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Abstract

This thesis focuses on endogenous approaches to studying macroeconomic dy-
namics and evaluates this tradition from different perspectives. It traces the origins
and development of non-linear, endogenous theories of business cycles from its early
beginnings up to its present frontiers. It argues that these theories emerged out of an at-
tempt to reconcile the then existing corpus of (essentially static) economic theory with
empirically observed persistent fluctuations. It offers a re-reading of Harrod’s book-
‘The Trade Cycle’ and demonstrates the accelerator in his theory to be non-linear and
consequently claims that Harrod’s text contains essential elements that constitute an
endogenous theory.

On the mathematical front, it examines the role of existence and uniqueness the-
orems (in particular, the Poincaré–Bendixson Theorem) in planar endogenous models
of economic dynamics. Their underpinnings, their use and influence on the mathemat-
ical models of aggregate macroeconomic fluctuations are critically evaluated. In this
context, it considers Goodwin (1951)’s nonlinear model of business cycles and shows
how existence and uniqueness of limit cycles can be established even for the case of
an asymmetric, nonlinear, accelerator with only one nonlinearity. This is achieved us-
ing a result by de Figueiredo (1960). It argues that an excessive reliance on proving
’existence’ and ’uniqueness’ hampered the enlargement of scope in these nonlinear,
endogenous theories. It outlines the non-constructive aspects of these theorems and
discusses the issue of computability for limit cycles in these planar models.

Furthermore, some methodological issues related to computational economic dy-
namics are analyzed. From an algorithmic point of view, it contends that there are in-
herent undecidabilities associated with many important properties of these dynamic
models. These include characterizing attractors, determining their number, the do-
mains of attraction and the possibility of exhibiting chaos, all of which have been im-
portant for dynamic economic theories. It makes a case for resorting to algorithmic
economic dynamics in the future in order to overcome some of the limitations faced by
the endogenous tradition, which exclusively relies on dynamical systems theory for
modelling. A broad outline of what such an approach would look like is illustrated.
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Chapter 1

Introduction

Macroeconomic dynamics has been an active area of research for almost over a century
now. Changes registered over time in aggregate economic measures such as GDP, in-
vestment, employment, inflation and wealth trigger enormous public interest and lies
at the heart of contemporary political debates and policy decisions. Economists over
the years have attempted to understand the empirical regularities of these aggregate
variables and have formulated various theories to explain their nature and dynam-
ics. This involves unearthing the nature of relationships between different economic
variables and theoretically framing the observed dynamics of the aggregate economic
system. Among the different topics under the umbrella of macroeconomic dynamics,
growth and business cycles (along with monetary dynamics, unemployment and in-
flation dynamics) are among the most important areas that have been the subjects of
extensive theoretical and empirical investigations.

Theoretical developments over the last century in explaining economic growth
and business cycles have progressed in various directions. The different schools of
thought that engage with these issues vary in terms of the causal factors and opera-
tional mechanisms that they attribute to growth and fluctuations. One useful way to
classify these different views can be to make a distinction between those that subscribe
to the view that sources of growth and fluctuations are from ‘within’ the economic sys-
tem and those that hold such dynamics to be coming from ‘outside’. Consequently, the
theories can be grouped as either ‘endogenous or ‘exogenous’ respectively. Theoretical
developments in these two areas have evolved in an interesting manner over the years:
Growth theory started out as being predominantly an exogenous theory and later be-
come endogenous over the years. For Business Cycle Theory, the opposite holds true.

In this thesis, the focus will be largely on cycle theory. However, there are impor-
tant implications for growth theory as well. The exogenous view of economic fluctu-
ations is often thought to have originated from the work of Frisch (1933), who made
a distinction between ‘impulse’ and ‘propagation’ mechanisms1. The argument here

1This is also referred as the Frisch-Slutsky methodology. However, as we point out later, Simon
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Chapter 1

is that the impulse mechanisms are to be distinguished from the propagation mecha-
nisms that are associated with the structure of the economic system. The impulses are
exogenous to the system and they take the form of stochastic shocks or random distur-
bances to one of the variables (for example, supply, productivity or demand shocks).
The economic system is assumed to be stable and would always return to a state of
equilibrium, if not for the disturbances that displace the system from its equilibrium.
In other words, the system is endowed with self-regulating capabilities that bring it
back to equilibrium. The metaphor that captures this worldview is that of a ‘rocking
horse’, which remains in a state of equilibrium unless it is disturbed. In the event of
being disturbed, the system fluctuates (or rocks) because of the manner in which these
shocks propagate. However, these oscillations gradually die down due to the structure
of the system. This view has been popular for almost two decades now, in the form of
Real Business Cycle theory (RBC) put forward by Kydland and Prescott (1982).

A brief sketch of the exogenous viewpoint, in its RBC rendition, would be the fol-
lowing: Business cycles are viewed as fluctuations in output in a steady-state growth
path of one or other neoclassical growth model. The baseline version of the model con-
siders a representative agent endowed with rational expectations, who maximizes his
or her utility and the representative firm maximizes its profit. The equilibrium is char-
acterized by the paths of evolution of different variables (such as output, consumption
and prices) at the steady state. In the presence of stochastic shocks, the equilibrium
(known as the Dynamic Stochastic General Equilibrium or DSGE) paths of evolution
for quantities and prices are characterized as stochastic processes. Here, studying busi-
ness cycles translates to understanding how positive or negative stochastic shocks to
a variable, for example technology2, translates to output fluctuations. This view has
been quite influential in the empirical and policy front as well in the form of impulse-
response investigations3.

Endogenous theories, on the other hand, hold that persistent cyclical tendencies
are in-built in capitalistic economies. The endogenous tradition in cycle theory can
probably be traced to Karl Marx or even earlier. The structure and the relationship
between different economic variables are such that they make the system prone to
sustained fluctuations, even if they are insulated from the disturbances. While ex-
ogenous shocks may very well have an impact, in the endogenous view, this only
plays a subordinate role. It is not central to explaining the persistent cyclical tenden-
cies of the economic system. There are many different strands under this broad view.
Some focus on highly aggregated systems (for example, those in the Keynesian tra-
dition) and disequilibrium fluctuations, while others look at systems with optimizing
agents, competitive markets and equilibrium fluctuations. The unifying theme is that

Kuznets deserves to be placed along with them.
2Variables are assumed to be auto-correlated processes, which are non-explosive.
3For instance, the Nobel memorial prize for Economics for 2011 was awarded to two of its propo-

nents, Thomas Sargent and Christopher Sims.
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Chapter 1

the source of these fluctuations are from ‘within’ the system, which does not have any
self-regulating mechanisms to bring itself back to a stable equilibrium or continue to
evolve without cycles.

In the past, economic growth and cycles have been mostly analyzed separately
with the exception of scholars like Schumpeter, Lundberg and Goodwin (1967). How-
ever, a puritan endogenous theorist would hold that trend and the cycle are insepara-
ble. There are also differing views within the endogenous approach regarding whether
which of the two phenomena - cycles or growth - should be given a central role. Some
view that there is no economic growth that is possible without a cycle, while others
hold that cyclical tendencies are merely the form that growth takes. This thesis will
mainly focus on endogenous cycle theories. In its development in the mathematical
mode, the presence of nonlinear relationships between different variables proved to be
a crucial ingredient in explaining persistent endogenous cycles. Consequently, math-
ematical tools from the theory of nonlinear oscillations (in the formative years) and
nonlinear dynamical systems theory (in the later years) were utilized for building the-
oretical models. These theories have often concentrated on explaining plausible long
and short-term properties of the system and their capacity to oscillate by resorting to
the application of different existence theorems. The progress in this tradition also par-
alleled important mathematical developments in nonlinear dynamics and this cross
fertilization led to interesting hybrids. Similarly, developments in the world of com-
puting had profound implications in studying nonlinear models via simulations, since
explicit solutions are often hard to obtain.

Among the vast literature in this area of endogenous economic dynamics, atten-
tion will be paid to theories that are explicitly mathematical. Additionally, the focus
will be on the ‘real’ theories of endogenous cycle, hence the monetary theories of en-
dogenous fluctuations will only feature occasionally in this analysis. This choice is
due to reasons of space and the fact that most mathematical models of endogenous
fluctuations in the past have concentrated on the ‘real’ side and monetary factors have
not been at the center stage. The unfortunate consequence of this would be that some
important endogenous (monetary) theories, for e.g., monetary models of fluctuations
underpinned by Swedish, Austrian schools of thought, price and output fluctuations
with optimizing agents in equilibrium models with money, theories of endogenous
(financial) instability (Hyman Minsky) will not be discussed at length. However, this
should not be mistaken as merely an attempt to trace the use of one or other kind of
mathematics in macroeconomics. Rather, it is the interplay between endogenous eco-
nomic theories and their mathematical characterizations that are of interest here. It
should be stated explicitly that this thesis neither claims to propose a new model nor
provide an alternative theory of endogenous fluctuations in output, prices or employ-
ment. Instead, it closely examines a specific exciting field of research in economics,
with the aim of understanding its origins, evolution, strengths and shortcomings. This
is important for few reasons: First, it helps us to be aware of the scope, limitations and

3
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the appropriateness of the (mathematical) tools that we utilize in our economic theo-
ries. Second, it is only by understanding the limits built into a particular mode of rea-
soning can we better qualify our theoretical views and predictions about the economic
system. This knowledge will, hopefully, also guide us to transcend these limitations
and point us to newer tools, paradigms and explorations.

After a century-long efforts in understanding, theorizing and modeling endoge-
nous fluctuations, it may be useful to take stock of these developments - the various
turns that have been taken by this tradition at different times - and critically analyze
its merit. In doing so, some of the following questions need to be addressed: How
did the mathematical theories of endogenous dynamics emerge and develop over the
years? What were the crucial ingredients in their mathematical structure that facili-
tated the demonstration of endogenous dynamics? What are the constraints posed by
the mathematical tools utilized by this tradition? What are the probable explanations
for the (seeming) stagnation in the theoretical developments of this tradition? How
to transcend these limitations and what new future directions should the endogenous
economic theorist embark upon? The two different view points, (i.e, exogenous and
endogenous) may appear to be merely different methodological or philosophical po-
sitions, which may be of interest only within academia and not relevant outside its
walls. However, this is not the case. Adopting one or other view has tremendous con-
sequences and often leads to diametrically opposing positions, especially in terms of
macroeconomic policy. While undertaking such a critical evaluation, it is also impor-
tant to be constructive. This would mean not just identifying the limitations to further
development in this tradition, both in terms of our economic understanding and the
tools we employ but also to propose possible and feasible alternative paths that go
beyond the limitations. This hopefully will lead to the development of new theories,
which incorporate and present new economic insights, and yet all the while remain
within the scope of an endogenous theorist. This is the aim of this thesis.

One of the recurring themes in this thesis is the insistence on constructive and
algorithmic procedures to study endogenous economic dynamics. This is along the
lines of Computable Economics, a field pioneered by Velupillai (2000), who since then4

has made a sustained plea for constructive approaches in economic theory. By com-
putation, we do not merely refer to the use of computational tools in economics, but
also to the theory of computation (Computability theory/recursion theory) and math-
ematical analysis of algorithms as formal objects. This algorithmic approach involves
constructing economic models, which are themselves algorithms, to encapsulate pat-
terns from the economic data. These algorithms are simulated and also studied as
formal objects in their own right. The aim would be to understand their evolution,
long-term properties, transition paths, complexity and so on. This will pay greater at-
tention to economic processes and allow us to search and develop methodological solu-

4A recent companion with important contributions in this field can be found in Velupillai et al. (2011).
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tions rather than merely be restricted to proving existence and uniqueness. This means
venturing beyond the exclusive reliance on dynamical systems theory for understand-
ing economic dynamics. The conventional approach to economic dynamics works on
unrestricted domains and does not pay careful attention to the natural data types asso-
ciated with the economic phenomena. Most models assume the data domain to be that
of real numbers, while economic quantities are often, at best, rational numbers. The
results and theorems in this standard approach often do not carry over to dynamics
defined on rational numbers. The correspondence between these two domains is un-
clear and its implications of using one vis-à-vis the other are not well understood. This
complicates relating the theories meaningfully to the available data. Algorithmic ap-
proaches overcome this weakness since formal algorithms themselves are defined over
rational numbers. The epistemological limits to formal reasoning are made explicit in
this approach since there are algorithmically undecidable problems.

With those introductory remarks, we can now look at the structure of this thesis.
It is composed of five chapters that address different aspects that concern endogenous
macrodynamics. The first chapter traces the origins and early development of nonlin-
ear, endogenous theories of business cycle. It argues that these theories came out of
an attempt to reconcile the then existing corpus of (essentially static) economic theory
with empirically observed fluctuations. It outlines the extraordinary set of events that
eventually led to the birth of a full fledged endogenous tradition. Its development in
different directions over the years is traced all the way up to the current frontiers.

The second chapter takes up a key contribution by Roy Harrod, one to which the
nonlinear, endogenous theories of the Keyneisan tradition owes much to. It is often
argued that Harrod’s attempt to combine the accelerator and the multiplier resulted in
an unstable system, which relied on exogenous factors to explain the turning points.
An attempt is made to re-read Harrod in order to find the true nature of the accelerator
that underlies his literary exposition. Following a clue in Ichimura (1955b), this chap-
ter presents arguments in support of the view that a nonlinear accelerator underpins
Harrod’s theory and consequently, claims that there were essential elements in Harrod
(1936) to constitute an endogenous theory.

In chapter 3, the role of existence theorems, in particular, the Poincaré–Bendixson
theorem and Levinson-Smith theorem, in the planar models of nonlinear, endogenous
mathematical theories of the business cycle (NETBC, henceforth) is analyzed. This
chapter investigates the mathematical and economic underpinnings of these theorems,
the features which enable them to demonstrate persistent fluctuations and the differ-
ent ways in which they were employed. Their influence on the mathematization of
various theories of aggregate macroeconomic fluctuations in this tradition is critically
evaluated. It argues that an excessive reliance on proving ’existence’ hampered the
enlargement of the scope of these nonlinear theories. The trade-offs involved in at-
tempting to strait-jacket economic theories to existing mathematical results are pointed
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out. We outline the non-constructive aspects of these theorems and discuss the issue
of computability of limit cycles for these planar models.

Chapter 4 examines the theorems which establish the uniqueness of periodic or-
bits in the planar models of endogenous business cycles. It identifies and catalogues
the different uniqueness theorems that are used in this tradition. By focusing on Good-
win (1951)’s nonlinear model of business cycles, it shows how existence and unique-
ness of limit cycles can be established even for the case of an asymmetric nonlinear
accelerator with only one nonlinearity (discussed in Goodwin (1950)). This is achieved
using a result by de Figueiredo (1960), which in turn benefited from important in-
sights from Le Corbeiller on Goodwin’s one-sided oscillator. The relationship between
this result and the sufficiency conditions used by Sasakura (1996) are discussed. The
chapter opens up ways to move beyond the ‘existence-uniqueness’ mode of theoriz-
ing that has restricted the development of NETBC. It argues in favour of resorting to
algorithmic methods to model economic dynamics and presents a broad outline of the
proposed approach. This can be a way to transcend the exclusive reliance on dynami-
cal systems theory and the limitations that come with it.

In chapter 5, we analyze some methodological issues in computational approaches
to studying economic dynamics in general. Computational models of economic dy-
namics are evaluated from the perspective of ‘decidability’. Tools from computable
analysis are utilized to study the dynamics of these economic models. From an algo-
rithmic point of view, it contends that there are inherent undecidabilities associated
with many properties of these systems. These properties include characterizing attrac-
tors, determining their number, domains of attraction and the possibility of exhibiting
chaos - all of which have been important for dynamic economic theories. It is shown
that some of these properties are however decidable for planar models of economic
dynamics- an important class of endogenous models. In particular, stability assump-
tion seems to play an important role in ensuring computability. It also presents a brief
evaluation of the use of numerical procedures in simulating continuous time models.
Finally, it attempts to make a case for moving towards the use of algorithmic methods
to study endogenous economic dynamics.

6



Chapter 2

Origins and Early Development of
NETBC1

2.1 Prologue

“He [Oppenheimer] studied me with his remarkable blue eyes and asked,
‘What is new and firm in Physics?’ The ‘. . . and firm’ impressed me.”

Oppenheimer: Portrait of an Enigma by Jeremy Bernstein, Ivy Publishers,
Chicago, 2005

We begin with a puzzle: Wicksell observes a 20-year deflation and constructs an
unstable model of inflation for stabilization purposes. Why? The same fact, observed and
recorded in their writings, led Fisher and Schumpeter to emphasize other aspects of
the behaviour of economic institutions, agents and the economic system’s evolutionary
dynamics. Fisher developed the link between appreciation and interest via expectations;
Schumpeter, on the other hand, that between deflation and innovation to justify the ten-
dency for a capitalist system to undergo benign fluctuations.

A young macroeconomist facing, say an ageing Walras, at the turn of the century
that took the 19th into the 20th, and confronted with the kind of question Bernstein was
posed by Oppenheimer, may have had difficulties identifying the unstable cumulative
process, the Fisher equation and Schumpeterian evolutionary dynamics as being part
of the ‘. . . and firm’ description of the subject; although she may have recognized them
as ‘new’. After all, even the subject did not exist at that time.

In March 1952, during a lecture in Stockholm, Eli Heckscher (1952) recalled, on
14 April 1898, Wicksell ‘somewhat unexpectedly revealed before the [Stockholm Eco-
nomic] Society what was perhaps his greatest theoretical achievement, his theory of
the connection between interest rate and money value’ (ibid, p. 119). Thus was born
modern macroeconomics.

1An extended version of this chapter, co-authored with Vela Velupillai, was published as Ragupathy
and Velupillai (2012b). It includes suggested future directions to go beyond dynamical systems theory.
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Chapter 2

Macroeconomics is a word coined in 1939 by the Swedish economist Erik Lin-
dahl2, himself Wicksell’s distinguished pupil in the theory of public finance and taxa-
tion. The word had been in use, in academic circles in Sweden and Norway, from the
early 1930s after Ragnar Frisch and Michal Kalecki had popularised the term macro-
dynamics in discussions about the problems of the trade cycle. But it was Lindahl who
explicitly contrasted the word macroeconomics with microeconomics, in the senses in
which we use them in modern economic theoretical discourse; and he did so in his
famous book Studies in the Theory of Money and Capital (Lindahl (1939)).

It is, proverbially, a new name for an old subject. However, it was Wicksell – and,
to a lesser extent, Fisher - not Keynes nor Hayek, who first stamped it with modernism
in an unmistakable way – the modernism we associate with providing microfounda-
tions for aggregate variables and behaviour. This he provided for the twin horns of
macroeconomics – the real and the monetary sides; for the former on the basis of Aus-
trian capital theory, which he almost single-handedly and rigorously re-wrote and re-
did for Menger, Böhm-Bawerk and von Wieser; for the latter, on the basis of a wholly
new approach to monetary theory by devising an innovative thought-experiment -
gedankenexperiment - which obviated the need for a reliance on the quantity theory of
money to explain inflation. This thought-experiment constructed a pure credit econ-
omy in which monetary transactions were conducted in an imaginary giro system.

The crucial event that spurred him to these conceptual innovations was the 20-
year deflation – not recession – experienced, without exception, by all the advanced in-
dustrial nations, from the mid-1870s to the mid-1890s. He was – as Fisher was - deeply
concerned that this deflation meant an unwarranted redistribution of wealth and in-
come between lenders and borrowers. The theoretical discussion on bimetallism, and
its policy ramification, had reached its summit.

The only conceptual tool that was available for policy purposes was the quantity
theory of money. A reliance on this would have meant a further deepening of the
deflationary process and an exacerbation of the unjust income and wealth distribu-
tions. He had to devise an alternative vision of the monetary mechanism in such a way
that it would yield policy perspectives and tools that would stabilize the price level,
whilst preserving consistency with the microeconomics of relative prices in a situation
of deflationary dynamics. Thus was born the Wicksellian analogue of the Malthu-
sian mechanism: the discrepancy between the money rate of interest, determined by
banking policy, and the natural rate of profit resulting from the capital structure of the
production system.

Independently, and motivated by the same events and concerns, Irving Fisher
had suggested an alternative mechanism for the interpretation and resolution of the
same problem. In a sense, modern macroeconomics is an uncoordinated amalgam of
Fisher’s expectational mechanism and Wicksell’s capital theoretic underpinnings on
Clower’s monetary macroeconomic thought-experiments.

2See, however, Velupillai (2009a), for reasonably complete details on the issue of the origins of the
word Macroeconomics. In passing it should be stressed that the origins of the word attributed to Jacob
Marschak in The Economist’s article on The Other Worldy Philosophers, on 16 July 2009, is incorrect.
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In this chapter our implicit working hypothesis is that the dynamics of Keynesian
macroeconomics in Harrod (1936), the sequence analysis of the Swedes, most explic-
itly formulated in Lundberg (1937) that which has come to be called the ‘time-to-build’
approach to business cycle theory, but originally in mathematical form encapsulated
in the early work by Tinbergen (1931) and Kalecki, and the ‘cobweb’ tradition, most el-
egantly broached, in a mathematical mode, by Leontief (1934), were the first successes
in the drive to integrate cycle theory, intrinsically, to macroeconomic theory, as this subject
itself emerged in a definable form in the 1930s. That these theories and their math-
ematical formulations have been subverted at the frontiers does not mean they have
disappeared from the active research agenda of many scholars, working in a variety
of traditions that cannot be encapsulated within any kind of equilibrium orthodoxy.
Moreover, we would like to assert, quite categorically, that we adhere to the methodol-
ogy of nonlinear, endogenous mathematical modelling of macroeconomic fluctuations.
It is our definite belief – going beyond ‘opinion’ - that epistemologically, too, this ap-
proach is superior to the dominant linear stochastic approach to modelling macroeco-
nomic fluctuation. In parallel work we have demonstrated, formally, this claim, from
the point of view of the epistemology of computation.

In the next section we outline, in a very concise form, the early – essentially con-
fined to the early years of the 1930s – attempts and discussions on the need to integrate
cyclical phenomena with economic theory, especially, though not exclusively, equilib-
rium economic theory. In section 3 we attempt to describe the kinds of ways intrin-
sically nonlinear macroeconomic theories were mathematised nonlinearly. The next
section traces the second stage, when consolidation of both the macroeconomic the-
ory of the business cycle, and its mathematical formalisation, outlined in the chapter
came to maturity in the Golden quarter century of Keynesian Macroeconomics, i.e.,
1947-1972 – then declined, rose - and, in recent years, seems to have fallen again.

2.2 Integrating Cyclical Phenomena with Economic The-
ory

“Eine Krisentheorie kann nie die Untersuchung eines abgesonderten
Theiles der socialwirtschaftliches Phänomene sein, sondern sie ist, wenn
sie nicht ein diletantisches Unding sein soll, immer das letzte oder vorletzte
Capitel eines geschriebenen oder ungeschriebenen socialwirtschaftlichen
Systems, die reife Frucht der Erkenntnis sämmtlicher socialwirtschaftlichen
Vorgänge und ihres wechselwirkenden Zusammenhanges. Daraus geht ein
Doppeltes hervor. Erstens, dass jedem wissenschaftlichen System eine an-
dere Krisentheorie entspricht; und zweitens, dass je weniger reif und vol-
lendet das zugehörige wissenschaftliche System ist, desto hypothetischer,
gewagter, sogar abenteuerlicher die darauf gebaute Krisentheorie geraten
kann. Es is wie mit den volksthümlichen Auffassungen und Erklärungen
vom Wesen der Krankheiten, die nicht auf eine solide Anatomie und Phys-
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iologie des menschliehen Organismus aufgebaut sind.”
Eugen von Böhm-Bawerk: Review of Die Wirtschaftskrisen. Geshichte der

nationalökonomischen Krisentheorien, Zeitschrift für Volkswirtschaft Sozialpoli-
tik und Verwaltung, Vol. vii, p. 1323

What began as an exercise in attempting a reconciliation between ‘theoretical eco-
nomics’ and the phenomenon displayed as ‘business cycles’, in 1898, became, by the
1930s, the attempt to graft business cycle phenomena to equilibrium theory. Three
interrelated, simultaneous, phenomena emerged from the attempt to synthesise tradi-
tional static, equilibrium, economic theory with dynamic method: business cycle theory,
monetary macroeconomic theory (as outlined in an ultra-brief mode in the previous
section) and the theory of economic policy (for long also referred to as stabilization
policy). Two diametrically opposing visions – in the strict Schumpeterian sense4 – of
this attempted synthesis were enunciated by two of the giants of 20th century eco-
nomics: Simon Kuznets and Friedrich von Hayek, both early Nobel Laureates (in 1971
& 1974, respectively). Kuznets, in a fundamental paper5, outlining the nature of the
synthesis that was being attempted so as to incorporate, in particular, business cycle
phenomena that were considered naturally ‘dynamic’, within the fold of the then or-
thodox equilibrium economic theory, came out with the radical conclusion:

“What [should] be discarded is the notion of a stable or slowly varying equi-
librium and the equational system of solving economic problems. What is substi-
tuted for it is a general recognition of the importance of the time element

3A free translation by Velupillai would be as follows (where socialwirtschaftliches is rendered economic,
although, perhaps, a direct translation of the word may suggest social economy, which is a more a 19th
century word/phrase):

A theory of crisis can never be based on the analysis of one separate aspect of the econ-
omy alone. Unless it is to be an amateurish absurdity, it is always the last or last but one
chapter of a written or unwritten system of economics, the ripe fruit of the insight obtained
from the totality of the economic processes and their interaction. Two implications follow
from this. First, that each scientific system requires its own crisis theory, and second, that
the less mature and complete the corresponding scientific system is, the more hypothetical,
daring, even preposterous the crisis theory built on it will be. This is similar to the popular
understanding and explanation of illnesses, which are not based on a solid anatomy and
physiology of the human organism.

4See p. 41, ff., (Schumpeter (1954)).
5In which he also pointed out that Böhm-Bawerk (see also the opening quote in this section), as early

as 1898, had taken up this topic (Kuznets (1930), p. 384):

“The organic relation between business-cycle theory and theoretical economics was stated
by Böhm-Bawerk as early as 1898 (in a book review in the Zeitschrift für Volkwirtschaft
Sozialpolitik und Verwaltung, Vol, vii, p.132).”

It is interesting to recall, as pointed out in section 1, that it was in 1898 that Wicksell’s similar concern
for the ‘organic relation’ between Monetary Theory and Theoretical Economics – which was, at that time, not
specifically identified with ‘equilibrium economics’ – was first expressed in the international literature
(Knut Wicksell, (1898, [1936]), Interest and Prices, translated by Richard F. Kahn, Macmillan, London).
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– a recognition which permits the utilization of the generalized experience
of various special investigations in a more complex and a more realistic
general theory of economic change. The equilibrium theory, in the limited
meaning in which it is retained, will also be enriched, since the general
theory of economic change will point out many more important economic
factors than have heretofore been included in the equational systems of the
mathematical school. If we are to develop any effective general theory of eco-
nomic change and any complete theory of economic behaviour, the practice of treat-
ing change as a deviation from an imaginary picture of a rigid equilibrium system
must be abandoned.”

Kuznets (1930), p. 415; italics added.

Hayek, on the other hand, suggested that6:

“[T]he thesis of Löwe (which remains .... the basis of my own work)
that the incorporation of cyclical phenomena into the system of economic
equilibrium theory, with which they are in apparent contradiction, remains
the crucial problem of Trade Cycle theory. .....

..
By ‘equilibrium theory’ we here primarily understand the modern the-

ory of the general interdependence of all economic quantities, which has
been most perfectly expressed by the Lausanne School of theoretical eco-
nomics.”

Hayek (1933), p.33 & p.42; italics added.

It should be noted that for Kuznets7 it was equilibrium theory that faced the prob-
lem of incorporating business cycle phenomena into its framework; the opposite is the
case for Hayek. Somewhere in between there was Johan Åkerman, perhaps best char-
acterised as the lone Schumpeterian8 voice, in an otherwise Wicksellian Sweden, whose
methodological views were refreshingly original in that he also brought into consider-
ation issues of the roles played by deductive and inductive processes of reasoning in
equilibrium theory and cycle theory9. A representative view of his stance on the prob-
lem of integrating the phenomenon of the business cycle with equilibrium theory, on

6Quoted in a fractured way, out of context, and inaccurately by Lucas (1981), p.215.
7Incidentally, the almost ‘universal’ reference to Frisch (1933) as the macrodynamic origins of what

is now referred to as the Frisch-Slutsky methodology is seriously unfair to Kuznets (1929), who also
pointed out that the classic Slutsky work was even referred to by Mitchell (1927); p. 478.

8Long before Schumpeterian evolutionary economics, where the cycle was an intrinsic manifestation
of the dynamic growth process, was a codified chapter in macroeconomic theory.

9It should be recalled that business cycle theory was referred to as konjunkturtheorie, as in German,
and was differentiated from crisis theory by the use of the word krisen for the latter phenomenon. Johan
Åkerman’s doctoral dissertation, (Åkerman (1928)), is an important document in the history of mathe-
matical business cycle theories, not least because Ragnar Frisch was the official examiner. It is the only
document, to the best of our knowledge, by any Swedish economist in the interwar period, where there
is an explicit acknowledgement to S.D. Wicksell, the statistician son of the great Knut Wicksell:
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which he wrote systematically during the decade late 1920s and the whole of the 1930s,
may be gleaned from his superbly pedagogical article in the Ekonomisk Tidskrift of
1932 (Åkerman, J. (1932)), where also copious references to his previous writings on
the subject is made available. It is clear, even with only rudimentary mathematical
mastery of nonlinear dynamics, he was advocating an endogenous, nonlinear, deter-
ministic approach to the modelling of business cycle phenomena, although he did not
neglect seasonal factors and, to some extent, both exogenous shocks and psychological
factors (although critical of Pigou’s stance on this factor in the latter’s Industrial Fluc-
tuations (Pigou (1927)) also played a role in his desiderata for a formal theory of the
cycle within economic theory.

Hicks, in 1933, as, indeed, Kaldor at that time10, was ‘minimising [his] differences
from Hayek’ (Hicks (1982), p. 28) and went so far as to claim (ibid, p. 29; italics added):

“The great advances that have been made in recent years in our under-
standing of the Trade Cycle have consisted chiefly of the successful applica-
tion of economic theory (and especially monetary theory) to the problem of
fluctuations. ... The development in our knowledge of the Cycle was thus,
from one point of view, a purely theoretical development. It took the form
of the construction of a theory of Money that finds a place inside general
economic theory rather than outside it.

The object of the present chapter is to make a small contribution to this
theoretical development by enquiring into the place that is to be occupied
in the new theory of Money and of the Cycle by the central notion of pure
economics: the concept of equilibrium.”

That this ‘new theory of Money’ was untenable, both from the point of view of a
seamless integration with economic theory and as a foundation for a cycle theory within
equilibrium economic theory, was the message of the two classics by Myrdal (1931), and
Sraffa (1932), but it took Hicks more than a quarter of a century to acknowledge the
twin messages of the great Swede and the Cambridge Italian maestro!

With the benefit of melancholy – at least from our point of view – hindsight, we
now know that the Hayekian vision, in the form of old wine in new bottles, prevailed
and is the dominant current approach; the enlightened and challenging vision of a

“Under min studietid vid universitetet i Lund har professor Emil Sommarin och professor
S.D. Wicksell visat ett livligt intresse för min undersökning och givit mig många värdefulla
råd och anvisningar, för vilket jag härmed får uttrycka min stora tacksamhet.”

[I express my immense gratitude to Professor Emil Sommarin and to Professor S.D. Wicksell for the
lively interest they have shown for my investigations and for having given me valuable advice and
instruction during my stuies at Lund (KVV’s translation of the original Swedish)]. During Velupillai’s
early years as a doctoral student at the University of Lund, Johan Åkerman was an occasional auditor
at special advanced seminars in the department of economics. He was, by then, almost totally deaf and
was always accompanied by his wife, who helped him interpret any talk.

10Kaldor was the joint translator (together with H.M. Croome) of Hayek’s classic Monetary Theory and
the Trade Cycle, Hayek (1933).

12



Chapter 2

dynamic theory free of viewing change as simply ‘a deviation from an imaginary pic-
ture of a rigid equilibrium system’, now survives only in the underworlds of modern
day reincarnations of Karl Marx, Silvio Gesell or Major Douglas11. Our adherence to
this underworld is uncompromisingly complete. It is based on exactly the reasons for
which Kuznets advocated the abandonment of equilibrium economics and its formal-
isations.

Formalisation of dynamic method12 that could encapsulate proper disequilibria,
the existence of multiple equilibria and even lack of any equilibria to which the system
may or may not tend, or around which fluctuations may or may not recur – whether
as small deviations or large and sustained departures, was the sought after criterion
such that it was possible to incorporate it coherently with the the formal systems of
general equilibrium equations of the real economy of orthodox theory. Hence, dynamic
method, formalised as ordinary differential, difference or mixed difference-differential
equations, and, very occasionally, also as differential inequalities were to be made an
adjunct of, or an integral part of, the systems of equilibrium equations, for which, then,
solutions would be sought in a similar manner to traditional methods (whatever they
may have been). The first, tentative, steps – methodologically – were simple additions
of time subscripts to standard variables and a claim that the consistent equilibrium
formulation and solutions to this new system of equations was an answer to the puzzle
of synthesising ‘change’ or ‘dynamics’ and ‘static equilibrium’.

In this chapter, we concentrate on those macroeconomic business cycle theories
that tried to encapsulate dynamic method in terms of nonlinear differential, difference
and mixed difference-differential equations such that the solutions – the attractors in
the language of dynamical systems theory – had the potential to display multiple, un-
stable, endogenously generated, equilibria, where the trajectories in any relevant basin of
attraction would be consistent with well defined economic disequilibria. This is the
standard approach of the nonlinear, endogenous, business cycle theories, when appro-
priately formalised. However, we shall also suggest that theories of the business cycle,
for example that associated with Swedish Sequence Analysis, may not be consistent with
generalised nonlinear dynamical systems modelling. This is because a literal, purist,
interpretation of Swedish Sequence Analysis suggests that they were seeking to model
economic dynamics of a kind that was not associated with any equilibrium. We sug-
gest that this interpretation is not consistent with modelling in terms of any kind of
dynamical system and one has to seek, at least in the first instance, a formalism for
dynamics that cannot be associated with any kind of differential, difference or mixed

11Paraphrasing Keynes (Keynes (1936), p. 32; italics added):

“The great puzzle of Effective Demand .... could only live on furtively, below the surface,
in the underworlds of Karl Marx, Silvio Gesell or Major Douglas.”

