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Abstract

The last decade has seen an increasing interest in bio-mathematical mod-
elling and scienti�c computing, resulting in new applications to relevant
physiological phenomena and to a better understanding of the origin of var-
ious diseases. A topic of great interest to several degenerative diseases is
�ltration across microvessel walls. The role of the microvessel wall is to let
oxygen and nutrients contained in the blood stream to reach the intersti-
tium, and ultimately the surrounding cells, while blocking macromolecules.
An understanding of these processes is important in preventing and curing
neuro-degenerative diseases, as well as for exploring possible mechanisms to
make drug delivery more e�cient. This work presents a one-dimensional,
time dependent mathematical model describing transport of blood plasma
and macromolecules across blood vessel walls. The model takes into account
the heterogeneous microvessel wall composition, in order to accurately de-
scribe trans-vascular �ow. This results in a multi-layered domain, accounting
for variable physical properties across the layers forming the micro-vascular
wall. In particular, the glycocalyx and endothelium, accounted for in many
biological studies, are represented in our model. This micro-structural, yet
simpli�ed description of the vascular wall, allows us to simulate the e�ect of
glycocalyx damage and of other pathologies, such as hypertension, hemor-
rhage and hypovolemia, both in steady and time-dependent states. Due to
the simplicity, and thus e�ciency of the proposed model, simulations are fast
and provide results which are in line with published experimental studies.
Furthermore, the simulation tool may be useful for practical applications in
physiological and medical studies, by evaluating the possible consequences
of pathological conditions.





Sommario

L'ultimo decennio ha visto un crescente interesse nella modellistica bio-
matematica e nel calcolo scienti�co, che ha portato a nuove applicazioni
a rilevanti fenomeni �siologici e ad una migliore comprensione dell'origine
di varie malattie. Un argomento di grande interesse per diversi disturbi de-
generativi è la �ltrazione attraverso le pareti dei microvasi. Il ruolo della
parete microvascolare è infatti di e�ettuare gli scambi gassosi e di nutrienti
tra il sangue e l'interstizio, ed in�ne le cellule dei tessuti circostanti, bloc-
cando le macromolecole. La comprensione di questi processi è importante
per prevenire e curare le malattie neuro-degenerative, nonché per esplora-
re i possibili meccanismi per una somministrazione più e�ciente di farmaci.
Questo lavoro presenta un modello matematico unidimensionale e transitorio
che descrive il trasporto di plasma sanguigno e di macromolecole attraver-
so le pareti dei vasi sanguigni. Il modello tiene conto della composizione
eterogenea della parete microvascolare per descrivere accuratamente i �ussi
trasvascolari. Ciò si traduce in un modello multi-strato con proprietà �siche
che variano tra i vari strati della parete microvascolare. In particolare, il gli-
cocalice ed l'endotelio, riscontrati in molti studi biologici, sono rappresentati
nel nostro modello. Questa descrizione micro-strutturale, seppure sempli�ca-
ta, dei microvasi sanguigni consente di simulare l'e�etto del danneggiamento
del glicocalice e di altre patologie, quali ipertensione, emorragia ed ipovole-
mia, sia nel caso stazionario che transitorio. Grazie alla semplicità, e quindi
all'e�cienza, del modello proposto, le simulazioni risultano piuttosto rapi-
de e forniscono risultati conformi a studi sperimentali pubblicati. Inoltre,
possono inoltre costituire un valido aiuto per le applicazioni pratiche in stu-
di �siologici e medici, valutando le possibili conseguenze di varie condizioni
patologiche.
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Introduction

Trans-vascular �ow occurring in small and large vessels plays a decisive role
in human physiology by ensuring an endless �ow of oxygen and other elec-
trolytes needed to sustain cell metabolism. Altogether, vessel wall operates
as a semipermeable membrane, which is selective with respect to the size of
molecules, such that water and electrolytes pass through the wall much more
easily than proteins. In order to preserve volume homeostasis, the following
question should be addressed: how does the interstitium avoid accumulating
plasma ultra�ltrate? The traditional view, by now disproved, is that small
veins and venules continuously re-absorb interstitial �uid, but this seems
no longer true. As a matter of fact, the lymphatic system, in addition to
its known role in the immuno-surveillance, has the vital task of draining
back into the venous part of the circulatory system the �uid �ltrated from
micro-circulation, the interstitial �uid having a substantially reduced pro-
tein content, through a complex network of lymphatic vessels (e.g. Levick,
2010; Silverthorn, 2009).

As evidenced by Starling (1896), volumetric �ow through microvessel
wall is controlled by the net imbalance between the osmotic pressure of
plasma proteins and the capillary hydrostatic pressure generated by heart
beat. Both pressures can change to exert a regulatory action on �ltration,
such as for example during exercise when an increased �ltration is triggered
by a larger capillary pressure and plasma volume reduces by up 20%. On the
other hand, an increased �ltration occurs during cardiac failure, which causes
excess water accumulation in the tissues (oedema). Substantial movement of
�uids occurs during rapid swelling of acutely in�amed tissues, while a rapid
absorption of interstitial �uid into blood stream follows an acute hemorrhage.

Electron micrograph studies (Turner et al., 1983) show that a typical
extra-cranial capillary is composed by only two layers: the glycocalyx and
the endothelium, as depicted in Figure 1.

Explicit modelling of the e�ect on glycocalyx and clefts at junctions
between endothelial cells has been performed by solving the Navier-Stokes
(NS) equations at micro scale (see e.g. Sugihara-Seki and Fu, 2005; Sugihara-
Seki et al., 2008). The main drawback of this modelling approach, besides
high computational burden, lies in the di�culty to model the interaction
between macromolecules and �bre cells composing glycocalyx, which feeds

xxi
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Figure 1: Schematic of a capillary, whose wall is composed by folded en-
dothelial cells with glycocalyx coating their luminal side.

back to volumetric �ow through the osmotic pressure (Squire et al., 2001;
Weinbaum et al., 2003). To overcome this di�culty, hybrid methods have
been used in which the glycocalyx has been modelled as a membrane (porous
medium), while the �ow through clefts has been modelled by solving the NS
equations (Sugihara-Seki et al., 2008). A similar approach has been used by
Prosi et al. (2005) and Formaggia et al. (2009) to model mass transfer across
arterial walls in patients a�ected by atherosclerosis.

The glycocalyx layer, or even the whole vessel wall, is often lumped into
an interface and considered as a membrane through the non-linear algebraic
Kedem-Katchalsky equations (Kedem and Katchalsky, 1958). In this way,
pressure distribution inside the membrane is completely neglected and the
dilution at the interface between glycocalyx and endothelium, described for
instance in Adamson et al. (2004), can not be reproduced.

A further simpli�ed, yet e�ective, way to represent vessel wall is by the
superimposition of two membranes with di�erent properties. The external
membrane mimics the e�ect of the mono-layered of endothelial cells joined
edge to edge along segments forming an irregular pattern of connections,
in a crazy-paving resemblance, without representing explicitly the structure
of the clefts. The connections are partially closed by tight junctions. On
the other hand, the internal membrane represents the glycocalyx coating the
layer of endothelial cells (Levick, 2010). Considering that the single layer of
endothelial cells is folded to form an annular semipermeable barrier around
blood stream, the trans-capillary �ow can be assumed as mainly radial and
orthogonal to blood �ow direction z (Figure 2).

This simpli�ed computational domain, with the internal membrane rep-
resenting the glycocalyx and the external one the endothelium, agrees with
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Figure 2: Sketch of the domain: a long hollow circular cylinder composed by
two homogeneous porous membranes representing glycocalyx for r ∈ (rc, rg)
and endothelial cells for r ∈ (rg, ro).

morphometric measurements (see e.g. Hu et al., 2000; Adamson et al., 2004;
Levick, 2010), but di�ers from existing studies in the way the main structural
elements are combined, as previously described. Khakpour and Vafai (2008b;
2008a; 2008d) and Ai and Vafai (2006) decouple the �ow equation from the
transport equation and in Khakpour and Vafai (2008c) some models with
coupled �ltration and transport equations are reviewed, but the coupling is
algebraic and not di�erential, as in our model.

The purpose of this thesis is to model �ltration and transport phenom-
ena in living tissue, also simulating pathological conditions as hypertension,
glycocalyx damage, hemorrhage. . . In order to take into account the link
between �ltration and solute transport, a time-dependent one-dimensional
multi-layered mathematical model described by a parabolic system was built.
The equations are written in cylindrical coordinates, to take advantage of
the radial symmetry of vessels. An analytic solution of the coupled �ow and
transport equations in steady-state is presented in the case of the two-layered
membrane with discontinuous physiological parameters. Also the case of a
smooth variation of media, and thus of the physical parameters, is explored
using numerical solutions.

The time-dependent �ltration and solute transport processes are investi-
gated both in the case of constant extra-vascular pressures, thus neglecting
the plasma/interstitial �uid balance, and in the case of a transient change
in the external pressures, due to the transient absorption of interstitial �uid
into the lumen which increases plasma protein content in the interstitium
and lowers the pressure exerted outside the vessel wall (Levick, 2010; Levick
and Michel, 2010).
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The outline of this dissertation is as follow.
Chapter 1 provide an overview of the physiology of the micro-vascular

exchange system, also recalling main anatomic features of blood microvessels.
We also justify simpli�cations both in the domain and in the radial �ows.
The permeability coe�cients used to model vessel wall are presented and
their distribution across the vessel is described.

In Chapter 2 we present a preliminary study in which we focus on the
increase in hydrostatic pressure, therefore neglecting the coupling of �ow
and transport equations. This simpli�cation permits to solve the �ow and
transport equations separately and to analyse the typical travel time, namely
an approximation of the time needed to a single solute molecule to cross
vessel wall.

In Chapter 3 we present the steady-state one-dimensional multi-layered
model used to describe the physiological processes controlling coupled �l-
tration and macro-molecules transport across vessel wall, resulting from the
application of general physical and thermodynamic principles. This is a gen-
eralisation of the equations presented in Chapter 2, being valid also for low
pressures. In the case of a composite vessel wall, comprising two membranes
with discontinuous physical properties (and thus physiological parameters),
the analytical solution of the coupled �ow and transport equations, with the
latter being non linear, is reported. Also the case of smooth transition is
explored by using a suitable numerical scheme and the results of our model
are compared with others taken from the literature. The results of our sim-
ulations are discussed, emphasising the combined e�ect of glycocalyx and
endothelial cells on controlling volumetric �ow and solute mass transport
across microvessel wall. The dilution occurring in the cleft at the contact
with the external surface of the glycocalyx (Michel, 1997; Weinbaum, 1998) is
reproduced by the model, in contrast to homogeneous single-layered models.

In Chapter 4 we apply the steady-state model presented in Chapter 3 to
investigate the e�ects on exchange of �uid and macromolecules across a typ-
ical microvessel wall, both in the case of glycocalyx deterioration, either due
to enzymatic digestion or to agonist recruitment, and in hypertensive zones
such as pre- and post-stenotic blood vessels. The change in the physiological
parameters needed to simulate glycocalyx deterioration is described, paying
attention to the relations among them. What emerges is that a seriously
damaged glycocalyx produces an augmentation of �ux of both solvent and
solute, thus losing its role of transport barrier and macro-molecular sieve,
as observed in the experiments of van den Berg et al. (2003). Analogously,
the e�ects of capillary pressure increase, as in the case of hypertension, on
both �uxes is investigated, showing an augmentation of both volume and
solute �uxes, in agreement with experimental results. The conjunction of
glycocalyx degradation and hypertension further raises plasma and solute
�uxes, leading in most severe cases to oedema and hemorrhage, as in the
case of diabetes.
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In Chapter 5 we present the governing equations of our time-dependent
mathematical model with two di�erent sets of external pressures, one con-
stant and the other taking into account the change in interstitial pressure
due to transient absorption of plasma and proteins. We solve them using a
�nite-di�erence Crank-Nicolson numerical scheme, validating our model �rst
through a test in which, imposing constant boundary conditions, we reach
the steady-state analytical solutions in a �nite time and then testing also the
time-dependent nature of the model. We then apply our model to study the
case of sudden capillary pressure drop, as during hemorrhage, con�rming
that, under normal conditions of internal pressures, the initial absorption
of interstitial �uid due to pressure drop is followed by a gradual increase in
both volume and solute �ux until a steady state of slight �ltration and solute
leak is attained, as described by Levick and Michel (2010).

Finally, Chapter 6 summarises the achievements of the dissertation, also
suggesting some additional studies.





Chapter 1

Micro-vascular exchange

In this section we summarise anatomic features of mammalian blood vessels
useful to describe the geometry of the computational domain used in the
present work.

1.1 Circulatory system

The circulatory system is composed by vessels of size ranging from centime-
tres in the main ones to a few microns in capillary bed. The structure of
vessel wall di�ers between arteries and veins and also between large vessels
and capillaries. Each segment of circulation shows an optimal combination
of size, wall composition, thickness and cross-sectional area that best ful�ls
its function. For example, arteries are more muscular than veins because
they have to bear the pumping force of heart.

Large vessels are formed of three layers: the endothelium, the middle
layer (composed by smooth muscle cells) and the connective layer. On the
contrary, small vessels such as capillaries, venules and arterioles are only one-
cell thick, in order to optimise the exchange of small hydrophilic molecules
from blood stream to interstitial volume before crossing cell membrane.

1.2 Trans-vascular pathways

There are di�erent pathways across which protein and plasma can be trans-
ported (Levick, 2010). Not only a system of small pores allows the passage of
nutrients and gases. Four primary pathways for passive transport of plasma
components have been hypothesised: inter-cellular cleft, trans-cellular pores,
vesicles and fenestrae (Sugihara-Seki and Fu, 2005), even if a long-standing
controversy over the e�ective existence of vesicular transport and transcyto-
sis exists (Michel, 1996).

It should also be noted that these possible pathways also depend on the
capillaries we are considering. As a matter of fact, in microvessels with

1



2 CHAPTER 1. MICRO-VASCULAR EXCHANGE

continuous endothelium, the principal pathway for water and solutes lies
between endothelial cells (see Figure 1.2) through inter-endothelial clefts
(Sugihara-Seki and Fu, 2005). Particular attention should be given to the
tight blood-brain barrier, across which speci�c endothelial carriers transport
solute to protect neurons from neurotoxic agents and to prevent pathological
conditions such as cerebral hemorrhage, in�ammation and oedema (Levick,
2010).

1.3 Anatomy of a typical vessel wall

The structure of the vessels is very specialized in relation to their function-
ality and this specialization results in di�erent permeability and re�ection
coe�cients of vessel wall.

1.3.1 Glycocalyx

Microvessel wall is typically composed of a single layer of endothelial cells,
which are internally coated with a 150− 400 nm thick dynamic negatively-
charged hydrated gel, called glycocalyx, as depicted in Figure 1.1. The gly-
cocalyx, present chie�y in capillaries since their endothelial surface area ac-
counts for most of the total surface area of the vascular system (VanTee�elen
et al., 2007), extends into outer regions of inter-cellular clefts between en-
dothelial cells composing blood vessel wall (Sugihara-Seki and Fu, 2005) and
protrudes into the lumen in hairy tufts, forming a size- and charge-selective
molecular sieve to plasma proteins, while being permeable to water and
small solutes, including oxygen and other nutrients (Levick, 2010, Ch. 9).
The �bre matrix of the glycocalyx was described by Squire et al. (2001) as
a quasi-periodic 3D �brous mesh work with a characteristic spacing of 20
nm and with anchoring foci (thought to form an hexagonal array) emanat-
ing from the underlying cortical cytoskeleton, as depicted in Figure 1.1. See
also Figure 5 of Arkill et al. (2012), in which the glycocalyx structure is
reconstructed using electron tomography.
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Figure 1.1: Illustration of the glycocalyx layer in a typical microvessel, with
the range of dimensions of the most relevant anatomical elements (transverse
view).
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Often, the role of glycocalyx is ignored, even if it was �rst introduced
in 1963 by Bennett (1963) and is currently recognised as crucial for micro-
vascular wall homeostasis, in particular it acts (a) as a transport barrier,
regulating micro-vascular perfusion and exchange, (b) as a molecular sieve,
maintaining low permeability to macromolecules, (c) as a porous hydrody-
namic interface in blood cell motion in microvessels, (d) as a hydrodynamic
exclusion layer, inhibiting the adhesion of red blood cells to endothelial cell
membrane proteins and modulating leukocyte attachment and rolling and
(e) as a transducer of mechanical forces (�uid shearing stresses) to the intra-
cellular actin cortical cytoskeleton of the endothelial cell in the initiation of
intracellular signalling and mediation of shear stress-dependent nitric oxide
(NO) production (e.g. VanTee�elen et al., 2007; Weinbaum et al., 2003).

1.3.2 Endothelium

Capillary wall is composed by a one-cell-thick layer of endothelial cells, sep-
arated by inter-cellular clefts. These long slits can be partially sealed by
dynamic complexes of cell-cell junctional proteins, as depicted in Figure 1.2,
thereby increasing the selectivity of the whole membrane.

They provide anchorage and cell stability, as in the case of the adherens
junctions, or form an almost impermeable barrier to plasma and macro-
molecules (tight/occludens junctions), in particular in the continuous capil-
laries composing the blood-brain barrier (Levick, 2010; Hawkins and Davis,
2005).

Figure 1.2: Illustration of an inter-cellular cleft in the endothelium of a
typical microvessel, with some protein complexes either providing anchorage
and cell stability (adherens junctions) or forming an almost impermeable
barrier to �uid and macromolecules (tight/occludens junctions).
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1.3.3 Blood-Brain Barrier

In fact, the clefts of cerebral capillaries are closed by multiple junctional
strands with no gaps, to impede neurotoxic agents contained in blood stream
to reach the interstitial �uid, further reducing the permeability to macro-
molecules. Since nourishment of neurons and glucose supply provided by
cerebral capillaries are strongly coupled, a complex structure, called neuro-
vascular unit exists.

This is composed by some peculiar cerebral cells (Hawkins and Davis,
2005; Li et al., 2010), among which are the pericytes, irregularly attached to
the abluminal membrane of the endothelium and able to di�erentiate into
various types of cells (in particular during angiogenesis) and responsible to
blood-brain barrier stability and blood �ow regulation. They are sheathed by
the basement membrane, a mechanical barrier responsible of cell anchorage
and essential for angiogenesis. Outside the basement membrane are attached
also the astrocytes (part of the neuro-vascular unit), giving biochemical sup-
port, providing nutrients to the blood-brain barrier and responsible of the
regulation of extracellular ion balance and processes of repair and scarring
(Hawkins and Davis, 2005; Li et al., 2010).

The breakdown of the blood-brain barrier with the associated increase of
vessel permeability has been observed in many brain diseases. Examples in-
clude stroke, traumatic head injury, Alzheimer's disease, AIDS, brain cancer,
meningitis etc. (see Li et al., 2010). In addition, blood-brain barrier rup-
ture has been associated with multiple sclerosis, as discussed for instance by
Zamboni et al. (2009), Singh and Zamboni (2009) and Haacke et al. (2005).

Figure 1.3: Schematic of a capillary, whose wall is composed by folded en-
dothelial cells with the glycocalyx coated at their luminal side.
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1.3.4 Modelling a microvessel

We are interested in a typical extra-cranial capillary, composed by only two
layers: the glycocalyx and the endothelium, as depicted in Figure 1.3.

Figure 1.4: Sketch of the domain: a long hollow circular cylinder com-
posed by two homogeneous porous membranes representing glycocalyx for
r ∈ (rc, rg) and endothelial cells for r ∈ (rg, ro).

To verify this conceptual model, and avoid complex micro-scale modelling
in view of applications at a larger scale, we propose to represent vessel wall as
the superimposition of two membranes with di�erent properties, as shown in
Figure 1.4. The internal membrane represents glycocalyx, while the external
membrane is introduced to mimic the e�ect of endothelial cells.

1.4 Capillarity Permeability

1.4.1 The permeability coe�cients

The permeability coe�cients describe capillary permeability and are de�ned
for instance in Michel and Curry (1999). Here we recall their de�nitions.

The hydraulic permeability Lp (also called hydraulic conductivity or hy-
draulic conductance or �ltration coe�cient) is de�ned as the �ow of �uid
per unit area of capillary wall Jv per unit di�erence in hydrostatic pressure
∆p across the wall, under conditions when the di�erence in osmotic pressure
within the capillary lumen and immediately outside the vessel is zero, i.e.
when ∆Π = 0:

Lp :=
Jv
∆p

. (1.1)

The di�usional permeability coe�cient Pd is de�ned as the mass trans-
port of a substance per unit area Js per unit concentration di�erence ∆c,
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under conditions when the �uid �ow through the capillary wall is zero, i.e.
when Jv = 0:

Pd :=
Js
∆c

, (1.2)

The re�ection coe�cient σ compares the penetration of a solute with
that of the solvent through a membrane. It can be de�ned either as the
fraction of solute �re�ected� at the membrane during ultra�ltration in the
absence of a concentration di�erence, i.e. when ∆c = 0:

σf := 1− Js
Jv · C

, (1.3)

or as that fraction of its total osmotic pressure which the solute can exert
across the membrane, i.e. when Jv = 0:

σd :=
∆p

∆Π
. (1.4)

The equivalence of these de�nitions only applies to ideal solutions, i.e.
to solutions in which the activity coe�cients (which measure deviation from
ideality) are equal to one.

If we have a membrane with cylindrical pores of uniform dimensions we
can estimate some of these constants. If we assume that the pore radius r is
many times greater than the radius of a water molecule, Lp is proportional
to r4, Pd for small hydrophilic molecules (or water) is proportional to r2

and σ for a neutral solute is proportional to a function of the ratio of solute
radius to the pore radius.

In the following, apart from σ, we will consider some slightly di�erent
transport parameters, indicated with small italic letters (`p and `d), due to
conversion of the formulation from algebraic relations to di�erential equa-
tions. The resultant relationships between the two sets of parameters can be
stated as

`p = LP ·∆x, (1.5)

`d =
PD ·∆x

ΠM
, (1.6)

where ∆x is the membrane thickness and ΠM is a mean value of the osmotic
pressure.

1.4.2 Modelling the material properties

Molecules dissolved in water are driven through the vessel wall by the gra-
dient of the net pressure P , which is given by the di�erence between the
hydrostatic p and osmotic Π pressure: P = p−σΠ, where σ is the re�ection
coe�cient. σ depends on the ratio between the Stokes radius of the molecule
and the pore radius, or the size of the cleft between adjacent endothelial cells.
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When the size of the molecule is comparable with the pore size (or the aper-
ture), the vessel wall behaves as a perfect membrane and σ → 1. On the
other hand, when molecules are much smaller than pore size, the membrane
e�ect vanishes and σ → 0. In the latter case, transport across vessel wall
is controlled by the gradient of hydrostatic pressure. For a given pore (or
cleft) size, the role of osmotic pressure increases with molecule size. The
sieving e�ect of glycocalyx on macromolecules is represented by a σ value
that approaches 1, while in the stratum representing the endothelial cells
σ is typically smaller, to re�ect the larger aperture of the tight junctions
connecting the two sides of the cleft at the border between adjacent cells
(Levick, 2010).

