
University of Trento

Department of Mathematics

Ph.D. in Mathematics

Ciclo XXV

On structure and decoding of Hermitian
codes

Chiara Marcolla

Supervisor: Prof. Massimiliano Sala

Head of PhD School: Prof. Alberto Valli

April, 2013

University of Trento

Department of Mathematics

Ph.D. in Mathematics

Ciclo XXV

On structure and decoding of Hermitian
codes

Ph.D.Thesis of:
Chiara Marcolla

Supervisor:
Prof. Massimiliano Sala

Head of PhD School:
Prof. Alberto Valli

April, 2013

Contents

I Preliminaries 1

1 Coding Theory 3

1.1 An overview on error correcting codes 3

1.2 Linear codes . 4

1.2.1 Basic de�nitions . 4

1.2.2 Decoding linear codes . 6

1.2.3 Probability of the Undetected Error 8

1.3 Cyclic codes . 9

1.3.1 An algebraic correspondence 9

1.3.2 Encoding and decoding with cyclic codes 12

2 Introduction to Gröbner bases 15

2.1 Monomial ordering . 15

2.2 Basic notions about ideals and Gröbner bases 18

2.3 Elimination Theory . 24

3 Hermitian and Norm-Trace curves 27

3.1 Known facts on Norm-Trace curve and Hermitian curve 27

3.2 Intersection between the Hermitian curve H and a line 28

3.3 Automorphisms of Hermitian curve 29

3.4 Automorphisms of Norm-Trace curve 30

4 A�ne-variety codes 31

4.1 A�ne�variety codes . 31

4.2 Norm-Trace codes and Hermitian codes 32

4.2.1 First results on words of given weight 33

4.3 The approach by Fitzgerald and Lax to decoding the a�ne-variety code 34

4.4 Base notion for decoding using our method 35

4.4.1 Strati�ed ideals . 35

4.4.2 Root multiplicities and Hasse derivative 37

4.4.3 General error locator polynomials 38

CGC i

5 The four phases of Hermitian codes 41

5.1 Numerical semigroups . 41

5.2 Analysing Hermitian codes using numerical semigroups 42

5.3 Phases intersections . 46

II Main Results 53

6 Intersections between the Hermitian curve H and parabolas 55

6.1 Odd characteristic . 58

6.1.1 Intersection between H and y = ax2 + c 58

6.1.2 Intersection between H and y = ax2 + bx+ c 62

6.2 Even characteristic . 68

7 Small-weight codewords of Hermitian codes 71

7.1 Corner codes and edge codes . 71

7.2 First results for the �rst phase . 72

7.3 Minimum-weight codewords . 74

7.4 Second-weight codewords . 78

7.5 The complete investigation for d = 3, 4. 82

7.6 On the geometry of small weight codewords of AG codes 87

8 Decoding of a�ne-variety codes 95

8.1 Decoding with ghost points . 96

8.2 Weak locator polynomials . 101

8.3 Results on some zero�dimensional ideals 110

8.4 Proof of Proposition 8.3.13 . 118

8.4.1 Preliminaries of proof . 118

8.4.2 Sketch of proof . 120

8.4.3 First part of the proof . 121

8.4.4 Second part of proof . 122

8.4.5 Third part of the proof . 125

8.5 Multi-dimensional general error locator polynomials 127

8.6 Stu�ed ideals . 131

8.7 Families of a�ne�variety codes . 135

8.7.1 SDG curves . 135

8.7.2 SDG surfaces I . 136

8.7.3 SDG surfaces II . 137

8.7.4 Norm�trace curves . 137

ii

8.7.5 Hermitian curves . 138

III Programs and Computations 141

9 Hermitian curve and Hermitian code 143

9.1 MAGMA programs to compute intersection between H and parabolas. 143

9.2 MAGMA programs to compute the number of minimum-weight words

of Hermitian code. 148

9.3 Singular programs to compute the number of words of weight d+ 1. . 151

10 Decoding a�ne�variety code 155

10.1 Singular programs to �nd weak locators. 155

10.2 Singular programs to �nd the locators. 158

Bibliography 175

iii

Introduction

Given a linear code, it is important both to identify fast decoding algorithms and

to estimate the �rst terms of its weight distribution. E�cient decoding algorithms

allow the exploitation of the code in practical situations, while the knowledge of the

number of small-weight codewords allows to estimate its decoding performance. For

a�ne-variety codes and its subclass formed by Hermitian codes, both problems are

as yet unsolved. We investigate both and provide some solutions for special cases of

interest.

The �rst problem is faced with use of the theory of Gröbner bases for zero-dimensional

ideals.

The second problem deals in particular with small-weight codewords of high-rate

Hermitian codes. We determine them by studying some geometrical properties of

the Hermitian curve, speci�cally the intersection number of the curve with lines and

parabolas.

This thesis is divided in two parts.

The �rst part contains preliminaries and known results except for some sections

that contain original results, namely Section 3.4 where we �nd some automorphisms

of Norm-Trace curve and Subsection 4.2.1 which is devoted to �nd a system that

permits us to compute the number of words of a given weight. Finally in Section 5.3

we revisit the phases of Hermitian codes proposed by [HvLP98].

Known results include basic theory and notations of linear codes ([AE09],[HP03],

[MS77]) and of Gröbner bases ([CLO07], [ST09]). Some material comes from the lec-

ture notes of the course Coding Theory lectured by M. Sala and written by E. Bellini,

D. Frapporti, O. Geil, M. Piva, M. Sala). In Chapter 4 we de�ne the most important

objects of this thesis, that is, the A�ne-variety codes and Hermitian codes, explain

the classical decoding and provide some preliminary results for our decoding method.

Part II contains our results. In particular, Chapter 6 and Chapter 7 describe

our paper [MPS12], except for last section where we report our results in [FM11].

Chapter 8 comprises the results of our article [MOS12].

CGC v

This part is organized as follows:

� In Chapter 6 the main result is Theorem 6.0.1, where we provide a complete

classi�cation of intersections between H and any parabola y = ax2 + bx + c

(a 6= 0). The proof is divided in three main parts. In the �rst part of Chapter 6

we lay down some preliminary lemmas and we skecth our proving argument, that

is, the use of the authomorphism group for H. In Section 6.1 we deal with the

odd-characteristic case and in Section 6.2 we deal with the even-characteristic

case.

� In the beginning of Chapter 7 we analyse in depth the �rst-phase Hermitian

codes (that is, codes such that d ≤ q). We give our algebraic characteriza-

tion in Section 7.2 and we use these results to completely classify geometrically

the minimum-weight codewords for all �rst-phase codes in Section 7.3. In Sec-

tion 7.4 we can count some special con�gurations of second-weight codewords

for any �rst-phase code and �nally in Section 7.5 we can count the exact number

of second-weight codewords for the special case when d = 3, 4.

� In Chapter 8 we generalize the general error locator polynomials (that are poly-

nomials introduced in [OS05] to decode cyclic codes) to cover also the multi-

dimensional case and hence the a�ne-variety case. This chapter contains the

following sections.

- In Section 8.1 we introduce the notion of �ghost points�, which are points

added to the variety to play the role of non-valid error locations.

- Using the de�nition of ghost point, in Section 8.2 we can de�ne a �rst

generalization of general error locator polynomials to the multivariate case

(De�nition 8.2.5), which provides a �rst decoding strategy. We also in-

troduce evaluator polynomials (De�nition 8.2.6) that permits a second

strategy.

- In Section 8.3 we study the �multi-dimensional case� of a strati�ed ideal,

that is precisely the theoretical background that we need for any multivari-

ate generalization of general locators. Unexpectedly, there is no obvious

�natural� way to extend the core notion of strati�ed ideals. We present

three generalizations in De�nition 8.3.4 and De�nition 8.3.5. We discuss

their implications and provide some preliminary results. This section ends

with the statement of Proposition 8.3.13, which is the main result claimed

in this section (but not proved here). Proposition 8.3.13 is, in some sense,

the multivariate analogue of Proposition 4.4.3 on strati�ed ideals.

vi

- Section 8.4 is devoted to the long proof of Proposition 8.3.13. This propo-

sition describes some features of the Gröbner basis of (the elimination

ideals of) a zero-dimensional radical ideal J . The proof is constructive and

relies on iterated applications of some versions of the Buchberger-Möller

algorithm.

- Unfortunately, result in the multidimensional case, Proposition 8.3.13, is

not as strong as our result in the one-variable case, Proposition 4.4.3. In

Section 8.5, it does allow us to prove the existence of our �rst generalization

of locators in Theorem 8.5.1, but we show that better locators can be found,

as in De�nition 8.5.2. We discuss with examples a new decoding strategy

by applying these locators, but for the moment we are unable to prove

their existence, since they use multiplicities. This will be done in the next

section.

- In Section 8.6 we develop the theory for generalizing strati�ed ideals to

the multivariate case with multiplicities.

As usual, we are interested in suitable Gröbner bases of elimination ideals

of some zero-dimensional ideals. First, we introduce the notion of stu�ed

ideals (De�nition 8.6.1), which basically means that the roots of some

polynomials in these Gröbner bases have the �expected� multiplicity. We

give a constructive method (�stu�ng�) to obtain stu�ed ideals from special

classes of ideals (in particular, radical ideals will do). Our main results here

are Theorem 8.6.4, that ensures that the desired shape of our Gröbner bases

is unchanged under stu�ng, and Theorem 8.6.6, that ensures the existence

of our sought-after locators (in our Gröbner bases).

- In Section 8.7 we compute some examples from di�erent families of a�ne-

variety codes. In particular, we formally determine the shape for multi-

variate locator polynomials in the Hermitian case, for any q ≥ 2 and t = 2

(Theorem 8.7.3), both in our weaker version and in our stronger version.

� In Chapter 9 we show how we computed speci�c examples and tested experi-

mentally all our counting results.

An appendix with some explicit locators concludes this document.

vii

Part I

Preliminaries

1

Coding Theory

In this chapter we summarize de�nitions and known results from [AE09, HP03, MS77].

We denote by Fq the �eld with q elements, where q is a power of a prime, and

by n ≥ 1 a natural number. Let (Fq)n be the vector space of dimension n over Fq.
From now on, we denote by K any (not necessarily �nite) �eld and by K its algebraic

closure.

1.1 An overview on error correcting codes

In 1948 Claude Shannon published a paper, A mathematical theory of commu-

nication [Sha48], that was the beginning of Coding Theory. In this paper Shannon

de�ned a number Q called the capacity of the channel and proved that for any given

degree of noise contamination of a communication channel, it is possible a communi-

cation nearly error-free up to Q.

This result guarantees that any data can be encoded before transmission so that the

altered data can be decoded to the speci�ed degree of accuracy. Hence the codes were

invented to correct the errors that occur during the transmission. The basic idea of

coding theory consists of adding some kind of redundancy to the message m which

the information source A wants to send to a destination B.

In the Figure 1.1 the message m is encoded by the encoder into a codeword c and

CHANNEL

SOURCE

A

DESTINATION

B

MESSAGE CODEWORD RECEIVED ESTIMATE
MESSAGE OF MESSAGE

ERROR
VECTOR

m = m1, . . . ,mk c = c1, . . . , cn

e = e1, . . . , en

y = c+ e m̂

ENCODER DECODER

Figure 1.1: A communication schema

the information is sent through a channel. In this channel there is some interference

(noise) and so a codeword c is changed to another vector y = c+ e, where e is called

CGC 3

Chapter 1. Coding Theory

error vector. Finally the vector y is decoded using the decoder, but only if the oc-

curred errors are not too many (in a sense that will be clear later), the receiver is

able to recover the original message m.

In the next sections we will describe some basic concepts about coding theory

considering the coding procedure as a linear function between vector spaces.

1.2 Linear codes

1.2.1 Basic de�nitions

Linear codes are widely studied because of their algebraic structure, which makes

them easier to describe than non-linear codes.

De�nition 1.2.1. Let k, n ∈ N such that 1 ≤ k ≤ n. A vector subspace of (Fq)n of

dimension k is a linear code C over Fq with length n and dimension k. An element

of C is called a word of C.

We indicate by [n, k]q a linear code over Fq with length n and dimension k and

we call binary code a code over F2.

Note that if C is a linear code [n, k]q, than C has qk codewords.

De�nition 1.2.2. If C is an [n, k]q code, then any k × n matrix G whose rows form

a basis for C is called a generator matrix for C.

In general there are many generator matrices for a code. For any set of k inde-

pendent columns of a generator matrix G, the corresponding set of coordinates forms

an information set for C. The remaining r = n− k coordinates forms a redundancy

set and r is called the redundancy of C. If the �rst k coordinates form an information

set, then C has a unique generator matrix G =
[
Ik | A

]
, where Ik is the k×k identity

matrix. G is called a generator matrix in standard form.

Thanks to this algebraic description, to encode a message m ∈ (Fq)k into the

word c ∈ (Fq)n, it is su�cient to perform the matrix multiplication mG = c. When

the generator matrix is in standard form [Ik | A], m is encoded in mG = (m,mA),

where (x, y) denote the vector obtained by the concatenation of x and y. In this case

the message m is formed by the �rst k components of the associated word. For this

reason, the set formed by the �rst k columns of G is called information set and this

type of encoding is called systematic.

4

1.2. Linear codes

De�nition 1.2.3. If C is an [n, k]q code, its dual code C⊥ is the set of vectors

orthogonal to all words of C:

C⊥ = {v ∈ (Fq)n | v · c = 0,∀c ∈ C}.

Thus C⊥ is an [n, n− k]q code.

A generator matrix of C⊥ is called parity-check matrix of C.

De�nition 1.2.4. A parity-check matrix H for an [n, k]q code C is a generator

matrix (n− k)× n for C⊥.

It is easy to see that C may be expressed as the null space of a parity-check

matrix H, that is,

∀x ∈ (Fq)n, HxT = 0 ⇐⇒ x ∈ C.

Theorem 1.2.5. If G =
[
Ik | A

]
is a generator matrix for the [n, k]q code C in

standard form, then H =
[
AT | In−k

]
is a parity check matrix for C

Proof. See Theorem 1.2.1 of [HP03].

For any two vectors x, y ∈ (Fq)n, we de�ne the (Hamming) distance d(x, y) be-

tween x and y as the number of coordinates in which x and y di�er.

Whereas, the (Hamming) weight w(x) of a vector x ∈ (Fq)n is the number of its

nonzero coordinates, that is,

w(x) = d(x, 0).

De�nition 1.2.6. The distance of a code C is the smallest distance between dis-

tinct words, that is,

d(C) = min{d(ci, cj) | ci, cj ∈ C, ci 6= cj}.

If we know the distance d = d(C) of an [n, k]q code, then we can refer to the code

as an [n, k, d]q code.

It is simple to prove that following proposition.

Proposition 1.2.7. Let C be a [n, k, d]q code, then

d(C) = min{w(c) | c ∈ C, c 6= 0}.

De�nition 1.2.8. Let C be an [n, k, d]q code and let Ai be the number of codewords

having weight i. The weight distribution of C is the sequence {Ai} with 1 ≤ i ≤ n.

If for any i, Ai = An−i, then we have a symmetric weight distribution.

It is simple to prove the following proposition.

5

Chapter 1. Coding Theory

Proposition 1.2.9. Let C be an [n, k, d]q code and let H be a parity-check matrix

of C. If H has w linearly dependent columns, then exists a codeword in C of weight

less than or equal to w. As a consequence, if any subset of r columns of H is linearly

independent, then d(C) ≥ r + 1.

An immediate consequence of the previous proposition is an upper bound on the

distance of a code in terms of the length and the dimension.

Proposition 1.2.10 (Singleton Bound). Let C be an [n, k, d]q code, then

d ≤ n− k + 1.

A code achieving this bound is called maximum distance separable (MDS).

Finally, we de�ne a subcode of a code C as a subspace of C.

1.2.2 Decoding linear codes

The distance of a code C is important to determine both the error correction

capability of C, that is, the number of errors that the code can correct and its error

detection capability, that is, the number of errors that the code can detect. In fact,

we can see the noise as a perturbation that moves a word into some other vector. If

the distance between the words is large, there is a low probability that the noise can

move a codeword near to another one. To be more precise, we have the following

theorem.

Theorem 1.2.11. Let C be an [n, k, d]q code, then C has detection capability d − 1

and it has correction capability t = bd−1
2
c.

Proof. See Theorem 1.11.4 of [HP03] or Theorem 2 of �3 of [MS77, 1].

Let c ∈ C be the word transmitted and let y ∈ (Fq)n be the vector received, then

e = y − c is the error vector. If we apply the parity-check matrix H to y, we get:

HyT = H(c+ e)T = HeT = s.

De�nition 1.2.12. The elements in (Fq)n−k, s = HyT , are called syndromes. We

say that s is the syndrome corresponding to y.

Note that if we transmit another word and the same error e occurs, we get the

same syndrome. So the syndrome does not depend on the speci�c word sent, but only

on the occurred error e.

We de�ne a coset as the a�ne subspace associated to the vector subspace C, that is,

a+ C = {a+ c | c ∈ C} with a ∈ (Fq)n.

6

1.2. Linear codes

Note that (Fq)n can be partitioned into qn−k cosets of size qk.

Two vectors a, b ∈ (Fq)n belong to the same coset if and only if a − b ∈ C. The

following fact is just a reformulation of our arguments.

Theorem 1.2.13. Let C be an [n, k, d]q code. Two vectors a, b ∈ (Fq)n are in the

same coset if and only if they have the same syndrome.

Proof. Let a, b ∈ (Fq)n. Then a, b belong to the same coset if and only if

a− b ∈ C ⇐⇒ H(a− b)T = 0 ⇐⇒ HaT = HbT .

De�nition 1.2.14. Let C be an [n, k, d]q code. For any coset a + C and any vector

v ∈ a+C, we say that v is a coset leader if it is an element of minimum weight in

the coset.

De�nition 1.2.15. If s is a syndrome corresponding to an error e of weight w(e) ≤ t,

then we say that s is a correctable syndrome and e a correctable vector error.

Theorem 1.2.16 (Correctable syndrome). If no more than t errors occurred (i.e.

w(e) ≤ t), then there exists only one error e corresponding to the correctable syndrome

s = He and e is the unique coset leader of e+ C.

Proof. See Corollary 1.11.3 of [HP03]

We are ready to describe the decoding algorithm of linear codes, that is the de-

coding using standard array. The standard array is a matrix that contains the 2n

vectors of (Fq)n ordered by coset. Then the complexity of the decoding procedure is

exponential in terms of memory occupancy.

The decoding procedure is the following.

1. After receiving a vector y ∈ (Fq)n, compute the syndrome s = HyT .

2. Find z, a coset leader of the corresponding coset.

This is equivalent to �nding a vector e of smallest weight in the coset containing

y such that y − e ∈ C.

3. The decoded word is c = y − z.

4. Recover the message m from c (in case of systematic encoding m consists of

�rst k components of c).

In [BKvT99], [BMvT78] and [Var97] it is shown that the general decoding problem

for linear codes and the general problem of �nding the distance of a linear code are

both NP-complete. This suggests that no algorithm exists that decodes linear codes

in a polynomial time.

7

Chapter 1. Coding Theory

1.2.3 Probability of the Undetected Error

When decoding using the standard array, the error vector e chosen by the decoder

is always one of the coset leaders. The decoding is correct if and only if the true error

vector is the coset leader. That is, if w(e) > t, then the decoder may make an error

and the output is another codeword. The probability that the decoder output is the

wrong codeword is called Probability of the Undetected Error (PUE) or word error

rate.

We will de�ne the PUE in a q-ary symmetric channel. That is,

De�nition 1.2.17. A q-ary symmetric channel (SC) is a channel which has the

following properties:

1. the component of a transmitted word (that we call �symbol�) can be changed

only to another element of Fq.

2. The probability that a symbol becomes another one is the same for all symbols.

3. The probability that a symbol changes during the transmission does not depend

on its position.

4. If the i-th component is changed, then this fact does not a�ect the probability of

change for the j-th components.

To these channel properties it is usually added a source property, that is,

5. all words are equally likely to be transmitted.

Obviously, the q-ary SC is a model that rarely can describe real channels, but it

permits a simpler construction of the theory. Now we are going to see in which way.

Let p be the probability that the symbol 1 become 0 or vice-versa where 1 ≤ p < 1/q.

Suppose that during the transmission occurs an error e. The probability that e is the

vector v ∈ (Fq)n of weight i is

Prob{e = v} = pi(1− p)n−i. (1.1)

Hence, if the code C has weight distribution {Ai} with 0 ≤ i ≤ n, then by (1.1)

PUE =
n∑
i=1

Aip
i(1− p)n−i.

Note that if p is very low, then the PUE is more in�uenced by the small weight

codewords.

8

1.3. Cyclic codes

1.3 Cyclic codes

1.3.1 An algebraic correspondence

De�nition 1.3.1. An [n, k, d]q linear code C is a cyclic code if the cyclic shift of a

word is also a word, that is,

(c0, . . . , cn−1) ∈ C =⇒ (cn−1, c0, . . . , cn−2) ∈ C.

A powerful instrument to describe algebraic properties of cyclic codes is to rep-

resent codewords in polynomial form. Detail can be found in Chapter 4 of [HP03].

Here we report an informal introduction of some tools that we will use in Section 2.2.

Let Fq[x] be a polynomial ring. For any f ∈ Fq[x] we denote

〈f〉 = {fg | g ∈ Fq[x]}

and we say that 〈f〉 is an ideal. We construct a bijective correspondence between the

vectors c = (c0, . . . , cn−1) of (Fq)n and the polynomials c(x) = c0 +c1x+· · ·+cn−1x
n−1

in Fq[x] of degree at most n− 1.

Note that if c(x) is a word, then the shift to the right of c(x) is xc(x) mod xn − 1.

This suggests that the words of cyclic codes can be represented as polynomials in a

residue class ring R = Fq[x]/I, where I is the ideal I = 〈xn−1〉. So we can identify C

with a subset of R and thus, with a slight abuse of notation, we can multiply elements

of C with polynomials modulo xn − 1

Knowing that xi · c ∈ C for any c ∈ C, it is simple to prove the following theorem.

Theorem 1.3.2. Let C be an [n, k, d]q code. Then C is cyclic if and only if C is an

ideal of R.

Let C be an [n, k, d]q cyclic code. It is easy to prove (see Theorem 4.2.1 and

Corollary 4.2.2 of [HP03]) that there exists a unique monic polynomial g of minimal

degree that generates C as an ideal of R. Moreover,

if C = 〈g〉 =⇒ g divides xn − 1 in Fq[x] and its degree is deg(g) = n− k.

We call g the generator polynomial of C.

A generator matrix can easily be given by using the coe�cients of the generator

polynomial g =
∑n−k

i=0 gix
i:

G =


g

xg
...

xkg

 =


g0 g1 . . . gn−k 0 . . . 0

0 g0 . . . gn−k−1 gn−k 0 0
...

. . .
...

.

0 . . . 0 g0 g1 . . . gn−k

 .

9

Chapter 1. Coding Theory

Previous observations imply that cyclic codes of length n over Fq are generated by

divisors of xn − 1. Let

xn − 1 =
s∏
j=1

fj, fj irreducible over Fq.

Then to any cyclic code of length n over Fq corresponds a subset of {fj}sj=1. So, to

�nd all cyclic codes, we have to �nd the irreducible factors of xn − 1 over Fq. Let

us put ourselves in the case xn − 1 has no repeated factors which is when q and n

are relatively prime. To factorize xn − 1 over Fq, we need to �nd all zeros of xn − 1

in some extension �eld Fqr , for some r ∈ N. The smallest �eld containing Fq and to

which these roots belong is called the splitting �eld of xn − 1 over Fq.

Theorem 1.3.3. Let n, q be coprime. Let Fqr be the splitting �eld of xn− 1 over Fq.
Then exist α ∈ Fqr such that

xn − 1 =
n−1∏
i=0

(x− αi).

This element α is called primitive n-th root of unity.

Proof. See Theorem 4.1.1 of [HP03].

Note that (see Theorem 3.7.4. of [HP03]) if f(x) is a polynomial in Fq[x] and if α

is a root of f(x) in some extension �eld Fqr , then:

1. f(xq) = f(x)q

2. αq is also a root of f(x) ∈ Fq.

Hence, in this case the generator polynomial of C has powers of α as roots.

De�nition 1.3.4. Let n, q be coprime. Let C be an [n, k, d]q cyclic code with generator

polynomial g. The set:

SC,α = SC = {i1, . . . , in−k | g(αij) = 0, j = 1, . . . , n− k}

is called the complete de�ning set of C.

The q-cyclotomic class of i, or q-cyclotomic coset of i, is the set

Ci = {i, qi, . . . , qmi},

where m is the smallest positive integer such that i ≡ iqm mod n.

10

1.3. Cyclic codes

So the complete de�ning set of a cyclic code is the collection of q-cyclotomic classes.

From now on we �x a primitive n-th root of unity α and we write SC,α = SC . A

cyclic code is de�ned by its complete de�ning set, since

C = {c ∈ R | c(αi) = 0, i ∈ SC} ⇐⇒ g =
∏
i∈SC

(x− αi).

By this fact it follows that

H =


1 αi1 α2i1 · · · α(n−1)i1

1 αi2 α2i2 · · · α(n−1)i2

...
...

...
. . .

...

1 αin−k α2in−k · · · α(n−1)in−k


is a parity-check matrix (de�ned over Fqm) for C.
In fact, if c(x) = c0 + c1x+ · · ·+ cn−1x

n−1, then c(αh) =
∑n−1

i=0 ciα
ih, so

HcT =


c(αi1)

c(αi2)
...

c(αin−k)

 =

 0
...

0

 ⇐⇒ c ∈ C.

Remark 1.3.5. We note that, since SC is partitioned into cyclotomic classes, there are

some subsets S ′C of SC (containing at least one element for each cyclotomic coset of

SC) any of them su�cient to specify the code unambiguously and we call any such

S ′C a de�ning set.

Theorem 1.3.6 (BCH bound). Let C be an [n, k, d]q cyclic code with complete

de�ning set SC = {i1, . . . , in−k} and let (n, q) = 1. Suppose there are δ−1 consecutive

numbers in SC, say {m0,m0 + 1, . . . ,m0 + δ − 2} ⊂ SC. Then

d ≥ δ.

Proof. See Theorem 4.5.3 of [HP03].

Now we are able to de�ne two particular cyclic codes, BCH codes and Reed

Solomon codes.

De�nition 1.3.7. Let C be the [n, k, d]q cyclic code with de�ning set S = (m0,m0 +

1, . . . ,m0 + δ − 2) such that

0 ≤ m0 ≤ · · · ≤ m0 + δ − 2 ≤ n− 1

Then, C is a BCH code of designed distance δ. The BCH code is called narrow

sense if m0 = 1 and it is called primitive if n = qm − 1.

11

Chapter 1. Coding Theory

Example 1.3.8. We consider the polynomial x9 − 1 over F2:

x9 − 1 = (x+ 1)
↑
f1

(x6 + x3 + 1)
↑
f2

(x2 + x+ 1)
↑
f3

Let C be the cyclic code generated by g = f1 ·f2. Let α a primitive n-th root of unity

such that f2(α) = 0, then SC = {0, 1, 2, 4, 5, 7, 8}. Hence C is a [9, 2, d] code over

F2 with SC as de�ning set and so it is a BCH code of designed distance δ = 6. The

BCH bound ensures that the minimum distance is at least 6. On the other hand, the

generator polynomial

g(x) = x7 + x6 + x4 + x3 + x+ 1

has weight 6, so the distance is exactly d = 6.

De�nition 1.3.9. A Reed Solomon code over Fq, denoted by RS(k, n,Fq), is a

BCH code with length n = q − 1.

Note that if n = q−1 then xn−1 splits into linear factors. If the designed distance

is d, then the generator polynomial of a Reed Solomon code has the form

g(x) = (x− αi0)(x− αi0+1) · · · (x− αi0+d−1)

and k = n− d+ 1. It follows that RS codes are MDS codes.

In Section 4.1 we will see the Reed-Solomon codes as a�ne-variety codes.

1.3.2 Encoding and decoding with cyclic codes

In this section we study the encoding and decoding of a message in the case of

cyclic codes.

Let C be an [n, k, d]q cyclic code with generator polynomial g of degree n−k. We

recall that C will correct at most t = bd−1
2
c errors.

Let m = (m0, . . . ,mk−1) be a message, we consider its polynomial representation

m(x) in the polynomial ring R. We can encode the message in two ways, the simpler

is to multiply m(x) by the generator polynomial g(x):

c(x) = m(x)g(x) ∈ C.

The other procedure exploits the proprieties of R and it is used to obtain a systematic

encoding. We have to multiply m(x) by xn−k and divide the result by g, obtaining:

m(x)xn−k = q(x)g(x) + r(x)

12

1.3. Cyclic codes

where deg(r(x)) < deg(g(x)) = n − k. So the polynomial representation of the

remainder is an (n− k)-vector. Joining the k-vector m with the (n− k)-vector r we

obtain an n-vector c, that is

c(x) = m(x)xn−k + r(x).

In this way, the message is formed by the last k components of the received word.

In the last case, to verify that some error occurred, it is su�cient to check if the

remainder of the division by g of the received polynomial c is di�erent from zero.

This procedure to compute the reminder is called Meggitt Decoding Algorithm (see

Section 4.6 of [HP03]).

Suppose that during the transmission an error e occurs with w(e) ≤ t. Then,

the remainder of the division by g in the procedure above gives exactly the syn-

drome associated to e. We can �nd e using the standard array which is described in

Subsection 1.2.2.

13

Introduction to Gröbner bases

In this chapter we will introduce some basic notions and known results from

[CLO07] and [ST09]. Some material comes from the lecture notes of the course Cod-

ing Theory lectured by M. Sala and written by E. Bellini, D. Frapporti, O. Geil, M.

Piva, M. Sala.

We denote by Fq the �eld with q elements, where q is a power of a prime. Let

n ≥ 1 be a natural number and let (Fq)n be the vector space of dimension n over Fq.
We denote by K any (not necessarily �nite) �eld and by K its algebraic closure.

2.1 Monomial ordering

A monomial in x1, . . . , xm is a product of the form

xα1
1 · . . . · xαmm

where all of the exponents αj are non negative integers. The sum α1 + . . . + αm is

de�ned to be the total degree of this monomial. We denote byM(X) = M the set

of all monomials in the variables x1, . . . , xm.

A polynomial f in x1, . . . , xm with coe�cients in K is a �nite linear combination

of monomials. That is,

f =
∑
α

aαx
α, aα ∈ K,

where xα = xα1
1 · . . . · xαmm and the sum is over a �nite number of m-uples α =

(α1, . . . , αm). Then we call aα the coe�cient of the monomial xα and we denote by

deg(f) the total degree of f which is the maximum |α| = α1 + . . .+αm such that the

coe�cient aα is nonzero.

Note that the sum and product of two polynomials is again a polynomial. It is

simple to prove that under addition and multiplication, K[x1, . . . , xm] = K[X] sa-

tis�es all �eld axioms except for the existence of multiplicative inverses (since, for

example, 1/x is not a polynomial). For this reason K[X], the set of all polynomials

CGC 15

Chapter 2. Introduction to Gröbner bases

in x1, . . . , xm with coe�cients in K, is called a polynomial ring.

Since a polynomial is a sum of monomials, we would like to be able to arrange

the terms in a polynomial unambiguously in descending (or ascending) order. To do

this, we have to de�ne a monomial ordering ≺.

De�nition 2.1.1. A monomial ordering ≺ is a binary relation onM such that:

1. ∀ m1 6= m2 ∈M, either m1 ≺ m2 or m2 ≺ m1.

∀ m1,m2,m3 ∈M, if m1 ≺ m2 and m2 ≺ m3, then m1 ≺ m3.

2. ∀ m1,m2,m ∈M if m1 ≺ m2 then m1 ·m ≺ m2 ·m.

3. ≺ is a well-ordering, i.e. every non-empty subset ofM has a least element.

Note that for every monomial ordering: 1 ≺ m.

Now that we have de�ned monomial ordering, we report some examples. We can

suppose that x1 � . . . � xm and let m1,m2 ∈ M such that m1 = xα1
1 · . . . · xαmm and

m2 = xβ1

1 · . . . · xβmm .

Lex that is a lexicographic order. We say that m1 ≺lex m2 if there exists j such that

αj < βj and αi = βi for 1 ≤ i < j ≤ m.

Example 2.1.2. LetM =M[x, y, z] and x � y � z. Then

x2 � y4 and x2yz3 � xy4z.

GrLex that is a graded lexicographic order and it is also call total lexicographic order.

We say that m1 ≺GrL m2 if |α| < |β| or if |α| = |β| and m1 ≺lex m2.

Example 2.1.3. LetM =M[x, y, z] and x � y � z. Then

x2 ≺ y4 and x2yz3 � xy4z.

DegRevLex that is a graded reverse lexicographic order. To say that m1 ≺DRL m2,

�rst of all we compare their total degrees: if |α| < |β| then m1 ≺DRL m2,

otherwise we have to compare the total degree of n1 = xα1
1 · . . . · x

αm−1

m−1 and

n2 = xβ1

1 · . . . · x
βm−1

m−1 , and so on.

Example 2.1.4. LetM =M[x, y, z] and x � y � z. Then

x2 ≺ y4 and x2yz3 ≺ xy4z since x2y ≺ xy4.

16

2.1. Monomial ordering

Note that DegRevLex is the same to reverse the lexicographic order, that is,

m1 ≺DRL m2 if there exists j that αj > βj and αj = βj for 1 ≤ j < i ≤ m.

Weighted Degree. We assign a weight wi ∈ N ∗ to each variable xi and we denote

by w(m1) =
∑

i αiwi and by w(m2) =
∑

i βiwi. We say that m1 ≺w m2 if either

w(m1) < w(m2) or w(m1) = w(m2) and m1 ≺lex m2.

Example 2.1.5. LetM =M[x, y, z] and x � y � z. We assign the weight to

each variables wx = 2, wy = 1 wz = 3. Then

x2 ≺ y4 and x2yz3 � xy4z.

Block Order. Let X = {x1, . . . , xm} and Y = {y1, . . . , yr} be two variable sets.

Let ≺X and ≺Y be two orders, on the monomials of X and on the monomials

of Y , respectively. That is m1,m2 as previous and n1 = y γ1

1 · . . . · y γrr and

n1 = y δ11 · . . . · y δrr . Let < as (≺X ,≺Y) a block order on the monomials of X ∪Y .
We say that m1n1 < m2n2 if n1 ≺Y n2 or if n1 = n2 and m1 ≺X m2. The

de�nition of a block order for more variable sets is a direct generalization.

Example 2.1.6. Let M = M[x1, x2, y1, y2, y3] and let <= (≺lex,≺GrL) and

x1 � x2 � y1 � y2 � y3. Then

x2
1 ≺ x2y

2
3 and x1y1y

3
2 � x3

2y1y
3
2 since x1 � x3

2.

We will use the following terminology.

De�nition 2.1.7. Let Ω ∈ Nm. Let f =
∑

α∈Ω aαx
α be a non zero polynomial in

K[X] and let ≺ be a monomial ordering. We say that xβ is the leading monomial

of f if xβ � xα for all α 6= β such that α ∈ Ω and it is denoted by lm(f) = xβ .

We denote by T(f) = aβx
β the leading term of f and by lc(f) = aβ the leading

coe�cient of f .

Using a monomial ordering, it can be proven that the leading monomial, the

leading term and the leading coe�cient of f are well de�ned and unique.

Example 2.1.8. Let f = 4x2y + xy3z + 5z in R[x, y, z] and let �lex be a lex order.

Then lm(f) = x2y, lc(f) = 4 and T(f) = 4x2y.

17

Chapter 2. Introduction to Gröbner bases

2.2 Basic notions about ideals and Gröbner bases

In this section we consider the ideals and the classic results of these algebraic

objects.

De�nition 2.2.1. A subset I ⊂ K[X] is an ideal if

1. 0 ∈ I.

2. If f, g ∈ I then f + g ∈ I.

3. If f ∈ I and h ∈ K[X] then fh ∈ I.

Let f1, . . . , fs be polynomials in K[X]. If

I =
{ s∑

i=1

λifi | λi ∈ K[X]
}

then I is �nitely generated by f1, . . . , fs and it is denoted by I = 〈f1, . . . , fs〉.

An ideal generated by one element is called a principal ideal.

A commutative ring A is a Noetherian ring if any ideal I ⊂ A is �nitely generated.

De�nition 2.2.2. We de�ne a semigroup ideal T as a subset of M such that for

all t ∈ T , m ∈M we have t ·m ∈ T .

Let t1, . . . , tk ∈M and set:

T =
k⋃
i=1

{λti | λ ∈M}.

Then T is a semigroup ideal ofM. We say that T is generated by {t1, . . . , tk} and
we write T = 〈t1, . . . , tk〉.

Lemma 2.2.3. Let M ⊂ M and I = 〈mi | mi ∈ M〉 be an ideal. Then a monomial

m lies in I if and only if m is divisible by mi for some mi ∈M .

Proof. See Lemma 2 of chapter 2 of [CLO07, �4].

Theorem 2.2.4 (Dickson's Lemma). Every semigroup ideal is generated by a �nite

set.

Proof. See Theorem 5 of chapter 2 of [CLO07, �4].

18

2.2. Basic notions about ideals and Gröbner bases

In the previous section, we de�ned the leading term of f ∈ I. For any ideal I, we

can de�ne its ideal of leading terms T(I) as the set of leading terms of elements of I.

That is,

T(I) = {λm | there exists f ∈ I with T(f) = λm}.

And we denote by 〈T(I)〉 the ideal generated by the elements of T(I).

In a similar way we can de�ne the ideal of leading monomials of I, that is,

lm(I) = {lm(f) | f ∈ I} ⊂ M.

It is clear that lm(I) is a semigroup ideal.

Note that, if I = 〈f1, . . . , fk〉, then 〈T(f1), . . . ,T(fk)〉 ⊆ 〈T(I)〉, but these two

ideals may be di�erent and it is the same for lm(I).

Example 2.2.5. Let I = 〈f1, f2〉 where f1 = x2 − x and f2 = xy − y + 1. We use

lexicographic ordering on the monomials in K[x, y]. Then xf2 − yf1 = x, so x ∈ I.
Thus x = T(x) ∈ 〈T(I)〉 but x is not divisible by T(f1) = x2 or T(f2) = xy. Hence,

by Lemma 2.2.3, x 6∈ 〈T(f1),T(f2)〉.

Proposition 2.2.6. Let I ⊂ K[X] be an ideal. Then 〈T(I)〉 is a monomial ideal and

there are g1, . . . , gk ∈ I such that 〈T(I)〉 = 〈T(g1), . . . ,T(gk)〉.

Proof. See Proposition 3 of chapter 2 of [CLO07, �5].

Theorem 2.2.7 (Hilbert Basis Theorem). Any ideal I ⊂ K[X] has a �nite generating

set.

Proof. See Theorem 4 of chapter 2 of [CLO07, �5].

We just noted, in Example 2.2.5, that not all bases {f1, . . . , fk} of an ideal I have

the special property that 〈T(I)〉 = 〈T(f1), . . . ,T(fk)〉. Those bases for which the

equality holds give rise to the following de�nition.

De�nition 2.2.8. Let I be an ideal and ≺ be a monomial ordering. We say that

G = {g1, . . . , gk} is a Gröbner basis for I if 〈T(I)〉 = 〈T(g1), . . . ,T(gk)〉. We

denote by GB(I).

Equivalently, G is a Gröbner basis of I if G ⊆ I and if for all f ∈ I there exist

gi ∈ G such that lm(gi) divides lm(f).

19

Chapter 2. Introduction to Gröbner bases

Theorem 2.2.9 (Buchberger Theorem). For every ideal I ⊆ K[X] and for every

monomial ordering ≺ onM, there exist a Gröbner basis G for I.

Proof. See Corollary 6 of chapter 2 of [CLO07, �5].

Moreover, there exists an algorithm, that is, Buchberger algorithm [Buc06, Buc98]

[CLO07, 2�7] that transforms any �nite set of generators for I into a Gröbner basis.

Actually, Gröbner bases computed using the Buchberger algorithm are often bigger

than necessary. We can eliminate some unneeded generators by using the following

lemma.

Lemma 2.2.10. Let G be a Gröbner basis for the polynomial ideal I. Let g ∈ G be a

polynomial such that T(g) ∈ 〈T(G\{g})〉. Then G\{g} is also a Gröbner basis for I.

Proof. See Lemma 3 of chapter 2 of [CLO07, �7].

Because of Lemma 2.2.10, we can de�ne a minimal Gröbner basis for I ⊆ K[X]

as a Gröbner basis G for I such that for all g ∈ G we have that lc(g) = 1 and

T(g) 6∈ 〈T(G\{g})〉.
Unfortunately, a given ideal I may have many minimal Gröbner bases. But we can

de�ne a special minimal basis, that we call a reduced basis. In this way to any ideal

we can associate a unique basis.

De�nition 2.2.11. Let G = {g1, . . . , gk} be a Gröbner basis for I. We say that G is

reduced if for all g ∈ G, lc(g) = 1 and no monomial of g divides T(gi) where gi 6= g

and gi ∈ G.

Proposition 2.2.12. Let I 6= {0} be a polynomial ideal. Then, for a given monomial

ordering, I has a unique reduced Gröbner basis.

Proof. See Proposition 6 of chapter 2 of [CLO07, �7].

For any ideal I in a polynomial ring K[X], X = {x1, . . . , xm}, we denote by V(I)

the variety of I in K, that is the set of all zeros of I in K

V(I) = {P ∈ Km | f(P) = 0 ∀ f ∈ I}.

Theorem 2.2.13. Let I = 〈f1, . . . , fk〉 be an ideal in K[X] and let P ∈ Km
. Then

f1(P) = . . . = fk(P) = 0 ⇐⇒ g(P) = 0 ∀ g ∈ I.

Proof. See Proposition 9 of chapter 2 of [CLO07, �5].

20

2.2. Basic notions about ideals and Gröbner bases

De�nition 2.2.14. Let I be an ideal. If the cardinality of V(I) is �nite, then I is

called a 0-dimensional ideal.

Theorem 2.2.15 (The Weak Nullstellensatz). Let K be an algebraically closed �eld

and let I ⊆ K[X] be an ideal satisfying V(I) = ∅. Then I = K[X].

Proof. See Theorem 1 of chapter 4 of [CLO07, �2].

De�nition 2.2.16. For any Z ⊂ Km
a set of points, we denote by I(Z) the vanish-

ing ideal of Z, I(Z) ⊂ K[X], that is, I(Z) = {f ∈ K[X] | f(P) = 0 ∀P ∈ Z}.

Theorem 2.2.17 (Buchberger-Möller). Let Z be a �nite set of points in Km. Let

G = {g1, . . . , gk} be a strictly ordered reduced Gröbner basis of I = I(Z), that is

lm(g1) ≺ . . . ≺ lm(gk). Let P = (p1, . . . , pm) be a point that does not belong to Z,

then a Gröbner basis for I ′ = I(Z ∪ {P}) is G ′ = G1 ∪G2 ∪G3, with

� G1 = {g ∈ G | lm(g) ≺ lm(g∗)},

� G2 = {(xi − pi)g∗ | 1 ≤ i ≤ m},

� G3 = {g − g(P)
g∗(P)

g∗ | lm(g) � lm(g∗)}.

where g∗ is the �rst polynomial in I such that does not vanish in P . That is, g∗(P) 6= 0

and g(P) = 0 for all g ∈ G such that lm(g) ≺ lm(g∗).

Proof. See [MB82, Mor09] or [CLO07, 2�7].

De�nition 2.2.18. Let I be an ideal in a polynomial ring K[X], the radical of I,

denote by
√
I is the set

√
I = {f ∈ K[X] | fn ∈ I for some n ≥ 1}.

Note that I ⊆
√
I. If I =

√
I, then I is radical, that is, fn ∈ I implies that f ∈ I,

for some n ≥ 1.

It is easy to prove that I(Z) is radical (Corollary 3 of chapter 4 of [CLO07, �2]).

Theorem 2.2.19 (Hilbert Nullstellensatz). Let K be an algebraically closed �eld. If

I ⊆ K[X] is an ideal, then √
I = I(V(I))

Proof. See Theorem 6 of chapter 4 of [CLO07, �2].

Theorem 2.2.20 (The Ideal-Variety Correspondence). Let K be an arbitrary �eld.

If I1 ⊂ I2 are ideals, then V(I2) ⊂ V(I1) and, similarly, if V(I2) ⊂ V(I1) are varieties,

then I(V(I1)) ⊂ I(V(I2))

Proof. See Theorem 7 of chapter 4 of [CLO07, �2].

21

Chapter 2. Introduction to Gröbner bases

Theorem 2.2.21. Let I ⊂ Fq[X] be an ideal such that {xqi − xi | 1 ≤ i ≤ m} ⊆ I,

then I is 0-dimensional and radical.

Proof. If {xqi − xi | 1 ≤ i ≤ m} ⊆ I it means that V(I) ⊂ Fm
q and then #V(I) ≤

|Fm
q | = qm. Thus I is 0−dimensional.

Since I ⊆
√
I, to prove that I is radical it is su�cient to show that

√
I ⊆ I.

Let f = a1m1 + . . . anmn where ai ∈ K, mi ∈M such that mi = x
α1,i

1 · . . . · xαm,im with

1 ≤ i ≤ n. First of all note that f q = f mod I. In fact, since a ∈ Fq we have aq = a

and mq
i = mi mod I since the �eld equations are in the ideal and so

m q
i = (x

α1,i

1 · . . . · xαm,im)q = (xq1)α1,i · . . . · (xqm)αm,i = x
α1,i

1 · . . . · xαm,im = mi

If f ∈
√
I then f r ∈ I by de�nition of radical of I, f r ∈ I is equivalent to say that

f r = 0 mod I. We can always consider that r < q since, otherwise, we reduce r

module q. So f r ∈ I =⇒ f r · f q−r ∈ I, that is, f q = 0 mod I but f q = f mod I

and so we can conclude that f ∈ I and
√
I ⊆ I.

Finally we de�ne the Hilbert staircase N(I), which is an important tool also for

a�ne-variety codes, the central argument of Chapter 4. N(I) is the set of all the

monomials that are not leading monomial of any polynomial in I:

De�nition 2.2.22. The set N(I) = M\lm(I) is called the Hilbert staircase or

footprint of I.

Example 2.2.23. Let I ⊂ Fq[x, y], let ≺ be lexicographic order y ≺ x.

Let

I = 〈x5, x3y2, x2y3, y6〉

Since 〈lm(I)〉 = 〈I〉, then, as we see in

the �gure, the Hilbert staircase has the

following form:

{yi, xyi, x2yj, x3, x3y, x4, x4y}

where 0 ≤ i ≤ 5 and 0 ≤ j ≤ 2.

x x2 x3 x4 x5 x6

y

y2

y3

y4

y5

y6

N(I)

I

Let I ⊂ K[X] there is a nice and natural connection between the number of zeros

of I and the number of points in its footprint w.r.t. any ordering.

Theorem 2.2.24. Let I be a 0-dimensional radical ideal in Fq. For any monomial

ordering we have: #V(I) = #N(I).

22

2.2. Basic notions about ideals and Gröbner bases

Proof. We prove this corollary by induction on variety cardinality and using the

Buchberger-Möller algorithm. Let I ⊆ Fq[X], with x1 � x2 � . . . � xm.

If #V(I) = 1, then V(I) = {P}, where P = (p1, . . . , pm) ∈ Fm

q . By Theorem 2.2.17

we can �nd a Gröbner basis G for I(V(I)), which is

G = {x1 − p1, . . . , xm − pm}.

Since I is radical we can use Theorem 2.2.19 and so we have that I(V(I)) =
√
I = I.

Hence N(I) = {1}, that is, #N(I) = 1.

Let us suppose that #V(I) = n− 1 =⇒ #N(I) = n− 1 and we want to prove that

#V(I ′) = n =⇒ #N(I ′) = n. Let #V(I ′) = n, then V(I ′) = {P1, . . . , Pn}, with
Pi ∈ Fm

q for 1 ≤ i ≤ n. We consider Z = {P1, . . . , Pn−1} and I = I(Z).

By inductive hypothesis #N(I) = #V(Z) = n − 1. Let G be a Gröbner basis for

I. Applying Buchberger-Möller Theorem for G and the point Pn = (p1, . . . , pm) we

obtain a Gröbner basis G ′ for the 0−dimensional radical ideal I ′ = I(Z ∪ Pn), which

is: G ′ = G1 ∪G2 ∪G3, where

G1 = {g ∈ G | lm(g) ≺ lm(g∗)}
G2 = {(xi − pi)g∗ | 1 ≤ i ≤ m}

G3 = {g − g(Pn)

g∗(Pn)
g∗ | lm(g) � lm(g∗)}

where g∗ is the �rst polynomial in I such that does not vanish in Pn. That is,

g∗(Pn) 6= 0 and g(Pn) = 0 for all g ∈ G such that lm(g) ≺ lm(g∗). Now, by

construction, we have

lm(I ′) = {lm(g1) | g1 ∈ G1} ∪ {lm(g∗xi) | 1 ≤ i ≤ m} ∪ {lm(g) | g ∈ G3}

and

lm(I) = {lm(g1) | g1 ∈ G1} ∪ {lm(g∗)} ∪ {lm(g) | g ∈ G3}.

Since V(I) ⊂ V(I ′), by Theorem 2.2.20, we have that I ′ ⊂ I. Hence lm(g∗xi) ∈ lm(I)

and

lm(I) = lm(I ′) ∪ {lm(g∗)} =⇒ #N(I ′) = #N(I) + 1 = n.

We consider I ⊂ K[X] an ideal such that {xqi − xi | 1 ≤ i ≤ m} ⊂ I and let

R = K[X]/I.

Theorem 2.2.25. Let I be an ideal in K[X] and let ≺ a monomial ordering. The

set

B = {m+ I | m ∈ N(I)}

constitutes a basis for R as a vector space over K

Proof. See Theorem 5 of [Gei09].

23

Chapter 2. Introduction to Gröbner bases

2.3 Elimination Theory

In this section we see a theorem about the structure of the Gröbner basis of a

0-dimensional ideal w.r.t lex monomial ordering. Let I be an ideal in K[x1, . . . , xm],

as monomial ordering we use the lex ordering induced by x1 ≺ . . . ≺ xm.

De�nition 2.3.1. Let I = 〈f1, . . . , fk〉 ⊂ K[x1, . . . , xm]. The i-th elimination ideal

Ii is the ideal of K[x1, . . . , xi] de�ned by

Ii = I ∩K[x1, . . . , xi].

Note that conventionally x1 � . . . � xm and the i-th elimination ideal Ii is the

ideal of K[xi+1, . . . , xm] de�ned by Ii = I ∩K[xi+1, . . . , xm].

Theorem 2.3.2 (The Elimination Theorem). Let I ⊂ K[X] be an ideal and let G be

a Gröbner basis of I with respect to lex order where x1 ≺ . . . ≺ xm. Then, for every

0 < i < m, the set

Gi = G ∩K[x1, . . . , xi]

is a Gröbner basis of the i-th elimination ideal Ii.

Proof. see Theorem 2 of chapter 3 of [CLO07, �1].