12We have in mind the idea of formalising an intuitive concept in a precisely defined scientific context.
This is similar to the way Alan Turing, and others, formalised the intuitive notion of calculability with the
precise notion of computability. The intuitive notion of continuity is still to find a definitive formalisation,
despite claims to the contrary by Bourbaki, and others.
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difference-differential equation system.
This observation is, in our opinion, dual to Samuelson’s important remark on

the existence of dynamical systems that cannot be associated with any (useful) maxi-
mum principle (Samuelson (1971)) and he gave the homely example of the (nonlinear)
multiplier-accelerator model of the business cycle to illustrate the point.

These two principles of modelling – nonmaximum and nonequilibrium economic
dynamics – will form the touchstone for the structure and content of the entire work,
and their crucial roles will emerge only as the whole tapestry is completed. This part
of the story is but one aspect of the final tapestry envisaged.

Finally, the problem setting itself should be provided by a background narrative,
at the outset, of two parallel stories: one, an outline of the business cycle theories that
provided the foundations for nonlinear, endogenous, dynamic modelling; two, a con-
cise outline of the parallel development of nonlinear dynamics, but extending back-
wards to Poincaré, and coming down the years till the dawn of the era of dynamical
systems theory – i.e., from Poincaré and the elder Birkhoff, via van der Pol and the An-
dronov school, and ending with Cartwright-Littlewood, Levinson and the Lefschetz
school. This is an outline of a 70-year history13, as the backdrop for the kind of math-
ematical formalisms used in the dynamic method of the theories of nonlinear, endoge-
nous, business cycle theories. The interaction between the formal dynamics invoked by
the macroeconomist and that being developed by the mathematician did have some fe-
licitous outcomes, and we will highlight some of them. But this chapter will, inevitably,
be crippled by leaving out the parallel development in the mathematics of nonlinear
dynamics, as itself emerged from nonlinear oscillations theory to become dynamical
systems theory. This latter story will also form a part of the completed tapestry.

From the strictly macroeconomic point of view the following fourteen classics
will provide the textual foundations on which we will outline the emergence of non-
linear, endogenous, business cycle theories (all of them produced during the 1930s):
Tinbergen (1931), Kalecki (1939), Fisher (1933), Hayek (1931), Hawtrey (1931), Myrdal
(1931), Frisch (1933), Hicks (1982), Leontief (1934), Keynes (1936), Harrod (1936), Lund-
berg (1937), Lindahl (1939) and Schumpeter (1939). It is not without significance that
eleven of these classics emanated on ‘this side’ of the Atlantic and three were by the
members of the ‘Stockholm School’.

Connoiseurs of the history of business cycle theories may wonder at the absence
of many classics – in particular the three League of Nations commissioned studies by
Haberler (1937a) and Tinbergen (1939a,b). To them our answer is that this is not a
study of the origins and development of business cycle theories; it is, instead, a study

13Our ‘model’ here is the excellent expository historical narrative by David Aubin and Amy Dahan
Dalmedico (Aubin and Dalmedico (2002)). The essays by Anosov, Arnold, Il’yashenko, Shil’nikov and
Sinai in (Bolibruch et al. (2005)) were also important for the way we structure our own story. Finally, we
are also deeply influenced by the ‘insider’s accounts’ given in a series of papers by Mary Cartwright,
spanning almost forty years of the history of how nonlinear oscillations theory became, first, topo-
logical dynamics and, eventually, dynamical systems theory (Cartwright (1952), Cartwright (1964) &
Cartwright (1974)).
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of the way a mathematical mode was introduced to study the nonlinear, endogenous,
vision of business cycle theory.

From the point of view of the differential, difference and mixed difference-differential
equations that were canonical in the formalisation of the dynamics of the emerging
nonlinear, endogenous, business cycle theories, the following played crucial roles14:

The van der Pol equation:

ẍ− k(1− x2)ẋ + x = 0 (2.1)

Equations of the Liénard type:

ẍ + f (x)ẋ + g(x) = 0 (2.2)

studied in the Liénard Plane:

ẋ = y− F(x), ẏ = −g(x) (2.3)

The generalized, forced, van der Pol equation:

ẍ + f (x, ẋ)ẋ + g(x) = p(t) (2.4)

The Rayleigh equation:

ẍ + η

(
−ẋ +

ẋ3

3

)
+ x = 0, {0 < η < ∞} (2.5)

The Logistic Map:

xn+1 = λxn(1− xn) (2.6)

The difference-differential equation:

m

∑
µ=0

n

∑
ν=0

aµνy(ν) (x + µ) = 0 (2.7)

The second-order difference equation:

yn+1 = F (yn, yn−1) ∀n = 0, 1, 2, ....

where F : R2 → R & given initial conditions y0, y−1 ∈ R
(2.8)

The first five encapsulated the business cycle theories of Fisher, Keynes, Harrod,
Schumpeter and Hawtrey; the sixth, models of the ‘cobweb’ type, as in Leontief; the
seventh, in various specialised forms, the business cycle theories of Tinbergen, Kalecki

14In all of the cases, when used in macrodynamic models of the business cycle, x and y signified either
aggregate output, income or sectoral (for example agricultural in cobweb models) output values. The
nonlinearities encapsulated in the functions f (x), g(x) and F(x) represented the nonlinear accelerator
or delayed adjustment of an independent variable.
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and Frisch; the last one, with variously specified functional forms for F, encapsulated
variations on the dynamics of Swedish Sequence Analysis (although we do not fully sub-
scribe to this interpretation of their ‘dynamic method’), on the one hand, and the Hicks
version of a Keynes-Harrod model of the trade cycle.

2.3 Excitement at Birth: 1928 – 1957

“van der Pol believes15 that even periodic business cycles show a certain
analogy to the relaxation oscillation of a physical system. The essential con-
dition for such oscillations is negative damping for small deviations and
a rather rapidly increasing positive damping for large deviations from the
equilibrium position. The psychological response of certain groups of peo-
ple to changing business conditions shows doubtless some analogy to the
behaviour of mechanical systems capable of relaxations oscillations.”

von Karman (1940), p.624.

How reliable are ‘analogies’ in devising fruitful models in economics in general
and in economic dynamics in particular? Is it sufficient to rely on analogies at a phe-
nomenological level to justify mathematical modelling of a particular variety and then
to seek behavioural and other basic hypotheses to justify that particular kind of for-
malization? Arguably, no field of formal economic analysis has been subject to serious
and systematic ‘analogical thinking’ that has led to mathematical formalizations of one
sort or another in more fruitful ways than business cycle theory.

From time to time, distinguished mathematicians, physicists, biologists and other
natural scientists make important forays into economics, make fundamental contri-
butions that changes the face of the subject in profound ways, and they themselves
return to their own, original disciplines, whilst the economists and economics con-
tinue to reap the results of such beneficial influences for years on end. von Neumann,
Wald, Mandelbrot, Smale, Gale and a few others come immediately to mind as out-
standing examples of such remarkable individuals. There are, of course, less obvious
successes and, equally, also less edifying examples of such attempts. The early 30s
was a fertile time for this kind of activity and economic theory was at the dawn of be-
coming almost swamped by a wave of mathematizations that was to change its char-
acter beyond recognition forever. Two outstanding natural scientists - one an applied
mathematician, in the sense in which the phrase was commonly used a few decades

15For example:

“Returning to a general consideration of relaxation oscillations many more instances of these
oscillations can be cited .. . Even the periodic reoccurrence of economical crises and epi-
demics may possibly follow similar laws.”
van der Pol (1934) p. 1081.
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ago, another a classic polymath - suggested a particular formalization for the mod-
elling of the macroeconomic phenomenon of business cycles: Philippe Le Corbeiller
and J.B.S. Haldane. The former advocated the formalization of business cycles as re-
laxation phenomena in a non-linear dynamical system; the latter advocated the use
of integral equations to formalize similar phenomena. Their individual advocacies re-
flected the particular concerns that had, at that point in time, occupied their fertile
minds: maintained oscillations in electrical and mechanical units in the case of Le Cor-
beiller and evolutionary biological phenomena in the case of Haldane. We try to tell
the circumstances that led to Le Corbeiller’s innovative suggestion being taken up by
an economist who, subsequently, pioneered the non-linear approach to business cycle
modelling. However, we do not mention Haldane’s name in these contexts frivolously!
The same economist, in a later ‘incarnation’, was directly and personally influenced by
Haldane to further the non-linear cause in macrodynamic modelling in even more dra-
matic ways. That, too, forms a lining in this story - but only as a kind of icing on the
cake. Perhaps the implicit message in the way the story will be constructed and nar-
rated is that fertile cross-disciplinary harvests require timely seedings in receptive soil
to be nurtured by men and women of imaginative, tenacious and audacious tempera-
ment. This is because harvests take time to mature and blossom.

One important theme here is to tell the story of mathematical business cycle theo-
ries as adventures in non-linear dynamics. Thus, it will not be a complete story - of the
past, the present or possible future - of mathematical business cycle theories; only the
part that embraced and was fertilised and enriched by being modelled as non-linear
dynamical systems.

In this section, a succinct description of the way nonlinear dynamics was intro-
duced into formal business cycle theory is given. There is a discussion of the way a
purely economically motivated hypothesis was fruitfully formalised as a characteristic
underpinning a special case of Liénard’s equation. The serendipitous way Goodwin
and Le Corbeiller came to meet and collaborate is also described.

“[E]conomists will be led, as natural scientists have been led, to seek in
nonlinearities as explanation of the maintenance of oscillation. Advice to
this effect, given by Professor Le Corbeiller is one of the earliest issues of
this journal, has gone largely unheeded”

Goodwin (1951), p. 1.

The thirty years in consideration was a period of flourishing and fertile research
in the mathematical modelling of business cycles. Our choice of precisely these initial
and terminal years are motivated by ex-post considerations. To the best of our knowl-
edge, it was in 1928 that the idea of interpreting economic cycles as being generated by
a non-linear dynamical system capable of relaxation oscillations was first hypothesized:

“The present writer would like to point out that the applicability of the prin-
ciple of relaxation-oscillations to economic cycles was first emphasized by

17



Chapter 2

him in 1928 [at the May 7, 1928, Meeting of the Batavian Society of Logic
Empirical Philosophy] in a discussion following a paper read by Messers.
Van der Pol and J. van der Mark on ‘The Heartbeat Considered as a Relaxation-
Oscillation, and an Electrical Model of the Heart.”

Hamburger (1934), p. 11216

The terminal year is defined as the dawn after the twilight characterised by the
classic by Hugh Hudson (1957) which summarised, in elegant prose and classic dia-
grammatic exegesis, the nonlinear, endogenous, business cycle theories that had be-
came, for that time, the standard approach.

We will outline the idea that invoking non-linear models capable of relaxation os-
cillations to encapsulate economic data had to rely on reasonably reliable empirical
evidence of a particular kind, historically and theoretically substantiated:

• evidence of the persistence of fluctuations;

• of asymmetric cycles (in the sense of time series of aggregate variable displaying
significantly non ‘sinusoidal’ behaviour);

• of multiple equilibria;

• of, at least, local instability of equilibria;

• of significant intrinsic non-linearities in economic relationships or behaviour in
variables defining macroeconomic fluctuations.

The five desiderata, persistence, asymmetry, multiple equilibria, instability and non-
linearity as criteria for a model of macroeconomic fluctuations implied, in turn, an en-
dogenous cycle. The key economic hypotheses underpinning these ideas (multiple equi-
libria, instability and non-linear behavioural relations) and the stylized facts (persistent
and asymmetrical fluctuations) underlined departures from orthodox visions of the
workings of the economic system in advanced industrial economies. Thus the insta-
bility hypothesis meant that deviations from equilibria did not call forth automatic
self-adjusting mechanisms of the metaphorical world of the invisible hands. The hy-
pothesis of multiple equilibria implied, in conjunction with the loss of self-adjustment
capabilities, that economies could, for endogenous or exogenous reasons, end up in
undesirable basins of attraction, out of which the system could not, of its own accord,
extricate itself and, hence, signalled an active role for policy. That, in turn, called forth

16Velupillai’s discovery of Hamburger’s work is as follows: Concisely summarised, it was the late
Professor Sukhamoy Chakravarty who, during a personal conversation in Cambridge in 1982, referred
Velupillai to Hamburger’s claims to priority in this area. Some of this information was summarised,
after he passed it on to her, in the doctoral dissertation of his brilliant student, Serena Sordi.
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a theory of macroeconomic policy to be developed within the same context17. Insta-
bility, multiple equilibria and a theory of policy within a framework of growth and
business cycles in an advanced industrial monetary economy were themes broached
by, and models for them were crafted by, four pioneering economists: Wicksell, Lin-
dahl, Keynes and Harrod. None of them, however, fashioned an explicit mathematical
model. We conjecture that none had the theoretical technology to construct meaningful
unstable, multiple equilibria, models mathematically. Their deep economic insights,
expressed in every one of their cases in exceptionally elegant prose18, left no doubt as
to the necessity of non-linear tools to encapsulate their fertile ideas. It was left to their
students and near contemporaries - in the chronological order in which their works
came to be published, Erik Lundberg, Nicholas Kaldor, Richard Goodwin and John
Hicks - to realise that aim.

Several authors, in the period considered, appealed to one or more of the above
desiderata. However, to the best of our knowledge, only these four invoked the whole
set as defining criteria for a model of macroeconomic fluctuations. Of these four, the
first and the last, Erik Lundberg and John Hicks, framed their models in terms of
piecewise linear relations; the second, Nicholas Kaldor, described his economic model
graphically and set out the defining economic relationships algebraically in non-linear
functional forms without, however, deriving the final, crucial, non-linear equation
which would encapsulate the dynamics and show the nature of its underlying relax-
ation oscillation behaviour. This significant task, for the Kaldor economic model, was
first accomplished by Takuma Yasui only in 1952-3 and it was shown, in a masterly
pedagogical piece of analysis, that the Kaldor (1940) non-linear Model of The Trade Cycle
implied a formalism in terms of the van der Pol equation. Only Richard Goodwin devel-
oped a formal mathematical macrodynamic model, explicitly satisfying every one of
the criteria listed above, and derived the final, formal, equation - as it happened it was
the Rayleigh form for maintained oscillations - in one fell swoop, so to speak.

These four supreme macroeconomic theorists did not invoke these desiderata ar-
bitrarily or in an atheoretical vacuum. The intrinsic structure of the theoretical foun-
dations on which each, in their own distinctive way, erected their respective business
cycle models implied non-linear mathematical equations encapsulating, naturally, the
five desiderata. It was not as if a non-linear equation was chosen, a priori, and, then,
economic assumptions were tailored to fit the chosen equation; it was, instead, quite
the other way about and according to the noblest Ockhamian traditions of model build-
ing and theorising. Indeed, it was precisely because these outstanding theorists went
about the construction of their theoretical model of the business cycle in this tradi-
tional, noble, way that non-linear macroeconomic modelling of business cycles had
many false starts, several still-born episodes and even unfortunate and unfounded
dismissals, at least in the period under consideration. None of them, except Goodwin,
ever managed to master the mathematical sophistication required for the understand-

17The choice between a van der Pol formalism and a Rayleigh formalism for non-linear business cycle
theory had, as its economic backdrop, a precise stance on policy.

18In Swedish of impeccable clarity and admirable directness, in the case of Wicksell and Lindahl.
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ing of the full formalism of non-linear dynamics. That Goodwin became a master - at
least of some aspects of this fascinating area - was almost wholly due to the personal
tutoring he received from Philippe Le Corbeiller.

Lundberg, Kaldor, Goodwin and Hicks had, each of them independently, con-
structed non-linear business cycle models of innovative and imaginative structure and
each had their own sources of theoretical inspiration. Lundberg built on Wicksell
and the contemporary work of his Swedish macroeconomic colleagues, particularly
Erik Lindahl, Gunnar Myrdal and Dag Hammarskjöld; Kaldor subtly synthesised the
works of Keynes, Harrod and Kalecki; Goodwin combined, with outstanding inno-
vative imagination, elements of Schumpeter, Keynes and Harrod; Hicks, in his own,
characteristic, low-key way, seemed to have relied on modified aspects of Keynesian
and Harrodian elements to construct his piecewise linear model of the trade cycle19. In
passing, it must be noted that modern studies on non-linear macrodynamics, partic-
ularly when it relates to business cycle theory, have had a tendency to pay justifiable
homage to these pioneers - with the exception of Lundberg.

Thus, before concluding this section, four issues must be faced and resolved.

1. First of all, why did Hamburger’s pioneering conjectures fail to elicit any re-
sponse at all?

2. Secondly, why is Lundberg’s impressive and highly original work not bracketed
together with Kaldor, Goodwin and Hicks as one of the pioneers of non-linear
business cycle modelling?

3. Thirdly, what of many other significant calls for the ‘non-linearization’ of macro-
dynamics in general and business cycle theory in particular, of this period, and
why didn’t any of them - some by outstanding theorists of the profession such
as Paul Samuelson and Nicholas Georgescu-Roegen - lead to serious modelling
exercises, satisfying the five desiderata enumerated above?

4. Only one such ‘clarion call’, that by Ph. Le Corbeiller, elicited any response at all,
by economic theorists - why?

19It is interesting to recall the reflections of one of the pioneers of macroeconometric model building
on the theoretical sources that inspired them:

“The econometric models that I have constructed as practical tools for analyzing or pre-
dicting the economies of the United States, Canada, United Kingdom, and Japan have
been based on combinations from the theoretical models of Marx, Kalecki, Keynes, Lange,
Hicks, Kaldor, Metzler, Goodwin, and others. .... Actually most models in existence today
could be decomposed into ideas first found in the models of Kalecki, Kaldor, Metzler, and
Goodwin.”
Klein (1964) p.189.

It is interesting that Metzler’s name appears in both lists. The precise role of the particular contri-
bution by Metzler to which Klein refers, in the ‘subverting’ of the piecewise linear Lundberg model, is
discussed above. The only surprise in the lists above is the absence of Harrod’s name.
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Hamburger’s imaginative and original line of economic research was sadly ter-
minated by the tragedy of the holocaust. Despite the valiant empirical case he tried
to make to substantiate his claims that economic fluctuations should be modelled as
the relaxation oscillations of a nonlinear differential equation, his work did not attract
much - or, indeed, any - attention in the vibrant efforts that were being made, through-
out the 30s, to model the business cycle. ‘Emphasizing the applicability of the principle
of relaxation-oscillations to model economic cycles’, is one thing; to actually build a for-
mal mathematical model of aggregate fluctuations, ab initio from economic principles,
encapsulated in the dynamics of a nonlinear (or even a linear) system of equations ca-
pable of relaxation oscillations, is quite another thing. Hamburger pointed out (ibid)
that his ‘suggestion .. was ..corroborated by results indicated in [his] paper[s]’ in Dutch
and French, published, respectively, in 1930 and 193120. However, the ‘corroboration’
is simply by way of appeal to descriptive similarities of crude statistical plots of time
series pertaining to arbitrary economic variables.21 Although it is surprising that his
innovative suggestions were not taken up in serious research circles, the reasons for the
failure of the modelling effort he wished to promote to take-off are equally unsurpris-
ing. Except for what may be called a tendentious preoccupation with the importance
of relaxation oscillations, Hamburger provided no unifying economic theoretic mod-
elling principle within which a theory of the business cycle could be embedded and at
least a few of the desired criteria satisfied22.

The full details of Lundberg’s model of the inventory cycle cannot be discussed
here23. All we shall do here is to report the main conclusion. Lundberg’s construc-

20As Hamburger (1930) and Hamburger (1931). The van der Pol equation does appear in both of these
papers (as equation # 7, on p.5, in the former and in footnote 7, p.6 in the latter) in the form:

d2y
dt2 − α

(
1− y2

) dy
dt

+ ω2y = 0 (2.9)

Figures 1 to 3 (in both papers) show the increasing loss of (nearly) sinusoidal behaviour of the time
variation of y for increasing values of α (0.1, 1.0, 10), presumably for a given value of ω (unspecified in
the papers). The equation and the simulations are supplemented by a couple of pages of a discursive
discussion on the meaning of relaxation oscillations in the abstract.

21For example, figure 4 plotting the monthly variation in sales in so-called ‘Five- and ten-cent chain
stores’ in the US, for the five years from 1921 to 1925, does show a remarkable consistency with a possible
underlying relaxation mechanism. The hard work is to go from suggestive statistics to the underlying
model and that does not seem to have exercised Hamburger’s considerably fertile mind. I have devoted
more space than warranted on the marginalised work of Hamburger simply because I feel his untimely
demise may have deprived the economic profession of an unusual talent that may have helped speed
up the introduction of nonlinear mathematical modelling to the art of business cycle theorising much
sooner than happened in his absence. The only reference in the mainstream economic literature to
anything by Hamburger is the one by Tinbergen in his famous Survey (cf. Tinbergen (1935), footnote 71,
p.288).

22For the same reason we have not gone into details of the contributions by Marrama and Palomba
to the nonlinear macrodynamic tradition. Our friend, Professor Giancarlo Gandolfo’s sterling effort on
this front may be referred to, for the interested reader (for example, Gandolfo (2010)).

23Readers wishing to get a partial idea of what is meant here could profitably read Berg (1991) and
Baumol (1991).
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tion was of a linear, unstable model of inventory cycles, made to generate bounded
fluctuations by building in natural, economic, constraints that would act as bounds on
unlimited expansion and catastrophic contractions. In effect, the formal model was
in terms of a piecewise linear difference equations. Lloyd Metzler endogenised the
bounds and converted the model into a completely linear system. Why did he do it?
We had to wait thirty years to get a straight, candid, answer - as always with charac-
teristic directness from Paul Samuelson:

“In leaving Frisch’s work of the 1930’s on stochastic difference, differential
and other functional equations, let me point out that a great man’s work
can, in its impact on lesser men, have bad as well as good effects. Thus, by
1940, Metzler and I as graduate students at Harvard fell into the dogma -
I use the word ‘dogma’ in the non-perjorative sense of Crick’s dogma on
DNA and RNA, as a leading hypothesis - that all economic business-cycle
models should have damped roots. .... [W]hat was so bad about the dogma?
Well, it slowed down our recognition of the importance of non-linear au-
torelaxation models of the van der Pol-Rayleigh type, with their charac-
teristic amplitude features lacked by linear systems.”

Paul Samuelson (Samuelson (1974), p.10; bold emphasis added.

Lundberg’s non-linear, unstable, model of the inventory cycle was, after its unfor-
tunate transmogrification by Metzler, forever cast into the linear mould, until recent,
sporadic, revivalist attempts, with hardly a ripple in mainstream thought or practice.

In 1933, in the very first volume of Econometrica, Philippe Le Corbeiller had writ-
ten, suggestively and challengingly:

“Le problème des crises, et plus généralment des oscillations des prix, est
assurément l’un des plus difficiles de l’Économie Politique; il ne sera sans
doute pas de trop, pour approcher de sa solution, de la mise en commun de
toutes les ressources de la théorie des oscillations et de la théorie économique.
C’est pouquoi j’ai pensé pouvoir vous présenter un compte-rendu succinct
d’un avance récente, que je crois importante, de la théorie des oscillations:
celle apportée au problème des systèmes autoentretenus par la découverte des
oscillations de relaxation, due à un savant hollandais, le Dr Balth. van der
Pol.”

- Le Corbeiller (1933), pp.328-9; italics added.

The suggestion was not one of those famed ‘bolts from the blue’. First of all,
by the time it came to be published, it had been in the hands of, Ragnar Frisch, the
Editor of Econometrica, for over an year.24 Secondly, there is ample evidence, even at

24Unfortunately, the University of Oslo library where, at present most of the Frisch Archives are de-
posited, do not allow copying of personal letters without the written permission from descendents on

22



Chapter 2

those very early stages in the development of the analytic apparatus of (non-linear25)
relaxation oscillations, that Le Corbeiller was deeply interested in, and committed to,
an investigation of diverse phenomena in the natural and physical world that were
amenable to an interpretation in terms of a non-linear formalization emphasising this
aspect in its dynamics.26 Thirdly, here we are conjecturing without hard evidence, it is
more than likely that his lifelong intimacy and friendship with van der Pol had already
begun in the late 20s. He may, therefore, have been aware of Hamburger’s remarks on
the van der Pol-van der Mark paper, via personal discussions or communications from
van der Pol himself. We believe a little more research effort may close this minor gap
and help present a complete picture of the background to Le Corbeiller’s fascinating
and suggestive paper. There is no mention of possible interpretations of economic
fluctuations as relaxation oscillations in his 1931 monograph, the contents of which
were given as seminars in May, 1931. Frisch had received27 a copy of the first draft by
July, 1932. Sometime in the 14-month period between these two dates, Le Corbeiller
had conceived and written this pioneering paper. The source of the inspiration remains
to be discovered.

To the best of our knowledge, there are only three explicit references to Le Cor-
beiller’s call for a non-linear, relaxation oscillation, approach to the modelling of eco-
nomic fluctuations: Paul Samuelson in his path-breaking monograph, Foundations of

both sides of a correspondence! Many of the letters between Le Corbeiller and Frisch, particularly from
the former, are in handwriting that is indecipherable without expert help. On 12 July 1932 Frisch wrote
as follows to Le Corbeiller (typewritten):

“My dear Professor Le Corbeiller,
Your manuscript ‘Les systremes autoentretenus....’ has been referred to me as Editor of
the newly established journal ‘Econometrica’, the journal of the Econometric Society. If
this paper has not been published elsewhere and if you do not plan to have it published
elsewhere, I shall be glad to accept it for publication in an early issue of ‘Econometrica’.
Please drop me a line about this at your earliest opportunity.
Sincerely yours,
Ragnar Frisch”

Le Corbeiller replied, with a handwritten note, from Paris, three days later, expressing his gratitude
for the honour Frisch was bestowing upon him with the proposal to publish his piece.

25Lest the unwary reader think we are being facetious with the qualifying ‘non-linear’, we must point
out that, in economics, an early attempt at applying the ideas underlying relaxation methods empha-
sised linearity. We shall deal with this later, in this paper.

26This is eminently clear in his elegant booklet of 1931 (Le Corbeiller (1931)), based on Seminars given
at the Conservatoire National des Arts et Métiers on 6-7, May, 1931. In particular, the concluding section,
sub-titled Aperçu historique et conclusion (pp.43-5), although the whole work reflects the mind of a
scientist with an admirably broad vision of natural and physical phenomena. It will not come as a
surprise to anyone familiar with this beautiful little exposition that this fertile mind saw the possibility of
a fruitful interpretation of fluctuating economic phenomena in terms of non-linear relaxation oscillation
mechanisms as the underlying cause. The significant step of identifying these mechanisms in terms of
meaningful and incontrovertible economic factors had to wait another decade and a half, much due to
the personal efforts of Le Corbeiller himself, albeit indirectly.

27Although through which channels is still a mystery.
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Economic Analysis (Samuelson (1947)); Georgescu-Roegen in one of his contributions
in the Cowles Foundation Monograph on Activity Analysis of Production & Allocation
(Gorgescu-Roegen (1951)) and, finally, Richard Goodwin (1951). It was only this latter
work that directly took up the challenge posed by Le Corbeiller and codified into a
usable formalization, within standard macroeconomic theory, a model of the business
cycle in a theoretically sound and empirically implementable way.

Paul Samuelson simply catalogued some possibilities for mathematically mod-
elling endogenous business cycles using non-linear differential and difference equa-
tions, in a brief section of two and a half pages, in his monumentally influential book of
447 pages. Perhaps the very fact that a voice as mathematically competent as Samuel-
son’s, expressing that a non-linear, relaxation oscillation, approach to mathematical
modelling of business cycles entails ‘formal difficulties of solution ... so great that very
much remains to be done’ (ibid, p.340), immediately after a reference to Le Corbeiller’s
paper, may have diverted the profession’s attention away from the potential gains that
may have been available with a little effort. Apart from this brief and wholly discour-
aging reference to Le Corbeiller, there are discursive remarks on general properties
of non-linear dynamical systems, with explicit references to van der Pol’s equation,
without, however, any indication or attempt at encapsulating meaningful economic
hypotheses in a mathematical formalism that may have resulted in such an equation.

Georgescu-Roegen opens his illuminating and interesting paper with an explicit
reference to Le Corbeiller’s pioneering role in emphasising the relevance of ‘relaxation
phenomena as a model for business cycles’, (ibid, p.116). He, then, goes on:

“However, Le Corbeiller’s suggestion has found little echo among economists,
and the literature shows only sporadic references to his paper. Paul A.
Samuelson .., speaking of this possible approach, admits that practically
nothing has been done along this line. The only economic problem which
could be regarded as having something to do with relaxation is the famous
cobweb problem, but this has been developed independently of any rela-
tion to the concept of relaxation’

[ibid, p.116]

Georgescu-Roegen’s attempt at introducing relaxation phenomena in economic
dynamics took the unusual form of emphasising the discontinuity residing in them by
highlighting the fact there were two time-phased regimes encapsulated in the system.
He, then, interpreted all attempts at encapsulating the discontinuity within one func-
tional equation, such as van der Pol’s, as ‘veiling the real meaning of relaxation, which
is the discontinuity of the regime’. He went on, therefore, to consider the two regimes
formalised as two separate systems of linear differential equations. There was, there-
fore, no scope for taking seriously the full message of Le Corbeiller’s challenge and,
indeed, like Samuelson’s reference to it, had the unfortunate consequence of diverting
the attention of the business cycle theorist away from it.
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The first formal attempt at a fully developed non-linear relaxation oscillation math-
ematical model of the The Business Cycle as a Self-Sustained Oscillation28 was presented
by Richard Goodwin at the Cleveland Meetings of the Econometric Society, on 30 De-
cember, 1948, (Goodwin (1949)). The full paper was published subsequently in the
same Journal as the lead article in the first issue of 1951 (Goodwin (1951)). The mathe-
matical model of the business cycle presented in this paper was the first fully-fledged
formalization of the phenomenon that satisfied all the five criteria discussed above:
persistence, asymmetry, multiple equilibria, instability and non-linearity. Le Corbeiller’s
role in the development of the work that enabled Goodwin to produce this pioneering
paper is evident in the footnote to the lead quote of this section (above):

“My debt to Professor Le Corbeiller is very great, not only for the original
stimulation to search for the essential nonlinearities, but also for his patient
insistence, in the face of the many difficulties which turned up, that this
type of analysis must somehow be worked out.”

ibid, p.2; italics in original

2.4 Towards Consolidation, Decline and Renewal

“Certainly we do not want a theory of the cycle which clamps the facts
into a vice; but this theory [which Frisch has called the theory of erratic
shocks29] ... does not explain enough.”

John Hicks (1950) pp. 90-1; italics in the original.

In no uncertain terms, based on lucid economic and mathematical reasoning,
Hicks pointed out (Hicks (1950), p. 91) that:

“[T]he theory of damped fluctuations and erratic shocks proves unac-
ceptable; but if we reject it, what is the alternative? There is an alternative
... ”

28In view of the fact that Goodwin, in his own celebrated non-linear model of the business cycle,
emphasised the Rayleigh rather than the van der Pol equation, it may be of interest to recall the title of
the pioneering paper by Lord Rayleigh in which that system was developed: ‘On Maintained Vibrations’
(Strutt (1883)). It was, perhaps, not a coincidence that, forty three years later, van der Pol’s classic paper,
‘On Relaxation Oscillations’, was also published in the same Journal (van der Pol (1926)). Incidentally,
Marshall was Second Wrangler to Lord Rayleigh in 1865 and, for those numerologists interested in
coincidences, 1883 was, of course the year Keynes and Schumpeter were born and Marx died! The non-
linear business cycle theories in discussion in this paper rely, to some extent, on the economic theories of
Marx, Keynes and Schumpeter. Some substantiation for this statement can be found in the first footnote
in Goodwin (1951) and the last sentence of the second footnote of the same paper.

29Or, in Richard Day’s more felicitous, if slightly less complementary, phrasing: the theory of ‘ad-hoc
shockeries’ (cf. Day (1992), p. 180).
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The ‘alternative’ is, of course, the subject matter of this chapter: non-linear theory.
The first ‘Bank of Sweden Prize in Economic Sciences in Memory of Alfred No-

bel’30 was shared by Tinbergen and Frisch in 1969. The citation for Frisch stated that
he was awarded the Prize ‘for having developed and applied dynamic models for the
analysis of economic processes’. Thirty five and forty two years later, we read that the
2004 Prize was to be shared by Prescott with another Norwegian, Finn Kydland, and
the 2011 Prize was to be shared by Sargent and Sims. The former were awarded it
‘for their contributions to dynamic macroeconomics: the time consistency of economic
policy and the driving forces behind business cycles’. The latter award was for ostensi-
bly different contributions – although by simply changing ‘for their contributions to
recursive macroeconomics’, rather than ‘dynamic macroeconomics’, nothing else would
have changed. The metaphor of the rocking horse was the cementing concept that uni-
fied the mathematical methodologies underpinning Frisch’s ‘dynamic models for the
analysis of economic processes’ and the Kydland-Prescott real business cycle models
of ‘dynamic macroeconomics’ (and the underpinning for Sargent’s so-called ‘recur-
sive macroeconomics’). That much maligned metaphor was incorrectly attributed, by
Frisch (cf. Frisch (1933), footnote 5, p.178) to Wicksell’s famous lecture in Oslo, to the
Statsφkonomisk Fφrening, on May 6, 1907 (cf. Wicksell (1907)). No amount of fine-
toothed combing of that fine lecture will unearth any reference to a rocking (or, more
appropriately, an unrocking31 horse. Wicksell invoked the metaphor of the rocking
horse in a review of an obscure and best-forgotten book titled Goda och Dåliga Tider32

by a long-forgotten minor Swedish economist by the name of Karl Petander (cf. Wick-
sell (1918), p. 71, footnote 1)33.

Hicks was, of course, not alone in finding the ‘the theory of damped fluctuations

30Sometimes, misleadingly, referred to as the Nobel Prize in Economics and placed, incorrectly, on a par
with the those awarded for Peace, Literature, Physics, Chemistry and Medicine & Physiology. Surely, it
would have been more appropriate for the Bank of Sweden to follow the practice of the Mathematicians
and award the equivalent of a Fields Medal – say, calling it a Wicksell Medal – to honour and celebrate
excellence in economics!

31Zambelli (1992)) has shown, unambiguously and convincingly, that Frisch’s ‘rocking horse’ does not
‘rock’. It is a pity that this exceptionally careful and detailed analysis of the untenability of the numerical
underpinnings of Frisch’s economic assumptions, such as implausible initial conditions and unsustain-
able historical trajectories, have received hardly any attention in the macrodynamic profession.