For the analytical solution, we consider membrane properties as piece-
wise constant with a discontinuous (abrupt) change at r = rg, the interface
between glycocalyx and endothelial cells. This abrupt transition is conve-
nient for obtaining the analytical solution, but not necessarily represents
the real transition of the physical properties. As a possible alternative we
consider the following model of smooth transition:





σ(r) =
σG + σW

2
+
σG − σW

2
w(r − rg),

`p(r) =
`Gp + `Wp

2
+
`Gp − `Wp

2
w(r − rg),

`d(r) =
`Gd + `Wd

2
+
`Gd − `Wd

2
w(r − rg),

(1.7)

where w = w(r) is the smoothing function de�ned as follows:

w(r) =
r√

ε2 + r2
, (1.8)

where both sub- and super-scripts G and W indicate the properties of gly-
cocalyx and the endothelial cells, respectively. With this function we can
control how properties vary at the interface between the two layers, with a
discontinuous transition occurring for ε→ 0. With ε > 0 the transition be-
comes progressively smoother to simulate possible gradual transitions, with
di�erent degrees of smoothness as indicated by Sugihara-Seki and Fu (2005).





Chapter 2

A preliminary decoupled model

The content of this Chapter is taken from Facchini et al. (2013c).

From a physiological point of view, microvessel wall plays an important
role in maintaining equilibrium between intra- and extra-vascular �uid com-
partments. Under normal conditions, vessel walls are nearly impermeable
to macromolecules, while lipophilic species and small hydrophilic substances
are allowed to cross the wall and reach surrounding tissues. Fluid �ow and
transport of dissolved molecules across wall depend on permeability and dif-
fusivity of the membrane composing the wall. Therefore, alterations of blood
pressure may lead to impaired exchange processes and, in extreme cases, to
leakage of hematic �uid. Several alterations of these exchange processes
have been observed, mainly in compartments other than the brain, resulting
in leakage of macromolecules, which is typically attributed to reduction of
osmotic pressure, or in�ammatory processes that alter endothelial structure.

In the present chapter we investigate the role of an increased blood pres-
sure as the driving force for alteration of exchange processes and leakage
of macromolecules. In particular, we analyse through a simpli�ed, yet re-
alistic, �ow and transport model, the impact of alterations in hydrostatic
blood pressure on transport of molecules across microvessel wall. Vascular
wall is assumed to be composed of two layers with di�erent permeability,
as assumed in previous studies on �uid �ow and macromolecules transport
in heteroporous membranes. The inner layer represents glycocalyx, a mem-
brane composed of extra-cellular polymeric material which is believed to ex-
ert an important sieving e�ect on macromolecules, while the external layer
represents the combined e�ect of the endothelial cells.

With this model we obtain closed-form steady-state solutions for �uid
�ow and solute transport through microvessel walls, which can be used for
a preliminary analysis of leakage of macromolecules due to an increase of
blood pressure.

9
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2.1 Conceptual model

Let us approximate microvessel geometry as a rigid circular cylinder, in-
�nitely long in the z-direction, i.e. in the direction of blood stream. We
assume vessel wall composed by one or more permeable layers of a given
thickness. Physical properties, such as permeability and molecular di�usion
are assumed constant within a layer, but may vary across the layers. The
porosity is assumed the same in all layers. Molecules of a given Stokes radius
are dissolved into blood plasma at a concentration that does not modify its
density and viscosity. Furthermore, to simplify the analysis we assume that
pressure gradient is small in the longitudinal direction, such that blood �ow
through vessel lumen can be decoupled from the �ltration through its wall. In
general, osmotic pressure changes with solute concentration c. For small con-
centrations, the following linear relationship is often considered: Π = RTc,
where R is the gas constant and T is the absolute temperature. Conse-
quently, �ow and transport equations are coupled through concentration c
that feeds back through Π to the �ow. This leads Levick and Michel (2010)
to conclude that microvessels cannot absorb �uid from interstitial space, as is
often argued. However, this feedback is important mainly when hydrostatic
pressure is abruptly reduced, as in the Landis experiment (Landis, 1932),
whereas here we are interested in the increase of hydrostatic pressure. We
therefore neglect this feedback and solve the �ow and transport equations
separately, extending the model by considering also low pressures only in
Chapter 3.

Under the above assumptions, mass balance of the solvent and the solute
leads to the following governing equations for the pressure P = P (x, y, z, t)

∂P

∂t
=
kρg

µSs
∇2P, (2.1)

and for the concentration c = c(x, y, z, t)

∂c

∂t
+

q

n
· ∇c = ∇ · (D · ∇c). (2.2)

where k is wall permeability, ρ is blood density, g is the acceleration due to
gravity, µ is blood dynamic viscosity, Ss is the speci�c storage of the porous
material, n is the porosity of the material and D is di�usion tensor.

The speci�c water (solvent) discharge q = q(x, y, z, t) is proportional to
the net pressure gradient through Starling's equation (Levick, 2010)

q = −K
ρg
∇P, (2.3)

where

K =
kρg

µ
. (2.4)
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Finally, mass �ux of solute fm = fm(x, y, z, t) is given by

fm = (1− σ)qc− nD · ∇c. (2.5)

The above equations written in cylindrical coordinates (r, θ, z) and assuming
radial symmetry take the following form

∂P

∂t
=

kρg

µSs

1

r

∂

∂r

(
r
∂P

∂r

)
, (2.6)

q = −K
ρg

∂P

∂r
, (2.7)

∂c

∂t
+
q

n

∂c

∂r
=

(
d

r
+
∂d

∂r

)
∂c

∂r
+ d

∂2c

∂r2
, (2.8)

fm = (1− σ)qc− nd∂c
∂r
. (2.9)

Since the initial and boundary conditions are independent from coordi-
nates z and θ, we only consider the radial component d of the di�usion tensor
D.

Furthermore, we assume that d is given by the sum of molecular di�usion
dm and hydrodynamic dispersion dh = Aq, where A is the dispersivity and
q is the radial component of speci�c discharge q.

In the next section we consider the steady-state solution of the above
�ow and transport equations.

2.2 Analysis

The steady-state equations for the solvent and for the solute in cylindrical
coordinates assume the following form

0 =
d

dr

(
r

dP

dr

)
, (2.10)

q

n

dc

dr
=

(
d

r
+

dd

dr

)
dc

dr
+ d

d2c

dr2
. (2.11)

2.2.1 Steady-state solutions for a single-layered vessel wall

We now consider a geometrical situation as depicted in Figure 2.1(a), which
shows a cylinder whose inner surface of the endothelial cells is represented
by radius rc and whose outer wall is determined by radius rg.

In this case, we obtain two generic solutions

P (r) = α+ β ln r, r ∈ [rc, ro] (2.12)

c(r) = δ + γh(r), r ∈ [rc, ro] (2.13)
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(a) (b)

Figure 2.1: (a) The domain is an in�nitely long hollow cylinder composed by
one layer only, whose inner and outer radii are rc and ro. (b) Cross section
depicting boundary conditions, where Pc = pc−σΠc and cc refer to net blood
pressure and solute blood concentration, respectively and Po = po−σΠo and
co indicate blood pressure and solute concentration in the interstitial �uid.

each of them depending on two parameters which can be computed by im-
posing boundary conditions, where h(r) is an auxiliary function depending
on the permeability and on the boundary conditions

h(r) =





−µn
kβ

[µdmr − kβA]
− kβ

nµdm , if k(Pc − Po) 6= 0

ln (µdmr)

dm
, if k(Pc − Po) = 0

(2.14)

for r ∈ [rc, ro], with

β =
Pc − Po

ln rc − ln ro
. (2.15)

We suppose that boundary conditions are independent from coordinates
z and θ. So we set constant pressures and concentrations at the boundary,
as depicted in Figure 2.1(b),

P (rc) = Pc, (2.16)

P (ro) = Po, (2.17)

c(rc) = cc, (2.18)

c(ro) = co, (2.19)

where Pc = pc− σΠc refers to net blood pressure, cc to solute blood concen-
tration, Po = po−σΠo indicates blood pressure in the interstitial �uid and co
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the interstitial solute concentration. So we obtain closed-form steady-state
solutions for r ∈ [rc, ro], given by

P (r) =
Pc ln(ro/r) + Po ln(r/rc)

ln(ro/rc)
, (2.20)

q(r) = − k

µr

Pc − Po
ln rc − ln ro

, (2.21)

c(r) =
cc[h(r)− h(ro)] + co[h(rc)− h(r)]

h(rc)− h(ro)
. (2.22)

Mass �ux depends on the values of the permeability and on the boundary
conditions

fm(r) =





kβ

µr

[
σc(r)− coh(rc)− cch(ro)

h(rc)− h(ro)

]
, if k(cc − co) 6= 0

−n
r

cc − co
h(rc)− h(ro)

, if k(cc − co) = 0

(2.23)

for r ∈ [rc, ro], with

β =
Pc − Po

ln rc − ln ro
. (2.24)

2.2.2 Steady-state solutions for a vessel wall composed by
two layers

We now consider a more complex case in which vessel wall is composed by
two layers (rc, rg) and (rg, ro), as depicted in Figure 2.2(a), with di�erent
values of permeability, di�usivity and re�ection coe�cient. The general case
of m layers can be treated similarly.

The generic solution for the pressure assumes the following form





P1(r) = α1 + β1 ln r, r ∈ [rc, rg]

P2(r) = α2 + β2 ln r, r ∈ [rg, ro]
(2.25)

while solute concentration is given by





c1(r) = δ1 + γ1h1(r), r ∈ [rc, rg]

c2(r) = δ2 + γ2h2(r), r ∈ [rg, ro]
(2.26)

where, similarly to the previous case, hj(r) is a function that depends on the
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(a) (b)

Figure 2.2: (a) The domain is an in�nitely long hollow cylinder composed
by two layers (rc, rg) and (rg, ro). (b) Cross section depicting boundary
conditions, where Pc = pc − σ1Πc and cc refer to net blood pressure and
solute blood concentration, respectively and Po = po − σ2Πo and co indicate
blood pressure and solute concentration in the interstitial �uid.

geometry and the permeability of the layer considered

hj(r) =





− µn

keqB

[
µdmjr − keqBAj

]−
keqB

nµdmj , if k1k2(Pc − Po) 6= 0

ln
(
µdmjr

)

dmj

, if k1k2(Pc − Po) = 0

(2.27)

for r in the j-th layer, recalling that dmj is the molecular di�usion and Aj
is the dispersivity of the j-th layer. B and keq are now de�ned as

B = Pc − Po, (2.28)

keq =
k1k2

k1(ln rg − ln ro) + k2(ln rc − ln rg)
. (2.29)

The constants appearing in the above solutions are obtained by imposing
suitable boundary conditions for both net pressure and solute concentration,
as depicted in Figure 2.2(b)

P1(rc) = Pc, (2.30)

P2(ro) = Po, (2.31)

c1(rc) = cc, (2.32)

c2(ro) = co, (2.33)
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where Pc = pc−σ1Πc refers to net blood pressure, cc to solute blood concen-
tration, Po = po − σ2Πo indicates blood pressure in the interstitial �uid and
co the interstitial solute concentration. These boundary conditions should
be supplemented by the conditions resulting from imposing the continuity of
speci�c discharge and solute �ux at the interface between the two layers at
r = rg

q1(rg) = q2(rg), (2.34)

fm,1(rg) = fm,2(rg), (2.35)

and that both pressure and solute concentration are continuous at r = rg

P1(rg) = P2(rg), (2.36)

c1(rg) = c2(rg). (2.37)

With all these conditions, pressures within the �rst and second layer are
given by

P1(r) =
k2 [Po ln(rc/r)− Pc ln(rg/r)] + Pck1 ln(rg/ro)

k1 ln(rg/ro) + k2 ln(rc/rg)
(2.38)

and

P2(r) =
k1 [Po ln(rg/r)− Pc ln(ro/r)]− Pok2 ln(rg/rc)

k1 ln(rg/ro) + k2 ln(rc/rg)
(2.39)

respectively.

The resulting expression for speci�c discharge is the same in the two
regions, indeed

q(r) = −kj
µ
· dPj

dr
(r) = − k1k2(Pc − Po)

µ[k1 ln(rg/ro) + k2 ln(rc/rg)]

1

r
, (2.40)

for r ∈ [rc, ro], where j ∈ {1, 2} indicates the layer we are considering.
Similarly, under steady-state conditions, solute concentration assumes

the following expression

c(r) =





c1(r) =
S1 + T1h1(r)

V
, r ∈ [rc, rg]

c2(r) =
S2 + T2h2(r)

V
, r ∈ [rg, ro]

(2.41)

where parameters S1, T1, S2, T2, V depend on the value of k1k2(Pc − Po).
Indeed, these parameters are de�ned as
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S1 =





cc(1 + σ1 − σ2)h1(rg)h2(ro)− coh1(rc)h2(rg)
+cc(σ2 − σ1)h1(rg)h2(rg),

if k1k2(Pc − Po) 6= 0

coh1(rc)− cc[h1(rg)− h2(rg) + h2(ro)],
if k1k2(Pc − Po) = 0

(2.42)

T1 =





[co − cc(1− σ1 + σ2)]h2(rg) + cc(σ2 − σ1)h2(ro),
if k1k2(Pc − Po) 6= 0

cc − co, if k1k2(Pc − Po) = 0

(2.43)

S2 =





cch1(rg)h2(ro) + co(σ2 − σ1)h1(rg)h2(rg)+
−co(1− σ1 + σ2)h1(rc)h2(rg),

if k1k2(Pc − Po) 6= 0

co[h1(rc)− h1(rg) + h2(rg)]− cch2(ro),
if k1k2(Pc − Po) = 0

(2.44)

T2 =





[co(1 + σ1 − σ2)− cc]h1(rg) + co(σ2 − σ1)h1(rc),
if k1k2(Pc − Po) 6= 0

cc − co, if k1k2(Pc − Po) = 0

(2.45)

V =





(σ2 − σ1)[h1(rg)h2(rg)− h1(rc)h2(ro)]+
−(1− σ1 + σ2)h1(rc)h2(rg) + (1 + σ1 − σ2)h1(rg)h2(ro),

if k1k2(Pc − Po) 6= 0

h1(rc)− h1(rg) + h2(rg)− h2(ro),
if k1k2(Pc − Po) = 0.

(2.46)

The resulting solute �ux is the following

fm,j(r) =





keqB

µr

[
σjcj(r)−

Sj
V

]
, if k1k2(Pc − Po) 6= 0

−nTj
V

1

r
, if k1k2(Pc − Po) = 0

(2.47)

for r in the j-th layer, where j ∈ {1, 2} indicates the layer we are considering
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and σj represents the re�ection coe�cient that may be di�erent in the two
layers.

Similar expressions may be obtained for three and more layers.

2.2.3 The travel time through the vessel wall

An important quantity in exchange processes is the time a single solute
molecule takes to cross vessel wall. We call this time the travel time τ , in
analogy with transport in porous media.

For the single layer case, τ may be approximated by neglecting the dif-
fusive component of the mass �ux

τ =

∫ ro

rc

n

(1− σ)q(r)
d r = − nρg

Pc − Po
ln rc − ln ro
K(1− σ)

r2
o − r2

c

2
. (2.48)

2.3 Preliminary results

The structure of the vessels is very specialised in relation to their function-
ality and this specialisation results in di�erent permeability and re�ection
coe�cients of vessel wall. Table 2.1 shows typical values of geometrical prop-
erties of microvessels together with hydraulic conductivity to serum albumin
and the re�ection coe�cient. Although permeability of venules is expected
to be larger than permeability of arterioles, in absence of speci�c data, and
for illustration purposes in the subsequent exercise we assumed the same
permeability for both microvessels.

Parameter [unit] Value Reference

K [kg sec−3 (cm H2O)
−1] 2.49 · 10−12 Michel and Curry (1999)

σ 0.85 Michel (1980)
n 0.5 Robinson (1988)
rA [µm] 15 Silverthorn (2009)
rV [µm] 10 Silverthorn (2009)
∆xA [µm] 6 Silverthorn (2009)
∆xV [µm] 1 Silverthorn (2009)

Table 2.1: Typical values of the parameters used in the computation. K is
the hydraulic conductivity for serum albumin, σ is the re�ection coe�cient
for serum albumin, n is the porosity, r is the mean radius of the vessel and
∆x is the vessel thickness. A refers to the arteriolar end of capillary bed,
while V to the venous end.

In addition, venules and arterioles are subjected to di�erent internal hy-
drostatic pressures and external osmotic pressures. Table 2.2 shows the
typical mean pressures in di�erent microvessels.
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Location pc po σΠc σΠo ∆P

cm H2O cm H2O cm H2O cm H2O cm H2O

arteriolar end
of capillary 47.62 −2.72 38.10 0.14 12.38

venular end
of capillary 20.41 −2.72 38.10 4.08 −10.88

Table 2.2: Mean pressures in human body, taken from Boron and Boulpaep
(2005). p represents hydrostatic pressure, while Π is osmotic pressure and σ
is the re�ection coe�cient. The subscript c refers to the pressure measured
inside the vessel, while the subscript o is measured just outside the vessel.
∆P is de�ned as the di�erence of the net pressure P between the internal and
the external side of microvessels, i.e. ∆P = Pc−Po = (pc−σΠc)−(po−σΠo).

The di�erence of net pressure P between the internal (subscript c) and
the external side (subscript o) of the microvessels, i.e.

∆P = Pc − Po = (pc − σΠc)− (po − σΠo), (2.49)

provides a �rst rough quanti�cation of the expected �ux through vessel wall
per unit area, i.e. speci�c discharge. In Table 2.2, we observe that ∆P is
positive for arterioles (12.38 cm H2O) and negative for venules (−10.88 cm
H2O). This leads to a tendency for absorption at the venular end of capillary
bed, which may be contrasted by the parallel increase of osmotic pressure
within the clefts just downstream glycocalyx, the membrane coating the
internal surface of endothelial cells (Levick, 2010). As mentioned before, in
the present chapter we neglect this feedback mechanism.

We start by considering microvessel wall composed by a single layer.
Figure 2.3 shows the speci�c discharge q crossing vessel wall as a function of
hydrostatic pressure pc for both arterioles and venules.

In the case in which vessel wall is composed by only one layer, we can
study the behaviour of the discharge per unit length and of the travel time of
a molecule, assuming that external pressures po and Πo and internal osmotic
pressure Πc are constant. Luminal hydrostatic pressure pc is the residual
pressure, controlled by cardiac pressure, so we can represent our quantities
with respect to it.

For typical values of venular pressure (see the blue bullet on the solid
line in Figure 2.3), speci�c discharge is negative, meaning that venules ab-
sorb �uid and dissolved molecules from interstitial volume. On the other
hand, arteriolar pressure is positive letting oxygen and nutrients nourish the
surrounding tissues.

In Figure 2.4, travel time τ of a target molecule (in this case, serum
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Figure 2.3: Discharge per unit length depending on internal hydrostatic
pressure, in the arteriolar (dashed line) and in the venular case (solid line).
The bullets represent the typical values of internal blood pressure in both
cases.

albumin) is depicted with respect to internal hydrostatic pressure pc for
arteriolar (dashed curve) and venular end (solid curve) of capillary beds.

For typical values of internal pressure (see the bullets in Figure 2.4),
τ is positive for arterioles and negative for venules, re�ecting the opposite
direction of the �ow in the two cases. An increase of hydrostatic pressure
leads to a reduction of τ for arterioles. In the case of venules, the same
increase leads to a larger travel time |τ |. Both occurrences may induce a
signi�cant alteration of the exchange mechanisms between the interstitial
�uid and the cells. If hydrostatic pressure increases above a given threshold
(about 26 cm H2O, in the present case), �ux is inverted across venular wall
and travel time becomes positive, thereby leading to leakage of hematic �uid
from venules into interstitial volume. Close to this threshold τ is large, but
it reduces rapidly as hydrostatic pressure further increases.

Finally, we observe that our simple model is in agreement with the early
experiments conducted by Landis (1932) in frog mesenteric capillaries.

2.4 Conclusions

We have presented a simpli�ed analytical model of steady-state �ow and
transport of a target molecule through the wall of microvessels. The advan-
tage of this model is that it allows us to easily explore the explicit in�uence of
the many parameters controlling transport processes and thereby avoiding,
for the time being, the use of numerical methods. With this model we have
performed a preliminary analysis of the �ux across arterioles and venules by
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Figure 2.4: Travel time of a molecule of serum albumin, in arterioles (dashed
curve) and in venules (solid curve). The bullets represent the typical values
of internal blood pressure in both cases.

using parameters taken from existing studies on mesenteric capillaries. In
both cases we computed the time a target molecule (with a given re�ection
coe�cient) spends crossing vessel wall, which may provide an indication of
the alteration of exchange mechanisms due to modi�cation of hydrostatic
pressure at arteriolar and venular ends.

An increase of hydrostatic pressure above the value observed in normal
conditions leads to an increase of the �ux crossing the wall of arterioles and
a corresponding reduction of travel time. In this condition more hydrophilic
molecules are released in interstitial �uid surrounding the vessel, thereby
potentially reducing downstream the availability of such substances needed
for cell metabolism. On venular side, a threshold hydrostatic pressure sepa-
rates two di�erent ways of functioning. For hydrostatic pressures below such
a threshold, �ux is negative and venules absorb �uid from the interstitial
space, while above this threshold venules leak hematic �uid to interstitial
space. An increase of hydrostatic pressure has then a di�erent impact ac-
cording to the reference hydrostatic pressure. For low reference pressure (i.e.
below the threshold) an increase of hydrostatic pressure leads to a reduction
of absorption and a parallel increase of travel time. However, if the reference
pressure is larger than this threshold, venules behave similarly to arterioles
and leak hematic �uid to interstitial space with a travel time that reduces
rapidly with the increase of hydrostatic pressure.



Chapter 3

A coupled steady-state model

The steady-state model presented in this Chapter
is taken from Facchini et al. (2013b).

The classical way to model �ow and transport across a micro-vessel is to
represent the glycocalyx and the clefts as an homogeneous membrane, with
equivalent properties. Starling's law is then applied to this homogenised
composite, such that capillary �ltration rate can be written as proportional
to the di�erence between the hydrostatic and osmotic pressure drops between
blood and interstitial �uid (Fu et al., 1994; Zhang et al., 2006). This simple
conceptual model has been shown to be unable to interpret the experiments
conducted by Landis (1932) and successively by Adamson et al. (2004) and
Hu et al. (2000).