Let g = atx
t
i + at−1x

t−1
i + . . . + a0 ∈ Gi, where the aj's belong to K[x1, ..., xi−1],

then at = lp(g) is called the leading polynomial of g.

Theorem 2.3.3 (Gianni-Kalkbrener Theorem). Let G be the reduced Gröbner basis

of the 0-dimensional ideal I in K[X] w.r.t. lex ordering with x1 ≺ . . . ≺ xm. Then:

1. There exists exactly one g ∈ G such that g ∈ K[x1], i.e. G1 = {g}.

2. For all 1 ≤ i ≤ m, we have that Gi 6= ∅ and that Gi is the Gröbner basis of the

elimination ideal Ii.

3. Let A = (a1, . . . , am) ∈ V(I) and let ā = (a1, . . . , ai−1). Let g ∈ Gi, then

ai ∈ V(g(ā, xi)), and the following equivalence holds

lp(g)(ā, xi) = 0 in K ⇐⇒ g(ā, xi) ≡ 0 in K[xi].

Moreover, there exists h ∈ Gi such that h(ā, xi) 6≡ 0 in K[xi].

Conversely, if g(ā, α) = 0, then there exists A = (ā, α, ai+1, . . . , am) ∈ V(I).

Proof. see [Gia89, Kal89]

24

2.3. Elimination Theory

Theorem 2.3.3 allows us to compute the set V(I) of zeros of a given 0-dimensional

ideal I in K. We compute the reduced Gröbner basis G for I w.r.t. lex x1 ≺ . . . ≺ xm.

By Theorem 2.3.3 there exists exactly one polynomial g1 in the �rst variable x1.

So we can compute its roots. Then we evaluate all polynomials of G2 in these roots,

obtaining polynomials in only one variable, that is x2. So we can compute their roots,

and so on.

Example 2.3.4. We consider three polynomials in F9[x, y, z]

f1 = x2 + 2xy f2 = xz − y f3 = z − y2z

Let I = 〈f1, f2, f3〉, we want to compute V(I). We consider the lex order x � y � z,

then the reduced Gröbner basis G of I is

g1 = z2 − z = z(z − 1)

g2 = yz − y = y(z − 1)

g3 = y2 − z
g4 = xz − y
g5 = xy − z
g6 = x2 − z

So G1 = G ∩ F9[z] = {g1} and G2 = G ∩ F9[y, z] = {g2, g3}. By Theorem 2.3.3, G1 is

a Gröbner basis of I1 = I ∩ F9[z] and G2 is a Gröbner basis of I2 = I ∩ F9[y, z].

We compute the roots of g1 and we �nd z1 = 1 and z2 = 0. Now we evaluate all

polynomials of G2 in zi. An we obtain g2(y, z1) = 0 but g3(y, z1) = y2 − 1, so y

must be 1, 2. Whereas, g2(y, z2) = −y and g3(y, z2) = y2 so y must be 0. Finally we

evaluate g4, g5, g6 in (0, 0), (1, 1) and (2, 1). And we obtain

g4(x, 0, 0) = 0 g5(x, 0, 0) = 0 g6(x, 0, 0) = x2 =⇒ x = 0

g4(x, 1, 1) = x− 1 g5(x, 1, 1) = x− 1 g6(x, 1, 1) = x2 − 1 =⇒ x = 1

g4(x, 2, 1) = x− 2 g5(x, 2, 1) = −x− 1 g6(x, 2, 1) = x2 − 1 =⇒ x = 2

So the solutions are

P1 = (0, 0, 0), P2 = (1, 1, 1), P3 = (2, 2, 1).

25

Hermitian and Norm-Trace curves

3.1 Known facts on Norm-Trace curve and Hermitian curve

From now on we consider Fqr the �nite �eld with qr elements, where q is a power

of a prime. We consider r = 2 and we let α be a �xed primitive element of Fq2 , and

we consider β = αq+1 as a primitive element of Fq. From now on q, q2, α and β are

understood as above.

We consider the norm and the trace, the two functions de�ned as follows.

De�nition 3.1.1. The norm N
Fqr
Fq and the trace Tr

Fqr
Fq are two functions from Fqr

to Fq such that

N
Fqr
Fq (x) = x1+q+···+qr−1

and Tr
Fqr
Fq (x) = x+ xq + · · ·+ xq

r−1

.

The Norm-Trace curve χ is the curve de�ned over Fqr by the following a�ne

equation [Gei03]

x(qr−1)/(q−1) = yq
r−1

+ yq
r−2

+ . . .+ y where x, y ∈ Fqr . (3.1)

We can note that the points (x̄, ȳ) ∈ (Fqr)2 such that N
Fqr
Fq (x̄) = Tr

Fqr
Fq (ȳ) are the zeros

of χ. So, it is possible to prove (Appendix A of [Gei03]) the following lemma.

Lemma 3.1.2. The Norm-Trace curve χ has exactly q2r−1 Fqr-rational a�ne points.

The genus of χ is g = 1
2
(qr−1 − 1)(q

r−1
q−1
− 1).

If we consider r = 2, we obtain a famous curve, that is, a Hermitian curve. The

Hermitian curve H = Hq is de�ned over Fq2 by the a�ne equation

xq+1 = yq + y where x, y ∈ Fq2 . (3.2)

This curve has genus g = q(q−1)
2

and has n = q3 rational a�ne points, denoted by

P1, . . . , Pn. For any x ∈ Fq2 , the equation (3.2) has exactly q distinct solutions in Fq2 .

H contains also one point at in�nity P∞, so it has q
3+1 rational points over Fq2 [RS94].

CGC 27

Chapter 3. Hermitian and Norm-Trace curves

We denote with N and Tr, respectively, the norm and the trace from Fq2 to Fq. It
is clear that H = {N(x) = Tr(y) | x, y ∈ Fq2}.
We can de�ne a similar curve H′ = {N(x) = −Tr(y) | x, y ∈ Fq2} and, using the

next lemma, it is easy to see that also H′ contains q3 Fq2-a�ne rational points. A

well-known fact is the following [LN86].

Lemma 3.1.3. For any t ∈ Fq, the equation Tr(y) = yq + y = t has exactly q distinct

solutions in Fq2. The equation N(x) = xq+1 = t has exactly q + 1 distinct solutions,

if t 6= 0, otherwise it has just one solution.

Proof. The trace is a linear surjective function between two Fq-vector spaces of di-
mension, respectively, 2 and 1. Thus, dim(ker(Tr)) = 1, and this means that for any

t ∈ Fq the set of solutions of the equation Tr(y) = yq + y = t is non-empty and then

it has the same cardinality of Fq, that is, q.
The equation xq+1 = 0 has obviously only the solution x = 0. If t 6= 0, since

t ∈ Fq, we can write t = βi, so that x = αi+j(q−1) are all solutions. We can assign

j = 0, . . . , q, and so we have q + 1 distinct solutions.

3.2 Intersection between the Hermitian curve H and a line

In this section we analyse the intersection between the Hermitian curve H and

any line.

Lemma 3.2.1. Let L be any vertical line {x = t}, with t ∈ Fq2. Then L intersects

H in q a�ne points.

Proof. For any t ∈ Fq2 , tq+1 ∈ Fq, and so the equation yq + y = tq+1 has exactly q

distinct solutions by applying Lemma 3.1.3.

Lemma 3.2.2. In the a�ne plane A2(Fq2), the total number of non-vertical lines is

q4. Of these, (q4− q3) intersect H in (q+ 1) points and q3 are tangent to H, i.e. they
intersect H in only one point.

Proof. Let L any non-vertical line, then L = {y = ax+ b}, with a, b ∈ Fq2 . We have

q2 choices for both a and b, so the total number is q4. Then

H ∩ L = {(x, ax+ b) | aqxq + bq + ax+ b = xq+1, x ∈ Fq2}.

Let c = c(a, b) = aq+1 + bq + b, then c ∈ Fq. We have two distinct cases:

� c = 0. Then aqxq + bq + ax+ b = xq+1 becomes aqxq − aq+1 + ax = xq+1, which

gives x = aq, that is, L is tangent.

28

3.3. Automorphisms of Hermitian curve

� c 6= 0. Then aqxq + bq + ax + b = xq+1 becomes xq+1 − aqxq + aq+1 − ax = c,

which gives (x − aq)q+1 = c. Since c = (αq+1)r for 1 ≤ r ≤ q − 1, we have

x = aq + αr+i(q−1) for any 0 ≤ i ≤ q.

The number of pairs (a, b) satisfying c(a, b) = 0 is q3, because they correspond to the

a�ne points of H′, and those satisfying c 6= 0 are (q4 − q3).

Corollary 3.2.3. Let L be any horizontal line {y = b}, with b ∈ Fq2. Then if

Tr(b) = 0, L intersects H in one a�ne point, otherwise, if Tr(b) 6= 0, L intersects H
in q + 1 a�ne points.

Proof. Apply Lemma 3.2.2 with a = 0.

3.3 Automorphisms of Hermitian curve

We consider an automorphism group Aut(H/Fq2) of the Hermitian curve over Fq2 .

Aut(H/Fq2) contain a subgroup Γ, such that any σ ∈ Γ has the following form, as in

[Xin95] and in Section 8.2 of [Sti93]:

σ

(
x

y

)
=

(
εx+ γ

εq+1y + εγqx+ δ

)

with (γ, δ) ∈ H, ε ∈ F∗q2 . Note that Γ is also a subset of group of a�ne transformation

preserving the set of Fq2-rational a�ne points of H.
If we choose ε = 1 we obtain the following automorphisms

{
x 7−→ x+ γ

y 7−→ y + γqx+ δ
with (γ, δ) ∈ H, (3.3)

that form a subgroup Λ with q3 elements, see Section II of [Sti88].

The reason why we are interested in the curve automorphisms is the following. If we

apply any σ to any curve X in the a�ne plane, then the planar intersections between

σ(X) and H will be the same as the planar intersections between X and H. So, if we
�nd out the number of intersections between X and H, we will automatically have

the number of intersection between σ(X) and H for all σ ∈ Γ. This is convenient

because we can isolate special classes of parabolas that act as representatives in the

orbit {σ(X)}σ∈Γ. These special types of parabolas may be easier to handle.

29

Chapter 3. Hermitian and Norm-Trace curves

3.4 Automorphisms of Norm-Trace curve

Similarly, we �nd an automorphism subgroup of Aut(χ/Fqr) of the Norm-Trace

curve, where χ is as (3.1).

We consider (γ, δ) ∈ χ. For any ε ∈ F ∗qr we obtain the following automorphisms{
x 7−→ εx+ γ

y 7−→ εq
r−1+qr−2+...+1y + δ +

∑
i ε
αiγβixαi

(3.4)

where for any subset Ai ⊆ S with S = {1, . . . , r − 2}, we have

αi = 1 +
∑
i∈Ai

qi and βi = qr−1 +
∑
i∈S\Ai

qi.

That is,

αi + βi = 1 + q + q2 + . . .+ qr−1

and

σ(x) = εx+ γ

σ(y) = εq
r−1+qr−2+...+1y + δ + ε1+qγq

2+q3+...+qr−1
x1+q+

ε1+q2
γq+q

3+...+qr−1
x1+q2

+ . . .+ ε1+q+...+qr−2
γq

r−1
x1+q+...+qr−2

.

Since (γ, δ) ∈ χ, then there exists an automorphism σ satisfying (3.4). In fact σ(y)

and σ(x) verify the equation σ(y)q
r−1

+ . . .+ σ(y) = σ(x)q
r−1+...+1.

Furthermore these automorphisms �x the point at in�nity.

This set of automorphisms constitutes a group of order q2r−1(qr−1). In fact ε 6= 0

and δ are arbitrary, so we have qr possible δ, and for each δ there are qr−1 possible

values of γ. We have proved:

Proposition 3.4.1. The automorphism group of the Norm-Trace code contains a

subgroup of order q2r−1(qr − 1).

In particular, if we choose ε = 1 we obtain the following automorphisms{
x 7−→ x+ γ

y 7−→ y + δ +
∑

i γ
βixαi

with (γ, δ) ∈ χ, (3.5)

with αi and βi as before. That is{
x 7−→ x+ γ

y 7−→ y + δ + γq
2+q3+...+qr−1

x1+q + γq+q
3+...+qr−1

x1+q2
+ . . .+ γq

r−1
x1+q+...+qr−2

30

A�ne-variety codes

In this section we �x some notation and recall some known results.

Recall that Fq is a �eld with q elements, where q is a power of a prime, and (Fq)n

is a vector space of dimension n over Fq. Any vector subspace C ⊂ (Fq)n is a linear

code (over Fq).

4.1 A�ne�variety codes

We present the Reed-Solomon codes (see De�nition 1.3.9) as evaluation codes.

Let {P1, . . . , Pq} be all elements of Fq and de�ne (again) the Reed Solomon codes as

follows:

RS(k, n,Fq) = {(f(P1), . . . , f(Pn)) | f ∈ K[X], deg(f) ≤ k − 1}.

If k ≤ n then dim(RS) = k and it is simple to prove that the distance is d = n−k+1.

These codes are a particular case of a larger family of codes, that is, a�ne-variety

codes.

Let m ≥ 1 and I ⊆ Fq[X] = Fq[x1, . . . , xm] be an ideal such that

{xq1 − x1, x
q
2 − x2, . . . , x

q
m − xm} ⊂ I.

Let V(I) = P = {P1, P2, . . . , Pn} ⊂ (Fq)m its variety, that is, the set of its common

roots. Let g1, . . . , gs ∈ Fq[X] be generators of I = 〈g1, . . . , gs〉.
Since I is a zero-dimensional radical ideal (by Theorem 2.2.21), we have an iso-

morphism of Fq vector spaces, that we call the evaluation map:

evP : R = Fq[x1, . . . , xm]/I −→ (Fq)n

f 7−→ (f(P1), . . . , f(Pn)).
(4.1)

Let L ⊆ R be an Fq vector subspace of R with dimension r.

De�nition 4.1.1 ([FL98]). The a�ne�variety code C(I, L) is the image of L

under the evaluation map evP and the a�ne�variety code C⊥(I, L) is its dual code.

CGC 31

Chapter 4. A�ne-variety codes

If b1, . . . , br is a linear basis for L over Fq, then the matrix

H =

 b1(P1) b1(P2) . . . b1(Pn)
...

... . . .
...

br(P1) br(P2) . . . br(Pn)


is a generator matrix for C(I, L) and a parity-check matrix for C⊥(I, L).

Theorem 4.1.2. Every linear code may be represented as an a�ne�variety code.

Proof. See Proposition 1.4 of [FL98]

Examples of a�ne-variety codes are Norm-Trace codes and, in particular, Hermi-

tian codes, which we study in the following section.

4.2 Norm-Trace codes and Hermitian codes

We consider a Norm-Trace polynomial over Fqr

yq
r−1

+ yq
r−2

+ . . .+ y − x
qr−1
q−1

Let I = 〈yqr−1
+ yq

r−2
+ . . . + yq − xq

r−1+qr−2+...+q+1, xq
r − x, yq

r − y〉 and let R =

Fqr [x, y]/I. We take L ⊆ R generated by

Bm,q = {xiyj + I | qr−1i+
(qr − 1)

q − 1
j ≤ m, 0 ≤ j < qr−1, 0 ≤ i ≤ qr − 1},

where m is an integer such that 0 ≤ m ≤ q2r−1 + . . .+ qr − qr−1 − . . .− q − 2.

For simplicity, we also write xrys for xrys + I.

We consider the evaluation map (4.1) evP : R→ (Fqr)n, where n = q2r−1. We have the

following a�ne�variety codes: C(I, L) = SpanFqr 〈evP(Bm,q)〉 and its dual (C(I, L))⊥

is a Norm-Trace code.

If we consider r = 2, we have a special case of a Norm-Trace code, that is, a

Hermitian code. In this case I = 〈yq + y − xq+1, xq
2 − x, yq

2 − y〉 ⊂ Fq2 [x, y] and

R = Fq2 [x, y]/I. We take L ⊆ R generated by

Bm,q = {xrys + I | qr + (q + 1)s ≤ m, 0 ≤ s ≤ q − 1, 0 ≤ r ≤ q2 − 1},

where m is an integer such that 0 ≤ m ≤ q3 + q2 − q − 2.

Then the a�ne-variety code C(m, q) = (C(I, L))⊥, where C(I, L) = SpanFq2
〈evP(Bm,q)〉,

32

4.2. Norm-Trace codes and Hermitian codes

is called the Hermitian code with parity-check matrix H.

H =

 f1(P1) . . . f1(Pn)
...

. . .
...

fi(P1) . . . fi(Pn)

 where fj ∈ Bm,q, (4.2)

where, for Hermitian codes, n = q3.

As we will see in Chapter 5, the Hermitian codes have speci�c explicit formulae linking

their dimension and their distance.

4.2.1 First results on words of given weight

Let 0 ≤ w ≤ n and C be a linear code. We recall (see Subsection 1.2.1) that

Aw(C) = |{c ∈ C | w(c) = w}|.

Let z̄ ∈ (Fq)n, z̄ = (z̄1, . . . , z̄n). Then

z̄ ∈ C(I, L)⊥ ⇐⇒ Hz̄T = 0 ⇐⇒
n∑
i=1

z̄ibj(Pi) = 0, j = 1, . . . , r. (4.3)

Proposition 4.2.1. Let 1 ≤ w ≤ n.

Let Jw be the ideal in Fq[x1,1, . . . x1,m, . . . , xw,1, . . . xw,m, z1, . . . , zw] generated by

w∑
i=1

zibj(Pi) for j = 1, . . . , r (4.4)

gh(xi,1, . . . xi,m) for i = 1, . . . , w and h = 1, . . . , s (4.5)

zq−1
i − 1, i = 1, . . . , w (4.6)∏

1≤l≤m

((xj,l − xi,l)q−1 − 1), 1 ≤ j < i ≤ w. (4.7)

Then any solution of Jw corresponds to a codeword of C⊥(I, L) with weight w. More-

over,

Aw(C⊥(I, L)) =
|V(Jw)|
w!

.

Proof. Let σ be a permutation, σ ∈ Sw. It induces a permutation σ̂ acting on

{x1,1, . . . , x1,m, . . . , xw,1, . . . xw,m, z1, . . . , zw} as σ̂(xi,l) = xσ(i),l and σ̂(zi) = zσ̂(i). It is

easy to show that Jw is invariant w.r.t. any σ̂, since each of (4.4), (4.5), (4.6) and

(4.7) is so.

Let Q = (x1,1, . . . x1,m, . . . , xw,1, . . . xw,m, z1, . . . , zw) ∈ V(Jw). We can associate a

codeword to Q in the following way. For each i = 1, . . . , w, Pri = (xi,1, . . . xi,m) is in

V(I), by (4.5). We can assume r1 < r2 < . . . < rw, via a permutation σ̂ if necessary.

33

Chapter 4. A�ne-variety codes

Note that (4.7) ensures that for each (i, j), with i 6= j, we have Pri 6= Prj , since there

is a l such that xi,l 6= xj,l. Since z
q−1
i = 1 (4.6), zi ∈ Fq \ {0}. Let c ∈ (Fq)n be

c = (0, . . . , 0, z1
↑
Pr1

, 0, . . . , 0, zi
↑
Pri

, 0, . . . , 0, zw
↑

Prw

, 0, . . . , 0).

We have that c ∈ C⊥(I, L), since (4.4) is equivalent to (4.3).

Reversing the previous argument, we can associate to any codeword a solution of Jw.

By invariance of Jw, we actually have w! distinct solutions for any codeword. So, to

get the number of codewords of weight w, we divide |V(Jw)| by w!.

Note that this approach is a generalization of the approach in [Sal07] to determi-

nate the number of words having given weight for a cyclic code.

4.3 The approach by Fitzgerald and Lax to decoding the a�ne-

variety code

In [FL98] a decoding technique was proposed following what is known as the

�Cooper philosophy�. Although this terminology has been established only recently

([MO09]), this decoding approach has a quite wide literature, e.g. [Coo90],[Coo93],

[CM02a],[Coo91], [CRHT94a]. We describe this technique for a�ne-variety codes,

as follows. Let C⊥(I, L) be an a�ne-variety code with dimension n − r and let

I = 〈g1, . . . , gγ〉. Let L be linearly generated by b1, . . . , br. Then we can denote by

JC,tFL the ideal (FL is for �FitzgeraldLax�)

JC,tFL ⊂ Fq[s1, . . . , sr, xt,1, . . . , xt,m, . . . , x1,1, . . . , x1,m, e1, . . . , et] = Fq[S,Xt, . . . , X1, E]

where1

JC,tFL =
〈 {∑t

j=1 ejbρ(xj,1, . . . , xj,m)− sρ
}

1≤ρ≤r
,{

eq−1
j − 1

}
1≤j≤t

, {gh(xj,1, . . . , xj,m)}1≤h≤γ,
1≤j≤t

〉
.

(4.8)

Let <S be any term ordering on the variables s1, . . . , sr and ≺lex be the lexicographic

ordering on the variables Xt, . . . , X1, such that

xt,1 ≺lex · · · ≺lex xt,m ≺lex · · · ≺lex x1,1 ≺lex · · · ≺lex x1,m.

Let <E be any term ordering on the variables e1, . . . , et.

Then let < be the block order (<S,≺lex, <E). We denote by GC,tFL a Gröbner basis of

JC,tFL with respect to <. In [FL98] we can �nd a method describing how to �nd the

error locations and values, by applying elimination theory to the polynomials in GC,tFL.

1To speed up the basis computation we can add
{
xqj,ι − xj,ι

}
1≤j≤t,
1≤ι≤m

to the ideal.

34

4.4. Base notion for decoding using our method

Example 4.3.1. Let C = C⊥(I, L) be the Hermitian code from the curve y2 +y = x3

over F4 and with de�ning monomials {1, x, y, x2, xy}. The eight points of the variety
de�ned by I are

P1 = (0, 0), P2 = (0, 1), P3 = (1, α), P4 = (1, α2),

P5 = (α, α), P6 = (α, α2), P7 = (α2, α), P8 = (α2, α2),

where α is any primitive element of F4. It is well�known that C corrects up to t = 2

errors. The ideal JC,2FL ⊂ F4[s1, . . . , s5, x2, y2, x1, y1, e1, e2] is

JC,2FL = 〈{x4
1 − x1, x

4
2 − x2, y

4
1 − y1, y

4
2 − y2, e

3
1 − 1, e3

2 − 1, y2
1 + y1 − x3

1,

y2
2 + y2 − x3

2, e1 + e2 − s1, e1x1 + e2x2 − s2, e1y1 + e2y2 − s3,

e1x
2
1 + e2x

2
2 − s4, e1x1y1 + e2x2y2 − s5}〉.

Typically the Gröbner basis of JC,tFL that has been obtained using the block order <

contains a large number of polynomials and most are not useful for decoding purposes.

We would have to choose a polynomial in Fq[S, xt,1] that, once specialized in the

received syndrome, could be used to �nd the �rst coordinates of all the errors. It is

important to observe that in this situation we do not know which polynomial is the

right one, because after the specialization we can obtain a polynomial which vanishes

identically.

4.4 Base notion for decoding using our method

4.4.1 Strati�ed ideals

In this subsection we summarize some de�nitions and results from [GS09].

Let J ⊂ K[S,A, T] be a zero�dimensional radical ideal, with variables S =

{s1, . . . , sN}, A = {a1, . . . , aL}, T = {t1, . . . , tK}. We �x a term ordering < on

K[S,A, T], with S < A < T , such that aL < aL−1 < . . . < a1 is the order of the

variables in A. Let us recall the elimination ideals (see Section 2.3)

JS = J ∩K[S], JS,aL = J ∩K[S, aL], . . . , JS,aL,...,a1 = J ∩K[S, aL, . . . , a1] = J ∩K[S,A].

We want to view V(JS) as a disjoint union of some sets. The way we de�ne these

sets is linked to the fact that any point P in V(JS) can be extended to at least one

point in V(JS,aL). But the number of all possible extensions of P in V(JS,aL) is �nite,

since the ideal is zero-dimensional, so we can partition V(JS) in sets such that all

points in the same set share the same number of extensions. We denote by λ(L) the

maximum number of extensions in V(JS,aL) for any P ∈ V(JS). The same principle

applies when we consider the variety of another elimination ideal, e.g. V(JS,aL,...,ah).

We can partition it into subsets such that all points in the same subset share the

35

Chapter 4. A�ne-variety codes

same number of extensions in V(JS,aL,...,ah,ah−1
). The maximum number of extensions

is denoted by λ(h− 1).

We write our partitioning in a formal way, as follows:

V(JS) = tλ(L)
l=1 ΣL

l , with

ΣL
l ={(s1, . . . , sN) ∈ V(JS) | ∃ exactly l distinct values ā(1)

L , . . . , ā
(l)
L

s.t. (s1, . . . , sN , ā
(`)
L) ∈ V(JS,aL), 1 ≤ ` ≤ l};

V(JS,aL,...,ah) = tλ(h−1)
l=1 Σh−1

l , 2 ≤ h ≤ L, with

Σh−1
l = {(s1, . . . , sN , aL, . . . , ah) ∈ V(JS,aL,...,ah) | ∃ exactly l distinct values

ā
(1)
h−1, . . . , ā

(l)
h−1 s.t. (s1, . . . , sN , aL, . . . , ah, ā

(`)
h−1) ∈ V(JS,aL,...,ah−1

), 1 ≤ ` ≤ l}.

For an arbitrary zero-dimensional ideal J , nothing can be said about λ(h), except

that λ(h) ≥ 1 for any 1 ≤ h ≤ L.

De�nition 4.4.1 ([GS09]). With the above notation, let J be a zero-dimensional

radical ideal. We say that J is strati�ed, with respect to the A variables, if:

(a) λ(h) = h, 1 ≤ h ≤ L, and

(b)
∑h

l 6= ∅, 1 ≤ h ≤ L, 1 ≤ l ≤ h.

To explain conditions (a) and (b) in the above de�nition, let us consider h = L

and think of the projection

π : V(JS,aL)→ V(JS). (4.9)

In this case, (a) in De�nition 4.4.1 is equivalent to saying that any point in V(JS)

has at most L pre-images in V(JS,aL) via π, and that there is at least one point with

(exactly) L pre-images. On the other hand, (b) implies that, if for a point P ∈ V(JS)

we have |π−1(P)| = m ≥ 2, then there is at least another point Q ∈ V(JS) such that

|π−1(Q)| = m− 1.

Example 4.4.2. Let S = {s1}, A = {a1, a2, a3} (L = 3) and T = {t1} such that

S < A < T and a3 < a2 < a1. Let us consider J = I(Z) ⊂ C[s1, a3, a2, a1, t1] with

Z = {(1, 2, 1, 0, 0), (1, 2, 2, 0, 0), (1, 4, 0, 0, 0), (1, 6, 0, 0, 0), (2, 5, 0, 0, 0), (3, 1, 0, 0, 0),

(3, 3, 0, 0, 0), (5, 2, 0, 0, 0)}. Then:

V(JS) = {1, 2, 3, 5}
V(JS,a3) = {(1, 2), (1, 4), (1, 6), (2, 5), (3, 1), (3, 3), (5, 2)}
V(JS,a3,a2) = {(1, 2, 1), (1, 2, 2)(1, 4, 0), (1, 6, 0), (2, 5, 0), (3, 1, 0), (3, 3, 0), (5, 2, 0)}
V(JS,a3,a2,a1) = {(1, 2, 1, 0), (1, 2, 2, 0)(1, 4, 0, 0), (1, 6, 0, 0), (2, 5, 0, 0), (3, 1, 0, 0), (3, 3, 0, 0), (5, 2, 0, 0)}

36

4.4. Base notion for decoding using our method

Let us consider the projection π : V(JS,a3)→ V(JS). Then:

|π−1({5})| = 1, |π−1({2})| = 1, |π−1({3})| = 2, |π−1({1})| = 3 ,

so
∑3

1 = {2, 5},
∑3

2 = {3},
∑3

3 = {1} and
∑3

i = ∅, i > 3. This means that

λ(L) = λ(3) = 3 and
∑3

l is not empty, for l = 1, 2, 3. Thus the conditions of

De�nition 4.4.1 are satis�ed for h = L = 3 (see Fig. 4.1). In the same way, it is easy

to verify said conditions also for h = 1, 2, and hence the ideal J is strati�ed with

respect to the A variables.

1 2

2

3

3

4

4

5

5

6

6

s

a
3

1

1

Figure 4.1: A variety in a strati�ed case

With the above notation, an immediate consequence of Theorem 3.6 in [GS06]

(Theorem 32 in [GS09]) is the following proposition.

Proposition 4.4.3. Let < be any lexicographic term order with S < A < T and

aL < aL−1 < · · · < a1. Let J be a strati�ed ideal with respect to the A variables. Let

G = GB(J). Then G contains one and only one polynomial g such that:

g ∈ K[S, aL], T(g) = aLL.

4.4.2 Root multiplicities and Hasse derivative

De�nition 4.4.4. Let g =
∑

i aix
i ∈ K[x]. Then the n-th Hasse derivative of g

is ϕ(n)(g) and the n-th formal derivative of g is g(n), where

ϕ(n)(g) =
∑
i

(
i

n

)
aix

i−n and g(n) = n!
∑
i

(
i

n

)
aix

i−n.

37

Chapter 4. A�ne-variety codes

We can note that g(n) = n!ϕ(n)(g). In a �eld with characteristic p, it is more

convenient to use the Hasse derivative, because n! = 0 for all n ≥ p.

Note that ϕ(2)(g) 6= ϕ(1)
(
ϕ(1)(g)

)
.

De�nition 4.4.5. Let g ∈ K[x], g 6= 0, P ∈ K and g(P) = 0. The multiplicity of

P as a root of g is the largest integer r ≥ 1 such that

ϕ(k)(g)(P) = ϕ(k)(g)∣∣
x=P

= 0, for 0 ≤ k ≤ r − 1.

The following theorem is well-known, see e.g. [LN97].

Theorem 4.4.6. Let g, f ∈ K[x] and let g be irreducible. Then

gr|f ⇐⇒ g|ϕ(k)(f) for 0 ≤ k ≤ r − 1 .

As a consequence of the previous theorem when g = (x − P) for any P ∈ K, we
have

(x− P)r|f ⇐⇒ ϕ(k)(f)∣∣
x=P

= 0 for 0 ≤ k ≤ r − 1 .

4.4.3 General error locator polynomials

Let C be an [n, k, d] linear code over Fq with correction capability t ≥ 1. Choose

any parity-check matrix with entries in an appropriate extension �eld Fqm of Fq,
m ≥ 1. Its syndromes lie in (Fqm)n−k and form a vector space of dimension r = n− k
over Fq. Let α be a primitive n-th root of unity in Fqm .

De�nition 4.4.7. Let L be a polynomial in Fq[S, x], where S = (s1, . . . , sr). Then L
is a general error locator polynomial of C if

1. L(S, x) = xt + at−1x
t−1 + · · ·+ a0, with aj ∈ Fq[S], 0 ≤ j ≤ t− 1, that is, L is a

monic polynomial with degree t with respect to the variable x and its coe�cients

are in Fq[S];

2. given a syndrome s = (s1, . . . sr) ∈ (FqM)r, corresponding to an error vector of

weight µ ≤ t and error positions {k1, . . . , kµ}, if we evaluate the S variables at

s, then the roots of L(s, x) are exactly {αk1 , . . . , αkµ , 0}, where the multiplicity

of 0 is t− µ.

Given any (correctable) linear code C, the existence of a general error locator

polynomial is not known. In [OS05] the authors prove its existence for any cyclic

code and recently in [GS06, GS09, Gio06] its existence has been proved for a large

class of linear codes.

We can extend De�nition 4.4.7 to the case when there are also erasures.

38

4.4. Base notion for decoding using our method

De�nition 4.4.8. Let L be a polynomial in Fq[S,W, x], S = (s1, . . . , sr) and W =

(w1, . . . , wν), where ν is the number of occurred erasures. Let 2τ + ν < d. Then L is

a general error locator polynomial of type ν of C if

1. L(S,W, x) = xτ + aτ−1x
τ−1 + · · ·+ a0, with aj ∈ Fq[S,W], for any

0 ≤ j ≤ τ − 1, that is, L has degree τ w.r.t. x and coe�cients in Fq[S,W];

2. for any syndrome s = (s1, . . . , sr) and any erasure location vector

w= (w1, . . . , wν), corresponding to an error vector of weight µ ≤ τ and error

locations {k1, . . . , kµ}, if we evaluate the S variables at s and the W variables

at w, then the roots of L(s,w, x) are {αk1 , . . . , αkµ , 0}, where the multiplicity of

0 is τ − µ.

For the bene�t of readers unfamiliar with simultaneous correction of errors and

erasures, we sketch how it works. When some (say ν) symbols are not recognised

by the receiver, the decoder treats them as erasures. The decoder knows the po-

sitions of these erasures i1, . . . , iν , which means in our notation that the decoders

knows the erasure locations grouped for convenience in the erasure location vector

w = (w̄1, . . . , w̄ν) = (αi1 , . . . , αiν). A standard result in coding theory is that it is

possible to correct simultaneously ν erasures and τ errors, provided that 2τ + ν < d.

To be consistent with our notation, we may refer to a polynomial in De�nition 4.4.7

also as a general error locator polynomial of type 0.

For a code C, the possession of a polynomial of each type 0 ≤ ν < d might be a

stronger condition than the possession of a polynomial of type 0, but in [OS05] the

authors prove that any cyclic code admits a polynomial of any type ν, for 0 ≤ ν < d.

In [GS09] the existence of general error locator polynomials (of any type) for a large

class of linear codes was proved, but it is still unknown whether such a result holds

for general linear codes.

39

The four phases of Hermitian codes

In this chapter we analyse the four phases of Hermitian codes.

We recall the notion of numerical semigroup and we report some technical results

that we �nd in Chapter 5 of [HvLP98]. We describe the four Hermitian phases that

span the Hermitian codes, focusing at the �rst phase. We also note that the �rst

phase could be extended to include a portion of the second phase and there is also

an intersection between the third and fourth phase.

5.1 Numerical semigroups

We de�ne a subset Λ ⊂ N to be a numerical semigroup if 0 ∈ Λ and for all x, y ∈ Λ

then also x+ y ∈ Λ.

The elements of Λ are called nongaps of Λ, whereas the elements in N\Λ are called

gaps. The number of gaps is called the genus and it is denoted by g. The conductor

c of Λ is the smallest n ∈ N such that {x ∈ N | x ≥ n} is contained in Λ. So c− 1 is

the largest gap of Λ if g > 0.

Let A = {a1, . . . , ak} be a subset of a semigroup Λ. If for any element s ∈ Λ there

exist x1, . . . , xk ∈ N such that s =
∑k

i=1 xiai, the semigroup Λ is said to be generated

by A and written Λ = 〈A〉.

The elements of a semigroup Λ will be enumerated by the sequence (ρi | i ∈ N) such

that ρi < ρi+1 for all i. The number of gaps smaller than ρi will be denoted by g(i).

Lemma 5.1.1. Let Λ be a semigroup with �nitely many gaps.

(1) If i ∈ N, then g(i) = ρi − i+ 1.

(2) If i ∈ N, then ρi ≤ i+ g − 1 and equality holds if and only if ρi ≥ c.

(3) If i > c− g, then ρi = i+ g − 1.

(4) If i ≤ c− g, then ρi < c− 1.

Proof. See Lemma 5.6 of [HvLP98].

CGC 41

Chapter 5. The four phases of Hermitian codes

Proposition 5.1.2. Let g a �nite number. Then c ≤ 2g.

Proof. See Proposition 5.7 of [HvLP98]

A semigroup is called symmetric if c = 2g.

Proposition 5.1.3. Let a, b ∈ N such that gcd(a, b) = 1. The semigroup generated

by a and b is symmetric. Furthermore c = (a− 1)(b− 1) and g = 1
2
(a− 1)(b− 1).

Proof. See Proposition 5.11 of [HvLP98]

5.2 Analysing Hermitian codes using numerical semigroups

Now we specialize to the case of Hermitian codes.

We consider a Hermitian curve H over Fq2 , i.e. xq+1 = yq +y. Let R = Fq2 [x, y]/I,

where I = 〈xq+1−yq−y, xq2−x, yq2−y〉 and P = {P1, . . . , Pn} is the set that contains
the a�ne points of H.

Let ≺ be a weighted degree ordering with wx = q and wy = q+1 and x ≺lex y. Let
ρ :M⊂ R −→ N be a weight function such that ρ(xrys) = qr + (q + 1)s. We recall

that the Hilbert staircase N(I) is the set of all the monomials that are not leading

monomial of any polynomial in I (De�nition 2.2.22).

Note that 〈lm(I)〉 = {yq, xq2
, yq

2}. A reduced Gröbner basis for I is G = {yq + y −
xq+1, xq

2 − x} and the leading terms of G are lm(G) = {yq, xq2}. Hence, the footprint
N(I) of I is

N(I) = {xrys | r ≤ q2 − 1, s ≤ q − 1}.

Remark 5.2.1. The weights of the elements in the footprint are exactly the elements

of the semigroup, and there are no repetitions. That is, ρi+1 ∈ Λ is nothing else

than the weight function of fi+1. This is the (i + 1)-th elements of N(I), where the

monomials in the footprint is ordered by ≺, the weighted degree ordering.

As we have seen in Section 2.2 the number of a�ne points of H, is related

to the Hilbert staircase of I. In fact, by Theorem 2.2.21, I is a 0-dimensional

and radical ideal. Hence, by Theorem 2.2.24 the number of a�ne points of H is

#V(I) = #N(I) = q · q2 = q3.

By Theorem 2.2.25 a base of R is

B = {m+ I | m ∈ N(I)}

42

5.2. Analysing Hermitian codes using numerical semigroups

We consider Li ⊂ B such that Li = {f ∈ B | ρ(f) ≤ ρi} where ρi is the i-th element

of Λ. Then a Hermitian code Ci could be seen as the dual of an evaluation code

Ei = {evP(f) | f ∈ Li},

where evP is the evaluation map as in (4.1). In fact in Section 4.2 we saw that a

Hermitian code is C(m, q) = (C(I, L))⊥ where L ⊂ R and a base of L is

Bm,q = {xrys + I | qr + (q + 1) ≤ m with s ≤ q − 1, r ≤ q2 − 1}.

Since ρ(xrys) = qr+(q+1), then the semigroup Λ of the weight function of Hermitian

curveH is generated by 〈q, q+1〉 and it is denoted by ΛH. Hence, by Proposition 5.1.3,

ΛH is a symmetric semigroup and g = q(q − 1)/2.

Example 5.2.2. We consider a Hermitian curve with q = 4.

The semigroup ΛH is generated by 〈q, q + 1〉 = 〈4, 5〉. The genus is g = 6 and the

gaps are {1, 2, 3, 6, 7, 11}.

i 1 2 3 4 5 6 7 8

fi 1 x y x2 xy y2 x3 x2y

ρi 0 4 5 8 9 10 12 13

The ideal

I = 〈x5 − y4 − y, x16 − x, y16 − y〉

by Theorem 2.2.21 is a 0-dimensional

and radical ideal.

The number of a�ne points of H is

#V(I) = #N(I) = 4 · 16 = 43.

b

b

b b

x x16

y

y2

y3

y4

y5

y6

N(I)

I

b b

b b

b

b

b

b

b

b

b

b

b

bb

b

b b

b

b b

b b

b b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b b b b b b b

b b b b b bb b b b b b bb

b

b

b

x4 x8 x12

b

Theorem 5.2.3. The minimum distance of Ei is di ≥ n− ρi.
If ρi < n, then dim(Ei) = i.

Proof. See Theorem 5.18 of [HvLP98].

To describe the phases of Hermitian codes we need some technical lemmas.

We denote with Ni the set de�ned in the following way:

Ni = {(j, k) ∈ N 2 | ρj + ρk = ρi+1}.

The number of elements of Ni is denoted by νi and let d(i) = min{νm | m ≥ i}.

43

Chapter 5. The four phases of Hermitian codes

Theorem 5.2.4. Let d(Ci) be the minimum distance of Ci. Then d(Ci) ≥ d(i).

Proof. See Theorem 4.13 of [HvLP98].

For the Hermitian codes, Theorem 5.2.4 gives the true minimum distance [YK92],

that is, the distance of Hermitian code Ci is d(i).

Lemma 5.2.5. Let i ≥ 3g − 1, then νi = d(i) = i + 1 − g. In general we have

d(i) ≥ i+ 1− g.

Proof. See Theorem 5.24 of [HvLP98].

Lemma 5.2.6. Let ρi+1 ∈ ΛH such that ρi+1 = qr + (q + 1)s.

If ρi+1 < q2 − 1 then νi = (r + 1)(s + 1) and there is at least one gap in the interval

[ρi+1 − νi, ρi+1].

Proof. See Lemma 5.27 of [HvLP98].

Lemma 5.2.7. Let ρi+1 ∈ ΛH. If i < g and (j − 1)(q + 1) < ρi+1 < j(q + 1) then

d(i) = j + 1.

Proof. See Proposition 5.28 of [HvLP98].

Lemma 5.2.8. Let ΛH the semigroup of the weight function of Hermitian curve H.
If i ≥ g then d(i) = min{ρt | ρt ≥ i+ 1− g}.

Proof. See Theorem 5.30 of [HvLP98].

Lemma 5.2.9. Let ΛH the semigroup of the weight function of Hermitian curve H.
If i = g then ρi = 2g − 2.

Proof. Note that c − 2 is not a gap. In fact we can write c − 2 = q2 − q − 2 =

(q + 1)(q − 2) ∈ ΛH. Since ρg+1 = c, then ρg = c− 2 as c− 2 is a nongap.

Finally, we de�ne the Goppa bound dG(i) on the minimum distance of Ci as

dG(i) = i+ 1− g.

So d(Ci) ≤ dG(i).

We now report the �ve phases of Hermitian codes found in [HvLP98] and we anal-

yse, for each phase, the distance and the dimension of Ci. Note that the last phase

is composed only by trivial codes. So we can consider just the �rst four phases.

44

5.2. Analysing Hermitian codes using numerical semigroups

In the next section we analyse the intersection between the �rst two phases and the

last two and we rewrite the formulae for the distance and dimension.

By Theorem 5.2.3, if ρi < n then dim(Ci) = n− i = n+ g − ρi − 1. Otherwise, if

ρi ≥ n, we have that dim(Ei) ≤ i so dim(Ci) ≥ n − i but also k ≤ n − d + 1 by the

singleton bound.

(1) 1 ≤ i < g and ρi < 2g − 2 by Lemma 5.2.9 and by (4) of Lemma 5.1.1.

Write i = a(a + 1)/2 + b + 1 with 0 ≤ b ≤ a ≤ q − 2 and b 6= q − 2. Then

ρi = aq + b.

If b < a then we have ρi+1 = aq + b + 1, so (a − 1)(q + 1) < ρi+1 < a(q + 1),

so by Lemma 5.2.7 d(i) is a+ 1.

If a = b then ρi+1 = (a + 1)q. In fact fi = ya and so fi+1 = xa+1. Therefore

a(q + 1) < ρi+1 < (a+ 1)(q + 1), so by Lemma 5.2.7 d(i) is a+ 2.

(2) g ≤ i ≤ 3g − 2 and 2g − 2 ≤ ρi ≤ 4g − 3 by (3) of Lemma 5.1.1 and by

Lemma 5.2.9.

Write i = 3g− 1− (a− 1)q− b with 1 ≤ a, b ≤ q− 1. By Lemma 5.2.8, we have

that d(i) = min{ρt | ρt ≥ i+ 1− g = (q − a− 1)q + (q − b)}.

If a < b then (q− a− 1) > (q− b), so (q− a− 1)q+ (q− b) = (r+ s)q+ s with

r = b− a− 1 and s = q− b. So the smallest nongap is d(i) = (q− a)q− b.
If a ≥ b then (q−a−1)q+(q−a) ≤ (q−a−1)q+(q−b) ≤ (q−a−1)q+(q−1), so, if

we call r = q−a, we have that (r−1)(q+1)+1 ≤ (q−a−1)q+(q−b) ≤ qr−1.

Since 1 ≤ r ≤ q−1, then all integers in the interval [(r−1)(q+1)+1, qr−1]

are gaps. So the smallest nongap is d(i) = (q − a)q.

(3) 3g − 2 < i < n− g and 4g − 2 ≤ ρi < n− 1 by (3) of Lemma 5.1.1.

By Lemma 5.2.5, d(i) = i+ 1− g = ρi + 2− 2g.

(4) n− g ≤ i < n+ g and n− 1 ≤ ρi < n+ 2g − 1 by (3) of Lemma 5.1.1.

Write i = n− g + aq + b with 0 ≤ a ≤ q − 2, 0 ≤ b ≤ q − 1.

Then ρi+1 = i+ g = q(q2 +a− b) + b(q+ 1), which means that fi+1 = xq
2+a−byb.

If a < b then q2 + a − b > q2 − 1, so by Lemma 5.2.5, d(i) = i + 1 − g =

n− 2g + aq + b+ 1.

If a ≥ b then the exponent of x is at least q2, so evP(fi+1) ∈ Ei and Ci = Ci+1.

By Lemma 5.2.8, the minimum is

d(i) = d(i+1) = {ρt | ρt ≥ (i+1)+1−g = n−2g+aq+b+2 ≥ n−2g+aq+a+2},

that is, d(i) = n− 2g + aq + a+ 2.

45

Chapter 5. The four phases of Hermitian codes

In this case we have that k ≤ n − d + 1 ≤ n − i + g by singleton bound, but

also k ≥ n− i, since dim(Ei) ≤ i. So 1 ≤ k ≤ 2g.

(5) i ≥ n+ g, then Ci = 0.

In fact ρi is at most (q2− 1)q+ (q− 1)(q+ 1)− 1 = q3− q+ q2− 2 = n+ 2g− 2,

so by Lemma 5.1.1 i ≤ n+ g − 1.

5.3 Phases intersections

In this section we analyse in detail the four phases and we consider the intersec-

tion between the �rst and the second phase and the intersection between the last two.

After that we modify the range of the �rst and second phase found in [HvLP98] and

the formulae to compute the distance and dimension of each code with respect to the

phase.

Now we focus on the intersection between the �rst and the second phase. We

consider i ≤ g + q, then we can write

i =
1

2
α(α + 1) + β + 1 0 ≤ β ≤ α ≤ q − 1.

Then ρi = αq + β and, by (1) of Lemma 5.1.1, the number of gap g(i) = αq + β − i.

We note that if α ≤ q − 2, we are in the �rst phase. So we just study the case

α = q − 1 and 0 ≤ β ≤ q − 1.

We want to prove that d(Ci) = α + 1 = q if i = g + β + 1 with 0 ≤ β < q − 1,

whereas if β = α = q − 1, then d(Ci) = α + 2 = q + 1.

Let β ≤ q − 3 then ρi+1 = αq + β + 1 < q2 − 1 so we can apply Lemma 5.2.6. We

obtain ρi+1 = αq + β + 1 = qr + (q + 1)s where r + s = α and s = β + 1 and

νi = (r + 1)(s+ 1) = (α− β − 1 + 1)(β + 1 + 1) = (q − 1− β)(β + 2).

Therefore d(i) = min{νm | m ≥ i} = min{(q − 1 − β)(β + 2) | β ≤ q − 2} = q. In

fact we have to study the function f(x) = (q − 1− x)(x+ 2) in [0, q − 2], which is a

concave parabola that intersects the x-axis in q− 1 and the y-axis in 2(q− 1). So the

minimum value of f(x) in the interval is exactly f(q − 2) = q.

If β = q − 2, we have i = g + q − 1 and, by Lemma 5.2.8, d(i) = min{ρt |
ρt ≥ i + 1 − g} = q, whereas if β = q − 1, we have that i = g + q and so

d(i) = min{ρt | ρt ≥ i+ 1− g} = q + 1.

46

5.3. Phases intersections

We have proved that there is an intersection between the �rst and the second

phase. In Section 7.1 we are going to study the Hermitian codes of the above men-

tioned extension of the �rst phase. For our theorems and results we need to consider

the �rst phase as i ≤ g + q − 2 and ρi+1 < q2 − 1, that is, β ≤ q − 2.

So, from now on, we consider the �rst phase as i ≤ g + q − 2 and ρi+1 ≤ q2 − 2.

Since we changed the parameters of �rst phase, we have to modify also the second

phase. Let g + q ≤ i ≤ 3g − 2 and q2 − 1 ≤ ρi ≤ 4g − 3 by (3) of Lemma 5.1.1.

Let i = 3g− 2− (a− 1)q− b with 1 ≤ a ≤ q− 2 and 0 ≤ b ≤ q− 2. By Lemma 5.2.8,

we have that d(i) = min{ρt | ρt ≥ i+ 1− g = (q − a− 1)q + (q − b− 1)}. The proof
to �nd the distance is similar to the above proof. In fact

If a ≤ b then (q − a− 1) ≥ (q − b− 1), so (q − a− 1)q + (q − b− 1) = (r + s)q + s

with r = b− a− 1 and s = q − b− 1. So d(i) = (q − a)q − b− 1.

If a > b then (q−a−1)q+(q−a) < (q−a−1)q+(q−b−1) ≤ (q−a−1)q+(q−1), so,

if we call r = q−a, we have that (r−1)(q+1)+1 ≤ (q−a−1)q+(q−b) ≤ qr−1.

Since 1 ≤ r ≤ q − 2, then all integers in the interval [(r − 1)(q + 1) + 1, qr − 1]

are gaps. So the smallest nongap is d(i) = qr = (q − a)q.

We know that the dual of a Hermitian code it is also a Hermitian code. In par-

ticular (C(m, q))⊥ = C(m⊥, q), where m⊥ = n+ 2g − 2−m.

So we analyse codes of the fourth phase as dual of Hermitian codes of the �rst

one. In this way we �nd an intersection between third and fourth phase and a single

formula for the distance.

We consider i⊥ the index of our �rst phase, that is, i⊥ = a(a+ 1)/2 + b+ 1 with

0 ≤ b ≤ a ≤ q − 1 and b 6= q − 1. Then ρi⊥ = aq + b. So

ρi = n+ 2g − 2− ρi⊥ = n+ 2g − 2− aq − b

and i, by (3) of Lemma 5.1.1, is i = n+ g − 1− aq − b.
Note that, since fourth phase codes are dual of �rst phase codes, we have that,

for n− g ≤ i < n+ g, there are not n+ g − (n− g) = 2g but only 2g − 2 = g codes.

For this reason, even if we do not obtain all values of i, we can write i = n+g−1−aq−b
with 0 ≤ b ≤ a ≤ q − 1 and b 6= q − 1. So in this case we can apply Lemma 5.2.5

obtaining d(i) = n− aq − b.
As regards the dimension of these Hermitian codes it is exactly i⊥ = a(a+1)/2+b+1.

47

Chapter 5. The four phases of Hermitian codes

Note that the third phase has some regularity, that is, for any step the dimension

is decreasing by one and the distance is increasing by one.

To study these codes, it is better to have the third phase as large as possible. For this

reason we restrict the range of our fourth phase and we consider the fourth phase as

n− g ≤ i < n+ g and n− 1 ≤ ρi < n+ 2g − 1 where

ρi = n+ 2g − 2− aq − b with 0 ≤ b ≤ a ≤ q − 2.

We can do that since the codes C(n, q) and C(n− 1, q) are the same.

Obviously the minimum distance and the dimension do not change.

