
 
Doctoral School in Materials Science and Engineering 

 

Production of steel matrix composites by 
mechanical milling and spark plasma sintering 

 
 

 

Anna Fedrizzi  
 

 
April 2013 

  

X
X

V
 c

y
c

le
 



 

  



 

PRODUCTION OF STEEL MATRIX COMPOSITES BY 

MECHANICAL MILLING AND SPARK PLASMA SINTERING 

 

 
 

 

Anna Fedrizzi 

 

 

 

Tutors: 

Prof. Massimo Pellizzari, 
Department of Industrial Engineering 
University of Trento, Italy. 
 
PhD. Mario Zadra, 
K4Sint, Italy. 

 

 

 

 

 

 

Ph.D. Commission: 

Prof. Claudio Migliaresi, 
Department of Industrial Engineering 
University of Trento, Italy. 
 
Dr. Pranesh Aswath, 
Department of Materials Science and 
Engineering and Mechanical and 
Aerospace Engineering 
University of Texas Arlington, USA. 
 
Prof. Orfeo Sbaizero, 
Department of Architecture and 
Engineering 
University of Trieste, Italy. 
 
PhD. Arthur J. Coury, 
Coury Consulting Service Boston, USA.

 
 
 
 

University of Trento, 

Department of Industrial Engineering 

 

April 2013



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

University of Trento - Department of 
Industrial Engineering 
 
Doctoral Thesis 
 

Anna Fedrizzi - 2013 
Published in Trento (Italy) – by University of Trento 
 

ISBN: 978-88-8443-473-9 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my beloved A. and L. 



 



 

Abstract 

 

 

Hot work tool steels (HWTSs) are ferrous alloys for tooling application, 

particularly developed to meet high toughness and good hot hardness. Increasing 

hardness generally leads to a decrease in toughness, therefore metal matrix 

composite (MMC) coatings and functionally graded materials have been proposed as 

a good solution for improving wear resistance. 

In this PhD thesis powder metallurgy has been applied for the production of 

particle reinforced HWTSs. Mechanical milling (MM) and mechanical alloying (MA) 

have been considered as suited techniques for the production of powders showing 

higher sinterability and finer microstructure. Spark plasma sintering (SPS) has been 

used for the consolidation. As reinforcement a harder high speed steel (HSS) and 

different ceramic powders (TiB2, TiC and TiN) have been selected. 

The production of HWTS/HSS blends has highlighted the negative interaction 

on densification of the two components due to their different sintering kinetics. This 

interference can be minimised by selecting powders with smaller particles size. With 

this respect MM was proved to be a very useful method, which enhances sintering. 

Fully dense blends with good dispersion of the reinforcing particles can be sintered 

using small sized powders and setting the particle size ratio (PSR) smaller than 1. 

For the production of MMCs the formation of aggregates has been overcome 

by MA which promotes a uniform dispersion of hard particles into the parent steel. 

Among the reinforcement considered in this work, TiB2 is not suitable because it 

reacts with steel depleting carbon and producing TiC and brittle Fe2B. HWTS 

composites with 20%vol of TiC can be fully densified by SPS at 1100 °C for 30 

minutes and 60 MPa uniaxial pressure. On the other hand TiN-reinforced MMC 

shows high resistance to densification and fully dense materials could not be 

produced. 
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Chapter I 
 

Introduction 

 
 
 
 
 
 

Hot work tool steels (HWTSs) are ferrous alloys for tooling application, 

particularly developed to meet high toughness and good hot hardness (Roberts et 

al., 1992). They find application for the production of tools working at temperature 

higher than 300 °C, such as forging, die casting, extrusion dies and punches. Their 

lower carbon content results in a lower amount of carbides than the one of cold work 

tool steels or high speed steels (HSSs). These carbides are mainly vanadium 

carbides, which are quite stable at high temperature assuring good hot hardness. 

Due to their fine distribution these small carbides avoid grain growth during the 

thermal treatment enhancing material toughness. 

It is known that increasing hardness generally leads to a decrease in 

toughness (Roberts et al., 1992). Therefore to guarantee high toughness these 

steels are characterized by lower hardness and lower wear resistance than other tool 

steels, such as HSS. The low wear resistance negatively influences tool performance 

and life. Since wear resistance strongly depends on material hardness (dos Santos 

et al., 2007), present solutions to increase tool life intend to increase surface 

hardness in order to enhance wear resistance without affecting toughness. The most 

common surface treatments applied to HWTS are nitriding or physical vapour 

deposition (PVD) of hard coatings (TiN, TiAlN, TiC, CrN…) (dos Santos et al., 2007; 

Kugler et al., 2006; Söderberg, 2001). Some systems, called duplex treatment, 

combine nitriding and PVD coatings (Duarte et al., 2009). The nitrided surface layer 

increases the load bearing capability of the hard and brittle coating improving its 

resistance to crack which is one of the most common causes of failure for these 

systems. The main limitations of these solutions are the low hardening depth and the 

low thickness of the hard coating. When wear starts to damage the thin hard surface 

layer the substrate remains without any protection and its deterioration suddenly 

increases leading to quick failure. 

In order to further improve the load bearing capability of hard surface layers 

and to increase tool life thick metal matrix composite (MMC) coatings and 

functionally graded materials (FGMs) have been proposed (Matula et al., 2006; 

Rajasekaran et al., 2010). These systems combine the toughness and strength of 

the metal phase with the high hardness and wear resistance of the ceramic 
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constituent. Their thickness guarantees longer protection of the substrate and their 

tailored properties improve hard layer adhesion and reduce residual thermal stresses 

in the component. Due to their complexity and to the high number of variables 

influencing their final behaviour their design is quite elaborate and their production 

can be relatively expensive, but their promising properties encourage research in this 

field. It has been demonstrated that in general particle reinforcement improves the 

wear resistance of steel, (Akhtar, 2008; Berns, 2003; Berns et al., 1999; Oliveira et 

al., 1999; Pagounis et al., 1997; Pagounis et al., 1998; Tjong et al., 1999[2]), but not 

much work has been done on reinforced HWTSs. 

The fundamental goal of this PhD thesis is to study and develop particle 

reinforced HWTSs. The composite materials studied in this work have been 

produced starting from metallic and ceramic powders. Harder steel powders as well 

as ceramic compounds have been considered as reinforcing particles. Powder 

Metallurgy (PM) is a technology apt to the production of composite materials (Chawla 

et al., 2006; Pagounis et al., 1998) and offering many advantages such as a finer 

and more homogeneous microstructure which results in increasing both hardness 

and toughness (Grinder, 1999). 

Generally speaking material properties are strongly influenced by the phase 

distribution and densification (Akhtar, 2008). In this work mechanical milling (MM) 

and mechanical alloying (MA) have been considered to improve the hard phase 

dispersion (Liu et al., 2001). MA is a solid state process performed at low 

temperature thus reducing or avoiding chemical reactions between metallic and 

ceramic phases. Moreover MM and MA refine both the metallic microstructure and 

the powder particle size (Zoz et al., 2003). The microstructure refinement results in 

increased strength and the particle size reduction enhances sintering and 

densification. 

The materials investigated in this work have been sintered by Spark Plasma 

Sintering (SPS). This technology applies a uniaxial pressure and a pulsed direct 

continuous (DC) current allowing sintering at lower temperature and in a shorter time 

comparing to conventional processes like hot isostatic pressing (HIP) (Li et al., 2010; 

Mamedov, 2002). The high heating rate and the DC current pulses preserve the fine 

microstructure produced by MM and reduce the interaction between the metal matrix 

and the reinforcing particles (Zoz et al., 2003). 

This PhD thesis is divided into two main parts. The first one, following previous 

studies on the sintering of tool steel blends (Pellizzari et al., 2009), is aimed at the 

investigation of the advantages deriving from MM on the densification and the 

mechanical properties of HWTS/HSS blends. The second part is focused on the 

development of HWTS based MMCs. The influence of the MMC processing route on 

the hard phase distribution and on densification has been investigated. Two different 

processing routes have been considered: in the first one pure HWTS has been 

mechanically milled and then mixed with the reinforcing ceramic powder while in the 



3 

second one steel and ceramic powders have been mechanically alloyed. Finally the 

MA process has been applied to produce MMCs with different reinforcing types 

(carbides, nitrides and borides). The interactions between the matrix and the 

reinforcing phases have been studied and the properties of the different MMCs have 

been compared. 
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Chapter II 
 

Metal Matrix Composite Materials 

 
 
 
 
 
 

2.1 Introduction 

Depending on their development and their applications different definitions of 

composite materials have been proposed. Staab (1999) considers as composite 

materials a material which contains two or more distinct constituents with significantly 

different macroscopic behaviour and a distinct interface between each constituent. 

Generally speaking it is possible to identify a continuous phase, named matrix, which 

embeds a more discontinuous phase, called reinforcement (Staab, 1999). Composite 

materials have been developed to combine the different characteristics of the matrix 

and the reinforcement in a new material with novel properties. They have a peculiar 

feature which makes them very attractive for many different applications, i.e. their 

possibility to meet a wide range of properties (Akhtar, 2008; Pagounis et al., 1997; 

Sadagopan et al., 1998). This means that their composition and internal architecture 

can be manipulated to achieve the desired properties. This design is rather complex 

and involves the optimization of several variables, such as the reinforcement 

geometry, the matrix and reinforcement materials, the architecture of reinforcement 

arrangement and the volume fraction of reinforcement phase. 

Among all composite materials, MMCs are a class of composites in which rigid 

ceramic reinforcements are embedded in a ductile metal or alloy matrix (Tjong et al., 

2000). The combination of hard ceramic particles with a metal matrix permits to 

increase the hardness and stiffness preserving the suited toughness and 

machinability of the metal matrix material (Akhtar, 2008; Berns, 2003; Degnan et al., 

2002; Pagounis et al., 1997; Pagounis et al., 1998; Tjong et al., 1999[1]; Tjong et al., 

2000). Although historically research has been mainly focused on other alloys 

(Angers et al., 1999; Tjong et al., 1999[1]), recently interest in steel matrix has grown 

(Akhtar, 2008; Berns et al., 1999; Degnan et al., 2002; Farid et al., 2007; Li et al., 

2010; Tjong et al., 1999[2]), also including MMCs based on tool steel matrix (Berns, 

2003; Bolton et al., 1998; Lemster et al., 2006; Liu et al., 2001; Oliveira et al., 1999; 

Pagounis et al., 1997; Pagounis et al., 1998; Rajasekaran et al., 2010). Steel matrix 

composites are quite fascinating materials for many high temperature applications, 

including tooling and automotive, since they combine high hardness and wear 
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resistance of ceramic particles with the toughness and hot strength characteristic of 

iron alloys (Oliveira et al., 1999; Pagounis et al., 1997; Pagounis et al., 1998; Tjong 

et al., 1999[2]). 

2.2 Reinforcing Mechanisms 

MMCs were firstly developed to increase strength and elastic moduli of light 

metals for aerospace applications (Pagounis et al., 1998). At the beginning aligned 

continuous fibres were used as reinforcement, but later they were replaced by less 

expensive ceramic particulates (Pagounis et al., 1998). These materials showed very 

high wear resistance which is a main requirement in many industrial applications, 

such as for metal forming tools. Nowadays the best wear resistant materials are 

cermets, i.e. ceramic particles bounded together by a thin layer of metal matrix, but 

their high costs reduce their competitiveness comparing to MMCs based on highly 

wear resistant iron alloys (Pagounis et al., 1997). In the last decades the production 

of steel based particle reinforced MMCs has gained increased scientific and 

industrial interest (Pagounis et al., 1997). Some companies have already developed 

tool steel matrix composites which are now commercially available, such as Ferro-

TiC® by Reade (Reade) or Ferro-Titanit® by Deutsche Edelstahlwerke GmbH 

(Deutsche Edelstahlwerke). These materials are TiC reinforced machineable and 

hardenable alloy/steel produced by PM. They combine steel and cemented carbide 

properties particularly showing high wear resistance and they find applications for 

high-production tooling, highly wear resistant parts, high temperatures and severe 

corrosion resistant components and for tools requiring additional toughness. Due to 

their hardenable steel matrix, which can vary from tool steels to stainless steels, in 

the annealed condition these carbide-alloyed materials can be easily machined by 

customary methods and then a conventional heat treatment guarantees the 

achievement of their maximum hardness. 

The two constituents of MMCs have different duties: the hard particles (HPs) 

have to withstand wear by grooving or indenting; the metal matrix has to guarantee 

toughness and enough support for the HPs (Berns, 2003). 

From the mechanical and tribological point of view not all the HPs and metal 

matrix combinations are good for producing a tough and wear resistant composite. 

Both properties depend on the hardness and toughness of the base constituents but 

they are also strongly influenced by the amount, size and distribution of HPs as well 

as by the strength of the HP and metal matrix bond (Berns, 2003). Previous studies 

(Berns, 2003; Berns et al., 1996; Berns et al., 1997; Zum Gahr, 1998) deeply 

investigated these relations. HPs improve the resistance against grooving wear only 

if they are bigger and of course harder than the abrasive medium (Berns et al., 1997; 

Zum Gahr, 1998). Figure 1 schematically shows the interactions between the HPs 

and the abrasive medium. Small HPs (Fig. 1a,c) can be easily dug out by both hard 
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and soft abrasive medium. Bigger HPs can substantially reduce the abrasion depth if 

they are well bonded to the matrix and if the mean free path between them is smaller 

than the abrasive particle size. As the HP size increases, however, the tensile and 

bending strength heavily decreases (Berns et al., 1996), in view of the lowered 

cracking resistance as it reported in Figure 2a. At a given content of HPs, their mean 

spacing increases with particle size. As shown in Figure 2b, when loading a 

precracked sample, the plastic zone ahead of the crack tip in the metal matrix will not 

contain any fractured HP, giving rise to improved toughness (Berns et al., 1996). In 

conclusion there is a suitable HP size which combines the two different 

requirements: small HPs to reduce the decrease of bending strength and big HPs to 

increase wear resistance and to improve fracture toughness due to the larger particle 

spacing. 

 

 

Figure II – 1. Interactions between HPs and abrasive medium. HP size increases moving from 
left to right (adapted from Zum Gahr, 1998). 



7 

 
Figure II – 2. Schematic representation of the influence at a give HP content of the mean HP 
size on the bending strength Rb (a) and of the mean HP spacing on the fracture toughness KIc 

(b) (Berns, 2003). 

Beside HP size, many studies on MMCs have highlighted the relevance of the 

HP distribution on the composite properties (Berns et al., 1996; Berns et al., 1998; 

Liu et al., 2001). To optimize their reinforcing effects HPs have to be finely and 

homogeneously distributed in the matrix. When producing MMCs by simply mixing 

the two constituent powders, the HP dispersion is ruled by two factors: the volume 

ratio (fHP/fMM) and the size ratio (dHP/dMM) (Berns, 2003; Berns et al., 1996; Berns et 

al., 1998). Figure 3 schematically represent the effects of both factors. To obtain high 

toughness is important that HPs are well dispersed, i.e. avoid a net-like 
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arrangement. As the volume fraction ratio increases the size ratio has also to be 

increased so that the small tough metal matrix particles surround the big HPs as 

satellites, forming a continuous matrix (Berns, 2003; Berns et al., 1996; Berns et al., 

1998). 

 

 
Figure II – 3. Microstructure of MMC produced by powder mixing as a function of the HP 

volume fraction f and of the size ratio d (Berns, 2003). 

2.2.1 “Double dispersion” microstructure 

Considering the opposite influence of HP size on bending strength and on 

wear resistance, Berns et al. (1996) proposed a new microstructure, composed by a 

relatively tough metal matrix (MM-I, i.e., HWTS) strengthened by a dispersion of 

harder particles. In order to contain the decrease of the bending strength, the HPs 

were replaced by powder particles of a second metal matrix (MM-II, i.e., a HSS) with 

a fine dispersion of carbides. This microstructure is called “double dispersion” 

because small HPs, i.e. the carbides, are dispersed in a metal matrix (MM-II) and 

these particles are dispersed them self in another tough metal matrix (MM-I) (Berns 

et al., 1996; Berns et al., 1998; Berns et al., 2006). This new design combines the 

high fracture toughness, owing to large spacing between the harder MM-II particles, 

with a high bending strength, due to the small carbides (i.e. the brittle phase) in MM-

II, and a sufficient wear resistance, through large harder MM-II areas (Berns et al., 

1996). 
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Following the way traced by Berns, hybrid tool steels showing this “double 

dispersion” microstructure were produced and investigated (Pellizzari et al., 2009). 

Results showed that properties change almost linearly with the hybrid steel 

composition giving the possibility to tailor material properties in agreement with the 

final application. 

2.3 MMC Densification Behaviour 

As introduced previously, PM is particularly suited for the production of MMCs. 

As for all PM products, density strongly determines MMC properties and therefore it 

is important to predict the densification behaviour during sintering. Densification 

strongly depends on the characteristic of the starting powder. According to German 

(1992[1]; 1992[2]), high packing density is favoured by wide particle size distributions 

but on the other hand narrow particle size distributions exhibit higher densification 

rate leading to higher density after sintering. As a result final density generally 

increases as the mean particle size decreases and as the particle size distribution 

becomes narrower (Ting et al., 1994; Ting et al., 1995). 

Considering MMC production by powder blending, the starting powder is a 

mixture of soft and hard particles, where the matrix alloy acts as the soft component 

and the reinforcement particles as the hard one. Literature data about the 

densification of soft/hard mixture for different kind of materials state that densification 

still depends on particle size but it is also strongly influenced by other factors such as 

the volume fraction of reinforcement, the ratio between soft and hard particle size or 

the reinforcement shape (Bonnenfant et al., 1998; Bouvard, 2000; Cho et al., 2001; 

Delie et al., 1998; Lange et al., 1991). 

Bouvard (2000) examined the densification behaviour under pressure of metal 

and ceramic powder mixtures. Ceramic HPs are assumed to be non-deforming under 

the applied pressure, while soft metal particles are assumed to behave in a visco-

plastic manner. According to the value of applied pressure, Bouvard (2000) 

proposed two main densification mechanisms. If the applied pressure is lower than 

the soft particle yield strength densification results from particle rearrangement. This 

mechanism is strongly influenced by the particle size distribution and the particle 

shape and it is favoured by high fraction of HPs. If the applied pressure increases, 

densification results from plastic or viscous deformation of soft particles. When 

applied pressure is high enough or the holding time is sufficiently long, particle 

deformation can lead to full density but the presence of HPs generally hinders the 

densification. In this situation, Bouvard (2000) distinguished three cases according to 

the fraction of HPs. If the HP fraction is low, then HPs are well dispersed and, 

depending on sintering condition, soft particles can deform to fill all the gaps and 

complete densification can be reached. For a medium content of HPs, these 

reinforcing particles form aggregates. The pores that Lange et al. (1991) called 
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“excluded volume” in the middle of these aggregates are difficult to be filled by 

deformed soft particles and so their presence reduces the relative density of sintered 

compound. When the volume fraction of HPs is high, HPs form a continuous net, 

called percolate, which supports part of the external load. In this case plastic 

deformation of soft particles is difficult and rearrangement of the HP skeleton is also 

required to achieve high density. As it is schematically shown in Figure 4, the HP 

fraction which defines the densification behaviour of mixtures depend on the particle 

size ratio (PSR), defined as the ratio of the mean diameter of soft particles on the 

mean diameter of HPs (dSOFT/dHARD) (Bonnenfant et al., 1998; Bouvard, 2000). 

Generally speaking, as PSR decreases densification rate increases and the 

maximum fraction of HPs which allows densification by soft particle deformation 

increases. In other words, HP dispersion and thus high density can be achieved 

even for higher fractions of HPs when the PSR is much lower than one. Other than 

for high densification, it can be recalled that HPs dispersion is mandatory for 

achieving good toughness, as stated in paragraph 2.2. 

 

 
Figure II – 4. HP distribution as a function of the HP volume fraction and of the PSR dSOFT/dHARD 

(Fedrizzi et al., 2012[1]). 

Jagota et al. (1995) showed that the percolation threshold is also influenced 

by HP contact. This means that if physical and chemical bonds between HPs are 

weak, these particles can easily slide one against the other allowing high 

densification even for high volume fraction of reinforcements. On the other hand, if at 

the beginning of sintering process strong bonds between HPs are created, these 

result in the formation of a rigid structure which hinders densification and therefore 

the percolation threshold decreases. 
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Delie et al. (1998) analysed the effect of HP aspect ratio resulting that it is 

better to choose spherical HPs with a low specific area, i.e. bigger size, to favour 

densification processes. 

To improve densification of powder mixture with high content of HP the 

application of cycling pressure has been proposed (Zavaliangos et al., 2000). The 

pressure cycling achieves a predetermined density applying a lower pressure than 

static pressing and it is quite promising for the densification of composites with more 

than 50-60%vol of HPs. Authors suggest that application of cycling pressure 

improves the HP rearrangement thus increasing densification compared to static 

pressure (Zavaliangos et al., 2000). 

Finer sized reinforcements (<2 µm) result in higher specific mechanical 

properties, but on the other side they can give significant agglomeration problems 

resulting in poor dispersion and subsequently less than optimal mechanical 

properties (Liu et al., 2001). To reduce the problem of agglomeration MA has been 

proposed as a successful producing route (Angers et al., 1999). MA allows the 

production of MMCs with a homogeneous distribution of HPs and exhibiting superior 

mechanical properties (Angers et al., 1999). Therefore MA has been selected as 

suited technology for the production of MMCs and its fundaments are described in 

the following chapter. 

  



12 

Chapter III 
 

Innovative powder production and consolidation 

 
 
 
 
 
 

3.1 Introduction 

Beside costs reduction, materials development aims at increasing materials 

properties and performances. In the field of tool steels great improvement came from 

PM technology (Hillskog, 2003; Zhong et al., 2010). PM offers many advantages 

compared to traditional production routes. First of all PM tool steels present a finer 

and more homogeneous carbide distribution which results in increasing hardness 

and improving cracking and fatigue resistance (Hillskog, 2003; Grinder, 1999). This 

small and uniform carbide structure guarantees a better dimensional stability during 

heat treatment and an easier machinability (Hillskog, 2003). Moreover the most 

common solid phase processes for MMC production are based on PM techniques 

(Chawla et al., 2006). Compared to liquid phase processes, the solid state ones 

allow better control of the reinforcement distribution and the production of more 

uniform matrix microstructure. Furthermore they generally involve lower processing 

temperature thus reducing the reactivity between metal matrix and reinforcement 

phase (Chawla et al., 2006). 

