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Abstract

This thesis is devoted to the study of the hydrodynamic behavior of the unitary

Fermi gas trapped by a highly elongated harmonic potential. Propagation of sound

is one of the most exciting features exhibited by interacting many-body systems. It

provides crucial information on the dynamic behavior of the system as well as on

key thermodynamic quantities. The propagation of sound is particularly interesting

in superfluids where two-fluid hydrodynamic theory predicts the occurrence of two

different sounds: first sound, where the normal and superfluid component oscillate in

phase, and second sound, where the two components oscillate with opposite phase.

In the thesis, we investigate the propagation of sound waves of the unitary Fermi

gas in a cylindrical geometry by solving the equations of two-fluid hydrodynamics

in the ‘1D’ scenario at finite temperature. The relevant thermodynamic functions

entering the hydrodynamic equations are discussed in the superfluid and normal

regimes in terms of universal scaling functions. Both the first sound and second

sound solutions are calculated as a function of temperature and the role of the

superfluid density is explicitly pointed out. The density fluctuations in the second

sound wave are found to be large enough to be measured as a consequence of the

finite thermal expansion coefficient of the gas, which is the strategy used in a recent

experiment carried out at Innsbruck where second sound was detected in the unitary

Fermi gas.

We also provide an investigation of the temperature dependence of the collec-

tive oscillations of first sound nature exhibited by a highly elongated harmonically

trapped Fermi gas at unitarity, including the region below the critical temperature

for superfluidity. Differently from the lowest axial breathing mode, the hydrody-

namic frequencies of the higher-nodal excitations show a temperature dependence,
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which is calculated starting from Landau two-fluid theory and using the available

experimental knowledge of the equation of state.
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Chapter 1

Introduction

1.1 Historical overview

With the discovery of superfluid helium, the study of strongly interacting systems

entered a new era. Following the discovery that liquid 4He exhibits a superfluid

phase when cooled below the λ-point [1, 2], L. Tisza suggested the existence of two

types of sound-like oscillations in the superfluid phase [3, 4]. Landau [5] developed a

successful quantitative two-fluid model (comprising a normal component, which be-

haves like an ordinary fluid, and a superfluid component with zero viscosity and zero

entropy), that could account for many of the properties of superfluid 4He. The two-

component nature in the superfluid phase is manifested in the occurrence of ‘second

sound’, an entropy wave in which the superfluid and the non-superfluid components

oscillate with opposite phases, as opposed to ordinary ‘first sound’, where they os-

cillate in phase. Second sound has attracted much attention in the literature mainly

because the velocity of this peculiar sound is determined by the superfluid density.

Actually in liquid 4He the most accurate determination of the temperature depen-

dence of the superfluid density is obtained through the measurement of the second

sound velocity [6, 7]. These data allowed Landau to establish the correct form of

the spectrum of the elementary excitations of 4He, including the roton minimum [8].

The search for other systems possessing similar properties has been carried out

extensively and successful achievements have been made in ultracold atomic gases.

In 1995, the first BEC in a dilute atomic gas was realized in the laboratory on vapors
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2 Introduction

of rubidium [9], and very quickly in the same year on sodium and lithium [10, 11].

The degenerate Fermi gas was obtained a few years later in several laboratories [12,

13, 14, 15, 16]. In contrast to bosons (particles with integer spins) which can form

a condensate at sufficient low temperatures, fermions (particles with half-integer

spin) avoid to occupy the same single particle state because of the Pauli principle.

However, also the Fermi gas exhibits a transition to the superfluid phase due to the

presence of the atom-atom interactions. The exclusion principle actually poses a

challenge (in cooling) and at the same time, yields a unique opportunity (in view of

the suppression of the three-body recombination rate) to achieve a stable strongly

interacting degenerate Fermi gas, contrary to a strongly interacting Bose gas, which

is unstable due to three-body collisions. In 2002, a strongly interacting Fermi gas

was first achieved by the Duke group [17], where fermionic atoms are cooled down to

quantum degeneracy and the atomic interactions are dramatically enhanced through

a Feshbach resonance [18].

In the case of ultracold dilute gases, only s-wave scatterings are important and

interactions are well characterized by a single parameter, i.e., the so-called s-wave

scattering length ‘a’. In this approximation, only fermions in different hyperfine

states interact due to the Pauli principle, therefore two different internal states are

considered instead in this case, and the system is often called a two-component

Fermi gas. By tuning an external magnetic field across a Feshbach resonance [18],

the interatomic interactions in a two-component Fermi gas can be changed pre-

cisely from weak to infinitely strong, leading to the observation of crossover from

a BEC-type system (for positive scattering length) to a fermionic superfluid with

Bardeen-Cooper-Schrieffer (BCS) type pairing (for negative scattering length). At

resonance, the s-wave scattering length a is infinite and the effective range of inter-

action is negligible, leading to a strongly interacting system with universal behavior

[19]. Under this circumstance, the s-wave cross section reaches its largest possible

value (unitary limit). This regime is called unitarity and the strongly interacting

degenerate Fermi gas is also referred to as the unitary Fermi gas. Due to the precise

control of geometry, purity and interactions in these systems, they have become

ideal laboratories to explore important quantum phenomena and provided a fruitful

playground to test many-body theories of quantum systems (see [20, 21, 22] and

[23, 24, 25] for reviews).
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A peculiar feature of ultracold gases is that they are confined, the confinement

being often of harmonic shape. In the case of highly elongated configurations, it

is possible to investigate directly the propagation of sound waves, by generating a

perturbation in the center of the trap and subsequently investigating the time and

space propagation of the resulting signal along the long axis [26, 27, 28]. Propagation

of sound provides crucial information on the dynamic behavior of the system as

well as on key thermodynamic quantities. Most of theoretical investigations in

trapped atomic gases have been so far carried out at zero temperature, where only

the first sound oscillations exist, both in the Bose-Einstein condensed gas and in

the interacting Fermi gas. The propagation of sound near zero temperature, and

in particular the value of the sound velocity, have been the object of systematic

studies, and the general agreement between theory [29, 30] and experiments [26, 27]

is satisfying, both for Bose and Fermi superfluids (for a review see, for example, [20]

and [24]).

Much less is known about the behavior of sound at finite temperature. This is

due to various reasons. On one hand the realization of the collisional regime in the

thermal component of a Bose gas, needed to apply the equations of hydrodynamics,

is not obvious due to the very dilute and weakly interacting nature of the system.

On the other hand the accurate control of temperature requires sophisticated ex-

perimental techniques. From the theoretical point of view the implementation of

dynamic theories at finite temperature is much more difficult than at zero temper-

ature [31], especially in the realistic case of trapped configurations. The situation

becomes particularly challenging in the study of second sound, due to the intrinsic

difficulties in generating and monitoring temperature waves and in providing accu-

rate theoretical predictions for their behavior. The first attempt to investigate the

relative motion of the condensate and the thermal component was carried out [32]

after the creation of the Bose-Einstein condensate by the MIT group and followed

almost 10 years later by R. Meppelink et al in Ref. [33] where the use of denser

samples permitted one to explore collisional damping effects. The corresponding

temperature dependence of the speed of sound has been measured in Ref. [34],

stimulating a recent theoretical interpretation in Ref. [35]. However, in weakly

interacting Bose-Einstein condensed gases, second sound behaves quite differently

from the case of liquid helium II. In such systems, over the experimentally relevant
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temperature range, second sound reduces to an oscillation of the condensate, the

thermal component remaining practically at rest. In contrast to dilute Bose gases,

the unitary Fermi gas characterized by strong interactions is more similar to liq-

uid helium II as revealed in a recent experimental observation of the propagation

of sounds in Ref. [36]. We will investigate the sound propagations in the unitary

Fermi gas in highly elongated harmonic traps, where the Landau two-fluid descrip-

tion of finite temperature collisional dynamics is expected to be valid, through the

formulation of the so-called one-dimensional (1D) hydrodynamic approach [37].

When the wavelength is comparable with the size of the sample, the confine-

ment causes the discretization of sound waves in the form of collective oscillations.

Collective oscillations provide powerful tools to understand the physical behavior of

quantum many-body systems from different points of view and to test fundamental

theories. On one hand, collective modes can be used to explore different dynamical

regimes of the system, such as superfluid, collisional, or collisionless regimes, for

both Bose and Fermi statistics [20, 21, 22, 23, 24, 25]. On the other hand, the mode

frequencies allow to probe and test the equation of state (EOS) of the system, in-

cluding its temperature dependence. Collective modes have been studied very early

in BEC gases, both experimentally [38, 39] and theoretically [40]. Collective modes

in strongly interacting Fermi gases attracted immediate attention [41, 42, 43] as soon

as these systems became experimentally available. In the case of BEC gases these

studies have permitted to check the validity of superfluid hydrodynamic theory at

zero temperature [40] and investigate new interesting phenomena [44, 32, 45, 46, 47].

In the case of interacting Fermi gases, along the BEC-BCS crossover, they have per-

mitted to investigate fine details caused by the interactions and quantum statistical

effects in the excitation spectrum of the discretized oscillations [41, 48], including

the beyond mean field Lee-Huang-Yang effect [49]. The temperature dependence

has been studied experimentally in Refs. [50, 51, 52]. Remarkably, at unitarity all

these modes turned out to be insensitive to the superfluid v.s. non-superfluid nature

of the gas, with their frequencies remaining independent of temperature throughout

the hydrodynamic regime. Recently, a joint theoretical and experimental investiga-

tion of the temperature dependence of the higher-nodal collective modes in a highly

elongated harmonically trapped unitary Fermi gas have been provided [53, 54]. The

frequency of these modes exhibits a useful temperature dependence. We will discuss
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this behavior explicitly in chapter 5.

1.2 Thesis outline

We give here a brief outline of the chapters of the thesis. In this chapter, we have

begun with reviewing the background and developments in the physics of ultracold

atomic gases, pointing out the new opportunities provided by the availability of the

Feshbach resonances, allowing for the tuning of the value of the scattering length

through the modulation of an external magnetic field. In the case of Fermi gases

the availability of Feshbach resonances allows for the BEC-BCS crossover, including

the strong-interaction region close to unitarity. The specific system we concentrate

on in this thesis is the two-component Fermi gas at unitarity.

One of the peculiarities concerning the unitary Fermi gas is that its thermody-

namic functions exhibit a universal behavior due to the absence of any length scale

apart from the mean interparticle spacing and thermal wavelength at finite temper-

atures [19]. In chapter 2, we discuss the universal thermodynamic behavior of the

unitary Fermi gas in both the uniform (Secs. 2.1–2.4), and trapped geometry (Sec.

2.5) assuming that the local density approximation (LDA) holds in the presence

of a smooth harmonic trap. As we will show later, all the thermodynamic quanti-

ties can be expressed in terms of universal functions of density or pressure. Since

the microscopic calculations of the thermodynamic functions are available only in

limited regions of temperature, we choose the strategy of using the data directly

derivable from the recent experimental analysis of the MIT team at unitarity [55],

implemented and completed at high temperature by the virial expansion ([56, 57]

with references therein) and, at very low temperature, by calculating explicitly the

phonon contribution which is known to give the leading exact behavior in super-

fluids as T → 0 [21]. The matching turns out to be rather satisfying (see Figs.

2.1 and 2.2). Therefore, for the goals of the dissertation, the equation of state of

the unitary Fermi gas can be considered known with reasonably good accuracy at

all temperatures. The superfluid density is another independent and fundamental

quantity. However, its present theoretical knowledge, as a function of temperature,

is rather poor and we will make use of simple phenomenological ad-hoc expressions
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in order to provide explicit predictions. We will discuss the superfluid density in

further detail after discussing its first recent experimental detection [36].

By virtue of the strong interactions between the atomic fermions in different

hyperfine states, unitary two-component Fermi gases can be used to probe the col-

lisional hydrodynamic regime at finite temperatures. The dynamic behavior of such

gases are described by Landau’s two-fluid hydrodynamics. This is the basis of the

thesis. In chapter 3, we review Landau’s theory of two-fluid hydrodynamics (Sec.

3.1), as originally developed for 4He (Sec. 3.2), and discuss its application to the

weakly interacting Bose gas (Sec. 3.3) and the unitary Fermi gas (Sec. 3.4), both

in the homogeneous and in the harmonically trapped case.

In chapter 4, we discuss sound propagations of the unitary Fermi gas in the

cylindrical geometry. In Sec. 4.1, we develop a theoretical frame for the so-called

quasi-1D geometry, which can be experimentally realized in highly elongated traps.

We use the notation ‘quasi-1D’ to indicate configurations which are still Thomas-

Fermi in the radial direction (and hence they are actually 3D configurations), but at

the same time exhibit peculiar 1D features in the sense that the relevant dynamic

behaviour can be described in terms of 1D variables, like for the 1D density, corre-

sponding to the radially integrated 3D density. From the theoretical side the use of

highly elongated configurations allows for an important simplification of the formal-

ism, through the formulation of the so-called 1D hydrodynamic approach [37] whose

derivation and implementation are discussed in detail. In Sec. 4.2, we implement

the reduced 1D two-fluid hydrodynamic equations to get solutions, in the case of

cylindrical harmonic traps, for the propagation of first sound (the in-phase motion

of the two fluids) and present also the results for second sound (an out-of-phase

oscillation of the normal and superfluid components), the most spectacular predic-

tion of Landau two-fluid hydrodynamic equations. We show that the second sound

can be detected experimentally due to the finite value of the thermal expansion. In

Sec. 4.3, we discuss the experimental excitation and observations of the two sound

modes in the cylindrical geometry. Since second sound is particularly sensitive to

the behavior of the superfluid density, the recent experimental investigation of sec-

ond sound [36] has provided the first access to this quantity of fundamental interest,

as discussed in Sec. 4.4.

In chapter 5, we focus on the discretized axial modes and study its temperature
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dependence across the superfluid phase transition within our 1D two-fluid hydro-

dynamic formalisms. We start in Sec. 5.1, by considering the zero temperature

hydrodynamic behavior of the unitary Fermi gas. In Sec. 5.2, we discuss the univer-

sal behavior exhibited by the scaling modes, showing that there exist exact solutions

for those modes characterized by a linear spatial dependence of the velocity field.

The frequencies of these modes turn out to be temperature independent. For the

more interesting temperature-dependent higher-nodal modes involving nonlinear de-

pendence in the velocity field, we apply the variational formalism, first developed

by Taylor et al [58, 59, 60], to the case of highly elongated traps. In Sec. 5.3, we

show that one can solve the classical collisional hydrodynamics in the high temper-

ature limit, as a complement to the limiting case T = 0 (as discussed in Sec. 5.1);

then we introduce the variational scheme and extend it to our 1D configurations.

In Sec. 5.4, we use the variational approach to provide our main results for the

discretized collective modes of first sound nature. In Sec. 5.5, we discuss the exper-

imental excitation and observation of higher-order modes of first sound nature. The

comparison between the theoretical prediction and the experimental measurement

shows excellent agreement and thus represents a sensitive test for the validity of the

theoretical approach and of the equation of state. In Sec. 5.6, we investigate the

simplest discretized collective modes of second sound nature using the second sound

ansatz, namely, assuming there is no net current. We also estimate the coupling

between the unperturbed second sound and the lowest coupled first sound mode

with the same parity symmetry.

In chapter 6, we provide an explicit discussion of the applicability of the 1D

approximation implemented in the thesis.

Finally, in chapter 7, we draw the conclusions and discuss the perspectives.
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Chapter 2

Universal thermodynamics of the

unitary Fermi gas

The unitary Fermi gas plays a fundamental role in broad areas of physics, like in

condensed matter physics (e.g. high temperature superconductors) and in astro-

physics (neutron stars). It is, however, a difficult system to describe microscopically

because of the absence of a small interaction parameter. There are numerous ef-

forts to develop strong coupling many-body theories for such a system (see [24]

and [57] with references therein and [61, 62, 63, 64, 65, 66, 67, 68]). The use of

standard strong-coupling theories [69, 70] requires infinite order expansions and the

truncation to a particular order cannot be fully justified a priori. For instance,

the Nozières and Schmitt-Rink treatment of fluctuations [71] agrees reasonably well

with the experimental data at unitarity at all temperatures except in regions close to

the superfluid transition temperature [70]. At present, numerical QMC simulations

[72, 73, 61] suffer from either the notorious sign problem for fermions [72] or, in

the case of lattice calculations, the need for extrapolation to the zero filling factor

limit [73, 61]. Recently, a new Monte Carlo technique (BDMC) [74] has made a

breakthrough in calculating the equation of state, showing an excellent agreement

with the precise experiment carried out by the MIT group at unitarity [55] in the

normal state. However, successful calculations below the superfluid transition are

still missing.

9



10 Universal thermodynamics of the unitary Fermi gas

On the other hand, due to infinitely large scattering length and zero effective

range of interaction, the absence of a characteristic length scale in unitary Fermi

gases implies that the type and details of the interaction are not important. A

universal thermodynamic behavior, identical for all systems belonging to such a class

of systems is expected [19]. Such “universality” can lead to simplifications. Since

the seminal work of T.-L. Ho [19], there is an explosive research on the universality

of the unitary Fermi gas. Systematic experimental [75, 76, 28, 55] and theoretical

(see for example [24, 25] and refs therein) efforts have been made to explore this

universal thermodynamic behavior in the superfluid as well as in the normal phase.

A breakthrough was achieved by the MIT group [55] in 2012. They measured with

high accuracy the critical temperature (Tc/TF = 0.167(13), see Eq. (2.2) for the

definition of TF ) and the so-called Bertsch parameter ξ = 0.376(4) accounting for

the interaction effects of the unitary Fermi gas (see Secs. 2.2 and 2.4), providing a

benchmark for many-body theories of strongly interacting fermions.

In our work, due to the uncertainties of the theoretical calculations in the relevant

temperature range below Tc, we will choose the strategy of using, for the equation of

state, the data available from the experimental analysis of the MIT team at unitarity

[55]. Universality can then be used to build the thermodynamic functions for all

values of T and the particle density n (see Sec. 2.1). Actually the experimental

MIT data do not cover the whole range of temperatures and the information on the

equation of state can be implemented and completed at high temperature by making

use of the virial expansion (Sec. 2.3) and, at very low temperature, by calculating

explicitly the phonon contribution (Sec. 2.2) which is known to give, in superfluids,

the exact behavior as T → 0 [21]. As far as the superfluid density is concerned,

its present theoretical knowledge is rather poor and we will introduce simple ad-

hoc parameterizations (see chapter 4). In addition to thermodynamic behavior

in the uniform geometry (Sec. 2.1), we also present its nontrivial corresponding

counterparts in highly elongated harmonic trap, a geometry favored by experiments

in the investigation of hydrodynamic collective modes and sound waves [27, 36, 53,

54].
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2.1 3D thermodynamic functions

At unitarity the s-wave scattering length diverges and, in uniform matter, the re-

maining length scales are the thermal wavelength

λT =
√

2π~2/mkBT , (2.1)

and the inter-particle distance n−1/3, where ~ is the Planck constant divided by 2π,

kB is the Boltzmann constant, m is the atomic mass, and n is the number density.

For the same reason the remaining energy scales are fixed by the temperature T and

by the Fermi temperature

TF =
1

kB

~2

2m
(3π2n)2/3, (2.2)

or, alternatively, by the chemical potential µ. It follows that at unitarity all the

thermodynamic functions can be expressed [19] in terms of a universal function

fp(x) depending on a dimensionless parameter x ≡ µ/kBT . This function can be

defined in terms of the pressure of the gas as

P

kBT
λ3
T ≡ fp(x) . (2.3)

Using the thermodynamic relation n = (∂P/∂µ)T , which follows from the Gibbs-

Duhem identity: dP = sdT + ndµ, the density of the gas can then be written as

nλ3
T = f ′p(x) ≡ fn(x) . (2.4)

From Eq. (2.4) one derives the useful expression

T

TF
=

4π

[3π2fn(x)]2/3
, (2.5)

for the ratio between the temperature and the Fermi temperature (2.2).

In addition to the functions fp(x) and fn(x) it is also useful to define the function

fq(x) =

∫ x

−∞
dx′fp(x

′), (2.6)

which, as we will show soon, enters in some relevant 1D thermodynamic quantities.
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Figure 2.1: Equation of state µ/kBT versus T/TF . The blue dash-dotted line

corresponds to the phonon contribution to thermodynamics. The red filled circles

correspond to the experiment data in the intermediate T regime, while the black solid

line to the virial expansion in classical limit. The green arrow indicates the critical

point Tc/TF = 0.167(13). The inset on the upper right corner is an amplification in

the lower T regime.

