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Abstract

Word reordering is one of the most difficult aspects of Statistical Machine Translation

(SMT), and an important factor of its quality and efficiency. While short and medium-

range reordering is reasonably handled by the phrase-based approach (PSMT), long-range

reordering still represents a challenge for state-of-the-art PSMT systems. As a major

cause of this problem, we point out the inadequacy of existing reordering constraints and

models to cope with the reordering phenomena occurring between distant languages. On

one hand, the reordering constraints used to control translation complexity appear to be

too coarse-grained. On the other hand, the reordering models used to score different re-

ordering decisions during translation are not discriminative enough to effectively guide

the search over very large sets of hypotheses. In this thesis we propose several tech-

niques to improve the definition of the reordering search space in PSMT by exploiting

prior linguistic knowledge, so that long-range reordering may be adequately handled with-

out sacrificing efficiency. In particular, we focus on Arabic-English and German-English:

two language pairs characterized by uneven distributions of reordering phenomena, with

long-range movements concentrating on few patterns. Through extensive experiments, we

show that our techniques can significantly advance the state of the art in PSMT for these

challenging language pairs. When compared with a popoular tree-based SMT approach,

our best PSMT systems achieve comparable or higher reordering accuracies while being

considerably faster.
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Chapter 1

Introduction

Statistical machine translation (SMT) is a data-driven approach to the translation of

text from a natural language into another. The core SMT methods [Brown et al., 1990,

1993, Berger et al., 1996, Koehn et al., 2003] – emerged in the 1990s and matured in the

2000’s to become widespread today – learn direct correspondences between surface forms

in the two languages, without the need of abstract linguistic representations. The main

advantages of SMT are versatility and cost-effectiveness: in principle, the same modeling

framework can be applied to any pair of languages with minimal human effort.

However, experiences in a diverse range of language pairs have revealed that this form

of shallow modeling makes SMT highly sensitive to structural differences between source

and target language – e. g. at the level of morphology or word order. A number of

enhancements to the original SMT formulation have then been proposed with the aim

of overcoming these limitations. Morphology has been addressed, for instance, by affix

segmentation (e. g. Habash and Sadat [2006], Durgar El-Kahlout and Oflazer [2006]) or

factored models [Koehn and Hoang, 2007]. As for word order, it has been one of the main

motivations for the development of tree-based SMT (e. g. Wu [1997], Yamada [2002],

Galley et al. [2004], Chiang [2005]), a trend of major importance in the field.

Currently none of these methods can be said to unconditionally dominate the others.

Rather, the choice of an optimal SMT framework for a new task appears to be mostly

driven by empirical trials, in which shallow methods often prove stronger than the more

structured and linguistically informed ones. From this observation, two important re-

search questions arise: is linguistic structure necessary for machine translation? And, if

so, to what to extent?

Human translation studies provide an interesting perspective on this issue. According

to many scholars [Gile, 2005, Craciunescu et al., 2004], the human translation process

1



CHAPTER 1. INTRODUCTION

involves phases of deep understanding of the source text, alternated with phases of se-

mantic transfer and subsequent target text production. However, this view is challenged

by other scholars [Mossop, 2003, Ruiz et al., 2008, Carl, 2011] who state that translation

mostly requires just a shallow and partial understanding of the source text, and that text

production can occur in parallel with understanding, at a very local level.

In the light of this second theory, shallow SMT methods need not be seen as a cheap

and limited alternative to sophisticated, structure-rich methods. They become instead

the natural choice for a wide range of language pairs where complete comprehension and

structured representation of the source sentence is actually not necessary to produce an

accurate translation.

In this thesis we aim at improving translation quality between distant languages, while

maintaining the SMT machinery as shallow and unstructured as possible. In particular,

we focus on the problem of word reordering between languages whose syntax differs con-

siderably, yet not at the point of requiring a complex and costly tree-based solution.

Word reordering is probably the most difficult aspect of SMT, and an important fac-

tor of both its quality and efficiency. Experience shows that different kinds of reordering

call for different SMT frameworks: namely, language pairs with very similar word orders

naturally fit a shallow modeling framework, such as the phrase-based one. In contrast,

language pairs with radically different word orders are better bridged through a struc-

tured representation, i. e. tree-based frameworks. Lying between these two extremes are

language pairs where most of the reordering is local, and where long reorderings can be

isolated and described by a handful of linguistic rules. We argue that tree-like structures

are not needed to model this last kind of language pairs. Instead, we focus on enhancing

the phrase-based approach to better account for uneven reordering distributions.

1.1 Motivating example

The error analysis of a strong Arabic-English PSMT baseline developed for the NIST 2009

evaluation1 revealed that the incorrect reordering of Arabic Verb-Subject-Object (VSO)

sentences was the main cause of disfluent outputs.

Indeed, modern Arabic syntax admits both VSO and SVO orders, with VSO being

dominant in written narrative texts, such as news stories. Figure 1.1 shows two examples

where the main verb precedes the subject in Arabic.2 In such sentences, the subject can

1http://www.itl.nist.gov/iad/mig/tests/mt/2009/
2Throughout this thesis, the Arabic text is transliterated according to the Buckwalter scheme.

2



1.2. CONTRIBUTIONS

src

¼PAÖ 	ßYË@ ú

	̄ Aê� Z @Q 	®� AK
Pñ� ð AJ
�. J
Ë ð �éK
Xñª�Ë@ 	áÓ É¿ �I«Y�J�@

verb subj. obj. compl.

w AstdEt kl mn AlsEwdyp w lybyA w swryA sfrA’ hA fy AldnmArk

ref Each of Saudi Arabia, Libya and Syria recalled their ambassadors from Denmark

mt He recalled all from Saudi Arabia, Libya and Syria ambassadors in Denmark

src

ú
æ�
	�Q 	®Ë @ ��
KQË @ ¨ðQå��Ó �Ë é� Ñ«X �XA�Ë@ YÒm× ½ÊÖÏ @ ú
G. Q

	ªÖÏ @ ÉëAªË@ XYg.
verb subj. obj. compl.

jdd AlEAhl Almgrby Almlk mHmd AlsAds dEm h l m$rwE Alr}ys Alfrnsy

ref The Moroccan monarch King Mohamed VI renewed his support to the project of French President

mt The Moroccan monarch King Mohamed VI ∅∅∅ his support to the French President

Figure 1.1: Arabic-English PSMT errors due to incorrect reordering of the verb in VSO sen-
tences.

be followed by adjectives, adverbs, coordinations, or appositions that further increase the

distance between the verb and its object. When translating into English – a primarily

SVO language – the resulting long-distance reorderings are often missed by the SMT

system. In our examples, missed verb reorderings resulted in different translation errors:

the introduction of a spurious subject pronoun and the omission of the verb, respectively.

Interestingly, it appeared from the same error analysis that word reordering was mostly

correct otherwise. Indeed, other order differences are also very frequent between Arabic

and English sentences, due to the head-initial structure of Arabic noun phrases. These

reorderings, however, are mostly local, hence likely to be captured by the standard PSMT

reordering mechanisms.

As our analysis of PSMT reordering proceeded, it became more evident that long-

range reordering errors were due to an ensemble of causes. On one hand, the reordering

constraints used to control the complexity of the translation process were too coarse:

they could either restrict the translation search space to short-range reorderings only,

or open it to short and long-range reorderings of all kinds. On the other hand, the

reordering models used to score different reordering decisions during translation were not

discriminative enough to guide the search over very large sets of hypotheses. Given that

reordering modeling had already been studied extensively, we decided to focus primarily

on improving the definition of the search space by exploiting prior linguistic knowledge.

1.2 Contributions

The main research contributions of this thesis are as follows:
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• we provide a theoretical ground for a number of empirical findings on the complexity

of reordering in different language pairs;

• we specifically analyze long-range reordering patterns in Arabic-English and German-

English, and develop shallow-syntax reordering rule sets to model them;

• we introduce a novel technique to suggest likely input reorderings to a PSMT system:

i. e. modified distortion matrices;

• we present a fully data-driven method to dynamically refine the reordering search

space explored by standard PSMT systems;

• we propose an evaluation metric to detect improvements in the reordering of specific

word classes;

• we compare our best methods with a competitive tree-based approach – i. e. hierar-

chical SMT [Chiang, 2005] – and achieve comparable or higher reordering accuracies

with systems that are up to two times faster.

1.3 Structure of the thesis

The remainder of this thesis is structured as follows.

Chapter 2 introduces the fundamental concepts of SMT and explains how the word

reordering problem is treated in different SMT approaches. The previous work in ad-

vanced reordering modeling is extensively reviewed, and different evaluation methods are

presented.

Chapter 3 analyzes the word order differences of several language pairs, based on a

large body of theoretical linguistic knowledge. Empirical results in the SMT literature

are shown to support the hypothesis that linguistic knowledge is useful to predict the

reordering characteristics of a language pair and to select the SMT framework that best

suits them.

Chapter 4 describes our first method to improve the handling of long-range reordering

phenomena in PSMT. Simple rules based on shallow syntax are designed to predict prob-

able verb reorderings in Arabic-English. Word reordering lattices are then used to provide

such reordering suggestions to a PSMT system. Finally, the problem of dense and noisy

lattices is addressed with a lattice pruning technique based on a discriminative classifier.

Improvements in terms of translation quality and reordering accuracy are reported over

a PSMT baseline tested on well-known news translation benchmarks.
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Chapter 5 introduces a novel and efficient technique to suggest likely input reorderings

to a PSMT system. This consists of modifying the distortion penalty function associated

to each input sentence, so that the cost for the desired permutations is reduced. The

technique is shown to improve a competitive PSMT baseline with no loss in translation

speed, in both an Arabic-English and a German-English task.

Chapter 6 presents a fully-data driven method to dynamically shape the reordering

search space. Specifically, the reordering options admitted by loose reordering constraints

are pruned on-the-fly through a binary classifier that predicts whether a given input

word should be translated right after another. Evaluated on Arabic-English and German-

English against a strong PSMT baseline, the method is shown to preserve translation

quality under very loose reordering constraints. Moreover the reordering of verbs is sig-

nificantly improved and translation time is considerably reduced.

Chapter 7 concludes the thesis with a comparative evaluation of the proposed reorder-

ing techniques. In order to position this work in the broader field of SMT, a state-of-the-art

tree-based SMT system is also included in the evaluation. After a detailed discussion of

translation quality and efficiency results, the chapter summarizes the major findings of

the thesis and suggests future research directions.

1.4 Related publications

Parts of Chapter 4 were published in the following papers:

• “Chunk-based verb reordering in VSO sentences for Arabic-English statistical ma-

chine translation” appeared in the proceedings of the Joint Fifth Workshop on

Statistical Machine Translation and Metrics MATR [Bisazza and Federico, 2010].

• “Chunk-lattices for verb reordering in Arabic-English statistical machine transla-

tion” appeared in the Machine Translation Journal, Special Issue on MT for Arabic

[Bisazza et al., 2012].

• “Word lattices for morphological reduction and chunk-based reordering” appeared

in the proceedings of the Joint Fifth Workshop on Statistical Machine Translation

and Metrics MATR [Hardmeier et al., 2010].

Chapter 6 elaborates on the following conference paper:

• “Modified distortion matrices for phrase-based statistical machine translation” pub-

lished in the proceedings of the 50th Annual Meeting of the Association for Com-

putational Linguistics [Bisazza and Federico, 2012].
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Finally, Chapter 7 extends the journal article currently under revision:

• “Dynamically shaping the reordering search space of phrase-based statistical ma-

chine translation” submitted to the Transactions of the Association for Computa-

tional Linguistics [Bisazza and Federico, 2013].
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Chapter 2

Word Reordering in Statistical

Machine Translation

Word order differences are among the most important factors determining the

performance of statistical machine translation on a given language pair.

The first vision of a computer translating between natural languages, based on the

statistical techniques of information theory, dates back to the memorandum of Warren

Weaver [1949]. Later on, the emergence of modern SMT methods was strongly influenced

by the speech processing technology. Much like a speech recognizer, the first SMT system

was based on a noisy channel formulation that viewed the source language text as a coded

signal that had to be decoded to obtain the original message in the target language. While

this idea was essential to spur decades of research that led to the modern SMT systems,

it appeared soon that the translation problem had additional factors of complexity. Word

reordering was probably the most disruptive among them.

Natural languages vary greatly in how they arrange the sentence constituents. Thus,

finding the optimal translation of a sentence generally implies a much larger search space

than finding the optimal transcription of an utterance. Since the beginning, SMT re-

searchers tried to solve this problem with various modeling strategies, and by heuristi-

cally restricting the possible word reordering operations. Word reordering research has

advanced along with the core SMT research and has sometimes directed it. Nevertheless,

up to date, word order differences remain among the most important factors determining

the performance of SMT systems on a given language pair.
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2.1 Word-based models

According to the noisy channel formulation, the SMT process is called decoding and

consists in searching for the most probable target (or English) sentence e∗ given a source

(or foreign) sentence f :

e∗ = arg max
e
p(e|f) (2.1)

Using the Bayes’ theorem, the probability is decomposed as follows:

e∗ = arg max
e
p(e)p(f |e) (2.2)

Here, p(e) represents the target language model, whose task is to estimate the gener-

ated sentence’s fluency independently from the input sentence, and p(f |e) represents the

translation model, whose task is to estimate the likelihood of the input sentence f given

any translation hypothesis e. Early SMT approaches [Brown et al., 1990, 1993, Berger

et al., 1996] are built precisely on these two components, factorizing each at the level

of words. For the language model, a monolingual n-gram model assigning a probability

to each target word given its n-1 preceding words. For the translation model, instead,

dependencies between source and target words are first mediated by an alignment model

p(f , a|e) such that:

p(f |e) =
∑
a

p(f , a|e) (2.3)

where the hidden variable a represents any map from the source word positions to the

target word positions. Hence, the alignment model is factored at the level of words by

introducing a bilingual lexicon model measuring the association of source-target word

pairs. Notice that for computational efficiency reasons, during decoding (equation 2.2)

the summation over all alignments is replaced with a maximization over the most probable

alignment.

While the language model only needs large amounts of text in the target language

to be trained, the translation model requires word-aligned parallel texts. In practice,

though, word alignment is typically not available at the beginning of the training process

and is treated as a hidden variable. The expectation maximization algorithm is therefore

used to iteratively learn word alignment and translation model parameters from a parallel

corpus only aligned at the level of sentences.

Word reordering was not explicitly modeled by the first SMT approaches. To over-

come this and other limitations, word translation models of increasing complexity were
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designed throughout the 1990’s, including, for instance, word-to-word distance probabil-

ities. Eventually, another modeling advance marked a major breakthrough in the field:

namely, the change of translation units from words to phrases.

2.2 Phrase-based models

The phrase-based approach (PSMT) [Zens et al., 2002, Koehn et al., 2003, Och and Ney,

2002] introduced two important novelties: namely, the incorporation of context in the

translation unit, and the move from a generative to a discriminative modeling framework.

Formally, PSMT builds on the same equation as word-based SMT (2.2) but decom-

poses the translation probability p(f |e) differently:

e∗ = arg max
e
p(e)p(f |e) = arg max

eL
1

plm(eL1 ) max
bI1

ptm(fJ1 , b
I
1|eL1 ) (2.4)

The target string is still modeled by a word-based n-gram model plm:

plm(eL1 ) =
L∏
l=1

plm(el|el−n+1..el−1) (2.5)

while the translation model is governed by the phrase-alignment variable bI1 embedding

both a segmentation and a reordering of the source and target phrases. This is defined

as:

bI1 = ((J1, I1), (J2, I2), . . . , (JI , II)) (2.6)

such that I1, . . . , II are contiguous intervals partitioning the target word positions 1, . . . , L,

and J1, . . . , JI are corresponding but not necessarily contiguous intervals partitioning the

source word positions 1, . . . ,M . Hence, the phrase alignment model is decomposed into

a phrase-level model φ and a phrase distortion model d:

ptm(fM1 , bI1|eL1 ) = d(bI1) φ(fM1 |el1, bI1) =
I∏
i=1

d(Ji−1, Ji) φ(f̃i|ẽi) (2.7)

where f̃i is a shorthand for the substring (phrase) of f spanning the source interval Ji,

and ẽi is a shorthand for the substring (phrase) of e spanning the target interval Ii.

The second probability factor represents a basic reordering model that exponentially
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Figure 2.1: Word (top) and phrase (bottom) alignments of an English-Italian sentence pair.

penalizes longer jumps among consecutively translated phrases:

d(Ji−1, Ji) = e
−

˛̨̨
start(Ji)− end(Ji−1)− 1

˛̨̨
(2.8)

This model, also known as distortion cost or penalty, assigns the maximum probability

e0 = 1 to translations that preserve the order of the source phrases (monotonic). Note,

finally, that phrases in PSMT do not necessarily correspond to well-formed syntactic

phrases.

Modeling phrases mainly helps to solve the problem of identifying one-to-many word

equivalences, and of translating ambiguous words. Besides, it makes it possible to capture

a considerable amount of local reordering phenomena into the translation units. The

typical PSMT training pipeline involves word-level alignment of the parallel data with

methods similar to those of word-level SMT. Source-target phrase pairs are then extracted

from the word-aligned sentences by language-independent heuristics, and finally scored

based on relative frequencies. The difference between word- and phrase-based translation

is illustrated by Figure 2.1: the PSMT approach allows the models not only to abstract

from the level of words in order to capture local context inside the translation units (e. g.

from must–necessario and encouraged–incoraggiare to [must be encouraged]–[ necessario

incoraggiare]), but also to solve local reordering (e. g. from career–professionali and

paths–percorsi to [career paths]–[percorsi professionali]).

The advent of PSMT also coincided with the transition to a log-linear modeling frame-

work [Och and Ney, 2002], allowing for the integration of additional model components

in the form of weighted feature functions. In this framework, equation (2.4) is replaced

by:

e∗ = arg max
e

max
b

exp

[
R∑
r=1

λrhr(e, f ,b)

]
(2.9)

where hr(e, f ,b) are R arbitrary feature functions and λr the corresponding feature
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weights. For instance, a log-linear model corresponding to the generative PSMT model

presented above can be obtained with the following features:

• h1 = log plm(e)

• h2 = log φ(f |e,b)

• h3 = log d(b)

and uniform weights. In addition to these three core features, state-of-the art PSMT

systems typically include:

• an inverse phrase translation model: log φ(e|f ,b),

• direct and inverse lexical translation models: log lex(f |e,b) and log lex(e|f ,b),

• a phrase penalty I controlling the number of phrases used to translate the sentence,

• a word penalty L controlling the target output length.

The rationale of weighting the feature functions is that different aspects of translation

can have different importance for a given translation task. Feature weights can be tuned

discriminatively, by directly optimizing translation performance on a development set.

This approach is commonly called minimum error rate training (MERT) [Och, 2003], and

relies on automatic evaluation metrics like BLEU (see Section 2.5).

More advanced reordering models will be presented in Section 2.2.2, after a description

of the PSMT decoding process.

2.2.1 Decoding

Given a set of trained models, the actual translation process, called decoding, consists of

finding the optimal target sentence satisfying equation (2.9).

During PSMT decoding, three main operations have to be performed in parallel:

(i) segmenting the input into phrases, (ii) deciding in which order these should be trans-

lated, and (iii) choosing, for each input phrase, a translation option among those learnt

during training. The target sentence is always built from left to right, while the input

sentence positions can be covered in different orders. For instance, given the English

sentence of Figure 2.1, a decoder may choose to first translate the source phrase “must

be encouraged” by the Italian phrase “E’ necessario incoraggiare”, then it may go back

to the first part of the input and translate the phrase “Freedom of movement” by “tale

mobilità” etc. Alternatively, it could start from the first word “Freedom” and translate

it by “Libertà”, then it may continue with the two following words “of movement” and
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translate them by “di movimento” etc. After each translation step, the SMT models (or

feature functions) incrementally score different aspects of the translation hypothesis, such

as the probability of its target words being the translation of its source words, the fluency

of the target word sequence produced so far, or the likelihood of a particular reorder-

ing. The weighted sum of all features over a complete hypothesis determines the optimal

translation.

Because searching over the space of all possible translations would be NP-hard, SMT

decoders employ heuristic search algorithms to only explore a promising subset of the

search space. In particular, state-of-the-art PSMT systems rely on a dynamic program-

ming beam-search algorithm [Tillmann and Ney, 2003], and on reordering constraints to

limit decoding complexity.

The dynamic programming strategy consists of decomposing the problem into sim-

pler and overlapping sub-problems, in such a way that the best overall solution can be

obtained by combining the best partial solutions. Each sub-problem is then solved only

once and its solution stored in a table for subsequent uses. More specifically, the PSMT

decoder exploits the fact that, among all partial decoding paths covering the same sub-

set of input positions, only the best one can lead to the best overall solution. Hence,

hypotheses obtained by translating exactly the same input words can be recombined dur-

ing decoding: that is, all but the highest-scoring one can be dropped without loss of

optimality. As an example, consider the following translation hypotheses:

[Freedom of movement] ... [Freedom] [of movement] ... [Freedom of movement] ...

[La libertà di movimento] ... [La libertà] [di movimento] ... [La mobilità] ...

All three hypotheses share the same source words and could be in principle recombined.

However, the conditions for hypothesis recombination also depend on the models included

in the decoder. For instance, the target n-gram model uses the last n-1 words to compute

the score of the next produced word. Recombination is then inhibited between hypotheses

that differ in their last n-1 words. Thus, only the first two hypotheses above can be

recombined if a bigram or higher-order target language model is used. In general, the

complexity of a dynamic programming decoder is exponential in the sentence length.

The beam search strategy consists of advancing along many search paths in parallel

and abandoning the least promising ones after each step. As opposed to hypothesis

recombination, beam search does not guarantee that a pruned path was not actually the

one leading to the best overall translation. To reduce the risk of search errors introduced

by this approach, pruning is applied to subsets of comparable hypotheses. To this end,
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partial hypotheses are organized into multiple stacks based on the number of source words

translated. For example, the following hypotheses would fall in the 3-source-word stack:

[Freedom of movement] ... [Freedom] ... [must be]... ... [must be encouraged] ...

[La libertà di movimento] ... [La libertà] [deve essere] ... [E’ necessario incoraggiare] ...

Moreover, an estimate of the cost needed to complete each hypothesis (i. e. future cost) is

included in its score before pruning. Each stack is then pruned according to two criteria:

• histogram pruning: discard all but the N best hypotheses in the stack;

• threshold pruning: discard all the hypotheses whose score is lower than the stack’s

best score by a fixed threshold.

Beam search reduces the complexity of dynamic programming decoding from exponential

to quadratic in the input sentence length.

Finally, reordering constraints are used to limit the space of explorable input per-

mutations. The constraint originally included in the PSMT framework is called distor-

tion limit (DL). This consists of allowing the decoder to skip, or jump, at most k words

from the last translated phrase to the next one. More precisely, the limit is imposed on

the distortion D between consecutively translated phrases (cf. equation 2.8):

D(Ji−1, Ji) = |start(Ji)− end(Ji−1)− 1| ≤ DL (2.10)

Notice that a monotonic step means 0-distortion, whereas covering the position immedi-

ately preceding the current one, counts for 2. Thus, longer jumps are admitted forwards.

To avoid decoding dead-ends, the distortion limit has to be coupled with another

constraint (gap constraint)1 which ensures that the left-most uncovered input position (`)

will still be reachable after translating the next source phrase (f̃i). Formally, to translate

a new phrase f̃i, the gap G(f̃i, `) must not be larger than the DL:

G(f̃i, `) = |`− end(Ji)− 1| ≤ DL (2.11)

Setting a low distortion limit means only exploring local reorderings, based on the

intuition that languages tend to arrange their sentence constituents in similar orders. This

further reduces decoding complexity, making it linear in the sentence length. Besides being

1Although implemented in our reference PSMT toolkit Moses [Koehn et al., 2007], this constraint is
not included in the original PSMT formulation, nor documented in the toolkit’s manual. We use the
term “gap constraint” following Chang and Collins [2011].
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essential for efficiency, reordering constraints are also important for translation quality

because the existing SMT models are typically not discriminative enough to guide the

search over very large sets of reordering hypotheses. However, reordering constraints

have also several drawbacks, as we will discuss later.

2.2.2 Advanced reordering modeling

Assuming a one-to-one correspondence between source and target phrases, reordering in

PSMT can be viewed as the problem of searching through a set of permutations of the

input sentence. Thus, two sub-problems arise: defining the set of allowed permutations

(reordering constraints) and scoring the allowed permutations according to some likelihood

criterion (reordering models or feature functions). We begin with the latter, returning to

the constraints later in this section.

Reordering feature functions

Target language modeling is the primary way to reward promising reorderings during

translation. This is done indirectly, through the scoring of target word n-grams that

are produced by translating the source positions in different orders. However, the fixed

window of language models used in SMT (typically 5 or 6 words) makes them mostly

insensitive to global reordering phenomena.

In the last years, a growing interest for language pairs with different word orders, such

as Arabic-English and Chinese-English, has favored the development of new techniques to

explicitly model the reordering problem. Given a source sentence, the search for its opti-

mal reordering is generally decomposed into a sequence of local reordering decisions, as is

done for the whole translation process. Thus, the basic reordering step corresponds to the

relative positioning of the word/phrase being translated with respect to the word/phrase

previously covered. Existing reordering models range from the simplest distortion penalty,

where longer reorderings are penalized purely based on the jump length, to more complex

models that are conditioned on the words being translated and on their context.

