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Abstract

Computational techniques provide invaluable tools for developing a quantitative
understanding the complexity of biological systems. The knowledge of the bi-
ological system under study is formalized in a precise form model A sim-
ulation algorithm will realize the dynamic interactions encoded in the model.
The simulation can uncover biological implications and derive further predic-
tive experiments. Several successful approaches with different lefvdiail

have been introduced to deal with various biological pathways including regu-
latory networks, metabolic pathways and signaling pathways. The Stochastic
simulation algorithm (SSA), in particular, is an exact method to redhe time
evolution of a well-mixed biochemical reaction network. It takes the infitere
randomness in biological reactions and the discrete nature of involved molec-
ular species as the main source in sampling a reaction event. SSA is useful
for reaction networks with low populations of molecular species, especigjly k
species. The macroscopic response can be significantly affected when these
species involved in the reactions both quantitatively and qualitativElyen
though the underlying assumptions of SSA are obviously simplified for real bi-
ological networks, it has been proved having the capability of reproducing the
stochastic effects in biological behaviour.

Essentially, SSA uses a Monte Carlo simulation technique to realize tempo-
ral behaviour of biochemical network. A reaction is randomly selected to fire at
a time according to itpropensityby conducting a search procedure. The fired
reaction leads the system to a new configuration. At this new configuration,



reactions have to update their propensities to reflect the changes.

In this thesis we investigate new algorithms for improving performance of
SSA. First, we study the application of tree-based search for improving the
search of a reaction firing, and devise a solution to optimize the averagh sear
length. We prove that by a tree-based search the performance of SSA can be sen-
sibly improved, moving the search from linear time complexity to loganthm
complexity. We combine this idea with others from the literature, and compare
the performance of our algorithm with previous ones. Our experiments show
that our algorithm is faster, especially on large models.

Second, we focus on reducing the cost of propensity updates. Although the
computational cost for evaluating one reaction propensity is small, the cumula-
tive cost for a large number of reactions contributes a significant portion to the
simulation performance. Typical experiments show that the propensity updates
contribute65% to 85%, and in some special cases uPpfys, of the total simu-
lation time even though@ependency graplvas applied. Moreover, sometimes
one models the kinetics using a complex propensity formula, further increasing
the cost of propensity updates. We study and propose a hew exact simulation
algorithm, calledRSSAamed afteRejection-based SS# reduce the cost of
propensity updates. The principle of RSSA is using an over-approximation of
propensities to select a reaction firing. The exact propensity value is ea@luat
only as needed. Thus, the propensity updates are postponed and collapsed as
much as possible. We show through experiments that the propensity updates by
our algorithm is significantly reduced, and hence substantially improving the
simulation time.

Third, we extend our study for reaction-diffusion processes. The simulation
should explicitly account the diffusion of species in space. The compartment-
based reaction-diffusion simulation is based on dividing the spacesuiteol-
umes so that the subvolumes are well-mixed. The diffusion of a species between
subvolumes is modelled as an additional unimolecular reaction. We propose a



new algorithm, calledRejection-based Reaction DiffusiRRD), to efficiently
simulate such reaction-diffusion systems. RRD combines the tree-baset se
and the idea of RSSA to select the next reaction firing in a subvolume. The high-
light of RRD comparing with previous algorithms is the selection of both the
subvolume and the reaction uses only the over-approximation of propensities.
We prove the correctness and experimentally show performance improvement
of RRD over other compartment-based approaches in literature.

Finally, we focus on performing a statistical analysis of the targetedteve
by stochastic simulation. A direct application of SSA is generating trajest
and then counting the number of the successful oRase eventswhich occur
only with a very small probability, however, make this approach infeasibkee
a prohibitively large number of trajectories would need to be generated before
the estimation becomes reasonably accurate. We propose a new method, called
splitting SSASSSA), to improve the accuracy and efficiency of stochastic sim-
ulation while applying to this problem. Essentially, SSSA is a kind of biased
simulation in which it encourages the evolution of the system making the target
event more likely, yet in such a way that allows one to recover an unbessed
timated probability. We compare both performance and accuracy for sSSSA and
SSA by experimenting in some concrete scenarios. Experimental resultd prevai
that SSSA is more efficient than the naive SSA approach.
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Chapter 1

Introduction

1.1 Biological modelling and simulation

Recent advances in molecular biology have been doubtlessly continuing and
increasing our knowledge of biological systems. The detailed quantitative data
produced allow to characterize, for example, the entire human genome sequence
and its products [144]. However, genes, proteins and their interconnections
alone are not sufficient to explain all the complexities of living organisms. A
cellular system, in essence, is a dynamic system in which its functionsoére
controlled only by the network structure but also the dynamics of involving
elements. Explaining how the molecular interactions and, at its best, the combi-
nation principles emerging to a specific cellular behaviour needs a system-wide
perspective. The cell differentiation during the cell cycle is just an exampl
By changing the experiment conditions, e.g., initial conditions, stimulus, the
resulted cells can be very different, even counter-intuitive pattdris. is due
to the dynamic characteristics and non-linearity of this process. A system le
analysis of biological systems is thus a promising approach to provide an insight
explaining of biological phenomena.

Systems biologg an emergent research area as a combination of system the-
ory and molecular biology. It takes into account the structure and dynamic inter-
actions within the biological network with the aim to understand how these give
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rise to a specific behaviour at the system level, and ultimately, to denelp
biological systems for useful purposes e.g., effective prevention and/or treat-
ment of diseases (see e.g. [87—-89, 173] and references therein).

The computational modelling and simulation plays an important role in the
development of systems biology in twofold. First, it abstracts out a biological
network in term of anodel The model encodes the temporal evolution of its
statein a formal form. Second, it allows to visualize and to predict the causal-
effect of the biological system in time through a computer simulation.

Essentially, a model is an effort to explicitly encode the knowledge of bio-
logical system in a precise form. Depending on features of the biological sys-
tem under study, the model should include sufficient information for analyzing
the system dynamics. For example, at a detail molecular modelling, the model
should manage all the detailed information, e.g., velocity and/or position, of all
molecular species. A whole-cell model, in contrast, should include only a de-
scription of all key cellular processes. A biological model, to some extent, |
therefore just an abstraction of the real system; however, it is usdfuitalize
the understanding of the biological system. So, modelling provides an effective
way to highlight gaps in knowledge of biological systems.

The temporal behaviour of a given biological model is then realized by con-
ductingin silico experiments. The simulation results are compared against with
real experimental data. The inconsistency will show a lack of knowledge in
the model of considered biological system. Models which are validated can
be used to discover indirect and hidden implications in the biological system,
which sometimes are hard to perform in wet lab. For example, one careisolat
some vital genes and observe in detail their behaviour in individual as well as in
together by in silico experiments. This, however, is obviously impossible in we
lab since the cell in such condition may not survive or even not exist. The results
produced by in silico experiments are used for hypotheses forming, and suggest
new experiments. Thus, the predictive feature of computer simulation makes it
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extremely useful for doing quantitative analysis of biochemical systems.

The biological modelling and simulation further contribute to the design
and implement. A component-based approach is more effective than build-
ing the entire system from scratch, which is often more error-prone. The well-
understood models with detailed interacting behaviour are reused as basic build-
ing blocks in a large model. The substitutable feature of this approach provides
an opportunity to reprogram cellular functions to serve for special purposes of
biological research [160].

Summing up, biological modelling and simulation in the post-genomic era
are becoming increasingly important. The knowledge of biological system is
able to integrate into a model, and make testable predictions through simulation.
In silico experiments, in this sense, are highly preferred in term ofdsEsse
and cost; however, it is also important to emphasize that in silico expets
cannot be considered as a substitution of real biological experiments. In silico
experiments thus are used in complement to biological research.

1.2 The need and challenges for stochastic simulation

Different levels of modelling and simulation detail have been adopted to in-
vestigate the dynamics of biological systems. At higher coarse-grained level
the deterministic approach, where the concentration of molecular species are
considered, has the capability of predicting dynamic behaviour of biochemical
systems. The application of deterministic approach often lies dathef mass
actionwhich states the rate of a reaction is directly proportional to the concen-
tration of reactant molecules [14,102, 168]. The time evolution of a biochemi-
cal network is completely described by a set of ordinary differential equations
(ODESs), which is generally referred to &eaction Rate Equatien(RRES).
Hence, the complete dynamic picture of the system, given an initial condi-
tion, can be constructed by an analytic and/or numerical method [10, 125, 155].
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Furthermore, a lot of well-developed tools, e.g., stability and bifurcattai-a
ysis [150], metabolic control analysis (MCA) [53], have been introduced for
analyzing the behaviour of ODE.

The law of mass action has been successful to model chemical reactions at
equilibrium (see [42,73] for examples); however, its underlying assumption is
obviously oversimplified for biological systems. The changes in population of
molecular species due to reaction firings are assumed to be less significant s
that population of molecular species are considered as continuous. The fluctu-
ations of involved species, in this sense, have a negligible effect to tbema
scopic trend of the molecular concentrations. Thus, the law of mass action
describes only average behaviour. The molecules involved in biochemical reac-
tions, however, are obviously discrete. Furthermore, it is common to find in a
model few specific species, e.g., genes, mMRNAs, which play a key role,yeet ha
a very small population. Small changes in these species can lead to a aignific
guantitative and qualitative fluctuation in the behaviour of the overall biological
system. Second, a collision between molecular species to form a reaction i
inherently random. The occurrence of a random reaction can give rise to un-
expected responses, e.g., bistability response pattern. Such random fluctuations
at molecular level are inevitable and referred to as biologicége The im-
portant of the fluctuations and noise in biological systems have been repeatedly
pronounced in recent research (see e.g., [9,46,108,109,127,158,166]). The ran-
dom effects in such systems can help to explain many biological phenomena,
e.g., phenotypic variants [131]. Finally, biological noise itself has an important
role in enhancing inter- and intra-cellular functions. The noise is propagated
from cell to cell to modulate and improve the cellular signaling [122,130]. A
guantitative understanding of biological responses taking account of stochastic
effects is preferred.

At molecular level, the molecular dynamics (MD) [3, 143], where the mo-
tions and interactions between molecules are governed by physical forces, is
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the most detailed and accurate method. It has to keep tracking all the pagsitions
velocities as well as possible collisions of every molecules in the biolbgysa

tem. Although this approach yields an accurate result, it requires a veredeta
knowledge of the molecules both in time and space, and computationally inten-
sive in performing simulation. Hence, MD is limited to simulate the eyst

only at the nanoscale of time and/or space. $toehastic kineticss a more
practical approach that still could capture the stochastic noise. In stmckiast
netics, the system state is denoted by a vector of population of species. Species
can interact through coupled biochemical reactions. A reaction firing wilea

the system state to move to a new state.

The stochastic kinetics is underpinned on that the probability a reaction firing
in the next infinitesimal time can be expressed lpya@ensityfunction. In [60]
a derivation for the existence of such propensity function for the so-caléed
mentaryreaction, which involves at most two molecular species as reactants, i
provided. The dynamic time evolution of the reaction network thus can be de-
scribed as a (continuous) jump Markov process. A complete mathematical form
for expressing the time evolution of the system state is generally referiasl
Chemical Master Equatio(CME) [64]. A directly analytic solution of CME,
however, is hard to obtain unless the system is very small. Fortunately, w
can construct an exact realization of CME through a simulation method called
stochastic simulation algorithm (SSEP, 61,65]. SSA realizes a possible state
transition by randomly selecting a reaction to fire according to its progensit
At the new state, affected reactions have to update their propensitieietd re
the changes.

SSA, however, is often very computational demand for simulating large bi-
ological systems. In practice, large models are needed to investigat®ise
effects to the whole regulatory system [150]. For example, one can observe
the propagation of noise in a pathway and its impacts on the cell fate. The un-
derstanding of these effects is necessary for developing an automatic system
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design and control. The simulation time of a SSA run is mainly dominated
by two sources: search for the next reaction firing and update the propensities
after a reaction fired. First, an inefficient search for the next readtring

such as the linear search is asymptotically increasing with the number of re
actions in the model. The linear characteristic thus limits the application of
SSA to large models. Second, a large model is typically encompassed with
a large number of interconnections and (feedback) loops. The propensity up-
dates required anytime the population of involved species is changed are also a
computational bottleneck. Moreover, sometimes one models the kinetics using
a complex propensity formula, e.g., the Michaelis-Menten equation, the Hill
equation, further increasing the cost of propensity updates. The computation
cost of SSA is further increased when relaxing the underlying assumptions of
SSA. For example, to handle the movement of species in space, the extension
of SSA is introduced by dividing space into subvolumes. A species can locally
interact with other species inside a subvolume or jump to its neighbors. The
search and update of reactions obviously take more computational demand be-
cause the number of species and reactions grow with the number of subvolumes.

Due to the stochastic behaviour in a single realization, a lot of simulation tra-
jectories are required to ensure correct statistical information dirthereach-
able states. For example, to estimate the reaching probability of a giveh se
targeted states, one needs to generate an ensemble of independent SSA simu-
lations (say10° runs) and count which hits the target to collect a reasonable
statistics. SSA will soon become inefficient to estimate the raratgu®ba-
bility since a prohibitively large number of trajectories, and of course veagly hi
computational effort, would need to be generated before the estimation becomes
reasonably accurate.

In addition to these general characters, a biological model can exhibit mul-
tiscale behaviour. The reactions are often separated by different tines scal
in which some fast reactions will occur at a rate greater than otheraeact
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In particular, instiff system, the fast reactions occurs frequently and drive the
system into stable state very fast. After this short fluctuation timme,stow
reactions will determine the system dynamics. However, most of the time the
simulation samples the fast reactions which is not the expected behaviour of
the system. Furthermore, the population of some species involved in reactions
may also many orders of magnitude larger than others. The fluctuations of these
species, when reactions fire, are less significant. Keep tracking seagtéan
firings for large population species by SSA is obviously less efficient since a
coarse-grained simulation method can be applied without loss of total simula-
tion accuracy. Because of the inherent dynamics in biochemical reactions, a
model can combine and mix all of these aspects in a very complicated man-
ner. For example, the system exhibit stiffness at beginning, but then requires
to consider a single reaction firings. It also can start with large population
some species then their population become small because of many reactions fir-
ings. These issues raise a great challenge for developing and implementing of
an efficient stochastic simulation method [142, 154].

1.3 The objective of the thesis

In this thesis we aim to improve the existing methods and investigate lgew a
rithms for efficiently performing exact stochastic simulation. We conteliat
the improvement of SSA in following aspects:

e We study the effect of theearchfor the next reaction firing to the perfor-
mance of SSA. We contribute to the improvement of SSA by proposing a
tree-based search approach. We show, both in theory and in practice, that
by using an underlying tree data structure to store reaction propensities the
simulation time can be sensibly improved. Second, we predict the shape
of the tree leading to optimal average search time. This turns out to be the
Huffman tree, a well-known device used for data compression. Then, we
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study efficient approaches to rebuild the tree when it becomes non-optimal.

We study the effect of the propensiipdatesto the overall performance

of stochastic simulation. Even though a dependency graph can reduce
the propensity updates to be model-dependent, in which only locally af-
fected reactions have to recompute their propensities, still there are mod-
els, e.g., highly coupled reactions, where costly updates are required. The
update cost is further increased if a complex propensity function is ex-
ploited to model complex effects, e.g., the allosteric effect in mauglli
protein binding mechanism. The simulation time is significantly affected
by propensity updates. We propose a new algorithm, called RSSA, to avoid
fully recomputing propensities of affected reactions as much as possible.
RSSA uses an over-approximation of propensities to select a candidate re-
action. The candidate reaction is then subjected to a rejection-based proce-
dure to decide either accept this selected reaction to fire or (with lota+pr
ability) reject it. We experimentally study different search procedures f
finding a candidate reaction and discuss which leads to better performance,
for different network sizes. We subsequently study several strategies for
controlling the amount of over-approximation (hence, indirectly the accep-
tance probability), and analyze their impact to the simulation performance.
We also discuss how to systematically optimize the tunable parameters of
RSSA so to maximize its performance.

We study the spatial effects in biological reactions. Although diffusion of
species in space is inevitable, it is less significant when the diffusiaa tim
IS many orders faster than the reaction time. The biological system, how-
ever, will exhibit spatial heterogeneity if this condition is violated. SSA
has been extended to incorporate diffusion by dividing the space into well-
stirred subvolumes. Species can locally interact in a subvolume oreliffus
between subvolumes. The diffusion of species is modelled as first-order
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reactions. As a result, the number of species and reactions in a reaction-
diffusion model are increased linearly with the number of subvolumes.
The simulation thus requires a prohibitive computational cost for both of
the search of a reaction firing in a subvolume and the update of affected
reactions and subvolumes after a reaction fired. We contribute to this topic
by proposing a new method call&®RD RRD combines the tree-based
search and the principle of RSSA to improve performance of the stochas-
tic reaction-diffusion simulation. First, a candidate subvolume is sadect
through a binary search on an over-approximation of subvolume propen-
sities. Then, a candidate reaction in this subvolume is retrieved by using
a fast lookup search on an over-approximation of reaction propensities. A
rejection-based procedure is finally applied to either accept the reagtion t
fire or reject it. These features of RRD make it scale well with bottdar
numbers of subvolumes and reactions.

We study the problem of performing a statistical analysis of a targeted
event of interest on a biological model. A large number of SSA runs may
be required to achieve reasonable statistical accuracy of the event under
study. The task becomes increasingly harder when considanagvents

which occur only with a very small probability. The estimated rare event
probability produced by SSA may even be inaccurate. We contribute to
this study by proposing a new method, calE®5Ato efficiently estimate

the probability of a rare event. sSSA estimates the probability of a rare
event through a kind of biased simulation. The state spag@itsnto sub-

sets defined so that the event becomes more likely to reach when moving
from one subset to another. Hence, the simulated trajectories are gradually
“pushed” towards the rare event following such subsets. The (unbiased)
probability for the rare event is then estimated by counting the successful
(biased) trajectories, and then applying a correction factor so to account
for the bias.



1.4 Structure of the thesis

The outline of the thesis is the following.

In chapter 2 we briefly review modelling techniques to represent a biochem-
ical reaction network. Then, we give a detailed review of stochastic sironlat
techniques, including exact, approximate and hybrid methods to improve the
performance of SSA. The extensions of SSA obtained by relaxing its underlying
assumptions i.e., reactions with delayed time and spatiality, areealswed.

In chapter 3 we describe in detail the application of tree-based search to
improve the search of next reaction firing. The underlying data structure and
algorithm for performing binary search are detailed. Then, we study which
tree structures leading to an optimal search length and tree rebuil diegses
when the tree becomes non-optimal. A part of this chapter has been published
in [156], of which an extended version is submitted for publication.

In chapter 4 we present key steps of RSSA for finding a reaction firing with
its firing time based on the over-approximation propensities. We provide a for-
mal proof for the correctness of RSSA. Then, we discuss different search pro-
cedures for finding a candidate reaction supported by RSSA as well as several
mechanisms to control the amount of approximation, hence controlling the ac-
ceptance probability. A part of this chapter has been submitted for publication.

In chapter 5 we will describe in detail the RRD algorithm. The key steps for
selecting a subvolume and a reaction firing in that subvolume are presented. A
proof for correctness of RRD is also presented.

In chapter 6 we formulate the problem of rare event probability estimation in
the stochastic simulation setting. Then, we present the sSSA algorithm and its
features for improving the efficiency and accuracy of estimating the protyabili
of rare events. A part of this chapter has been published in [157].

The conclusions and further research are in chapter 7.
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Chapter 2

Stochastic Simulation: A Literature
Review

2.1 Introduction

Molecular species, e.g., genes, mRNAs, proteins, are constantly movidg insi
a cell. Following a species trajectory, it can collide with other sgpcA colli-
sion between molecular species will form a reaction if it satisfiesesspecific
conditions, e.g., activation energy, which are known asréaetion kinetics
The rate of a reaction, in essence, depends on a rate constant and reactants
The result of a reaction is new molecular species produced to help performing
necessary activities of the cell. The reaction pathway is an organiaetiae
network to perform special cellular purposes. A biological system exploits dif-
ferent pathways by many mechanisms, e.g., feedback and feedforward loops at
different levels, e.g., time and/or space to control, regulate and coordinate op-
erations between cells. The understanding of these mechanisms becomes more
difficult when random noise, yet important, is taken part in these processes.
The stochastic framework provides promising tools for performing an insight
analysis of the system behaviour at system-wide level.

Two important factors have to be established for the success of a stochastic
approach. First, a modelling formalism should allow to encode the knowledge
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of the reaction network as well as its parameters in a more formal seraad
testable form. It must be simple, flexible and scalable enough for modelling
different types of reaction networks ranging from very small, e.g., simple gene
expression, to very large, e.g., complex signaling pathways, metabolismror eve
living organisms. Further, the model should be standardized so that it is able to
share information, data and knowledge between communities. Second, a sim-
ulation algorithm is built to visualize the time evolution of the system. The
simulation should be able to capture important features in the dynamics of bi-
ological processes. It also takes into account biological noise as an important
factor affecting the system evolution. Thus, the grand challenge in computa-
tional biology is to model and simulate a full cellular organism [142, 154].

A lot of successful work has been established in literature to lay down the
foundation for modelling biochemical reaction networks. A direct way to de-
scribe a reaction network is to write down the network as a list of coupled
reactions. Modelling a reaction network by coupled reactions is simple and
flexible. The network is easy to communicate between biologists and computer
scientists. However, this modelling technique also has its own disady@anta
The number of reactions and their complex coupling in large models make
it difficult to control. A graphical representation is an alternative maagg||
for reaction networks. For instance, a graph, e.g species-reaction graph, Pet
net [171], can visualize the reaction network in a visual form. It thus unravels
the hiearchical organization and causalities between components of themmeact
network. Further, mathematical analysis on graph can be carried out to obtain
a qualitative information about the dynamics of the network. Recent modelling
formalisms, adapted from the computational area, have tried to improve the
expressiveness of the model, esgr¢alculus, state chart, discrete-event mod-
elling (DEV) [37,49]. They allow to explicitly represent the biological enstie
such as molecular species, reactions, as concurrent processes. Eachiprocess
an independent entity. It interacts and shares information with other precesse
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concurrently through channels. A logical process could be implemented as an
instance of a runnable process in a computer, so it is easy to turn an entire model
into an executable simulation. Furthermore, these formalisms have stndng a
well-studied mathematical background. A lot of well-developed mathematical
tools have been developed to support for useful analysis, e.g., checking equiv-
alence behaviour, model checking [1, 113]. New modelling techniques such
as rule-based modelling [50, 107, 146], also get more attention recently. They
are introduced to overcome the explosion problem in modelling reaction path-
ways, e.g., signaling pathway. For example, in rule-based modelling, reactions
are modelled as rules. A rule also encompasses with extra informatiomefor t
reaction firing, i.e., reaction kinetics. If a rule is matched, the cpoeding
reactions is introduced to the system at runtime. Thus, all the possible reactions
in the model do not need to be specified at the beginning of simulation.

Once the model developed, we can perfamsilico experiments through
a computer-based simulation. The dynamic interaction between species in the
model can reveal indirect implications, unexpected behaviour which are com-
plicated, unpredictable and even unknown at the modelling phase. The stochas-
tic framework is often the choice to analyze random phenomena in biological
responses. A reaction between molecular species is expressed as atistochas
process. The time associated with reactions is treated continuous, while the
state is discrete, e.g., species population. The dynamics of the biological net-
work thus can be expressed as a collection of stochastic equations. An analytic
solution to these stochastic equations, however, is limited to small siodBl.
Mathematical analysis is often intractable for large models. Stochsistig-
lation is an alternative approach to realize the dynamic behaviour of the given
reaction network. A sample trajectory of the system is generated by samapling
possible reaction event. Thus, usually many trajectories should be generated i
order to have a sufficient information about the system behaviour. Throughout
the time, many simulation algorithms and software tools have been developed
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for performing biochemical simulation. These algorithms can count for the
stochasticity in time and/or space.

For a well-mixed biochemical reaction system, the stochastic siroalatt
gorithm (SSA) [60, 61] is @e factostandard for numerically sampling the time
evolution of a biochemical reaction network. The development of SSA has the
mathematical background on the chemical master equation (CME) [64], which
completely describes the probability distribution of all possible stateitiamns.

SSA takes into account the inherently random fluctuation of the involved molec-
ular species as a main source in selecting a reaction firing. It is ahreg#cod

in the sense it does not introduce any source of approximation in selecting the
reaction. In other words, it gives the same result as the analytic solution of
CME, while the later is intractable for many cases. Essentially, S&#ches

for a reaction to fire at a time based on a probability function. The reaction
probability distribution depends on the (current) system state and the chemical
kinetics. Anytime a reaction fires, the system configuration, i.e., themyste
state, as well as the reaction probability distribution have to be updated.

SSA often requires very computational demand for large models. In prac-
tice, a large model is needed to address and understand the regulatory affects t
the cell behaviour. Several improvements to SSA has been introduced during
the time course to make it applicable for large models. For example, to speed
up the search of the next reaction firing, reactions is rearranged so thata rea
tion having higher probability is placed near the search position. For updating
reactions, alependency grap[b9] is often exploited so that only locally de-
pendent reactions should have to be updated. The update is thus reduced to be
model-dependent. Therefore, for loosely coupled reaction networks, e.g., a lin-
ear chain, the update is only a constant factor. Some algorithms even sacrifice
its exactness to achieve a higher performance. The main idea of approximate
algorithms is trying to fire as many as possible the number of reactions, but stil
constrained the approximation by an error constraint. The most notable approxi-
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mate method is the-leaping [63] algorithm. Although approximate algorithms
indeed run faster, they expose serious problems especially to models having just
some species at very low copy numbers. Firing many reactions in one gme st
yields the negative population for these species which is obviously infeasible in
real experiments. A promising approach to solve this problem is the hybrid sim-
ulation [121]. It treats the system by two complementary parts. The part with
low population species is simulated by an exact stochastic simulation, tvaile

part with the high population species is treated by a fast simulation algorithm
e.g., ODE integrationz-leaping. Hence, it still achieves a better performance
and also captures the important stochastic effects.

The assumptions of SSA, e.g. instantaneous reaction firing, well-mixed so-
lution, is restricted for living cells. The effects of these factors whamsaler-
ing can alter the behaviour of the biological network significantly. Hence, SSA
should be adapted to account for these factors. For example, the highly localiza-
tion of species which is generally referred to asri@ecular crowdindg33, 82]
enhances the availability of species, and thus speeding up the operations of
cellular processes. It also helps to explain important effects in biolbgysa
tems, e.g., the excluded volume effect. Thus, taking spatial informationhato t
stochastic simulation is a crucial task [153]. A possible extension of SSA for
spatially heterogeneous environment is dividing space into well-mixed subvol-
umes. The diffusion of a molecular species between subvolumes is explicitly
modelled by an additional unimolecular reaction. The extension of SSA in this
manner is known as th@ompartment-basesimulation.

