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Introduction

After the introduction of quaternions, the 4-dimensional real skew algebra H generated
by 1, i, j, k with the following relations

i2 = j2 = k2 = −1, ij = −ji = k,

by Sir William Hamilton, there were several attempts to introduce a satisfactory notion of
regularity for functions defined over these numbers. The particular structure of H, that is
non-commutative and containing a whole sphere of imaginary units, namely

S := {I ∈ H | I2 = −1} = {x = x1i+ x2j + x3k |x2
1 + x2

2 + x2
3 = 1},

implies that, in this context, all the equivalent notions of complex analysis to define holo-
morphicity, cease to be equivalent and produce different sets of functions. In fact, several
definitions of regularity for a quaternionic function of one quaternionic variable were given
in the last century, but none of them seemed to be satisfactory enough: some definitions
contemplate too few functions, some too many (for more details see [48] and the references
therein).

The most explored way to generalize the concept of regularity was settled down and
developed by R. Fueter in the 1930’s and 1940’s, who considered the kernel of the following
differential operator:

D =
1

4

(
∂

∂x0

+ i
∂

∂x1

+ j
∂

∂x2

+ k
∂

∂x3

)
,

where x = x0 + x1i+ x2j + x3k is a generic quaternion.
The function theory based on this notion of regularity (called Fueter-regularity), is now

well understood and generalized to other frameworks. A good starting point to approach
this notion is again the survey [48], in which are stated the main properties and features
of this kind of functions. Even if this notion is very important and seems to be very rich1,
it does not contemplates polynomial functions: even the identity map, f(q) = q, fails to be

1We point out that is available, for Fueter-regular functions, a Cauchy theorem and formula; moreover,
Fueter-regular functions are harmonic functions.
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2 Introduction

regular. The issue of finding a theory of quaternionic regular functions that contemplates
polynomials was partially solved by Fueter himself who introduced the class of quaternionic
holomorphic functions as solutions of the equation

D∆f(x) = 0,

where ∆ denotes the Laplacian in the four real variables x0, . . . , x3. Even if this theory
contains polynomial functions, it is not of much interest from our point of view, because
is extremely large. It in fact includes the class of harmonic functions of four real variables,
which includes the class of Fueter-regular functions. For other information about this
theory and its generalizations we refer to [10, 18, 39, 40].

So, the main object of this thesis is the latest theory, in chronological order, of regular
quaternionic functions, called slice regularity. This theory, based on a definition of regu-
larity for quaternionic-valued functions of one quaternionic variable given by C. G. Cullen
in 1965 (see [13]), was reintroduced and developed, in the last years, by G. Gentili, D. C.
Struppa and others (see [12, 25, 27, 11] and their bibliography), and independently by S.
De Leo S and P.P. Rotelli in [15]. More precisely the main concept is the following. A point
x = x0+x1i+x2j+x3k in H\R can be written as2 x = α+Ixβ, where α = Re(x) = x0 ∈ R,
β = ||Im(x)|| =

√
x2

1 + x2
2 + x2

3 ∈ R and Ix = Im(x)/||Im(x)|| ∈ S. Therefore, putting CI

to be the real subspace of H generated by 1 and I, we give the following definition.

Definition 0.1. Let Ω be a domain in H and let f : Ω → H be a quaternion-valued
function defined on Ω. Let ΩI = Ω ∩ CI and let fI = f |CI . The restriction fI is called
holomorphic if it has continuous partial derivatives and

∂If(α + Iβ) =
1

2

(
∂

∂α
+ I

∂

∂β

)
fI(α + Iβ)

vanishes identically. The function is called Cullen-regular if, for all I ∈ S, fI is holomorphic.

Examples of such functions are convergent quaternionic power series defined on a ball
centered in the origin

f : B(0, R)→ H, f(x) =
∑
n∈N

xnan,

where R > 0 denote the radius of convergence of the sum. Moreover it was proven in [27]
that if f : B(0, R) → H is a regular function, then there exist a sequence of quaternions
{an}n∈N, such that,

f(x) =
∑
n∈N

xnan

for all x ∈ B(0, R). In particular, f ∈ C∞(B(0, R)).
Anyway, this definition is not enough to obtain a satisfactory theory. In fact, examples

of “bad” quaternionic functions which are regular, are the following two:

2When there will not be ambiguity we will denote x = α+ Ixβ by x = α+ Iβ.
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(i) f : H \ R→ H defined as

(1) f(x) =

{
1, if x ∈ H \ Ci

0, if x ∈ Ci \ R.

This function is of course regular but is not even continuous. So regularity, by itself,
do not implies even continuity. However this example is quite meaningless since we
could restrict to functions which are already differentiable. In this view the next
example is more meaningful.

(ii) Fix a J ∈ S and a real number λ /∈ {−1, 0, 1}. Let x = α + Ixβ be a non-real
quaternion and define f : H \ R→ H as

(2) f(x) = Ix + λJIxJ.

This function, which is of class C∞ and regular, sends H\R into an ellipsoidal surface.
The reason why we don’t want this kind of examples will be more clear later. For now
let’s just say that, while the behavior over any complex plane CK , for any K ∈ S, is
the desired one, in the remaining directions it is not “under control”.

These examples are constructed removing the real line from the domain of definition. To
solve this issue one can choose (1) to study regular functions defined over domains that
do intersect the real axis or (2) to add some hypothesis to the set of functions, to avoid
examples such as the previous two.

The first solution is very well studied by several authors and the main elements can
be found in the book [25]. Among the several achieved results, one can found: • the
possibility to expand a regular function in series of particular polynomials, • the structure
of zeros set (which gives, together with the right notion of multiplicity, a good version
of the Fundamental theorem of Algebra), • a classification of singularities, • a Cauchy
integral representation formula, • a Maximum and Minimum modulus principle, • an
Open Mapping theorem and • an analogous of the fractional and Möbius transformations.

Of course these attainments do not exhaust the whole theory (which is still very fruit-
ful). In particular, we point out that several progresses were made, for instance, in the
study of functional spaces of regular functions such as Bergman, Hardy and Fock spaces
(see, respectively, [8], [14, 6], [2]).

The second solution, which is the one adopted in this thesis, is the following. In theo-
rem 3.1 of [9] it is stated, implicitly, that a regular function f defined over a domain that
intersects the real line results to be of the form f(α+Iβ) = f1(α, β)+If2(α, β) with f1 and
f2 quaternionic valued functions, i.e.: f is quaternionic left-affine w.r.t. the imaginary unit
I. As the reader can see, the functions defined in the previous examples do not satisfies
this requirement. Indeed, while imposing this hypothesis to a regular function does not
affects the theory in the case in which the domain intersects the real axis, at the same time
this gives new and satisfactory results in the other case. To be more precise we remember
definitions 4 and 5 of [30].



4 Introduction

Definition 0.2. Let D be a domain in C. A function F : D → H ⊗R C(=: HC) is
called a stem function if it is complex intrinsec, i.e.: F (z̄) = F (z), for each z ∈ D such that
z̄ ∈ D, where, if w ∈ HC, then w = x+

√
−1y with x, y ∈ H and we define w̄ = x−

√
−1y.

Given a domain D in C we denote by ΩD its circularization in H, that is,

ΩD := {α + Iβ ∈ H | α + iβ ∈ D, I ∈ S}.

Definition 0.3. Let ΩD be a circular domain in H. A (left)3 slice function is a function
f : ΩD → H that is induced by a stem function F = F1 +

√
−1F2, in the following way:

let x = α + Iβ ∈ ΩD, let z = α + iβ ∈ D, then

f(x) = F1(z) + IF2(z).

Usually, when f is a slice function induced by F , we denote it by f = I(F ), furthermore
we will denote by S(ΩD) and by S1(ΩD) the spaces of slice functions on ΩD induced respec-
tively by continuous and differentiable with continuous partial derivatives stem functions.

Note that examples in equations 1 and 2 are not slice functions.
A function F is a stem function if and only if the H-valued components F1, F2 of

F = F1 +
√
−1F2 form an even-odd pair with respect to the imaginary part of z, i.e.:

F1(z) = F1(z), F2(z) = −F2(z), ∀z ∈ D s.t. z̄ ∈ D.
Thanks to this fact, the slice function f is well defined, in fact f(α + (−I)(−β)) =
F1(z) + (−I)F2(z) = F1(z) + IF2(z).

So, morally, a slice function is a quaternionic function of one quaternionic variable
that is quaternionic left-affine w.r.t. the imaginary unit.

With this in mind it is not difficult to understand part of the behavior of such a function.
In particular given a slice function f : ΩD → H it is possible to show that, having the
values of f over two different half planes (or semislices) of the form C+

J := {α+ Jβ | α ∈
R, β ≥ 0} and C+

K , one can reconstruct the whole function with the following representation
formula (see proposition 6 of [30]):

f(x) = (I −K)(J −K)−1f(α + Jβ)− (I − J)(J −K)−1f(α +Kβ)

for all I ∈ S and for all x = α + Iβ ∈ DI := ΩD ∩ CI .
Now, thanks to “sliceness”, one can control the “spherical behavior” of f using the

following notion stated in definition 6 of [30].

Definition 0.4. Let f = I(F ) : ΩD → H be a slice function. We define the spherical
derivative of f as the slice function ∂sf = I

(
F2(z)
Im(z)

)
: ΩD \ R → H, i.e.: ∂sf(x) :=

1
2
Im(x)−1(f(x)− f(xc)), where, as before, if x = α + Iβ, then xc = α− Iβ.

3Of course, there is an analogous definition for right slice functions when the element J ∈ S is placed
on the right of F2(z).
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Obviously, this function is constant on every sphere Sx = {y ∈ H | y = α+Jβ, J ∈ S},
for x = α+ Iβ ∈ ΩD. Moreover ∂sf = 0 if and only if f is constant on Sx, in other terms:

∂s(∂s(f)) = 0.

Let now F be a differentiable stem function over a domain D. The two functions
∂F
∂z
, ∂F
∂z̄

: D → HC, are stem functions that induce the continuous slice derivatives

∂f

∂x
= I

(
∂F

∂z

)
,
∂f

∂xc
= I

(
∂F

∂z

)
.

Left multiplication by
√
−1 defines a complex structure on HC and, with respect to this

structure, a C1 stem function F = F1 +
√
−1F2 : D → HC is holomorphic if and only if it

satisfies the Cauchy-Riemann equations{
∂F1

∂α
= ∂F2

∂β
,

∂F1

∂β
= −∂F2

∂α

⇔ ∂F

∂z
≡ 0⇔ ∂f

∂xc
≡ 0.

We are now in position to remember the definition of slice regular functions given in
definition 8 of [30].

Definition 0.5. A function f ∈ S1(ΩD) is (left) slice regular if its stem function F is
holomorphic. The space of slice regular function defined on ΩD will be denoted by SR(ΩD).

It is possible to show, as already mentioned, that if D is such that D ∩ R 6= ∅ (and so
ΩD ∩ R 6= ∅), then f : ΩD → H is Cullen regular if and only if is slice regular.

We have now a theory which actually extends the theory of Cullen regular functions,
when the domain is free of real points, and for which it might be useful and interesting to
understand its properties.

The elements of this theory can be found in [30, 32, 33], where the authors show many
results in the more general setting of real alternative ∗-algebras (among the others there
is a Cauchy integral formula for slice functions of class C1).

Based on this groundwork, in the present thesis we study properties of slice regular
functions with domains that do not contain real points, with the following aim: to extend,
as much as possible, the very interesting correspondence, settled down in [20], between
quaternionic analysis of slice regular functions and twistor geometry of R4.

To enter into details, let (Ω2n, g) be a 2n-dimensional oriented Riemannian manifold.
An almost complex structure over Ω is an endomorphism of the tangent bundle J : TΩ→
TΩ, such that J2 = −id. An almost complex structure is said to be a complex structure if
J is integrable, meaning, for instance, that the associate Nijenhuis tensor

NJ(X, Y ) = [X, Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ],

vanishes everywhere for each couple of tangent vectors X and Y ; it is said to be orthogonal
if it preserves the orientation and the Euclidean product, i.e. g(JX, JY ) = g(X, Y ) for
each couple of tangent vectors X and Y . An orthogonal complex structure (OCS) is an
almost complex structure which is integrable and orthogonal.
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If the manifold Ω is a 4-dimensional open subset of R4 endowed with the standard
Euclidean metric, then it is possible to construct standard OCSes, called constant, in the
following way: think R4 ' H as the space of real quaternions and fix an element q ∈ S (e.g.:
q = i). Identifying each tangent space TpΩ with H himself, we define the complex structure
everywhere by left multiplication by q, i.e. J(p)v = qv. Any OCS defined globally on H
is known to be constant, moreover it was proven in [43] that any OCS J of class C1 on
R4 \Λ, where Λ is a closed set of zero 1-dimensional Hausdorff measure, is either constant
or can be maximally extended to the complement of a point R4 \ {p}. In both cases, J is
the push-forward of the standard OCS on R4 under a conformal transformation.

In the same paper it was proven that if Λ is a round circle or a straight line and J is
an OCS of class C1 on R4 \ Λ that is not conformally equivalent to a constant OCS, then
J is unique up to sign, and R4 \ Λ is a maximal domain for J.

In this particular context it is possible to construct explicitly the OCS J as follows. For
each x = α + Ixβ ∈ H \ R we define J such as J(x)v = Ixv, for each v ∈ Tx(H \ R). Since
the last is an OCS over H \ R, then J and −J are the only non-constant OCSes on this
manifold (up to conformal transformations).

Coming back to our motivation, in [20] the authors proposed a new way to study the
problem when Λ is a closed set in R4 of different type. The idea is to take the OCS J,
previously defined, and to push it forward via some function on the set we are interested
in. To do this we need to be sure that the function f preserves the properties of J. Well,
if the function f is an injective Cullen regular function, then this is true. In addition,
another interesting feature of Cullen regular functions is that it is possible to lift them in
the space of twistors as specified in theorem 5.3 of [20] and later in this thesis. Thanks
to these two facts the authors of [20] were able to construct and classify all the OCSes
defined over R4 \ γ, where γ is a parabola4.

To obtain the results in [20] the authors need to be sure that a slice regular function
has several properties; among them they need to know that if it is injective then its real
differential is everywhere non-singular. Moreover to show this and other results they make
use of several rigidity properties of the class of slice regular functions, such as the Open
Mapping theorem and the Maximum Modulus Principle. In this thesis we obtain and col-
lect all the needed results to extend everything in our case (i.e.: when ΩD ∩ R = ∅), and,
moreover, we start the study of twistor geometry via slice regular functions.

To be more precise, this work can be divided into four parts: the first (chapter 1) is
about some basic definitions and results, while the other three, whose results are contained
more or less in [3],[4] and [5] respectively, are briefly described in the following.

4In particular, they found that if one removes a parabola from R4, then has to remove as well a solid
three dimensional paraboloid placed in a certain specific position w.r.t. γ.
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In chapter 2 we show some rigidity results about slice regular functions. We will make
use of slice constant functions : slice functions induced by locally constant stem functions.
Of course, if D is connected and intersects R, then a slice constant function f = I(F )
defined on ΩD is an actually constant function. An example of slice constant function is
f : H \R→ H, f(α+ Iβ) = (1− Ii)/2. This function is constant on each C+

J and is equal
to one on C+

i and to zero on C+
−i.

Let f = I(F ) : ΩD → H ∈ SR(ΩD), D+
K := ΩD ∩ C+

K , with K ∈ S and denote
f+
K := f |D+

K
. The next results, which were proven with the hypothesis ΩD ∩ R 6= ∅ re-

spectively in [9], [27] and the last two in [22], are presented in this work, without this
assumption, in the following formulations5.

Theorem 0.1. Identity Principle. Let ΩD be a connected circular domain of H.
Given f = I(F ) : ΩD → H ∈ SR(ΩD), with V (f) = {x ∈ ΩD | f(x) = 0} be its zero locus.
If there exists K 6= J ∈ S such that both D+

K ∩ V (f) and D+
J ∩ V (f) contain accumulation

points, then f ≡ 0 on ΩD.

Theorem 0.2. Maximum Modulus Principle. Let f = I(F ) ∈ SR(ΩD) with ΩD

connected circular domain. If there exist J 6= K ∈ S such that ||f+
J || has relative maximum

in a ∈ D+
J and ||f+

K || has relative maximum in b ∈ D+
K, then f is slice-constant on ΩD.

Theorem 0.3. Minimum Modulus Principle. Let ΩD be a connected circular do-
main and let f : ΩD → H be a slice regular function. If ||f || has a local minimum point
p = x+ yI ∈ D+

I then either f(p) = 0 or exists a J ∈ S such that f+
J is constant.

We will see then that a slice regular function f : ΩD → H, that is not slice-constant,
can not admit a three dimensional submanifold Mf ⊂ ΩD of constant values, but if it is
constant on a curve γ then it must be constant on a surface that contains γ.

Theorem 0.4. Open Mapping Theorem. Let f : ΩD → H be a slice regular function
non-slice constant, defined over a connected circular domain. Let Sf be the set of surfaces
on which f is constant. Then

f : ΩD \ Sf → H
is open.

We will see that, if f is not slice-constant, then the set Sf is closed with empty interior
and that it must be removed from the domain of f to obtain the thesis of the Open Mapping
Theorem. Indeed let us define f as:

(3) f : H \ R→ H, f(x) = x(1− Ixi)/2, x = α + Ixβ.

f is non-constant in every semislice except for C+
−i in which is identically equal to zero.

We have then that f : H \ R→ H is not open while f : H \ C+
−i → H it is.

Since an important tool in the proofs of previous theorems is the representation for-
mula, it is clear that they will fail if we do not assume “sliceness” (i.e. if we allow, in our

5For complex variables background we refer to classical book as [1, 37, 42].
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theory, examples such as the one in equations 1 and 2).

In chapter 3 we study some differential properties of slice regular functions. Precisely,
we show that the real differential of any injective slice regular function is invertible ev-
erywhere. The result, which is a generalization of a theorem proved in [20], is obtained
thanks to some new information regarding the first coefficients of a certain series expan-
sion (called spherical expansion), and to a new general theorem which says that the slice
derivative ∂f/∂x of any injective slice function is everywhere different from zero. A useful
tool proven in this chapter is a new formula that relates slice and spherical derivatives of
a slice regular function (see formula 18).

With the mentioned formula it is possible to explicit the real differential as follows. Let
f ∈ SR(ΩD) and let (df)x denotes the real differential of f at x = α + Ixβ ∈ ΩD \ R. If
we identify TxH with H = CIx ⊕ C⊥Ix , then for all v1 ∈ CIx and v2 ∈ C⊥Ix ,

(df)x(v1 + v2) = v1
∂f

∂x
(x) + v2∂sf(x).

If α ∈ ΩD ∩ R then, the previous formula reduces to the following one

(df)α(v) = v
∂f

∂x
(α) = v∂sf(α).

Finally, in chapter 4 we apply all the previous results to achieve the differential geometry
application mentioned above. First of all, given an injective slice regular function f : ΩD →
H, we define the push forward over f(ΩD \ R) of J via f as,

Jf := (df)J(df)−1.

We, then, prove that Jf is an actual OCS and describe its action.
Now, the complex manifold (H \ R, J) is biholomorphic to the open subset Q+ of the

quadric

(4) Q = {[X0, X1, X2, X3] ∈ CP3 | X0X3 = X1X2},

such that at least one of the following conditions is satisfied:
• X0 6= 0 and X2/X0 ∈ C+,
• X1 6= 0 and X3/X1 ∈ C+.

Here we are meaning CP3 as the twistor space of S4 ' H ∪ {∞} ' HP1 (i.e.: the total
space of a bundle parametrizing OCSes on S4), projecting in HP1 as π : CP3 → HP1,
π[X0, X1, X2, X3] = [X0 + X1j,X2 + X3j]. Starting from this correspondence between
H \R and Q+, we prove that if f is a slice function, then there exists a map from a subset
O of Q+, f̃ : O ⊂ Q+ → CP3 such that π ◦ f̃ = f ◦ π (see theorem 4.5). Moreover f is
slice regular if and only if f̃ is holomorphic. This result is an extension of one proved in
[20], where the domain ΩD has nonempty intersection with the real line and the function
f is regular.
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From the last theorem, which is constructive, we are able to show that, up to projective
transformations, the only non-singular surface over which the lift of a slice regular function
can lies is Q itself. Then we show that, up to conformal transformation of S4 ' H ∪ {∞},
all the non-singular quadrics in the Salamon-Viaclovsky classification (see theorem 1.11
in [43]), can be reached. Moreover, we find all the possible (singular) quadric and cubic
surfaces (up to projective transformations), that can be expressed in this way.

Since the quadric in equation 4 is doubly ruled and biholomorphic to CP1 × CP1, we
pass then to study the geometry of lines through f̃ . In fact, we show by construction that
a sphere α + Sβ ⊂ H can be identified with the line

lv := {[1, u, α + iβ, (α + iβ)u] |u ∈ C ∪ {∞}} ⊂ CP3,

defined by fixing v = α + iβ ∈ C+. Furthermore it is possible to see that f̃(v) is a line in
CP3 too.

The line f̃(lv) ⊂ CP3 is seen as a point in the Grassmannian Gr2(C4) or, equivalently,
as a point in the Klein quadric in P(

∧2 C4) ' CP5 via Plücker embedding. To study how
these lines behave in the target surface of our twistor lift f̃ , we recall the definition of
twistor transform of f ([20], definition 5.6), i.e.: the map defined as

F : D → Gr(C4), v 7→ f̃(lv).

For this map we extend a result proved in [20] which says that, with some technical
hypotheses, the twistor transform of a slice function f is a holomorphic curve if and only
if the function f is regular.

With this tool it is possible to characterize a certain class of linear holomorphic functions
γ : D → Gr(C4), in terms of slice regular functions. As we will see, this result is interesting
because shows the importance, in this context, of the set of slice regular functions that do
not extend to the real line.

The last part of the work is devoted to the study of the function f in equation 3 as tool
to generate OCSes over its image. As already said, this function is constant and equal to
0 if restricted to C+

−i and equal to x if restricted to C+
i . Moreover, f restricted to H \C+

−i
is open and injective. For these reasons this function fit very well in our setting and then,
we describe its image properly restricted, obtaining,

f(H \ C+
−i) = {x ∈ H | x1 > 0}, where x = x0 + x1i+ x2j + x3k.

Then we show that the twistor lift of f lies in the hypersurface H := {X3 = 0} ⊂ CP3: in
this case the general theory (see Section 3 of [43]) says that H induces an OCS conformally
equivalent to a constant one, defined over the image of f . This is actually true and, in
fact, the conformal function that shows this equivalence is g : {q1 > 0} → {q1 < 0} defined
by g(q) = q−1. So, in particular, the map h = g ◦ f : (H \ C+

−i, J)→ ({q1 < 0}, Ji) shows a
biholomorphism between the two complex manifolds.

This result closes the present research, but, of course, all these new notions and tools
opened several questions which we hope to study in the future. Some of these questions
are listed in the final appendix.





CHAPTER 1

Definitions and basic tools

1. Slice functions and regularity

In this chapter we state the main definitions and results in the slice regularity theory.
Let x = x0+ix1+jx2+kx3 be generic element ofH, the real skew algebra of quaternions,

where
i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = −1, ki = −ik = j.

We denote the usual conjugation with xc = x0 − ix1 − jx2 − kx3. It is clear then that
• (xc)c = x;
• (xy)c = ycxc;
• xc = x, ∀x ∈ R.

For every x ∈ H, is defined its (squared) norm as ||x||2 = xxc. Any x ∈ H \ {0} is then
invertible and x−1 = xc/||x||2.

We denote by S ⊂ H the sphere of imaginary units in H:
S := {I ∈ H | I2 = −1}.

Let now HC = H⊗RC be the real tensor product between H and the complex space C.
An element of HC is a sum w = x +

√
−1y, where x, y ∈ H. The space HC is a complex

alternative algebra1 with a unity w.r.t. the product defined by the formula

(x+
√
−1y)(z +

√
−1w) := xz − yw +

√
−1(xw + yz).

The algebra H can be identified with the sub algebra {x +
√
−1y | y = 0} ⊂ HC and

the unity of HC coincide with the one of H. In HC are then defined two commuting
conjugations:

• wc = (x+
√
−1y)c = xc +

√
−1yc;

1An alternative algebra A is an algebra in which the multiplication is alternative, that is, for any
x, y ∈ A, x(xy) = (xx)y and (yx)x = y(xx).

11
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• w = x+
√
−1y = x−

√
−1y.

As already said, the main object in this thesis are slice regular functions. To define
them we will use the concept of stem functions introduced by Ghiloni and Perotti in [30].
The idea is to have a “generating function” which carries on all the information we need.

The definition is rather technical but it will turn out to be very useful. The general
reference for most of this chapter is [30] and the next is definition 4 of the mentioned
paper.

Definition 1.1. A function F : D → HC is called a stem function on D if it is complex
intrinsec, i.e.: if the condition

(5) F (z) = F (z)

holds for each z ∈ D such that z ∈ D. Moreover we call F continuous or differentiable if
the two components of F = F1 +

√
−1F2 are respectively continuous or differentiable.

Remark 1.1. There are no restrictions to assume that D is symmetric with respect to
the real axis, i.e.:

D = conj(D) := {z ∈ C | z ∈ D}.
In fact, if this is not the case, F can be extended to D ∪ conj(D) by imposing equation
(5). Moreover, a function F : D ⊂ C → H is a stem function if and only if the H-valued
components F1, F2 of F = F1+

√
−1F2 form an even-odd pair with respect to the imaginary

part of z, i.e.:
F1(z) = F1(z), F2(z) = −F2(z), ∀z ∈ D s.t. z̄ ∈ D.

