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Abstract 
 
The aim of this thesis is to provide new insights about the role of the left human parietal 

operculum (OP) in sensory motor transformations in the context of object-directed 

behavior. This work is divided in two main parts: and introductive part about the theory 

underlying the sensory motor integration and the existing literature about the parietal 

operculum, and an experimental part in which the experiments realized during these 

three years are described. In Chapter 1 , the theory underlying the sensory motor 

transformation in the visual modality and the possible functions of the different front-

parietal circuits are described on the basis of the theory proposed in the literature. A 

specific paragraph is dedicated to ventral premotor cortex (PMv) and its role in visually 

guided grasping. The Chapter 2 , is a review of the literature about the cytoarchitecture, 

the connectivity and the physiology of humans and non- human primates parietal 

operculum. In Chapter 3  the literature about the role of OP of primates and humans in 

sensory motor integration is reviewed together with some literature about studies on 

lesions. In the experimental part, four transcranial magnetic stimulation (TMS) 

experiments are described. The last two experiments have been grouped in a single 

major work and results have been discussed together. In Chapter 4 the Experiment I  is 

described. This experiment aimed to characterize the fronto-parietal network involving 

the connection between left OP and ipsilateral primary motor cortex (M1). By means of 

double coil TMS paradigm we were able to asses on five healthy volunteers the 

functional interaction occurring between these two regions, defining the optimal spot 

located into the left OP region that was producing the highest inhibition on motor evoked 

potentials (MEPs) peak-to peak amplitude. We moreover characterized the timing of 

their interplay obtaining a 5 ms short latency interaction in support of a plausible direct 

cortico-cortical connection. In Chapter 5 the Experiment II  and Experiment III  (which is 
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subdivided in two  different experiments named Experiment IIIa  and Experiment IIIb ) 

are described. On the basis of the functional connectivity between OP and ipsilateral M1 

at rest proved in Experiment I, the Experiment II aimed to asses whether and how the 

haptic information about objects’ geometry (size) is encoded within the left OP and 

whether such information is used for guiding object-directed motor actions. Again, by 

means of double coil TMS paradigm we provided evidences supporting that the 

excitability of left M1 of twelve healthy volunteers, in presence of a motor plan involving 

the grasping of an object, was modulated accordingly with the size information stored in 

ipsilateral OP of such object when such physical feature was previously acquired by 

haptic exploration. Such modulation didn’t occur when the object size was acquired by 

visual modality. As control we run the same paradigm on other twelve volunteers by 

conditioning the ventral premotor cortex (PMv) which is well know to play a key role in 

the visually guided grasping obtaining a clear double dissociation between haptic and 

visual modality, supporting the hypothesis that haptically guided behavior relies on a 

distinct network respect to visually guided one.Experiment III  is divided in two different 

experiments (Experiments IIIa and Experiments IIIb ). In both of these experiments we 

aimed to test the effect introduced by high frequency repetitive online TMS (rTMS) 

during two different tasks both involving only haptic modality. In Experiment IIIa  a purely 

discriminative match-to-sample task, in which two cylinders (either equal or different in 

the diameter feature) were haptically explored in sequence with 2 seconds of delay, was 

implemented. RTMS was delivered during the delay period and effects on accuracy and 

sensitivity on discrimination were tested. In such non motor task, no significant effects 

were obtained on performances of the twelve healthy participants.  In Experiment IIIb  

the effects of rTMS applied during different phases of a delayed grasping of a previously 

haptically explored object on the kinematics of the hand preshaping were assessed. 

Differently form experiment IIIa, in this motor task we obtained a significant perturbation 
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of the hand aperture during the preshaping when stimulation was applied between the 

exploration of the object and the grasping, during the delay phase. Such results might 

suggest of the involvement of OP in sensory-motor transformations as a putative 

element of memory when a object-directd action plan is implemented supporting the 

theory of the existence also for the haptic modality, of a model dual to the one proposed 

for the visual modality, made of two different streams processing sensory information 

according with the final use (for action or for perception). 
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 Glossary 
 
AIP  anterior intraparietal sulcus 
aIPC   anterior inferior parietal  
  cortex  
aIPS   anterior intraparietal sulcus  
aSPC   anterior superior parietal 
  cortex  
 
CMAd   dorsal cingulate motor area  
CMAr  rostral cingulate motor  
  area 
condTMS conditioning TMS stimuli 
 
DTI   diffusion tensor imaging  
 
ECD  equivalent current dipole  
EIP   extensor indicis proprius  
EMG  electromiography 
 
FEF   frontal eye field  
fMRI   functional magnetic  
  resonance imaging  
FV   frontal visual area  
 
ICMS   Intracortical micro  
  stimulation  
ID1  interosseus dorsalis primus  
Ig   granular insular cortex  
IPL  inferior parietal lobule  
IPS  intraparietal sulcus  
ISI   interstimulus interval  
 
M1  primary motor cortex  
MEG  magnetoencephalography  
MEP  motor evoked potential 
MIP  middle intraparietal sulcus 
MPM   maximum probabilistic map  
 
PCC   posterior parietal cortex  
PCG   post central gyrus  
PET   emission tomography  
pIPC   posterior inferior parietal 
  cortex  
PMC   premotor cortex  
PMd   dorsal premotor cortex  
PMv   ventral premotor cortex  
PR  parietal rostra area 
ProM   proisocortical motor area  
pSPC   posterior superior parietal 
  cortex  
PV  parietal ventral area  
RFs    receptive fields 
RI  retroinsular cortex  

 
 
 
 
Ri   retroinsular area  
rTMS  repetitive transcranial  
  magnetic stimulation 
SEFs   somatosensory-evoked  
  magnetic fields  
SI   primary somatosensory  
  cortex  
SII  second somatosensory  
  cortex  
SDT  Signal Detection Theory 
SMA   supplementarymotor area  
 
testTMS test TMS stimuli 
TMS  transcranial magnetic  
  stimulation 
TOR   tactile object recognition  
 
V1  primary visual cortex  
VA  ventroanterio nuclei  
VIP  ventral intraparietal 
VL  ventrolateral nucley  
VPI  inferior nuclei  
VPL   vantroposterior lateral  
  thalamus 
vPM   ventral premotor cortex 
VS  ventral somatosensory area 
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PART I - A THEORETICAL OVERVIEW 

 

Chapter 1   

General insights on sensory- motor transformation 
 
 
 

The term ‘sensorymotor transformation’ is used to describe the process that regulates 

the computing of sensory stimuli in order to provide valid inputs for the production of 

motor commands. This process is essential to any biological organism or artificial 

system that possesses the ability to interact with the surrounding environment. The 

somatosensory system and the motor system are the two mainstays of such process 

and their interaction has been widely investigated, tough several aspects about 

mechanisms underlying their interplay are still undiscovered. The somatosensory system 

is a crucial player involved in several aspects of motor behavior. It provides 

propioceptive information such as the reciprocal position of different body parts and it 

allows the characterization of different kind of stimuli such as touch, pain or difference of 

temperature and the localization of their provenance. Thanks to the somatosensory 

system it is possible to acquire information about the physical characteristics of external 

objects and use it for further potential processes of object recognition or in following 

object directed actions (Pouget and Snyder 2000) (Dijkerman and de Haan 2007). In a 

seminal work, which will be taken as the main reference and reported for this 

introductive chapter, Rizzolatti and colleagues (Rizzolatti, Luppino et al. 1998) reviewed 

the organization of the cortical motor system describing in non-human primates the 

possible functions of several specialized parietal-motor circuits involved in the 
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transformation of sensory information in actions. In such paper, authors reviewed the 

“old fashioned” idea of the cortical motor organization based on two different regions - 

the primary motor cortex (M1) embedding the whole area 4 and most of the lateral area 

6, and the supplementary motor area (SMA) located on the cortical medial surface – 

providing clear and valuable details, nowadays available thanks to modern anatomical 

and functional techniques, about the cortical motor organization and the complex 

networks underlying the process of sensory motor integration.  They proposed a main 

subdivision of the motor cortex in four areas, namely primary motor cortex (M1), ventral 

premotor cortex (inferior area 6), dorsal premotor cortex (superior area 6) and 

presupplementary/supplementary motor area (pre SMA/SMA) (mesial area 6), which are 

subdivided as well  in “a mosaic of anatomically and functionally distinct areas”. In such 

vision, M1 corresponds to the region F1 (F means “frontal”), the ventral premotor cortex 

is composed by F4, F5ab and F5c, dorsal premotor encloses F2 and F7 and at last 

preSMA and SMA comprises F3 and F6.  Such multiplicity of areas is engaged in distinct 

and specialized networks with the different regions embedded into the parietal lobe 

(using the terminology introduced in (Pandya and Seltzer 1982)   PE,  PEc, PEpc, PEci, 

PF, PGm, ventral intraparietal (VIP), anterior intraparietal (AIP) medial intraparietal 

(MIP). In the paper authors highlighted that there is a sort of privileged connections 

between pairs of regions. This means that there are predominant connections between 

frontal and parietal areas (this latter named as “predominant input”) that reflects similar 

functional properties. Of course the connections are not univocal: parietal regions in turn 

connect with other different motor areas (such connections are named in the paper  

”additional input”). However such predominant networks represent a sort of segregated-

functional circuits which are considered as functional units of the cortical motor system 

engaged in the sensory-motor transformation process. Such fronto-parietal connections 
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are following described grouped according to the four motor fields mentioned in the 

paper.  

Primary motor cortex field connection:    
 
F1 ↔ PE   

F1 is the motor region involved in the decomposition of complex actions computed in 

other motor regions in elementary movements. PE is a parietal region whose neurons 

are involved in processing of propioceptive information such as multiple joint positions.  

This connection probably allows the primary motor cortex to codify for the body position 

and control movement of limbs. 

Ventral premotor cortex field connections:    
 
F4 ↔ VIP   

In F4 recording studies show that oro-facial movements are represented laterally while 

arm and axial movements are mapped medially. Additionally, some neurons responded 

to reaching movements body directed. In this motor region  bimodal (visuo-haptic) and 

unimodal (haptic) neurons coexist almost in the same proportion and have 

complementary receptive fields (RFs) (that means if the RFs for tactile neurons are 

mainly located on the face and upper part of the body, for the visual neurons they are 

located in the peripersonal space). Moreover, this region shows to encode the space in 

body-parts centered coordinates.   Area VIP receives input coming form regions involved 

in processing vision of motion, or selective for direction or speed of visual stimuli. 

However, beside the presence of visual neurons, as well as in F4 there’s the presence of 

also bimodal (visual-haptic) neurons and RFs are still complementary. Rizzolatti and 

colleagues depicted such connection as involved in the encoding of the peripersonal 

space and in the computation of object location finalized to the movement towards them. 
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F5ab ↔ AIP  

F5 neurons actively discharge during specific goal directed actions, especially if 

performed with the hand or directed to the mouth. In such frontal field there are 

represented distal arm movements grasping (with different kind of hand prehension), 

holding, tearing and manipulation. Neurons belonging to AIP are shown to codify for 

grasping of object of different shapes and sizes but not for  their position. Moreover, 

there’s three different kinds of neurons existing in such parietal region: motor-dominants 

(active in both light and darkness), visuo-motor (addressed to encode the type of grip 

related to the intrinsic characteristic of the object), and visuo-dominants (dedicated to 

fixation of objects). Such network has been described as responsible for the 

transformation of the intrinsic characteristics of an object into suitable and appropriate 

hand movements. 

 

F5c ↔ PF  

In this frontal field there are specific neurons with motor properties equal to those of 

F5ab but visual properties significantly different. Such neurons discharge  (many of them 

selectively) with the observation of another individual performing an action such as 

grasping, manipulation and object placement and they show congruency in firing 

between observed and executed action and motor requirements for their trigger are quite 

restricted. Such neurons exist also in PF, however authors stated that their properties 

have not been studied in details yet. The authors highlighted the importance of that 

neurons (called mirror neurons) and the fact that their existence show an internal 

representation of action for the motor cortex which is used in the context of action 

imitation and recognition. 
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Dorsal premotor cortex field connections:    
 
F2 ↔ PEc/PEip   

In the dimple region of F2, which is te one involved in this connection, movements are 

somatotopically represented (legs movements are dorsal while arm movements are 

ventral). Neurons’ electrical activity shows to be correlated with movements onset or 

even in advanced, supporting their probable involvement in motor preparation. 

Regarding the response to sensory stimuli, they show to answer to propioceptive 

stimulation. In relation to area PEc, there’s not much evidence in literature about its 

functional role. However, authors hypothesized its involvement with somatosensory 

stimuli for motor organization. More evidences exist in literature for PEip which show to 

respond to somatosensory stimuli, arm movement or limb projection in certain directions. 

It has been showed the presence of bimodal neurons responding to tactile and visual 

stimulation. Researchers have found interestingly that RFs of visual neurons are not 

fixed in their extension but expand according to specific motor action executed. Those 

two parietal regions have been depicted as  involved in somatosensory control of 

movement and such connection with the frontal F2 has been hypothesized as be 

engaged in the control of limb movements on the basis of somatosensory information. 

F2 ↔ MIP  

In ventro-rostra F2, besides responding to propioceptive stimuli, neurons show to be 

responsive also to tactile and visual stimulation. Such response is reported also for MIP 

neurons. Despite the poorness of evidences regarding the functional activation of such 

parietal field, similarly to the connections F2 ↔ PEc/PEip, also this connection is 

engaged in the same functional processing of control of limb movements with the 

probably involvement of the visual information. 
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F7 ↔ PGm  

Electrical discharge of F7 neurons occurs in relation to arm movements or even before 

their onset. Their response has been showed also as consequence of visual stimuli. 

Moreover, behavioral paradigms showed F7 neurons as involved in the spatial 

localization of external stimuli for reaching movements; such neurons appear to assume 

an important role in the conditional stimulus-response association tasks and in 

conditional movement selection. Authors report that the functional role of area PGm is 

largely unknown; however, its neurons present electrical activity during eye and/or arm 

movements. 

 

PreSMA/SMA field connections:    
 
F3 ↔ PEci   

Similarly to area F1, neurons belonging to this field appear to discharge in response to 

active movements but differently form area F1, representation of movements are 

somatotopically organized in a mixed order, and multijoints movements are observed as 

consequence of micro stimulation. Its involvement in control of posture and postural 

adjustments has also been proposed. F3 neurons show to respond additionally in 

association to visual and somatosensory stimuli. Area PEci is also named as 

supplementary somatosensory area due to the fact that a complete somatotopic map is 

embedded in such field. Authors’ hypothesis is that such circuit is involved in a global 

control of the motor activity.  

F6 ↔ prefrontal lobe   

This peculiar frontal field is considered as a region addressed too control motor 

processing rather than involved in sensorymotor transformation. Its activation is not 



 

 17 

trivial; it shows to occur in correspondence of complex movements, visual presentation 

of stimuli and increase when the stimulus is moved toward the subject and the discharge 

is modulated according whether an object can or cannot be grasped.  Authors propose 

F6 as a region controlling a potential action  encoded in lateral parieto-frontal networks. 

Their hypothesis comes from the idea that even if neurons encoding a specific action are 

activated, the real onset of the action is conditioned by external factors (e.g. motivation). 

In their vision, F6 whose activity is conditioned by external  contingencies acts as a 

controller for the onset of such action fulfilling a role in sequence organization of 

movements.   

 

PMv and visually guided object directed behavior         
 
Among all the fronto-parietal circuits described above, we want to concentrate on one 

specific connection which is crucial for the visually-guided object directed behavior.  

Such connection is the AIP-F5ab. Classically, the sensory modality through which we 

mainly interact with the surrounding environment is the visual modality.  By means of 

vision we acquire information about physical characteristics and features of objects (e.g. 

size, shape, position) which are then processed and used to product a motor action 

towards them. For example, in the case of grasping, an important prerequisite for 

producing an efficient movement is that the adopted hand preshaping is congruent and 

compatible with the geometrical properties of the target object (Jeannerod, Arbib et al. 

1995). Thus it is necessary that such information are acquired by vision, processed in 

the circuit and used by the motor cortex. The connection between AIP-F5ab is 

suggested to be involved in transforming the size and the shape of the objects (which 

are coded in AIP) into an appropriate motor schema (which is computed in F5ab 

(Rizzolatti and Matelli 2003). The most likely human homologue for such circuit is the 
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connection between an area located at the junction between the anterior IPS and the 

inferior postcentral sulcus (Binkofski, Buccino et al. 1999) (Frey, Vinton et al. 2005) and 

the ventral part of the premotor cortex (including part of area 6a alpha and area BA 44 

(Binkofski and Buccino 2006)  (which has been classically considered to be a speech 

area but it is also related to hand actions (Rizzolatti, Fogassi et al. 2002)). 

A specific review of the literature related to the premotor cortex is out of the purpose of 

this thesis; however, it is important to characterize its role into visually guided grasping. 

Neurons belonging to this region have been shown to be activated during manipulation 

and grasping. In (Binkofski, Buccino et al. 1999) for example, strong activation of PMv 

were obtained in subjects manipulating  complex objects respect to simple objects 

(sphere) or in complex object manipulation followed by a naming task on the explored 

objects. In (Ehrsson, Fagergren et al. 2000)  by means of an fMRI study, authors shown 

engagement of bilateral ventral premotor cortex, the rostral cingulate motor area (CMAr), 

the supramarginal  cortex, the ventral lateral prefrontal cortex, and the right intraparietal 

cortex in subjects performing a precision grip respect to respect to when they used a 

palmar power grasp during  a similar manipulative task. It was also shown in monkeys 

that such region contains neurons selective for specific different types of grasp which 

appear to be represented by different overall levels of activity within the F5-M1 circuit. In 

fact, in monkey grasping different objects, different pattern of modulation in neural 

electrical activity of PMv (F5) and M1 were recorded by suggesting, as written in the 

papers that “F5 grasping-related neurons play a role in translating visual information 

about the physical properties of an object into the motor commands that are appropriate 

for grasping, and which are elaborated within M1 for delivery to the appropriate spinal 

machinery controlling hand and digit muscles”. The possible involvement of PMv in 

grasping through its corticospinal projections has been evaluated in (Shimazu, Maier et 
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al. 2004). In their study on macaque monkeys, they found that a conditioning electrical 

stimulation delivered over F5 could produce a significant modulation of motor outputs 

from M1 while by little or no detectable corticospinal output were obtained by stimulation 

of  F5 alone.  Details about the causality that characterize the relationship between 

bilateral PMv and its interaction with M1 in the context of hand and finger control during 

grasping have been provided in (Davare, Andres et al. 2006). By means of rTMS 

delivered either bilaterally on single unilaterally on subjects performing a simple grip-lift 

task with the right hand, authors showed the causal involvement of PMv in the grasping 

component of the movement. They in fact observed an incorrect positioning of finger on 

the object and an modified recruitment of hand muscles when the stimulation was 

delivered on PMv. In a following study (Davare, Montague et al. 2009), by means of 

double coil TMS, authors  provided further details about the functional interplay between 

these regions during grasping by finding a short latency interactions at 6-8 ms. 

Furthermore, by observing effects of conditioning TMS over PMv on different muscles 

involved either in visually guided precision grasp or in whole hand grasp,  they 

demonstrated that during a grasp preparation, interactions between PMv and M1 are 

modulated depending on the object to be grasped. 

Taken together such results support the importance of PMv in visually based object 

directed behavior and its relevance in transformation of visually acquired information 

about object shape in motor action. In this thesis we aimed to investigate whether OP 

could be involved in sensorymotor transformation in an analogue manner in the context 

of haptic modality. 
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In the next chapter…  

This first chapter is meant to report the modern vision of the neural basis underlying the 

sensory motor transformations by highlighting the role of a specific cortical region in the 

visual-based object directed behavior. In the next chapter, some of the literature about 

the cytoarchitecture, the anatomical connectivity and the physiology of the parietal 

operculum in primates and humans will be reviewed.  
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Chapter 2  

The parietal operculum – cytoarchitecture, connecti vity and 
physiology 

 

Anatomy of OP in non human primates         
 
In monkeys different cytoarchitectonic maps propose several parcellations of the dorsal 

Sylvian operculum and adjacent areas of cerebral cortex. According to the map 

produced by Brodmann in 1905 (Brodmann 1905) by examining the brain of an old-world 

monkey of the genus Cercopithecus (Figure 1A), the cortices of the inferior parietal 

lobule (IPL) and of OP are all grouped in the same cytoarchitectonic area, namely area 

8. A slightly more detailed subdivision of the cortex lying below the intraparietal sulcus 

(IPS) was provided by the Vogts (Vogt and Vogt 1919) who identified three different 

parcellations, named in rostro-caudal order: area 2, area 7b and area 7a (Figure 1B). 

