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Abstract 

In the 2007 report of World Health Organization (WHO) it was reported that in 

2005 a great proportion of 1.8 million people died because of food and drinking water 

contamination (Velusamy et al., 2010). Fresh food product such as, fruits and 

vegetables carry a natural non-pathogenic epiphytic micro-flora, but during the food 

chain: harvest, transportation and further processing and handling the produce can be 

contaminated with pathogens from human or animal sources (Anon, 2002). 

While conventional methods used to evaluate pasteurization efficiency are based 

on cultivation in vitro, it has been ascertained that, under environmental stress 

conditions (e.g. nutrient limitation, pressure, temperature), a number of pathogens enter 

in a so-called Viable But Not Cultivable (VBNC) state, becoming eventually more 

resistant to stress and thus escaping to detection by cultivation methods. Improving 

health risk assessment associated with the increasing consumption of minimally 

processed fresh food products is a crucial need. To reach this objective, in the first part 

of my PhD project I set up and validated cultivation-independent bacterial viability 

assays, propidium monoazide quantitative PCR (PMA-qPCR) and flow cytometry 

(FCM), to monitor bacterial populations in food after Supercritical Carbon Dioxide 

(SC-CO2) treatment, that is one of the most promising non-thermal pasteurization 

technology in the age of the increasing demand for “ready-to-eat” and minimally-

processed food products. The efficiency of SC-CO2 treatment was evaluated on 

bacterial liquid cultures, on bacteria spiked both on a synthetic solid substrate (LB agar) 

and on some fresh food products, including carrots, coconut and dry cured ham. The 

results indicated that the treatment is more efficient on bacteria spiked on LB agar, and 

that bacterial inactivation is accompanied by a reduction of their biovolume. Total 

bacterial inactivation on food products was reached for both Escherichia coli and 

Listeria monocytogenes, satisfying both the US and European requirements 

(CFSAN/FSIS, 2003; European Commission, 2005). Salmonella enterica was instead 

more resistant to treatment, suggesting future experiments consisting in the application 

of a combination between SC-CO2 and other techniques alternative to heat 

pasteurization, such as ultrasounds or Pulsed Electrical Field.  

FCM and PMA-qPCR data showed that a fraction of bacterial cells not 

detectable by plate counts maintained the integrity of their membrane (at least 102 

cells/g for each bacterial species) suggested that the cells entered in a VBNC state. 
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Comprehensively, the FCM assay showed the best performance as a bacterial viability 

test method, permitting to evaluate with high sensitivity the efficiency of treatment, to 

discriminate subpopulations of cells with different level of membrane permeabilization, 

and to identify variations in biovolume and alterations of the cellular surface. The 

method could be applied, with some adjustments, to any field where determining 

microbial viability status is of importance, including food, environment or in the clinic. 

Permeabilization of the cell membrane has been proposed to be the first event 

leading to cell inactivation or death after SC-CO2 treatment (Garcia-Gonzalez et al., 

2007; Spilimbergo et al., 2009).The Permeabilization of membrane induced by SC-CO2 

was also observed in Salmonella enterica (Kim et al., 2009a; Tamburini et al., 2013) 

and in Saccharomyces cerevisiae (Spilimbergo et al., 2010). Whether SC-CO2 has a 

direct effect on the bacterial membrane or permeabilization is a consequence of cell 

death remains an open question. In the second part of the Thesis to increase knowledge 

on the mechanism of bacterial inactivation mediated by SC-CO2 lipidomic profiles 

(HPLC-IT-ESI-MS), bacterial depolarization/permeabilization analysis (FCM) and gene 

expression studies of enzymes involved in phospholipids biosynthesis were performed 

on E. coli K12 MG1665. The data indicated that after 15 min of SC-CO2 treatment most 

of bacterial cells lost their membrane potential (95%) and membrane integrity (81% of 

permeabilized and 18% of partially-permeabilized cells). Bacterial permeabilization was 

associated to a 20% decrease of cellular biovolume and to a strong reduction (more than 

50%) of all Phosphatidylglycerol (PG) membrane species, but without altering their 

average unsaturation index (1.30 ±0.02) and the average acyl chain on the glycerol 

backbone (33.30 ±0.03). The process acts more efficiently on PG than on PE 

(Phosphatidylethanolamine) head group phospholipids. Bacteria responded to treatment 

up-regulating the expression level of PssA gene, involved in PEs synthesis, since PssA 

activity is regulated by mole fraction of PGs and Cardiolin in the membrane. However 

still remains to understand why only PG species have been found to strongly decrease 

during the treatments. Further studies would be necessary, including phospholipid 

biosynthesis mutant analysis. 
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Chapter 1:  Introduction 

 

1.1 Food Microbiology 

Food microbiology is a discipline concerned with the study of the 

microorganisms, not only bacteria, but also fungi and viruses, that inhabit, create or 

contaminate food.  

In the 2007 report of  World Health Organization (WHO) it was reported that in 

2005 a great proportion of 1.8 million people died because of food and drinking water 

contamination (Velusamy et al., 2010). Fresh food product such as fruits and vegetables 

carry a natural non-pathogenic epiphytic microflora, but during the food chain, which 

include harvesting, transportation and further processing and handling the product can 

be contaminated with pathogens from human or animal sources (Anon, 2002). In 

addition, most of the food products contain high levels of nutrients or a high water 

activity; therefore they are particularly susceptible of microbial spoilage which results 

in a deterioration of their organoleptic characteristics, and may even risk the health of 

immune-compromised individuals (Tournas et al., 2006). 

Escherichia coli, Salmonella spp. and  Listeria spp. are the most common food-

borne bacterial pathogens in industrialized countries. These bacteria are typically 

transmitted to humans from raw meat, vegetables, cheese, eggs and milk (Czajka and 

Batt, 1994, Thévenot et al., 2006). Agricultural irrigation with polluted surface water 

can be one of the sources of enteropathogenic contamination of vegetables and fruits, 

such as the Gram-negative E. coli and Salmonella (Velusamy et al., 2006). Escherichia 

coli is a member of the coliform group that is commonly used as indicator microbe of 

fecal contamination in water samples and in food products (Edberg et al., 2000; Raj and 

Liston, 1960; Montville and Matthews, 2008). Salmonella constitutes a major public 

health burden and its control measures lead to high costs in many countries (WHO 

2005). In 2005 in the United States, approximately 40% of the food-borne infections 

were caused by Salmonella (Vugia et al., 2006). Listeria monocytogenes is a Gram-

positive pathogen that has a large ability to adapt to different environmental stresses 

(Gandhi et al., 2007). This pathogen causes human listeriosis and other serious diseases 
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in immune-compromised adults (Mead et al., 1999). Every year in the United States, 

this microbe produces 2500 serious illnesses and 500 deaths (CDC, 2003). 

In an attempt to reduce disease burden, the monitoring of food-borne diseases 

and pathogens in the food chain has been implemented and a farm-to-fork approach has 

been adopted encouraging all sectors of the food production chain to improve hygiene 

and actively incorporate structured approaches to food safety, such as HACCP 

principles (Newell et al., 2010). 

  

1.2  Food pasteurization  

During the last two decades, consumers demand for fresh but also ready-to-eat 

(RTE) fruits and vegetables has increased considerably, providing a constant and 

diverse supply of fresh products, which is not always possible, especially when off-

season products have to be dealt. Preservation and safety of RTE products has become 

one of the main issue for the food industry since fresh vegetables and fruits are vehicle 

for international outbreak of foodborne diseases (EFSA, 2013), considering that 

traditional techniques -as thermal pasteurization, addition of preservatives or ionizing 

radiations, etc.- present some drawbacks in their exploitations in food applications. 

Thermal pasteurization (up to 80◦C) and sterilization (up to 120◦C) generate great 

scepticism because the high temperature degrades nutrients and vitamins in food 

products. Ionizing radiation and chemical treatments such as chlorine, ethylene oxide or 

hypochlorite (Winthrop et al., 2003; Beuchat et al., 2001) negatively affect the sensorial 

properties of products, decreasing their overall quality (Spilimbergo et al., 2012). As a 

consequence, the interest in innovative “minimal processing” techniques has increased 

considerably in the last years. A number of non-thermal pasteurization methods have 

been developed, which inactivate microbes while not adversely compromising food 

integrity and nutritional quality, including high hydrostatic pressure (HHP) and pulsed 

electrical fields (PEF) (Devlieghere et al., 2004), dense CO2 (DCO2), or supercritical 

CO2 (SC-CO2) (Spilimbergo and Bertucco, 2003). Among these methods, one of the 

most promising is the use of SC-CO2, since it is considered to be a GRAS (Generally 

Recognized as Safe) solvent, implying that it can be used in food products. This method 

presents some fundamental advantages related to the mild operating conditions 

employed, particularly because it allows processing at low temperature and low 
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pressure (Garcia-Gonzalez et al., 2007). Indeed it avoids retention of flavor, 

denaturation of nutrients, production of side toxic reactions and changes in physical and 

optical properties of the treated materials, thus preserving the fresh-like qualities of food 

(Spilimbergo and Bertucco, 2003). The SC-CO2 treatment reduces microbial load 

improving the safety of the food. However a great challenge is the control of process 

parameters (pressure, temperature and treatment time) considering that they can affect 

molecular interactions and protein conformation causing color and structural changes in 

food products. The SC-CO2 treatment does not seem suitable for all solid foodstuffs due 

to the physical consistency of the products and their ability to positively react to the 

process in terms of microbial inactivation and retention of quality attributes. It seems to 

be more suitable for foods that retain their structure or maintain an appeal for the 

consumers although in soft form (Ferrentino and Spilimbergo, 2011). 

 

1.3  Supercritical Carbone Dioxide  

“The critical phenomena were discovered by Cagniard de la Tour in 1822, who 

died 150 years ago…In 1822, in the context of his interests in acoustics, he placed a 

flint ball in a digester partially  filled  with liquid. Upon rolling the device, a splashing 

sound was generated as the solid ball penetrated the liquid-vapour interface. Cagniard 

de la Tour noticed that upon heating the system far beyond the boiling point of the 

liquid, the splashing sound ceased above a certain temperature. This marks the 

discovery of the supercritical fluid phase. In this phase there is no surface tension as 

there is no liquid-gas phase boundary. The supercritical fluid can dissolve matter like a 

liquid and can diffuse through solids like a gas.” 

Berche et al., 2009 
 

1.3.1  Supercritical CO2 characteristics  

Every substance has a critical point, having a critical pressure (Pc), critical 

temperature (Tc) and critical density (ρc) above which it can neither be in the liquid 

state nor in the gaseous state, but in the supercritical state (the vapor-liquid 

equilibrium). The critical point of a pure fluid represents a state of mechanical 

instability, where the density and all thermodynamic properties of the gas and liquid 
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become indistinguishable and the liquid-vapor meniscus disappears (Figure 1.1). In this 

state the fluid has both properties of a liquid, with a similar density, and a gas, with a 

similar viscosity. It has the unique ability to diffuse through solids like a gas and 

dissolve materials like a liquid. In addition, it has no superficial tension, because there is 

no liquid/gas phase boundary, which promotes penetration into micro-porous materials 

(Lucien and Foster, 1999).  

 

Figure 1.1. Disappearance of phase boundary (meniscus) on heating between gas and liquid state 

of CO2. The meniscus between gas and liquid under critical point is easily observed. With an increase in 

temperature the meniscus begins to diminish. Above the critical point the meniscus can no longer be seen. 

One homogenous phase called the "supercritical fluid" phase occurs which shows properties of both 

liquids and gases. http://www.nasa.gov/vision/earth/technologies/harvestingmars_prt.htm 

 

Supercritcal Carbone Dioxide (SC-CO2) is particularly attractive for food 

preservation, since temperature and pressure values at its critical point are relatively 

mild and readily attained (Tc = 31.5°C; Pc=75.8 bar) and it can readily change in 

density upon minor changes in temperature or pressure  (Figure 1.2). CO2 is non-toxic, 

non-flammable, odourless, colourless, inert, cheap and environmentally and 

physiologically safe (Hong et al., 1999; Brunner, 2005; Gonzalez et al., 2007). 

Additionally, CO2 is a non-polar solvent able to dissolve into lipids; insoluble 

compounds in water, like oils, butter, fats, are soluble in CO2, while polar compounds, 

like sugar, proteins and salts are insoluble in CO2 (Sahena et al., 2009). 

 

 

http://www.nasa.gov/vision/earth/technologies/harvestingmars_prt.htm�
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Figure 1.2. Carbon dioxide pressure-temperature phase diagram. The regions of the different 

substance state are indicated. The supercritical point is at 31.5°C and 75.8 bar (Spilimbergo et al., 2009). 

1.3.2  Antimicrobial activity of CO2 

The antibacterial action of CO2 on bacterial growth is known from more than 

100 years. Gonzalez et al. (2007) reviewed the antibacterial effect of different states of 

CO2. The gas is able to inactivate microorganisms both in its subcritical and 

supercritical state, but is more efficient in the latter state. The enhanced antimicrobial 

action could be attributed to its physico-chemical properties, but its mechanism of 

action remains unknown. The antibacterial action of SC-CO2 has been extensively 

studied in the past years, on different microorganisms, in different culture conditions, 

and by using different SC-CO2 systems. CO2 is also commonly used in the Modified 

Atmosphere Packaging (MAP) technique to increase the shelf life of food products by 

removing O2 and replacing it by N2 or CO2. 

 

1.3.3 Parameters influencing SC-CO2 treatment  

There are a number of factors that may affect the inactivation rate induced by 

CO2 treatment, including pressure, temperature, agitation of the system, water content, 

depressurization rate, bacterial species and initial bacterial load (Garcia-Gonzalez et al, 

2007).  

Pressure and Temperature. It is known that microbial inactivation increases by 

raising the CO2 pressure, thus even a short exposure time is needed for a given amount 

of cells (Hong et al., 1999; Hong and Pyun, 1999). In addition, pressure affects the 
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solubilization rate, that at higher pressure facilitates both the acidification of the 

external medium (Spilimbergo, 2002) and the contact of CO2 itself with the cells due to 

higher solvating power at high pressure. At specific combination of temperature and 

pressure, CO2 acquires solvent properties to extract lipids from sample matrix (Sahena 

et al., 2009). On the other hand, the inactivation rate increases with increasing 

temperatures due to the higher diffusivity of CO2 and higher fluidity of membranes 

(Hong et al., 1999).  

Agitation and depressurization rate. The agitation of liquid samples during 

treatment enhance the antibacterial effect probably because the solubilization of CO2 

and its contact with bacterial cells increase in these conditions (Tsuji et al., 2005; 

Spilimbergo et al., 2010a). Another important parameter is the depressurization rate, 

since flash depressurization could mechanically disrupt the bacterial cells. Since 1951 

many experiments have been carried out to demonstrate the bursting action of CO2 on 

cells. Although mechanical disruption of bacterial cells induced by depressurization 

may be the cause of bacterial death, Enomoto et al. (1997) demonstrated that faster 

decompression is not always associated with maximal bacterial inactivation. 

Water activity and suspending medium. SC-CO2-mediated microbial 

inactivation seems to depend on the water content of the medium and the bacterial cells. 

Reducing water cellular content could increase the bacterial resistance to the treatment. 

The effect of water is probably the result of an increase of CO2 solubility, given that the 

water in contact with pressurized CO2 becomes acidic due to the formation of H2CO3, 

and dissociation in HCO3
- and H+, consequently reducing the pH of solution 

(Spilimbergo, 2002). The pH of pure water is strongly affected by adding CO2 respect to 

acidic matrices such as orange juice (Hong and Pyung, 1999; Spilimbergo 2002). 

Indeed, Lin et al. (1994) reported that bacteria re-suspended in a complex media respect 

to a saline solution were more resistant to SC-CO2. These results could be due to 

buffering action of the solutes in the medium that prevent pH decrease.  

Microbiological aspects. Another remarkable factor is the different 

susceptibility to the treatment of different bacterial species, which could be related to 

variations of the cellular envelope and its permeability (Spilimbergo and Bertucco, 

2003). In general, Gram-positive bacteria seem to be more resistant than Gram-negative 

to the treatment, presumably due to their thick cell wall (Garcia-Gonzalez et al., 2007). 

However, scanning electron microscopy studies Dillow et al. (1999) did not reveal 
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alterations of the cellular surface in Gram-negative bacteria such as E. coli. Because 

most treated cells appear to have intact cell walls, it can be hypothesized that the CO2 

antibacterial mechanism is independent of cellular disruption. The initial bacterial load 

also affects the effectiveness of the treatment: the highest level of bacterial inactivation 

is obtained with the lowest bacterial concentration. It seems that high bacterial 

concentration results in mutual protection (Garcia-Gonzalez et al., 2007) and low 

concentration appear to more readily expose cells to the action of CO2 (Tahiri et al., 

2006). A other important aspect of bacterial inactivation is the growth phase. Bacterial 

cells in the stationary phase are much more resistant to treatment than those in the 

exponential phase. The entrance of Gram-negative bacteria in the stationary phase is 

indeed a highly regulated process governed by the alternative sigma factor RpoS, that 

induce many changes in gene expression pattern, aiming to produce a more resistant 

cell, promoting changes in all structures of the cell envelope (outer membrane, 

periplasm, peptidoglycan and cytoplasmic membrane) and in the cytoplasm, while the 

nucleoid condenses to protect the DNA (Navarro Llorens et al., 2010). 

1.3.4 Hypotheses of antibacterial SC-CO2 action  

SC-CO2 was first proposed as an alternative to heat-based pasteurization in the 

1980’s. Many articles have described the efficiency of the treatment on different 

microorganisms in liquid and on solid samples by using different techniques. In 1985 

Daniels at al. proposed possible bacteriostatic mechanisms of CO2. Three recent 

reviews summarize current knowledge about the effects of SC-CO2 treatment on 

bacterial cells, but the inactivation mechanism has not been deciphered yet (Spilmbergo 

and Bertucco, 2003; Damar and Balaban, 2006; Garcia-Gonzalez et al., 2007). Potential 

incativation mechanisms can be summarized as following: (i) physical-mechanical 

disruption of cells; (ii) alteration of the cell membrane and extraction of cellular 

components; (iii) decrease of extracellular pH or cytoplasmic pH; (iv) metabolic 

inhibition and perturbation of the intracellular electrolyte balance. Most of these steps 

may not occur consecutively, but rather take place simultaneously in a complex and 

interrelated manner (Figure 1.5). 

Physical-mechanical disruption of cells. In 1951, Fraser demonstrated cell 

disruption in E. coli after rapid release of gas pressure in less than 5 min by using 

Petroff-Hauser direct microscopic cell count method but without bacterial staining. 



Chapter 1: Introduction 

8 

 

Other groups also investigated the cellular disruption of microorganisms after SC-CO2 

treatment by using transmission or scanning electron microscopy (TEM or SEM) 

(Ballestra et al., 1996; Dillow et al., 1999; Liao et al., 2010). SEM analysis on 

Saccharomyces cerevisiae cells showed some burst cells and other with wrinkles or 

holes on their surface (Folkes, 2004) (Figure 1.3 A,B). Similar results were obtained by 

Liao et al. (2010) and Yuk et al. (2010) on E. coli cells (Figure 1.3 C,D). TEM analysis 

after rapid decompression highlighted a decrease of the outer layer thickness of Absidia 

coerula spores (Liu et al., 2005). Furthermore, Lin et al. (1991) used an indirect method 

to verify cellular disruption by measuring protein concentration released in the 

supernatant. Conversely, Hong and Pyun (1999) and Kim et al. (2007) demonstrated the 

inactivation of Lactobacillus plantarum and Salmonella enterica, even if TEM and 

SEM analyses did not reveal bacterial disruption but only the occurrence of more 

“veins” and smalls vesicles on the cell surface (Figure 1.3 E,F).  

Modification of cellular membrane. CO2 may diffuse into the cell membrane 

and accumulate in the phospholipid bilayer (Isenchmid et al., 1995). Spilimbergo 

(2002) measured the theoretical affinity between CO2 and the plasma membrane, 

revealing the capability of CO2 to dissolve into the membrane with very high affinity, 

using the common membrane model mostly made up of phosphotidiletanol amines and 

phosphatidilglycerol. The accumulation of CO2 into the plasma membrane is known to 

increase the fluidity and disorder of the membrane due to an order loss of the lipid 

chains also called “anaesthesia effect”. The diffusion of molecular CO2 into the plasma 

membrane compromises the construction of membrane domains and increases its 

permeability (Jones and Greenfield, 1982; Isenschmid et al., 1995). GC-MS analysis of 

Salmonella enterica  revealed that the fatty acid profiling in control and treated samples 

were almost identical (Kim et al. 2009b). However, the minor component of fatty acids 

tended to increase after SC-CO2 treatment probably duo to an alteration of bacterial 

cells, that made the extraction of the minor fatty acids more easily from membrane.   
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Figure 1.3. Representative scanning electron microscope (SEM) micrographs of micro-

organisms treated with SC-CO2. (A,B) Saccharomyces cerevisiae in fresh beer untreated and treated at 

27.6 MPa, 10% CO2, at 21°C for 5 min (Folkes, 2004); (C,D) Escherichia coli in K12 in apple cider 

untreated and treated at 8% CO2 at 34 °C (Yuk et al., 2010); (E,F) Salmonella typhimurium in phosphate-

buffered saline (PBS) untreated and treated  at 35 °C and 100 bar for 30 min (Kim et al., 2007). 
 

The effect of the treatment on the structure of the cell membrane has been 

proposed to be the first event leading to a progressive cell membrane permeabilization 

and consequently cell inactivation or death (Garcia-Gonzalez et al., 2007; Spilimbergo 

et al., 2009). Membrane permeabilization in E. coli and in L. monocytogenes cells 

induced by SC-CO2 treatment was investigated by Garcia- et al. (2010a) on the basis of 

the uptake of propidium iodide (PI) in the permeabilized bacterial cells analyzed by 

spectrofluorometry together with morphological observations by TEM. The authors 

demonstrated the relationship between irreversible membrane permeabilization 

(identified by PI uptake) and the loss of bacterial ability to grow on rich media 
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following SC-CO2 treatment. Kim et al. (2009a) reported the ability of SC-CO2 to 

permeabilize Salmonella enterica serotype Typhimurium cells by using flow cytometry 

coupling wit SYTO 9 and PI. Membrane permeabilization was also observed in 

Saccharomyces cerevisiae cells exposed to SC-CO2 treatment (Spilimbergo et al., 

2010a). In addition, treated Salmonella cells have been shown to lost their efflux pump 

activity (Kim et al., 2009a). 

Extraction of cellular components. Hong and Pyun  (1999) observed by SEM 

that Lactobacillus plantarum cells remained intact after SC-CO2 treatment, but TEM 

images showed cell membrane modifications with possible cytoplasm leakage (Figure 

1.4 A-C); a large periplasmic space and empty spaces in the cytoplasm appeared. In E. 

coli the cytoplasm lost its organization and seem to concentrate at the cell periphery 

(Figure 1.4 D-F) whilst in L. monocytogenes SC-CO2 induced protrusion of cytoplasmic 

content through pores in the cell wall (Figure 1.4 G-I). In S. cerevisiae cells the 

cytoplasm was less dense in treated cells respect untreated cells (Figure 1.4 L-N) 

(Garcia-Gongalez et al., 2010). The total fatty acid quantity of S. enterica cells 

decreased significantly after SC-CO2 treatment and revealed also qualitative differences 

in the protein profile, as well as quantitative differences that consisted in a decrease in 

intensity of 33 spots; eleven down regulated protein spots were identified by using 

MALDI-TOF MS, which were identified as enzymes involved in cell metabolism (Kim 

et al., 2009b). White et al. (2006) did not note any appreciable degradation of 

Salmonella typhimurium proteins and did not identify any differentially expressed 

protein in 2D gels. In E. coli, the amount of total protein decreased after treatment and 

accumulated in the supernatant with increasing treatment time (Liao et al., 2011). 

Increasing the temperature in the range of 40-50°C rendered triglycerides soluble whilst 

with temperatures of 80-100°C, all lipids species become extracted (Sahena et al., 

2009). In addition, Hong and Pyun (2001) the release of intracellular ions, including 

Mg2+ and K+ was reported in Lactobacillus plantarum. 
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Figure 1.4. Representative transmission electron microscope (TEM) micrographs by ultra-thin 

sectioning of micro-organisms untreated and SC-CO2-treated. Lactobacillus plantarum untreated (A) and 

treated (B,C) at 70MPa, at 30°C for 1 h (Hong and Pyun, 1999). Escherichia coli untreated (D) and 

treated at 21 MPa and 45°C up to 60 min (E,F); Listeria monocytogenes untreated (G) and treated at 21 

MPa and 45°C up to 60 min (H,I); Saccharomyces cerevisae untreated (L) and treated at 21 MPa and 

45°C up to 60 min (M,N) (Gonzalez et al., 2010a). The arrows show the cytoplasm bulging through 

smallpores in the cell wall. 
 