We report in Table 5.1 the explicit formulae linking the dimension and the dis-

tance of Hermitian Codes Ci = C(m, q).

From Figure 5.1 and Figure 5.2 it is easy to understand our decision for the

classi�cation of Hermitian codes. In particular in Figure 5.1 all Hermitian codes over

Fq with q = 3, divided by phases, are represented. Whereas, in Figure 5.2 we plotted

some Hermitian codes over Fq with q = 4. In this �gure we do not report all codes of

phase 3 since they all stand on a single line.

48

5.3. Phases intersections

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
d

k

Phase 1

Phase 2

Phase 3

Phase 4

Figure 5.1: Hermitian codes with q = 3.

49

Chapter 5. The four phases of Hermitian codes

b

b

b

b b b

b

b

b

6463626160595857565554535251504916151413121110987654321

1

2

3

4

5

6

7

8

9

10

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

k

d

Phase 1

Phase 2

Phase 3

Phase 4

Figure 5.2: Hermitian codes with q = 4.

50

5.3. Phases intersections

P
h
a
se

i
ρ
i

=
m

D
is
ta
n
c
e

d
D
im
e
n
si
o
n

k

1
1
≤
i
≤
g

+
q
−

1

0
≤
m
≤
q2
−

2

m
=
a
q

+
b

0
≤
b
≤
a
≤
q
−

1

b
6=
q
−

1

a
+

1
if
a
>
b

a
+

2
if
a

=
b

=
⇒

d
≤
q

n
−

a
(a

+
1
)

2
−
b
−

1

2
g

+
q
≤
i
≤

3
g
−

2

q2
−

1
≤
m
≤

4g
−

3

m
=

2q
2
−
q
−
a
q
−
b
−

3

1
≤
a
≤
q
−

2

0
≤
b
≤
q
−

2

(q
−
a
)q
−
b
−

1
a
≤
b

(q
−
a
)q

a
>
b

n
−
g
−
q2

+
a
q

+
b

+
2

3
3g
−

1
≤
i
≤
n
−
g
−

1
4g
−

2
≤
m
≤
n
−

2
m
−

2
g

+
2

n
−
m

+
g
−

1

4
n
−
g
≤
i
≤
n

+
g
−

1

n
−

1
≤
m
≤
n

+
2
g
−

2

m
=
n

+
2
g
−

2
−
a
q
−
b

0
≤
b
≤
a
≤
q
−

2,

n
−
a
q
−
b

a
(a

+
1
)

2
+
b

+
1

T
ab
le
5.
1:

T
h
e
fo
u
r
p
h
as
es

of
H
er
m
it
ia
n
co
d
es

51

Part II

Main Results

53

Intersections between the Hermitian curve H and

parabolas

In this chapter, we report our results in [MPS12].

Let Fq2 be the �nite �eld with q2 elements, and let Fq be the �nite �eld with q

elements, where q is a power of a prime. We call α a primitive element of Fq2 , and

we consider β = αq+1 as a primitive element of Fq.
We recall the de�nition of the Hermitian curve H over Fq2 (Section 3.1), i.e.

xq+1 = yq + y.

Given two curves X and Y lying in the a�ne plane A2(Fq) it is interesting to know
the number of (a�ne plane) points that lie in both curves, disregarding multiplicity.

We call this number their planar intersection. This knowledge may have applications

for the codes constructed from X and Y . As regards H, it is interesting for coding

theory applications [Cou11, BR12a, BR12b, FM11] to consider an arbitrary parabola

y = ax2 + bx + c over Fq2 and to compute their planar intersection. Moreover, it is

essential to know precisely the number of parabolas having a given planar intersection

with H. Only partial results were known [DD10, DDK09], we present here for the

�rst time a complete classi�cation in the following theorem.

Theorem 6.0.1. For q odd, the only possible planar intersections of H and a parabola

are {0, 1, q − 1, q, q + 1, 2q − 1, 2q}. For any possible mutual intersection we provide

in the next tables the exact number of parabolas sharing that value.

#H∩ parabola 0 1 q − 1

parabolas q2(q + 1) (q−1)
2

q2(q + 1) q(q−3)
2

q2(q + 1) q(q−1)2

2

#H∩ parabola q q + 1

parabolas q2(q + 1)(q2 − q + 1) q2(q + 1) q(q−1)(q−3)
2

CGC 55

Chapter 6. Intersections between the Hermitian curve H and parabolas

#H∩ parabola 2q − 1 2q

parabolas q2(q + 1) q(q−1)
2

q2(q + 1) (q−1)
2

For q even, the only possible planar intersections of H and a parabola are {1, q −
1, q + 1, 2q − 1}. For any possible mutual intersection we provide in the next tables

the exact number of parabolas sharing that value.

#H∩ parabola 1 q − 1

parabolas q3(q + 1)(q
2
− 1) q3(q + 1)(q − 1) q

2

#H∩ parabola q + 1 2q − 1

parabolas q3(q + 1)(q − 1)(q
2
− 1) q3(q + 1) q

2

We begin with some simple lemmas.

First of all, we recall (Section 3.1) that the Norm N and the Trace Tr are two

functions N,Tr : Fq2 → Fq such that N(x) = xq+1 and Tr(x) = xq + x.

Using these functions, we de�ne the map Fa : Fq2 → Fq such that

Fa(x) = N(x)− Tr(ax2). (6.1)

We can note that the following property holds for the function Fa:

Lemma 6.0.2. If ω ∈ Fq, then Fa(ωx) = ω2Fa(x).

Proof. Since ω ∈ Fq, we have Fa(ωx) = N(ωx)−Tr(a(ωx)2) = ωq+1xq+1− aqω2qx2q−
aω2x2 = ω2(xq+1 − aqx2q − ax2) = ω2Fa(x).

Lemma 6.0.3. Let t ∈ F∗q2, then there is a solution of xq−1 = t if and only if N(t) = 1.

In this case, xq−1 = t has exactly (q − 1) distinct solutions in Fq2.

Proof. We consider the function f : Fq2 → Fq2 such that f(x) = xq−1. We want to

prove that t ∈ Im(f) ⇐⇒ N(t) = 1.

We can note that if t = αλ(q−1) for any λ, then x = αλ is a solution of xq−1 = t. We

claim that the solutions are:

x = αλ+k(q+1) with 0 ≤ k ≤ q − 2.

In fact (αλ+k(q+1))q−1 = αλ(q−1) = t for 0 ≤ k ≤ q− 2. So if the equation xq−1 = t has

at least one solution, then it has at least q − 1 distinct solutions. Since the equation

56

degree is q − 1, then it has exactly q − 1 distinct solutions.

Further we can note that if t ∈ Im(f) =⇒ N(t) = 1. In fact N(t) = tq+1 =

(xq−1)q+1 = 1. So Im(f) ⊂ {t | N(t) = 1}. But |Im(f)| = q + 1 and |{N(t) = 1}| =

q + 1 hence Im(f) = {t | N(t) = 1}.

Remark 6.0.4. We note that 4N(a) = N(2a) for any a ∈ Fq2 .

Lemma 6.0.5. If q is odd and 4N(a) = 1 then a is a square in Fq2.

Proof. Let a = αk, so that 4N(a) = 1 =⇒ 4αk(q+1) = 1 =⇒ 4βk = 1. Since 4 is a

square in Fq, we have

4 = β2t =⇒ β2t+k = 1 =⇒ 2t+ k ≡ 0 mod q − 1,

so that k is even and a is a square.

We recall a well-known result in linear algebra:

Lemma 6.0.6. Let f : V → W be a linear function and f(ā) = a ∈ Im(f). Then

f−1(a) = ā+ ker(f) and

dim ker(f) + dim Im(f) = dimV.

Lemma 6.0.7. For any a ∈ Fq2, let f : Fq2 → Fq2, f(x) = 2ax − xq. Then f is

Fq-linear.

Proof.

∀ c, d ∈ Fq2 , f(c+ d) = 2ac− cq + 2ad− dq = f(c) + f(d).

∀ c ∈ Fq2 , ∀ k ∈ Fq then f(kc) = 2akc− kqcq = 2akc− kcq = kf(c).

Because of Lemma 6.0.7 and Lemma 6.0.6 we have the following corollary:

Corollary 6.0.8. Let f : Fq2 → Fq2 such that f(x) = 2ax − xq. Then the equation

f(x) = k has q distinct solutions if k ∈ Im(f), otherwise it has 0 solutions.

Lemma 6.0.9. Let y = ax2 + bx + c̄ and y = ax2 + bx + c be two parabolas. If

Tr(c̄) = Tr(c), then the planar intersections between the Hermitian curve H and the

parabolas are the same.

Proof. From a set {y = ax2 + bx + c̄} ∩ H and another set {y = ax2 + bx + c} ∩ H
we obtain by direct substitution respectively xq+1 = aqx2q + ax2 + bqxq + bx + Tr(c̄)

and xq+1 = aqx2q + ax2 + bqxq + bx + Tr(c). If Tr(c̄) = Tr(c), the two equations are

identical.

57

Chapter 6. Intersections between the Hermitian curve H and parabolas

For the proof of Theorem 6.0.1, we will need to apply the automorphism of Her-

mitian curve to the parabolas. We recall the automorphism of Hermitian curve (3.3)

(Section 3.3): {
x 7−→ x+ γ

y 7−→ y + γqx+ δ
with (γ, δ) ∈ H.

If we apply (3.3) to y = ax2, we obtain

y = ax2 + x(2aγ − γq) + aγ2 − δ, (6.2)

while if we apply (3.3) to y = ax2 + c we obtain

y = ax2 + x(2aγ − γq) + aγ2 − δ + c. (6.3)

In the general case, if we have y = ax2 + bx + c and apply the automorphism (3.3)

we obtain

y = ax2 + (2aγ − γq + b)x+ aγ2 + bγ − δ + c. (6.4)

To prove Theorem 6.0.1, we have to study two distinct cases depending on the

�eld characteristic. Section 6.1 is devoted to the proof of Theorem 6.0.1 when the

characteristic is odd, while Section 6.2 is devoted to the proof of Theorem 6.0.1 when

the characteristic is even.

6.1 Odd characteristic

In this section, q is always odd.

6.1.1 Intersection between H and y = ax2 + c

Intersecting a parabola of the form y = ax2 + c with the Hermitian curve, we

obtain xq+1 = aqx2q + ax2 + Tr(c) which is equivalent to

N(x)− Tr(ax2) = Fa(x) = Tr(c). (6.5)

We have to study the number of solutions of (6.5). From this equation we get aqx2q−
xq+1 + ax2 = −Tr(c), that is,

x2(aqx2q−2 − xq−1 + a) = −Tr(c). (6.6)

Now we set xq−1 = t and we factorize the polynomial aqt2 − t+ a in Fq2 [t], obtaining

t1,2 =
1±

√
1− 4N(a)

2aq
=

1±
√

∆

2aq

58

6.1. Odd characteristic

where ∆ = 1− 4N(a). So equation (6.6) becomes

aqx2

(
xq−1 − 1 +

√
∆

2aq

)(
xq−1 − 1−

√
∆

2aq

)
= −Tr(c). (6.7)

Since ∆ ∈ Fq, there is z ∈ Fq2 such that ∆ = z2, and so the equation (6.7) is in Fq2 [x].

Note that

∆ = 0 ⇐⇒ N(2a) = 1.

So, in this special case, (6.7) becomes aqx2(xq−1 − 2a)2 = −Tr(c). We have proved

the following lemma:

Lemma 6.1.1. By intersecting a parabola y = ax2 + c, where N(2a) = 1, and the

Hermitian curve, we obtain the following equation

aqx2(xq−1 − 2a)2 = −Tr(c).

Recall that α is a primitive element of Fq2 and β = αq+1 is a primitive element of Fq.

Lemma 6.1.2. Let x = αjβi, with j = 0, . . . , q and i = 0, . . . , q − 2. Then

� If 4N(a) 6= 1, then the non-zero values Fa(α
jβi) give us all the elements of F∗q.

� If 4N(a) = 1, then the non-zero values Fa(α
jβi) give us half of the elements of

F∗q.

Proof. We �x an index j such that Fa(α
j) 6= 0. The set of the values

{Fa(αjβi)}0≤i≤q−2 = {β2iFa(α
j)}0≤i≤q−2

contains half of the elements of F∗q, since q is odd (and q−1
2

is an integer) and so

β2(q−1
2

) = αq
2−1 = 1.

If 4N(a) = 1, by Lemma 6.1.1, Fa(x) becomes −aqx2(xq−1 − 2a)2, so β2iFa(α
j) =

−aqβ2i(αjq − 2aαj)2, and give us half of the elements of F∗q, that are all square of F∗q.
If 4N(a) 6= 1, by varying j, we can obtain every element of F∗q.
In fact, Fa(x) = −x2(aqx2q−2 + a− xq−1), so

Fa(α
j) = N(αj)− Tr(a(αj)2) = βj − aα2j − aqα2jq = βj − βrj ,

where 0 ≤ rj ≤ q − 2 and β2iFa(α
j) = β2i+j − β2i+rj , that are all elements of F∗q.

Now we study the number of solutions of equation (6.5), analysing two cases:

when Tr(c) = 0 and when Tr(c) 6= 0.

59

Chapter 6. Intersections between the Hermitian curve H and parabolas

∗ Case Tr(c) = 0. By Lemma 6.0.9, it is enough to study the case c = 0, which is

the intersection between H and y = ax2. By (6.7) we have

aqx2

(
xq−1 − 1 +

√
∆

2aq

)(
xq−1 − 1−

√
∆

2aq

)
= 0.

We must di�erentiate our argument depending on ∆. Recall that ∆ ∈ Fq.

- ∆ = 0. By Lemma 6.1.1, (6.7) becomes

aqx2(xq−1 − 2a)2 = 0.

So we have always one solution x = 0 and the solutions of xq−1 = 2a.

Since N(2a) = 1, by Lemma 6.0.3, the number of solutions of xq−1 = 2a

are q−1. Therefore, in this case, we have q points of intersections between

the parabola and the Hermitian curve H.
By condition on a, i.e. N(2a) = 1, we have (q + 1) distinct a's.

- ∆ = 1. That is, N(2a) = 0 ⇐⇒ a = 0, which is impossible.

- ∆ ∈ Fq\{0, 1}. We note that any element in Fq can always be written as

z2 with z2 ∈ Fq2 . In order to study the solutions of (6.7), we can consider

the solutions of the following equations

xq−1 =
1± z
2aq

. (6.8)

By Lemma 6.0.3 we know that xq−1 = 1+z
2aq

has some solutions if and only

if N
(

1+z
2aq

)
= 1. Note that

N

(
1 + z

2aq

)
= 1 ⇐⇒ (1 + z)q+1

1− z2
= 1 ⇐⇒ 1− z = (1 + z)q ⇐⇒ −z = zq

We obtain the same result for xq−1 = 1−z
2aq

.

If (6.8) has a solution x and z ∈ Fq, then z simultaneously satis�es zq = z

and zq = −z. Since q is odd, this is possible only when z = 0, which

implies ∆ = 0, which is not admissible.

Returning to count the intersection points, thanks to the previous discus-

sion of the solution of (6.8), we have to consider two distinct cases:

1. z = zq, that is, z ∈ Fq. Since z 6= 0, 1, there are q−1
2
−1 = q−3

2
possible

values of z2, and so we have (q + 1) q−3
2

values of a. In this case, the

parabola y = ax2 + c intersects H in only one point (with x = 0).

60

6.1. Odd characteristic

2. z = −zq. The equation −z = zq has only one solution in Fq, so the

other q− 1 solutions are in Fq2\Fq. For such z, we have 2(q− 1) + 1 =

2q − 1 points of intersection. That is, q − 1 solutions from equation

xq−1 = 1−z
2aq

, q − 1 solutions from equation xq−1 = 1+z
2aq

and one point

from x = 0.

It is simple to verify that the number of z2 such that z ∈ Fq2\Fq is
q−1

2
. So we have (q+1) q−1

2
values of a for which we have exactly 2q−1

points of intersection between y = ax2 + c and H.

Now we apply the automorphism (3.3) and we want to compute how many

di�erent parabolas we can obtain. Applying (3.3) to y = ax2 we obtain (6.2):

y = ax2 + x(2aγ − γq) + aγ2 − δ.

For the moment, we restrict our counting argument to the case ∆ 6= 0. We

note that if ∆ 6= 0, we have a maximal orbit, that is, all possible parabolas

are distinct (there are q3 because Γ has q3 elements). In other words, we claim

that it is impossible that we obtain two equal parabolas with (γ, δ) 6= (γ̄, δ̄). To

prove that, we have to solve the following system:



2aγ̄ − γ̄q = 2aγ − γq

aγ̄2 − δ̄ = aγ2 − δ
γq+1 = δq + δ

γ̄q+1 = δ̄q + δ̄

1− 4aq+1 6= 0.

However, 2aγ̄ − γ̄q = 2aγ − γq ⇐⇒ 2a(γ̄ − γ) = γ̄q − γq = (γ̄ − γ)q =⇒
4aq+1(γ̄ − γ)q(γ̄ − γ) = (γ̄ − γ)(γ̄ − γ)q ⇐⇒ 4aq+1 = 1. And it is impossible,

since ∆ 6= 0.

Hence, when ∆ 6= 0, we have exactly q3 distinct parabolas that have the same

planar intersections with H as y = ax2 has.

∗ Case y = ax2 + c, with Tr(c) 6= 0. As in previous case, we have to di�erentiate

depending on ∆.

- If ∆ = z2 and z ∈ Fq, we know that Fa(x) vanishes only if x = 0. If x 6= 0,

then by Lemma 6.1.2, Fa(β
iαj) = β2iFa(α

j) = t assumes every value of

F∗q. But x = βiαj assumes q2− 1 distinct values, varying i and j. So every

t is obtained q + 1 times (Fa(x) is a polynomial of degree q + 1). Hence,

the equation Fa(x) = Tr(c) has exactly q + 1 solutions.

61

Chapter 6. Intersections between the Hermitian curve H and parabolas

- If ∆ = z2 and z ∈ Fq2\Fq, we know that Fa(x) = 0 has 2q − 1 solutions.

So there are exactly two distinct values of j such that Fa(α
j) = 0, one for

each equation xq−1 = 1±z
2aq

(to �nd the q− 1 solutions, we vary i). So every

value in F∗q is obtained q− 1 times. Hence, the equation Fa(x) = Tr(c) has

exactly q − 1 solutions.

- If ∆ = 0 we have 4aq+1 = 1.

So (6.1) can be written as aqx2(xq−1 − 2a)2 = −Tr(c), that is,

x2(xq−1 − 2a)2 = −4aTr(c) = −4aβr (6.9)

for some �xed r with 1 ≤ r ≤ q − 1.

Note that (6.9) can be written as f(x)2 = −4aTr(c), where f is as in

Lemma 6.0.7, that is, f(x) = xq − 2ax.

We note that −4aβr is always a square in Fq2 . In fact −4βr is a square

because it lies in Fq, and also a is a square by Lemma 6.0.5. Let us write

−4aβr = α2h, so (6.9) becomes x(xq−1 − 2a) = ±α h where 0 ≤ h ≤ q2−1
2

.

We consider the �positive� case:

f(x) = xq − 2ax = α h. (6.10)

It is simple to prove that if x is a solution of equation (6.10), then −x
is a solution of the equation xq − 2ax = −αh. So by Corollary 6.0.8 the

equation Fa(x) = Tr(c) has 0 solutions if αh is not in Im(f) or 2q solution

if αh is in Im(f).

6.1.2 Intersection between H and y = ax2 + bx+ c

We consider a parabola y = ax2 + bx + c, apply the automorphism (3.3) and we

obtain (6.4).

Note that, for any k ∈ Fq2 ,

2aγ − γq + b = k =⇒ 2abq + b = 2akq + k, (6.11)

because bq = (k− 2aγ + γq)q = kq − 1
2a
γq + γ = kq + 1

2a
(−γq + 2aγ) = kq + 1

2a
(k− b).

A consequence is that 2aγ − γq + b = 0 =⇒ 2abq + b = 0.

We consider two distinct cases 2aγ − γq + b = 0 and 2aγ − γq + b 6= 0.

62

6.1. Odd characteristic

2aγ − γq + b 6= 0.

Theorem 6.1.3. Let y = ax2 + bx+ c be a parabola with 2abq + b 6= 0 and N(2a) = 1.

Then there exists γ such that for any δ, applying the automorphism (3.3), we obtain

y = ax2 + (2aγ − γq + b)x + aγ2 + bγ − δ + c, with 2aγ − γq + b 6= 0. We can write

any such parabola as y = (ux+ uv)2 where a = u2 and vq + 2av 6= 0.

Proof. Because of (6.11) with k 6= 0 we have that, since 2abq + b 6= 0, then ∃ γ such

that 2aγ − γq + b 6= 0.

Let k ∈ Fq2 such that 2aγ − γq + b = k 6= 0. By Corollary 6.0.8, if there exists at

least one solution of 2aγ − γq = k − b, then there exists q solutions. So we have at

least q di�erent γ's that verify the previous equation.

To prove that any parabola as in (6.4) can be written as y = (ux+ uv)2 with a = u2

and vq + 2av 6= 0, it is su�cient to prove that the solutions of the following system

contain all c's. 
2aγ − γq + b = 2av 6= 0

aγ2 + bγ − δ + c = av2 6= 0

γq+1 = δq + δ

1− 4aq+1 = 0

Using (6.11) the �rst equation of system 2aγ−γq+b = 2av implies that vq+2av 6= 0.

In fact if we consider (6.11) with k = 2av, we have 0 6= 2abq + b = 2akq + k =

2a(2av)q + 2av = vq + 2av.

By the second equation we have c = δ+av2−aγ2− bγ. So for any γ (and there are q

possible γ's), there are q distinct δ's (by the curve equation). So we have q2 di�erent

c's, that is, all possible c's.

Finally, we can write (6.4) as y = a(x + v)2. By Lemma 6.0.5, a = u2 is a square so

y = (ux+ uv)2.

Theorem 6.1.4. Let a, v ∈ Fq2 such that N(2a) = 1 and vq + 2av 6= 0. Then the

Hermitian curve H intersects the parabola y = a(x+ v)2 in q points.

Proof. We have to solve the system{
y = (ux+ uv)2

xq+1 = yq + y
=⇒ xq+1 = (ux+ uv)2q + (u+ uv)2

By a change of variables z = ux+ uv, we obtain (z−uv
u

)q+1 = z2q + z2, so we have

−(uv)zq − (uv)qz + (uv)q+1 = uq+1z2q + uq+1z2 − zq+1 = uq+1(zq − 2uq+1z)2.

63

Chapter 6. Intersections between the Hermitian curve H and parabolas

Since N(2a) = 1 and a = u2, we have uq+1 = ±1
2
and so

1

2
(zq − z)2 = N(uv)− Tr(z(uv)q) (6.12)

−1

2
(zq + z)2 = N(uv)− Tr(z(uv)q) (6.13)

We consider two cases:

∗ If uq+1 = 1
2
, we can note that (zq − z)2 is not a square in Fq if zq − z 6= 0.

In fact, suppose by contradiction that (zq − z)2 = β2r, then zq − z = βr ∈ Fq
but also zq + z ∈ Fq, so −2z ∈ Fq ⇐⇒ z ∈ Fq and so zq − z = 0, which is

impossible.

∗ If uq+1 = −1
2
, we can note that (zq + z)2 is a square in Fq, because zq + z ∈ Fq.

Let t = N(uv) − Tr(z(uv)q). So t ∈ Fq. Due to (6.12) we have 2t = (zq − z)2, while

(6.13) becomes −2t = (zq + z)2.

When uq+1 = 1
2
, we have q−1

2
values of t (that are all the non-squares) and t = 0,

whereas when uq+1 = −1
2
, we have q−1

2
values of t (that are all the squares) and t = 0.

Now we consider separately the cases t = 0 and t 6= 0.

- We claim that if t = 0 and uq+1 = ±1
2

=⇒ z ∈ Fq. Whereas if t =

0 and uq+1 = −1
2

=⇒ z ∈ Fq2\Fq. We show only the case uq+1 = 1
2
. With

these assumptions (6.12) becomes

−(uv)zq − (uv)qz + (uv)q+1 = 0 ⇐⇒ z =
(uv)q+1

(uv)q + uv
.

We can note that since vq + 2av 6= 0, then (uv)q +uv 6= 0. In fact, suppose that

vq + 2av = 0, then (uv)q + uv = − 1
2u

2av + uv = 0.

We have to verify that zq = z. Indeed zq = (uv)q+1

uv+(uv)q
= z.

Similar computations (here omitted) show the case uq+1 = −1
2
.

- We claim that if t 6= 0 and uq+1 = ±1
2

=⇒ z 6∈ Fq. With these assumptions,

we show only the case uq+1 = 1
2
. We have (zq − z)2 = 2t = α2r, that is,

zq = z ± αr. Now we substitute zq in −(uv)zq − (uv)qz + (uv)q+1 = t and we

obtain −(uv)(±αr + z)− (uv)qz + (uv)q+1 = 1
2
α2r, that is,

z =
(uv)q+1 − 1

2
α2r ∓ uvαr

Tr(uv)
(6.14)

64

6.1. Odd characteristic

We can note that αqr = −αr, in fact 2t = α2r ∈ Fq, so (α2r)q = α2r, that is,

αrq = ±αr but αr 6∈ Fq (since 2t is not a square in Fq) so αqr = −αr. We have

thus proved

z =
(uv)q+1 − 1

2
α2r ∓ uvαr

Tr(uv)
and zq =

(uv)q+1 − 1
2
α2r ± (uv)qαr

Tr(uv)

Now we have to verify that the two z's as in (6.14) are solutions of (6.12). We

have zq − z = ±αr and N(uv)− Tr(z(uv)q) = t. So

±αr = zq − z ⇐⇒ ±Tr(uv)αr = ±(uv)qαr ± uvαr

and
(uv)q+1 − z(uv)q − zq(uv) = t

⇐⇒ (uv)q+1Tr(uv)− (uv)q((uv)q+1 − 1
2α

2r ∓ uvαr)+
−uv((uv)q+1 − 1

2α
2r ± uvαr) = Tr(uv)t

⇐⇒ (uv)q+1Tr(uv) + tTr(uv)− (uv)2q+1 − (uv)q+2 = Tr(uv)t

⇐⇒ (uv)q+1Tr(uv)− (uv)2q+1 − (uv)q+2 = 0.

So the z's are solutions of (6.12).

Similar computations (omitted here) show the case uq+1 = −1
2
.

Therefore, we have two solutions for any t not a square in F∗q and we have only one

solution when t = 0. That is, we get a total of q−1
2

2 + 1 = q intersections.

The same holds for the case with uq+1 = −1
2
.

Now we consider the second case.

2aγ − γq + b = 0.

We note that if 2aγ − γq + b = 0 then 2abq + b = 0, and so (6.4) is actually

y = ax2 + c. Now we apply the automorphism (3.3) to the parabola y = ax2 + c and

we obtain (6.3). Now if

- ∆ 6= 0, the parabolas in (6.3) are all distinct.

The number of values of c such that Tr(c) 6= 0 are exactly q2−q, but we must be
careful and not count twice the same parabola. In particular, if two parabolas

share a and b, then they are in the same orbit if Tr(c) = Tr(c′). So we must

consider only one of these for any non-zero Tr(c). Thus there are q − 1 values.

65

Chapter 6. Intersections between the Hermitian curve H and parabolas

Summarizing:

∗ If ∆ = z2 and z ∈ Fq (and Tr(c) 6= 0), then the number of parabolas with

q + 1 intersections is

(q + 1)
q − 3

2︸ ︷︷ ︸
a

q3(q − 1)︸ ︷︷ ︸
b,c

=
1

2
q3(q2 − 1)(q − 3).

∗ If ∆ = z2 and zq + z = 0 (and Tr(c) 6= 0), then the number of parabolas

with q − 1 intersections is

(q + 1)
q − 1

2︸ ︷︷ ︸
a

q3(q − 1)︸ ︷︷ ︸
b,c

=
1

2
q3(q + 1)(q − 1)2.

- ∆ = 0, that is, 4aq+1 = 1, we want to understand how many di�erent parabolas

of the type y = ax2 + bx+ c̄ (with a �xed) we can obtain. So we have to study

the number of pairs (b, c̄).

We note that

Tr(c̄) = aqb2 + Tr(c). (6.15)

In fact

Tr(c̄) = (aγ2 − δ)q + aγ2 − δ + Tr(c)

= (aγ2)q + aγ2 − γq+1 + Tr(c) = aqγ2(γq−1 − 2a)2 + Tr(c).

Let Tr(c) = k, with k ∈ F∗q. Let us consider two distinct cases:

- Tr(c) = Tr(c̄). By (6.15) we have that Tr(c) = Tr(c̄) ⇐⇒ b = 0.

So the number of pairs (0, c̄) are exactly q2 − q, because they correspond

to all c̄ ∈ Fq2 such that Tr(c̄) 6= 0.

- Tr(c) 6= Tr(c̄). Then Tr(c̄) = aqb2 + k.

Since b = 2aγ − γq, then, by considering all possible γ's, we obtain q − 1

distinct b's.

In fact, we can consider the function f : Fq2 → Fq2 such that f(γ) =

2aγ− γq. By Corollary 6.0.8, for any t ∈ Im(f), the equation f(γ) = t has

q distinct solutions.

Since we are interested in the case b 6= 0, we have (q2−q)
q

= q − 1 di�erent

b's. We can note that if b is a solution of the equation 2aγ − γq = 0, then

−b is also a solution.

Since we are interested in the pairs (b2, c̄), we note that we have to consider

the equation Tr(c̄) = aqb2 + k, so the pairs (b2, c̄) are exactly q−1
2

(q2 − q).

66

6.1. Odd characteristic

In fact there are exactly q−1
2

distinct b2 and for any pairs (b2, k) we have

exactly q distinct c̄ 's. While the possible k's are exactly q − 1 (because

Tr(c) 6= 0).

All possible pairs (b, c̄) are 2 q−1
2

(q2 − q) = (q − 1)(q2 − q).

We �x a and we obtain exactly (q − 1)(q2 − q) + q2 − q = q2(q − 1) parabolas

of the type y = ax2 + bx+ c̄.

In conclusion if ∆ = 0 and Tr(c) 6= 0, then we have q2(q+ 1) q−1
2

parabolas with

2q or 0 intersections.

The last type of parabolas cannot be easily counted and so we obtain their number

by di�erence.

Claim 6.1.5. The number of parabolas that have q intersections with the Hermitian

curve H is q2(q + 1)(q2 − q + 1).

Proof. The number of total parabolas is q4(q2 − 1). By summing all parabolas that

we already counted we obtain

q2(q + 1)

(
2
q − 1

2
+ q

q − 1

2
(q − 1 + q − 3) +

q

2
(q − 1 + q − 3)

)
=

= q2(q + 1)(q − 1 + q2(q − 2)).

So the number of parabolas that have q intersections with H is

q4(q2 − 1)− q2(q + 1)(q − 1 + q2(q − 2)) =

q2(q + 1)(q2(q − 1)− q + 1− q2(q − 2)) = q2(q + 1)(q2 − q + 1).

We have proved the following theorems, depending on the condition Tr(c) = 0 or

Tr(c) 6= 0.

Theorem 6.1.6. Let q be odd. A parabola y = ax2 + c with Tr(c) = 0 intersects the

Hermitian curve H in 2q − 1, q or 1 points.

Moreover, we have

(q + 1) q−1
2
q3 parabolas that intersect H in 2q − 1 points.

q2(q + 1)(q2 − q + 1) parabolas that intersect H in q points.

(q + 1) q−3
2
q3 parabolas that intersect H in one point.

67

Chapter 6. Intersections between the Hermitian curve H and parabolas

Theorem 6.1.7. Let q be odd. A parabola y = ax2 + c with Tr(c) 6= 0 intersects the

Hermitian curve H in 2q, q + 1, q − 1 or 0 points.

Moreover, we have

q2(q + 1) q−1
2

parabolas that intersect H in 2q points.

q3(q + 1)(q − 1) q−3
2

parabolas that intersect H in q + 1 points.

q3(q + 1) (q−1)2

2
parabolas that intersect H in q − 1 points.

q2(q + 1) q−1
2

parabolas that intersect H in 0 point.

Therefore, thanks to Theorem 6.1.6 and to Theorem 6.1.7, we obtain the �rst half

of Theorem 6.0.1.

6.2 Even characteristic

In this section, q is always even.

We claim that it is enough to consider just two special cases: y = ax2 and y =

ax2 + c. Before studying these two cases, we consider the following lemma:

Lemma 6.2.1. Let x = αjβi, with j = 0, . . . , q and i = 0, . . . , q − 2; then the values

Fa(α
jβi) that are not zero are all the elements of F∗q.

Proof. Fixing a index j, by Lemma 6.0.2 we have Fa(α
jβi) = β2iFa(α

j). If Fa(α
j) = 0

we have �nished, otherwise β2iFa(α
j) are all elements of F∗q, because also β2 is a

primitive element of Fq.

We divide the study into two parts.

∗ Case y = ax2. We intersect H with y = ax2 and we obtain x2(aqx2q−2 −
xq−1 + a) = 0, as in (6.6). We set xq−1 = t and we have to solve the equation

aqt2 − t+ a = 0. Setting z = taq we obtain

z2 + z + aq+1 = 0.

It is known that this equation has solutions in a �eld of characteristic even if

and only if Tr
Fq2
F2

(aq+1) = 0 (by special case of Artin - Schreier Theorem, see

Theorem 6.4 of [S.02]). And this latter condition holds, since we have

Tr
Fq2
F2

(aq+1) = Tr
Fq
F2

(Tr
Fq2
Fq (aq+1)) = Tr

Fq
F2

(0) = 0.

We also have N(t) = 1, in fact tq+1 = (xq−1)q+1 = 1. Then we have

zq+1 = N(z) = N(aq) = aq
2+q = aq+1 = N(a)

68

6.2. Even characteristic

and so the equation becomes

z2 + z + zq+1 = 0.

Since t 6= 0, z 6= 0, then we must have

zq + z = 1.

We can note that, since aq+1 ∈ Fq, then it is possible to compute its trace from

Fq to F2, and we obtain

Tr
Fq
F2

(aq+1) = Tr
Fq
F2

(zq+1) = Tr
Fq
F2

(z2+z) = z+z2+z2+z4+. . .+zq/2+zq = z+zq.

If it is equal to 0, we have a contradiction, then there is not any solution x ∈ Fq2 .

On the other hand if it is equal to 1, then we have solutions.

When the solutions exist, since zq+1 = aq+1, a solution z is aαj(q−1), for some

j, and the other is z + 1, which we can write as aαj
′(q−1). From each of these

we have the corresponding t = (α
j

a
)q−1 and so the x's are αj+i(q+1)

a
= αjβi

a
and

αj
′+i(q+1)

a
= αj

′
βi

a
, with i = 0, . . . , q − 2.

We can summarize:

- If Tr
Fq
F2

(aq+1) = 0, there is only one solution. This happens when a = 0,

which it is not acceptable, and for q
2
−1 other values of aq+1, so the possible

values of a are (q
2
− 1)(q + 1).

- If Tr
Fq
F2

(aq+1) = 1, there are 2q − 1 solutions. This happens for q
2
values of

aq+1, so the possible values of a are q
2
(q + 1).

As in the odd case, we apply the automorphism (3.3) to the parabolas of type

y = ax2 and we can see that distinct automorphisms generate distinct parabolas.

We omit the easy adaption of our earlier proof.

So we have proved the following theorem:

Theorem 6.2.2. The Hermitian curve H and the parabola y = ax2 intersect

in either one point or 2q − 1 points.

Moreover, from the application of (3.3) to these parabolas, we obtain:

q3(q
2
− 1)(q + 1) parabolas with one point of intersection with H.

q3 q
2
(q + 1) parabolas with 2q − 1 points of intersection with H.

* Case y = ax2 + c with Tr(c) 6= 0. We consider the equation (6.1). We divide

the problem into two parts:

69

Chapter 6. Intersections between the Hermitian curve H and parabolas

- If Tr
Fq
F2

(aq+1) = 0, we know that Fa(x) is equal to zero only for x = 0. If

x 6= 0, then by Lemma 6.2.1 if we �x j we have that Fa(x) = Fa(α
jβi) =

β2iFa(α
j) are all the elements of F∗q. But j can assume q + 1 distinct

values, so any value of F∗q can be obtained q + 1 times. So, the equation

Fa(x) = Tr(c) has exactly q + 1 solutions.

- If Tr
Fq
F2

(aq+1) = 1, Fa(x) = 0 has 2q − 1 solutions. So, if we �x an index

j, the values of Fa(α
jβi) = β2iFa(α

j) are all equal to zero or are all the

elements of F∗q. There are exactly two distinct values of j that give zero,

so any non-zero value of Fq can be obtained q − 1 times. So, the equation

Fa(x) = Tr(c) has exactly q − 1 solutions.

We apply the automorphism (3.3) to the parabola y = ax2 + c and we obtain

(6.3). These are all distinct and di�erent from those of Theorem 6.2.2, because

the planar intersection of H and the previous parabolas are di�erent. The

number of values of c such that Tr(c) 6= 0 are exactly q2 − q, but we must be

careful and not count twice the same parabola. In particular, if two parabolas

share a and b, then they are in the same orbit if Tr(c) = Tr(c̄). So we must

consider only one of these for any non-zero value of Tr(c). These are q − 1 of

these values.

Summarizing, we have proved the following theorem:

Theorem 6.2.3. The Hermitian curve H and the parabola y = ax2 + c with

Tr(c) 6= 0 intersect in either q + 1 or q − 1 points.

Moreover, from the application of (3.3) to these parabolas, we obtain:

q3(q
2
− 1)(q + 1)(q − 1) parabolas (with Tr

Fq
F2

(aq+1) = 0) with q + 1 points of

intersection with H.

q3 q
2
(q+1)(q−1) parabolas (with Tr

Fq
F2

(aq+1) = 1) with q−1 points of intersection

with H.

By summing all parabolas that we have found in Theorem 6.2.2 and Theo-

rem 6.2.3, we obtain

q3(q + 1)
(q

2
− 1 +

q

2
+ (q − 1)(

q

2
− 1 +

q

2
)
)

=

= q3(q + 1)(q − 1)(1 + q − 1) = q4(q2 − 1).

Since this is exactly the total number of the parabolas, this means that we actu-

ally considered all parabolas, and so we obtain the second half of Theorem 6.0.1.

70

Small-weight codewords of Hermitian codes

In this chapter we analyse the small-weight codewords of Hermitian codes of the

�rst phase, that is, of all codes C(m, q), with m ≤ q2 − 2. In particular we are able

to obtain geometric characterizations for small-weight codewords for those Hermitian

codes. From these geometric characterizations, we obtain explicit formulae which

permits us to determine the number of minimum-weight codewords for all Hermitian

codes with d ≤ q (see Section 7.3). In Section 7.4 we �nd the number of words having

weight d + 1 for some special cases and in Section 7.5 we compute all second-weight

codewords for codes with distance d = 3, 4.

This work can be found in our article [MPS12].

In the last section, we use a geometrical approach reporting our results in [FM11].

7.1 Corner codes and edge codes

The �rst phase Hermitian codes can be either edge codes or corner codes.

De�nition 7.1.1. Let 2 ≤ d ≤ q and let 1 ≤ j ≤ d− 1.

Let Ld0 = {1, x, . . . , xd−2}, Ld1 = {y, xy, . . . , xd−3y}, . . . , Ldd−2 = {yd−2}.
Let ld1 = xd−1, . . . , ldj = xd−jyj−1.

� If Bm,q = Ld0 t · · · t Ldd−2, then we say that C(m, q) is a corner code and we

denote it by H 0
d .

� If Bm,q = Ld0 t · · · t Ldd−2 t {ld1, . . . , ldj}, then we say that C(m, q) is an edge

code and we denote it by H j
d .

From previous results (see Chapter 4.2), that we report also in Table 5.1, we have

the following theorem.

Theorem 7.1.2. Let 2 ≤ d ≤ q, 1 ≤ j ≤ d− 1. Then

d(H 0
d) = d(H j

d) = d, dimFq2 (H 0
d) = n− d(d− 1)

2
, dimFq2 (H j

d) = n− d(d− 1)

2
− j.

CGC 71

Chapter 7. Small-weight codewords of Hermitian codes

In other words all evP(xrys), where P is the set of the Fq2-rational a�ne points of

H, are linearly independent (i.e. H has maximal rank). Moreover for any distance

d there are exactly d Hermitian codes (one corner code and d − 1 edge codes). We

can represent the above codes as in the following picture, where we consider the �ve

smallest non-trivial codes (for any q ≥ 3).

H
0
2 is a [n, n− 1, 2] code.

Bm,q = L2
0 = {1}, so the parity-check ma-

trix of H 0
2 is (1, . . . , 1).

H
1
2 is a [n, n− 2, 2] code.

Bm,q = L2
0 t l21 = {1, x}

H
0
3 is a [n, n− 3, 3] code.

Bm,q = L3
0 t L3

1 = {1, x, y}

H
1
3 is a [n, n− 4, 3] code.

Bm,q = L3
0 t L3

1 t l31 = {1, x, y, x2}

H
2
3 is a [n, n− 5, 3] code.

Bm,q = L3
0 t L3

1 t {l31, l32} = {1, x, y, x2, xy}

7.2 First results for the �rst phase

Ideal Jw of Proposition 4.2.1 for C(m, q) is

Jw =
〈 {∑w

i=1 zix
r
iy
s
i

}
xrys∈Bm,q

,
{
xq+1
i − yqi − yi

}
i=1,...,w

,{
zq

2−1
i − 1

}
i=1,...,w

,
{
xq

2

i − xi
}
i=1,...,w

,
{
yq

2

i − yi
}
i=1,...,w

,{∏
1≤i<j≤w((xi − xj)q

2−1 − 1)((yi − yj)q
2−1 − 1

}〉
.

(7.1)

Let w ≥ v ≥ 1. Let Q = (x1, . . . , xw, y1, . . . , yw, z1, . . . , zw) ∈ V(Jw). We say that

Q is in v-block position if we can partition {1, . . . , n} in v blocks I1, . . . , Iv such

that

xi = xj ⇐⇒ ∃ 1 ≤ h ≤ v such that i, j ∈ Ih.

W.l.o.g. we can assume |I1| ≤ · · · ≤ |Iv| and I1 = {1, . . . , u}. It is simple to prove

the following numerical lemma.

Lemma 7.2.1. We always have u + v ≤ w + 1. If u ≥ 2 and v ≥ 2, then v ≤ bw
2
c

and u+ v ≤ bw
2
c+ 2.

We need the following technical lemma.

72

7.2. First results for the �rst phase

Lemma 7.2.2. Let us consider the edge code H j
d with 1 ≤ j ≤ d − 1 and 3 ≤ d ≤

w ≤ 2d− 3. Let Q = (x1, . . . , xw, y1, . . . , yw, z1, . . . , zw) be a solution of Jw in v-block

position, with v ≤ w, then exactly one of the following cases holds:

(a) u = 1, v > d and w ≥ d+ 1

or

(b) v = 1, that is, x̄1 = · · · = x̄w.

If d = 2 and w = 2, then (a) holds for H1
2 .

Proof. We denote for all 1 ≤ h ≤ v

Xh = x̄i if i ∈ Ih, Zh =
∑
i∈Ih

z̄i, Yh,δ =
∑
i∈Ih

ȳδi z̄i with 1 ≤ δ ≤ u− 1

(a) u = 1. We have to prove, by contradiction, that v > d.

Let v ≤ d. Since Q ∈ V(Jw), then Lw0 (Q) = lw1 (Q) = 0, that is

0 =
w∑
i=1

x̄ri z̄i =
∑
i∈Ih

Xr
hz̄i =

v∑
h=1

Xr
hZh 0 ≤ r ≤ d− 1. (7.2)

We only need to consider only the �rst v equations of (7.2), because v ≤ d, so

v∑
h=1

Xr
hZh = 0 0 ≤ r ≤ v−1 ⇐⇒


1 . . . 1

X1 . . . Xv

... . . .
...

Xv−1
1 . . . Xv−1

v


 Z1

...

Zv

 = 0 (7.3)

The above matrix is a Vandermonde matrix, so it has maximal rank v. There-

fore, the solution of (7.3) is (Z1, . . . , Zv) = (0, . . . , 0). Since u = 1, then

Z1 = z1 = 0, which contradicts zi ∈ Fq2 \ {0}. So if v > d then w ≥ d+ 1.

(b) u ≥ 2. We suppose by contradiction that v ≥ 2.

We consider Proposition 4.2.1. A subset of equations of condition (4.4) is the

following system, where 0 ≤ r ≤ v

∑w
i=1 x̄

r
i z̄i = 0∑w

i=1 x̄
r
i ȳiz̄i = 0

...∑w
i=1 x̄

r
i ȳ
u−1
i z̄i = 0

⇐⇒



∑v
h=1 X

r
hZh = 0∑v

h=1X
r
hYh,1 = 0

...∑v
h=1X

r
hYh,u−1 = 0

(7.4)

73

Chapter 7. Small-weight codewords of Hermitian codes

In fact system (7.4) is a subset of (4.4) if and only if deg(x̄vi ȳ
u−1
i) ≤ d − 1 for

any i = 1, . . . , w. That is, v + (u− 1) ≤ d− 1 ⇐⇒ v + u ≤ d.

To verify it, since v ≥ 2, it is su�cient to apply Lemma 7.2.1 and we obtain

u+ v ≤ bw
2
c+ 2 ≤ b2d−3

2
c+ 2 = d.

By system (7.4) we obtain u Vandermonde matrices (all having rank v). There-

fore, the solutions of these systems are zero-solutions. So, in the particular case

h = 1, we have Z1 = Y1,1 = . . . = Y1,u−1 = 0, that is

∑u
i=0 z̄i = 0∑u
i=0 ȳiz̄i = 0
...∑u
i=0 ȳ

u−1
i z̄i = 0

⇐⇒


1 . . . 1

ȳ1 . . . ȳu
... . . .

...

ȳu−1
1 . . . ȳu−1

u


 z̄1

...

z̄u

 = 0

Since the ȳi's are all distinct (because the x̄i's are all equal), we obtain a Van-

dermonde matrix, and so z̄1 = · · · = z̄u = 0, but this is impossible because

z̄i ∈ Fq2 \ {0}. Therefore v = 1.

The case H1
2 is trivial.

7.3 Minimum-weight codewords

Corollary 7.3.1. Let us consider the edge code H j
d with 1 ≤ j ≤ d− 1.

If Q = (x1, . . . , xd, y1, . . . , yd, z1, . . . , zd) ∈ V(Jd), then x̄1 = · · · = x̄d. In other words,

the points that correspond to a minimum-weight word lie in the intersection of the

Hermitian curve H and a vertical line.

Whereas if d ≥ 4 and Q = (x1, . . . , xd+1, y1, . . . , yd+1, z1, . . . , zd+1) ∈ V(Jd+1), then

one of the following cases holds

(a) x̄i 6= x̄j with i 6= j for 1 ≤ i, j ≤ d+ 1.

or

(b) x̄1 = · · · = x̄d+1.

Proof. We are in the hypotheses of Lemma 7.2.2. So if w = d then u 6= 1. So v = 1.

Whereas, if w = d + 1 then there are two possibilities. In case (a) of Lemma 7.2.2,

all the x̄i's are di�erent, since v = d+ 1, or, case (b), x̄1 = · · · = x̄d+1.

Now we can prove the following theorem for edge codes.

Theorem 7.3.2. The number of minimum weight words of an edge code H j
d is

Ad = q2(q2 − 1)

(
q

d

)
.

74

7.3. Minimum-weight codewords

Proof. By Proposition 4.2.1 we know that Jd represents all words of minimum weight.

The �rst set of ideal basis (7.1) has exactly d(d−1)
2

+ j equations, where 1 ≤ j ≤ d− 1.

So, if j = 1, this set implies the following system:



z̄1 + · · ·+ z̄d = 0

x̄1z̄1 + · · ·+ x̄dz̄d = 0

ȳ1z̄1 + · · ·+ ȳdz̄d = 0

x̄2
1z̄1 + · · ·+ x̄2

dz̄d = 0
...

ȳd−2
1 z̄1 + · · ·+ ȳd−2

d z̄d = 0

x̄d−1
1 z̄1 + · · ·+ x̄d−1

d z̄d = 0

(7.5)

Whereas, if j > 1 then we have to add the �rst j − 1 of following equations:


x̄d−2

1 ȳ1z̄1 + · · ·+ x̄d−2
d ȳdz̄d = 0

...

x̄1ȳ
d−2
1 z̄1 + · · ·+ x̄dȳ

d−2
d z̄d = 0

(7.6)

But x̄1 = . . . = x̄d, since we are in the hypotheses of Corollary 7.3.1. So the system

becomes 
z̄1 + · · ·+ z̄d = 0

ȳ1z̄1 + · · ·+ ȳdz̄d = 0
...

ȳd−2
1 z̄1 + · · ·+ ȳd−2

d z̄d = 0

(7.7)

We have q2 choices for the x̄i's and, by Lemma 3.2.1, we have
(
q
d

)
d! di�erent ȳi's,

since for any choice of the x̄i's there are exactly q possible values for the ȳi's, but we

need just d of them and any permutation of these will be again a solution. Now we

have to compute the solutions for the z̄i's.

We write the system (7.7) as a matrix, which is a Vandermonde matrix with rank d−1.

This means that the solution space has linear dimension 1 because 1 = d− (d− 1) =

number of variables − rank of matrix. So the solutions are (a1α, a2α, . . . , ad−1α) with

α ∈ F∗q2 , where aj are �xed since they depend on ȳi. So the number of the z's is

|F∗q2 | = q2 − 1, then Ad = 1
d!

(
q2(q2 − 1)

(
q
d

)
d !
)
.

75

Chapter 7. Small-weight codewords of Hermitian codes

We consider now corner codes. We have the following geometric characterisation.

Proposition 7.3.3. Let us consider the corner code H 0
d . Then the points

(x̄1, ȳ1), . . . , (x̄d, ȳd) corresponding to minimum-weight words lie on the same line.

Proof. The minimum-weight words of a corner code have to verify the �rst condition

set of Jw, which has d(d−1)
2

equations. That is,

z̄1 + · · ·+ z̄d = 0

x̄1z̄1 + · · ·+ x̄dz̄d = 0

ȳ1z̄1 + · · ·+ ȳdz̄d = 0

x̄2
1z̄1 + · · ·+ x̄2

dz̄d = 0
...

ȳd−2
1 z̄1 + · · ·+ ȳd−2

d z̄d = 0

(7.8)

This system is the same as (7.5), but with a missing equation. This means that (7.8)

has all solutions of system (7.5) and other solutions.

If we consider a subset of (7.8):

z̄1 + · · ·+ z̄d = 0

x̄1z̄1 + · · ·+ x̄dz̄d = 0

x̄2
1z̄1 + · · ·+ x̄2

dz̄d = 0
...

x̄d−2
1 z̄1 + · · ·+ x̄d−2

d z̄d = 0

(7.9)

we note that the z̄i's are all non-zero if all x̄i's are distinct (or all are equal). Therefore,

we have only two possibilities for the x̄i's: either are all di�erent or they coincide.

The same consideration is true for the ȳi's, in fact when we consider (7.8) and we

exchange x with y, we obtain again (7.8).