More recently Roberts and Akert, (Roberts and Akert 1963) studied the insular and 

opercular cortex and their thalamic projections in the Rhesus macaque and produced 

the map reported in Figure 2A. Data were derived from histological analysis and 

topographic rectilinear reconstruction of a series of coronal sections of the monkey brain 

processed with dyers. In their work authors defined second somatosensory cortex (SII) 

as region entirely limited within the OP area identifying its rostral limit at the end point of 

intersection between the projection of the central sulcus and the Silvian fissure and its 

caudal limit coinciding with the end of the lateral sulcus. Regarding cytoarchitecture of 

cortical layers, authors described SII cortical patterns similar to postcentral granular 

cortex with however some differences. Similarly to postcentral regions, layer II and V 

presented a high density of cell population, the latter composed mainly of small medium 

sized cells. However, layer IV which was clearly visible, didn’t’ appear to be as 
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developed as classical post central areas and layer VI resulted to be divided into inner 

and outer zone less sharply separated form the adjacent white matter than the same 

layer in postcentral cortex. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. A: Brodmann cytoachitectonic map of cercopithecus (1905). B: Vogt and Vogt 
architectonic  map (from (Cipolloni and Pandya 1999)) 

 
 

A further subdivision of parieto-opercular cortex has been provided by Pandya and 

Seltzer (Pandya and Seltzer 1982). With their research, by means of autoradiographic 

and ablation degeneration techniques on Rhesus monkey, they were able to divide the 

inferior parietal lobule in four different architectonic regions named PF, PFG, PG and 

OPt. Furthermore, they discerned two additional zones within OP with distinct 

architectonic features which they named PFop, PGop. Their maps are reported in Figure 

2B and Figure 2C. As it is showed in the picture, the more rostral region lying below the 

intraparietal sulcus is PF followed caudally by PFG and at last by PG. Ventrally to area 

PF and lied along the Silvian fissure is the area PFop which is followed by area PGop 

which remains ventral to area PFG and PG. Considering area PFop and PGop, authors 

identified PFop as the location for SII (referring to parcellation proposed by Jones and 

Burton (Jones and Burton 1976) while PGop was defined as a ventral extension of the 

A B 
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cortex of IPL. According with results related to the laminar structure of these two OP 

areas, PFop did not show the columnar appearance which was noticed for surrounding 

regions such as PF. Moreover, authors observed a poor differentiation between layer III 

and layer IV. Contrarily, in region PGop layers were more sharply differentiated than in 

PFop and layer II and layer IV appeared distinct. At last, an occasional occurrence of  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Cytoachitectonic maps A: Roberts and Akert (1963). Abbreviations: Allo, allocortex; CS, 
central sulcus; Ins a, agranular insular cortex; Ins d, dysgranular insular cortex; Ins g, granular 
insular cortex; IP, intraparietal sulcus; IPD, anterior subcentral sulcus; OFO, orbitofrontal cortex; 
PrCo, precentral opercular cortex; SA, arcuate sulcus; SP, principal sulcus; SSII, second 
somatosensory cortex; tr, transitional zone.)). B: Lateral view of the cerebral emisphere of 
macaca mulatta. Abbreviations: AN, annectent gyrus; AS, arcuate sulcus; CING S, cingulated 
sulcus; CC, corpus callosum; CF, calcarine fissure; CS, central sulcus; IOS, inferior occipital 
sulcus; IPS, intra parietal sulcus; LF, lateral (Silvian) fissure; LS, lunate sulcus; OTS, 
occipitotemporal sulcus; POMS, parietoccupital medial sulcus; PS, principal sulcus; RS, rhinal 
sulcus; STS, superior temporal sulcus. C: Intraparietal, lateral  and cingulated sulci are opened  in 
order to show the location of the zones lying within the sulci (Pandya and Seltzer 1982). 
 
 
large pyramidal neurons in layer IIIc was observed. In the same year Mesulam and 

Mufson (Mesulam and Mufson 1982) published their research about architecture of the 

insula in old world monkeys providing various details also about surrounding regions 

such as temporal and frontoparietal operculum. The obtained cytoarchitectonic map is 

reported in Figure 3. In their map, SII region lies caudally to the primary somatosensory 

A B 
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cortex (SI) and it extends rostro-caudally along the upper bank of the Silvian fissure 

sharing boundaries with retroinsular cortex (RI), the region PF and the posterior part of 

the insula (Ig). Their results were obtained by the observation of series of slices of the 

primates brains processed with dyers. Beside animal brains, also one human brain was 

included in the study and it was used for comparisons of results related to insula 

anatomical structure alone and not for surrounding regions. In relation to results 

regarding cytoarchitecture of anterior parietal regions, authors characterized the cortex 

of area SI (area 1 and 2) as granular cortex according with its densely cellular layer IV 

and moderately well-developed granularity in layer II. They moreover found distinct 

demarcation between layer V and VI. Regarding SII cortical architecture, authors  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Architectonic map of the insula and surrounding regions. Abbreviations: AI, first auditory 
area; AII, second auditory area; CS, central sulcus; I, insula; Ia-p, insula agranular periallocortical; 
Idg insula dysgranular, Ig, insula granular; OF, orbitofrontal cortex; OF a-p, orbitofrontal cortex 
agranular periallocortical; OFdg orbitofrontal cortex dysgranular; OFg, orbitorforntal cortex 
granular; OFO, opercular cortex; PA, postauditory cortex; PF, anterior inferior parietal cortex; PI 
parainsular cortex; POC, prepiriform olfactory cortex; Prco, precentral operculum; RI, 
restroinsular cortex; SI, primary somatosensory cortex; SII second somatosensory cortex; STPg, 
supertemporal cortex granular; TPdg, temporopolar cortex dysgranular (Mesulam and Mufson 
1982). 
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highlighted difficulties in differentiate it from SI. Both of these regions shown 

sublamination in layer III based on a variation on cells size. However authors found that, 

respect to SI structure, layer II in SII tended to be thicker, layer III appeared to have 

denser cellularity and separation form layer V and layer VI seemed be less clear. 

 
 
 

Summary or cytoarchitecture of primates  

Discussed cytoarchitectonic maps differ from each others for both numbers and names 

of fields identified within the OP region. Also definition of boundaries for SII field seems 

to vary across maps, however generally this region is defined as an area extending 

along the upper bank of the lateral sulcus, and caudally limited by SI. Its rostral limit 

appears to be close to the final part of the Silvian fissure. Concerning its laminar 

architecture, results mainly show SII region characterized by granular cortex with layer II 

and layer IV which appear to have higher density of cell respect to other layers. 
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Anatomy of OP in humans 

 

Classical cytoarchitectonic maps 
 
In humans according with Brodmann cytoarchitectonic map, the OP comprises areas 39, 

40, 43, 3, 1 and 2. However, different nomenclature and locations have been identified in 

others classical cytoarchitectonic subdivisions such as Vogt and Vogt (1919) (Vogt and 

Vogt 1919) and von Economo and Koskinas (1925) (von Economo and Koskinas 1925). 

Considering Brodmann map at first, areas 43 and 40 lying below the IPL extend in 

sequence rostro-caudally form the central sulcus into the OP. The area 43 occupies the 

postcentral gyrus and the precentral gyrus between the ventrolateral extreme of the 

central sulcus and the depth of the lateral sulcus at the insula. Its borders are defined 

from the anterior and the posterior central sulcus. The area 40 shares its rostral border 

with the area 43 and it is bounded approximately by the intraparietal sulcus, the inferior 

postcentral sulcus and the lateral sulcus. Due to their topography, BA 43 and BA 40 are 

generally considered good candidates for human SII. On the basis of their 

myeloarchitectonic studies Vogt and Vogt (Vogt and Vogt 1919) defined two regions 

named area 72 and area 88 which can be considered the putative location for SII. Area 

72 is a small subcentral region and differently form area BA 43, its extension hardly 

reaches the anterior part of the subcentral cortex rostral to the central sulcus. The area 

88 lies caudally to the area 72 along the inferior supermarginal gyrus. It is larger than the 

area 72 but it remains in the anterior part of the inferior parietal lobule. Other two 

additionally areas lying in the depth of Silvian fissure were defined by Vogt and Vogt 

(Vogt and Vogt 1919). Named area 73 (rostrally) and area 74 (caudally) they don’t have 

any candidate homologous in Brodmann map. A further cytoarchitectonic parcellation of 

the cortex proposed by von Economo and Koskinas (von Economo and Koskinas 1925) 
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identified two regions named PFD and PFop. The former is a subcentral region which 

might correspond roughly to the location of BA 43. The latter, located caudally to PFD, 

might be the candidate for area BA 40 and taken together, these regions could be 

considered the location for SII in von Economo and Koskinas (von Economo and 

Koskinas 1925) map. Classical maps discussed above are reported in Figure 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 4. Classical cytoarchitectonic maps. A: Brodmann map (Brodmann 1905). B: par of Vogt 
and Vogt parcellation of parietal operculum (Vogt and Vogt 1919). C: von Economo and Koskinas 
map (von Economo and Koskinas 1925). Adapted form (Caspers, Geyer et al. 2006) 

A 

B 
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Recent cytoarchitectonic atlases 
 
Recently, Eickhoff and colleagues proposed a new parcellation of the human OP based 

on a quantitative statistically testable approach. In their paper (Eickhoff, Schleicher et al. 

2006) they motivated efforts done for this new cytoarchitectonic map with the fact that in 

the classical maps the definition of borders is observer dependent because the 

parcellation rely purely on visual inspection of histological sections. They moreover 

raised issues about the small size of samples used for the studies and about the 

problem of biological variability between examined brains. They thus used a method for 

the observer-independent detection of borders for parcellation of the OP region on ten 

post mortem human brains. In their work, after the isolation of the OP region within the 

pre-prepared histological sections, they selected several so called “profiles” which were 

very thin slices/sections of cortex taken in the direction perpendicular to the cortical 

layers. For each profile they quantified a 10 features vector representing the volume 

fraction of cell bodies. At last, they compared blocks of profiles evaluating the mutual 

distance and, assuming that profiles sampled from different areas resulted in high 

distance, they were able to differentiate regions of cortex and thus, to produce a new 

parcellation of the OP cortex. They distinguished four cytoarchitectonically different 

regions which they named form OP1 to OP4. Area OP1 (caudally) and area OP4 

(rostrally) are located more superficially on the OP region than OP2 (caudally) OP3 

(rostrally) which lie in the folded cortex in the depth of the Silvian fissure. Figure 5 shows 

an image of their OP parcellation. In general they found a common border between OP4 

and primary somatosensory cortex, and a shared border between OP1 and the inferior 

parietal cortex. The cortex caudal to OP2 was occupied by a Ri area while ventrally both 

OP2 and OP3 shared the border with the Ig cortex. In their work, authors proposed 

these new four OP regions as the human putative homologous for non human primates 
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specific regions. They observed that based on its topography, OP4 may correspond to 

the  parietal ventral area (PV) (Krubitzer, Clarey et al. 1995). In fact, similarly to PV, OP4 

was identified as located superficially within the Silvian fissure close to the central sulcus 

and bordering the primary somatosensory cortex. Area OP1 which lied caudally to OP4 

next to the inferior parietal cortex, was proposed as the analogue areas for non human 

primates SII (Krubitzer, Clarey et al. 1995). Similarly to SII and PV, also OP1 and OP4 

shared a common border along medial to lateral direction. Area OP3 which was located 

deeper in the lateral sulcus than OP1 and OP4 and bordering with both of those areas, 

may topologically correspond to non human primates VS (Cusick, Wall et al. 1989). The 

association between OP2 with its corresponding primate area was more complex.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The location of areas OP 1-4 in according with (Eickhoff, Schleicher et al. 2006). A: 
slices considered  for the analysis. B: flat map of OP parcellation (Eickhoff, Schleicher et al. 2006) 

A B 
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Authors reported that no distinct areas have yet been described in non human primates 

SII cortex corresponding to topographically to OP2. Moreover in primates, this region is 

not considered a somatosensory cortical field and neurons respond to complex stimuli 

including input coming from other sensory modalities like auditory and vestibular system 

(Robinson and Burton 1980). In a following work of Eickhoff and colleagues (Eickhoff, 

Weiss et al. 2006) OP2 was defined not a somatosensory cortical field and it was 

proposed as a good candidate for the parieto insular vestibular cortex (PIVC) in non 

human primates. With respect to analogies with human classical architectonic maps, 

OP4 and OP3 may correspond to Brodmann BA 43 even though, BA 43 cover the whole 

subcentral gyrus while OP4 and OP3 remain slightly rostrally.  Area BA40, extends from 

the intraparietal sulcus to the insular cortex and covers OP region. Its border to BA43 

coincides with the location of the border shared between OP4 and OP1. Thus OP1 

seems to be comprised in Brodmann’s definition of BA 40.  According to von Economo 

and Koskinas parcellation (von Economo and Koskinas 1925), their cytoarchitectonic 

characterization of PFD region is close to the one of OP4 area. Region named PFop can 

be considered a good candidate for OP1 region. No subparcellation of the OP 

corresponding to OP2 and OP3 were described in von Economo and Koskinas maps 

(von Economo and Koskinas 1925), but possible homologous for these two regions 

located in the depth of the Silvian fissure can be found in area 73 and 74 of Vogt and 

Vogt (Vogt and Vogt 1919) myeloarchitectonic map which is considered by Eickhoff and 

colleagues the most similar to their parcellation. In this last classical map, beside area 

73 and 74, it is possible to identify other two regions named area 72 and area 88 which 

are located superficially and extent onto the free surface of the OP recalling the 

subdivision found by Eickhoff and colleagues.  
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Connectivity of OP in non-humans primates 
 
Cortico-cortical connectivity of the upper bank of the Silvian fissure has been widely 

studied in non human primates by means of injection of tracers producing detailed data 

about cortical projections of the OP. In the work of Pandya and Seltzer (Pandya and 

Seltzer 1982), connections of the posterior parietal cortex in Rhesus monkey were 

investigated by means of autoradiographic and ablation-degeneration techniques 

highlighting strong connections between the OP and the post central gyrus and the 

dorsal areas of the inferior parietal lobule. In their study they considered different regions 

of the post central gyrus (BA 3,1,2) and the posterior parietal cortex (superior parietal 

lobule: PE, PEc; inferior parietal lobule: PF, PFG, PG; parietal operculum: PFop, PGop). 

By observing labels originated from tracers or by evaluating terminal degeneration they 

were able to identify anatomical pathways connecting these cortical regions. Regarding 

IPL and OP connectivity, ablation performed in correspondence of BA 3,1 and 2 and in a 

portion of area PF produced a terminal degeneration in the area immediately caudal to 

the lesion PF and PFG, and more ventrally in PFop and PGop. Also isotope injection in 

correspondence of PF and PFG, besides highlighting connections in regions 

immediately close sites of injections, produced terminal labeling over the PFop (SII). 

Additionally, their study showed further afferents opercular projection originating in more 

caudal regions of the parietal lobe such as PEc and PG. In the same year Mesulam and 

Mufson published their research about afferents and efferents connections of the insula 

in Rhesus monkeys providing evidences for existing connections with OP region 

(Mesulam and Mufson 1982; Mufson and Mesulam 1982). Retrograde tracers injections 

into three different parts of insula (anterior, midanterior and posterior insula) revealed 

that afferents originate from different regions such as frontal lobe, prepiriform olfactory 

cortex, cingulated gyrus, parietal lobe and temporal lobe. Regarding the parietal lobe 



 

 32 

projections, labels produced by injections in the posterior insula have revealed the origin 

of those projections in regions such as SI, SII, area PF and area 5. In the same way, 

anterograde tracers injected in posterior insula to investigate efferent projections 

produced labeling located in region SII, PF and area 5. Considering the obtained results 

on efferents and afferents, authors highlighted reciprocity of connections between 

posterior insula and the OP cortical areas. In another study conducted by Krubitzer and 

Kaas (Krubitzer and Kaas 1990) on marmoset monkeys, beside confirming OP cortical 

connectivity with already discussed parietal sites such as BA 3, 1, 2, authors found the 

existence of anatomical interconnections with others parietal areas such as the one 

immediately rostral to SII (the PV area).They moreover investigated connectivity with 

frontal regions such as motor cortex and oculomotor fields. Injections were placed into SI 

(BA 3b) and SII, which were identified with microelectrode mapping techniques. 

Concerning results obtained form injection in SII, significant patches of labels in area 3b 

were obtained, supporting the evidence of strong interconnections. Labeling patches 

resulted also in midportion of areas 3a and 1, extending into adjoining parts of area 2. 

Moreover, labels were obtained also in PV region and in sites immediately rostral to PV. 

In relation to connectivity with frontal lobe, the appearance of various scattered foci in 

frontal cortex nearby the central sulcus demonstrated interconnections also with M1. 

Projections to SMA were also obtained in two animals. In this study, the SII injections 

also resulted in labels in correspondence of others frontal regions in the frontal eye field 

(FEF) and the frontal visual area (FV) fields. Moreover, SII showed to have 

interconnections with limbic cortex medial to SMA. Authors investigated also 

interemispheric connections revealing callosal connections between SII and controlateral 

PV and SII. Additional foci due to transcallosal pathways were found in areas 1, 3b, and 

M1. Results related to connectivity with the frontal lobe are quite consistent with those 

obtained in a following study (Stepniewska, Preuss et al. 1993) conducted on owl 
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monkeys. In their work, Stepniewska and colleagues injected tracers in primary motor 

cortex of the animal after identification of the injection site by means of intracortical 

microstimulation. They were then able to provide evidences for somatotopically 

distributed connections with motor areas such as dorsal premotor cortex (PMd), ventral 

premotor cortex (PMv), and SMA, but more interestingly, they confirmed the existence of 

an anatomical projection with somatosensory regions BA 3a,b, 1, 2, and SII and PV. 

They moreover highlighted connections with posterior parietal cortex, and cingulate 

cortex. Authors were furthermore able to differentiate connectivity between caudal M1 

(M1c) and rostral M1 (M1r) which shown to produce different labeling. The former 

appeared to be connected primarily with somatosensory areas, while the latter with both 

non-primary motor cortex and somatosensory cortex.  An exhaustive paper published by 

Cipolloni and Pandya (Cipolloni and Pandya 1999) investigated in Rhesus monkeys by 

using antero and retrograde tracer technique, the cortico cortical connectivity for fronto-

parietal opercular areas considering the entire upper bank of the Silvian fissure. In their 

work they subdivided the dorsal Sylvian opercular area into four rostrocaudal sectors. As 

they described: “The frontal operculum extends from the beginning of Sylvian fissure to 

the inferior precentral dimple; the pericentral operculum refers to the cortex at the level 

of the ventral tip of the central sulcus from the inferior precentral dimple to the rostral tip 

of the intraparietal sulcus; the parietal opercular region behind the pericentral operculum 

extends from the end of the  pericentral operculum to the caudal end of the Sylvian 

fissure and is divided into rostral and caudal regions.”. In relation to parietal projection of 

the OP region, their results show pathways of connections to midpoint of BA 3 as well as 

caudal portion of BA 2, 1. Additional projection to area BA 5 and 7 of IPL were 

highlighted by tracers. Additionally, others connections towards rostral portion of the SII 

region in the operculum as well as to the rostral insula, the gustatory area, and the 

vestibular cortex were also shown. According with labels obtained in the frontal lobe, 
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pathways of connection between the OP and the midportion of area 4, area 44, the 

ventral portion of area 6, and with proisocortical motor area (ProM) were identified. At 

last, authors showed this area projecting to the caudo-ventral portion of area 46, to the 

cingulated motor area and to SMA. With fluorescent retrograde tracers, they were also 

able to show that the OP receives connections from virtually all of the cortical areas to 

which it projects. Ipsilateral and interempsheric cortico-ortical connectivity of regions 

embedded in OP in marmosets have been investigated also by Qui and colleagues (Qi, 

Lyon et al. 2002). In their study they focused their attention in discuss PV cortical 

connectivity. SII and PV were selected as injections sites and they were identified by 

means of microelectrode mapping methods. Their results identified in area BA 3b the 

major inputs provider to area PV. Patches obtained from labeling showed anatomical 

connections with other parietal regions such as BA 3a and 1, SII, the region rostrally to 

PV (named parietal rostral areas (PR)) and a region folded into the lateral sulcus defined 

ventral somatosensory cortex (VS) by Cusick and colleague in 1989 (Cusick, Wall et al. 

1989). They moreover found noteworthy callosal connections with controlateral PV and, 

as they wrote, “probably also with controlateral SII”. In the end, they also investigated 

thalamocortical connections of area PV, showing that major thalamic connections of PV 

were with ventroposterior (VP) and ventroposterior inferior nucleus of thalamus (VPI). 

Finally, Disbrow and colleagues (Disbrow, Litinas et al. 2003) investigated the OP 

ipsilateral as well as controlateral connectivity in order to identify specific patterns of 

connections of S2 and PV on four  macaque monkeys. Neuroanatomical tracers were 

injected into electrophysiologically defined somatosensory cortical fields such as SII and 

PV. At first, for both SII and PV, authors demonstrated significant connections 

immediately close to the injection site. Regarding connections with anterior parietal 

fields, the injection centered in SII resulted in labels in area BA 3b as well as area 1 at 

the same mediolateral locations as that in 3b suggesting that connections with area 1 
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are matched as well. However, label in area 1 was much less dense than in area 3b. A 

dense patch of label was also highlighted in the field termed area 7b. In one of the four 

cases, labeling appeared also in orbitofrontal cortex rostral to the arcuate sulcus. 

Transcallosal connections were with the middle portion of both S2 and PV were 

identified and labels were also observed in area 7b, and in area 3b. According with 

labeling obtained after injection in PV region, this area appears connected with area 3b 

and area 1. Very dense label was also observed with area 7b. Differently form injection 

in S2, tracers in PV produced a dense patch in PR, just rostral to PV. Interemishperic 

connections resulted in transported tracers predominantly in a middle portion of PV. A 

small patch of label was also observed near the 3b/PV border. At last, other two recent 

studies investigated the frontoparietal pathways of connections by injections of tracers in 

motor regions electrophysiologically defined. In the former study (Gharbawie, 

Stepniewska et al. 2011) by means of long trains of electrical stimulation  regions, 

authors identified in M1, PMC and area 2 of four macaque monkeys regions that they 

defined “grasp zones”. Stimulation over such region evoked movement classified from 

authors as grasping (i.e. flexion of all digits, flexion of digit 2 and opposition with digit 1 

and concurrent flexion of all digits and forearm supination of wrist extension). Retrograde 

tracers were injected in such regions. Regarding connections originated from M1 

injection, they mainly found labeled cells in frontal cortex motor regions equally 

distributed among SMA, dorsal cingulate motor area (CMAd) and PMv. Considering 

labeling obtained outside the frontal cortex, the densest concentration of stained cells 

were found in anterior parietal cortex, mainly in area 3a, and S2/PV.  The same authors 

published a second study (Gharbawie, Stepniewska et al. 2011) in which they examined 

the connections of posterior parietal cortex (PCC) with motor and premotor cortex of new 

world monkeys (squirrel monkeys and owl monkeys). Again, by means of electrical 

stimulation they identified in M1, PM  and PCC different zones such grasp zone, reach 
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zone, the defense zone by classifying the nature of evoked movements. In such zones 

they injected retrograde tracers. They found dense connections between reach, defense 

and grasp zones with hand and forelimb representation in M1. Regarding M1 

connections, beside dense inputs received from PCC they obtained connections with 

somatosensory hand/forelimb representation in area 3a, 3b, 1 and the area S2 /PV. In 

particular the latter region resulted labeled for connection with the grasp zone of M1. 