32‘Good and Bad Times’.
33Frisch translated only the first of the two sentences in this footnote which referred to the now famous

rocking-horse metaphor. Just for the record, the full Swedish statement in this Wicksellian footnote is as
follows (ibid; italics in the original):

“Om man slår på en gunghäst med en klubba, så bli gunghästens rörelser mycket
olika klubbans. Stöten är orsaken till rörelsen, men föremålets egna jämiktsbetingelser äro
förutsättningarna för rörelsens form”.

[The impulse is the reason for the movement, but the object’s own equilibrium tendencies {structure}
are the prerequisites for the form of the movement. (KVV’s translation from the original Swedish, of the
second sentence].
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and erratic shocks unacceptable’; the names we have invoked in the pages of this chap-
ter are a testimony to that fact.

But is it necessary to choose between such starkly different alternatives - between
a linear stochastic theory and a non-linear deterministic theory? It was not in Hicks’
nature, nor in the nature of Schumpeter, Keynes, Lindahl, Lundberg, Tinbergen, Leon-
tief, Kalecki, Kaldor, Goodwin, Yasui, Morishima or Day, to depict possible worlds in
starkly contrasting colours; their’s was a world of shades and many colours and this
was so even in their theories of the trade cycle. Even though Hicks opted for the alter-
native of theorising without reliance on ad-hoc shockeries, he did add the characteristic
caveat (Hicks (1950), p.90):

“It [the theory of erratic shocks] certainly is an interesting theory; it is
quite likely that a ‘stochastic’ hypothesis of this sort has some part to play
in the explanation of what happens. But this particular hypothesis will not
do.”

There was a time when the theoretical technology of computing mitigated against
the use of non-linear dynamical systems to model macroeconomic fluctuations in ex-
cess of two or three dimensions. However, advances in the technology of feasible,
large-scale computations and simulations of high-dimensional non-linear dynamical
systems suggests new approaches to the modelling of macroeconomic fluctuations.
Moreover, it is also possible, with the new developments in theory and technology
at hand, to use modelling techniques and strategies that go beyond the traditional re-
liance on difference, differential and mixed difference-differential systems, whether
deterministic or stochastic, whether linear or nonlinear. Indeed, even the traditional
and worn dichotomy between deterministic and stochastic systems can be questioned
from the point of view of newer mathematical modelling possibilities brought to the
fore by concepts of incompleteness, uncomputability and undecidability34.

The rest of this concluding section, apart from summarising very briefly the way
nonlinear, endogenous, mathematical theorising of the phenomenon of aggregate fluc-
tuations proceeded, is also a mini-manifesto of hope.

2.4.1 The Interregnum: 1958-1970

We have called this period an Interregnum. This is an era that seemed to have reached a
nadir in the nonlinear, endogenous, mathematical theory of the business cycle, with the
provocative and perennially falsified thought that the business cycle was ‘obsolete’. A
conference convened by the Social Science Research Committee on Economic Stability, with
distinguished business cycle theorists in attendance - Erik Lundberg, Robin Matthews,
Lawrence Klein, Bert Hickman, R.A. Gordon, P.J.Verdoorn and many others - with the

34Note that we carefully avoid mentioning the fashionable – although ‘fashion’ has a way of making
obsolete even current ‘buzz’ words faster than adherents to them can imagine – notion of deterministic
randomness, deterministic chaos, and so on – at least here.

27



Chapter 2

main theme being: Is the Business Cycle Obsolete (Bronfenbrenner (1969)). The closing
year of the period is significant in that it was also approximately midway between
the year of Friedman’s famous AEA address that ushered in the natural rate of un-
employment as an essential ingredient in macroeconomic thinking and modelling and
the birth of newclassical macroeconomics at the hands of Lucas (1972)35. Apart from
sporadic contributions to business cycle theory - mostly in the linear mode - the sig-
nificance of the period for the story being told here is that 1967 marked the year that
Goodwin’s remarkable ‘A Growth Cycle’ was published, in the Dobb Festschrift (Good-
win (1967)) and a new impetus that was given to the worn out mantle of IS-LM by
Hugh Rose in an influential and inspired series of contributions that integrated the
non-linear Phillips curve within the fold of the dying embers of the Neoclassical Syn-
thesis and helped revive it, at least for a few years36. The former introduced, into
mainstream macrodynamic modelling, the famous Lotka-Volterra equations and with it
a wholly different set of issues from non-linear dynamical systems theory - even while
that theory was itself undergoing, literally, cataclysmic changes with the publication
of Steve Smale’s famous survey paper on Differential Dynamical Systems (Smale (1967)).
The latter – i.e., the contributions of Hugh Rose – introduced into the toolbox of the
macrodynamic student, once and forever, the powerful Poincaré-Bendixson theorem. In
the early years of the Interregnum, crossing over and overlapping with the period of Ex-
citement at Birth, there was a sudden burst of activity, probably inspired by the powerful
contributions by Yasui (1953), in the late 1940s and early 1950s, by Japanese economists.
Kurihara (1955), Ichimura (1955b) and Morishima (1958), surveyed and pushed the
frontiers of non-linear Keynesian macroeconomics in interesting directions. Indeed,
few realise that Morishima’s doctoral dissertation was on Non-Linear Macrodynamics.
There is also another important contribution to the main theme of this section: Hugh
Hudson’s little acknowledged but hugely important pedagogical effort at making non-
linear trade cycle theory comprehensible to the general macroeconomic community
(Hudson (1957)) – which, by and large, did an admirable job of completely bypassing
it in the manner of Robertson’s ‘Scottish Preacher’ (Robertson (1952), p.70). Finally, the
re-formalisation of Kaldor’s model, in formally more precise ways than in Yasui’s early
paper that was referred to above, was expertly attempted by Chang and Smyth (1971).
This paper had a significant influence in inspiring some interesting work on non-linear
Keynesian models of the business cycle and further helped in making the economist

35Indeed, the ‘closing year’ – 1970 – was the year Lucas submitted his famous paper to the Journal
of Economic Theory, received by the Journal on ‘September 4, 1970’. However, it had been subject
to ‘a withering rejection from the journal to which it was first submitted’ (Lucas (1981), p.10), which
must date its completion in draft form a little earlier. It is clear from the Introduction to Lucas (1981)
that the foundations of Newclassical economics lay in the concepts – natural rate, neutrality, rational
expectations, etc., – and metaphors – the island paradigm, for example – conceived by Muth, Friedman
and Phelps during the previous decade.

36The most illuminating and comprehensive of a series of three papers by Hugh Rose (1966, 1967,
1969) was the 1967, RES contribution. Rose had been a pupil of Hicks; so it is entirely natural that his
fundamental contributions arose from considering the neglected ‘monetary chapters’, XI and XII (as did
Hudson, a decade earlier, Hudson (1957) – see below), in the Hicksian classic (Hicks (1950)).
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more familiar with the mathematics of planar dynamical systems. We may add that it
also imprisoned the mathematically inclined business cycle theorist within the strait-
jacket of two-dimensional modelling. A large part of the story, both adventurous and
monotonous, was due to the dominance of planar dynamic modelling. That it was a
necessity in the early years cannot be denied; that it was a straitjacket in a later period
is something to be established by argument.

But the story of this part, as befits the meaning of the word Interregnum37, will be
about an afterglow and a setting of the scene for a new thrust. An afterglow after the
excitements of birth and early growth of a nascent discipline and the expectations of
continued progress in understanding and taming the more virulent aspects of cyclical
fluctuations. With hindsight, it will also be a story of the scene that was being set
for the new developments in non-linear dynamical systems theory to be embraced by
macroeconomic theories that were going beyond and away from Keynesian paradigms
and freeing themselves from the somnambulance of the Neo-Classical Synthesis.

2.4.2 Hopes Betrayed: 1970-1987

The dawn of this period saw the challenge posed by Clower to the Neoclassical Syn-
thesis, even while the capital, growth and distribution controversies were going on
at another end of the macroeconomic spectrum. Meanwhile Friedman was mount-
ing a sustained and increasingly plausible attempt at reviving Monetarism to place it
as the centerpiece not just of macroeconomics traditionally conceived, but also as a
basis for business cycle theories. Out of these challenging developments at the core
of macroeconomic theory emerged, at first with great promise and much excitement,
varieties of Fix-Price Macroeconomics38. There were two immediate fountainheads for
these theories: the challenge to the Neoclassical Synthesis posed, on the one hand, by
Clower from a Keynesian perspective; and, from another end, by Barro and Grossman.
The former line of macroeconomics was further codified by Malinvaud’s famous Yrjö
Jahnsson Lectures (Malinvaud (1977)) and added a new impetus to non-linear modelling
of economic fluctuations. New tools of non-linear dynamics, particularly René Thom’s
Catastrophe Theory and Christopher Zeeman’s work at the University of Warwick in
the same tradition, came to dominate that version of macroeconomic fluctuations em-
anating from the French version of Fix-Price Macroeconomics. Perhaps the most compre-
hensive study along these lines, summarised the economics and the non-linear math-
ematics of catastrophe theory and was used to formalize regime changes as phases
in economic dynamics. They were, then, interpreted as macroeconomic fluctuations
(Michael Blad’s doctoral dissertation at Warwick University (Blad (1969)), out of which
he was to spawn some influential articles on ‘new’ methodologies for modelling non-

37The OED definition, #4, is: ‘A breach of continuity; an interval, pause, vacant space’. The other three
definitions are almost equally applicable, for the sense we have in mind.

38However, the fix-flex price divide in macroeconomics had first been broached by Hicks much earlier,
in his comparison of aggregate accounting by Lindahl and Keynes, in a severely neglected masterpiece
in the Lindahl Festschrift (Hicks (1956)).
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linear, fluctuating, phenomena, Blad (1981) & Blad and Zeeman (1982), exemplify this
work). At the level of graduate pedagogy, with a specific application of the mathemat-
ical methods introduced by Rose (for example in Rose (1967)) in the framework of the
macroeconomics of the neoclassical synthesis, there were important contributions by,
for example Benassy (1986).

The quintessential nonlinear, endogenous, business cycle contribution, which
was to lead to a flurry of activity in the application of modern dynamical systems
theory in a variety of Non-Newclassical macrodynamic models – New Keynesian Eco-
nomics is what it transmogrified into, but that was to be in a future where the nonlinear
mathematical underpinnings were diluted – was of course the classic by Grandmont
(1985).

Almost all of these developments that emerged out of the ruins of the Neoclassi-
cal Synthesis were, initially, theories of Disequilibrium Macrodynamics39. The tide, how-
ever, was turning against this paradigm as the defining theme for macroeconomics and
the early years of the period, particularly after the Phelps Volume (Phelps et.al (1970)),
saw a revival of the equilibrium approach to macroeconomics in general reasserting
itself. The 1970s saw the codification of Lucasian Macroeconomics, re-named Newclas-
sical Macroeconomics, built on fusing of eight fundamental concepts in a remarkable tour
de force of model building by Lucas:

• the natural rate of unemployment (from Friedman and Phelps);

• the rational expectations hypothesis (from Muth);

• endogenising labour supply via the search model (from Stigler and McCall);

• exploiting the local-global divide to formalise misperceptions in a monetary econ-
omy subject to shocks by situating the rational agent in Phelpsian Islands;

• reintroducing Human capital as an additional factor of production in aggregate
production functions;

• incorporating all these elements in an overlapping generations model (from Samuel-
son);

• reinterpreting business cycles as equilibrium phenomena (claiming allegiance to
Hayek’s thesis of the early 30s)

• and utilising developments in linear filtering theory to reinterpret the rational
agent as a signal processor (from Kalman and Wesley Clare Mitchell, as explicitly
acknowledged by Lucas)

39To be distinguished from current work on Keynesian Disequilibrium Macrodynamics, most systemati-
cally and competently developed and pursued by Carl Chiarella, Peter Flaschel and their collaborators
(cf., for example, Chiarella and Flaschel (2000), Chiarella et al. (2005),Flaschel et al. (1997) & Asada et al.
(2010)).
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By the end of this era of Hopes Betrayed, Newclassical economics was Macroeco-
nomics and at least so far as business cycle theory was concerned, non-linear, disequi-
librium theories of macroeconomic fluctuations had been banished to the hinterlands.
Kydland and Prescott published, in 1982, their celebrated paper that defined the dom-
inant research paradigm for business cycle theory for the whole of the period after
that, Real Business Cycle Theory (Kydland and Prescott (1982)), Lucas and Romer ‘en-
dogenised’ growth theory (Lucas (1988), Romer (1986)), Lucas gave up on his original
monetary misperception theory of the business cycle, Kydland and Precott nailed the
coffin that bore the remains of the fix price macrodynamic visions with their own pol-
icy nihilistic codification via Kydland and Prescott (1977), the first of Sargent’s hugely
successful series of Newclassical textbooks appeared (Sargent (1987)), DSGE modelling
became the paradigm and with it six decades of adventures with non-linear dynamics
in business cycle modelling came to an end- or so it seemed.

Mercifully - or is it better to say, fortunately - not all was lost and not all was
as it seemed or appeared. There had been momentous - the word is chosen carefully -
developments in the theory of non-linear dynamics. Chaos and, more generally, sen-
sitive dependence on initial conditions had been rediscovered and the Poincaré- Birkhoff
tradition in non-linear dynamical systems theory was about to explode into a frenzy
of research activity, much facilitated by the new power brought into that branch of
work by the availability of cheap computing resources. Lorenz, Takens, Ruelle, May,
Feigenbaum, Smale, Abraham, Arnold and others had taken non-linear dynamics into
new frontiers, beyond where it had been left off by the giants of the first half of the
20th century: Poincaré, above all; but also van der Pol, the Russian school fostered
and nurtured by the great Andronov; the Latin American schools inspired by Peixoto
and Lefshetz, in Mexico, Brazil, Argentina and Uruguay; Littlewood and Cartwright;
Levinson, Minorsky and Lefshetz (now, in his US roles) and, of course, many others in
Continental Western Europe. While all this was going on, two significant papers were
published in core economic journals that pointed the way towards the usefulness of
these new developments in non-linear dynamical systems theory for the modelling of
macroeconomic fluctuations. First of all, there was the remarkably elegant and almost
deceptively simple paper by David Gale (1973); and, then, building on this, a series
of papers by Richard Day, beginning with (a joint work with Jess Benhabib), Benhabib
and Day (1982).

The period was dominated by the emergence of the Newclassical approach to
business cycle modelling; but it ended with a hope for the revival of non-linear busi-
ness cycle modelling due, primarily, to external factors. The external factors were
something entirely new in the adventures of non-linear mathematical business cycle
modelling: the power, facility and feasibility of studying non-linear systems by simu-
lation due to the cheap and easy availability of computers, literally at one’s fingertips,
and the increasingly well documented and competently prepared software for study-
ing and simulating complex non-linear equations.

In the excitement that was brewing for the dawn of the next period all and sundry
forgot that much had been written and claimed for chaos and its existence; but little had
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been done about developing a theory of chaos.

2.4.3 Adventures in Poincaré’s Paradise: 1988-2003

In the early years of this period, a leading non-linear theorist remarked:

“The chaotic attractor of mathematical theory began with Birkhoff in 1916.
The chaotic attractor of simulation experiment arrived with Lorenz in 1962. ..
The identification of these two objects has not yet succeeded, despite many
attempts during the past twenty years. Of course, everyone (including my-
self) expects this to happen soon.”

Ralph Abraham (1985), p.117; italics added.

The ferment and the plethora of articles, books and manuscripts on non-linear
economic dynamics describing complex behaviour paid little or no attention to the
above dichotomy. This sense of careless excitement was compounded by a habitual
disregard, in economic modelling, for the need to understand three interrelated issues:

• the digital computer, with floating-point precision, needs to be fed discrete dy-
namical systems; hence, if economic modelling has been done in continuous time,
then such systems have to be discretized in a way that preserves the characteris-
tics of its attractor (supposing there to be one for the system);

• the non-linear dynamical system, when implemented in a digital computer, takes
on the characteristics of a recursive function that is iterated, or that of a Turing
Machine that is initialised to implement a computation; hence, the theory of com-
putation acts to constrain the feasible trajectories and the characteristics of the
basin of attraction of the dynamical system;

• in view of the above two points, any study – theoretically or experimentally – of a
non-linear dynamical system cannot be complete without a correspondence with
a theory of numerical analysis and recursion theory (the theory of computation).

In describing the work on mathematical business cycle theory in the non-linear
mode of this period, against the backdrop of the development in the mathematics of
non-linear dynamical systems theory, the above three caveats and Ralph Abraham’s
cautionary note must be kept in mind.

Bifurcation theory played a crucial role in the non-linear economic models that
were developed in this period. Examples are the Andronov-Hopf Bifurcations in clas-
sic Keynesian models of the business cycle and Turing bifurcations in Marxian models
of distribution cycles. All kinds of macrodynamic models made this tool and con-
cept, by the end of the period, as familiar to mathematically minded economists as
the Perron-Frobenius theorem had been to linear economic model builders and eco-
nomic theorists, and the Brouwer and other fix point theorems had become to general
equilibrium theorists in earlier periods.
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The economic workhorse, for the non-linear theorist of business cycles, turned
out to be the overlapping generations model, owing a great deal to the pioneering two
contributions by Gale and Day, mentioned above. This workhorse, encapsulating non-
linearities in an ingenious way - exploiting, for example, the differences in attitude to
risk by different generations populating the economy - served a dual purpose in what
had become an intellectual battle between Newclassical visions of the economy as a
self-sustaining, self-adjusting, equilibrium phenomenon and those on an obverse side
challenging all or some of these characteristics. The first purpose was to demonstrate
the existence of multiple equilibria and, hence, the possibility of selection via policy
active measures. The second purpose was to show that even incorporating rational
behaviour as the underlying disciplining criterion for a model, there was the possibil-
ity of persistency in disequilibrium configurations for long periods of time. In both
of these ways, this signalled a return to the program that initiated the non-linear ad-
ventures in the mathematical modelling of business cycles, in 1928-1957. It gives some
substance to that famous Robertsonian wit and wisdom:

“Now, as I have often pointed out to my students, some of whom have been
brought up in sporting circles, highbrow opinion is like the hunted hare; if
you stand in the same place, or nearly the same place, it can be relied upon
to come round to you in a circle.”

Dennis Robertson (1956), p. 81.

In some sense the way the story of this period will be told keeping this Robert-
sonian precept in mind; but it applies only to a part of the story. The remarkable
developments in the mathematics of non-linear dynamical systems is an undoubted
advance in theory. Whether, and to what extent, there was progress in the economics
of business cycle analysis, outside the Newclassical framework, to match the powerful
non-linear dynamical system theories remains a moot point - or a ‘Robertsonian point’.
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Nonlinear Accelerator and Harrod’s
Trade Cycle

3.1 Harrod’s Trade Cycle

The nonlinear cycle theories in the Keynesian tradition owe their core analytical insight
to Roy Harrod in one way or another. Harrod (1936) attempted to close the Keynesian
system and infuse explicit dynamic elements into it. Despite the fact that his book
did not always attract favourable reviews from noted economists like Joan Robinson,
Tinbergen, Harberler and Hansen, his insight turned out to be crucial1 in the further
developments of endogenous cycle theory in the hands of Hicks, Goodwin, Kaldor and
others.

For the interests that concern this thesis, attention will be focused on examining
Harrod’s contribution to see whether his system had plausible mechanisms that could
result in a perpetual, endogenous cycle. The key contribution of Harrod (1936) was
to combine the forces of the (Keynes-Kahn) multiplier and the accelerator in order to
have a theory of trade cycle. However, he did not call the principle of acceleration -
the functional relationship between aggregate investment level and the rate of change
of income, by its well known name. The accelerator mechanism was not definitely
not a new concept by that time and had been widely studied. Instead, Harrod called
it by a new name -‘The Relation’, which attracted much criticism for an undue claim

1Although, the recognition given to his contribution to trade cycle theory may not have been com-
mensurable with its importance. Samuelson, in his reply to Heertje-Heemeijer’s article (Heertje and
Heemeijer (2002)) on the origins of the multiplier-accelerator model reiterates Harrod’s role (Samuelson
(2002), p.219):

I applaud these authors for calling attention to Roy Harrod’s important post-1935 contri-
butions to the literature on the acceleration principle and macroeconomic business cycles.
Harrod was a brilliant innovator who felt – properly felt – that a number of his seminal
novelties failed to receive their deserved recognition.
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on novelty, especially by Hansen, who was well acquainted with the work of Clark,
Bickerdike and Aftalion (Samuelson (2002), p.220). Samuelson, who was a student
of Hansen, developed a mathematical model of the multiplier-accelerator story. He
was apparently influenced by Hansen’s work, especially by his book ‘Full recovery or
Stagnation’, published in 1938. Samuelson employed linear difference equations (by
resorting to lags) and the resulting second order system was capable of sustained fluc-
tuations only for a very special set of parameters. The fluctuations otherwise were
either damped or explosive.

Harrod’s explanation about the combined effect of the multiplier and the acceler-
ator and the upper and lower turning points were purely verbal. He did clearly per-
ceive the importance of the constraints that are associated with the economic system
- the presence of full employment and a lower limit to net investment (which cannot
below the amount of depreciation). However, he did not explicitly relate them to the
changing values of the accelerator co-efficient depending on the level of output, as
Goodwin eventually did. Instead, he attributed the slowdown of the rate of increase
of consumption (consequently, the investment) in the later stages of the boom and vice
versa during the recession to a set of static and dynamic determinants. The elaborate
explanations concerning the operation of these determinants seem to have obscured
the potential behind the role of nonlinearities in explaining the possibility of a per-
petual cycle. The main (and relevant) criticism seems to be that of Tinbergen, who
interpreted Harrod’s model as a linear, first order, differential equation, and argued
that such a system was not capable of generating cycles.

Was it merely that Harrod’s exposition fitted a linear, unstable system and that he
failed to see how the bounds on either end that accounted for the turning points could
have been deftly utilized for generating perpetual cycle? Or was Harrod’s descrip-
tion of the accelerator was in fact nonlinear and therefore endowed with the power to
explain sustained oscillations? This might be important not just for the reasons of doc-
trine history, but also for a close understanding of the nonlinear elements that underlie
the non mathematical exposition of these older theories. The contention of this chapter
is that Harrod’s accelerator was in fact nonlinear and we attempt to substantiate this
claim further.

3.2 The Issue of Lags:

The linear, unstable system with bounds on either side would mean that there would
be a discontinuous switch between two regimes at the turning points. It would be
along the lines of what Samuelson called as the ‘billiard table’ theory and the turning
points themselves would have to be explained by exogenous factors. This, for example,
is the view taken by Heertje and Heemeijer (2002), p. 211:

“What then stops us now from concluding outright that it was Harrod who
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laid the verbal basis for Samuelson’s model? It is not in his under- stand-
ing of the interaction between the multiplier and accelerator that we can
find shortcomings, but in the fact that Harrod himself did not see the ex-
planatory possibilities of this interaction. The problem will be evident to
any reader of his work: the movement of production between the turning
points is made perfectly clear, but when it comes to explaining the turn-
ing points themselves, the analysis seems to drown in a massive swamp of
exogenous variables.”

This shares certain similarities with Hicks (1950), where disequilibrium fluctua-
tions are superimposed on to exogenous growth factors. The system bounces between
the ceiling and the floor and there are clearly two regimes at play. However, there are
remarkable differences between Hicks and Harrod’s approach too. First of all, Hicks’
model was squarely in the tradition of period analysis and therefore showed explicit
allegiance to lags. Harrod, however, was not a great supporter of lag theories2.

“All references to time-intervals in this topic are highly dangerous; it is so
easy to give plausible explanations on the basis of a time-lag hypothesis; the
hypotheses that may be introduced are so many and various that with their
aid the facts can be made to fit almost any theory; it is extremely difficult
to demonstrate that one hypothesis is more probable than the another.” - p.
88, Harrod (1936)

Potential inconsistencies in letting the multiplier and the accelerator operate in the
same period (in the absence of lags) and Harrod’s unclear description about the length
of the period involved were the two factors that attracted criticism from people like
Tinbergen and Haberler (1937b). Tinbergen reviewed Harrod’s book (Tinbergen, 1937)
and pointed out that Harrod’s system (without the lags) would not be able to pro-
duce sustained oscillations3. In the absence of lags, Tinbergen interpreted Harrod’s
system as being a linear, first-order, continuous time system and contended that it can
only generate exponential growth and not cycles. This system, upon reaching the full-
employment ceiling would break down. In his reply to Tinbergen (dated 1st July, 1937),

2This is made clear right from the preface of the book:

“In fact, writers seeking to introduce dynamic considerations have often tended to confine
themselves to mere description or to develop a theory regarding time-lags. But is not a
theory of time-lags or of friction premature when the fundamental propositions relating to
velocity and acceleration remain unformulated?” - p. viii, Harrod (1936)

However, his exposition of the interaction of multiplier and the accelerator does seem to introduce lags
implicitly. See Haberler (1937b), p. 691, where he points out the tension between Harrod’s outspoken
aversion to the use of lags and the standing of his own theory without time-lags.

3This is along the same lines, in principle, of Frisch’s criticism of Kalecki’s model for its ability to
generate sustained oscillations for a special set of parameters. For a linear rendition of Harrod’s theory,
Samuelson(1939) showed that sustained fluctuations are possible only for special value of parameters
for which the system lies in the boundary between regions.
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Harrod mentioned that such a rigid mathematical formulation would not do justice to
his theory4:

I fear that my mathematics are rather rudimentary and that any single-handed
attempt to give a rigid mathematical formulation to my theory would not be suc-
cessful. . . . I am aware that my fundamental propositions do not yield a sine curve
of the kind that your soul delights in. I do not think it follows that they necessarily
fail to demonstrate the inevitability of the cycle. On the look out for a certain
type of equation you have, I think, done less than justice to my argument at
this point.

Harrod, while admitting in his reply that he resorted to the use of lags implicitly
in his argument, felt that though lags might have role to play it would not be fun-
damental for the explanation of an endogenous cycle. Tinbergen’s criticism allegedly
played an important part in the transition that Harrod made from his theory of trade
cycle to his famous model of growth5.

I very much hope therefore that you will pause a little further to consider
the significance for the cycle of my multiplier/relation propositions, and
not dismiss them because the solution is not so neat as (those) you get by
certain lag assumptions. My own intuition, for what it is worth, is that you
will not get at the vera causa of the cycle by looking at lags only. I have no
doubt they play some part in the whole thing, but I believe it will be found
to be a relatively minor part.
I see you convict me of bringing lags into my argument at various points.
Of course I do. But I do not think that the assumption of a lag is present in
the fundamental part of my argument formulated in the equations above.

Harrod seems to have been interested in providing a theory that does not resort to
lags, yet having the power to explain the discontinuity between the boom and the
recession. That is, discontinuity occurring at the turning points are to be accounted for
using endogenous mechanisms.

3.3 The Nonlinear Accelerator

The crucial detail to remembered from the earlier section is that the functional relation-
ship of the accelerator described by Harrod was assumed to be linear by Tinbergen.
Goodwin, who later developed the nonlinear accelerator model (Goodwin (1951)), in-
dicated that his inspiration came from Harrod (1936).

4Source: http://economia.unipv.it/harrod/edition/editionstuff/rfh.2dd.htm#pgfId=73882
5This issue has been discussed in detail by Jolink (1995), Velupillai (1988) and interested readers are

referred to these articles.
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“I continued to believe in Harrod’s primal insight but did not know how
to validate it. Both Frisch and Tinbergen, had failed to pay adequate attention to
a short note in an early issue of Econometrica to the effect that to explain a self-
generated cycle, it was necessary to have an unstable equilibrium with a pair of
non linearities, in the outer regions of the state space, to convert the instability into
global stability”
Goodwin (1988) p. 20.

Harrod’s description of the multiplier-accelerator has been widely perceived in
the literature as being a linear, unstable system. A remarkable exception was a percep-
tive remark by Ichimura6, which seems to have gone unnoticed:

“Mr. Harrod’s cycle theory is really a forerunner of the Hicks-Goodwin type
of nonlinear macrodynamics, though he presented it verbally. Mr. Harrod
combines the multiplier and the accelerator, which latter is made nonlinear
by reason of the following effects of the changes in the level of output on
the acceleration co-efficient:

1. the influence of the rising rate of interest in the upswing and that of
the falling rate of interest in the downswing;

2. the changes in the relative prices of the capital goods; and

3. the variations in profitability due to the law of diminishing returns and
the elasticity of demand.”
- Page 217, Ichimura (1955b)

However, Ichimura does not cite the exact arguments in Harrod’s book to bolster
his claim. The following sections attempt to fill this gap.

3.3.1 Ceiling and the floor

Harrod begins his description of the ‘relation’ with the observation that the activity
in production of capital goods is more rapid than that of consumer goods in upswing
and conversely in downswing. Based on their use, the produced capital goods can be
divided loosely into two parts - to compensate for depreciation and to increment the
existing capital stock (net investment). Assuming no technological growth, the amount
of increase in net investment depends on the rate at which consumption is increasing.
In this case, “since net investment is responsible for a large proportion of the activity
of capital goods industries, a cessation of the advance of consumption, without any
decrease in its absolute amount, would entail a vast falling off in the activity of cap-
ital goods industries(p.55, Harrod(1936))”. Thus, Harrod realized that the accelerator
provided a way to link changes in consumption to investment, dynamically. With the

6To the best of our knowledge, the only other exception was Besomi (1998). In particular, see section
7 (pp. 126-128), where Marshack’s correspondence with Harrod on this issue is discussed.
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multiplier, now there was a possibility of closing the system because it provided a link
between investment and income (or consumption).

The entire mechanism operates within the natural constraints posed by the eco-
nomic system. Increase in output, once it has set in, cannot go on forever when it is not
in line with the increase in population and improvements in technology. If the increase
in output that has been brought about by bringing in the unemployed into the labour
force, keeping the technology constant, diminishing marginal returns for labour ought
to set in. This would lead to a reduction in the level of activity. In other words, the full
employment ceiling comes in to effect.

“After any outstanding surplus capital plant is brought back into use, the
activity of the capital goods trades becomes abnormally high; for a time the
increase of general activity is itself above normal, the unemployed is taken
up and the monetary-destabilizer has exerted all its influence or a great
part of its possible influence in raising activity, any further advance must
depend on increasing population or improving technique;. . .
When the period of abnormal advance comes to an end, there must be some
recession in the capital goods industries. But if the prime factors of produc-
tion are incompletely mobile and cannot be readily absorbed in the con-
sumption goods industries as they are displaced from the capital goods in-
dustries, total activity must recede.”
- Page 57, ibid

Similarly, during the downturn, the inescapable constraint that net investment cannot
be negative (except in situations like war) sets the bound on the other side. These two
constraints establish the natural bounds within which any advance or contraction in
the capitalistic mode of production can ensue.

“If consumption actually recedes, complete replacement of existing capital
goods will not be necessary. Certain replacements and repairs are neces-
sary from time to time to keep a centre of output in operation at all. These
might be called ‘overhead’ replacements. But some are related to the vol-
ume of its activity. To give an example in very simple terms, suppose that
the machines of a firm last ten years and ten percent of these machines are
normally replaced each year when the level of output is steady. Suppose a
recession in out of 20 percent; in the first two years it will not be necessary
to replace machines at all; but there after replacement must revive. This
necessity involves increased activity in the capital goods industry, although
no increase in consumption occurs. But if total output and income thus in-
crease, an increase of consumption is highly probable. This is the revival.”
- pp. 57-58, ibid

As the level of output changes during the phases of boom and recession, we
need to understand the magnitude (and direction) of change in the net investment
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that results. In other words, we need to understand the value and variations in the co-
efficient of the accelerator. Apart from the above mentioned bounds, whose presence
can be incorporated into the accelerator co-efficient and making it nonlinear, Harrod’s
discussions also reveal other possible reasons to regard the accelerator as being non-
linear. The rate of growth of consumption is related to the rate of growth of investment
via what Harrod’s calls as three dynamic determinants7: propensity to save, shift to
profit and the amount of capital used in production. The first two dynamic determi-
nants cause a restrictive influence on the advance of output. Higher the savings by the
households out of their income, lesser will be the effect of the multiplier. A reduction in
the share of income available for consumption due to shift to profits during the boom
exerts a restrictive force on expansion of income. The argument about shift to profit is a
bit more complex and lets analyze it in a bit more detail. Before that, we shall examine
the role of interest rates during boom and the slump in his theory.

3.3.2 Role of interest rates:

The influence of the interest varies during the phase of expansion or contraction as it
increases during the former and decreases in the latter. When it decreases, it changes
the relative price of capital by making it cheaper and tends to make the productive
methods more capitalistic.

Net Investment, in addition to that required as a basis of increase of con-
sumption, may also occur because a representative parcel of consumable
goods comes to require more capital for its production. This may occur
either (i) owing to a fall in the rate of interest which makes the capital rela-
tively cheaper factor of production and so stimulates its use, or (ii) owing to
a fall in the relative prices of capital goods compared to that of consumable
goods, or (iii) owing to improvements of productive technique requiring a
larger use of capital to make representative parcel.. (p.59 ibid)

This reinforces the expansionary power associated with the third dynamic determinant
viz: the amount of capital used in production process. This effect helps overpower
the restrictive force exerted by the other two determinants8. Furthermore, when the

7This is along with four static determinants which determine the level of output at any given point
in time: Plasticity of prime costs, Law of diminishing marginal returns, Law of decreasing elasticity of
demand and price level

8This made clear from the following discussion:

Drawing again from the field of observation, we find interest rates tending to be high
in the boom and low in the slump. Thus, so far as the rate of interest is concerned, net
investment is discouraged in the boom. . . . The stimulus to the net investment afforded
by the Relation being so great, it is fortunate that we have the rate of interest to provide
some counterweight. High rates in the boom and low rates in the slump do something to
check the vagaries of net investment which we should expect otherwise. Furthermore, (ii)
the relative prices of capital goods tend to be lower in the slump and higher in the boom
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changes in the rate of interest also influences the propensity to save, the expansion-
ary forces (due to the multiplier effect resulting from reduced saving) overcome the
restrictive forces, thereby leading to the process of recovery. During the upswing, the
influence of the increasing interest rate is the contrary and it works to restrict the ex-
pansionary effect discussed earlier. In all, the role of interest rate with varying influ-
ence across the cycle has a nonlinear influence on the acceleration co-efficient ( i.e, on
investment resulting from changes in rate of change of consumption (output)).

3.3.3 Changes in Profit

Changes in profit per unit of output during the cycle is determined by the difference
between price and marginal revenue or that between average and marginal cost under
the assumption of profit maximization (p.78, ibid).

