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1
I N T R O D U C T I O N

An unmistakable trend in embedded systems is the growth of
soft real-time computing. A soft real-time application is one for

which deadlines can occasionally be missed, but the probability of
this event has to be controllable and predictable.

1.1 soft real-time applications

In the last decade, we have witnessed the emergence of a new de-
sign paradigm in real–time computing in which the strict respect
of every deadline is replaced by looser performance guarantees. A
strong motivation for this is in the growing number of applications
that require an “acceptable” timing behaviour but are resilient to oc-
casional timing faults. Such applications are by and large referred to
as soft real–time. Obvious applications for soft real-time systems can
be found in the realm of signal processing, multimedia streaming, or
even in control applications. In signal processing, the extraction of
features from images can be done using an anytime approach, which
produces varying levels of accuracy depending on the time allocated
to the application. Audio/video streaming is another classical exam-
ple of soft-real time: if we stream a movie at 25 frames per second, an
occasional loss of a frame is not even perceived by the average user, as
far as the anomaly is kept in check. Other unsuspected applications of
the soft real-time paradigm have been found in real-time control. Em-
pirical experiences [1] and recent theoretical findings [2] reveal that
a moderate occurrence of deadline misses can be easily traded for a
more aggressive choice of the task parameters (e.g., shorter activation
periods).

For these applications, the execution time or the inter-arrival time
have so wide a variance that a design based on the worst case be-
haviour produces a dramatic under-utilization of the system resources
(hardly an affordable choice in many embedded applications). What
is more, the strict respect of every deadline is often neither required
nor desirable, as long as it can traded for a more efficient utilization
of the system. This is true for multimedia applications and, surpris-
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2 introduction

ingly, even for a large class of control applications [3]. The rising tide
of these soft real–time applications is introducing a sea change in the
industry of real–time systems, with classic hard real–time confined
to a niche (albeit an important one). The market penetration of soft
real–time applications is so relevant that it has stimulated an intense
research activity aiming for an adequate satisfaction of their Quality
of Service (QoS) goals.

1.2 probabilistic deadline

For all these applications, the traditional notion of deadline is insuf-
ficient per-se to formulate Quality of Service requirements. Designers
working in the soft real–time domain need effective means to reason
about the impact of their scheduling choices on the performance of
the system in stochastic terms. A very natural direction is offered by
the probabilistic deadlines [4]: a deadline is associated with a probability
of meeting it, which in turn is related to the scheduling parameters.
The classic hard real–time systems can be recovered as special cases
(setting the probability to one).

Even if probabilistic analysis can be applied to classic real-time
scheduling algorithms, other scheduling approaches such as the re-
source reservations [5, 4] are commonly regarded as a superior choice
for design for they enable a fine-grained control on the amount of
CPU reserved to each task. For this and other reasons, the resource
reservations algorithm (and their derivatives) have gained visibility
and consideration in the real–time scheduling community. Despite
this success, these algorithms are not yet supported by efficient and
scalable tests for probabilistic guarantees, let alone analytic results
linking the probability of missing the deadline with the resource allo-
cation.

A feature of paramount importance of reservation-based algorithms
is the so called temporal isolation: minimum performance guarantees
can be offered to each task independently from the behaviour of the
other tasks. This property introduces a drastic simplification in sys-
tem design and is probably the main reason for the increasing pop-
ularity of resource reservations. However, to date the probabilistic
analysis of reservation based systems cannot be regarded as a mature
area. One of the few known facts is that when computation times and
inter-arrival times are described by an independent and identically
distributed (IID) process, a resource reservation can be modelled by
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a discrete–time Markov chain (DTMC) with an infinite number of
states [6, 7]. This model is difficult to manage from a numeric stand-
point and offers little analytical insight into the system behaviour.

1.3 objectives and contributions to novel researches

This work is aimed to close the gap in the research of stochastic real-
time analysis related to resource reservation scheduling algorithms.

This dissertation attempts to:

1. give a quick overview of classic real-time analysis

2. analyze the problems related to use the well-known techniques
in the context of soft real-time applications:

• overvalue the assignation of parameters as in hard real-
time systems based on worst case execution times

• time and memory complexity using the known theoretical
stochastic analysis

3. propose solutions able to overcome the limitation showed in
point 2

4. show some specific examples (theoretical and practical) in which
resource reservation lead to advantages.

The novel contributions of this thesis are:

• a new bound to predict the probability of a deadline misses in
a resource reservation systems

• a very efficient numeric solution for matrix generated with well-
know abstraction models of reservation based on Quasi Birth
Death Markov Process

• an analytical solution, with some conservative approximations,
for the same models.

• a new model for specific applications, like interrupts.

• experiments using resource reservation in different contexts

The thesis is evolved following two different approaches:

1. the first based on the exact model of reservation, and the contri-
butions is:



4 introduction

• define a new pessimistic bound, efficient in term of com-
putation, able to overcome the problem of complete knowl-
edge of the computation time. The solution is an approxi-
mation of the real solution of the model.

2. the second based on an approximation model in which the
novel contributions are:

• presents an exact and numeric efficient solution for the
model based on Quasi Birth and Death Markov Process

• introduces an approximate analytical solution which can
be computed with no complexity and which is reversible

These techniques are applicable since the minimum inter-arrival of
a request is greater than a server period. Unfortunately exists situa-
tions in which this assumption is not feasible. An important example
is using resource reservation to scheduling interrupts. In order to con-
sider also this situation, another important novel result of this thesis
is:

• to introduce a new model for scheduling interrupts

In addition, some practical examples of using resource reservation
are presented.

1.4 thesis organization

This thesis is organized in eleven Chapters, including the present one,
and two Appendixes.
Chapter 2 presents some previous researches in the area of stochas-
tic real-time analysis, showing the scenario in which the presented
thesis is posed and Chapter 3 defines some basic concepts of random
events, discrete time Markov chain and quasi birth and death Markov
process. These definitions are needed to understand the main results
of the thesis. Chapter 4 introduces the Constant Bandwidth Server
(CBS), the scheduling algorithm used in the following chapters. This
algorithm has been chosen for its simplicity and effectiveness, but in
practice the analysis abstract from the implementation and any other
resource reservation algorithm can be used. In Chapter 5 describes
one of the most important results of this work: a pessimistic bound
to predict the deadline miss probability in presence of resource reser-
vation. The solution is approximated starting from the exact model.
Chapter 6 presents a different approach of the same problem: the
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classic model of [4] is seen as Quasi Birth and Death Process, allow-
ing a very efficient numeric solution. In addition, with some conser-
vative approximation, the same matrix can be solved with a simple
analytic solution. Even if the two techniques presented can be used
with real applications, there are still cases in which the analysis is
not suitable. In particular when the applications has an inter-arrival
time very small, the model cannot guarantee to have consistent re-
sults. For example the problem of scheduling interrupts, presented
in Chapter 8, shows that resource reservation could be very useful,
but a new model must be developed to have prediction on it. In addi-
tion, Chapter 9 presents some experiments with resource reservation,
showing the improvement on the performance using this paradigm.
Chapter 10 is a general discussion of the work described in this thesis,
outlining paths for new and future researches. The two Appendixes
show some works related to this dissertation which are developed
for a different purpose. By definition, a systems cannot guarantee re-
source reservation in the presence of communication between appli-
cations. Appendix A introduces the concepts of resource reservation
in the client-server paradigm.





2
S T O C H A S T I C R E A L - T I M E A N A LY S I S

Examples of a similar analysis have been presented in the past
(both for fixed priority [8, 9, 10] and for dynamic priority [11, 12,

13, 14] scheduling) and have been recently extended to multiprocessor
systems [15]. Other scheduling approaches (for example, based on
Time Division Multiplexing [16], on modifications of fixed priority
scheduling [17], or on splitting tasks in mandatory parts and optional
parts [18]) have been analyzed too.

The techniques based on classic fixed priority and earliest deadline
first estimate the probability of missing deadlines for the task set
considered as a whole: the parameters of a task can influence the
termination statistics of the other tasks. This diminishes the potential
interest of the method as a synthesis tool.

Traditional design of real-time systems follows a simple but effec-
tive paradigm [19]: 1) each task composing the system is character-
ized by its worst case inter-arrival time and execution time, 2) tasks
are scheduled using static or dynamic priorities, 3) the ability for
each task to meet its deadlines is guaranteed by a portfolio of algo-
rithmic approaches such as the utilization test [19] or the response
time analysis [20]. The enormous popularity of these technique is
motivated by their amazing numeric efficiency, which makes them
suitable for scalable design of real–time systems or even for admis-
sion tests executed on-line in a real–time operating system. Besides,
these methods provide analytical over-approximations of the region
of parameters [19, 21, 22] associated with a feasible design. These an-
alytical expressions offer a precious insight into the system behaviour
and guide the design choices.

A recent work from Mills and Anderson [23] has considered the
problem of stochastic analysis for resource reservations on multipro-
cessor systems. The authors main focus is on the computation of tardi-
ness and response time bounds for the average case. As a by-product
of their work, the authors offer a result on the probabilistic deadlines,
which is very conservative and is applicable only if deadlines much
larger than the period are considered.

7



8 stochastic real-time analysis

Finally, an interesting approach that deserve a mention is the real–
time queueing theory [24], which allows one to compute the response
time distributions of a set of tasks for different scheduling algorithms
when the workload of the tasks is very close to 100% (heavy traffic
assumption). The heavy traffic assumption and other assumptions on
the task model restricts its applicability, but the paper has a strong
theoretical interest.

Regarding the problem of assigning parameters for a resource reser-
vations system, in [25] the authors characterize the response time of
a served task as a function of the server parameters. In addition they
provide a methodology to minimize the average response time opti-
mizing the server parameters.

2.0.1 Computation time

In general, most of the approaches recalled above require the compu-
tation of the stationary probability distribution of the response times
(or of an approximation), and only focus on mathematical equations
that, when solved, provide such a distribution as a result. However,
less effort is dedicated to how such equations are actually solved.
As a result, when non-trivial distributions of the execution times are
used, long times and large amounts of memory are required to com-
pute the probabilistic deadlines. This issue makes probabilistic anal-
ysis unsuitable for on-line acceptance tests, which result inefficient
on ordinary computing architecture and are at a serious risk of being
unfeasible on many embedded devices utilising low-cost CPUs and
small amounts of memory.

2.0.2 Exact knowledge of distribution

Another important limitation is that the exact knowledge of the entire
distributions of the computation times and of the inter-arrival times
of the tasks is required in order to properly estimate the deadline
miss probabilities (and it is not possible to estimate the errors and ap-
proximations caused by an incomplete or inexact knowledge of the
probability distributions). However, the statistics of the task activa-
tion parameters are typically collected over an extensive set of execu-
tion runs of the task. As a result, even in a long sequence of execution
the worst-case condition may never occur and the experimental distri-
bution could be incomplete. Hence, execution times higher than the
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measured Worst Case Execution Time (WCET) can happen with a low
probability εc (that can be computed by using statistical techniques).
In order for an analysis methodology to be practically applicable, it
has to possess a certain degree of robustness with respect to partially
known distributions.





3
B A C K G R O U N D A N D D E F I N I T I O N S

In this thesis, we consider a set of real-time tasks {τi} sharing a
processing unit (CPU). A real-time task τi consists of a stream of

jobs Ji,k. Each job Ji,k arrives (becomes executable) at time ri,k, and
finishes at time fi,k after executing for a time ci,k. Job Ji,k is tradi-
tionally characterised by a deadline di,k = ri,k +Di, that is respected
if fi,k 6 di,k, and is missed if fi,k > di,k. In this work, probabilis-
tic deadlines [6] are used instead of traditional hard deadlines di,k. A
probabilistic deadline (δi,pi) is respected if P {fi,k > ri,k + δi} 6 pi1.

Since the tasks parameters will be modelled as stochastic processes,
we report here some basic definitions from the theory of random pro-
cesses that will be used in the thesis. Interested readers are referred
to the vast literature in the field for additional details [26].

3.1 randoms events

A random experiment is any experiment whose outcome is uncertain.
We define sample space Ω the set of all possible outcomes of a random
experiment (for instance the sample space for throwing a dice the
sample space is given by Ω = {1, 2, . . . , 5, 6}). In this set an event
is a possible outcome of a random experiment and is associated to
a subset of Ω (for instance, if the random experiment is throwing
a dice, one possible event can be “outcome greater than 3”, which
is associated to the subset {4, 5, 5}). The set of all possible events is
said event space and is a subset of 2Ω, the set of all subsets of Ω. We
will denote it by the symbol E. On the E set, it is possible to define
an algebra using the ordinary operations defined over sets (inclusion,
intersection, union, complement).

The pair (Ω, E) is said probability space. Given a probability space
(Ω, E), the probability P {.}, is a function from E to R such that: 1)
P {A} > 0, for all A ∈ E, 2)P {Ω} = 1, 3) if the events A1, A2, . . . , An
are disjoint, then P {

⋃n
i=1Ai} =

∑n
i=1 P {Ai}. Two events A1 and A2

are said independent if P {A1 ∩A2} = P {A1} · P {A2}. The conditional

1 An hard real-time task can be described by a (Di, 0) probabilistic deadline.

11
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probability P(A|B) is defined as P(A|B) = P(A ∩ B)/P(B). For two in-
dependent events we have P(A|B) = P(A).

3.1.1 Random Variables and Random Processes

Given a random experiment and a sample spaceΩ, a random variable
X is a function that associates the possible outcome of an experiment
with a real value: X : Ω→ R. For instance, if our random experiment
is tossing a coin, we could decide that that X(head) = 0 and X(tails) =
1. For consistency, in the definition of X() we also require that the set
{ω ∈ Ω such that X(ω) 6 x} for every x ∈ R is an event, which we
will denote as [X 6 x]. The cumulative distribution function (CDF)
F(x) is defined as: F(x) = P {X 6 x}. Clearly, F(−∞) = 0 and F(∞) = 1.
If a random variable X takes on values in a discrete set, it is possible
to define the probability mass function (PMF) as p(x) = P {X = x}. The
relation between PMF and CDF is given by F(x) =

∑
y6x p(y).

The definition above easily extends to vectors of random variables
X = [X1, X2, . . . , Xn]. In this case the CDF is defined as F(x1, x2, . . . xn) =
P {X1 6 x1 ∧X2 6 x2 ∧ . . .∧ xn 6 Xn}. The CDF just defined is also
called joint CDF. The marginal CDF Fi(xi) is simply obtained by eval-
uating F(x1, x2, . . . , xn) on xj = +∞ for all j 6= i. In the same way,
it is possible to define a joint PMF p(x1, x2, xn) and the marginal
PMF pi(xi). The random variables X1 and X2 are said independent if
F(x1, x2) = F1(X1) · F2(X2). Given two variables X1 and X2 the condi-
tional PMF distribution pX1|X2(x11|x2) is defined as P {X1 = x1|X2 = x2}
and is given by p(x1, x2)/p2(x2).

A random process (or stochastic process) is a family of random vari-
ables defined over a common probability space and indexed by a time
variable: {Xt|t ∈ T }, where t varies over an index set. A stochastic pro-
cess with a discrete index set is said a discrete–time random process
(or random sequence); for this type of processes it is customary in
the literature to use the indexes k,n, i, j (instead of t). In this thesis
we will only consider discrete–time random processes. The set of val-
ues taken by the variable Xk is said state space of the process. If the
state space is a discrete set (e.g., a subset of the natural numbers), the
stochastic process is often referred to as a chain. In some sense, it is
possible to think of a random process as an experiment whose out-
come is a function of time (either discrete–time or continuous–time).
For a fixed k, Xk is clearly a random variable, which can be associ-
ated with the CDF F(xk;k) = P {Xk 6 xk}. The process is identically dis-
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tributed if ∀k1, k2, we have F(xk1 ;k1) = F(xk2 ;k2), i.e., the CDF of Xk
do not depend on k (the same applies to the PMF). If we consider the
process samples taken at several time instants k1,k2, . . . ,kn, we ob-
tain a vector of random variables Xk1 , Xk2 , . . . , Xkn associated with
the joint CDF F(xk1 , xk2 , . . . , xkn ;k1, k2, . . . ,kn). A stochastic process
is said independent if: F(xk1 , xk2 , . . . , xkn ;k1, k2, . . . ,kn) =

∏
k=k1, ...,kn F(xk;k)

(the same applies to the PMF). A process is said IID if it is both inde-
pendent and identically distributed.

3.1.2 Discrete–Time Markov Chains

A Discrete–Time Markov Process (DTMP) is a discrete–time process
such that its future development only depends on the current state
and not on the past history. This can be stated in formal terms on the
conditional PMF: P {Xn = xn|X1 = x1,X2 = x2, . . . ,Xn−1 = xn−1} =

P {Xn = xn|Xn−1 = xn−1}. A DTMP defined over a discrete state space
is said discrete–time Markov chain (DTMC). Given a DTMC, let π(j)n
represent the probability π(j)(n) = P {Xn = j}, πn be the vector πn =

[π
(0)
n , π(1)n , . . .], P = [pi,j] be a matrix whose generic element pi,j is

given by the conditional probability pi,j = P {Xn = j|Xn−1 = i}. Start-
ing from an initial probability distribution π0, the application of the
Bayes theorem and of the properties of the Markov Processes allow
us to express the evolution of the distribution by the matrix equation
πn+1 = πnP. The matrix P is said probability transition matrix. An
equilibrium point for this dynamic equation is a vector p̃i such that
π̃ = π̃P.

For a DTMC, a recurrent state i is a state such that starting from i,
the process eventually returns to state iwith probability 1. For a recur-
rent state i, there exist some n > 0 such that P {Xm = i∧Xm+n = i} >

0,∀m. The period di of a recurrent state i is defined as the greatest
common divider of the set of all number n for which P {Xm = i∧Xm+n = i} >

0,∀m. A state is said aperiodic if its period di = 1. A DTMC is said
aperiodic, if all of its states are aperiodic. A DTMC is said irreducible,
if every state can be reached from any other state in a finite number of
steps. It can be shown that if a DTMC is irreducible, then all states are
of the same type. So, if one state is aperiodic, so is the entire DTMC.

A very important property of irreducible and aperiodic DTMC is
that there exist a single equilibrium π̃ = π̃P such that the limiting dis-
tributions limn→∞ πn converge starting from any initial probability
distribution π0. This equilibrium is called steady state distribution.
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A DTMC is called a Quasi Birth Death process (QBDP) if its proba-
bility transition matrix P has the following block structure:

P =



B0 B1 0 0 0 · · ·

A−1 A0 A1 0 0 · · ·

0 A−1 A0 A1 0 · · ·

0 0 A−1 A0 A1 · · ·

· · · · · · · · · · · · · · ·


When the matrices are scalars, this structure reduces to the standard

Birth Dead Process (BDP).
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C O N S TA N T B A N D W I T H S E RV E R

As multiple real-time tasks may be concurrently active at the same
time, a scheduling mechanism is used to schedule the CPU. To this
purpose, we advocate the use of resource reservations. Each task τi is
associated with a reservation (Qsi , T

s
i ), meaning that τi is allowed to

execute for Qsi (budget) time units in every interval of length Tsi (reser-
vation period). The bandwidth Bi allocated to the task is defined as
Bi = Qsi/T

s
i and it can be thought of as the fraction of CPU time

allocated to the task. The particular implementation of the Resource
Reservations approach that we consider is the (CBS) [4]. In the CBS,
reservations are implemented by means of an Earliest Deadline First
(EDF) scheduler. The EDF schedules tasks {τi} based on their schedul-
ing deadlines dsi,k, which are dynamically managed by the CBS algo-
rithm. When a new job Ji,k arrives, the server checks whether it can
be scheduled using the last assigned scheduling deadline dsi,k−1. In
the affirmative case, the scheduling deadline of the job is initially set
to current deadline dsi,k = dsi,k−1. Otherwise, the initial deadline dsi,k
is set equal to ri,k + Tsi . Every time the job executes for Qsi time units
(i.e., its budget is depleted), its scheduling deadline is postponed by
Tsi : dsi,k = dsi,k + T

s
i . This way, the task is prevented from executing

for more than Qsi units with the same deadline. When the remaining
budget qi arrives to 0 τi is said to be depleted, and two different
behaviours are possible:

• the budget is immediately replenished toQsi and the scheduling
deadline is postponed to dsi + T

s
i (so, τi remains schedulable).

• τi is not schedulable until time dsi , when the budget will be
replenished and the deadline will be postponed as above (so, it
cannot be scheduled until dsi ). This is known as hard reservation
behaviour.

As a consequence, each task is reserved an amount of computation
time Qsi in each server period Tsi regardless of the behaviour of the

15
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other tasks. This property is called temporal isolation and it holds as
long as the system satisfies the following schedulability condition:

∑
i

Bi =
∑
i

Qsi
Tsi

6 1. (4.1)

The scheduling deadline dsi,k has, in general, nothing to do with
the deadline di,k of the job: it is simply instrumental to a correct
implementation of the resource reservation paradigm. For a full de-
scription of the algorithm and of its properties the reader is referred
to [4].



5
E F F I C I E N T A N D R O B U S T P R O B A B I L I S T I C
G U A R A N T E E S

In this chapter we introduces a new analysis, able to give a pes-
simistic bound on the prediction of the probability of deadline

miss. The specific scheduling algorithm used to implement the reser-
vation strategy is not important for the analysis, and the only impor-
tant property is that task τi can execute for Qsi time units every Tsi time
units. A possible scheduling algorithm is presented in Chapter 4.

The distribution of the finishing time can be computed applying
standard arguments of the queueing theory. Since such analysis is sig-
nificantly simplified when the inter-arrival times are multiples of Tsi ,
a conservative approximation of Ii(t) can be used, which ensures that
the inter-arrival times are multiples of Tsi . A possible definition [7] is

Ti(z) = P
{
ri,j+1 − ri,j = zT

s
i

}
(5.1)

where the random variable z represents the inter-arrival times ex-
pressed in multiples of Tsi . To qualify the notion of conservative ap-
proximation of a random variable, it is useful to introduce the follow-
ing relation between random variables [12]:

Definition 1. Given two random variables X and Y, X � Y if Fx(x) 6

Fy(x) for all x (where Fx(x) = P {X 6 x} is the Cumulative Distribution
Function - CDF - of X, and Fy(y) is the CDF of Y).

Since considering a shorter inter-arrival time is a conservative ap-
proximation, to be conservative Ti(z) should be defined so that FIi(x) �
FTi(x). A distribution with such a property can be easily computed as

Ti(z) =

(z+1)Tsi −1∑
t=zTsi

Ii(t)

(see the cited paper [7], where the condition FIi(x) � FTi(x) is ex-
pressed as ∀n,

∑nTsi
t=0 Ii(t) 6

∑n
z=0 Ti(z)).

Parts of this Chapter are going to appear in:
L. Abeni, N. Manica, L. Palopoli “Efficient and robust probabilistic guarantees for
real-time tasks,” Journal of Systems and Software
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Summing up, the guarantees obtained by using Ti(z) are valid for
the original inter-arrival times distribution Ii(t) too, and Ti(z) has
inter-arrival times multiple of Tsi by construction.

When using reservation-based scheduling, each task can be pro-
vided with an individual guarantee (without having to consider all
the other tasks in the system); hence, from now on a single task τ
will be considered and the i index will be dropped (to simplify the
notation).

In deterministic real-time analysis the WCET C = maxj{cj} of task
τ is assumed to be known, and even the probabilistic analysis tech-
niques proposed up to now make the same assumption. Indeed, since
U(c) is assumed to be fully known, the maximum possible value
C for which U(C) 6= 0 is assumed known as well. In this chapter,
such a constraint about the WCET knowledge is relaxed, U(c) is
known up to a maximum value C̄ and the WCET C > C̄ can be
unknown. However, in order to perform some analysis the probabil-
ity P{c > C̄} =

∑∞
c=C̄+1U(c) = εc to have an execution time larger

than C̄ must be known. In this framework. setting εc = 0 to the
traditional model (with a known WCET). On the contrary, choosing
εc > 0 allows the designer to improve the robustness of the analy-
sis. For example, if U(c) is estimated by running N jobs of the task
and measuring their execution times, we do not have any guarantee
that the worst case situation has been considered. By using statisti-
cal techniques it is possible to estimate the confidence that the actual
worst case computation time is actually the one resulting from the
experiments. A very rough estimation of the probability of having a
new run in which the worst case exceed the one found in the first N
experiment runs is 1/N.

As in previous work [7] a stochastic process vj can be introduced
to model the amount of time to be executed after the arrival of the
jth job Ji,j. As shown in the cited paper, vj evolves according to the
following rules:

v0 = c0

vj+1 = max{0, vj − zjQs}+ cj+1 (5.2)

Informally speaking, Equations 5.2 says that the amount of time to be
executed after the arrival of the first job is equal to the job’s execution
time, and the amount of time to be executed after the arrival of the
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jth job can be computed by summing the job’s execution time to the
amount of time to be executed after serving the previous jobs.

The worst-case finishing time of job Ji,j can be computed based
on the value of vj, as δj =

⌈
vj
Qs

⌉
Ts; hence, when the probability dis-

tribution V(v) = P{vj = v} is known, it is possible to compute the
probability D(δ) = P{fi,j − ri,j 6 δ} as P

{⌈
vj
Qs

⌉
Ts 6 δ

}
.

As shown in the original paper, Equations (5.2) can be used to com-
pute the state transition probabilities

P{vj+1 = v|vj = x} =

∞∑
h=1

U(v− max{0, x− hQs})T(h) (5.3)

which can be written as π(j+ 1) = Mπ(j) where π(j) is the vector of
state probabilities at step j and M is a properly defined matrix. Then,
ifQs/Ts > E[U(c)]/(E[T(z)]Ts) queueing theory says that a stationary
probability vector π = limj→∞ π(j) exists and can be computed by
solving the eigenvector problem π =Mπ. In previous work, numeric
techniques are used to solve such an eigenvector problem and find the
stationary probabilities. However, this computation is too expensive
to be performed on-line (see Section 5.0.5).

5.0.3 Conservative Bounds

This section shows how to compute a conservative bound for P{fj >
rj+δ} by adapting and extending some known bounds about GI/G/1
queues [27]. Equation (5.2) can be written as follows:

v0 = c0

vj+1 = max{cj+1, vj − zjQs + cj+1}. (5.4)

Then, a new random variable Yj = cj+1 − zjQs can be introduced, so
that

v0 = c0

vj+1 = max{cj+1, vj + Yj}

E[c] is the expected value of the execution times, and E[z] is the expected value of z
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Let h(y) = P
{
Yj = y

}
represent the PMF of Yj; since Yj is given by

the linear combination of two independent variables, h(y) can be com-
puted as follows:

h(y) = P
{
Yj = y

}
=

∑
{c,z|c−zQs=y}

P
{
cj = c∧ zj = z

}
=

z∑
z=1

P
{
cj = y+ zQ

s ∧ zj = z
}

=

z∑
z=1

P
{
cj = y+ zQ

s
}
P
{
zj = z

}
=

z∑
z=1

U(y+ zQs)T(z)

(5.5)

where z is the maximum value of z. The problem with the computa-
tion of this PMF is that U(c) is not known for values of the argument
greater than C̄. Hence, it is possible to obtain a bound for this func-
tion by truncating the sum in Equation 5.5 to values of z which lead
to y+ zQs 6 C. The resulting truncated version h̃(y) of the PMF of Y
can be computed as:

h̃(y) =

h(y) for y 6 y∑b C̄−y
Qs

c
z=1 U(y+ zQs)T(z) for y 6 y 6 y

where y = C̄−Qs and y = C̄− zQs. In plain words, h̃(y) is derived
from h(y) by padding with zeros the function U(c) in Equation (5.5)
for the values of the argument for which there is no knowledge. As
a result, the values of h̃(y) for y 6 y do not sum to 1, and the miss-
ing probabilities are accumulated in unknown values larger than y:
for y > y, function h̃(y) is unknown, but it is possible to compute∑∞
y=y+1 h̃(y).

Lemma 1. The h̃() function has the following properties:

• for y 6 y, P
{
Yj 6 y

}
=
∑y
k=−∞ h̃(k)

• for y < y 6 y, P
{
Yj 6 y

}
>
∑y
k=−∞ h̃(k)

• for y > y,
∑y
k=−∞ h̃(k) 6 P {Yj 6 y} 6 1; εy = 1−

∑y
k=−∞ h̃(k)

is the size of the interval in which P
{
Yj 6 y

}
(or P {Yi > y}) can

range (with P
{
Yj 6 y

}
∈ (1− εy, 1) and P {Yi > y} ∈ (0, εy)).
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In essence, a random variable Y
′
j associated with the PMF h̃(y)

is a conservative approximation for: Y
′
j � Yj, according to Defini-

tion 1. As discussed in the next section, Yi quantifies the possible
load changes on the system. A positive Yi value indicates that the
system load is increasing, while negative values indicate that it is de-
creasing. Thereby, a conservative approximation for Yj as proposed in
the previous lemma can be used to carry out a a conservative analysis
on the probability of respecting the deadline.