Together, such results are indeed in support of the involvement of OP in cortical 

networks involved in grasping. At last, a seminal work of (Galea and Dariansmith 1994) 

by injecting  retrograde tracers in  the cervical spinal cord of 11 Macaque monkeys  

investigated the corticospinal projections from neurons belonging to the somatosensory 

cortex. They identified at least nine different somatotopically organized projections. 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 6. OP connectivity map summarizing anatomical connections. The parcellation scheme is 
the one proposed in (Pandya and Seltzer 1982) anche the image was taken and adapted form 
(Caspers, Eickhoff et al. 2011) Pink ellipsoid represent the OP region. Green dots represent point 
which showed connections with OP. Transcallosal connections to controlateral SII and PV are not 
shown here as well as thalamic connections and posterior part of ipsilateral insula. 
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The most prominent projections were to frontal cortex (area 4, area 6, SMA, postarcuate 

cortex and the cingulated cortex). Beside projection to frontal cortex, the highlighted 

ipsilateral and controlateral projections form S2. They were able thus to show different 

separate population of corticospinal neurons and each of which with continuous access 

to all spinal motoneuron populations, stating the importance of cortical and spinal 

connections and highlighting their involvement in action coordination. A map 

summarizing main connection of the OP cortical fields is reported in Figure 6. The 

parcellation scheme was chosen according with the one proposed in (Pandya and 

Seltzer 1982). 

 

Connectivity of OP in humans 
 
Literature about anatomical connectivity of the human OP is quite poor. And it is 

therefore necessary to refer to the one available for monkey studies. Despite the little 

presence of documentation related to this topic, a non-invasive anatomical investigation 

published by Eickhoff and colleagues (Eickhoff, Jbabdi et al. 2010) explored possible 

connection pathways between the OP and different brain regions. Through diffusion 

tensor imaging DTI probabilistic tractography technique they produced different 

distributions of possible connections between the subregions OP1 and OP4 (see 

(Eickhoff, Jbabdi et al. 2010)) and parietal areas, frontal regions and thalamus. Diffusion 

weighted images were acquired along 60 independent directions at 1.5 Tesla for 

seventeen healthy subjects. As seed region for DTI probabilistic tractography they 

considered the maximum probabilistic map (MPM) of area OP4 and OP1. For each 

subject, these maps identified the most likely anatomical area to which each voxel 

belonged after coregistration to a standard template. Same approach was adopted to 

create target mask to reach with probabilistic tractography. Target regions were chosen 
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in frontal lobe (Broca, PMC) and primary motor cortex (M1)), parietal lobe (post central 

gyrus (PCG), anterior intraparietal sulcus (aIPS), anterior superior parietal cortex 

(aSPC), posterior superior parietal cortex (pSPC), anterior inferior parietal cortex (aIPC) 

and posterior inferior parietal cortex (pIPC)) and thalamus (vantroposterior lateral/inferior 

nuclei VPL/VPI and ventrolateral nucley (VL) and ventroanterio nuclei (VA)). For each 

subject they drew 5000 samples from the connectivity distribution and computed the 

mean probability of connection for each seed-target combination. IPC and PCG 

appeared as the most connected regions to OP1 and OP4. In particular, while aIPC 

showed significantly higher connections probabilities with OP1 than with OP4, PCG 

turned out to be more densely connected with OP4. Moreover, a strong level of 

connectivity was also computed between OP1 and VPL/VPI as well as a significant 

number of transcallosal connections. Area OP4 showed instead significant higher 

probabilities of connections with Broca region, PMC and M1. No significant difference 

between both OP areas with respect to their possible connections with aIPS, pIPC Vl/VA 

and SPC. In comparison OP connectivity found in monkey studies which shown SII and 

PV areas with dense reciprocal connections to PCG and IPC (Krubitzer and Kaas 1990) 

(Disbrow, Litinas et al. 2003), Eickhoff work confirms these pathways of connectivity 

OP1 (SII) and OP4 (PV) in humans. In support of human direct connectivity of OP with 

M1 there are also  neurophysiological evidences provided in (Cattaneo and Barchiesi 

2011). In this work authors mapped by means of double-coil transcranial magnetic 

stimulation (TMS) the functional interaction between left M1 and several loci belonging to 

different ipsilateral cortical regions such as posterior dorsal frontal cortex, ventral frontal 

cortex, anterior dorsal frontal cortex, OP, inferior parietal cortex and superior parietal 

cortex. Concerning OP, authors provided a novel finding related to its functional 

connectivity to M1 showing how the conditioning stimulation applied over OP introduced 

a significant inhibition of the motor evoked potentials (MEP) originated by the test stimuli 
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delivered over ipsilateral M1 at a very short latency (4-7 ms) from conditioning stimuli. 

Such results doesn’t provide direct evidences of anatomical connections between the 

two regions, however, the resulting short-latency interaction supports the plausible 

existence of direct pathways of connections between OP and M1. 

 

Physiology of OP in non human primates 
 
As already discussed, the OP embeds the area SII. Basically, neurons in this area fire 

accordingly to different tactile stimulations of skin receptors. They moreover show 

activation during processes of texture discrimination and their response is also obtained 

with noxious and visual stimuli. Furthermore, neuronal firing within SII region has been 

recorded also in presence of thermal and propioceptive inputs. Hereafter some literature 

about physiological properties of SII and characterization of its receptive fields defined in 

non human primates by means of electrophysiological intracortical recordings and 

stimulation will be illustrated. 

 

Recodring studies 
 
In 1995 Krubitzer and colleagues (Krubitzer, Clarey et al. 1995) proposed their definition 

of somatosensory areas in the lateral sulcus of macaque monkeys. By recording 

electrical response of neurons in SII region they were able to detect two complete 

representations of body part embedded into OP. Light cutaneous stimulations delivered 

with probes, brushes, or fingers and joints manipulations were applied to the animal. 

Signals recorded from about 1000 sites were used to determine the somatotopic 

organization of the region. Results shown that, in a number of distantly located regions 

of the lateral sulcus, the same body parts were represented bringing authors to identify 
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two major symmetrically organized body maps lying in correspondence of the OP. The 

field adjacent to the lateral boundary of area1 and 2 was designed SII while the field 

immediately rostral bordering lateral boundary of area of area 3b and 1 was defined PV. 

The mediolateral sequence of organization was similar for both fields. Figure 7 shows a 

summary map of the somatotopic organization of the OP for macaque and for marmoset 

(according with (Krubitzer and Kaas 1990)). As it is possible to see in the figure, oral 

structures and face are represented most superficially on the lateral sulcus or medially in 

the flattened cortex (inner part of the sulcus).The forelimb representation lies laterally to 

the one of the face or deeper in the intact brain. Hindlimbs are mapped in the deepest 

portion of the upper bank of the Silvian sulcus. The trunk representation in SII is located 

caudal to limbs mapping while in PV it lies rostrally. In a following paper, written by 

Fitzgerald and colleagues (Fitzgerald, Lane et al. 2006) authors investigated response 

properties of neurons belonging to SII region produced by cutaneous and propioceptive 

stimulation of the hand of macaque monkeys. They moreover characterized sizes and 

shapes of receptive fields (RFs) and response dependency from orientation of the tactile 

stimulus. Cutaneous stimulation consisted in skin brushing or tapping of finger pads. 

Propioceptive inputs were identified in different kinds of manipulation (passive 

extension/flexion /torsion of hand joints, maintaining the joints in different conformation 

and observations of active movements of manipulation of objects). Responses 

dependency from orientation was tested using a direction-adjustable bar. They identified 

three separate functional fields (anterior, central and posterior) within the OP region 

responding to stimuli. Central field showed to be more reactive to cutaneous stimuli and 

it appeared to be medial to lateral somatotopically organized with digits represented in 

an orderly manner. Anterior and posterior fields responded more weakly to cutaneous 

stimulation and for these regions authors were not able to define a distal to proximal  
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Figure 7. Summary map of the somatotopic organization of SII and PV in macaque monkeys 
(left). For comparison also the somatotopic organization of marmoset has been proposed (right) 
(Krubitzer and Kaas 1990). The two fields SII and PV appear to have a symmetric organization 
and they share a common boundary at the representation of the digits, toes and portion of the 
face.  
 

organized digit representation. They were generally responsive to passive flexion or 

extension of digits and to grasping movements performed by the animal. In relation to 

RFs properties authors saw that RFs size appeared to vary significantly along anterior-

posterior axis while the RF shape (in terms of contiguity of surface) did not seem to vary 

substantially along anterior posterior axis. Firing rate showed different features for 

central field during cutaneous stimulation respect to anterior and posterior. Respect to 

bar orientation, authors found that neuron response belonging to anterior and central 

fields was more commonly modulated respect to those of neurons belonging to posterior 

field. Despite different responses, authors did not define these three fields as separate 

cortical regions. According with pre-existent studies (e.g. (Krubitzer, Clarey et al. 1995)) 
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they hypothesized their anterior field may correspond to area PV and that combined 

central-posterior fields might be the equivalent for SII. 

 

Stimulation studies 
 
Intracortical micro stimulation (ICMS) of SII in non human primates provided interesting 

results about motor effects yielded by the stimulation. In mid 80’s, Mori and colleagues 

(Mori, Babb et al. 1985) applied ICMS on brain of three Macaca fascicularis. Electrodes 

for both stimulation and recording were placed in the region bounded by the Silvian 

fissure, the intraparietal sulcus, and the caudal border of the postcentral gyrus. Authors 

obtained seven sites located deep in the Silvian sulcus which yielded effects such as 

wrist extension, eye blinking, knee extension, ear retraction, foot extension, end elbow 

extension. Each of these effects was evoked singularly in only one site and they 

appeared only controlaterally. Tactile stimulation was then applied to body parts which 

previously showed motor effects. Neuronal firing recording revealed that the most 

effective stimuli were related to the type of movement evoked form the cortex. This 

means that touch of the skin around the eye produced firing of neurons that, if stimulated 

electrically caused eye blink. The same result was obtained for touch of the knee skin 

and firing of those neurons which previously caused knee extension. In another paper 

(Burish et al., 2008) frontoparietal cortex of marmosets was extensively stimulated with 

ICMS involving motor, premotor and somatosensory areas. Results coming from ICMS 

were correlated with architectonic features of stimulated cortex obtained by means of 

anatomical techniques. Location of electrodes implant was estimated based on bone 

landmarks and cortical surface vasculature. Movements evoked during experimental 

session were broadly classified into four body regions: facial, forelimb, trunk and hind 

limb movements. Concerning results related to the OP region, authors reported that the 
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majority of stimulation sites in PV and SII were unresponsive. However they found high 

threshold face movements evoked form both areas including the lower lip, eyelid and 

nose and in one case they obtained elbow movement evoked from presumably area SII. 

 

Non invasive neuroimaging study 
 
In a recent non invasive neuroimaging study (Nelissen and Vanduffel 2011) by means of 

fMRI authors provided interesting results about grasping-related brain response in 

macaque monkeys. Two rhesus monkeys were tested in two different task both 

performed in the dark in order to ensure that fMRI activations were due only to the motor 

aspects of the task and not to the visualization of the object involved. Authors compared 

activations during two different motor tasks: a reach and grasp task and a reach-only 

task.  As results, evaluating grasping versus reaching, they obtained in the controlateral 

hemisphere a significant difference in activation in portions of premotor F5, a larger 

activity in the hand motor area F1,in region S1, in area AIP, in the rostral lower bank of 

IPS, and in area PFG. Moreover, they showed several activations in regions 

corresponding to SII and PV and also in area VS. Such regions belonging to OP cortex 

were found activated also in the ipsilateral hemisphere. They justified the activity of 

somatosensory regions as a tactile feedback necessary for grasping and control of finger 

force. They however were not able to attribute the differential fMRI response in 

somatosensory cortex during the two tasks to either the hand preshaping or the haptic 

contact of with the object due to the fact that they didn’t record detailed hand kinematics. 
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Physiology of OP in humans 
 
In human OP, its physiological properties and receptive fields have been studied with 

different techniques. At first, electrophysiological intracortical recording and stimulation 

studies have been conducted on epilepsy patients in early 50’s. Later, with the advent of 

non invasive techniques the activation of human OP has been largely investigated with 

neuroimaging studies which supported electrophysiological outcomes and provided 

further details about its somatotopic arrangements.  

 

Recording and stimulation studies 
 
Effects of cortical stimulation of the OP region on epilepsy patients were firstly 

investigated by Penfiled and colleagues (Penfield and Boldrey 1937) (Penfield and 

Rasmussen 1950). In their study they collected data from over 400 patients providing 

important details about first and second sensorymotor cortex and supporting evidences 

for location of SII in the parietal operculum and its somatotopic mapping. A more recent 

study involving both cortical stimulation and direct recording have been conducted by 

Woolsey and colleagues (Woolsey, Erickson et al. 1979). In this study cortical 

stimulation was applied on 20 neurosurgical patients whose disorders required wide 

exposure of the Rolandic region in order to arouse paresthesia and to induce 

movements due to excitation of postcentral and precentral cortex. In relation to the 

cortical recording, elicitation of potentials was done by using a tapping device which 

applied a mechanical stimulation over the body surface. Results of this study, beside 

providing evidences for somatotopic mapping of body parts for both primary motor cortex 

and primary sensory cortex, allowed authors to identify a second somatic sensory area 

located within the OP. Excellent evoked potentials were in fact yielded in 

correspondence of one recording site belonging to the OP by the mechanical stimulation 
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of both hands. Moreover, cortical stimulation applied in a point immediately medial 

produced plantar flexion controlateral foot. Authors highlighted consistency of these 

result with SII somatotopy obtained for primates. 

 

Non invasive neuroimaging studies 
 
Non invasive neuroimaging studies allow the investigation, in our case, of OP region in 

healthy humans avoiding researchers to include in results potential effects due to 

disease. In one positron emission tomography (PET) study published by Burton and 

colleagues (Burton, MacLeod et al. 1997), authors assessed the number and the 

distribution of cortical regions activated by rubbing textured surfaces across fingertips. 

Surface contact was applied directly on the skin or through an imposed tool. Different 

peaks of activation in correspondence to hand region of SI was obtained according with 

skin modes stimulation. In relation to the OP activation, authors found that two modes of 

stimulation yielded different peaks as well. They in fact observed that peak activated 

during skin mode stimulation lied rostrally respect to peak activate during tool mode 

stimulation. These findings brought authors to hypothesize that, as was found in monkey 

studies, also human S2 could be subdivided in two major fields one of those reacts 

stronger to tactile stimulation. Some years later Disbrow and colleagues (Disbrow, 

Roberts et al. 2000) by means of functional magnetic resonance imaging (fMRI) 

provided detailed evidences supporting such subdivision of cortex within the OP. By 

applying tactile stimulation over different body parts (rubbing with large sponge right 

palm and back of the hand, foot, cheek and half mouth, shoulder and leg) authors 

provided evidence for four somatosensory fields. Two of them, identified as SII and PV, 

showed a mirror symmetric representation of the body surface. Their statistical analysis 

on the Talairach coordinates of center of mass of body part representations indicated a 
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medial to lateral progression form foot to hand to face. Bordering these body part 

representations they observed activation in response to stimulation over shoulder and 

hips. The other two fields identified by authors, named rostral region (RL) and caudal 

region (C) showed not consistent activation across subjects in response to 

somatosensory stimuli. The representation of activation obtained for OP cortex is shown 

in Figure 8A. The somatotopic arrangement for SII and PV and the one obtained for 

macaque monkey (according with (Krubitzer, Clarey et al. 1995)) are reported in Figure 

8B.  In another multimodal neuroimaging study Del Gratta and colleagues (Del Gratta, 

Della Penna et al. 2002), the response of OP cortex as consequence of nerve 

stimulation was showed. By means of comparison between fMRI activation and 

equivalent current dipole (ECD) localization provided by magnetoencephalography 

(MEG), authors produced a rough but clear somatotopy of SII region. Electrical 

rectangular pulses were delivered to medial nerve at wrist or to tibial nerve at the medial 

malleolus during both fMRI and MEG acquisition. Their fMRI results showed a consistent 

segregation of activated voxels within the OP region due to stimulation of upper and 

lower limb nerves highlighting a topographical organization of SII with the lower limb 

located more caudally and medially then the upper limb. Authors found confirmation of 

fMRI results in MEG recording. ECD localization showed the median nerve area located 

more anteriorly and more inferiorly respect to the tibial nerve one confirming the 

somatotopic organization of SII. Authors found a slight mismatch between ECD and 

fMRI activations which they ascribed to coregistration errors between MEG and 

structural MRI data. Beside response to tactile stimulation and nerve stimulation, SII 

activation can be elicited as a consequence of different somatosensory stimuli. This has 

been demonstrated in a fMRI investigation conducted by Mazzola and colleagues 

(Mazzola, Faillenot et al. 2012) In this study authors investigated controlateral and 

ipsilateral parieto-insular cortical response to five different types of stimuli applied on left 
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hand of subjects. On the base of cytoarchitectonic subdivision proposed by Eickhoff 

(Eickhoff, Schleicher et al. 2006) authors aimed to investigate whether these proposed 

subdivisions (named from OP1 to OP4) could embed distinct aspect of discriminative 

somatosensory functions. Stimuli employed for all subjects on the same body area were 

tactile stimulation, passive movements, innocuous cold stimuli, non noxious warm stimuli 

and heat pain.Results related to activation of controlateral and ipsilateral OP and insula 

are showed in Figure 9. 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Figure 8. A: Reconstruction of an axial slice through the lateral sulcus with the activity patterns 
from all 16 cases collapsed onto a single drawing. All of the blue encircled areas denote the 
SII/PV region from all of the cases, the green denotes the rostral field (RL), and the red denotes 
the caudal field (C). B: Summary of the somatotopic organization of the second somatosensory 
area (SII) and the parietal ventral area (PV) on the upper bank and parietal operculum of the 
lateral sulcus of human (left) and macaque monkey (right) (as described in (Krubitzer, Clarey et 
al. 1995)). 
 

In this work authors showed that all the different types of stimulation tested activated at 

least one region in SII and insula cortex and moreover that different stimuli 

corresponded to different patterns of activation. In relation to OP areas, controlateral 

OP1 showed activation for all types of stimulation suggesting its unspecific role in 

processing different somatosensory inputs. Both brush and passive movements 

activated controlateral and ipsilateral OP1 reminding to the similarities between the two 

A B 
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stimuli in terms of stimulated peripheral fibers. OP2, activated with cooling stimuli, was 

proposed by author as a possible sensory cortex for cold sensations. OP3 revealed its 

activation during brushing and pain stimuli and according to authors, this result was 

consistent with literature. At last, a bilateral widespread and intense activation of OP1 

and OP4 was obtained after painful stimulation which leaded authors to argue in favor of 

an anterior specificity OP region to pain stimuli.  

  

Summary of physiology of OP 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Group activation maps after stimulation of the left hand. Left: controlateral activation of 
SII/insula. Right: Ipsilateral activation of SII/insula. (Mazzola, Faillenot et al. 2012). On the low-
right:  the new mask representing the regions of interests used in the analysis. Parietal operculum 
is composed by OP1, OP2,OP3 and OP4 (Eickhoff, Schleicher et al. 2006). Anterior insular 
cortex is composed by anterior short gyrus (ASG), middle short gyrus (MSG) and precentral 
insular gyrus (PreCG). Posterior insula includes Ig1, Ig2, Id1 and the post-central gyrus (PostCG) 
according to the probabilistic maps based on cytoarchitectonic maps included in (Eickhoff, 
Stephan et al. 2005). 
 

CONTROLATERAL      IPSILATERAL  CONTROLATERAL      IPSILATERAL  
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According with results obtained for non human primates and humans, the OP is 

generally considered the site for the second somatosensory cortex. Despite slight 

differences presented in literature related to the number, the extension and the borders 

of fields composing this somatosensory area, a shared outcome is represented by its 

activation due to tactile stimulation. This feature allowed researchers to investigate its 

somatotopic organization leading them to find high analogies between non human 

primates and humans mapping. Moreover, non invasive neuroimaging studies allowed 

researchers to study SII response to different kind of stimulation, showing its activation 

also after noxious input, nerve stimulation and joints manipulation. Results have been 

investigated with different techniques which showed consistency in terms of location of 

cortical activation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the next chapter…  

This second chapter focused on the literature related to the anatomy and and the 

physiology of the parietal operculum in both primates and humans. In the next chapter, 

some of the literature about the involvement of such region in sensorymotor 

transformation in feedback model and in feed-forward models will be reviewed together 

with some studies on tactile agnosia. 
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Chapter 3  

 

The parietal operculum in sensory-motor integration : a 
literature review  
 
 

The above mentioned studies deal with the issue of how the brain recognizes passively 

presented complex tactile stimuli. In daily life in ecological settings, haptic knowledge of 

the world relies on active exploration, therefore movement and haptic recognition and 

manipulation are intimately linked. Information provided by sensory modalities are 

processed within the brain in order to produce a suitable object directed action. These 

sensory inputs are the framework that allows the motor system to plan, coordinate, and 

execute the motor programs responsible for voluntary and purposeful movements. Motor 

control relies on several processes that are generally classified into feed-forward (or 

open loop) circuits and feed-back (or closed-loop) circuits. Prediction and correction are 

two concepts related to these two models. For example during a voluntary grasping 

action, in a feed-back model, sensory signals are monitored and compared with a 

desired state, represented by a reference signal. The difference, or error signal, is used 

to adjust the output acting directly on the limb. In a feed forward mode, perturbations are 

detected with various sensory modes and anticipatory movement strategies based on 

experience are applied. Sensory information can be used therefore in two ways, for 

feedback and for feed-forward. In particular, considering the aspect of connectivity 

already discussed, these somatosensory information which are processed in motor 

control might reach M1 also via a cortical loop connecting it with the OP regions (in 

particular PV and SII).  
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OP and sensory-motor integration 
 
Human and monkey studies discussed above (e.g. (Krubitzer, Clarey et al. 1995), 

(Disbrow, Roberts et al. 2000)) related to somatotopic organization of the OP allowed 

inferences about possible participation of this region in sensorymotor integration and in 

tasks involving hand motor control. Beside these studies, there are also several studies 

which specifically investigate the OP cortical activation and neural circuitry involved in 

hand-object interaction and effects on OP cortex regions of motor task execution. In one 

fMRI study conducted by Binkofski and colleagues (Binkofski, Buccino et al. 1999) 

subject were required to perform a continuous manipulation and tactile exploration of 

three-dimensional either recognizable or not recognizable complex objects requiring thus 

continuous finger movements and a constant change in finger configurations. Different 

conditions such as manipulation of complex object versus rest, or versus manipulation of 

a sphere were tested. Authors found an activation of SII and adjacent areas in all tasks 

of their experiment observing a particularly strong activation in the condition in which 

complex object manipulation was compared to sphere manipulation. Authors proposed 

SII as a component involved in the control of exploratory manipulation and in description 

of the objects in terms of their intrinsic physical properties highlighting its functional role 

in capturing information from the external world. In a similar paper the same authors 

(Binkofski, Buccino et al. 1999) compared the activation of SI and SII in complex and 

meaningless object manipulation. Since they observed a high statistical significance of 

SII activation during manipulation but they didn’t observed a parallel activation in SI they 

hypothesized that such activity in SII was probably not due merely increased tactile 

stimulation. They proposed a couple of explanation for this activation: the first one 

following the theory of Murray and Mishkin (1984) which depicts SII as a player in tactile 

object discrimination; the other hypothesis is supporting connections between SII and 
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ventral PMC and the possibility of information exchange between the two region finalized 

to direct and control of finger in order to adapting them online to stimuli configuration. In 

another study Lin and colleagues investigated SII involvement in muscle contraction and 

motor task modulation (Lin, Simoes et al. 2000). They in fact explored the effect of motor 

activity from different body parts on somatosensory responses to left median nerve 

stimulation. Authors recorded somatosensory-evoked magnetic fields (SEFs) during five 

different conditions such as rest without voluntary contraction, contraction of the 

masseter muscles, contraction of the left deltoid muscles, contraction of the left thenar 

muscles, and contraction of the left tibialis anterior muscles. Authors obtained that 

responses from both the right (controlateral) and ipsilateral second somatosensory 

cortices (SII) were significantly enhanced during contraction of the left thenar muscles. 