In the recession the average prime cost will, in so far as it is affected by
this ‘overhead’ factor9, tends to rise. There is an asymmetry here which is
worth noticing. In the later phases of expansion this overhead item may
have grown; it does not follow that it can be reduced in recession. . . . This
asymmetry is due to the irreversible nature of decisions regarding the scale
of capital equipment. It is worth emphasizing, since its effect corresponds
with the observed facts of the cycle, viz. a smaller rise of profit per unit for
the last n units of expansion than the fall of profit per unit for the first n units of
contraction (p.80, ibid)

Harrod accounts for the shift to and away from profit during the boom and the
slump through the forces exerted by the law of diminishing returns (LDR) and the law
of decreasing elasticity of demand (LDE). In case of the former (LDR), an increase in
output is associated with a shift to profit whenever there is an increase in the ratio be-
tween marginal costs and average prime costs. As the system nears a situation where
the labour availability becomes scarce, marginal cost ought to be increasing. Although
his judgment is not clear cut, Harrod claims that it is highly probable that with the
operation of LDR, shift to profit occurs. More importantly, LDE provides an explana-
tion for shift to profits, operating through rise and fall of prices. Note that the changes
in profits and prices, due to changes in elasticity of demand, is not linear under the
assumption of profit maximization10. Therefore, LDE exerts varying impacts on prices
and profits during different phases of the cycle. The intuitive reasoning would be that
the forces of imperfect competition set in with the increase in income more forcefully
and this effect is explained by LDE11. The shift to profit can occur with reduction in

in relation to general prices, and this should reinforce the fluctuations in the interest rate.
(p.59 ibid)

9This refers to the minimum cadre required maintaining operations, which may not be easily variable
10See this in conjunction with the pricing rule in footnote 1, p.86. ibid
11Even though the nonlinear aspects are not discussed explicitly, Lokanathan (1938) summarizes this

argument in a very lucid manner in his review of Harrod’s book. See pp. 519 – 521.
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output under imperfect competition.

From the hypothesis that the ‘amount by which methods of production become
more capitalistic’ is relatively higher in the slump, he concludes that the stabilizing
power exerted ‘shift to profit’ would be eventually overcome by the expansive effect
triggered due to the third dynamic determinant.

This tendency of production to become more capitalistic will offset the re-
strictive influence of the first two determinants. . . . There is a reason to
suppose that the shift to profit is intensified as the advance continues and
available human material is used up. If this is so, the point will come when
a given rate of increase of net investment proves no longer justified. This
happens as soon as the restrictive force of first two determinants comes to
exceed the expansive force of the third. (p.94, ibid)

3.3.4 Nonlinear accelerator and Relaxation Oscillations

Thus, we see evidence for Ichimura’s remark that the accelerator is indeed nonlinear.
This is due to the varying role and influence of interest rates and the imperfect competi-
tion, the latter in the form of LDE operating through the profit channel. The accelerator
coefficient has to be defined as being nonlinear to capture these effects. This opens up
the possibility of explaining the turning points under these assumptions mathemati-
cally, without relying on any lag theories as Harrod intended. If one does not resort to
lag theories, the model has to be formulated in continuous time and the model ought to
explain the asymmetry associated with rapid booms and long recessions in conformity
with observed data. The presence of such an asymmetry rules out employing sine-like
curves, which were the popular mode of theorizing about periodic phenomena during
that period. However, the existence of non-linearities give a straight forward method
of viewing this as relaxation oscillations. This is also the message of LeCorbeiller’s
note in Econometrica, advocating the view that business cycles can be viewed as relax-
ation phenomena.

In the case of relaxation oscillations, the system slowly builds up energy and
then there is a rapid discharge of this energy. This is due to the nonlinear damping
coefficient and the oscillations are self-sustained. It would be useful to consider an
example (the van der Pol oscillator):

ẍ + ε(x2 − 1)ẋ + x = 0 (3.1)

The coefficient of ẋ, ε(x2 − 1) is positive for small values of x (x < 1) and thereby fa-
cilitating the increase in the value of x. However, for larger values of x, the coefficient
switches sign and the damping reduces the value of x as the rate of change of x is neg-
ative. Thus, there is a local instability, but the system is globally stable. The switch
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between the increasing and decreasing branches of x is sudden and is almost instanta-
neous. With higher values of ε, the switch between the two branches (increasing and
decreasing)becomes increasingly rapid. In Harrod(1936), the presence of nonlinearities
mentioned earlier mean that the co-efficient of accelerator changes. It may alternate its
sign, but not necessarily so. This alone would have sufficed to address the criticisms
posed on mathematical grounds that Harrod’s theory was incapable of generating en-
dogenous cycles without resorting to exogenous ceilings and floors. The economic
system encourages net investment until the expansionary forces are counterbalanced
by the stabilizing forces of imperfect competition and diminishing returns, so that the
system does not explode. Similarly, the very same forces do not let the system collapse
either. In the light of Harrod’s letter to Tinbergen mentioned earlier, this realization
would have helped Harrod explain, even on mathematical grounds, that the asymmet-
ric trade cycle can be endogenously explained as a result of the multiplier-accelerator
interaction, without lags. The key is to view them as relaxation oscillations instead of
harmonic, sinusoidal oscillations (however much we like our souls to delight in such
things).

This is precisely what Goodwin(1951) went on to do - by skillfully utilizing the
two bounds on either side to correspond to the changes in the value of the acceleration
co-efficient. Two remarks related to this context might be useful. First, if the above
relaxation metaphor were to be accepted, the rapid switch in the sign of the damp-
ing co-efficient needs further explanation. What does infinitely fast transition between
increasing and decreasing rate of change (of investment) mean in terms of economic
quantities involved? Can this be validated by observation? Gorgescue-Rogen made
an interesting observation that relaxation phenomena masked a discontinuity between
upward and the downward regimes (see Gorgescu-Roegen (1951), p.116-117). His em-
phasis on the discontinuity between regimes led him to characterize such a scenario
via two separate functions for each regime. One might not agree with the solution pro-
posed by him, but it seems important to provide an economic rationale for this discon-
tinuous or infinitely fast transition. Second, it should be noted that the net investment
of the system does not have to reach to zero. This is elaborated in Harrod (1936)(pp.58-
59). The improvements in productive techniques (innovations) have a place in this
framework and this can be modeled by introducing a forcing term.Concerning the
lags, the use of continuous time model does help solve the problem mathematically.
However, the real issue of the length of the period, in terms of the economics, still
haunts to be a thorny issue in this context.

Harrod’s economic intuition, with or without mathematics, was probably right
after all. Even more than he himself knew!
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Existence theorems in Planar NETBC1

“The modern business cycle theories in the Keynesian paradigm have a
long history. Among them the most relevant ones are of nonlinear types...
From the analytical point of view these nonlinear theories, whether verbally
or analytically presented, essentially owe the core of their results - that is,
the possibility of business cycles - either implicitly or explicitly, to the Poincaré-
Bendixson .. theorem on the existence of a limit cycle, except for Goodwin
(1967) results, which depend on the Volterra differential equation2 simu-
lating the symbiosis of prey and predator, that generates infinitely many
concentric trajectories”
-Nikaido (1996), pp. 217-218 (italics added).

It would not be an exaggeration to state that the tradition of modelling, and prov-
ing the existence of, ‘cycles’ in Nonlinear Endogenous Theories of the Business Cycle (hence-
forth, NETBC) on the plane (the phase-plane), from the late 1940s and the early 1950s, was
largely reliant on the use of one or other of the available formal existence theorems,
such as, for example, the Poincaré-Bendixson theorem3 (henceforth, the P-B theorem). We

1This chapter expands on the ideas from a paper co-authored with K. Vela Velupillai and published
as Ragupathy and Velupillai (2012a). The same theme resonates in another of our papers, explicitly
focusing on Hugh Hudson’s contribution to nonlinear cycle theory. See: Ragupathy et al. (2013).

2Of course, the existence of such ‘centre-type’ attractors for this system, of differential equations also
requires a ‘proof’. Nikaido, with characteristic candour, goes on (p. 218, italics added):

“I am myself allied in spirit with the Keynesian paradigm, and will show in this study the
possibility of a long-term growth cycle with explicit consideration of both demand-side and
supply-side potential based on the [Poincaré-Bendixson] theorem. .... Ignoring the monetary
factors here is just for the sake of obtaining a complete growth cycle based on the [Poincaré-
Bendixson] theorem.”

Nikaido’s transparent statement exemplifies the main theme of this chapter: an investigation into
the way the application of a mathematical theorem determined the nature of the constructed economic
model.

3To the best of our knowledge, the first time this important theorem was given a pedagogical ex-
position in an advanced textbook, aimed essentially at graduate students in economics, was in (what
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have claimed (see, Velupillai (2008)) that this tradition originated in the early, pioneer-
ing, contribution of Yasui (1952, 1953)), Ichimura (1955b,a) and Morishima (1953, 1958).
Perhaps the crucial role played by the P-B theorem was first highlighted by the impor-
tant contributions of Rose (1966, 1967, 1969), Chang and Smyth (1971).

In a sense the reign of what may be called the P-B (and allied existence) theorems
and the dominance of planar dynamical modelling of NETBC could be said to have
lasted – and coincided with – the ‘Golden Years of Keynesian Economics’, approxi-
mately the quarter of a century from 1949 ((Goodwin, 1949)) to 19734.

However both Goodwin (1951) and Hicks (1950) were well aware of the need to
prove the existence (and uniqueness5) of endogenously generated aggregate fluctuations
in formally acceptable, mathematically rigorous, modes in their economic models of
fluctuations. Although one would have expected the distinguished author of Value
& Capital (Hicks, 1939) to have emphasised this aspect, it was, in fact, Goodwin who
was more explicit (ibid, pp. 13-14, italics added):

“It is intuitively clear that [the aggregate fluctuations] will settle down
to [a limit cycle] although proof requires the rigorous methods developed
by Poincaré. ..... Of another equation [the van der Pol equation] mathemat-
ically equivalent to ours [the Rayleigh equation], Andronov and Chaikin
say:‘Thus while there is no convenient method for solving van der Pol’s equa-
tion, it is known that: (a) there is a unique periodic solution and it is stable;
(b) every solution tends asymptotically to the periodic solution.’ ”

Two further points should be noted and emphasised. First of all, there is the im-
portant distinction between ‘methods of solution’ and ‘proof of existence of solutions’.
Secondly, the classic Andronov and Chaikin (1949) text did, in fact, discuss explicitly
the P-B theorem for planar dynamical systems (ibid, 208-9). The former distinction was
a practising credo Goodwin maintained in all his work on nonlinear macrodynamics.
It is not surprising, therefore, that he did not pay attention to the fact that he could
have applied the Poincaré-Bendixson theorem to prove the existence of a limit cycle in
his (Rayleigh-type) model of nonlinear macrodynamics6. The cognoscenti would, of
course, realise that this concern with existence proofs in NETBC was neither an inde-
pendent research activity in one isolated field of economics, nor a ‘flash in the pan’.

eventually turned out to be the first of four editions of) Gandolfo (1971), p.407 & p. 421).
4David Gale (1973) is, for us, the fountainhead of the era of NETBC beyond planar dynamics and its

underpinnings in the P-B theorem, although it took another decade before this was recognised (with the
pioneering works of Richard Day (for example, Benhabib and Day (1982)). As in all such ‘approximate’
historical delineations, there is slippage at both ends. Thus, Torre (1977)) is an anticipation and Schinasi
(1981) and Benassy (1984) are ‘hangovers’.

5And, indeed, stability, too.
6In a personal letter to Velupillai, dated 23 August 1990, Goodwin wrote (italics added):

“As you are well aware, I am hopeless at formalism and I was always pleased to be told by
you that what I practice, innocently, is constructive analysis (proofs being quite beyond me).”
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Formal concern with existence proofs,using fix point theorems7, in core areas of eco-
nomics can be said to have begun with von Neumann (1928) to reach a kind of zenith
with the Arrow-Debreu classic (Arrow and Debreu (1954))8.

In this chapter, we examine the role of existence proofs in modelling NETBC as
planar dynamical systems. As a by-product we also point out that this can be inter-
preted as a further attempt to straight-jacket economic theories to existing mathemati-
cal results, thereby restricting the attempts at unravelling the real nature of attractor(s)
that characterize economic dynamics. Efforts seem to have been directed at adapting
economic theories and assumptions to fit those for which existence results concerning
the attractors were available.

Thus, the questions we pose are the following: Why did mathematically oriented
macrodynamic modellers appeal to existence theorems in the context of business cy-
cles? What were the different existence theorems that were widely used and how?
How did these theorems, directly or indirectly, influence the direction in which en-
dogenous business cycle theory proceeded? Are these proofs constructive, if not, how
can we make them constructive? Are these mathematical objects encapsulating eco-
nomic phenomena (that is, attractors like limit points and limit cycles) that are proved
to exist, computable?

In order to address these questions, we investigate the role of important existence
theorems, in particular, the Poincaré-Bendixson theorem (and the Levinson-Smith the-
orem), in the NETBC models on the plane. The chapter is organised in the following
way: Section 2 provides a brief overview of endogenous business cycle theory. Section
3 investigates the different existence theorems and the way in which they were invoked
using Kaldor’s model as an example. Section 4 undertakes a detailed discussion of the
use and the impact of Poincaré-Bendixson theorem in NEBCT. In section 5 we discuss
the differences between classical existence proofs and that of Poincaré-Bendixson the-
orem and issue of computability of attractors in this context.

7Temple (1981), p.119, italics added) made an important observation of the utmost relevance to the
general ‘vision’ underpinning the message in this chapter:

”One of the most fruitful studies in topology has considered the mapping T of a set of
points S into S, and the existence of fixed points such that T (x) = x. The importance of
these studies is largely due to their application to ordinary and partial differential equa-
tions which can often be transformed into a functional equation Fx = 0 with F = T − I
where Ix = x.

8We do not ignore Walras’ s valiant – often unjustly belittled – efforts to juxtapose the question of
existence of equilibrium with devising methods to solve for its determination, in line with the dominant
19th century tradition of algorithmic proofs. In other writings by us (Velupillai (2009a, 2011a)) these
issues have been tackled in greater detail. A comprehensive discussion is forthcoming in Velupillai
(2012).
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4.1 Endogenous Business Cycle Theories

The nature and cause of aggregate fluctuations that characterize capitalistic economies
has been one of the overriding themes of macroeconomic research and theorizing for
more than a century now. Business cycle theory was born as a result of the attempts to
incorporate the observed phenomena of cyclical fluctuations into the existing corpus
of equilibrium economic theory. Different schools of thought in macroeconomics vary
in terms of the sources that they attribute to these fluctuations. Their views can be
classified, broadly, into two categories: Those who view that these sources are from
‘within’ the economic system and those whose view them as being from ‘outside’.
Consequently, their theories can be classified as ‘endogenous’ and ‘exogenous’ busi-
ness cycles, respectively. These different approaches have differed in their choice of
tools and formalisms while theorizing in a mathematical mode and these choices have
in turn influenced the economic assumptions made for these models.

The endogenous view of the business cycles perceives that the aggregate eco-
nomic fluctuations arise from within the system and holds that the fluctuations are a
result of an interaction between different economic forces that operate in an economy
and it is considered as an intrinsic feature of the system. This is in sharp contrast with
the exogenous view, which considers that these fluctuations stem essentially due to
factors that are outside the system, often termed as exogenous shocks, that perturbs the
economic system that is, or has a tendency to return to, its equilibrium state. This
meant that the formalization of latter was in terms of equations that necessarily had
damped roots.

The initial attempts to characterize business cycles in a mathematical mode aimed
at building models to demonstrate certain qualitative properties that were observed
in the advanced industrial economies at that time. Broadly, these desired properties
were: the persistence of economic fluctuations that made the economic system unsta-
ble; these upswings and downswings were not symmetrical; the possibility of multiple
equilibria was tied together with a widely held belief that the instability is endoge-
nous to the economic system. Characterizing economic fluctuations in a mathematical
model with these desired properties meant that there was a need to go beyond linear
models, since the latter are capable of exhibiting either damped oscillations, or main-
tained oscillations only for very specific parameter values. To this end, nonlinearity
became an essential feature for these theories, in the mathematical mode. When they
started out, the leading theories of business cycles were predominantly endogenous,
which later became exogenous. For the endogenous theories, nonlinearity in economic
relationships was a crucial element in generating persistent oscillations. Here, we focus
on the mathematical apparatus of the endogenous business cycle theories and inves-
tigate the role of existence theorems in shaping the mathematization of the economic
models in this tradition.
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The pioneering works that spearheaded the area of mathematical Nonlinear En-
dogenous Business Cycle Theory are : Lundberg (1937), Kaldor (1940), Goodwin (1949,
1951) and Hicks (1950). In Kaldor’s model, which builds on the works of Harrod (1936),
Kalecki (1939) and Keynes (1936), a trade cycle arises due to a dynamic, nonlinear re-
lationship, between investment and savings and, in particular, in the specification of
the investment demand function, which responds to the changes in the level of capi-
tal stock (although a part is also played by an intrinsic nonlinearity in the aggregate
savings function). Goodwin and Hicks built on Harrod’s work on trade cycles which
combines the Keynesian multiplier and the accelerator. Neither was influenced at all
by Kalecki, although both Lundberg and Schumpeter (1912, 1939)) underpin the foun-
dations of many aspects of Goodwin’s approach to NETBC. Hicks developed a piece-
wise linear multiplier-accelerator model of a growing economy, with the presence of
a ceiling and a floor (upper and lower bounds). The economy is constrained by these
bounds and continues to oscillate within this corridor. Goodwin (1951) constructed
a model using the Keynesian dynamic multiplier and a nonlinear accelerator. Kaldor
presented his model in terms of graphical analysis, Hicks modeled his system in dis-
crete time and as a piecewise linear system using difference equations, while Goodwin
used difference-differential (which was reduced to a differential equation) equations.
However, none of them proved the formal existence theorems concerning these per-
sistent fluctuations. Lundberg’s formal models was in the Wicksellian tradition de-
veloped by Lindahl, Myrdal and Hammarskjöld and resulted in a piecewise linear
discrete model, formally similar to the Hicksian theory. Lundberg, however, resorted
to numerical simulations to study the analytical properties of his essentially nonlinear
difference equation model (see Velupillai (2012a) for a detailed discussion of the Ham-
marskjöld-Lundberg tradition, subverted by the unfortunate linearization by Metzler
(1941), but revived by the ‘traverse’ dynamics work of Amendola and Gaffard (1998)).

4.2 Existence theorems in NETBC

Though the models of Hicks and Kaldor were nonlinear, they did not succeed in de-
riving the final nonlinear equation of the model that was necessary to demonstrate the
existence of sustained fluctuations. It was Goodwin who succeeded in doing so. He re-
duced his model to a nonlinear second-order differential equation of the Rayleigh-van
der Pol type that is capable of exhibiting maintained (relaxation) oscillations. How-
ever, he showed the existence of the limit cycle for the equation geometrically and did
not provide an analytical proof of existence. He came very close to hinting at the use
of Poincaré’s methods, but did not, for reasons given above, make the final ‘leap’ to-
wards a formal, analytical, proof of existence (see also the previous quote of a part of
this passage)9:

9In retrospect, this remark could be considered as envisaging the entry of existence theorems in
NETBC.
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“..the system oscillates with increasing violence in the central region, but
as it expands into the outer regions, it enters more and more into an area of
positive damping with a growing tendency to attenuation. It is intuitively
clear that it will settle down to such a motion as will just balance the
two tendencies, although proof requires the rigorous methods developed by
Poincaré. It is interesting to note that this is how the problem of the mainte-
nance of oscillation was originally conceived by Lord Rayleigh ... The result
is that we get, instead of a stable equilibrium, a stable motion. This concept
is the more general one, for a stable equilibrium point may be considered as
a stable motion so small that it degenerates into a point. Perfectly general
conditions for the stability of motion are complicated and difficult to for-
mulate, but what we can say is that any curve of the general shape of X(ẋ)
[or ϕ(ẏ)] will give rise to a single, stable limit cycle.” - Goodwin (1951), pg.
13 [Italics added]

Though Goodwin provided the intuition for the existence and hinted at the direction
for proving the maintained oscillations, the final steps were accomplished by the works
of the Japanese economists- Yasui, Morishima and Ichimura (roughly in that order; cf.,
Velupillai (2008), for a full discussion). Though proving existence theorems was not
entirely new to the economic (and game) theorists by then, it was the Japanese trio
who were responsible for raising the formal question of existence proofs into business
cycle theory. Yasui (1953) was interested in formulating the Kaldor model in terms of
the van der Pol equation, like the way Goodwin formulated the multiplier accelera-
tor model using the Rayleigh equation. Yasui outlined the methods by which one can
cast business cycle models via graphical discussions, especially of nonlinear systems.
In this context, he posed the question of formal existence and invoked the (Levinson-
Smith) theorem, thereby bringing questions of existence into the discussions on business
cycles.

The subsequent use of existence proofs in business cycle theory was by Ichimura,
who appealed to the Levinson-Smith theorem once again and discussed the questions
of existence in a more detailed manner. The earliest use of Poincaré-Bendixson Theo-
rem in business cycle theory was by Morishima (1953, 1958), where he used both the
Levinson-Smith theorem and P-B theorem in his analysis. Thus, the Japanese trio, made
possible the entry of formal existence theorems concerning planar differential equations
into the business cycle theory, which later went on to crucially determine how nonlin-
ear cycle theory evolved in two dimensions.

For the purposes of this chapter, we will focus on the existence theorems related
to the following models: Goodwin (1951), Kaldor (1940), Hicks (1950), Kalecki (1935),
Lundberg (1937) and their variations. It can be shown that all these models are special
cases of the following canonical difference-differential equation.
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Canonical difference-differential Equation

Bellman and Cooke (1963), p. 43:

F[t, u (t) ,u (t−ω1) . . . , u (t−ωm) , u′ (t) , u′ (t−ω1) , . . . , . . . ,

u(n) (t) , u(n) (t−ω1) , . . . , un (t−ωm)] = 0
(4.1)

This is a nth order difference-differential equation and it is function of 1 + (m +
1) + (n + 1) variables. The functions F and u are real functions, ωi ∈ R and n ∈ Z.

Richard Goodwin:

Goodwin (1951) formulated a nonlinear model of business cycle, in which he combined
the nonlinear accelerator with dynamic multiplier, allowing for the presence of invest-
ment lags to account for the lag between the time in the enhanced version of the model.
The presence of a nonlinearity in the investment function meant that the investment
that comes forth is proportional to the change in national income around the unstable
equilibrium value. However, capital accumulation becomes highly inflexible once the
deviation of the national income from the equilibrium level. He reduces the model to
the following equation.

εẏ(t + θ) + (1− α)y(t + θ) = OA(t + θ) + φ[ẏ(t)] (4.2)

where, y is the aggregate output and φ is the nonlinear accelerator, θ is the delay pa-
rameter, which accounts for the time-to-build10 1− α is the propensity to save, OA is
the sum of autonomous consumption and investment outlays and 1/ε is the adjust-
ment parameter. Simplifying this we get,

ẏ(t + θ) +
1
ε
(1− α)y(t + θ)− 1

ε
OA(t + θ)− 1

ε
φ[ẏ(t)] = 0

This is a first order nonlinear difference-differential equation, which is a special case of
the equation (4.1) with 4, i.e, (1+1+2) variables. Goodwin then takes the Taylor series
expansion of the terms with time lags (t + θ) and by retaining the leading terms of
the expansion obtains the following second order, nonlinear, differential equation, a
special case of the equation (4.1).

εθÿ + [ε + (1− α)θ]ẏ(t)]− φ[ẏ + (1− α)y = 0 (4.3)

Mihał Kalecki:

Kalecki (1935) introduces an investment function

I
K

= φ

(
C1 + A

K

)
10For a detailed discussion of the Time-to-Build Tradition in Business Cycle Modelling, refer Dhar-

maraj and Velupillai (2011).
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where C1, A, K, I are: constant part of the accumulation of the capitalist, gross ac-
cumulation equal to the production of capital goods, volume of the existing capi-
tal equipment and investment respectively. He then linearizes the function as I =
m(C1 + A)− nk with m, n as the linearization parameters to derive the following final
equation:

I′(t) =
m
θ
[I(t)− I(t− θ)]− n[I(t− θ)−U]

This can be simplified further as,

I′(t)− m
θ

I(t) +
(m

θ
+ n

)
I(t− θ) + nU = 0 (4.4)

This is a linear, first order difference-differential equation11, a special case of the canon-
ical equation (4.1) as a function of three variables. However instead of linearizing the
investment function had he used a nonlinear investment function(see Velupillai (1997),
the model would reduced to

K(t)− K(t− 1)
K(t− θ)

= φ

(
C1 + U + 1

θ [K(t)− K(t− θ)]

K(t− θ)

)
−U

This in turn can be simplified and rewritten as

K(t)− K(t− 1)− φ(.)K(t− θ) + UK(t− θ) = 0

where
(

C1+U+ 1
θ [K(t)−K(t−θ)]

K(t−θ)

)
= φ. This, in turn, is a nonlinear difference equation,

again a special case of (4.1), here a function of three variables.

John Hicks:

Hicks presented his model in terms of linear relationships in discrete time. He starts
with the national income identity,

Yn = Cn + In + An

where, Anis the autonomous investment , Yn, Cn, In are total income, consumption and
induced investment respectively. By introducing an appropriate number of lags, p, in

11In case of Frisch, the model that he presented which was supposed to generate endogenous (non-
persistent) fluctuations can be presented as the following second order linear difference-differential
equation.

ẍ =
( sµ

ε
− λr

)
ẋ(t) +

( sµ

ε

)
ẋ(t− ε) +

sm
ε
[x(t)− x(t− ε)] (4.5)

Here, x is the amount of consumer goods produced per year. m, µ, s, ε are parameters which stand for:
depreciation of capital stock for every unit of consumer good produced, amount of capital stock required
for production of one unit of consumer good, the desired cash balance (encaisse désirée) parameter for
production of capital goods, respectively. However, this model, for the parameter values presented by
Frisch do not generate any oscillations as shown by Zambelli (2007).
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the presence of the accelerator, the above equation becomes a Pth order, linear differ-
ence equation.

Yn = An +
p

∑
r=1

crYn−r +
p−1

∑
r=1

vr (Yn−r −Yn−r−1) + K (4.6)

cr is the propensity to consume out of the income in period r, or the weight of period p
income on the current consumption and vr is the corresponding accelerator coefficient.
This relation above, together with the bounds, that is, a ceiling and a floor that are
a result of natural constraints to the system in the form of limited available factors
and lower limit of investment, becomes a piecewise linear (hence, nonlinear) Pth order
difference equation. This, in turn, is a particular case of (4.1).

Erik Lundberg:

Lundberg’s approach was based on the logic of sequence analysis and the idea of cumu-
lative causation. He constructed model sequences in an expanding economy by varying
the assumptions on the nature of investment, parameters and initial conditions and
studied them for the presence of cyclical behaviour. He worked with a piecewise lin-
ear, unstable, model of inventory cycles. This model had built-in natural, economic,
constraints acting as bounds that checked the system from unlimited expansion and
catastrophic contractions and based on this, the model was made to generate bounded
fluctuations. Among the cases he considered, for example, the expansion determined
by investment in working capital and fixed capital, respectively, were formulated as
second-order difference equations, in terms of the expenditure receipts. Let us consider
the case of investment in fixed capital (housing). This was expressed as the following
model sequence:

Rt − Rt−1 =

(
µ(1−Λ)

σ

)
(Rt−1 − Rt−2) +

(
1− (1−Λ)(1− b− h− b

σ
)

)
Rt−1 + C

(4.7)
Ri - Expenditure receipts from the output of consumer goods at period i, C is a con-
stant autonomous investment in consumer goods inventory, µ is the ratio of income
generated from building a house and the sum of expected rent payments during a
given period to cover costs, Λ - the propensity to save, 1/σ is the proportion of total
expenditure on consumer expenditure spent on rent payments for housing, h is the
proportion of consumer expenditure for dwellings that does not become income dur-
ing the next period. Simplifying this equation and setting(

1 +
µ(1−Λ)

σ
+

(
1− (1−Λ)(1− b− h− b

σ

))
= Θ

and (
µ(1−Λ)

σ

)
= Φ
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we get the following second order nonlinear difference equation, (piecewise linear due
to the presence of natural constraints) which is a special case of equation (4.1) which is
a function of 3 variables.

Rt −ΘRt−1 + ΦRt−2 − C = 0

Lundberg was exploring these model sequences, numerically, rather than finding a gen-
eral solutions for these equations. This exercise can be thought of as a numerical ex-
perimentation to identify the possibility of turning points in an expanding economy.
This model was later considered by Metzler (1941). He endogenised the bounds and
transformed the model into a purely linear, second order, difference equation, which
again is a very straight forward, special case of (4.1)

4.2.1 Nicholas Kaldor

Chang and Smyth:

Let us take the case of Chang and Smyth’s exposition of Kaldor’s model with nonlinear
income and savings functions.

dY
dt

= α[I(Y, K)− S(Y, K)]

dK
dt

= I(Y, K)
(4.8)

Here Y, K, I, S are net income, capital stock, net investment and savings respec-
tively. α is the goods market adjustment parameter. Here the savings and the invest-
ment functions are nonlinear. Let us assume, as with Chang and Smyth, IY ≡ ∂I

∂Y > 0,
SY ≡ ∂S

∂Y > 0 and IK ≡ ∂I
∂Y < 0, SK ≡ ∂S

∂Y < 0. Differentiating dY
dt and substituting

dK
dt = I(Y, K), given the above assumptions, we have

Ÿ− α (IY − SY) Ẏ− α (IK − SK) I(Y, K) = 0

This is a second order, nonlinear, differential equation - a special case of (4.1).

Takuma Yasui:

Yasui casts Kaldor’s model into a van der Pol type equation, which is expressed below.

ÿ +
1
√

µγs
[s + µγ− φ′(y)]ẏ + y = 0

Here, y is deviation of the national income from its stationary or equilibrium
value. s is the propensity to save and 1/γ is the proportion by which the national in-
come changes according to the difference between savings and investment. We will
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discuss this model in some detail below. The final form of his equation is a continu-
ous time, second order, nonlinear differential equation, a particular case of (4.1) as well.

Why were the existence theorems used in the first place, in business cycle theory?
Is it because the geometrical demonstrations were considered not rigorous enough and
therefore an inevitable outcome in the quest for rigour, or was it was purely an accident
? It is possible that the age of existence proofs was dawning upon economics profes-
sion, with von Neumann’s use of the min-max theorem, the application of Brouwer’s
fixed point theorem by Nash in game theory and the Arrow-Debreu proof of the ex-
istence of the competitive equilibrium, in turn, using Nash’s approach. The use exis-
tence theorems in business cycle theory by the trio of Japanese economists, who were
familiar with nonlinear mathematics and the theory of oscillations, may seem like an
inevitable spillover. We will explore the way in which different existence theorems
were used in NETBC and the kind of assumptions that were forced to introduce into
economic models.

4.2.2 Kaldor’s Model of Trade Cycle

Proving the existence of limit cycles in NETBC for two dimensional autonomous sys-
tems has proceeded in two ways and it is useful to distinguish between them. The
first approach is to reduce the model of an economy into an autonomous second-order
nonlinear differential equation of the Liénard type and appeal to one of the theorems
to establish the existence of a unique limit cycle. The second method involves proving
the existence of atleast one limit cycle for a model which is eventually reduced to a pla-
nar dynamical system, by making use of the P-B theorem. Let us begin by considering
a slightly modified version of Kaldor model of trade cycles, along the lines of Yasui
(1953). We choose this model because it has been studied widely and it was one of the
first models in this tradition to which the existence proofs were applied. However, it
is equally possible to do the same analysis with the Goodwin’s nonlinear accelerator
model as well.

We begin with the national income accounting identity,

Y = C + I (4.9)

Here, Y stands for aggregate income and C and I stand for consumption and invest-
ment, respectively. We now define behavioural equations for the aggregate consump-
tion and investment functions as follows:

Ct = c(Yτ) + α (τ < t)
It = φ(Yt)− µKt

α for autonomous consumption and the investment function φ is assumed to be a non-
linear function. In Kaldor’s model, this is an S shaped function. Let us ignore the time
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subscripts of the variables to keep the notations simple. Taking Taylor series expansion
and retaining only the first two terms of the consumption function,

C = βY− γẎ + α

Substituting C and I in (1), we get,

Y = βY− γẎ + α + φ(Y)− µK

Differentiating the above equation, we get

Ẏ = βẎ− γŸ + φ′(Y)Ẏ− µK̇ (4.10)

By viewing investment as the change in capital stock:

K̇ = I = Y− C

= Y− βY + γẎ− α

= (1− β)Y + γẎ− α

= sY + γẎ− α

A more illuminating way of looking at this equation, in the context of Kaldor model,
is to remember that in the Investment-Savings theory of income determination, the
change in income is proportional to the difference between savings and investment.12

Substituting this in (2), and rearranging the equation, we get

γŸ + [1− β + µγ− φ′(Y)]Ẏ + µsY− µα = 0

γŸ + [s + µγ− φ′(Y)]Ẏ + µ(sY− α) = 0

Let us redefine the variables Y and time(t). Write Y in terms of the deviations from the
equilibrium(z),

z = Y− (α/s)

and time as
T =

√
µs/γt

we obtain a second-order, nonlinear, differential equation.

z̈ +
1
√

µγs
[s + µγ− φ′(z)]ż + z = 0 (4.11)

Now let,
1
√

µγs
[s + µγ− φ′(z)] = ζ ′(z)

12We can express this as follows: γẎ = I − sY
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Substituting this in (3), we get a simpler equation,

z̈ + ζ ′(z)ż + z = 0 (4.12)

Here, assume that φ′(z) > µγ + s in the neighbourhood of z = 0 and this would
imply that ζ(z) is positive or negative, depending on whether the absolute values of z
are small or large. Under these assumptions, the equation(3) is the unforced, van der
Pol equation and this in turn is a special case of the Liénard equation

ẍ + f ′(x)ẋ + g(x) = 0

Note that the van der Pol equation is a special case of this equation and that this equa-
tion can be obtained by transforming the Rayleigh equation. Goodwin, for example,
reduced his model to an equation of Rayleigh type and demonstrated the existence of
limit cycle using the Liénard method13. Yasui reduced the Kaldor model to the van
der Pol equation, a particular case of the Liénard equation. The idea was to reduce the
model under investigation to this canonical, nonlinear equation and invoke the appro-
priate theorems that ensure the existence of periodic solutions.