In one of his experiments, Landis (1932) showed that at steady state,
�uid exchange in perfused single capillaries of frog mesentery did not invert
direction, leading to absorption, when hydrostatic pressure inside the lumen
was lowered below the limit value that Starling's law indicates for inversion
(Levick, 2010). As a possible interpretation of the apparent breakdown of
Starling's law, Michel (1997) and Weinbaum (1998) argued that �ltration
rate may be controlled by the drop of osmotic pressure between the lumen
and a position in the cleft at the contact with glycocalyx, rather than the
interstitium. This leads to an important change in the conceptual model,
ruling out models with a single equivalent homogeneous membrane lumping
the e�ect of both glycocalyx and clefts at the junctions of endothelial cells.

We thus consider vessel wall as a structure composed by two layers rep-
resenting glycocalyx and endothelium. This is evidenced by electron mi-
crograph after perfusion with cationized ferritin (Turner et al., 1983) and
re�ects morphometric measurements performed later (Hu et al., 2000; Adam-
son et al., 2004; Levick, 2010).

21
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3.1 The mathematical model

3.1.1 Statement of the problem

We idealise micro-vessel wall as two concentric hollow cylinders represent-
ing (from the lumen outward) glycocalyx and the surrounding endothelial
cells. The two hollow cylinders are considered rigid, owing to the small
compliance of micro-vessels, including venules (Levick, 2010). The resulting
computational domain is shown in Figure 3.1 with the dimensions of the
two membranes reported in Table 3.1. Blood �ow is along the longitudinal
axis of micro-vessel and we assume that variation of target macro-molecule
concentration is small along �ow direction (Intaglietta et al., 1996).

A widely accepted rheological model of blood �owing in vessel considers
an internal Red Blood Cells (RBCs) rich inner core surrounded by a rela-
tively thin plasma layer, which can be well approximated as a Newtonian
�uid (Sriram et al., 2011). With the further assumption that the two cylin-
drical layers are homogeneous, �ow across micro-vessel wall is radial and
at a �rst approximation controlled by local hydrostatic and osmotic pres-
sures. In addition, we consider the case of a single not reacting molecule and
isothermal conditions (Katchalsky and Curran, 1965).

Figure 3.1: Sketch of the domain: a long hollow circular cylinder com-
posed by two homogeneous porous membranes representing glycocalyx for
r ∈ (rc, rg) and endothelial cells for r ∈ (rg, ro).

3.1.2 Governing equations

Under the above hypotheses, solvent �ow qv and di�usional macro-molecule
�ow qd through micro-vessel wall are coupled and given by the following
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phenomenological equations (Katchalsky and Curran, 1965):

qv = −`p (∇p− σ∇Π) ,
qd = σ`p∇p− `d∇Π,

(3.1)

where p is hydrostatic pressure and Π is osmotic pressure, which emerges
because macro-molecule size is comparable to the size of the apertures in gly-
cocalyx and in endothelial cells. In addition, `p = k/µ is the ratio between
hydraulic permeability of the membrane and solvent viscosity, σ ∈ [0, 1] is
membrane re�ection coe�cient and `d is di�usional permeability (Michel and
Curry, 1999). Equations (3.1) are written for a single macro-molecule. In
case of two or more macromolecules the terms involving osmotic pressure
should be summed over all the relevant macromolecules. Osmotic pressure
depends on the solute (macro-molecule) concentration c, through the follow-
ing expression (Levick, 2010):

Π = RTc, (3.2)

where R is the gas constant and T is the absolute temperature.
The re�ection coe�cient σ in equations (3.1) re�ects the hindrance ex-

erted by the pore to free movement of macromolecules and approaches zero
as the characteristic size of the pore is much larger than the characteristic
size of macromolecules. In this situation, which is typical of small molecules,
the e�ect of osmotic pressure tends to zero and di�usion coe�cient tends
to free di�usion coe�cient, which depends only on the characteristics of the
molecule and the temperature.

The total �ux qs of macromolecules is given by the sum of convective and
di�usive components:

qs = c(qv + qd). (3.3)

Mass conservation of the �owing solvent and of macromolecules under
steady-state conditions leads to the following governing equations:

{
∇ · qv = 0,
∇ · qs = 0,

(3.4)

which written in a radial coordinate system assume the following form:




d

dr

(
r`p

dp

dr

)
− d

dr

(
r`pσ

dΠ

dr

)
= 0,

d

dr

[
r`p(σ − 1)

Π

RT

dp

dr

]
+

d

dr

[
r(`pσ − `d)

Π

RT

dΠ

dr

]
= 0,

(3.5)

de�ned in the interval r ∈ (rc, ro) from the lumen side of glycocalyx to the
external surface of endothelial cells.
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In the present chapter we seek the analytical solution of this system of two
non-linear coupled equations subjected to the following boundary conditions
(Figure 3.2):

pc = p(rc), po = p(ro), Πc = Π(rc), Πo = Π(ro), (3.6)

where subscripts c and o indicate the internal surface of glycocalyx and the
external surface of endothelial cells, respectively.

�rc rg
ro

(pc,Πc)

(po,Πo)

1

Figure 3.2: Sketch of the domain indicating the relevant geometric elements:
the internal radius rc at luminal side of micro-vessel, the radius of the inter-
face between glycocalyx and endothelial cells, rg, and the external radius ro.
In addition, pc and Πc are hydrostatic and osmotic pressures, respectively,
within the lumen, while po and Πo are the same quantities in the external
interstitial space.

3.1.3 Dimensionless �ow and transport equations

To facilitate the analysis, it is convenient to make the above steady-state
�ow and transport equations (3.5) dimensionless with respect to the follow-
ing reference quantities: vessel wall thickness, ∆r = ro − rc, for the length;
interstitial hydrostatic pressure, |po|, for both hydrostatic and osmotic pres-
sures; `Hp for both `p and `d, where `

H
p is the weighted harmonic mean for

hydraulic conductivity of the two layers composing micro-vessel wall:

`Hp =
ro − rc

rg − rc
`Gp

+
ro − rg
`Wp

, (3.7)

with `Gp and `Wp indicating hydraulic conductivity of glycocalyx and endothe-
lial cells layer, respectively. In addition, the dimensionless radius is de�ned
as follows: r = (r∗−rc)/∆r = r∗/∆r−ξ, where r∗ indicates the dimensional
radius varying from r∗ = rc to r

∗ = ro and ξ = rc/∆r. With this de�nition
the dimensionless radius r lies between 0 and 1.



3.1. THE MATHEMATICAL MODEL 25

After these preliminary steps, system (3.5) assumes the following dimen-
sionless form (hereafter all the quantities are considered dimensionless, unless
otherwise stated):





d

dr

(
F dp

dr

)
+

d

dr

(
G dΠ

dr

)
= 0,

Π

[
d

dr

(
Hdp

dr

)
+

d

dr

(
LdΠ

dr

)]
+

dΠ

dr

(
Hdp

dr
+ LdΠ

dr

)
= 0,

(3.8)

where the auxiliary functions F , G, H and L are de�ned as follows:

F(r) = (r + ξ) `p(r),
G(r) = −(r + ξ) `p(r)σ(r),
H(r) = (r + ξ) `p(r) [σ(r)− 1],
L(r) = (r + ξ) [`p(r)σ(r)− `d(r)].

(3.9)

In addition, we consider the following boundary conditions, which are
the dimensionless counterpart of equations (3.6):

p(r = 0) = pc, p(r = 1) = po,
Π(r = 0) = Πc, Π(r = 1) = Πo.

(3.10)

3.1.4 Discharge and �ux reconstruction

Solvent (volume) and solute �uxes are given by the following expressions:





qv = −`p
(

dp

dr
− σdΠ

dr

)
,

qs = Π

[
`p(σ − 1)

dp

dr
+ (`pσ − `d)

dΠ

dr

]
,

(3.11)

which are written in the dimensionless form with respect to the quantities
introduced in Section 3.1.3. Finally, the total �uxes of solvent and solute
crossing the micro-vessel wall are given by:

Jv =

∫ 2π

0
qv(r) (r + ξ) dθ = −2π(r + ξ)`p

(
dp

dr
− σdΠ

dr

)
, (3.12)

Js =

∫ 2π

0
qs(r) (r + ξ) dθ = 2π(r + ξ)Π

[
`p(σ − 1)

dp

dr
+ (`pσ − `d)

dΠ

dr

]
,

(3.13)

where θ is the angle as depicted in Figure 3.1, while volume and solute �uxes
are dimensionless with respect to `Hp |po| and `Hp |po|2/(RT ), respectively. No-
tice that in the latter two expressions all quantities are dimensional.
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With the material properties de�ned through the dimensionless counter-
part of equations (1.7), namely





σ(r) =
σG + σW

2
+
σG − σW

2
w(r − rg),

`p(r) =
`Gp + `Wp

2
+
`Gp − `Wp

2
w(r − rg),

`d(r) =
`Gd + `Wd

2
+
`Gd − `Wd

2
w(r − rg),

(3.14)

the solutions of hydrostatic and osmotic pressures are di�erentiable every-
where, while transition between material properties of the two layers is con-
trolled by parameter ε.

3.1.5 Analytical solution of the single- and two-layered model

The two di�erential equations composing system (3.8) can be integrated with
respect to r leading to the following expressions for the �uxes:





k1 = (r + ξ)`p

(
dp

dr
− σdΠ

dr

)
,

k2 = (r + ξ)Π

[
`p(σ − 1)

dp

dr
+ (`pσ − `d)

dΠ

dr

]
.

(3.15)

After some algebraic manipulations, system (3.15) can be written in the
following form:





k1 = (r + ξ)`p

(
dp

dr
− σdΠ

dr

)
,

k2 = Π

[
(σ − 1)k1 + (r + ξ)(`pσ

2 − `d)
dΠ

dr

]
.

(3.16)

The single homogeneous layer solution

The second equation of system (3.16) contains only the osmotic pressure Π as
unknown and therefore can be solved analytically with boundary conditions
(3.10) for the case of a single equivalent layer, and with additional conditions
at the interface between the layers in case of multiple layers.

We consider �rst the case of a single layer with equivalent membrane
properties. In this case the solution of the system (3.16) is:

Π(r) =
k2

k1

1

σ − 1


1 + W


k4(r + ξ)

−
(k1)2

k2

(σ − 1)2

`pσ2 − `d





 , (3.17)



3.1. THE MATHEMATICAL MODEL 27

for osmotic pressure Π and

p(r) =
k1
`p

ln(r + ξ) + k3 + σΠ(r) =

=
k1
`p

ln(r + ξ) + k3 +
k2
k1

σ

σ − 1


1 + W


k4(r + ξ)

−
(k1)2

k2

(σ − 1)2

`pσ2 − `d





 ,

(3.18)

for hydrostatic pressure, when both k1 and k2 are non-zero and material
properties `p, `d and σ are equivalent parameters. In equations (3.17) and
(3.18), W(z) is the Lambert W function (see e.g. Corless et al., 1996; Barry
et al., 2000), also called omega function or product logarithm, which is the
solution of the following algebraic non-linear equation:

z = W(z) eW(z). (3.19)

The solutions (3.17) and (3.18) require that four constants k1, k2, k3 and
k4 be evaluated by imposing boundary conditions on the hydrostatic and
osmotic pressures at the lumen and external surfaces of micro-vessel. This
leads to the following explicit expressions for k1, k3 and k4:

k1 = `p
(pc − po)− σ(Πc −Πo)

ln(ξ)− ln(1 + ξ)
, (3.20)

k3 =
(po − σΠo) ln(ξ)− (pc − σΠc) ln(1 + ξ)

ln(ξ)− ln(1 + ξ)
, (3.21)

k4 = fefξδ, (3.22)

where f = (k1/k2)(σ − 1)Πc − 1 and δ = k2
1(σ − 1)2/

[
k2(`pσ

2 − `d)
]
.

By imposing that the osmotic pressure be equal to Πc at r = rc we obtain,
after a few manipulations, the following expression in the only unknown k2,
provided that k1 is given by equation (3.20):

[
k1
k2

(σ − 1)Πo − 1

]
e

k1
k2

(σ − 1)Πo − 1
− fef

(
ξ

1 + ξ

) (k1)2

k2

(σ − 1)2

`pσ2 − `d = 0.

(3.23)

Equation (3.23) can be solved by using a Newton-Raphson method (Hilde-
brand, 1987) with the following initial guess:

k2 =
Πc + Πo

2

`p(σ − 1)(pc − po) + (`pσ − `d)(Πc −Πo)

ln(rc + ξ)− ln(ro + ξ)
, (3.24)

which is the exact solution of equation (3.23) in the special case of k1 = 0.
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The multiple layer solution

Expressions (3.17) and (3.18) for osmotic and hydrostatic pressures can be
applied to all the layers of a multi-layered microvessel, provided that the
constants k3 and k4 are layer-speci�c and that properties `p, `d and σ are
discontinuous across the boundary between adjacent layers. On the other
hand, k1 and k2 are global quantities since they are equal to volume and
solute mass �uxes (divided by ∓ 2π) crossing microvessel wall. Therefore,
in addition to the 4 boundary conditions at the inner and outer surfaces,
continuity of hydrostatic and osmotic pressures as well as constancy of volu-
metric and macro-molecule �uxes should be imposed at each interface. This
results in a system of 2n + 2 equations, in the same number of unknown
consisting in the n values of both k3 and k4, which are layer-speci�c quan-
tities in addition to the two global quantities k1 and k2. In particular, for
the two-layered model besides the boundary conditions (3.10) the following
continuity conditions should be imposed at the interface between the �rst
and second layer at r = rg:

p1(rg) = p2(rg); Π1(rg) = Π2(rg), (3.25)

where the subscripts �1� and �2� refers to the solution within the �rst (gly-
cocalyx) and the second (endothelial cells) layer.

The case of a smooth transition of these properties between adjacent
layers will be discussed subsequently with the help of numerical solutions.

The imposition of the pressures at the inner surface of glycocalyx equal to
the pressures in the blood stream and of the pressures at the outer surface
of endothelial cells equal to the pressures in the interstitium leads to the
following expressions for ki3 and ki4:

kG3 = (pc − σGΠc)−
k1

`Gp
ln(ξ), (3.26)

kW3 = (po − σWΠo)−
k1

`Wp
ln(1 + ξ), (3.27)

kG4 = fGe
fGξδG , (3.28)

kW4 = fW e
fW (1 + ξ)δW , (3.29)

where

fG =
k1

k2
(σG − 1)Πc − 1,

fW =
k1

k2
(σW − 1)Πo − 1,

δG =
(k1)2

k2

(σG − 1)2

`Gp σ
2
G − `Gd

,

δW =
(k1)2

k2

(σW − 1)2

`Wp σ
2
W − `Wd

.

(3.30)
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By substituting the layer-speci�c quantities ki3 and ki4 into equations
(3.25) we obtain the following two equations in the two unknowns k1 and k2:

g1e
g1 − fGefG

(
ξ

rg + ξ

)δG
= 0, (3.31)

g2e
g2 − fW efW

(
1 + ξ

rg + ξ

)δW
= 0, (3.32)

where g1 and g2 assume the following expressions

g1 =
k1

k2

σG − 1

σG − σW
[(po − σWΠo)− (pc − σGΠc) + k1β]− 1, (3.33)

g2 =
σW − 1

σG − 1
(1 + g1)− 1, (3.34)

with σG 6= σW and

β =
`Wp ln(ξ) + (`Gp − `Wp ) ln(rg + ξ)− `Gp ln(1 + ξ)

`Gp `
W
p

. (3.35)

In case the re�ection coe�cients are the same in both layers (i.e. σG =
σW ), equations (3.31)-(3.32) become

fGe
fG

(
ξ

rg + ξ

)δG
− fW efW

(
1 + ξ

rg + ξ

)δW
= 0, (3.36)

with

k1 =
`Gp `

W
p [(pc − po)− σ(Πc −Πo)]

`Wp ln(ξ) + (`Gp − `Wp ) ln(rg + ξ)− `Gp ln(1 + ξ)
, (3.37)

where σ := σG = σW .

Equations (3.31) and (3.32) can be solved by using a Newton-Raphson
method with the initial guess for the unknowns k1 and k2 obtained by com-
puting volumetric and solute mass �uxes for the case in which interstitial
pressures are applied to the external surface of glycocalyx at r = rg. These
�uxes can be obtained analytically exactly for k1 and as a �rst-order approx-
imation for k2, as follows:

k
(0)
1 = `Gp

(pc − po)− σG(Πc −Πo)

ln(ξ)− ln(rg + ξ)
, (3.38)

k
(0)
2 = Πok1(σG − 1). (3.39)



30 CHAPTER 3. A COUPLED STEADY-STATE MODEL

3.1.6 Approximate analytical solutions for a single-layered
microvessel

The �rst equation of system (3.8) can be written as a function of net pressure
P (r) = p(r)− σΠ(r) as follows:

(r + ξ)`p
dP

dr
= c1, (3.40)

then the linearised version of the second equation of system (3.16), obtained
by decomposing osmotic pressures in a mean value ΠM plus a perturbation
ε(r) and neglecting the terms of the second and higher order in the pertur-
bation, assume the following form:

(σ − 1) c1
dε

dr
+ (`pσ

2 − `d) ΠM

[
dε

dr
+ (r + ξ)

d2ε

dr2

]
= 0, (3.41)

in the unknown function ε.

Equations (3.40)-(3.41) with boundary conditions





P (0) = Pc = pc − σΠc,
P (1) = Po = po − σΠo,

ε(0) = Πc −ΠM =
Πc −Πo

2
,

ε(1) = Πo −ΠM = −Πc −Πo

2
,

(3.42)

can be separately solved analytically to obtain:

P (r) = c1 ln(r + ξ) + c3,
Π(r) = c2(r + ξ)−β + c4,
p(r) = P (r) + σΠ(r) = c1 ln(r + ξ) + σc2(r + ξ)−β + c3 + σc4,

(3.43)

where the coe�cients assume the following expressions:

c1 =
(pc − po)− σ(Πc −Πo)

ln(ξ)− ln(1 + ξ)
,

c2 =
Πc −Πo

ξ−β − (1 + ξ)−β
,

c3 =
[po ln(ξ)− pc ln(1 + ξ)]− σ[Πo ln(ξ)−Πc ln(1 + ξ)]

ln(ξ)− ln(1 + ξ)
,

c4 =
Πcξ

β −Πo(1 + ξ)β

ξβ − (1 + ξ)β
,

(3.44)

for

β =
2(σ − 1)

`pσ2 − `d
(pc − po)− σ(Πc −Πo)

[ln(ξ)− ln(1 + ξ)](Πc + Πo)
6= 0. (3.45)
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3.1.7 Parameters of two-layered model

Table 3.1 shows typical values of geometrical and physiological characteristics
of an intact vessel, as well as the values of osmotic and hydrostatic pressures
within the lumen and in the external interstitial space used in the present
study.

The analytical solution for the two-layered case presented in Section 3.1.5
has been obtained assuming a discontinuous transition of properties at the
interface between glycocalyx and endothelial cells. Smoother transitions are
also possible and will be analysed successively, by using a suitable numerical
solution.

Thermodynamic considerations on the phenomenological equations (3.1)
discussed in Katchalsky and Curran (1965), lead to the following constraint:

Pe <
1

σ2
, (3.46)

where Pe = `p/`d is a Péclet number, which represents the reciprocal strength
of advective and di�usive transport processes: when Pe is high advection
dominates over di�usion and vice-versa when Pe is small.

Parameter [unit] Value Reference

rc [µm] 5 Charm and Kurland (1974)
rg [µm] 5.15 Adamson et al. (2004)
ro [µm] 5.5 Charm and Kurland (1974)
Πc [mmHg] 25 Levick (1991)
Πo [mmHg] 12 Levick (1991)
pc [mmHg] 20 Levick (1991)
po [mmHg] −1 Levick (1991)
α 1.1
σG 0.9 Michel and Phillips (1987)
σW 0.1 Hu and Weinbaum (1999)
`Gp [µm2sec−1mmHg−1] 0.601854 Speziale et al. (2008)

`Wp [µm2sec−1mmHg−1] 4.15203 Speziale et al. (2008)

`Gd [µm2sec−1mmHg−1] 0.536252
`Wd [µm2sec−1mmHg−1] 3.69946

Table 3.1: Typical values of material properties of a micro-vessel: σ is the
re�ection coe�cient, `p is the hydraulic conductivity, `d is the di�usional
permeability. The coe�cient α depends on a Péclet number and is de�ned
such as to respect condition (3.46). The superscripts G and W indicate
glycocalyx and endothelial layers, respectively.

In order to respect the condition (3.46) everywhere within the computa-
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tional domain, including the transition zone, we choose `d as follows:

`d(r) := α

[
max

rc<r<ro
σ(r)

]2

`p(r), (3.47)

where α > 1 is a constant, which ensures that condition (3.46) is respected
everywhere.

3.2 Numerical approximation

The analytical solutions described in the Section 3.1.5 are valid for a two-
layered model with discontinuous properties at the interface between glyco-
calyx and endothelial cells. However, the case of smooth transition between
the two layers cannot be solved analytically, for which it is necessary to resort
to numerical solutions. In this section we describe numerical methods and we
assess convergence properties, accuracy and e�ciency for the case of a vessel
composed of two homogeneous layers with di�erent material properties.

3.2.1 Description of numerical schemes

Among the possible numerical schemes, which can be used to solve the
Boundary Value Problem (BVP) (3.8)-(3.10), in the present chapter we con-
sider a classical Finite Di�erence (FD) scheme and a Runge-Kutta shooting
scheme. The domain [0, 1] is discretised by a regular mesh ri = ih, for
i = 0 . . . N + 1, where h = 1/(N + 1) is the mesh spacing. The grid is
designed in such a way that the interface point rg lies between two adjacent
grid points. The unknowns are the functions p(r) and Π(r), for which we
seek approximations pi ≈ p(ri) and Πi ≈ Π(ri).

Following Freeze (1975), the di�usion terms of equations (3.8) are ap-
proximated as follows:

d

dr

[
K(r)

df

dr

]

r=ri

≈ 1

h

(Ki +Ki+1

2

fi+1 − fi
h

− Ki−1 +Ki
2

fi − fi−1

h

)
,

(3.48)

where K(r) is substituted with functions F(r), G(r), H(r) or L(r), in the
respective di�usion terms in equations (3.8). The application of this numeri-
cal scheme (indicated hereafter as Freeze's scheme) leads, after imposing the
following boundary conditions:

p0 = pc, pN+1 = po, Π0 = Πc, ΠN+1 = Πo, (3.49)

to a sparse non-linear algebraic system of 2N equations in 2N unknowns,
which can be solved by using a Newton method.

The second strategy makes use of the shooting method, which is based on
converting the BVP (3.8)-(3.10) to an initial value problem for the following
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augmented system in the unknowns y1(r) = Π(r), y2(r) = Π′(r), y3(r) =
p(r), y4(r) = p′(r) :




y′1 = y2,

y′2 = − 1

FL − GH

[
(FH′ −F ′H) y4 + (FL′ − G′H) y2 + F (Hy4 + Ly2)

y2
y1

]
,

y′3 = y4,

y′4 =
1

FL − GH

[
(GH′ −F ′L) y4 + (GL′ − G′L) y2 + G (Hy4 + Ly2)

y2
y1

]
,

(3.50)

with the following initial conditions:

p(0) = pc, p′(0) = dpc, Π(0) = Πc, Π′(0) = dΠc . (3.51)

Initial value problem (3.50)-(3.51) is solved many times by using Runge-
Kutta schemes from the �rst (RK1) to the fourth (RK4) orders, until con-
vergence is achieved (Hildebrand, 1987).