Responses from the left SII were significantly enhanced also during contraction of the 

left deltoid muscles, but they were decreased during contraction of the masseter and left 

tibialis anterior muscles. Their results indicated that motor activity from various body 

parts differentially influenced SII activity and that the modulation of SII activity seemed to 

depend on the topographical proximity of the contracting muscles to the stimulated body 

part. In their discussion authors argued that the dependence of SII activation on motor 

activity at different body parts implied spatial tuning which could be helpful for monitoring 

and correcting sensorymotor performance. In another fMRI study (Milner, Franklin et al. 

2007) the OP is hypothesized as a region of integration of propioceptive and tactile 

information aimed to control of movements. In this work the neural mechanisms that 

contribute to the ability to manipulate an object with complex dynamics were studied by 

asking participants to perform two different tasks: the formers was a complex object 

manipulation consisting in balancing in an unstable equilibrium position a weighted 

flexible ruler, the second task required to squeeze a soft foam balls. Besides obtaining a 

strong activation of cerebellum during the complex object manipulation, they obtained a 
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significant bilateral activation of both SII region and insula. They discussed the role of SII 

as a region involved in somatosensory integration finalized to produce a coherent image 

of the object for cognitive action. Considering together that afferent of SII are cutaneous 

and propioceptive types and that such region project also to M1, authors presented SII 

as a feedback provider for M1 due to its putative involvement into integration of 

propioceptive and tactile information. 

 

OP in feedback mode - visually guided movements 
 
However despite the growing literature on the OP involvement in sensory motor 

integration, the issue of definition whether OP sensory inputs are involved in motor 

control such as grasping actions as feedback signals in closed loop mode or if they 

provide inputs for anticipatory strategies in feed forward mode is still open. If we have a 

look at studies that did not explicitly address this issue but that more generally 

investigated brain activations during grasp, we can clearly see that systematically the 

OP region is involved. In a PET study Grafton and colleagues (Grafton, Fagg et al. 1996) 

investigated healthy subjects performing three visually guided motor paradigms 

consisting in grasping, pointing and a control condition. In the grasp task, subjects 

reached and grasped cylindrical targets repetitively; in the point task, subjects were 

instructed to point over the top of the cylindrical targets with their right hand using a 

natural pointing hand position with the index finger extended and all others flexed in a 

comfortable fist. As in the grasp task, they returned the hand to a resting position. In the 

control task, subjects were told to leave the right hand at rest on the chest and to simply 

look at each target as it was illuminated. Different cortical regions such as primary 

sensory and motor cortex, premotor cortex, mesial frontal cortex, and cingulated sulcus 

showed their activation in proposed tasks in individual analysis. In the group analysis 
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authors found two adjacent sites showing significant task effects in the OP. Authors in 

fact reported that the main difference between the grasp and the point tasks was the 

marked activity in the OP during grasping, especially in the site containing the putative 

SII. As primitive interpretations of obtained results authors stated that the increased SII 

activity could be merely due to greater simple sensory input because the subjects were 

touching the objects in the grasp task and not in the point task. However, considering 

that the primary sensory cortex showed no difference in activity between the two tasks 

they speculated that the OP might be also involved in higher level processing of object 

shape based on tactile information in prehension. One year later Faillenot and 

colleagues (Faillenot, Toni et al. 1997) published another PET study aimed to identify 

the functional anatomy of the mechanisms involved in visually guided prehension and in 

object recognition. In the study subjects were required to perform different tasks such 

pointing, grasping and matching. The first required to point with the right index finger 

towards the center of the different objects (whose shape was not referred to usual 

objects) and come back to the starting position. The second task consisted in grasping 

with precision grip the object with the right hand and placing it on the table. A third task 

require the participant to observe the objects and press a mouse button each time the 

shapes of two consecutive objects were identical, irrespective of size and orientation. 

Authors obtained activation of left inferior postcentral sulcus (BA 2/40) and extended 

towards the area SII in both the pointing and the grasping tasks by comparing them with 

activity during matching task. They moreover observed that the ventral part of the 

postcentral sulcus was activated by the grasping task only. They moreover verified that 

coordinates of this ventral part corresponded to those of the area found by (Grafton, 

Fagg et al. 1996) in the lateral OP involved in the grasping task but not in the pointing 

task. In one fMRI study (Frey, Vinton et al. 2005), again OP activation was shown during 

grasping. With their research Frey and colleagues investigated the role of human 



 

 56 

putative aIPS in visually guided grasping assuming it as a crucial component in using 

visual shape to determine opposition space of the hands. Stimulus shapes grasped by 

subjects consisted of all 12 objects and used in psychophysical testing (Blake, Brady et 

al. 1992). Subjects performed serially three conditions in a fixed order such as point with 

right index, grasp with right thumb and index, and rest. By comparing activation due to 

grasping versus the one due to pointing, authors identified two significant sites of 

activation in the hemisphere controlateral to the performing right hand. The first site was 

described as area BA40, corresponding to area PF or PDE. The second activation was 

located in the left lateral sulcus extending into OP. Results of this study provided once 

again evidences for supporting involvement of human OP in grasping, by showing its 

activation in association with available haptic information concerning the objects’ 

shapes. All these studies are conducted in the visual modality and therefore OP 

activation is related to a feed-back control of action during the grasp phase. Interestingly 

if we compare grasping studies with the few studies on reaching (e.g. (Culham, Danckert 

et al. 2003) we see that OP is not active. In fact in their fMRI study Culham and 

colleagues obtained activation in human AIP when object size and shape computations 

were required to preshape the hand during grasping, while this region was not active 

during reaching which did not require preshaping. 

 

OP in feed forward mode - working memory 
 
On the contrary, the neuroimaging literature on the use of tactile information for 

predictive movements is not abundant. Useful insights related to this issue can be found 

in studies which investigate in general the working memory defined as the short term 

maintenance and manipulation of information for performing upcoming tasks and the 

neural substrate underling this processes.  
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Non-human primates  

In monkeys for example, bilateral removal of SII area showed impairment in tactile 

learning and retention of somatosensory inputs. In the study of Ridley and Ettlinger 

(Ridley and Ettlinger 1978) monkeys were required to perform a series of different tasks 

such as object tactile discrimination, object’s weight discrimination, unfamiliar objects 

tactile discrimination, intermanual transfer of unfamiliar tactile discrimination and 

retention of information acquired during tactile discrimination. Behavioral results were 

compared to those obtained for a control group of monkey whose did not receive 

ablation. Mainly, authors showed that lesions of SII caused significantly reduction of 

performance of animals with lesions during tactile discrimination tasks, during tasks 

involving inter-manual transfer and showed some evidence of impairment on another 

unfamiliar tactile learning task. Interestingly, SII with lesions animals were not impaired 

on tests of weight discrimination and generalization, highlighting that discrimination 

impairment was confined to touch and did not extend to propioception. Authors argued 

that impairments occurred during discrimination tasks were related more to learning than 

to perception. They in fact claimed that the poor retention of tactile tasks learnt post-

operatively could not be ascribed to poor perception given that, in tasks involving prizes 

according to successful discrimination of some surfaces feature, there was a strong 

preference in animal response to the unrewarded stimulus. According to authors’ 

opinion, this indicates that all animals could immediately perceive a difference between 

stimuli and SII was involved in processes higher than haptic perception. In a more recent 

study, temporary memory for haptically perceived objects in a delayed matching to 

sample task was investigated by recording neural activity in parietal cortex. In the work 

of Koch and Fuster (Koch and Fuster 1989) the monkey with vision occluded was first 

presented with a sample tactile stimulus and, after a short delay (seconds or minutes), 
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two or more comparison stimuli, one of which was identical to the sample. To obtain a 

reward, the animal had to choose the stimulus that matches the sample. Reach, grasp 

and tactile exploration were the actions required to accomplish the task. Authors focused 

their research on neurons activity in parietal areas BA 2, 5 and 7 (which in the lower part 

embeds also the OP region). Basically, they found that during the sample manipulation 

activity there was a gradient of decreasing responsiveness form area 1 to area 7 likely 

due to decreasing density of specific thalamic inputs and increasing complexity of 

processing that occurs in moving caudally through the parietal lobe. They however found 

remaining strongly activated cells in area 7 which authors identified as cells responsive 

to active touch and somatomotor activity. During delay activity, authors found both 

sustained inhibition for some cells, and delayed activation for others. The latter were 

subdivided in non-differentially delayed activated cells and stimuli-specific activated 

cells. Inhibition was hypothesized as a mechanism for decreasing background noise to 

enhance the neural responses of an anticipated perceptual event (choice discrimination). 

Activated cells were proposed as participants in the short term retention of the attributes 

of the sample object. Non-differentially delay-activated cells were hypothesized as 

involved in the retention of stimulus features that are common to all trials, while the 

differentially-activated cells may play a role in the temporary memory of specific haptic 

attributes. In particular authors explained that activated cells firing during the first half of 

the delay period, showed a topographic gradient in activation in anterior parietal region 

like activation occurring during sample manipulation. They hypothesized that these 

delayed activated cells supported the haptic discrimination that occurs during the sample 

manipulation period highlighting the role of anterior parietal cortex as neural substrate 

retentions of haptically acquired somatosensory inputs designed for action.  In another 

study the electrical activity of single neurons belonging to SII cortex was recorded during 

a decision making task involving a consequent motor action (Romo, Hernandez et al. 
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2002). Two vibrotactile stimulations at different frequency (ν1> ν2 or ν1< ν2) were 

presented to the skin of the distal segment of the right hand of four monkeys (Macaca 

mulatta) separated by a period of about 3 seconds. Monkeys were trained to use their 

left hand to indicate at the end of each trial which of the two stimuli had the higher 

vibration frequency by pressing one of the two push button located either on the 

monkey’s left side or in front of it. They interestingly that while during the first stimulation, 

the firing rate of SII neurons encoded the stimulus frequency, during the second 

stimulation their response were a function of both past and current stimuli. Moreover, by 

analyzing responses during error trials they found that a bunch of hundred milliseconds 

after the presentation of the second stimulus SII response was correlated to monkey’s 

choice of action. They thus interpreted these evidences as a putative role of OP in 

processing past and present sensory information for decision-making. 

 

Humans 

In humans, the role of the OP in sensory motor integration, tactile learning and working 

memory has been investigated with neuroimaging studies. In 2001 Jäncke and 

colleagues (Jäncke, Kleinschmidt et al. 2001) studied the role of the parietal cortex in 

linking tactile perception of objects and the manual construction. In the experiment, as 

control task subjects were required to manipulate a plasticine cube. Activation were 

investigated for different condition tasks such as: exploring a 3D object in order to 

haptically infer its shape, imagining the construction of the previously palpated object 

and finally constructing the object from an amorphous lump of plasticine. With the 

comparison between the manual modeling in absence of vision and the imagination of 

the construction authors aimed to dissociate the conceptual component of object 

construction and perception from the concomitant low level sensorymotor processing 
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involved in both construction and exploration. Outcomes produced in their work showed 

similar bilateral activation of region such as anterior and posterior intraparietal sulcus 

(IPS and AIP) during object exploration and modeling conditions; during imagery, a left-

sided network was activated including posterior IPS and ventral premotor cortex vPMC 

similarly to modeling and exploring conditions. Respect to tactile exploration, authors 

showed that manual modeling revealed additional activation of supplementary motor 

area SMA. In relation to activation of SII, in both exploration and modeling respect to 

imaging task Jäncke and colleagues found that the OP region resulted to be significantly 

activated even tough they did not discuss such activation. The major conclusions of 

authors was that manual construction on the basis of haptically acquired features such 

as shape and size involves the retention and the adequate processing of such 

information and it requires different functions such as production of mental 

representation of the object and its transformations into appropriate motor trajectories 

together with to fine tuned bimanual interactions and sensorymotor dexterity. Activation 

of OP showed in the discussed study highlights active involvement of OP cortex in such 

processes. In another fMRI study, published by Reed and colleagues (Reed, Shoham et 

al. 2004) investigated whether the somatosensory system has a specialized neural 

pathway for object recognition under conditions of naturalistic tactile object recognition 

(TOR). In the experiment, TOR of real objects was compared versus a rest condition and 

in a second step TOR of real object was compared to TOR of “non sense” objects. 

Subjects were instructed execute a “grasp, rub, rub” motor sequence and covertly name 

the object in case of the real object. Authors found that, accounting for activation of SI 

and M1 due to motor and somatosensory stimulation, other three networks of stimulation 

were involved: a TOR network for higher level somatosensory representation, a 

somatomotor attention circuit and a multimodal ventro-temporal object recognition 

stream. According with results obtained for TOR network, bilateral activation of inferior 
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somatosensory associations areas including SII were observed. In the somatomotor 

attention network, authors showed the involvement of frontal regions such as prefrontal 

cortex, SMA, premotor cortex, frontal eye fields. In relation to the ventro-temporal object 

recognition stream, they obtained activation of lateral occipital cortex and medial 

temporal lobe. By focusing on SII activation, authors identified this region belonging to 

ventrolateral somatosensory pathway which was previously proposed by (Mishkin 1979) 

as key route for tactile object processing in the integration of features. Authors, 

observing that significant activation of inferior somatosensory association areas such SII 

was still existing when sensory motor components were accounted for, concluded that 

such cortical region might have a key role in non perceptual aspects of TOR such as for 

example, tactile learning and sensory motor integration of information gained from 

exploration aimed to generate coherent image of an object. 

 

Lesions studies in humans 
 
Lesion analyses are one of the main neuroscientific tools to infer structure-function 

relationships. They rely on the combined analysis of a defined neurological deficit and 

the underlying critical brain area. In our case, studies related to parietal lesions and 

sensory syndromes and impairments in motor behavior provide useful findings about the 

involvement of this cortical region.  

Among different sensory syndromes there are: 

� Elementary sensory deficits 

� Astereognosis  

� Deficit of sense of position 

 

The above syndromes can be caused by lesions of the peripheral nervous system or of 

the ascending sensory pathways. A fourth syndrome is tactile agnosia (or deficit in 
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TOR). Tactile agnosia is an exquisitely cortical syndrome defined as a modality-specific 

disorder characterized by impaired ability to recognize objects tactually in the absence of 

more basic somesthetic dysfunction. Following results a couple of studies on patients 

presenting tactile agnosia due to parietal lesions will be briefly reported. In the first study 

conducted by Reed and Caselli (Reed and Caselli 1994), authors investigated the issue 

of finding the faulty step in the perceptual-mnemonic pathway in a tactile agnostic 

person. Their patient presented a small left inferior parietal cortical infarction and after 

neurological examination, impaired right hand TOR was confirmed while intellect, 

language and motor skills (in particular hand movement) were considered normal. 

Unilaterality of tactile agnosia, the ability to acquire sensory data, to combine sensory 

stimuli, to manipulate and associate sensory perceived stimuli, and episodic object 

discrimination were tested. As control for assessing right hand performance, authors 

used the patient’s unimpaired left hand. At first they hypothesized that an inaccurate 

acquisition of sensory data imputed either to a disordered search strategy or to 

interference of competing stimuli could represent the faulty step in the process. 

However, this hypothesis was discarded due to the fact that they observed that 

somatosensory input was sufficiently decoded and multidimensional processing of object 

structure was also preserved. Authors investigated then whether the problem could be 

due to mismatch between stored mental representation of the object and processing of 

rudimentary sensory percept. They however verified that the patient had no difficulty in 

accessing somatosensory and visual knowledge.  The third aspect investigated was if 

the recognition level failure occurred at a deeper taxonomic level but authors found no 

evidence of impaired association between the percept and episodic memory. Authors 

proposed that in the case under examination, tactile agnosia was a high-level perceptual 

disorder resulting from a failure to integrate accurately acquired perceptive features into 

a haptic mental image due to lesions to inferior parietal cortex. In the last study 
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discussed in this review, again evidences about involvement of inferior parietal cortex 

including SII in TOR are provided. In the work of Platz (Platz 1996) perceptual, motor 

and cognitive functions were studied in a man with impaired tactile object-recognition 

(TOR) in his left hand due to a meningeoma into the middle and the lower third of the 

right parietal cortex which was surgically removed. The author identified the patient as a 

case of tactile agnosia since its primary motor and somatosensory functions were not 

impaired, and its abilities for discrimination of various tactile aspects and its cognitive 

skills were preserved but he was not able to appreciate the object's nature or 

significance when it was placed in his left hand and he was unable to name or to 

describe or demonstrate the use of these objects. In the study, sensibility and perceptual 

modalities were tested with delivering stimuli such as light touch, pain, temperature 

variation. Sense of position, ability to discriminate two points and discrimination of 

weight, texture and size 2D and 3D form and TOR were also tested. Moreover, also 

motor ability was tested: maximal fist closure, maximum speed of finger movements and 

fine grip of object with vision occluded. The patient showed preserved perceptual 

functions and ability to discriminate object characteristics such as shape, size, weight 

and texture. He was moreover able to use these skills during tactile selection and tactile-

visual matching. The author reported that the patient, despite its preserved skills, was 

not able to realize object’s nature or significance when it was placed in his hand, neither 

to name it, describe it, and to demonstrate the use. The author observed that patient’s 

exploratory movements were abnormal if compared to non-agnostic hand and often the 

object was lost during manipulation. Since motor impairment was excluded, the author 

hypothesized that these motor findings might imply sensory motor integration related to 

object manipulation. Also in this work it has been highlighted the role of lower part of 

inferior parietal lobule which embeds OP cortical region in sensory-motor integration and 

behavior control. 



 

 64 

Summarizing the parietal operculum 
 
 
� Cytoarchitecture of the OP in non human primates showed distinctive features 

compared to its neighboring regions, namely the primary somatic cortices and the 

inferior parietal lobule, thus confirming the specific identity of the opercular region. 

� Connectivity studies provided evidence for major anatomical connections with the 

primary sensory cortex, inferior parietal lobule, premotor cortex and primary motor 

cortex. 

� In humans, the classical cytoarchitectonic maps showed different levels of 

parcellation of IPL. All of them however identified an area of granular cortex within 

IPL that is referred to as secondary somatosensory area (SII). 

� A modern cytoarchitectonic map provided a detailed subdivision of human OP in four 

regions (OP1-OP4). Their probabilistic connectivity with other parts of the cortex was 

investigated with non invasive neuroimaging techniques. Significant connections 

were found with the primary somatosensory area, the inferior parietal lobule, the 

premotor cortex and the primary motor cortex. 

� Physiological properties of OP have been illustrated by means of single-cell 

recordings and intracortical microstimulation (ICMS) in non human primates. In 

humans most studies employ non-invasive techniques, though in some cases it was 

possible to record intracortical responses from SII in pre-surgical epileptic patients. 

Neural activation of the OP was observed for different types and orientation of tactile 

stimulation. For both non-human primates and humans, OP showed to embed two 

somatotopic maps, sharing one border along medio-lateral direction. 

� The role of the OP in motor control was reviewed. Beside its involvement in tactual 

perception and processing of haptically acquired features of manipulated objects, its 
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role in the use of tactile information for predictive movements was highlighted in 

works on visually guided grasping. 

� Finally some evidence indicates a role of the OP in tactile learning and tactile 

memory, retention and recall of haptically acquired information and mental 

representation of objects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the next chapter…  

This third chapter focused on the literature related to the involvement of OP in 

sensorymotor transformations. In the next chapter, after stating the aim of this thesis, a 

general introduction on the experimental deigns and stimulation paradigms will follow. At 

last, the first experiment, focused on the investigation and characterization functional 

connectivity between the left parietal operculum and the ipsilateral primary motor cortex 

will be described and discussed.  
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PART II – AIM OF THE STUDY 
 
 
Given the theoretical aspects discussed in the first chapter in which the new vision of the 

organization of the cortical motor system has been reported describing the possible 

functions of the different fronto-parietal circuits in the fundamental process of sensory-

motor transformations, and given all the anatomical, functional and connectivity aspects 

of the primates and human parietal operculum discussed in the second and third 

chapter, the aim of this work is to investigate the role of such parietal region on the 

context of haptic-based object directed behavior. Such context is essential for most of 

the everyday life actions. The concert of movements that a human being performs when 

approaching an object appears to be quite natural and immediate, however, such perfect 

and linear symphony of actions is the result of a complex interaction of different cortical 

regions. In fact, there are specific regions that acquire information about different 

aspects such as the surrounding space, the geometry of the objects, their position in the 

space, the position of the human body. Such information must be converted then in a 

suitable signal and at last, it must be exchanged with other specific cortical regions at 

appropriate timing. Thus, providing insights about underlying processes involved in 

different aspects of such transformation (e.g. cortical circuits involved, timing of 

communication between active players, characterization of the encoding of sensory 

information, involvement in working memory aspects) turns out to be extremely 

important. The role of the cortical region under investigation, often underplayed, is slowly 

arousing attention of researchers due to its complex, multimodal and still not completely 

defined behavior in the context of sensory-motor transformation. In order to provide 

insights related to different aspects of the role of parietal operculum in sensory-motor 

transformation in the context of haptic-based object directed behavior, four TMS 
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experiments have been conducted by using different paradigms of stimulation and 

experimental tasks. Methods, results and their discussion will follow in the experimental 

session of this thesis. 
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PART III - EXPERIMENTAL WORK 

 

Introduction to studies and stimulation paradigms 
 
The aim of this work is to investigate the role of OP on the context of haptic-based object 

directed behavior. In order to provide insights related to different aspects of this issue, 

four TMS experiments have been conducted by using different paradigms of stimulation 

and experimental tasks 

  

Experiment I  

This experiment aimed to test cortico-cortical connectivity between left OP and ipsilateral 

M1. This experimental hypothesis is supported by anatomical studies conducted on non-

human primates that provide evidences of direct anatomical connections between the 

two regions justifying the hypothesis of their direct functional interaction. In this 

experiment a dual coil TMS paradigm was used in a no task-design and peak to peak 

amplitude of conditioned MEPs were compared to unconditioned ones in order to asses 

any possible effect introduced by the conditioning stimulation over OP. 

