
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

ON EFFICIENT ALGORITHMS FOR

STOCHASTIC SIMULATION

OF BIOCHEMICAL REACTION SYSTEMS

Vo Hong Thanh

Advisor:

Dr. Roberto Zunino

Universit̀a degli Studi di Trento

November2013

Abstract

Computational techniques provide invaluable tools for developing a quantitative

understanding the complexity of biological systems. The knowledge of the bi-

ological system under study is formalized in a precise form by amodel. A sim-

ulation algorithm will realize the dynamic interactions encoded in the model.

The simulation can uncover biological implications and derive further predic-

tive experiments. Several successful approaches with different levelsof detail

have been introduced to deal with various biological pathways including regu-

latory networks, metabolic pathways and signaling pathways. The Stochastic

simulation algorithm (SSA), in particular, is an exact method to realize the time

evolution of a well-mixed biochemical reaction network. It takes the inherent

randomness in biological reactions and the discrete nature of involved molec-

ular species as the main source in sampling a reaction event. SSA is useful

for reaction networks with low populations of molecular species, especially key

species. The macroscopic response can be significantly affected when these

species involved in the reactions both quantitatively and qualitatively.Even

though the underlying assumptions of SSA are obviously simplified for real bi-

ological networks, it has been proved having the capability of reproducing the

stochastic effects in biological behaviour.

Essentially, SSA uses a Monte Carlo simulation technique to realize tempo-

ral behaviour of biochemical network. A reaction is randomly selected to fire at

a time according to itspropensityby conducting a search procedure. The fired

reaction leads the system to a new configuration. At this new configuration,

reactions have to update their propensities to reflect the changes.

In this thesis we investigate new algorithms for improving performance of

SSA. First, we study the application of tree-based search for improving the

search of a reaction firing, and devise a solution to optimize the average search

length. We prove that by a tree-based search the performance of SSA can be sen-

sibly improved, moving the search from linear time complexity to logarithmic

complexity. We combine this idea with others from the literature, and compare

the performance of our algorithm with previous ones. Our experiments show

that our algorithm is faster, especially on large models.

Second, we focus on reducing the cost of propensity updates. Although the

computational cost for evaluating one reaction propensity is small, the cumula-

tive cost for a large number of reactions contributes a significant portion to the

simulation performance. Typical experiments show that the propensity updates

contribute65% to 85%, and in some special cases up to99%, of the total simu-

lation time even though adependency graphwas applied. Moreover, sometimes

one models the kinetics using a complex propensity formula, further increasing

the cost of propensity updates. We study and propose a new exact simulation

algorithm, calledRSSAnamed afterRejection-based SSA, to reduce the cost of

propensity updates. The principle of RSSA is using an over-approximation of

propensities to select a reaction firing. The exact propensity value is evaluated

only as needed. Thus, the propensity updates are postponed and collapsed as

much as possible. We show through experiments that the propensity updates by

our algorithm is significantly reduced, and hence substantially improving the

simulation time.

Third, we extend our study for reaction-diffusion processes. The simulation

should explicitly account the diffusion of species in space. The compartment-

based reaction-diffusion simulation is based on dividing the space intosubvol-

umes so that the subvolumes are well-mixed. The diffusion of a species between

subvolumes is modelled as an additional unimolecular reaction. We propose a

new algorithm, calledRejection-based Reaction Diffusion(RRD), to efficiently

simulate such reaction-diffusion systems. RRD combines the tree-based search

and the idea of RSSA to select the next reaction firing in a subvolume. The high-

light of RRD comparing with previous algorithms is the selection of both the

subvolume and the reaction uses only the over-approximation of propensities.

We prove the correctness and experimentally show performance improvement

of RRD over other compartment-based approaches in literature.

Finally, we focus on performing a statistical analysis of the targeted event

by stochastic simulation. A direct application of SSA is generating trajectories

and then counting the number of the successful ones.Rare events, which occur

only with a very small probability, however, make this approach infeasiblesince

a prohibitively large number of trajectories would need to be generated before

the estimation becomes reasonably accurate. We propose a new method, called

splitting SSA(sSSA), to improve the accuracy and efficiency of stochastic sim-

ulation while applying to this problem. Essentially, sSSA is a kind of biased

simulation in which it encourages the evolution of the system making the target

event more likely, yet in such a way that allows one to recover an unbiasedes-

timated probability. We compare both performance and accuracy for sSSA and

SSA by experimenting in some concrete scenarios. Experimental results prevail

that sSSA is more efficient than the naive SSA approach.

Keywords

Systems biology, Stochastic simulation, SSA, Tree-based SSA, Huffman tree

SSA, Rejection-based SSA, RSSA, Rejection-based reaction-diffusion, RRD,

Rare event simulation, Splitting SSA, sSSA.

Acknowledgments

I would like to thank my supervisor Roberto Zunino. I am indebted to him very

much for his countless help and support. He always has time for me to listen

and give me useful advice in my journey in science.

I would like to express my grateful thank to my family and friends for their

support during my study. The most dearly acknowledgments are for my wife,

Truong Thi Thanh Thao, who always gives me love and strength to overcome

difficult time.

Contents

1 Introduction 1

1.1 Biological modelling and simulation 1

1.2 The need and challenges for stochastic simulation 3

1.3 The objective of the thesis . 7

1.4 Structure of the thesis . 10

2 Stochastic Simulation: A Literature Review 11

2.1 Introduction . 11

2.2 Reaction network representation 16

2.2.1 Coupled reaction list 16

2.2.2 Graphical network diagram 17

2.3 Simulation algorithm . 19

2.3.1 Exact stochastic simulation 19

2.3.2 Approximate stochastic simulation 29

2.3.3 Hybrid stochastic simulation 33

2.3.4 Stiff system simulation 36

2.3.5 SSA Extensions . 39

3 Tree-based search 43

3.1 Introduction . 43

3.2 Complete Tree Search . 44

3.3 Huffman Tree Search . 46

i

3.3.1 Fixed time tree rebuilding 50

3.3.2 Adaptive time tree rebuilding 55

3.4 Conclusion . 58

4 Rejection-based update 61

4.1 Introduction . 61

4.2 RSSA . 63

4.2.1 Selection of reaction firing 64

4.2.2 Reaction firing time 68

4.2.3 The RSSA algorithm 70

4.2.4 Proof of correctness 73

4.2.5 Fluctuation interval control 76

4.3 Experimental results . 79

4.3.1 Fully connected reaction model 81

4.3.2 Multiscaled reaction model 84

4.3.3 Gene expression model 85

4.4 Towards an Optimal Parameter Selection 90

4.5 Conclusions . 94

5 Rejection-based reaction diffusion 97

5.1 Introduction . 97

5.2 Reaction-diffusion simulation 100

5.2.1 Spatial SSA . 100

5.2.2 Rejection-based reaction-diffusion simulation 102

5.2.3 The RRD algorithm 104

5.2.4 Correctness of the RRD algorithm 107

5.3 Experimental results . 108

5.3.1 cAMP activation of PKA model 110

5.3.2 Multiscaled reaction-diffusion model 112

5.4 Conclusion . 115

6 Rare event probability estimation 117

6.1 Introduction . 117

6.2 Problem setting . 119

6.3 Splitting for rare event simulation of reaction networks 121

6.3.1 Splitting approach . 121

6.3.2 Choosing a level function 125

6.3.3 The sSSA algorithm 126

6.4 Experimental results . 129

6.4.1 Production degradation model 130

6.4.2 Biological switch model 136

6.5 Conclusions . 138

7 Conclusion 141

Bibliography 145

Chapter 1

Introduction

1.1 Biological modelling and simulation

Recent advances in molecular biology have been doubtlessly continuing and

increasing our knowledge of biological systems. The detailed quantitative data

produced allow to characterize, for example, the entire human genome sequence

and its products [144]. However, genes, proteins and their interconnections

alone are not sufficient to explain all the complexities of living organisms. A

cellular system, in essence, is a dynamic system in which its functions arenot

controlled only by the network structure but also the dynamics of involving

elements. Explaining how the molecular interactions and, at its best, the combi-

nation principles emerging to a specific cellular behaviour needs a system-wide

perspective. The cell differentiation during the cell cycle is just an example.

By changing the experiment conditions, e.g., initial conditions, stimulus, the

resulted cells can be very different, even counter-intuitive patterns.This is due

to the dynamic characteristics and non-linearity of this process. A system level

analysis of biological systems is thus a promising approach to provide an insight

explaining of biological phenomena.

Systems biologyis an emergent research area as a combination of system the-

ory and molecular biology. It takes into account the structure and dynamic inter-

actions within the biological network with the aim to understand how these give

1

rise to a specific behaviour at the system level, and ultimately, to developnew

biological systems for useful purposes e.g., effective prevention and/or treat-

ment of diseases (see e.g. [87–89,173] and references therein).

The computational modelling and simulation plays an important role in the

development of systems biology in twofold. First, it abstracts out a biological

network in term of amodel. The model encodes the temporal evolution of its

statein a formal form. Second, it allows to visualize and to predict the causal-

effect of the biological system in time through a computer simulation.

Essentially, a model is an effort to explicitly encode the knowledge of bio-

logical system in a precise form. Depending on features of the biological sys-

tem under study, the model should include sufficient information for analyzing

the system dynamics. For example, at a detail molecular modelling, the model

should manage all the detailed information, e.g., velocity and/or position, of all

molecular species. A whole-cell model, in contrast, should include only a de-

scription of all key cellular processes. A biological model, to some extent, is

therefore just an abstraction of the real system; however, it is useful toformalize

the understanding of the biological system. So, modelling provides an effective

way to highlight gaps in knowledge of biological systems.

The temporal behaviour of a given biological model is then realized by con-

ductingin silico experiments. The simulation results are compared against with

real experimental data. The inconsistency will show a lack of knowledge in

the model of considered biological system. Models which are validated can

be used to discover indirect and hidden implications in the biological system,

which sometimes are hard to perform in wet lab. For example, one can isolate

some vital genes and observe in detail their behaviour in individual as well as in

together by in silico experiments. This, however, is obviously impossible in wet

lab since the cell in such condition may not survive or even not exist. The results

produced by in silico experiments are used for hypotheses forming, and suggest

new experiments. Thus, the predictive feature of computer simulation makes it

2

extremely useful for doing quantitative analysis of biochemical systems.

The biological modelling and simulation further contribute to the design

and implement. A component-based approach is more effective than build-

ing the entire system from scratch, which is often more error-prone. The well-

understood models with detailed interacting behaviour are reused as basic build-

ing blocks in a large model. The substitutable feature of this approach provides

an opportunity to reprogram cellular functions to serve for special purposes of

biological research [160].

Summing up, biological modelling and simulation in the post-genomic era

are becoming increasingly important. The knowledge of biological system is

able to integrate into a model, and make testable predictions through simulation.

In silico experiments, in this sense, are highly preferred in term of speed, ease

and cost; however, it is also important to emphasize that in silico experiments

cannot be considered as a substitution of real biological experiments. In silico

experiments thus are used in complement to biological research.

1.2 The need and challenges for stochastic simulation

Different levels of modelling and simulation detail have been adopted to in-

vestigate the dynamics of biological systems. At higher coarse-grained level

the deterministic approach, where the concentration of molecular species are

considered, has the capability of predicting dynamic behaviour of biochemical

systems. The application of deterministic approach often lies on thelaw of mass

actionwhich states the rate of a reaction is directly proportional to the concen-

tration of reactant molecules [14, 102, 168]. The time evolution of a biochemi-

cal network is completely described by a set of ordinary differential equations

(ODEs), which is generally referred to asReaction Rate Equations (RREs).

Hence, the complete dynamic picture of the system, given an initial condi-

tion, can be constructed by an analytic and/or numerical method [10,125,155].

3

Furthermore, a lot of well-developed tools, e.g., stability and bifurcation anal-

ysis [150], metabolic control analysis (MCA) [53], have been introduced for

analyzing the behaviour of ODE.

The law of mass action has been successful to model chemical reactions at

equilibrium (see [42, 73] for examples); however, its underlying assumption is

obviously oversimplified for biological systems. The changes in population of

molecular species due to reaction firings are assumed to be less significant so

that population of molecular species are considered as continuous. The fluctu-

ations of involved species, in this sense, have a negligible effect to the macro-

scopic trend of the molecular concentrations. Thus, the law of mass action

describes only average behaviour. The molecules involved in biochemical reac-

tions, however, are obviously discrete. Furthermore, it is common to find in a

model few specific species, e.g., genes, mRNAs, which play a key role, yet have

a very small population. Small changes in these species can lead to a significant

quantitative and qualitative fluctuation in the behaviour of the overall biological

system. Second, a collision between molecular species to form a reaction is

inherently random. The occurrence of a random reaction can give rise to un-

expected responses, e.g., bistability response pattern. Such random fluctuations

at molecular level are inevitable and referred to as biologicalnoise. The im-

portant of the fluctuations and noise in biological systems have been repeatedly

pronounced in recent research (see e.g., [9,46,108,109,127,158,166]). The ran-

dom effects in such systems can help to explain many biological phenomena,

e.g., phenotypic variants [131]. Finally, biological noise itself has an important

role in enhancing inter- and intra-cellular functions. The noise is propagated

from cell to cell to modulate and improve the cellular signaling [122, 130]. A

quantitative understanding of biological responses taking account of stochastic

effects is preferred.

At molecular level, the molecular dynamics (MD) [3, 143], where the mo-

tions and interactions between molecules are governed by physical forces, is

4

the most detailed and accurate method. It has to keep tracking all the positions,

velocities as well as possible collisions of every molecules in the biological sys-

tem. Although this approach yields an accurate result, it requires a very detailed

knowledge of the molecules both in time and space, and computationally inten-

sive in performing simulation. Hence, MD is limited to simulate the system

only at the nanoscale of time and/or space. Thestochastic kineticsis a more

practical approach that still could capture the stochastic noise. In stochastic ki-

netics, the system state is denoted by a vector of population of species. Species

can interact through coupled biochemical reactions. A reaction firing will cause

the system state to move to a new state.

The stochastic kinetics is underpinned on that the probability a reaction firing

in the next infinitesimal time can be expressed by apropensityfunction. In [60]

a derivation for the existence of such propensity function for the so-calledele-

mentaryreaction, which involves at most two molecular species as reactants, is

provided. The dynamic time evolution of the reaction network thus can be de-

scribed as a (continuous) jump Markov process. A complete mathematical form

for expressing the time evolution of the system state is generally referredto as

Chemical Master Equation(CME) [64]. A directly analytic solution of CME,

however, is hard to obtain unless the system is very small. Fortunately, we

can construct an exact realization of CME through a simulation method called

stochastic simulation algorithm (SSA)[60,61,65]. SSA realizes a possible state

transition by randomly selecting a reaction to fire according to its propensity.

At the new state, affected reactions have to update their propensities to reflect

the changes.

SSA, however, is often very computational demand for simulating large bi-

ological systems. In practice, large models are needed to investigate the noise

effects to the whole regulatory system [150]. For example, one can observe

the propagation of noise in a pathway and its impacts on the cell fate. The un-

derstanding of these effects is necessary for developing an automatic system

5

design and control. The simulation time of a SSA run is mainly dominated

by two sources: search for the next reaction firing and update the propensities

after a reaction fired. First, an inefficient search for the next reaction firing

such as the linear search is asymptotically increasing with the number of re-

actions in the model. The linear characteristic thus limits the application of

SSA to large models. Second, a large model is typically encompassed with

a large number of interconnections and (feedback) loops. The propensity up-

dates required anytime the population of involved species is changed are also a

computational bottleneck. Moreover, sometimes one models the kinetics using

a complex propensity formula, e.g., the Michaelis-Menten equation, the Hill

equation, further increasing the cost of propensity updates. The computation

cost of SSA is further increased when relaxing the underlying assumptions of

SSA. For example, to handle the movement of species in space, the extension

of SSA is introduced by dividing space into subvolumes. A species can locally

interact with other species inside a subvolume or jump to its neighbors. The

search and update of reactions obviously take more computational demand be-

cause the number of species and reactions grow with the number of subvolumes.

Due to the stochastic behaviour in a single realization, a lot of simulation tra-

jectories are required to ensure correct statistical information of thefinal reach-

able states. For example, to estimate the reaching probability of a given set of

targeted states, one needs to generate an ensemble of independent SSA simu-

lations (say106 runs) and count which hits the target to collect a reasonable

statistics. SSA will soon become inefficient to estimate the rare event proba-

bility since a prohibitively large number of trajectories, and of course very high

computational effort, would need to be generated before the estimation becomes

reasonably accurate.

In addition to these general characters, a biological model can exhibit mul-

tiscale behaviour. The reactions are often separated by different time scales

in which some fast reactions will occur at a rate greater than other reactions.

6

In particular, instiff system, the fast reactions occurs frequently and drive the

system into stable state very fast. After this short fluctuation time, the slow

reactions will determine the system dynamics. However, most of the time the

simulation samples the fast reactions which is not the expected behaviour of

the system. Furthermore, the population of some species involved in reactions

may also many orders of magnitude larger than others. The fluctuations of these

species, when reactions fire, are less significant. Keep tracking single reaction

firings for large population species by SSA is obviously less efficient since a

coarse-grained simulation method can be applied without loss of total simula-

tion accuracy. Because of the inherent dynamics in biochemical reactions, a

model can combine and mix all of these aspects in a very complicated man-

ner. For example, the system exhibit stiffness at beginning, but then requires

to consider a single reaction firings. It also can start with large populationof

some species then their population become small because of many reactions fir-

ings. These issues raise a great challenge for developing and implementing of

an efficient stochastic simulation method [142,154].

1.3 The objective of the thesis

In this thesis we aim to improve the existing methods and investigate new algo-

rithms for efficiently performing exact stochastic simulation. We contribute to

the improvement of SSA in following aspects:

• We study the effect of thesearchfor the next reaction firing to the perfor-

mance of SSA. We contribute to the improvement of SSA by proposing a

tree-based search approach. We show, both in theory and in practice, that

by using an underlying tree data structure to store reaction propensities the

simulation time can be sensibly improved. Second, we predict the shape

of the tree leading to optimal average search time. This turns out to be the

Huffman tree, a well-known device used for data compression. Then, we

7

study efficient approaches to rebuild the tree when it becomes non-optimal.

• We study the effect of the propensityupdatesto the overall performance

of stochastic simulation. Even though a dependency graph can reduce

the propensity updates to be model-dependent, in which only locally af-

fected reactions have to recompute their propensities, still there are mod-

els, e.g., highly coupled reactions, where costly updates are required. The

update cost is further increased if a complex propensity function is ex-

ploited to model complex effects, e.g., the allosteric effect in modelling

protein binding mechanism. The simulation time is significantly affected

by propensity updates. We propose a new algorithm, called RSSA, to avoid

fully recomputing propensities of affected reactions as much as possible.

RSSA uses an over-approximation of propensities to select a candidate re-

action. The candidate reaction is then subjected to a rejection-based proce-

dure to decide either accept this selected reaction to fire or (with low prob-

ability) reject it. We experimentally study different search procedures for

finding a candidate reaction and discuss which leads to better performance,

for different network sizes. We subsequently study several strategies for

controlling the amount of over-approximation (hence, indirectly the accep-

tance probability), and analyze their impact to the simulation performance.

We also discuss how to systematically optimize the tunable parameters of

RSSA so to maximize its performance.

• We study the spatial effects in biological reactions. Although diffusion of

species in space is inevitable, it is less significant when the diffusion time

is many orders faster than the reaction time. The biological system, how-

ever, will exhibit spatial heterogeneity if this condition is violated. SSA

has been extended to incorporate diffusion by dividing the space into well-

stirred subvolumes. Species can locally interact in a subvolume or diffuse

between subvolumes. The diffusion of species is modelled as first-order

8

reactions. As a result, the number of species and reactions in a reaction-

diffusion model are increased linearly with the number of subvolumes.

The simulation thus requires a prohibitive computational cost for both of

the search of a reaction firing in a subvolume and the update of affected

reactions and subvolumes after a reaction fired. We contribute to this topic

by proposing a new method calledRRD. RRD combines the tree-based

search and the principle of RSSA to improve performance of the stochas-

tic reaction-diffusion simulation. First, a candidate subvolume is selected

through a binary search on an over-approximation of subvolume propen-

sities. Then, a candidate reaction in this subvolume is retrieved by using

a fast lookup search on an over-approximation of reaction propensities. A

rejection-based procedure is finally applied to either accept the reaction to

fire or reject it. These features of RRD make it scale well with both large

numbers of subvolumes and reactions.

• We study the problem of performing a statistical analysis of a targeted

event of interest on a biological model. A large number of SSA runs may

be required to achieve reasonable statistical accuracy of the event under

study. The task becomes increasingly harder when consideringrare events,

which occur only with a very small probability. The estimated rare event

probability produced by SSA may even be inaccurate. We contribute to

this study by proposing a new method, calledsSSA, to efficiently estimate

the probability of a rare event. sSSA estimates the probability of a rare

event through a kind of biased simulation. The state space issplit into sub-

sets defined so that the event becomes more likely to reach when moving

from one subset to another. Hence, the simulated trajectories are gradually

“pushed” towards the rare event following such subsets. The (unbiased)

probability for the rare event is then estimated by counting the successful

(biased) trajectories, and then applying a correction factor so to account

for the bias.

9

1.4 Structure of the thesis

The outline of the thesis is the following.

In chapter 2 we briefly review modelling techniques to represent a biochem-

ical reaction network. Then, we give a detailed review of stochastic simulation

techniques, including exact, approximate and hybrid methods to improve the

performance of SSA. The extensions of SSA obtained by relaxing its underlying

assumptions i.e., reactions with delayed time and spatiality, are alsoreviewed.

In chapter 3 we describe in detail the application of tree-based search to

improve the search of next reaction firing. The underlying data structure and

algorithm for performing binary search are detailed. Then, we study which

tree structures leading to an optimal search length and tree rebuilding strategies

when the tree becomes non-optimal. A part of this chapter has been published

in [156], of which an extended version is submitted for publication.

In chapter 4 we present key steps of RSSA for finding a reaction firing with

its firing time based on the over-approximation propensities. We provide a for-

mal proof for the correctness of RSSA. Then, we discuss different search pro-

cedures for finding a candidate reaction supported by RSSA as well as several

mechanisms to control the amount of approximation, hence controlling the ac-

ceptance probability. A part of this chapter has been submitted for publication.

In chapter 5 we will describe in detail the RRD algorithm. The key steps for

selecting a subvolume and a reaction firing in that subvolume are presented. A

proof for correctness of RRD is also presented.

In chapter 6 we formulate the problem of rare event probability estimation in

the stochastic simulation setting. Then, we present the sSSA algorithm and its

features for improving the efficiency and accuracy of estimating the probability

of rare events. A part of this chapter has been published in [157].

The conclusions and further research are in chapter 7.

10

Chapter 2

Stochastic Simulation: A Literature

Review

2.1 Introduction

Molecular species, e.g., genes, mRNAs, proteins, are constantly moving inside

a cell. Following a species trajectory, it can collide with other species. A colli-

sion between molecular species will form a reaction if it satisfies some specific

conditions, e.g., activation energy, which are known as thereaction kinetics.

The rate of a reaction, in essence, depends on a rate constant and reactants.

The result of a reaction is new molecular species produced to help performing

necessary activities of the cell. The reaction pathway is an organized reaction

network to perform special cellular purposes. A biological system exploits dif-

ferent pathways by many mechanisms, e.g., feedback and feedforward loops at

different levels, e.g., time and/or space to control, regulate and coordinate op-

erations between cells. The understanding of these mechanisms becomes more

difficult when random noise, yet important, is taken part in these processes.

The stochastic framework provides promising tools for performing an insight

analysis of the system behaviour at system-wide level.

Two important factors have to be established for the success of a stochastic

approach. First, a modelling formalism should allow to encode the knowledge

11

of the reaction network as well as its parameters in a more formal, precise and

testable form. It must be simple, flexible and scalable enough for modelling

different types of reaction networks ranging from very small, e.g., simple gene

expression, to very large, e.g., complex signaling pathways, metabolism or even

living organisms. Further, the model should be standardized so that it is able to

share information, data and knowledge between communities. Second, a sim-

ulation algorithm is built to visualize the time evolution of the system. The

simulation should be able to capture important features in the dynamics of bi-

ological processes. It also takes into account biological noise as an important

factor affecting the system evolution. Thus, the grand challenge in computa-

tional biology is to model and simulate a full cellular organism [142,154].

A lot of successful work has been established in literature to lay down the

foundation for modelling biochemical reaction networks. A direct way to de-

scribe a reaction network is to write down the network as a list of coupled

reactions. Modelling a reaction network by coupled reactions is simple and

flexible. The network is easy to communicate between biologists and computer

scientists. However, this modelling technique also has its own disadvantage.

The number of reactions and their complex coupling in large models make

it difficult to control. A graphical representation is an alternative modelling

for reaction networks. For instance, a graph, e.g species-reaction graph, Petri

net [171], can visualize the reaction network in a visual form. It thus unravels

the hiearchical organization and causalities between components of the reaction

network. Further, mathematical analysis on graph can be carried out to obtain

a qualitative information about the dynamics of the network. Recent modelling

formalisms, adapted from the computational area, have tried to improve the

expressiveness of the model, e.g.,π-calculus, state chart, discrete-event mod-

elling (DEV) [37, 49]. They allow to explicitly represent the biological entities

such as molecular species, reactions, as concurrent processes. Each processis

an independent entity. It interacts and shares information with other processes

12

concurrently through channels. A logical process could be implemented as an

instance of a runnable process in a computer, so it is easy to turn an entire model

into an executable simulation. Furthermore, these formalisms have strong and

well-studied mathematical background. A lot of well-developed mathematical

tools have been developed to support for useful analysis, e.g., checking equiv-

alence behaviour, model checking [1, 113]. New modelling techniques such

as rule-based modelling [50, 107, 146], also get more attention recently. They

are introduced to overcome the explosion problem in modelling reaction path-

ways, e.g., signaling pathway. For example, in rule-based modelling, reactions

are modelled as rules. A rule also encompasses with extra information for the

reaction firing, i.e., reaction kinetics. If a rule is matched, the corresponding

reactions is introduced to the system at runtime. Thus, all the possible reactions

in the model do not need to be specified at the beginning of simulation.

Once the model developed, we can performin silico experiments through

a computer-based simulation. The dynamic interaction between species in the

model can reveal indirect implications, unexpected behaviour which are com-

plicated, unpredictable and even unknown at the modelling phase. The stochas-

tic framework is often the choice to analyze random phenomena in biological

responses. A reaction between molecular species is expressed as a stochastic

process. The time associated with reactions is treated continuous, while the

state is discrete, e.g., species population. The dynamics of the biological net-

work thus can be expressed as a collection of stochastic equations. An analytic

solution to these stochastic equations, however, is limited to small models only.

Mathematical analysis is often intractable for large models. Stochasticsimu-

lation is an alternative approach to realize the dynamic behaviour of the given

reaction network. A sample trajectory of the system is generated by samplinga

possible reaction event. Thus, usually many trajectories should be generated in

order to have a sufficient information about the system behaviour. Throughout

the time, many simulation algorithms and software tools have been developed

13

for performing biochemical simulation. These algorithms can count for the

stochasticity in time and/or space.

For a well-mixed biochemical reaction system, the stochastic simulation al-

gorithm (SSA) [60,61] is ade factostandard for numerically sampling the time

evolution of a biochemical reaction network. The development of SSA has the

mathematical background on the chemical master equation (CME) [64], which

completely describes the probability distribution of all possible state transitions.

SSA takes into account the inherently random fluctuation of the involved molec-

ular species as a main source in selecting a reaction firing. It is an exact method

in the sense it does not introduce any source of approximation in selecting the

reaction. In other words, it gives the same result as the analytic solution of

CME, while the later is intractable for many cases. Essentially, SSA searches

for a reaction to fire at a time based on a probability function. The reaction

probability distribution depends on the (current) system state and the chemical

kinetics. Anytime a reaction fires, the system configuration, i.e., the system

state, as well as the reaction probability distribution have to be updated.

SSA often requires very computational demand for large models. In prac-

tice, a large model is needed to address and understand the regulatory affects to

the cell behaviour. Several improvements to SSA has been introduced during

the time course to make it applicable for large models. For example, to speed

up the search of the next reaction firing, reactions is rearranged so that a reac-

tion having higher probability is placed near the search position. For updating

reactions, adependency graph[59] is often exploited so that only locally de-

pendent reactions should have to be updated. The update is thus reduced to be

model-dependent. Therefore, for loosely coupled reaction networks, e.g., a lin-

ear chain, the update is only a constant factor. Some algorithms even sacrifice

its exactness to achieve a higher performance. The main idea of approximate

algorithms is trying to fire as many as possible the number of reactions, but still

constrained the approximation by an error constraint. The most notable approxi-

14

mate method is theτ -leaping [63] algorithm. Although approximate algorithms

indeed run faster, they expose serious problems especially to models having just

some species at very low copy numbers. Firing many reactions in one time step

yields the negative population for these species which is obviously infeasible in

real experiments. A promising approach to solve this problem is the hybrid sim-

ulation [121]. It treats the system by two complementary parts. The part with

low population species is simulated by an exact stochastic simulation, whilethe

part with the high population species is treated by a fast simulation algorithm

e.g., ODE integration,τ -leaping. Hence, it still achieves a better performance

and also captures the important stochastic effects.

The assumptions of SSA, e.g. instantaneous reaction firing, well-mixed so-

lution, is restricted for living cells. The effects of these factors when consider-

ing can alter the behaviour of the biological network significantly. Hence, SSA

should be adapted to account for these factors. For example, the highly localiza-

tion of species which is generally referred to as themolecular crowding[33,82]

enhances the availability of species, and thus speeding up the operations of

cellular processes. It also helps to explain important effects in biological sys-

tems, e.g., the excluded volume effect. Thus, taking spatial information into the

stochastic simulation is a crucial task [153]. A possible extension of SSA for

spatially heterogeneous environment is dividing space into well-mixed subvol-

umes. The diffusion of a molecular species between subvolumes is explicitly

modelled by an additional unimolecular reaction. The extension of SSA in this

manner is known as thecompartment-basedsimulation.

In the following, we review the model representation techniques used to

represent of biochemical reaction networks. Although the modelling of bio-

chemical systems is attractive and has been continuously increasing, a thor-

ough review is out of scope of this thesis (see e.g., [37, 49, 50, 107, 146, 171]

and references therein for more discussion). In the review, we focus only on

the modelling formalisms that we directly apply for developing of our simula-

15

tion algorithm. Then, we are going to details of the algorithms for conducting

stochastic simulation of biochemical reaction networks. We cover fundamental

ideas of SSA as well as efficient formulations proposed during the time course.

We also present a brief review of approximate and hybrid methods to improve

the performance by the cost of its exactness. The extensions of SSA by relax-

ing the underlying assumptions of the biochemical reaction networks are also

reviewed. Two possible extensions are reviewed namely: reactions with delays

and reactions with spatiality.

2.2 Reaction network representation

2.2.1 Coupled reaction list

Listing all the reactions in the network is a direct way to specify reactions of

the model. The network thus will be expressed in form of coupled reactions.

Let consider a biochemical reaction system consistingn species denoted as

S1, ...Sn. These species interact throughm reactionsR1, ...Rm. Each reaction

has the following general form:

Rj : v1jS1 + ...+ vnjSn

kj→ v′1jS1 + ...+ v′njSn (2.1)

wherevij and v′ij are referred to asstoichiometric coefficients. In fact vij is

the number of speciesSi are consumed and, in contrast,v′ij is the number of

species are produced by reactionRj. In this general reaction form, we allow

some species to appear in the both side of a reaction. The appearance of such

species is only to increase the rate of the reaction and this species is generally

called acatalyst. kj is the (stochastic)rate constantof reactionRj. A reversible

reaction in this representation should be expressed explicitly. The reversible

reaction is thus considered as two separated irreversible reactions, and they are

treated independently.