Remark 1.2. In remark 3 of [30] it is described, in a more general context the following
construction: as a real vector space, H has dimension 4, so, let B = {uk}4

k=1 be a basis
for H. The function F can be identified with a complex intrinsic curve in C4. Let F (z) =
F1(z) +

√
−1F2(z) =

∑4
k=1 F

k
B(z)uk, with F k

B(z) ∈ C. Then

F̃B = (F 1
B, F

2
B, F

3
B, F

4
B) : D → C4

satisfies F̃B(z) = F̃B(z). Giving to H the unique manifold structure as a real vector space,
we get that a stem function F is of class Ck or real-analytic if and only if the same property
holds for F̃B. Moreover this notion of differentiability is independent of the choice of the
basis of H.

Definition 1.2. Given any set D ⊂ C we define the circularization of D in H as the
subset of H defined by:

ΩD := {α + Jβ ∈ H |α + iβ ∈ D , J ∈ S}.
A set ΩD of this type will be called circular domain. If D ∩ R = ∅, then ΩD = D × S and
it is called product domain.

Remark 1.3. If ΩD is such that ΩD ∩ R 6= ∅, then ΩD is a so-called slice domain (see
definition 1.14 of [25]).
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From now on D will always be an open set of C and ΩD will be its associated circular
set. In the following we will use the notations

DJ := ΩD ∩ CJ , D+
J := ΩD ∩ C+

J ,

where CJ := {x = α+ Jβ ∈ H |α, β ∈ R} and C+
J := {x = α+ Jβ ∈ H |α, β ∈ R , β ≥ 0}.

If D ∩ R = ∅, then DJ = D × {−J, J} and D+
J = D × {J}. The sets DJ and D+

J will be
called respectively slice and semislice. We are now in position to remember the definition
of slice function (see definition 5 of [30]).

Definition 1.3. A function f : ΩD → H is called a (left)2 slice function if it is induced
by a stem function F = F1 +

√
−1F2 on D, denoted by f = I(F ), in the following way:

f(α + Jβ) := F1(α + iβ) + JF2(α + iβ), ∀x = α + Jβ ∈ ΩD.

We will denote by S(ΩD) and by S1(ΩD) the real vector spaces and right H-module3 of
slice functions on ΩD induced respectively by continuous and differentiable stem functions.

Since (F1, F2) is an even-odd pair w.r.t. β, then the slice function f is well defined,
in fact f(α + (−J)(−β)) = F1(z) + (−J)F2(z) = F1(z) + JF2(z). Moreover, for the same
reason, f is defined also on real points: in fact if F = F1 +

√
−1F2, then F2(α) = 0 for any

α ∈ R.
So, as we pointed out in the introduction, a slice function is a quaternionic function

of one quaternionic variable that is affine w.r.t. the imaginary unit. With this in mind it
is not difficult to understand part of the behavior of such a function. Even if the notion
of stem function seems useless, later this will turn out to be false. Many definitions, in
fact, will result to be more “natural” given in the stem’s language than in the quaternionic
functions’ one. Let us show now some examples.

Example 1.1. (1) Clearly the stem functions z = Re(z) +
√
−1Im(z) and z =

Re(z)−
√
−1Im(z) induces the slice functions x and xc respectively.

(2) For any a ∈ H ,F (z) := zna = Re(zn)a +
√
−1(Im(zn)a) induces the monomial

f(x) = xna ∈ S(H).
(3) By linearity, we get all the standard polynomials p(x) =

∑n
j=0 x

jaj with right
quaternionic coefficients. More generally, every convergent power series

∑
j x

jaj,
with (possibly infinite) convergence radius R, belongs to the space S(BR), where
BR is the open ball of H centered in the origin with radius R.

(4) The two functions G(z) := Re(zn)a and H(z) :=
√
−1Im(zn)a are complex in-

trinsic on C. They induce respectively the slice functions g(x) = Re(xn)a and
h(x) = Im(xn)a.

An important property of slice functions is that, as usual affine functions, they can be
recovered by knowing their values on two semislices. More precisely, we have the following
theorem.

2Of course, there is an analogous definition for right slice functions when the element J ∈ S is placed
on the right of F2(z).

3This means that for each real number λ, each q ∈ H and each couple of slice (differentiable) functions
f and g, (fλ+ g)q ∈ S(1).
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Theorem 1.1. ([30], proposition 6). Let J,K ∈ S with J 6= K. Then every f ∈ S(ΩD)
is uniquely determined by its values on D+

J and D+
K. More precisely we have the following

formula

(6) f(x) = (I −K)(J −K)−1f(α + Jβ)− (I − J)(J −K)−1f(α +Kβ)

for all I ∈ S, for all x = α + Iβ ∈ DI . In particular if K = −J , we get the following
simpler formula

f(x) =
1

2
[f(α + Jβ) + f(α− Jβ)− IJ (f(α + Jβ)− f(α− Jβ))] .

This theorem was firstly proven in [9] for slice regular functions on slice domains, and
was used to show an extension result. After that, Ghiloni and Perotti in [30] proved
the same theorem for slice functions which are not, in general, regular. Moreover, the
Representation formula 6 characterizes slice functions: if a function f : ΩD → H can be
reconstructed with formula 6 for any couple J 6= K ∈ S, then f is a slice function.

If I = J we have the trivial equality

f(x) =
1

2
[f(x) + f(xc)] +

1

2
[f(x)− f(xc)] ,

where clearly 1
2
(f(x) + f(xc)) = F1(z) and 1

2
(f(x)− f(xc)) = JF2(z). Having this in mind,

we remember definition 6 of [30].

Definition 1.4. We define the spherical derivative of f in x ∈ ΩD \ R as

∂sf(x) :=
1

2
Im(x)−1(f(x)− f(xc))

and the spherical value of f in x ∈ ΩD as

vsf(x) :=
1

2
(f(x) + f(xc)).

Remark 1.4. We have that vsf = I(F1(z)) on ΩD and ∂sf = I( F2(z)
Im(z)

) on ΩD \ R.
Given x = α + Jβ ∈ ΩD, the spherical derivative is constant on every sphere Sx = {y ∈
H | y = α+ Iβ, I ∈ S}. Moreover ∂sf = 0 if and only if f is constant on Sx, in other terms:

∂s(∂s(f)) = 0,

and, in this case, f = vsf on Sx. If ΩD ∩ R 6= ∅, under some regularity hypothesis on F
(e.g.: differentiability of F2), ∂sf can be extended continuously as a slice function on ΩD.
The next theorem will precise this claim.

The following is a regularity result for slice functions depending on their stem functions.

Theorem 1.2. ([30], proposition 7). Let f = I(F ) ∈ S(ΩD).
(1) If F ∈ C0(D) then f, vsf ∈ C0(ΩD), ∂sf ∈ C0(ΩD \ R);
(2) If F ∈ C2s+1(D), s ∈ N, then f, vsf, ∂sf ∈ Cs(ΩD);
(3) If F ∈ Cω(D) then f, vsf, ∂sf ∈ Cω(ΩD) where Cω(D) and Cω(ΩD) denote, re-

spectively, the spaces of analytic functions on D and on ΩD).
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Let D ⊂ C be an open set. Given a stem function F = F1 +
√
−1F2 : D → HC of class

C1, the two functions
∂F

∂z
,
∂F

∂z̄
: D → HC,

are stem functions. Explicitly:
∂F

∂z
=

1

2

(
∂F

∂α
−
√
−1

∂F

∂β

)
=

1

2

(
∂F1

∂α
+
∂F2

∂β
−
√
−1

(
∂F1

∂β
− ∂F2

∂α

))
,

and
∂F

∂z̄
=

1

2

(
∂F

∂α
+
√
−1

∂F

∂β

)
=

1

2

(
∂F1

∂α
− ∂F2

∂β
+
√
−1

(
∂F1

∂β
+
∂F2

∂α

))
.

The previous stem functions induce the continuous slice derivatives :
∂f

∂x
= I

(
∂F

∂z

)
,

∂f

∂xc
= I

(
∂F

∂z

)
.

Remark 1.5. Let y = ξ + Jη ∈ ΩD \ R. Define ω := ξ + iη ∈ D and ΦJ : D → ΩD by
setting ΦJ(α+ iβ) := α+ Jβ. We recall definition 1.7 in [20] of ∂Cf and definition 1.1 in
[20] of ∂Cf :

∂Cf(y) =
1

2

(
∂

∂α
− J ∂

∂β

)
(f ◦ ΦJ)(ω), ∂Cf(y) =

1

2

(
∂

∂α
+ J

∂

∂β

)
(f ◦ ΦJ)(ω).

On ΩD \ R, the derivatives ∂f/∂x and ∂Cf of a slice regular function f coincide. In fact
it holds:

2
∂f

∂x
(y) =

(
∂F1

∂α
(ω) +

∂F2

∂β
(ω)

)
+ J

(
∂F2

∂α
(ω)− ∂F1

∂β
(ω)

)
=

(
∂F1

∂α
(ω) + J

∂F2

∂α
(ω)

)
− J

(
∂F1

∂β
(ω) +

∂F2

∂β
(ω)

)
=

(
∂

∂α
− J ∂

∂β

)
(f ◦ ΦJ)(ω) = 2∂Cf(y).

Similarly, ∂f/∂xc = ∂Cf on ΩD \ R. Therefore the operators ∂/∂x and ∂/∂xc extend the
Cullen derivative ∂C and ∂C to each slice function on domains possibly intersecting the
real axis.

While the spherical derivative control the behavior of a slice function f along the “spher-
ical” directions determined by S, the slice derivatives ∂/∂x and ∂/∂xc, give information
about the behavior along the remaining directions (i.e.: along the (semi)slices).

Now, left multiplication by
√
−1 defines a complex structure on HC and, with respect

to this structure, a C1 stem function

F = F1 +
√
−1F2 : D → HC

is holomorphic if and only if satisfy the Cauchy-Riemann equations
∂F1

∂α
=
∂F2

∂β
,
∂F2

∂β
= −∂F2

∂α
, z = α + iβ ∈ D
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or equivalently if
∂F

∂z
≡ 0.

This condition is equivalent to require that, for any basis B, the complex curve F̃B defined
in remark 1.2 is holomorphic.

We are now in position to define slice regular functions (see definition 8 in [30]).

Definition 1.5. A function f ∈ S1(ΩD) is (left) slice regular if its stem function F is
holomorphic. The set of slice regular functions will be denoted by

SR(ΩD) := {f ∈ S1(ΩD) | f = I(F ), F : D → HC holomorphic}.

Equivalently, a slice function f ∈ S1(ΩD) is regular if the following equation holds:

∂f

∂xc
(α + Jβ) = 0, ∀α + Jβ ∈ ΩD.

The set of slice regular functions is again closed under linear combinations with real coeffi-
cients and so it is a real vector space. Moreover it is also closed under right multiplication
by a quaternion, i.e.: SR is a right H-module.

Example 1.2. The polynomials
∑m

j=0 x
jaj and power series in the previous example

1.1 are non trivial slice regular functions.

Further examples of slice regular functions will be given conveniently in the following.
For now, as stated by the following theorem, a slice regular function can be constructed
by means of the Representation formula in theorem 1.1.

The next theorem gives, in fact, a characterization of slice regular functions, but to
state it it will be useful to introduce the following notation. Given f = I(F ) : ΩD → H,
we denote the restrictions over a complex slice or a complex semi-slice, respectively, as

fJ := f |DJ : DJ → H, f+
J := f |D+

J
: D+

J → H.

The proof of the following proposition can be obtained combining proposition 8 and remark
6 of [30].

Proposition 1.3. ([30]) Let f = I(F ) ∈ S1(ΩD), then the following facts are equiva-
lents:

• f ∈ SR(ΩD);
• the restriction f+

J is holomorphic for every J ∈ S with respect to the complex
structures on DJ and H defined by left multiplication by J ;
• two restrictions f+

J , f
+
K (J 6= K) are holomorphic on D+

J and D+
K respectively (the

possibility K = −J is not excluded).

Remark 1.6. We underline that, the third point says that, in order to get slice reg-
ularity of f = I(F ), it is sufficient to assume that two restrictions f+

J , f
+
K (J 6= K) are

holomorphic on D+
J and D+

K respectively. The possibility K = −J is not excluded.
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The second point of the proposition shows that if the set D has nonempty intersection
with the real line, then f is slice regular on ΩD if and only if it is Cullen regular in the sense
introduced by Gentili and Struppa in [26, 27] (see also definition 0.1 in the introduction).
Moreover in theorem 2.11 of [32], the authors, showed, in the more general context of real
alternative algebras, that requiring regularity (in the sense of Cullen) for a quaternionic
function does not imply sliceness if the domain does not intersects the real axis. An example
of quaternionic regular function which is not slice is the following, already given in formula
2 in the introduction: fix a J ∈ S and a real number λ /∈ {−1, 0, 1}. Let x = α+ Ixβ be a
non-real quaternion and define f : H \ R→ H as

f(x) = Ix + λJIxJ.

This function, which is of class C∞ and Cullen-regular, sends H \ R into an ellipsoidal
surface. The function has image equal to an ellipsoidal surface and so, even if it is constant
and consequently regular in every semislice, it is not a slice function. This issue will
condition many of the following results (especially the one regarding rigidity), meaning
that, many theorems will be split into two parts: one that deals with the case in which the
function is defined over real points and the other that explores the remaining case.

Remark 1.7. If a function f is slice regular and of class C2 on its domain, then also
its slice derivative ∂f

∂x
is slice regular on the same domain.

Remark 1.8. Since the spherical derivative ∂sf is H-valued, then it is slice regular
only when is locally constant. In fact, let f : ΩD → H be a slice function induced by
F = F1 +

√
−1F2. Then, imposing the Cauchy-Riemann equations to the stem function

G : D → HC, G(α + iβ) = F2(α + iβ)/β, means that
∂G1

∂α
=
∂G2

∂β
∂G1

∂β
= −∂G2

∂α

⇔


1

β

∂F2

∂α
= 0

(∂F2/∂β)β − F2

β2
= 0,

but the first equation says that F2(α+ iβ) = q(β), for some quaternionic function q : D →
H, while the second says that ∂q

∂β
= q(β)

β
, and so q(β) = q0β, for some q0 ∈ H.

Another consolidated and well known result about slice regular functions is the splitting
lemma. It says that any slice regular function, if properly restricted, admits a splitting into
two actual complex holomorphic functions. A proof of this result can be found in [9, 33],
the first with the additional hypothesis that the domain of definition intersects the real
axis.

Lemma 1.4. Let f ∈ SR(ΩD). Then, for each J ∈ S and each K⊥J , K ∈ S, there
exist two holomorphic functions g, h : DJ → CJ such that

fJ = g + hK.

Observe that g and h are defined over the whole DJ . This means that, if DJ is discon-
nected and the disjoint union of D1 and D2, then, g and h could have unrelated different
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behavior on D1 and D2. A particular case is when ΩD∩R = ∅, where, a priori the function
f and g can have different behaviors if restricted either to D+

J or D−J .

Remark 1.9. As stated in Remark 2.5 of [33], an immediate consequence of the split-
ting lemma is that, given a sequence {fn}n∈N of slice regular functions on ΩD, uniformly
convergent on compact subsets of ΩD, the limit of the sequence is slice regular on ΩD.

2. Product of slice functions and their zero set

We now want to multiply slice regular functions. In general, the pointwise product of
slice functions is not a slice function4, so we need another notion of product. The following,
introduced in [9, 24] for slice regular functions defined over domains that does intersect R
and in definition 9 of [30] for slice functions (in the context of real alternative algebras),
is the notion that we will use.

Definition 1.6. Let f = I(F ), g = I(G) ∈ S(ΩD) the (slice) product of f and g is
the slice function

f · g := I(FG) ∈ S(ΩD).

Explicitely, if F = F1 +
√
−1F2 and G = G1 +

√
−1G2 are stem functions, then

FG = F1G1 − F2G2 +
√
−1(F1G2 + F2G1).

Remark 1.10. Let f(x) =
∑

j x
jaj and g(x) =

∑
k x

kbk be polynomials or, more gener-
ally, converging power series with coefficients aj, bk ∈ H. The usual product of polynomials,
where x is considered to be a commuting variable, can be extended to power series in the
following way: the star product f ∗ g of f and g is the convergent power series defined by
setting

(f ∗ g)(x) :=
∑
n

xn

( ∑
j+k=n

ajbk

)
.

In proposition 12 of [30] it was proved that the product of f and g, viewed as slice functions,
coincide with the star product f ∗ g, i.e.: I(FG) = I(F ) ∗ I(G). Indeed sometimes the
slice product between f and g is denoted by f ∗ g (see [27] or [22]) and called regular
product, to stress that this notion of product was born to preserve the regularity as the
next proposition says.

Proposition 1.5. ([30], proposition 11). If f, g ∈ SR(ΩD) then f · g ∈ SR(ΩD)

In [30] it is also pointed out and proved that the regular product introduced in [9, 24]
is generalized by this one if the domain ΩD does not have real points. By the way, an idea
to prove this theorem is simply to explicit the slice product in term of stem function and
compute the Cauchy-Riemann equations.

4For instance, if f(q) = qa and g(q) = q, with a ∈ H \ R, then h(q) = f(q)g(q) = qaq is not a slice
function.
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Remark 1.11. If f , g are slice functions then the spherical derivative of the product
follows a Leibnitz type formula:

∂s(f · g) = (∂sf)(vsg) + (vsf)(∂sg).

The slice product of two slice functions coincide with the punctual product if the first
slice function is real (see definition 10 of [30]).

Definition 1.7. The slice function f = I(F ) is called real or slice-preserving or, again,
quaternionic intrinsec if the H-valued components F1, F2 are real valued.

The next proposition, stated in lemma 6.8 of [29], justifies the different names given in
the previous definition.

Proposition 1.6. Let f = I(F ) be a slice function. The following conditions are
equivalent.

• f is real.
• For all J ∈ S, f(DJ) ⊂ CJ .
• For all x in the domain of f it holds f(x) = (f(xc))c.

These functions are special since, in a certain sense, transpose the concept of complex
function in our setting. In fact, if h(z) = u(z) + iv(z) is a complex function defined over a
certain domain D ⊂ C, then the function H : D → HC defined as H(z) = u(z) +

√
−1v(z)

is a stem function, and I(H) is a real slice function.
As stated in [24], if f is a slice regular function defined on B(0, R), the ball of center

zero and radius R for some R > 0, then it is real if and only if f can be expressed as a
power series of the form

f(x) =
∑
n∈N

xnan,

with an real numbers.

Lemma 1.7. Let f = I(F ), g = I(G) ∈ S(ΩD), with f real, then the slice function
h : ΩD → H, defined by h := f · g is such that

h(x) = f(x)g(x).

Proof. The proof of this lemma can be found in a more general context in remark 7 of
[30]. If x = α + Jβ belongs to DJ = ΩD ∩ CJ and z = α + iβ, then

(f · g)(x) = F1(z)G1(z)− F2(z)G2(z) + JF1(z)G2(z) + JF2(z)G1(z),

while

f(x)g(x) = F1(z)G1(z) + JF2(z)JG2(z) + F1(z)JG2(z) + JF2(z)G1(z).

If the components F1, F2 of the first stem function F are real-valued, then (f · g)(x) =
f(x)g(x) for every x ∈ ΩD.

�
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In the next proposition we explicit the slice product as the pointwise product with the
proper evaluations. This proposition was proved for regular functions defined on domains
that intersect the real axis in [9, 23, 24].

Proposition 1.8. Let f, g ∈ SR(ΩD) then, for any x ∈ ΩD \ V (f)

(f · g)(x) = f(x)g(f(x)−1xf(x)).

Proof. Let x = α + Iβ, with I ∈ S and z = α + iβ. Since f(x) = F1(z) + IF2(z) is
invertible, we have

(f · g)(x) = I(FG)(x)

= F1(z)G1(z)− F2(z)G2(z) + I(F1(z)G2(z) + F2(z)G1(z))

= (F1(z) + IF2(z))[G1(z) +

+(F1(z) + IF2(z))−1(IF1(z)G2(z)− F2(z)G2(z))]

= (F1(z) + IF2(z))[G1(z) +

(F1(z) + IF2(z))−1I(F1(z) + IF2(z))G2(z)]

but, since F1(z) + IF2(z) is invertible, then I ′ = (F1(z) + IF2(z))−1I(F1(z) + IF2(z)) =
f(x)−1If(x) ∈ S. So if we call x′ = α + I ′β = f(x)−1xf(x) we obtain the thesis

(f · g)(x) = f(x)g(x′).

�

Given any quaternionic function f : Ω ⊂ H → H of one quaternionic variable we will
denote its zero set as

V (f) := {x ∈ Ω | f(x) = 0}

Corollary 1.9. Let f = I(F ), g = I(G) ∈ S(ΩD), with g real, then the slice function
h : ΩD \ V (g)→ H, defined by h = I(G−1F ) is such that

h(x) =
1

g(x)
f(x),

and, moreover, h belongs to SR(ΩD \ V (g)).

In view of defining a “slice inversion” also for non-real slice functions, we introduce the
following objects. The following definitions appeared for the first time in [9], can be found
also in [22] and [24]. Later they were generalized by Ghiloni and Perotti for slice functions
in definition 11 of [30].

Definition 1.8. Let f = I(F ) ∈ S(ΩD), then also F c(z) = F (z)c := F1(z)c +√
−1F2(z)c is a stem function. We set
• f c := I(F c) ∈ S(ΩD), called slice conjugate of f ;
• CN(F ) := F cF ;
• N(f) := f c · f = I(CN(F )) symmetrization or normal function of f .

The symmetrization of f is sometimes denoted by f s.
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Remark 1.12. We have that (FG)c = GcF c, and so (f · g)c = gc · f c, i.e.:

N(f) = N(f)c.

Moreover the next equalities holds true:

N(f · g) = N(f)N(g) and N(f c) = N(f).

Let now spend a few words about the zero locus of slice functions. For more details see
[30] and [24]. The next result is a reformulation of proposition 16 of [30].

Proposition 1.10. Let f ∈ S(ΩD). Then the restriction f|Sx is injective or constant
for all x ∈ ΩD \ R. In particular, either Sx ⊆ V (f) or Sx ∩ V (f) is at most a singleton.

This proposition is very natural given the expression of slice functions as “affine func-
tions w.r.t. the imaginary unit”. The structure of V (f) for slice functions is showed in the
next theorem.

Theorem 1.11. ([30], theorem 17). Let f = I(F ) ∈ S(ΩD). Let x = α + Jβ ∈ ΩD,
z = α + iβ ∈ D. One of the mutually exclusive statements holds:

(1) Sx ∩ V (f) = ∅;
(2) Sx ⊆ V (f) (in this case x is called a real (x ∈ R) or spherical (x /∈ R) zero of f);
(3) Sx∩V (f) consists of a single, non-real point (in this case x is called an S-isolated

non-real zero of f).
These three possibilities correspond, respectively to the following properties of F (z) ∈ HC:

(1) CN(F )(z) = F (z)F (z)c 6= 0;
(2) F (z) = 0
(3) F (z) 6= 0 and CN(F )(z) = 0.

Simple examples of the cases previously described can be found in Example 3.6-7 of
[25]. Anyway we report them here for completeness.

Example 1.3. • Fix J ∈ S, then the slice function f1 : H → H defined by
f1(x) = (x− J) · (x+ J) = x2 + 1 vanishes at each imaginary unit I ∈ S.
• Fix J1 6= ±J2 ∈ S, then the slice function f2 : H → H defined by f2(x) =

(x− J1) · (x− J2) = x2 − x(J1 + J2) + J1J2 vanishes at J1 and in no other point
in S (in particular f2(J2) 6= 0).

A simple corollary of the previous theorem is the following.

Corollary 1.12. ([30], corollary 19). The following statements hold:
(1) A real slice function has no S-isolated non-real zeros;
(2) For all f ∈ S(ΩD)

V (N(f)) =
⋃

x∈V (f)

Sx.
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The idea of the first point in the previous theorem is that if f = I(F ) is a real slice
function then 0 = f(α+ Iβ) = F1(α+ iβ) + IF2(α+ iβ) if and only if F1(α+ iβ) = 0 and
F2(α + iβ) = 0.

The next two results regard the zero set of the slice product of two slice functions.
They can be find in section 7.2 of [30].

Proposition 1.13. ([30], proposition 24). Let f, g ∈ S(ΩD). Then V (f) ⊂ V (f · g).

In general, we can not conclude that V (g) ⊂ V (f · g) as the last example has shown.

Proposition 1.14. ([30], proposition 25). Let x ∈ H. If f, g ∈ S(ΩD), then it holds:⋃
x∈V (f ·g)

Sx =
⋃

x∈V (f)∪V (g)

Sx

In the next theorems we add regularity property. For all of them we refer to section 7
of [30]. The first result is a “natural” generalization of a feature that holds in the complex
case and suggest a possible statement of an “Identity Principle” that will be discussed in
the next chapter.

Theorem 1.15. ([30], theorem 20). Let ΩD be connected. If f is slice regular and
N(f) does not vanish identically, then

CJ ∩
⋃

x∈V (f)

Sx

is closed and discrete in DJ for all J ∈ S. If ΩD ∩ R 6= ∅, then N(f) ≡ 0 if and only if
f ≡ 0.