In the following, we review the model representation techniques used to
represent of biochemical reaction networks. Although the modelling of bio-
chemical systems is attractive and has been continuously increasing, a thor-
ough review is out of scope of this thesis (see e.qg., [37,49, 50, 107, 146, 171]
and references therein for more discussion). In the review, we focus only on
the modelling formalisms that we directly apply for developing of our simula-
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tion algorithm. Then, we are going to details of the algorithms for conducting
stochastic simulation of biochemical reaction networks. We cover fundamenta
ideas of SSA as well as efficient formulations proposed during the time course.
We also present a brief review of approximate and hybrid methods to improve
the performance by the cost of its exactness. The extensions of SSA by relax-
ing the underlying assumptions of the biochemical reaction networks are also
reviewed. Two possible extensions are reviewed namely: reactions with delays
and reactions with spatiality.

2.2 Reaction network representation

2.2.1 Coupled reaction list

Listing all the reactions in the network is a direct way to specify reastiof

the model. The network thus will be expressed in form of coupled reactions.
Let consider a biochemical reaction system consistingpecies denoted as
S, ...S,. These species interact throughreactionsR,, ...R,,. Each reaction
has the following general form:

kj
Rj : Uljsl + ...+ Uann — vijSl —+ ...+ U;Lan (21)

wherewv;; andv;; are referred to astoichiometric coefficientsin fact v;; is

the number of specieS; are consumed and, in contras}; is the number of
species are produced by reactiin. In this general reaction form, we allow
some species to appear in the both side of a reaction. The appearance of such
species is only to increase the rate of the reaction and this species ialgener
called acatalyst k; is the (stochastiajate constanof reactionR?;. A reversible
reaction in this representation should be expressed explicitly. The Heleersi
reaction is thus considered as two separated irreversible reactnmhthey are
treated independently.
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A coupled reaction list intuitively shows the coupling of the species in the
model. It itself can give a qualitative structure of the system. Becausigeof
simplicity and flexibility of the representation one can easily add, modify and
remove reactions to extend the model. This modelling has been widely ac-
cepted to represent a reaction network. The systems biology markup language
(SBML) [54, 77,78, 152] is an attempt to standardize the modelling process
with the help of a computer software. SBML encodes the reaction list in an
independent format (the XML format). Thus, the model is easy to store, trans-
fer and parse by a software component. There are also similar approaches to
ease the modelling of reaction list with the help of computer e.g., CellML,
BioPAX [44,92,104].

The coupled reaction list, however, also has its own disadvantages. aFirst
practical model often contains a lot of reactions. the model becomes extremely
complex and even uncontrollable when modelling large networks. Second, it
does not support for structural analysis. This preliminary analysis can give a
substantial information for guiding the simulation development. This informa-
tion is also useful in understanding the system dynamics at runtime. Further-
more, because the reaction model is not associated with necessary indarmat
l.e., reaction kinetics and initial condition, it has to be tailored witls thfor-
mation before it can be simulated.

2.2.2 Graphical network diagram

A graphical representation is a visual approach to model a biochemical reaction
network. It contains the same information as a coupled reaction list, butpsese
the reactions in a diagrammatic format. Thus, it is easy to understand the hi-
erarchical organization of the reaction network. Because a graphical model
Is backed on a rigorous mathematical structure, i.e., a discrete gragnalsev
well-developed tools in this area can be applied to support for analyzing the
organizing structure of the reaction network. The structure information briefly
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characterizes the dynamic behaviour of the corresponding biological system.
The development of a graphical model with the help of computer, e.g., JDe-
signer, JigCell, make it become more easier. Recently, an effort ke e
standard notations for network diagrams using the system biology graphical
notation (SBGN) is proposed [81, 119], hence enhancing the quality and the
usability of models.

The species-reaction (SR) graph is a natural representation of a biochemical
reaction network. It is a type of bipartite graphs where nodes are completely
divided into two types: the species nodes and the reaction nodes. A species node
represents for a molecular species involved in the model, while a reanciam
denotes for a reaction between species. A directed edge from a species node to a
reaction node indicates that the species is a reactant of the reaction. lastontr
an edge from a reaction to a species indicates that the corresponding species is
a product of the reaction. The edge between a species node and a reaction node
Is further attributed with a weight. This value denotes the stoichiometry of the
species in the reaction.

A Petri net [69, 124, 133] is an another graphical modelling of the biochem-
ical reaction network, but is augmented with rigorous mathematical sesnanti
rules. Thus, it takes advantage over the SR graph. The Petri net is grounded
also on a directed bipartite graph in which a species node is cafitg and
a reaction node is calledteansition The place is associated with a number
of tokers, which are the population of the corresponding species. A configu-
ration of the tokens in places at a time is referred to asaaking When a
transition fires, corresponding with a reaction fires, the tokens in the pages
redistributed. The system then moves to another marking. A transition firing is
able to be modified to account for the random noise. Furthermore, properties of
the model encoding in the Petri net such as network invariants e.g., P- and T-
Invariants, reachability, can be derived to support the simulation asallisus,
the Petri net is very well-suited for stochastic modelling and simulation.
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R: G>G+M

Ry M>M+P

Ry M~ _

Ry P> _

Rg: 2P 5 P,

Rg: P, > 2P

R;,: P,+G > P,G R,

Rg: P,G>P,+G

a) Reaction list b) Petri net re:){?esentation

reactant product
G M P P, PG G M P P, PG
R, 1 0 0 0 O 11 0 0 O
R, 01 0 0 O 01 1 0 0
R; 01 0 0 O 00 0 0 O
R, 0 0 1 0 O 00 00 O
Ry, 0 0 2 0 O 00 0 1 O
Re 0 0 0 1 0 00 2 0 0
R, 1.0 0 1 O 00 0 0 1
Rg 0 0 0 0 1 1 0 0 1 O
)

c) Stoichiometric matrix

Figure 2.1: The gene expression model is represented byoaipdet! reaction list, b) a Petri-net
and c) the corresponding stoichiometric matrix

To store the underlying bipartite graph of a graphical model in a computer,
we make use of a matrix. An element in the matrix is corresponding with an di-
rected edge between two nodes. The corresponding element is set with a value
is the weight (stoichiometry) of such edge. Such matrix is generally referre
to as thestoichiometric matrix Since the matrix is often sparse (with many
zero elements), we can apply the sparse matrix computation techniques to re
duce its size and processing time. The figure 2.1 gives an example of different
representations for the gene expression model.

2.3 Simulation algorithm

2.3.1 Exact stochastic simulation

Let consider a well-mixed biochemical reaction system. The cell is agstome
be fixed to a constant volume, and is in a thermal equilibrium. The position and
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Table 2.1: Propensity function for elementary reactions
R0 k#products a; = ky

Ry S; gproducts as = ko - X
Rs: S; + 5 3products as = ks - X; - X;

Ry: SZ + Sz gprOdUCtS ag = k4w

speed of molecular species in the cell volume, by these assumptions, become
randomized. In fact, they are randomly distributed following the thermodynam-
ics law. We therefore only need to consider the population of molecular species,
while ignoring all the positions, velocities of species. D&{t) denote the pop-
ulation of species); at timet. Thus, the state vectox (¢) of the system at time
t is represented by @a-vector X (t) = (X1(¢), ..., Xu(t)).

The change of the system state at time d¢ which is the consequence of
the next reactio?; firing is denoted by a state change veatprNote that; is
corresponding to a row of the stoichiometric matrix. Thus, the state transition
of the system is formulated as:

X(t+dt)=X(t) +vj (2.2)

The quantity characterizing the probability reactifin firing is termed a
propensity functioru,. It is defined so that;(x)dt is the probability reaction
R; will fire in the next infinitesimal time + dt given the current stat& (¢) = «
at timet. This is referred to as tfendamental hypothes60] of the stochastic
kinetics simulation. A physical derivation for the existence of such propensity
function for theelementary reactiosis provided in [60,111]. We summarize
the form of these formulas in the following table 2.1.

By the fundamental hypothesis, the biochemical reaction system can be mod-
elled as a (continuous-time) jump Markov process. Pét,t) be the prob-
ability of system being in stat& (t) = x at timet¢. The differential equa-
tion expresses the complete time evolutionR{fr, t|z, ty) with initial state

20



X (ty) = zo at timet, given in Equ. 2.3.

OP(z,t|z,t0) =
x ’x()) 0 Z :L,_fU x_vj7t|x07t0) —aj(x)P(a],tliL‘o,to)}

Jj=1

(2.3)

Equ. 2.3 is generally called the chemical master equation (CME). It com-
pletely determines the time evolution of the system at any particular time
CME is indeed a collection of differential equations describing all the #tae
sitions by biochemical reactions. The number of equations in CME is thus in-
creasing exponentially with all possible state transitions. For examplegre
sider a system where each species has only two statesd1. Forn species
we will have total2” equations. A full analytic solution of CME is obviously
intractable for most of practical problems wheres large enough. Some recent
computational approaches [116,172] have tried to solve CME directly but at the
cost of an approximation error. In this thesis, we exploit the simulation tech-
nique to sample the possible solutions of CME instead. The simulation realizes
a trajectory of the system evolution by sampling tiext reaction probability
density functiomp(r, j|x, t), in whichp(7, j|z, t)dT is the probability a reaction
will be fired in the next time +-7+d7 and it is the reactior;, provided that we
are in stateX (¢) = =. The next reaction probability is indeed a joint probability
of the firing timer and the selected probability of reactiéh. We have:

p(T, jlo, t)dt = aj(x)exp(—ap(x)T)dt (2.4)

where .
ap(x) =) a;j(w) (2.5)

=1

while 7 and; are the time of the reaction firing and its index, respectively.

The Equ. 2.4-2.5 is the basis for the stochastic simulation algorithm (SSA).
It imposes two important things. First, the firing time is exponential disteidbut
with meanl/ay. Second, the probability reactid; is selected to fire at that
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time is a discrete probability mass functioyya,. There are two implementa-

tions of SSA which have the same stochastic behaviour were introduced. They

are known as the Direct Method (DM) and the First Reaction Method (FRM).
DM directly computes the reaction firing timeby inverse the exponential

distributionagexp(—ao(x)7), and then searches for reactiBnto fire according

to its probabilitya; /ay. DM requires two random number for doing a simulation

step. Letr; andr, be random numbers generated from a uniform distribution

U(0,1). The first number is used to compute the firing timevhile the second

one is used to decide which the reacti®nfires at that time.

1 1
= () =
j = the smalles} s.t. Z arp(x) > roap(x) (2.7)
k=1

The search for a reaction firing; in DM is directly implemented by con-
tinuously accumulating the sum of propensities on-the-fly until it satisfies the
conditionz‘};z1 ax(x) > rqeap(z). Itis equivalent with a linear search.

Having the timer and the fired reactio®®;, DM jumps current system state
to the new state: + v;, and updates current time to the new time 7. The
propensities of reactions are updated to reflect the change in the systens state a
well. The simulation will loop until the current time is passed over a predete
mined simulation timd;,,,... We briefly outline the DM algorithm in Alg. 1 for
the ease of reference.

The key point of the DM algorithm is the propensitie$z)s are computed
once at the start of the simulation, and then updated as soon as the state
changes. In Alg. 1 all the reactions have to update their propensities after a
reaction firing. The update step is obviously inefficient with a large model. To
speed up the propensity updates, it is common to exploit a dependency graph be-
tween reactions, which describes which propensities actually need todra-re
puted after every reaction firings. In other words, only locally affectadtions
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Algorithm 1 Direct Method (DM)
1. initialize system time¢ = 0 and system state = z

2: while t < t,,,,, dO

3: forall reactionR; do
4 computeq;
5. end for

6: computen
.

8

9

generate two random numbefsr, ~ U(0, 1)
sett = 1/ag(x)ln (%)
:  search for the next reactioR; by continuously accumulating propensities until
>ty an(w) > raao()
10:  update the time = ¢ 4- 7 and system state = z + v,
11: end while

have to be recalculated their propensities. The dependency @y, £) is a
directed graph (see Fig. 2.2 for an example) which contains the reactions as ve
ticesV, while an directed edge(R;, R;) € E if and only if R; € affect§R;),

the set of reactions affected ;. Formally

affect§ R;) = { R, |(reactant§R;)Uproduct$RR;))N reactant§R;) # 0} (2.8)

where reactant${;) and productsg;) are the set of species taking part in reac-
tion R; as reactants and products, respectively. Because a directed catalyst i
not consumed by the reaction itself, it is excluded from the reactants and prod-
ucts of the reaction. Hence, by the dependency graph update mechanism, the
propensity updates are now reduced to be model-dependent.

FRM is mathematically equivalent with DM but proceeds in a different man-
ner. Itis a type of racing algorithm. The reaction with smallest putative ti
Is selected to fire next. Thus, in each simulation loppyandom numbers
r...rm ~ U(0,1) are used to generate the putative times of reactions. The
putative timer; of reaction?; is computed as:

Tj = ! ln(l>,j:1...m (2.9)

aj(x)  \r;
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No. Reaction
A+B— C ’ °
C+B =D ".
E+C = 2C+F
2C— G O "’°
F+H— B

Figure 2.2: Dependency graph (removing self affected gdges

g A WO N -

The reaction?; having the smallest putative timg = min(7y,...,7,,) iS se-
lected to fire. The propensity update in FRM is done similar to DM. The mathe-
matical equivalence between FRM and DM is derived directly from the ptpper
of the exponential distribution [60].

FRM takesn random numbers in each simulation step to compute the puta-
tive times of reactions. But, only one is actually consumed by the simulation,
while m — 1 random numbers are discarded. A lot of random numbers waste
while applying to large models. FRM is thus less efficient and often runs slower
than DM. However, treating each reaction as a separated procdgsalidws
to consider in detail the effects of each reaction to the overall sydiaram-
ics. For example, we can easily modify the propensity of a reaction taking into
account the effect of e.g., cell size changing during the simulation time. This
Is known as theandom-time changespresentation [97]. The firing time of a
reaction can even be modelled by different distributions, e.g., the Erlang, the
Hyperexponential distribution [117]. Second, FRM allows to see the simula-
tion as a discrete-event simulation algorithm. And, there are manyegiffici
event-queue data structures [20, 68, 83, 135] developed in computer science so
that they can be directly applied to improve the performance of FRM. The most
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notable improvement of FRM as a discrete-event simulation is the Next Reac
tion Method (NRM) [59]. NRM uses a special priority queue, called the binary
heap, to store the putative reaction times. Retrieving the smallesiveuiate

IS constant since it is always on the top of the heap. After a reaction igesglec

to fire, NRM has to maintain the priority queue to reflect the change in the sys-
tem; however, it does this in a clever way. NRM exploits the scaling pnesert

of the exponential distribution and dependency graph to improve the propen-
sity updates. By this way, the absolute putative time has to be used, instead
of relative putative time in original FRM. There are two cases the computing
of new putative times and maintaining the heap are required. In the first case,
the reaction that has to update its propensity is itself the reaction firing. The
new reaction propensity is evaluated. Then, the new putative time is generated
following Eg. 2.9. In the second situation, the reactions are dependent reac-
tions (the affected reactions in the dependency graph). The scaling property of
exponential distribution will be exploited to scale up their putative times. A
suming that the system moves from the stat® the new state”** with the

firing timet. Let7/'“ be the new putative time of reactidty at this new state.

It is scaled ag [ = (a;(z"")/a;(z))(r; — t) + t. So, we do not need to
generate additional random numbers for updating the putative times of affected
reactions. There only one random number is required for each simulation step.
This would save a lot of computational resource as the number of reaetions

is large. In fact, the complexity of a call to binary heap consolidation takes
logarithmic time i.e.O(log(m)). Thus, NRM, in worst case, takes logarithmic
time for a simulation loop assuming a constant number of affected reactions in
the model.

A software package called Moleculizer [105] exploits these two characters
of FRM to design an efficient simulation for the intra-cellular biochenmsyal
tems, i.e., the pheromone signal transduction pathway in Yeast. Due to the
complexities of receptor-binding mechanism the number reactions in the model
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Is exponentially increasing. The reactions in entire network is possibly not able
to introduce to the simulation at beginning. Moleculizer takes over this problem
by introducing the species and reactions to the simulation only as needed. The
propensity of new introduced reactions will be modified in consistency with
physical properties of this reaction. The new introduced reaction event is then
efficiently controlled by a simplified version of queue-event data structure |
NRM.

Although NRM is often faster than FRM, DM, it also exposes challenges
for implementing the complex data structure used. In some special classes of
problems, the complex data structure even negates the performance of NRM.
For example, in [29], it showed that the runtime of NRM is actually slowen tha
DM when applied for highly coupled and multiscale reactions models e.g., the
heat shock response model of E. Coli. In [29], it also introduces an formu-
lation to improve the performance of DM. This new formulation is called the
Optimized Direct Method (ODM). ODM improves the search of DM based on
a careful observation that the searching of the next reaction firing widifast
propensities are sorted in descending order. Indeed, the constraint in Eq. 2.7
is faster to satisfy if we rearrange the propensities in a descending diuier.
new formulation will achieve a great speed up gain if the system contains dis-
parate ranges of propensity values. In ODM, the order of propensity values is
predicted by pre-run simulations. The average values of propensities are used
as criteria for ordering the reactions. The Sorting Direct Method (SDM) [110]
shares the same idea with ODM, but it uses a different technique to order the
reactions. SDM dynamically bubbles the reactions instead. Anytime ageacti
fires, its new propensity is computed. Its index is then exchanged with the next
lowest propensity (if exists). The bubble step is also applied to alltaffiere-
actions. At the end, an order for reactions propensities is established without a
pre-run simulation.

Sorting of reaction propensities does make the linear search of DM run faster
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It, however, potentially makes the search less accurate [65]. A trioncartror

can happen when the sum of the biggest propensities is represented by a fixed-
size floating number. For example, consider a floating point number Awith
precision in a computer representation. If the propensity of a reactibrolis

ders of magnitude smaller than the sum of biggest propensities placed before it
in the decreasing sorted order. This reaction is thus never selected ifoafire
decreasing order of propensity values is used. The implementation of sorting of
reaction should require an infinite precision number representation. However,
the most restriction of linear search, even reactions are orderedtimetsom-
plexity, in the worst case, is increasing linearly with the number of reasin,
i.e.,O(m). The search thus becomes very slow to as applied to large models.

There are several formulations have been proposed during time to reduce the
complexity of the linear search used in DM. One possible approach is divid-
ing the reactions into groups. The search is now composing of two consecu-
tive steps. First, the group containing the next reaction is discovered. Second,
the next reaction firing in the corresponding group is retrieved out. In [106],
these two steps are done through two linear searches. The first search discov-
ers the group based on the total propensity of each group. And, the second
search retrieves the next reaction firing in corresponding group by its propen-
sity. In [145, 147], the grouping of reactions is also exploited, but the search
of the next reaction in group is implemented by an acceptance-rejection pro-
cedure. A group is associated with a constraint. More precisely, reagtion
belonging to groug: must satisfy the group constrairit: ' < a; < b* where
b is a selected base (e.g.= 2 in [147]). Then, the search of reaction firing
is done as follows. A standard linear search is conducted to find out a group
k containing the next reaction. The next reaction within the grbup dis-
covered by applying theejectionmechanism with the chosen hat functii
This formulation is referred to as the composition rejection SSA (CR)SH#e
complexity for the long run of CR-SSA in searching the next reaction firing is
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constant time. The assumptions for the constant time of CR-SSA are: 1) the
number of dependent reactions of a firing reaction should be restricted to a con-
stant factor, and 2) the reaction propensities which are varied by redicings

are less significant. Once these assumptions are violated, CR-SSA willspend
lot of time adding and removing reactions to appropriate groups. The CR-SSA
performance therefore can be very slow. This has been shown by experiments
in [106].

If reactions are divided into groups so that each group contains only two
reactions, the search of the next reaction thus needs only one comparison to
discover the next branch in the search path. In this sense we have a binary
search [18, 103, 156]. The binary search obviously achieves better performance
than linear search, but it requires to pre-compute the partial sums of propen-
sities. These values have to be stored in a tree structure so that wpplgn a
the dependency-graph update mechanism. The time complexity of a tree-based
search SSA is logarithmic both in search and update. We are going to the detai
of the tree-based search on the next chapter. There we also predict and discuss
the tree leading to the optimal search length.

Instead of grouping reactions, the partial propensity SSA (PSSA) [128] fac-
torizes and groups the reactants. The reactions sharing the same reactants
are grouped. Only the partial propensities related to a reactant are computed.
PSSA then exploits a complex data structure to store reactants as watliak pa
propensities. An equivalent procedure with SSA to find the next reaction firing
Is proposed. The complexity of PSSA, in the worst case, is proportional with
number of molecular species. PSSA therefore outperforms when applying to
highly coupled reaction models. The current restriction of PSSA is that: 1) it
only supports for reactions having at most two reactants, and 2) the reaction
propensity is based mainly on the mass-action kinetics [128]. The key idea of
reactant grouping and binary search to improve the performance of SSA also
proposed in [80].
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A different approach to improve SSA is discussed in [141]. It exploits the
uniformizationtechnique to improve the simulation performance. The idea of
uniformization technique is using the upper-bound of total propensity to dis-
cretize the time. By the application of the upper-bound of total propensity, this
approach introduces a dummy reaction, without changing the system state, to
the current set of reactions. The rate of the dummy reaction is equal to the dif-
ferent between the upper-bound value and the current total propensity. Because
the firing time of all reactions, including the dummy reaction, is all exponential
distributed with the same mean corresponding to the inverse of the total propen-
sity upper-bound, we do not need to generate the reaction firing time. Only the
search of reactions and propensity updates are required. in order to approxi-
mate the upper-bound of total propensity it has to knog¥adal upper-bound
for the population of all species. This is hard to pre-compute. Indeed, even
in the case such upper-bound is known, it may be several orders of magnitude
larger than the actual total propensity e.qg. if the system is stiff. In #gg,csim-
ulation would spend a lot of time firing the dummy reaction, hence frequently
following self-loops.

2.3.2 Approximate stochastic simulation

Essentially, an approximate method speeds up the simulation by sacrificing its
accuracy. It tries to execute as many as possible the number of reactiais ev
in one simulation step. This is the main different with SSA where only one
reaction event occurs at time. There are many approximate methods introduced,
see for example [62, 115, 134], in which the most notable algorithm isthe
leaping method. The time axisinleaping is divided into (small) time intervals.
The changes of all reaction propensities in a time interval are considered les
significant and assumed to be constant. This condition is known dgsdbe
condition

Let [t,t + 7) be a time interval in which the propensity of any particular
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reactionR; satisfies the leap condition. In other words, the propensity) is
remained essentially constant during that time interval. The number of times
reactionR; occurring is so a Poisson proceBsisson(a;(z)T). Letk; be the
number of times reactioR; fires during the time intervat, ¢t + 7). Thus, we
have thatk; ~ Poisson(a;(z)7). Each occurrence ak; causes the system
state to change an amount+ v;. So, the net change of the system state by
firing &, times reactionR; in the time intervalt, ¢ + 7) isz + k; - v;. Based on

this observation the-leaping is proceeding as follows.

The simulation timel;,,ax is divided into time interval&, t + 7) so that the
leap condition is satisfied on each interval. In each simulation sidpoisson
random numbers; ~ Poisson(a;j(x)7) forall j = 1...m are generated. The
system state changing by reactions firing in an interval are updated by:

X(t+T) :X(t)—i—zm:kjvj (210)
Jj=1

The accuracy of the-leaping thus is strongly depending on the choosing of
an appropriate- value. In principle, gost-leapcheck can be applied. That
Is we start with an predefined arbitrary (smaillyalue. Then, we check the
difference in the reaction propensity after that leaf. If all the diffiees are
acceptable (i.e., satisfying the leap condition) then the leaf is accefitd.
erwise,r should be reduced. More precisely, letindz” be the state before
and after the leap. The absolute change in propensity of reactions com-
puted and ensured to be sufficiently small comparing with an error parameter
i.e., [Ja;j(27) —a;(z)]] < eforall j = 1...m. If the change in propensity of
any reaction violates this conditionjs reduced e.g., to a half, and the checking
procedure repeats. The post-leap working in this manner, however, potentially
biases the system away from large yet reasonable changes in the state.

The pre-leapis thus often more promising than the post-leap. It instead
computes the leap by postulating the expected change in propensities at the
new expected state. The expected change is calculated and checked against

30



whether it is acceptably small. Several strategies have been introftuckzing

the pre-leap check. In [62] the expected change in propensities is suggested to
be bound byuy(x), i.e.,||a;j(z”) — a;(z)] < eap(x) forall j = 1...m where

0 < e < 1isthe error control parameter. This original idea of the leap selection
Is extended and improved by [26, 66]. In [27], a new leap selection procedure
Is proposed in which the relative change in propensity of a reaction is bound by
its current propensity instead of total sum of propensities.

A subtle problem occurring in the-leaping is the negative population of
species. The Poison random variable~ P(a;(x)7), in general, is unbound.
The population of a species after the leap thus can get negative. It is obviously
unrealistic and should be prevented during the simulation. Several solutions
have been introduced to solve the negative population. In [32,159] a Binomial
distribution with the same mean with the Poison procE$s;(x)7) is used
instead to sample the number of reactions events in a leap. The negative pop-
ulation is avoided because the Binomial random number is bound. In [123],
it constraints the changes in species population by solving an integer linear
programming problem. The number of reaction events is then sampled by a
Multinomial distribution. An another solution to this problem is dividing the
system in two parts [25]. The species which have the large population is put in
safe part which can directly apply theleaping method, while the low popula-
tion species are put in thaitical region. The reactions involving with critical
species are treated in individual by e.g., SSA. For stiff systems, the lefean
(explicit) T-leaping selection is very small which is in the order of the inverse
of the total propensity,,. The implicit 7-leaping [132] handles this obstacle
to allow to choose an arbitrary largevalue by applying an implicit approxi-
mation form. However, the state change vector now is not an integer vector. |
has to be round off to the nearest integer. This introduces an additional source
of approximation to simulation. A combination of explicit-implieitleaping is
proposed recently in [28].
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In [11] the K-leap method and in [22] the R-leap method, respectively, are
alternatives for the-leaping method. The advantage of these methods is the
number of reaction firings during a leap is controllable. The negative popula-
tion never happens, and thus improving the simulation accuracy. These meth-
ods are variants of,-leaping method proposed in [62]. The principle of these
methods is the total number of reaction firings during a leap is predefined and
constrained. The leapis proved to be following a Gamma distribution, while
the number of times a reaction firings during a leap is following a Multinomial
distribution. Then, several sampling techniques have introduced for both of
these methods to generate a suitablalue.