MA has been proposed as an advantageous method for the production of 

composite powders (Angers et al., 1999; El-eskandarany, 2001; Liu et al., 2001; 

Suryanarayana, 2001; Zhu et al., 1999). The mechanically alloyed powders are 

characterized by uniform distribution of reinforcement and the milling process allows 

the refinement of microstructure as well as of particle size (Huang et al., 1996; Oh-

ishi et al., 2007; Zoz et al., 2003). Generally speaking finer mean particle size and 

narrower particles size distribution improve sintering allowing the production of highly 

dense materials (Pellizzari et al., 2011[1]; Ting et al., 1994; Ting et al., 1995). A fine 

microstructure is also beneficial for sintering since small grain size enhances the 

grain boundary diffusion increasing the sintering rate. In view of all these 

advantages, in this work MA has been investigated for the production MMC powders 

and in order to preserve the microstructure refinement and to enhance densification 

the MA powders have been consolidated by SPS. This emerging technology is very 

promising for the production of those advanced materials which are difficult to 

produce by conventional sintering methods, like for example MMCs, fibre reinforced 
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ceramics, nanocrystalline materials, intermetallic compounds and functionally graded 

materials (Tokita, 1993). 

3.2 Mechanical Milling and Alloying 

MM is a high energy process in which metallic powders continuously undergo 

flattening, cold welding and fragmentation (Maurice et al., 1994). The repetition of all 

these events causes the modifications in the particle size and morphology and also 

the evolution of the microstructure. 

Originally milling has been developed for the fine reduction of ores and other 

row materials for many industrial applications. In the last decades this process has 

gained more relevance also for the development of advanced materials. Nowadays 

in the metallurgical field MM and MA refer to solid state processes occurring at room 

temperature in which reactions between the fresh powder surfaces and the reactant 

materials occur (El-eskandarany, 2001). The main difference between MM and MA 

lies in the starting powder: generally MA refers to the milling of a mixture of powders 

during which material transfer is required to homogenize the microstructure; on the 

other hand MM is the milling of a uniform composition powder which does not need 

any material transport for homogenization (Suryanarayana, 2001). 

At the beginning of the ’60 ball milling was firstly applied to produce oxide 

powders with a metal coating which could not be produced by other methods (El-

eskandarany, 2001; Suryanarayana, 2001). Later Benjamin (1970) also used MA for 

the development of oxide dispersion strengthened nickel alloys opening a new field 

of research which drew much interest, (Benjamin et al., 1974; Benjamin et al., 1977; 

Benjamin et al., 1981; Dai et al., 2012; Wilcox et al., 1974). The strong refinement of 

the microstructure occurring during MM was applied for the development of 

nanostructured materials, (Fecht, 1995; Kuhrt et al., 1993; Libardi et al., 2008) and 

longer milling time can even lead to the formation of amorphous phases (Guo et al., 

1994; Koch et al., 1983; Salahinejad et al., 2010). 

The base principle of MM is that the impacts between the powder and the 

milling medium cause an energy transfer which is responsible for the morphological 

and microstructural evolution. Even if this concept is quite simple, MM and MA are 

complex processes influenced by many variables which determine the final material 

microstructure and properties (Suryanarayana, 2001). Some parameters which 

influence the final products are the type of mill, the milling container, the milling 

speed, the milling time, the grinding medium, ball-to-powder weight ratio (BPR), the 

extent of filling the vial, the milling atmosphere, the process control agent (PCA) and 

the temperature of milling (Suryanarayana, 2001). These variables influence the 

milling process to a different extent and generally they are not completely 

independent. 
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There is a large number of different high energy mills suited for MA. Their 

main differences are their capacity, the speed of operation and the ability to control 

the operation. The planetary ball mill, which has been used in this work, is one of the 

most popular and its name comes from the plant-like movements of its vials. The 

vials indeed rotate around their own axes while they also follow the rotation of the 

disc on which they are placed (Fig. 1) (El-eskandarany, 2001; Suryanarayana, 

2001). The powder and the balls are subjected to both the centrifugal forces which 

are alternatively synchronized and opposite because the two rotatory motions have 

opposite directions. Therefore the balls and the powder roll on the inner wall of the 

vial for a while and then they are lifted and thrown off across the bowl at high speed 

(Fig. 1) (El-eskandarany, 2001). 

 

 
Figure III – 1. Schematic drowing of a high-energy planetary ball mill. 

This type of mill can process few hundred grams of powder at a time. Its 

capacity is higher than other mills, such as the shaker mill. On the other hand its 

frequency of impacts is much lower, therefore compared to shaker mills, planetary 

ball mills can be considered lower energy mills (Suryanarayana, 2001). 

Generally speaking as milling speed increases the energy input also 

increases. However, there are some limitations to the maximum speed which can be 

applied. The energy input usually rises up to a certain speed, then decreases by 

further speed increase. Therefore, it is possible to determine a critical value of speed 

which limits the maximum speed (Suryanarayana, 2001). Another limitation is related 

to the temperature increase. MM is a low efficiency process in which only a small 

percentage of the total energy is used for the milling process. The major part of 

energy is wasted and it is turned into heat. Higher speed means higher energy and 

therefore higher heating. This raise of temperature can be detrimental because it can 
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cause dynamical recrystallization or the decomposition of supersaturated solid 

solution or metastable phases (Kuhrt et al., 1993; Suryanarayana, 2001). Low milling 

speed was shown to favour the formation of amorphous phases (Guo et al., 1994). 

Among all parameters the milling time is the one which deeply influence the 

process. For every system, depending on the type of mill, the energy, the BPR and 

of course on the milled material, there is an optimum milling time for which the 

fragmentation and the cold welding processes are in dynamic equilibrium. At this 

stage the powder presents the minimum particle size and the finest crystallite size, 

as well (Maurice et al., 1994; Suryanarayana, 2001). In any case too long milling 

time is to be avoided because the level of contaminations increases (Suryanarayana, 

2001). 

The BPR strongly influences the time required to produce a specific 

microstructure: generally the higher the BPR, the shorter is the time required (El-

eskandarany, 2001; Suryanarayana, 2001). That is because at high BPR, i.e. when 

ball weight is proportionally high, the number of collisions per unit time increases 

resulting in a much higher energy transfer. On the other side the temperature 

increase must be considered: increasing the energy transfer causes a higher 

increase of temperature which can change the powder constitution or lead to re-

crystallization phenomena. 

“Soft” milling conditions (i.e. low BPR, low speed...) favour the formation of 

metastable phases whereas “hard” conditions produce the equilibrium phases 

(Suryanarayana, 2001). 

3.2.1 Morphological and microstructural evolution 

MM is based on the repeated cold welding, fracturing and rewelding of the 

milled powder. The optimum of this process can be achieved when the fracturing and 

the welding phenomena are balanced (El-eskandarany, 2001). 

Every time that two grinding balls collide some powder particles are trapped in 

the collision. The impact forces plastically deform the powder particles determining 

their morphological evolution and the changes in the particle size (Fig. 2). 
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Figure III – 2. Morphological and dimensional evolution of the powder particles as a function of 

milling time (Suryanarayana, 2001). 

In the early steps the impact forces cause the flattening and work hardening of 

the ductile metal particles. The flatten particles overlap and are brought into intimate 

contact, forming layered structure of composite particles (El-eskandarany, 2001). At 

the beginning of the process the metal particles are soft and ductile therefore their 

tendency to cold weld is high. At this stage the particle size increases, even 

becoming three times bigger than the starting powder (Suryanarayana, 2001). The 

particle morphology shows a considerable change, particles become flat and 

elongated instead of round as most of the row powders (Bailon-Poujol et al., 2011; 

Maurice et al., 1994). 

For longer milling time these layered aggregates are continuously deformed 

and work hardened so that their microstructure is further refined. The increase of 

particle hardness due to the work hardening leads to fracturing of these 

agglomerates resulting in the decrease of the particle size. At this point fracturing 

predominates over cold welding, particle size keeps decreasing and the milled 

powder shape becomes round again (El-eskandarany, 2001; Maurice et al., 1994; 

Suryanarayana, 2001). 

When particles become very small they may tend to aggregate again. The 

system then reaches a steady-state equilibrium, in which the rates of welding and of 

fracturing are balanced. At the equilibrium, the mean particle size and particle 

hardness remain constant and the size distribution is quite narrow because bigger 

particles are fragmented at the same rate at which smaller particles aggregate 

(Maurice et al., 1994; Suryanarayana, 2001). 

This analysis of the particle size evolution highlights that fracturing has to be 

promoted to achieve a fine reduction of the particle size. PCA can modify the particle 

surfaces inhibiting the metal-to-metal contact necessary for cold welding thus 
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enhancing fragmentation (El-eskandarany, 2001). Another way to promote fracturing 

is cooling the mill chamber. This changes the deformation behaviour of the powder 

which is not able anymore to deform to the large compressive strains and prefers to 

fracture (El-eskandarany, 2001). The presence of a brittle component in the starting 

powder also accelerates the fragmentation phenomenon. In this case the milling 

stages are the same as those described previously but they all occur for shorter 

milling times (Bailon-Poujol et al., 2011). The brittle phase is not able to store plastic 

deformation and breaks easily. This favours the fragmentation and inhibits the first 

stage of milling where cold welding predominates. Therefore the reduction of particle 

size starts sooner and higher is the amount of brittle phase, shorter is the milling time 

required to achieve the steady-state. 

Beside the particle size and shape changes, MM also deeply modifies the 

microstructure of the powder. This modification depends on the starting powder 

deformation behaviour, so that three categories can be distinguished: ductile-ductile 

system, ductile-brittle system and brittle-brittle system. 

The MA of ductile-ductile components is the ideal system. The true alloying 

process requires an intimate contact between the powders which can be achieved 

only by the repeated action of cold welding. This process forms a composite lamellar 

structure (Benjamin et al., 1974). Increasing milling time these elemental lamellae 

become convoluted and thinner. For a metal-metal system, the reduction of the 

interlamellar spacing results in decreasing the diffusion distances and this together 

with the increased lattice defect density and any heating occurring during milling 

activates the true alloying process forming solid solutions. The lamellar structure 

becomes finer and even disappears for long milling time (Suryanarayana, 2001). 

In the initial stage of MA of ductile-brittle systems the collisions flattens the 

metal powder and fragments the brittle component. These brittle fragments are 

entrapped by the ductile deformed particles and so they are arranged along the 

interlamellar spacing, as schematically shown for oxide dispersion strengthen alloys 

(Fig. 3-a). Further milling twists and refine the lamellae decreasing the interlamellar 

spacing and uniformly dispersing the brittle fragments (Fig. 3b) (Suryanarayana, 

2001). If the brittle phase is soluble, true alloying occurs for longer milling time. In 

this case the achievement of chemical homogeneity depends also on the solid 

solubility of the brittle phase in the ductile matrix. 

In the case of MA of brittle-brittle systems the lack of a ductile component 

preclude the welding phenomenon. Brittle components get fragmented until they 

reach a minimum size, called “limit of comminution”. Even though cold welding does 

not take place, it has been observed that the fragments of the harder component get 

embedded in the softer component (Suryanarayana, 2001). 
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Figure III – 3. Scheme of the microstructural evolution during MA for oxide dispersion 

strengthened alloys (adapted from Suryanarayana, 2001). 

Regardless of the ductile or brittle behaviour of the components, MM and MA 

always bring a microstructure refinement. It has been reported that crystallite size 

changes during milling (Dai et al., 2012; Fecht, 1995; Huang et al., 1996). Generally 

speaking crystallite size is strongly reduced in the early stage of MM due to the 

intense collisions. Further milling continuously refines the crystallite size but at a 

lower rate. 

In some systems MM can also lead to the formation of new phases. This is the 

case for example of austenitic steels, in which the strain induced austenite to 

martensite transformation can occur (Huang et al., 1996). 

3.2.2 Case of study: mechanical milling of AISI H13 

Before considering the production of MMCs, MM of a HWTS (grade AISI H13) 

has been investigated (Fedrizzi et al., 2012[3]). This study has been focused on the 

influence of milling time on the morphological and microstructural evolution of milled 

powders. Figure 4 shows effect of the milling time on particle morphology. Atomized 

spherical powder (Fig. 4a) is flattened and elongated in the early stage of milling 

(Fig. 4b). For longer milling time the particle morphology becomes round again (Fig. 

4c,d). 
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Figure III – 4. SEM micrographs of the morphology of the atomized AISI H13 powder (a) and of 

the milled AISI H13 for 200 min (b), 400 min (c) and 2000 min (d) (Fedrizzi et al., 2012[3]). 

From Figure 4 it is also possible to see the strong particle size reduction 

produced by MM. The mean particle size as a function of the milling time is shown in 

Figure 5a. The particle size is quickly reduced to 30 µm in the early stage of MM and 

then continuously decreases but at a lower rate. Together with the particle size 

reduction, MM produces also a microstructural refinement (Fig. 5b). As well as for 

the particle size, the crystallite size shows a sharp reduction in the early stage of MM 

followed by a low rate decrease for longer milling time. This behaviour is in good 

agreement with literature data (Dai et al., 2012; Fecht, 1995; Huang et al., 1996). 

 

 
Figure III – 5. Mean particle size (a) and crystallite size (b) as a function of milling time 

(adapted from Fedrizzi et al., 2012[3]). 



20 

Microstructural investigation shows that the solidification structure of the AISI 

H13 (Fig. 6a) is being progressively deformed during MM. The dendritic structure is 

stretched and aligned forming a lamellar structure (Fig. 6b). Further milling reduces 

the size of lamellae and the microstructure becomes more and more homogeneous 

until the lamellar structure completely disappears (Fig. 6d). 

 

 
Figure III – 6. SEM micrographs of the microstructure of the atomized AISI H13 powder (a) and 

of the milled AISI H13 for 200 min (b), 400 min (c) and 2000 min (d) (Fedrizzi et al, 2012[3]). 

This investigation has pointed out that for this milling conditions the system 

achieve the steady state at about 1000 min. Longer milling time does not significantly 

improve the powder features and therefore carry on long MM it is not worthwhile. 

3.3 Consolidation by SPS 

Tool steels by PM are mainly produced by HIP (Grinder, 1999). In mass 

production this process has still the leading role but new technologies, such as metal 

injection moulding, hot extrusion sintering, are becoming quite attractive for the 

production of advanced materials (El-eskandarany, 2001). 

It has been demonstrated that electric current can be applied to enhance 

sintering and therefore to shorten the processing route (Munir et al., 2006). In the 

60s in Japan a sintering process based on pulse current was researched and in the 

80s-90s some small experimental Plasma Activated Sintering systems were 

produced. Later research developed the third generation of SPS systems and this 

advanced technology has gained more and more attention among the materials 
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researchers as well as in the production industry (Tokita, 1993). The main features 

which make SPS so attractive are the very high thermal efficiency, the uniform 

heating and the powder particle surface purification and activation occurring due to 

the current pulse (Tokita, 1993). 

SPS is a pressure sintering in which DC pulsed current is applied. Due to the 

Joule effect the current directly heats the graphite mould and the stacked powder at 

a very high heating rate. Compared to HIP, SPS offers a finer control of the sintering 

energy, high production rate, high reliability (Tokita, 1993). 

The SPS unit (Fig. 7) is formed by a uniaxial vertical press and a vacuum 

chamber. A water cooling system controls the chamber and punches temperature. 

The punches are conductive, usually graphite made, and they are connected to the 

DC current generator so to work also as electrodes. 

 

 
Figure III – 7. Schematic representation of SPS configuration (adapted from Tokita, 1993). 

Beside Joule heating the ON-OFF pulses of DC current applied in SPS are 

believe to generate spark plasma, spark impact pressure and an electric field 

diffusion (Tokita, 1993). However the physical phenomena taking place during SPS 

have not been fully understood yet. Hulbert et al. (Hulbert et al., 2009) 

experimentally proved the absence of plasma at any time of the process for many 

configurations. In any case the direct heating by electric current allows fast heating 

rate and the production of innovative materials, some of which cannot be prepared 

without SPS (Omori, 2000). For example, SPS can break the stable oxide layer 

covering aluminium particles. Diffusion of aluminium occurs through these small 

holes in the oxide allowing the formation of metallurgical bonds and consolidation. 

Moreover it has been proved that very high temperature can be reached at the 

contact points leading to localized melting and enhancing the interparticle bonding 
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(Diouf et al., 2012; Song et al., 2006). All these features and the plastic deformation 

due to the applied pressure allow the production of fully dense high quality materials 

working at lower temperature and in a shorter time than conventional sintering 

processes (Tokita, 1993). Li et al. (2006) pointed out the beneficial effect of the 

pulsed current on the formation of neck in the initial stage of sintering. 

3.3.1 Densification mechanisms 

The sintering mechanism occurring during SPS have been described by 

Zhaohui et al. (2008) who have proposed a sequence of four stages: i) activation and 

refining of the powder; ii) formation of the sintering neck; iii) growth of the sintering 

neck and iv) plastic deformation. Due to the oxide breakage and the fast heating up 

of the surfaces, the spark discharges mainly activate the first two stages. The other 

two steps play the main role in densification and they are promoted by the heating 

due to Joule effect and by the applied pressure. These two mechanisms are quite 

similar to those acting in classic pressure sintering (like HIP) therefore constitutive 

models for densification in SPS (Olevsky et al., 2006) are generally based on those 

developed for HIP (Artz et al., 1983; Helle et al., 1985). These analyses pointed out 

four main densification mechanisms described in the following. In the early stage, 

when relative density is lower than 90%, the densification by rate-independent 

plasticity plays the main role. This mechanism is related to the plastic deformation of 

the contact areas, it needs a local pressure higher than the yield stress to be 

activated and it ends when the contact areas are big enough that the acting pressure 

is lower than the yield stress. The second mechanism is the densification by power-

law creep and it is related to the deformation of the contact areas at high 

temperature under constant load. Another mechanism is the densification by 

diffusion. It is based on either grain boundary and bulk diffusion. This mechanism is 

strongly influenced by the particle size and generally speaking diffusion increases as 

particle size decreases. The last mechanism is the densification by Nabarro-Herring 

and Coble creep which acts only when the grain size is much smaller than the 

particle size. This mechanism accelerates densification even when the applied 

pressure is low. 

Experimental studies indicate that in SPS electric current directly contributes 

to the diffusion mass transport leading to densification (Munir et al., 2006). Olevsky 

et al. (2006) developed a constitutive model for SPS densification kinetics. They 

considered two major components of mass transfer leading to densification: the grain 

boundary diffusion and the power-law creep. Beside the applied load these two 

phenomena are activated by the sintering stress, or surface tension, and stady-state 

electromigration due to the electric field contribution to diffusion (Olevsky et al., 

2006). Creep due to applied load has the main role in densification when porosity is 

higher than 30%. Otherwise the leading phenomena depends on the grain size. For 
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conventional micron-size materials (grain size around 40 µm) the applied load still 

plays the dominant role in material transport. In the case of ultrafine powders (grain 

size smaller than 1 µm) the electromigration is the principal phenomenon promoting 

densification, even if for the final collapse of void externally applied load may be 

required. Finally for nano-powders (having grain size of 100 nm) the main 

contribution to sintering comes from the surface tension. 

It has been demonstrated that by SPS full density can be achieved sintering at 

lower temperature and in shorter time (Mamedov, 2002). Hence, SPS is considered 

to be suitable for the fabrication of the nanocrystalline metals and ultrafine-grained 

metals (Zhaohui et al., 2008). 
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Chapter IV 
 

Materials and Experimental Procedures 

 
 
 
 
 
 

4.1 Hybrid Tool Steels 

4.1.1 Materials 

For the production of hybrid tool steel a HWTS (grade AISI H13) and a HSS 

(grade AISI M3:2) powders were selected. Their composition is given in Table 1. 

Table IV – 1. Nominal composition of the alloying elements in the steel powders [weight %]. 

Material C W Mo Cr V Mn Si N* O* 

AISI H13 0.41 - 1.6 5.1 1.1 0.35 0.90 383 105 
AISI M3:2 1.28 6.4 5.0 4.2 3.1   559 163 

* composition in ppm. 

 

Both powders were produced by nitrogen atomization and they present 

spherical morphology with many satellites around the surface of the bigger particles 

(Fig. 1). Their particle size distribution is quite wide, with more than 5% of particles 

having size bigger than 355 µm and the mean particle size about 100 µm (Fig. 2). 

 

 
Figure IV – 1. SEM micrographs of the AISI H13 (a) and AISI M3:2 (b) powders. 
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Figure IV – 2. Particle size distribution of the AISI H13 and AISI M3:2 powders. 

The microstructure of both steels is constituted by primary martensite 

dendrites surrounded by microsegregated regions resulting from the solidification of 

the last liquid phase richer in alloying elements (Fig. 3). Due to the relatively high 

amount of carbon and alloying elements retained austenite is detected by X-rays 

diffraction (XRD) analysis in both steels (Fig. 4). The higher content of alloying 

elements in AISI M3:2 is responsible for the higher content of retained austenite and 

for the precipitation of some primary carbides (Fig. 4b). 

 

 
Figure IV – 3. SEM micrographs of the microstructure of the AISI H13 (a) and AISI M3:2 (b) 

powders. 