 

Experiment II 

On the basis of results obtained with Experiment I supporting the functional connectivity 

between OP and primary motor regions, the aim of the Experiment II was to assess the 

possible involvement of OP in a reach to grasp task when the size of the graspable 

object was previously explored in different sensory modalities. Correlation between 

conditioned MEPs of two muscles (acting as antagonists in case of the type of grasp 
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required) and size of the object were compared with unconditioned for both exploration 

modalities and for different conditioning sites. 

 

Experiment III 

Experiment III is composed by two experiments hereafter called Experiment IIIa and 

Experiment IIIb. 

Experiment IIIa 

Given outcomes achieved with experiment 2, suggesting OP as a putative site for 

working memory in presence of a motor plan which requires grasping an object of a 

given geometry, a further step has been made in order to provide additional insights 

related to this functional aspect of OP. In the Experiment IIIa by using an on-line rTMS 

paradigm, the effects of repetitive stimulation were investigated by comparing the 

performance of participants receiving the stimulation over OP respect to different control 

conditions executing a purely discriminative match to sample task without motor 

planning. 

Experiment IIIb 

Similarly to the Experiment IIIa, the on-line rTMS paradigm was used also in this 

experiment.  The aim is to study whether the stimulation over OP, by exploiting virtual 

lesion effect of rTMS, produces any sort of variations of the hand preshaping in a task 

requiring a motor plan such as the voluntary delayed grasping of previously haptically 

explored size-variable objects.  The effect of the stimulation site and the temporal phase 

in which it was delivered was evaluated on a specific metric representing the hand 

preshaping. 
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Dual coil TMS paradigm 

Dual coil transcranial magnetic stimulation (TMS), which is also referred to as twin-coil 

TMS or bifocal TMS, is a powerful method to probe the functional link between cortical 

areas and to study the time curse of such interaction ((Civardi, Cantello et al. 2001; 

Koch, Del Olmo et al. 2007; O'Shea, Sebastian et al. 2007; Davare, Montague et al. 

2009) by applying simultaneously two distinct coils to the participant’s head. Generally, a 

suprathreshold stimulus (testTMS) is applied over primary motor cortex in order to elicit 

a motor evoked potential which is a measurable entity. Before testTMS, a subthreshold 

conditioning stimulus (condTMS) is delivered in correspondence of a specific cortical 

region which is hypothesized to functionally interact with M1. The interstimulus interval 

(ISI) that produced significant variation of motor evoked potential is indicative of direct 

cortico-cortical connections. In this way it is possible to evaluate if an output activated by 

condTMS in one brain region works, at a specific latency,  as input producing significant 

effects on the motor cortex excitability indicating then a functional interplay between the 

cortical areas. As pointed out in (Cattaneo and Barchiesi 2011) experiments in which 

such paradigm is applied are based on a priori assumption on where to position the 

condTMS to test effects on a specific behavior. The main limitation of such approach is 

given by the anatomical variability of the functional active regions among individuals.   

 

On-line repetitive TMS paradigm 

Generally, lesion studies are a powerful tool to evaluate the causal relation between 

brain region and specific functions. In case of healthy human brains, it is possible to 

exploit the effects induced by TMS on the stimulated region to infer the relation of 

causality between such brain area and behavior. The basic concept behind such 
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application is that TMS can be used to perturb temporarily the function of a specific 

cortical target thus creating a transient virtual brain lesion. With the term repetitive TMS 

(rTMS) is intended a train of TMS pulses of the same intensity applied to a single brain 

area at a given frequency (from 1 Hz). The disruption of the cortical function during the 

stimulation is related to the intensity of the stimulation and the frequency (Kobayashi and 

Pascual-Leone 2003). In this work, we used an on-line paradigm, delivering the rTMS 

during the execution of the tasks. In this way we aimed to test whether disturbing the 

neural activity of the left OP the execution of a match to sample task or a haptic driven 

grasping task caused any sort of perturbation of the normal outcomes related  (e.g. 

accuracy or hand preshaping). 
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Chapter 4 

Cortico-cortical connectivity with primary motor co rtex  
    

 

Experiment I 

 

Introduction 

 
The human parietal operculum (OP) is a heterogeneous cortical region located above 

the caudal Silvian fissure comprising Brodmann’s areas 39, 40, 43, 3, 1, and 2 (Eickhoff, 

Grefkes et al. 2006; Eickhoff, Schleicher et al. 2006). It embeds 2 complete tactile 

sensory representations of the body and is considered an important station for 

processing somatosensory information ((Krubitzer and Kaas 1990; Krubitzer, Clarey et 

al. 1995). The portion of OP that contains such somatosensory representation is 

historically referred to as the secondary somatosensory cortex (SII). It has been showed 

that OP neurons respond to non-noxious and noxious cutaneous and muscular stimuli 

and to propioceptive inputs generated by passive joint movements, in non-human 

primates (Krubitzer, Clarey et al. 1995) (Fitzgerald, Lane et al. 2006) and in human 

(Woolsey, Erickson et al. 1979) (Treede and Kunde 1995; Svensson, Minoshima et al. 

1997) (Disbrow, Roberts et al. 2000; Del Gratta, Della Penna et al. 2002) (Mazzola, 

Faillenot et al. 2012). Parts of OP are also recruited during active movements. This 

activity has been considered the consequence of the propioceptive reafference caused 

by movement (Faillenot, Toni et al. 1997) (Binkofski, Buccino et al. 1999; Binkofski, 

Buccino et al. 1999; Ehrsson, Fagergren et al. 2000; Ehrsson, Fagergren et al. 2003), 

but it also suggests a direct role of OP in the coordination of movement (Jäncke, 
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Kleinschmidt et al. 2001) (Reed, Shoham et al. 2004). The first aspect that we decided 

to study in order to investigate the role of such region in motor behavior was its 

connectivity with motor regions such as ipsilateral primary motor cortex (M1). Thus, 

probing the functional connectivity between OP and ipsilateral M1 is the aim of the first 

experiment which was addressed by using dual coil TMS. In a recent article, (Cattaneo 

and Barchiesi 2011) authors mapped the connectivity of the entire hemisphere with the 

ipsilateral M1by means of such paradigm in subjects at rest. Among other results, we 

observed that TMS applied to the OP produced a short-latency effect on M1, supporting 

the presence of direct cortico-cortical connections between the 2 regions. These findings 

indicate that some OP neurons are just one synapse away from the motor cortex and 

are in agreement with anatomical studies in non human primates which show that in 

monkey OP, a substantial proportion of M1 neurons is stained following the injection of 

anterograde tracers (Mesulam and Mufson 1982; Mufson and Mesulam 1982; Pandya 

and Seltzer 1982; Cusick, Wall et al. 1989; Krubitzer and Kaas 1990; Stepniewska, 

Preuss et al. 1993; Cipolloni and Pandya 1999; Qi, Lyon et al. 2002; Disbrow, Litinas et 

al. 2003). Hence, in this first experiment we investigated by using dual coil TMS in 

baseline conditions the optimal stimulation point in the left OP cortex and we assessed 

the optimal intersitmulus interval between conditioning and test stimuli for eliciting short-

latency modulation of M1. 

 

Methods 
 

Participants  

Five right-handed volunteers took part in this experiment (3 females, age 25.6±2.8 

years). None of them had contraindications to TMS (Rossi, Hallett et al. 2009) and all 
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gave written informed consent in accordance with the Ethical Committee of the 

University of Trento (protocol n. 2009-033).  

 

MRI and Neuronavigation  

All MRI data were acquired with a 4T scanner (Bruker Medical, Ettlingen, 

Germany)using a birdcage transmit, 8-channel receiver head radiofrequency coil. 

Structural images were acquired using a 3D magnetization prepared rapid gradient echo 

sequence (3D MPRAGE) optimized for gray-white matter contrast [1x1x1 mm3 

resolution, echo time (TE) =4.18 ms, repetition time (TR)=2700 ms, inversion time 

(TI)=1020ms, flip angle = 7°, Generalized Autocalib rating Partially Parallel Acquisition 

(GRAPPA) acceleration factor=2]. Anatomical images in Digital Imaging and 

Communications in Medicine (DICOM) format of each participant were then processed 

using the Brainvoyager software (Brain Innovation BV, The Netherlands) to produce a 

3D surface reconstruction of the scalp and of the gray matter surface. The opercular 

sub-region that we aimed to cover with the grid was the OP4 part, defined according to 

(Eickhoff, Grefkes et al. 2006). We obtained the OP4 mask from the Statistical 

Parametric Mapping (SPM5) anatomy toolbox (Wellcome Department of Cognitive 

Neurology; http://www.fil.ion.ucl.ac.uk/spm) implemented in MATLAB 2007 (Mathworks 

Inc.) in the Neuroimaging Informatics Technology Initiative (NIfTI-1) format. Such mask 

was then converted in Brainvoyager-compatible format using the NIfTI converter plugin 

for Brainvoyager QX (available at http://support.brainvoyager.com). The participant’s 

head and the condTMS coil were co-registered with the scalp 3D reconstruction by 

means of the Neuronavigation module of the Brainvoyager software, interfaced with the 

ultrasound tracker CMS20S (Zebris Medical, Isny, Germany). This allowed online 

updating of the position of the condTMS coil over the scalp.  
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Dual coil TMS  

The stimulation paradigm used was the same as in (Cattaneo and Barchiesi 2011). Two 

different magnetic stimulators, each connected to a separate coil were used 

simultaneously. A Magstim 200 monophasic stimulator (The Magstim Company, 

Whitland, UK) was used to deliver the testTMS via a Magstim custom-made figure-of-

eight coil with 50 mm diameter windings. A Magpro stimulator (Magventure, Skovlunde, 

Denmark) in biphasic stimulus modality produced the condTMS via an MC-B35 coil with 

winding diameter of 36 mm. The participants’ heads were held still with a chin-rest 

incorporating an additional lateral head-constrain. The testTMS coil was permanently 

positioned on hand motor cortex of the left-hemisphere and held in place by means of a 

mechanical support. It was oriented with the handle pointing medially forming a 90° 

angle with the midline. The optimal coil orientation for trans-synaptic stimulation of 

corticospinal neurons in the hand representation in M1 is known to be of 45° (Mills, 

Boniface et al. 1992). In our protocol however, in order to allow the concurrent presence 

of the two coils on the scalp surface we adopted the configuration described above. 

Besides, other studies have shown that also a current orientation perpendicular to the 

midline elicits preferentially indirect waves in the cortico-spinal descending volley (Sakai, 

Ugawa et al. 1997). TestTMS was delivered at an intensity corresponding to 120% of 

individual resting motor threshold (Rossini, Barker et al. 1994) calculated for the right 

interosseus dorsalis primus (ID1) muscle.  

 

Electromyographic (EMG) recordings  

Motor evoked potentials (MEPs) were recorded from the right ID1 muscle. Recordings 

were realized by means of passive Ag/AgCl electrodes in a bipolar belly-tendon 

montage. The analog EMG signal was then amplified 1000x by means of a CED 1902 
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amplifier (Cambridge Electronic Design, Cambridge, UK) and digitized by means of a 

CED 1401 micro Mk-II unit (Cambridge Electronic Design, Cambridge, UK) at a sampling 

frequency of 4 KHz. The EMG recording was triggered by the testTMS pulse (time=0.0) 

by means of the Signal software (Cambridge Electronic Design, Cambridge, UK).In each 

trial EMG was recorded from -250 ms to +250 ms and stored on a PC for offline 

analysis. 

 

General design  

This experiment aimed at establishing the optimal position and ISI to produce short-

latency effects by condTMS to M1. To do so we tested participants while sitting at rest 

and moved the condTMS coil over a grid of scalp points that covered the whole of the 

OP region. Moreover we tested different ISIs between condTMS and testTMS (see 

Figure 10). The analysis of the data was first carried out on a single-subject basis by 

computing statistical scalp maps of the comparison between condTMS+testTMS trials 

with testTMS trials. Finally, a group analysis was carried out to generalize the findings 

from single subjects.  

 

Mapping procedure  

We built in each participant a 3x3 grid drawn over the left OP region (Figure 11 shows 

individual grids in the 5 participants). The condTMS coil was moved sequentially over 

the grid-points under online neuronavigation guidance and its intensity was set at 90% of 

resting motor threshold computed for ID1. Three different ISIs were used (5ms, 7 ms 

and 9 ms) in a separate blocks. The mapping procedure consisted in a sequence of 

condTMS+testTMS trials following a fixed spatial order over the grid. The moment of 



 

 78 

TMS was manually determined in each trial by the operator whenever the condTMS coil 

had been moved over the following point of the grid. All 9 points of the grid were 

therefore tested at every cycle of 9 consecutive condTMS+testTMS . This cycle was 

repeated 16 times in order to have 16 repeated measures of condTMS+testTMS for 

each grid point. Trials with only testTMS were interleaved in the mapping sequence 

every 3 condTMS+testTMS trials. The session of stimulation described was repeated for 

three blocks, each with a different ISI. To summarize, each of the 3 blocks was 

composed by 144 (9 points x 16 repetitions) condTMS+testTMS trials interleaved with 48 

tTMS-only trials for a total of 192 trials. Conditioned TMS paradigms conventionally use 

the grand average of test MEP amplitudes from the whole block as the denominator of 

the normalization ratio (for example see (Kujirai, Caramia et al. 1993) or (Ziemann, 

Tergau et al. 1998)). In the present work we performed lengthy experimental sessions in 

which the test MEP amplitude was likely to vary greatly in the course of the block for 

spontaneous fluctuations of vigilance or for technical aspects such as coil heating and 

switching. We therefore decided to adopt a quasi-instantaneous measure of test MEP 

amplitudes represented by the average of two adjacent testTMS trials moving along the 

timeline of the block in a sliding window, as described in (Cattaneo and Barchiesi 2011). 

Therefore each MEP from condTMS+testTMS trials was normalized to the mean of the 2 

test MEPs preceding and following the conditioned trial. 

 

Computation of TMS statistical maps and group analy sis  

The data from each ISI was analyzed separately. As a result of MEP processing and 

normalization we obtained for each of the 3 ISIs a series of 16 normalized MEP 

amplitudes, each varying form 0 to +∞, for each of the nine points composing the grid. 

Values >1 represented facilitatory effects of condTMS and values <1 represented 
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Figure 10. A: Dual coil TMS paradigm. CondTMS  is delivered over the left OP; test TMS is 
delivered over ipsilateral M1. ISIs tested are 5,7,9 msec. B left: OP scalp grid points located over 
the left OP; B right: cortical projections of the scalp grid point s. The central sulcus is drawn in 
red. C: Motor evoked potentials were recordied from the first dorsal interosseus by means of 
Ag/AgCl superficial electrodes in a belly tendon montage. 
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inhibitory effects of condTMS. Such values were transformed logarithmically in order to 

obtain a distribution of the data varying between -∞ and +∞. After this process, values >0 

represented facilitatory effects of condTMS and values <0 represented inhibitory effects 

of condTMS. At last, each of the 9 distributions of 16 data was analyzed in a 2-tailed t-

test for single samples, against the null hypothesis that the distribution had a mean value 

of zero. Significance level for the t-test was corrected for the 9 comparisons within the 

grid and therefore was set to p = 0.05/9 = 0.0056. In order to quantify the distribution of 

the effects of condTMS at the group level we performed an ANOVA on t-values with 2 

factors: ISI (3 levels: 5, 7 and 9 ms) and POINT (9 levels corresponding to the 9 grid 

points). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Individual MRI scans of the 5 participants to experiment I at the sagittal section 
corresponding to x=-59. Superimposed over the MRI scans is the probabilistic (50% probability) 
cytoarchitectonic maps and the projection from the scalp of the individual 9-point grids. The 
lower-right panel shows on a standard brain the labels of the cytoarchitectonic areas. The central 
sulcus is indicated in red and the Silvian fissure in yellow. 
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Results 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 12. Upper panel: individual statistical maps of the t-values obtained contrasting the 
distribution of log(condMEP+testMEP / testMEP) against the null hypothesis of the mean value = 
0. Values of t are reported when they exceeded 2.13, i.e. the one corresponding to a p-value of 
p=0.05 at 15 degrees of freedom. The t-value Bonferroni corrected for 9 multiple comparisons (p= 
0.0056) corresponded to 3.25. Lower panel: mean t-values from all 5 participants. Asterisks 
indicate the grid points with significant differences of the mean values from chance level (t=0). 
The inserted grid indicates the nomenclature of the grid points. Note that orientation conventions 
of the grids are to be interpreted as overlying the scalp of the left hemisphere, therefore they are 
oriented with the cranial direction to the left and the caudal direction to the right.  
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The results of the mapping experiment show the existence of a short-latency modulation 

of condTMS delivered over OP on corticospinal excitability which is both temporally and 

spatially specific. The single-sample t-test performed on the points of individual grids 

produced significant results in all 5 subjects only at the ISI of 5 ms. The location of 

significant spots was distributed along the mid portion of the grid. All significant effects 

were inhibitory (Figure 12 upper panel). The ANOVA with GRID POINT and ISI as 

within-subjects factors showed that a significant distribution of t-values was present only 

for the 5 ms ISI. The ANOVA also shows that at the group level, a significant effect of 

condTMS was observed only for the grid point p5 (Bonferroni-corrected p=0.02) (Figure 

12 lower panel). This corresponded to the ventral part of the postcentral sulcus, at the 

border between the OP4 and the OP1 region.  

 

Discussion 
     
The results of this experiment, carried out on participants in the resting state, show that 

condTMS delivered on the OP produces a short-latency inhibitory effect on the 

representation of hand movements in M1. In dual coil paradigms the presence of short 

latency condTMS-testTMS interactions is attributed to either the presence of direct 

cortico-cortical connections between the two stimulated spots or to the convergence of 

corticospinal efferent projections from the two areas. In the case of the OP, both 

hypotheses are possible, because the OP region is known to be directly connected to 

M1 (Tokuno and Tanji 1993) (Gharbawie, Stepniewska et al. 2011) (Gharbawie, 

Stepniewska et al. 2011) and to project fibers to the spinal cord (Galea and Dariansmith 

1994). In the present work we did not control for changes at segmental level of 

motoneuron excitability produced by TMS of OP alone. We privilege the hypothesis that 

the short-latency modulation seen here is mainly due to cortico-cortical connections, 
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considering the very small contribution of the OP to the corticospinal tract, i.e. less than 

3,5 % of contralateral corticospinal projections in the macaque (Galea and Dariansmith 

1994). In this study, the effects of condTMS show striking temporal and spatial 

specificity. The modulation effects of OP condTMS are specific to the ISI of 5 ms (Figure 

12), consistent with a direct link between OP and M1. This datum is analogous to the 

well-established short-latency effects of premotor cortex stimulation on M1 neurons 

known in non-human primates ((Tokuno and Nambu 2000);(Kraskov, Prabhu et al. 

2011)) and humans (Davare, Montague et al. 2009) and it is likely that similar type of 

connections link OP to M1. We show that the conditioning effect is also restricted to a 

single small region along the post-central sulcus. This spot corresponds to the caudal 

border of the OP4 region where direct projections to the primary motor cortex in human 

subjects are thought to arise ((Eickhoff, Grefkes et al. 2006) (Eickhoff, Jbabdi et al. 

2010)). These results are also in agreement with anatomical evidence in macaque 

monkeys showing that the OP sends dense projections towards the hand representation 

of the premotor cortex and M1 (Tokuno and Tanji 1993; Gharbawie, Stepniewska et al. 

2011). However, in TMS studies the spatial relations between the stimulating coil and 

the underlying cortex is to be interpreted cautiously. The impact of TMS is likely to be 

maximum at sites different form that of the orthogonal projection of the centre of the coil 

onto the cortex and moreover it is not possible to assume that the effects of TMS are 

due to stimulation of a single cortical site but rather to the simultaneous activation of 

different though neighboring patches of cortex (Thielscher and Wichmann 2009; 

Thielscher, Reichenbach et al. 2010). In the present data, though we found that the most 

efficient coil position right over the post-central sulcus, the actual cortical origin of the 

short-latency effect of condTMS could be on a vaster region of the OP.  
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In the next chapter…  

This fourth chapter focused on the characterization of the functional connectivity 

between the left parietal operculum and the ipsilateral primary motor cortex. Given such 

short-latency interaction, experiments described in the next chapter will focus on: a) 

assessing the role of parietal operculum as site of working memory for haptically 

acquired information on object geometry for guiding object directed actions (Experiment 

II), 2) providing evidences supporting the existence of different networks for processing 

haptic information whether such information is used for perception (Experiment IIIa) or 

action (Experiment IIIb anche characterizing the involvement of the parietal operculum in 

such circuits.  