5.0.3.1 Main Result

Theorem 1. Let T ∈ N be a positive integer. If there exists a real constant
γ ∈ R with γ > 1 such that

y∑
y=−∞γ

yh̃(y) + γTεy < 1 (5.6)

then

∀δ 6
⌈
T

Qs

⌉
Ts,P{fj 6 rj + δ} > 1− (

C̄∑
c=0

U(c)γ−(b δTs cQ
s−c) + εc)

The constant T is the maximum value of vj, for which PMF bound is
considered to be useful. This constant is expressed in amount of exe-
cution time to be executed (like vj). Therefore, only deadlines smaller
than

⌈
T
Qs

⌉
Ts can be analysed. T can be chosen very large and it does

not make practical sense to analyse values of vj larger than T , because
they would result in deadlines missed by a very large amount. γ is
computed, for a given T , considering the shape of the distribution
h̃(y) (its intuitive meaning will be clarified in the next section).

Note that Theorem 1 also states that it is possible to compute a
bound for P

{
fj 6 rj + δ

}
(with δ 6

⌈
T
Qs

⌉
Ts) even if the values of

U(c) for c > C̄ are not known. Indeed, only the knowledge of the
cumulative probability εc = P{c > C̄} is needed. The values of the
probability U(c) for specific c > C̄ has an impact only on the compu-
tations of P

{
fj 6 rj + δ

}
for large values of δ (δ 6

⌈
T
Qs

⌉
Ts). Clearly,

the partial knowledge of U(c) will introduce some more pessimism
in the analysis even for small values of δ, but this is accounted for
in the computation of the bound, as shown in Section 5.0.5 (see Fig-
ure 5.12). This means that a complete knowledge of the execution



22 efficient and robust probabilistic guarantees

times distribution is not needed, and that probabilistic guarantees
can be provided even if U(c) is not fully known.

5.0.3.2 Proof of the Result

To prove Theorem 1 it is useful to introduce a new variable wi, rep-
resenting the amount of execution time to be executed immediately
before the arrival of job Jj (whereas vj represents the amount of exe-
cution time to be executed immediately after the arrival of job Jj). By
definition, the evolution of wj can be expressed as:

w0 = 0

wj+1 = max{0,wj − zjQs + cj}

or, using Yj, as

w0 = 0

wj+1 = max{0,wj + Yj}

which is known as Lindley recursion [28].
An easy relation between vj and wj is stated in the following.

Fact 1. For all jobs Jj, vj = wj + cj

Proof. By induction on j.
Induction base: for j = 0, by definition v0 = c0 = 0+ c0 = w0 + c0.
Inductive step: vj+1 = max{0, vj− zjQs}+ cj+1. By inductive hypoth-
esis, this is equal to max{0,wj + cj − zjQs}+ cj+1, and by definition
this is wj+1 + cj+1.

5.0.4 Discussion

Notice that Yj represents the variation between the amount of execu-
tion time yet to be served immediately before (or immediately after)
two consecutive arrivals. In other words, if Yj is negative then the
amount of “accumulated” execution time vj decreases; otherwise it
increases.

If Qs > C
z (where z is the minimum value of z), then C−Qsz 6

0, so P{cj − Q
szj > 0} 6 εc ⇒ P{Yj > 0} 6 εc. Hence, ∀γ >

1,P{
∑y
y=−∞ γyh̃(y) > 0} 6 εc (and if εc = 0 then Yj is always < 0

and all the jobs finish before the arrival of the next job).
On the other hand, it can be shown that if Qs 6 E[c]

E[z] , then it is not
possible to find a value of γ such that

∑y
y=−∞ γyh̃(y) < 1 (this is
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Figure 5.1: PMF of the execution times.
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Figure 5.2: PMF of z.

consistent with the fact that a queue with a load > 1 is not stable). As
a result, Qs must be larger than E[c]

E[z] .
To better understand how the various scheduling parameters affect

the probability distribution of Yj, consider a simple example with the
execution times and inter-arrival times distributed as in Figures 5.1
and 5.2. The resulting PMFs for Yj have been computed (as explained
in the previous section) for different values of Qs ranging from the
minimum possible (1000) to almost the maximum (1900), and the re-
sults are displayed in Figure 5.3. From the figure, it can be noticed
that increasing Qs, h(y) is shifted left (meaning that the probability
to decrease the amount of remaining computation time is increased).



24 efficient and robust probabilistic guarantees

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-20000 -15000 -10000 -5000  0  5000

P
{Y

 <
=

 t
}

t

Q = 1000
Q = 1100
Q= 1400
Q = 1700
Q = 1900

Figure 5.3: CDF of Yj for various values of Qs.

 0.01

 0.1

 1

 10

 100

 1000

 1  1.0005  1.001  1.0015  1.002  1.0025

g
Q

s
(γ

)

γ

Q = 1000
Q = 1100
Q = 1400
Q = 1700
Q = 1900

1

Figure 5.4: gQs(γ) =
∑y
t=−∞ γth̃(t) for various values of Qs.



efficient and robust probabilistic guarantees 25

Remember that to find a pessimistic estimation of the probabil-
ity to respect a probabilistic deadline, a value of γ satisfying Equa-
tion 5.6 must be found. Since in this simplified example we have
εc = 0 ⇒ εy = 0, the condition is simplified to

∑y
y=−∞ γyh̃(y) < 1.

To show how the choice of Qs impacts on the choice of γ, the dif-
ferent functions gQs(γ) =

∑y
t=−∞ γth̃(t) for different values of Qs

have been computed, and are displayed in Figure 5.4. It is possible to
notice how for Qs = 1900 (close to the hard schedulability condition)
the gQs is decreasing, and will cross the g1900(γ) = 1 line only for
large values of γ (for Qs = 2000, such a line is never crossed).

5.0.5 Experimental Results

The presented analysis technique has been implemented in a set of
utilities using fairly portable C code. Dichotomic search is used to
find proper values for γ. The resulting library of functions can be
used to implement off-line design tools, or on-line admission tests
(even in slower CPUs, as it will been shown in this section) and
is freely available (downloadable from http://www.disi.unitn.it/

~abeni/gamma-bound.tgz).
This software has been used to compute the conservative bounds

as discussed in this chapter, and to validate them through a com-
parison with simulations and with the “exact” probability distribu-
tions obtained by numerically solving the eigenvector problem [7].
These comparisons have been performed through an extensive set
of tests and experiments presented in this section. Such experiments
confirmed that the bound is conservative, in perfect accordance with
our theoretical expectations.

In a first batch of experiments, the two synthetic PMF distributions
for c and z represented in Figures 5.1 and 5.2 have been used. The
server period Ts was chosen equal to Ts = 20000 µs. Different values
for Qs were considered spanning the interval between 1000 µs (min-
imum) to 2000 µs (maximum). Some of the bounds obtained for the
CDF are shown in Figure 5.5. The bounds have then been compared
with the exact CDF and with the empirical distribution obtained from
a long simulation run. The workload of the system has been increased
by inserting additional real-time tasks (up to utilisation 1) to make
sure that the task only receives the reserved computation time (with-
out reclaiming unused bandwidth). Some of the results are reported

http://www.disi.unitn.it/~abeni/gamma-bound.tgz
http://www.disi.unitn.it/~abeni/gamma-bound.tgz
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in Figures 5.6, and 5.7, showing that not only is the new bound con-
servative, but the gap from the exact distribution is relatively narrow.

The worst case response time should be multiple of the server pe-
riod Ts (since in the worst case the budget Qs is received at the very
end of each server period). However, the empirical distributions ob-
tained from simulation do not exhibit this behaviour (the CDF is not
structured as a sequence of step with break points coincident with in-
teger multiples of Ts). This is suggestive of a potential inadequacy of
the empirical method for worst case analysis, since it does not seem
to capture the worst case patterns.

In a next set of experiments, the performance of the proposed ap-
proach has been evaluated by measuring the amount of time needed
to compute the bound and comparing it with the amount of time
needed to numerically compute the exact CDF. A periodic task with
period P = 200ms and a randomly generated PMF of the execution
times U(c) (with c varying between 10ms and 40ms), served by a
(30ms, 100ms) reservation, has been considered, and the probabil-
ity P{δ < 100ms} has been computed 100 times (using 100 different
PMFs). Each PMF is composed by 300 samples.

The tests have been executed on various systems, characterised by
different CPU speeds: a PC based on an Intel Core2 Duo CPU running
at 2.60GHz (core2 in the table), a BeagleBoard (an embedded board
based on an ARM CPU), a PowerPC 750CX running at 500MHz (ppc
in the table), a FoxBoard (an embedded board based on an Etrax

http://www.beagleboard.org

http://www.beagleboard.org
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System Time for Confidence Time for Confidence
Bound Interval Exact Solution Interval

core2 0.562ms 0.013ms 807.636ms 12.413ms
ppc 4.775ms 1.317ms 31547.189ms 21.385ms
BeagleBoard 8.817ms 1.436ms 32518.927ms 2.926ms
FoxBoard 2582.697ms 2.106ms — —
FLEX 301.9 0.678ms — —

Table 5.1: Solution times on different devices.

LX system on chip running at 100MHz), and a FLEX (an embedded
board based on a Microchip dsPIC DSC micro-controller). The results
are shown in Table 5.1, that presents the average times for finding
the bound (including the time needed to compute a correct value
for γ, using dichotomic search) and their 95% confidence intervals.
The average times needed to compute the exact solution (and their
confidence intervals) are also shown for the systems on which it was
possible to compute the exact solution.

This experiment shows that using the proposed bound on-line ad-
mission control is feasible on almost all of the tested systems, with the
only exception is the FoxBoard and the FLEX. Using a resampling of
the execution times PMF [12, 29] to reduce its size to 15 samples, the
average computation times for the bound are reduced to 135.901ms
with a 95% confidence interval of 0.548ms for the FoxBoard (notice
that even with the resampled PMF, the time needed to compute the
exact solution on a FoxBoard is quite large - more than 10 seconds),
and to 22.1ms with a 95% confidence interval of 7.464ms for the
FLEX.

Other similar tests have been repeated, with different kinds of tasks,
and consistently reported a speedup of at least 400 times.

In order to check the bound on a more realistic example, a video
player has been instrumented, measuring the execution times PMF
represented in Figure 5.8. Since the video is 25fps (frames per sec-
ond), the player is modelled as a periodic task with period P = 40ms.
The proposed technique has been used to compute the CDF of the
response times when the player is scheduled by using a (6ms, 20ms)
reservation (hence, Ts is half of the task period, and T(z) is a delta
function with T(2) = 1 and T(z) = 0 for z 6= 2). The results are
reported in Figure 5.9, along with the exact CDF (obtained by numer-

http://foxlx.acmesystems.it
http://www.evidence.eu.com/content/view/114/204

http://foxlx.acmesystems.it
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Figure 5.8: U(c) for a video player.
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Figure 5.11: Probabilistic deadlines bound vs simulation results. Q = 15ms

ically solving the eigenvector problem) and with some empirical dis-
tribution, constructed from simulation as discussed in the previous
experiment (additional real-time tasks have been inserted to increase
the utilisation up to 1). As for the previous example, the bound results
correctly conservative (the CDF estimated with the bound remains
below the exact one) and the gap from the actual CDF is acceptable.
Once again, the CPU time required to compute the bound is between
two and three orders of magnitude smaller than from the exact so-
lution. Figures 5.10 and 5.11 compare the conservative bounds with
empirical distributions for different values of Qs, confirming the pre-
vious findings.
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Figure 5.12 shows the effects of an unknown tail in the PMF of the
execution times, by comparing the bound obtained with Qs = 10ms

assuming a complete knowledge of the PMF with the bounds ob-
tained (for the same value of Qs) assuming εc = 10−3, 10−4, 10−5.
Note that when εc > 0 the probabilistic deadlines are very conserva-
tive but this is the price to be paid to tolerate a partial knowledge of
the execution times.

After that, the impact of the server period Ts on the probabilistic
deadlines has been evaluated by computing the bound for different
values of the server period. Ts affects the final results by changing the
degree of pessimism in the generation of T(z) (see Equation 5.1) and
by changing the granularity of the CPU time allocation (and hence
the size of the steps in the PMF of the response times). For example,
consider the inter-arrival times distributed according to the PMF I(t)
described in Figure 5.13. The CDFs of z, for various values of Ts

(ranging from 1000 to 20000) are displayed in Figure 5.14. The CDF of
the response times obtained with a uniform execution time (average
21000) and Qs = 0.6Ts are shown in Figure 5.15.

Finally, the proposed bounds have been applied to a real-world ap-
plication: a video tracking task with the execution times shown in Fig-
ure 5.16 and period 40ms. Notice that in this application, c̄ = 53ms

is larger than the period, so it is not possible to schedule the peri-
odic task without any deadline miss. According to the application’s
requirements, at least 80% of the deadlines have to be respected, and
by applying the proposed analysis with Ts = 10ms, it has been possi-
ble to verify that with Qs = 8.2ms such a requirement is respected.
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6
A N A LY T I C A L A N D N U M E R I C T E C H N I Q U E S F O R
P R O B A B I L I S T I C G U A R A N T E E S O F S O F T
R E A L – T I M E S Y S T E M S U S I N G
Q U A S I – B I RT H – D E AT H P R O C E S S E S

In view of the temporal isolation property, each task is guaranteed
a minimum share of the processor Qsi/T

s
i independently of the be-

haviour of the other tasks. As a consequence, it is possible to carry out
a conservative analysis leading to the computation of a lower bound
of the probability of respecting a deadline assuming that the task al-
ways receives this minimum (as long as Condition (4.1) is respected).
The advantage is that the the behaviour of each task can be studied
in isolation. Therefore, we can remove the subscript i meaning that
the analysis refers to one specific task.

In this setting, our problem is formulated as follows.

Problem 1. Given a periodic real–time task with a stochastic computation
time characterised by a PMF U(c), find conditions on the reservation param-
eters (Qs, Ts) such that the task respects the probabilistic deadline (D, p).

A few remarks are in order. First of all, we look for analytical condi-
tions, which can be inverted and offer easy solution for the problem
of system design. Second, in order to be safely utilisable, such condi-
tions have to be sufficient (although necessity is certainly a desirable
additional requirement).

6.1 stochastic model

6.1.1 A resource reservation as a Markov Chain

In the following, we will denote by FU(c) =
∑c
h=cmin

U(h) the Cumu-
lative Distribution Function (CDF) of the execution time. To simplify
the analysis we will also assume that the server period Ts is chosen
as an integer sub-multiple of the activation period P: P = NTs. Other
choices are certainly possible but make little practical sense.

Let dsk denote the latest scheduling deadline used for the execution
of job Jk and introduce the symbol δk = dsk − rk. The quantity dsk

35
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Figure 6.1: Example schedule of a task by a CBS. The two colours denote
different jobs.

is an upper bound for the finishing time of the job. Hence, δk is an
upper bound for the job response time.

Example 1. Consider the schedule in Figure 6.1. The schedule in the figure
considers two adjacent jobs starting at rk and rk+1 and the reservation
period is chosen as one third of the task period. Jok Jk, in this case finishes
beyond the deadline (which in our periodic model is rk+1). More precisely,
the last reservation period that it uses (in which its finishing time lies) is
upper-limited by the scheduling deadline dsk.

The quantity δk takes on values in a discrete set: the integer mul-
tiples of Ts and the probability p of meeting the deadline is lower
bounded by P {δk 6 D}.

As discussed in previous work [7], we can express the dynamic
evolution of δk using the following stochastic model:

v0 = c0

vk+1 = max{0, vk −NQs}+ ck+1

δk =

⌈
vk
Qs

⌉
Ts (6.1)

In this case vk is a non-measurable variable representing the amount
of backlogged execution time that has to be served by the CBS sched-
uler when a new job arrives.

Since the process U modelling the sequence ck of the computation
time is assumed a discrete valued and IID random process, the model
in Equation (6.1) represents a discrete–time Markov Chain (DTMC)
that we define M0, where the states are determined by the possible
values of vk and the the transition probabilities by the PMF of the
computation time U(c).
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This model permits a fine-grained modelling of the behaviour of
the reservation, which can be difficult to treat. One possible sim-
plification is to collapse into a single state all the states for which
δk 6 D = NTs, which correspond to the values of vk such that
vk 6 NQs. In the modified DTMC M, the state S is defined as

S =

0 if vk 6 NQs

i if vk = NQs + i

.

By using Equation (6.1), the transition probabilities for this DTMC
can be written as follows:

pi,j =


P {vk+1 6 NQs|vk = i+NQs} , if j = 0

P {vk+1 = j+NQs|vk 6 NQs} , if i = 0, j 6= 0

P {vk+1 = NQs + j|vk = i+NQs} , if i 6= 0, j 6= 0

=


P {ck 6 NQs − i} = FU(NQs − i), if j = 0

P {ck = j+NQs} = U(j+NQs), if i = 0, j 6= 0

P {ck = NQs + j− i} = U(j− i+NQs), if i 6= 0, j 6= 0.

.

Let π̃k be the (infinite) vector where the ith element represent the probabil-
ity associated with the ith state of the DTMC M after k step of evolution
starting from an initial probability vector π̃0. The recursive equation for the
evolution of π̃k is π̃k+1 = π̃kP. The objective of our analysis can now be
stated in more precise terms: we aim for the computation of a lower bound for
the first element of the steady state probability vector π̃ = limk→∞ πk. As long as
we are not interested in the distribution of δk inside the region δk 6 NQs,
collapsing into one state all the values of vk smaller than NQs does not
introduce any error because such states do not have influence on the next
state (max{0, vk −NQs} = 0 in Equation (6.1)).

The probability matrix P resulting from the computation above has the
structure in Figure 6.2, where

an−h = pi, i+h−2 = U(h− 2+NQs)

bi = pi,0 = FU(NQ
s − i),

and n is the maximum integer such that U(NQs + h− 2) = 0 for all h > n,
and H is the minimum integer such that U(NQs + h− 2) = 0 for all h < H.
This structure is recursive: from row H− 1 onwards, each row is obtained by
shifting the previous one to the right and inserting a 0 in the first position.
We now introduce a useful notation for sub-matrices.

Definition 2. Let P = (pi, j) be a matrix whose elements are pi,j. Let α =

{ii, i2, . . . , in} β = {ji, j2, . . . , jm} two ordered set of indexes. The sub-matrix
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P =



b0 an−3 . . . a0 0 . . .

b1 an−2 an−3 . . . a0 . . .

b2 an−1 an−2 an−3 . . . a0 . . .

. . . . . . . . . . . . . . . . . .

bH−1 an+H−4 . . . an−2 an−3 . . . a0 . . .

an+H−2 an+H−3 an+H−4 . . . an−2 an−3 . . . a0 . . .

0 an+H−2 an+H−3 ah+H−4 . . . an−2 an−3 . . . a0 . . .

.

.

.
.
.
.

.

.

.
. . .



,

Figure 6.2: Structure of the transition matrix

P[α,β] is a matrix whose elements are pih,jt for all h ∈ [1, n] t ∈ [1, m] Likewise,
if π is a vector, by π[α] we will denote the sub-vector whose elements are πih for all
h ∈ [1, n].

From the properties of our transition matrix we can prove the following
result [30].

Theorem 2. Let H the minimum integer such that U(NQs + h− 2) = 0 for all
h < H. Let F be defined as max {n− 2,H}. Define α (i, F) the set {i, . . . , i+ F− 1}
and β (j, F) the set {j, . . . , j+ F− 1}. The transition matrix P is block-tri-diagonal
with the following structure:

C A0 0 0 . . .

A2 A1 A0 0 . . .

0 A2 A1 A0 . . .

0 0 A2 A1 . . .
...

...
...

...
. . .


(6.2)

where A0 = P[α(F,F),β(0,H)], A2 = P[α(0,F),β(F,F)], A1 = P[α(F,F),β(F,F)],
C = P[α(0,F),β(0,F)], are square matrices of order H.

This structure is known in the literature as a Quasi-Birth-Death Process
(see appendix) and lends itself to an efficient numeric solution.

6.1.2 Numeric Solution

As long as any element in the diagonal is nonnull the QBDP with transition
matrix in Figure 6.2 is aperiodic. Under reasonable conditions on the ele-
ments of the matrix, it is also positive recurrent and irreducible. In this case
the process has a unique steady state solution for the probability π̃ given
by the solution of the infinite system of linear equations π̃ = π̃ · P, π̃ · 1 = 1,
where π̃ · 1 denotes the scalar product between π̃ and an infinite vector con-
sisting of unitary elements and P has the structure in Equation (6.2). LetH be
the order of the diagonal block A0,A1,A2,C. We partition the vector π̃ into
sub-vectors π̃[α(hH,H)] of length H (see Definition 2), where α (hH, H) is the
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index set {hH, . . . , hH+H− 1}. For simplicity, we will denote π̃[α(hH,H)] by
π̃(h).

The computation of the stationary probability can be set up in the follow-
ing recursive way:

π̃(0)(C− I) + π̃(1)A2 = 0

π̃(h−1)A0 + π̃
(h)(A1 − I) + π̃

(h+1)A2 = 0 for h > 1∑
h>0

π̃(h) · 1 = 1,
(6.3)

where π̃(h) · 1 denotes the scalar product between the sub-vector π̃(h) and
a vector consisting the repetition of H unitary elements. A property of the
QBDP is that this recursion can be solved as shown in the following result:

Theorem 3. [31] If the QBD is positive recurrent, then there exists a non-negative
matrix R of order H such that: 1) π̃h) can be computed as π̃(h+1) = π̃(h)R for h >

0, which is equivalent to

π̃(h) = π̃(0)Rh (6.4)

2) π̃(0) is given by

π̃(0) =
[
0 0 . . . 0 1

]
M+

M =

C+ RA2 − I (I− R)−1


1
...

1


 (6.5)

where M+ denotes the Penrose pseudo-inverse and I denotes the identity matrix.
Matrix M can be found by solving the following non-linear matrix equation:

R = A0 + RA1 + R
2A2. (6.6)

This result offers a straight path to the computation of π̃ once we have a
solution for Equation (6.6) (and hence to the computation of the probability
of meeting the deadline).

The solution of Equation (6.6) can be computed by several algorithms
available in the literature [32]. The one that we used is the simple iterative al-
gorithm reported in Algorithm 1. The algorithm can be easily implemented
in Matlab or in C using a numeric library (for our implementation we used
the Meshach library). Even using a very small tolerance (ε = 10−5) the
algorithm converges in a few iterations (in the order of 10).

http://www.cs.uiowa.edu/∼dstewart/meschach/meschach.html
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Algorithm 1 R computation

1: procedure ComputeR(A0,A1,A2, ε)
2: Rt = [0]
3: Rnew = A0 + RtA1 + R

2
tA2;

4: while ||Rt − Rnew||∞ > ε do
5: Rt = Rnew
6: Rnew = A0 + RtA1 + R

2
tA2;

7: end while
8: R = Rnew
9: end procedure

6.2 an analytical bound

6.2.1 A conservative simplification

While the numeric algorithm presented in the previous section is generally
applicable, the analytical bound requires a simplification of the DTMC. To
be applicable in our context, such simplification has to be “conservative” in
the computation of the probabilities. The notion of conservative approxima-
tion that we shall adopt here relies on the following order relation:

Definition 3. Given two random variables X and Y, with CDFs Fx(x) and Fy(y),
X � Y iff ∀x Fx(x) 6 Fy(x).

When this definition is applied to the evolution of the variable δk in Equa-
tion (6.1), it plainly means that in the modified system the low values of the
δk will have a greater probability and so will be the probability of the first
element of the probability vector (associated with the deadline).

A conservative approximation can be found by replacing ck with a new
variable c ′k whose distribution is given by:

U∆(c
′) =

0 if c ′ mod ∆ 6= 0∑k∆
c=(k−1)∆+1U(c

′) otherwise,
(6.7)

where ∆ is chosen as an integer submultiple of Qs. By using this new vari-
able in Equation (6.1), we can apply the same line of reasoning of Diaz et
al. [12] and show that the resulting system is conservative approximation of
our system in the sense described above. In particular, we obtain a DTMC
whose transition matrix has again the structure in Figure 6.2. In the follow-
ing we will implicitly refer to a system where the conservative approxima-
tion technique just described has been applied for some value of the scaling
factor ∆.

It can be shown that the model thus obtained is a generalization of the
model used in previous work [33, 30], which can be recovered by setting
∆ = Qs.
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6.2.2 Computation of the bound

As discussed earlier, the steady state probability of meeting the deadline can
be found by computing the first element π̃(0) of the π̃ that solves the equa-
tion π̃ = π̃P, where P is the infinite transition matrix in Figure 6.2 associated
with the DTMC M. Let us consider a new DTMC whose transition matrix is
given by:

P
′
=



b0 an−3 an−4 . . . a1 a0 0 . . .

b1 an−2 an−3 . . . a2 a1 a0 . . .

0 a
′
n−1 an−2 . . . a3 a2 a1 . . .

0 0 a
′
n−1 an−2 . . . a3 a2 . . .

0 0 0 a
′
n−1 an−2 . . . a3 . . .

...
...

...
...

. . . . . . . . .


, (6.8)

and a
′
n−1 = b1 = an−1 + an + . . .+ aN+H. The underlying idea is very

simple. Consider the DTMC associated with matrix P. The terms on the
left of the diagonal are transition probabilities toward states with a smaller
delay than the current one. By using P

′
we lump together all these transi-

tions to the state immediately on the left of the current one. For instance, if
the current state corresponds to 4 server periods of delay, its only enabled
transition to the left will be to the state associated with delay 3. The effect
of deleting the transition toward states associated with smaller delays is to
slow down the convergence toward small delays, thus decreasing the steady
state probability of these states.

Let π represent the steady state probability of this system. We can easily
show the following:

Lemma 2. Let Γ be a random variable representing the state of the DTMC evolving
with transition matrix P and Γ

′
be a random variable describing the state of the

DTMC associated with the transition matrix P
′
. If both DTMC are irreducible

and aperiodic, then at the steady state Γ
′

is a conservative approximation of Γ :
Γ

′ � Γ , according to Definition 3. Therefore, for the first element of the steady state
probability, we have π̃(0) > π(0).

Proof. We prove the Lemma by showing that if for some k we have

∀h,
h∑
i=0

π̃
(i)
k >

h∑
i=0

π
(i)
k (6.9)

then at step k+ 1 the same holds:

∀h,
h∑
i=0

π̃
(i)
k+1 >

h∑
i=0

π
(i)
k+1. (6.10)
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P ′A =


b0 b0 +an−3 b0 +

∑n−3
i=n−4 ai . . . b0 +

∑n−3
i=1 ai 1 1 . . .

b1 b0 b0 +an−3 . . . b0 +
∑n−3

i=2 ai b0 +
∑n−3

i=1 ai 1 . . .

0 b1 b0 . . . b0 +
∑n−3

i=3 ai b0 +
∑n−3

i=2 ai b0 +
∑n−3

i=2 ai . . .

.

.

.
. . .

. . .
. . .



PA =



b0 b0 +an−3 b0 +
∑n−3

i=n−4 ai . . . b0 +
∑n−3

i=1 ai 1 1 . . .

b1 b0 b0 +an−3 . . . b0 +
∑n−3

i=2 ai b0 +
∑n−3

i=1 ai 1 . . .

b2 b1 b0 . . . b0 +
∑n−3

i=3 ai b0 +
∑n−3

i=2 ai b0 +
∑n−3

i=2 ai . . .

.

.

.
. . .

. . .
. . .

bH−1 bH−2 bH−3 . . . b0 +
∑n−3

i=m ai b0 +
∑n−3

i=m−1 ai b0 +
∑n−3

i=m−2 ai . . .

bH bH−1 bH−2 . . . b0 +
∑n−3

i=m+1 ai b0 +
∑n−3

i=m ai b0 +
∑n−3

i=m−1 ai . . .

0 bH bH−1 . . . b0 +
∑n−3

i=m+2 ai b0 +
∑n−3

i=m+1 ai b0 +
∑n−3

i=m ai . . .

0 0 bH . . . b0 +
∑n−3

i=m+3 ai b0 +
∑n−3

i=m+2 ai b0 +
∑n−3

i=m+1 ai . . .

.

.

.
. . .

. . .
. . .



Figure 6.3: P ′A and PA matrices, for bH = an+H−2.

Define δ(i) = π(i)k − π̃
(i)
k . Condition (6.9) can be written as:

∀h,
h∑
i=0

δ(i) 6 0. (6.11)

We first notice that (6.11) can be written as:

(πk − π̃k)A = δA 6 0,

where

A =


1 1 1 . . . 1 . . .