Theorem 1.16. Let f ∈ SR(ΩD). Let x, y ∈ R, such that x + Sy ⊂ ΩD. The zeros
of f c on x + Sy are in bijective correspondence with those of f . Moreover N(f) vanishes
exactly on the set x+ Sy on which f has a zero.

The previous theorem was proven in [24] for power series and extended to all regular
functions on domain with real point in [9] and [23]. In general, combining proposition 1.14
and corollary 1.12, we have the thesis since:⋃

x∈V (N(f))

Sx =
⋃

x∈V (f)∪V (fc)

Sx,

and, ⋃
x∈V (f)

Sx =
⋃

x∈V (N(f))

Sx =
⋃

x∈V (fc)

Sx.

The next definition is needed for defining the multiplicity of a slice function at a point.
Moreover it provide a set of polynomial functions that will give several information in other
parts of the theory. References for this set of functions are section 7.2 of [30] and the whole
paper [33], in which it plays a fundamental role.
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Definition 1.9. The characteristic polynomial of y is the slice regular function ∆y(x) :
H→ H defined by:

∆y(x) := N(x− y) = (x− y) · (x− yc) = x2 − x(y + yc) + yyc.

Remark 1.13. The following facts about the characteristic polynomial are quite obvi-
ous. If the reader need more details we refer again to [30].

• ∆y is a real slice function (this is obvious from the definition).
• Two characteristic polynomials ∆y, ∆′y coincide if and only if Sy = Sy′ (in fact,
if y = α + Iβ and y′ = γ + Kδ, then ∆y = ∆′y if and only if 2α = 2γ and
α2 + β2 = γ2 + δ2).
• V (∆y) = Sy (this is obvious from the previous results and examples).

The next theorem and corollary will turn out to be powerful instruments for many
results. They practically say that if a slice regular function has a zero in a point x0, then
we can divide the function by ∆x0(x) or by (x− x0) (respectively if x0 is a spherical zero
or not).

Theorem 1.17. ([30], theorem 22). Let f ∈ SR(ΩD) and x0 ∈ V (f). Then the
following statements are true.

• If x0 ∈ R, then there exists g ∈ SR(ΩD) such that f(x) = (x− x0)g(x).
• If x0 is not real, then there exists h ∈ SR(ΩD) and a, b ∈ H such that f(x) =

∆x0(x)h(x) + xa+ b, where,
– Sx0 ⊂ V (f) if and only if a = b = 0;
– Sx0 ∩ V (f) is a singleton if and only if a 6= 0 (in this case x0 = −ba−1 and
b 6= 0).

Remark 1.14. In the last point of the previous theorem, a = ∂sf(x0).

Corollary 1.18. If f ∈ SR(ΩD) and x0 ∈ V (f), then there exists g ∈ SR(ΩD) such
that f(x) = (x− x0) · g(x).

Remark 1.15. Observe that while in the previous theorem the products between (x−
x0) and g and between ∆x0 and h are pointwise, in this corollary it isn’t. In this case the
thesis is that f is equal to the slice product between (x− x0) and g.

And now, this following fundamental corollary will permit us to define the multiplicity
of a zero for a slice regular function.

Corollary 1.19. ([30], corollary 23). If f ∈ SR(ΩD) and x0 ∈ V (f) then ∆x0(x)
divides N(f).

Thanks to the last corollary, we are able to remember the following definition (see
definition 14 in [30]).

Definition 1.10. Let f ∈ SR(ΩD) such that N(f) does not vanish identically. Given
n ∈ N and x0 ∈ V (f), we say that x0 is a zero of f of total multiplicity n, and we will
denote it by mf (x0), if ∆n

x0
| N(f) and ∆n+1

x0
- N(f).

If mf (x0) = 1, then x0 is called a simple zero of f .
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The last notion, is equivalent to the one of total multiplicity stated in [28, 25] when
the domain intersects R. The adjective “total” was introduced to underline the fact that
this integer takes into accounts both spherical and isolated orders of zero of a point.

As previously mentioned before the discussion around zero set structure, we will now
introduce the notion of reciprocal in the framework of slice functions. This was firstly intro-
duced in [9, 24, 22, 47] and then in [3] if the domain of definition has empty intersection
with the real line.

Definition 1.11. Let f = I(F ) ∈ SR(ΩD). We call the slice reciprocal of f the slice
function

f−· : ΩD \ V (N(f))→ H
defined by

f−· = I((F cF )−1F c)

From the previous definition it follows that, if x ∈ ΩD \ V (N(f)), then

f−·(x) = (N(f)(x))−1f c(x).

The regularity of the reciprocal just defined follows thanks to corollary 1.9. The follow-
ing proposition extends an already known one that can be found in [22], where the authors
studied the case of slice functions defined on domains that intersects the real axis.

Proposition 1.20. Let f ∈ SR(ΩD) such that V (f) = ∅, then f−· ∈ SR(ΩD) and

f · f−· = f−· · f = 1.

Proof. Since V (f) = ∅ then V (N(f)) = ∅. So (N(f))−1 and f−· are well defined and
regular on the whole ΩD. We may consider then their regular product with other regular
functions g : ΩD → H. For all g, (N(f)(x))−1g(x) = ((N(f))−1 · g)(x). Than we have

f−· · f = (N(f))−1 · f c · f = (N(f))−1N(f) = 1

and
f · f−· = f · (N(f))−1 · f c = (N(f))−1 · f · f c = (N(f))−1N(f) = 1.

�

With the notion of slice reciprocal, we can state the following characterization, that,
in a certain sense, results to us very natural. In our knowledge this theorem is new and
stated for the first time in this thesis.

Theorem 1.21. Let ΩD be an open domain of H and f = I(F ) : ΩD → H be a
differentiable slice function. The following limit exists for all x0 = α0 + J0β0 ∈ ΩD

(7) lim
x→x0

(x− x0)−· · (f(x)− f(x0)) = q,

if and only if f is slice regular and ∂f
∂x

(x0) = q.
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Proof. If f is slice regular, then, thanks to corollary 1.18, there exists a slice regular
function g : ΩD → H, such that

f(x)− f(x0) = (x− x0) · g(x).

But then the function (x−x0)−· · (f(x)−f(x0)) is defined also in x0 and limx→x0(x−x0)−· ·
(f(x)−f(x0)) = limx→x0 g(x) = g(x0). Since then ∂

∂x
((x−x0)·g(x)) = g(x)+(x−x0) ∂g

∂x
(x),

then g(x0) = ∂f
∂x

(x0).
Viceversa, if for each x0 = α0 + J0β0 ∈ ΩD \ R, the limit in 7 exists, then, for any

differentiable curve γ : (−ε, ε) → CJ0 , such that γ(0) = x0 we must have the following
result

lim
t→0

[
(x− x0)−· · (f(x)− f(x0))

]
|x=γ(t)

= q = ~.

Using proposition 1.8 and denoting h(x) = (x− x0)−·, we have that

h(x) · (f(x)− f(x0)) = h(x)(f(h(x)−1xh(x))− f(x0)).

If one choose γ to be defined as γ(t) = α0 + J0(t + β0), then we have that h(γ(t)) =
(J0β0)−· = (J0β0)−1 and (f(h(x)−1xh(x))− f(x0)) = (f(α0 + J0(t+ β0))− f(x0)), and so,

~ = lim
t→0

(J0t)
−1(f(α0 + J0(t+ β0))− f(α0 + J0β0)) = −J0

∂f

∂β
(x0) = q.

Analogously we obtain, for γ(t) = (α0 + t) + J0β0 that

~ = lim
t→0

t−1(f((α0 + t) + J0β0)− f(α0 + J0β0)) =
∂f

∂α
(x0) = q,

and so
q =

∂f

∂α
(x0) = −J0

∂f

∂β
(x0)

and if we write the function f as f(α + Jβ) = F1(α + iβ) + JF2(α + iβ), then we obtain
exactly the Cauchy-Riemann equations and the thesis. If x0 ∈ ΩD ∩R, we repeat the same
argument considering a curve γ : (−ε, ε) → CJ for a fixed J ∈ S, such that γ(0) = 0.
Underlying that, if x0 ∈ R, then (x− x0)−· · (f(x)− f(x0)) = (x− x0)−1(f(x)− f(x0)).

�

2.1. Power and spherical series. In this section we will outline some results about
the possibility of expanding a slice (regular) function, in some sense, in power series. We
are firstly interested in power series of the form p(x) =

∑
n∈N x

nan, with an ∈ H, or, more
generally, of the type

(8) p(x) =
∑
n∈N

(x− y)·nan,

where y ∈ H and (x− y)·n denotes the n-th power of x− y w.r.t. the slice product.
In [21] it was proved that the sum of a series of type 8, in the interior of its set

of convergence, is a slice regular function. If y is a real number, then the slice power
(x − y)·n coincides with the usual power (x− y)n and the series converges on the interior
of an Euclidean ball B(y,R) centered in y with radius R ≥ 0. Unfortunately in the same
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paper was proved that, if y /∈ R, the set of convergence can have empty interior. This
set may actually be reduced to a disk centered in y and contained in the complex slice of
the quaternionic space defined by spanR < 1, y >. To be more specific, we introduce the
following metric. Let x, y = ξ + Jη ∈ H for some ξ, η ∈ R and J ∈ S. Define

σ(x, y) :=

{
||x− y|| if x ∈ CJ√
|Re(x)−Re(y)|2 + (||Im(x)||+ ||Im(y)||)2 if x /∈ CJ .

The topology induced by σ is finer than the Euclidean one: a σ-ball of radius r centered
in y has empty interior if r ≤ ||Im(y)|| (for some picture see fig. 2.2 of [25]). A σ-ball
of radius r centered in y will be denoted by Σ(y,R) := {x ∈ H |σ(x, y) < R}. For the
following definition we refer to [21, 33].

Definition 1.12. Given a function f : Ω → H defined on a non-empty open subset
Ω in H, we say that f is σ analytic or power analytic, if, for all y ∈ Ω, there exists a
non-empty σ-ball Σ centered at y and contained in Ω, and a series

∑
n∈N(x− y)·nan with

coefficients in H, which converges to f(x) for each x ∈ Σ ∩ Ω.

We have the following characterizing result.

Theorem 1.22. Let ΩD be a connected circular set and f : ΩD → H be any function.
The following assertions hold.

(1) ([21], corollary 2). If D ∩ R 6= ∅, then f is a slice regular function if and only if
f is a σ-analytic function.

(2) ([33], theorem 4.3). If D ∩R = ∅, then f is a slice regular function if and only if
f is a σ-analytic slice function.

The next proposition (proved in [21, 33]), establishes an explicit form of the coefficients
of the slice power expansion. It will be stated only for y ∈ H \ R, since, as already said,
if y is real, then a power series w.r.t. the slice product coincides with a standard power
series.

Proposition 1.23. Let y ∈ H \ R and let P : Σ(y,R)→ H be a function defined by a
power series P (x) =

∑
n∈N(x− y)·nan centered in y with positive σ-radius of convergence.

Then it holds, for each n ∈ N,
an =

1

n!
∂nCP (y).

Another approach that avoids the difficulty of having possibly domains of convergence
with empty interior was given in [46], where the powers (x− y)·n were replaced by another
family of slice regular polynomials of a quaternionic variable. The set of convergence of
these series is always an open Euclidean set and every slice regular function has a series
expansion of this type near every point of its domain of definition. To enter into details we
start expliciting the family of polynomials taken in consideration. The new choice is given
by the powers of the characteristic polynomial introduced in definition 1.9. More precisely,
for each m ∈ N we define, the slice regular polynomial functions
(9) Sy,2m(x) := ∆y(x)m, Sy,2m+1(x) := ∆y(x)m(x− y).
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Note that, since ∆y is a real slice function, then ∆·my = ∆m
y . As already said, differently

from slice power series, series of type
∑

n∈N Sy,n(x)sn have convergence sets that are always
open w.r.t. the Euclidean topology. More precisely, we introduce the following Cassini
pseudometric5. If x, y ∈ H, we set

u(x, y) :=
√
|| ∆y(x) ||.

The function u turn out to be a pseudometric on H, whose induced topology is strictly
coarser than the Euclidean one. A u-ball of radius r centered in y will be denoted by
U(y,R) := {x ∈ H |u(x, y) < R}. In [46, 33] it is showed that the sets of convergence
of series

∑
n∈N Sy,n(x)sn are u-ball centered at y and it is proved a corresponding Abel

theorem (see fig. 8.1 in [25]). Moreover in [33], formulas for computing the coefficients
are given. In this context, the following is the definition of analyticity. For the following
definition we refer to [46, 33].

Definition 1.13. Given a function f : Ω → H defined on a non-empty open circular
subset Ω in H, we say that f is u-analytic or spherical analytic, if, for all y ∈ Ω, there
exists a non-empty u-ball U centered at y and contained in Ω, and a series

∑
n∈N Sy,n(x)sn

with coefficients in H, which converges to f(x) for each x ∈ U ∩ Ω.

We have the following expected result.

Theorem 1.24. Let ΩD be a connected circular set and f : ΩD → H be any function.
The following assertions hold.

(1) ([46], corollary 4.3). If D ∩R 6= ∅, thenf is a slice regular function if and only if
f is a spherical analytic function.

(2) ([33], theorem 5.8). If D ∩R = ∅, then f is a slice regular function if and only if
f is a spherical analytic slice function.

Some considerations about the coefficients of the spherical expansion of a slice regular
function will be given in chapter 3.

We observe now that, since quaternionic polynomials and converging power series are
contained in the set of quaternionic holomorphic function (see [18]), then the following
corollary holds true.

Definition 1.14. A sufficiently regular quaternionic function of one quaternionic vari-
able f : ΩD → H is said to be quaternionic holomorphic if satisfies the following equation

(10) D∆f(x) = 0,

5A pseudometric space (X, d) is a set X endowed with a non-negative function (called pseudometric),
d : X ×X → R+, such that

• For each x ∈ X, d(x, x) = 0;
• For each x, y ∈ X, d(x, y) = d(y, x);
• For each x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

Differently from a metric space, here we’re not asking for d(x, y) to be different from zero for any x 6= y.
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where x = α + Iβ = x0 + x1i + x2j + x3k, ∆ denotes the Laplacian in the four variables
x0, x1, x2, x3, and D denotes the standard Cauchy-Fueter operator:

D :=
1

4

(
∂

∂x0

+ i
∂

∂x1

+ j
∂

∂x2

+ k
∂

∂x3

)
.

Corollary 1.25. Any slice regular function f : ΩD → H is quaternionic holomorphic.
Moreover, since f satisfies equation 10, then it also satisfies the following equation:

∆∆f = 0.

The last equality holds because, if we denote by D := 1
4

(
∂
∂x0
− i ∂

∂x1
− j ∂

∂x2
− k ∂

∂x3

)
,

then DD = ∆. For more details about the previous corollary and about the theory of
quaternionic holomorphic functions, we refer to [18, 39, 40].

3. Slice differential and slice differential forms

The content of this section is essentially an attempt of formalization of an important
piece of the real differential of a slice regular function f : the slice differential. We will see
that it carries on the slice information of the behavior of f , which, in some cases, can be
enough to restore f . Let us start with some formal consideration.
Let x ∈ H ' R4, x = (x0, x1, x2, x3) with
(x1, x2, x3) 6= (0, 0, 0) (i.e.: x ∈ H\R). When
we talk about slice functions we implicitly use
the following change of coordinates:

(x0, x1, x2, x3) 7→ (α, β, I),

where α ∈ R, β > 0 and I = I(ϑ, ϕ) ∈ S with
the following equalities:

α = x0

β =
√
x2

1 + x2
2 + x2

3

ϑ = arccos(x3
β

)

ϕ = arctan(x2
x1

). Spherical coordinates of Iβ

Let now f : Ω ⊂ R4 → R4 be any differentiable function. Then, its differential in these
new coordinates, can be written in its domain, as follows

(11) df =

(
∂f

∂α
dα +

∂f

∂β
dβ

)
+

1

β

(
∂f

∂ϑ
dϑ+

1

sinϑ

∂f

∂ϕ
dϕ

)
,

where : 
dα = dx0

dβ = sinϑ cosϕdx1 + sinϑ sinϕdx2 + cosϑdx3

dϑ = cosϑ cosϕdx1 + cosϑ sinϕdx2 − sinϑdx3

dϕ = − sinϕdx1 + cosϕdx2.
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We would like, however, to consider also β < 0 (having in mind that a non-real quater-
nion x can be written both as α+ Iβ and α+ (−I)(−β)). But in this case we have to take
care that dβ(−β, I) = dβ(β,−I) = −dβ(β, I).

The aim of this section is to study the first part of the right hand side of equation 11,
when f is a slice differentiable function.

We will start with the following general definition.

Definition 1.15. Let f = I(F ) ∈ S1(ΩD). We define the slice differential dslf of f
as the following differential form:

dslf : (ΩD \ R) → H∗,
α + Iβ 7→ dF1(α + iβ) + IdF2(α + iβ).

Remark 1.16. The one-form ω : H \ R→ H∗ defined as ω(α + Iβ) = Idβ, represents
the outer radial direction to the sphere Sx = {α + Kβ |K ∈ S}. Then ω(α + I(−β)) =
ω(α + (−I)β) = −ω(α + Iβ). We can translate this observation in the language of slice
forms. We’ve seen in example 1.1 that h(x) = Im(x) is a slice function induced by
H(z) =

√
−1Im(z). Then we have dslh(α + Iβ) = Idβ(α + iβ) and, thanks to the

previous considerations dslh(α+(−I)(−β)) = −Idβ(α− iβ) = Idβ(α+ iβ). Summarizing,
we have that dβ(z̄) = −dβ(z). The same doesn’t hold for dα which is a constant one
form over H and for this reason in the next computations we will omit the variable (i.e.:
dα = dα(z) = dα(z̄)).

We can show now that the previous definition is well posed.

Proposition 1.26. Definition 1.15 is well posed, i.e. if D is symmetric with respect
to the real axis, then

dslf(α + Iβ) = dslf(α + (−I)(−β)), ∀α + Iβ ∈ ΩD \ R

Proof. Let x = α + Jβ ∈ ΩD \ R and z = α + iβ, then,

dslf(α + (−I)(−β)) =

=

(
∂F1(z̄)− IF2(z̄)

∂α

)
dα +

(
∂F1(z̄)− IF2(z̄)

∂β

)
dβ(z̄) =

=
∂F1

∂α
(z̄)dα +

∂F1

∂β
(z̄)(−1)dβ(z)− I

(
∂F2

∂α
(z̄)dα +

∂F2

∂β
(z̄)(−1)dβ(z)

)
=

=
∂F1

∂α
(z)dα +

∂F1

∂β
(z)dβ(z)− I

(
−∂F2

∂α
(z)dα− ∂F2

∂β
(z)dβ(z)

)
=

=

(
∂F1(z) + IF2(z)

∂α

)
dα +

(
∂F1(z) + IF2(z)

∂β

)
dβ(z) =

= dslf(α + Iβ),

where the third equality holds thanks to the even-odd character of the couple (F1, F2).
�
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To avoid ambiguity, in the following of this section we will consider always β > 0, so, to
be more clear, the point p = α − Jβ will be intended as p = α + (−J)β and we will omit
the argument of the one-form dβ. We can represent, then, the slice differential as follows.

Proposition 1.27. Let f = I(F ) ∈ S1(ΩD) with D ⊂ C+ (so that β > 0). Then, on
ΩD \ R, the following equality holds true.

dslf =
∂f

∂α
dα +

∂f

∂β
dβ.

Proof. The thesis follows from the following computations. Let x = α+ Iβ ∈ ΩD and
z = α + iβ, then

dslf(x) =
(
∂F1

∂α
(z)dα + ∂F1

∂β
(z)dβ

)
+ I

(
∂F2

∂α
(z)dα + ∂F2

∂β
(z)dβ

)
=

(
∂F1

∂α
(z)dα + I ∂F2

∂β
(z)dβ

)
+
(
∂F1

∂β
(z)dβ + I ∂F2

∂β
(z)dβ

)
= ∂f

∂α
(x)dα + ∂f

∂β
(x)dβ.

�
It is clear from the definition that, if we choose the usual coordinate system, where

x = α + Iβ with β > 0, then dslx = dα + Idβ and dslxc = dα − Idβ. We can now state
the following theorem.

Theorem 1.28. Let f ∈ S1(ΩD). Then the following equality holds:

dslx
∂f

∂x
(x) + dslx

c ∂f

∂xc
(x) = dslf(x), ∀x ∈ ΩD \ R.

Proof. The thesis is obtained after the following explicit computations:

dslx
∂f

∂x
+ dslx

c ∂f

∂xc
=

1

2

[
(dα + Idβ)

(
∂F1

∂α
+
∂F2

∂β
− I

(
∂F1

∂β
− ∂F2

∂α

))
+

+ (dα− Idβ)

(
∂F1

∂α
− ∂F2

∂β
+ I

(
∂F1

∂β
+
∂F2

∂α

))]
=

1

2

[
dα
∂F1

∂α
+ dα

∂F2

∂β
− Idα∂F1

∂β
+ Idα

∂F2

∂α

+Idβ
∂F1

∂α
+ Idβ

∂F2

∂β
+ dβ

∂F1

∂β
− dβ F2

∂α
+

+dα
∂F1

∂α
− dα∂F2

∂β
+ Idα

∂F1

∂β
+ Idα

∂F2

∂α
+

−Idβ ∂F1

∂α
+ Idβ

∂F2

∂β
+ dβ

∂F1

∂β
+ dβ

F2

∂α

]
= dα

∂F1

∂α
+ Idβ

∂F2

∂β
+ dβ

∂F1

∂β
+ Idα

∂F2

∂α

=
∂F1

∂α
dα +

∂F1

∂β
dβ + I

(
∂F2

∂α
dα +

∂F2

∂β
dβ

)
= dslf.

�
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We have then the obvious corollary:

Corollary 1.29. Let f ∈ SR(ΩD). Then the following equality holds:

dslx
∂f

∂x
(x) = dslf(x), ∀x ∈ ΩD \ R.

At this point we want to embed the concept of slice differential in the theory of 1-forms.
We begin with the following definition. This part of the thesis has not a proper application
so far. Anyway it seems to us that this could be a useful tool for the analysis of slice
functions in the future. To give a flavor of what can be done we will give a small non
essential application, showing eventually a Morera type theorem.

Definition 1.16. Let D ⊂ (C+ \ R) (so β > 0), and let ΩD be a circular domain in
H. A one-form ω : ΩD \ R→ H∗ such that

ω(α + Iβ) = (ωα1(α, β)dα + ωβ1(α, β)dβ) + I(ωα2(α, β)dα + ωβ2(α, β)dβ),

where the coefficients ωlγ are continuous functions on ΩD and will be called slice differential
one-form.

From now on in this section, unless differently specified, we will suppose that D∩R = ∅
(and so ΩD ∩R = ∅). For any I ∈ S and any slice form ω : ΩD → H∗ we denote by ωI the
restriction

ωI := ω|D+
I

: D+
I → H∗.

We will use also the following notation: if ω is a slice form then

ω(α + Iβ) = (ωα1(α, β) + Iωα2(α, β))dα + (ωβ1(α, β) + Iωβ2(α, β))dβ =

= (ωα1(α, β)dα + ωβ1(α, β)dβ) + I(ωα2(α, β)dα + ωβ2(α, β)dβ) =

= ω1(α, β) + Iω2(α, β),

where, of course,
ωα1dα + ωβ1dβ = ω1, ωα2dα + ωβ2dβ = ω2.

Remark 1.17. If we want to define slice forms without imposing β > 0 we have to
ask some conditions to the coefficients. These conditions can be expressed as ωα1(α,−β) =
ωα1(α, β), ωβ2(α,−β) = ωβ2(α, β), ωα2(α,−β) = −ωα2(α, β) and ωβ1(α,−β) = −ωβ1(α, β).

As for slice functions also for slice forms we have a representation formula.

Theorem 1.30. (Representation Formula) Let D ⊂ (C+ \ R). Let J 6= K ∈ S.
Every slice form ω : ΩD → H∗ is uniquely determined by its values on the two distinct
semislices D+

J and D+
K. In particular the following formula holds:

(12) ω(α + Iβ) = (I −K)(J −K)−1ω(α + Jβ)− (I − J)(J −K)−1ω(α +Kβ),

for every α + Iβ ∈ ΩD.



32 1. DEFINITIONS AND BASIC TOOLS

Before passing through the proof of the previous theorem, we observe that, if K = −J ,
the previous formula (12), can be written as:

(13) ω(α + Iβ) =
1

2
[ω(α + Jβ) + ω(α− Jβ)− IJ (ω(α + Jβ)− ω(α− Jβ))] .

Proof. To prove the theorem, we will show how to derive ω1 and ω2 from ωJ and ωK .
First of all we have,

ωJ(α + Jβ)− ωK(α +Kβ) = ω1(α, β) + Jω2(α, β)− ω1(α, β)−Kω2(α, β)
= (J −K)ω2(α, β),

for all α + iβ ∈ D with β greater than zero6. To determine ω1 it is sufficient to consider
the difference between ωJ and Jω2:

ωJ − Jω2 = ω1(α, β) + Jω2(α, β)− Jω2.

Passing now to prove the formula, we already know that

ω2(α, β) = (J −K)−1(ω(α + Jβ)− ω(α +Kβ)), ω1(α, β) = ω(α + Jβ)− Jω2,

and so
ω1(α, β) = ω(α + Jβ)− J(J −K)−1(ω(α + Jβ)− ω(α +Kβ)).