So we have two alternatives:

� The x̄i's are all equal or the ȳi's are all equal, so our proposition is true.

� The x̄i's and the ȳi's are all distinct. We will prove that they lie on a non-

horizontal line that intersects the Hermitian curve.

Let y = βx+λ be a non-vertical line passing through two points in a minimum

weight con�guration. We can do an a�ne transformation of this type:{
x = x′

y = y′ + ax′, a ∈ Fq2

such that at least two of the y′'s are equal and not all y's are coincident. Substi-

tuting the above transformation in (7.8) and applying some operations between

76

7.3. Minimum-weight codewords

the equations, we obtain a system that is equivalent to (7.8). But this new

system has all y′'s equal (or all distinct), so the y′'s have to be all equal. Hence

we can conclude that the points lie on the same line.

We �nally prove the following theorem:

Theorem 7.3.4. The number of words having weight d of a corner code H 0
d is

Ad = q2(q2 − 1)

(
q

d− 1

)
q3 − d+ 1

d
.

Proof. Again, the points corresponding to minimum-weight words of a corner code

have to verify (7.8). By above proposition, we know that these points lie in the

intersections of any line and the Hermitian curve H.
Let Q = (x1, . . . , xd, y1, . . . , yd, z1, . . . , zd) ∈ V(Jd) such that x1 = . . . = xd, that is,

the points (x̄i, ȳi) lie on a vertical line. We know that the number of such Q's is

q2(q2 − 1)

(
q

d

)
d ! .

Now we have to compute the number of solutions Q ∈ V(Jd) such that (x̄i, ȳi) lie on

a non-vertical line.

By Lemma 3.2.2 we know that the number of the ȳi's and x̄i's is

(q4 − q3)

(
q + 1

d

)
d !,

since for any choice of the ȳi's there are exactly q+ 1 possible values for the x̄i's, but

we need just d of these (and the system is invariant). As regards the number of the

z̄i's, we have to compute the number of solutions of system (7.8).

We apply an a�ne transformation to the system (7.8) to obtain a horizontal line, that

is, to have all the x̄i's di�erent and all the ȳi's equal, so we obtain a system equivalent

to system (7.7). Therefore we have a Vandermonde matrix, hence the number of the

z̄i's is q
2 − 1. So

Ad = 1
d!

(
q2(q2 − 1)

(
q
d

)
d ! + (q4 − q3)(q2 − 1)

(
q+1
d

)
d !
)

= q2(q2 − 1)
(
q

d−1

)
q3−d+1

d
.

77

Chapter 7. Small-weight codewords of Hermitian codes

7.4 Second-weight codewords

In this section we study the case when the xi's and the yi's lie either on a vertical

line or a non-vertical line.

Theorem 7.4.1. The number of words of weight d + 1 with y1 = . . . = yd+1 of a

corner code H 0
d is:

(q2 − q)(q4 − (d+ 1)q2 + d)

(
q + 1

d+ 1

)
.

Whereas for an edge code H j
d with 1 ≤ j ≤ d− 1 the numbers is:

(q2 − q)
(
q + 1

d+ 1

)
.

Proof. We have q2 choice for the ȳi's and, by Corollary 3.2.3, we have
(
q+1
d+1

)
(d + 1)!

di�erent x̄i's, since for any choice of the ȳi's there are exactly q + 1 possible values

for the x̄i's, but we need just (d + 1) of them and any permutation of these will be

again a solution.

Now we have to compute the solutions for the z̄i's, in the two distinct cases.

∗ Case H 0
d . By Proposition 4.2.1 we know that Jd represents all words of minimum

weight. The �rst set of ideal basis (7.1) has exactly d(d−1)
2

equations, which is

system (7.8) with more variables, that is, instead of x̄d, ȳd and z̄d, we have,

respectively, x̄d+1, ȳd+1 and z̄d+1. Since ȳ1 = . . . = ȳd+1, the said variation of

system (7.8) is 

z̄1 + · · ·+ z̄d+1 = 0

x̄1z̄1 + · · ·+ x̄d+1z̄d+1 = 0

x̄2
1z̄1 + · · ·+ x̄2

d+1z̄d+1 = 0
...

x̄d−2
1 z̄1 + · · ·+ x̄d−2

d+1z̄d+1 = 0

(7.10)

We can note that, if we write the system (7.10) as a matrix adding these two

equations xd−1
1 +. . .+xd−1

d+1 = 0 and xd1 +. . .+xdd+1 = 0 we obtain a Vandermonde

matrix. So all rows of (7.10) are linearly independent. This means that the

solution space has linear dimension 2 because 2 = (d + 1) − (d − 1). So the

number of the z's is q4 − |{zi = 0 for at least an i}|, since we have q2 for each

zd+1 and zd. We want to compute the number of zi = 0 for at least one i.

Since the matrix H has maximum rank, we can apply the Gauss elimination to

78

7.4. Second-weight codewords

the system (7.10)

z̄1 + · · ·+ z̄d+1 = 0

h2,2z̄2 + . . .+ h2,dz̄d + h2,d+1 + z̄d+1 = 0
...

hd−1,d−2z̄d−2 + hd−1,d−1z̄d−1 + hd−1,dz̄d + hd−1,d+1z̄d+1 = 0

hd−1,d−1z̄d−1 + hd−1,dz̄d + hd−1,d+1z̄d+1 = 0

(7.11)

If we solve the system (7.11) we obtain

hd−1,d−1z̄d−1 + hd−1,dz̄d + hd−1,d+1z̄d+1 = 0 (7.12)

First of all we consider the case z̄d−1 = 0, that is

hd−1,dz̄d + hd−1,d+1z̄d+1 = 0 ⇐⇒ z̄d = −hd−1,d+1

hd−1,d

z̄d+1 (7.13)

The equation (7.13) in the variable z̄d+1 ∈ Fq2 has exactly q2 solutions. In par-

ticular, we have the pair (z̄d, z̄d+1) = (0, 0) and other q2 − 1 ways to choose the

variable z̄d+1.

We have similar conditions when z̄d = 0 and z̄d+1 = 0. As before we have the

pairs (z̄d−1, z̄d+1) = (0, 0) and (z̄d−1, z̄d) = (0, 0) and other q2−1 ways to choose

z̄d−1 and q2 − 1 ways to choose z̄d.

So the equation (7.12) has exactly 3(q2 − 1) + |{(z̄d−1, z̄d, z̄d+1) = (0, 0, 0)}| =

3q2 − 2 solutions.

Now we consider the second last line of the system (7.11): hd−1,d−2z̄d−2 +

hd−1,d−1z̄d−1 + hd−1,dz̄d + hd−1,d+1z̄d+1 = 0, that is,

z̄d−2 = −(kd−1z̄d−1 + kdz̄d + kd+1z̄d+1) (7.14)

First of all we have to study the case z̄d−2 = 0. We just studied the case in

which all variables z̄d−1 = z̄d = z̄d+1 = 0, so we have to study the case when all

variables are di�erent from zero, that is, kd−1

kd+1
z̄d−1 + kd

kd+1
z̄d = −z̄d+1 = k ∈ F∗q2 .

So the equation (7.14) has exactly (q2 − 1) solutions.

We repeat the argument for each of system's equations (7.11), there are (d− 2)

of them, if we do not count the last equation. Therefore

#(z̄i = 0 for at least one i) = 3q2 − 2 + (d− 2)(q2 − 1) = (d+ 1)q − d

So the system (7.11) has exactly q4 − (d+ 1)q + d solutions. Then the number

of words of weight d+ 1 with y1 = . . . = yd+1 of H 0
d is:

(q2 − q)(q4 − (d+ 1)q2 + d)

(
q + 1

d+ 1

)
.

79

Chapter 7. Small-weight codewords of Hermitian codes

∗ Case H j
d . In this case the �rst set of ideal basis (7.1) contains exactly d(d−1)

2
+ j

equations, where 1 ≤ j ≤ d − 1. So, if j = 1, this set implies the system (7.5)

with more variables, that is, instead of x̄d, ȳd and z̄d, we have, respectively,

x̄d+1, ȳd+1 and z̄d+1. Whereas, if j > 1 then we have to add the �rst j − 1 of

equations (7.6) with more variables.

Since ȳ1 = . . . = ȳd+1, the system becomes



z̄1 + · · ·+ z̄d+1 = 0

x̄1z̄1 + · · ·+ x̄d+1z̄d+1 = 0

x̄2
1z̄1 + · · ·+ x̄2

d+1z̄d+1 = 0
...

x̄d−1
1 z̄1 + · · ·+ x̄d−1

d+1z̄d+1 = 0

(7.15)

This means that the solution space has linear dimension d− (d−1) = 1. So the

number of the z's is |F∗q2 | = q2 − 1, then the number of words of weight d + 1

with y1 = . . . = yd+1 of H j
d is:

(q2 − 1)(q2 − q)
(
q + 1

d+ 1

)
.

Theorem 7.4.2. The number of words of weight d + 1 with x1 = . . . = xd+1 of a

corner code H 0
d and of an edge code H j

d is:

q2(q4 − (d+ 1)q2 + d)

(
q

d+ 1

)
.

Proof. By Proposition 4.2.1 we know that Jd represents all words of minimum weight.

For an edge code the �rst set of ideal basis (7.1) implies, if j = 1 the system (7.5)

with more variables1 and if j > 1 we have to add the �rst j−1 of equations (7.6) with

more variables. Whereas, for a corner code, the �rst set of ideal basis (7.1) implies

the system (7.8) with more variables. But x̄1 = . . . = x̄d+1, so the systems becomes
z̄1 + · · ·+ z̄d+1 = 0

ȳ1z̄1 + · · ·+ ȳd+1z̄d+1 = 0
...

ȳd−2
1 z̄1 + · · ·+ ȳd−2

d+1 z̄d+1 = 0

(7.16)

1instead of x̄d, ȳd and z̄d, we have, respectively, x̄d+1, ȳd+1 and z̄d+1. This is true every time
that we write with more variables

80

7.4. Second-weight codewords

We have q2 choice for the x̄i's and, by Lemma 3.2.1, we have
(
q

d+1

)
(d + 1)! di�erent

ȳi's, since for any choice of the x̄i's there are exactly q possible values for the ȳi's,

but we need just d+ 1 of them and any permutation of these will be again a solution.

And we have (q4 − (d + 1)q2 + d) possible z̄i's which is exactly the situation met in

Theorem 7.4.1.

Theorem 7.4.3. The number of words of weight d + 1 of a corner code H 0
d with

(xi, yi) lying on a non-vertical line is:

(q4 − q3)(q4 − (d+ 1)q2 + d)

(
q + 1

d+ 1

)
.

Theorem 7.4.4. The number of words of weight d+1 of an edge code H j
d with (xi, yi)

lying on a non-vertical line is:

(q4 − q3)(q2 − 1)

(
q + 1

d+ 1

)
.

The proofs are similar to those of the statements as in Section 7.2 and the previous

theorems and so are omitted.

In other cases, we have to consider the intersection of the curve with higher de-

gree curves and the formulae get more complicated. For example the cubic found in

[Cou11, BR12a].

Now we are going to study some special cases of Hermitian codes, that is, we count

the number of words having weight d+1 for any Hermitian code having distance d = 3

or d = 4. In the following section we are going to prove these theorems:

Theorem 7.4.5. The number of words of weight 4 of a corner code H 0
3 is:

A4 =
1

4

((
q3

3

)
(q + 1)− q2

(
q + 1

3

)
(3q3 + 2q2 − 8)

)
(q − 1)(q3 − 3).

The number of words of weight 4 of an edge code H 1
3 is:

A4 = q2

(
q

4

)
(q4 − 4q2 + 3) +

q4(q2 − 1)2(q − 1)2

8
+ (q2 − 1)

2q∑
k=4

Nk

(
k

4

)
.

Where Nk is the number of parabolas and non-vertical lines that intersect H in exactly

k points.

The number of words of weight 4 of an edge code H 2
3 is:

A4 = q2(q − 1)

(
q + 1

4

)
(2q3 − 3q2 − 4q + 9).

81

Chapter 7. Small-weight codewords of Hermitian codes

Theorem 7.4.6. The number of words of weight 5 of a corner code H 0
4 is:

A5 =
1

5
q2

(
q

4

)
(q3 − 4)(q2 − 1)(q2 − 4).

The number of words of weight 5 of all edge codes H j
4 for 1 ≤ j ≤ 3 is:

A5 = q2(q − 1)

(
q + 1

5

)
(2q3 − 4q2 − 5q + 16).

The formula for A4 of H
1
3 in Theorem 7.4.5 contains some implicit values Nk's. To

derive explicit values it is enough to consider Theorem 6.0.1.

7.5 The complete investigation for d = 3, 4.

In this section we will study separately the corner and edge codes of distance 3

and 4, that is, H0
3, H

1
3, H

2
3, H

0
4, {H

j
4}1≤j≤3.

Study of H0
3.

Now we count the number of words with weight w = 4. In this case, the �rst condition

set of Jw becomes: 
z1 + z2 + z3 + z4 = 0

x1z1 + x2z2 + x3z3 + x4z4 = 0

y1z1 + y2z2 + y3z3 + y4z4 = 0

We notice that this is a linear system in zi. We �rst choose 4 points Pi = (xi, yi) on

H and then we compute the number of solutions in zi's. The coe�cient matrix is 1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4


This matrix cannot have rank 1. If the rank is 2, this means that all Pi's lie on a same

line. The vector space of solutions has dimension 2, so that we have q4−4(q2−1)−1

solutions in zi's (we have to exclude the zero solution and solutions with one zi = 0).

Otherwise, the rank is 3. In this case, we have 3 points on a same line, say

P1, P2, P3, if and only if we have a square submatrix of order 3 whose determinant is

0, but this implies that z4 = 0, which is not admissible. If we choose 4 points such

that no 3 of them lie on a same line, all zi's will be non-zero and we get a codeword.

The vector space of solutions has dimension 1, so that we have q2− 1 solutions in zi's

(we have to exclude the zero solution).

82

7.5. The complete investigation for d = 3, 4.

If the rank is 2, the total number of solutions (in xi, yi, zi) is(
q2

(
q

4

)
+ (q4 − q3)

(
q + 1

4

))
(q4 − 4q2 + 3).

If the rank is 3, the total number of solutions (in xi, yi, zi) is((
q3

4

)
− q2

(
q

3

)
(q3 − q)− (q4 − q3)

(
q + 1

3

)
(q3 − q − 1)+

−q2

(
q

4

)
− (q4 − q3)

(
q + 1

4

))
(q2 − 1).

Putting together, we get the total number of codewords of weight 4 of H0
3:

A4 =

((
q3

4

)
− q2

(
q

3

)
(q3 − q)− (q4 − q3)

(
q + 1

3

)
(q3 − q − 1)

)
(q2 − 1)+

+

(
q2

(
q

4

)
+ (q4 − q3)

(
q + 1

4

))
(q4 − 5q2 + 4).

Doing the computations we obtain the �rst part of Theorem 7.4.5.

Study of H1
3.

We count the number of words with weight w = 4. In this case, the �rst condition

set of Jw becomes: 
z1 + z2 + z3 + z4 = 0

x1z1 + x2z2 + x3z3 + x4z4 = 0

y1z1 + y2z2 + y3z3 + y4z4 = 0

x2
1z1 + x2

2z2 + x2
3z3 + x2

4z4 = 0

As above, we �rst choose 4 points Pi = (xi, yi) on H and then we compute the number

of solutions in zi's. The coe�cient matrix is
1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

x2
1 x2

2 x2
3 x2

4

 (7.17)

Now we study the rank of the matrix according to �v-blocks�.

If all xi's are equal, we have 4 points on a vertical line; the rank is 2 (see below)

and the number of codewords is (see case H0
3)

q2

(
q

4

)
(q4 − 4q2 + 3).

83

Chapter 7. Small-weight codewords of Hermitian codes

If only three xi's are equal, we have 3 points on a vertical line and another one

outside, but this con�guration is impossible for H0
3 (that is, we do not have codewords

associated to it), and it is also impossible for H1
3, since H

1
3 ⊂ H0

3.

If we have two pairs of equal xi's (for instance, x1 = x2 6= x3 = x4), we can have

codewords. In this case, we deduce

z1 + z2 = 0, z3 + z4 = 0,

z1(y1 − y2) + z3(y3 − y4) = 0,

so that we have
(
q2

2

)
ways to choose {x1, x3},

(
q
2

)
ways to choose {y1, y2},

(
q
2

)
ways

to choose {y3, y4}, q2 − 1 ways to choose z1, this determines all zi. The number of

codewords in this case is
q4(q2 − 1)2(q − 1)2

8
.

If only two xi's are equal, say x1 = x2, we can show that we have z1 + z2 = 0,

z3 = 0, z4 = 0, which is not admissible.

If we have all xi's distinct, the submatrix 1 1 1 1

x1 x2 x3 x4

x2
1 x2

2 x2
3 x2

4


has rank 3, but if the whole matrix (7.17) has rank 4 we can only have the zero

solution, which is not admissible. Thus, (7.17) must have rank 3, that is, the yi's row

must be linearly dependent on the other rows. This means that

∃ a, b, c ∈ Fq2 such that yi = ax2
i + bxi + c ∀ i = 1, . . . , 4.

That is, all Pi's lie on the same parabola (or on the same non-vertical line, when

a = 0). In this case, the number of codewords is

(q2 − 1)

2q∑
k=4

Nk

(
k

4

)
,

where Nk is the number of parabolas and non-vertical lines that intersect H in exactly

k points.

Putting all together we get A4, that is, the second part of Theorem 7.4.5.

84

7.5. The complete investigation for d = 3, 4.

Study of H2
3.

We count the number of words with weight w = 4. In this case, the �rst condition

set of Jw becomes: 

z1 + z2 + z3 + z4 = 0

x1z1 + x2z2 + x3z3 + x4z4 = 0

y1z1 + y2z2 + y3z3 + y4z4 = 0

x2
1z1 + x2

2z2 + x2
3z3 + x2

4z4 = 0

x1y1z1 + x2y2z2 + x3y3z3 + x4y4z4 = 0

As above, we �rst choose 4 points Pi = (xi, yi) on H and then we compute the number

of solutions in zi's. The coe�cient matrix is
1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

x2
1 x2

2 x2
3 x2

4

x1y1 x2y2 x3y3 x4y4

 (7.18)

Now we study the rank of the matrix according to �v-blocks�.

If all xi's are equal, we have 4 points on a vertical line; the rank is 2 (see below)

and the number of codewords is (see case H1
3)

q2

(
q

4

)
(q4 − 4q2 + 3).

If only three xi's are equal, we have 3 points on a vertical line and another one

outside, but this con�guration is impossible (as above).

If we have two pairs of equal xi's (for instance, x1 = x2 6= x3 = x4), we can deduce

z1 + z2 = 0, z3 + z4 = 0,

and then {
z1(y1 − y2) + z3(y3 − y4) = 0

x1z1(y1 − y2) + x3z3(y3 − y4) = 0

but this system in the unknowns y1 − y2, y3 − y4 has determinant z1z3(x3 − x1) 6= 0, so

that y1 = y2, which is impossible.

If only two xi's are equal, say x1 = x2, we can show that we have z1 + z2 = 0,

z3 = 0, z4 = 0, which is not admissible.

If we have all xi's distinct, the submatrix 1 1 1 1

x1 x2 x3 x4

x2
1 x2

2 x2
3 x2

4


85

Chapter 7. Small-weight codewords of Hermitian codes

has rank 3, but if the whole matrix (7.18) has rank 4 we can only have the zero

solution, which is not admissible. Thus, (7.18) must have rank 3, that is, the yi's

and xiyi's rows must be linearly dependent on the other rows. This means that

y = ax2 + bx+ c and xy = dx2 + ex+ f , then ax3 + (b− d)x2 + (c− e)x− f = 0. But

this equation can have at most 3 distinct solutions, and we need 4. Thus we must

have a = 0, b = d, c = e, f = 0, that is, y = bx+ c: all Pi's lie on a same non-vertical

line, and the number of codewords is

(q4 − q3)

(
q + 1

4

)
(q2 − 1).

Putting all together we get A4, that is, the last part of Theorem 7.4.5.

Study of H0
4.

We count the number of words with weight w = 5. We have a linear system in zi

with a (6 × 5) matrix. If its rank is 5, we can only have the zero solution, which is

not admissible. Thus, its rank must be at most 4; this means that we have at least 2

relationships of linear dependency, say{
xy = a+ bx+ cy + dx2

y2 = e+ fx+ gy + hx2.

We need to �nd 5 points on the intersection of 2 di�erent conics, but this means that

the 2 conics must be degenerate, they must have a common line, and all 5 points

belong to this line. We could distinguish between vertical lines and non-vertical lines,

but in both cases the rank of the matrix is exactly 3. So, the number of codewords is

A5 =

(
(q4 − q3)

(
q + 1

5

)
+ q2

(
q

5

))
(q4 − 5q2 + 4).

Doing the computations we obtain the �rst part of Theorem 7.4.6.

Study of H1
4, H

2
4, H

3
4.

To count the number of words with weight w = 5, we remember that

H0
4 ⊇ H1

4 ⊇ H2
4 ⊇ H3

4 ⊇ H0
5

and the �rst and the last code have all words with weight 5 corresponding to 5 points

on a line. We notice that for a vertical line the rank of the matrix is 3, while for a

non-vertical line the rank of the matrix is 4. So, the number of codewords is

A5 = q2

(
q

5

)
(q4 − 5q2 + 4) + (q4 − q3)

(
q + 1

5

)
(q2 − 1).

Doing the computations we obtain the last part of Theorem 7.4.6.

86

7.6. On the geometry of small weight codewords of AG codes

7.6 On the geometry of small weight codewords of AG codes

In the previous sections, the number of small weight codewords for some families

of Hermitian codes was determined. Besides explicit computation, the main ingre-

dient in Section 7.3 is a geometric characterization of the points in the support of a

minimum weight codeword, which turn out to be collinear (see Corollary 7.3.1 and

Proposition 7.3.3).

In this section, we report our results in [FM11].

Here we show that such a property is not peculiar to Hermitian codes, but it

holds in full generality for dual algebraic geometric codes on any smooth complete

intersection projective variety of arbitrary dimension. We start recalling some geo-

metrical base notions in regard to AG codes. To do these we consider Chapter Two

of [HvLP98], the �rst two chapters of [Sti93] and Chapter Thirteen of [HKT08].

In the following section, we denote by F the algebraic closure of Fq.

Let Ar be the r-dimensional a�ne space with coordinates x1 . . . , xr and let Pr be
the r-dimensional projective space with homogenous coordinates x0, x1 . . . , xr. In Ar,

the algebraic set of zeros of ideal I of F[x1, . . . , xr] are the variety V (I).

Let I be a prime ideal in the ring F[x1, . . . , xr]. The set X of zeros of I is called an

a�ne variety. We denote with F[X] the coordinate ring F[x1, . . . , xm]/I of the variety

X and the quotient �eld of F[X] is denoted by F(X), that is a rational function �eld

on X
F(X) =

{f(X)

g(X)
| f(X), g(X) ∈ F[X], g 6= 0 + I

}
.

Let X be an algebraic curve de�ned over Fq, that is, an a�ne variety of dimension

one, where the dimension of X is the transcendence degree of F(X) over F.

In projective space P r, the situation is similar but we have to use the homoge-

nous coordinates. So a projective variety X is the zero set in P r of a homogeneous

prime ideal I ∈ F[X0, X1, . . . , Xr]. Consider the subring R(X) of F(X0, X1, . . . , Xr)

consisting of the fractions f/g, where f and g are homogeneous polynomials of the

same degree and g 6∈ I. Then R(X) has a unique maximal ideal M(X) consisting of

all those f/g with f ∈ I. The function �eld F (X) is by de�nition R(X)/M(X).

Let X be an a�ne variety and let P be a point on X . Then a rational function ϕ

is called regular in the point P if we can �nd polynomials f and g such that g(P) 6= 0

87

Chapter 7. Small-weight codewords of Hermitian codes

and ϕ is the coset of f/g.

If X is a projective variety, we have the same de�nition. In this case, f and g are two

homogeneous polynomials of the same degree.

The local ring OP of the point P on the variety X is the set of rational functions

that are regular in P . LetMP be the set of functions in OP that are zero at P .

We consider t the generating element ofMP . It is possible to write every element z

of OP as z = utm, where u is a unit and m is a natural number. If m > 0, then P

is a zero of multiplicity m of z, otherwise P is a pole. We denote this by vP (z) = m

and the function t is called local parameter.

Finally we recall a smooth curve and its related notations.

Consider a curve X in A2, de�ned by the equation f = 0. Let P be a point on

this curve. If at least one of the partial derivatives fX or fY is not zero in P , then P

is called a simple or nonsingular point of the curve and a curve is called nonsingular,

regular or smooth if all the points are nonsingular.

Let X be an absolutely irreducible (i.e. irreducible in the algebraic closure) non-

singular projective curve over Fq. We recall that a divisor on X is a formal sum

D =
∑
P∈X

nPP with nP ∈ Z and almost all nP = 0.

The support of a divisor is the set of points with nonzero coe�cient, that is

supp(D) = {P ∈ X | nP 6= 0}.

A divisor D is called e�ective if all coe�cients nP are non-negative. The degree

deg(D) of the divisor D is
∑
nP .

If f is a rational function on X , not identically 0, we de�ne the divisors of f as

(f) =
∑
P∈X

vP (f)P = (f)0 − (f)∞,

where, if we denote with Z and N , respectively, the set of zeros and the set of poles

of f , we have the zero and the pole divisor

(f)0 =
∑
P∈Z

vP (f)P and (f)∞ =
∑
P∈N

−|vP (f)|P.

Let P ∈ P r. An integer n > 0 is called a pole number of P if there is an element

f ∈ F with (f)∞ = nP . Otherwise n is called a gap number of P.

Now, we are already to de�ne a Riemann-Roch space.

88

7.6. On the geometry of small weight codewords of AG codes

De�nition 7.6.1. Let D be a divisor on a curve X . The Riemann-Roch space

associated to D is a vector space L(D) over F de�nited as

L(D) = {f ∈ F(X) | (f) +D ≥ 0} ∪ {0}.

The dimension of L(D) over F is denoted by l(D), which is called also the dimension

of the divisor D.

The genus g of F(X) is de�ned by

g = max{degD − l(D) + 1 | D ∈ Div(X)}.

Theorem 7.6.2. If D is a divisor of F(X) of degree degD ≥ 2g − 1 then

l(D) = degD + 1− g.

Proof. See proof of Theorem 1.5.17. of [Sti93].

Now we have all the geometrical notions needed to de�ne an AG code.

Assume that P1, . . . , Pn are rational points on X and D is a divisor such that D =

P1 + . . .+ Pn. Let G be some other divisor such that supp(D)∩ supp(G) 6= ∅ and we

denote with m the degree of G, that is, m = deg(G). Then we can de�ne

De�nition 7.6.3. The algebraic-geometric code (or AG code) C(D,G) associated

with the divisors D and G is de�ned as

C(D,G) = {(f(P1), . . . , f(Pn)) | f ∈ L(G)} ⊂ Fnq .

In other words an algebraic-geometric code is the image of the evaluation map,

i.e. Im(evD) = C(D,G), where the evaluation map is evD : L(G)→ Fnq given by

evD(f) = (f(P1), . . . , f(Pn)) ∈ Fnq .

Theorem 7.6.4. Let C(D,G) be a [n, k, d] algebraic-geometric code. Then

� k = l(G)− l(G−D).

� d ≥ n−m.

Furthermore if 2g − 2 < m < n then k = m− g + 1.

Corollary 7.6.5 (Goppa's Bound). Let C(D,G) be a [n, k, d] algebraic-geometric

code and let 2g − 2 < m < n. Then

d ≥ n− k + 1− g.

89

Chapter 7. Small-weight codewords of Hermitian codes

Let C(D,G)⊥ be a dual of C(D,G). Then it is also an algebraic-geometric code.

Corollary 7.6.6. Let C⊥(D,G) be a [n, k⊥, d⊥] algebraic-geometric code. Then

� k⊥ = n−m+ g − 1.

� d⊥ ≥ m− 2g + 2.

� n− k⊥ + 1− g ≤ d⊥ ≤ n− k⊥ + 1.

Note that in Chapter 5 we saw this corollary for the special case of Hermitian

codes. In particular we have the distance in Lemma 5.2.5 and the dimension is a

consequence of Theorem 5.2.3.

We are ready to report some notation and results (without demonstration) from

the paper The dual minimum distance of arbitrary-dimensional algebraic-geometric

codes of A. Couvreur [Cou11].

We denote with H0(Pr,OPr(u)) the space of homogeneous forms of degree u in

r + 1 variables.

De�nition 7.6.7. Let P1, . . . , Ps be rational points of P r. They are in u-general

position if the evaluation maps evP1 , . . . , evPs are linearly independent in the dual

of H0(Pr,OPr(u)). If they are not in u-general position, we can say that they are

u-linked. Moreover they are said to be minimally u-linked if they are u-linked and

if each proper subset of {P1, . . . , Ps} is in u-general position.

Lemma 7.6.8. Let P1, . . . , Ps be a minimally u-linked con�guration of points in P r.

Let d and l be two integers satisfying respectively 1 < d < u and 1 < l < s. Let H be

a hypersurface of degree d containing exactly l of the Pi's. Then, the s− l remaining

points are (u− d)-linked.

Proposition 7.6.9. A set of s ≤ u+ 1 distinct points P1, . . . , Ps ∈ P r is u-general.

Proposition 7.6.10. Let P1, . . . , Pu+2 be a family of u-linked points. Then they are

collinear.

Proposition 7.6.11. A con�guration of s ≤ 2u + 1 distinct points P1, . . . , Ps ∈ P r

such that no m+ 2 of them are collinear is u-general.

Proposition 7.6.12. For all u ≥ 1, any minimally u-linked con�guration of n ≤ 3u

points is a set of coplanar points.

90

7.6. On the geometry of small weight codewords of AG codes

Proposition 7.6.13. A con�guration of s ≤ 3u−1 distinct points such that no m+2

of them are collinear and no 2m+ 2 of them lie on a plane conic, are u-general.

Proposition 7.6.14. An u-linked con�guration of 3u points such that no u + 2 of

them are collinear and no 2u+ 2 of them lie on a plane conic is a family of coplanar

points lying at the intersection of a cubic and a curve of degree u having no common

component.

Now we can start with our results.

Theorem 7.6.15. Let X ⊂ Pr, r ≥ 2, be a smooth connected complete intersection

de�ned over Fq. Let D and G be two divisors on X as previous and let G be such

that L(G) ⊇ H0(Pr,OPr(u)). Let d be the minimum distance of the code C(D,G)⊥

and let {Pi1 , . . . , Pid} be the points in the support of a minimum weight codeword.

(i) If d ≤ u+ 2, then d = u+ 2 and all the u+ 2 points Pij are collinear in Pr.

(ii) If d ≤ 2u + 2 and no u + 2 of the Pij 's are collinear, then d = 2u + 2 and all

the 2u+ 2 points Pij lie on a plane conic.

(iii) If d ≤ 3u, no u + 2 of the Pij 's are collinear and no 2u + 2 of them lie on a

plane conic, then d = 3u and all the 3u points Pij lie at the intersection of two

coplanar plane curves of respective degrees 3 and u.

Proof. Let c ∈ C(D,G)⊥ be a minimum weight codeword having support {Pi1 , . . . , Pis}
with s = d. By the de�nition of a dual code, we have

s∑
j=1

cjf(Pij) = 0 for every f ∈ L(G) ⊇ H0(Pr,OPr(u)).

In particular, we have

s∑
j=1

cjevPij (f) = 0 for every f ∈ H0(Pr,OPr(u)).

Hence evPij turn out to be linearly dependent in H0(Pr,OPr(u))⊥ and by De�ni-

tion 7.6.7, Pi1 , . . . , Pis are u-linked. Now we have, in case

(i) by Proposition 7.6.9, d = s = u+ 2 and so we can apply Proposition 7.6.10.

(ii) by Proposition 7.6.11, d = s = 2u+ 2 and so we apply Proposition 7.6.12.

(iii) by Proposition 7.6.13, d = s = 3u and by Proposition 7.6.14 we prove this case.

91

Chapter 7. Small-weight codewords of Hermitian codes

We focus on the Hermitian codes (Chapter Eight of [Sti93] and Chapter Five of

[HvLP98]).

As we know, a special case of algebraic-geometric code is a Hermitian codes. We

consider the Hermitian curve H of a�ne equation xq+1 = yq + y de�ned over Fq2 . We

recall that the genus of H is g = q(q − 1)/2 and H has q3 + 1 points of degree one,

namely a pole Q∞ and q3 distinct points Pα,β = (α, β) such that αq+1 = βq + β.

De�nition 7.6.16. For m ∈ Z we de�ne the code C(m, q) = C(D,mQ∞) where

D =
∑

αq+1=βq+β

Pα,β

is the sum of all places of degree one (except Q∞, that is a point at in�nity) of the

Hermitian function �eld F(H). The codes C(m, q) are called Hermitian codes.

We can note that if m < 0, then L(mQ∞) = 0 and so C(m, q) = 0.

For m > q3 + (2g − 2) = q3 + q2 − q − 2, by Theorem 7.6.4 and Theorem 7.6.2 we

have that

dimC(m, q) = l(mQ∞) + l(mQ∞ −D) = (m+ 1− g)− (m− q3 + 1− g) = q3,

therefore C(m, q) = Fn
q2 .

So we study the Hermitian codes with 0 ≤ m ≤ q3 + (2g − 2) = q3 + q2 − q − 2.

We can note that if m < 0, then L(mQ∞) = 0 and so C(m, q) = 0.

For m > q3 + (2g − 2) = q3 + q2 − q − 2, by Theorem 7.6.4 and Theorem 7.6.2 we

have that

dimC(m, q) = l(mQ∞) + l(mQ∞ −D) = (m+ 1− g)− (m− q3 + 1− g) = q3,

therefore C(m, q) = Fn
q2 .

So we study the Hermitian codes with 0 ≤ m ≤ q3 + (2g − 2) = q3 + q2 − q − 2.

Now we report a result (see Lemma 6.4.4. of [Sti93]), that we need for the our

following propositions and the four phases of Hermitian code, that are in Chapter 5.

Let m, i, j ≥ 0, j ≤ q − 1 and iq + j(q + 1) ≤ m. Then the elements xiyj form a

basis of L(mQ∞).

92

7.6. On the geometry of small weight codewords of AG codes

So our general result specializes as follows:

Corollary 7.6.17. LetH ⊂ P2 be the Hermitian curve de�ned over Fq2. Let C(D,G)⊥

be the Hermitian code. Let d be the minimum distance and let {Pi1 , . . . , Pid} be the

points in the support of a minimum weight codeword.

� If 0 ≤ m ≤ q2 − 2, then all the points Pij are collinear.

� If m ≥ q2 − 1, then the following holds.

(i) If d ≤ q + 1, then all the points Pij are collinear.

(ii) If d ≤ 2q, then either q+ 1 of the points Pij are collinear, or all the points

Pij lie on a plane conic.

(iii) If d ≤ 3q− 3, then either q + 1 of the points Pij are collinear, or 2q of the

points Pij lie on a plane conic, or all the points Pij lie at the intersection

of two coplanar plane curves of respective degrees 3 and q − 1.

Proof. L(G) = 〈{xiyj : i ≥ 0, 0 ≤ j ≤ q − 1, iq + j(q + 1) ≤ m}〉 and H0(Pr,OPr(k))

can be identi�ed with the set of polynomials in r variables of degree at most k. We

want to prove that L(G) ⊇ H0(P2,OP2(k)) for every k ≥ 0 such that k ≤ q − 1 and

k(q + 1) ≤ m.

� Let 0 ≤ m ≤ q2−2 and let d = u+2. So u = d−2 < q−1. We have m = aq+b

with 1 ≤ b ≤ a ≤ q − 1 and b 6= q − 1. So we know that d = a+ 1 if a > b and

d = a+ 2 if a = b. Hence d = u+ 2 implies:

for a > b, u = a− 1 and so u(q + 1) = (a− 1)(q + 1) ≤ m since a ≤ q − 1.

for a = b, u = a and so u(q + 1) = a(q + 1) = m ≤ m.

� Let m ≥ q2 − 1 and let u = q − 1. Then u(q + 1) = q2 − 1 ≤ m.

We proved that H0(P2,OP2(u)) ⊆ L(G). Now our claim follows from Theorem 7.6.15.

Note that the �rst point of Corollary 7.6.17 we have proved in Section 7.3, specif-

ically in Corollary 7.3.1 and in Proposition 7.3.3 and the second point is signi�cant

just for the second phase. In fact the corresponding minimum distance satis�es our

assumption d ≤ 3q−3 only for q ≤ 3 in the third phase and never in the fourth phase.

In the case of Hermitian codes we may even describe the geometry of small, even

if not minimum, weight codewords (notice that our technical assumption L(G) =

H0(P2,OP2(d− 2)) is satis�ed by De�nition 7.1.1 of corner code).

93

Chapter 7. Small-weight codewords of Hermitian codes

Proposition 7.6.18. Let H ⊂ P2 be the Hermitian curve de�ned over Fq2. Let

C(D,G)⊥ be the Hermitian code. If 0 ≤ m ≤ q2− 2 and L(G) = H0(P2,OP2(d− 2)),

then at least d−1 of the points {Pi1 , . . . , Pid+δ} in the support of a codeword of weight

d+ δ, where 0 ≤ δ ≤ d− 3, are collinear.

Proof. If cj are the non-zero components of the corresponding codeword, then

d+δ∑
j=1

cjf(Pij) = 0

for every f ∈ L(G) ⊇ H0(P2,OP2(d − 2)), in particular {Pi1 , . . . , Pid+δ} are (d − 2)-

linked.

If they are not minimally (d− 2)-linked, then (up to reordering) we have

d+δ−1∑
j=1

bjf(Pij) = 0

for every f ∈ H0(P2,OP2(d−2)). Our assumption L(G) = H0(P2,OP2(d−2)) implies

that the bj's are the components of a codeword of weight strictly less than d+ δ. By

induction on δ starting from Corollary 7.6.17 we conclude that at least d− 1 of them

are collinear.

Assume now that the points {Pi1 , . . . , Pid+δ} are minimally (d− 2)-linked. If they

are not collinear, there exists a hyperplane H containing exactly l of them, with

2 ≤ l ≤ d + δ − 1. By Lemma 7.6.8, the remaining d + δ − l points are (minimally)

(d− 3)-linked and from Proposition 7.6.11, it follows that at least (d− 1) of them are

collinear since by our numerical assumption on δ we have d+ δ− l ≤ 2(d−3) + 1.

94

Decoding of a�ne-variety codes

In this chapter we report our article [MOS12].

The approach presented in Section 4.3 shares the same problem with other si-

milar approaches ([CRHT94b],[LY97],[CM02a]). In the portion of the Gröbner basis

corresponding to the elimination ideal IS,xt,1 (see Section 2.3), one should choose a

polynomial g in Fq[S, xt,1] \ Fq[S], specialize it to the received syndrome, and then

�nd its xt,1-roots. The problem is that it is not possible to know in advance which

polynomial has to be chosen, and there might be hundreds of �candidate� polynomials.

Let us call ideal JC,tFL the �Cooper ideal for a�ne-variety codes� (the convenience for

this historically inaccurate name will be clear in a moment) and the �Cooper variety�

its variety.

The same problem is present in the ideal for decoding cyclic codes presented in

[CRHT94b], which we will call the �Cooper ideal for cyclic codes� (although again its

formal de�nition was �rst presented in [CRHT94b]), where a huge number of poly-

nomials can be found as soon as the code parameters are not trivial. In this case an

improvement was proposed in [CM02a]. Instead of specializing the whole polynomial,

one can specialize only its leading polynomial, since it does not vanish identically if

and only if the whole polynomial does not vanish (by the Gianni-Kalkbrener theorem,

that is, Theorem 2.3.3). We could adopt exactly the same strategy for the �Cooper

ideal for a�ne-variety codes� and thus get a signi�cant improvement on the algorithm

proposed in [FL98]. This improvement would reduce the cost of the specialization,

but would still require an evaluation (in the worst case) for any candidate polyno-

mial. In Section 7 of [CM02a] a more re�ned strategy has been investigated, that is,

the vanishing conditions coming from the leading polynomials were grouped and a

decision tree was formed. In the example proposed there, this resulted in a drastic re-

duction of the computations required to identify the right candidate. Unfortunately,

this strategy has not been deeply investigated in the general case, but we believe that

it is obvious how this could be done also for the Cooper ideal for a�ne-variety codes,

obtaining thus another improvement.

In [LY97] it was noted that the Cooper variety for cyclic codes contains also

points that do not correspond to valid syndrome-error location pairs and thus are

CGC 95

Chapter 8. Decoding of a�ne-variety codes

useless. In [OS05] the authors enlarge the Cooper ideal in order to remove exactly

the non-valid pairs, which we call �spurious solutions�. The new ideal turns out to be

strati�ed (although the notion of strati�ed ideal is established later in [GS09]) and

hence to contain the general error locator polynomial, thanks to deep properties of

some Gröbner bases of strati�ed ideals, which is the only polynomial that needs to

be specialized. We are now going to explain how this improvement can be obtained

also for the Cooper variety for a�ne-variety codes.

We de�ne several modi�ed versions of the Cooper ideal for decoding a�ne-variety

codes. We summarize what we are going to do:

- In Section 8.1 we de�ne a decoding ideal JC,t∗ (8.6) that is able to correct any

correctable error, even not knowing in advance the number of errors.

- However, in Section 8.2 we show why this decoding ideal does not necessarily

contain locator polynomials that play the same role of generator error locator

polynomials for cyclic codes. Still, these weak forms of locators (De�nition 8.2.5)

can be used to decode.

- In Section 8.3 we develop the commutative algebra necessary to show the exis-

tence of weak locators, with Section 8.4 devoted to the long proof of the main

result, and then in Section 8.5 we will �nally be able to de�ne a set of multi-

dimensional general error locator polynomials (see De�nition 8.5.2). We de�ne

a suitable ideal containing this set as we show in Theorem 8.6.6.

We note that other authors try to link the lexicographic Gröbner basis of an

ideal with the points of its variety, using interpolation at the univariate level, see, for

example, [Led08].

8.1 Decoding with ghost points

Note that Fitzgerald and Lax consider the possible error locations as t points in

V(I), that we call Pσ1 , . . . , Pσt , but they denote their components dropping the ref-

erence to σ, that is, Pσl = (xl,1, . . . , xl,m) for 1 ≤ l ≤ t. We adhere to this notation

from now on.

We observe that in the Cooper ideal (4.8) there is not any constraint on point

pairs. But we want that all error locations are distinct. We have to force this, i.e.

any two locations Pσj = (xj,1, . . . , xj,m) and Pσk = (xk,1, . . . , xk,m) must di�er in at

least one component. So we add this condition:∏
1≤ι≤m

((xj,ι − xk,ι)q−1 − 1) = 0 for 1 ≤ j < k ≤ t.

96

8.1. Decoding with ghost points

In fact, if α ∈ Fq, then α 6= 0 ⇐⇒ αq−1 = 1. Therefore, the product
∏

1≤ι≤m((xj,ι −
xk,ι)

q−1 − 1) is zero if and only if at least for one ι we have (xj,ι − xk,ι)q−1 = 1, i.e.

xj,ι 6= xk,ι and thus Pσj 6= Pσk . Our ideal becomes

Ĵ C,t
FL =

〈 {∑t
j=1 ejbρ(xj,1, . . . , xj,m)− sρ

}
1≤ρ≤r

,
{
eq−1
j − 1

}
1≤j≤t ,

{gh(xj,1, . . . , xj,m)}1≤h≤γ,
1≤j≤t

,{∏
1≤ι≤m((xj,ι − xk,ι)q−1 − 1)

}
1≤j<k≤t

〉
.

(8.1)

Remark 8.1.1. Ideal Ĵ C,t
FL can be used to correct and it will work better than J C,t

FL ,

since its variety does not contain spurious solutions. However, we cannot expect that

Ĵ C,t
FL contains polynomials with a role similar to that of the generic error locator in

the cyclic case, because Ĵ C,t
FL still depends on the knowledge of the error number.

In the following we modify (8.1) to allow for di�erent-weight syndromes.

(a) First, we note that in Ĵ C,t
FL the following condition is veri�ed

eq−1
j = 1 with j = 1, . . . , t.

This is equivalent to saying that exactly t errors occurred, which are e1, . . . , et ∈
F∗q. We must allow for some ej with j = 1, . . . , t to be equal to zero. We would

obtain a new ideal where the conditions eq−1
j = 1 are replaced with eqj = ej for

every j = 1, . . . , t.

(b) We recall the changes made to the Cooper ideal in [OS05] for cyclic codes. We

consider the error vector

e = (0, . . . , 0︸ ︷︷ ︸
k1−1

, e1
↑
k1

, 0, . . . , 0, el
↑
kl

, 0, . . . , 0, eµ
↑
kµ

, 0, . . . , 0︸ ︷︷ ︸
n−1−kµ

) with µ ≤ t,

where k1, . . . , kµ are the error positions and e1 . . . , eµ are the error values. We

consider the j-th syndrome and we obtain the following equation

µ∑
l=1

el(α
ij)kl = sj. (8.2)

(For the n-th root codes in [GS06, GS09] the formulas are slightly more com-

plicated). To arrive at the desired equation

t∑
l=1

el(α
ij)kl = sj (8.3)

97

Chapter 8. Decoding of a�ne-variety codes

we have to add the �virtual error position� k de�ned as αk = 0 ∀α ∈ F. Using
the location zl = αkl (and so the �virtual error location� is αk = 0), equation

(8.3) becomes

sj =

µ∑
l=1

el(zl)
ij +

t∑
l=µ+1

el(α
k)kl =

µ∑
l=1

el(zl)
ij +

t∑
l=µ+1

el(0)kl =
t∑
l=1

el(zl)
ij .

We can rephrase what we did by saying that we are using 0 as a ghost error loca-

tion, meaning that if we �nd ν zero roots in the error location polynomial, then

µ = t− ν (ν error locations are ghost locations and so they do not correspond

to actual errors).

(c) Let us come back to the a�ne-variety case. The error vector is

e = (0, . . . , 0︸ ︷︷ ︸
σ1−1

, e1
↑
Pσ1

, 0, . . . , 0, el
↑
Pσl

, 0, . . . , 0, eµ
↑

Pσµ

, 0, . . . , 0︸ ︷︷ ︸
n−1−σµ

).

The valid error locations are the points Pσl = (xl,1, . . . , xl,m), 1 ≤ l ≤ µ. The

equation corresponding to (8.2) is

sρ =

µ∑
l=1

elbρ(Pσl) =

µ∑
l=1

elbρ(xl,1, . . . , xl,m). (8.4)

We want a sum like (8.3), something like sρ =
∑t

l=1 elbρ(Pσl). In order to do

that, we would need
∑t

l=µ+1 elbρ(Pσl) = 0, for some convenient ghost points

{Pσl}µ+1≤l≤t. Actually, we can use just one ghost point, that we call P0. But

it must not lie on the variety, otherwise it could be confused with valid lo-

cations. In particular, we cannot hope to use always the ghost point P0 =

(x0,1, . . . , x0,m) = (0 . . . , 0), since (0 . . . , 0) could be a point on the variety. For

example, the Hermitian curve H : xq+1 = yq + y contains (0, 0) for any q.

Let P0 be a ghost point. Not only do we need to choose P0 outside the variety,

but we must also force ej = 0 for the error values in P0, since we cannot hope

that bρ(P0) = 0 for each ρ. With these assumptions, we obtain

sρ =
∑µ

l=1 elbρ(xl,1, . . . , xl,m) +
∑t

l=µ+1 elbρ(P0)

=
∑µ

l=1 elbρ(xl,1, . . . , xl,m) +
∑t

l=µ+1 0 bρ(P0)

=
∑µ

l=1 elbρ(xl,1, . . . , xl,m) .

(8.5)

(d) For us a ghost point is any point P0 ∈ (Fq)m \ V(I). Depending on the variety,

there can be clever ways to choose P0.

98

8.1. Decoding with ghost points

De�nition 8.1.2. Let P0 = (x0,1, . . . , x0,m) ∈ (Fq)m \ V(I). We say that P0

is an optimal ghost point if there is a 1 ≤ j ≤ m such that the hyperplane

xj = x0,j does not intersect the variety. We call j the ghost component.

In other words, for any optimal ghost point there is at least a component not

shared with any variety point. See Figure 8.1 for an example.

Figure 8.1: In the �rst picture we have a optimal ghost point with two ghost compo-

nents. In the second, a non-optimal ghost point.

Remark 8.1.3. The advantage of using optimal ghost points is that it is enough

to look at any ghost component in order to discard non-valid locations.

If a curve is smooth and maximal (e.g., an Hermitian curve), it will probably

intersect any hyperplane and so no optimal ghost point will exist in this case.

(e) We are ready to de�ne a new ideal, summarising the above argument.

We start from equations (8.5):{
t∑

j=1

ejbρ(xj,1, . . . , xj,m)− sρ

}
1≤ρ≤r

We choose a ghost point P0 = (x0,1, . . . , x0,m) 6∈ V(I). We need to �nd a

generator set for the radical ideal I ′ vanishing on V(I)t{P0}. The easiest way of
doing this is to start from any Gröbner basis G of I and to use the Buchberger-

Möller algorithm (see Theorem 2.2.17) to compute the Gröbner basis G′ of

99

Chapter 8. Decoding of a�ne-variety codes

I ′. We restate Buchberger-Möller algorithm in Theorem 8.4.1 (with respect to

Theorem 2.2.17) using a slightly di�erent notation. Let G′ = {g′h}1≤h≤γ′ . We

can insert in our new ideal the following polynomials

{g′h(xj,1, . . . , xj,m)}1≤h≤γ′,
1≤j≤t

In our new system we put {eqj = ej}, because there can be zero values (cor-

responding to ghost locations). We enforce (xj,1, . . . , xj,m) 6= P0 for all j cor-

responding to actual error locations. In order to do that, when ej 6= 0 we

must have at least one component of Pσj di�erent from that of P0, that is,

ej
∏

1≤ι≤m ((xj,ι − x0,ι)
q−1 − 1) = 0. So we can add{
ej
∏

1≤ι≤m

((xj,ι − x0,ι)
q−1 − 1)

}
1≤j≤t

.

On the other hand, when ej = 0 we want (xj,1, . . . , xj,m) = P0. To enforce it,

we add {
(eq−1
j − 1)(xj,ι − x0,ι)

}
1≤j≤t,
1≤ι≤m

.

Finally, if two points correspond to valid locations then they must be distinct.

However, if at least one is a ghost point, then the following requirement does

not hold: {
ejek

∏
1≤ι≤m

((xj,ι − xk,ι)q−1 − 1)

}
1≤j<k≤t

.

We denote by JC,t∗ the ideal in Fq[s1, . . . , sr, Xt, . . . , X1, e1, . . . , et], with X1 =

{x1,1, . . . , x1,m}, . . . , Xt = {xt,1, . . . , xt,m} s.t.