Ther-leaping is not only used for improving the performance of SSA, it but
also bridges a connection to the deterministic simulation [65]. Let suppose the
leap condition is relaxed so thais still small enough to satisfy the leap condi-
tion, but the expected number of reaction firings in a leap is also large enough,
i.e.,a;(x)r > 1forall j = 1...m. By this new condition, the Poisson dis-
tribution is approximated by a Normal distribution with the mean and vagianc
area;(z)r. Thus, Eq. 2.10 is rewritten by:

X(t+71)=X(t)+ Z Nj(a;T, a;T)v;
j=1

= X(t) + Z v;a;T + Z vj\/a_ij(O, 1)\/; (211)
j=1 Jj=1

where N;(u, 0?) denotes a Normal distribution with meanand variancer?.
To derivation of Eq 2.11 makes use a special property in conversion of a Nor-
mal distribution to standard Normal distribution(0, 1) i.e., N;(u, 0?) = p +
oN(0,1).

The Eq. 2.11 is referred to as the chemical Langevin equation (CLE). The
equivalent differential formulation of Eq. 2.11 is given in Eq. 2.12.
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dX(t) < -
dt :Z”Jaﬁz;vj\/a_ﬁj(t) (2.12)

j=1 J=
wherel’;(t) is an independent Gaussian white-noise process.

In the thermodynamic limjtwhere the volume size and the species popu-
lation is increasing to infinity, but the species concentration (the ratiodsa
species population and volume size) is kept roughly constant, the random fluctu-
ation termzz.”:1 v;,/a;1;(t) in Eq. 2.12 grows slowly (in square root) compar-
ing with other terms (in linearity). This term is thus negligible small cduuiie
to the macroscopic change of the system and can be ignored. In other words,
the fluctuation in population of species in Eq. 2.12 is able to remove. Eq. 2.12
approximate to be:

I3 sx) 213)

j=1

in which [X'] denotes the species concentration vector, and a funffiwasents

the changes of the species concentration by reactions. The Equation 2.13 is the
general form of RREs used in deterministic simulation. Hence, the stochastic
approach in the thermodynamic limit converges to the deterministic one.

2.3.3 Hybrid stochastic simulation

Hybrid methods are proposed to efficiently simulate the system with a great dis
parity in the species population. The high population species are simulated with
a less computational technique since the fluctuations in these species are less
significant. The low population species will be simulated by an exact method
so that it is still able to captures the significant fluctuations [16, 118]. The hy-
brid approach thus still achieves a better performance, but also reproduces the
stochastic effects by the low population species.
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The principle of the hybrid approach is dividing the system into two sub-
systems. These parts will be simulated by different simulation methods, but
they are complementary to each others. An intuitive partitioning strasetyy
partition reactions into subsets of fast and slow reactions. Matherhatites
equivalent to partition CME. The fast reactions often, but not always, involves
high population species. The rest will be called slow reactions. Two subsys-
tems are assumed to evolve independently. The fast reactions is integrated by
e.g., an ODE solver. The slow reactions is simulated by an SSA variagttin
the important fluctuations. Because the slow reactions, in general, is dependent
to the fast species, their propensities can change if a fast reactiarRmethis
reason, the propensity of slow reaction have to modify to use the random time
varying propensity.

For the success of a hybrid method, several aspects have to be considered.
First, the criteria as well as their reliability are applied for fgeming of the
system. Second, how the patrtition is done in static or in dynamic. Third, how
the synchronization between simulation techniques i.e., between the determin-
Istic vs. stochastic as well as the data conversion i.e., between ttiespen-
centration vs. population, continuous vs. discrete. Lastly, how to treat the fast
reactions involving also the low population species.

There are several hybrid methods has been proposed in literature. We review
three main approaches in the following.

e The ODE/SSA hybrid. In [2,84] it proposed a combination of SSA and
ODE solver to simulate the system. An ODE solver is used to integrate
the high population species part, while an SSA variant simulates for low
population species. The algorithm works by partitioning the species and
reactions as well as choosing a fixed integration time atefor the ODE
integration. Although, note thaf\t could be adaptively decided in modern
ODE solver. The ODE/SSA hybrid is proceeding as follows. First,an ODE
integration with the time step\t is computed with assumption that there
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IS no slow reaction event occurring. The time-varying propensities of the
slow reactions in this time step are evaluated. Then, the firingdirfar a

slow reaction event is derived. In particular case, the timeAtap chosen
small enough so that the changes in slow reaction propensities are assumed
to be constant. The computing of the slow reaction event thus does not
require to use the random time change technique and is greatly simplified.
Finally, the simulation decides which event will update the system. If the
slow reaction event is occurring before the ODE integration,dtes; At,

a slow reaction is fired. The fast species involved in this slow read$
updated as well. In the other case, only the ODE integration takes place.
A new simulation iteration is executed after that.

The CLE/SSA hybrid. This hybrid simulation is a combination of a dis-
crete simulation for slow reactions and a CLE solver for fast reactions [72,
140]. The partitioning of reactions is treated dynamically. A reaction is
considered to be fast if it satisfies the conditionsalAt > X and 2)

x > €|v;| in which At is the time step for updating the fast reactioks,
ande are parameters to control the partitioning. For example, in [140],
ande are assigned to bE) and100, respectively. During the time course

if a fast reaction violates the partitioning condition, it is automatically
moved to slow reaction subset. The CLE/SSA achieves higher accuracy
than ODE/SSA because it still could capture for the fluctuations in the fast
reactions.

Ther-leaping/SSA hybrid. The-leaping/SSA hybrid places in the middle
between deterministic and stochastic hybrid. It is named am#emal
timestepalgorithm in [126]. The key idea af-leaping/SSA hybrid is that

the 7-leaping is applied to simulate the fast reactions while the slow reac-
tions is simulated by an SSA variant. This hybrid technique bridges the
gaps in the ODE/CLE integration and discrete event simulation described
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above. However, by applying a variant ofleaping for the fast subset
makes this hybrid approach become more difficult to analyze the time-
varying nature of slow reaction propensities. Thus, this technique puts an
assumption that the changes in slow reaction propensities during a leap is
less significant, and is ignored. This, of course, introduces an additional
source of error to the simulation.

2.3.4 Stiff system simulation

The stiffness arises in systems consisting both fast and slow reactiome whe
the fast reactions approach the stable state very fast. After rapatigiént
time with a very short fluctuation due to fast reactions, the system becomes
stable. The slow reactions then determine the system dynamics. The presence
of multiple time scales in such system slows down the stochastic siorulat
significantly. In fact, SSA spends most of its simulation time for simotafast
reaction events; however, this is not corresponding to the system dynamics.

Many methods have been proposed for efficiently simulating the stiff sys-
tems. They are often based on two main techniques: the quasi-steady state as
sumption (QSSA) and the partial equilibrium assumption (PEA), which are used
in the deterministic context and adapted to the stochastic simulation. The QSSA
iImproves the simulation performance by removing intermediate and highly re-
active species from the model, while PEA enhances the simulation by assuming
fast reactions reaching equilibrium will remain always in that equilibraiate.
The difference between QSSA and PEA is the object they focus on. The for-
mer focuses on the state, while the latter concentrates on the reactiadhg. In
following we briefly review these techniques.

The QSSA-based stochastic simulationn [129, 161], the QSSA stochas-
tic kinetics is introduced to deal with stiffness. The system statedivided
into the set of primary specigsand intermediate speciesso thatr = (y, z).
The intermediate species are assumed to be transitory and highly redntive.
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other words, two following assumptions are made. First, the probability-distri
bution of intermediate speciesconditional ony approximatively satisfies the
definition of the CME. That isP(z|y, t) follows the form of chemical master
equation in eq. 2.3. Second, the net rate of change for the conditional probabil-
ity distribution of these intermediate species is approximatively equadrm It

is equivalent thatl P(z|y, t)/dt ~ 0. By these two assumptions, the stationary
probability distribution of intermediate speci€$z|y) is more easier to derive.

An analytic solution or a nhumerical computation can be conducted to sample
the population of intermediate species. Having the knowledge of intermediate
species, reaction propensities involving the primary speciesdoing stochas-

tic simulation become easier to derive. In fact, these propensitiesina¥erm

bi(y) = 22, ar(y, 2) P(z]y).

Summing up, in each QSSA-based simulation loop two consecutive steps
are done. First, the intermediate speciés sampled from the stationary distri-
bution P(z|y). They are substituted into the computation of propensiiés)
involving primary species. And second, a SSA step is applied to find the next
reaction firing based on propensitig$y ). Note that when a reaction firing only
the population of primary specigds updated.

The PEA-based stochastic simulationThe slow-scale SSA (ssSSA) [23,
24] is an example of PEA. ssSSA proceeds as follows. It provisionally divides
reactions into fast reactions, denotgd, and slow reactions, denotétf. The
provisionally partitioning of reactions is decided only by their rate constants.
The fast reactions are further assumed to remain always in equilibrium sta
upon reaching the equilibrium. Species whose population gets changed by a
fast reaction are labeled as fast spediégthe rest species is called slow species
S*®. By this definition, a fast species clearly can change by a slow reaction,
but the reverse direction is not true. The corresponding prokéssis thus
divided into a fast procesX/(¢) and X*(¢). Although the full state vector
X(t) = (X/(t), X*(t)) obeys CME, each individual component is not. SSSSA
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overcomes this difficulty by introducing the definition of virtual fast process.
More precisely, the virtual fast proce&s contains the same species as the fast
speciesY/(t) where all slow reactions turned off. Thus, the virtual fast process
X/ only depends on fast species, while the slow species are assumed constant.
The P(X/ . t) in this definition is completely described by CME.

The virtual process(/, under the stiffness property, is assumed to be a sta-
ble process. It thus imposes two assumptions. First, the stationary disimibut
P(xf, 00) exists. Second, the relaxation time ¥{t) to stationary asymptotic
form, X (t) — X (co) happens very quickly (typically, smaller than the time to
the next slow reaction event). With these two assumptions, the statiomsay di
bution P(z/, o) is analytically solvable by e.g. a numerical method. Thus, the
population of fast species involved in the virtual fast process can be computed
without doing simulation. The simulation now only applies for slow reactions
where the propensity of a slow reaction is adapted as followsAL ek the time
which is very large compared to relaxation timeXf (¢), but also very small
compared to the expected time to the next slow reaction. The probability one
slow reactionR? occurs in intervalt, t + A,) is approximated by (z/, 2%) A,
whereaj(xf ,x*) is referred to as slow scaled propensity function of reaction
R;. Itis given by:

ZP ,oolx!, %) (2.14)

zf!

In conclusion, a ssSSA execution for sampling a trajectory is first numer-
ically calculating the population of fast species. The fast species aredindee
generated by randomly sampling the limited virtual fast proéés&x). Then,

a SSA step is applied to select a next slow reaction to fire based onoile sl
scale propensities Eq. 2.14. Thus, in the manner, the simulation moves the sys-
tem state forward in time by firing one slow reaction at a time withfadk
reaction events ignoring.
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2.3.5 SSA Extensions

Several extensions also have been introduced to cover different aspeats of bi
chemical reactions systems by relaxing SSA underlying hypothesis. In this sec-
tion we briefly review two such relaxations that are: the reaction withysel

and reaction with spatiality.

Reaction with delays.In SSA, the next reaction assumes to happen instan-
taneously. Biochemical reactions, in fact, will take a certain tiongnish after
they are initiated. The delayed time in biochemical reactions is thus inejtabl
but it is often many orders smaller than the waiting time to the nextimact
The delayed time is therefore often ignored. The delayed time, however, will
introduce a another source of noise and plays a crucial role in the development
of the biochemical processes if it is in the order of the reaction time. For-exam
ple, in [13], the effect of delayed time to the development of the gene expression
has been observed. The system exhibits the stochasticity even the counterpart
Is deterministic. The delayed-time reactions could further use to reduce the
deleterious effects of propagation noise.

Because of delays the Markovian property of SSA is invalidated. The in-
stantly update of the system state caused by the reaction firing would end with
an incorrect result. SSA thus should be modified to take into account the de-
layed time in reactions. In [19] an exact generalization of DM with delayed
time reactions is introduced. The key steps of the algorithm are as follows. In
each simulation step, the next reaction and its firing time is generatedvby D
If the selected reaction is a delayed time reaction, the actual cordpiete of
this reaction is stored in a stack. In the other case, the reaction is a fayede
reaction. Its firing time is compared against with the time stored ondpe t
of the stack. There are two cases. In the first case, the reaction til®ssis
than the completed time of a delayed reaction, the system state will be hormal
updated by firing this non-delayed reaction. On the other hand, the selected
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reaction is discarded and the update of the delayed reaction is performed. An
exact generalization of SSA covering all possible delays in reactiorlsddhk

delay stochastic simulation algorithm (DSSA), is introduced in [21]. An effi
cient modified of NRM for the delayed time reactions is also introduced rgcentl

in [6].

Reaction with spatiality. This extension considers relaxing the well-mixed
assumption. The spatial homogeneous is easy to validate tyro experi-
ments where the diffusion of molecular species is much faster than thereact
However, it is in general not true for living cells. The species in cell remvi
ment is indeed very highly localized to improve cellular functions. The cell
division, metabolic and signaling pathways, for example, strongly depend on
the spatial information. The temporal evolution of SSA by reactions alone is
not enough to reproduce important effects such as the molecular crowding, the
excluded volume effect. It therefore should be extended to take into account the
diffusion of species in space.

Several approaches adapted SSA to make it applicable for simulating the
diffusion of species in space. The key idea of these extensions is diving the
space into smaller subvolumes. The subvolume size length is chosen to be small
enough so that the well-mixed assumption inside that subvolume is satisfied.
SSA therefore can be applied to simulate reactions inside a subvolume. The
diffusion of a species between subvolume is treated directly as a unimaecul
reaction. The rate of diffusion is translated from the bulk diffusion by the Eick’
law. The rate of the diffusion reaction, in general, should depend on the shape
of subvolume. The modelling of the spatial information in such the way is often
referred to as reaction-diffusion master equation (RDME). RDME is iddee
natural extension of CME for spatial heterogeneous.

The SSA-based stochastic simulation algorithms for a RDME are also intro-
duced. A direct extension of DM to simulate RDME is proposed in [17, 151].
It uses a DM variant to select a reaction firing. If the selection is anH@m-
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ical reaction, the population of reactants involved in that reaction is ugdate
Then, only affected reactions in the current subvolume have to update propen-
sities. In case the selection is a diffusion reaction, the diffusiveispaelects

a random neighbor to move to and the population of this species in these sub-
volumes is updated. For anisotropy diffusion, the destination subvolume of
a diffusive species should be explicitly defined instead of random selecting a
neighbor. The affected reactions due to the diffusive species in both of these
subvolumes update their propensities after that. The direct application of SSA
for doing reaction-diffusion simulation, however, is often computation and/or
memory inefficient. A possible improvement is dividing the selection of the
reaction firing into two consecutive search steps. The first searchvdisctine
subvolume containing the next reaction firing, then the second one retrieves out
the next reaction firing within that subvolume. There are many possible combi-
nations for doing these steps, e.g., two consecutive DMs. The next subvolume
method (NSM) [45] is a notable formulation of spatial SSA extension in this
way for sampling RDME. NSM is indeed a clever combination of NRM and
DM. In NSM, the selection of the next subvolume using the idea of NRM. The
putative times of subvolumes is precomputed and stored in an indexed priority
gueue. Since the smallest putative time is always on the top of the queue, the
selection of the subvolume is in constant time. The next reaction firing in this
subvolume will be found out by DM. After the next reaction firing is defined,
the population of species and affected reaction propensities in subvolume(s)
are updated depending on the type of the selected reaction. Then, the putative
times of subvolume(s) are recalculated to reflect the changes. The phieaipy

of subvolume putative times is consolidated as well. By using the priority queue
to select a subvolume, the time complexity of NSM is scaled logarithntit w

the number of subvolumes.

The Gillespie Multi-particle Method (GMP) [137] is a different simulation
approach to simulate the reaction-diffusion processes. Itis differeahseghat
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the reactions and diffusions are treated separately. The theory behinds GMP
Is known as theoperator splittingtechnique [35, 36]. In essential, GMP pre-
computes the diffusion time of a molecular species based on its diffusion con-
stant and the subvolume size length. The time-axis is thus divided into small
chunks of the diffusion times. During the simulation, if a diffusion event occurs,
the corresponding species in a subvolume is distributed all over its neighbors.
Between two diffusion events, reactions between species are sichblaiaM.

In [138] a hybridr-leaping (H-leaping) algorithm is presented. It is working
similar to GMP, but the diffusion time of all species is fixed instead. ThtiM
nomial simulation algorithm (MSA) [100] also treats the reactions and ddfusi
separately but allows a molecule diffusing from a subvolume to any neighbors
within a prescribed distance. It thus improves the spatial simulatidwe ihtim-

ber of diffusive events many orders larger than the reaction events. MS&Aause
conditioned Multinomial distribution to approximate the number of molecules
diffusing.

In literature, the particle-based spatial simulation algorithms hiseeleeen
proposed. In these algorithms, the spatial information of each speciesistrac
directly. The diffusion of a species in space is explicitly model by a Brownian
dynamic (BD). A reaction between molecules occurs if they are close enough.
More specifically, if the distance between two molecules is less thasahe
calledreaction radius the reaction could happen. The Smoldyn [7] is a direct
application of the BD to simulate the reaction-diffusion at the particlellev
However, the time step for moving a molecular species in space by a random
walk has to choose small enough so that it does not miss reactions with other
molecules. Green’s Function Reaction Dynamics (GFRD) [163] solves this
problem by a discrete event simulation. Thus the time step for doing a random
work does not need to be fixed arbitrarily small. Recently, the combination of
particle-tracking and RDME simulation are also proposed [55, 90].
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Chapter 3

Tree-based search

3.1 Introduction

An insight understanding the mechanisms of regulatory effects in large cellular
models gives many benefits, but also raises a great challenge for the impleme
tation of the simulation algorithm. Both the search of the next reaction firing
and the update affected reactions suffer the simulation performance. In this
chapter, we focus our study to the impact of the search on the overall simula-
tion performance, and contribute to its improvement by applying variants of a
tree-based search. The update will be considered in the next chapter.

A linear search to determine the next reaction firing in DM, in principle,
works with any biochemical reaction model. The accumulating sum of propen-
sitiesa; repeats until a reaction found. The time complexity of linear search,
however, is increasing linearly with the number of reactions in the network,
i.e., O(m). Thus, except for some small models, the performance of linear
search is often very slow.

A binary search is, of course, a more efficient method than a linear search
(logarithmic vs. linear complexity). In order to exploit binary search the par-
tial sums of propensities have to be precomputed and store in a tree structure.
Hence, we will start by discussing the underlying data structures and algorithms
used to apply binary search on complete trees with a dependency graph based
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update mechanism. Then, we study which tree structure will minimize the num-
ber of comparisons needed to find the next reaction firing.

We show, both in theory and in practice, that by using an underlying tree
data structure to store reaction propensities the simulation time cam&iblge
improved. Theory shows that our approach reduces search time from linear to
logarithmic, although propensity updates now require logarithmic time instead
of constant time. Theory also predicts the shape of the tree leading to optimal
average search time. This turns out to be the Huffman tree [79], a device used
in computer science for data compression. Experiments confirm that this tree
indeed leads to faster simulation. We also study further the impact of tree-
rebuilding approaches, by which the propensity Huffman tree is rebuilt when
it becomes non-optimal caused of many reaction firings. Two strategies are
proposed: the fixed time tree rebuilding and adaptive time tree rebuilding. The
former strategy periodically rebuilds the tree after a fixed time, evihié latter
allows to rebuild the tree during the simulation depending on how the system
evolves.

3.2 Complete Tree Search

A (binary) complete tree, is a binary tree completely filled at evergl|axcept
possibly the last; each node has exactly two children (internal node), or zero
(leaf). For our purposes, leaves hold the reaction propeasftyr j = 1---m,

while internal nodes store the sums of values of their child nodes. Thus, at the
top, the root holds the total sum. Proposition 1 and the following discussion
allow to store a complete tree on a contiguous array, hence improving cache-
friendliness.

Proposition 1. A complete binary tree withh leaves has exactlm — 1 nodes.

We therefore use an array wil, — 1 elements to represent a complete tree
with m reaction propensities filled at the lowest level. In the array reptase
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tion, a node at positionwill have its two children at positioR; and2i + 1. We

then recursively from leaves to root construct the tree with the inteumas s

in Algo. 2. Here, each element of the array TREE stores only the partial sums
of the reaction propensities, so we simply need each cell to store a saigée v

(a floating point double). In order to build up the tree, the number of reactions
m must be an even number. In the casas not one can add a dummy node
(with propensity0) as the last element of the array.

Algorithm 2 Building the complete tree
procedure: build_treg(position)

require: array TREE witl2m — 1 elements where elements fromto 2m — 1 are filled with
reaction propensities
1: if position is not leathen
2. build_tree(2position)
3:  build_tree(2position + 1)
4.  TREE[position] = TREE[2position] + TREE[2position + 1]
5. end if

Once having built the tree, to search for the next reaction firing we proceed
as follows. Letr be a random number (0, 1), andra, be the value we are
looking for. Starting from the root, we travel down the tree, following thé lef
or right branches according to whether the propensity sum stored in the left one
is smaller than the search value. Whenever we take a right branch, we adjust
the search value by subtracting it from the value stored in the parent. The whole
procedure is outlined in Algo. 3. The procedure is correct, in the sense it finds
the same leaf?; as in Equ. (2.7), so each reaction indeed is chosen with the
correctly desired probability; /.

The reaction firing causes the system state change; therefore, we also have
to update the propensity tree as well. For that, we use the dependency graph to
keep the local affection between reactions and exploit the fact that thet jpédre
node;: is located at positiofi /2 |. Hence, we only update the reactions affected
and their ancestor nodes in the tree following the path from leaf to root. Since
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Algorithm 3 Finding the next reaction firing
procedure: searcl{position, s)

require: properly set up array TREE, search value s
1: if position is leathen
return position
else if TREE[2position]> sthen
search(2position, s)
else
v = TREE[position] - s
search(2position + 1, v)
end if

© N o g M w N

the average path length isg(m), the total cost for the simulation is stable
O(log(m)).

A particular order of reactions in the leaves of a tree in an implementation
has impact on the update of the affected reactions. To illustrate the idea, we
Imagine a binary tree with two reactions which affect each other. The number of
computation could reduce to a half if they are staying near each other, i.&, whe
they share the same parent comparing with the case they are put in different
branches, i.e., they have different ancestors. In general reactions should be
placed together so that they form a clique.

3.3 Huffman Tree Search

While storing reactions in a complete tree minimizes tiegght of the tree,
corresponding to the average computation to search the next reaction firing,
this does not lead to an optimal average-case performance. Indeed, consider
the average number of comparisons performed during the search of the next
reaction firing and denote this value By, (C'), we have:

Tn(C) = Zm:ijj (3.1)
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wherem is the total number of reactions); andw;, respectively, are the depth
of the leaf?; in the tree and the weight corresponding to the probability the
reactionR?; is being selected to fire. The reaction depthis indeed the search
length of firing reaction?;. The SSA, by our formulation, therefore now has
changed to find a representation to optiniizgC').

In complete tree setting, the deptbs are roughly equal, since all the leaves
are in the last level or in the next-to-last one. So, we are performing the sam
number of computations in every cases i.e., the likely event of picking a fast
reaction requires the same computational effort of the unlikely event of picking
a slow reaction. It is simple to check that this choice leads to a non optimal
T.»(C). Consider the extreme case in which reactlohas91% probability,
while reaction, 3, 4 have3% probability each. In a complete tree, we would
haveD; = 2, hencel,(C) = 2. With a non-complete tree it would however
be possible to move reactidnup in the tree D, = 1), while moving the other
reactions down); = 3,5 > 1). This leads tdl}(C) = 1.18 comparisons,
which is better. Intuitively, we can improve the performance of the complet
tree search, especially for multi-scale biochemical systems, whiclbe sep-
arated into fast and slow reactions. The main idea would then be to pldce fas
reactions close to the root, while slow ones farther from it.

These facts are very closely related to well-known results in datgEsn
sion. Indeed, the minimization @f,,(C), which leads to optimal performance
In our setting, is the purpose of the Huffman encoding for data compression.
Huffman tree, in [79, 91], provides a possible construction to minirdjze”").
The fundamental idea there is to build the tree by repeatedly merging trees in a
forest, which initially contains only trees with one node. At each step, the tw
trees whose rooty(@ndq) have thesmallestweights (v, andw,) are merged.
A new rootpq is created and the two previous trees become the subtrees of
Thepg node is assigned weight,, = w, + w,. This is repeated until the for-
est contains only one tree. From this, it is clear that in the final tree we have
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D,,+1= D, = D,, wherep, ¢, pq are the nodes involved in any merge. Hence,
we obtain for any such, ¢, pq:

T(C) =Y w;D; + w,D, + w,D,
=1
J'J#nq

- ( Z w;Dj + wqupq) + Wpqg

Jj=1
J#p.q

= T—1(C) + wy, (3.2)

which relatesT,,,(C') with 7,,,_1(C). The above allows us to recall the main
result for Huffman trees.

Proposition 2. The Huffman tree gives the minimum valudpfC)

Proof. Proof By induction onmn. Base case easy to check forn = 2. In-
ductive case by the inductive hypothesis, the Huffman tree far— 1 gives

the optimum value foff;,_1(C). By contradiction, suppose the Huffman tree
for m is not optimal. So there is some tree having total number of comparisons
1! (C)suchthatl] (C) < T,,(C). W.l.o.g. the smallest weights must be placed
at lowest level. Hence, letandq are nodes with smallest weight and their par-
ent labeledpg. Using (3.2), we havd) ,(C) + wy, < T5-1(C) + wy, then

T _1(C) < T,-1(C), contradicting the inductive hypothesis. O

Since each node in Huffman tree has two children, Proposition 1 still holds.
We therefore still use an array with si2e: — 1 for representing the Huffman
tree. Note that, however, we do not needto be even in this setting. The
elements at position fromn — 1 to 2m — 1 are filled by reactions as leaves. But,
unlike for complete trees, each element in the array must point to itareift
right child. Building a Huffman tree is done by employing a heap to extract the
nodesp, ¢ with minimum weight at each step.
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Algorithm 4 Building Huffman tree
procedure: build_huffmantree

require: An array TREE with2m — 1 elements, where the elements fremto 2m — 1 are
filled
1: build heap H with element8n, w,),... (2m — 1, w,,), ordered according te,
2: for position = m — 1 down tol do
3:  extract top elemenp( w,) from H
4:  extract top elemeny(w,) from H
5. TREE[position].VALUE = TREE[p].VALUE + TREE[q].VALUE
6: TREE[position].LEFT =p
7. TREE[position].RIGHT = ¢
8
9

insertposition, w, + w,) into H
: end for

The Huffman tree we built in the Algo. 4 is stored in an array in which each
element contains the fields: VALUE, LEFT, RIGHT. The partial sum is now
stored in the VALUE field. The index of left and right subtree is indicated by
LEFT and RIGHT, respectively. The same binary search procedure in Algo. 3is
applied to search the Huffman tree for the next reaction, except that now LEFT
and RIGHT fields are used to travel the tree, instead of the previous formulas
which work only for complete trees.