 
Figure IV – 4. XRD patterns for the AISI H13 (a) and AISI M3:2 (b) powders. 
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4.1.1.1 Influence of the particle size ratio 

For the analysis of the influence of the PSR both powders were sieved in three 

groups having particle size range 0-45 µm, 45-125 µm and 125-250 µm, 

respectively. Fixing the composition to 80% H13 – 20% M3:2 (vol %), the sieved 

powders were dry mixed in a “Turbula©” mixer for 20 minutes so to produce nine 

blends with different PSR, defined as the ratio between the mean particle size of 

AISI H13 (dH13) and AISI M3:2 (dM3:2) (Tab. 2). The sample codes identify the 

composition (80%vol of AISI H13) and the powder size, so that the main number 

indicates the maximum size of AISI H13 powder while the small subscript number 

indicates the maximum size of AISI M3:2 powder. In the following paragraphs the 

name “80H13 blends” is used to generally refer to these samples. 

Table IV – 2. Composition and codes of the 80H13 blends. 

Sample code 
H13 particle size 

[µm] 
M3:2 particle size 

[µm] 
PSR (dH13/dM3:2) 

[µm] 

80H13-250250 125-250 125-250 1.00 
80H13-250125 125-250 45-125 2.21 
80H13-25045 125-250 0-45 6.47 
80H13-125250 45-125 125-250 0.45 
80H13-125125 45-125 45-125 1.01 
80H13-12545 45-125 0-45 2.95 
80H13-45250 0-45 125-250 0.15 
80H13-45125 0-45 45-125 0.32 
80H13-4545 0-45 0-45 0.95 

 

4.1.1.2 Influence of the composition 

Previous study (Pellizzari et al., 2011[2]) investigating the influence of the 

composition on the properties of a hybrid tool steel highlighted a negative 

interference between the two steels during sintering. The achievement of high 

density is obstructed by their different densification kinetic, resulting in decreased 

material properties. Larger particle size distribution amplifies this negative effect. In 

this work MM has been considered to refine the powder particle size in order to 

reduce this interference. 

MM was conducted in a Fritsch Pulverisette 6 planetary mono mill at 450 rpm 

in vacuum atmosphere. Spheres with 10 mm diameter of 100Cr6 (63HRC) and a 

BPR of 10:1 were used. To avoid overheating cycles of 2 min on + 9 min off were 

used for a total milling time of 1000 minutes. As PCA 0.2%wt Kenolube was added 

to the starting powder. It has been demonstrated that these parameters optimize the 

refinement of both grain size and particle size in AISI H13 (Fedrizzi et al., 2012[3]). 
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The milled powders were dry mixed in a “Turbula©” mixer for 20 minutes so to 

produce four blends with different composition (Tab. 3). Two reference samples were 

produced using the base milled powders. All these six materials are generally called 

“MM-samples” in the following paragraphs. 

Table IV – 3. Composition and codes of the MM-samples. 

Sample code 
Composition [volume fraction] 

AISI H13 AISI M3:2 

MM-H13 1.0 0.0 
MM-80H13 0.8 0.2 
MM-60H13 0.6 0.4 
MM-40H13 0.4 0.6 
MM-20H13 0.2 0.8 
MM-M3:2 0.0 1.0 

 

4.2 HWTS Based MMCs 

4.2.1 Materials 

For the MMC matrix the same HWTS powder (grade AISI H13) selected for 

the production of the hybrid tool steel was used. Its composition is given in Table 1 

and its main characteristics are discussed in paragraph 4.1.1. As reinforcement three 

different compounds were chosen, namely titanium diboride (TiB2), titanium carbide 

(TiC) and titanium nitride (TiN). Their composition is listed in Table 4. These 

compounds have been proved to be suitable reinforcement for steel matrix (Akhtar, 

2008; Du et al., 2008; Liu et al., 2001; Ma et al., 2012; Oliveira et al., 1999; Pagounis 

et al., 1998; Tjong et al., 1999[2]). They are all characterized by high hardness, i.e. 

29.4 GPa, 28 GPa and 18-22 GPa for TiB2, TiC and TiN, respectively (Du et al., 

2008; Ma et al., 2012). 

Table IV – 4. Nominal composition of the TiB2, TiC and TiN powders [weight %]. 

Material C O N Fe B Ti 

TiB2 0.03 0.4 0.15 0.025 33.2 balance 
TiC 19.2 0.5 0.1 0.044 - balance 
TiN 0.02 0.4 22.1 0.163 - balance 

 

The three powders show different particle size and morphology (Fig. 5). The 

TiB2 particles mainly show a hexagonal prism shape and they are quite big: 90%wt 

of the particles are smaller than 31.21 µm and their mean diameter is 11.99µm. TiC 

and TiN powders are finer and more irregular and their mean particle size is 1.3µm 

and 3.6µm, respectively.  
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Figure IV – 5. SEM micrographs of the TiB2 (a), TiC (b) and TiN (c) powders. 

4.2.1.1 Influence of the processing route 

For the fabrication of HWTS based MMCs two different routes were 

considered: powder mixing and MA. In this study of the influence of the processing 

route only the TiB2 powder was considered as reinforcement and its content was 

fixed to 20%vol. 

The particle size distribution of the atomized AISI H13 (Fig. 2) is much wider 

than that of TiB2 and this results in a high PSR, defined as the ratio between the 
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mean particle size of AISI H13 (dH13) and TiB2 (dTiB2). Therefore for the powder 

mixing process the AISI H13 powder was previously milled in order to refine its 

particle size and reduce the PSR. For purpose of comparison, a steel sample was 

produced using this milled AISI H13 powder. 

The complete list of materials investigated in this stage is reported in Table 5. 

Table IV – 5. Powder production steps and codes of the investigated materials. 

Sample code Description 

sMM-H13 soft mechanically milled AISI H13 
sMM-H13+20TiB2 mechanically milled AISI H13 then dry mixed with 

20%vol of TiB2 
MA(H13+20TiB2) as-atomized AISI H13 dry mixed with 20%vol TiB2 

powder and then mechanically alloyed 

 

All the mixing stages were carried out in a “Turbula©” mixer for 20 minutes. 

The milling steps were conducted in a Fritsch Pulverisette 6 planetary mono mill at 

450 rpm in vacuum atmosphere. To avoid overheating cycles of 2 min on + 9 min off 

were used for a total milling time of 200 minutes. Spheres in 100Cr6 (63 HRC) with 

10 mm diameter were used to obtain a BPR of 10:1.5 and 0.2%wt Kenolube was 

added as PCA. 

4.2.1.2 Influence of the reinforcing particles 

From the analysis of the processing route, MA has resulted to be the most 

suited process for the production of these MMCs. Therefore all the materials 

investigated in this part of the thesis were produced according to the procedure 

previously described for the MA(H13+20TiB2) sample (Tab. 5). 

Fixing the amount of HPs to 20%vol, MMC powders with different kind of 

reinforcement were produced by MA. These powders and their corresponding 

sintered samples are generally named “MA-powders” and “MA-samples”, 

respectively. Their names, which are listed in Table 6, identify both the kind and 

amount of reinforcement. 

Table IV – 6. Composition and codes of the MA-powders. 

Powder code 
Reinforcement 
amount [vol%] 

Reinforcement 
kind 

MA(H13+20TiB2) 20 TiB2 
MA(H13+20TiC) 20 TiC 
MA(H13+20TiC) 20 TiN 
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4.3 Spark Plasma Sintering 

All samples investigated in this PhD thesis were sintered in a DR.SINTER® 

SPS1050 (Sumitomo Coal & Mining, now SPS Syntex Inc.) apparatus with graphite 

punches and dies. All sample have cylindrical geometry with 5 mm height but 

diameter was set to 30 mm for samples described in paragraph 4.1 (hybrid tool 

steels) and to 20 mm for those described in paragraph 4.2 (HWTS based MMCs). 

Sintering was performed heating up to 1100 °C and the sintering rate was set to 50 

°C/min for the 30 mm diameter samples and to 100 °C/min for the 20 mm ones. The 

holding time was set to 1 minute for all the MM-powders (MM-samples and all HWTS 

based MMCs) and to 5 minutes for the 80H13 blends. Final free cooling was 

performed after the isothermal soaking. Selecting the MA(H13+20TiC) and 

MA(H13+20TiN) powders a second round of samples was produced changing the 

holding time from 5 to 30 min. These samples are named with their powder code 

followed by a hyphen and the corresponding holding time (i.e. MA(H13+20TiC)-

5min). Once the temperature reached 600 °C, to obtain a pressure of 60 MPa, a 

compressive load of 42 kN and 19 kN was applied to the 30 mm and 20 mm 

diameter samples, respectively. These conditions have been previously 

demonstrated to be the most suitable for sintering present steels (Pellizzari et al., 

2011[1]). The displacement of the lower punch was monitored during sintering and 

used to follow material densification. The temperature was recorded by an optical 

pyrometer focused on the external wall of the graphite die. 

All 80H13 blends and MM-samples were vacuum heat treated in a low 

pressure furnace. The austenization temperature was set to 1050 °C for 15 min and 

it was followed by 5 bar nitrogen quenching and then double tempering at 625 °C for 

2 h each. 

4.4 Material characterization 

4.4.1 Particle size distribution 

The powders particle size distribution was measured in a “Partica LA-950©” 

Laser Diffraction/Scattering Particle Size Distribution Analyzer at the Department of 

Chemistry, Physics and Environment, University of Udine (Italy). The measurement 

is based on light scattering phenomena and the system can detect a wide range of 

particle size, from 10 nm up to 3 mm. 

4.4.2 X-ray diffraction 

For both powders and sintered samples, XRD patterns were collected using a 

Mo kα (λ = 0.7093 nm) source. The experimental data were elaborated with the 
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Rietveld method (Rietveld, 1969) using the MAUD software (Materials Analysis 

Using Diffraction) (Lutterotti, 1997). 

In this work XRD was used to determine the crystallite size and lattice strain of 

the MA-powders and the composition by quantitative analyses of both MA-powders 

and MA-samples. The formers were evaluated using the X-ray peak broadening 

techniques. Three factors determine the peaks broadening: the instrument, the 

crystallite size and the lattice strain (Lutterotti, 1997). After proper corrections taking 

into account the instrumental effect, crystallite size and lattice strain can be calculate 

applying the Scherrer formula (1), 

 B = (0.9 λ) / (d cosθ) + η tanθ (1) 

where B is the peak width at half height, λ is the radiation wavelength, d is the 

crystallite size, η is the lattice strain and θ is the Bragg angle. The equation can be 

rewritten as follows: 

 B cosθ = (0.9 λ) / d + η sinθ (2) 

This equation represents a straight line, where the lattice strain η is the slope 

and the intercept is 0.9λ/d. This method is quite accurate for measuring crystallite 

size in the range of 10-100 nm (Suryanarayana, 2001). 

The quantitative analysis, based on the Rietveld method, considers the area 

under the peak proportional to the volumetric fraction of the corresponding phase. 

MAUD fits the experimental data with the following relation: 

  = I fj / Vj
2 Lk |Fk,j|2 Pk,j Aj (3) 

where  is the intensity of the k peak related to the j phase, I is the incident 

radiation intensity, fj is the volumetric fraction of the j phase, Vj is the cell volume of 

the j phase, Lk is the Lorentz polarization for the k peak, Fk,j and Pk,j are structure 

factors and Aj is the absorption factor (Lutterotti, 1997). 

4.4.3 Density 

The density of the sintered samples was measured applying the Archimedes’ 

principle, according to ASTM B962-08 standard. 

For the determination of relative densities of composite materials, their 

theoretical absolute density was calculated according to the linear rule of mixture (4), 

 ρcomposite = νi · ρi + νii · ρii (4) 

where ν is the volume fraction and ρ is the absolute density of each 

component. 

For the 80H13 blends the theoretical absolute density was calculated equal to 

7.82 g/cm3, assuming 7.76 g/cm3 as the absolute density of AISI H13 and 8.05 g/cm3 

as the AISI M3:2 one. 
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For the MM-samples the theoretical absolute densities was calculated 

considering the absolute density of the two MM-steels measured by a pycnometer 

(ρMM-H13 = 7.71g/cm3, ρMM-M3:2 = 7.97g/cm3). 

In the case of HWTS based MMCs, literature data 7.76 g/cm3, 4.38 g/cm3, 

4.94 g/cm3 and 5.21 g/cm3 were considered as the absolute densities of AISI H13, 

TiB2, TiC and TiN, respectively. 

4.4.4 Metallography 

A metallographic cross section of the sintered sample was obtained by 

precision microcutting with diamond blade. Standard metallographic preparation, 

including grinding with SiC papers up to 1200 grit and final polishing with 3 μm and 1 

μm diamond paste and chemical etching with Nital etchant (5% nitric acid in ethanol 

solution) was carried out for both sintered materials and powders. 

Microstructures as well as powder morphologies were investigated by 

Scanning Electron Microscopy (SEM) and semi-qualitative chemical analysis was 

carried out by energy-dispersive X-ray spectroscopy (EDXS). 

A Veeco Multimode Nanoscope IIIa Atomic Force Microscope (AFM) at the 

Department of Chemistry, Physics and Environment, University of Udine (Italy) was 

used to map the sMM-H13+20TiB2 sintered sample surface. Topographic and 

surface Volta potential maps were obtained simultaneously using tapping and 

Scanning Kelvin Probe Force Microscopy (SKPFM)-interleave mode configuration on 

marked 25×25 μm2 areas. SKPFM measures the local Volta potential giving 

information about the differences in the potential between the different particles and 

phases present on the sample investigated surface. The same areas were observed 

by SEM to provide a clear overview of the particle dimension and distribution inside 

the metal matrix. EDXS was used in order to obtain a semi-quantitative 

compositional analysis of the different phases. 

4.4.5 Hardness and microhardness 

Hardness of sintered materials was measured by Vickers method, according 

to ASTM E92-82. The applied load was set to 10 kg and reported results are the 

average of six measurements. 

Microhardness was measured on both the sintered MA-samples and the MA-

powders. Microhardness test was performed on the metallographic samples with a 

Vickers Paar MHT-4 micro-indenter. The applied load was set to 0.5 N for the 

sintered materials while it was reduced to 0.1 N for the powders in order to eliminate 

the influence of the substrate. 
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4.4.6 Fracture toughness 

For the hybrid tool steels (80H13 blends and MM-samples) the apparent 

fracture toughness (Ka) was evaluated following the procedure proposed for small 

fracture toughness specimen (Lee et al., 2002). Notch depth (a) with root radii () of 

50 µm were electro discharge machined in 6×3×30 mm3 (W × B × L) specimens. 

The ratio of notch depth to the specimen width (a/W) was set at 0.5. Static fracture 

toughness testing was performed using a 10 ton capacity universal tester (Instron). 

The specimens were loaded in three-point bending at a crosshead speed of 0.5 

mm/min, according to the ASTM E399. The decrease in stress triaxiality with 

increasing  causes a decrease in the stress that would initiate fracture, so that the 

Ka value is higher than that of KIC measured on a fatigue precracked sample. 
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Chapter V 
 

Hybrid Tool Steels 

 

Part of this chapter has been published in: 
 
 
A. Fedrizzi, M. Pellizzari, M. Zadra 

“Influence of particle size ratio on densification behaviour of AISI H13/AISI M3:2 powder 
mixture”, 
Powder Technology, 228 (2012) 435-442. 
 
 
A. Fedrizzi, M. Pellizzari, M. Zadra 

“Production of hybrid tool steel by Mechanical Milling and Spark Plasma Sintering”, 
Proc. of the 2012 Powder Metallurgy World Congress & Exhibition 14-18 October, Yokohama, 
Japan, ISBN: 978-4-9900214-9-8. 
 
 
 
 
 
 

5.1 Influence of the Particle Size Ratio 

Densification behaviour of soft/hard powder mixture was deeply investigated 

by Bouvard (2000). This analysis is based on the hypothesis that ceramic HPs are 

not deformable under the applied pressure while metal soft particles can be 

plastically deformed and their deformation is accountable for the material 

densification. The powders used in this work are a hot work tool steel and a high 

speed steel thus it is not possible to define a totally hard component and a totally soft 

one. In any case these two steels present different hot strength (Imbert et al., 1984; 

Rodenburg et al., 2004) and it is thus plausible to identify a harder material and a 

softer material. The differences in alloying contents between AISI H13 and AISI M3:2 

(Tab. IV-1) produce a higher carbides volume fraction in the HSS AISI M3:2 

microstructure (Fig. 1). Close to equilibrium condition, a conventional AISI M3:2 

contains primary carbides such as M6C type (tungsten or molybdenum carbides) and 

MC (vanadium carbides) (Fig. 1b) which are quite hard and do not dissolve at high 

temperature resulting in the high strength of this steel. In contrast in AISI H13 the 

major fraction of carbides consists of pro-eutectoid MC types (Fig. 1a), but in a lower 

amount and size than in AISI M3:2. These differences in the microstructure are 
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responsible for the different strength of the two steels. As shown in Figure 2, AISI 

M3:2 is always characterized by a higher flow stress compared to that of AISI H13 in 

the same working conditions (temperature and strain rate). 

 

 
Figure V – 1. SEM micrographs of the microstructure of AISI H13 (a) and AISI M3:2 (b) after 

sintering. 
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Figure V – 2. Flow stress as a function of strain rate and temperature for AISI H13 and AISI 

M3:2 (adapted from Fedrizzi et al., 2012[1]). 

The powder microstructure (Fig. IV-3) is not the one at the equilibrium and 

therefore XRD analysis (Fig. IV-4) has highlighted that residual austenite is present 

in both powders and carbides has not precipitated in the AISI H13 powder while only 

a small amount of them has formed in the AISI M3:2 powder. DSC measurements on 

the powders highlight the presence of a exothermal signal starting around 490-500 

°C and showing the maximum at 616 °C and 657 °C for AISI H13 and AISI M3:2, 

respectively (Fig. 3). These peaks can be related to the precipitation of carbides and 

therefore it can be assumed that during the heating stage of sintering, carbides 

precipitates in both materials before the maximum pressure is reached (700 °C). 

This means that during the sintering cycle, when pressure is applied, both steels 

microstructure is closer to the equilibrium one. Therefore experimental data in Figure 

2 can be assumed to be relevant for the behaviour of present steels when pressure 

is applied. It can be concluded that at the sintering temperature (1100 °C) AISI H13 

deforms more easily than M3:2 so that they can be considered as the “softer” and 

“harder” component, respectively, for the study of the densification mechanisms. 

Microstructural observations of the sintered blends confirm this assumption. As 

shown in Figure 4 AISI H13 particles are strongly deformed by the applied pressure. 

This deformation allows AISI H13 to fill all the pores around AISI M3:2 powders 

(black arrows). On the other hand, due to their higher resistance to plastic 

deformation AISI M3:2 particles are mainly not-deformed or slightly deformed on the 

surface (white arrows in Fig. 4). 
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Figure V – 3. DSC curves for AISI H13 and AISI M3:2 powders. 

 
Figure V – 4. Optical micrograph of sample 80H13-250250 in which light areas are AISI H13 and 
grey areas are AISI M3:2. Black arrows highlight AISI H13 heavy deformation and white arrow 

indicates small deformation of an AISI M3:2 particle. 

The microstructure of the nine 80H13 blends has been investigated by optical 

microscope (Fig. 5). Even if the composition is the same for all materials, i.e. 80%vol 

of AISI H13, it is possible to see that the two components present different 

arrangements according to the PSR (dH13/dM3:2). As shown in Figure II-4 and as 

described by Bouvard (2000), for a fixed composition the HP distribution is ruled by 

the PSR. The three blends with PSR lower than 0.5 (i.e. samples 80H13-125250, 

80H13-45250 and 80H13-45125) represent the case of “isolated HPs” characterized by 



38 

a good dispersion of AISI M3:2 particles (Fig. 5d,g,h). In the three blends with PSR 

close to 1 (i.e. samples 80H13-250250, 80H13-125125 and 80H13-4545) AISI M3:2 

particles are still mainly dispersed but aggregates start to form (Fig. 5a,e,i) meaning 

that these blends fall into the “aggregation” field (Fig. II-4). Finally the three blends 

with PSR higher than 2 (samples 80H13-250125, 80H13-25045 and 80H13-12545) 

show a net-like distribution of AIS M3:2 particles which form a nearly continuous 

skeleton (Fig. 5b,c,f). These microstructures are relevant to the percolative structure. 

The model of Bouvard (2000) predicts that for 20% volume fraction of HPs 

percolation occurs when PSR is higher than 1.95. Figure 6 shows the percolation 

threshold as a function of the PSR and the HP volume fraction. Present 80H13 

blends data are also plotted and it is possible to see the good agreement between 

the 80H13 blends microstructures (Fig. 5) and the analysis of Bouvard (2000). It can 

be deduced that AISI H13/AISI M3:2 composites follow the typical densification 

behaviour of the soft/hard blends even if both their components present a visco-

plastic deformation behaviour. 
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Figure V – 5. Optical micrographs after chemical etching of the samples 80H13-250250 (a), 
80H13-250125 (b), 80H13-25045 (c), 80H13-125250 (d), 80H13-125125 (e), 80H13-12545 (f), 

80H13-45250 (g), 80H13-45125 (h) and 80H13-4545 (i). Light areas are AISI H13, dark grey areas 
are AISI M3:2 and black areas are pores (adapted from Fedrizzi et al., 2012 [1]). 
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Figure V – 6. Percolation threshold as a function of hard particle volume fraction and particle 
size ratio according to Bouvard (2000) and values for 80H13 blends (adapted from Fedrizzi et 

al., 2012[1]). 

The density of the 80H13 blends is mainly affected by the particle size of the 

principal component, i.e. AISI H13, as shown in Figure 7a, where the relative density 

is plotted as a function of the maximum AISI H13 particle size. Particularly, as the 

AISI H13 particle size decreases the relative density increases. This behaviour 

agrees with previous results, which showed an improvement in density as the mean 

particle size decreases and as the particle size distribution becomes narrower 

(Pellizzari et al., 2011[1]; Ting et al., 1994; Ting et al., 1995). Moreover, as the AISI 

H13 particle size decreases, the effect of AISI M3:2 particle size on density is 

minimized. Indeed the three samples with the smallest AISI H13 particles present the 

same value of density regardless of the AISI M3:2 particle size, while the three 

specimens with the bigger AISI H13 particles are characterized by quite different 

density values as the AISI M3:2 particle size changes (Fig. 7a). 