We have already presented in equation (2.8) the distortion cost function, which is

commonly employed as a baseline reordering model by modern PSMT systems, such as

Moses [Koehn et al., 2007]. A weakness of this model is that it penalizes long jumps only

after these have been performed, rather than accumulating their cost gradually. As an

effect, hypotheses with gaps (i. e. uncovered input positions) can proliferate and cause

the pruning of more monotonic hypotheses that could lead to overall better translations.
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Figure 2.2: Phrase reordering example showing the difference between standard and early dis-
tortion costs (cumulative values). The total cost is the same, but early distortion [Moore and
Quirk, 2007] anticipates its accumulation, by incorporating an estimate of the future jumps cost.

To solve this problem, Moore and Quirk [2007] propose an improved version of the

distortion cost function which consists in “incorporating an estimate of the distortion

penalty yet to be incurred into the estimated score for the portion of the source sentence

remaining to be translated” (early distortion cost). This function has the same value

as the standard one over a complete translation hypothesis, provided that the jump from

the last translated word to the end of the sentence is taken into account. As a differ-

ence, though, it anticipates the gradual accumulation of the total distortion cost, making

hypotheses with the same number of covered words more comparable with one another.

Early distortion cost is computed by an algorithm that keeps track of the uncovered

input positions. In Figure 2.2 we provide an example to illustrate the difference between

standard and early distortion costs, while we invite the reader to refer to Moore and Quirk

[2007] for the detailed algorithm. We have implemented early distortion cost in the Moses

platform and used it successfully in some of our experiments, as we will see in Chapters

6 and 7.

The more sophisticated models can be divided into three families: phrase orientation

models, jump models and source decoding sequence models. A representative selection of

state-of-the-art reordering models is summarized in Table 2.1.

Phrase orientation models [Tillmann, 2004, Koehn et al., 2005], also known as

lexicalized reordering models, predict the orientation of a phrase with respect to the last

translated one, by classifying it as monotone, swap or discontinuous.2 The model prob-

abilities are conditioned on the whole source and target phrases, and they are estimated

from the relative frequencies observed in a parallel corpus. Hierarchical phrase orienta-

tion models [Galley and Manning, 2008] are a refinement of the latter, improving the way

2The discontinuous class can be further divided into discontinuous left and discontinuous right.
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Reordering models References Train Reordering step Features
mode classification

linear distortion cost Koehn & al.′03 – jump length based –

lexicalized (hierarchical) Tillmann′04 gener. ternary (monotonic, source/target phrases
phrase orientation Koehn & al.′05 swap, discontinuous)

Galley&Manning′08
discriminative phrase Zens & Ney′06 discr. binary (left, right) source/target phrases,
orientation words, POS

inbound/outbound/pairwise Al-Onaizan & gener. jump length based source words
lexicalized distortion Papineni′06
inbound/outbound Green & al.′10 discr. jump length-bin source words, POS,
discriminative length-bin based (9 classes) position; sent. length

reordered source Feng & al.′10a gener. – source words
n-gram (9-gram context)
source word-after-word Visweswariah&al.′11 discr. – source words, POS

context-based

Table 2.1: An overview of state-of-the-art reordering models for PSMT.

of computing the orientation of a new phrase: adjacent blocks can be merged together

to form longer phrases, so that a larger number of long-span swaps is detected. As an

alternative to the relative-frequency approach, Zens and Ney [2006] addressed the same

problem with a maximum-entropy model. Within this framework, they tested a richer

combination of features (phrase- and word-level, lexical and word-class based) and found

that source word features help most. Phrase orientation models have proven very useful

for short and medium-range reordering and are probably the most widely used in PSMT

nowadays. However, their coarse classification of reordering steps makes them unsuitable

to model long-range reordering phenomena.

Jump models predict the direction and length of a jump to perform after a given

input position. Al-Onaizan and Papineni [2006] proposed to model the probability of

possible jumps given the last covered source word, the word to be translated, or both

(outbound, inbound or pairwise lexicalized distortion models). Here, probabilities are

conditioned on the exact jump length, wich yields a risk of over-fitting and data sparseness.

To cope with this issue, a harsh smoothing factor penalizing longer jumps is applied, so

that the lexicalized jump length probability accounts for only 1/9 of the distortion cost

actually used in decoding. Green et al. [2010] introduced a discriminative classifier that

scores different jumps depending on the words being translated, on their part-of-speech

(POS), on their relative position in the sentence, and on the sentence length. In doing

this, they take two steps towards robustness. First, jumps are grouped into length bins
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whose size increases with the jump length:

< −6 [-6,-4] [-3,-2] [-1] 0 1 [2,3] [4,6] > 6

Second, irrelevant features are filtered out automatically by means of a regularization

technique. Tested on an Arabic-English task, these models outperform hierarchical phrase

orientation models only at high distortion limits, but no improvement is shown over the

best available baseline. In both these works, best Arabic-English results were obtained

within a rather small DL: namely, 8 in [Al-Onaizan and Papineni, 2006] and 5 in [Green

et al., 2010], thus failing to capture the rare but crucial long reorderings that are the

main motivation of these works. A drawback of the jump modeling approach is that long

jumps are typically penalized because of their low frequency compared to short jumps.

Source decoding sequence models predict which input word3 is likely to be trans-

lated at a given state of decoding. Reordered source language models [Feng et al., 2010a]

are smoothed n-gram models trained on a corpus of source sentences reordered to match

the target word order. When integrated into the SMT system, they assign a probability

to each newly translated word given the n-1 previously translated words. In this way,

jumps are not directly addressed. Instead, the model rewards reordered word sequences

seen in the training data. When testing a 9-gram model on a gold reordered corpus,

Feng et al. [2010a] reported a rather high perplexity, likely due to data sparseness and

consequent abuse of back-off probabilities by the LM. Nevertheless, integrating the model

into a PSMT system yielded a gain in performance comparable to the gain achieved by

a maximum-entropy phrase orientation model Zens and Ney [2006]. Slight but consistent

improvements were obtained when both models were used together. Finally, source word

pair (or word-after-word) reordering models [Visweswariah et al., 2011] estimate, for each

pair of input words i and j, the cost of translating j right after i, given various features

of i, j and their respective contexts. Differently from reordered source LMs, these models

are discriminative and can profit from richer feature sets. At the same time, they do

not employ decoding history-based features, which allows for more effective hypothesis

recombination. Visweswariah et al. [2011] only applied their model as pre-processing to

the training and test data. We will see in this thesis how a similar model can be integrated

into a PSMT decoder (Chapter 6).

3By “input word” or “source word”, we denote the word at a given position of the input sentence, as
opposed to the notion of word type.
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Reordering constraints

As previously discussed, limiting the input permutation space is necessary for phrase-

based decoding to achieve linear complexity.

We have already described in equation (2.10) the distortion limit (DL), which is

commonly used by modern PSMT systems such as Moses Koehn et al. [2007]. In fact,

the first constraining paradigms were formulated earlier for word-based SMT in the IBM

Research labs [Berger et al., 1996]:

• MS (max skip): at each decoding step, translate one of the first k uncovered

source positions. In other words, the translation of a limited number of words (at

most k) may be postponed indefinitely.

• IS (inverted skip): at each decoding step, check how many source words after the

first uncovered position j have been translated. If they are less than k−1, translate

any uncovered word, otherwise translate j. This means that the translation of at

most k−1 source words can be anticipated at any point, while the rest of the sentence

is covered monotonically.

The growth of the permutation search space for a sentence of 10 words, with respect to

the threshold k of the MS, IS and DL constraints is reported in Table 2.2. We notice that

the space defined by DL is considerably smaller than the one defined by IBM constraints,

as long as k is small compared to the sentence length. However, both types of constraint

grow exponentially with k. The default Moses configuration includes a DL of 6 words,

and this is widely accepted as an optimal baseline setting across language pairs.

Number of permutations (in thousands)
Threshold (k): 2 3 4 5 6 7 8 9 10+
MS, IS 0.5 13 98 375 933 1729 2581 3266 3629
DL 0.2 3 24 128 476 1246 2333 3266 3629

Table 2.2: Number of permutations allowed for a 10-word sentence by the maximum skip (MS),
inverted skip (IS) and distortion limit (DL) reordering constraints, while varying the respective
thresholds (k). The total number of permutations is 10!=3,628,800.

An enhancement of the IBM constraints was proposed by Tillmann and Ney [2003] to

specifically address the reordering of the verb between German and English, in a word-

based SMT system. This paradigm allows to set different thresholds for the anticipation

and for the postponement of some input words. A reordering state is added to the decoder

to ensure that any reordering pattern (either skip or move) is completed before initiating
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a new one. Both reordering patterns are strictly defined and, aside from them, decoding

proceeds monotonically. For the German-English translation direction, Tillmann and

Ney [2003] manually set their thresholds so that one word may be skipped for at most

4 positions, and up to 2 words may be moved up to 10 positions. In this way, a non-

contiguous verb chunk in German may be correctly reordered into a contiguous verb

chunk in English. Note, however, that these constraints do not take into account the

actual position of the verbs in the input sentence.

A different kind of reordering constraint can be derived from the so-called Inversion

Transduction Grammars (ITG) Wu [1997]. ITGs only admit permutations that are gen-

erated by recursively swapping pairs of adjacent blocks of words. In particular, ITG

constraints disallow reorderings that generalize the patterns 3142 and 2413, which are

very rarely attested in natural languages.4 Enforcing ITG constraints in PSMT decoding

is not as trivial as enforcing constraints based on word-to-word distances. Zens et al.

[2004] proposed a method to do this by inspecting the source coverage vector. However,

Cherry et al. [2012] later demonstrated that this method is not able to prevent all non-

ITG permutations. Exact ITG-constraint enforcement can be achieved by integrating a

deterministic permutation parser into the decoder, as proposed by Feng et al. [2010b].

Interestingly, Cherry et al. [2012] found no consistent benefit from adding hard ITG-

constraints to a PSMT system which already included a hierarchical phrase orientation

model [Galley and Manning, 2008].

Whether based on word-to-word distances (IBM and Moses-style) or on permutation

patterns (skip/move and ITG), the existing reordering constraints are not sensitive to the

word being translated nor to its context. Rather, they are uniform throughout the input

sentence. This results in a very coarse definition of the reordering search space, which is

problematic in language pairs with different syntactic structures.

To address this problem, Yahyaei and Monz [2010] presented a technique to dynam-

ically vary the DL during decoding: they train a discriminative jump model to predict

the most probable jump length after each input word, and use the predicted value as

the DL after that position. Unfortunately, this method appears to generate inconsistent

constraints leading to decoding dead-ends. As a solution, the dynamic DL is relaxed

when needed to reach the first uncovered position. The authors reported translation im-

provements only on a small-scale task with short sentences (BTEC), over a baseline that

includes a very simple reordering model.

4Refer to [Zens and Ney, 2003] for a comparative study of the IBM and ITG constraints.
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2.3 Tree-based models

The SMT approaches presented so far are shallow in the sense that they learn direct corre-

spondences between source and target words, only relying on a local context. Sometimes,

though, the translation process would highly benefit from a structured representation of

the sentence, where syntactic dependencies between words are made explicit. For instance,

the choice of the correct form for the translation of an adjective could depend on a noun

that lies outside its immediate context. Likewise, in our motivating example (Figure 1.1),

knowing the span of the subject may be enough to predict the correct reordering of the

verb. Indeed, word reordering is one of the translation aspects that most motivated the

development of tree-based SMT.

To date, many frameworks have been proposed to model translation via tree-like struc-

tures, such as Wu [1997], Yamada [2002], Galley et al. [2004], Chiang [2005], Menezes and

Quirk [2005], Zollmann and Venugopal [2006] among others. These can differ in the

formalism they use to represent the trees, or in how they apply the trees (i. e. to the

source, to the target, or to both languages). Moreover, some approaches build on trees

produced by pre-trained monolingual parsers, while others induce their grammar directly

from word-aligned parallel texts. We refer to Koehn [2010] for a comprehensive overview

of the tree-based SMT field, while here we only focus on one approach that has gained

popularity as a strong competitor to the phrase-based approach: namely, hierarchical

phrase-based SMT (HSMT) [Chiang, 2005].

HSMT models build on the formalism of probabilistic Synchronous Context-Free Gram-

mars (SCFG), and are directly learnt from word-aligned parallel data. HSMT rules are

not syntactically motivated as they only admit two non-terminal symbols: S for the sen-

tence root, and X. The major strength of HSMT compared to PSMT, is the ability to

learn discontinous phrases and long-range reordering rules.

Figure 2.3 shows an example SCFG extracted from a word-aligned parallel sentence.

Each synchronous rule associates a non-terminal symbol (left-hand) with a source and

a target symbol sequence (right-hand). The right-hand side may include non-terminals

only (rules 1–2), or a mix of terminals and non-terminals (rule 3), or only terminals (rules

4–5), the latter being equivalent to regular phrase pairs. In particular, rule 3 includes two

non-terminal symbols, X1 and X2, that are swapped in the target side, thus providing an

example of both discontinous phrase and reordering rule. From the same rule, we can see

that reordering in HSMT is triggered by lexical items – the so-called lexical anchors of

a rule. Indeed, compared to syntax-based approaches where rules contain labeled non-

terminals (e. g. vp, np etc.), HSMT reordering is more precise but generalizes less to new

20



2.3. TREE-BASED MODELS

Figure 2.3: An example Synchronous Context-Free Grammar extracted from a word-aligned
parallel sentence.

data.

Similarly to phrase pairs in PSMT, hierarchical rules are scored by maximum likelihood

estimates using relative frequencies.

Tree-based SMT decoders work similarly to parsers. In particular, HSMT decoders are

typically based on a chart parsing algorithm. Chart decoding complexity is cubic in the

input length, and even higher when taking into account the target language model. This

issue can be addressed by different strategies such as cube pruning [Chiang, 2007], which

reduces the LM complexity to a constant, or rule application constraints. Although effec-

tive in reducing the size of the search space, these methods cannot change the fundamental

order of complexity of the algorithm, which remains cubic.

Compared to PSMT decoding, chart decoding is a radically different approach to the

word reordering problem, as the target sentence is not produced from left to right but

following a tree derivation order. The resulting reordering space is more linguistically mo-

tivated, but still too large to be exhaustively explored, therefore HSMT decoders impose a

hard limit on the maximum number of source words that may be covered by non-terminal

symbols (span constraint). As a result, long-range reordering represents a challenge also

for HSMT. This problem has only recently been addressed by Braune et al. [2012], who

propose to relax the span constraint only for a specific subset of the SCFG rules which
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are more likely to capture long reordering patterns in German-English.

We conclude this section by describing two SMT frameworks that couple together

tree-based and string-based aspects: namely, discontinous phrase-based SMT [Galley and

Manning, 2010] and the so-called “context-free reordering, finite-state translation” ap-

proach by Dyer and Resnik [2010].

In order to combine the efficiency of string-based decoding with the benefits of dis-

continuous phrases modeled in HSMT, Galley and Manning [2010] propose a method to

extract phrases with gaps from word aligned parallel data, and modify a standard string-

based PSMT decoder to support them. The resulting system is shown to significantly

outperforms both a PSMT and an HSMT system on a Chinese-English task. Long-range

reordering is however not addressed by this work, who adopts a standard distortion limit

of 6 words.

Dyer and Resnik [2010] aim instead at combining the efficiency and modeling flexibility

of string-based decoding with the powerful reordering mechanisms of syntax-based SMT.

They use the syntactic parse tree of the input sentence to define the space of possible

reorderings – represented as a reordering forest – but perform the actual translation with

string-based models.

2.4 Word reordering as pre-processing

Given the difficulties of solving word reordering during the decoding process, a productive

line of research has focused on decoupling reordering decisions from translation decisions.

These approaches typically aim at arranging the source sentence in a target-like order

before translating it. Thus, word reordering is solved as pre-processing in a monolingual

fashion: i. e. pre-ordering.

Different strategies have been proposed: deterministic pre-ordering aims at finding

a single optimal reordering for each input sentence, which is then translated monotonically

[Xia and McCord, 2004] or with a low DL [Collins et al., 2005, Costa-jussà and Fonollosa,

2006, Habash, 2007, Tromble and Eisner, 2009, Genzel, 2010, Gojun and Fraser, 2012];

non-deterministic pre-ordering encodes multiple alternative reorderings into a word

lattice and lets a monotonic decoder choose the best path according to its models [Zhang

et al., 2007, Crego and Habash, 2008, Elming and Habash, 2009, Niehues and Kolss,

2009]. Both kinds of methods are conceived as alternatives, rather than enhancements,

to standard PSMT reordering.

As for pre-ordering rules, they can be manually written [Collins et al., 2005, Gojun
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and Fraser, 2012] or automatically learned from syntactic parses [Xia and McCord, 2004,

Habash, 2007, Elming and Habash, 2009, Genzel, 2010], shallow syntax chunks [Zhang

et al., 2007, Crego and Habash, 2008] or part-of-speech labels [Niehues and Kolss, 2009]. In

[Costa-jussà and Fonollosa, 2006], pre-ordering is learnt by training a monolingual PSMT

system on a parallel corpus of original-to-preordered source sentences. In [Tromble and

Eisner, 2009], pre-ordering is cast as a permutation problem and solved by a model that

estimates the probability of reversing the relative order of any two input words.

Some of these works are particularly relevant for our thesis because they specifically

address reordering between Arabic and English. Habash [2007] extracts reordering rules

from a word-aligned parallel corpus with full parses on the source side. The rules reorder

syntactic constituents and are applied in a deterministic way (always the most probable)

to preprocess the training and test data. The technique achieves consistent improvements

only in very restrictive conditions: maximum phrase length of 1 and monotonic decoding.

The use of shallow syntax-based reordering rules, first proposed by Zhang et al. [2007] for

a Chinese-English system, is applied to Arabic-English by Crego and Habash [2008]. In

both works, the source permutations generated by the rules are represented in a lattice,

which is then processed by a monotonic phrase- or n-gram-based decoder. Elming and

Habash [2009] follow a similar approach for English-Arabic, but with rules learnt from

full syntactic parses.

The German language was also addressed in several works. Collins et al. [2005] propose

a set of six rules aimed at arranging the German sentence in an English-like order. The

rules address in particular the position of verbs, verb particles and negation particles, and

they are applied on full parse trees. Following a similar approach, Gojun and Fraser [2012]

develop a set of rules for the opposite translation direction. Both works achieve significant

improvements in terms of BLEU. From a manual analysis of their system, though, Gojun

and Fraser [2012] report that about 10% of the English clauses were wrongly pre-ordered,

mostly due to parsing errors.

Two works have explicitly challenged the reliability of syntactic parses for pre-ordering,

particularly in Arabic-English: Green et al. [2009] analyzed two state-of-the-art parsers

[Bikel, 2004, Klein and Manning, 2003] and reported F-measures of only 55-56% at the

sub-task of detecting Arabic NP subjects in verb-initial clauses. Similar results were

observed by Carpuat et al. [2010] using a dependency parser [Nivre et al., 2006]. The

same paper also showed that the correct pre-ordering could not be safely predicted even

from correct parses.

Rather than relying on supervised parsers trained on golden treebanks, two recent

works have induced specific parsers directly from non-annotated parallel texts [DeNero
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and Uszkoreit, 2011, Neubig et al., 2012]. In these works, source sentence reorderings

are first inferred from the word alignments with the target translation. Then, a parsing

model is trained to maximize the likelihood of source trees that can generate such re-

orderings. Evaluated on the English-Japanese language pair, these methods almost reach

the performance of a pre-ordering method that employs a supervised parser.

In alternative to the pre-processing approach, a smaller line of research has instead

focused on reordering the target output after a monotonic translation process (e. g. Ban-

galore and Riccardi [2000], Sudoh et al. [2011]) or on re-scoring a set of n-best translation

candidates produced by a medium-distortion PSMT system – for instance by means of

POS-based reordering templates ([Chen et al., 2006]) or word-class specific distortion

models [Gupta et al., 2007].

2.5 Evaluating word reordering

Automatically evaluating translation quality is a complex problem because there are in-

numerable ways to correctly render the same source sentence’s meaning in the target

language. Therefore, SMT systems are generally judged on the extent to which their

outputs resemble a set of reference translations produced by different human translators.

Despite relying on a very rough approximation of language variability, this approach pro-

vides SMT researchers with fast automatic metrics that can guide, at least in part, their

steps towards improvement. Besides, fast evaluation metrics are used to automatically

tune SMT feature weights on a development corpus, by means of minimum error rate

training (MERT) procedures [Och, 2003].

While BLEU remains a widespread choice for both system evaluation and optimization,

countless other measures have been proposed to overcome its many limitations. The design

of MT evaluation metrics correlating with human judgements is an active research area,

promoted for instance by the Workshop on Statistical Machine Translation [Callison-

Burch et al., 2010]. In this thesis we adopt two general-purpose metrics (BLEU and

METEOR) and a reordering-specific metric (KRS).

BLEU (Bilingual Evaluation Understudy metric) [Papineni et al., 2001] is a lexical

match-based score that represents a de-facto standard for SMT evaluation. Here, prox-

imity between candidate and reference translations is measured in terms of overlapping

n-grams, with n typically ranging from 1 to 4. For each n a modified precision score p(n)

is computed on the whole test set and combined in a geometric mean.5 The resulting score

5See Papineni et al. [2001] for more details on the computation of modified (or clipped) precisions.
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(PBLEU) is then multiplied by a brevity penalty (BP ) that accounts for length mismatches

between reference and candidate translations:

BLEU = PBLEU ·BP (2.12)

BP (ref, out) =

{
1 if |out| > |ref |
exp(1− |ref ||out| ) otherwise

(2.13)

Using n-grams is a limited solution to the problem of word ordering evaluation: First,

because only perfect surface matches are counted, without any morphology or synonymy

notion. Second, because the absolute positioning of words in the sentence is not captured,

but only their proximity within a small context.

The former issue is addressed, at least to some extent, by METEOR (Metric for Eval-

uation of Translation with Explicit ORdering metric) [Banerjee and Lavie, 2005], which

relies on language-specific stemmers and synonymy modules to go beyond the surface-level

similarity. The core formula of METEOR is the harmonic mean (Fmean) of word-level pre-

cision and recall computed over a word alignment between the hypothesis and reference

translations. As for word order, METEOR treats it separately with a fragmentation

penalty FragP . That is:

METEOR = Fmean · (1− FragP ) (2.14)

FragP = γ

(
ch

m

)β
(2.15)

where ch is the smallest number of chunks that the hypothesis must be divided into to

align with the reference translation; m is the number of words matched by the alignment; β

and γ are free scaling parameters. This measure too is poorly sensitive to word reordering

errors because it only counts breaks in the word order with no distinction between short

and long-range reordering.

The weakness of BLEU and METEOR with respect to word order was demonstrated by

Birch et al. [2010] with a significant example that we report in Table 2.3. For simplicity,

the example assumes that the reference order is monotonic and that hypotheses and

reference translations contain exactly the same words. According to both metrics, the

hypothesis (a) is worse than (b), although in (a) only two adjacent words are swapped

while in (b) the two halves of the sentence are swapped.

To overcome these limitations, we complement our evaluation with a metric specifically
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Example: (a) (b)
bleu 61.80 81.33
meteor 86.91 92.63

Table 2.3: Two example alignments and their respective BLEU and METEOR scores, assuming
that the reference alignment is monotonic. The permutation resulting from the hypothesis
alignment is reported under each matrix, where bullet points represent jumps between non-
sequential indices. Taken from Birch et al. [2010].

designed to measure word order differences. Following the approach proposed in the same

paper [Birch et al., 2010], we measure the similarity between the reorderings needed

to reach the reference translations from the source sentence and those applied by the

decoder to produce the candidate translation. In practice, this is done by converting

word alignments to permutations and computing a permutation distance among them.

Among the metrics proposed in their paper, we chose the square root of the Kendall’s

Tau, as this was shown to be reliable and highly correlated with human judgements.

The normalized Kendall’s Tau distance K is originally a measure of disagreement

between rankings. Given a set of n elements and two permutations π and σ, the K

distance corresponds to the number of discordant pairs (i.e. pairs of elements whose

relative ordering differs in the two permutations) normalized by the total number of

ordered element pairs:

K(π, σ) =

∑n
i=1

∑n
j=1 d(i, j)

1
2
n(n− 1)

where d(i, j) =

{
1 if πi < πj and σi > σj

0 otherwise

Birch et al. [2010] further suggested to extract the square root of K to obtain a function

that is more discriminative on lower distance ranges, i.e. for translations that are closer

to the reference word ordering. Finally, the Kendall Reordering Score (KRS) – a
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positive measure of quality ranging from 0 to 1 – is computed by substracting the latter

quantity from one, and by multiplying the result by a brevity penalty (BP ) that accounts

for length mismatches between reference and candidate translations:

KRS(π, σ) = (1−
√
K(π, σ)) ·BP

The BP definition corresponds to that of BLEU, with the difference that this one is

computed at the sentence level. In case of multiple references, the one that yields the

highest score is retained for each test sentence. Finally, the average of all sentence-level

KRS scores gives the global KRS of the test set.