The update stage in the simulation is to reflect the changes to the propensity
of reactions affected. Each element of array TREE stores the location of its
parent node by an additional field, called PARENT, which is set in the Huffman
tree building procedure. The path from a leaf to its root is thus easily to egstor
Accompanying with dependency graph, we traverse upward this path to update
reactions affected. In the following, we discuss about the weight function in the
implementation of Huffman tree and the tree rebuilding when the tree becomes
non-optimal.

By applying the Huffman tree to find the next reaction firing, we want to
reduce the number of comparisons of SSA. A native candidate for the weight
function is the propensity functiom; since this choice leads to less time spent
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for finding the next reaction. However, during the execution of the simulation,
reaction firings affect their dependent propensities, which also could change
rapidly. This happens, for example, whenever a reaction has a very large rate
constant but a small number of reactant molecules. Its propensity will signif-
icantly change by a very large amount. Updating the values stored in the tree
therefore could make the tree no longer optimal i.e., no longer an Huffman tree.
In this case, we face the choice of either proceeding with a non-optimal tree
(which could still be near the optimum, though), or rebuilding the Huffman
tree. Rebuilding the tree is rather expensive, so we need a trade-off.

Our idea is postponing the reconstruction of the tree while the change of the
weight is less significant. We thus keep on using a non-optimal tree for some
predefined (and tunable) number of SSA steps. The choice of this parameter,
however, only affects the performance, while the results are still exact

3.3.1 Fixed time tree rebuilding

An intuitive and easy implementation for the tree rebuilding discussedeabov
to use a fixed number, and consolidate the tree structure only once every
steps. This amounts to assuming that the weights do not change significantly
during k& simulation steps, so we can postpone the rebuilding without a large
impact on performance. To compensate, we slightly modify weights cope
with propensities changing rapidly. More precisely, we assign a higher weight
to those reactions which are more likely to change.

For reactionR;, we consider two sets: conflicf3() as the collection of
reactions that affect and compete with

conflicty R;) = {R;|R; € affectg R;), reactantsR;) N reactant&R;) # (0}
(3.3)
and favors(z;) is the collection of reactions that affect and favor

favor R;) = {R;|R; € affectg R;), product$R;) N reactant&R;) # 0} (3.4)
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Table 3.1: Models with number of reactions and species

Model Species| Reactions
Oregonator 8 5
Circadian Cycle 9 11
HSR of E. Coli 28 61
MAP Kinase Cascade 106 296

respectively, where reactantg( and productsg;) are the set of species taking
part in reaction®; as reactants and products. In terms of the dependency graph
DG(V, E), we have the following relationjconflicts(®;)| + | favors;)| =
in-degreef;).

Then, we will estimate the probability a particular reaction occurring will
increase (resp. decrease) the propensity of reactioas |conflicts®;)|/m
(resp.|favors(R;)|/m). For k simulation steps, the estimated weight of reaction
R;is:

favord R conflict R
wj(aj, k) = a; + oy VOIS lconflicts 2 )|
| m

(3.5)
wherea;, oy are parameters denoting the average change amount. For sim-
plicity, we assign these to the stochastic rate constant for the reattiand
e, aq = —ay = k;j.

We evaluate and compare the performance of four algorithms: DM, NRM,
Complete Tree Search and Huffman Tree Search. The simulation is pedforme
on different models varying in size. Table 3.1 provides a summary of the num-
ber of reactions and species in each simulated systems. Before going to the
details of the results, we give a brief description of these models.

The first two models we studied are the Oregonator and Circadian Cycle
model. The underlying mechanism of the Oregonator dynamics contains both
an autocatalytic step and a delayed negative feedback loop. Itis a kind of chem-
ical reaction that shows a periodic change in the concentrations of the products
and reactants [5] where reactions and species involved are shown in Eig. 2.
The second model is the simplified circadian cycle model in [166]. The circa-
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dian rhythm is a daily cycle in the biochemical processes of many living beings.
The key mechanism of the circadian rhythm is the intracellular transcription
regulation of two genes that is an activator and a repressor. Activatoastie
positive element in transcription in binding to promoter, while represseraect
the negative element by repressing the activator.

The third model that we simulated is the heat shock response (HSR) process
which occurs when cells are shifted to high temperature. The synthesis of a
small number of proteins, called the heat shock proteins (HSPs), is rapidly in-
duced. In E. coli, the response is controlled by the so-calléactor which is
capable of binding to various regions of the DNA that stimulate the transcrip-
tion of the particular gene under their control. When E. coli senses the raised
temperature the special heat sheckactor calleds32 will replaces70, which
Is the boundr unit of RNA Polymerase (RNAP), to accelerate HSPs synthesis
(see more details in [96]).

The last model is the mitogen-activated protein (MAP) kinase (MAPK) cas-
cade. The MAP kinase signaling pathway is a chain of proteins in the cell that
cascade a signal from a receptor on the surface of the cell to its nucleus. The
signal begins when mitogens or growth factors bind to the receptor on the cell
surface and ends when the cell responds a response pattern e.g., growth, dif-
ferentiation, inflammation and apoptosis. The cascade is well-conserveld whic
means this process can be found in a large number of cell types. The basic
mechanism of this pathway is driven by three protein kinases: MAPKKK (such
as RAS/Raf), MAPKK (such as MEK) and MAPK. The external stimuli acti-
vate the first element of the pathway, the MAPKKK. The activated MAPKKK
phosphorylates MAPKK at two sites. The phosphorylated MAPKK then acti-
vates the MAPK through the phosphorylation on its threonine or tyrosine of the
protein structure. MAPK can then act as a kinase for transcription fadiots
may also have a feedback effect on the activity of kinases like the MAPKKK
further upstream [93].
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Figure 3.1: Number of comparisons performed by each algorit For Huffman Tree, we
rebuild the tree every = 100, 000 steps.

The performance of four algorithms is reported in Fig. 3.1-3.2. The results
have been computed f&00, 000 simulation steps on an Intel Core i5-540M
processor. For the Huffman Tree Search, we had to pick a nuinbésteps
after which we reconstruct the Huffman tree. In this experiment we chese
100, 000, hence causing the tree to be rebaittmes in the whole simulation.

In Fig. 3.1, we show the number of comparisons performed for finding the
next reaction firing in each case. The NRM algorithm is not shown because the
smallest putative time is always on the top of the priority queue used in NRM.
In all the cases, the Huffman tree search performed the least number of com
parisons. In simulating small models, the difference between lineactsaad
binary search is not very significant. However, with the larger models yinar
search is nearl§0% faster than linear search, and Huffman Tree Search further

improves on that by performing 20% fewer comparisons than Complete Tree
Search.

As shown in Fig. 3.2, simulating small models is not significantly affected
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Figure 3.2: Overall performance in terms of reactions firedgecond.

by the choice of the algorithm. This is intuitive, since in these models there is
little room to improve both in search time and in update time, which cant#ib
roughly in the same way to the overall performance. However, when thersyste
Is large, then search time dominates update time. In this case, seaechid-
nificantly benefits from using an algorithm such as Huffman tree search, as our
results for the MAP Kinase model show.

Picking an appropriaté to gain the best performance strongly depends on
the problems at hand. More specifically, it depends on the changes of propensity
function. In general, we could pick a large valbdor systems which evolve
near a stable state, so that changes in propensity are small. For unstadatessyst
where the propensities sharply change frequently, by contrast, the value of
should be chosen small enough to capture such fluctuation. In practice, one
can roughly estimate the value bffrom a pilot simulation run, or move to an
adaptive approach for tree rebuilding.
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3.3.2 Adaptive time tree rebuilding

The tree rebuilding timé is model-dependent. Indeed, a periodic rebuilding
tree with a fixed valu& seems to be appropriate in simulating systems which
are almost stable, so that propensity changes are small. In applying taugrbitr
models, the performance is so very sensitive. We therefore improve thie abo
approach by avoiding the use of a fixed number of steps, and instead use an
adaptive approach in which we rebuild the tree only when there is a large change
occurred i.e., when rebuilding seems to lead to a higher gain in perfoemanc

Large changes of reaction propensity occur if the reaction rate constant is
very large, hence even a small fluctuation in reactant population candesad t
very different reaction propensity. Large changes to propensity may also hap-
pen for reactions having a medium rate constant, but the population of reactants
suddenly is increased by other fast reactions. These types of biochemical re-
actions are typically found in, e.ghjochemical switchesThere, the system
spends a bulk of time fluctuating near the stable state; however, when a random
noise triggers the switch and this results in a dramatic change in the propensiti
of reactions (shown in Fig. 3.3). In that case, the tree should be rebuilt, or the
search performance will suffer.

A straightforward procedure predicting such events is based on trial simula-
tions, in which sample trajectories are collected. An analysis on therdgaise
of trajectories is then performed to obtain roughly average times for the fluc-
tuations in the system. These values therefore are used as the times liw rebui
the Huffman tree. However, since the behavior of biochemical systems is inher
ently random, there will always be some difference between the predictes tim
and real simulation.

An intuitively less expensive approach is to dynamically check for changes
in propensities caused by each simulation step. The advantage of this approach
Is that we detect the abrupt changes on the fly. To do so, we define an acceptance
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Figure 3.3: Random noise activates the trigger causing tsteisyto abruptly exit of its stable
state.

threshold), which is the largest change which does not trigger an immediately
tree rebuilding. Let be the sojourn time until the next reaction fires. Then, the
difference in propensity of an reactidty is computed as:

¢j(7) = a;(x(t + 7)) — a;(2(1)) (3.6)

wheret is the current simulation time. When the above difference is high
enough, i.e.¢;(7) > ¢, we then immediately restructure the Huffman tree.

In above we only consider abrupt single changes to propensities. We should
also account for the fact that small updates, when applied many timedsocan a
cause a significant change in propensities. To handle this case as well, we cu-
mulatively sum all the propensity updates while simulating, as shown below.

sj+= Y cj(r) (3.7)

T

Thus, we rebuild the entire tree when the cumulative sum is over the acceptanc
threshold i.e., when; > 4.

56



Table 3.2: Gene expression model
DNA “=5% DNA + mRNA
mRNA “2=% mRNA + Protein
mRNA 2= ¢
Protein=% ()
DNA + IND _Protein2=2%L bNA_INDProtein

DNA_INDProtein =% DNA_INDProtein + mRNA

To compare the performance of the Huffman tree search with fixed and adap-
tive time rebuilding, we considered a gene regulation given in Table 3.2. There,
a single gene is being translated into mMRNA, which is then being transcribed
into proteins. While there is no transcription factor binding to DNA, the tran-
scription occurs at a medium rate. The system then slowly fluctuates for a long
time. However, as soon as the transcription factor IRiDtein binds to DNA,
it acts as an inducer, causing the transcription to happen at a larger rate by
quickly producing a large amount of mRNA. In Fig. 3.4 we report the simula-
tion runtime of these approaches. We measured the average time required to
run a simulation fob00, 000 steps (disregarding the initial setup time for the
algorithms).

In our gene expression model, the inducer protein IRiDtein has an im-
portant role while binding to DNA, since it accelerates the rate of mMRNA pro-
duction, which results in a large amount of proteins. This is because the last
reaction in the model has very large rate> k;, while its reactant population
Is small. The Huffman tree structure for applying binary search clearly dhoul
be consolidated when this reaction occurs.

The adaptive approach performs the reconfiguration at the correct time, by
dynamically checking for propensity changes. Even if this requires a small
overhead, still this leads to a better performance than those we obtained through
the fixed approach, as Fig. 3.4 shows. By contrast, in the fixed approach, a
small value of parametér causes the tree to be rebuilt too many times. Here,
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although the tree is kept near the optimum, and less time is spent for searching,
the rebuilding cost negates this advantage. On the other side, a higher value of
k leaves the tree far from the optimum, causing search to be rather expensive
and impacting one the overall performance.

3.4 Conclusion

In this chapter we apply binary search in trees to the SSA. We have shown the
complexity of the search and update by a tree structure is reduced to logarith-
mic in the number of reactions. This feature makes it become more appealing to
simulate large models. Further, we exploit the Huffman tree to reduce the num-
ber of comparisons needed for finding the next reaction firing. We proposed
two strategies, the fixed time and adaptive time tree rebuilding, fqrikgehe

tree close to the Huffman optimum during simulation, and studied their perfor-
mance. The fixed time tree rebuilding is suitable for system near stablie, whi
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the adaptive tree rebuilding is more flexible.

Several improvements for the future are possible. For instance, in the stud-
led approaches we either leave the Huffman tree as it is, or perform a demple
rebuilding. One could then imagine to interleave full rebuilding, which is ex-
pensive, with a cheaper partial optimization. The latter would not restore the
tree to an optimal case, but just improve it slightly. For instance, if gde
node in the tree is found to have higher propensity than a shallow node, we can
quickly swap them and improve the tree. This optimization mechanism would
be then similar to those used in garbage collection in computing systems, whic
is often split in frequent minor collections and rare major ones. As another
approach, one could even explore the use-afy trees instead of binary trees.
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Chapter 4

Rejection-based update

4.1 Introduction

Even though there are many efficient improvements of SSA introduced, most of
them only focus on improving the search for the next reaction firing. For loosely
coupled reactions in which the affected reactions have to update propensities
roughly a small constant factor, the search largely affects to perfornudiice
simulation. An efficient search procedure combined with a dependency graph
update mechanism yields a great speedup gain; however, this is not always be
the case for large cellular models. They are typically encompassed wiitpea la
number of interconnections and feedback loops. The dependency graph be-
comes very dense due to the highly coupled degree of reactions. Anytime the
population of a species is changed, a large number of affected reactions have
to recompute propensities. The costly propensity update is thus inevitable and
contributes a significant portion to the simulation time. Hence, reducing the up-
date time will substantially improve performance of the stochastic stmuala
Furthermore, in order to apply SSA, the reaction network has to be explicitly
described in form of elementary reactions. In other words, the reactiorrietw
should not contain any abstraction. That is all intermediate products of all bio-
chemical reactions have to be explicitly described. However, this esénge
difficult problems. First, if all possible combinations of molecular species ar
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taken into account, the problem of state explosion can occur [120]. A signaling
pathway, which enables the cell to sense the changes in its environment, is just
an example. The signaling pathway is activated when a receptor is bound. The
receptor often has many binding sites e.g., the phosphorylation site, the methy-
lation site. A binding site changes the internal state of the receptor, andrfurthe
controls and regulates the operations of the pathway. Due to the large number of
possible binding combinations and their corresponding biological responses, a
model with a quite limited number of species can derive a huge number of reac-
tions (see e.qg., [34] for details). Second, because of the incomplete knowledge
in the full set of reactions, only the macroscopic behaviour of the biological
system is observable. A typical example is the allosteric effect. Thestedic-

curs when an effector molecule binds to the allosteric site of a targetetkspe
e.g. a protein, an enzyme. The targeted species is then modulated and operated
independently with the reactions in the system. This type of biological noise is
referred to as thextrinsic noisg150]. These issues have augmented for the ap-
plication of complex propensity functions in modelling biochemical reactions.
The power law [39], for example, has been successfully applied to model such
the cooperativity behaviour of biochemical reactions. However, evaluating a
complex propensity function is indeed very time-consuming, and hence firmly
increasing the computational burden in update the reaction propensities.

In this chapter, we are going to study the effect of propensity updates to
performance of the stochastic simulation. We contribute to the improvement
of SSA by introducing a new efficient algorithm, called Rejection-based SSA
(RSSA). RSSA is an exact simulation algorithm, and is specificallpred
for the case in which propensity updates are time-consuming. It reduces the
cost of propensities updates by avoiding and collapsing as much as possible
the number of propensity updates. The propensity of a reaction is evaluated
only as needed. In RSSA, the selection of a reaction firing is done through two
steps. First, a candidate reaction is selected according to anmwenxamation
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of its propensity. A rejection-based mechanism is then applied to redower t
exactness of the algorithm. In the following, we are going to describe these steps
in detail and devise improvements to this core of RSSA algorithm. Further, we
discuss how to systematically optimize the tunable parameters of RSSA so t
maximize its performance.

4.2 RSSA

RSSA improves over SSA by reducing the average number of propensity up-
dates which have to be performed. Its key idea is to pre-compute an over-
approximation of reaction propensities, and use that to select candidate reac-
tions to be fired. Selected candidates are then inspected, and are either fire
(with low probability) rejected. The rejection mechanism is used to enbate t
reactions are fired following exactly the distribution provided by SSA. RSS
takes advantage because it evaluates propensities infrequently (only as needed)
by postponing and collapsing as much as possible their updates. When firing a
reaction, with high probability, we do not need to recompute the propensity of
all the dependent reactions. Hence, we avoid costly updates.

In the following, we first detail how RSSA samples a reaction firing wgh i
firing time. We examine several possible choices with their implememisti
and discuss the effects of such choices for different network sizes. Second, we
provide a formal proof for correctness of RSSA. RSSA is exact in the sense
it produces the same stochastic behaviour as SSA. Then, we focus on control-
ling the acceptance probability of a candidate reaction by varying the amount of
over-approximation, hence indirectly controlling simulation performance. Sev-
eral mechanisms are proposed which can be run at different levels, iincaosta
dynamic way. This allows RSSA to automatically adjust the acceptance proba-
bility depending on the current system state, so to adaptively optimize itsel
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4.2.1 Selection of reaction firing

The over-approximation of reaction propensities is derived by giving a bound
on the population of molecular species involved in the reaction. SaX et
and X;, respectively, be an arbitrary lower bound and upper bound for each
speciesS; around the current populatiaki;. The interval[.X, X] is called the
fluctuation interval The current state vecto¥ satisfiesX < X < X on
each species. Then, we compute a lower baunand an upper bound; for

the reaction propensities;. Sincea; is a functionf of the state vectorX,

the lower/upper bounds are computed by minimizing/maximizing such function
over the whole fluctuation interval. Often, this function is monotonic, in that it
Increases whenever the species population increases. This is the cager e.g.,
the mass action kinetics. If the monotonicity holds, one can simply let

f(X) anda; = f(X). In the case a complex propensity functifis used, one

can e.g., apply numerical optimization techniques, or interval analysis [114] to
recover the bounds. Note that we do not actually need the exact minimum and

maximum: any (possibly tight) lower/upper bounds suffice.

Given propensity upper bounds and lower bounds, the selection of a reaction
firing is composed of two steps as following. First, a candidate readtion
will be chosen with the probability; /@, in which @y is the total sum of the
upper-bound propensities i.ag = Zyila_j. After the selectionR; is subject
to a rejection test for validation. I®; is accepted, it is fired and is updated.
Otherwise,R; is discarded and we randomly select a new candidate.

The selection of the candidate is made randomly, assigning to Ratte
probability @;/a;. For this we need to apply a search algorithm for general
discrete distributions. The general interface of the search is it takesdam
numberr; ~ U(0, 1) as a parameter and returns a candidate reagjovith the
corresponding probability; /a;. Here, we can choose among several different
algorithms. These algorithms are different in the speed and simplicityarsise
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with very fast marginal speed, however, requires to build complex underlying
data structures, e.g., trees, hash tables before it could run. We discudwzbere
options for implementing of the search algorithm. We briefly discuss their time
complexities as they are running. An experimental study is presented in the next
section.

Linear search. The simplest search is the linear search. In linear search, the
partial sum of upper-bound propensities is continuously accumulated, and the
candidate reactio?; is selected which is the smallest reaction ingesatis-
fying the inequalityZ{%zla_k > 11 - ag. 1he advantage of linear search is that
it does not require any complex data structures. In implementation we need an
array sizem to storem upper-bound propensitieg for all j = 1...m. How-
ever, the time complexity of the search is linearly with the number of i@zt
i.e., O(m). Hence, it often runs very slow with large models. Although the
search can be improved if upper-bound propensities are sorted in the decreasing
order, the complexity does not change in the worst case.

Binary search. A binary search can apply to find the next candidate reac-
tion. The details of binary search is discussed in chapter 3. Essentialge a tr
structure, e.g., a complete tree is needed to build before the search can-be
ducted. At the lowest level of the tree the upper-bound of reaction propensities
are stored. The partial sums of propensity upper-bounds are stored in middle
levels. The total sumn, therefore will be stored at the tree root. When search-
ing, only one root-to-leaf path of the tree is visited to find the candidate reaction
R;. The next branch is selected depending on the search valug t.&g, with
the partial sum stored in current internal node. The left branch is selecdtes if
search value is less than the value stored in the internal node. The right lsanch i
chosen otherwise. In case the right branch selected, the search valueste@d;
by subtracting it with the value stored in this internal node. The search trav-
els down with a new branch selection until a leaf is reached. Since thehsear
complexity is linked to the length of the tree path, we could use a special tree
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structure i.e., the Huffman tree, to optimize the average search pamae. In

an implementation we can still use an array to represent the treéusépLicow-

ever, compared with linear search the array has more elements. Thcaisskee

we have to store also partial sums of propensity upper-bounds for the internal
nodes, as well as the pointers to the children nodes. The time complexity for
the (complete) binary tree search is logarithmic both in search and upate t
tree. This property makes it suitable for large models.

Lookup table search.A lookup table search is a very fast procedure to find
a candidate reaction as comparing with a comparison-based search, e.g., lin-
ear search, binary search. The downside for using this search procedure is the
pre-processing time which is needed to build the lookup tables. We have im-
plemented and experimented with a well-known lookup search called the Alia
method [43,76,169]. The theoretical foundation underlying the Alias method is
a theorem stating that any discrete probability distribution avealues can be
expressed as an equi-probable mixturenafivo-point distribution. The proba-
bility vector is used in RSSA is thei-vector of probabilitya; /ags. The set-up
of the Alias method requires two tables each sizea table, called cut-off ta-
ble I, storing the probability of the first two-point distribution, and a second
table, called alias tablg, contains the alias of the second of the two-point dis-
tribution [94]. The pre-processing time to build these tables is linear thih
number of valuesn [167]. The Alias method proceeds to search for a candidate
reaction as follows. A random number ~ U(0, 1) is first used to lookup the
position of the equi-probable mixture. It is then rescaled to select whichrpart
the two-point distribution. More specifically, the positipn= |m - | of the
two-point mixture is located. The first value in this two-point distribution stored
in cut-off tableF is loaded. It is compared against witt - r; — p) to select the
candidate reaction. [f(m - r; — p) < F[p]) the candidate reaction indgx= p
will be returned. Otherwise, the candidate reaction index is the akad.|[p).
The Alias method therefore requires only one comparison and at most two table
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accesses to select a candidate reaction.

When the candidate reactid®; is defined, an acceptance-rejection proce-
dure is applied to verify whether accept it to fire. The decision is made by
its exact propensity;;. For this validation step, we toss a (biased) coin with
success probability; /a;. If the toss succeeds, we accept the candifiat®th-
erwise we reject it. The efficient simulation of this coin toss, howasdricky
since we do not know the exact valuefin advance, and we want to avoid
computing it if possible. To achieve that, we extract a uniform random number
r < U(0,1). We then check whethet < a;/a;, which does not require us
to computer;. If the check succeeds, then we know thak a;/a; < a;/a;,
hence we can accept;. Only when this test fails we indeed computg and
then testr, againstz; /a;. Note that the computation af; is infrequently per-
formed whery; /a; is close tol.

The clarification in reaction firing selection between SSA and RSSA-is de
picted in Fig. 4.1. The selection of a reaction firing in SSA is done in one step
only by the exact reaction propensities, while RSSA instead uses the propensity
upper bounds with two steps. Showing in the figure, reackigrselected by
SSA will be fired immediately after selected. In RSSA, candidateti@a R;
has to be verified before it can be fired. This candidate reaction can even be
rejected if the random value (the black dot in the figure) is larger than it exac
propensity.

The Fig. 4.2 graphically demonstrates the improvement of RSSA over SSA
in which reaction rate is modelled by the Michaelis-Menten expression. ghe fi
ure shows the behaviour of RSSA on different regions of the Michaelis-Menten
curve. From Fig. 4.2 we see that the fluctuation interval of the species can
be widened without too much approximation of reaction propensity, and thus
achieve a huge advantage in performance. More specifically, when the species
population increases, it can be bound by a larger fluctuation interval, while the
propensity range still gets narrower, allowing RSSA to rarely disd¢s¢icked
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Figure 4.1: Select a reaction firing by SSA and RSSA

Reaction Selection by SSA
selected

1 2 3 4
reaction

Reaction Selection by RSSA
selected

1 2 3 4 quickly evaluate reject
reaction accept a;
1) candidate reaction selection 2) verify candidate reaction

reaction.

4.2.2 Reaction firing time

By introducing propensity upper-boungto select a reaction firing, rather than
exacta;, we add a probability the system will do a self-jump to its current state.
We imagine that we have built a new transition rule for the candidate reaction
R; given the current stat& at timet (see Fig. 4.3). There are two options for
this candidate reaction: 1) moving to new stafé + 7) = X (¢) + v; with
ratea; (w.r.t. the candidate reaction is accepted), or 2) still remaining in its
current stateX (¢ + 7) = X(¢) with rate(a; — a;) (w.r.t. candidate reaction is
rejected) in whichr is the waiting time. The total rate for candidate reactions

is > la; + (@j — a;)] = ag. Therefore, the waiting time for all these
transitions is exponential distributed with meari;. The firing time of an
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Figure 4.2: The behaviour of RSSA on different regions of thehdelis-Menten curve

Propensity

Species population

accepted reaction is the accumulated times of the consecutive rejacididate
reactions. In probability theory, the firing time of the accepted reacti@mis
Erlang(k, \) distribution with rate parameter = @y and shape parameteiis
the number of trials until that reaction is accepted.

We use the convolution method to sample fivdang distribution. Hence,
we count the number of trials until a new state transition occurring due to a
reaction accepted. Theh,uniform random numbers, denoted by~ U(0, 1)
fori =1...k, are generated. The firing time is computed by:

k

7= (=1/a) In(] [ w) (4.1)

i=1

In practice, we can approximate the reaction firing timby the mean of
the correspondindrlang distribution i.e.,k/ag. If the number of trialst is
large, a lot of random numbers used in generatingfihking distribution will
be saved.
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Figure 4.3: Transition rule for a candidate reaction

4.2.3 The RSSA algorithm

Following the discussions in previous section, we now present the overall of the
RSSA algorithm. The outline is given in the Algo. 5. The simulation repeats
(by thewhile loop at line 1) until the current timepasses over a predetermined
simulation timeT;,.... The code inside the simulation loop is logically divided
into three parts: 1) preparing data structures for selecting the next relghign

(line 2 - 4), 2) deciding which reaction fires next and its firing time (line 8- 21),
and 3) updating and maintaining the system state due to a reaction firing (line 22
- 25).