In terms of fn and fp we can calculate directly the thermodynamic functions of

the uniform Fermi gas at unitarity. For example, using the relation s = (∂P/∂T )µ,

we find

S

NkB
=

s

nkB
=

1

nkB
(
∂P

∂T
)µ =

5

2

P

nkBT
+

T

nλ3
T

fn(
∂x

∂T
)µ =

5

2

fp
fn
− x, (2.7)

while the specific heat at constant volume (hence constant density, and TF ) becomes

CV
NkB

=
cv
nkB

= T (
∂S/NkB
∂T

)V,N =
T

TF
(
∂S/NkB
∂T/TF

)V,N =
15

4

fp
fn
− 9

4

fn
f ′n
, (2.8)
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Figure 2.2: Universal scaling functions fn and fp as a function of the dimensionless

variable µ/kBT . See Fig. 2.1 for the notation.

and the specific heat at constant pressure becomes

CP
NkB

=
cp
nkB

= T (
∂S/NkB
∂T

)P,N

= T
dβλ3

T

dT
P (
∂S/NkB
∂βλ3

TP
)P,N =

(
15

4

fp
fn
− 9

4

fn
f ′n

)
5

3

f ′nfp
f 2
n

, (2.9)

where β = 1/kBT . According to thermodynamics the ratio between isobaric heat

capacity CP and isochoric heat capacity CV coincides with the ratio between the

isothermal (κT ) and the adiabatic (κs) compressibility

CP
CV

=
κT
κs

=
5

3

f ′nfp
f 2
n

, (2.10)

with κT and κs given, respectively, by:

κT =
1

n

(
∂n

∂P

)
T,N

=
λ3
Tf
′
n

kBTf 2
n

, (2.11)
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Figure 2.3: Entropy and specific heats per particle in uniform matter, evaluated

using Eqs. (2.7)–(2.9). In the lower panel, the red square-guided line corresponds

to Cp/NkB; the black full-circle-guided line to Cv/NkB. The vertical green line

indicates the critical temperature.

κs =
1

n

(
∂n

∂P

)
S,N

=
3

5

λ3
T

kBTfp
. (2.12)

The entropy (s) and the specific heat (cv, cp) densities are introduced in Eqs. (2.7)–

(2.9).

The scaling function fp(x) (and hence the various thermodynamic functions)

can be determined through microscopic many-body calculations or extracted di-

rectly from experiments. In Figs. 2.1 and 2.2 we show, respectively, the equation

of state µ/kBT as a function of T/TF and the universal functions fn(x) and fp(x)

as a function of x, determined according to the procedures discussed in the follow-

ing sections. In Fig. 2.3 we show the relevant thermodynamic functions S/NkB,

CV /NkB and CP/NkB as a function of T/TF . The normalized compressibilities

κT/κ0 and κs/κ0 are provided in Fig. 2.4 as a function of T/TF , where κ0 = 3
2

1
nεF

is
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Figure 2.4: Isothermal and isentropic compressibilities in the uniform Fermi gas at

unitarity, evaluated using Eqs. (2.11)–(2.12) normalized by the compressibility (κ0 =
3
2

1
nεF

) of a noninteracting Fermi gas of the same local density at zero temperature.

The grey dotted line indicates the zero temperature limit value. The vertical green

line indicates the critical temperature.

the compressibility of a noninteracting Fermi gas at the same local density at zero

temperature.

Different from the previous thermodynamic quantities, the superfluid density ns

instead requires the knowledge of another independent function. According to di-

mensional arguments, at unitarity, ns can be written in terms of a universal function

fs(x) as

ns(T, x) =
1

λ3
T

fs(x). (2.13)

Its behavior is known at low temperature, in the phonon regime (see Sec. 2.2) [77],

and near the critical point where it is predicted to vanish as ns ∝ (1 − T/Tc)
2/3

[78]. Here Tc is the critical temperature for superfluidity which, at unitarity can be
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written in the form,

Tc = αtcTF , (2.14)

with αtc a dimensionless universal parameter.

2.2 Low temperature regime

At very low temperatures, corresponding to T � Tc, phonons provide the leading

contribution to the thermodynamic behavior of uniform superfluids. In this regime

one can easily calculate the relevant thermodynamic functions introduced in the

previous section.

Starting from the expression [21],

F = E0 −
V π2(kBT )4

90(~c)3
, (2.15)

for the free energy associated with the phonon excitations in a uniform 3D superfluid,

one can easily evaluate the other thermodynamic functions. In the above equation

E0 is the ground state energy, c is the T = 0 value of the sound velocity, while V is the

volume occupied by the gas. For the unitary Fermi gas one can write E0 = 3
5
NξkBTF

and mc2 = 2
3
ξkBTF . Here ξ is the so-called universal Bertsch parameter ([79],

[24]), accounting for the interaction effects of the unitary Fermi gas. Starting from

(2.15) one can calculate the low temperature expansion of the chemical potential

µ = (∂F/∂N)T,V , pressure P = −(∂F/∂V )T,N and entropy S = −(∂F/∂T )V,N . One

finds:

µ = kBTF

[
ξ +

π4

240

(
3

ξ

)3/2(
T

TF

)4
]
, (2.16)

P =
2

5
nkBTF

[
ξ +

π4

48

(
3

ξ

)3/2(
T

TF

)4
]
, (2.17)

and
S

NkB
=

(
3

ξ

)3/2
π4

60

(
T

TF

)3

. (2.18)
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Using Landau equation for the phonon contribution to the normal density one

also finds the result (P66 in [21]),

nn
n

=
3
√

3π4

40ξ5/2

(
T

TF

)4

. (2.19)

Using the definition (2.3) together with (2.16)–(2.17) one can also calculate the

large x expansion of fp and hence of fn. We find

fp(x) =
2

5

(4π)3/2

3π2

[
ξ

(
x

ξ

)5/2

+
π4

96

(
3

x

)3/2
]
, (2.20)

and

fn(x) =
(4π)3/2

3π2

[(
x

ξ

)3/2

− π4

480

(
3

x

)5/2
]
. (2.21)

The first terms in the expansions determine the T = 0 value of the thermodynamic

functions, while the second ones account for the first contribution due to the thermal

excitation of phonons.

2.3 High temperature regime

Above the Fermi degenerate temperature, virial expansion gives a complete solution

of strongly-correlated Fermi gas. Quantum virial expansion, also referred to as

quantum cluster expansion, is practically useful for a dilute quantum gas. In general,

thermodynamic properties such as the thermodynamic potential can be expanded

in terms of the cluster expansion parameter, or fugacity z = eβµ, which is a small

parameter at large T but increases with decreasing T . By further taking into account

the thermodynamic identity Ω = −PV , the expansion for the universal function fp

can be reformulated as:

fp(x) = 2(b1e
x + b2e

2x + ...), (2.22)

where bj are the so-called virial coefficients and the factor ‘2’ comes from spin de-

generacy. The determination of the n-th virial coefficient bn requires full solutions
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up to the n-body problem. But Liu and co-workers find that it is sufficient to treat

the two-body and the three-body problem ([57] with references therein), that is,

the second and third terms in the virial expansion to describe the thermodynamic

behaviors down to the Fermi temperature TF .

The value b1 = 1 is fixed by the classical equation of state, while theoretical

calculations have provided the values b2 = 3
√

2
8

[80] and b3 = −0.29 [81] for the

second and third coefficients, respectively. These values are consistent with the

measurement of the equation of state at high temperatures [28, 76, 55]. By taking

the derivative of the pressure (2.22) with respect to x, we obtain, for the function

fn(x), the expansion:

fn(x) = 2(b1e
x + 2b2e

2x + ...). (2.23)

2.4 Intermediate temperature regime

In this regime, through high-precision measurements of the local compressibility,

density, and pressure, the MIT team measured the universal thermodynamic behav-

ior of the unitary Fermi gas with high accuracy both below and above the critical

temperature for superfluidity overcoming, in particular, the problem of the direct

measurement of the temperature of the gas [55]. They have been able, in particu-

lar, to identify the superfluid phase transition at the temperature Tc = αtcTF with

αtc = 0.167(13), corresponding to the value xc = µc/kBT = 2.48. Also the relevant

Bertsch parameter ξ, giving the ground state energy in units of the ideal Fermi gas

value, was determined with high accuracy ( ξ = 0.376(4)). These values are in good

agreement with the best theoretical predictions based on accurate many-body cal-

culations ([61, 62, 65, 68]). Concerning the critical temperature it is worth stressing

that in [55] its value was identified by exploring the peaked structure exhibited by

the specific heat at constant volume near the transition (see Fig. 2.3), by taking

explicitly into account finite resolution effects. This yields a value of Tc slightly

higher than the value where the measured specific heat exhibits the peak. Figure

2.3 shows that the peak exhibited by the specific heat at constant pressure is even

more pronounced, in agreement with the general behavior of the specific heats near

a second order phase transition [82]. The difference lies also in the compressibil-
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ity. Figure 2.4 reveals that the isothermal compressibility is peaked close to the

transition point while the isentropic compressibility looks continuously smooth.

The matching between the values extracted using the MIT data and the pre-

dictions provided by phonon thermodynamics discussed above is reasonably good.

At high temperatures these experiments also confirm with high accuracy the va-

lidity of the virial expansion (see Figs. 2.1 and 2.2) so that, for the goals of the

thesis, the equation of state of the unitary Fermi gas can be considered known with

reasonably good accuracy at all temperatures. We will adopt the MIT equation

of state, together with the low and high temperature behavior discussed above, to

implement the calculation of the frequency of the collective oscillations and of the

sound velocities within the hydrodynamic formalism in the thesis.

2.5 1D thermodynamic functions

Starting from the above 3D thermodynamic quantities one can calculate the rel-

evant 1D quantities entering the hydrodynamic equations (4.4)–(4.7), whose so-

lution is the main goal of the thesis. In the presence of radial harmonic trap-

ping the chemical potential varies along the radial direction according to the law

µ(r⊥) = µ1 − (1/2)mω2
⊥r

2
⊥ (µ1 is the chemical potential on the symmetry axis,

r2
⊥ = x2 + y2, and ω⊥ =

√
ωxωy characterizes the geometric average of the trapping

frequency in the radial direction), predicted by the the local density approximation,

so that one can easily reduce the radial integrals to integrals in the variable x [37].

By carrying out the radial integrals of the 3D quantities (2.3, 2.4, and 2.7), one finds

the following results for the 1D pressure, density, entropy:

P1(x1, T ) =

∫
dr⊥2πr⊥P =

2π

mω2
⊥

(kBT )2

λ3
T

fq(x1), (2.24)

n1(x1, T ) =

∫
dr⊥2πr⊥n =

2π

mω2
⊥

kBT

λ3
T

fp(x1) , (2.25)

s1(x1, T )

kB
=

∫
dr⊥2πr⊥s =

2π

mω2
⊥

kBT

λ3
T

[
7

2
fq(x1)− x1fp(x1)

]
, (2.26)
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where x1 = µ1/kBT is the value of the chemical potential, in units of kBT , calculated

on the symmetry axis of the trap. The 1D heat capacity per particle can be derived

from the 1D entropy per particle s̄1 = s1/n1. One finds:

c̄v1(x1)

kB
= T

(
s̄1/kB
∂T

)
n1

=
35

4

fq(x1)

fp(x1)
− 25

4

fp(x1)

fn(x1)
. (2.27)

Note that c̄v1 doesn’t coincide with the radial integral of the bulk specific heat per

particle (2.8) as one would expect. For the specific heat at constant pressure, one

instead finds the result,

c̄p1(x1)

kB
= T

(
∂s̄1/kB
∂T

)
P1

= c̄v1(x1)
7

5

fq(x1)fn(x1)

f 2
p (x1)

. (2.28)

Since s̄1 depends only on the variable x1 one finds that the adiabatic derivative

of the 1D pressure (2.24) with respect to the 1D density takes the form(
∂P1

∂n1

)
s̄1

=
7

5

P1

n1

, (2.29)

differently from the uniform case where one has, at unitarity, (∂P/∂n)s̄ = (5/3)P/n

with s̄ = S/N [37]. From the comparison between Eq. (2.3) and Eq. (2.25) one also

finds the relationship

n1 =
2π

mω2
⊥
P (r⊥ = 0), (2.30)

between the 1D density and the pressure calculated at r⊥ ≡ xî + yĵ = 0. This

relationship holds in the local density approximation for a general fluid radially

confined with harmonic trapping [83]. It actually follows directly from the radial

integration of the general thermodynamic equation n = (∂P/∂µ)T .

Analogously, in the 1D thermodynamics, we have that the ratio between isobaric

heat capacity c̄p1 and isochoric heat capacity c̄v1 coincides with the ratio between

the 1D isothermal (κT1) and the adiabatic (κs̄1) compressibilities,

c̄p1
c̄v1

=
κT1

κs̄1
=

7

5

fq(x1)fn(x1)

f 2
p (x1)

, (2.31)

with κT1 and κs̄1 given, respectively, by:

κT1 =
1

n1

(
∂n1

∂P1

)
T

=
fn(x1)

2π
mω2
⊥

(kBT )2

λ3T
f 2
p (x1)

, (2.32)
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κs̄1 =
1

n1

(
∂n1

∂P1

)
s̄1

=
1

7
5

2π
mω2
⊥

(kBT )2

λ3T
fq(x1)

. (2.33)

As concerns the 1D superfluid density, starting from Eq. (2.13) we find the

expression

ns1(x1, T ) =

∫
dr⊥2πr⊥ns =

2π

mω2
⊥

kBT

λ3
T

fs1(x1), (2.34)

with

fs1(x1) =

∫ x1

−∞
dxfs(x). (2.35)

An interesting comparison between the 3D and 1D thermodynamic quantities

concerns the explicit low T behavior as a consequence of the expansions (2.20–2.21).

The 1D entropy (2.26), as well as the 1D specific heats (2.27–2.28) and the 1D

normal density nn1 = n1 − ns1 (2.34) exhibit a different T dependence as compared

to the corresponding bulk quantities (2.18–2.19). In particular they behave like

T 5/2 as T → 0, as can be shown by exploiting the leading behavior at large x. For

example the 1D entropy behaves as

s1(T )

kB
=

2π(kBT )5/2

mω2
⊥

( m

2π~2

)3/2

γ, (2.36)

with γ =
∫ +∞
−∞ dx′

[
5
2
fp(x

′)− x′fn(x′)
]
, the integral being convergent since (5/2)fp(x)−

xfn(x) decays like x−3/2 for large x [84]. Analogously the 1D pressure and the 1D

normal density at low temperature behave as

P1(n1, T ) =
2

7
ξ3/5n1kBT

1D
F (n1) +

4π(kBT )7/2

7mω2
⊥

( m

2π~2

)3/2

γ, (2.37)

and

nn1(T ) =
2π(kBT )5/2

mω2
⊥

( m

2π~2

)3/2
∫ +∞

−∞
dxνn(x), (2.38)

with the quantity νn(x) vanishing as π7/2

45

(
3
x

)5/2
at large x, in the phonon regime.

The above equations reveal that in order to determine the coefficient of the T 5/2 law

the knowledge of the functions fn, fp and fq are needed for all values of x. This
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Figure 2.5: The 1D entropy s̄1/kB and specific heat c̄1/kB evaluated using Eqs.

(2.26)–(2.28). In the lower panel, the red dashed line corresponds to c̄p1/kB; the

black dash-dotted line to c̄v1/kB. The vertical green line indicates the critical tem-

perature.

is physically due to the fact that in the radial integration the whole range of ratio

T/TF (and not only the large x phonon region) enters the calculation.

It is finally interesting to calculate the low temperature expansion of the 1D

chemical potential. Equation (2.30) relates the 1D density to the pressure of the gas

calculated on the symmetry axis so that the equation of state µ1(n1, T ) corresponds

to the equation of state of uniform matter as a function of P and T . We can

consequently employ Eqs. (2.16)–(2.17) to derive the low T expansion

µ1(n1, T ) = kBT
1D
F

[
ξ3/5 −

√
3π4

80ξ3/10
(
T

T 1D
F

)4

]
. (2.39)

It is worth pointing out that, differently from the case of Eqs. (2.36)–(2.37), the first

contribution due to thermal effects to µ1 is determined by the phonon contribution

and exhibits the typical T 4 dependence. It is also interesting to notice the opposite
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n1ε1DF

) of a noninteracting

Fermi gas of the same local density at T = 0. The grey dotted line indicates the zero

temperature limit value. The vertical green line indicates the critical temperature.

sign exhibited by the thermal correction with respect to the bulk Eq. (2.16) which

implies that these 1D-like configurations will exhibit a different thermo-mechanical

effect as compared to uniform gases [85].

In Figs. 2.5 and 2.6 we show the relevant 1D thermodynamic functions calculated

as a function of the ratio

T

T 1D
F

=

(
16

15
√
πfp(x1)

)2/5

, (2.40)

where,

T 1D
F =

1

kB

(
15π

8

)2/5

(~ω⊥)4/5

(
~2n2

1

2m

)1/5

, (2.41)

is the natural definition for the Fermi temperature in 1D cylindrical configurations

[37]. T 1D
F coincides with the usual 3D definition (2.2) of the Fermi temperature if n1
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is calculated for an ideal Fermi gas at zero temperature. If one instead calculates n1

in the unitary Fermi gas at zero temperature one finds the relationship T 1D
F = ξ2/5TF

where ξ is the so-called Bertsch parameter. Figures 2.5 and 2.6 show that the

matching between the values extracted using the MIT data and the predictions

provided by phonon thermodynamics at low T and virial expansions at high T are

remarkably good as concerns the 1D thermodynamic quantities.

From the knowledge of the 1D thermodynamic functions one can also easily

calculate the equilibrium properties in the presence of axial harmonic trapping, using

the local density approximation µ1(z) = µ0−Vext(z) for the chemical potential along

the z-th direction, with µ0 being the chemical potential in the center of the trap and

fixed by the normalization condition
∫
dzn1(z) = N . For example, the 1D density

profile is available from Eq. (2.25) by replacing x1 with [µ0−(1/2)mω2
zz

2]/kBT . It is

then natural to express the value of x0 = µ0/kBT in terms of the Fermi temperature

T trapF = (3N)1/3~ω̄ho/kB of the 3D trapped Fermi gas, where ω̄ho is the geometrical

average of the three oscillator frequencies and N is the total number of atoms. One

finds

T/T trapF =

(
6√
π

∫ x0

−∞
dx(x0 − x)1/2fn(x)

)−1/3

. (2.42)

This temperature scale will be used to discuss the temperature dependence of the

discretized frequencies of the elementary excitations in the presence of 3D harmonic

confinement.



Chapter 3

Two-fluid hydrodynamic theory

This chapter is devoted to reviewing the two-fluid hydrodynamic theory, describing

the dynamics of a superfluid at a macroscopic level. Two-fluid hydrodynamics were

first developed by Landau in order to describe relevant phenomena of superfluidity

in 4He. Nevertheless, the two-fluid hydrodynamic equations, formulated on the basis

of fundamental conservation laws, are general and apply to all superfluids despite

the different quantum statistics. The differences in the hydrodynamic behavior of

different systems are manifested when the specific equation of state, which enters the

Landau equations, is taken into account. In Sec. 3.1, we will briefly review Landau’s

two-fluid hydrodynamic theory developed for 4He and discuss its applications in

predicting the dynamic behavior of superfluid helium in Sec. 3.2. Then, we review

its applications to ultracold gases, in particular, to the case of weakly interacting

Bose gases (Sec. 3.3) and to the case of strongly interacting Fermi gases (Sec. 3.4).

3.1 Landau theory: uniform 3D superfluid

The superfluidity of liquid 4He, below the so-called λ-point, was discovered by

Kapitza [1] and, independently, by Allen and Misener [2]. It was soon explained

by Landau [5] who showed that, if the spectrum of elementary excitations satisfies

suitable criteria, the motion of the fluid cannot give rise to dissipation. In this

novel superfluid state several unique properties emerge. The superfluid flow is fric-

tionless (with zero viscosity), carries no entropy and furthermore, is irrotational, in

25
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contrast to the normal fluid, which carries entropy and can have nonzero viscosity

and be rotational. Based on these facts, Landau wrote down the famous two-fluid

hydrodynamic equations [5, 86]. The classical description of Landau’s two-fluid

hydrodynamics in superfluid 4He is given in the book by Khalatnikov [86], where

dissipation effects are also taken into account. For the goals of our thesis, we will

simply present the equations instead of going through detailed derivations:

m∂tn+∇ · j = 0, (3.1)

∂ts+∇ · (svn) = ∇ · (κ∇T
T

), (3.2)

m∂tvs = −∇(µ+ Vext), (3.3)

∂tji + ∂iP + n∂iVext = ∂k(ηΓik). (3.4)

In the above equations, j = m(nsvs + nnvn) is the current density, ns and nn are

the superfluid and normal number densities for a fluid with total particle density

n = ns+nn, vs and vn are the corresponding velocity fields. The continuity equation

in Eq. (3.1) expresses mass conservation and is always valid. The quantity s is the

entropy density and κ is the thermal conductivity1. Eq. (3.2) assumes that the

entropy of the fluid is carried by the normal fluid and a dissipative term, fixed by

the thermal conductivity κ, is added to the right-hand side, expressing the increase

of entropy in irreversible processes. The quantity µ is the local chemical potential

and determined by the uniform equation of state. Vext is the external trapping

potential which will be often assumed of harmonic form. Eq. (3.3) implies that

the superfluid velocity field is irrotational. P is the local pressure and ηΓik =

η(∂kvni +∂ivnk−2δik∂jvnj/3) is the correction to the momentum flux density tensor

(or stress tensor) arising from the shear viscosity η. We should emphasize that

the inclusion of damping, while giving only higher order corrections in the long

wavelength limit in the uniform geometry, can play a crucial role in the presence of

1In this thesis we use the notation κ to indicate the thermal conductivity, while κT to indicate

the isothermal compressibility.
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trapping [37], as shown in chapter 4. We have dropped bulk viscosity terms, which

give smaller contributions, and omitted terms quadratic in the velocity since we are

interested in the linearized solutions around equilibrium.