Let’s now I ∈ S, then,
ω(α + Iβ) = ω1(α, β) + Iω2(α, β)

= ω(α + Jβ)− J(J −K)−1(ω(α + Jβ)− ω(α +Kβ))+
+I(J −K)−1(ω(α + Jβ)− ω(α +Kβ))

= ω(α + Jβ) + (I − J)(J −K)−1(ω(α + Jβ)− ω(α +Kβ))
= ((J −K) + (I − J))(J −K)−1ω(α + Jβ) + (I − J)(J −K)−1ω(α +Kβ)
= (I − J)(J −K)−1ω(α + Jβ) + (I − J)(J −K)−1ω(α +Kβ).

�

At this point a natural question arise: are all the slice forms the slice differential of a
slice function? The answer, in general, is not. As a counterexample we can consider the
slice form defined over H \ R in the following way:

ω : α + Iβ 7→ Iβdα + (−Iα)dβ.

The previous slice form is not the slice differential of a slice function since, if this was the
case, then ω = dslf , with f = I(F1 +

√
−1F2) and ∂F2

∂α
= ωα2 = β while ∂F2

∂β
= ωβ2 = −α.

But,
∂2F2

∂β∂α
=
∂(β)

∂β
= 1 6= −1 =

∂(−α)

∂α

∂2F2

∂α∂β
.

Definition 1.17. Let D ⊂ (C+ \ R). A slice differential form ω : ΩD → H∗ is called
slice-exact (s-exact) in ΩD if there exists a slice function f : ΩD → H of class C1 such that
dslf(x) = ω(x) on ΩD.

6If we define slice forms without the request β > 0, at this point of the proof we have to add that, for
β < 0, ω2 is determined by oddness w.r.t. β.
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The previous counterexample suggests a necessary condition for a slice form to be
s-exact. The condition is the following.

Definition 1.18. Let D ⊂ (C+ \R). A slice differential form with coefficients of class
C1, ω : ΩD → H∗ is called slice-closed (s-closed) in ΩD if, written in coordinates

ω(α + Iβ) = ωα(α + Iβ)dα + ωβ(α + Jβ)dβ,

one has
∂ωα

∂β
=
∂ωβ

∂α
, ∀α + Iβ ∈ ΩD,

where ωα = ωα1 + Iωα2 and ωβ = ωβ1 + Iωβ2.

Remark 1.18. If a slice form ω is such that dω1 = dω2 = 0, then ω is s-closed.

Thanks to theorem 1.30, we have the following proposition.

Proposition 1.31. Let D ⊂ (C+ \ R). Let ω : ΩD → H∗ be a slice differential form.
If there exist two imaginary units J 6= K ∈ S such that the following equations holds:

(14)


∂ωαJ
∂β

=
∂ωβJ
∂α

, ∀α + Jβ ∈ D+
J ,

∂ωαK
∂β

=
∂ωβK
∂α

, ∀α +Kβ ∈ D+
K ,

then ω is s-closed.

Proof. The proof of the theorem follows applying formula 12 and deriving.
�

The previous proposition simplifies the conditions to check if a form is closed. Moreover
the result is sharp, meaning that asking only one condition in equation 14 it is not enough
to obtain the thesis, as the following example will show.

Example 1.4. Let J ∈ S be a fixed imaginary unit and let ω : H \ R → H∗ be the
following slice form:

ω(α + Iβ) = (Jβ + 1 + I(β + J))dα + (1− Jα + I(J − α))dβ.

This slice form is constructed with formula 13 where
ωJ(α, β) = 2Jβdα− 2Jαdβ
ω−J(α, β) = 2dα + 2dβ,

and so
∂ωα−J
∂β

=
∂ωβ−J
∂α

, but,
∂ωαJ
∂β

= J 6= −J =
∂ωβJ
∂α

.

Now, if we compute the partial derivatives of ωI , for a generic I ∈ S, what we obtain is
the following:

∂ωαI
∂β

= J + I,
∂ωβI
∂α

= −J − I,

which are equal if and only if I = −J .
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The next is a natural result.

Proposition 1.32. Let D ⊂ (C+ \ R). Let ΩD be a circular open set in H and let
ω : ΩD → H∗ be a slice form with coefficients of class C1. If ω is s-exact then ω is s-closed.

The next theorem is a characterization for s-exact slice form.

Theorem 1.33. Let D ⊂ (C+ \R) be an open and connected set and ω : ΩD \R→ H∗
a slice differential form. The following facts are equivalent:

(1) ω is s-exact;
(2) for any J ∈ S and for any couple of path γ1 and γ2 contained in DJ , with same

extremal points, the following equation hold,∫
γ1

ω =

∫
γ2

ω;

(3) for any J ∈ S and for any closed piecewise differentiable curve γ contained in DJ ,
the following equation hold, ∫

γ

ω = 0.

(4) there exist J 6= K ∈ S such that for any closed piecewise differentiable curve
γ : [0, 1]→ (DJ tDK), the following equation hold,∫

γ

ω = 0.

Remark 1.19. In the hypothesis of this theorem, since D ⊂ (C+ \R), then, automat-
ically, β > 0 and DJ = D+

J for any J .

Proof. In the sequence (1)⇒ (2)⇒ (3)⇒ (2)⇒ (1), the only non-trivial implication
to prove, and for which we give an argument, is (2) ⇒ (1). Then we have that (1) ⇒
(2)⇒ (3)⇒ (4) and we have to prove (4)⇒ (1).

((2) ⇒ (1)) Since for any J ∈ S, DJ is connected, then any couple of points x and
y in DJ can be connected with a curve. Let then x0 be a fixed point in DJ and define
f : DJ → H as f(x) :=

∫
γ
ωJ , where γ is any curve from x0 to x. The function f is well

defined thanks to the hypothesis (2). It is clear then, using a little bit of standard analysis
that df = ωJ . The thesis is obtained repeating the same argument in another different
semislice DK , using the representation formula 12.

((4) ⇒ (1)) Let γL : [0, 1] → DL be a closed piecewise differentiable curve in DL for
L = J,K, then,

0 =

∫
γL

ω =

∫
γL

ωL,

where ωL denotes the restriction of ω to DL. But since γL lies on a complex plane then,
for L = J,K, there exist fL : DL → H such that ωL = dfL. Observe that since the domain
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of fL is DL then it doesn’t depend on L but only on the planar variables α and β. In
particular we have

ωL = dfL =
∂fL
∂α

dα +
∂fL
∂β

dβ.

Now, using representation formula 13, we have that for any I ∈ S

ω(α + Iβ) = J(J −K)−1dfK −K(J −K)−1dfJ + I(J −K)−1(dfJ − dfK)

but since β > 0, then the following expression

J(J −K)−1fK −K(J −K)−1fJ + I(J −K)−1(fJ − fK)

defines a slice function f : ΩD → H and, since all the imaginary units do not depend on α
and β we obtain that ω = dslf .

�

Using this theorem we can prove that not all the s-closed forms are s-exact. An example
for such a case of this type is given by following slice form:

ω : H \ R → H∗

α + Iβ 7→ −(β − 1)dα + αdβ

α2 + (β − 1)2
.

This slice form is independent w.r.t I ∈ S and is s-closed (in particular ω = ω1 + Iω2, with
ω2 ≡ 0 and dω1 = 0). We will show that ω is not s-exact by showing that point (3) of the
previous theorem fails. Fix, in fact, J ∈ S and consider the differentiable circumference
γ : [0, 1] → C+

J , defined as γ(t) = (1
2

cos(2πt), 1
2

sin(2πt) + 1). This is a circumference
contained in C+

J , centered in (0, J) with radius 1/2. But then we have∫
γ

ω =

∫
γ

ωJ = 2π 6= 0,

and so ω is not s-exact.
At this point, we are going to state a Poincaré type lemma.

Theorem 1.34. Let D be a star-shaped open subset of C+ and let ΩD its circularization.
If a slice differential form ω : ΩD \ R→ H∗ is s-closed then ω is s-exact.

Proof. The proof follows a standard argument in calculus. We repeat the considerations
here for completeness. Let x0 = α0 + J0β0 ∈ D+

J0
. We are going to show that the function

f+
J0

: D+
J0
→ H defined by

f+
J0

(α + J0β) :=

∫ 1

0

[ωαJ0(α0 + t(α− α0), β0 + t(β − β0))(α− α0)+

+ ωβJ0(α0 + t(α− α0), β0 + t(β − β0))(β − β0)]dt,
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is a primitive of ωJ0 . To obtain the result it is sufficient to show that the partial derivatives
of f+

J0
w.r.t. α and β are equal to ωαJ0 and ωβJ0 respectively, i.e.:

∂f+
J0

∂α
(α + J0β) = ωαJ0(α + J0β),

∂f+
J0

∂β
(α + J0β) = ωβJ0(α + J0β), ∀α + J0β ∈ D+

J0
.

We have:

∂f+
J0

∂α
(α + J0β) =

∫ 1

0

[
∂ωαJ0
∂α

(α0 + t(α− α0), β0 + t(β − β0))t(α− α0)+

+ ωαJ0(α0 + t(α− α0), β0 + t(β − β0))+

+
∂ωβJ0
∂α

(α0 + t(α− α0), β0 + t(β − β0))(β − β0)]dt,

and, since ω is s-closed (∂ωα
∂β

= ∂ωβ

∂α
), the last is equal to:∫ 1

0

t[
∂ωαJ0
∂α

(α0 + t(α− α0), β0 + t(β − β0))(α− α0)+

+
∂ωαJ0
∂β

(α0 + t(α− α0), β0 + t(β − β0))(β − β0)]dt+

+

∫ 1

0

ωαJ0(α0 + t(α− α0), β0 + t(β − β0))dt.

Now, we observe that the first integral is equal to∫ 1

0

t[
dωJ0
dt

(α0 + t(α− α0), β0 + t(β − β0))]dt = ~,

which, integrated by parts, gives:

~ = [tωαJ0(α0 + t(α− α0), β0 + t(β − β0))]t=1
t=0 −

∫ 1

0

ωαJ0(α0 + t(α− α0), β0 + t(β − β0))dt,

and so
∂f+

J0

∂α
(α + J0β) = ωαJ0(α + J0β).

Obviously, the computations for
∂f+J0
∂β

are the same as before and so, repeating the same
argument on another different semislice, say D+

K0
, with J0 6= K0 ∈ S, and applying the

representation formula, we obtain the thesis.
�

3.1. Morera’s theorem. In this short subsection we will give an application of the
theory of slice forms proving a Morera type theorem. As said before the notion of slice
forms has not a proper application so far, meaning that there are not results that cannot
be obtained without slice forms. In fact one can shows other “elementary” proof for the
following Morera’s theorem. Anyway we think that it can be useful to give a flavor of the



3. SLICE DIFFERENTIAL AND SLICE DIFFERENTIAL FORMS 37

basic techniques of slice forms. We start remembering the statements by Giacinto Morera
regarding functions of a complex variable.

Theorem 1.35. (Morera,1886) If f : D → C is defined and continuous in an open
and connected set D, and if ∫

γ

fdz = 0,

for all closed and piecewise differentiable curves γ in D, then f(z) is analytic in D.

In [27], the authors states a Morera theorem in a first version for power series defined
on a ball of center 0 and radius R. In [25] it is provided the following formulation.

Theorem 1.36. ([25], propsition 6.2). Let ΩD be a circular domain such that ΩD∩R 6=
∅ and let f : ΩD → H. If for each I ∈ S, the restriction of f to DI is continuous and
satisfies ∫

γI

dslxf(x) = 0

for all rectifiable closed curve γI : [0, 1]→ DI , then f is regular in ΩD.

We will prove an analogous result without the hypothesis on the domain and reducing
the set of I ∈ S where to check the hypothesis only to two different imaginary units.

Theorem 1.37. Let D ⊂ C+ such that ΩD ⊂ H is a connected circular domain that
does not intersect the real line in H. Let f : ΩD → H be a continuous slice function. If
there are I 6= J ∈ S such that

(15)
∫
γ

dslxf(x) = 0,

for all closed and piecewise differentiable curves γ : [0, 1] → (D+
I t D

+
J ), then f is slice

regular in ΩD.

It must be noticed that the case I = −J is not excluded.
We underline the fact that, if f = I(F1 +

√
−1F2) is a continuous slice function, then

dslxf(x) is a continuous slice form. Explicitly,

dslf = F1dα− F2dβ + I(F2dα + F1dβ).

Proof. Since dslxf(x) is a slice form, then equation 15, with point (4) of theorem 1.33,
says that it is also s-exact. And so there exist a slice differentiable function g = I(G) ∈
S1(ΩD) such that,

dslxf = dslg,

but this entails that,

∂G1

∂α
dα+

∂G1

∂β
dβ+I

(
∂G2

∂α
dα +

∂G2

∂β
dβ

)
= F1dα−F2dβ+I(F2dα+F1dβ), ∀α+Iβ ∈ ΩD
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and so, 
∂G1

∂α
= F1 =

∂G2

∂β

∂G1

∂β
= −F2 = −∂G2

∂α
,

that means that g is regular and so also f is.
�

4. Slice affine functions

In the last part of this chapter we will introduce some notion about slice-constant
and slice-affine functions. Slice-constant functions, firstly defined in [3], are the natural
generalization, in the slice function theory setting, of constant holomorphic functions.

Definition 1.19. Let ΩD be a connected circular domain and let f = I(F ) ∈ S(ΩD).
f is called slice constant if the stem function F is locally constant on D.

Proposition 1.38. Let f ∈ S(ΩD) be a slice constant function, then f is slice regular.

Proof. The proof is trivial because of the nature of the stem function that generate a
slice constant function.

�

A simple characterization is given by the following theorem:

Theorem 1.39. Let f = I(F ) ∈ S(ΩD). Then f is slice constant if and only if

∂f

∂x
= I

(
∂F

∂z

)
≡ 0.

Proof. Let F be locally constant, then in a connected component of D, F = a + ib,
with a, b ∈ H. This entails obviously that ∂F

∂z
= 0. Vice versa, let f = I(F ) ∈ SR(ΩD)

such that ∂F
∂z
≡ 0, then, recalling the intrinsic curve in remark 1.2, we have in a connected

component of D, that
∂F

∂z
=

4∑
k=1

∂

∂z
F k
B(z)uk = 0

and so F k
B = ck ∈ C, for every k, and so also F =

∑4
k=1 F

k
Buk = c′ ∈ H.

�

Remark 1.20. The previous theorem tells that if we have a slice constant function
f ∈ SR(ΩD) over a connected circular domain ΩD, then, given J ∈ S, if x ∈ D+

J \ R

f(x) = a+ Jb = a+
Im(x)

||Im(x)||
b, a, b ∈ H.
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Proposition 1.40. Let ΩD be a connected circular domain. Let g : ΩD → H be
a slice function. g is slice constant if and only if given any fixed J ∈ S, g is a linear
combination, with right quaternionic coefficients, of the two functions g± : H \ R → H
defined by g±(α + Iβ) = 1± IJ .

Proof. Thanks to theorem 1.39, any linear combination of the two functions g± is slice
constant since their slice derivative is everywhere zero. Vice versa, given a slice constant
function g = I(G) : ΩD → H, with G := g1 +

√
−1g2 its locally constant stem function,

it holds g(α + Iβ) = g1 + Ig2, but, thanks to the representation formula in 1.1, for any
J ∈ S, g(α + Iβ) = [(1− IJ)(g1 + Jg2) + (1 + IJ)(g1 − Jg2)]/2.

�

Now we will introduce the set of slice regular function that are affine slice by slice. This
notion will be useful in the classification of rational curves in the Grassmannian in chapter
4.

Definition 1.20. Let f : ΩD → H be a slice regular function. f is called slice affine
if its slice derivative is a slice constant function.

Proposition 1.41. Let f : ΩD → H be a slice function. f is slice affine if and only
if given any fixed J ∈ S, g is a linear combination, with right quaternionic coefficient, of
the four functions f±, g± : H \R→ H, where g± are the same as before and f±(α+ Iβ) =
(α + Iβ)g±(α + Iβ).

Proof. If f is a linear combination of f± and g± then it is obviously a slice affine
function. Viceversa, since ∂f/∂x is a slice constant function, then, in the language of slice
forms

dslf = dslx
∂f

∂x
= dslxg(x),

with g = I(g1 +
√
−1g2) a slice constant function. The previous equality, using the

definition of slice form, is equivalent to the following one

∂F1

∂α
dα +

∂F1

∂β
dβ + I

(
∂F2

∂α
dα +

∂F2

∂β
dβ

)
= g1dα− g2dβ + I(g2dα + g1dβ),

that implies F1 = g1α − g2β + q1 and F2 = g2α + g1β + q2, for some couple q1, q2 of
quaternions. But then, applying the representation formula in 1.1, and using the same
argument as in the proof of the previous theorem we obtain,

f(α + Iβ) = = g1α− g2β + I(g2α + g1β) + q1 + Iq2

= α(g1 + Ig2) + Iβ(g1 + Ig2) + q1 + Iq2

= (α + Iβ)(g1 + Ig2) + q1 + Iq2

= (α + Iβ)[(1− IJ)(g1 + Jg2) + (1 + IJ)(g1 − Jg2)]/2+
+[(1− IJ)(q1 + Jq2) + (1 + IJ)(q1 − Jq2)]/2.

�
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Remark 1.21. The set of slice constant functions contains the set of constant functions
and the condition for a slice constant function g = g+q+ + g−q− to be extended to R is
that q+ = q− (i.e.: g is a constant function). Analogously, a slice affine function f =
f+q1+ + f−q1− + g+q0+ + g−q0− extends to the real line if and only if q1+ = q1− and
q0+ = q0− (i.e.: f = xa+ b is a H-affine function). For slice constant function the assertion
is trivial while for slice affine functions it requires a simple consideration regarding the limit
of the function for β that approach 0 when β is lower or greater than zero. In formula, the
previous condition is the following one:

lim
β→0

α+Iβ∈C+
I

f(α + Iβ) = lim
β→0

α+Iβ∈C−
I

f(α + Iβ).

Remark 1.22. One can define, in general, the class of “slice polynomial” functions
as the set of slice regular functions such that the nth slice derivative vanishes for some
n. This can be actually a useful notion in view of some researches regarding the number
of counterimages of a slice regular function defined over a domain without real points.
Anyway this theme is not explored in this thesis and so we will not spend any other words.
We will remember this fact when in remark 3.6 we will motivate the construction of a new
proof for theorem 3.11.



CHAPTER 2

Rigidity properties for slice regular functions

In this chapter we will explore some rigidity properties of slice regular functions. These
are essentially generalizations of holomorphic functions properties in this quaternionic con-
text. As in the complex setting, also in the quaternionic one it is very important to study
rigidity properties and, in principle, one could ask if any result in complex analysis can be
extended in this context. In particular, the content of this chapter will be used in many
occasions later in this thesis. As already mentioned in section 3.1 of chapter 1 the theory
of slice regular functions over domains that do not intersect the real line must contemplate
examples of functions such that restricted to some complex plane CJ might behave in very
different ways on C+

J and C+
−J .

The results in this chapter were proved, with the additional hypothesis of nonempty
intersection of the domain with the real axis, in [9, 22, 23] and then extended in [3].

1. Identity principle

In this section we will prove an analogous of the identity principle for slice regular
functions. A suggestion that an analogous of the identity principle might be true came,
among the other things, from theorem 1.15, where we said essentially that the set of zeros of
a non-slice constant regular function restricted to a semislice is closed and discrete. In [27]
the authors proved the statement for slice regular functions defined on open balls centered
in the origin and later, in [47] it was extend to functions defined on generic circular domain
with nonempty intersection with the real axis.

More precisely their statement, in our language, is the following.

Theorem 2.1. ([25], theorem 1.12). Let ΩD ⊂ H be a connected domain such that
ΩD ∩R 6= ∅, and let f : ΩD → H be a slice regular function. If there exists I ∈ S such that
DI ∩ V (f) has an accumulation point, then f ≡ 0 on ΩD.

41
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Now, it is not possible to generalize this theorem as it is to the case in which the domain
D does not intersect the real line. In fact, there is a counterexample.

Example 2.1. Let J ∈ H be fixed. The slice regular function defined on H \ R by

f(x) = 1− IJ, x = α + Iβ ∈ C+
I

is induced by a locally constant stem function (and so is slice constant, see definition 1.19)
and its zero set V (f) is the half plane C+

−J \ R. The function can be obtained by the
representation formula in theorem 1.1 by choosing the constant values 2 on C+

J \ R and 0
on C+

−J \R. Now, by definition, it is clear that this function does not satisfies the thesis of
the theorem.

It is now clear that if we want to obtain an identity principle we must control the set
of slice constant functions. The following theorem clarifies the situation.

Theorem 2.2. (Identity Principle) Let ΩD be a connected open set of H. Given
f = I(F ) : ΩD → H ∈ SR(ΩD), let V (f) = {x ∈ ΩD | f(x) = 0} be its zero locus. If there
exists K 6= J ∈ S such that both D+

K ∩ V (f) and D+
J ∩ V (f) contain accumulation points,

then f ≡ 0 on ΩD.

Proof. Let xJ = α1+Jβ1, xK be accumulation points of V (f) respectively onD+
J ∩V (f)

and D+
K ∩ V (f). After having fixed a basis uk for H and putting z0 = α1 + iβ1 we have

that (see remark 1.2),

0 = f(xJ) = F1(α1 + iβ1) + JF2(α1 + iβ1)

=
4∑

k=1

F k
B(z0)uk,

and so all the four components F k
B vanishes at z0, and since these are holomorphic, for the

identity principle in the complex case, they are identically zero on D+
J . Replacing J with

K in the previous formula, we obtain that f is identically zero also on D+
K . We now obtain

the thesis thanks to the representation formula in theorem 1.1.

�

Remark 2.1. An equivalent result is, of course, the following: if f ∈ SR(ΩD) is such
that both (f |D+

K
)−1(q) and (f |D+

J
)−1(p) contain an accumulation point respectively in D+

K

and in D+
J , for some J 6= K and p, q ∈ H, then, using the representation formula 6, f is

slice constant and equal to

f(α + Iβ) = (I −K)(J −K)−1p− (I − J)(J −K)−1q

To prove the equivalence one apply the previous proof for g = f − (I −K)(J −K)−1p +
(I − J)(J −K)−1q.
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2. Maximum and minimum modulus principles

In this section we will generalize the maximum modulus principle stated in [27], to the
case of regular functions defined over product domains. Before this we need a lemma. The
proofs of the lemma and the theorem, follow the argument in [27], with the adjustments
needed in our context.

Lemma 2.3. If f = I(F ) : ΩD → H is a slice regular function, and if I ∈ S, then f+
I

has the slice mean value property, i.e.: for any x0 = α0 +Iβ0 ∈ C+
I and for each r > 0 such

that the closed disc B(x0, r)centered in x0 with radius r is contained in D+
I , the following

equality holds

f+
I =

1

2π

∫ 2π

0

f+
I (x0 + reIϑ)dϑ

Proof. If x = α+ Iβ ∈ D+
I then we know that f(x) = F1(z) + IF2(z), with z = α+ iβ.

But then, for every point x0 = α0 + Iβ0 ∈ D+
I , and all positive real number r such that

B(x0, r) ⊂ D+
I we have,

1

2π

∫ 2π

0

f(x0 + reIϑ)dϑ =

=
1

2π

∫ 2π

0

(F1(x′0 + reiϑ) + IF2(x′0 + reiϑ))dϑ

= F1(x′0) + IF2(x′0) = f(x0)

where x′0 = γ + iδ. The penultimate equality holds because, restricting to D+
I and pass-

ing through the complex curve in remark 1.2, F1(z) +
√
−1F2(z) =

∑4
k=1 F

k
B(z)uk, with

F k
B(z) ∈ C, for each component we are in the hypothesis of the mean value property in

the holomorphic case (more precisely we’re considering here fI = φI ◦ F k
B for F k

B , where
φI : C→ CI is the isomorphism defined as φI(α + iβ) = α + Iβ), and so we’re done.

�

Theorem 2.4. (Maximum Modulus Principle) Let f = I(F ) ∈ SR(ΩD) with ΩD

connected circular domain. If there exists J 6= K ∈ S such that ||f+
J || has local maximum

at a ∈ D+
J and ||f+

K || has local maximum at b ∈ D+
K, then f is slice-constant on ΩD.

Proof. If f(a) = f(b) = 0 the result is trivial. We will assume that at least one between
f(a) and f(b) is different from zero. Let then f(a) 6= 0, using lemma 2.3 and following the
proof in [27], we get that f is constant on D+

J . Now, if f(b) = 0, the result is again trivial
thanks to the representation formula in 1.1. If f(b) 6= 0, repeating the argument in [27], we
get that f is constant also over D+

K . The proof is concluded thanks to the representation
formula in 1.1.

�

Remark 2.2. It must be noticed that the hypothesis of double relative maximum on
two different semislices of ΩD is not removable. Indeed there is a counterexample. Let
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J ∈ S be fixed. Then the function f : H \ R→ H defined by

f(x) = x(1− IJ), x = α + Iβ,

is constant and equal to 0 on C+
−J \ R, but is equal to 2x on C+

J \ R.

We have the following trivial corollary

Corollary 2.5. Let f = I(F ) ∈ SR(ΩD). If there exists J 6= K ∈ S such that ||f+
J ||

has relative maximum in a ∈ ΩD ∩ C+
J and ||f+

K || has relative maximum in b ∈ ΩD ∩ C+
K

and f(a) = f(b), then f is constant on ΩD.

Our next goal now is to obtain a minimum modulus principle that generalizes the
one in [22] to the case of domains without real points. This will enable us to prove the
open mapping theorem. For this reason we need some additional material regarding the
symmetrization and the reciprocal of a slice regular function.