Literature data show that relative density of soft/hard powder mixtures 

increases as the PSR decreases (Bonnenfant et al., 1998; Bouvard, 2000). The 

relative density of present blends as a function of the PSR is shown in Figure 7b. 

Considering samples having the same AISI M3:2 particle size it is clear that as PSR 

decreases relative density linearly increases in agreement with previous studies 

(Bonnenfant et al., 1998; Bouvard, 2000). 

Figure 7b also points out the influence of the AISI M3:2 particle size on 

relative density. When considering samples having constant AISI H13 particle size, 

relative density trend shows a minimum as AISI M3:2 particle size changes. This 

minimum decreases as AISI H13 particle size decreases and it disappears for the 

smallest particle size, i.e. 80H1345250, 80H1345250 and 80H1345250 samples. This 
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relation between relative density and AISI M3:2 particle size results from the 

superimposition of two distinct contributions as schematically shown in Figure 8. On 

one side there is the effect of the formation of aggregation/percolation microstructure 

(dashed curve in Fig. 8). For a constant AISI H13 particle size the PSR increases 

when AISI M3:2 particle size decreases. This leads to the formation of aggregates 

and percolative network of AISI M3:2 hindering blends densification (Bouvard, 2000). 

On the other side due to the decrease of AISI M3:2 particle size the “excluded 

volume” in the middle of the aggregates and the pores in the percolative skeleton 

also decrease as it is possible to see in Figure 5a,e,i. This results in increasing 

density as schematically shown by the dotted curve in Figure 8. 

 

 
Figure V – 7. Relative density data as function of the maximum AISI H13 particle size (a) and 

as a function of the PSR (dH13/dM3:2) (b) (adapted from Fedrizzi et al., 2012[1]). 
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Figure V – 8. Scheme of the influence of AISI M3:2 particle size on the relative density 

(adapted from Fedrizzi et al., 2012[1]). 

The lower punch displacement has been used to evaluate the material 

densification during sintering. The first derivative of displacement (ds/dT) against 

temperature is representative of the densification rate and it is shown in Figure 9. As 

previously stated (Pellizzari et al., 2011[1]), ferrite to austenite transformation during 

sintering is responsible for a slowdown in materials densification. Therefore the 

displacement first derivative curves present a minimum in correspondence to the 

ferrite to austenite transformation and consequently two relative maxima (Fig. 10). 

For all the nine samples the densification rate starts to slow down at about 830 °C, 

that is the onset of the ferrite to austenite transformation for AISI H13, and it reaches 

the minimum around 925 °C. Then the densification behaviour changes depending 

on the particle size of AISI H13, i.e. the main component of the blends. Figure 10 

shows the influence of the particle size on the sintering rate and on the ferrite to 

austenite transformation in SPS. As particle size decreases the peak of sintering rate 

becomes narrower because densification is enhanced by smaller particles (Pellizzari 

et al., 2011[1]; Ting et al., 1994; Ting et al., 1995). It has been demonstrated (Diouf 

et al., 2012; Song et al., 2006) that during SPS of conductive powders the 

temperature at the contact points between particles is much higher than that of the 

particle core and this difference in temperature becomes greater as the particle size 

increases. This temperature difference is also confirmed by microstructural 

investigations on previous work sintered samples (Pellizzari et al., 2011[1]). AISI 

M3:2 sample sintered using particles smaller than 45 µm shows a coarser 

microstructure in the inner part of particles (areas A in Fig. 11) and a finer one at the 

particle surface (area B). This finer carbide precipitation can be due to the higher 

temperature achieved at the particle surface. This means that the ferrite to austenite 
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transformation occurs firstly near the contact points and only later at the particle 

core. Hence, the temperature range of transformation becomes wider as the particle 

size increases. Combining the influence of particle size on these two distinct effects 

it results that as the AISI H13 particle size increases the second relative maximum of 

the densification rate is shifted to higher temperature (Fig. 9). Indeed the blends with 

the smallest AISI H13 particles (samples 80H13-45250, 80H13-45125 and 80H13-4545) 

show the second peak at lower temperature (at about 1015 °C), while for the blends 

with medium sized AISI H13 particles (samples 80H13-125250, 80H13-125125 and 

80H13-12545) the second peak occurs at 1045 °C just before the maximum sintering 

temperature. Finally in the case of the blends with the biggest AISI H13 particles 

(samples 80H13-250250, 80H13-250125 and 80H13-25045) the second peak falls 

beyond the maximum measured temperature (nearly 1070 °C). This means that for 

these samples the sintering cycle ends before complete densification as confirmed 

by their low relative density (< 98.5%). 
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Figure V – 9. First derivative of displacement (ds/dT) against temperature during sintering for 

samples with biggest AISI M3:2 particles (a), with medium AISI M3:2 particles (b) and with 
smallest AISI M3:2 particles (c) (adapted from Fedrizzi et al., 2012[1]). 
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Figure V – 10. Schematic trend for sintering rate and ferrite to austenite transformation during 

SPS of tool steel powders (adapted from Fedrizzi et al., 2012[1]). 

 
Figure V – 11. SEM micrograph of the microstructure of AISI M3:2 SPS sample sintered using 

as-atomized powder smaller than 45 µm. 

The 80H13 blends hardness measured after thermal treatment is plotted in 

Figure 12 as a function of the relative density. Previous study on tool steel SPS 

(Pellizzari et al., 2011[1]) and literature data for ceramic materials, (Adachi et al., 

2006; Abderrazak et al., 2011; Luo et al., 1999; Xu et al., 2009) showed that a lower 

porosity results in an improvement of hardness of sintered materials. Present 

materials confirm this behaviour showing a general increase of hardness as relative 
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density increases. Moreover as porosity decreases the standard deviation also 

decreases, meaning that materials become more homogeneous. 

As shown for the relative density (Fig. 7b), as a first approximation three 

individual trends can be drawn according to AISI M3:2 particle size (curves in Fig. 

12), meaning that this parameter also effects hardness. As AISI M3:2 particles 

become smaller the trend shifts to higher hardness, hence the three blends with the 

smallest AISI M3:2 particles (samples 80H13-25045, 80H13-12545 and 80H13-4545) 

present the highest hardness in relation to their relative density. This improvement of 

hardness as AISI M3:2 particle size decreases can be related to the material 

microstructure. In the atomization process the cooling rate for smaller particles is 

much higher resulting in a much finer microstructure, as shown in Figure 13. Due to 

the fast heating rate and the short holding time in SPS, sintered materials still show 

these differences according to the particle size (Fig. 14). Therefore AISI M3:2 

sintered using the smallest powder (0-45 µm) has a finer microstructure with small 

grains size (around 1 µm) and a finer and more homogeneous distribution of 

carbides (Fig. 14a). Both these features have a hardening effect on the AISI M3:2 

component resulting in increased hardness for the whole composite. 

The three densest blends (samples 80H13-45250, 80H13-45125 and 80H13-

4545) show relative density similar to that of the pure AISI H13 produced by SPS 

(99.5%) (Pellizzari et al., 2011[1]). As expected the addition of 20%vol of AISI M3:2 

harder particles results in higher hardness compared to the pure AISI H13 (black 

square in Fig. 12). 

 

 
Figure V – 12. Hardness as a function of relative density (adapted from Fedrizzi et al., 2012[1]). 
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Figure V – 13. SEM micrographs of the microstructure of the AISI M3:2 powders depending on 

the particle size range: 0-45 µm (a), 45-125 µm (b) and 125-250 µm. 
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Figure V – 14. SEM micrographs of the microstructure of the sintered AISI M3:2 depending on 

the particle size range: 0-45 µm (a), 45-125 µm (b) and 125-250 µm. 
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Apparent fracture toughness (Fig. 15) shows a dependence on the density 

similar to that of hardness, confirming that density also influences mechanical 

properties of sintered materials (Adachi et al., 2006; Pellizzari et al., 2011[1]; Luo et 

al., 1999). Up to 99% of relative density apparent toughness increases linearly as 

relative density increases. In this range, apparent toughness seems not to be 

influenced by the AISI M3:2 particle size, as it has been highlighted for hardness 

instead (Fig. 12). When relative density is lower than 99%, the presence of pores 

mostly affects toughness, which decreases as porosity increases. In these conditions 

toughness is less sensible to other features, such as the presence of a brittle 

component. When considering the three highly dense blends (samples 80H13-45250, 

80H13-45125 and 80H13-4545) the behaviour changes. In this case porosity has a 

minor effect and apparent toughness is influenced by AISI M3:2 particle size. Indeed 

as the harder particle size decreases apparent toughness increases considerably. 

This result can be explained by fractographic analysis. The two components show 

quite different fracture behaviour (Fig. 16). AISI M3:2 presents a brittle fracture 

characterized by flat surfaces which pass through the powder particles (area A in 

Fig. 16). In AISI H13 interparticle fracture occurs (rough area B in Fig. 16) The 

interparticle fracture is not typical for this material and it suggests that AISI H13 is 

not well consolidated even though it is well densified. Due to its poor consolidation, 

AISI H13 does not resist enough to crack propagation and therefore the crack can 

easily reach the harder AISI M3:2 particles where fracture propagation is accelerated 

due to their brittle behaviour. In this situation, smaller hard particles play a beneficial 

role on crack propagation improving the apparent toughness. 

The addition of 20%vol of harder AISI M3:2 brings a decrease of toughness 

for all the 80H13 blends compared to that of pure AISI H13 produced by SPS 

(Pellizzari et al., 2011[1]) (squared data in Fig. 15). But in the case of sample 80H13-

4545 this reduction of apparent toughness is quite restricted, about 3.6% only. 
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Figure V – 15. Apparent toughness as a function of relative density (adapted from Fedrizzi et 

al., 2012[1]). 

 
Figure V – 16. SEM micrograph of fracture surface for sample 80H13-45250 (adapted from 

Fedrizzi et al., 2012[1]). 

5.1.1 Conclusions 

The microstructure of the nine 80H13 blends shows the effect of the PSR 

(dH13/dM3:2) on the phases distribution. If PSR is bigger than 1, the harder AISI M3:2 

particles are not evenly dispersed and present the unwanted percolation structure. 

When PSR is close to 1 the harder particles tend to aggregates. To produce a 
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dispersion of isolated AISI M3:2 particles PSR has to be smaller than 1. This 

behaviour agrees with the analysis of Bouvard (2000) for soft/hard blends. 

Density of the blends is mainly influenced by the particle size of AISI H13 (the 

major component) and it increases as the particle size decreases. The effect of PSR 

on density becomes evident comparing the samples with constant AISI M3:2 particle 

size. As PSR decrease the relative density increases. Considering samples with 

constant AISI H13 particle size, the curve of density vs. PSR shows a minimum due 

to the superimposition of two distinct contributions: the decrease of density by 

increasing PSR, due to the progressive formation of aggregates and percolative 

network of harder particles; the increase of density by increasing PSR, due to the 

smaller “excluded volume” formed between harder particles aggregates. 

Relative density strongly influences both hardness and toughness which 

increase as density increase. Therefore the three highly dense samples made by 

small AISI H13 powders (blends 80H13-45250, 80H13-45125 and 80H13-4545) 

presented the best hardness and apparent toughness. 

The fine and homogeneous carbide dispersion and the small size of AISI M3:2 

particles enable the sample 80H13-4545 to gain the highest values of hardness 

combined with a very good toughness. 

5.2 Influence of the Composition 

As shown for the 80H13 blends, particle size influences the sintering kinetics 

(Fig. 10). Smaller particles enhance sintering and they reduce the temperature range 

of the ferrite to austenite transformation. According to this result it has been thought 

to reduce the particle size by MM. 

The cumulative particle size distribution for as-atomized and mechanically 

milled AISI H13 and AISI M3:2 are compared in Figure 17. The as-atomized powders 

show a very similar particle size distribution with mean particle size equal to 123 µm 

and 115 µm for AISI H13 and AISI M3:2, respectively. After MM the particle size 

distributions become narrower and the mean particle size decreases to 14.6 µm for 

MM-H13 powder and to 18.3 µm for MM-M3:2 powder. The cumulative curves of the 

MM-powders have different shape: at the beginning (i.e. in the diameter range of 5-

30 µm) the MM-M3:2 curve is less steep than the one of MM-H13 while the trend is 

inverted for larger diameters, i.e. MM-M3:2 curve is steeper than the MM-H13 one. 

This means that AISI M3:2 powder presents some big aggregates and it has not 

reached the equilibrium between fragmentation and agglomeration jet. This is 

confirmed by morphological and microstructural observations (Fig. 18 and 19). Both 

MM-powders show a round morphology, meaning that milling is not at the very early 

stage (Bailon-Poujol et al., 2011; Maurice et al., 1994), but MM-M3:2 has much 

bigger particles (Fig. 18b). Low magnification micrograph (Fig. 19c) confirms that 
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these big particles are aggregates which on the other hand are not present in the 

MM-H13 (Fig. 19a). 

In MM-H13 (Fig. 19b) the as-atomized microstructure has completely 

disappeared due to the cold welding and fragmentation phenomena occurring during 

MM (Benjamin et al., 1974; Maurice et al., 1994; Suryanarayana, 2001). These 

events result in the stretching and deformation of the dendritic microstructure of the 

as-atomized powder, leading to the formation of a lamellar microstructure (Çetinkaya 

et al., 2007; Suryanarayana, 2001). As the milling time increases the lamellae 

become thinner until the microstructure is fully homogenized. After 1000 minutes no 

more traces of lamellar microstructure can be seen for AISI H13 (Fig. 19b) meaning 

that the MM process has been properly carried out. Microstructure investigation on 

MM-H13 also highlights the presence of some porosity inside the milled particles. 

The MM-M3:2 powder microstructure shows some pores and traces of cellular 

structure (Fig. 19d) confirming that present MM conditions for AISI M3:2 are far from 

the optimum. Increasing milling time can be considered in future works to obtain the 

best microstructure for MM-M3:2 powder, too. 

 

 
Figure V – 17. Cumulative particle size distribution of AISI H13 and AISI M3:2 powders after 

atomization and after MM. 
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Figure V – 18. SEM micrographs of the morphology of the MM-H13 powder (a) and of the MM-

M3:2 powder (b). 
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Figure V – 19. SEM micrographs of the microstructure of the MM-H13 powder at lower (a) and 
higher (b) magnification and of the MM-M3:2 powder at lower (c) and higher (d) magnification. 

Microstructure of sintered MM-H13 and MM-M3:2 is shown in Figure 20. For 

both steels the grain size is much smaller than that shown for the as-atomized 

materials (Fig. 1). In the MM-H13 (Fig. 20a), MM has strongly refined the 

microstructure and finely dispersed the carbides which can now be seen only at 

higher magnification. Also in the case of MM-M3:2 the microstructure has been 

greatly refined by MM (Fig. 20b), but in this steel its higher alloying elements content 

results in a greater carbide precipitation, as previously stated (par. 5.1). The not 

uniform microstructure of the MM-M3:2 powder is responsible for the not 

homogeneous microstructure of the sintered material. Where MM has completely 

destroyed the cellular structure of the atomized powder and fully homogenized the 

steel structure the sintered material shows a fine and uniform distribution of carbides 

which act as a barrier to the grain growth. On the other hand where the cellular 

structure has not been destroyed carbide distribution is less homogeneous and the 

grain size is bigger. 
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Figure V – 20. SEM micrographs of the microstructure of MM-H13 (a) and MM-M3:2 (b) after 

sintering. 

The microstructure of the four blends is shown in Figure 21. It is possible to 

see that the two components are uniformly distributed in all the four MM-blends and 

the microstructures are quite homogeneous. The reduction of the particle size, 

especially of the biggest particles, results in a more uniform microstructure than that 

produced by using as-atomized powders (Fig. 22). MM-blends do not show any 

porosity which is very evident in the as-atomized blends instead (Pellizzari et al., 

2011[2]). 

 



56 

 
Figure V – 21. SEM micrographs of the microstructure of MM-20H13 (a), MM-40H13 (b) MM-
60H13 (c) and MM-80H13 (d) after sintering. Brighter areas are AISI M3:2 and grey areas are 

AISI H13 (adapted from Fedrizzi et al., 2012[2]). 

 
Figure V – 22. Optical micrographs of the microstructure of as-atomized blends 20H13 (a), 

40H13 (b) 60H13 (c) and 80H13 (d) after sintering. Brighter areas are AISI H13, darker areas 
are AISI M3:2 and black spots are pores (adapted from Pellizzari et al., 2011[2]). 

The absolute density of the MM-samples decreases linearly as the weight 

fraction of AISI H13 (i.e. the component with lower density) increases (black data in 

Fig. 23), in good agreement with the linear rule of mixture. The relative density 
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(empty circles in Fig. 23) has been calculated as the ratio to the density of the MM-

powders measured by a pycnometer. Since the MM-powders have some internal 

porosity, especially the MM-M3:2 (Fig. 19), these measures are thought to be lower 

than the theoretical density of the two MM-steels. Therefore the relative density of 

MM-samples can be a little bit higher than the real values, particularly for the 

specimens with high amount of HSS, i.e. MM-M3:2, MM-20H13 and MM-40H13. In 

any case these data are meaningful and they show that all the MM-samples achieve 

high density, very close to theoretical one (relative density higher than 99.4%), as 

already highlighted by microstructural observations (Fig. 21). 

Figure 24 shows previous density data for materials sintered using as-

atomized powders (Pellizzari et al., 2011[2]). In that case the two base steels were 

sintered up to nearly full density (relative density around 99.5%) but all the four 

blends did not achieve theoretical density values predicted by the linear rule of 

mixture (dotted line in Fig. 24). All the four blends showed a high porosity (Fig. 22) 

and lower density (between 98.8% and 99.0%) than the two base steels. 

 

 
Figure V – 23. Density and relative density of the MM-samples as a function of the AISI H13 

content. 
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Figure V – 24. Density and relative density of the samples produced with as-atomized powders 

as a function of the AISI H13 content (adapted from Pellizzari et al., 2011[2]). 

To better understand densification behaviour the punch displacement during 

sintering has been investigated. Figure 25 shows the first derivative of the punch 

displacement for MM-H13 and MM-M3:2. For comparison, data of samples produced 

using as-atomized powders have also been plotted (Pellizzari et al., 2011[2]). As 

highlighted for the 80H13 blends (Fig. 9) the derivative curves show a minimum in 

correspondence of the ferrite to austenite transformation. Also the MM-samples 

present this behaviour. MM-M3:2 shows this minimum at lower temperature (about 

850 °C) than MM-H13 (around 900 °C). This is because the ferrite to austenite 

transformation occurs at lower temperature in the AISI M3:2 steel as it is shown by 

the dialtometric curves in Figure 26. Compared to the as-atomized samples (dashed 

lines in Fig. 25), MM-samples show higher densification rate and a new relative 

maximum around 750 °C, which was not shown by any material produced with as-

atomized powders (Pellizzari et al., 2011[2]). Moreover the sintering peak of both 

MM-steels ends at a lower temperature (about 1050 °C) than that of the as-atomized 

samples. These results suggest that MM activates sintering, shifting the sintering 

peak at lower temperature (Zoz et al., 2003). It is plausible that both particle size and 

microstructural refinements promote sintering, particularly in in the range of low 

temperature, i.e. before 800 °C. The activation produced by MM seems more 

efficient for MM-M3:2. Indeed MM-M3:2 shows the highest densification rate and all 

its peaks are shifted to lower temperature than MM-H13. The as-atomized samples 

show reverse behaviour than MM-steels, i.e. as-atomized H13 densification occurs at 

lower temperature than that of as-atomized M3:2. 

The derivative curves for all MM-sample are shown in Figure 27. The 

behaviour of the four blends follows the trend of their main component. This means 

that the MM-20H13 and MM-40H13 curves follow the MM-M3:2 one, while the MM-

60H13 and MM-80H13 samples behave like the MM-H13. The densification of all 
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MM-samples ends before the maximum sintering temperature, suggesting that 

sintering temperature could even be decreased to 1050 °C. 

The densification rate of the blends produced using as-atomized powder is 

plotted in Figure 28. Previous analysis (Pellizzari et al., 2011[2]) has highlighted that 

the different sintering kinetics of the two base steels hinder the densification of the 

blends, but this negative interaction can be minimized by reducing the particle size 

(Fig. 28b). Present data on the MM-samples confirm this last assumption. Indeed 

due to the particle size reduction achieved by MM, the MM-blends follow the base 

steels behaviour according to their composition (Fig. 27) as it was shown for as-

atomized powder smaller than 45 µm (Fig. 28b). 
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Figure V – 25. First derivative of displacement (ds/dT) against temperature during sintering for 

MM and as-atomized AISI H13 (a) and for MM and as-atomized AISI M3:2 (b). 
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Figure V – 26. Change in length as a function of temperature. 

 
Figure V – 27. First derivative of displacement (ds/dT) against temperature during sintering for 

the MM-samples. 
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Figure V – 28. First derivative of displacement (ds/dT) against temperature during sintering for 

the sample sintered using as-atomized powders (adapted from Pellizzari et al., 2011[2]). 

Hardness of the heat treated MM-samples is shown in Figure 29. The fine 

martensitic microstructure and the high amount of carbides in the MM-M3:2 are 

responsible for its higher hardness (about 546 HV10). As the AISI H13 content 

increases the hardness decreases down to 422 HV10 for the MM-H13. The lower 

hardness of AISI H13 is due to its lower content of carbon and alloying elements 

(Tab. IV-1) which results in the formation of a softer martensite with lower amount of 

carbides. 

It is noticeable that all the four MM-blends achieve higher hardness than that 

predicted by the linear rule of mixture (dashed line in Fig. 29). Mechanisms 

responsible for the deformation behaviour in MMCs have scarcely been investigated 

so far and thus it is hard to predict MMCs properties (Pramanik et al., 2008; Shen et 

al., 2001). Experimental and numerical investigations showed that the dispersion of 

HPs in the metal matrix increases the flow resistance resulting in improved hardness 

(Pramanik et al., 2008). Investigation on the correlation between hardness and 

tensile strength highlighted that the slight improvement of tensile strength resulting 

from the addition of HPs may correspond to a comparatively higher increase of 

hardness (Shen et al., 2001). This higher work hardening for MMCs may be ascribed 

to different factors, among which the local increase in HPs concentration during 

loading and the parallel decrease in volume of matrix being deformed (Shen et al., 

2001) and the change of stress distribution leading to the generation of stresses 

higher than the yield stress of the matrix since the initial stage of indentation 

(Pramanik et al., 2008). Consequently MMCs show higher work hardening rate than 

the pure metal (Pramanik et al., 2008). For present MM-blends it can be plausibly 

assumed that the dispersion of particles of a second constituent causes a similar 

modification of the stress field resulting in increased work hardening of the matrix. 