The Landau two-fluid equations (3.1)–(3.4) are valid in the hydrodynamic regime,

where the system can be viewed as in local thermal and mechanical equilibrium, such

that well-defined local quantities (n, T , P , s, µ, vn, vs...) are allowed and only suf-

ficiently smooth and slow perturbations need to be considered. In general, there

are two types of hydrodynamic regimes: the irrotational superfluid hydrodynamic

regime that describes the superfluid motion at zero temperature and the collisional

hydrodynamic regime that requires fast collisions to drive the system into a state

of local equilibrium, characterized by ωτ � 1, where ω is a typical frequency of a

collective mode and τ is a mean-collision time. The time τ describes the typical

time needed to reach local equilibrium. The two-fluid hydrodynamic equations, at

T = 0, reduce to the irrotational superfluid hydrodynamic equations and in the dis-

sipationless regime (η = κ = 0) above Tc, to the standard collisional hydrodynamics

equations.

3.2 Sound propagation in superfluid 4He

For a uniform liquid, in the dissipationless limit (κ = η = 0), the two-fluid equations

(3.1)–(3.4) can be simplified to the standard Landau equations for the uniform sound

velocities by assuming a plane wave ei(qz−ωt) propagating, for example, in the z-

direction in the liquid, with ω = cq [86, 87, 21]. The equation of the sound velocities

c takes the form:

c4 − c2

[
1

m

(
∂P

∂n

)
s̄

+
1

m

nsT s̄
2

nnc̄v

]
+

1

m2

nsT s̄
2

nnc̄v

(
∂P

∂n

)
T

= 0. (3.5)

In helium, the temperature expansion coefficient (α3D = − 1
n
( ∂n
∂T

)P ) is small and

the temperature and pressure fluctuations are essentially uncoupled. Therefore, the

isothermal and adiabatic compressibilities are nearly the same, as indicated by the

identity (see Sec. 16 of Landau and Lifshitz [82]):(
∂P

∂n

)
s̄

=

(
∂P

∂n

)
T

+
T

c̄v

1

n2

(
∂P

∂T

)2

n

=

(
∂P

∂n

)
T

+
T

c̄v
α2

3D

(
∂P

∂n

)2

T

. (3.6)
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Figure 3.1: Experimental values of first and second sound speeds in superfluid 4He.

From Ref. [60].

Equation (3.5) has two non-negative solutions, hence two velocities of sound. One

of them is related in the usual way to the compressibility,

mc2
1 =

(
∂P

∂n

)
s̄

, (3.7)

and the other one is the so-called second sound,

mc2
2 = T

s̄2

c̄

ns
nn
, (3.8)

where the specific heat c̄ can be evaluated equally at either constant volume or

pressure, i.e., c̄ ≡ c̄p ' c̄v.

The superfluid and normal components move with opposite phase in second

sound [5]. In superfluid helium, second sound reduces to a temperature wave, leaving

the total density practically unaffected. Differently from first sound, the superfluid

density ns plays a crucial role in the propagation of second sound. The measure-

ment of the second sound velocity in superfluid 4He has actually provided the most
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accurate determination of ns as a function of temperature [6, 7]. The temperature

dependence of the two sound velocities are presented in Fig. 3.1. At the λ point,

the superfluid density vanishes and the velocity c2 also goes to zero. At T → 0, the

second sound velocity instead tends to the limit 1/
√

3 c1 [21].

3.3 Sound propagation in weakly interacting Bose

gases

Two-fluid hydrodynamic modes have been extensively studied in superfluid helium,

providing a deeper understanding of the macroscopic properties of helium. One key

question concerning ultracold gases is whether the hydrodynamic conditions that

validate the Landau two-fluid description can be achieved. It is crucial to make the

interactions or the density large enough to satisfy the local equilibrium criterion.

Two-fluid hydrodynamics in the context of uniform ultracold Bose gases have

been discussed in [20, 21, 22]. It is found that in dilute Bose gas, second sound

behaves quite differently from the case of strongly interacting superfluids, like 4He.

The motion of the condensate and that of the excitations are essentially uncoupled

as a result of the weak interactions between the condensate and the thermal cloud.

Second sound in dilute Bose gases actually reduces to the oscillation of the conden-

sate in agreement with Tisza’s original idea, except at very low temperature in the

phonon regime [21] and disappears above Tc; first sound, instead, mainly involves

the thermal cloud and reduces to the usual hydrodynamic sound above Tc [88, 89].

A schematic representation of the velocity of first and second sound in a dilute Bose

gas as a function of temperature is shown in Fig. 3.2.

In non uniform media sound waves can propagate if the wavelength is smaller

than size of the condensate. The propagation of sound in a magnetically trapped

dilute Bose-Einstein condensate near zero temperature was first reported by MIT

group [26] and shows quite satisfying agreement with Bogiubov theory [29]. At-

tempts to excite the relative motion between the condensate and the thermal com-

ponents of a harmonically trapped Bose gas were first carried out in [32] and more

recently in [33] where the use of denser samples permitted to explore collisional

damping effects. The propagation of second sound waves in dilute Bose gases was
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Figure 3.2: Velocities of first and second sound in a dilute Bose gas as a function

of temperature. The figure points out the effect of hybridization between the two

modes taking place at low temperature. Above Tc only first sound survives. From

Ref. [21].

recently measured in [34].

3.4 Sound propagation in unitary Fermi gases

Unitary Fermi gases are characterized by strong interaction effects. In such systems,

the normal component behaves in a deeply hydrodynamic way over a wide range

of temperatures, as manifested in recent experiments [50, 51, 52, 53, 54], and the

spatial overlap between the normal and the superfluid components can be very large

also in the presence of harmonic trapping. This provides a new system where we

can look for first and second sound hydrodynamic oscillations. In this situation,

Landau’s two-fluid theory can be readily applied.

The propagation of first sound waves near zero temperature across the BEC-BCS

crossover in very elongated traps was recently measured [27], in good agreement with
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Figure 3.3: Two-fluid sound speeds in a uniform superfluid gas of ultracold Fermi

atoms at unitarity. From Ref. [60].

the hydrodynamic prediction [30] at unitarity. The search for second sound in the

unitary Fermi gas has been already the object of numerous theoretical investigations

[58, 60, 90, 91, 92] in uniform geometries (see Fig. 3.3) and, more recently, in cylin-

drical configurations [37]. However, one major problem is that the thermodynamic

functions which enter the hydrodynamic equations are quite complicated and diffi-

cult to derive, so that accurate predictions for the dynamic behaviors represent a

challenging task for theorists. Nevertheless, these theoretical works have suggested

that second sound in strongly interacting Fermi gases is rather similar to that in

superfluid 4He, namely, the two components are out of phase in an almost pure

temperature oscillation. In the next chapter, we will discuss explicitly the sound

propagations in the experimentally favorable elongated harmonic traps and draw

some final conclusions about second sound in strongly interacting fluids.
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Chapter 4

From 3D to 1D

In this chapter we will concentrate on the unitary Fermi gas in highly elongated har-

monic traps. These configurations are well suited for the experimental excitation

and detection of sound waves [26, 27, 28, 36]. It turns out that there are important

differences with respect to the case of homogeneous systems, depending on geometry

and dissipative effects [37, 53, 93, 36]. We start by reviewing the quasi-1D hydro-

dynamic theory [94] and, in particular, its conditions of validity [37, 95]. Then we

discuss the sound propagations in a strongly interacting Fermi gas in the cylindrical

geometry. This problem was first investigated by G. Bertaina et al [37] by numer-

ically solving the two-fluid hydrodynamic equations. We will revisit the problem

by employing more accurate thermodynamic ingredients, now available experimen-

tally. Furthermore, by grasping the essential features of the two sound propagations,

we will derive an analytic expression to describe the second sound velocity, which

permits to extract the superfluid fraction from the knowledge of the second sound

velocity. This is actually the procedure employed in the experiment of Ref. [36]

based on the measurement of the second sound velocity. Finally, we will discuss the

behavior of the superfluid fraction in superfluid Fermi gases.

33
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4.1 Quasi-1D hydrodynamics

We consider atomic gases confined by a harmonic potential of the form

Vext =
1

2
mω2

⊥r
2
⊥ +

1

2
mω2

zz
2, (4.1)

and we will assume highly elongated configurations with trapping frequency satisfy-

ing the condition ωz � ω⊥, while m is the atomic mass. Our aim in this chapter is to

investigate the propagation of sound in the cylindrical geometry (ωz = 0). The dis-

cretized solutions with frequency of order ωz will be discussed in chapter 5. To derive

simplified 1D hydrodynamic equations we start from the usual two-fluid Landau hy-

drodynamic equations defined in 3D [86]. We will consider the usual hydrodynamic

regime l � λ with the geometrical condition of tight radial confinement R⊥ � λ,

where R⊥ is the radial size of the sample, l is the mean free path and λ is the wave-

length of the sound wave. We will assume the Thomas Fermi regime along the radial

direction. Furthermore, we require that the viscous penetration depth δ satisfies the

condition, δ =
√
η/mnnω � R⊥, where η is the shear viscosity coefficient, nn is the

normal density and ω is the frequency of the sound wave. The penetration depth

is the typical distance from a surface at which an oscillation becomes attenuated

due to shear viscosity [87]. In the case of a uniform fluid confined by the hard walls

of a tube, the condition δ � R⊥, imposes the uniformity of the normal velocity

field as a function of the radial coordinate. Since friction between the normal part

of the fluid and the walls further requires that the normal velocity be zero on the

walls, the normal part cannot move at all along the tube. This interesting mode is

known as 4th sound where it involves only the motion of the superfluid [96]. In the

presence of harmonic trapping the condition δ � R⊥ of large viscous penetration

depth is equivalent to requiring the low frequency condition ω � ω2
⊥τ , where τ is a

typical collisional time to characterize the effects of viscosity. This can be obtained

by estimating, as usual, η ≈ τ v̄2mn, where v̄ is the average velocity of the particles,

of the order of the Fermi velocity ∼ vF . In the case of a harmonically trapped gas

the effect of viscosity exhibits new features. In fact, the uniformity of the velocity

field does not stop the motion of the normal component, as shown later on.

In the presence of axial trapping, we are interested in the low energy solutions

of the order of ωz for the hydrodynamic equations satisfying the condition ω � ω⊥.
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As a consequence of the tight radial confinement, Eq. (3.4) for the current implies

the important condition

∇⊥P +∇⊥Vext = 0 (4.2)

of mechanical equilibrium along the radial direction. Violation of this condition

would in fact result in frequencies of the order of ω⊥ rather than ωz. Due to the

same reason, the superfluid velocity is uniform in the radial direction as indicated

by Eq. (3.3). The tight radial confinement also implies that the radial component

of the velocity field must be much smaller than the longitudinal one. Excluding the

superfluid velocity from Eqs. (3.3) and (3.4) and using the Gibbs-Duhem identity

dP = sdT + ndµ one can write the equation for the relevant z component of the

velocity field of the normal component in the form,

mnn∂tv
z
n + nn∂z(δµ) + s∂z(δT ) = ∇ · (η∇vzn), (4.3)

where terms containing the small radial components of the velocity field are ignored.

The presence of viscosity in Eq. (4.3) results in the independence of vzn on the

radial coordinate r⊥. In fact violation of such a behavior would be incompatible

with the low frequency condition ω � ω2
⊥τ . As already anticipated, it is worth

noticing that, differently from the case of the tube with hard walls, for harmonic

trapping the normal component can move. Here we assume that the collisional times

responsible for viscosity and thermal conductivity are comparable so, analogously,

the presence of thermal conductivity in Eq. (3.2) for the entropy results in the

independence of the temperature fluctuations on the radial coordinate in the same

low frequency limit. This in turns implies that also the fluctuations of the chemical

potential will be independent of the radial coordinate. This follows from the radial

mechanical equilibrium condition and the use of the thermodynamic identity dP =

sdT + ndµ, namely, 0 = ∇⊥P + n∇⊥Vext = s∇⊥T + n∇⊥(µ0 + δµ). Thus in the

low frequency limit both the fluctuations δT and δµ are independent of the radial

coordinates. In a word, due to the crucial roles played by the shear viscosity and

by the thermal conductivity in the case of tight radial confinement, the velocity

fields are independent of the radial position and a thermal equilibrium in the radial

direction is achieved. This is the reason why we call this regime a 1D regime,
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despite the fact that the system satisfies the radial Thomas Fermi conditions and is

consequently 3D from a local point of view.

By radial integration of the 3D hydrodynamic equations, and following the pro-

cedure described in [37, 95], one obtains the following 1D hydrodynamic equations:

m∂tn1 + ∂zjz = 0, (4.4)

∂ts1 + ∂z(s1v
z
n) = 0, (4.5)

m∂tv
z
s = −∂z(µ1(z) + Vext(z)), (4.6)

∂tjz = −∂zP1 − n1∂zVext(z), (4.7)

where the terms n1, s1, P1 are the radial integrals of their 3D counterparts, namely

the particle density, the entropy density and the local pressure, the integration

accounting for the inhomogeneity caused by the radial component of the trapping

potential (4.1). In the above equations jz = m(nn1v
z
n +ns1v

z
s) is the current density,

ns1 and nn1 are the superfluid and normal number densities respectively with n1 =

ns1 + nn1 while vzs and vzn are the corresponding velocity fields. µ1 = µ(T, n(r⊥ =

0, z)) is the chemical potential calculated on the symmetry axis of the trapped gas

and is determined by the equation of state of uniform matter. Here and in the

following we assume that the system is large enough to safely carry out the radial

integrals using the local density approximation.

4.2 First sound and second sound in the cylindri-

cal trap

In the following we will assume ωz = 0 (cylindrical geometry) in order to calculate

the velocity of the sound waves propagating along the axial direction. We will limit

ourselves to the description of small-amplitude oscillations. So the equations of mo-

tion for both fluids (4.4)–(4.7) have to be linearized and all the thermodynamic vari-

ables are expanded around their equilibrium values, e.g., n1(z, t) = n10+δn1(z, t). In
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addition, the equilibrium values of the velocities vzn0 and vzs0 are zero. The linearized

hydrodynamic equations take the form:

m∂tδn1 + ∂zδjz = 0, (δjz = mn0
n1v

z
n +mn0

s1v
z
s) (4.8)

∂tδs1 + ∂z(s
0
1v
z
n) = 0, (4.9)

m∂tv
z
s = −∂zδµ, (4.10)

∂tδjz = −∂zδP1. (4.11)

Hereafter, we use vzn, vzs to denote the out-of-equilibrium velocity fields. The ther-

modynamic quantities entering the above equations are not independent and, in the

linear regime, obey the thermodynamic relation δP1 = s1δT + n1δµ.

By excluding δjz from Eqs. (4.8) and (4.11) one obtains the important equation,

m
∂2δn1

∂t2
= ∇2

zδP1, (4.12)

relating the time and space variations of the density and of the pressure, respectively.

Our purpose now is to derive an equation relating the time and space variations of

the temperature and the entropy. To achieve this it is convenient to have the entropy

conservation equation given by (4.5) written in terms of the local entropy per particle

with its linearized form given by

∂tδs̄1 =
s̄0

1

n0
1

n0
s1∂z(v

z
s − vzn). (4.13)

In getting this expression, we have used the mass and entropy continuity equations,

and we have assumed homogeneity along the z-direction. It is worth noticing that

in the normal phase, where the superfluid density is zero, or in the superfluid phase,

when the two fluid velocity fields are identical, the 1D entropy per particle s̄1 is

conserved. This shows that an in-phase motion of first sound nature corresponds to

an isentropic oscillation.

Using the Gibbs-Duhem relation and the equation for the superfluid velocity

field (4.6) and the current (4.7), we find,

n0
n1∂t(v

z
s − vzn) = s̄0

1n
0
1∂zδT, (4.14)
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which, combined with Eq. (4.13), yields the required equation

m
∂2δs̄1

∂t2
=
n0
s1

n0
n1

s̄02
1 ∇2

zδT. (4.15)

It’s worth mentioning that Eq. (4.14) implies that ∂zδT = 0 for an in-phase mode

with vzs = vzn. This means that in the superfluid phase an isentropic mode is also an

isothermal mode. Hereafter we refer vzs = vzn as the first sound ansatz, corresponding

to a pure density oscillation.

Equations (4.12) and (4.15) are coupled via the following thermodynamic iden-

tities,

δP1 = (
∂P1

∂n1

)s̄1δn1 + (
∂P1

∂s̄1

)n1δs̄1, (4.16)

δT = (
∂T

∂n1

)s̄1δn1 + (
∂T

∂s̄1

)n1δs̄1. (4.17)

Inserting the above two equations into (4.12) and (4.15) we obtain the following two

coupled wave equations for the density and entropy fluctuations,

m
∂2δn1

∂t2
= (

∂P1

∂n1

)s̄1∇2
zδn1 + (

∂P1

∂s̄1

)n1∇2
zδs̄1, (4.18)

m
∂2δs̄1

∂t2
=
n0
s1

n0
n1

s̄0
1

[
(
∂T

∂n1

)s̄1∇2
zδn1 + (

∂T

∂s̄1

)n1∇2
zδs̄1

]
. (4.19)

By looking for plane wave solutions varying in time and space like ∝ ei(qz−ωt) with

ω = cq, we obtain:

mc2δn1 = (
∂P1

∂n1

)s̄1δn1 + (
∂P1

∂s̄1

)n1δs̄1, (4.20)

mc2δs̄1 =
n0
s1

n0
n1

s̄0
1

[
(
∂T

∂n1

)s̄1δn1 + (
∂T

∂s̄1

)n1δs̄1

]
. (4.21)

Thereby, if the thermodynamic function 1
n0
1
(∂P1

∂s̄1
)n1 = n0

1( ∂T
∂n1

)s̄1 in Eqs. (4.20) and

(4.21) is equal to zero, or alternatively, if the isothermal compressibility coincides
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with the isentropic compressibility, we get a pure density wave with an adiabatic

sound velocity,

mc2
1 =

(
∂P1

∂n1

)
s̄1

, (4.22)

and a pure entropy wave with the sound velocity given by,

mc2
2 = T

s̄1
02

c̄0
v1

n0
s1

n0
n1

, (4.23)

involving an out-of-phase motion of the two components with the total mass current

of the liquid remaining at rest, as indicated by Eq. (4.8). Hereafter, we refer to the

condition n0
s1v

z
s + n0

n1v
z
n = 0 as the second sound ansatz, corresponding to a pure

entropy oscillation. A nonzero value of the thermal expansion coefficient leads to a

coupling between density and temperature oscillations.

Using straightforward thermodynamic relations for the solutions of the two cou-

pled equations (4.20) and (4.21), we obtain the following equation for the sound

velocity2:

c4 − c2

[
1

m

(
∂P1

∂n1

)
s̄1

+
1

m

ns1T s̄
2
1

nn1c̄v1

]
+

1

m2

ns1T s̄
2
1

nn1c̄v1

(
∂P1

∂n1

)
T

= 0, (4.24)

which generalizes the well known Landau equation (3.5) [5, 86] for the first and

second sound velocities to the case of a cylindrically trapped gas.

In the normal phase the superfluid vanishes (ns1 = 0), Eq. (4.24) admits only

one solution with velocity different from zero, namely, the adiabatic sound (4.22).

In the superfluid phase, Eq. (4.24) gives rise to two distinct sound velocities as a

consequence of the coexistence of two fluids. Unlike in helium, where the tempera-

ture and pressure fluctuations are essentially uncoupled and Eq. (4.23) holds, the

situation in interacting Fermi gases is different. In this case
(
∂P1

∂n1

)
s̄1
6=
(
∂P1

∂n1

)
T

or

c̄v1 6= c̄p1 except at very low temperature, as shown in Figs. 2.5 and 2.6. The second

sound solution emerging from Eq. (4.24) will be different from Eq. (4.23) due to the

coupling with first sound. The coupling can be important to better understand the

2Hereafter, we drop the superscript ‘0’ to denote the equilibrium quantities and pick it up only

when necessary.



40 From 3D to 1D

0.14 0.16 0.18 0.20 0.22 0.24
0.0

0.1

0.2

0.3

0.4

0.5

 

 

c 1/v
1D F

T/T1D
F

Figure 4.1: 1D first sound velocity in units of v1D
F calculated using Eq. (4.26) (blue

dashed line). The experiment data (red dots) for the first sound in the shaded region

are taken from [36]. The shaded area indicates the uncertainty range of experimental

data. The vertical green line indicates the critical temperature.

nature of second sound propagation which is a crucial ingredient for its experimental

detection. Taking into account the relation between the ratio of specific heats and

compressibilities given by (2.31), Eq. (4.24) can be rewritten as:

c4 − c2

[
1

m

(
∂P1

∂n1

)
s̄1

+
1

m

ns1T s̄
2
1

nn1c̄v1

]
+

1

m2

ns1T s̄
2
1

nn1c̄p1

(
∂P1

∂n1

)
s̄1

= 0. (4.25)

For the in-phase motion of the two fluids (first sound), we expect that oscillation

is basically isentropic and we take Eq. (4.22) as the zero order approximation for

the first sound velocity. By inserting Eq. (2.29) into Eq. (4.22), we obtain the speed

of isentropic sound waves,

mc2
10 =

7

5

P1

n1

. (4.26)
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This differs from the sound velocity in uniform Fermi gases at unitarity, given by

mc2 = (5/3)P/n [37], the difference being caused by the 1D nature of our config-

urations generated by the radial trapping which gives rise to a different condition

of adiabaticity. In Fig. 4.1 we show the value of the first sound velocity c1 as

a function of T/T 1D
F using the thermodynamic results for P1/n1 discussed in Sec.