Thanks to proposition 1.8 we have the following lemma, the proof of which is identical
to the one in [22] remembering that:

f−·(x) = N(f)(x)−1f c(x) = ((f c · f)(x))−1f c(x).

Lemma 2.6. ([22], proposition 3.5). Let f ∈ SR(ΩD), then if we set Tf (x) :=
f c(x)−1xf c(x), we have

f−·(x) = f(Tf (x))−1,

for all x ∈ ΩD \ V (N(f)).

Proposition 2.7. ([22], proposition 3.6). Let f ∈ SR(ΩD), then Tf and Tfc are
mutual inverses w.r.t. composition. Moreover Tf : ΩD \ V (f c) → ΩD \ V (f) is a diffeo-
morphism.

We recall now the definition of the degenerate set of a function.

Definition 2.1. Let f ∈ S(ΩD) and let x = α + Iβ ∈ ΩD, β > 0 be such that
Sx = α+ Sβ ⊂ ΩD. The 2-sphere Sx is said to be degenerate for f if the restriction f |Sx is
constant. The union Df of all degenerate spheres for f is called degenerate set of f .

Observe that the degenerate set of a slice function is a circular domain. We will now
state some properties of the degenerate set of a slice function. First of all, the degenerate
set of a slice function can be described as the zero set of the spherical derivative as stated
in the following proposition.

Proposition 2.8. Let f be a slice function over ΩD, then we have the following equal-
ity:

Df = V (∂sf).

Moreover Df is closed in ΩD \ R.

Proof. The proof of the statement is trivial thanks to remark 1.4.
�
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As usual, adding the regularity property implies several additional results as the fol-
lowing one.

Proposition 2.9. If f ∈ SR(ΩD) is non-constant, then the interior of Df is empty.

Proof. If ad absurdum there exists a point p ∈ Df and a circular connected neighbor-
hood ΩU of p such that ΩU ⊂ Df and f is non-constant, then, for all α + Jβ ∈ ΩU

f(α + βJ) = F1(α + iβ).

Since f is slice regular we have that

0 =
∂F1

∂z
=
∂F1

∂α
+
√
−1

∂F1

∂β
,

but then ∂F1

∂α
= 0 and ∂F1

∂β
= 0 separately and so F1 is equal to a constant in all ΩU ⊂ Df ⊂

ΩD. Thanks to the identity principle we obtain that f is constant.
�

Remark 2.3. As already stressed in the first chapter, if f is a slice function defined on
ΩD and Sx = α + Sβ ⊂ ΩD (β > 0), is a non-degenerate sphere, then the restriction f |Sx
is a non-constant affine map of Sx onto a 2-sphere b+ Sc with b, c ∈ H.

Thanks to this remark we have the following proposition:

Proposition 2.10. Let f be a slice regular function defined on ΩD let α, β ∈ R, β > 0
be such that Sx = α + Sβ ⊂ ΩD, Sx * Df . Then ||f |Sx|| has a global minimum and a
global maximum; moreover if the maximum and the minimum are different, then there are
no other extremal point.

We are now ready to state a formulation of the minimum modulus principle.

Theorem 2.11. (Minimum Modulus Principle) Let ΩD be a connected circular
domain and let f : ΩD → H be a slice regular function. If ||f || has a local minimum point
p = x+ Iy ∈ D+

I then f(p) = 0 or exists a I ′ ∈ S such that f+
I′ is constant.

Proof. Suppose f does not have zeroes in S = x + Sy. The reciprocal f−· is defined
on ΩD \V (N(f)) which includes S. Since ||f−·(q)|| = 1/||f(Tf (q))|| for every q and Tf is a
diffeomorphism, the fact that ||f || has a local minimum at p = Tf (p

′) implies that ||f ◦Tf ||
has a local minimum at p′ = x+ I ′y and so, in particular, ||f ◦ Tf (p′)|| is a local minimum
if we restrict ||f ◦ Tf ||(p′) to D+

I′ . As a consequence, ||f−·|| has a maximum at p′. Now,
by the argument of the maximum modulus principle f−· is constant on D+

I′ . Hence, for
almost any α + I ′β ∈ C+

I′ we have that f−·(α + I ′β) = q 6= 0

1 = (f−· · f)(α + I ′β) = qf(α + qI ′q−1β),

and so f+
qI′q−1 = q−1.

Suppose now that, for every J ∈ S, f+
J is non-constant, ||f || has a local minimum at

p = x + Iy and there exists a point p′ ∈ S such that f(p′) = 0. But then ||f || has a local
minimum also at p′. By the previous proposition, ||f || cannot have two distinct global
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minimum points on the same sphere S, unless ||f || is constant. As a consequence, either
f is constant on S or p = p′. In both cases, f(p) = f(p′) = 0.

�
It is clear that this theorem can be refined adding some hypothesis. For instance, if

one ask for f to have two minimal points p 6= q for its modulus that are sent by Tf on two
different semislices, then one can conclude that f is slice constant. This case could happen
for example when p, q belongs to the same sphere, because we know that Tf maps any
2-sphere to itself. Anyway this formulation of the minimum modulus principle is sufficient
to prove the open mapping theorem.

3. Open mapping theorem

In the last part of this chapter we will expose an open mapping theorem. We remember
that, for slice regular functions defined over circular domains intersecting the real axis, this
was proved in [22].

We will expose now the introductory materials to state our extending version of this
result.

What we need to know is something more about the zero set of a slice regular function.
We have the following theorem.

Theorem 2.12. Let ΩD be a connected circular domain such that ΩD ∩ R = ∅. Let
f ∈ SR(ΩD) be a non-constant function. If x0 ∈ V (f) is not isolated in V (f), then there
exists a real surface S ⊂ ΩD such that x0 ∈ S ⊂ V (f). Moreover, V (f) does not contain
any 3-manifold M .

Proof. Let us start with the three dimensional case: writing ΩD as the product D×S,
we have that, if V (f) contains a three-dimensional manifold M , then it can be split as
MD ×MS, with MD ⊂ D and MS ⊂ S. Since M has dimension 3, then, it is not fully
contained either in D or in S and it must contain either an open set of D times a curve in
S or, conversely, an open set of S times a curve in D. But if M contains an open subset
of Λ ⊂ D times a curve in S, then there are at least two imaginary units I 6= J ∈ S such
that, denoting by Λ+

K the projection of Λ in D+
K , f(Λ+

I ) = f(Λ+
J ) ≡ 0 and so, thanks to

theorem 2.2, f ≡ 0. In the other case, if M contains an open set in S times a curve in
D, then, thanks to formula 6, M contains the whole sphere and so f is equal to zero on a
curve of degenerate spheres. Fixing then two different imaginary units I 6= J ∈ S we have
that f+

I and f+
J are identically zero on a curve and so, again, f ≡ 0.

Let now f = I(F1 +
√
−1F2), x = α + Iβ ∈ ΩD and z = α + iβ ∈ D. If x is an

accumulation point in V (f) ∩ Sx then it is clear that the whole sphere Sx is contained
in the zero locus of f . Analogously, if x is an accumulation point for V (f) ∩ D+

I , then
D+
I ⊂ V (f). Let us consider then the case in which x is a generic accumulation point that

doesn’t accumulate in any sphere or in any semislice. The point x belongs to V (f) if and
only if F1(z) + IF2(z) = 0. Since x doesn’t accumulate in any sphere that intersects V (f),
then F2(z) 6= 0. Then the zero locus of f is equal to

V (f) = V (∂sf) t {x ∈ D × S |x = (z,−F1(z)F2(z)−1)},
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where ΩD ' D+ × S (D+ ⊂ C+), is the isomorphism that send each α + Iβ ∈ ΩD to the
couple (α + iβ, I). Since x is an accumulation point in V (f) \ V (∂sF ), that means that,
for any open disc centered in z and contained in D, there are infinite points w such that
there exists an imaginary unit Iw for which F1(w) + IwF2(w) = 0. Hence, for any J ∈ S,
the normal function N(f) restricted to D+

J vanishes at infinite points that accumulates
to α + Jβ and so, for the identity principle, N(f) ≡ 0. So, for any z ∈ D, there exists
Iz ∈ S, such that (z, Iz) ∈ (D× S)∩ V (f). Now, the condition N(f) ≡ 0, translates in the
following system

(16)

{
g(F1, F1)− g(F2, F2) = 0

g(F1, F2) = 0,

that means that, for any z ∈ D, || − F1(z)F2(z)−1|| = 1 and Re(F1(z)F2(z)−1) = 0 and so
F1(z)F2(z)−1 ∈ S. Finally, the set

Ṽ (f) = {x ∈ D × S |x = (z,−F1(z)F2(z)−1)}
defines a surface in D × S that contains the accumulation point x.

�
Given a non-constant slice regular function f , its zero locus contains isolated points, null-
spheres and generic surfaces not contained in the degenerate set.

Proposition 2.13. Let ΩD be a connected circular open domain. Let f ∈ SR(ΩD)
be a slice regular function. If there exist q ∈ H such that h = f − q admits two different
surfaces S1 and S2 that are not degenerate spheres, in the zero locus (i.e.: S1, S2 ⊂ V (h)),
then f is constant.

Proof. Without loss of generality, we can suppose q = 0. Then, for any z ∈ D there
exist I1 6= I2 ∈ S such that f vanishes both at (z, I1) and (z, I2) in ΩD = D × S. This will
imply that the spherical derivative is everywhere equal to zero and so f is constant.

�

Remark 2.4. The condition N(f) ≡ 0 defines a surface in ΩD that can coincide with
a semislice D+

I , for some I ∈ S, or not. We will see in the following chapter (see lemma
3.8), that the set of surfaces in which a slice regular function is constant is contained in a
possibly bigger set that is closed and with empty interior.

Given a slice regular function f : ΩD → H that is non-slice constant, the set of surfaces
in ΩD in which f is constant consists in the union of its degenerate set Df and of Sf , the
surface defined by u : D → D × S, u(z) = (z,−F1(z)F2(z)−1) extended, where F (z) = 0,
with the unique element in S such that u is continuous, i.e.:

Sf =
⋃
c∈H

N(f−c)≡0

˜V (f − c).

We can now state the open mapping theorem, where, again, if ΩD ∩ R 6= ∅, this result
is proved in [22].
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Theorem 2.14. (Open Mapping Theorem) Let f : ΩD → H be a slice regular
function that is non-slice constant. Then

f : ΩD \ (Df ∪ Sf )→ H

is open.

The proof of this theorem follow the one in complex case.
Proof. Let U be an open set in ΩD \ (Df ∪ Sf ), the thesis is that f(U) is open in

H. Let p0 ∈ f(U), then there exist q0 ∈ U such that p0 = f(q0). Clearly, the function
f(q) − p0 vanishes in q0. Now, theorem 1.11 tells that either q0 is an isolated zero or is
part of a sphere S where the function vanishes identically. Since by hypothesis we have
removed all the surfaces on which f is constant from the domain of the function, the last
option cannot hold and so q0 is an isolated zero for f . We have then that there exists an
open ball B = B(q0, r) such that B ⊂ U and f(q)− p0 6= 0 for all q ∈ ∂B, i.e.: there exists
ε > 0 such that ||f(q)− p0|| ≥ 3ε for all q ∈ ∂B. We choose now an arbitrary p such that
||p− f(q0)|| = ||p− p0|| < ε and we have the following inequality:

||f(q)− p|| ≥ ||f(q)− p0|| − ||p− p0|| ≥ 3ε− ε = 2ε, ∀q ∈ ∂B.

We have obtained that the minimum of ||f(q)−p|| in B is strictly less then its minimum in
∂B, and so ||f(q)−p||must have a minimum in B. By theorem 2.11, either f(q)−p vanishes
at the point of minimum or there exists a semislice where the function is constant. Since,
by hypothesis, f is non-constant in every semislice, then there exists a point q ∈ B ⊂ U
such that f(q) = p and p ∈ f(U) and the proof is concluded.

�

Of course, if we don’t remove the set Sf from the domain ΩD of the function f , then
the previous theorem is no more true. Let us define f as in remark 2.2: let J ∈ S be a
fixed imaginary unit and define

f : H \ R→ H
f(x) = x(1− IJ), x = α + Iβ

f is non-constant in every semislice except for C+
−J in which is identically equal to zero.

Moreover in every semislice except for C+
−J it assumes non-purely real values. We will

prove that f : H \ R→ H is not open while f : H \ C+
−J → H it is.

Given B = B(y, r), with y ∈ (H \ R) ∩ C+
−J , r > 0 such that B ∩ R = ∅, we will prove

that f(B) is not open. But this is trivial because f(B) = {0} tD, where D ⊂ H \ R and
the union is disjoint. This is true because, writing the function explicitly, it is easy to see
that f(H \ C+

−J) ∩ R = ∅. Let, in fact, x = α + Iβ ∈ H \ C+
−J ,

f(α + Iβ) = α + Iβ − αIJ + βJ

and, since I 6= ±J , then I, J and IJ describe independent vectors in R4; then, since β > 0,
Im(f(α + Iβ)) 6= 0. This entails that it is not possible to find a ball B′ ⊂ H centered
in zero such that f(y) ∈ B′ ⊂ f(B) because, otherwise, the intersection B′ ∩ R would be
equal to an interval (0− ε, 0 + ε), for some ε > 0 but f(B) ∩ R = {0}.
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Let see now that the same function f restricted to H \ (R ∪ C+
−J) is open. First of all,

if x = α + Iβ, then

f(x) = α(1 + I · J) + Iβ + Jβ + I ∧ J(−
√

1− (I · J)2),

where I · J and I ∧ J denote, respectively, the scalar and the vector products in R3. But
then again,

f(x) = α(1 + I · J) +

(
βI + βJ −

√
1− (I · J)2I ∧ J

2β2 + α2(1− (I · J)2)

)
(2β2 + α2(1− (I · J)2)).

Now, the sets of the form
A = (α− ε, α + ε) + (β − δ, β + δ)BI(R) ∈ H \ (R ∪ C+

−J),

with BI(R) = B(I, R)∩S, form a basis for the topology in H\ (R∪C+
−J). So to prove that

f is open we need to prove that f(A) is open. Is clear that if we stay far from C+
J , then

α(1 + I ·J) sends the set A in an open interval. It is also clear that (2β2 +α2(1− (I ·J)2))
sends A into an open interval since β − δ > 0. For the last part, since for J /∈ BI(R), I,

J and I ∧ J are linear independent, then the function βI+βJ−
√

1−(I·J)2I∧J
2β2+α2(1−(I·J)2)

sends A into an

open set. If I = J we have no problems, since the image of βI+βJ−
√

1−(I·J)2I∧J
2β2+α2(1−(I·J)2)

contains a
ball centered in J .

Remark 2.5. The last example shows also that, if the domain ΩD of definition of a
non-constant slice regular function f does not contains real points, then, in general, the
set f(ΩD) is not open in H (see theorem 7.4 of [25]).





CHAPTER 3

Real differential of a slice regular function

In this chapter we will describe some interesting differential properties of slice regular
functions that will be useful in the next chapter.

We will start describing the real differential of a slice function. For this purpose, in
addition to using what we already discussed in the previous pages, we will recall some
results and constructions due to Caterina Stoppato (see [46]). Moreover, we will also use
the concept of spherical differential that will be introduced right now.

Let f ∈ S1(ΩD) be any differentiable slice function. We have seen that is possible
to define its slice differential, considering, roughly speaking, the restriction of the real
differential, outside of the real line, to each semislice. It is clear that this object does not
exhaust the description of the real differential. What we are going to define is exactly the
missing part.

Definition 3.1. Let f ∈ S1(ΩD) be a differentiable slice function. We define its
spherical differential as the following differentiable form

dspf : ΩD \ R→ H∗, dspf(α + Iβ) := df(α + Iβ)− dslf(α + Iβ),

where df(α + Iβ) denotes the real differential of f .

In the next pages we will give a more explicit description of the spherical differential
of a slice function. Starting from equation 11, we have formally that,

dspf = df − dslf =
1

β

(
∂f

∂ϑ
dϑ+

1

sinϑ

∂f

∂ϕ
dϕ

)
,

but since, for every α+ Iβ ∈ ΩD \R, a slice function f depends on I = I(ϑ, ϕ) in an affine
way, then, if x = α + Iβ ∈ ΩD \ R and z = α + iβ ∈ D

dspf(x) =
1

β

(
∂I

∂θ
dθ +

1

sin θ

∂I

∂ϕ
dϕ

)
F2(z).

51
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If g : H→ H is the identity function, (g(α + Iβ) = α + Iβ), then

dg|H\R = dα + Idβ + dIβ = dslx+
1

β

(
∂I

∂θ
dθ +

1

sin θ

∂I

∂ϕ
dϕ

)
β = dslx+ dspx,

and so,
dspf = dspx ∂sf

It seems then that, if f ∈ SR(ΩD), then its real differential satisfies the following
equation:

df |ΩD\R = dslx
∂f

∂x
+ dspx∂sf,

where, the position of the elements of the cotangent space is on the left. As the reader
could object, the previous are only formal considerations but, in the next pages everything
will be proved in the case of slice regular functions (in particular see corollary 3.5). We
remember firstly the notion of spherical analyticity and its consequences.

1. Coefficients of the spherical expansion

As already described in Section 2.1 of chapter 1, in [33, 46] the authors introduce, in
slightly different contexts, a spherical series of the form

(17) f(x) =
∑
n∈N

Sy,n(x)sn,

where Sy,n were defined in equation 9.
Given a slice regular function f : ΩD → H, it is possible to construct its spherical

coefficients {sn} (see [46, 33]), but the methods described in the cited papers allow a
correct explanation and interpretation only for the first two coefficients which can be easily
written as (see [33]),

s1 =
1

2
Im(y)−1(f(y)− f(yc)) = ∂sf(y)

s2 =
1

2
Im(y)−2(2Im(y)

∂f

∂x
(y)− f(y) + f(yc)),

and in particular

s1 + 2Im(y)s2 =
∂f

∂x
(y).

The following proposition, which has an independent interest, allows us to understand
better the nature of s2.

Proposition 3.1. Let f ∈ SR(ΩD) be a slice regular function, then the following
formula holds:

(18)
∂f

∂x
(x) = 2Im(x)

(
∂

∂x
∂sf

)
(x) + ∂sf(x), ∀x = α + Jβ ∈ ΩD.
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Proof. Let F = F1+
√
−1F2 the inducing stem function of f and let x = α+Jβ ∈ ΩD\R

and z = α + iβ, then,
∂f

∂x
(x) =

1

2

(
∂F1

∂α
(z) + J

∂F2

∂α
(z)− J ∂F1

∂β
(z) +

∂F2

∂β
(z)

)
= ~.

Using the slice regularity we have,

~ =
∂F2

∂β
(z) + J

∂F2

∂α
(z) = 2J

[
1

2

(
∂F2

∂α
(z)− J ∂F2

∂β
(z)

)]
(x).

Now F2(z) = βG(z), with G = (F2(z)/β) the stem function that induces the spherical
derivative, then the last equation is equal to

2J

[
1

2

(
β
∂G

∂α
(z)− Jβ∂G

∂β
(z)− JG(z)

)]
=

= G(z) + 2Jβ

(
1

2

(
∂G

∂α
(z)− J ∂G

∂β
(z)

))
= ∂sf(x) + 2Im(x)

(
∂
∂x
∂sf
)

(x),

where of course, in the last equality ∂sf and ∂
∂x
∂sf are the slice functions induced by G

and 1
2
(∂G
∂α
− J ∂G

∂β
) respectively.

At this point we have proven the theorem in the case in which the point x is not real.
Now, if the function f is defined also on the real line, then, thanks to slice regularity we
have, in particular, that f is of class C∞. Therefore, recalling remark 1.4, we have that the
spherical derivative and its slice derivative extends continuously to the real line and the
proof of the theorem is concluded.

�

Remark 3.1. Since the previous theorem holds for any x0 ∈ ΩD, then , if x0 ∈ R, then
we have that ∂f

∂x
(x0) = ∂sf(x0).

Thanks only to the previous formula we get the value of s2.

Corollary 3.2. Let f ∈ SR(ΩD) be a slice regular function with spherical expansion
f(x) =

∑
n∈N Sy,n(x)sn centered in x0 ∈ ΩD then,

s2 =
∂

∂x
(∂sf)(x0).

Of course, even if we will not use it, the last formula can be easily generalized to the
case of n-th derivative, as the following corollary states.

Corollary 3.3. Let f ∈ SR(ΩD) be a slice regular function, then we have the following
formula: (

∂

∂x

)(n)

f(x) = ((A(n)f))(x) + ∂s(A)(n−1)f(x), ∀x = α + Jβ ∈ ΩD,

for any n ∈ N, where A denotes the operator 2Im(x) ∂
∂x
∂s and the apex (A)(n) denote the

composition of the operator A with itself n times.
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Proof. The proof is by induction. We yet know that ∂f
∂x

(x) = 2Jβ
(
∂
∂x
∂sf
)

(x)+∂sf(x),
but then,

∂2f

∂x2
(x) =

∂

∂x

(
∂f

∂x

)
(x)

= 2Jβ

(
∂

∂x
∂s

(
2Jβ

(
∂

∂x
∂sf

)
(x) + ∂sf(x)

))
(x)+

+∂s

(
2Jβ

(
∂

∂x
∂sf

)
(x) + ∂sf(x)

)
(x), ∀x ∈ ΩD,

and since ∂s(∂sf) ≡ 0 (see remark 1.4), we obtain the thesis for n = 2. With an analogous
argument it is possible to complete the induction.

�

Since in this thesis we will not need other information about the spherical coefficients,
we end this discussion here.

2. Rank of the real differential of a slice regular function

In [20, 46], the authors show the following theorem.

Theorem 3.4. ([46], theorem 6.1). Let f ∈ SR(ΩD) and x = α + Iβ ∈ ΩD. For all
v ∈ H, ||v|| = 1, it holds

lim
t→0

f(x+ tv)− f(x)

t
= vs1 + (xv − vxc)s2,

where s1 and s2 are the first two coefficients of the spherical expansion of f .

The previous theorem has an important corollary (see equation 3.3 in [20]), that was
anticipated in the introduction of this chapter.

Corollary 3.5. Let f ∈ SR(ΩD) and let (df)x denote the real differential of f at
x = α + Iβ ∈ ΩD \ R. If we identify TxH with H = CI ⊕ C⊥I , then for all v1 ∈ CJ and
v2 ∈ C⊥J ,

(df)x(v1 + v2) = v1(s1 + 2Im(x)s2) + v2s1 = v1
∂f

∂x
(x) + v2∂sf(x).

If α ∈ ΩD ∩ R then, the previous formula becomes the following one

(df)α(v) = v
∂f

∂x
(α) = v∂sf(α).

We will not give a proof of the previous theorem and corollary since the ones in [46] do
not use the additional hypothesis of nonempty intersection between the domain and the
real axis. The only feature needed for the proof is, in fact, the existence, for every slice
regular function, of a spherical expansion, but this is true also if the domain of definition



2. RANK OF THE REAL DIFFERENTIAL OF A SLICE REGULAR FUNCTION 55

of f does not intersects the real line as was shown in [33] (see theorem 1.8). For the second
part we only add that it can be seen as consequence of formula 18.

We now want to study the rank of a slice regular function. In [20] the authors prove
that an injective slice regular function defined over a circular domain with real points, has
invertible differential. The aim of the following pages is to extend this result to all injective
slice regular functions. Let’s start with a general result.

Proposition 3.6. ([20], proposition 3.3). Let f ∈ SR(ΩD) and x0 = α+Jβ ∈ ΩD\R.
• If ∂sf(x0) = 0 then:

– dfx0 has rank 2 if ∂f
∂x

(x0) 6= 0;
– dfx0 has rank 0 if ∂f

∂x
(x0) = 0.

• If ∂sf(x0) 6= 0 then dfx0 is not invertible at x0 if and only if 1 + 2Im(x0)s2s
−1
1 =

∂f
∂x

(x0)(∂sf(x0))−1 belongs to C⊥J .
Let now α ∈ ΩD ∩R. dfx0 is invertible at α if and only if its rank is not 0 at x0 = α+ Jβ.
This happens if and only if ∂sf(x0) = ∂f

∂x
(x0) 6= 0.

The proof of the previous statement can be found (with the appropriate change of
notation), on [20] (proposition 3.3) or in [25] (proposition 8.18).

Remark 3.2. As the previous theorem states, the rank of a slice regular function is
always an even number1.

Definition 3.2. Let f : Ω → H any quaternionic function of quaternionic variable.
We define the singular set of f as

Nf := {x ∈ Ω | df is not invertible at x}.

Remark 3.3. If a slice regular function f ∈ SR(ΩD) is constant on a surface S, then
S ⊂ Nf . This is obvious if S is in the degenerate set, but if S is not a degenerate sphere
then this is true as well. If S is a semislice D+

I for some I ∈ S, then the slice derivative of
f on that semislice is everywhere zero and so S ⊂ Nf . Suppose now that S is not in the
degenerate set, is not a semislice and f |S ≡ 0, then N(f) ≡ 0 and the last translates in
the system in equation 16. Deriving the first equation w.r.t. β and the second w.r.t. α we
obtain, for each z ∈ D,{

g(∂F1

∂β
(z), F1(z))− g(∂F2

∂β
(z), F2(z)) = 0

g(∂F1

∂α
(z), F2(z)) + g(∂F2

∂α
(z), F1(z)) = 0.