JC,t∗ =
〈 {∑t

j=1 ejbρ(xj,1, . . . , xj,m)− sρ
}

1≤ρ≤r
,
{
eqj − ej

}
1≤j≤t ,

{g′h(xj,1, . . . , xj,m)}1≤h≤γ′,
1≤j≤t

,
{

(eq−1
j − 1)(xj,ι − x0,ι)

}
1≤j≤t,
1≤ι≤m

,{
ej
∏

1≤ι≤m((xj,ι − x0,ι)
q−1 − 1)

}
1≤j≤t

,{
ejek

∏
1≤ι≤m((xj,ι − xk,ι)q−1 − 1)

}
1≤j<k≤t

〉
.

(8.6)

Since I ′ = 〈{g′h}1≤h≤H〉 contains the �eld equations, we may add them to reduce

the computation of the Gröbner basis of JC,t∗ .

100

8.2. Weak locator polynomials

8.2 Weak locator polynomials

We would like to de�ne some locator polynomials for a�ne-variety codes that play

the same role as those in De�nition 4.4.7. We would expect to �nd them in our ideal

(8.6). These locators might look like

Li(S, x1, . . . , xi) = xti + at−1x
t−1
i + · · ·+ a0, (8.7)

with aj ∈ Fq[S, x1, . . . , xi−1], 0 ≤ j ≤ t − 1, that is, Li is a monic polynomial with

degree t with respect to the variable xi and its coe�cients are in Fq[S, x1, . . . , xi−1].

We would also want the following property.

Given a syndrome s = (s̄1, . . . s̄r) ∈ (Fq)r, corresponding to an error vector of weight

µ ≤ t and µ error locations (x̄1,1, . . . , x̄1,m) , . . . , (x̄µ,1, . . . , x̄µ,m), if we evaluate the

S variables at s and the variables x1, . . . , xi−1 at x̄j,1, . . . , x̄j,i−1 for any 1 ≤ j ≤ µ,

then the roots of Li(s, x̄j,1, . . . , x̄j,i−1, xi) are either {x̄1,i, . . . , x̄t,i}, when µ = t, or

{x̄1,i, . . . , x̄µ,i, x̄0,i}, when µ ≤ t− 1. Apart from the actual location components and

possibly the ghost component, polynomial Li should not have other solutions.

To show that a polynomial of this kind does not necessarily exist in JC,t∗ , we

consider the following examples.

Example 8.2.1. Let us consider an MDS code C = C⊥(I, L) [5, 1, 5] from the plane

curve {y5 − y4 + y3 − y2 + y − x = 0} ∩ {x− 1 = 0} over F7 and with

L = {y − 3, y2 − 1, y3 + 3, y4 − 1},
V(I) = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5)}.

It is easy to see that C can correct up to t = 2 errors. Let us consider the lex

term-ordering with s1 < s2 < s3 < s4 < s5 < x2 < y2 < x1 < y1 < e2 < e1 in

F7[s1, s2, s3, s4, s5, x2, y2, x1, y1, e1, e2]. Ideal JC,t∗ is generated by

〈e71 − e1, e72 − e2, x1 − 1, x2 − 1, y6
1 − y5

1 + y4
1 − y3

1 + y2
1 − y1, y

6
2 − y5

2 + y4
2 − y3

2 + y2
2 − y2,

e1(−y4
1 + y3

1 + y2
1 − 2y1 + 2) + e2(−y4

2 + y3
2 + y2

2 − 2y2 + 2)− s1, e2((x2 − 1)6 − 1)(y6
2 − 1),

e1(3y4
1 − 2y3

1 + 3y2
1 + 3y1) + e2(3y4

2 − 2y3
2 + 3y2

2 + 3y2)− s2, e1(3y4
1 − y2

1 − 2) + e2(3y4
2 − y2

2 − 2)− s3,

e1(−y4
1 + 2y3

1 − y2
1 − 3y1 + 3) + e2(−y4

2 + 2y3
2 − y2

2 − 3y2 + 3)− s4, e1((x1 − 1)6 − 1)(y6
1 − 1),

e1e2((x1 − x2)6 − 1)((y1 − y2)6 − 1), (e62 − 1)(x2 − 1), (e62 − 1)y2, (e
6
1 − 1)(x1 − 1), (e61 − 1)y1〉,

where the ghost point is P0 = (1, 0). The reduced Gröbner basis G with respect to

s1 < s2 < s3 < s4 < s5 < x2 < y2 < x1 < y1 < e2 < e1 has 27 elements and the new

locators are L1(s1, . . . , s5, x2) = Lx and L2(s1, . . . , s5, x2, y2) = Lxy (see Appendix for

polynomials a and b):

Lx = x− 1 and Lxy = y2 + ya+ b.

101

Chapter 8. Decoding of a�ne-variety codes

Note that Lx does not play any role, because all x's are equal to 1. So to apply the

decoding we evaluate only Lxy at s and we expect to obtain the (second) components

of error locations. We show it in two cases:

- We suppose that two errors occur at the points P1 = (1, 1) and P2 = (1, 2), both

with error values 1, so the syndrome vector corresponding to the error vector

(1, 1, 0, 0, 0) is s = (2, 1, 0, 0).

In order to �nd the error positions we evaluate Lxy in s. We obtain two di�erent

solutions Lxy(s, y) = y2 − 3y + 2 = (y − 2)(y − 1), that identify the two error

locations.

- We consider s = (0, 4, 4, 0, 1) corresponding to (0, 0, 0, 4, 0), so only one error

occurs in the point (1, 3). Evaluating Lxy at s we obtain Lxy(s, y) = y2 −
3y = y(y − 3). Also in this case we obtain a correct solutions (0 is the ghost

component). So the above choice of Lx and Lxy seems correct.

Now we consider the above code but with a di�erent ghost point. Also in the

following example, we take an optimal ghost point.

Example 8.2.2. Let us consider the same MDS code C = C⊥(I, L) as in Exam-

ple 8.2.1. In this example we choose the (optimal) ghost point P0 = (0, 0). The ideal

JC,t∗ is generated by

〈e71 − e1, e72 − e2, x1y1 − y1, x2y2 − y2, x
2
1 − x1, x

2
2 − x2, y

6
1 − y5

1 + y4
1 − y3

1 + y2
1 − y1,

y6
2 − y5

2 + y4
2 − y3

2 + y2
2 − y2, e1(−y4

1 + y3
1 + y2

1 − 2y1 + 2) + e2(−y4
2 + y3

2 + y2
2 − 2y2 + 2)− s1,

e1(3y4
1 − 2y3

1 + 3y2
1 + 3y1) + e2(3y4

2 − 2y3
2 + 3y2

2 + 3y2)− s2, e1(3y4
1 − y2

1 − 2) + e2(3y4
2 − y2

2 − 2)− s3,

e1(−y4
1 + 2y3

1 − y2
1 − 3y1 + 3) + e2(−y4

2 + 2y3
2 − y2

2 − 3y2 + 3)− s4, e1(x6
1 − 1)(y6

1 − 1),

e2(x6
2 − 1)(y6

2 − 1), e1e2((x1 − x2)6 − 1)((y1 − y2)6 − 1), (e62 − 1)x2, (e
6
2 − 1)y2, (e

6
1 − 1)x1, (e

6
1 − 1)y1.〉,

The reduced Gröbner basis G with respect to s1 < s2 < s3 < s4 < s5 < x2 < y2 < x1 < y1 <

e2 < e1 has 27 elements and the new locators are L1(S, x2) = Lx and L2(S, x2, y2) = Lxy,
where S = {s1, . . . , s5} (see Appendix for c and d):

Lx = x2 − x and Lxy = y2 + yc+ d. (8.8)

Also in this case Lx does not depend on any syndrome, so to apply the decoding we

just specialize Lxy(s,x, y). We would like that the solutions of Lxy(s,x, y) = 0 are

exactly the second components of error locations, but this is not always the case. Let

us consider the same errors as in Example 8.2.1:

- We suppose that two errors occur at the points P1 = (1, 1) and P2 = (1, 2), with

both error values 1, so the syndrome vector corresponding to the error vector

102

8.2. Weak locator polynomials

(1, 1, 0, 0, 0) is s = (2, 1, 0, 0). In order to �nd the error positions we evaluate

Lxy in s. We obtain three di�erent solutions

Lxy(s, 1, y) = y2 − 3y + 2 = (y − 1)(y − 2),

Lxy(s, 0, y) = y2 − 3y − 3 = (y + 2)2.

In this case, we are lucky, because (0, 5) is not a point coordinate and so we can

discard y = 5 �nding the two error locations.

- We consider s = (0, 4, 4, 0, 1) corresponding to (0, 0, 0, 4, 0), so only one error

occurs in the point (1, 3). Evaluating Lxy in (s) we obtain

Lxy(s, 1, y) = y2 − y + 1 = (y − 3)(y + 2),

Lxy(s, 0, y) = y2 − y = y(y − 1).

In this case we have four possible solutions (1, 3), (1, 5),(0, 0) and (0, 1), but only

three are acceptable, which are (1, 3), (1, 5) and (0, 0). To individuate those

corresponding to the syndrome vector s, we must compute the two syndromes

and we will see that (1, 3) and (0, 0) are correct. In this case, the above choice

of Lx and Lxy is unfortunate.

One might think that the unpleasant behaviour of (8.8) is due to the degenerate

geometric situation. Unfortunately, this is not entirely true, as next the example

shows (we end this long example with a horizontal line).

Example 8.2.3. Let us consider, as in Example 4.3.1, the Hermitian code C =

C⊥(I, L) from the curve y2+y = x3 over F4 and with de�ning monomials {1, x, y, x2, xy}.
It is well-known that C can correct up to t = 2 errors. Let us consider the lexico-

graphic term-ordering with s1 < . . . < s5 < x2 < y2 < x1 < y1 < e2 < e1 in

F4[s1, s2, s3, s4, s5, x2, y2, x1, y1, e1, e2]. Ideal JC,tFL is

〈x4
1 − x1, y

4
1 − y1, x

4
2 − x2, y

4
2 − y2, e

3
1 − 1, e3

2 − 1, y2
1 + y1 − x3

1, y
2
2 + y2 − x3

2,

e1 + e2 − s1, e1x1 + e2x2 − s2, e1y1 + e2y2 − s3, e1x
2
1 + e2x

2
2 − s4,

e1x1y1 + e2x2y2 − s5〉,

and the reduced Gröbner basis G (with respect to <) has 53 elements.

The authors of [FL98] report 119 polynomials because they do not use lex but a block

order, which is faster to compute but which usually possesses larger Gröbner bases.

In G ∩ (F4[S, x2] \ F4[S]) there are 5 polynomials of degree 2 in x2 and these are our

candidate polynomials:

g5 = x2
2s5 + x2(s5s4s22 + s24s

2
3s2s

2
1 + s24s2s1 + s4s23s1 + s4s3s32s

2
1 + s4s3s21 + s4s31 + s23s

2
2s

3
1 + s22s

2
1)+

s35s3 + s5s24s
3
3s2 + s5s24s2 + s34s

3
3s

3
2s1 + s34s

3
3s1 + s34s

2
3s

3
2s

2
1 + s34s3s

3
2 + s34s1 + s24s

3
3s

2
2 + s24s

2
3s

2
2s1+

s4s23s2 + s4s2s21 + s33s
3
2s1 + s3s32s

3
1 + s3s32 + s32s1

103

Chapter 8. Decoding of a�ne-variety codes

g4 = x2
2s4 + x2(s24s

2
2 + s32s1 + s1 + s24s

2
3s

3
1) + s24s

2
3 + s24s

3
2s

2
1 + s24s

2
1 + s4s3s22s

3
1 + s4s3s22 + s2s31 + s2

g3 = x2
2s3 + x2(s24s3s1 + s4s3s22s

3
1 + s4s3s22 + s3s2s21) + s25s

2
3 + s5s23s2 + s24s

3
3s2s1 + s24s

2
3s2s

2
1 + s4s33s

3
1+

s4s23s1 + s33s
2
2s

2
1 + s23s

2
2s

3
1 + s23s

2
2

g2 = x2
2s2 + x2(s24s2s1 + s4s31 + s4 + s22s

2
1) + s24s

2
2 + s4s23s2s

3
1 + s4s23s2 + s4s2s21 + s3s32s

3
1 + s3s32 + s32s1

g1 = x2
2(s1) + x2(s24s

2
1 + s2s31) + s24s2s1 + s4s31 + s22s

2
1

Of course, there are other similar polynomials in JC,tFL∩(F4[S, x2]\F4[S]) and they may

be found for example by computing Gröbner bases with respect to other orderings.

It is immediate that the leading polynomials are just {s1, . . . , s5}. Suppose that we

receive a syndrome s = (s̄1, . . . , s̄5). If it is zero, then no errors occurred. Otherwise,

we might follow the most obvious way to correct, that is, we might substitute s in all

gi's, until we �nd one which does not vanish identically. The improvement introduced

by Caboara and Mora translates here in checking only the leading polynomials, i.e.

checking which of the syndrome components s̄i is non-zero. Since clearly at least one

is non-zero, with a negligible computational e�ort we are able to determine the right

candidate.

Let us now follow our proposal. Ideal JC,t∗ is generated by

{x4
1 − x1, y

4
1 − y1, x

4
2 − x2, y

4
2 − y2, e

4
1 − e1, e

4
2 − e2, y

2
1x1 + y2

1 + y1x1 + y1 + x3
1 + x1,

y2
2x2 + y2

2 + y2x2 + y2 + x3
2 + x2, y

3
1 + y1x

3
1 + y1 + x3

1, y
3
2 + y2x

3
2 + y2 + x3

2, e1 + e2 − s1,

e1x1 + e2x2 − s2, e1y1 + e2y2 − s3, e1x
2
1 + e2x

2
2 − s4, e1x1y1 + e2x2y2 − s5,

e1((x1 − 1)3 − 1)((y1 − 1)3 − 1), e2((x2 − 1)3 − 1)((y2 − 1)3 − 1), (e3
1 − 1)(x1 − 1),

(e3
1 − 1)(y1 − 1), (e3

2 − 1)(x2 − 1), (e3
2 − 1)(y2 − 1), e1e2((x1 − x2)3 − 1)((y1 − y2)3 − 1)}.

where the ghost point is (1, 1) (note that 13 6= 12 + 1).

The reduced Gröbner basis G with respect to s1 < s2 < s3 < s4 < s5 < x2 < y2 <

x1 < y1 < e2 < e1 has 32 elements and the new locators are L1(s1, . . . , s5, x2) = Lx
and L2(s1, . . . , s5, x2, y2) = Lxy, that are the polynomials of degree two in, respec-

tively, x2 and y2:

Lx = x2 + x(s2
1s2s

3
4 + s3

4 + s1s
3
2s

2
4 + s2

1s
2
2s

2
4 + s1s

2
4 + s2

2s4 + s1s2s4 + s3
2 + s2

1s2 + s3
1)+

s3s
2
5 + s2s3s5 + s1s

2
2s

3
4 + s2

1s2s
3
4 + s2s

3
3s

2
4 + s1s2s

2
3s

2
4 + s2

1s2s3s
2
4 + s1s

3
2s

2
4 + s3

1s2s
2
4+

s2s
2
4 + s2

1s
3
3s4 + s3

1s
2
3s4 + s1s3s4 + s2

1s
3
2s4 + s3

1s
2
2s4 + s2

1s4 + s3
1s

3
2s

3
3 + s3

2s
3
3 + s1s

2
2s

3
3+

s3
1s

3
3 + s3

3 + s2
1s

2
2s

2
3 + s3

1s
2
2s3 + s2

2s3 + s3
1s

3
2 + s3

2 + s1s
2
2 + s3

1 + 1

Lxy = y2 + y(s3
3 + s1s

2
3 + s2

1s
3
2s3 + s2

1s3 + s3
1) + x(s2

2s3s
3
4 + s1s

2
2s

3
4 + s2

1s2s3s
2
4 + s2

1s
3
3s4 + s2

3s4+

s1s3s4 + s2
1s

3
2s4) + s3

5 + s2s
2
3s

2
4s5 + s3s4s5 + s2

2s5 + s3
3s

3
4 + s1s

3
2s

2
3s

3
4 + s3

2s
3
4 + s2

1s
2
2s

3
3s

2
4+

s2
1s2s

2
3s4 + s3

1s2s3s4 + s1s2s4 + s3
2s

3
3 + s3

3 + s1s
3
2s

2
3 + s1s

2
3 + s2

1s
3
2s3 + s2

1s3 + s3
1s

3
2 + s3

1 + 1

We can apply the decoding in this way: we specialize Lx(s, x) to s for any received

syndrome. If the syndrome corresponds to two errors, then we expect that the roots

104

8.2. Weak locator polynomials

of Lx(s, x) are the �rst components of error locations and the roots of Lxy(s,x, y) are

exactly the second components of error locations. But it is not always true, we show

it in three cases:

- We suppose that two errors occur at the points P6 = (α, α + 1) and P7 =

(α + 1, α), with both error values 1, so the syndrome vector corresponding to

the error vector (0, 0, 0, 0, 0, 1, 1, 0) is s = (0, 1, 1, 1, 0).

In order to �nd the error positions we evaluate Lx in s and we obtain the correct

values of x, in fact:

Lx(s, x) = x2 + x+ 1 = (x− α)(x− (α+ 1)).

Now we have to evaluate Lxy in (s,x). We obtain four di�erent solutions

Lxy(s, α, y) = y2 + y + 1 = (y − α)(y − (α+ 1))

Lxy(s, α+ 1, y) = y2 + y + 1 = (y − α)(y − (α+ 1)).

But this is a problem for us, because all these solutions are curve points:

(α, α),(α, α + 1),(α + 1, α),(α + 1, α + 1). Only two are the correct locations.

To individuate those corresponding to the syndrome vector s, we must com-

pute the two syndromes and we will see that (α + 1, α), (α, α + 1) are correct.

Another methods to �nd the correct locations are combinatorial algorithms as

[FRR06, Lun10, GRS03]. All of these methods of try-and-see works nice be-

cause the code is small, but soon it becomes unfeasible. So the above choice of

Lx and Lxy is unfortunate.

- We suppose that the syndrome is (α + 1, 0, α, 0, 0), corresponding to the error

vector (1, α, 0, 0, 0, 0, 0, 0). So two errors have occurred and their values are 1

and α in the point, respectively, P1 = (0, 0) and P2 = (0, 1). In order to �nd the

error locations we evaluate Lx in s and we obtain Lx(s, x) = x2 + x = x(x− 1),

then we evaluate Lxy in (s, 0) and (s, 1) and we get Lxy(s, 0, y) = Lxy(s, 1, y) =

y2 + y = y(y − 1). The equations

Lx(s, x) = Lxy(s, 1, y) = Lxy(s, 0, y) = 0 (8.9)

have four possible solutions: (0, 0), (0, 1), (1, 0) and (1, 1). Since the points (1, 0)

and (1, 1) do not lie on the Hermitian curve, then only one solution couple is

admissible: {(0, 0), (0, 1)}. This situation is better than the above case, because

we can immediately understand what the correct solutions of system (8.9) are.

This happens by chance and in any case the solutions of equation Lx(s) = 0 are

not what we want.

105

Chapter 8. Decoding of a�ne-variety codes

- Finally we consider s = (α + 1, α + 1, 1, α + 1, 1) corresponding to (0, 0, α +

1, 0, 0, 0, 0, 0), so only one error occurs. Evaluating Lx and Lxy, respectively, in
s and (s,x), we obtain{

Lx(s, x) = x2 + 1

Lxy(s, 1, y) = y2 + (α + 1)y + α = (y − 1)(y − α).
(8.10)

In this case we are extremely lucky because the two polynomials Lx and Lxy
answer correctly: the solutions of system (8.10) are (1, 1), which is the ghost

point, and (1, α), which is the error location.

Remark 8.2.4. Since, in Example 8.2.3, the curve equation has all coe�cients in F2,

the ideal JC,tFL actually lies in F2[s1, s2, s3, s4, s5, x2, y2, x1, y1, e1, e2]. This is a special

case of a more general fact: for any a�ne variety-code and any decoding ideal that

we are considering in the whole paper, all polynomials de�ning these ideals have

no coe�cient di�erent from {1,−1}, except possibly for the polynomials de�ning I.

Therefore, if it is possible to have a basis for the ideal I with all coe�cients in a smaller

�eld, then any of its Gröbner bases will have elements with the same coe�cient �eld,

which means that the basis computation will be much faster.

Since polynomials like Lx and Lxy in Example 8.2.3 contain the right solutions (to-

gether with unwelcome parasite solutions), they deserve a de�nition. See Section 4.1

for our notation.

De�nition 8.2.5. Let C = C⊥(I, L) be an a�ne-variety code. Let 1 ≤ i ≤ m.

Let P0 = (x̄0,1, . . . , x̄0,m) ∈ (Fq)m \ V(I) be a ghost point. Let

ti = min {t , |{π̂i(P) | P ∈ V(I) ∪ P0}|} ,

and let Pi be a polynomial in Fq[S, x1, . . . , xi], where S = {s1, . . . , sr}. Then {Pi}1≤i≤m

is a set of weak multi-dimensional general error locator polynomials of C if

for any i

� Pi(S, x1, . . . , xi) = xtii + ati−1x
ti−1
i + · · · + a0, with aj ∈ Fq[S, x1, . . . , xi−1], 0 ≤

j ≤ ti − 1, that is, Pi is a monic polynomial with degree ti with respect to the

variable xi and its coe�cients are in Fq[S, x1, . . . , xi−1];

� given a syndrome s = (s̄1, . . . s̄r) ∈ (Fq)r, corresponding to an error vector of

weight µ ≤ t, and µ error locations (x̄1,1, . . . , x̄1,m) , . . . , (x̄µ,1, . . . , x̄µ,m), if we

evaluate the S variables at s and the variables (x1, . . . , xi−1) at the truncated

vectors xj = (x̄j,1, . . . , x̄j,i−1) for 0 ≤ j ≤ µ, then the roots of Pi(s,xj, xi)
contain:

106

8.2. Weak locator polynomials

- either {x̄h,i | xh = xj, 0 ≤ h ≤ µ} (when µ < t),

- or {x̄h,i | xh = xj, 1 ≤ h ≤ µ} (when µ = t),

plus possibly some parasite solutions.

Note that the di�erence between {x̄h,i | xh = xj, 0 ≤ h ≤ µ} and {x̄h,i | xh = xj, 1 ≤
h ≤ µ} is that the latter set does not consider the ghost point.

Now we consider an alternative strategy to compute the error locations, using the

weak multi-dimensional general error locator polynomials and some other polynomials

in ideal JC,t∗ .

Since it is convenient to know in advance the error number and the error values,

we provide the following de�nition for a general correctable linear code. Let C be an

[n, k, d] linear code over Fq with correction capability t ≥ 1. Choose any parity-check

matrix with entries in an appropriate extension �eld FqM of Fq,M ≥ 1. Its syndromes

lie in (FqM)n−k and form a vector space of dimension r = n− k over Fq.

De�nition 8.2.6. Let E ∈ Fq[S, e], where S = {s1, . . . , sr}. Then E is a general

error evaluator polynomial of C if

� E(S, e) = ate
t + at−1e

t−1 + · · · + a0, with aj ∈ Fq[S], 0 ≤ j ≤ t, that is, E is a

polynomial with degree t with respect to the variable e and its coe�cients are in

Fq[S];

� Given a syndrome s = (s̄1, . . . s̄r) ∈ (FqM)r corresponding to an error vector of

weight µ ≤ t and with ē1, . . . , ēµ as error values, we evaluate the S variables

at s, then the roots of E are the error values ē1, . . . , ēµ plus 0 with multiplicity

t− µ.

The importance of E lies in fact that the error number is µ if and only if

et−µ|E(s) and e(t−µ+1) 6 |E(s).

The ideal JC,t∗ ∩ K[S, e1, . . . , et] is easily seen to be strati�ed, as follows. There is a

bijective correspondence between correctable syndromes and correctable errors (i.e.,

errors of weight τ ≤ t) and so if we �x 1 ≤ l ≤ t and 1 ≤ s ≤ t − l we can always

�nd l error values e1, . . . , el that have s extensions at level el+1. So we can apply

Proposition 4.4.3 and obtain the existence of E .

Theorem 8.2.7. For any a�ne-variety code C = C⊥(I, L), the general error evalu-

ator polynomial exists.

107

Chapter 8. Decoding of a�ne-variety codes

Proof. We apply Proposition 4.4.3 to the strati�ed ideal JC,t∗ ∩ K[S, e1, . . . , et]. It is

enough to take g with T(g) = aLL with A = {e1, . . . , et} and S = S.

Using E , we know not only τ , but also the τ error values. In order to exploit this infor-

mation, we can consider a straightforward generalisation of weak multi-dimensional

general error locator polynomials (see De�nition 8.2.5) where the locators are actually

Pei ∈ Fq[S, e, x1, . . . , xi−1]. We do not give a long de�nition for these, since we think

it is obvious.

We consider again Example 8.2.3 to show two alternative strategies.

Example 8.2.8. Let us consider the Hermitian code C = C⊥(I, L) from the curve

y2 + y = x3 over F4 and with de�ning monomials {1, x, y, x2, xy}, as in the Exam-

ple 8.2.3. The reduced Gröbner basis G of JC,t∗ with respect to lex with s1 < s2 <

s3 < s4 < s5 < e2 < e1 < x2 < y2 < x1 < y1 has 33 elements and the general error

evaluator polynomial E is

E =e2 + es1 + s3
4s

2
3 + s3

4s3s1 + s3
4s

3
2s

2
1 + s3

4s
2
1 + s2

4s
2
3s

2
2s

2
1 + s2

4s3s
2
2s

3
1 + s4s

2
3s2s1+

s4s3s2s
2
1 + s4s2s

3
1 + s4s2 + s2

3s
3
2s

3
1 + s2

3 + s3s
3
2s1 + s3s1 + s3

2s
2
1.

In G there are also these polynomials:

Pex = x2 + xs4s
2
2 + e ax + bx and gx = x1 + x2 + cx,

where ax, bx, cx ∈ F4[s1, s2, s3, s4, s5] (see Appendix for the full polynomials). Now we

change the lex ordering to s1 < · · · < s5 < e2 < e1 < y2 < x2 < y1 < x1. In the new

Gröbner basis we have other two polynomials Pey and gy.

Pey = y2 + y(s4s3s2 + s3
2 + 1) + e ay + by and gy = y1 + y2 + cy,

where ay, by, cy ∈ F4[s1, s2, s3, s4, s5] (see Appendix for the full polynomials). We can

decode as follows. First we evaluate E(s) and we �nd two error values e1, e2 (when

τ = 1, one is zero).

- If the syndrome corresponds to two errors, then the roots of Pex(s, e2, x) are the

�rst components of error locations,

- else if s corresponds to one error, we specialize gx(s, e, x1, x2) in (s, e2, 1), where

1 is the ghost component, and again the root of gx(s, e2,1, x2) is the �rst com-

ponent of the error location.

Similarly we use Pey and gy to �nd the second location components. Let us explain in

detail the above-mentioned decoding with the help of the three cases of Example 8.2.3.

108

8.2. Weak locator polynomials

- s = (0, 1, 1, 1, 0) is the syndrome vector corresponding to the error vector

(0, 0, 0, 0, 0, 1, 1, 0). Evaluating E in s we obtain: E(s) = e2 + 1, so two er-

rors have occurred and their values is 1. In order to �nd the error positions we

evaluate Pex and Pey in (s, 1) and we obtain

Pex(s, 1) = x2 + x+ 1 = (x− α)(x− (α + 1))

Pey(s, 1) = y2 + y + 1 = (y − α)(y − (α + 1)).

The system Pex(s, 1) = Pey(s, 1) = 0 have four possible solutions: (α, α), (α +

1, α+ 1), (α+ 1, α) and (α, α+ 1). But only two solution pairs are admissible:

{(α+ 1, α), (α, α+ 1)} and {(α, α), (α+ 1, α+ 1)}, since both α and α+ 1 must

appear as �rst components (and as second components). We are in the same

ambiguous situation as in Example 8.2.3.

- Now we consider the syndrome s = (α+ 1, 0, α, 0, 0), corresponding to a vector

(1, α, 0, 0, 0, 0, 0, 0). Evaluating E in s we obtain E(s) = (e − 1)(e − α), so two

errors have occurred and their values are 1 and α. In order to �nd the error

positions we evaluate Pex and Pey in (s, 1) (or in (s, α))

Pex(s, 1) = fx(s, α) = x2 and Pey(s, 1) = fy(s, α) = y2 + y = y(y − 1).

The solutions of the system fx(s, 1) = fy(s, 1) = 0 are {(0, 0), (1, α)}, in this

case we �nd the correct error positions. Note that this case is an ambiguous

situation in Example 8.2.3, while here it is not.

- Vector s = (α+ 1, α+ 1, 1, α+ 1, 1) is the syndrome corresponding to (0, 0, α+

1, 0, 0, 0, 0, 0). We evaluate E and we get E(s) = e2 +(α+1)e. So only one error

occurred and its value is α + 1. We evaluate gx and gy in (s, α + 1, 1), where 1

is the �rst ghost component, and we have

gx(s, α + 1, 1) = x2 + 1 and gy(s, α + 1, 1) = y2 + α.

Therefore the error location is (1, α).

Now we consider another type of decoding, using E and taking polynomials from Ĵ C,t
FL

as in (8.1). First, we evaluate E(s) to know the number of errors. We do not need

their values. Instead, we compute the Gröbner basis of ideal Ĵ C,τ
FL , with 1 ≤ τ ≤ t

and we collect polynomials in Fq[S, x] and Fq[S, y]. For example,if two errors occur

we use s1 < s2 < s3 < s4 < s5 < x2 < y2 < x1 < y1 < e2 < e1 and . . . s5 < y2 < . . . to

get, for τ = 2,

109

Chapter 8. Decoding of a�ne-variety codes

f2,x = x2 + x(s2
4s1 + s4s

2
2s

3
1 + s4s

2
2 + s2s

2
1) + s2

5s3 + s5s3s2 + s2
4s

3
3s2 + s2

4s
2
3s2s1 + s2

4s3s2s
2
1

+s2
4s2 + s4s

3
3s

2
1 + s4s

2
3s

3
1 + s4s3s1 + s4s

2
1 + s3

3s
2
2s1 + s2

3s
2
2s

2
1 + s3s

2
2s

3
1 + s3s

2
2 + s2

2s1

f2,y = y2 + y(s3
4 + s4s3s2s

3
1 + s4s3s2 + s4s2s1 + s2

3s1 + s3s
2
1 + s3

2s
3
1 + s3

1 + 1) + s3
5 + s5s

2
4s

2
3s2+

s5s
3
3s

2
2 + s5s

2
2 + s3

4s3s
3
2s

2
1 + s3

4s3s
2
1 + s3

4s
3
2 + s3

4 + s2
4s

3
3s

2
2s

2
1 + s2

4s
2
3s

2
2 + s2

4s3s
2
2s1+

s4s
3
3s2s1 + s4s3s2s

3
1 + s4s3s2 + s3

3 + s3s
3
2s

2
1 + s3

2s
3
1 + s3

2 + 1

and for τ = 1

f1,x = x + s2s
2
1 and f1,y = y + s3s

2
1.

The decoding with {f2,x, f2,y, f1,x, f1,y} is obvious.
These polynomials are not the ideal polynomials yet, because again we may �nd

parasite solutions (except with τ = 1).

In the previous examples we have used some polynomials as weak multi-dimensional

general error locator polynomials, as for example Lx and Lxy in Example 8.2.3. It is

not obvious that such polynomials exist for any (a�ne-variety) code. To prove this,

we need to analyse in depth the structure of the zero-dimensional ideal JC,t∗ . This

ideal turns out to belong to several interesting classes of zero-dimensional ideals, de-

�ned as generalizations of strati�ed ideals. These ideal classes are rigorously studied

in Section 8.3, where it is claimed in full generality that the sought-after polynomials

can be found in a suitable Gröbner basis. Section 8.4 is devoted to the proof of this

claim. In Section 8.5 we will come back to the coding setting.

8.3 Results on some zero�dimensional ideals

Our aim in this section is to describe the structure of the reduced Gröbner basis for

some special classes of zero-dimensional ideals which are generalizations of strati�ed

ideals.

First we provide a generalization of the material in Section 4.4. In this sec-

tion J ⊂ K[S,AL, . . . ,A1, T] is a zero�dimensional ideal, with S = {s1, . . . , sN},
Aj = {aj,1, . . . , aj,m}, j = 1, . . . , L, T = {t1, . . . , tK}. We �x a block order < on

K[S,AL, . . . ,A1, T], with S < AL < · · · < A1 < T , such that within Aj we use lex

with aj,1 < aj,2 < · · · < aj,m (for any j). Let A and Aj,i denote the a�ne spaces

A = KN+mL+K and Aj,i = KN+m(L−j)+i.

With the usual notation for the elimination ideals, we want to partition V(JS)

according to the number of extensions in V(JS,aL,1), similarly to what was done in

Subsection 4.4.1 in the one-variable case, that is, when m = 1. The additional com-

plication here is that the a variables are not L any more, but rather they are collected

110

8.3. Results on some zero�dimensional ideals

into L blocks, each block having m variables. Since we order the a variables �rst

according to their block (block AL is the least) and then within the block from the

least to the greatest, their �rst index denotes the block and their second index denotes

their position within the block itself. So, the least a variable is aL,1 and the greatest

is a1,m.

The members of the partition of V(JS) will be called {ΣL,1
l } (similarly to the previ-

ously de�ned ΣL
l). The maximum number of extensions will be called η(L, 1) (compare

with λ(L)).

Remark 8.3.1. It is essential to count the number of extensions in V(JS,aL,1) discarding

their multiplicities. In the de�nition of a strati�ed ideal we required radicality, so in

that case multiplicities did not arise. However, in our following multi-dimensional

generalisations of results and de�nitions from Subsection 4.4.1-4.4.3, we must drop

radicality and so we have to be very careful when handling multiplicities.

In the general case, if we consider block j and variable aj,i, we partition the variety

V(JS,AL,...,Aj+1,aj,1,...,aj,i) into subsets {Σ
j,i+1
l } according to the number of extensions to

V(JS,AL,...,Aj+1,aj,1,...,aj,i,aj,i+1
), that is, adding the next variable aj,i+1. The maximum

number of extensions will be called η(j, i + 1). We meet a special case when we

consider the last variable in a block (i.e., i = m), since in that case we extend

from V(JS,AL,...,Aj+1,aj,1,...,aj,m) to V(JS,AL,...,Aj−1,aj,1,...,aj,m,aj−1,1
). However, no confusion

will arise if we follow our convention of naming the partition members according to

the added variable, so they are called {Σj−1,1
l } in this case, even if their union is

V=V(JS,AL,...,Aj−1,aj,1,...,aj,m). Coherently, η(j − 1, 1) denotes the maximum number of

extensions for points in V .

A formal description of the above discussion goes as follows, where l, j and m are

integers such that l ≥ 1, 1 ≤ j ≤ L and 1 ≤ i ≤ m:

ΣL,1
l ={(̄s1, . . . , s̄N) ∈ V(JS) | ∃ exactly l distinct values ā(1)

L,1, . . . , ā
(l)
L,1

s.t. (̄s1, . . . , s̄N , ā
(`)
L,1) ∈ V(JS,aL,1) with 1 ≤ ` ≤ l},

Σj,1
l =

{
(s̄1, . . . , s̄N , āL,1, . . . , āL,m, . . . , āj+1,1, . . . , āj+1,m) ∈ V(JS,AL,...,Aj+1) |

∃ exactly l distinct values ā(1)
j,1 , . . . , ā

(l)
j,1 s.t. for any 1 ≤ ` ≤ l

(̄s1, . . . , s̄N , āL,1, . . . , āL,m, . . . , āj+1,1, . . . , āj+1,m, ā
(`)
j,1) ∈ V(JS,AL,...,Aj+1,aj,1)

}
j = 1, . . . , L− 2,

Σj,i
l =

{
(s̄1, . . . , s̄N , āL,1, . . . , āL,m, . . . , āj+1,1, . . . , āj+1,m, āj,1, . . . , āj,i−1) in

V(JS,AL,...,Aj+1,aj,1,...,aj,i−1) | ∃ exactly l distinct values ā(1)
j,i , . . . , ā

(l)
j,i s.t.

(̄s1, . . . , s̄N , āL,1, . . . , āL,m, . . . , āj+1,1, . . . , āj+1,m, āj,1, . . . , āj,i−1, ā
(`)
j,i) is in

V(JS,AL,...,Aj+1,aj,1,...,aj,i) 1 ≤ ` ≤ l
}
, i = 2, . . . ,m, j = 1, . . . , L− 1.

111

Chapter 8. Decoding of a�ne-variety codes

The maximum number of extensions at any level, which is η(j, i), plays an important

role for our approach and therefore deserves a precise de�nition. Before de�ning it,

we need an elementary result.

Fact 8.3.2. Given J , there is a set of natural numbers {η(j, i)}1≤j≤L,
1≤i≤m

such that

i) V(JS) = tη(L,1)
l=1 ΣL,1

l ;

ii) V(JS,aL,1,...,aL,i) = tη(L,i+1)
l=1 ΣL,i+1

l , i = 1, . . . ,m− 1;

iii) V(JS,AL) = tη(L−1,1)
l=1 ΣL−1,1

l ;

iv) V(JS,AL,...,Aj+1
) = tη(j,1)

l=1 Σj,1
l , j = 1, . . . , L− 2;

v) V(JS,AL,...,Aj+1,aj,1,...,aj,i) = tη(j,i+1)
l=1 Σj,i+1

l , i = 1, . . . ,m− 1, j = 1, . . . , L− 1;

vi) Σj,i
η(j,i) 6= ∅, ∀i = 1, . . . ,m, ∀j = 1, . . . , L.

Proof. Since I is a zero-dimensional ideal, V(I) is �nite and so any variety projection

V = V(JS,AL,...,Aj+1,aj,1,...,aj,i−1
) has a �nite number of points. Obviously V is the union

of the corresponding Σj,i
l , which means that there can be only a �nite number of non-

empty Σj,i
l and so we use the notation η(j, i) to denote the largest l such that Σj,i

l is

non-empty.

De�nition 8.3.3. The level function of J (with respect to the AL, . . . ,A1 variables)

is the function η : {1 . . . L} × {1 . . .m} → N satisfying Fact 8.3.2.

We want now to generalize our previous de�nition of strati�ed ideals (De�ni-

tion 4.4.1) to the multivariate case, but dropping radicality (see Remark 8.3.1). It

turns out that there are two ways of doing it: we have a weaker notion in the next

de�nition and two stronger notions in the subsequent de�nition.

De�nition 8.3.4. Let J be a zero-dimensional ideal with the above notation. We say

that J is a weakly strati�ed ideal if

Σj,i
l 6= ∅ for 1 ≤ l ≤ η(j, i), 1 ≤ i ≤ m, 1 ≤ j ≤ L.

Being weakly strati�ed means that when considering the elimination ideal at level

(j, i) (block j and variable aj,i) if there is a variety point with l ≥ 2 extensions then

there is another point with l − 1 extensions.

The following de�nition of multi-strati�ed ideal is given at variable-block level,

rather than at a single-variable level. It contains two conditions: there is at least one

point with exactly j extensions and there are no �gaps� in the number of extensions

112

8.3. Results on some zero�dimensional ideals

(for any integer 1 ≤ l ≤ j there is at least one point with l extensions). So it is

exactly the multi-dimensional analogue of the de�nition of strati�ed ideals, except

that we drop the radicality. Unfortunately, this straightforward generalization does

not guarantee the existence of polynomials playing the role of �ideal� locators, and so

in the same de�nition we provide an even stronger notion �strongly multi-strati�ed

ideal�.

De�nition 8.3.5. Let J be a zero-dimensional ideal with the above notation. Let us

consider the natural projections

πL : V(JS,AL) −→ V(JS)

πj : V(JS,AL,...,Aj+1,Aj) −→ V(JS,AL,...,Aj+1
), j = 1, . . . , L− 1

ρj : V(JS,AL,...,Aj+1,Aj) −→ V(JAj), j = 1, . . . , L

Ideal J is a multi-strati�ed ideal (in the AL, . . . ,A1 variables) if

1) for any 1 ≤ j ≤ L−1 and for any P ∈ V(JS,AL,...,Aj+1) we have that |π−1
j ({P})| ≤ j.

Moreover, for any s̄ ∈ V(JS) we have that |π−1
L ({s̄})| ≤ L;

2) for any 1 ≤ j ≤ L− 1 there is Q ∈ V(JS,AL,...,Aj+1
) s.t. |π−1

j ({Q})| = j.

Moreover, there is s̄ ∈ V(JS) s.t. |π−1
L ({s̄})| = L.

For any 1 ≤ j ≤ L, let Zj = ρj(V(J)). We say that ideal J is a strongly

multi-strati�ed ideal (in the AL, . . . ,A1 variables) if 1) holds and

3) for any 1 ≤ j ≤ L − 1, for any T ⊂ Zj s.t. 1 ≤ |T | ≤ j there is a

Q ∈ V(JS,AL,...,Aj+1
) s.t. ρj(π

−1
j ({Q})) = T .

Moreover, for any T ⊂ ZL s.t. 1 ≤ |T | ≤ L there is an s̄ ∈ V(JS) s.t.

ρL(π−1
L ({s̄})) = T .

Again, in the previous de�nition, we do not count multiplicities.

Remark 8.3.6. For any zero-dimensional ideal J with the above notation, let Z = Z1.

Once ρj′(V(J)) = ρj(V(J)) for any 1 ≤ j, j′ ≤ L, we obviously have ρj(π
−1
L ({s̄})) ⊂ Z.

Assuming this, 1) and 3) could be replaced by saying that there is a bijection between

the sets of ρj(π
−1
L ({Q})) and all (non-empty) subsets of Z with up to j elements (and

a similar condition at level L).

We note the following obvious fact.

Fact 8.3.7. Let m ≥ 1. If J is a strongly multi-strati�ed ideal then J is a multi-

strati�ed ideal.

Let m = 1. If J is a multi-strati�ed ideal then J is a weakly strati�ed ideal. If J

is radical, then J is a multi-strati�ed ideal if and only if J is a strati�ed ideal.

113

Chapter 8. Decoding of a�ne-variety codes

The next two examples clarify (in the case m = 1) the notions of multi-strati�ed

ideals and of weakly strati�ed ideals.

Example 8.3.8. Let S = {s1}, A1 = {a1,1}, A2 = {a2,1}, so that m = 1, and T =

{t1}. Let J = I(Z) ⊂ C[s1, a2,1, a1,1, t1] with Z = {(0, 0, 0, 0), (0, 1, 1, 0), (0, 2, 2, 0)}.
The order < is s1 < a2,1 < a1,1 < t1 and the varieties are

V(JS) = {0}, V(JS,a2,1) = {(0, 0), (0, 1), (0, 2)},
V(JS,a2,1,a1,1) = {(0, 0, 0), (0, 1, 1), (0, 2, 2)}.

Let us consider the projection π2 : V(JS,a2,1) → V(JS). Then |π−1
2 ({0})| = 3. We

have
∑2,1

3 = {0} and
∑2,1

1 = ∅,
∑2,1

2 = ∅. So η(2, 1) = 3 and J is not a weakly

strati�ed ideal (neither a strati�ed ideal).

Example 8.3.9. Let S = {s1}, A1 = {a1,1}, A2 = {a2,1}, A3 = {a3,1}, T = {t1}
so that m = 1. Let J = I(Z) ⊂ C[s1, a3,1, a2,1, a1,1, t1] with Z = {(0, 1, 0, 0, 0),
(0, 2, 1, 1, 2), (2, 2, 2, 0, 0)}. The order < is s1 < a3,1 < a2,1 < a1,1 < t1 and the
varieties are

V(JS) = {0, 2}, V(JS,a3,1) = {(0, 1), (0, 2), (2, 2)},
V(JS,a3,1,a2,1) = {(0, 1, 0), (0, 2, 1), (2, 2, 2)},
V(JS,a3,1,a2,1,a1,1) = {(0, 1, 0, 0), (0, 2, 1, 1), (2, 2, 2, 0)}.

Let us consider the projection π3 : V(JS,a3,1) → V(JS). Then |π−1
3 ({0})| = 2 and

|π−1
3 ({2})| = 1, so

∑3,1
2 = {0},

∑3,1
1 = {2} and η(3, 1) = 2, but

∑3,1
3 = ∅. Similarly,

η(2, 1) = η(1, 1) = 1. So J is a weakly strati�ed ideal that is not multi-strati�ed (and

not strati�ed).

However, if m ≥ 2, a weakly strati�ed ideal is not necessarily a multi-strati�ed

ideal and, viceversa, a multi-strati�ed ideal is not necessarily a weakly strati�ed ideal,

as shown in the following example.

Example 8.3.10. Let S = {s1, s2, s3}, A1 = {a1,1, a1,2}, A2 = {a2,1, a2,2}, A3 = {a3,1, a3,2},
T = {t1} so that m = 2. Let J = I(Z) ⊂ C[s1, s2, s3, a3,1, a3,2, a2,1, a2,2, a1,1, a1,2, t1, t2],

with Z = {(0, 0, 1, 1, 1, 1, 1, 3, 1, 1, 1), (0, 0, 1, 1, 2, 1, 3, 1, 2, 1, 1), (0, 0, 1, 1, 3, 0, 0, 2, 1, 1, 2),

(1, 1, 2, 2, 1, 2, 1, 0, 0, 0, 1), (1, 1, 2, 0, 1, 1, 1, 0, 1, 2, 1), (1, 1, 2, 0, 1, 1, 0, 1, 0, 0, 1), (2, 3, 0, 3, 3, 1,

0, 1, 1, 1, 2)}. The order < is s1 < s2 < s3 < a3,1 < a3,2 < a2,1 < a2,2 < a1,1 < a1,2 < t1 and the

varieties are

V(JS) = {(0, 0, 1), (1, 1, 2), (2, 3, 0)},
V(JS,A3

) = {(0, 0, 1, 1, 1), (0, 0, 1, 1, 2), (0, 0, 1, 1, 3), (1, 1, 2, 2, 1), (1, 1, 2, 0, 1), (2, 3, 0, 3, 3)},
V(JS,A3,A2

) = {(0, 0, 1, 1, 1, 1, 1), (0, 0, 1, 1, 2, 1, 2), (0, 0, 1, 1, 3, 0, 0), (1, 1, 2, 2, 1, 2, 1), (1, 1, 2, 0, 1, 1, 1),

(1, 1, 2, 0, 1, 1, 0), (2, 3, 0, 3, 3, 1, 0)},
V(JS,A3,A2,A1

) = {(0, 0, 1, 1, 1, 1, 1, 3, 1), (0, 0, 1, 1, 2, 1, 2, 1, 2), (0, 0, 1, 1, 3, 0, 0, 2, 1), (1, 1, 2, 2, 1, 2, 1, 0, 0),

(1, 1, 2, 0, 1, 1, 1, 0, 1), (1, 1, 2, 0, 1, 1, 0, 1, 0), (2, 3, 0, 3, 3, 1, 0, 1, 1)}.

114

8.3. Results on some zero�dimensional ideals

Let us consider the projection π3 : V(JS,A3) → V(JS). Then |π−1
3 ({(0, 0, 1)})| = 3,

|π−1
3 ({(1, 1, 2)})| = 2 and |π−1

3 ({(2, 3, 0)})| = 1.

Similarly, if we consider π2 : V(JS,A3,A2) → V(JS,A3), then |π−1
2 ({(1, 1, 2, 0, 1)})| is

equal to 2 and for other P ∈ V(JS,A3
) we have that |π−1

2 ({P})| = 1.

Finally, if we consider π1 : V(JS,A3,A2,A1)→ V(JS,A3,A2), then for any P ∈ V(JS,A3,A2)

we have that |π−1
1 ({P})| = 1 and so J is multi-strati�ed. It is easy to see that J is not

weakly strati�ed. In fact, if we consider the projection π3,1 : V(JS,a3,1,a3,2)→ V(JS,a3,1)

then

π−1
3,2({(0, 0, 1, 1)}) = {(0, 0, 1, 1, 1), (0, 0, 1, 1, 2), (0, 0, 1, 1, 3)},
π−1

3,2({(1, 1, 2, 2)}) = {(1, 1, 2, 2, 1)}, π−1
3,2({(1, 1, 2, 0)}) = {(1, 1, 2, 0, 1)}

π−1
3,2({(2, 3, 0, 3)}) = {(2, 3, 0, 3, 3)}.

So
∑3,2

3 = {(0, 0, 1, 1)}, but
∑3,2

2 = ∅.

Proposition 8.3.11. Let J be a strongly multi-strati�ed ideal then J is a weakly

strati�ed ideal.

Proof. For any 1 ≤ i ≤ m and for any j = 1, . . . , L − 1, let us consider the natural
projection

πj,i : V(JS,AL,...,Aj+1,āj,1,...,āj,i) −→ V(JS,AL,...,Aj+1,āj,1,...,āj,i−1)

We will also use ρj and πj as in De�nition 8.3.5.

To avoid complications, we consider only the case 2 ≤ i ≤ m − 1, being the modi�-

cations in the i = 1 and i = m obvious.

The �rst fact that we note is that η(j, i) ≤ j, because if the pre-images at block level

contain at most j elements, then at variable level they cannot contain more. Let

2 ≤ l ≤ η(j, i) such that Σj,i
l 6= ∅. It is enough to show that Σj,i

l−1 6= ∅.
Let R̄, P̄ and Q such that Q ∈ Σj,i

l , Q = (S̄, ĀL, . . . , Āj+1, āj,1, . . . , āj,i−1),

P̄ = (S̄, ĀL, . . . , Āj+1), R̄ = (āj,1, . . . , āj,i−1), so Q = (P̄ , R̄).

Then π−1
j,i ({Q}) = {(Q,λ1), . . . , (Q,λl)} and all λ`'s are distinct.

Let Γ1, . . . ,Γl ∈ V(Jaj,i+1,...,aj,m) such that (Q,λ`,Γ`) ∈ V(JS,AL,...,Aj). The Γ`'s do not

have to be distinct. For any 1 ≤ ` ≤ l at least one such Γ` must exist. We choose one

Γ` for any `. So {(Q,λ1,Γ1), . . . , (Q,λl,Γl)} ⊂ π−1
j (P̄) and {(R̄, λ`,Γ`)}1≤`≤l is a subset of

ρj(V (JS,AL,...,Aj+1,Aj
)). Let

T = {(R̄, λ1,Γ1), . . . , (R̄, λl−1,Γl−1)}.

Then T ⊂ ρj(V (JS,AL,...,Aj+1,Aj)) and |T | = l − 1 ≤ η(j, i)− 1 ≤ j − 1.

Since J is strongly multi-strati�ed, there is P̃ ∈ V(JS,AL,...,Aj+1
) such that

T = ρj(π
−1
j ({P̃})), so π−1

j ({P̃}) = {(P̃ , R̄, λ1,Γ1), . . . , (P̃ , R̄, λl−1,Γl−1)}.

This implies that {(P̃ , R̄, λ1), . . . , (P̃ , R̄, λl−1)} = π−1
j,i ({(P̃ , R̄)}), and so Σj,il−1 6= ∅, as all

λ`'s are distinct.