As shown in Figure 29, after thermal treatment the hardness of the two base 

MM-steels is very close to that of the as-atomized materials (Pellizzari et al., 

2011[2]). Indeed the tempering curves for AISI H13 show that the MM-steel 

hardness remains much higher than that of the as-atomized materials until the 
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secondary hardness peak (around 500 °C) (Fig. 30) (Pellizzari et al., 2012). For 

higher tempering temperature the hardness of MM-H13 suddenly drops to the same 

value of that of AISI H13 produced by as-atomized powder. Present MM-samples 

have been tempered at 625 °C so that the hardness is nearly the same of as-

atomized AISI H13 (Fig. 30). It is plausible that AISI M3:2 would show similar 

behaviour and that at this tempering temperature all the hardening effects induced 

by MM are vanished. On the contrary all the MM-blends are harder than those 

obtained using as-atomized powders, which show a negative deviation from the 

linear rule of mixture. This result is directly correlated to the poor densification of 

these samples (Fig. 24) (Pellizzari et al., 2011[2]). In conclusion, present data 

confirm the efficacy of MM as a powerful technique for the achievement of high 

relative density and good hardness. 

 

 
Figure V – 29. Hardness of the MM-samples and as-atomized samples after heat treatment as 

a function of the AISI H13 content (adapted from Fedrizzi et al., 2012[2]). 
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Figure V – 30. Tempering curves for AISI H13 sintered from MM-powder and as-atomized 

powder (adapted from Pellizzari et al., 2012). 

Figure 31 shows the apparent toughness for the MM-samples. MM-M3:2 

shows lower apparent toughness than MM-H13 according to its microstructure (Fig. 

20) and its hardness (Fig. 29). The four MM-blends reach apparent toughness 

values in between those of the two base MM-steels. The values of the two blends 

containing a higher fraction of AISI H13 (i.e., MM-80H13 and MM-60H13) are close 

to those predicted by the linear rule of mixture (dashed line in Fig. 31). On the other 

hand, in MM-40H13 and MM-20H13, the addition of AISI H13 provides a positive 

deviation from the rule of mixture, suggesting a beneficial influence beyond that 

expected by simple mechanical mixing. As far as author experience is concerned, 

AISI H13 produced by SPS generally shows interparticle fracture resulting in quite 

rough fracture surface (Pellizzari et al., 2009; Pellizzari et al., 2011[2]). This 

behaviour highlights poor consolidation of AISI H13 in SPS, but this can give a 

toughening effect when AISI H13 particles are placed in a less tough matrix. During 

fracture propagation the AISI H13 particles force the crack to follow their surface 

(details A in Fig. 32b) instead of passing across AISI M3:2 particles (details B). This 

makes the crack path more winding and it dissipate more energy resulting in 

increasing material toughness. Moreover AISI H13 particles act as a barrier against 

crack propagation (Fig. 32c) and this also has a toughening effect. On the other 

hand, in the AISI H13 rich blends, the AISI M3:2 particles do not obstruct the 

propagation of the crack which proceeds straight across them (Fig. 33) decreasing 

the HWTS toughness in agreement with the linear rule of mixture. 

Compared to the as-atomized materials (blue squares in Fig. 31) (Pellizzari et 

al., 2011[2]), the apparent toughness of the MM-M3:2 drops from 46 MPa*m1/2 to 34 

MPa*m1/2 and that of MM-H13 from 77 MPa*m1/2 to 58 MPa*m1/2. This can be 
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explained in view of the oxygen pick-up shown by the powders after MM (Tab. 1). 

Due to the lack of a suited insulation system the oxygen content increases almost 

one order of magnitude compared to as-atomized powders (Tab. IV-1). The surface 

of the MM-powders is covered by a thin oxide layer which impairs consolidation 

during sintering, reducing toughness (Arnberg et al., 1988; Pellizzari et al., 2009; 

Pellizzari et al., 2011[2]). This result suggests that if the oxygen content had not 

increased, the toughness of all MM-samples could have been 10-20MPa*m1/2 higher. 

However, despite of the negative effect of the higher oxygen content, all MM-blends 

show higher toughness than as-atomized blends (Fig. 31) which exhibit higher 

porosity (Fig. 24) (Pellizzari et al., 2011[2]). It can be concluded that the high porosity 

due to poor densification is more detrimental for toughness than high oxygen 

content. In other words, for the production of hybrid tool steels obtained by blending 

different powders, the benefits on densification by MM largely compensate the 

detrimental effect of higher oxygen content. Unquestionably, proper systems aimed 

at reducing oxidation could bring to much higher benefits than those evidenced in 

this research. 

 

 
Figure V – 31. Apparent toughness of the MM-samples and as-atomized samples after heat 

treatment as a function of the AISI H13 content (adapted from Fedrizzi et al., 2012[2]). 
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Figure V – 32. SEM micrograph of fracture propagation near the notch in MM-20H13: low 

magnification (a) and higher magnification of area 1 (b) and area 2 (c). 
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Figure V – 33. SEM micrograph of fracture propagation in MM-60H13. 

Table V – 1. Oxygen and nitrogen content in the MM-powders [weight %]. 

Powder O N 

MM-H13 0.1702 0.0978 

MM-M3:2 0.1391 0.0950 

 

5.2.1 Conclusions 

MM has been successfully applied to reduce the particle size of AISI H13 and 

AISI M3:2, so to minimize their negative interference during co-sintering. The milling 

parameters have been already optimized for AISI H13 powder, which therefore 

shows a high refinement and a homogeneous microstructure after MM. MM process 

for AISI M3:2 has not been investigated so far and therefore MM of AISI M3:2 has 

been carried out in the same condition as for MM-H13. MM-M3:2 powder is less 

refined than MM-H13 and its microstructure is not completely homogenized. Traces 

of the as-atomized dendritic structure or of the lamellar structure, which is formed in 

the early stage of MM, can still be found in several particles. These results suggest 

that MM-M3:2 powder has not achieved the steady state of milling, probably because 

of a too short milling time. 

Spark plasma sintered MM-samples achieve near full density confirming that 

the interference during co-sintering due to the different material densification kinetics 

can be minimized or completely eliminated by reducing the powder particle size. The 

higher density, hardness and toughness of MM-blends than that fabricated using as-

atomized powders confirm the positive influence of MM. 

Present results confirm that properties of the hybrid steel can be modulated by 

changing the blend composition. Density, hardness and apparent toughness of the 
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MM-blends fall in between the values measured for the two base MM-steels 

according to the HWTS/HSS content. 

The lack of a suited protection against oxidation for MM-powders has caused 

a sharp increase of the oxygen content resulting in a marked drop of toughness for 

the two base MM-steels. Their toughness is much lower than that of samples 

produced using as-atomized powders. In spite of this higher oxygen content the 

toughness of the MM-blends is higher than that of the as-atomized blends. Indeed 

the positive influence of a higher density largely compensates the detrimental 

influence of the higher oxygen content. 
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HWTS Based MMCs 
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6.1 MA-powders characterization 

Figure 1 shows the particle size distribution of sMM-H13 powder and the three 

MA-powders (i.e. MA(H13+20TiB2), MA(H13+20TiC) and MA(H13+20TiN)). The 

particle size distribution of as-atomized AISI H13 (par. 4.1.1) is also plotted for 

comparison. The soft MM of the pure steel nearly halves the mean particle size (59 

µm) and promotes a narrower particle distribution, as confirmed by the steeper slope 

of the sMM-H13 line in Figure 1a. Compared to MM-H13 (Fig. V-17), the particle size 

refinement of sMM-H13 is much less intense. It has to be recalled that for sMM-H13 

softer milling conditions have been applied, i.e. shorter time and lower BPR than 

MM-H13 (see par. 4.2.1.1 and 4.1.1.2, respectively). All the MA-powder curves are 

shifted towards left hand side. Their particles are smaller than 50 µm and their mean 

particle size falls below 10 µm (9.83µm, 9.42µm and 7.86µm for MA(H13+20TiB2), 

MA(H13+20TiC) and MA(H13+20TiN), respectively). The presence of a hard phase 

enhances the particle refinement, which is reflected in a narrower size distribution 

and smaller mean particle size (Bailon-Poujol et al., 2011). MA(H13+20TiB2) and 

MA(H13+20TiC) powders have nearly the same particle size distributions. It can be 

inferred that, in spite of its slightly lower hardness and its considerably smaller mean 
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particle size (par. 4.2.1), during MA TiC acts on the particle size refinement in a quite 

similar way to TiB2. In the case of MA(H13+20TiN), the size distribution curve is 

further shifted to left hand side. TiN is the least hard reinforcement but it results to be 

more efficient in refining particle size than the other two compounds considered in 

this work. 

 

 
Figure VI – 1. Cumulative particle size distribution of as-atomized AISI H13, sMM-H13 and MA-
powders: complete range (a) and the zoom for diameter < 50 µm (b) (adapted from Fedrizzi et 

al., 2013[1]). 
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The powder morphology is shown in Figure 2. Compared to the as-atomized 

AISI H13 particles (Fig. IV-1a), those of sMM-H13 are heavily deformed, being flat 

and elongated (Fig. 2a). This morphology is the typical one observed in the early 

stages of MM, when cold welding prevails over fragmentation (Maurice et al., 1994; 

Suryanarayana, 2001). SEM micrographs of the MA-powders (Fig. 2b,c,d) confirm 

the stronger refinement of particle size than sMM-H13. Moreover the presence of the 

HPs in the three MA-powders promotes a much rounder morphology. Particles have 

irregular shape but they are nearly equiaxial. The brittle HPs enhance the 

fragmentation process so that all MA-powders show the typical morphology of the 

second stage of MM, observed when fragmentation prevails over cold welding 

(Maurice et al., 1994; Suryanarayana, 2001). Indeed the presence of a brittle phase 

shifts all the stages of MM to lower times (Bailon-Poujol et al., 2011; Suryanarayana, 

2001). 

 

 
Figure VI – 2. SEM micrographs of the morphology of the sMM-H13 (a), MA(H13+20TiB2) (b), 

MA(H13+20TiC) (c) and MA(H13+20TiN) (d) powders. 

Figure 3 shows the microstructure of the milled powders. As described in 

paragraph 4.1.1, the as-atomized AISI H13 powder microstructure is constituted by 

dendrites surrounded by microsegregated regions (Fig. IV-3a). MM destroys this 

cellular microstructure, as evidenced by the distribution of the super-saturated phase 

which is stretched in lines, finely wrapped and closely packed (Fig. 3a). This lamellar 

microstructure is characteristic of the early stage of MM and the strain level can be 

identified by the spacing of microsegregated areas (Çetinkaya et al., 2007; 
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Suryanarayana, 2001). Generally, the deformation is not uniform through a particle 

section and particles showing different extent of deformation can be distinguished 

(areas A and B in Fig. 3a). As previously stated, these microstructures also indicate 

that MM has not achieved the stationary stage yet (Suryanarayana, 2001). The 

microstructures of the MA-powders (Fig. 3b,c,d) confirm that MA allows the HPs to 

be finely dispersed in the steel matrix. However their distribution is not uniform and 

large areas of pure poorly deformed steel, showing a lamellar structure, are still 

present inside the particles. As reported by Suryanarayana (2001), in the initial 

stages of MA, the collisions between balls and powder flatten the ductile metal 

particles and fragment the brittle ceramic particles. These small fragments of HPs 

are included and trapped in by the ductile metal powders and they are arranged 

along the interlamellar spacing. Longer milling time refines the lamellar 

microstructure, decreasing the interlamellar spacing and producing a more uniform 

dispersion of HPs (Suryanarayana, 2001). For systems similar to those investigated 

here it was stated that there is an optimal MM time leading to small powders with 

uniform distribution of reinforcement (Angers et al., 1999; Liu et al., 2001). In view of 

these studies it can be suggested that longer MM time could result in a more 

homogeneous HPs distribution. 
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Figure VI – 3. SEM micrographs of the microstructure of the sMM-H13 (a), MA(H13+20TiB2) 

(b), MA(H13+20TiC) (c) and MA(H13+20TiN) (d) powders. 
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As stated in paragraph 4.1.1, the atomized AISI H13 powder is constituted by 

ferrite (Fe-α) and retained austenite (Fe-γ) (Fig. IV-4a). The strain induced 

transformation of retained austenite into martensite takes place during MM (Delogu, 

2011; Huang et al., 1996; Zoz et al., 2003) so that in the diffraction pattern of sMM-

H13 no peaks pertaining to austenite can be detected (Fig. 4a). The XRD analyses 

of the MA-powders (Fig. 4b,c,d) show the peaks of ferrite and of the corresponding 

ceramic phase. The quantitative analysis reveals that the HP volume fraction is 

about 22.3% for MA(H13+20TiB2) and MA(H13+20TiC) and 23.7% for 

MA(H13+20TiN). These results are in good agreement with the original target 

compositions (Tab. IV-6). No peaks pertaining to any other phases are present 

confirming that MA does not involve chemical reaction between the metal matrix and 

the HPs (Angers et al., 1999; Liu et al., 2001). 

 

 
Figure VI – 4. XRD patterns for the sMM-H13 (a), MA(H13+20TiB2) (b), MA(H13+20TiC) (c) 

and MA(H13+20TiN) (d) powders. 

6.2 TiB2 – MMCs: Analysis of the Processing Route 

The influence of powder mixing or MA on the sintering process has been 

evaluated following the densification of the samples (Tab. IV-5). Both sintering 

shrinkage and final density have been considered. 

Figure 5 shows the displacement of the lower punch and its first derivative, 

which represent the material densification and densification rate respectively, as a 
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function of sintering time. When load is applied after 360 s (corresponding to 600 

°C), the lower punch start to move, and firstly, until the load reaches its maximum 

value after 480 s, the displacements increase almost linearly (Fig. 5a). In this first 

stage the displacement is mainly due to the rearrangement of the particles and it is 

ruled by their compressibility. The softest powder, i.e. sMM-H13, achieves the 

highest displacement in view of the highest densification rate (Fig. 5b). The presence 

of coarse hard TiB2 particles in sMM-H13+20TiB2 decreases the compressibility of 

the powder reducing the densification rate. This effect is more evident in 

MA(H13+20TiB2) where the finer dispersion of TiB2 particles (Fig. 3b) further impairs 

densification. During the second stage, i.e. heating up to the maximum temperature 

under constant load, a reduced displacement rate is observed for all materials. 

Under maximum constant load, densification proceeds at lower rate. In this stage the 

displacement of MA(H13+20TiB2) increases almost continuously as the temperature 

increases while in the case of sMM-H13 and sMM-H13+20TiB2 the displacement 

shows a clear slowdown just before 600 s (i.e. around 900 °C), as evidenced by the 

two plateau regions in the corresponding curves (Fig. 5a). As previously described 

for the 80H13 blends and the MM-samples (par. 5.1 and 5.2), in this temperature 

range the ferrite to austenite transformation occurs and this transformation is held to 

be responsible for the slower sintering rate (Pellizzari et al., 2011[1]). The absence of 

a plateau suggests that this transformation is much less important for 

MA(H13+20TiB2). After the end of ferrite to austenite transformation, displacements 

restart to increase up to the maximum densification attainable by each sample (Fig. 

5a). In the case of sMM-H13 this maximum densification, highlighted by a second 

plateau, is achieved before the end of the heating stage, at about 1020 °C. When the 

heating stage ends sMM-H13+20TiB2 is approaching its maximum density and 

therefore the further increase of displacement in the holding stage is very small. 

Finally MA(H13+20TiB2) reaches its maximum density far behind the end of the 

heating stage. Due to creep phenomena, this material keeps densifying during the 

holding stage, too, and the displacement curve flattens nearly at the end of this last 

stage. 

The densification rate curves (Fig. 5b) better highlight these behaviours. sMM-

H13 shows a minimum in the densification rate in correspondence of the ferrite to 

austenite transformation at 900 °C and its densification ends before the maximum 

sintering temperature, as shown for the MM-samples (Fig. V-27). The behaviour of 

sMM-H13+20TiB2 is similar to that of sMM-H13 up to 600 s, where it shows the 

slowdown due to the ferrite to austenite transformation, too. After this point the 

densification curves of the two samples start to differ: sMM-H13+20TiB2 presents a 

wider minimum and after it its densification rate shows the second relative maximum 

later, which means at higher temperature (1050 °C) and then it slowly goes back to 

zero during the holding stage. The curve of MA(H13+20TiB2) is even different. It 

does show a shallow minimum around 600 s meaning that the ferrite to austenite 
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transformation still has an influence on sintering of this material, but less intense 

than in the other samples. Then MA(H13+20TiB2) densification curve shows a wide 

relative maximum as if sintering proceeds at a constant rate. After this 

MA(H13+20TiB2) densification rate constantly decreases until the end of the holding 

stage. 

These results highlight that the addition of the hard TiB2 changes the sintering 

kinetics in the composite materials. TiB2 shifts the end of the sintering peak towards 

longer time meaning that the composite material requires higher temperature to be 

sintered. 

 

 
Figure VI – 5. Displacements of the lower punch (a) and its first derivative (ds/dT) (b) during 

the SPS cycle of sMM-H13, sMM-H13+20TiB2 and MA(H13+20TiB2). 
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Absolute and relative density data are listed in Table 1. Considering the 

displacement curves (Fig. 5) it is possible to see that relative density is proportional 

to the final displacement, i.e. higher is the final displacement higher is the relative 

density. This is because the three powders are characterized by very similar values 

of tap density, which is the apparent density of the starting powder when is poured 

into the die. Therefore the starting height of the lower punch, i.e. the zero point of 

displacement, is the same for all the samples. The relative density of sMM-H13 is 

99.10% after sintering at 1100 °C for 1 minute, meaning that this material achieves 

near full density. The addition of 20%vol TiB2 in sMM-H13+20TiB2 causes a severe 

drop of density (96.41%). The reason is quite evident from Figure 6b where big 

pores (black areas) can be detected in the middle of large aggregates of TiB2 

particles (particles A). Porosity can be ascribed to an unfavourable PSR, i.e. the ratio 

between mean particle size of steel and TiB2 (dsMM-H13/dTiB2) (Bonnenfant et al., 1998; 

Bouvard, 2000; Delie et al., 1998). In present case PSR is equal to 4.92 (dsMM-H13=59 

µm, dTiB2=12 µm), i.e. above the percolation threshold (Fig. V-6) (Bouvard, 2000). 

The study of MM of AISI H13 has shown that the particle size can be further reduced 

up to 14.6 µm by milling for 1000 minutes with BPR equal to 10 (Fig. V-17). Using 

the fraction of this powder smaller than 25 µm only (i.e. 12.8 µm of mean particle 

size) and mixing it with 20%vol of TiB2 a new sample has been produced having 

PSR reduced to 1.06. Relative density could be increased up to 98.53% but the 

formation of TiB2 aggregates could not be avoided. These results confirm that the 

particle size of AISI H13 is the limiting factor for producing fully dense MMC by 

powder mixing. It is difficult to further reduce the steel particle size and therefore the 

PRS. This means that it is difficult to avoid aggregates formation and thus to 

increase relative density by powder mixing. On the other side, the addition of 20%vol 

TiB2 is not so detrimental for the densification of MA(H13+20TiB2) which achieves 

very high relative density (99.24%). In this material the limit of PSR has been 

overcome by MA which induces an even dispersion of fine hard TiB2 fragments into 

the parent steel particles (Fig. 3b) avoiding the formation of agglomerates during 

sintering. This assures the achievement of high relative density. 

Table VI – 1. Density and relative density of sintered samples. 

Samples 
Density 
[g/cm3] 

Relative density 
[%] 

sMM-H13 7.69 99.10 
sMM-H13+20TiB2 6.84 96.56 
MA(H13+20TiB2) 7.03 99.24 

 

The microstructures of the sintered samples are shown in Figure 6. sMM-H13 

(Fig. 6a) has fine grain size and no pores can be seen confirming that this material is 

fully dense. Higher magnification image (Fig. 7a) shows the presence of small 

globular carbides placed both at the grain boundary and inside the grains. This 
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image also highlights that the grain size is not uniform, plausibly due to a not fully 

optimized MM process (Fig. 3a), as shown for MM-M3:2 (par. 5.2). 

As previously stated, in sMM-H13+20TiB2 the unfavourable PSR leads to the 

formation of aggregates of TiB2 particles (particles A in Fig. 6b), which enclose big 

pores. Moreover, compared to that of sMM-H13, the microstructure of the AISI H13 

matrix has changed. Grain size is much bigger in sMM-H13+20TiB2 and coarse 

precipitates (particles B in Fig. 6b) can be found at the grain boundary. These 

precipitates are better shown in Figure 7b, where it is also possible to identify the 

formation of a different phase around the TiB2 particles, highlighted by the presence 

of a thin layer with different colour in the SEM micrograph. This means that during 

sintering there is an interaction between steel and TiB2. The grain growth and the 

formation of coarse precipitates suggest that at the steel particle surface there is a 

local overheating. It is known that during SPS the current causes an overheating of 

several hundred degrees at the particles contact points (Diouf et al., 2012; Song et 

al., 2006). According to the proposed model the overheated layer in the neck region 

can be few micrometers thick. Probably the presence of TiB2 particles at these 

contact points may change the thermal conductivity and heat capacity of the 

material. Therefore it is plausible that the heat generated at the necks is mainly 

dissipated through the steel particles, resulting in a higher heat supply in the steel 

particles in the composite sample than in sMM-H13. The coarse grains, which can 

also be seen at the particle care, can be a piece of evidence of this higher heating in 

sMM-H13+20TiB2. 