16

A coupled reaction list intuitively shows the coupling of the species in the

model. It itself can give a qualitative structure of the system. Because ofthe

simplicity and flexibility of the representation one can easily add, modify and

remove reactions to extend the model. This modelling has been widely ac-

cepted to represent a reaction network. The systems biology markup language

(SBML) [54, 77, 78, 152] is an attempt to standardize the modelling process

with the help of a computer software. SBML encodes the reaction list in an

independent format (the XML format). Thus, the model is easy to store, trans-

fer and parse by a software component. There are also similar approaches to

ease the modelling of reaction list with the help of computer e.g., CellML,

BioPAX [44,92,104].

The coupled reaction list, however, also has its own disadvantages. First, a

practical model often contains a lot of reactions. the model becomes extremely

complex and even uncontrollable when modelling large networks. Second, it

does not support for structural analysis. This preliminary analysis can give a

substantial information for guiding the simulation development. This informa-

tion is also useful in understanding the system dynamics at runtime. Further-

more, because the reaction model is not associated with necessary information,

i.e., reaction kinetics and initial condition, it has to be tailored with this infor-

mation before it can be simulated.

2.2.2 Graphical network diagram

A graphical representation is a visual approach to model a biochemical reaction

network. It contains the same information as a coupled reaction list, but presents

the reactions in a diagrammatic format. Thus, it is easy to understand the hi-

erarchical organization of the reaction network. Because a graphical model

is backed on a rigorous mathematical structure, i.e., a discrete graph, several

well-developed tools in this area can be applied to support for analyzing the

organizing structure of the reaction network. The structure information briefly

17

characterizes the dynamic behaviour of the corresponding biological system.

The development of a graphical model with the help of computer, e.g., JDe-

signer, JigCell, make it become more easier. Recently, an effort to make the

standard notations for network diagrams using the system biology graphical

notation (SBGN) is proposed [81, 119], hence enhancing the quality and the

usability of models.

The species-reaction (SR) graph is a natural representation of a biochemical

reaction network. It is a type of bipartite graphs where nodes are completely

divided into two types: the species nodes and the reaction nodes. A species node

represents for a molecular species involved in the model, while a reactionnode

denotes for a reaction between species. A directed edge from a species node to a

reaction node indicates that the species is a reactant of the reaction. In contrast,

an edge from a reaction to a species indicates that the corresponding species is

a product of the reaction. The edge between a species node and a reaction node

is further attributed with a weight. This value denotes the stoichiometry of the

species in the reaction.

A Petri net [69, 124, 133] is an another graphical modelling of the biochem-

ical reaction network, but is augmented with rigorous mathematical semantic

rules. Thus, it takes advantage over the SR graph. The Petri net is grounded

also on a directed bipartite graph in which a species node is called aplace, and

a reaction node is called atransition. The place is associated with a number

of tokens, which are the population of the corresponding species. A configu-

ration of the tokens in places at a time is referred to as amarking. When a

transition fires, corresponding with a reaction fires, the tokens in the pacesare

redistributed. The system then moves to another marking. A transition firing is

able to be modified to account for the random noise. Furthermore, properties of

the model encoding in the Petri net such as network invariants e.g., P- and T-

invariants, reachability, can be derived to support the simulation analysis. Thus,

the Petri net is very well-suited for stochastic modelling and simulation.

18

Figure 2.1: The gene expression model is represented by a) a coupled reaction list, b) a Petri-net

and c) the corresponding stoichiometric matrix

To store the underlying bipartite graph of a graphical model in a computer,

we make use of a matrix. An element in the matrix is corresponding with an di-

rected edge between two nodes. The corresponding element is set with a value

is the weight (stoichiometry) of such edge. Such matrix is generally referred

to as thestoichiometric matrix. Since the matrix is often sparse (with many

zero elements), we can apply the sparse matrix computation techniques to re-

duce its size and processing time. The figure 2.1 gives an example of different

representations for the gene expression model.

2.3 Simulation algorithm

2.3.1 Exact stochastic simulation

Let consider a well-mixed biochemical reaction system. The cell is assumed to

be fixed to a constant volume, and is in a thermal equilibrium. The position and

19

Table 2.1: Propensity function for elementary reactions

R1: ∅ k1→products a1 = k1

R2: Si
k2→products a2 = k2 ·Xi

R3: Si + Sj
k3→products a3 = k3 ·Xi ·Xj

R4: Si + Si
k4→products a4 = k4

Xi(Xi−1)
2

speed of molecular species in the cell volume, by these assumptions, become

randomized. In fact, they are randomly distributed following the thermodynam-

ics law. We therefore only need to consider the population of molecular species,

while ignoring all the positions, velocities of species. LetXi(t) denote the pop-

ulation of speciesSi at timet. Thus, the state vectorX(t) of the system at time

t is represented by an-vectorX(t) = (X1(t), ..., Xn(t)).

The change of the system state at timet + dt which is the consequence of

the next reactionRj firing is denoted by a state change vectorvj. Note thatvj is

corresponding to a row of the stoichiometric matrix. Thus, the state transition

of the system is formulated as:

X(t+ dt) = X(t) + vj (2.2)

The quantity characterizing the probability reactionRj firing is termed a

propensity functionaj. It is defined so thataj(x)dt is the probability reaction

Rj will fire in the next infinitesimal timet+dt given the current stateX(t) = x

at timet. This is referred to as thefundamental hypothesis[60] of the stochastic

kinetics simulation. A physical derivation for the existence of such propensity

function for theelementary reactions is provided in [60, 111]. We summarize

the form of these formulas in the following table 2.1.

By the fundamental hypothesis, the biochemical reaction system can be mod-

elled as a (continuous-time) jump Markov process. LetP (x, t) be the prob-

ability of system being in stateX(t) = x at time t. The differential equa-

tion expresses the complete time evolution ofP (x, t|x0, t0) with initial state

20

X(t0) = x0 at timet0 given in Equ. 2.3.

∂P (x, t|x0, t0)
∂t

=
m
∑

j=1

[

aj(x− vj)P (x− vj, t|x0, t0)− aj(x)P (x, t|x0, t0)
]

(2.3)

Equ. 2.3 is generally called the chemical master equation (CME). It com-

pletely determines the time evolution of the system at any particular timet.

CME is indeed a collection of differential equations describing all the statetran-

sitions by biochemical reactions. The number of equations in CME is thus in-

creasing exponentially with all possible state transitions. For example, let con-

sider a system where each species has only two states:0 and1. Forn species

we will have total2n equations. A full analytic solution of CME is obviously

intractable for most of practical problems wheren is large enough. Some recent

computational approaches [116,172] have tried to solve CME directly but at the

cost of an approximation error. In this thesis, we exploit the simulation tech-

nique to sample the possible solutions of CME instead. The simulation realizes

a trajectory of the system evolution by sampling thenext reaction probability

density functionp(τ, j|x, t), in whichp(τ, j|x, t)dτ is the probability a reaction

will be fired in the next timet+τ+dτ and it is the reactionRj, provided that we

are in stateX(t) = x. The next reaction probability is indeed a joint probability

of the firing timeτ and the selected probability of reactionRj. We have:

p(τ, j|x, t)dt = aj(x)exp(−a0(x)τ)dt (2.4)

where

a0(x) =
m
∑

j=1

aj(x) (2.5)

while τ andj are the time of the reaction firing and its index, respectively.

The Equ. 2.4-2.5 is the basis for the stochastic simulation algorithm (SSA).

It imposes two important things. First, the firing time is exponential distributed

with mean1/a0. Second, the probability reactionRj is selected to fire at that

21

time is a discrete probability mass functionaj/a0. There are two implementa-

tions of SSA which have the same stochastic behaviour were introduced. They

are known as the Direct Method (DM) and the First Reaction Method (FRM).

DM directly computes the reaction firing timeτ by inverse the exponential

distributiona0exp(−a0(x)τ), and then searches for reactionRj to fire according

to its probabilityaj/a0. DM requires two random number for doing a simulation

step. Letr1 andr2 be random numbers generated from a uniform distribution

U(0, 1). The first number is used to compute the firing timeτ , while the second

one is used to decide which the reactionRj fires at that time.

τ =
1

a0(x)
ln

(

1

r1

)

(2.6)

j = the smallestj s.t.
j

∑

k=1

ak(x) > r2a0(x) (2.7)

The search for a reaction firingRj in DM is directly implemented by con-

tinuously accumulating the sum of propensities on-the-fly until it satisfies the

condition
∑j

k=1 ak(x) > r2a0(x). It is equivalent with a linear search.

Having the timeτ and the fired reactionRj, DM jumps current system state

to the new statex + vj, and updates current time to the new timet + τ . The

propensities of reactions are updated to reflect the change in the system state as

well. The simulation will loop until the current time is passed over a predeter-

mined simulation timeTmax. We briefly outline the DM algorithm in Alg. 1 for

the ease of reference.

The key point of the DM algorithm is the propensitiesaj(x)s are computed

once at the start of the simulation, and then updated as soon as the statex

changes. In Alg. 1 all the reactions have to update their propensities after a

reaction firing. The update step is obviously inefficient with a large model. To

speed up the propensity updates, it is common to exploit a dependency graph be-

tween reactions, which describes which propensities actually need to be recom-

puted after every reaction firings. In other words, only locally affected reactions

22

Algorithm 1 Direct Method (DM)
1: initialize system timet = 0 and system statex = x0

2: while t < tmax do

3: for all reactionRj do

4: computeaj
5: end for

6: computea0
7: generate two random numbersr1, r2 ∼ U(0, 1)

8: setτ = 1/a0(x)ln
(

1
r1

)

9: search for the next reactionRj by continuously accumulating propensitiesaj until
∑j

k=1 ak(x) > r2a0(x)

10: update the timet = t+ τ and system statex = x+ vj

11: end while

have to be recalculated their propensities. The dependency graphDG(V,E) is a

directed graph (see Fig. 2.2 for an example) which contains the reactions as ver-

ticesV , while an directed edgee(Ri, Rj) ∈ E if and only if Rj ∈ affects(Ri),

the set of reactions affected byRi. Formally

affects(Ri) = {Rj |(reactants(Ri)∪products(Ri))∩ reactants(Rj) 6= ∅} (2.8)

where reactants(Ri) and products(Ri) are the set of species taking part in reac-

tion Ri as reactants and products, respectively. Because a directed catalyst is

not consumed by the reaction itself, it is excluded from the reactants and prod-

ucts of the reaction. Hence, by the dependency graph update mechanism, the

propensity updates are now reduced to be model-dependent.

FRM is mathematically equivalent with DM but proceeds in a different man-

ner. It is a type of racing algorithm. The reaction with smallest putative time

is selected to fire next. Thus, in each simulation loop,m random numbers

r1 . . . rm ∼ U(0, 1) are used to generate the putative times of reactions. The

putative timeτj of reactionRj is computed as:

τj =
1

aj(x)
ln

(

1

rj

)

, j = 1 . . .m (2.9)

23

Figure 2.2: Dependency graph (removing self affected edges)

The reactionRj having the smallest putative timeτj = min(τ1, . . . , τm) is se-

lected to fire. The propensity update in FRM is done similar to DM. The mathe-

matical equivalence between FRM and DM is derived directly from the property

of the exponential distribution [60].

FRM takesm random numbers in each simulation step to compute the puta-

tive times of reactions. But, only one is actually consumed by the simulation,

while m − 1 random numbers are discarded. A lot of random numbers waste

while applying to large models. FRM is thus less efficient and often runs slower

than DM. However, treating each reaction as a separated process, FRM allows

to consider in detail the effects of each reaction to the overall systemdynam-

ics. For example, we can easily modify the propensity of a reaction taking into

account the effect of e.g., cell size changing during the simulation time. This

is known as therandom-time changerepresentation [97]. The firing time of a

reaction can even be modelled by different distributions, e.g., the Erlang, the

Hyperexponential distribution [117]. Second, FRM allows to see the simula-

tion as a discrete-event simulation algorithm. And, there are many efficient

event-queue data structures [20, 68, 83, 135] developed in computer science so

that they can be directly applied to improve the performance of FRM. The most

24

notable improvement of FRM as a discrete-event simulation is the Next Reac-

tion Method (NRM) [59]. NRM uses a special priority queue, called the binary

heap, to store the putative reaction times. Retrieving the smallest putative time

is constant since it is always on the top of the heap. After a reaction is selected

to fire, NRM has to maintain the priority queue to reflect the change in the sys-

tem; however, it does this in a clever way. NRM exploits the scaling properties

of the exponential distribution and dependency graph to improve the propen-

sity updates. By this way, the absolute putative time has to be used, instead

of relative putative time in original FRM. There are two cases the computing

of new putative times and maintaining the heap are required. In the first case,

the reaction that has to update its propensity is itself the reaction firing. The

new reaction propensity is evaluated. Then, the new putative time is generated

following Eq. 2.9. In the second situation, the reactions are dependent reac-

tions (the affected reactions in the dependency graph). The scaling property of

exponential distribution will be exploited to scale up their putative times. As-

suming that the system moves from the statex to the new statexnew with the

firing time t. Let τnewj be the new putative time of reactionRj at this new state.

It is scaled asτnewj = (aj(x
new)/aj(x))(τj − t) + t. So, we do not need to

generate additional random numbers for updating the putative times of affected

reactions. There only one random number is required for each simulation step.

This would save a lot of computational resource as the number of reactionsm

is large. In fact, the complexity of a call to binary heap consolidation takes

logarithmic time i.e.,O(log(m)). Thus, NRM, in worst case, takes logarithmic

time for a simulation loop assuming a constant number of affected reactions in

the model.

A software package called Moleculizer [105] exploits these two characters

of FRM to design an efficient simulation for the intra-cellular biochemicalsys-

tems, i.e., the pheromone signal transduction pathway in Yeast. Due to the

complexities of receptor-binding mechanism the number reactions in the model

25

is exponentially increasing. The reactions in entire network is possibly not able

to introduce to the simulation at beginning. Moleculizer takes over this problem

by introducing the species and reactions to the simulation only as needed. The

propensity of new introduced reactions will be modified in consistency with

physical properties of this reaction. The new introduced reaction event is then

efficiently controlled by a simplified version of queue-event data structure in

NRM.

Although NRM is often faster than FRM, DM, it also exposes challenges

for implementing the complex data structure used. In some special classes of

problems, the complex data structure even negates the performance of NRM.

For example, in [29], it showed that the runtime of NRM is actually slower than

DM when applied for highly coupled and multiscale reactions models e.g., the

heat shock response model of E. Coli. In [29], it also introduces an formu-

lation to improve the performance of DM. This new formulation is called the

Optimized Direct Method (ODM). ODM improves the search of DM based on

a careful observation that the searching of the next reaction firing will faster if

propensities are sorted in descending order. Indeed, the constraint in Eq. 2.7

is faster to satisfy if we rearrange the propensities in a descending order.This

new formulation will achieve a great speed up gain if the system contains dis-

parate ranges of propensity values. In ODM, the order of propensity values is

predicted by pre-run simulations. The average values of propensities are used

as criteria for ordering the reactions. The Sorting Direct Method (SDM) [110]

shares the same idea with ODM, but it uses a different technique to order the

reactions. SDM dynamically bubbles the reactions instead. Anytime a reaction

fires, its new propensity is computed. Its index is then exchanged with the next

lowest propensity (if exists). The bubble step is also applied to all affected re-

actions. At the end, an order for reactions propensities is established without a

pre-run simulation.

Sorting of reaction propensities does make the linear search of DM run faster.

26

It, however, potentially makes the search less accurate [65]. A truncation error

can happen when the sum of the biggest propensities is represented by a fixed-

size floating number. For example, consider a floating point number withk

precision in a computer representation. If the propensity of a reaction isk or-

ders of magnitude smaller than the sum of biggest propensities placed before it

in the decreasing sorted order. This reaction is thus never selected to fireif a

decreasing order of propensity values is used. The implementation of sorting of

reaction should require an infinite precision number representation. However,

the most restriction of linear search, even reactions are ordered, is itstime com-

plexity, in the worst case, is increasing linearly with the number of reactionsm,

i.e.,O(m). The search thus becomes very slow to as applied to large models.

There are several formulations have been proposed during time to reduce the

complexity of the linear search used in DM. One possible approach is divid-

ing the reactions into groups. The search is now composing of two consecu-

tive steps. First, the group containing the next reaction is discovered. Second,

the next reaction firing in the corresponding group is retrieved out. In [106],

these two steps are done through two linear searches. The first search discov-

ers the group based on the total propensity of each group. And, the second

search retrieves the next reaction firing in corresponding group by its propen-

sity. In [145, 147], the grouping of reactions is also exploited, but the search

of the next reaction in group is implemented by an acceptance-rejection pro-

cedure. A group is associated with a constraint. More precisely, reactionRj

belonging to groupk must satisfy the group constraint:bk−1 ≤ aj ≤ bk where

b is a selected base (e.g.,b = 2 in [147]). Then, the search of reaction firing

is done as follows. A standard linear search is conducted to find out a group

k containing the next reaction. The next reaction within the groupk is dis-

covered by applying therejectionmechanism with the chosen hat functionbk.

This formulation is referred to as the composition rejection SSA (CR-SSA). The

complexity for the long run of CR-SSA in searching the next reaction firing is

27

constant time. The assumptions for the constant time of CR-SSA are: 1) the

number of dependent reactions of a firing reaction should be restricted to a con-

stant factor, and 2) the reaction propensities which are varied by reactionfirings

are less significant. Once these assumptions are violated, CR-SSA will spenda

lot of time adding and removing reactions to appropriate groups. The CR-SSA

performance therefore can be very slow. This has been shown by experiments

in [106].

If reactions are divided into groups so that each group contains only two

reactions, the search of the next reaction thus needs only one comparison to

discover the next branch in the search path. In this sense we have a binary

search [18,103,156]. The binary search obviously achieves better performance

than linear search, but it requires to pre-compute the partial sums of propen-

sities. These values have to be stored in a tree structure so that we can apply

the dependency-graph update mechanism. The time complexity of a tree-based

search SSA is logarithmic both in search and update. We are going to the detail

of the tree-based search on the next chapter. There we also predict and discuss

the tree leading to the optimal search length.

Instead of grouping reactions, the partial propensity SSA (PSSA) [128] fac-

torizes and groups the reactants. The reactions sharing the same reactants

are grouped. Only the partial propensities related to a reactant are computed.

PSSA then exploits a complex data structure to store reactants as well as partial

propensities. An equivalent procedure with SSA to find the next reaction firing

is proposed. The complexity of PSSA, in the worst case, is proportional with

number of molecular species. PSSA therefore outperforms when applying to

highly coupled reaction models. The current restriction of PSSA is that: 1) it

only supports for reactions having at most two reactants, and 2) the reaction

propensity is based mainly on the mass-action kinetics [128]. The key idea of

reactant grouping and binary search to improve the performance of SSA also

proposed in [80].

28

A different approach to improve SSA is discussed in [141]. It exploits the

uniformizationtechnique to improve the simulation performance. The idea of

uniformization technique is using the upper-bound of total propensity to dis-

cretize the time. By the application of the upper-bound of total propensity, this

approach introduces a dummy reaction, without changing the system state, to

the current set of reactions. The rate of the dummy reaction is equal to the dif-

ferent between the upper-bound value and the current total propensity. Because

the firing time of all reactions, including the dummy reaction, is all exponential

distributed with the same mean corresponding to the inverse of the total propen-

sity upper-bound, we do not need to generate the reaction firing time. Only the

search of reactions and propensity updates are required. in order to approxi-

mate the upper-bound of total propensity it has to know aglobal upper-bound

for the population of all species. This is hard to pre-compute. Indeed, even

in the case such upper-bound is known, it may be several orders of magnitude

larger than the actual total propensity e.g. if the system is stiff. In this case, sim-

ulation would spend a lot of time firing the dummy reaction, hence frequently

following self-loops.

2.3.2 Approximate stochastic simulation

Essentially, an approximate method speeds up the simulation by sacrificing its

accuracy. It tries to execute as many as possible the number of reaction events

in one simulation step. This is the main different with SSA where only one

reaction event occurs at time. There are many approximate methods introduced,

see for example [62, 115, 134], in which the most notable algorithm is theτ -

leaping method. The time axis inτ -leaping is divided into (small) time intervals.

The changes of all reaction propensities in a time interval are considered less

significant and assumed to be constant. This condition is known as theleap

condition.

Let [t, t + τ) be a time interval in which the propensity of any particular

29

reactionRj satisfies the leap condition. In other words, the propensityaj(x) is

remained essentially constant during that time interval. The number of times

reactionRj occurring is so a Poisson processPoisson(aj(x)τ). Let kj be the

number of times reactionRj fires during the time interval[t, t + τ). Thus, we

have thatkj ∼ Poisson(aj(x)τ). Each occurrence ofRj causes the system

state to change an amountx + vj. So, the net change of the system state by

firing kj times reactionRj in the time interval[t, t+ τ) is x+ kj · vj. Based on

this observation theτ -leaping is proceeding as follows.

The simulation timeTmax is divided into time intervals[t, t+ τ) so that the

leap condition is satisfied on each interval. In each simulation step,m Poisson

random numberskj ∼ Poisson(aj(x)τ) for all j = 1 . . .m are generated. The

system state changing bym reactions firing in an interval are updated by:

X(t+ τ) = X(t) +
m
∑

j=1

kjvj (2.10)

The accuracy of theτ -leaping thus is strongly depending on the choosing of

an appropriateτ value. In principle, apost-leapcheck can be applied. That

is we start with an predefined arbitrary (small)τ value. Then, we check the

difference in the reaction propensity after that leaf. If all the differences are

acceptable (i.e., satisfying the leap condition) then the leaf is accepted.Oth-

erwise,τ should be reduced. More precisely, letx andxτ be the state before

and after the leapτ . The absolute change in propensity of reactionRj is com-

puted and ensured to be sufficiently small comparing with an error parameterǫ,

i.e., ‖aj(xτ)− aj(x)‖ < ǫ for all j = 1 . . .m. If the change in propensity of

any reaction violates this condition,τ is reduced e.g., to a half, and the checking

procedure repeats. The post-leap working in this manner, however, potentially

biases the system away from large yet reasonable changes in the state.

The pre-leap is thus often more promising than the post-leap. It instead

computes the leapτ by postulating the expected change in propensities at the

new expected state. The expected change is calculated and checked against

30

whether it is acceptably small. Several strategies have been introducedfor doing

the pre-leap check. In [62] the expected change in propensities is suggested to

be bound bya0(x), i.e.,‖aj(xτ)− aj(x)‖ ≤ ǫa0(x) for all j = 1 . . .m where

0 < ǫ≪ 1 is the error control parameter. This original idea of the leap selection

is extended and improved by [26, 66]. In [27], a new leap selection procedure

is proposed in which the relative change in propensity of a reaction is bound by

its current propensity instead of total sum of propensities.

A subtle problem occurring in theτ -leaping is the negative population of

species. The Poison random variablekj ∼ P (aj(x)τ), in general, is unbound.

The population of a species after the leap thus can get negative. It is obviously

unrealistic and should be prevented during the simulation. Several solutions

have been introduced to solve the negative population. In [32, 159] a Binomial

distribution with the same mean with the Poison processP (aj(x)τ) is used

instead to sample the number of reactions events in a leap. The negative pop-

ulation is avoided because the Binomial random number is bound. In [123],

it constraints the changes in species population by solving an integer linear

programming problem. The number of reaction events is then sampled by a

Multinomial distribution. An another solution to this problem is dividing the

system in two parts [25]. The species which have the large population is put in

safe part which can directly apply theτ -leaping method, while the low popula-

tion species are put in thecritical region. The reactions involving with critical

species are treated in individual by e.g., SSA. For stiff systems, the leaf τ of an

(explicit) τ -leaping selection is very small which is in the order of the inverse

of the total propensitya0. The implicit τ -leaping [132] handles this obstacle

to allow to choose an arbitrary largeτ value by applying an implicit approxi-

mation form. However, the state change vector now is not an integer vector. It

has to be round off to the nearest integer. This introduces an additional source

of approximation to simulation. A combination of explicit-implicitτ -leaping is

proposed recently in [28].

31

In [11] the K-leap method and in [22] the R-leap method, respectively, are

alternatives for theτ -leaping method. The advantage of these methods is the

number of reaction firings during a leap is controllable. The negative popula-

tion never happens, and thus improving the simulation accuracy. These meth-

ods are variants ofkα-leaping method proposed in [62]. The principle of these

methods is the total number of reaction firings during a leap is predefined and

constrained. The leapτ is proved to be following a Gamma distribution, while

the number of times a reaction firings during a leap is following a Multinomial

distribution. Then, several sampling techniques have introduced for both of

these methods to generate a suitableτ value.

Theτ -leaping is not only used for improving the performance of SSA, it but

also bridges a connection to the deterministic simulation [65]. Let suppose the

leap condition is relaxed so thatτ is still small enough to satisfy the leap condi-

tion, but the expected number of reaction firings in a leap is also large enough,

i.e., aj(x)τ ≫ 1 for all j = 1 . . .m. By this new condition, the Poisson dis-

tribution is approximated by a Normal distribution with the mean and variance

areaj(x)τ . Thus, Eq. 2.10 is rewritten by:

X(t+ τ) = X(t) +
m
∑

j=1

Nj(ajτ, ajτ)vj

= X(t) +
m
∑

j=1

vjajτ +
m
∑

j=1

vj
√
ajNj(0, 1)

√
τ (2.11)

whereNj(µ, σ
2) denotes a Normal distribution with meanµ and varianceσ2.

To derivation of Eq 2.11 makes use a special property in conversion of a Nor-

mal distribution to standard Normal distributionN(0, 1) i.e.,Nj(µ, σ
2) = µ +

σN(0, 1).

The Eq. 2.11 is referred to as the chemical Langevin equation (CLE). The

equivalent differential formulation of Eq. 2.11 is given in Eq. 2.12.

32

dX(t)

dt
=

m
∑

j=1

vjaj +
m
∑

j=1

vj
√
ajΓj(t) (2.12)

whereΓj(t) is an independent Gaussian white-noise process.

In the thermodynamic limit, where the volume size and the species popu-

lation is increasing to infinity, but the species concentration (the ratio between

species population and volume size) is kept roughly constant, the random fluctu-

ation term
∑m

j=1 vj
√
ajΓj(t) in Eq. 2.12 grows slowly (in square root) compar-

ing with other terms (in linearity). This term is thus negligible small contribute

to the macroscopic change of the system and can be ignored. In other words,

the fluctuation in population of species in Eq. 2.12 is able to remove. Eq. 2.12

approximate to be:

d[X]

dt
=

m
∑

j=1

f([X]) (2.13)

in which [X] denotes the species concentration vector, and a functionf presents

the changes of the species concentration by reactions. The Equation 2.13 is the

general form of RREs used in deterministic simulation. Hence, the stochastic

approach in the thermodynamic limit converges to the deterministic one.

2.3.3 Hybrid stochastic simulation

Hybrid methods are proposed to efficiently simulate the system with a great dis-

parity in the species population. The high population species are simulated with

a less computational technique since the fluctuations in these species are less

significant. The low population species will be simulated by an exact method

so that it is still able to captures the significant fluctuations [16, 118]. The hy-

brid approach thus still achieves a better performance, but also reproduces the

stochastic effects by the low population species.

33

The principle of the hybrid approach is dividing the system into two sub-

systems. These parts will be simulated by different simulation methods, but

they are complementary to each others. An intuitive partitioning strategyis to

partition reactions into subsets of fast and slow reactions. Mathematically, it is

equivalent to partition CME. The fast reactions often, but not always, involves

high population species. The rest will be called slow reactions. Two subsys-

tems are assumed to evolve independently. The fast reactions is integrated by,

e.g., an ODE solver. The slow reactions is simulated by an SSA variant toretain

the important fluctuations. Because the slow reactions, in general, is dependent

to the fast species, their propensities can change if a fast reaction fires. For this

reason, the propensity of slow reaction have to modify to use the random time

varying propensity.

For the success of a hybrid method, several aspects have to be considered.

First, the criteria as well as their reliability are applied for partitioning of the

system. Second, how the partition is done in static or in dynamic. Third, how

the synchronization between simulation techniques i.e., between the determin-

istic vs. stochastic as well as the data conversion i.e., between the species con-

centration vs. population, continuous vs. discrete. Lastly, how to treat the fast

reactions involving also the low population species.

There are several hybrid methods has been proposed in literature. We review

three main approaches in the following.

• The ODE/SSA hybrid. In [2, 84] it proposed a combination of SSA and

ODE solver to simulate the system. An ODE solver is used to integrate

the high population species part, while an SSA variant simulates for low

population species. The algorithm works by partitioning the species and

reactions as well as choosing a fixed integration time step∆t for the ODE

integration. Although, note that,∆t could be adaptively decided in modern

ODE solver. The ODE/SSA hybrid is proceeding as follows. First, an ODE

integration with the time step∆t is computed with assumption that there

34

is no slow reaction event occurring. The time-varying propensities of the

slow reactions in this time step are evaluated. Then, the firing timeδt for a

slow reaction event is derived. In particular case, the time step∆t is chosen

small enough so that the changes in slow reaction propensities are assumed

to be constant. The computing of the slow reaction event thus does not

require to use the random time change technique and is greatly simplified.

Finally, the simulation decides which event will update the system. If the

slow reaction event is occurring before the ODE integration, i.e.,δt < ∆t,

a slow reaction is fired. The fast species involved in this slow reaction is

updated as well. In the other case, only the ODE integration takes place.

A new simulation iteration is executed after that.

• The CLE/SSA hybrid. This hybrid simulation is a combination of a dis-

crete simulation for slow reactions and a CLE solver for fast reactions [72,

140]. The partitioning of reactions is treated dynamically. A reaction is

considered to be fast if it satisfies the conditions 1)aj∆t ≥ λ and 2)

x ≥ ǫ |vj| in which ∆t is the time step for updating the fast reactions,λ

andǫ are parameters to control the partitioning. For example, in [140],λ

andǫ are assigned to be10 and100, respectively. During the time course

if a fast reaction violates the partitioning condition, it is automatically

moved to slow reaction subset. The CLE/SSA achieves higher accuracy

than ODE/SSA because it still could capture for the fluctuations in the fast

reactions.

• Theτ -leaping/SSA hybrid. Theτ -leaping/SSA hybrid places in the middle

between deterministic and stochastic hybrid. It is named as themaximal

timestepalgorithm in [126]. The key idea ofτ -leaping/SSA hybrid is that

theτ -leaping is applied to simulate the fast reactions while the slow reac-

tions is simulated by an SSA variant. This hybrid technique bridges the

gaps in the ODE/CLE integration and discrete event simulation described

35

above. However, by applying a variant ofτ -leaping for the fast subset

makes this hybrid approach become more difficult to analyze the time-

varying nature of slow reaction propensities. Thus, this technique puts an

assumption that the changes in slow reaction propensities during a leap is

less significant, and is ignored. This, of course, introduces an additional

source of error to the simulation.

2.3.4 Stiff system simulation

The stiffness arises in systems consisting both fast and slow reactions where

the fast reactions approach the stable state very fast. After rapidly transient

time with a very short fluctuation due to fast reactions, the system becomes

stable. The slow reactions then determine the system dynamics. The presence

of multiple time scales in such system slows down the stochastic simulation

significantly. In fact, SSA spends most of its simulation time for simulating fast

reaction events; however, this is not corresponding to the system dynamics.