115

Chapter 8. Decoding of a�ne-variety codes

Let ≺lex be the lexicographic term order such that AL ≺lex . . . ≺lex A1 and

for any 1 ≤ j ≤ L we have aj,1 ≺lex . . . ≺lex aj,m. Let <S be a term order on

S and <T a term order on T . Let < be the block order <= (<S,≺lex, <T) (for

de�nitions see Section 2.1). We are now assuming that J is any zero-dimensional ideal

is K[S,AL, . . . ,A1, T]. Let G = GB(J). We consider a Gröbner basis of elimination

ideal K[S,AL, . . . ,A1] \ K[S] (see Section 2.3). It is well�known that the elements

of G ∩ (K[S,AL, . . . ,A1] \K[S]) can be collected into non-empty blocks {G j}1≤j≤L,

where

GL = G ∩ (K[S,AL] \K[S])

and, for 1 ≤ j ≤ L− 1,

G j = G ∩ (K[S,AL, . . . ,Aj+1,Aj] \K[S,AL, . . . ,Aj+1]).

Then we denote by GL,1, GL,i, G j,1 and G j,i, 1 < j ≤ L, 1 < i ≤ m, respectively, the

sets:

GL,1 = G ∩ (K[S, aL,1] \K[S])

GL,i = G ∩ (K[S, aL,1, . . . , aL,i] \K[S, aL,1, . . . , aL,i−1])

G j,1 = G ∩ (K[S,AL, . . . ,Aj+1, aj,1] \K[S,AL, . . . ,Aj+1])

G j,i = G ∩ (K[S,AL, . . . ,Aj+1, aj,1, . . . , aj,i] \K[S,AL, . . . ,Aj+1, aj,1, . . . , aj,i−1]).

In other words, let g be any polynomial in G j,i. Then:

� g contains the variable aj,i,

� g does not contain any greater variable (i.e. no variables in blocks Aj+1 . . .A1

and none of the remaining variables in the j-th block aj,i+1, . . . , aj,m),

� g may contain lesser variables (the S variables, the a variables contained in

blocks L, . . . , j − 1 and the lesser a variables in the same block: aj,1, . . . , aj,i−1).

As the ideal under consideration is assumed zero-dimensional, the sets G j,i are non-

empty. The polynomials in any G j,i can be grouped according to their degree δ with

respect to aj,i.

For us it is essential to know the maximum value of δ in G j,i, that we call

ζ(j, i) (8.11)

So we can write:

G j,i = tζ(j,i)δ=1 G
j,i
δ , j = 1, . . . , L, i = 1, . . . ,m, with G j,i

ζ(j,i) 6= ∅,

but some G j,i
δ could be empty. In this way, if g ∈ G j,i

δ we have:

116

8.3. Results on some zero�dimensional ideals

� g ∈ K[S,AL, . . . ,Aj+1, aj,1, . . . , aj,i−1][aj,i] \K[S,AL, . . . ,Aj+1, aj,1, . . . , aj,i−1]

� degaj,i
(g) = δ.

Note that we can view ζ as a function ζ : {1 . . . L} × {1 . . .m} → N, that is, as a
function with exactly the same range of η.

If g ∈ G j,i
δ , then we can write uniquely g as

g = aδa
δ
j,i + aδ−1a

δ−1
j,i + · · ·+ a0,

with aj ∈ K[S,AL, . . . ,Aj+1, aj,1, . . . , aj,i−1]. and aδ is the leading polynomial of g.

We name the elements of G j,i
δ according to the term order of their leading terms, i.e.

G j,i
δ = {g(i)

j,δ,1, . . . , g
(i)

j,δ,|G j,i
δ |
}, with T(g

(i)
j,δ,h) < T(g

(i)
j,δ,h+1) for any h.

We note the following lemma.

Lemma 8.3.12. For any j = 1, . . . , L and i = 1, . . . ,m, G j,i
ζ(j,i) = {g(i)

j,ζ(j,i),1}, i.e.
there exists only one polynomial in G j,i

ζ(j,i) such that degaj,i
= ζ(j, i).

Proof. From elementary properties of Gröbner bases of zero-dimensional ideals, for

any variable aj,i, G must contain a polynomial g with leading term akj,i, for some

k ≥ 1. Note that g ∈ G j,i, because variable akj,i is present in g and any greater

variable cannot be present. If there is a g ∈ G j,i with degaj,i
g ≥ k, then aj,i|T(g) and

so g can be removed (recall that G is reduced). As a consequence, g has the highest

possible degree in aj,i, i.e. k = ζ(j, i), and so g = g
(i)
j,ζ(j,i),1.

We are ready for the main result of this section. Compare with Theorem 32

in [GS09].

Proposition 8.3.13. Let G be a reduced Gröbner basis of a radical weakly strati�ed

ideal J with respect to < as previously described. Let V(J) ⊂ A. Then for any

j = 1, . . . , L and i = 1, . . . ,m,

G j,i = tζ(j,i)δ=1 G
j,i
δ ,with

1. ζ(j, i) = η(j, i), i.e. ζ is the level function of J ;

2. G j,i
δ 6= ∅ for any 1 ≤ δ ≤ ζ(j, i);

3. G j,i
ζ(j,i) = {g(i)

j,ζ(j,i),1}, i.e. there exists only one polynomial in G j,i
ζ(j,i) such that

degaj,i
= ζ(j, i);

4. we have that

T(g
(i)
j,ζ(j,i),1) = a

ζ(j,i)
j,i .

117

Chapter 8. Decoding of a�ne-variety codes

Note that it is the radicality that ensures 1., but in later situations we will have 1.

also without radicality.

In Section 8.4 we are going to prove the previous proposition using the Buchberger-

Möller theorem. Note that it may be proved also using other two approaches that

are [CM90, CM95, CM02b] and [FRR06, Lun10, GRS03].

8.4 Proof of Proposition 8.3.13

8.4.1 Preliminaries of proof

To prove Proposition 8.3.13 we use the Buchberger-Möller theorem:

Theorem 8.4.1 (Buchberger-Möller). Let H ′ ⊂ H be ideals in K[V1, . . . , VN] such

that:

(i) there is a K-linear map θ : H 7−→ K s.t. ker(θ) = H ′,

(ii) there are N �eld elements {βk}1≤k≤N ⊂ K s.t. (Vk−βk)H ⊂ H ′ for 1 ≤ k ≤ N ,

that is, θ((Vk − βk)f) = 0 for all f ∈ H.

Let W be a strictly ordered Gröbner basis of H relative to a term order <, then a

Gröbner basis W ′ of H ′ w.r.t < can be constructed as follows:

1. compute αg = θ(g) for all g ∈ W .

2. if αg = 0 for all g, then W = W ′, which happens if and only if H = H ′ and

θ = 0 in HomK(H,K).

3. otherwise, let g∗ be the least g such that αg 6= 0.

We have W ′ = W1 ∪W2 ∪W3, with

� W1 = {g | g < g∗},

� W2 = {(Vk − βk)g∗ | 1 ≤ k ≤ N},

� W3 = {g − αg
αg∗

g∗ | g > g∗}.

Remark 8.4.2. In the proof of Theorem 8.4.1, the hypothesis (ii) is used only to prove

that W2 ⊂ H ′. Therefore, Theorem 8.4.1 still holds if we replace (ii) with a much

weaker hypothesis, that is,

(iii) there are N �eld elements {βk}1≤k≤N ⊂ K s.t. (Vk − βk)g∗ ∈ H ′, 1 ≤ k ≤ N ,

where g∗ is as in (3).

118

8.4. Proof of Proposition 8.3.13

We recall that, by Lemma 2.2.10, if G is a Gröbner basis of an ideal I with respect

to a term ordering > and let g1, g2 ∈ G be such that T(g1)|T(g2), then G\{g2} is
again a Gröbner basis of I. Therefore, any time there is a redundant basis element,

we can remove it.

From the remainder of this section, we �x 1 ≤ i ≤ m and 1 ≤ j ≤ L, and we

extend the projection

π : V(JS,AL,...,Aj+1,aj,1,...,aj,i−1,aj,i)→ V(JS,AL,...,Aj+1,aj,1,...,aj,i−1
) (8.12)

to

π : KN+(L−j)m+i → KN+(L−j)m+i−1

Coherently, we consider only the variable aj,i in the block Aj.

Remark 8.4.3. To simplify the notation in the proof, we use τ as a symbol with a

special meaning, as follows. We introduce τ to single out the contribution of variable

aj,i. Any non-zero element of K[S,AL, . . . ,Aj+1, aj,1, . . . , aj,i−1] may be written as τ

and we use u to express this unconventional identi�cation. For example, aL,1 u τ

and 1 u τ but also τaL,1 u τ and aL,1aj,i u τaj,i 6u τ and s1a
2
j,i u τa2

j,i u aL,2a
2
j,i.

Let H be a zero-dimensional ideal in K[S,AL, . . . ,Aj+1, aj,1, . . . , aj,i]. Let W be its

Gröbner basis. Denote with

W = W ∩ (K[S,AL, . . . ,Aj+1, aj,1, . . . , aj,i]\K[S,AL, . . . ,Aj+1, aj,1, . . . , aj,i−1])

and Ŵ = W ∩ (K[S,AL, . . . ,Aj+1, aj,1, . . . , aj,i−1]), so that W = W t Ŵ . With the τ

notation, we have

Ŵ u {τ, . . . , τ} and W ⊂ {τaj,i + τ, . . . , τaj,i + τ, τa2
j,i + τaj,i + τ, . . .}.

In the same way we can denote

H = H ∩ (K[S,AL, . . . ,Aj+1, aj,1, . . . , aj,i]\K[S,AL, . . . ,Aj+1, aj,1, . . . , aj,i−1])

and Ĥ = H ∩ (K[S,AL, . . . ,Aj+1, aj,1, . . . , aj,i−1]).

Remark 8.4.4. Suppose we want to compute the ideal H ′ from H by adding a point

Q = (P, aj,i), with P = (s1, . . . , sN , aL,1, . . . , aj,i−1). We apply Theorem 8.4.1 to

compute W ′ from W using the point evaluation θ(g) = g(Q). In this case it is easy

to see that we can take as βi the i-th component of Q. There are two distinct cases:

1. either for all g ∈ Ŵ , g(Q) = g(P) = 0,

119

Chapter 8. Decoding of a�ne-variety codes

2. or there exists g ∈ Ŵ such that g(Q) = g(P) 6= 0.

The �rst case implies g∗ ∈ W , the second case implies g∗ ∈ Ŵ . Since these are

logically distinct, we can conclude that there are only two (distinct) cases:

1. either for all g ∈ Ŵ , g(Q) = g(P) = 0, and this happens if and only if g∗ ∈ W ,

2. or there exists g ∈ Ŵ such that g(Q) = g(P) 6= 0 and this happens if and only

if g∗ ∈ Ŵ .

8.4.2 Sketch of proof

Let us consider g = g
(i)
j,ζ(j,i),1 and ∆ = η(j, i).

Let I = J ∩ (K[S,AL, . . . ,Aj+1, aj,1, . . . , aj,i]). Since V(I) ⊂ Aj,i and I is radical

and zero-dimensional, by Hilbert Nullstellensatz Theorem (that is Theorem 2.2.19)

I = I(V(I)) = I(Σj,i
1 t . . . t Σj,i

∆). Since J is weakly-strati�ed, we will have Σj,i
h 6= ∅

for all 1 ≤ k ≤ ∆.

Our proof needs several steps:

� Step I.

We consider P1 ∈ Σj,i
1 , P2 ∈ Σj,i

2 and π as in (8.12). We are interested in the

leading terms of the Gröbner basis of I(π−1(P1)) and of I(π−1(P1) ∪ π−1(P2)).

However, the exact knowledge of these leading terms is unnecessary and it is

su�cient for us to determine their expression in the τ notation. We perform

this step in Subsection 8.4.3.

� Step II.

Generalising the previous argument, in Subsection 8.4.4 (Lemma 8.4.5) we take

any 2 ≤ t ≤ ∆ and consider any point Ph in Σj,i
h for all 1 ≤ h ≤ t. We describe

the leading terms of the Gröbner basis of I(π−1(P1) ∪ . . . ∪ π−1(Pt)). Since we

need an induction on the number of points to prove Lemma 8.4.5, we give an

intermediate lemma: Lemma 8.4.6.

� Step III.

As the leading terms of the Gröbner basis of I(π−1(P1) ∪ . . . ∪ π−1(P∆)) are

already in the desired shape, in Lemma 8.4.8 we show that adding more points

does not change the shape of the leading terms of the Gröbner basis, as long as

the points come from some Σj,i
h with h ≤ ∆.

120

8.4. Proof of Proposition 8.3.13

8.4.3 First part of the proof

We use the approach of Remark 8.4.4.

� Let P1 = (s1, . . . , sN , aL,1, . . . , aj,i−1) ∈ Σj,i
1 and H = I(π−1(P1)) be the vani-

shing ideal of π−1(P1). Then π−1(P1) = {(s1, . . . , sN , aL,1, . . . , aj,i−1, aj,i)}. The
basisW = GB(H) isW = {s1−s1, . . . , sN−sN , aL,1−aL,1 . . . , aj,i−aj,i}. Using
our notation we have

T(W) = {τ, . . . , τ, aj,i}. (8.13)

� We consider a point P2 ∈ Σj,i
2 that, with abuse of notation1, we write

P2 = (s1, . . . , sN , aL,1, . . . , aj,i−1). We can write

π−1(P2) =

{
Q1 = (s1, . . . , sN , aL,1, . . . , aj,i−1, a

(1)
j,i)

Q2 = (s1, . . . , sN , aL,1, . . . , aj,i−1, a
(2)
j,i)

∗ We add the point Q1.

Using Theorem 8.4.1 we can build W ′ from W in (8.13). If ∀g ∈ Ŵ ,

g(Q1) = 0, then π(Q1) ∈ V(Ĥ). But π(Q1) = P2 and V(Ĥ) = {P1},
so P1 = P2 and |π−1(P2)| = 3, which is impossible because P2 ∈ Σj,i

2 .

Therefore, for Remark 8.4.4, g∗ ∈ Ŵ .

So the Gröbner basis W ′ = W1 tW2 tW3, where

- W1 = {g ∈ Ŵ | g < g∗} because g∗ ∈ Ŵ , so we have W1 u {τ, . . . , τ} and T(W1) u

{τ, . . . , τ}.

- W2 is composed by the following polynomials

g∗(s1 − s1), . . . , g∗(sN − sN)

g∗(aL,1 − aL,1), . . . , g∗(aj,i−1 − aj,i−1)

g∗(aj,i − a
(1)
j,i)

- W3 = {g − g(Q1)
g∗(Q1)

g∗ | g > g∗}.

We have T(W2) u {τ, . . . , τ, τaj,i} and T(W3) ⊆ {τ, . . . , τ, aj,i} and aj,i ∈ T(W3). With

T(W3) ⊆ {τ, . . . , τ, aj,i} we actually mean that T(W3) is a subset of a set S

such that S ≈ {τ, . . . , τ, aj,i}. We will write similarly from now on without any

further comment. Observe that T(W ′) u {τ, . . . , τ, τaj,i, aj,i}. By Lemma 2.2.10,

we have T(W ′) u {τ, . . . , τ, aj,i}.

∗ We add the point Q2.

Let2 W := W ′ and let us use again Theorem 8.4.1. We have to �nd a

1Where we do not imply that the components of P2 are the same as those of P1, although we use
the same symbols.

2With �let W := W ′� we mean that in this proof step we remove all elements in set W and
instead we insert into W all elements from W ′. After that, we remove all elements from W ′. We
also forget the values of g∗ and W1,W2,W3.

121

Chapter 8. Decoding of a�ne-variety codes

polynomial g∗ ∈ W such that g∗(Q2) 6= 0. Of course g∗ 6∈ Ŵ , because

π(Q1) = π(Q2) = P2. Thus g∗ ∈ W and g∗ = aj,i + τ . W ′ is formed by

W ′ = W1 tW2 tW3, where

- W1 u {τ, . . . , τ},

- W2 = W2,1 ∪W2,2 where

W2,1 = {g∗(s1 − s1), . . . , g∗(sN − sN), g∗(aL,1 − aL,1), . . . , g∗(aj,i−1 − aj,i−1), so

T(W2,1) u {τaj,i, . . . , τaj,i}.

W2,2 = {g∗(aj,i − a
(2)
j,i)} =⇒ T(W2,2) = {a2

j,i}.

- W3 = ∅.

So

T(W ′) = {τ, . . . , τ, τaj,i, . . . , τaj,i, a2
j,i} (8.14)

8.4.4 Second part of proof

If ∆ ≤ 2, we have �nished our proof. Otherwise, i.e. ∆ ≥ 3, we want to prove,

using induction on t with 1 ≤ t ≤ ∆, the following lemma.

Lemma 8.4.5. The Gröbner basis W of H = I(π−1(P1) ∪ . . . ∪ π−1(Pt)), where

1 ≤ t ≤ ∆ and Ph is any point in Σj,i
h for 1 ≤ h ≤ t, is such that

T(W) u {τ, . . . , τ, τaj,i, . . . , τaj,i, . . . , τat−1
j,i , . . . , τa

t−1
j,i , a

t
j,i}. (8.15)

Proof. The Gröbner basis with t = 1 and t = 2 were just shown in (8.13) and (8.14)

respectively.

By induction we suppose to have t − 1 points {P1, . . . , Pt−1} and to have a Gröbner

basis W such that:

T(W) u {τ, . . . , τ, τaj,i, . . . , τaj,i, . . . , τat−2
j,i , . . . , τa

t−2
j,i , a

t−1
j,i } (8.16)

Now we can prove the t-th step. In order to do it, we prove the following lemma,

with its long proof between horizontal lines.

Lemma 8.4.6. Let 3 ≤ t ≤ ∆ and Pt ∈ Σj,i
t with π−1(Pt) = {Q1, . . . , Qt}. For any

1 ≤ u ≤ t− 1, let Hu be the vanishing ideal

Hu = I(π−1(P1) ∪ . . . ∪ π−1(Pt−1) ∪ {Q1, . . . , Qu}) and

H0 = I(π−1(P1) ∪ . . . ∪ π−1(Pt−1)).

Let W u be its reduced Gröbner basis. Then

T(W u) has the same structure as T(W) in (8.16).

122

8.4. Proof of Proposition 8.3.13

Proof. Let Pt = (s1, . . . , sN , aL,1, . . . , aj,i−1). Since Pt ∈ Σj,i
t , then

π−1(Pt) =


Q1 = (s1, . . . , sN , aL,1, . . . , aj,i−1, a

(1)
j,i)

Q2 = (s1, . . . , sN , aL,1, . . . , aj,i−1, a
(2)
j,i)

...

Qt = (s1, . . . , sN , aL,1, . . . , aj,i−1, a
(t)
j,i)

We prove the lemma by induction on u.

(a) We know that W 0 is as in (8.16). We add point Q1 to H0.

Using Theorem 8.4.1 we can buildW 1 fromW 0 as usual. We adopt the �W,W ′�

notation. If ∀g ∈ Ŵ , g(Q1) = 0, then π(Q1) ∈ V(Ĥ). But π(Q1) = Pt and

V(Ĥ) = {P1, . . . , Pt−1}, so Pt = Pk for some 1 ≤ k ≤ t−1, and |π−1(Pk)| = k+1

which is impossible because Pk ∈ Σj,i
k . Therefore, for Remark 8.4.4, g∗ ∈ Ŵ .

So the Gröbner basis W ′ is formed by the union of these sets:

- W1 = {g ∈ Ŵ | g < g∗}. Since g∗ ∈ Ŵ then T(W1) = {τ, . . . , τ},

- W2 = W2,1 ∪W2,2 where

W2,1 = {g∗(s1 − s1), . . . , g∗(sN − sN), g∗(aL,1 − aL,1), . . . , g∗(aj,i−1 − aj,i−1),

so T(W2,1) = {τ, . . . , τ}.

W2,2 = {g∗(aj,i − a
(1)
j,i)} =⇒ T(W2,2) = {τaj,i}.

- W3 = {g − g(Q1)
g∗(Q1)

g∗ | g > g∗} and so the leading terms of W3 are those in T(W),

except possibly for τ .

Therefore W 1 = W ′ has the same structure of W 0 = W in (8.16) (because τaj,i

is already present in (8.16)).

(b) We add the point Q2 to H1 and we compute W 2.

Let W := W ′ and we use again Theorem 8.4.1.

We �nd g∗ ∈ W such that g∗(Q2) 6= 0. We are sure that g∗ 6∈ Ĝ, because

π(Q1) = π(Q2) = Pt, and so g∗ ∈ G. We can claim:

Claim: T(g∗) u τaj,i.

Proof. The Gianni-Kalkbrener theorem (2.3.3) says that there exists a polyno-

mial g ∈ W such that

g(Pt, aj,i) = g(s1, . . . , sN , aL,1, . . . , aj,i−1, aj,i) 6= 0 in K[aj,i]

and the solutions of g(Pt, aj,i) are exactly the extensions of Pt. In V(H) we have

only one extension of Pt (which is Q1), so the degree of g w.r.t. aj,i must be 1

and so g u τaj,i + τ.

Let g be the smallest polynomial of this kind. We have that g∗ = g, because

g(Q1) = 0, g(Q2) 6= 0 and all smaller polynomials vanish at Q2.

123

Chapter 8. Decoding of a�ne-variety codes

So W ′ is the union of

- W1 = {g ∈ Ŵ | g < g∗}.

Since g∗ = τaj,i + τ then T(W1) = {τ, . . . , τ} or T(W1) = {τ, . . . , τ, τaj,i, . . . , τaj,i},

- W2 = W2,1 ∪W2,2 where

W2,1 = {g∗(s1 − s1), . . . , g∗(sN − sN), g∗(aL,1 − aL,1), . . . , g∗(aj,i−1 − aj,i−1)},

so T(W2,1) = {τaj,i, . . . , τaj,i}. W2,2 = {g∗(aj,i − a
(2)
j,i)} =⇒ T(W2,2) = {τa2

j,i}.

- W3 = {g− g(Q2)
g∗(Q2)

g∗ | g > g∗} so the leading terms ofW3 are those in T(W), except

possibly for τ and τaj,i.

If t = 3, we have that a2
j,i ∈ T(W), and so any leading term τa2

j,i can be removed

(by Lemma 2.2.10) and we obtain again that the structure of W ′ = W 2 is as in

(8.16). Otherwise (t ≥ 4), the leading term τa2
j,i remains and we still have the

structure of (8.16).

(c) We proceed inductively on u until we are left to add the point Qt−1.

(d) We add Qt−1.

In this case H = I(π−1(P1) ∪ . . . ∪ π−1(Pt−1) ∪ {Q1, . . . , Qt−2}) and W t−2 has (by

induction on u) the structure of (8.16). Let W = W t−2 and W ′ = W t−1. We

apply Theorem 8.4.1.

We have to �nd g∗ ∈ W such that g∗(Qt−1) 6= 0. Exactly as before, g∗ 6∈ Ŵ .

We know that T(g∗) u τat−2
j,i . To prove it we might use the Gianni-Kalkbrener

theorem repeating the reasoning of our Claim on page 123.

So W ′ is the union of the following sets:

- W1 = {g ∈W | g < g∗}. Since T(g∗) u τat−2
j,i ,

T(W1) = {τ, . . . , τ, τaj,i, . . . , τaj,i, . . . , τat−3
j,i , . . . , τa

t−3
j,i } or possibly also τat−2

j,i ∈ T(W1),

- W2 = W2,1 ∪W2,2 where

W2,1 = {g∗(s1 − s1), . . . , g∗(sN − sN), g∗(aL,1 − aL,1), . . . , g∗(aj,i−1 − aj,i−1)}

W2,2 = {g∗(aj,i − a
(r+1)
j,i)}

- W3 = {g − g(Qr+1)

g∗(Qr+1)
g∗ | g > g∗}.

Since g∗ = τat−2
j,i + . . ., we have T(W2,1) = {τat−2

j,i , . . . , τa
t−2
j,i } and T(W2,2) = {τat−1

j,i }.

But in the Gröbner basis W in (8.16) there exists a polynomial g such that

T(g) = at−1
j,i . So T(g)|τat−1

j,i and we can remove the new term. Hence T(W ′) does

not change and it remains as in (8.16).

Lemma 8.4.6 is proved.

124

8.4. Proof of Proposition 8.3.13

Now we know T(W t−1), which are the leading terms for the basis of

H = I(π−1(P1) ∪ . . . ∪ π−1(Pt−1) ∪ {Q1, . . . , Qt−1}).

We can add the point Qt and we use our �W,W
′� notation. Using Gianni-Kalkbrener's

theorem we may prove as usual that T(g∗) = at−1
j,i . So the leading terms of

g∗(s1 − s1), . . . , g∗(sN − sN), g∗(aL,1 − aL,1), . . . , g∗(aj,i−1 − aj,i−1)

are all of the type τat−1
j,i , while g

∗(aj,i − a
(t)
j,i) = atj,i + . . ., so its leading term is atj,i.

The new leading terms are {τat−1
j,i , . . . , τa

t−1
j,i , a

t
j,i}. Therefore, by Lemma 2.2.10, the

structure of W ′ becomes the same as in (8.15), because there are no other new terms,

since {g > g∗} = ∅.
This concludes the proof of Lemma 8.4.5.

Corollary 8.4.7. With the above notation, if H = I(π−1(P1) ∪ . . . ∪ π−1(P∆)), then

T(W) u {τ, . . . , τ, τaj,i, . . . , τaj,i, . . . , τa∆−1
j,i , . . . , τa∆−1

j,i , a∆
j,i} (8.17)

Proof. Apply Lemma 8.4.5 with t = ∆.

8.4.5 Third part of the proof

Lemma 8.4.8. Let I(π−1(P1) ∪ . . . ∪ π−1(P∆)) ⊃ H ⊃ J be a radical zero-dimensional

ideal. Suppose that the leading terms of its reduced Gröbner basis satisfy (8.17). Let

Ṗh ∈ Σj,i
h , 1 ≤ h ≤ ∆ and let H ′ = I(V(H) ∪ π−1(Ṗh)).

Then I(π−1(P1) ∪ . . . ∪ π−1(P∆)) ⊃ H ⊃ H ′ ⊃ J and the leading terms of its reduced

Gröbner basis satisfy (8.17).

Proof. We use our �W,W ′� notation, so that W = GB(H) and W ′ = GB(H ′). Let us

take a point3 Ṗk = (s1, . . . , sN , aL,1, . . . , aj,i−1) ∈ Σj,i
k with 1 ≤ k ≤ ∆.

π−1(Ṗk) =


Q1 = (s1, . . . , sN , aL,1, . . . , aj,i−1, a

(1)
j,i)

...

Qk = (s1, . . . , sN , aL,1, . . . , aj,i−1, a
(k)
j,i)

∗ We add the point Q1.

We build W ′ using Theorem 8.4.1. We know that g∗ ∈ Ŵ (as in (a) of Lemma

8.4.6). So W ′ = W1 tW2 tW3 where

- W1 u {τ, . . . , τ}, because g∗ ∈ Ŵ . So T(W1) u {τ, . . . , τ},

3With our usual abuse of notation.

125

Chapter 8. Decoding of a�ne-variety codes

- W2 = W2,1 ∪W2,2 where

W2,1 = {g∗(s1 − s1), . . . , g∗(sN − sN), g∗(aL,1 − aL,1), . . . , g∗(aj,i−1 − aj,i−1),

so T(W2,1) = {τ, . . . , τ}.

W2,2 = {g∗(aj,i − a
(1)
j,i)} so T(W2,2) = {τaj,i}.

- W3 = {g − g(Q1)
g∗(Q1)

g∗ | g > g∗} and so the leading terms of W3 are those in T(W),

except possibly for new τ 's.

Therefore the structure of W ′ is the same as that of W .

∗ We add Qr+1 with 2 ≤ r + 1 ≤ k. We assume, using induction on r, that W

veri�es (8.17).

Let W := W ′ and we use again Theorem 8.4.1.

To construct W ′ we have to �nd g∗ ∈ W such that g∗(Qr+1) 6= 0. Exactly as in

case (d) of Lemma 8.4.6, T(g∗) = τarj,i. So W
′ = W1 tW2 tW3, where

- W1 = {g ∈ Ŵ | g < g∗} where T(g∗) = τarj,i.

So T(W1) = {τ, . . . , τ, τaj,i, . . . , τaj,i, . . . , τar−1
j,i , . . . , τar−1

j,i } or possibly also τarj,i ∈ T(W1).

- W2 = W2,1 ∪W2,2 where

W2,1 = {g∗(s1 − s1), . . . , g∗(sN − sN), g∗(aL,1 − aL,1), . . . , g∗(aj,i−1 − aj,i−1)},

W2,2 = {g∗(aj,i − a
(r+1)
j,i)}

- W3 = {g − g(Qr+1)

g∗(Qr+1)
g∗ | g > g∗}.

Now

- If r + 1 ≤ k ≤ ∆− 1, then the structure of T(W ′) does not change. In fact

T(W ′) = T(W1) ∪T(W2) ∪T(W3), where

- T(W1) = {τ, . . . , τ, τaj,i, . . . , τaj,i, . . . , τar−1
j,i , . . . , τar−1

j,i } or possibly also

τarj,i ∈ T(W1),

- T(W2) = T(W2,1) ∪T(W2,2) where T(W2,1) = {τarj,i, . . . , τarj,i} and

T(W2,2) = {τar+1
j,i }.

- The leading terms of W3 are those in T(W) with degree (in aj,i) at

least r + 1, plus possibly some terms in T(W) of degree r, that is,

those greater than T(g∗).

- If r + 1 = ∆ then T(g∗) u τa∆−1
j,i , so the leading terms of

g∗(s1 − s1), . . . , g∗(sN − sN), g∗(aL,1 − aL,1), . . . , g∗(aj,i−1 − aj,i−1)

remain τa∆−1
j,i , but

g∗(aj,i − a
(∆)
j,i) u τa∆

j,i +

126

8.5. Multi-dimensional general error locator polynomials

Since in W there is a g such that T(g) = a∆
j,i and T(g)|τa∆

j,i, then, by

Lemma 2.2.10, the structure of W ′ does not change and veri�es (8.17).

We reiterate Lemma 8.4.8 starting from H = I(π−1(P1) ∪ . . . ∪ π−1(P∆)) and

adding all the sets π−1(Ṗh) until all points in V(J) have been added. When we

obtain J , we will have that its leading terms satisfy (8.17), so point (1) and (2) of

Proposition 8.3.13 are proved. In particular, (8.17) proves also (3) and (4).

The proof of Proposition 8.3.13 is complete.

8.5 Multi-dimensional general error locator polynomials

The following theorem ensures that our weak multi-dimensional general error lo-

cator polynomials (see De�nition 8.2.5) exist for any code.

Theorem 8.5.1. Let C = C⊥(I, L) be an a�ne�variety code with d ≥ 3. Then

i) JC,t∗ is a radical strongly multi-strati�ed ideal w.r.t. the X variables.

ii) A Gröbner basis of JC,t∗ contains a set of weak multi-dimensional general error

locator polynomials for C.

Proof. i) We recall that JC,t∗ is the ideal in Fq[s1, . . . , sr, Xt, . . . , X1, e1, . . . , et] as

de�ned in (8.6). We set H = JC,t∗ . We want to show that H is a radical

strongly multi-strati�ed ideal with respect to the X variables. The radicality

of H is obvious since it contains the �eld equations for all variables.

Let us consider πj and ρi, 1 ≤ j ≤ t as in De�nition 8.3.5

πt : V(HS,Xt)→ V(HS), πj : V(HS,Xt,...,Xj)→ V(HS,Xt,...,Xj+1
)

ρj : V(HS,Xt,...,Xj+1,Xj) −→ V(HXj), j = 1, . . . , L.

By De�nition 8.3.5, H is a strongly multi-strati�ed ideal with respect to the X

variables if:

a0) Let Zj = ρj(V(HS,Xt,...,Xj+1,Xj)), then Zj = Zj̄ for any 1 ≤ j 6= j̄ ≤ t. In

this case we use Z = Zj. Since the locations are only V(I) ∪ {P0}, then
Z = V(I) ∪ {P0}.

a1) Let 1 ≤ j ≤ t − 1. For any T ⊂ Z with 1 ≤ |T | ≤ j, there is ṽ ∈
V(HS,Xt,...,Xj+1

) such that ρj(π
−1
j {ṽ}) = T .

a2) Moreover, for any T ⊂ Z, 1 ≤ |T | ≤ t there is s̄ ∈ V(HS) such that

ρt(π
−1
t {s̄}) = T .

127

Chapter 8. Decoding of a�ne-variety codes

b1) For any 1 ≤ j ≤ t − 1 and for any u ∈ V(HS,Xt,...,Xj+1,Xj) we have that

|π−1
j ({u})| ≤ j.

b2) Moreover, for any s̄ ∈ V(HS) we have that |π−1
t ({s̄})| ≤ t.

Let s = (s̄1, . . . , s̄r) be a correctable syndrome corresponding to an error e of

weight µ ≤ t. Let Q be a point in V(H) corresponding to s. We have

Q = (s̄1, . . . , s̄r, Āt, . . . , Ā1, ē1, . . . , ēt).

We note that for any permutation σ ∈ St, there is Q̃ ∈ V(H),

Q̃ = (s̃1, . . . , s̃r, Āσ(t), . . . , Āσ(1), ēσ(1), . . . , ēσ(t)). (8.18)

So (8.18) gives immediately a0).

We want to prove a1) and a2). Let 1 ≤ j ≤ t− 1 and let T ⊂ Z, 1 ≤ |T | ≤ j.

Let k = |T |. There are two cases to consider: either P0 ∈ T or P0 6∈ T .

- P0 ∈ T . Let Q ∈ V(H) corresponding to an error with weight µ = t− j +

k − 1. Because of (8.18) we can assume that

Q = (s̄1, . . . , s̄r, Āt, . . . , Āj+1, Āj, . . . , Ā1, ē1, . . . , ēt)

where {Āt, . . . , Āj+1} are t − j elements in Z that are di�erent from P0,

{Āj, . . . , Ā1} are (j−k+ 1) P0's and (k− 1) is the number of the elements

of T di�erent from P0. Let u = (s̄1, . . . , s̄r, Āt, . . . , Āj+1). At this point,

we will obviously have ρj(π
−1
j (u)) = T.

- P0 6∈ T . Let Q ∈ V(H) corresponding to an error with weight µ = t− j +

k− 1. Similar to the previous case, because of (8.18), we can assume that

Q = (s̄1, . . . , s̄r, Āt, . . . , Āj+1, Āj, . . . , Ā1, ē1, . . . , ēt), where {Āt, . . . , Āj+1}
are (t−j) elements of V(I) = Z\{P0}, {Āj, . . . , Ā1} contains (j−k) points

equal to P0 and k points forming T . Let u = (s̄1, . . . , s̄r, Āt, . . . , Āj+1), then

we have ρj(π
−1
j (u)) = T.

The proof of a2) is similar and is omitted.

To prove b1) and b2) it is enough to observe that if t − j locations (including

possibly the ghost point) are �xed, then at most j distinct locations can exist

for that error.

ii) SinceH is strongly multi-strati�ed,H is weakly strati�ed (by Proposition 8.3.11),

and so we can apply Proposition 8.3.13. As weak locators, we take Pi = g
(i)
t,ζ(t,i),1,

128

8.5. Multi-dimensional general error locator polynomials

where ζ(t, i) = η(t, i) ≤ t and T(Pi) = xtii . In fact, the number of possible ex-

tensions is bounded by both ti and |{π̂i(P) | P ∈ V(I)∪P0}|. The �rst condition
of De�nition 8.2.5 is satis�ed.

In order to prove the second condition we note that Pi(s, x̄1, . . . , x̄i−1, xi) has

among its solutions the x̄i's such that (x̄1, . . . , x̄i) are the �rst i components of

an error location corresponding to s (or P0,i value).

We can summarize our �ndings so far.

Using weak locators does not work because Pi(S, x1, . . . , xi) depends also on i− 1

x-variables. Thus, the point (S, x1, . . . , xi−1) ∈ V(I) has the right multiplicity if and

only if ti = 1. If this fails, it is very likely to have parasite solutions.

On the other hand, if we use the general error evaluator polynomial E , we can

proceed in two ways (see Example 8.2.8), but both require an additional choice to

discover parasite solutions. With non-trivial codes, this choice is very computationally

expensive.

The strategy we propose here is to force point (S, x1, . . . , xi−1) ∈ V(I) to have the

right multiplicity. See De�nition 8.2.5 for the ti's.

De�nition 8.5.2. Let C = C⊥(I, L) be an a�ne-variety code.

Let P0 = (x̄0,1, . . . , x̄0,m) ∈ (Fq)m \ V(I) be a ghost point. For any 1 ≤ i ≤ m, let Li
be a polynomial in Fq[S, x1, . . . , xi], where S = {s1, . . . , sr}. Then {Li}1≤i≤m is a set

of multi-dimensional general error locator polynomials for C if for any i

� Li(S, x1, . . . , xi) = xtii +ati−1x
ti−1
i + . . .+a0, aj ∈ Fq[S, x1, . . . , xi−1] for 0 ≤ j ≤

ti − 1. In other words, Li is a monic polynomial with degree ti with respect to

the variable xi and its coe�cients are in Fq[S, x1, . . . , xi−1].

� Given a syndrome s̄ = (s̄1, . . . s̄r) ∈ (Fq)r, corresponding to an error vector of

weight µ ≤ t and µ error locations (x̄1,1, . . . , x̄1,m) , . . . , (x̄µ,1, . . . , x̄µ,m), if we

evaluate the S variables at s̄ and the variables (x1, . . . , xi−1) at the truncated

locations x̄j = (x̄j,1, . . . , x̄j,i−1) for any 0 ≤ j ≤ µ, then the roots of Li(̄s, x̄j, xi)
are {x̄h,i | xh = xj, 1 ≤ h ≤ µ} when µ = t, and {x̄h,i | xh = xj, 0 ≤ h ≤ µ}
when µ ≤ t − 1. That is, the polynomial Li(̄s, x̄j, xi) does not have parasite

solutions.

Note that the number of distinct �rst components of error locations could be lower

than µ and ti.

To show how multi-dimensional general error locator polynomials can be applied,

we redo the example on p. 155 of [FL98]. We postpone for the moment the problem

of the existence of these polynomials and of the method to compute them.

129

Chapter 8. Decoding of a�ne-variety codes

Example 8.5.3. As in the Example 8.2.3, let us consider the Hermitian code C from

the curve y2 + y = x3 over F4 and with de�ning monomials {1, x, y, x2, xy}. Let us

consider the lex term-ordering with s1 < . . . < s5 < x2 < y2 < x1 < y1 < e2 < e1 in

F4[s1, s2, s3, s4, s5, x2, y2, x1, y1, e1, e2].

We consider the ideal JC,t∗ . In this ideal we are lucky enough to �nd the two

multi-dimensional general error locator polynomials that are L2,1(s1, . . . , s5, x2) and

L2,2(s1, . . . , s5, x2, y2), which are respectively the polynomials Lx and Lxy of degree

two in x2 and y2. In this case t1 = t2 = t = 2 (ax, bx, ay, by, cy are in the Appendix).

Lx = x2 + x ax + bx and Lxy = y2 + y ay + x by + cy

Also in this example, we consider the three cases of Example 8.2.3.

- We suppose that two errors occurred in the points P6 = (α, α + 1) and P7 =

(α + 1, α), so the syndrome vector corresponding to (0, 0, 0, 0, 0, 1, 1, 0) is s =

(0, 1, 1, 1, 0). In order to �nd the error positions we evaluate Lx in s and we

obtain the correct values of x, in fact Lx(s, x) = x2 +x+1 = (x−α)(x−(α+1)).

Now we have to evaluate Ly in (s, α) and in (s, α + 1). Also in this case we

obtain the correct solutions (with the highest possible multiplicity)

Lxy(s, α, y) = y2 + α = (y − (α + 1))2

Lxy(s, α + 1, y) = y2 + α + 1 = (y − α)2.

- We consider the syndrome (α + 1, 0, α, 0, 0), corresponding to the error vector

(1, α, 0, 0, 0, 0, 0, 0), we obtain

Lx(s, x) = x2 and Lxy(s, 0, y) = y2 + y = y(y − 1).

The solutions of the above system are (0, 0), (0, 1). Also in this case the solutions

of the equation Lx(s) = 0 are correct.

- Again, when there is only one error of value α + 1 in the third point, we have

the correct answers, in fact

Lx(α + 1, α + 1, 1, α + 1, 1, x) = x2 + 1 = (x+ 1)2

Lxy(α + 1, α + 1, 1, α + 1, 1, 1, y) = y2 + (α + 1)y + α = (y − 1)(y − α),

so the solutions are (1, 1), which is the ghost point, and (1, α) i.e. the coordi-

nates of the right location.

The main di�erence between Lx,Lxy of Example 8.2.3 and Lx, Lxy of this example is

that now we do not have spurious solutions, that is, now the roots of our locators are

exactly the error locations and no more ambiguity exists.

130

8.6. Stu�ed ideals

As evident from the previous example, multidimensional general error locator

polynomials are very convenient for decoding. However, to prove their existence we

cannot use the theoretical methods developed so far, because these methods do not

deal with multiplicities. In the next section we will develop more advanced theoretical

methods, that will permit us to construct ideals where these polynomials lie and can

be easily spotted.

8.6 Stu�ed ideals

Let G be a reduced Gröbner basis of a radical weakly strati�ed ideal J as in

Proposition 8.3.13. From now on we consider the ordering as in Proposition 8.3.13.

In this section we �x 1 ≤ i ≤ m and 1 ≤ j ≤ L and we consider the projection

π : V(JS,AL,...,Aj+1,aj,1,...,aj,i−1,aj,i)→ V(JS,AL,...,Aj+1,aj,1,...,aj,i−1
).

We consider the variable aj,i in block Aj.

Let R = K[S,AL, . . . ,Aj+1, aj,1, . . . , aj,i−1]. Let g be a polynomial in G j,i such

that the degree in aj,i of g is ∆ = ζ(j, i) = η(j, i). By Proposition 8.3.13, we know

that this polynomial exists and it can be assumed to be monic in R[aj,i]. Let Ph ∈ Σj,i
h

where 1 ≤ h ≤ ∆− 1, then

g(Ph, aj,i) = a∆
j,i + α∆−1a

∆−1
j,i + . . .+ α0 ∈ K[aj,i] where αi ∈ K.

We are interested in solutions of the equation

g(Ph, aj,i) = 0. (8.19)

Since Ph ∈ Σj,i
h , there exist distinct Q1, . . . , Qh such that π−1(Ph) = {Q1, . . . , Qh}, with

Ql = (Ph, λl) for any 1 ≤ l ≤ h. So λ1, . . . , λh are some solutions of (8.19). But there

exist other ∆−h solutions (counting multiplicities) of (8.19), say λh+1, . . . , λ∆. There

are two cases:

(a) It may be that λh+l 6∈ {λ1, . . . , λh} for some l. In this case, point (Ph, λh+l) is

not an extension of Ph, because (Ph, λh+l) 6∈ V(JS,AL,...,Aj+1,aj,1,...,aj,i−1,aj,i), and so

λh+l is a parasite solution.

(b) But it may also be that {λh+1, . . . , λ∆} ⊂ {λ1, . . . , λh}, depending on the mul-

tiplicities of the {λ1, . . . , λh}. In this case, if we solve (8.19), we have exactly

the extensions and we are not confused by parasite solutions.

We want to change slightly our variety in order to force case (b). To do that, we need

that the sum of multiplicities of {λl}1≤l≤h is equal to ∆. To increase the multiplicity

of any λl, we can use the Hasse derivative (see Subsection 4.4.2 and in particular

Theorem 4.4.6).

131

Chapter 8. Decoding of a�ne-variety codes

De�nition 8.6.1. Let K ⊂ R[aj,i] be a zero-dimensional ideal such that V(K) ⊂ Aj,i.

Let ∆ = η(j, i). Let G = GB(K) and g = g
(i)
∆ . We say that K is stu�ed if for any

1 ≤ h ≤ ∆ − 1 and for any Ph ∈ Σj,i
h , the equation (8.19) has h distinct solutions

in K.

De�nition 8.6.2. Let H ⊂ K[V1, . . . , VN] be a zero-dimensional ideal. Let n ≥ 1. Let

f ∈ H and Q ∈ V(H) where Q = (P, V N). Let ϑ1 : H −→ K such that

ϑ1(f) = ϕ(1)(f(P, VN))∣∣
VN=V N

and let H [Q,1] = kerϑ1. We de�ne inductively ϑn : H [Q,n−1] −→ K such that

ϑn(f) = ϕ(n)(f(P, VN))∣∣
VN=V N

and we write H [Q,n] = kerϑn.

We note that H [Q,1] is an ideal. In fact, if f ∈ H [Q,1], g ∈ K[VN] and V N ∈ V(f) then

we claim that

ϕ(1)(fg)(V N) = ϕ(1)(f)(V N)g(V N) + ϕ(1)(g)(V N)f(V N) = 0.

In fact, ϕ(1)(f)(V N) = 0, since f ∈ kerϑ1 and f(V N) = 0, since V N ∈ V(f).

Inductively, we can similarly prove that H [Q,n] is an ideal.

Let us consider a zero-dimensional ideal K ⊂ R[aj,i]. It is convenient to call our

variables also as {V1, . . . , VN} = S ∪ AL,∪ . . . ,Aj+1 ∪ {aj,1, . . . , aj,i}, in such a way

that V1 < . . . < VN and VN = aj,i.

We suppose that G = GB(K) satis�es (8.17), that is

T(G) u {τ, . . . , τ, τVN , . . . , τVN , . . . , τV ∆−1
N , . . . , τV ∆−1

N , V ∆
N }

and τ is any elements in V1 < . . . < VN−1. In particular there is a polynomial g ∈ G j,i

s.t. T(g) = aj,i
∆ = VN

∆.

For each 1 ≤ h ≤ ∆− 1 we perform the following operations:

(a) If for any Ph ∈ Σj,i
h equation (8.19) has h distinct solutions in K, we do nothing.

Otherwise, we take any Ph ∈ Σj,i
h such that (8.19) has more than h solutions.

(b) We consider Q = (Ph, V N) which is any extension of Ph. We want to compute

H [Q,∆−h]. In order to do that, we iteratively compute kerϑn (see De�nition 8.6.2)

from n = 1 to n = ∆− h.

(c) For any such n, we apply Theorem 8.4.1 to H = H [Q,n−1] and H ′ = H [Q,n],

so that H ′ = kerϑn. The hypotheses of Theorem 8.4.1 are trivially satis�ed,

because ϑn is K−linear and kerϑn is an ideal. In the subsequent step (d), we

get ready to apply Theorem 8.4.1.

132

8.6. Stu�ed ideals

(d) We consider the point Q = (V 1, . . . , V N) = (P, aj,i) with P = (V 1, . . . , V N−1) =

(s1, . . . , sN , aL,1, . . . , aj,i−1), Q is a solution of ideal H. To apply Theorem 8.4.1,

we consider the smallest polynomial g∗ ∈ W , with W = GB(H), such that

ϑn(g∗) 6= 0, that is, ϕ(n)(g∗((P, VN))∣∣
VN=V N

6= 0.

We compute W ′ from W . To apply Theorem 8.4.1, we need to identify βk's

such that

ϑn((Vk − βk)g∗) = 0 where 1 ≤ k ≤ N ,

where we consider the weaker form (iii) in Remark 8.4.2.

We solve the previous equation as follows

ϑn((Vk − βk)g∗) = (V k − βk)ϑn(g∗) = 0 (1 ≤ k ≤ N − 1)

=⇒ βk is the k-th component of Q.

ϑn((VN − βN)g∗) = g∗(Q) + V Nϑn(g∗)− βNϑn(g∗) = 0

=⇒ βN = g∗(Q)+V Nϑn(g∗)
ϑn(g∗)

= g∗(Q)
ϑn(g∗)

+ V N .

Lemma 8.6.3. We claim that

g∗ ∈ G j,i
r , i.e. T(g∗) u τarj,i where n− 1 ≤ r ≤ ∆− 1.

Proof. Recall that we use u to express a unconventional identi�cation (see

Remark 8.4.3). IfT(g∗) u τarj,i with r < n−1, then ϑn(g∗) = 0. SoT(g∗) u τarj,i
with r ≥ n − 1. However, r 6= ∆, otherwise we have already �nished. So

n− 1 ≤ r ≤ ∆− 1.

(e) We build W ′ using Theorem 8.4.1. By Lemma 8.6.3 we have that

T(g∗) u τarj,i n− 1 ≤ r ≤ ∆− 1.

So W ′ = W1 ∪W2 ∪W3 where

- W1 = {g | g < g∗}.

So T(W1) u {τ, . . . , τaj,i, . . . , τar−1
j,i }, or possibly also τarj,i ∈ T(W1).

- W2 = W2,1 ∪W2,2 where W2,1 = {g∗(s1 − s1), . . . , g∗(aj,i−1 − aj,i−1),

so T(W2,1) = {τarj,i, . . . , τarj,i}.

W2,2 = {g∗(aj,i − g∗

ϑr(g∗) − aj,i)}. Then T(W2,2) = {τar+1
j,i }.

- W3 = {g − ϑr(g)
ϑr(g∗)g

∗ | g > g∗} and hence the leading terms of W3 are those in

T(W), except for τ, . . . , τar−1
j,i and possibly τarj,i.

133

Chapter 8. Decoding of a�ne-variety codes

Therefore, the structure of W ′ is the same as that of W , except possibly if

r + 1 = ∆. In that case

- T(W1) u {τ, . . . , τaj,i, . . . , τaj,i, τa∆−2
j,i , . . . , τa∆−2

j,i }, or possibly also τa∆−1
j,i ∈ T(W1),

- T(W2) = T(W2,1) ∪T(W2,2) where T(W2,1) = {τa∆−1, . . . , τa∆−1}

and T(W2,2) = {τa∆
j,i}.

- T(W3) = ∅.

In the Gröbner basis W in (8.17) there exists a polynomial g s.t. T(g) = a∆
j,i.

So T(g)|τa∆
j,i and we can remove the new term. Thus T(W ′) does not change

and it remains as in (8.17).

(f) Once all the above operations have been concluded, for any 1 ≤ h ≤ ∆− 1 and

for any Ph ∈ Σj,i
h , (8.19) will have exactly h distinct solutions and the resulting

ideal will be stu�ed.

We have thus proved the following theorem:

Theorem 8.6.4. Let K ⊂ R[aj,i] be a zero-dimensional ideal such that G = GB(K)

veri�es (8.17). Let g be the polynomial in G such that T(g) = a∆
j,i, with ∆ = η(j, i).

We can obtain an ideal K̃ ⊂ R[aj,i] such that

1. K̃ is stu�ed.

2. GB(K̃) veri�es (8.17).

3. V(K̃) = V(K).

Although, in Theorem 8.6.4 we obtain K̃ as in the procedure above, there are

other ways to obtain K̃, for example by simultaneously increasing the multiplicity of

more λh's.

Note that, generally speaking, K̃ will lose the radicality, but its Gröbner basis will

retain (8.17), which is what we need.

Theorem 8.6.5. If K and K̃ are as in Theorem 8.6.4, then if K is, respectively,

strongly multi-strati�ed, multi-strati�ed and weakly strati�ed, then K̃ is as well.

Proof. The stu�ng procedure does not change the number of pre-images at any level.