 

pH lowering effect. CO2 is able to decrease the pH of solution when it dissolves 

in the water. CO2 reacts with water forming the carbonic acid, which further dissociates 

in bicarbonate and H+ ions lowering the pH solution (Spilimbergo et al., 2005): 
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CO2+H2O↔H2CO3 

H2CO3↔ H++HCO3
- pKa=6.57 

HCO3
-↔H++CO3

-2 pKa=10.62 

 

Such lowered extracellular pH may inhibit microbial growth and force bacteria 

to consume more energy to maintain pH homeostasis. However, a reduction of external 

pH alone cannot efficiently inactivate microorganisms, since other acids used to lower 

medium acidity have been shown to have a less inhibitory effect than CO2 (Haas et al., 

1989; Wei et al., 1991; Lin et al., 1993). Lin et al. (1994) suggested that lowered 

external pH increases cellular permeability, thus facilitating the entry of CO2 into the 

cells.  

Acidification of cytoplasm. The increase of CO2 in the medium likely leads to 

greater membrane fluidity, increasing the passage of CO2 across the membrane. 

Aqueous CO2 reacts with cytoplasmic water and increase the concentration of 

intracellular H+ ions. Spilimbergo et al. (2010b) measured the decrease of intracellular 

pH in Listeria monocytogenes after SC-CO2 treatment by using fluorescent pH-sensitive 

dyes, and reported that the intracellular pH decreased from 7.9 in control samples 

respect to <5 in SC-CO2 treated samples. Furthermore, phosphoric and hydrochloric 

acids generally used for acidification of medium did not have a strong inhibitory effect 

like SC-CO2 (Haas et al., 1989). An hypothesis is that CO2 penetrates the cells at a 

much faster rate than other molecules that do not produce acidification of the medium 

and other acid molecules. It is known that viable cells need to maintain a 

transmembrane pH gradient with their internal pH (pHi) above the acidic external pH 

(pHex). A failure in maintaining pHi homeostasis indicates that the bacterial cell is 

severely stressed which ultimately leads to a loss of cell viability (Kastbjerg et al., 

2009). The concentration of aqueous CO2 and HCO3
- are controlled by pH buffering to 

maintain a rather constant intracellular pH. Some microorganisms, such as lactic acid 

bacteria, possess systems to regulate intracellular pH by using cytoplasmic buffering, 

proton symport systems, production of bases and proton pumps (Hutkins and Nannen, 

1993; Slonczewski et al., 2009). Acidification of cytoplasm likely inactivates key 

cellular enzymes, specifically those with an acidic isoelectric point (Ballestra et al., 

1996). 
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Disordering of the intracellular electrolyte balance. Intracellular CO2 may be 

converted into HCO3
- and then CO3

2-, and may precipitate with intracellular inorganic 

electrolytes (such as Ca2+ and Mg2+) (Lin et al., 1993).  In addition the collapse of the 

proton-motive force across the membrane due to the external pH lowering may produce 

a Ca2+ cytosolic disorder since Ca2+ extrusion is catalyzed by the Ca2+/H+ antiporter 

system in bacteria (Gangola and Rosen, 1987).  

 

Figure 1.5. A schematic diagram of how SC-CO2 may affect the bacterial cells. The different 

steps of the inactivation mechanism are shown (Garcia-Gonzalez et al., 2007).  

 

1.4 What is life? 

It is difficult answering to the common question "What is life?" and to the 

inverse question "What is dead?"  The answer for the second question may be "the 

absence of life", making the definition of life and dead inseparable (Davey, 2011). The 

Oxford dictionary defines "life" as "the condition that distinguishes animals and plants 

from inorganic matter, including the capacity for growth, reproduction, functional 

activity, and continual change preceding death". 
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Susan Watanable, Editor of the NASA homepage (2007), tried to provide the 

Life's Working Definition. "Living creatures respond, and their stimulation fosters a 

reaction-like motion, recoil, and in advanced forms, learning. Life is reproductive, as 

some kind of copying is needed for evolution to take hold through a population's 

mutation and natural selection. To grow and develop, living creatures need foremost to 

be consumers, since growth includes changing biomass, creating new individuals, and 

the shedding of waste. To qualify as a living thing, a creature must meet some variation 

for all these criteria. For example, a crystal can grow, reach equilibrium, and even 

move in response to stimuli, but lacks what commonly would be thought of as a 

biological nervous system". 

 

Applying these definitions to microbes is difficult. Whether bacterial cells are 

viable or dead is a fascinating and not trivial question. The answer is often part of the 

basis of decisions related to such matters as the safety of food and drinking water, the 

sterility of pharmaceuticals and medical devices, and so on. Microscopic observation of 

a bacterial cell does not tell the microbiologist whether the cell is viable or dead, only 

that it exists. The common definition of bacterial life is the cellular capability to divide 

and generate a population, typically a visible colony on the surface of a nutrient agar 

plate (Bogosian and Bourneuf, 2001).  

1.4.1 Viable But Non Cultivable (VBNC) cells 

Since the original study by Xu et al. (1982) many articles have been published 

about the occurrence of a VBNC state in bacterial cells. Many bacteria, including a 

variety of important human pathogens, are known to respond to various environmental 

stress by entering in a VBNC state, in which bacteria fail to grow on standard media, 

but remain alive (Olivier, 2010). It has been proposed that some readily cultivable 

species of bacteria, when subjected to various stresses, including nutrient starvation, 

incubation outside the normal temperature range of growth, elevated or lowered osmotic 

concentrations, heavy metals and food preservatives (Oliver, 2010), may enter a long-

term survival state in which they are not detectable by culture-based methods. Cells in 

the VBNC state demonstrate very low levels of metabolic activity but on resuscitation 

are again cultivable (Bogosian and Bourneuf, 2001). Some pathogens entering in the 

VBNC state result more resistant to antibiotics and are able to re-grow and reinitiate 

http://www.bestcrystals.com/crystals2.html�
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infections. For instance, uropathogenic E. coli cells are not completely eliminated by 

antibiotic treatment, but a part of cells not detectable by plate counts resist (Mulvey, 

2001). It has been demonstrated that a number of VBNC pathogens are not able to 

initiate disease. VBNC cells of Vibrio harveyi are not able to kill zebra fish (Sun et al., 

2008), but resuscitated cells are lethal.  

  

1.4.2 Viability concept 

To overcome the limit of plate counts, by which only bacteria able to grow can 

be detected, new viability definitions were proposed and new viability assays to 

quantify total and viable cells were developed. 

 

Nucleic acids detection. The presence of intact DNA sequences was initially 

used as an indicator of cell viability assuming that DNA would become degraded more 

rapidly in a dead cell than other cellular components (Jamil et al., 1993). Given its 

highly labile nature and very short half-life, mRNA has been used as a marker of 

viability, and should provide more closely correlated indication of viability status than 

DNA-based methods (Keer and Kirch 2003). Ribosomal RNA (rRNA) has also been 

investigated as a viability indicator. For Chlamydia pneumoniae the detection of 16S 

rRNA was demonstrated to provide a better infection indicator than 

immunocytochemical detection of specific antigens, but because of longer half-life of 

rRNA species and their variable retention following a variety of bacterial stress 

treatments makes rRNA a less accurate viability indicator than mRNA targets (Keer and 

Birch, 2003). mRNA, on the other hand, degrades rapidly after cells have lost viability 

(Belasco, 1993), but the same intrinsic instability results in technical problems if used as 

a molecular target.  

 

Cellular integrity. Other viability definitions are based on physiological state of 

the cell. Membrane integrity demonstrates the protection of constituents in intact cells 

and the capability of metabolic/enzymatic activity and, potentially, reproductive growth. 

Cells without an intact membrane are considered permeabilized and can be classified as 

dead cells (Ziglio et al., 2002). As their structures are freely exposed to the environment 

they will eventually decompose (Nebe-von-Caron et al., 2000). Several papers have 
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reported the use of molecular dyes, such as Propidium Iodide (PI), to detect dead 

bacterial cells. (Müller and Nebe-von-Caron, 2010). PI often is combined with other 

DNA fluorescent dyes, such as Syto-9 (Barney et al., 2006) or Sybr-Green-I (Barbesti et 

al., 2000) or metabolic fluorescent dyes, such as calcein-AM (Hiraoka and Kimbara, 

2002). 

 

Pump activity and membrane potential. Metabolic activity is a more 

restrictive condition, because it requires that cells are able to demonstrate one of the 

following functions: biosynthesis, pump activity, membrane potential. Among these 

properties, the loss of pump activity can be measured by Ethidium Bromide (EB) 

uptake, whilst the loss of membrane potential by using molecular dyes, such as 

DiBAC4(3) for Gram-negative bacteria and DiOC6 for Gram-positive bacteria, allow to 

quantify depolarized cells (Berney et al., 2006; Müller and Nebe-von-Caron, 2010). 

 

Enzymatic activity. Fluorogenic probes are often used to detect metabolically 

active bacteria (Ziglio et al., 2002). The general principle is that cells become 

fluorescent through the action of intracellular enzymes. An example is BCECF-AM, a 

not fluorescent compound, hydrolyzed by intracellular esterases into fluorescent 

molecules. Its retention in intact cells is an indication of cellular membrane integrity, 

thanks to its hydrophobic tail which anchors the molecule on the lipids of the cell 

membrane. Variations of fluorescence intensity has been be used to measure changes of 

intracellular pH (Meyer-Rosberg et al., 1996). 

 

According to the viability concept proposed by Nebe-von-Caron et al. (2000) 

(Figure 1.7) microbial cells can be classified based on their physiological status: (i) 

cultivable cells detected by plate counts; (ii) viable-but-non-cultivable cells (VBNC) 

and (iii) dead cells. Each cell category can be detected and quantified by using many 

fluorescent viability indicators (Breeuwer and Abee, 2000). Viable cells are considered 

as the sum of cultivable and VBNC cells, on the basis of their metabolic activity or 

membrane integrity (Nebe-von-Caron et al., 2000; Nocker et al., 2012).  
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1.4.3 Methods to assess bacterial viability 

In response to environmental conditions, bacteria may become no more 

cultivable, making microbial risk evaluation difficult. Moreover, cultivation is time-

consuming with positive results often lagging behind the required timeline for 

preventive measures. Figure 1.6 summarizes the range of approaches used to assess 

bacterial viability. Alternatives to colony counting include the application of: (i) flow 

cytometry (FCM) coupled with fluorescent staining to assess cellular integrity; (ii) DVC 

test and detection of respiration to verify the metabolic activity, and (iii) PCR, RT-PCR, 

qPCR and other molecular techniques to detect and quantify mRNA, rRNA and DNA. 

However, due to the persistence of DNA after cell death (Josephson et al., 1993; 

Masters et al., 1994), DNA-based quantification can lead to a substantial overestimation 

of the pathogenic risk or to false-positive results.  

Figure 1.6. Schematic diagram illustrating the range of approaches used in the assessment of 

bacterial viability (Keer and Birch 2003). 

 

PMA-qPCR analysis. Nocker et al. (2006) developed a viability assay, by 

coupling an analogous of propidium with quantitative PCR (qPCR), in order to quantify 

only the DNA from viable cells. Propidium monoazide quantitative PCR (PMA-qPCR) 

is a qPCR amplification performed after PMA staining. PMA is an analogue of 

Propidium Iodide (PI) with a covalently-linked azide group, used as a marker of 

bacterial cells with permeabilized membrane. After photoactivation, PMA binds 
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irreversibly to double strand DNA, thus inhibiting DNA amplification during qPCR or 

causing DNA loss together with cellular debris during DNA extraction. PMA was used 

to discriminate intact and permeabilized cells in an environmental matrix (Nocker et al., 

2007a, Figure 1.7) and was applied to monitor the effect of disinfection treatments 

altering membrane integrity (Nocker et al., 2007b). 

 

Flow cytometry. FCM is a multi-parametric and single-cell analysis technique 

for high-throughput and real time quantification of multiple cellular parameters, such as 

cell size, surface granularity and physiological state. In FCM, two light scattering 

signals can be collected simultaneously from each bacterial cell: the Forward Angle 

Light Scatter (FALS), which is related to bacterial size (Foladori et al., 2008), and the 

Large Angle Light Scatter (LALS), measuring cell density or granularity (Müller and 

Nebe-von-Caron, 2010). In FCM studies, SYBR Green I fluorophore (SYBR-I) is often 

used as total cell marker, given its ability to cross the cell membrane and to bind DNA 

(Barbesti et al., 2000), whilst propidium iodide (PI) is used as dead cell marker, since it 

penetrates only cells with permeabilized membrane (Ziglio et al., 2002). In 

permeabilized cells the simultaneous presence of SYBR-I and PI activates Fluorescence 

Resonance Energy Transfer (FRET), due to the total absorption of the fluorescent 

emission spectrum of SYBR-I by PI. In these conditions, it is possible to distinguish 

intact cells emitting green fluorescence from permeabilized ones emitting red 

fluorescence. FCM coupled with fluorescent dyes (SYBR-I and PI or Syto9 and PI) was 

used to discriminate intact and permeabilized cells in wastewater treatment plant 

(Foladori et al., 2010) and to monitor the effect of various antibacterial treatments 

(Wouters et al., 2001; Kim et al., 2009a). 
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Figure 1.7. Cellular viability concept according to Nebe-von Caron (2000). The viable cells are 

represented by the sum of culturable and VBNC cells. Total DNA can be detected by PCR or qPCR, but 

without distinguishing DNA from viable and dead cells. PMA-qPCR and FCM coupled with fluorescent 

dyes discriminate viable and dead cells on the bases of membrane integrity, which is the less restrictive 

viability parameter. PMA-qPCR only quantifies viable cells, whilst FCM quantifies all cells including 

viable and dead cells.
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Chapter 2:  Aim of the PhD project 

SC-CO2  treatment is one of the most promising non-thermal pasteurization 

technology in the age of an increasing demand for “ready-to-eat” (RTE) and minimally 

processed food products. Many studies evaluated the inactivation efficiency of the 

treatment on different bacterial species, either in pure culture or spiked on food 

products. Inactivation efficiency was deduced from c.f.u plate counts, therefore 

measuring the bacterial ability to form colonies upon standard growth conditions. Since 

under environmental stress conditions (e.g. nutrient limitation, pressure, temperature), a 

number of pathogens enter in a so-called viable but not cultivable (VBNC) state,  

becoming eventually more resistant to stress and escaping to detection by cultivation 

methods, the use of alternative viability assays is needed to correctly evaluate biohazard 

issues associated with minimally processed food products.  

The aim of the first part of my PhD project was to define the optimal parameters 

of SC-CO2  treatment, including temperature, pressure and time, to inactivate three 

important food-borne pathogens in liquid cultures or spiked both on solid synthetic 

substrate and on food products. To overcome the limits of plate count methods, 

cultivation-independent bacterial viability assays including propidium monoazide PCR 

and flow cytometry were set up to discriminate and quantify viable bacterial cells on the 

basis of membrane integrity.   

Although microbiological hazards in the food processing and application of food 

preservation technologies have yet been evaluated, microorganisms adapt very quickly 

to stress developing new resistant mechanisms increasing the potential biosafety hazard 

associated to RTE food products. It is therefore crucial to increase knowledge on the 

mechanism of action of SC-CO2 on the bacterial cells to prevent the rise of bacterial 

resistance. Given that bacterial permeabilization induced by SC-CO2 is believed to be 

the first event leading to bacterial inactivation or death, lipidomic analysis of bacterial 

membranes and gene expression analysis of membrane phospholipid biosynthesis 

pathways were performed.      
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Chapter 3:   Materials and Methods 

 

3.1 Bacterial strains and sample preparation.  

Three common food-borne pathogens used in this study were purchased at the 

American Type Culture Collection (ATCC, Manassas, VA, USA). Salmonella enterica 

ATCC 14028 and Escherichia coli ATCC 29522 were grown on solid Luria-Bertani 

(LB) agar medium (Sigma-Aldrich Co., Milan, Italy) at 37°C for 16 h. Listeria 

monocytogenes ATCC 19111 was grown on solid Brain Heart Infusion (BHI) medium 

(Becton Dickson, NJ, USA) at 37°C for 16 h. One colony was picked and inoculated 

into 200 ml of corresponding broth medium. Bacterial cultures were incubated at 37°C 

with constant shaking (200 rpm) to stationary phase (16 hours). Cells were collected by 

centrifugation at 6000 rpm for 10 min and were re-suspended in an equal volume of 

phosphate buffered saline (Sigma-Aldrich Co., Milan, Italy). 

 Escherichia coli K12 strain MG1665 was used to study lipidomic 

profiles and gene expression. It was grown on solid Luria-Bertani (LB) agar medium 

(Sigma-Aldrich Co., Milan, Italy) at 37°C for 16 h. One colony was picked, inoculated 

into 10 ml of LB medium and incubated at 37°C with constant shaking (200 rpm) to 

stationary phase (16 hours). The cells were re-inoculated into 200 ml of LB medium and 

incubated at 37°C with constant shaking (200 rpm) to reach the exponential phase, with 

OD=0.6. 

 

3.2 Synthetic substrate and solid food contamination 

5x106 cells of E. coli ATCC 25922, 107 cells of S. enterica ATCC 14028 and 

3x107 cells of L. monocytogenes ATCC 19111 were spiked on a synthetic solid 

substrate made of LB agar with a surface of about 380 mm2 (Sigma-Aldrich Co., Milan, 

Italy). 

Carrots (Daucus carota), Coconut fruit (Cocos nucifera) and slices of dry cured 

ham surface were purchased from a local market. Carrots were washed with water, cut 

into 2-gram pieces and spiked with 50 µL of E. coli ATCC 25922 at a concentration of 

108 CFU/mL. The edible part of the coconut was cleaned, washed with water and cut in 
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2-gram pieces with a surface of about 100 mm2. The coconut pieces were spiked with 

50 µl of S. enterica suspension at an initial concentration of 107 CFU/mL). Slices of dry 

cured ham were cut in 2-gram pieces of rectangular shape (surface area of about 200 

mm2) and spiked with 50 µL of L. monocytogenes at a concentration of 109 CFU/mL.  

All spiked samples were left 1 h in a sterile chamber at room temperature to let 

the microbial suspension absorb on synthetic substrate and solid food products were 

loaded in a SC-CO2 multi-batch apparatus. 

 

3.3 SC-CO2 treatment 

The SC-CO2 treatment was performed in a multi-batch apparatus as described by 

Mantoan and Spilimbergo (2011). Briefly, the system consisted of 10 identical 15 ml-

capacity reactors operating in parallel. All reactors were submerged in the same 

temperature-controlled water bath to maintain the desired temperature constant 

throughout the process. Each reactor was connected to an on-off valve for independent 

depressurization and had an internal magnetic stirrer device, to guarantee homogeneous 

dissolution in the cell suspension (Figure 2.1) Aliquots of 10 ml of each bacterial 

suspension, prepared as described in sample preparation section, or 50 µl spiked on 

solid substrates, as described in synthetic substrate and fresh solid food contamination 

section, were transferred into the reactors. The SC-CO2 treatment was carried out with 

the conditions reported in Table 1. Each treatment was interrupted by slowly 

depressurizing the reactor over approximately 1 min. 
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Figure 2.1 Schema of the SC-CO2 multi-batch apparatus. V-1 to V-4 = valves; R1, R2 = 
electrical resistance; PT = pressure transducer; PI = pressure manometer  

 

Table 1. Microorganisms, matrices and SC-CO2 conditions 

Target microorganism Medium Process conditions 

S. enterica ATCC 14028 
 

PBS 
LB agar 
Coconut 

120 bar; 35°C; up to 60 min 
120 bar; 35°C; up to 60 min 
120 bar: 40,50°C up to 60 min 

E. coli ATCC 25922 PBS 
LB agar 
Carrot 

120 bar; 35°C; up to 60 min 
120 bar; 35°C; up to 60 min 
80-120 bar; 22,35°C; up to 30 min 

L. monocytogenes ATCC 19111 PBS 
LB agar 
Dry cured ham 

120 bar; 35°C; up to 60 min 
120 bar; 35°C; up to 60 min 
80,120 bar; 45,50°C up to 30 min 

E. coli K12 MG1665 LB Broth 120 bar; 35°C; up to 45 min 

 

3.4 Sample homogenization 

Untreated and treated solid samples were collected and re-suspended in 4 mL of 

PBS in a sterile plastic bag (Reinforced Round Bag- 400, International P.B.I., Milan, 

Italy) and homogenized in a Stomacher 400 (International P.B.I., Milan, Italy) at 230 

rpm for 2 min. The resulting homogenate was taken from the sterile bag and used for 

plate counts, FCM and PMA-qPCR analyses. 
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3.5 Plate counts.  

Untreated and SC-CO2 treated cells were serially diluted with 1x PBS (900 µl of 

PBS and 100 µl of sample) and were spread-plated on chromogenic coli/coliform agar 

(Liofilchem, Teramo, Italy) for E. coli, on chromatic Salmonella agar (Liofilchem, 

Teramo, Italy) for S. enterica, and on O.A. Listeria agar (Liofilchem, Teramo, Italy) for 

L. monocytogenes. The plates were incubated at 37°C for 24h. Three independent 

experiments were performed for each species. 

 

3.6 Genomic DNA extraction and PMA staining.  

107-108 control or treated cells were stained with PMA (Biotium Inc., Hayward, 

CA, USA), at a final concentration of 50 µM, and incubated at room temperature in the 

dark for 5 min. Stained samples were then exposed to UV light for 5 min and 

centrifuged for 10 min at 12000 rpm. Cell pellets were stored at -20°C. Genomic DNA 

(gDNA) was extracted from unstained and PMA-stained samples using QIAGEN 

DNeasy Blood and Tissue Kit (Qiagen, Milan, Italy), according to the manufacturer’s 

instructions. A modified protocol was used for L. monocytogenes: cells were incubated 

at 37°C for 1 hour with the enzymatic lysis buffer provided by the supplier. Cells were 

then incubated at 56°C for 30 min and were treated with RNAse A. After column 

purification, DNA was eluted with 100 µl of 10 mM Tris-HCl pH 8.0. DNA quality was 

assessed by 0.7% agarose gel electrophoresis, run at 70 V for 30 minutes and followed 

by ethidium bromide staining. DNA concentration and purity was assessed by 

measuring the absorbance at 260nm (A260) and the ratio of the absorbance at 260 and 

280nm (A260/A280) with a NanoDrop ND-1000 spectrophotometer (Thermo Scientific, 

Wilmington, DE, USA). 

 

3.7 Real-time quantitative PCR (qPCR) 

Primer and Taqman probe set sequences targeting the hlyA and the invA gene 

were used for L. monocytogenes and S. enterica quantification, respectively (Suo et al., 
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2010). The best candidate primers and probe sets for E .coli detection and quantification 

were designed in-house on the uidA marker gene with AlleleID7.0 software (PREMIER 

Biosoft International, Palo Alto, CA, USA). Primer sequences and their features are 

shown in Table 2. The reaction mixture contained 1x iQTM Multiplex Powermix (Bio-

Rad Laboratories, Milan, Italy), 200 nM each primer, 200nM probe and 2 µl template 

gDNA (or 2 µl distilled H2O for the no-template control) in a total volume of 25 µl. 

Each TaqMan PCR assay was performed in triplicate using a CFX96 Real Time PCR 

Detection System (Bio-Rad Laboratories, Milan, Italy), with the following cycling 

program: 3 minutes at 95°C, 15 seconds at 95°C and 1 minute at 60°C for 40 cycles. 

PCR results were analyzed using CFX Manager 1.1 software (Bio-Rad Laboratories, 

Milan, Italy). The correlation between PCR Ct values and gene copy numbers was 

obtained by means of a standard curve. The cell number equivalents were then 

extrapolated by taking in account the average bacterial genome size for each target 

bacterium available at NCBI  

(http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.html"), 

assuming each gene is present in a single copy per genome. The number of gDNA 

copies for experimental samples was determined by using the inverse formula of linear 

equation of each species (DNA copies=10[(Ct-q)/m]). The amplification efficiency for each 

primer/probe set was calculated as E=10(-1/slope)-1 (Klein, 2002). Assays were performed 

in parallel on cell suspensions before and after PMA staining, in order to quantify total 

and intact cell number equivalents, respectively. 