Many methods have been proposed for efficiently simulating the stiff sys-

tems. They are often based on two main techniques: the quasi-steady state as-

sumption (QSSA) and the partial equilibrium assumption (PEA), which are used

in the deterministic context and adapted to the stochastic simulation. The QSSA

improves the simulation performance by removing intermediate and highly re-

active species from the model, while PEA enhances the simulation by assuming

fast reactions reaching equilibrium will remain always in that equilibriumstate.

The difference between QSSA and PEA is the object they focus on. The for-

mer focuses on the state, while the latter concentrates on the reactions. Inthe

following we briefly review these techniques.

The QSSA-based stochastic simulation.In [129, 161], the QSSA stochas-

tic kinetics is introduced to deal with stiffness. The system statex is divided

into the set of primary speciesy and intermediate speciesz so thatx = (y, z).

The intermediate species are assumed to be transitory and highly reactive.In

36

other words, two following assumptions are made. First, the probability distri-

bution of intermediate speciesz conditional ony approximatively satisfies the

definition of the CME. That isP (z|y, t) follows the form of chemical master

equation in eq. 2.3. Second, the net rate of change for the conditional probabil-

ity distribution of these intermediate species is approximatively equal tozero. It

is equivalent thatdP (z|y, t)/dt ≈ 0. By these two assumptions, the stationary

probability distribution of intermediate speciesP (z|y) is more easier to derive.

An analytic solution or a numerical computation can be conducted to sample

the population of intermediate species. Having the knowledge of intermediate

species, reaction propensities involving the primary speciesy for doing stochas-

tic simulation become easier to derive. In fact, these propensities havethe form

bk(y) =
∑

z ak(y, z)P (z|y).
Summing up, in each QSSA-based simulation loop two consecutive steps

are done. First, the intermediate speciesz is sampled from the stationary distri-

butionP (z|y). They are substituted into the computation of propensitiesbk(y)

involving primary species. And second, a SSA step is applied to find the next

reaction firing based on propensitiesbk(y). Note that when a reaction firing only

the population of primary speciesy is updated.

The PEA-based stochastic simulation.The slow-scale SSA (ssSSA) [23,

24] is an example of PEA. ssSSA proceeds as follows. It provisionally divides

reactions into fast reactions, denotedRf , and slow reactions, denotedRs. The

provisionally partitioning of reactions is decided only by their rate constants.

The fast reactions are further assumed to remain always in equilibrium state

upon reaching the equilibrium. Species whose population gets changed by a

fast reaction are labeled as fast speciesSf , the rest species is called slow species

Ss. By this definition, a fast species clearly can change by a slow reaction,

but the reverse direction is not true. The corresponding processX(t) is thus

divided into a fast processXf(t) andXs(t). Although the full state vector

X(t) = (Xf(t), Xs(t)) obeys CME, each individual component is not. ssSSA

37

overcomes this difficulty by introducing the definition of virtual fast process.

More precisely, the virtual fast process̃Xf contains the same species as the fast

speciesXf(t) where all slow reactions turned off. Thus, the virtual fast process

X̃f only depends on fast species, while the slow species are assumed constant.

TheP̃ (Xf , t) in this definition is completely described by CME.

The virtual process̃Xf , under the stiffness property, is assumed to be a sta-

ble process. It thus imposes two assumptions. First, the stationary distribution

P̃ (xf ,∞) exists. Second, the relaxation time ofX̃(t) to stationary asymptotic

form, X̃(t) → X̃(∞) happens very quickly (typically, smaller than the time to

the next slow reaction event). With these two assumptions, the stationary distri-

butionP̃ (xf ,∞) is analytically solvable by e.g. a numerical method. Thus, the

population of fast species involved in the virtual fast process can be computed

without doing simulation. The simulation now only applies for slow reactions

where the propensity of a slow reaction is adapted as follows. Let∆s be the time

which is very large compared to relaxation time ofX̃f(t), but also very small

compared to the expected time to the next slow reaction. The probability one

slow reactionRs
j occurs in interval[t, t+∆s) is approximated byasj(x

f , xs)∆s

whereasj(x
f , xs) is referred to as slow scaled propensity function of reaction

Rs
j . It is given by:

asj(x
f , xs) =

∑

xf ′

P̃ (xf
′

,∞|xf , xs) (2.14)

In conclusion, a ssSSA execution for sampling a trajectory is first numer-

ically calculating the population of fast species. The fast species are indeed

generated by randomly sampling the limited virtual fast processX̃f(∞). Then,

a SSA step is applied to select a next slow reaction to fire based on the slow

scale propensities Eq. 2.14. Thus, in the manner, the simulation moves the sys-

tem state forward in time by firing one slow reaction at a time with allfast

reaction events ignoring.

38

2.3.5 SSA Extensions

Several extensions also have been introduced to cover different aspects of bio-

chemical reactions systems by relaxing SSA underlying hypothesis. In this sec-

tion we briefly review two such relaxations that are: the reaction with delays,

and reaction with spatiality.

Reaction with delays.In SSA, the next reaction assumes to happen instan-

taneously. Biochemical reactions, in fact, will take a certain timeto finish after

they are initiated. The delayed time in biochemical reactions is thus inevitable,

but it is often many orders smaller than the waiting time to the next reaction.

The delayed time is therefore often ignored. The delayed time, however, will

introduce a another source of noise and plays a crucial role in the development

of the biochemical processes if it is in the order of the reaction time. For exam-

ple, in [13], the effect of delayed time to the development of the gene expression

has been observed. The system exhibits the stochasticity even the counterpart

is deterministic. The delayed-time reactions could further use to reduce the

deleterious effects of propagation noise.

Because of delays the Markovian property of SSA is invalidated. The in-

stantly update of the system state caused by the reaction firing would end with

an incorrect result. SSA thus should be modified to take into account the de-

layed time in reactions. In [19] an exact generalization of DM with delayed

time reactions is introduced. The key steps of the algorithm are as follows. In

each simulation step, the next reaction and its firing time is generated by DM.

If the selected reaction is a delayed time reaction, the actual completed time of

this reaction is stored in a stack. In the other case, the reaction is a non-delayed

reaction. Its firing time is compared against with the time stored on the top

of the stack. There are two cases. In the first case, the reaction time isless

than the completed time of a delayed reaction, the system state will be normally

updated by firing this non-delayed reaction. On the other hand, the selected

39

reaction is discarded and the update of the delayed reaction is performed. An

exact generalization of SSA covering all possible delays in reactions, called the

delay stochastic simulation algorithm (DSSA), is introduced in [21]. An effi-

cient modified of NRM for the delayed time reactions is also introduced recently

in [6].

Reaction with spatiality. This extension considers relaxing the well-mixed

assumption. The spatial homogeneous is easy to validate byin vitro experi-

ments where the diffusion of molecular species is much faster than the reaction.

However, it is in general not true for living cells. The species in cell environ-

ment is indeed very highly localized to improve cellular functions. The cell

division, metabolic and signaling pathways, for example, strongly depend on

the spatial information. The temporal evolution of SSA by reactions alone is

not enough to reproduce important effects such as the molecular crowding, the

excluded volume effect. It therefore should be extended to take into account the

diffusion of species in space.

Several approaches adapted SSA to make it applicable for simulating the

diffusion of species in space. The key idea of these extensions is diving the

space into smaller subvolumes. The subvolume size length is chosen to be small

enough so that the well-mixed assumption inside that subvolume is satisfied.

SSA therefore can be applied to simulate reactions inside a subvolume. The

diffusion of a species between subvolume is treated directly as a unimolecular

reaction. The rate of diffusion is translated from the bulk diffusion by the Fick’s

law. The rate of the diffusion reaction, in general, should depend on the shape

of subvolume. The modelling of the spatial information in such the way is often

referred to as reaction-diffusion master equation (RDME). RDME is indeed a

natural extension of CME for spatial heterogeneous.

The SSA-based stochastic simulation algorithms for a RDME are also intro-

duced. A direct extension of DM to simulate RDME is proposed in [17, 151].

It uses a DM variant to select a reaction firing. If the selection is an biochem-

40

ical reaction, the population of reactants involved in that reaction is updated.

Then, only affected reactions in the current subvolume have to update propen-

sities. In case the selection is a diffusion reaction, the diffusive species selects

a random neighbor to move to and the population of this species in these sub-

volumes is updated. For anisotropy diffusion, the destination subvolume of

a diffusive species should be explicitly defined instead of random selecting a

neighbor. The affected reactions due to the diffusive species in both of these

subvolumes update their propensities after that. The direct application of SSA

for doing reaction-diffusion simulation, however, is often computation and/or

memory inefficient. A possible improvement is dividing the selection of the

reaction firing into two consecutive search steps. The first search discovers the

subvolume containing the next reaction firing, then the second one retrieves out

the next reaction firing within that subvolume. There are many possible combi-

nations for doing these steps, e.g., two consecutive DMs. The next subvolume

method (NSM) [45] is a notable formulation of spatial SSA extension in this

way for sampling RDME. NSM is indeed a clever combination of NRM and

DM. In NSM, the selection of the next subvolume using the idea of NRM. The

putative times of subvolumes is precomputed and stored in an indexed priority

queue. Since the smallest putative time is always on the top of the queue, the

selection of the subvolume is in constant time. The next reaction firing in this

subvolume will be found out by DM. After the next reaction firing is defined,

the population of species and affected reaction propensities in subvolume(s)

are updated depending on the type of the selected reaction. Then, the putative

times of subvolume(s) are recalculated to reflect the changes. The priorityheap

of subvolume putative times is consolidated as well. By using the priority queue

to select a subvolume, the time complexity of NSM is scaled logarithmic with

the number of subvolumes.

The Gillespie Multi-particle Method (GMP) [137] is a different simulation

approach to simulate the reaction-diffusion processes. It is different in sense that

41

the reactions and diffusions are treated separately. The theory behinds GMP

is known as theoperator splittingtechnique [35, 36]. In essential, GMP pre-

computes the diffusion time of a molecular species based on its diffusion con-

stant and the subvolume size length. The time-axis is thus divided into small

chunks of the diffusion times. During the simulation, if a diffusion event occurs,

the corresponding species in a subvolume is distributed all over its neighbors.

Between two diffusion events, reactions between species are simulated by DM.

In [138] a hybridτ -leaping (Hτ -leaping) algorithm is presented. It is working

similar to GMP, but the diffusion time of all species is fixed instead. The Multi-

nomial simulation algorithm (MSA) [100] also treats the reactions and diffusion

separately but allows a molecule diffusing from a subvolume to any neighbors

within a prescribed distance. It thus improves the spatial simulation if the num-

ber of diffusive events many orders larger than the reaction events. MSA uses a

conditioned Multinomial distribution to approximate the number of molecules

diffusing.

In literature, the particle-based spatial simulation algorithms have also been

proposed. In these algorithms, the spatial information of each species is tracking

directly. The diffusion of a species in space is explicitly model by a Brownian

dynamic (BD). A reaction between molecules occurs if they are close enough.

More specifically, if the distance between two molecules is less than theso-

calledreaction radius, the reaction could happen. The Smoldyn [7] is a direct

application of the BD to simulate the reaction-diffusion at the particle level.

However, the time step for moving a molecular species in space by a random

walk has to choose small enough so that it does not miss reactions with other

molecules. Green’s Function Reaction Dynamics (GFRD) [163] solves this

problem by a discrete event simulation. Thus the time step for doing a random

work does not need to be fixed arbitrarily small. Recently, the combination of

particle-tracking and RDME simulation are also proposed [55,90].

42

Chapter 3

Tree-based search

3.1 Introduction

An insight understanding the mechanisms of regulatory effects in large cellular

models gives many benefits, but also raises a great challenge for the implemen-

tation of the simulation algorithm. Both the search of the next reaction firing

and the update affected reactions suffer the simulation performance. In this

chapter, we focus our study to the impact of the search on the overall simula-

tion performance, and contribute to its improvement by applying variants of a

tree-based search. The update will be considered in the next chapter.

A linear search to determine the next reaction firing in DM, in principle,

works with any biochemical reaction model. The accumulating sum of propen-

sitiesaj repeats until a reaction found. The time complexity of linear search,

however, is increasing linearly with the number of reactions in the network,

i.e., O(m). Thus, except for some small models, the performance of linear

search is often very slow.

A binary search is, of course, a more efficient method than a linear search

(logarithmic vs. linear complexity). In order to exploit binary search the par-

tial sums of propensities have to be precomputed and store in a tree structure.

Hence, we will start by discussing the underlying data structures and algorithms

used to apply binary search on complete trees with a dependency graph based

43

update mechanism. Then, we study which tree structure will minimize the num-

ber of comparisons needed to find the next reaction firing.

We show, both in theory and in practice, that by using an underlying tree

data structure to store reaction propensities the simulation time can be sensibly

improved. Theory shows that our approach reduces search time from linear to

logarithmic, although propensity updates now require logarithmic time instead

of constant time. Theory also predicts the shape of the tree leading to optimal

average search time. This turns out to be the Huffman tree [79], a device used

in computer science for data compression. Experiments confirm that this tree

indeed leads to faster simulation. We also study further the impact of tree-

rebuilding approaches, by which the propensity Huffman tree is rebuilt when

it becomes non-optimal caused of many reaction firings. Two strategies are

proposed: the fixed time tree rebuilding and adaptive time tree rebuilding. The

former strategy periodically rebuilds the tree after a fixed time, while the latter

allows to rebuild the tree during the simulation depending on how the system

evolves.

3.2 Complete Tree Search

A (binary) complete tree, is a binary tree completely filled at every level, except

possibly the last; each node has exactly two children (internal node), or zero

(leaf). For our purposes, leaves hold the reaction propensityaj for j = 1 · · ·m,

while internal nodes store the sums of values of their child nodes. Thus, at the

top, the root holds the total suma0. Proposition 1 and the following discussion

allow to store a complete tree on a contiguous array, hence improving cache-

friendliness.

Proposition 1. A complete binary tree withm leaves has exactly2m−1 nodes.

We therefore use an array with2m− 1 elements to represent a complete tree

with m reaction propensities filled at the lowest level. In the array representa-

44

tion, a node at positioni will have its two children at position2i and2i+1. We

then recursively from leaves to root construct the tree with the internal sums as

in Algo. 2. Here, each element of the array TREE stores only the partial sums

of the reaction propensities, so we simply need each cell to store a single value

(a floating point double). In order to build up the tree, the number of reactions

m must be an even number. In the casem is not one can add a dummy node

(with propensity0) as the last element of the array.

Algorithm 2 Building the complete tree
procedure: build tree(position)

require: array TREE with2m− 1 elements where elements fromm to 2m− 1 are filled with

reaction propensities

1: if position is not leafthen

2: build tree(2position)

3: build tree(2position + 1)

4: TREE[position] = TREE[2position] + TREE[2position + 1]

5: end if

Once having built the tree, to search for the next reaction firing we proceed

as follows. Letr be a random number inU(0, 1), andra0 be the value we are

looking for. Starting from the root, we travel down the tree, following the left

or right branches according to whether the propensity sum stored in the left one

is smaller than the search value. Whenever we take a right branch, we adjust

the search value by subtracting it from the value stored in the parent. The whole

procedure is outlined in Algo. 3. The procedure is correct, in the sense it finds

the same leafRj as in Equ. (2.7), so each reaction indeed is chosen with the

correctly desired probabilityaj/a0.

The reaction firing causes the system state change; therefore, we also have

to update the propensity tree as well. For that, we use the dependency graph to

keep the local affection between reactions and exploit the fact that the parent of

nodei is located at position⌊i/2⌋. Hence, we only update the reactions affected

and their ancestor nodes in the tree following the path from leaf to root. Since

45

Algorithm 3 Finding the next reaction firing
procedure: search(position, s)

require: properly set up array TREE, search value s

1: if position is leafthen

2: return position

3: else ifTREE[2position]≥ s then

4: search(2position, s)

5: else

6: v = TREE[position] - s

7: search(2position + 1, v)

8: end if

the average path length islog(m), the total cost for the simulation is stable

O(log(m)).

A particular order of reactions in the leaves of a tree in an implementation

has impact on the update of the affected reactions. To illustrate the idea, we

imagine a binary tree with two reactions which affect each other. The number of

computation could reduce to a half if they are staying near each other, i.e., when

they share the same parent comparing with the case they are put in different

branches, i.e., they have different ancestors. In general reactions should be

placed together so that they form a clique.

3.3 Huffman Tree Search

While storing reactions in a complete tree minimizes theheight of the tree,

corresponding to the average computation to search the next reaction firing,

this does not lead to an optimal average-case performance. Indeed, consider

the average number of comparisons performed during the search of the next

reaction firing and denote this value byTm(C), we have:

Tm(C) =
m
∑

j=1

wjDj (3.1)

46

wherem is the total number of reactions,Dj andwj, respectively, are the depth

of the leafRj in the tree and the weight corresponding to the probability the

reactionRj is being selected to fire. The reaction depthDj is indeed the search

length of firing reactionRj. The SSA, by our formulation, therefore now has

changed to find a representation to optimizeTm(C).

In complete tree setting, the depthsDj are roughly equal, since all the leaves

are in the last level or in the next-to-last one. So, we are performing the same

number of computations in every cases i.e., the likely event of picking a fast

reaction requires the same computational effort of the unlikely event of picking

a slow reaction. It is simple to check that this choice leads to a non optimal

Tm(C). Consider the extreme case in which reaction1 has91% probability,

while reactions2, 3, 4 have3% probability each. In a complete tree, we would

haveDj = 2, henceT4(C) = 2. With a non-complete tree it would however

be possible to move reaction1 up in the tree (D1 = 1), while moving the other

reactions down (Dj = 3, j > 1). This leads toT4(C) = 1.18 comparisons,

which is better. Intuitively, we can improve the performance of the complete

tree search, especially for multi-scale biochemical systems, which can be sep-

arated into fast and slow reactions. The main idea would then be to place fast

reactions close to the root, while slow ones farther from it.

These facts are very closely related to well-known results in data compres-

sion. Indeed, the minimization ofTm(C), which leads to optimal performance

in our setting, is the purpose of the Huffman encoding for data compression.

Huffman tree, in [79,91], provides a possible construction to minimizeTm(C).

The fundamental idea there is to build the tree by repeatedly merging trees in a

forest, which initially contains only trees with one node. At each step, the two

trees whose roots (p andq) have thesmallestweights (wp andwq) are merged.

A new rootpq is created and the two previous trees become the subtrees ofpq.

Thepq node is assigned weightwpq = wp + wq. This is repeated until the for-

est contains only one tree. From this, it is clear that in the final tree we have

47

Dpq+1 = Dq = Dp, wherep, q, pq are the nodes involved in any merge. Hence,

we obtain for any suchp, q, pq:

Tm(C) =
m
∑

j=1
j 6=p,q

wjDj + wpDp + wqDq

=
(

m
∑

j=1
j 6=p,q

wjDj + wpqDpq

)

+ wpq

= Tm−1(C) + wpq (3.2)

which relatesTm(C) with Tm−1(C). The above allows us to recall the main

result for Huffman trees.

Proposition 2. The Huffman tree gives the minimum value ofTm(C)

Proof. Proof By induction onm. Base case: easy to check form = 2. In-

ductive case: by the inductive hypothesis, the Huffman tree form − 1 gives

the optimum value forTm−1(C). By contradiction, suppose the Huffman tree

for m is not optimal. So there is some tree having total number of comparisons

T ′m(C) such thatT ′m(C) < Tm(C). W.l.o.g. the smallest weights must be placed

at lowest level. Hence, letp andq are nodes with smallest weight and their par-

ent labeledpq. Using (3.2), we haveT ′m−1(C) + wpq < Tm−1(C) + wpq then

T ′m−1(C) < Tm−1(C), contradicting the inductive hypothesis.

Since each node in Huffman tree has two children, Proposition 1 still holds.

We therefore still use an array with size2m − 1 for representing the Huffman

tree. Note that, however, we do not needm to be even in this setting. The

elements at position fromm−1 to 2m−1 are filled by reactions as leaves. But,

unlike for complete trees, each element in the array must point to its leftand

right child. Building a Huffman tree is done by employing a heap to extract the

nodesp, q with minimum weight at each step.

48

Algorithm 4 Building Huffman tree
procedure: build huffmantree

require: An array TREE with2m − 1 elements, where the elements fromm to 2m − 1 are

filled

1: build heap H with elements(m,w1),... (2m− 1, wm), ordered according towj

2: for position = m− 1 down to1 do

3: extract top element (p, wp) from H

4: extract top element (q, wq) from H

5: TREE[position].VALUE = TREE[p].VALUE + TREE[q].VALUE

6: TREE[position].LEFT = p

7: TREE[position].RIGHT = q

8: insert(position, wp + wq) into H

9: end for

The Huffman tree we built in the Algo. 4 is stored in an array in which each

element contains the fields: VALUE, LEFT, RIGHT. The partial sum is now

stored in the VALUE field. The index of left and right subtree is indicated by

LEFT and RIGHT, respectively. The same binary search procedure in Algo. 3 is

applied to search the Huffman tree for the next reaction, except that now LEFT

and RIGHT fields are used to travel the tree, instead of the previous formulas

which work only for complete trees.

The update stage in the simulation is to reflect the changes to the propensity

of reactions affected. Each element of array TREE stores the location of its

parent node by an additional field, called PARENT, which is set in the Huffman

tree building procedure. The path from a leaf to its root is thus easily to restored.

Accompanying with dependency graph, we traverse upward this path to update

reactions affected. In the following, we discuss about the weight function in the

implementation of Huffman tree and the tree rebuilding when the tree becomes

non-optimal.

By applying the Huffman tree to find the next reaction firing, we want to

reduce the number of comparisons of SSA. A native candidate for the weight

function is the propensity functionaj since this choice leads to less time spent

49

for finding the next reaction. However, during the execution of the simulation,

reaction firings affect their dependent propensities, which also could change

rapidly. This happens, for example, whenever a reaction has a very large rate

constant but a small number of reactant molecules. Its propensity will signif-

icantly change by a very large amount. Updating the values stored in the tree

therefore could make the tree no longer optimal i.e., no longer an Huffman tree.

In this case, we face the choice of either proceeding with a non-optimal tree

(which could still be near the optimum, though), or rebuilding the Huffman

tree. Rebuilding the tree is rather expensive, so we need a trade-off.

Our idea is postponing the reconstruction of the tree while the change of the

weight is less significant. We thus keep on using a non-optimal tree for some

predefined (and tunable) number of SSA steps. The choice of this parameter,

however, only affects the performance, while the results are still exact.

3.3.1 Fixed time tree rebuilding

An intuitive and easy implementation for the tree rebuilding discussed above is

to use a fixed numberk, and consolidate the tree structure only once everyk

steps. This amounts to assuming that the weights do not change significantly

during k simulation steps, so we can postpone the rebuilding without a large

impact on performance. To compensate, we slightly modify weightswj to cope

with propensities changing rapidly. More precisely, we assign a higher weight

to those reactions which are more likely to change.

For reactionRj, we consider two sets: conflicts(Rj) as the collection of

reactions that affect and compete withRj

conflicts(Rj) = {Ri|Rj ∈ affects(Ri), reactants(Ri) ∩ reactants(Rj) 6= ∅}
(3.3)

and favors(Rj) is the collection of reactions that affect and favorRj

favors(Rj) = {Ri|Rj ∈ affects(Ri), products(Ri) ∩ reactants(Rj) 6= ∅} (3.4)

50

Table 3.1: Models with number of reactions and species
Model Species Reactions

Oregonator 8 5

Circadian Cycle 9 11

HSR of E. Coli 28 61

MAP Kinase Cascade 106 296

respectively, where reactants(Rj) and products(Rj) are the set of species taking

part in reactionRj as reactants and products. In terms of the dependency graph

DG(V,E), we have the following relation:|conflicts(Rj)| + | favors(Rj)| =

in-degree(Rj).

Then, we will estimate the probability a particular reaction occurring will

increase (resp. decrease) the propensity of reactionRj as |conflicts(Rj)|/m
(resp.|favors(Rj)|/m). Fork simulation steps, the estimated weight of reaction

Rj is:

wj(aj, k) = aj + α1k
|favors(Rj)|

m
+ α2k

|conflicts(Rj)|
m

(3.5)

whereα1, α2 are parameters denoting the average change amount. For sim-

plicity, we assign these to the stochastic rate constant for the reaction at hand

i.e,α1 = −α2 = kj.

We evaluate and compare the performance of four algorithms: DM, NRM,

Complete Tree Search and Huffman Tree Search. The simulation is performed

on different models varying in size. Table 3.1 provides a summary of the num-

ber of reactions and species in each simulated systems. Before going to the

details of the results, we give a brief description of these models.

The first two models we studied are the Oregonator and Circadian Cycle

model. The underlying mechanism of the Oregonator dynamics contains both

an autocatalytic step and a delayed negative feedback loop. It is a kind of chem-

ical reaction that shows a periodic change in the concentrations of the products

and reactants [5] where reactions and species involved are shown in Fig. 2.2.

The second model is the simplified circadian cycle model in [166]. The circa-

51

dian rhythm is a daily cycle in the biochemical processes of many living beings.

The key mechanism of the circadian rhythm is the intracellular transcription

regulation of two genes that is an activator and a repressor. Activator acts as the

positive element in transcription in binding to promoter, while repressor acts as

the negative element by repressing the activator.

The third model that we simulated is the heat shock response (HSR) process

which occurs when cells are shifted to high temperature. The synthesis of a

small number of proteins, called the heat shock proteins (HSPs), is rapidly in-

duced. In E. coli, the response is controlled by the so-calledσ-factor which is

capable of binding to various regions of the DNA that stimulate the transcrip-

tion of the particular gene under their control. When E. coli senses the raised

temperature the special heat shockσ-factor calledσ32 will replaceσ70, which

is the boundσ unit of RNA Polymerase (RNAP), to accelerate HSPs synthesis

(see more details in [96]).

The last model is the mitogen-activated protein (MAP) kinase (MAPK) cas-

cade. The MAP kinase signaling pathway is a chain of proteins in the cell that

cascade a signal from a receptor on the surface of the cell to its nucleus. The

signal begins when mitogens or growth factors bind to the receptor on the cell

surface and ends when the cell responds a response pattern e.g., growth, dif-

ferentiation, inflammation and apoptosis. The cascade is well-conserved which

means this process can be found in a large number of cell types. The basic

mechanism of this pathway is driven by three protein kinases: MAPKKK (such

as RAS/Raf), MAPKK (such as MEK) and MAPK. The external stimuli acti-

vate the first element of the pathway, the MAPKKK. The activated MAPKKK

phosphorylates MAPKK at two sites. The phosphorylated MAPKK then acti-

vates the MAPK through the phosphorylation on its threonine or tyrosine of the

protein structure. MAPK can then act as a kinase for transcription factors, but

may also have a feedback effect on the activity of kinases like the MAPKKK

further upstream [93].

52

Figure 3.1: Number of comparisons performed by each algorithm. For Huffman Tree, we

rebuild the tree everyk = 100, 000 steps.

The performance of four algorithms is reported in Fig. 3.1-3.2. The results

have been computed for500, 000 simulation steps on an Intel Core i5-540M

processor. For the Huffman Tree Search, we had to pick a numberk of steps

after which we reconstruct the Huffman tree. In this experiment we chosek =

100, 000, hence causing the tree to be rebuilt5 times in the whole simulation.

In Fig. 3.1, we show the number of comparisons performed for finding the

next reaction firing in each case. The NRM algorithm is not shown because the

smallest putative time is always on the top of the priority queue used in NRM.

In all the cases, the Huffman tree search performed the least number of com-

parisons. In simulating small models, the difference between linear search and

binary search is not very significant. However, with the larger models binary

search is nearly50% faster than linear search, and Huffman Tree Search further

improves on that by performing∼ 20% fewer comparisons than Complete Tree

Search.

As shown in Fig. 3.2, simulating small models is not significantly affected

53

Figure 3.2: Overall performance in terms of reactions fired per second.

by the choice of the algorithm. This is intuitive, since in these models there is

little room to improve both in search time and in update time, which contribute

roughly in the same way to the overall performance. However, when the system

is large, then search time dominates update time. In this case, search time sig-

nificantly benefits from using an algorithm such as Huffman tree search, as our

results for the MAP Kinase model show.

Picking an appropriatek to gain the best performance strongly depends on

the problems at hand. More specifically, it depends on the changes of propensity

function. In general, we could pick a large valuek for systems which evolve

near a stable state, so that changes in propensity are small. For unstable systems

where the propensities sharply change frequently, by contrast, the value ofk

should be chosen small enough to capture such fluctuation. In practice, one

can roughly estimate the value ofk from a pilot simulation run, or move to an

adaptive approach for tree rebuilding.

54

3.3.2 Adaptive time tree rebuilding

The tree rebuilding timek is model-dependent. Indeed, a periodic rebuilding

tree with a fixed valuek seems to be appropriate in simulating systems which

are almost stable, so that propensity changes are small. In applying to arbitrary

models, the performance is so very sensitive. We therefore improve the above

approach by avoiding the use of a fixed number of steps, and instead use an

adaptive approach in which we rebuild the tree only when there is a large change

occurred i.e., when rebuilding seems to lead to a higher gain in performance.

Large changes of reaction propensity occur if the reaction rate constant is

very large, hence even a small fluctuation in reactant population can lead to a

very different reaction propensity. Large changes to propensity may also hap-

pen for reactions having a medium rate constant, but the population of reactants

suddenly is increased by other fast reactions. These types of biochemical re-

actions are typically found in, e.g.,biochemical switches. There, the system

spends a bulk of time fluctuating near the stable state; however, when a random

noise triggers the switch and this results in a dramatic change in the propensities

of reactions (shown in Fig. 3.3). In that case, the tree should be rebuilt, or the

search performance will suffer.

A straightforward procedure predicting such events is based on trial simula-

tions, in which sample trajectories are collected. An analysis on the ensemble

of trajectories is then performed to obtain roughly average times for the fluc-

tuations in the system. These values therefore are used as the times to rebuild

the Huffman tree. However, since the behavior of biochemical systems is inher-

ently random, there will always be some difference between the predicted times

and real simulation.

An intuitively less expensive approach is to dynamically check for changes

in propensities caused by each simulation step. The advantage of this approach

is that we detect the abrupt changes on the fly. To do so, we define an acceptance

55

Figure 3.3: Random noise activates the trigger causing the system to abruptly exit of its stable

state.

thresholdδ, which is the largest change which does not trigger an immediately

tree rebuilding. Letτ be the sojourn time until the next reaction fires. Then, the

difference in propensity of an reactionRj is computed as:

cj(τ) = aj(x(t+ τ))− aj(x(t)) (3.6)

where t is the current simulation time. When the above difference is high

enough, i.e.,cj(τ) ≥ δ, we then immediately restructure the Huffman tree.

In above we only consider abrupt single changes to propensities. We should

also account for the fact that small updates, when applied many times, can also

cause a significant change in propensities. To handle this case as well, we cu-

mulatively sum all the propensity updates while simulating, as shown below.

sj +=
∑

τ

cj(τ) (3.7)

Thus, we rebuild the entire tree when the cumulative sum is over the acceptance

threshold i.e., whensj ≥ δ.

56

Table 3.2: Gene expression model

DNA
k1=5−−−→ DNA + mRNA

mRNA
k2=5−−−→ mRNA + Protein

mRNA
k3=1−−−→ ∅

Protein
k4=1−−−→ ∅

DNA + IND Protein
k5=0.0001−−−−−−→ DNA INDProtein

DNA INDProtein
k6=100−−−−→ DNA INDProtein + mRNA

To compare the performance of the Huffman tree search with fixed and adap-

tive time rebuilding, we considered a gene regulation given in Table 3.2. There,

a single gene is being translated into mRNA, which is then being transcribed

into proteins. While there is no transcription factor binding to DNA, the tran-

scription occurs at a medium rate. The system then slowly fluctuates for a long

time. However, as soon as the transcription factor INDProtein binds to DNA,

it acts as an inducer, causing the transcription to happen at a larger rate by

quickly producing a large amount of mRNA. In Fig. 3.4 we report the simula-

tion runtime of these approaches. We measured the average time required to

run a simulation for500, 000 steps (disregarding the initial setup time for the

algorithms).