2.5. Using the expansion (2.37) for the 1D pressure one finds that at T = 0 the

first sound velocity approaches the value c1 =
√
ξ3/5(v1D

F )2/5 =
√
ξv2

F/5 where

v1D
F =

√
2kBT 1D

F /m and vF =
√

2kBTF/m are, respectively, the 1D and 3D Fermi

velocities. The quenching of the sound velocity by the factor
√

3/5 with respect

to the bulk value
√
ξv2

F/3 was first pointed out in [30], in analogy with a similar

behavior exhibited by Bose-Einstein condensed gases [29].

In order to get access to the second sound velocity, it is crucial to know the

behavior of the superfluid density. At present the theoretical knowledge of ns is

rather poor in the unitary Fermi gases. In the following we will make use of simple

ansatz for ns in order to provide a first estimate of the speed of the second sound

oscillation. We use two different models for ns. The first model employs the formula,

ns/n = (1− T/Tc)2/3, (4.27)

accounting for the correct critical exponent 2/3 characterizing the vanishing of ns

near the critical point. A second model employs the phenomenological expression

ns/n = 1− (T/Tc)
4, (4.28)

which also vanishes at T = Tc and exhibits, at low temperature the correct T 4

behavior, although the coefficient of the T 4 law is about 8 times larger than the

one predicted by the phonon contribution to the normal density (see Eq. (2.19)).

The second sound velocity depends in a crucial way on the choice of the model for

ns so that the measurement of c2 is expected to provide useful information on its

temperature dependence.

For the out-of-phase motion of the two fluids, we find (see discussions below)

that a better description of the velocity is given by the expression,

mc2
20 = T

ns1
nn1

s̄2
1

c̄p1
. (4.29)
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Figure 4.2: 1D second sound velocity, calculated using Eq. (4.29) and two different

models for the superfluid density: the phenomenological ansatz: ns/n = 1− (T/Tc)
4

(the red dashed-line) and ns/n = (1 − T/Tc)2/3 (the black dash-dotted-line). The

scattered blue circles are the experimental data [36]. At low temperature the 1D

second sound velocity is expected to vanish like
√
T . The shaded area indicates the

uncertainty range of experimental data. The vertical green line indicates the critical

temperature.

This expression for the velocity differs from Eq. (4.23) because of the presence of

the specific heat at constant pressure rather than at constant density. The two

specific heats actually exhibit a different behavior for temperatures close to Tc (see

Fig. 2.5). When T → 0 the specific heat at constant pressure and at constant

volume instead coincide and, as a consequence of the temperature dependence of

the 1D thermodynamic functions in the low temperature regime (see Sec. 2.5), the

second sound velocity vanishes like
√
T , differently from what happens in the bulk

where it approaches a constant value [21]. In Fig. 4.2 we show the prediction for the

second sound velocity (4.29), with the two ansatz (4.27) and (4.28) for the superfluid
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Figure 4.3: Uniform superfluid density: the red dashed-line corresponds to the

phenomenological ansatz: ns/n = 1 − (T/Tc)
4 while the black dash-dotted-line to

the choice: ns/n = (1 − T/Tc)
2/3. The blue dots are the experimental data [36].

The shaded area indicates the uncertainty range of experimental data.

fraction (see Fig. 4.3).

We have checked the accuracy of (4.29) by considering the next order correction.

In terms of c2
10 and c2

20 we can write the exact equation (4.25) as:

c4 − c2[c2
10 + c2

20

c̄p1
c̄v1

] + c2
10c

2
20 = 0. (4.30)

As the first approximation we assume:

c2
1 = c2

10(1 + o1), c2
2 = c2

20(1 + o2), |o1| � 1, |o2| � 1. (4.31)

A simple calculation shows that the first order corrections are given by,

o1 = −o2 =

c220
c210

( c̄p1
c̄v1
− 1)

1− c220
c210

. (4.32)
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Figure 4.4: First order correction (4.33) to the ansatz (4.29) for the second sound

velocity. The vertical green line indicates the critical temperature.

Thus the expressions (4.29) can accurately describe the sound velocities under the

condition,

c2
20

c2
10

c̄p1 − c̄v1

c̄v1

� 1, (4.33)

where we have dropped the higher order terms of
c220
c210

. It turns out that the condition

(4.33) is well satisfied for all temperatures as shown in Fig. 4.4, thereby proving

that the expression (4.29) is very accurate in reproducing the lower solution of

(4.25) as confirmed by Fig. 4.5. The solutions from the exact numerical method for

both sounds are compared with the solutions from the two approximations given by

Eqs. (4.22) and (4.29). The figure shows that the first sound velocity is actually

independent of the different ansatz for the superfluid density and that expression

(4.26) is essentially accurate. On the other hand, it shows that the second sound

velocity crucially depends on the ansatz for the superfluid density. For both ansatz

the expression (4.29) turns out to be very accurate. The inset of the figure 4.5
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Figure 4.5: 1D first and second sound velocity in units of v1D
F . Upper branch (first

sound): numerical solution of Eq. (4.25) for the first sound by using the superfluid

fraction as ns/n = (1−T/Tc)2/3 (blue open squares) and ns/n = 1− (T/Tc)
4 (dark-

red filled circles); The black solid line corresponds to the approximate adiabatic

sound solution (4.26). Lower branch (second sound): numerical solution of Eq.

(4.25) for the second sound by using the superfluid fraction as ns/n = (1−T/Tc)2/3

(red filled circles) and ns/n = 1 − (T/Tc)
4 (red squares); the black short-dashed

line and the dashed line correspond to the approximation (4.29) with the superfluid

fraction ansatz being, ns/n = (1 − T/Tc)2/3 and ns/n = 1 − (T/Tc)
4, respectively.

The vertical green line indicates the critical temperature. In the inset, the second

sound velocity is calculated under the ansatz ns/n = 1− (T/Tc)
4 using Eqs. (4.23)

(pink squares) and (4.29) (black dashed line), based, respectively, on the specific

heat at constant volume and constant pressure.
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Figure 4.6: Ratio (4.35) between the relative density and temperature fluctuations

calculated for 1D second sound. The vertical green line indicates the critical tem-

perature.

shows that the two expressions (4.23) and (4.29) differ, at maximum, by 10%. In

3D, the maximum difference is significantly larger (33%). The relative difference in

the second sound velocities is defined with respect to the expression (4.29).

Second sound can be actually regarded as an oscillating wave at constant pres-

sure, rather than at constant density, as previously assumed in the derivation of

(4.23). In fact, by a lengthy but straightforward calculation using the equations for

the density and entropy fluctuations given by (4.20) and (4.21), we can get the ratio

between the relative density and temperature fluctuations,

δn1/n1

δT/T
=
− T
n1

(
∂n1

∂T

)
P1

c2

c210

c̄p1
c̄v1
− 1

, (4.34)

holding for both the first sound (c = c1) and second sound (c = c2). Under the con-

dition c20 � c10, the ratio between the relative density and temperature fluctuations
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for second sound takes the simple expression,

δn1/n1

δT/T
=

T

n1

(
∂n1

∂T

)
p1

=
5

2
− 7

2

fnfq
f 2
p

, (4.35)

where we have used the expression α1 = − 1
n1

(∂n1

∂T
)P1 = 5

2T
( c̄p1
c̄v1
−1) for the 1D thermal

expansion coefficient at unitarity. The ratio (4.35) turns out to be negative [97] and

is shown in Fig. 4.6. It should be compared with the result δn1/n1

δT/T
= T

n1

(
∂n1

∂T

)
s̄1

= 5
2

characterizing the propagation of first sound, where the derivative is calculated at

constant entropy rather than at constant pressure. It is remarkable that the ratio

(4.35) is significantly large in a useful range of temperatures, thereby revealing

that second sound can be observed by looking at the density fluctuations of the

propagating signal [91, 92, 36].

4.3 Experimental excitation and observations

In ultracold atomic gases, below the critical temperature for superfluidity, the prop-

agation of sound has been the object of extensive experimental work in recent years.

In the case of highly elongated configurations, it is possible to investigate directly the

propagation of sound waves, by generating a perturbation in the center of the trap

and subsequently investigating the time and space propagation of the resulting sig-

nal along the long axis. Detections of propagation of sound along the axial direction

in the cigar-shaped trap have been reported both for the Bose-Einstein condensate

[26] and for Fermi gases along the BEC-BCS crossover [27, 28] at zero temperature.

The propagation of second sound waves in dilute Bose gases was explored in [34].

In dilute Bose gas, however, second sound actually reduces to the oscillation of the

condensate except at very low temperature in the phonon regime [21], exhibiting

quite different behaviors from the case of strongly interacting superfluids, like 4He.

Differently from dilute Bose gases, Fermi gases at unitarity behave like strongly

interacting fluids and, in this respect, are more similar to liquid 4He, despite the

different statistics. Thanks to the accurate experiment carried out by the Innsbruck

team, the long-standing goal of observation of second sound in superfluid fermions

has been recently achieved [36].
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We summarize here the key features of the experiment of Ref. [36]. Experi-

mentally, an ultracold, resonantly interacting Fermi gas can be prepared by evap-

orating a two-component spin mixture of fermionic 6Li in an optical dipole trap

[98]. The sample consists of N = 3.0× 105 atoms in a balanced mixture of the two

lowest-spin states. The axial and radial trap frequencies are ωz = 2π × 22.46(7)

Hz and ω⊥ = 2π × 539.4(8) Hz, respectively. The corresponding Fermi tempera-

ture is T trapF ∼ 0.9µK. The magnetic field is set to 834 Gauss, right on top of the

well-known broad Feshbach resonance [18]. The relevant temperature range for the

present experiment is between 0.11T trapF and 0.15T trapF . The schemes to excite the

first and second sound are illustrated in Fig. 4.7.

First sound is excited by suddenly turning on the repulsive laser that perpendic-

ularly intercepts the trapped sample at its center, which induces local reduction in

the trapping potential. The actions caused by the potential variations acts on the

superfluid and normal components in the same way and creates a small hump in the

axial density distribution, which then propagates along the axis. Second sound is

excited by locally heating the cloud through a fast modulation of the power of the

green beam (2ω⊥ ∼ 3ω⊥) for a certain period of time and observed through a density

pulse, due to the sizeable thermal expansion as discussed in the previous section,

propagating across the atomic cloud. The signal, however, travels at a slower speed

than that of the first sound and disappears at the superfluid boundary, in clear

contrast to the first sound pulse, as shown in Fig. 4.7.

To detect sound propagation, the axial density profile, n1(z, t) is recorded for

various time delays, t, after the excitation pulse. The density pulse signal is obtained

by subtracting a background profile (average of the profiles over all measured delay

times). Then the speed of sound is extracted by taking the derivative of density

pulse with respect to time. The temperature dependence of the sound speeds is

determined by converting local linear density into its corresponding local Fermi

temperature defined by (2.40), without changing the global temperature, T , of the

trapped sample. The corresponding experimental results are shown in Figs. 4.1

and 4.2. The good agreement between the experimental results (red dots) and the

theoretical prediction (dashed line) based on the isentropic expression (4.26) in Fig.

4.1 shows that first sound in strongly interacting fermions is a wave that propagates

with constant entropy per particle (adiabatic oscillation). The measured speed of
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second sound (Fig. 4.2, blue points) is instead observed to decrease with increasing

temperature and becomes zero at the critical point, in contrast to first sound. The

1D superfluid fraction, ns1/n1 is extracted from the data set of Fig. 4.2 using the

isobaric expression (4.29). The temperature dependence of the superfluid fraction in

the uniform geometry can be obtained by taking the derivative of the 1D superfluid

fraction [36]. The result for the superfluid fraction is presented in Fig. 4.8. A

comparison with Fig. 4.3 shows that the ansatz ns/n = 1 − (T/Tc)
4 provides a

much better description of the measured data in the relevant temperature regime

explored in this experiment. Of course the experiment cannot explore the critical

behavior of the superfluid density near Tc.

4.4 Superfluid fraction

In this section, we discuss the behavior of the superfluid density. Several papers

have provided theoretical predictions for the temperature dependence of the super-

fluid fraction of the interacting Fermi gas at unitarity. A comprehensive discussion

is contained in the paper by Taylor et al. [59]. However, these calculations predict

values of the critical temperature which are in general significantly higher than the

experimental value so that the comparison in the relevant region, where the fraction

ns/n significantly deviates from unity, is not particularly useful. Theoretical predic-

tions in the lower temperature region, corresponding to T < 0.5Tc, and accounting

for the effects of fermionic excitations in addition to the leading phonon contribu-

tion, have been also reported [99, 100], but this regime, cannot be resolved in the

experiment of Ref. [36]. On the other hand, the most reliable quantum many-body

calculations providing accurate values for the critical value for the superfluid tran-

sition [61, 62, 68] have not yet provided predictions for the temperature dependence

of the superfluid fraction.

The experimental investigation of second sound, which is particularly sensitive to

the behavior of the superfluid density, has provided the first access to this quantity of

fundamental interest [36]. The results (Fig. 4.8) turn out to be rather close to those

for liquid helium II [101] (solid line). In particular, the gas is almost completely

superfluid below 0.6Tc. This behaviour is quite different from that exhibited by a
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weakly interacting Bose gas, whose superfluid fraction is significantly smaller, as a

function of temperature, than the fraction represented by the data points in Fig. 4.8

and is well approximated by the condensate fraction of the ideal Bose gas (dashed

line). The recent experiment of Ref. [36] has already stimulated new calculations of

the superfluid fraction (see, for instance, [102] and [103]).
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Figure 4.7: Exciting and observing the propagation of first and second sound. a,

the basic geometry of exciting the optically trapped cloud with a weak, power-

modulated repulsive laser beam (green), which perpendicularly intersects the trap-

ping beam (red). The trapped cloud has a superfluid core (|z| < 190µm), surrounded

by a normal region (about 1.5 times larger). b, c, normalized differential axial den-

sity profiles, δn1(z, t)/n1,max (colour scale), measured for variable delay times after

the excitation show the propagation of first sound (local density increase, bright)

and second sound (local decrease, dark). The temperature of the atomic cloud is

0.135(10)T trapF . The vertical dashed lines indicate the axial region where superfluid is

expected to exist according to the recent determination of the critical temperature.

From Ref. [36].
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Figure 4.8: Superfluid fraction for the homogeneous case. The data points and the

corresponding uncertainty range (shaded region) show the superfluid fraction for a

uniform, resonantly interacting Fermi gas, reconstructed from its 1D counterpart,

as a function of T/Tc. The two horizontal error bars indicate the systematic un-

certainties resulting from the limited knowledge of the critical temperature Tc. For

comparison, we show the fraction for helium II [101] (solid line) and the textbook

expression 1− (T/Tc)
3/2 for the Bose-Einstein condensed fraction of the ideal Bose

gas (dashed line). From Ref. [36].



Chapter 5

Discretized collective oscillations

in a harmonic trap

While in uniform systems it is straightforward to solve the linearized Landau two-

fluid equations since the solutions are plane waves (see chapter 4), for trapped gases

it is not easy to solve these differential equations since the coefficients are position-

dependent. An exception is the zero temperature case, where the chemical potential

has a power law dependence on the density, allowing for analytic solutions. In Sec.

5.1, we will review the well-established results of hydrodynamic theory on the dy-

namic behavior of the unitary Fermi gas at zero temperature, like, the expansion

and the collective oscillations. In Sec. 5.2 we show that in the regime of small am-

plitude oscillations the two-fluid Landau hydrodynamic equations, when applied to

the unitary gas in the presence of harmonic trapping, admit exact scaling solutions

of compressional and surface nature characterized by the linear spatial dependence

of the velocity field and temperature independent frequencies. This is the conse-

quence of the universal scaling behavior exhibited by the unitary Fermi gas at all

temperatures. When the velocity field is no longer characterized by the linear spatial

dependence, the frequency of the collective oscillations exhibits a temperature de-

pendence. This is the case of the so-called higher-nodal modes, for which no analytic

solutions exist. In Sec. 5.3, we build the so-called quasi-1D hydrodynamic formal-

ism by generating the variational approach developed by E. Taylor et al [58, 59, 60].

This variational approach is equivalent to the Landau two-fluid hydrodynamic the-

53
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ory but permits an easier and rather accurate estimate for the higher-order modes.

As a specific application, in Sec. 5.4, we search for the discrete collective modes

under the first sound ansatz (assuming that the two components move with the

same velocity field). We present the comparison of theoretical predictions with the

experimental observations in Sec. 5.5 and show that the agreement is remarkably

good, thus confirming the validity of our 1D hydrodynamic approach. In the last

section 5.6, we discuss the discretized modes of second sound nature, and in partic-

ular, the coupling of the second sound dipole mode with the first sound mode of the

same parity.

5.1 Hydrodynamic behavior at zero temperature

At zero temperature, the hydrodynamic equations of superfluid consist of coupled

and closed equations for the density and the velocity field. Actually, due to the

absence of the normal component, the superfluid density coincides with the total

density and the superfluid current with the total current. At T = 0 the equations

for entropy identically vanishes and Euler equation coincides with the equation for

the superfluid velocity. In this limit the Landau two-fluid equations then reduce

to two coupled equations for the density and the velocity field, first applied to the

case of a nonuniform dilute Bose gas in [40]. The same equations were employed to

discuss beyond mean field corrections in [104].

While in the case of normal fluid the hydrodynamic description requires fast

collisions to ensure local equilibrium, the hydrodynamic is always guaranteed at

T = 0. The hydrodynamic formalism at T = 0 has been also extensively employed

to describe the anisotropic expansions of the superfluid gas after releasing of the

confining trap. The agreement between theory and experiment is very good in both

Fermi and Bose superfluids [24, 20]. See Fig. 5.1 as an example of the anisotropic

expansion of fermions at unitarity.

In the following of this section, we will seek for the zero temperature hydrody-

namic solutions in the quasi-1D geometry. At T = 0, there is no normal component

(ns1 = n1 and vzs = vz) and entropy is zero. So the reduced quasi-1D superfluid



5.1 Hydrodynamic behavior at zero temperature 55

Figure 5.1: Aspect ratio of the cloud as a function of time after release. The dots

indicate experimental data at unitarity (red) and in the absence of interactions

(blue). The solid curves show theoretical predictions with no adjustable parameters

(red, hydrodynamic; blue, ballistic; green, attractive mean field; orange, repulsive

mean field). From Ref. [17].

hydrodynamic equations (see section 4.1) are:

∂tδn1 + ∂z(n1vz) = 0, (5.1)

m∂tvz = −∂z(µ+ Vext) = −∂zδµ. (5.2)

It’s worth noticing that the above equations hold both for Bose and Fermi super-

fluids but its solutions depend on the equation of state. By taking the second time

derivative of Eq. (5.1) and inserting the Euler equation Eq. (5.2), the hydrodynamic

equations at zero temperature take the following form in the linear regime:

∂2
t δn1 = ∂z

[
n1

m
∂z(

∂µ

∂n1

δn1)

]
. (5.3)
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The key ingredient needed for the above equation is the EOS, or more specifically,

the ∂µ/∂n1. We assume that the chemical potential has a power law dependence

µ ∝ nγ on the density in uniform matter [105]; then the Thomas-Fermi equilibrium

profiles take the analytic form:

n = Cµ1/γ = C (µ0 − Vext(r⊥, z))1/γ , (5.4)

where C is a constant independent of coordinates and µ0 is the chemical potential

in the center of the trap. By carrying out the radial integral of the bulk density we

get the 1D density profile:

n1 =

∫
dr⊥n(r⊥, z) =

2πC

mω2
⊥

γ

γ + 1
µ

(γ+1)/γ
1 , (5.5)

where µ1 is the chemical potential along the symmetry axis. Therefore µ1 ∝ n
γ/(γ+1)
1 ,

yielding a density dependence of the chemical potential different from the 3D case.

Let us assume that the density oscillation has a harmonic time dependence and

a spatial dependence of a form determined by the expression δµ = ∂µ
∂n1

δn1 =
∑
clz

l.

Multiplying Eq. (5.3) by ∂µ
∂n1

and using the identity (∂µ/∂n1)∇n1 = −∇Vext(z)

holding at T = 0 for the density profile at equilibrium, we find solutions that obey

the following dispersion law:

ω2 =
γl2 + (γ + 2)l

2γ + 2
ω2
z , (5.6)

where l = 1, 2... represents the order of the polynomial. According to Kohn’s the-

orem, the dipole oscillation (l = 1 mode), which can be excited by a sudden shift

of the confining harmonic trap, has the same frequency as the trap frequency, inde-

pendent of statistics and interactions. This is the consequence of the translational

invariance of the two-body force and is confirmed by Eq. (5.6). For the breath-

ing mode (l = 2) we instead find ω2 = 3γ+2
γ+1

ω2
z [105]. For fermions at unitary, the

equation of state is characterized by the power law coefficient γ = 2/3, and the

corresponding frequency is ω2 = 12/5ω2
z . The frequency of the breathing mode for

dilute Bose gas (γ = 1) is instead ω2 = 5/2ω2
z . Those results are consistent with the

literature [40, 106, 41] in the elongated limit ωz � ω⊥. If we focus on the unitary

Fermi gas and take γ = 2/3, the exact zero temperature dispersion relation is given



5.2 Exact Scaling solutions at finite temperature 57

by:

ω2 =
k2 + 6k + 5

5
ω2
z , (5.7)

where we use the integer value, k = l − 1 counting from ‘0’ for later convenience.