 

Table 2. Gene targets, primers and probes used for qPCR.  

Oligo Name Gene 
Target Sequence (5’-3’) Tm 

(°C) Dye (5’-3’) Reference 

EC-uidAF 
EC-uidAR 
EC-uidAP 

uidA 
CTCTGCCGTTTCCAAATC 
GAAGCAACGCGTAAACTC 
AATGTAATGTTCTGCGACGCTCAC 

 
 
70.1 

 
 
HEX/BHQ1 

This work 

SE-invAF 
SE-invAR 
SE-invAP 

invA 
GTTGAGGATGTTATTCGCAAAGG 
GGAGGCTTCCGGGTCAAG 
CCGTCAGACCTCTGGCAGTACCTTCCTC 

 
 
69.0 

 
 
FAM/BHQ1 

Suo et al., 2010 

LM-hlyAF 
LM-hlyAR 
LM-HlyAP 

hlyA 
ACTGAAGCAAAGGATGCATCTG 
TTTTCGATTGGCGTCTTAGGA 
CACCACCAGCATCTCCGCCTGC 

 
 
70.0 

 
 
TR/BHQ2 

Suo et al., 2010 

Tm, melting temperature. Dyes refer to the reporter and quenching fluorophores linked to the 
TaqMan probe sequences 

 

http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.html�
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3.8 Flow cytometry (FCM) 

Untreated and SC-CO2 treated samples were diluted to 107-108 cells/ml and 

divided in two subsamples. 1 ml of each sample was stained with 10 µl SYBR-I 

(Merck, Darmstadt, Germany), at 1:30000 final concentration in DSMO, and 10 µl PI at 

1 mg/ml (Invitrogen, Carlsbad, CA, USA) to quantify intact and permeabilized cells. 

The depolarized cells were measured adding10 µl of 1mM DiBAC4(3) (Invitrogen, 

Carlsbad, CA, USA), only E. coli depolarized cells emit green fluorescence and the 

percentage of depolarized cells was calculated using the total count measurements. 

Excitation and emission wavelengths were at λex=495 nm, λem=525 nm for SYBR-

I;λex=536 nm, λem=617 nm for PI and λex=490 nm, λem=516 nm for DiBAC4(3). Samples 

were incubated at room temperature, in the dark for 15 minutes. FCM analyses were 

performed with an Apogee-A40 flow cytometer (Apogee Flow Systems, Hertfordshire, 

UK) equipped with an Argon laser emitting at 488 nm. For each cell crossing the focus 

point of the laser, two light scattering signals and two fluorescence signals (green, FL1 

and red, FL3) were collected. The Large Angle Light Scatter (LALS), measuring cell 

density or granularity (Müller and Nebe-von-Caron, 2010) and the Forward Angle Light 

Scatter (FALS), which is related to bacterial size (Foladori et al., 2008). LALS and 

FALS were collected on a 256-channel linear scale while fluorescence signals were 

collected with logarithmic amplifier gain. The conversion of FALS intensities into 

biovolumes was performed as proposed by Foladori et al. (2008). Non-fluorescent silica 

microspheres (MicroParticles GmbH, Germany) of different diameters were used to 

assess the calibration curve of FALS intensity used in bacteria sizing. Six sizes of silica 

microsphere with diameters ranging from 0.5 mm to1 mm were selected.  

 

3.9 Phospholipid extraction 

109 E. coli cells K12 MG1665 (control and treated) were collected by 

centrifugation at 6000 rpm for 10 min. The pellets were suspended into 500 µl of sterile 

water. 75 µl of internal standardphosphatidylcholin(PC, 12:0/12:0) solution (10 

ng/µl)were add to each sample to normalized the amount of extracted phopholipids, 

then3ml of CHCl3/CH3OH (2:1) solution (Sigma-Aldrich Co., Milan, Italy; Carlo Erba, 

Milan, Italy) were added to each sample.Bacterial cells were disrupted by using an 
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Ultrasound processor S-4000sonicator (Misonix. Inc, Farmingdale, NY,USA) operating 

at 20 kHz. Each sample was subjected to two cycles of sonication with the following 

program: treatment time of 150 s; amplitude of 40; pulse time 3 s and pause time 2 

s.The main parameters (transferred power, P;time, t; treated volume, V) were used to 

calculate the transferred specific energy as reference parameter, indicated afterward as 

Es and expressed in kJL-1 (Es=Pxt/V). Transferred power instead of applied power was 

used for Es calculation, in order to obtain results comparable with those obtained from 

different instruments. After sonication the samples were centrifuged for 10 min at 

10000 rpm and at 4°C. The lower organic phase of each sample was recovered, brought 

to dryness and re-suspended in 650 µL of CD3OD (99.90% purity) for 31P-NMR and 

liquid chromatography-mass spectrometry (LC-MS) analyses. 

 

3.10 NMR measurements 

1H-NMR (400.13 MHz) and  31P-NMR (161.98 MHz) were recorded at 300 K 

on a Bruker-Avance 400 MHz NMR spectrometer in CD3OD (99%, Aldrich) by using a 

5 mm BBI probe. The 1H and 31P  chemical shift scales (δ) were calibrated on the 

residual proton signal of CD3OD (δH = 3.310 ppm) and on the signal of PC 18:1/18:1 

(δP  -0.55 ppm), respectively. Composite pulse decoupling was used to remove any 

proton coupling in 31P-NMR spectra. Generally, 4000 free induction decays were 

processed using an exponential line broadening of 0.3 Hz prior to Fourier 

transformation. Probe temperature was maintained to ±0.1 °C by a Bruker B-VT 1000 

variable temperature unit. Resulting 1D NMR spectra were analyzed by MestreNova 8.1 

software (Mestrelab research S.L.2012, Escondido, CA). 

 

3.11 RPLC-IT-ESI-MS analysis 

The raw methanol extract was analyzed by LC-MS using a Hewlett-Packard 

Model 1100 series liquid chromatograph coupled to a Bruker Esquire-LCTM quadrupole 

ion-trap mass spectrometer (Bruker-Franzenm, Bremen, Germany) equipped with 

electrospray ion source (ESI). The ESI was operated in positive mode for 

phosphatidylcholine (PC) analysis and in negative mode for phosphatidylglycerol (PG) 

and phosphatidylethanolamine (PE) analysis. The chromatographic separation of 
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phospholipids was carried out at room temperature on a KinetekTM C18 column (length: 

100 mm; particle size: 2.6 µm; internal diameter: 2.1 mm; pore size: 100 Å) purchased 

by Phenomenex (Torrence, Ca, USA). The solvent system consisted of A, CH3OH/H2O 

7:3 containing 12 mM ammonium acetate and B, CH3OH also containing 12 mM 

ammonium acetate. The linear gradient, at a constant flow rate of 1.0 mL/min, started 

from 30% B to reach 100% B in 40 min, followed by column wash using 100%B for 15 

min and column re-equilibration at starting conditions. Nebulizer gas was high purity 

nitrogen at a pressure of 20-30 psi, at a flow of 6 L/min and 300°C. The mass 

spectrometer scan range was 13,000 units per second in the range 50-1500 m/z. Relative 

proportions of fatty acids ranging from C16:0 to C34:0 were calculated from peak areas. 

 

3.12 Gene expression analyses 

Three replicates of control and treated samples were harvested during 

exponential phase at O.D600 of 0.6 and were pelleted by centrifugation (6,000 g for 5 

min at 4°C). Total RNA was isolated from bacterial pellets by using the RNeasy Mini 

Kit (Qiagen, Milan, Italy) as described by the manufacturer. RNA concentration and 

purity were determined by UV absorption (260:280 nm) using a NanoDrop ND-1000 

spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and 0.8% agarose gels 

stained with ethidium bromide.1 µg of RNA was reverse-transcribed into cDNA using 

First Strand cDNA Synthesis Kit (Fermentas, Milan, Italy). cDNAs were amplified by 

real-time PCR using Kapa Sybr Fast qPCR Mastermix (KapaBiosystems, Resnova, 

Rome, Italy) using a CFX96 Real Time PCR Detection System (Bio-Rad Laboratories, 

Milan, Italy). PCR conditions were as follows: 95°C for 3 min, 40 cycles of 15 sec at 

95°C, 30 sec at 60°C and 5 sec at 75°C, with a final melting curve analysis from 75°C 

to 95°C, with increments of 1°C every 5 sec. Real-time PCR amplifications were 

performed with three experimental replicates for each sample. Primers were designed 

by using AlleleID7.0 software (PREMIER Biosoft International, Palo Alto, CA, USA). 

Primers sequences are reported in Table 3. Each primer pair was controlled for dimer 

formation by melting curve analysis and PCR efficiency was calculated over a five-fold 

dilution series. The gyrA and mdoG genes were used as housekeeping genes (Heng et 

al., 2011). Amplification profiles were analyzed using BioRad Manager Software (Bio-

Rad Laboratories, Milan, Italy) and cycle threshold (Ct) values for each target gene 



Chapter 3: Materials and Methods 

29 

 

were normalized to the geometric mean of the Ct of gyrA and mdoG amplified from the 

corresponding sample. The fold-change of target genes for each strain respect to 

untreated samples was calculated using the delta-delta Ct method. 

 

Table 3. Primer sequence for gene expression analysis 

Target gene Forward (5'-3') Reverse (5'-3') 

Plsb CCTACCTTAACCAGCATG CGGCAGCAATATTATTGAC 

CdsA ACAGCTTAGCGGTTTTAC GCAACAGAAAAAGCATCAG 

PssA GAGCAGAAACTAACCATC CGCAGATTGATCTCATAG 

PgsA GTGGCAGATAAAGTTCTC TAGCGCAGAAATAATAATTTC 

Psd CCGAATGTACTGGTCATG GAGGTAAGTGGTCACAAAC 

PgpA TTCGGAAGTGGATTAAGC CCGTTTGATGACAAAGATAG 

PgpB GGCGTTAAATCCTGGATC TCAGCCAACTGTTCTTTC 

PgpC ACCGATTATAGCCATTGC GTCTGTAAACGTGCTTCG 

 Housekeeping gene   

gyrA TCTGGATTATGCGATGTC TTGCCTAGTACGTTCATG 

mdoG CCGGGTAAAGAGATGAAC CCACAAAGGCGATAGTAC 
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Chapter 4:  Development of bacterial viability assays and their 

application to evaluate SC-CO2 treatment efficiency 

 

4.1 Comparison of viability assays on pure liquid culture 

 The SC-CO2 treatments using the multi-batch apparatus described by 

Mantoan and Spilimbergo (2011) were performed on pure liquid culture of three 

important food-borne pathogens: Listeria monocytogenes, Escherichia coli and 

Salmonella enterica. 

Flow cytometry experiments coupled with SYBR Green I (SYBR-I) and 

Propidium Iodide (PI) (Ziglio et al., 2002) and Propidium monoazide qPCR (PMA-

qPCR) assay (Nocker and Camper, 2006) were set up for the three bacterial species. 

Both viability assays are based on membrane integrity and were applied to evaluate the 

efficiency of SC-CO2 treatment, overcoming the limits of plate counts. Data from FCM 

and PMA-qPCR were compared with plate counts and fluorescent microscopy to 

evaluate which method is the most appropriate to correctly discriminate viable from 

dead cells after treatment. The obtained results were published in the following article: 

Tamburini, S., Ballarini, A., Ferrentino, G., Moro, A., Foladori, P., Spilimbergo, S., 

Jousson, O: "Comparison of quantitative PCR and flow cytometry as cellular 

viability methods to study bacterial membrane permeabilization following 

supercritical CO2 treatment" (Microbiology 159, 1056–1066, 2013) (Appendix: 

Publication A). 

Plate counts revealed >5 log of bacterial inactivation after 60 min of treatment, 

but this method probably overestimate the level of bacterial inactivation, since VNBC 

cells escape detection by cultural methods. PMA-qPCR and FCM produced strongly 

correlated results for two out of three bacterial species tested, which was expected as 

both methods quantify cellular subpopulations on the basis of membrane permeability. 

FCM analyses highlighted a diverse effect of the treatment on the level of membrane 

permeabilization of L. monocytogenes compared with E. coli and S. enterica. The FCM 

assay showed the best performance as a bacterial viability test method as it allowed not 

only to quantify the efficiency of treatment rapidly and with high sensitivity, but also to 

discriminate the subpopulations of partially-permeabilized cells from totally-
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permeabilized cells and identify variations in biovolume and alterations of the cellular 

surface. 

 

4.2 Evaluation of SC-CO2 treatment on synthetic solid substrate 

 PMA-qPCR and FCM coupled with SYBR-Green I and Propidium 

Iodide analyses were also performed on L. monocytogenes, E. coli and S. enterica 

spiked on synthetic solid substrates before and after SC-CO2 treatment at 120 bar, 35°C 

and up to 60 min to simulate the action of treatment on solid food products. 

 

4.2.1 Bacterial membrane permeabilization evaluated by PMA-qPCR 

TaqMan qPCR analyses were performed on gDNA samples extracted from cell 

homogenized suspensions before and after PMA staining, to quantify both total and 

intact cell unit equivalents before and after SC-CO2 treatment (Table 4). qPCR is a 

highly sensitive method able to detect fewer than 10 genome equivalents per reaction 

and is therefore the technique of choice for quantification of microorganisms at low 

concentrations. qPCR data revealed that a large fraction (97%) of L. monocytogenes  

cells were permeabilized by the treatment after 15 min, whilst 94% of E. coli cells were 

permeabilized after only 5 min. The percentage of E. coli cell permeabilization 

increased up to 98.6% after 45 min of treatment. Also a large fraction of S. enterica 

(more than 80%) cells were permeabilized after only 5 min, but the fraction of 

permeabilized cells did not exceed 90% at successive time points.  

 

Table 4. Target gene copy numbers determined by qPCR following SC-CO2 

treatment.  
Species and 
 fluorophores 

Treatment 
time (min) Target gene copy numbers 

 

 -PMA 
(Total cell 

equivalents) 

+PMA 
(Intact cell equivalents) 

% Intact cells 
reduction 

L. monocytogenes 
hlyA (Texas Red) 

 
0 
5 
15 
30 
45 

 
3.42x108±0.06 
3.50x108±1.04 
9.36x107±0.55 
2.56x107±0.27 
1.17x107±0.20 

 
3.47x108±0.85 
3.66x108±1.83 
6.99x106±0.01 
3.67x106±0.54 
3.70x106±0.82 

 
NA 
NA 

97.94±0.51 
98.93±0.11 
98.93±0.02 

Continue  
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60 4.48x107±0.47 1.34x107±0.12 96.07±0.61 

E. coli 
uidA (HEX) 

 
0 
5 
15 
30 
45 
60 

 
2.18x108±0.52 
7.36x107±1.11 
9.69x107±1.37 
5.46x107±0.72 
4.74x107±0.53 
2.53x107±0.02 

 
3.63x108±0.46 
1.89x107±0.31 
9.93x106±3.02 
7.00x106±1.84 
4.77x106±1.56 
5.08x106±1.71 

 
NA 

94.79±0.20 
97.29±0.49 
98.09±0.27 
98.70±0.27 
98.62±0.30 

S. enterica 

invA (FAM) 

 
0 
5 
15 
30 
45 
60 

 
8.07x107±0.51 
3.07x107±0.82 
2.01x107±0.35 
1.68x107±0.29 
2.91x107±0.65 
2.85x108±0.15 

 
1.03x108±0.23 
1.98x107±0.07 
1.07x107±0.04 
9.99x106±0.70 
2.75x107±0.43 
9,01x106±2.28 

 
NA 

80.44±3.72 
89.39±1.95 
90.16±1.54 
73.22±1.83 
91.30±0.24 

The average target-gene copy number were repeated in triplicates for each species and each 
treatment time. The percentages of intact cells reduction were calculated as the ratio of treated PMA-
stained cells relative to untreated 

 
 

4.2.2 Detection of intact and permeabilized cells by FCM 

Homogenized suspensions of untreated and SC-CO2 treated bacteria, spiked on 

synthetic solid substrates, were stained with SYBR-I and PI and analyzed with FCM 

counting viable (intact) and dead (permeabilized) cells. The detection limit of the flow 

cytometer used in this study is approximately 1 cell per μl. Fluorescent signals acquired 

for each bacterial cell were plotted in a two-dimensional dot plot, where the horizontal 

axis shows the green fluorescence intensity (FL1) emitted by SYBR-I, and the vertical 

axis shows the red fluorescence intensity (FL3) emitted by PI (Figure 3.1). Upon 

staining four regions could be distinguished in the two-dimensional dot plot. The two 

regions on the right included a region of intact cells, emitting only high FL1 intensity 

due to the absence of intracellular PI, and a region of partially-permeabilized cells 

emitting high fluorescent intensity both in FL1 and FL3 channels, due to incomplete 

FRET between SYBR-I and intracellular PI. The two regions on the left included one 

with totally-permeabilized cells emitting only high FL3 intensity, due to the 

simultaneous presence of SYBR-I and PI in the cells and complete FRET, and one due 

to noise caused by non-biotic particles emitting FL1 and FL3 signals lower than the 

instrument background threshold. The kinetics of cell membrane permeabilization was 

specific for each bacterial species (Figure 3.1) and the percentage reported in each 

quadrant of each cytogram represent the proportion in percentage of each 

subpopulation. With regards to L. monocytogenes, the percentage of intact cells was 

98.4% in the untreated suspension and after only 5 min of treatment most of Listeria 
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cells (97.8%) moved from the region of intact cells to the one of permeabilized cells. 

After 15 min of treatment the percentage of permeabilized cells reached the maximun 

value (99.3%). Surprisingly, a small fraction of cells (8-9%) was intact after 30 and 60 

min of treatment as if in the range of 30 min same cells were replicated during the 

treatment.  

After only 5 min of treatment the most of E. coli cells moved from region of 

intact cells to one of partially-permeabilized (93.3%) and a small fraction of cells 

moved to the region of permeabilized cells (6%). After 15 min a fraction of partially-

permeabilized cells became permeabilized (26.6%). As for E. coli cells also for 

Salmonella cells most of them were partially-permeabilized (68.6%) and permeabilized 

(29.6%) after 5 min of SC-CO2 treatment, and by increasing the treatment time, the 

permeabilized cells increased up to 64.9%. 

For all three bacterial species 15 min of the treatment at 120 bar and 35°C 

seemed to be the best condition to permeabilize all most of the bacterial cells (>99%). 
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Figure 3.1. Membrane permeabilization observed by FCM assay upon SC-CO2 treatment. The 

percentages of intact, partially-permeabilized and permeabilized cells are shown within each cytogram 

quadrant. 
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4.2.3 SC-CO2 treatment induces disruption of a fraction of bacterial cells 

The concentration of bacterial cells in untreated samples was compared with the 

bacterial concentration in SC-CO2 treated samples. After 5 min of treatment the 

concentration of bacterial cells decreased in all three species, by 62% for L. 

monocytogenes, by 34.3% for E. coli and by 16% for S. enterica. The fraction of 

disrupted cells was compared to the intact, partially-permeabilized and permeabilized 

cell subpopulations for each treatment time, the percentage of each subpopulation was 

re-calculated and plotted in Figure 3.2. After 15 min of treatment 84% of L. 

monocytogenes cells were disrupted and about 15% were permeabilized. The same data 

was obtained after 45 min, whilst at 30 min and 60 min a small part of cells, 1.7% and 

2.4%, respectively, remained intact (Figure 3.2a). The treatment seemed to be less 

efficient E. coli respect to L. monocytogenes; on average 40% of cells were 

permeabilized during the treatment and the remained cells were partially-permeabilzed 

and permeabilized (Figure 3.2b). Only 15% of S. enterica cells were disrupted after 15 

min of treatment, 58% were partially-permeabilized and 27% were permeabilized. After 

30 min it seemed that a fraction of cells grew in the reactor, but after 45 min also these 

cells were permeabilized (Figure 3.2c). 
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Figure 3.2. Percentages of bacterial cells subpopulations before and after SC-CO2 treatment at 120 bar, 

35°C up to 60 min. (a) L. monocytogenes; (b) E. coli and (c) S. enterica. 
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4.2.4 Morphological changes evaluated by FALS and LALS signals 

FCM analysis collected two light scattering signals simultaneously from each 

bacterial cell: the forward-angle light scatter (FALS), which is related to bacterial size 

(Foladori et al., 2008), and the large-angle light scatter (LALS), measuring cell density 

or granularity (Müller and Nebe-von-Caron, 2010). 

The scattering signals of untreated and SC-CO2 treated samples were overlapped 

for each bacterial species (Figure 3.3). The signal from untreated and treated cells is 

shown in green and in purple, respectively. The FALS and LALS signals were referred 

to an arbitrary scale divided in 256 channels. All tree bacterial species showed a shift of 

the peak signals after SC-CO2 treatment. The FALS mean channel of untreated L. 

monocytogenes cells was 31, whilst the channel of treated cells 13. The peak of 

untreated and treated E. coli cells shifted from 137 to 94, whilst the peak of S. enterica 

cells shifted from 118 to 35. SC-CO2 treatment induced a reduction of biovolume in all 

three species, L. monocytogenes by 58%, E. coli by 32%, and S. enterica by 70%. 

A significant shift of the LALS medium channels was observed for L. 

monocytogenes and S. enterica cells; the complexity of cells decreased of 38% and 

42%, respectively. E. coli cells did not show a significant shift of LALS media channel.  

 

 
Figure 3.3. Scattering signals FALS and LALS obtained by FCM analysis of L. monocytogenes, 

E. coli and S. enterica before and after 5 min of SC-CO2 treatment at 120 bar and 35°C. The signals from 
untreated cells are in green; signals from SC-CO2 treated cells in purple. 
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4.2.5 Comparison between PMA-qPCR and FCM methods to evaluate cell 

viability 

The results obtained by qPCR and by PMA-qPCR were expressed as number of 

total and intact equivalent cells per ml, respectively, whilst the results obtained by FCM 

were expressed as total and intact cells per ml. These results were compared in Figure 

3.4. The same general trend was obtained with both viability assays, with the exception 

of L. monocytogenes after 5 min of treatment. Pearson correlation coefficients (r) were 

calculated to determine if the two viability assays are correlated. High and good 

correlations were obtained for E. coli and S. enterica cells (r=0.99 and 0.96, 

respectively). The correlation for L. monocytogenes was poor (r=0.60), but excluding 

the inconsistent data point (5 min of treatment) the correlation coefficient became high 

(r=0.99). 
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Figure 3.4. Number of total and viable or intact cells monitored during SC-CO2 treatment and 

inferred from qPCR and FCM for L. monocytogenes (a), E. coli (b) and S. enterica (c). Error bars 

represent standard deviations from three replicates.  
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4.3 Comparison of SC-CO2 treatment efficiency between liquid 

cultures and synthetic solid substrate 

The FCM analysis of bacterial cells treated in liquid cultures showed that the 

ability of the fluorescent dyes to enter the cells depends on the level of outer membrane 

permeabilization for SYBR-I and on the level of both outer and cytoplasmic membrane 

permeabilization for PI. Upon staining with SYBR-I, untreated E. coli and S. enterica 

cells spiked on synthetic solid substrate showed a green fluorescent signal brighter than 

the signal of untreated cells in liquid broth (Figure 3.5), whereas L. monocytogenes cells 

did show any significant difference. In addition, treated bacterial cells spiked on 

synthetic substrate showed a significant shift of both FALS and LALS signals, 

indicating biovolume reduction and surface alteration after 5 min of treatment.  

 

 

 

 

 

 

 

Figure 3.5. The FL1 green fluorescent signals of untreated bacterial cells in liquid broth (light 

green line) and spiked on synthetic solid substrate (dark green line) after SYBR-I staining were 

overlapped. 

  

The data obtained by FCM and PMA-qPCR before and after SC-CO2 treatment 

for the three bacterial species treated in liquid cultures and spiked on synthetic solid 

substrate were compared and expressed as percentages of bacterial inactivation (Figure 

3.6). The SC-CO2 treatment was more efficient when applied on bacterial cells spiked 

on synthetic solid substrate rather than on cell suspensions. Most of the cells of the three 

species spiked on synthetic solid substrate were inactivated after only 5 min, whilst the 

inactivation in liquid broth required at least 30 min of treatment. 
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FCM PMA-qPCR

Figure 3.6. The efficiencies of SC-CO2 treatment on bacterial cells in liquid culture and spiked on 

synthetic solid substrate were compared; percentage of bacterial inactivation of L. monocytogenes (a,b), 

of E. coli (c,d) and of S. enterica (e,f). 
 