0 1 1 . . . 1 . . .

0 0 1 . . . 1 . . .
...

...
. . . . . . . . .

 ,

and the 6 operator applies element–wise. Likewise, (6.11) can be written in
matrix form as:

(πk+1 − π̃k+1)A = (πkP
′ − π̃kP)A,

where P ′A and PA are represented in Figure 6.3, for bH = an+H−2. This
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leads to,

∀h,
h∑
i=0

π
(i)
k+1 =

=

h+1∑
j=i

π
(j)
k bj−i + b0

h−1∑
j=0

π
(j)
k +

n−3∑
l=0

al h−n+2+l∑
j=0

π
(j)
k


∀h,

h∑
i=0

π̃
(i)
k+1 =

=

h+H∑
j=h

π̃
(j)
k bj−h + b0

h−1∑
j=0

π̃
(j)
k +

n−3∑
l=0

al h−n+2+l∑
j=0

π̃
(j)
k

 .

(6.12)

Since we want to show that (6.10) holds whenever (6.9) is verified, we
can conservatively neglect the elements from i+ 2 to i+H in the first
term

∑h
i=0 π̃

(i)
k+1 in (6.12). Thereby, (6.12) is conveniently written in

terms of δ(i), i.e.,

∀h,
h∑
i=0

(
π
(h)
k+1 − π̃

(h)
k+1

)
6

ε(h) =

h+1∑
j=h

δ(j)bj−h + b0

h−1∑
j=0

δ(j) +

n−3∑
l=0

al h−n+2+l∑
j=0

δ(j)

 .

(6.13)

The claim is proved if, for every h, (6.9) implies ε(h) 6 0. The latter
statement, in turn, is true if the following set of linear constraints
does not have feasible assignments in δ(0), δ(1), . . . , δ(h):

δ(0) 6 0

δ(0) + δ(1) 6 0

. . .

δ(0) + δ(1) + · · ·+ δ(h+1) 6 0

ε(h) > 0

(6.14)

This equation can be written as:

∀h, Ã


δ(0)

. . .

δ(h+1)

 6 0, cT


δ(0)

. . .

δ(h+1)

 > 0 (6.15)
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where

Ã =


1 0 0 . . . 0

1 1 0 . . . 0
...

...
...

...
...

1 1 1 . . . 1


and

c =



1
...

1

b0 +
∑n−3
l=1 al

...

b0 +
∑n−3
l=n−4 al

b0 + an−3

b0

b1



,

whereas the first h− n+ 2 are equal to 1. To prove the infeasibility
of this assignment we can use Farkas Lemma, which states that the
system in Equation (6.15) is unfeasible if and only if the following is
feasible:

∀h, ÃTy− c = 0, y > 0 (6.16)

This condition can be written as



1 1 1 . . . 1

0 1 1 . . . 1

0 0 1 . . . 1
...

...
...

...
...

0 0 0 . . . 1


y =



1
...

1

b0 +
∑n−3
l=1 al

...

b0 +
∑n−3
l=n−4 al

b0 + an−3

b0

b1


y > 0
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which leads to:

y(h+1) = b1

y(h) = b0 − b1

y(h−1) = b0 + an−3 − b0 + b1 − b1 = an−3

y(h−2) = b0 + an−3 + an−4 − b0 + b1 − b1 − an−3 = an−4

...

y(h−n+2) = a1

y(h−n+1) = 1− b0 −

n−3∑
l=1

al = a0

y(h−n) = 1− b0 −

n−3∑
l=0

al = 0

y(h−n−1) = y(h−n−2) = . . . = 0.

Since all ai and bi are non-negative, the condition of Farkas Lemma
is verified if y(h) = b0−b1 > 0, i.e., b0 > b1, which is obviously true.
This concludes the proof.

In view of this Lemma, we can concentrate on the system associated to the
transition matrix P ′. We first notice that the equilibrium condition πP ′ = π

produces the following:

π(0)b0 + π
(1)a ′

n−1 = π(0),

π(0)an−3 + π
(1)an−2 + π

(2)a ′
n−1 = π(1),

π(0)an−4 + π
(1)an−3 + π

(2)an−2 + π
(3)a ′

n−1 = π(2),

. . .

n−3∑
i=max(n−2−j,0)

π(j+i−(n−2))ai + π
(j)an−2 + π

(j+1)a ′
n−1 = π(j)

. . .

We can conveniently rewrite the above condition as the following re-
cursion:

π(1) =

n−2∑
j=1

αjπ
0,

π(k) =

1+ n−2∑
j=1

αj

π(k−1) − n−2∑
j=max(n−k,1)

π(k−n+j)αj,

(6.17)

where αj =
aj−1
a ′
n−1

> 0. The equalities of (6.17) hold for ∀k > 1.
Now we can determine the closed form solution using the follow-

ing theorem:
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Theorem 4. Consider a QBDP described by the transition probability ma-
trix (6.8), in which both a0 and a ′

n−1 differ from zero. Assume that the
matrix

W =



0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
. . . . . .

...
...

0 0 0 . . . 1 0

0 0 0 . . . 0 1

0 −α1 −α2 . . . −αn−2 1+
∑n−2
j=1 αj


, (6.18)

has distinct eigenvalues. Then, there exists a limiting probability distribution
given by

π(0) = lim
k→+∞π(0)(k) = max{1−

n−2∑
j=1

(n− 1− j)
aj−1

a ′
n−1

, 0} =

= max{1−
n−2∑
j=1

(n− 1− j)αj, 0},

(6.19)

while the generic terms π(j), with j > 0, are given by (6.17).

The proof of the theorem is deferred to Section 6.2.3. We complete
the section with a few remarks.

The first one is on the intuitive meaning of the result just proposed.
Consider a DTMC with transition matrix as in Figure 6.2 and assume
for simplicity n = 5 and H = 0. The analytical bound in Theorem 4 is
given by:

π(0) = 1− 3α1 − 2α2 −α3

= 1− 3 a0
a5+a4

− 2 a1
a5+a4

− a2
a5+a4

In the computation of the steady state probability π(0) we have to con-
sider every possible transition to the right (i.e., increasing the delay)
that the system can make. For each of them, we compute the ratio
between the probability of taking the transition and the aggregate
probability of moving to the left (decreasing the delay). In the final
computation each of this ratio has a state proportional to the delay in-
troduced. In our example, a0 corresponds to three steps to the right
and is weighted by the factor 3.

The second remark is on the assumptions of the theorem on the
eigenvalues of the matrix W. This assumption is merely technical (it
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is instrumental to the proof of the result) and it is not restrictive. In all
our examples (both synthetically generated and using data from real
applications), it is respected. Artificial examples that violate it could
probably be constructed but they are not relevant in practice.

The application of this result to our context can be formalised in
the following:

Corollary 5. Consider a resource reservation used to schedule a periodic
task and suppose that the QBDP produced respects the assumption in Theo-
rem 4. Then the probability of respecting the deadline is greater than or equal
to:

π(0) = 1−

n−2∑
j=1

(n− 1− j)
U ′
∆(N+n− j− 1)Qs)∑N−1

h=0 U
′
∆(hQ

s)
(6.20)

This corollary descends from the following facts: 1) the DTMC
described by the transition matrix P in Figure 6.2 is a conservative
approximation of the system, 2) Lemma 2 provides an analytically
tractable approximation of the DTMC with transition matrix P, 3)
Theorem 4 contains the analytical bound.

6.2.3 Proof of Theorem 4

The rationale behind this proof of Theorem 4 is the following. First
the equilibrium point of the QBDP is expressed as an iterative system.
The evolution in the iteration step represents the connection between
the probabilities of the different states. Using this representation, we
can express all the steady–state probabilities as a function of the prob-
ability π(0) to stay in first state. Then, π(0) is found by imposing that
the probabilities sum to 1, coming up with its closed form expression.

Proof. We start noticing that having a0 and a ′
n−1 different from zero

implies that the Markov chain of the QBDP is irreducible and aperi-
odic. Therefore, it is guaranteed that the probability of the different
states converge to a value [34]. Notice, however, that this does not
necessarly imply the existence of a steady–distribution (the probabil-
ity distribution could gradually shift toward increasing values of the
state without ever reaching the equilibrium).
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Let us first consider the case that the QBDP is also positive recur-
rent and so it admits indeed a unique steady state distribution. The
first step of the proof is then to introduce the following vector:

Π0 =


π(0)

...

π(n−1)

 ,

whose dimension is equal to n. It is possible to exploit (6.17) and (6.18)
to derive the equilibrium of the QBDP as the dynamic of the following
system:

Π1 =


π(1)

π(2)

...

π(n)

 =WΠ0, Πj =


π(j)

π(j+1)

...

π(n−1+j)

 =WΠj−1 =WjΠ0,

from which one has that the sum of the probabilities of the equilibrium of
the QBDP is 1 and it is given by

[
1 0 0 . . . 0

] +∞∑
i=0

Πi = 1. (6.21)

The characteristic polynomial of the lower-left companion form matrix W
reported in (6.18) is simply given by

P(λ) = λn −

1+ n−2∑
j=1

αj

 λn−1 + n−2∑
j=1

αjλ
j, (6.22)

from which it is trivially derived that the matrix W has two simple eigen-
values in β0 = 0 and β1 = 1 and additional n− 2 eigenvalues βi. Therefore

P(λ) = λ(λ− 1)

n−1∏
i=2

(λ−βi). (6.23)

Since each βi verifies P(βi) = 0, the following relation holds

βn−1i −

1+ n−2∑
j=1

αj

βn−2i +

n−2∑
j=1

αjβ
j−1
i = 0⇒

1+

n−2∑
j=1

αj = βi +

∑n−2
j=1 αjβ

j−1
i

βn−2i

.

(6.24)
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Since all the eigenvalues are assumed simple, we can use of the spectral
decomposition of the matrix W: W =

∑n−1
i=0 βiGi, where the spectral projectors

Gi are given by

Gi =
ViLi
LiVi

= NiViLi,

and Li and Vi are respectively the left and right eigenvectors associated with
the i-th eigenvalue βi.Ni is the normalization constant needed to satisfy the
spectral projectors basic properties, i.e., GiGj = 0 for i 6= j and GiGi = Gi.
As a consequence,

Π1 =WΠ0 =

n−1∑
i=0

βiGiΠ0 =

n−1∑
i=1

βiNiViLiΠ0,

and, in general,

Πj =W
jΠ0 =

n−1∑
i=0

β
j
iGiΠ0 =

n−1∑
i=1

β
j
iNiViLiΠ0. (6.25)

Therefore, by combining (6.25) and (6.21), one has the following relation

n−1∑
i=1

+∞∑
j=0

β
j
iv

(0)
i NiLiΠ0 = 1, (6.26)

where v(0)i is the first element of the right eigenvector. Given the expression
of the matrix W, the left and right eigenvectors associated to βi, with i =
1, . . . ,n− 1, have the following expression

Li =

[
0 −α1βi . . . −

∑n−3
j=1 αjβ

j−1
i

βn−3i

−

∑n−2
j=1 αjβ

j−1
i

βn−2i

1

]
,

Vi =

[
1

βn−1i

1

βn−2i

. . . 1
β2i

1
βi

1

]T
.

(6.27)

In order to prove the theorem, we have to first notice that the existence of
the equilibrium implies |βi| < 1 for i = 2, . . . ,n− 1. To this end, we rely on
the following propositions.

Proposition 1. The product between the left eigenvector Li and the initial condi-
tion Π0 is given by

LiΠ0 = βn−2i (βi − 1)π
(0).

Proof. Consider (6.17) and substitute the constraint given in (6.24) to get

π(n−k) =

(
βi +

∑n−2
j=1 αjβ

j−1
i

βn−2i

)
π(n−k−1)−

n−1−k∑
j=1

αj+k−1π
(j−1), (6.28)
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for k = 1, . . . ,n− 2. Since the explicit form of LiΠ0 is

LiΠ0 = π(n−1) −

n−2∑
k=1

∑k
j=1 αjβ

j−1
i

βki
π(k), (6.29)

substituting (6.28) in (6.29) for k = 1 yields to

LiΠ0 = βiπ
(n−2) −

n−3∑
k=1

∑k
j=1 αjβ

j−1
i

βki
π(k) −

n−2∑
j=1

αjπ
(j−1).

Therefore, by recursively substituting (6.28) for k = 2, . . . ,n− 2 into (6.29),
one finally get

LiΠ0 = βn−2i π(1) −

n−2∑
j=1

αjβ
(j−1)
i π(0),

that, recalling (6.17) yields to

LiΠ0 =

βn−2i

n−2∑
j=1

αj −

n−2∑
j=1

αjβ
(j−1)
i

π(0).

Finally, substituting again (6.24), the proof follows.

Proposition 2. The initial condition Π0 is orthogonal to the left eigenvector asso-
ciated to β1 = 1.

Proof. The proof follows from Proposition 1.

Proposition 3. The normalization factor Ni is given by

Ni =
βn−3i

(βi − 1)
∏n−2
j6=i
j=1

(
βi −βj

)
Proof. Before going into the details of the proof, we need the following defi-
nitions.

Definition 4. Ck = {c(k,i)}, where c(k,i) is the i-th string of k elements in B =

{β2, . . . ,βn−1}, without repetitions. Therefore, #Ck =

(
n− 2

n− k

)
and Ck = ∅ for

k > n− 2 and k < 1.

From Definition 4, follows that C1 = ∅.

Definition 5. For all J ∈ Ck,
∏
βJ = βj1βj2 · · ·βjk .

Definition 6. Even though #Cn−1 = 0, we impose
∑
J∈Cn−1

∏
βJ = 1.

Definition 7. C
βi
k stands for: “the set of strings of length k in Ck containing

the element βi”. Similarly, Cβik stands for: “the set of strings of length k in Ck

not containing the element βi”.
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Corollary 6. From Definition 7 follows that Ck = C
βi
k ∪ C

βi
k .

We are now in a position to prove this proposition. From (6.23), we have

P(λ)

λ
= (λ− 1)

n−1∏
i=2

(λ−βi) = λ
n−1 +

n−1∑
j=1

Sj(β)λ
j−1, (6.30)

where, using Definition 5, Definition 6 and Definition 7,

Sj(β) = (−1)n−j

 ∑
J∈C

βi
n−j

∏
βJ +

∑
J∈C

βi
n−j−1

∏
βJ+

+
∑

J∈C
βi
n−j

∏
βJ +

∑
J∈C

βi
n−j−1

∏
βJ

 , S
βi
j (β) + S

βi
j (β),

(6.31)

where βi is a generic eigenvalue of B. Since

βiS
βi
j (β) = βi(−1)

n−j

 ∑
J∈C

βi
n−j

∏
βJ +

∑
J∈C

βi
n−j−1

∏
βJ

 =

= −S
βi
j−1(β),

(6.32)

it follows that

S
βi
j−1(β) +βiS

βi
j (β) = 0, (6.33)

and

Sj−1(β) +βiSj(β) = S
βi
j−1(β) +βiS

βi
j (β). (6.34)

Moreover, by (6.31) and Definition 6 follows that S1(β) = S
βi
1 (β), since

S
βi
1 (β) = 0.

By (6.22), (6.30), and Definition 6, we have the following relations

Sn−1(β) = −

1+ n−2∑
j=1

αj

 = −

(
1+

n−2∑
i=1

βi

)
,

Sj(β) = αj, j = 1, . . . ,n− 2.

Therefore, recalling (6.34),

αjβ
j−1
i +αj+1β

j
i = β

j−1
(
αj +βiαj+1

)
=

= βj−1
(
Sj(β) +βiSj+1(β)

)
= βj−1

(
S
βi
j (β) +βiS

βi
j+1(β)

)
,
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and, by virtue of (6.33),

n−2∑
k=1

(n− 1− k)αkβ
k−1
i =

n−2∑
j=1

S
βi
j (β)βj−1i . (6.35)

Without loss of generality, consider the n− 1-th eigenvalue βn−1. Since it
is a simple root of P(λ), we define the new polynomial

P?(λ) =
P(λ)

λ(λ−βn−1)
,

for which we have

P?(λ) = (λ− 1)

n−2∏
i=2

(λ−βi),

and, using (6.30),

P?(λ) = λn−2 +

n−2∑
j=1

Ŝj(β)λ
j−1,

where theˆhighlights the fact that the strings are of maximum length n− 3

instead of n− 2. By evaluating P?(λ) for λ = βn−1, we have

P?(βn−1) = β
n−2
n−1 +

n−2∑
j=1

Ŝj(β)β
j−1
n−1,

and, multiplying both sides by βn−1,

βn−1P
?(βn−1) = β

n−1
n−1 +

n−2∑
j=1

βn−1Ŝj(β)β
j−1
n−1.

It has to be noted that Ŝj(β) = S
βn−1
j+1 (β) since for S the additional symbol

βn−1 is also considered (hence, j → j+ 1). Therefore, making use of (6.32),
βn−1Ŝj(β) = −S

βn−1
j (β). Therefore, using (6.35),

βn−1P
?(βn−1) = β

n−1
n−1 −

n−2∑
j=1

S
βn−1
j (β)βj−1n−1

= βn−1n−1 −

n−2∑
k=1

(n− 1− k)αkβ
k−1
n−1.
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To prove the Proposition, we have only to recall the closed form of the left
and right eigenvector reported in (6.27), which yields to

Ni =
1

1−
∑n−2
k=1

∑k
j=1αjβ

j−1
i

βki

1

βn−1−ki

=
βn−1i

βn−1i −
∑n−2
k=1 (n− 1− k)αkβ

k−1
i

.

Finally, noticing that by definition

βn−1P
?(βn−1) = βn−1(βn−1 − 1)

n−2∏
i=2

(βn−1 −βi),

the proof follows.

We can now state the following proposition.

Proposition 4. The existence of the equilibrium for the QBDP implies |βi| < 1 for
i = 2, . . . ,n− 1.

Proof. If the QBDP has an equilibrium then (6.26) holds true. The unitary
eigenvalue β1 = 1 does not play any role in the summation of (6.26) in
view of Proposition 2. Next, suppose that there exists one or more |βi| >

1. From Equation (6.26) it follows that it may be LiΠ0 = 0, Ni = 0 or
Π0 = 0. However, the first two conditions are excluded by Proposition 1
and Proposition 3, while using (6.25) it follows that Π0 = 0 ⇒ Πj = 0, ∀j.
Therefore,

π(j) = lim
k→+∞π(j)(k) = 0, ∀j,

and, since the Markov chain is irreducible and aperiodic, the QBDP does
not have a unique stationary distribution [34], which contradicts the hypoth-
esis.

Proposition 4 yields

n−1∑
i=2

v
(0)
i Ni

1−βi
LiΠ0 = 1, (6.36)

which is a more useful version of (6.26). Indeed, (6.26) states that Π0 =

f(π(0)) while (6.36) gives a straightforward way to describe it in closed form,
as summarised in the following.

Proposition 5. The value of π(0) is given by

π(0) =

n−1∏
i=2

(1−βi).
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Proof. By substituting into (6.36) the results of Proposition 1 one gets

π(0) = −
1∑n−1

i=2
Ni
βi

,

and then by making use of Proposition 3

π(0) = −
1∑n−1

i=2
βn−3i

(βi−1)
∏n−1
j 6=i
j=2

(βi−βj)

. (6.37)

Without loss of generality, let us consider the k-th eigenvalue βk and its as-
sociated term, which can be expressed using the partial fraction decomposition,
i.e.,

βn−3k

(βk − 1)
∏n−1
j6=k
j=2

(
βk −βj

) =

(−1)n−1∏n−1
i=2 (βi − 1)

+
∑
i 6=k
i=2

βn−3i

(βk −βi)(βi − 1)
∏n−1
j6=i
j6=k
j=2

(
βi −βj

) .

Plugging the partial fraction expansion in (6.37), one gets

π(0) = −(−1)n−1
n−1∏
i=2

(βi − 1) =

n−1∏
i=2

(1−βi).

The result of Proposition 5 can suitably rewritten in the following way

n−1∏
i=2

(1−βi) = 1+

n−2∑
i=1

(−1)n−i−1
∑

J∈Cn−i−1

∏
βJ = 1+

n−2∑
i=1

Wi(β),

where

W1(β) = −S1(β),

W2(β) = − (S1(β) + S2(β)) ,

. . .

Wk(β) = −

k∑
j=1

Sj(β),
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and, recalling that Sj(β) = αj, for j = 1, . . . ,n− 2, finally yields to

π(0) = 1+

n−2∑
i=1

Wi(β) = 1−

n−2∑
i=1

i∑
j=1

Sj(β) =

= 1−

n−2∑
i=1

i∑
j=1

αj = 1−

n−2∑
j=1

(n− 1− j)αj,

(6.38)

as desired.
At this point we have proved that if the QBDP has an equilibrium, this is

given by (6.38) and by the recursion of (6.17). Now consider the case in
which QBDP does not have a stationary distribution at all. In such a case,
recalling the block-tridiagonal matrix representation of (6.2), the following
theorems are of interest.

Theorem 7. [34] An irreducible Markov chain has a stationary distribution if and
only if all its states are positive recurrent.

Definition 8. Assume A = A0 +A1 +A2 is irreducible. Then, by the Perron-
Frobenius Theorem, there exists a unique vector µ > 0 with µT1 = 1 and µTA =

µT . The vector µ is called the stationary probability vector of A, while 1 is a column
vector whose elements are all equal to one.

Theorem 8. [35] The QBDP is transient if µTA21 < µTA01, null recurrent if
µTA21 = µTA01 and positive recurrent if µTA21 > µTA01.

By Theorem 7, the QBDP does not have an equilibrium if and only if
it has at least one state that is transient or null recurrent. Since A is irre-
ducible, one immediately has that µT = 1

n1T , from which it is possible to

explicitly compute µTA21 =
a ′
n−1
n and µTA01 = 1

n

∑n−2
j=1 (n− 1 − j)aj−1.

From Theorem 8, the QBDP does not have an equilibrium if and only if
µTA21 6 µTA01 or, equivalently,

a ′
n−1

n
6
1

n

n−2∑
j=1

(n− 1− j)aj−1,

This is exactly the condition in which Equation (6.38) produces π(0) 6 0. We
finally notice that, even if the QBDP does not have an equilibrium, it is still
irreducible and aperiodic, from which follows that a limiting probability
exists, which is given by

π(j) = lim
k→+∞π(j)(k) = 0, ∀j,

An this ends the proof of Theorem 4.

A useful corollary of the proof above is the following:

Corollary 9. If the QBDP does not have a stationary distribution, there
exist at least one eigenvalue |βi| > 1.
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Figure 6.4: Probability of respecting the deadline obtained when using dif-
ferent algorithms to compute the probability to respect a dead-
line, as a function of the maximum server budget and of the
scaling factor.

6.3 experimental validation

The presented approach was validated in two different ways. First,
the probabilistic deadline was computed using synthetic distributions,
to compare the degree of conservativeness of our bounds w.r.t alter-
native methods and using different values for the scaling factor ∆ (see
Equation (6.7)). Second, we evaluated the method in a more realistic
situation using traces extracted from real applications.

6.3.1 Synthetic Distributions

We considered a periodic task with period P = 40ms and random exe-
cution time changing according to different probability distributions.
We computed the probability of deadline miss probability by using
the numeric method illustrated in Section 6.1.2 (denoted as QBDM in
the sequel) and the analytical bound (denoted as ANALYTICAL) for
different values of the scaling factor ∆. For comparison purposes, we
also compared the results with the one obtained using pre-existing
method [36] (denoted as GAMMA) and with the exact solution of the
eigenvector problem (denoted to as EXACT). As a first example, we
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have analysed the behaviour of the system for a beta distribution with
parameters α = 2 and β = 3 and for different choices ofQs The server
period was set to Ts = P/2 = 20ms (N = 2). As an example, Figure 6.4
shows the different probabilities computed for a We have restricted
to a range of Qs that produces a probability of meeting the deadline
greater than 90%. This is because smaller probabilities would make
little practical sense for a system required to provide an “acceptable”
Quality of Service. A first consideration is that the QBDM method ap-
proaches very closely the exact solution for small values of ∆ (the plot
with ∆ = 1

5Q
s is always within 1%). The quality of the QBDM bound

decreases monotonically with ∆. This is in accordance with our expec-
tations since resampling with a coarser granularity increases the level
of pessimism. Different considerations apply to the analytical bound.
In this case, we have two effects contrasting each other. On the one
hand, the reduction of ∆ decreases the pessimism as for the QBDM
method. On the other, it increases the pessimism in view of the simpli-
fication described in Section 6.2.1. In this situation it is reasonable to
expect a bad performance for ∆ = Qs and for ∆ very small, while the
optimal choice stays in between. The comparison with the GAMMA
bound does not produce univocal results. The analytical methods and
the GAMMA bound outperform each other for different values of ∆
and for different choices of Qs. In this particular example, the ana-
lytical solution has worse performance than the GAMMA bound for
∆ = Qs,∆ = 4

5Q
s, ∆ = 1

5Q
s and better for ∆ = 2

5Q
s,∆ = 3

5Q
s. As a

final remark, a reasonably good choice for ∆ is in a neighborhoud of
1
2Q

s (between 2
5Q

s and 3
5Q

s).
To verify the validity of these consideration in a more general case,

we have generated 1000 random distribution functions for the peri-
odic task. We have set the server period to Ts = 10000 µs (N = 4),
with a budget Qs ranging in [1.7E(c)N ; 2E(c)N ] and a scaling factor ∆
ranging in [0.2Qs; 1.0Qs]. Let p denote the probability computed with
the EXACT method and p ′

A denote the approximation computed us-
ing the algorithm A. We define the approximation absolute error in-
troduced by algorithm A as EA = p − p ′

A. In Figure 6.5 we report
the approximation error (for different values of the ratio between
the assigned bandwidth Qs/Ts and the average utilisation) averaged
through the 1000 different distributions. In accordance with the re-
sults obtained for the single beta distribution, the QBDM method
with ∆ = 1

5Q
s and the quality of the QBDM method changes mono-

tonically with ∆. For the analytical bound, the comparison with the
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Figure 6.5: Approximation error

GAMMA method is not univocal again (the winner is not the same for
allQs and for all ∆) and the best choice is in the neighborhoud of 12Q

s.
The spread between the different choices of ∆ is much smaller than
for the single beta distribution. This is because the optimal choice is
different for each distribution and the average flattens the results. We
believe it interesting to report also the computation time required for
the different methods for this set of experiments. The data (average
and width of the confidence interval) are reported in Table 6.1. The
closed form solution is obviously the fastest: its computation time is
at least two order of magnitude below any other method and it is not
significantly affected by ∆ (for this reason we just report one value).
The computation time for the QBDM method, on the contrary, has a
strong dependency from the size of the model (which is determined
by ∆. However, even for relatively small values of ∆, it remains well
below the one of pre-existing methods. The GAMMA bound pays its
generally good accuracy and its general applicability with a larger
computation time. The EXACT method is reported for the sake of
comparison, but in fact it is not applicable for systems of reasonable
size.
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method average 95% interval
1
5∆ NUMERIC 7667.47 µs [4993.58-10341.35] µs
2
5∆ NUMERIC 1366.75 µs [970.75-1762.76] µs
3
5∆ NUMERIC 611.78 µs [458.57-764.98] µs
4
5∆ NUMERIC 356.59 µs [281.01-432.16] µs
5
5∆ NUMERIC 241.70 µs [202.14-281.26] µs
ANALYTICAL 5̃.08 µs [4̃.99-5̃.16] µs
GAMMA 21333.63 µs [20626.06-22041.21] µs
EXACT 107191302.70 µs [101909558.63-112473046.76] µs

Table 6.1: Time computation for the different techniques

6.3.2 Real application

To test the method (and the validity of its underlying assumptions) in
a real–application, we have considered a vision program that tracks
a line a stream captured by a webcam (this is used in a larger control
application). The computation was carried out using an embedded
board (a Beagle Board). We have collected several execution traces
of a reasonable length (about 600 seconds of execution). The appli-
cation period was P = 40000 µs; the server period and the budget
were chosen as Ts = 20000 µs and Qs = 3000µs. Such traces have
been used in the RTSIM scheduling simulator to estimate the experi-
mental probability of meeting the deadline for the assigned choice of
parameters. The result will be denoted below as RTSIM-Trace. What
is more, we have derived the experimental probabilities and used
them in our methods neglecting the correlation structure of the pro-
cess and assuming it to be IID. As in the experiments reported in the
previous section, we applied the QBDM and the ANALYTICAL meth-
ods for several choices of ∆ and compared them with the GAMMA
bound and with the experimental probability. For the sake of com-
pleteness, we also computed the experimental probability reported
by RTSIM using an IID process having the PMF estimated from the
trace (this will be denoted as RTSIM-PMF). The results are shown in
Figure 6.6, where we consider two different traces collected in dif-
ferent environmental conditions. For the first trace (top half of the
figure) the GAMMA bound produces a very accurate bound, while
in the second (bottom half of the figure) the QBDM and ANALYTI-
CAL method have a better performance. As far as the QBDM method

www.beagleboard.org
http://rtsim.sssup.it/

www.beagleboard.org
http://rtsim.sssup.it/
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is concerned, we observe the usual monotonicity with respect to ∆,
while for the ANALYTICAL method the best choice for ∆ is again
very close to 50% of Qs. The plots reported by the ANALYTICAL
method and by QBDM overlap for large values of ∆.