An alternative way to derive the equation of motion for the collective modes at

zero temperature is to take the time derivative of Eq. (5.2) and substitute the time

derivative of density fluctuation by Eq. (5.1), leading to the following expression:

m∂2
t vz = −∇z(

∂µ1

∂n1

∂tδn1) = ∇z(
∂µ1

∂z
vz + n1

∂µ1

∂n1

∂vz
∂z

). (5.8)

By assuming that the velocity oscillates with vz ∝ e−iωt, Eq. (5.8) can be rewritten

as:

mω2vz = ∇2
zVextvz −

1

n1

∇z[n1(
dP1

dn1

)∇zvz], (5.9)

where the pressure enters through the identity n1
∂µ
∂n1

= dP1

dn1
holding at zero tempera-

ture and the mechanical equilibrium condition, ∇zµ1 = −∇zVext, is used to replace

the chemical potential with the external harmonic trap. Inserting the polytropic

equation of state, namely, P1 ∝ nγ+1
1 into the above equation, we reproduce the

same results as the solutions from Eq. (5.3). Furthermore, as will be demonstrated

in Sec. 5.4, if dP1

dn1
is replaced by (∂P1

∂n1
)s̄1 , Eq. (5.9) can be generalized to the case of

finite temperature.

5.2 Exact Scaling solutions at finite temperature

In this section, we prove that the two-fluid Landau hydrodynamic equations, when

applied to unitary gas in the presence of harmonic trapping, admit exact scaling

solutions of mixed compressional and surface nature. These solutions are charac-

terized by a linear dependence of the velocity field on the spatial coordinates and a

temperature independent frequency which is calculated in terms of the parameters

of the trap. Our results are derived in the regime of small amplitude oscillations and

hold both below and above the superfluid phase transition. They apply to isotropic
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as well as to deformed configurations, thereby providing a generalization of Castin’s

theorem [107] holding for isotropic trapping. Our predictions agree with the experi-

mental findings in resonantly interacting atomic Fermi gases. The breathing scaling

solution, in the presence of isotropic trapping, is also used to prove the vanishing of

two bulk viscosity coefficients in the superfluid phase in the end of this section.

In Ref. [107] Castin has shown that exact scaling solutions for the time evolution

of a unitary quantum gas are available if the system is trapped by an isotropic

three-dimensional harmonic potential. A remarkable example is the occurrence of

an undamped radial breathing mode oscillating at the frequency 2ωho, where ωho is

the oscillator frequency of the harmonic potential. This result is remarkable because

it concerns a strongly interacting system and its validity is not restricted to small

amplitude oscillations. Furthermore it holds exactly at all temperatures irrespective

of the collisional regime and the value of the mean free path. It can be regarded as the

strongly interacting and quantum analog of the most famous classical result derived

by Boltzmann for an ideal gas trapped by an isotropic harmonic potential [108].

Similarly to the case of the Boltzmann gas, the universality of the scaling oscil-

lation breaks down in the presence of a deformed harmonic trap. In this case no

general exact result is available, unless one considers the collisional hydrodynamic

regime characterized by the occurrence of fast collisions. This is the case considered

in this section where we prove the existence of a class of scaling solutions describ-

ing small amplitude oscillations of the gas around equilibrium, characterized by a

temperature independent value of the collective frequency. These solutions have

been already identified in the literature at zero temperature (see Sec. 5.1). Their

existence is proven here at all temperatures, both below and above the critical tem-

perature for superfluidity. For simplicity we consider the axially symmetric trapping

potential given in Eq. (4.1), but our proof can be easily generalized to the more

general case of tri-axial trapping.

We start from the two-fluid hydrodynamic equations given in chapter 3 but in

the dissipationless case (κ = η = 0)3. In the following, we prove the existence of

exact solutions of the hydrodynamic equations, corresponding to the first sound like

3For the scaling modes, when we refer to the Landau two-fluid hydrodynamic equations, we

focus only on the dissipationless regime, namely, setting κ = η = 0 in (3.2) and (3.4).
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ansatz vn = vs ≡ v for the velocity field of the normal and superfluid components.

Firstly, we consider a velocity flow with symmetric behavior in the x and y directions,

corresponding to excitations carrying angular momentum along the z-th direction

`z = 0, namely:

v = β(t)r⊥ + δ(t)z . (5.10)

Above Tc, where the superfluid density is absent, the same anstaz applies to the

velocity field of the fluid. The generalization of the formalism to scaling excitations

carrying angular momentum `z = ±1 and `z = ±2 is straightforward and will be

given later in this section.

The choice (5.10) is accompanied by the following scaling transformations for

the density

n(r, t) = e2α(t)+γ(t)n0(r′), (5.11)

and for the entropy density

s(r, t) = e2α(t)+γ(t)s0(r′), (5.12)

where r′ ≡ (eα(t)x, eα(t)y, eγ(t)z) is the scaled spatial variable and n0 and s0 are

the particle density and entropy density calculated at equilibrium. The prefactor

e2α(t)+γ(t) in the above equations ensures the normalization condition for the density

and the conservation of total entropy. At unitary the entropy density can be written

in the form s(n, T ) = nfe(T/TF (n)) where TF is the Fermi temperature, proportional

to n2/3, and fe is a universal function that can be derived from the knowledge of the

equation of state (see chapter 2), but whose explicit form is irrelevant for the proof

of our theorem. The ansatz (5.12) then requires that the ratio T/TF (n) should be

conserved by the scaling transformation. This implies that the temperature should

exhibit the position independent scaling law

T (t) = e(2α(t)+γ(t))2/3T0, (5.13)

where T0 is the temperature of the gas at equilibrium. Finally the chemical po-

tential, which due to dimensionality arguments can be written in the form µ =
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TF (n)fµ(T/TF (n)) where fµ is a dimensionless function, exhibits the following scal-

ing behavior

µ(r, t) = e(2α(t)+γ(t))2/3µ0(n0(r′)), (5.14)

with µ0 calculated at the equilibrium temperature T0. The fact that temperature

fluctuations associated with the scaling solutions are uniform in space represents

a peculiar feature of these collective oscillations. It implies, in particular, that as

a consequence of the thermodynamic relationship ∇P = s∇T + n∇µ and of the

ansatz (5.10), the equations (3.3) and (3.4) for the superfluid velocity and for the

current are exactly equivalent3.

We now prove that the above scaling ansatz actually corresponds to an exact

solution of the hydrodynamic equations. From the equation of continuity one finds

the following relationship

[(2α̇ + γ̇) + (2β + δ)]n0 + (β + α̇)r⊥ · ∇⊥n0 + (δ + γ̇)z∇zn0 = 0, (5.15)

which implies the identities

α̇ = −β, γ̇ = −δ. (5.16)

The same conditions permit to satisfy the equation for the entropy density.

Since at equilibrium the chemical potential satisfies the condition ∇µ0(r) =

−mω2
⊥r⊥−mω2

zz (see Eq. (3.3)), the equation for the superfluid velocity (or, equiv-

alently, the equation for the total current) takes the simplified form

β̇r⊥ + δ̇z = (e2α+(2α+γ)2/3 − 1)ω2
⊥r⊥ + (e2γ+(2α+γ)2/3 − 1)ω2

zz. (5.17)

By looking for time dependent solutions proportional to e−iωt and expanding the

exponentials of Eq. (5.17) up to terms linear in α and γ, one finally derives the

coupled equations

ω2α =

(
10

3
α +

2

3
γ

)
ω2
⊥, (5.18)

and

ω2γ =

(
4

3
α +

8

3
γ

)
ω2
z , (5.19)
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yielding the temperature independent result

ω2 =

(
5

3
+

4

3
λ2 ± 1

3

√
16λ4 − 32λ2 + 25

)
ω2
⊥, (5.20)

for the collective frequencies, where λ = ωz/ω⊥ is the aspect ratio of the trap.

For isotropic trapping (λ = 1, i.e. ω⊥ = ωz ≡ ωho) the corresponding modes

are the uncoupled monopole (breathing) mode with ω = 2ωho and the surface

quadrupole mode with ω =
√

2ωho. For highly elongated traps (λ� 1, i.e. ωz � ω⊥)

the two solutions are instead ω =
√

10/3ω⊥ and ω =
√

12/5ωz, in agreement with

the results already derived in the literature at zero temperature (see for example

[106, 41]).

The above results provide a generalization of the theorem of [107], where it

was shown that for isotropic trapping the monopole breathing mode of the unitary

Fermi gas oscillates with frequency ω = 2ωho, independent of temperature. Differ-

ently from the case of [107] our results hold, however, only in the dissipationless

hydrodynamic regime and in the limit of small amplitude oscillations. The temper-

ature independence of the frequency of the scaling solutions of the unitary Fermi

gas has been already confirmed in experiments [49, 53].

Let us also mention that the proof of the temperature independence of the fre-

quency of the scaling solutions can be derived also for the `z = ±1 and `z = ±2

excitations, respectively. The velocity field corresponding to the excitation of the

`z = ±1 modes is characterized by velocity field proportional to ∇(zx), namely,

v = β(t)zî+ β(t)xĵ . (5.21)

The corresponding scaling transformations for the density is:

n(x, y, z, t) = n0(x+ α(t)z, y, z + α(t)x) , (5.22)

which satisfies the normalization condition of the density. The local entropy has the

same scaling form as the density while the chemical potential exhibits the following

scaling behavior independent of the specific equation of state:

µ(x, y, z, t) = µ0(x+ α(t)z, y, z + α(t)x) . (5.23)
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The above scaling ansatz is shown to be an exact solution of the hydrodynamic

equations below. In view of the previous arguments, the independent equations

are the continuity equation (3.1) and the velocity field equation (3.3) under the first

sound ansatz. Inserting the Taylor expansion till the first order of the time evolution

of the density and the chemical potential into Eqs. (3.1) and (3.3), respectively, we

can get the following relationships:

α̇ + β = 0, β̇ = α(ω2
⊥ + ω2

z), (5.24)

yielding the temperature independent value

ω =
√
ω2
⊥ + ω2

z , (5.25)

for the collective frequency corresponding to the excitation of the combination of

the lz = ±1 modes. And analogously for the velocity field v = β(t)∇(x2 − y2) of

the excitation of the lz = ±2 modes, the scaling transformation for the density is

defined by:

n(x, y, z, t) = n0(xeα(t), ye−α(t), z) , (5.26)

obeying the normalization condition of the density. Hence the scaling behavior for

the chemical potential is:

µ(x, y, z, t) = µ0(xeα(t), ye−α(t), z) . (5.27)

Following the similar strategy as the lz = ±1 modes, we get the temperature inde-

pendent frequency as below:

ω =
√

2ω⊥. (5.28)

Differently from the `z = 0 solutions discussed above the results for the `z = ±1

and `z = ±2 are not restricted to the unitary Fermi gas, but simply require the

applicability of the hydrodynamic equations, being solutions characterized by di-

vergency free velocity fields (surface excitations). They hold in particular for both

Fermi and Bose gases in the presence of harmonic trapping.
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Furthermore, in the 1D geometry (considered in the thesis), there exists an

exact scaling solution as well. In this geometry the velocity field of the breathing

mode linearly depends on the axial coordinate. In the following, we show that the

frequency for the breathing mode is invariant at different temperatures by applying

proper scaling transformations. We know that for 3D Fermi gases at unitarity, one

has µ = Tf( T
n2/3 ), so that the equilibrium density profile under the local density

approximation is: n(r⊥, z) = T 3/2
(
f−1(µ1(z)

T
− mω2

⊥r
2
⊥

2T
)
)−3/2

, where f−1 denotes the

inverse of the dimensionless function f and µ1(z) = µ0
0−mω2

zz
2/2 with µ0

0 being the

chemical potential in the center of the trap. The 1D density profile is defined by:

n1(z) =

∫
d~r⊥n = T 5/2h(

µ1(z)

T
), (5.29)

whose inversion gives the following expression for the chemical potential along the

axial direction:

µ1(z) = n
2/5
1 h−1

(
n1(z)

T 5/2

)
. (5.30)

For the axial breathing mode we make the scaling ansatz:

n1(z, t) = eα(t)n0
1(eα(t)z), (5.31)

where the coefficient eα(t) comes from the normalization condition, n0
1 is the equilib-

rium density and

T (t) = T0e
2/5α(t), (5.32)

where T0 is the equilibrium temperature. The entropy has the same scaling trans-

formation as density:

s1(z, t) = eα(t)s0
1(eα(t)z). (5.33)

The velocity field of the axial breathing mode takes the form:

vz = β(t)z. (5.34)

Following the same strategy as the 3D case, we get an equation for the scaling

parameters by substituting the scaled density into Eq. (4.4):

α̇ + β = 0. (5.35)
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Concerning the velocity field equation (4.6), we need the 1D EOS for further simpli-

fication, in particular, the scaling form for the chemical potential. From Eq. (5.30)

and the scaling ansatz for 1D density (5.31) and temperature (5.32) we obtain

µ1(z, t) = e2α(t)/5µ10(eα(t)z). (5.36)

Following the similar procedure as in 3D case, we get from Eq. (4.6) the following:

β̇ − 12

5
αω2

z = 0. (5.37)

Taking into account Eq. (5.35), we get the result ω =
√

12
5
ωz.

The scaling solutions of the 3D configurations discussed above are characterized

by temperature variations and by an axial velocity field vz independent of the radial

coordinates x and y. These are the conditions required, in general, to apply the 1D

hydrodynamic equations in highly elongated configurations (see chapter 4) which

have been recently successfully applied to describe the experimental results of [53,

36]. In general these 1D like conditions are ensured by the effective roles of the

thermal conductivity and of the viscosity which cause the absence of gradients in

the radial direction and are favored by the presence of a tight radial confinement as

shown in chapter 4. In the case of the low frequency oscillations considered in the

present work the absence of radial gradients is automatically ensured by the form

of the scaling transformation. This explains, in particular, why the frequency ω =√
12/5ωz of the axial breathing mode, here derived in a 3D framework in the highly

elongated limit ωz � ω⊥, coincides with the predictions of the 1D hydrodynamic

equations.

Let us finally discuss a non trivial implication of the scaling solutions concerning

the behavior of the bulk viscosity coefficients. According to Khalatnikov [86] the

entropy production per unit volume associated with a hydrodynamic flow is R/T ,

where R is the so-called dissipative function in the superfluid phase, defined by

R =
1

2
η

(
∂kvni + ∂ivnk −

2

3
δik∇ · vn

)2

+2ζ1∇ · vn∇ ·mns (vs − vn) +

+ζ2 (∇ · vn)2 + ζ3 [∇ ·mns (vs − vn)]2 (5.38)

+ (κ/T ) (∇T )2 .
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Here the Einstein convention is used for the summation.

In the above equation η is the shear viscosity, ζ1, ζ2 and ζ3 are the three bulk

viscosity coefficients appearing in the superfluid phase, while κ is the thermal con-

ductivity. For the scaling modes discussed in the present paper ∇T = 0 and the

velocity fields for the normal and superfluid components coincide. Furthermore, for

the monopole breathing mode in an isotropic trap one has vn = vs = βr and the

first term, proportional to the shear viscosity, identically vanishes. It follows that

in this case only the term with ζ2 survives. However, according to Castin’s theorem

[107] the dissipation associated with the breathing oscillation must be zero and we

then conclude that ζ2 = 0. On the other hand the positiveness of R implies that

ζ2
1 ≤ ζ2ζ3. Thus also ζ1 must vanish, the only surviving bulk viscosity coefficient

being ζ3. Above Tc, where one can introduce only one bulk viscosity term, the vis-

cosity coefficient ζ should be also zero in order to ensure the absence of dissipation.

The same results, concerning the value of the bulk viscosity coefficients, were pre-

viously derived by Son [109] using different considerations. Actually, our derivation

provides a simple foundation to Son’s heuristic argumentation.

5.3 Variational procedures for higher nodal col-

lective modes

In the previous sections we have shown that at zero temperature the superfluid

hydrodynamic equations (Sec. 5.1) can be solved exactly in the elongated harmonic

trap for the collective modes. At finite temperatures one can identify the exact

temperature-independent solutions only for the scaling modes characterized by a

linear dependence of the velocity field on the spatial coordinates (Sec. 5.2). The

solutions for the higher collective modes at finite temperatures are instead more

difficult due to the complex thermodynamics of the strongly interacting fermions

and the inhomogeneity induced by the trap. Easy solutions are available in the

classical limit where only the normal fluid exists and P = nkBT . Starting from the

hydrodynamic equations in the normal phase regime:

∂tn1 + ∂z(n1vz) = 0, (5.39)
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mn1∂tvz + ∂zP + n1∂zVext = 0, (5.40)

∂ts1 + ∂z(s1vz) = 0, (5.41)

and taking the second derivative of Eq.(5.40), we get:

mn1∂
2
t vz + ∂z∂tP + ∂tn1∂zVext = 0. (5.42)

Using the EOS for classical gas and Eq.(5.39), we finally find

mn1∂
2
t vz − T∂2

z (n1vz) + ∂z(n1∂tT )− ∂z(n1vz)∂zVext = 0. (5.43)

To further simplify the velocity field equation (5.43), we need to know the time

evolution behavior of the temperature. We find that ∂tT can be written in the form:

∂T

∂t
= −n1

(
∂T

∂n1

)
s̄1

∂vz
∂z

. (5.44)

In fact, by choosing the density and entropy per particle as independent variable,

we have,

∂tT = (∂T/∂n1)s̄1∂tn1 + (∂T/∂s̄1)n1∂ts̄1. (5.45)

Recalling equations (5.39) and (5.41) for n1 and s1 we can write,

∂tT = −vz [(∂T/∂n1)s̄1∇zn1 + (∂T/∂s̄1)n1∇z s̄1]− n1(∂T/∂n1)s̄1T∇zvz. (5.46)

The term in the square brackets is zero since it corresponds to ∇zT evaluated at

equilibrium so that the final result for the temperature fluctuations reduces to Eq.

(5.44). For a classical gas, Eq. (5.44) becomes,

∂T

∂t
= −2

5
T 0∂vz

∂z
, (5.47)

where we have used the 1D adiabatic equation (2.29).

At unitarity (for all temperatures) the adiabatic derivative n1(∂T/∂n1)s̄1 is equal

to 2/3T in 3D and to 2/5T in 1D. It is worth noticing that result (5.44) is valid in

general, not only for the unitary Fermi gas, for example it is valid along the BEC-

BCS crossover although in this case the adiabatic derivative cannot be calculated in

an easy way.
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The gradient of the 1D density profile for the classical gas at equilibrium is

readily available by adopting the classical EOS P1 = n1kBT and applying the me-

chanical equilibrium condition within the local density approximation, i.e., ∇zP1 =

−n1∇zVext(z). Hence we have

∂zn1 =
∂zP1

kBT
= − n1

kBT
∂zVext(z). (5.48)

Substituting Eq. (5.47) and Eq. (5.48) into Eq. (5.43), we get the equation of

motion for the collective modes in terms of the velocity field for small deviations

from the equilibrium state:

m∂2
t vz =

7

5
kBT∂

2
zvz −

7

5
∂zVext∂zvz − ∂2

zVextvz

= −∂2
zVextvz +

1

n1

∂z

[
n1

(
∂P1

∂n1

)
s̄1

∂zvz

]
, (5.49)

holding for a classical gas. It’s worth mentioning that Eq. (5.49) has a similar

form as Eq. (5.9), suggesting the existence of a general equation of motion for the

collective modes in terms of the velocity field. Taking the polynomial ansatz for the

spatial dependence of the velocity field, i.e., vz(z, t) = e−iωt
∑

k akz
k +ak−2z

k−2 + ...,

we get the following iteration relation:

ak+2

ak
=

7k + 5− 5(ω2/ω2
z)

7(k + 1)(k + 2)

mω2
z

kBT
. (5.50)

By truncating the polynomials to the kth term in order to avoid nonphysical divergent

solutions, we get the dispersion law:

ω2 =
7k + 5

5
ω2
z . (5.51)

At k = 0, vz(z) = a0, we find ω = ωz. The result for the k = 0 mode follows

from the universality of the center-of-mass oscillation in the presence of harmonic

trapping. At k = 1, vz(z) = a1z, ω2 = 12
5
ω2
z , consistent with the temperature

independent result of the breathing mode. The fact that the frequency of the lowest

axial breathing oscillation does not depend on temperature is a peculiarity of the

unitary Fermi gas as discussed in Sec. 5.2. It is worth noting that Eqs. (5.7)
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and (5.51) coincide for the dipole mode and the lowest axial breathing mode. The

k ≥ 2 results instead differ in the two limits revealing that these modes are more

interesting because of the temperature dependence.