Figure 2.4: Example of KRS computation showing how word alignments are converted to
permutations.

Figure 2.4 illustrates an example of KRS computation. A source sentence composed

of 7 words (in the center) is aligned to a reference translation of 8 words and to an MT

output of 6. The two word-alignment sets are converted to permutations, as shown in

the right side of the figure, according to the following rules: (i) multiple source words

aligned to the same target word are considered to be in monotonic order, (ii) non-aligned

source words are assumed to immediately follow the previous source word, and (iii) if a

source word is aligned to non-adjacent words in the target, only the first alignment is

retained. Thus, for example, the link s2-t5 is ignored, while the word s7 is inserted

right after s6 in the resulting permutation σ. The discordant pairs between π and σ are:

(s1,s2),(s1,s3),(s1,s4),(s5,s6),(s5,s7), hence:

K(π, σ) =
5

1
2
7(7− 1)

= 0.2381 , BP (π, σ) = exp

(
1− 8

6

)
= 0.7165

and KRS = (1−
√

0.2381) ·BP = 0.3669

Going back to the example of Table 2.3, hypothesis (a) would rightly obtain a much

higher KRS than (b): that is 0.8509 versus 0.2546.
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In a related work, Isozaki et al. [2010] proposed to directly measure the reordering

occurring between the words of the hypothesis and those of the reference translation.

A weakness of this approach is that only identical words contribute to the score. To

address this problem, the permutation distance is then multiplied by a word precision

score that penalizes hypotheses containing few reference words. Still, the resulting metric

assigns different scores to hypotheses differing in their lexical choice, but not in their word

reordering. On the contrary, KRS is robust to lexical choice because it does not directly

compare output and reference words but only the positions of their translations. For this

reason, we find it more suitable to specifically evaluate the reordering aspect of SMT.

2.6 Open issues

Translating words in the correct order is essential to preserve the meaning of a sentence.

For instance, taking English as the target language, it is precisely the relative positioning

of the predicate arguments that determines their role, in the absence of case markers.

Thus, a wrongly reordered verb with minor impact on automatic scores, can be judged

very badly by a human evaluator.

Although many solutions have been proposed to explicitly model word reordering dur-

ing decoding, PSMT still largely fails to handle long-range word movements in language

pairs with different syntactic structures.6. We believe this is mostly not due to deficiencies

of the existing reordering models, but rather to a very coarse definition of the reorder-

ing search space. Indeed, the reordering constraints that are currently used to limit the

space of explorable input permutations, are rather simple and typically based on word-

to-word distances. For instance, the distortion limit constraint used by the open-source

toolkit Moses is not sensitive to the actual words being translated, nor to their context,

but is uniform throughout the input sentence. Relaxing this kind of constraints means

dramatically increasing the size of the search space, making the reordering model’s task

extremely complex and intensifying the risk of model errors. As a result, even in language

pairs where long reordering is regularly observed, PSMT quality degrades when long word

movements are allowed to the decoder – typically, when the DL is higher than 6 words.

Indeed, decent performances are obtained with a low or medium DL, but this obviously

comes at the expense of long reorderings, which are often crucial to preserve the general

meaning of a translated sentence.

On the other hand, tree-based SMT methods have a radically different approach to

6For empirical evidence, see for instance Birch et al. [2009], Galley and Manning [2008].
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the word reordering problem. While being more linguistically motivated than PSMT,

these methods fail to outperform it on many language pairs, including Arabic-English

(see for example Birch et al. [2009]). This can be due to different factors: in the hierar-

chical framework, reordering information is totally lexicalized, thus the presence of words

triggering reordering is essential for the success of these models. Moreover, the HSMT

reordering space is typically restricted by hard constraints that improve efficiency and

translation quality overall, at the expense of long-range word movements. Thus, HSMT

can suffer from similar problems as PSMT.

Alternatively, reordering can be solved by relying on a syntactic parse tree of the

input. In this case the reordering space corresponds to only those permutations that can

be generated by permuting the children of each node in the tree. This strategy is adopted

by syntax-based SMT methods, where the tree is reordered and translated simultaneously,

and by syntactic pre-ordering methods, where the tree is transformed before translation.

The success of these approaches depends on the degree of isomorphism of the modeled

language pair, and also on the parser’s performance, which can vary substantially across

languages.

To address these problems, we adopt the PSMT framework and investigate various

techniques to refine its reordering search space based on prior linguistic knowledge. As a

difference from pre-ordering, we do not take hard reordering decisions before the actual

translation process, as these naturally interact with the other aspects of translation. By

leaving the final reordering decision to the decoder, we can thus take advantage of the most

recent advances in reordering modeling. Finally, considering that parsing resources are

still scarce and inaccurate in many languages, we only employ other kinds of annotation

– like part-of-speech and shallow syntax – which are simpler to automate, less prone to

errors, and available in more languages.

In the following chapter, we will analyze the word reordering characteristics of various

language pairs, based on a large body of theoretical linguistic knowledge.
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Chapter 3

Word Reordering in Different

Language Pairs

Developing a methodology to predict the complexity of reordering in a given

language pair is key to selecting the right SMT models and to improving them.

To date, word reordering phenomena have mainly been analyzed from a quantitative

perspective [Birch et al., 2008, 2009]. We argue that, besides measuring the amount

of reordering, it is important to understand which kinds of reordering occur in a given

language pair. In this chapter, we present a qualitative analysis of word reordering based

on linguistic knowledge, which can guide the choice of a suitable SMT approach. To this

end, we consider a large body of syntactic information collected from more than 1500

languages, and systematized in the World Atlas of Language Structures (WALS) [Dryer

and Haspelmath, 2011].

Following the seminal work of Matthew S. Dryer, we describe the word order profile of

a language by the canonical orders of some of its constituent sets (word order features).

The resulting language pair classification is primarily based on the order of subject, object

and verb, and further refined according to the order of several other element pairs, such

as noun-adjective, verb-negation, etc. We then compare the word order features of several

languages that were studied in the SMT field, and show that empirical results generally

confirm existing theoretical knowledge.

3.1 A qualitative analysis

The amount of word reordering found in a language pair is known to be a good predictor

of SMT performance. Birch et al. [2008] considered three variables – reordering quantity,
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morphological complexity and historical relatedness – and found the first to have the

highest correlation with the BLEU scores of a standard PSMT system, over a sample

of 110 European language pairs. Birch et al. [2009] further analyzed the distribution of

different reordering widths in Arabic-English and Chinese-English, and the ability of two

SMT approaches to model them. They found that the PSMT approach is more suitable

for language pairs where most reordering is local (Arabic-English), while the hierarchical

approach is stronger when medium-range reorderings are dominant (Chinese-English).

Still, both approaches failed to capture most of the long-range reorderings found in the

reference corpora.

These findings are indeed relevant to our work, but we believe there is also much to

learn from theoretical linguistic knowledge. Moreover, a quantitative analysis can suffer

from noise in the data, typically originating from automatic word alignments.1 Noise can

also be due to what we could call “unnecessary” reordering. In fact, human translators

can choose to restructure the sentence according to their personal taste, or to accomodate

style and conventions of the target language. Here is an example:

Arabic sentence:

ú

	̄ é 	K AK. Qª ���
 é 	K @ úÍ@ 	�J
K. B@ �I�
J. Ë @ é�KPXA 	ªÓ ÉJ
J. �̄ 	á��
 	̄ Aj�Ë@ ( �é 	J� 55 ) ��ñK. 	à


AÒ£ ð

. “ @Yg. �èYJ
k. ” �ém�� ð “ �éªK @P ” ÈAg
Literal translation:

Bush, aged 55, assured journalists before leaving the White House that he felt

“great” and that his health was “very good”.

Human translation:

Before leaving the White House, Bush, aged 55, assured journalists that he felt

“great”and that his health was “very good”.

This kind of reordering is not strictly necessary to produce accurate and fluent trans-

lations, but its occurrence in parallel corpora affects the automatic reordering measures.

On the contrary, a qualitative analysis can profit from the extensive work done by

linguists and grammaticians to abstract the fundamental properties of a language. In this

chapter, we draw largely on Dryer [2007] and on the sections of the WALS devoted to

word order (Dryer [2011], ch. 81-97, 143-144).

1Birch et al. [2009] used manual word alignment in their study, but this kind of resource is available
only for very few language pairs.
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3.2 Word order profiles

The word order profile of a language is determined by the canonical order of its constituent

sets (word order features). In general, the basic or canonical order of a constituent set can

be established by the criteria of frequency (i. e. the most common), distribution (the one

with the least restricted usage) or pragmatics (the neutral one) [Dryer, 2007]. Although

many languages are said to have free (or flexible) order, it is often possible to detect

one that is dominant and neutral. Consider for instance English, a subject-verb-object

(SVO) language where other orders are used, but only to achieve specific emphasis or

topicalization effects.

(1) a. I saw the cat.

b. The cat, I saw.

However, there exist cases where no particular order can be defined as dominant. An

example of mix-ordered constituent set in English is the pair noun and genitive.

(2) a. the tail of the cat

b. the cat’s tail

Based on Dryer [2007] and on the availability of data points in the WALS, we have

established a set of 13 core features to determine the word order profile of a language. For

the purpose of describing word order differences between language pairs, we have divided

the features in two broad categories: clause-level and phrase-level2.

3.2.1 Clause-level order features

• Subject, Object, Verb [WALS feature 81A]

The first and most important feature consists of the “ordering of subject, object,

and verb in a transitive clause, more specifically declarative clauses in which both

the subject and object involve a noun (and not just a pronoun)” [Dryer, 2011].

For instance, English and French are SVO languages, while Turkish is SOV. The

distribution of main word order types in a large sample of world languages is given

in Table 3.1. This feature is often used alone to denote the word order of a language,

because it can be a good predictor of many other features.

2Here, phrase is used in its traditional syntactic sense – a group of words forming a constituent – as
opposed to the notion of data-driven phrase adopted by phrase-based SMT (cf. n-gram).

33



CHAPTER 3. WORD REORDERING IN DIFFERENT LANGUAGE PAIRS

Order Languages
SOV 565 41%
SVO 488 35%
VSO 95 7%
VOS 25 2%
OVS 11 1%
OSV 4 <1%

mixed/no-dominant 189 14%
total sample size 1377

Table 3.1: The distribution of main word order types (Verb, Subject and Object) in the
world languages. From the World Atlas of Language Structures, chapter 81 [Dryer, 2011].

• Oblique or Adpositional Phrase [84A]

This feature refers to the position of a phrase functioning as adverbial modifier of

the verb, relative to the position of object and verb. For instance, English is VOX

because it places oblique phrases after verb and subject.

• Noun and Relative Clause [90A]

The location of the relative clause with respect to the noun it modifies.

• Adverbial Subordinator and Subordinate Clause [94A]

Subordinators are used to link adverbial subordinate clauses to the main clause.

They can take the form of verbal suffixes or separate words, such as the English

subordinating conjunctions ‘when’ and ‘because’.

• Polar Question Particle [92A]

In many languages, polar or yes-no questions are signaled by specific particles. This

feature denotes their position in the sentence (not defined for English).

• Content Question Phrase [93A]

As opposed to polar questions, content questions are characterized by the presence

of an interrogative word or phrase (e.g. ‘who’, ‘which one’). In some languages, like

English, these are always placed at the beginning of the sentence. In some others,

like Turkish, they take the position of the constituent they replace: for instance, the

word ‘ne/what’ replacing the object naturally occurs between subject and verb.

• Negation and Verb [143A]

The position of the negative morpheme3 with respect to the main verb. Note that

more than one morpheme may be necessary to express negation (e. g. in French).

3Differently from the WALS, we do not distinguish between negative words and affixes for this feature.
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3.2.2 Phrase-level order features

• Noun and Adpositions [WALS feature 85A]

Whether a language uses mainly prepositions or postpositions.

• Noun and Genitive [86A]

• Noun and Adjective [87A]

• Noun and Demonstrative [88A]

• Noun and Numeral [89A]

• Adjective and Degree Word [91A]

3.2.3 Language sample

For our study, we have chosen six widely spoken languages4 representing various language

families and very different word order profiles. These are English, German, French, Ara-

bic (Modern Standard), Turkish and Chinese (Mandarin). Mainly based on the WALS,

we have summarized the word order feature values for all these languages in Table 3.2.

Whenever possible, features were assigned one (or two) values corresponding to the dom-

inant order(s) in that language. When no particular order was given as dominant we

marked it as ‘mixed’.

The main word order of German and Arabic deserves a special mention. In German,

the positioning of subject, object and verb is syntactically determined: main clauses with

no auxiliary verb are SVO, while subordinate clauses and clauses containing an auxiliary

are SOV. A further complication, not shown in Table 3.2, is that the German finite verb

must be placed in second position, in which case the pattern becomes SAuxOV, with the

object intervening between auxiliary and main verb. As regards Arabic, while the WALS

classifies Modern Standard Arabic as VSO, the corpora typically used in SMT studies

show a very mixed distribution of VSO and SVO clauses.5 Carpuat et al. [2012] examined

the Arabic-English Treebank6 and found that, when the subject is expressed, it follows

the verb in 70% of the cases, but precedes it in 30%. Similarly, in the Pennsylvania

Arabic Treebank7, they found an order distribution of 67% VS and 33% SV. Besides

4More than 50 million native speakers each, according to Wikipedia: http://en.wikipedia.org/wiki/
List of languages by number of native speakers.

5VOS order is also admitted in Arabic, but only in specific contexts (e. g. when the object is expressed
by a pronoun).

6Corresponding to the Linguistic Data Consortium (LDC) code LDC2009E82.
7LDC code LDC2008E22.
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Indo-European Afro-Asiatic Altaic Sino-Tibet.

Features English German French Arabic Turkish Chinese

C
la

u
se

-l
ev

el

Subject,Object,Verb SVO SVO/ SVO VSO/ SOV SVO
[Tom] [chases] [Jerry] SOV SVO*

Oblique Phrase VOX mixed VOX VOX XOV XVO
[chases] [Jerry] [with a stick]

Noun,RelClause N-Rel N-Rel N-Rel N-Rel* Rel-N Rel-N
[a stick] [that he stole]

Subordinator,Clause Sub-C Sub-C Sub-C Sub-C C-Sub/ mixed**
[because] [he was hungry] Sub-C

PolarQuest.Particle none none initial initial final final
∅ [did he steal it?]

ContentQuest.Phrase initial initial initial initial* other other
[why] [did he steal it?]

Negation,Verb Neg-V Neg-V/ Neg-V-Neg/ Neg-V V-Neg Neg-V
he did [not] [steal] V-Neg V-Neg

P
h

ra
se

-l
ev

el

Noun,Adpositions Adp-N Adp-N Adp-N Adp-N N-Adp N-Adp/
[with] [a stick] Adp-N

Noun,Genitive N-Gen/ N-Gen N-Gen N-Gen Gen-N Gen-N
[Tom’s] [stick] Gen-N

Noun,Adjective A-N A-N N-A N-A A-N A-N
[hungry] [Tom]

Noun,Demonstrative Dem-N Dem-N Dem-N Dem-N Dem-N Dem-N
[this] [stick]

Noun,Numeral Num-N Num-N Num-N Num-N Num-N Num-N
[two] [sticks]

Adjective,DegreeW. Deg-A Deg-A Deg-A A-Deg Deg-A Deg-A
[very] [hungry]

Feature English German French Arabic Turkish Chinese

Table 3.2: The word order profile of six world languages. Sources: the World Atlas of Language
Structures [Dryer and Haspelmath, 2011], (*) personal knowledge, and (**) Li [2008].
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frequency, it can be noted that the SVO sentences attested in these corpora are in general

pragmatically neutral. We believe that this variability in Modern Standard Arabic may

be due to the effect of spoken language varieties such as Egyptian, Gulf, Kuwaiti, Iraqi

(all listed as SVO by the WALS), and Syrian (listed as VSO/SVO). For these reasons, we

classify Arabic as a mixed VSO/SVO language.

It is worth noting that our six-language sample covers the main word order types of

the large majority of the world languages: namely, SOV, SVO and VSO (see Table 3.1).

3.3 Word order differences

Linguistically motivated word order profiles can be very helpful to predict the kind of

word reordering problems that an SMT system will have to face. Clearly, these will also

vary in relation to the genre (written news, speeches, etc.) and to the translation’s style

and degree of literality. However, we can reasonably expect the syntactic properties of

two languages to determine the general reordering characteristics of that pair.

We will now confront the reordering characteristics of six language pairs: English

paired with the other five languages presented in Table 3.2, as well as the French-Arabic

pair.8 To this end, we propose the following analysis procedure. As a first indication of

reordering complexity, we look at the main word order feature (subject, object, verb). A

difference at this level typically results in poor SMT performances. Then, we count the

total number of discordant features. To simplify, if a particular element does not exist

in a language (e. g. polar question particles in English) we count zero difference for that

feature, and when one of the languages has a mixed order we count a half difference. We

insist, however, on the qualitative nature of our analysis: numbers are only meaningful

in combination with the list of specific discordant features, as these have different impact

on word reordering. In particular, we find it essential for SMT to distinguish between

clause-level and phrase-level differences (CDiff and PDiff) because the former account for

most longer-range word movements, and the latter for the shorter. Thus, a language pair

with only phrase-level discordant features is likely to be suitable for a PSMT approach,

where reordering is managed through local distortion or inside translation units (phrase

pairs). Conversely, the presence of many clause-level differences calls for a tree-based

solution, either at preprocessing or at decoding time. As we will see, some pairs lay on

the borderline, by displaying only one or few clause-level differences. Finally, it should be

noted that, even among features of the same group, some have more impact on SMT than

8The language pair direction (e. g. French-Arabic or Arabic-French) is irrelevant for the purposes of
this chapter.
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others due to their frequency or to the average length of their constituents. For instance,

the order of noun and genitive is more important than that of adjective and degree word.

English and German [ Main order: different; CDiff=1.5; PDiff=0.5 ]

The main word order of German is SVO or SOV according to the syntactic context

(cf. Section 3.2). German also differs from English with respect to the position

of oblique phrases and that of the negation: both fixed in English but mixed in

German. At the phrase level, German predominantly places the genitive after the

noun, while English displays both orders.

Thus, despite belonging to the same family branch (Indo-European/Germanic), this

pair is characterized by at least some complex reordering patterns. Indeed, German-

English reordering has been widely studied in SMT and is still an open topic. Look-

ing at the results of the Workshop of Machine Translation’s last edition (WMT12)

[Callison-Burch et al., 2012], no particular SMT approach appears to be winning. In

both language directions (official results excluding the online systems) the rule-based

systems outperformed all SMT approaches, and among the best SMT systems we

find a variety of approaches: pure phrase-based, phrase-based and hierarchical sys-

tems combination, n-gram based, a rich syntax-based approach, and a phrase-based

system coupled with POS-based pre-ordering. This gives an idea of how challenging

this language pair is for SMT.

English and French [ Main order: same; CDiff: 0.5; PDiff: 1.5 ]

Most clause-level features have the same values in French as in English, except for

the negation which is typically expressed by two words in French: one preceding

and one following the verb. At the phrase level, differences are found in the location

of genitives and adjectives. Thus, English and French have very similar clause-level

orders, but reordering is abundant at the local level.

As a reference, among the three top English-to-French WMT12 systems (official

results excluding online and rule-based systems), two were phrase-based and one

was hierarchical. The same thing was observed in the French-to-English track.

English and Arabic [ Main order: different; CDiff: 0.5; PDiff: 2.5 ]

The dominant Arabic order is VSO, followed by SVO (cf. Section 3.2). Apart from

this important difference, all other clause-level features agree between Arabic and

English. At the phrase level, differences are found in genitives, adjectives and degree

words.
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As a result, reordering is overwhelmingly local but few crucial long-range reorderings

also regularly occur. This pair is, in fact, challenging for PSMT but, at the same

time, not well suited to a tree-based approach. As shown by Zollmann et al. [2008]

and Birch et al. [2009], PSMT performs similarly or better than hierarchical SMT

for the Arabic-to-English language pair.

English and Turkish [ Main order: different; CDiff: 5.5; PDiff: 1.5 ]

Turkish is a typical example of verb-final language, except for the fact that it can

employ both clause-final and clause-initial subordinators.9 As a result, almost all

clause-level features are discordant in this pair. At the phrase level, Turkish mainly

differs from English for the use of postpositions.

Among the language pairs of our sample, this is the most difficult to reorder for an

SMT system. The complex nature of its reordering phenomena makes it particularly

suitable for tree-based SMT approaches. Although this language pair has been less

studied than the others, we know from Ruiz et al. [2012] that hierarchical SMT can

significantly outperform PSMT on Turkish-to-English.

English and Chinese [ Main order: same; CDiff: 3.5; PDiff: 1 ]

Despite belonging to the same main order type, these two languages differ in the

positioning of oblique phrases, relative clauses, interrogative phrases and subordi-

nating words. The latter can in fact occur at the beginning of the subordinate

clause, at its end, or even inside it [Li, 2008]. Comparing the two languages at

the phrase level, we find partial disagreement in the use of genitive and adpositions

(Chinese has both prepositions and postpositions).

Thus, this pair too is characterized by very complex reordering, hardly manageable

by a PSMT system. This is confirmed by a number of empirical results showing

that tree-based approaches (particularly HSMT) consistently outperform PSMT in

Chinese-to-English evaluations [Zollmann et al., 2008, Birch et al., 2009].

French and Arabic [ Main order: different; CDiff: 1.5; PDiff: 1 ]

This pair displays the same clause-level differences as the English-Arabic pair. On

the other hand, the phrase stucture is notably more similar, with only one discordant

feature of minor importance (adjective and degree word).

9In Turkish, non-finite subordinate clauses are typically placed before the main clause and linked to it
by a clause-final subordinator (e. g. raǧmen/although), whereas finite subordinate clauses can be placed
after the main clause and introduced by a clause-initial subordinator (e. g. ama/but). The former case is
by far more common.
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Little research was published on this language pair. To our knowledge the state of

the art in Arabic-to-French is represented by Hasan and Ney [2008] and Schwenk

and Senellart [2009], both of which employ a PSMT approach.

Figure 3.1 illustrates the reordering characteristics of three of our language pairs,

by means of examples drawn from parallel corpora. On the first row, we can see two

English-German sentence pairs: in both cases, most of the points lie close to the diagonal

representing an overall monotonic translation, whereas the few isolated points stand for

verbs that are placed in very different positions. Similarly, in the two English-Arabic

sentence pairs, we mostly observe very local reorderings, with the exception of few isolated

points corresponding to the Arabic clause-initial verbs. Finally, the two Turkish-English

examples display massive and global reordering, due to the high number of clause-level

order differences.

3.4 Conclusions

We conclude from our analysis that linguistic knowledge is indeed useful to predict the

reordering characteristics of a language pair and to select the SMT approach that best

suits them. In particular, language pairs with many clause-level order differences (Turkish-

English and Chinese-English) are best handled by tree-based SMT approaches that can

handle complex, hierarchical reordering patterns. On the other hand, PSMT is preferable

for language pairs with only phrase-level differences (French-English), as these mostly

imply short or medium-range reordering patterns that can be captured by local distortion.

Finally, the pairs with mostly phrase-level differences and only one or few clause-level

differences (German-English and Arabic-English) do not fit into either category. In the

absence of global reordering, tree-based SMT underperforms PSMT, likely due to a much

larger search space. At the same time, applying PSMT to such pairs can lead to systematic

errors in the positioning of specific constituents. The working hypothesis of this thesis

is that these ‘borderline’ language pairs are best handled by a hybrid approach where

local reorderings are captured by the regular PSMT reordering mechanisms while long

reordering patterns are treated by specific techniques. In the next chapters, we will

propose different ways to achieve this.
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English and German:

English and Arabic:

English and Turkish:

Figure 3.1: Word-alignment matrices of sentence pairs taken from three parallel news corpora:
the nist-mt-08 Arabic-English evaluation benchmark, the wmt-10 German-English training
corpus, and the Turkish-English South European Times corpus. English is always on the x axis.
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Chapter 4

Chunk Reordering Lattices

Reordering lattices serve to represent multiple permutations of the input sen-

tence. We use them to suggest likely long reorderings to the decoder, while

short and medium-range reordering is handled by decoding-time distortion.

4.1 Introduction

As discussed in the introduction and in Chapter 3, the Arabic-English language pair is

characterized by an uneven distribution of reordering phenomena: namely, frequent local

reorderings due to the head-initial structure of Arabic noun phrases, and isolated long

reorderings of the main verb in Arabic VSO sentences.

In this chapter, we present our first method to improve the performance of a PSMT

system with respect to this issue: chunk-based verb reordering lattices. We develop a

simple set of shallow syntax-based rules to reorder clause-initial verbs in the Arabic side

of a word-aligned parallel corpus (Section 4.2). This technique is used (i) to preprocess the

training data by minimizing long reordering in the alignments, and (ii) to collect statistics

about verb movements (Section 4.3). From this analysis, we build a word lattice repre-

senting a set of likely verb reorderings for each test sentence (Section 4.5). Translation

is then performed by a lattice decoder which explores additional (local) reordering. As

a result, the space of local reorderings defined by the standard constraints is augmented

with few long reorderings encoded in the lattice. Lastly, because our lattices can be very

dense, we devise a pruning technique based on a discriminative classifier (Section 4.6).