The initial conditions are changed according to the boundary conditions
at r = 1 and the procedure is stopped when the boundary values pN+1

and ΠN+1 converge to po and Πo, respectively. Given the initial slopes

(dΠ
(k−1)
c , dp

(k−1)
c ) and (dΠ

(k)
c , dp

(k)
c ), the initial conditions are updated ac-

cording to the following linear interpolation scheme:





dΠ
(k+1)
c = dΠ

(k)
c +

dΠ
(k)
c − dΠ

(k−1)
c

Π
(k)
N+1 −Π

(k−1)
N+1

(Πo −Π
(k)
N+1),

dp
(k+1)
c = dp

(k)
c +

dp
(k)
c − dp(k−1)

c

p
(k)
N+1 − p

(k−1)
N+1

(po − p(k)
N+1) ,

(3.52)

until ||Πo−Π
(k)
N+1, po−p

(k)
N+1||2 is smaller than a given tolerance, where Π

(k)
N+1

and p
(k)
N+1 are the numerical solutions at the boundary r = 1 obtained by

solving the initial value problem with the initial conditions at the stage k.
For the �rst two stages we used

{
dΠ

(0)
c = Πo −Πc,

dp
(0)
c = po − pc,

{
dΠ

(1)
c = α1 dΠ

(0)
c ,

dp
(1)
c = α2 dp

(0)
c ,

(3.53)

with α1 = 2 and α2 = 0.5 . Next, we assess the two numerical schemes just
presented.

3.2.2 Assessment of the computational methods

Grid independence. We consider a sequence of meshes {Mk}, k = 0, 1, . . . ,K
such that the mesh size of Ml is reduced by a factor of 2 relative to that of
mesh Ml−1. The number of mesh points for M0 is N0 = N + 2 ≥ 3, where
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N is a positive integer; this is actually the number of internal points in the
initial mesh. The meshMk has Nk = 2k(N0−1)+1 points, where N0 = 199.
The mesh size for Mk is

hk =
h0

2k
=

1

Nk − 1
=

1

2k (N0 − 1)
. (3.54)

Let us denote by

(Π, p)k := (Π0, . . . ,ΠN+1, p0, . . . , pN+1) (3.55)

the solution vector for mesh Mk of Nk points and by

∆k := ||(Π, p)k − (Π, p)k−1||2 (3.56)

the di�erence between the solution vectors (Π, p)k and (Π, p)k−1 correspond-
ing to meshes Mk and Mk−1, computed from their common nodes, using the
L2-norm normalised by the mesh spacing hk. Figure 3.3 shows ∆k for the
shooting method with Runge-Kutta from the �rst (RK1) to the fourth (RK4)
orders and for the Freeze's scheme. We remark that the shooting method
with RK4, as expected, is faster in achieving grid independence, with a tol-
erance of 10−10.
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Figure 3.3: L2-norm ∆k = ||(Π, p)k − (Π, p)k−1||2 as function of grid points,
for Freeze's �nite di�erence method and Runge-Kutta shooting methods of
orders 1 to 4.

We therefore choose the solution computed with the shooting scheme,
with the fourth order Runge-Kutta method, with N8 = 50689 points, as the
reference solution (Π̂, p̂) for the convergence study to be reported next.



3.2. NUMERICAL APPROXIMATION 35

Convergence. Here we carry out an empirical convergence rate study using
(Π̂, p̂) as the reference solution, in which numerical solutions were computed
for nine meshes. Errors

Ek := ||(Π, p)k − (Π̂, p̂)||2 (3.57)

were measured with the L2-norm, normalised by the mesh spacing hk; these
are plotted in Figure 3.4.
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Figure 3.4: Error Ek = ||(Π, p)k − (Π̂, p̂)||2 as function of grid points, for
Freeze's �nite di�erence method and Runge-Kutta shooting methods of or-
ders 1 to 4.

As expected, the error for all methods decreases as the mesh is re�ned,
but for higher order methods the error decreases faster. For su�ciently �ne
meshes the error of the higher order methods is smaller than that of the
lower order methods. Note that RK2 and Freeze, being both of second order
of accuracy, have the same slope, but the latter has a smaller error. In Fig-
ure 3.4 we also note that given a �xed error of 10−6 (see solid line), this error
is attained by Freeze's scheme with a mesh of N7 = 25345 points; for the
shooting schemes with RK3 and RK4 this is attained with N5 = 6337 and
N3 = 1585 points, respectively. For large errors, for example, larger than
10−2, Freeze's scheme attains that error on a coarser mesh, as compared to
some of the other schemes.

E�ciency. By e�ciency we mean this. Given a �xed error, what is the
scheme that attains that error at the lowest computational cost? Figure 3.5
shows error against CPU time, for all �ve schemes. Obviously, CPU time
increases by both re�ning the mesh and augmenting the order of accuracy
of the schemes. In general, however, from an e�ciency point of view, it is
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more convenient to increase the order of accuracy of a scheme than to re�ne
the mesh, to compute solutions more accurately. For su�ciently large errors,
or inaccurate solutions, it is not always clear as to what is best, re�ne the
mesh or increase the accuracy. For example, Freeze's scheme requires a lower
computational time than any of the shooting schemes when the chosen error
is su�ciently large.
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Figure 3.5: Error Ek = ||(Π, p)k − (Π̂, p̂)||2 as function of CPU time, for
Freeze's �nite di�erence method and Runge-Kutta shooting methods of or-
ders 1 to 4.

For example, for an error of 10−4, horizontal dashed line in Figure 3.5,
Freeze's scheme is more e�cient than a shooting method. However, for an
error of 10−6, a shooting scheme with a high-order Runge-Kutta method is
more e�cient than Freeze's scheme, see horizontal solid line in Figure 3.5;
this error is attained in about 17 seconds by the shooting method with RK4,
in around 55 seconds with RK3 and in about 255 seconds by Freeze's method.
The fourth-order shooting method is 15 times more e�cient than the second-
order Freeze's scheme.

Improved shooting scheme. The previously described shooting scheme used
linear interpolation (3.52) to �nd an iterate to approximate the prescribed
boundary value at r = 1. The implementation simply used the last two iter-
ates to perform the linear interpolation. It is possible to improve this scheme
by (i) selecting the last iterate as one of the points and (ii) selecting the other
point as the one associated with the smallest error, amongst the two previ-
ous iterates. This strategy reduces the number of iterations in the shooting
method to about one half, resulting in a reduction of the computing time
by about one half. For example, with the new algorithm, an error of 10−6
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is attained in about 8.6 seconds by the shooting method with RK4, whereas
this time is 27 seconds with RK3. Now the fourth-order shooting method is
about 30 times more e�cient than the second-order Freeze's scheme.

3.3 Results

3.3.1 Validation of the numerical scheme

In view of its applicability to the case of smooth transition of membrane prop-
erties at the interface between glycocalyx and endothelial cells, we compare
the numerical solution obtained from Freeze's method with the analytical
solution for discontinuous membrane properties discussed in Section 3.1.5.
Preliminary simulations showed that a satisfying agreement between numer-
ical and analytical solutions for osmotic and hydrostatic pressures can be ob-
tained with only 25 grid nodes. However, in order to obtain a good agreement
also for the �uxes, the number of nodes should be increased signi�cantly.
Figure 3.6 shows the following relative di�erences: ∆Ji = |(JNk

i − Ji)/Ji|,
i = v, s, where JNk

i is volumetric �ux (for i = v) or solute mass �ux (for
i = s) computed numerically with Nk grid nodes and Ji is the corresponding
�ux obtained with the analytical solution, i.e. Jv = − 2π k1 and Js = 2π k2,
respectively. The relative di�erences of the two �uxes decline oscillating
around at what appears to be a common power law function of the number
of grid nodes (notice the log-log scale used in Figure 3.6). For Nk = 18433,
the relative di�erence is smaller than 10−4 and 10−6 for the volumetric and
the solute mass �uxes, respectively. Therefore, in the following, if not explic-
itly stated, the numerical simulations are performed with Freeze's scheme by
using Nk = 18433 grid nodes, which ensures good accuracy at a reasonable
computational cost.

Figure 3.7 compares hydrostatic and osmotic pressures across micro-
vessel wall, obtained by solving numerically equations (3.8) with the ana-
lytical solutions (3.17) and (3.18), respectively. The di�erence between ana-
lytical and numerical solutions is negligible with an error equal to 7.12 ·10−4

and 7.15 · 10−4 for the osmotic and hydrostatic pressures, respectively.

3.3.2 Comparison between the two- and single-layered mod-
els

In most applications the micro-vessel is considered homogeneous, under the
assumption that homogeneous equivalent properties can be obtained mim-
icking the combined e�ect of glycocalyx and endothelial cells. Equivalent
parameters can be de�ned as the parameters that when used into the so-
lutions for a homogeneous medium lead to the same volumetric and solute
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Figure 3.6: Relative di�erences between numerical and analytical solutions
of volumetric and solute mass �uxes, as a function of the number of grid
points.

�uxes of the heterogeneous (two-layered) medium. However, given the non-
linearity of the governing equations (3.8) equivalent parameters valid for any
choice of boundary conditions cannot be de�ned, since they depend of the
structure of the governing equations and the boundary conditions as well
(Milton, 2002). Exploring this issue in depth would require a detailed anal-
ysis, which is beyond the objectives of the present chapter, we therefore
limit ourselves to compute equivalent parameters for boundary conditions
and medium properties of the base case reported in Table 3.1.

Equivalent parameters to be used in the analytical solutions for a single
homogeneous layer can be obtained by imposing that the �uxes are con-
served, i.e. by imposing the following conditions:

kH1 = k1 , kH2 = k2 , (3.58)

where the superscript H indicates that the �ux is evaluated with the single-
layered model, while k1 and k2 are the �uxes of the heterogeneous two-layered
model. All the �uxes, that in equations (3.58) are divided by ∓ 2π, are
obtained as described in Section 3.1.5 with the parameters and the boundary
conditions showed in Table 3.1. Since the equivalent parameters to be de�ned
are three (`eqp , `

eq
d , σ

eq), while the conditions imposed by equations (3.58)
are two, we set the equivalent re�ection coe�cient by using the following
expression suggested by Sugihara-Seki and Fu (2005):

σeq =
`Gd `

W
d

`Gd + `Wd

(
σG

`Gd
+
σW

`Wd

)
, (3.59)
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Figure 3.7: Comparison between the numerical solution of osmotic (a) and
hydrostatic (b) pressures for the two-layered case, obtained with the Freeze's
scheme by using 18433 grid nodes (Numerical, 2−L), and the corresponding
analytical solutions (Analytical, 2−L). The single layer analytical solutions
(Analytical, 1 − L) are also shown together with the linearised analytical
solutions (Linearised, 1 − L) presented in Section 3.1.6. In all cases ε2 = 0
and for ease of representation the numerical solution is shown only at a
few grid points. The properties of the two layers are reported in Table 3.1
together with Dirichlet boundary conditions at the lumen and interstitial
sides of micro-vessel wall.

which for the medium properties shown in Table 3.1 assumes the follow-
ing value: σeq = 0.7987 . With this value of σeq the two equations (3.58)
can be solved obtaining `eqp = 0.7795, `eqd = 0.5210, which substituted into
equations (3.17) and (3.18) provide the behaviour of the osmotic and hydro-
static pressures, respectively, for the equivalent homogeneous single-layered
medium.

The analytical solution of the osmotic pressures is shown in Figure 3.7a.
Osmotic pressure declines rapidly across glycocalyx, reaches a minimum at
the interface with endothelial cells and then it increases again to the value
imposed as boundary condition at the external surface of micro-vessel. This
behaviour, and in particular the minimum of osmotic pressure at the ex-
ternal surface of glycocalyx, is in agreement with a recent reinterpretation
of Starling's law proposed independently by Michel (1997) and Weinbaum
(1998), which provides an improved interpretation of the classic experiments
conducted by Landis (1927); see also Levick and Michel (2010) for a com-
plete review. Dilution in the clefts just outside glycocalyx is an important
physiological mechanism, which has been indicated by Michel (1997) and
Weinbaum (1998) as the cause preventing reversal steady-state �ow (ab-
sorption) when capillary hydrostatic pressure was lowered to 10 − 15 cm
H2O (7.35 − 11.03 mmHg) in Landis' experiment. A similar behaviour is
shown in Figure 3.7b for hydrostatic pressure with a strong reduction across
glycocalyx followed by a mild reduction across endothelial cells. Hydrostatic
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pressure is not di�erentiable at the interface between the two layers, which
is due to the discontinuity in medium properties, but pressure gradient does
not reverse across endothelial cells, as for osmotic pressure. The important
result shown in Figures 3.7a and 3.7b is that most of the pressures drop
between lumen and interstitium occurs in the glycocalyx, con�rming the im-
portance of this hydrated gel in controlling �ow and solute mass exchange
(see e.g. Levick, 2010).

A striking di�erence can be observed in Figures 3.7a and 3.7b between
the single- and two-layered models, with the latter showing a smooth but
steep decline of both hydrostatic and osmotic pressures within glycocalyx.
This is due to the strong sieving e�ect that glycocalyx exerts on macro-
molecules, such that only a very small fraction of them reached the clefts.
In the two-layered model this e�ect is reproduced by using a large re�ection
coe�cient. Notice that, due to the larger aperture of the clefts, macro-
molecules move with small to negligible hindrance, as soon as they have
crossed glycocalyx. In the membrane model adopted in this work the almost
free movement of macromolecules in the clefts is represented by adopting a
small re�ection coe�cient (σ = 0.1). Because of the high selectivity of gly-
cocalyx, concentration of macromolecules is small at the interface between
glycocalyx and endothelial cells, resulting in an osmotic pressure smaller
than in the interstitium. This feeds back to hydrostatic pressure, which
also shows a strong decline within glycocalyx, as discussed above. This be-
haviour, which is consistent with the observation that �ow cannot be reversed
by simply reducing hydrostatic pressure in the lumen as discussed by Levick
and Mortimer (1999) and Levick and Michel (2010), is not captured by the
single-layered model, which instead predicts much higher pressures at the
interface between glycocalyx and endothelial cells and a gradual decline of
both pressures across micro-vessel wall, with a gradient that increases with
the distance to account for the progressive increase of the surface crossed by
the �ows.

An important consequence of this di�erent behaviour of the pressures is
that the single-layered model is unable to capture the e�ect on volumetric
and solute mass �uxes of glycocalyx deterioration, which being located in
the lumen side of micro-vessel is more prone to be damaged, than endothelial
cells.

Figures 3.8a and 3.8b show the distribution of osmotic and hydrostatic
pressures, respectively, across micro-vessel wall for the following three val-
ues of the parameter controlling property variations at the interface: ε2 =
0, 10−4, 10−3. The solution for the discontinuous transition, i.e. for ε2 = 0
is the analytical solution discussed in Section 3.1.5, while for ε2 > 0 the
solutions are numerical and obtained with Freeze's scheme by using 18433
grid nodes. A smooth, yet sharp, transition in material properties eliminates
the discontinuity in the �rst derivative of the pressures at the interface be-
tween the two layers; contemporaneously, pressures within the glycocalyx are
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Figure 3.8: Osmotic (a) and hydrostatic (b) pressures across micro-vessel
wall for ε2 = 0, 10−4, 10−3. The case ε = 0 is obtained by means of
the analytical solutions, while the cases with ε2 = 10−4, 10−3 are obtained
numerically with Freeze's scheme by using 18433 grid nodes.

steeper and with a smaller curvature than in the discontinuous case. The
pressures at the position where the interface is located in the discontinu-
ous case show negligible variations such as the distribution of the pressures
within endothelial cells. The progressive increase of the gradients of hydro-
static and osmotic pressures within glycocalyx occurring when ε2 increases,
which is accompanied by the reduction of the re�ection coe�cient close to
the interface, leads to an increase of both volume and solute mass �uxes (see
Table 3.2). The relative increase of Jv is negligible (0.2%) for ε2 = 10−4, but
it increases rapidly with ε, reaching 16% for ε2 = 10−3. Js is more sensitive
to variations of ε2, with an increase of 9.9% and 41.8% for ε2 = 10−4 and
10−3, respectively, with respect to the solute mass �ux obtained with a sharp
transition (ε2 = 0) of material properties.

Description Jv Js

Analytical ε2 = 0 545.586 2802.45
Numerical ε2 = 0 545.607 2802.46
Numerical ε2 = 10−4 572.354 3110.18
Numerical ε2 = 10−3 634.809 3945.78

Table 3.2: Volumetric and solute mass �uxes for the following values of ε2,
the parameter controlling the smoothness of properties transition between
the two layers: ε2 = 0, 10−4, 10−3.

Figures 3.9a and 3.9b show the e�ect of changes in blood osmotic pressure
(at the lumen side) on the behaviour of osmotic and hydrostatic pressures,
respectively. A variation of luminal osmotic pressure, with respect to the
reference value of Πc = 25 mmHg shown in Table 3.1, causes a variation
of the same sign, but smaller, in the osmotic pressure at the interface be-



42 CHAPTER 3. A COUPLED STEADY-STATE MODEL

tween the two layers. An opposite behaviour is observed for the hydrostatic
pressure at the interface, which as shown in Figure 3.9b reduces as luminal
osmotic pressure increases. Interestingly, the change in the osmotic pressure
drop across micro-vessel wall feeds back to hydrostatic pressure distribution
through the coupling with the non-linear transport equation.

This e�ect cannot be reproduced with linearised models decoupling �ow
and transport processes, such as that presented by Speziale et al. (2008).
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Figure 3.9: Behaviour of osmotic and hydrostatic pressures across micro-
vessel wall for several values of the osmotic pressure Πc in the lumen.
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Figure 3.10: Volumetric and solute mass �uxes, relative to the reference case
with boundary conditions and material properties as shown in Table 3.1, as
a function of blood osmotic pressure Πc within the lumen.

The impact of osmotic pressure variations in the lumen is shown in Fig-
ure 3.10. The most relevant information contained in the �gure lies in the
opposite behaviour of the two �uxes; an increase of luminal osmotic pressure
with respect to the reference case, with all the other quantities remaining
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the same, leads to a reduction of volumetric �ux and a contemporaneous
increase in solute mass �ux. The opposite occurs, when Πc is reduced below
the reference case: volumetric �ux increases, while solute mass �ux reduces,
as an e�ect of the reduction in the osmotic pressure drop across micro-vessel
wall.
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Figure 3.11: Behaviour of osmotic (a) and hydrostatic (b) pressures across
micro-vessel wall for several values of blood hydrostatic pressure pc within
the lumen.

Figures 3.11a and 3.11b show the behaviour of osmotic and hydrostatic
pressures across micro-vessel wall for several values of blood hydrostatic pres-
sure pc within the lumen. The reduction of osmotic pressure at the interface
between the two layers, with respect to the interstitial value, becomes pro-
gressively smaller as the hydrostatic pressure within the lumen reduces, and
it vanishes at pc ' 15. For smaller values of pc, osmotic pressure at the inter-
face between the two layers remains higher than external osmotic pressure.
At the interface, hydrostatic pressure is higher for higher luminal hydrostatic
pressures, but to a lesser extent with respect to the increase in the lumen.
This leads to a higher pressure drop for higher luminal hydrostatic pressures.
A similar behaviour is shown by osmotic pressure, but with a smaller varia-
tions in pressure drop, due to the fact that the osmotic pressure at the lumen
does not change.

As shown in Figure 3.12, both �uxes increase with the hydrostatic pres-
sure at the lumen. However, volumetric �ux reduces to zero as luminal
hydrostatic pressure reduces to 10 mmHg. This results is consistent with
the experiments of Landis (1932) showing no volumetric �ux inversion at
steady state at pressures as low as 20 cm H2O (14.7 mmHg), which had
been considered the basis for revisiting Starling's law (Michel, 1997; Wein-
baum, 1998).
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Figure 3.12: Volumetric and solute mass �uxes, with boundary conditions
and material properties as shown in Table 3.1, as a function of the blood
hydrostatic pressure pc within the lumen.

3.4 Conclusions

We have presented and discussed a new model of �ow and transport of macro-
molecules (proteins) across the composite wall of a micro-vessel. The micro-
vessel has been represented as a two-layered hollow cylinder. The inner layer
has represented the glycocalyx, an hydrated membrane exerting a remark-
able sieving e�ect on macromolecules, and the external layer representing
endothelial cells, which are folded and connected along clefts spiralling in
an irregular manner along longitudinal micro-vessel axis. The clefts are par-
tially closed by tight junctions. We represent this composite medium as
two membranes of di�erent thickness and properties. Flow and non-linear
transport equations are coupled through osmotic pressure, which is assumed
proportional to the concentration of macromolecules in blood plasma. We
have shown that, by assuming radial symmetry, this model can be solved
analytically for the general case of n−layers. The solution is consistent with
the mechanistic revisitation of the classical Starling's law proposed inde-
pendently by Michel (1997) and Weinbaum (1998). In particular, it well
represents the dilution occurring in cleft space at the external surface of
glycocalyx, with the corresponding reduction of osmotic pressure to values
smaller than in external tissues, which is in line with recent observations
(Adamson et al., 2004) and claimed as the main mechanism preventing �ow
inversion at low hydrostatic pressures. Our model di�ers from other pub-
lished models in several aspects. Di�erently from Speziale et al. (2008), we
solve the full system of coupled di�erential equations for �ow and trans-
port without linearising the transport equation in a n−layer setup, which
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allows us to handle specialised microvessels. For simplicity, the application
was limited to a two-layered microvessel, which is the most common type
of microvessel in humans and other mammals. However, the extension to
four layers, typical of brain microvessels, can be obtained at the cost of a
more complicated structure of the solution, due to the need to impose con-
servation of hydrostatic and osmotic pressures across three interfaces, while
conservation of volumetric and mass �uxes are obtained by imposing that the
coe�cients k1 and k2 are the same in the three layers. The application of the
model to an homogenised micro-vessel, representing the combined e�ect of
glycocalyx and endothelial cells with a single layer membrane characterised
by somewhat equivalent properties, as suggested by Speziale et al. (2008)
for example, has evidenced a strikingly di�erent distribution of the pressures
within micro-vessel wall, which are signi�cantly higher than those of the
two-layered model, in particular at the interface between the two layers. A
better match may be obtained if boundary conditions are applied to the ex-
ternal surface of glycocalyx, thereby neglecting the e�ect of endothelial cells
and the dilution occurring in the cleft at the contact with the external sur-
face of glycocalyx, which has been indicated as an important physiological
mechanism controlling volumetric �ux (see e.g. Levick and Michel, 2010).