In our gene expression model, the inducer protein INDProtein has an im-

portant role while binding to DNA, since it accelerates the rate of mRNA pro-

duction, which results in a large amount of proteins. This is because the last

reaction in the model has very large ratek6 ≫ k1, while its reactant population

is small. The Huffman tree structure for applying binary search clearly should

be consolidated when this reaction occurs.

The adaptive approach performs the reconfiguration at the correct time, by

dynamically checking for propensity changes. Even if this requires a small

overhead, still this leads to a better performance than those we obtained through

the fixed approach, as Fig. 3.4 shows. By contrast, in the fixed approach, a

small value of parameterk causes the tree to be rebuilt too many times. Here,

57

Figure 3.4: Simulation time of fixed time and adaptive time effort

although the tree is kept near the optimum, and less time is spent for searching,

the rebuilding cost negates this advantage. On the other side, a higher value of

k leaves the tree far from the optimum, causing search to be rather expensive

and impacting one the overall performance.

3.4 Conclusion

In this chapter we apply binary search in trees to the SSA. We have shown the

complexity of the search and update by a tree structure is reduced to logarith-

mic in the number of reactions. This feature makes it become more appealing to

simulate large models. Further, we exploit the Huffman tree to reduce the num-

ber of comparisons needed for finding the next reaction firing. We proposed

two strategies, the fixed time and adaptive time tree rebuilding, for keeping the

tree close to the Huffman optimum during simulation, and studied their perfor-

mance. The fixed time tree rebuilding is suitable for system near stable, while

58

the adaptive tree rebuilding is more flexible.

Several improvements for the future are possible. For instance, in the stud-

ied approaches we either leave the Huffman tree as it is, or perform a complete

rebuilding. One could then imagine to interleave full rebuilding, which is ex-

pensive, with a cheaper partial optimization. The latter would not restore the

tree to an optimal case, but just improve it slightly. For instance, if a deep

node in the tree is found to have higher propensity than a shallow node, we can

quickly swap them and improve the tree. This optimization mechanism would

be then similar to those used in garbage collection in computing systems, which

is often split in frequent minor collections and rare major ones. As another

approach, one could even explore the use ofn-ary trees instead of binary trees.

59

60

Chapter 4

Rejection-based update

4.1 Introduction

Even though there are many efficient improvements of SSA introduced, most of

them only focus on improving the search for the next reaction firing. For loosely

coupled reactions in which the affected reactions have to update propensities

roughly a small constant factor, the search largely affects to performanceof the

simulation. An efficient search procedure combined with a dependency graph

update mechanism yields a great speedup gain; however, this is not always be

the case for large cellular models. They are typically encompassed with a large

number of interconnections and feedback loops. The dependency graph be-

comes very dense due to the highly coupled degree of reactions. Anytime the

population of a species is changed, a large number of affected reactions have

to recompute propensities. The costly propensity update is thus inevitable and

contributes a significant portion to the simulation time. Hence, reducing the up-

date time will substantially improve performance of the stochastic simulation.

Furthermore, in order to apply SSA, the reaction network has to be explicitly

described in form of elementary reactions. In other words, the reaction network

should not contain any abstraction. That is all intermediate products of all bio-

chemical reactions have to be explicitly described. However, this emerges two

difficult problems. First, if all possible combinations of molecular species are

61

taken into account, the problem of state explosion can occur [120]. A signaling

pathway, which enables the cell to sense the changes in its environment, is just

an example. The signaling pathway is activated when a receptor is bound. The

receptor often has many binding sites e.g., the phosphorylation site, the methy-

lation site. A binding site changes the internal state of the receptor, and further

controls and regulates the operations of the pathway. Due to the large number of

possible binding combinations and their corresponding biological responses, a

model with a quite limited number of species can derive a huge number of reac-

tions (see e.g., [34] for details). Second, because of the incomplete knowledge

in the full set of reactions, only the macroscopic behaviour of the biological

system is observable. A typical example is the allosteric effect. This effect oc-

curs when an effector molecule binds to the allosteric site of a targeted species

e.g. a protein, an enzyme. The targeted species is then modulated and operated

independently with the reactions in the system. This type of biological noise is

referred to as theextrinsic noise[150]. These issues have augmented for the ap-

plication of complex propensity functions in modelling biochemical reactions.

The power law [39], for example, has been successfully applied to model such

the cooperativity behaviour of biochemical reactions. However, evaluating a

complex propensity function is indeed very time-consuming, and hence firmly

increasing the computational burden in update the reaction propensities.

In this chapter, we are going to study the effect of propensity updates to

performance of the stochastic simulation. We contribute to the improvement

of SSA by introducing a new efficient algorithm, called Rejection-based SSA

(RSSA). RSSA is an exact simulation algorithm, and is specifically tailored

for the case in which propensity updates are time-consuming. It reduces the

cost of propensities updates by avoiding and collapsing as much as possible

the number of propensity updates. The propensity of a reaction is evaluated

only as needed. In RSSA, the selection of a reaction firing is done through two

steps. First, a candidate reaction is selected according to an over-approximation

62

of its propensity. A rejection-based mechanism is then applied to recover the

exactness of the algorithm. In the following, we are going to describe these steps

in detail and devise improvements to this core of RSSA algorithm. Further, we

discuss how to systematically optimize the tunable parameters of RSSA so to

maximize its performance.

4.2 RSSA

RSSA improves over SSA by reducing the average number of propensity up-

dates which have to be performed. Its key idea is to pre-compute an over-

approximation of reaction propensities, and use that to select candidate reac-

tions to be fired. Selected candidates are then inspected, and are either fired or

(with low probability) rejected. The rejection mechanism is used to ensure that

reactions are fired following exactly the distribution provided by SSA. RSSA

takes advantage because it evaluates propensities infrequently (only as needed)

by postponing and collapsing as much as possible their updates. When firing a

reaction, with high probability, we do not need to recompute the propensity of

all the dependent reactions. Hence, we avoid costly updates.

In the following, we first detail how RSSA samples a reaction firing with its

firing time. We examine several possible choices with their implementations,

and discuss the effects of such choices for different network sizes. Second, we

provide a formal proof for correctness of RSSA. RSSA is exact in the sense

it produces the same stochastic behaviour as SSA. Then, we focus on control-

ling the acceptance probability of a candidate reaction by varying the amount of

over-approximation, hence indirectly controlling simulation performance. Sev-

eral mechanisms are proposed which can be run at different levels, in a static or

dynamic way. This allows RSSA to automatically adjust the acceptance proba-

bility depending on the current system state, so to adaptively optimize itself.

63

4.2.1 Selection of reaction firing

The over-approximation of reaction propensities is derived by giving a bound

on the population of molecular species involved in the reaction. So, letX i

andX i, respectively, be an arbitrary lower bound and upper bound for each

speciesSi around the current populationXi. The interval[X,X] is called the

fluctuation interval. The current state vectorX satisfiesX ≤ X ≤ X on

each species. Then, we compute a lower boundaj and an upper boundaj for

the reaction propensitiesaj. Sinceaj is a functionf of the state vectorX,

the lower/upper bounds are computed by minimizing/maximizing such function

over the whole fluctuation interval. Often, this function is monotonic, in that it

increases whenever the species population increases. This is the case, e.g.,for

the mass action kinetics. If the monotonicity holds, one can simply letaj =

f(X) andaj = f(X). In the case a complex propensity functionf is used, one

can e.g., apply numerical optimization techniques, or interval analysis [114] to

recover the bounds. Note that we do not actually need the exact minimum and

maximum: any (possibly tight) lower/upper bounds suffice.

Given propensity upper bounds and lower bounds, the selection of a reaction

firing is composed of two steps as following. First, a candidate reactionRj

will be chosen with the probabilityaj/a0 in which a0 is the total sum of the

upper-bound propensities i.e.,a0 =
∑m

j=1 aj. After the selectionRj is subject

to a rejection test for validation. IfRj is accepted, it is fired andX is updated.

Otherwise,Rj is discarded and we randomly select a new candidate.

The selection of the candidate is made randomly, assigning to eachRj the

probability aj/a0. For this we need to apply a search algorithm for general

discrete distributions. The general interface of the search is it takes a random

numberr1 ∼ U(0, 1) as a parameter and returns a candidate reactionRj with the

corresponding probabilityaj/a0. Here, we can choose among several different

algorithms. These algorithms are different in the speed and simplicity. A search

64

with very fast marginal speed, however, requires to build complex underlying

data structures, e.g., trees, hash tables before it could run. We discuss herethree

options for implementing of the search algorithm. We briefly discuss their time

complexities as they are running. An experimental study is presented in the next

section.

Linear search. The simplest search is the linear search. In linear search, the

partial sum of upper-bound propensities is continuously accumulated, and the

candidate reactionRj is selected which is the smallest reaction indexj satis-

fying the inequality
∑j

k=1 ak > r1 · a0. The advantage of linear search is that

it does not require any complex data structures. In implementation we need an

array sizem to storem upper-bound propensitiesaj for all j = 1 . . .m. How-

ever, the time complexity of the search is linearly with the number of reactions

i.e., O(m). Hence, it often runs very slow with large models. Although the

search can be improved if upper-bound propensities are sorted in the decreasing

order, the complexity does not change in the worst case.

Binary search. A binary search can apply to find the next candidate reac-

tion. The details of binary search is discussed in chapter 3. Essentially, a tree

structure, e.g., a complete tree is needed to build before the search can becon-

ducted. At the lowest level of the tree the upper-bound of reaction propensities

are stored. The partial sums of propensity upper-bounds are stored in middle

levels. The total suma0 therefore will be stored at the tree root. When search-

ing, only one root-to-leaf path of the tree is visited to find the candidate reaction

Rj. The next branch is selected depending on the search value i.e.,r1 · a0, with

the partial sum stored in current internal node. The left branch is selected ifthe

search value is less than the value stored in the internal node. The right branch is

chosen otherwise. In case the right branch selected, the search value is adjusted

by subtracting it with the value stored in this internal node. The search trav-

els down with a new branch selection until a leaf is reached. Since the search

complexity is linked to the length of the tree path, we could use a special tree

65

structure i.e., the Huffman tree, to optimize the average search performance. In

an implementation we can still use an array to represent the tree structure; how-

ever, compared with linear search the array has more elements. This is because

we have to store also partial sums of propensity upper-bounds for the internal

nodes, as well as the pointers to the children nodes. The time complexity for

the (complete) binary tree search is logarithmic both in search and update the

tree. This property makes it suitable for large models.

Lookup table search.A lookup table search is a very fast procedure to find

a candidate reaction as comparing with a comparison-based search, e.g., lin-

ear search, binary search. The downside for using this search procedure is the

pre-processing time which is needed to build the lookup tables. We have im-

plemented and experimented with a well-known lookup search called the Alias

method [43,76,169]. The theoretical foundation underlying the Alias method is

a theorem stating that any discrete probability distribution overm values can be

expressed as an equi-probable mixture ofm two-point distribution. The proba-

bility vector is used in RSSA is them-vector of probabilityaj/a0s. The set-up

of the Alias method requires two tables each sizem: a table, called cut-off ta-

ble F , storing the probability of the first two-point distribution, and a second

table, called alias tableL, contains the alias of the second of the two-point dis-

tribution [94]. The pre-processing time to build these tables is linear withthe

number of valuesm [167]. The Alias method proceeds to search for a candidate

reaction as follows. A random numberr1 ∼ U(0, 1) is first used to lookup the

position of the equi-probable mixture. It is then rescaled to select which partin

the two-point distribution. More specifically, the positionp = ⌊m · r1⌋ of the

two-point mixture is located. The first value in this two-point distribution stored

in cut-off tableF is loaded. It is compared against with(m ·r1−p) to select the

candidate reaction. If((m · r1 − p) < F [p]) the candidate reaction indexj = p

will be returned. Otherwise, the candidate reaction index is the aliasj = L[p].

The Alias method therefore requires only one comparison and at most two table

66

accesses to select a candidate reaction.

When the candidate reactionRj is defined, an acceptance-rejection proce-

dure is applied to verify whether accept it to fire. The decision is made by

its exact propensityaj. For this validation step, we toss a (biased) coin with

success probabilityaj/aj. If the toss succeeds, we accept the candidateRj, oth-

erwise we reject it. The efficient simulation of this coin toss, however,is tricky

since we do not know the exact value ofaj in advance, and we want to avoid

computing it if possible. To achieve that, we extract a uniform random number

r2 ← U(0, 1). We then check whetherr2 ≤ aj/aj, which does not require us

to computeaj. If the check succeeds, then we know thatr2 ≤ aj/aj ≤ aj/aj,

hence we can acceptRj. Only when this test fails we indeed computeaj, and

then testr2 againstaj/aj. Note that the computation ofaj is infrequently per-

formed whenaj/aj is close to1.

The clarification in reaction firing selection between SSA and RSSA is de-

picted in Fig. 4.1. The selection of a reaction firing in SSA is done in one step

only by the exact reaction propensities, while RSSA instead uses the propensity

upper bounds with two steps. Showing in the figure, reactionR3 selected by

SSA will be fired immediately after selected. In RSSA, candidate reactionR3

has to be verified before it can be fired. This candidate reaction can even be

rejected if the random value (the black dot in the figure) is larger than its exact

propensity.

The Fig. 4.2 graphically demonstrates the improvement of RSSA over SSA

in which reaction rate is modelled by the Michaelis-Menten expression. The fig-

ure shows the behaviour of RSSA on different regions of the Michaelis-Menten

curve. From Fig. 4.2 we see that the fluctuation interval of the species can

be widened without too much approximation of reaction propensity, and thus

achieve a huge advantage in performance. More specifically, when the species

population increases, it can be bound by a larger fluctuation interval, while the

propensity range still gets narrower, allowing RSSA to rarely discard the picked

67

Figure 4.1: Select a reaction firing by SSA and RSSA

reaction.

4.2.2 Reaction firing time

By introducing propensity upper-boundaj to select a reaction firing, rather than

exactaj, we add a probability the system will do a self-jump to its current state.

We imagine that we have built a new transition rule for the candidate reaction

Rj given the current stateX at timet (see Fig. 4.3). There are two options for

this candidate reaction: 1) moving to new stateX(t + τ) = X(t) + vj with

rateaj (w.r.t. the candidate reaction is accepted), or 2) still remaining in its

current stateX(t + τ) = X(t) with rate(aj − aj) (w.r.t. candidate reaction is

rejected) in whichτ is the waiting time. The total rate form candidate reactions

is
∑m

j=1 [aj + (aj − aj)] = a0. Therefore, the waiting time for all thesem

transitions is exponential distributed with mean1/a0. The firing time of an

68

Figure 4.2: The behaviour of RSSA on different regions of the Michaelis-Menten curve

accepted reaction is the accumulated times of the consecutive rejectedcandidate

reactions. In probability theory, the firing time of the accepted reaction isan

Erlang(k, λ) distribution with rate parameterλ = a0 and shape parameterk is

the number of trials until that reaction is accepted.

We use the convolution method to sample theErlang distribution. Hence,

we count the number of trialsk until a new state transition occurring due to a

reaction accepted. Then,k uniform random numbers, denoted byui ∼ U(0, 1)

for i = 1 . . . k, are generated. The firing time is computed by:

τ = (−1/a0) ln(
k
∏

i=1

ui) (4.1)

In practice, we can approximate the reaction firing timeτ by the mean of

the correspondingErlang distribution i.e.,k/a0. If the number of trialsk is

large, a lot of random numbers used in generating theErlang distribution will

be saved.

69

Figure 4.3: Transition rule for a candidate reaction

4.2.3 The RSSA algorithm

Following the discussions in previous section, we now present the overall of the

RSSA algorithm. The outline is given in the Algo. 5. The simulation repeats

(by thewhile loop at line 1) until the current timet passes over a predetermined

simulation timeTmax. The code inside the simulation loop is logically divided

into three parts: 1) preparing data structures for selecting the next reactionfiring

(line 2 - 4), 2) deciding which reaction fires next and its firing time (line 8- 21),

and 3) updating and maintaining the system state due to a reaction firing (line 22

- 25).

The preparation starts at line 2. First, the fluctuation interval[X,X] of the

current system stateX is defined. Given the fluctuation interval, we will com-

pute the upper-bound propensityaj and lower-bound propensityaj of a par-

ticular reactionRj. The usage of lower-bound propensity will speed up the

acceptance process when the evaluation of the propensity is time-consuming.

The corresponding total upper-bound propensitya0 sums up allaj.

The selection of the next reaction firing is done through a loop from line 8 -

20. The loop repeats until the flagaccepted is set totrue. In each iteration three

70

Algorithm 5 RSSA procedure
1: while t < Tmax do

2: define the fluctuation interval[X,X] of current stateX

3: compute the upper-bound propensityaj and lower-bound propensityaj for each reaction

Rj

4: compute the total upper-bound suma0
5: repeat

6: setu = 1

7: setaccepted = false

8: repeat

9: generate three random numbersr1, r2, r3 from uniform distributionU(0, 1)

10: search for a candidate reactionRj with probabilityaj/a0 by r1
11: if r2 ≤ (aj/aj) then

12: accepted = true

13: else

14: evaluateaj with current stateX

15: if r2 ≤ (aj/aj) then

16: accepted = true

17: end if

18: end if

19: setu = u · r3
20: until accepted

21: set transition timeτ = (−1/a0) ln(u)
22: update timet = t+ τ

23: update stateX = X + vj

24: store/handle data

25: until X(t) /∈ [X,X]

26: end while

71

random numbersr1, r2, andr3 ∼ U(0, 1) are generated, respectively. The first

two numbers is used to decide which reaction occurring, while the last random

numberr3 is accumulated up to calculate the reaction firing time (by line 21).

At line 10, we user1 to randomly retrieve a candidate reactionRj with the

probability aj/a0. A particular search discussed in the previous section can

be applied; however, it may require to set-up underlying data structures at the

preparation step. Then, we decide whether to accept this candidate reaction fir-

ing or to reject it. At line 11, we comparer2 < aj/aj. If this inequality is satis-

fied, we immediately accept the candidate reactionRj firing without evaluating

its exact propensity. We only compute the actual propensity in case this con-

dition fails. For this situation, we evaluate the reaction propensityaj (line 14).

Then, ifr2 < aj/aj reactionRj is accepted. We then move to calculate its firing

time.

The reaction firing timeτ is computed by line 21 i.e.,τ = (−1/a0) ln(u),
in which variableu is defined at line 6. It is, in fact, a implementation of the

convolution method for theErlang distribution by Eq. 4.1 discussed in the pre-

vious section. RSSA multiplies variableu in every validation step by a uniform

random quantityr3 at line 19.

Consequently, from line 22 - 24, we finish a simulation step. The system

moves to new statex + vj caused by reactionRj firing. We advance the simu-

lation clock to new timet + τ . The current simulation data could be stored to

external storage for further processing.

When we update the state (line 23) we do not have to update propensities for

dependent reactions as in SSA. This is especially beneficial when the reaction

network comprises reactions having a large number of dependencies. In that

case, SSA has to recompute the propensities for each of them, while RSSA

simply skips this step. On the other hand, RSSA has to check whether the new

stateX still belongs to the fluctuation interval by line 25. This requires only a

few comparisons, since only a few species were affected by the fired reaction.

72

If the system state is still confined in its fluctuation interval, the new reaction

firing selection is executed. In the uncommon case in which the system state

leaves the interval, i.e.X /∈ [X,X], we exit the loop in line 25 so that a new

fluctuation interval is defined. At that time, new upper-bounds and the lower-

bounds of reaction propensities as well as the supported data structures for the

search have to be recomputed.

4.2.4 Proof of correctness

We now show the correctness of the RSSA algorithm. The correctness, in this

sense, means RSSA selects the next reaction firingRj with the same probabil-

ity as SSA i.e., a reactionRj is selected with corresponding probabilityaj/a0.

This result is stated in Proposition 3. In other words, RSSA produces the same

stochastic behavior as SSA.

Proposition 3. RSSA is exactly choosing a reactionRj to fire with probability

aj/a0. In addition, its firing time is exponential distribution with ratea0.

Proof. At a specific timet with current system stateX ∈ (X,X), letPr(Rj) be

the probability a candidate reactionRj is selected and accepted to fire.Pr(Rj),

by the chain rule, is the multiplication of two probabilities: the probability of

Rj is selected as a candidate, and the probability it is accepted. Hence, it given

by:

Pr(Rj) =
(aj
a0

)

·
(aj
aj

)

=
aj
a0

(4.2)

Now, letPr(R) be the probability an arbitrary reaction which is selected and

accepted with current system state. We havePr(R)

73

Pr(R) =

∑m
j=1 aj

a0

=
a0
a0

(4.3)

Thus, using the conditional probability, we can derive the probability re-

actionRj is selected and accepted given an arbitrary candidate reactionR is

selected and accepted. That is:

Pr(Rj|R) =
(aj
a0

)

/
(a0
a0

)

=
aj
a0

(4.4)

For the second statement, letfτ be the PDF of the firing time of the accepted

reactionRj. We will prove that it has the exponential distribution with ratea0

i.e., fτ(x) = a0 · e−a0x. In following let suppose the number of trials before

reactionRj accepted is denoted byk. The following derivation makes use the

fact that a reaction is accepted at trialk (i.e.,k − 1 trials previous are rejected)

following a geometric distribution with success probabilitya0/a0.

We have:

74

fτ(x) =
∂

∂x
P(τ ≤ x)

=
∂

∂x

∑∞
k0=1 P(τ ≤ x | k = k0) · P(k = k0)

=
∂

∂x

∑∞
k0=1 FErlang(k0,a0)(x) ·

a0
a0
· (1− a0

a0
)k0−1

=
∑∞

k0=1

∂

∂x
FErlang(k0,a0)(x) ·

a0
a0
· (1− a0

a0
)k0−1

=
∑∞

k0=1 fErlang(k0,a0)(x) ·
a0
a0
· (1− a0

a0
)k0−1

=
∑∞

k0=1

a0
k0 · xk0−1 · e−a0x
(k0 − 1)!

· a0
a0
· (a0 − a0

a0
)k0−1

= a0 · e−a0x ·
∑∞

k0=1

(a0 − a0)
k0−1 · xk0−1

(k0 − 1)!

= a0 · e−a0x · ex·(a0−a0)

= a0 · e−a0x = fExp(a0)(x)

From the proof, we derive that the acceptance probability of the acceptance-

rejection step in selecting a reaction firing of RSSA is bound. In fact, let

Pr(acceptance) be the acceptance probability. We have that

a0/a0 ≤ Pr(acceptance) = a0/a0 ≤ 1 (4.5)

Because the lower-bound and upper-bound propensity are functions of the given

75

fluctuation interval, we could adjust the acceptance probability to achieve a de-

sired probability through tuning this interval.

4.2.5 Fluctuation interval control

Once a candidate reaction is selected, RSSA decides whether to accept or reject

the candidate reaction. We can adjust the acceptance probability of a candi-

date reaction through controlling the fluctuation interval[X,X]. In general,

the smaller the interval we use, the higher acceptance probability a candidate

has, however propensity updates become more frequent. In the special case

where the fluctuation interval[X,X] degenerates into stateX the acceptance

probability is100%. In other words, RSSA reduces to the original SSA. On

the other side, if we increase the fluctuation interval, we reduce the number of

propensity updates. We can even widen the flucutation interval so that no update

occurs during the simulation; however, the candidate reaction will be rejected

frequently. In that case, the acceptance probability is decreased significantly.

The selection of the next reaction firing therefore has to be repeated frequently.

Summing up, it is important in RSSA to control the fluctuation interval so that

we can control the acceptance probability, and thus the simulation performance.

The simulation performance is then optimized when the search and update costs

are balanced.

Three mechanisms are discussed below. The simplest one is the uniform

fluctuation rate in which all species use the same rate. It has both advantages

and disadvantages. On the positive side, the calculation of fluctuation interval

is fast, requiring only vector computation. However, it is quite not suitable for

the models having species fluctuating in different scales. For example, consider

the case in which some species are involved in fast reactions, and are modified

frequently while other species fluctuate slower. The application of uniform rate

in this case is clearly inefficient. Using a non-uniform rate or an adaptive rate

appears to be better since they would allow to control the fluctuation interval of

76

each single species. The latter approach is the most flexible. It allows to adjust

the fluctuation rate at runtime to improve the acceptance probability depend-

ing on the phase of the system. The most advantageous application of adaptive

rate control is on those models where the population of some species fluctuates

from very high to very low and vice versa. It is clear that we should dynam-

ically change the fluctuation rates of these species to optimize the acceptance

probability. Also, an absolute interval size (instead of a%) can be preferred

in case the population of a species is very low (say e.g., less than25) than the

relative rate.

Uniform fluctuation rate. This is the simplest procedure to control the

fluctuation interval. All molecular species are assigned with the same rateδ.

Then, the population of a molecular speciesSi is assigned to an fluctuation

interval[Xi(1− δ), Xi(1 + δ)].

When a reaction is selected to fire, the populations of the molecular species

involved in this reaction is updated. The new system state is checked to satisfy

its fluctuation interval constraint i.e.,X ∈ [X,X]. There are two possible

outcomes. If the constraint is satisfied, that is the system state is stillconfined

in the fluctuation interval, the simulation continues without doing any update to

the underlying data structures. Otherwise, the system stateX has moved out

of its assigned interval. The new fluctuation interval has to be computed. It

is given by (using vector notation) as[X(1 − δ), X(1 + δ)]. The new upper-

bound of reaction propensities as well as the underlying data structures have to

be re-computed. Then, the new simulation iteration is executed.

Non-uniform fluctuation rate. The main idea of non-uniform fluctuation

rate is to assign different rates to molecular species. It provides flexibility to

control in detail the fluctuation interval of each species. On the other hand, it

also requires more computational effort. This approach is indeed a generaliza-

tion of the uniform fluctuation rate. It is intuitively useful to apply to the systems

where some molecular species fluctuate more frequently in a larger intervalthan

77

other species.

Let us consider a multiscaled system, in which reactions can be separated

into fast and slow reactions. A fast reaction is selected to fire mostof the

time during the simulation. Fast species involved in the fast reactions there-

fore change more frequently. It seems useful then to use larger fluctuation rates

for fast species, and smaller ones for slow species.

Thus, the application of uniform fluctuation rate for these systems seems to

be less efficient. We should assign a larger rate for fast species, hence decreas-

ing the number of updates, and a smaller rate for slow species, hence improving

their acceptance probability. In order to implement the non-uniform rate ap-

proach to multiscaled models, we first divide the reactions into fast reactions

and slow reactions. It is possible to do that because the system satisfies the

multiscaled condition. The classification of reactions depends on the reaction

rate. The reactions having large reaction rate will be assigned to fast reaction

group. The species which are involved in fast reactions are labeled fast species,

while the rests are called slow species. A fluctuation rateδfs will be applied

for the fast species while slow species are assigned a smaller rateδss. Using the

assigned rate, we can calculate the fluctuation interval of each speciestype.

Indeed, we can generalize the non-uniform rate approach used in multiscaled

models so that each species is assigned a unique rate. That is done by lettingδi

be the fluctuation rate of speciesSi. We then assign to that species the fluctua-

tion interval[Xi(1− δi), Xi(1 + δi)]. In implementation, a lookup table can be

used to store the fluctuation rate of each species to speed up the retrieving.

Adaptive fluctuation control. The mechanisms discussed above are static

fluctuation control systems in the sense they apply fixed fluctuation rates during

the simulation. In some models, the population of some species can change

significantly during the simulation, e.g., moving from very highly abundant to

very low and vice versa. The rate for such molecular species should therefore

be changed to adapt the fluctuation interval of the involving reactions. Indeed,

78

RSSA allows to adjust the fluctuation interval adaptively during the simulation

depending on the availability of species in the system (for instance, using a

threshold). If the population of the species is high we assign it a larger rate.

During the simulation, when it gets down to low abundance, we apply a smaller

rate instead to improve the acceptance probability. In this way, simulation can

achieve a better performance.

Let us consider the application of adaptive interval control, and demonstrate

its efficiency to tackle the case in which the species population is at verylow

copy number. We combine the relative fluctuation rate and fixed interval size

to overcome this problem. In order to exploit the adaptive interval control we

first need to set a threshold valueλ. Second, for each speciesSi, we apply a

fluctuation rateδi hence using the interval[Xi(1−δi), Xi(1+δi)]wheneverXi ≥
λ. Instead, if the population ofSi gets lower than threshold value i.e.,Xi < λ,

we will apply a fixed (absolute) fluctuation interval∆. The populationXi of

speciesSi now fluctuates in the interval[Xi −∆, Xi +∆].

Following this example, we can extend the idea of adaptive fluctuation con-

trol to models having many phases. The population of species in each phase

will be assigned a specific rate. To do that we set a thresholdλk
i correspond-

ing to speciesSi at phasek. During the simulation if the molecular speciesSi

is bound to this threshold, a specific fluctuation rateδki will be applied. This

advantage allows an automatic adjustment of the fluctuation interval of species

during the simulation depending on the phase of the system state.

4.3 Experimental results

In this section we experiment with the performance of RSSA using three bio-

chemical reaction models: 1) Fully connected reaction model, 2) Multiscaled

reaction model, and 3) Gene expression model. Table 4.1 summarizes the prop-

erties of simulated models. The first two models are artificial ones, crafted so

79

Table 4.1: Summary of models

Model Species Reactions

Fully connected reaction model N N(N-1)

Multiscaled reaction model N + M N(N-1) + M

Gene expression model 5 8

to study the performance of the RSSA in different settings. These are highly

coupled reaction networks where one reaction firing causes a large number of

affected reactions to update their propensities. Thus, most of the simulation

time would be spent for propensity updates in standard SSA. The last model is

a real-world model that we use to demonstrate the improvement of RSSA. We

consider different types of chemical reaction kinetics (i.e., mass-action kinetics

and Hill kinetics) applied to this last model. Even if this model is quite small

(having just8 reactions), the employed chemical kinetics are non-trivial, hence

the propensity updates require a significant computational cost. By optimizing

such updates, we aimed to observe a large effect on the performance of the sim-

ulation. In this way, we assess the RSSA efficiency over conventional stochastic

simulation methods.

Three algorithms are tested including: Gillespie’s Direct Method (DM), Next

Reaction Method (NRM), and RSSA. In RSSA, we further consider three im-

plementations for searching the candidate reaction: 1) Linear search (RSSA-

Linear), 2) Binary search (RSSA-Binary) and 3) Alias lookup search (RSSA-

Lookup). All these simulation algorithms are implemented in Java and run on

Intel i5-540M processor. In each case, the simulation ran for2 · 106 reaction

steps. The simulation data are recorded for105 steps. The experimental mea-

sures exclude the initialization time, hence focusing only on the main simulation

loop of each method.

80

4.3.1 Fully connected reaction model

The fully connected reaction network is a highly coupled reaction model we

used to benchmark the performance of the simulation algorithms. It consists of

N chemical species denotedSi which reversibly convert into each other species

Sj at a reaction rateki. A general form of reaction in this model is:

Ri : Si
ki−→ Sj, i 6= j = 1 . . . N

In our experiment the initial population of each species is set to100. The

propensity function is derived following the usual mass-action kinetics.

In Table 4.2, we measure the performance of the algorithms when increas-

ing the number of speciesN . In this table, the execution time is the total time

(including both the search and update time) spent to run the simulation. The up-

date time counts the time spent for recomputing the propensities upper-bounds

and rebuilding the needed data structures when the system state leaves the given

fluctuation interval. The uniform fluctuation rate mechanism was used to con-

trol the fluctuation interval in RSSA. Three different values ofδ are considered:

10%, 20% and30%, respectively.