Another important remark is on the impact of the assumption that
underlie the application of our method, and in particular of the com-
putation process being IID. In this particular example this assump-
tion does not have a strong impact. Indeed, the distance between the
experimental probability obtained with the trace (RTSIM–Trace) and
with the PMF generated neglecting the correlation structure (RTSIM–
PMF) is very small and cannot be appreciated with the scale of the
plots. We can hardly claim any generality for this remark. For other
applications assuming an IID process can have a significant impact.
In our previous work [33] we made a more extensive investigation on
this aspect on a large set of applications and the result was that the er-
ror introduced is almost always acceptable. Nevertheless, accounting
for the correlation structure of the process is certainly an important
future direction for research.
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D I S C U S S I O N O F M O D E L S

We already shows some numbers about the difference between the
models in Chapter 6, in this chapter we discuss it at higher level. First
of all, the methods presented in Chapter 5 and Chapter 6 assume that
the processes are IID. Since in real life this assumption can be very
difficult to claim, this section try to give some information about that
simplification.

7.1 iid : independent and identically distributed ran-
dom variables

To evaluate the impact of approximating a real process as an IID pro-
cess, we have tests on 78 executions of a mix of real applications.
In particular, we considered video encoding and decoding tasks and
video tracking tasks (used in visual control applications). To avoid an
overcommitment to a specific architecture, some of the applications
were executed on an INTEL based personal computer and some of
the applications were executed on an ARM based embedded board
(the beagle board: www.beagleboard.org). For each application, we
collected the traces of the execution times and derived their distribu-
tions, which were used as input data for the execution of the different
algorithms. In doing this step, the correlation structure of the process
has been discarded and the process has been assumed IID.

Our goal is to evaluate the impact of discarding the correlation
structure (independently of the algorithm used for the computation
of the probability). To this end, for each application we generated a
synthetic application, with IID computation times distributed with
the same distribution as the “real” application. The synthetic applica-
tion was executed and its deadline misses recorded for the different
values of the budget. In Figure 7.1, we show the error EIID reported
in this way. The plot contains the worst performance and the best
performance obtained on the entire set of applications. The former is
obtained by the tracking application in a particular configuration; the
latter was obtained by an MPEG decoder. The performance of all the
tested application lies somewhere in between these two lines. In the
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dependently by the bound used to estimate the deadline respect
probabilities).

method robust IID small arr. pessimistic pessimism comp.

Simulation N Y Y N 0 -

Exact N N Y Y 1 4

Gamma Y N N Y 2 3

QBDM N N N Y 2 2

Analytical N N N Y 3 1

Table 7.1: Comparison between methods

x –axis, we report the ratio 2Qs/E[c] between the average utilisation
of the task and the assigned bandwidth. For values of the bandwidth
close to the average of the utilisation, the IID approximation produces,
in the worst case, a very conservative estimation of the probability (er-
ror close to 70%). In the best case, the error remains very limited for
every value of the bandwidth.

7.2 summary of results

In this section we want to compare the characteristics of the differ-
ent methods. The schema in Figure 7.2 resumes the evolution of this
dissertation. The new methods introduced are compared with the lit-
erature methods in Table 7.1 show the different characteristics of the
possible methods to predict the behaviour a resource reservation sys-
tems. The methods considered are:

• Simulation: this analysis is done using the RTSIM simulator,
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Resource reservation

Exact model

Approximate model

Approximate solution
ANALYTICAL

Exact Solution
QBDM

Approximate solution
GAMMA

Figure 7.2: Schema of the used approaches

• Exact: this analysis in [4],

• Gamma: the analysis presented in Chapter 5,

• QBDM: the numeric solution presented in Chapter 6,

• Analytical: the analytical solution described in Chapter 6.

The parameters are:

• robust: the method can be used without the complete knowledge
of the execution times. The answer is Yes or No

• IID: the method can considers not only PMF but also trace of
executions. The answer is Yes or No.

• small arrivals: the method can be used for application in which
the inter-arrival time is very small, even with burst of arrivals.
The answer is Yes or No.

• pessimistic: in order to give guarantees, the method is pessimistic
respect to the real probability. The answer is Yes or No.

• degree of pessimism: the difference between the real probability
and the pessimistic probability obtained with the method. Lower
is the number, lower is the pessimism in the average case.

• complexity: the complexity in term of time and memory. Lower
is the number, lower is the complexity.
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As expected, from Table 7.1, we can notice that greater is the pes-
simism of the method, lower is the complexity. This is true in the
average case but in the single experiment it is possible and frequent
that the analytical solution gives result equal or very similar to the
others. For the methods presented in this dissertation, for an offline
computation is possible to use all of this methods and simply choose
the best one. For online computation, the most indicated methods are
the analytical solution, and in case of less strict timing constraints
also the QBDM method can be applied.
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R E S E RVAT I O N - B A S E D I N T E R R U P T S C H E D U L I N G

In this chapter is presented an example in which resource reserva-
tion can be very useful to improve the performance of the system.
Unfortunately the techniques explained in the previous chapters are
not suitable for this example. A new model must be created specific
for this application.

8.1 introduction

A recent trend in real-time research is to support complex applica-
tions for which the restrictive assumptions made by the standard real-
time theory are not applicable. For example, when real-time applica-
tions heavily interact with the external environment (reading or writ-
ing large amount of data from hardware devices), the classical model
of real-time tasks as independent activities, activated with a given
temporal pattern, and using only one type of resources (typically the
CPU) is at risk of losing fundamental details. Indeed, I/O operations
(and hence the execution of device drivers) can generate timing prob-
lems of unexpected harshness when they are not adequately handled
and taken into account.

From the scheduling point of view, device drivers can introduce
very long priority inversions, potentially disrupting the temporal guar-
antees. Therefore, a necessary condition to process device informa-
tion in real-time system is to execute them inside schedulable en-
tities (typically threads). In the past, this solution has been mainly
used in µkernel based systems or in small real-time kernels. More
recently, even widely used OS kernel such as Linux offered the possi-
bility of executing interrupt handlers in dedicated threads, by apply-
ing a real-time patch to the kernel. The recent adoption of interrupt
threads in the main stream Linux kernel (starting from version 2.6.30)
raises strong expectations on the future popularity of these technique
among developers.

Parts of this Chapter are going to appear in:
N. Manica, L. Abeni, L. Palopoli, “Reservation-based interrupt scheduling,” Real-
Time and Embedded Technology and Applications Symposium (RTAS), 2010 16th IEEE

67
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In this new context, a very important issue is the impact of the
scheduling policy on the device drivers performance. As of today,
interrupt threads are frequently scheduled with a fixed priority as-
signed in empirical ways. The result is often unsatisfactory: the sys-
tem has to be designed with a conservative assignment of resources
and temporal guarantees are difficult to provide. Hence, there is a
pressing need for theoretical models for interrupt threads scheduling
enabling well-founded choices of the scheduling parameters.

The scheduling analysis of interrupt threads cannot be carried out
using the standard approaches because many hardware devices have
finite queues which impose an upper bound on the number of pend-
ing interrupts (e.g., interrupts awaiting the CPU allocation). This situ-
ation is not normally considered in the standard real-time scheduling
theory. Finite queues are obviously dealt with in the framework of
queueing theory [37], but this type of analysis is not directly con-
cerned with real-time constraints.

Besides the difficulty in modelling the scheduling problem, the use
of standard scheduling solutions could be inadequate in many situa-
tion of interest. For instance Modena and other [38] showed that by
using fixed priority it is impossible to guarantee both the timing con-
straints of real-time tasks and the performance of hardware devices.
In other words, we can easily find situations in which there does not
exist a priority assignment allowing us to respect the constraints of
real-time tasks and to maintain an acceptable value of throughput
for non real-time applications at once. An example of this kind is
discussed in Section 8.3.1.

The adoption of advanced scheduling solution such as reservation-
based scheduling [39, 4, 5] allows us to overcome this difficulty, as
shown in Section 8.5.2. The basic idea of reservation-based interrupt
scheduling is that each interrupt thread can be reserved a fraction of
the CPU time. This approach (as compared to fixed priorities) enables
a finer grained control of the CPU. In this framework, the scheduling
design problem becomes identifying the correct choice of the reser-
vation parameters. Standard techniques for dimensioning these pa-
rameters [7] require that the inter-arrival time of the threads be large
enough compared to the reservation period (which is one of the pa-
rameters to choose). However, in the case of interrupt threads, this
assumption fails because the inter-arrival time of interrupts can be
very small.
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To cope with this problem, two novel analysis techniques (the first
one deterministic and the second one stochastic) have been devel-
oped to identify a correct choice of the reservation parameters so that
the number of pending interrupts can be controlled. Finally, an ex-
tensive experimental validation carried out on a real implementation
is presented that validates the theoretical analysis and proves that
the approach based on interrupt threads and resource reservations is
actually viable in real-life situations and it enables a good trade-off
between predictability and throughput.

8.1.1 Related Work

The effects of device drivers on user space applications have been
previously analysed mainly considering network devices and the net-
work subsystem. Some modifications of such subsystem have been
previously proposed in order to improve the network throughput, or
to eliminate the so called “receive livelock” [40, 41, 42], but, exclud-
ing some notable exceptions [43, 44], real-time aspects have not been
investigated.

Interrupt handlers have been traditionally executed inside dedi-
cated threads in µkernel environments [45, 46], and the idea of schedul-
ing device drivers have been previously considered also in real-time
theory [47]. Reservation-based scheduling has also been proposed in
the past as a way to serve interrupt threads [48]. However, none of
the papers mentioned above provide a theoretical analysis of a sys-
tem including interrupt threads. Moreover, they require heavy modi-
fications to the kernel structure, while the approach proposed in this
chapter is based on a widely-supported kernel (Linux) plus two fairly
maintainable patches [49, 50].

More recently, interrupt threads scheduling in Linux has been eval-
uated in the context of real-time scheduling [51, 52]. However, the ex-
periments and analysis presented in such works are limited to fixed
priorities, and fixed priorities do not seem to provide enough flex-
ibility to properly serve device drivers without affecting real-time
tasks [38].
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8.2 definitions and background

Real-time systems are traditionally modelled as sets Γ = {τi, i ∈ N}

of real-time tasks τi, where a real-time task is a stream of jobs (or
instances) Ji,j. Job Ji,j becomes ready for execution (arrives) at time
ri,j, it requires a computation time ci,j, and finishes at time fi,j. Each
job Ji,j is also characterised by a deadline di,j that is respected if
fi,j 6 di,j, and is missed if fi,j > di,j. Task τi is often described by a
Worst Case Execution Time (WCET) Ci = maxj{ci,j} and a Minimum
Interarrival Time Pi = minj{ri,j+1 − ri,j}.

In this chapter, we will use reservation based scheduling: each task
τi is served by a reservation RSVi = (Qsi , T

s
i ), meaning that a time

Qsi is reserved to τi in a period Tsi ; Qsi is called maximum budget, and
Tsi is called server period. Resource reservations present the great ad-
vantage of providing temporal isolation between tasks, meaning that
the worst case behaviour of task τi is not affected by the other tasks
running in the system. As a result, the performance of each task can
be analysed in isolation, without considering all the other tasks; this
is very important from the analysis point of view, because a system
containing IRQ threads can be very complex, and including all the
possible interrupts and tasks in the model can make it intractable.

The reservation mechanism used in the section is the Constant
Bandwidth Server (CBS) (Chapter 4).

8.3 the problem

Based on the system model introduced in Section 8.2, which only
considers applications using one hardware resource (the CPU), the
schedulability of a real-time task set (i.e., the fact that the tasks’ dead-
lines are respected) can be guaranteed by using a proper scheduling
algorithm and an admission test. The admission test can be carried
out in different ways (utilisation-based test, response time analysis,
or time demand analysis) and is traditionally based on Ci and Pi.
However, this model is simplistic because it does not consider the
time consumed by the OS kernel to handle interrupts raised by the
hardware devices connected to the system. For example, consider a
traditional kernel, in which hardware interrupts are generally served
in two phases:

The word “task” is used to identify a schedulable entity, being it a thread or a
process.
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• a short Interrupt Service Routine (ISR) is invoked as soon as an in-
terrupt fires and is responsible for acknowledging the hardware
interrupt mechanism, postponing the real data transfer and pro-
cessing to a longer routine, to be executed later;

• a longer routine (soft interrupt, or bottom half) is executed later
to correctly manage the data coming from the hardware device.

ISRs generally execute with interrupts disabled, while soft interrupts
always execute with interrupts enabled and are served when switch-
ing from kernel space (where ISRs run) to user space (where user
programs are executed). Therefore, soft interrupts can be preempted
by ISRs.

Both ISRs and soft interrupts have a higher priority than user tasks,
and can “steal” execution time from them. Such “stolen time” can be
accounted for in real-time guarantees by modelling it as a blocking
time Bi (the admission tests mentioned above can be enhanced to ac-
count the blocking times). This implies that a low-priority task can
affect the schedulability of high-priority tasks by causing the genera-
tion of a large number of hardware interrupts.

This problem is generally solved in real-time kernels by scheduling
the interrupt handlers: for example, the Real-Time Preemption patch
(RT-preemtp) [49] introduces real-time features in the Linux kernel
and transforms ISRs and soft interrupts in kernel threads (the hard
IRQ thread and the soft IRQ thread), that are schedulable entities han-
dled by the kernel scheduler in the same way as user tasks (so, IRQ
threads can have lower priorities than real-time tasks, and can be pre-
empted by them). Hence, some new tasks τi are added to the system,
representing the IRQ threads which are used to serve hardware in-
terrupts. The arrival times ri,j of these new tasks correspond to the
times when the interrupts fire.

This solution can present a slightly higher overhead, and requires
a more careful synchronisation, but has the advantage to correctly
accounting the handler code in a real-time system (that is, the CPU
time required to execute the handler can be correctly accounted in
order not to break the system’s guarantees).

8.3.1 A Motivational Example

The possibility to schedule interrupt handlers (provided by IRQ threads)
permits to reduce the interference from hardware devices (by giv-
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Figure 8.1: CDF of the response times for a τ = (20ms, 50ms) real-time task
in a standard Linux kernel with high network traffic.
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Figure 8.2: CDF of the response times for a τ = (20ms, 50ms) real-time task
in a Preempt-RT kernel with high network traffic and τ’s priority
higher than the IRQ thread priority.

ing user-space real-time tasks higher priorities than interrupts). How-
ever, identifying a correct scheduling policy for this type of threads
is largely an open issue, as discussed in the following example. On a
Linux based systems (see Section 8.5 for a more detailed description
of the experimental setup), we have executed a periodic real-time task
τ = (C = 20ms,P = 50ms) along with a non real-time task receiving
UDP packets from the network (the netperf benchmark has been
used for this purpose, for it generates the desired workload and eval-
uates the network throughput).

When the real-time task runs alone on an unmodified Linux ker-
nel, the maximum measured response time is around 20ms (corre-
sponding to the WCET) as expected. When running the network
server alone on an unmodified Linux kernel and using small pack-
ets (around 192 bytes), the measured network throughput is around
74Mbps. However, when the two tasks are executed simultaneously
the worst-case response time of the real-time task grows to more than
150ms (even if the program receiving UDP packets is executed as a

http://www.netperf.org
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non real-time task), as shown in Figure8.1 (representing the Cumula-
tive Distribution Function - CDF - of the response times).

When executing the two tasks on a preempt-RT kernel, it is possi-
ble to set the priority of the IRQ threads so that the real-time guaran-
tee for τ is not jeopardised: if the priority of the IRQ threads is less
than τ’s priority, then the worst-case response time is still very close
to 20ms (see Figure8.2). However, the network throughput drops to
48Mbps. As one would expect, the network throughput returns to
74Mbps if the priority of the network IRQ threads is raised to a value
higher than the priority of τ, but the response time of the latter is in
this case out of control. These results confirm the outcome of some
previous work [38] in showing that fixed priorities do not allow to
find good trade-offs between the real-time performance of user-space
tasks and the throughput of hardware devices.

8.3.2 Reservation-Based Scheduling of Interrupt Threads

The work presented in this chapter addresses the problem of find-
ing good latency/throughput trade-offs by using reservation-based
scheduling for the IRQ threads (in particular, a CBS with hard reser-
vation behaviour is used).

The CBS parameters Qsi and Tsi must be properly dimensioned to
avoid dropping too many interrupts. For example, some hardware
devices have a limited amount of memory for incoming data, and
interrupt handlers are used to get data from this buffer. If too many
interrupts are pending, the buffer can overflow and some input data
can be lost (in the next sections, a network card which can buffer at
most Nc input Ethernet frames will be considered). Hence, the CBS
used to schedule the IRQ thread for the device must be dimensioned
to control the number of pending interrupts.

A typical strategy for dimensioning a reservation is to choose a
reservation period Ts smaller than the minimum inter-arrival time of
the served task. Such a choice allows one to model a reservation as a
queue and to use standard tools for Markov Chain analysis to com-
pute the probability distribution of the response time. Unfortunately,
this approach is not viable in our setting: indeed, two interrupts can
even be separated by an interval of time of a few micro-seconds. On
the other hand, choosing a value for Ts smaller than 1ms leads to an
unacceptable scheduling overhead. As discussed next, this consider-
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Figure 8.3: Worst case reservation behaviour for periodic interrupt arrivals.

ation induces a different modelling technique than the one typically
used in these cases.

8.4 theoretical analysis

In this section, the problem of correctly dimensioning the CBS param-
eters for serving an IRQ thread is addressed, starting with a determin-
istic model and then providing a stochastic analysis of the system.
As already explained in Section 8.3, thanks to the temporal isolation
property provided by the CBS it is possible to analyse a single IRQ
thread in isolation; hence, the analysis can be developed considering
one single interrupt type.

8.4.1 Deterministic Analysis

In the deterministic case, which is simpler to analyse, interrupts are
assumed to fire with a minimum inter-arrival time P, and the inter-
rupt handler is assumed to need a maximum time C to serve an inter-
rupt request. Based on such assumptions, the worst case situation is
represented by periodic interrupt requests (with period P), with the
interrupt hander serving each one of them in a constant time C.

In this situation, the IRQ thread can be modelled as a periodic
task τ = (C,P) and properly dimensioning a CBS (Qs, Ts) so that no
interrupt is lost is quite simple. For the sake of simplicity and without
loss of generality, Ts is set as a multiple of P. In a server period n = Ts

P

interrupts arrive, requiring Ts

P C units of time to be served. Hence, the
CBS must reserve at least Qs = Ts

P C unit of time every server period
Ts. Moreover, there is an upper bound to the server period, due to
the maximum number of pending interrupts Nc that can be queued.
In fact, in the worst case the CBS can provide the Qs time units at
the end of the server period, as shown in Figure 8.3; hence, in the
first Ts −Qs time units of the server period the IRQ thread will not
execute, and Ts−Qs

P pending interrupts will be queued. This number
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should be smaller than the maximum number of pending interrupts
Nc.

As a result, the conditions expressed in Equation 8.1 must be satis-
fied:  Qs

Ts > C
P

Ts−Qs

P < Nc

(8.1)

As noticed above, this kind of conservative analysis can be applied
even if the IRQ thread is not periodic (and/or its execution times are
not constant), by substituting C with the WCET of the IRQ thread,
and P with the minimum inter-arrival time between interrupts. How-
ever, assuming this kind of worst case conditions for the workload
can be very pessimistic, often resulting in over-provisioning and in a
suboptimal system utilisation.

To evaluate the degree of conservativeness of Equation 8.1 for real-
world workloads, a stochastic model (offering a fine grained descrip-
tion of the system evolution) has been developed.

8.4.2 Stochastic Analysis

A stochastic analysis of a reservation-based system has already been
performed in the past [7, 4, 6], but such previous approaches can-
not be used in this context for the reasons explained at the end of
Section 8.3. Hence, a new stochastic model has been developed.

The model is constructed assuming that the inter-arrival time be-
tween the hth and (h + 1)th interrupts is a stochastic process and
that the time needed for serving the hth interrupt is also a stochastic
process. Both these stochastic processes are assumed to be indepen-
dent and identically distributed (i.i.d.). However, the stochastic analy-
sis presented in this chapter differs from the previous ones because it
is based on a discrete-time model, where all the times are multiple of
a small time interval ∆. The system evolution is necessarily observed
at each time interval ∆ (this difference respect to the previous works
allows to handle inter-arrival times smaller than Ts and to count the
number of pending jobs).

Applying standard modelling techniques based on Discrete Time
Markov Chains (DTMC) it is possible to find the probability of drop-

To be more correct, the resulting stochastic process is semi-Markovian.
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ping an interrupt. The state of the IRQ thread can be described by a
5-tuple Si = (x,h, z, t,q) where:

• x is the number of the pending interrupts;

• h is the time to the arrival of the next interrupt;

• z is the residual execution time of the currently served interrupt;

• t is the time elapsed from the beginning of the last server pe-
riod;

• q is the residual budged of the CBS.

Each variable is described by an integer number of time intervals ∆,
therefore the number of states is numerable. Since the system cannot
queue more than Nc pending interrupts, x 6 Nc. All other variables
are also bounded, hence the number of states is finite (i.e., model is
finite).

The transitions between the states are driven by 1) the evolution of
time (which has an impact on h, z, t), 2) the arrival of a new interrupt
(that has an impact on x), 3) the allocation of the CPU by the sched-
uler (which decreases q, z and, when the current task finishes, may
determine a decrease of x). The probability to execute a task served
by a CBS at time t is estimated by Equation 8.2

Exec(q, t) :=

1 with probability q
Ts−t

0 otherwise

(8.2)

(remember that q is the current budget and t is the time elapsed
from the beginning of the period). At the beginning of a reservation
period (when the deadline is postponed), the task has a probability to
execute equal to Qs/Ts. After 1 time unit, the execution probability
becomes (Qs − 1)/(Ts − 1) if the task executed, or Qs/(Ts − 1) if the
task did not execute. Note that if the task does not execute for Ts −
q time units, then it is guaranteed to execute in the next time unit
(Exec(q, t) gives an execution probability equal to 1). This function
models the properties of a hard CBS, so that a task executes for Qs

time units every Ts time units.
The resulting set of states transitions is clearly very large and com-

plex, and due to space constraints it is not possible to fully describe
it. However, the most important transitions are described in the fol-
lowing.
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The initial state of the system is S0 = (0, 0, 0, 0, 0). A set of states
with x = −1 is used to model the situation in which an interrupt is
lost (an interrupt arrived when there already are Nc pending inter-
rupts).

An interrupt is completely served (and the corresponding job of the
IRQ thread finishes) when z arrives to 0; then, if there is a pending
interrupt it can be served. Hence, a new job for the IRQ thread is gen-
erated, and its execution time is computed based on the Probability
Distribution Function (PDF) of the service times U(c) = P{ci,j = c}.

In the same way, a new interrupt fires (and becomes ready to be
served or pending) when h arrives to 0; in this case, the arrival time
of the next interrupt is computed based on the PDF of the inter-arrival
times V(δ) = P{ri,j+1 − ri,j = δ}.

The CBS budget is recharged at the next scheduling deadline (the
end of the current server period) according to the hard reservation
behaviour, so when t arrives to Ts its value is reset to 0 and q is
recharged to Qs.

As previously mentioned, the complete model is much more com-
plex than this (there are many state transitions that have not been
mentioned above), and the complete transition function between Si
and Si+1 is described in Figure 8.9 and Figure 8.10, at the end of this
chapter.

The presented model permits to compute the probability to drop
an interrupt, which is equal to the steady state probability of the
(−1,h, z, t,q) states. Such probability can be computed by finding the
steady state probabilities through some numerical tool: in practice, if
π(n) is a vector containing the state probabilities at time n∆ (that is,
the ith component of π(n) is probability that at time n∆ the system
is in the ith state - remember that the states are numerable), then
π(n + 1) = π(n)M, where M is a transition matrix containing the
values from the model presented in Figure 8.9 and 8.10. The searched
steady state probabilities are given by π = limn→∞ π(n), and can be
found by numerically solving the equation π = πM (that is, finding
the eigenvector with eigenvalue 1 for the matrix M).

Although M can be a very large matrix, it has a sparse structure
(the non-null terms are a small percentage of the elements of the
matrix). Therefore, the computation is tractable appropriate tools for
sparse matrix (in particular we used the sparse matrices libraries from
the Trilinos Project).

http://trilinos.sandia.gov
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Figure 8.4: Interrupt loss probability for P = 4, C = 2, Nc = 4 and Ts = 2Qs

as a function of Qs.

8.4.3 Selected Results

The proposed model has been numerically solved using different
PDFs for the execution and inter-arrival times, and different (Qs, Ts)
settings, verifying that the results are consistent with Equation 8.1.

A first set of results shows that if the PDFs of the execution and
inter-arrival times are deterministic, then the results exactly match the
deterministic analysis. To achieve this result, the PDF of the execution
times has been set to U(2) = 1, and the PDF of the inter-arrival times
has been set to V(4) = 1 (hence, interrupts are periodic with period
P = 4 and each interrupt needs 2 time units to be served). Then, when
solving the eigenvector problem mentioned above it turns out that
the probability to drop an interrupt is > 0 if Qs/Ts < 0.5. If, instead,
Qs/Ts > 0.5, things are more interesting and the probability to drop
an interrupt depends on the period. Consistently with Equation 8.1, if
Qs > Ts −NcP = Ts −Nc · 4 then such probability is 0. For example,
Figure 8.4 shows the probability to drop an interrupt when Ts = 2Qs

and Nc = 4 and it is possible to see that interrupts are not lost for
Qs < 2Qs − 4 · 4⇒ Qs < 16.

The effect of the maximum number of pending interrupts Nc is
also shown in Figure 8.5, which plots the interrupt loss probability
for a (20, 40) CBS as a function of Nc. Finally, Figure 8.6 shows how
the interrupt loss probability depends on both Qs and Ts.
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Figure 8.5: Interrupt loss probability for P = 4, C = 2, Qs = 20, and Ts = 40
as a function of Nc.

The advantages of using a stochastic model become even more visi-
ble when execution and inter-arrival times are not fixed. For example,
consider a simple example with V(δ) : V(4) = 0.2,V(5) = 0.8 and
U(c) : U(2) = 0.3,U(3) = 0.7 (hence, the maximum load is 3/4 = 0.75).
The maximum amount of pending interrupts is assumed to beNc = 3.
According to the deterministic analysis, the reserved fraction of CPU
time must be Qs/Ts > 0.56250, and the maximum budget must be
Qs > Ts − 3 · 4 = Ts − 12. However, Table 8.1 shows that even if these
two conditions are not respected the probability to drop an interrupt
can be very low.

8.5 implementation and experiments

An implementation of the CBS scheduler for Linux [50] has been used
to schedule the IRQ threads in the 2.6.21.4-rt12-cfs-v17 of the RT-
Preempt for the Linux kernel. This patch transforms both the ISRs
and the bottom halves in kernel threads (the hard IRQ threads and
the soft IRQ threads), and the CBS scheduler is used to handle such
threads (in the experiments reported in this section, a hard reserva-
tion behaviour has been used, to leave some execution time to non-
real-time userspace tasks).
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The experiments reported in this section focus on the network card
as a hardware device, because it is a good example of a high-throughput
device (up to 100Mbps) for which it is possible to control the input
load (this is needed for checking the consistence between the theo-
retical analysis and the experimental results). In particular, the test
system used a “National Semiconductor Corporation DP83815” eth-
ernet card (handled by the “natsemi dp8381x” Linux driver), which
has an input ring buffer able to store up to 32 ethernet frames. This
means that at most 32 ethernet IRQs can be simultaneously pend-
ing without dropping any input packet (Nc = 32). The test system
is based on an Intel Pentium 4 CPU running at 1700MHz, equipped
with 256MB of RAM.

To generate a controlled load on the network card, the test machine
has been connected to a traffic generator through a cross network
cable. The traffic generator is another PC based on RT-Preempt, which
is able to send UDP packets according to a specified distribution of
the inter-packet times.