Two main constituents can be seen iIn the MA(H13+20TiB2) microstructure 

(Fig. 6c): a composite area (A) in which pure AISI H13 steel particles (areas B) are 

embedded. The low signal of Ti in the light areas by EDXS analysis (Fig. 8c) has 

confirmed that these areas are made of pure steel. The bright particles in these 

areas have been identified as chromium carbides by spot EDXS analysis. The 

composite areas are constituted by steel (high signal of Fe as shown in Fig. 8b) with 

smaller carbides and uniformly distributed TiB2 small particles (black spots in SEM 

micrographs, highlighted by intense Ti signal in Fig. 8c). As shown for the 

MA(H13+20TiB2) powder (Fig. 3b), this microstructure arises from a not optimized 

MA process. However, compared to sMM-H13+20TiB2, the dispersion of the hard 

TiB2 particles during MA prevents the formation of aggregates allowing the material 

to be sintered to high density. 
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Figure VI – 6. SEM micrograph of the microstructure of sintered samples: sMM-H13 (a), sMM-

H13+20TiB2 (b) and MA(H13+20TiB2) (c). 
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Figure VI – 7. Higher magnification SEM micrograph of the microstructure of sintered samples: 

sMM-H13 (a) and sMM-H13+20TiB2 (b). 
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Figure VI – 8. SEM micrograph of the MA(H13+20TiB2) microstructure (a) and the element 

distribution maps by EDXS analysis for iron (b) and titanium (c) (adapted from Fedrizzi et al., 
2013[2]). 
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6.2.1 TiB2 and AISI H13 interaction 

The above microstructures have highlighted the occurrence of some 

interactions between TiB2 and AISI H13 steel during SPS (Fig. 7b). Further 

investigations have been carried out to better understand these phenomena. 

Figure 9 shows the XRD spectra for the three sintered materials. The XRD 

pattern of sMM-H13 evidences the presence of ferrite, (Fe,Cr)3C carbides and 

retained austenite (Fig. 9a). The XRD patterns for the two TiB2 reinforced steels are 

more complex. The sMM-H13+20TiB2 spectrum (Fig. 9b) shows the signals of the 

same phases detected in sMM-H13 (Fe-α, (Fe,Cr)3C and Fe-γ) together with the 

peaks of TiB2 and also traces of new phases (TiC and Fe2B). The presence of these 

new compounds confirms that during SPS the steel interacts with the TiB2 particles, 

as shown in Figure 7b and as it was stated in other works (Degnan et al., 2002; Li et 

al., 2010; Sigl et al., 1991; Tanaka et al., 1999). For MA(H13+20TiB2) the XRD 

pattern is even different (Fig. 9c). In this case the peaks are attributed to ferrite, TiB2, 

Fe2B, TiC and oxides. There are no peaks pertaining to austenite. In this sample the 

peaks of TiB2 are weaker than in the case of sMM-H13+20TiB2 whereas peaks 

related to TiC and Fe2B are more intense. The quantitative analysis confirms that the 

volume fraction of TiB2 decreased to 15.9% while 4%vol of TiC and 9.3%vol of Fe2B 

have been formed. This result supports the partial dissolution of TiB2 particles in 

favour of new and more thermodynamically stable compounds. The 

MA(H13+20TiB2) pattern shows also some peaks related to oxides, which confirms 

the higher tendency of MM powder towards oxidation and the oxygen-induced Fe2B 

formation (Tanaka et al., 1999). 
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Figure VI – 9. XRD patterns of the sintered samples: sMM-H13 (a), sMM-H13+20TiB2 (b) and 

MA(H13+20TiB2) (c) (adapted from Fedrizzi et al., 2013[2]). 
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To evaluate the equilibrium conditions for the studied system, thermodynamic 

calculations have been carried out. The diagram in Figure 10 represents an isopleth 

of the AISI H13 (Fe-C-Cr-Mn-Si-V-Mo)-TiB2 equilibrium diagram (according to the 

composition in Tab. IV-1 and 4) calculated by the Thermo-Calc® software using the 

TCFe3 database (Sundman et al., 1985). The author is conscious that the materials 

studied in this work are well far away from equilibrium conditions, but thermodynamic 

calculations are useful to determine in which way the system would evolve, 

according to energy-based conditions. For a system containing about 20%vol TiB2 

(i.e. Mole fraction B = 0.17) at the sintering temperature of 1100 °C, the model 

predicts ferrite, Fe2B, TiB2 and TiC as stable phases. The ferrite to austenite 

transformation is shifted to much higher temperature than that measured in pure AISI 

H13 (about 820 °C, according to dilatometric test in Fig. V-26). 

 

 
Figure VI – 10. H13-TiB2 pseudobinary equilibrium phase diagram (adapted from Fedrizzi et 

al., 2013[2]). 

The presence of Fe2B and TiC peaks in the spectra of the composite samples 

(Fig. 9b,c) confirms the tendency of the system to move towards the equilibrium 

conditions. The reaction occurs at the interface between steel and TiB2 particles, 

where the microstructural analysis highlighted the formation of a different phase (Fig. 

7b). The refinement and the fine dispersion of the TiB2 particles during MA have 

resulted in a considerable increase of the interface between steel and TiB2 in 

MA(H13+20TiB2). Thus this material has a much higher driving force for the reaction 
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and the XRD analysis shows more intense peaks for Fe2B and TiC. Moreover the 

absence of austenite in the MA(H13+20TiB2) XRD spectrum confirms the inhibition 

of the ferrite to austenite transformation during sintering. All these evidences confirm 

that during sintering the steel matrix and the TiB2 particles strongly interact, in spite 

of the high heating rate and low holding time at elevated temperature made possible 

by SPS. 

As proposed by Sigl et al. (1991) for a TiB2-Fe system with carbon present as 

impurity, the plausible reaction that occurs during heating at the interface between 

TiB2 and steel is given in the follow: 

 TiB2 + α-Fe(↑C) → TiC + Fe2B + α-Fe(↓C) (5) 

The TiB2 particles react with the iron rich in carbon of the steel matrix 

producing TiC, Fe2B and a ferrite with a lower amount of dissolved carbon. This 

ferrite, due to the lower carbon content, is more stable therefore the ferrite to 

austenite transformation is shifted to higher temperature and it concerns only the 

areas of pure AISI H13. All austenite is completely transformed into ferrite again after 

cooling. DSC measurements carried out on the powders have confirmed this 

assumption. As shown in Figure 11, the DSC curves during heating for all the three 

powders present the exothermic peak related to the carbide precipitation at 684 °C 

and the endothermic signal at the Curie’s temperature (764 °C). At 877° C both 

sMM-H13 and sMM-H13+20TiB2 powders show the endothermic peak related to the 

ferrite to austenite transformation, not present in the MA(H13+20TiB2) curve. In 

MA(H13+20TiB2) there is a weak endothermic signal at 1017 °C meaning that some 

ferrite to austenite transformation may occur, but at higher temperature, and it 

concerns only a small fraction of the material. 

 

 
Figure VI – 11. DSC curves during heating for sMM-H13, sMM-H13+20TiB2 and 

MA(H13+20TiB2) powders (adapted from Fedrizzi et al., 2013[2]). 

As stated at the beginning of this paragraph, the interaction between TiB2 and 

steel has been firstly evidenced by microstructural analysis of sMM-H13+20TiB2 (Fig. 

7b). Thus deeper investigations have been carried out on this sample by means of 
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AFM and TEM. Figure 12 shows an AFM topographic map, a SKPFM Volta potential 

map and SEM micrographs for the sMM-H13+20TiB2 sample. As previously shown 

by SEM analysis, too (Fig. 6b), the topographic map (Fig. 12a) highlights the 

presence of some pores (dark areas) in between the TiB2 aggregates. The HPs are 

higher (lighter colour) than the matrix because during polishing they are less abraded 

due to their higher hardness. The Volta potential map (Fig. 12b) indicates that TiB2 

particles are characterized by a higher potential (about 50 mV) than the steel matrix. 

In the steel matrix this map also reveals the presence of some small precipitates 

which show a lower potential (darker colour) than the matrix. These precipitates are 

small secondary carbides, which are visible by SEM only at higher magnification 

(Fig. 7). Before chemical etching the SEM image (Fig. 12c) shows the HP 

distribution, confirming that the higher potential areas are made by TiB2, and it 

highlights again the presence of a reaction layer around the TiB2 particles. The 

chemical etching reveals the presence of the big precipitates at the steel grain 

boundary (Fig. 12d). These particles were displayed neither by AFM topographic 

analysis nor by SKPFM Volta potential. TEM investigations on these precipitates 

(Fig. 13) have revealed that they are rich in boron, vanadium, chromium, iron and 

molybdenum (Tab. 2). This result suggests that during SPS the boron coming from 

the decomposition of the TiB2 particles can promote the formation of these 

compounds with complex composition, which can be responsible for the Fe2B signal 

in the XRD analysis. The layer surrounding TiB2 particles has been deeper 

investigated by TEM, too. In Figure 14a it is possible to see a TiB2 particle and the 

reaction layer (darker border). EDXS analysis on this reaction layer shows the 

presence of carbon, titanium, vanadium, and iron, mainly (Tab. 3). This result 

suggests that the reaction layer can be composed by complex MC-carbide 

containing Ti and V. TEM analysis on the MA(H13+20TiB2) has also evidenced the 

presence of small precipitates (Fig. 15) rich in carbon and titanium (Tab. 4). These 

precipitates are the products of the chemical interaction between TiB2 and steel. 
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Figure VI – 12. AFM topographic map (a), SKPFM Volta potential map (b) and SEM 

micrograph before etching (c) and after chemical etching (d) of the sMM-H13+20TiB2 sample 
(adapted from Fedrizzi et al., 2013[2]). 
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Figure VI – 13. TEM image of a precipitate in sMM-H13+20TiB2. 

Table VI – 2. EDXS localized analysis results [wt%] on the spot 1 in Fig. 13. 

B C Si Ti V Cr Fe Mo 

15.8  0.7 3.3 12.5 12.5 31.9 23.4 
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Figure VI – 14. TEM micrograph (a) of a TiB2 particle in sMM-H13+20TiB2 and EDXS spectra 

(b) for spot 1 (black area) and spot 2 (solid line). 

Table VI – 3. EDXS localized analysis results [wt%] on the marked spots in Fig. 14a. 

Analysis B C Ti V Cr Fe Mo 

Spot 1 38.9 - 53.9 - 0.4 6.8 - 
Spot 2 - 10.3 41.1 16.9 2.9 25.1 3.8 
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Figure VI – 15. TEM image of MA(H13+20TiB2). 

Table VI – 4. EDXS localized analysis results [wt%] on the spot 1 in Fig. 15. 

C O Si Ti V Cr Fe Mo 

12.1 7.2 0.7 48.9 1.7 1.5 24.5 3.4 

 

6.2.2 Conclusions 

Powder mixing and mechanical alloying techniques for producing HWTS 

based MMCs have been compared. 

Investigations on the material densification during SPS have pointed out that 

the addition of the hard TiB2 particles changes the sintering kinetics in the composite 

materials. The end of the sintering peak is shifted later in time meaning that the 

composite material requires higher temperature to sinter than the pure AISI H13. The 

mixed sample (i.e. sMM-H13+20TiB2) shows little difference in sintering kinetics but 

it is the least dense one. MA amplifies the influence of TiB2 on sintering: 

MA(H13+20TiB2) sample shows only a slight slowdown in sintering rate in the range 

of ferrite to austenite transformation and it densifies during the holding stage, too, 

reaching full density only at the end of the sintering cycles. 

Microstructure investigations have shown the formation of big TiB2 aggregates 

in the sMM-H13+20TiB2 sample. These aggregates, which enclose large pores, 

result from an unfavourable PSR and they cause poor densification. Results pointed 

out that the AISI H13 particle size is the limiting factor for producing fully dense MMC 

by powder mixing. It has been proved difficult to further reduce the steel particle size 

and therefore the PRS. This means that it is difficult to avoid aggregates formation 

and thus to increase relative density by powder mixing. 
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Problems related to the PSR have been overcome by MA which promotes a 

uniform dispersion of TiB2 fragments into the parent steel particles avoiding the 

formation of agglomerates during sintering. This assures the achievement of high 

relative density. It can be stated that MA is a well suited technology for the 

production of MMC. 

Microstructural characterization have highlighted the formation of TiC and 

Fe2B in the sintered composites, meaning that TiB2 and steel react during sintering. 

This phenomenon is more intense in the MA(H13+20TiB2) sample in view of the 

larger surface area of finely dispersed HPs which can react much easier with the 

steel matrix. These results clearly point out that the carbon, which is present in the 

steel matrix, destabilizes TiB2 allowing the formation of new compounds. 

6.3 TiC and TiN – MMCs: Improved Chemical Stability 

The interaction between TiB2 and H13 makes this compound not suitable for 

the production of HWTS based MMCs. Therefore two different compounds, i.e. TiC 

and TiN, have been considered. In order to predict their stability when sintered with 

AISI H13, equilibrium phase diagrams were calculated by Thermo-Calc® (Fig. 16). 

The diagrams show that both compounds are stable in AISI H13. Indeed for 

temperature higher than 900 °C the thermodynamic calculations give only austenite 

and the corresponding ceramic compound as stable phases. At low temperature 

(200 °C) the H13-TiC diagram (Fig. 16a) shows the presence of ferrite, TiC and the 

typical carbides found in AISI H13 (i.e. M23C6 and M6C). Similar results have been 

found for the H13-TiN system (Fig. 16b), where at 200 °C the stable phases are 

ferrite, TiN, M23C6, M6C and VN. In this case the presence of VN may imply a partial 

decomposition of TiN. Equilibrium calculation shows that the volume fraction of TiN 

at room temperature is 19.5%, meaning that any eventual formation of VN would be 

only moderate and that TiN can be assumed to be chemically stable in AISI H13. 

Thus, the equilibrium phase diagrams suggest that no reactions should occur for 

both systems during SPS and this makes TiC and TiN suitable reinforcements for the 

development of HWTS based MMCs. 
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Figure VI – 16. H13-TiC (a) and H13-TiN (b) pseudobinary equilibrium phase diagrams. 

Two samples containing 20%vol of reinforcement, MA(H13+20TiC) and 

MA(H13+20TiN), were sintered. First of all densification during sintering has been 
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investigated. The punch displacements and their derivatives are shown in Figure 17. 

Data for sMM-H13 and MA(H13+20TiB2) samples are also plotted for comparison 

(see par. 6.2). The displacement of MA(H13+20TiC) and MA(H13+20TiN) is always 

lower than MA(H13+20TiB2) (Fig. 17a), meaning that these two new powders are 

less compressible and more difficult to be sintered. During the loading step the 

displacement in MA(H13+20TiC) and MA(H13+20TiN) is almost coincident and 

increases linearly. As previously stated (par. 6.2), in the second stage the 

densification increases at a lower rate. This deceleration is higher in 

MA(H13+20TiN). At nearly 600 s, MA(H13+20TiC) and MA(H13+20TiN) present the 

slowdown related to the ferrite to austenite transformation (around 900 °C), which is 

less evident in MA(H13+20TiB2). All the three MA-samples reach their maximum 

displacement at the end of the holding step, meaning that sintering has not been 

completed during the heating stage. 

The curves of the densification rate (Fig. 17b) underline the occurrence of the 

ferrite to austenite transformation in MA(H13+20TiC) and MA(H13+20TiN). Both 

samples present a deep minimum quite similar to that of sMM-H13 (dashed line). 

Compared to the pure steel, the addition of HPs shifts the second densification rate 

peak later in time for all the MA-samples. MA(H13+20TiN) is characterized by the 

lowest peak, meaning that this sample has the highest resistance to densification. 

For MA(H13+20TiC) the second peak occurs at about 700 s, nearly at the end of the 

heating stage denoting that this composite requires the highest temperature to sinter. 
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Figure VI – 17. Displacements of the lower punch (a) and its first derivative (ds/dT) (b) during 

the SPS cycle of sMM-H13 and MA-samples. 

The absolute and relative density values are listed in Table 5. As well as for 

previous samples (par. 6.2), relative density values are proportional to the final 

displacement. The  new samples show high porosity, particularly MA(H13+20TiN) 

whose relative density is only 87.86%. It has to be recalled that MA(H13+20TiB2), 

which shows the highest displacement, reaches nearly full density (Tab. 1). 

The sintered sample microstructures (Fig. 18) confirm density results. 

MA(H13+20TiN) (Fig. 18b) has a large amount of irregular and interconnected pores 

and powder particles show few contact points where sintering has happened. 

MA(H13+20TiC) (Fig. 18a) also has big pores but they are fewer and less 

interconnected than in MA(H13+20TiN). 
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As discussed in paragraph 6.1, the not fully optimized MA process is the 

cause of composite powders having nonhomogeneous HP distribution. The sintered 

materials still show this uneven microstructure (Fig. 18). As shown for 

MA(H13+20TiB2) (Fig. 6c), the MA-samples microstructures are formed by two main 

components: a composite constituent and some pure AISI H13 areas. Due to the 

bigger size of the starting powder (par. 4.2.1), TiB2 fragments are clearly displayed in 

the composite phase of MA(H13+20TiB2) (Fig. 6c), whereas TiC and TiN particles 

have become too small to be detectable (Fig. 18). 

  

 
Figure VI – 18. SEM micrograph of the microstructure of sintered samples: MA(H13+20TiC) (a) 

and MA(H13+20TiN) (b) (adapted from Fedrizzi et al., 2013[1]). 
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Table VI – 5. Density and relative density of sintered samples. 

Samples 
Density 
[g/cm3] 

Relative density 
[%] 

MA(H13+20TiC) 6.59 91.58 
MA(H13+20TiN) 6.37 87.86 

 

XRD patterns for MA(H13+20TiC) and MA(H13+20TiN) after sintering are 

shown in Figure 19. These patterns are quite similar, they both show peaks related 

to ferrite (Fe-α), austenite (Fe-γ) and their ceramic reinforcement, i.e. TiC and TiN, 

respectively. Compared to the original powder (Fig. 4c,d), after SPS the austenite 

signal has appeared, as it happens for sMM-H13 (Fig. 9a). During sintering the 

composite powders are heated up to 1100 °C, where austenite is the stable phase 

for the steel matrix, as previously shown in the equilibrium phase diagrams (Fig. 16). 

Due to the fast cooling rate, austenite does not completely transform into martensite 

and some retained austenite remains in the sintered composites. The quantitative 

analysis has determined that the retained austenite volume fraction is about 4% and 

5.6% for MA(H13+20TiC) and MA(H13+20TiN), respectively, and the ceramic 

content is about the same that it has been found in the composite powders. The 

unchanged volume fraction of HPs and the absence of signals related to new phases 

suggest that TiC and TiN do not react with the AISI H13 matrix. These results are in 

good agreement with thermodynamic calculations and they confirm the good 

chemical and thermal stability of TiC and TiN in steel matrix (Akhtar, 2008; Ma et al., 

2012; Pagounis et al., 1998). 
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Figure VI – 19. XRD patterns of sintered MA(H13+20TiC) (a) and MA(H13+20TiN) (b) (adapted 

from Fedrizzi et al., 2013[1]). 

The hardness of the MA-samples is listed in Table 6. For comparison sMM-

H13 and MA(H13+20TiB2) data are also reported. MA(H13+20TiC) is the hardest 

among the MA-samples while the hardness of MA(H13+20TiN) is the lowest. It is 

possible to see that all MA-samples are softer than sMM-H13. It is well known that 

porosity effects hardness (Abderrazak et al., 2011; Adachi et al., 2006; Luo et al., 

1999; Pellizzari et al., 2011[1]; Xu et al., 2009). The high porosity of MA(H13+20TiC) 

and MA(H13+20TiN) causes the severe drop of their hardness, thwarting the 

strengthening of the HP addition. 
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Due to the uneven microstructure of the MA-samples, their hardness values 

result from the combination of the hardness of composite areas and that of the pure 

AISI H13 particles. Microhardness (HV0.05) of these constituents has been measured 

and the results are listed in Table 6. Microhardness of the composite areas highlights 

that TiC has the highest hardening effect. TiN also increases steel microhardness, 

compared to the sMM-H13 value. On the other hand the composite areas in 

MA(H13+20TiB2) are less hard than sMM-H13. Considering the steel particle 

microhardness, values measured in MA(H13+20TiC) and MA(H13+20TiN) are 

slightly lower than that of sMM-H13 but in any case they fall in the range of those of 

martensite. In contrast steel areas in MA(H13+20TiB2) show very low 

microhardness, close to that characteristic of ferrite. These data confirm again that 

during sintering TiB2 depletes carbon in the steel inhibiting martensite formation, as it 

has been deeply discussed in paragraph 6.2.1 and shown by the phase diagram 

(Fig. 10). Thus the composite areas have also a ferrite matrix which is responsible 

for their lower microhardness. 

In the fully dense MA(H13+20TiB2) hardness value is close to the combination 

of microhardness of the composite consituent and of steel particles. On the other 

hand hardness of MA(H13+20TiC) and MA(H13+20TiN) is much lower than the 

average microhardness. This decreased hardness is caused by the high porosity of 

these samples. 

In view of the hardness measurements it can be suggested that due to its 

lower hardness MA(H13+20TiB2) is more easily deformed during sintering allowing 

the achievement of full density. 

Table VI – 6. Hardness and microhardness of sintered samples. 

Samples 
Hardness 

[HV10] 

Microhardness [HV0.05] 

Composite phase Steel areas 

sMM-H13 759 ± 3 - 830.5 ± 21.4 
MA(H13+20TiB2) 459 ± 7 689.7 ± 55.1 268.0 ± 6.5 
MA(H13+20TiC) 533 ± 23 1097.9 ± 43.3 719.4 ± 8.3 
MA(H13+20TiN) 384 ± 19 961.4 ± 46.7 648.4 ± 39.5 

 

6.3.1 Conclusions 

Thermodynamic calculations have suggested that TiC and TiN are chemically 

stable in AISI H13 and thus they have been considered as reinforcing particles for 

HWTS based MMCs. The influence of the different HPs on densification, 

microstructure and hardness has been evaluated. 