In this fully connected model the number of affected reactions is linearly

increasing with the number of speciesN . In fact, there areN − 1 affected

reactions having to update their propensities each time a reaction fires. For

this high coupled degree, the update time is shown to largely contribute to the

simulation runtime asN is increased. For example, the update time of DM

and NRM in caseN = 100 contributes up to93% and99%, respectively, to

the total simulation runtime. This results in a rather low performance of these

algorithms. In contrast, RSSA efficiently controlled the update of propensity.

Therefore, it has significantly reduced the simulation time. For example, with

δ = 20% RSSA-Linear is roughly10 times faster than DM, NRM with the

same configuration. In this network sizeN = 100, RSSA-Binary with uniform

fluctuation rateδ = 30% received the best performance (approxiamtely65 times

81

Table 4.2: Performance of algorithms on fully connected reaction model
N Algorithm Execution Update Acceptance

Time (ms) Time (ms) Prob. (%)

5

DM 4234 3245
NRM 4935 4272

RSSA-Linear
uniform rate (δ = 10%) 1719 100 91.25
uniform rate (δ = 20%) 1727 10 83.59
uniform rate (δ = 30%) 1808 3 77.23

RSSA-Binary
uniform rate (δ = 10%) 1764 120 91.28
uniform rate (δ = 20%) 1790 21 83.65
uniform rate (δ = 30%) 1851 7 77.15

RSSA-Lookup
uniform rate (δ = 10%) 1755 144 91.24
uniform rate (δ = 20%) 1742 29 83.60
uniform rate (δ = 30%) 1880 11 77.17

10

DM 8632 7561
NRM 9862 9066

RSSA-Linear
uniform rate (δ = 10%) 2182 307 91.29
uniform rate (δ = 20%) 2032 67 83.64
uniform rate (δ = 30%) 2111 21 77.14

RSSA-Binary
uniform rate (δ = 10%) 2177 383 91.32
uniform rate (δ = 20%) 2021 84 83.60
uniform rate (δ = 30%) 1998 29 77.15

RSSA-Lookup
uniform rate (δ = 10%) 2243 535 91.27
uniform rate (δ = 20%) 1941 118 83.60
uniform rate (δ = 30%) 1960 34 77.23

50

DM 78083 70941
NRM 80208 78753

RSSA-Linear
uniform rate (δ = 10%) 12389 3615 91.28
uniform rate (δ = 20%) 10482 918 83.61
uniform rate (δ = 30%) 10708 368 77.20

RSSA-Binary
uniform rate (δ = 10%) 6490 4094 91.27
uniform rate (δ = 20%) 3503 1002 83.62
uniform rate (δ = 30%) 3169 416 77.18

RSSA-Lookup
uniform rate (δ = 10%) 19222 16999 91.29
uniform rate (δ = 20%) 6625 4242 83.59
uniform rate (δ = 30%) 4178 1698 77.20

100

DM 367248 351102
NRM 376892 373726

RSSA-Linear
uniform rate (δ = 10%) 42230 10242 91.31
uniform rate (δ = 20%) 37425 2555 83.60
uniform rate (δ = 30%) 38597 1044 77.18

RSSA-Binary
uniform rate (δ = 10%) 16334 12207 91.26
uniform rate (δ = 20%) 7198 2961 83.60
uniform rate (δ = 30%) 5846 1311 77.13

RSSA-Lookup
uniform rate (δ = 10%) 138395 134081 91.30
uniform rate (δ = 20%) 37359 33108 83.60
uniform rate (δ = 30%) 17851 13549 77.17

82

faster than DM) .

The result in Table 4.2 shows two important facts. First, performance de-

pends on the search procedure. Although a complex search procedure runs fast,

it spends high computational cost for maintaining the underlying data structure.

Thus, in a small network (e.g.,N = 5) the linear search (RSSA-Linear), which

does not require any complex data structure, achieved a better performance than

the other search procedures (RSSA-Binary, RSSA-Lookup). Instead, when

the network size increases, linear search is no longer the best choice. But,

on the other hand, a very expensive data structure e.g., building supported ta-

bles in Alias method, does not yield the best performance, either. Consider, as

an example, the caseN = 100. Applying RSSA-Binary and RSSA-Lookup

with the same the fluctuation rateδ = 20%, we can see that their acceptance

probability is approximately83.60%, but RSSA-Binary is nearly5 times faster

than RSSA-Lookup. This is because the update underlying data structure of

lookup search method requires too much bookkeeping, indeed the update time

of RSSA-Lookup contributes88% to the total execution time, and is10 times

larger than the RSSA-Binary.

Second, the choice of fluctuation rateδ yielding the best performance is

highly dependent on the coupled degree of the reactions. A small value ofδ

is likely to achieve a better performance when the network size is small(N is

small). For example, whenN = 5, a good choice isδ = 10% to 20%. This is

because the search time dominates the overall execution time. However, if we

increaseN , updates largely affect the performance. A larger fluctuation interval

would then yield better performance. For example, withN = 100, the perfor-

mance of RSSA-Binary withδ = 30% is approximately1.5 times faster than

the caseδ = 20%. Also, RSSA-Lookup becomes2 times faster when moving

from δ = 20% to δ = 30%.

83

4.3.2 Multiscaled reaction model

The multiscaled reaction model involves a mix of both fast and slow reactions,

having the following form.

Fast reactionRi : Ai
ki−→ Aj

Slow reactionRj : Ai +Bj

kj−→ Bk

The chemical speciesAi are the only ones to occur in fast reactions, and are

therefore named the “fast species”. By contrast, slow reactions involve also

other speciesBj, named the “slow species”. We assumeN fast speciesAi and

M slow speciesBi. The model then is generated in this way. First, we include

all the fast reactionsAi
ki−→ Aj for any value ofi, j. Then, we addM slow

reactionsAi + Bj

kj−→ Bk whereAi andBk are chosen randomly, whileBj

ranges over theM slow species.

In this model, reaction rates of fast reactions are chosen to be much larger

than the slow reactions (ki ≫ kj). The initial population of each fast species is

set to1000, while slow species are set to100. The propensity function is simply

the one given by the mass-action kinetics. In our experiment we fix the num-

ber of fast species toN = 5, and vary the number of slow speciesM (hence

also varying the number of slow reactions) from50 to 1000. In RSSA, we im-

plemented two fluctuation interval control mechanisms: 1) uniform fluctuation

rate and 2) non-uniform fluctuation rate. The uniform rateδ is adjusted between

10% and20%. In non-uniform fluctuation rate, the fast species are assigned rate

δfs = 20% and slow species are assignedδss = 10%. Table 4.3 compares the

performance of algorithms applied to multiscaled reaction model.

A slow reaction is formed by combining a slow species and a randomly se-

lected fast species, so we have on averageM/N + 1 affected reactions which

must update their propensities each time a fast reaction fires. Update timeis

linearly increasing with the number of slow speciesM . Thus, the update time

dominates the total simulation time asM is increasing. This effect is shown in

84

Table 4.3. From the results we observe that, even with the small network size

M = 50, roughly92% of the execution time is spent for update in NRM, and

this value is increasing to over97% with M ≥ 100. The update time of DM

also exposes the same effect in that it contributes roughly95% to the simulation.

The performance of these algorithms is thus rather low. RSSA achieves better

performance because it effectively controls the time-consuming updates. In the

caseM = 1000, RSSA-Linear with uniform rateδ = 20% is more than45

times faster than DM, while RSSA-Lookup with non-uniform rateδfs = 20%,

δss = 10% is 185 times faster than DM.

From Table 4.3, the acceptance probability of RSSA with non-uniform fluc-

tuation rateδfs = 20%, δss = 10% is between the one for uniform rates

δ = 20% andδ = 10%, when the same search procedure is applied. This is

because we keep the acceptance probability of fast reactions to the same as the

one in uniform rateδ = 20%, and also increase the acceptance probability of

slow reactions. As a result, the performance of RSSA with non-uniform rate

δfs = 20%, δss = 10% is better than the one with uniform fluctuation rate

δ = 20%. However, it is not always better than the caseδ = 10% (for exam-

ple, see RSSA-Linear and RSSA-Binary), even though the difference is quite

small. This is because the search of these algorithms is more expensive than the

update. By contrast, RSSA-Lookup uses a fast search procedure, so it needs a

better mechanism to control the fluctuation interval. Thus, in caseM = 1000,

RSSA-Lookup with non-uniform fluctuation rateδfs = 20%, δss = 10% is

nearly5% faster than the RSSA-Lookup with uniform rateδ = 20%, and10%

faster than with uniform rateδ = 10%.

4.3.3 Gene expression model

The gene expression model is a type of regulatory pathway which plays a key

role in the understanding of gene regulation mechanisms and functionality. The

result of gene expression is a collection of proteins encoded by the correspond-

85

Table 4.3: Performance of algorithms on multiscaled reaction model
M Algorithm Execution Update Acceptance

Time (ms) Time (ms) Prob. (%)

50

DM 16280 15062
NRM 17740 16987

RSSA-Linear
uniform rate (δ = 10%) 1823 5 90.92
uniform rate (δ = 20%) 1976 0 81.43

non-uniform (δfs = 20%, δss = 10%) 1868 0 83.93

RSSA-Binary
uniform rate (δ = 10%) 1662 3 90.98
uniform rate (δ = 20%) 1778 0 81.36

non-uniform (δfs = 20%, δss = 10%) 1700 0 83.96

RSSA-Lookup
uniform rate (δ = 10%) 1642 9 90.88
uniform rate (δ = 20%) 1799 0 81.33

non-uniform (δfs = 20%, δss = 10%) 1779 0 83.90

100

DM 29416 27918
NRM 32240 31346

RSSA-Linear
uniform rate (δ = 10%) 2241 7 90.90
uniform rate (δ = 20%) 2367 0 81.06

non-uniform (δfs = 20%, δss = 10%) 2304 0 82.79

RSSA-Binary
uniform rate (δ = 10%) 1802 11 90.91
uniform rate (δ = 20%) 1883 0 81.19

non-uniform (δfs = 20%, δss = 10%) 1843 0 82.74

RSSA-Lookup
uniform rate (δ = 10%) 1809 18 90.94
uniform rate (δ = 20%) 1892 0 81.18

non-uniform (δfs = 20%, δss = 10%) 1885 0 82.89

500

DM 173357 169555
NRM 194623 193520

RSSA-Linear
uniform rate (δ = 10%) 4291 64 90.90
uniform rate (δ = 20%) 4534 0 79.18

non-uniform (δfs = 20%, δss = 10%) 4535 0 81.22

RSSA-Binary
uniform rate (δ = 10%) 1881 55 90.79
uniform rate (δ = 20%) 1971 0 79.07

non-uniform (δfs = 20%, δss = 10%) 1892 0 81.92

RSSA-Lookup
uniform rate (δ = 10%) 1903 67 90.78
uniform rate (δ = 20%) 1918 0 78.94

non-uniform (δfs = 20%, δss = 10%) 1859 0 81.35

1000

DM 377483 371024
NRM 404654 403219

RSSA-Linear
uniform rate (δ = 10%) 7557 119 90.67
uniform rate (δ = 20%) 8242 4 78.06

non-uniform (δfs = 20%, δss = 10%) 8079 6 79.89

RSSA-Binary
uniform rate (δ = 10%) 2010 110 90.70
uniform rate (δ = 20%) 2071 3 78.10

non-uniform (δfs = 20%, δss = 10%) 2016 4 79.67

RSSA-Lookup
uniform rate (δ = 10%) 2049 156 90.61
uniform rate (δ = 20%) 1998 2 78.09

non-uniform (δfs = 20%, δss = 10%) 1914 6 79.77

86

Table 4.4: Gene expression model

R1: G→ G+RNA k1 = 0.09

R2: RNA→ RNA+ P k2 = 0.05

R3: RNA→ k3 = 0.001

R4: P → k4 = 0.0009

R5: P + P → P2 k5 = 0.00001

R6: P2 → P + P k6 = 0.0005

R7: P2 +G→ P2G k7 = 0.005

R8: P2G→ P2 +G k8 = 0.9

ing genes. It composes two main consecutive processes: transcription and trans-

lation. The transcription initiates when an enzyme called RNA polymerase

(RNAP) binds to gene promoter. During the transcription process, the gene

is copied to intermediate form called mRNA. In the translation process mRNA

will then bind to ribosomes to translate into the corresponding protein.

The8 reactions shown in 4.4 depict a typical gene expression model. In this

table, proteinP is encoded by geneG. The intermediate product of transcription

is denoted byRNA. The transcription was modelled by reactionR1 where gene

G transcribes toRNA. RNA, after translating to proteinP through reaction

R2, will degrade by reactionR3.

The proteins usually interact to form a dimerP2 rather than existing in the

isolated form. ReactionsR5 andR6, respectively, model the association and

dissociation of dimersP2. The dimer could bind to geneG to enhance the

activation of the gene. Thus this is modelled by reactionR7, R8.

In simulating this model, we set the initial population of geneG to 10, 000,

while other species are set to0. We implement the adaptive fluctuation interval

control to compare with other mechanisms. The threshold is set toλ = 25. We

dynamically choose between the fluctuation rateδ and a fixed interval size∆.

Table 4.5 compares the performance of the different simulation algorithms.

87

Table 4.5: Performance of algorithms for Gene Expression Model using mass-action kinetics

propensity

Algorithm Execution Update Acceptance Prob.

Time (ms) Time (ms) (%)

DM 3128 1922

NRM 3167 2459

RSSA-Linear

uniform rate (δ = 10%) 2444 144 86.77

uniform rate (δ = 20%) 2513 30 75.89

adaptive rate (δ = 20%,∆ = 5) 2386 120 86.51

RSSA-Binary

uniform rate (δ = 10%) 2724 175 86.79

uniform rate (δ = 20%) 2520 44 75.85

adaptive rate (δ = 20%,∆ = 5) 2479 123 86.58

RSSA-Lookup

uniform rate (δ = 10%) 2538 161 86.78

uniform rate (δ = 20%) 2583 45 75.86

adaptive rate (δ = 20%,∆ = 5) 2523 140 86.56

From the result Table 4.5, the performance of NRM and DM is nearly the

same, although DM is slightly faster than NRM. Although this model is quite

small, it also requires a high cost for updating, which contributes77% to the

total simulation time in NRM, while in DM this contributes62%. Even in this

model RSSA-Linear withδ = 10% could reduce the update time to only6%.

Hence, its performance is approximately22% faster than DM and NRM. In

this small model, it is easy to see from Table 4.5 that RSSA-Linear is a bit

faster than RSSA-Binary and RSSA-Lookup; however, the difference between

the performance of these implementations of RSSA is quite small. Second, for

this model a narrow fluctuation interval (small value ofδ) would yield a high

acceptance probability, and thus better simulation time.

Because the population of species involved in this model is quite low (both

88

at beginning and at the stable state), the combination of uniform fluctuation rate

and fixed interval size yields the best performance. For example, RSSA-Linear

with the combination of uniform rateδ = 20% and fixed interval size∆ = 5 is

nearly4% better than RSSA-Linear using only the uniform rateδ = 10% which

is the best performance achieved while applying uniform rate.

For second experiment, we consider the effects of evaluating the complex

propensity function to the update and the total simulation performance. Hence,

we modified the propensity function to use the Hill kinetics. This kinetics was

first used to model the nonlinear effects of aggregation of the haemoglobin

molecules with oxygen in the solution [75]. The Hill equation recently has

extensive applications in pharmacology to model the nonlinear relationship in

drug-dose response on the target (see e.g. [70] for details). In biology, Hill

kinetics has been used to model the mechanism of enzymatic reactions. The

Michaelis-Menten law, a well-known model of enzyme kinetics, is a special

type of Hill kinetics. Hill kinetics is commonly used to describe the coopera-

tivity of a ligand binding to an enzyme. In this cooperative binding, the binding

of a ligand to an enzyme is often enhanced the enzyme operativities if there are

already ligands binding to this enzyme. In modelling of gene expression, Hill

kinetics has applied to describe the activation controlled in the gene regulation

process. For example, in [86], it was used to model the switch-like behavior

in the gene expression by protein activation. In our experiment, we use the

propensity function with Hill equation which has a general form:

g(x) =
xn

Kn + xn
(4.6)

whereK is threshold constant andn is the steepness parameter (also called Hill

coefficient), which is usually non-integer.

The simulation runtime of the gene expression model with Hill kinetics of

different simulation algorithms is in Table 4.6. Since evaluating the propensity

now requires more computational effort, the performance of DM and NRM is

89

Table 4.6: Performance of algorithms for Gene Expression model with Hill kinetics propensity

Algorithm Execution Update Acceptance Prob.

Time (ms) Time (ms) (%)

DM 9517 8307

NRM 8188 7480

RSSA-Linear

uniform rate (δ = 10%) 3423 615 86.78

uniform rate (δ = 20%) 3655 162 75.87

adaptive rate(δ = 20%,∆ = 5) 3389 568 86.54

RSSA-Binary

uniform rate (δ = 10%) 3432 661 86.77

uniform rate (δ = 20%) 3613 161 75.91

adaptive rate (δ = 20%,∆ = 5) 3404 562 86.59

RSSA-Lookup

uniform rate (δ = 10%) 3537 636 86.79

uniform rate (δ = 20%) 3720 177 76.00

adaptive rate (δ = 20%,∆ = 5) 3508 617 86.57

roughly3 times slower than the mass-action kinetics propensity. In the simu-

lation involving the Hill kinetics, the propensity computation contributes87%

of the overall time in DM, and91% in NRM. By our RSSA simulation method,

the update cost of RSSA-Linear withδ = 10% is kept nearly at17% of the

total cost, and the overall performance is roughly2.5 times better than DM. In

this experiment, RSSA with a combination of uniform rate and fixed interval

size also achieves a better performance than by only using uniform rate. This is

because it handles the low population of species better.

4.4 Towards an Optimal Parameter Selection

We have proposed several improvements to RSSA, and shown their efficiency

in applying to concrete models in the previous sections. Still, a systematic ap-

90

proach is required to automatically select the optimal parameters e.g.,the fluc-

tuation rate vector, in order to optimize performance. The tunable parameters

used in RSSA essentially are related to the fluctuation control mechanismand

the search procedure. Because these factors are correlated, optimizing bothcan

not be performed by handling them independently. For example, a fluctuation

rate used with a specific fluctuation control mechanism could yield an opti-

mal performance for RSSA with a linear search, but that might not the optimal

choice when applying other strategies e.g. binary search, lookup search. In fact,

the selection of parameters for optimizing RSSA can be regarded as a combina-

torial optimization problem. Several global optimization techniques have been

developed to tackle this task (see e.g. [58, 149] and references therein). In this

section, however, we limit our focus on choosing the parameters for fluctuation

control with a given search procedure. Our approach is based on a gradient-like

method, called stochastic approximation (SA) [136], to estimate the rate param-

eter. SA is essentially an iterative algorithm. In each iteration,the parameter

is estimated by a similar form of the gradient-based optimization; however, the

gradient is approximated by using a simulation instead of using a fixed exact

analytic form. The advantage of this method is that it does not require a de-

tailed knowledge of the relationship of the rate parameter and the performance

measurement being considered.

Let TRSSA(r,m, c, a) be the measurement of the run time of RSSA, wherer

is the fluctuation rate vector used by fluctuation controlc with a specific search

algorithm a, andm is the given simulated model (i.e., a reaction network).

TRSSA(r,m, c, a) is regarded as a random value, to be determined by simula-

tion. Our purpose is finding:

min
r∈R

E[TRSSA(r,m, c, a)] (4.7)

Hence, the objective is to find the parameterr in the parameter spaceR mini-

mizing the expected run timeE[TRSSA(r,m, c, a)].

91

Starting with initial guessr0. SA estimates the parameterrk at iterationk by

the form:

rk+1 = rk + akgk(rk) (4.8)

wheregk(rk) is an estimation of the gradient of the performance measurement,

andak is the (positive) step size. This principle of the estimation is based on

local changes of the rate parameter. There are two main implementations of this

method: namely, the finite difference stochastic approximation (FDSA) and the

simultaneous perturbation stochastic approximation (SPSA) [58, 148]. In the

former only one component in parameter vectorrk is perturbed at a time, while

in the latter all components of the rate parameter are randomly perturbed.

Let p be the dimension of the rate vector parameter. FDSA estimates the

approximated gradientgk(rk) is as following. Theith component in the rate

parameterrk is perturbed by a small positive constantck hence obtainingrk +

ckeki with 1 ≤ i ≤ p whereeki is a unit vector having itsi-th component set to

1, while all the other are zero. Then, theith element in the estimated gradient

gk(rk) is approximated by

gki(rk) =
TRSSA(rk + ckeki)− TRSSA(rk − ckeki)

2ck
(4.9)

The number of evaluations of the performance functionTRSSA grows linearly

with the parameter dimension. Indeed, we need to perform exactly2p such

evaluations. Hence, as the number of parametersp becomes large, the cost to

reach convergence increases.

SPSA takes advantage over DFSA in estimating the gradient by evaluating

the performanceTRSSA independently of the dimension of the rate parameter.

SPSA approximates the gradient by perturbing all the components by a user

specified randomp-vector∆k = (∆k1, . . . ,∆kp). The i-th component of the

estimated gradient is computing by:

gki(rk) =
TRSSA(rk + ck∆k)− TRSSA(r − ck∆k)

2ck∆ki

(4.10)

92

The random vector∆k should be chosen so that the{∆ki} components are inde-

pendent, symmetrically distributed around0, and having finite inverse moments.

The most common selected distributed satisfied this condition is the Bernoulli

±1 distribution. The selection of(ak, ck) values, and the convergence of the

stochastic approximation (in suitable conditions), have been studied in [149].

We applied the SA method discussed above to optimize, for any given search

algorithm, the fluctuation rate parameter for the fully connected reaction model.

Results are shown in Fig. 4.4. The figure shows that, when increasing the cou-

pled degree of the reaction network, the fluctuation rate should be increased, so

to reduce the update time. This agrees with the experiments discussed in the

previous section. Note that the optimal rate for each search procedure is dif-

ferent, especially when the coupled degree is high. For example, whenN = 5

(w.r.t. the coupled degree =4) the difference in the optimal rates used by search

procedures are small i.e.11.95%, 19.12% and12.67% for RSSA-Linear, RSSA-

Binary and RSSA-Lookup, respectively. The optimal rates are quite similar in

the caseN = 10 (the optimal rate is around22%). Then, if we continuously

increase the coupled degree the optimal rate for each variant of RSSA becomes

very different. The optimal fluctuation rate for RSSA-Linear slowly increases

with N . Instead, the one for RSSA-Lookup grows much faster. The rate for

RSSA-Binary lies somewhere in the middle. For example, withN = 100

the optimal rate of RSSA-Linear is25.27%, while in RSSA-Binary is37.37%.

RSSA-Lookup achieves the best performance with the rate around57.75%. This

can be explained as follows. The lookup search in RSSA-Lookup is very effi-

cient, but the rebuilding of the underlying data structures is rather expensive.

Hence, it has to use a large rate to reduce the number of rebuilding steps, at the

price of reducing acceptance probability as well.

93

Figure 4.4: Optimal Fluctuation Rate for Fully Connected Reaction Model

4.5 Conclusions

In this chapter we proposed a new generalized algorithm, called RSSA, for do-

ing stochastic simulation. RSSA, in essential, is a rejection-based algorithm.

The selection of a reaction firing composes of two steps. RSSA uses a propen-

sity upper-bound to select a candidate reaction. An acceptance-rejection proce-

dure is then used to verify the candidate reaction. We mathematically proved

RSSA, performing in this way, produces the same stochastic behaviour as SSA.

Then, we investigated how to improve RSSA, by studying how to tune its

performance so to efficiently simulate biochemical reaction systems. First, we

experimentally explored different search procedures for implementing the se-

lection of a candidate reaction. The optimal choice ultimately depends on the

problem size and complexity of the underlying data structures. Some search

procedures e.g., binary search, alias method can obtain a fast search time, but

also require data structure which is expensive to update; instead, a simple search

method e.g., linear search, does not require any complex data structure, while

having a low search performance. According to our experiments, linear search

is best used on small models, while more complex methods should be applied on

94

large models. Second, Several search algorithms for implementing the selection

of a candidate reactions are proposed. We experiment with their implementa-

tions using different network sizes, and discuss the results of such experiments.

Second, we proposed different mechanisms to control acceptance probabil-

ity of a candidate reaction. The proposed mechanisms run at different levels, in

a static or dynamic fashion during the simulation. A dynamic control give more

flexibility for controlling the acceptance probability depending on the state of

the system, but it also requires more computational effort. We also discussed an

approach to automatically select the optimal rate for a given search and fluctu-

ation control mechanism.

In RSSA, the acceptance-rejection procedure is applied to reduce the cost

of propensity updates while, in the literature, it has been used for different

purposes. We clarify some applications of acceptance-rejection procedure to

stochastic simulation with RSSA in the following. The composition rejection

SSA (CR-SSA) [147] uses the acceptance-rejection method for improving only

the search of the next reaction firing. The search time of CR-SSA is indeed

a constant time for long run. Thus, if the network is dense and highly cou-

pled, its update time will contribute a significant portion to the simulation. The

uniformizationtechnique is proposed in [141] to discrete the time in which it

uses a global upper-bound of total propensity instead of upper-bound reaction

propensities in RSSA. Hence, the simulation only needs the search and update

of reactions without generating the firing time. The discrete time conversion

approach is different with RSSA in many aspects. First, while it does not need

to generate the reaction firing time, it still requires paying the search and update

costs in each simulation step, using exact propensity values. Second, in order to

approximate the global upper-bound of total propensity it has to know aglobal

upper-bound for the population of all species. This is hard to pre-compute.

Indeed, even in the case such upper-bound is known, the upper-bound of to-

tal propensity may be several orders of magnitude larger than the actual total

95

propensity e.g. if the system is stiff. The result is the simulation would spend

a lot of time to reject the candidate reaction. In the contrast, RSSA controls

the upper-bound of each reaction propensity. Furthermore, we can efficiently

control the upper-bound of each reaction propensity in runtime through a fluc-

tuation control techniques, as discussed in previous section. This provides a

needed flexibility, allowing one to adjust the acceptance probability as desired.

The simulation performance thus can be sensibly improves by tuning these pa-

rameters. A rejection-based simulation algorithm recently proposed in [40]for

simulating the signaling pathways. This simulation algorithm is different with

RSSA in some senses. First, it rather applies the rejection step to skip count-

ing all possible combinations of the receptor-ligand binding which is typically

a huge number. Second, it exploits a very complex timing scheme to match

the exact time. In our RSSA method, the timing scheme is clean and simple,

i.e., the Erlang distribution. Furthermore, it is proved that the time alsofollows

the exact distribution.

Further studies are possible to improve the performance of RSSA. For in-

stance, when propensities are given by a user-specified complex function, one

needs to devise an efficient way to compute the propensity lower- and upper-

bounds. This may be done automatically, or with some help from the user.

The impact of this choice still needs to be evaluated. Another research line

would focus on using global optimization techniques to fine-tune RSSA per-

formance. This approach would suggest the optimal combination of methods

to use, i.e., which search procedure and which control mechanism. Integrating

such optimization techniques in simulation is a non trivial task since the time

required to run them might negate their benefits. This would indeed require

further investigation.

96

Chapter 5

Rejection-based reaction diffusion

5.1 Introduction

The dynamic behaviour of living cells is indeed dependent on both the reac-

tion and diffusion of molecular species. The significance of diffusion becomes

highly important when the diffusion time of species is slower than the reaction

time. The biological systems will exhibit inhomogeneities. Furthermore, the

cell is highly compartmentalized. Diffusion between sub-compartments formed

by localized species significantly magnifies the noise effects on reaction path-

ways. These thus imply a crucial coupling of reaction and diffusion. Spatial

heterogeneity recently has been successful in explaining many experimental ob-

servations, e.g., localization of the E. coli cell division [52]. In this situation,

the simulation should explicitly take into account the diffusion of the species in

reaction networks.

The spatial extensions of SSA have been introduced to simulate reaction-

diffusion systems [17]. These methods are based on discretizing the space into

subvolumes. The subvolume side length is chosen so that the subvolume is well-

mixed. It further assumes that a species in a subvolume only reacts with species

in the same subvolume. Hence, the same molecular species in different subvol-

umes is treated separately. The diffusion of a diffusive species between neigh-

bor subvolumes is modelled as a unimolecular reaction. The kinetics of this

97

enlarged network is mathematically modelled by the reaction-diffusion master

equation (RDME). RDME is in fact a spatial extension of CME. It, therefore,is

possible to simulate by SSA.

Although RDME, in principle, can be exactly simulated by SSA, a direct ap-

plication of SSA to sample RDME is often computationally intensive because

the number of species and reactions in the model is linearly increased by the

number of subvolumes. An efficient implementation for performing stochastic

reaction-diffusion simulation is to select the subvolume which contains the next

reaction firing, and then retrieve out the next reaction firing in that subvolume.

There are many possible combinations for implementing these steps. For exam-

ple, these two steps can be done in two consecutive DMs in which the first DM

searches for which subvolume and the second one is for finding the next reaction

in selected subvolume. The Next Subvolume Method (NSM) [45] is an efficient

formulation for improving the search of the subvolume. In NSM, the selection

of a subvolume is done by exploiting a special priority queue, i.e., the binary

heap. The subvolumes are indexed so that the subvolume having smallest puta-

tive time is always put on the top of the queue. The search for the subvolume

thus is in constant time. Then, the next reaction firing in the selected subvolume

is found out by a DM search. Anytime there is a change in the subvolume due

to a reaction firing or a diffusive transfer from its neighbor, the priority queue

should be maintained to reflect the change. Hence, a significant portion of the

simulation time of NSM now is spent for updating the priority queue.

The computational cost for performing stochastic reaction-diffusion simula-

tion is further increasing to ensure a physical consistence and correctness ofthe

spatial discretization. First, for the applicability of SSA in a subvolume, the

side length of the subvolume must be chosen much smaller than the so-called

Kuramoto length [95]. However, the subvolume side length also should not be

chosen arbitrarily small. It has been shown that if the subvolume side length

becomes too fine the simulation of RDME yields incorrect and even nonphysi-

98

cal results [12]. There the system is entirely controlled by diffusion, and there

is no reaction occurring. In this case, reaction propensities have to be corrected

e.g., by some correction factors, to match the results from a particle-based simu-

lation [51]. These correction factors are often rather expensive to compute [48].

Second, the space is often discretized by regular meshes, e.q., the cubical sub-

volumes, and the rate of the diffusion is often transformed from the Fick’s law.

The space, however, may be discretized by irregular meshes to deal with the

highly complex cell medium, e.g., the cell membrane. In that case the rate

of the diffusion reaction also has to be modified by a complex and, of course,

computational demanding function [15,47,74].

In this chapter we propose a new formulation, called RRD, to alleviate the

computational burden of the exact spatial stochastic simulation. RRD improves

both the search of a reaction firing in a subvolume and the propensity updates,

and hence improving the total simulation performance. More specifically, RRD

combines the efficient tree-based search and the methods based on the over-

approximation of propensities developed in chapters 3 and 4 to enhance the

search and the update. Both the search for a subvolume and then a reaction

in the selected subvolume by RRD are using only the over-approximation of

propensities. This feature is the highlighted difference with stochastic reaction-

diffusion simulation approaches in literature. A candidate subvolume is first

found by a tree-based search based on the over approximation of subvolume

propensities. Then, given the subvolume, a fast lookup search is conducted to

retrieve a candidate reaction in that subvolume. The candidate reaction is com-

mitted to fire by a rejection-based mechanism. In case the candidate reaction is

rejected, an entirely new candidate subvolume as well as a new candidate reac-

tion in this subvolume have to be selected again. Since the candidate subvolume

is discovered by the tree-based search, it scales in a logarithmic way with the

number of subvolumes. The update of a tree branch is rarely required unless

the population of species in the subvolume jumps out of the fluctuation interval.