Related work [Zhang et al., 2007, Crego and Habash, 2008, Elming and Habash, 2009]

mostly aimed at representing all word reorderings in the lattices, which were then pro-

cessed by monotonic phrase- or n-gram-based decoders. These methods were, in fact,
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conceived as alternatives, rather than integrations, to the standard PSMT reordering

models. We instead focus on a single type of significant long reordering, and improve a

system that already includes state-of-the-art PSMT reordering models. To our knowledge,

the only example of reordering lattices coupled with reordering at decoding time is the

work by Niehues and Kolss [2009] on German-English. Their phrase-based decoder admits

local reordering within a fixed window of 2 words, while we perform experiments up to a

distortion limit of 10. Another major difference is that, while their rules are POS-based,

we use shallow syntactic chunks to reduce the number of possible permutations.

The application of our chunk-based reordering methods to the training and test data

results in consistent improvements on the NIST-MT 2009 Arabic-English benchmark,

both in terms of BLEU score (+1.06) and of reordering quality measured with the Kendall

Reordering Score (+0.85).

4.2 Chunk-based verb reordering

We performed a manual analysis on a random sample of 100 sentences drawn from the

newswire parts of the NIST-MT09 training data. This set contains 51 verbs in pre-subject

position (ignoring clauses where the subject pronoun is dropped), and in 10 of these cases

the subject spans more than 6 tokens. This suggests that a special treatment of VSO

constructions could benefit significantly PSMT, which is known to perform poorly on

long-range reordering.

Our approach is two-fold: (i) reorder verbs in the source side of the parallel training

data so that long reordering between the two languages is minimized. We expect this to

benefit both word alignment and phrase extraction. (ii) Suggest likely verb reorderings

to the decoder.

To model verb reordering we can employ different kinds of linguistic annotation. One

option would be to use syntactic parse trees to detect the Arabic constituents, and then

swap verb and subject in all VSO sentences. This kind of technique was adopted, for

instance, by Green et al. [2009] and Carpuat et al. [2010]. Another option would be to use

shallow syntactic chunks as the reordering blocks, and generate multiple verb reorderings

by means of non-deterministic (fuzzy) rules.1 Then, in a word-aligned parallel corpus, we

could establish the optimal position of each verb chunk by minimizing distortion in the

alignments. As for the test sentences, we could represent multiple reorderings with a word

lattice and let the decoder choose the one that leads to an overall better translation. We

1Chunk annotation does not identify subject and complement boundaries, nor the relations among
constituents that are needed to deterministically rearrange a sentence in SVO order.
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choose the second option because it has several advantages: First, shallow syntax chunking

is a simpler task than full parsing, therefore less prone to errors. Second, because multiple

suggestions are provided to the decoder, all the SMT models can contribute to the final

reordering decision. Third, by using word alignments as supervision for the training data,

we avoid reordering verb-subject constructions that for some reason were not inverted in

the English translation. Admittedly, we incur the risk of missing correct verb reorderings

due to alignment errors, but we hope that this type of error on the training data will have

a minor impact.

We propose a simple set of fuzzy chunk-based rules aimed at transforming VS(O)

sentences into SV(O):

R1) move the verb chunk by up to M positions to the right;

R2) move the verb chunk and the chunk following it by up to M positions to the right.

The second rule addresses the case where the verb chunk (VC) needs to be moved along

with an adverbial chunk or a complement. The maximum movement M is set empirically

to ensure substantial coverage of the verb reorderings observed in parallel data (see Sec-

tion 4.3). To prevent verb reordering from overlapping with the following clause, we also

limit the maximum movement of a given VC to the position of the next VC found in the

sentence.2 Thus, for each VC our rule set generates 2×M reorderings, or less according

to the context.

Given a word-aligned translation of the sentence, we define the optimal reordering as

the one that minimizes the amount of distortion in the alignment, defined as the number

of swaps of source words in target order. If no movement reduces the swaps found in

the original order, then the verb is left at its original position. On the other hand, if

several movements are found to satisfy this criterion, a second minimization is applied to

the sum of distances between source positions aligned to consecutive target positions, i.e.∑
i |ai − (ai−1 + 1)| where ai is the index of the foreign word aligned to the ith English

word. These two conditions generally suffice to define a single best reordering, but when

this is not the case, the shortest best movement is heuristically selected.

Figure 4.1 illustrates the process of chunk-based verb reordering in a word-aligned

sentence pair. According to the alignments, the optimal rearrangement of the source

sentence is obtained by moving the VC by 2 chunks to the right. In fact, among the

reorderings admitted by the rules, this is the only one that reduces the number of swaps

(from 4 to 3).

2In fact, this condition inhibits the reordering of clause-initial verbs whose subject contains a verb,
e.g. in the case of relative clauses. However, this occurrence is rare in the data.
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Figure 4.1: Example application of chunk-based verb reordering to a word-aligned sentence
pair. The chunk-based rules generate a set of likely verb reorderings (grey arrows), among
which the one minimizing distortion in the alignment is chosen as optimal (bold arrow).

We manually re-inspected the 100-sentences sample after application of verb reorder-

ing. It appeared that 40 clause-initial verbs out of 51 were indeed moved after the subject.

The remaining 11 were left in their original position because they were unaligned, which

suggests that our reordering technique can be affected by alignment errors. In Section 4.4

we will measure whether verb reordering of the training is nevertheless helpful.

The proposed verb reordering technique is used to (i) perform a quantitative analysis

of verb reordering, (ii) train a PSMT system on more monotonic alignments, and finally

(iii) produce training examples for an SVM classifier that predicts likely verb reorderings.

4.3 Corpus analysis of verb reordering

We applied the above technique to two parallel corpora provided for the NIST-MT09

Arabic-English evaluation: the first corpus (gale-nw)3 contains manual alignments; as for

the second (eval08-nw)4 automatic alignments were generated with Moses as the Inter-

section of the direct and inverse alignments computed by GIZA++ [Och and Ney, 2003].

The choice of such a high-precision, low-recall alignment set is supported by the findings

of Habash [2007] on syntactic rule extraction from parallel corpora. Sentences longer than

80 tokens were filtered out to make word alignment feasible, resulting in 4337 (gale-nw)

and 777 (eval08-nw) sentence pairs respectively.

Both corpora were preprocessed with the AMIRA toolkit [Diab et al., 2004] for mor-

phological segmentation according to the ATB scheme5 and for shallow syntax chunking.

3Newswire section of the LDC2006E93 data set.
4Newswire section of the LDC2009E08 data set.
5The Arabic Treebank tokenization scheme isolates conjunctions w+ and f+, prepositions l+, k+, b+,

future marker s+, pronominal suffixes, but not the article Al+.
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The average length of the Arabic sentences, after morphological segmentation, is 32.2

words in gale-nw and 29.1 words in eval08-nw. The average length of the chunks is 1.6

words.

Figure 4.2: Percentage of verb reorderings by maximum shift (0 stands for no movement).

There are 1,955 verb chunks in gale-nw and 11,833 in eval08-nw. Among all verb

chunks, 86% and 84% respectively do not need to be moved according to the alignments.

The remaining 14% and 16% are distributed by movement length as shown in Figure 4.2:

most verb reorderings consist of a 1-chunk jump to the right (8.3% in gale-nw and 11.6%

in eval08-nw). The rest of the distribution is similar in the two corpora, which indicates

a good correspondence between verb reordering observed in automatic and manual align-

ments. By increasing the maximum movement length from 1 to 2, we cover an additional

3% of verb reorderings, and around 1% when moving from 2 to 3. Recall that the length

measured in chunks may not correspond to the number of jumped words. We use these

figures to determine an optimal set of reordering rules: from now on we will focus on verb

movements of at most 6 chunks, as these account for 99.5% of the observed occurrences.

We then performed another analysis to measure the impact of chunk-based verb re-

ordering on the total word distortion observed in parallel data. For the sake of reliability,

we only examined the manually aligned corpus (gale-nw). Figure 4.3 shows the positive

effect of verb reordering on the total distortion, which is measured as the number of words

that have to be jumped on the source side in order to cover the sentence in the target

order (that is |ai − (ai−1 + 1)|, see Section 4.2). Jumps have been grouped by length and
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Figure 4.3: Distortion reduction in the gale-nw corpus: jump occurrences grouped by binned
length (in number of words).

the relative decrease of jumps per length is shown on top of each double column.

These figures do not prove as we hoped that verb reordering resolves most of the long

range reorderings. Thus we manually inspected a sample of verb-reordered sentences that

still contain long jumps, and found out that several of these were due to what we could

call “unnecessary” reordering. In fact, human translations that are free to some extent,

often display a global sentence restructuring that makes distortion dramatically increase

(cf. Section 3.1). We believe this phenomenon introduces noise in our analysis since these

are not reorderings that an MT system needs to capture to produce a correct translation.

Nevertheless, the relative decreases shown in the plot suggest that, although short

jumps are by far the most frequent, verb reordering affects especially medium and long-

range distortion. More precisely, our selective reordering technique solves 21.8% of the

5-to-6-words jumps, 25.9% of the 7-to-9-words jumps and 24.2% of the 10-to-14-words

jumps, against only 9.5% of the 2-words jumps, for example. Since our primary goal is

to improve the handling of long reorderings, this lets us think that we are advancing in a

promising direction.

4.4 Preliminary SMT experiments

In this section we investigate how verb reordering of the source language can affect trans-

lation quality. We apply verb reordering to both training and test data. While the parallel
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data can be reordered by exploiting word alignments, for the test set we need a verb re-

ordering prediction model. We then assume that optimal verb reordering of the test is

provided by an oracle that has access to alignment with the reference translations.

We first trained a Moses baseline on a subset of the NIST-MT09 training data6 for a

total of 981K sentences, roughly corresponding to 30M English words. We then used the

resulting GIZA++ word alignments (Intersection set) to apply the technique explained in

Section 4.2 and retrained the whole PSMT system – from word alignment to phrase scoring

– on this reordered dataset. For the evaluation we used two different versions of eval08-nw:

original and verb-reordered. In the latter, reordering was obtained from the alignment

with the first English reference. With the first experiment we measure the impact of verb

reordering on training only. With the second, we estimate the maximum improvement

achievable by applying a verb reordering prediction technique to the test data.7 In all

experiments we used a typical Moses configuration including a 4-feature phrase translation

model, a phrase and a word penalty, a 7-feature lexicalized phrase-orientation model [Och

et al., 2004, Koehn et al., 2007] and a 6-gram language model trained on the English

side of all the available NIST-MT09 parallel data (147M words). The language model

was estimated by the SRILM toolkit [Stolcke, 2002] with modified Kneser-Ney smoothing

[Chen and Goodman, 1999]. Feature weights were tuned by minimum error rate traning

(MERT) [Och, 2003] on the newswire part of the NIST-MT06 evaluation set (dev06-nw)

– original version for the baseline, verb-reordered for the reordered system.

Figure 4.4 shows the results in terms of BLEU score [Papineni et al., 2001] for (i)

the baseline system, (ii) the system only trained on reordered data and (iii) the system

trained and tested on reordered data. The scores are plotted against the distortion limit

(DL) used in decoding. To let the decoder explore the larger search space induced by the

higher DL (8-10), we relaxed the pruning parameter for these conditions (maximum stack

size: 1000 instead of the default 200).

We observe that, on the plain test set, the system trained on reordered data always

performs better than the baseline (+0.5∼0.6 absolute), despite the mismatch between

training and test ordering. This may be due to the fact that automatic word alignments

are in general more accurate when less reordering is present in the data, although previous

6We use all the in-domain parallel data available for the NIST-MT09 task, that is everything except
the large UN corpus. As reported by Green et al. [2010] the removal of UN data does not affect baseline
performances on news texts.

7Given our experimental setting, it could be argued that our BLEU scores are biased because one of
the references was also used to generate the verb reordering. However, in a series of experiments not
reported here, we evaluated the same systems using only the remaining three references and observed
similar trends as when all four references are used.
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Figure 4.4: Impact of verb reordering on translation quality measured by BLEU [%]; the three
curves refer to (i) the baseline system, (ii) the system only trained on reordered data and (iii)
the system trained and tested on reordered data.

work [Lopez and Resnik, 2006] showed that gains in alignment accuracy seldom lead to

better translations. Moreover, phrase extraction may benefit from a distortion reduction,

since its heuristics are directly sensitive to word order. In fact, a higher number of phrases

are extracted from the verb-reordered training corpus (15.9M compared to 14.6M from

the non-reordered). Results on the oracle-reordered test set are also interesting: a gain

of at least 1.2 BLEU over the baseline is reported in all tested DL conditions. These

improvements are remarkable, keeping in mind that only 31% of the train and 33% of

the test sentences get modified by verb reordering. Concerning distortion, although long

verb movements are often observed in parallel corpora, relaxing the DL to high values

does not benefit translation accuracy, even with our ‘generous’ setting of the pruning

parameter. In fact, when more distortion is allowed, the risk of model errors increases as

the reordering model has to rank an exponentially growing set of permutations.

4.5 Verb reordering lattices

Having assessed the potential improvement in verb reordering, we propose a technique

to address this phenomenon at decoding time. The basic idea is to feed the decoder a

word lattice that augments the source text with probable movements of its verb chunks.
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Figure 4.5: Reordering lattices for Arabic VSO sentences. Top: a chunked sentence and its
English meaning. Center: word-based lattice representing 7 possible word orders. Bottom:
chunk-based lattice before and after word expansion. The final lattice thus obtained represents
4 input sentence permutations.

Word lattices were initially employed in SMT to compactly encode multiple transcription

hypotheses produced by a speech recognizer (see Casacuberta et al. [2008] for a survey).

More recently, they have been used to represent various forms of input ambiguity, both at

the level of word order (starting from Zens et al. [2002]), and of token boundaries [Dyer

et al., 2008]. A major issue with reordering lattices is that their size grows quickly with

the amount and length of represented reorderings. We are particularly concerned with

this issue because our decoder will perform additional reordering on the lattice input.

Indeed, we can produce compact lattices by assuming the same conditions we put on the

rules described in Section 4.2: (i) only reordering between chunks and (ii) no overlap

between consecutive verb chunks movement.

Figure 4.5 illustrates the advantage of using chunk-based reordering lattices. Here, the

main Arabic verb (>kdt, ‘confirmed’ ) appears in pre-subject position. If we considered for

this sentence all possible movements of the verb to the right, we would obtain 6 reorderings
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as represented by the top lattice. With the chunk-based rules, instead, we treat chunks

as units and obtain only 3 reordering paths represented by the second lattice.8 Then, by

expanding each chunk edge, we obtain the final word lattice ready for decoding.

Following the results of our corpus analysis (Section 4.3), we use a set of rules that

move each verb alone or with its following chunk by 1 to 6 chunks to the right, which

is consistent with the reordering applied to the training data. With these settings, we

generate lattices with at most 5 × 6 additional chunk edges for each verb, as shown in

Figure 4.6.

Before translation, each edge is assigned a weight used by the decoder as an additional

feature. We tested two weighting schemes: the first (W-switch) favors the original word

order, by arbitrarily assigning weights of 1 to the plain path edges, and 0.25 to the

reordering path edges. The second (W-prob) models the length of verb movement: each

edge is shared by one or more reordering paths; its probability is computed by summing

the relative frequencies of the corresponding verb-chunk movements as observed in the

parallel data (cf. Figure 4.2). For example, the left-most edge labeled CH3 in Figure 4.6

corresponds to the probability of moving the verbal chunk alone by 1 to 6 chunks to the

right, i.e. 0.132.

Figure 4.6: Structure of a chunk-based reordering lattice for verb reordering, before chunk-to-
word expansion. The maximum verb chunk movement is set to 6. Bold edges represent the
verb chunk.

Evaluation. For the experiments, we use the implementation of non-monotonic de-

coding for word lattices available in Moses [Dyer et al., 2008]. The translation system is

the same as the one presented in Section 4.4, to which we added a feature function for

the lattice score (weight-i). In order to minimize the influence of feature weight tuning

on the outcome of our experiments, we do not run MERT a second time. Instead, we

reuse the weights of the system trained and tuned on verb-reordered data. We manually

optimize the lattice weight on the devset with a linear search over the interval [0.002,0.5].

8For simplicity, in this example, we do not consider the rule that moves the verb chunk along with
the chunk following it (R2).
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eval08-nw eval09-nw reo08

System DL bleu krs bleu krs bleu krs

baseline 6 43.10 80.57 48.13 83.17 46.90 82.54

reord. training +

plain input 6 43.67 80.62 48.53 83.58 46.64 82.23

lattice(W-switch) 4 44.04 80.93 48.96 83.75 47.51 83.41

lattice(W-prob) 4 44.18 81.13 49.06 84.02 47.40 83.22

oracle reordered 4 44.36 81.29 49.26 84.30 48.25 84.03

Table 4.1: BLEU and KRS [%] of baseline and reordered system on plain input, reordering
lattices and oracle reordered test.

The resulting optimal value is 0.05. Empirically, the optimal distortion limit (DL) when

translating lattices is 4, as opposed to 6 when translating text.

As evaluation metrics, we complement BLEU with the Kendall Reordering Score or

KRS [Birch et al., 2010, Bisazza et al., 2012], which is a positive score based on the

Kendall’s Tau distance between the source-output permutation and the source-reference

permutation.9 The source-references and source-output word alignments needed to com-

pute the reordering score10 were obtained with the Berkeley Aligner [Liang et al., 2006]

trained on our baseline system’s training data (see Section 4.4).

Table 4.1 presents the results on two benchmarks: eval08-nw which was used to cali-

brate the reordering rules, and eval09-nw a yet unseen data set (newswire section of the

NIST-MT09 evaluation set, 586 sentences). To focus the evaluation on sentences that con-

tain verb reordering, we also consider a subset of eval08-nw including only sentences that

are actually modified by oracle verb reordering. We call this subset reo08 (258 sentences).

We first consider the full test sets eval08-nw and eval09-nw. Here, the system trained on

reordered data always outperforms the baseline, and verb reordering lattices yield further

improvements according to both metrics. Concerning the lattice weighting schemes we can

see that frequency-based weighting (W-prob) is slightly better than switch-based weighting

(W-switch). Finally, the gap between the baseline and the best score obtainable by oracle

verb reordering (44.36/81.29 on eval08-nw, 49.26/84.30 on eval09-nw) is largely filled.

However, figures are different on reo08: here, a degradation is observed when the

reordered models are applied to non-reordered (plain) input. This suggests that the mis-

9See Section 2.5 for more details on the Kendall Reordering Score.
10MT outputs must be word-aligned to the source sentences in their original order, regardless of any

transformation they undergo before decoding. That is why we apply a supervised aligner, rather than
simply using the word alignments produced by the decoder.
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match between training and test data has a negative impact on the reordering capabilities

of the system with respect to verbs. We speculate that such negative effect is diluted in

the full test set (eval08-nw) and compensated by the positive influence of verb reordering

on phrase extraction. Indeed, when the lattice technique is applied we get an improve-

ment of about 0.6/0.9 BLEU/KRS over the baseline, which is still a fair result, but not as

good as the one obtained on the generic test sets. Another difference is that switch-based

weighting (W-switch) slightly outperforms frequency-based weighting (W-prob) on ‘the

reordering-specific test. This is probably due to the fact that W-switch equally penalizes

all chunk movements, letting the decoder catch all the needed long reorderings. On the

other hand, the same scheme may cause spurious long reorderings, which would explain

the lower score obtained on the generic tests. Finally, the oracle scores on reo08 show

that there is still room for improvement on VSO sentences: from 47.51 to 48.25 BLEU,

and from 83.41 to 84.03 KRS.

From the point of view of efficiency, lattice decoding is a very costly solution. Decoding

times are three times longer than for standard text decoding, that is on average 177

milliseconds per word (ms/word) instead of 53 when translating eval09-nw.11

4.6 Discriminative lattice pruning

In order to refine our lattices and possibly overcome the lack of a reliable weighting

scheme, we explore a lattice pruning technique aimed at discard unlikely reorderings. We

model this step as a binary classification problem: that is, given a verb chunk movement

in a sentence, predict whether it will minimize the reordering needed to produce a good

English translation. Reorderings that do not meet this criterion should be excluded from

the lattice.

As a supervised learning framework, we use Support Vector Machines [Boser et al.,

1992, Vapnik, 1998] and syntactic tree kernels (STK) [Collins and Duffy, 2001] to fully

exploit the availability of lexical and shallow-syntactic information. Tree kernels are

a family of convolution kernels [Haussler, 1999] defined over pairs of trees. The trees

are projected onto a very high dimensional space, where each subtree is mapped onto

a distinct dimension. Here, pairwise similarity is measured in terms of the number of

substructures shared by two trees. For our experiments, we adopt the implementation

of the SVM-Light-TK toolkit,12 which extends the SVM optimizer with support for tree

kernel functions.

11The run times reported in this chapter were computed by an Intel Xeon E5420 processor.
12http://disi.unitn.it/moschitti/Tree-Kernel.htm

54



4.6. DISCRIMINATIVE LATTICE PRUNING

BLOCK

VP-BLOCK

VBD

jdd

FROM

-1

-2

NULL

NULL

+1

NP+1

NN

EAhl

JJ

mgrby

+2

NP+2

NN

mlk

NNP

mHmd

NNP

sAds

TO

-1

-2

NP-2

NN

EAhl

JJ

mgrby

NP-1

NN

mlk

NNP

mHmd

NNP

sAds

+1

NP+1

NN

dEm

PRP$

h

+2

PP+2

IN

l

NN

m$rwE

NN

r}ys

JJ

frnsy

SKIP

NP

NN

EAhl

JJ

mgrby

SKIP

NP

NN

mlk

NNP

mHmd

NNP

sAds

SKIP

NULL

Figure 4.7: A forest of trees describing the movement of a verbal chunk. The four trees describe:
the moving chunk(s) (top left); the context of the chunk in its original position (bottom left);
the context of the chunk after the movement (top right); and the sequence of skipped chunks
(bottom right).
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We represent each reordering example as a forest of 4 trees that focus on different

aspects of the movement (see example in Figure 4.7). These trees are artificial structures

specifically designed to encode relevant information in a compact form. The similarity

between two examples is computed as the sum of the tree kernels evaluated between the

4 pairs of corresponding trees. The trees specify respectively:

• the moving block, consisting of either one or two adjacent chunks (block);

• the context of the moving block in its original position (from);

• the context of the moving block in its final position (to);

• the sequence of chunks lying between the original and final positions of the moving

block (skip).

Within each tree, a chunk is modeled as a subtree of depth 3 whose root is the type of the

chunk (verbal vp, nominal np, prepositional pp etc.), and whose children are the words

composing it. A word is encoded by its part-of-speech tag and its stemmed form. Fake

root nodes and additional label decorators are used to glue the chunks together, and to

provide other relevant information (e.g. relative positioning). The from and to trees

model the context of the verb chunk before and after the movement, respectively: the

nodes labeled +1 and +2 describe the first and the second chunks to its right, while

nodes -1 and -2 describe the chunks to its left. The use of such deep structures allows

the model to capture various levels of increasingly fine-grained information.

The training set is constructed as follows: based on the findings of Section 4.3, we

only consider movements of up to 6 positions involving the verbal chunk alone or together

with the following chunk. This results in 12 reordering examples for each verb. Only

the example that maximizes the optimization criteria defined in Section 4.2 is labeled as

positive. If the verb is already in its optimal position, the whole set of examples will be

negative. For testing, we generate all the possible reorderings and classify them with this

model. For each example, the SVM classifier outputs its distance from the separating

hyperplane, which we use as a confidence value to establish a ranking among the possible

reorderings.13 Note that the plain sentence ordering is always included since, according

to our training data, it is the best choice in 84-86% of the cases (see Section 4.3).

Evaluation. The binary classifer was trained and tested on two subsets of the PSMT

13The problem addressed here is naturally a binary decision. In fact, a verb reordering can only be
correct or incorrect, according to our formulation. Still, due to class imbalance issues – large majority of
null reordering examples – it may help to model this as a ranking problem, where the correct reordering
should simply score higher than all others. We have not however explored this option.
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#sent. #verbs #instances (positive)

train 20,000 46,047 320,191 (6,646)

test 722 1,776 12,193 (236)

Figure 4.8: Left: Statistics of the SVM classifier’s training and test sets. Right: Verb movement
ranking results. Null movement instances are not included in the figures.

training data, described on the left of Figure 4.8. Its performance is 42.3% F-measure,

34.5% precision and 54.7% recall. To understand how informative the SVM margin values

are, we also count how many times the optimal verb reordering received the highest score

(1st) or the second highest score (2nd) etc. The results are presented on the right of

Figure 4.8: in 71.5% of the cases in which a verb needs to be reordered, the classifier

assigns the highest score to the correct movement. In 13.2% of the cases, it assigns the

second highest score to the correct movement and so on. Interestingly, we can capture

84.7% of the actual verb reorderings by considering the 2-best SVM predictions, and 90%

by considering the 3-best. Hence, we apply pruning to the translation test sets and repeat

the SMT experiments previously described.