The preparation starts at line 2. First, the fluctuation intef¥alX] of the
current system stat& is defined. Given the fluctuation interval, we will com-
pute the upper-bound propensity and lower-bound propensity; of a par-
ticular reactionR;. The usage of lower-bound propensity Wifspeed up the
acceptance process when the evaluation of the propensity is time-consuming.
The corresponding total upper-bound propengitgums up alkz;.

The selection of the next reaction firing is done through a loop from line 8 -
20. The loop repeats until the flagcepted is set totrue. In each iteration three
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Algorithm 5 RSSA procedure
1: whilet < T},,4. dO

2:  define the fluctuation intervéX , X| of current stateX
3: compute the upper-bound propensityand lower-bound propensity; for each reaction
R, N
4:  compute the total upper-bound sum
5. repeat
6 setu =1
7 setaccepted = false
8 repeat
9 generate three random numbeysrs, 3 from uniform distribution/ (0, 1)
10: search for a candidate reactié with probabilitya; /ag by r;
11: if ro < (a;/a;) then
12: acceptzd = true
13: else
14: evaluatez; with current stateX
15: if ro < (a;/a;) then
16: accepted = true
17: end if
18: end if
19: setu=1u-r3
20: until accepted
21: set transition time- = (—1/ag) In(u)
22: update time =t + 7
23: update stat&X’ = X + v;
24: store/handle data
25: until X(¢) ¢ [X, X]
26: end while
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random numbers,;, r,, andrs ~ U(0, 1) are generated, respectively. The first
two numbers is used to decide which reaction occurring, while the last random
numberrs is accumulated up to calculate the reaction firing time (by line 21).

At line 10, we user; to randomly retrieve a candidate reactiBnwith the
probability @;/a;. A particular search discussed in the previous section can
be applied; however, it may require to set-up underlying data structures at the
preparation step. Then, we decide whether to accept this candidate reaction fir-
ing or to reject it. Atline 11, we compare < a;/a;. If this inequality is satis-
fied, we immediately accept the candidate r&cﬂgrﬁring without evaluating
its exact propensity. We only compute the actual propensity in case this con-
dition fails. For this situation, we evaluate the reaction propensifline 14).
Then, ifry < a;/a; reactionR; is accepted. We then move to calculate its firing
time.

The reaction firing time- is computed by line 21 i.e;; = (—1/ag) In(u),
in which variableu is defined at line 6. It is, in fact, a implementation of the
convolution method for thé&'rlang distribution by Eq. 4.1 discussed in the pre-
vious section. RSSA multiplies variablan every validation step by a uniform
random quantity-; at line 19.

Consequently, from line 22 - 24, we finish a simulation step. The system
moves to new state + v; caused by reactioR; firing. We advance the simu-
lation clock to new time + 7. The current simulation data could be stored to
external storage for further processing.

When we update the state (line 23) we do not have to update propensities for
dependent reactions as in SSA. This is especially beneficial when the reaction
network comprises reactions having a large number of dependencies. In that
case, SSA has to recompute the propensities for each of them, while RSSA
simply skips this step. On the other hand, RSSA has to check whether the new
stateX still belongs to the fluctuation interval by line 25. This requires only a
few comparisons, since only a few species were affected by the firedoreact
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If the system state is still confined in its fluctuation interval, the neactien

firing selection is executed. In the uncommon case in which the system state
leaves the interval, i.eX ¢ [X, X], we exit the loop in line 25 so that a new
fluctuation interval is defined. At that time, new upper-bounds and the lower-
bounds of reaction propensities as well as the supported data structures for the
search have to be recomputed.

4.2.4 Proof of correctness

We now show the correctness of the RSSA algorithm. The correctness, in this
sense, means RSSA selects the next reaction fRingith the same probabil-

ity as SSA i.e., a reactioR; is selected with corresponding probability/a.

This result is stated in Proposition 3. In other words, RSSA produces the same
stochastic behavior as SSA.

Proposition 3. RSSA is exactly choosing a reactifin to fire with probability
a;/ag. In addition, its firing time is exponential distribution with raig.

Proof. At a specific time with current system stat& € (X, X), let Pr(R;) be
the probability a candidate reactidt) is selected and accepted to fire:(R;),
by the chain rule, is the multiplication of two probabilities: the probability of
R; is selected as a candidate, and the probability it is accepted. Hencerit giv

by:

-4 (4.2)

Now, let Pr(R) be the probability an arbitrary reaction which is selected and
accepted with current system state. We hAvéR)
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T (4.3)

Thus, using the conditional probability, we can derive the probability re-
action R; is selected and accepted given an arbitrary candidate reagtien
selected and accepted. That is:

Pr(rR) = (55)/(55)
— 4 (4.4)
ao

For the second statement, letbe the PDF of the firing time of the accepted
reactionR;. We will prove that it has the exponential distribution with rage
e, f-(x) = ap - e”®". In following let suppose the number of trials before
reaction?; accepted is denoted ldy The following derivation makes use the
fact that a reaction is accepted at tria(i.e., k£ — 1 trials previous are rejected)
following a geometric distribution with success probabitity ay.

We have:
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From the proof, we derive that the acceptance probability of the acceptance-
rejection step in selecting a reaction firing of RSSA is bound. In fatt, le
Pr(acceptance) be the acceptance probability. We have that

ag/ay < Pr(acceptance) = ap/ag < 1 (4.5)

Because the lower-bound and upper-bound propensity are functions of the given
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fluctuation interval, we could adjust the acceptance probability to achieve a de
sired probability through tuning this interval.

4.2.5 Fluctuation interval control

Once a candidate reaction is selected, RSSA decides whether to accégttor re
the candidate reaction. We can adjust the acceptance probability of a candi-
date reaction through controlling the fluctuation interj&l X]. In general,

the smaller the interval we use, the higher acceptance probability a candidate
has, however propensity updates become more frequent. In the special case
where the fluctuation intervalX, X| degenerates into stafé the acceptance
probability is100%. In other words, RSSA reduces to the original SSA. On
the other side, if we increase the fluctuation interval, we reduce the number of
propensity updates. We can even widen the flucutation interval so that no update
occurs during the simulation; however, the candidate reaction will be rdjecte
frequently. In that case, the acceptance probability is decreased sigtiyfica
The selection of the next reaction firing therefore has to be repeated frequently
Summing up, it is important in RSSA to control the fluctuation interval so that
we can control the acceptance probability, and thus the simulation performance.
The simulation performance is then optimized when the search and update costs
are balanced.

Three mechanisms are discussed below. The simplest one is the uniform
fluctuation rate in which all species use the same rate. It has both adwantage
and disadvantages. On the positive side, the calculation of fluctuation interva
Is fast, requiring only vector computation. However, it is quite not suitable for
the models having species fluctuating in different scales. For example, consider
the case in which some species are involved in fast reactions, ancodriath
frequently while other species fluctuate slower. The application of uniform rate
in this case is clearly inefficient. Using a non-uniform rate or an adafuitee r
appears to be better since they would allow to control the fluctuation interval of
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each single species. The latter approach is the most flexible. It allovauist a

the fluctuation rate at runtime to improve the acceptance probability depend-
ing on the phase of the system. The most advantageous application of adaptive
rate control is on those models where the population of some species fluctuates
from very high to very low and vice versa. It is clear that we should dynam-
ically change the fluctuation rates of these species to optimize the acaeptanc
probability. Also, an absolute interval size (instead dftacan be preferred

in case the population of a species is very low (say e.g., less2ff)ahan the
relative rate.

Uniform fluctuation rate. This is the simplest procedure to control the
fluctuation interval. All molecular species are assigned with the saed.r
Then, the population of a molecular specigsis assigned to an fluctuation
interval [ X;(1 — §), X;(1 4 ).

When a reaction is selected to fire, the populations of the molecular species
involved in this reaction is updated. The new system state is checkeddfy sat
its fluctuation interval constraint i.eX < [X,X]. There are two possible
outcomes. If the constraint is satisfied, that is the system state isastiihed
in the fluctuation interval, the simulation continues without doing any update to
the underlying data structures. Otherwise, the system statas moved out
of its assigned interval. The new fluctuation interval has to be computed. It
is given by (using vector notation) aX (1 — 9), X (1 + 0)]. The new upper-
bound of reaction propensities as well as the underlying data structures have to
be re-computed. Then, the new simulation iteration is executed.

Non-uniform fluctuation rate. The main idea of non-uniform fluctuation
rate is to assign different rates to molecular species. It providediligxito
control in detail the fluctuation interval of each species. On the other hand, it
also requires more computational effort. This approach is indeed a generaliza-
tion of the uniform fluctuation rate. Itis intuitively useful to apply to the sys$
where some molecular species fluctuate more frequently in a larger intteswval
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other species.

Let us consider a multiscaled system, in which reactions can be separated
into fast and slow reactions. A fast reaction is selected to fire ob#te
time during the simulation. Fast species involved in the fast reactioms-the
fore change more frequently. It seems useful then to use larger fluctuatien rate
for fast species, and smaller ones for slow species.

Thus, the application of uniform fluctuation rate for these systems seems to
be less efficient. We should assign a larger rate for fast species, hemeasiec
ing the number of updates, and a smaller rate for slow species, hence improving
their acceptance probability. In order to implement the non-uniform rate ap-
proach to multiscaled models, we first divide the reactions into fastioaact
and slow reactions. It is possible to do that because the system satisfies the
multiscaled condition. The classification of reactions depends on the reaction
rate. The reactions having large reaction rate will be assigned to fasiorea
group. The species which are involved in fast reactions are labeled fagtspe
while the rests are called slow species. A fluctuation satewill be applied
for the fast species while slow species are assigned a smallég yatésing the
assigned rate, we can calculate the fluctuation interval of each spgoees

Indeed, we can generalize the non-uniform rate approach used in multiscaled
models so that each species is assigned a unique rate. That is done by]etting
be the fluctuation rate of speci®s We then assign to that species the fluctua-
tion interval[ X;(1 — ¢;), X;(1 + 9;)]. In implementation, a lookup table can be
used to store the fluctuation rate of each species to speed up the retrieving.

Adaptive fluctuation control. The mechanisms discussed above are static
fluctuation control systems in the sense they apply fixed fluctuation rates during
the simulation. In some models, the population of some species can change
significantly during the simulation, e.g., moving from very highly abundant to
very low and vice versa. The rate for such molecular species should therefore
be changed to adapt the fluctuation interval of the involving reactions. Indeed,
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RSSA allows to adjust the fluctuation interval adaptively during the sinamnat
depending on the availability of species in the system (for instance, using a
threshold). If the population of the species is high we assign it a larger rate.
During the simulation, when it gets down to low abundance, we apply a smaller
rate instead to improve the acceptance probability. In this way, sironlaan
achieve a better performance.

Let us consider the application of adaptive interval control, and demonstrate
its efficiency to tackle the case in which the species population is atleery
copy number. We combine the relative fluctuation rate and fixed interval size
to overcome this problem. In order to exploit the adaptive interval control we
first need to set a threshold valbe Second, for each speciés, we apply a
fluctuation raté; hence using the intervak;(1—4;), X;(1+9;)] wheneverX; >
A. Instead, if the population of; gets lower than threshold value i.&; < A,
we will apply a fixed (absolute) fluctuation interval. The populationX; of
speciesS; now fluctuates in the intervak; — A, X; + Al.

Following this example, we can extend the idea of adaptive fluctuation con-
trol to models having many phases. The population of species in each phase
will be assigned a specific rate. To do that we set a thresklolbrrespond-
ing to speciesS; at phase:. During the simulation if the molecular speciés
is bound to this threshold, a specific fluctuation rétewill be applied. This
advantage allows an automatic adjustment of the fluctuation interval of specie
during the simulation depending on the phase of the system state.

4.3 Experimental results

In this section we experiment with the performance of RSSA using three bio-
chemical reaction models: 1) Fully connected reaction model, 2) Multdcale
reaction model, and 3) Gene expression model. Table 4.1 summarizes the prop-
erties of simulated models. The first two models are artificial onesecrab
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Table 4.1: Summary of models

Model Species Reactions
Fully connected reaction model N N(N-1)
Multiscaled reaction model N+M | N(N-1)+M
Gene expression model 5 8

to study the performance of the RSSA in different settings. These are highly
coupled reaction networks where one reaction firing causes a large number of
affected reactions to update their propensities. Thus, most of the simulation
time would be spent for propensity updates in standard SSA. The last model is
a real-world model that we use to demonstrate the improvement of RSSA. We
consider different types of chemical reaction kinetics (i.e., mass+akinetics

and Hill kinetics) applied to this last model. Even if this model is quite $mal
(having just8 reactions), the employed chemical kinetics are non-trivial, hence
the propensity updates require a significant computational cost. By optimizing
such updates, we aimed to observe a large effect on the performance of the sim-
ulation. In this way, we assess the RSSA efficiency over conventiondlagbc
simulation methods.

Three algorithms are tested including: Gillespie’s Direct Method (DMxtNe
Reaction Method (NRM), and RSSA. In RSSA, we further consider three im-
plementations for searching the candidate reaction: 1) Linear search (RSSA-
Linear), 2) Binary search (RSSA-Binary) and 3) Alias lookup search (RSSA-
Lookup). All these simulation algorithms are implemented in Java and run on
Intel i5-540M processor. In each case, the simulation rar2 for0°® reaction
steps. The simulation data are recordedlfor steps. The experimental mea-
sures exclude the initialization time, hence focusing only on the main sironilati
loop of each method.
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4.3.1 Fully connected reaction model

The fully connected reaction network is a highly coupled reaction model we
used to benchmark the performance of the simulation algorithms. It consists of
N chemical species denotégdwhich reversibly convert into each other species
S; at a reaction raté;. A general form of reaction in this model is:

RS2 8,itj=1...N

In our experiment the initial population of each species is setOtb The
propensity function is derived following the usual mass-action kinetics.

In Table 4.2, we measure the performance of the algorithms when increas-
ing the number of speciel. In this table, the execution time is the total time
(including both the search and update time) spent to run the simulation. The up-
date time counts the time spent for recomputing the propensities upper-bounds
and rebuilding the needed data structures when the system state leavesithe giv
fluctuation interval. The uniform fluctuation rate mechanism was used to con-
trol the fluctuation interval in RSSA. Three different values afe considered:
10%, 20% and30%, respectively.

In this fully connected model the number of affected reactions is linearly
increasing with the number of speciés In fact, there areV — 1 affected
reactions having to update their propensities each time a reaction fires. For
this high coupled degree, the update time is shown to largely contribute to the
simulation runtime asV is increased. For example, the update time of DM
and NRM in caseV = 100 contributes up t®3% and99%, respectively, to
the total simulation runtime. This results in a rather low performance oéthes
algorithms. In contrast, RSSA efficiently controlled the update of propensity.
Therefore, it has significantly reduced the simulation time. For examplk, wit
d = 20% RSSA-Linear is roughlyi0 times faster than DM, NRM with the
same configuration. In this network si2é= 100, RSSA-Binary with uniform
fluctuation raté = 30% received the best performance (approxiaméélyimes

81



Table 4.2: Performance of algorithms on fully connectedtiea model

N Algorithm Execution| Update | Acceptance
Time (ms)| Time (ms)| Prob. (%)

DM 4234 3245

NRM 4935 4272
uniform rate §{ = 10%) 1719 100 91.25
RSSA-Linear | uniform rate § = 20%) 1727 10 83.59
uniform rate § = 30%) 1808 3 77.23
5 uniform rate § = 10%) 1764 120 91.28
RSSA-Binary | uniform rate § = 20%) 1790 21 83.65
uniform rate § = 30%) 1851 7 77.15
uniform rate § = 10%) 1755 144 91.24
RSSA-Lookup| uniform rate § = 20%) 1742 29 83.60
uniform rate § = 30%) 1880 11 77.17

DM 8632 7561

NRM 9862 9066
uniform rate § = 10%) 2182 307 91.29
RSSA-Linear | uniform rate § = 20%) 2032 67 83.64
uniform rate § = 30%) 2111 21 77.14
10 uniform rate § = 10%) 2177 383 91.32
RSSA-Binary | uniform rate § = 20%) 2021 84 83.60
uniform rate § = 30%) 1998 29 77.15
uniform rate § = 10%) 2243 535 91.27
RSSA-Lookup| uniform rate § = 20%) 1941 118 83.60
uniform rate § = 30%) 1960 34 77.23

DM 78083 70941

NRM 80208 78753
uniform rate § = 10%) 12389 3615 91.28
RSSA-Linear | uniform rate § = 20%) 10482 918 83.61
uniform rate § = 30%) 10708 368 77.20
50 uniform rate § = 10%) 6490 4094 91.27
RSSA-Binary | uniform rate § = 20%) 3503 1002 83.62
uniform rate § = 30%) 3169 416 77.18
uniform rate § = 10%) 19222 16999 91.29
RSSA-Lookup| uniform rate § = 20%) 6625 4242 83.59
uniform rate § = 30%) 4178 1698 77.20

DM 367248] 351102

NRM 376892 373726
uniform rate § = 10%) 42230 10242 91.31
RSSA-Linear | uniform rate § = 20%) 37425 2555 83.60
uniform rate § = 30%) 38597 1044 77.18
100 uniform rate § = 10%) 16334 12207 91.26
RSSA-Binary | uniform rate § = 20%) 7198 2961 83.60
uniform rate § = 30%) 5846 1311 77.13
uniform rate §{ = 10%) 138395 134081 91.30
RSSA-Lookup| uniform rate § = 20%) 37359 33108 83.60
uniform rate § = 30%) 17851 13549 7717
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faster than DM) .

The result in Table 4.2 shows two important facts. First, performance de-
pends on the search procedure. Although a complex search procedure runs fast,
it spends high computational cost for maintaining the underlying data structure.
Thus, in a small network (e.gN = 5) the linear search (RSSA-Linear), which
does not require any complex data structure, achieved a better performance than
the other search procedures (RSSA-Binary, RSSA-Lookup). Instead, when
the network size increases, linear search is no longer the best choice. But,
on the other hand, a very expensive data structure e.g., building supported ta-
bles in Alias method, does not yield the best performance, either. Consider, as
an example, the cas®¥ = 100. Applying RSSA-Binary and RSSA-Lookup
with the same the fluctuation rate= 20%, we can see that their acceptance
probability is approximately3.60%, but RSSA-Binary is nearl§ times faster
than RSSA-Lookup. This is because the update underlying data structure of
lookup search method requires too much bookkeeping, indeed the update time
of RSSA-Lookup contribute88% to the total execution time, and 19 times
larger than the RSSA-Binary.

Second, the choice of fluctuation raieyielding the best performance is
highly dependent on the coupled degree of the reactions. A small valiie of
is likely to achieve a better performance when the network size is givial
small). For example, wheN = 5, a good choice i§ = 10% to 20%. This is
because the search time dominates the overall execution time. However
increaseV, updates largely affect the performance. A larger fluctuation interval
would then yield better performance. For example, with= 100, the perfor-
mance of RSSA-Binary witlh = 30% is approximatelyl.5 times faster than
the case) = 20%. Also, RSSA-Lookup becomexstimes faster when moving
from o = 20% to 6 = 30%.
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4.3.2 Multiscaled reaction model

The multiscaled reaction model involves a mix of both fast and slow @agti
having the following form.

Fast reactior; : A; - A;
. k;
Slow reactionR; : A; + B; — By,

The chemical specied; are the only ones to occur in fast reactions, and are
therefore named the “fast species”. By contrast, slow reactions ienaibo
other specie$3;, named the “slow species”. We assuf¥idast species!; and

M slow specied3;. The model then is generated in this way. First, we include
all the fast reactions; LN A; for any value ofi, j. Then, we add\/ slow
reactionsA; + B; i> By, where A; and B, are chosen randomly, whilB;
ranges over tha/ slow species.

In this model, reaction rates of fast reactions are chosen to be much larger
than the slow reactiong:(> k£;). The initial population of each fast species is
set t01000, while slow species are sett00. The propensity function is simply
the one given by the mass-action kinetics. In our experiment we fix the num-
ber of fast species t&/ = 5, and vary the number of slow specigs (hence
also varying the number of slow reactions) frémto 1000. In RSSA, we im-
plemented two fluctuation interval control mechanisms: 1) uniform fluctuation
rate and 2) non-uniform fluctuation rate. The uniform rat®adjusted between
10% and20%. In non-uniform fluctuation rate, the fast species are assigned rate
drs = 20% and slow species are assigngg = 10%. Table 4.3 compares the
performance of algorithms applied to multiscaled reaction model.

A slow reaction is formed by combining a slow species and a randomly se-
lected fast species, so we have on aver&feV + 1 affected reactions which
must update their propensities each time a fast reaction fires. Updatéstime
linearly increasing with the number of slow specigs Thus, the update time
dominates the total simulation time &6 is increasing. This effect is shown in
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Table 4.3. From the results we observe that, even with the small netwerk siz
M = 50, roughly92% of the execution time is spent for update in NRM, and
this value is increasing to ové7% with A/ > 100. The update time of DM
also exposes the same effect in that it contributes rougii¥iyto the simulation.
The performance of these algorithms is thus rather low. RSSA achieves better
performance because it effectively controls the time-consuming updaté= In t
caseM = 1000, RSSA-Linear with uniform raté = 20% is more thand5
times faster than DM, while RSSA-Lookup with non-uniform rage = 20%,
0.5 = 10% is 185 times faster than DM.

From Table 4.3, the acceptance probability of RSSA with non-uniform fluc-
tuation ratedy; = 20%, 0, = 10% is between the one for uniform rates
d = 20% andd = 10%, when the same search procedure is applied. This is
because we keep the acceptance probability of fast reactions to the sdrae as t
one in uniform rate) = 20%, and also increase the acceptance probability of
slow reactions. As a result, the performance of RSSA with non-uniform rate
drs = 20%, dss = 10% is better than the one with uniform fluctuation rate
5 = 20%. However, it is not always better than the case 10% (for exam-
ple, see RSSA-Linear and RSSA-Binary), even though the difference is quite
small. This is because the search of these algorithms is more expensive than the
update. By contrast, RSSA-Lookup uses a fast search procedure, so it needs a
better mechanism to control the fluctuation interval. Thus, in ddse 1000,
RSSA-Lookup with non-uniform fluctuation rate, = 20%, d,s = 10% is
nearly5% faster than the RSSA-Lookup with uniform rate= 20%, and10%
faster than with uniform raté = 10%.

4.3.3 Gene expression model

The gene expression model is a type of regulatory pathway which plays a key
role in the understanding of gene regulation mechanisms and functionality. The
result of gene expression is a collection of proteins encoded by the correspond-
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Table 4.3: Performance of algorithms on multiscaled reaathodel

M Algorithm Execution| Update | Acceptance
Time (ms)| Time (ms)| Prob. (%)

DM 16280 15062

NRM 17740 16987
uniform rate § = 10%) 1823 5 90.92
RSSA-Linear uniform rate § = 20%) 1976 0 81.43
non-uniform ¢, = 20%, 4., = 10%) 1868 0 83.93
50 uniform rate § = 10%) 1662 3 90.98
RSSA-Binary uniform rate § = 20%) 1778 0 81.36
non-uniform §; = 20%, 0, = 10%) 1700 0 83.96
uniform rate § = 10%) 1642 9 90.88
RSSA-Lookup uniform rate § = 20%) 1799 0 81.33
non-uniform ¢, = 20%, 0, = 10%) 1779 0 83.90

DM 29416 27918

NRM 32240 31346
uniform rate § = 10%) 2241 7 90.90
RSSA-Linear uniform rate § = 20%) 2367 0 81.06
non-uniform ¢, = 20%, 4., = 10%) 2304 0 82.79
100 uniform rate § = 10%) 1802 11 90.91
RSSA-Binary uniform rate § = 20%) 1883 0 81.19
non-uniform ¢, = 20%, 05, = 10%) 1843 0 82.74
uniform rate § = 10%) 1809 18 90.94
RSSA-Lookup uniform rate § = 20%) 1892 0 81.18
non-uniform ¢, = 20%, ., = 10%) 1885 0 82.89

DM 173357 169555

NRM 194623 193520
uniform rate § = 10%) 4291 64 90.90
RSSA-Linear uniform rate § = 20%) 4534 0 79.18
non-uniform ¢, = 20%, d,, = 10%) 4535 0 81.22
500 uniform rate § = 10%) 1881 55 90.79
RSSA-Binary uniform rate § = 20%) 1971 0 79.07
non-uniform ¢, = 20%, d,, = 10%) 1892 0 81.92
uniform rate § = 10%) 1903 67 90.78
RSSA-Lookup uniform rate § = 20%) 1918 0 78.94
non-uniform ¢, = 20%, ., = 10%) 1859 0 81.35

DM 377483 371024

NRM 404654 403219
uniform rate § = 10%) 7557 119 90.67
RSSA-Linear uniform rate § = 20%) 8242 4 78.06
non-uniform ¢, = 20%, 0,, = 10%) 8079 6 79.89
1000 uniform rate § = 10%) 2010 110 90.70
RSSA-Binary uniform rate § = 20%) 2071 3 78.10
non-uniform ¢, = 20%, 4, = 10%) 2016 4 79.67
uniform rate § = 10%) 2049 156 90.61
RSSA-Lookup uniform rate § = 20%) 1998 2 78.09
non-uniform ¢, = 20%, d,; = 10%) 1914 6 79.77
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Table 4.4: Gene expression model

Ri:G— G+ RNA ky = 0.09
Ry RNA — RNA+ P | ky=0.05
Rs: RNA — ks = 0.001
Ry P — k4 = 0.0009
Rs:P+P — P ks = 0.00001
R¢: P, - P+ P ks = 0.0005
R Po+G — BG k7 = 0.005
Rg: PG — P+ G ks = 0.9

ing genes. It composes two main consecutive processes: transcriptionresad tra
lation. The transcription initiates when an enzyme called RNA polymerase
(RNAP) binds to gene promoter. During the transcription process, the gene
is copied to intermediate form called mRNA. In the translation proceéRkl/Mm

will then bind to ribosomes to translate into the corresponding protein.

Theg8 reactions shown in 4.4 depict a typical gene expression model. In this
table, proteinP is encoded by gen@. The intermediate product of transcription
is denoted by? NV A. The transcription was modelled by reacti@nwhere gene
G transcribes taRNA. RN A, after translating to protei® through reaction
Rs, will degrade by reactiomks.

The proteins usually interact to form a dimgy rather than existing in the
isolated form. Reaction&; and Rg, respectively, model the association and
dissociation of dimerd%. The dimer could bind to gen€ to enhance the
activation of the gene. Thus this is modelled by reacfibnRs.