To summarise, our solution of the n−layer model of micro-vessel has a
level of complexity comparable to existing homogenised single-layered mod-
els (Speziale et al., 2008), but showed to be much more accurate in describing
the combined e�ect of glycocalyx and endothelial cells, including the dilution
occurring in the cleft at the contact with the external surface of glycocalyx,
on controlling volumetric �ow and solute mass transport across micro-vessel
wall. Our model is computationally much more e�ective than micro-scale
approaches, such as that proposed by Sugihara-Seki et al. (2008); with a
moderate e�ort it can be implemented into large-scale models represent-
ing blood circulation in human body. This is an important feature that
full micro-scale models, resorting to sophisticated numerical methods and
requiring parallel computing, cannot enjoy. In addition, the better repro-
duction of hydrostatic pressure across micro-vessel wall, with respect to the
homogeneous single-layered model, makes this approach appealing for appli-
cations dealing with the mechanical response of the micro-vessel to changes
of internal hydrostatic pressure.





Chapter 4

E�ects of glycocalyx damage

and hypertension on transport

processes

The content of this Chapter is taken from Facchini et al. (2013a).

As we have already seen in Chapter 1, capillary wall is composed by
a one-cell-thick layer of endothelial cells, internally coated by the surface
glycocalyx, currently recognised as crucial for micro-vascular wall homeosta-
sis. Measurements of glycocalyx thickness vary between 150 and 400 nm,
although these may be under-estimations due to the dehydrating e�ect of
electron microscopy �xation and processing (Weinbaum et al., 2007). The
�bre matrix of glycocalyx is recently described by Squire et al. (2001) as a
quasi-periodic 3D �brous mesh work with a characteristic spacing of 20 nm
and with anchoring foci (thought to form an hexagonal array) emanating
from the underlying cortical cytoskeleton. See for instance Figure 5 of Arkill
et al. (2012), in which the glycocalyx structure is reconstructed using electron
tomography.

A pathological loss or agonist-induced thinning of glycocalyx may pro-
duce an impaired vascular wall protection throughout the circulatory sys-
tem (VanTee�elen et al., 2007). In particular, experimental studies in which
the glycocalyx was treated with glycosaminoglycan-degrading enzymes show
that enzymatic degradation results in (a) a reduction of anionic dextran ex-
clusion (Henry and Duling, 1999), (b) the formation of perivascular oedema
(van den Berg et al., 2003), (c) an impairment of shear stress-dependent NO
production in arteries and cultured endothelial cells (Florian et al., 2003;
Mochizuki et al., 2003), (d) an increase in hydraulic conductivity (Adam-
son, 1990), in protein permeability (Huxley and Williams, 2000), in albumin
glomerular clearance (Jeansson and Haraldsson, 2003) and in adhesion of
platelets and leukocytes in venules (Constantinescu et al., 2003).

47
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Moreover, degradation and/or loss of glycocalyx have been shown dur-
ing exposure to atherogenic/cardiovascular risk factors, including in�amma-
tory and atherogenic stimuli, ischemia/reperfusion and oxidized low-density
lipoprotein infusion (VanTee�elen et al., 2007).

Patients with type 1 diabetes mellitus and microalbuminuria were demon-
strated to be more susceptible to glycocalyx degradation compared to their
normalbuminuric counterparts (Nieuwdorp et al., 2006). Glycocalyx dis-
ruption occurs also in clinical conditions such as chronic renal failure, cere-
brovascular disease and septis (Martens et al., 2013; Nieuwdorp et al., 2007;
Vlahu et al., 2012; Marechal et al., 2008; Donati et al., 2013) and on high-
fat high-cholesterol diet (van den Berg et al., 2006). Moreover, this loss of
systemic glycocalyx volume, leading to �uid leakage outside microvessels,
correlates to a reduction in anatomic capillary diameter and/or functional
capillary density (VanTee�elen et al., 2007; Constantinescu et al., 2011).

Glycocalyx degeneration, induced by reactive oxygen species exposure, is
shown to lead to endothelial dysfunction, with the possible onset of microal-
buminuria or proteinuria (i.e. the presence of an excess of albumin or other
serum proteins, respectively, in the urine) in clinical disease (Singh et al.,
2007, 2013).

Finally, shear stress appears to contribute both to the incorporation of
the glycosaminoglycan hyaluronan into the glycocalyx, thus a�ecting sul-
fated glycosaminoglycan distribution, and to the shedding of hyaluronan
(for instance, during reperfusion after ischemia), thus permitting leukocyte
adherence to vessel wall (VanTee�elen et al., 2007). Shear stress seems to
be mediated by NO production (Mochizuki et al., 2003) and G proteins
(Mulivor and Lipowsky, 2004).

On the other hand, hypertension is a chronic medical condition in which
arterial blood pressure is high, forcing the heart to work harder than normal
to pump blood. Systolic blood pressure higher than 115 mmHg is responsible
for 62% of cerebrovascular disease (including stroke, myocardial infarction,
heart failure, aneurysms of the arteries, coronary heart disease and peripheral
arterial disease) and 49% of ischemic heart disease. Also the concordance of
hypertension and diabetes is pernicious; moreover, loss of renal function (as
for chronic kidney disease) is proportional to blood pressure level. Hyperten-
sion plays a role in trans-vascular exchange, increasing both �uid �ltration
and protein extravasation. This leads in most severe cases to leakages as in
the cases of extra-vascular oedema and hemorrhages, observed for instance
in hypertensive retinopathy and hypertensive optic neuropathy (Chobanian
et al., 2003).

A series of 1D (e.g. Curry and Michel, 1980; Tsay and Weinbaum, 1991;
Weinbaum et al., 1992) and 3D (e.g. Bundgaard, 1984; Ward et al., 1988;
Tsay and Weinbaum, 1991; Weinbaum et al., 1992; Fu et al., 1994) mathe-
matical models has been developed since 1950s, showing that permeabilities
to water and hydrophilic solutes in microvessels of di�erent tissues can be ac-
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counted for by inter-endothelial cleft pathways with surface glycocalyx layer
and junction strands with discontinuous leakages (see the reviews of Michel
and Curry, 1999; Sugihara-Seki and Fu, 2005).

Squire et al. (2001) even proposed a quasi-periodic 3D ultra-structural
model of the endothelial surface layer, which was subsequently used in Wein-
baum et al. (2003) to study in detail the �exural rigidity of the core proteins
comprising the bush-like matrix and the adhesive molecular interactions be-
tween proteins in the endothelial membrane and circulating cellular compo-
nents.

In order to incorporate charge e�ects on microvessel permeability, the
model developed in Fu et al. (1994) was extended in Fu et al. (2003) by
including a negatively charged glycocalyx layer at the entrance of inter-
endothelial cleft and considering electrostatic and steric exclusions on charged
solutes, at the interfaces of the glycocalyx layer between the vessel lumen,
between the endothelial cleft and within the glycocalyx layer. Neverthe-
less, in the following we neglect the charge-sieving e�ect of glycocalyx, only
considering its size-�ltering capacity.

The e�ects of glycocalyx thinning and of a change in its morphology are
also described in the work of Speziale and Sivaloganathan (2009), in which
the glycocalyx enters into the mathematical model simply as in the boundary
conditions.

The speci�c objective of the present chapter is to carry out a theoreti-
cal study of �ltration and solute transport processes with the steady-state
mathematical model described in Chapter 3, varying glycocalyx morphology
and its physical properties, as much as blood pressure.

Our model di�ers from existing studies in the way the main anatomical
microvessel structure is described, thereby allowing to explicitly compute
the distribution of hydrostatic and osmotic pressure inside the vessel wall,
without lumping glycocalyx layer into an algebraic relation. This results in
a more precise and reasonable reconstruction of plasma �ltration and solute
leakage, also in the interface region between glycocalyx and endothelium.

In the present chapter we are considering a typical extra-cranial capillary,
composed by only two layers: the glycocalyx and the endothelium.

4.1 The mathematical model

Assuming radial symmetry, we model steady-state plasma �ltration and so-
lute transport across blood vessel wall through the coupled non-linear or-
dinary di�erential equations presented in Chapter 3, written in cylindrical
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coordinates (r, θ, z) and in dimensionless form as




d

dr

[
(r + ξ)`p

(
dp

dr
− σ dΠ

dr

)]
= 0,

d

dr

[
(r + ξ)Π

(
A

dp

dr
+B

dΠ

dr

)]
= 0,

(4.1)

in the hydrostatic p = p(r) and the osmotic Π = Π(r) pressures, for the di-
mensionless distance r ∈ (0, 1) from vessel axis. The dimensionless quantities
are de�ned as follows

p =
p∗

pR
, Π =

Π∗

pR
, ξ =

rc
ro − rc

, r =
r∗ − rc
ro − rc

,

`p =
`∗p
`Hp
, `d =

`∗d
`Hp
, A =

`∗p(σ − 1)

`Hp
, B =

`∗pσ − `∗d
`Hp

, (4.2)

where superscripts ∗ denote dimensional quantities, ro is the external radius
of vessel wall and rc is the internal radius of vessel wall identi�ed with the
internal surface of glycocalyx. Furthermore, `Hp is the harmonic mean for the
dimensional hydraulic conductivity `∗p among the layers, weighted by each
layer thickness, which for two layers is given by

`Hp =
ro − rc

rg − rc
`Gp

+
ro − rg
`Wp

, (4.3)

where `Gp refers to the glycocalyx layer (rc, rg) and `Wp to the endothelial
cells composing the proper vessel wall (rg, ro). σ is the membrane re�ection
coe�cient and `d is the di�usional permeability. We choose as reference
pressure pR the magnitude of the external hydrostatic pressure |p∗o|.

We solve system (4.1) in the hydrostatic p = p(r) and the osmotic pres-
sure Π = Π(r), using the �nite di�erence scheme proposed by Freeze (1975),
and we recover the dimensionless volume Jv = Jv(r) and solute Js = Js(r)
�uxes through

Jv = −2π(r + ξ)`p

(
dp

dr
− σdΠ

dr

)
, (4.4)

Js = 2π(r + ξ)Π

[
`p(σ − 1)

dp

dr
+ (`pσ − `d)

dΠ

dr

]
. (4.5)

Even if system (4.1) requires that both �uxes are constant in r, there is a
small variation due to numerical approximations. We thus consider the �ux
as the mean of the spatial values in the previous expressions.

4.2 Relations between the physiological parameters

If we model the glycocalyx as a system of N cylindrical pores (per unit area
of surface membrane) of mean radius rp, we have the following relations



4.2. RELATIONS BETWEEN THE PHYSIOLOGICAL PARAMETERS51

(Levick and Michel, 2010)

σ = (1− ϕ)2, with ϕ =

(
1− rs

rp

)2

, (4.6)

`p =
Nπr4

p

8µ
, (4.7)

`d =
Nπr2

pDϕ

ΠM
fp

(
rs
rp

)
, (4.8)

where σ ∈ [0, 1] is the re�ection coe�cient, ϕ is the solute partition coe�cient
(that reduces di�usion in a narrow cylindrical pore, due to steric exclusion),
rs is the solute radius, `p is the hydraulic conductivity, µ is the kinematic
�uid viscosity within the pores, `d is the di�usional permeability, D is the
di�usion coe�cient of the solute in aqueous solution and ΠM is a mean
osmotic pressure (here assumed as the arithmetic mean of the boundary
values of the osmotic pressures), fp is an empirical function, used to take
into account the restricted di�usion due to the increased hydrodynamic drag
(Renkin, 1954):

fp(x) = 1− 2.104x+ 2.09x3 − 0.95x5. (4.9)

Note that all the previous quantities are dimensional.
Thermodynamic considerations of irreversible thermodynamics (Katchal-

sky and Curran, 1965) state that

`d > σ2 `p, (4.10)

we thus assume that the di�usional permeability is given by `d = ασ2 `p,
where α > 1 is a constant related to a Péclet number Pe = `p/`d through
α = 1/(σ2 Pe).

Manipulating the previous algebraic equations, we can express the dif-
fusional permeability in terms of the re�ection coe�cient and the hydraulic
conductivity as

`d =
8µD

r2
pΠM

`p
(
1−√σ

)
fp

(
1−

√
1−√σ

)
, (4.11)

where the radius and the number of the pores can be estimated through the
following

rp =
rs

1−
√

1−√σG
, (4.12)

N =
8µ`Gp
πr4

p

, (4.13)

where reasonable values of σG and `Gp for the glycocalyx layer are reported for
instance in Speziale et al. (2008). Note that the obtained mean pore radius
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has dimension rp = 4.65 nm, comparable the 4− 5 nm half-distances of the
periodic glycocalyx surface structure determined from electron micrographs
(Squire et al., 2001) and the 5.7 nm pore exclusion size limiting glycocalyx
permeation by dextrans (Vink and Duling, 2000).

The e�ective di�usion coe�cient D can be estimated from the free di�u-
sion coe�cient Dfree as D = θpDfree, where the coe�cient θp > 1, de�ned
as

θp =
ασ2ΠMr

2
p

8µDfree(1−
√
σ) fp(1−

√
1−√σ)

, (4.14)

simulates the increase of di�usivity due to the fact that solute molecules in
a small-bore channel di�use more easily and move more randomly than in
an open space, owing to the wall friction producing di�erent velocities over
the cross-section of the pore, as described by Taylor (1953). Note that the
e�ective di�usivity coe�cients reported in the work of Taylor (1953) are 3
to 4 order of magnitude larger compared to the di�usion coe�cient, whereas
here the value of θp is about 33, possibly because of the micro scale processes.
By de�ning θp as in equation (4.14), we automatically have that condition
(4.10) is satis�ed.
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Figure 4.1: Di�usional permeability `d versus `p and σ. Here the physio-
logical parameters `p and `d are dimensionless with respect to the weighted
harmonic mean `Hp for the hydraulic conductivity.

Since the function fp is positive (in a reasonable domain), we have that
`d > 0 and an increase in the hydraulic conductivity `p produces a linear
increase in `d, as depicted in Figure 4.1. Equation (4.11) also states that a
decrease in the re�ection coe�cient σ produces an increase in the di�usional
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permeability `d (for a reasonable range of σ, see Figure 4.1), as we expect
from the augmented mobility of the solute molecules.

4.2.1 Physiological parameters across the wall

In order to have smooth solutions, we consider a smooth transition between
the two layers composing the vessel wall as in Chapter 3:





σ(r) =
σG + σW

2
− σG − σW

2

r − rg√
ε2 + (r − rg)2

,

`p(r) =
`Gp + `Wp

2
−
`Gp − `Wp

2

r − rg√
ε2 + (r − rg)2

,
(4.15)

where sub-scripts G and W indicate the re�ection coe�cient of glycocalyx
and endothelial cells, respectively, and rg denotes the interface point between
glycocalyx and endothelium. We control the transition between material
properties of the two layers through the smoothing parameter ε. The larger
it is the smoother the transitions are. Here, ε2 = 10−5, thus the transition
is assumed smooth, even if quite sharp.

Table 4.1 shows typical values of geometrical and physiological features
of an intact capillary, as well as the values of the osmotic and hydrostatic
pressures within the lumen and in the external interstitial space. Also the
physical and hydrodynamical properties of the solute (here albumin), as well
as kinematic �uid viscosity within the pores, are reported.

4.3 Simulation of glycocalyx shedding

We have already mentioned that degradation and/or loss of glycocalyx have
been shown during exposure to atherogenic/cardiovascular risk factors, in-
cluding in�ammatory and atherogenic stimuli, ischemia/reperfusion and ox-
idized low-density lipoprotein infusion (VanTee�elen et al., 2007); further-
more, patients with type 1 diabetes mellitus and microalbuminuria are more
susceptible to glycocalyx degradation (Nieuwdorp et al., 2006). Apart from
pathological conditions, glycocalyx thickness can change also because of in-
creased shear stress (as at atherosclerosis-prone sites) and in response to
agonists such as adenosine, which may increase wall conductivity up to 40%
(VanTee�elen et al., 2005).

In this section we simulate glycocalyx deterioration, possibly due to phys-
iological glycocalyx �bre rearrangement and/or to enzymatic digestion.

4.3.1 How to simulate glycocalyx modulation?

In Nieuwdorp et al. (2006), glycocalyx thickness in sub-lingual capillaries is
estimated from the di�erence between capillary red blood cell column width
during baseline (functionally perfused capillary diameter) and after passage
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Parameter [unit] Value Reference

rc [µm] 5 Charm and Kurland (1974)
rg [µm] 5.15 Adamson et al. (2004)
ro [µm] 5.5 Charm and Kurland (1974)
Πc [mmHg] 25 Levick (1991)
Πo [mmHg] 12 Levick (1991)
pc [mmHg] 20 Levick (1991)
po [mmHg] −1 Levick (1991)
σG 0.9 Speziale et al. (2008)
σW 0.1 Speziale et al. (2008)
`Gp [µm2sec−1mmHg−1] 0.601854 Speziale et al. (2008)

`Wp [µm2sec−1mmHg−1] 4.15203 Speziale et al. (2008)

µ [mmHg sec] 5.2504 · 10−6 Li et al. (2010)
rs [µm

−3] 3.6 · 10−3 Levick and Michel (2010)
Dfree [µm

2 sec−1] 60 Stevens et al. (2007)
α 1.001

Table 4.1: Typical values of material properties of a capillary: σ is the
re�ection coe�cient and `p is the hydraulic conductivity. The typical values
of capillary blood hydrostatic and osmotic pressures (pc and Πc) are reported
against typical values of interstitial pressures po and Πo. The superscripts G
andW refer to glycocalyx and endothelial layers, respectively. µ is kinematic
water viscosity, rs is the mean molecular radius of human serum albumin
and Dfree is its free di�usion coe�cient. The coe�cient α > 1 depends on
a Péclet number and is de�ned such as to satisfy condition (4.10).

of a leukocyte (anatomic capillary diameter) and a decrease of about 45%
is found in healthy subject glycocalyx thickness, compared to patients with
type 1 diabetes mellitus. An electron microscopic study of mouse carotid
arteries (van den Berg et al., 2006) shows a thinning of endothelial glycocalyx
layer of about 75% at an atherosclerosis-prone site compared to glycocalyx
thickness at a low-atherogenic-risk site (VanTee�elen et al., 2007)

Moreover, Adamson (1990) observed that treatment of frog mesenteric
capillaries with the glycocalyx-degrading enzyme pronase produces an ap-
proximately 2.5-fold increase in post-pronase hydraulic conductivity com-
pared to the initial control value, accompanied by no signi�cative changes in
the morphology of inter-cellular clefts, but large alterations in luminal glyco-
calyx structure, due to its partial digestion (see also Figure 1 in van den Berg
et al., 2003). This suggests a correlation between the changes in physiologi-
cally measured hydraulic conductivity and morphologically demonstrated al-
terations in glycocalyx structure. Moreover, the 2.5-fold increase in capillary
permeability (which reaches nearly a 20-fold increase in particular vessels)
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Figure 4.2: Contour lines of physiological parameters σ, `p and `d (divided by
the reference value obtained for an integer vessel wall) varying with respect
to pore radius rp and the number N of pores in glycocalyx layer (divided by
the corresponding values of an integer glycocalyx).

implies that at least 60% of the hydraulic resistance to plasma �ow across
microvessel walls is associated with endothelial glycocalyx.

Looking again at equation 4.7, we may conclude that an increment in
glycocalyx hydraulic conductivity is due either to a raise in the number of
pores or to an increase in their radius or by augmenting both of them (see
Figure 3 in Adamson, 1990).

We can not neglect the relations described in Section 4.2 between the
physiological parameters, thus we model the alteration of endothelial surface
glycocalyx properties directly changing the number N of glycocalyx pores
and their radii rp, since both of them in�uence also the other parameters
in the following way. A change in N determines a variation of both `p and
`d, but does not alter σ since the latter is only related to the ratio of solute
and pore size (see Figure 4.2a). On the contrary, a change in rp produces a
change in σ, `p and `d.

In Figure 4.2, the variation of the physiological parameters σ, `p and `d
due to a change in the number N and radius rp of pores in the glycocalyx
layer is depicted. Note that all the quantities are reported with respect to
the reference values reported in Table 4.1, obtained considering a typical
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vessel wall with an integer glycocalyx.

We thus model the deterioration of endothelial glycocalyx by three means:
(i) decreasing its thickness `G, (ii) increasing the number N of its pores and
(iii) augmenting their radii rp.

4.3.2 Fluxes in the case of glycocalyx damage

In Figure 4.3, we depict volume and solute �uxes divided by the reference
�uxes obtained with typical values of an integer vessel wall reported in Ta-
ble 4.1 versus the previously described normalised quantities `G, N and rp.
Glycocalyx thinning and an increase in pore number and/or radius result
in an augmentation of plasma �ltration and/or solute extravasation, as ex-
pected.

Note the 6 to 7-fold increase of volume �ux in the case in which mean pore
radius rp increases, whereas the variation is halved in the case in which rp is
�xed, see Figure 4.3c. The in�uence of rp on physiological parameters vary
among them, see in particular Figure 4.2a in which doubling rp, σ decreases
by one half. This suggests a pivotal role of σ in volume �ux, being more
sensitive to variations of rp compared to changes of the other parameters.

A role of glycocalyx degradation is recognised in septis with the onset
of acute lung injury in most severe cases (Schmidt et al., 2012). In acute
lung injury and acute respiratory distress syndrome, pulmonary oedema was
observed, correlated to glycocalyx deterioration (Yang and Schmidt, 2013).
To the best of our knowledge, myocardial tissue oedema, and in general ex-
travascular oedema, are measured through the change in pericapillary space
(van den Berg et al., 2003), without reporting the precise values of plasma
and solute �uxes. An increase in pericapillary space by about 65% is thus
measured during myocardial tissue oedema, demonstrating �uid and protein
extravasation (van den Berg et al., 2003).

The behaviour of solute �ux is analogous, except that a change in glyco-
calyx thickness and/or pore number quadruples the �ux (see Figure 4.3d),
whereas a change in rp (and thus in σ) decuples this e�ect. These re-
sults agree with experimental results, where a signi�cant increase in macro-
molecular �ux across microvessel wall is described both after exposure to
H2O2 (Singh et al., 2013) and after treatment with heparan-sulfate-degrading
enzymes (Singh et al., 2007). Unfortunately, since pore radius and the num-
ber of the pores are not estimated from histological analysis, a fair compari-
son is not achievable. Depending of the enzymes used, a 1.4 to 3-fold increase
in the trans-vascular albumin �ux after enzyme-treatment compared to the
initial macro-molecular �ux occurs, thus con�rming our predictions.

Looking at Figure 4.3, we may also observe that both �uxes do not change
much varying `G compared to their stronger dependence on rp (a)-(b). Their
behaviour also depends on pore number: for small N , both �uxes are more
sensitive to a change in N than to a variation of glycocalyx thickness (c)-(d),
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Figure 4.3: Contour lines of volume and solute �uxes (divided by reference
�uxes) as functions of glycocalyx thickness `G, pore radius rp and number
of pores N (divided by the corresponding values of an integer glycocalyx).
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wheres for higher values of N , they become more dependent on rp (e)-(f).