Table 4.2 shows BLEU and KRS scores obtained by translating SVM-pruned lattices.

The row labeled 1-best-pruned refers to the configuration in which the lattice only in-

cludes the original chunk order and the best SVM-ranked reordering. Similarly, the rows

2-best-pruned and 3-best-pruned correspond to lattices including the 2-best and the 3-best

reorderings, respectively. The lattice weighting scheme used here is always W-switch, that

is 1 for the plain path edges and 0.25 for the reordering edges. We can see that, according

to both metrics, discriminative pruning yields slight but consistent improvements with

respect to translating the full lattices as described in Section 4.5. Interestingly, the high-

est scores are obtained when only 1 or 2-best reordering paths among the 12 possible

are retained14. In particular, when translating 2-best-pruned lattices, the BLEU score

increases from 44.04 to 44.29 on eval08-nw, and from 48.96 to 49.19 on eval09-nw. The

14The KRS achieved by 2-best-pruned on eval08-nw is slightly higher than the oracle KRS. Although
not significant, this result is plausible because the oracle itself is not perfect: it reorders verbs based on
automatic alignments that may contain errors. In the lattice, instead, all verb reorderings are considered
and then pruned.
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eval08-nw eval09-nw reo08

System DL bleu krs bleu krs bleu krs

baseline 6 43.10 80.57 48.13 83.17 46.90 82.54

reord. training +

lattice(W-switch) 4 44.04 80.93 48.96 83.75 47.51 83.41

1-best-pruned 4 44.34 81.18 49.10 84.15 48.04 83.69

2-best-pruned 4 44.29 81.30 49.19 84.02 47.87 83.88

3-best-pruned 4 44.11 81.13 49.05 83.90 47.60 83.57

oracle reordered 4 44.36 81.29 49.26 84.30 48.25 84.03

Table 4.2: BLEU and KRS [%] of baseline and reordered system on SVM-pruned lattices and
oracle reordered test.

KRS increases from 80.93 to 81.30 on eval08-nw, and from 83.75 to 84.02 on eval09-nw.

The positive effect is now also evident on the reordering of the specific test set (reo08):

KRS increases from 83.41 with full lattice(W-switch) to 83.88 with 2-best-pruned.

Compared to the baseline, our best configuration – reordering of training data and

2-best-pruned reordering lattice – leads to an overall gain of 1.06 BLEU and 0.85 KRS on

the blind test set (eval09-nw), that is from 48.13 to 49.19 BLEU and from 83.17 to 84.02

KRS. We have reached the oracle upper-bound on eval08-nw, and closely approached it

on eval09-nw.

Lattice pruning has also a positive effect on decoding time: for instance, translating

1-best-pruned lattices takes on average 62 ms/word, versus 177 ms/word when the full

lattices are used. However, the classification phase needed for pruning is very costly

(162 ms/word), which makes the whole translation workflow considerably slower than the

baseline (53 ms/word).

4.7 Conclusions

Based on the intuition that a few reordering patterns would suffice to handle the most

significant cases of long-range reordering in Arabic-English, we focused on the problem

of VSO sentences. Starting from simple linguistic assumptions about verb movement, we

developed an effective technique to (i) partially reorder the training data and (ii) better

handle verb reordering at decoding time. In particular, translation is performed on a word

lattice representing a set of likely chunk-reordering paths, as ranked by a discriminative

model that has access to a rich representation of the verb context.
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The resulting system produces overall more readable translations (see examples in

Figure 4.9) and outperforms a strong baseline both in terms of BLEU and of Kendall

Reordering Score – a metric that directly addresses word ordering choices. Still, our ap-

proach has some limitations. First, efficiency is heavily affected when the full lattices are

used. Lattice pruning considerably reduces decoding times, but implies a costly classifi-

cation phase at pre-processing time. Second, the success of our method mainly depends

on the particular distribution of reorderings found in the Arabic-English language pair.

Applying it to another pair would require the development of a new rule set, which may

be more complex than the one we have presented.

The next two chapters aim to overcome these limitations: Chapter 5 mainly addresses

efficiency and presents a novel method to suggest likely input reorderings to the decoder,

as an alternative to the lattice solution; Chapter 6 addresses versatility and presents a

fully data-driven and decoding-integrated approach to dynamically shape the reordering

search space. Concerning the languages, we will keep Arabic-English as our primary case

study but extend the evaluation to the German-English pair.

src
pñJ
 ��Ë@ �Êm.× úÎ« 	�Q« A«ðQå��Ó é� Ñ«X úÍ@ Pñ�KA 	J�Ë@ PA ��@ ð

w A$Ar AlsnAtwr AlY dEm h m$rwEA ErD ElY mjls Al$ywx

ref The Senator referred to his support for a project proposed to the Senate

base The Senator to support projects presented to the Senate

new Senator noted his support projects presented to the Senate

src
ú
æ�

	�Q 	®Ë @ ��
KQË @ ¨ðQå��Ó �Ë é� Ñ«X �XA�Ë@ YÒm× ½ÊÖÏ @ ú
G. Q
	ªÖÏ @ ÉëAªË@ XYg.

jdd AlEAhl Almgrby Almlk mHmd AlsAds dEm h l m$rwE Alr}ys Alfrnsy

ref The Moroccan monarch King Mohamed VI renewed his support to the project of the French President

base the Moroccan monarch King Mohammed VI his support to the French President

new the Moroccan monarch King Mohammed VI renewed his support for the French President

src

�èYg. �é 	JK
YÓ �K. 	á�
�J�Y�®ÖÏ @ 	á�
�J 	�K
YÖÏ @ ¡�. QK
 ð Q��Ó Õ» 500 ¨ðQå��ÖÏ @ Y�JÖß
 ð
w ymtd Alm$rwE 500 km mtr w yrbT Almdyntyn Almqdstyn b mdynp jdp

ref The project is 500 kilometers long and connects the two holy cities with the city of Jeddah

base It extends the project 500 km and linking the two holy cities in the city of Jeddah

new The project extends 500 km, linking the two holy cities in the city of Jeddah

Figure 4.9: Examples showing SMT improvements obtained by chunk-based verb reordering.
src is the reference translation, base is the baseline PSMT output, and new is the output of
a PSMT system trained on verb-reordered data and tested on SVM-pruned (2-best) lattices.
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Chapter 5

Modified Distortion Matrices

Modified distortion matrices are a novel method to suggest likely input re-

orderings to the decoder, which consists in reducing the distortion cost for

specific pairs of input positions on a per-sentence basis.

5.1 Introduction

We have seen in Chapter 4 how reordering lattices can be used to suggest specific re-

ordering patterns to a PSMT decoder. The proposed methods have a positive impact on

translation quality, but at the expense of efficiency.

We present here a novel method to suggest reorderings to the decoder, which consists

in reducing the distortion cost for specific pairs of input words.1 Indeed, distortion can

be thought of as a matrix assigning a cost to all pairs of input words. A set of multiple

input reorderings can then be represented by modifying selected entries of this matrix so

that the cost for the desired permutations is reduced. Compared to reordering lattices,

modified distortion matrices provide a more compact and implicit way to encode likely

reorderings in a sentence-specific fashion. Moreover, the matrix representation does not

require multiplication of nodes for the same source word and is naturally compatible with

the PSMT decoder’s standard reordering mechanisms.

Added to the space of local permutations defined by a low distortion limit (DL), the

modified distortion matrix results in a linguistically informed definition of the search

space that simplifies the task of the in-decoder reordering model. As a difference from

1By “input word” or “source word” we denote the word at a given position of the input sentence, as
opposed to the notion of word type.
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the reordering lattice approach, here the input sentence is presented to the decoder in its

original order, therefore the training data does not need to be reordered.

In this chapter we consider two language pairs where long reordering concentrates on

few patterns: Arabic-English and German-English. We use fuzzy chunk-based reordering

rules like those presented in Section 4.2 to generate probable long reorderings for each

input sentence (see Section 5.2). Then, we use so-called reordered n-gram language models

to rank and select the n-best permutations for translation (Section 5.3). Finally, we encode

these reorderings by modifying selected entries of the distortion cost matrix (Section 5.4).

Evaluated on well-known SMT benchmarks against a competitive baseline that includes

state-of-the-art reordering models [Galley and Manning, 2008], the proposed technique

leads to better translation quality with similar or even shorter decoding time (Section 5.5).

5.2 Fuzzy chunk-based reordering rules

The reordering characteristics of Arabic-English and German-English have been dicussed

in Section 3.3. To generate probable long reorderings for these language pairs, we use

fuzzy chunk-based rules. Shallow syntax chunking is indeed a lighter and simpler task

compared to full parsing, and it can be used to constrain the number of reorderings in a

softer way. While rules based on full parses are generally deterministic, chunk-based rules

are non-deterministic or fuzzy, as they generate several permutations for each matching

sequence. Besides defining a unique segmentation of the sentence, chunk annotation

provides other useful information that can be used by the rules – namely chunk type and

POS tags.2

For Arabic-English we apply the rules proposed in Section 4.2 to transform VS(O)

sentences into SV(O). Namely, reorderings are generated by moving each verb chunk (vc),

alone or with its following chunk, by 1 to 6 chunks to the right. The maximum movement

of each vc is limited to the position of the next vc, so that neighboring verb-reordering

sequences may not overlap. This rule set was shown to cover most (99.5%) of the verb

reorderings observed in a parallel news corpus, including those where the verb must be

moved along with an adverbial or a complement.

For German-English we propose a set of three rules aimed at arranging the German

constituents in SVO order:

2We use AMIRA [Diab et al., 2004] to annotate the Arabic data, and Tree Tagger [Schmid, 1994] to
annotate the German data.
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• infinitive: move each infinitive vc right after a preceding punctuation. To bound

the number of reorderings, at most three punctuations preceding the vc are consid-

ered. For example:

orig Die EZB ist bestrebt, die Inflationrate unter zwei Prozent, oder zumindest knapp an der

zwei-Prozent- Marke zu halten.

reo Die EZB ist bestrebt, zu halten die Inflationrate unter zwei Prozent, oder zumindest

knapp an der zwei-Prozent-Marke.

ref The ECB wants to hold inflation to under two percent, or somewhere in that vicinity.

• subordinate: if a vc is immediately followed by a punctuation, place it after a pre-

ceding subordinating conjunction (kous) or substitutive relative pronoun (prels).

One to three chunks are left between the conjunction (or pronoun) and the moved

vc to account for the subject.

orig Nachdem diese Infektion vorwiegend in Krankenhäusern und Altersheimen vorkommt, ...

reo Nachdem diese Infektion vorkommt vorwiegend in Krankenhäusern und Altersheimen, ...

ref Since this type of infection typically occurs in hospitals and nursing homes, ...

• ‘broken’ verb chunk: join each finite vc (auxiliary or modal) with the nearest

following non-finite vc (infinitive or participle). Place the resulting block in any

position between the original position of the finite verb and that of the non-finite

verb. If the distance between the finite and non-finite verb is more than 10 chunks,

only the first 5 and last 5 positions of the verb-to-verb span are considered.

orig Die Budapester Staatsanwaltschaft hat ihre Ermittlungen zum Vorfall eingeleitet.

reo Die Budapester Staatsanwaltschaft hat eingeleitet ihre Ermittlungen zum Vorfall.

ref The Budapest Prosecutor’s Office has initiated an investigation on the accident.

Figure 5.1 illustrates the application of the fuzzy reordering rules.3 In the Arabic

sentence (a), the subject ‘dozens of militants’ is preceded by the main verb ‘took part’

and its argument ‘to the march’. The rules generate 5 permutations for one matching

sequence (chunks 2 to 5), out of which the 5th is the best for translation. The German

sentence (b) contains a broken vc with the inflected auxiliary ‘has’ separated from the

past participle ‘initiated’. Here, the rules generate 3 permutations for the chunk sequence

2 to 5, corresponding to likely locations of the merged verb phrase, the 1st being optimal.

By construction, both rule sets generate a limited number of permutations per match-

ing sequence: in Arabic at most 12 for each vc; in German at most 3 for each infinitive

3The Arabic and German texts shown in the figure were pre-processed by a morphological segmenter
and a compund splitter, respectively. See Section 5.5 for more details.
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(b) German broken verb chunk: three permutations

Chunk types: CC conjunction, VC verb (auxiliary/past participle), PC preposition, NC noun, Pct punct.

Figure 5.1: Chunk permutations generated by fuzzy chunk-based reordering rules for translation
into English.

vc and for each vc-punctuation sequence, at most 10 for each broken vc. Empirically,

this yields on average 22 reorderings per sentence in the NIST-MT Arabic benchmark

(dev06-nw) and 3 on the WMT German benchmark (test08).4 Arabic rules are indeed

more noisy, which is not surprising as all verb chunks can trigger some reordering.

5.3 Reordering selection

The number of chunk-based reorderings per sentence varies according to the rule set, the

size of chunks, and the context. A high degree of fuzziness can complicate the decoding

process, leaving too much work to the in-decoding reordering model. A solution to this

problem is using an external model to score the rule-generated reorderings and discard

the least likely. In such a way, a further part of reordering complexity is taken out of

decoding.

At this end, instead of using a Support Vector Machine classifier as was done in

Chapter 4, we apply reordered n-gram models that are lighter-weight and more suitable

4All benchmarks are described in detail in Section 5.5.
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for a ranking task. A reordered n-gram model – or source-side decoding sequence model, as

introduced by Feng et al. [2010a] – is a smoothed n-gram language model (LM) trained on

a corpus of source sentences reordered to match the target word order. Similar models were

used by Costa-jussà and Fonollosa [2006] as the main component of a statistical machine

reorderer – that is, a decoder trained to reorder source sentences prior to monotonic

translation. In contrast to these works, our models are trained on source sentences that are

only partially reordered by applying the chunk-based rules described above. Consequently,

at test time, the models are used to score the set of reorderings generated by the rules

for each matching sequence. The task of our reordered LMs is thus considerably simpler

than the one addressed in previous works. As another difference from Feng et al. [2010a],

who integrate the LMs into the decoder, we apply our models only before translation,

thus avoiding the multiplication of decoding states.

We introduce a novel type of reordered n-gram model trained at the level of chunks

rather than words, with the aim of better capturing constituent-level reordering phenom-

ena. Since the models are applied outside decoding, conflicts between phrase and chunk

segmentation are not an issue.

Reordering selection is performed as follows:

1. chunk-based reordering rules are applied to the source side of the parallel training

data, and word alignment is used to choose the optimal permutation for each rule-

matching sequence (“oracle reordering”);5

2. one or several chunk-level 5-gram LMs are trained on such reordered data, using

different chunk representation modes;

3. reordering rules are applied to the test sentences and the resulting sets of rule-

matching sequence permutations are scored by the LM (or by a log-linear combina-

tion of LMs);

4. the n-best permutations of each rule-matching sequence are selected for translation.

The question remains on how to represent chunks for LM training. A basic solution

is to just use the chunk type label but this leads to poorly informative probability dis-

tributions. We then experiment with a combination of the chunk’s type label and head

word.6 Head words can also be represented in several ways: surface form, POS or stem.

5As defined in Section 4.2, the optimal reordering for a source sentence is the one that minimizes
distortion in the word alignment to a target translation, measured by number of swaps and sum of
distortion costs.

6The head word of a chunk is detected by a simple heuristic: in Arabic it is the first (in German the
last) word of the chunk whose POS corresponds to the chunk type.
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Our representation modes are presented in Table 5.1 and evaluated in Section 5.5.

Chunk Representation Modes Examples

– full
pc(fy|IN AltZAhrp|DET NNFS) nc(E$rAt|NNSFP AlmslHyn|DET NNSMP)

in the-march dozens (of) the-militants

T chunk type pc nc

PT chunk type, preposition if pc pc:fy nc

PHP chunk type, preposition if pc,X
head word (POS)

pc:fy(det nnfs) nc(det nnsmp)

HW chunk type, head word (surface) pc(AltZAhrp) nc(E$rAt)
HS chunk type, head word (stem) pc(tZAhr) nc(E$r)

Table 5.1: Chunk representation modes for reordered LMs. Explanation and examples based
on two Arabic chunks: a prepositional and a nominal one.

5.4 Modified distortion matrices

We present here a novel technique to encode likely long reorderings of an input sentence,

which can be seamlessly integrated into the PSMT framework.

During decoding, the distance between source positions is used for two main purposes:

(i) generating a distortion penalty for the current hypothesis and (ii) determining the set

of source positions that can be covered at the next hypothesis expansion. We can then

tackle the coarseness of both distortion penalty and reordering constraints, by replacing

the distance function with a function defined ad hoc for each input sentence.

Distortion can be thought of as a matrix assigning a positive integer to any ordered

pair of source positions (sx, sy). In the linear distortion model this is defined as:

DL(sx, sy) = |sy − sx − 1|

hence, moving to the right by 1 position costs 0, and by 2 positions costs 1. Moving to the

left by 1 position costs 2, and by 2 positions costs 3, and so on. At the level of phrases,

distortion is computed between the last word of the last translated phrase and the first

word of the next phrase. We retain this equation as the core distortion function for our

model. Then, we modify entries in the matrix so that the distortion cost is minimized for

the decoding paths pre-computed by the fuzzy reordering rules.

Given a source sentence and its set of rule-generated permutations, the linear distortion

matrix is modified as follows:
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1. non-monotonic jumps (i.e. ordered pairs (si, si+1) such that si+1−si 6=1) are ex-

tracted from the permutations;

2. then, for each extracted pair, the corresponding point in the matrix is assigned the

lowest possible distortion cost, that is 0 if si < si+1 and 2 if si > si+1. We call these

points shortcuts.

Although this technique is approximate and can overgenerate minimal-distortion decoding

paths,7 it practically works when the number of encoded permutations per sequence is

limited. This makes modifed distortion matrices particularly suitable to encode just those

reorderings that are typically missed by phrase-based decoders.
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Figure 5.2: Modified distortion matrix (mode A×A) of the German sentence given in Figure 5.1.
The chunk reordering shown on top generates three shortcuts corresponding to the 0’s and 2’s
highlighted in the matrix.

Since in this work we use chunk-based rules, we also have to convert chunk-to-chunk

jumps into word-to-word shortcuts. We propose two ways to do this, given an ordered

pair of chunks (cx,cy):

7In fact, any decoding path that includes a jump marked as shortcut benefits from the same distortion
discount in that point.
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mode L×F : create only one shortcut from the last word of cx to the first of cy;

mode A×A : create a shortcut from each word of cx to each word of cy.

The former solution implies that the first word of a reordered chunk is covered first and the

last is covered last, whereas the latter admits more chunk-internal permutations with the

same minimal distortion cost. To better understand this difference, consider for instance

a noun chunk containing an adjective. Adjectives follow nouns in Arabic, but precede

them in English. If the shortcut is created only to the first word of that chunk (mode

L×F), the shortcut will only function if the chunk is translated as a single phrase. On

the contrary, in mode A×A, the shortcut will function even if the decoder chooses to first

translate the adjective as a separate phrase. In practice, the impact of this distinction on

translation performance will mainly depend on the size of chunks.

Figure 5.2 shows the distortion matrix of the German sentence of Figure 5.1, with

starting positions as columns and landing positions as rows. Suppose we want to encode

the reordering shown on top of Figure 5.2, corresponding to the merging of the broken VC

‘hat ... eingeleitet’. This permutation contains three jumps: (2,5), (5,3) and (4,6). Con-

verted to word-level in A×A mode, these yield five word shortcuts:8 one for the onward

jump (2,5) assigned 0 distortion; two for the backward jump (5,3), assigned 2; and two for

the onward jump (4,6), also assigned 0. The desired reordering is now attainable within

a DL of 2 words instead of 5. The same process is then applied to other permutations of

the sentence.

Compared to dynamically varying the distortion limit, as done by Yahyaei and Monz

[2010], modifying the distortion function makes it possible to expand the permutation

search space by a much finer degree.

Distortion matrices have been integrated into the Moses toolkit [Koehn et al., 2007]

using a sentence-level XML markup. The list of word shortcuts for each sentence is

provided as an XML tag that is parsed by the decoder to modify the distortion matrix

just before starting the search. As usual, the distortion matrix is queried by the distortion

penalty generator and by the hypothesis expander, which is in charge of enforcing the

distortion limit and gap constraint.9 Note that the lexicalized reordering model is not

affected by changes in the matrix, because it uses real word distances to compute the

8In L×F mode, instead, each chunk-to-chunk jump would yield exactly one word shortcut, for a total
of three.

9The gap constraint checks that the left-most uncovered position is attainable from the end of the
new source phrase, with the aim of avoiding decoding dead-ends (see Section 2.2.1). In practice, though,
this condition can inhibit some of the reorderings encoded in the matrix. We have examined some
heuristics to relax the gap constraint, but found that the standard one works better empirically.
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orientation class of a new hypothesis.

5.5 Evaluation

In this section we evaluate the accuracy of reordering selection and the impact of modified

distortion matrices on two news translation system.

For Arabic-English, we use all the in-domain parallel data provided for the nist-

mt09 evaluation for a total of 986K sentences (31M English words).10 The target LM is

trained on the English side of all available nist-mt09 parallel data, un included (147M

words). For development and test, we use the newswire sections of the nist benchmarks:

dev06-nw, eval08-nw and eval09-nw consisting of 1033, 813 and 586 sentences respectively.

All benchmarks include four reference translations, and the average sentence length is 33

words.

The German-English system is trained on wmt10 data: namely Europarl (v.5) plus

News-commentary-2010 for a total of 1.6M parallel sentences, 43M English words. The

target LM is trained on the monolingual news data provided for the constrained track

(1133M words). For development and test, we use the wmt10 news benchmarks test08,

test09 and test10: 2051, 2525 and 2489 sentences respectively, all with one reference

translation.

To focus our SMT evaluation on problematic reordering, we also extract from each

test set the sentences that got permuted by “oracle reordering” (see Section 5.3) and

use these as “reordering-specific” test sets. These subsets constitute about a half of the

Arabic sentences (reo08, reo09), and about a third of the German (reo09, reo10).

Concerning pre-processing, we apply standard tokenization to the English data, while

for Arabic we use our in-house tokenizer that removes diacritics and normalizes special

characters. Arabic text is then segmented with AMIRA [Diab et al., 2004] according to the

ATB scheme.11 The same tool also produces POS tagging and shallow syntax annotation.

German tokenization and compound splitting are performed with Tree Tagger [Schmid,

1994] and the Gertwol morphological analyser [Koskenniemi and Haapalainen, 1994].12

Tree Tagger is also used for POS tagging and shallow syntax chunking.

10The in-domain parallel data includes all the provided corpora except the un proceedings, and the
non-newswire parts of the gale-y1-q4 consisting of 9K sentences of audio transcripts and web data.
As reported by Green et al. [2010] the removal of un data does not affect baseline performances on the
news benchmarks.

11The Arabic Treebank tokenization scheme isolates conjunctions w+ and f+, prepositions l+, k+,
b+, future marker s+, pronominal suffixes, but not the article Al+.

12http://www2.lingsoft.fi/cgi-bin/gertwol
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Reordered Ar-En (dev06-nw) De-En (test08)
LM(s) Top-1 TopR-1|3 Top-1 TopR-1|3
baseline 81.7 — 60.0 —

T 57.9 32.0 | 66.9 52.7 61.3 | 88.7
PT 54.8 35.6 | 65.4 50.5 60.3 | 87.8
PHP 54.1 40.3 | 71.9 48.5 61.2 | 88.4
HW 59.7 45.1 | 74.2 45.8 55.4 | 85.0
HS 59.7 47.4 | 72.7 46.3 54.6 | 83.5

PHP,HW 65.4 50.0 | 77.5 49.9 63.0 | 89.3
PHP,HW,HS 65.2 50.4 | 77.2 49.0 60.0 | 88.0

word 9-gram 63.1 49.8 | 72.5 47.2 55.9 | 86.2

Table 5.2: Permutation ranking accuracies of reordered n-gram LMs trained on different chunk
representations (cf. Table 5.1): Top-1 – accuracy at 1st ranked reordering, including identity
permutation; TopR-1|3 – accuracy at 1st and 3rd, excluding identity permutation. Multiple
LMs are log-linearly combined with uniform weights.

5.5.1 Reordering ranking accuracy

For intrinsic evaluation, we measure the ability of the reordered LMs to rank sets of

chunk sequence permutations. Therefore, instead of perplexity, we compute the following

accuracy measures:

Top-n indicates how often the true permutation13 lies in the first n reorderings including

“non-reordering” instances (identity permutation). This score denotes the LM’s

generic performance in ranking permutations;

TopR-n (reordering accuracy) is the same score, but computed only on sequences that

are actually reordered in the true permutation (i. e. “non-reordering” instances are

excluded). This score denotes the LM’s ability to rank reorderings, but not to

recognize sequences that shouldn’t be reordered at all.

Because we always encode reorderings in addition to the original input order and let the

decoder choose the optimal path, the latter measure is more important for the evaluation

of our reordered LMs.

Table 5.2 presents results obtained with the parallel training and test data described

above. In addition to various chunk-level 5-gram LMs and LM log-linear combinations,

we include the results of a conservative baseline that always prefers no-reordering, and

those of a word -level 9-gram LM that best approximates the work by Feng et al. [2010a].