In simulating this model, we set the initial population of ge&néo 10, 000,
while other species are set@oWe implement the adaptive fluctuation interval
control to compare with other mechanisms. The threshold is sett@5. We
dynamically choose between the fluctuation raend a fixed interval sizé\.
Table 4.5 compares the performance of the different simulation algorithms.
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Table 4.5: Performance of algorithms for Gene Expressiodéflasing mass-action kinetics
propensity

Algorithm Execution Update| Acceptance Proh.
Time (ms)| Time (ms) (%)
DM 3128 1922
NRM 3167 2459
uniform rate § = 10%) 2444 144 86.77
RSSA-Linear uniform rate § = 20%) 2513 30 75.89
adaptive rateq = 20%, A = 5) 2386 120 86.51
uniform rate § = 10%) 2724 175 86.79
RSSA-Binary uniform rate § = 20%) 2520 44 75.85
adaptive rateq = 20%, A = 5) 2479 123 86.58
uniform rate § = 10%) 2538 161 86.78
RSSA-Lookup uniform rate § = 20%) 2583 45 75.86
adaptive rateq{ = 20%, A = 5) 2523 140 86.56

From the result Table 4.5, the performance of NRM and DM is nearly the
same, although DM is slightly faster than NRM. Although this model is quite
small, it also requires a high cost for updating, which contribGi#s to the
total simulation time in NRM, while in DM this contributé®%. Even in this
model RSSA-Linear withh = 10% could reduce the update time to ortl¥.
Hence, its performance is approximatey, faster than DM and NRM. In
this small model, it is easy to see from Table 4.5 that RSSA-Linear is a bit
faster than RSSA-Binary and RSSA-Lookup; however, the difference between
the performance of these implementations of RSSA is quite small. Second, for
this model a narrow fluctuation interval (small valuespfwould yield a high
acceptance probability, and thus better simulation time.

Because the population of species involved in this model is quite low (both
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at beginning and at the stable state), the combination of uniform fluctuation rate
and fixed interval size yields the best performance. For example, RSSArLinea
with the combination of uniform rat& = 20% and fixed interval sizé\ = 5 is
nearly4% better than RSSA-Linear using only the uniform rate 10% which

is the best performance achieved while applying uniform rate.

For second experiment, we consider the effects of evaluating the complex
propensity function to the update and the total simulation performance. Hence,
we modified the propensity function to use the Hill kinetics. This kinetics was
first used to model the nonlinear effects of aggregation of the haemoglobin
molecules with oxygen in the solution [75]. The Hill equation recently has
extensive applications in pharmacology to model the nonlinear relationship in
drug-dose response on the target (see e.g. [70] for details). In biology, Hill
kinetics has been used to model the mechanism of enzymatic reactions. The
Michaelis-Menten law, a well-known model of enzyme kinetics, is a special
type of Hill kinetics. Hill kinetics is commonly used to describe the coopera-
tivity of a ligand binding to an enzyme. In this cooperative binding, the binding
of a ligand to an enzyme is often enhanced the enzyme operativities if there are
already ligands binding to this enzyme. In modelling of gene expression, Hill
kinetics has applied to describe the activation controlled in the gene regulati
process. For example, in [86], it was used to model the switch-like behavior
in the gene expression by protein activation. In our experiment, we use the
propensity function with Hill equation which has a general form:

xn

- - 4.6
Kn + an (4.6)

g()

whereK is threshold constant andis the steepness parameter (also called Hill
coefficient), which is usually non-integer.

The simulation runtime of the gene expression model with Hill kinetics of
different simulation algorithms is in Table 4.6. Since evaluating the propensit
now requires more computational effort, the performance of DM and NRM is
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Table 4.6: Performance of algorithms for Gene Expressiodehwith Hill kinetics propensity

Algorithm Execution Update| Acceptance Prob.
Time (ms)| Time (ms) (%)
DM 9517 8307
NRM 8188 7480
uniform rate § = 10%) 3423 615 86.78
RSSA-Linear uniform rate § = 20%) 3655 162 75.87
adaptive ratel = 20%, A = 5) 3389 568 86.54
uniform rate § = 10%) 3432 661 86.77
RSSA-Binary uniform rate § = 20%) 3613 161 75.91
adaptive rateq = 20%, A = 5) 3404 562 86.59
uniform rate § = 10%) 3537 636 86.79
RSSA-Lookup uniform rate § = 20%) 3720 177 76.00
adaptive rated = 20%, A = 5) 3508 617 86.57

roughly 3 times slower than the mass-action kinetics propensity. In the simu-
lation involving the Hill kinetics, the propensity computation contribl8&%

of the overall time in DM, an®1% in NRM. By our RSSA simulation method,

the update cost of RSSA-Linear with= 10% is kept nearly ati7% of the

total cost, and the overall performance is roughlytimes better than DM. In

this experiment, RSSA with a combination of uniform rate and fixed interval
size also achieves a better performance than by only using uniform rate. This is
because it handles the low population of species better.

4.4 Towards an Optimal Parameter Selection

We have proposed several improvements to RSSA, and shown their efficiency
in applying to concrete models in the previous sections. Still, a systematic ap-
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proach is required to automatically select the optimal parametergheedluc-
tuation rate vector, in order to optimize performance. The tunable parameters
used in RSSA essentially are related to the fluctuation control mechamdm
the search procedure. Because these factors are correlated, optimizicgtoth
not be performed by handling them independently. For example, a fluctuation
rate used with a specific fluctuation control mechanism could yield an opti-
mal performance for RSSA with a linear search, but that might not the optimal
choice when applying other strategies e.g. binary search, lookup search. In fact,
the selection of parameters for optimizing RSSA can be regarded as a cembina
torial optimization problem. Several global optimization techniques have been
developed to tackle this task (see e.g. [58, 149] and references thereinis In t
section, however, we limit our focus on choosing the parameters for fluctuation
control with a given search procedure. Our approach is based on a gradient-like
method, called stochastic approximation (SA) [136], to estimate the raaepar
eter. SA is essentially an iterative algorithm. In each iteratiba,parameter
Is estimated by a similar form of the gradient-based optimization; howtheer
gradient is approximated by using a simulation instead of using a fixed exact
analytic form. The advantage of this method is that it does not require a de-
tailed knowledge of the relationship of the rate parameter and the performance
measurement being considered.

Let Trssa(r, m, c,a) be the measurement of the run time of RSSA, where
is the fluctuation rate vector used by fluctuation contraith a specific search
algorithm a, andm is the given simulated model (i.e., a reaction network).
Trssa(r,m,c,a) is regarded as a random value, to be determined by simula-
tion. Our purpose is finding:

min E[Trgsa(r,m, ¢, a)] (4.7)

reR

Hence, the objective is to find the parameteén the parameter spade mini-
mizing the expected run time[Trssa(r, m, c, a)l.
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Starting with initial guess,. SA estimates the parameierat iterationk by
the form:

Tee1 = Tk + argr(Tr) (4.8)

whereg(r1) is an estimation of the gradient of the performance measurement,
anday, is the (positive) step size. This principle of the estimation is based on
local changes of the rate parameter. There are two main implementations of thi
method: namely, the finite difference stochastic approximation (FDSA) and the
simultaneous perturbation stochastic approximation (SPSA) [58, 148]. In the
former only one component in parameter vectois perturbed at a time, while

in the latter all components of the rate parameter are randomly perturbed.

Let p be the dimension of the rate vector parameter. FDSA estimates the
approximated gradienf(ry) is as following. Theith component in the rate
parameter;. is perturbed by a small positive constapthence obtaining;, +
crer; With 1 < ¢ < p whereey; IS a unit vector having its-th component set to
1, while all the other are zero. Then, thth element in the estimated gradient
gr(r1) is approximated by

Tresa(rk + creri) — Trssa(ry — crer;)
QCk

Iri(Te) = (4.9)

The number of evaluations of the performance functi@gs 4 grows linearly
with the parameter dimension. Indeed, we need to perform exagtguch
evaluations. Hence, as the number of parametdrscomes large, the cost to
reach convergence increases.

SPSA takes advantage over DFSA in estimating the gradient by evaluating
the performancézss4 independently of the dimension of the rate parameter.
SPSA approximates the gradient by perturbing all the components by a user
specified randomp-vector A, = (A, ..., Ag,). Thei-th component of the
estimated gradient is computing by:

Tresa(re + cAr) — Trssa(r — ceAg)
2, A

Gri(re) = (4.10)

92



The random vectaf; should be chosen so that thA,;} components are inde-
pendent, symmetrically distributed aroundnd having finite inverse moments.
The most common selected distributed satisfied this condition is the Bernoulli
+1 distribution. The selection afay, c;) values, and the convergence of the
stochastic approximation (in suitable conditions), have been studied in [149].

We applied the SA method discussed above to optimize, for any given search
algorithm, the fluctuation rate parameter for the fully connected reactionlmode
Results are shown in Fig. 4.4. The figure shows that, when increasing the cou-
pled degree of the reaction network, the fluctuation rate should be increased, so
to reduce the update time. This agrees with the experiments discussed in the
previous section. Note that the optimal rate for each search procedure is dif-
ferent, especially when the coupled degree is high. For example, Wherb
(w.r.t. the coupled degree4 the difference in the optimal rates used by search
procedures are small i.€1.95%, 19.12% and12.67% for RSSA-Linear, RSSA-
Binary and RSSA-Lookup, respectively. The optimal rates are quite similar in
the caseN = 10 (the optimal rate is aroung2l%). Then, if we continuously
increase the coupled degree the optimal rate for each variant of RSSA becomes
very different. The optimal fluctuation rate for RSSA-Linear slowly insesa
with N. Instead, the one for RSSA-Lookup grows much faster. The rate for
RSSA-Binary lies somewhere in the middle. For example, wth= 100
the optimal rate of RSSA-Linear &%.27%, while in RSSA-Binary i37.37%.
RSSA-Lookup achieves the best performance with the rate afdung)o. This
can be explained as follows. The lookup search in RSSA-Lookup is very effi-
cient, but the rebuilding of the underlying data structures is rather expensive.
Hence, it has to use a large rate to reduce the number of rebuilding steps, at the
price of reducing acceptance probability as well.
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Figure 4.4: Optimal Fluctuation Rate for Fully Connected Rieadvlodel

4.5 Conclusions

In this chapter we proposed a new generalized algorithm, called RSSA, for do-
Ing stochastic simulation. RSSA, in essential, is a rejection-bageaitiim.

The selection of a reaction firing composes of two steps. RSSA uses a propen-
sity upper-bound to select a candidate reaction. An acceptance-rejecti@a proc
dure is then used to verify the candidate reaction. We mathematicallggrov
RSSA, performing in this way, produces the same stochastic behaviour as SSA.

Then, we investigated how to improve RSSA, by studying how to tune its
performance so to efficiently simulate biochemical reaction systeimst, we
experimentally explored different search procedures for implementing the se-
lection of a candidate reaction. The optimal choice ultimately depends on the
problem size and complexity of the underlying data structures. Some search
procedures e.g., binary search, alias method can obtain a fast searchuime
also require data structure which is expensive to update; instead, a sirzmle se
method e.g., linear search, does not require any complex data structure, while
having a low search performance. According to our experiments, linear search
is best used on small models, while more complex methods should be applied on

94



large models. Second, Several search algorithms for implementing themelec
of a candidate reactions are proposed. We experiment with their implementa-
tions using different network sizes, and discuss the results of such experiments

Second, we proposed different mechanisms to control acceptance probabil-
ity of a candidate reaction. The proposed mechanisms run at different levels, in
a static or dynamic fashion during the simulation. A dynamic control give more
flexibility for controlling the acceptance probability depending on the state of
the system, but it also requires more computational effort. We also distasse
approach to automatically select the optimal rate for a given searchuantd-fl
ation control mechanism.

In RSSA, the acceptance-rejection procedure is applied to reduce the cost
of propensity updates while, in the literature, it has been used for different
purposes. We clarify some applications of acceptance-rejection procedure to
stochastic simulation with RSSA in the following. The compaosition rejection
SSA (CR-SSA) [147] uses the acceptance-rejection method for improving only
the search of the next reaction firing. The search time of CR-SSA is indeed
a constant time for long run. Thus, if the network is dense and highly cou-
pled, its update time will contribute a significant portion to the simulation. The
uniformizationtechnique is proposed in [141] to discrete the time in which it
uses a global upper-bound of total propensity instead of upper-bound reaction
propensities in RSSA. Hence, the simulation only needs the search and update
of reactions without generating the firing time. The discrete time conversion
approach is different with RSSA in many aspects. First, while it does reat ne
to generate the reaction firing time, it still requires paying the seardlupdate
costs in each simulation step, using exact propensity values. Second, incorder t
approximate the global upper-bound of total propensity it has to kngletzal
upper-bound for the population of all species. This is hard to pre-compute.
Indeed, even in the case such upper-bound is known, the upper-bound of to-
tal propensity may be several orders of magnitude larger than the actual total
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propensity e.g. if the system is stiff. The result is the simulation would spend
a lot of time to reject the candidate reaction. In the contrast, RSSA controls
the upper-bound of each reaction propensity. Furthermore, we can efficiently
control the upper-bound of each reaction propensity in runtime through a fluc-
tuation control techniques, as discussed in previous section. This provides a
needed flexibility, allowing one to adjust the acceptance probability as desire
The simulation performance thus can be sensibly improves by tuning these pa-
rameters. A rejection-based simulation algorithm recently proposed irfd40]
simulating the signaling pathways. This simulation algorithm is different with
RSSA in some senses. First, it rather applies the rejection steppgaeunt-

ing all possible combinations of the receptor-ligand binding which is typically

a huge number. Second, it exploits a very complex timing scheme to match
the exact time. In our RSSA method, the timing scheme is clean and simple,
l.e., the Erlang distribution. Furthermore, it is proved that the time falémvs

the exact distribution.

Further studies are possible to improve the performance of RSSA. For in-
stance, when propensities are given by a user-specified complex function, one
needs to devise an efficient way to compute the propensity lower- and upper-
bounds. This may be done automatically, or with some help from the user.
The impact of this choice still needs to be evaluated. Another research line
would focus on using global optimization techniques to fine-tune RSSA per-
formance. This approach would suggest the optimal combination of methods
to use, i.e., which search procedure and which control mechanism. Integrating
such optimization techniques in simulation is a non trivial task since the tim
required to run them might negate their benefits. This would indeed require
further investigation.
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Chapter 5

Rejection-based reaction diffusion

5.1 Introduction

The dynamic behaviour of living cells is indeed dependent on both the reac-
tion and diffusion of molecular species. The significance of diffusion becomes
highly important when the diffusion time of species is slower than the reaction
time. The biological systems will exhibit inhomogeneities. Furthermore, the
cell is highly compartmentalized. Diffusion between sub-compartments tbrme
by localized species significantly magnifies the noise effects on reacttbn pa
ways. These thus imply a crucial coupling of reaction and diffusion. Spatial
heterogeneity recently has been successful in explaining many experimental ob-
servations, e.g., localization of the E. coli cell division [52]. In this ditua

the simulation should explicitly take into account the diffusion of the species in
reaction networks.

The spatial extensions of SSA have been introduced to simulate reaction-
diffusion systems [17]. These methods are based on discretizing the space into
subvolumes. The subvolume side length is chosen so that the subvolume is well-
mixed. It further assumes that a species in a subvolume only reacts willespe
in the same subvolume. Hence, the same molecular species in differeat-subv
umes is treated separately. The diffusion of a diffusive species betwegn ne
bor subvolumes is modelled as a unimolecular reaction. The kinetics of this
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enlarged network is mathematically modelled by the reaction-diffusiorienas
equation (RDME). RDME is in fact a spatial extension of CME. It, therefgre,
possible to simulate by SSA.

Although RDME, in principle, can be exactly simulated by SSA, a direct ap-
plication of SSA to sample RDME is often computationally intensive because
the number of species and reactions in the model is linearly increased by the
number of subvolumes. An efficient implementation for performing stochastic
reaction-diffusion simulation is to select the subvolume which contains ttte ne
reaction firing, and then retrieve out the next reaction firing in that subvolume
There are many possible combinations for implementing these steps. For exam-
ple, these two steps can be done in two consecutive DMs in which the first DM
searches for which subvolume and the second one is for finding the next reaction
in selected subvolume. The Next Subvolume Method (NSM) [45] is an efficient
formulation for improving the search of the subvolume. In NSM, the selection
of a subvolume is done by exploiting a special priority queue, i.e., the binary
heap. The subvolumes are indexed so that the subvolume having smallest puta-
tive time is always put on the top of the queue. The search for the subvolume
thus is in constant time. Then, the next reaction firing in the selected subvolume
Is found out by a DM search. Anytime there is a change in the subvolume due
to a reaction firing or a diffusive transfer from its neighbor, the priority queue
should be maintained to reflect the change. Hence, a significant portion of the
simulation time of NSM now is spent for updating the priority queue.

The computational cost for performing stochastic reaction-diffusion simula-
tion is further increasing to ensure a physical consistence and correctriags of
spatial discretization. First, for the applicability of SSA in a subvoluthe
side length of the subvolume must be chosen much smaller than the so-called
Kuramoto length [95]. However, the subvolume side length also should not be
chosen arbitrarily small. It has been shown that if the subvolume side length
becomes too fine the simulation of RDME yields incorrect and even nonphysi-
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cal results [12]. There the system is entirely controlled by diffusion, and there
IS no reaction occurring. In this case, reaction propensities have to beteakre

e.g., by some correction factors, to match the results from a partiskedisamu-

lation [51]. These correction factors are often rather expensive to compute [48]
Second, the space is often discretized by regular meshes, e.q., the cubical sub-
volumes, and the rate of the diffusion is often transformed from the Fick’s law
The space, however, may be discretized by irregular meshes to deal with the
highly complex cell medium, e.g., the cell membrane. In that case the rate
of the diffusion reaction also has to be modified by a complex and, of course,
computational demanding function [15,47, 74].

In this chapter we propose a new formulation, called RRD, to alleviate the
computational burden of the exact spatial stochastic simulation. RRD improves
both the search of a reaction firing in a subvolume and the propensity updates,
and hence improving the total simulation performance. More specifically, RRD
combines the efficient tree-based search and the methods based on the over-
approximation of propensities developed in chapters 3 and 4 to enhance the
search and the update. Both the search for a subvolume and then a reaction
in the selected subvolume by RRD are using only the over-approximation of
propensities. This feature is the highlighted difference with stochastitoaac
diffusion simulation approaches in literature. A candidate subvolume is first
found by a tree-based search based on the over approximation of subvolume
propensities. Then, given the subvolume, a fast lookup search is conducted to
retrieve a candidate reaction in that subvolume. The candidate reactimmis c
mitted to fire by a rejection-based mechanism. In case the candidat®mndac
rejected, an entirely new candidate subvolume as well as a new candidate rea
tion in this subvolume have to be selected again. Since the candidate subvolume
Is discovered by the tree-based search, it scales in a logarithmyievitta the
number of subvolumes. The update of a tree branch is rarely required unless
the population of species in the subvolume jumps out of the fluctuation interval.
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Anytime this happens, there are at most two tree branches have to update.

5.2 Reaction-diffusion simulation

5.2.1 Spatial SSA

Assuming the cell volum#& is divided inton,, subvolumes, which are denoted
by Vi,...,V,,. These subvolumes are further assumed to be spatial homoge-
neous. Thus, only the population of species in subvolumes are required to keep
tracking. LetXZ.Vk(t) be population of specieS; in subvolumeV, at timet.
Then-vector X V(t) = (X*(t),..., X)*(t)) denotes the population vector of
subvolumel/, for all £ = 1...ny. Hence, the system state isidy n, vector
X(t) = (X",...,X") denoting population of each species in each subvol-
ume at timet.

The diffusion of species; with diffusion constanD; from subvolumé/;, to
its neighborV; is explicitly expressed by a unimolecular reaction. That is:

Sl — i (5.1)

the rate of this diffusion reaction for a cubical subvolume with side lehggh
defined to beD; /h2. For an irregular mesh, a correction factor for the diffusion
reaction has to be applied [47]. We assume further that there:adsffusion
reactions in a subvolume.

Let «'* be the propensity of reactioR; in subvolumeV,. Let ag" be the
propensﬂy of subvolumé&.. It is the sum of propensmes of all reactions in
subvolumeVy, i.e.,ap* = YT alt. Letag = Y ¥ agh = Y000, S alk
be the total propensity of the system.

The spatial stochastic simulation makes a trajectory of RDME by sampling
the joint next reaction probability distribution functigir, j, k|z, t) which de-
notes the probability the reactid®; inside the subvolumé&), occurring at the
next timet + 7 given current stat& (¢t) = z at time¢. The reaction firing time
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is distributed following an exponential distributiegexp(—ay7). The subvol-
ume 'V} is selected given the time following a discrete probability function
a(‘)/’“/ao. The conditional probability of the reactid®; firing in subvolumeV;, at
time 7 follows a discrete probability functiomyk/agk. The joint next reaction
probability p(7, j, k|x, t) for the reaction-diffusion process thus has the form:

p(7,j, K|z, t) = altexp(—aoT) (5.2)

The sampling of the joint next reaction probabilityr, j, k|z, t) is done as fol-
lows. First, the firing timer is generated by sampling the exponential distri-
bution with meanl /a;. Then, two consecutive searches are conducted to find
which the subvolumé’, and after that the reaction within selected subvolume
Vi with probability ag* /ag anda;* /ag*, respectively.

NSM improves the subvolume search by an efficient formulation. It uses
the putative times of subvolumes to select the subvolume. The putative time
V% of subvolumeV,, is generated following an exponential distribution with
meanl/agk forall K = 1...ny. These putative times are indexed in a priority
gueue so that the subvolume having smallest putative time is always on the top
of the queue. When searching for the subvolume, the smallest putative time as
well as the corresponding subvolume on the priority queue are extracted. The
firing time 7 is assigned to be this smallest time. Only the search for the next
reaction firing is required. In NSM, it is simply found by sampling the digeret
probability functiona* /ag".

Given the selected reactioll; in the subvolumeV}, firing at time 7, the
system is updated depending on the typézef If it is a biochemical reaction,
the population state of species in subvolumes updated i.e. X" = X" +
v;. In case, it is a diffusive species, a subvoluijen the neighbors ot/ is
randomly selected. I, one species in the population 8fis removed, while
the population of species; in V. is increased by one. After updating the state,
the affected reactions in subvolume(s) recompute their propensities ¢otrefl
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the changes.

5.2.2 Rejection-based reaction-diffusion simulation

The rejection-based reaction-diffusion (RRD) simulation exploits an gver a
proximation of reaction propensities for selecting a reaction in a subvolume.
The search of a reaction firing in RRD is composed of two steps: 1) searching
for a candidate subvolume by the tree-based search technique (chapter 3) and 2)
finding and committing a candidate reaction in the candidate subvolume by the
rejection-based technique (chapter 4).

The approximation of reaction propensities is derived by confined the pop-
ulation of each species in a subvolume to a fluctuation interval. Thus, let us
assume the population of specigsin subvolumel/, at timet is confined to a
fluctuation interval[&vk,fiv’“]. The population staté"* of subvolumeV;, is
therefore fixed to the intervak Vk,Yv’“]. Because the same species in different
subvolumes is, in general, treated differently by reactions it fluctuateg-
ferent manners. The fluctuation intervals of the population state of subvolumes
thus can be defined by different fluctuation control mechanisms.

Given a fluctuation interval of species in a subvolume we compute the upper-
bound and lower-bound of propensity of reactions in that subvolumea;Vet
anda;"*, respectively, be the propensity upper-bound and lower-bound of re-
actio_nRj in subvolumeV,. Leta;" be the propensity upper-bound of sub-
volumeV,. ay** is, in fact, the sum of propensity upper-boundsnof+ my
reactions in subvolum&j. Thus,ag" = Z;’flmd a;s forall k = 1...ny.

These upper-bounds will be used for selecting a candidate subvolume and, after
that, a candidate reaction in that candidate subvolume. Specifically, the sub-
volume is discovered by a tree-based search on the propensity upper-bound of
subvolume. A table lookup search on the propensity upper-bound of reaction is
then applied for searching the candidate reaction.

To do that, a tree for holding these subvolume propensity upper-bounds is
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built. Inthe tree, the leaves will contain the subvolume propensity upper-bounds
@ for k = 1...ny, while the internal nodes store the sum of its children.
Following this way, the tree root will store total sum of subvolume propensity
upper-bound valug; = >, a;"*. In a subvolume, reaction propensity upper-
bounds are used to build up tables for a fast lookup search. The lookup search
here is chosen to be the Alias method. The probability vector for the Alias
method isa;"* /ag .

The search of a reaction firing starts by first searching for a candidate sub-
volume placing on the leaves of the tree. The running of the search takes a
random number if0, ag], which decides which the left or right tree branch will
be discovered. Beginning at the tree root, the search travels down thH thee.
random value is less than the value stored in the left internal node, the search
expands the left branch. Otherwise, it chooses the right branch to explore. In
case the search chooses the right branch, the random number is adjusted by
subtracting its number by the value stored on the right node. The search repeats
until a leaf (candidate subvolume) reached.

Having the candidate subvolume, a candidate reaction in that subvolume is
taken out by accessing the lookup tables of the Alias method. Essentially, this
method requires a random probability valug(nl], and returns a reactioR;
corresponding to this input probability.

The candidate reaction in the subvoluings accepted to fire by a rejection-
based mechanism. A random value fr@va,'*| is generated. If it is less than
the actual reaction propensihg/’“, the reaction is committed. Otherwise, the
selection is rejected. In case the reaction is rejected, new isgletep is re-
peated. The lower-bound propensity* will be used for quickly accepting the
candidate reaction, thus without hgving to always evaluate reaction propensity
a}fk.

The reaction firing time- is generated by sampling therlang distribution
in which the shape parameter is the number of trkaistil having a reaction
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accepted, and the rate parameter is the total propensity upper-bguive use
the convolution technique described in chapter 4 for doing this task.

Knowing the reactior?; firing at timer in the subvolumé/;,, the population
states of the affected subvolumes are updated. If a biochemical reaction fir
only the population of species involved in the current subvolliinis updated
i.e., XV = XV + ¢, In contrast, if a diffusive transfer is selected, a random
destination subvolum#; in the neighbours o/, is taken. The population of
corresponding diffusive speciés in both of these subvolumes is updated. In
the uncommon case in which the population state of a subvolume caused by the
reaction firing jumps out of the assigned fluctuation interval, a new fluctuation
interval should be redefined. The reaction propensity upper-bounds are recom-
puted and the tree is updated as well. However, only at most two tree branches
updates are required because at any time maximum two subvolumes have to
update by a reaction firing.

5.2.3 The RRD algorithm

The detailed steps of RRD is listed in Alg. 6. We first define a fluctuation in-
terval[X"s, X '*] for the population stat& " of each subvolum&;. Note that

we could use different fluctuation intervals for subvolumes. We then compute
the lower-bound propensity;'* and upper-bound propensity** for each re-
actionRz;forj=1...m+ Ed. We then compute the upper-bound subvolume
propensityagy "+ for k = 1...n,. These upper-bound subvolume propensity val-
ues will be stored in a tree structure supporting for the tree-based seduitd, w
upper-bound reaction propensity values are used to build tables for the Alias
lookup.