Now, we are �nally able to prove the existence of our multi-dimensional general

error locator polynomials for any code. Note that this is another constructive proof,

since it tells us how to compute our polynomials, that is, simply by computing a

suitable Gröbner bases of the corresponding stu�ed ideal.

134

8.7. Families of a�ne�variety codes

Theorem 8.6.6. Let C = C⊥(I, L) be an a�ne-variety code with d ≥ 3. Let J̃C,t∗ be

a stu�ed ideal of JC,t∗ . Then

1. J̃C,t∗ is a strongly multi-strati�ed ideal with respect to the X variables.

2. A Gröbner basis of J̃C,t∗ contains a set of multi-dimensional general error locator

polynomials for C.

Proof. 1. We can use Theorem 8.6.5 and so J̃C,t∗ is a strongly multi-strati�ed ideal.

2. As locators we can take for any i

Li = g
(i)
t,ζ(t,i),1,

where ζ(t, i) = η(t, i) and T(Li) = xtii , ti = ζ(t, i) = η(t, i), thanks to Theo-

rem 8.6.4. So the �rst condition of De�nition 8.5.2 is satis�ed.

Let H = JC,t∗ and H̃ = J̃C,t∗ . In order to prove the second condition we note

that, since Li is a polynomial of H̃S,xt,1,...,xt,i it will vanish at (s, x̄1, . . . , x̄i), where

s = (s̄1, . . . , s̄r) and (s, x̄1, . . . , x̄i) can be extended to a point in V(H) = V(H̃).

Since H̃ is stu�ed, Li(s, x̄1, . . . , x̄i−1, xi) has as solutions only the x̄i's such that

(x̄1, . . . , x̄i) are the �rst i components of an error location corresponding to s

(or P0,i).

8.7 Families of a�ne�variety codes

In this section we consider some families of a�ne-variety codes.

8.7.1 SDG curves

We discuss codes from some curves introduced in [SDG06].

De�nition 8.7.1 ([SDG06]). Let Fs be a sub�eld of Fq. A polynomial f in Fq[x] is

called an (Fq,Fs)�polynomial if for each γ ∈ Fq we have f(γ) ∈ Fs.

Proposition 8.7.2 ([SDG06]). 1. The polynomial f(x) = b3x
3 + b2x

2 + b1x+ b0 ∈
F4[x] is an (F4,F2)�polynomial if and only if b0, b3 ∈ F2 and b2 = b2

1.

2. The polynomial g(x) = b7x
7 + · · ·+ b1x+ b0 ∈ F8[x] is an (F8,F2)�polynomial if

and only if b0, b7 ∈ F2, b2 = b2
1, b4 = b2

2, b6 = b2
3 and b3 = b2

5.

135

Chapter 8. Decoding of a�ne-variety codes

Let F = {f(x) + g(y) | f, g are (F8,F2)-polynomials , deg(f) = 4, deg(g) = 6}.
In [SDG06] it is shown that the family F has 784 members and that each member

of this family has 32 roots in (F8)2. Let us consider the polynomial G = f(x) + g(y),

with f(x) = x4 + x2 + x and g(y) = y6 + y5 + y3 + 1, so that G ∈ F . Let I = 〈G〉 and
JC,t∗ be the ideal associated to the C = C⊥(I, L) code over F8 that can correct up to

t = 1 errors and with de�ning monomials L = {1, y, x, y2}. Ideal JC,t∗ is generated by:

{x8
1−x1, y

8
1−y1, e

7
1−1, x4

1 +x2
1 +x1 +y6

1 +y5
1 +y3

1 +1, e1−s1, e1y1−s2, e1x1−s3, e1y
2
1−s4}

and the reduced Gröbner basis G with respect to the lexicographic ordering with

s1 < s2 < s3 < s4 < x1 < y1 < e1 is

{s7
1 + 1, s8

2 + s2, s
4
3 + s2

3s
2
1 + s3s

3
1 + s6

2s
5
1 + s5

2s
6
1 + s3

2s1 + s4
1, s4 + s2

2s
6
1,

x1 + s3s
6
1,y1 + s2s

6
1, e1 + s1}

and then

L2 = y1 + s3s
6
1, L1 = x1 + s2s

6
1.

8.7.2 SDG surfaces I

We discuss codes from some surfaces introduced in [SDG06].

Let F = {f(x) + g(y) + h(z) | f, g, h are (F4,F2)-polynomials, deg(f) = deg(h) = 3,

deg(g) = 2}. In [SDG06] it is shown that the family F has 96 members and that

each member of this family has 32 roots in (F4)3. Let us consider the polynomial

G = f(x) + g(y) + h(z), with f(x) = x3, g(y) = y2 + y + 1 and h(z) = z3 + 1, so that

G ∈ F . Let I = 〈G〉 and JC,t∗ be the ideal associated to the code C = C⊥(I, L) over

F4 that can correct up to t = 1 error and with de�ning monomials L = {1, x, z, y}.
The ideal JC,t∗ ⊂ F4[s1, s2, s3, s4, x1, y1, z1, e1] is generated by

{x4
1 − x1, y

4
1 − y1, z

4
1 − z1, e

3
1 − 1, g + f + h, e1 − s1, e1z1 − s3, e1x1 − s2, e1y1 − s4}

and the reduced Gröbner basis G with respect to the lex ordering with s1 < s2 <

s3 < s4 < x1 < y1 < z1 < e1 is

{s3
1 + 1, s4

2 + s2, s
4
3 + s3, s

2
4 + s4s1 + s3

3s
2
1 + s3

2s
2
1, y1 + s4s

2
1, x1 + s2s

2
1, z1 + s3s

2
1, e1 + s1} ,

and then

L1 = x1 + s2s
2
1, L2 = y1 + s4s

2
1, L3 = z1 + s3s

2
1 .

136

8.7. Families of a�ne�variety codes

8.7.3 SDG surfaces II

We discuss codes from another family of surfaces introduced in [SDG06].

Let F = {βx2z+β2xz2+f(x)+g(y)+h(z) | β 6= 0, f, g, h are (F4,F2)-polynomials,

deg(f) ≤ 2, deg(h) ≤ 3, deg(g) = 2}. In [SDG06] it is shown that the family F has

576 members and that each member of this family has 32 roots in (F4)3. Let us

consider the polynomial G = x2z + xz2 + f(x) + g(y) + h(z), with β = 1, f(x) = 1,

g(y) = y2 + y + 1 and h(z) = z3 + 1, so that G ∈ F . Let I = 〈G〉 and JC,t∗ be the

ideal associated to the code C = C⊥(I, L) over F4 that can correct one error and with

de�ning monomials L = {1, z, z2, z3, x, y}.
The ideal JC,t∗ ⊂ F4[s1, s2, s3, s4, s5, s6, x1, y1, z1, e1] is generated by

{x4
1 − x1, y

4
1 − y1, z

4
1 − z1, e

3
1 − 1, x2

1z1 + x1z
2
1 + f + g + h,

e1 − s1, e1z1 − s2, e1z
2
1 − s3, e1z

3
1 − s4, e1x1 − s5, e1y1 − s6, }

and the reduced Gröbner basis G with respect to the lex ordering with s1 < s2 <

s3 < s4 < s5 < s6 < x1 < y1 < z1 < e1 is

{s3
1 + 1, s4

2 + s2, s3 + s2
2s

2
1, s4 + s3

2s1, s
4
5 + s5, s

2
6 + s6s1 + s2

5s2s
2
1 + s5s

2
2s

2
1 + s3

2s
2
1 + s2

1,

x1 + s5s
2
1,y1 + s6s

2
1, z1 + s2s

2
1, e1 + s1}

and then

L1 = x1 + s5s
2
1, L2 = y1 + s6s

2
1, L3 = z1 + s2s

2
1 .

8.7.4 Norm�trace curves

Let C = C⊥(I, L) be the code from the norm�trace curve x7 = y4 + y2 + y over

F8 and with de�ning monomials {1, x, x2, y}. This code can correct t = 1 error. Let

JC,t∗ be the ideal generated by:

{x8
1 − x1, y

8
1 − y1, e

7
1 − 1, e1 − s1, e1x1 − s2, e1x

2
1 − s3, e1y1 − s4, x

7
1 − y4

1 − y2
1 − y1}

and the reduced Gröbner basis G with respect to the lex ordering with s1 < s2 <

s3 < s4 < x1 < y1 < e1 is

{s7
1 + 1, s8

2 + s2, s3 + s2
2s

6
1, s

4
4 + s2

4s
2
1 + s4s

3
1 + s7

2s
4
1, x1 + s2s

6
1, y1 + s4s

6
1, e1 + s1}.

Then

L1 = x1 + s2s
6
1, L2 = y1 + s4s

6
1 .

Observe that in all our examples so far no stu�ng was required, because we were

considering the case t = 1, which clearly cannot contain multiplicities.

137

Chapter 8. Decoding of a�ne-variety codes

8.7.5 Hermitian curves

Let q be a power of a prime, then the Hermitian curve H over Fq2 is de�ned by

the a�ne equation xq+1 = yq + y. Each member of this family has n = q3 points in

Fq2 and it is well-known that the function space is generated by monomials.

In Example 8.2.3 we considered the case q = 2 and t = 2, we now consider the

code C corresponding to the case q = 3 and t = 2. The de�ning monomials are

L = {1, x, y, x2, xy, y2, x3}. As before, we choose as ghost point (1, 1).

Our ideal JC,2∗ is generated by

{x9
1 − x1, y

9
1 − y1, e

9
1 − e1, e92 − e2, x9

2 − x2, y
9
2 − y2, y

3
1x1 − y3

1 + y1x1 − y1 − x5
1 + x4

1,

y3
2x2 − y3

2 + y2x2 − y2 − x5
2 + x4

2, y
4
1 − y3

1 + y2
1 − y1 − y1x

4
1 + x4

1, y
4
2 − y3

2 + y2
2 − y2 − y2x

4
2 + x4

2,

e1 + e2 − s1, e1x1 + e2x2 − s2, e1y1 + e2y2 − s3, e1x2
1 + e2x

2
2 − s4, e1x1y1 + e2x2y2 − s5,

e1y
2
1 + e2y

2
2 − s6, e1x3

1 + e2x
3
2 − s7, e1((x1 − 1)8 − 1)((y1 − 1)8 − 1), e2((x2 − 1)8 − 1)((y2 − 1)8 − 1),

(e81 − 1)(x1 − 1), (e81 − 1)(y1 − 1), (e82 − 1)(x2 − 1), (e82 − 1)(y2 − 1), e1e2((x1 − x2)8 − 1)((y1 − y2)8 − 1)} .

We compute the Gröbner basis G with respect to the usual lex ordering with

s1 < · · · < s7 < x2 < y2 < x1 < y1 < e2 < e1. The general error evaluator polynomial

of C contains 134 monomials and it is reported in the Appendix.

The �rst weak locator P2 contains 172 monomials, while the second weak locators

P1 contains 494 monomials (see Appendix for all polynomials). However, these poly-

nomials are by far not random. Indeed, we can prove the following general structure

result for any q ≥ 2 and t = 2.

Theorem 8.7.3. Let p be any prime number and m ∈ N such that q = pm ≥ 2. Let

C = C⊥(I, L) be any Hermitian code with t = 2 over Fq. Then all sets of multi-

dimensional general error locator polynomials for C are of the form

{L2 = Lx = x2 + ax+ b,L1 = Lxy = y2 + cy + d}
{L2 = Ly = y2 + Ay +B,L1 = Lyx = x2 + Cx+D}

(8.20)

with a, b, A,B ∈ Fp[S], c, d ∈ Fp[S, x] and C,D ∈ Fp[S, y].

Moreover,

q ≥ 2 =⇒ as2 + bs1 = −s4 , (8.21)

q ≥ 3 =⇒ As3 +Bs1 = −s6 . (8.22)

Let q ≥ 2 and s1 = s2 = 0. We have e1 = −e2, x1 = x2, b = x2
1, a = 2x1.

Let q ≥ 3 and s1 = s3 = 0. We have e1 = −e2, y1 = y2, B = y2
1, A = 2y1.

All the results above hold also for any set of weak multi-dimensional general error

locator polynomials

{P2 = Px = x2 + ax+ b,P1 = Pxy = y2 + cy + d}
{P2 = Py = y2 + Ay +B,P1 = Pyx = x2 + Cx+D}

(8.23)

138

8.7. Families of a�ne�variety codes

Proof. Let H = JC,2∗ be the non-stu�ed ideal for C and H̃ its stu�ed ideal as in

Theorem 8.6.6. There are two Gröbner bases of H and H̃ that are relevant for us.

If the order has S < x2 < y2 then we get Gx for H and G̃x for H̃. If the order has

S < y2 < x2 then we get Gy for H and G̃y for H̃. As in Theorem 8.6.6, G̃x contains

polynomials px ∈ Fq[S, x2] and px,y ∈ Fq[S, x2, y2] such that, once we replace x2 with

x and y2 with y, we get a set of locators {L2 = Lx,L1 = Lxy}.
The degree of px in x2 is, a priori, 1 or 2. However, since there are at least two points

{P1, P2} on the curve with two di�erent x, then degx2
px = 2, since px must have two

distinct roots once evaluated on a syndrome corresponding to a weight-2 error with

{P1, P2} as locations.
The degree of px,y in y2 is, a priori, 1 or 2. However, for any x̄ ∈ Fq there are

at least two points {P1 = (x̄, ȳ1), P2 = (x̄, ȳ2)} on the curve with ȳ1 6= ȳ2. Then

degy2
py = 2, since it must have the two distinct roots {ȳ1, ȳ2} once evaluated on a

syndrome corresponding to a weight-2 error with {P1, P2} as locations.
The previous argument can be trivially adapted to show that degy2

(py) = 2 and

degx2
(py,x) = 2, where py ∈ Fq[S, y2] and py,x ∈ Fq[S, y2, x2] come from G̃y, and so

(8.20) is proved, except for our claim that all the coe�cients of these polynomials

actually lie in the base �eld Fp, which follows from Remark 8.2.4.

To prove (8.21), we �rst claim that

f ∈ H =⇒ f 2 ∈ H̃. (8.24)

To see (8.24) we note that in the creation of H̃ from H we only impose the vanishing

of the �rst-order derivative at points of V(H), but if we take any point Q ∈ V(H) we

have (see De�nition 8.6.2 for θ1)

θ1(f 2) = 2f(Q)θ1(f) = 0θ1(f) = 0 .

Since s1 − e1 − e2, s2 − e1x1 − e2x2, s4 − e1x
2
1 − e2x

2
2 ∈ H, we have that

(s1 − e1 − e2)2, (s2 − e1x1 − e2x2)2, (s4 − e1x
2
1 − e2x

2
2)2 ∈ H̃ for (8.24). Passing from

variables to values we observe that

s̄1 = ē1 + ē2, s̄2 = ē1x̄1 + ē2x̄2, s̄4 = ē1x̄
2
1 + ē2x̄

2
2 (8.25)

and that

ā = a(S̄) = −(x̄1 + x̄2), b̄ = x̄1x̄2 .

So

−(x̄1 + x̄2)(ē1x̄1 + ē2x̄2) + x̄1x̄2(ē1 + ē2) = −(ē1x̄
2
1 + ē2x̄

2
2), which proves (8.21).

In the same way, we can compute the set of locators {L2 = Ly,L1 = Lyx}. If q ≥ 3,

we have also s1 − e1 − e2, s3 − e1y1 − e2y2, s6 − e1y
2
1 − e2y

2
2 ∈ H, so we have that

139

Chapter 8. Decoding of a�ne-variety codes

(s1 − e1 − e2)2, (s3 − e1y1 − e2y2)2, (e6 − e1y
2
1 − e2y

2
2)2 ∈ H̃ for (8.24). Again, we pass

from variables to values, and we obtain

s̄1 = ē1 + ē2, s̄3 = ē1ȳ1 + ē2ȳ2, s̄6 = ē1ȳ
2
1 + ē2ȳ

2
2 (8.26)

and that

Ā = A(S̄) = −(x̄1 + x̄2), B̄ = B(S̄) = x̄1x̄2 .

So

−(x̄1 + x̄2)(ē1ȳ1 + ē2ȳ2) + ȳ1ȳ2(ē1 + ē2) = −(ē1ȳ
2
1 + ē2ȳ

2
2) =⇒ Ās3 + B̄s1 = −s6 .

The last part of theorem comes from direct computations, as follows.

From (8.25), in the case s̄1 = s̄2 = 0, we note ē1 = −ē2, x̄1 = x̄2. And so

1. If p = 2 then ā = −(x̄1 + x̄2) = 2x̄1 = 0 and b̄ = x̄1x̄2 = x̄2
1.

2. If p 6= 2 then ā = −(x̄1 + x̄2) = 2x̄1 =⇒ x̄1 = ā
2
.

From (8.26), if s1 = s3 = 0 then e1 = −e2 and y1 = y2. And thus

1. If p = 2 then Ā = 0 e B̄ = y2
1.

2. If p 6= 2 then Ā = 2y1 =⇒ y1 = A
2
and B̄ = y2

1.

Since in the proof so far we have used the relations on the syndromes coming from

the non-stu�ed ideal H, everything that we proved up to now holds also for the weak

locators.

The locator P2 computed for the Hermitian code with q = 3 and t = 2 is indeed

of the form P2 = Px = x2 + ax+ b, with |a| = 82 and |b| = 91, so, for example when

s1 6= 0, it is enough to evaluate a(S̄) and then we obtain b(S̄) as

b(S̄) = −s4 + a(S̄)s2

s1

.

Also P1 is as above, that is, of the form P1 = Pxy = y2 + cy + d.

Regrettably, we have not been able to compute explicitly L2 and L1 for q = 3,

due to the high computation cost of the stu�ng procedure.

140

Part III

Programs and Computations

141

Hermitian curve and Hermitian code

In this chapter we want to verify our formulas for the number of small weight

codewords and for the intersection of Hermitian curve and parabolas. For these rea-

son, we report some programs and results.

As software packages we used Singular and MAGMA [GPS07, MAG].

9.1 MAGMA programs to compute intersection between H
and parabolas.

Here we report the MAGMA program that count the number of intersection be-

tween H and three types of parabolas.

q:=8;

K<u>:=GF(q^2);

Kpos:={c : c in K | c ne 0};

/////////Trace Function

Tr:=function(c)

return(c^q+c);

end function;

/////////Norm Function

N:=function(a)

return(a^(q+1));

end function;

//All c that have Tr(c)=0

Trnulla:={@@};

time for c in K do

if Tr(c) eq 0 then

Trnulla:=Include(Trnulla,c);

end if;

end for;

CGC 143

Chapter 9. Hermitian curve and Hermitian code

#Trnulla;

TrNONzero:={c : c in K | c notin Trnulla};

////////Intersection between y=ax^2+bx+c and Hermitian curve

fabc:=function(a,b,c)

local count;

count:=0;

for x in K do

for y in K do

if (N(x) eq Tr(y)) and (y eq a*x^2+b*x+c) then

count:=count+1;

end if;

end for;

end for;

return(count);

end function;

///////Intersection between y=ax^2+c and Hermitian curve

f:=function(a,c)

local count;

count:=0;

for x in K do

for y in K do

if (x^(q+1) eq y^q+y) and (y eq a*x^2+c) then

count:=count+1;

end if;

end for;

end for;

return(count);

end function;

////////Intersection between y=ax^2 and Hermitian curve

fa:=function(a)

local count;

count:=0;

for x in K do

for y in K do

if (N(x) eq Tr(y)) and (y eq a*x^2) then

count:=count+1;

end if;

end for;

end for;

return(count);

end function;

144

9.1. MAGMA programs to compute intersection between H and parabolas.

//Number of intersection y=ax^2

INTa:=[];

time for a in K do

if a ne 0 then

sa:=fa(a);

INTa:=Append(INTa,sa);

end if;

end for;

#INTa;

int0a:=0;

int1a:=0;

intQm1a:=0;

intQa:=0;

intQp1a:=0;

int2Qm1a:=0;

int2Qa:=0;

for i in [1..#INTa] do

if INTa[i] eq 0 then

int0a:=int0a+1;

else if INTa[i] eq 1 then

int1a:=int1a+1;

else if INTa[i] eq q-1 then

intQm1a:=intQm1a+1;

else if INTa[i] eq q then

intQa:=intQa+1;

else if INTa[i] eq q+1 then

intQp1a:=intQp1a+1;

else if INTa[i] eq 2*q-1 then

int2Qm1a:=int2Qm1a+1;

else if INTa[i] eq 2*q then

int2Qa:=int2Qa+1;

end if;

end if;

end if;

end if;

end if;

end if;

end if;

end for;

145

Chapter 9. Hermitian curve and Hermitian code

//Number of intersection y=ax^2+bx+c

int0:=0;

int1:=0;

intQm1:=0;

intQ:=0;

intQp1:=0;

int2Qm1:=0;

int2Q:=0;

INTabc:=[];

time for a in K do

if a ne 0 then

for b in K do

for c in K do

sabc:=fabc(a,b,c);

INTabc:=Append(INTabc,sabc);

end for;

end for;

end if;

end for;

#INTabc;

for i in [1..#INTabc] do

if INTabc[i] eq 0 then

int0:=int0+1;

else if INTabc[i] eq 1 then

int1:=int1+1;

else if INTabc[i] eq q-1 then

intQm1:=intQm1+1;

else if INTabc[i] eq q then

intQ:=intQ+1;

else if INTabc[i] eq q+1 then

intQp1:=intQp1+1;

else if INTabc[i] eq 2*q-1 then

int2Qm1:=int2Qm1+1;

else if INTabc[i] eq 2*q then

int2Q:=int2Q+1;

end if;

end if;

end if;

end if;

end if;

end if;

end if;

end for;

146

9.1. MAGMA programs to compute intersection between H and parabolas.

We report the results and the timing for some q, that are q = 3, 5, 8.

\\\\\\\\\\\\\\ q=3 \\\\\\\\\\\\\\\\

> //Number of intersection y=ax^2

Time: 0.000

> #INTa;

8

> int0a;

0

> int1a;

0

> intQm1a;

0

> intQa;

4

> intQp1a;

0

> int2Qm1a;

4

> int2Qa;

0

\\\\\\\\\\\\\\ q=5 \\\\\\\\\\\\\\\\

> //Number of intersection y=ax^2

Time: 0.010

> #INTa;

24

> int0a;

0

> int1a;

6

> intQm1a;

0

> intQa;

6

> intQp1a;

0

> int2Qm1a;

12

> int2Qa;

0

\\\\\\\\\\\\\\ q=3 \\\\\\\\\\\\\\\\

> //Number of intersection y=ax^2+bx+c

Time: 0.060

> #INTabc;

648

> int0;

36

> int1;

0

> intQm1;

216

> intQ;

252

> intQp1;

0

> int2Qm1;

108

> int2Q;

36

\\\\\\\\\\\\\\ q=5 \\\\\\\\\\\\\\\\

> //Number of intersection y=ax^2+bx+c

Time: 10.600

> #INTabc;

15000

> int0;

300

> int1;

750

> intQm1;

6000

> intQ;

3150

> intQp1;

3000

> int2Qm1;

1500

> int2Q;

300

147

Chapter 9. Hermitian curve and Hermitian code

\\\\\\\\\\\\\\ q=8 \\\\\\\\\\\\\\\\

//Number of intersection y=ax^2

Time: 0.240

> #INTa;

63

> int0a;

0

> int1a;

27

> intQm1a;

0

> intQa;

0

> intQp1a;

0

> int2Qm1a;

36

> int2Qa;

0

\\\\\\\\\\\\\\ q=8 \\\\\\\\\\\\\\\\

//Number of intersection y=ax^2+bx+c

Time: 1393.720

> #INTabc;

258048

> int0;

0

> int1;

13824

> intQm1;

129024

> intQ;

0

> intQp1;

96768

> int2Qm1;

18432

> int2Q;

0

9.2 MAGMA programs to compute the number of minimum-

weight words of Hermitian code.

The command HermitianCode(q,m) is use in magma to �nd n, k, d and generator

matrix of an Hermitian code in Fq2 . For example

> q:=3;

> K<u>:=GF(q^2);

> HermitianCode(q,5);

[27, 3, 23] Linear Code over GF(3^2)

Generator matrix:

[1 0 2 0 u u^6 u^7 2 1 u^3 u 0 1 u^2 u^2 u^2 u^2 u^7 0 u^7 u^5 2 u u^7 2 1 u]

[0 1 2 0 2 u u^2 u^2 2 u^2 u^7 u^3 u^5 u^2 1 u^7 0 u u 2 u^7 1 1 0 u^6 u^7 u]

[0 0 0 1 u^6 2 u^2 u^3 1 2 u^7 u u u^7 u^6 u^2 u^5 u^7 u^3 u^5 2 1 u^5 u^6 u u^3 u^2]

Now we report the number of minimum weight codewords of some Corner and Edge

codes. To do these we use the following commands:

C:=HermitianCode(3,5);

D:=Dual(C);

d:=MinimumDistance(D);

WeightDistribution(D);

148

9.2. MAGMA programs to compute the number of minimum-weight words of

Hermitian code.

The command WeightDistribution(D) gives us a sequence of couples <a,b>, where
b is the number of words having weight a. In the following example, we want to verify
Theorem 7.3.2 and Theorem 7.3.4, in two special cases, which are q = 3 and q = 7.

///////////// q=3 /////////////

// m=2 ---> Corner Code

> MinimumDistance(D);

2

> WeightDistribution(D);

[<0, 1>, <2, 2808>, <3, 163800>, ...]

> q^2*(q^2-1)*Binomial(q,d-1)*(q^3-d+1)/d;

2808

// m=3 ---> Edge Code

> MinimumDistance(D);

2

> WeightDistribution(D);

[<0, 1>, <2, 216>, <3, 18648>, ...]

> q^2*(q^2-1)*Binomial(q,d);

216

// m=4,5 ---> Corner Code

> MinimumDistance(D);

3

> WeightDistribution(D);

[<0, 1>, <3, 1800>, <4, 101088>, ...]

> q^2*(q^2-1)*Binomial(q,d-1)*(q^3-d+1)/d;

1800

// m=6 ---> Edge Code

> MinimumDistance(D);

3

> WeightDistribution(D);

[<0, 1>, <3, 72>, <4, 11664>, ...]

> q^2*(q^2-1)*Binomial(q,d);

72

// m=7 ---> Edge Code

> MinimumDistance(D);

3

> WeightDistribution(D);

[<0, 1>, <3, 72>, <4, 432>, ...]

> q^2*(q^2-1)*Binomial(q,d);

72

149

Chapter 9. Hermitian curve and Hermitian code

///////////// q=7 /////////////

// m=1,..,6 ---> Corner Code

> WeightDistribution(D)[2];

<2, 2815344>

> WeightDistribution(D)[3];

<3, 15040506096>

> q^2*(q^2-1)*Binomial(q,d-1)*(q^3-d+1)/d;

2815344

// m=7 ---> Edge Code

> WeightDistribution(D)[2];

<2, 49392>

> WeightDistribution(D)[3];

<3, 307201776>

> q^2*(q^2-1)*Binomial(q,d);

49392

// m= 8,..13 ---> Corner Code

> WeightDistribution(D)[2];

<3, 246000>

> WeightDistribution(D)[3];

<4, 207156000>

> q^2*(q^2-1)*Binomial(q,d-1)*(q^3-d+1)/d;

246000

// m=14 ---> Edge Code

> WeightDistribution(D)[2];

<3, 82320>

> WeightDistribution(D)[3];

<4, 549140256>

> q^2*(q^2-1)*Binomial(q,d);

82320

// m=15 ---> Edge Code

> WeightDistribution(D)[2];

<3, 82320>

> WeightDistribution(D)[3];

<4, 10701600>

// m=16,..,20 ---> Corner Code

> WeightDistribution(D)[2];

<4, 6997200>

> WeightDistribution(D)[3];

<5, 251158320>

> q^2*(q^2-1)*Binomial(q,d-1)*(q^3-d+1)/d;

6997200

150

9.3. Singular programs to compute the number of words of weight d+ 1.

9.3 Singular programs to compute the number of words of

weight d+ 1.

In this section, using Singular, we want to verify some results of Section 7.4.
The veri�cation has been done by computing a Gröbner basis of ideal Jw as in Propo-
sition 4.2.1 for the corresponding case, when q = 3.

//////////////// q=3 //////////////////////////

//==//

// m=3 ---> Edge Code

//==//

//We count the number of minimum words.

ring R=3,(y1,x1,y2,x2,z2,z1),dp;

ideal I=x1^9-x1,x2^9-x2,y1^9-y1,y2^9-y2,

z1^8-1, z2^8-1,

z1+z2,

z1*x1+z2*x2,

((x1-x2)^8-1) * ((y1-y2)^8-1),

x1^4-y1^3-y1,

x2^4-y2^3-y2;

ideal G=std(I);

> G;

G[1]=z2+z1

G[2]=x1-x2

G[3]=y1^2+y1*y2+y2^2+1

G[4]=x2^4-y2^3-y2

G[5]=y2^6*x2-y2^4*x2+y2^2*x2-x2

G[6]=z1^8-1

G[7]=y2^9-y2

> vdim(G);

432

//the number of minimum words is 432/2!=216

//==//

//We count the number of words having weight d+1.

ring R=3,(y1,x1,y2,x2,y3,x3,z3,z2,z1),dp;

int q=3;

int d=2;

ideal I=x1^9-x1,x2^9-x2,y1^9-y1,y2^9-y2,

x3^9-x3,y3^9-y3,

z1^8-1, z2^8-1, z3^8-1,

z1+z2+z3,

z1*x1+z2*x2+ z3*x3,

151

Chapter 9. Hermitian curve and Hermitian code

((x1-x2)^8-1) * ((y1-y2)^8-1),

((x1-x3)^8-1) * ((y1-y3)^8-1),

((x3-x2)^ 8-1) * ((y3-y2)^8-1),

x1^4-y1^3-y1,

x2^4-y2^3-y2,

x3^4-y3^3-y3;

ideal G=std(I);

> vdim(G);

111888

//The number of words having weight d+1=3 is 111888/3!=18648

//==//

//We count the number of words having weight d+1=3 and all the x's equal.

ideal I1=I,x1-x2,x1-x3;

ideal G1=std(I1);

vdim(G1);

> vdim(G1);

3024

//The number of words having weight d+1=3 and all the x's are equal is 3024/3!=504

//Verify using MAGMA:

q:=3;

d:=2;

> (q^2)*(q^4-(d+1)*q^2+d)*Binomial(q,d+1);

504

> 3024/6;

504

//==//

//We count the number of words having weight d+1=3 and all the y's are equal

ideal I2=I,y1-y2,y1-y3;

ideal G2=std(I2);

vdim(G2);

> vdim(G2);

1152

//The number of words having weight d+1=3 and all the y's are equal is 1152/3!=192

//Verify using MAGMA:

> (q^2-q)*(q^2-1)*Binomial(q+1,d+1);

192

> 1152/6;

192

152

9.3. Singular programs to compute the number of words of weight d+ 1.

//==//

// m=4,5 ---> Corner Code

//==//

ring R=3,(y1,x1,y2,x2,y3,x3,y4,x4,z4,z3,z2,z1),dp;

int q=3;

int d=3;

ideal I=x1^9-x1,x2^9-x2,y1^9-y1,y2^9-y2,

x3^9-x3,y3^9-y3,x4^9-x4,y4^9-y4,

z1^8-1, z2^8-1, z3^8-1, z4^8-1,

z1+z2+ z3+z4,

z1*x1+z2*x2+ z3*x3+z4*x4,

z1*y1+z2*y2+ z3*y3+z4*y4,

((x1-x2)^8-1) * ((y1-y2)^8-1),

((x1-x3)^8-1) * ((y1-y3)^8-1),

((x3-x2)^ 8-1) * ((y3-y2)^8-1),

((x1-x4)^ 8-1) * ((y1-y4)^ 8-1),

((x4-x2)^ 8-1) * ((y4-y2)^ 8-1),

((x3-x4)^ 8-1) * ((y3-y4)^ 8-1),

x1^4-y1^3-y1,

x2^4-y2^3-y2,

x3^4-y3^3-y3,

x4^4-y4^3-y4;

///We count the number of words having weight d+1=3 and all the x's are equal.

///We know that is 3024/3!=504 = (q^2)*(q^4-(d+1)*q^2+d)*Binomial(q,d+1)

ideal I1=I,x1-x2,x1-x3,x1-x4;

ideal G1=std(I1);

vdim(G1);

> vdim(G1);

3024

> 3024/6;

504

//==//

///We count the number of words having weight d+1=3 and all the y's are equal.

///We know that is 182/3!=192 = (q^2-q)*(q^2-1)*Binomial(q+1,d+1)

ideal I2=I,y1-y2,y1-y3;

ideal G2=std(I2);

vdim(G2);

> vdim(G2);

182

> 182/6;

192

153

Decoding a�ne�variety code

In this chapter we report Singular [GPS07] programs needed to �nd the multi-

dimensional general error locators of the Hermitian code C = C⊥(I, L) over F4. In

particular we following step by step our main example providing results and programs.

In Section 10.2, we report a program used to stu�ed our ideal JC,t∗ .

10.1 Singular programs to �nd weak locators.

We analyse the decoding of Hermitian codes following the main example, that

is, the Hermitian code C = C⊥(I, L) from the curve y2 + y = x3 over F4 and with

de�ning monomials {1, x, y, x2, xy}.

We start with Example 8.2.3 writing ideal JC,t∗ and computing the Gröbner basis
G using the command G=std(I).

> ring R=(4,a),(e1,e2,y1,x1,y2,x2,s5,s4,s3,s2,s1),lp;

> ideal I=x1^4-x1,x2^4-x2,y1^4-y1,y2^4-y2,e1^4-e1,e2^4-e2,

y1^2*x1+y1^2+y1*x1+y1+x1^3+x1,

y2^2*x2+y2^2+y2*x2+y2+x2^3+x2,

y1^3+y1*x1^3+y1+x1^3,

y2^3+y2*x2^3+y2+x2^3,

e1+e2-s1,

e1*x1+e2*x2-s2,

e1*y1+e2*y2-s3,

e1*x1^2+e2*x2^2-s4,

e1*x1*y1+e2*x2*y2-s5,

e1*e2*((x1-x2)^3-1) * ((y1-y2)^3-1),

e1*((x1-1)^3-1) *((y1-1)^3-1),

e2*((x2-1)^3-1) *((y2-1)^3-1),

(e1^3-1)*(x1-1),

(e1^3-1)*(y1-1),

(e2^3-1)*(x2-1),

(e2^3-1)*(y2-1);

> option(redTail);

> option(redSB);

> ideal G=std(I);

//used time: 30.88 sec

CGC 155

Chapter 10. Decoding a�ne�variety code

The two commands option(redTail) and option(redSB) is needed to reduce a

Gröbner basis. To �nd the two multi-dimensional general error locator polynomials

Lx = L2,1(s1, . . . , s5, x2) and Lxy = L2,2(s1, . . . , s5, x2, y2), we have to see the leading

term of g ∈ G:

> lead(G);

_[1]=s1^4

_[2]=s2^4

_[3]=s3^4

_[4]=s4*s2^3*s1^3

_[5]=s4^3*s1^3

_[6]=s4^4

_[7]=s5*s1

_[8]=s5*s3^3*s2^3

_[9]=s5*s4*s2^3

_[10]=s5*s4^3

_[11]=s5^2*s2

_[12]=s5^2*s3^3

_[13]=s5^2*s4

_[14]=s5^4

_[15]=x2*s2^3*s1^3

_[16]=x2*s4^3*s2^3

_[17]=x2*s4^3*s3^2

_[18]=x2*s5*s2^3

_[19]=x2*s5^2

_[20]=x2^2

_[21]=y2*s2*s1^3

_[22]=y2*s3^2*s2

_[23]=y2*s3^3*s1^3

_[24]=y2*s4

_[25]=y2*s5*s2

_[26]=y2*s5*s3^3

_[27]=y2*x2

_[28]=y2^2

_[29]=x1

_[30]=y1

_[31]=e2

_[32]=e1

Hence Lx is G[20] and Lxy is G[28]:

> poly Lx=G[20];

> Lx;

x2^2+s1^2*s2*s4^3*x2+s4^3*x2+s1*s2^3*s4^2*x2+s1^2*s2^2*s4^2*x2+s1*s4^2*x2+s2^2*s4*x2+s1*s2*s4*x2+

s2^3*x2+s1^2*s2*x2+s1^3*x2+s3*s5^2+s2*s3*s5+s1*s2^2*s4^3+s1^2*s2*s4^3+s2*s3^3*s4^2+s1*s2*s3^2*s4^2+

s1^2*s2*s3*s4^2+s1*s2^3*s4^2+s1^3*s2*s4^2+s2*s4^2+s1^2*s3^3*s4+s1^3*s3^2*s4+s1*s3*s4+s1^2*s2^3*s4+

s1^3*s2^2*s4+s1^2*s4+s1^3*s2^3*s3^3+s2^3*s3^3+s1*s2^2*s3^3+s1^3*s3^3+s3^3+s1^2*s2^2*s3^2+s1^3*s2^2*s3+

s2^2*s3+s1^3*s2^3+s2^3+s1*s2^2+s1^3+1

> poly Lxy=G[28];

> Ly;

y2^2+s3^3*y2+s1*s3^2*y2+s1^2*s2^3*s3*y2+s1^2*s3*y2+s1^3*y2+s2^2*s3*s4^3*x2+s1*s2^2*s4^3*x2+

s1^2*s2*s3*s4^2*x2+s1^2*s3^3*s4*x2+s3^2*s4*x2+s1*s3*s4*x2+s1^2*s2^3*s4*x2+s5^3+s2*s3^2*s4^2*s5+

s3*s4*s5+s2^2*s5+s3^3*s4^3+s1*s2^3*s3^2*s4^3+s2^3*s4^3+s1^2*s2^2*s3^3*s4^2+s1^2*s2*s3^2*s4+

s1^3*s2*s3*s4+s1*s2*s4+s2^3*s3^3+s3^3+s1*s2^3*s3^2+s1*s3^2+s1^2*s2^3*s3+s1^2*s3+s1^3*s2^3+s1^3+1

These two polynomials are exactly the two weak multi-dimensional general error
locators that we �nd at page 104. To evaluate the polynomials in the syndrome (and
the variable x if it is necessary) we just use the command subst()

// Occur 2 errors in P6=(a,a+1) e P7=(a+1,a) --> The syndrome is s = (0,1,1,1,0).

> subst(Lx,s1,0,s2,1,s3,1,s4,1,s5,0);

x2^2+x2+1

> subst(Lxy,s1,0,s2,1,s3,1,s4,1,s5,0,x2,a+1);

y2^2+y2+1

> subst(Lxy,s1,0,s2,1,s3,1,s4,1,s5,0,x2,a);

y2^2+y2+1

// Occur 2 errors in P1=(0,0) e P2=(0,1) --> The syndrome is s=(a+1,0,a,0,0)

> subst(Lx,s1,a+1,s2,0,s3,a,s4,0,s5,0);

156

10.1. Singular programs to �nd weak locators.

x2^2+x2

> subst(Lxy,s1,a+1,s2,0,s3,a,s4,0,s5,0,x2,1);

y2^2+y2

> subst(Lxy,s1,a+1,s2,0,s3,a,s4,0,s5,0,x2,0);

y2^2+y2

// Occur only one error. --> The syndrome is s=(a+1,a+1,1,a+1,1)

> subst(Lx,s1,a+1,s2,a+1,s3,1,s4,a+1,s5,1);

x2^2+1

> subst(Lxy,s1,a+1,s2,a+1,s3,1,s4,a+1,s5,1,e2,a+1,x2,1);

y2^2+a^2*y2+a

To �nd the general error evaluator polynomial E(S, e) (see De�nition 8.2.6) we

just change the ordering as in Example 8.2.8 in this way (we do not report the ideal

since it is as above).

> ring R=(4,a),(e1,y1,x1,y2,x2,e2,s5,s4,s3,s2,s1),lp;

...

> ideal G=std(I);

//used time: 72.28 sec

> size(G);

33

> lead(G);

_[1]=s1^4

_[2]=s2^4

_[3]=s3^4

_[4]=s4*s2^3*s1^3

_[5]=s4^3*s1^3

_[6]=s4^4

_[7]=s5*s1

_[8]=s5*s3^3*s2^3

_[9]=s5*s4*s2^3

_[10]=s5*s4^3

_[11]=s5^2*s2

_[12]=s5^2*s3^3

_[13]=s5^2*s4

_[14]=s5^4

_[15]=e2*s1^3

_[16]=e2*s5

_[17]=e2^2

_[18]=x2*s1

_[19]=x2*s2^3

_[20]=x2*s4^3

_[21]=x2*s5^2

_[22]=x2*e2

_[23]=x2^2

_[24]=y2*s1

_[25]=y2*s2

_[26]=y2*s3^3

_[27]=y2*s4

_[28]=y2*e2

_[29]=y2*x2

_[30]=y2^2

_[31]=x1

_[32]=y1

_[33]=e1

So the general error evaluator polynomial E(S, e) is G[17]

> poly E=G[17];

> E;

e2^2+e2*s1+s4^3*s3^2+s4^3*s3*s1+s4^3*s2^3*s1^2+s4^3*s1^2+s4^2*s3^2*s2^2*s1^2+

s4^2*s3*s2^2*s1^3+s4*s3^2*s2*s1+s4*s3*s2*s1^2+s4*s2*s1^3+s4*s2+s3^2*s2^3*s1^3+

s3^2+s3*s2^3*s1+s3*s1+s2^3*s1^2;

157

Chapter 10. Decoding a�ne�variety code

and two weak multi-dimensional general error locator polynomials with error Pex =
fx =G[23] and gx =G[31]. Changing again the ordering, we �nd the other two
polynomials, that are Pey = fy =G[23] and gy =G[33].

> ring Q=(4,a),(e1,y1,x1,x2,y2,e2,s5,s4,s3,s2,s1),lp;

> ideal I=imap(R,G);

> ideal G=std(I);

> size(G);

34

The explicit polynomials can be found at Appendix at page 167. Finally, we evaluate
these polynomial in the usual way.

// Occur 2 errors in P6=(a,a+1) e P7=(a+1,a)

> subst(E,s1,0,s2,1,s3,1,s4,1,s5,0);

e2^2+1

> subst(Pey,s1,0,s2,1,s3,1,s4,1,s5,0,e2,1);

y2^2+y2+1 -

> subst(Pex,s1,0,s2,1,s3,1,s4,1,s5,0,e2,1);

x2^2+x2+1

// Occur 2 errors. The syndrome is s=(a+1,0,a,0,0)

> subst(E,s1,a+1,s2,0,s3,a,s4,0,s5,0);

e2^2+a^2*e2+a

> subst(Pey2,s1,a+1,s2,0,s3,a,s4,0,s5,0,e2,1);

y2^2+y2

> subst(Pey2,s1,a+1,s2,0,s3,a,s4,0,s5,0,e2,a);

y2^2+y2

> subst(Pex,s1,a+1,s2,0,s3,a,s4,0,s5,0,e2,1);

x2^2

> subst(Pex,s1,a+1,s2,0,s3,a,s4,0,s5,0,e2,a);

x2^2

// Occur only one error. The syndrome is s=(a+1,a+1,1,a+1,1)

> subst(E,s1,a+1,s2,a+1,s3,1,s4,a+1,s5,1);

e2^2+a^2*e2

> subst(gy,s1,a+1,s2,a+1,s3,1,s4,a+1,s5,1,e2,a+1,y2,1);

y1+a

> subst(gx,s1,a+1,s2,a+1,s3,1,s4,a+1,s5,1,e2,a+1,x2,1);

x1+1

10.2 Singular programs to �nd the locators.

In this section, we analyse Example 8.5.3 and a method to stu� the ideal.

That is, we �nd the multi-dimensional general error locator polynomials Lx and Lxy

158

10.2. Singular programs to �nd the locators.

stu�ng the ideal JC,t∗ .

LIB "general.lib";

LIB "matrix.lib";

ring r1 = (2,a),(s1,s2,s3,s4,s5,x2),rp;

minpoly= a^2+a+1;

string s=read("Base_G2X")+";";

execute(s);

ring r = (2,a),x(1..7),rp;

minpoly= a^2+a+1;

map f = r1,x(1),x(2),x(3),x(4),x(5),x(6),x(7);

ideal GGX=f(G2X);

//Compute the hasse derivative

proc hasse (poly f,int n)

{ intvec v=0,0,0,0,0,1,0;

poly g = 0;

poly g1= 0;

poly g2 = 0;

poly f1=f;

while(deg(f1,v)>n-1)

{ g1=lead(f1);

if (deg(g1,v) == 0)

{ f1=f1-g1;}

else

{ g2=coef(g1,x(6))[2,1]*x(6)^(deg(g1,v)-n);

g2=coeffs((x(1)+1)^(deg(g1,v)),x(1))[n+1,1]*g2;

f1=f1-g1;

g=g+g2;

}

}

return(g);

};

proc n_functional (ideal I,i1,i2,i3,i4,i5,j,int ndiff)

{

ideal J=I;

int n;

int r;

int m =ncols(J);

poly val =0;

poly pp;

poly gstar=0;

n=0;

while ((val==0) and (n <m))

{ n=n+1;

pp=J[n];

159

Chapter 10. Decoding a�ne�variety code

val= subst(hasse(subst(pp,x(1),i1,x(2),i2,x(3),i3,x(4),i4,x(5),i5),ndiff),x(6),j);

}

if (val!=0)

{ n;

gstar= subst(pp,x(1),i1,x(2),i2,x(3),i3,x(4),i4,x(5),i5,x(6),j);

return(n,val,gstar);

}

return(0) ;

};

proc HnFunc(poly f,i1,i2,i3,i4,i5,j, int ndiff)

{ int k;

poly val =subst(f,x(1),i1,x(2),i2,x(3),i3,x(4),i4,x(5),i5);

val= hasse(val,ndiff);

val =subst(val,x(6),j);

val;

if (val!=0){ return(val);}

return(0);

};

//Use Buchberger-Moeller algorithm

proc HBM_func (ideal I, i1,i2,i3,i4,i5,j, int ndiff)

{ int k;

ideal J;

ideal T=I;

def n,Hgs,gs = n_functional (I,i1,i2,i3,i4,i5,j,ndiff);

if (n==0){ return(T);}

else

{ int m =ncols(T);

poly a;

for(k=1;k<n;k=k+1)

{J=J,T[k];}

J=J,(T[n])*(x(1)-i1),(T[n])*(x(2)-i2),(T[n])*(x(3)-i3),

(T[n])*(x(4)-i4),(T[n])*(x(5)-i5);

poly p= gs-j*Hgs+x(7)*Hgs;

if(jet(p,0)==0)

{J=J,(I[n])*(x(6));}

else

{J=J,(T[n])*(x(6)+((coef(p,x(7))[2,2])/(coef(p,x(7))[2,1])));}

for(k=n+1;k<=m;k=k+1)

{ def Divg = HnFunc((T[k]),i1,i2,i3,i4,i5,j,ndiff)/HnFunc((T[n]),i1,i2,i3,i4,i5,j,ndiff);

a=I[k]-(Divg*I[n]);

J=J,a;

}

return(J);

}

160

10.2. Singular programs to �nd the locators.

};

matrix E[8][36]=0;

matrix B [2][9]=1,1,1,a,a,a,a+1,a+1,a+1,1,a,a+1,1,a,a+1,1,a,a+1;

int j;

for(j=0;j<4;j=j+1)

{ E[1+j*2,1+9*j..9*(j+1)]=B[1,1..9];

E[2+j*2,1+9*j..9*(j+1)]=B[2,1..9];

};

matrix H[5][8] = 1,1,1,1,1,1,1,1,0,0,1,1,a,a,a+1,a+1,0,1,a,

a+1,a,a+1,a,a+1,0,0,1,1,a+1,a+1,a,a,0,0,a,a+1,a+1,1,1,a;

matrix S=H*E;

matrix VS[6][36];

VS[1..5,1..36]=S;

int i;

for(i=1;i<=9;i=i+1)

{ VS[6,i]=0;}

for(i=10;i<=18;i=i+1)

{ VS[6,i]=1;}

for(i=19;i<=27;i=i+1)

{ VS[6,i]=a;}

for(i=28;i<=36;i=i+1)

{ VS[6,i]=a+1;}

proc add_points(matrix A, ideal I)

{ int n = ncols(A);

ideal J=I;

int i;

for(i=1;i<=n;i=i+1)

{J= HBM_func(J,A[1,i],A[2,i],A[3,i],A[4,i],A[5,i],A[6,i],1);

J=interred(J);i;

}

return(J);

};

timer=1;

ideal J= add_points(VS,GGX);

ring r2 = (2,a),(s1,s2,s3,s4,s5,x2),rp;

minpoly= a^2+a+1;

map ff=r,s1,s2,s3,s4,s5,x2;

ideal JJ=ff(J);

ideal JJrid=std(JJ);

write(":w G2X_FINITA", "ideal G2X=", JJrid);

161

Chapter 10. Decoding a�ne�variety code

// We stuff the ideal adding ghost point

LIB "general.lib";

LIB "matrix.lib";

ring r1 = (2,a),(s1,s2,s3,s4,s5,x2),rp;

minpoly= a^2+a+1;

string s=read("G2X_FINITA")+";";

execute(s);

ring r = (2,a),x(1..7),rp;

minpoly= a^2+a+1;

map f = r1,x(1),x(2),x(3),x(4),x(5),x(6),x(7);

ideal GGX=f(G2X);

...