 

 85 

Chapter 5  

Haptic driven grasping 
    

 

Introduction 
 

The results in support of direct cortico-cortical connectivity between OP and M1 obtained 

In Experiment I lead to a straightforward question: what could be the role of such 

connections? A first plausible hypothesis is that OP is involved in the direct 

transformation of somatosensory information in motor commands. Evidences supporting 

such hypothesis come from non invasive neuroimaging studies which show that, besides 

its well know involvement in passive tactile perception, its activation is present also 

during active tasks such as tactile discrimination (Burton, Abend et al. 1999), and motor 

related tasks such as complex object manipulation (Binkofski, Buccino et al. 1999) and 

motor learning (Eliassen, Souza et al. 2003). These outcomes lead to further 

investigations whose aim is to characterize the nature of the liaison between such 

cortical region and motor aspects. In support of the existence of anatomical connections 

there are anatomical studies on non human primates that show direct cortico-cortical 

projections between OP and primary motor cortex (M1) (Mesulam and Mufson 1982) 

(Mufson and Mesulam 1982) (Pandya and Seltzer 1982) (Cusick, Wall et al. 1989) 

(Krubitzer and Kaas 1990) (Stepniewska, Preuss et al. 1993; Cipolloni and Pandya 

1999) (Qi, Lyon et al. 2002). In humans, the literature related to the study of such 

connections is quite poor. However,  a recent reclassification of cytoarchitectonic 

parcellation of the OP region in humans has indicated that its dorso-rostral portion 

(labeled OP4) is characterized by its connections to M1 and is probably separated from 



 

 86 

the classically defined the secondary somatosensory area (Eickhoff, Jbabdi et al. 2010). 

Moreover, in two our recent transcranial magnetic stimulation (TMS) studies (Cattaneo 

and Barchiesi 2011) and (Maule, Barchiesi et al. 2013) by applying a twin-coil paradigm 

of stimulation, beside mapping the optimal spot within the OP region for their interaction 

we found a  very short latency (5ms) functional interplay occurring between OP and 

ipsilateral M1. Such results are in support of direct cortico-cortical connections and 

suggest a direct role of OP in the coordination of movement (Jäncke, Kleinschmidt et al. 

2001) (Reed, Shoham et al. 2004) as a player  involved in the direct transformation of 

somatosensory information into motor commands. The following experiments investigate 

with different experimental designs the nature of the involvement of OP in sensory motor 

integration.  

In experiment II, we investigated the possibility that OP plays a direct role in haptically 

guided grasping. As well as in the Experiment I, we used the dual-coil TMS paradigm 

exploiting results previously obtained. Test stimuli (testTMS) were applied to M1 and 

conditioning TMS (condTMS) to the optimal spot of ipsilateral OP at 5 ms ISI (results 

obtained in Experiment I). OP-M1 connectivity was tested while participants were 

preparing the blindfolded grasp of an object, the variable size of which had been 

previously explored by the participant in the haptic or in the visual modality. In a 

complementary part of the experiment, we controlled for the validity of the effects of OP 

stimulation by implementing the same experimental paradigm with stimulation of the 

ventral premotor cortex (vPM), which is well known to play a role in visually rather than 

haptically guided grasping. 

Experiment III is composed by two different experiments. In experiment IIIa and 

Experiment IIIb, on the basis of results obtained in Experiment II (Maule, Barchiesi et al. 

2013)  we decided to exploit the effect induced by on-line high frequency repetitive 
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transcranial magnetic stimulation (rTMS) delivered over the left OP in two different tasks 

involving the temporarily retention of the size related information acquired haptically. In 

experiment IIIa we tested the effects of online rTMS on the accuracy of participants 

performing a simple non-motor match to sample discriminative task of haptically 

explored diameter-variable cylinders. The aim was to test whether the stimulation 

affected the retention of the haptically acquired information on the size of the cylinder in 

a task where no motor plan was required. Differently, in Experiment IIIb we evaluated 

such effects on the hand preshaping in a delayed grasping of previously haptically 

explored diameter-variable cylinders. In this case, the effect of the noise introduced by 

rTMS was assessed on a task requiring a motor plan. In both experiments, we controlled 

for the validity of effect on OP, by implementing the same experimental paradigm on left 

primary visual cortex (V1) and with sessions without stimulation.  

 
 

Experiment II  
 
 

Methods 
 
 
Participants 

Twnty four healthy right handed volunteers (14 females, aged 32.2 ±3.6 years) 

participated to this experiment. Twelve participants received condTMS over the left OP 

region (referred to as ‘OP group’) while the other twelve received condTMS over the left 

vPM region (referred to as ‘vPM group’). None of them had contraindications to TMS 

(Rossi, Hallett et al. 2009)  and all gave written informed consent in accordance with the 

Ethical Committee of the University of Trento (protocol n. 2009-033).  
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Electromyographic (EMG) recordings 

Motor evoked potentials (MEPs) were recorded from the ID1 and the extensor indicis 

proprius (EIP) muscles. The ID1 muscle originates from the base of the first and second 

metacarpal bones and inserts on the proximal phalanx of the index finger. Its action is 

therefore that of abducting and flexing the index finger around the metacarpo-phalangeal 

joint. The EIP muscle arises from the distal third of the ulna and by intermediation of the 

dorsal aponeurosis, it acts upon the distal phalanx of the index. Its action is therefore 

that of extending the whole index finger. These two muscles therefore can act as 

antagonists in flexion-extension movements of the index finger, as in the experimental 

task adopted in this experiment. It should however be made clear that the two muscles 

are not obligatory antagonists because they can be partially synergistic in the abduction 

of the index finger (Brochier, Spinks et al. 2004). Recordings were realized by means of 

passive Ag/AgCl electrodes in a bipolar belly-tendon montage. The analog EMG signal 

was then amplified 1000x by means of a CED 1902 amplifier (Cambridge Electronic 

Design, Cambridge, UK) and digitized by means of a CED 1401 micro Mk-II unit 

(Cambridge Electronic Design, Cambridge, UK) at a sampling frequency of 4 KHz. A 

continuous recording of the EMG activity was carried out throughout the whole 

experiment by means of the Spike II software (Cambridge Electronic Design, 

Cambridge, UK) and stored on a PC for offline analysis. Peak-peak amplitudes of MEPs 

were extracted by an automatic algorithm in the Signal software (Cambridge Electronic 

Design, Cambridge, UK) seeking for the maximum and minimum EMG values in a time 

window from 20 to 40 ms after testTMS. 
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General design and experimental setup  

Participants were tested in dynamic conditions during a delayed reach and grasp task. 

They were divided in two groups according to whether they received condTMS over the 

OP or over the vPM. In both groups, condTMS intensity was set at 90% of resting motor 

threshold computed for right ID1. The condTMS coil was positioned following the 

neuronavigation system on one single spot for every participant. In the OP group, 

condTMS was applied to a single point in the OP region that was established on the 

basis of the maps obtained in Experiment I, as a point along the postcentral sulcus, 2 cm 

above the Silvian fissure. In the vPM group, the target of condTMS was established on 

the basis of previous dual-coil TMS experiments for the study of vPM-M1 

 

 

 

 

 

 

Figure 13. Schematics of the apparatus controlling inter-plug distance.  
 

interactions (Baumer, Schippling et al. 2009; Davare, Montague et al. 2009; Davare, 

Rothwell et al. 2010); (Koch, Cercignani et al. 2010); (Lago, Koch et al. 2010) as a point 

along the precentral sulcus, 1.5 cm below the intersection with the inferior frontal sulcus. 

In this experiment also the ISI between condTMS and testTMS was fixed and 

corresponded to 5 ms for the OP group, which was defined as the optimal ISI in 

Experiment I and to 7ms in the vPM group (Davare, Montague et al. 2009). Subjects 
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were sitting on a comfortable chair with their head placed in the chin rest. A custom-

made (www.lmelettronica.it) apparatus holding two plastic plugs (Figure 13) was placed 

in front of them. The distance between the plugs was varied randomly at every trial. The 

lower plug was fixed to a vertical panel, the upper plug moved inside a vertical fissure in 

the panel, by virtue of a linear actuator connected to a stepper motor in the rear part of 

the panel. The whole automation was implemented by using an ArduinoUNO 

microcontroller (www.arduino.cc) which generated at each trial a random number that 

was converted in inter-plug distance. A linear potentiometer connected to the plugs 

assured feedback to the microcontroller on the inter-plug distance. The setup consisted 

additionally in A) a switch on the table on which the participant’s right hand rested and 

which signaled the start of the Reach phase. B) a small touch-sensitive sensor placed 

over the upper plug in order to signal the time of contact of the hand with the object. C) a 

pair of computer-controlled liquid crystal shutter goggles (Plato translucent technologies 

inc.) worn by subjects in the whole experiment. Additionally participants were wearing 

earphones in order to hear acoustic cue-sounds and white noise played in the 

background. The participant’s left hand was kept in a rest condition for the whole 

experimental session.  

 

Trial structure and order  

The participant’s task is schematized in Figure 14 and consisted in a Rest phase, 

followed by exploration of the inter-plug distance, either visually or haptically, followed by 

a Delay phase in which participants waited for TMS. The TMS pulse served as the GO-

signal and instructed the participants to release the home switch to reach and grasp the 

plugs with their index and thumb fingertips. TMS was therefore delivered when the 
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participant had already acquired the information on the inter-plug distance to be 

grasped, and was waiting to use that information to perform the grasp. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. Top: Visual exploration trial. Bottom: Haptic exploration trial. Each trial is composed by 
four phases: A) Rest, change of inter-plug distance; B) Exploration: visual or haptic according 
with the type of trial (note that in haptic trials the vision of the object was occluded in this phase); 
C) Set: the subject waits for the GO-signal; D) Reach-grasp: the participant, with vision occluded 
in both trial types, performs a thumb-index grasping of the two plugs. 
 

Visual and haptic trials were identical in the Rest, Delay and Grasp phases but differed 

in the Exploration phase. At the beginning of each trial, subjects were sitting with vision 

occluded by the shut goggles and with their right hand relaxed on the home switch while 

the distance between the two objects was being changed. In the subsequent exploration 

phase, the shutter lenses were opened for 2000 ms in order to allow vision of the objects 
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in Visual Exploration. Goggles instead remained closed in haptic trials and an acoustic 

cue-sound prompted the subjects to start tactile exploration of the plugs with their right 

hand. After 2000 ms another acoustic cue advised participant to finish the exploration 

and go back to the rest position. During this Delay phase, subjects were instructed to be 

ready to perform a thumb-index grasp of the plugs whenever they heard the GO signal. 

The GO signal occurred randomly between 2100 and 2600 msec after the end of the 

visual or haptic inspection. Once the plugs were grasped, subjects returned with their 

right hand relaxed on the home switch. The inter-plug distance was fully randomized 

between trials, the order of trials was fixed in the sequence: 1) Visual Exploration trial 

with cond+testTMS, 2) Visual Exploration trial with testTMS alone, 3) Haptic Exploration 

trial with cond+testTMS, 4) Haptic Exploration trial with testTMS alone. This basic 

sequence was repeated 50 times for a total duration of the experimental session of 35 

minutes. For each trial, the set interplug distance and the timing of the go signal (TMS) 

were recorded in a log file by the Arduino system. The number of trials was 200 per each 

experimental session corresponding to 50 trials per each of the four conditions: 1) single 

pulse-visual trial, 2) single pulse-haptic trial, 3) dual pulse-visual trial and 4) dual-pulse-

haptic trial.  

 

MEP data analysis  

The strategy of data analysis in this experiment was different from the conventional one 

used in experiment I. We did not compute the ratio between conditioned and test MEPs 

but focused on the modulation of raw MEP peak-to-peak amplitudes for each muscle. In 

each single subject, we calculated an index of correlation (Pearson’s r coefficient) 

between the amplitude of MEPs obtained in single trials and the inter-plug distance of 

that same trial. The use of a statistical metric to describe the effect of an experimental 
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factor and a physiological process is widely accepted and validated in functional 

neuroimaging studies (for more details see (Friston, Frith et al. 1991; Friston 1995; 

Friston, Frith et al. 1995). In our work we decided to adopt this approach, and 

considered in our analysis the mutual combination of r-correlation coefficients between 

MEPs of the two antagonist muscles and the size of the grasped object. More precisely, 

we correlated MEP amplitudes with target size separately per each of the four 

conditions: 1) single pulse-visual trials, 2) single pulse-haptic trials, 3) dual pulse-visual 

trials and 4) dual pulse-haptic trials. Each r value was computed on 50 pairs of data. In 

our opinion the use of a statistical parameter to describe the distribution of single trial 

measures (MEP amplitudes) according to an experimental variable (the target size) is 

more reliable than the conventional approach based on the extraction of mean values of 

MEP amplitudes in factorial designs. The main reason for this is that mean values of 

MEP amplitudes are strongly influenced by outlier data and that MEP amplitudes are not 

distributed normally, being comprised between 0 and +∞. The use of correlation 

coefficients linking the dependent variable and the dimension that is manipulated 

experimentally overcomes this potential source of noise and bias. Correlation 

coefficients were calculated in single participants and take account therefore of values 

form each single trial. They were computed separately for each of the two muscles, thus 

resulting in 8 r values for each subject, corresponding to a 2*2*2 design with the factors: 

MODALITY (2 levels: haptic or visual), PULSE (2 levels: testTMS only or condTMS + 

testTMS ) and MUSCLE (2 levels: ID1 and EIP). The r-values have to be interpreted in 

two ways. First, their absolute values indicate that MEPs from a given muscle are 

correlated with the size of the object that has been explored and that will be grasped. 

For each participant, positive and negative values of r indicate that the MEP size 

increases and decreases linearly with the size of the grasp target, respectively. Second, 

the two muscles are to be considered as mutual antagonists in the context of the present 
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movement. Therefore, besides their absolute values, also the mutual relation of r-values 

between the two muscles within each condition is informative because it indicates 

whether the MEP modulation reflects the actual reach-grasp EMG pattern, in which it is 

expected that r-values for the EIP muscle are more positive than those from the ID1 

muscle. The r values were used as dependent variable in an ANOVA with the 3 within-

subjects factors MODALITY*PULSE*MUSCLE and a between-subjects factor, i.e. the 

GROUP (2 levels: OP group and vPM group).  

 

Analysis of EMG during the reach-grasp action  

We also performed a direct analysis of the EMG activity of the actual reach-grasp 

movements performed in the last phase of the trial (Grasp phase), i.e. when subjects 

had already explored the target size. The epoch of the reaching movement was 

identified on the continuous EMG recordings with respect to home-switch release and 

plug-contact. The reaching epoch from each trial was then divided in ten decile time 

bins. Electrical muscular activity started slightly before the mechanical event of hand 

elevation and, obviously, continued after the contact with the target. Therefore in each 

trial we considered also two additional time bins immediately preceding and immediately 

following the reach, with duration identical to the deciles of that trial. This procedure 

resulted for each trial in a total of 12 consecutive time intervals of equal length. The 

average duration of deciles among trials and subjects was of 111 ms (SD: 12 ms). The 

rectified EMG activity was averaged in each 2 consecutive time bins, resulting in 6 

values per trial corresponding to the time-course of EMG along the reaching movement. 

Pearson’s r coefficient was computed between each of the 6 EMG values for the two 

muscles and the inter-plug distance of that trial. As with MEP analysis, the correlations 

were computed per each of the four conditions:1) single pulse-visual trial, 2) single 
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pulse-haptic trial, 3) dual pulse-visual trial and 4) dual-pulse-haptic trial. Therefore each r 

value was computed on 50 pairs of data. The EMG-target size correlations were then 

analyzed with an ANOVA with 4 within-subjects factors: TIME (6 levels corresponding to 

the 6 consecutive time bins), MODALITY (2 levels, visual or haptic), PULSE (2 levels, 

single or dual pulse) and MUSCLE (2 levels, ID1 and EPI) and one between-subjects 

factor, GROUP (2 levels, OP and vPM) as between-subjects factor.  

 

Results 
 
Correlations between MEPs and target size  

The results of the ANOVA performed on r coefficients obtained from the MEP amplitudes 

produced a significant main effect of MUSCLE (F(1, 22)=7.99,p=0.01) driven by the 

higher values of r-coefficients associated with the ID1 muscle compared to those 

associated to the EIP muscle. The most important finding however was a 4-way 

GROUP*MODALITY*PULSE*MUSCLE interaction (F(1, 22)=19.78, p=0.0002) which is 

illustrated in Figure 15. To explore the complex interaction we divided the analysis 

between the two groups in two symmetrical MODALITY*PULSE*MUSCLE ANOVAs, 

which both resulted in significant 3-way interactions (F(1, 11)=15.34, p=0.002 in the OP 

group and F(1, 11)=8.18, p=0.016 in the vPM group). We broke each interaction effect 

into two PULSE* MUSCLE sub-ANOVAs for each of the 2 sensory modalities. The 

results in the OP group showed a significant PULSE*MUSCLE interaction for the tactile 

modality (F(1, 11)=23.03, p=0.0006) but no interaction in the visual modality (F(1, 

11)=0.05, p=0.83). Post-hoc t-tests indicated that the interaction was to be attributed to 

the fact that no difference was present between the r-coefficients from the two muscles 

in the single pulse modality (Bonferroni-corrected p=1.0), while a consistent difference 
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was present between the mean r-coefficients of the 2 muscles in the dual-pulse 

modality, i.e. when also OP had been stimulated with TMS (Bonferroni-corrected 

p=0.00006).  

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 15.  Grey columns indicate the mean r-coefficients calculated on the MEPs from the 2 
muscles in the different experimental conditions. Line-circle elements indicate the individual data. 
The asterisks indicate the significant post-hoc comparisons. 
 

 

On the contrary, the same analysis performed in the vPM group did not show any 

PULSE*MUSCLE interaction in the haptic modality (F(1, 11)=0.96, p=0.35) but did show 

a significant PULSE*MUSCLE interaction in the visual modality (F(1, 11)=6.71, =0.025). 

Post-hoc comparisons indicated that the interaction was ultimately due to a difference 

between r-coefficients from the two muscles in the dual-pulse trials (Bonferroni-corrected 
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p=0.022) but not in the single-pulse trials (Bonferroni-corrected p=1.0). Additionally, as a 

post-hoc analysis aimed at assessing whether any correlation was present between the 

MEPs in each category and the target size, we performed single-sample t-tests against 

the null hypothesis of mean x = 0.0. The results did not show any significant result 

(minimum p=0.08).  

 

Effects of TMS on the subsequent reach-grasp moveme nt  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16. The rectified EMG recordings of the EIP and ID1 muscles from one representative 
subject are represented, to illustrate the relation of the EMG signal to the size of the object. The 
data from the single-pulse, haptic exploration conditions are shown. For purely illustrative 
purposes, the EMG traces have been averaged in 3 groups, corresponding to the lower (small), 
middle (medium), and upper (large) thirds of interplug distances. All traces are aligned to the start 
of the reaching, that is, when the participant’s hand was lifted from the start-switch. In this subject 
contact with the plugs occurred around 1 s later. Notice that EIP muscle activity increases with 
increasing interplug distance and conversely ID1 activity decreases with the size of the target.  
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Figure 16 illustrates qualitatively in one representative subject the relation between the 

EMG recorded from the two muscles and the size of the object to be grasped.  The 

results of the ANOVA showed a TIME*MUSCLE interaction (F(5, 110)=62.57, 

p<0.000001) which indicates the divergent time course of the r-coefficients from the two 

muscles during the Reach-Grasp phase. As shown in Figure 17 the IP muscle showed 

an activity that was correlated from very early in the reach with the geometry of the 

target object as indicated by the deviance from the zero value (dashed line in Figure 17).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. General time course of the r-coefficients linking each of the two muscles with the inter-
plug distance to be grasped. Bin 1 corresponds to the period around the GO signal and bin 6 
includes the contact with the plugs and the initial grasp phase. Bins 2-5 describe the reaching 
phase. The dashed line indicates y=0. Error bars indicate 95% CI. 
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The ID1 muscle on the contrary is specifically activated in relation to the object only very 

late in the reach and maximally during the grasp. The most complex result of the 

ANOVA was a GROUP*MODALITY*TIME*MUSCLE interaction (F(5, 110)=3.43, 

p=0.006) that is illustrated in Figure 18. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18.  r-coefficients resulting from the correlation of EMG values in the Reach- Grasp phase 
with the inter-plug distance. Error bars indicate 95% CI. The 2nd bin, which resulted to be related 
to the 4-way interaction, is highlighted with a gray shade and an asterisk. 
 

This interaction was further analyzed by means of 6 separate 

OUP*MODALITY*MUSCLE ANOVAs, which yielded a significant 3-way interaction only 

in the 2nd time bin (F(1, 22)=7.10, p=0.014). A further decomposition of the analysis 

indicated that only in the OP group a significant MODALITY*MUSCLE (F(1, 11)=14.67, 
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p=0.003) interaction was present. Post-hoc comparisons indicated that the interaction 

was due to the fact that in the visual modality the mean r-coefficients were significantly 

different between the two muscles (Bonferroni-corrected p=0.027) but not so in the 

haptic modality (Bonferroni-corrected p=1.0). Within the OP group, the results are not 

specific for the condition of dual pulse but are generally observed in the group of 

subjects who have been stimulated on the OP compared to those stimulated over the 

vPM. 

 

Discussion 
  
    
This experiment characterized the role of the OP-M1 interactions demonstrated in 

Experiment I. in processing haptic information for grasping.  Previous data indirectly 

indicate that the motor functions of OP could be at least in part related to haptic 

knowledge of graspable objects’ geometry. In humans, neuroimaging studies show that 

SII is active in tasks requiring the memorization of textures or 3D shapes acquired 

haptically (Bonda, Petrides et al. 1996) (Kaas, van Mier et al. 2013). In monkeys, single 

neurons in SII present a sustained activity when haptic information is memorized for the 

later performance of a discrimination task (Romo, Hernandez et al. 2002). Finally, one 

imaging study showed that SII is particularly active when monkeys must rely on haptic 

memory to perform a reach-to-grasp movement in the dark (Nelissen and Vanduffel 

2011). Our experiment extends these observations by showing that OP stores haptic 

information on object shape that is then to be transferred to M1 once a reach-to-grasp 

plan is implemented. This is indicated by the critical finding that in trials with testTMS 

only, no information on a motor plan to grasp that particular object size could be 

extracted from the MEPs, ultimately suggesting that such information was not yet 

present in M1 at the time of TMS pulse. This conclusion arises mainly from the mutual 
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comparison of the r-coefficients between the two muscles, rather than from a significant 

deviation of r-coefficients in any of the conditions from the 0 value. In the first part of this 

experiment we applied condTMS to the OP region. Prior to the actual movement, the 

pattern of conditioned corticospinal output from M1 to the EIP muscle was differently 

correlated with the inter-plug distance compared to the ID1 muscle pattern. More 

specifically the EIP r-coefficients were higher than those from the ID1 muscle. This result 

is in keeping with the fact that we recorded two muscles that are partially antagonists 

when actually producing the hand shape required in the task. The EIP is more active 

when reaching for the manipulandum with a large inter-plug distance than with a small 

inter-plug distance. Vice-versa the ID1 muscle needs to be more relaxed when reaching 

for large inter-plug distances than when reaching for small inter-plug distances (Figure 

16). The reciprocal activity in the two muscles is therefore a signature of the variations of 

inter-plug distance as confirmed by analyzing the ongoing EMG activity during the actual 

reach-grasp (Figure 17). Therefore, the significant PULSE*MUSCLE interaction following 

condTMS to the OP region can be explained exclusively by hypothesizing that muscle-

specific information to be used for reaching-grasping is present in OP and is readily  

transferable to M1. These interactions are functionally relevant only when information 

relative to object geometry is acquired haptically but not visually (Figure 15). In the 

second part of the experiment we applied condTMS to vPM to a second group of 

participants. Taken together with the results of the OP group of participants the data 

show a clear double dissociation between sensory modality and stimulated cortical area. 