It may be useful to clarify the role of nonlinearity in the models of NETBC. Since
linear models are also capable of exhibiting oscillatory behaviour, we need to distin-
guish the essential differences in the nature of oscillations between these two and the
additional value of placing nonlinearity at the heart of the matter. Linear systems
are capable of having periodic solutions (closed paths) if and only if the character-
istic equation of these systems have purely imaginary roots. If the roots are purely
imaginary, the trace of the coefficient matrix of this characteristic equation vanishes
and the system has a center. This means that either all paths are closed, else no path is
closed. In contrast, nonlinear models are capable of having isolated closed paths, that is,
without other closed paths lying next to them. The solution curves that are near wrap
themselves around these isolated closed orbits. Closed paths of this type are called
as limit cycles. Therefore, nonlinearity becomes a crucial ingredient for constructing
endogenous models that are capable of persistent fluctuations.

4.2.3 Levinson-Smith theorem & the Kaldor Model

Now we can proceed in three different directions in establishing the existence of limit
cycle(s) for the above equation. The first way is to go the old-fashioned geometric way
- by transforming the equation by relevant change of variables and study it on the
Liénard plane and demonstrate the existence of a limit cycle by constructing it purely
geometrically. This is the method resorted by Goodwin and by Yasui. However, Ya-
sui also discussed the applicability of formal existence proofs. The first method is
discussed in the appendix. In this section, we analyze the second way, which is to

13Refer to the appendix for a detailed exposition of the Liénard method.
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appeal to the Levinson-Smith theorem, like the way the Japanese economists – Yasui,
Morishima and Ichimura did, by assuming that certain properties hold for the func-
tions under consideration. The third way is to invoke the P-B theorem, widely used in
NETBC, which will be dealt with in the next section.

Yasui succeeded in formulating the Kaldor model in terms of a generalized van
der Pol type equation (or Liénard equation) and showed the presence of self-excited
oscillations, graphically. It was in this exercise, for the first time, an existence theorem
was referred to in the theory of business cycles.

“Thus equation (2.18), in which ϕ(y) and g(y) are assumed to have the
above stated properties, is known to be the generalized van der Pol-type
equation or Liénard-type equation mentioned above. ... It has been already
proved mathematically that in this case (2.18) will have a unique periodic
solution”
-Yasui (1953), pg. 233.14

He appealed to the Levinson-Smith theorem which guarantees the existence of a
unique limit cycle under certain conditions.

Theorem 1. Levinson Smith Theorem
Consider a two-dimensional differential equation system

ẋ = y− f (x)
ẏ = −g(x)

which is represented as a second-order differential equation,

ẍ + f ′(x)ẋ + g(x) = 0

The above equation has a unique periodic solution if the following conditions are satisfied.

1. f ′ and g′ are C1

2. ∃x1 > 0 and x2 > 0 such that for −x1 < x < x2 : f ′(x) < 0 and > 0 otherwise.

3. xg(x) > 0 ∀x 6= 0

4. lim
x→∞

F(x) = lim
x→∞

G(x) = ∞ where F(x) =
∫ x

0
f ′(s)ds and G(x) =

∫ x

0
g(s)ds

5. G(−x1) = G(x2)

14We are using the mimeographed, condensed, version of the original Cowles Foundation Discus-
sion Paper: Economics No. 2065, 1953. This mimeographed version’s pagination is from 219-240 and
quotations refer to this pagination.
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Proving existence in this case simply becomes an exercise of verifying whether
the final nonlinear equation to which the model is reduced does satisfy the conditions
required by the above theorem. By assuming functions assumed satisfy the above
mentioned properties, the proof of existence of a limit cycle was established. Often,
these conditions were too stringent or unrealistic for the economic system to satisfy, so
the functional forms were assumed to satisfy these properties. In this case, ζ ′(z) and z
are assumed to be C1 implies that these functions satisfy the Lipschitz condition. The
last condition is called the symmetry condition and if the functions f ′(x) and g(x) to
be even and odd functions respectively, this condition is automatically satisfied. This
condition plays a crucial role in establishing existence of cycle in this case. Since the
van der Pol equation satisfies these conditions, it was possible to prove the existence of
a unique limit cycle. This was the practice, for example, in Morishima (1958), Schinasi
(1981), Ichimura (1955b).

Remark 2. Note here that the version of the Kaldor’s model that we have analyzed assumes
that the rate of change of capital stock(K̇ = I) is independent of the level of capital stock and is
only a function of income. This assumption is not trivial, since making investment dependent
on both capital and income (as it is the case in version investigated by Chang and Smyth
(1971)), then the dynamical system does not reduce to Liénard equation (Lorenz (1987), p.286).
Consequently, it is not possible to apply the Levinson-Smith theorem so long as investment is
dependent on capital stock. Alternatively, one can assume that the change in capital stock
(K̇) is determined by the savings function alone (which is only dependent on income and not on
capital stock). For proving existence and uniqueness using theorems other than Levinson-Smith
for this model, see Galeotti and Gori (1989).

4.2.4 The Poincaré-Bendixson theorem

Now we analyze the use of another important existence theorem that was very widely
used (not just for the theories expressed in terms of Liénard equations) in NETBC.

A Brief Overview of the P-B theorem

The Poincaré-Bendixson theorem is an important existence theorem that is used in the
study of the qualitative behaviour of the planar dynamical systems and provides pos-
itive criterion for presence of limit cycles in the plane.The origin of this theorem dates
back to Poincaré, who pioneered the field of the qualitative theory of differential equa-
tions. Instead of trying to solve differential equations in terms of explicit solutions,
Poincaré developed methods to analyse the qualitative behaviour of solution curves
of these differential equations. He thereby developed a geometric approach to under-
stand the global behaviour of these equations on the plane via phase portraits. He
classified different kinds of limit sets for these planar differential equations and intro-
duced the concept of ‘limit cycles’. We now know that his attempts at an exhaustive
classification may not have been successful. He concluded that if the curves do not end
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up in one of the singular or stationary points, then they are either closed orbits or they
wrap themselves around these closed orbits. Such limit sets are known as limit cycles.

Later, building on the contributions of Poincaré, the Swedish mathematician Bendix-
son (1901) proved the same theorem, with much weaker assumptions. The P-B theo-
rem guarantees the existence of limit cycles under certain assumptions, providing the
sufficient conditions for its existence on the plane. It provides a precise description of
the structure of limit sets in the case of planar dynamical systems and it rules out the
possibility of ‘chaos’ on the plane.15

The P-B theorem & the Kaldor Model

Equation (12), which is a second order equation, can be rewritten as a system of two
first-order, ordinary differential equations (ODEs) in the following manner:

dz
dt

= y− ζ(z)

dy
dt

= −z
(4.13)

This system has a unique equilibrium given by (0,ζ(0)). The z and y-nullcline for
the above system are

y = ζ(z) ; z = 0

respectively. Following Kaldor’s assumption that the investment curve is S-shaped, it
is clear that y = ζ(z) has a cubic characteristic and we can divide the (z− y) plane in
to four regions.

V+ = {(z, y) | y > 0, z = 0}
V− = {(z, y) | y < 0, z = 0}
g+ = {(z, y) | z > 0, y = ζ(z)}
g− = {(z, y) | z < 0, y = ζ(z)}

In the case of the original van der Pol equation, ζ(z) = z3− z. It is worth noting that the
characteristic of our equation, based on Kaldor’s theory also has a cubic characteristic.
Therefore, the arguments in our case are analogous to the case of the original van der
Pol equation and let us for now assume that ζ(z) = z3 − z. The Jacobian matrix is the
following: (

ζ ′(0) 1
−1 0

)
The eigenvalues, computed from the characteristic equation of this system are:

λ± =
1
2
(−ζ ′(z)±

√
ζ ′2 − 4)

15Refer to Ciesielski (2001) for a detailed discussion on its history and its development during the last
century.
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Given that system has a unique equilibrium (0, ζ(0)), one can analyze the above Ja-
cobian matrix around this point in order to identify the nature of this equilibrium. If
φ′(z) > µγ + s around z = 0, then ζ ′(z) < 0 and the equilibrium is a source. Conse-
quently, no solution curve can tend to the equilibrium point over time. It is also the
case that any solution curve, which starts in V+, has to pass through g−, V− and g+

before it enters back16 to V+.
Now, define a closed, invariant region on the plane (trapping region) (call it Ω)

surrounding the origin, whose boundary is a Jordan curve. Given that the region Ω ⊂
R2 is closed and invariant with an unstable equilibrium point, one can invoke the
following theorem to establish the existence of a periodic orbit. In case of the van
der Pol equation, the periodic solution is also a limit cycle- i.e, all the other solutions,
except the equilibrium point, tend to this periodic solution.

Theorem 3. Poincaré-Bendixson Theorem: Consider a nonlinear autonomous system

dx
dt

= F(x, y)

dy
dt

= G(x, y)
(4.14)

Let Ω be a bounded region of the phase plane together with its boundary, and assume that Ω
does not contain any critical points of the above system. If φ is a path of system that lies in Ω
for some t0 and remains in Ω ∀t > t0, then φ is either itself a closed path or it spirals toward a
closed path as t→ ∞. Thus in either case the system has a closed path in Ω.

Here, the vector field all along the boundary of this closed and bounded (hence
compact) region points inwards into Ω. This would indicate that the path must spiral
towards a closed orbit or it is in itself a closed orbit. The compactness of the space on
which these these variables are studied is therefore crucial in ensuring the presence
of a closed orbit. In our case, the assumption of compactness of the income space is
introduced so as to invoke this theorem. This is even more explicit in the following
treatment of the Kaldor’s model by Chang and Smyth.

The Kaldor NETBC Model as a Planar Dynamical System and the P-B theorem

There is an alternative way to formalize the Kaldor model, without reducing it in to a
Liénard type equation. Instead, it is possible to define relationships between the differ-
ent variables involved and characterising the direction of changes in one variable with
respect to changes in the other. Firstly, ex-ante savings and investment are functions of
aggregate income and aggregate capital stock. As mentioned earlier, Kaldor’s model
does not endorse the acceleration principle and it relies on the Savings-Investment the-
ory of income determination. Accordingly, change in aggregate income (Y) is propor-
tional to the difference aggregate savings (S) and investment (I). Investment is defined

16Refer to Hirsch et al. (2004), Pg. 263-64 for the proof
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as the change in capital stock (K) over time. These relations define the following dy-
namical system.

dY
dt

= α[I(Y, K)− S(Y, K)]

dK
dt

= I(Y, K)
(4.15)

Here we assume nonlinear investment and savings curves as in the original Kaldor
model, which twice differentiable, therefore satisfying the Lipschitz condition. The
partial derivatives, according the assumptions of the Kaldor model can be stated as
IY ≡ ∂I

∂Y > 0, SY ≡ ∂S
∂Y > 0 and IK ≡ ∂I

∂Y < 0, SK ≡ ∂S
∂Y < 0. This system can be studied

on the Y-K plane and the nullclines are given by

dK
dY

∣∣∣∣
Ẏ=0

=
SY − IY

IK − SK

dY
dK

∣∣∣∣
K̇=0

= − IY

IK
> 0

(4.16)

The slope of the nullcline dK
dY

∣∣
Ẏ=0 is greater, less than or equal to zero, depending

on whether SY is less, greater than or equal to IY, respectively. Further, assume that
IK SY < SK IY, that is if the slope of the nullcline along which the capital stock is con-
stant, is steeper than the slope of the nullcline along which the income is constant(when
it is rising). The Jacobian of this dynamical system is given by

J =
[

α(IY − SY) α(IK − SK)
IY IK

]
The characteristic roots can be analyzed to understand the nature of the singular

point. The assumption that IK SY < SK IY implies that there is a unique, singular point
(y∗, K∗) and assuming that α(IY − SY) + IK > 0 will ensure that this singular point is
unstable node or a focus. By choosing Ω – a compact subset (or assuming that such a
compact subset exists) in the Y-K plane (non-negative quadrant of R2), we are ready to
invoke the P-B theorem, which guarantees the existence of a closed orbit. Further, if
we choose this compact subset Ω in such a way that the closed orbits are in the interior
of Ω and assume that the system is structurally stable in Ω, we can establish that these
closed orbits are limit cycles.

Proving the existence of limit cycle using this theorem can be synthesized as be-
low.

1. Formulate the dynamic model of the economy as a system of differential equa-
tions, encapsulating the nonlinearities in relationships between different eco-
nomic variables.

2. Reduce the model to a planar (two dimensional) dynamical system.
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3. Demonstrate that the economic model thus formulated has a unique equilibrium
point.

4. Examine the Jacobian matrix of this system, evaluated at the unique equilibrium
point, for the possibility of the equilibrium to be a saddle point and by showing
that the determinant of the Jacobian is positive, rule out this possibility. There-
fore, the equilibrium can either be a node or a focus.

5. Show that the trace of the Jacobian evaluated at the unique equilibrium point is
positive and consequently establish that the unique equilibrium is unstable.

6. Choose an appropriate compact region in the space on which the model is de-
fined in such a way that the chosen compact space is invariant and includes the
equilibrium in the interior.

7. Following from the assumption that the chosen set is invariant, establish that the
system is structurally stable.

8. Demonstrate that in the boundary of the compact region thus chosen, the velocity
vector field points to the interior.

9. Use the Poincaré-Bendixson theorem to prove the existence of at least one limit
cycle.

This was also the way it was used by Rose (1967), later by Chang and Smyth
(1971), which later became a standard practice in the profession and this was emulated
by most other studies mentioned in the previous section. However, it should be noted
that not all studies end up demonstrating all the above mentioned points in the strat-
egy and instead simply assume that some of these requirements hold. For example, as
Sasakura (1994) points out, Schinasi (1982) and Varian (1979) take that point 6 in the
above list, i.e, the compact region with the vector field pointing inwards at the bound-
aries, exists by assumption. Some others assume structural stability of the system in the
chosen region, apriori.

Remark 4. The Poincaré-Bendixson theorem guarantees the existence of atleast one limit cy-
cle and therefore uniqueness of this limit cycle is not automatically established. On the other
hand, the Levinson-Smith theorem for the Liénard equation does guarantee uniqueness as well.
In the case of the van der Pol equation, the uniqueness is established by appealing to the inter-
mediate value theorem. Also, note that the van der Pol equation satisfies the requirements of the
Levinson-Smith theorem, which can be invoked to prove existence.

4.3 Existence Theorems in NETBC: A Survey

In this section, we provide a survey of the models of endogenous cycles that use the
P-B theorem. Morishima (1958) built on the works of Yasui and Goodwin, attempting
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to find a way to combine and synthesize the models of Kaldor (Yasui’s version) and
Goodwin-Hicks, formulated as van der Pol and Rayleigh equations, respectively. The
rate of investment was a function of the level of income in Kaldor’s model and ‘rate of
change’ of income (accelerator) in the model of Hicks-Goodwin. He defined the rate of
investment as a linear combination of the investment functions of these two models.
He then derived the final equation representing the generalization of these two models
and investigated the existence of cycles formally by invoking the Levinson- Smith and
P-B theorems.

Almost a decade later, Rose (1967) made an important contribution, where he de-
veloped a theory of employment cycles in the neoclassical tradition, with profit maxi-
mizing firms. In his model, cyclical movements in employment (real effects) arise due
to changes in money wages, even in the absence of real balance effects, money illusion
and pressure on interest rates. The crucial element that drives the cycles is the nonlin-
ear relationship between employment rate and the wage inflation, that is, the nonlinear
Phillips curve. He demonstrates the existence of (real) employment cycles by invoking
the P-B theorem.

By exploiting this nonlinear relationship capable of generating cycles endoge-
nously, Rose managed to influence NETBC in important ways. First, by taking endoge-
nous cycle theory outside the Keynesian circles to a broader arena, subsequently, forg-
ing new ways forward in modeling cycles. Second, his work presented a full fledged
invocation and a detailed demonstration of the way in which the Poincaré-Bendixson
theorem can be applied in NETBC. By introducing the Poincaré-Bendixson theorem,
he provided a strategy for establishing the existence of business cycles in more general
conditions than earlier. Further, his works (especially Rose (1969)) provided attention
to monetary factors in NETBC, which till then was largely focused on ‘real’ elements
of the cycles17

After the contributions by the Japanese economists mentioned earlier, another im-
portant contribution to Kaldor’s model was made by Chang and Smyth (1971). They
undertook a study of Kaldor (1940), addressing questions regarding existence and per-
sistence of cycles. Kaldor’s model had nonlinear investment and saving functions,
which change according to the direction of capital accumulation, which set the eco-
nomic system into cyclical motion between stable and unstable equilibrium points.
Though the questions of existence were posed in relation to this model by Yasui and
Morishima, they did so by reducing the model to a nonlinear differential equations of
Liénard type that are known to have stable limit cycles. It was Chang & Smyth, follow-
ing the path of Rose, who reduced Kaldor’s model to a planar dynamical system and
showed the existence and persistence of cycles in this system using the P-B theorem.18

17The exceptions include Hicks (1950), Hudson (1957) and the contributions by Swedish economists
like Lindahl, Lundberg, whose theories were intrinsically monetary. ).

18It is interesting to note that Rose (1967) discusses the possibility of proving the existence of cycles,
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Kaldor’s model was analyzed by Varian (1979) in the light of catastrophe theory
that was developed mainly by Thom and Zeeman. In his interpretation of the Kaldor
model, he assumes a linear savings function and a nonlinear (sigmoid) investment
function, and demonstrates the presence of cyclical behaviour of the system that is
locally stable and globally unstable. He introduces the idea of having different rates
of change for parameters and the state variables of the functions involved, ‘slow’ and
‘fast’ variables respectively, and explains plausible situations where there is a jump in
short run equilibrium between different regions of the state space(catastrophes). De-
pending on whether there are one or two slow variables, the resulting behaviour of the
system can be either in terms of ‘fold’ or ‘cusp’ catastrophes and the latter is shown
to account for the possibilities of slow and fast recoveries in one model. In this frame-
work, Varian uses the P-B theorem to prove the existence of limit cycles.

Research on Hicks’ IS-LM model in the context of business cycles also made use
of the Poincaré-Bendixson theorem (see Velupillai (2008) for a more comprehensive
discussion of this strand of research). Notable works on this line of research include
Schinasi (1981, 1982), Benassy (1984) and this came to be called the fix-price macroe-
conomics approach. Schinasi (1981) in his model of short run fluctuations, combined
the dynamic version of the traditional IS-LM model, augmented for the government
budget constraint, with the idea of a having a nonlinear investment function. He then
showed that this model can be reduced to the Liénard equation and thereby appealing
to the Levinson-Smith theorem to prove the existence of a unique limit cycle. In Schi-
nasi (1982), he works in the same framework for the intermediate run, but this time
appealing to the P-B theorem. The existence proof for the cycles in this model, in partic-
ular, the use of P-B theorem was later refined by Sasakura (1994).

Benassy developed a non-Walrasian model, in which business cycles arise due to
interaction between ‘stabilizing’ and ‘destabilizing’ effects - the former role is played
by prices and the latter is due to the unstable accelerator and its resulting quantity
dynamics. He works with the IS-LM framework and the traditional Phillips curve (as
opposed to the nonlinear Phillips curve like Rose) and incorporates expected demand
explicitly into the investment function. The model focuses long run dynamics of the
short run (non-Walrasian) equilibrium and proves the existence of cyclical behaviour in
this case, by invoking the P-B theorem.

In the case of Goodwin’s model, Sasakura (1996) and Flaschel (2009) demonstrate
the existence of limit cycle under more general conditions than the earlier attempts (us-
ing the Liénard method) by using the P-B theorem. The missing case – the application
of P-B theorem in proving the existence of cycles in Hicks’ trade cycle model, is proba-

albeit in a modified version of the Kaldor’s model, adapted for the presence of growth in the system.
He outlines the proof strategy in footnote no.1, p.170 for proving the existence of cycles. We don’t know
whether Chang and Smyth took the hint from here.
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bly due to the fact that the original Hicks model was formulated in terms of difference
equations and as a piecewise linear model, unlike the other two nonlinear models,
which were presented (or else reduced or approximated) as differential equations19.
However, a recent paper by Matsumoto and Szidarovszky (2010), on a modified ver-
sion of Hicks’ model presents in continuous time with consumption and investment
time delays. They make use of the P-B theorem to prove the existence of cycles.

There are many other strands of work in NETBC which make use of the Poincaré-
Bendixson theorem – for example numerous studies which focus on inventory cycles,
but they do not belong to the ‘origins’ and, therefore, we do not discuss them here. It
is evident from various studies that were mentioned in this section that the role played
by the P-B theorem is both crucial and pervasive across different schools of thought
within the nonlinear tradition of endogenous (business) cycles on the plane.

4.3.1 The Impact of the Poincaré-Bendixson Theorem

As we can observe from the studies mentioned above, this tendency to equate rigour
with mathematics of a particular tradition or one kind of mathematics and more spe-
cially, proving existence in this case, went beyond the case Walrasian equilibrium to
business cycle theory as well. This mode of theorizing meant that, in some sense,
methods dictated the questions and hypothesis that were posed and restricted the evo-
lution of this tradition. It also hampered the enlargement of the scope of theories since
theorizing concentrated on proving existence, rather than gaining insight into the real
nature of the attractors. The questions relating to dynamic methods, processes through
which one can understand were ignored.

The introduction of the P-B theorem marked a subtle shift from a modeling strat-
egy in NETBC. Earlier, the strategy was the following: First, reduce the models to some
form of Liénard’s equation, i.e, nonlinear differential equations like the van der Pol
or the Rayleigh equations (which are known to exhibit relaxation oscillations). Then,
show that the system has limit cycles, either graphically using the Liénard method as
in the case of Goodwin or by appealing to an existence theorem for the uniqueness of
limit cycles for the Liénard-type equation. Instead, with the introduction of this theo-
rem, the models were formulated as dynamical systems to investigate the existence of
cycles in more general situations, without restrictions on the functional forms as in the
earlier case.

One of the important limitations that was posed by the use of the P-B theorem
was the constraint on the dimensions of the economic model it demanded. Recall our

19However, Goodwin’s model and Hicks’ model are in some sense equivalent, though the former
uses a nonlinear accelerator. This is also why the early work on NETBC by the Japanese economists
considered these two models together.

66



Chapter 4

earlier remark that the vector field has to constantly turning inwards at the boundaries
of the compact, invariant space and that there is no equivalent for this theorem in
higher dimensions. This has to do with the fact that the P-B theorem in turn depends
on the Jordan curve theorem on the plane. In the case of a plane, it is easy to decide the di-
rection of the vector field to be either inside or outside the compact region. Whereas, this
is extremely difficult when the dimension is higher than two. For dimensions greater
than 2, it can be shown that there is a always a vector that exists, that is not in the set
of all tangent vectors to the simple closed curve. For example, in the case of a three-
dimensional object like a Möbius strip, what is inside and outside is undecidable. Even
on 2-dimensional plane, a formal verification of the validity of P-B theorem would
necessitate checking for the satisfiability of the Jordan curve theorem. This is compu-
tationally a non-trivial task (See the discussion in Ragupathy et al. (2013), section III.)
This restriction meant that the scope for theorizing was rather limited, since it was
not always possible to reduce the dynamic relationships between different economic
variables to two dimensions, without making strong assumptions or sacrificing some
relevant economic factors which might be crucial in explaining economic fluctuations.
To overcome this restriction, NETBC researchers had to either adopt new mathemati-
cal tools or to be confined to two dimensions. Eventually, researchers working in the
tradition of NETBC reacted by moving on to endorse the tools of bifurcation theory,
catastrophe theory and chaos theory.

It should be noted that this theorem is concerned with the qualitative global dy-
namics of the system. In this framework, it was not possible to meaningfully assert
much regarding the short-run behaviour of the system as economists would desire
otherwise. Further, since the theorem proves the existence of atleast one limit cycle and
the fact that the knowledge of the precise number of limit cycles for the planar dynam-
ical systems is not known in general meant that details regarding the possible kinds
(number and nature) of the fluctuations were not available in this mode of theorizing.

The fact that P-B theorem was purely an existence theorem had its impact on
NETBC in another important methodological influence for the years that followed.
While the use of this theorem may have been decisive in the earlier period of develop-
ment of NETBC, later models that were developed that were made possible solely be-
cause of the availability of this theorem. In other words, economic theory was straight-
jacketed to fit the assumptions of these theorems. Once this was the established prac-
tice, NETBC moved from depending on one existence theorem to another (those in
bifurcation theory, for example) which probably, in retrospect, limited the develop-
ment of algorithmic methods to study business cycles in NETBC.

The use of the P-B theorem meant that the theory of NETBC was largely restricted
to continuous time formalisms, i.e., in terms of differential equations. A correspond-
ing theory of limit cycles, where economic variables exhibit nonlinear relationships
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between themselves, was not available for difference equations.20 This also meant that
NETBC endorsed continuous time formalisms and topological assumptions needed for
the validity of P-B theorem, such as an existence of a compact, invariant space, which
might not correspond with either the underlying economic intuition or the nature of
the economic quantities which are being studied.21

4.3.2 A Very Brief Note on Bifurcation theorems

Besides the criterion provided by the above existence theorems for detecting limit
cycles, it is also possible to prove the existence of business cycles using bifurcation
theorems. We briefly discuss them in this section, without attempting to be compre-
hensive. Bifurcation refers to instances where parametrized dynamical systems un-
dergo sudden changes in their topological structure. That is, the qualitative behaviour
of their trajectories change abruptly at certain points of the parameter space. These
points are called bifurcation points and some of the commonly discussed bifurcations
include: Poincaré-Andronov-Hopf Bifurcation, Turing bifurcations, pitch fork bifurca-
tion, saddle-node bifurcations, etc. Bifurcation theorems facilitate, in particular, the
possibility of working with dimensions higher than two, which is a serious restriction
in the case of the P-B theorem.

Bifurcation theorems, too, for proving the existence of limit cycles have been
widely used in the Keynesian tradition of business cycle theories. Torre (1977) used
bifurcation theorems to establish the presence of a stable limit cycle in what he called
as the ‘Complete Keynesian system’, which is structurally stable. However, bifurcation
theorems have also been widely used in other traditions of endogenous business cycle
theory, for example, to establish competitive endogenous business cycles in overlap-
ping generations models (see, for example, Grandmont (1985)).

Within the tradition of endogenous business cycles that this chapter has concen-
trated on, there has been a recent interest in applying bifurcation theorems to Kaldor,
Goodwin and Hicks models. Flaschel (2009) summarizes some of the common criteria
used for establishing the presence of bifurcations in the appendix. Kaldor’s system has
been modified to incorporate time-delays and bifurcations occur in these models due to
changes in the parameters, capturing either the time delay or the intensity of the effect
of the difference between savings and investment on income (see Kaddar and Alaoui
(2008), Krawiec and Szydlowski (1999) and Wang and Wu (2009)). Similar investiga-

20There is the other case of difference-differential equations, also known as the delay differential equa-
tions, which was used by Frisch, Kalecki (in their time-to-build models and by Goodwin (1951). The lat-
ter reduced this to a Rayleigh equation by taking a Taylor series expansion and neglecting higher order
terms (which he should not have done, see Dharmaraj and Velupillai (2011).

21Refer to Velupillai (2010) for arguments against the indiscriminate use of real numbers (and func-
tions defined on real number domains) in economics, since economic quantities can, at best, be rational
numbers.
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tions have been carried out for modified versions of Goodwin’s model (for example,
in Matsumoto (2009)) and Hicks’ model (in Matsumoto and Szidarovszky (2010)). By
the way, all these modified models are again are special cases of the canonical equation
(4.1).

4.4 Existence theorems and Computability

Existence of solutions for IVP of an ODE Vs Poincaré-Bendixson the-
orem:

While proving existence is fairly straight forward in the case of linear system of differ-
ential equations, it is more complicated for nonlinear equations. For some nonlinear
equations, there may not be any solutions for certain initial conditions and in some
cases there might be many solutions for the same initial condition. For a general case,
including nonlinear differential equations, there are additional conditions that need to
be imposed and which guarantee (local) existence and uniqueness of solutions. At this
point, it is pertinent to wonder why this general existence, uniqueness theorem for so-
lution of ordinary differential equations, a more general theorem, valid for any finite
dimension(n), was not used here for establishing the periodic solution. To understand
this, we need to look more into the difference between these two theorems.

Theorem 5. Existence and Uniqueness of Solutions: Consider the initial value problem

X′ = F(x), X(0) = X0

where, X0 ∈ Rn. Suppose that F: Rn → Rn is C1. Then there exists a unique solution of this
initial value problem. More precisely, there exists a > 0 and a unique solution

X : (−a, a)→ Rn

of this differential equation satisfying the initial condition X(0) = X0

In this proof of existence, a sequence of functions are defined via Picard’s iteration
procedure, by successive approximation of the functions. Later, it is shown that the
sequence of functions thus defined would uniformly converge to the solution of the given
differential equation. Note that F is C1 implies that the function F satisfies the Lipschitz
condition, which in turns ensures the contraction to a unique fixed point.

Definition 6. Lipschitz Continuity: Let D ⊂ Rn and F: D → Rn. F is called Lipschitz
continuous if for any closed and bounded interval I ⊂ D there exists a K ∈ R and K < ∞ with

|F(x)− F(y)| ≤ K|x− y|, ∀x, y ∈ I (4.17)

and K is called the Lipschitz constant.
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If the functions f (x) and g(x) in the Liénard equation satisfy the of the Lipschitz
condition, then, why was the general existence proof for a system of differential equa-
tions not used and what is different in the planar case?

Firstly, the above existence theorem, known as the Picard-Lindelöf theorem, like the
Cauchy-Peano existence theorem, is a part of the analytical tradition of studying differ-
ential equations. In this approach, the solution of the differential equation is obtained
in terms of finding analytic functions equivalent to the differential equation. Though
this quantitative approach is valid and accurate, it is quite complicated in practice and
often limited in scope. These difficulties led Poincaré to develop the qualitative the-
ory of differential equations. The idea in the qualitative, geometrical, approach is to
find methods to understand the qualitative behaviour of the solutions of the differen-
tial equations. Theorems such as P-B and Levinson-Smith, are existence theorems in
this latter tradition. Therefore, it needs to be clarified that the existence theorems in
nonlinear, endogenous theories of business cycles were essentially invoked to estab-
lish certain properties of solutions in the spirit of the qualitative tradition.

Secondly, this qualitative approach to understanding dynamics meant that NETBC
was an exercise to understand certain global properties of the economic system. The
Picard-Lindelöf theorem, however, is a local existence theorem. Initial efforts in NETBC
were to establish global behaviour of economic system, in this case – the presence and
persistence of cyclical fluctuations, independent of the initial conditions. For planar
dynamical systems, the P-B theorem provides a positive criterion for establishing this,
in terms of identifying the presence of limit cycles. It is more complicated for higher
dimensions and there equivalent for this theorem in higher dimensions (for n ≥ 3).

Thirdly, the P-B theorem proves the plausibility of atleast one limit cycle. How-
ever, it does not say anything about the number of limit cycles that are present in the
given system and their location, which might be of interest to economists. This leads
directly to the unresolved Part B of Hilbert’s 16th Problem (see Velupillai (2008).

4.4.1 Computability of the attractors on the plane

Besides proving the existence of endogenous business cycles, economists would like
study the nature of these cycles, more generally, the properties of the attractors. In
the case of planar dynamical systems that characterize the nonlinear models we have
discussed, the P-B theorem provides a criterion for the existence of limit cycles. The
question that we ask is the following: Is it possible to precisely determine these attrac-
tors (in the case of the P-B theorem) and their basins of attraction, in order to gain a
deeper insight into the precise nature of the aggregate dynamics of the economy and
to undertake meaningful computational experiments? In other words, are attractors of
a given dynamical system on the plane decidable (algorithmically)? Alternatively, can we
determine the basin of attraction in which the economy is located at a given time, from
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the data we have?

Before answering these questions, it would be fruitful to understand why com-
putability of the attractors is important. Studying these attractors to which an economy
tends to, and their properties, would have important bearing on theorizing on the kind
of policies and control mechanisms to be adopted. As mentioned earlier, the P-B theo-
rem is an existence theorem, which is proved non-constructively. This means that the proof
does not offer a procedure to identify these attractors, instead, it merely states that
such a mathematical object exists. It might be the case that there exists no finite procedure
to determine these attractors.

Given that the nonlinear dynamical systems are often impossible to solve an-
alytically, simulation experiments to study these systems have relied on numerical
methods. Since the above theorem is valid only for a (planar) system of differential
equations defined over real number domains, it poses challenges to compute, since
not all real numbers are computable. There have been attempts to bridge this gap on
two fronts – numerical analysis and computable analysis (and, more recently, also via
constructive analysis).

Three questions can be posed at this point.

1. What are the conditions under which we can establish that a solution of the dy-
namical system and a numerical procedure used to approximate it are equiva-
lent?

2. Can we say something about the possibility of computing the solutions of these
dynamical systems from the point of view of computability, instead of numerical
analysis?

3. What are the other mathematical tools to gain insight into the nature of the at-
tractors?

To answer the first question, it is worthwhile to note that a numerical procedure
is essentially a discrete dynamic object. The numerical procedures – like the Euler
method and Runge-Kutta method – can themselves be viewed as dynamical systems.
For the solutions approximated by these numerical procedures to be same as that of
the original system, it is necessary to show the equivalence between the two and the
conditions under which they are so. That is, it is essential to demonstrate that the
numerical procedure employed would converge to same invariant sets of the original
dynamical system and that structural properties of the original system are retained by
the numerical procedure as well. Therefore, the choice of numerical procedures and
the conditions under which these procedures faithfully approximate the dynamics of
the system which is studied need to considered. Even in this case, it is necessary to
discipline these computational investigations using the theory of computability to de-
lineate what can and cannot be computed. These ideas are discussed in Stuart and
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Humphries (1998) and Velupillai (2010), pp.127-151).

For the second, we need to evaluate the P-B theorem from a constructive and
computable point of view and identify the source of the non-constructive or uncom-
putable content, if there are any. P-B theorem requires that the limit sets are compact
subsets of Euclidean space. For example, a classic Compactness criterion for a metric
space is given by the Heine-Borel Theorem.

First, a subset X of E is said to be closed if and only if every sequence {xn} of
elements of X which converges in E has its limit in X. A subset X of a metric space
(E, d) is said to be bounded if there exists a number A such that d(x, y) ≤ A for all
x, y ∈ X.

Theorem 7. Heine-Borel Theorem:
A subset X of Rn is compact if and only if X is closed and bounded. Alternatively, A subset X
of Rn is compact if and only if each open cover of X has a finite subcover.

This in turn appeals to the Bolzano-Weierstrass theorem, which states that ev-
ery bounded real sequence in Rn has a convergent subsequence. This theorem is in
turn based on the axiom of completeness for the real numbers. Therefore this kind
of definition of compactness is dependent on the completeness axiom of the Cauchy
sequences.

Definition 8. Completeness Axiom
Every non-empty set of R which is bounded from above has a least upper bound. Every non-
empty set of R which is bounded from below has a greatest lower bound.