99

Anytime this happens, there are at most two tree branches have to update.

5.2 Reaction-diffusion simulation

5.2.1 Spatial SSA

Assuming the cell volumeV is divided intonV subvolumes, which are denoted

by V1, . . . , VnV
. These subvolumes are further assumed to be spatial homoge-

neous. Thus, only the population of species in subvolumes are required to keep

tracking. LetXVk

i (t) be population of speciesSi in subvolumeVk at time t.

Then-vectorXVk(t) = (XVk

1 (t), . . . , XVk
n (t)) denotes the population vector of

subvolumeVk for all k = 1 . . . nV . Hence, the system state is an by nv vector

X(t) = (XV1, . . . , XVnV) denoting population of each species in each subvol-

ume at timet.

The diffusion of speciesSi with diffusion constantDi from subvolumeVk to

its neighborVl is explicitly expressed by a unimolecular reaction. That is:

SVk

i −→ SVl

i (5.1)

the rate of this diffusion reaction for a cubical subvolume with side lengthh is

defined to beDi/h
2. For an irregular mesh, a correction factor for the diffusion

reaction has to be applied [47]. We assume further that there aremd diffusion

reactions in a subvolume.

Let aVk

j be the propensity of reactionRj in subvolumeVk. Let aVk

0 be the

propensity of subvolumeVk. It is the sum of propensities of all reactions in

subvolumeVk, i.e.,aVk

0 =
∑m+md

j=1 aVk

j . Leta0 =
∑nV

k=1 a
Vk

0 =
∑nV

k=1

∑m+md

j=1 aVk

j

be the total propensity of the system.

The spatial stochastic simulation makes a trajectory of RDME by sampling

the joint next reaction probability distribution functionp(τ, j, k|x, t) which de-

notes the probability the reactionRj inside the subvolumeVk occurring at the

next timet + τ given current stateX(t) = x at timet. The reaction firing time

100

is distributed following an exponential distributiona0exp(−a0τ). The subvol-

umeVk is selected given the timeτ following a discrete probability function

aVk

0 /a0. The conditional probability of the reactionRj firing in subvolumeVk at

time τ follows a discrete probability functionaVk

j /aVk

0 . The joint next reaction

probabilityp(τ, j, k|x, t) for the reaction-diffusion process thus has the form:

p(τ, j, k|x, t) = aVk

j exp(−a0τ) (5.2)

The sampling of the joint next reaction probabilityp(τ, j, k|x, t) is done as fol-

lows. First, the firing timeτ is generated by sampling the exponential distri-

bution with mean1/a0. Then, two consecutive searches are conducted to find

which the subvolumeVk and after that the reaction within selected subvolume

Vk with probabilityaVk

0 /a0 andaVk

j /aVk

0 , respectively.

NSM improves the subvolume search by an efficient formulation. It uses

the putative times of subvolumes to select the subvolume. The putative time

τVk of subvolumeVk is generated following an exponential distribution with

mean1/aVk

0 for all k = 1 . . . nV . These putative times are indexed in a priority

queue so that the subvolume having smallest putative time is always on the top

of the queue. When searching for the subvolume, the smallest putative time as

well as the corresponding subvolume on the priority queue are extracted. The

firing time τ is assigned to be this smallest time. Only the search for the next

reaction firing is required. In NSM, it is simply found by sampling the discrete

probability functionaVk

j /aVk

0 .

Given the selected reactionRj in the subvolumeVk firing at time τ , the

system is updated depending on the type ofRj. If it is a biochemical reaction,

the population state of species in subvolumeVk is updated i.e.,XVk = XVk +

vj. In case, it is a diffusive species, a subvolumeVl in the neighbors ofVk is

randomly selected. InVk, one species in the population ofSi is removed, while

the population of speciesSi in Vk is increased by one. After updating the state,

the affected reactions in subvolume(s) recompute their propensities to reflect

101

the changes.

5.2.2 Rejection-based reaction-diffusion simulation

The rejection-based reaction-diffusion (RRD) simulation exploits an over ap-

proximation of reaction propensities for selecting a reaction in a subvolume.

The search of a reaction firing in RRD is composed of two steps: 1) searching

for a candidate subvolume by the tree-based search technique (chapter 3) and 2)

finding and committing a candidate reaction in the candidate subvolume by the

rejection-based technique (chapter 4).

The approximation of reaction propensities is derived by confined the pop-

ulation of each species in a subvolume to a fluctuation interval. Thus, let us

assume the population of speciesSi in subvolumeVk at timet is confined to a

fluctuation interval[Xi
Vk , Xi

Vk
]. The population stateXVk of subvolumeVk is

therefore fixed to the interval[XVk, X
Vk
]. Because the same species in different

subvolumes is, in general, treated differently by reactions it fluctuatesin dif-

ferent manners. The fluctuation intervals of the population state of subvolumes

thus can be defined by different fluctuation control mechanisms.

Given a fluctuation interval of species in a subvolume we compute the upper-

bound and lower-bound of propensity of reactions in that subvolume. Letaj
Vk

andajVk, respectively, be the propensity upper-bound and lower-bound of re-

actionRj in subvolumeVk. Let a0Vk be the propensity upper-bound of sub-

volumeVk. a0
Vk is, in fact, the sum of propensity upper-bounds ofm + md

reactions in subvolumeVk. Thus,a0Vk =
∑m+md

j=1 aj
Vk for all k = 1 . . . nV .

These upper-bounds will be used for selecting a candidate subvolume and, after

that, a candidate reaction in that candidate subvolume. Specifically, the sub-

volume is discovered by a tree-based search on the propensity upper-bound of

subvolume. A table lookup search on the propensity upper-bound of reaction is

then applied for searching the candidate reaction.

To do that, a tree for holding these subvolume propensity upper-bounds is

102

built. In the tree, the leaves will contain the subvolume propensity upper-bounds

a0
Vk for k = 1 . . . nV , while the internal nodes store the sum of its children.

Following this way, the tree root will store total sum of subvolume propensity

upper-bound valuea0 =
∑nV

k=1 a0
Vk. In a subvolume, reaction propensity upper-

bounds are used to build up tables for a fast lookup search. The lookup search

here is chosen to be the Alias method. The probability vector for the Alias

method isajVk/a0
Vk.

The search of a reaction firing starts by first searching for a candidate sub-

volume placing on the leaves of the tree. The running of the search takes a

random number in[0, a0], which decides which the left or right tree branch will

be discovered. Beginning at the tree root, the search travels down the tree.If the

random value is less than the value stored in the left internal node, the search

expands the left branch. Otherwise, it chooses the right branch to explore. In

case the search chooses the right branch, the random number is adjusted by

subtracting its number by the value stored on the right node. The search repeats

until a leaf (candidate subvolume) reached.

Having the candidate subvolume, a candidate reaction in that subvolume is

taken out by accessing the lookup tables of the Alias method. Essentially, this

method requires a random probability value in[0, 1], and returns a reactionRj

corresponding to this input probability.

The candidate reaction in the subvolumeVk is accepted to fire by a rejection-

based mechanism. A random value from[0, a0Vk] is generated. If it is less than

the actual reaction propensityaVk

j , the reaction is committed. Otherwise, the

selection is rejected. In case the reaction is rejected, new selection step is re-

peated. The lower-bound propensityajVk will be used for quickly accepting the

candidate reaction, thus without having to always evaluate reaction propensity

aVk

j .

The reaction firing timeτ is generated by sampling theErlang distribution

in which the shape parameter is the number of trialsk until having a reaction

103

accepted, and the rate parameter is the total propensity upper-bounda0. We use

the convolution technique described in chapter 4 for doing this task.

Knowing the reactionRj firing at timeτ in the subvolumeVk, the population

states of the affected subvolumes are updated. If a biochemical reaction fires,

only the population of species involved in the current subvolumeVk is updated

i.e.,XVk = XVk + vj. In contrast, if a diffusive transfer is selected, a random

destination subvolumeVl in the neighbours ofVk is taken. The population of

corresponding diffusive speciesSi in both of these subvolumes is updated. In

the uncommon case in which the population state of a subvolume caused by the

reaction firing jumps out of the assigned fluctuation interval, a new fluctuation

interval should be redefined. The reaction propensity upper-bounds are recom-

puted and the tree is updated as well. However, only at most two tree branches

updates are required because at any time maximum two subvolumes have to

update by a reaction firing.

5.2.3 The RRD algorithm

The detailed steps of RRD is listed in Alg. 6. We first define a fluctuation in-

terval [XVk , X
Vk
] for the population stateXVk of each subvolumeVk. Note that

we could use different fluctuation intervals for subvolumes. We then compute

the lower-bound propensityajVk and upper-bound propensityajVk for each re-

actionRj for j = 1 . . .m +md. We then compute the upper-bound subvolume

propensitya0Vk for k = 1 . . . nv. These upper-bound subvolume propensity val-

ues will be stored in a tree structure supporting for the tree-based search, while

upper-bound reaction propensity values are used to build tables for the Alias

lookup.

The main simulation loops until the timet passes over a predefined simula-

tion timeTmax. A simulation step consists of three steps: 1) selecting a reaction

firing in a subvolume, 2) generating firing time and 3) updating the system.

The selection of a reaction firing is repeated until flagaccepted is set totrue.

104

Algorithm 6 RRD procedure
1: for all subvolumeVk wherek = 1→ nv do

2: define fluctuation interval[XVk , X
Vk

] for population stateXVk

3: compute propensity lower-boundajVk and upper-boundajVk for j = 1 . . . m+md

4: compute subvolume propensity upper-bounda0
Vk

5: build supporting tables for Alias method for reactions in subvolumeVk

6: end for

7: build a tree for upper-bound subvolume propensitya0
Vk for all k = 1 . . . nv

8: while t < Tmax do

9: setu = 1

10: setaccepted = false

11: repeat

12: generate four random numbersr1, r2, r3 andr4 from uniform distributionU(0, 1)

13: apply tree-based search for finding candidate subvolumeVk with search valuer1a0
14: apply Allias method for lookup a candidate reactionRj in subvolumeVk with proba-

bility r2

15: if r3 ≤ (aj
Vk/aj

Vk) then

16: accepted = true

17: else

18: evaluateaj with current stateXVk

19: if r3 ≤ (aVk

j /aj
Vk) then

20: accepted = true

21: end if

22: end if

23: setu = u · r4
24: until accepted

25: set transition timeτ = (−1/a0) ln(u)
26: update timet = t+ τ

27: if Rj is a biochemical reactionthen

28: update population state of subvolumeVk byXVk = XVk + vj

29: else

30: if Rj is a reaction diffusion of speciesSi then

31: get a neighbor subvolumeVl

32: remove one from population of speciesSi in subvolumeVk

33: add one to population of speciesSi in subvolumeVl

34: end if

35: end if

105

36: for all affected subvolumeVk do

37: if XVk /∈ [XVk , X
Vk

] then

38: define a new fluctuation interval[XVk , X
Vk

]

39: compute propensity lower-boundajVk and upper-bound propensityajVk

40: build supporting tables for Alias method in subvolumeVk

41: propagate the change in subvolumeVk in the path from it to the tree root

42: end if

43: end for

44: end while

A trial composes of three consecutive steps. First, a candidate subvolumeVk is

found by applying the binary search on the upper-bound subvolume propensity

tree built in preparation with the search value isr1a0 wherer1 is a random value

from U(0, 1). Then, a candidate reactionRj in that subvolume is retrieved

by applying the Alias lookup method. The lookup requires a random value

r2 ∼ U(0, 1). Third, the candidate reaction is subjected for an acceptance-

rejection procedure. The trial is successful if the actual reaction propensity aVk

j

is greater thanr3ajVk wherer3 is a random value fromU(0, 1). We quickly

accept the candidate reaction without evaluating the actual reaction propensity

if ajVk ≥ r3aj
Vk. In the other case, the selection is rejected.

The reaction firing is generated by sampling theErlang distribution with

rate parametera0 and shape parameter is the number of trials until that reaction

is accepted. We use the convolution method in sampling theErlang distribu-

tion. For each trial, the variableu is continuously updated to beu = u ∗ r4
wherer4 is a random value generating fromU(0, 1). Then, the firing timeτ of

the reaction firing is computed asτ = (−1/a0) ln(u).
Knowing the reactionRj in subvolumeVk and its firing timeτ , the system

is updated depending on the type of the reaction. If the reactionRj is a bio-

chemical reaction, only population state of this subvolume is updated. In case

Rj is a diffusion of speciesSi, a random neighbor subvolumeVl is taken. The

population of speciesSi in Vk is removed by one, while its population inVl is

106

added one.

The next simulation loop is executed without updating the affected reaction

propensities in the subvolume if its population state is still confined in the fluc-

tuation interval. In other case, a new fluctuation interval has to be redefined.

The new lower-bound propensity and upper-bound propensity of reactions have

to be computed. Then, the upper-bound subvolume propensity is recomputed

as well as the tree branch from root to that subvolume is updated to reflect the

change. The tables for the Alias lookup used inside the subvolume also have to

construct according to the new upper-bound propensities.

5.2.4 Correctness of the RRD algorithm

We prove that RRD selects a reaction firing with the joint probability function

p(τ, j, k). The statement is stated in the Proposition 4.

Proposition 4. RRD is exactly sampling RDME by selecting a reactionRj in

subvolumeVk to fire at timeτ following the joint probability density function

p(τ, j, k) = aVk

j exp(−a0τ).

Proof. Let Pr(Rj, Vk) be the probability a candidate reactionRj in subvolume

candidateVk is selected and accepted to fire. We factorizePr(Rj, Vk) by the

chain rule.

Pr(Rj, Vk) = Pr(Vk) · Pr(Rj|Vk)

=
a0

Vk

a0
· aj

Vk

a0
Vk
·
aVk

j

aj
Vk

=
aVk

j

a0
(5.3)

The derivation in the Equ. 5.3 is using three facts. First, a candidate sub-

volumeV k is selected with probabilitya0Vk/a0. Second, the reactionRj in

107

that subvolume is selected with probabilityajVk/a0
Vk. And, last the candidate

reaction is accepted to fire with probabilityaVk

j /a0
Vk.

Now, letPr(R, V) be the probability an arbitrary reactionR in an arbitrary

subvolumeV is selected and accepted to fire. We have:

Pr(R, V) =

∑nV

k=1

∑m+md

j=1 aVk

j

a0

=
a0
a0

(5.4)

Thus, the probability the reactionRj in subvolumeVk is selected to fire given

an arbitrary reactionR in an arbitrary subvolumeV is selected as:

Pr(Rj, Vk|R, V) =

a
Vk
j

a0
a0
a0

=
aVk

j

a0
(5.5)

Let τ be the firing time of the accepted reactionRj in subvolumeVk. It is

indeed exponential distributed with ratea0, i.e.,Pr(τ) = a0 ·e−a0τ . It is derived

from a similar proof provided in Proposition 3, so we do not repeat it here.

Hence, RRD selects a reactionRj in subvolumeVk to fire at timeτ following

a joint probability density function:

Pr(τ, j, k) = (
aVk

j

a0
)(a0 · e−a0τ)

= aVk

j · e−a0τ (5.6)

5.3 Experimental results

We implement and compare three algorithms including: TreeRD, NSM and

RRD. The first implementation is TreeRD which is a variant of spatial SSAin

108

Table 5.1: Summary of models for reaction-diffusion simulation

Model Species Diffusive Species Biochemical Reactions

cAMP activation of PKA model 6 1 6

Multiscaled reaction model N + M N N(N-1) + M

which the subvolume is discovered by a tree-based search. The tree is built

using the subvolume propensities. The reaction firing inside a subvolume is se-

lected by a direct linear search. The second algorithm is an implementation of

NSM. We use a binary heap to maintain the priority queue of subvolume pu-

tative times. The last algorithm is an implementation of our formulation RRD.

All these simulation algorithms are implemented in Java and run on Intel i5-

540M processor. The simulation was done after107 steps. The simulation data

are recorded for106 steps. The experimental result is averaging over 100 runs.

All initializations, which is not a part of simulation loop, are excluded from the

calculation.

We report the performance of algorithms on two biochemical reaction mod-

els. 1) The cyclic adenosine monophosphate (cAMP) activation of protein ki-

nase A (PKA), and 2) Multiscaled reaction model. The table 5.1 summarizes the

properties of simulated models. The first model is a real world model which is

used to demonstrate the improvement of RRD. In this model, we experimentally

validate the results of the tested algorithms. Then, we show the performance im-

provement of our formulation. The second model is an artificial model we use

to benchmark the simulation performance in different settings. We compare the

performance of algorithms by increasing both the number of reactions and sub-

volumes. The performance of these algorithms now is dependent on two factors:

the search of a reaction firing in a subvolume and update of the affected reac-

tions in subvolumes. According to our experiments, our new formulation the

simulation performance dramatically outperforms over the tested algorithms.

109

Table 5.2: cAMP activation of PKA model

R1: PKA+ 2cAMP → PKAcAMP2 k1 = 8.696 · 10−5

R2: PKAcAMP2 → PKA+ 2cAMP k1 = 0.02

R3: PKAcAMP2 + 2cAMP → PKAcAMP4 k1 = 1.154 · 10−4

R4: PKAcAMP4 → PKAcAMP2 + 2cAMP k1 = 0.02

R5: PKAcAMP4 → PKAr + 2PKAc k1 = 0.016

R6: PKAr + 2PKAc→ PKAcAMP4 k1 = 0.0017

5.3.1 cAMP activation of PKA model

The cAMP activation of PKA is a part of highly prevalent mammalian sig-

naling pathways that translates an extracellular message into an intracellular

response [41, 85]. The cAMP is a second messenger forming when the mem-

brane enzyme adenylyl cyclase is activated. It then goes on activating specific

proteins in which an important class is the protein kinase A (PKA). PKA is a

tetrameric holoenzyme, consisting of two regulatory subunits (PKAr) and two

catalytic subunits (PKAc). PKA is normally inactive in which the regulatory

units blocks the catalytic units. The binding of two molecules cAMP to spe-

cific locations on the regulatory units of PKA causes the dissociation between

the regulatory and catalytic subunits. It thus activates the catalytic unitsand

enables them to phosphorylate substrate proteins. These steps are detailed in

Table 5.2.

For running simulation, the space is divided intonv = 100 cubical subvol-

umes. The diffusion constant of species cAMP isDcAMP = 300. The dif-

fusion of all other species is set to zero. At the beginning, there are30, 000

cAMP molecules placed at the top-left corner of the space, and30, 000 PKA

molecules are uniformly distributed across the space. The population of all

other molecules is set to zero.

In Figure 5.1, we plot the average population of three molecules cAMP, PKA

110

TreeRD

1 5 10

1

5

10

1 5 10

1

5

10

1 5 10

2

4

6

8

10

NSM

1 5 10

1

5

10

1 5 10

1

5

10

1 5 10

1

5

10

RRD

1 5 10

1

5

10

1 5 10

1

5

10

1 5 10

1

5

10

10 15 10 125 250 2 20
#PKA #PKAc#cAMP

Figure 5.1: Average population of species in cAMP activation of PKA model by algorithms

and PKAc, respectively, over the space at the end of the simulation. The figure

shows a strong agreement in the average population of species by simulation

algorithms, and thus experimentally confirms the correctness of RRD.

Table 5.3 presents in detail the computational costs for simulation algo-

rithms. In this table, we record the search time which is the time for finding

a subvolume and a reaction firing in that subvolume, the update time which is

the time required for updating the affected reactions and reflecting the changes

to the underlying data structures, and the total simulation time which composes

of search time, update time and all other tasks (e.g., random number genera-

tion).

From Table 5.3, we see an important fact that the update time contributes a

significant portion to the total simulation time. For example, the update cost

of NSM contributes up to80% of its simulation time, while the search time is

only 4%. Although the search time for the next reaction firing in the subvolume

by NSM is the best, the expensive update negates its advantage. The result is

111

Table 5.3: Simulation time for cAMP activation of PKA model

Algorithm
Search Time Update Time Total Time

(ms) (ms) (ms)

TreeRD 1717 17652 24971

NSM 1091 21028 26345

RRD 4135 8825 18237

the performance of NSM is the worst. TreeRD reduces the update time a bit

to roughly70% of its total simulation time. The simulation time of TreeRD is

thus slightly better (about5% faster) than NSM. In this model, RRD yields the

best performance even though the search time of RRD is worst (about3.8 times

slower than the search time of NSM). By expoiting the over-approximation of

propensities, RRD does not require to update the system at any time after a

reaction firing. The update is rarely taken only as needed, hence substantially

reducing the update time. The update of RRD is about2.8 times faster than the

update time of NSM. In this experiment, the update time of RRD is reduced to

48% of its total simulation time. As a result, the total simulation time of RRD

is roughly30% and27% faster than NSM and TreeRD, respectively.

5.3.2 Multiscaled reaction-diffusion model

The multiscaled reaction-diffusion model consists ofN fast speciesAi andM

slow speciesBi. The reactions are also separated into fast reactions and slow

reactions. A fast reaction is involving fast speciesAi only, while a slow reaction

involves both slow speciesBj and fast speciesAi. To form a slow reaction, a

fast species is randomly selected in the collection ofN fast species. The product

of a slow reaction is a random species from the slow species collection. The

reaction rate of fast reaction is chosen many times faster than the slow reactions

(ki ≫ kj). In this model, The space is further divided intonv subvolumes. The

112

fast species are be able to move in space, while the slow species are unmovable.

Thus, in a subvolume we haveN more diffusion reactions.

Fast reactionRi : Ai
ki−→ Aj

Slow reactionRj : Ai +Bj

kj−→ Bk

Diffusion reactionRd : A
Vk

i

kd−→ AVl

i

In this experiment, we focus on the effects of search and update cost to sim-

ulation performance of algorithms. The search is examined by increasing the

number of subvolumesNv in which Nv is adjusted from100 to 4, 000 sub-

volumes. We investigate the effect of update by changing the number of slow

speciesM from 10 to 500. In this model, the number of fast species is fixed

N = 5. At beginning of the simulation, in each subvolume the initial popula-

tion of fast species is set to1, 000 and slow species is100. Since the aim of this

experiment concentrates on the performance of algorithms we do not present

the data obtained by the simulation algorithms here, although they have shown

a strong agreement. Figure 5.2 shows the detailed simulation performance of

algorithms on this model.

Figure 5.2a) compares the search time of three algorithms. Although the

search time of TreeRD and NSM with small models is slightly better thanRRD,

it is not scaled well when increasing the model size. In fact, the searchtime of

TreeRD and NSM sharply increase while adjustingM andNv from small to

large. For example, the search time of NSM forM = 500, Nv = 4000 is about

24 times slower than the caseM = 10, Nv = 100. The search time of RRD also

increases by increasing the model size but with smaller rate. The searchtime of

RRD forM = 500, Nv = 4000 is only 1.9 times the caseM = 10, Nv = 100.

The result is the search of RRD is3 times faster than the search of NSM with

the same model configurationM = 500, Nv = 4000.

In Figure 5.2b) the update time exhibits the same behavior as the search when

113

Figure 5.2: Simulation time for multiscaled reaction-diffusion model

114

increasing the model size. With large model, the update cost becomes extremely

expensive. For example, the update time of NSM forM = 500, Nv = 4000 is40

times slower than the caseM = 10, Nv = 100. RRD handles the update better

than TreeRD and NSM. The update time of RRD forM = 500, Nv = 4000 is

nearly80 times faster than the NSM and TreeRD.

The total simulation time of three algorithms is shown in Figure 5.2c). From

the figure, the performance of TreeRD and NSM is nearly the same, and the

performance of RRD is the best for all the cases. Even for small model with

M = 10, Nv = 100 the performance of RRD is roughly3 times faster than

NSM, TreeRD. By exploiting the efficient search and update, the computational

time of RRD is extremely reduced when simulating for large models. In this ex-

periment, the simulation runtime of RRD is around30 times faster than TreeRD,

NSM.

5.4 Conclusion

In this chapter we proposed a new formulation, called RRD, for stochastic

reaction-diffusion simulation. RRD combines the over-approximation of reac-

tion propensity and the efficient tree-based search for selecting a reaction firing.

The selection of a reaction firing in a subvolume composes of three steps. First,

a subvolume is discovered by an efficient tree-based search. Then, a candidate

reaction in the selected subvolume is selected by a table lookup. The key point

in selecting the subvolume and reaction of RRD is both of these steps are using

the over-approxiamtion of reaction propensity. Finally, the candidate reaction

is verified to fire based on a rejection-based mechanism. The actual reaction

propensity is only required to evaluate at this verification step. These features

of RRD is useful for simulating large model for both search and update the

system.

115

116

Chapter 6

Rare event probability estimation

6.1 Introduction

In this chapter we delve into the problem of performing a statistical analysis

of targeted event of interest, such as having a high the population of a specific

protein after a determined simulation time. Depending on the event to be stud-

ied, a large number of simulation runs may be required to achieve reasonable

statistical accuracy. Indeed, the task becomes increasingly harder when consid-

eringrare events, which occur only with a very small probability. Despite these

events being rare, the investigation of such events may be rather importantin

the study of e.g. the reliability and robustness of a given biochemical system.

The occurrence of a rare event could lead the system into an abnormal state,

possibly leading to large macroscopic consequences such as the development

of a disease e.g., cancer. For example, the epigenetic changes, in amongst other

factors, which play important roles in the development of cancer, inactivatetu-

mor suppressor genes and then cause normal cells to be transformed into cancer

cells. If the immune system fails to recognize such changes and induce apop-

tosis, the tumor can spread to healthy cells. As a result, the cancer cangrow,

possibly causing severe problems to the living organism.

The conventional stochastic simulation, e.g., SSA, for such a task would be

to simulate many trajectories and counting the number of the successful ones.

117

Rare events make this approach infeasible since a prohibitively large number of

trajectories would need to be generated before the estimation becomes reason-

ably accurate. Hence, it is important to devise a method for efficiently producing

many evolution samples showing the event of interest. Sufficient information

about the rare event could shed light in understanding the developing patterns

which lead to the formation of the event.

In this chapter we contribute to the study of rare event simulation by propos-

ing a new simulation algorithm, calledsSSA, for increasing the frequency of a

rare event without otherwise affecting the system behavior. Essentially, oursis

an algorithm whichencouragesthe evolution of the system so that the target

event becomes more likely, yet in such a way that allows one to recover anesti-

mate for the target event probability in the unbiased system. More in detail, our

algorithm follows a multi-stage strategy where the system state is dividedinto

nested subsets corresponding to levels that a given trajectory must pass through

to reach the desired event. The algorithm works by progressively generating a

set of trajectories, and filtering out those which do not reach a given level.The

successful trajectories are then used as the basis for a new simulation, gener-

ating a new set of trajectories. Then the process is repeated, filtering the new

generation according to an higher level, and so on. This is the fundamental idea

behind themultilevel splitting(see [57, 67, 71, 99, 101] for detailed reviews and

discussions). An advantage of this approach is that, while the filtering biases the

simulation outcome, the algorithm does not change the reaction rates of their

propensities in any way. In this way, we can account for the bias, and still claim

the results to be relevant to the model which is being studied. The same idea of

multilevel splitting was successfully applied to biochemical networks tocalcu-

late the reaction rate constant of the transition between given stable states [4].

However, it requires to fixed the levels before simulating instead of automatic

levels chosen in our approach. In the context of rare event simulation there is a

different approach based onimportance sampling[139], where the underlying

118

probability measure of the reaction events, for example, the reaction propen-

sities [98, 98], is manipulated and recovered by multiplying with the so-called

likelihood ratio, was introduced to increase the frequency of a rare event. The

system, however, is sampling with a different probability distribution, thusit

should not be regarded as valid representation of the actual system behavior.

6.2 Problem setting

Let Ω ⊆ N
n be the system state space, ranged over byX. Let E0 andE,

respectively, be different subsets ofΩ. We want to study the probability of

reaching the stateX(t) ∈ E given an initial stateX(0) = x0 ∈ E0, for some

time t bounded by a constant stopping time:t ≤ Tmax. In other words, given

an eventE, we want to compute its reachability probabilityP(E). To help

intuition, consider the case where the eventE corresponds to speciesSi having

a large population (greater than some thresholdλ). The probability to compute

P(E) can then be explicitly expressed asP(∃t ≤ Tmax. Xi(t) ≥ λ|X(0) = x0).

Denote withTE the first time the system hits the eventE, i.e.,TE = inf{t ≥
0 : X(t) ∈ E}. Our goal is then to efficiently estimate the probability:

γ = Pr(TE ≤ Tmax) = E[1ITE≤Tmax
(X)] (6.1)

where1ITE≤Tmax
(X) is the indicator function. It returns1 if X(TE) ∈ E s.t.

0 ≤ TE ≤ Tmax, or 0 otherwise.

We could, in principle, computeγ exactly as in Eq. 6.1 by studying the

time evolution of the system. For a well-mixed biochemical system, an exact

definition of its evolution is provided by the chemical master equation (CME).

However, although the CME completely determines the time evolution of the

system, it is hard to solve analytically whenever the state space is not very

small. In most cases, stochastic simulation is usually adopted to estimate the

probability above. SSA can be used for estimatingγ, following Eq. 6.1. This

119

is done by just samplingN i.i.d. trajectories{X i}Ni=1 by running SSA from the

initial state up to stopping timeTmax. Each trajectoryX i visits a finite number

of states, so checking whetherX i hits the eventE is straightforward. We can

then estimate the preferred probabilityγ̂ as:

γ̂ =

∑N
i=1 1ITE≤Tmax

(X i)

N
(6.2)

In order to understand how accurate the estimatorγ̂ is, that is how close it

is to the actual valueγ, we need to study its accuracy as well. By the central

limit theorem,γ̂ approaches a normal distributionN (γ, σ2/N) asN is large

enough, whereσ2 is the variance of processX. In other words, we have the

relation:E[γ̂] = γ, V ar(γ̂) = σ2/N . Althoughσ2 is unknown in general, it can

be estimated by the (unbiased) sample variances2

s2 =

∑N
i=1(1ITE≤Tmax

(X i)− γ̂)2

N − 1
(6.3)

To quantify the accuracy of an estimator therelative errorcan be used. It is

given by

RE =

√

V ar(γ̂)

E[γ̂]
=

σ

γ
√
N

(6.4)

The estimation of the above is therefore approximated byRE ≈ s/γ̂
√
N .

Further, a rough analysis of Eq. 6.4 can be obtained whenever the probability

γ is small by noting that we have the approximationγ · (1 − γ) ≈ γ. Thus it

yieldsV ar(γ̂) = γ · (1 − γ)/N ≈ γ/N , in which γ · (1 − γ) appears as the

variance of the Bernoulli variable1ITE≤Tmax
(X i). The relative error so could be

approximated asRE ≈
√

γ/N/γ = 1/
√
N · γ. From this we can see that in

order to reach a given relative errorRE, we need to perform at least1/γRE2

trajectory simulations. For instance, ifγ = 10−6 and we wantRE = 1%,

we need to run roughlyN = 1010 simulation runs, which seems expensive to

perform. Hence, using a trivial SSA sampling to estimate the probability of rare

events appears inefficient.