From the densification analysis during SPS, it is clear that the addition of HPs 

shifts the end of the densification peak later in time, meaning that generally 

composites require higher temperature for sintering than the pure steel matrix. 
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MA(H13+20TiC) and MA(H13+20TiN) are less compressible and more demanding to 

be sintered than MA(H13+20TiB2). Indeed these two MA-samples do not achieve full 

density. They show high porosity content, particularly MA(H13+20TiN) relative 

density is the lowest. 

XRD measurements point out that either TiC and TiN do not react with the 

AISI H13 matrix, supporting their good chemical and thermal stability in steel matrix. 

Microhardness measurements confirm the martensitic microstructure of the steel 

matrix and show that TiC has the higher hardening effect. On the other hand, 

hardness is negatively influenced by porosity, thwarting the hardening effect of HPs. 

Thus MA(H13+20TiC) and MA(H13+20TiN) hardness is lower than what expected 

from microhardness measurements. 

This investigation points out that TiC and TiN are suitable for producing HWTS 

based MMCs. After sintering at 1100 °C for only 1 minute the composites materials 

are characterized by good microhardness, showing the hardening effect of the HPs. 

On the other hand their low density negatively affects the composite hardness. 

These results point out that SPS cycles have to be optimized in order to achieve full 

density and increased hardness. 

6.4 TiC and TiN – MMCs: SPS Optimization 

It has been shown that the addition of HPs shifts the sintering peak later in 

time, which means at higher temperature (Fig. 17b). Therefore firstly it has been 

decided to increase the sintering temperature until the end of the sintering peak. 

However there is a limit for the maximum sintering temperature. The surface of the 

sample is in contact with the graphite die and there carbon diffuses into the steel 

matrix. The local increase of carbon is quite high and the steel can reach the eutectic 

composition giving rise to the formation of liquid phase at quite low temperature (i.e. 

1147 °C for pure Fe-C system). This liquid forms only at the surface of the sample 

and the applied pressure squeezes it out from the die. Therefore sintering has to be 

stopped. For present composites it has been experimentally proved that liquid phase 

forms at 1150-1160 °C and this small increase in the sintering temperature does not 

bring any remarkable improvement in the material density. 

During holding step displacement curves (Fig. 17a) for MA(H13+20TiC) and 

MA(H13+20TiN) continuously increase. This means that densification occurs even at 

constant temperature due to creep phenomenon which causes material transport. 

The evolution of density during the holding stage has been investigated by sintering 

samples with holding time ranging from 1 to 30 minutes. 

Figure 20 shows the displacement of the lower punch for the sample sintered 

for 30 minutes. As previously shown for the samples sintered for 1 minute (Fig. 17a), 

the displacement of MA(H13+20TiN) is always lower than that of MA(H13+20TiC). In 

the holding stage the displacement of MA(H13+20TiC) increases quickly in the first 
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minute, then the displacement rate sharply decreases. After 5 minutes the 

displacement still increases but at a very low rate, nearly approaching zero, and after 

30 minutes the displacement is stable at its maximum. The MA(H13+20TiN) also 

shows a high displacement rate in the first minute of holding time, but in any case 

lower than that of MA(H13+20TiC). Then the displacement continuously increases at 

a constant rate and after 30 minutes of holding time the displacement does not 

shows any plateau, meaning that the displacement rate is still higher than zero and 

the displacement has not reached its maximum value yet. 

 

 
Figure VI – 20. Displacements of the lower punch during SPS cycle of MA(H13+20TiC)-30min 

and MA(H13+20TiN)-30min. 

Relative density for MA(H13+20TiC) and MA(H13+20TiN) samples is plotted 

as a function of the holding time in Figure 21. The higher displacement of 

MA(H13+20TiC) results in higher relative density than MA(H13+20TiN). The trend of 

relative density is in good agreement with that of displacement. MA(H13+20TiC) 

relative density increases at a high rate moving from 1 to 5 minutes of holding time. 

Then it continuously increases but at a lower rate. After 20 minutes the densification 

rate is nearly equal to zero (i.e. 0.00047 min-1) and MA(H13+20TiC)-30min sample 

reaches nearly full density (99.36%). MA(H13+20TiN) relative density increases 

quite fast going from 1 to 5 minutes, then it increases at a constant rate and after 30 

minutes the composites is still far away from full densification showing only 94.34% 

relative density. 

MA(H13+20TiC) density data are in good agreement with a power-law creep 

densification mechanism. Creep phenomena are time dependent and their effect 

diminishes as time increases. Olevsky et al. (2006) reported that densification is 
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mainly promoted by creep in the micron-sized materials, but the applied load can be 

the dominant factor for the final collapse of voids also in the ultrafine powders, i.e. 

the powder investigated in this work. 

Present data for MA(H13+20TiN) follow a linear trend which may suggest that 

the densification mechanism acting in this material are other than power-law creep. 

MA(H13+20TiN) powder particle size is significantly smaller than that of 

MA(H13+20TiC) (Fig. 1), resulting in a higher specific surface and thus in a higher 

oxygen pick up after MA (Tab. 7). This thin oxide layer may have an effect on the 

densification mechanisms. Sintering for longer holding time can be suggested to 

further improve density but it has to be considered that for long sintering time SPS 

becomes less convenient than conventional processes, like HIP. 

 

 
Figure VI – 21. Relative density as a function of the holding time for MA(H13+20TiC) and 

MA(H13+20TiN). 

Table VI – 7. Oxygen content in the MA-powders [weight %]. 

Powder O 

MA(H13+20TiC) 0.2704 

MA(H13+20TiN) 0.3137 

 

The influence of the holding time on hardness is quite similar to that on 

relative density (Fig. 22). This is because hardness strongly depends on density 

(Adachi et al., 2006; Abderrazak et al., 2011; Luo et al., 1999; Pellizzari et al., 

2011[1]; Xu et al., 2009) and thus increasing the holding time result in increased 

hardness. The dependency of hardness on relative density is highlighted in Figure 

23. Hardness linearly increases as density increases. Porosity seems to be the 

dominant factor influencing hardness. Thus data for MA(H13+20TiC) and 
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MA(H13+20TiN) fall nearly on the same line regardless the different hardness of the 

two ceramic compounds. 

 

 
Figure VI – 22. Hardness as a function of the holding time for MA(H13+20TiC) and 

MA(H13+20TiN). 

 
Figure VI – 23. Hardness as a function of the relative density for MA(H13+20TiC) and 

MA(H13+20TiN). 

Figure 24 and 25 show the microstructure of MA(H13+20TiC) and 

MA(H13+20TiN), respectively. After sintering for 1 minute, large sintering necks have 

formed between most of the particles in MA(H13+20TiC) but some big isolated pores 
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are also present (Fig. 24a). Increasing the holding time up to 5 minutes the pores 

size decreases considerably (Fig. 24b) and after 30 minutes porosity has been 

completely close and no pores can be seen (Fig. 24c). The micrograph of 

MA(H13+20TiN) samples also show the reduction of porosity content by increasing 

the holding time (Fig. 25), but in this case pores can still be seen after sintering for 

30 minutes. Generally pores in MA(H13+20TiN) samples are smaller in size that 

those in MA(H13+20TiC), but they are more interconnected. As a result of this 

elongated shape, pores surround the composite particles and thus sintering necks 

are smaller than in the case of MA(H13+20TiC). Small necks and interconnected 

porosity may suggest that sintering mechanisms could not act properly. The causes 

have to be deeper investigated. As previously stated it may be suggested that the 

oxide layer influences the diffusion mechanisms resulting in a slowdown of the 

sintering kinetics. 
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Figure VI – 24. SEM micrographs of the microstructure of MA(H13+20TiC) sintered for 1 

minute (a), 5 minutes (b) and 30 minutes (c). 
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Figure VI – 25. SEM micrographs of the microstructure of MA(H13+20TiN) sintered for 1 

minute (a), 5 minutes (b) and 30 minutes (c). 
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6.4.1 Conclusions 

For sintered material higher density results in improved properties, such as 

higher hardness which is mandatory to guarantee wear resistance. Therefore 

sintering parameters have been modified in order to increase the density of TiC and 

TiN reinforced MMCs. 

Due to the low strength of the graphite punches it is not possible to further 

increase the applied load and on the other hand temperature cannot be risen 

because of the formation of liquid phase at the sample surface. Thus investigations 

have been focused on the influence of the holding time on densification. 

In the holding stage the composites show continuous densification, 

highlighting the occurrence of plastic deformation due to creep phenomena. 

MA(H13+20TiC) shows a power-law creep behaviour. The displacement, and 

consequently the relative density, quickly increases in the early minutes of the 

holding stage, then the densification rate decreases and after 30 minutes the 

composite reaches nearly full density (99.36%). 

MA(H13+20TiN) is characterized by higher resistance to densification. It 

shows lower densification rate than MA(H13+20TiC) in the early minutes of the 

holding stage. For longer holding time MA(H13+20TiN) densifies at a constant rate 

showing a linear dependence on time and after 30 minutes its relative density is still 

lower that 95%. MA(H13+20TiN) sintering seems to be influenced by densification 

mechanisms other than power-law creep. Microstructure investigations show 

interconnected porosity and small sintering necks. This may suggest that the oxide 

layer influences diffusion mechanisms changing the sintering kinetic. 

The investigation of sintering process shows that AISI H13 composites with 

20%vol of TiC can be fully densified by SPS for 30 minutes. On the other hand due 

to the slower sintering kinetic, AISI H13 composites with 20%vol of TiN still show 

porosity after 30 minutes of sintering. Longer sintering time can be considered but it 

has to be noticed that a strong point of SPS is the shorter processing time. If the 

holding time is further increased the SPS becomes less convenient than customary 

processes, such as HIP. 
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Chapter VII 
 

Conclusions 

 
 
 
 
 
 

In this PhD thesis powder metallurgy technology has been employed for the 

production of particle reinforced hot work tool steels (HWTSs). Particularly 

mechanical milling (MM) and mechanical alloying (MA) have been considered for the 

powder production and innovative Spark plasma Sintering (SPS) for the 

consolidation. The milling process refines both microstructure and powder particle 

size and promotes a more uniform distribution of the hard phase, resulting in 

increased strength and enhanced sintering and densification. On the other hand SPS 

allows sintering at lower temperature and in a shorter time comparing to customary 

processes. Indeed the high heating rate peculiar of SPS preserves the fine 

microstructure produced by MM and reduces the interaction between the metal 

matrix and the reinforcing particles. 

As reinforcement a harder high speed steel (HSS) and different ceramic 

powders (TiB2, TiC, and TiN) have been selected in order to produce Hybrid Tool 

Steels and Metal Matrix Composites (MMCs), respectively. 

7.1 Hybrid Tool Steels 

The first part of the research has been focused on the investigation of the 

advantages deriving from MM on the densification and the mechanical properties of 

HWTS/HSS blends. The following main results have been found: 

 The co-sintering behaviour of HWTS/HSS blends has highlighted the negative 

interaction of the two components due to their different sintering kinetics. This 

results in poor densification of the blends. 

 Particle size plays the main role in material densification and in the phases 

distribution. The negative interaction during co-sintering can be reduced by 

selecting powders with smaller particles size. Moreover the particle size ratio 

(PSR) influences the phase distribution and thus the material properties. It has 

been proved that fully dense blends with a good dispersion of the reinforcing 

particles can be sintered by small sized powders setting the PSR smaller than 

1. The finer and more homogeneous microstructure of these fully dense hybrid 

steels result in high hardness and high toughness. 
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 MM has been successfully applied to reduce the particle size of HWTS and 

HSS powders, so to enhance sintering. Spark plasma sintered MM-samples 

achieve near full density confirming that the interference during co-sintering can 

be minimized or completely eliminated by reducing the powder particle size. 

 For the MM-blends hardness shows a positive deviation from the linear rule of 

mixture which can plausibly suggest that the dispersion of particles of a second 

constituent modifies the stress field resulting in increased work hardening of the 

matrix. On the other hand the lack of a suited protection against oxidation for 

MM-powders has caused a sharp increase of the oxygen content resulting in a 

marked drop of toughness for the two base MM-steels compared to that of 

samples produced using as-atomized powders. In spite of this higher oxygen 

content the toughness of the MM-blends is higher than that of the as-atomized 

blends. Indeed the positive influence of a higher density largely compensates 

the detrimental influence of the higher oxygen content. 

7.2 HWTS Based MMCs 

The second part of research has concerned the development of HWTS based 

metal matrix composites (MMCs), considering different production routes for the 

composite powders (i.e. powder mixing and MA) and different reinforcing compounds 

(i.e. TiB2, TiC and TiN). The main result are summarized in the following: 

 Due to the high PSR, the powder-mixed sample shows the presence of big TiB2 

aggregates, which enclose large pores. HWTS particle size is the limiting factor 

for producing fully dense MMCs by powder mixing. Since it is difficult to reduce 

the steel particle size below a certain limit, even using longer milling time, it is 

practically impossible to avoid aggregates and thus to increase relative density 

by easy powder mixing. 

 Problems related to the PSR have been overcome by MA which promotes a 

uniform dispersion of TiB2 fragments into the parent steel particles avoiding the 

formation of agglomerates. This assures the achievement of high relative 

density. It can be stated that MA is a suited technology for MMC production. 

 Microstructural characterization have highlighted the formation of TiC and Fe2B 

in the sintered composites, meaning that TiB2 and HWTS react during sintering. 

These results clearly point out that the carbon, which is present in the steel 

matrix, destabilizes TiB2 allowing the formation of new compounds. Moreover 

the TiB2-steel interaction inhibits the ferrite to austenite transformation thus the 

steel matrix cannot be heat treated anymore. These results prove that TiB2 is 

not a suitable reinforcement for the production of HWTS based MMCs. 

 Thermodynamic calculations and X-ray diffraction analyses show that TiC and 

TiN are chemically stable in the steel matrix. Microhardness confirms the 

martensitic microstructure of the steel matrix and shows that TiC has higher 
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hardening effect. On the other hand, after only 1 minute of sintering, hardness 

is negatively influenced by porosity, thwarting the hardening effect of HPs. 

Thus the hardness of both MA-samples is lower than what expected from 

microhardness measurements. 

 The TiN-reinforced MMC is characterized by higher resistance to densification 

and after 30 minutes of sintering its relative density is still lower that 95%. For 

this composite sintering seems to be influenced by densification mechanisms 

other than power-law creep. Microstructure investigations show interconnected 

porosity and small sintering necks. This may suggest that the oxide layer 

influences diffusion mechanisms changing the sintering kinetic. Longer 

sintering time can be considered but it has to be noticed that a strong point of 

SPS is the shorter processing time. If the holding time is further increased the 

SPS becomes less convenient than customary processes, such HIP. 

 For the 20%volTiC-reinforced MMC density quickly increases in the early 

minutes of the holding stage, then the densification rate decreases and after 30 

minutes the composite reaches nearly full density (99.36%). 
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List of abbreviations and acronyms 

 
 
 
 
 
 

AFM atomic force microscopy 

BPR ball to powder ratio 

DC direct continuous  

EDXS energy-dispersive X-ray spectroscopy  

FGM functionally graded material  

HHS high speed steel  

HIP hot isostatic pressing 

HP hard particle 

HWTS hot work tool steel  

MA mechanical alloying 

MM mechanical milling 

MMC metal matrix composite  

PCA process control agent 

PM powder metallurgy  

PSR particle size ratio 

PVD physical vapour deposition 

SEM scanning electron microscopy 

SKPFM Scanning Kelvin Probe Force Microscopy 

SPS spark plasma sintering 

TEM transmission electron microscopy 

XRD X-rays diffraction 

 

  



111 

References 

 
 
 
 
 
 

Abderrazak H., F. Schoenstein, M. Abdellaoui, N. Jouini, Spark plasma sintering consolidation 
of nanostructured TiC prepared by mechanical alloying. International Journal of Refractory 
Metals and Hard Materials, 2011. 29: p. 170-176. 

Adachi J., K. Kurosaki, M. Uno, S. Yamanaka, Porosity influence on the mechanical 
properties of polycrystalline zirconium nitride ceramics. Journal of Nuclear Materials, 
2006. 358: p. 106-110. 

Akhtar F., Microstructure evolution and wear properties of in situ synthesized TiB2 and TiC 
reinforced steel matrix composites. Journal of Alloys and Compounds, 2008. 459: p. 491-497. 

Angers R., M.R. Krishnadev, R. Tremblay, J. Corriveau, D. Dubé, Characterization of 
SiCp/2024 aluminium alloy composites prepared by mechanical processing in a low energy ball 
mill. Material Science and Engineering A, 1999. 262: p. 9-15. 

Arnberg L., A. Karlsson, Influence of powder surface oxidation on some properties of a HIPped 
martensitic chromium steel. International Journal of Powder Metallurgy, 1988. 24: p. 107-112. 

Artz E., M.F. Ashby, K.E. Easterling, Practical Applications of Hot-Isostatic Pressing Diagrams: 
Four Case Studies. Metallurgical Transactions A, 1983. 14: p. 211-221. 

Bailon-Poujol I., J.P. Bailon, G. L'Espèrance, Ball-mill grinding kinetics of master alloys for 
steel powder metallurgy applications. Powder Technology, 2011. 210: p. 267-272. 

Benjamin J.S., Dispersion Strengthened Speralloys by Mechanical Alloying. Metallurgical 
Transaction, 1970. 1: p. 2943-2951. 

Benjamin J.S., M.J. Bomford, Dispersion Strengthened Aluminum Made by Mechanical 
Alloying. Metallurgical Transaction A, 1977. 8: p. 1301-1305. 

Benjamin J.S., R.D. Schelleng, Dispersion Strengthened Aluminum-4 Pct Magnesium Alloy 
Made by Mechanical Alloying. Metallurgical Transaction A, 1981. 12: p. 1827-1832. 

Benjamin J.S., T.E. Volin, The Mechanism of Mechanical Alloying. Metallurgical Transactions, 
1974. 5: p. 1929-1934. 

Berns H., Comparison of wear resistant MMC and white cast iron. Wear, 2003. 254: p. 47-54. 

Berns H., A. Melander, D. Weichert, N. Asnafi, C. Broeckmann, A. Gross-Weege, A new 
material for cold forging tools. Computational Material Science, 1998. 11: p. 166-180. 

Berns H., F.D. Sinesio, Effect of coarse hard particles on high-temperature sliding abrasion of 
new metal matrix composites. Wear, 1997. 203-204: p. 608-614. 

Berns H., S. Koch, Influence of abrasive particles on wear mechanism and wear resistance in 
sliding abrasion tests at elevated temperatures. Wear, 1999. 233-235: p. 424-430. 

Berns H., N. von Chuong, A new microstructure for PM toolling material. Metallugical Physical 
Advanced Technology, 1996. 6: p. 61-71. 

Berns H., T. Schneiders, W. Theisen, Properties of double dispersed tool steels. in 
Proceedings of the 7th International Tooling Conference. 2006. Turin (Italy). p. 77-84. 



112 

Bolton J.D., A.J. Gant, Fracture in ceramic-reinforced metal matrix composites based on high-
speed steel. Journal of Material Science, 1998. 33: p. 939-953. 

Bonnenfant D., F. Mazerolle, P. Suquet, Compaction of powders containing hard inclusions: 
experiments and micromechanical modelling. Mechanics of Materials, 1998. 29: p. 93-109. 

Bouvard D., Densification behaviour of mixtures of a hard and soft powders under pressure. 
Powder Technologies, 2000. 111: p. 231-239. 

Çetinkaya C., T. Findik, S. Özbilen, An investigation into the effect of experimental parameters 
on powder grain size of the mechanically milled 17-4 PH stainless steel powders. Materials and 
Design, 2007. 28: p. 773-782. 

Chawla N., K. Chawla, Metal Matrix Composites. 2006, New York: Springer. 

Cho J.H., K.T. Kim, Densification of mixed metal powder at high temperature. International 
Journal of Mechanical Science, 2001. 43: p. 921-933. 

Dai L., Y. Liu, Z. Dong, Size and structure evolution of yttria in ODS ferritic alloy powder during 
mechanical milling and subsequent annealing. Powder Technology, 2012. 217: p. 281-287. 

Degnan C.C., P.H. Shipway, A comparison of the reciprocating sliding wear behaviour of steel 
based metal matrix composites processed from self propagation high-temperature synthesised 
Fe-TiC and Fe-TiB2 masteralloys. Wear, 2002. 252: p. 832-841. 

Delie F., D. Bouvard, Effect of inclusion morphology on the densification of powder composites. 
Acta Materialia, 1998. 46: p. 3905-3913. 

Delogu F., A few details of the austenite to martensite phase transformation in 304 stainless 
steel powders under mechanical processing. Acta Materialia, 2011. 59: p. 2069-2074. 

Diouf S., A. Molinari, Densification mechanisms in spark plasma sintering. Effect of particle 
size and pressure. Powder Technology, 2012. 221: p. 220-227. 

dos Santos J.A.B.O., W.F. Sales, S.C. Santos, A.R. Machado, M.B. da Silva, J. Bonney, E.O. 
Ezugwu, Tribological evaluation of TiN and TiAlN coated PM-HSS gear cutter when machining 
19MnCr5 steel. International Journal of Advanced Manufacturing and Technologies, 2007. 31: 
p. 629-637. 

Du B., S.R. Paital, N.B. Dahotre, Phase constituents and microstructure of laser synthesized 
TiB2–TiC reinforced composite coating on steel. Scripta Materialia, 2008. 59: p. 1147-1150. 

Duarte A., M. Vila, F.J. Oliveira, F.M. Costa, Structure and morphology of TiB2 duplex coatings 
deposited over X40 CrMoV 5-1-1 steel by DC magnetron sputtering. Vacuum, 2009. 83: p. 
1291-1294. 

Deutsche Edelstahlwerke, Ferro-Titanit®. http://www.ferro-titanit.com/en/home/ 

El-eskandarany M.S., Mechanical alloying for fabrication of advanced engineering materials. 
2001, New York: William Andrew Publishing. 