If now x0 = α0 + I0β0 ∈ S and z0 = α0 + iβ0 ∈ D, then f(x0) = 0, and so, if S is not
degenerate, F1(z0) = −I0F2(z0). Evaluating the previous system in z0 we obtain{

g(∂F1

∂β
(z0),−I0F2(z0))− g(∂F2

∂β
(z0), F2(z0)) = 0

g(∂F1

∂α
(z0), F2(z)) + g(∂F2

∂α
(z0),−I0F2(z0)) = 0,

1 This was also pointed out in [41].
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and, using regularity and the fact that for any p, q, r ∈ H, g(pq, r) = g(q, pcr), we get,{
g(I0(∂F1

∂β
(z0) + I0

∂F2

∂β
(z0)), F2(z0)) = β0||∂sf(x0)||g(∂f

∂x
(x0)(∂sf)(x0)−1, 1) = 0

g(I0(∂F1

∂α
(z0) + I0

∂F2

∂α
(z0)), F2(z0)) = β0||∂sf(x0)||g(∂f

∂x
(x0)(∂sf)(x0)−1, I0) = 0,

and so for any x0 ∈ S we have that x0 ∈ Nf .

The following theorem will characterize the set Nf of singular points of f . In particular,
the next theorem generalizes a well known concept in real and complex analysis i.e.: the
fact that if the differential of a function is singular in some point x0, then, the function
can be expanded in a neighborhood of x0 as

f(x) = f(x0) + o((x− x0)2).

Theorem 3.7. ([20], proposition 3.6). Let f ∈ SR(ΩD) and let x0 = α + βI ∈ ΩD.
Then x0 ∈ Nf if and only if there exists a point x̃0 ∈ Sx0 and a function g ∈ SR(ΩD) such
that the following equation hold:

f(x) = f(x0) + (x− x0) · (x− x̃0) · g(x).

Equivalently, x0 ∈ Nf if and only if the function f − f(x0) has total multiplicity n ≥ 2 in
Sx0.

The proof of the last theorem is analogous to the one in proposition 3.6 of [20]. However,
we will rewrite the proof in our setting with our notations. Before proving the last theorem
we recall from [20] the following remark.

Remark 3.4. For all x0 = α+ Jβ ∈ H \R, setting Ψ(x) := (x− x0)(x− xc0)−1 defines
a stereographic projection of α + Sβ onto the plane C⊥J from the point xc0. Indeed, if we
choose K ∈ S with K⊥J then for all x = α + βL with L = tJ + uK + vJK ∈ S we have
Ψ(x) = (L− J)(L+ J)−1 = u+vJ

1+t
JK and CJ ·K = (R + RJ)JK = C⊥J .

We are now able to pass to the proof of the theorem.
Proof. If x0 ∈ ΩD \ R then it belongs to Df iff, f is constant on the sphere Sx0 , i.e.

there exists a slice regular function g : ΩD → H such that

f(x)− f(x0) = ∆x0(x)g(x).

This happens if and only if the coefficient s1 = ∂sf(x0) in the spherical expansion vanishes.
Let now pass to the case x0 ∈ ΩD \R, x0 /∈ Df . Thanks to proposition 3.6, x0 ∈ Nf iff,

1 + 2Im(x0)s2s
−1
1 = p ∈ C⊥J . Thanks to remark 3.4, p ∈ C⊥J iff there exists x̃0 ∈ Sx0 \ {xc0}

such that p = (x̃0 − x0)(x̃0 − xc0)−1. The last formula is equivalent to

2Im(x0)s2s
−1
1 = (x̃0 − x0)(x̃0 − xc0)−1 − (x̃0 − xc0)(x̃0 − xc0)−1

= (x̃0 − x0 − x̃0 + xc0)(x̃0 − xc0)−1

= −2Im(x0)(x̃0 − xc0)−1,
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that is s1 = (xc0− x̃0)s2. Writing then the first terms of the spherical expansion of f around
x0 we have:

f(x) = s0 + (x− x0)s1 + ∆x0(x)s2 + ∆x0(x)(x− x0) · h(x)
= s0 + (x− x0)(xc0 − x̃0)s2 + ∆x0(x)s2 + ∆x0(x) · (x− x0)h(x)
= s0 + (x− x0)(xc0 − x̃0)s2 + ∆x0(x)s2 + (x− x0) · (x− xc0) · (x− x0) · h(x)
= s0 + (x− x0) · [(xc0 − x̃0 + x− xc0)s2 + ∆x̃0(x)h(x)]

= s0 + (x− x0) · (x− x̃0) · [s2 + (x− x̃c0h(x))]

= f(x0) + (x− x0) · (x− x̃0) · [s2 + (x− x̃c0h(x))],

for some slice regular function h : ΩD → H, where we used the following facts:
• (x− x0)(xc0 − x̃0) = (x− x0) · (xc0 − x̃0) because the second factor is constant;
• ∆x0(x)(x− x0) = ∆x0(x) · (x− x0) because the first factor is a real slice function;
• (x− xc0) · (x− x0) = ∆x0(x);
• ∆x0(x) = ∆x̃0(x) because x̃0 ∈ Sx0 .

Finally, if x0 ∈ ΩD ∩ R then s1 = 0 iff

f(x) = f(x0) + (x− x0)2 · l(x) = f(x0) + (x− x0) · (x− x0) · l(x),

for some slice regular function l : ΩD → H.
�

For the main result we need, now, two lemmas, the first of which regards the topology of
the singular set of a slice regular function, while the second regards the spherical behavior
of an injective (possibly non regular) slice function.

Lemma 3.8. Let f : ΩD → H ∈ SR(ΩD) be non slice-constant. Then its singular set
Nf has empty interior.

Proof. Since Df = V (∂sf) then it is closed in ΩD. So, since Df ⊂ Nf , then the thesis
is that Nf \Df has empty interior.

Let x0 ∈ Nf \ Df and ad absurdum let R > 0 be a real number such that the open
Euclidean ball B = B(x0, R) centered in x0 with radius R is fully contained in Nf \ Df .
For any y ∈ B the spherical derivative ∂sf(x0) 6= 0 and, by the previous theorem 3.7,
there exists a slice regular function hy : ΩD → H such that N(f − f(y)) = ∆y(x)2h(x),
where N(f − f(y)) is the normal function of f − f(y). Computing the slice derivative of
N(f − f(y)) and evaluating in x = y we obtain

(19) 0 =

[
∂N(f − f(y))

∂x

]
x=y

=

[
∂f

∂x
· (f − f(y))c

]
x=y

.

There are two cases 1) ∂f
∂x

(y) = 0 or 2) ∂f
∂x

(y) 6= 0. Case 2) implies, using formula 1.8, that

f

(
∂f

∂x
(y)−1y

∂f

∂x
(y)

)
= f(y).

Case 1) can be divided into two sub-cases: i) y = α + Iβ is an isolated zero for the slice
derivative in D+

I or ii) ∂f
∂x

+

I
≡ 0. If ii) holds true, then we change our point y considering
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another point ω ∈ B lying on another different semislice. Then, ω can only be an isolated
zero on its semislice for the slice derivative of f (otherwise f would be slice constant). The
only possibility is, therefore, case i). If we are in case 1), i) then we can find a positive real
number r such that the two dimensional disc ∆ = ∆I(x0, r) is contained in B ∩ C+

I and,
for any x ∈ ∆ \ {y} we have ∂f

∂x
(x) 6= 0. For any y′ ∈ ∆ \ {y} we are in case 2) and, again,

there are two sub cases: A) ∂f
∂x

(y′)−1y′ ∂f
∂x

(y′) 6= y′ or B) ∂f
∂x

(y′)−1y′ ∂f
∂x

(y′) = y′. If there is a
point that satisfies case A), then f would be equal to some quaternion p both in y′ and in
∂f
∂x

(y′)−1y′ ∂f
∂x

(y′) and this would implies, using the representation theorem, that f |Sy ≡ p
that is Sy ∈ Df . So, the only possible case is, finally, B). But if condition B) holds true
for any y ∈ ∆ \ y′, then

y
∂f

∂x
(y) =

∂f

∂x
(y)y,

and so, for any y ∈ ∆ \ y′, ∂f
∂x

(y) belongs to CI and so, thanks to theorem 2.2, this is true
for any point in D+

I . We claim that this is not possible. In fact, if α + Iβ = y ∈ B, then
∂f

∂x
(y)∂sf(y)−1 ∈ C⊥I

and this is true if and only if
∂f

∂x
(y)∂sf(y)−1Im(y) = −Im(y)

∂f

∂x
(y)∂sf(y)−1.

If, now, ∂f
∂x

(y) belongs to CI then it commutes with Im(y) and so

∂sf(y)−1Im(y) = −Im(y)∂sf(y)−1

and ∂sf(y) ∈ C⊥I for each y ∈ D+
I . This implies that there exists an imaginary unit

J ∈ S orthogonal to I and a function g : D+
I → R such that, for any y ∈ D+

I it holds
∂sf(y) = 1

β
g(y)J . Since the spherical derivative is independent from the imaginary unit I

then it is g as well. Since f = I(F1 +
√
−1F2) is a slice regular function, then(

∂f

∂x

)+

I

=
∂F2

∂β
− I ∂F2

∂α
=

(
∂g

∂β
− I ∂g

∂α

)
J

and this is not possible since, as we said, the slice derivative belongs to CI .
�

Lemma 3.9. Let f = I(F ) : ΩD → H be an injective slice function. Then for all
x = α + Jβ ∈ ΩD \ R, ∂sf(x) 6= 0.

Proof. We know that ∂sf(x) = 0 if and only if f is constant on the sphere Sx (see
remark 1.4). But then if f is injective then ∂sf(x) 6= 0 for all x ∈ ΩD \ R.

�

Now we have that every injective slice regular function has real differential with rank
at least equal to 2. The next step is to prove that for every injective slice regular function
f the slice derivative ∂f

∂x
is everywhere different from 0. To do that we need to introduce
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some tools from complex analysis. The main reference for the following is the book by
Heins [37].

Definition 3.3. Given a holomorphic function f : D ⊂ C → C we define the multi-
plicity of f at a point x ∈ D as the number:

n(x; f) := inf{k ∈ N \ {0} | f (k)(x) 6= 0},
f (k)(x) denoting the kth derivative of f w.r.t. z evaluated in x.

This notion of multiplicity, given for complex holomorphic functions, must not be con-
fused with the one of total multiplicity given in chapter 1.

Definition 3.4. Given a holomorphic function f defined over a region D we define
the valence of f at w ∈ C ∪ {∞} as

vf (w) :=

{
+∞, if the set {f(z) = w} is infinite;∑

f(z)=w n(z; f), otherwise.

If f does not take the value w, then vf (w) is obviously equal to zero. It turns out
that, for any r > 0, such that D(x; r) ⊂ D, the valence at w of f |D(x;r) is constant on
each component of (C ∪ {∞}) \ f(∂D(x; r)), where D(x; r) denote the disc centered in x
of radius r. Now we can pass to the quaternionic setting. We recall that any slice regular
function admits a splitting into two complex holomorphic function as stated in lemma 1.4.
So, let f ∈ SR(ΩD) and J⊥K two elements of S. Then there exists two holomorphic
functions f1, f2 : DJ → CJ such that

fJ = f1 + f2K.

We can now state the following theorem.

Theorem 3.10. Let f = I(F ) : ΩD → H be an injective slice regular function. Then
its slice derivative ∂f

∂x
is always different from zero.

Proof. What we want to prove is that, for any x0 = α + Jβ ∈ ΩD

∂f

∂x
(x0) 6= 0.

First of all, thanks to the identity principle 2.2 applied to the slice derivative of f , if
∂f/∂x is equal to zero in y ∈ D+

I ⊂ ΩD, for some I ∈ S, then y is isolated in D+
I . Since

f is slice regular, for any K orthogonal to J in S, there exist two holomorphic functions
f1, f2 : D+

J → CJ such that f+
J = f1 + f2K. Thanks to lemma 2.1 of [33], we have then

that
∂f

∂x
(x0) =

∂f1

∂z
+
∂f2

∂z
K,

and so the thesis becomes that at least one of the two derivatives ∂f1
∂z

, ∂f2
∂z

is different from
zero. Moreover, since f is injective, then also f+

J = f |D+
J
is injective. So, if one between f1

and f2 is constant, then the other one must be injective, and so we will have an injective
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holomorphic function and the thesis will follow trivially. Let’s suppose then that both f1

and f2 are non-constant functions and fix the following notations:

n(x; f) := inf{k ∈ N \ {0} | ∂
kf

∂xk
(x) 6= 0},

n1(x; f) := inf{k ∈ N \ {0} | f (k)
1 (x) 6= 0},

n2(x; f) := inf{k ∈ N \ {0} | f (k)
2 (x) 6= 0}.

Using again lemma 2.1 of [33], it is easy to see that, for every x ∈ D+
J ,

n(x; f) = min(n1(x; f), n2(x; f)).

Moreover, since f is non-constant then the null set of its slice derivative restricted to the
semislice D+

J is discrete. Let now B1 := B1(x0; r1), B2 := B2(x0; r2) be two balls such that
their closure is contained in D+

J and fi take the value fi(x0) on Bi only at x0 and such
that ∂fi

∂z
(z) 6= 0 for any z ∈ Bi \ {x0}. Let now B = B1 ∩ B2, then the valence vfi(fi(z))

of fi|B is constant and equal to ni(z; f) in the component of (CJ ∪ {∞}) \ f(∂B) which
contains fi(z). Since n(x; f) = min(n1(x; f), n2(x; f)) and n(x; f) = 1 a.e. suppose that
∃y ∈ B such that 1 = n(y; f) = n1(y; f). Then n1 is constant and equal to 1 in B and so
we have the thesis.

�

Remark 3.5. The proof of the previous statement works also to prove that a slice
regular function f : ΩD → H injective on a semislice D+

J ⊂ ΩD has slice derivative nonzero
over the same semislice D+

J . We choose to formalize the theorem in the previous less
general hypothesis only to simplify the reading.

Theorem 3.11. Let f be an injective slice regular function, then Nf = ∅.

Proof. If, by contradiction, there exists x0 = α + Jβ ∈ Nf 6= ∅, then, thanks to
theorem 3.7, the function f − f(x0) must have multiplicity n greater or equal to 2 in Sx0 .
This means that,

f(x)− f(x0) = (x− x0) · g(x),

with g ∈ SR(ΩD) such that g(x1) = 0 for some x1 ∈ Sx0 . Since f is injective, then
g(x0) = ∂f

∂x
(x0) 6= 0 and g(xc0) = ∂sf(x0) 6= 0, and so x1 6= x0, x

c
0. Now, whereas we know

the values of g at x0 and at xc0, we can apply the representation formula in theorem 1.1 to
analyze the behavior over the sphere Sx0 . The result is the following,

g(α + Iβ) =
1

2

(
∂f

∂x
(x0) + ∂sf(x0)− IJ

(
∂f

∂x
(x0)− ∂sf(x0)

))
, ∀I ∈ S.
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So, if there exists I ∈ S such that g(α + Iβ) = 0, then,
∂f

∂x
(x0) + ∂sf(x0) = IJ

(
∂f

∂x
(x0)− ∂sf(x0)

)

⇔ ∂f

∂x
(x0)(∂sf(x0))−1 + 1 = IJ

(
∂f

∂x
(x0)(∂sf(x0))−1 − 1

)

⇔ ∂f

∂x
(x0)(∂sf(x0))−1 = −(1− IJ)−1(1 + IJ),

with I 6= J,−J , but then, since for I 6= ±J the product −(1 − IJ)−1(1 + IJ) has a non
zero real part, ∂f

∂x
(x0)(∂sf(x0))−1 does not belong to C⊥J and this is in contradiction with

proposition 3.6.
�

Example 3.1. Let J ∈ S be a fixed imaginary unit and f : H \ R → H be the slice
regular function defined at the end of the second chapter,

f(α + Iβ) = (α + Iβ)(1− IJ).

We remember that this function is constructed, by means of the representation formula, to
be equal to zero over the semislice C+

−J and to be equal to 2x over the opposite semislice
C+
J . What we want to show is that the restriction f |H\(R∪C+

−J ) is injective. This is trivial
if we restrict the function to a semislice C+

I , so let x1 = α1 + β1I1 6= α2 + β2I2 = x2, with
I1 6= I2, then

f(x1) = f(x2)⇔
⇔ x1(1− I1J) = x2(1− I2J)⇔
⇔ x1I1(I1 + J) = x2I2(I2 + J)⇔

⇔ (x2I2)−1(x1I1) = −1
c
(I2 + J)(I1 + J),

where c = ||I1 +J ||2 6= 0. Translating the variables x1, x2 into their components, we obtain
that, the last equality is equivalent to the following one:

− 1

α2
2 + β2

2

[−β1β2 + α1β2I1 − α2β1I2 + α1α2I1I2] = −1

c
[I2I1 + I2J + JI1 − 1].

Now we can decompose the last equation into the system involving the real and imaginary
parts as follows:

c

α2
2 + β2

2

[β1β2 + α1α2I2 · I1] = 1 + I1 · I2 + (I1 + I2) · J

c

α2
2 + β2

2

[α1β2I1 − α2β1I2 + α1α2I2 ∧ I1] = I2 ∧ I1 + (I2 − I1) ∧ J

where I · J and I ∧ J denote the scalar and the vector products2 respectively in R3. We
will work now on the second equation of the previous system. Firstly, multiplying scalarly

2Here we used the ’scalar-vector’ notation.
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the equation by I2 − I1, we obtain that
α1β2 = −α2β1.

Substituting α1 = −β1
β2
α2 and multiplying scalarly by I1 + I2 it follows that

(I2 ∧ I1) · J =
c

2

α1β2

α2
2 + β2

2

.

Taking into account the previous results and multiplying scalarly by J and then by I1 (or
I2), and supposing α2 6= 0, we obtain the following two equalities:

(I1 + I2) · J = −1

2

[
1 + c

α2

β2

α2β1

α2
2 + β2

2

]
, I1 · I2 = −1

2
.

Putting all these ingredients in the first equation of the system one obtain that:
cβ1

α2
2 + β2

2

[
β2 +

α2
2

2β2

]
= −1

2

cβ1

α2
2 + β2

2

α2
2

β2

,

and this is possible if and only if β2
2 = −α2

2, which is absurd. If now α2 = 0, following the
first part of the same argument, we obtain α1 = 0 and so,

(20) − cβ1

β2

= I2I1 + I2J + JI1 − 1.

But then, the imaginary part of I2I1+I2J+JI1, that is I2∧I1+I2∧J+J∧I1, must vanishes.
This implies that (I2∧ I1) ·J = 0 i.e.: J = AI1 +BI2, for some A and B real numbers both
different from zero. In this case equation 20 becomes A + B + 1− cβ1

β2
= (1 + A + B)I1I2

and so I1 ∧ I2 = 0. The last equalities (since I1 6= I2), entails I1 = −I2 but this would
imply β1

β2
= 0 and this is not possible.

Since this function, with the proper restriction, is slice regular and injective then the-
orem 3.11 says that its real differential is always invertible. This fact could also be seen
computing the slice and the spherical derivative. Indeed, since

∂sf(α + Iβ) =
β − αJ
β

,

is always different from zero, we need only to control that the product ∂f
∂x

(α+ Iβ)(∂sf(α+

Iβ))−1 does not belong to C⊥I . Now,

∂f

∂x
(α + Iβ)(∂sf(α + Iβ))−1 = (1− IJ)

(
β − αJ
β

)−1

=
β(1− IJ)(β + αJ)

β2 + α2
,

and so, whenever I 6= −J , the previous product has a nonzero real part and so does not
belong to C⊥I .

Remark 3.6. The reader could ask why we didn’t follow the way of proving theorem
3.11 by Gentili, Salamon and Stoppato in [20]. The answer is that that proof does not
work in the case in which the domain of the function does not have real points. This fact,
rather than being a mere observation, gives space to interesting considerations that are not
studied in this thesis. To be precise, the theorem that fails is the following:
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Theorem 3.12. ([20], theorem 3.9) Let f : ΩD → H be a non-
constant regular function, and let ΩD∩R 6= ∅. For each x0 = α+Iβ ∈ Nf ,
there exists a n > 1, a neighborhood U of x0 and a neighborhood T of Sx0
such that for all x1 ∈ U , the sum of the total multiplicities of the zeros of
f − f(x1) in T equals n.

A counter example, if the domain does not have real points, is given by the function,
f : H \ R→ H

α + Iβ 7→ (α + Iβ)(1− IJ),

for a fixed J ∈ S. As we have seen, this function is injective over H \ (R∪C+
−J), and so, if

we take x0 = −J ∈ Nf , for any neighborhood U of −J and any neighborhood T of S−J the
sum of total multiplicities of the zeros of f −f(x1), for any x1 ∈ U \C+

−J is equal to 1. The
previous function is constructed to be equal to 0 over C+

−J and equal to 2x over C+
J , but

other more complex examples can be build in this way, for example considering a function
equal to some monomial xm on a semislice and equal to another different monomial xn on
the opposite. This fact was already pointed out in remark 1.22 where was said that this
feature will certainly be a starting point for future investigations.





CHAPTER 4

Applications to differential geometry

In this final chapter we will explore an interesting application of the theory of slice
regular functions to some aspects of the complex geometry of R4. We will start with some
basic definitions (for general references see book [38]).

Let (Ω2n, g) be a 2n-dimensional oriented Riemannian manifold. An almost complex
structure over Ω is an endomorphism J : TΩ→ TΩ, defined over the tangent bundle such
that J2 = −id. An almost complex structure is said to be a complex structure if J is
integrable, meaning, for instance, that the associate Nijenhuis tensor

NJ(X, Y ) = [X, Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ],

vanishes everywhere for each couple of tangent vectors X and Y ; it is said to be orthogonal
if it preserves the Euclidean product, i.e. g(JX, JY ) = g(X, Y ) for each couple of tangent
vectors X and Y and preserves the orientation of Ω. Collecting everything, an orthogonal
complex structure (OCS) is an almost complex structure which is integrable and orthogonal.

Of course, if J is an OCS w.r.t. some Riemannian metric g, then if we change g
with a conformal equivalent metric h, J remains an OCS w.r.t. h as well. If Ω is a
four dimensional open subset of R4, then the resulting theory is invariant by the group of
conformal automorphisms of H ∪ {∞} ' S4.

For an open subset Ω of R4 endowed with the standard Euclidean metric it is possible
to construct standard OCSes, called constant, in the following way: think R4 as the space
of real quaternions H, then fix any element q ∈ H such that q2 = −1. Identifying each
tangent space TpΩ with H himself, we define the complex structure everywhere by left
multiplication by q, i.e. Jpv = qv. A standard example is the OCS defined everywhere as
the left multiplication by i. Any OCS defined globally on H is known to be constant (see
proposition 6.6 in [49]), moreover it was proven in [43] the following result.

65
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Theorem 4.1. Let J be an OCS of class C1 on R4 \ Λ, where Λ is a closed set of
zero 1-dimensional Hausdorff measure. Then either J is constant or J can be maximally
extended to the complement of a point R4 \ {p}. In both cases, J is the push-forward of the
standard OCS on R4 under a conformal transformation.

In the same paper it was proven the following result which completely solve the situation
in a very particular case.

Theorem 4.2. Let J be an OCS of class C1 on R4 \ Λ, where Λ is a round circle or a
straight line, and assume that J is not conformally equivalent to a constant OCS. Then J
is unique up to sign, and R4 \ Λ is a maximal domain of definition for J .

In this context it is possible to construct explicitly the OCS J as follows. As we already
saw many times in this thesis, a point x in H can be written as x = x0 + x1i + x2j + x3k
(with the usual multiplication rules of quaternions), or, if x ∈ H\R, as x = α+ Ixβ, where
α = x0, Ix = (x1i + x2j + x3k)/

√
x2

1 + x2
2 + x2

3 and β =
√
x2

1 + x2
2 + x2

3. Then, for each
x = α+ Ixβ ∈ H \R we define J such as Jxv = Ixv, for each v ∈ Tx(H \R). Since the last
is an OCS over H \ R, then J and −J are the only non-constant OCSes on this manifold
(up to conformal transformations).

In [20] the authors proposed a new way to study the problem when Λ is a closed set
in R4 of different type. The idea is to take the OCS previously defined J and to push it
forward on the set we are interested in. To do this we need to be sure that the function f ,
considered to push forward, preserves the properties of J. Well, if the function f is a slice
regular function, then this is true.

What we are going to do now is to restore the theoretical work of [20] in our setting
of slice regular functions on domains without real points. Then we will try to explore
this construction from another point of view: we will show some results regarding the
quality of the OCSes that can be reached by our construction. This will be done thanks
to the twistorial interpretation of the theory, saying that any slice (regular) function f :
ΩD → H lifts to a (holomorphic) curve in the twistor space CP3 of H ∪ {∞} ' S4.
The complex projective space CP3 is in fact the twistor space of (S4, grnd) (i.e.: the total
space of a bundle parametrizing orthogonal almost complex structures on S4), and we let
π : CP3 → S4 denotes the twistor projection with fiber CP1. We already know (see e.g.:
[43]), that complex hypersurfaces in CP3 produce OCSes on subdomains of S4, wherever
such a hypersurface is a single-valued graph. Conversely, any OCS J on a domain Ω
generates a holomorphic hypersurface in CP3. Starting from that we will explore in more
details this relation between these two theories.

At the end we will study a very particular case that fit very well in our theory and that
will give a constructive result regarding the existence of a biholomorphism between a four
dimensional open half space endowed with a constant OCS and a dense subset of R4 with
a non-constant OCS.
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1. Twistor lift

We can start the whole story thanks to theorems 2.14 and 3.11 that extend, as said,
two results proved, respectively in [22] and in [20].