Spilimbergo et al. (2010a) reported that the utilization of a stirring system during 

SC-CO2 treatment of liquid culture is important to homogenize the sample and increase 

the surface of contact between cells and dense CO2. Stirring likely increase the rate of 

dense CO2 dissolution inside the liquid phase. The action of SC-CO2 on solid substrate 

was more efficient, presumably because the supercritical fluid acted directly on bacterial 

cells without the need to dissolve in the liquid phase. Batch tests showed that the 

bacterial inactivation in liquid proceeds in two phases: the early one is characterized by 

a slow rate of reduction of microbes number, which then sharply decrease at a later 

stage, confirming previously published results (Dillow et al., 1999). Conversely, on 
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solid substrate the first stage of inactivation proceeds at a fast rate of bacterial 

inactivation and the second one at a slow rate. 
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Chapter 5:  Bacterial inactivation on solid food products 

 
The SC-CO2 process is less applied to solid foods than to liquid products, due to 

the complexity of the matrix, which can make the CO2 bactericidal action less efficient, 

and to the lack of document edevidence about the inactivation mechanism (Ferrentino 

and Spilimbergo, 2011). The process has been applied to different kind of solid foods 

including meats (Erkmen et al., 2000; Meurehg get al., 2006), vegetables (Kuhne and 

Knorr, 1990;Zhong et al., 2008), alfalfa seeds (Mazzoni et al, 2001; Jung et al., 2009), 

fruits (Haas et al., 1989; Valverde et al., 2010), and fish (Meujo et al., 2010), but the 

bacterial inactivation has been mainly evaluated by using only standard cultivation-

based methods (Jung et al., 2009; Bae et al., 2011). Although cultivation methods are 

applied routinely, they may lead to strong underestimations of the real concentration of 

microorganisms in the analyzed samples (Keer and Birch, 2003; Oliver, 2005). Some 

bacterial species, when exposed to environmental stress (e.g. nutrient limitation, 

pressure, temperature), may become no more cultivable although remaining alive, 

becoming even more resistant to stress (Bogosian and Bourneuf, 2001; Oliver, 2010). 

In this thesis, FCM and PMA-qPCR analysis were applied to evaluate the 

efficiency of SC-CO2 treatment on viable and viable but not cultivable (VBNC) cells of 

three important common food-borne pathogens spiked on solid fresh food products. The 

exact function of the VBNC state in bacteria and the mechanisms to reach it are 

currently unknown and could differ from bacterium to bacterium. In the VBNC state, 

pathogens could survive in environmental matrices over one year and maintain the 

capability to develop diseases in their host (Oliver 2010). Improving health risk 

assessment associated with the increasing consumption of minimally processed fresh 

food products is a crucial need. To reach this objective, the development and 

standardization of fast and accurate cultivation-independent assays (FCM and PMA-

qPCR) providing cellular and molecular information on microorganisms associated with 

food products are required.  
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5.1 SC-CO2 inactivation of Escherichia coli spiked on fresh cut 

carrots 

 Carrot (Daucuscarota L.) is among the top-ten most economically important 

vegetable crops in the world, since it is a good source of natural antioxidants such as 

carotenoids and phenolic compounds and is consumed all year around (Simon et al., 

2008) as fresh but also as ready-to-eat (RTE) product. Carrot cut or grated carrot is 

widely used in ready-to-eat salads, and preservation and safety of RTE products has 

become one of the main issue for the food industry. Maximum level of E. coli 

inactivation on fruits and vegetables required by EU normative is < 20 CFUs/g 

(Regulation (EC) No. 2073/2005). E. coli cells with high load were spiked on fresh cut 

carrots to evaluate the maximum efficiency of treatment. The best SC-CO2 conditions to 

treat this fresh vegetable have been tested on their natural flora by Splimbergo et al. 

(2012). The manuscript submitted to International Journal of Food Microbiology with 

the title: "Flow cytometry as an accurate tool to monitor E. coli subpopulations on 

solid food products after SC-CO2 treatment" (Tamburini, S., Foladori, P., Ferrentino 

G., Spilimbergo S., Jousson O.) is included at the end of this document (Appendix: 

Publication B) The article reports the development of protocols to identify the FCM 

profiling of E. coli cells spiked on carrots and the inactivation kinetics obtained by plate 

counts and FCM analysis to quantify the viable and VBNC E. coli cells during the 

treatment. 

 

5.2 SC-CO2 inactivation of Salmonella enterica spiked on coconut 

Coconut (Cocos nucifera L.) is one of the 10 most exploited tree species 

worldwide as primary source of food, drink, and shelter. The white meat (flesh) of the 

nut can be eaten either raw or shredded and dried as an ingredient in a wide variety of 

foods from cakes to beverages. Similar to other fruits that are consumed raw, coconut 

can be a source of pathogenic or spoilage bacteria (Strawn et al., 2011). EU normative 

(2005) states that in 25 grams samples of fruits or vegetables Salmonella must not be 

detected. SC-CO2 conditions to inactivate natural flora of coconut have been evaluated 

by plate count methods (Ferrentino et al., 2012a) and sensorial analyses have showed 

that were not detected  significant differences in terms of texture, taste, appearance, and 



Chapter 5: Solid food products 

45 

 

aroma; however, color instrumental analyses reported significant differences in 

lightness between control and treated samples (Ferrentino et al., 2013). 

 

5.2.1 Inhibition of S. enterica cells to grow 

 The inactivation kinetics of Salmonella enterica spiked on fresh cut 

coconut at 120 bar, 40 and 50°C as a function of the treatment time ranging from 5 to 60 

min measured with plate counts are reported in Figure 4.1.The inactivation rate 

increased with the treatment time: at 120 bar, 50°C, 60 min, 99.9% (5 Log) of microbial 

inactivation was achieved. The results also indicated that changing the temperature from 

40 to 50°C did not significantly increase the inactivation rate. 
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Figure 4.1. Inactivation kinetics of Salmonella enterica spiked on fresh cut coconut expressed as 

CFUs per gram. 

5.2.2 Salmonella profiling by FCM and SC-CO2-induced inactivation 

Homogenized suspensions of S. enterica spiked on fresh coconut surface were 

stained with SYBR-I and PI and analyzed with FCM to detect both the profiles of 

natural microbial flora of coconut and Salmonella cells. The FCM scattering profiling 

was used to distinguish Salmonella cells from coconut debris. Referring to an arbitrary 

scale divided in 256 channels, the FALS histogram of Salmonella cells was used to 

discriminate the bacterial cells from other particles that emit green and red fluorescence. 

Green (FL1) and red (FL3) fluorescent signals acquired for each bacterial cell were 

plotted in a two-dimensional dot plot (cytogram). The populations of coconut debris 
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with auto-fluorescence or unspecific staining are indicated in gray whilst the population 

of Salmonella cells particles with bacteria size is in red (Figure 4.2). Most of 

Salmonella cells were intact (99.8%) at t=0, and after 15 min 94.3% of cells were 

partially-permeabilized. No further permeabilization was observed by increasing 

treatment time. 

 

Figure 4.2 Cytograms of Salmonella cells spiked on fresh coconut untreated and 

SC-CO2 treated at 120 bar and 50°C up to 60 min. The Salmonella population e 

particles with bacteria size are in red, and the debris in gray. 

 

After 5 min of SC-CO2 treatment, the total cell concentration strongly decreased 

of more than 50%. The fraction of disrupted cells was compared to the intact, partially-

permeabilized and permeabilized cell populations for each treatment time. The 

respective percentages are plotted in Figure 4.3. A large disruption of bacterial cells 

occurred even in the first 5 min of treatment and within 15 min the second one. The 

increase of the exposure to the treatment did not carry out a further reduction of the 

percentage of intact cells. 
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Figure 4.3. Fraction of intact, partially-permeabilized, permeabilized and disrupted cells of 

Salmonella spiked on fresh cut coconut. The samples were treated with SC-CO2 at 120 bar and 50°C up 

to 60 min.  

5.2.3 PMA-qPCRquantification of intact equivalent Salmonella cells and 

degraded DNA 

InvA gene was selected as target gene to detect and to quantify S. enterica by 

qPCR. Fresh cut coconut pieces spiked with Salmonella were treated with SC-CO2 at 

40°C and50°C up to 60 min. The TaqManq PCR analyses were performed on gDNA 

samples extracted from homogenized suspensions before and after PMA staining, to 

quantify both total invA gene copies and invA gene copies from intact Salmonella cells. 

Both values decreased after SC-CO2 treatment suggesting that, besides cellular 

permeabilization, SC-CO2 also induces, directly or indirectly, the degradation of 

genomic DNA. The treatment at 40°C affected significantly Salmonella cells after 60 

min (Figure 4.4a). Inversely, the treatment at 50°C showed a reduction of the 75% of 

intact equivalent cells after only 5 min and gDNA copies reduction of more than 50% 

(Figure 4.4b). 
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Figure 4.4. Fraction of intact equivalent cells, intact DNA and degraded DNA of Salmonella 

cells spiked on fresh cut coconut treated at 120 bar and (a) at 40°C and  (b) 50°C up to 60 min. 

 

5.2.4 Comparison of cultivable, intact and equivalent intact Salmonella cells 

The cultivable Salmonella cells spiked on fresh cut coconut were compared with 

intact cells (considered as viable) obtained by FCM and intact equivalent cells obtained 

by PMA-qPCR (Figure 4.5). Cultivable cells obtained by plate counts were expressed as 

CFUs per gram, the intact cells obtained by FCM were expressed as intact cells per 

gram whilst the intact cells obtained by PMA-qPCR were expressed as intact equivalent 

cells per gram. After 60 min at 50°C the maximal Salmonella reduction (5 Log) was 

obtained by plate count, but 103 Salmonella cells remained cultivable. FCM data 

reported 105 intact Salmonella cells per gram (3 log reduction), indicating that about 102 

Salmonella cells entered in the VBNC state. PMA-qPCR data showed only 2 Log of cell 

inactivation. 
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Figure 4.5. Viable cells per gram of Salmonella enterica afterSC-CO2 treatment at 120 bar and 

50°C evaluated with plate count, PMA-qPCR and FCM. 

 

5.3 SC-CO2 inactivation of Listeria monocytogenes spiked on dry 

cured ham 

Dry cured ham prepared in small portions, slices or pieces, and obtained from 

the processed raw product is one of the most diffused RTE product provided by the 

meat industry (Toldra, 2004). During the post-processing procedures of cutting, slicing 

and repackaging dry cured ham can be easily contaminated by pathogenic Listeria 

monocytogenes, since once established on food processing equipment, it is very difficult 

to eliminate it (Møretrø and Langsrud, 2004). Elimination or reduction of L. 

monocytogenes is a compulsory step before marketing the product. Some countries such 

as USA (CFSAN/FSIS 2003), Australia and New Zealand (ANZFA 2001) accept only 

L. monocytogenes-free RTE meat products. In the European Union the criterion "not 

detected in 25 g" is applied before the product leaves the production plant (European 

Commission, 2005).The SC-CO2 parameters for total Listeria inactivation have been 

tested preserving the overall acceptability and sensory quality of the dry cured ham 

(Ferrentino et al., 2012b), but re-growth phenomena could be not excluded. 
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5.3.1 Inhibition of L. monocytogenes growth 

The inactivation by SC-CO2 treatment of cultivable L. monocytogenes cells 

spiked on cubes of dry cured ham was evaluated quantifying bacterial cells able to 

replicate by plate counts. A set of experiments at 45°C or 50°C, and 80 or 100 bar were 

performed to evaluate the best conditions for bacterial inactivation, expressed as 

Log10(N/N0) as a function of treatment time (Figure 4.6).  

At 120 bar, either at 45°C or 50°C, the total inactivation to undetectable levels 

(about 8 Log reduction) was obtained in 30 min and 15 min, respectively. 
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Figure 4.6. Inactivation of cultivable L. monocytogenes cells spiked on dry cured ham surface 

expressed as Log10(Ni/N0) as a function of treatment time. SC-CO2 treatment was performed at (a) 45°C 

and (b) 50°C. 

 

5.3.2 FCM analysis of L. monocytogenes and natural microflora of dry cured 

ham surface 

An high concentration of Listeria monocytogenes (5x107 CFUs) was inoculated 

on dry cured ham surface. Homogenized suspension of L. monocytogenes-spiked on dry 

cured ham surface were stained with SYBR-I and PI and analyzed with FCM to detect 

both profiling of natural microbial flora of dry cured ham and L. monocytogenes cells 

(Figure 4.7a). The FCM scattering profiling was used to distinguish L. monocytogenes 

cells from food debris. Referring to an arbitrary scale divided in 256 channels, the 

FALS histogram of L. monocytogenes cells was used to discriminate the bacterial cells 

from other particles emitting green and red fluorescence.  
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Green (FL1) and red (FL3) fluorescent signals acquired for each bacterial cell 

were plotted in a two-dimensional dot plot (cytogram) (Figure 4.7). Food debris with 

auto-fluorescence or unspecific staining are indicated in gray whilst the population of L. 

monocytogenes cells and bacterial natural flora with FALS signals similar to Listeria 

are in red. The bacteria identified and quantified on the untreated dry cured ham surface 

(composed by L. monocytogenes spiked on ham and natural microflora) can be divided 

in three different subpopulations: 108 cells/g were permeabilized, 107 cells/g were 

partially-permeabilized and 4.2∙107 cells/g were intact. 

 
Figure 4.7. FCM cytograms of untreated and treated L. monocytogenes cells spiked on dry cured 

ham surface. The percentages of intact, partially- and totally-permeabilized cells are shown within each 

cytogram quadrant. The bacterial populations are in red and the food debris in gray. 

 

5.3.3 FCM analysis to evaluate the efficiency of SC-CO2 

In Figure 4.7 the cytograms obtained by FCM coupled with SYBR-I and PI 

before and after SC-CO2 treatment at 120 bar both 45°C and 50°C are shown. Listeria 

cells inoculated on dry cured ham surface were viable on the basis of membrane 

integrity, and assumed to be intact cells. After only 5 min at 120 bar and 45°C only 

0.3% of bacterial cells remained in the region of intact cells, and after 15 min all cells 
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moved to the region of permeabilized cells (Figure 4.7b,c). Eventual intact cells were 

under the detection limit of the instrument. At 50°C, the number of intact Listeria cells 

were undetectable even after 5 min and all cells were partially-permeabilized or 

permeabilized (Figure 4.7d).The disruptive action of SC-CO2, measured as the reduction 

of the number of total cells, and cellular permeabilization were observed within 5 min 

of treatment at both 45°C and 50°C (Figure 4.8).The number of total cells decreased by 

46% after 5 min at 45°C and by 60% at 50°C. The fraction of disrupted cells was 

compared to the intact, partially-permeabilized and permeabilized cell populations for 

each treatment time. The respective percentages are plotted in Figure 4.8. After 30 min 

of SC-CO2 at 45°C a similar level of cellular disruption was observed as after 5 min at 

50°C. After 15 min at 50°C 90% of bacterial cells were disrupted and 10% of them were 

permeabilized. 

 

0 5 15 30 
0

20

40

60

80

100

Treatment time (min)

%
 o

f c
el

ls

0 5 15 30 
0

20

40

60

80

100
Intact
Partially-permeabilized
Permeabilized
Disrupted

Treatment time (min)

%
 o

f c
el

ls

(a) (b)

 
Figure 4.8. Percentages of L. monocytogenes cells subpopulations before and after SC-CO2 

treatment at (a) 45°C and (b) 50°C. 

 

5.3.4 PMA-qPCR quantification of intact equivalent Listeria cells 

The target gene selected for Listeria monocytogenes detection was hlyA 

encoding hemolysin A. 5x107 CFUs of L. monocytogenes cells were inoculated on dry 

cured ham surface. The samples were treated with SC-CO2 at 45°C and 50°C up to 30 

min. The TaqManq PCR analyses were performed on gDNA samples extracted from 

homogenized suspensions before and after PMA staining, to quantify both total hlyA 

gene copies and hlyA gene copies from intact Listeria cells. Both values decreased after 

treatment. The reduction of total gene copies indicated that genomic DNA is exposed to 
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degradation, whilst the difference between total gene copies and gene copies from intact 

cells indicated that a part of the cells were permeabilized or disrupted. The maximum 

level of gDNA degradation (>60%) was obtained at 50°C after 30 min of treatment. 

Comparing the number of intact equivalent cells between control and treated samples 

revealed that 70% of intact equivalent cells decreased after 5 min of treatment both at 

45°C and 50°C (Figure 4.9).  
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Figure 4.9. Percentages of hlyA gene copies of (i) intact equivalent cells, (ii) intact DNA and 

(iii) degraded DNA before and after treatment. 

 

5.3.5 Comparison of cultivable, intact and equivalent intact Listeria cells 

The cultivable L. monocytogenes cells spiked on dry cured ham surface were 

compared with intact cells (considered as viable) obtained by FCM and intact 

equivalent cells obtained by PMA-qPCR (Figure 4.10). Cultivable cells obtained by 

plate counts were expressed as CFUs per gram, intact cells obtained by FCM were 

expressed as intact cells per gram, and intact cells quantified by PMA-qPCR were 

expressed as intact equivalent cells per gram. All Listeria cells spiked on dry cured ham 

surface were cultivable and intact. After 5 min of the treatment both at 45°C and 50°C 

more than 104 and 106 CFUs per gram were no more cultivable and 102 and 104 were no 

more intact. These results indicate that part of Listeria cells (102 cells per gram) were 

viable but not cultivable. Conversely, the PMA-qPCR data showed only 1 Log of 

Listeria cell inactivation after 5 min of treatment. Increasing the treatment time the 
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number of cultivable and intact cells per gram decreased, but the difference between 

intact and cultivable cells remained in the range of 102 cells per gram. 
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 Figure 4.10. Comparison of cultivable, intact and intact equivalent L. monocytogenes cells per 

gram before and after SC-CO2 treatment at 120 bar and at (a) 45°C and (b) 50°C. 
 

5.4 Conclusions 

Total inactivation was reached for both Escherichia coli and Listeria 

monocytogenes, therefore satisfying both US and European food safety requirements. 

Longer treatment times were required to inactivate Salmonella enterica respect to E. 

coli. To reach total inactivation of Salmonella SC-CO2 could be combined with others 

methods alternative to heat pasteurization techniques, including ultrasounds or PEF.  

The comparison of results obtained by plate counts, FCM and PMA-qPCR 

showed that a fraction of intact bacterial cells escaped detection by plate counts. This 

would suggest that these cells entered in a VBNC state, confirming that plate counts do 

not detect a significant proportion of cells that may re-grow after treatment. 

Real-time quantitative PCR (qPCR) is a highly sensitive method able to detect 

fewer than 10 genome equivalents per reaction and permit to quantify bacteria at low 

concentration. The use of primers and fluorescent Taqman probes allows to identify 

with high specificity and accuracy the microorganisms within a mixed community such 

as in food products. A main disadvantage of PMA-qPCR applied to viable bacterial 

quantification is that genomic DNA extraction and PMA staining may cause biases in 

the bacterial quantification. In addition, qPCR is an indirect method to quantify cells 

and it does not discriminate between cells that have achieved the division process  and 

cells in division with double content of genomic DNA. Conversely, FCM is a multi-

parametric, single-cell analysis method. When coupled with SYBR-I and PI, this 
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technique permits to discriminate directly viable from dead cells. FCM provides 

information about cell viability, volume and structure of cell surface, but it shows some 

limitations when applied to complex environmental matrixes such as food products,  

because it is not species-specific. The use of FCM in combination with complementary 

techniques, including both fluorescent species-specific antibodies and probes for 

Fluorescent In situ Hybridization (FISH) could be applied to evaluate bacterial viability 

in a species-specific manner. Furthermore, the combination between FCM and single 

cell sorting could allow to evaluate whether the cells that remained intact after treatment 

are able to re-grow and to study their physiology (Wang et al., 2010).  

FCM and PMA-qPCR are innovative and fast approaches for cell viability 

assessment and bacterial monitoring, though not yet fully standardized, and offer the 

possibility to critically evaluate culture-based methods. They could be applied routinely, 

overcoming the limitations of cultivation methods, and defining new parameters of 

microbiological risk assessment. 
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Chapter 6:  Effects of SC-CO2 on E. coli cells 

 

6.1 Supercritical CO2 induces marked changes in membrane 

phospholipids in Escherichia coli K12 

Permeabilization of the cell membrane has been proposed to be the first event 

leading to cell inactivation or death (Garcia-Gonzalez et al., 2007; Spilimbergo et al., 

2009). Membrane permeabilization in E. coli and in L. monocytogenes cells induced by 

SC-CO2 was investigated by Garcia-Gonzalez et al. (2010a) using spectrofluorometry 

and transmission electron microscopy. These authors demonstrated the relationship 

between irreversible membrane permeabilization and the inability of bacteria to grow on 

rich media. SC-CO2-induced membrane permeabilization was also observed in 

Salmonella enterica (Kim et al., 2009a; Tamburini et al., 2013) and in Saccharomyces 

cerevisiae (Spilimbergo et al., 2010a) by using flow cytometry coupled with viable 

dyes. Whether SC-CO2 has a direct effect on the bacterial membrane or 

permeabilization is a consequence of cell death remains an open question. Kim et al. 

(2009b) applied GC-MS to analyze fatty acid profiling of Salmonella enterica serotype 

Typhimurium. Their results suggested that the inactivation of Salmonella could be 

related to an increase of minor compounds of the fatty acid profile, though SC-CO2 

could also alter the membrane so that minor fatty acids become more efficiently 

extracted. SC-CO2 is indeed used as a solvent to extract non-polar compounds such as 

triglycerides and fat (Sahena et al., 2009). Flow cytometry analysis, LC-ESI-MS, and 
31P-NMR analyses were applied to examine the membrane lipidomic profile per cell of 

Escherichia coli K12 (in exponential growth phase) before and after SC-CO2 treatment. 

In addition, phospholipid biosynthesis gene expression experiments were performed to 

study the bacterial response to the treatment (Figure 5.1). 
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Figure 5.1. Kennedy pathway for the biosynthesis of E. coli phospholipids (Lu et al., 2011). 

 

6.2 SC-CO2 induces depolarization, permeabilization and 

biovolume reduction in E. coli 

As previously reported (Tamburini et al., 2013), the double staining with SYBR-

I and PI in FCM analysis allowed to distinguish different bacterial subpopulations: (i) 

intact cells, emitting green fluorescence; (ii) partially-permeabilized cells, emitting both 

green and red fluorescence and (iii) permeabilized cells, emitting red fluorescence. 

Figure 5.2 shows the distribution of E. coli subpopulations as a function of treatment 

time. After 15 min of SC-CO2 treatment, a significant effect on the membrane was 

observed, as 18% of cells were permeabilized and 81% were partially-permeabilized. 

Cell depolarization also became effective after 15 min. For longer treatment times, the 

partially-permeabilized cells became permeabilized and the proportion of depolarized 

cells decreased. These results indicate that partial permeabilization leads to 

depolarization of the membrane. When the cells become fully-permeabilized, 

DIBAC4(3) dye likely diffuses out of the cells.  
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 Figure 5.2. Proportions of intact, partially-permeabilized, permeabilized and depolarized E. coli 

cells during SC-CO2 treatment assessed by FCM.  

 

The comparison between untreated and SC-CO2-treated samples did not show 

significant differences of LALS signals, indicating that the treatment has no detectable 

effect on cell density or granularity (data not shown). Conversely, FALS signals, which 

provide information on cellular biovolume, changed significantly after 15 min of 

treatment (Figure 5.3a). Referring to an arbitrary scale divided in 256 channels, the 

FALS peak of untreated cells and treated cells was at mean channel 126 and 98, 

respectively. The biovolume ratio was 1.3, indicating that the cellular biovolume 

decreased of about 20% after 15 min; longer treatment times did not induce further 

biovolume reduction (Figure 5.3b).  