Farid A, S. Guo, F. Cui, P. Feng, T. Lin, TiB2 and TiC stainless steel matrix composites. 
Materials Letters, 2007. 61: p. 189-191. 

Fecht H.J., Nanostructure formation by mechanical attrition. Nanostructured Materials, 1995. 6: 
p. 33-42. 

Fedrizzi A., M. Pellizzari, M. Zadra, Influence of particle size ratio on the densification 
behaviour of AISI H13/AISI M3:2 powder mixture. Powder Technology, 2012[1]. 228: p. 435-
442. 

Fedrizzi A., M. Pellizzari, M. Zadra, Production of hybrid tool steel by mechanical milling and 
spark plasma sintering. In Proceedings of the 2012 Powder Metallurgy World Congress & 
Exhibition. 2012[2]. Yokohama (Japan). 

Fedrizzi A., M. Pellizzari, M. Zadra, Production of a particle reinforced hot work tool steel by 
mechanical alloying. La Metallurgia Italiana, 2013[1]. 105: In Press. 

http://www.ferro-titanit.com/en/home/


113 

Fedrizzi A., M. Pellizzari, M. Zadra, F. Dies, Fabbrication of fine grained hot work tool steel by 
mechanical milling and spark plasma sintering. In Proceedings of the 2012 Powder Metallurgy 
World Congress & Exhibition. 2012[3]. Yokohama (Japan). 

Fedrizzi A., M. Pellizzari, M. Zadra, E. Marin, Densification and microstructure analysis of hot 
work tool steel matrix composites reinforced with TiB2 particles. Submitted to Materials 
Characterizzation 2013[2]. 

German R.M., Sintering densification for powder mixtures of varying distribution widths. Acta 
Metallurgica Materialia, 1992[1]. 40: p. 2085-2089. 

German R.M., Prediction of sintered density for bimodal powder mixtures. Metallurgical 
Transactions A, 1992[2]. 23: p. 1455-1465. 

Grinder O., PM HSS and tool steels - Present state of the art and development trends. In 
Proceedings of the 5th International Conference on Tooling. 1999. Leoben (Austria). p. 39-58. 

Guo W., A. Iasonna, M. Magini, S. Martelli, F. Padella, Synthesis of amorfhous and metastable 
Ti40Al60 alloys by mechanical alloying of elemental powders. Journal of Material Science, 1994. 
29: p. 2436-2444. 

Helle A.S., K.E. Easterling, M.F. Ashby, Hot-isostatic pressing diagrams: new developments. 
Acta metallurgia, 1985. 33: p. 2163-2174. 

Hillskog T., Powder-Metallurgy Tool Steel: an overview. Metalforming Magazine, 2003. p. 48-
51. 

Huang H., J. Ding, P.G. McCormick, Microstructural evolution of 304 stainless steel during 
mechanical milling. Material Science and Engineering A, 1996. 216: p. 178-184. 

Hulbert D.M., A. Anders, J. Andersson, E.J. Lavernia, A.K. Mukherjee, A discussion on the 
absence of plasma in spark plasma sintering. Scripta Materialia, 2009. 60: p. 835-838. 

Imbert C., N.D. Ryan, H.J. McQueen, Hot workability of three grades of tool steel. Metallurgical 
Transactions A, 1984. 15: p. 1855-1864. 

Jagota A., G.W. Scherer, Viscosity and sintering rates of composite packings of spheres. 
Journal of American Ceramic Society, 1995. 78: p. 521-528. 

Koch C.C., O.B. Cavin, C.G. McKamey, J.O. Scarbrough, Preparation of "amorphous" Ni60Nb40 
by mechanical alloying. Applied Physics Letters, 1983. 43: p. 1017-1019. 

Kugler G., R. Turk, T. Večko-Pirtovšek, M. Terčelj, Wear behaviour of nitrided microstructures 
of AISI H13 dies for hot extrusion of aluminium. Metalurgija, 2006. 45: p. 21-29. 

Kuhrt C., H. Schropf, L. Schultz, E. Arztz, Syntesis of nanocrystalline FeAl and NiAl by 
mechanical alloying. In 2nd International Conference on Structural Applications of Mechanical 
Alloying. 1993. Vancouver (Canada). p. 269-273. 

Lange F.F., L. Atteraas, F. Zok, Deformation consolidation of metal powders containing steel 
inclusion. Acta Metallurgical Materialia, 1991. 39: p. 209-219. 

Lee B.W., J. Jang, D. Kwon, Evaluation of fracture toughness using small notched specimens. 
Materials Science and Engineering A, 2002. 334: p. 207-214. 

Lemster K., T. Graule, T. Minghetti, C. Schelle, J. Kuebler, Mechanical and machining 
properties of X38CrMoV5-1/Al2O3 metal matrix composites and components. Materials Science 
and Engineering A, 2006. 420: p. 296-305. 

Li B., Y. Liu, J. Li, H. Cao, L. He, Effect of sintering process on the microstructures and 
properies of in situ TiB2-TiC reinforced steel matrix composites produced by spark plasma 
sintering. Journal of Material Processing and Technologies, 2010. 210: p. 91-95. 

Li Y., X. Li, Y. Long, W. Xia, M. Zhu, W. Chen, Fabrication of iron-base alloy by spark plasma 
sintering. Journal of Materials Science and Technology, 2006. 22: p. 257-260. 



114 

Libardi S., M. Zadra, F. Casari, A. Molinari, Mechanical properties of nanostructured and 
ultrafine-grained iron alloys produced by spark plasma sintering of ball milled powders. 
Materials Science and Engineering A, 2008. 478: p. 243-250. 

Liu Z.Y., N.H. Loh, K.A. Khor, S.B. Tor, Mechanical alloying of TiC/M2 high speed steel 
composite powders and sintering investigation. Material Science and Engineering A, 2001. 311: 
p. 13-21. 

Luo J., R. Stevens, Porosity-dependence of elastic moduli and hardness of 3Y-TZP ceramics. 
Ceramics International, 1999. 25: p. 281-286. 

Lutterotti L., Materials Analysis Using Diffraction (MAUD), 1997. http://www.ing.unitn.it/~maud/ 

Ma Y.-P., X.-I. Li, C.-H. Wang, L. Lu, Microstructure and impact wear resistance of TiN 
reinforced high manganese steel matrix. International Journal of Iron Steel Resistance, 2012. 
17: p. 60-65. 

Mamedov V., Spark plasma sintering as advanced PM sintering method. Powder Metallurgy, 
2002. 45: p. 322-328. 

Matula G., L.A. Dobrzański, Structure and properties of FGM manufactured on the basis of 
HS6-5-2. Journal of Achievements in Materials and Manufacturing Engineering, 2006. 17: p. 
101-104. 

Maurice D., T.H. Courtney, Modelling of mechanical alloying: part I. Deformation, coalescence 
and fragmentation mechanisms. Metallurgical Material Transactions A, 1994. 25: p. 147-158. 

Munir Z.A., U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the 
synthesis and consolidation of materials: A review of the spark plasma sintering method. 
Journal of Materials Science, 2006. 41: p. 763-777. 

Oh-ishi K., H.W., Zhang, T. Ohkubo, K. Hono, Microstructure characterization of bulk 
nanocrystalline Fe-0.8C alloy produced by mechanical milling and spark plasma sintering. 
Material Science and Engineering A, 2007. 456: p. 20-27. 

Olevsky E., L. Froyen, Constitutive modelling of spark-plasma sintering of conductive 
materials. Scripta Materialia, 2006. 55: p. 1175-1178. 

Oliveira M.M., J.D. Bolton, High-speed steels: increasing wear resistance by adding ceramic 
particles. Journal of Materials Processing Technology, 1999. 92-93: p. 15-20. 

Omori M., Sintering, consolidation, reaction and crystal growth by the spark plasma system 
(SPS). Materials Science and Engineering A, 2000. 287: p. 183-188. 

Pagounis E., V.K. Lindroos, Development and Performance of New Hard and Wear-Resistant 
Engineering Materials. Journal of Materials Engineering and Performance, 1997. 6: p. 749-756. 

Pagounis E., V.K. Lindroos, Processing and properties of particulate reinforced steel matrix 
composites. Materials Science and Engineering A, 1998. 246: p. 221-234. 

Pellizzari M., A. Fedrizzi, F. Dies, Production of a novel hot work tool steel by mechanical 
milling and spark plasma sintering. In Proceedings of the 9th International Tooling Conference. 
2012. Leoben (Austria). p. 207-214. 

Pellizzari M., A. Fedrizzi, M. Zadra, Influence of processing parameters and particle size on the 
properties of hot work and high speed tool steels by spark plasma sintering. Materials and 
Design, 2011[1]. 32: p. 1796-1805. 

Pellizzari M., A. Fedrizzi, M. Zadra, Spark Plasma co-Sintering of hot work and high speed 
steel powders for fabrication of a novel tool steel with composite microstructure. Powder 
technology, 2011[2]. 214: p. 292-299. 

Pellizzari M., M. Zadra, A. Fedrizzi, Development of a hybrid tool steel produced by Spark 
Plasma Sintering. Materials and Manufacturing Processes, 2009. 24: p. 873-878. 

http://www.ing.unitn.it/~maud/


115 

Pramanik A., L.C. Zhang, J.A. Arsecularatne, Deformation mechanisms of MMCs under 
indentation. Composite Science and Technology, 2008. 68: p. 1304-1312. 

Rajasekaran B., G. Mauer, R. Vaßen, A. Röttger, S. Weber, W. Theisen, Development of cold 
work tool steel based-MMC coating using HVOF spraying and its HIP densification behaviour. 
Surface and Coatings Technology, 2010. 204: p. 3858-3863. 

Reade, Ferro-Tic Alloys. http://www.reade.com/Products/Ferro_Alloys/ferro_tic.html 

Rietveld H.M., A profile refinement method for nuclear and magnetic structures. Journal of 
Applied Crystallography, 1969. 2: p. 65-71. 

Roberts G.A., R.A. Cary, Tool Steels. 1992, Ohio: American Society for Metals. 

Rodenburg C., M. Krzyzanowski, J.H. Beynon, W.M. Rainforth, Hot workability of spray-formed 
AISI M3:2 high-speed steel. Materials Science and Engineering A, 2004. 386: p. 420-427. 

Sadagopan D., R. Pitchumari, Application of genetic algorithms to optimal tailoring of 
composite materials. Composites Science and Technology, 1998. 58: p. 571-589. 

Salahinejad E., R. Amini, E. Askari Bajestani, M.J. Hadianfard, Microstructural and hardness 
evolution of mechanically alloyed Fe-Cr-Mn-N powders. Journal of Alloys and Compounds, 
2010. 497: p. 369-372. 

Shen Y.-L., N. Chawla, On the correlation between hardness and tensile strength in particle 
reinforced metal matrix composites. Material Science and Engineering A, 2001. 297: p. 44-47. 

Sigl S.L., K. Schwetz, TiB2-based cermet borides: a new generation of hardmetals. PIM, 1991. 
23: p. 221-224. 

Söderberg S., Advances in coating technology for metal cutting tools. Metal Powder Report, 
2001. 56: p. 24-30. 

Song X., X. Liu, J. Zhang, Neck formation and self-adjusting mechanism of neck growth of 
conducting powders in spark plasma sintering. Journal of the American Ceramic Society, 2006. 
89: p. 494-500. 

Staab G.H., Laminar composites. 1999, Boston, USA: Butterworth-Heinemann. 

Sundman B., B. Jansson, J.-O. Andresson, The Thermo-Calc databank system. Calphad, 
1985. 9: p. 153-190. 

Suryanarayana C., Mechanical alloying and milling. Progress in Materials Science, 2001. 46: 
p. 1-184. 

Tanaka K., T. Saito, Phase equilibria in TiB2-reinforced high modulus steel. Journal of Phase 
Equilibria, 1999. 20: p. 207-214. 

Ting J.M., R.Y. Lin, Effect of particle size distribution on sintering - part I modelling. Journal of 
Materials Science, 1994. 29: p. 1867-1872. 

Ting J.M., R.Y. Lin, Effect of particle size distribution on sintering - part II sintering. Journal of 
Materials Science, 1995. 30: p. 2382-2389. 

Tjong S.C., K.C. Lau, Properties and abrasive wear of TiB2/Al-4%Cu composites produced by 
hot isostatic pressing. Composite Science and Technologies, 1999[1]. 59: p. 2005-2013. 

Tjong S.C., K.C. Lau, Sliding wear of stainless steel matrix composite reinforced with TiB2 
particles. Materials Letters, 1999[2]. 41: p. 153-158. 

Tjong S.C., Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix 
composites. Materials Science and Engineering R, 2000. 29: p. 49-113. 

Tokita M., Mechanism of Spark Plasma Sintering. Journal of the Society of Powder Technology 
Japan, 1993. 30: p. 790-804. 

http://www.reade.com/Products/Ferro_Alloys/ferro_tic.html


116 

Wilcox B.A., I.G. Wright, Observations on strengthening and oxidation behavior of a dispersion 
hardened Fe-Cr-base alloy prepared by mechanical alloying. Metallurgical Transactions, 1974. 
5: p. 957-960. 

Xu Z., C.-C. Jia, C. Kuang, K. Chu, X. Qu, Spark plasma sintering of nitrogen-containing nickel-
free stainless steel powders and effect of sintering temperature. Journal of Alloys and 
Compounds, 2009. 484: p. 924-928. 

Zavaliangos A., A. Laptev, The densification of powder mixtures containing soft and hard 
components under static and cycling pressure. Acta Materialia, 2000. 48: p. 2565-2570. 

Zhaohui Z., W. Fuchi, W. Lin, L. Shukui, S. Osamu, Sintering mechanism of large-scale 
ultrafine-grained copper prepared by SPS method. Materials Letters, 2008. 62: p. 3987-3990. 

Zhong H.L., Y. Fang, C. Kuang, X. Kuang, Q. Hao, X. Li, Development of powder metallurgy 
high speed steel. Materials Science Forum, 2010. 638-642: p. 1854-1859. 

Zhu S., K. Iwasaki, Characterization of mechanically alloyed ternary Fe-Ti-Al powders. 
Materials Science Engineering A, 1999. 270: p. 170-177. 

Zoz H., K. Ameyama, S. Umekawa, H. Ren, D.V. Jaramillo, The millers' tale: high-speed steel 
made harder by attrition. Metal Powder Report, 2003. 58: p. 18-29. 

Zum Gahr K.-H., Wear by hard particles. Tribology International, 1998. 31: p. 587-596. 

 

  



117 

Scientific Production 

 
 
 
 
 
 

International Journal 

[1] M. Pellizzari, M. Zadra, A. Fedrizzi, Development of a hybrid tool steel produced by spark 
plasma sintering, Materials and Manufacturing Processes 24:7 (2009) 873-878. 

[2] M. Pellizzari, A. Fedrizzi, M. Zadra, Influence of processing parameters and particle size on 
the properties of hot work and high speed tool steels by spark plasma sintering, Materials and 
Design 32:4 (2011) 1796-1805. 

[3] M. Pellizzari, A. Fedrizzi, M. Zadra, Spark plasma co-sintering of hot work and high speed 
steel powders for fabrication of a novel tool steel with composite microstructure, Powder 
Technologies 214 (2011) 292-299. 

[4] A. Fedrizzi, M. Pellizzari, M. Zadra, Influence of particle size ratio on densification behavior 
of AISI H13 / AISI M3:2 powder mixture, Powder Technologies 228 (2012) 435-442. 

[5] N. Vicente, A. Fedrizzi, N. Bazzanella, F. Casari, F. Buccioti and A. Molinari, Microstructure 
of interface of SPS co-sintered and sinter bonded cp2-Ti and Co–28Cr–6Mo, Powder 
Metallurgy (2012) DOI 10.1179/1743290112Y.0000000040. 

[6] S. Diouf, A. Fedrizzi, A. Molinari, A fractographic and microstructural analysis of the neck 
regions of coarse copper particles consolidated by Spark Plasma Sintering, Submitted to 
Materials Letters (2013). 

[7] A. Fedrizzi, M. Pellizzari, M. Zadra, E. Marin, Densification and microstructure analysis of 
hot work tool steel matrix composites reinforced with TiB2 particles, Submitted to Materials 
Characterization (2013). 

 

National Journal 

[1] A. Fedrizzi, M. Pellizzari, M. Zadra, Sviluppo di un acciaio per lavorazione a caldo rinforzato 
tramite alligazione meccanica, La Metallurgia Italiana, 105 (2013) in Press. 

[2] A. Fedrizzi, M. Pellizzari, M.Zadra, F. Francesco, Studio del processo di macinazione 
meccanica di un acciaio per lavorazioni a caldo, La Metallurgia Italiana, (2013) Accepted. 

 

Proceedings 

[1] A. Fedrizzi, M. Pellizzari, Properties of an 80%H13-20%M3:2 PM tool steel produced by 
Spark Plasma Sintering, Proc. 3rd Int. Conf. on “Heat Treatment and Surface Engineering of 
Tools and Dies, Wels (Austria) 2011, pp. 181-189. 

[2] A. Fedrizzi, M. Pellizzari, M. Zadra, Spark Plasma Sintering of mechanically milled hot work 
tool steel powder, Proc. European Powder Metallurgy Congress & Exhibition - EUROPM2011, 
Barcelona (Spain) 2011, vol. 1, pp. 165-170. 



118 

[3] M. Pellizzari, A. Fedrizzi, F. Dies, Production of a novel hot work tool steel by mechanical 
milling and spark plasma sintering, Proc. of the 9th International Tooling Conference, Tool12, 
Leoben (Austria) 2012, pp. 207-214. 

[4] A. Fedrizzi, M. Pellizzari, M. Zadra, Production of a hybrid tool steel by mechanical milling 
and spark plasma sintering, Proc. of the 2012 Powder Metallurgy World Congress & Exhibition, 
Yokohama (Japan) 2012, on electronic support. 

[5] A. Fedrizzi, M. Pellizzari, M. Zadra, F. Dies, Fabrication of fine grained hot work tool steel 
by mechanical milling and spark plasma sintering, Proc. of the 2012 Powder Metallurgy World 
Congress & Exhibition, Yokohama (Japan) 2012, on electronic support. 

  



119 

Acknowledgments 

 
 
 
 
 
 

I gratefully acknowledge professor S. Maschio, Department of Chemistry, Physics and 

Environment (University of Udine – Italy), for the Laser Diffraction/Scattering Particle Size 

Distribution Analysis. 

 

 

 

… e quelli meno formali… 

 

Come nelle migliori opere, sono giunta anch’io alla fine dell’ultimo capitolo di questa trilogia 

metallurgica ed è quindi doveroso (tri)nominare chi mi ha sostenuto e accompagnato (in varia 

maniera) in questo percorso… 

Un ringraziamento di cuore va a Mario, sempre disponibile a chiarire i miei dubbi, a sostenermi 

e indirizzarmi nel percorso e a consigliarmi con franchezza e discrezione. Restando in quel di 

Pergine, segue Luca, che mi ha sempre spronato a puntare all’obiettivo. Inoltre un grazie ad 

entrambi per il contributo materiale! Senza i campioni della K4Sint ovviamente non avrei potuto 

scrivere una sola virgola!!! 

Con immenso affetto ringrazio tutte le “girls di Metallurgia”! Prime fra tutte Cinzia e Lorena! 

Siete state due meravigliose compagne di viaggio, dal punto di vista lavorativo ma molto più 

importante dal punto di vista umano. Sempre pronte e disponibili, siete un supporto costante 

per tutti e la forza e l’energia con cui affrontate qualsiasi cosa sono un insegnamento che 

porterò sempre con me. Segue Melania, costante e insostituibile presenza in tutti questi tre 

anni, compagna di ufficio, ma soprattutto carissima amica! Un ringraziamento poi a tutte le 

metallurgiste che si sono avvicendate, Elena e Ketner nei primi anni, seguite da Giulia e Elisa 

con cui abbiamo monopolizzato l’ufficio! E un affettuoso ricordo a Giusy… 

Ovviamente non posso trascurare la parte maschile del laboratorio! Pertanto un grazie va al 

mio “compagno di banco” Nerio, con cui ho condiviso tutti i crucci di questo SPS, ma 

soprattutto tanti momenti gioiosi; un ringraziamento speciale a Zanza che mi ha sempre 

sostenuta; ringrazio Saliou per tutti i lunghi discorsi sulla metallurgia e non solo; Marcolino, 

punto di riferimento quando la strumentazione di laboratorio proprio non ne voleva sapere di 

stare dalla mia; Ibo sempre pronto per dare una mano o semplicemente fare due chiacchiere (o 

due foto!); grazie a Nicolò, Luca, Lazslo, Piergiorgio, Pedro e tutti i tesisti che si sono 

susseguiti, con un ringraziamento particolare a Francé sostegno sia materiale che morale di 

questo lavoro. Per adozione rientra nel gruppo anche Talla, che ha reso molto più gioiosi i 

viaggi in treno! 



120 

Un ringraziamento ai compagni di dottorato, Thiago, Elisa, Giulia e soprattutto Matteo, per aver 

reso più piacevoli le ore di lezione e le pause pranzo o caffè, gli aperitivi, gli allenamenti di 

dragonboat e le partite di volley! 

Grazie a tutti quelli che in Unitn hanno dato il loro contributo operativo a questo lavoro: Mirco 

per i raggi X; Gloria per il TEM; Luca per l’aiuto negli ambiti più svariati; Angela, Wilma e 

Fabrizio per le richieste di “materiale di consumo”; Eleonora e tutta la biblioteca per il supporto 

alla ricerca bibliografica (parte fondamentale in un lavoro di ricerca). 

Un grazie va anche ai ragazzi del laboratorio di metallurgia dell’Uniud, Alex, Elia e Maria! 

Grazie per i piacevoli momenti passati assieme, per la calorosa accoglienza e in particolare ad 

Elia per aver contribuito in prima persona a tutte le analisi SKPFM. 

Un ringraziamento speciale a Carlotta, mamma e papà, che mi hanno più che sostenuta, 

consigliata e spronata in ogni momento! Ed un grazie ad Andrea per essere al mio fianco. 

 