In particular, thanks to theorem 3.11 it is possible to define the push forward of the
following OCS defined over H \ R.

Definition 4.1. Let p = α+ Ipβ ∈ X = H \R. We define the following OCS over X:

Jpv =
Im(p)

||Im(p)||
v = Ipv,

where v is a tangent vector of X in p, and we are identifying TpX ' H and Ipv denotes
the quaternionic multiplication between Ip and v.

Given an injective slice regular function f : ΩD → H we define the pushforward of J
via f on f(ΩD \ R) as:

Jf := (df)J(df)−1,

for any v ∈ Tf(p)f(ΩD \ R) ' H.
The following theorem explains the action of the push-forward of J via a slice regular

function.

Theorem 4.3. Let f : ΩD → H be an injective slice regular function and p = α+Ipβ ∈
ΩD. Then

Jff(p)v =
Im(p)

||Im(p)||
v = Ipv.

Moreover Jf is an OCS on the image of f .

Proof. The theorem can be proved as in [20], but we will write again the proof using
the representation in theorem 3.5 of the real differential of a slice regular function. The
thesis follows thanks to the next computations. Let v be a tangent vector to f(ΩD \R) in
f(x)

Jff(x)v = (df)xJx(df)−1
f(x)v = ~.

Putting (df)−1
f(x)v = w and denoting by w> and w⊥, respectively, the tangential and or-

thogonal part of w w.r.t. CIx , we obtain,

~ = (df)xJxw = (df)xIxw

= Ixw>
∂f

∂x
(x) + Ixw⊥∂sf(x)

= Ix(df)xw = Ixv.

For the second part of the theorem we refer again in [20].
�

At this point one could ask if it is possible to construct a twistor theory also for slice
regular functions that do not extend to the real line. To be more clear, if ΩD ∩ R = ∅,
then is it possible to construct its twistor lift as explained in theorem 5.3 of [20]? Well,
the answer is yes and it is explained in the next pages.
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First of all we need to introduce coordinates for the sphere S of imaginary units. For
this purpose we will follow the construction in section 4 of [20]. For any complex number u
we define the following quaternion Qu := 1 + uj. Let, now, φ be the following application:

φ : C× C+ → H
(u, v) 7→ Q−1

u vQu

By direct computation it is clear that φ(u, α+ Jβ) ∈ α+Sβ and so, for any J ∈ S, the
number φ(u, J) belongs to S as well. Fix now J to be equal to i, then, for each q ∈ H \R,
there exists a unique couple (u, v) ∈ C × C+ such that q = φ(u, v). In particular, if
q = α + Iβ, β > 0, then, {

v = α + iβ
u = −i b+ic

1+a
,

where I = ai+ bj + ck. And, finally, we obtain the following representation,
α + Iβ = φ(u, v) = Q−1

u vQu = α +Q−1
u iQuβ.

At this point we can pass to reintroduce the twistorial interpretation of the quaternionic
analysis. Let HP1 be the left quaternionic projective line, i.e. the set of equivalence classes
[q1, q2] = [pq1, pq2], for every p ∈ H∗. We embed H in HP1, sending a quaternion q in
the affine line [1, q]. This definition of quaternionic projective line enable us to define the
twistor projection

π : CP3 → HP1

[X0, X1, X2, X3] 7→ [X0 +X1j,X2 +X3j].

This map is well defined, in fact, if we change the representative (X0, X1, X2, X3) in C4\{0},
this will not affect the image in the quaternionic projective line. Moreover, the embedding
of H \ R in HP1 via the function q → [1, q], can be viewed, also, in the following way:

[1, q] = [1, Q−1
u vQu] = [Qu, vQu]

= [1 + uj, v + vuj] = π[1, u, v, uv],

and so, we have obtained, as in [20], the following proposition.

Proposition 4.4. The complex manifold (H\R, J) is biholomorphic to the open subset
Q+ of the quadric

(21) Q = {[X0, X1, X2, X3] ∈ CP3 | X0X3 = X1X2},
such that at least one of the following conditions is satisfied:

• X0 6= 0 and X2/X0 ∈ C+,
• X1 6= 0 and X3/X1 ∈ C+.

Now we have all the ingredients to state the following theorem which generalizes theo-
rem 5.3 of [20].

Theorem 4.5. Let D be a domain of C and ΩD ⊂ H its circularization. Let f : ΩD →
H be a continuous slice function. Then f admits a twistor lift to O = π−1(ΩD \ R) ∩ Q+,
i.e.: there exist a continuous function f̃ : O → CP3, such that π ◦ f̃ = f ◦ π. Moreover f
is slice regular if and only if f̃ is a holomorphic map.
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As we said, this theorem was already proven in [20], when the domain D has nonempty
intersection with the real line and the function f is regular. Our proof contemplate also the
case in which f does not extends to the real line and it is not regular, so it is more general.
To add this extension we will use the previous described formalism of stem functions to
which we add this trivial lemma that is a consequence of lemma 6.11 of [29].

Lemma 4.6. Let f = I(F ) : ΩD → H be a slice function induced by the stem function
F : D → HC. Then, for each couple I, J ∈ S such that I⊥J , there exist two stem functions
F>, F⊥ : D → CI ⊗R C, such that f = f> + f⊥J with f> = I(F>), while f⊥ = I(F⊥).

Now we pass to the proof of theorem 4.5.
Proof. Since f is a slice function, then it is induced by a stem function F : D → HC

such that, for q = α + Iβ ∈ ΩD,

f(q) = f(α + Iβ) = f(α +Q−1
u iQuβ) = F1(α + iβ) +Q−1

u iQuF2(α + iβ).

Thanks to the previous lemma f can be written also as f = f> + f⊥j, with f> = I(F>),
f⊥ = I(F⊥), F>, F⊥ : D → Ci⊗RC. Now, each stem function splits into two components,
F> = F>1 +

√
−1F>2 and F⊥ = F⊥1 +

√
−1F⊥2 , and we define, for i ∈ S, F>i = pi ◦ F> and

F⊥i = pi ◦F⊥, where pi is the map that sends
√
−1 to i (e.g.: if w = x+

√
−1y ∈ HC, then

pi(w) = x+ iy). To resume we have the following diagram

D Ci ⊗R C

Ci

.................................................................................................................................................................................. ............
F>, F⊥

...................................................................................
.....
.......
.....

pi

................................................................................................................................................................................................................................... .........
...

F>i , F
>
i

Letting finally q = α + Iβ and v = α + iβ and remembering that Qu = 1 + uj, we can
compute,

[1, f(q)] = [1, f(Q−1
u (α + iβ)Qu)]

= [1, f(α +Q−1
u iQuβ)]

= [1, F>1 (v) +Q−1
u iQuF

>
2 (v) + F⊥1 (v)j +Q−1

u iQuF
⊥
2 (v)j]

= [Qu, F
>
1 + ujF>1 + iF>2 + uijF>2 + F⊥1 j + ujF⊥1 j + iF⊥2 j + uijF⊥2 j] = ~,

where in the last equality we have omitted the variable v. Now, for any w ∈ Ci, we have
that jw = wcj and jwj = −wc and so, identifying Ci with C,

~ = [Qu, F
>
1 + uF>c1 j + iF>2 + uiF>c2 j + F⊥1 j − uF⊥c1 + iF⊥2 j − uiF⊥c2 ]

= [Qu, F
>
1 + iF>2 + (F⊥1 + iF⊥2 )j + u((F>c1 + iF>c2 )j − (F⊥c1 + iF⊥c2 ))]

We finally obtain the coordinates of the lift:

(22) f̃ [1, u, v, uv] = [1, u, pi ◦ F>(v)− u(pi ◦ F⊥c(v)), pi ◦ F⊥(v) + u(pi ◦ F>c(v))].

But now, remembering that F>, F⊥ are holomorphic stem functions, then, we have that f
is slice regular if and only if f̃ is a holomorphic map.

�
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Remark 4.1. Starting with a regular slice function f , one can repeat the computations
in the following way

[1, f(q)] = [1, f(Q−1
u (α + iβ)Qu)]

= [1, f(α +Q−1
u (i)Quβ)]

= [1, F1(α + iβ) +Q−1
u (i)QuF2(α + iβ)]

= [Qu, QuF1(α + iβ) + iQuF2(α + iβ)]
= [1 + uj, (1 + uj)F1(α + iβ) + i(1 + uj)F2(α + iβ)]
= [1 + uj, f(α + iβ) + ujf(α− iβ)]
= [1 + uj, f(v) + ujf(v̄)] = ~.

At this point, using the splitting in lemma 1.4, we can write fi(v) = g(v) + h(v)j, where
g, h : Di → Ci are holomorphic functions. Denoting by ĝ(v) = g(v̄), ĥ(v) = h(v̄), we
obtain

ujf(α− iβ) = u(ĝ(v)j − ĥ(v)),

and then

(23) ~ = [1 + uj, g(v) + h(v)j − uĥ(v) + uĝ(v)j]

= π[1, u, g(v)− uĥ(v), h(v) + uĝ(v)],

and so the lift coincide with the one computed in [20]

Remark 4.2. It will be useful to notice that the twistor lift of a slice regular function
is always a rational map over its image.

Thanks only to the general shape of the lift given in equation 22, we are able to prove
the following result. Given a slice regular function f we will say that its twistor lift f̃ lies
on a certain variety S if the image of f̃ is contained in S.

Theorem 4.7. Let f : H \ R→ H be a slice regular function. Then its twistor lift lies
over the quadric in equation 21 if and only if f is a real slice function.

Proof. Since the parametrization of the lift f̃ is given by equation 22, then the condition
of lying on the quadric 21 is encoded by the following system of equations

{
pi ◦ F⊥c = 0 = pi ◦ F⊥(24)
pi ◦ F>c = pi ◦ F>,(25)

and so the slice regular function f with lifting equal to f̃ can be constructed, thanks
to equation 24, to be equal to,

f(α + Iβ) = f>(α + Iβ) = F>1 (α + iβ) + IF>2 (α + iβ).

But, thanks to equation 25 we have that

F>1 (α + iβ) + IF>2 (α + iβ) = F>c1 (α + iβ) + IF>c2 (α + iβ),

which implies that both F>1,2 are real functions and so f is real.
The converse is trivial.
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�
Of course it is interesting in the context of OCSes to classify projective hypersurfaces

in CP3 under the action of the conformal group of S4 acting on CP3 as a subgroup of the
holomorphic automorphism group PGL(4,C) (this is explained in section 2.7 of [43]). But
such a classification was already given for quadric surfaces in [43] as follows.

Theorem 4.8. (Salamon-Viaclovsky) Any non-singular quadric hypersurface in
CP3 is equivalent under the action of the conformal group of S4 to the zero set of

(26) eλ+iνX2
0 + e−λ+iνX2

1 + eµ−iνX2
2 + e−µ−iνX2

3 ,

or the zero set of

(27) i(X2
0 +X2

1 ) + k(X1X3 −X0X2) +X1X2 −X0X3,

where in the first case a couple of parameters (λ, µ, ν), (λ′, µ′, ν ′) define two quadrics in
the same equivalence class if and only if (λ, µ, ν) and (λ′, µ′, ν ′) belong to the same orbit
under the group Γ of transformation of R3 generated by the four maps

(λ, µ, ν) 7→ (λ, µ, ν + π
2
)

(λ, µ, ν) 7→ (−λ, µ, ν)

(λ, µ, ν) 7→ (λ,−µ, ν)

(λ, µ, ν) 7→ (µ, λ,−ν),

while k ∈ [0, 1) is a complete invariant in the second case.

With this result the authors of [43] where able to describe the geometry of non-singular
quadric surfaces under the twistor projection π. Defining the discriminant locus of a
hypersurface S of degree d as the set of point D in S4 such that π−1(p)∩S has cardinality
different from d then the following theorem describe the possible cases that can occur for
d = 2.

Theorem 4.9. (Salamon-Viaclovsky) For any non-degenerate quadric Q there are
three possibilities.

(1) Q is a real quadric with discriminant locus a circle in S4 and Q contains all the
twistor lines over the circle.

(2) Q contains exactly one or exactly two twistor lines. In these cases the discriminant
locus is a singular torus pinched at one or two points, respectively.

(3) Q does not contain any twistor lines. In this case the discriminant locus is a torus
T2 ⊂ S4 with a smooth unknotted embedding.

Moreover if Q is the zero locus of the polynomial in (26) with 0 ≤ λ ≤ µ and 0 ≤ ν < π/2,
then

(1) Q contains a family of twistor lines over a circle if and only if λ = µ = ν = 0,
(2) Q contains exactly two twistor lines if and only if λ = µ 6= 0 and ν = π/2,
(3) Q contains no twistor lines in the other cases.

Finally if Q is the zero locus of the polynomial in 27 with k ∈ [0, 1), then the corresponding
quadric Q contains exactly one twistor line.
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Now, the next result states that every non-singular quadric in the previous classification
can be reached by the lift of a slice regular function. Before stating it and proving it we
just remark that, given the Representation formula for slice functions, exhibiting a slice
function is equivalent to exhibit its defining stem function or its splitting over a complex
plane CI for some I ∈ S. In fact, in the next proofs we will construct g and h starting
from equation 23.

Theorem 4.10. For any non-singular quadric in the classification of theorem 4.9 there
is a equivalent one Q such that there exists a slice regular function f defined on a dense
subset of H \ R, such that its twistor lift lies in Q.

Proof. For all the cases we will show the thesis exhibiting the splitting of f .
(1) If Q is given as in equation 26, then it translates in set of solutions of

eλ+iν + e−λ+iνu2 + eµ−iν(g(v)− uĥ(v))2 + e−µ−iν(h(v) + uĝ(v))2 = 0.

Writing the previous equation as a polynomial in u and imposing the vanishing of
the coefficients we obtain the following system

eλ+iν + eµ−iνg2 + e−µ−iνh2 = 0

−eµgĥ+ e−µhĝ = 0

e−λ+iν + eµ−iν ĥ2 + e−µ−iν ĝ2 = 0

From the first and the last equations we obtain

h2 = −eµ+iν(eλ+iν + eµ−iνg2), ĥ2 = −e−µ+iν(e−λ+iν + e−µ−iν ĝ2).

Take now the square of second equation e substitute the values of h2 and ĥ2:

eµg2(e−λ+iν + eµ−iν ĝ2) = e−µĝ2(eλ+iν + eµ−iνg2),

that is
ĝ = ±eµ−νg.

Taking now, for instance, g(v) = v, ĝ(v) = eµ−νv, h = i(eµ+iν(eλ+iν + eµ−iνg2))1/2

and ĥ = i(e−µ+iν(e−λ+iν + e−µ−iν ĝ2))1/2, we get the thesis in the first case.
(2) The last case is when Q is the zero locus of the polynomial in 27 with k ∈ [0, 1).

Imposing then the usual equations we obtain that g, h : Ci \ R → C and ĝ, ĥ :
C−i \ R→ C can be chosen as

g(v) = −ĝ(v) = v, h(v) = 2i+ v/2, ĥ(v) = 2i− v/2.
It is now a matter of computation, using the Representation formula, to write the slice
regular functions defined by the previous three cases.

�

Remark 4.3. In the next section we will compute the points in S4 where the eventual
twistor lines lie.
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In the next theorem we will show that the result in theorem 4.7 exhausts the set of
non-singular algebraic surfaces (up to projective transformations) of degree 2, that can be
reached by the twistor lift of a slice regular function. Some suspects that a result of this
kind must hold came from the fact that there aren’t dominant1 rational maps from Q to
any smooth varieties of degree d ≥ 4. In fact, any smooth quadric in CP3 is projectively
isomorphic to Q (see, for instance, section 4 of [34]). Now, if X → Y is a dominant rational
map between non-singular varieties in CP3, then dimH0(Y,KY ) ≤ dimH0(X,KX), where
KX and KY stands for the canonical bundle of the subscript variety (see chapter 2, Section
8 of [35]). But dimH0(S, KS) is greater or equal to 1 when the degree of S is greater or
equal to 4 and it is 0 when d = 2, 3.

Anyway the specific statement and proof follow.

Theorem 4.11. Let S be a non-singular algebraic surface of degree d ≥ 2 in CP3 and
let f̃ : Q+ → S the twistor lift of a slice regular function and such that f̃(Q+) is open in
S. Then S is projectively equivalent to Q.

Proof. Observe that for each fixed v0 in CP1, the twistor lift f̃ of a generic slice regular
function f , contains the whole line lv0 : CP1 → CP3 parametrized by u ∈ CP1. In formula

lv0 [1, u] = [1, u, f>(v0)− uf⊥c(v0), f⊥(v0) + uf>c(v0)].

This is enough to prove the theorem since, from general facts about projective surfaces,
we know that the number of lines over a non-singular surface of degree greater or equal to
3 in CP3 is always finite2.

�

Remark 4.4. The theory of lines or, in general, of rational curves over a surface is a very
interesting and studied field. In particular we point out that several further information are
stated about the nature of rational curves that can lie over a surface. Among the others we
found theorem 1.1 in [7] and theorem 1 in [50], in which the authors state general formulas
that implies that surfaces of degree greater or equal to 5 contain no lines. For the case in
which the degree is equal to 3 we refer to [17] in which there is a summary of the whole
story concerning the 27 lines over a cubic surface, while for degree equal to four we cite the
classical paper [44] by Segre in which it is stated a upper bound on the number of lines
over a quartic surface.

Remark 4.5. The case studied in [20] gave rise to a quartic ruled surface and so it is
coherent with our last result.

After the last result one can search for classes of singular varieties that can be reached
by the twistor lift of a slice regular function. Of course, since the argument of the proof
is general, one can exclude from this classification all the surfaces which are not ruled by
lines. And so, we obtain the following theorems.

1Meaning a rational map with dense image.
2 We would like to thanks Prof. Edoardo Ballico for the useful discussion about classical algebraic

geometry.
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Theorem 4.12. Up to projective transformation any quadric surface Q ⊂ CP3 is such
that there exists a slice regular function f such that its twistor lift f̃ lies on Q.

In the proof of this theorem, we will choose a particular union of two planes and
a particular cone. Since the classification is projective this is enough to complete all the
possible cases. If one is interested in singular quadric surfaces defined by different equations
it may be possible to find no slice regular function whose lift realizes the chosen equation.

Proof. The smooth case is solved thanks to theorem 4.7 and by the fact that all non-
singular quadric are projectively equivalent. Up to projective transformations there are
only two classes of singular quadric surfaces: the unions of two planes and cones. We will
show that there is a cone and a union of two planes that can be described with coordinates
in accordance with equation 23.

(1) Let P be the union of two planes defined by the following equation

X2
0 −X2

2 = 0.

The slice regular function f : H\R→ H defined by f(α+ Iβ) = (α+ Iβ)(1− Ii) j
2

lifts as f̃ [1, u, v, uv] = [1, u, 1, v] and so lies in P .
(2) Let K be the quadratic cone defined by the following equation

X2
1 = X2X3

Imposing then the usual equations we obtain that g, h : Ci \R→ Ci can be chosen
as

g(v) =

{
0 if v ∈ C+

i

v if v ∈ C−i .
, h(v) =

{
0 if v ∈ C+

i

− 1
v

if v ∈ C−i .
As before, it is now a matter of computation, using the Representation formula, to write
the slice regular functions defined by the previous equation.

�

We will treat now the case of cubics surfaces. Firstly we will consider non-normal
cubics and then cones. An algebraic variety X is said to be normal if it is normal at every
point, meaning that the local ring at any point is an integrally closed domain. If X is a
non-normal cubic surface, then its singular locus contains a 1 dimensional part (see [16],
chapter 9.2).

Theorem 4.13. Let C be a non-normal cubic surface in CP3 that is not a cone. Then,
up to projective isomorphisms, there exists a slice regular function f such that its twistor
lift f̃ lies on C.

Proof. In theorem 9.2.1 of [16], the author says that, up to projective isomorphisms,
the only non-normal cubic surfaces in CP3 that are not cones are the following two:

(1) X0X
2
3 +X2

1X2 = 0,
(2) X0X1X3 +X2X

2
3 +X3

1 = 0.
Putting the coordinates of the lift in Remark 4.1 in the previous equations we obtain,
respectively,
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(1) g(v) = −v2, ĝ(v) = v and h ≡ 0 ≡ ĥ

(2) g(v) = −1/v, ĝ(v) = v, ĥ(v) = 1/v2 and h ≡ 0

and so, if we put x = α+Iβ and v = α+iβ, the two slice regular functions are, respectively,
(1) f1 : H \ R→ H defined by

(28) f1(x) = −x2 (1− Ii)
2

+ x
(1 + Ii)

2
,

(2) f2 : H \ R→ H defined by

f2(x) = −x−1 (1− Ii)
2

+ x
(1 + Ii)

2
+ x−2 (1 + Ii)

2
j

�

The last case that we will threat is the case of cubic cones. The set of cubic cones can
be defined by the equation

(29) X3
3 − (c+ 1)X2

3X1 + cX3X
2
1 −X2

2X1 = 0,

where, if c ∈ C \ {0, 1}, the surface is a cone over a non-singular plane cubic curve, while,
in the case in which c = 0, 1 the surface is a cone over a nodal or cuspidal plane cubic
curve respectively.

Theorem 4.14. Let C be cubic cone. Then there exist a slice regular function f defined
on a dense subset of H \ R, such that, up to projective transformations, its twistor lift f̃
lies on C.

Proof. As in the previous theorems we will prove this result by exhibiting the splitting
of the function f . If we impose equation 29 in the coordinates 23 we obtain that g and h
must be identically zero while ĝ and ĥ must satisfy the following equation

ĝ3 − (c+ 1)ĝ2 + cĝ = ĥ2.

Solving then in ĥ or in ĝ, one finds the desired splitting of the slice regular function that
give the thesis.

�

Since, up to projective transformations, the only cubic surfaces that contain infinite
lines are cones and the non-normal ones, then, the projective classification is complete.

Of course, the functions seen in the previous proofs are not the only slice regular
functions that solve the problem and give the thesis. One could ask for the “best” slice
regular function such that its lift satisfies a certain algebraic equation, but this issue will
not be treated in this paper and we propose it for some future work.

2. Rational curves on the Grassmannian

The aim of this section is to reconstruct the twistor transform defined in [20] for
slice regular functions that are not defined on the real line. Moreover at the end we will
characterize certain rational curves over the Grassmannian Gr2(C4).
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The non-singular quadric in equation 21 is biholomorphic to CP1×CP1 and the rulings
are parametrized by u and v. A sphere α + Sβ can be identified with the line,

lv0 := {[1, u, α + iβ, (α + iβ)u] |u ∈ C ∪ {∞}} ⊂ CP3,

defined by fixing v0 = α+ iβ. The line lv0 can also be seen as a point in the Grassmannian
Gr2(C4) or, equivalently, as a point in the Klein quadric in P(

∧2 C4) ' CP5 via Plücker
embedding.

Now, the left multiplication by j on H2 lifts in C4 as

[X0, X1, X2, X3]
j·−→ [−X1, X0,−X3, X2],

and the last induces a real structure σ over CP5 as follows,

σ : [ξ1, . . . , ξ6] 7→ [ξ̄1, ξ̄5,−ξ̄4,−ξ̄3, ξ̄2, ξ̄6],

where {ξ1, . . . , ξ6} represent the basis {e01, e02, e03, e12, e13, e23} of
∧2 C4 and, of course,

eij := ei ∧ ej. In the above coordinates we can explicit the equation of the Klein quadric
as follows,

(30) ξ1ξ6 − ξ2ξ5 + ξ3ξ4 = 0.

As explained in section 2 of [45], a fixed point of σ corresponds to a j-invariant line in
CP3, i.e. a (twistor) fibre of π.

Example 4.1. Consider the coordinates founded in theorem 4.10 as functions defined
on CP1×CP1. We want to find the twistor fiber mentioned in the previous result imposing
equation σ(F(v)) = F(v).

(1) If λ = µ 6= 0 and ν = π/2 we get, F : v 7→ [1, c(1 − v2)1/2,−v, v, 1
c
(1 − v2)1/2, 1].

Imposing σ(F(v)) = F(v), we obtain v = ±1 (i.e. two twistor lines in correspon-
dence of x = ±1 ∈ R).

(2) If λ = µ = 0 and ν ∈ (0, π/2)/2 we get,

F : v 7→ [v2 − e2iν + v2

||eiν ||2
,

i

||eiν ||
(e2iν + v2)1/2,−v, v, i

||eiν ||
(e2iν + v2)1/2, 1].

Imposing σ(F(v)) = F(v), we obtain no solution or no twistor lines (this because
ω is a fixed non-real complex number).

(3) If Q is the zero set of the polynomial in equation 27, we get, F : v 7→ [−(5
4
v2 +

4), 2i + v
2
,−v,−v, 2i − v

2
, 1]. Imposing σ(F(v)) = F(v), we obtain v = −4i (i.e.

one twistor line in correspondence of x = −4i ∈ H).

At this point we can extend the definition given in [20] of twistor transform.

Definition 4.2. Let D ⊂ C+ be a domain and f : ΩD → H be a slice function. We
define its twistor transform of f as the following map:

F : D → Gr(C4)

v 7→ f̃(lv).

The following result extends theorem 5.7 of [20].



2. RATIONAL CURVES ON THE GRASSMANNIAN 77

Theorem 4.15. Let D be a domain in C+. If f : ΩD → H is a continuous slice
function, then its twistor transform F defines a continuous curve over D. Moreover, every
curve γ : D → Gr(C4), such that ξ6 ◦ γ is never zero, is the twistor transform of a slice
function f : ΩD → H. The function f is regular if and only if its twistor transform is a
holomorphic curve.