4.4 Pressure in�uence on glycocalyx degeneration

In this section we study the impact on mean volume �ux and mean solute
�ux of an increase in hydrostatic blood pressure, as in pre- and post-stenotic
blood vessels.

In Figure 4.4, we plot volume and solute �uxes (divided by reference

�uxes) versus the previous quantities (`G/`
ref
G , N/Nref and rp/r

ref
p ) and

blood hydrostatic pressure pc (divided by its normal value in a microvessel of
a normotensive control), as reported in Table 4.1. Local hypertension results
in an augmentation of plasma �ltration and/or solute leakage, worsened by
glycocalyx shedding, as expected.

In the brain, even the slight increase in pressure may produce serious
consequences, as observed in the experiments of Mayhan and Heistad (1986),
where an increase in cerebral venous pressure either due to phenylephrine-
induced hypertension or to superior venae cavae occlusion is shown to lead
to the disruption of rat cerebral capillaries.

In hypertensive retinopathy, the retinal vasculature may be su�ciently
injured to cause occlusion or leakage, thus causing extra-vascular oedema
and intraretinal hemorrhages in most severe cases. Also hypertensive optic
neuropathy, accompanied to severe hypertension, correlates to �ame hemor-
rhages and optic disc oedema (Chobanian et al., 2003).

Diabetes is often associated to glycocalyx degradation (Nieuwdorp et al.,
2006) and is recently hypothesised to accelerate transvascular transport of
both albumin and lipoproteins by 25% and 28%, respectively (Jensen et al.,
2005), possibly explaining its association with proteinuria and a highly in-
creased risk of atherosclerosis development. Moreover, this increased transvas-
cular solute transport is accelerated in presence of systolic hypertension or
albuminuria, where solute �ux of albumin and low-density lipoprotein raises
by 29% and 44%, respectively, compared to healthy controls.

This agrees with our predictions of a loosening in vascular solute barrier
in the case of glycocalyx degradation, as for diabetic patients, even worsened
in presence of hypertension.

We now look in detail at Figure 4.4. Halving glycocalyx thickness `G,
both �uxes quintuple, showing a strong dependence on blood pressure pc
(a)-(b). Analogously, decupling pore number N produces a decupling even
in both �uxes. Also in this case we may observe that this phenomenon is
more strongly linked to blood pressure than to pore number, at least for large
values of N (e)-(f). What is surprising is the di�erent e�ect of a variation
in rp on plasma and solute �uxes, compared to the previous cases: a 14-fold
increase in plasma �ux and even an 80-fold rise in solute �ux. Moreover,
a strong dependence of both �uxes on both blood pressure and pore radius



4.4. PRESSURE INFLUENCE ON GLYCOCALYX DEGENERATION59

Volume �ux

0.5 1 1.5 2
0.5

0.6

0.7

0.8

0.9

1

pc/p
ref
c

` G
/`

re
f

G

0

1

2

3

4

5

(a)

Solute �ux

0.5 1 1.5 2
0.5

0.6

0.7

0.8

0.9

1

pc/p
ref
c

` G
/`

re
f

G

1

2

3

4

5

(b)

Volume �ux

0.5 1 1.5 2
1

1.2

1.4

1.6

1.8

2

pc/p
ref
c

r p
/r

re
f

p

2

4

6

8

10

12

14

(c)

Solute �ux

0.5 1 1.5 2
1

1.2

1.4

1.6

1.8

2

pc/p
ref
c

r p
/r

re
f

p

20

40

60

80

(d)

Volume �ux

0.5 1 1.5 2

2

4

6

8

10

pc/p
ref
c

N
/N

re
f

0

2

4

6

8

10

(e)

Solute �ux

0.5 1 1.5 2

2

4

6

8

10

pc/p
ref
c

N
/N

re
f

2

4

6

8

10

(f )

Figure 4.4: Contour lines of volume and solute �uxes (divided by reference
�uxes) as functions of hydrostatic blood pressure pc (normalised by its typical
value in a microvessel of a normotensive control) and morphological and/or
physical parameters `G, rp and N (normalised by the corresponding values
of an integer glycocalyx).
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(and thus σ) is shown (c)-(d).

We compare our results to the experimental results of Valenzuela-Rendon
and Manning (1990b,a), where trans-capillary �ux of �uid and proteins in
conscious dogs is incremented both during volume-loading hypertension and
during angiotensin II-induced hypertension.

In their �rst experiment, where hypertension (with an increase in mean
arterial pressure of 24%) is induced by volume-loading (Valenzuela-Rendon
and Manning, 1990b), �uid �ux increases 165%, whereas protein �ux (appar-
ently dominated by convection) increases only 57%. Analogously, during an-
giotensin II-induced hypertension experiment (Valenzuela-Rendon and Man-
ning, 1990a), trans-capillary �ux increases 45% and protein �ux increases
24% (induced by an increase in mean arterial pressure of 45%).

Note that a change in mean arterial pressure is not directly correlated to
capillary pressure, since the latter is also a�ected by nervous control, venous
pressure, vascular resistance, gravity and distance along the capillary axis
(Levick, 2010), being thus quite di�cult to be estimated. Nevertheless, in
both experiments of Valenzuela-Rendon and Manning (1990b,a), hyperten-
sion produces an increase in both volume and solute �uxes, as qualitatively
reproduced by our model.

Note that here we are completely neglecting the role of lymphatic system,
which drains away accumulated ultra�ltrate, demonstrated by the increase
in its lymph �ow by 2 to 3 times in thoracic duct (Valenzuela-Rendon and
Manning, 1990b). Indeed, a well-known safety factor against oedema lies
in the increment of lymph �ow until it exceeds trans-capillary �ow, thus
limiting �uid accumulation in the surrounding tissues (Levick, 2010). To
model this highly dynamic process, a mathematical description of tissue
morphology and transport properties is needed, together with a reasonable
modelling of the time-dependent pressure changes in lymphatic capillaries.
This is outside the aim of the present work, but Chapter 5 will be directed
toward a transient mathematical model of trans-vascular plasma �ltration
and solute transport.

4.5 Conclusions

We have applied our one-dimensional multi-layered steady-state mathemat-
ical model to simulate glycocalyx degeneration, due to its thinning and/or
to lose of its transport properties.

The reconstructed plasma and solute �uxes across vessel walls show an
higher impact of the mean pore radius representing glycocalyx mesh work
compared to the other parameters (glycocalyx thickness and its pore num-
ber), suggesting a signi�cative in�uence of glycocalyx re�ection coe�cient,
only related to the ratio of the solute to the pore radii, into transport pro-
cesses.
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With our model, we have been also able to quantify the e�ects of hyper-
tension on both �uxes, even in presence of glycocalyx deterioration, in agree-
ment with experimental results reported in literature, where both oedema
and hemorrhage are observed.

Due to the simplicity and the e�ciency of our one-dimensional model,
these simulations provide results in line with physiological studies and can
possibly be a useful tool in the prediction of long-term e�ects of glycocalyx
deterioration and/or hypertension.

To take into account also the dynamic changes in lymph �ow and tissue
properties, a time-dependent mathematical model of trans-vascular phenom-
ena is needed. Chapter 5 has the objective of modelling the transient nature
of biological transport processes.





Chapter 5

A time-dependent model

The time-dependent model presented in this Chapter
is taken from Facchini et al. (2013d).

As already mentioned in the Introduction, to avoid the accumulation of
plasma ultra�ltrate in the interstitium and to preserve volume homeostasis,
it is now accepted that interstitial �uid, after �ltrating through microvessel
walls and having substantially reduced its protein content, drains into the
lymphatic system, which in turn connects to the venous part of the circula-
tory system (e.g. Levick, 2010; Silverthorn, 2009).

This new view is con�rmed by three considerations. The �rst one is re-
lated to the measurements of �uid �ltration with respect to venous capillary
pressure both immediately after an abrupt pressure raise/reduction (tran-
sient case) and several minutes after the change (steady state-case), showing
that absorption occurs only in the transient case, since after some time �l-
tration is restored (see Figure 3 in Levick and Michel, 2010). Also the direct
measurement of all four Starling's forces (namely capillary blood pressure pc,
plasma colloid osmotic pressure Πc, interstitial �uid pressure po and extra-
vascular colloid osmotic pressure Πo) in the same tissue and species proves
that a constant state of �ltration is present in almost all tissues, under nor-
mal conditions (see Figure 11.12 in Levick, 2010). Some exceptions of the
sum-of-forces evidence are reported for example in Levick and Michel (2010),
where the special case of water absorption from gut lumen is described. The
last experimental and theoretical proof of absorption in steady state lies in
the fact that Πo is inversely related to �ltration rate Jv thanks to the so-
called protein wash-down e�ect. As a matter of fact, extravascular protein
concentration is given by the ratio of the rate of solute in�ux to �ltration
rate, but the speed at which plasma is transferred across vascular membrane
is higher compared to the protein transfer rate, since the small pores present
on vessel wall slow down or even block blood proteins, meanwhile allowing
�uid to pass freely through them. Thus, interstitial protein concentration
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(and also osmotic pressure) changes inversely with capillary �ltration rate,
because the rate of solute in�ux is almost constant, if compared to the rate
of plasma in�ux due to di�erent pathways across which protein and plasma
are transported (Levick, 2010).

Starling (1896), already in 1896, observed that �uid movement across ves-
sel wall is driven by four main forces, the already mentioned Starling's forces,
given by the di�erences of hydrostatic and osmotic pressures measured in-
side blood vessel and in the interstitium immediately outside. Almost all the
measurements and the discussions were based on the experiments of Landis
(1927) which are generally regarded as a con�rmation of Starling's hypoth-
esis. This was in fact quite misleading, since he blocked a capillary with a
glass rod while keeping a constant hydrostatic pressure inside the microvessel
through a micropipette inserted inside it and neglecting the dynamic nature
of the process. Another important contribution was done by Pappenheimer
and Soto-Rivera (1948), who estimated a mean hydrostatic pressure in capil-
laries knowing the pressure in arterial and venous end of a capillary bed and
the ratio of pre- to post-capillary resistance (Levick, 2010). Around 70 years
were needed to correct Starling's law taking into account the sieving e�ect
of glycocalyx. This was done by Michel (1997) and Weinbaum (1998), who
considered the di�erences between pressures measured in the lumen and just
below glycocalyx as driving forces of �ltration and solute transport in spite
of the pressure di�erences between lumen and interstitium.

What was, unfortunately, neglected for many years was the dynamic com-
ponent of the external pressures. It is a well-known fact that hydrostatic lu-
minal pressure decreases along a capillary, thus reducing also �ltration rate.
It is also now established that, under normal conditions, a well-perfused cap-
illary is in a state of �ltration along its entire length, but it can absorb �uid
transiently when blood pressure pc falls (for instance during hypovolemia, a
pathological decrease of blood volume).

Another important e�ect of the change in the external pressures lies in
the decay in absorption, followed by a restoration of a state of (dynamic)
equilibrium in which slight �ltration occurs. In fact, plasma protein concen-
tration below glycocalyx (and thus external osmotic pressure Πo) increases
as interstitial �uid is absorbed into the lumen, while interstitial pressure po
decreases as �uid is removed from the interstitium, lowering the pressure
exerted outside vessel wall (Levick, 2010; Levick and Michel, 2010).

We build up a time-dependent one-dimensional multi-layered mathemat-
ical model, where �ltration and solute transport are strongly coupled and
it is no longer possible to solve independently �ow equation in the hydro-
static pressure and then plugging the solution into transport equation. After
validating our model, we test it simulating an hemorrhage with associated
abrupt blood pressure decrease, by considering the two di�erent views: the
traditional one, now disproved, with constant values of external hydrostatic
and osmotic pressures, and the new one in which the transient absorption
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due to the lowering of internal pressure raises extra-vascular osmotic pressure
and reduces interstitial pressure.

The behaviour of external pressures is reconstructed qualitatively from
Figure 3.B of Levick and Michel (2010), assuming an initial phase with con-
stant values, followed by the decrease in hydrostatic internal pressure, deter-
mining an exponential change in both external pressures (augmentation of
osmotic pressure and reduction of hydrostatic pressure) until new constant
values are reached. The change of volume and solute �uxes in time is studied
in both cases, paying attention to pressure distribution inside vessel wall.

The simulation of an hemorrhage with our model also depends on the
physical features describing vessel wall anatomy: whether we consider a wall
consisting of the endothelium internally coated by glycocalyx or if we assume
the vessel wall as homogeneous with mean characteristics of the two layers
composing it. In the second case, we can no longer distinguish glycocalyx
from endothelium or junctions, thus neglecting the cleft exit microgradients
below the glycocalyx, as described by Levick (2010).

The speci�c objective of the present chapter is thus to carry out a theoret-
ical study of �ltration and solute transport processes with a time-dependent
mathematical model. We investigate what happens considering constant ex-
ternal pressures, thus neglecting plasma/interstitial �uid balance (Levick,
2010). Moreover, we consider an homogeneous vessel wall, thus lessening
the sieving role of glycocalyx layer (VanTee�elen et al., 2007).

5.1 The mathematical model

5.1.1 Statement of the problem

A series of 1D and 3D mathematical models was developed since 1950s (e.g.
Michel and Curry, 1999; Sugihara-Seki and Fu, 2005, and references therein),
showing that permeability to water and hydrophilic (water-loving) solutes in
microvessels of di�erent tissues can be accounted for by inter-endothelial cleft
pathways and junction strands with discontinuous leakages (see Figure 5.1)
with a surface �bre layer (the glycocalyx), as depicted in Figure 5.2.

Thus, we idealise a single microvessel wall by assuming it as composed by
two rigid concentric circular hollow cylinders with homogeneous properties:
the internal ones representing surface glycocalyx and the outer one standing
for the endothelial cells with the junctions between them, as depicted in
Figure 5.3.

Even if glycocalyx is a negatively-charged membrane (Levick, 2010) and
some e�orts have been done in the modelling of charged molecule transport
(e.g. Fu et al., 2003) and of active transport (e.g. Patlak et al., 1963), here
we are only interested in passive transport of a single non-electrolyte under
isothermal conditions (Katchalsky and Curran, 1965). The solute consid-
ered in the present chapter is albumin, which �accounts for half the plasma
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Figure 5.1: Illustration of an inter-cellular cleft between endothelial cells in a
typical microvessel, with some protein complexes either providing anchorage
and cell stability (adherens junctions) or forming an almost impermeable
barrier to �uid and macromolecules (tight/occludens junctions).
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Figure 5.2: Illustration of glycocalyx in a typical microvessel, with the range
of dimensions of the most relevant anatomical elements (transverse view).

protein mass and generates about two-thirds of the colloid osmotic pressure�
(Levick, 2010). Note that the osmotic pressure exerted by albumin is highly
in�uenced by its negative charge (which accounts for about one-third of its
osmotic pressure) and cannot thus be correctly predicted by van't Ho�'s
law, which is for ideal solutes (Levick, 2010). Nevertheless, we assume that
transvascular exchange processes are entirely passive and that the solute
considered is ideal and neutral.

We also consider the �ow as completely radial, taking into account a
reasonable assumptions of vessel radial symmetry and thus focusing on the
dynamics in every cross-section of the cylinder (Speziale et al., 2008).

The presence of the central core of red blood cells in the lumen and a cell-
depleted wall layer, possibly due to glycocalyx reducing the e�ective cross-
sectional area available for plasma and red cell motion, in the neighbourhood
of the vessel wall justi�es the assumption of a Newtonian �uid crossing vessel
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wall (Sugihara-Seki and Fu, 2005).

Figure 5.3: Sketch of our static mathematical domain: an in�nitely-long hol-
low circular cylinder composed by two homogeneous uniform porous mem-
branes representing glycocalyx for r ∈ (rc, rg) and endothelial cells for
r ∈ (rg, ro).

5.1.2 Governing equations in dimensionless form

Under the above hypothesis, the volume speci�c discharge qv = qv(x, y, z, t)
and the total solute speci�c discharge qs = qs(x, y, z, t) are related to hydro-
static pressure p = p(x, y, z, t), osmotic pressure Π = Π(x, y, z, t) and protein
concentration c = c(x, y, z, t) through the following expressions reported in
Chapter 3

{
qv = −`p (∇p− σ∇Π) ,
qs = c [`p (σ − 1)∇p+ (`pσ − `d)∇Π] ,

(5.1)

where `p is the hydraulic conductivity, σ is the membrane re�ection coe�-
cient and `d is the di�usional permeability.

In order to correlate the osmotic pressure and the protein concentration,
we assume the van't Ho� law (Levick, 2010) stating that

Π = RTc, (5.2)

where R is the gas constant and T is the absolute temperature, even being
aware that there are better functions expressing the relationship between
protein osmotic pressure Π and their concentration c, as the Landis and
Pappenheimer (1963) cubic empirical equation

Π = 2.1 c+ 0.16 c2 + 0.009 c3, (5.3)
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which takes into account the non-ideality of the solution (Katz, 1985). Nev-
ertheless, we consider the ideality assumption for protein, in order to have
simpler equations.

Mass conservation of blood plasma and of the solute leads to the following
governing equations





SS
ρg

∂p

∂t
= −∇ · qv,

1

RT

∂Π

∂t
= −∇ · qs,

(5.4)

where ρ is the �uid (here blood plasma) density, g is the standard gravi-
tational acceleration and SS is the speci�c storage measuring the amount
of plasma that a portion of vessel wall releases from storage, per unit mass
or volume of wall, per unit change in hydraulic head, while remaining fully
saturated. The speci�c storage is given by the following expression

SS = γw(βm + nβw), (5.5)

where γw = ρg is plasma speci�c weight, βw is water compressibility, βm and
n are blood vessel wall compressibility and porosity, respectively.

Thus system (5.4) simpli�es into





(βm + nβw)
∂p

∂t
= −∇ · [−`p (∇p− σ∇Π)] ,

∂Π

∂t
= −∇ · {Π [`p (σ − 1)∇p+ (`pσ − `d)∇Π]} ,

(5.6)

which, written in cylindrical coordinates (r, θ, z), as depicted in Figure 5.3,
and assuming radial symmetry, takes the following dimensionless form





α
∂p

∂t
=

1

r + ξ

∂

∂r

[
(r + ξ)`p

(
∂p

∂r
− σ ∂Π

∂r

)]
,

∂Π

∂t
=

1

r + ξ

∂

∂r

[
−(r + ξ)Π

(
A
∂p

∂r
+B

∂Π

∂r

)]
,

(5.7)

for r ∈ (0, 1) and t > 0, where α = (βm +nβw)pR, pR is a reference pressure
and the dimensionless quantities are de�ned as follows

p =
p∗

pR
, Π =

Π∗

pR
, ξ =

rc
ro − rc

, r =
r∗ − rc
ro − rc

, t =
t∗

tR
,

`p =
`∗p
`Hp
, `d =

`∗d
`Hp
, A =

`∗p(σ − 1)

`Hp
, B =

`∗pσ − `∗d
`Hp

, (5.8)

where superscripts ∗ denote dimensional quantities, ro is the external radius
of vessel wall and rc is the internal radius of vessel wall identi�ed with the
internal surface of glycocalyx. Furthermore, `Hp is the harmonic mean for the
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dimensional hydraulic conductivity `∗p among the layers, weighted by each
layer thickness, which for two layers is given by

`Hp =
ro − rc

rg − rc
`Gp

+
ro − rg
`Wp

, (5.9)

where `Gp refers to the glycocalyx layer (rc, rg) and `Wp to the endothelial
cells composing the proper vessel wall (rg, ro). The reference time is given
by tR = (∆r)2/(`Hp pR) and we choose as reference pressure pR = |p0

o|, where
p0
o is the (dimensional) initial external hydrostatic pressure.

5.1.3 Flux reconstruction

Since we are interested in the dimensionless �uxes, we reconstruct them after
solving system (5.7) in the unknown pressure functions. At each time t, the
�uxes are given by the mean spatial values of the following expressions

Jv(t) =

∫ 2π

0

qv(r, t) (r + ξ)dθ = −2π(r + ξ)`p

(
∂p

∂r
− σ∂Π

∂r

)
, (5.10)

Js(t) =

∫ 2π

0

qs(r, t) (r + ξ)dθ = 2π(r + ξ)Π

[
`p(σ − 1)

∂p

∂r
+ (`pσ − `d)

∂Π

∂r

]
,

(5.11)

where θ is the angle as depicted in Figure 5.3, while volume and solute
�uxes are dimensionless with respect to `Hp |po| and `Hp |po|2/(RT ) (dimen-
sional quantities), respectively.

5.1.4 Physiological parameters

In order to have a smooth initial condition, we consider the model of smooth
transition between the two layers composing vessel wall as in Chapter 3:

σ(r) =
σG + σW

2
− σG − σW

2

r − rg√
ε2 + (r − rg)2

, (5.12)

where both sub-scripts G and W indicate the re�ection coe�cient of glyco-
calyx and the endothelial cells, respectively. The distribution of `p(r) and
`d(r) are totally analogous. With this function we control the smoothness of
the physiological properties varying at the interface between the two layers.
A discontinuous transition occurs for ε = 0 and it becomes progressively
smoother for ε > 0 to simulate possible gradual transitions (Sugihara-Seki
and Fu, 2005). Here, the transition between the material properties of the
two layers is represented by assuming ε2 = 10−4, unless otherwise stated.

Table 5.1 shows typical values of geometrical and physiological features of
an intact capillary, as well as the values of osmotic and hydrostatic pressures
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within the lumen and in the external interstitial space, at the initial (with
superscript 0) and exit times (with superscript T ). Also the compressibilities
of the �uid and of the wall, as well as medium porosity, are reported.

Parameter [unit] Value Reference

rc [µm] 5 Charm and Kurland (1974)
rg [µm] 5.15 Adamson et al. (2004)
ro [µm] 5.5 Charm and Kurland (1974)
Π0
c [mmHg] 25 Levick and Michel (2010)

Π0
o [mmHg] 8 Levick and Michel (2010)

p0
c [mmHg] 22 Levick and Michel (2010)
p0
o [mmHg] −1.3 Levick and Michel (2010)

ΠT
o [mmHg] 15 Levick and Michel (2010)

pTc [mmHg] 7.36 Levick and Michel (2010)
pTo [mmHg] −3.6 Levick and Michel (2010)
σG 0.9 Michel and Phillips (1987)
σW 0.1 Hu and Weinbaum (1999)
`Gp [µm2sec−1mmHg−1] 0.601854 Speziale et al. (2008)

`Wp [µm2sec−1mmHg−1] 4.15203 Speziale et al. (2008)

`Gd [µm2sec−1mmHg−1] 0.536252 Facchini et al. (2013b)
`Wd [µm2sec−1mmHg−1] 3.69946 Facchini et al. (2013b)
βw [mmHg−1] 5.45 · 10−8 Urick (1947)
βm [mmHg−1] 9.21 · 10−6 Carew et al. (1968)
n 0.5 Robinson (1988)

Table 5.1: Typical values of material properties of a capillary: σ is the
re�ection coe�cient, `p is the hydraulic conductivity, `d is the di�usional
permeability. Superscripts G and W refer to glycocalyx and endothelial lay-
ers, respectively. As described in Section 5.3.1, boundary conditions change
following equations (5.34)-(5.36)-(5.37) with initial (at t = 0) and �nal (at
t = T ) values denoted with superscripts 0 and T , respectively. The coef-
�cient βw refers to the compressibility of horse blood plasma, while βm is
the maximum value of blood vessel wall compressibility measured in dog de-
scending thoracic aorta. The porosity n was measured in an arterial graft
prosthesis.