 

 
Figure 5.3. Reduction of cellular biovolume and phospholipids during SC-CO2 treatment. (a) 

Median channels of FALS signals and (b) associated percentages of biovolume reduction. 
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6.3 Phospholipids profile of Escherichia coli K12 MG1665 by 

NMR 

A preliminary NMR analysis was carried out in order to establish the 

phospholipid profile of E. coli inner membranes. The 1H-NMR spectrum of a raw lipids 

extract (Figure 5.4a) clearly indicated the dominance of Phosphatidylethanolamine (PE) 

lipids species by the characteristic resonances of the ethanolamine head group (δH 3.16 

and 4.03 for the methylene protons linked to α-carbon atoms at amino- and phosphate 

group, respectively) besides the expected proton-resonances attributable to the presence 

of two acyl chains on the glycerol backbone (multiplets at δH 5.23 and 4.44/4.18 for 

protons linked carbon atoms at sn-1 and sn-2 position of glycerol, respectively) and the 

presence of unsaturations on the same chains (triplet at δH 5.35). Other minor but 

characteristic signals in the 4.00 <δH< 3.60 chemical shifts range were initially guessed 

and after firmly confirmed to belong to Phosphatidylglycerol (PG) lipid species by 

comparison with 1H-NMR spectra of pure PG 16:0/18:1. Another striking feature that 

could be obtained by analysis of the1H-NMR spectrum through the ratio of the signal 

area at δH 5.35 (2H for every unsaturation) to that of the area at δH4.44 (2H for every PL 

species) was the averaged unsaturation index (UI) of the acyl chains in all the PE and 

PG species (UI = 0.82) pointing out that PE and PG are acylated mainly by saturated (or 

eventually monounsaturated) fatty chains. Finally the evaluated PG/PE % molar ratio 

(16%) must be considered just a rough estimation due both to the low signal/noise ratio 

of the spectrum and partial overlap of the PE/PG signals considered in the 

corresponding area integrations.  

Further structural information was gained by 31P-NMR spectrum (Figure 5.4b) 

carried out in CD3OD; not only it confirmed the presence of only PE (δP 0.18) and PG 

(δP 0.73) lipid species but allowed to establish their correct molar fractions (% xPE = 82 

;% xPG = 18) by the relative area integrations. The same analysis carried out on a sample 

obtained by extraction of SC-CO2 treated cells (60 min) gave us the first suggestion that 

the PG/PE ratio undergoes severe control by SC-CO2 treatment. In fact, after overnight 

acquisition of the corresponding 31P-NMR spectrum the signal of PG was found 

significantly decreased with respect to that of PE as much to hinder a reliable 

integration of the PG signal itself. 
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Figure 5.4 NMR analysis of phospholipid profile in E. coli K12 cells. (a) 1H-NMR spectrum of a 

raw lipids extract to indentify PE and PG species; (b) 31P- NMR spectrum carried out in CD3OD to 

establish the correct molar fractions between PG and PE by the  relative area integrations. 
 

6.4 The phospholipids profile of E. coli K12 MG1665 by LC-MS 

With the insight gained by preliminary NMR measurements E. coli lipid profile 

was performed by mass spectrometric techniques, in particular through high 
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performance liquid chromatography/electrospray ionization mass spectrometry 

(HPLC/ESI-MS). 

A complete qualitative analysis was carried out on E. coli cells containing even a 

small amount of PC 12:0/12:0 added for the evaluation of extraction recovery. This 

analysis confirmed the previous NMR findings that more than 98% of  our sample 

contained only PE and PG lipids with almost undetectable amount of lyso-PC (lyso PC 

16:0, lyso PC 18:0 and lyso PC 18:1). However, a wide chemical diversity of the acyl 

chains was found both in PE (25 species) and PG (22 species) with chains length 

ranging from 14 to 19 carbon atoms and carbon-carbon double bonds from 0 to 3. A 

relevant source of chemodiversity was found to derive from the presence in significant 

amount of i) odd carbon atoms acyl chains (in particular 15:0 and 17:1), ii) structural 

isomers (such as PE 16:0/18:2 and PE 16:1/18:1) and iii) regiochemical isomers (such 

as PE 16:0/18:1 and PE 18:1/16:0). The complete lipid profile of the E. coli cells is 

reported in Figure 5.5. Among all Phospholipids (PL) species, PE 32:1, 34:1,34:2, 34:2 

isomer, and 36:2 were found to dominate but even PE 30:0, 30:1, 32:1, 32:2, 33:1 and 

36:3 were present in in relative amount higher than 2%; PG species were found in much 

lower amount than PE but essentially they shared the same acyl chains of  PE species. 

The average molar fraction of all the PEs in E. coli cells was evaluated to be xPE = (80 ± 

3)%, whilst xPG = (20 ± 2)% according to 31P-NMR measurements and  Morein et al. 

(1996) and Lu et al. (2011).  
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 Figure 5.5. Phospholipid profile of E. coli K12 MG1665. The percentage of  absolute molar  

fraction of each PE or PG species were indicated. Error bars represent the relative error. 
 

6.5 SC-CO2 has a more marked effect on PGs relative to PEs 

A full quantitative analyses were performed through high performance liquid 

chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) to 

compare E. coli lipids profile between untreated and  

SC-CO2 treated samples. The E. coli cells were treated at 120 bar, 35 °C up to 30 

min. The integration of the extracted ion currents of all the PL species allowed to 

establish, through external calibration (working curve) and normalization of the 

recovery efficiency of every extraction (by added PC 12:0/12:0) the complete 

quantitative profile of the samples. The comparison of PE (Figure 5.6a) and PG (Figure 

5.6b) quantitative profile of untreated and treated samples not only confirmed the first 

NMR results, but also allowed to gain much more structural details. The PG/PE molar 

ratio decreased significantly. The absolute amount of total phospholipids showed only 
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marginal change although the absolute amount of the PG species underwent a strong 

reduction (52% after 30 min, Figure 5.6b); The PGs decrease resulted somehow 

compensated by small random changes in the amount of the PE species. In particular, 

the % absolute molar fraction (%amf) of  PE species, defined as  %amf 

(PE)=[Σimol(PE)i/total mol (PL)]x100, changed from 80% (untreated) to 90.0% (after 

30 min of treatment), whilst the corresponding %amf of PG species (%amf 

(PG)=[Σimol(PG)i/total mol(PL)]x100)) changed from 20 % (untreated) to 10% (after 

30 min of treatment); a significant part of this reduction was obtained in the first 5 min 

of treatment where the PG species were found to reduce their total amount till 30% 

(60% of the overall observed reduction).  

The % relative molar fraction (%rmf) of a single PL class (for PE class defined 

as %rmf (PE) = [Σimol(PE)i/total mol (PE)]x100) did not shown statically significant 

changes in the relative molar fraction both for PE and PG species after treatment, 

indicating that SC-CO2 acted with the same effects on all PE or PG species. One 

exception was observed for the isomeric PG 34:2 species (PG 16:1/18:1) that 

unchanged after the treatment (Figure 5.7). 



Chapter 6: Membrane modifications 

64 

 

28
:0

29
:0

30
:0

30
:1

31
:0

31
:0

 is
om

er
31

:1
31

:1
 is

om
er

32
:0

32
:1

32
:2

32
:2

 is
om

er
33

:1
33

:1
 is

om
er

33
:2

34
:1

34
:2

34
:2

 is
om

er
34

:3
35

:1
35

:2
36

:1
36

:2
36

:3

0

5

10

15

20

25 0 min
5 min
15 min
30 min

PE species

%
 o

f a
bs

ol
ut

e 
m

ol
ar

 fr
ac

tio
n

28
:0

30
:0

30
:1

31
:0

31
:1

32
:0

32
:1

32
:2

32
:2

 Is
om

er
33

:1
33

:1
 Is

om
er

33
:2

34
:1

34
:2

34
:2

 Is
om

er
34

:3
35

:1
35

:2
35

:2
36

:2
36

:3

0

2

4

6

8
0 min
5min
15 min
30 min

PG species

%
 o

f a
bs

ol
ut

e 
m

ol
ar

 fr
ac

tio
n

(a)

(b)

 
Figure 5.6. Quantitative lipids profile of untreated and SC-CO2 treated E. coli cells: (a) PE 

species and (b) PG species 
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Figure 5.7. Percentages of relative molar fraction of the major PL species detected in E. coli 

K12 after SC-CO2 treatment. 

 

6.6 SC-CO2 does not affect the acyl chains 

The HPLC/ESI-MS permitted to determine whether SC-CO2 treatment induced 

changes in the unsaturation and length of lipid fatty acids. The unsaturation index (UI) 

was defined as UI = Σi (UN)i x (amf)i, where UN represent the number of double bonds 

and amf the absolute molar fraction of a given species i  and the sum is extended on all 

the PE and PG species. The data clearly indicated that UI (1.30 ±0.02) didn’t show any 

change during the treatment. The same behavior was followed also by the averaged acyl 

chains lengths (defined by Σi (TCL)i x (amf)i,, where TCLi is the total carbon atoms of 

the acyl chains on the glycerol backbone of a given species) which was found (33.30 ± 

0.03) absolutely constant during the time course of the treatment.   

6.7 E. coli cells responds to treatment increasing PL synthesis 

 In an initial attempt to identify a bacterial response to loss of membrane 

PL by SC-CO2 treatment the genes involved in biosynthesis of membrane phospholipids 

were selected (Figure 5.1). The E. coli cells in exponential growth phase were treated 
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with SC-CO2 at 120 bar, 35°C up to 30 min. The expression level of selected genes was 

performed by RT-qPCR and was quantified using the delta delta Ct method (Figure 5.6) 

The p-values to identify the significant fold changed differences were calculated by 

Pearson correlation and are shown in Figure 5.8. Only PssA gene seemed to be up-

regulated after 5 min of SC-CO2 treatment, whilst CdsA and Psd genes were down-

regulated. CdsA gene product is involved in the both synthesis of phospholipids, PEs 

and PGs, whilst PssA and Psd, up and down regulated, respectively only in the PE 

synthesis (see Figure 5.1). 
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Figure 5.8. Expression analysis of genes involved in the Kennedy pathway of phospholipids biosynthesis 

in E. coli. Error bars indicate the standard deviation of five independent biological replicates.*p<0.05; 

**p<0.01. 
 

6.8 Discussion 

In this study, the changes of lipid profiles of E. coli K12 during SC-CO2 

treatment were compared with cellular features to get insights on the action mechanism 

of SC-CO2 on bacterial cells. After 15 min of SC-CO2 treatment most of bacterial cells 

lost their membrane potential (95%) and membrane integrity (81% of permeabilized and 

18% of partially-permeabilized cells). Bacterial permeabilization was associated to a 
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20% decrease of cellular biovolume and to a strong decrease (more than 50%) reduction 

of PG membrane lipids.  

PEs are zwitterionic lipids participating in a multitude of cellular task, such as 

fusion, vesiculation, curvature bilayers, influence permeation and cell division (Zhao et 

al., 2008). Conversely, PGs are anionic carrying a unit negative charge, playing an 

important role in the overall homeostatic equilibrium of cell membranes and in 

membrane-peptide interactions (Tari et al., 1989). Due to ammonium group in PE and 

hydroxyl groups in PG, both lipids are able to form hydrogen bonds. PE-PE hydrogen 

bonds have been observed both experimentally (Boggs, 1987) and in molecular 

simulations (Pink et al., 1998; Leekumjorn et al., 2006), whereas there is no 

experimental evidence of PG-PG hydrogen bonds. Zhao et al. (2008) suggested that 

PGs increase the bacterial membrane stability, because PGs reduce the PEs motion 

along bilayer, therefore promoting the formation of inter-lipid hydrogen bonds. Bacteria 

are able to adjust the relative concentrations of PEs and PGs when exposed to toxic 

organic solvents such ethanol increasing the PG/PE molar ratio (Weber et al., 1996). 

The lipid profiles of E. coli treated cells showed that i) SC-CO2 treatment decreased by 

50% the amount of total PGs whilst PEs remained almost unchanged, ii) the grade of 

this decrease is almost uniformly distributed among all the PG species and iii) the 

destabilizing effect induced by the PG decrease is most significant in the first minutes 

of the treatment.  

Besides changing the headgroup of the phospholipids species, bacteria generally 

respond to environmental stress by increasing the number of unsaturated fatty acids and 

the length of acyl chains (Weber et al., 1996; Zhang and Rock, 2008). The data showed 

that both the factors did not play any role during SC-CO2 treatment; in fact both the 

average unsaturation index (1.30 ±0.02) and the average acyl chain on the glycerol 

backbone (33.30 ±0.03) were found absolutely constant.  

In addition, only PssA gene, involved in PE biosynthesis, was up-regulated after 

5 min of SC-CO2 treatment, whilst Psd gene was down-regulated. CdsA gene involved 

in the synthesis of both phospholipids was also down-regulated. All enzymes involved 

in phospholipid head-group synthesis are localized in the inner membrane, whith the 

exception of PssA, which is located in the cytoplasm (Zhang and Rock, 2008). PGs are 

constitutively produced by the action of PgsA and PgpP, whilst PEs synthesis depends 

on mole fraction of PGs and Cardiolipin in the membrane, which control the PssA 
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association to the membrane and their activity (Linde et al., 2004; Zhang and Rock, 

2008). The mechanisms that regulate the amounts and the ratio among different PL 

classes seemed likely to be interrelated and to regulate by product feedback inhibition 

rather than an overall expression of the enzymes involved in the PL synthesis in E. coli. 

Even the competitive routes of PL synthesis which, starting from CDP-diacylglycerol, 

lead to PE and PG branches are unaffected by overexpression of E. coli PssA or PgsA 

(Jackson et al., 1986).  

On the other hand, the intracellular pH in Listeria monocytogenes cells treated 

with SC-CO2 decreased until <5 (Spilimbergo et al., 2010b). The pH change likely have 

detrimental effects on several biochemical processes, such as protein denaturation, loss 

of enzymatic activity and even in the structural architecture of cells membranes. Also 

the PE/PG cell membranes would be strongly affected by pH change, given that at 

pH=7 PGs are negatively charged and PEs are zwitterionic, while at pH=2.8, the 

phosphodiester group of PGs (pKa = 2.9) is mainly protonated (60%) (Garidel et al., 

1997). This biophysical effect could explain the reason why SC-CO2 treatment result in 

a strong perturbation of membranes architecture in E. coli, where PG and in particular 

PE have been ever found as the dominant phospholipid species. Such alterations are 

likely associated with its strong inactivation effect. Why specifically PG species have 

been found to strongly decrease during treatment remains an open question. Further 

studies, including phospholipid biosynthesis mutant analysis, will help to determine E. 

coli response to the treatment. 
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Chapter 7:  Conclusion 

Supercritical carbon dioxide (SC-CO2) has been widely investigated as an 

innovative technology for the preservation of food products. It is a promising alternative 

to the traditional processes used to inactivate pathogens (Gunes et al., 2006; Choi et al., 

2009) and spoilage microorganisms (Gunes et al., 2005; Ferrentino et al., 2013), 

without negatively affecting the sensorial properties of products and decreasing their 

overall quality (Damar and Balaban, 2006; Chen et al., 2009). 

The results showed that SC-CO2 treatment was more efficient when applied on 

bacterial cells spiked on synthetic solid substrate and on food products rather than on 

cell suspensions. Batch tests showed that bacterial inactivation in liquid substrate 

proceeds in two phases: the early one is characterized by a slow rate of reduction of the 

number microbes, which then sharply decrease at a later stage, confirming previously 

published results (Dillow et al., 1999). Conversely, on solid substrate the first stage of 

inactivation proceeds at a fast rate of bacterial inactivation and the second one at a 

slower rate. The action of SC-CO2 on solid substrate was more efficient, presumably 

because the supercritical fluid acted directly on bacterial cells without the need to 

dissolve in the liquid phase, although some studies reported that bacterial inactivation 

depends on water content of the medium and on water content inside the bacterial cells 

(Hong and Pyung, 1999; Spilimbergo and Bertucco, 2003). 

The comparison of results obtained by plate counts, FCM and PMA-qPCR 

showed that a fraction of intact bacterial cells escaped detection by plate counts. This 

would suggest that these cells entered in a VBNC state, confirming that plate counts do 

not detect a significant proportion of cells that may re-grow after treatment. 

The exact role of the VBNC state in bacteria and the mechanisms to reach this 

state is unknown and it could differ from bacterium to bacterium. In VBNC state 

pathogens can survive in environmental matrices over one year, maintaining the 

capability to develop diseases in their host (Oliver 2010). Flow cytometry coupled with 

cells-sorting could be applied to recover the putative VBNC cells and to study their 

capability to re-growth and determine whether the cells maintain their metabolic activity 

and pathogenic potential.  

The adaptation of microorganisms to the stresses induced by food processing 

and food preservation technologies constitute a potential safety hazard. Co-evolution of 

commensal microorganisms and cooperative metabolic interaction among bacterial 
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species could be a survival strategy to stress (Hibbing et al., 2010; Freilich et al., 2011). 

Further studies to simulate the efficiency of treatment on real food matrices should be 

developed. The exposure to SC-CO2 of commensal bacterial communities spiked on 

food product could be a good start point to study the evolution of bacterial communities 

associated to RTE products in response to SC-CO2 treatment. In addition, bacteria live 

in multi-species communities both in planktonic form and associated in biofilm. The 

most common lifestyle of bacteria is  surface-attached within a biofilm, because the 

extracellular polymeric substances (EPS) that encase them offer a protection from 

physical, chemical and biological stress (Mitchel et al., 2008). Bacteria associated in 

biofilm are indeed known to be more resistant to treatment than their planktonic form 

(Watnick et al., 2000). For instance Bacillus mojavensis biofilms have been shown to be 

more resistant to SC-CO2 treatment than suspended cells (Mitchell et al., 2008).  

E. coli and L. monocytogenes have yet shown an increase in the resistance of 

SC-CO2 treatment after seven cycles of exposition (Garcia-Gonzalez et al., 2010b). To 

understand the action mechanism of SC-CO2 on bacterial cells, it is necessary to depict 

the bacterial adaptation strategy. The data showed that SC-CO2 permeabilized the 

bacterial cells and SC-CO2 action on membrane permeabilization level depends on the 

bacterial species. In E. coli, the partial permeabilization, induced by SC-CO2 was 

correlated to a decrease of cellular biovolume, depletion of potential membrane, loss of 

PG species, without altering their acyl chains, from the bacterial membrane, and to 

down-regulation of some genes involved in PL biosynthesis. The theoretical affinity 

between SC-CO2 and the plasma membrane was measured revealing the possible 

accumulation of CO2 into plasma membrane (Isenchmid et al., 1995; Spilimbergo and 

Bertucco, 2003). The accumulation may compromise the construction of membrane 

domains and increase its permeability. In Listeria monocytogenes cells after SC-CO2 

treatment the cytosolic pH decreased until <5 (Spilimbergo et al., 2010b) and the 

membrane was permeabilized (Tamburini et al., 2013). Lactic acid bacteria of coconut 

shown a minor inactivation rate compared with mesophilic bacteria of coconut 

(Ferrentino et al., 2012a). Lactic acid bacteria posse systems to regulate intracellular pH 

by using cytoplasmic buffering, proton symport system, production of bases and proton 

pumps (Hutkins and Nannen, 1993; Slonczewsky et al., 2009). 

Further studies are necessary to understand both the action mechanism of SC-

CO2 on bacterial cells and the bacterial response to the treatment. Of particular interest 
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are the identification of the first target of SC-CO2. This could be performed by 

constructing E. coli phospholipid biosynthesis mutants containing different amounts of 

PEs and PGs in their membranes. In addition, to understand the role of cytoplasm 

acidification associated to membrane permeabilization during SC-CO2 treatment, it 

could be also of interest to evaluate the behavior of acid-resistant mutants respect to 

treatment.  
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Chapter 9:  Appendix 

9.1 Publications and Contributions 

9.1.1 Publications on the topic of the doctoral thesis: 

My PhD project was focused on the development and application of new cellular 

viability assays, including propidium monoazide quantitative PCR (PMA-qPCR) and 

flow cytometry (FCM) to monitor the efficiency of SC-CO2 treatment on relevant food-

borne pathogens (E. coli, S. enterica, L. monocytogenes). The experiments were 

performed on bacteria grown in liquid cultures, on a synthetic solid substrate, and 

directly on food products. First, the data showed that FCM allows accurate monitoring 

of bacterial cellular status during treatment. The method could be applied, with some 

adjustments, to any field where determining microbial viability status is of importance, 

including food, environment or in the clinic. I published these results as first and 

corresponding author in Microbiology. 

After optimization and validation, the FCM approach was subsequently applied 

to assess the evolution of viability and cultivability of E. coli cells spiked on fresh cut 

carrots during SC-CO2 treatment. A large fraction of the non-cultivable cells that 

maintained the integrity of their membrane, likely entering in a Viable But Not 

Cultivable (VNBC) state, and potentially leading to a regrowth phenomenon, which has 

important practical implications on food processing. I submitted these results as first 

and corresponding author to International Journal of Food Microbiology (article under 

review). 

To get insights into the mechanism of bacterial inactivation mediated by SC-

CO2, detailed structural (LC-MS), cellular (FCM) and gene expression (qPCR) 

experiments were performed. Specifically, NMR and HPLC/ESI-MS analysis were 

performed in collaboration with Professor Graziano Guella (Bioorganic Chemistry 

Laboratory, Physics Department, University of Trento). The data indicated that SC-CO2 

affected all Phosphatidylglycerol (PG) species inducing depolarization and partialy-

permeabilization of all most of E. coli cells. These results would be published soon, the 

manuscript is in preparation and I will submitted these data as first author to Journal of 

Biological Chemistry. 
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Tamburini, S., Andrea Anesi, A., Ferrentino, G., Spilimbergo, S., Guella G. 

Jousson, O. Supercritical CO2 induces marked changes in membrane phospholipids 

composition in Escherichia coli K12. In preparation. 

 

Tamburini, S., Foladori, P., Ferrentino, G., Spilimbergo S., Jousson O. Flow 

cytometry as an accurate tool to monitor E. coli subpopulations on solid food products 

after SC-CO2 treatment. International Journal of Food Microbiology, under review. 

(Publication B) 

 

Tamburini, S., Ballarini, A., Ferrentino, G., Moro, A., Foladori, P., 

Spilimbergo, S., Jousson, O. (2013). Comparison of quantitative PCR and flow 

cytometry as cellular viability methods to study bacterial membrane permeabilization 

following supercritical CO2 treatment. Microbiology 159, 1056–1066. (Publication A) 

 

Abstracts: 
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SC-CO2 affects membrane phospholipids profile in Escherichia coli K12. Proceeding of 

FEMS2013. July 21-25, 2013. Leipzig, Germany. 

 

Ferrentino, G., Tamburini, S., Foladori., Jousson, O. Spilimbergo, S. Evaluation 

of Supercritical Carbon Dioxide Inactivation effect on Salmonella enterica spiked on 

Fresh Cut Coconut by using Plate Count, Flow Cytometry and Real time PCR 

techniques. Proceeding of 10th Conference of Supercritical Fluids and their 

Applications. April 29- May 6 2013. Napoli, Italy. 

 

Tamburini, S., Ballarini, A., Ferrentino, G., Foladori, P., Spilimbergo, S., 

Jousson, O. Supercritical CO2 treatment induces membrane permeabilization in food-

borne bacterial pathogens. Proceeding of SIMGBM 29th National meeting. September 

21-23 2011. Pisa, Italy. 
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Tamburini, S., Ballarini, A., Ferrentino, G., Foladori, P., Spilimbergo, S., 

Jousson, O. Evaluation of cellular viability of food-borne bacterial pathogens after 

supercritical CO2 treatment. Proceeding of FEMS2011. June 26-30, 2011. Geneve, 

Switzerland. 

 

9.1.2 Publications on other microbiology topics 

During this period, I also had the occasion to provide a contribution to other 

projects, resulting in co-authorship of other articles, including: 

a collaboration with Dr. Paola Foladori (Department of Civil, Environmental and 

Mechanical Engineering, University of Trento), in which I performed FCM analysis to 

quantify viable and dead cells in a wastewater treatment plant and to evaluate viability 

of bacteria living in activated sludge after some sludge reduction technologies (Foladori 

et al., 2010) 

a collaboration with Dr. Hussnain A. Janjua (Microbial Genomics Laboratory, 

CIBIO, University of Trento) where I performed gene expression analysis of virulence 

factors in clinical Pseudomonas aeruginosa strains isolated from acute infections 

(Janjua et al., 2012). 

 

Papers: 

Janjua, H.A., Segata, N., Bernabò, P., Tamburini, S., Ellen, A., Jousson, O. 

(2012) Clinical populations of Pseudomonas aeruginosa isolated from acute infections 

show a high virulence range partially correlated with population structure and virulence 

gene expression. Microbiology 158, 2089-2098. (Publication C) 

 

Foladori, P., Tamburini, S., Bruni, L. (2010) Bacterial permeabilisation and 

disruption caused by sludge reduction technologies evaluated by flow cytometry. Water 

Research 44 (17), 4888-99. (Publication D) 
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permeabilisation and disruption of bacteria in activated sludge evaluated by flow 

cytometry. Proceeding of SIMGBM 29th National meeting. September 21-23 2011. 
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Foodborne illness due to bacterial pathogens is increasing worldwide as a consequence of the

higher consumption of fresh and minimally processed food products, which are more easily cross-

contaminated. The efficiency of food pasteurization methods is usually measured by c.f.u. plate

counts, a method discriminating viable from dead cells on the basis of the ability of cells to

replicate and form colonies on standard growth media, thus ignoring viable but not cultivable cells.