13The true permutations of the test sets are obtained by oracle reordering, using the word alignment
with the reference as supervision. In case of multiple references, only the first is used to this end.
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Baseline accuracies show that 81.7% of the Arabic rule-matching sequences do not need

reordering, versus 60% of the German, which confirms our initial observations on the rule

sets’ noisiness. Among the single chunk-level LMs, HS (chunk type + head stem) achieves

the highest reordering accuracy for Arabic (TopR-1=47.4%), while T (only chunk type) is

the best for German (TopR-1=61.3%). The word-level 9-gram LM outperforms all single

chunk-level LMs in Arabic (but not in German). However, the best reordering accuracies

overall are achieved by combining chunk-level LMs of different granularities: PHP, HW

and HS for Arabic; PHP and HW for German. In the rest of the evaluation, we use these

two combinations to select the 3-best reorderings of each rule-matching sequence, with a

reordering accuracy (TopR-3) of 77.2% in Arabic and 89.3% in German.

5.5.2 SMT results and discussion

Using Moses we build competitive baselines on the training data described above. More

specifically, for each language, word alignment is produced by the Berkeley Aligner [Liang

et al., 2006]. The decoder is based on the log-linear combination of a phrase translation

model, a lexicalized reordering model, a 6-gram target language model, distortion cost,

word and phrase penalties. The language model is estimated by the IRSTLM toolkit

[Federico et al., 2008] with modified Kneser-Ney smoothing [Chen and Goodman, 1999].

The reordering model is a hierarchical phrase orientation model [Tillmann, 2004, Koehn

et al., 2005, Galley and Manning, 2008] trained on all the available parallel data. The

hierarchical variant [Galley and Manning, 2008] was shown to outperform the default

word-based on an Arabic-English task. As proposed by Johnson et al. [2007], statistically

improbable phrase pairs are removed from the translation model.

Note that, in this work, the SMT models (phrase translation and orientation tables)

are trained on non-reordered parallel data because the test sentences are presented to the

decoder in their original order, differently from the lattice solution.

The DL is initially set to 5 words for Arabic-English and to 10 for German-English. For

German-English only, we enable the Moses option monotone-at-punctuation which forbids

reordering across strong punctuation marks. According to our experience, these are the

optimal settings for the evaluated tasks. Feature weights are optimized by minimum error

training [Och, 2003] on the development sets (dev06-nw and test08).

We measure translation quality with BLEU, METEOR and KRS.14 To obtain the

reference word alignments needed to compute the KRS, we apply the Berkeley Aligner

(trained on the training data) to the test data. As for the source-output word alignments,

14Kendall Reordering Score, see Section 2.5.
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(a) Arabic-English

eval08-nw reo08 eval09-nw reo09 ms/
Distortion Function DL bleu met krs krs bleu met krs krs word

† plain [baseline] 5 44.5 34.9 81.6 82.9 49.9 38.0 84.1 84.4 263
plain 8 44.2O 34.8 80.7H 82.2H 49.8 37.9 83.3H 83.5H 389
† modified: allReo, L×F 5+ 44.4 34.9 82.2N 83.7N 49.9 37.8H 84.3 84.4 275

modified: 3bestReo, L×F 5+ 44.5 35.1N 82.3N 83.5N 50.7N 38.1 84.8N 85.0N 267
† modified: 3bestReo, A×A 5+ 44.8M 35.1N 82.3N 83.6N 50.8N 38.2N 84.7N 85.0N 273

(b) German-English

test09 reo09 test10 reo10 ms/
Distortion Function DL bleu met krs krs bleu met krs krs word

† plain [baseline] 10 18.8 27.5 65.8 66.7 20.1 29.4 68.7 68.9 292
plain 20 18.4H 27.4H 63.6H 65.2H 19.8H 29.3H 66.3H 66.6H 369
plain 4 18.4H 27.4H 67.3N 66.9 19.6H 29.1H 70.2N 69.6N 158
† modified: allReo, L×F 4+ 19.1N 27.6N 67.6N 68.1N 20.4N 29.4 70.6N 70.7N 161

modified: 3bestReo, L×F 4+ 19.2N 27.7N 67.4N 68.1N 20.4N 29.4 70.4N 70.6N 160
† modified: 3bestReo, A×A 4+ 19.2N 27.7N 67.4N 68.4N 20.6N 29.5M 70.4N 70.7N 163

Table 5.3: Impact of modified distortion matrices on translation quality, measured with BLEU,
METEOR and KRS (all in percentage form, higher scores mean higher quality). The settings
used for weight tuning are marked with †. Statistically significant differences wrt the baseline
are marked with NHat the p ≤ .05 level and MOat the p ≤ .10 level. Decoding time is measured
in milliseconds per input word.

we use those produced by the decoder. Statistically significant differences are assessed by

approximate randomization as in Riezler and Maxwell [2005].15

Table 5.3 reports results obtained by varying the DL and modifying the distortion

function. To evaluate the reordering selection technique, we also compare the encoding

of all rule-generated reorderings against only the 3 best per rule-matching sequence, as

ranked by our best performing reordered LMs (cf. Section 5.5.1 ). We mark the DL with

a ‘+’ to denote that some longer jumps are allowed by modified distortion. Run times

refer to the translation of the first 100 sentences of eval08-nw and test09 by an Intel Xeon

E5420 processor (including models loading time).

Arabic-English. As anticipated, raising the DL does not improve, but rather wors-

ens performances. The decrease in BLEU and METEOR reported with DL=8 is not

significant, but the decrease in KRS is both significant and large. Efficiency is heavily af-

15Translation scores and significance tests are computed with the tools multeval [Clark et al., 2011]
and sigf [Padó, 2006].
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fected, with a 48% increase of the run time from 263 ms/word with DL=5 to 389 ms/word

with DL=8.

Results in the row “allReo” are obtained by encoding all the rule-generated reorderings

in L×F chunk-to-word conversion mode. Except for some gains in KRS reported on

eval08-nw, most of the scores are lower or equal to the baseline. Such inconsistent behavior

is probably due to the low precision of the Arabic rule set, pointed out in Section 5.2.

Finally, we arrive to the performance of 3-best reorderings per sequence. With L×F

we obtain several improvements, but it is with A×A that we are able to beat the baseline

according to all metrics. BLEU and METEOR improvements are rather small but signifi-

cant and consistent across test sets, the best gain being reported on eval09-nw (+.9 BLEU).

Most importantly, substantial word order improvements (+.7/+.6 KRS) are achieved on

both full test sets and selected subsets (vs*). According to these figures, word order is

affected only in the sentences that contain problematic reordering. This is good evidence,

suggesting that the decoder does not get “confused” by spurious shortcuts.

Looking at run times, we can say that modified distortion matrices are a very efficient

way to address long reordering. Even when all the generated reorderings are encoded,

translation time increases only by 5%. Reordering selection naturally helps to further

reduce decoding overload. As for conversion modes, A×A yields slightly higher run

times than L×F because it generates more shortcuts for the same number of reorderings.

German-English. In this task we manage to improve translation quality with a

setting that is almost twice as fast as the baseline: from 292 ms/word to 163 ms/word,

that is a 44% decrease of the run time. In fact, as shown by the first part of the table, the

best baseline results are obtained with a rather high DL of 10 (only KRS improves with

a lower DL). However, with modified distortion, the best results according to all metrics

are obtained with a DL of 4.

Looking at the rest of the table, we see that reordering selection is not as crucial

as in Arabic-English. This is in line with the properties of the more precise German

reordering rule set (two rules out of three generate at most 3 reorderings per sequence).

Considering all scores, the last setting (3-best reordering and A×A) appears as the best

one, achieving the following gains over the baseline: +.4/+.5 BLEU, +.2/+.1 METEOR,

+1.6/+1.7 KRS, and +1.7/+1.8 KRS on the test subsets (vs*). The agreement observed

among such diverse metrics makes us confident about the goodness of the approach.
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5.6 Conclusions

We have addressed the problem of word reordering in two language pairs – Arabic-English

and German-English – where most long-range phenomena are describable by a handful of

linguistic rules. By means of non-deterministic chunk reordering rules, we have generated

likely permutations of the test sentences and ranked them with n-gram LMs trained

on pre-ordered source language data. We have then introduced the notion of modified

distortion matrices to naturally encode a set of likely reorderings in the decoder input.

Compared to varying the distortion limit, modifying the distortion function allows for a

finer and linguistically informed definition of the search space, which is reflected in better

translation outputs and more efficient decoding.

The main limitation of this work lies in the need of language-specific reordering rules.

As a solution, in the next chapter we propose a fully data-driven approach to dynamically

shape the reordering search space.
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Chapter 6

Dynamic Reordering Space Pruning

During decoding, the reordering model can be used not only as a feature func-

tion, but also as an early indication of whether or not a given reordering path

should be further explored. We exploit this idea to refine the reordering search

space in a dynamic and fully data-driven way.

6.1 Introduction

The reordering techniques proposed so far assume that most long-range reorderings in

the working language pair concentrate on few patterns. Moreover, they require the

availability of language-specific rules describing such patterns. In the present chapter,

instead, we explore a fully-data driven approach to dynamically shape the reordering

search space. While arising from the same motivations as the rest of this thesis, this

approach is language-independent and can in principle improve PSMT reordering in any

type of language pair.

Reordering in PSMT can be viewed as the problem of choosing the input permutation

that leads to the highest-scoring output sentence. Due to efficiency reasons, however,

the input permutation space cannot be fully explored, and is therefore limited with hard

reordering constraints. Such constraints are also important for translation quality because

the existing models are typically not discriminative enough to guide the search over very

large sets of reordering hypotheses (i. e. relaxing the reordering constraints generally

results in more model errors).

The existing reordering constraints, however, are rather simple and typically based

on word-to-word distances. We propose instead to dynamically define the reordering

search space, based on the scores of a specific reordering model. To this end, we build
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a binary classifier that predicts whether a candidate input position should be translated

right after another, given the words at those positions and their contexts. When this

model is integrated into decoding, its predictions can be used not only as an additional

feature function, but also as an early indication of whether or not a given reordering

path should be further explored. More specifically, at each hypothesis expansion, we

compute the set of input positions that are reachable according to permissive reordering

constraints, and prune it based only on the reordering model score. Then, the hypothesis

is expanded normally by covering the non-pruned positions. This technique makes it

possible to dynamically refine the search space while decoding with a very high distortion

limit, which can improve translation quality and efficiency at the same time.

This chapter is closely related to the work of Yahyaei and Monz [2010] on dynamic

distortion limit, which consists in training a classifier to predict the most probable jump

length after each input word,1 and using the predicted value as the DL after that position.

In our work we develop this idea further, and use a classifier to predict which specific input

words, rather than input intervals, should be translated next. This makes it possible to

shape the reordering space in a finer way, as compared to simply varying the distortion

limit. Our method also differs from the dynamic distortion limit in that it does not

generate inconsistent constraints, that is leading to decoding dead-ends.

The remainder of this chapter is organized as follows. We start by describing in

detail our reordering model and its features. In the following section, we introduce early

pruning of reordering steps as a way to dynamically shape the input permutation space.

Finally, we present an empirical analysis of our approach including intrinsic evaluation of

the model and SMT experiments on two popular news translation tasks, from Arabic to

English and from German to English.

6.2 The WaW reordering model

As discussed in Section 2.2.2, many solutions have already been proposed to explicitly

model word reordering during decoding. Phrase orientation models [Tillmann, 2004,

Koehn et al., 2005] predict the orientation of a phrase with respect to the last translated

one, therefore they are not suitable to predict the kind of long-range reorderings that

we address in our work. Another option would be to use jump models [Al-Onaizan and

Papineni, 2006, Green et al., 2010], as was done by Yahyaei and Monz [2010], but this

approach has another drawback: classifying reordering steps by their jump length has the

1As in Chapter 5, we denote here by “input word” the word at a given position of the input sentence,
as opposed to the notion of word type.
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effect of overly penalizing long jumps because of their low frequency compared to short

jumps. This bias is undesirable, as we are especially interested in detecting probable long

reorderings. Finally, source decoding sequence models [Feng et al., 2010a, Visweswariah

et al., 2011] predict which word of the input sentence is likely to be translated at a given

state of decoding. The model we present here belongs to this group, and more precisely

to the sub-group of source word pair reordering models, which we find especially suitable

to predict long reorderings. According to this approach, reordering is modeled as the

problem of judging whether a given input word should be translated right after another

(Word-after-Word). This formulation is particularly useful for the decoder to decide

whether a reordering path is promising enough to be further explored. Moreover, when

translating a sentence, choosing the next source word to translate appears as a more

natural problem than guessing how much to the left or to the right we should move from

the current source position.

The WaW reordering model addresses a binary decision task through the following

maximum-entropy classifier:

P (Ri,j=Y |fJ1 , i, j) =

exp[
∑

m λmhm(fJ1 , i, j, Ri,j=Y )]∑
Y ′ exp[

∑
m λmhm(fJ1 , i, j, Ri,j=Y ′)]

where fJ1 is a source sentence of J words, hm are feature functions and λm the correspond-

ing feature weights. The outcome Y can be either 1 or 0, with Ri,j=1 meaning that the

word at position j is translated right after the word at position i. Features are extracted

from the local context of positions i and j, and from the words occurring between them

(see details below).

Our WaW reordering model is strongly related to that of Visweswariah et al. [2011]

– hereby called Travelling Salesman Problem (TSP) model – with few important differ-

ences: (i) we do not include in the features any explicit indication of the jump length, in

order to avoid the bias on short jumps; (ii) they train a linear model with MIRA [Cram-

mer and Singer, 2003] by minimizing the number of input words that get placed after

the wrong position, while we use a maximum-entropy classifier trained by maximum-

likelihood; (iii) they use an off-the shelf TSP solver to find the best source sentence

permutation and apply it as pre-processing to training and test data. By contrast, we

integrate the maximum-entropy classifier directly into the SMT decoder and let all other

models (phrase orientation, translation, target LM etc.) contribute to the final reordering
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decision.

6.2.1 Features

Like the TSP model [Visweswariah et al., 2011], the WaW model builds on binary fea-

tures similar to those typically employed for dependency parsing [McDonald et al., 2005]:

namely, combinations of surface forms or POS tags of the words i and j and their context.

Our feature templates are presented in Table 6.1. The main novelties with respect to the

TSP model are the mixed word-POS templates (rows 16-17) and the shallow syntax fea-

tures. In particular, we use the chunk types of i, j and their context (18-19), as well as

the chunk head words of i and j (20). Finally we add a feature to indicate whether the

words i and j belong to the same chunk (21). The jump orientation – forward/backward

– is included in the features that represent the words comprised between i and j (rows 6,

7, 14, 15). However, no explicit indication of the jump length is included in any feature.

i−2 i−1 i i+1 b j−1 j j+1
1 w w
2 w w w
3 w w w w
4 w w w w
5 w w w w
6 w w w
7 wall w w
8 p p
9 p p p
10 p p p p
11 p p p p
12 p p p p
13 p p p p p p
14 p p p
15 pall p p
16 w p
17 p w
18 c c
19 c c c c c c
20 h h
21 belong to same chunk(i, j)?

w: word identity, p: POS tag, c: chunk type, h: chunk head word

Table 6.1: Feature templates used to learn whether a source position j is to be translated
right after i. Positions comprised between i and j are denoted by b and generate two feature
templates: one for each position (6 and 14) and one for the concatentation of them all (7 and
15).
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6.2.2 Training data

To generate training data for the classifier, we first extract reference reorderings from a

word-aligned parallel corpus. Given a parallel sentence, different heuristics may be used

to convert arbitrary word alignments to a source permutation [Birch et al., 2010, Feng

et al., 2010a, Visweswariah et al., 2011]. Similarly to this last work, we compute for each

source word fi the mean ai of the target positions aligned to fi, then sort the source words

according to this value.2 As a difference, though, we do not discard unaligned words but

assign them the mean of their neighbouring words’ alignment means, so that a complete

permutation of the source sentence (σ) is obtained. Table 6.2(a) illustrates this procedure.

(a) Converting word alignments to a permutation: source words are sorted
by their target alignments mean a. The unaligned word “D” is assigned
the mean of its neighbouring words’ a values (2 + 5)/2 = 3.5 :

(b) Generating binary samples by simulating the decoding process: shaded
rounds represent covered positions, while dashed arrows represent negative
samples:

Table 6.2: The classifier’s training data generation process.

2Using the mean of the aligned indices makes the generation of training data more robust to
alignment errors. This heuristic does not handle well the case of source words that are correctly aligned
to non-consecutive target words. However, this phenomenon is also not captured by standard PSMT
models, who only learn to translate continuous phrases.
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Given the reference permutation, we then generate positive and negative training

samples by simulating the decoding process. We traverse the source positions in the order

defined by σ, keeping track of the positions that have already been covered and, for each

t : 1 ≤ t ≤ J , generate:

• one positive sample (Rσt,σt+1=1) for the source position that comes right after it,

• a negative sample (Rσt,u=0) for each source position in {u : σt−δ+1 < u < σt+δ+1

∧ u 6= σt+1} that has not yet been translated.

Here, the sampling window δ serves to control the size of the training data and the

proportion between positive and negative samples. Its value naturally correlates with the

DL used in decoding. The generation of training samples is illustrated by Table 6.2(b).

6.2.3 Integration into phrase-based decoding

Rather than using the new reordering model to pre-process the input as done by Visweswariah

et al. [2011], we directly integrate it into the PSMT decoder Moses [Koehn et al., 2007].

Two main computation phases are required by the WaW model: (i) at system initial-

ization time, all features weights are loaded into memory, and (ii) before translating each

source sentence, features are extracted from it3 and model probabilities are pre-computed

for each position pair (i, j) such that |j − i− 1| ≤ DL. Note that this solution is possible

and efficient because our model does not employ features depending on the decoding his-

tory, like the word that was translated before the last one, or like the previous jump legth.

This is an important difference with respect to the reordered source LM proposed by Feng

et al. [2010a], which requires inclusion of the last n translated words in the decoder state.

Figure 6.1: Integrating the binary word reordering model into a phrase-based decoder: when a
new phrase is covered (dashed boxes), the model returns the log-probability of translating its
words in the order defined by the phrase-internal word alignment.

Figure 6.1 illustrates the scoring process: when a partial translation hypothesis H is

expanded by covering a new source phrase f̃ , the model returns the log-probability of

3POS tags and chunk annotation are encoded as input factors.
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translating the words of f̃ in that particular order, just after the last translated word of

H. In details, this is done by converting the phrase-internal word alignment4 to a source

permutation, in just the same way it was done to produce the model’s training exam-

ples. Thus, the global score is independent from phrase segmentation, and normalized

across outputs of different lengths: that is, the probability of any complete hypothesis

decomposes into J factors, where J is the length of the input sentence.

The WaW reordering model is fully compatible with, and complementary to the lexi-

calized reordering (phrase orientation) models included in Moses.

6.3 Model-based reordering space definition

We now explain how the WaW reordering model can be used to dynamically refine the

input permutation space. This method is not dependent on the particular classifier de-

scribed above, but can in principle work with any device estimating the probability of

translating a given input word after another.

6.3.1 Early pruning of reordering steps

A way to refine the reordering search space is to query the reordering model at the time of

hypothesis expansion, and to filter out hypotheses solely based on their reordering score.

The rationale is to avoid costly hypothesis expansions for those source positions that the

reordering model considers very unlikely to be covered at a given point of decoding. In

practice, this works as follows:

• at each hypothesis expansion, we first enumerate the set of uncovered input positions

that are reachable within a fixed DL, and query the WaW reordering model for each

of them;

• solely based on the WaW reordering score, we apply histogram and threshold prun-

ing to this set, and proceed to expand only the non-pruned positions.

Furthermore, it is possible to ensure that local reorderings are always allowed, by setting

a so-called non-prunable-zone of width ϑ around the last translated position.

According to how the DL, pruning parameters, and ϑ are set, we can actually aim at

different targets: with a low DL, loose pruning parameters, and ϑ=0 we can try to speed

up search without sacrificing much translation quality. With a high DL, strict pruning

4Phrase-internal word alignment is provided in the phrase table.
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parameters, and a medium ϑ we ensure that the standard medium-range reordering space

is explored, as well as those few long jumps that are promising according to the reordering

model. In our experiments, we explore this second option with the setting DL=18 and

ϑ=5.

The underlying idea is similar to that of early pruning proposed by Moore and Quirk

[2007], which consisted in discarding possible extensions of a partial hypothesis based on

their estimated score before computing the exact language model score. Our technique

too has the effect of introducing additional points at which the search space is pruned.

However, while theirs was mainly an optimization technique meant to avoid useless LM

queries, we instead aim at refining the search space by exploiting the fact that some SMT

models are more important than others at different stages of the translation process. Our

approach actually involves a continuous alternation of two processes: during hypothe-

sis expansion the reordering score is combined with all other scores, while during early

pruning some reordering decisions are taken only based on the reordering score. In this

way, we try to combine the benefits of fully integrated reordering models with those of

monolingual pre-ordering methods.

6.3.2 Technical details

We have explained above how early reordering pruning works at the conceptual level. In

practice, though, there are some technical issues due to the fact that the WaW reordering

model operates at the level of input positions (words), while hypothesis expansion proceeds

at the level of input ranges (phrases).

Let us consider again Figure 6.1 and assume that (s1s2|t1t2) is the last translated

phrase pair of a partial hypothesis H. At this point, H can be expanded by covering any

range of input positions [x..y] that satifies the standard conditions:

• there exists at least one translation option matching [x..y] on the source side;

• x is reachable within the DL from the last word of the last covered phrase (here s2);

• the left-most uncovered position of the input (here s3) is reachable within the DL

from y (“gap constraint”).

Now, we want to prune this set of input ranges, but the WaW reordering scores apply to

single input positions. We then proceed with the following steps:

1. the set of reachable input positions is pruned to obtain the set of positions allowed

for expansion (A);
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2. the input ranges that do not include any position in A are discarded;

3. all the remaining input ranges are considered for expansion, but only with transla-

tion options whose first target word aligns to a source position in A.

Hence, in Figure 6.1, the input range [4..6] would be discarded in step (2) if all positions

{4, 5, 6} were pruned in step (1). Otherwise, the translation options matching the input

range [4..6] would be examined along with their internal word alignment. At this point

(step 3) the translation option showed in the figure (s4s5s6|t3t4) would be discarded if s5

was pruned in step (1), because s5 aligns to the option’s first target word t3.

At the end of the pruning process, we check that at least one range can be expanded.

If not, we let nevertheless expand the ranges starting at the left-most uncovered position.

This measure effectively prevents decoding dead-ends.

6.4 Evaluation

We test our approach on two news translation tasks where sentences are typically long

and complex: the Arabic-English nist-mt09 task and the German-English wmt10 task.

In Arabic-English, long reordering errors mostly concern verbs, as all of SVO, VSO

and, more rarely, VOS constructions are attested in modern written Arabic. This issue

is well known in the SMT field and was addressed by several recent works, with deep

or shallow parsing-based techniques [Green et al., 2009, Carpuat et al., 2012, Andreas

et al., 2011, Bisazza et al., 2012]. In German-English too, verbs are among the hardest

words to reorder, due to the verb-second nature of German and to the particular order

of subordinate clauses.5 Reordering in this language pair was addressed, among others,

by Collins et al. [2005] with manually written syntax-based pre-processing rules. We

question whether our approach – which is not conceived to solve these specific problems,

nor requires manual rules to predict verb reordering – will succeed in improving long

reordering in a fully data-driven way.

The SMT training, development and test corpora used in this chapter, as well as the

pre-processing pipelines, are the same as those used in the evaluation of Chapter 5 (see

in particular Section 5.5).

5See Section 3.2 for a detailed discussion of Arabic and German word order.

83



CHAPTER 6. DYNAMIC REORDERING SPACE PRUNING

(a) Arabic-English results on tides-mt04.

Features [templates] P R F
W [1-7] 73.11 16.39 26.78
P [8-15] 69.46 54.82 61.28

W,P [1-17] 70.16 56.49 62.58
W,P,C [1-21] 70.59 58.14 63.77

(b) German-English results on test08.

Features [templates] P R F
W [1-7] 66.14 11.37 19.40
P [8-15] 66.87 48.29 56.08

W,P [1-17] 67.17 48.87 56.58
W,P,C [1-21] 66.97 49.96 57.23

Table 6.3: WaW reordering model performance (precision, recall and F-score) achieved by
different feature subsets. The template numbers refer to the rows of Table 6.1.

6.4.1 Reordering model intrinsic evaluation

Before proceeding to the SMT experiments, we evaluate the performance of the WaW

reordering model in isolation.

All the tested configurations are trained with the freely available MegaM Toolkit,6

implementing the conjugate gradient method [Hestenes and Stiefel, 1952], in maximum

100 iterations. Training samples are generated within a sampling window of width δ=10,

from a subset (30K sentences) of the parallel data described above, resulting in 8M training

word pairs for each language pair.7 Arabic-English test samples are generated from tides-

mt04 (1324 sentences, 370K samples generated with δ=10), one of the corpora included in

our SMT training data. German-English test samples are generated from the development

set test08 (2051 sentences, 444K samples). Features with less than 20 occurrences are

ignored.