120

6.3 Splitting for rare event simulation of reaction networks

By the discussion in the previous section, estimating the probability of reaching

a rare eventE by generating many trajectories using SSA is inefficient. The

vast majority of such traces will missE, hence we would need to generate a

very large number of trajectories before we can achieve a reasonable accuracy.

sSSA improves the efficiency of the simulation by retaining only trajectories

which is more likely to reachE, while filtering out the unlikely ones. The

promising trajectories will be split into a number of trajectories. It thus needs

only a modest number of starting trajectories to estimate the wanted probability

with good accuracy. Of course, such estimate is biased. However, we can

remove the bias by correcting the estimate using a suitable factor.

6.3.1 Splitting approach

The fundamental of multilevel splitting approach is dividing the state spaceΩ

into some nested subsetsΩ ⊃ E1 ⊃ · · · ⊃ EL ⊃ EL+1 = E. This is done

so that the probability that a trajectory reachesEl given that it reachesEl−1 is

significantly higher than the probability of directly reaching rare eventE from

the initial statex0 ∈ E0. For our purposes we shall assume that these sets can

be expressed asEl = {X : ∃tl ≤ Tmax ∧ h(X(tl)) ≥ hl}, for somelevels

h1 < · · · < hL and alevel functionh : Ω 7→ R. Simulation is then applied

to estimate all these conditional probabilities i.e., to estimatepl = P(El|El−1).

Finally, an estimator for the probability of the rare eventP(E) is achieved using

the chain rule, by letting̃γ =
∏L+1

l=1 pl.

To estimate the probability of reaching eventE given the fixed stopping

timeTmax thefixed splittingvariant [57] requires to predefine a level sequence

h1, ..., hL. Then, it proceeds as follows. We start with a number of trajectories,

sayN , from timet = 0 at a given initial stateX(0) = x0 ∈ E0. The trajectories

reachingE1 are kept, while those failing to reach that level are discarded. For

121

Figure 6.1: Fixed splitting procedure with levelh1 and splitting factors = 3

each trajectory we keep, we consider its first entrance state, that is(X i(t1), t1),

which falls intoE1. Starting from that entrance state (and time), we again apply

simulation to generates new trajectories. All the trajectories so generated are

used to estimateP(E2|E1), and the process is repeated. The constants is termed

thesplitting factor. The splitting of a trajectory is depicted in Fig. 6.1, which

illustrates just one levelh1, and a splitting factor ofs = 3.

Although fixed splitting variant is unbiased, its accuracy and efficiency are

very sensitive to the choice of the parameters. The estimator, indeed, strongly

depends on the level sequence and splitting factor. If reaching the next level is

unlikely, all trajectories then will probably be discarded. On the other hand, in

case reaching the next level is highly probable and the splitting factor is large,

the number of trajectories will explode exponentially with the levels.

The adaptivemultilevel splitting [30] solves the choosing the parameters

which does not require ana priori choice of levelsEl and splitting factors.

Instead, levels will be defined during its execution. More concretely, to avoid

the possibility of trajectories being extinguished, it shall choose intermediate

122

Figure 6.2: Adaptive choice of level in multilevel splitting, with an ensemble ofN = 3 trajecto-

ries andk = 1 trajectory to be kept. In a)3 trajectories are generated and in b) the2nd quantile

is used as the next level.

levels so that there are alwaysk trajectories reaching the next level. In initial,

N trajectories are simulated in whichk trajectories with highest value reached

by the level functionh(−) are kept. In the next stageN − k new trajectories

are obtained by prolonging the trajectories reaching the level. These trajectories

are merged with the retained trajectories. Then the selecting ofk trajectories is

repeated. In this way, it keeps the reaching probabilityP(El|El−1) close to a

fixed probabilityk/N . Hence, it guarantees that they will not be extinguished,

and further avoid their exponential explosion as well. We illustrate the above

idea in Fig. 6.2. There, we generate an ensemble ofN = 3 trajectories. For

each of them, we compute the maximum level ofh which is reached. Then, the

level h1 is picked so to be at the start of the(k + 1)th quantile i.e. such that

exactlyk traces go beyond that level (k = 1 in the figure).

Although adaptive multilevel splitting chooses the next level without any a

priori knowledge, it introduces bias to the estimated probability of the event

of interest. Due to the bias, the adaptive approach could underestimate the

probability of the event when it is very small [30].

123

sSSA takes advantage over adaptive multilevel splitting by ensuring absence

of biasduring the estimation at each stage. sSSA estimatespl by an ensemble of

N trajectories, which are further divided into two disjoint, independent sets of

simulation runsN1 andN2. More in detail, theN1 group is used to choose the

next levelhl, while theN2 group is used to estimate the conditional probability

P (El|El−1). Using the same trajectories for both purposes makes it hard to jus-

tify that estimator for the conditional probability is unbiased, since the eventEl

depends onhl which ultimately depends on the simulated trajectories. Instead,

by using independent trajectories we achieve bias-freedom in a simple way.

sSSA defines the next level so that having aboutk = N1 ·p trajectories passes

this level, wherep is a non-negligible and non-overwhelming fixed probability.

More precisely, we obtainN1 trajectories by prolonging the successful trajec-

tories in last level until the stopping time. These trajectories are then ordered

according to the highest value reached by the level functionh(−) in each tra-

jectory. That is, we sort them according to maximum level reaching by a tra-

jectories until the stopping time. Finally, we considerk = N1 · p and take the

(k + 1) topmost trace, and let the next level behl.

Having defined the next levelEl, N2 trajectories are then generated to esti-

mate the probabilitypl. The trajectories reaching levelEl are kept for the next

stage, while those failing to reach that level are discarded. Letkl be the actual

number of trajectories which hits the levelEl. So, the reaching probability is

the ratio of the number of successful tracesk1 overN2, i.e.pl = kl/N2.

For each retained trajectory, we store the first entrance state falling intoEl.

The N trajectories in the next stage are simulated starting from these stored

states. More in detail,N initial states are picked randomly from the stored

ones, possibly duplicating them.

124

6.3.2 Choosing a level function

The choice ofh is a critical issue, a poor selection can lead to a severe ineffi-

ciency, even compared to standard methods e.g, SSA. Also, a wrongh which

invalidates the assumptionEl ⊇ El−1 can undermine the correctness of our ap-

proach. Therefore, we want to discuss on the choosing of level function before

going to the details of sSSA in the next section.

The basis of the level functionh is to map a multi-dimensional stateX(t)

into a value representing the importance of that state. It must be consistent

with transition paths to drive the system towards the rare event of interest. In

other words, it measures how close a given state is from the target rare eventE.

Functionh should return a higher value when the rare eventE is more likely

to be reached in the next stages. A choice forh in some problems could be

easy to define. For example, let consider the eventE which is expressed by

the number of translocated polymers moves through a narrow pore in the poly-

mer translocation problem in many biological and biotechnological phenomena.

Level functionh thus could be defined as the number of involving molecules.

A guidance to minimize the variance of the estimator, in general, is to select

h so that the probability of reaching an onward level does not depend on the

possible entrance states on the trajectory reaching that level (see more details

in [162]). In sense of biochemical reactions, the level function should be chosen

matching the parts of the reaction mechanism which can increase the probability

to reach the eventE.

For certain classes of reaction networks which describe a “monotonic” sys-

tem, structural analysis could help in better understanding the dynamics of the

system. The properties of graphical conditions of these reactions will then pro-

vide information to the choice of reaction coordinates [8]. However, the bio-

chemical systems are very complex in general which involve many molecular

species, interacting through a very complex and nonlinear manner to exhibit

125

consistent and reliable behavior. The qualitative analysis may not be sufficient

to account inherently stochastic of these systems, a quantitative method in these

cases is preferred. For a complex reaction coordinate, we could exploit the

approach presented in [164]. First, the configuration in the transition path is

partitioning into set of Voronoi polyhedra. Then the interface is defined as the

planes in phase space across the edges of the Voronoi polyhedra.

The committor function, which is the probability a trajectory starting from

an intermediate statex will reach the eventE started from the initial statex0,

is a precise concept of reaction coordinate [112, 165]. It is the optimal choice

of reaction coordinate since it correlates to the progress of the transition paths.

Because the committor considers all the the coordinates of the systems, it is

a very complex function. We therefore have to project it onto a small set of

appropriated coordinates. Then, we have to choose the parameters that most

closely matches the committor function which should lead to the interfaces that

are perpendicular to the transition paths.

In the above discussion on the choice of the level function, we only focus

on reducing the variance of the estimator. However, it is important to note this

may not optimize the computation time for the simulation because the cost to

reach eventE may depend on the entrance states. Further investigating how to

address that issue as well is for the time being left for future research.

6.3.3 The sSSA algorithm

We now present our sSSA algorithm, assuming we are given a the level function

h as discussed previously. The sSSA procedure is outlined in Alg. 7.

Roughly, in its first main loop iteration sSSA samples an ensemble of N

trajectories, which is composed of two groups ofN1 andN2 trajectories, re-

spectively. We first generate only the first group (N1 trajectories) (starting from

the initial statex0), which we use to define the next levelh1. We defineh1 so

that exactlyk trajectories of the generatedN1 reach values ofh(−) beyondh1.

126

Algorithm 7 sSSA procedure
require: N = N1 +N2: total number of trajectories

1: k: expected number of successful trajectories at each level

2: ks: number of successful trajectories to stop

3: setl = 1

4: setX i to be a single-point trajectory starting from statex0 at time0, for eachi = 1..N

main loop:

5: repeat

6: prolong theN1 trajectoriesX i with i = 1..N1 using SSA from their last state until

stopping timeTmax

7: compute maximum levelhi reached byX i by hi = max
0≤t≤Tmax

h(X i(t))

8: sethl = (k + 1)th quantile of{hi}N1

i=1

9: prolong theN2 trajectoriesXN1+j with j = 1..N2 using SSA from their last state until

stopping timeTmax

10: let k′ be the number of trajectories in theN2 group reaching the target rare event

11: within theN2 group, retain thekl trajectories reaching levelhl, and truncate them at the

first time they do so

12: computepl = kl/N2

13: uniformly clone to obtainN trajectories{X i}Ni=1 within thekl retained ones, update the

old values forX i

14: increasel = l + 1

15: until k′ ≥ ks

16: let pl = k′/N2

statistics:

17: produce estimated probabilitỹγ =
∏l

i=1 pi

127

Formally, lethi, be the maximum value obtained by evaluating functionh on

corresponding trajectoryX i, as shown below:

hi = max
0≤t≤Tmax

h(X i(t)) (6.5)

The next levelh1 is then chosen to be the(k + 1)th quantile in theseN1 values.

Hence,h1 is the (k + 1)th quantile of{hi}N1

i=1. By doing this, we make the

probability of reaching the next levelE1 starting fromx0 ∈ E0 close tok/N1.

Parametersk andN1 can be tuned as needed, so to make this probability non

negligible.

Then, we sample otherN2 trajectories (fromx0), and count how many of

them actually reach the next levelE1. We letp1 to be the ratio of the number of

successful tracesk1 overN2, which we use as an estimator ofP(E1|E0).

We prepare for the next iterations by uniformly samplingN elements from

the set ofsuccessfultrajectories in theN2 group. (Note that sinceN > N2, some

trajectories will be taken more than once.) Name these trajectories{X i}i=1..N .

Then, we truncate eachX i at the time it first succeeds, i.e. at its first crossing of

the next level. The next iterations can then start. The sSSA algorithm will repeat

the tasks done in the first iteration, except for the fact that the newN = N1+N2

generated trajectories are not simulated starting fromx0 but rather from the

last states of the retainedX i trajectories. In other words, we prolong eachX i

until time Tmax. In this way, we start the new simulations from states inEl

(the last states ofX i), so that the computation ofpl = kl/N2 indeed estimates

P(El+1|El).

We stop the main loop when a significant part (at leastks) of the generated

N2 trajectories hit the target rare event. When that happens, we just estimate

the probability of the rare event by the chain ruleγ̂ =
∏l

i=1 pi, wherel is the

number of levels which have been generated.

The estimator̂γ is clearly bias-free, but also does not requireda priori in

determining the levels. The asymptotic normality convergent of the estimator

128

could be proved using the formulation in [31]. While setting the expected prob-

ability for reaching the next level, we have tried to reduce the variance of the

estimator. In the special case whereγ = pq whereq ∈ N, with the choice

of the levels such that allpl = p then it is the same as the optimal setting in

fixed multilevel splitting (see [67] for more detailed discussion on the optimal

conditions).

Compared with the standard sampling using SSA, our algorithm requires a

little more computational resources given the same model and parameters. A

rough analysis of sSSA can be done as follows. AssumeTmax to be a constant,

and letC be the expected work to generate a single trajectory. By applying

e.g. tree search, the search and update inm reactions can be done in logarithmic

time in the number of reactions, i.e.,C = O(logm). The expected work for

generatingN trajectories is thusO(NC) = O(N logm). To select the(k+1)th

quantile inN1 values a direct selection search or a randomized version [38]

which run in expected linear time, i.e.,O(N1) could be applied. Overall, the

expected work is thereforeO(N logm + N1) for sSSA, which is only slightly

more than SSA. This comparison however does not take accuracy into account,

which is crucial in the problem at hand. To better compare SSA and sSSA we

resort to experiments in the next section.

6.4 Experimental results

In this section we report on the experimental results of our algorithm on two

models: a simple production degradation model and an artificial biological

switch model. With these model we compare the performance and efficiency

of sSSA with standard simulation methods. The code was implemented and run

on the Intel Core i5-540M processor.

129

Table 6.1: Production degradation model

R1: DNA→ DNA + mRNA k1 = 1

R2: mRNA→ ∅ k2 = 0.025

6.4.1 Production degradation model

The production degradation model consists of two speciesDNA, mRNA and

involves two reactions shown in Table 6.1. The system models a simple tran-

scription ofDNA to mRNA. In this model, theDNA continuously pro-

ducesmRNA via reactionR1 at ratek1, while mRNA is degraded at rate

k2 in reactionR2. The initial stateX(0) with each component is given with

#DNA(0) = 1 and#mRNA(0) = 40.

In this example we aim to estimate the probability that the first time the sys-

tem reaches a state in which the population ofmRNA is larger than a threshold

valueλ, which is taken in the range55, 60, 65, 70, and75 respectively. The

event is meant to be reached before the stopping timeTmax = 100 and given

the initial stateX(0). First, we briefly derive the complete time evolution of

the system following CME in this simple case, and calculate the probabilitythe

first time the system reaches the event. Then we compare with the simulation

methods, i.e., SSA and sSSA.

To do so, leta1 anda2 be the propensities of reactionR1 andR2, respectively.

We have:

a1(X) = k1#DNA (6.6)

a2(X) = k2#mRNA (6.7)

a0(X) = a1(X) + a2(X) (6.8)

Notice that in our model the population ofDNA is conserved, so thea1 is

unchanged overtime, and thus we only focus on the change of speciesmRNA.

The state vector now is reduced to one dimensionalX = #mRNA.

130

Let P (λ, t|λ0, 0) be the probability density thatt is the first time in which

#mRNA(t) ≥ λ, given initial value#mRNA = λ0. We have the CME

equation written as

δ

δt
P (λ, t|λ0, 0) = a1(λ− 1)P (λ− 1, t|λ0, 0)+

a2(λ+ 1)P (λ+ 1, t|λ0, 0)− a0(λ)P (λ, t|λ0, 0) (6.9)

The collection of differential-difference equations in Eq. 6.9 is analytically

tractable, and can be solved given the initial constraintsP (λ0, 0|λ0, 0) = 1

andP (−1, t|0, 0)) = P (λ + 1, t|λ0, 0) = 0. The propensities are also confined

to zero at stateλ since the system stays in stateλ forever upon the first arrival.

Let expand Eq. 6.9 using a matrix representation by defining matrixM hav-

ing size(λ+ 1)× (λ+ 1) whereM [i, i] = a0(i− 1), M [i+ 1, i] = −a2(i) and

M [i, i + 1] = −a1(i − 1), while all other elements including the last column

are set to zero. The notationM [m,n] denotes the element at rowm and column

n of matrixM . Let Q(t) be the probability vector of all probablely reachable

states at time timet, i.e.,Q(t) = (P (0, t|λ0, 0), ..., P (λ, t|λ0, 0))
T . The Eq. 6.9

is then rewritten as
δ

δt
Q(t) = −MQ(t) (6.10)

Denoteµ1 < µ2 < ... < µλ+1 be the eigenvalues of matrixM in increasing

order. Lete−µt be the diagonal matrix with valueeµit in the main diagonal, and

V be the matrix that itsith column is the eigenvector ofM corresponding to

eigenvalueµi, respectively. The solution of Eq. 6.10 has the following form

Q(t) = V e−µtV −1Q(0) (6.11)

By expanding it, we receiveP (λ, t|λ0, 0) as

P (λ, t|λ0, 0) =
λ+1
∑

i=1

V [λ+ 1, i]e−µitV −1[i, λ0 + 1] (6.12)

From these results we can conclude that if the timet = Tmax is fixed, then

the probability#mRNA reachingλ becomes very small as increasingλ. For

131

example, with our setting above takingλ = 75, we haveγ = 8.4171 ∗ 10−6. In

other words, the probability to reach the event is indeed rare.

To compare the result of SSA and sSSA, we run them, in turn, with different

values ofN , in which 20% are use to determine levels, taken from103, 104 and

105 for each value ofλ. For choosing level we expected50% of the trajectories

will pass to next level. The simulation stop when having at least30% of trajec-

tories hit the event. To estimate the variance of the estimator by sSSA werun

the simulation100 times. For the level functionh we choose it to be the number

of mRNA. It is clear since the model has been reduced to a one dimensional

system. The results of the experiments to estimateγ are shown in Table 6.2 for

different values ofλ. Table 6.2 gives the estimated probabilities, with the esti-

mated relative error for different settings of SSA and sSSA. Note that wewrite

’-’ meaning that there are no successful trajectories hitting the eventE. When

the probability is not rare, say from10−1 to 10−3, SSA can be used to roughly

estimate the probability the first time the system reaching the event, as inthe

casesλ = 55, 60, 65. when the probability instead becomes rarer and we still

use a fixed budgetN , SSA is not so accurate. For example, in caseλ = 75 there

is no successful trajectory reaching the event. Hence, we could not approximate

γ̂. In this extreme case, sSSA still could be able to estimateγ̃ even with only

N = 103 trajectories.

Furthermore, we can conclude from the Table 6.2 the estimated variance by

sSSA in all cases is always better than SSA with the same parameterssetting.

The estimatedRE of algorithms whileλ takes small values, in corresponding

to not rare event, is not too much, although sSSA is always smaller. An inter-

esting point from results in Table 6.2, even though in the case of not rare, is that

sSSA could produce the same RE by using less simulation time than SSA. For

example, to haveRE = 2% in caseλ = 60, SSA requires105 trajectories with

simulation time16 seconds while sSSA just needs5 seconds withN = 104.

Similarly, for the caseλ = 65, sSSA just requiresN = 103 with time less than

132

Table 6.2: Estimated probability for Production degradation model of simulation methods with

initial state#DNA = 1,#mRNA = 40. ’-’ means there are no successful trajectories hitting

the event

λ Analytic

Simulation

N
SSA sSSA

Prob. RE Time(ms) Prob. RE Time(ms)

55 0.1186

103 0.112 8.41E-02 220 0.1046 5.60E-02 397

104 0.1167 2.71E-02 1644 0.1105 1.51E-02 3375

105 0.1193 8.64E-03 15261 0.1107 3.51E-03 33108

60 0.0207

103 0.018 2.03E-01 262 0.0164 6.76E-02 580

104 0.0177 6.37E-02 1701 0.0173 2.21E-02 5368

105 0.0201 2.14E-02 15844 0.0203 9.47E-03 35018

65 0.0023

103 0.004 8.68E-01 279 0.0023 6.97E-02 884

104 0.0018 1.84E-01 1751 0.0019 2.57E-02 7961

105 0.0021 6.26E-02 16353 0.0021 8.65E-03 52895

70 1.68E-4

103 - - - 2.18E-4 5.23E-02 1540

104 1.00E-4 5.97E-01 1856 1.68E-4 2.72E-02 10458

105 1.30E-4 2.15E-01 17368 1.66E-4 6.31E-03 354895

75 8.42E-6

103 - - - 5.14E-06 5.73E-02 8760

104 - - - 7.29E-06 3.69E-02 33705

105 - - - 8.57E-06 7.69E-03 437547

133

second to achieveRE = 6% while SSA needs to run16 seconds withN = 105

trajectories.

The difference inRE between algorithms becomes very large when the

probability became very small. The number of trajectories used by SSA has

to grow linear with the rarity. This mean theRE of SSA will very poor if we

fix N and increase the rarity. This is exactly what we obtained from the Ta-

ble 6.2. But, sSSA instead scales very well. TheRE in estimating the event

is controlled around5% in case we only useN = 103. In other words, the

convergence of the sSSA estimator is really better than the standard method.

We also study the computational cost of sSSA. Given a fixedN , using the

algorithms discussed above, the runtime of sSSA is always a bit longer than

SSA since it has to resample to obtain more successful trajectories. However,

to measure the efficiency of the estimator in the rare event setting, whilealso

taking into account the computational cost, we study theefficiencyof an estima-

tor, which is given by the inverse of the multiplication of the variance and the

expected runtime to estimateγ, i.e., Eff(̂γ) = 1/[V ar(γ̂)∗T (γ̂)], whereV ar(γ̂)

is the estimated variance andT (γ̂) denote the simulation time. Thus, an esti-

mator γ̂ is said efficient thañγ if it has greater efficiency, i.e., when Eff(γ̂) >

Eff(γ̃). The result is presented in Fig. 6.3 showing the efficiency of SSA and

sSSA.

Although sSSA demands more CPU runtime than SSA, given in Table 6.2,

its efficiency is better than SSA in all cases as shown in Table 6.3 where we

compare with each value ofN . Note that, however, when the event is not rare,

for example in caseλ = 55, the additional computational expensive will down-

ward the efficiency, resulting in a suboptimal efficiency of sSSA. For example,

the caseN = 104 andλ = 55, we have Eff(sSSA)= 0.4470 and Eff(SSA)

= 0.4556, showing that SSA is a little better, nearly one percentage, than sSSA.

By contrast, whenλ = 75 andN = 104, sSSA is much more efficient, since

Eff(sSSA)= 813.5235 while there are no successful trajectories in case of SSA

134

Table 6.3: Efficiency of simulation methods for estimating probabilities the first time the popu-

lation of#mRNA reachingλ for Production Degradation model with initial state#DNA =

1,#mRNA = 40

N λ Eff(SSA) Eff(sSSA)

103

55 0.4556 0.4470

60 0.9074 1.7233

65 1.7948 10.1436

70 0 56.9536

75 0 387.5949

104

55 0.1894 0.1985

60 0.4458 0.4872

65 1.3472 2.5724

70 5.3879 20.9253

75 0 110.2641

105

55 0.0641 0.0883

60 0.1424 0.2174

65 0.4244 1.0407

70 1.5969 2.6901

75 0 34.6791

135

Table 6.4: Biological switch model

No. Reaction Rate constant

R1 2A→ A2 k1 = 5

R2 A2→ 2A k2 = 5

R3 O + A2→ OA2 k3 = 5

R4 OA2→ O + A2 k4 = 1

R5 O→ O + A k5 = 1

R6 OA2→ OA2 + A k6 = 1

R7 A→ ∅ k7 = 0.25

R8 2B → B2 k8 = 5

R9 B2→ 2B k9 = 5

R10 O +B2→ OB2 k10 = 5

R11 OB2→ O + B2 k11 = 1

R12 O→ O + B k12 = 1

R13 OB2→ OB2 + B k13 = 1

R14 B → ∅ k14 = 0.25

(in those cases we set Eff(SSA)= 0).

Suppose we want to use SSA for estimating the probability the first time

the population of#mRNA reachingλ = 75 with RE = 5%. We therefore

have to simulate roughly1/(RE ∗ γ) ≈ 107 trajectories. The average time

for one trajectory generating is12ms in our machine. In case we use sSSA

with totalN = 103, the computational gain returning by our algorithm is(12 ∗
107)/(8760) ≈ 104.

6.4.2 Biological switch model

In this case study, we applied the sSSA to a generic biochemical switch [170].

It is an artificial model of a minimal presentation of lysis/lysogeny switch in

136

the phageλ which consists of two adjacent operons that mutually repress each

other. There is a demonstrated construction of the toggle switch in E. coli pro-

posed in [56]. The reaction model is shown in 6.4. We consider here the ex-

clusive model of toggle switch in which only one dimer can bind to the DNA.

In particular, the generic switch consists of two factors: proteins A and protein

B which is encoding by their corresponding genesA andB. Protein A and B

form the corresponding homodimersA2 andB2, respectively, which can bind to

DNA, named O. WhenA2 is bound, geneB is not transcribed, and in vice versa

B2 is bound, it suppresses the transcription of geneA. As the DNA is bound

by one protein type, it continuously produce the corresponding protein. Thus

this biological switch model shows the appearance of bistability phenomenon

where there are two steady states corresponding with the high number of protein

A and B, respectively.

Let NA = #A + 2(#A2 + #OA2) andNB = #B + 2(#B2 + #OB2)

be the total number of protein A and B. In this model we focus on estimating

the probability of transition starting from a state in the region withNA = λA

and ending in another region withNB ≥ λB during the simulation timeTmax.

Because of the mutual suppression between protein A and B, the probability to

move from one highly stable region to the opposite stable region will becomes

very rare. Table 6.5 shows the estimated probability for our case study with

different settings for initial values ofλA, while the total number of protein B is

0.

From the result, we draw a conclusion that the estimated probability by sSSA

is consistent with the SSA when the event is less rare, the caseλA = 20. While

increasingλA, the event becomes indeed rare. In other words the probability to

jump off this region is very small. The number of simulationN of SSA has to

grow proportional with the rarity of the event. For example,λA = 40, the order

of probability is10−8, we have to generate in averageN = 1012 trajectories

to estimate the probability withRE = 1%. The average time to have one

137

Table 6.5: Estimated probability for Biological Switch model of simulation methods with fixed

λB = 25, while changing initial value ofλA. ’-’ means there are no successful trajectories

hitting the event

λA

SSA sSSA

N Prob. RE Time(min) N Prob. RE Time(min)

20

105 5.20E-04 1.35E-01 128 104 4.70E-04 5.21E-02 97

106 4.95E-04 5.16E-02 1299 105 4.54E-04 2.29E-02 964

107 4.63E-04 1.70E-02 11633

30

105 - - - 104 2.42E-6 5.68E-02 218

106 - - - 105 1.34E-6 2.36E-02 2015

107 1.20E-6 2.89E-01 18874

40

105 - - - 104 4.23E-8 6.10E-02 341

106 - - - 105 2.14E-8 2.79E-02 3341

107 - - -

trajectory for this model is235ms. The simulation is therefore unaceptable

(roughly7451 years!). While the sSSA could estimate this probablity with total

N = 104 trajectories with controlled6% relative error.

6.5 Conclusions

Stochastic simulation is an emerging research area for investigating biological

processes, especially whenever fluctuation and noise play important roles. Liv-

ing organisms use different mechanisms, which usually involve the complex and

nonlinear interactions between molecular species, to expose a consistent behav-

ior under such noisy regimes. Hence, rare event simulation becomes a very

important step to understand the robustness and the reliability of biochemical

138

systems. In this paper we developed a new algorithm, called sSSA, to improve

the efficiency w.r.t. standard stochastic simulation in a rare event setting.

Although the sSSA algorithm has been shown to be efficient when applied

to a few reference models, further investigation is necessary. A first line of

research would be to find more guidelines helping a modeler to choose the

of level functionh. This is important since a bad choice forh can lead to a

lower efficiency, even when comparing with previous methods. Second, from

the practical point of the algorithm, we need to decide the number of levels in

the level sequence to achieve a better performance in applying to simulate a real

biochemical systems. In this work we prolong a trajectory from the first en-

trance state when it reaches the next level. We clearly can extend this to count

all the states falling in the next level. And a pruning technique, e.g., Russian

roulette, could be applied to kill trajectories going down to save the computa-

tional resources. A further study on the efficiency of the algorithm is required.

139

140

Chapter 7

Conclusion

Stochastic simulation is an invaluable tool for understanding the complexities

of biochemical reactions. In this thesis we studied performance of the exact

stochastic simulation algorithm i.e., SSA, and contribute to the developmentof

new efficient formulations. We proposed new algorithms for improving both

efficiency and statistical accuracy measurement of the stochastic simulation so

to make it applicable for large and highly coupled reaction networks.

In chapter 3 we study the effect of the search of next reaction firing to the

performance of the stochastic simulation. We proposed a tree-based search ap-

proach to reduce the search time complexity. Through the experiments, we

showed that simulation performance can be sensibly improved if an underlying

tree data structure is used to support the search. We predict the shape of the tree

leading to optimal average search time. This turns out to be the Huffman tree,

a device used in computer science for data compression. Then, we study the

impact of approach to rebuild the tree when it becomes non-optimal by many

reaction firings. Two approaches are presented to handle this problem namely:

the fixed time tree rebuilding and adaptive time tree rebuilding in which the lat-

ter allows to rebuilt the tree during the simulation depending on how the system

evolves.

Then, we study the effect of the propensity update to overall performance of

141

stochastic simulation. Indeed, whenever the population of a species is changed

by a reaction firing, the propensities of all the dependent reactions has to be

recomputed. Even though a dependency graph can reduce the update to be

model-dependent, in which only locally affected reactions have to recompute

their propensities, still there are many models, e.g., highly coupled reactions,

where a costly update required. A significant portion of the computation time is

spent on propensity updates. In highly coupled reaction networks, the propen-

sity updates soon become a bottleneck of the whole algorithm. In chapter 4

we proposed an solution to cope this problem with a new simulation algorithm,

calledRSSA. RSSA is an exact simulation algorithm improving the simulation

performance by postponing and collapsing as much as possible the propensity

updates, hence reducing their cost. RSSA exploits a rejection-based mechanism

to select a reaction firing. It uses the over approximation reaction propensity,

which is often very fast and more efficient to compute, to select a reaction fir-

ing. The search of a reaction firing is carried out in two steps. A candidate

reaction is selected according to an over-approximation of its propensity.A

rejection step is then applied to recover the exactness of the algorithm. We fur-

ther contribute to the improvement of RSSA in both of these steps. First, we

discuss which search procedures for finding a candidate reaction lead to better

performances, for different network sizes. Second, we study several strategies

for controlling the amount of over-approximation, and analyze their impact to

the simulation performance. We also discuss how to systematically optimize

the tunable parameters of RSSA so to maximize its performance.

In chapter 5 we extend our study to the reaction networks where the dif-

fusion significantly affects the biological behaviour. The spatial extensions of

SSA are introduced to simulate the reaction-diffusion by dividing the space into

subvolumes so that a subvolume is assumed to be well-mixed. The diffusion

in this modelling is explicitly modelled as unimolecular reaction. The search

of a reaction firing now is consisting of two steps: 1) search for a subvolume,

142

and then 2) search for a reaction firing in that subvolume. After a selected re-

action fires the system is updated. Although a spatial SSA is able to simulate

the reaction-diffusion processes, its performance is slow due to the inefficient

search and update. In chapter 5 we propose a new formulation, called RRD.

Our new formulation combines an efficient binary search and approximation

of propensity for searching an subvolume and then a reaction firing inside that

subvolume. According to our experiments, the search and update of a reaction

firing in a subvolume by our formulation is substantially reduced and thus its

performance outperforms over previous approaches e.g., NSM.

In chapter 6 we study the statistical analysis of targeted event of interest by

performing stochastic simulation. The random in reaction firing requires a large

number of simulation runs to achieve a reasonable statistical accuracy. The task

becomes increasingly harder when consideringrare events, which occur only

with a very small probability. Estimating the probability of rare events inbio-

chemical systems, however, is an important task, since it can help in studying

rare abnormal behavior when they do occur. We contribute to this study by

proposing a new algorithm, calledsSSA, to efficiently estimate the probability

of a rare event. It is a kind of biased simulation where the state space issplit

into subsets so that the event become more likely when moving from one subset

to another. Thus, simulated trajectories are gradually “pushed” towards the rare

event following such subsets. The (unbiased) probability for the rare event is

then estimated by counting the successful (biased) trajectories, and then apply-

ing a correction factor so to account for the bias.