Supercritical CO2 (SC-CO2) has recently emerged as one of the most promising fresh food

pasteurization techniques, as an alternative to traditional, heat-based methods. In the present

work, using three SC-CO2-treated foodborne bacteria (Listeria monocytogenes, Salmonella

enterica and Escherichia coli) we tested and compared the performance of alternative viability test

methods based on membrane permeability: propidium monoazide quantitative PCR (PMA-qPCR)

and flow cytometry (FCM). Results were compared based on plate counts and fluorescent

microscopy measurements, which showed that the former dramatically reduced the number of

cultivable cells by more than 5 log units. Conversely, FCM provided a much more detailed picture

of the process, as it directly quantifies the number of total cells and distinguishes among three

categories, including intact, partially permeabilized and permeabilized cells. A comparison of both

PMA-qPCR and FCM with plate count data indicated that only a fraction of intact cells maintained

the ability to replicate in vitro. Following SC-CO2 treatment, FCM analysis revealed a markedly

higher level of bacterial membrane permeabilization of L. monocytogenes with respect to E. coli

and S. enterica. Furthermore, an intermediate permeabilization state in which the cellular surface

was altered and biovolume increased up to 1.5-fold was observed in L. monocytogenes, but not in

E. coli or S. enterica. FCM thus compared favourably with other methods and should be

considered as an accurate analytical tool for applications in which monitoring bacterial viability

status is of importance, such as microbiological risk assessment in the food chain or in the

environment.

INTRODUCTION

Foodborne illness is a public health challenge that,
according to a World Health Organization report (WHO,
2007), caused almost 1.8 million human deaths in 2005

(Velusamy et al., 2010). Such illness is mostly caused by
eating food contaminated with pathogenic bacteria (e.g.
Escherichia coli 0157 : H7, Listeria monocytogenes, Salmonella
enterica), which enter the food supply through cross-
contamination events or food handlers’ poor hygiene. In
particular, fresh or minimally processed fruit and vegetable
products can easily become contaminated with pathogens
along the food chain, from harvesting through transporta-
tion and processing, to handling. Food consumption
patterns worldwide have now changed in favour of these

Abbreviations: FALS, forward angle light scatter; FCM, flow cytometry;
FRET, fluorescence resonance energy transfer; gDNA, genomic DNA;
LALS, large angle light scatter; PI, propidium iodide; PMA-qPCR,
propidium monoazide quantitative PCR; SC-CO2, supercritical CO2;
SYBR-I, SYBR Green I; VBNC, viable but not cultivable.
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fresh (Anon, 2002) or minimally processed (Gandhi &
Chikindas, 2007) ready-to-eat food products; as a con-
sequence, the risk of foodborne illness is increasing.

Foodborne illnesses caused by fresh/minimally processed
products can be prevented by applying pasteurization
treatments aiming to reduce the number of viable
pathogens without affecting food taste, appearance and
quality. Thermal pasteurization procedures are highly
effective, but they do not apply to fresh food products.
Thus, non-thermal pasteurization methods have been
developed, which inactivate microbes while not adversely
compromising food integrity or nutritional quality,
including high hydrostatic pressure and pulsed electrical
fields (Devlieghere et al., 2004), dense CO2 or supercritical
CO2 (SC-CO2) (Spilimbergo & Bertucco, 2003).

Among the latter methods, SC-CO2 non-thermal pasteur-
ization is one of the most promising for fresh food
products. This method is based on the fluid state of CO2

reached at or above its critical temperature and critical
pressure. Compared with heat- and high hydrostatic
pressure-based pasteurization, it has the advantage of
working in a range of relatively low temperature (30–
40 uC) and moderate pressure (80–120 bar), thus having a
much lower impact on nutritional, organoleptic and
physico-chemical properties of fresh/minimally processed
food products (Garcia-Gonzalez et al., 2007). The pasteur-
ization efficiency of SC-CO2 has been tested on several
micro-organisms spiked into various substrates (Spilimbergo
& Bertucco, 2003; Ferrentino & Spilimbergo, 2011).
Specifically, treatments have led to a 3–4 log c.f.u. ml21

reduction in physiological saline buffer (Ballestra et al., 1996;
Erkmen, 2000; Erkmen & Karaman, 2001) and to a 2–2.5 log
c.f.u. cm22 reduction on solid food products (Jung et al.,
2009; Bae et al., 2011). The effect of SC-CO2 on living cells
has not been fully deciphered. Several hypotheses have been
proposed based on experimental observations, including
solubilization of pressurized CO2 in the external liquid phase,
cell membrane permeabilization, intracellular acidification,
key enzyme inactivation/cellular metabolism inhibition due
to pH lowering, direct (inhibitory) effect of molecular CO2

and HCO3
2 on metabolism, disordering of the intracellular

electrolyte balance, and removal of vital constituents from
cells and cell membranes. Most of these steps may not occur
consecutively, but rather take place simultaneously in a very
complex and interrelated manner (Spilimbergo & Bertucco,
2003; Garcia-Gonzalez et al., 2007).

To evaluate pasteurization efficiency, bacterial inactiva-
tion is typically deduced from c.f.u. plate counts, a
viability test method measuring the bacterial ability to
replicate and form colonies upon standard growth
conditions. It is well known that, under environmental
stress conditions (e.g. nutrient limitation, pressure,
temperature), a number of pathogens enter into a so-
called viable but not cultivable state (VBNC), becoming
even more resistant to stress (Oliver, 2010). Thus, plate
counts may overestimate pasteurization efficiency, by not

detecting as viable reversibly damaged bacterial cells (Keer
& Birch, 2003).

Additional viability test methods may be more suited for
studying the efficiency of pasteurization treatment on
bacterial cells, including propidium monoazide quantitative
PCR (PMA-qPCR) (Nocker & Camper, 2006) and flow
cytometry (FCM) (Müller & Nebe-von-Caron, 2010). Both
methods employ cell-membrane permeability as the viability
parameter. PMA-qPCR is a quantitative PCR amplification
performed after PMA staining, an anologue of propidium
iodide (PI) with a covalently linked azide group, used as a
marker of bacterial cells with a permeabilized membrane.
After photoactivation, PMA binds irreversibly to dsDNA,
thus inhibiting DNA amplication during qPCR or causing
DNA loss with cellular debris during DNA extraction. PMA
was used to discriminate intact and permeabilized cells in an
environmental matrix (Nocker et al., 2007a) and was applied
to monitor the effect of disinfection treatments altering
membrane integrity (Nocker et al., 2007b).

FCM is a multi-parametric and single-cell analysis
technique for high-throughput and real-time quantifica-
tion of multiple cellular parameters, such as cell size,
surface granularity and physiological state. In FCM, two
light-scattering signals can be collected simultaneously
from each bacterial cell: the forward-angle light scatter
(FALS), which is related to bacterial size (Foladori et al.,
2008), and the large-angle light scatter (LALS), measuring
cell density or granularity (Müller & Nebe-von-Caron,
2010). In FCM studies, the fluorophore SYBR Green I
(SYBR-I) is often used as a total cell marker, given its
ability to cross the cell membrane and to bind to DNA
(Barbesti et al., 2000), whilst PI is used as a dead cell
marker, as it penetrates only cells with a permeabilized
membrane (Ziglio et al., 2002). In permeabilized cells the
simultaneous presence of SYBR-I and PI activates fluor-
escence resonance energy transfer (FRET), due to the total
absorption of the fluorescent emission spectrum of SYBR-I
by PI. In these conditions, it is therefore possible to
distinguish intact cells emitting green fluorescence from
permeabilized ones emitting red fluorescence. FCM
coupled with fluorescent dyes (SYBR-I and PI or Syto9
and PI) was used to discriminate intact and permeabilized
cells in a wastewater treatment plant (Foladori et al., 2010)
and to monitor the effect of various antibacterial
treatments (Wouters et al., 2001; Kim et al., 2009).

In the present work, L. monocytogenes, E. coli and S. enterica
were treated with SC-CO2 to evaluate the performance of
different cell viability assays. Data from FCM and PMA-qPCR
were compared with plate counts and fluorescent micro-
scopy, to evaluate which method is the most appropriate to
correctly discriminate viable from dead cells after treatment.

METHODS

Bacterial strains and sample preparation. The three strains used

in this study were purchased from the American Type Culture
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Collection. S. enterica ATCC 14028 and E. coli ATCC 29522 were
grown on solid Luria–Bertani (LB) agar medium (Sigma-Aldrich) at
37 uC for 16 h. L. monocytogenes ATCC 19111 was grown on solid
brain heart infusion (BHI) medium (Becton Dickson) at 37 uC for
16 h. One colony was picked and inoculated into 200 ml of
corresponding broth medium. Bacterial cultures were incubated at
37 uC with constant shaking (200 r.p.m.) to stationary phase (16 h).
Cells were collected by centrifuging at 6000 r.p.m. for 10 min and
were resuspended in an equal volume of PBS (Sigma-Aldrich).

SC-CO2 treatment. The SC-CO2 treatment was performed in a multi-
batch apparatus as described by Mantoan & Spilimbergo (2011).
Briefly, the system consisted of 10 identical 15 ml-capacity reactors
operating in parallel. All reactors were submerged in the same
temperature-controlled water bath to maintain the desired temperature
constant throughout the process. Each reactor was connected to an on–
off valve for independent depressurization and had an internal
magnetic stirrer device to guarantee homogeneous dissolution in the
cell suspension. Aliquots of 10 ml of each bacterial suspension,
prepared as described above, were transferred to the reactors. The
SC-CO2 treatment was carried out at 120 bar and 35 uC, as these
operative conditions were selected in preliminary plate counts
experiments as the mildest ones that induced significant microbial
inactivation. SC-CO2 treatment was interrupted after 5, 15, 30, 45 or
60 min by slowly depressurizing the reactor over approximately 1 min.

Plate counts. Untreated and SC-CO2-treated cells were serially
diluted with 16 PBS (900 ml PBS and 100 ml sample) and were
spread-plated on chromogenic coli/coliform agar (Liofilchem) for E.
coli, on chromatic Salmonella agar (Liofilchem) for S. enterica and on
O.A. Listeria agar (Liofilchem) for L. monocytogenes. The plates were
incubated at 37 uC for 24 h. Three independent experiments were
performed for each species.

Fluorescence microscopy. In total, 108 untreated or SC-CO2-
treated cells were stained with SYBR-I and PI, as described for FCM.
After staining, cells were centrifuged at 10 000 r.p.m. for 10 min and
the pelleted cells were resuspended in 16 PBS and 30 % Moviol.
Fluorescence microscopy images were acquired in bright-field at 490
and 750 nm, with a ZeissAxio Observer Z.1 microscope with Zeiss
ApoTome device using the AxioVision Rel. 4.8.1 software (Zeiss)
according to the manufacturer’s instructions.

Genomic DNA extraction and PMA staining. In total, 107–108

untreated or treated cells were stained with PMA (Biotium), at a final
concentration of 50 mM, and incubated at room temperature in the
dark for 5 min. Stained samples were then exposed to UV light for
5 min and centrifuged for 10 min at 12 000 r.p.m. Cell pellets were
stored at 220 uC. Genomic DNA (gDNA) was extracted from
unstained and PMA-stained samples using a Qiagen DNeasy Blood
and Tissue kit, according to the manufacturer’s instructions. A
modified protocol was used for L. monocytogenes: cells were incubated
at 37 uC for 1 h with the enzymic lysis buffer provided by the
supplier. Cells were then incubated at 56 uC for 30 min and were
treated with RNase A. After column purification, DNA was eluted
with 100 ml 10 mM Tris/HCl, pH 8.0. DNA quality was assessed by
0.7 % agarose gel electrophoresis, run at 70 V for 30 min and
followed by ethidium bromide staining. DNA concentration and
purity were assessed by measuring the absorbance at 260 nm (A260)
and the ratio of the absorbance at 260 and 280 nm (A260/A280) with a
NanoDrop ND-1000 spectrophotometer (Thermo Scientific).

Real-time qPCR. Primer and TaqMan probe set sequences targeting
the hlyA and the invA genes were used for L. monocytogenes and S.
enterica identification, respectively (Suo et al., 2010). The best
candidate primers and probe sets for E. coli identification were
designed in-house on the uidA marker gene with AlleleID7.0 software

(PREMIER Biosoft International). Primer sequences and their
features are detailed in Table 1. The reaction mixture contained 16
iQ Multiplex Powermix (Bio-Rad Laboratories), 200 nM each primer,
200 nM probe and 2 ml template gDNA (or 2 ml distilled H2O for the

no-template control) in a total volume of 25 ml. Each TaqMan PCR
assay was performed in triplicate using a CFX96 Real-time PCR

Detection System (Bio-Rad Laboratories), with the following cycling

programme: 3 min at 95 uC, 15 s at 95 uC and 1 min at 60 uC for 40
cycles. PCR results were analysed using CFX Manager 1.1 software

(Bio-Rad Laboratories). The correlation between PCR Ct values and
gene copy numbers was obtained by means of a standard curve. Cell

number equivalents were then extrapolated by taking into account the
mean bacterial genome size for each target bacterium available at

NCBI (http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_
taxtree.html), assuming each gene is present in a single copy per

genome. The number of gDNA copies for experimental samples was
determined by using the inverse formula of linear equation of each

species (DNA copies510[(Ct2q)m21]). The amplification efficiency for
each primer/probe set was calculated as E510(21/slope)21 (Klein,

2002). Assays were performed in parallel on cell suspensions before and
after PMA staining to quantify total and intact cell number equivalents,

respectively.

Flow cytometry. Untreated and SC-CO2-treated cell suspensions

were diluted to 107–108 cells ml21; then 1 ml was stained with 10 ml
SYBR-I (Merck), 1 : 30 000 final concentration in DSMO, and 10 ml PI

1 mg ml21 (Invitrogen). Peak excitation and emission wavelengths
were at lex5495 nm, lem5525 nm for SYBR-I and lex5536 nm,

lem5617 nm for PI. Samples were incubated at room temperature in

the dark for 15 min. FCM analyses were performed with an Apogee-
A40 flow cytometer (Apogee Flow Systems) equipped with an argon

laser emitting at 488 nm. For each cell crossing the focus point of the
laser, two light-scattering signals (FALS and LALS) and two

fluorescence signals (red and green) were collected. LALS and FALS
were collected on a 256-channel linear scale while fluorescence signals

were collected with logarithmic amplifier gain. The conversion of
FALS intensities to biovolumes was performed as proposed by

Foladori et al. (2008). To exclude electronic noise, thresholds were set
on green or red fluorescence histograms.

RESULTS

Cell viability evaluated by plate counts and
fluorescence microscopy

The efficiency of SC-CO2 treatment was evaluated by
quantifying bacterial cells able to replicate using plate
counts and observing PI uptake by fluorescence microscopy
(Fig. 1). To compare the efficiency of treatment among the
tested species, the bacterial inactivation was expressed as
log10(Ni/N0), as a function of treatment time (Fig. 1a). After
5 min, only S. enterica cells showed more than 1 log
reduction. After 30 min the process dramatically reduced
the number of cultivable cells by more than 5 log in all three
species. An increase of treatment time up to 60 min did not
induce any additional significant inactivation.

Bacterial inactivation on the basis of PI uptake as a
function of treatment time was evaluated by using
fluorescent staining of SYBR-I and PI. Fluorescence
microscopy images of untreated and treated bacterial cells
(Fig. 1b) showed a significant shift from green fluorescence
to yellow/red fluorescence after 30 min treatment: almost
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all L. monocytogenes cells emitted yellow/red fluorescence
whilst E. coli and S. enterica cells emitted green, yellow and
red fluorescence.

Bacterial membrane permeabilization evaluated
by PMA-qPCR

TaqMan qPCR analyses were performed on gDNA samples
extracted from cell suspensions before and after PMA
staining, to quantify both total and intact cell unit
equivalents. qPCR data for each bacterial species revealed
that the fraction of intact cells from all three species was
reduced to less than 50 % cell equivalents. However, such
reduction was reached after different treatment time periods:
30–45 min for L. monocytogenes, 15–30 min for E. coli and 5–
15 min for S. enterica (Table 2). After 5 min, L. mono-
cytogenes intact cells showed a 10 % reduction, whereas E. coli
and S. enterica intact cells showed a 20 and 35 % reduction,
respectively. After the longest treatment time (60 min),
the proportion of permeabilized cells was 82.4 % for L.
monocytogenes, 66.6 % for E. coli and 41.9 % for S. enterica.

Detection of intact and permeabilized cells by
FCM

Upon staining of a mixed population of intact and
permeabilized cells with SYBR-I and PI, FCM distinguishes
among three cellular states: (i) intact cells, emitting only
high FL1 intensity due to the absence of intracellular PI; (ii)
partially permeabilized cells emitting high fluorescent
intensity both in FL1 and in FL3 channels, due to incomplete
FRET between SYBR-I and intracellular PI; and (iii)
permeabilized cells emitting only high FL3 intensity, due
to the simultaneous presence of SYBR-I and PI in the cells
and complete FRET. Analyses were performed on cell
suspensions stained with both SYBR-I and PI for quan-
tification of total and permeabilized cells, respectively. The
observed kinetics of cell membrane permeabilization was
specific for each bacterial species (Table 3). With regard to L.
monocytogenes, the percentage of intact cells was 99.5 % in
the untreated suspension, but this decreased significantly
with treatment time. After 5 min, a small fraction of cells
(1.3 %) were partially permeabilized. After 30 min, the
number of partially permeabilized cells reached its max-
imum, i.e. 17.2 % of total cells, whereas the percentage of

Table 1. Gene targets, primers and probes used for qPCR

Dyes refer to the reporter and quenching fluorophores linked to the TaqMan probe sequences.

Oligo name Gene target Sequence (5§–3§) Tm (6C)* Dye (5§–3§) Reference

EC-uidAF uidA CTCTGCCGTTTCCAAATC This work

EC-uidAR GAAGCAACGCGTAAACTC

EC-uidAP AATGTAATGTTCTGCGACGCTCAC

SE-invAF invA GTTGAGGATGTTATTCGCAAAGG 70.1 HEX/BHQ1 Suo et al. (2010)

SE-invAR GGAGGCTTCCGGGTCAAG

SE-invAP CCGTCAGACCTCTGGCAGTACCTTCCTC 69.0 FAM/BHQ1

LM-hlyAF hlyA ACTGAAGCAAAGGATGCATCTG Suo et al. (2010)

LM-hlyAR TTTTCGATTGGCGTCTTAGGA

LM-hlyAP CACCACCAGCATCTCCGCCTGC 70.0 TR/BHQ2

*Tm, Melting temperature.
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Fig. 1. Bacterial inactivation following SC-CO2 treatment eval-
uated by (a) plate counts expressed as logNi/N0 and (b)
fluorescence microscopy after staining by SYBR-I and PI.

Quantitative PCR and flow cytometry cellular viability methods

http://mic.sgmjournals.org 1059



intact cells decreased but remained high (71.2 %). After
45 min, the percentages of both intact and partially
permeabilized cells decreased significantly and almost all
cells (96.4 %) were fully permeabilized.

The untreated E. coli and S. enterica bacterial suspensions
contained 99.8 and 98.6 % of intact cells, respectively. As for
L. monocytogenes, after 5 min of treatment a small percentage
of cells (3.0 and 4.8 %, respectively) became partially
permeabilized, while a negligible amount of dead cells was
detected. After 15 min, E. coli subpopulations maintained
the same distribution, with 96.2 % of intact cells and 3.6 % of
partially permeabilized cells. By contrast, almost all S.
enterica cells were split between intact (59.9 %) and partially
permeabilized (39.6 %). After 30 min, a similar behaviour
was observed for E. coli and S. enterica populations: a large
percentage of cells were partially permeabilized (95.3 and
93.7 %, respectively) but almost no totally permeabilized
cells were detected. Longer SC-CO2 treatment times did not
lead to significant changes in population distribution, as the
vast majority of cells (99.2 %) from both species remained in
the partially permeabilized state.

Investigation of subpopulations of partially
permeabilized cells by FCM

The kinetics of cell inactivation was further investigated by
FCM, examining the variation over time in SYBR-I and PI

uptake in SC-CO2-treated samples. As shown in Fig. 2, L.
monocytogenes, E. coli and S. enterica differed in their
SYBR-I uptake kinetics, as shown by the green fluorescence
intensity (FL1 channel) at each treatment time point. For
example, the intensity measured in the FL1 median channel
for L. monocytogenes was constant for treatment-time
extensions from 5 to 30 min (Fig. 2a). The graph of FL1
intensity showed limited variations in the FL1 median
channel, which ranged from 402 to 412 units based on the
arbitrary 1024-channel scale. This result indicates that the
uptake of SYBR-I in L. monocytogenes is complete even in
the untreated cells. For treatment times higher than
45 min, the FL1 median channel decreased to 202–220
units, due to the large percentage of permeabilized cells, in
which FRET (i.e. quenching of FL1 fluorescence by PI)
occurred.

Conversely, the FL1 intensity of intact cells in untreated
samples of E. coli was weak and close to the threshold of
FL1-positive signals (Fig. 2b) due to partial staining of cells
by SYBR-I. By increasing SC-CO2 treatment time, both E.
coli and S. enterica populations showed a progressive and
significant increase of FL1 intensity, corresponding to a
shift of the FL1 histogram peak from left to right and to an
increase in peak intensity far above the background
threshold of the instrument (Fig. 2b,c). E. coli and S.
enterica populations reached their maximum value of FL1
median channel after 45 and 15 min, respectively. This

Table 2. Target gene copy numbers determined by qPCR following SC-CO2 treatment

Mean (±SD) target-gene copy number were determined in triplicate for each species and each treatment time. The percentages of intact cells

reduction were calculated as the ratio of treated PMA-stained cells relative to untreated. NA, Not applicable.

Species and

fluorophores

Treatment time

(min)

Target gene copy numbers

”PMA (total cell

equivalents)

+PMA (intact cell equivalents) % Intact cells reduction

L. monocytogenes

hlyA (Texas Red) 0 5.246107±0.86 7.286107±0.30 NA

5 4.916107±0.67 6.816107±0.62 6.43±6.41

15 4.896107±0.45 4.886107±0.10 32.92±4.80

30 4.926107±0.89 4.916107±0.71 32.55±7.60

45 9.466107±2.06 0.696107±0.57 90.39±5.63

60 9.376107±1.02 1.276107±0.23 82.44±6.06

E. coli

uidA (HEX) 0 1.896108±0.73 2.216108±0.19 NA

5 1.456108±0.37 1.736108±0.25 22.04±10.85

15 1.336108±0.52 1.786108±0.16 19.57±12.00

30 0.806108±0.48 0.476108±0.17 78.54±10.90

45 0.876108±0.09 0.806108±0.06 63.55±13.10

60 0.906108±0.25 0.746108±0.20 66.55±11.20

S. enterica

invA (FAM) 0 3.786108±0.18 5.626108±4.12 NA

5 3.446108±1.20 3.476108±0.49 34.57±10.51

15 2.576108±0.13 2.516108±0.00 55.36±13.24

30 3.006108±0.12 3.116108±0.39 44.66±11.45

45 3.776108±0.13 3.736108±0.58 33.66±13.02

60 3.656108±1.10 3.276108±0.43 41.85±14.07
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progressive increase in FL1 emission in E. coli and S.
enterica is probably due to the gradual permeabilization of
cells during SC-CO2 treatment, which facilitated the uptake
of SYBR-I.

As shown in Fig. 3, for the E. coli population, the presence of
a subpopulation with high FL1 intensity was negligible in
untreated samples, whereas it was detectable (15.2 %) after
5 min of treatment and dominant (86 %) after 30 min.
Among the 15.2 % of E. coli cells with higher FL1 intensity
after 5 min, 12.0 % represented intact cells whilst 3.2 % were
partially permeabilized cells. After 30 min, the progressive
staining by PI resulted in 95.3 % of partially permeabilized
cells, with a fraction of 86 % with high FL1 intensity.