This property does not hold for the set of computable or constructive real num-
bers.

Theorem 9. Specker’s Theorem:
A sequence exists with an upper bound, but without a least upper bound.

The Bolzano-Weierstrass theorem is not valid in Constructive Analysis and the
classical version of the Heine-Borel theorem is not valid in many variants of Com-
putable Analysis (it is however valid in Weihrauch’s program with the so-called type 2
effectivity). This means that the attractors that are proved to exist by the nonlinear mod-
els of business cycles invoking the P-B theorem cannot be computed, unless we have a
computable (or constructive) definition of compact sets. This is so as long as one works on
the domain of real numbers as in the case of the models of NETBC. The question then
is whether there is a way to make these models computable?

First of all, we need to restrict the domain of numbers on which we theorize to
computable real numbers and work with only computable functions. Results from
computable analysis (of the Weihrauch variety) provides some answers. Graça and
Zhong (2011) conclude that the attractors and the basins of attractions are semi-computable
if we assume that the system is stable. In their scheme, they work with so-called type-2
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machines. Stability becomes a necessary condition for ensuring the computability of
attractors22. By employing a notion of computability on closed, open and compact sets
as outlined, for example, in Brattka and Weihrauch (1999) and Weihrauch (2000)), they
are able to prove the following.

Theorem 10. Let x′ = f (x) be a planar dynamical system. Assume that f ∈ C1(R2) and that
the system is structurally stable. Let K ⊆ R2 be a computable compact set and let Kcycles be
the union of all hyperbolic periodic orbits of the system, is contained in K. Then, given as input
ρ-names of f and K, one can compute a sequence of closed sets {Kn

cycles}n∈N with the following
properties:

1. Kn
cycles ⊆ K for every n ∈N

2. Kn+1
cycles ⊆ Kn

cycles for every n ∈N

3. limn→∞ Kn
cycles = Kcycles

This means that, under the assumption of structural stability, if one can supply
the ρ names of f and the compact set K as input, there is an algorithm which can
tell, in finite time, whether f has a periodic orbit of the above dynamical system in
the compact set K. Since the periodic orbits are only semi-decidable in this case, one
may need an infinite amount of time, countably calibrated, to conclude that K does
not contain a periodic orbit. The same is true for the equilibrium points of the above
dynamical system. However, the number of attractors of a given compact set are, in
general, undecidable - even if the functional forms are analytic.
All this is part of living with the Halting Problem for Turing Machines and the problem
of recursively enumerable sets that are not recursive.

Finally to answer the third question, in the affirmative, we want to mention about
the possibilities offered by non-standard analysis (see Velupillai (2012b)).

4.5 Concluding Notes

The introduction of existence proofs, in particular, the Poincaré-Bendixson theorem,
transformed the way mathematical NETBC on the plane envisioned the economics of
aggregate fluctuations. In particular, it had an important methodological influence on
NETBC, in terms of the mathematical formalisms that the economic theory of aggre-
gate fluctuations embraced and also the role of existence proofs becoming a dominant
way of theorizing about economic fluctuations. Whether this development was due
to the absence of results in dynamical systems theory or due to the shortcoming of
the theorists in terms of developing appropriate mathematical tools for the theoretical
problems at hand is not clear. So a categorical judgement on the overall benefit due

22These themes are discussed more elaborately in the last chapter of this thesis.
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to the wide acceptance of this theorem, for the development NETBC, is not easy to
evaluate - one way or the other. What is undeniable, however, is its importance in the
modelling of theories of nonlinear endogenous business cycles.

4.A Limit cycles on the Liénard plane

“Therefore, making only assumptions acceptable to most business cycle theo-
rists, along with two simple approximations, we have been able to arrive at a sta-
ble, cyclical motion which is self-generating and self-perpetuating. For performing
the graphical integration it is convenient, letting v = ẋ, to rewrite

ẍ + X(ẋ) + x = 0

as
vdv + X(v) + x = 0

“Thus we have an extremely simple, nonlinear, first order, differential equation,
which may easily (the Liénard method makes it truly easy ) be integrated graph-
ically, provided we have an empirically given X(v) curve. X(v) need not be ex-
pressible in any simple mathematical form, although some approximation, say by
a cubic expression, does facilitate qualitative discussion of the type of system.”
Goodwin (1951), p. 14, emphasis added.

In this section, we elaborate on the ‘Liénard method’ and how it makes the graph-
ical integration truly easy, as mentioned by Goodwin in the above quote. The questions
that we are interested in exploring are: What is the difference between the normal
phase plane and the Liénard plane? What is the Liénard graphical method? What are
the advantages of using Liénard plane and how this has been used in the theory of
endogenous business cycles?

4.A.1 Liénard plane:

The early phase of NETBC proceeded in terms of reducing a model of the economy
to a canonical nonlinear equation and establishing that the economy was capable of
endogenous, self-sustaining oscillations. As we have shown earlier, the two important
nonlinear equations in NETBC are the van der pol equation and the Rayleigh equa-
tion, which are special cases of a more general equation, namely, the Liénard equation.
These equations were then analyzed on a special phase plane (Liénard plane), different
from the normal phase plane. By using a special method to construct integral curves
on this Liénard plane, it was possible to demonstrate the presence of a limit cycle,
graphically.

Let us consider the Liénard equation,

ẍ + f (x)ẋ + x = 0 (4.18)
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Now let us introduce a new variable v = ẋ + F(x), where F(x) =
∫ x

0
f (s)ds

We can write the above equation, equivalently, as the following system:

dx
dt

= v− F(x)

dv
dt

= −x
(4.19)

For analyzing the behaviour of this system, let us define a modified plane, Liénard
plane:

v = ẋ + F(x)
x = −v̇

Note that this is different from the ordinary phase plane(x, y), where y = ẋ. In the
ordinary phase plane, the velocity is counted along the vertical axis with respect to the
abscissa(x axis). In the Liénard plane(x, v), the velocity is counted along the vertical
axis, not with respect to the regular abscissa, but the new ’curvilinear abscissa’. That is,
because of the new transformation of co-ordinates that we introduced, v = ẋ + F(x),
our abscissa has been redefined. Note that the curve F(x) is the characteristic of the
equation. Therefore, the trajectories that are traced on the Liénard plane look different
from those on the phase plane.
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Solution for X(0)=3.5

Solution for X(0)=0.0001

mu=1.5

But, what are the advantages of this co-ordinate change, in comparison to the reg-
ular phase plane? In order to see this, let us first understand the relationship between
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the two planes, in terms of the trajectories. There is a one-to-one correspondence im-
plies that the trajectories traced on the Liénard plane can be easily transformed to the
ordinary phase plane through the relation,

ẋ = v− F(x)
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solution for x(0)=3.5

Solution for x(0)=0.0001

mu=1.5

If the functions f (x) and x are assumed to satisfy the Lipschitz condition, existence
and uniqueness of solutions are guaranteed on the ordinary phase plane. Since, x is
C1 and F(x) is an integral of a C1 function f (x), F(x) is also Lipschitz. This means
that the existence and uniqueness of solutions to the ODE is applicable to the Liénard
plane (x, v) as well. This guarantees that the trajectories cannot cross. The one-to-one
correspondence, which is continuous both ways, in turn means that the closed path
in one plane has a corresponding closed path in the other plane and these qualitative
attributes of their solutions do not change across the two planes.

Eliminating time from the above system of equations, we have

dv
dx

=
−x

v− F(x)
(4.20)

The above equation gives the equation for the paths of the above dynamical system
and in order to analyze these paths, the Liénard plane offers some advantages over the
normal phase plane, in the absence of the possibilities of numerical integration using
computers. However, this geometric method is not without its advantages and this
pre-digital computing era method in fact enabled one of the important discoveries in
dynamical systems theory, entirely due to pure macrodynamic motivations: the one-
sided oscillator with the Goodwin-characteristic (for a fairly full discussion of this ‘story’,
see Velupillai (2008).

On examining the above equation, we can infer that the paths described by the
equation become horizontal when they cross the v-axis. Similarly, only when they cross
the curve v = F(x), they become vertical. This feature makes graphical construction
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of the integral curves easier. Also, if we assume that x and F(x) are odd functions23,
then the equation of the path does not change if the (x, v) are replaced by (−x,−v).
This implies that the curve is symmetric with respect to the origin and therefore the
paths traced on one half of the plane, then those on the other half of the plane can be
obtained by mere reflection by exploiting the property that they are symmetric with
respect to the origin. This property of the Liénard plane, in particular, makes it easier,
to analyze the paths geometrically.

4.A.2 Liénard’s Method of Graphical Integration:

By setting the variable, y = ẋ, we can rewrite the Liénard equation as the following:

dy
dx

+ f (x) +
x
y
= 0 (4.21)

If we change the co-ordinates by introducing v = y + F(x), where F(x) =
∫ x

0 f (s)ds,
then the differential equation becomes:

dv
dx
− dF(x)

dx
+ f (x) +

x
v− F(x)

= 0 (4.22)

dv
dx

+
x

v− F(x)
= 0 (4.23)

This can be rewritten as
xdx + (v− F(x))dv = 0

This is nothing but the equation of the normal, with respect to the curvilinear (abscissa)
axis and the corresponding ordinate. It is easier to visualize it as the normal passing
through (0, F(x)):

(x− X)dx + (v−V)dv = 0 (4.24)

The procedure to construct integral curves on the plane is the following: Choose
any point, say M, on the plane (x,v). In order to construct the curve, we can drop a
perpendicular to the curve F(x) and obtain a projection m on the axis parallel to this
perpendicular (in the case of the van der Pol equation, the projection would be on
the V-axis). Keeping m as the center, one can trace a small arc that passes through
M. Similarly, one can trace a family of small arcs keeping m as the center along the
perpendicular from M.The line mM gives the normal and it is easy to construct a line
perpendicular to mM to obtain the tangent at this point. By repeating the same pro-
cedure for different points and consequently, the projections on V- axis, we can ob-
tain a family of curves. Using this, we can then construct the integral curves and one
of these curves in the family will be a closed path, provided the conditions that one

23Note that if f (x) is assumed to be even, F(x) =
∫ x

0 f (s)ds becomes an odd function.
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imposes on the Liénard equation are met. This, in essence, is the method of graphi-
cal integration that was developed by Liénard. On the Liénard plane, given that we
know that the paths can be horizontal and vertical when they cross the v axis and the
curve F(x) respectively makes this procedure very intuitive and easy. Goodwin uses
this method in order to geometrically demonstrate the presence of a limit cycle. Ya-
sui uses the same technique to proceed with graphical integration for a van der Pol
type equation. In addition to this geometric demonstration, he formulates his inves-
tigation along the lines of existence proofs, stating the conditions that need to be met
by the functions in order to formally ensure the existence of periodic solutions. We
discuss this in detail in the following section. In contrast, Goodwin’s demonstration
was purely by geometric construction. In his case, he showed the presence of limit
cycle in a Rayleigh type equation, which has a cubic characteristic. Note that the
precise shape of the characteristic does not limit this graphical integration method -
which is more general and can be applied regardless of the shape of the characteristic.

M

mN

n

O

F(x)

x

v

Construction of Integral curves - Liénard’s Graphical Method

4.A.3 Liénard’s criterion:

Given the advantages listed in first section above, how can one go about establishing
the presence of a unique, stable, limit cycle on the Liénard plane? To see this, we
need to introduce the variable that defines the total every of the systemλ as the sum of
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kinetic and potential energies:

λ(x, v) =
v2

2
+
∫ x

0
xds

λ(x, v) =
v2

2
+

x2

2
dλ(x, v)

dt
=

d
dt

[
v2

2
+

x2

2

]
=

d
dt

[
1
2
(ẋ + F(x))2 +

x2

2

]
= ẋ[ẍ + f (x)ẋ + x] + F(x)

d
dt
(ẋ + F(x))

= F(x)
d
dt
(ẋ + F(x))

dλ(x, v) = F(x)dv

(4.25)

The rationale behind this is given by the Liénard’s criterion, which states that for a
system to be in a state of sustained oscillation, the change in total energy of the sys-
tem over a given cycle must be zero. For this the curvilinear integral taken along the
trajectory should be zero. ∮

F(x)dv = 0

First, the condition for the presence of limit cycles can be intuitively inferred from the
symmetry condition discussed above. Given that the paths are symmetric to the origin,
let us first analyze the length of the two intercepts, along the ordinate (v− axis), due
these paths traced on the right half of the plane (call them OA and OC). If the length of
these intercepts are not equal, then the paths cannot be closed, due to the fact the the
paths are symmetric about the origin and the reflection on the other half of the plane
would suggest that the paths will never meet if OC is greater or smaller than OA. In
order to prove that there is a unique closed path, it would be sufficient to show that
intercepts are equal. This is also the idea behind the proof 24 that we invoked a purely
geometric criterion for showing the existence of limit cycles in the Kaldor model.

The use of Levinson-Smith theorem in NETBC, by Yasui, Morishima, Ichimura
and others, was essentially along these lines - assuming that the relevant economic
variables and their functional forms are odd and even, along with other requirements
of this theorem, guarantees the existence of an unique, stable limit cycle. Symmetry
property of the trajectories on the Liénard plane is particularly helpful in the search for
closed paths.

24Refer Minorsky (1974) and Hirsch et al. (2004) for the detailed proof.
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Uniqueness theorems in NETBC

In this chapter, we look at the uniqueness theorems that have been employed in macro-
dynamics in planar models. We confine our attention to the Nonlinear, Endogenous
theories of Business cycle (NETBC), in particular, to the pioneering models of Good-
win, Kaldor, Hicks and their variations. We focus on the uniqueness proofs concerning
the attractors (limit cycles) in these models and examine them. Section 2 provides a
survey of different uniqueness theorems that were used in this tradition. In Section 3
Goodwin’s nonlinear cycle model is considered and we apply a sufficiency theorem for
the nonlinear accelerator model, with just one non-linearity. We point out the connec-
tion that this theorem has with Goodwin’s own contribution. Section 4 presents some
ways in which one can go beyond the existence-uniqueness mode of theorizing in this
tradition.

5.1 Uniqueness proofs in NETBC

In the planar models of NETBC, the qualitative nature of the attractors that underpin
these theories is fairly obvious, viz, limit cycles1. Important models in this tradition
are Goodwin (1951), Kaldor (1940), Hicks (1950), Lundberg (1937). These models were
largely in the Keynesian tradition. Their unifying thread was the presence of non-
linearities in how different economic variables were related. For example: relation-
ship between income, savings and investment; presence of limits to investment and
growth due to natural economic constraints such as full employment. This nonlinear-
ity played a crucial role in explaining the observed, sustained fluctuations in aggregate
variables such as output and employment. Mathematically, what these economic theo-
ries sought to explain (viz, sustained fluctuations of aggregate economic variables over
time) were translated to demonstrating the presence of periodic solutions at a local or
global level2. These theories were formulated in terms of models using differential or

1There is also the case of ‘centers’, which is associated with the growth cycle model of Goodwin
(1967)

2However, this may not be applicable in the case of Lundberg(1937).
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difference equations or dynamical systems. The early models that were formulated in
continuous time were mostly reduced to one or the other special case of the Liénard
equation3 – van der pol equation (in the case of Kaldor’s model) or the Rayleigh equa-
tion Goodwin (1951)), which were known to possess stable periodic solutions. Later,
with the development in dynamical systems theory, these models were formulated in
terms of dynamical systems and the attention shifted to demonstrating the existence of
sustained oscillations by means of formal existence proofs.Theorems such as Poincaré-
Bendixson theorem were used to establish the necessary and sufficient conditions for
the presence of limit cycles.

Compared to the use of existence proofs in NETBC, studies providing results con-
cerning the number of possible attractors have been relatively few. The proof of exis-
tence and uniqueness was established in some of the early models models by invoking
the Levinson-Smith theorem. While Poincaré- Bendixson guarantees the existence of
atleast one limit cycle for planar dynamical systems, the Levinson and Smith theorem
establishes the sufficient conditions under which a Liénard equation (a special case of a
second-order differential equation) can have a unique isolated periodic solution(limit
cycle). There are a couple of observations that may be relevant here. First, uniqueness
theorems that are used often provide only sufficient conditions and not the necessary
and sufficient conditions for the presence of a unique limit cycle. Presupposing that
a cycle already exists for a given system, these theorems provide the conditions for
such a cycle to be unique. Therefore, proof of existence is provided first and then these
sufficiency conditions are provided for the strip in which the limit cycle exists. Sec-
ondly, it is, in some sense, relatively easy to provide sufficient conditions, compared to
proving the existence of the cycle. The more general mathematical problem concern-
ing the upper bound on the number of limit cycles for a planar polynomial vector field
(as a function of the degree of the polynomial), posed as the second part of Hilbert’s
16th problem, still remains unresolved till today. Consequently, a ‘complete’ character-
ization of the nature and number of attractors, even for Liénard equation (which is a
special case of the planar polynomial vector fields), is still beyond reach.

5.1.1 Uniqueness of limit cycle - Kaldor’s Model

In the early mathematical models of NETBC, the proof of uniqueness of the limit cy-
cle in the planar models has involved reducing the dynamic model to a generalized
Liénard equation and invoking the Levinson-Smith theorem, which provides sufficient
conditions for the existence and uniqueness of limit cycles. Depending on the way in
which one approximates the economic assumptions into a mathematical model, the
number of limit cycles can vary. Therefore, any categorical statement regarding the

3Liénard equation is written as
ẍ + f ′(x)ẋ + g(x) = 0
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presence of unique limit cycle must be evaluated in the light of the approximation in-
volved.
We provide a survey of the studies that employ uniqueness theorems in NETBC. For
the purpose of this chapter, we restrict our attention only to analytical proofs for es-
tablishing uniqueness and therefore we will not focus on studies which use numerical
simulations and other approximate methods. In case of Kaldor’s model, the issue of
the uniqueness of attractors has been taken up for the different versions of the model
by Lorenz (1987), Galeotti and Gori (1989), Ichimura (1955b). Earliest application of
sufficient conditions to guarantee a unique limit cycle was by Yasui(1953) who applied
Levinson-Smith theorem to his version of Kaldor’s model. In this case, the model was
reduced to a van der Pol type equation, which is a particular case of the more general
Liénard equation.

Theorem 1 (Levinson Smith Theorem). [Gandolfo (2005), p.440]
Consider a two-dimensional differential equation system

ẋ = y− f (x)
ẏ = −g(x)

which is represented as a second-order differential equation,

ẍ + f ′(x)ẋ + g(x) = 0

The above equation has a unique periodic solution if the following conditions are satisfied.

1. f ′(x) and g(x) are C1

2. ∃x1 > 0 and x2 > 0 such that for −x1 < x < x2 : f ′(x) < 0 and ≥ 0 otherwise.

3. xg(x) > 0 ∀x 6= 0

4. lim
x→∞

f (x) = lim
x→∞

G(x) = ∞ where f (x) =
∫ x

0
f ′(s)ds and G(x) =

∫ x

0
g(s)ds

5. G(−x1) = G(x2)

Ichimura (1955b) discussed the possibility of applying the above theorem to a
particular case of his model, in which he attempted to synthesize the theory of Kaldor,
Goodwin and Hicks. However, he perceptively noted that the symmetry condition
(G(−x1) = G(x2)) may not hold for his system and therefore uniqueness of the limit
cycle was not certain. Lorenz (1987) later took up the Kaldor model and explicitly ad-
dressed the question of uniqueness. He observed that Kaldor’s model (Chang and
Smyth’s version) does not reduce to a generalized Liénard equation, and therefore
Levinson and Smith theorem cannot be applied. In particular, he argued the assump-
tion concerning symmetry of G(x) may be too restrictive from an economic point of
view. He contended that it is not possible to apply the above theorem unless one of the
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following assumptions are made: Investment is assumed to be independent of capi-
tal stock or that changes in capital stock is entirely determined by savings, which is
independent of the level of capital. This is because in the Kaldor model, as long as
one assumes investment function is dependent on both capital stock and income, the
resulting second-order differential equation is not a Liénard equation. His main mes-
sage was that it was not possible to retain all the assumptions of the original economic
model, without making further simplifying assumptions to satisfy mathematical re-
quirements of the theorems invoked.

In reply to this, Galeotti and Gori (1989) contended that it is possible to make
use of other uniqueness theorems for Kaldor’s trade cycle model and demonstrate the
presence of unique limit cycle. By making convenient assumptions and appropriate
transformations, they show that Kaldor’s system is reducible to a Liénard system.

ẋ = y− F(x)
ẏ = −g(x)

(5.1)

The existence of a limit cycle is proved by using the theorem by Fillipov and
they provide the sufficiency conditions for uniqueness of the limit cycle for this model
through the following theorem.

Theorem 2 (Zhang Zhi-Fen4). Suppose the system (5.1) above satisfies the following condi-
tions:

1. There exists a ≥ 0 such that, F1(z) ≤ 0 ≤ F2(z) for 0 ≤ z ≤ a, F1(z) 6≡ F2(z) for
0 < z� 1, F1(z) > 0 for z > a; F′2(z) ≤ 0 for z ∈ {z > 0|F2(z) < 0}

2. F′1(z) is non-decreasing for z > a

3. if F1(z) = F2(u) with a < z < u, then F′1(z) ≥ F′2(u)

Then the system has at most one limit cycle, which, if exists, must be stable.

The above theorem is utilized by applying the Fillipov transformation5.
However, in the process of doing so, they overlook the essential message that

there is a tendency among economists to force their economic intuitions to the de-
mands of the existence-uniqueness theorems.

4Galeotti and Gori refer to Zhi-Fen (1986b) and Zhi-Fen (1986a). Since the second reference is difficult
to access, we refer the reader to Theorem 1, section 2 of Xianwu et al. (1994) for the proof.

5Fillipov transformation is done as follows:

z1 =
∫ x

0 g(t)dt if x ≥ 0; F1(z1) = F(x)as x ≥ 0
z2 =

∫ x
0 g(t)dt if x ≤ 0; F2(z2) = F(x)as x ≤ 0

zi is the integral curve of g(x) and therefore instead of the trajectory of (5.1) in the right and left half-
planes, due to the transformation, one deals with the integral curves dz

dy = Fi(z)− y, i = 1, 2. Uniqueness
in this case is established by way of an comparison argument involving F1(z) and F2(z) for z > 0.
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Goodwin (1951) did not‘prove’ existence or uniqueness of the limit cycle by in-
voking theorems of these kind, instead he demonstrated the presence of single stable
limit cycle (for an S-shaped characteristic) by using geometric methods (Liénard inte-
gration). This was later addressed by Sasakura (1996), pp.1771-73:

In Goodwin’s (1951) model there has been something mysterious to busi-
ness cycle theorists, since, in spite of the simple structure, the question:
“Does the model have really a unique stable limit cycle?” could not be
solved in general circumstances. In this paper I gave a correct answer to
the question: ‘Yes, as was expected.’ The model has a unique stable limit
cycle in an economically meaningful region.

His demonstrated the uniqueness of the limit cycle by using the following theo-
rem, which provides the sufficient conditions.

Theorem 3. Luo Ding-Jun Uniqueness Theorem
For the system

ẋ = y− F(x)

ẏ = −x

if F′(x)− F(x)/x ≥ 0 (or ≤ 0) for all x 6= 0, and in the strip where the limit cycle exists
the left side of the above formula is not identically zero, then the system has at most one limit
cycle. (Ye et al. (1986), 139-140)

The above theorems comprehensively cover almost all the uniqueness results that
were employed within this tradition.

5.2 Uniqueness of Limit cycle and Goodwin’s (1951) model

There has been a fair amount of ambiguity about the number of limit cycles that are
associated with the Goodwin model. On the one hand, Sasakura points out the ‘aca-
demic belief’ that was held about the presence of a unique limit cycle for this model.
Flaschel(2009) also resonates the same belief for his version of Goodwin’s model, but
at the same time makes a puzzling remark6 that there could be multiple limit cycles:

... We state without proof that a [Goodwin] system such as the one we
depicted earlier will not only have a closed orbit, but will in fact exhibit
just one limit cycle, which will be a globally stable attractor for all other
trajectories of this dynamical system in the above depicted domain.

For economic purposes, it is, however, not necessary to have a unique and
stable limit cycle under all circumstances. Figure 3.13 shows that all points

6In footnote 75, Flaschel’s remark about uniqueness is a bit misleading and his reference to Ye et al.
(1986) is inaccurate. It is misleading because the uniqueness theorems discussed in Ye et al. (1986) deal
with ‘sufficiency’ conditions and not ‘necessary’ conditions.
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close to the boundary of the box as well as points close to the stationary state
of the dynamics cannot lie on the limit cycle, but will be attracted by one
(not necessarily the same) in the interior of the box.
- Flaschel (2009), p. 97–98

In this section, let us take a closer look at Goodwin’s model in the light of the
above discussion on the uniqueness of limit cycle and hope to clarify some of these
ambiguities.

5.2.1 Goodwin’s Nonlinear Model

Let us briefly sketch the business cycle model developed by Goodwin (1951). In this
model, cyclical fluctuations result from the interaction of the dynamic multiplier with
a nonlinear accelerator. Let y, α, k̇, β, ε be the income, marginal propensity to consume,
change in capital stock, autonomous consumption and the lag in consumption for the
changes in income, respectively. The multiplier relation can be written as,

y =
1

1− α
(β + k̇− εẏ)

By introducing a lag between the time at which investment outlays are made and their
realization (θ - the time to build parameter), we have

(1− α)y(t + θ) + εẏ(t + θ) = OA(t + θ) + OI(t + θ)

where,
OA(t + θ) = β(t + θ) + l(t + θ)

and
OI(t + θ) ' OD ' ψ(ẏ)

Here OA is the sum of autonomous investment and consumption outlays and OI is the
induced investment ψ(ẏ) (the nonlinear accelerator or the flexible accelerator). This
investment function is assumed to be nonlinear7. We then have

(1− α)y(t + θ) + εẏ(t + θ) = OA(t + θ) + ψ(ẏ(t)) (5.2)

This we shall call as the Canonical Goodwin Equation. From here, based on the kind of
approximation we would like, we can have different final equations and consequently,
the nature and the number of attractors can vary.

Taking the Canonical Goodwin Equation and approximating the equation through
Taylor-series expansion for the (t + θ) terms and retaining only the first two terms of y
and ẏ variable8, we have:

εθÿ + [ε + (1− α)θ]ẏ]− ϕ(ẏ) + (1− α)y = OA(t + θ) (5.3)
7Goodwin also introduces lag in investment and decision outlays - the time lag between decisions on

investment and actual investment outlays. However,it is assumed that OI(t + θ) ' OD(t)
8That is, without taking OA(t + θ) term into account

86



Chapter 5

This is a second-order nonlinear difference-differential equation. Goodwin shifts
the time co-ordinate of the autonomous injections by θ units and arrives at,

εθÿ + [ε + (1− α)θ]ẏ(t)]− ϕ(ẏ) + (1− α)y = OA(t) (5.4)

The delay term here can be viewed as a periodic forcing to the differential system
by the injection of autonomous investment. This equation corresponds to a Rayleigh
type equation with external forcing9 and to the best of our knowledge, there is no
general result characterizing the attractors completely or establishing that this system
has a unique limit cycle. As in the case of the forced van der Pol equation, results
are known only for some special cases of the forced Rayleigh type equation. However,
Goodwin himself went on to further approximate this equation by assuming that OA to
be constant O∗ and redefined the variable y in terms of z, representing deviations from
the equilibrium value O∗

(1−α)
. The system is assumed to have a cubic characteristic, i.e,

the nonlinear accelerator is assumed to be a S-shaped function, with two nonlinearities
representing the built-in economic constraints.

εθz̈ + [ε + (1− α)θ]ż(t)]− ϕ(ż) + (1− α)z = 0 (5.5)

To this, he adds the requirement that the equilibrium is locally unstable and that

dϕ(0)/dż > ε + (1− α)θ. By defining the following variables, x =
√

1−α
εθ z/ż0

10 and

t1 =
√

1−α
εθ t, the above equation can be reduced to a dimension-less form11, to the

following equation.
ẍ + χ(ẋ) + x = 0 (5.6)

where, χ(ẋ) =
[ε + (1− α)θ]ż(t)]− ϕ(ż)√

(1− α)εθ

Goodwin states that

Consequently the system oscillates with increasing violence in the central
region, but as it expands into the outer regions, it enters more and more
into an area of positive damping with a growing tendency to attenuation.
It is intuitively clear that it will settle down to such a motion as will just
balance the two tendencies, although proof requires the rigorous methods
developed by Poincaré.
... Perfectly general conditions for the stability of motion are complicated
and difficult to formulate, but what we can say is that any curve of the gen-
eral shape of X(ẋ) [or ϕ(ẏ)] will give rise to a single, stable limit cycle.

[pp.13-14, Goodwin (1951)] (emphasis added)

9In this case, constant and periodic
10ż0 is any unit to measure velocity
11Refer Goodwin (1951), pp. 12-13
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He uses the graphical integration method of Liénard, a geometric method and not a
proof of existence and uniqueness, to establish the presence of a limit cycle. However,
whether there will be ‘single, stable limit cycle’ for more complicated functional forms
of nonlinear accelerator is not addressed.

We can rewrite the above system as

ẋ = u−Θ(x)
u̇ = −x

(5.7)

where,
Θ(x) = στ(x)

σ =
1√

(1− α)εθ

and
τ(x) = [ε + (1− α)θ]ẋ(t)]− ϕ(ẋ)

Does this system have a unique limit cycle? The answer to that question depends
on the approximation of the nonlinear investment function. For example, Matsumoto
(2009) shows that assuming ϕ(ẋ) = vtan−1(x)(an odd function), the system can have
single or multiple limit cycles depending on the values of θ and the local instability
condition ε + (1− α)θ − v < 0 on Θ(x).

Approximating the nonlinear accelerator ϕ(ẋ) = vtan−1(x) by x − 1
3 x3 would

have different result on the number of limit cycles as opposed to taking the higher or-
der terms, by say the fifth order expression, where τ(x) = x − 5

3 x3 + 2
5 x5, which has

two limit cycles12. For the above Liénard form representation of the Goodwin model,
the number of limit cycles for the system will depend on the degree of Θ function.
Therefore, approximations play a crucial role and it is also necessary to have these
approximations correspond to the actual shape of the investment function and com-
patible with the economic assumptions 13. Goodwin was aware of this and notes:

Finally, it should be noted that, while I have assumed a particular shape
for ϕ(ẏ), the power of the Liénard construction is shown by the fact that an
equation containing any given curve may be easily integrated. Therefore,
whatever sort of investment function is found actually to hold, that type
may be completely analyzed in its cyclical functioning. If we look closely
into this problem, we find that what is really necessary is to take individual
account of many different industries because, while one industry may still
have excess capacity, another may be short of fixed capital. Therefore, the
combined operation may depend as much on the points at which different

12For σ = 0.08. Refer Matsumoto (2009) for the details of the approximation
13For example, Matsumoto notes that the fifth order approximation specified above does not have

asymptotic bounds that correspond to the ceiling and the floor and the same goes for the values of θ
being small or large

88



Chapter 5

industries fire into investment activity as on the actual shape of the X func-
tion for each industry or any conceivable aggregation of all of them.
-Goodwin (1951), pg. 17.

Instead of approximations of the investment functions, if one resorts to higher or-
der approximations around the time lag parameter θ, it would result in multiple limit
cycles as well. This exercise was carried out using analogue and digital simulations by
Strotz(et.al) (1953) and Dharmaraj and Velupillai (2011) respectively. The latter study
uses a fifth order approximation and shows that the number of periodic solutions in-
crease with retaining more higher order terms in the Taylor series approximation. Over
all, the uniqueness of the limit cycle in Goodwin’s model and its independence from
initial conditions is not so clearcut.

5.2.2 Sasakura’s proof

Sasakura (1996) starts his analysis by taking the following equation mentioned in the
last section:

εθŸ + [ε + (1− α)θ]Ẏ(t)]− ϕ(Ẏ) + (1− α)Y = β + l (5.8)

He then replaces it with the following, mathematically equivalent system of the
previous equation:

Ẏ = (1/ε) (I − (1− α)y + β)

İ = (1/θ) (ϕ[ẏ(t)] + l − I)
(5.9)

Here I = K̇ and income in not in terms of deviations from its equilibrium value,
but its absolute value. By restricting the domain of income and investment values to
an economically meaningful region, he proved the existence of a limit cycle for this
region using the Poincaré- Bendixson theorem. He considers the dimensionless form
(eq. 5.6)

z̈ + ζ ′(z)ż + z = 0 (5.10)

Let u = ż and v = −z
u̇ = v− ζ(u)

v̇ = −u

and uses a theorem that provides sufficient conditions for uniqueness of the limit
cycle for this system. Since this theorem does not require any assumptions regarding
symmetry, the functional form of the induced investment (or the characteristic) need
not be restricted to be symmetric around the origin. From the economic point of view,
the meaning of this asymmetry is quite clear.
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Theorem 11 (Luo Ding-Jun Theorem). For the system

ẋ = y− F(x)

ẏ = −x

if F′(x)− F(x)/x ≥ 0 (or ≤ 0) for all x 6= 0, and in the strip where the limit cycle exists
the left side of the above formula is not identically zero, then the system has at most one limit
cycle. (Ye et al. (1986),p. 139-140)

The intuitive meaning of the condition is the following: if the marginal propensity
to invest due to an increase in income is less than the average propensity in the strip
where the limit cycle exists, such a cycle will be unique, within that strip.

One Sided Oscillator

Since the approximations and the assumptions that go into defining the shape of the
investment function are crucial in Goodwin’s model, we shall examine alternative con-
siderations regarding the shape of the nonlinear accelerator. The nonlinear accelerator
in Goodwin (1951) is motivated by the fact that aggregate capital accumulation in an
economy cannot go on unhindered forever, since the built-in constraints of the eco-
nomic system come in to play at some point. In the multiplier accelerator mode, this
had meant that the operation of the accelerator mechanism (changes in investment as
induced by changes in income) is restricted during the upswing by having reached the
desired level of capital (which is a function of income) or by hitting full employment
of economic resources. In the downswing, the fact that net investment in fixed capi-
tal cannot be lower than the amount required corresponding to rate(s) of depreciation
and therefore, poses a natural lower bound. These constraints have traditionally been
dubbed as the ceiling and the floor of the economic system. This means that there are
two economically plausible nonlinearities, or two plausible bends on the either ends of
the accelerator if we wish, in the model of the economy. In Hicks’ model, exogenous,
autonomous growth factors are superimposed on to a disequilibrium model of fluctu-
ations which incorporates both the ceiling and the floor. Goodwin(1951) model also
had two built-in constraints on either side for the accelerator, therefore, utilizing two
nonlinearities in order to explain sustained oscillations. In terms of the mathematical
structure, this means that the dimensionless form (equation 5.6)of the reduced master
equation has a cubic characteristic.