Indeed in the vPM group we found that the conditioned corticospinal output was 

predictive of the motor plan required to grasp an object of a given geometry only when 

that information was acquired visually and not haptically. The results in the vPM group 

are consistent with the effects characterizing PMv-MI interaction in the visual modality 

previously reported (Davare, Montague et al. 2009). Altogether, these results show that 
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SII and PMv are two essential components of the cortical grasping network in which they 

support highly complementary functions. It is likely that direct connections between 

these two areas are required to coordinate their activity and their interaction with M1 

during grasp. As stated above while discussing the results of Experiment 1, the effects of 

the conditioning TMS on corticospinal excitability are likely to reflect cortico-cortical 

interactions. Differently from what observed in Experiment I, the net effects of condTMS 

are not merely inhibitory, but rather modulate the net output of M1 in the corticospinal 

system in a task-dependent pattern. As shown in previous twin-coil bifocal TMS studies 

and reviewed by (Koch and Rothwell 2009), the effects of conditioning TMS cannot be 

possibly classified as simply inhibitory or excitatory, but rather instantaneously indicate 

the transfer of information within a cortical network. The task used in the present 

experiment actually tests the capacity of the brain to hold in a working memory system 

the motor plan required to grasp an object of a given geometry. Some observations on 

this should be made. The issue of the neural site of tactile working memory for objects is 

not well defined because most studies focused on the retention of memory of textures 

rather than macro-geometrical object features. There is general agreement on the fact 

that haptic memory is supported by an expert and dedicated system which resides 

probably in a ventral network passing from the somatosensory cortex,  the parietal 

operculum and insula and finally the frontal cortex as reviewed in (Burton and Sinclair 

2000) (Pasternak and Greenlee 2005). Although our task was based on memory 

retention of object geometry, our data also suggest that OP plays a key function during 

grasping by transferring information to be used for movement to M1 (Milner, Franklin et 

al. 2007). From a further perspective, perception-action coupling theories generally are 

aimed at identifying several hierarchical levels of sensorimotor interactions, as reviewed 

by   (Lebedev and Wise 2002), but do not take into account the possible differences 

between sensory modalities. In fact most models on perception-action coupling indicate 
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the premotor cortex as a pivotal node from which all information needs to pass to be 

transformed into movement. Our data suggest that the premotor cortex does not cover 

this role for all sensory modalities. Haptically-guided behavior relies on a distinct network 

in which the role of the parietal operculum is that of a “premotor” cortex where the term 

premotor does not refer to anatomy, but rather to its functional position in the circuit. In 

addition, we provide unprecedented indications that the OP region is causally involved in 

the use of haptic information for the reaching-grasping movements. We analyzed the 

actual pattern of ongoing EMG activity while subjects were reaching for the 

manipulandum and its correlation with object size (Figure 8). We found in the very early 

phases of hand pre-shaping in the haptic task a significant difference in EMG activity 16 

between the OP and the vPM groups. More specifically, the physiological differentiation 

of EMG activity between the two recorded muscles (namely higher r-values for EIP than 

those for ID1 muscle) occurred later in the OP group compared to the vPM group. We 

did not find a significant effect of the PULSE factor. Our interpretation of this datum is 

that repeatedly targeting OP with spTMS produced a cumulative effect that was 

observed throughout the experimental session. The statistical results indicate that this 

sort of after-effect was present in both trials with only testTMS over M1 and in the ones 

with also condTMS over OP. Given the invariance of all other experimental conditions, 

including the sensory modality, the difference between the two groups can only be 

attributed to the site of application of condTMS. But how is it possible that it is evident 

also for testTMS-only trials? The observed changes in performance could be due to 

cumulative effects of TMS applied to OP along the whole experimental session. In other 

words this would be a repetitive TMS-like effect, resulting ultimately in a change in motor 

performance during the actual reaching for the object. In a post-hoc analysis we 

observed that the frequency of stimulation of OP was of 0.05 Hz. This is beyond 0.1 Hz 

that is considered the limit for carry-over effects of simple rTMS  (Chen, Classen et al. 
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1997). However, in the absence of any other better explanation we hypothesize that the 

particular patterned repetitive stimulation resulting from the ordered sequence of trials 

applied here might escape the conventions established for simple frequency rTMS as 

has been shown, for example, for 0.1 Hz TMS coupled with peripheral deafferentation 

(Ziemann, Corwell et al. 1998). In the absence of a baseline condition (i.e. a condition 

without TMS) the interpretation of this finding is not univocal because the possibility 

exists that the difference between the two groups is due to the vPM stimulation. Given 

that vPM condTMS did not produce any modulation of MEPs in the haptic modality while 

OP condTMS did, this seems a less likely possibility.  
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Experiment III  

 

Experiment IIIa 

 

Methods 
 

Participants 

Participants: twelve healthy right handed volunteers (9 females, aged 26.6 ±3.4 years) 

received on-line 4 Hz rTMS. None of them had contraindications to TMS (Rossi, Hallett 

et al. 2009) and all gave written informed consent in accordance with the Ethical 

Committee of the University of Trento (protocol n. 2009-033). All participants received 

TMS over two sites corresponding to left OP and ipsilateral primary visual cortex (V1) in 

two separated experimental sessions. 

 

Stimulation sites 

Given that in this experiment it was not possible to rely to the cortical anatomy of 

participants, the stimulation site corresponding to left OP was estimated on its average 

position computed on twenty-four anatomical scans provided in the experiment (Maule, 

Barchiesi et al. 2013). The coordinates of the OP spot, hereafter referred as X,Y are 

intended to be the scalp coordinates of the stimulation site. The coordinate system (X,Y) 

used as frame of reference was centered on the left external acoustic meatus; the X axis 

run parallel to the nasion-inion plane while the Y run along the dorso-ventral direction.  

The use of a Cartesian coordinate system is justified by the assumption that the site 

considered for the stimulation over OP is located in correspondence of a flat skull region 
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and thus the error on our estimation introduced by the head curvature is reasonably 

small.  In each of the twenty-four anatomical scans the scalp spot corresponding to the 

left OP was previously marked on the reconstructed 3D mesh provided by BrianVoyager 

(http://www.brainvoyager.com/). The coordinates respect to the BrainVoyager reference 

frame were transformed into the new reference frame by applying the transformation 

matrix between the two systems previously obtained by computing the difference 

between the origins of the two reference frames. We then computed the average on the 

24 coordinates obtaining the final averaged position for OP site. In order to identify this 

spot on participant’s scalp, their head was adequately fixed with nasion-inion aligned 

and by means of a home-made dima representing the two cartesian axes placed in 

correspondence of the acoustic meatus it was possible to mark the two averaged 

coordinates (X,Y) of OP. In Figure 19 the X,Y coordinates of left OP respect to the new 

reference frame are plotted for the whole population.   The V1 spot was identified as the 

O1 point according to the international standard 10-20 system. 

 

 

 

 

 

 

 

 

Figure 19. OP coordinates (X,Y) projected in out coordinate system. In the highlighted box, the 
spot representing the averaged coordinate of X and Y is represented in black. White bars 
represent the standard deviation along the two dimensions. 

X = -0,25 ± 3.97 [mm]   

Y = 40,66 ± 4.97[mm] 
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Stimulation procedure 

The stimulation paradigm used is on-line high frequency repetitive TMS (rTMS) with ν = 

4 Hz. In this experiment, a single coil was used and moved from one TMS site to the 

other at the end of each experimental session. A further session without delivering TMS 

was run. The order of sessions was varied randomly across subjects. The stimulation 

was delivered with a Magpro stimulator (Magventure, Skovlunde, Denmark) via a 

custom-made figure-of-eight coil BCF-65 with 75 mm diameter windings.  The intensity 

of the stimulation was set at 90% of the RMT ((Rossini, Barker et al. 1994)) computed 

for ID1. The subjects were sitting comfortably on a chair with both the forearms lying 

relaxed on the table. Their right hand was hanging out from the table, relaxed, ready to 

explore the object (see Figure 20). Their heads were held still with a chin-rest 

incorporating an additional lateral head-constrain. During the sessions in which the rTMS 

was delivered, the coil was permanently positioned over the stimulation site (left OP or 

left V1) and held in place by means of a mechanical support. Concerning stimulation 

over OP, the coil was oriented along the dorsal to ventral direction with the handle 

pointing the ceiling, while the stimulation of V1 was delivered with the coil’s handle lying 

along the medial to lateral direction pointing towards left. 

 

General design and experimental procedure   

Participants were tested in dynamic conditions during a match to sample task performed 

with vision occluded. The study was composed by four experimental sessions: training 

session composed by 40 trials; OP stimulation session, V1 stimulation session, and no-

TMS session each of them composed by 80 trials. Each trial was composed by three 

phases: A) haptic object exploration phase; B) delay phase; C) haptic object exploration 

phase. The objects explored consisted in two cylinders steel-made differing only in the 
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diameter dimension (cylinder 1: height = 30 mm, diameter = 15 mm; cylinder 2: height 

=30 mm, diameter = 17 mm). The two cylinders were fixed on the two opposite points of 

a plastic-made wheel mounted on a vertical support (see Figure 20 top panel). The 

wheel was placed in front of the table at a suitable distance and height to allow 

comfortable exploration of the objects with the right hand. For each trial, the wheel was 

manually turned by the researcher.  The subjects were therefore asked to explore 

haptically for 2 seconds the first cylinder presented (phase A). They were then required 

to stop the haptic exploration (phase B). After 2 seconds, they were asked to perform a 

second object exploration (phase C) of the second cylinder presented (see Figure 20 

lower panel for the trial structure). Two possible objects were proposed during the phase 

C: the same cylinder previously explored or a cylinder differing from the previously 

explored only from the diameter. In the end, participants were required to answer the 

question: “Are the two explored cylinders different?”. Their answer was stored for 

following analysis. It is important to highlight that the motor action were minimized as 

much as possible during the task and cylinders were presented immediately close to 

participant’s fingers in a way that tactile exploration were performed without need of  

implement reaching. The rotation of the wheel occurred in each trial, even when the 

second cylinder presented was the same previously explored. For both the stimulation 

sessions, the 4 Hz rTMS occurred during the delay phase (phase B) for a total of 8 

stimuli. During the training session, after the subject’s decision, a feedback was provided 

by the researcher in order to allow the participant to become familiar with the objects.  

During the other three sessions no feedback was provided. An acoustic cue sound (1000 

Hz, 50 ms duration) was announcing the beginning and the end of each phase. The 

beginning of each trial was triggered by the pushing of an electric button operated by the 

researcher. The control and the synchronization of the button, the cue sound, and the 

trigger for the 4 Hz rTMS was implemented by using the microcontroller ArduinoUNO 
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(www.arduino.cc). In each of the four sessions, the number of matching trials was 

balanced with the one of the non-matching as well as the direction of non-matching 

(small cylinder to large cylinder or large cylinder to small cylinder) and trials were 

presented randomly. The training session lasted about 7 minutes while three other three 

sessions lasted about 15 minutes for a total length of 52 minutes of experimental 

session. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 20. Top left: side view of the experimental setup. Top right: top view of the experimental 
setup. It is important to highlight that the motor action were minimized as much as possible during 
the task and cylinders were presented immediately close to participant’s fingers in a way that 
tactile exploration were performed without need of  implement reaching. Bottom: Trial structure.  
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Data Analysis 

The aim of this experiment is to investigate the effects of rTMS on the subject’s ability to 

perform a sample task. Since the task under investigation is a simple match to sample 

task (“Yes/No” task), we used the measure of sensitivity d’, as it is  stated in the Signal 

Detection Theory (SDT) (Green and Swets 1966), to quantify the subject’s ability to 

discriminate between the two cylinders. Henceforth, according to SDT, accuracy and 

sensitivity has been calculated as follows: 

Accuracy � P_c = (H+F)/2 

Sensitivity  � d’ = z(H) – z(F) 

where H (hit rate) and F (false alarm rate) are the two SDT independent conditional 

probabilities of “Yes” answer, while z represents the inverse cumulative Gaussian 

distribution. We computed the sensitivity for each of the four experimental sessions; at 

the end, for each subject we obtained four values of d’ that has been compared in a 

single factor (rTMS site) of three levels (left OP, left V1, no TMS) ANOVA analysis.  

 

Results 
 
The results of the on-way ANOVA performed on both the sensitivity and on the accuracy 

didn’t produce any significant effect of the factor (SITE of STIMUALTION). In particular, 

statistic obtained for the sensitivity (d’) analysis was (F(3,33) = 7.089  P = 0.6212)  and 

the one obtained of the accuracy (P_c) analysis was (F(3,33) = 7.089  P = 0.8730) (see 

Figure 21). 
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Figure 21. Results of on-way ANOVA statistic for the sensitivity (top) and for the accuracy 
(bottom).  Different gray shades are used to indicate different experimental sessions. Black line 
lying on the bars represents the intervals of confidence (α=0.05). 
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Experiment IIIb  

 

Methods 
 

Participants 

Participants: Fourteen healthy right handed volunteers (6 females, aged 26.9 ±5.7years) 

received 4 Hz rTMS on-line. None of them had contraindications to TMS and all gave 

written informed consent in accordance with the Ethical Committee of the University of 

Trento (protocol n. 2009-033). All participants received TMS over two sites 

corresponding to left OP and ipsilateral primary visual cortex (V1) in a single 

experimental session. 

 
Stimulation sites 

The two sites of stimulation (namely left OP and ipsilateral V1) have been identified as in 

Experiment IIIa. 

 
Stimulation procedure 

The stimulation paradigm used is on-line high frequency repetitive TMS (rTMS) with f = 4 

Hz. In this experiment two identical coils were used in a single experimental session. 

Trials without stimulation were interleaved randomly in the session. The TMS over OP 

was delivered with a Magpro stimulator while the stimulation over V1 was delivered with 

a Magpro compact (Magventure, Skovlunde, Denmark) both via a custom-made figure-

of-eight coil BCF-65 with 75 mm diameter windings. The intensity of the stimulation was 

set at 90% of the RMT ((Rossini, Barker et al. 1994)) computed for ID1. The subjects 

were sitting comfortably on a chair with the left arm relaxed lying on the table. Their right 
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arm was lifted a showed in Figure 22 with thumb and index closed in such a way that 

they were touching each other’s  fingertips  Their heads were held still with a chin-rest 

incorporating an additional lateral head-constrain. The coils were permanently positioned 

over the stimulation sites (left OP or left V1) and held in place by means of a mechanical 

supports. The site corresponding to left OP and ipsilateral V1 was identified as described 

in Experiment IIIa. Concerning the stimulation over OP, the coil was oriented along the 

dorsal to ventral direction with the handle pointing the ceiling, while the stimulation of V1 

was delivered with the coil’s handle lying along the medio to lateral direction pointing 

towards the midline. 

 

General design and experimental procedure  

In this experiment participants were tested in dynamic conditions during a blindfolded 

reach-to grasp task. The study was composed by one single experimental session of 

270 trials. Each trial was composed by four phases: A) rest phase; B) haptic object 

exploration phase; C) delay phase; D) blindfolded grasping of the previously explored 

object phase. The objects composing the stimuli consisted in four cylinders steel-made 

differing only in the diameter dimension (cylinder 1: diameter = 13 mm; cylinder 2: 

diameter 18 mm; cylinder 3:  diameter = 23 mm cylinder 4: diameter = 28 mm). The  

height of all cylinders was 30 mm. The four cylinders were fixed horizontally on the 

external border of a plastic-made wheel mounted on a vertical support (see Figure 22) at 

a specific angle of 90 degrees. The wheel was placed in front of the table at a suitable 

distance and height to allow comfortable exploration of the objects with the right hand. 

For each trial, the wheel was manually turned by the researcher.  The subjects were 

therefore asked to explore haptically for 2 seconds the first cylinder presented (phase B). 

They were then required to stop the haptic exploration (phase C). After 2 seconds, they 
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were asked to perform thumb and index grasping (phase D) of previously explored 

object. The rotation of the wheel occurred in each trial. The subjects were instructed to 

start every movement of different trial phases (namely exploration or grasping) with 

fingertips of thumb and finger touching each others and to go back to this reference 

position after performing either exploration and grasping actions. For each trial, the 

rTMS occurred randomly during one of three phases as well as the activation of the coil 

delivering the stimulation over OP or V1.  Trials with no stimulation were furthermore 

randomly added during the session. Both the smaller and the larger cylinders were 

presented only as catch trials. This was done in order to avoid  the production of  long-

term representation in memory of the two cylinders. The experimental design counted 

thus 3 factors (DIAMETER, SITE of STIMULATION and PHASE of STIMUALTION); the 

DIAMETER had two levels (18 or 23mm) while the other two factors had three levels  

(stimulation over OP, V1 or NO STIMUALTION  - stimulation during phase A, B, or C). 

Ten trials were run for each condition (2 x 3 x 3 x 10 = 180 trials). We interleaved 

randomly four catch trails for each conditions (2 x 3 x 3 x 4 = 72) for a total number of 

trial equal to 252 trials and a total duration of the experimental session of about 55 

minutes. An acoustic cue sound (1000 Hz, 50 ms duration) was announcing the 

beginning and the end of each phase. The beginning of each trial was triggered by the 

pushing of an electric button operated by the researcher. The control and the 

synchronized of button, the cue sound, and the trigger for the 4 Hz rTMS was 

implemented by using the microcontroller ArduinoUNO (www.arduino.cc). 

 

Hand aperture data recordings and analysis 

The aperture of the thumb and finger was measured by means of a fleximeter. A 

fleximeter is a transducer consisting in a flexible stripe plastic-made embedding resistors 
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that change their resistance according with the bending/flexion of the strip. In this way it 

is possible to obtain an electrical signal varying according with the flexion of the 

transducer. The strip (70 x  5 mm, flat resistance = 25 KΩ ; bend resistance range = [45  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. The task. Each trial is composed by four phases: A) Rest,: setting of the cylinder; B) 
Exploration of the cylinder with thumb and index grasping; C) Delay the subject waits for the 
acoustic go signal; D) Reach-grasp: the participant performs a thumb-index grasping of the 
cylinder 
 

to 125 KΩ] ) was sticked tightly to the right palm of participants, running from the 

middle/proximal phalanx of the index finger, till the proximal phalanx of the thumb (see 

Figure 23). Since the grasping required in this study was a thumb-index grasping, the 
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signal produced by the fleximeter in such position was representative of the cinematic of 

the movement along the trial (see Figure 24). The signal was digitized by means of a 

CED 1401 micro Mk-II unit (Cambridge Electronic Design, Cambridge, UK) at a sampling 

frequency of 100Hz and recorded by means of the Signal software (Cambridge 

Electronic Design, Cambridge, UK). For each trial, the part of the signal related to the 

hand preshaping of the grasping phase was isolated from the rest of the signal in a time 

window ranging form about 5,5 s to 8 s (section 5 of the Figure 24) and the maximum 

value was extracted. Such value is intended to be representative for the maximum hand 

aperture during the preshaping phase before the effective grasping of the previously  

 

 

 

 

 

 

 

 

Figure 23. Fleximeter application. The fleximeter was sticked to the hand as showed in order to 
obtain an electrical signal variable according to the hand aperture indicating the hand preshaping 
during the thumb-index grasping (phase D). 
 

 

explored cylinder. For all the trials belonging to a single condition the medians of the 

maximum values extracted were computed. The decision of adopt the median instead of 

using a classical value of average, is due to the fact that  the shape of the distributions of 
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peak values belonging to different conditions were slightly skewed and in this case, it is 

know that the mean loses its ability to provide a good measure of central tendency of 

data. Moreover, in the electrical recordings, there was the unavoidable presence of 

artifacts introduced by the stimulation which might produce possible outliers into our data 

(Manikadan 2011). The final dataset for each of the fourteen subject was composed by 

18 values of the median of the peak distribution corresponding to a 2*3*3 design with the 

factors: DIAMETER (2 levels: 19 and 23mm), STIMULATION SITE (3 levels: left OP, left 

V1, NO TMS) and PHASE of STIMULATION (3 levels: during exploration, during delay 

and during grasping). Uche values were used as dependent variable in an ANOVA 

analysis with the three within-subject factors (DIAMETER, STIMULATION SITE and 

PHASE OF STIMULATION). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24. Fleximeter electrical signal. On the upper part of the figure the electrical signal 
obtained by the fleximeter during a whole trial is represented. On the lower part of the figure, the 
corresponding hand configuration producing the signal is reported.  
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Results 
 
The results of the ANOVA performed on the median of peak values obtained from the 

fleximeter electrical signal during the hand preshaping before the grasping phase 

produced significant main effect of DIAMETER  (F(1,13) = 7.089  P = 0.0195) due to the 

higher peak values obtained in correspondence of the grasping of the larger cylinder 

(see Figure 25). A further result is given by the 3-way DIAMETER * SITE of 

STIMULATION * PHASE of STIMULATION interaction (F(4,52) = 2.605   P=0.0463). To 

explore this interaction we computed different 2-ways ANOVA on data grouped 

according to the PHASE of STIMULATION. Such analysis didn’t produce any significant 

effect of factors when stimulation was delivered during the exploration phase. Contrarily, 

we found a significant effect of the DIAMETER when stimulation occurred during the 

grasping phase (F(1,13) = 9.01, P=0.01). More interestingly a two-ways interaction 

(DIAMETER*SITE of SITMUALTION) was obtained when stimulation was delivered 

during the delay phase (F(2,26) = 5.44, P=0,01). Results from a one-way ANOVA 

indicated that the interaction was to be attributed to the fact that no difference was 

present for smaller diameter  between peak values obtained from different site of  

stimulation (P=0,51) while such consistent difference was present for the peak values 

obtained from the larger cylinder (P= 0.0035). Post-hoc t-test analysis indicated that the 

interaction was due to the facet that no difference was present between peak values 

when stimulation was delivered over the control site V1 and  when no stimulation was 

delivered (P=0.93). Contrarily, a significant difference was obtained when stimulating left 

OP respect to V1 (P=0.01) and respect to not stimulating at all (P=0.0038).This 

difference is due to the fact that the stimulation over left OP induced a larger hand 

aperture. In Figure 26 the results obtained for the 2-ways interaction are showed. 
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Figure 25. Main effect of the DIAMETER factor on the hand preshaping before the grasping 
phase. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26. 3-way ANOVA interaction between factors DIAMETER, SITE of STIMUALTION and 
PHASE of STIMULATION. The significant effect of rTMS delivered during the Delay phase is 
highlighted with the symbol * (α=0.05) 
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Discussion of Experiment  IIIa end Experiment IIIb 
 
In this experiment we aimed to study whether rTMS delivered over left OP produced a 

significant perturbation of performance in two different tasks that both relied on the 

formation of an internal representation of the 3D properties of an object acquired in the 

haptic modality. Specifically, Experiment IIIa aimed to study the effects of the online 

rTMS on the participant’s accuracy when performing an explicit discrimination task of an 

object’s size. Experiment IIIb aimed to asses whether the same paradigm of online rTMS 

induced significant modification in the kinematics of hand pre-shaping when reaching for 

a previously haptically explored object. Both of the tasks required the short-term 

retention of the geometrical feature of the object (e.g. size), however the use of such 

information for the task accomplishment was different. The task in experiment IIIa 

presumably required to actively encode the size of the first cylinder, to maintain it in a 

memory buffer and to compare it to the size of a second cylinder explored with the aim 

to explicitly decide whether the two objects were the same or of different size. 