Though there exist exact solutions in the zero temperature limit and in the

classical limit, for the higher modes (k ≥ 2) solving Landau’s two-fluid equations

for trapped gases in general is difficult due to the inhomogeneity of the equilibrium

thermodynamic quantities entering the equations, making a reliable ‘brute force’ nu-

merical calculation very challenging [110, 90]. An alternate variational approach was

developed by E. Taylor et al [58, 59, 60]. In this method, the involved quantities are

the spatial integral of the thermodynamic quantities, making it simpler and more re-

liable than directly solving the differential two-fluid equations for trapped gases. We

do not review the details of this technique, referring the reader to the Ph.D thesis of

E. Taylor [111], where the variational approach to solve the two-fluid hydrodynamic

equations in the trapped Fermi gases is described in an explicit way. The main idea

is to derive an action S
(2)
0 to describe the fluctuations in the displacement fields us,

un defined by vs ≡ u̇s and vn ≡ u̇n. By adopting physically reasonable ansatz for

the displacement fields, the action can be written in terms of the variational param-

eters involved in the ansatz. The stationary condition for the action then gives the

solutions of the linearized Landau two-fluid differential equations. The frequencies ω

corresponding to the solutions of the two-fluid hydrodynamic equations (3.1)–(3.4)

without dissipation, with time dependence proportional to e−iωt, can then be derived

using the variational procedure

δω2/δun = δω2/δus = 0, (5.52)

where [60]:

ω2 =

∫
dr
[

1
n0

(∂P
∂n

)s̄(δn)2 + 2n0(∂T
∂n

)s̄δnδs̄+ n0(∂T
∂s̄

)n(δs̄)2
]

m
∫
dr [ns0u2

s(r) + nn0u2
n(r)]

(5.53)

and the displacement fields us and un are characterized by the density and entropy

fluctuations according to δn = −∇· [ns0us+nn0un] and δs̄ = −un ·∇s̄0 +(s̄0/n0)∇·
[ns0(us − un)]. The densities for the superfluid and normal fluid in the equilibrium

state are denoted by ns0 and nn0, respectively. As already anticipated, an approxi-

mate expression for the collective frequencies can be obtained within a variational
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approach by adopting a simplified form of Rayleigh-Ritz method and make ansatz

for the displacement fields of the form: us(r) = asifi(r), un(r) = anigi(r), where the

constant coefficients asi and ani are the variational parameters. Inserting this ansatz

into Eq. (5.53) and equating to zero the variation of the resulting expression with

respect to these parameters, one can obtain approximate results for the collective

modes.

The scheme above was developed for a 3D system and can be generalized to a

1D configurations. The 1D counterpart of Eq. (5.53) takes the form:

ω2 =

∫
dz

[
1
n1

(
∂P1

∂n1

)
s̄1

(δn1)2 + 2n1

(
∂T
∂n1

)
s̄1
δn1δs̄1 + n1

(
∂T
∂s̄1

)
n1

(δs̄1)2

]
m
∫
dz [ns1u2

s + nn1u2
n]

,(5.54)

and the hydrodynamic solutions are derived imposing the variational conditions,

δω2/δun = 0, δω2/δus = 0. (5.55)

Keeping s̄1 constant in the derivatives of Eq. (5.54) corresponds to considering 1D

isentropic transformations. The density and entropy fluctuations δn1 and δs̄1 with

respect to equilibrium are given, in terms of the displacement fields un(z) and us(z),

by δn1 = −∂z[ns1us +nn1un] and δs̄1 = −un∂z s̄1 + (s̄1/n1)∂z[ns1(us−un)]. We have

dropped the superscript ‘0’ to denote the equilibrium quantities. The 1D quantities

with subscript ‘1’ are obtained by radial integral of their corresponding 3D quantities

within the local density approximation (see chapter 2). In App. A, repeating the

3D derivations, we actually show that the 1D variational equations (5.54)–(5.55) are

exactly equivalent to the 1D two-fluid hydrodynamic equations (4.4)–(4.7). Equa-

tions (5.54)–(5.55) hold both in uniform and in trapped configurations. Actually for

a uniform superfluid, it can be proved that the variational equations are identical

to the standard Landau quadratic equations for the velocities c2
i of first and second

sound given by Eq. (4.25), by adopting a plane wave ansatz for the displacement

fields, namely us(z) = ase
iqz and un(z) = ane

iqz and taking the variational procedure

with respect to the variational parameters as and an, respectively. The advantage

of the variational methods is that it allows to get the approximate analytic sound

solutions under suitable ansatz for the velocity field of the fluid, therefore revealing

the physical nature of the solutions.
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Let us now discuss the behavior of the discretized collective oscillations in the

presence of axial harmonic trapping. The effect of the trapping potential enters

through the position dependent thermodynamic functions at equilibrium. The use

of the variational procedure is particularly convenient in trapped configurations

where analytic solutions of the full hydrodynamic equations are not available. In

analogy with the 3D strategy, we can get approximate expressions by making the

following ansatz for the displacement fields:

us(z) =
∑
l=0

asl z
l, un(z) =

∑
l=0

anl z
l, (5.56)

where l is a non-negative integer and the constant coefficients asl and anl are the

variational parameters. Inserting this ansatz into Eq. (5.54) and equating to zero

the variation of the resulting expression with respect to these parameters, i.e., set-

ting ∂ω2/∂asl = 0, ∂ω2/∂anl = 0, we can obtain explicit solutions for the collective

frequencies.

We will implement the variational approach in Secs. 5.4 and 5.6, where we

provide results for the discretized first and second sound modes, respectively. In

particular in Sec. 5.4 we calculate the discretized frequencies which have been

recently measured in [53, 54] as discussed in Sec. 5.5, while in Sec. 5.6 we discuss the

behavior of the second sound solutions in the case of axially trapped configurations.

The coupling between the two modes will be discussed in detail as well.

5.4 Higher-nodal collective modes of first sound

nature at finite temperatures

In this section, we will illustrate the variational formalism under the so-called first

sound ansatz, a simplified case, by assuming that the superfluid and the normal

fluid move in phase with equal displacement fields i.e.,

us = un ≡ u. (5.57)

This condition, which is exact for the scaling solutions as discussed in Sec. 5.2, will

provide approximate predictions in the case of higher-nodal modes. Employing the
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first sound ansatz (5.57), the expressions for the density fluctuations and the entropy

fluctuations to be used in the variational calculation take the simplified form

δn1 = −∂z [n1u] , (5.58)

δs̄1 = −u∂z s̄1. (5.59)

Inserting the above two equations into Eq. (5.54), the expression for the integrals

entering in the variational calculation can be simplified and after combining the

terms in a proper way (App. B.1), takes the form:

ω2 =

∫
dzn1

(
∂P1

∂n1

)
s̄1

(
∂u
∂z

)2∫
dzmn1u2

+ ω2
z . (5.60)

In the unitary Fermi gas, where the 1D thermodynamic relation (∂P1/∂n1)s̄1 =

7/5 (P1/n1) holds, Eq. (5.60) is further simplified to the following form:

ω2 =
7

5

∫
dzP1

(
∂u
∂z

)2∫
dzmn1u2

+ ω2
z . (5.61)

In order to provide a simple quantitative prediction for the temperature depen-

dence of the higher nodal collective modes, we implement the variational strategy

developed in Sec. 5.3. Since the displacement field has the dimension of length, we

take the following ansatz:

u = Rz

∑
l

Xlz
′l, (5.62)

where z′ = z/Rz and l takes either odd values: 1, 3,... or even values: 0, 2,... in

view of the parity of the displacement field and Rz ≡
√

2kBT
mω2

z
at finite temperature

to achieve dimensionless equations (in the case of zero temperature, see App. B.2).

Carrying out the variation with respect to the parameters Xk characterizing the

displacement fields, after a lengthy but straightforward algebra (see App. B.2) we

find the following equation:∑
l

[(
ω2

ω2
z

− 7k + 5

5
)

2

k + l + 1
Mk+l +

7k(k − 1)

5

1

k + l − 1
Hk+l]Xl = 0, (5.63)
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where,

Mk+l =

∫ βµ0

−∞
dx(βµ0 − x)

k+l+1
2 fn(x), (5.64)

and

Hk+l =

∫ βµ0

−∞
dx(βµ0 − x)

k+l−1
2 fp(x), (5.65)

with the universal functions fn(x) and fp(x) defined in chapter 2. Since f ′p(x) =

fn(x) at constant temperature, we get the recursion relation between Mk+l and Hk+l

by applying partial integration to (5.65):

Mk+l =
k + l + 1

2
Hk+l. (5.66)

Equation (5.63) is a matrix equation of the form:
∑

l Cl(ω/ωz)Xl = 0, with

Cl(ω/ωz) representing the coefficient vectors as a function of the frequency. By

requiring the determinant of the coefficient matrix be zero, we obtain the eigenfre-

quency ω; from the vectors Xl we get the density fluctuation according to Eqs. (5.58)

and (5.62) as will be shown in the followings. One can see that when k = l = 0, cor-

responding to u = const, we recover the frequency for dipole mode (ω = ωz); when

k = l = 1, corresponding to u ∝ z, we recover the frequency for axial breathing

mode (ω2 = 12
5
ω2
z). For the higher modes, it is hard to solve exactly in general we

can test the validity of the Eq. (5.63) in both the T = 0 limit (Sec. 5.1) and high

T limit (in the beginning of Sec. 5.3) where we already know the exact results.

Let us now calculate the moments of the density which are crucial ingredient of

Eq. (5.63). As indicated by Eq. (2.21), at zero temperature, we already know

the universal function of fn(x) = (4π/ξ)3/2

3π2 x3/2 for x > 0 and zero elsewhere. Inserting

it into Eq. (5.63), we get:

M0
k+l =

(4π/ξ)3/2

3π2

∫ 1

0

dx′(1− x′)
k+l+1

2 x′
3
2

=
k + l + 1

2

(4π/ξ)3/2

3π2

Γ(5
2
)Γ(k+l+1

2
)

Γ(4 + k+l
2

)
, (5.67)

suggesting (according to Eq. (5.66)),

H0
k+l =

(4π/ξ)3/2

3π2

Γ(5
2
)Γ(k+l+1

2
)

Γ(4 + k+l
2

)
, (5.68)
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where x′ = x/(µ0/kBT ) and M0
k+l, H

0
k+l are the corresponding moments at zero

temperature (see App. B.2). Taking these two expressions into account, the general

sum terms in Eq. (5.63) can be rewritten as:

(
ω2

ω2
z

− 7k + 5

5
− k(k − 1)

5
)H0

k+l +
k(k − 1)

5
H0
k+l−2. (5.69)

Since according to the property of a determinant, whenever two columns (or rows)

of a matrix are identical, or more generally some column (or row) can be expressed

as a linear combination of the other columns, its determinant is 0, we require that
ω2

ω2
z
− 7k+5

5
− k(k−1)

5
= 0 in order to make the determinant of the coefficient matrix

be zero. Therefore, the variational solution at zero temperature reproduces exactly

the frequencies (5.7) in the T = 0 limit.

In the classical limit, we know, from Eq. (2.23), the expression for the univer-

sal function: fn(x) = 2ex (we will discuss the contributions from higher order virial

terms later in this section). Analogously, we get the moments

Mk+l =

∫ x0

−∞
dx(x0 − x)

k+l+1
2 2ex

=
k + l + 1

2
2ex0Γ(

k + l + 1

2
), (5.70)

and

Hk+l = 2ex0Γ(
k + l + 1

2
). (5.71)

Therefore, in the classical limit, the general sum terms in Eq. (5.63) can be rewritten

as:

(
ω2

ω2
z

− 7k + 5

5
)Hk+l +

7

10
k(k − 1)Hk+l−2, (5.72)

and the determinant of the coefficients is zero when ω2

ω2
z

= 7k+5
5

, reproducing exactly

the frequencies (5.51) in the high T limit.

In the intermediate temperature regime, there are no simple analytical

solutions to the higher mode frequency and the displacement field since the universal

functions fn(x) and fp(x) are not simple analytic functions. In order to provide a

simple quantitative prediction for the temperature dependence of the frequencies we
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adopt the variational approach discussed above and we will focus on the k = 2 and

k = 3 modes in the followings.

For the k = 2 mode, we assume a displacement field of the form u = Rz(X0 +

X2z
′2), i.e., we truncate the polynomial expansion (5.62) up to the second order,

namely, the integers k, l = 0, 2. We show that our prediction for the frequency is

practically not sensitive to the the inclusion of higher order terms in the polynomial

expansion for the velocity field in Apps. C and D. Under this approximation, Eq.

(5.63) turns out to be:[
(ω

2

ω2
z
− 1)M0

1
3
(ω

2

ω2
z
− 1)M2

1
3
(ω

2

ω2
z
− 1)M2

1
5
(ω

2

ω2
z
− 43

15
)M4

][
X0

X2

]
= 0, (5.73)

where we have used the recursion relation (5.66) to replace the moments of pressure

by the moments of the density. One trivial solution for the above equation is ω2

ω2
z

= 1,

X2 = 0, corresponding to the dipole mode. The nontrivial solution is given by:

ω2
k=2 =

129t2 − 25

45t2 − 25
ω2
z , (5.74)

X0

X2

= − M2

3M0

, (5.75)

where t2 ≡ M0M4/M
2
2 . In the zero temperature and in the classical limits, we get

t2 = 4/3, 5/3, available from Eq. (5.67) and Eq. (5.70), respectively. This ansatz

reproduces exactly the frequencies in both the T = 0 (5.7) and high T (5.51) limits.

Similarly, for the k = 3 mode, we take the assumption u = Rz(X1z
′+X3z

′3) for the

displacement field and the corresponding solutions are given by:

ω2
k=3 =

440t3 − 252

5(25t3 − 21)
ω2
z , (5.76)

X1

X3

= −3

5

M4

M2

, (5.77)

where t3 ≡ M2M6/M
2
4 . In the zero temperature and the classical limits, we get

t3 = 7/6, 7/5, respectively, therefore reproduce also in this case the frequencies in

both the T = 0 (5.7) and high T (5.51) limits for the k = 3 mode.
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Figure 5.2: Frequency for the k = 2 (upper panel) and k = 3 (lower panel) first sound

collective modes. Experiment data are from [53, 54]. The green lines are the theoretical

predictions based on Eqs. (5.74) and (5.76) using the equation of state of the unitary

(solid) and ideal (dashed) Fermi gas. The thin horizontal dashed lines mark the zero-T

superfluid limit (5.7) and the classical hydrodynamic limit (5.51), respectively. The red

dash-dot vertical lines in (a) and (b) indicate the critical temperature. In this figure and

Fig. 5.3 the Fermi temperature corresponds to the definition T trapF = (3N)1/3~ω̄ho/kB
introduced in the text.

At finite temperature, for simplicity, we express the moments of density as

Ml =

∫ x0

−∞
dx(x0 − x)

l+1
2 fn(x), (5.78)

where x0 is related to the value of T/T trapF by Eq. (2.42). The integrals can be

calculated using the data for the thermodynamic function fn(x) discussed in chap-

ter 2 which include the proper interpolation between the experimental data from

[55], the low temperature phonon regime as well as the classical regime, relevant to

describe the low density region on the tails. The resulting predictions for the tem-

perature dependence of the frequencies are shown in Fig. 5.2 and are denoted by the

green solid line, together with the asymptotic zero temperature and classical values
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Figure 5.3: Equilibrium profiles (upper figure) and density oscillations for the k = 2

(middle figure) and the k = 3 (lower figure) first sound collective modes at different

temperatures. See Fig. 5.2 for the definition of the Fermi temperature. From Ref.

[54].

marked by the thin horizontal dashed lines. The results are plotted as a function of

T/T trapF .

Using the same ansatz for the velocity field determined by Eqs. ( 5.75) and (5.77)

and the equation of continuity we can also calculate the density fluctuations of

each mode given by δn1 = −∂z[n1u]. Since the 1D density profile n1(z) is related

to the pressure at point (r⊥ = 0, z) by Eq. (2.25) and the normalized displacement

field for the k = 2 mode is given by u ∝ (1 − 3M0(x0)
M2(x0)

z′2), the mode profile for the

k = 2 mode can be obtained as:

δnk=2 = −∂z[n1u] ∝ ∂fp
∂z′

u+
∂u

∂z′
fp ∝ 3

M0

M2

z′3fn − (fn + 3
M0

M2

fp)z
′, (5.79)

where the moments Ml are given by Eq. (5.78). Similarly, the mode profile of the

k = 3 mode can be shown to be

δnk=3 ∝
10

3

M2

M4

fnz
′4 − (2fn + 5

M2

M4

)z′4 + fp. (5.80)
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The normalized 1D profile of a unitary Fermi gas is given by

n1(z′)

n1(z′ = 0, T = 0)
=

15π1/2

8
ξ1/4(

T

T trapF

)5/2fp(x0 − z′2). (5.81)

Here the 1D density profile is normalized by the zero-temperature density of the

unitary Fermi gas with the same number of atoms: n1(z′ = 0, T = 0) = 8N
5πZTF

,

where ZTF is the Thomas Fermi radius for the unitary Fermi gas4. In Fig. 5.3 we

show the density profile and the density fluctuations of the k = 2 and the k = 3

modes. As shown, the higher mode has richer nodal structure than the elementary

modes of the same parity. We will discuss the comparison with the experimental

observations later in section 5.5. In addition to the density fluctuations, we can

get the temperature fluctuations of first sound solutions as well. They are given by

∂tT = −n1(∂T/∂n1)s̄1∇zvz (see Eq. (5.44)) already discussed in Sec. 5.3.

Virial correction As shown in Fig. 5.2, the temperature dependence of the

frequencies in the higher temperature region exhibits non monotonic behavior. In

the followings, we show that this is caused by the presence of the higher virial

corrections into the equation of state at lower temperatures below the classical limit.

In general, the phase-space density can be expanded in terms of the fugacity as given

in Eq. (2.23),

fn(x) = 2
∞∑
j=1

jbje
jx. (5.82)

Hence the moment of density is:

Ml = 2
∞∑
j=1

jbj

∫ x0

−∞
dx(x0 − x)

l+1
2 ejx = 2

∞∑
j=1

bjj
− l+1

2 z
j
0Γ(1 +

l + 1

2
), (5.83)

where z0 is the fugacity in the trap center. In the high temperature regions, x =

µ/kBT is very large and negative, making the fugacity z≡ ex � 1. So in deriving

Eqs. (5.70)–(5.72), we keep only the first order virial terms. When the temperature

4For convenience, we use the Thomas Fermi radius for the unitary Fermi gas ZTF =

√
2ξ1/2εtrap

F

mω2
z

or its finite temperature analogue’ Rz =
√

2kBT
mω2

z
as Length scales. They are related to each other

by Rz

ZTF
= 1

ξ1/4

√
T

T trap
F

at finite temperature.
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is lowered, higher order terms should be included [69]. In general, the ratio of the

moments entering the k = 2 mode is:

t2 =
M0M4

M2
2

=
5

3

(
∑∞

j=1 bjj
− 1

2 zj−1
0 )(

∑∞
j=1 bjj

− 5
2 zj−1

0 )

(
∑∞

j=1 bjj
− 3

2 zj−1
0 )2

. (5.84)

Let us first take into account up to the second virial terms and keep only the leading

term of the fugacity in the expansion of t2:

t2 =
5

3

(1 + b22−
1
2 z0)(1 + b22−

5
2 z0)

(1 + b22−
3
2 z0)2

' 5

3
(1 +

b2z0

4
√

2
)

=
5

3
(1 + ∆t2). (5.85)

The first term comes from the first order virial expansion and the second term

∆t2 = b2z0
4
√

2
is the correction due to the second order terms. Correspondingly, the

frequency of the k = 2 mode is modified as below:

ω2
k=2

ω2
z

=
129t2 − 25

45t2 − 25
' 19

5
− 7

5

b2z0

4
√

2
. (5.86)

As can be seen, due to the second order correction, the frequency is reduced below

the classical value
ω2
k=2

ω2
z

= 19
5

as T decreases (b2 = 3
√

2
8
> 0 [80]).

Working to the third order and keeping the corresponding leading terms of the

fugacity in the expansion of t2, we have

t2 =
5

3

(1 + b22−
1
2 z0 + b33−

1
2 z2

0)(1 + b22−
5
2 z0 + b33−

5
2 z2

0)

(1 + b22−
3
2 z0 + b33−

3
2 z2

0)2

' 5

3
(1 +

b2z0

4
√

2
+ (

4b3

9
√

3
− b2

2

8
)z2

0)

=
5

3
(1 + ∆t2 + ∆t3), (5.87)

where, ∆t3 = ( 4b3
9
√

3
− b22

8
)z2

0 . The first term comes from the first order virial expan-

sion and the second and the third terms are the second and the third correction,

respectively. Therefore, the corresponding frequency is

ω2
k=2

ω2
z

' 19

5
− 7

5

[
b2z0

4
√

2
− (
−4b3

9
√

3
+
b2

2

8
)z2

0

]
. (5.88)
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Figure 5.4: The square frequency for the k = 2 mode given by the 2 × 2 matrix in

the high T regime by considering the higher order virial corrections. The dashed

line corresponds to the second order correction. The solid line includes the third

order correction. In the high temperature regime, the frequency is reduced below its

classical value 19/5 (indicated by the dash-dotted line) as the temperature decreases.

We denote the square frequency shift due to the higher virial correction as δε ≡
−7

5
[ b2z0
4
√

2
− (−4b3

9
√

3
+

b22
8

)z2
0 ]. It’s known that b2 = 3

√
2

8
> 0 [80] and b3 = −0.29 < 0 [81],

so the second and the third order virial correction compete, but as shown in Fig. 5.4,

for small values of the fugacity, i.e., at high temperature, the second order correction

of course dominates. δε < 0 due to the second order correction, the frequency is

reduced below the classical value as T decreases within the range of small fugacity.