The main simulation loops until the tintgpasses over a predefined simula-
tion timeT,,... A simulation step consists of three steps: 1) selecting a reaction
firing in a subvolume, 2) generating firing time and 3) updating the system.

The selection of a reaction firing is repeated until flagepted is set tatrue.
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Algorithm 6 RRD procedure

1

2.

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

3
4
5:
6:
7
8
9

. for all subvolumel, wherek =1 — n, do
define fluctuation intervalY V, X *] for population statex Vs
compute propensity lower-boung"* and upper-bound;"+ for j = 1...m + my
compute subvolume propensity_upper-bom&
build supporting tables for Alias method for reactions ibwlumeV;
end for
. build a tree for upper-bound subvolume propengity forallk = 1...n,
- while t < T,,,, dO
setu =1
Setaccepted = false
repeat
generate four random numbefs o, r3 andr, from uniform distributionl/ (0, 1)
apply tree-based search for finding candidate subvolipweth search value;ag
apply Allias method for lookup a candidate reacti@nin subvolumeV;, with proba-
bility 7,
if 73 < (a;"* /@;"*) then
accept;d = true
else
evaluater; with current stateX '
if r3 < (a*/@;") then
accepted = true
end if
end if
setu=u-ry
until accepted
set transition time- = (—1/ag) In(u)
update timg =t + 7
if R; is a biochemical reactiotinen
update population state of subvoluighy X" = XVe + v;
else
if R; is a reaction diffusion of specie$ then
get a neighbor subvolunig
remove one from population of specig€sin subvolumeV,
add one to population of speci§sin subvolumeV;
end if
end if
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36: for all affected subvolum&), do

a7.if X% ¢ [X", X *] then

38: define a new fluctuation intervak V¢, X ]

39: compute propensity lower-boung"* and upper-bound propensity"
40: build supporting tables for Alias method in subvoluime

41: propagate the change in subvoluiein the path from it to the tree root
42: end if

43:  end for

44: end while

A trial composes of three consecutive steps. First, a candidate subvbjuie
found by applying the binary search on the upper-bound subvolume propensity
tree built in preparation with the search value;ig wherer, is a random value
from U(0,1). Then, a candidate reactiadR; in that subvolume is retrieved
by applying the Alias lookup method. The lookup requires a random value
ro ~ U(0,1). Third, the candidate reaction is subjected for an acceptance-
rejection procedure. The trial is successful if the actual reaction prope@&it
is greater thamsa;"* wherer; is a random value frond/(0,1). We quickly
accept the candidate reaction without evaluating the actual reaction prgpensit
if a;'* > rsa;"*. In the other case, the selection is rejected.

The reaction firing is generated by sampling thielang distribution with
rate parametet; and shape parameter is the number of trials until that reaction
Is accepted. We use the convolution method in samplingtteng distribu-
tion. For each trial, the variable is continuously updated to e = wu * ry
wherer, is a random value generating fraif(0, 1). Then, the firing time- of
the reaction firing is computed as= (—1/ag) In(u).

Knowing the reaction?; in subvolumeV;, and its firing timer, the system
is updated depending on the type of the reaction. If the readtiois a bio-
chemical reaction, only population state of this subvolume is updated. In case
R; is a diffusion of species);, a random neighbor subvoluni¢is taken. The
population of species; in V. is removed by one, while its population 3 is
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added one.

The next simulation loop is executed without updating the affected reaction
propensities in the subvolume if its population state is still confined in the fluc-
tuation interval. In other case, a new fluctuation interval has to be redefined.
The new lower-bound propensity and upper-bound propensity of reactions have
to be computed. Then, the upper-bound subvolume propensity is recomputed
as well as the tree branch from root to that subvolume is updated to reflect the
change. The tables for the Alias lookup used inside the subvolume also have to
construct according to the new upper-bound propensities.

5.2.4 Correctness of the RRD algorithm

We prove that RRD selects a reaction firing with the joint probability fuomcti
p(7, j, k). The statement is stated in the Proposition 4.

Proposition 4. RRD is exactly sampling RDME by selecting a reactionin
subvolumé/; to fire at timer following the joint probability density function

p(7-7j7 k) = a}/’“eajp(—am).

Proof. Let Pr(R;, Vi) be the probability a candidate reactif in subvolume
candidateV;, is selected and accepted to fire. We factodz€ R;, V};) by the
chain rule.

Pr(R;, Vi) = Pr(Vy) - Pr(R;|Vk)

Vi Vi

_apt oa;t 4y
a @
Vi

9

- — (5.3)
ap

The derivation in the Equ. 5.3 is using three facts. First, a candidate sub-
volume V* is selected with probabilityi;"* /a;. Second, the reactioR; in
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that subvolume is selected with probabiltt‘yfk/a_ovk. And, last the candidate
reaction is accepted to fire with probabil'ttyk Jag"r.
Now, let Pr(R, V') be the probability an arbitrary reactidhin an arbitrary
subvolumeél” is selected and accepted to fire. We have:
> hly g

Pr(R,V) = ===
0

=2 (5.4)
ao

Thus, the probability the reactid®; in subvolumel, is selected to fire given
an arbitrary reactio? in an arbitrary subvolum¥ is selected as:

Vi
a;

Pr(R;, Vk|R,V) = Zg

=8

a
= — (5.5)
ao
Let 7 be the firing time of the accepted reactifh in subvolumeV;. It is
indeed exponential distributed with ratg i.e., Pr(7) = ag-e~ 7. Itis derived
from a similar proof provided in Proposition 3, so we do not repeat it here.
Hence, RRD selects a reactié in subvolumeV, to fire at timer following

a joint probability density function:

Pr(r,j, k) = (—)(ag-e ™)

= a‘./k . g @07 (56)

5.3 Experimental results

We implement and compare three algorithms including: TreeRD, NSM and
RRD. The first implementation is TreeRD which is a variant of spatial 86A
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Table 5.1: Summary of models for reaction-diffusion sintiola

Model Species Diffusive Species Biochemical Reactions
CAMP activation of PKA mode 6 1 6
Multiscaled reaction model N+M N N(N-1) + M

which the subvolume is discovered by a tree-based search. The tree is built
using the subvolume propensities. The reaction firing inside a subvolume is se-
lected by a direct linear search. The second algorithm is an implementation of
NSM. We use a binary heap to maintain the priority queue of subvolume pu-
tative times. The last algorithm is an implementation of our formulation RRD
All these simulation algorithms are implemented in Java and run on Intel i5-
540M processor. The simulation was done aft&rsteps. The simulation data

are recorded for(0° steps. The experimental result is averaging over 100 runs.
All initializations, which is not a part of simulation loop, are excluded from the
calculation.

We report the performance of algorithms on two biochemical reaction mod-
els. 1) The cyclic adenosine monophosphate (cCAMP) activation of protein ki-
nase A (PKA), and 2) Multiscaled reaction model. The table 5.1 summahiees t
properties of simulated models. The first model is a real world model which is
used to demonstrate the improvement of RRD. In this model, we experimentally
validate the results of the tested algorithms. Then, we show the performance im
provement of our formulation. The second model is an artificial model we use
to benchmark the simulation performance in different settings. We compare the
performance of algorithms by increasing both the number of reactions and sub-
volumes. The performance of these algorithms now is dependent on two factors:
the search of a reaction firing in a subvolume and update of the affected reac-
tions in subvolumes. According to our experiments, our new formulation the
simulation performance dramatically outperforms over the tested digusit
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Table 5.2: cAMP activation of PKA model
Ri: PKA+2cAMP — PKAcCAMP, ky = 8.696 - 107°

Ry PKACAMP, - PKA+ 2cAMP ky = 0.02
R3: PKACAMPy + 2cAMP — PKAcAMP; | ky = 1.154-107*
Ry PKACAMP, - PKACAMP, + 2cAMP ky = 0.02
Rs: PKAcAMP, — PKAr +2PK Ac ky = 0.016
R¢: PKAr +2PKAc — PKAcCAMP, ky = 0.0017

5.3.1 cAMP activation of PKA model

The cAMP activation of PKA is a part of highly prevalent mammalian sig-
naling pathways that translates an extracellular message into an lifiace
response [41,85]. The cAMP is a second messenger forming when the mem-
brane enzyme adenylyl cyclase is activated. It then goes on activating specifi
proteins in which an important class is the protein kinase A (PKA). PKA is a
tetrameric holoenzyme, consisting of two regulatory subunits (PKAr) and two
catalytic subunits (PKAc). PKA is normally inactive in which the regoist

units blocks the catalytic units. The binding of two molecules cCAMP to spe-
cific locations on the regulatory units of PKA causes the dissociation between
the regulatory and catalytic subunits. It thus activates the catalytic ands
enables them to phosphorylate substrate proteins. These steps are detailed in
Table 5.2.

For running simulation, the space is divided imtp= 100 cubical subvol-
umes. The diffusion constant of species cCAMPLIs y;p = 300. The dif-
fusion of all other species is set to zero. At the beginning, there@r@)0
cAMP molecules placed at the top-left corner of the space,3and0 PKA
molecules are uniformly distributed across the space. The population of all
other molecules is set to zero.

In Figure 5.1, we plot the average population of three molecules cAMP, PKA

110



1

TreeRD 5

10

1

NSM S

RRD

Figure 5.1: Average population of species in CAMP activatid PKA model by algorithms

and PKAc, respectively, over the space at the end of the simulation. The figure
shows a strong agreement in the average population of species by simulation
algorithms, and thus experimentally confirms the correctness of RRD.

Table 5.3 presents in detail the computational costs for simulation algo-
rithms. In this table, we record the search time which is the time forriondi
a subvolume and a reaction firing in that subvolume, the update time which is
the time required for updating the affected reactions and reflecting the changes
to the underlying data structures, and the total simulation time which composes
of search time, update time and all other tasks (e.g., random number genera-
tion).

From Table 5.3, we see an important fact that the update time contributes a
significant portion to the total simulation time. For example, the update cost
of NSM contributes up t&0% of its simulation time, while the search time is
only 4%. Although the search time for the next reaction firing in the subvolume
by NSM is the best, the expensive update negates its advantage. The result is
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Table 5.3: Simulation time for cAMP activation of PKA model

_ Search Time Update Time| Total Time
Algorithm
(ms) (ms) (ms)
TreeRD 1717 17652 24971
NSM 1091 21028 26345
RRD 4135 8825 18237

the performance of NSM is the worst. TreeRD reduces the update time a bit
to roughly70% of its total simulation time. The simulation time of TreeRD is
thus slightly better (about’% faster) than NSM. In this model, RRD yields the
best performance even though the search time of RRD is worst (al¥dunes
slower than the search time of NSM). By expoiting the over-approximation of
propensities, RRD does not require to update the system at any time after a
reaction firing. The update is rarely taken only as needed, hence substantially
reducing the update time. The update of RRD is alRdttimes faster than the
update time of NSM. In this experiment, the update time of RRD is reduced to
48% of its total simulation time. As a result, the total simulation time offlRR

is roughly30% and27% faster than NSM and TreeRD, respectively.

5.3.2 Multiscaled reaction-diffusion model

The multiscaled reaction-diffusion model consists\ofast speciesi; and M

slow species3;. The reactions are also separated into fast reactions and slow
reactions. A fast reaction is involving fast specigonly, while a slow reaction
involves both slow specieB; and fast specied;. To form a slow reaction, a
fast species is randomly selected in the collectioVdést species. The product

of a slow reaction is a random species from the slow species collection. The
reaction rate of fast reaction is chosen many times faster thanaveehctions

(ki > k;). In this model, The space is further divided intosubvolumes. The
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fast species are be able to move in space, while the slow species arealneno
Thus, in a subvolume we havé more diffusion reactions.

Fast reactior®; : A; - A,

: k;
Slow reactionR; : A; + B; — B;,
Diffusion reactioni, : A'x 4, AV

In this experiment, we focus on the effects of search and update cost to sim-
ulation performance of algorithms. The search is examined by increasing the
number of subvolumes, in which N, is adjusted froml00 to 4,000 sub-
volumes. We investigate the effect of update by changing the number of slow
speciesM from 10 to 500. In this model, the number of fast species is fixed
N = 5. At beginning of the simulation, in each subvolume the initial popula-
tion of fast species is set 10 000 and slow species iB)0. Since the aim of this
experiment concentrates on the performance of algorithms we do not present
the data obtained by the simulation algorithms here, although they have shown
a strong agreement. Figure 5.2 shows the detailed simulation performance of
algorithms on this model.

Figure 5.2a) compares the search time of three algorithms. Although the
search time of TreeRD and NSM with small models is slightly better RiaD,
it is not scaled well when increasing the model size. In fact, the se@nehof
TreeRD and NSM sharply increase while adjustingand N, from small to
large. For example, the search time of NSM fdr= 500, /V,, = 4000 is about
24 times slower than the cagé = 10, NV, = 100. The search time of RRD also
increases by increasing the model size but with smaller rate. The saaechf
RRD for M = 500, N, = 4000 is only 1.9 times the casé/ = 10, N, = 100.

The result is the search of RRD dgimes faster than the search of NSM with
the same model configuratiod = 500, N,, = 4000.
In Figure 5.2b) the update time exhibits the same behavior as the search when
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Figure 5.2: Simulation time for multiscaled reaction-d#ffon model
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increasing the model size. With large model, the update cost becomes extremely
expensive. For example, the update time of NSMMbe 500, N, = 4000 is 40

times slower than the casé = 10, N, = 100. RRD handles the update better
than TreeRD and NSM. The update time of RRD fdr= 500, N, = 4000 is
nearly80 times faster than the NSM and TreeRD.

The total simulation time of three algorithms is shown in Figure 5.2c). From
the figure, the performance of TreeRD and NSM is nearly the same, and the
performance of RRD is the best for all the cases. Even for small model with
M = 10, N, = 100 the performance of RRD is roughB/times faster than
NSM, TreeRD. By exploiting the efficient search and update, the computational
time of RRD is extremely reduced when simulating for large models. In fhis e
periment, the simulation runtime of RRD is arowtdtimes faster than TreeRD,
NSM.

5.4 Conclusion

In this chapter we proposed a new formulation, called RRD, for stochastic
reaction-diffusion simulation. RRD combines the over-approximation of reac-
tion propensity and the efficient tree-based search for selecting @orefiihg.

The selection of a reaction firing in a subvolume composes of three steps. First
a subvolume is discovered by an efficient tree-based search. Then, a candidat
reaction in the selected subvolume is selected by a table lookup. The key point
in selecting the subvolume and reaction of RRD is both of these steps are using
the over-approxiamtion of reaction propensity. Finally, the candidate ogacti

is verified to fire based on a rejection-based mechanism. The actuabreact
propensity is only required to evaluate at this verification step. Thesarésat

of RRD is useful for simulating large model for both search and update the
system.
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Chapter 6

Rare event probability estimation

6.1 Introduction

In this chapter we delve into the problem of performing a statistical analysis
of targeted event of interest, such as having a high the population of a specific
protein after a determined simulation time. Depending on the event to be stud-
led, a large number of simulation runs may be required to achieve reasonable
statistical accuracy. Indeed, the task becomes increasingly harder wh&d-c
eringrare eventswhich occur only with a very small probability. Despite these
events being rare, the investigation of such events may be rather impiortant
the study of e.g. the reliability and robustness of a given biochemical system.
The occurrence of a rare event could lead the system into an abnormal state,
possibly leading to large macroscopic consequences such as the development
of a disease e.g., cancer. For example, the epigenetic changes, in amongst othel
factors, which play important roles in the development of cancer, inactwate
mor suppressor genes and then cause normal cells to be transformed into cancer
cells. If the immune system fails to recognize such changes and induce apop-
tosis, the tumor can spread to healthy cells. As a result, the cancgr@an
possibly causing severe problems to the living organism.

The conventional stochastic simulation, e.g., SSA, for such a task would be
to simulate many trajectories and counting the number of the successful ones.
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Rare events make this approach infeasible since a prohibitively large number of
trajectories would need to be generated before the estimation becomas-reas
ably accurate. Hence, itis important to devise a method for efficiently proguci
many evolution samples showing the event of interest. Sufficient information
about the rare event could shed light in understanding the developing patterns
which lead to the formation of the event.

In this chapter we contribute to the study of rare event simulation by propos-
ing a new simulation algorithm, callesESAfor increasing the frequency of a
rare event without otherwise affecting the system behavior. Essentiallyisours
an algorithm whichencourageghe evolution of the system so that the target
event becomes more likely, yet in such a way that allows one to recowestian
mate for the target event probability in the unbiased system. More in detail, our
algorithm follows a multi-stage strategy where the system state is diundied
nested subsets corresponding to levels that a given trajectory must pass through
to reach the desired event. The algorithm works by progressively generating a
set of trajectories, and filtering out those which do not reach a given [Ekel.
successful trajectories are then used as the basis for a new simulation, gene
ating a new set of trajectories. Then the process is repeated, filteringwhe ne
generation according to an higher level, and so on. This is the fundamental idea
behind themultilevel splittingsee [57,67,71,99, 101] for detailed reviews and
discussions). An advantage of this approach is that, while the filtering bleses t
simulation outcome, the algorithm does not change the reaction rates of their
propensities in any way. In this way, we can account for the bias, andiatiti ¢
the results to be relevant to the model which is being studied. The same idea of
multilevel splitting was successfully applied to biochemical networksatou-
late the reaction rate constant of the transition between given statds pta
However, it requires to fixed the levels before simulating instead afmaaitic
levels chosen in our approach. In the context of rare event simulation there is a
different approach based amportance samplingiL39], where the underlying
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probability measure of the reaction events, for example, the reaction propen-
sities [98, 98], is manipulated and recovered by multiplying with the sedall
likelihood ratio, was introduced to increase the frequency of a rare event. The
system, however, is sampling with a different probability distribution, thus
should not be regarded as valid representation of the actual system behavior.

6.2 Problem setting

Let @ C N" be the system state space, ranged overXbylLet £, and E,
respectively, be different subsets @f We want to study the probability of
reaching the stat&’(¢) € F given an initial stateX' (0) = xy € E, for some
time ¢t bounded by a constant stopping tinte< 7,,... In other words, given
an eventE, we want to compute its reachability probabili(£). To help
intuition, consider the case where the eventorresponds to speciés having
a large population (greater than some threshldlrhe probability to compute
P(F) can then be explicitly expressedasit < T,4.. Xi(t) > A X(0) = x0).

Denote withT the first time the system hits the evénti.e., Ty = inf{t >
0: X(t) € E}. Our goal is then to efficiently estimate the probability:

Y= PY(TE < Tmam) = E[]JTESTmM (X)] (6.1)

wherelly, < (X) is the indicator function. It returns if X (7x) € E s.t.
0 <Tg < T Or0 otherwise.

We could, in principle, compute exactly as in Eg. 6.1 by studying the
time evolution of the system. For a well-mixed biochemical system, arnt exac
definition of its evolution is provided by the chemical master equation (CME).
However, although the CME completely determines the time evolution of the
system, it is hard to solve analytically whenever the state space is not ve
small. In most cases, stochastic simulation is usually adopted toatetiime
probability above. SSA can be used for estimatindollowing Eq. 6.1. This
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is done by just sampling/ i.i.d. trajectories{ X}, by running SSA from the
initial state up to stopping timé,,.... Each trajectoryX " visits a finite number
of states, so checking wheth&r hits the event? is straightforward. We can
then estimate the preferred probabilityas:

. A <1, (X
5 = Zin Urecn, (X) ©2)
In order to understand how accurate the estiméatis, that is how close it
Is to the actual value, we need to study its accuracy as well. By the central
limit theorem,4 approaches a normal distributiovi(, c>/N) as N is large
enough, where? is the variance of procesk. In other words, we have the
relation:E[4] = v, Var(%) = 0?/N. Althoughs? is unknown in general, it can

be estimated by the (unbiased) sample variafce
o 2im(Irer,,, (X)) = 4)° 6.3)
N -1
To quantify the accuracy of an estimator tiedative errorcan be used. It is

given by
RE = Y Vaf(w _ (6.4)
E[4] N
The estimation of the above is therefore approximate®By~ s/9v/N.
Further, a rough analysis of Eq. 6.4 can be obtained whenever the probability

~ is small by noting that we have the approximatipn(1 — ) ~ ~. Thus it
yieldsVar(4) = ~v- (1 —~)/N = ~/N, in which~ - (1 — ) appears as the
variance of the Bernoulli variablér, -7 (X*). The relative error so could be
approximated a®E ~ \/v/N /vy = 1//N - . From this we can see that in
order to reach a given relative err2, we need to perform at leasfyRE?
trajectory simulations. For instance,+f = 107% and we wantRE = 1%,
we need to run roughlyv = 10!V simulation runs, which seems expensive to
perform. Hence, using a trivial SSA sampling to estimate the probabilitgref r
events appears inefficient.
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6.3 Splitting for rare event simulation of reaction networks

By the discussion in the previous section, estimating the probability of reaching
a rare eveniy by generating many trajectories using SSA is inefficient. The
vast majority of such traces will miss, hence we would need to generate a
very large number of trajectories before we can achieve a reasonableg@ccura
sSSA improves the efficiency of the simulation by retaining only trajeesori
which is more likely to reach®, while filtering out the unlikely ones. The
promising trajectories will be split into a number of trajectories. It thusdse
only a modest number of starting trajectories to estimate the wanted projpabili
with good accuracy. Of course, such estimate is biased. However, we can
remove the bias by correcting the estimate using a suitable factor.

6.3.1 Splitting approach

The fundamental of multilevel splitting approach is dividing the state sface
into some nested subsets> £, D --- D Ep D Ery1 = E. This is done

so that the probability that a trajectory reacliggiven that it reacheg); ; is
significantly higher than the probability of directly reaching rare eveértom

the initial statery € E,. For our purposes we shall assume that these sets can
be expressed ab; = {X : 3t; < T A (X (t)) > Ry}, for somelevels

hy < --- < hy and alevel functionh : Q — R. Simulation is then applied

to estimate all these conditional probabilities i.e., to estimate P(E;|E;_1).
Finally, an estimator for the probability of the rare evB(E) is achieved using

the chain rule, by letting = T[], p.

To estimate the probability of reaching evefitgiven the fixed stopping
time 7,,,.. thefixed splittingvariant [57] requires to predefine a level sequence
hi, ..., hr. Then, it proceeds as follows. We start with a number of trajectories,
say N, from timet = 0 at a given initial stat& (0) = z¢ € Ej. The trajectories
reachingE, are kept, while those failing to reach that level are discarded. For
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Figure 6.1: Fixed splitting procedure with level and splitting factos = 3

each trajectory we keep, we consider its first entrance state, thit(ig ), t1),
which falls into £/;. Starting from that entrance state (and time), we again apply
simulation to generate new trajectories. All the trajectories so generated are
used to estimat®( £, | E1 ), and the process is repeated. The constétermed

the splitting factor The splitting of a trajectory is depicted in Fig. 6.1, which
illustrates just one levél,, and a splitting factor of = 3.

Although fixed splitting variant is unbiased, its accuracy and efficiency are
very sensitive to the choice of the parameters. The estimator, indeed, gtrong|
depends on the level sequence and splitting factor. If reaching the next level is
unlikely, all trajectories then will probably be discarded. On the other hand, in
case reaching the next level is highly probable and the splitting factor is large,
the number of trajectories will explode exponentially with the levels.

The adaptivemultilevel splitting [30] solves the choosing the parameters
which does not require aa priori choice of levelsE; and splitting factors.
Instead, levels will be defined during its execution. More concretely, talavoi
the possibility of trajectories being extinguished, it shall choose intermediate
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Figure 6.2: Adaptive choice of level in multilevel splittjnwith an ensemble ¥ = 3 trajecto-
ries andk = 1 trajectory to be kept. In & trajectories are generated and in b) 2nel quantile
is used as the next level.

a) b)

levels so that there are alwaydrajectories reaching the next level. In initial,
N trajectories are simulated in whiéhtrajectories with highest value reached
by the level functiom(—) are kept. In the next stag€ — k& new trajectories
are obtained by prolonging the trajectories reaching the level. These trasctor
are merged with the retained trajectories. Then the selectikdrafectories is
repeated. In this way, it keeps the reaching probabiity;|F; 1) close to a
fixed probabilityk/N. Hence, it guarantees that they will not be extinguished,
and further avoid their exponential explosion as well. We illustrate the above
idea in Fig. 6.2. There, we generate an ensembl& cf 3 trajectories. For
each of them, we compute the maximum levehathich is reached. Then, the
level h; is picked so to be at the start of tle + 1)th quantile i.e. such that
exactlyk traces go beyond that levél & 1 in the figure).

Although adaptive multilevel splitting chooses the next level without any a
priori knowledge, it introduces bias to the estimated probability of the event
of interest. Due to the bias, the adaptive approach could underestimate the
probability of the event when it is very small [30].
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sSSA takes advantage over adaptive multilevel splitting by ensuring absenc
of biasduring the estimation at each stage. sSSA estimatasan ensemble of
N trajectories, which are further divided into two disjoint, independent sets of
simulation runsV; and N,. More in detail, theV; group is used to choose the
next levelh;, while the N, group is used to estimate the conditional probability
P(E;|E;-1). Using the same trajectories for both purposes makes it hard to jus-
tify that estimator for the conditional probability is unbiased, since the event
depends om; which ultimately depends on the simulated trajectories. Instead,
by using independent trajectories we achieve bias-freedom in a simple way.

SSSA defines the next level so that having aldost IV, - p trajectories passes
this level, wherep is a non-negligible and non-overwhelming fixed probability.
More precisely, we obtaitV; trajectories by prolonging the successful trajec-
tories in last level until the stopping time. These trajectories are thegrea
according to the highest value reached by the level fundiien) in each tra-
jectory. That is, we sort them according to maximum level reaching by a tra-
jectories until the stopping time. Finally, we consider N, - p and take the
(k 4+ 1) topmost trace, and let the next level e

Having defined the next level;, N, trajectories are then generated to esti-
mate the probability;. The trajectories reaching leve} are kept for the next
stage, while those failing to reach that level are discardedkLle¢ the actual
number of trajectories which hits the levE]. So, the reaching probability is
the ratio of the number of successful traége®ver Ny, i.e.p; = k;/No.

For each retained trajectory, we store the first entrance stategfadlio £;.
The N trajectories in the next stage are simulated starting from these stored
states. More in detailV initial states are picked randomly from the stored
ones, possibly duplicating them.
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6.3.2 Choosing a level function

The choice ofn is a critical issue, a poor selection can lead to a severe ineffi-
ciency, even compared to standard methods e.g, SSA. Also, a vkramgch
invalidates the assumptidiy © E;_; can undermine the correctness of our ap-
proach. Therefore, we want to discuss on the choosing of level function before
going to the details of SSSA in the next section.