However, the presence of two bounds is not a necessary condition for showing
persistence of cycles in this class of planar models. It was persuasively argued by
Goodwin in his review of Hicks’ book that economic intuition would suggest that ei-
ther the ceiling (full employment) or the floor (lower limit on disinvestment, which is
zero) would be sufficient to guarantee the presence of sustained oscillations14. In terms

14He notes:
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of the mathematical structure, this meant that a single nonlinearity would be enough
to have sustained oscillations, which until then was not thought to be possible. This
was shown to be a mathematically plausible by Goodwin himself and thus was born
the ‘one-sided oscillator’15.

Now, if we approximate the investment function with a piecewise linear func-
tion16, with only one nonlinearity - either a ceiling or a floor, it is still possible to show
the presence of a limit cycle. Let us consider the case where the accelerator becomes
inflexible after having reached a ceiling17:

φ(ẏ) =
{

κẏ if κẏ ≤ k̇U

k̇ if ẏ > κk̇U

Here κ is the accelerator co-efficient and k̇U is the investment level once the system
reaches the ceiling. This can be appropriately modified in case one wants to shift the
focus to the floor and on the downswing. Let us measure income in terms of the devi-
ations from its equilibirum value and express

τ(ż) =
{
−[κ − (ε + (1− α)θ)]ż if ż ≤ k̇U/κ
−[k̇U − (ε + (1− α)θ)]ż if ż > k̇U/κ

When we substitute this and following the time translations x =
√

1−α
εθ z/ż0 and t1 =√

1−α
εθ t, we arrive at the 5.5 and reduce it to the dimensionless18 form, the characteristic

of which is as follows:

ẍ + ζ(ẋ) + x = 0

Either the ”ceiling” or the ”floor” will suffice to check and hence perpetuate it. Thus the
boom may die before hitting full employment,but then it will be checked on the down-
swing by the limit on disinvestment. Or again it may, indeed it ordinarily does, start up
again before eliminating the excess capital as a result of autonomous outlays by business
or government.
Goodwin (1950), p.319

15A detailed discussion of this discovery can be found in Velupillai (1998)
16See: Sordi (2006). However, her study focuses on the simulation aspects of the cycle more than the

proof of uniqueness.
17Note that this ceiling, given by desired capital level given the income level, need not necessarily

coincide with the full employment ceiling. This ceiling can come into effect even before the full employ-
ment ceiling is reached.

18The piecewise linear characteristic above can be approximated by a function to smoothen the dis-
continuity (Refer Le Corbeiller (1960)) and we have the following second order differential equation.

z̈− ρ(2− e−ż)ż + z = 0 (5.11)

Under the instability condition assumed by Goodwin, i.e, κ > ε+ (1− α) and for appropriate parameter
values, we can establish the presence of sustained oscillations.
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where,

ζ(ż) =
τ(ẋż0)

ż0
√
(1− α)εθ

The above dimensionless equation can be rewritten as:

ẋ = −u− ζ(x)
u̇ = x

(5.12)

The proof of existence is given by a theorem by de Figueiredo, making use of the
Poincaré-Bendixson theorem. (Theorem 1,p. 274, de Figueiredo (1960) ).

Theorem 12. de Figueiredo’s Existence Theorem
Consider the system (5.12) above and let

1. ζ(0) = 0

2. ζ ′(0) exists and is negative and provided there exists a y0 > 0 such that

3. ζ(ẋ) > 0, min(ẋ ≥ y0)

4. 2 > −minζ ′(ẋ) < ζ ′(−ẋ), (ẋ ≤ −y0) except for values of ẋ at which ζ ′(ẋ) undergoes
simple discontinuities.

Under the above conditions, the system has atleast one periodic solution.

Given the above conditions for existence, the sufficient conditions for uniqueness
of the periodic orbit are provided by the following theorem:

Theorem 13. de Figueiredo’s Uniqueness Theorem
Suppose the above system satisfies the above conditions for existence and therefore has a

periodic solution. Let there exist a y1 > 0 such that following conditions hold:

1. ζ(y1) = ζ(0) = 0

2. ẋζ(ẋ) < 0, (0 < |ẋ| < y1)

3. ζ(ẋ) > 0, (ẋ > y1)

4. ζ ′(ẋ) ≥ 1
ẋ ζ(ẋ), ẋ < 0, ẋ > y1 except at values of ẋ where ζ ′(ẋ) undergoes simple

discontinuities. Then the system has a unique periodic solution, except for translations
in t.

A more general theorem for uniqueness is given in de Figueiredo (1970) for a
generalized Liénard system.
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Theorem 14.
ẋ = y− F(x)

ẏ = −g(x)

Suppose the above system has a periodic solution. Let xg(x) > 0 for x 6= 0 and the following
conditions hold for g, G and F:

1. f and g are real valued functions which are C1 (Lipschitz condition, which in turn,
guarantees the local uniqueness of the solution of the system)

2. limx→0[g(x)/x] exists and is 6= 0

3. G(x)→ ∞ as x→ ±∞

4. 2G(x) + y2 − F(x)y 6= 0 ∀(x, y) 6= (0, 0)

If the inequality 2G(x) f (x) − F(x)g(x) ≥ 0 holds on the interval x < 0, x > x0,
where x0 is a positive constant such that xF(x) < 0 on 0 < |x| < x0, F(x) > 0 on x > x0
and G(x0) = G(−x0), then the above system has a unique periodic orbit (except for time
translations along t axis).

Remark 15. For g(x) = x, the above inequality reduces to f (x)− F(x)/x ≥ 0. Note that
this is the same condition that ensures the uniqueness of periodic oribit in Sasakura’s use of Luo
Ding-Jun’s theorem19.

If one feels that we have merely provided yet another sufficiency theorem that
is applicable to one of the nonlinear models of business cycle, then may be some jus-
tification is warranted. This is not meant to be an exercise in showing that a certain
sufficiency theorem can be applied, by searching in the compendium of results on suf-
ficiency conditions for unique limit cycles. In fact, the motivation is the contrary - to
show that economic intuition ought to steer the boat, as in the case of Goodwin’s re-
view of Hicks’ book. The economic intuition that the accelerator was dead during the
downswing motivated to Goodwin to come up with the one-sided oscillator as a mode

19On Saskura’s theorem, Sordi (2006) says:

“.. a good starting point is the recent contribution by Sasakura (1996), where the existence
of a unique stable limit cycle in Goodwin’s model (for the general case of asymmetric
nonlinearity of the investment function) is rigorously proved.”

Sordi, who mentions de Figueiredo’s work and Goodwin’s role in the discovery of the one-sided os-
cillator, overlooks the fact the sufficient conditions in Sasakura’s theorem that she discusses are in fact
the same conditions (see above) that de Figuerido obtained in his thesis, where the one-sided oscilla-
tor played a crucial role. Sasakura also mentions about the one-sided oscillator, but does not discuss
similarities of the sufficient conditions. Moreover, in footnote 3 in Sasakura (1996), he says that “one
of the referees suggested another easier method for proving at least the uniqueness and stability parts
as follows: This is to compute the derivative of the Poincaré map and show that (2) is hyperbolic and
orbitally asymptotically stable. Then uniqueness drops out easily too.”. This is the way de Figuerido
proves uniqueness in his 1970 paper.
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of clarifying his economic intuition. This was acknowledged by de Figueiredo and Le
Corbeiller. de Figueiredo provided sufficient conditions for the unique limit cycles as
early as 1958. The economic interpretation of these sufficient conditions are exactly
the same as the ones which we seem to have been ’rediscovered’ after almost 40 years!
In addition, the aim was also show that a more general, economically grounded, yet
parsimonious explanation for the persistence of the cycle can be provided within the
framework of Goodwin’s nonlinear cycle model. If one wishes to prove uniqueness
and existence and so on, it is possible, but that however was not the concern for Good-
win. He seemed to be much more interested in unearthing the nature of the cycle. It is
in lines with Hick’s reaction to the criticism on Value and Capital model, which he felt
was out of place:

“It may also be observed that on this interpretation, VC model is not
much affected by the criticism, made against it by some mathematical economists,
that the existence of an equilibrium, at positive prices, is not demonstrated.
I admire the elegance of the Samuelson–Solow proof of existence; but I still
do not think that for my purpose I needed it. Existence, from my point of
view, was a part of the hypothesis; I was asking, if such a system existed,
how would it work? I can understand that for those who are concerned
with the defense of ’capitalism’, to show the possibility of an arm’s length
equilibrium (an ‘Invisible Hand’) is a matter of importance. But that was
not, and still is not, my concern.”
- Hicks (1983), pg. 374-5.

5.3 Beyond Existence and Uniqueness

Proving existence and uniqueness has preoccupied the theorists of NETBC, and this
seems to have limited the potential that nonlinear theories of the cycle hold. This
meant not having to uncover the nature of the cycles, their properties, amplitude, fre-
quency etc, instead merely proving that there are cycles, without providing any explicit
method either to find or analyze them. Goodwin’s disinterest in proving existence may
have been partly because he was concerned with solving or simulating them (geometri-
cally). In contrast, the approximations and simplifications in NETBC often got trapped
to the practice of reducing models to equations with known results on uniqueness.

.. we discuss three different accounts of the original model derived from
alternative assumptions...
In each case the corresponding dynamics is written in Lienard form, so as
to apply a classical result of A. Fillipov and a more recent theorem of the
Chinese mathematician Zhang Zhi Fen.
. . . Indeed in business-cycle Kaldor’s systems, which can be driven to Lien-
ard form, several periodic orbits are ruled out: even with an imperfect
knowledge of the initial state, the limit cycle to which the economy will
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eventually tend is univocally determined.
Galeotti and Gori (1989), pp. 137-38

Rather than exploring ways to generalize the models, for example to higher di-
mensions, removing first approximations and so on, the above quote clearly captures
the way in which NETBC modeling activities were directed.

Lorenz repeatedly underlines the ‘ad hoc’ character of these further as-
sumptions and their lack of economic meaning . . . it is very important, in
our opinion, to underline the fact that the empirical relevance of systems
presenting a certain number of limit cycles cannot be deduced from the
‘realism’ of the formal conditions, which are known to guarantee such a
dynamical morphology.
In particular, in the case discussed, if the mathematical hypotheses em-
ployed in proving existence and uniqueness of a limit cycle do not appear
economically justifiable, this cannot imply that models reducible to Lien-
ard(sic) form, which exhibit a unique periodic orbit, are necessarily ‘unre-
alistic’.
Galeotti and Gori (1989)), p. 137

Expecting realism of formal conditions is one thing, demanding that the economic
assumptions be modified to suit these requirements is quite another. It is regrettable
that this always came at the cost of resorting to ad-hoc assumptions which compro-
mised the rich economic intuitions in these models. Galeotti and Gori assume that
either savings or investment is a function of income level alone and independent of
the level of capital stock. But this does not escape the criticism that was posed by
Lorenz that these assumptions are economically restrictive. These simplifications are
done so that the model is reducible to the general Liénard form, so that already avail-
able theorems can be readily applied. Even when moving on to higher dimensions
and other generalizations, the same temptation to trail behind mathematical results is
likely to prevail, for example, in the use of bifurcation theory.

This tendency to sacrifice economic theory at the altar of mathematics can actu-
ally be reversed. This does not mean giving up on mathematical models altogether.
Instead, we need to develop methods and tools that are faithful to the domain of data
that we deal with. For this, we have to explicitly acknowledge and remember that
the domain of data in which economic quantities, particularly those relevant for cycle
theory - employment, income, investment, prices- are rational numbers at best. By as-
suming that the domain of these quantities are real numbers, we create a wedge - one
that keeps us away from meaningfully relating the results to the data we observe on
the one hand, and making claims regarding existence and uniqueness which do not
have any known correspondence with the economic world, once the assumptions on
their domain are relaxed.
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Our interest, therefore, should be directed towards models of economic dynamics
that are not merely explanatory devices. For endogenous, nonlinear cycle theory, there
are possible ways to move beyond the existence-uniqueness paradigm. We suggest
that the mathematical business cycle theorists should, after 75 years of adventures with
non-linear differential, difference and mixed differential-difference equations, move on
to other formalisms and other adventures - but still remaining within the fold of the
non-linear theorist. One way to move forward, we believe, is to embrace an algorith-
mic approach to model economic dynamics. This involves modelling and simulations
with formal algorithms, so that dynamic method is divorced from exclusive reliance on
dynamical systems theory.

5.4 Algorithmic Economic Dynamics:

In the algorithmic approach, dynamic models of the macroeconomy would be formu-
lated as formal algorithms and these, in turn, can be analyzed. This approach can be
fruitful for the following reasons:

1. The mathematics of the digital computers and economic system share a common
meeting ground – rational numbers20.

2. Respecting the nature of the domain of economic data (which is rational num-
bers, at best) would mean that these models can now be meaningfully related to
observed data.

3. Constructing algorithmic models would aim to encapsulate patterns and styl-
ized facts observed in economic data. It involves modeling and analyzing an
economic system by constructing algorithms (equivalently, Turing machines21.)
and formally study their evolution to understand its dynamic properties.

4. It would help devote attention to the ‘methods’ and the ‘processes’ that are in-
volved while studying economic systems. Instead of being exclusively concerned
with steady states and long-run properties, adjustment processes and transition
paths, structural change can be addressed and analyzed meaningfully.

5. Questions like ‘does this model have an attractor, if so, is the attractor unique?’
can be rephrased as: ‘Can we devise algorithmic procedures that will help us
identify attractors or other long term properties of the system? Can we algorith-
mically ‘decide’ whether the attractor is unique?

20This does not mean that digital computers can process rational numbers alone. They can handle
algebraic numbers too.

21Note that Turing machines are themselves discrete dynamical systems in their own right (Moore,
1991), however, acting on natural or rational numbers.
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6. Interesting questions related to the characterization and decidability of the attrac-
tors can be posed. These will have straightforward implications when it comes
to forecasting.

7. There is natural place for complexity and indeterminacy within this framework in
the form of computational irreducibility, algorithmic complexity and algorithmic
undecidability, respectively.

8. Methodologically, this could be a stepping stone for establishing a constructive
approach, avoiding the non-constructive aspects that are routinely used in cur-
rent mathematical approaches to study economic dynamics, in general.

The above direction is geared towards developing methods and results that are
specific to the discipline of economics. It might help to advance the field of endogenous
economic dynamics by infusing constructive and algorithmic elements.
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Algorithmic Undecidability and
Dynamic Economic Theory1

In the previous chapters, we discussed the role of non-linearity in endogenous models
of business cycles. It was pointed out that there was an excessive focus on proving
the existence of periodic attractors (limit cycles) on the plane. This can be thought of
as an exercise in constructing dynamic models to illustrate a plausible story in a way
that explains the observed phenomena2. This method of ascribing an attractor to a sys-
tem involved the use of existence proofs, which provided the necessary and sufficient
conditions for the existence of an equilibrium or periodic cycles. Typically, these exis-
tence proofs are non-constructive, devoid of any algorithmic content and do not offer
an explicit procedure to determine the actual properties of these attractors. However,
computational approaches have been utilized in the past to study such models of eco-
nomic dynamics. This rises important methodological questions since the mathematics
of these models are different from the mathematics that underpins digital computation.

Our task here is to examine some questions concerning the methodology of eco-
nomic dynamics, in general, from the viewpoint of computation. We will be discussing
the issues pertaining to computation in the context of dynamical systems and differ-
ential equations, which are widely used for modeling economic dynamics. This has
implications for computational approaches to studying endogenous economic dynam-
ics as well. We will largely focus on the methodology of computational dynamics in
the context of continuous time models or flows. Most results that are shown for this
restricted class can then be extended to hybrid dynamical systems as well.

1The inspiration for this chapter comes from various contributions by Velupillai (1999, 2011b, 2010,
2011c, 2009b) on this topic. It expands on some of the themes discussed in a paper co-authored with my
colleagues in the Algorithmic Social Sciences Research Unit, See: Kao et al. (2012).

2In the case of cycle theory, the phenomenon in question was the persistent fluctuations in output and
employment. These models described specific (nonlinear) economic relationships between variables,
and due to these relationships, the aggregate system is shown to exhibit periodic cycles.
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It may be useful to highlight some aspects of the traditional models of economic
dynamics that are relevant for this chapter, even though they have been mentioned in
the earlier chapters. First of all, almost all the theoretical models in economic dynam-
ics are defined on real number domains and the functions are real valued functions,
whereas the mathematics of digital computers deals with numbers and functions that
are defined on natural or rational numbers. It is also worth noting that not all real num-
bers are computable – when we simulate these models on digital computers, we are in
fact dealing with functions that are defined over natural, rational or algebraic numbers.
Secondly, the natural data-type of the economic system are themselves rational num-
bers, at best. Many results that are valid for dynamics defined over real domains do
not easily carry over to dynamics defined over rational numbers. The functions over
these numbers also need to be equipped with computational content. It is the quest
to develop formal models that respect the natural data type for economics that leads
us to algorithmic dynamics. If we view the economy as a computational system and
economic processes as computations, then the need for algorithmic models for study-
ing economic dynamics is clear, and they can help discover the dynamic properties of
economic systems while offering the possibility of performing computational experi-
ments.

Computational models are often understood as those which employ numerical
methods in order to compute solutions. However, by algorithmic economic models,
we mean those models that are explicitly faithful to the nature of the economic data
as well as the mathematics of the computer (computability theory). By algorithmic
models, we refer to algorithms in the sense in which they are formally understood in
Computability theory and not merely any iterative procedure. Therefore, this should
not be confused with the use of numerical procedures to solve economic models 3. The
focus of the algorithmic approach is therefore on computation, the kind of numbers
and processes that are involved in it. If we choose to retain continuous time models
and solve them using numerical methods, we need to understand the scope and lim-
itations of this approach. As we will discuss subsequently, an indiscriminate reliance
on numerical procedures may not perhaps be justified.

In this note, we focus on providing computational meaning4 to continuous time
dynamic models in macroeconomics. By imposing a computability structure, we then
ask whether their long-run dynamic properties can be answered algorithmically. Ques-
tions concerning the extent of predictability of future events and states of the economy
arise naturally in this context.

We focus on the following questions related to long-run properties:

1. Is it possible to characterize the attractors of dynamic economic models algorith-
3For example, the use of numerical methods to solve for economic models that are formulated as dif-

ferential equations. We will briefly discuss some questions related to convergence of numerical methods
and discretization in economic models in the later sections.

4In the sense in which ‘computability’ was defined by Alan Turing.
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mically? Are their domains of attraction computable?

2. Given knowledge of the attractors, can we ‘decide’ whether and when the econ-
omy would reach a given attractor?

3. Can we ‘decide’ the number of attractors algorithmically?

This brings us to the interface between economic theory, computability theory
and dynamical systems. In order to provide a computational structure to dynamical
systems, we appeal to definitions and results from computable analysis so as to keep
the discussion relevant to continuous time models that are widely used in economic
dynamics. That means, while talking about computation, we do not impose restric-
tions such as that the numbers have to be natural or rational (or computable reals)
alone, as in classical computability theory. Instead, we resort to computation over real
numbers and topological spaces using type-2 machines. The main contention of this
chapter is that several important properties in these are algorithmically undecidable.
Since we are interested in endogenous models of economic dynamics and the role of
non-linearity, the emphasis will be on nonlinear dynamical systems and the algorith-
mic undecidabilities and unpredictabilities associated with them. We also discuss the
decidable fragments of these models and the assumptions that may be necessary (or
sufficient) for them to be decidable. We do not address questions related to computa-
tional complexity here.

The rest of the chapter is organized as follows: Section 2 provides an brief intro-
duction to the notion of computability in continuous time models. Section 3 deals with
algorithmic questions related to computing the attractors, and section 4 investigates
algorithmic unpredictabilities in the models of economic dynamics, with a focus on
complex dynamical systems.

6.1 Continuous-time models and Computability

Many of the models in economic dynamics, especially endogenous dynamics, are for-
mulated in continuous time and we need to explore the status of these models from a
computational standpoint. For this, we require that these models are endowed with
computational content. Then, the questions that we have raised in the previous sec-
tion can be framed as decision problems concerning economic dynamics. In a decision
problem, we are interested in a ’yes’ or ’no’ decision using an effective procedure. Typ-
ically, this involves a problem that has many individual sub-problems and one looks
for a general method or procedure to answer each of those problems. For example, to
decide whether an arbitrary Diophantine equation is solvable is a more general prob-
lem with countably infinite sub-problems. Instead of addressing the solvability of each
specific problem, one looks at whether there is a general method to decide. If there is
no such method available, then each problem or a sub-class of problems might need
a specific decision procedure. Some of these sub-problems might not be decidable as
well.
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Before proceeding, we need to formally define what we mean by a ‘procedure’.
This leads us to the definition of an algorithm, provided by the work of Turing, Church
and others. The conventional definition of an algorithm in computability theory is over
discrete mathematical objects. This can be viewed as a theory for (discrete) computa-
tion on words in some alphabet Σ5. According to the Church-Turing thesis, the set
of intuitively computable functions are precisely those that are computable via Tur-
ing machines. Turing machines themselves are discrete dynamical systems in their
own right, and the operation of a Turing machine can be viewed as the evolution of
a corresponding discrete dynamical system. Since most models of the economy are
formulated in terms of continuous-time dynamical systems that are often defined over
(compact) metric spaces, we need a way to tackle this problem for continuous time
systems.

For continuous time systems, there is a need to bridge the gap between the struc-
ture on which traditional computability theory is defined (N, which are countable)
and continuous systems (defined on sets in Rn, n = 1, 2.. for example, which are un-
countable). If we can link continuous-time dynamical systems to structures with ex-
plicit computational meaning, then decision problems concerning dynamic economic
models can be addressed. Notions such as enumerable, recursively enumerable, co-
recursively enumerable, semi-decidable, recursive are central to understanding the no-
tion of computability of the functions defined over sets.

Definition 16. Recursively Enumerable Set
A set S ⊂ N is said to be recursively enumerable if and only if it can be accepted by a Turing
machine.

Definition 17. Recursive Set
A set S ⊂ N is recursive if and only if both the set S and its complement Sc are recursively
enumerable.

The idea of enumerability deals with listing the elements of a set, while recursive
sets have the property that the problem of membership is solvable for them. There
are at least two possible ways to extend the notion of computation to continuous time
dynamic models. The first is to extend the theory of computability to continuous-time
systems. In classical computability theory, the set S ⊂ N and we need to extend it to
subsets of R and functions defined on these sets. The second is to simulate the contin-
uous time model using continuous-time analog machines. The former is the subject of
Computable analysis or recursive analysis, which extends computability to continuous
objects. On the other hand, the analog computation of continuous time models has a
fairly long and established history, even within economics. MONIAC - designed by

5In a digital computer, one can think of an alphabet as being composed of {0,1}. But it need not nec-
essarily be restricted to binary alphabets and can be generalized to more expressive ones. See (Collins,
2010)
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A.W.H. Phillips and popularly known as the ‘Phillips machine’ is one of the classic ex-
amples of this approach. See Velupillai (2011a) for a detailed account of this tradition6.

In Computable Analysis,‘representations’ or naming systems provide a way to
link continuous objects (such as real numbers, continuous functions) to other objects
that have an explicit computational content or meaning. It is instructive to think of this
as a code word that links elements in one domain to those in another. Using these rep-
resentations, we can induce computability on sets, and the results of the computation
can be interpreted in light of these representations. This allows to carry out accurate
computations with arbitrary finite precision.

When dealing with real numbers, we require an infinite amount of information to
describe an object exactly. We also need to be able to reliably approximate these infinite
objects in R using finite information, and use them for computation or find other ways
to overcome this problem. It is possible to extend the traditional notion of computabil-
ity on words of an alphabet (Σ→ Σ) to sequences of words on an alphabet(Σω → Σω).
Since real numbers can be represented via infinite sequences, computability can now
be defined for mappings between infinite sequences. This is referred to as Type-2 com-
putability or Type-2 effectivity (see Weihrauch (2000), Ch:2 for more details), where
infinite sequences act as ‘representations’ for a real number. Note that Type-2 com-
putability is still explicitly based on Turing computability and it is only as powerful.
The infinite amount of computation associated while dealing with infinite inputs and
outputs (sequence of decimals for example) can be finitely approximated to any de-
sired level of precision in this framework and can be simulated using digital comput-
ers.

These representations can be extended to topological spaces as well (Weihrauch
(2000), Brattka and Weihrauch (1999)), and concepts such as effective or computable
topological spaces, admissible representations and names, computability over real num-
bers, computability over closed, open and compact sets, can be appropriately defined
(Chapters 2-5, Weihrauch (2000)). This approach relies heavily on the nexus between
continuity and computability of functions. Please refer to the appendix on computable
analysis for a list of basic definitions in this area.

6One of the well known theoretical models of a universal continuous-time analogue machine is per-
haps Claude Shannon’s General Purpose Analog Computer (GPAC). The computational power of com-
putable analysis and GPAC is shown to be equivalent, at least in the case of real computable functions
over compact domains (Bournez et al. (2007)). However, there seems to be no explicit agreement on the
class of computable functions via different models of analog machines, as opposed to the case of digital
computation, where we have the Church-Turing thesis.
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6.2 Attractors of the economic models and Computabil-
ity

Having extended the notion of computability to real numbers and topological spaces
via representations, we can now turn to dynamic economic models formulated in these
spaces. It should be remembered that these extensions do not enable us to compute
more than what is computable by a Turing machine and hence we are still within the
Turing boundary. This should not be interpreted as advocating or dismissing the use
of continuous time models. Rather, we are interested in exploring what properties can
be declared computable in this class of economic models. In macroeconomic dynam-
ics, given certain assumptions regarding the relationships between different economic
variables, we are interested in exploring and characterizing certain long term proper-
ties of an economic system such as steady state paths, equilibrium points, limit cycles,
periodic or chaotic attractors and their stability properties. If more than one attractor
is possible, then we need understand the conditions under which the system tends to
one or the other, i.e, their respective domains of attraction. This can be viewed as the
characterization of the ω limit set associated with a given dynamic economic model.
In the case of endogenous economic dynamics, the focus will be on the algorithmic
characterization of equilibrium points and periodic attractors, as has been the major
focus of this tradition7.

In the context of aggregate economic dynamics, we may ask: given a representa-
tion of an economy as a (nonlinear) dynamical system, can we algorithmically charac-
terize:

1. Long run patterns of growth (steady states, unique or multiple equilibria)

2. Features concerning the periodic attractors (of relevance to business cycle theory)

3. The domains of attraction and the stability of these attractors.

It turns out that many long-run properties associated with these models are, in general,
undecidable. Therefore, exhaustive algorithmic classification of attractors is generally
not possible. Since this is not a big surprise for the case of continuous time models, we
focus on a class for which these properties are known to be decidable. Fortunately, the
major class of economic models of endogenous dynamics – which happen to be pla-
nar systems – do seem to have important properties that are algorithmically decidable
under certain stability conditions. In nonlinear models, Poincaré-Bendixson theorem

7This query is directly related to the kind of questions posed by Roger Penrose in his book “The
Emperor’s New Mind”. He asks whether mathematical structures such as the Mandelbrot set and the
Julia set that one encounters in complex dynamics are recursive. In other words, whether there is an
algorithm that can compute the Julia set or the Mandelbrot set precisely. Note that this is different from
asking whether a given point belongs to the attractor. Instead, this is about the characterization of the
attractors themselves.
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helps to classify the attractors on the plane. In higher dimensions, the attractors can be
highly complicated and we do not have general results for classifying them as we do
on the plane.

Some formal definitions concerning dynamical systems and related notions that
are relevant for this chapter are provided in the appendix.

For now, let us assume that we know the qualitative properties of the possible
attractors for the economic model. This is what is usually done when one invokes the
Poincaré-Bendixson theorem to prove the existence of limit cycles. Computability and
decidability questions about the ω-limit set can be analyzed in different ways. One is to
compute the attracting set - such as fixed points and limit cycles, explicitly. The second
is to algorithmically decide whether a trajectory belongs to the domain of attraction
of a given attractor. There is also the issue of explicitly computing the domain(s) of
attraction for members of the ω-limit set, but we will not discuss this here.

When we ask the above questions about attractors, we are essentially asking
whether the set is recursive. By providing a computable structure, we endow the set
with the property of recursive enumerability. That is, there is a rule or an algorithm
or a partial recursive function to list the successive members of this set. In order for
this set to be decidable, we require an algorithm that will decide whether a given el-
ement belongs to the set or not in finite time. It is intuitive that all recursive sets are
recursively enumerable, but the converse is not true. The major theme of the following
sections is to understand the possibility of determining the properties of an economy,
which is viewed as a recursively enumerable, but not recursive set. By establishing a
correspondence between the economy formulated as a dynamical system and a Turing
machine, we can study the dynamic trajectories of an economy via the evolution of a
Turing machine.

6.2.1 Computing the Attractors: Planar models

Planar, nonlinear models form an important class of models in the tradition of en-
dogenous economic dynamics, especially, business cycle theory. What is the status of
these models when it comes for algorithmic decidability and computability of attrac-
tors? Although several of their properties are undecidable, there are some decidable
fragments. Graça and Zhong (2011) conclude that attractors and their basins of attrac-
tions are semi-computable if we assume that the system is stable. They work within the
framework of computable analysis and type-2 machines. Since the attractors cannot
be computed in general, we need to explore the conditions under which they become
computable. Stability becomes a crucial condition for ensuring the computability of
attractors. They employ the notion of computability on closed, open and compact sets
as outlined earlier, following the work of Brattka and Weihrauch (1999) and Weihrauch
(2000). Please refer to appendix A for detailed definitions.

Theorem 18. Let x′ = f (x) be a planar dynamical system. Assume that f ∈ C1(R2) and
that the system is structurally stable. Let K ⊆ R2 be a computable compact set and let Kcycles

105



Chapter 6

be the union of all hyperbolic periodic orbits of the system, which is contained in K. Then, given
as input ρ-names of f and K, one can compute a sequence of closed sets {Kn

cycles}n∈N with the
following properties:

1. Kn
cycles ⊆ K for every n ∈N

2. Kn+1
cycles ⊆ Kn

cycles for every n ∈N

3. limn→∞ Kn
cycles = Kcycles

This means that, under the assumption of structural stability (together with the
Lipschitz property), if one can supply the ρ names of f and the compact set K as input,
there is an algorithm which can tell, in finite time, whether f has a periodic orbit of the
above dynamical system in the compact set K. Since the periodic orbits are only semi-
decidable in this case, one may need an infinite amount of time, countably calibrated, to
conclude that K does not contain a periodic orbit. The same is true for the equilibrium
points of the above dynamical system. This is a necessary consequence of dealing with
a recursively enumerable, but not recursive set.

6.2.2 Stability

The notion of stability has played an important role in the models of economic dy-
namics. The stability properties associated with the equilibria, limit cycles as well as
structural stability are routinely discussed in relation to these models. Bifurcations oc-
cupy an important role in these models as well. Bifurcations are intimately related to
the idea of stability. Bifurcations occur when there is change in the stability properties
of the solutions of a (parameterized) dynamical system due to changes in parametric
values. Bifurcations are essentially transitions of the phase portraits as the parameters
vary, where they move from being topologically equivalent to being nonequivalent.
In other words, as the parameter values pass certain critical values, similarity of the
phase portraits no longer holds and the qualitative behaviour of the system under-
goes a change. These critical values are called bifurcation points, where the stability of
the equilibirium undergoes a change. For example, Hopf bifurcation has been widely
used to show the possibility of endogenously generated economic fluctuations. Struc-
tural stability, on the other hand, is concerned with perturbation to the entire system
(family of solutions), while other notions of stability such as Lyapunov stability are
based on small perturbations to individual orbits.

We saw earlier that (structural) stability and Lipschitz property are crucial for
computing the attractors on the plane. This indicates that we might have to impose
some apriori assumptions concerning stability of the economic system in order to achieve
computability. But can considering only structurally stable8 systems be justified in eco-

8Or even some other notion of stability.
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nomics? If we were to adopt the view held by Schumpeter or Goodwin, it may be perti-
nent to view the capitalist evolution as one that is throughout unstable. Therefore, the
assumption of structural stability can be seen as being too stringent or even counter
intuitive. Structural stability may be considered a reasonable assumption for planar
models, since structurally stable systems are ‘typical’ on the plane. But for higher di-
mensional systems, this is not the case9. The definitions of stability associated with
dynamical systems and smooth manifolds may not be appropriate for capturing the
intuitive notion of stability and instability in an economy. It might be necessary to
develop discipline-specific notions of stability for economics that respect the nature of
economic data.

6.2.3 Decidability of the Number of attractors

Along with existence theorems, uniqueness theorems related to equilibrium and limit
cycles have also been discussed in macroeconomic dynamics. These theorems provide
sufficient conditions for uniqueness. We briefly consider the algorithmic decidability
of the number of attractors for a given planar dynamical system. Since the models
invoking these theorems often assume compactness, we grant these assumptions and
ask whether the number of attractors for a given economy (dynamical system) is algo-
rithmically decidable. We can consider a situation that is general enough by allowing
the function to be analytic.

Proposition 19. Consider a nonlinear model of an economy, formulated as a planar dynamical
system ẋ = ψ(x) on a compact subset K ⊆ R2. Consider the case where ψ is described by an
analytic function and assume that the system is structurally stable.

1. The possible limit sets (hyperbolic equilibria and hyperbolic limit cycles) are necessarily
finite.

2. Given the ρ names of the compact set K ⊆ R2 and the analytic function ψ, the problem
of deciding the number of equilibria and limit cycles is in general undecidable.

Proof. The first part follows from Dulac’s theorem (Perko (2001), pg. 205-6). The second
part follows from Graça and Zhong (2011), theorems 20 & 21.

Within the framework of computable analysis, the algorithmic decidability of the
number of attractors is not possible, in general. The precise number and position of
limit cycles of planar polynomial vector fields is the subject of Hilbert’s 16th problem,
which is yet to be resolved. When there is more than one attractor, computing their
respective domains of attraction becomes important. A system that has a unique, stable
equilibrium point may seem trivial from the point of view of dynamic economic theory.
No matter where one starts from, the system will end up in that unique equilibirum.

9Without listing the theorems and their proofs, we just note that several stability properties associated
with dynamical systems (continuous and discrete) are in general undecidable.
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However, for a nonlinear system this is not trivial from the point of view of computing
its domain of attraction. For a nonlinear system, the problem of deciding the domain
of attraction is uncomputable even for hyperbolic systems with a unique equilibrium.

Theorem 20. (Zhong, 2009)
Let ẋ = ψ(x) be a nonlinear system with a stable hyperbolic equilibrium point that is com-
putable. The domain of attraction of this equilibrium point S is not necessarily computable
even when the equilibrium is unique.