8.5.1 Validation of the Theoretical Model

First of all, the theoretical analysis developed in Section 8.4 has been
validated through a set of experiments, by using the traffic generator
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to send fixed-size UDP packets to the test system according to a speci-
fied PDF of the inter-packet times, shown in Table 8.2. The amount of
time needed by the IRQ thread to receive an ethernet frame has then
been measured by using accurate CPU accounting and measuring
the execution time for receiving a large number of ethernet frames. A
large number of runs revealed that the amount of CPU time needed
by the IRQ thread to receive an ethernet frame does not depend on
the frame size and is between 22µs and 25µs.

Then, the number of network card IRQs in the test machine has
been measured by reading /proc/interrupts (to check if it matched
the number of ethernet frames sent by the traffic generator), and the
number of correctly received packets has been measured by using the
netstat command. Based on these two measurements, it has been
possible to compute the fraction of lost ethernet frames (equal to the
fraction of dropped ethernet IRQs), displayed in the second column
of Table 8.3.

The stochastic model has then been used to compute the packet
loss probability (using a PDF of the execution times consistent with
the numbers measured above), and the results are displayed in the
third column of Table 8.3. These results show that there is a good
match between the theoretical model and the experiments, and that
the stochastic model is pessimistic (it always gives a probability to
drop an interrupt that is slightly higher than the one measured in
the real experiments). This last property is important for providing
stochastic real-time guarantees. Note that the deterministic model
can be used by considering the minimum inter-arrival time between
interrupts (100µs) and the maximum interrupt service time (25µs).
The results obtained by using Equation 8.1 indicate that only the
(300µs, 1000µs) configuration results in no lost interrupt, but do not
provide any information about the amount of lost interrupts. On the
other hand, the stochastic model shows that some other configura-
tions can also be useful (for example, (3000µs, 10000µs).

8.5.2 Back to the Motivational Example

The analysis presented in the previous section can be used to assign
the reservation parameters so that the problem with netperf and
small network packets showed in Section 8.3.1 is solved. After esti-
mating the PDF of the inter-arrival times of the packets generated by
netperf and of the computation time, we used the stochastic model



82 reservation-based interrupt scheduling

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 24000  26000  28000  30000  32000  34000  36000  38000  40000  42000  44000  46000

P
{r

 >
 t
}

t (us)

Response Times CDF

(20ms, 50ms)
(5ms, 10ms)

Figure 8.7: CDF of the response times for a τ = (20ms, 50ms) real-time task
in a standard Linux kernel with high network traffic, when serv-
ing τ and the IRQ thread with CBS.

to compute the packet loss probability when a (4ms, 10ms) CBS is
used for the network hard IRQ thread. The resulting probability was
0. The experiments confirmed this result, showing a network through-
put of 74Mbps (which is equal to the network throughput measured
when the network hard IRQ thread is scheduled with the maximum
fixed priority). In the same experiment, we used a (20ms, 50ms) CBS
to serve the periodic real-time task, and the worst case response time
has been measured as 46ms (which is consistent with the expecta-
tions: since Qs = 20ms is larger than the WCET, the worst case re-
sponse time is expected to be less or equal than Ts = 50ms[4]).

The worst case response time of the periodic task can be reduced
by using a smaller server period and reserving a larger fraction of
the CPU time to the periodic task. To verify this hypothesis, the
experiment has been repeated scheduling the periodic task with a
(5ms, 10ms) CBS, and using a (2ms, 10ms) CBS for the IRQ thread (a
fraction of the CPU time has been left unused for the netperf server,
or for non real-time activities or other IRQ threads). The stochastic
model allowed to compute a probability to drop an interrupt equal to
17.8%, and the throughput measured in the experiment was 65Mbps
(a drop rate of about 12% w.r.t. the previous 74Mbps). The differ-
ence between the expected 17.8% and the measured 12% is probably
due to the slight divergence of the IRQ thread from the theoretical
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model, since it used to serve more than one interrupt at time, with a
polling mechanism. The expected worst case response time was less
than dC/QseTs = 40ms, and indeed a worst case response time of
36ms has been measured.

Figure 8.7 shows the CDFs of the real-time task’s response times
measured in the two experiments described above (using a (20ms, 50ms)
CBS or a (5ms, 10ms) CBS to serve the real-time task).

Summing up, the previous two examples show how the CBS can be
used to find latency/throughput trade-offs, and the proposed theoret-
ical model can be used to analyse the CBS parameters assignments.
Practical experiments on real hardware show a reasonable consistence
with the theoretical analysis.

8.5.3 Controlling the System Performance

After verifying the correctness of the theoretical model, some addi-
tional experiments have been performed to verify that the proposed
approach allows to control the real-time and I/O performance. This
evaluation has been performed by first verifying that if

∑
iQ

s
i/T

s
i 6 1

then the worst case response times of a task τi can be controlled by
modifying its CBS parameters Qsi and Tsi , and are not affected by
the other tasks running in the system and by the I/O load. For this
purpose, some periodic tasks τi = (Ci,Pi) have been run, measuring
the worst case response times. Then, netperf has been used to evalu-
ate the network throughput between the traffic generator and the test
system when the IRQ threads are scheduled through the CBS (and
to check that the worst case response times of the periodic tasks are
not affected). The test focused on the network hard IRQ thread (run-
ning the ISR for the network card) and UDP traffic, and the results
for 2 different packet sizes (1024 bytes and 512 bytes) are displayed
in Figure 8.8.

From the figure it is possible to notice that when the reserved CPU
time is enough the network throughput using IRQ threads and CBS
is comparable with the network throughput of a standard Linux ker-
nel (quite near to the theoretical maximum). Hence, the proposed ap-
proach does not affect the network performance too badly. It is also
worth noting that the network throughput is linearly proportional to
Qs/Ts, and that the scaling factor depends on the packet size. This
last result is consistent with the fact that each ethernet frame needs
an almost-constant time to be processed, independently from the size,
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Figure 8.8: Network throughput as a function of the maximum budget Qs

(Ts = 10ms).

as previously measured (in particular, note that the slope of the curve
for packet size = 512 is about half of the other curve, showing that the
CPU time needed by the IRQ thread is about double).

In the following experiment, a stream of UDP packets has been sent
from the traffic generator to the test system, with a fixed inter-packet
time P = 100µs, measuring the times when the packets were received
by a user-space real-time application running on the test system. The
difference between the reception times of two consecutive packets (ex-
pected to be 100µs) depends on the (Qs, Ts) scheduling parameters
of the IRQ thread. The results showed that if the fraction of CPU time
reserved to the ethernet IRQ thread is not enough, then the times
between the reception of two consecutive packets can be very large.
But if enough CPU time is reserved, then the inter-packet times are
very stable (more stable than for an unpatched Linux kernel). The
maximum inter-packet times are reported in Table 8.4.

8.6 conclusions and future work

This chapter presented the application of reservation-based schedul-
ing (more specifically, the CBS algorithm) to interrupt threads. Two
analysis techniques have been presented for correctly dimensioning
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the reservation parameters, and the analysis has been validated through
a set of experiments on a real-time version of the Linux kernel.

As a future work, the stochastic model will be simplified (the cur-
rent model is quite complex, and the number of states and transitions
can probably be reduced), and a continuous-time model will be tested
as an alternative. Moreover, it will be extended to analyse more com-
plex situations (chains of interrupt threads, etc...). Additional experi-
ments will also be performed using different hardware and multiple
cooperating resources.
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(1, j,0,0,Qs) (0,0,0,0,0) with prob V(j) (1)

(0,h− 1,0, t+ 1,q) (0,> 1,z, t,q) (2)

(Nc − 1,h− 1,0, t+ 1,q− 1) (−1,> 1,1,< Ts − 1,q) with prob P{Exec(q, t) = 1} (4)

(Nc ,h− 1,z, t+ 1,q) (−1,> 1,1,< Ts − 1,q) with prob P{Exec(q, t) = 0} (5)

(−1, j,z− 1, t+ 1,q− 1) (−1,1,> 1,< Ts − 1,q) with prob P{Exec(q, t) = 1}V(j) (6)

(−1, j,z, t+ 1,q) (−1,1,> 1,< Ts − 1,q) with prob P{Exec(q, t) = 0}V(j) (7)

(Nc ,h− 1,z− 1, t+ 1,q− 1) (−1,> 1,> 1,< Ts − 1,q) with prob P{Exec(q, t) = 1} (8)

(Nc ,h− 1,z, t+ 1,q) (−1,> 1,> 1,< Ts − 1,q) with prob P{Exec(q, t) = 0} (9)

(Nc , j,0, t+ 1,q− 1) (−1,1,1,< Ts − 1,q) with prob P{Exec(q, t) = 1}V(j) (10)

(−1, j,z, t+ 1,q) (−1,1,1,< Ts − 1,q) with prob P{Exec(q, t) = 0}V(j) (11)

(Nc − 1,h− 1,0, t+ 1,q− 1) (−1,> 1,0,< Ts − 1,q) with prob P{Exec(q, t) = 1}U(1) (12)

(Nc ,h− 1,k− 1, t+ 1,q− 1) (−1,> 1,0,< Ts − 1,q) with prob P{Exec(q, t) = 1}U(k) (13)

(Nc ,h− 1,z, t+ 1,q) (−1,> 1,0,< Ts − 1,q) with prob P{Exec(q, t) = 0} (14)

(Nc , j,0, t+ 1,q− 1) (−1,1,0,< Ts − 1,q) with prob P{Exec(q, t) = 1}U(1)V(j) (15)

(−1, j,k− 1, t+ 1,q− 1) (−1,1,0,< Ts − 1,q) with prob P{Exec(q, t) = 1}U(k)V(j) (16)

(−1, j,z, t+ 1,q) (−1,1,0,< Ts − 1,q) with prob P{Exec(q, t) = 0}V(j) (17)

(Nc − 1,h− 1,0,0,Qs) (−1,> 1,1,Ts − 1,q) with prob P{Exec(q, t) = 1} (18)

(Nc ,h− 1,z,0,Qs) (−1,> 1,1,Ts − 1,q) with prob P{Exec(q, t) = 0} (19)

(−1, j,z− 1,0,Qs) (−1,1,> 1,Ts − 1,q) with prob P{Exec(q, t) = 1}V(j) (20)

(−1, j,z,0,Qs) (−1,1,> 1,Ts − 1,q) with prob P{Exec(q, t) = 0}V(j) (21)

(Nc ,h− 1,z− 1,0,Qs) (−1,> 1,> 1,Ts − 1,q) with prob P{Exec(q, t) = 1} (22)

(Nc ,h− 1,z,0,Qs) (−1,> 1,> 1,Ts − 1,q) with prob P{Exec(q, t) = 0} (23)

(Nc , j,0,0,Qs) (−1,1,1,Ts − 1,q) with prob P{Exec(q, t) = 1}V(j) (24)

(−1, j,z,0,Qs) (−1,1,1,Ts − 1,q) with prob P{Exec(q, t) = 0}V(j) (25)

(Nc − 1,h− 1,0,0,Qs) (−1,> 1,0,Ts − 1,q) with prob P{Exec(q, t) = 1}U(1) (26)

(Nc ,h− 1,k− 1,0,Qs) (−1,> 1,0,Ts − 1,q) with prob P{Exec(q, t) = 1}U(k) (27)

(Nc ,h− 1,z,0,Qs) (−1,> 1,0,Ts − 1,q) with prob P{Exec(q, t) = 0} (28)

(Nc , j,0,0,Q) (−1,1,0,Ts − 1,q) with prob P{Exec(q, t) = 1}U(1)V(j) (29)

(−1, j,k− 1,0,Q) (−1,1,0,Ts − 1,q) with prob P{Exec(q, t) = 1}U(k)V(j) (30)

(−1, j,z,0,Q) (−1,1,0,Ts − 1,q) with prob P{Exec(q, t) = 0}V(j) (31)

(x− 1,h− 1,0,0,Qs) (Nc ,> 1,0,Ts − 1,q) with prob P{Exec(q, t) = 1}U(1) (32)

(x,h− 1,k− 1,0,Qs) (Nc ,> 1,0,Ts − 1,q) with prob P{Exec(q, t) = 1}U(k) (33)

(x,h− 1,z,0,Qs) (Nc ,> 1,0,Ts − 1,q) with prob P{Exec(q, t) = 0} (34)

(x, j,0,0,Qs) (Nc ,1,0,Ts − 1,q) with prob P{Exec(q, t) = 1}U(1)V(j) (35)

(−1, j,k− 1,0,Qs) (Nc ,1,0,Ts − 1,q) with prob P{Exec(q, t) = 1}U(k)V(j) (36)

(−1, j,z,0,Qs) (Nc ,1,0,Ts − 1,q) with prob P{Exec(q, t) = 0} (37)

(x− 1,h− 1,0,0,Qs) (Nc ,> 1,1,Ts − 1,q) with prob P{Exec(q, t) = 1} (38)

(x,h− 1,z,0,Qs) (Nc ,> 1,1,Ts − 1,q) with prob P{Exec(q, t) = 0} (39)

(x, j,0,0,Qs) (Nc ,1,1,Ts − 1,q) with prob P{Exec(q, t) = 1}V(j) (40)

(−1, j,z,0,Q) (Nc ,1,1,Ts − 1,q) with prob P{Exec(q, t) = 0}V(j) (41)

(x,h− 1,z− 1,0,Qs) (Nc ,> 1,> 1,Ts − 1,q) with prob P{Exec(q, t) = 1} (42)

(x,h− 1,z,0,Qs) (Nc ,> 1,> 1,Ts − 1,q) with prob P{Exec(q, t) = 0} (43)

(−1, j,z− 1,0,Qs) (Nc ,1,> 1,Ts − 1,q) with prob P{Exec(q, t) = 1}V(j) (44)

(−1, j,z,0,Qs) (Nc ,1,> 1,Ts − 1,q) with prob P{Exec(q, t) = 0}V(j) (45)

(x,h− 1,z,0,Qs) (0,> 1,z,Ts − 1,q) (46)

(x+ 1, j,z,0,Qs) (0,1,z,Ts − 1,q) with prob V(j) (47)

(x− 1,h− 1,0,0,Qs) (<Nc ,> 1,0,Ts − 1,q) with prob P{Exec(q, t) = 1}U(1) (48)

(x,h− 1,k− 1,0,Qs) (<Nc ,> 1,0,Ts − 1,q) with prob P{Exec(q, t) = 1}U(k) (49)

(x,h− 1,0,0,Qs) (<Nc ,> 1,0,Ts − 1,q) with prob P{Exec(q, t) = 0} (50)

(x, j,0,0,Qs) (<Nc ,1,0,Ts − 1,q) with prob P{Exec(q, t) = 1}U(1) (51)

(x+ 1, j,k− 1,0,Qs) (<Nc,1,0,Ts − 1,q) with prob P{Exec(q, t) = 1}U(k)V(j) (52)

(x+ 1, j,z,0,Qs) (<Nc ,1,0,Ts − 1,q) with prob P{Exec(q, t) = 0}V(j) (53)

(x− 1,h− 1,0,0,Qs) (<Nc ,> 1,1,Ts − 1,q) with prob P{Exec(q, t) = 1} (54)

(x,h− 1,z,0,Qs) (<Nc ,> 1,1,Ts − 1,q) with prob P{Exec(q, t) = 0} (55)

(x, j,0,0,Qs) (<Nc ,1,1,Ts − 1,q) with prob P{Exec(q, t) = 1}V(j)) (56)

(x+ 1, j,z,0,Qs) (<Nc ,1,1,Ts − 1,q) with prob P{Exec(q, t) = 0}V(j)) (57)

Figure 8.9: The stochastic model (1/2).
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(x,h− 1,z− 1,0,Qs) (<Nc ,> 1,> 1,Ts − 1,q) with prob P{Exec(q, t) = 1} (58)

(x,h− 1,z,0,Qs) (<Nc ,> 1,> 1,Ts − 1,q) with prob P{Exec(q, t) = 0} (59)

(x+ 1, j,z− 1,0,Qs) (<Nc ,1,> 1,Ts − 1,q) with prob P{Exec(q, t) = 1}V(j) (60)

(x+ 1, j,z,0,Qs) (<Nc ,1,> 1,Ts − 1,q) with prob P{Exec(q, t) = 0}V(j) (61)

(x− 1,h− 1,0, t+ 1,q− 1) (Nc ,> 1,0,< Ts − 1,q) with prob P{Exec(q, t) = 1}U(1) (62)

(x,h− 1,k− 1, t+ 1,q− 1) (Nc ,> 1,0,< Ts − 1,q) with prob P{Exec(q, t) = 1}U(k) (63)

(x,h− 1,z, t+ 1,q) (Nc ,> 1,0,< Ts − 1,q) with prob P{Exec(q, t) = 0} (64)

(x, j,0, t+ 1,q− 1) (Nc ,1,0,< Ts − 1,q) with prob P{Exec(q, t) = 1}U(1)V(j) (65)

(−1, j,k− 1, t+ 1,q− 1) (Nc ,1,0,< Ts − 1,q) with prob P{Exec(q, t) = 1}U(k)V(j) (66)

(−1, j,z, t+ 1,q) (Nc ,1,0,< Ts − 1,q) with prob P{Exec(q, t) = 0}V(j) (67)

(x− 1,h− 1,0, t+ 1,q− 1) (Nc ,> 1,1,< Ts − 1,q) with prob P{Exec(q, t) = 1} (68)

(x,h− 1,z, t+ 1,q) (Nc ,> 1,1,< Ts − 1,q) with prob P{Exec(q, t) = 0} (69)

(x, j,0, t+ 1,q− 1) (Nc ,1,1,< Ts − 1,q) with prob P{Exec(q, t) = 1}V(j) (70)

(−1, j,z, t+ 1,q) (Nc ,1,1,< Ts − 1,q) with prob P{Exec(q, t) = 0}V(j) (71)

(x,h− 1,z− 1, t+ 1,q− 1) (Nc ,> 1,> 1,< Ts − 1,q) with prob P{Exec(q, t) = 1} (72)

(x,h− 1,z, t+ 1,q) (Nc ,> 1,> 1,< Ts − 1,q) with prob P{Exec(q, t) = 0} (73)

(−1, j,z− 1, t+ 1,q− 1) (Nc ,1,> 1,< Ts − 1,q) with prob P{Exec(q, t) = 1}V(j) (74)

(−1, j,z, t+ 1,q) (Nc ,1,> 1,< Ts − 1,q) with prob P{Exec(q, t) = 0}V(j) (75)

(x,h− 1,z, t+ 1,q) (0,> 1,0,< Ts − 1,q) (76)

(x+ 1, j,z, t+ 1,q) (0,1,0,> Ts −( q
Q T

s),q) with prob V(j) (77a)

(x+ 1, j,z,0,Q) (0,1,0,< Ts −( q
Q T

s),q) with prob V(j) (77b)

(x− 1,h− 1,0, t+ 1,q− 1) (<Nc ,> 1,0,< Ts − 1,q) with prob P{Exec(q, t) = 1}U(1) (78)

(x,h− 1,k− 1, t+ 1,q− 1) (<Nc ,> 1,0,< Ts − 1,q) with prob P{Exec(q, t) = 1}U(k) (79)

(x,h− 1,0, t+ 1,q) (<Nc ,> 1,0,< Ts − 1,q) with prob P{Exec(q, t) = 0}) (80)

(x− 1,h− 1,0, t+ 1,q− 1) (<Nc ,> 1,1,< Ts − 1,q) with prob P{Exec(q, t) = 1} (81)

(x,h− 1,z, t+ 1,q) (<Nc ,> 1,1,< Ts − 1,q) with prob P{Exec(q, t) = 0} (82)

(x,h− 1,z− 1, t+ 1,q− 1) (<Nc ,> 1,> 1,< Ts − 1,q) with prob P{Exec(q, t) = 1} (83)

(x,h− 1,z, t+ 1,q) (<Nc ,> 1,> 1,< Ts − 1,q) with prob P{Exec(q, t) = 0} (84)

(x+ 1, j,z− 1, t+ 1,q− 1) (<Nc ,1,> 1,< Ts − 1,q) with prob P{Exec(q, t) = 1}V(j) (85)

(x+ 1, j,z, t+ 1,q) (<Nc ,1,> 1,< Ts − 1,q) with prob P{Exec(q, t) = 0}V(j) (86)

(x, j,0, t+ 1,q− 1) (<Nc ,1,1,< Ts − 1,q) with prob P{Exec(q, t) = 1}V(j) (87)

(x+ 1, j,z, t+ 1,q) (<Nc ,1,1,< Ts − 1,q) with prob P{Exec(q, t) = 0}V(j) (88)

Figure 8.10: The stochastic model (2/2).
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Table 8.1: Probability to drop an interrupt for various (Qs, Ts) assignments.

Qs Ts Qs

Ts > 0.75 Qs > Ts − 12 P{Drop}

3 4 Yes Yes 0.0
6 8 Yes Yes 0.0
9 12 Yes Yes 0.0

12 16 Yes Yes 0.0
15 20 Yes Yes 0.0
18 24 Yes Yes 0.0
21 28 Yes Yes 0.0

2 4 No Yes 0.0027
4 8 No Yes 0.0062
6 12 No Yes 0.0102
8 16 No Yes 0.0142

10 20 No Yes 0.0215
12 24 No No 0.0244
14 28 No No 0.0269

4 6 No Yes 4.11e− 16
8 12 No Yes 2.12e− 15

12 18 No Yes 0.0058
16 24 No Yes 0.0056
20 30 No Yes 0.0055
24 36 No No 0.0054

4 7 No Yes 2.011e− 08
8 14 No Yes 5.29e− 07

12 21 No Yes 0.0064
16 28 No No 0.0060
20 35 No No 0.0056
24 42 No No 0.0063
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Table 8.2: PDF of the inter-packet times.

δ(µs) P{ri+1 − ri = δ}

100 0.312393
110 0.684386
120 0.001791
130 0.000210
140 0.000240
150 0.000290
160 0.000420
170 0.000090
180 0.000070
190 0.000110

Table 8.3: Probability to drop an interrupt, according to the theoretical
model and to experimental measurements.

Qs(µs) Ts(µs) Experimental Stochastic
Results Model

100 1000 0.55 0.5899
200 1000 0.18 0.1997
300 1000 0 0

1000 10000 0.63 0.6717
2000 10000 0.27 0.3105
3000 10000 0 0.0007

Table 8.4: Maximum measured inter-packet times as a function of the sched-
uler.

CBS Parameters Maximum Inter-Packet

(1ms, 10ms) 52593µs

(1.5ms, 10ms) 42922µs

(2ms, 10ms) 29869µs

(3ms, 10ms) 489µs

(10ms, 100ms) 323716µs

(20ms, 100ms) 147064µs

(30ms, 100ms) 491µs

No CBS 656µs
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P R A C T I C A L E X A M P L E S

In this chapter we present two possible examples in which resource
reservation has an undisputed advantage respect to fixed priority

scheduling. One examples is the interrupt scheduling and one is the
scheduler inside the X server.

9.1 schedulable device drivers : implementation and ex-
perimental results

An important issue when designing real-time systems is to con-
trol the kernel latencies introduced by device drivers. This result can
be achieved by transforming the interrupt handlers into schedulable
entities (threads). This section shows how to schedule such threads
(using resource reservations) so that both the performance of real-
time tasks and the device throughput can be controlled. In particular,
some tools based on a kernel tracer (Ftrace) are used to collect tim-
ing information about the IRQ threads, and a novel reservation-based
scheduler for Linux (SCHED_DEADLINE) is used to schedule them. An
implementation of the proposed technique is validated through an
extensive set of experiments, using different kinds of resources and
of realistic applications.

9.1.1 Introduction

One of the prominent issues in the design of modern real-time op-
erating systems is accounting for interference of device drivers on
the real-time tasks. Indeed, the interference possibly generated by a
device driver (which contributes to the so called “Kernel latencies”)
introduces some unbounded blocking times that can compromise the
schedulability of task sets deemed schedulable by the formal analy-

Parts of this Chapter are going to appear in:
N. Manica, L. Abeni, L. Palopoli, D. Faggioli, C. Scordino, “Schedulable Device
Drivers: Implementation and Experimental Results,” International Workshop on Op-
erating Systems Platforms for Embedded Real-Time Applications
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sis techniques (because the worst case blocking times are unknown,
hence it is not possible to account for them in the formal analysis).

A straightforward strategy to address this problem is to give real-
time tasks higher priorities than device drivers. However, this is not
possible on general purpose systems, where interrupt handlers and
device drivers are not schedulable entities (and are executed with a
higher priority than all the user-space tasks). For this reason, recent
developments in the Linux kernel allow transforming the interrupt
handlers (both Interrupt Service Routines — ISRs — and Bottom
Halves) into kernel threads, the so called IRQ threads (note that in
the past similar solutions have been mainly used in µkernel based sys-
tems [45, 46] or in proprietary real-time kernels such as LynxOS). This
functionality was originally developed for the Preempt-RT real-time
kernel [49, 53], and enables a control on the amount of interference
from device drivers suffered by real-time tasks [51, 52, 38].

Once interrupt handlers have been transformed into schedulable
entities, the problem remains open of identifying the best scheduling
algorithm that can be used to serve the newly introduced threads.
For example, Manica et al. [54, 55] have provided a clear evidence
that using resource reservations [5] to schedule the interrupt han-
dlers (IRQ threads, in Preempt-RT) allows the designer to find ap-
propriate trade-offs between the response time of real-time tasks and
the device throughput (this is important when the device is used
by real-time tasks). However, to the best of our knowledge, most ex-
periments and tests with advanced scheduling solutions have been
performed only using prototypical schedulers or experimental Oper-
ating Systems [56, 43]. Only recently has a Linux scheduler based on
resource-reservation has been proposed to the kernel community [57].
Such a scheduler exports an API that can be easily used to schedule
kernel threads implementing the device drivers. Additionally, most of
the previous work has focused on network devices [47, 48, 44, 51, 55]
paying little or no attention to other types of devices (e.g., disks). Fi-
nally, another limitation of previous results is that they are mostly
collected on artificial task sets.

This section takes a step forward to show that the results collected
with experiments based on prototypical schedulers can be repeated:
1) with a scheduler likely to become main line in the near future, 2)
using different kinds of resources, 3) with realistic applications rather
than with artificial task sets.
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As a last contribution, a set of tools based on the Ftrace kernel
tracing facility is used to collect the stochastic distribution of the ex-
ecution time and of the inter-arrival time of device drivers. This way
it is possible to apply design techniques that enable an appropriate
dimensioning of the scheduling parameters.

9.1.2 Scheduling the IRQ Threads

This section briefly recalls some basic concepts about resource reser-
vations, and about assigning proper reservation parameters to the
interrupt threads. It also introduces the reservation-based scheduler
for Linux (named SCHED_DEADLINE) that has been used for scheduling
the interrupt threads.

9.1.2.1 Reservation-Based Scheduling

The basic idea of reservation-based scheduling is that each task is
reserved an amount Q of CPU time (named maximum budget) every
T time units (T is called reservation period). Such a strategy can be
implemented by using various scheduling algorithms. The particu-
lar reservation algorithm used in this section is the Constant Band-
width Server (CBS)(See Chapter 4 or [4]), which, contrary to differ-
ent scheduling algorithms of the same kind, is well behaved with
both regular and periodic tasks and with aperiodic and dynamically
changing tasks.

The CBS algorithm assigns each task a scheduling deadline, and sched-
ules processes and threads using an Earliest Deadline First (EDF) pol-
icy (i.e., the task with the earliest scheduling deadline is selected first
for execution). When a task wakes up, the CBS checks if its current
scheduling deadline can be used; otherwise, a new scheduling dead-
line is generated (as d = t + T , where t is the wakeup time). The
scheduling deadline is then postponed by T (d = d+ T ) every time
that the task executes for Q time units (if having a work conserving
algorithm is not important, the task is removed from the runqueue
until time d− T ).

An interesting feature of the reservation-based schedulers is that
they provide temporal isolation among tasks. This means that the tem-
poral behaviour of a task is not affected by the behaviour of the other
tasks in the system: if a task requires a large execution time, it cannot
affect the schedulability of the other tasks, or monopolise the proces-
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sor. This is a basic property needed for scheduling real-time tasks on
general-purpose operating systems.

9.1.2.2 The Linux SCHED_DEADLINE Policy

In the recent versions, the official Linux kernel has introduced a
new scheduling framework that replaces the old O(1) scheduler. This
framework contains an extensible set of scheduling classes. Each schedul-
ing class implements a specific algorithm and schedules tasks with a
specific policy.

Currently, two scheduling classes are available in the Linux kernel:

• sched_fair, which implements the “Completely Fair Scheduler”
(CFS) algorithm, and schedules tasks having SCHED_OTHER or
SCHED_BATCH policies. Tasks are run at precise weighted speeds,
so that each task receives a “fair” amount of processor share.