Experiment IIIb instead, required haptically exploring one cylinder, storing the size 

information in a memory buffer and, after a delay, using it implicitly to grasp the same 

object. The basic difference between the two tasks was that the haptic information was 

used for two different final aims: object perception (discrimination) and object-directed 

action (grasping).  

A preliminary discussion is reserved for one result obtained in Experiment IIIb related to 

the main effect of the DIAMETER factor on the peak values (see Figure 25). The larger 

was the diameter of the cylinder previously explored, the higher was the peak value 

obtained indicating a larger hand aperture during the hand preshaping independently 

from the occurrence of the stimulation, site and timing. This results that reflects our 

expectation is in accordance with the  evidences about the kinematics of visually guided 
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grasping  in which increasing object size led to a proportional increase in the peak hand 

aperture (Bootsma, Marteniuk et al. 1994). This result also supports the use of the 

fleximeter and the as a system to measure the kinematics of such task-related grasping 

and the use of the median as a metric to represent our data. 

Concerning the main discussion of our results, basically, we didn’t observe any 

significant change introduced by rTMS in the participant’s accuracy when haptic 

information was used for object discrimination. On the contrary, rTMS induced specific 

changes of the regular hand pre-shaping in the delayed grasping task. In the literature 

the absence of effect in a discrimination task find support in those obtained in (Stoeckel, 

Weder et al. 2003); in this fMRI study in which subjects perform tactile discrimination of 

size-variable objects, authors showed activation of S2 during exploration of objects, but 

not during the object discrimination phase. On the contrary, our results are partially in 

contrast with the literature that provides evidence for the activity of OP neurons during 

haptic discrimination task. In their recording study on non-human primates, Romo and 

colleagues (Romo, Hernandez et al. 2002) recorded neurons belonging to S2 in a 

vibrotactile discrimination task showing that such neurons were encoding the difference 

of frequency of the two haptic stimuli. A significant difference that could be taken into 

account in order to explain the discrepancy of our result is the nature of the stimuli. In 

our case there’s involved a 3D geometrical feature of the object while in their case, 

monkeys had to discriminate between two different frequencies of vibration. Another 

difference could be attributed the region recorded form Romo and colleagues. They 

concentrated on neurons belonging specifically to S2 while in our experiment we 

assessed effects of rTMS one spot located over left OP (which is known to embeds 

more than only S2 field (Disbrow, Roberts et al. 2000) (Eickhoff, Grefkes et al. 2006)) 

whose coordinates was computed as the averaged coordinates on 24 subjects. We are 
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not able to tell if we were stimulation exactly over the S2 region. A limit of the 

experimental design of Experiment IIIa is that we investigate the effects of rTMS on the 

subject’s performance during the delay phase, without accounting for the encoding 

phases of the cylinders. Such investigation could allow to asses the causal role of OP in 

encoding phase in a non-motor task such a discrimination task. 

Beside such considerations, the difference related to the significance of effects between 

Experiment IIIa and Experiment IIIb might provide evidences in support of the 

hypothesis, already present in literature (Mishkin 1979; Murray and Mishkin 1984; 

Dijkerman and de Haan 2007) of separated cortical networks for processing haptically 

acquired information depending from the final purpose for which the input is acquired. 

Such model (see in Figure 27 a possible example adapted from (Dijkerman and de Haan 

2007)), involving two different processing streams of acquired information has been 

previously proposed for the visual system (Goodale and Milner 1992) (Jeannerod and 

Rossetti 1993) under the concepts of visual ventral steam and dorsal stream. The 

former, is a network dedicated to process visual information for object perception in a 

scene-based frame of reference while the latter is engaged in the processing of visual 

inputs in a context of object-directed action which presumably occurs in an actor-based 

frame of reference. Results coming from our Experiment IIIb support the involvement of 

left OP in an “object-directed action” network for haptic modality compatible with the 

proposed dorsal stream for vision. The significant variation on hand preshaping 

introduced by rTMS when delivered during the delay phase, (a phase in which the 

haptically-acquired size information is likely to be present in an ongoing processing for 

the coming action) supports our previous hypothesis of OP as relevant player for the 

transformation of short-term memory of object geometry into a coherent pattern of 

muscular activation for grasping (Maule, Barchiesi et al. 2013). Such direct involvement 
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in an action-finalized network is furthermore supported from short-latencies (5ms) 

functional interaction with ipsilateral M1 demonstrated in (Cattaneo and Barchiesi 2011) 

and (Maule, Barchiesi et al. 2013) beside from various anatomical studies on non-human 

primates showing direct cortico-cortical connections between OP and M1 (e.g. (Tokuno 

and Tanji 1993) (Gharbawie, Stepniewska et al. 2011)).  

 

 

 

 

 

 

 

 

 

 

Figure 27. An outline of the two stream model proposed for haptic modality. Dark grey boxes and 
broken lines depict areas and projections involved in somatosensory processing for action. Light 
grey boxes and lines show the areas and pathways involved in somatosensory processing for 
perceptual recognition. Note also the distinction between somatosensory processing pertaining to 
the body (internal, shown in the bottom of the figure) and tactile processing of information 
concerning external stimuli such as objects (top). Adapted from (Dijkerman and de Haan 2007) 
 

One striking and unexpected aspect of the the result of Experiment IIIb is that rTMS 

produced specific effects on hand kinematics only when it was applied during the delay 

phase and not during the exploration/encoding phase. 
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We hypothesize two possible explanations: 

A) If the OP represented simply the storage site of a sensory memory, it would be 

expected that its role would be evident also when acquiring and storing the haptic 

information. The dissociation between the effects of rTMS during the encoding and the 

delay phases can be explained by a similarity with the model of the phonological loop in 

working memory (Baddeley 2003). In this model two systems interact in order to keep 

alive a verbal memory: a memory buffer and a rehearsal system. If we apply to haptic 

working memory a similar model, our data fit well with a role of the OP in the motor 

rehearsal module rather than in the pure memory buffer module. In other words, the 

present data seem to indicate that the part of the OP that we are functionally testing in 

our protocols has a role more similar to that of a premotor cortex than to that of a 

sensory cortex. By all means this partial conclusion does not exclude that the OP 

contains purely sensory representations, but in our opinion, at least some neuronal 

populations in the OP region are part of a premotor network rather than of a sensory 

one. 

B) One alternative explanation that could actually encompass both a role of the OP as a 

sensory and as a premotor cortex is the following. It is well known that sensory 

representations in S2 are mainly bilateral. Therefore a compensation of controlateral 

non-stimulated OP could account for the lack of effects in the encoding phase of 

Experiment IIIb and even for the negative result of Experiment IIIa. On the contrary it is 

possible that the neurons in OP that directly access M1 contain a strictly unilateral 

representation of the body (as witnessed by anatomical connectivity data (Mesulam and 

Mufson 1982; Mufson and Mesulam 1982; Pandya and Seltzer 1982; Cusick, Wall et al. 

1989; Krubitzer and Kaas 1990; Stepniewska, Preuss et al. 1993; Cipolloni and Pandya 

1999; Qi, Lyon et al. 2002; Disbrow, Litinas et al. 2003)). 
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Our results support thus the hypothesis of two different streams for processing haptic 

acquired information depending on their eventual use (for perception or for action), a 

model which is dual to the one proposed for visual modality.  As well as in the visual 

domain where investigations on certain types of visual illusion ((Aglioti, Desouza et al. 

1995; Haffenden and Goodale 1998)) or studies on visual agnosia  (Goodale, Milner et 

al. 1991) or optic ataxia (Jeannerod, Decety et al. 1994)  are taken to show the 

dissociation between vision for action and for perception,  also for haptic modality such 

dissociation has been showed with tactile illusions (Westwood and Goodale 2003) and 

studies on patients (Caselli 1991) (Reed and Caselli 1994). With our experiment we 

provided further insights in support of the hypothesis that the anatomical and the 

physiological organization of the somatosensory system should reflect the final use of 

haptically acquired information hypothesizing an active and direct interplay between OP 

and ipsilateral M1. We furthermore provided evidences that might suggest an analogy 

between the role of OP in haptic modality the one of PMv in visual modality supporting 

the involvement of OP in the production of the object-directed movement acting as 

premotor region, as a site for retention of haptically acquired information related to 

geometry of explored object. 
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Chapter 6  

Conclusions 

 

By summarizing the different result obtained with the described experiments it is 

possible to hypothesize the following conclusions: 

 

� Data obtained in Experiment I provide further evidences related to cortico-cortical 

connectivity of OP with primary motor cortex, confirming results obtained in 

(Cattaneo and Barchiesi 2011). Our outcomes allowed us to identify the optimal 

stimulation site in the left OP that elicited short-latency modulation of M1 as a 

point along the postcentral sulcus, 2 cm above the Silvian fissure. Moreover we 

were able to characterize the functional interaction by finding the optimal 

interstimulus interval between conditioning and test stimuli that elicited 

modulation of excitability of motor cortex equal to 5 ms, a data in support a 

monosynaptic connection between those two regions.  

 

� Results of Experiment II indicate that OP and vPM play a fundament al role in the 

transformation of short-term memory of object geometry into a coherent pattern 

of muscle activation for grasping. Each of the two areas is specialized for one 

sensory modality, the OP contains information acquired haptically and the vPM 

contains visual information. Despite this segregation, the role of the two cortical 

stations appears very similar in storing macroscopic sensory information to be 

used in an open -loop manner for object-directed motor behavior. 
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� With Experiment III we provided evidences supporting the hypothesis of the 

existence of two separate neural pathways involved in the processing of haptic 

information depending on the final purpose: for conscious perception and 

recognition or for guidance of actions. Without excluding the purely sensory 

nature of the OP region, we hypothesized on the basis of our results that at least 

some neuronal populations belonging to such parietal region might play a 

significant role in a premotor network as an element working for the maintenance 

of the haptic acquired information which is following used to produce a suitable   

object-directed action. 
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List of Figures
 

Figure 1.  A: Brodmann cytoachitectonic map of cercopithecus (1905). B: Vogt and Vogt 

architectonic  map (from (Cipolloni and Pandya 1999)) 

Figure 2.  Cytoachitectonic maps A: Roberts and Akert (1963). Abbreviations: Allo, 

allocortex; CS, central sulcus; Ins a, agranular insular cortex; Ins d, dysgranular insular 

cortex; Ins g, granular insular cortex; IP, intraparietal sulcus; IPD, anterior subcentral 

sulcus; OFO, orbitofrontal cortex; PrCo, precentral opercular cortex; SA, arcuate sulcus; 

SP, principal sulcus; SSII, second somatosensory cortex; tr, transitional zone.)). B: 

Lateral view of the cerebral emisphere of macaca mulatta. Abbreviations: AN, annectent 

gyrus; AS, arcuate sulcus; CING S, cingulated sulcus; CC, corpus callosum; CF, 

calcarine fissure; CS, central sulcus; IOS, inferior occipital sulcus; IPS, intra parietal 

sulcus; LF, lateral (Silvian) fissure; LS, lunate sulcus; OTS, occipitotemporal sulcus; 

POMS, parietoccupital medial sulcus; PS, principal sulcus; RS, rhinal sulcus; STS, 

superior temporal sulcus. C: Intraparietal, lateral  and cingulated sulci are opened  in 

order to show the location of the zones lying within the sulci (Pandya and Seltzer 1982).  

Figure 3.  Architectonic map of the insula and surrounding regions. Abbreviations: AI, 

first auditory area; AII, second auditory area; CS, central sulcus; I, insula; Ia-p, insula 

agranular periallocortical; Idg insula dysgranular, Ig, insula granular; OF, orbitofrontal 

cortex; OF a-p, orbitofrontal cortex agranular periallocortical; OFdg orbitofrontal cortex 

dysgranular; OFg, orbitorforntal cortex granular; OFO, opercular cortex; PA, postauditory 

cortex; PF, anterior inferior parietal cortex; PI parainsular cortex; POC, prepiriform 

olfactory cortex; Prco, precentral operculum; RI, restroinsular cortex; SI, primary 

somatosensory cortex; SII second somatosensory cortex; STPg, supertemporal cortex 

granular; TPdg, temporopolar cortex dysgranular (Mesulam and Mufson 1982). 
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Figure 4.  Classical cytoarchitectonic maps. A: Brodmann map (Brodmann 1905). B: par 

of Vogt and Vogt parcellation of parietal operculum (Vogt and Vogt 1919). C: von 

Economo and Koskinas map (von Economo and Koskinas 1925). Adapted form 

(Caspers, Geyer et al. 2006)  

Figure 5.  The location of areas OP 1-4 in according with (Eickhoff, Schleicher et al. 

2006). A: slices considered  for the analysis. B: flat map of OP parcellation (Eickhoff, 

Schleicher et al. 2006) 

Figure 6.  OP connectivity map summarizing anatomical connections. The parcellation 

scheme is the one proposed in (Pandya and Seltzer 1982) anche the image was taken 

and adapted form (Caspers, Eickhoff et al. 2011) Pink ellipsoid represent the OP region. 

Green dots represent point which showed connections with OP. Transcallosal 

connections to controlateral SII and PV are not shown here as well as thalamic 

connections and posterior part of ipsilateral insula.  

Figure 7.  Summary map of the somatotopic organization of SII and PV in macaque 

monkeys (left). For comparison also the somatotopic organization of marmoset has been 

proposed (right) (Krubitzer and Kaas 1990). The two fields SII and PV appear to have a 

symmetric organization and they share a common boundary at the representation of the 

digits, toes and portion of the face. 

Figure 8.  A: Reconstruction of an axial slice through the lateral sulcus with the activity 

patterns from all 16 cases collapsed onto a single drawing. All of the blue encircled 

areas denote the SII/PV region from all of the cases, the green denotes the rostral field 

(RL), and the red denotes the caudal field (C). B: Summary of the somatotopic 

organization of the second somatosensory area (SII) and the parietal ventral area (PV) 

on the upper bank and parietal operculum of the lateral sulcus of human (left) and 

macaque monkey (right) (as described in (Krubitzer, Clarey et al. 1995)).  
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Figure 9.  Group activation maps after stimulation of the left hand. Left: controlateral 

activation of SII/insula. Right: Ipsilateral activation of SII/insula. (Mazzola, Faillenot et al. 

2012). On the low-right:  the new mask representing the regions of interests used in the 

analysis. Parietal operculum is composed by OP1, OP2,OP3 and OP4 (Eickhoff, 

Schleicher et al. 2006). Anterior insular cortex is composed by anterior short gyrus 

(ASG), middle short gyrus (MSG) and precentral insular gyrus (PreCG). Posterior insula 

includes Ig1, Ig2, Id1 and the post-central gyrus (PostCG) according to the probabilistic 

maps based on cytoarchitectonic maps included in (Eickhoff, Stephan et al. 2005). 

Figure 10.  A: Dual coil TMS paradigm. CondTMS  is delivered over the left OP; test 

TMS is delivered over ipsilateral M1. ISIs tested are 5,7,9 msec. B left: OP scalp grid 

points located over the left OP; B right: cortical projections of the scalp grid point s. The 

central sulcus is drawn in red. C: Motor evoked potentials were recordied from the first 

dorsal interosseus by means of Ag/AgCl superficial electrodes in a belly tendon 

montage. 

Figure 11.  Individual MRI scans of the 5 participants to experiment I at the sagittal 

section corresponding to x=-59. Superimposed over the MRI scans is the probabilistic 

(50% probability) cytoarchitectonic maps and the projection from the scalp of the 

individual 9-point grids. The lower-right panel shows on a standard brain the labels of the 

cytoarchitectonic areas. The central sulcus is indicated in red and the Silvian fissure in 

yellow. 

Figure 12.  Upper panel: individual statistical maps of the t-values obtained contrasting 

the distribution of log(condMEP+testMEP / testMEP) against the null hypothesis of the 

mean value = 0. Values of t are reported when they exceeded 2.13, i.e. the one 

corresponding to a p-value of p=0.05 at 15 degrees of freedom. The t-value Bonferroni 

corrected for 9 multiple comparisons (p= 0.0056) corresponded to 3.25. Lower panel: 
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mean t-values from all 5 participants. Asterisks indicate the grid points with significant 

differences of the mean values from chance level (t=0). The inserted grid indicates the 

nomenclature of the grid points. Note that orientation conventions of the grids are to be 

interpreted as overlying the scalp of the left hemisphere, therefore they are oriented with 

the cranial direction to the left and the caudal direction to the right. 

Figure 13.  Schematics of the apparatus controlling inter-plug distance. 

Figure 14.  Top: Visual exploration trial. Bottom: Haptic exploration trial. Each trial is 

composed by four phases: A) Rest, change of inter-plug distance; B) Exploration: visual 

or haptic according with the type of trial (note that in haptic trials the vision of the object 

was occluded in this phase); C) Set: the subject waits for the GO-signal; D) Reach-

grasp: the participant, with vision occluded in both trial types, performs a thumb-index 

grasping of the two plugs. 

Figure 15.   Grey columns indicate the mean r-coefficients calculated on the MEPs from 

the 2 muscles in the different experimental conditions. Line-circle elements indicate the 

individual data. The asterisks indicate the significant post-hoc comparisons. 

 Figure 16.  The rectified EMG recordings of the EIP and ID1 muscles from one 

representative subject are represented, to illustrate the relation of the EMG signal to the 

size of the object. The data from the single-pulse, haptic exploration conditions are 

shown. For purely illustrative purposes, the EMG traces have been averaged in 3 

groups, corresponding to the lower (small), middle (medium), and upper (large) thirds of 

interplug distances. All traces are aligned to the start of the reaching, that is, when the 

participant’s hand was lifted from the start-switch. In this subject contact with the plugs 

occurred around 1 s later. Notice that EIP muscle activity increases with increasing 

interplug distance and conversely ID1 activity decreases with the size of the target. 
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Figure 17.  General time course of the r-coefficients linking each of the two muscles with 

the inter-plug distance to be grasped. Bin 1 corresponds to the period around the GO 

signal and bin 6 includes the contact with the plugs and the initial grasp phase. Bins 2-5 

describe the reaching phase. The dashed line indicates y=0. Error bars indicate 95% CI. 

Figure 18.   r-coefficients resulting from the correlation of EMG values in the Reach- 

Grasp phase with the inter-plug distance. Error bars indicate 95% CI. The 2nd bin, which 

resulted to be related to the 4-way interaction, is highlighted with a gray shade and an 

asterisk. 

Figure 19.  OP coordinates (X,Y) projected in out coordinate system. In the highlighted 

box, the spot representing the averaged coordinate of X and Y is represented in black. 

White bars represent the standard deviation along the two dimensions. 

Figure 20.  Top left: side view of the experimental setup. Top right: top view of the 

experimental setup. It is important to highlight that the motor action were minimized as 

much as possible during the task and cylinders were presented immediately close to 

participant’s fingers in a way that tactile exploration were performed without need of  

implement reaching. Bottom: Trial structure. 

Figure 21.  Results of on-way ANOVA statistic for the sensitivity (top) and for the 

accuracy (bottom).  Different gray shades are used to indicate different experimental 

sessions. Black line lying on the bars represents the intervals of confidence (α=0.05). 

Figure 22.  The task. Each trial is composed by four phases: A) Rest,: setting of the 

cylinder; B) Exploration of the cylinder with thumb and index grasping; C) Delay the 

subject waits for the acoustic go signal; D) Reach-grasp: the participant performs a 

thumb-index grasping of the cylinder. 
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Figure 23.  Fleximeter application. The fleximeter was sticked to the hand as showed in 

order to obtain an electrical signal variable according to the hand aperture indicating the 

hand preshaping during the thumb-index grasping (phase D). 

Figure 24.  Fleximeter electrical signal. On the upper part of the figure the electrical 

signal obtained by the fleximeter during a whole trial is represented. On the lower part of 

the figure, the corresponding hand configuration producing the signal is reported. 

Figure 25.  Main effect of the DIAMETER factor on the hand preshaping before the 

grasping phase. 

Figure 26.  3-way ANOVA interaction between factors DIAMETER, SITE of 

STIMUALTION and PHASE of STIMULATION. The significant effect of rTMS delivered 

during the Delay phase is highlighted with the symbol * (α=0.05) 

Figure 27.  An outline of the two stream model proposed for haptic modality. Dark grey 

boxes and broken lines depict areas and projections involved in somatosensory 

processing for action. Light grey boxes and lines show the areas and pathways involved 

in somatosensory processing for perceptual recognition. Note also the distinction 

between somatosensory processing pertaining to the body (internal, shown in the bottom 

of the figure) and tactile processing of information concerning external stimuli such as 

objects (top). Adapted from (Dijkerman and de Haan 2007)
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