6.3 Unpredictability in Models of Economic Dynamics

6.3.1 Decidability of Domains of Attraction

We now turn to the decidability of the domain(s) of attraction. Our interest is to ob-
tain a better understanding of the power and limitations of dynamic economic models.
When the economic system has more than one attractor 10, the knowledge regarding
the limit set of the economic system is of natural interest. Let us consider a situation
where the attractor(s) associated with the model of the economy can be characterized
explicitly apriori. Given this information, we are interested in finding out the attractor
that is currently associated with the economy. If the number of attractors is finite, then
the observed data on variables in the model can be used to describe the ‘current’ state
so as to verify whether the economy is in the domain of attraction of one or other at-
tractor.

Here, we focus on the possibility of verification using a computer - digital or ana-
logue. Formally, the question can be stated as follows: Is it possible to algorithmically
verify, in general, whether the trajectory of an economic system (through the observed data)
would ever reach a pre-specified attractor of the theoretical model? In other words, the idea is
to verify whether the economy is in the domain of attraction of a given attractor. What
would be the use of such a verification? In case the economy is headed towards one
of the undesirable attractors, then there is a need to steer it away from these basins
with the aid of policy. The appropriate policy instruments and targets for such an ex-
ercise in controlling the economic system is an familiar topic in the control theoretic
approach to economic policy. This is important in order to meaningfully link models
with available economic data and also to validate such economic models. In terms of
real-life economic questions, here are some ways in which the above question can be
translated: Is the economy tending to a specific steady growth rate? Is the economy
already in a periodic trajectory or tending to one? Is the economy going to enter a
ponzi regime from the current regime11? The idea is to see whether these type of can be

10This is can be of the same qualitative type, for e.g. multiple equilibria, or different types - for e.g. an
equilibrium and a limit cycle

11This example is related to Minsky’s model of financial crises
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answered algorithmically.

We can pose these problems as a canonical reachability problem, since the decid-
ability of the domains of attraction of the ω-limit set is a special case of the problem of
reachability. The destination of the trajectory will be one of the members of the ω-limit
set of the model.

Definition 21. Reachability
Let (X, f ) be a dynamical system and X ∈ Rn×n, x0 ∈ Rn, Y ∈ Rn. The system is said to
reach Y from x0 if there exists t ∈ R such that φ(t, x0) = Y with φ(t, x) the trajectory of the
dynamical system with an the initial condition x0.

Definition 22. Reachability Problem
Given a trajectory φ of the dynamical system (X, f ), such that X ∈ Rn×n, x0 ∈ Rn, and a
point Y ∈ Rn, can we decide whether Y can be reached from x0. Alternatively, is Reach(X, x0, Y)
decidable?

Note that the reachability problem is a ‘decision’ problem - i.e, a yes/no problem.
It is not restricted to point-point reachability (i.e the destination need not always be
an point), and we modify the problem appropriately to answer point-to-set or set-to-set
reachability as well. It is even possible to specify a particular region of the state space
and ask whether the trajectory will ever enter this region.

Lemma 23. There exist polynomial dynamical systems that can simulate universal Turing
machines.

Proof. Refer Graça et al. (2008)

Lemma 24. There exist analytic maps and flows which can simulate universal Turing ma-
chines.

Remark 25. The main result follows from these two lemmas. Note that the above theorems are
valid even in the presence of some perturbation and therefore, are error-robust. Here, each and
every configuration of a Turing machine is associated with a unique point in Rn. The next step
is to show that the evolution of the TM can be related to the flow (or a map) of a dynamical
system whose state space is in Rn.

Lemma 26. The Reachability problem is decidable for strictly linear dynamical systems.

Proof. Refer Hainry (2008)

Proposition 27. Consider a nonlinear model of the economy formulated as a continuous-time
dynamical system (H). Given knowledge of the attractors (Ω) apriori, and an observed (ratio-
nal) data point x0, there is no finite procedure to decide, in general, whether the trajectory of H
through x will reach a given attractor ωi ∈ Ω.
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Proof. Assume that such a rule (Ψ) does exist and that it can be defined explicitly. From
Lemma 23, Turing machines can be simulated by polynomial dynamical systems. That
is, an injective function can encode every state of the Turing machine to a point on the
state space in Rn. Since Ψ is capable of deciding reachability for an arbitrary dynamical
system, we can do the following: Let (x0 ∈ R) representing the current state of the
Turing machine be the initial condition. Encode the attracting set (Ω) set as the halting
set. Since we can decide whether or not the trajectory through x0 will reach ωi, we
can now decide whether or not the Turing machine will halt. But this implies that the
halting problem for Turing machines is decidable, which is known to be undecidable.
Hence, a contradiction.

Reachability via shift maps

Another way to establish this undecidability of reachability is through symbolic dy-
namics. In symbolic dynamics, the dynamical system can be studied using another
dynamical system which is its conjugate, defined over a discrete space. We can con-
sider a specific class of dynamical systems. The dynamics of this class of systems are
defined using a shift-operator over a set of bi-infinite sequences of some finite alphabet
A. Shift maps have been frequently used in models to demonstrate chaotic economic
dynamics.

Let us look at some definitions:

Definition 28. Shift Map
Let Σ = AZ

σ : Σ→ Σ : (σa)k := ak+1

The discretized space is labelled using symbols, and the trajectory of any point
over time can be viewed as a sequence of symbols denoting its position in terms of
these labels. In order to explicitly relate this to the idea of computation, one needs to
generalize the notion of a shift map (Moore (1991), Moore (1990)).

Definition 29. Generalized Shift Map
Let a ∈ Σ and F : Σ→ Z

Φ : a→ σF(a)(a⊕ G(a))

The maps F and G above depend on a finite number of cells in a, called the domain
of dependence. F maps a to integers and G maps a to finite sequences. The generalized
shift map has two distinct operations - while G governs the rules related to changing a
finite number of cells in a, F(a) is responsible for shifting the sequence to the right or
left. From this one can show the correspondence between Generalized Shift map and
Turing Machines, which will then link us explicitly to the world of computation. Refer
Moore(1991) for details.

Proposition 30. [Moore(1991)] Any generalized shift map Φ on an alphabet A can be simu-
lated by a Turing Machine, and vice versa.
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Proof. Refer to the proof of Theorems 7 and 8 in Moore(1991)

It is not difficult to find a dynamical system that embeds the evolution of a gener-
alized shift map (Moore, 1990). Given this correspondence, the problem of reachability
can be posed as follows: Given an initial condition, is there a finite procedure to verify
that a trajectory through the initial condition will reach a particular point on a region
A. It is equivalent to asking for a procedure to decide whether a Turing machine will
halt for a given initial state. This is because we can specify a particular cell or a block of
the sequence as the halting state of the Turing machine, and pose the above question.
We know that the above question is undecidable, in general, due to the unsolvability
of the halting problem for Turing Machines.

Note that the sets associated with partial recursive functions (Turing machines),
for example their domain, range, image and its inverse, are recursively enumerable
sets (Moore,1991, 214-215). Due to Rice’s theorem, again, we know that any nontrivial
properties12 of these recursively enumerable sets are undecidable.

Proposition 31. Moore(1991)
Given a point x0 and a periodic attractor ωp, it is impossible to decide, in general, whether the
trajectory through x0 with converge to ωp.

This is one way to establish that the reachability problem is in general undecid-
able. Also, note that the domain of attraction of a dynamical system is recursively
enumerable, but not recursive, in general. It follows from the above results that the
reachability problem is undecidable for this class of dynamical systems and therefore
undecidable in general.

6.3.2 Complex Economic Dynamics

Complex economic dynamics have been extensively studied in the past (Day (1994),
Grandmont (1985), Goodwin (1990)). This area has mainly concentrated on studying
economic dynamics through the framework of nonlinear dynamical systems. Loosely
speaking, the (endogenous) dynamics of the economic system are understood to be
complex, if it does not converge to a fixed point (or balanced path) or periodic attractor
Rosser (2009). It has been associated with the presence of chaotic attractors, aperiodic
fluctuations, bifurcations, catastrophes and/or endogenous structural change. This
view has concentrated on defining complexity in terms of the attractors. ‘Chaos’ is
understood as systems having sensitive dependence on initial conditions, where even
a minute error in specifying initial conditions gets exponentially amplified over time.
The trajectories which are close to each other diverge exponentially fast, and predict-
ing the future becomes extremely hard or even impossible. This is especially relevant
for continuous time models which require infinite precision while specifying initial
conditions.

12This means that the only decidable properties are true either for all Turing Machines or for none.
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Dynamical systems exhibiting chaos are often studied using maps, and we will
therefore focus on maps (instead of flows). A relevant decision problem in this case
would be to ask whether a given model of the economy is capable of such complex
(chaotic) dynamics, in general. As usual, we are interested in an algorithmic verifica-
tion of this property.

Definition 32. Sensitive Dependence on Initial Conditions (Robinson (1995), p.82)
A map f on a metric space X is said to have sensitive dependence on initial conditions provided
there is an r > 0 (independent of the point) such that for each point x ∈ X and for each ε > 0
there is a point y ∈ X with d(x, y) < ε and k ≥ 0 such that d( f k(x), f k(y)) ≥ r.

Definition 33. Chaotic map13 (Robinson(1995), p.83)
A map f on a metric space X is said to be chaotic on an invariant set Y or exhibits chaos,
provided (i) f is transitive on Y and (ii) f has sensitive dependence on the initial conditions on
Y.

Proposition 34. It is impossible to algorithmically decide, in general, whether a given model
of the economy will exhibit chaos.

Proof. Application of theorems 10 and 11 from Moore(1991).

The above statement means that for a class of piece-wise linear dynamical sys-
tems (generalized shift maps), it is impossible to have a general algorithmic rule to
decide whether an arbitrary model from this class has sensitive dependence on initial
conditions. This naturally implies that such a general rule does not exist for nonlinear
dynamical systems as a whole. But so far, we have restricted complex dynamics only
to SDIC. One can question whether the complexities associated with economic dynam-
ics are faithfully captured by the unpredictability arising from the presence of SDIC. If
the modeling exercise is merely linking unpredictability of the economic system quali-
tatively to those arising in a certain class of dynamical system, then it is likely that this
could just be a pseudo-unpredictability. In other words, it could simply be an artefact
of the modeling exercise. The debate concerning the appropriate notion of dynamic
complexity that would encapsulate the complexities of the economic system can be
found in Rosser (2009) and Velupillai (2011c).

In contrast to the ‘negative’ definition14 of dynamic complexity provided by Day-
Rosser, Velupillai (2011c) points to computational universality as the relevant property
that one ought to associate with a ‘dynamically complex’ economic system. This def-
inition is more general than the Day-Rosser definition and is explicit in terms of the
computational content. The inherent unpredictability associated with such complex

13An important class of chaotic maps that illustrates the idea of homoclinic orbits is the ‘Horseshoe
map’ developed by Stephen Smale. The Smale horseshoe map, however, is computable within the
framework of Computable Analysis (See:Graça et al. (2012)).

14It is negative because the definition is in terms of what the system does not do (i.e., reach one of the
elementary attractors), as opposed to what it does.
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systems is different from the chaotic dynamics because it is more than mere SDIC. It
concerns the unpredictability in determining the long term property of the system,
even with complete knowledge of initial conditions.

For a dynamical system to be chaotic means that it exponentially amplifies
ignorance of its initial condition; for it to be undecidable means that essen-
tial aspects of its long-term behaviour – such as whether a trajectory ever
enters a certain region – though determined, are unpredictable even with
total knowledge of initial conditions.
Pg. 606, Bennett (1990)

Perhaps it is reasonable to doubt the relevance of ‘computational universality’
as a required property specifically in the context of economic dynamics. The absence
of a general rule to decide some specific properties of dynamical systems may not be
relevant. This is true if the characteristics that we desire for our economic models do
not require the system to be computationally universal. However this is not so!

To place this discussion squarely within the interests of this thesis – endogenous
macrodynamics – it is worth listing some important observations and results from
Velupillai(1999). He lists the following criteria as the ‘minimal’ requirements of an
endogenous macroeconomic model (Velupillai (1999), pg.663):

1. It must be capable of extracting patterns inherent in aggregate data, without as-
suming that such data have been generated by an underlying probability model;

2. It must be capable of generating multiple equilibria;

3. It must be capable of persistent (or observably) unstable equilibria;

4. It must be consistent with the fundamental individually rational principle of no
arbitrage;

5. It must be capable of encapsulating rational disequilibria;

6. It must be capable of non-maximum dynamics;

Lemma 35. (Velupillai, 1999)
If an endogenous dynamic economic model satisfies all the above criteria simultaneously, then
such a system has to be computationally universal.

Notice that we require that the model should be capable of encapsulating all the
above desired characteristics and not merely a subset of them. Also, these criteria are
not arbitrary, but are common features extracted from the models in this tradition.
We can ask: Is it possible to verify whether an observed trajectory is in the basin of
attraction of a system that is complex (in the above mentioned sense)?

Theorem 36. (Velupillai (2011c), p.556)
There is no effective procedure to decide whether a given observable trajectory is in the basin of
attraction of a dynamical system capable of computation universality.
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The above theorem states that there is no algorithmic procedure to verify whether
the system is in fact complex in the above defined sense. The preceding sections have
outlined some undecidable questions associated with dynamic economic models. On
the face of it, these results may appear negative or even nihilistic towards mathemati-
cal models of dynamic economic theory. But this is not the case. These results have to
be understood as establishing the boundary between what can and cannot be known
(algorithmically) for a particular kind of formalism. The general message is that we
can say very little, algorithmically, about the long-term properties of these dynamic
models in general. We may wonder whether we can resort to other ways, perhaps not
algorithmic, to answer these questions. But ‘to decide’ is invariably connected with ‘to
decide by what’. If the decision has to be reached by using a ‘procedure’15, we need to
find or define a universally agreed-upon notion of a procedure that is general enough.
We are now back again to the definition of an algorithm, an effective procedure or
a mechanism, all of which culminated in the definition of a Turing machine and the
Church-Turing thesis.

We need to clarify the implications of undecidability in this context. One inter-
pretation is that there exist no general algorithmic rules that will enable us know the
long term properties of an economy (viewed as a computational model). We need to
develop specific algorithms for specific models and this is a non-trivial task. For some
class of models, it might not be possible at all. The second, and related interpretation
is more to do with what we usually understand as (un)predictability: There is no way
to know what happens after n-periods, before explicitly computing these n-steps of
the computation. It means that we cannot unravel answers to some questions concern-
ing the economy, apriori, before the future actually unfolds. This is true even for the
world of theoretical models of the economy, even if they are entirely deterministic. The
second interpretation is related to the time involved in gaining knowledge about the
computation. It is not possible to take shortcuts to know these answers before the eco-
nomic system (or the model) evolves through time. If we have to provide our models
with meaningful computational content, one that is computationally equivalent (in the
sense of Wolfram16) to the original system, then we have to live with the fact that there
are no general methods to know the outcome of this computation before it actually
takes place. Simulation is the best we can do, especially when it comes to finding the
long-term properties of a system. This is similar to Wolfram’s notion of ‘Computational
irreducibility’17 in the context of economic dynamics. Computational irreducibility can
be interpreted as computational universality in the context of economic dynamics, as

15If not by a procedure, how else can one decide!
16Although similar, Wolfram’s notion of computational equivalence is in the context of discrete sys-

tems such as Cellular Automata. Although he discusses the relevance of this property for continuous
systems and differential equations, he says that this is still a guess, and stops short of pronouncing a ver-
dict (Wolfram (2002), pp.730-733). But a more detailed discussion of this topic can be found in Velupillai
(2013)

17For a discussion on the definitions of computational irreducibility, refer Zwirn and Delahaye (2013)
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argued in Velupillai (2013).

The lesson here seems to be this: Even if the underlying rules governing economic
processes are simple and known, if the system is complex enough (interpreted as com-
putationally universal or computationally irreducible), then there is an inescapable un-
predictability. It is impossible to predict reliably with knowledge of the past behaviour
of the system, or even with knowledge of the underlying rules and initial conditions.
This does not mean that there is no place for a theory of economic dynamics. Instead,
the answers about these undecidable properties can be understood only by actually
simulating them. Neither does this preclude a place for educated guesses, nor does it
undermine economic intuition. In fact, it establishes the presence of limitations to pure
mathematical reasoning and the inherent unpredictability even within deterministic
mathematical models, that we cannot bridge.
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6.A Numerical Methods and Computability:

For the moment note that algorithms are the main object of study in scien-
tific computation, yet there is not a formal definition of algorithm. . . .

In contrast to numerical analysis, the use of Turing machines gives the com-
puter scientists a unifying concept of algorithm, well formalized. Thus
complexity theory can speak of lower bounds of all algorithms without am-
biguity. . . .

I hope the above communicates my view of numerical analysis as an eclectic
subject with weak foundations. On the other hand,its achievements over
many centuries, and especially since the revolution of the computer have
an undeniable greatness.
Smale (1990), p. 212.

We mentioned earlier that the algorithmic approach to economic dynamics should
not equated with the use of numerical procedures, which are often used in simula-
tions. The important difference between the algorithms in numerical analysis and
computability theory is that the algorithms in computability theory have a strong foun-
dation in terms of Turing machines. This formal definition of algorithms was originally
in the domain of natural numbers and are now extended to real numbers, still retaining
Turing machines foundations as we have seen earlier in the discussion on computable
analysis18. Algorithms in numerical analysis lack any such explicit foundation and
they typically operate over real number domains. In this section, we will briefly at-
tempt to discuss a few issues that are relevant for simulations and economic dynamics.
The discussion will not address all aspects of numerical analysis, but only those which
are relevant to differential equations.

6.A.1 Numerical Methods and Dynamical Systems

While simulating dynamic models, one often resorts to numerical methods to solve a
ODEs.

Definition 37 (Dynamical System). Consider the following ODE:

dx
dt

= f (x), x(0) = X ∈ Rn (6.1)

where f ∈ C(Rn, Rn) and x(t) ∈ Rn denotes a vector valued function of t ∈ R. The
above equation is said to define a dynamical system on a subset E ⊆ Rn if, for every X ∈ E,
there exists a unique solution for the equation, which is defined for all t ∈ [0, ∞) and remaining
in E for all t ∈ [0, ∞).

18There are other developments which seek new foundations as well. We will not discuss them here.
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Numerical methods such as Euler method, Runge-Kutta methods are used to
solve the Initial Value Problems (IVP) like 6.1 and these methods can themselves be
viewed as discrete dynamical systems in their own right. The following questions are
relevant in this context:

1. Whether the numerical method in question generates a dynamical system?

2. If it does generate a dynamical system, whether they preserve the structure of the
original dynamical system?

The conditions under which the long term, global properties and structure of the
original, continuous time dynamical system is preserved while using a discrete dy-
namical system to approximate the former need to be understood. This is important
to ensure that the limit sets generated by the numerical approximation is are equiva-
lent. This will help us avoid ending up with spurious limit sets that are introduced
by discretization. This is particularly relevant while studying chaotic systems. These
issues are discussed in great detail in Stuart and Humphries (1998). Lipschitz condi-
tions on f plays a crucial role for the numerical method to define a dynamical system.
Similarly, the size of the time steps used in these numerical methods have important
implications on the accuracy of the solutions approximated by the numerical meth-
ods. For the long term (asymptotic) properties of economic models, the accuracy of
numerical methods in determining the ω limit sets becomes relevant. In general, we
need to place some restrictions on the time step size in numerical procedures and on
initial conditions, for them to preserve the asymptotic properties of the original sys-
tem. Some numerical methods are capable of generating additional fixed points and
periodic solutions, which are purely a result of the numerical discretization procedure.
That is, use of discrete dynamical systems that are not equivalent to the original con-
tinuous time systems and therefore it is possible to end up with spurious solutions19.
Even if it might not be possible to undertake a systematic study of spurious solutions
while studying economic dynamics, this fact needs to be borne in mind to discrimi-
nate between different numerical procedures and choose those that do not admit such
solutions.

6.A.2 ODEs and Computability

We need to understand the assumptions that are needed to guarantee the presence of
solutions for these systems, and the conditions under which their solution paths can
be simulated on digital computers using numerical procedures. Let us consider the
initial value problem (IVP) for ODEs (or a system of ODEs). In IVP, given the initial
condition, the task is to find a solution to the ODE. This is guaranteed under certain
conditions provided by this fundamental theorem on the existence and uniqueness of

19Besides the equivalence of numerical methods, there are also potential pitfalls while trying to dis-
cretize a continuous system. See (Potts, 1982) for phantom solutions that might arise due to non-
equivalent discretization of nonlinear equations.
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solutions to IVP. Let us consider the problem of existence of solutions for an ordinary
differential equation, given an initial condition.

Theorem 38. Existence and Uniqueness of Solutions: Consider the initial value problem

X′ = F(x), X(0) = X0

where, X0 ∈ Rn. Suppose that F: Rn → Rn is C1. Then there exists a unique solution of this
initial value problem. More precisely, there exists a > 0 and a unique solution

X : (−a, a)→ Rn

of this differential equation satisfying the initial condition X(0) = X0

We can now contrast this with another existence theorem available for the solu-
tions of an IVP, which is attributed to Peano.

Theorem 39. Peano’s Existence Theorem: Consider the initial value problem

X′ = F(x, t), X(0) = X0

where, X0 ∈ Rn. Suppose that U is open in Rn×R and (x0, t0) ∈ U. Suppose f : U → Rn is
continuous. Then there exists some positive number α and a C1 function h : [t0, t0 + α]→ Rn

which satisfies
h′(t) = F(h(t), t), h(t0) = X0 (6.2)

The difference between the Picard-Lindelöf theorem and Peano’s theorem lies
in the assumptions that they make regarding the function F. While F is assumed to
both continuous and differentiable C1 in the first case, it is only continuous in Peano’s
theorem. It states that there exists at least one solution for the IVP, but does not guaran-
tee that this solution is unique. On the other hand, Picard-Lindelöf theorem assumes
more, namely that F is (locally) Lipschitz continuous20, and concludes that the solution
is unique. Lipschitz continuity, intuitively, requires that the slope of the continuous
function cannot vary more than a constant, called the Lipschitz constant.

Definition 40. Lipschitz Continuity: Let D ⊂ R and F: D → R. F is called Lipschitz
continuous if for any closed and bounded interval I ⊂ D there exists a K ∈ R and K < ∞ with

|F(x)− F(y)| ≤ K|x− y|, ∀x, y ∈ I (6.3)

and K is called the Lipschitz constant.

This provides the space for a contraction mapping to a unique solution, through
successive approximations of the solutions by an iterative scheme.Lipschitz continuity
has important implications for the computability of trajectories. For example, what if
we decide to stick to the world of Peano and do not impose Lipschitz continuity as

20Note that C1 implies that the function F is locally Lipschitz. (See p.387, Hirsch and Smale for proof)
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a requirement for the functions in our dynamic economic models (given that Peano’s
theorem asserts that there exists at least one solution)? Since we are concerned about
computability, our solutions are computable with the requirements of Peano’s theorem
alone. The following theorem by Aberth (1971) shows that computability fails for this
classical existence theorem.

Theorem 41. Let y′(x) = f (x, y(x))
There exists a function f (x, y), uniformly continuous in the rectangle R : |x| ≤ 1 and |y| ≤ 1
and with | f (x, y)| ≤ 1 for (x, y) in R, such that for any interval [a, b] which is a subset
of [−1, 1] and contains the point 0, there is no function y(x) defined in the interval which
satisfies the above equation and the initial condition y(0) = 0.

A similar theorem is by Pour-El and Richards (1979) in their study of computabil-
ity properties associated with Peano’s existence theorem. They analyze an ODE which
takes computable inputs and has a rule of evolution f which is computable, and still
generates an uncomputable solution.

Theorem 42. Pour-El and Richards Theorem:
There exists an ODE: y′(x) = f (x, y(x)) with y(0) = 0, such that f(x,y) is computable on the
rectangle [0 ≤ x ≤ 1,−1 ≤ y ≤ 1], but no solution of the ODE is computable on any interval
[0, δ], δ ≥ 0

Note that uniqueness of the solutions is important for the computability of tra-
jectories. While studying dynamics, simulation of ODEs on computers rely on the
condition that the function has the Lipschitz property. Theorems in numerical analysis
concerning convergence often rely on the existence of Lipschitz constants. If the ODE
has a unique solution, then we can say something about the computability of the so-
lution for IVPs. However, if the solution is not unique, computability of the solution
is not always possible (Collins and Graça (2008)). Since global Lipschitz constants are
extremely hard to find and may not even exist for most cases, local Lipschitz constants
becomes relevant in deciding whether the solution can be computed over its entire life
span. If the solution is locally Lipschitz, and if the Lipschitz constant(s) for each and
every compact neighbourhood are computable (effective Lipschitz constant), then the
trajectory is computable over its entire life span. Thus, we see a strong connection be-
tween computability of trajectories, uniqueness of the solution to IVP and Lipschitz
condition.

The existence theorems for IVP stated above are both local theorems and we still
have to determine the length of the interval over which the solution to the IVP ex-
ists. This is important, particularly in the case of nonlinear models, to establish the
adequacy of numerical methods that are employed to simulate these models. The fol-
lowing theorem by Graça et al. (2009) establishes that this maximal interval of existence
is uncomputable in general, even if we have f and the initial condition are computable.
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Theorem 43. There exists a continuous computable and effectively locally Lipschitz function
f : R→ R such that the unique solution of the problem{

ẋ = f (x)
x(0) = 0

is defined on a non-computable maximal interval.

They also show that the question of whether or not this maximal interval is
bounded is also undecidable. This is a caution against exclusive reliance on numerical
methods to infer global properties of the dynamic system, with inadequate attention
to the computability concerns associated with the models that are being simulated.

The non-computability of the lifespan suggests limitations concerning nu-
merical methods for solving ODE problems, because numerical methods
often assume the existence of some time interval where the solution is de-
fined, and this assumption is crucial in error analysis. In the case where
the lifespan is non-computable, one may have to settle for a numerical al-
gorithm computing only a local solution.
Graça et al. (2009), p.2914.

Numerical simulations of continuous time dynamical systems rely on some no-
tion of stability of the underlying system so that computed trajectories and phase por-
traits are approximately close to the original. One such assumption is the shadowing
property that concerns global stability21. This property requires that the whole set of
orbits are stable to perturbations. If so, there is a real orbit that always shadows or
stays close to the simulated ‘pseudo-orbit’. This can be used to justify that these simu-
lated orbits approximate the original system. However, this property is not sufficient if
one is interested accurate computation of properties and their algorithmic verification
with arbitrary finite precision(Hoyrup (2007)). For this, the system needs to posses a
much stronger property: robustness. This, unlike shadowing, requires that each and
every pseudo-orbit (not merely the whole set of orbits) stays close to the original orbit
starting from the same initial condition. This is a local stability property and hence,
a more restrictive property. Therefore, relying on simulations (both approximate or
exact computation - in the sense of computable analysis) of economic models that lack
robustness, especially for prediction, needs to be thought carefully.

21See results in section 6.5, Stuart and Humphries (1998)
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6.B Dynamical Systems - Definitions

Definition 44. Dynamical System
A dynamical system describes the evolution of points on a state space over time. Let X is an
open subset of Rn. A dynamical system on X is a C1 function

φ : R× X → X

, where φt(x) = φ(t, x) and φt satisfies the following conditions:

1. φ0(x) = x for all x ∈ X

2. φt ◦ φs(x) = φt+s(x) for all s, t ∈ R (in case of discrete time systems s, t ∈ N) and
x ∈ X.

The evolution rule φ is a map (for discrete-time system) or can be written as a differential
equation (for a continuous-time, C1 system).

Definition 45. ω limit set
Let φ(t, x) be the flow of the above dynamical system and z be a point on this trajectory. z
is called a ω limit point of the trajectory of the dynamical system if there exists a sequence
tn → ∞ such that limn→∞φ(tn, x) = z. The ω limit set of x ,ω(x), is the set of all ω-limit
points z ∈ X

Definition 46. Invariant Set
A set L ⊂ Rn is called an invariant set if φ(t, x) ∈ L, for all x ∈ L and t→ ∞.

Definition 47. Attracting Set
The closed invariant set L is called an attracting set of the flow φ(t, x) if ∃ some neighbourhood
V of L, such that, ∀x ∈ V and ∀t ≥ 0, φ(t, x) ∈ V and φ(t, x)→ L as t→ ∞

Definition 48. Domain of Attraction Domain of attraction of the attracting set L of φ(t, x)
is defined as,

ΘL =
⋃
t≤0

φt(V)

the union of all neighbourhoods V of the attracting set, for which ∀x ∈ V and ∀t ≥ 0, φ(t, x) ∈
V and φ(t, x)→ L as t→ ∞

121



Chapter 6

6.C Computable Analysis - Some definitions

We quote only the minimum definitions (from Graça and Zhong (2011)) required for
the present context and for more details please refer Weirauch(2000).

Definition 49. 1. A sequence {rn} of rational numbers is called a ρ-name of a real number
x if there are three functions a, b and c from N→N such that for all n ∈N,
rn = (1)a(n) b(n)

c(n)+1 and |rn − x| 1
2n

2. A double sequence {rn,k}n,k∈N of rational numbers is called a ρ-name for a sequence
{xn}n∈N of real numbers if there are three computable functions a, b, c from N2 → N

such that, for all k, n ∈ N, rn,k = (1)a(k,n) b(k,n)
c(k,n)+1 and

|rn,k − xn| 1
2k

3. A real number x (a sequence {xn}n∈N of real numbers) is called computable if it has a
computable ρ-name, i.e. there is a Type-2 machine that computes the ρ-name without any
input.

Definition 50. Computable Functions
Let A, B be sets, where ρ-names can be defined for elements of A and B. A function f : A →
B is computable if there is a Type-2 machine such that on any ρ-name of x ∈ A, the machine
computes as output a ρ-name of f (x) ∈ B.

Definition 51. 1. An open set E ⊆ Rm is called recursively enumerable (r.e. for short)
open if there are computable sequences {an} and {rn}, an ∈ Qm and rn ∈ Q, such that
E =

⋃∞
n=0 B(an, rn).

2. A closed subset K ⊆ Rm is called r.e. closed if there exist computable sequences {bn}
and {sn}, bn ∈ Qm and sn ∈ Q, such that {B(bn, sn)}n∈N lists all rational open balls
intersecting K.

3. An open set E ⊆ R is called computable (or recursive) if E is r.e. open and its comple-
ment Ec is r.e. closed. Similarly, a closed set K ⊆ Rmis called computable (or recursive)
if K is r.e. closed and its complement Kc is r.e. open.

4. A compact set M ⊆ Rmis called computable if it is computable as a closed set and, in
addition, there is a rational number b such that ‖ x ‖≤ b∀x ∈ M.

Definition 52. Semi-Computable Functions
A function ψ : A→ O(Rm), (where O(Rm) = {O|O ⊆ Rm is open in the standard topology}
is called semi-computable if there is a Type-2 machine such that on any ρ-name of x ∈ A, the
machine computes as output two sequences {an} and {rn}, an ∈ Qm and rn ∈ Q, such that
ψ(x) =

⋃∞
n=0 B(an, rn).
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Definition 53. Type-2 Machine [Weihrauch(2000), p.15]
Let Σ∗ be the set of finite words over some arbitrary finite alphabet Σ. Similarly, let Σω be the
set of infinite sequence of symbols from some arbitrary finite alphabet Σ, which has atleast two
elements. A Type-2 Machine M is a Turing machine with k input tapes together with a type
specification (Y1, Y2....Yk, Y0) with Yi ∈ (Σ∗, Σω), giving the type for each input tape and the
output tape.
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Conclusion

In this thesis, we critically evaluated and took stock of developments in the field of en-
dogenous macroeconomic dynamics. The focus is largely on the mathematical aspects
of these theories, more specifically the models of endogenous fluctuations. We traced
the origins of this tradition, its rich history and the different directions in which it has
developed. We distilled some methodological elements that underpin these theories
and analyzed them critically. We also looked at some methodological and epistemo-
logical aspects in computational economic dynamics, in terms of the algorithmic un-
decidablities that are associated with these models.

We have seen that the endogenous tradition in economic dynamics has gone
through various phases - from being the predominant paradigm for understanding
business cycles to being an unfashionable mode of theorizing subject to intermittent
resurgences. We are left with some questions concerning the future of the endoge-
nous tradition in economic modeling. Is this modeling philosophy which attributes
aggregate phenomena to endogenous factors still tenable? Can it pose a formidable
challenge to the exogenous view on both theoretical and empirical fronts? Can non-
linearity still retain its value as a reliable source for characterizing endogenous fluc-
tuations? The answer, in light of arguments presented in this thesis, is a simple Yes.
It is not just an episode in the development of economic thought that got replaced
by ‘better’ theories and we believe that it holds a lot of potential in contributing to
our knowledge about the dynamics of capitalistic economies. Schumpeter’s words are
most relevant here:

The essential point to grasp is that in dealing with capitalism we are deal-
ing with an evolutionary process. It may seem strange that anyone can fail
to see so obvious a fact which moreover was long ago emphasized by Karl
Marx. Yet that fragmentary analysis which yields the bulk of our proposi-
tions about the functioning of modern capitalism persistently neglects it. ...
Capitalism, then, is by nature a form or method of economic change and not only
never is but never can be stationary. ...The fundamental impulse that sets
and keeps the capitalist engine in motion comes from the new consumers?
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goods, the new methods of production or transportation, the new markets,
the new forms of industrial organization that capitalist enterprise creates.
-Schumpeter (1942), pp. 82-83 (Italics added)

Capitalistic economies are highly intricate, complex structures that continue to
evolve, constantly generating new products, methods, organizational forms. Its dy-
namics presents the investigator with very interesting patterns. Understanding the
driving forces, mechanisms and the fluctuating nature of its evolution remains a formidable
challenge even today. An endogenous approach to analyzing macroeconomic dynam-
ics is still very relevant and we believe it is a superior modelling philosophy when
compared with the exogenous view to understand and theorize about these conun-
drums. However, these investigations should treat economic phenomena in its actual
form, rather than distorting its inherent structure to suit available tools. This thesis
argued that the power of endogenous approach can be better exploited if we transcend
the limitations posed by its current mathematical tools. It also tried to make a case for
resorting to algorithmic and constructive approaches to modeling economic dynamics,
pioneered by Velupillai (2010, 2000), which we hope will invigorate this tradition with
newer challenges and insights. This could be one possible way in which endogenous
macroeconomic dynamics - a tradition that flourished under the venerable hands of
Marx, Keynes, Schumpeter, Hicks, Goodwin, Day and a legion of other scholars -could
move forward.
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