• sched_rt, which implements a POSIX fixed-priority real-time
scheduler, and handles tasks having SCHED_FIFO or SCHED_RR

policies.

As explained in previous papers [57], using these scheduling poli-
cies with tasks characterised by temporal constraints might be prob-
lematic, mainly because the standard API used in general purpose
kernels like Linux does not allow to associate temporal constraints
(e.g., deadlines) to the tasks. In fact, although it allows to assign a
share of processor time to a task, there is no way to specify that the
task must finish the execution of a job before a given time. Using CFS,
moreover, the time elapsed between two consecutive executions of a
task is not deterministic and cannot be bound, since it depends on
the number of tasks running in the system at that time.

For these reasons, very recently, a new scheduling class based on
resource reservations has been implemented and proposed to the ker-
nel community. The project, formerly known as SCHED_EDF, changed
name to SCHED_DEADLINE after the request of the kernel community.

This class adds the possibility of scheduling tasks using the CBS
algorithm, without changing the behaviour of tasks scheduled using
the existing policies. Figure 9.1 depicts schematically the Linux sched-
uler extended with the SCHED_DEADLINE scheduling class (note that
scheduling classes have increasing priorities from left to right).

SCHED_DEADLINE. The code is open and available at http://gitorious.org/sched_

deadline.

http://gitorious.org/sched_deadline
http://gitorious.org/sched_deadline
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SCHED_NORMAL

Task

SCHED_IDLE

Task

SCHED_BATCH

Task

SCHED_RR

Task

SCHED_FIFO

Task

sched_rt

SCHED_DEADLINE

Task

sched_deadlinesched_fair (CFS)

Linux scheduler

Figure 9.1: Linux scheduler with SCHED_DEADLINE.

The implementation does not make any restrictive assumption on
the characteristics of the tasks. Thus, it can handle periodic, sporadic
and aperiodic tasks. It is aligned with the current mainstream ker-
nel, and it relies on standard Linux mechanisms to natively support
multicore platforms and to provide hierarchical scheduling through
a standard API.

main characteristics of the implementation In the im-
plementation, red-black trees are used for ready queues to enable
efficient handling of events such as earliest deadline task scheduling,
new task activation, task blocking/unblocking, etc. One run-queue
per each CPU is used to avoid contention and achieve high scalabil-
ity even on large systems. Moreover, it is enriched with the following
features:

• support for bandwidth reclaiming, to make the scheduler work
conserving without affecting guarantees;

• capability of synchronising tasks with the scheduler;

• support for resource sharing similar to priority inheritance (al-
ready present in the kernel for fixed priority real-time tasks);

• support for standard Linux mechanisms for debugging and trac-
ing the scheduler behaviour and for specifying per-user policies
and limitations;

• capability of sending signals to the tasks on budget overruns
and scheduling deadline misses;

• support for bandwidth management throughout admission con-
trol, both system-wide and for separate groups of tasks.
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user level api An user-level application can exploit the ser-
vices provided by the SCHED_DEADLINE scheduling class by means of
some new system calls and a new data structure that accommodates
additional scheduling parameters. The new data structure is called
sched_param_ex and comprises the following fields:

• temporal parameter of the task — i.e., sched_runtime and sched_-

deadline which will be Q and T of its reservation, respectively;

• sched_flag for controlling some aspects of the scheduler be-
haviour. More precisely, (i) whether or not a task wants to be no-
tified about budget overruns and/or scheduling deadline misses
and (ii) whether or not a task wants to exploit some kind of
bandwidth reclaiming;

• some other fields left there for backward compatibility or future
extensions (sched_priority and sched_period).

The most important system calls added are:

• sched_setscheduler_ex (and a couple of others), that manipu-
lates sched_param_ex;

• sched_wait_interval to synchronise the task with the sched-
uler. This means a task can ask to be put to sleep until either its
next deadline or whenever it will be possible to receive its full
budget again.

The security model adopted is very similar to the one already in
use in the kernel for fixed priority real-time tasks — i.e., it is based on
user permissions and capabilities and it can be affected by standard
UNIX security mechanism, like rlimits. Controls exist for managing
the fraction of CPU time usable by the whole EDF scheduler as well
as to a group of EDF tasks, but they are not described here for space
reasons.

9.1.2.3 Assigning the Reservation Parameters

The reservation parameters (Q, T) can be dimensioned by performing
a deterministic or a stochastic analysis of the interrupt behaviour [55].
The deterministic case is simpler to analyse, and allows to dimension
the reservation so that no interrupt is lost (at the cost of some overes-
timation of the reserved CPU time). First of all, if P is the minimum
inter-arrival time between two consecutive interrupts and C is the
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maximum amount of time needed to serve an interrupt, then Q and
T must be assigned according to Equation 9.1

Q

T
>
C

P
(9.1)

In other words, the fraction of CPU time reserved to the IRQ thread
should be greater than or equal to the fraction of CPU time needed
by the IRQ thread for executing.

However, some hardware devices have an upper bound Nc on the
number of pending interrupts (interrupts that have not been pro-
cessed yet), and if an interrupt fires when Nc interrupts requests
are already pending, then the interrupt is lost even if Equation 9.1
is respected. As discussed in our previous work [55], this problem
ban be addressed by producing the following condition that has to
be respected to avoid losing interrupts:

T −Q

P
< Nc (9.2)

The same paper also presented a stochastic analysis instrumental
to the correct dimensioning of the CBS parameters: in this case, in-
stead of considering the worst-case times P and C, the interrupt inter-
arrival times and the execution times of the interrupt handlers are
modelled as stochastic variables. As a result, the probability to drop
an interrupt can be computed.

Both approaches require a precise characterisation of the workload
generated by IRQ threads. Hence, the need for the tracing mechanism
described in the next section.

9.1.3 Inferring the IRQ Parameters

According to Section 9.1.2.3, if the probability distributions of the
inter-arrival and execution times of an IRQ thread are known, then it
is possible to schedule such thread with a (Q, T) reservation so that no
interrupt is lost (note that if no interrupt is lost then the device can
achieve its maximum throughput). Hence, to assign the maximum
budgetQ and the reservation period T to an IRQ thread it is necessary
to know the IRQ parameters (that is, the probability distributions of the
inter-interrupt times and of the times needed to serve an interrupt).

Such probability distributions can be measured by using the Ftrace
tracer provided by the Linux kernel and by properly parsing its traces.
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Figure 9.2: General architecture of the tool

In the proposed approach, this is done through a set of tools organ-
ised in a pipeline, as shown in Figure 9.2 (more details about the used
tracing tools are available in a technical report [58]).

9.1.3.1 The Tracing Pipeline

The kernel traces produced by Ftrace can be used to extract various
information about tasks’ timings, so that their temporal behaviour
can be inferred.

The first stage of the pipeline (the trace parser) transforms the tex-
tual traces exported by Ftrace in an internal format, which is used
by the other tools in the pipeline. This step is needed because Ftrace
exports traces in the form of text files, whose format can change from
one kernel version to another, containing redundant and unneeded
information (this happens because the Ftrace format has been de-
signed to be easily readable by humans). Hence, the textual traces
produced by Ftrace are parsed and transformed in a more compact,
kernel-independent, binary format which is used as input by the next
stages of the pipeline. Such stages are composed by a second set of
tools that can:

• parse the internal format to gather statistics about execution
times, inter-arrival times, response times, and utilisation;

• generate a chart displaying the CPU scheduling;

• infer some of the tasks temporal properties, identifying (for ex-
ample) periodic tasks.

In this context, the presented tools are used to extract the probabil-
ity distributions of the execution and inter-arrival times of the IRQ
threads.
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Table 9.1: Statistics collected for some periodic tasks. Times are in µs.

Task Execution Time Inter-Arrival Time Response Time

Avg Std Dev Max Min Avg Std Dev Max Min Avg Std Dev Max Min

Task 1 2991 273 8953 2956 5993 303 10720 11 3182 555 5986 2960

Task 2 553 66 6025 544 2997 10 3002 2991 556 229 6027 546

Task 3 2941 51 5859 2919 7993 24 9049 6938 3683 397 7285 2927
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Figure 9.3: CDFs of the response times for 3 periodic tasks.

The various tools composing the pipeline communicate through
standard Unix FIFOs (named pipes) and can be combined in dif-
ferent ways, to collect different kinds of information. For example,
a tool which periodically displays important statistics for selected
tasks (similarly to the standard “top” utility) can be inserted into
the pipeline. In this work, the collected values are generally saved
to files to be processed off-line later, but in other situations they can
also be summarised by some statistics that are saved instead of the
raw sequence of values, to save some disk space.

Since connecting the different tools in a correctly working pipeline
(creating all the needed FIFOs, etc.) can sometimes be difficult, some
helper scripts have been developed.

9.1.3.2 Examples

The first possible usage of the proposed tools is to visually analyse
the scheduler’s behaviour, to check its correctness or to understand
the reason for unexpected results. An example about this usage will
be presented in Section 9.1.4. If, instead, a statistics module is used
in the last stage of the pipeline, it is also possible to collect some
information for performance evaluation. For example, some statistics
for some periodic tasks have been collected and shown in Table 9.1.
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Table 9.2: Inter-Packet times as measured in the sender. Times are in µs.

Test Average Std Dev Max Min

T1 1190 29 1569 1040
T5 5198 22 5278 5058
T10 10195 22 10277 10062
T50 50207 27 50298 50081
T100 100207 25 100290 100093

Table 9.3: Inter-Packet times as measured in the receiver. Times are in µs.

Test Average Std Dev Max Min

T1 1207 1011 14336 0
T5 5212 1019 6144 4096
T10 10210 271 12288 8192
T50 50229 1023 51200 49152
T100 100204 530 100352 98304

The Cumulative Distribution Functions (CDFs) of the response times
for the three tasks, as measured using a different output module, are
displayed in Figure 9.3. Note that all the results presented up to now
can be obtained by just changing the final stage of the processing
pipeline.

As explained, in this work the presented tools are used to collect
timing information about IRQ threads. However, before performing
such measurements, it is important to test the reliability of this in-
formation. For this purpose, some experiments have been performed
by considering the network IRQ threads: a stream of periodic UDP
packets has been sent between two computers, measuring the inter-
packet times in the sender (Table 9.2) and in the receiver (Table 9.3).
Note that, as expected, the values in Table 9.3 almost match the val-
ues in Table 9.2: the only noticeable difference is test T1, in which
the inter-packet times on the receiver have a large maximum value
and 0 as a minimum value. This is probably due to some delayed
scheduling of the receiver task. After these initial measurements, the
proposed tools have been used to extract the inter-arrival times of the
network IRQ thread, summarised in Table 9.4. By comparing Table 9.2
and Table 9.4, it is possible to verify that the average inter-activation
times of the network IRQ thread in the receiver are consistent with
the average inter-packet times in the sender. The maximum times also
match, while the minimum times present some differences. In partic-
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Table 9.4: Inter-Arrival times for the network IRQ thread. Times are in µs.

Test Average Std Dev Max Min

T1 1210 32 1424 59
T5 5222 117 5385 63
T10 10264 60 10353 10093
T50 50832 627 50353 50082
T100 100424 9342 100313 76

Table 9.5: Statistics about the execution times of the IRQ thread. Times are
in µs.

Test Average Std Dev Max Min

T1 15 5 63 9
T5 19 1 68 18
T10 14 1 29 13
T50 16 2 28 15
T100 21 3 23 12

ular, in tests T1, T5 and T100 the minimum inter-arrival time for the
network IRQ thread in receiver is much smaller than the minimum
inter-packet time in the sender. A more detailed analysis revealed that
this is probably due to some non UDP packets (ICMP or ARP) which
are not directly generated by the test program in the sender machine
(hence, they are not periodic and they are not listed in Table 9.2). In
any case, the comparison between Table 9.2 and Table 9.4 seems to
confirm the correctness of the collected data.

Some information about the IRQ thread execution times (needed to
perform some kind of performance analysis of the system) are shown
in Table 9.5, and some examples of distribution functions obtained
using these tools will be presented in Section 9.1.4.

9.1.4 Experimental Results

The effectiveness of the proposed approach has been tested by an ex-
tensive set of experiments. In particular, the performance of the Linux
SCHED_DEADLINE policy and the influence of the scheduling parame-
ters have been evaluated when the new scheduling class is used to:

• schedule real-time tasks sets

• schedule IRQ threads
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Figure 9.4: SCHED_DEADLINE serving a periodic task and two CPU hungry
(greedy) tasks.

• schedule hybrid task sets composed of both real-time tasks and
IRQ threads.

The next subsections will report the results obtained for each of these
cases.

9.1.4.1 Using SCHED_DEADLINE

To see the new SCHED_DEADLINE policy in action, consider a peri-
odic task (with period 5ms) and two greedy tasks (task which never
block, and try to consume all the CPU time) scheduled by two CBSs
(1ms, 10ms) and (1ms, 4ms). Figure 9.4 shows a segment of the sched-
ule produced by the tools presented in Section 9.1.3.

On the other hand, Figure 9.5 shows how the CBS scheduler im-
plemented by SCHED_DEADLINE is more effective in handling multi-
ple time sensitive applications than the fixed priority policy SCHED_-

FIFO provided by the standard Linux kernel. A simple video player
based on GTK is used as a real-time task, and two player’s instances
reproduce the “Big Buck Bunny” trailer either (i) with two differ-
ent SCHED_FIFO priority or (ii) within two CBSs, (12.5ms, 40ms) and
(25ms, 40ms).

Since the frame rate of the video is 25 frames per second (fps), the
expected time interval between two consecutive frames (named Inter-
Frame Time - IFT - from now on) is supposed to be 1000/25 = 40ms.
In this experiment, two instances of the video player are executed in
parallel, using different scheduling algorithms and priorities. As it
clearly emerges from the figure, when SCHED_FIFO is used, the player
execute with higher priority correctly reproduces the stream, and the
IFTs are constant around 40ms (average 39573.0µs, standard devia-
tion 4725.1); however, the low priority instance has poor performance,
to the point where playback stops completely at frame 310 (this is the

http://www.gtk.org
http://www.bigbuckbunny.org

http://www.gtk.org
http://www.bigbuckbunny.org
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Figure 9.5: Inter-frame times for two instances of the video player when ex-
ecuting under SCHED_FIFO (with different priorities) or SCHED_-
DEADLINE. (within different reservations)

meaning of the peak in the graph) and starts again only when the
other instance finished.
When the reservation-based approach enabled by SCHED_DEADLINE is
used, instead, both the instances are able to proceed and the perfor-
mance they achieve are proportional to the fraction of CPU time they
can use. This is shown in the right side of the figure and by the fact
that IFT average and standard deviation are, respectively, 39082.0µs,
5735.3 for (25, 40) and 39517.0µs, 19455.0 for (12.5, 40).

9.1.4.2 Controlling the Device Throughput

The next set of experiments has been performed to check the effects of
scheduling the disk IRQ thread with a (Q, T) reservation, for different
values of Q and T .

First of all, the disk throughput has been measured by using the
hdparm command and disabling the disk caches. The results of this
experiment showed that the disk throughput only depends on the
fraction of CPU time Q/T reserved to the disk IRQ thread, and is
not affected by the specific values of Q and T . This result seems to
contradict the condition expressed by Equation 9.2, and is probably
due to the fact that the disk controller has a large buffer (i.e., Nc is
very large).

Figure 9.6 shows the disk throughput as a function ofQ/T (confirm-
ing that the throughput is proportional to the fraction of CPU time
reserved to the IRQ thread), while Figures 9.7 and 9.8 show the prob-
ability distributions of the interrupt inter-arrival and execution times.
According to such probability distributions, the maximum utilisation
of the disk IRQ thread is about 0.41096, while the average utilisa-
tion is about 0.0021833. By comparing these data with results shown
in Figure 9.6, it is possible to see that deterministic analysis is too
pessimistic and highly overestimates the needed amount of time: in
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Figure 9.6: Disk throughput (as measured by hdparm) when the disk IRQ
thread is scheduled by a CBS, as a function of the reserved frac-
tion of CPU time.

fact, hdparm measures the maximum throughput when Q/T = 0.003,
which is only a little bit more than the average utilisation. By look-
ing at Figures 9.7 and 9.8 again, it is clear that the worst case con-
ditions (leading to the 0.41096 utilisation) are due to a long tail in
the execution times probability distribution and to a small amount
of small inter-arrival times with low probability, hence they are very
unlikely. This explains why a fraction of reserved CPU time which
is very close to the average utilisation is sufficient for achieving full
utilisation. This consideration motivates future investigations on the
application of stochastic analysis technique [55]. This research activity
is currently under way.

Note that in this experiment the utilisation of disk IRQ thread is
quite low, and only a small fraction of the CPU time had to be re-
served to it to control the hard-disk performance. Such a low CPU
utilisation caused by the disk IRQ thread is due to the usage of DMA
when performing disk accesses. Such a mechanism (the DMA) al-
lows to reduce the amount of CPU time needed by the IRQ thread,
but can cause some other kind of interference (that cannot be mod-
elled as a task in schedulability analysis) on real-time tasks due to
bus contention. By disabling the DMA, all the interference is due to

When running hdparm with the disk IRQ thread scheduled with the maximum fixed
priority, the throughput resulted to be about 75MB/s.
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Figure 9.7: PMF of the inter-arrival times for the disk IRQ thread.

the IRQ thread, and can be properly accounted for in the schedu-
lability analysis. Hence, the experiments have been repeated with
DMA disabled (these experiments also allows to better understand
what happens when the IRQ thread consumes more time); the re-
sults are reported in Table 9.6. Each line in the table is the average
of the results of 20 repeated tests on a UP machine when DMA is
disabled; the average utilisation for the disk IRQ thread is about
0.66, with a minimum utilisation of 0.57 and a maximum of 0.93.
As expected, the throughput without DMA is much lower than the
throughput achieved when using DMA, and it proportionally grows
with the fraction of CPU time reserved to the interrupt thread. The
maximum throughput (100% of the throughput measured when the
disk IRQ thread is scheduled with a fixed priority) is achieved when
Q/T = 0.95. Again, the throughput seems to only depend on the Q/T
ratio, and not on the reservation period T : in other words, the aver-
age throughput achieved when using a (2ms, 100ms) reservation is
the same achieved when using a (20ms, 1000ms) reservation.

After evaluating the “raw” disk performance through hdparm, the
next experiments have been run to evaluate the performance of more
complex read operations, involving multiple system calls and file sys-
tem access. The operation involved is a simple cat of a large file
(about 44MB) redirecting output to /dev/null. The total time for the
operation has been measured, disabling disk caches and DMA. Sev-
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Table 9.6: Disk IO-throughput when IRQ thread is scheduled with deadline
scheduler.

Test Average

(2ms, 100ms) 1.9858%
(4ms, 100ms) 4.23484%
(6ms, 100ms) 6.38374%

(20ms, 1000ms) 2.16843%
(40ms, 1000ms) 4.46488%
(60ms, 1000ms) 6.49811%
(10ms, 100ms) 10.6726%
(20ms, 100ms) 21.5825%
(40ms, 100ms) 41.8182%
(60ms, 100ms) 62.4476%
(80ms, 100ms) 82.5952%
(90ms, 100ms) 92.9371%
(95ms, 100ms) 100%

(100ms, 1000ms) 11.778%
(200ms, 1000ms) 23.261%
(400ms, 1000ms) 44.4056%
(600ms, 1000ms) 65%
(800ms, 1000ms) 84.5455%
(900ms, 1000ms) 93.007%
(950ms, 1000ms) 100%
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Figure 9.8: PMF of the execution times for the disk IRQ thread.

Table 9.7: Time needed to perform a file copy, when the disk IRQ thread is
scheduled with different parameters.

Test Average Std Dev Max Min

No Reservations 16.89s 0.12s 17.05s 16.67s
(30ms, 100ms) 52.85s 0.87s 55.22s 52.36s
(40ms, 100ms) 39.52s 0.61s 41.25s 39.27s
(50ms, 100ms) 31.49s 0.12s 31.74s 31.40s
(60ms, 100ms) 26.23s 0.03s 26.30s 26.19s
(70ms, 100ms) 22.58s 0.20s 23.14s 22.47s
(80ms, 100ms) 19.77s 0.19s 20.31s 19.69s
(90ms, 100ms) 17.59s 0.04s 17.66s 17.55s

eral runs have been repeated, and the results are reported in Table 9.7.
The experiments were performed in a pretty old machine, and the op-
eration lead to a very big interrupt workload, loading the CPU up to
about 100% of the CPU time. The first line of the table reports the
time needed for the operation when the default scheduler is used
(that is, SCHED_RT is used for IRQ threads) in a machine with no other
load. In the following lines SCHED_DEADLINE is used and the time falls
down as the reserved fraction of CPU grows.

Note that by modifying the amount of reserved CPU time it is pos-
sible to control the amount of time needed for executing the cat com-
mand. In particular, the throughput (computed as the ratio between
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Figure 9.9: Throughput when reading a large file, as a function of the re-
served CPU time.

the file size and the time needed to cat it) is proportional to Q/T , as
shown in Figure 9.9.

Finally, the time needed to read a large file has been analysed by
measuring the system time, the user time, and the total time used by
the task performing the read operation (disabling the disk caches so
that the experiment is more deterministic and repeatable). The size of
the file involved in this experiment was about 80MB. As expected, the
total time needed to read the file resulted to be much larger than the
sum of the system time and the user time, because the task is often
blocked waiting data from the disk (so, the task performing the read
operation spends most of the time in the wait state. Most of the CPU
time is consumed by the disk IRQ thread, and is not visible in the
statistics of the user task performing the read operation). Moreover,
the amount of user time and system time used by the task resulted to
be very small, and did not depend on the reservation parameters (the
user time was around 2.5ms, and the system time was around 100ms).
On the other hand, the total time (shown in Figure 9.10) resulted to
be proportional to T/Q (because the disk throughput is proportional
to Q/T ), and (again), disk interrupts did not suffer by Equation 2.
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9.1.4.3 Latency/Throughput Trade-Offs

Finally, some experiments have been performed to show how the pro-
posed approach allows one to control both the device throughput
and the real-time performance of user-space tasks. The video player
presented above has been used as a real-time task, and the network
device has been considered (using netperf to generate network load
and to measure the network throughput [55]).
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Figure 9.11: Inter-frame times for the video player when executed alone and
concurrently with netperf, with different priorities.

An instance of netperf has then been activated concurrently with
the video player, and the experiment has been repeated scheduling
the video player as SCHED_OTHER and as SCHED_FIFO with a priority
higher than the network IRQ threads. The results, displayed in Fig-
ure 9.11, show that when the player executes alone it is able to cor-
rectly reproduce the video (the inter-frame times are constant around
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Table 9.8: Network throughput achieved by using different reservation pa-
rameters for the video player and for the network hard IRQ.

Test Player CBS net IRQ CBS Throughput

Test1 (29ms, 40ms) (9ms, 100ms) 59.75Mbps

Test2 (28ms, 40ms) (12ms, 100ms) 65.43Mbps

Test3 (26ms, 40ms) (13ms, 100ms) 70.83Mbps

Test4 (25ms, 40ms) (14ms, 100ms) 76.14Mbps

Test5 (20ms, 40ms) (18ms, 100ms) 88.55Mbps

40ms), while when some concurrent network load is created, the inter-
frame times increases by a large amount (and video playback is not
continuous). Finally, if the player is scheduled with a priority higher
than the priority of the network IRQ threads, then it is again able to
work correctly, but in this case the network throughput measured by
netperf drops from 88Mbps to about 58Mbps.

A trade-off between real-time performance for the player and high
network throughput can be found by using reservation-based schedul-
ing. To this purpose, the tool presented in Section 9.1.3 can be used to
collect the probability distributions of the execution and inter-arrival
times of the network IRQ threads, and these data can be used as
shown in Section 9.1.2.3.
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Figure 9.12: Inter-frame times for a video player when executed alone and
concurrently with netperf, using different kinds of reserva-
tions.

Based on such analysis, the reservation parameters shown in Ta-
ble 9.8 have been used, obtaining the network throughput shown in
the last column of the table. The evolution of the inter-frame times
in the player for the most interesting cases is shown in Figure 9.12.
As it is possible to perceive by looking at the table and at the figure,
resource reservations really allow to find latency/throughput trade-
offs, as previously claimed:
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• if the player is reserved enough CPU time (29ms every period of
40ms), then the inter-frame times are stable and near to 40ms
(see the right side of Figure 9.12). However, in this case it is
possible to reserve only a small fraction of the CPU time to the
network IRQ thread, and the network throughput is low (about
60Mbps);

• if enough CPU time is reserved to the network IRQ thread
(18ms every 100ms), then the maximum network throughput
can be achieved). But in this case it is possible to reserve only
20ms of CPU time every 40ms to the player, and the inter-frame
times increase (see the left side of Figure 9.12). Note, however,
that the maximum inter-frame times are still under 80ms (com-
pare this situation with the middle of Figure 9.11);

• some compromises can be found: for example, scheduling the
player with a (25ms, 40ms) reservation and the network IRQ
thread with a (14ms, 100ms) reservation it is possible to have
reasonable inter-frame times with a good network throughput
(about 86% of the maximum).

9.1.5 Conclusions and Future Work

This section reported the results of some experiences with device
drivers scheduling in real-time systems. In particular, some of the
presented experiments show how recent developments in the Linux
kernel can be exploited to schedule the IRQ threads so that both their
interference on real-time tasks and the device throughput can be con-
trolled.

The proposed solution is based on the Linux Preempt-RT kernel
(which transforms interrupt handlers into schedulable entities), a new
reservation-based scheduler, and some tools based on Ftrace that can
be used to infer the timing information needed to correctly assign the
scheduling parameters.

As a future work, the effectiveness and usability of the stochastic
analysis for IRQ threads will be investigated by considering differ-
ent workloads and resources. This will probably require to simplify
the Markov model used in the stochastic analysis, so that it can be
applied more easily.
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9.2 qos support in the x11 window systems

In this section, we consider the problem of providing QoS guaran-
tees to the execution of applications using the X11 window system. In
particular, we offer a system level analysis of the issues encountered
when using X11 to serve real-time applications. By using a tracer de-
veloped for the purpose we analyse in depth the internal behaviour
of the system. The result of the analysis puts on display the adverse
effect played by a non real-time scheduler on the performance of time-
sensitive applications. Based on this analysis, we propose an alterna-
tive solution based on the CBS scheduler and prove its effectiveness
by an extensive set of experiments on real hardware.

9.2.1 Introduction

In the past few years, we have observed a clearly established trend to-
ward the use of computer based devices for multimedia applications.
The growing commercial fortune of such networked applications as
IPTV, YouTube and video servers is a clear indicator of a paradigm
shift in the way most people use their personal computers and, gener-
ally speaking, their computer based devices. The gain of using com-
puters for this class of applications is evident in terms of flexibility
and cost effectiveness. A computer can be used to run multiple and
heterogeneous applications at once. Moreover, it is easy to upgrade
the software to support new multimedia compression standards and
sophisticated sound technologies, as soon as they become available.

This huge potential though poses formidable challenges to the de-
signers of Operating Systems and of network protocols. Indeed, a
multimedia application is inherently time-sensitive: uncontrolled fluc-
tuations in latency and frame-rate defy the patience of any user who
expects to watch TV or talk to VoIP phone with a Quality of Service
(QoS) comparable to the one experienced with traditional dedicated
hardware solutions. To this regard, resource sharing is known to play
an adverse role since it introduces scheduling delays that are not eas-
ily predictable when designing the application (since they depend
on the workload of the system). In contrast, what we need is that a

Parts of this Chapter are going to appear in:
N. Manica, L. Abeni, L. Palopoli, “QoS support in the X11 Window Systems,” Real-
Time and Embedded Technology and Applications Symposium, 2008. RTAS’08. IEEE
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time-sensitive application receives a dedicated fraction of a shared re-
source in time, regardless of the behaviour of other applications. This
property is called temporal protection [59] and it is the natural com-
plement of memory protection, which prevents interference in the
concurrent access of a set of applications to a limited memory. For
years, researchers have been confronted with the challenging effort of
designing scheduling algorithms that feature temporal protection. A
first important class of algorithms designed to this purpose approxi-
mates the Generalised Processor Sharing concept of a fluid flow alloca-
tion, in which each application using the resource marks a progress
proportional to its weight (for example, see some Proportional Share
algorithms [60]). Similar are the underlying principles of a family of
algorithms known as Resource Reservations [61, 5, 4, 62], which asso-
ciate to each application a pair (Q,P) guaranteeing that it receives at
least Q units of time every P.