Classification accuracy

Table 6.3 presents precision, recall, and F-score achieved by different feature subsets,

where W stands for word-based, P for POS-based and C for chunk-based feature tem-

plates. We can see that all feature types contribute to improve the classifier’s performance.

In Arabic-English, the word-based model achieves the highest precision but a very low

6http://www.cs.utah.edu/˜hal/megam/ [Daumé III, 2004].
7This is the maximum number of samples manageable by MegaM. However, even scaling from 4M to

8M was only slightly helpful in our experiments.
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recall, while the POS-based has much more balanced scores. A better performance over-

all is obtained by combining word-, POS- and mixed word-POS-based features (62.58%

F-score). Finally, the addition of chunk-based features yields a further improvement of

about 1 point, reaching 63.77% F-score. In German-English we observe similar trends,

except for the lower precision of the word-based model. Here too, the best F-score is

achieved by including all feature types (W,P,C) in the classifier. Given these results, we

decide to use the W,P,C model for the rest of the intrinsic evaluation and for all the SMT

experiments. However, we underline the fact that performances would be only slightly

worse if the shallow syntax annotation was not available.

In general, classification accuracy scores are rather low, which shows that the reorder-

ing problem is very hard to solve even when rich context-based features are used.

Ranking accuracy

A more important aspect to evaluate for our application is how well our model’s proba-

bility can rank a typical set of reordering options. In fact, the WaW model is not meant

to be used as a stand-alone classifier, but as one of several SMT feature functions. More-

over, for early reordering pruning to be effective, it is especially important that the correct

reordering option be ranked in the top n among those available at the time of a given

hypothesis expansion.

In order to measure this, we simulate the decoding process by traversing the source

words in target order and, for each of them, we examine the ranking of all words that

may be translated next (that is the uncovered positions within a given DL). We check

how often the correct jump was ranked first (Top-1) or at most third (Top-3). We also

compute the latter score on long reorderings only (Top-3-long): i.e. backward jumps

with distortion D>7 and forward jumps with D>6. In Table 6.4 results are compared

with the ranking produced by standard distortion, which always favors shorter jumps.

Two conditions are considered: DL=10 corresponding to the sampling window δ used to

produce the training samples, and DL=18 corresponding to the maximum distortion of

jumps that will be considered in our early-pruning SMT experiment.

In Arabic-English, the WaW reordering model outperforms standard distortion by a

large margin (about 10% absolute) in terms of overall accuracies. This is an important

result, considering that the jump length, strongly correlating with the jump likelihood, is

not directly known to our model. As regards the DL, the higher limit naturally results in

a lower DL-error rate (percentage of correct jumps beyond DL): namely 0.76% instead of

2.44%. However, jump prediction becomes much harder: Top-3 accuracy of long jumps by
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(a) Arabic-English results on tides-mt04.

Model DL DL-err Top-1 Top-3
Top-3-long

back forw.

Distortion
10 2.44 61.75 79.63 50.66 65.96
18 0.76 61.98 80.00 18.85 52.28

WaW
10 2.44 71.22 91.16 76.35 69.30
18 0.76 71.24 91.76 67.95 51.77

(b) German-English results on test08.

Model DL DL-err Top-1 Top-3
Top-3-long

back forw.

Distortion
10 6.54 61.65 73.79 44.48 54.03
18 1.96 62.02 74.53 17.32 34.66

WaW
10 6.54 61.49 80.34 72.70 67.34
18 1.96 61.70 81.41 68.02 46.25

Table 6.4: Word-to-word jump ranking accuracies (%) of standard distortion and WaW
reordering model, in different DL conditions. DL-err is the percentage of correct jumps lying
beyond the DL. The test sets consist of 40K and 51K reordering decisions: one for each source
word in tides-mt04 and test08, respectively.

distortion drops from 50.66% to 18.85% (backward) and from 65.95% to 52.28% (forward).

Our model is remarkably robust to this effect on backward jumps, where it achieves

67.95% accuracy. Given the syntactic characteristics of Arabic and English, the typical

long reordering pattern in this language pair consists in (i) skipping a clause-initial Arabic

verb, (ii) covering a long subject, then finally (iii) jumping back to translate the verb and

(iv) jumping forward to continue translating the rest of the sentence (see Figure 6.8 for an

example). Deciding when to jump back to cover the verb (iii) is the hardest part of this

process, and that is precisely where our model seems more helpful, while distortion always

prefers to proceed monotonically achieving a very low accuracy of 18.85%. In the case of

long forward jumps (iv), instead, distortion is advantaged as the correct choice typically

corresponds to translating the first uncovered position, that is the shortest jump available

from the last translated word. Even here, our model achieves a reasonable accuracy of

51.77%, only slightly lower than that of distortion (52.28%).

In German-English, figures are somewhat different: the WaW reordering model is

slightly weaker than distortion in terms of Top-1 accuracy (61.70% versus 62.02% with

DL=18), but much stronger than it in terms of Top-3 (81.41% versus 74.53% with DL=18).

As regards long reorderings, the performance of distortion degrades greatly when the DL

is raised, while the WaW model is robust to this effect. More precisely, with DL=18,

the WaW model achieves a Top-3 accuracy of 68.02% versus 17.32% by distortion on
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long backward jumps. Interestingly, the WaW model outperforms distortion also on long

forward jumps (46.25% versus 34.66%), which was not the case in Arabic-English. This

can be explained by the fact that long reordering patterns are more mixed in German-

English than in Arabic-English.

In summary, the WaW reordering model significantly outperforms distortion in the

ranking of long jumps in both language pairs. In the large majority of cases, it is able to

rank a correct long jump in the top 3 reordering options, which suggests that it can be

effectively used for early reordering pruning.

6.4.2 SMT experiments

Our SMT systems are built with the Moses toolkit, while word alignment is produced by

the Berkeley Aligner [Liang et al., 2006]. For each language pair, the baseline decoder

includes a phrase translation model, a lexicalized reordering model, a 6-gram target lan-

guage model, distortion cost, word and phrase penalties. More specifically, the baseline

reordering model is a hierarchical phrase orientation model [Tillmann, 2004, Koehn

et al., 2005, Galley and Manning, 2008] trained on all the available parallel data. The

hierarchical variant [Galley and Manning, 2008] was shown to outperform the default

word-based on an Arabic-English task. To make our baseline even more competitive, we

apply early distortion cost, as proposed by Moore and Quirk [2007]. As explained

in Section 2.2.2, this distortion function has the same value as the standard one over a

complete translation hypothesis, but it anticipates the gradual accumulation of the cost,

making hypotheses of the same length more comparable to one another. Note that this

option has no effect on the distortion limit, but only on the distortion feature function.

The language model is estimated by the IRSTLM toolkit [Federico et al., 2008] with mod-

ified Kneser-Ney smoothing [Chen and Goodman, 1999]. As proposed by Johnson et al.

[2007], statistically improbable phrase pairs are removed from the translation model.

Feature weights are optimized by minimum BLEU-error training [Och, 2003] on dev06-

nw and test08). To reduce the effects of the optimizer instability, we tune each configu-

ration four times and use the average of the resulting weight vectors to translate the test

sets, as suggested by Cettolo et al. [2011]. Moreover, eval08-nw and test09 are used to

select the early pruning parameters for the last experiment, while eval09-nw and test10

are used as blind tests.

We recall that reo09 and reo10 are the reordering-specific test sets obtained by extract-

ing from eval09-nw and test10, respectively, only those sentences that got reordered by

our chunk-based rules (see Section 5.2). Thus, the Arabic subset (reo09: 299 sentences)
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contains verb-subject (VS) sentences, representing about a half of all sentences. The Ger-

man subset (reo10: 885 sentences) contains sentences where the verb lies in a different

position with respect to the canonical SVO order of English. More precisely, the rules

recognize three patterns: clause-final infinitives, verbs placed at the end of a subordinate

clause, and ‘broken’ verb chunks where the finite verb is separate from the non-finite verb.

According to our rule set, these patterns occur in about a third of the German sentences.

We evaluate global translation quality by BLEU and METEOR, and reordering

accuracy by Kendall Reordering Score (KRS).8 As in Chapter 5, source-output word

alignments are produced by the decoder, while source-reference word alignments are gen-

erated by the Berkeley Aligner trained on the training data. Statistical significance is

assessed by approximate randomization as in Riezler and Maxwell [2005].

Fine-grained evaluation

Our work specifically addresses long-range reordering phenomena in language pairs where

these are quite rare, although crucial for preserving the source text meaning. Hence, an

improvement at this level may not be detected by the general-purpose metrics used so

far.

A better way to automatically evaluate our systems would be to use syntax- or

semantics-based metrics, as the impact of long reordering errors is particularly impor-

tant at these levels. As a light-weight alternative, we propose instead to use word classes

(i. e. Part-of-Speech) and to concentrate the evaluation on those classes that are typically

crucial to guess the general structure of a sentence.

We then develop a KRS variant that is only sensitive to the positioning of specific

input words. As explained in Section 2.5, the standard KRS is computed as follows:

K(π, σ) =

∑n
i=1

∑n
j=1 d(i, j)

1
2
n(n− 1)

d(i, j) =

{
1 if πi < πj and σi > σj

0 otherwise

To obtain a word-weighted KRS, we assume that each input word fi is assigned a weight

λi, and modify the formula above as follows:

dλ(i, j) =

{
λi+λj if πi < πj and σi > σj

0 otherwise

8See Section 2.5 for details on these metrics.
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A similar element-weighted version of Kendall Tau was proposed by Kumar and Vas-

silvitskii [2010] to evaluate document rankings in information retrieval. Because long

reordering errors in Arabic-English and German-English mostly affect verbs, we set the

weights to 1 for verbs and 0 for all other words to only capture verb reordering errors,

and refer to the resulting metric as KRS-V.

Results and discussion

To motivate the choice of our baseline setup (early distortion cost and DL=8), we first

compare the performance of standard and early distortion costs under various DL condi-

tions. This analysis was performed only on the Arabic-English pair.

DL=8 
DL=5|10 
DL=18 

DL=5 
DL=8 

DL=10 

DL=18 
75.5 

76.5 

77.5 

78.5 

79.5 

80.5 

81.5 

82.5 

83.5 

43.1  43.6  44.1  44.6  45.1 

KR
S 

BLEU 

early 

standard 

Figure 6.2: Standard versus early distortion cost results on the Arabic-English eval08-nw,
under different distortion limits (DL). Best scores are on top-right corner.

As shown in Figure 6.2, most results are close to each other in terms of BLEU and KRS,

but early distortion consistently outperforms the standard one (differences are statistically

significant). The most striking difference appears at a very high distortion limit (18),

where standard distortion scores drop by more than 1 BLEU point and almost 7 KRS

points! Early distortion is much more robust (only -1 KRS when passing from DL=8 to

DL=18), which makes our baselines especially strong from the reordering point of view.

Table 6.5 presents the results obtained by integrating the WaW reordering model as

an additional feature function, and by applying our technique of early reordering pruning.

Note that statistical significance is always computed against the baseline [b]. Run times

refer to the translation (model loading times included) of the first 100 sentences of eval08-

nw and test09 by an Intel Xeon X5650 processor.
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(a) Arabic-English

eval08-nw eval09-nw reo09 ms/

DL Reo. models bleu met krs krs-v bleu met krs krs-v krs-v word

8
hier.lexreo, early disto.[b] 44.8 35.2 83.4 85.6 50.6 38.1 84.7 86.2 84.8 98

+ WaW model 45.0 35.2 83.7M 85.9 51.1N 38.3N 85.1N 86.8N 85.8N 102

18
hier.lexreo, early disto. 44.7 34.9H 82.4H 84.9H 50.3 38.0O 83.9H 85.8O 84.3O 164

+ WaW model 44.8 35.2 82.7H 85.5 51.0M 38.3N 84.2O 86.2 85.2 172

+ early reo.pruning(ϑ=5) 45.0 35.3 83.7M 86.3N 50.9 38.3N 84.9 87.0N 86.2N 79

(b) German-English

test09 test10 reo10 ms/

DL Reo. models bleu met krs krs-v bleu met krs krs-v krs-v word

8
hier.lexreo, early disto.[b] 19.0 27.4 66.1 64.2 20.4 29.2 69.2 67.1 63.9 347

+ WaW model 19.3N 27.5 66.1 64.3 20.7N 29.4N 69.4N 67.3 64.3 361

18
hier.lexreo, early disto. 18.0H 27.3O 61.7H 61.0H 19.3H 29.1H 64.4H 63.8H 61.2H 680

+ WaW model 18.1H 27.3O 60.6H 60.3H 19.6H 29.2 63.7H 63.4H 60.8H 703

+ early reo.pruning(ϑ=5) 19.4N 27.7N 66.5N 64.9N 20.6N 29.5N 69.5N 67.8N 65.9N 240

Table 6.5: Effects of WaW reordering modeling and early reordering pruning on translation
quality, measured with % BLEU, METEOR, and KRS: regular (KRS) and verb-specific (KRS-
V). Statistically significant differences with respect to the baseline [b] are marked with NH at
the p ≤ .05 level and MO at the p ≤ .10 level. Decoding time is measured in milliseconds per
input word.

In both language pairs, integrating the WaW model as an additional feature function

results in small but consistent improvements (second row of each table), showing that

this type of model conveys at least some information that is missing from the state-of-

the-art reordering models. Some of these gains, though, are not statistically significant.

Concerning the run time, we notice just a small overload of about 4%: that is, from 98

to 102 ms/word in Arabic-English and from 347 to 361 ms/word in German-English.

As expected, raising the DL to 18 with no special pruning (third row) has a negative

impact on both translation quality and efficiency. This effect is especially visible on the

reordering scores: from 84.7 KRS to 83.9 KRS on the Arabic-English eval09-nw, and

from 69.2 to 64.4 KRS on the German-English test10. Run times increase by 67% in

Arabic-English (from 98 to 164 ms/word), and by 96% in German-English (from 347 to

680 ms/word).

Adding the WaW model under the high DL condition (third row) is beneficial ac-

cording to all scores in Arabic-English, however the low-distortion baseline [b] remains

90



6.4. EVALUATION

unbeaten. In German-English, the addition of the WaW model has inconsistent effects

under the high DL condition: the BLEU scores increase slightly (e. g. from 19.3 to 19.6

BLEU on test10), but the reordering scores decrease (e. g. from 64.4 to 63.7 KRS on

test10).

We then proceed to the last experiment where the reordering space is dynamically

pruned based on the WaW model scores (fifth row of each table). As explained in Sec-

tion 6.3.1, a non-prunable-zone of width ϑ=5 is set around the last covered position. To

set the early pruning parameters, we perform a grid search over the values (1, 2, 3, 4,

5) for histogram and (0.5, 0.25, 0.1) for relative threshold pruning, and select the values

that achieve the best BLEU and KRS on eval08-nw and test09. The optimal values in

Arabic-English are 3 (histogram) and 0.1 (threshold). This pruning setting implies that,

at a given point of decoding where i is the last covered position, a new word can be

translated only if:

• it lies within a DL of 5 from i, or

• it lies within a DL of 18 from i and its WaW reordering score is among the top 3

and at least equal to 1/10 of the best score (in linear space).

The optimal values in German-English are instead 2 and 0.25. The resulting configurations

are re-optimized by MERT on dev06-nw and test08 before the final experiment.

As shown in the last row of Tables 6.5(a) and 6.5(b), early pruning achieves the best

results overall: despite the high DL, we report no loss in BLEU, METEOR and KRS,

but we actually see several improvements. On the Arabic-English blind test (eval09-nw),

the improvements are +0.3 BLEU, +0.2 METEOR and +0.2 KRS (only METEOR is

significant). On the German-English blind test (test10), the improvements are: +0.2

BLEU, +0.3 METEOR, +0.3 KRS (all are significant). While these gains are indeed

small, we recall that our techniques affect rather rare and isolated events which can

hardly emerge from the general purpose evaluation metrics. Moreover, to our knowledge,

this is the first time that a PSMT system is able to maintain a good performance on these

language pairs while admitting very long-range reordering.

Finally, and more importantly, the verb-specific KRS-V improves significantly on both

the generic benchmarks and the reordering-specific subsets. In Arabic-English, we achieve

a notable gain of +0.8 KRS-V on eval09-nw and +1.4 KRS-V on reo09. In German-

English, we report a gain of +0.7 KRS-V on test10 and +2.0 KRS-V on reo10. All these

results validate our hypothesis on the importance of refining the reordering space.

Efficiency is also largely improved by our early reordering pruning technique. Trans-

lation time is reduced from 98 to 79 ms/word in Arabic-English and from 347 to 240
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ms/word in German-English, which corresponds to a speed-up of 19% and 31% over the

baseline, respectively.

Interaction with beam-search pruning

During the beam-search decoding process, early reordering pruning interacts with regular

hypothesis pruning based on the weighted sum of all model scores. In particular, all the

systems presented in this thesis apply a default histogram threshold of 200 to each stack

of hypotheses that cover the same number of input words (cf. Section 2.2.1). Given

this setting, one could argue that the positive effect of our approach is mainly due to

the reduction of search error. In other words, reordering quality may be improved by

simply relaxing the standard pruning parameters, in which case our approach should be

considered as an optimization technique rather than an actual model improvement.

Table 6.6: Effect of beam size on translation quality measured by BLEU, KRS and KRS-V, in
two baseline systems (DL=8 and DL=18) and in the WaW early-pruning system (Arabic-English
task).
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To answer this question, we perform another series of experiments, where we vary the

histogram threshold (beam size) from the default value of 200 up to 800, while keeping

all other parameters and feature weights fixed. The results in terms of BLEU, KRS and

KRS-V are plotted against the beam size and reported in Table 6.6. Three Arabic-English

systems are represented: baseline with a DL=8, baseline with DL=18 and our enhanced

system that includes the WaW model and early reordering pruning with DL=18.

We can see that increasing the beam size has inconsistent effects on the low-DL base-

line. The large-DL baseline, instead, appears to benefit from the increased beam size,

nevertheless its performance remains the worst overall. Indeed, the superiority of the

early-pruning system is maintained according to all metrics in all the tested beam set-

tings, which shows that the success of our approach is due in large part to the reduction

of model errors. These results confirm the usefulness of our method not only as an opti-

mization technique, but also as a way to improve translation quality on top of a strong

baseline regardless of efficiency.

Long-range reordering statistics and examples

To better understand the behavior of the early-pruning system, we extract phrase-to-

phrase jump statistics from the decoder log file and count the number of long jumps that

were performed to produce the 1-best translation. More precisely, we count a long jump

for each pair of consecutively translated source phrases (f̃i−1, f̃i) such that:

D = |start(f̃i)− end(f̃i−1)− 1| > 5

Results are reported in Table 6.7, along with the average number of partial translation

hypotheses considered per test sentence.

We can see that, in both languages, the early-pruning system performed several long

jumps while exploring a much smaller search space compared to the high-distortion base-

line. In Arabic-English, the high-distortion system performed almost the same number

of long jumps when early pruning was enabled, but it considered four times less par-

tial hypotheses (from 2424K to 642K per sentence). In German-English, instead, early

pruning resulted in a smaller number of performed long jumps (e. g. from 48 to 19 per

100 sentences with D in [9..18]). At the same time, the higher translation quality scores

reported in Table 6.5 suggest that the early-pruning system is more precise, while the

high-distortion baseline is over-reordering. In German-English too, early pruning had the

beneficial effect of shrinking the search space by a factor of four.
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System DL #hyp/sent
(#jumps/sent)×100

D: [6..8] [9..12] [13..18]

baseline 8 1119K 14 – –

Arabic-English baseline 18 2424K 19 5 2

eval09-nw + WaW model and
18 642K 16 5 2

early reo.pruning (ϑ=5)

baseline 8 634K 89 – –

German-English baseline 18 1349K 92 66 48

test10 + WaW model and
18 385K 52 32 19

early reo.pruning (ϑ=5)

Table 6.7: Decoding statistics of the baseline and the new system: #hyp/sent is the average
number of partial translation hypotheses considered per test sentence; (#jumps/sent)×100
is the average number of phrase-to-phrase jumps included in the 1-best translation per 100 test
sentences. Only long jumps are shown, divided into three distortion buckets.

Finally, Table 6.8 shows some examples of test sentences that were erroneuously re-

ordered by the baseline systems. The systems including the WaW model and early pruning

of reordering steps, instead, produced the correct translation.

The first Arabic sentence is a typical example of VSO order with a long subject. While

the baseline system left the verb in its Arabic position, producing an incomprehensible

translation, the new system placed it rightly between the subject and the object. This

reordering involved two long jumps: one with D=9 backward and one with D=8 forward.

The second sentence displays another, less common, Arabic construction: namely VOS,

with the object realized by a personal pronoun. In this case, a backward jump with D=10

and a forward jump with D=8 were necessary to achieve the correct reordering.

The first German sentence contains a broken verb chunk: that is, the auxiliary verb

(hat) is separated from the past participle (geeinigt) by the object and a very long comple-

ment. The new system was able to correctly translate and reorder the verb by performing

a backward jump with D=15 and a forward jump with D=16. Finally, in the last sentence,

the modal verb (konnten) is separate from the infinitive verb (erreichen) by the subject,

the object and a complement. This example is further complicated by the presence of

the negation (nicht). To produce the correct translation, the new system had to jump

forward by D=12 and backward by D=14.

These examples show that our early reordering pruning technique can successfully

handle very complex and diverse reordering patterns.
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src verb subj. obj. compl.

(ar) ywASl sfyr Almmlkp AlErbyp AlsEwdyp ldY lbnAn EbdAlEzyz xwjp tHrk -h fy AtjAh...
continues ambassador Kingdom Arabian Saudi to Lebanon Abdulaziz Khawja move his in direction

ref The Kingdom of Saudi Arabia ’s ambassador to Lebanon Abdulaziz Khawja continues his moves
towards ...

base continue to Saudi Arabian ambassador to Lebanon , Abdulaziz Khwja its move in the direction of ...

new The Kingdom of Saudi Arabia ’s ambassador to Lebanon , Abdulaziz Khwja continue its move in the
direction of ...
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src adv. verb obj. subj. compl.

(ar) fymA dEA -hm r}ys Almktb AlsyAsy l- Hrkp HmAs xAld m$El AlY AltzAm AlHyAd
meanwhile called them head bureau political of movement Hamas Khaled Mashal to necessity neutrality

ref Meanwhile, the Head of the Political Bureau of the Hamas movement , Khaled Mashal , called upon
them to remain neutral .

base The called them , head of Hamas’ political bureau , Khalid Mashal , to remain neutral .

new The head of Hamas’ political bureau , Khalid Mashal , called on them to remain neutral .

subj. verbaux obj. compl.

Die obersten Vertreter des amerikanischen Kongresses haben sich auf eine breitere Form
src the top representatives of-the American Congress have themselves on a broader form

(de) compl.(cont’d) verbpp

eines Abkommens über eine Finanz hilfe für das amerikanische Finanz system geeinigt .
of-an agreement about a financial aid for the American financial system agreed

ref The top representatives of the American Congress have agreed upon a broader form of the agreement
on financial assistance for the American financial system .

base The top representatives of the American Congress has on a broader form of an agreement on financial
assistance for the American financial system , agreed .

new The top representatives of the American Congress have agreed on a broader form of an agreement
on financial assistance to the American financial system .

adv. verbmod subj. obj. compl.

Jedoch konnten sie Kinder in Teilen von Helmand und Kandahar im Süden aus Sicherheit grund
src however could they children in parts of Helmand and Kandahar in South for security reasons

(de) neg verbinf

nicht erreichen .
not reach

ref But they could not reach children in parts of Helmand and Kandahar in the south for security reasons.

base However , they were children in parts of Helmand and Kandahar in the south, for security reasons .

new However, they could not reach children in parts of Helmand and Kandahar in the south for security
reasons.

Table 6.8: Long-range reordering examples showing improvements over the baseline system
when the DL is raised to 18 and early pruning based on WaW reordering scores is enabled
(new). The Arabic sentences are taken from eval09-nw and the German ones from test09.
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6.5 Conclusions

In this chapter, we have presented a fully data-driven approach to improve the perfor-

mance of a PSMT system on long reordering. We have trained a discriminative model to

predict likely reordering steps in a way that is complementary to state-of-the-art PSMT

reordering models. We have effectively integrated it into a PSMT decoder as an additional

feature, ensuring that its total score over a complete translation hypothesis is consistent

across different phrase segmentations. Lastly, we have proposed early pruning of reorder-

ing steps as a novel method to dynamically refine the input permutation space defined

by standard reordering constraints. The core idea of this technique is to let the decoder

alternate between hard reordering decisions (early pruning only based on the reordering

model) and soft reordering decisions (regular pruning based on the combination all SMT

models). In this way, we combine the benefits of fully integrated reordering models with

those of monolingual pre-ordering methods.

The approach is easily portable to other language pairs, because it does not rely on

language-specific rules, but only on widely available linguistic resources, such as POS

taggers.9

Evaluated in Arabic-English and German-English against two strong news translation

baselines, our approach leads to similar or even higher BLEU, METEOR and KRS scores

at a very high distortion limit (18), which is by itself an important achievement. At

the same time, the reordering of verbs, measured with a novel version of the KRS, is

significantly improved, while decoding gets between 19% and 31% faster than the baseline.