//construct matrix E

matrix E[2][6]=1,a,a+1,0,0,0,0,0,0,1,a,a+1;

matrix H[5][2] = 1,1,1,1,a,a+1,1,1,a,a+1;

matrix S=H*E;

matrix VS[6][6]=0;

VS[1..5,1..6]=S;

int i;

for(i=1;i<7;i=i+1)

{ VS[6,i]=1;}

proc add_points(matrix A, ideal I)

{int n = ncols(A);

ideal J=I;

int i;

for(i=1;i<=n;i=i+1)

{ J= HBM_func(J,A[1,i],A[2,i],A[3,i],A[4,i],A[5,i],A[6,i],1);

J=interred(J);i;

}

return(J);

};

timer=1;

ideal J=add_points(VS,GGX);

ring r2 = (2,a),(s1,s2,s3,s4,s5,x2),rp;

minpoly= a^2+a+1;

map ff=r,s1,s2,s3,s4,s5,x2;

ideal JJ=ff(J);

ideal JJrid=std(JJ);

write(":w G2X_ghostTOT", "ideal G2XT=", JJrid);

162

10.2. Singular programs to �nd the locators.

The two locators that we found in Example 8.5.3 are Lx =G[20] and Lxy =G[23]:

> ring R=(4,a),(e1,e2,y1,x1,y2,x2,s5,s4,s3,s2,s1),lp;

> string s=read("G2XY_ghostTOT")+";";

> execute(s);

> ideal G=G2XY;

> lead(G);

_[1]=s1^4

_[2]=s2^4

_[3]=s3^4

_[4]=s4*s2^3*s1^3

_[5]=s4^3*s1^3

_[6]=s4^4

_[7]=s5*s1

_[8]=s5*s3^3*s2^3

_[9]=s5*s4*s2^3

_[10]=s5*s4^3

_[11]=s5^2*s2

_[12]=s5^2*s3^3

_[13]=s5^2*s4

_[14]=s5^4

_[15]=x2*s2^3*s1^3

_[16]=x2*s4^3*s2^3

_[17]=x2*s4^3*s3^2

_[18]=x2*s5*s2^3

_[19]=x2*s5^2

_[20]=x2^2

_[21]=y2*s3^3*s2^3*s1^3

_[22]=y2*x2

_[23]=y2^2

> poly Lx=G[20];

> poly Lxy=G[23];

//Compute error values and locations

//Occur 2 errors in P6=(a,a+1) e P7=(a+1,a)

> subst(Lx,s1,0,s2,1,s3,1,s4,1,s5,0);

x2^2+x2+1

> subst(Lxy,s1,0,s2,1,s3,1,s4,1,s5,0,x2,a+1);

y2^2+a^2

> subst(Lxy,s1,0,s2,1,s3,1,s4,1,s5,0,x2,a);

y2^2+a

//Occur 2 errors. The syndrome is s=(a+1,0,a,0,0)

> subst(Lx,s1,a+1,s2,0,s3,a,s4,0,s5,0);

x2^2

> subst(Lxy,s1,a+1,s2,0,s3,a,s4,0,s5,0,x2,0);

y2^2+y2

//Occur only one error. The syndrome is s=(a+1,a+1,1,a+1,1)

> subst(Lx,s1,a+1,s2,a+1,s3,1,s4,a+1,s5,1);

x2^2+1

> subst(Lxy,s1,a+1,s2,a+1,s3,1,s4,a+1,s5,1,e2,a+1,x2,1);

y2^2+a^2*y2+a

163

Appendix -

Some locator polynomials

165

10.2. Singular programs to �nd the locators.

In Example 8.2.1 we have the following polynomial

Lxy =y2 + y(2s64 + 2s54s3 + 2s54s2s
6
1 − 2s54s2 + 2ys44s

2
3 − 2s44s

2
2 + 2s44s2s1 + 2s34s

3
3 − 2s34s

3
2 + 2s34s2s

2
1+

2s24s
4
3 − 2s24s

4
2 + 2s24s2s

3
1 + 2s4s

5
3 − s4s3s42 − s4s3s2s31 + 2s4s3s

4
1 − s4s52 + s4s2s

4
1 − 2s63 + 2s53s2s

6
1−

2s53s2 + 2s43s
2
2 − 2s43s2s1 + 3s33s

3
2 − 3s33s2s

2
1 + 3s23s

6
2s

4
1 + 2s23s

5
2s

5
1 − 3s23s

4
2s

6
1 − s23s42 + 2s23s

3
2s1−

s23s
2
2s

2
1 − 2s23s

4
1 − s3s62s51 + s3s

5
2s

6
1 + s3s

4
2s1 − 2s3s

3
2s

2
1 + s3s

2
2s

3
1 − 3s62 − s52s1 − s42s21 − s32s31 − s22s41−

s2s
5
1 − s61)− s64s63 + 2s64s

6
2 + 3s64s2s

5
1 − 2s64s

6
1 − s54s3 − s54s2s61 + s54s2 − s44s23 + s44s

2
2 − s44s2s1−

s34s
3
3 + s34s

3
2 − s34s2s21 − s24s43 + s24s

4
2 − s24s2s31 − s4s53 + 2s4s3s

4
2 − s4s3s41 − s4s52 + s4s2s

4
1 − 3s63s

6
2+

2s63s2s
5
1 − s63s61 − s63 − 2s53s2s

6
1 + 2s53s2 + 3s33s

3
2 − 3s33s2s

2
1 − s23s62s41 − s23s52s51 + s23s

4
2s

6
1 + 3s23s

3
2s1−

s23s
2
2s

2
1 − 3s23s2s

3
1 + s23s

4
1 − 3s3s

6
2s

5
1 + 3s3s

5
2s

6
1 − 3s3s

5
2 + 2s3s

4
2s1 + 2s3s

3
2s

2
1 + s3s

2
2s

3
1 − 2s3s2s

4
1+

2s62s
6
1 + 2s62 + 2s52s1 + 2s42s

2
1 + 2s32s

3
1 + 2s22s

4
1 + 2s2s

5
1.

In Example 8.2.2 we the have following polynomial

Lxy =y2 + y(3s4s3s
4
2 + 2s4s3s2s

3
1 − 3s4s

5
2 + 3s4s2s

4
1 + s63 − s53s2s61 + s53s2 + s43s

2
2 − s43s2s1 + s33s

3
2−

s33s2s
2
1 − 3s23s

5
2s

5
1 − s23s42s61 − 2s23s

4
2 − 2s23s

3
2s1 − s23s22s21 − 3s23s2s

3
1 − s3s62s51 + 2s3s

5
2s

6
1 − s3s42s1−

2s3s
3
2s

2
1 − s3s22s31 + 3s3s2s

4
1 − 3s52s1 − 3s42s

2
1 − 3s32s

3
1 − 3s22s

4
1 − 3s2s

5
1 − 3s61 − 3)+

x(2s63 + 2s62 + 3s2s
5
1 + s61 − 3) + 3s4s3s

4
2 − 3s4s3s2s

3
1 − 2s4s3s

4
1 − 3s4s

5
2 + 3s4s2s

4
1 + 2s63s

6
2−

3s63s2s
5
1 − 3s63s

6
1 + 3s53s2s

6
1 − 3s53s2 − 3s43s

2
2 + 3s43s2s1 − 3s33s

3
2 + 3s33s2s

2
1 + 2s23s

6
2s

4
1 − s23s52s51+

s23s
4
2 + s23s

3
2s1 + s23s

2
2s

2
1 + 3s23s2s

3
1 + 2s23s

4
1 − 2s3s

6
2s

5
1 + 3s3s

5
2s

6
1 + 3s3s

5
2 − 3s3s

4
2s1 − 3s3s

3
2s

2
1−

2s3s
2
2s

3
1 − 3s3s2s

4
1 − 2s62s

6
1 + 3s62 − s52s1 − s42s21 − s32s31 − s22s41 + 3s2s

5
1.

In Example 8.2.8 we have the following polynomials

fx =x2 + xs4s
2
2 + e(s34s

2
3s2s

2
1 + s34s

2
3 + s34s3s2 + s34s3s1 + s34s

3
2s

2
1 + s34s

2
2 + s34s

2
1 + s24s

2
3s

3
2s1 + s24s

2
3s

2
2s

2
1+

s24s3s
3
2s

2
1 + s24s3s

2
2 + s4s

2
3s

2
2 + s4s3s2s

2
1 + s4s

3
2s1 + s4s1 + s23s

3
2 + s23 + s3s

3
2s1 + s3s1 + s32s

2
1 + s22 + s21)+

s25s3 + s5s3s2 + s34s
2
3s2 + s34s

2
3s1 + s34s3s2s1 + s34s3s

2
1 + s34s

3
2 + s34s

2
2s1 + s34 + s24s

3
3s2 + s24s

2
3s

3
2s

2
1+

s24s
2
3s

2
2 + s24s

2
3s2s1 + s24s3s

3
2 + s24s3s

2
2s1 + s24s3s2s

2
1 + s24s2s

3
1 + s24s2 + s4s

3
3s

2
1 + s4s

2
3s

2
2s1 + s4s

2
3s2s

2
1+

s4s
2
3s

3
1 + s4s3s

2
2s

2
1 + s4s3s2 + s4s3s1 + s33s

2
2s1 + s23s

3
2s1 + s23s

2
2s

2
1 + s23s1 + s3s

3
2s

2
1 + s3s

2
2s

3
1 + s3s

2
2+

s3s
2
1 + s32 + s22s1 + 1,

gx =x1 + x2 + s34s
2
3s2 + s34s

2
3s1 + s34s3s2s1 + s34s3s

2
1 + s34s

3
2 + s34 + s24s

2
3s

3
2s

2
1 + s24s

2
3s

2
2s

3
1 + s24s3s

3
2 + s24s3s

2
2s1+

s24s3s
3
1 + s24s3 + s24s1 + s4s

2
3s

2
2s1 + s4s

2
3s2s

2
1 + s4s3s

2
2s

2
1 + s4s3s2s

3
1 + s4s

2
2s

3
1 + s4s

2
2 + s23s

3
2s1 + s23s2s

3
1+

s23s2 + s23s1 + s3s
3
2s

2
1 + s3s

2
1 + s32s

3
1 + s2s

2
1 + s31

fy =y2 + y(s4s3s2 + s32 + 1) + e(s34s
3
3s

3
2s

2
1 + s34s3s

3
2s1 + s34s

3
2s

2
1 + s24s

3
3s

2
2s1 + s24s

2
2s1 + s4s

2
3s2s1 + s4s3s2s

2
1+

s23s
3
2 + s3s

3
2s1 + s32s

2
1) + s35 + s5s

2
4s

2
3s2 + s5s

3
3s

2
2 + s5s

2
2 + s34s

3
3s

3
2 + s34s

2
3s

3
2s1 + s34s

2
3s1 + s34s3s

3
2s

2
1+

s34s3s
2
1 + s34s

3
2 + s24s

2
3s

2
2s

3
1 + s24s3s

2
2s1 + s24s

2
2s

2
1 + s4s

3
3s2s1 + s4s3s2s

3
1 + s4s3s2 + s3s

3
2s

2
1 + s32s

3
1 + s32,

gy =y1 + y2 + s34s
3
3 + s34s3s

3
2s

2
1 + s34s

3
2 + s24s

3
3s

2
2s

2
1 + s24s3s

2
2s1 + s4s

3
3s2s1 + s4s3s2 + s4s2s1 + s33s

3
2s

3
1 + s33+

s23s1 + s3s
2
1 + s32s

3
1 + s32 + s31.

167

Chapter 10. Decoding a�ne�variety code

In Example 8.5.3 we have the following polynomials

Lx =x2 + x(s2s
2
3s

3
4 + s1s

2
3s

3
4 + s1s2s3s

3
4 + s21s3s

3
4 + s32s

3
4 + s34 + s21s

3
2s

2
3s

2
4 + s31s

2
2s

2
3s

2
4 + s31s

3
2s3s

2
4 + s41s

2
2s3s

2
4+

s42s
2
4 + s2s

2
4 + s41s

2
4 + s1s

2
2s

2
3s4 + s21s2s

2
3s4 + s21s

2
2s3s4 + s31s2s3s4 + s1s

4
2s4 + s31s

2
2s4 + s22s4 + s1s2s4+

s42s
2
3 + s1s

3
2s

2
3 + s31s2s

2
3 + s41s

2
3 + s1s

4
2s3 + s21s

3
2s3 + s1s2s3 + s21s3 + s31s

3
2 + s41s

2
2 + s1s

2
2 + s21s2 + s31)+

s3s
2
5 + s2s3s5 + s21s

2
2s

2
3s

3
4 + s31s2s

2
3s

3
4 + s22s3s

3
4 + s1s2s3s

3
4 + s21s

4
2s

3
4 + s31s

3
2s

3
4 + s32s

3
4 + s21s2s

3
4 + s2s

3
3s

2
4+

s1s
4
2s

2
3s

2
4 + s21s

3
2s

2
3s

2
4 + s1s2s

2
3s

2
4 + s21s

4
2s3s

2
4 + s31s

3
2s3s

2
4 + s21s2s3s

2
4 + s2s

2
4 + s21s

3
3s4 + s31s

3
2s

2
3s4+

s41s
2
2s

2
3s4 + s31s

2
3s4 + s1s

3
2s3s4 + s21s

2
2s3s4 + s1s3s4 + s1s

4
2s4 + s41s2s4 + s21s4 + s31s

3
2s

3
3 + s32s

3
3 + s1s

2
2s

3
3+

s31s
3
3 + s33 + s21s

2
2s

2
3 + s41s2s3 + s1s2s3 + s41s

2
2 + s31 + 1.

Lxy =y2 + y(s32s
3
3s

3
4 + s1s

2
2s

3
3s

3
4 + s21s2s

3
3s

3
4 + s1s

2
3s

3
4 + s21s

3
2s3s

3
4 + s22s3s

3
4 + s1s2s3s

3
4 + s21s3s

3
4 + s32s

3
4+

s1s
3
2s

3
3s

2
4 + s21s

2
2s

3
3s

2
4 + s31s2s

3
3s

2
4 + s31s

2
2s

2
3s

2
4 + s32s3s

2
4 + s21s2s3s

2
4 + s31s3s

2
4 + s3s

2
4 + s21s

2
2s

2
4+

s21s
3
2s

3
3s4 + s31s

2
2s

3
3s4 + s1s2s

3
3s4 + s21s2s

2
3s4 + s1s

3
2s3s4 + s21s

2
2s3s4 + s1s2s4 + s31s

3
3 + s33 + s1s

3
2s

2
3+

s1s
2
3 + s21s

3
2s3 + s31s

2
2s3 + s22s3 + s21s3 + s31s

3
2 + s32) + x(s22s3s

3
4 + s21s3s

3
4 + s1s

2
2s

3
4 + s21s2s

3
4 + s34+

s1s
2
2s3s

2
4 + s21s2s3s

2
4 + s1s

3
2s

2
4 + s21s

2
2s

2
4 + s23s4 + s1s

3
2s3s4 + s31s2s3s4 + s1s3s4 + s31s

2
2s4 + s1s2s4+

s21s4 + s21s
2
2s

2
3 + s21s

3
2s3 + s22s3 + s21s3 + s32 + s1s

2
2 + s31 + s35) + s2s

2
3s

2
4s5 + s3s4s5 + s22s

3
3s5 + s22s5+

s21s
2
2s

2
3s

3
4 + s2s

2
3s

3
4 + s1s

2
3s

3
4 + s22s3s

3
4 + s32s

3
4 + s1s

2
2s

3
4 + s21s2s

3
4 + s21s

3
2s

2
3s

2
4 + s31s

2
2s

2
3s

2
4 + s1s2s

2
3s

2
4+

s1s
2
2s3s

2
4 + s21s2s3s

2
4 + s1s

3
2s

2
4 + s31s2s

2
4 + s1s2s

3
3s4 + s32s

2
3s4 + s1s

2
2s

2
3s4 + s21s2s

2
3s4 + s31s

2
3s4 + s23s4+

s1s
3
2s3s4 + s31s2s3s4 + s2s3s4 + s21s

3
2s4 + s31s

2
2s4 + s1s2s4 + s31s

3
2s

3
3 + s33 + s1s

3
2s

2
3 + s31s2s

2
3 + s2s

2
3+

s1s
2
3 + s31s

2
2s3 + s22s3 + s21s3 + s31 + 1.

In Subsection 8.7.5 we have the following polynomials

E =e2
2 − e2s1 − s7s35s62 − s7s5 − s7s4s33s72s61 − s7s4s3s72 − s7s4s32s51 + s7s

4
3s

5
2s

8
1 − s7s43s52 − s7s33s2s51−

s7s3s2s
7
1 + s7s

5
2s

4
1 − s6s1 − s45s4s33s62s41 − s45s4s3s62s61 + s45s4s

2
2s

3
1 + s45s

3
3s

8
2s

3
1 + s45s

3
3s

3
1 + s45s3s

8
2s

5
1+

s45s3s
5
1 + s45s

4
2s

2
1 + s35s

2
4s

3
3s2s1 + s35s

2
4s3s2s

3
1 − s35s24s52 + s35s4s

4
3s

7
2s

3
1 + s35s4s

2
3s

7
2s

5
1 − s35s4s3s32s21+

s35s4s
7
2s

7
1 − s35s63s2s81 + s35s

6
3s2 + s35s

4
3s2s

2
1 − s35s33s52s71 + s35s

2
3s2s

4
1 + s35s3s

5
2s1 + s35s2s

6
1 − s25s54s33s81−

s25s
5
4s3s

2
1 + s25s

5
4s

4
2s

7
1 − s25s44s33s22s71 − s25s44s3s22s1 − s25s44s62s61 + s25s

3
4s

6
3s

7
1 − s25s34s43s1 + s25s

3
4s

2
3s

3
1+

s25s
3
4s

8
2s

5
1 − s25s4s33s41 − s25s4s3s61 − s25s63s62s41 + s25s

4
3s

6
2s

6
1 − s25s23s62s81 + s25s

6
2s

2
1 − s5s54s43s2s71−

s5s
5
4s

2
3s2s1 + s5s

5
4s3s

5
2s

6
1 + s5s

5
4s2s

3
1 − s5s44s43s32s61 + s5s

4
4s

3
3s

7
2s

3
1 − s5s44s23s32s81 + s5s

3
4s

7
3s2s

6
1−

s5s
3
4s

5
3s2s

8
1 + s5s

3
4s

3
3s2s

2
1 + s5s

3
4s3s2s

4
1 + s5s

3
4s

5
2s1 + s5s

2
4s

7
2s

8
1 − s5s24s72 + s5s4s

6
3s2s1 + s5s4s

3
3s

5
2s

8
1−

s5s4s
2
3s2s

5
1 − s5s5s4s3s52s21 − s73s72s31 − s5s63s32s81 + s5s

6
3s

3
2 + s5s

5
3s

7
2s

5
1 − s5s43s32s21 − s5s23s32s41−

s84s
6
3s

4
1 + s84s

4
3s

6
1 − s84s33s42s31 − s84s23s81 − s84s3s42s51 − s84s82s21 + s84s

2
1 − s74s63s22s31 + s74s

4
3s

2
2s

5
1 − s74s33s62s21−

s74s
2
3s

2
2s

7
1 − s74s3s62s41 − s64s63s42s21 + s64s

4
3s

4
2s

4
1 − s64s33s82s1 + s64s

3
3s1 − s64s23s42s61 − s64s3s82s31 + s64s3s

3
1−

s64s
4
2s

8
1 + s64s

4
2 − s54s53s22s61 − s54s33s22s81 − s54s33s22 + s54s

2
3s

6
2s

5
1 + s54s3s

2
2s

2
1 − s44s63 − s44s53s42s51 − s44s43s82s21+

s44s
4
3s

2
1 + s44s

2
3s

8
2s

4
1 − s44s23s41 + s44s3s

4
2s1 + s44s

8
2s

6
1 + s44s

6
1 + s34s

8
3s

2
2s

5
1 − s34s23s22s31 + s34s3s

6
2s

8
1 + s34s3s

6
2+

s34s
2
2s

5
1 + s24s

4
3s

4
2s

8
1 + s24s

2
3s

4
2s

2
1 − s24s3s82s71 − s24s42s41 + s4s

7
3s

2
2s

8
1 + s4s

7
3s

2
2 − s4s63s62s51 + s4s

5
3s

2
2s

2
1−

s4s
3
3s

2
2s

4
1 + s4s3s

2
2s

6
1 + s4s

6
2s

3
1 − s83s82s21 − s63s82s41 + s53s

4
2s1 − s43s82s61 − s33s42s31 − s23s82s81 + s23 − s3s42s51.

Px =x2
2 + x2(s7s4s

3
3s

3
1 + s7s4s3s

5
1 − s7s4s42s21 − s7s33s22s21 − s7s3s22s41 + s7s

6
2s1 − s35s54 − s35s44s22s71+

s35s
3
4s

3
3s

7
1 + s35s

3
4s3s1 + s35s

3
4s

4
2s

6
1 + s35s

2
4s

6
2s

5
1 − s35s4s63s61 + s35s4s

4
3 − s35s4s33s42s51 − s35s4s23s21−

s35s4s3s
4
2s

7
1 + s35s

6
3s

2
2s

5
1 − s35s43s22s71 + s35s

2
3s

2
2s1 − s5s64s1 + s5s

5
4s

2
2s

8
1 − s5s54s22 + s5s

4
4s

3
3s

8
1 + s5s

4
4s3s

2
1−

s5s
4
4s

4
2s

7
1 − s5s34s33s22s71 − s5s34s3s22s1 − s5s24s63s71 + s5s

2
4s

4
3s1 − s5s24s33s42s61 − s5s24s23s31 − s5s24s3s42s81−

s5s
2
4s

8
2s

5
1 − s5s4s63s22s61 + s5s4s

4
3s

2
2 + s5s4s

3
3s

6
2s

5
1 − s5s4s23s22s21 + s5s4s3s

6
2s

7
1 − s5s63s42s51 + s5s

4
3s

4
2s

7
1−

s5s
2
3s

4
2s1 + s84s

8
1 + s74s

3
2s

6
1 + s74s

2
2s

7
1 − s64s33s2s61 + s64s

4
2s

6
1 + s54s

4
3s

7
2s

8
1 − s54s43s72 − s54s3s32s71 + s54s

7
2s

4
1+

s54s
6
2s

5
1 + s44s

6
3s2s

5
1 + s44s

4
3s2s

7
1 + s44s

3
3s

5
2s

4
1 + s44s3s

5
2s

6
1 + s44s

8
2s

4
1 − s34s63s32s41 + s34s

2
3s

3
2s

8
1 + s34s3s

7
2s

5
1+

168

10.2. Singular programs to �nd the locators.

s34s
3
2s

2
1 + s34s

2
2s

3
1 + s24s

7
3s2s

6
1 − s24s53s2s81 + s24s

4
3s

5
2s

5
1 + s24s

3
3s2s

2
1 + s24s

2
3s

5
2s

7
1 − s24s3s2s41 − s24s52s1 + s24s

4
2s

2
1+

s4s
8
3s

7
2s

8
1 − s4s83s72 + s4s

4
3s

7
2s

4
1 + s4s

2
3s

7
2s

6
1 − s4s72s81 + s4s

7
2 + s4s

6
2s1 − s73s52s41 + s53s

5
2s

6
1 − s33s52s81 + s82 − 1)−

s7s4s
3
3s2s

2
1 − s7s4s3s2s41 + s7s4s

5
2s1 + s7s

3
3s

3
2s1 + s7s3s

3
2s

3
1 − s7s72 + s35s

5
4s2s

7
1 + s35s

4
4s

3
2s

6
1 − s35s34s33s2s61−

s35s
3
4s3s2 − s35s34s52s51 − s35s24s72s41 + s35s4s

6
3s2s

5
1 − s35s4s43s2s71 + s35s4s

3
3s

5
2s

4
1 + s35s4s

2
3s2s1 + s35s4s3s

5
2s

6
1−

s35s
6
3s

3
2s

4
1 + s35s

4
3s

3
2s

6
1 − s35s23s32 − s25s63s82s81 + s25s

6
3s

8
2 + s25s

6
3s

8
1 − s25s63 + s5s

6
4s2s

8
1 − s5s44s33s2s71 − s5s44s3s2s1+

s5s
4
4s

5
2s

6
1 + s5s

3
4s

3
3s

3
2s

6
1 − s5s34s3s32s81 − s5s34s3s32 + s5s

2
4s

6
3s2s

6
1 − s5s24s43s2s81 + s5s

2
4s

3
3s

5
2s

5
1 + s5s

2
4s

2
3s2s

2
1+

s5s
2
4s3s

5
2s

7
1 + s5s

2
4s2s

4
1 + s5s4s

6
3s

3
2s

5
1 − s5s4s43s32s71 − s5s4s33s72s41 + s5s4s

2
3s

3
2s1 − s5s4s3s72s61 + s5s

7
3s

8
2s

8
1−

s5s
7
3s

8
2 − s5s73s81 + s5s

7
3 + s5s

6
3s

5
2s

4
1 − s5s43s52s61 − s5s23s52s81 − s5s23s52 − s84s2s71 + s74s3s

8
1 − s74s3 − s74s42s51−

s74s
3
2s

6
1 + s64s

3
3s

2
2s

5
1 − s64s52s51 + s54s3s

4
2s

6
1 − s54s82s31 − s54s72s41 − s44s63s22s41 − s44s43s22s61 − s44s33s62s31 + s44s

2
3s

2
2s

8
1−

s44s
2
3s

2
2 − s44s3s62s51 − s44s2s31 + s34s

6
3s

4
2s

3
1 − s34s53s81 + s34s

5
3 − s34s23s42s71 − s34s3s82s41 − s34s42s1 − s34s32s21−

s24s
7
3s

2
2s

5
1 + s24s

5
3s

2
2s

7
1 − s24s43s62s41 − s24s33s22s1 − s24s23s62s61 + s24s3s

2
2s

3
1 + s24s

6
2 − s24s52s1 − s4s43s82s31−

s4s
2
3s

8
2s

5
1 − s4s72s81 − s4s71 + s73s

6
2s

3
1 − s63s22s81 + s63s

2
2 − s53s62s51 + s33s

6
2s

7
1.

Pxy =y2
2 − y2(s26s

3
3s

3
1 − s26s3s51 + s26s

4
2s

2
1 − s6s73 + s6s

6
3s1 − s6s43s42s71 − s6s43s31 + s6s

3
3s

4
2 + s6s

2
3s

5
1 − s6s3s82s61+

s6s3s
4
2s

2
1 + s6s

8
2s

7
1 + s6s

4
2s

3
1 − s6s71 − s83 + s63s

4
2s

6
1 − s63s21 − s53s42s71 − s53s31 + s43s

4
2 + s43s

4
1 + s33s

8
2s

5
1 − s33s51−

s23s
8
2s

6
1 + s23s

4
2s

2
1 − s23s61 − s3s82s71 + s3s

4
2s

3
1 + s82 + s81 + 1) + x2(s7s4s

3
3s

6
2s

5
1 + s7s4s3s

6
2s

7
1 − s7s4s22s41−

s7s
3
3s

8
2s

4
1 − s7s3s82s61 + s7s

4
2s

3
1 + s45s

3
2s1 + s35s

4
4s1 − s35s34s22 − s35s24s73s41 + s35s

2
4s

6
3s

5
1 + s35s

2
4s

5
3s

6
1 − s35s24s43s42s31−

s35s
2
4s

4
3s

7
1 + s35s

2
4s

3
3s

4
2s

4
1 − s35s24s23s42s51 + s35s

2
4s

2
3s1 − s35s24s3s82s21 + s35s

2
4s3s

4
2s

6
1 − s35s24s3s21 + s35s

2
4s

8
2s

3
1−

s35s
2
4s

4
2s

7
1 − s35s24s31 − s35s4s73s22s31 − s35s4s63s62 + s35s4s

6
3s

2
2s

4
1 + s35s4s

5
3s

2
2s

5
1 − s35s4s43s22s61 + s35s4s

3
3s

6
2s

3
1−

s35s4s
3
3s

2
2s

7
1 + s35s4s

2
3s

6
2s

4
1 + s35s4s

2
3s

2
2 + s35s4s3s

6
2s

5
1 − s35s73s42s21 + s35s

6
3s

8
2s

7
1 + s35s

6
3s

4
2s

3
1 − s35s63s71 + s35s

5
3s

4
2s

4
1−

s35s
5
3s

8
1 + s35s

5
3 + s35s

4
3s

8
2s1 − s35s43s42s51 + s35s

4
3s1 + s35s

3
3s

8
2s

2
1 + s35s

2
3s

4
2s

7
1 − s35s23s31 + s35s3s

8
2s

4
1 − s35s3s42s81+

s35s3s
4
2 + s35s

5
1 + s25s

3
4s

3
3s

3
2s

5
1 + s25s

3
4s3s

3
2s

7
1 − s25s34s72s41 + s25s4s

3
2s

2
1 − s25s52s1 + s5s

7
4s3s

7
1 − s5s74s81−

s5s
6
4s3s

2
2s

6
1 + s5s

6
4s

6
2s

3
1 + s5s

6
4s

2
2s

7
1 − s5s54s43s61 + s5s

5
4s

3
3s

7
1 − s5s54s23s81 + s5s

5
4s3s

4
2s

5
1 + s5s

5
4s3s1 − s5s54s42s61−

s5s
5
4s

2
1 − s5s44s43s22s51 + s5s

4
4s

3
3s

2
2s

6
1 − s5s44s23s22s71 − s5s44s3s62s41 + s5s

4
4s3s

2
2s

8
1 + s5s

4
4s

6
2s

5
1 − s5s44s22s1−

s5s
3
4s

7
3s

5
1 + s5s

3
4s

6
3s

6
1 + s5s

3
4s

5
3s

7
1 − s5s34s43s42s41 − s5s34s43s81 − s5s34s33s42s51 + s5s

3
4s

3
3s1 − s5s34s23s42s61+

s5s
3
4s

2
3s

2
1 + s5s

3
4s3s

8
2s

3
1 − s5s34s3s42s71 + s5s

3
4s3s

3
1 + s5s

3
4s

8
2s

4
1 + s5s

3
4s

4
2s

8
1 − s5s34s42 + s5s

3
4s

4
1 − s5s24s63s62s1−

s5s
2
4s

4
3s

6
2s

3
1 − s5s24s33s62s41 − s5s24s33s22s81 − s5s24s3s62s61 + s5s

2
4s3s

2
2s

2
1 + s5s

2
4s

2
2s

3
1 − s5s4s63s82 + s5s4s

6
3s

8
1−

s5s4s
4
3s

8
2s

2
1 + s5s4s

4
3s

2
1 − s5s4s33s82s31 + s5s4s

3
3s

3
1 − s5s4s23s42s81 + s5s4s

2
3s

4
2 − s5s4s3s82s51 − s5s4s3s42s1+

s5s4s3s
5
1 + s5s4s

8
2s

6
1 − s5s4s42s21 + s5s

7
3s

6
2s

2
1 − s5s63s62s31 + s5s

6
3s

2
2s

7
1 − s5s53s62s41 + s5s

5
3s

2
2s

8
1 − s5s53s22+

s5s
4
3s

6
2s

5
1 − s5s43s22s1 − s5s23s62s71 + s5s

2
3s

2
2s

3
1 + s5s3s

6
2 + s5s

6
2s1 − s5s22s51 + s84s3s

3
2s

4
1 − s84s32s51 − s74s23s2s61+

s74s3s
5
2s

3
1 + s74s3s2s

7
1 − s74s52s41 − s74s2s81 − s74s2 + s64s

4
3s

3
2s

3
1 − s64s33s32s41 − s64s23s32s51 − s64s3s72s21 + s64s3s

3
2s

6
1+

s64s
3
2s

7
1 + s54s

7
3s2s

3
1 + s54s

6
3s

5
2s

8
1 − s54s63s52 − s54s63s2s41 + s54s

4
3s

5
2s

2
1 − s54s33s52s31 + s54s

2
3s2 − s54s52s61 − s54s2s21−

s44s
7
3s

3
2s

2
1 + s44s

6
3s

7
2s

7
1 + s44s

6
3s

3
2s

3
1 − s44s53s72s81 + s44s

5
3s

7
2 − s44s53s32s41 + s44s

4
3s

7
2s1 + s44s

4
3s

3
2s

5
1 + s44s

3
3s

7
2s

2
1−

s44s
3
3s

3
2s

6
1 + s44s

2
3s

7
2s

3
1 + s44s3s

3
2 + s34s

8
3s2s

4
1 − s34s73s2s51 + s34s

5
3s2s

7
1 + s34s

4
3s

5
2s

4
1 + s34s

4
3s2s

8
1 + s34s

4
3s2−

s34s
3
3s

5
2s

5
1 + s34s

3
3s2s1 + s34s

2
3s

5
2s

6
1 + s34s

2
3s2s

2
1 − s34s3s52s71 − s34s52s81 − s24s83s32s31 + s24s

7
3s

7
2s

8
1 + s24s

7
3s

3
2s

4
1−

s24s
6
3s

3
2s

5
1 − s24s53s32s61 − s24s43s72s31 + s24s

4
3s

3
2s

7
1 + s24s

3
3s

7
2s

4
1 − s24s23s72s51 − s24s23s32s1 + s24s3s

7
2s

6
1 + s24s3s

3
2s

2
1−

s24s
3
2s

3
1 − s4s83s52s21 + s4s

7
3s

5
2s

3
1 − s4s73s2s71 − s4s63s52s41 − s4s53s52s51 − s4s43s52s61 + s4s

4
3s2s

2
1 + s4s

2
3s

5
2s

8
1+

s4s
2
3s

5
2 + s4s

2
3s2s

4
1 − s4s3s2s51 + s4s

5
2s

2
1 − s4s2s61 + s83s

7
2s1 − s73s72s21 − s63s72s31 − s63s32s71 + s53s

7
2s

4
1+

s53s
3
2s

8
1 + s53s

3
2 − s43s32s1 − s33s72s61 + s23s

7
2s

7
1 + s3s

7
2s

8
1 + s3s

7
2 − s3s32s41 − s72s1 + s32s

5
1)−

s7s4s
3
3s

7
2s

4
1 − s7s4s3s72s61 + s7s4s

3
2s

3
1 + s7s

3
3s2s

3
1 + s7s

2
3s

5
2s

8
1 − s7s23s52 + s7s3s2s

5
1 − s7s52s21 + s26s

6
3+

s26s
3
3s

4
2s

7
1 − s26s23s41 + s26s

8
2s

6
1 − s26s61 − s6s83s71 − s6s73s81 − s6s53s42s61 + s6s

5
3s

2
1 − s6s43s42s71 − s6s33s42 − s6s33s41−

s6s
2
3s

8
2s

5
1 − s6s23s42s1 − s6s3s82s61 + s6s3s

6
1 + s6s

8
2s

7
1 + s6s

7
1 − s45s43s82s81 + s45s

4
3s

8
2 + s45s

4
3s

8
1 − s45s43 − s45s42s81−

s35s
4
4s2 + s35s

3
4s

6
3s

3
2s1 − s35s34s43s32s31 + s35s

3
4s

3
3s

7
2 + s35s

3
4s

2
3s

3
2s

5
1 + s35s

3
4s3s

7
2s

2
1 + s35s

3
4s

3
2s

7
1 + s35s

2
4s

7
3s2s

3
1−

169

Chapter 10. Decoding a�ne�variety code

s35s
2
4s

6
3s2s

4
1 − s35s24s53s2s51 + s35s

2
4s

4
3s

5
2s

2
1 + s35s

2
4s

4
3s2s

6
1 − s35s24s33s52s31 + s35s

2
4s

2
3s

5
2s

4
1 − s35s24s23s2 − s35s24s3s52s51−

s35s
2
4s3s2s1 + s35s

2
4s

5
2s

6
1 + s35s4s

7
3s

3
2s

2
1 + s35s4s

6
3s

7
2s

7
1 − s35s4s63s32s31 − s35s4s53s32s41 + s35s4s

4
3s

3
2s

5
1 − s35s4s33s72s21+

s35s4s
3
3s

3
2s

6
1 − s35s4s23s72s31 − s35s4s23s32s71 − s35s4s3s72s41 − s35s83s52s81 + s35s

8
3s

5
2 + s35s

7
3s

5
2s1 − s35s63s52s21 − s35s63s2s61−

s35s
5
3s

5
2s

3
1 + s35s

4
3s

5
2s

4
1 − s35s43s2 − s35s33s52s51 − s35s33s2s1 − s35s23s52s61 − s35s3s52s71 − s35s3s2s31 − s35s2s41 − s25s34s33s42s41−

s25s
3
4s3s

4
2s

6
1 + s25s

3
4s

8
2s

3
1 − s25s4s42s1 − s25s83s62s81 + s25s

8
3s

6
2 − s25s43s22s81 + s25s

4
3s

2
2 − s25s62s81 − s25s62 − s5s74s3s2s61+

s5s
7
4s2s

7
1 + s5s

6
4s3s

3
2s

5
1 − s5s64s72s21 − s5s64s32s61 + s5s

5
4s

4
3s2s

5
1 − s5s54s33s2s61 + s5s

5
4s

2
3s2s

7
1 − s5s54s3s52s41−

s5s
5
4s3s2s

8
1 + s5s

5
4s

5
2s

5
1 + s5s

5
4s2s1 − s5s44s63s32s21 − s5s44s43s32s41 − s5s44s33s72s1 − s5s44s33s32s51 − s5s44s3s32s71−

s5s
4
4s

7
2s

4
1 − s5s44s32s81 − s5s44s32 + s5s

3
4s

7
3s2s

4
1 + s5s

3
4s

6
3s

5
2s1 − s5s34s63s2s51 − s5s34s53s2s61 + s5s

3
4s

4
3s2s

7
1+

s5s
3
4s

3
3s

5
2s

4
1 − s5s34s33s2s81 + s5s

3
4s

3
3s2 − s5s34s23s52s51 − s5s34s23s2s1 + s5s

3
4s3s

5
2s

6
1 − s5s34s3s2s21 + s5s

3
4s2s

3
1+

s5s
2
4s

6
3s

7
2s

8
1 + s5s

2
4s

4
3s

7
2s

2
1 + s5s

2
4s

3
3s

7
2s

3
1 + s5s

2
4s

3
3s

3
2s

7
1 + s5s

2
4s

2
3s

3
2s

8
1 − s5s24s23s32 + s5s

2
4s3s

7
2s

5
1 − s5s24s3s32s1−

s5s
2
4s

3
2s

2
1 + s5s4s3s

5
2s

8
1 + s5s4s

5
2s1 − s5s4s2s51 + s5s

8
3s

7
2s

8
1 − s5s83s72 − s5s73s72s1 + s5s

6
3s

7
2s

2
1 − s5s63s32s61+

s5s
5
3s

7
2s

3
1 − s5s43s72s41 + s5s

4
3s

3
2s

8
1 + s5s

2
3s

7
2s

6
1 − s5s23s32s21 − s5s3s72s71 + s5s

7
2s

8
1 + s5s

7
2 + s5s

3
2s

4
1 − s84s3s42s31+

s84s
4
2s

4
1 + s84s

8
1 − s84 − s74s33s62s81 + s74s

3
3s

6
2 + s74s

2
3s

2
2s

5
1 − s74s3s62s21 − s74s3s22s61 + s74s

6
2s

3
1 − s74s22s71 − s64s63s42s81−

s64s
3
3s

8
2s

7
1 + s64s

3
3s

4
2s

3
1 + s64s

2
3s

8
1 − s64s23 − s64s3s42s51 − s64s42s61 − s54s73s22s21 + s54s

6
3s

6
2s

7
1 + s54s

6
3s

2
2s

3
1 + s54s

4
3s

6
2s1+

s54s
3
3s

6
2s

2
1 + s54s

3
3s

2
2s

6
1 + s54s

2
3s

6
2s

3
1 − s54s23s22s71 + s54s3s

2
2s

8
1 + s54s

6
2s

5
1 + s54s

2
2s1 − s44s83s42s81 + s44s

8
3s

4
2 − s44s73s42s1−

s44s
6
3s

4
2s

2
1 + s44s

6
3s

6
1 − s44s43s82 − s44s43s42s41 + s44s

4
3s

8
1 + s44s

4
3 − s44s33s82s1 + s44s

3
3s

4
2s

5
1 + s44s

2
3s

8
2s

2
1 + s44s

2
3s

2
1+

s44s3s
4
2s

7
1 + s44s

8
2s

4
1 − s44s41 − s34s83s22s31 + s34s

7
3s

6
2s

8
1 − s34s73s62 + s34s

7
3s

2
2s

4
1 + s34s

6
3s

2
2s

5
1 − s34s53s22s61 − s34s43s62s31−

s34s
3
3s

6
2s

4
1 − s34s33s22s81 − s34s23s62s51 − s34s3s62s61 + s34s

6
2s

7
1 + s24s

8
3s

4
2s

2
1 − s24s73s82s71 − s24s73s42s31 + s24s

5
3s

4
2s

5
1+

s24s
4
3s

8
2s

2
1 + s24s

3
3s

8
2s

3
1 + s24s

2
3s

8
2s

4
1 + s24s3s

8
2s

5
1 − s24s3s42s1 + s24s

4
2s

2
1 + s4s

8
3s

6
2s1 − s4s73s62s21 + s4s

7
3s

2
2s

6
1 + s4s

6
3s

6
2s

3
1+

s4s
5
3s

6
2s

4
1 + s4s

4
3s

6
2s

5
1 − s4s43s22s1 + s4s

2
3s

6
2s

7
1 − s4s23s22s31 − s4s3s62s81 + s4s3s

6
2 + s4s3s

2
2s

4
1 − s4s62s1 + s4s

2
2s

5
1+

s83s
8
2s

8
1 + s83s

8
2 + s83s

8
1 + s73s

8
2s1 − s73s42s51 + s73s1 − s63s82s21 − s63s42s61 − s53s82s31 + s53s

4
2s

7
1 − s53s31 + s43s

8
2s

4
1 − s43s42s81−

s43s
4
2 − s43s41 − s33s82s51 + s33s

4
2s1 + s33s

5
1 − s23s82s61 − s23s42s21 − s23s61 − s3s42s31 − s3s71 − s82s81 − s82 − s42s41 − s81 + 1.

170

Bibliography

[AE09] D. Betti Augot and Orsini E. E., An introduction to linear and cyclic

codes, Gröbner Bases, Coding, and Cryptography (M. Sala, T. Mora,

L. Perret, S. Sakata, and C. Traverso, eds.), RISC Book Series, Springer,

Heidelberg, 2009, pp. 47�68.

[BKvT99] A. M. Barg, E. Krouk, and H. C. A. van Tilborg, On the complexity of

minimum distance decoding of long linear codes, IEEE Trans. on Inf. Th.

45 (1999), no. 5, 1392�1405.

[BMvT78] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, On the

inherent intractability of certain coding problems, IEEE Trans. on Inf.

Th. 24 (1978), no. 3, 384�386.

[BR12a] E. Ballico and A. Ravagnani, On Goppa codes on the Hermitian curve,

Arxiv preprint arXiv:1202.0894 (2012).

[BR12b] , On the geometry of Hermitian one-point codes, Arxiv preprint

arXiv:1203.3162 (2012).

[Buc98] B. Buchberger, An algorithmical criterion for the solvability of algebraic

systems of equations, London Math. Soc. LNS 251 (1998), 535�545.

[Buc06] , Bruno Buchberger's PhD thesis 1965: An algorithm for �nd-

ing the basis elements of the residue class ring of a zero dimensional

polynomial ideal, J. Symb. Comput. 41 (2006), no. 3-4, 475�511.

[CLO07] D. Cox, J. Little, and D. O'Shea, Ideals, varieties, and algorithms, third

ed., Springer, 2007, An introduction to computational algebraic geome-

try and commutative algebra.

[CM90] L. Cerlienco and M. Mureddu, Algoritmi combinatori per

l'interpolazione polinomiale in dimensione ≥ 2., preprint (1990),

http://www.emis.ams.org/journals/SLC/opapers/s24cerlien.pdf.

CGC 171

Bibliography

[CM95] , From algebraic sets to monomial linear bases by means of com-

binatorial algorithms, Discrete Math. 139 (1995), no. 1-3, 73�87.

[CM02a] M. Caboara and T. Mora, The Chen-Reed-Helleseth-Truong decoding al-

gorithm and the Gianni-Kalkbrenner Gröbner shape theorem, Appl. Al-

gebra Engrg. Comm. Comput. 13 (2002), no. 3, 209�232.

[CM02b] L. Cerlienco and M. Mureddu, Multivariate interpolation and standard

bases for Macaulay modules, J. Algebra 251 (2002), no. 2, 686�726.

[Coo90] A. B. III Cooper, Direct solution of BCH decoding equations, Comm.,

Cont. and Sign. Proc. (1990), 281�286.

[Coo91] , Finding BCH error locator polynomials in one step, Electronic

Letters 27 (1991), no. 22, 2090�2091.

[Coo93] , Toward a new method of decoding algebraic codes using Gröbner

bases, Transactions of the Tenth Army Conference on Applied Mathe-

matics and Computing (1992), vol. 93, U.S. Army, 1993, pp. 1�11.

[Cou11] A. Couvreur, The dual minimum distance of arbitrary-dimensional

algebraic�geometric codes, Journal of Algebra (2011).

[CRHT94a] X. Chen, I. S. Reed, T. Helleseth, and T. K. Truong, Algebraic decoding

of cyclic codes: a polynomial ideal point of view, Finite �elds, Contemp.

Math., vol. 168, Amer. Math. Soc., 1994, pp. 15�22.

[CRHT94b] X. Chen, I. S. Reed, T. Helleseth, and T. K. Truong, Use of Gröbner

bases to decode binary cyclic codes up to the true minimum distance,

IEEE Trans. on Inf. Th. 40 (1994), no. 5, 1654�1661.

[DD10] G. Donati and N. Durante, On the intersection of a Hermitian curve with

a conic, Designs, Codes and Cryptography 57 (2010), no. 3, 347�360.

[DDK09] G. Donati, N. Durante, and G. Korchmaros, On the intersection pattern

of a unital and an oval in pg (2, q2), Finite Fields and Their Applications

15 (2009), no. 6, 785�795.

[FL98] J. Fitzgerald and R. F. Lax, Decoding a�ne variety codes using Gröbner

bases, Des. Codes Cryptogr. 13 (1998), no. 2, 147�158.

[FM11] C. Fontanari and C. Marcolla, On the geometry of small weight codewords

of dual algebraic geometric codes, Arxiv preprint arXiv:1104.1320 (2011).

172

Bibliography

[FRR06] B. Felszeghy, B. Ráth, and L. Rónyai, The lex game and some applica-

tions, J. Symbolic Comput. 41 (2006), no. 6, 663�681.

[Gei03] O. Geil, On codes from norm-trace curves, Finite Fields Appl. 9 (2003),

351�371.

[Gei09] , Algebraic geometry codes from order domains, Gröbner Bases,

Coding, and Cryptography (M. Sala, T. Mora, L. Perret, S. Sakata,

and C. Traverso, eds.), RISC Book Series, Springer, Heidelberg, 2009,

pp. 121�141.

[Gia89] P. Gianni, Properties of Gröbner bases under specializations, Proc. of

EUROCAL1987, LNCS, vol. 378, Springer, 1989, pp. 293�297.

[Gio06] Marta Giorgetti, On some algebraic interpretation of classical codes,

Ph.D. thesis, University of Milan, 2006.

[GPS07] G.-M. Greuel, G. P�ster, and H. Schönemann, Singular 3.0. A computer

algebra system for polynomial computations, http://www.singular.uni-

kl.de, 2007, Centre for Computer Algebra, University of Kaiserslautern.

[GRS03] S. Gao, V. M. Rodrigues, and J. Stroomer, Gröbner ba-

sis structure of �nite sets of points, preprint (2003),

http://www.researchgate.net/publication/2870598.

[GS06] M. Giorgetti and M. Sala, A commutative algebra approach to linear

codes, BCRI preprint, www.bcri.ucc.ie, 58, UCC, Cork, Ireland, 2006.

[GS09] , A commutative algebra approach to linear codes, Journal of Al-

gebra 321 (2009), no. 8, 2259�2286.

[HKT08] J.W.P. Hirschfeld, G. Korchmáros, and F. Torres, Algebraic curves over

a �nite �eld, Princeton Univ Pr, 2008.

[HP03] W. C. Hu�man and V. Pless, Fundamentals of error-correcting codes,

Cambridge University Press, 2003.

[HvLP98] T. Høholdt, J. H. van Lint, and R. Pellikaan, Algebraic geometry of codes,

Handbook of coding theory, Vol. I, II (V. S. Pless and W.C. Hu�man,

eds.), North-Holland, 1998, pp. 871�961.

[Kal89] M. Kalkbrener, Solving systems of algebraic equations by using Gröbner

bases, Proc. of EUROCAL 1987, LNCS, vol. 378, 1989, pp. 282�292.

173

Bibliography

[Led08] M. Lederer, The vanishing ideal of a �nite set of closed points in a�ne

space, J. Pure Appl. Algebra 212 (2008), no. 5, 1116�1133.

[LN86] R. Lidl and H. Niederreiter, Introduction to �nite �elds and their appli-

cations, Cambridge University Press, Cambridge, 1986.

[LN97] , Finite �elds, Encyclopedia of Mathematics and its Applications,

Cambridge University Press, 1997.

[Lun10] S. Lundqvist, Vector space bases associated to vanishing ideals of points,

J. Pure Appl. Algebra 214 (2010), no. 4, 309�321.

[LY97] P. Loustaunau and E. V. York, On the decoding of cyclic codes using

Gröbner bases, AAECC 8 (1997), no. 6, 469�483.

[MAG] MAGMA: Computational Algebra System for Algebra, Number The-

ory and Geometry, The University of Sydney Computational Algebra

Group., http://magma.maths.usyd.edu.au/magma.

[MB82] H. M. Möller and B. Buchberger, The construction of multivariate poly-

nomials with preassigned zeros, LNCS 144 (1982), 24�31.

[MO09] T. Mora and E. Orsini, Decoding cyclic codes: the Cooper philosophy,

Gröbner Bases, Coding, and Cryptography (M. Sala, T. Mora, L. Perret,

S. Sakata, and C. Traverso, eds.), RISC Book Series, Springer, Heidel-

berg, 2009, pp. 69�91.

[Mor09] T. Mora, The FGLM problem and Moeller's algorithm on zero-

dimensional ideals, Gröbner Bases, Coding, and Cryptography (M. Sala,

T. Mora, L. Perret, S. Sakata, and C. Traverso, eds.), RISC Book Series,

Springer, Heidelberg, 2009, pp. 27�45.

[MOS12] C. Marcolla, E. Orsini, and M. Sala, Improved decoding of a�ne-variety

codes, Journal of Pure and Applied Algebra 216 (2012), no. 7, 1533�

1565.

[MPS12] Chiara Marcolla, Marco Pellegrini, and Massimiliano Sala, On the her-

mitian curve, its intersections with some conics and their applications to

a�ne-variety codes and hermitian codes, arXiv preprint arXiv:1208.1627

(2012).

[MS77] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting

codes. I and II, North-Holland Publishing Co., Amsterdam, 1977.

174

Bibliography

[OS05] E. Orsini and M. Sala, Correcting errors and erasures via the syndrome

variety, J. Pure Appl. Algebra 200 (2005), 191�226.

[RS94] H.G. Ruck and H. Stichtenoth, A characterization of Hermitian function

�elds over �nite �elds, Journal fur die Reine und Angewandte Mathe-

matik 457 (1994), 185�188.

[S.02] Lang S., Algebra revised third edition, Springer-Verlag, 2002.

[Sal07] M. Sala, Gröbner basis techniques to compute weight distributions of

shortened cyclic codes, Journal of Algebra and Its Applications 6 (2007),

no. 3, 403�404.

[SDG06] G. Salazar, D. Dunn, and S. B. Graham, An improvement of the Feng-

Rao bound on minimum distance, Finite Fields Appl. 12 (2006), no. 3,

313�335.

[Sha48] C. E. Shannon, A mathematical theory of communication, Bell System

Tech. J. 27 (1948), 379�423, 623�656.

[ST09] M. Mora T. Perret L. Sakata S. Sala and C. Traverso, Gröbner Bases,

Coding, and Cryptography, RISC Book Series, Springer, Heidelberg,

2009.

[Sti88] H. Stichtenoth, A note on Hermitian codes over GF(q2), IEEE Trans.

Inform. Theory 34 (1988), no. 5, 1345�1348.

[Sti93] , Algebraic function �elds and codes, Universitext, Springer-

Verlag, Berlin, 1993.

[Var97] A. Vardy, Algorithmic complexity in coding theory and the minimum dis-

tance problem, Proceedings of the twenty-ninth annual ACM symposium

on Theory of computing, 1997, pp. 92�109.

[Xin95] C. Xing, On automorphism groups of the Hermitian codes, Information

Theory, IEEE Transactions on 41 (1995), no. 6, 1629�1635.

[YK92] K. Yang and P.V. Kumar, On the true minimum distance of Hermitian

codes, Proceedings of AGCT�3, LNCS, Springer, 1992, pp. 99�107.

175