The same scenario holds for the k = 3 mode as shown in Fig. 5.5.

The variational procedure δω2/δu = 0, under the first sound ansatz, yields the

following equation for the displacement field:

mω2u = ∇2
zVextu−

1

n1

∇z

[
n1

(
∂P1

∂n1

)
s̄1

∇zu

]
, (5.89)
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Figure 5.5: The square frequency for the k = 3 mode given by the 2 × 2 matrix in

the high T regime by considering the higher order virial corrections. The dashed

line corresponds to the second order correction. The solid line includes the third

order correction. Its classical value (26/5) is represented by the dash-dotted line.

a generalized form for the equation of motion in the T = 0 (5.9) and the classical

limit (5.49). In both cases, it is immediate to find the polynomial solutions of the

hydrodynamic equation (5.89). Actually, starting from this equation, we can recover

the previous results concerning the in-phase motion of the two-fluid. For instance,

for axially uniform configurations, we recover the adiabatic expression of first sound

mc2
1 = 7

5
P1

n1
(4.26) discussed in Sec. 4.2 by setting ωz = 0 in Eq. (5.89). In the

presence of axial harmonic trapping, exact numerical solutions of Eq. (5.89) for

the temperature dependence of the frequency of the k = 2 and the k = 3 modes

are presented in App. D [112] and turn out practically indistinguishable from the

approximate results obtained in this section.
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5.5 Experimental excitation and observations

In this section, first, we briefly describe the experimental procedures carried out

by the Innsbruck team [53, 54] and then compare the experimental results with the

main theoretical predictions for the two different higher-nodal modes. Experiment is

carried out on a mixture of fermionic 6Li atoms in two hyperfine states trapped in an

elongated harmonic potential. The atoms are cooled well below degeneracy on top

of the broad Feshbach resonance at 834 Gauss where the scattering length diverges.

The lowest temperature achieved in the experiment is around 0.1T trapF (deep in

the superfluid regime) and the highest temperature explored in the experiment is

around 0.45T trapF , corresponding to rather closely the classical hydrodynamic case.

An almost perfect harmonic confinement along the long trap axis (z axis) is ensured

by the magnetic trapping that results from the curvature of the magnetic field

used for the Feshbach tuning [98]; Also, anharmonicities in the radial confinement

remain negligibly small, indicating that the experimental setup and the theoretical

conditions match well with each other. The thermometry is also under control. In

the experiment, two methods have been adopted, i.e., the wing-fit method and the

potential-energy method to fit the temperature ([53, 54]), which, in general showed

satisfying agreement with each other.

The higher-nodal modes (k = 2 and k = 3 modes) could be efficiently excited

using a resonant local excitation scheme. A repulsive 532-nm laser beam perpen-

dicularly intersects the trapping beam, with its position and size chosen in a way

to provide best mode matching. The power, length, and shape of the excitation

pulse are optimized in order to resonantly drive the desired small amplitude os-

cillation. The one-dimensional axial density profiles n1(z) are recorded by near in

situ absorption imaging and sensitively analyzed by a Fourier transformation of the

detected time evolution of the axial density profile. The experimental results are

given in Fig. 5.2. For the k = 2 mode, the comparison between the theoretical

predictions and the corresponding experimental data remarkably agree with each

other. The excellent agreement of the experimentally observed mode frequencies

with the theoretical predictions provides a stringent test for the validity of this 1D

approach and provides an independent confirmation of the recently measured EOS

[55] of the resonantly interacting Fermi gas. At the lowest temperature realized in
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the experiment (T/T trapF ≈ 0.1), the frequency lies close to the T = 0 superfluid limit

(ωk=2/ωz = 2.049), but already shows a significant down-shift amounting to almost

1%. This illustrates the high sensitivity of the mode frequency to finite-temperature

effects. At the highest temperatures (T/T trapF ≈ 0.45) the experimental data show a

clear trend to go below the asymptotic high-temperature value (ωk=2/ωz = 1.949),

which corresponds to the classical hydrodynamic case. This non-monotonic tem-

perature dependence is consistent with the higher-order virial expansions discussed

above. For the k = 3 mode, the general behavior is very similar to the k = 2

mode, with the main difference that the relative frequency change from superfluid

to collisional hydrodynamics (ωk=2/ωz = 2.530 and 2.280, respectively) is about two

times larger. For temperatures below 0.2TF the agreement is similarly good as in

the k = 2 case. However, for higher temperatures there is a significant trend to lie

above the predicted frequencies. This discrepancy is most likely due to dissipative

effects, which manifest themselves in mode damping and we will be discuss damping

effects in chapter 6.

5.6 Discretized collective modes of second sound

nature

Second sound corresponds to an out-of-phase oscillation of the normal and superfluid

components of the fluid. The out-of-phase oscillations, which are the analogue in

trapped gases of second sound in uniform superfluids, have so far not been observed

in strongly interacting Fermi gases, although there are some theoretical proposals to

observe these modes via two-phonon Bragg scattering or by density perturbations

(the spectrum of the Bragg scattering is related to the imaginary part of density

response function) [60].

We will discuss our predictions using the quasi-1D hydrodynamic formalism in

the experimentally-favored geometry. As a first ansatz for the second sound discrete

modes, we assume that the total current be zero (jz = mnn1v
z
n + mns1v

z
s = 0),

which implies that the oscillation corresponds to a pure temperature (or entropy)

oscillation, without any fluctuation of the density. The coupling of this mode with

the first sound solutions discussed in the previous sections will be discussed in detail
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later. Under the assumption that the total current vanishes, the expression (5.54)

for the frequency of second sound to be used in the variational calculation takes the

simplified form:

ω2 =

∫
dz

(
∂T

∂s1

)
n1

[
∂

∂z

(
uss1ns1
nn1

)]2

∫
dzm

ns1n1

nn1

u2
s

, (5.90)

and the variational condition δω2/δus = 0 yields the following equation for the

displacement field of the superfluid component:

ω2us = − s1

mn2
1

∂

∂z

[(
∂T

∂s̄1

)
n1

∂

∂z

(
s1ns1us
nn1

)]
. (5.91)

The above equations reveal that the key thermodynamic quantities characterizing

the propagation of second sound are the 1D density, entropy, specific heat and

superfluid density. The presence of axial trapping is indirectly present through

the value of the equilibrium quantities. As discussed in Sec. 4.4, at present, the

theoretical knowledge of ns is rather poor in the unitary Fermi gas. In the following

we will make use of simple ansatz for ns (4.27) and (4.28) in order to provide a first

estimate of the frequency of the second sound oscillations.

From Eq. (5.91) one immediately recovers the second sound velocity for an

axially uniform system by considering a plane wave solution of the form eiqz for us.

One finds ω = c2q with mc2
2 = T s̄12

c̄v1

ns1

nn1
, consistent with Eq. (4.23).

In the presence of harmonic trapping along the z-th direction, the second sound

modes are discretized. In principle, it’s possible to solve the differential equation

(5.91) numerically. However, this involves non trivial thermodynamic quantities.

In particular, the appearance of the unavoidable derivative of the specific heat (in

some sense, the derivative of the MIT experiment data [55] is required) makes the

control of the ingredients of the equations challenging. So we resort to the variational

approach (5.90), whose solution requires no numerical derivatives of the specific heat,

to obtain first estimates for the collective frequencies by assuming the polynomial

ansatz for the superfluid displacement field:

us =
∑
l

aslz
l. (5.92)
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Then the normal fluid velocity field is given by

un = −ns1
nn1

us = −
∑
l

asl
ns1
nn1

zl, (5.93)

where l takes either even (0, 2, ...) or odd values (1, 3, ...). Minimizing the frequency

by taking variation with respect to ask, we get:∑
l

[ω2Ak,l −Bk,l −
k + l

2
Ck,l − klDk,l]asl = 0, (5.94)

where

Ak,l = m

∫
dzn1

ns1
nn1

zk+l, (5.95)

Bk,l =

∫
dz(

∂T

∂s1

)n1(
∂s1ns1/nn1

∂z
)2zk+l, (5.96)

Ck,l =

∫
dz(

∂T

∂s1

)n1

∂

∂z
(s1ns1/nn1)2zk+l−1, (5.97)

Dk,l =

∫
dz(

∂T

∂s1

)n1(s1
ns1
nn1

)2zk+l−2, (5.98)

which can be expressed in terms of the dimensionless chemical potential x =

βµ0 − β
2
mω2

zz
2 within local density approximation in order to make direct use of

the universal thermodynamic functions investigated in chapter 2.

The lowest frequency mode of second sound nature is expected to be of dipolar

nature for which we make the simplifying assumption that the displacement field us

of the superfluid component is constant in space and un is fixed by the condition

nsus + nnun = 0 of vanishing total current. Including only the term l = k = 0 in

Eq. (5.94), we obtain the simplest expression ω2 = B0,0/A0,0. In Fig. 5.6 we show

the resulting prediction for the temperature dependence of the lowest second sound

mode, using the two models for the superfluid density given by Eqs. (4.27) and

(4.28). We have checked that the inclusion of higher order terms in the polynomial

ansatz for us introduces minor corrections (less than 10 %, see Fig. 5.7). However,
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Figure 5.6: Frequency for the lowest discretized second sound mode in an axially

trapped configuration with ωz � ω⊥. Two different models for the superfluid density

are used: the phenomenological ansatz: ns/n = 1 − (T/Tc)
4 (the red dashed-line)

and ns/n = (1 − T/Tc)
2/3 (the black dash-dotted-line). The vertical green line

indicates the critical temperature.

we have checked that the convergence of higher order modes of second sound nature

is not as good as for the dipole mode.

Notice that in Fig. 5.6, an important feature of the second sound frequency is

that it vanishes when the temperature approaches the critical value, as a consequence

of the vanishing of the superfluid density at Tc. This result differs from the one

predicted in 3D isotropic configurations [60, 90] and can be understood noticing

that an estimate for the discretized frequency can be obtained using the expression

ω ∼ c2q with q ∼ 1/Rs,z where Rs,z is the size of the superfluid along the z-

th direction. On the other hand the main temperature dependence of the second

sound velocity, as T → Tc, is given by the the 1D superfluid velocity that behaves

like
√
ns1 ∼

√
nsR2

s,⊥ and is hence proportional to the square root of the bulk

superfluid density calculated in the center of the trap and the size of the superfluid
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Figure 5.7: Convergence of the out-of-phase dipole mode. From top to bottom, the

orders of the polynomials for the superfluid displacement field are: 0, 2, 4, 6, 8.

along the radial direction. Since the ratio Rs,⊥/Rs,z in the LDA is given by ωz

ω⊥

and ns vanishes as one approaches the transition temperature, the second sound

frequencies will vanish too.

We can estimate the temperature fluctuations under the second sound ansatz.

For the entropy fluctuation (4.5), we have:

∂δs1

∂t
= −∂z(s0

1v
z
n) = ∂z(vs

s0
1ns1
nn1

). (5.99)

So the temperature-fluctuation is determined by:

∂T

∂t
= (

∂T

∂n1

)s1
∂n1

∂t
+ (

∂T

∂s1

)n1

∂s1

∂t
= (

∂T

∂s1

)n1∂z(
s1ns1
nn1

us), (5.100)

where we have imposed the condition ∂n1

∂t
= 0. As a simple application, we can get

the rough temperature fluctuation mode corresponding to the second sound ‘dipole’

mode assuming that the displacement field can be well approximated by us = const.

In contrast to the dipole mode of first sound nature, where the temperature is
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uniform in space and time (indicated by Eq. (5.44)), the temperature fluctuations

of the ‘dipole’ mode of second sound nature exhibits a spatial-dependence structure.

Let us point out that the discretized second sound oscillations discussed above

are expected to be more damped than the first sound ones discussed in the previous

section. The reason is that the thermal conductivity in the normal phase tends to

infinity near the transition point [113] and is consequently large near the boundary

between the superfluid and the normal phases. This is expected to result in the

penetration of the temperature fluctuations into the normal phase, resulting in an

increase of damping.

Next, we discuss the coupling between the two modes. This can be estimated

using a variational approach. To this purpose we will look for solutions of the

variational hydrodynamic equations in the form us = au(1)+u
(2)
s and un = au(1)+u

(2)
n

for the superfluid (us) and normal (un) displacement fields, respectively. Here u
(1)
n =

u
(1)
s ≡ u(1) corresponds to the velocity field of the first sound solutions discussed in

Sec. 5.4, while u
(2)
n and u

(2)
s are the velocity fields of the uncoupled second sound

solutions satisfying the condition of vanishing total current. By inserting the ansatz

into Eq. (5.54) we find, after a straightforward calculation, the expression

ω2 =
a2ω2

1 + ω2
2
K2

K1
− aU1,2

K1

a2 + K2

K1

, (5.101)

for the collective frequency as a function of the variational parameter a, where

K1 = 1
2

∫
dzmn1u

2
1, K2 = 1

2

∫
dzm(u

(2)
s )2n1ns1

nn1
and U1,2 = 1

2
T
∫
dz ∂u1

∂z
∂s1ns1u

(2)
s /nn1

∂z
and

we have used the identity n1( ∂T
∂n1

)s̄1 = 2
5
T holding at unitarity. By imposing the

variational condition δω2/δa = 0 we find the result

ω2 =
ω2

1 + ω2
2 ±

√
(ω2

1 − ω2
2)2 +

U2
1,2

K1K2

2
, (5.102)

for the frequency of the two coupled modes. The corresponding solution for the

coupling parameter is:

a = −
(ω2

1 − ω2
2)±

√
(ω2

1 − ω2
2)2 +

U2
1,2

K1K2

U1,2

K2

. (5.103)

When applied to uniform matter, using result (4.22) and (4.23) for the uncoupled
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Figure 5.8: The upper panel shows the coupling strength (5.103) between the second

sound dipole mode and the k = 2 first sound mode using two different ansatz for the

superfluid density as indicated in the captions. In the lower panel, the frequency

of the second sound dipole mode calculated with (denoted by filled symbols) and

without (denoted by empty symbols) coupling with the first sound mode. In both

panels, the superfluid density ansatz ns/n = 1−(T/Tc)
4 (upper branch) and ns/n =

(1− T/Tc)2/3 (lower branch) are used.

first (ω1) sound and second (ω2) frequencies, the above procedure reproduces exactly

the two decoupled solutions given by the roots of Eq. (4.25). As an example of

application in the presence of harmonic trapping we have considered the coupling

between the dipole second sound solution discussed above and the k = 2 first sound

solution discussed in Sec. 5.4. The k = 2 mode is actually the lowest first sound

mode that can be coupled to the dipole second sound mode, being characterized by

the same parity symmetry. The k = 0 (dipole) first sound mode is in fact an exact

solution of the two-fluid hydrodynamic equations and cannot exhibit any coupling

with other modes. The numerical calculation shows that the changes in the value of

the second sound frequency caused by the coupling are very small (see Fig. 5.8).



Chapter 6

Damping mechanisms

In the previous chapters we have applied the quasi-1D two-fluid hydrodynamic the-

ory to investigate the sound propagations (chapter 4) and discretized oscillations

(chapter 5) of the unitary Fermi gas in the highly elongated configuration. In this

chapter, we will discuss the applicability of the 1D approximation employed in the

thesis. To this purpose we will apply the two-fluid hydrodynamic equations to cal-

culate the damping of the sound waves, induced by a violation of the 1D condition,

i.e., by the presence of radial gradients in the normal velocity field and in the tem-

perature fluctuations.

The damping behavior of the higher-node modes in the elongated unitrary Fermi

gas has been investigated experimentally in Ref. [54]. There, it is found that the

damping rate increases with the order of the mode investigated. A better under-

standing of damping is very important to understand the limitations of the theo-

retical approach applied to describe these modes. As discussed in Sec. 4.1, under

suitable conditions of radial trapping, it is possible to derive simplified 1D hydrody-

namic equations from the usual two-fluid Landau hydrodynamic equations starting

from a 3D description [86]. The basic point of such a derivation is the requirement

that both the normal velocity field along the long z-th axis and the temperature os-

cillations during the propagation of sound do not depend on the radial coordinates.

This requirement is justified in the case of tight radial confinement and is a direct

consequence of the effects of viscosity and of thermal conductivity. The condition

89
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Figure 6.1: Theoretical calculation of the shear viscosity. From Ref. [114].

can be formulated in a simple form:

η � mnn1ω, (6.1)

(As we will see below, actually there is a small prefactor in the right side of the

inequality (6.1)). An analogous condition holds for the thermal conductivity. In-

deed the relatively small damping shown by the experiment [54] in the case of the

k = 2 mode confirms that the main assumption mnn1ω/η � 1 needed to derive

the 1D hydrodynamic equations is reasonably well satisfied. One can estimate the

correctness of (6.1) using the available data for the density and the shear viscosity

[55, 114].

To this purpose, Eq. (6.1) is rewritten in the following form:

η

n~
� mnn1ω

n~

= 2π(3N)1/3(
ωz
ω⊥

)4/3 T

T trapF

fp
fn

ω

ωz
. (6.2)
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In achieving the above expression, we have adopted the universal functions discussed

in chapter 2 and replaced the normal 1D density by the total 1D density as we will

concentrate on the estimate in the normal phase. The quantity on the right-hand

side can be readily calculated by using the EOS discussed in chapter 2 together with

the experimental parameters: N = 3×105, ωz = 2π×22.52Hz and ω⊥ = 2π×473Hz

(for lowest T); ωz = 2π × 23.31Hz and ω⊥ = 2π × 1226Hz (for highest T) adopted

by the Innsbruck team [54, 53]. The corresponding value of the Fermi temperature

ranges from T trapF ' 0.8µK to T trapF ' 1.5µK. The quantity on the left-hand side

of Eq. (6.2) is the shear viscosity divided by the density, whose value is accessible

from the recent theoretical estimates [114]. By comparing the values of the left-

and right-hand sides of Eq. (6.2) (see Figs. 6.1 and 6.2), we find that the condition

(6.2) is actually violated for the experimental conditions of [53, 36, 54]. However, a

more careful investigation shows the occurrence of a small numerical coefficient in

the right-hand side of the inequality, as will be discussed below.

To produce more quantitative estimates, one should calculate the first correction

to some observable quantity and confirm that the correction is small. We will

actually calculate the first correction δc/c to the velocity of sound, propagating in the

z-th direction in the absence of axial trapping. The calculations are cumbersome and

we consider here only the case of unitary Fermi gas above the transition temperature.

It is easy to show that the first correction is imaginary and corresponds to damping.

Thus it is more convenient to calculate the correction through the energy dissipation

due to the radial gradients of the velocity field v and of the temperature fluctuations

δT .

The dissipation of the energy of the oscillation due to the shear viscosity (we

keep only the leading term) is given by (see §49 in [87])

Ėosc = −
∫ ∞

0

η(r⊥) (∂r⊥v)2 2πr⊥dr⊥ . (6.3)

The correction we are looking for is

|δc|
c

=

∣∣∣Ėosc∣∣∣
2ωEosc

, (6.4)

where Eosc = 2Ekin
osc = mn1v

2. The relevant hydrodynamic equation, needed to

calculate ∂r⊥v, is the equation of momentum conservation along the z-th direction
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Figure 6.2: Value of mn1ω
n~ for the k = 2 mode with larger (blue data) and smaller

(red data) aspect ratio, respectively. The total number of particles is 3× 105. The

green line indicates the critical point.

given, with proper accuracy, by:

1

r⊥
∂r⊥ [r⊥ (η∂r⊥v)] = −iω (mnv − δP/c) , (6.5)

where, to the lowest order, the velocity v in the right-hand side can be considered

r⊥-independent and the pressure changes δP can be evaluated in terms of v using

Eqs. (3.1)–(3.4). The proper solution is given by:

∂r⊥v (r⊥) = −v 1

η(r⊥)r⊥

∫ ∞
r

F (r⊥)r⊥dr⊥, (6.6)

where, for the unitary gas, the function F can be expressed through the universal

functions introduced in Sec. 2.1 as:

F (r⊥) = iω
kBT

c2λ3
T

[
2

5
(x1 − x) fn −

mc2

T
fn + fp

]
, (6.7)
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with x = x1 − r2
⊥/R

2
⊥ and R2

⊥ ≡ 2kBT/mω
2
⊥. The correction to the speed of sound

is finally given by

|δc|
c

=
π

ωmn1

∫ ∞
0

(∫ ∞
r

F (r⊥)r⊥dr⊥

)2
dr⊥

η (r⊥) r⊥
. (6.8)

Further calculations demand the knowledge of the viscosity. It is reasonable to

assume that, in the relevant region around the critical temperature, the value of

the shear viscosity is close to the “minimal quantum value” [115] ηQ = ~s/4πkB.

Experimental data on the shear viscosity by [116, 117] confirms this ansatz. Actually

the measured values of η turn out to be larger than ηQ, which makes the correction
|δc|
c

even smaller. A simple calculation then gives the result,

|δc|
c
≤
(
|δc|
c

)
Q

=
A

8× 49π

mn1ω

ηQ(xc)
, (6.9)

with A ≈ 0.5 near Tc and ηQ(xc) the value of the minimum quantum viscosity

calculated on the symmetry axis at Tc. It occurs that for the experimental conditions

of Refs. [53, 54], |δc| /c turns out to be 0.01 with the parameters: N = 3 × 105,

ωz = 2π × 23.31Hz and ω⊥ = 2π × 1226Hz. Notice that the condition |δc|
c
� 1

actually requires a less stringent condition as compared to Eq. (6.1) because of the

small prefactor A/(8× 49π) in the right-hand side of Eq. (6.9).