Proof. Given a slice function f : ΩD → H, its twistor lift is given, as in 22, by,
f̃ [1, u, v, uv] = [1, u, pi ◦ F>(v) − u(pi ◦ F⊥c(v)), pi ◦ F⊥(v) + u(pi ◦ F>c(v))], where f>

and f⊥ are the same as in formula 22. Fixing v, f̃(lv) is defined by the following linear
equations: {

X0(pi ◦ F>)−X1(pi ◦ F⊥c)−X2 = 0

X0(pi ◦ F⊥) +X1(pi ◦ F>c)−X3 = 0.

The coefficients of the last two equations determines the following generating vectors

e1 = [pi ◦ F>,−pi ◦ F⊥c,−1, 0], e2 = [pi ◦ F⊥, pi ◦ F>c, 0,−1].

Using equation 30, then, the twistor transform can be made explicit as follows

F(v) = [ξ1, . . . , ξ6] = [(pi ◦ F>)(v)(pi ◦ F>c)(v) + (pi ◦ F⊥)(v)(pi ◦ F⊥c)(v),

(pi ◦ F⊥)(v),−(pi ◦ F>)(v), (pi ◦ F>c)(v), (pi ◦ F⊥c)(v), 1],

where {ξi} = {eh1 ∧ ek2}0≤h<k≤3. But now that we have the explicit parametrization of F(v)
it is clear that this is a holomorphic curve if and only if f is a slice regular function.
Vice versa, given a curve γ : D → Gr2(C4) such that ξ6 ◦ γ is never zero, we can assume
ξ6 ◦ γ = 1 and recover the splittings of f as follows,

(pi ◦ F>) = −ξ3 ◦ γ, (pi ◦ F⊥) = ξ2 ◦ γ, (pi ◦ F>c) = ξ4 ◦ γ, (pi ◦ F⊥c) = ξ5 ◦ γ.

Thanks to the Representation theorem we can now recover f and thanks to theorem 1.3
we obtain regularity.

�

From the proof, then, came out that the twistor transform F of a slice regular function
f , can be represented in the following way,

F(v) = [(pi ◦ F>)(v)(pi ◦ F>c)(v) + (pi ◦ F⊥)(v)(pi ◦ F⊥c)(v),

(pi ◦ F⊥)(v),−(pi ◦ F>)(v), (pi ◦ F>c)(v), (pi ◦ F⊥c)(v), 1].

Remark 4.6. As for theorem 4.5, in the last theorem we could repeat the computations
using the splitting lemma. The result would be the following,

F(v) = [g(v)ĝ(v) + ĥ(v)h(v), h(v),−g(v), ĝ(v), ĥ(v), 1],

which coincide with the result in [20].

We will now present some examples.
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Example 4.2. • Let f1 : H \ R → H be the following slice regular function:
f(α + Iβ) = 1 − Ii. This function is equal to 2 over Ci and to 0 over C−i. Its
twistor transform F1 : C+ → Gr(C4) is the constant function v 7→ [0, 0,−2, 0, 0, 1].
• Let f2 : H \ R → H be the following slice regular function: f(α + Iβ) = 1 + Ii.
This function is equal to 0 over Ci and to 2 over C−i. Its twistor transform
F2 : C+ → Gr(C4) is the constant function v 7→ [0, 0, 0, 2, 0, 1].
• Let f3 : H \ R → H be the following slice regular function: f(α + Iβ) = (α +
Iβ)(1 − Ii)/2. This function is equal to (α + Iβ) over Ci and to 0 over C−i. Its
twistor transform F3 : C+ → Gr(C4) is the function v 7→ [0, 0,−v, 0, 0, 1].
• Let f4 : H \ R → H be the following slice regular function: f(α + Iβ) = (α +
Iβ)(1 + Ii)/2. This function is equal to 0 over Ci and to (α + Iβ) over C−i. Its
twistor transform F4 : C+ → Gr(C4) is the function v 7→ [0, 0, 0, v, 0, 1].

As said at the beginning of this section we want to characterize a certain set of linear
holomorphic functions γ : D → Gr(C4) in terms of slice regular functions. We will restrict
to the case in which ξ6 ◦γ is never zero, The theorem we are going to prove is the following.

Theorem 4.16. Let γ : C+ → Gr(C4) be a holomorphic curve such that ξ6 ◦ γ is never
zero. Then γ is affine if and only if there exist A,B ∈ C, with A/B ∈ C+ ∪ R such that
γ is the twistor transform of a slice regular function f and (A + xB) · f is a slice affine
function that satisfies

(31) hi(Afi −Bgi, Āf−i − B̄g−i) = 0,

where f±i are the values of the slice derivative of (A+ xB) · f in C±i, g±i are the values of
the slice constant function (A+ xB) · f − x[(1− Ii)fi + (1 + Ii)f−i] in C±i and hi denotes
the hermitian product in Ci ⊕ C⊥i ' H.

Proof. A linear map γ : C+ → Gr(C4) is a map of the form,

γ(v) = [c11 + c12v, c21 + c22v, c31 + c32v, c41 + c42v, c51 + c52v, c61 + c62v],

intending the Grassmannian Gr2(C4) as the Klein quadric 30 in CP5. The condition
ξ6 ◦ γ 6= 0 for all v ∈ C+ can be interpreted, of course, as c61/c62 ∈ C+ ∪ R. Dividing
everything by c61 + c62v, we obtain

γ(v) =

[
c11 + c12v

c61 + c62v
,
c21 + c22v

c61 + c62v
,
c31 + c32v

c61 + c62v
,
c41 + c42v

c61 + c62v
,
c51 + c52v

c61 + c62v
, 1

]
,

and so, now ξ6 ◦ γ = 1. Substituting then the components of γ in equation 30, one obtain
the following system of equations:

(32)

 c11c61 − c21c51 + c31c41 = 0
c11c62 + c12c61 − (c21c52 + c22c51) + (c31c42 + c32c41) = 0
c12c62 + c32c42 + c22c52 = 0

.
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Moreover, since γ is a holomorphic function, then it will be the twistor transform of some
slice regular function f such that

fC+
i

(α + iβ) = −c31 + c32(α + iβ)

c61 + c62(α + iβ)
+
c21 + c22(α + iβ)

c61 + c62(α + iβ)
j

fC+
−i

(α− iβ) =
c41 + c42(α + iβ)

c51 + c52(α + iβ)
+
c21 + c22(α + iβ)

c61 + c62(α + iβ)
j.

With the Representation Formula one obtain that, for each α + Iβ ∈ H \ R,
2f(α + Iβ) = [(1− Ii)f(α + iβ) + (1 + Ii)f(α− Ii)]

= (c61 + (α + Iβ)c62)−· · [(α + Iβ)(1− Ii)(−c32 + c22j) + (1− Ii)(−c31 + c21j)]
+(c61 + (α + Iβ)c62)−· · [(α + Iβ)(1 + Ii)(c̄42 + c̄52j) + (1 + Ii)(c̄41 + c̄51j)],

but then, (c61 + (α+ Iβ)c62) · f is a slice affine function. If now, one between c61 or c62 is
equal to zero this correspond, respectively, to A or B equal to zero and so equation 31 holds
true. If both c61 and c62 are non-zero, observe that, the first and the third equations in
32 can be written , respectively, as hi(gi, g−i) = c11A and hi(fi, f−i) = c12B. Substituting
these in the second equation of the system and since (c21c52 + c22c51)− (c31c42 + c32c41) =
hi(gi, f−i) + hi(fi, g−i), we get

hi(gi, g−i)
B

A
+ hi(fi, f−i)

A

B
= hi(gi, f−i) + hi(fi, g−i),

and so equation 31 holds true. The vice versa is trivial, following the proof in the opposite
verse.

�

Example 4.3. Simple examples of slice regular functions that satisfies the condition
in equation 31, are all the functions of the following type:

f : H \ R → H
α + Iβ 7→ (Cx+D)−· · (Ax+B)(1− Ii)/2,

with
(
A B
C D

)
∈ SL(2,R). In the next section we will explore one particular function in

this set and then we will add some remarks to the whole family.

Remark 4.7. The set of slice affine functions that satisfy 31 does not contain non
constant slice functions that extend to the real line. In fact, as shown in remark 1.21, a
slice affine function extends to R if the coefficients of first order are equal, i.e.: f+ = f−,
meaning that hi(fi, f−i) 6= 0.

3. Main Example

In this section we will study the following slice regular function
f : H \ R → H

α + Iβ 7→ (α + Iβ)(1− Ii)/2
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as tool to generate OCSes over its image. We will write also, for brevity, f(x) = x(1−Ii)/2,
where x = α + Iβ ∈ H \ R. As was shown in remark 2.2, this function is constant and
equal to 0 if restricted to C+

−i and equal to x if restricted to C+
i . In the same section was

shown either theoretically and by explicit computations that the restriction to H \ C+
−i is

an open function. In example 3.1 was proved that, if restricted to H \ C+
−i, the function

f is injective. For these reasons this function fit very well in the twistorial construction
studied here. Moreover, this construction has a symbiotic aspect w.r.t. the function f .
In fact, with the help of the twistor lift stated in theorem 4.5 it is possible to understand
constructively the image of f . The next theorem precise this fact.

Theorem 4.17. If q = q0 + q1i + q2j + q3k, then the function defined in equation 3 is
such that f(H \ C+

−i) = {q ∈ H | q1 > 0}. Moreover⋃
I∈S

f |C+
I

(R) = {q ∈ H | q1 = 0},

where f |C+
I

(R) means the unique extension to R of the function restricted to C+
I .

Proof. To prove the theorem we will use the twistor lift 22. In fact, thanks to theorem
4.5, it is possible to compute the image of a slice regular function by looking at the image
of the projection to H of its twistor lift. Since, as already said, the function f is equal to
the identity if restricted to C+

i and to zero over the opposite semislice C+
−i, then its twistor

lift is defined as follows:

(33) F : Q+ ∩ π−1(H \ C+
−i) → CP3

[1, u, v, uv] 7→ [1, u, v, 0],

where, if α + Iβ ∈ H \ C+
i and I = ai + bj + ck, then u = −i b+ic

a+1
and v = α + iβ, with

(a, b, c) 6= (−1, 0, 0) and β > 0. At the end what we want to compute is the image of the
function (1 + uj)−1v and so these are the computations:

(1 + uj)−1v =

(
1− b+ ic

a+ 1
k

)
(α + iβ)

=
(a+ 1)2

(a+ 1)2 + (b2 + c2)

(
1 +

bk − cj
a+ 1

)
(α + iβ)

=
1

2
[(a+ 1)(α + iβ) + (βb− αc)j + (αb+ βc)k].

So, the image of a quaternion x = α+ (ai+ bj + ck)β via f , with ai+ bc+ ck ∈ S \ {−i}
and β > 0 is the quaternion

2f(x) = α(a+ 1) + β(a+ 1)i+ (βb− αc)j + (αb+ βc)k.
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Take now a generic quaternion q = q0 + q1i + q2j + q3k, this will be reached by f if and
only if q1 > 0. In fact the system 

α(a+ 1) = q0

β(a+ 1) = q1

βb− αc = q2

αb+ βc = q3,

can be solved in the following way: the first two equations give α = q0/(a + 1) and
β = q1/(a + 1) and since (a + 1) ∈ (0, 2], then q1 > 0. If we put B = b/(a + 1) and
C = c/(a+ 1), the last two equations can be rewritten as{

q1B − q0C = q2

q0C + q1B = q3,

which is a linear system such that the two equations are linearly independent, so the
solutions is,

B =
q1q2 + q0q3

q2
0 + q2

1

, C =
q1q3 − q0q2

q2
0 + q2

1

.

Now we remember that a2 + b2 + c2 = 1 and so B2 + C2 = 1−a
1+a

that entails a = 1−B2−C2

1+B2+C2

which is always an admissible solution since it is always different from −1.
For the second part of the theorem, fix I = ai + bj + ck ∈ S \ {−i} and look for the

following limit,
lim
β→0

α+Iβ∈C+
I

f(α + Iβ).

After restricting the function to C+
I it is possible to extend it to R and also to look at

the image via the twistor lift. Since f is continuous we obtain that, up to a factor 2, the
previous limit is equal to

α(a+ 1)− αcj + αbk = α(a+ 1, 0,−c, b),
which is a straight line belonging to the set {q ∈ H | q1 = 0} passing through the vector
(a+ 1, 0,−c, b). Taking the union, for (a, b, c) that runs over S \ {−i}, it is clear that this
will span the whole hyperplane {q1 = 0}.

�

The twistor lift of f lies in the hypersurface H := {X3 = 0} ⊂ CP3. In this case the
general theory (see Section 3 of [43]) says that H induces an OCS conformally equivalent
to a constant one, defined over the image of f . This is actually true and we will show that
there is a specific conformal function from {q1 > 0} ⊂ H to {q1 < 0} that sends Jf to i.
The theorem is the following one.

Theorem 4.18. The complex metric manifold ({q1 > 0}, gEucl, Jf ) is conformally equiv-
alent to ({q1 < 0}, gEucl, Ji), where, with Ji we mean the left multiplication by i. The
conformality is determined by the function g : {q1 > 0} → {q1 < 0} defined by g(q) = q−1.
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Proof. The function g is of course a conformal map for the Euclidean metric. So, the
only thing to prove is that the push-forward of Jf via g is exactly Ji, meaning that, the
following equality holds true

dg ◦ Jf = Ji ◦ dg.

But what is the actual shape of the two complex structures Jf and Ji? The answer is
easy and can be found analyzing the action against a generic tangent vector on a point.
So we have that, if v = (v0, v1, v2, v3) is a tangent vector over p = f(α + Iβ), then,
Ji(p)v = (−v1, v0,−v3, v2), while Jf (p)v = (−av1 − bv2 − cv3, av0 − cv2 + bv3, bv0 + cv1 −
av3, cv0 − bv1 + av2), where ai+ bj + ck = I.

And so

Ji =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , Jf (p) =


0 −a −b −c
a 0 −c b
b c 0 −a
c −b a 0

 ,

where p = p0 + p1i+ p2j + p3k and, working on the computations in the proof of theorem
4.17,

a =
p2

0 + p2
1 − p2

2 − p2
3

| p |2
, b = 2

p0p3 + p1p2

| p |2
, c = 2

p1p3 − p0p2

| p |2
.

Now, writing g as g(q0 + q1i+ q2j + q3k) = (q0,−q1,−q2,−q3)/ | q |2, one have that

dg(q) =


| q |2 −2q2

0 −2q0q1 −2q0q2 −2q0q3

2q1q0 − | q |2 +2q2
1 2q1q2 2q1q3

2q2q0 2q2q1 − | q |2 +2q2
2 2q2q3

2q3q0 2q3q1 2q3q2 − | q |2 +q2
3

 / | q |4

and that,

Ji ◦ dg =


−2q1q0 | q |2 −2q2

1 −2q1q2 −2q1q3

| q |2 −2q2
0 −2q0q1 −2q0q2 −2q0q3

−2q3q0 −2q3q1 −2q3q2 | q |2 −2q2
3

2q2q0 2q2q1 − | q |2 +2q2
2 2q2q3

 / | q |4 .

It is now a matter of computation to show that dg ◦ Jf = Ji ◦ dg, but we will skip it.
�

Remark 4.8. The function g(q) = q−1 in the previous theorem, was found using
the following idea. The constant OCS Ji is described by the hyperplane {X1 = 0} ⊂
CP3 (see Remark 2.3 of [43]) and so, starting from our lift [1, u, v, 0] after changing the
first two coordinates with the second two and dividing everything by v(6= 0), we obtain
[1, 0, v−1, v−1u] that projects to [1, v−1(1 + uj)], but now v−1(1 + uj) = ((1 + uj)−1v)−1 =
(f(q))−1.
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Remark 4.9. The last theorem and construction can be obtained using the following
function as well: f : H \ R→ H, defined as

f(α + Iβ) = (Cx+D)−· · (Ax+B)
(1− Ii)

2
,

with
(
A B
C D

)
∈ SL(2,R), x = α + Iβ and z = α + iβ. In fact, if we remove from

the domain of this function the semislice C+
−i over which is equal to zero, f is open and

injective and its image is equal again to {q ∈ H | q1 > 0}. With easy computations one
obtains that

f(α + Iβ) =



(a+ 1)

2‖Cz +D‖2
[CA‖z‖2 +DB + (BC + AD)α] = q0

(a+ 1)

2‖Cz +D‖2
β = q1

(bβ − c[CA‖z‖2 +DB + (BC + AD)α])

2‖Cz +D‖2
= q2

cβ + b[CA‖z‖2 +DB + (BC + AD)α]

2‖Cz +D‖2
= q3,

, z = α + iβ,

and, with the same argument in the proof of theorem 4.17, we obtain that q1 > 0 and,
for any values of q0, q1, each q2 and q3 can be reached. Now, on the remaining first two
components the function is exactly equal to

A(α + iβ) +B

C(α + iβ) +D
=
q0 + iq1

(a+ 1)
,

but, since A,B,C,D are taken such that the matrix they describe is in SL(2,R), then
since the function on the left describes an automorphism of the upper half complex space,
it turns out that each q0 and q1 > 0 can be reached. The twistor lift of this function is

f̃ : Q+ ∩ π−1(H \ C+
−i) → CP3

[1, u, v, uv] 7→ [1, u, Av+B
Cv+D

, 0]

In the next remark we will show an idea that we haven’t explored completely but might
be a starting point for some future considerations.

Remark 4.10. The twistor lift in equation 33, extends to a holomorphic mapping
f̃ : Q → CP3 by allowing v to take values in C rather than just in C+. However, even if
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π ◦ f̃ = f ◦ π on Q+ ∩ π−1(H \ C+
−i),

Q+ {X3 = 0}

H \ R {q1 > 0}

....................................................................................................................................................................... ............
f̃

...................................................................................
.....
.......
.....

π

...................................................................................
.....
.......
.....

π

............................................................................................................................................................. ............
f

this does not imply that the graph will commute once f̃ is extended. In fact we will have
the following diagram,

Q {X3 = 0}

? ?

.......................................................................................................................................................................... ............
1 : 1

...................................................................................
.....
.......
.....

2 : 1

...................................................................................
.....
.......
.....

1 : 1

.........................................

∗1 : 2∗

where, the number upon the arrows are intended as generically and we don’t know a priori
what is in the two corners below and what is the meaning of the arrow that connects
them. Also this arrow must represent something which behaves like 1 : 2. This of course
cannot be possible and suggest the possibility of approaching the issue using multi-valued
functions. Anyway this example seems enough easy to be studied “by hands”. So, first of
all, we need to construct the “ghost function” that realize the second part of that 1 : 2
cited before. So, when we extend f̃ to the whole Q we need the function that realizes the
lifting f̃ [1, u, v, uv] = [1, u, v, 0], for v ∈ C−.

Of course theorem 4.5 is true if we substitute Q− for Q+ and, in this case the lift of a
slice regular function g is given by

g̃[1, u, v, uv] = [1, u, g− − uh+, h− + ug+],

where g+, h+, g− and h− are the same as in equation 22. So, the function that has lift
g̃ : Q− → CP3, g̃[1, u, v, uv] = [1, u, v, 0], is

g : H \ R → H
α + Iβ 7→ (α + Iβ)(1 + Ii)/2.

This function can be thought as dual to f : it is equal to the identity over C+
−i and equal

to zero over C+
i ; is injective and open over H \ C+

i ; its image, restricted on H \ C+
i is

{q ∈ H | q1 < 0} and ⋃
I∈S

gC+
I

(R) = {q ∈ H | q1 = 0}.

Obviously f(H \ C+
−i) ∩ g(H \ C+

i ) = ∅.
In some sense the function g is the natural holomorphic extension slice by slice of the

function f . The lift f̃ can be considered as the lift of the double-function

h : H \ R → H
α + Iβ 7→ {x(1 + Ii)/2, x(1− Ii)/2},
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where the first “component” lifts in Q+ and the second in Q−. With this definition of h
we can complete the previous commuting diagram as follows:

Q {X3 = 0}

H \ R H \ {q1 = 0}

.......................................................................................................................................................................... ............
f̃

...................................................................................
.....
.......
.....

π

...................................................................................
.....
.......
.....

π

..........................................................................................
................................................ ......

......

.......................................................................................................................................... ............

h
Given all the properties of h we would like to apply the theory of section 1 to our example.
In particular we would like to construct a non-constant OCS over R4 minus an hyperplane.
Since the images of f and g does not intersects, then we can define the push forward of an
OCS via h as the push forward via f into {q1 > 0} and via g into {q1 < 0}:

Jhp :=

{
Jff−1(p) if p ∈ {q1 > 0}
Jgg−1(p) if p ∈ {q1 < 0}.

We have just constructed the following metric complex space(
H \ {q1 = 0}, Jh, gEucl

)
We end this discussion here and, as already said, we remand to some future work the

possibility of specifying and developing the content of this remark.

Remark 4.11. The techniques used in this section can be useful to study more com-
plicated examples such as the function in equation 28 which seems more complicated but
carries on some interesting geometries.





APPENDIX A

Future works

Since we believe in the fully independence of scientific research, we think that
the richness of the theory exposed in this thesis gives valid reasons to deepen our research.
Nevertheless the final application to complex geometry justifies concretely the importance
of the theory also to whom think of science differently from us. This is of course not
the only application to other fields: another active basin, nowadays, is the quaternionic
functional calculus developed from this function’s theory.

Strongly motivated by these feelings we propose some further open problems and ques-
tions that we didn’t have the time to explore in these few months of doctorate’s studies.
The following enumeration can be interpreted as a to do list for the future but the order
is almost random.

(1) Further rigidity properties. In general, any further information on the nature
of a slice regular function could be of some interest both by itself and in view of
next points.

(2) Bergman spaces. In our knowledge there is still not a result regarding Bergman
spaces of slice functions defined over domains without real points. In [8] are
presented two kinds of Bergman spaces of slice regular functions: the first defined
by a norm that takes in consideration the values of a function over the whole
domain (that in this thesis is denoted by ΩD), while the second defined on a norm
that take in consideration the values of a function on a single complex plane (DI

for some I ∈ S). Both interpretations could give several useful results in our
context.

(3) Coefficients of spherical expansion. So far the only closed form of the coef-
ficients of the spherical expansion in definition 1.13 is the one in theorem 3.7 of
[32]. Anyway the construction given in this paper is quite hard to understand:
for instance it is not clear if there is any relation between the coefficients of the

87
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expansion of a slice regular function and those of its slice derivative. We think
that further developments in this way could give interesting results.

(4) Univalent functions. As we saw in theorem 3.11 if a regular function is injective,
hence its real differential is everywhere non-singular. Is there any result in the
opposite direction? In the recent paper [19] the authors start some investigations
about that issue obtaining some sufficient condition and, in particular, they prove
an analogous of the Bieberbach-de Branges result in a special case (see theorem
3.11 in [19]). We wonder (and hope to study) if there is any condition in the
general case as well and if a Bieberbach-de Branges type theorem can be proved.

(5) Multivalued functions. The last remark 4.10 shows that could be interesting
to study, in some sense, multivalued functions. A first reason is explained in the
remark itself while another reason is the possibility to extend in some way the
Hurwitz theorem cited in remark 3.6 also to the case of a (multivalued/2-valued)
slice regular function defined on a domain without real points.

(6) Further on twistor lift. A feature that we would like to explore is if the slice
or the spherical derivative (or, in general the real differential), of a slice function
can be interpreted in its twistor lift. Understanding a relation of this kind could
be very useful in the description of the discriminant locus of the surface reached
by the lift.

(7) Discriminant loci. As we said just before theorem 4.9, the discriminant locus of
a surface S of degree d is the set of point p ∈ S4 such that π−1(p)∩S has cardinality
different from d, where π is the usual twistor projection π : CP3 → HP1 explored in
chapter 4. To construct the discriminant locus of a surface S means to understand
the domain of definition of the OCSes induced by S. We would like to study the
discriminant loci of all the surfaces constructed in chapter 4. In principle, in fact,
these surfaces could generate interesting OCSes over some domain in S4.

(8) Rational curves over the Grassmannian. This point is very simple: we would
like to remove from theorems 4.15 and 4.16 the technical hypothesis ξ6 ◦ γ 6= 0.
This will involves the study of singularities of a slice function. A result of this
kind will be useful for a complete description of the twistor lines over some classes
of special surfaces in CP3.

(9) Extensions to ∗-algebras. We are quite sure that many results contained in
Chapters 2 and 3 can be extended in the general setting of a real ∗-algebra. We
would like to prove some of them using the general approach of [30].

(10) Slice regular functions of several variables. In [31] the authors introduce the
definition of slice regular function of several variables in the general context of real
∗-algebras. With this definition they are able to prove a Hartogs type extension
result. Adapting the definition in the quaternionic case we would like to study
this set of functions. As in the one variable case any result in this direction could
be of interest on its own and giving some interesting application.

(11) G2 geometry of submanifolds. The less investigated (but maybe the most im-
portant) issue that we had the chance to think of is a particular application of the
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theory of quaternionic functions (in the more generality) to the geometry of spe-
cial submanifolds in a G2-manifold. In section IV.2.A of [36], the authors explain
that the graph of certain quaternionic functions is a area minimizing submanifold
of R7 viewed as G2-manifold . Since the study of slice regular function is now well
under way we want to understand if it could be applied in this different context,
maybe, constructing non-trivial kind of these submanifolds.
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