In this context a relatively marginal importance has been attached
to the problem of building a window system for real-time applica-
tions. This lack of attention is not, in our opinion, well deserved.
Indeed, for instance, it is of little use to have a very fine grained
allocation of the CPU time for a MPEG player if the projection of
the movie into the window can be stalled by a non real-time appli-
cation scrolling a huge amount of textual data in a different window.
On the other hand, designing a real-time window system (RTWS) is
surely to be considered a challenging activity because a difficult bal-
ance has to be found between contrasting needs. Since the most com-
monly used window systems are based on a client/server paradigm,
the first problem is the so called priority inversion [63]. Mainstream
window systems (e.g., X11) execute graphical primitives in an order
that is irrespective of the real-time priority of the tasks formulating
the request. Thereby, real-time tasks can incur a blocking time from
lower priority tasks, for which it is difficult or impossible to find an
upper bound. Blocking times can be reduced by using appropriate
scheduling mechanisms but they are lower-bounded by the length
non-interruptible graphical primitives. Another non-trivial problem
is that, in order to provide real-time guarantees to the clients, we
have to take into account that these requests have to be scheduled in
the slots of CPU execution time allocated to the server. Finally, real-
time policies are commonly regarded to reduce the system through-
put and this is hardly acceptable when a window system is used to
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manage heterogeneous applications, which only in part have timing
constraints.

A first remarkable attempt to cope with these challenging issues is
called Artifact [64], and it was developed in the early nineties as part
of the real-time Mach project. Even if the authors use a single thread
to manage all real-time request (potentially introducing priority in-
version), they alleviate the problem by restricting to a small set the
graphical primitives usable by real-time tasks. In this way the priority
inversion is limited, but the authors themselves concede that a more
satisfactory solution can only be found using different approaches
(e.g., a multithreaded approach).The authors also consider the prob-
lem of coordinated scheduling of server and client by creating schedul-
ing models for client and server upon a connection request, subject to
a global admission test. In a more recent proposal called DOPE [65]
(based on the DROPS kernel),the authors use a time-triggered thread
to refresh the widgets belonging to real-time applications. An inter-
esting idea is the introduction of resource managers that map basic
resources to higher level ones, e.g., DOPE maps CPU cycles and main
memory to refresh bandwidth. A different viewpoint is taken in EWS,
a window system built in the context of the EROS kernel [66]. In this
case the authors make a strong point that a WS with fast graphical
primitives may provide good real-time performance without the need
for an adequate scheduling support. In our evaluation, this statement
is arguably true only when the system is not heavily loaded by a large
number of client requests.

The proposals reported so far have a very important commonality:
they are based on research systems, built from scratch to the pur-
pose of displaying issues of interest, or to show the effectiveness of
a specific solution. Research on CPU scheduling followed a similar
path in the past, and the development of specialised real-time ker-
nels, aimed at demonstrating some novel technique or scheduling al-
gorithm, has been popular for some years producing solutions such
as Nemesis [62], Real-time Mach [67], Hartik [68], YARTOS [69]. How-
ever, the absence of a strong connection with main-stream technolo-
gies such as Windows or Linux has severely hindered maintenance
and porting across different hardware platform, reducing the impact
of these proposals and ultimately causing their obsolescence. There-
fore, there has been a paradigm shift toward architectural construc-
tions tacked on general purpose kernels (typically Linux). As a result,
the real-time performance of such general purpose operating systems
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as the Linux kernel has improved impressively [70], to a point where
today Linux is considered as a viable solution for both real-time re-
search and industrial embedded software.

In this spirit, we believe that research on RTWSs should also move
from writing research systems from scratch to modifying commonly
used solutions; for this reason, we propose to introduce limited changes
to the X11 server to make it suitable to real-time applications. The
first contribution of this section is a very thorough analysis of the X
server to clearly identify the scenarios in which it fails to provide an
adequate support to real-time applications. To this end, we have con-
structed a tracing tool that allows us to expose the timing behaviour
of the X-server in different workload conditions. The conclusion of
the first part of this work is that the effects of the scheduling policy
are indeed quite heavy on real-time performance, and their impor-
tance outweighs the problems generated by the length of the non-
interruptible primitives (which is being reduced by the new genera-
tion of accelerated graphical cards). This experimental observation is
in perfect accordance with a similar conjecture formulated in [71]. In
this case, case the authors propose a modification of the X11 server
to support fixed priority scheduling. In our evaluation, this solution
is not sufficient to lend robustness to the temporal behaviour of such
soft real-time applications as continuous media, for which, as noted
above, temporal protection plays a prominent role. Therefore, we have
built a solution based on a particular flavour of the resource reserva-
tion algorithms, the constant bandwidth server (CBS).

9.2.2 The Problem

The window system traditionally used in Unix-like systems is based
on a client-server paradigm, where an X server acts as a manager for
the video and for the input devices (keyboard and mouse). The X
server forwards input events to some client applications and executes
the requests received from the clients drawing on the screen.

Unfortunately, the X server is not aware of real-time requirements
of time-sensitive clients, its only design goal being to maximise the
global throughput. Indeed, it is possible to observe that the refresh
rate of each window decreases with the number of active windows.
This is hardly acceptable for real-time applications, for which a fixed
refresh rate (independent of the workload of the server) is required.
For instance, in a media player, the users perceives this effect as a



116 practical examples

Workload level on the server average ocbench period standard deviation

low 12005 µs 182 µs

heavy 35606 µs 28475 µs

Table 9.9: ocbench periods with lightly loaded or overloaded X server.

slowdown of the movie whenever some clients require a heavy oper-
ation.

In terms of the real-time scheduling theory, this problem can be
classified as a priority inversion. The video card is accessed by a re-
source manager (the X server) that serves the different requests in an
order that is not dictated by their real-time priorities. The duration
of this priority inversion can be very long (potentially unbounded).
The practical consequence is that even if the CPU is not overloaded
and all the applications are properly scheduled by the CPU sched-
uler, time-sensitive applications can still be unable to perform their
graphical operations with the correct timing. For example, a media
player is not able to play a movie at the correct frame rate even if it is
scheduled with the highest priority on the CPU (or if the CPU load -
as measured by some utilities like top - is low).

To expose the problem and study it, we used an X testing applica-
tion, called ocbench [72]. Ocbench is a very simple application which
periodically updates a spinning wheel on the screen, using a very
small amount of CPU time (so, it generates a large number of X re-
quests that must be served in a timely fashion, but it creates a very
low CPU workload). The application simply consists of an infinite
loop that sleeps for a fixed amount of time (10ms in our tests) and
then refreshes the image on the screen, and it lends itself to an im-
mediate performance assessment. Indeed, when ocbench undergoes
the interference of other X applications the user immediately notices
a slowdown of the spinning wheel motion. In order to have a quanti-
tative evaluation of this effect, we instrumented the code, by inserting
a call to gettimeofday() right before the execution of the redraw op-
eration. So, the progress of the measured times can be used as an
indicator of the performance of the X server. The ideal evolution of
this quantity is given by the k(a+ T), where k is the activation num-
ber, T = 10ms is the periodicity of the requests and a ≈ 2ms is the
duration of the redraw operation. To introduce interference on the
execution of ocbench, we used the x11perf application (a standard
test for the X server performance) that creates a large volume of X
requests.
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Figure 9.13: Evolution of the ocbench periods, with lightly loaded or over-
loaded X server.

Table 9.9 shows the average and the standard deviation of the dif-
ferences between two consecutive time readings of the instrumented
ocbench. In particular, the first row refers to an execution of ocbench
on a lightly loaded X server, whereas in the second one we consid-
ered the disturbing effects of an instance of x11perf -getimagexy100

executing in background,.
As shown in the table, when the X server is not loaded the average

distance between the start of two consecutive redraw operations is
about 12ms, and the variance is about 0.182ms (in close accordance
with the ideal behaviour). However, when the X server is heavily
loaded by the x11perf application, the average distance increases and
becomes much less stable (the variance increases to 28ms). This be-
haviour is well depicted in Figure 9.13, which plots the evolution of
the time readings as a function of the activation of ocbench. In case
of a low workload the progress is exactly linear. In case of heavy
workload, we have a piecewise linear plot. In particular, in correspon-
dence with the 200th activation of ocbench, the slope becomes steeper
(meaning a slower progress) due to the activation of x11perf. When
x1perf is terminated (650th activation of ocbench) the slope becomes
again equal to 12ms.

To cast some light on this big variation in ocbench speed noticed
in the second case, we measured the time needed by X to serve the
redraw requests, inclusive of the execution time of the operation and
of the scheduling delays. The result is plotted in Figure 9.14, in which
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Figure 9.14: Evolution of the time needed by X to serve a request (X latency),
with lightly loaded or overloaded X server.

the time required to complete the requests scales by orders of magni-
tude wen x11perf is activated.

9.2.2.1 Problem Analysis

As a first step to solve the priority inversion problems, we performed
an in-depth analysis on the way the X server schedules the requests
of its clients. To do this, we have written a patch of the X server
that introduces a tracing mechanism to record the arrival of requests
from the clients, their executions, and the times when each request is
terminated. In particular, the following events are traced (each event
is described by an event type, the event time, and the client id):

• begin: indicates the starting time for a trace;

• end: end of the trace;

• creation: a new client connects to the server;

• destruction: a client terminates, or disconnects from the server;

• activation: a new request from a connected client arrives (and
is inserted into the queue of ready clients);

• deactivation: a request has been served, and is terminated;

• dispatch: the server starts to serve a request from a client (se-
lected by the server’s scheduler).
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Figure 9.15: ocbench trace with non-loaded X server.
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Figure 9.16: ocbench trace with overloaded X server.

This tracer can be used to identify the sequence of events generated
by the X server when it serves a client: for example, Figure 9.15 shows
the trace of an instance of ocbench served by a lightly loaded X server.
From the figure it is easy to see that the program periodically gener-
ates a burst of requests (corresponding to a redraw operation), which
are immediately served by the X server (in about 2.5ms / 3ms). As a
result, ocbench can execute at a constant rate, and all the timing con-
straints are clearly respected. Note that each burst starts about 10ms
after the end of the previous one, as expected (ocbench sleeps 10ms
between two redraw operations).

Figure 9.16, on the other hand, shows a trace of ocbench when
it competes with x11perf (that creates a heavy workload on the X
server as discussed above). Right after being started, x11perf runs
a calibration phase, which in this trace ends at time 260ms. During
this phase, x11perf does not significantly affect the time execution
of ocbench, which runs smoothly as in Figure 9.15. Around time 260,
the calibration phase terminates, and x11perf starts to overload the
X server: as a result, ocbench requests are not served in time. This
phenomenon is easily detectable on the trace dedicated to ocbench;
the bursts are no longer executed with regularity and some of them
are delayed by a long time.

This effect has a clear explaination: since the scheduling mecha-
nism adopted by X11 is a variant of the classical round-robin used
in traditional time sharing systems, an application able to generated
a large number of requests like x11perf is able to engage the server
for arbitrarily long times starving other graphical applications. As
shown next, the scheduling algorithm proposed in this thesis allows
us to radically alleviate this problem.

9.2.2.2 Interactions with the CPU Scheduler

The test applications used in the previous examples do not consume
CPU time other than the one required for submitting request to X, so
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their real-time performance is only affected by the X scheduler (and
the CPU scheduler contained in the kernel does not really matter,
because the CPU load is low).

In more realistic situations things will likely be more complex, and
there will be stronger interactions between the CPU scheduler and X
scheduler: a request from an X client will only be served when the
CPU scheduler selects the X server for execution, and the X scheduler
selects the client. This means that performing real-time guarantees
for X clients could potentially be quite difficult.

However, we believe that the complex system composed by the
CPU scheduler, the X scheduler and the X clients’ requests can be
modelled as a hierarchical system. As a consequence, if both the X
scheduler and the CPU scheduler provide predictable performance
their combined effect can be analysed by applying the hierarchical
scheduling theory [73, 74, 75]. This approach permits to simplify the
analysis of the system, by considering the two schedulers in isolation,
and composing their real-time guarantees. Since CPU schedulers have
been studied at long in the past, and various theoretical frameworks
for hierarchically composing scheduling guarantee exist in literature,
in this section we only focus on the behaviour of the X scheduler in
isolation.

9.2.3 A Possible Solution

As shown in the previous section, the absence of an appropriate
scheduling mechanism inhibits the use of X11 for real-time clients. On
the other hand, fixed priority mechanisms based on classical real-time
scheduling theory [19] like the one adopted in linux-SRT [71] have evi-
dent shortcomings when the task set encompasses both real-time and
non real-time tasks. In particular, a design based on the worst case re-
quirements of the tasks can be overly conservative. On the other hand,
if we use a design based on the average resource requirements, a high
priority real-time task consuming more than expected can cause dead-
line misses in other (unrelated) real-time tasks [59]. This problem is
well known in the context of CPU scheduling, and a number of differ-
ent solutions has been proposed. In particular, we based our work on
a scheduling algorithm, called the Constant Bandwidth Server (CBS)
that implements the Resource Reservations paradigm. In the develop-
ment of this scheduler, we considered the X server as an Open Sys-
tem [76]. An Open System is a system in which applications dynami-



9.2 qos support in the x11 window systems 121

cally enter and exit the system in an unpredictable (or hard to predict)
way. Tasks (X clients, in this case) can dynamically be activated at any
time and are characterised by variable execution times, so the sched-
uler cannot make any restrictive assumption on the characteristics of
the task set.

Resource Reservations [61] have emerged as an effective technique
to support time-sensitive applications on general purpose operating
systems (GPOS). This technique provides support for time-sensitive
applications by allowing the integration of classical real-time tech-
niques, developed to meet timing constraints on real-time operating
systems (RTOSs), with the general-purpose allocation strategies used
on GPOSs. In particular, CPU reservations have been traditionally
implemented by using a dedicated aperiodic server (the Deferrable
Server [77]) to serve each reserved task [61, 5]. Unfortunately, this
implementation strategy generates some scheduling anomalies when
tasks block and unblock dynamically [77]. This particular problem
has been solved by the CBS algorithm [4], which uses dynamic prior-
ities to correctly cope with dynamic aperiodic arrivals. Therefore the
CBS can provide a predictable QoS to both periodic and aperiodic
real-time activities [6].

Since X requests are generally non periodic (for example, in Fig-
ure 9.15 we can see that requests arrive in bursts), the CBS appeared
as a very natural choice for our reference implementation. However,
the original version of the algorithm is fully preemptive. Thereby, it
cannot be directly used in the X server (in which each request is sub-
stantially uninterruptible). For the sake of clarity, we will first briefly
recall the original algorithm. Then we will review the most important
features of the X server architecture (to discuss how our solution has
been implemented). Finally, we will discuss the modification required
to the CBS algorithm to adapt it to the X server.

9.2.3.1 The Constant Bandwidth Server

In the sequel an X client issuing a request to the server will be consid-
ered as a real-time task and referenced as τi; when receiving requests
from multiple clients, the X server selects the request to be served
according to some parameters and variables.

Each client τi is characterised by two parameters Qi and Ti (we
say that τi is associated to a reservation RSVi = (Qi, Ti)), meaning
that it is reserved a time Qi in a period Ti. According to the original
(fully preemptive) CBS algorithm, when a request from client τi is
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served, the time needed by the X server for serving such request is
accounted by decreasing a variable qi called budget, and clients are
scheduled based on their scheduling deadlines dsi (the client with the
earliest scheduling deadline is scheduled). When a request from client
τi arrives to the X server at time t, we say that τi is activated. On the
first activation of τi, qi is initialised toQi and di is initialised to t+ Ti,
and when qi arrives to 0 τi is said to be depleted. On depletion, two
different behaviours are possible:

• the budget is immediately replenished toQi and the scheduling
deadline is postponed to dsi + Ti (so, the client remains schedu-
lable). This is known as soft reservation behaviour;

• the client is not schedulable until time dsi , when the budget will
be replenished and the deadline will be postponed as above (so,
the client cannot be scheduled until dsi ). This is known as hard
reservation behaviour.

The CBS is guaranteed to execute respecting the real-time properties
of the tasks inasmuch as the following condition is respected:

∑
i

Qi
Ti

6 1 (9.3)

For a further discussion on the CBS algorithm and on its properties,
the reader is referred to the Chapter 4 or the original paper [4].

9.2.3.2 The X Server Architecture

The X server is a single thread application, in which a single flow
of execution cyclically intercepts input events and receive clients’ re-
quests, selects the action to process, and processes it. While a multi-
threaded server (creating a thread per client) can easily delegate to
the CPU scheduler (in the OS kernel) the selection of the client to be
served, a single-threaded server like X must explicitly contain a sched-
uler for this purpose. On the hand, retaining the single threaded struc-
ture allows us to reduce the modifications required on the X server to
implement the real-time scheduler and facilitates porting across the
different versions of X.

The X server is logically structured in four layers - an OS depen-
dent layer (OS), a device independent layer (DIX), a device dependent
(DDX), and an Extension interface - and the scheduler is located in
the DIX layer.
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As said, the X server is implemented according to an event-based
paradigm, with a main loop waiting for events, scheduling an event
to be served, and serving it. There are three different kinds of events:

• connections from a new client;

• input events from the user (mouse click, ...);

• requests from an already connected client (clients’ activations).

Events are served in a non-preemptable way, and the selection
of the event to be served is performed by the scheduling function
SmartSchedule(), which implements a variation of the round robin
algorithm. So, when an event representing a request from client τi
is selected (τi is scheduled), it executes until completion; moreover,
to improve the throughput when τi scheduled it can execute a burst
of requests (and not only one). In particular, a global variable called
isItTimeToYield is used by the server to decide when new sched-
uler invocation are needed. In the standard implementation of X,
isItTimeToYield is set when there are no more requests from a client
(the client is deactivated), or when a maximum number of requests
have been served.

9.2.3.3 Implementing the CBS on the X server

A modified (non fully-preemptable) version of the CBS scheduler has
been implemented in the X server as an extension that can be enabled
at compile time. When the feature is enabled, our implementation
replaces the SmartSchedule() function with a CBS scheduler. First of
all, we extended the information maintained for every client to store
the CBS parameters and runtime variables:

• rt_period: the reservation period Ti;

• rt_deadline: the scheduling deadline dsi ;

• rt_capacity: the current budget qi;

• rt_maxcapacity: the maximum budget Qi.

Then, we modified the X scheduler introducing a real-time queue
(RTQ) ordered by scheduling deadlines, in which requests from clients
associated to a CBS are stored. If there are requests in the RTQ, then
the first one (i.e., the one having the earliest scheduling deadline) is
selected, otherwise the original X scheduler is used.



124 practical examples
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Figure 9.17: Original and modified accounting and replenishment mecha-
nisms.

Notice that since events are served in a non-preemptable way, the
accounting can only be performed after serving an event, so qi is up-
dated when the request has been completely served. This means that
after serving long requests qi can become negative (if the maximum
time C needed to serve a request was known in advance, we could
consider qi exhausted if qi < C, but such assumption is not reason-
able in an open system). If after performing the accounting qi 6 0,
then

• qi = qi +Qi, dsi = dsi + Ti, and the RTQ is reordered (soft
reservation behaviour), or

• the client is removed from the RTQ, and will be re-inserted only
at time dsi when budget and scheduling deadline will be up-
dated as above (hard reservation behaviour)

Note that since qi can become negative, the replenishment is per-
formed by setting qi = qi +Qi, and not qi = Qi. Finally, when the
scheduling deadline is postponed the RTQ must be reordered, and
a different client is selected for service (note that this only happens
after finishing to serve a request).

Figure 9.17 shows the effects of the modified accounting mecha-
nism: the upper part depicts the behaviour of the original account-
ing and replenishment rules (for soft CBS) , while the the lower part
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shows the modified rules in action. When a new request arrives, it
is assigned a deadline equal to the arrival time plus T ; after some
time the request is scheduled and its budget starts to decrease. In the
original algorithm, when the budget arrives to 0 it is recharged to Q
(remember that we are considering the soft incarnation of the CBS
algorithm) and the deadline is postponed by T . Note that since the
deadline is postponed, the client can be preempted (in the example,
it is actually preempted, and is scheduled again only after some time).
In the X implementation of the CBS, since the request is not preempt-
able it cannot be interrupted when the budget arrives to 0, and the
request runs to completion. When it is finally served, the budget is
negative, and is recharged by Q, postponing the deadline by T as
above. Finally, note that the non-preemtpability of the requests can
be modelled through the concept of blocking time: each request can
cause a blocking time as long as the maximum time needed by X to
serve it. So, if an upper bound B for the time needed by the X server
to serve a request is known, it is possible produce an update of the
admission test in Equation 4.1:

∀i,
i∑
j=1

Qj

Tj
+
B

Ti
6 1

(see [78] for more details).
Clients can manage their CBS parameters (Qi, Ti) by using three

new functions:

• XRTInitialize(): initialise the RT structure and check if this
extension is installed;

• RTSetProperty(): transform the client in real-time (CBS) and
set the reservation parameters

• RTGetProperty(): return some real-time information about the
client

As a final remark, this scheduler could be plugged into the struc-
ture of X11 with a small effort. All these functions have been devel-
oped as X extensions strictly conforming to the guidelines provided
by the Xorg foundation (that is, by properly extending the xext pro-
tocol and by implementing the functions in the Extension Layer) and
without interfering with the normal functionalities of the window
systems. Therefore, it is possible to rely on the hardware support for
a plethora of graphic cards offered by the most commonly used X11
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Figure 9.18: ocbench progress with lightly loaded or overloaded X server.

servers (Xfree86 and xorg) and to use the legacy applications without
any porting effort (the API of the Window Systems has been totally
unaffected).

9.2.4 Experimental Results

To test the effectiveness and the efficiency of the proposed solution,
we performed an extensive set of experiments on a real implementa-
tion of our scheduler, considering different types of X clients (both
real-time and not). All the experiments have been run on a standard
PC based on an Intel core duo CPU at 1.66GHz equipped with an ATI
Radeon X1300 graphic card and 1GB of RAM. The system is running
Ubuntu Festy with a standard 2.6.20 Linux kernel, and the X server
from current git.

9.2.4.1 Serving Time-Sensitive Applications

The objective of a first set of experiments was to verify that the CBS
scheduler implemented in the X server properly addresses the prob-
lems exposed in Section 9.2.2. To this end, we considered the same sit-
uation depicted in Figure 9.13, in which a time-sensitive application
(ocbench) is scheduled while an instance of x11perf overloads the X
server and a measure of the system time is taken for each ocbench

activation right before executing the redraw operations. Contrary to
what we did before, the ocbench application is scheduled using a
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Figure 9.19: trace of an ocbench scheduled by a hard CBS, with overloaded
X server.
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Figure 9.20: trace of an ocbench scheduled by a soft CBS, with overloaded X
server.

CBS server, both in the hard and in the soft version, with parameters
(3ms, 10ms). The result is reported in Figure 9.18 and the difference
with the results displayed in Figure 9.13 is evident. In this case even
after the activation of x11perf, which occurs after 200 ocbench cycles
the time marks a perfectly proportionate progress in time. The speed
of this progress is only affected by the choice of parameters for the
CBS.

Since the amount of X time reserved to ocbench is enough for
properly serving its requests, the hard and soft CBS schedulers pro-
vide the same performance, so the figure displays only one set of
results. The correctness of the timing behaviour is confirmed by Fig-
ures 9.19 and 9.20, which represent the traces obtained when schedul-
ing ocbench with a hard or soft CBS. As it is possible to see, reserv-
ing a correct bandwidth to the client allows the server to fulfill all
requests with the proper timing.

9.2.4.2 Impact on Throughput

One of the problems encountered when applying real-time techniques
in general-purpose systems is that they often have a bad impact on
the throughput of non real-time applications. To show that the CBS
implementation presented in this section does not suffer from this

Q = 1/6T Q = 1/3T Q = 1/2T Q = 2/3T Q = 5/6T

Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev

T = 30 67 1.14 132 3.64 193 2.40 264 2.3 318 2.48

T = 60 66.2 0.96 133 0.55 192 1.78 251 1.58 313 1.34

T = 90 66 0.55 128 1.51 189 2.04 253 1.30 310 1.48

T = 120 65.8 1.01 126 1.22 186 2.28 248 1.92 310 1.82

T = 150 63.7 1.12 126 1.34 187 2.28 248 2.49 306 2.30

T = 180 62.5 0.99 126 1.64 188 2.34 245 3.36 308 2.00

T = 210 62.8 1.04 125 1.08 187 2.30 246 2.60 305 4.1833

Table 9.10: x11perf throughput when scheduled by a CBS with different pa-
rameters.
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problem, a second batch of experiments has been performed to gauge
the effects of the CBS on the throughput of non time-sensitive applica-
tions. To this end, the throughput (number of operations per second)
achieved by instance of x11perf served by a CBS has been measured
(relying on the numbers reported by the x11perf program to compute
the throughput).

First of all, x11perf has been scheduled through a soft CBS, ob-
taining an average throughput of 360 operations per second with a
standard deviation of 1.73, while the throughput obtained using the
standard X scheduler is 357 operations per second with standard de-
viation 2.28. We performed several experiments of this type obtaining
consistent results: in all cases the CBS did not worsen the throughput
(sometimes the results with the soft CBS were even better than the
standard X11 scheduler ).

Note that serving non time-sensitive applications with a CBS al-
lows to have some degree of control on the applications’ throughput.
Hence, a third batch of experiments was designed to show the abil-
ity of the CBS to control the fraction of time devoted by the X server
to serve requests from a specified client. In this case we used a hard
CBS to schedule an instance of x11perf with different scheduling
parameters. For each choice of parameters Q and T me measured
the throughput achieved through 5 trials. The results (average and
standard deviation) are shown in Table 9.10 and Figure 9.21. The
achieved throughput increases proportionally to the bandwidth Q/T .
It is worth noting that the performance obtained with the soft CBS
was remarkably better (360 operations per second, as measured in
the previous experiment). This is perfectly consistent with our expec-
tations, since the hard CBS is used exactly to the purpose of allocating
a hard bound to the time dedicated to the application (e.g., to avoid
starvation of other applications running in background).

9.2.4.3 Scheduling a Media Player with the CBS

To show how the CBS can improve the performance of more complex
time-sensitive applications, some of the previous experiments have
been repeated using a media player. To this purpose, a media player
based on FFMPEG and GTK/GDK has been ran together with an
instance of x11perf (used to create a high load on the X server). The

This surprising result is probably due to the fact that scheduling x11perf with a CBS
gives him a higher priority over non real-time clients, such as the window manager
remember that ocbench is a very simple application, designed to be only used as a
benchmark
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Figure 9.21: x11perf throughput when scheduled by a CBS with different
parameters, in 3D.

player has been configured for not skipping video frames, and the
Inter-Frame time (defined as the difference between the display times
of two consecutive frames) has been used as a measure of the QoS
perceived by the user.

Figure 9.22 shows the Inter-Frame times obtained when playing a
video at 25 frames per second (fps) when using the standard X sched-
uler (this player will be referred as nrt player), and when serving
the player with a properly dimensioned CBS (rt player). Until arond
frame 110, the X server is not overloaded and all the frames from
both the player instances are displayed in time (note that the Inter-
Frame times are arond 40ms = 1/25). Then, an instance of x11perf is
started around frame 110, and overloads the X server causing a large
increase in the Inter-Frame times experienced by the nrt player. The rt
player instead, is not affected by the x11perf load and its Inter-Frame
time remain stable all the time. During x11perf execution, the video
frames from the nrt player are not displayed in time, and are queued
by the X server; when x11perf stops, such frames are displayed at
a high speed until the X queue is empty and the Inter-Frame times
return to 40ms.

9.2.5 Conclusions

In this section, we analysed the performance of the X11 server when
it is used to serve real-time requests, showing some anomalies caused



130 practical examples

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0  500  1000  1500  2000  2500

In
te

r-
F

ra
m

e
 t

im
e

 (
u

s
)

Frame number

Inter-Frame times for a video player

Standard X scheduler
CBS

Figure 9.22: video player served by the standard X scheduler and by a CBS.

by the priority inversions that stem from a substantially round-robin
mechanism in managing a shared resource (the video card), which
do not account for real-time priorities.

To solve this problem, we devised our own scheduling solution
based on a CBS server. Advantages of our approach are: 1) the con-
tainment of priority inversion, 2) temporal isolation between the dif-
ferent applications, 3) easy portability across different X versions, 4)
negligible effects on the global throughput.

As a future work, we plan to study the interactions between the
X scheduler and the CPU scheduler contained in the kernel, and to
formally analyse the complex hierarchical system composed by the
X server and its clients. As far as architectural aspects are concerned,
we will test our solution on a wide class of applications to cover the
whole gamut of graphical primitives and propose it as a full-fledged
alternative to the standard scheduler.



10
C O N C L U S I O N

In this thesis, we have considered the problem of probabilistic guar-
antees for soft real–time periodic tasks scheduled through a re-

source reservation.
The new method explained in Chapter 5 for analyzing soft real-

time systems through probabilistic deadlines, is faster and is robust
against uncertainties in the execution times distribution.