It is interesting also to produce calculations in the classical regime of high tem-

peratures. Here η = ηCl does not depend on density nor, consequently, on r⊥. The

result is given by (6.9) with ηQ replaced by ηCl = 15
32
√
π

(mkBT )3/2

~2 [118] and A = 1.

We find that also in this case |δc| /c is small enough and that the condition for the

1D approximation is satisfied.

A condition analogous to Eq. (6.4) should be also satisfied for the thermal

conductivity κ. We do not present here the corresponding calculation, because

there are no reliable data on κ from experiments. It is however important to point

out that the temperature fluctuations are always r⊥-independent in the superfluid

phase due to the conditions of mechanical equilibrium of the superfluid component in

the radial direction. Furthermore, the thermal conductivity κ diverges at transition

temperature [113] so that there are good reasons to believe that the corresponding

corrections to the sound velocity are less important than the ones due to the shear

viscosity.
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Chapter 7

Conclusions and Perspectives

We have provided a systematic discussion of the two-fluid hydrodynamic behavior

exhibited by the unitary Fermi gas in the presence of a highly elongated harmonic

potential. The main achievements contained in the thesis are summarized below.

(i) We have presented an exhaustive discussion of the relevant 3D and 1D thermo-

dynamic functions, like the pressure, the entropy and the specific heats at constant

density and at constant pressure, whose knowledge is required in order to solve the

hydrodynamic equations. The thermodynamic functions are identified using the

most recent experimental data obtained at MIT [55], through the introduction of

universal scaling functions which emphasize the universality of the unitary Fermi

gas. The matching of the MIT data with the low temperature behavior of the 3D

thermodynamic functions fixed by the thermal excitation of phonons and with the

high temperature virial expansion has been explicitly discussed. Particularly in-

teresting results concern the behavior of the 1D quantities which are calculated by

radial integration of the 3D thermodynamic functions using the local density ap-

proximation. The behavior of the 1D thermodynamic functions at low temperature

is not uniquely fixed by the thermal excitation of phonons as happens in uniform

superfluids, but involves also the thermal regimes at higher temperature in the pe-

ripheral radial region. Their temperature dependence at low T has been explicitly

calculated.

(ii) We have solved the 1D hydrodynamic equations derived in [37] using a vari-

ational formulation of the hydrodynamic equations. Explicit results are given for
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both the first and second sound modes. While the first sound solutions are basically

determined by the 1D adiabatic compressibility the second sound solutions are sen-

sitive, in addition to the entropy and the specific heat, to the superfluid density of

the system, a rather elusive quantity which cannot be determined by the knowledge

of the equation of state of the system.

(iii) We have provided results for both 1D uniform and axially trapped config-

urations. In the first case the solutions of the hydrodynamic equations take the

form of sound wave whose velocity has been systematically investigated for both

first and second sound, employing different models for the superfluid density, and a

detailed analysis of recent experimental results was presented [36]. In the presence

of axial trapping the lowest excitations take the form of discretized collective oscilla-

tions whose frequencies are calculated as a function of temperature. The theoretical

predictions for the first discretized sound solutions are compared with recent exper-

iments carried out both below and above the critical temperature for superfluidity

[53].

(iv) An important feature emerging from our studies is that the finite value

of the thermal expansion coefficient makes the second sound mode an oscillation at

constant 1D pressure, rather than at constant 1D density and an explicit formula for

the resulting density fluctuations has been derived as a function of temperature. This

has the important consequence that, except at very low temperature, the density

fluctuations characterizing second sound are not negligible, thereby making this

mode observable in experiments.

(v) The applicability of the 1D hydrodynamic approach employed in the thesis is

based on the assumption that the dependence of the temperature fluctuation and of

the velocity field on the radial coordinates can be safely ignored. We have discussed

the validity of this assumption by properly including the effects of viscosity in the

hydrodynamic equations and calculating the first corrections to the velocity of sound.

Explicit estimates near the critical temperature and in the classical regime show that

these corrections are small in the experimentally available trapping conditions.

(vi) A still open question concerns the theoretical calculation of the temperature

dependence of the superfluid density near the superfluid transition. Ab initio Monte

Carlo calculations could provide a quantitative estimate of the superfluid fraction

in this relevant region, now accessible experimentally, where fermionic quasiparticle
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excitations are expected to provide the dominant contribution, as recently discussed

in [102]. We hope our work encourages more theoretical calculations in order to

improve the accuracy of the theoretical predictions for superfluid density.

Another open question remains the theoretical understanding of damping phe-

nomena characterizing the first and second sound oscillations of the strongly inter-

acting Fermi gas.
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Appendix A

1D variational formulation of the

Landau two-fluid hydrodynamic

equations

The continuity equation (4.4) and the equation for the entropy (4.5) can be easily

recovered by taking the time derivative of the density fluctuation δn1 and that of

the entropy fluctuation δs1 = n0
1δs̄1 + s̄0

1δn1 (in linear regime) according to their

definition given in Sec. 5.3. The equation for the superfluid field (4.6) can be

recovered by minimizing the frequency defined in Eq. (5.54) with respect to the

superfluid displacement field us. Similarly, the equation for the total current (4.7)

can be recovered by minimizing the frequency with respect to un, as shown below.

Minimizing the frequency (5.54) with respect to the superfluid displacement field,

namely, δω2

δus
= 0 results in the equation below:

mω2n0
s1us = n0

s1

∂

∂z
[

1

n0
1

(
∂P

∂n1

)s̄1δρ1]

+n0
s1

∂

∂z
[n0

1(
∂T

∂n1

)s̄1δs̄1]− n0
s1

∂

∂z
[s̄1(

∂T

∂n1

)s̄1δn1]

−n0
s1

∂

∂z
[s̄0

1(
∂T

∂s̄1

)n1δs̄1]

= n0
s1

∂

∂z
δµ. (A.1)

The equation above is equivalent to −m∂tvs = ∂
∂z

(µ+ Vext) by assuming us ∝ e−iωt.
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So Eq. (4.6) is proved. We mainly used the formula:∫
dzf(z)∇[δ(z − z′)g(z)] = −g(z′)∇f(z′), (A.2)

and the thermodynamic identity:

(
∂T

∂n1

)s̄1 =
1

n2
1

(
∂P1

∂s̄1

)n1 . (A.3)

A simple proof is the following: we get from the Gibbs-Duhem relation dµ = dP1

n1
+

P1

n2
1
dn1−d(T s̄1)+Tds̄1, which gives that d(µ− P1

n1
+T s̄1) = P1

n2
1
dn1 +Tds̄1. Therefore,

( ∂T
∂n1

)s̄1 = 1
n2
1
(∂P1

∂s̄1
)n1 .

Similarly, taking these into account and using the expansion of δP1 and δT in

terms of n1 and s̄1, we get an equation for the normal velocity field following the

requirement δω2

δun
= 0:

mω2n0
n1un =

∂P1

∂z
+ n1∇zVext −mω2n0

s1us (A.4)

Therefore, mω2(n0
n1un+n0

s1us) = −m(n0
n1∂tvn+n0

s1∂tvs) = ∂P1

∂z
+n1∇zVext, Eq. (4.7)

is proved.



Appendix B

Some derivation details

B.1 Derivation for the simplified first sound equa-

tion (5.61)

In this section, we show how to simplify the general equation (5.54) under the first

sound ansatz (us = un = u). For instance, the first term can be written as:

1

n1

(
∂P1

∂n1

)
s̄1

(δn1)2 = n1

(
∂P1

∂n1

)
s̄1

(
∂u

∂z
)2 +

u2

n1

(
∂P1

∂n1

)
s̄1

(
∂n1

∂z
)2

+2u

(
∂P1

∂n1

)
s̄1

∂n1

∂z

∂u

∂z
. (B.1)

The second cross-term between the density fluctuations and the entropy fluctuations

take the form:

2n1

(
∂T

∂n1

)
s̄1

δn1δs̄1 = 2n1u
2

(
∂T

∂n1

)
s̄1

∂n1

∂z

∂s̄1

∂z
+ 2n2

1u

(
∂T

∂n1

)
s̄1

∂s̄1

∂z

∂u

∂z

= n1u
2

(
∂T

∂n1

)
s̄1

∂n1

∂z

∂s̄1

∂z
+
u

2

n1

(
∂P1

∂s̄1

)
n1

∂s̄1

∂z

∂n1

∂z

+2u

(
∂P1

∂s̄1

)
n1

∂s̄1

∂z

∂u

∂z
. (B.2)

In obtaining the second step, we have used the identity:
(
∂T
∂n1

)
s̄1

= 1
n2
1

(
∂P
∂s̄1

)
n1

(see

App. A). Inserting the expression for the entropy fluctuation (5.59) into the last
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term in Eq. (5.54), we get

n1

(
∂T

∂s̄1

)
n1

(δs̄1)2 = n1u
2

(
∂T

∂s̄1

)
n1

∂s̄1

∂z

∂s̄1

∂z
. (B.3)

Equation (B.3) actually cancels with the first term in Eq. (B.2) due to the condi-

tion ∇zT = 0 holding at equilibrium. Then by recombining the remaining terms

in Eq. (B.1) and Eq. (B.2), we get the simplified integrand in the numerator:

n1 (∂P1/∂n1)s̄1 (∂zu)2−ω2
zz∂z(mn1u

2) where we have employed the thermodynamic

relation ∂zP1 = −n1∂zVext(z) holding at equilibrium (see Eq. (4.7)). Carrying out

the partial integral when necessary, finally, the expression for the frequency (5.54)

takes the simplified form:

ω2 =

∫
dzn1

(
∂P1

∂n1

)
s̄1

(
∂u
∂z

)2∫
dzmn1u2

+ ω2
z . (B.4)

B.2 Derivation of the general equation (5.63)

A detailed derivation in reaching the general matrix equation (5.63) for the first

sound discretized modes via variational approach is given below. Taking variation

of expression (5.61) with respect to Xk, we get:

δK

δXk

= R2
z

∑
l

Xl

∫
dz′Rzmn1z

′k+l, (B.5)

where K = 1
2

∫
dzmn1u

2. In order to make use of experiment data of Ref. [55],

we reformulate the moment of density. By proper scaling, asymmetrical harmonic

trap can be transformed to spherical form: Vext = 1
2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) =

1
2
m(x̃2 + ỹ2 + z̃2) = 1

2
mr̃2, where j̃ = ωjj, j = x, y, z. So the moment of 1D density
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can be reformulated in terms of the 3D harmonic potentials.

M̃k,l =

∫
dz′Rzmn1z

′k+l

=
2πRz

ωxωy(ωzRz)k+l+1

2

k + l + 1
(

2

m
)
k+l+1

2

∫
dVextV

k+l+1
2

ext n(Vext)

=
2πRz

ωxωy

2

k + l + 1

β−1

λ3
T

∫ βµ0

β(µ0−Vext(R))

dx(βµ0 − x)
k+l+1

2 λ3
Tn(x)

≡ 2πRz

ωxωy

2

k + l + 1

β−1

λ3
T

Mk,l. (B.6)

We have also introduced the dimensionless quantity: x = β(µ0 − Vext) where µ0

is the chemical potential in the center of the harmonic trap. β = 1/kBT at finite

temperature. Similarly, for the numerator U = 1
2

∫
dz 7

5
P1

(
∂u
∂z

)2
+ 1

2
ω2
z

∫
dzmn1u

2 we

get (we also used partial integral so part of the second part joins the first part):

δU

δXk

=
7k + 5

5
ω2
zR

2
z

∑
l

M̃k,lXl −
7

5
k(k − 1)ω2

zR
2
z

∑
l

H̃k,lXl, (B.7)

where,

H̃k,l =

∫
dz′

P1

ω2
zRz

z′k+l−2

=
2π

ωxωy(ωzRz)k+l

1

k + l − 1
(

2

m
)
k+l+1

2

∫
dVext

P

ωz
V

k+l−1
2

ext

=
2πRz

ωxωy

1

k + l − 1

kBT

λ3
T

∫ βµ0

β(µ0−Vext(R))

dx
P (x)λ3

T

kBT
(βµ0 − x)

k+l−1
2

≡ 2πRz

ωxωy

1

k + l − 1

kBT

λ3
T

Hk,l. (B.8)

Minimization of the frequency with respect to the velocity field requires that ω2 δK
δXk

=
δU
δXk

. So by combining Eqs. (B.5)–(B.8), we get,

∑
l

[(
ω2

ω2
z

− 7k + 5

5
)

2

k + l + 1
Mk,l +

7

5
k(k − 1)

1

k + l − 1
Hk,l]Xl = 0. (B.9)

In the case of T = 0, we change the variable from x to x′ = x/(µ0/kBT ). Note

that at zero temperature, the size of the cloud is determined by µ0 according to
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the Thomas Fermi approximation, so the lower bound in the integrals entering the

coefficient matrix is 0, and the upper bound is 1. An extra term of the prefactor

µ0/kBT will correspondingly be produced, but can be included into Xl, therefore

doesn’t affect the final form for the coefficient matrix. We use M0
k+l and H0

k+l for

the moments to distinguish from the moments at finite temperatures.



Appendix C

Convergence revealed by the 3× 3

matrix equation solution

In order to check the convergence of the frequency for the k = 2 and k = 3 modes,

we solve Eq. (5.63) involving the next order terms, i.e., taking up to the third terms

in the generic expression and get the 3× 3 matrix of even parity below: (ε− 1)M0
1
3
(ε− 1)M2

1
5
(ε− 1)M4

1
3
(ε− 1)M2

1
5
(ε− 43

15
)M4

1
7
(ε− 81

25
)M6

1
5
(ε− 1)M4

2
7
(ε− 81

25
)M6

1
9
(ε− 21

5
)M8


 X0

X2

X3

 = 0, (C.1)

where, ε ≡ ω2

ω2
z
. In order to compare with 2 × 2 matrix, we expand the coefficient

matrix in terms of the third row and get:

D = 8(ε− 1)M0M4M8[(
1

45
− d0

81
)(ε− ε0)(ε− 21

5
) +

2d1

105
(ε− 1)(ε− 81

25
)

− d2

125
(ε− 1)(ε− 43

15
)− d3

49
(ε− 81

25
)2], (C.2)

where d0 =
M2

2

M0M4
= 1/t2, d1 = M2M6

M0M8
, d2 =

M2
4

M0M8
, d3 =

M2
6

M4M8
, whose values, in

the zero temperature and classical limit, can be obtained by adopting the moments

of density (5.67) and (5.70) and ε0 = 129−25d0
45−25d0

is the second frequency we obtained

from the 2 × 2 matrix. As expected, one of the roots for the determinant to be

zero is ε = 1 because the dipole mode is the exact solution of the Landau two-fluid

105
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Figure C.1: First order correction to the frequency of the k = 2 and k = 3 modes

by considering the 3× 3 matrix.

equations. Besides, we get another two roots from the following equation:

I = (
1

45
− d0

81
)(ε− ε0)(ε− 21

5
) +

2d1

105
(ε− 1)(ε− 81

25
)

− d2

125
(ε− 1)(ε− 43

15
)− d3

49
(ε− 81

25
)2 = 0. (C.3)

Next we try to understand better Eq. (C.3) to see whether 3 × 3 matrix gives

only a small correction to the k = 2 mode compared to the frequency obtained

from 2 × 2 matrix. At T = 0, by substituting all the parameters into I we get

I = 7
4500

(ε − 21
5

)(ε − 9), yielding the same analytic solutions as the 2 × 2 matrix,

i.e., ε = 21
5

and in addition, ε = 9 (as expected from the exact solution at zero

temperature (5.7)). In the T � Tc limit, I = 16
4725

(ε − 19
5

)(ε − 33
5

), hence the roots

are: ε = 19
5

and ε = 33
5

, consistent with the previous exact solutions (5.51) in the

high temperature limit. But in the intermediate temperature, the corrections are not

straightforwardly visible. To study the correction in the intermediate temperature,

we assume ε = ε0 + ε1 and ε1 � ε0. Substituting ε = ε0 + ε1 into I and neglecting
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the terms of ε21, we get: I ≈ [( 1
45
− de0

81
)(ε0− 21

5
) +

4de1
105

(ε0− 53
25

)− 2de2
125

(ε0− 29
15

)− 2de3
49

(ε0−
81
25

)]ε1 +
2de1
105

(ε0−1)(ε0− 81
25

)− de2
125

(ε0−1)(ε0− 43
15

)− de3
49

(ε0− 81
25

)2 = 0. So, the correction

is given by

ε1
ε0

= −
2de1
105

(ε0 − 1)(ε0 − 81
25

)− de2
125

(ε0 − 1)(ε0 − 43
15

)− de3
49

(ε0 − 81
25

)2

( 1
45
− de0

81
)ε0(ε0 − 21

5
) +

4de1
105
ε0(ε0 − 53

25
)− 2de2

125
ε0(ε0 − 29

15
)− 2de3

49
ε0(ε0 − 81

25
)
.(C.4)

One can check that in the limits T = 0 and T � Tc, ε1 = 0. We make use of the

experiment data and show that ε1
ε0
� 1 in the intermediate temperature regime as

well. We have checked that the correction is small also for the k = 3 mode (see Fig.

C.1).
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Appendix D

Numerical solutions of the

displacement field equation (5.89)

In the presence of the axial harmonic trapping, we verify that the variational pre-

dictions for the collective frequencies of the k = 2 and k = 3 modes are practically

indistinguishable from the exact numerical solution of Eq. (5.89), governing the

first sound collective modes [112]. Equation (5.89) is a second order non-linear dif-

ferential equation with a single variable. It can be solved numerically in a rather

straightforward way. To compute u numerically, we subdivide the z axis equally

into many small elements ∆z within the region of interest that typically covers a

few Thomas-Fermi radii from the trap center. We then label the point at a distance

i∆z (i ∈ Z) away from the origin as point i. When ∆z is sufficiently small compared

to the characteristic feature scale of the displacement field u, one can represent u

and its derivatives accurately using

u(i∆z) = ui, (D.1)

∂zui =
ui+1 − ui−1

2∆z
, (D.2)

∂2
zui =

ui+1 + ui−1 − 2ui
∆z2

. (D.3)

Below, we adopt the finite temperature Thomas Fermi radius Rz =
√

2kBT
mω2

z
to achieve

the dimensionless expressions in order to make direct use of the universal functions

109
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discussed in chapter 2. Using the discretized displacement field and rearranging,

Eq. (5.89), we get

ui+1 = 2ui − ui−1 +
7
5
iui−1 + aui − 7

5
iui

7
10
i− fi

∆z̄2

, (D.4)

where the quantities a = ω2

ω2
z
− 1, ∆z̄ = ∆z

Rz
(in the relevant figures below, we take

∆z̄ = 0.001), fi = 7
10

fq(x0−i2∆z̄2)

fp(x0−i2∆z̄2)
are all dimensionless. Here, fi can be deter-

mined from the measured EOS for any given x0 = βµ0 at the trap center. For the

symmetric displacement fields, one has u+i =u−i, we can set u0 = 1 and obtain

u1 = 1 − a∆z̄2/2f0 using Eq. (D.4) and the symmetry requirement. Similarly, for

the anti-symmetrical displacement fields, one has u+i =−u−i, we can set u0 = 0 and

u1 = 1. The complete displacement field can then be obtained using the recurrence

relation in Eq. (D.4). The physical eigen-collective modes are obtained by keeping

the divergence of u at large z as small as possible (i.e. keeping the divergence as

polynomials instead of exponential). This can be achieved by varying the mode

frequency through the parameter a in Eq. (D.4).

Once the displacement field is obtained, the corresponding mode profile is avail-

able by using Eq. (5.58), namely:

δn1 = −∂n1u

∂z
= −n1,i+1ui+1 − n1,i−1ui−1

2∆z

∝ fp(x0 − (i+ 1)2∆z̄2)ui+1 − fp(x0 − (i− 1)2∆z̄2)ui−1

2∆z̄
. (D.5)

The results from the exact numerical calculation show that the approximate
variational method gives very good prediction for the mode frequencies and mode
profiles (see Figs. D.1 and D.2).
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Figure D.1: Comparing the frequency and the corresponding mode profile of the

k = 2 mode obtained from the variational method to the exact numerical solutions.

In the lower panel, the density fluctuations are shown at two different temperatures,

for the lowest (T/T trapF ≈ 0.1) and for the highest temperature (T/T trapF ≈ 0.45)

explored in the experiment of Refs. [53], [54].



112 Numerical solutions of the displacement field equation (5.89)

0.0 0.4 0.8 1.2 1.6 2.0 2.4

-2

-1

0

1

2

3
0.0 0.2 0.4 0.6 0.8 1.0 1.2

2.22

2.28

2.34

2.40

2.46

2.52 k=3 mode

 

 

 

 variational solution
 numerical solution

k=
2/

z

T/Ttrap
F

T/Ttrap
F     

=0.40

T/Ttrap
F     

=0.11

 

 

n 1 (a
rb

. u
ni

ts
)

z/ZTF

Figure D.2: Comparing the frequency and the corresponding mode profile of the

k = 3 mode obtained from the variational method to the exact numerical solutions.

In the lower panel, the density fluctuations are shown at two different temperatures.
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