With regard to the S. enterica population, the FL1 intensity
increased significantly in a group of cells after 15 min of
treatment. This subpopulation moved to the right on the
FL1 graph, being characterized by a higher SYBR-I uptake
(Fig. 4). Only cells with initial high FL1 intensity moved
towards the region of partially permeabilized cells. These
results suggest that the treatment led first to the progressive
introduction of SYBR-I with the complete staining of cells
and the emission of high FL1 intensity, and, later, when the
membrane became more permeable, to the progressive and
partial staining of cells by PI. The co-occurrence of green
and red fluorescence is probably a consequence of
incomplete FRET occurring between SYBR-I and PI, due
to a lower PI uptake.

Interestingly, while the group of cells with low SYBR-I
concentration exhibited a unimodal distribution, the group
of cells with high SYBR-I concentration was characterized

by a noticeable bimodal distribution (Fig. 4) corresponding
to two subpopulations with different amounts of DNA.
The ratio of the FL1 intensity (high DNA peak/low DNA
peak ratio) was about 1.5. Additionally, the FALS ratio of
the two subpopulations was 1.4, indicating a larger brighter
fluorescent peak, therefore confirming that the subpopula-
tion of bacteria with a larger amount of DNA also had a
larger biovolume. FL1 intensity and FALS ratios indicated
that these cells are dividing actively.

Morphological changes evaluated by LALS and
FALS FCM signals

The light-scattering signals collected by the flow cytometer,
i.e. FALS and LALS, are related to physical properties of the
bacteria. In particular, FALS depends on bacterial size (and
cellular biovolume) while LALS is related to the complexity
of the cellular surface, cell density and granularity. The FALS
and LALS signals of E. coli and S. enterica populations did
not change significantly over treatment time (data not
shown). Conversely, L. monocytogenes cells showed changes
in both light-scattering signals at different treatment times.
In particular, although the scattering signals of intact and
permeabilized Listeria cells were similar, as demonstrated
by the overlapping distributions in Fig. 5, the partially
permeabilized cells were characterized by a higher FALS
intensity (larger size) and slightly higher LALS intensity.
With reference to an arbitrary scale of 1024 channels, the
peaks of the FALS distribution of intact and permeabilized
cells of L. monocytogenes were at channels 187 and 133,
respectively, whereas the peak of partially permeabilized cells

Table 3. Membrane permeabilization determined by FCM following SC-CO2 treatment

Bacterial species Treatment time (min) Intact cells* (%) Partially permeabilized cellsD (%) Permeabilized cellsd (%)

L. monocytogenes 0 99.5 0.2 0.2

5 97.4 1.3 1.3

15 96.2 1.7 2.0

30 71.2 17.2 11.0

45 0.5 3.1 96.4

60 0.5 7.3 92.2

E. coli 0 99.8 0.2 0.1

5 96.8 3.0 0.2

15 96.2 3.6 0.2

30 4.5 95.3 0.2

45 7.5 92.1 0.2

60 0.3 99.2 0.2

S. enterica 0 98.6 1.0 0.3

5 94.9 4.8 0.2

15 59.9 39.6 0.3

30 5.9 93.7 0.3

45 11.5 88.0 0.3

60 0.3 99.2 0.5

*Intact cells emitting only high FL1 intensity.

DPartially permeabilized cells emitting high fluorescent intensity in both FL1 and FL3 channels.

dPermeabilized cells emitting only high FL3 intensity.
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was at channel 398. Conversion of FALS intensities

produced a biovolume ratio of about 1.5 between partially

permeabilized and intact cells. This ratio, together with the

increase in LALS intensity, indicates that bacteria tempor-

arily underwent a pronounced increase in biovolume.

Correlation between plate counts, qPCR and FCM
methods in evaluating cell viability

We compared the concentration of viable cells obtained by
plate counts with that of intact cells determined by PMA-
qPCR and FCM during SC-CO2 treatment. The three
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methods produced similar results during the initial phase
(15 min) (Fig. 6). After 30 min, a dramatic decrease (.5
log) in the number of viable cells was observed with plate
counts, whereas FCM and, in particular, qPCR showed a
much more modest reduction of intact cells (about 0.9 and
0.5 log, respectively), indicating that only a small fraction
of intact cells (as determined by FCM and qPCR) are
effectively able to replicate in vitro (as determined by plate
counts) after treatment.

To determine if the three methods produced consistent and
comparable results, Pearson correlation coefficients (r)
were calculated (Fig. 7). The highest correlation was
between qPCR and FCM for L. monocytogenes and E. coli

(r50.91 and 0.92, respectively), and between qPCR and
plate counts for S. enterica (r50.92). The poorest
correlations were between FCM and plate counts for both
E. coli and S. enterica (r50.60 and 0.62, respectively), and
between qPCR and plate counts for L. monocytogenes
(r50.63).

DISCUSSION

In this study we compared different viability assays to
monitor the efficiency of SC-CO2 treatment on L.
monocytogenes, E. coli and S. enterica. Plate counts showed
that the treatment inactivated viable cells by .5 log.
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FL3 dot plots were obtained by measuring red versus green fluorescence in (a) untreated, (b) 5 min-treated and (c) 30 min-
treated E. coli cell suspensions. Cell subpopulations characterized by low and high SYBR-I uptake are bordered by dark and
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High DNA

Low DNA

Green fluorescence intensity (FL1)

High DNA

Low DNA

Relative frequency

R
e
la

ti
ve

 f
re

q
u
e
n
c
y

R
e
d

 f
lu

o
re

s
c
e
n
c
e
 i
n
te

n
s
it
y 

(F
L
3

)

Fig. 4. Cell subpopulations identified by FCM
in S. enterica cell suspensions after 15 min of
SC-CO2 treatment. Cells with low and high
SYBR-I uptake are bordered by light and dark
green boxes, respectively, whereas cells with
low and high PI uptake are bordered by yellow
and red boxes, respectively. The single channel
distributions are shown next to their corres-
ponding fluorescence channel. Arrows indic-
ate cell subpopulations with low and high DNA
content.

Quantitative PCR and flow cytometry cellular viability methods

http://mic.sgmjournals.org 1063



Fluorescence microscopy globally corroborated plate count
data, with a marked bacterial permeabilization process
revealed by PI uptake after 30 min treatment. Under
environmental stress, many bacteria are known to enter in
a so-called VBNC state, becoming even more resistant to
stress (Oliver, 2010). Plate counts therefore probably
overestimate bacterial inactivation, as VNBC cells escape
detection by cultural methods. We applied two viability
methods based on membrane integrity (PMA-qPCR and
FCM) to overcome the limits of plate counts and to
identify the proportion of VNBC cells in the populations.
We showed that qPCR and FCM produced strongly
correlated results for two out of three bacterial species
tested, which was expected as both methods quantify
cellular subpopulations on the basis of membrane
permeability. Our results also confirmed that plate counts
drastically underestimate the number of intact cells, being
unable to detect those in a VBNC state.

According to Nocker et al. (2007b), PMA-qPCR is an
adequate tool to monitor the effect of a given treatment
affecting bacterial membrane integrity. PMA-qPCR pro-
duced inconsistent data to evaluate the efficiency of the
treatment on S. enterica, while it correctly detected the
effect of SC-CO2 on L. monocytogenes and E. coli,
supporting previously published data (Garcia-Gonzalez
et al., 2010). qPCR is a highly sensitive method able to
detect fewer than 10 genome equivalents per reaction and
is therefore the technique of choice for quantification of
micro-organisms at low concentrations. A main disadvant-
age of PMA-qPCR applied to bacterial viability studies lies
in the fact that variations in genomic DNA extraction and
PMA-staining efficiency may cause biases in the deter-
mination of the number of intact cells.

Conversely, FCM coupled with SYBR-I and PI staining
provided consistent and detailed information on the cell
permeabilization process. This technique distinguished
cells in three different states: intact, partially permeabilized
and permeabilized. FCM analyses highlighted a diverse
effect of the treatment on L. monocytogenes compared with
E. coli and S. enterica. After 30 min treatment, 71.2 % of L.
monocytogenes cells were intact, whereas 95.3 % of E. coli
and 93.7 % of S. enterica cells were partially permeabilized.
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By contrast, the fraction of cultivable cells was reduced by
more than 5 log for all three species.

FCM estimated the variation of FL1 intensity during
treatment in E. coli and S. enterica, indicating a gradual
permeabilization of cells and facilitating the uptake of
SYBR-I, as suggested by Liao et al. (2010). The emergence
of subpopulations of cells with double the amount of DNA
appeared only when SYBR-I completely entered the cells, in
agreement with data reported by Berney et al. (2007) with
SYTO-9. The double amount of DNA was detected both in
partially permeabilized cells and in almost totally permea-
bilized cells, as shown by the overlapping green and red
fluorescence peaks in the FL1 and FL3 channels, respect-
ively. The ability of the fluorescent dyes to enter the cells
depends on the level of outer membrane permeabilization
for SYBR-I and on the level of both outer and cytoplasmic
membrane permeabilization for PI. The double amount of
DNA was not observed in the intact and permeabilized cells
from the untreated sample, presumably due to limitations
in the diffusion of SYBR-I across the membranes. In
addition, a shift of both FALS and LALS signals in partially
permeabilized L. monocytogenes cells suggested a temporary
increase of biovolume and surface alteration during
permeabilization, while in E. coli and S. enterica the
process did not affect biovolume or cellular surface.

The FCM assay showed the best performance as a bacterial
viability test method, evaluated here by monitoring
membrane permeabilization following SC-CO2 treatment.
FCM allowed us not only to quantify the efficiency of
treatment rapidly and with high sensitivity, but also to
discriminate the subpopulations of partially permeabilized
cells from totally permeabilized cells and identify variations
in biovolume and alterations of the cellular surface. FCM
compared favourably with other methods and should be

considered as an accurate analytical tool for applications in
which monitoring bacterial viability status is of import-
ance, such as microbiological risk assessment in the food
chain or in the environment.
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Abstract:   26 

Supercritical CO2 (SC-CO2) is one of the most promising non-thermal “mild processing” technique 27 

to pasteurize fresh food products. The effect of SC-CO2 treatment on microorganisms present on 28 

food products has been mainly evaluated by conventional cultivation-based methods, which may 29 

lead to large underestimation because under stress conditions, a number of pathogens enter in a so-30 

called Viable But Not Cultivable (VBNC) state, thus escaping detection by cultivation methods. 31 

Flow cytometry (FCM) coupled with SYBR-Green I and Propidium Iodide allowed distinguishing 32 

E. coli cells from fresh carrots debris, to evaluate the reduction of E. coli total cells and to quantify 33 

viable and dead bacteria based on their membrane integrity after SC-CO2 treatment. FCM results 34 

were compared with conventional cultivation methods. SC-CO2 treatments performed at 120 bar 35 

and 22°C or 35°C disrupted 43% and 53% of bacterial cells, respectively, and produced a large 36 

percentage of permeabilized and partially-permeabilized cells. While treatments of 10 min at 22°C 37 

and 7 min at 35°C were enough to inhibit the capability of all E. coli cells to replicate with an 38 

inactivation of 8 Log, FCM analysis showed that the inactivation of intact cells was only 2-2.5 Log, 39 

indicating that the cells maintained the membrane integrity and entered in a VBNC state. The 40 

results confirmed the accuracy of FCM in monitoring the efficiency of SC-CO2 treatment on food 41 

products. Further, this powerful method could significantly assist to improve management of food-42 

associated health risks increasing the knowledge about bacterial cells in a VBNC state. 43 
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 49 

1 Introduction 50 

Carrot (Daucus carota L.) is among the top-ten most economically important vegetable crops in the 51 

world, since is a good source of natural antioxidants such as carotenoids and phenolic compounds 52 

and is consumed all year around (Simon et al., 2008) as fresh but also as ready-to-eat (RTE) 53 

product. During the last two decades, consumers demand for RTE fruits and vegetables has 54 

increased considerably, providing a constant and diverse supply of fresh products, which is not 55 

always possible, especially when off-season products have to be dealt. Preservation and safety of 56 

RTE products has become one of the main issue for the food industry since fresh vegetables and 57 

fruits are vehicle for international outbreak of foodborne diseases (EFSA, 2013), considering that 58 

traditional techniques -as thermal pasteurization, addition of preservatives or ionizing radiations, 59 

etc.- present some drawbacks in their exploitations in food applications. As a consequence, the 60 

interest in innovative “minimal processing” techniques has increased considerably in the last years. 61 

One of the most promising non-thermal preservation method is based on the use of Supercritical 62 

Carbon Dioxide (SC-CO2), that works at relatively low temperature (30-40°C) and moderate 63 

pressure (80-120 bar), thus having a much lower impact on nutritional, organoleptic and physico-64 

chemical properties of food products than heat-based methods (Garcia-Gonzalez et al., 2007). 65 

Recently published data demonstrated that this technology can effectively inactivate 66 

microorganisms both in culture media (Hong and Pyun, 1999; Erkmen, 2000) and liquid foods 67 

(Ferrentino et al., 2009; Liao et al., 2010; Spilimbergo and Ciola, 2010) but also in fresh cut fruits 68 

(Valverde et al., 2010; Ferrentino et al., 2012) and vegetables (Zhong et al., 2008, Spilimbergo et 69 

al., 2012). The effect of SC-CO2 treatment on microorganisms spiked on food products has been 70 

mainly evaluated by standard conventional cultivation-based methods (Jung et al., 2009; Bae et al., 71 

2011). Although cultivation methods are applied routinely, they may lead to strong 72 

underestimations of the actual concentration of microorganisms in the analyzed samples (Keer and 73 
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Birch, 2003; Oliver, 2005). Some bacterial species, when undergone to environmental stress 74 

conditions (e.g. nutrient limitation, pressure, temperature), may become no more cultivable 75 

although remaining alive, becoming even more resistant to stress (Bogosian & Bourneuf, 2001; 76 

Oliver, 2010), therefore cultivation methods may lead to an overestimation of the pasteurization 77 

efficiency after food treatments.   78 

According to the viability concept proposed by Nebe-von-Caron et al. (2000) microbial cells can be 79 

classified based on their physiological status: (i) culturable cells; (ii) viable-but-non-culturable cells 80 

(VBNC); (iii) dead cells. Many viability indicators using fluorescent molecules have been applied 81 

(Breeuwer  and Abee, 2000) to identify and quantify viable bacterial cells (considered as the sum of 82 

culturable and VBNC cells) on the basis of metabolic activity or membrane integrity (Nebe-von-83 

Caron et al., 2000; Nocker et al., 2012). Since membrane integrity is the minor restrictive 84 

physiological parameter to define a viable cells compared with either capability to grow or 85 

metabolic cellular activity, we called viable bacterial cells those with intact membrane, whilst the 86 

dead cells have a permeabilized membrane.  87 

Flow cytometry (FCM) is a multi-parametric and single-cell analysis method for high-throughput 88 

and real time quantification of multiple cellular parameters, such as physiological status, cell size or 89 

surface granularity. FCM, coupled with fluorescent dyes, has been used to follow the microbial 90 

inactivation during new pasteurization treatments such as pulsed electric fields applied to 91 

Lactobacillus strains (Wouters et al., 2001), high-intensity ultrasound treatment on E. coli and 92 

Lactobacillus rhamnosus (Ananta et al., 2005), and SC-CO2 treatment on Salmonella enterica, E. 93 

coli and Listeria monocytogenes (Kim et al., 2009; Tamburini et al., 2013, Ferrentino et al, 2013). 94 

In FCM, two light scattering signals and some fluorescent signals can be collected simultaneously 95 

from each bacterial cell. The Forward Angle Light Scatter (FALS) is related to bacterial size 96 

(Foladori et al., 2008), whilst the Large Angle Light Scatter (LALS) measures cell density or 97 

granularity (Müller and Nebe-von-Caron, 2010). SYBR Green I (SYBR-I) and Propidium Iodide 98 
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(PI) are two fluorescent dyes used in FCM analysis to distinguish viable cells from dead ones. 99 

SYBR-I is used as total cell marker, due to its ability to cross the cell membrane and to bind to 100 

DNA, whilst PI is used as dead cell marker, since it penetrates only cells with permeabilized 101 

membrane (Ziglio et al., 2002). In permeabilized cells, the simultaneous presence of SYBR-I and PI 102 

activates Fluorescence Resonance Energy Transfer, due to the total absorption of the fluorescent 103 

emission spectrum of SYBR-I by PI.  104 

In this study, FCM was applied for the first time to evaluate the efficiency of SC-CO2 treatment on 105 

E. coli cells spiked on fresh cut carrots. Agricultural irrigation with polluted surface water can be 106 

one of the sources of enteropathogenic contamination of vegetables and fruits, such as the Gram-107 

negative E. coli and Salmonella (Velusamy et al., 2006). E. coli is commonly used as an indicator 108 

of fecal contamination in water samples and in food products (Raj and Liston, 1960; Edberg et al., 109 

2000; Montville and Matthews, 2008). The FCM quantification of the bacterial cells before and 110 

after treatment permitted to evaluate the number of cells that was disrupted by the treatment and to 111 

distinguish the remaining E. coli cells on the basis of their physiological status, including 112 

permeabilized (dead) cells, VBNC cells and culturable cells, by combining cultivation methods 113 

(plate counts) and FCM analysis. The aim of the present work was to evaluate the efficacy of the 114 

minimal processing SC-CO2 technique in the reduction of E. coli contamination, overcoming the 115 

limitations of cultivation methods that may lead to underestimation of microbiological risk 116 

assessment. 117 

 118 

2 Materials and methods 119 

 120 

2.1 Bacterial strain and growth conditions 121 

Escherichia coli ATCC 29522 was grown on solid Luria-Bertani (LB) agar medium (Sigma-Aldrich 122 

Co., Milan, Italy) at 37°C for 16 h. One colony was picked and inoculated into 10 mL of LB 123 
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medium. Bacterial culture was incubated at 37°C with constant shaking (200 rpm) to stationary 124 

phase (16 hours). Cells were collected by centrifugation at 6000 rpm for 10 min and re-suspended 125 

in 5 mL of phosphate buffered saline solution (PBS, Sigma-Aldrich Co., Milan, Italy).  126 

 127 

2.2 Fresh  carrots contamination 128 

Carrots (Daucus carota) were purchased from a local market. The food was washed with water, cut 129 

into 2 grams pieces and spiked with 50 µL of E. coli ATCC 25922 with a concentration of 10
8
 130 

CFU/mL. The samples were left 1 h in a sterile chamber at room temperature to let the microbial 131 

suspension absorb on the carrot and then were loaded in a SC-CO2 multi – batch apparatus. 132 

 133 

2.3 SC-CO2 treatment 134 

SC-CO2 treatment was performed in a multi-batch apparatus as described by Mantoan and 135 

Spilimbergo (2011). Briefly, the system consisted of 10 identical 15 mL-capacity reactors operating 136 

in parallel. All reactors were immersed in the same temperature-controlled water bath to maintain 137 

the desired temperature constant throughout the process and were connected to an on-off valve for 138 

independent depressurization at different treatment times. The solid samples spiked with E. coli 139 

were loaded into the reactors and pressurized with CO2. The operating parameters (temperature and 140 

pressure) were continuously recorded by a real time acquisition data system (NATIONAL 141 

INSTRUMENTS, field point FP-1000 RS 232/RS 485) and monitored by a specific software 142 

(LabVIEW 
TM

 5.0). The process conditions tested were: 80-120 bar, 22-35°C and 5-30 min, 143 

followed by a slow depressurization of the reactors over approximately 1 min. The conditions were 144 

chosen based on previous data (Spilimbergo et al., 2012). 145 

 146 

2.4 Sample homogenization 147 
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Untreated and treated solid samples were collected and suspended in 4 mL of PBS in a sterile 148 

plastic bag (Reinforced Round Bag- 400, International P.B.I., Milan, Italy) and homogenized in a 149 

Stomacher 400 (International P.B.I., Milan, Italy) at 230 rpm for 2 min. The resulting homogenate 150 

was taken from the sterile bag and used for plate counts and FCM analyses. 151 

 152 

2.4 Plate counts  153 

Untreated and treated homogenized samples were diluted 1:10 with PBS and spread-plated on 154 

chromogenic coli/coliform agar for E. coli detection (Liofilchem, Teramo, Italy). The plates were 155 

incubated at 37°C for 24 h. Three independent experiments were performed for each SC-CO2 156 

treatment. Bacterial inactivation was calculated as Log10 (N/N0), where N were CFUs/g present in 157 

the treated sample and N0 were CFUs/g in the untreated sample.  The detection limit for plate count 158 

analysis was 30 CFUs/g.  159 

 160 

2.5 Flow cytometry 161 

Untreated and treated homogenized samples were diluted in PBS to 10
7
-10

8 
cells/mL. Then 1 mL 162 

was stained with 10 µL SYBR-I (1:30000 final concentration in DMSO; Merck, Darmstadt, 163 

Germany), and 10 µL PI (1 mg/mL; Invitrogen, Carlsbad, CA, USA). Peak excitation and emission 164 

wavelengths were λex=495 nm and λem=525 nm for SYBR-I and λex=536 nm and λem=617 nm for 165 

PI. Samples were incubated at room temperature in the dark for 15 min. FCM analyses were 166 

performed with an Apogee-A40 flow cytometer (Apogee Flow Systems, Hertfordshire, UK) 167 

equipped with an Argon laser emitting at 488 nm. For each cell crossing the focus point of the laser, 168 

two light scattering signals (FALS and LALS) and two fluorescence signals (green, FL1 and red, 169 

FL3) were collected. LALS and FALS were collected on a 256-channel linear scale while 170 

fluorescence signals were collected with logarithmic amplifier gain. The estimation of cellular 171 

biovolume from FALS intensities was performed as proposed by Foladori et al. (2008). To exclude 172 
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electronic noise thresholds were set on green or red fluorescence histograms. Fluorescent 173 

polystyrene spheres were used to verify steady-state optical properties of the instrument during 174 

operation. In this work, the detection limit in the FCM analysis was approximately 1 cell/μL. 175 

 176 

3 Results and Discussion 177 

 178 

3.1 SC-CO2 inhibit the capability of E. coli cells to grow  179 

The inactivation by SC-CO2 treatment of culturable  E. coli cells spiked on fresh cut carrots was 180 

evaluated quantifying bacterial cells able to replicate by plate count method. A set of experiments at 181 

22°C (Fig. 1A) and at 35°C (Fig. 1B) and at different pressures were performed to evaluate the best 182 

conditions for bacterial inactivation expressed as Log10(N/N0) as a function of the treatment time. 183 

At 22°C, inactivation to undetectable levels (about 8 Log reduction) was obtained in 30 min at 60-184 

80 bar or in 10 min increasing the pressure to 100-120 bar. At 35°C, 8 Log reduction was reached in 185 

10 min at 100-120 bar, 15 min at 80 bar and 20 min at 60 bar. On the basis of the results obtained 186 

from plate counts, a treatment time of 10 min at 120 bar appeared sufficient to inactivate all E. coli 187 

cells spiked on fresh cut carrots both at 22°C and 35°C. Spilimbergo et al. (2012) demonstrated that 188 

these SC-CO2 conditions were sufficient to inactivate more than 2.5 Log of either mesophilic 189 

microorganisms or acid lactic bacteria and also 5 Log of yeast, molds and total coliforms that live 190 

on carrots. Bacterial inactivation on solid samples is known to require a shorter treatment time 191 

respect to liquid samples (Valverede et al., 2010) 192 

 193 

 194 

3.2  FCM profiling permits to distinguish E. coli cells from natural flora of carrots  195 
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Homogenized suspensions of un-spiked and E. coli-spiked fresh cut carrots were stained with 196 

SYBR-I and PI and analyzed with FCM to detect the profiling of natural microbial flora and E. coli 197 

cells on the fresh carrots (Figure 2). The FCM profiling of natural microbial flora was used as a 198 

control to investigate in details the FCM profiles obtained for samples of carrots with spiked E. coli. 199 

The following scattering and fluorescent signals obtained from FCM were analyzed: (i) FALS 200 

signal related to bacterial size and cellular biovolume; (ii) LALS signal related to the complexity of 201 

cells; (iii) green fluorescence signals related to intact cells and (iv) red fluorescence related to 202 

permeabilized cells. Referring to an arbitrary scale divided in 256 channels, the FALS histogram of 203 

natural flora of carrots was divided in two parts: the first one representing 90% of bacterial cells 204 

with small size with a mean channel at 24; the second one representing 10% of cells with large size 205 

at mean channel 102 (orange line). The weighted mean channel of the two natural microbial 206 

population was 32. E. coli cells showed a clear unimodal histogram at mean channel 56 (violet line) 207 

(Figure 2A) and the biovolume ratio between E. coli cells and natural microbial cells was 1.7, 208 

indicating that E. coli cells are longer than the cells belonging to natural flora, as expected. The 209 