Concluding, we investigated new algorithms for improving exact stochastic

simulation; however, there still many problems are open for further investiga-

tion. For instance, in exact stochastic simulation a discrete copy number of each

molecular species is keep tracking. This is obviously not efficient because the

population of species in biological systems is often great disparity. The species

having large population should be better simulated by a fast, but less sensitive,

143

simulation algorithm without loss of accuracy. A hybrid simulation algorithm is

an ideal approach to handle this problem in which the large population species

is handled by a fast numerical integration, e.g., ODE integration, while the low

population species is simulated by an exact simulation algorithm. RSSA is a

good candidate for the exact simulation algorithm. In hybrid approach, the de-

terministic integration part can affect the stochastic part. However, by RSSA,

we do not need to update the propensity of affected reactions in stochastic part

if the species population is still confined in its fluctuation interval. Thus, a

lot of computation effort would be saved. The parallel stochastic simulation is

also a promising approach to deal with the complexity of biochemical systems.

However, because the stochastic simulation is inherently sequential it requires

special approach to parallelize the algorithm to achieve a better performance.

Finally, extending stochastic simulation for systems that are not well-mixed

also exposes a great many challenges.

144

Bibliography

[1] Luca Aceto, Anna Ingolfsdottir, Kim G. Larsen, and Jiri Srba.Reactive

Systems: Modelling, Specification and Verification. Cambridge Univer-

sity Press, 2007.

[2] Aurlien Alfonsi, Eric Cancs, Gabriel Turinici, Barbara Di Ventura, and

Wilhelm Huisinga. Adaptive simulation of hybrid stochastic and deter-

ministic models for biochemical systems. InProc. of ESAIM, 2005.

[3] Michael P. Allen. Introduction to molecular dynamics simulation. In

Lecture Notes on Computational Soft Matter: From Synthetic Polymers

to Proteins, volume 23, pages 1–28, 2004.

[4] R. Allen, C. Valeriani, and P. ten Wolde. Forward flux sampling for rare

event simulations.J. Phys., 21:463102, 2009.

[5] S. Alonso, F. Sagus, and A. S. Mikhailov. Negative-tension instability

of scroll waves and winfree turbulence in the oregonator model.J. Phys.

Chem. A, 110(43):12063–12071, 2006.

[6] David F. Anderson. A modified next reaction method for simulating

chemical systems with time dependent propensities and delays.J. Chem.

Phys., 127(21):214107, 2007.

[7] Steven S Andrews and Dennis Bray. The two-regime method for opti-

mizing stochastic reaction-diffusion simulations.Phys. Biol., 1:137–151,

2004.

145

[8] D. Angeli, P. De Leenheer, and E. Sontag. Graph-theoretic characteri-

zations of monotonicity of chemical networks in reaction coordinates.J

Math Biol., 61(4):581–616, 2010.

[9] Adam Arkin, John Ross, and Harley H. McAdams. Stochastic kinetic

analysis of developmental pathway bifurcation in phage lambda-infected

escherichia coli cells.Genetics, 149:16331648, 1998.

[10] Uri M. Ascher and Linda R. Petzold.Computer Methods for Ordinary

Differential Equations and Differential-Algebraic Equations. SIAM,

1998.

[11] A Auger, P Chatelain, and P Koumoutsakos. R-leaping: accelerating

the stochastic simulation algorithm by reaction leaps.J. Phys. Chem.,

125(8):084103, 2006.

[12] F. Baras and M. Malek Mansour. Reaction-diffusion master equation:

A comparison with microscopic simulations.Physical Review E, 54(6),

1996.

[13] M. Barrio, K. Burrage, A. Leier, and T. Tian. Oscillatory regulation of

hes1: Discrete stochastic delay modelling and simulation.PLoS Comput.

Biol., 2(9):117, 2006.

[14] O. Bastiansen.The Law of Mass Action, A Centenary Volume. Univer-

sitetsforlaget: Oslo, 1964.

[15] Basil Bayati, Philippe Chatelain, and Petros Koumoutsakos. Adaptive

mesh refinement for stochastic reactiondiffusion processes.Journal of

Computational Physics, 230:13–26, 2011.

[16] M Bentele and R. Eils. General stochastic hybrid method for the simu-

lation of chemical reaction processes in cells. InProc. of Computational

Methods in Systems Biology (CMSB), 2004.

146

[17] David Bernstein. Simulating mesoscopic reaction-diffusion systems us-

ing the gillespie algorithm.Phys. Rev. E, 71(4):041103, 2005.

[18] James Blue, Isabel Beichl, and Francis Sullivan. Faster monte carlosim-

ulations.Phys. Rev. E, 51(2):867–868, 1995.

[19] D. Bratsun, D. Volfson, Lev S. Tsimring, and J. Hasty. Delay-induced

stochastic oscillations in gene regulation. InIn Proc. of PNAS, 2005.

[20] R. Brown. Calendar queues: a fast 0(1) priority queue implementa-

tion for the simulation event set problem.Communications of the ACM,

31(10):1220–1227, 1988.

[21] X Cai. Exact stochastic simulation of coupled chemical reactions with

delays.J. Chem. Phys., 126(12):124108, 2007.

[22] X Cai and Z Xu. K-leap method for accelerating stochastic simulation of

coupled chemical reactions.J. Phys. Chem., 126:074102, 2007.

[23] Y Cao, D Gillespie, and L Petzold. Multiscale stochastic simulation al-

gorithm with stochastic partial equlibrium assumption for chemically re-

acting systems.J Comp. Phys., 266(2):395411, 2005.

[24] Y Cao, D Gillespie, and L Petzold. The slow-scale stochastic simulation

algorithm.J. Chem. Phys., 122(1):014116, 2005.

[25] Y Cao, D T. Gillespie, and L R. Petzold. Avoiding negative populations

in explicit poisson tau-leaping.J. Phys. Chem., 123(5):054104, 2005.

[26] Y Cao, D T. Gillespie, and L R. Petzold. Trapezoidal tau-leaping for-

mula for the stochastic simulation of biochemical systems. InProc. of

Foundations of Systems Biology Engineering (FOSBE 2005), 2005.

[27] Y Cao, D T. Gillespie, and L R. Petzold. Efficient step size selectionfor

the tau-leaping simulation method.J. Phys. Chem., 124:044109, 2006.

147

[28] Y Cao, D T. Gillespie, and L R. Petzold. Adaptive explicit-implicit

tau-leaping method with automatic tau selection.J. Phys. Chem.,

126(22):224101, 2007.

[29] Yang Cao, Hong Li, and Linda Petzold. Efficient formulation of the

stochastic simulation algorithm for chemically reacting systems.J.

Chem. Phys., 121(9):4059, 2004.

[30] F. Cerou and A. Guyader. Adaptive multilevel for rare event analysis.

Stochastic Analysis and Applications, 25(2):417–443, 2007.

[31] F. Cerou, P. Moral, F. LeGland, and P. Lezaud. Genetic genealogi-

cal models in rare event analysis.ALEA Lat. Am. J. Prob. Math. Stat.,

1:181203, 2006.

[32] A. Chatterjee, D. G. Vlachos, and M. A. Katsoulakis. Binomial distri-

bution based tau-leap accelerated stochastic simulation.J. Phys. Chem.,

122(2):024112, 2005.

[33] N A. Chebotareva, B I. Kurganov, and N B. Livanova. Biochemical ef-

fects of molecular crowding.Biochemistry, 69(11):1239–1251, 2004.

[34] William W. Chen, Birgit Schoeber, Paul J. Jasper, Mario Niepel, Ulrik B.

Nielsen, Douglas A. Lauffenburger, and Peter K. Sorger. Input-output

behavior of ErbB signaling pathways as revealed by a mass action model

trained against dynamic data.Mol. Syst. Biol., 5(239), 2009.

[35] TaiJung Choi, Mano Ram Maurya, Daniel M. Tartakovsky, and Shankar

Subramaniam. Stochastic operator-splitting method for reaction-

diffusion systems.J. Chem. Phys., 137:184102, 2012.

[36] B. Chopard and M. Droz.Cellular Automata Modeling of Physical Sys-

tems. Cambridge University Press, 1998.

148

[37] Anne Condon, David Harel, Joost N. Kok, Arto Salomaa, and Erik Win-

free. Algorithmic Bioprocesses. Springer, 2009.

[38] T. Cormen, C. Stein, R. Rivest, and C. Leiserson.Introduction to Algo-

rithms. McGraw-Hill Higher Education, 2001.

[39] E. J. Crampina, S. Schnella, and P. E. McSharry. Mathematical and com-

putational techniques to deduce complex biochemical reaction mecha-

nisms. Progress in Biophysics and Molecular Biology, 86(1):77–112,

2004.

[40] Vincent Danos, Jerome Feret, Walter Fontana, and Jean Krivine. Scalable

simulation of cellular signaling networks. InProc. of APLAS, 2007.

[41] R. Das, V. Esposito, M. Abu-Abed, G. Anand, S. Taylor, and G. Melacini.

camp activation of pka defines an ancient signaling mechanism. InProc.

of PNAS, 2006.

[42] Gerda de Vries, Thomas Hillen, Mark Lewis, Birgitt Schnfisch, and Jo-

hannes Muller.A Course in Mathematical Biology: Quantitative Model-

ing with Mathematical and Computational. SIAM, 2006.

[43] Luc Devroye. Non-Uniform Random Variate Generation. Springer-

Verlag, 1986.

[44] A R. Dinasarapu, B. Saunders, I Ozerlat, K. Azam K, and S. Subrama-

niam. Signaling gateway molecule pages - a data model perspective.

Bioinformatics, 27(12):17361738, 2010.

[45] Johan Elf, Andreas Doni, and Mns Ehrenberg. Mesoscopic reaction-

diffusion in intracellular signaling. InIn Proc. of SPIE, 2003.

[46] M. Elowitz, A. Levine, E. Siggia, and P. Swain. Stochastic gene expres-

sion in a single cell.Science, 297:11831186, 2002.

149

[47] Stefan Engblom, Lars Ferm, Andreas Hellander, and Per Lotstedt. Simu-

lation of stochastic reaction-diffusion processes on unstructured meshes.

SIAM J. Sci. Comput., 31(3):1774–1797, 2009.

[48] Radek Erban and S Jonathan Chapman. Stochastic modelling of reac-

tiondiffusion processes: algorithms for bimolecular reactions.Physical

Biology, 6(4), 2009.

[49] R. Ewald, C. Maus, A. Rolfs, and A. Uhrmacher. Discrete event mod-

elling and simulation in systems biology.Journal of Simulation, 1:8196,

2007.

[50] James R. Faeder, Michael L. Blinov, Byron Goldstein, and William S.

Hlavacek. Rule-based modeling of biochemical networks.Complexity,

10(4):2241, 2005.

[51] David Fange, Otto G. Berg, Paul Sjberg, and Johan Elf. Stochastic

reaction-diffusion kinetics in the microscopic limit. InProc. of PNAS,

2010.

[52] David Fange and Johan Elf. Noise-induced min phenotypes in e. coli.

PLoS Comput. Biol., 2(6), 2006.

[53] D. Fell. Understanding the Control of Metabolism. Portland Press, 1997.

[54] A. Finney and M. Hucka. Systems biology markup language: Level 2

and beyond.Biochemical Society Transactions, 31(6):1472, 2003.

[55] M B Flegg, S J Chapman, and R. Erban. The two-regime method for op-

timizing stochastic reaction-diffusion simulations.Journal of The Royal

Society Interface, 9(70):869–68, 2012.

[56] T. Gardner, C. Cantor, and J. Collins. Construction of a genetic toggle

switch in escherichia coli.Nature, 403:339–342, 2000.

150

[57] M. Garvels. The splitting method in rare event simulation. PhD thesis,

University of Twente, 2000.

[58] J. Gentle, W. Hrdle, and Y. Mori.Handbook of Computational Statistics:

Concepts and Methods. Springer-Verlag, 2012.

[59] Michael Gibson and Jehoshua Bruck. Efficient exact stochastic simula-

tion of chemical systems with many species and many channels.J. Phys.

Chem. A, 104(9):1876–1889, 2000.

[60] Daniel T. Gillespie. A general method for numerically simulating the

stochastic time evolution of coupled chemical reactions.J. Comp. Phys.,

22(4):403–434, 1976.

[61] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical re-

actions.J. Phys. Chem., 81(25):2340–2361, 1977.

[62] Daniel T. Gillespie. Approximate accelerated stochastic simulation. J.

Phys. Chem., 115(4):171633, 2001.

[63] Daniel T. Gillespie. Approximate accelerated stochastic simulation of

chemically reacting.J. Chem. Phys., 115:1716–1733, 2001.

[64] Daniel T. Gillespie. A rigorous derivation of the chemical master equa-

tion. Physica A, 188(1):404–425, 2007.

[65] Daniel T. Gillespie. Stochastic simulation of chemical kinetics.Annu

Rev Phys Chem., 58:35–55, 2007.

[66] Daniel T. Gillespie and Linda R. Petzold. Improved leap-size selection

for accelerated stochastic simulation.J. Phys. Chem., 119(16):822934,

2003.

151

[67] P. Glasserman, P. Heidelberger, P. Shahabuddin, and T. Zajic. Multilevel

splitting for estimating rare event probabilities.Operations Research,

47(4):585–600, 1999.

[68] R Goh and I. Thng. Mlist: an efficient pending event set structure for

discrete event simulation.Journal of Simulation, 4(5), 2003.

[69] P. Goss and J. Peccoud. Quantitative modeling of stochastic systems in

molecular biology by using stochastic petri nets. InPNAS, 1998.

[70] S. Goutelle, M. Maurin, F. Rougier, X. Barbaut, L. Bourguignon,

M. Ducher, and P. Maire. The Hill equation: a review of its capabilities

in pharmacological modelling.Fundamental & Clinical Pharmacology,

22, 2008.

[71] A. Guyader, N. Hengartner, and E. Matzner-Lber. Simulation and estima-

tion of extreme quantiles and extreme probabilities.Appl. Math. Optim.,

64(2):171–196, 2011.

[72] E L Haseltine and J B Rawlings. Approximate simulation of coupled

fast and slow reactions for stochastic chemical kinetics.J. Phys. Chem.,

117(15):695969, 2002.

[73] R. Heinrich and S. Schuster.The Regulation of Cellular Systems. Kluwer

Academic Publishers, 1996.

[74] Iain Hepburn, Weiliang Chen, Stefan Wils, and Erik De Schutter. STEPS:

efficient simulation of stochastic reactiondiffusion models in realistic

morphologies.BMC Systems Biology, 6(36), 2012.

[75] A. V. Hill. The possible effects of the aggregation of the molecules of

haemoglobin on its dissociation curves.J. of Physiology, 40, 1910.

[76] Wolfgang Hormann, Josef Leydold, and Gerhard Derflinger.Automatic

Nonuniform Random Variate Generation. Springer-Verlag, 2004.

152

[77] M. Hucka and et al. The systems biology markup language (sbml): A

medium for representation and exchange of biochemical network models.

Bioinformatics, 19(4):524–531, 2003.

[78] M. Hucka and et al. Evolving a lingua franca and associated software

infrastructure for computational systems biology: The systems biology

markup language (sbml) project.Systems Biology, 1(41), 2004.

[79] D. A. Huffman. A method for the construction of minimum-redundancy

codes. InProc. of IRE, 1952.

[80] S. Indurkhya and J. Beal. Reaction factoring and bipartite update graphs

accelerate the gillespie algorithm for large-scale biochemical systems.

PLoS One., 5(1):8125, 2010.

[81] A. Jansson and M. Jirstrand. The systems biology graphical notation.

Drug Discov. Today, 15(9):36570, 2010.

[82] Matthias Jeschke and Adelinde M. Uhrmacher. Multi-resolution spatial

simulation for molecular crowding. InProc. of Winter Simulation Con-

ference, 2008.

[83] Douglas W. Jones. An empirical comparison of priority-queue and event-

set implementations.Communications of the ACM, 29(4):300–311, 1986.

[84] Thomas R. Kiehl, Robert M. Mattheyses, and Melvin K. Simmons. Hy-

brid simulation of cellular behavior.Bioinformatics, 20(3):316322, 2004.

[85] C. Kim, C. Cheng, S. Saldanha, and S. Taylor. Pka-i holoenzyme

structure reveals a mechanism for camp-dependent activation.Cell,

130(6):1032–43, 2007.

[86] Haseong Kim and Erol Gelenbe. Stochastic gene expression modeling

with Hill function for switch-like gene responses.IEEE/ACM Trans. on

Computational Biology and Bioinformatics, 9(4):973–979, 2012.

153

[87] Hiroaki Kitano. Foundation of Systems Biology. MIT Press, 2001.

[88] Hiroaki Kitano. Computational systems biology.Nature, 420:206–210,

2002.

[89] Hiroaki Kitano. Systems biology: A brief overview.Science, 295:1662,

2002.

[90] Michael Klann, Arnab Ganguly, and Heinz Koepp. Hybrid spatial gille-

spie and particle tracking simulation. InProceeding of European Confer-

ence on Computational Biology (ECCB), 2012.

[91] D. Knuth. The Art of Computer Programming, volume 1. Addison-

Wesley, 2011.

[92] H. Koeppl, D. Densmore, G. Setti, and M. di Bernardo.Design and

Analysis of Bio-molecular Circuits. Springer-Verlag, 2011.

[93] W. Kolch. Meaningful relationships: the regulation of the ras/raf/mek/erk

pathway by protein interactions.Biochem. J., 351(2):289–305, 2000.

[94] Richard A. Kronmal and Arthur V. Peterson. On the Alias method for

generating random variables from a discrete distribution.The American

Statistician, 33(4):214–218, 1979.

[95] Yoshiki Kuramoto and Tomoji Yamada. Pattern formation in oscilla-

tory chemical reactions.Progress of Theoretical Physics, 56(3):724–740,

1976.

[96] H. Kurata, H. El-Samad, T. M. Yi, M. Khammash, and J. Doyle. Feed-

back regulation of the heat shock response in e. coli. InProc. of CDC,

2001.

[97] Thomas G. Kurtz. The relationship between stochastic and deterministic

models for chemical reactions.J. Chem. Phys., 57(2976), 1972.

154

[98] H. Kuwahara and I. Mura. An efficient and exact stochastic simulation

method to analyze rare events in biochemical systems.J. Chem. Phys.,

29(16):165101, 2008.

[99] A. Lagnoux. Rare event simulation.PEIS, 20(1):45–66, 2006.

[100] S Lampoudi, D T. Gillespie, and L R. Petzold. The multinomial sim-

ulation algorithm for discrete stochastic simulation.J. Chem. Phys.,

130(9):94104, 2009.

[101] P. L’Ecuyer, V. Demers, and B. Tuffin. Rare events, splitting, and quasi-

monte carlo.ACM Transactions on Modeling and Computer Simulation,

17(22), 2007.

[102] Trevor H. Levere.Affinity and Matter: Elements of Chemical Philosophy

1800-1865. Routledge, 1993.

[103] Hong Li and Linda Petzold. Logarithmic direct method for discrete

stochastic simulation of chemically reacting systems. Technical Report,

2006.

[104] C. M. Lloyd, M. D. B. Halstead, and P. F. Nielsen. Cellml: its fu-

ture, present and past.Progress in Biophysics and Molecular Biology,

85(2):433–450, 2004.

[105] L. Lok and R. Brent. Automatic generation of cellular reaction networks

with moleculizer 1.0.Nat. Biotec., 23(1):131–6, 2005.

[106] S. Mauch and M. Stalzer. Efficient formulations for exact stochastic sim-

ulation of chemical systems.IEEE/ACM Trans. on Computational Biol-

ogy and Bioinformatics, 8(1):27–35, 2011.

[107] Carsten Maus, Stefan Rybacki, and Adelinde M Uhrmacher. Rule-based

multi-level modeling of cell biological systems.BMC Systems Biology,

5(166), 2011.

155

[108] H. McAdams and A. Arkin. Stochastic mechanisms in gene expression.

Proc. Natl. Acad. Sci., 94:814819, 1997.

[109] H. McAdams and A. Arkin. It’s a noisy business! genetic regulation at

the nanomolar scale.Trends in Genetics, 15(2):65–69, 1999.

[110] James McCollum andet al. The sorting direct method for stochastic sim-

ulation of biochemical systems with varying reaction execution behavior.

Comp. Bio. Chem., 30(1):39–49, 2006.

[111] Donald A. McQuarrie. Stochastic approach to chemical kinetics.Journal

of Applied Probability, 4(3):413–478, 1967.

[112] P. Metzner, C. Schtte, and E. Vanden-Eijnden. Illustration of transi-

tion path theory on a collection of simple examples.J. Chem. Phys.,

125(8):084110, 2006.

[113] Robin Milner. Communicating and Mobile System: theπ-Calculus.

Cambridge University Press, 1999.

[114] Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud.Introduction

to Interval Analysis. SIAM, 2009.

[115] C. J. Morton-Firth and D. Bray. Predicting temporal fluctuations in an

intracellular signalling pathway.J. Theor. Biol., 192:117–128, 1998.

[116] B. Munsky and M. Khammash. The finite state projection algorithm

for the solution of the chemical master equation.J Chem Phys.,

124(4):44104, 2006.

[117] I. Mura, D. Prandi, C. Priami, and A. Romanel. Exploiting non-

markovian bio-processes.Electronic Notes in Theoretical Computer Sci-

ence, 253(3):8398, 2009.

156

[118] N A. Neogi. Dynamic partitioning of large discrete event biological sys-

tems for hybrid simulation and analysis. InIn Proc. of Hybrid Systems:

Computation and Control (HSCC), 2004.

[119] N. Le Novre and et al. The systems biology graphical notation.Nat.

Biotechnol., 27(8):73541, 2009.

[120] Nicolas Le Novre and Dominic Tolle. Particle-based stochastic simula-

tion in systems biology.Current Bioinformatics, 1(3), 2006.

[121] Jrgen Pahle. Biochemical simulations: stochastic, approximate stochastic

and hybrid approaches.Brief Bioinform., 10(1):53–64, 2009.

[122] J. Pedraza and A. van Oudenaarden. Noise propagation in gene networks.

Science, 307(5717):1965–1969, 2005.

[123] M F. Pettigrew and H. Resat. Multinomial tau-leaping method for

stochastic kinetic simulations.J. Phys. Chem., 126:084101, 2007.

[124] J. W. Pinney, D R.Westhead, and G. A. McConkey. Petri net representa-

tions in systems biology.Biochem Soc Trans., 31(6):1513–5, 2003.

[125] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.

Flannery. Numerical Recipes: The Art of Scientific Computing. SIAM,

3rd editon edition, 2006.

[126] J Puchalka and A M. Kierzek. Bridging the gap between stochastic and

deterministic regimes in the kinetic simulations of the biochemical reac-

tion networks.J Biophys., 86(22):135772, 2004.

[127] A. Raj and A. van Oudenaarden. Single-molecule approaches to stochas-

tic gene expression.Annual Review of Biophysics, 297:255270, 2009.

157

[128] Rajesh Ramaswamy, Nlido Gonzlez-Segredo, and Ivo F. Sbalzarini. A

new class of highly efficient exact stochastic simulation algorithms for

chemical reaction networks.J. Chem. Phys., 130(24):244104, 2009.

[129] C V Rao and A P Arkin. Stochastic chemical kinetics and the quasi-

steady-state assumption: Application to the gillespie algorithm.J. Phys.

Chem., 118(11):49995010, 2003.

[130] Christopher V. Rao, Denise M. Wolf, and Adam P. Arkin. Control,

exploitation and tolerance of intracellular noise.Nature, 420:231–237,

2002.

[131] J. Raser and E. O’Shea. Noise in gene expression: Origins, conse-

quences, and control.Science, 309(5743):2010–2013, 2005.

[132] M Rathinam, L R. Petzold, Y Cao, and D T. Gillespie. Stiffness in

stochastic chemically reacting systems: The implicit tau-leaping method.

J. Phys. Chem., 119(24):1278494, 2003.

[133] W. Reisig.Petri Nets: An Introduction, Monographs on Theoretical Com-

puter Science. Springer-Verlag, 1985.

[134] Haluk Resat, H. Steven Wiley, and David A. Dixon. Probability-weighted

dynamic monte carlo method for reaction kinetics simulations.J. Phys.

Chem. B, 105(44):1102611034, 2001.

[135] Robert Rnngren, Jens Riboe, and Rassul Ayani. Lazy queue: an effi-

cient implementation of the pending-event set. InProc. of 24th Annual

Symposium on Simulation (ANSS), 1991.

[136] H. Robbins and S. Monro. A stochastic approximation method.The

Annals of Mathematical Statistics, 22(3):400, 1951.

158

[137] J. Vidal Rodrguez, Jaap A. Kaandorp, Maciej Dobrzynski, and Joke G.

Blom. Spatial stochastic modelling of the phosphoenolpyruvate-

dependent phosphotransferase (pts) pathway in escherichia coli.Bioin-

formatics, 22(15):1895–1901, 2006.

[138] Diego Rossinelli, Basil Bayati, and Petros Koumoutsakos. Accelerated

stochastic and hybrid methods for spatial simulations of reactiondiffusion

systems.Chemical Physics Letters, 451:1–3, 2008.

[139] G. Rubino and B. Tuffin. Rare Event Simulation using Monte Carlo

Methods. Wiley, 2009.

[140] Howard Salis and Yiannis Kaznessis. Accurate hybrid stochastic simula-

tion of a system of coupled chemical or biochemical reactions.J. Phys.

Chem., 122:054103, 2005.

[141] Werner Sandmann. Discrete-time stochastic modeling and simulation of

biochemical networks.Comput. Biol. Chem., 32(4):292, 2008.

[142] H. Sauro, A. Uhrmacher, D. Harel, M. Hucka, M. Kwiatkowska,

P. Mendes, C. Shaffer, L. Stromback, and J. Tyson. Challenges for mod-

eling and simulation methods in systems biology. InIn Proc. of Winter

Simulation Conference, pages 1720–1730, 2006.

[143] Harold A. Scheraga, Mey Khalili, and Adam Liwo. Protein-folding dy-

namics: Overview of molecular simulation techniques.Annu. Rev. Phys.

Chem., 58:57–83, 2007.

[144] Jeremy Schmutz and et al. Quality assessment of the human genome

sequence.Nature, 429:365–368, 2004.

[145] Tim Schulze. Efficient kinetic monte carlo simulation.J. Comp. Phys.,

227(4):2455–2462, 2008.

159

[146] J A. Sekar and J R. Faeder. Rule-based modeling of signal transduction:

a primer.Methods Mol Biol., 880:139–218, 2012.

[147] Alexander Slepoy, Aidan P. Thompson, and Steven J. Plimpton. A

constant-time kinetic monte carlo algorithm for simulation of large bio-

chemical reaction networks.J. Chem. Phys., 128(20):205101, 2008.

[148] James C. Spall. An overview of the simultaneous perturbation method

for efficient optimization. Johns Hopkins APL Technical Digest,

19(4):482492, 1998.

[149] James C. Spall.Introduction to Stochastic Search and Optimization: Es-

timation, Simulation, and Control. John Wiley and Sons, Inc., 2003.

[150] Michael Stumpf, David J. Balding, and Mark Girolami.Handbook of

Statistical Systems Biology. Wiley, 2011.

[151] Audrius B. Stundzia and Charles J. Lumsden. Stochastic simulation of

coupled reactiondiffusion processes.J. Comp. Phys., 127(168):196207,

1996.

[152] Zoltan Szallasi, Jrg Stelling, and Vipul Periwal.Systems Modeling in Cell

Biology: From Concepts to Nuts and Bolts.MIT Press, 2010.

[153] K. Takahashi, S N. Arjunan, and M. Tomita. Space in systems biology

of signaling pathways-towards intracellular molecular crowding in silico.

FEBS Lett., 579(8):1783–8, 2005.

[154] Kouichi Takahashi, Katsuyuki Yugi, Kenta Hashimoto, Yohei Yamada,

Christopher J. Pickett, and Masaru Tomita. Computational challenges

in cell simulation: a software engineering approach.IEEE Trans. on

Intelligent Systems, 17(5):64–71, 2002.

[155] Gerald Teschl.Ordinary Differential Equations and Dynamical Systems.

Graduate Studies in Mathematics, 2012.

160

[156] Vo H. Thanh and Roberto Zunino. Tree-based search for stochastic sim-

ulation algorithm. InProc. of ACM-SAC, 2012.

[157] Vo H. Thanh and Roberto Zunino. Splitting for rare event simulation in

biochemical systems. InProc. of SIMUTools, 2013.

[158] M. Thattai and A. van Oudenaarden. Intrinsic noise in gene regulatory

networks.Proc. Natl. Acad. Sci., 98(15):86148619, 2001.

[159] T. Tian and K. Burrage. Binomial leap methods for simulating stochastic

chemical kinetics.J. Phys. Chem., 121(21):1035664, 2004.

[160] John J. Tyson, Katherine C. Chen, and Bela Novak. Sniffers, buzzers,

toggles and blinkers: dynamics of regulatory and signaling pathways in

the cell.Current Opinion in Cell Biology, 15(2):221–231, 2003.

[161] A.R. Tzafriri and E.R. Edelman. The total quasi-steady-state approx-

imation is valid for reversible enzyme kinetic.Journal of Theoretical

Biology, 226:303313, 2004.

[162] J. van Ommeren, M. Garvels, and D. Kroese. On the importance func-

tion in splitting simulation. European Trans. on Telecommunications,

13(4):363–371, 2002.

[163] Jeroen S. van Zon and Pieter Rein ten Wolde. Greens-function reac-

tion dynamics: A particle-based approach for simulating biochemical

networks in time and space.J. Chem. Phys., 123:234910, 2005.

[164] E. Vanden-Eijnden and M. Venturoli. Revisiting the finite temperature

string method for the calculation of reaction tubes and free energies.J.

Chem. Phys., 130:194103, 2009.

[165] E. Vanden-Eijnden, M. Venturoli, G. Ciccotti, and R. Elber. On the as-

sumptions underlying milestoning.J. Chem. Phys., 129:174102, 2008.

161

[166] J. Vilar, H. Kueh, N. Barkai, and S. Leibler. Mechanisms of noise-

resistance in genetic oscillators.Proc. Natl. Acad. Sci., 99(9):156–161,

2002.

[167] Michael D. Vose. A linear algorithm for generating random numbers with

a given distribution.IEEE Trans. on Software Engineering, 17(9):972–

974, 1991.

[168] P. Waage and C. M. Gulberg. Studies concerning affinity.Christiana,

1864.

[169] Alastair J. Walker. An efficient method for generating discrete random

variables with general distributions.ACM Trans. on Mathematical Soft-

ware (TOMS), 3(3):253–256, 1977.

[170] P. Warren and P. ten Wolde. Enhancement of the stability of genetic

switches by overlapping upstream regulatory domains.Phys. Rev. Lett.,

92(12):128101, 2004.

[171] Darren J. Wilkinson.Stochastic Modeling of System Biology. Chapman

& Hall/CRC, 2006.

[172] Verena Wolf, Rushil Goel, Maria Mateescu, and Thomas A Henzinger.

Solving the chemical master equation using sliding windows.BMC Sys-

tems Biology, 4(42), 2010.

[173] Olaf Wolkenhauer and Mihajlo Mesarovic. Feedback dynamics and cell

function: Why systems biology is called systems biology.Mol Biosys.,

1(1):14–16, 2005.

162