The basis of the level functioh is to map a multi-dimensional stafé(t)
into a value representing the importance of that state. It must be consistent
with transition paths to drive the system towards the rare event of ihtdres
other words, it measures how close a given state is from the target ramefeve
Functionh should return a higher value when the rare evEns more likely
to be reached in the next stages. A choice/ian some problems could be
easy to define. For example, let consider the eventhich is expressed by
the number of translocated polymers moves through a narrow pore in the poly-
mer translocation problem in many biological and biotechnological phenomena.
Level functionh thus could be defined as the number of involving molecules.

A guidance to minimize the variance of the estimator, in general, is totsele
h so that the probability of reaching an onward level does not depend on the
possible entrance states on the trajectory reaching that level (see niais de
in [162]). In sense of biochemical reactions, the level function should be chosen
matching the parts of the reaction mechanism which can increase the prgbabilit
to reach the evenf.

For certain classes of reaction networks which describe a “monotonic” sys-
tem, structural analysis could help in better understanding the dynamics of the
system. The properties of graphical conditions of these reactions will then pro-
vide information to the choice of reaction coordinates [8]. However, the bio-
chemical systems are very complex in general which involve many malecul
species, interacting through a very complex and nonlinear manner to exhibit
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consistent and reliable behavior. The qualitative analysis may not be sufficient
to account inherently stochastic of these systems, a quantitative methoden the

cases is preferred. For a complex reaction coordinate, we could exploit the
approach presented in [164]. First, the configuration in the transition path is
partitioning into set of Voronoi polyhedra. Then the interface is defined as the
planes in phase space across the edges of the Voronoi polyhedra.

The committor function, which is the probability a trajectory starting from
an intermediate state will reach the event’ started from the initial state,,

IS a precise concept of reaction coordinate [112, 165]. It is the optimal choice
of reaction coordinate since it correlates to the progress of the transitios. pat
Because the committor considers all the the coordinates of the systems, it is
a very complex function. We therefore have to project it onto a small set of
appropriated coordinates. Then, we have to choose the parameters that most
closely matches the committor function which should lead to the interfaeés t

are perpendicular to the transition paths.

In the above discussion on the choice of the level function, we only focus
on reducing the variance of the estimator. However, it is important to nate thi
may not optimize the computation time for the simulation because the cost to
reach event’ may depend on the entrance states. Further investigating how to
address that issue as well is for the time being left for future research.

6.3.3 The sSSA algorithm

We now present our sSSSA algorithm, assuming we are given a the level function
h as discussed previously. The sSSA procedure is outlined in Alg. 7.

Roughly, in its first main loop iteration sSSA samples an ensemble of N
trajectories, which is composed of two groups/of and N, trajectories, re-
spectively. We first generate only the first grouyj trajectories) (starting from
the initial stater,), which we use to define the next level. We defineh; so
that exactlyk trajectories of the generatéd, reach values of(—) beyondh;.
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Algorithm 7 sSSA procedure

require: N = N; + N,: total number of trajectories

1 k. expected number of successful trajectories at each level
2: k.. number of successful trajectories to stop
3 setl =1

4: setX'to be a single-point trajectory starting from stateat time0, for eachi = 1..N

main loop:

5: repeat

10:
11:

12:
13:

14:

15:
16:

17:

prolong theN; trajectoriesX’® with i = 1..N; using SSA from their last state until
stopping timer,,, ...
compute maximum level’ reached byX by h' = max h(X'(t))

0<t<Trnaz

seth; = (k + 1)th quantile of{ '},

prolong theN, trajectoriesX V7 with j; = 1..N, using SSA from their last state until
stopping timer,,, ...

let &’ be the number of trajectories in té group reaching the target rare event

within the NV, group, retain thé; trajectories reaching level, and truncate them at the
first time they do so

computep, = k;/No

uniformly clone to obtainV trajectories{ X*} , within the k; retained ones, update the
old values forX™

increasd =1+ 1
until & > k,
letp, = k'/ Ny

statistics:
produce estimated probability= Hizl pi
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Formally, leth?, be the maximum value obtained by evaluating functioon
corresponding trajectory(’, as shown below:

h' = max h(X'(t)) (6.5)

0<t<T0m
The next leveh, is then chosen to be th{é + 1)th quantile in thesév; values.
Hence,h, is the (k + 1)th quantile of{h'}",. By doing this, we make the
probability of reaching the next levél; starting fromz, € Ej close tok/Nj.
Parameterg and NV, can be tuned as needed, so to make this probability non
negligible.

Then, we sample othe¥, trajectories (fromz(), and count how many of
them actually reach the next levE|. We letp, to be the ratio of the number of
successful traces over N,, which we use as an estimator®fF, | Ey).

We prepare for the next iterations by uniformly sampliigelements from
the set oSuccessfukajectories in théV, group. (Note that sinc& > N,, some
trajectories will be taken more than once.) Name these trajectpki€s_; .
Then, we truncate eacki’ at the time it first succeeds, i.e. at its first crossing of
the next level. The next iterations can then start. The sSSA algorithm wiktepe
the tasks done in the first iteration, except for the fact that theMew N; + N,
generated trajectories are not simulated starting frignbut rather from the
last states of the retained’ trajectories. In other words, we prolong eakh
until time T7,,,... In this way, we start the new simulations from stateg:jn
(the last states ak), so that the computation @f = k;/N, indeed estimates
P(E1|E)).

We stop the main loop when a significant part (at légsbf the generated
N, trajectories hit the target rare event. When that happens, we just estimat
the probability of the rare event by the chain rgle= Hﬁzlpi, wherel is the
number of levels which have been generated.

The estimatory is clearly bias-free, but also does not requigegriori in
determining the levels. The asymptotic normality convergent of the estimator
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could be proved using the formulation in [31]. While setting the expected prob-
ability for reaching the next level, we have tried to reduce the variancieof t
estimator. In the special case where= p? whereq € N, with the choice

of the levels such that alf, = p then it is the same as the optimal setting in
fixed multilevel splitting (see [67] for more detailed discussion on the agdtim
conditions).

Compared with the standard sampling using SSA, our algorithm requires a
little more computational resources given the same model and parameters. A
rough analysis of SSSA can be done as follows. Assilijng to be a constant,
and letC' be the expected work to generate a single trajectory. By applying
e.g. tree search, the search and update reactions can be done in logarithmic
time in the number of reactions, i.&€;, = O(logm). The expected work for
generatingV trajectories is thu® (NC) = O(N log m). To select thék+1)th
guantile in V; values a direct selection search or a randomized version [38]
which run in expected linear time, i.&)(N;) could be applied. Overall, the
expected work is therefor@(N log m + N;) for SSSA, which is only slightly
more than SSA. This comparison however does not take accuracy into account,
which is crucial in the problem at hand. To better compare SSA and sSSA we
resort to experiments in the next section.

6.4 Experimental results

In this section we report on the experimental results of our algorithm on two
models: a simple production degradation model and an artificial biological
switch model. With these model we compare the performance and efficiency
of sSSSA with standard simulation methods. The code was implemented and run
on the Intel Core i5-540M processor.
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Table 6.1: Production degradation model
Ri: DNA— DNA+mRNA | k=1

Ry: mRNA— () ko = 0.025

6.4.1 Production degradation model

The production degradation model consists of two spebidsd, m RN A and
involves two reactions shown in Table 6.1. The system models a simple tran-
scription of DNA to mRNA. In this model, theDN A continuously pro-
ducesmRN A via reactionRz, at ratek;, while mRN A is degraded at rate

ks in reactionR,. The initial stateX (0) with each component is given with
#DNA(0) =1and#mRNA(0) = 40.

In this example we aim to estimate the probability that the first time the sys
tem reaches a state in which the populatiomd@® N A is larger than a threshold
value A\, which is taken in the ranggb, 60, 65, 70, and 75 respectively. The
event is meant to be reached before the stopping Time = 100 and given
the initial stateX (0). First, we briefly derive the complete time evolution of
the system following CME in this simple case, and calculate the probathibty
first time the system reaches the event. Then we compare with the simulation
methods, i.e., SSA and sSSA.

To do so, letz; andas be the propensities of reactidy andRz,, respectively.

We have:

ao(X) = a1(X) + ax(X) (6.8)

Notice that in our model the population @&IN A is conserved, so the, is
unchanged overtime, and thus we only focus on the change of spe&iasA.
The state vector now is reduced to one dimensicghat #mRN A.
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Let P(\,t|\,0) be the probability density thatis the first time in which
#mRNA(t) > A, given initial value#mRNA = X,. We have the CME
equation written as

J

=P #20,0) = ar(A = DP(A = 1,2, 0)+

QQ()\+ 1)P(>\—|— 1,t‘)\0,0) —Clo(A)P(/\,tp\o,O) (6.9)

The collection of differential-difference equations in Eq. 6.9 is analytically
tractable, and can be solved given the initial constraits,, 0|Ap,0) = 1
andP(—1,t0,0)) = P(A+ 1,t|A\,0) = 0. The propensities are also confined
to zero at state since the system stays in statéorever upon the first arrival.
Let expand EqQ. 6.9 using a matrix representation by defining matrhbav-
ing size(A+ 1) x (A+ 1) whereM i, i] = ag(i — 1), M[i+ 1,i] = —aq(i) and
MTi,i + 1] = —ay1(i — 1), while all other elements including the last column
are set to zero. The notatidd [m, n| denotes the element at rowand column
n of matrix M. Let Q(t) be the probability vector of all probablely reachable
states at time time, i.e.,Q(t) = (P(0,t|\o,0), ..., P(\, t| X, 0))T. The Eq. 6.9
Is then rewritten as
9Q(1) = ~MQU) (6.10)
Denoteu; < ps < ... < uyy1 be the eigenvalues of matri¥ in increasing
order. Lete ** be the diagonal matrix with value'’ in the main diagonal, and
V' be the matrix that itgth column is the eigenvector df/ corresponding to
eigenvalue.;, respectively. The solution of Eqg. 6.10 has the following form

Q(t) = Ve "V 1Q(0) (6.11)
By expanding it, we receiv€(\, t|\g, 0) as
A+1
P(X 1A, 0) = Y VA + Lle "V i, Ao + 1] (6.12)

i=1
From these results we can conclude that if the ttme T7,,,, IS fixed, then
the probability#m RN A reaching\ becomes very small as increasihgFor
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example, with our setting above taking= 75, we havey = 8.4171 * 107, In
other words, the probability to reach the event is indeed rare.

To compare the result of SSA and sSSA, we run them, in turn, with different
values of NV, in which 20% are use to determine levels, taken fid 10* and
10° for each value of\. For choosing level we expect&d% of the trajectories
will pass to next level. The simulation stop when having at 186%t of trajec-
tories hit the event. To estimate the variance of the estimator by sSS#anve
the simulationt 00 times. For the level functioh we choose it to be the number
of mMRNA. It is clear since the model has been reduced to a one dimensional
system. The results of the experiments to estimaee shown in Table 6.2 for
different values of\. Table 6.2 gives the estimated probabilities, with the esti-
mated relative error for different settings of SSA and sSSA. Note thatnite
-’ meaning that there are no successful trajectories hitting the éveM/hen
the probability is not rare, say frond~! to 10~%, SSA can be used to roughly
estimate the probability the first time the system reaching the event,the in
cases\ = 55,60, 65. when the probability instead becomes rarer and we still
use a fixed budgeV, SSA is not so accurate. For example, in case 75 there
IS no successful trajectory reaching the event. Hence, we could not approximate
4. In this extreme case, sSSA still could be able to estifiatgen with only
N = 103 trajectories.

Furthermore, we can conclude from the Table 6.2 the estimated variance by
sSSA in all cases is always better than SSA with the same paramseténg).
The estimated? E of algorithms while) takes small values, in corresponding
to not rare event, is not too much, although sSSA is always smaller. An inter-
esting point from results in Table 6.2, even though in the case of not rare, is that
SSSA could produce the same RE by using less simulation time than SSA. For
example, to hav&®E = 2% in case\ = 60, SSA required 0° trajectories with
simulation timel6 seconds while sSSSA just neefiseconds withV = 10%.
Similarly, for the case\ = 65, SSSA just required’ = 10? with time less than
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Table 6.2: Estimated probability for Production degraatatnodel of simulation methods with
initial state#DNA = 1,#mRN A = 40. '~ means there are no successful trajectories hitting
the event

Simulation
A | Analytic SSA SSSA
" Prob. RE Time(ms)| Prob. RE Time(ms)
103 | 0.112 | 8.41E-02 220 0.1046 | 5.60E-02 397
55| 0.1186 | 10* | 0.1167 | 2.71E-02| 1644 0.1105 | 1.51E-02| 3375
10° | 0.1193 | 8.64E-03| 15261 0.1107 | 3.51E-03| 33108
103 | 0.018 | 2.03E-01 262 0.0164 | 6.76E-02 580
60| 0.0207 | 10* | 0.0177 | 6.37E-02| 1701 0.0173 | 2.21E-02| 5368
10° | 0.0201 | 2.14E-02| 15844 0.0203 | 9.47E-03| 35018
10® | 0.004 | 8.68E-01| 279 0.0023 | 6.97E-02| 884
65| 0.0023 | 10* | 0.0018 | 1.84E-01| 1751 0.0019 | 2.57E-02] 7961
10° | 0.0021 | 6.26E-02| 16353 0.0021 | 8.65E-03| 52895
103 - - - 2.18E-4 | 5.23E-02| 1540
70| 1.68E-4| 10* | 1.00E-4| 5.97E-01| 1856 1.68E-4 | 2.72E-02| 10458
10° | 1.30E-4| 2.15E-01| 17368 | 1.66E-4 | 6.31E-03| 354895
103 - - - 5.14E-06| 5.73E-02| 8760
75| 8.42E-6| 10 - - - 7.29E-06| 3.69E-02| 33705
10° - - - 8.57E-06| 7.69E-03| 437547
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second to achievBE = 6% while SSA needs to rui6 seconds withV = 10°
trajectories.

The difference inRE between algorithms becomes very large when the
probability became very small. The number of trajectories used by SSA has
to grow linear with the rarity. This mean theF’ of SSA will very poor if we
fix N and increase the rarity. This is exactly what we obtained from the Ta-
ble 6.2. But, sSSSA instead scales very well. TR& in estimating the event
is controlled around% in case we only us&/ = 10°. In other words, the
convergence of the sSSA estimator is really better than the standard method.

We also study the computational cost of SSSA. Given a fiXedising the
algorithms discussed above, the runtime of sSSA is always a bit longer than
SSA since it has to resample to obtain more successful trajectoriegevdn
to measure the efficiency of the estimator in the rare event setting, alse
taking into account the computational cost, we studyetfieiencyof an estima-
tor, which is given by the inverse of the multiplication of the variance and the
expected runtime to estimagei.e., Eff(y) = 1/[Var(y) «T(¥)], whereVar(¥)
is the estimated variance afit|y) denote the simulation time. Thus, an esti-
mator is said efficient thary if it has greater efficiency, i.e., when Eff) >
Eff(7). The result is presented in Fig. 6.3 showing the efficiency of SSA and
SSSA.

Although sSSA demands more CPU runtime than SSA, given in Table 6.2,
its efficiency is better than SSA in all cases as shown in Table 6.3enter
compare with each value @¥f. Note that, however, when the event is not rare,
for example in cas@ = 55, the additional computational expensive will down-
ward the efficiency, resulting in a suboptimal efficiency of SSSA. For exampl
the caseV = 10* and\ = 55, we have Eff(SSSA)= 0.4470 and Eff(SSA)
= 0.4556, showing that SSA is a little better, nearly one percentage, than sSSA.
By contrast, whenm\ = 75 and N = 10%, sSSA is much more efficient, since
Eff(sSSA)= 813.5235 while there are no successful trajectories in case of SSA
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Table 6.3: Efficiency of simulation methods for estimatimgh@bilities the first time the popu-
lation of #m RN A reaching\ for Production Degradation model with initial stateD N A =
1, #mRNA = 40

N | A | Eff(SSA) | Eff(SSSA)

55| 0.4556 0.4470

60| 0.9074 1.7233

10° | 65| 1.7948 | 10.1436

70 0 56.9536

75 0 387.5949

55| 0.1894 0.1985

60 | 0.4458 0.4872

10* | 65| 1.3472 2.5724

70| 5.3879 | 20.9253

75 0 110.2641

55| 0.0641 0.0883

60| 0.1424 0.2174

10° | 65| 0.4244 | 1.0407

70| 1.5969 2.6901

75 0 34.6791
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Table 6.4: Biological switch model

t

No. | Reaction Rate constan
Ry | 2A— Ay ki =5
Ry | Ay —2A ko =05
Ry | O+ Ay — OA; ks =5
Ry | OAy — O+ Ay ky=1
Ry |O—=0+A ks =1
Rg | OAy — OAy+ A ke =1
R; | A—=0 kr = 0.25
Ry | 2B — B, kg =

Ry | By — 2B kg =5
Rig | O+ By — 0B, ki =05
Ri1 | OBy — 0+ By k=1
Ry | O—-0+18B ki =1
Ry3 | OBy - OBy + B ki =1
Ry, | B—0 ks = 0.25

(in those cases we set Eff(SSA)0).

Suppose we want to use SSA for estimating the probability the first time
the population oftm RN A reaching\ = 75 with RE = 5%. We therefore
have to simulate roughly/(RE * ) ~ 107 trajectories. The average time
for one trajectory generating i2ms in our machine. In case we use SSSA
with total N = 103, the computational gain returning by our algorithn{ig =

107)/(8760) ~ 10%.

6.4.2 Biological switch model

In this case study, we applied the sSSSA to a generic biochemical switch [170].
It is an artificial model of a minimal presentation of lysis/lysogeny switt
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the phage\ which consists of two adjacent operons that mutually repress each
other. There is a demonstrated construction of the toggle switch in E. coli pro-
posed in [56]. The reaction model is shown in 6.4. We consider here the ex-
clusive model of toggle switch in which only one dimer can bind to the DNA.
In particular, the generic switch consists of two factors: proteins A aneiprot

B which is encoding by their corresponding gepésnd 5. Protein A and B
form the corresponding homodimets andB,, respectively, which can bind to
DNA, named O. Whemn, is bound, gend is not transcribed, and in vice versa
By is bound, it suppresses the transcription of geneAs the DNA is bound

by one protein type, it continuously produce the corresponding protein. Thus
this biological switch model shows the appearance of bistability phenomenon
where there are two steady states corresponding with the high number of protein
A and B, respectively.

Let Ny = #A + 2(#Ay + #0As) and Ng = #B + 2(#Bs + #0Bs)
be the total number of protein A and B. In this model we focus on estimating
the probability of transition starting from a state in the region With = A4
and ending in another region witkiz > Ap during the simulation tim&,,,...
Because of the mutual suppression between protein A and B, the probability to
move from one highly stable region to the opposite stable region will becomes
very rare. Table 6.5 shows the estimated probability for our case study with
different settings for initial values of4, while the total number of protein B is
0.

From the result, we draw a conclusion that the estimated probability by SSSA
Is consistent with the SSA when the event is less rare, the)case20. While
increasing\ 4, the event becomes indeed rare. In other words the probability to
jump off this region is very small. The number of simulatidnof SSA has to
grow proportional with the rarity of the event. For examplg,= 40, the order
of probability is10~8, we have to generate in average = 10'? trajectories
to estimate the probability wittRE = 1%. The average time to have one
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Table 6.5: Estimated probability for Biological Switch mbdésimulation methods with fixed
Ap = 25, while changing initial value of 4. -* means there are no successful trajectories

hitting the event
SSA SSSA
Aa | N Prob. RE Time(min) | N Prob. RE Time(min)
105 | 5.20E-04| 1.35E-01 128 10* | 4.70E-04| 5.21E-02 97
20 | 10° | 4.95E-04| 5.16E-02 1299 105 | 4.54E-04| 2.29E-02 964
107 | 4.63E-04| 1.70E-02| 11633
10° - - - 10* | 2.42E-6 | 5.68E-02 218
30 | 10° - - - 105 | 1.34E-6 | 2.36E-02 2015
107 | 1.20E-6 | 2.89E-01| 18874
109 - - - 10* | 4.23E-8 | 6.10E-02 341
40 | 10° - - - 10° | 2.14E-8 | 2.79E-02 3341
107 - - -

trajectory for this model i235ms. The simulation is therefore unaceptable
(roughly 7451 years!). While the sSSA could estimate this probablity with total
N = 10* trajectories with controlled% relative error.

6.5 Conclusions

Stochastic simulation is an emerging research area for investighitblogical
processes, especially whenever fluctuation and noise play important roles. Liv-
ing organisms use different mechanisms, which usually involve the complex and
nonlinear interactions between molecular species, to expose a consistent behav-
lor under such noisy regimes. Hence, rare event simulation becomes a very
important step to understand the robustness and the reliability of biochemical
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systems. In this paper we developed a new algorithm, called sSSA, to ienprov
the efficiency w.r.t. standard stochastic simulation in a rare evéimge

Although the sSSA algorithm has been shown to be efficient when applied
to a few reference models, further investigation is necessary. Alifies of
research would be to find more guidelines helping a modeler to choose the
of level functionh. This is important since a bad choice fbrcan lead to a
lower efficiency, even when comparing with previous methods. Second, from
the practical point of the algorithm, we need to decide the number of levels in
the level sequence to achieve a better performance in applying to simudatle a r
biochemical systems. In this work we prolong a trajectory from the first en-
trance state when it reaches the next level. We clearly can extend @tusint
all the states falling in the next level. And a pruning technique, e.g., Russian
roulette, could be applied to kill trajectories going down to save the computa-
tional resources. A further study on the efficiency of the algorithm is required.
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Chapter 7

Conclusion

Stochastic simulation is an invaluable tool for understanding the complexities
of biochemical reactions. In this thesis we studied performance of the exact
stochastic simulation algorithm i.e., SSA, and contribute to the developrmhent
new efficient formulations. We proposed new algorithms for improving both
efficiency and statistical accuracy measurement of the stochastitasiom so

to make it applicable for large and highly coupled reaction networks.

In chapter 3 we study the effect of the search of next reaction firing to the
performance of the stochastic simulation. We proposed a tree-based search ap-
proach to reduce the search time complexity. Through the experiments, we
showed that simulation performance can be sensibly improved if an underlying
tree data structure is used to support the search. We predict the shape of the tree
leading to optimal average search time. This turns out to be the Huffman tree,
a device used in computer science for data compression. Then, we study the
impact of approach to rebuild the tree when it becomes non-optimal by many
reaction firings. Two approaches are presented to handle this problem namely:
the fixed time tree rebuilding and adaptive time tree rebuilding in wineHat-
ter allows to rebuilt the tree during the simulation depending on how the system
evolves.

Then, we study the effect of the propensity update to overall performance of
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stochastic simulation. Indeed, whenever the population of a species is changed
by a reaction firing, the propensities of all the dependent reactions has to be
recomputed. Even though a dependency graph can reduce the update to be
model-dependent, in which only locally affected reactions have to recompute
their propensities, still there are many models, e.g., highly coupled oeacti
where a costly update required. A significant portion of the computation time is
spent on propensity updates. In highly coupled reaction networks, the propen-
sity updates soon become a bottleneck of the whole algorithm. In chapter 4
we proposed an solution to cope this problem with a new simulation algorithm,
calledRSSARSSA is an exact simulation algorithm improving the simulation
performance by postponing and collapsing as much as possible the propensity
updates, hence reducing their cost. RSSA exploits a rejection-based mechanism
to select a reaction firing. It uses the over approximation reaction propensit
which is often very fast and more efficient to compute, to select aiozeafit-

ing. The search of a reaction firing is carried out in two steps. A candidate
reaction is selected according to an over-approximation of its propenaity.
rejection step is then applied to recover the exactness of the algoritlerfurw

ther contribute to the improvement of RSSA in both of these steps. First, we
discuss which search procedures for finding a candidate reaction lead to better
performances, for different network sizes. Second, we study severaigstsat

for controlling the amount of over-approximation, and analyze their impact to
the simulation performance. We also discuss how to systematically aptimi
the tunable parameters of RSSA so to maximize its performance.

In chapter 5 we extend our study to the reaction networks where the dif-
fusion significantly affects the biological behaviour. The spatial extensions of
SSA are introduced to simulate the reaction-diffusion by dividing the space into
subvolumes so that a subvolume is assumed to be well-mixed. The diffusion
in this modelling is explicitly modelled as unimolecular reaction. The search
of a reaction firing now is consisting of two steps: 1) search for a subvolume,
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and then 2) search for a reaction firing in that subvolume. After a seleete
action fires the system is updated. Although a spatial SSA is able to simulate
the reaction-diffusion processes, its performance is slow due to the iaeffici
search and update. In chapter 5 we propose a new formulation, called RRD.
Our new formulation combines an efficient binary search and approximation
of propensity for searching an subvolume and then a reaction firing inside that
subvolume. According to our experiments, the search and update of a reaction
firing in a subvolume by our formulation is substantially reduced and thus its
performance outperforms over previous approaches e.g., NSM.

In chapter 6 we study the statistical analysis of targeted event of ihtgres
performing stochastic simulation. The random in reaction firing requires a large
number of simulation runs to achieve a reasonable statistical accuracyaskhe t
becomes increasingly harder when considerarg eventswhich occur only
with a very small probability. Estimating the probability of rare eventbio:
chemical systems, however, is an important task, since it can helpdgisg
rare abnormal behavior when they do occur. We contribute to this study by
proposing a new algorithm, callbSAto efficiently estimate the probability
of a rare event. It is a kind of biased simulation where the state spaquitis
into subsets so that the event become more likely when moving from one subset
to another. Thus, simulated trajectories are gradually “pushed” towardséhe ra
event following such subsets. The (unbiased) probability for the rare event is
then estimated by counting the successful (biased) trajectories, andobign a
ing a correction factor so to account for the bias.

Concluding, we investigated new algorithms for improving exact stochastic
simulation; however, there still many problems are open for further ilgaest
tion. For instance, in exact stochastic simulation a discrete copy humbestof ea
molecular species is keep tracking. This is obviously not efficient because the
population of species in biological systems is often great disparity. The species
having large population should be better simulated by a fast, but less sensitive,
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simulation algorithm without loss of accuracy. A hybrid simulation algorithm is
an ideal approach to handle this problem in which the large population species
Is handled by a fast numerical integration, e.g., ODE integration, while the low
population species is simulated by an exact simulation algorithm. RSSA is a
good candidate for the exact simulation algorithm. In hybrid approach, the de-
terministic integration part can affect the stochastic part. HowdweRSSA,

we do not need to update the propensity of affected reactions in stochastic part
if the species population is still confined in its fluctuation interval. Thus, a
lot of computation effort would be saved. The parallel stochastic simulation is
also a promising approach to deal with the complexity of biochemical systems.
However, because the stochastic simulation is inherently sequentiglites
special approach to parallelize the algorithm to achieve a better perioana
Finally, extending stochastic simulation for systems that are not wekanix
also exposes a great many challenges.
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