9According to our experiments, shallow syntax annotation was beneficial but not essential for the
success of the approach.
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Chapter 7

Comparative Evaluation and

Conclusions

Throughout this thesis, we have proposed various methods to address the problem of

long-range reordering in phrase-based SMT, obtaining consistent improvements over the

state of the art in two language pairs that display important reordering phenomena.

Our methods differ primarily in the kind of language-specific resources that they

require: chunk-based reordering lattices (Chapter 4) and modified distortion matrices

(Chapter 5) need a POS-tagger, a shallow syntax chunker and a set of hand-written re-

ordering rules to be constructed. On the contrary, early reordering pruning based on the

Word-after-Word (WaW) reordering model (Chapter 6) does not require rules. It only

employs POS and, if available, chunking annotation.

From the point of view of time efficiency, the lattice solution appears to be the most

costly: decoding becomes three times slower than the baseline when unpruned lattices

are used. To limit this effect, lattices can be pruned by means of discriminative methods,

but the pruning phase itself can also be expensive (cf. Section 4.6). On the other hand,

distortion matrices and WaW-based early pruning are both very competitive in terms of

run times.

To fairly compare the proposed methods at the level of translation quality and effi-

ciency, we will now present a final series of experiments performed with exactly the same

training and decoding conditions. Moreover, to position our work in the broader field of

SMT, we will also evaluate our methods against the hierarchical SMT (HSMT) approach

[Chiang, 2005].
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7.1 Experimental setup

The comparative evaluation is carried out on the Arabic-English nist-mt09 task and the

German-English wmt10 task. The SMT training, development and test corpora used

in this chapter, as well as the pre-processing pipelines, are the same as those used in

the evaluations of Chapters 5 and 6. The baseline PSMT setting corresponds to that of

Chapter 6, that is our strongest PSMT system including hierarchical phrase orientation

models [Galley and Manning, 2008] and early distortion cost [Moore and Quirk, 2007].

The contrastive experiments are set up as follows:

Lattices. The chunk-based reordering rules described in Sections 4.2 and 5.2 are applied

deterministically to the training data before phrase extraction and scoring. The

same rules are then applied non-deterministically to the test sets, and the result-

ing reorderings are represented explicitly in the form of word reordering lattices.

Translation is performed by non-monotonic lattice decoding [Dyer et al., 2008]. Be-

fore translation, the lattices are pruned according to the scores of a chunk-based

reordered source LM, as explained in Sections 5.3 and 5.5.1.1 We choose this prun-

ing technique because it is much faster than the one based on the SVM classifier

proposed in Section 4.6. Lattice edges are assigned a score of 1 if they belong to the

original order path, or 0.25 otherwise. The lattice path feature weight is then tuned

by MERT along with the other feature weights. Lattice decoding is not compatible

with early distortion cost,2 therefore we use standard distortion in this experiment

only.

Matrices. The same chunk-based reordering rules are applied to the test sets, but the

resulting reorderings are represented implicitly by means of modified distortion ma-

trices. Before computing the matrices, reorderings are pruned with a chunk-based

reordered LM as in the lattice experiment. Thus, the reorderings encoded by the

matrices correspond to those encoded by the lattices. In this experiment we enable

early distortion cost, therefore the modified distortion cost is not used as a feature

function but only as a constraint: that is, to select the set of positions allowed for

hypothesis expansion.

Because the input sentence is presented to the decoder in its original order, the

training data is not reordered in this and the following experiments.

1This technique was designed for modified distortion matrix, but can be applied to lattices as well.
2This is because exact distortion between pairs of word nodes is not well defined in non-linear lattices.

The approach proposed by Dyer et al. [2008], and implemented in Moses, is to use the shortest possible
path pre-computed using an all-pairs shortest path algorithm.
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WaW early reordering pruning. This system includes the WaW reordering model as

an additional feature function. Besides, early pruning of reordering steps based

on WaW scores is applied to each hypothesis expansion. All settings (pruning

parameters etc.) coincide with those of the early-pruning experiments presented in

Table 6.5.

Hierarchical SMT. For each language pair, we build a HSMT system on the same

training data, using the tree-based implementation of Moses [Hoang et al., 2009].

As explained in Section 2.3, the number of words that may be covered by non-

terminal symbols has to be limited for efficiency reasons (span constraint). We set

this constraint to the default value of 10 words for rule extraction, while for decoding

we consider two settings: the default 10 words and a large value of 20 to enable very

long-range reorderings.

The feature weights of all our systems are optimized by MERT [Och, 2003] on the

Arabic-English dev06-nw and the German-English test08. Each configuration is tuned

four times and the average of the resulting weight vectors is used to translate the test

sets, as suggested by Cettolo et al. [2011]. We evaluate global translation quality by

BLEU and METEOR, and reordering accuracy by generic and verb-specific Kendall

Reordering Scores (KRS and KRS-V).3 The source-reference word alignments needed

to compute the reordering scores are generated by the alignment models previously trained

on the training data. The source-output word alignments are obtained from the decoder’s

trace in all experiments except the one involving reordering lattices, for which we have

to make use of the pre-trained alignment models. Statistical significance is assessed by

approximate randomization as in Riezler and Maxwell [2005].

The results of the comparative evaluation are presented in Tables 7.1 and 7.3. In the

upper part of each table, statistical significance is computed against the baseline PSMT

system (DL=8). In the lower part, instead, our best reordering method is individually

compared against both the PSMT and the HSMT baselines. Run times refer to the

translation of the first 500 sentences of eval08-nw and test09 by an Intel Xeon X5650

processor. To allow for a finer evaluation of decoding efficiency, model loading times are

subtracted from the total translation time.

Note that the German-English scores are overall lower because only one translation

reference is available, as opposed to four in Arabic-English. As for run times, they are

overall higher because of the larger language model.

3See Section 2.5 for details on all evaluation metrics except the KRS-V, which is introduced in
Section 6.4.2.
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7.2 Arabic-English results

The results in the first block of Table 7.1 prove once again the coarseness of distance-based

reordering constraints: that is, when the distortion limit is raised to 18 words, translation

quality decreases and decoding becomes almost two times slower than the baseline.

Looking at the second block, we see that reordering lattices fail to improve the PSMT

baseline in this experimental set up. These results are in contrast with the findings of

Chapter 4, where both the unpruned and pruned lattices were consistently outperforming

the baseline. This is partly explained by the fact that our latest baseline includes early

distortion cost but lattice decoding does not support it, which makes the comparison

somewhat unfair. Another difference with respect to our earlier evaluation is the use

of hierarchical phrase orientation models. These are particularly beneficial in Arabic-

English, which makes the baseline harder to beat. As regards efficiency, the lattice solution

– even when the lattices are pruned – is very expensive. This is because the lattice

representation implies the multiplication of input word nodes: that is, the same word has

to be decoded multiple times if it appears in different positions of the lattice.

Next in the comparison are modified distortion matrices. Results by this method are

slightly better than those achieved by the lattice solution, while decoding is almost four

times faster. In particular, the reordering of verbs measured by KRS-V improves on all

test sets. With respect to the baseline, most differences are not statistically significant,

however we report a significant gain on the KRS-V of the reordering-specific subset reo09

(from 84.8 to 85.2), which is where improvements by our methods are mostly expected.

WaW early reordering pruning is our last proposed technique – fully data-driven

and integrated into the decoding process. Results by this method are the same as those

reported in Table 6.5(b) except for the run time, which is recomputed on a larger sentence

sample excluding model loading time. As observed in Chapter 6, early reordering pruning

makes it possible to preserve or even increase performances when raising the DL to a

very high value. We report small gains in terms of BLEU and METEOR (but only

the METEOR gain on eval09-nw is statistically significant). But more importantly, the

reordering scores increase on all test sets, with larger improvements concentrating on the

reordering of verbs: that is a gain of +0.7, +0.8 and +1.4 KRS-V on eval08-nw, eval09-nw

and reo09 respectively. Notice that these scores are also significantly higher than the

low-distortion baseline, proving that jumps longer than 5 are effectively performed by

the early-pruning system. This system is also very efficient: that is 22% faster than the

DL8-baseline.

The following block shows the results achieved by the hierarchical SMT system,
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Arabic-English
eval08-nw eval09-nw reo09 ms/

bleu met krs krs-v bleu met krs krs-v krs-v word
All systems against the PSMT baseline:

Phrase-based SMT
[b] DL=5 44.7 35.1H 82.9H 84.7H 50.3O 38.1 84.6 85.9 84.7 59

[baseline] DL=8 44.8 35.2 83.4 85.6 50.6 38.1 84.7 86.2 84.8 87
[b] DL=18 44.7 34.9H 82.4H 84.9H 50.3 38.0O 83.9H 85.8O 84.3 164

Reordering lattices
DL=5 44.9 35.0O 83.1 85.1 50.4 38.1 84.4O 85.9 84.7 229

Modif. disto. matrices
DL=5 44.8 35.1 83.4 85.8 50.7 38.1 84.8 86.3 85.2M 60

WaW early reo. pruning
ϑ=5 | DL=18 45.0 35.3 83.8M 86.3N 50.9 38.3N 84.9 87.0N 86.2N 68

Hierarchical SMT
max.span=10 44.2H 35.0O 81.9H 84.7H 49.9H 38.1 83.7H 86.5 85.9N 137
max.span=20 44.0H 35.1 82.7H 85.3 50.2 38.2 84.2H 86.8 85.8N 325

System-to-system comparisons:
WaW early reo. pruning
� versus PSMT base.DL=8 +0.2 +0.1 +0.4M +0.7N +0.3 +0.2N +0.2 +0.8N +1.4N -22%
� versus HSMT m.span=10 +0.8N +0.3N +1.9N +1.6N +1.0N +0.2N +1.2N +0.5 +0.3 -50%

Table 7.1: Comparison of the proposed reordering techniques against a baseline phrase-
based system and a tree-based system, in Arabic-English. Translation quality is measured
with % BLEU, METEOR, and KRS: regular (KRS) and verb-specific (KRS-V). Statistically
significant differences with respect to the baseline are marked with NH at the p ≤ .05 level and
MO at the p ≤ .10 level. Decoding time is measured in milliseconds per input word.

which has a totally different approach to word reordering. In fact, as explained in Sec-

tion 2.3, the HSMT decoder builds the target sentence in a bottom-up fashion rather than

from left to right. Moreover, all reordering information is embedded in the translation

rules. At the level of translation modeling, the HSMT approach is advantaged by the

ability to learn many more translation units from the same training data and to reuse

them in a variety of contexts (i. e. discontinuos phrases). Nevertheless, the results of our

experiments confirm previous evidence [Zollmann et al., 2008, Birch et al., 2009] on the

superiority of PSMT over HSMT in Arabic-English. The only exception to this trend is

a significantly higher verb reordering accuracy achieved by the HSMT system on reo09:

that is, 85.9 versus 84.8 KRS-V by the PSMT baseline. This is an important result from

the point of view of reordering, however the low reordering scores reported on the generic

test sets suggest that the HSMT system tends to perform excessive reordering. If we relax

the span constraint from 10 to 20 to enable long-range reorderings comparable to those
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performed by a PSMT system with DL=18, the scores appear to change inconsistently.

Overall, HSMT performance remains slightly worse than that of the PSMT baseline. No-

tice moreover the dramatic increase of translation time when a larger reordering space is

explored by the HSMT system (from 137 to 325 ms/word).

In the last block of the table, we directly compare our best method – WaW-based early

reordering pruning – against the PSMT and HSMT baselines, and find that our system

achieves consistently higher translation quality while being significantly faster: namely,

decoding time is 22% and 50% shorter, respectively.
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src verb subj. obj. compl.

(ar) ywASl sfyr Almmlkp AlErbyp AlsEwdyp ldY lbnAn EbdAlEzyz xwjp tHrk -h fy AtjAh...
continues ambassador Kingdom Arabian Saudi to Lebanon Abdulaziz Khawja move his in direction

ref The Kingdom of Saudi Arabia ’s ambassador to Lebanon Abdulaziz Khawja continues his moves
towards ...

base continue to Saudi Arabian ambassador to Lebanon , Abdulaziz Khwja its move in the direction of ...

lat Saudi Arabian ambassador to Lebanon , Abdulaziz Khwja continue to move in the direction of ...

mat The Kingdom of Saudi Arabia ’s ambassador to Lebanon , Abdulaziz Khwja continue to move in the
direction of ...

wrp The Kingdom of Saudi Arabia ’s ambassador to Lebanon , Abdulaziz Khwja continue its move in the
direction of ...

h10 continue to Saudi Arabian ambassador to Lebanon , Abdulaziz Khwja its move in the direction of ...

h20 continue to Saudi Arabian ambassador to Lebanon , Abdulaziz Khwja its move in the direction of ...
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src adv. verb obj. subj. compl.

(ar) fymA dEA -hm r}ys Almktb AlsyAsy l- Hrkp HmAs xAld m$El AlY AltzAm AlHyAd
meanwhile called them head bureau political of movement Hamas Khaled Mashal to necessity neutrality

ref Meanwhile, the Head of the Political Bureau of the Hamas movement , Khaled Mashal , called upon
them to remain neutral .

base The called them , head of Hamas’ political bureau , Khalid Mashal , to remain neutral .

lat The head of Hamas’ political bureau , Khalid Mashal called on them to remain neutral .

mat The head of Hamas’ political bureau , Khalid Mashal , called on them to remain neutral .

wrp The head of Hamas’ political bureau , Khalid Mashal , called on them to remain neutral .

h10 called them , head of Hamas’ political bureau , Khalid Mashal , commitment to neutrality .

h20 The head of Hamas ’ political bureau , Khalid Mashal , called them to remain neutral .

Table 7.2: Long-range reordering examples showing the behavior of different systems on
Arabic-English: [base] is the baseline PSMT system; [lat] refers to the lattice experiment;
[mat] refers to the modified distortion matrix experiment; [wrp] refers to the WaW early
reordering pruning experiment; [h10] and [h20] are HSMT systems with a span constraint of
10 and 20 words respectively.
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To conclude, we consider again the examples of Chapter 6 and report them in Table 7.2

including also the output of the systems evaluated in this chapter. In both sentences, the

long-range reordering of the verb was missed by the PSMT baseline but captured by all

the proposed reordering methods (lat, mat and wrp). As for the HSMT systems (h10

and h20), both of them failed to reorder the verb in the first sentence, whereas in the

second sentence only the system with a large span constraint (h20) produced the correct

word order.

7.3 German-English results

We start by observing the behavior of the PSMT system in different DL conditions.

Although some scores increase when the DL is reduced to 5, we decide to consider DL=8

as our baseline setting because of the higher BLEU scores on test10 and a much higher

KRS-V on reo10. On the other hand, raising the DL to a high value (18) has a very bad

impact on both efficiency and translation quality.

We then examine the performance of our reordering techniques. Differently from

Arabic-English, all the proposed techniques – lattices and matrices included – appear

to outperform the PSMT baseline, even if this is especially strong from the reordering

point of view (i. e. including hierarchical phrase orientation models and early distortion

cost). In particular, lattices and matrices achieve statistically significant improvements

according to all metrics. While the gains in the generic metrics are admittedly small

(ranging between +0.2 and +0.7 BLEU and between +0.2 and +0.4 METEOR), the

improvement is clearly visible in the reordering scores (ranging between +0.6 and +1.3

KRS and between +0.5 and +3.7 KRS-V). In this regard, we recall that the main goal

of our work is to specifically improve the word reordering aspect of translation without

introducing other errors, therefore our measure of success is precisely to obtain higher

reordering scores with no loss in the generic scores.

The fact that lattices and matrices are more beneficial in German-English than in

Arabic-English can be partly explained by the more precise reordering rule set,4 which

reduces the risk of discarding correct reorderings before lattice or matrix construction.

Among our three reordering techniques, the lattices appear as the most accurate but also

as the most costly in terms of decoding time. Where efficiency is paramount, the matrices

or the WaW-pruning technique may be used with slightly lower performances.

Lastly, we directly compare our best method – lattices – against both the PSMT

4We recall that our chunk-based rules generate 3 reorderings per sentence in German-English versus
22 in Arabic-English (cf. Section 5.2).
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German-English
test09 test10 reo10 ms/

bleu met krs krs-v bleu met krs krs-v krs-v word
All systems against the PSMT baseline:

Phrase-based SMT
[b] DL=5 19.0 27.5 66.7N 64.6N 20.1H 29.1H 70.0N 67.2 62.8H 155

[baseline] DL=8 19.0 27.4 66.1 64.2 20.4 29.2 69.2 67.1 63.9 202
[b] DL=18 18.0H 27.3O 61.7H 61.0H 19.3H 29.1H 64.4H 63.8H 61.2H 408

Reordering lattices
DL=5 19.3N 27.6N 67.2N 65.3N 21.1N 29.6N 70.5N 68.3N 67.6N 260

Modif. disto. matrices
DL=5 19.2 27.6N 66.7N 64.7N 20.8N 29.4N 69.9N 68.0N 66.8N 143

WaW early reo. pruning
ϑ=5 | DL=18 19.4N 27.7N 66.5N 64.9N 20.6N 29.5N 69.5N 67.8N 65.9N 142

Hierarchical SMT
max-span=10 19.7N 27.7N 67.0N 65.6N 21.4N 29.7N 70.1N 68.2N 64.8N 406
max-span=20 19.8N 27.8N 66.7N 65.4N 21.3N 29.7N 69.8N 68.3N 65.8N 706

System-to-system comparisons:
Reordering lattices
� versus PSMT base.DL=8 +0.3N +0.2N +1.1N +1.1N +0.7N +0.4N +1.3N +1.2N +3.7N +29%
� versus HSMT m.span=10 -0.4H -0.1O +0.2 -0.3 -0.3O -0.1 +0.4N +0.1 +2.8N -36%

Table 7.3: Comparison of the proposed reordering techniques against a baseline phrase-
based system and a tree-based system, in German-English. Translation quality is measured
with % BLEU, METEOR, and KRS: regular (KRS) and verb-specific (KRS-V). Statistically
significant differences with respect to the baseline are marked with NH at the p ≤ .05 level and
MO at the p ≤ .10 level. Decoding time is measured in milliseconds per input word.

and the HSMT baseline. The improvement over the PSMT baseline is reflected by all

evaluation metrics in all test sets. In particular, we report a great increase in verb

reordering accuracy on the reordering-specific test set reo09 (+3.7 KRS-V). We recall

that the lattice system does not use early distortion cost, thus we would get even higher

gains if we compared it with a standard-distortion baseline.

Looking at the very last row of the table, we see that the lattice system achieves lower

BLEU scores than the HSMT sysyem, but slightly higher KRS and a much higher KRS-V

on the reordering-specific subset. This last result is probably due to the fact that the span

constraint of 10 prevents the HSMT system from capturing very long-range reorderings.

If we relax the span constraint to 20, the KRS-V on reo09 increases from 64.8 to 65.8, but

remains much lower than the one achieved by the lattice system (67.6). Notice, moreover,

that the larger span constraint results in a critical slowdown of the decoding process.

To sum up, these results challenge the idea that HSMT is more suitable than PSMT for
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subj. verbaux obj. compl.

Die obersten Vertreter des amerikanischen Kongresses haben sich auf eine breitere Form
src the top representatives of-the American Congress have themselves on a broader form

(de) compl.(cont’d) verbpp

eines Abkommens über eine Finanz hilfe für das amerikanische Finanz system geeinigt .
of-an agreement about a financial aid for the American financial system agreed

ref The top representatives of the American Congress have agreed upon a broader form of the agreement
on financial assistance for the American financial system .

base The top representatives of the American Congress has on a broader form of an agreement on financial
assistance for the American financial system , agreed .

lat The top representatives of the American Congress have agreed on a broader form of an agreement
on financial assistance to the American financial system .

mat The top representatives of the American Congress have agreed on a broader form of an agreement
on financial assistance to the American financial system .

wrp The top representatives of the American Congress have agreed on a broader form of an agreement
on financial assistance to the American financial system .

h10 The top representatives of the American Congress , have an agreement on a form on a broader
financial aid for the American financial system , agreed .

h20 The top representatives of the American Congress have agreed on an agreement on a form a broader
financial support for the US financial system .

adv. verbmod subj. obj. compl.

Jedoch konnten sie Kinder in Teilen von Helmand und Kandahar im Süden aus Sicherheit grund
src however could they children in parts of Helmand and Kandahar in South for security reasons

(de) neg verbinf

nicht erreichen .
not reach

ref But they could not reach children in parts of Helm. and Kand. in the south for security reasons.

base However, they were children in parts of Helm. and Kand. in the south, for security reasons.

lat However, they have not been able to reach children in parts of Helm. and Kand. in the south for
security reasons.

mat However, they could not reach the children in parts of Helm.and Kand. in the south for security reasons.

wrp However, they could not reach children in parts of Helm. and Kand. in the south for security reasons.

h10 However, they were children in parts of Helm. and Kand. in the south not reach for security reasons.

h20 However, they were children in parts of Helm. and Kand. in the south not reach for security reasons.

Table 7.4: Long-range reordering examples showing the behavior of different systems on
German-English: [base] is the baseline PSMT system; [lat] refers to the lattice experiment;
[mat] refers to the modified distortion matrix experiment; [wrp] refers to the WaW early
reordering pruning experiment; [h10] and [h20] are HSMT systems with a span constraint of
10 and 20 words respectively.
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the German-English language pair. In fact, HSMT appears to incur similar problems as

PSMT as far as long-range reordering is concerned: that is, existing reordering constraints

are simply too coarse-grained to define an adequate reordering search space. On the

other hand, the proposed PSMT enhancements appear as a valuable way to improve the

handling of long-range reordering phenomena without sacrificing efficiency.

The German-English translation examples are reported in Table 7.4. In both sentences,

our three reordering methods (lat, mat and wrp) were able to capture the very long-

range reordering of the verb, as opposed to the baseline. Among the HSMT systems,

only the one with a large span constraint (20) could correctly reorder the first sentence,

whereas both failed in the second sentence.

7.4 Conclusions and future research directions

Natural languages vary greatly in how they arrange sentence constituents. Since the

emergence of the first statistical machine translation methods, researchers have tried to

solve this problem with various modeling strategies, and by heuristically restricting the

possible word reordering operations. Still up to date, no method appears to be dominant

across different language pairs.

In this thesis, we have proposed a number of techniques to advance the state of the

art in reordering modeling within the phrase-based SMT framework. Our techniques

differ primarily in the kind of language-specific resources that they require. All, however,

share the goal of improving the definition of the reordering search space based on the

characteristics of a specific language pair. In fact, in the absence of perfect reordering

models, effectively restraining the set of explorable reordering hypotheses is key to the

success of SMT. Being mostly complementary to the design of better reordering feature

functions, our work can take advantage of the most recent advances in reordering modeling

and improve SMT performances on top of them.

To guide our research, we have first examined the reordering characteristics of various

language pairs, from a qualitative perspective. We have then chosen to focus specifically

on language pairs with uneven distributions of reordering phenomena – that is, where

reordering is predominantly local with the exception of few isolated long-range reordering

patterns that are crucial to preserve the general meaning of a sentence.

Evaluated in large-scale news translation tasks, our techniques have proven successful

for two very different language pairs: namely, Arabic-English and German-English. In

particular, we were able to obtain significant improvements in the reordering-specific

metrics while preserving – or sometimes even increasing – the generic translation quality
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scores. As illustrated by the examples, these results are due to very targeted changes,

which are nevertheless essential for understanding the translated text.

Our best PSMT systems also appear to compare favorably with a competitive tree-

based SMT approach, in terms of both quality and efficiency.

While we have clearly proved the importance of refining the reordering search space,

there are still several ways to improve and extend our work. For instance, the techniques

that make use of language-specific fuzzy reordering rules – lattices and matrices – could

benefit from the development of more precise rules that exploit POS and lexical clues,

especially in Arabic-English.

As for the early reordering pruning technique, it could profit from more accurate re-

ordering scores. To this end, the WaW model could be improved by using different feature

templates and granularities, such as automatically learnt word classes. Additionally, other

kinds of reordering model scores (e. g. phrase orientation [Koehn et al., 2005] or pairwise

word order [Tromble and Eisner, 2009]) may be combined to the WaW model score for

the purpose of early pruning.

Concerning the language choice, we would like to apply our data-driven methods to

language pairs with similar reordering characteristics, such as Arabic-French or Dutch-

English, but also to language pairs with global reordering phenomena, such as Chinese-

English or Turkish-English, to find out whether the gap between PSMT and HSMT can

at least be narrowed.

As a concrete application of our work, we plan to integrate the proposed methods to

an online PSMT system with high efficiency requirements. In particular, we would like to

explore how the post-editing effort of human translators could be reduced by improving

the word reordering accuracy of an SMT component included in a computer assisted

translation tool.

We conclude with a consideration that has emerged during the last stages of this thesis.

In line with previous findings, our experimental results suggest that HSMT also suffers

from the coarseness of reordering constraints – an issue that has begun to be studied

only recently [Braune et al., 2012]. If the problem of defining the reordering search space

is common to both the PSMT and HSMT approaches, we are confident that the ideas

proposed in this thesis can inspire analogous solutions in the tree-based SMT field.
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