After that we have shown that the evolution of the system can be
also modelled as a Quasi Birth Death Process. The probability of re-
spect the deadline amounts to the computation of the steady state
probability of this process. We have shown how this is possible both
by numeric means achieving different performance/accuracy trade-
offs. We have also shown the computation of an analytical bound and
offered a validation of these results by experiments and simulations.

In addition, to complete the analysis, we described a model able
to model the problem of scheduling interrupts, which is a particular
situation in which the inter-arrival times are very small.

Finally we have shown some practical examples of using the re-
source reservation.

10.1 future research work

As a future work, a new strategy for finding a proper value of γ
(based on discrete Fourier transform) will be investigated, and the
bounds will be compared with some closed-form solutions that can
be obtained in some special cases. Respect to the QBDM we aim to
further refine the accuracy of our analytical bound and apply the
proposed approach in different contexts.

To complete the Figure 7.2, the next step is to find a way to compute
the exact solution starting from the exact model.
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A
A N A LY S I S O F C L I E N T / S E RV E R I N T E R A C T I O N S I N
A R E S E RVAT I O N - B A S E D S Y S T E M

This appendix presents a theoretical schedulability analysis of clien-
t/server communication in a reservation-based system. The inheri-
tance mechanism previously implemented in a reservation-based sys-
tem (based on the SCHED_DEADLINE Linux patch, which implements
the Constant Bandwidth Server (CBS) algorithm in the Linux kernel)
is improved to support predictable client/server communications, and
the modified SCHED_DEADLINE has been used to run an extensive set
of experiments showing the effectiveness of the proposed approach
and analysis.

a.1 introduction

Resource Reservation is an effective mechanism for enforcing tempo-
ral protection (or temporal isolation) between real-time tasks. This
means that the worst case response time of a real-time task does not
depend on the other applications running in the system, and allows
to provide real-time guarantees considering each task “in isolation”
(without having to care about all of the other tasks running in the
system). For real-time systems, temporal protection is as important as
the memory protection (or address-space protection) feature provided
by general-purpose Operating System (OS) kernels.

While traditional reservation mechanisms only provide isolation
between independent tasks, some form of inheritance mechanism
has been introduced for extending temporal isolation to groups of
tasks interacting through shared resources accessed in mutual exclu-
sion [79, 80, 81]. More recently, similar inheritance mechanisms have
been developed to support different kinds of interactions, such as in-
teractions with device drivers [82] or message passing [83, 84, 82, 36],
which is the most common programming model used in modern
OSs (for example, constructing pipelines of tasks, or using the clien-
t/server paradigm). In particular in Unix-like systems, many services
are based on the client/server (message-based) paradigm: for exam-
ple, graphical input/output often happens through a server (the X
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server), using a client/server model. This appendix addresses the
problem of analysing the schedulability of client/server interactions
(based on Remote Procedure Calls) when reservation-based schedul-
ing is used.

The original Resource Reservations abstraction [5] (and, in partic-
ular, CPU reservations [39]) considered independent tasks, and the
schedulability analysis has been only extended to consider shared
resources [79, 85, 80]. In this appendix, client/server interactions be-
tween tasks are considered.

In particular, the usage of the BandWidth Inheritance (BWI) [80]
mechanism proposed and implemented (but not analysed) in [36], is
analysed. Informally speaking, the BWI idea is quite simple: when
a task is blocked waiting for other tasks, it can share its reservation
with such tasks. A similar algorithm, named Proxy Execution [81],
is based on the concept of Group Scheduling and uses proxy tasks
instead of reservation inheritance to obtain analogous results. The
approach proposed in this appendix is also similar to [86], but al-
lows a better schedulability analysis. Similar inheritance mechanisms
have also been proposed in other contexts [82, 84, 83], but a formal
schedulability analysis is still missing. While the analysis presented
here focuses on [36], it can be adapted to the other implementations
mentioned above.

The schedulability analysis presented in this appendix is different
from the original BWI analysis (which considered multiple tasks ac-
cessing a shared resource in mutual exclusion) because it considers
client/server interactions.

a.2 definitions and background

Real-time systems are traditionally modelled as a set Γ = {τi} of real-
time tasks τi. In this appendix, the term “task” is used to identify a
schedulable entity, being it a thread or a process.

Each real-time task τi is modelled as a stream of jobs Ji,j, which
become ready for execution (arrive) at time ri,j, require a computation
time ci,j, and finish at time fi,j. Job Ji,j is also characterised by a
deadline di,j that is respected if fi,j 6 di,j, and is missed if fi,j > di,j.

If ri,j+1 − ri,j = Pi is constant, then τi is said to be periodic, with
period Pi. The Worst Case Execution Time (WCET) of task τi is de-
fined as Ci = maxj{ci,j}.

http://www.x.org

http://www.x.org
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Finally, the response time ρi,j of job Ji,j is defined as ρi,j = fi,j− ri,j.
The performance of a real-time task can be described by the Cu-
mulative Distribution Function (CDF) of the tasks’ response times:
P{fi,j − ri,j 6 ρ}.

This appendix considers sets of tasks scheduled by a reservation-
based scheduler: each task τi is associated to a resource reservation
(a CPU reservation, in this case) RSVi = (Qsi , T

s
i ), meaning that the

scheduler reserves to τi, an amount Qsi of execution time (called max-
imum budget) every period Tsi (server period).

Resource reservations provide temporal isolation between tasks, mean-
ing that the worst case behaviour of each task τi is not affected by the
other tasks running in the system. As a result, the performance of
each task can be analysed in isolation, without considering all the
other task and simplifying the theoretical analysis of the system.

Resource reservations can be implemented by using a large number
of scheduling algorithms, and the reservation mechanism used in the
appendix is the Constant Bandwidth Server (CBS) (See Chapter 4).

The CBS algorithm guarantees that no scheduling deadline will
ever be missed (that is, ∀i,qsi will arrive to 0 before time dsi ) if the fol-
lowing schedulability condition

∑
iQ

s
i/T

s
i 6 1 is respected. In this ap-

pendix, it is assumed that this schedulability condition is respected.
A reservation-based scheduler provides temporal isolation between

tasks assuming that they are independent (that is, they do not inter-
act nor share resources). However, if tasks share some resources (ac-
cessed in mutual exclusion) or interact in some other way (for exam-
ple, through message passing) it is not possible to provide temporal
isolation anymore. This appendix analyses the interactions happen-
ing when a message passing mechanisms is used (in particular, clien-
t/server interactions). In particular, task τi that can act as a client
requiring some service from a different (even non real-time) task τs,
acting as a server. These interaction happen by using a Remote Proce-
dure Call (RPC) mechanism:

• Client τi sends a message to the server τs, and blocks waiting
for a reply message from τs

• If τs is busy, the request is queued (using a priority-based queue,
as described in the next sections) and will be processed later

• As soon as τs is ready, it gets the highest priority request from
the requests’ queue and processes it

• After processing the request, τs replies to τi
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• When τi receives the reply message from τs, it unblocks and
can finish job Ji,j.

a.3 rpc and bandwidth inheritance

In a client-server architecture, the execution of the client is influenced
by the execution of the server: if the server cannot execute, then the
client will be blocked waiting from the results provided by the server.

In general, this problem happens when a high priority task τi

blocks waiting for a lower priority task τj (in case of CBS schedul-
ing, dsi < d

s
j ). For example, τi and τj share a resource R accessed in

mutual exclusion, and τi tries to access it while the resource is locked
by τj. The same problem also happens when τi is a client sending a
request to a server τj and blocking until it receives a reply from the
server, according to the RPC mechanism described in Section A.2.

While τi is blocked waiting for τj, another medium priority task τk
(with priority between τi and τj: in case of CBS, dsi < d

s
k < d

s
j ) can

be ready for execution and preempt τj, delaying indefinitely τi. The
amount of time for which lower priority tasks (τj and τk, in this case)
are scheduled instead of τi is called blocking time, and in a real-time
system it is important to provide an upper bound to the blocking
time suffered by each task.

The situations described above are the classical example of the pri-
ority inversion problem, that is well known in real-time literature and
can result in an unbounded increase in the blocking time for high
priority real-time tasks such as τi. The effects of priority inversion
can be reduced and controlled in various ways: for example, by us-
ing Priority Inheritance (PI) or Priority Ceiling [63], or some similar
mechanisms such as the Stack Resource Protocol (SRP) [87].

The PI protocol is one of the simplest ones, and is based on two
rules: when a higher priority task τi wants to access a critical section
locked by a lower priority task τj, τi blocks and the lower priority
task τj inherits the priority of τi. When τj unlocks the resource ex-
iting the critical section, the priorities return the same as before the
acquisition of the lock. When using reservation-based scheduling, the
PI approach can be extended by inheriting not only the task’s prior-
ity (the scheduling deadline, if CBS is used) but also the current bud-
get. This is the main idea of the BandWidth Inheritance protocol [80]
(BWI): when a high priority task τi blocks waiting for a lower priority
task τj, τj not only inherits the priority of τi (the scheduling deadline
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dsi in the case of CBS scheduling) but also consumes budget qsi of the
blocked task.

The BWI algorithm has been recently used in combination with the
RPC mechanism (as described in Section A.2) [36]:

• when, during the execution of job Ji,j, the client τi sends a mes-
sage to the server τs and blocks waiting for a reply message, the
CBS RSVi serving τi is inherited by τs (in other words, τs can be
scheduled based on dsi and its execution time can be accounted
to qsi )

• τs receives τi’s request, and processes it (eventually executing
with the priority of dsi and consuming qsi )

• after processing the request, τs replies to τi

• when τi receives the reply message from τs, it unblocks and
RSVi return to τi (so, τs cannot be scheduled by using RSVi’s
budget and scheduling deadline).

Some experimental evaluation showed BWI to be effective for schedul-
ing client/server interactions in reservation-based systems, but a for-
mal schedulability analysis has not been presented yet.

a.4 schedulability analysis

In this section, a schedulability analysis for the scheduling strategy
presented in Section A.3 is developed, based on the following defini-
tions and observations.

Definition 9. Cs is the maximum amount of time needed by a server τs to
process a request from a client.

Definition 10. RSVi is the CBS originally associated to task τi

Definition 11. S(i, t) is the set of CBSs serving task τi at time t

Definition 12. T(i, t) is the set of tasks served by CBS RSVi at time t

Definition 13. A CBS RSVi is said to be active at time t if one of the tasks
in T(i, t) can be scheduled at time t.

Observation 1. In a client/server system, S(i, t) can contain more than 1
CBS only if τi is a server

Observation 2. If ∃j : ri,j 6 t 6 fi,j (a job Ji,j of task τi is active), then
T(i, t) contains exactly 1 non-blocked task.
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Proof. At time ri,j, T(i, t) = {τi} and τi is not blocked. If τi blocks
waiting for a reply from server τs, then RSVi is inherited by τs, so
T(i, t) = {τi, τs}. Now, τi is blocked and τs is active, hence the number
of non-blocked tasks in T(i, t) is still 1.

Observation 3. In a single processor system, CBS RSVi is active at time t
iff ri,j 6 t 6 di,j. One of the tasks in T(i, t) is actually scheduled if RSVi
has the earliest scheduling deadline dsi in the system. In other words, there
is no priority inversion between the CBSs.

This means that if a job of τi is started and not finished yet, then
RSVi can be scheduled. If τi is blocked (waiting for the completion
of an RPC), and RSVi has the earliest scheduling deadline, then it
can be used to serve some other task (the server). Its budget qsi can
be consumed even if τi is blocked. Hence, dimensioning Tsi 6 Pi

and Qsi > Ci is not enough to guarantee that τi will respect all of
its deadlines (Lemma 1 of [4] showed that such an assignment is
sufficient if τi does not block).

Notice that the previous observation is valid only on single proces-
sor systems: on a multi processor system, there can be situations in
which τi is blocked waiting for the server response, dsi is the earliest
deadline on its CPU, but the server is scheduled on a different CPU
through a CBS RSVj having dsj < d

s
i . In this case, RSVi cannot be used

to schedule τi nor the server (because the server cannot be simultane-
ously scheduled on two different CPUs), and suffers a blocking time.
Because of this, from this point a single processor system is assumed
in the analysis.

Definition 14. The Inherited time Ii is the maximum amount of budget of
RSVi consumed when τi is blocked.

Using the concepts defined above, it is now possible to guarantee
the respect of all the deadlines of a task, as explained in the following
lemma.

Lemma 3. Task τi is schedulable by a CBS RSVi = (Qsi , T
s
i ) if Qsi >

Ci + Ii and Tsi 6 Pi.

Proof. By contradiction, assuming that τi is not schedulable. Task τi
is not schedulable if one of its jobs Ji,j misses its deadline: fi,j > di,j =
ri,j +Di > ri,j + T

s
i . Since each job is guaranteed to finish before dsi

(because
∑
iQ

s
i/T

s
i 6 1), this means that dsi > ri,j + T

s
i . Let Ji,k be

the first job finishing with dsi > ri,k + T
s
i . Since Ji,k−1 finished with
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dsi 6 ri,k−1 + T
s
i , ri,k > ri,k−1 + Pi, and Tsi 6 Pi (by hypothesis),

we have ri,k > dsi and a new scheduling deadline ds = ri,k + T
s
i is

generated (recharging the budget to Qsi > Ci + Ij).
Since Ji,k finishes with dsi > ri,k + T

s
i , dsi has been postponed dur-

ing the time interval [ri,k, fi,k]. This means that in such an interval an
amount of CBS budget larger than Qsi has been consumed. However,
Ji,k can consume at most Ci time units of the CBS budget, and at
most Ii units of CBS budget are consumed by the server because of
inheritance. Hence, Ci + Ii > Qsi , contradicting the hypothesis.

Hence, if the inherited time for a task τi is known, it is possible to
dimension its CBS RSVi in order to respect all the deadlines. At this
point, the problem is how to compute Ii. If τi is the only task sending
requests to the server τs, such a computation is pretty easy, as shown
by the following lemma.

Lemma 4. If τi is the only task using server τs, then Ii = Cs.

Proof. When τi sends a request to τs, the server is not executing and
the request is immediately processed. To process this request, τs in-
herits τi’s CBS RSVi, so it executes with the priority given by dsi and
consumes the budget qsi . In the worst case, τs will need an amount
of time Cs for serving the request, so it will consume at most Cs time
units from qsi ; hence, Ii = Cs.

If τs serves requests coming from multiple clients, Ii can be com-
puted by using Theorem 10, which needs the following definition for
its proof.

Definition 15. A server τs is said to be busy if it is serving a request. A
busy interval for server τs is a time interval (t1, t2) which has the following
properties:

• ∀t ∈ (t1, t2), τs is busy at time t

• ∀t ′1 < t1, (t ′1, t2) is not a busy interval (that is, ∃t ∈ (t ′1, t1) : τs is
not busy at time t).

Theorem 10. If server τs serves clients’ requests according to the schedul-
ing deadlines of the clients’ CBSs, and if every client τi sends a request when
qsi > 2Cs, then Ii = 2Cs.

Proof. Consider a client τi sending a request at time t: the proof is by
induction on the number N of requests arrived in the busy interval
(t1, t2) including t (t1 6 t 6 t2). Inductive base: If client τi sends a
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request to the server when the server is idle (t = t1 ⇒ N = 0), then it
can immediately serve the request (using RSVi’s scheduling deadline
and budget). This is the same situation as in Lemma 4, hence Ii = Cs.
Since the request is sent when qsi > 2Cs, q

s
i is not exhausted and dsi

is not postponed.
Inductive step: If the property holds when client τi’s request is the

Nth request in the busy period, then it holds when the request is
the N+ 1th request in the busy period. Since τi’s request is not the
first request in the busy period, when it arrives the server is already
working on a different request, which cannot be preempted. Consider
two cases: 1) the currently served request is from higher priority (ear-
lier scheduling deadline) client, and 2) the request which is currently
served is from a lower priority client. In case 1), RSVi is inherited by
the server, but it is not used (because τs is serving a request from
a higher priority client, hence S(s, t) includes CBSs with scheduling
deadlines shorter than dsi ). Since the property holds for the previous
request in the busy period (the Nth request) by inductive hypothesis,
the scheduling deadline currently used by τs is not postponed, hence
RSVi does not become the highest priority CBS in S(s, t) until the re-
quests from higher priority tasks are completed. Hence, Ii = Cs. In
case 2), τs inherits RSVi which can become the highest priority CBS
in S(s, t). As a result, up to Cs time units of RSVi’s budget can be con-
sumed to serve the current (lower priority) request (since requests are
served in a non-preemptable way). After such a request is served, the
situation is the same as in case 1). Hence, Ii = Cs +Cs = 2Cs

The results from Theorem 10 can be used in two ways: to properly
assign the scheduling parameters (Qsi , T

s
i ) of all the clients τi using

server τs so that no deadline is missed in these tasks, or to enforce a
check on the budget before starting an RPC, so that the interference
time of each task has an upper bound.

In the first case, if ∀τi using τs, Tsi = Pi and Qsi > Ci + 2Cs, then it
is guaranteed that all the deadlines of all these clients are respected.
Temporal protection with other tasks not using τs is guaranteed, but
temporal protection between the clients accessing τs is not guaran-
teed: if a client τj executes for more than its expected WCET Ci, it
can compromise the schedulability of other clients τi accessing the
same server.

In the second case, the condition of Theorem 10 (each client sends
a request to the server when qsi > 2Cs) is enforced by the RPC mech-
anism: before sending a request to the server, qsi is checked, and
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if qsi < 2Cs the deadline is postponed (recharging the budget) so
that the condition is respected. Another option would be to block the
client until the CBS budget is large enough. Notice that in this case
all the deadlines of task τi are respected if Qsi > Ci + 2Cs, but no as-
sumptions on the maximum budgets of the other clients are needed.

a.5 implementation

The Linux implementation [36] is based on the SCHED_DEADLINE patch [57],
which implements the CBS algorithm in the Linux scheduler (by intro-
ducing a new SCHED_DL scheduling class). While the implementation
details can be found in the original paper, this section just recalls the
two system calls that have been added to support BWI in case of var-
ious kinds of interactions between tasks (for example, RPC, but also
other kinds of message passing): bwi_give_server() and bwi_take_-

back_server().
The bwi_give_server() system call is used by a client task τi to per-

form the inheritance, by associating an additional task τs (the server,
in case of client/server interactions) to the client’s CBS (as a conse-
quence, the server’s priority might be updated, and the server might
become a SCHED_DL task if it was not): T(i, t) = T(i, t)∪ {τs}.

The bwi_take_back_server() system call, instead, is used by τi

to end the inheritance, by removing τs from T(i, t) (in case of clien-
t/server interactions, a client invokes bwi_take_back_server() when
waking up from an RPC. As a result, the server task’s priority is
changed back to the original value).

Note that if applications perform RPCs through a system library
(for example, xlib is used by clients to interact with the X server),
then such a library can be modified to call bwi_give_server() and
bwi_take_back_server(). In this way, unmodified user applications
can transparently take advantage of BWI when accessing a server.

In this work, the bwi_give_server() system call has been modi-
fied to check if the current budget qsi of Si is larger than 2Cs, and
to postpone the scheduling deadline (and increase qsi by Qsi ) if this
condition is not respected: qsi = qsi +Q

s
i ;d

s
i = dsi + T

s
i . In this way,

the the hypotheses of Theorem 10 are always satisfied and the RPC
becomes predictable.
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a.6 experimental results

The implementation described in [36] has been modified as described
in Section A.5 and used to perform some experiments on a real sys-
tem, showing the effectiveness of the proposed approach and the cor-
rectness of the analysis. The experiments are based on a server and
multiple clients, communicating through UDP sockets. Some other
periodic or CPU-hungry tasks which do not interact with the server
and the clients have also been added to the system, to make it more
realistic and to increase the system workload. Hence, the programs
used in the tests are a server, some client, some periodic tasks and
some CPU hogs. The server program listens on a UDP socket; when it
receives an UDP packet, it processes such a packet (spending a vari-
able amount of time, with worst case Cs), and sends back a response
to the client. Requests are processed by a dedicated thread, so during
this time the server can continue to receive requests and insert them
in a priority queue, but since requests are non-premptable the server
cannot start to serve a new request until the previous is complete.
The deadline of the requesting client is used as a priority to order the
pending requests.

Clients are periodic tasks with period Pi. Each job of these tasks exe-
cutes for a given amount of time (the preamble), then sends a request
to the server and waits for the response. After receiving the response
from the server, the job executes for some time (the postamble) and
then it finishes (the task waits for the next activation).

The “classic” (non interacting) periodic tasks execute for a prede-
fined amount of time and then wait for the next activation.

Finally, CPU hog tasks, try to consume 100% of the CPU time.
A large number of experiments with different number of tasks and

different tasks parameters has been performed, and all the results
were consistent with the presented analysis. Here, the results of some
simple experiments (which are easier to understand, and can better
show the properties of the proposed approach) are presented and dis-
cussed. The clients and the periodic tasks are associated to different
CBSs, while the server and the CPU hog are scheduled using the stan-
dard Linux scheduling policy, so they can execute only when CBSs
are not active.

In the first example, two clients communicate with a server having
Cs = 5ms. By default, the server is scheduled by using the SCHED_-

OTHER Linux scheduling policy (non real-time), and a CPU hog task
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Figure A.1: First example: Client τ1: deadline 40ms, Client τ2: deadline
50ms.

competes with it. The client τ1 executes for 4ms before sending a
request to the server, and executes for 7ms after receiving a reply
from the server (so, its WCET is C1 = 4ms + 7ms = 11ms). The
task’s period is P1 = 40ms. The client τ2 executes for 1ms before
sending a request to the server, and executes for 11ms after receiving
the server’s reply (so, its WCET is C2 = 1ms+ 11ms = 12ms). The
tasks’ period is P2 = 50ms. According to theorem 10, Qs1 should be
at least C1 + 2Cs = 11ms + 2 ∗ 5ms, hence in the test τ1 has been
scheduled by a CBS RSV1 = (21ms, 40ms). Similarly, τ2 is associated
to RSV2 = (22ms, 50ms).

The resulting response times obtained with and without using BWI
as proposed in this appendix have been measured, and the CDFs of
such times are shown in Figure A.1. By looking at the figure it is
possible to notice that since the CBS parameters are properly dimen-
sioned when using BWI all the deadlines are respected (all the re-
sponse times are less than 40ms for τ1, and less than 50ms for τ2).
When BWI is not used, instead, the probability to miss a deadline is
pretty high even if each task is reserved enough time.

In a second example, a periodic task τ3 with C3 = 5ms and P3 =

100ms associated to a RSV3 = (5ms, 100ms) CBS is added to the sys-
tem. The CDFs of the response times of the three tasks are displayed
in Figure A.2, showing that τ3 is not disturbed by the execution of the
other tasks in the system (all its deadlines are respected, as expected).
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Figure A.2: Second example: a periodic task τ3 (not interacting with the
other tasks) is added to the system.

Summing up, this experiment shows that there is temporal protection
between the periodic task (not interacting with the other tasks in the
system) and the group of tasks formed by the clients and their server.

In the third example, the system contains three clients τ1, τ2, and
τ3, with the parameters described in Table A.1. As it possible to notice
from the table, all of the tasks respect the condition necessary for the
Theorem 10, so no missed deadlines are expected when BWI is used.
Figure A.4 shows the CDF of the response times of the three clients
when BWI is used, and confirms this expectation. Figure A.3 presents
the CDFs obtained repeating the same experiment without BWI, and
show that in this case the response times diverge.

The fourth example shows that the temporal isolation between the
tasks in the system is still respected even if the maximum budgets of
the various tasks are not dimensioned according to Theorem 10 (be-
cause the kernel checks the current budget of a task before perform-
ing an inheritance operation). To this purpose, an additional periodic
task has been added to the system, and the scheduling parameters
of the various tasks have been assigned as shown in Table A.2. The
computation time of the server is equal to 15ms. As it is possible to
notice from the table, the maximum budget reserved to client τ2 is not
enough to guarantee that all the deadlines of this task are respected (it
isQs2 = 31ms, while it should be at leastQs2 = 5+ 2 ∗ 15+ 11 = 41ms).
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Figure A.3: Third experiment: three clients, no BWI.
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Figure A.4: Third experiment: three clients, with BWI.
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Figure A.5: Fourth experiment: three clients, with client τ2 not having
enough maximum budget. In this case, BWI is used: note that
τ2 is the only task missing some deadlines.

However, there should be temporal isolation between τ2 and the other
tasks running in the system, hence the other tasks are not expected to
miss their deadlines. The response times obtained when using BWI
are distributed as shown in Figure A.5: note that the plot for client
τ2 has a long tail, arriving to 160ms. This means that there is a non
0 probability for some job of τ2 to have a response time as large as
160ms, and since the task’s period is P2 = 120ms some deadlines for
τ2 are missed (as expected). By looking at the plots for the other tasks
it is also possible to notice that according to the figure τ2 is the only
task in the system missing some deadlines (again, this is consistent
with the expectations).

Summing up, this experiment shows that if the kernel checks qsi >
2Cs before starting an RPC, then there is temporal isolation even be-
tween clients accessing the same server (provided that Cs is known
and correctly estimated). Finally, the same experiment has been re-
peated without using BWI, and the periodic task (not performing any
RPC) resulted to be the only one respecting its deadlines. This shows
that even if the scheduling parameters of some tasks are not correctly
assigned, BWI still helps in improving the response times.
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Table A.1: Task set for the third example.

Client Preamble Postamble Qsi Pi

τ1 4ms 7ms 21ms 80ms

τ2 5ms 11ms 26ms 60ms

τ3 1ms 1ms 12ms 40ms

Table A.2: Task set for the fourth example. Client τ2 is not reserved enough
time to respect all of its deadlines.

Client Preamble Postamble Qsi Pi

τ1 4ms 7ms 41ms 140ms

τ2 5ms 11ms 31ms 120ms

τ3 1ms 1ms 32ms 100ms

a.7 conclusions and future work

This appendix analysed the schedulability of tasks interacting accord-
ing to the client/server paradigm and scheduled by a reservation-
based scheduler. The predictability of the tasks’ interactions is in-
creased by using the BWI algorithm, and by modifying the RPC mech-
anism in order to check the current budget of a client before sending
requests to the client. As a result of the analysis, it is possible to assign
the reservations’ parameters in order to guarantee the respect of the
deadlines of a single task, or of a group of tasks. Temporal isolation is
guaranteed between tasks that do not interact, but also between tasks
accessing the same server via RPC (thanks to the modifications to the
RPC mechanism).

This solution has been implemented in the Linux kernel, has been
used to perform various experiments in order to verify the correct-
ness of the analysis and to see how the proposed approach works in
practice.

Work is currently in progress to extend the proposed analysis to
multi-processor systesm (as already noticed in Section A.4, the anal-
ysis presented in this appendix is only valid on single processor sys-
tems). When there is more than 1 CPU, it is not guaranteed that a
CBS does not suffer any blocking time (on single processor systems,
if BWI is used there can be an inherited time Ii “stolen” from the
budget qsi , but there is no blocking time). In particular, issues like the
following can occur:
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• Client τi, running on CPU m, starts an RPC with server τs at
time t1 and blocks waiting for the servers’ reply. At time t1, the
current budget of RSVi is qsi

• Server τs is executing on CPU m, and serving a different client
τj with dsj < dsi . Hence, RSVi is inherited, but not used by τs.
So, dsi is the earliest deadline CBS on CPU n, but RSVi cannot
execute (and its budget is not decreased

• At time t2, τs can finally serve τi’s request, and starts execut-
ing with the priority given by dsi and consuming qsi . However,
since qsi has not been decreased in the meanwhile it can be
that qsi/(d

s
i − t2) > Qsi/T

s
i . Hence, RSVi can compromise the

schedulability of other CBSs running on CPU m.

The Multiprocessor BWI algorithm [88] addresses this issue by using
busy waiting to avoid the blocking time. In this way, qsi is decreased
while τi is waiting for τs and τs cannot use RSVi for executing. This
idea can be adapted to be used in case of client/server interactions,
and the proposed analysis can be modified accordingly. This is cur-
rently under development, and mainly requires two modifications to
the previous analysis: accounting of the busy waiting in the interfer-
ence time (or as an increase to the WCET), and analysis of the FIFO
queueing used by multiprocessor BWI (this is partly already done in
the multiprocessor BWI appendix).

The busy waiting introduced by multiprocessor BWI can be re-
moved by accepting that a CBS RSVi cannot be scheduled even if
τi has an active job. In this case, when at time t2 RSVi can be used
again to schedule a task, qsi has to be adjusted in order to avoid
causing blocking times on other tasks. This can be done by setting
qsi = min{qsi ,Q

s
/T
s
i (d

s
i − t2)}.
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