5.1.5 Linearised problem

The second equation of the non-linear system of PDEs (5.7) can be linearised
by assuming that osmotic pressure is a small perturbation ε(r, t) around a
reference value ΠR (here the arithmetic mean of the initial boundary values
of the osmotic pressure) and neglecting the products of the terms involving
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ε(r, t) and its derivatives, thus obtaining





α
∂p

∂t
=

1

r + ξ

∂

∂r

[
(r + ξ)`p

(
∂p

∂r
− σ ∂ε

∂r

)]
,

∂ε

∂t
=

1

r + ξ

∂

∂r

[
−(r + ξ)ΠR

(
A
∂p

∂r
+B

∂ε

∂r

)]
,

(5.13)

for r ∈ (0, 1) and t > 0, in the unknowns functions p = p(r, t) and ε =
ε(r, t) = Π(r, t)−ΠR, where A = `p(σ − 1) and B = `pσ − `d.

Linear system (5.13) should be solved with the following initial/boundary
conditions





p(r, 0) = p0(r),
ε(r, 0) = Π0(r)−ΠR,
p(0, t) = pc(t),
p(1, t) = po(t),
ε(0, t) = Πc(t)−ΠR,
ε(1, t) = Πo(t)−ΠR.

(5.14)

Note that the steady-state solutions of this problem are di�erent from
the ones of the general problem.

Steady-state single-layered solutions

In the case of constant physiological parameters `p, σ, A and B (single-
layered model), we have the following exact analytical solution for the pres-
sures:

p(r) =
(pc − po) ln(r + ξ) + po ln(ξ)− pc ln(1 + ξ)

ln(ξ)− ln(1 + ξ)
, (5.15)

Π(r) =
(Πc −Πo) ln(r + ξ) + Πo ln(ξ)−Πc ln(1 + ξ)

ln(ξ)− ln(1 + ξ)
, (5.16)

with �uxes equal to

Jv = −2πk1 = −2π
`p [(pc − po)− σ(Πc −Πo)]

ln(ξ)− ln(1 + ξ)
, (5.17)

Js = 2πk2 = 2π
`p(σ − 1)(pc − po) + (`pσ − `d)(Πc −Πo)

ln(ξ)− ln(1 + ξ)
, (5.18)

since

k1 =
`p [(pc − po)− σ(Πc −Πo)]

ln(ξ)− ln(1 + ξ)
, (5.19)

k2 =
`p(σ − 1)(pc − po) + (`pσ − `d)(Πc −Πo)

ln(ξ)− ln(1 + ξ)
. (5.20)
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Steady-state two-layered solutions

Following the same procedure described in Chapter 3, we assume that both
the physiological parameters (`p, σ, A and B) and the integration constants
(k1, k2, k3 and k4) are layer-speci�c, denoting with the sub- or super-script
G the values in the �rst (Glycocalyx) layer and with W the values in the
second (endothelium composing the vessel Wall) layer.

The steady-state problem obtained from linearised system (5.13) in the
two-layered model has the following exact analytical solution for the pres-
sures:

pi(r) =

[
σi
k2 − k1(σi − 1)

`ipσ
2
i − `id

+
k1

`ip

]
ln(r + ξ) + ki3 + σik

i
4, (5.21)

Πi(r) = ΠR +
k2 − k1(σi − 1)

`ipσ
2
i − `id

ln(r + ξ) + ki4, (5.22)

for each layer i ∈ {G,W}, with integration constants

k1 = `Gp `
W
p

CW ηG [ln(rg + ξ)− ln(ξ)]− CGηW [ln(rg + ξ)− ln(1 + ξ)]

φδ − ψ ,

k2 =
`Wp CW γG [ln(rg + ξ)− ln(ξ)]− `Gp CGγW [ln(rg + ξ)− ln(1 + ξ)]

φδ − ψ ,

kG3 = pc − σG(Πc −ΠR)− k1
`Gp

ln(ξ),

kW3 = po − σW (Πo −ΠR)− k1
`Wp

ln(1 + ξ),

kG4 = Πc −ΠR −
k2 − k1(σG − 1)

`Gp σ
2
G − `Gd

ln(ξ),

kW4 = Πo −ΠR −
k2 − k1(σW − 1)

`Wp σ
2
W − `Wd

ln(1 + ξ),

(5.23)

with parameters

Ci = `ipσ
2
i − `id,

ηG = (pc − po)− σG(Πc −Πo),
ηW = (pc − po)− σW (Πc −Πo),
γG = `Gp (σG − 1)(pc − po) + (`Gp σG − `Gd )(Πc −Πo),

γW = `Wp (σW − 1)(pc − po) + (`Wp σW − `Wd )(Πc −Πo),

δ = `Wp ln(ξ) + (`Gp − `Wp ) ln(rg + ξ)− `Gp ln(1 + ξ),

φ = −CW ln(ξ)− (CG − CW ) ln(rg + ξ) + CG ln(1 + ξ),
ψ = `Gp `

W
p (σG − σW )2 [ln(rg + ξ)− ln(ξ)] [ln(rg + ξ)− ln(1 + ξ)] ,

(5.24)

and �uxes equal to

Jv = −2π`Gp `
W
p

CW ηG [ln(rg + ξ)− ln(ξ)]− CGηW [ln(rg + ξ)− ln(1 + ξ)]

φδ − ψ ,

Js = 2π
`Wp CW γG [ln(rg + ξ)− ln(ξ)]− `Gp CGγW [ln(rg + ξ)− ln(1 + ξ)]

φδ − ψ .

(5.25)
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5.1.6 Numerical methods

We rewrite the non-linear system of PDEs (5.7) as




α
∂p

∂t
=

1

r + ξ

[
∂

∂r

(
F ∂p
∂r

)
+

∂

∂r

(
G ∂Π

∂r

)]
,

∂Π

∂t
=

1

r + ξ

[
∂

∂r

(
HΠ

∂p

∂r

)
+

∂

∂r

(
LΠ

∂Π

∂r

)]
,

(5.26)

for r ∈ (0, 1) and t > 0, in the unknown functions p = p(r, t) and Π = Π(r, t),
where the auxiliary functions are de�ned as

F(r) = +(r + ξ)`p(r),
G(r) = −(r + ξ)`p(r)σ(r),
H(r) = −(r + ξ)`p(r)[σ(r)− 1],
L(r) = −(r + ξ)[`p(r)σ(r)− `d(r)].

(5.27)

We apply the implicit Crank-Nicolson �nite di�erence scheme proposed
in Freeze (1975), which leads to the following non-linear algebraic system

− (Fi−1 + Fi) p
n+1
i−1 +

(
Fi−1 + 2Fi + Fi+1 + α

4(∆x)2

∆t
(ri + ξ)

)
pn+1
i +

− (Fi + Fi+1) pn+1
i+1 − (Gi−1 + Gi) Πn+1

i−1 +

+ (Gi−1 + 2Gi + Gi+1) Πn+1
i − (Gi + Gi+1) Πn+1

i+1 = S
(i,n)
1 ,

2Πn+1
i

[
4(∆x)2

∆t
(ri + ξ)− (Hi−1 +Hi) p

n+1
i−1 + (Hi−1 + 2Hi +Hi+1) pn+1

i +

− (Hi +Hi+1) pn+1
i+1 − (Li−1 + Li) Πn+1

i−1 +

+ (Li−1 + 2Li + Li+1) Πn+1
i − (Li + Li+1) Πn+1

i+1

]
+

−
(
Πn+1

i+1 −Πn+1
i−1

) [
Hi

(
pn+1
i+1 − p

n+1
i−1

)
+ Li

(
Πn+1

i+1 −Πn+1
i−1

)]
= S

(i,n)
2 ,

(5.28)

to be solved using a Newton's method, where the source terms are de�ned
as follows

S
(i,n)
1 := α

4(∆x)2

∆t
(ri + ξ)pni + [(Fi + Fi+1) (pni+1 − pni )− (Fi−1 + Fi) (pni − pni−1) +

+ (Gi + Gi+1) (Πn
i+1 −Πn

i )− (Gi−1 + Gi) (Πn
i −Πn

i−1)] ,

S
(i,n)
2 :=

8(∆x)2

∆t
(ri + ξ)Πn

i + {(Πn
i+1 −Πn

i−1) [Hi (pni+1 − pni−1) + Li (Πn
i+1 −Πn

i−1)] +

+2Πn
i [(Hi +Hi+1) (pni+1 − pni )− (Hi−1 +Hi) (pni − pni−1) +

+ (Li + Li+1) (Πn
i+1 −Πn

i )− (Li−1 + Li) (Πn
i −Πn

i−1)]} .

(5.29)

Note that ∆x denotes the mesh spacing of the spatial grid {ri}N+1
i=0

and ∆t denotes the time step between two adjacent temporal grid points
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{tn}M+1
n=0 , while hydrostatic and the osmotic pressures are approximated by

pni ≈ p(ri, t
n) and Πn

i ≈ Π(ri, t
n), respectively. The auxiliary functions

assume the following values: Fi = F(ri), Gi = G(ri), Hi = H(ri) and
Li = L(ri).

In order to solve system (5.7), we need to prescribe an exit time T > 0,
so that all boundary conditions are de�ned for t ∈ [0, T ], and to compute
the initial conditions. We also take care that rg lies between two spatial grid
points, without being one of them.

For each time step, we need many mesh points to have an accurate re-
construction of the �uxes, as already noted in Chapter 3.

5.2 Validation of the model

In this section, we validate our time-dependent full model, �rst by choos-
ing arbitrary initial conditions, constant boundary conditions and looking
at the convergence of both pressures to the steady-state analytical solutions
reported in Chapter 3. Then, we check the transient nature of our math-
ematical model by modifying the BVP introducing source terms, in order
to have an exact analytical solution of the transient modi�ed problem to
compare it with the numerical solutions at given times.

5.2.1 Steady state

We start from the study of the convergence of the numerical solutions to
the steady-state pressures of the two-layered problem with discontinuous
physiological parameters (namely ε = 0) reported in Chapter 3.

As initial conditions for this convergence study, we choose a linear dis-
tribution of both pressures with constant boundary conditions, equal to the
initial values reported in Table 5.1.

At �rst, there are no signi�cant changes in the osmotic pressure, while
hydrostatic pressure varies continuously (see the solutions at time t = 1.02 ·
10−6 in Figure 5.4), until it reaches a halt at around t = 1.02 · 10−4 (see
Figure 5.5). At this point, osmotic pressure starts to gradually decrease in
proximity of the interface, wedging, while hydrostatic pressure slowly changes
in a coupled way (see the solutions at time t = 1.02 · 10−2), until both
pressures gradually approach the steady-state solutions (see the solutions
at time t = 1.02 · 10−1, namely 13 milliseconds after the initial time, in
Figure 5.4).

In Figure 5.5, the L2-norm of the di�erence between the transient numer-
ical solution and the steady-state analytical solution of both osmotic and the
hydrostatic pressure are depicted with respect to time t. The convergence is
quick at the beginning (until around t = 10−4), but then it gradually slows
down (note that the scale is logarithmic).
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Figure 5.4: Hydrostatic (a) and osmotic (b) pressures for the two-layered
model at given times t ∈ {0, 1.02 · 10−6, 1.02 · 10−4, 1.02 · 10−2, 1.02 · 10−1},
obtained numerically with a spatial grid of 100 points, ∆t = 10−6 · (∆x)2,
ε = 0 and tolerance equal to 10−9 (thin curves/marks), and compared to the
analytical steady-state solutions (thick curves) described in Chapter 3.
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Figure 5.5: L2-norm of the di�erence between the transient numerical solu-
tion (obtained numerically with a spatial grid of 100 points, ∆t = 10−6·(∆x)2

and ε = 0) and the steady-state analytical solution for the two-layered model
of both osmotic (dashed curve) and hydrostatic pressure (solid curve).
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5.2.2 Time-dependent model

To study the transient nature of our mathematical model solved with the
numerical scheme described in Section 5.1.6, we modify system (5.7) by
assuming given pressure distributions p̂(r, t) and Π̂(r, t) and plugging them
into it to obtain a source term vanishing only if the pressure distributions
we have chosen are the exact solutions of the original problem (5.7). The
modi�ed problem can be stated as





α
∂p̂

∂t
− 1

r + ξ

∂

∂r

[
(r + ξ)`p

(
∂p̂

∂r
− σ ∂Π̂

∂r

)]
= Ŝ1(r, t),

∂Π̂

∂t
+

1

r + ξ

∂

∂r

[
(r + ξ)Π̂

(
A
∂p̂

∂r
+B

∂Π̂

∂r

)]
= Ŝ2(r, t).

(5.30)

By assuming the following distributions for the pressures

{
p̂(r, t) = sin (2π t) + sin (2π r) ,

Π̂(r, t) = sin (2π t) + sin (2π r) + 5,
(5.31)

we can validate our problem, by choosing the initial/boundary conditions
equal to equations (5.31) at the boundaries of the domain [0, 10] × [0, T ),
since they are the exact solutions of the modi�ed system (5.30).

Note that the only change in the numerical implementation lies in the
right-hand sides of the discretised equations (5.28), which become now equal

to S
(i,n)
1 + 4(∆x)2(ri + ξ)Ŝ1(ri, t

n+1) and S
(i,n)
2 + 8(∆x)2(ri + ξ)Ŝ2(ri, t

n+1),

respectively, where S
(i,n)
1 and S

(i,n)
2 are the source terms (5.29) of the previous

discretised equations (5.28).
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Figure 5.6: Hydrostatic (a) and osmotic (b) pressures of the modi�ed prob-
lem for the two-layered model after one period (t = 1), obtained numerically
with a spatial grid of 49 points, ∆t = (∆x)2 = 4.3403 · 10−4 and ε = 10−2

(circles), and compared to exact solutions (solid curves).

Since equations (5.31) are periodic in t with period equal to 1, we evaluate
the accuracy of Crank-Nicholson method by comparing the exact solutions
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(solid curves) and the numerical solutions (circles) after one period, as de-
picted in Figure 5.6.

Mesh ∆x ∆t L∞-error L1-error L2-error

7 0.166667 0.0277778 0.437544 0.284086 0.276584
13 0.0833333 0.00694444 0.116974 0.0636364 0.0682671
25 0.0416667 0.00173611 0.0299723 0.0175038 0.0178583
49 0.0208333 0.000434028 0.00734658 0.00463064 0.00446781
97 0.0104167 0.000108507 0.0018257 0.00118912 0.00112179

Table 5.2: Lp-norm errors of the numerical solutions obtained with di�erent
meshes at time t = 1, for the two-layered model and ε = 10−2.

The behaviour of the error, computed as the Lp-norm of the di�erence
between exact and numerical solutions at t = 1, for di�erent meshes is
reported in Table 5.2.

Mesh ∆x ∆t L∞-order L1-order L2-order

13 0.0833333 0.00694444 1.90324 2.1584 2.01846
25 0.0416667 0.00173611 1.96448 1.86218 1.9346
49 0.0208333 0.000434028 2.02849 1.91838 1.99895
97 0.0104167 0.000108507 2.00862 1.96132 1.99377

Table 5.3: Empirical orders of accuracy computed from the di�erent Lp-
norm errors reported in Table 5.2 at time t = 1 for the two-layered model
and ε = 10−2.

Note that empirical orders of accuracy reported in Table 5.3 approach
the theoretical order of accuracy of Crank-Nicholson method, which is second
order. This happens even if we take ∆t = k(∆x)2 with k larger than 1, but
smaller than k = 1000. Indeed, in the latter case the method is no longer
convergent to the analytical solution.

5.3 An application: study of an hemorrhage

In this section we report the results of our simulations, starting from the
comparison between the transient change in external pressures and the mis-
leading assumption of constant extra-vascular pressures.

5.3.1 Initial/boundary conditions in dimensionless form

To solve numerically the partial di�erential equation (PDE) system (5.7) in
the unknown functions p = p(r, t) and Π = Π(r, t), we prescribe the following
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initial conditions
{
p(r, 0) = p0(r),
Π(r, 0) = Π0(r),

(5.32)

where p0(r) and Π0(r) are the steady-state solutions of the ordinary di�er-
ential equation (ODE) system obtained from system (5.7) by imposing zero
time derivative of the pressures





0 =
d

dr

[
(r + ξ)`p

(
dp

dr
− σ dΠ

dr

)]
,

0 =
d

dr

[
−(r + ξ)Π

(
A

dp

dr
+B

dΠ

dr

)]
,

(5.33)

with boundary conditions given by (p0
c ,Π

0
c) and (p0

o,Π
0
o) as in Table 5.1.

Moreover, in order to reach a steady situation after the alteration of the
initial pressure and in order to have an accurate description of the changes
in the �uxes with respect to the time, we impose an exit time of T = 10
(around 1.3 sec) and a �xed time step equal to ∆t = (∆x)2 (about 128
milliseconds), small if compared to the time scale.

Our aim is to simulate the experiment described in Levick and Michel
(2010), so we abruptly (at a time t̂ = 0.5T ) decrease the internal hydrostatic
pressure from an initial value p0

c to a �nal value pTc , keeping the internal
osmotic pressure constantly equal to Π0

c :

{
p(rc, t) = pc(t) = p0

c + (pTc − p0
c)H(t− t̂),

Π(rc, t) = Πc(t) = Π0
c ,

(5.34)

where H(x) is the Heaviside step function (see e.g. Kawamoto et al., 2011)
de�ned as

H(x) =





0, x < 0,
1/2, x = 0,
1, x > 0.

(5.35)

Then we assume two di�erent types of external boundary conditions, as
depicted in Figure 5.7: the �rst one with constant values of the external
pressures, namely

{
p(ro, t) = po(t) = p0

o,
Π(ro, t) = Πo(t) = Π0

o,
(5.36)

and the second one with the following physiological change in the external
pressures, recovered qualitatively from Figure 3 in Levick and Michel (2010):




p(ro, t) = po(t) = p0
o − (pTo − p0

o)H(t− t̂)
[
e−β(t−t̂) − 1

]
,

Π(ro, t) = Πo(t) = Π0
o − (ΠT

o −Π0
o)H(t− t̂)

[
e−β(t−t̂) − 1

]
,
(5.37)
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where

β =
1

t̂− τ W

(
t̂− τ

ΠT
o −Π0

o

10−1

)
(5.38)

controls the speed necessary to reach at time τ = 0.7T (> t̂ ) �almost�
constant external pressures1, if the abrupt drop in the internal hydrostatic
pressure occurs at t̂ = 0.5T . W(x) is the Lambert W function (see e.g.
Corless et al., 1996; Barry et al., 2000), also called omega function or product
logarithm, which is the inverse function of z → z ez.
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Figure 5.7: Behaviour of the boundary conditions, both for constant external
pressures (a) as described in equations (5.34)-(5.37) and for pressures varying
with time (b) and following equations (5.34)-(5.36).

5.3.2 How to model external pressures

We �rst consider a vessel wall composed by two homogeneous layers, with
parameters varying gradually between them (namely ε2 = 10−4), to study
the consequences on �uxes of the choice of constant external boundary con-
ditions as in equations (5.36) or if we vary them following equations (5.37).

For t ≤ t̂, since external boundary conditions are the same both cases,
there are no di�erences in the �uxes (see Figure 5.8), after choosing to solve

1 In the sense that we impose that at t = τ the derivative of the external pressure
function is �almost� zero, namely equal to a given tolerance (here the value prescribed
was 10−1).
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Figure 5.8: Behaviour of the mean volume (a)-(c) and solute (b)-(d) �uxes,
reconstructed from both the complete non-linear system (a)-(b) and from
the linearised problem described in Section 5.1.5 (c)-(d). The numerical
solutions for the pressures were computed using a spatial grid of 100 points
and ∆t = (∆x)2. The external pressures are assumed either constant as
in equations (5.36) (solid curves) or varying with time following equations
(5.37) (dashed curves).

either the complete problem or the linearised problem obtained from it as
described in Section 5.1.5.

Note that the linearised problem has a steady-state solution di�erent
from that of the full problem, thus it takes some time (∼ 0.02T , namely
around 26 milliseconds) to reach its own steady-state solution. In Sec-
tion 5.1.5 are reported the steady-state solutions of the linearised problem
both in the case of a single homogeneous layer, with equivalent parameters
as described in Chapter 3, and in the case of a vessel wall composed by
two layers with physical features varying discontinuously and taken from
Table 5.1.

In Table 5.4 are reported the values of volume and solute �uxes, at some
given times: (a) for t = 0, (b) immediately before the drop in luminal
hydrostatic pressure, namely at t = t̂−, (c) immediately after pc is reduced,
namely at t = t̂+ and (d) at the exit time t = T .

The minimum is attained for t = t̂+ and is usually lower for the linearised
problem compared to the full problem. At the exit time, solute �ux is always
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positive, even if considering constant external pressures it is lower (848.252
for the complete problem and 822.554 for the linearised problem) compared
to external pressures varying following equations (5.37), where solute �ux is
equal to Js(T ) = 1097.77 for the complete problem and Js(T ) = 907.579 for
the linearised problem. But we see the most relevant e�ects on the �uxes of
the choice of external boundary conditions for t > 0.5T , namely after the
abrupt drop in luminal hydrostatic pressure. As a matter of fact, over time
the two �uxes do not increase with the same speed, neither they reach the
same stationary value, as depicted in Figure 5.8. The latter is due to the
fact that the �nal external boundary conditions are di�erent, (pTo ,Π

T
o ) for

transient BCs and (p0
o,Π

0
o) in the constant case.

Mean volume �ux

Layers BCs Problem t = 0 t = t̂− t = t̂+ t = T

2 Constant Complete 406.57 406.57 −308.541 −257.008
2 Constant Linearised 406.57 372.929 −318.758 −268.854
2 Transient Complete 406.57 406.57 −306.794 103.93
2 Transient Linearised 406.57 372.929 −316.765 98.995
1 Transient Complete 406.57 406.57 −204.885 124.323
1 Transient Linearised 406.57 406.57 −204.885 124.323

Mean solute �ux

Layers BCs Problem t = 0 t = t̂− t = t̂+ t = T

2 Constant Complete 1878.38 1878.38 −370.162 848.252
2 Constant Linearised 3379.94 1880.08 −1426.91 822.554
2 Transient Complete 1878.38 1878.38 −426.027 1097.77
2 Transient Linearised 3379.94 1880.08 −1524.36 907.579
1 Transient Complete 1878.72 1878.72 −2.79111 849.76
1 Transient Linearised 1673.73 1670.06 107.945 689.012

Table 5.4: Mean volume and solute �uxes for certain times, both for the
complete non-linear system and for the linearised problem described in Sec-
tion 5.1.5. The numerical solutions for the pressures were computed using
a spatial grid of 100 points and ∆t = (∆x)2. The external pressures are
assumed either constant as in equations (5.36) or varying with time (tran-
sient BCs) following equations (5.37). The values of the �uxes are reported
both for the two-layered model and for the single-layered model with equiv-
alent dimensionless parameters equal to σeq = 0.7987, `eqp = 0.8247 and
`eqd = 0.5838, following the procedure described in Chapter 3.
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The main di�erence between the two approaches in the assumptions for
the external pressure behaviour appears looking at the volume �ux (see Ta-
ble 5.4); as a matter of fact, for constant external pressure, after the drop in
internal hydrostatic pressure which causing a decrease in volume �ux taking
negative values, the �ux remains negative, being equal to Jv(T ) = −257.008
and Jv(T ) = −268.854 for the complete and linearised problem, respectively.
The situation is di�erent for external pressures varying in a physiological
way, that is following equations (5.37). Indeed, after a transient decrease in
volume �ux immediately after internal hydrostatic pressure drop (where the
�ux becomes negative), the �ux returns being positive, assuming at the exit
time t = T (positive) values, Jv(T ) = 103.93 and Jv(T ) = 98.995 for the
complete and linearised problem, respectively. This con�rms the description
in Levick and Michel (2010) of a transient absorption, followed by a condition
of steady �ltration.

The linearised problem has a very similar behaviour to the full problem,
but, in general, the �ows assume lower values than those of the complete
problem, except in the transition phases (at the beginning and immediately
after the drop in internal hydrostatic pressure).

5.3.3 Comparison between the single- and two-layered mod-
els

We now consider transient external pressures varying following equations
(5.37) and compare the single- and two-layered models.

As described in Chapter 3, the single-layered model is a simpli�cation in
which vessel wall is assumed as composed by an homogeneous material, with
mean physical properties. They are obtained taking the mean of the re�ec-
tion coe�cient described in Sugihara-Seki and Fu (2005) and than imposing
that at the initial time both volume and solute �uxes are the same either
if reconstructed numerically (J0

v and J0
s ) using the two-layered model with

discontinuous parameters (namely for ε = 0) or if computed using equivalent
values of `p and `d (taken constant in the whole domain). The values used
in the computations are the following:

σeq =
`Gp `

W
p

`Gp + `Wp

(
σG

`Gd
+
σW

`Wd

)
,

`eqp = −J
0
v

2π

ln(ξ)− ln(1 + ξ)

(pc − po)− σeq(Πc −Πo)
,

`eqd = `eqp σ
2
eq −

1

2π

(
J0
v

)2
(σeq − 1)2 [ln(ξ)− ln(1 + ξ)]

J0
v (σeq − 1)(Πc −Πo)− J0

s ln

(
J0
v (σeq − 1)Πc + J0

s

J0
v (σeq − 1)Πo + J0

s

) ,

(5.39)
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where (pc,Πc) and (po,Πo) are the initial values of the pressures at r = 0
and r = 1, respectively.

In Figure 5.9 the comparison of both �uxes between the single- (1L) and
two-layered (2L) model are depicted. We may note that the �uxes obtained
using the single-layered model are usually higher if compared to the ones
obtained from the two-layered model, except from the initial solute �ux of
the linearised problem, which is far away from its steady-state value (see
Table 5.4).
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Figure 5.9: Comparison of the mean volume (a) and solute (b) �uxes, recon-
structed from the full non-linear system (solid curves) and from the linearised
problem described in Section 5.1.5 (dashed curves), for external pressures
varying following equations (5.37). The numerical solutions for the pres-
sures were computed using a spatial grid of 100 points and ∆t = (∆x)2.
The �uxes obtained considering the two-layered model are depicted with
thick curves, while the ones of the single-layered model are depicted with
thin curves. The equivalent dimensionless parameters are assumed equal to
σeq = 0.7987, `eqp = 0.8247 and `eqd = 0.5838.

Another important di�erence lies in the solute �ux behaviour during
the transition phase, in which slight (Js = −426.027) or signi�cant (Js =
−1524.36) absorption occurs in the two-layered model, depending on the
problem considered (full or linearised, respectively). On the other hand, in
the single-layered model extravasation happens for the linearised problem
(Js = 107.945), even if the internal hydrostatic pressures is dramatically
reduced; while really slight absorption occurs for the full problem (Js =
−2.79111).

In Figures 5.10 and 5.11, the numerical solutions of the full PDE system
(5.7) for the two- and single-layered model are depicted.

We may see that the behaviour of both hydrostatic and osmotic pres-
sure is quite di�erent in the two models. In particular, the decrease of both
hydrostatic and osmotic pressures from the inner part of the domain to the
outer part is more pronounced in the glycocalyx layer of the two-layered
model. Moreover, even if the range of the pressures are totally similar in the
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Figure 5.10: Hydrostatic (a) and osmotic (b) pressures obtained numerically
with a spatial grid of 100 points and ∆t = (∆x)2 for the two-layered model,
for external pressures varying following equations (5.37).
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Figure 5.11: Hydrostatic (a) and osmotic (b) pressures obtained numerically
with a spatial grid of 100 points and ∆t = (∆x)2 for the single-layered model,
for external pressures varying following equations (5.37). The equivalent
dimensionless parameters are assumed equal to σeq = 0.7987, `eqp = 0.8247
and `eqd = 0.5838.

two models, the dilution at the interface rg, typical of the two-layered model,
is absent in the single-layered model. Osmotic pressure at the interface be-
tween glycocalyx and endothelial layers can be signi�cantly di�erent from
the extra-vascular osmotic pressure Πo, being around 70− 90% of Πo under
normal conditions of capillary pressure and �ltration rate (Levick, 2010).
The reason behind this phenomenon lies in the sieving e�ect of glycocalyx.
Indeed, blood plasma passes through it, but proteins are blocked, demon-
strated by the tremendous decrease of osmotic pressure in the glycocalyx
layer, accompanied by a slight reduction in hydrostatic pressure in the same
region (see Figures 5.10). Due to the high velocity of the �uid in the �rst
region and the solute slow motion (due to di�usion) in the endothelial region
(look at the small di�erence in the osmotic pressure between the interface
rg and the interstitial osmotic pressure Πo at the initial time t = 0), plasma
proteins are pushed outward and the current prevents them from going back
by di�usion, thus creating a zone in which their concentration (and thus its
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osmotic pressure) is lower.
A surprising �nding is that dilution at the interface is not present in the

full problem at the exit time, where osmotic pressure decreases monotoni-
cally. On the contrary, at the exit time, the linearised problem shows an
osmotic pressure at the interface equal to 11.46, slightly lower than its value
at r = 1, which is 11.54 (not shown here).

5.4 Conclusions

We have presented a one-dimensional multi-layered mathematical model,
with �ltration and transport di�erential equations strongly coupled and the
solute �ow being non-linear.

With our model, we have been able to provide a theoretical basis to con-
�rm that a sudden drop in luminal hydrostatic pressure, as during hemor-
rhage, produces an initial transient absorption of interstitial �uid, followed
by a gradual increase in both volume and solute �ux until both of them
assume positive values; this translates into steady �ltration and solute ex-
travasation under normal conditions of internal pressures.

This is a qualitative con�rm of what stated in Levick and Michel (2010),
also describing what happens in the transient phase, both in terms of pressure
distribution in vessel wall and in terms of volume and solute �uxes across it.

We have also implemented a simpli�ed model in which the PDE system
is linear, giving reasonable steady �uxes, even if the description of the phys-
ical phenomenon in the transient phase is not so accurate. We have also
compared this two-layered model with a single-layered model with equiva-
lent parameters, noting that the results are signi�cantly di�erent from each
other, even showing solute extravasation also in the transient phase of the
single-layered model.





Chapter 6

Conclusions and further work

This dissertation focused on micro-�ltration across microvessel wall in both
stationary and transient conditions and considering the impact of blood pres-
sure anomalies and damages of the cells composing the microvessel wall.
Possible applications are in studying the origin of degenerative diseases and
in drug delivery. For the purpose of mathematical modelling, the microves-
sel wall is idealised as a multi-layered membrane with material properties
homogeneous within the single layer, but changing across the layers to rep-
resents the compartments with di�erent specialisations. The application of
the mass conservation principle for both solvent and solute under isothermal
non-equilibrium thermodynamic conditions leads to a system of two di�eren-
tial conditions equations; the �rst is linear and represents mass conservation
of the solvent, the second is non-linear and represents the conservation of
the solute (macromolecule). The two equations are coupled through the
osmotic pressure. This model is solved, numerically and when possible ana-
lytically, assuming radial symmetry, which is a reasonably assumption given
the negligible compliance of microvessels.

Chapter 1 provides an overview of micro-vascular exchange system phys-
iology, including the main anatomic features of blood microvessels. The
assumptions adopted in the development of the mathematical model are jus-
ti�ed on the basis of physiological properties. The permeability coe�cients
used to model the vessel wall have been de�ned and their distribution across
vessel wall has been described.

A �rst simpli�ed analysis is presented in Chapter 2, by neglecting the
coupling of �ow and transport equations. Despite this rather extreme sim-
pli�cation, the model reasonably describes �ltration and macro-molecules
transport across vessel wall, in the particular case of high pressures (as for
arterial vessels or for pathological conditions of venous hypertension). This
preliminary model has been used to explore the e�ects of hydrostatic pressure
increase on �uid �ltration and on the time needed for a single solute molecule
to cross vessel wall. Indeed, this simpli�cation permits to solve steady-state
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�ow and transport equations separately and to analyse the travel time of
macro-molecules across the vessel wall, showing an increase of both plasma
�ltration and travel time with the hydrostatic blood pressure, which are in
agreement with existing physiological studies.

Chapter 3, while still being a steady model, is a coupled model which
allows for low pressures, by taking into account the modern view where �ow
absorption cannot occur in steady-state conditions unless luminal hydrostatic
pressure drops below physiologically plausible values. This revised view de-
scribes a venous system continuously in a condition of slight �ltration, which
can absorb interstitial �uid and solute only transiently or in pathological con-
ditions. This is contrary to common belief, where arterial vessels would be
in a state of constant �ltration of oxygen and nutrients, while venous vessels
would continuously absorb carbon dioxide and waste products. Now, this
reabsorption role of venous vessels has been recently disproven in favour of
lymphatic system drainage and �ltration both in arterial and in venous cir-
culatory system, under physiological conditions. This new view of �ltration
among all blood vessels under physiological conditions, apart from being in
qualitative agreement with experimental observations, is strengthened by the
important and often neglected role of osmotic pressure induced by the col-
loidal plasma proteins, which strongly couples �ow and transport equations
one to each other. Despite the complexity of this ODE system describing
transport processes, a mathematical analysis has been carried out obtaining
analytical solutions for the hydrostatic and osmotic pressures in steady state
under the assumption that the membrane properties are piece-wise constant,
in agreement with experimental observations.

Microvessel wall description plays an important role in the mathematical
model. Indeed, homogenising microvessel wall into a single-layered homo-
geneous membrane with equivalent properties leads to an unrealistic dis-
tribution of pressure across microvessel wall, not consistent with observa-
tions. Microvessel wall is a composite medium with the internal glycocalyx
layer exerting a remarkable sieving e�ect on macromolecules, with respect
to the external layer composed by the endothelial cells; we have represented
its physiological structure through the superimposition of two homogeneous
axially-symmetric membranes with di�erent properties: the inner membrane
representing the glycocalyx and the outer membrane standing for the sur-
rounding endothelial cells. In the case of a composite vessel wall, comprising
two membranes with discontinuous physical properties (and thus physiolog-
ical parameters), the analytical solution of the coupled �ow and transport
equations, with the latter being non linear, has been reported. Also the case
of smooth transition has been explored by using a suitable numerical scheme
and the results of our model have been compared with others taken from
the literature. A striking di�erence has been shown between the single- and
two-layered models, with the �rst predicting much higher pressures at the
interface between glycocalyx and endothelial cells and a gradual decline of
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both pressures across microvessel wall, with a gradient increasing with the
distance to account for the progressive increase of the surface crossed by the
�ows. On the other hand, the two-layered model has shown a smooth but
steep decline of both hydrostatic and osmotic pressures within glycocalyx,
due to the strong sieving e�ect that the glycocalyx exerts on macromolecules
(modelled by using a re�ection coe�cient close to 1), such that only a very
small fraction of them reaches the clefts. Then, due to the larger aperture
of the clefts, macromolecules have been shown to move with small to neg-
ligible hindrance (represented by adopting a small re�ection coe�cient), as
soon as they have crossed the glycocalyx. In particular, osmotic pressure has
shown to decline rapidly across glycocalyx, reaching a minimum at the inter-
face with endothelial cells and then increasing again to the value imposed as
boundary condition at the external surface of microvessel. This dilution in
the clefts just outside glycocalyx, which homogeneous single-layered models
are unable to reproduce, is an important physiological mechanism, which
has been indicated by Michel (1997) and Weinbaum (1998) as the cause pre-
venting reversal steady-state �ow (absorption) when capillary hydrostatic
pressure was lowered to 10−15 cm H2O (7.35−11.03 mmHg) in Landis' ex-
periment (Landis, 1927). Concentration of macromolecules was small at the
interface between glycocalyx and endothelial cells, resulting in an osmotic
pressure smaller than in the interstitium, due to the high selectivity of gly-
cocalyx. This feeds back to hydrostatic pressure, which also shows a strong
decline within glycocalyx, followed by a mild reduction across endothelial
cells. Hydrostatic pressure was not di�erentiable at the interface between
the two layers, due to the discontinuity in material properties, but pressure
gradient does not reverse across endothelial cells, as for osmotic pressure.
Our two-layered model has resulted in proving that most of the pressures
drop between lumen and interstitium occurs in the glycocalyx, con�rming
the importance of this hydrated gel in controlling �ow and solute mass ex-
change (see e.g. Levick, 2010).

The results of our simulations have been discussed, emphasising the com-
bined e�ect of glycocalyx and endothelial cells on controlling volumetric �ow
and solute mass transport across microvessel wall, which the single-layered
model is unable to capture. The alterations of volumetric �ux and solute
mass �ux, in case of a signi�cant reduction of luminal hydrostatic pressure,
have been in qualitative agreement with observed variations during detailed
experiments reported in the literature. If the strong coupling between �ow
and transport equations is neglected, serious mistakes in quanti�cation of
volume and solute �ows exiting microvessels may occur.

In Chapter 4 we have extensively applied the steady-state model pre-
sented in Chapter 3 to investigate the e�ects on exchange of �uid and macro-
molecules across a typical microvessel wall, both in the case of glycocalyx
deterioration, either due to enzymatic digestion or to agonist recruitment,
and in hypertensive zones such as pre- and post-stenotic blood vessels. Since
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the �bre matrix of surface glycocalyx layer is located in the lumen side of
microvessel, it has been recognised as crucial for micro-vascular wall home-
ostasis and has been shown to be more prone to be damaged than endothelial
cells. Indeed, degradation and/or loss of glycocalyx have been shown at high
shear-stress zones (such as at atherosclerosis-prone sites), during exposure
to in�ammatory stimuli, atherogenic/cardiovascular risk factors and in re-
sponse to agonists such as adenosine. The e�ects of glycocalyx deterioration,
either due to enzymatic digestion or to agonist recruitment, on plasma �ltra-
tion and solute extravasation has been explored, by carefully justifying how
to model the change in the physiological parameters describing glycocalyx
structure and functions. Particular attentions has been devoted to correctly
describe the relations among the transport parameters both in physiologi-
cal and pathological conditions. What emerged has been that a seriously
damaged glycocalyx produces an augmentation of �ux of both solvent and
solute, thus losing its role of transport barrier and macro-molecular sieve, as
observed in the experiments of van den Berg et al. (2003). Analogously, the
e�ects of capillary pressure increase, as in the case of hypertension, on both
�uxes have been investigated, showing an augmentation of both volume and
solute �uxes, in agreement with experimental results (Valenzuela-Rendon
and Manning, 1990b,a). A physiological or pathological increment of blood
pressure, as pre- and post-stenotic blood vessels, has been considered and
studied also in concomitance with glycocalyx damage. The concurrence of
glycocalyx degradation and hypertension has been shown to further raise
plasma and solute �uxes, leading in most severe cases to oedema and hem-
orrhage, as in the case of diabetes.

Blood pressure continuously changes during time due to heart beat, ner-
vous control and baro-re�exes, and is known to decrease along capillaries,
thus reducing �ltration rate. Under normal conditions, a well-perfused cap-
illary is in a state of �ltration along its entire length, but it can absorb �uid
transiently when pressure falls (for instance, during hemorrhage and other
forms of hypovolemia). A transient change in external pressures occurs,
leading to decay in absorption and to restoration of a steady state of slight
�ltration. In fact, sub-glycocalyx plasma protein concentration increases as
interstitial �uid is absorbed from a position between the glycocalyx and the
endothelium, while interstitial pressure decreases as �uid is removed from
interstitium, lowering the pressure exerted outside vessel wall. Two di�er-
ent sets of external pressures have been considered to investigate the e�ects
of a sudden capillary pressure drop on transport processes: the �rst set of
constant external pressures, while the other considering the change in inter-
stitial pressure due to transient absorption of plasma and proteins. To take
into account also the dynamic changes in trans-vascular �ow in the case of
transient pressures (as during hemorrhage), a time-dependent mathematical
model of trans-vascular phenomena was needed. Thus, the time-dependent
mathematical model of Chapter 5 has been developed to study this inter-
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esting subject. The governing equations have been again obtained applying
the mass conservation principle for both solvent and solute under isothermal
non-equilibrium thermodynamic hypothesis. We have solved them using a
�nite-di�erence Crank-Nicolson numerical scheme, validating our model �rst
through a test in which, imposing constant boundary conditions, the steady-
state analytical solutions is reached in a �nite time and then testing also
the time-dependent nature of the model. With our time-dependent model,
a theoretical basis has been provided to con�rm that a sudden drop in lumi-
nal hydrostatic pressure, as during hemorrhage, produces an initial transient
absorption of interstitial �uid, followed by a gradual increase in both volume
and solute �uxes until both of them assume positive values; this translates
into steady �ltration and solute leakage under normal conditions of internal
pressures, as described by Levick and Michel (2010). Thanks to this math-
ematical model, it has also been possible to describe quantitatively what
happens in the transient phase, both in terms of pressure distribution across
vessel wall and in terms of trans-vascular �uxes. Due to the simplicity, and
thus e�ciency of our model, all the simulations presented in this dissertation
have been rather fast and have been providing results in line with physio-
logical studies. Furthermore, the simulation tool may be useful for practical
applications in physiological and medical studies, by evaluating the possible
consequences of pathological conditions.

Among the potential further developments of the proposed model is a
reformulation of the original time-dependent parabolic system through a re-
laxation parameter ε� 1. We thus obtain an hyperbolic system eventually
with a sti� source term, which provides the original parabolic equations in
the limit as ε → 0. The advantage of this hyperbolised approach lies in
the implementation of high-order, �nite volume schemes with little e�ort,
resulting in an increase of the e�ciency of the numerical method used, since
in general from an e�ciency point of view, given a small target error, it is
more convenient to increase the order of accuracy of a scheme than to re�ne
the mesh to compute solutions more accurately. Another natural develop-
ment of the proposed trans-vascular model is its coupling to haemodynamics,
since plasma �ltration and solute transport are closely linked to local blood
�ow dynamics. As a matter of fact, it has been observed that vessel oc-
clusion, resulting in anomalous blood �ow and hypertension, is associated
with the tendency to oedema formation and perivascular accumulation of
material (see for instance Mayhan and Heistad, 1985, 1986; Singh and Zam-
boni, 2009). The aim of trans-vascular transport studies is to determine the
in�uence of disturbed �ow patterns �rst on luminal pressure and then on
the local concentration of substances both in the lumen and in the vessel
wall. Another fundamental issue lies in the development of a model that
includes more than two layers, necessary to accurately describe plasma and
solute transport across cerebral vessel walls (composing the blood-brain bar-
rier), which are characterised by three additive external layers: the pericytes,
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the basement membrane and the astrocyte feet (Hawkins and Davis, 2005).
This would result in a better understanding of neuro-degenerative conditions
which seem to be connected to vascular and/or transport anomalies, such as
Parkinson's disease, Alzheimer's disease and multiple sclerosis (Hawkins and
Davis, 2005; Li et al., 2010). Drug delivery in the treatment of diseases could
also be explored and potentially optimised by extending the current mod-
els. All these are very controversial issues in which accurate mathematical
modelling may provide a starting point in new medical research �elds.



List of quantities and their

dimension

Symbol Dimension Quantity name

p ML−1T−2 hydrostatic pressure
Π ML−1T−2 osmotic pressure
c NL−3 macro-molecular molar solute concentration
qv LT−1 speci�c volume discharge
qs NL−2T−1 speci�c solute discharge through the capillary wall
Jv L2T−1 volume �ux per unit length of vessel
Js NT−1L−1 solute �ux per unit length of vessel
`p TL3M−1 hydraulic conductivity of a membrane
`d TL3M−1 di�usional permeability of a membrane
σ 1 re�ection coe�cient
ϕ 1 partition coe�cient
ρ ML−3 density of the �uid
g LT−2 gravitational acceleration
Ss L−1 (volumetric) speci�c storage
R ML2N−1Θ−1T−2 gas constant
T Θ absolute temperature
Dfree L2T−1 free di�usion coe�cient
Lp TL2M−1 hydraulic conductivity of the capillary wall
Pd LT−1 di�usional permeability to a particular solute
∆r L capillary wall thickness
`G L glycocalyx thickness
rc L capillary radius
rg L radius of the interface between glycocalyx and endothelium
ro L external radius of the vessel wall
pc ML−1T−2 capillary hydrostatic pressure
po ML−1T−2 interstitial hydrostatic pressure
Πc ML−1T−2 capillary osmotic pressure
Πo ML−1T−2 interstitial osmotic pressure
σG 1 glycocalyx re�ection coe�cient
σW 1 endothelial cells re�ection coe�cient
`Gp TL3M−1 glycocalyx hydraulic conductivity

`Wp TL3M−1 endothelial cells hydraulic conductivity

`Gd TL3M−1 glycocalyx di�usional permeability
`Wd TL3M−1 endothelial cells di�usional permeability

Table 1: Notation and dimensions of the quantities. L is the length, T is the
time, M is the mass, Θ is the temperature and N is the number of moles.
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