LALS signals of natural flora of carrots and E. coli did not shown a significant difference in the 210 

cellular complexity. Due to the significant difference in FALS signals the cytogram FALS vs. 211 

LALS obtained from un-spiked and E. coli spiked fresh carrots permitted to distinguish the 212 

population of natural microflora from the population of E. coli cells (Figure 2B). Fluorescent 213 

signals acquired for each bacterial cell were plotted in a two-dimensional dot plot (cytogram), 214 

where the horizontal axis corresponding to the green fluorescence intensity (FL1) emitted by 215 

SYBR-I, and the vertical axis indicating the red fluorescence intensity (FL3) emitted by PI. Upon 216 

staining of a mix population of intact and permeabilized cells with these two fluorophores, up to 217 

four regions could be distinguished in the two-dimensional dot plot. The two regions on the right 218 

included a region of intact cells, emitting only high FL1 intensity due to the absence of intracellular 219 

PI, and a region of partially-permeabilized cells emitting high fluorescent intensity both in FL1 and 220 
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FL3 channels, due to incomplete FRET between SYBR-I and intracellular PI. The two regions on 221 

the left included one with permeabilized cells emitting only high FL3 intensity, due to the 222 

simultaneous presence of SYBR-I and PI in the cells and complete FRET, and one due to noise 223 

caused by non-biotic particles emitting FL1 and FL3 signals below the instrument background 224 

threshold. Furthermore, the cytogram FL1 vs. FL3 signals permitted to distinguish debris of carrots 225 

from intact and permeabilized microbial cells in natural flora and in E. coli cells spiked on carrots. 226 

In particular, the green and red fluorescent population on the bisector line of the cytogram represent 227 

the debris in the sample, which resulted auto-fluorescent. The natural microbial flora was made up 228 

of cells in different physiological states (orange populations in Figure 2C): 33% of cells were 229 

permeabilized whilst 66% of cells were intact, whereas most of the E. coli cells spiked on carrots 230 

(99.2%) were intact. The intact natural flora cells quantified by FCM were 1.9∙10
7 

cells/g, whilst the 231 

intact E. coli cells spiked on carrots were 2∙10
8 

cells/g. Due to the low concentration of natural 232 

microbial flora compared to E. coli concentration and to the ability of FCM analysis to exclude a 233 

selected population such as natural flora, the following results about SC-CO2 treatment were 234 

referred only to the E. coli population.  235 

 236 

3.3 SC-CO2 induces membrane permeabilization of E. coli  237 

FCM analyses of untreated and treated E. coli ce lls produced different cytograms as shown in 238 

Figure 3, highlighting the process of membrane permeabilization induced by SC-CO2 treatment at 239 

22°C and 35°C. The percentage of intact, partially and permeabilized cells were calculated respect 240 

to the total number of cells per µL detected by the instrument. The percentage of intact cells was 241 

99.2% in the untreated sample, while it decreased significantly with the treatment time. After even 242 

few minutes of SC-CO2 treatment, a large part of E. coli cells emitted red fluorescence indicating 243 

the uptake of PI and the partial or total permeabilization of cells. Increasing the treatment time, the 244 
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temperature of 35°C appeared to be slightly more effective in cell permeabilization than 22°C. After 245 

15 min of treatment at 35°C, 99.4% of E. coli cells moved to the region of partially-permeabilized 246 

or permeabilized cells, while at 22°C this percentage was lower (98.5%).  247 

Figure 4 shows the scattering signals obtained by FCM for the E. coli in the untreated sample and 248 

SC-CO2-treated sample at 35°C 120 bar and 15 min. The FALS signal (Fig. 4A) of treated E. coli 249 

cells was characterized by a shift of the peak respect to untreated cells. Referring to an arbitrary 250 

scale divided in 256 channels, the FALS peak of untreated cells was at mean channel 137 whilst the 251 

peak of treated cells at 94. The biovolume ratio of about 1.45 indicates that E. coli cells decreased 252 

their biovolume after treatment. LALS signals of untreated and treated E. coli cells did not show a 253 

significant difference (vertical axis in Figure 4B), indicating a negligible influence of the treatment 254 

on the complexity and internal structure of cells. 255 

 256 

3.4 SC-CO2 treatment induces disruption of a fraction of E. coli cells 257 

 258 

The concentration of total E. coli cells obtained by FCM in the treated samples for each treatment 259 

time, at 22°C and 35°C, was compared with the concentration of total E. coli cells quantified in the 260 

untreated sample. After 5 min of SC-CO2 treatment, the total cell concentration strongly decreased 261 

by 43% and 53% at 22°C and 35°C, respectively. The fraction of disrupted cells was compared to 262 

the intact, partially-permeabilized and permeabilized cell populations for each treatment time. The 263 

respective percentages are plotted in Figure 5. SC-CO2 at 35°C (Fig. 5B) resulted more aggressive 264 

against E. coli cells than the treatment at 22°C (Fig. 5A). A large disruption of bacterial cells 265 

occurred even in the first 5 min of treatment, whilst the increase of the exposure to the treatment 266 

carried out a further reduction of the percentage of intact cells.  267 

 268 

 269 
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3.5 A fraction of E. coli cells enters in a VBNC state after SC-CO2 treatment  270 

The culturable E. coli cells spiked on carrots were compared to the total and intact cells (considered 271 

as viable) obtained by FCM (Fig. 6). Culturable cells obtained by plate counts were expressed as 272 

CFUs per gram. About 2∙10
8
 E. coli cells per gram were inoculated on fresh cut carrots and most of 273 

them were intact (99.2%) and culturable (85.5%). After 5 min of treatment at 22°C, 120 bar (Fig. 274 

6A) only 4.6∙10
3 

of E. coli cells were culturable, but a higher concentration 4∙10
6
 cells remained 275 

intact, demonstrating that a fraction of E. coli cells, in the magnitude of 10
3
 cells/g entered in 276 

VBNC state. After 7 min at 35°C and 120 bar of treatment all E. coli cells were no more culturable 277 

(Fig. 6B). At the end of treatment, both at 22°C and 35°C, a fraction of E. coli cells (10
5
 cells/g) 278 

maintained membrane integrity. We observed a typical VBNC cellular response mediated by SC-279 

CO2 treatment and leading to total inhibition of E. coli growth. FCM analyses indicated that the 280 

number of total cells decreased by less than a half and that 10
5 

E. coli cells per gram remained 281 

viable, as attested by the membrane integrity. Spilimbergo et al. (2012) demonstrated that natural 282 

microflora of vegetables, including mesophilic microorganisms and acid lactic bacteria, showed 283 

marked regrowth ability following a 1-2 weeks storage period upon SC-CO2 treatment. 284 

 285 

4. Conclusions 286 

 287 

A number of antibacterial treatments, including  milk heat treatments (Gunasekera et al., 2002) and 288 

wastewater chlorination (Oliver et al., 2005), have been validated directly on food or environmental 289 

samples and immediately upon treatment by using plate count as a reference method. Such 290 

approach do not consider eventual regrowth phenomena of natural microflora or pathogens. The 291 

VBNC state is often interpreted as a bacterial survival strategy to resist to an adverse environment.  292 

The low metabolic activity characterizes the bacteria in the VBNC state and it could be a putative 293 
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mechanisms of pathogens to resist against some antibiotics, since many antibiotics act on growing 294 

bacterial cells (Mar Lleo et al., 2007). The exact role of VBNC state in bacteria and the mechanisms 295 

to reach this state is unknown and it could differ from bacterium to bacterium. In VBNC state 296 

pathogens could be survive in environmental matrices over one year and to maintain the capability 297 

to develop diseases in the host (Oliver 2010). Improving health risk assessment associated with the 298 

increasing consumption of minimally processed fresh food products is a crucial need. To reach this 299 

objective, the development and standardization of fast and accurate cultivation-independent assays 300 

providing cellular and molecular information on microorganisms associated with food products are 301 

required.  302 
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Fig 1. Inactivation of culturable E. coli cells spiked on fresh cut carrots expressed as Log10(Ni/N0) 430 

as a function of treatment time. SC-CO2 treatment was performed at (A) 22°C and (B) 35°C. 431 

 432 

Fig 2. FCM profiling of untreated natural flora (orange line) and E. coli cells (violet line) spiked on 433 

fresh cut carrots after SYBR-I and PI staining. (A) Overlapping of FALS histograms of natural flora 434 

and E. coli cells: the fraction percentage of small and large cells of natural flora and E. coli were 435 

indicated; (B) Cytogram of FALS vs. LALS signals of natural flora and E. coli cells; the cytogram 436 

of the green and red fluorescence signals of both populations are shown.  437 

 438 

Fig 3. Progressive cell membrane permeabilization observed by FCM assays after SC-CO2 439 

treatment of E. coli cells spiked on fresh cut carrots. The treatments were performed at 120 bars, 440 

22°C and 35°C, and up to 15 min. The percentages of intact, partially- and permeabilized cells are 441 

shown within each cytogram quadrant.  442 

Fig 4. E. coli cells in untreated and SC-CO2-treated (15 min, 35°C, 120 bar) samples: (A) FALS 443 

signals (B) and cytogram of LALS vs. FALS signal.  444 

 445 

Fig 5. Percentages of E. coli cells subpopulations before and after SC-CO2 treatment at (A) 22°C 446 

and (B) 35°C.  447 

 448 

Fig 6. Comparison of total, viable and culturable E. coli cells per gram before and after SC-CO2 treatment at 449 

120 bar and at (A) 22°C and (B) 35°C. 450 

 451 

 452 
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Pseudomonas aeruginosa is a ubiquitous environmental bacterium responsible for a variety of

infections in humans, as well as in animal hosts. While the evolution of virulence in P. aeruginosa

strains isolated from chronic lung infection in cystic fibrosis (CF) patients has been extensively

studied, the virulence phenotype of P. aeruginosa isolated from other infection types or from the

environment is currently not well characterized. Here we report an extensive analysis of the

virulence of P. aeruginosa strains isolated from acute infections compared with population

structure. Virulence profiles of individual strains were also compared with the expression levels of

the rhlR gene, the transcriptional regulator of the rhl quorum-sensing system, and the gene

encoding Crc, a global regulator controlling catabolite repression and carbon metabolism.

Additionally, the presence/absence of the two mutually exclusive genes, exoU and exoS,

encoding effectors of the type III secretion system, was assessed. In order to capture the widest

range of genetic variability, a collection of 120 clinical strains was initially characterized by

repetitive element-based PCR genotyping, and a selection of 27 strains belonging to different

clonal lineages was subsequently tested using three different virulence assays, including two

Dictyostelium discoideum assays on different growth media, and a Caenorhabditis elegans fast-

killing assay. We show that the parallel application of virulence assays can be used to

quantitatively assess this complex, multifactorial phenotypic trait. We observed a wide spectrum

of virulence phenotypes ranging from weakly to highly aggressive, indicating that clinical strains

isolated from acute infections can present a reduced or altered virulence phenotype. Genotypic

associations only partially correlated with virulence profiles and virulence gene expression,

whereas the presence of either exoU or exoS was not significantly correlated with virulence.

Interestingly, the expression of rhlR showed a significant and positive correlation with the virulence

profiles obtained with the three assays, while the expression of crc was either negatively or not

correlated with virulence, depending on the assay.

INTRODUCTION

Pseudomonas aeruginosa is a Gram-negative opportunistic
pathogen and one of the main causes of nosocomial
infections, including pneumonia, urinary tract infections,
surgical wound infections and bloodstream infections. It is
frequently isolated from immunocompromised individuals
and intubated patients, and causes chronic lung infections
in cystic fibrosis (CF) patients, as well as in adults with

bronchiectasis and chronic obstructive pulmonary disease
(Valderrey et al., 2010).

Understanding bacterial virulence and, more generally, the
host–pathogen relationship at the cellular and molecular
level is essential to identify new targets and develop new
strategies to fight infection. Molecular analysis of host–
pathogen interactions benefits from the use of model
systems, allowing a systematic study of the factors involved.
In this regard the social amoeba Dictyostelium discoideum
has been extensively used in recent virulence studies of
various pathogenic bacteria, among which are Salmonella
typhimurium (Sillo et al., 2011), Streptococcus suis (Bonifait

Abbreviations: CF, cystic fibrosis; rep-PCR, repetitive element-based
PCR.
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et al., 2011), Vibrio cholerae (Miyata et al., 2011), Burk-
holderia pseudomallei (Hasselbring et al., 2011), Legionella
pneumophila (Shevchuk & Steinert, 2009), Klebsiella
pneumoniae (Pan et al., 2011) and P. aeruginosa (Alibaud
et al., 2008). Dictyostelium cells are typically used as a screen-
ing system to determine the role of individual genes in
virulence, by comparing the virulence phenotype of wild-
type and mutant bacterial strains. In P. aeruginosa, such an
approach has led to the identification of a number of
virulence genes involved in various processes, among which
are quorum-sensing (Pukatzki et al., 2002; Cosson et al.,
2002), induction of the type III secretion system (Alibaud
et al., 2008) and global metabolic regulation (Linares et al.,
2010).

The microevolution of P. aeruginosa during the course of
infection in CF patients has been extensively studied and
typically leads to the selection of diversely virulent variants,
based on mutations or expression changes in many viru-
lence genes, including type III secretion, quorum sensing
and iron acquisition (Hogardt & Heesemann, 2010; Lelong
et al., 2011; Kesarwani et al., 2011). While early infection
CF isolates are more virulent and more likely to cause acute
infections than late isolates, the latter have been shown to
maintain their ability to cause chronic infection and
inflammation (Bragonzi et al., 2009). Late CF isolates
therefore exhibit an altered virulence pattern with respect
to acute infection isolates, as recently confirmed by the
comparison of transcriptomes of isogenic early acute infec-
tion versus chronic infection isolates (Naughton et al.,
2011). In contrast to CF isolates, very little is known about
the virulence phenotype of P. aeruginosa isolated from
other infection types or from the environment; a recent
study (Bradbury et al., 2011) showed that CF strains are
globally less virulent against D. discoideum than those
isolated from other sources. However, the experimental
settings used by Bradbury and co-workers allowed the
study of the virulence range of CF strains only, since only
one non-CF strain supported growth of D. discoideum.

In the present study, we performed an extensive analysis of
the virulence range of P. aeruginosa strains isolated from
acute infections and compared it with the genotypic popu-
lation structure. Additionally, we measured in a selection of
strains the expression level of the rhlR gene, the trans-
criptional regulator of the rhl quorum-sensing system, and
of the gene encoding Crc, a global regulator controlling
catabolite repression and carbon metabolism in P. aerugi-
nosa. Both genes have been shown to play a role in the
virulence phenotype of P. aeruginosa, in particular against
D. discoideum (Cosson et al., 2002; Linares et al., 2010).
Furthermore, the presence/absence of the two mutually
exclusive genes exoU and exoS (Wareham & Curtis, 2007),
encoding effectors of the type III secretion system, was also
assessed. In order to capture the widest range of genetic
variability, a collection of 120 clinical strains was initially
characterized by repetitive element-based PCR (rep-PCR)
genotyping (Syrmis et al., 2004), and a selection of 27 strains
belonging to different clonal lineages was subsequently

characterized using three different virulence assays, includ-
ing two D. discoideum assays on SM and HL5 growth media
(Froquet et al., 2009), and a Caenorhabditis elegans fast-
killing assay (Tan et al., 1999). In a previous study
(Fumanelli et al., 2011), we showed the importance of
determining the correct experimental parameters for the
application of Dictyostelium virulence assays to bacterial
species or strains of unknown aggressiveness. In order to
quantitatively estimate the level of virulence associated with
each strain and to make results directly comparable, a
virulence score was defined for each assay. A surprisingly
high range of virulence phenotypes was observed.
Correlations between clonal lineages and virulence profiles
of individual strains were examined by mapping virulence
scores, virulence gene expression levels, and exoU/exoS
genotype on a phylogenetic tree derived from rep-PCR
genotyping data.

METHODS

Strains and growth media. A total of 120 strains of P. aeruginosa

were isolated from patients at Santa Chiara Hospital (Trento, Italy)

affected by lung infections, urinary tract infections or skin ulcers. These
strains were initially grown on MacConkey agar and stored at 280 uC
in 20 % (v/v) glycerol. D. discoideum NC4 strain (DBS0304666) was
obtained from the Dicty Stock Center (Northwestern University, IL,

USA). C. elegans strain N2 was obtained from the Caenorhabditis

Genetic Center (University of Minnesota). D. discoideum NC4 was
grown on SM broth using Klebsiella aerogenes as a food source, whereas

C. elegans N2 was grown on NGM (nematode growth medium) agar

plates with E. coli OP50 as a carbon source.

Rep-PCR-based genotyping assays. ERIC-PCR and BOX-PCR

assays were performed as previously described (Syrmis et al., 2004) on

the whole P. aeruginosa collection, consisting of 120 clinical strains
isolated from acute infections, and on reference strains PA14, PAO1,

PA2192 and LESB58. The reaction mixture contained 6 mM MgCl2,
16 PCR buffer, 200 mM each dNTP, 1 mM each ERIC primer and

1.2 mM BOX primer, 2.5 U Taq, 0.2 % (v/v) glycerol and 100 ng

genomic DNA. The final reaction volume was adjusted to 50 ml with
PCR grade water. PCR amplification cycling was an initial

denaturation step at 94 uC for 7 min, followed by 30 cycles with a
denaturation step of 1 min at 94 uC, an annealing step of 1 min at

53 uC for BOX and 55 uC for ERIC primers, and an extension step of

2 min at 72 uC, followed by a final extension step of 10 min at 72 uC.
Ten microlitres of each amplicon was loaded on a 2 % agarose gel

made in 16 Tris-acetate-EDTA (TAE) buffer and stained with
ethidium bromide. The gels were visualized under UV light using a

BioDoc-It gel documentation system (UVP). ERIC and BOX

electrophoretic profiles were analysed and transformed into binary
matrices using Cross Checker software, available at http://www.

plantbreeding.wur.nl/UK/software_crosschecker.html.

Phylogenetic analyses. Phylogenetic analyses were initially per-
formed on the whole collection of clinical strains (120) by merging

BOX and ERIC band patterns in a single binary matrix. Cluster analyses

were generated using the unweighted pair group method using
arithmetic averages (UPGMA) and the Dice similarity coefficient was

calculated using TREECON software (Van de Peer & De Wachter, 1994).
The criterion for defining clonal lineages was taken as profiles with

85 % or more similar bands. At least one clinical strain per clonal

lineage was selected for further virulence assays and correlation
analyses. The resulting tree was represented as a radial cladogram using

H. A. Janjua and others
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an in-house tool (Segata et al., 2011), and virulence profiles, virulence

gene expression and exoU/exoS genotype of each taxon were mapped

on the tree.

Virulence assays using D. discoideum NC4. Two D. discoideum

virulence assays were applied, the standard SM agar assay (Cosson et

al., 2002) and the HL5 diluted medium assay (Froquet et al., 2009).

Both assays offer the opportunity to distinguish among different

degrees of virulence of pathogenic bacteria. The HL5 assay proved to

be more suitable to quantify virulence in bacterial strains with

extreme virulence phenotypes, such as ‘super-virulent’ or ‘non-

virulent’ strains (Froquet et al., 2009). For the SM agar assay, P.

aeruginosa cells were harvested during exponential phase and

resuspended into SM broth at a final OD600 of 1, diluted into 5 ml

SM broth and spread on SM agar plates to make a homogeneous

bacterial lawn. D. discoideum NC4 was grown in SM broth with K.

aerogenes as a food source. The cells were harvested after 2–3 days of

incubation at 20 uC, and resuspended into HL5 medium and 16
Sorensen phosphate buffer. Cell concentration was determined using

a Countess Automated Cell Counter (Invitrogen). Nine 5 ml droplets

consisting of serial dilutions of D. discoideum cells were spotted on the

bacterial lawn. The dilution factor was threefold, and the approximate

number of cells in each droplet was 20 000, 6600, 2200, 750, 250, 90,

30, 10 and 3, respectively. Each assay was run in triplicate. A control

plate was obtained using non-pathogenic E. coli DH5a instead of P.

aeruginosa strains. The plates were incubated for 6 days at 19 uC
before examining the growth pattern of D. discoideum.

For the diluted HL5 medium assay, P. aeruginosa strains were

harvested during the exponential phase and diluted into 2.5 ml SM

broth. A suspension of 500 ml of bacterial cells at a final OD600 of 1

was deposited into 12-well Corning Costar cell culture plates (Sigma-

Aldrich) containing serially diluted (twofold) HL5 agar at the

following concentrations: 100, 50, 25, 12.5, 6.25, 3.1, 1.5, 0.75, 0.37,

0.18, 0.09, 0.04 and 0.02 %. The plates with the bacterial lawn were

initially dried at room temperature for 1 h before adding to D.

discoideum cells. D. discoideum NC4 was grown in SM broth with K.

aerogenes at 20 uC as a food source and resuspended into SM broth

diluted 1 : 1 with 16 Sorensen buffer. Two microlitres of D.

discoideum containing approximately 7000 cells was spotted on a P.

aeruginosa lawn plated on HL5 medium at different concentrations.

The plates were incubated at 19 uC for 6 days before examining the

growth pattern of D. discoideum. Each assay was run in triplicate. As

in the assay above, a plate incubated with E. coli DH5a was used as a

control.

Fast-killing virulence assays using C. elegans N2. The C. elegans

N2 strain was grown on NGM (nematode growth medium) agar

plates with E. coli OP50 as a food source. The C. elegans fast-killing

assay was performed as described elsewhere (Tan et al., 1999). P.

aeruginosa cells were grown in peptone glucose (PG) medium,

harvested during exponential phase and resuspended into PG broth at

a final OD600 of 1, and 200 ml was spread on PG agar plates. The

plates were incubated at room temperature for 18 h. On average, 60–

70 C. elegans individuals were picked and placed on PG plates, and

incubated at 22 uC for 4 h. The viability/mortality of the worms was

observed under a microscope using a 610 lens and monitored with a

CCD camera. The percentage killing of C. elegans was calculated by

determining the number of dead worms out of the total worms

deposited on each plate. Each assay was run in triplicate. As in the

assays above, E. coli DH5a was used as a control.

Gene expression analyses. Two replicates of each P. aeruginosa

strain were harvested during exponential phase at OD600 0.6 and

pelleted by centrifugation (6000 g for 5 min at 4 uC). Total RNA was

isolated from bacterial pellets by using the TRIzol Max Bacterial

Isolation kit (Life Technologies) as described by the manufacturer.

Approximately 10 mg of the total RNA preparation was treated twice
with the RNase-free DNase set (Qiagen) to remove genomic DNA

contamination and was subsequently cleaned up with the RNeasy
Mini kit (Qiagen) following the manufacturer’s instructions. RNA

concentration and purity were determined by UV absorption
(260 : 280 nm) using a NanoDrop ND-1000 spectrophotometer

(NanoDrop Technologies) and 0.8 % agarose gels stained with
ethidium bromide. One microgram of DNase-treated RNA was

reverse-transcribed into cDNA using a First Strand cDNA Synthesis
kit (Fermentas). cDNAs were amplified by real-time PCR using Kapa

Sybr Fast qPCR Mastermix (KapaBiosystems) and a CFX96 Real-
Time PCR Detection System (Bio-Rad Laboratories). PCR conditions

were as follows: 95 uC for 3 min, 40 cycles of 3 s at 95 uC and 30 s at
60 uC, with a final melting curve analysis from 72 to 95 uC, with

increments of 1 uC every 5 s. Real-time PCR amplifications were
performed with two experimental replicates for each sample.

Primers for the rhlR, crc, exoU and exoS genes were designed using
Primer3 software (Rozen & Skaletsky, 2000) to produce amplicons
ranging from 80 to 220 bp. Primers sequences are reported in Table 1.

Each primer pair was controlled for dimer formation by melting
curve analysis, and PCR efficiency was calculated over a sixfold 26
dilution series. The rpoD and rplS genes were used as housekeeping
genes (Savli et al., 2003; Llanes et al., 2004), and gene expression

values were further normalized to those obtained with PSUR28, the
strain displaying the lowest score in virulence assays. Amplification

profiles were analysed using Bio-Rad Manager Software and cycle
threshold (Ct) values for each target gene were normalized to the

geometric mean of the Ct of rpoD and rplS amplified from the
corresponding sample. The fold change of target genes for each strain

with respect to the PSUR28 control strain was calculated using the
DDCt method.

Virulence scores and correlation analyses. In order to quantita-
tively estimate the level of virulence associated with each strain and to

make them directly comparable, a virulence score was defined for
each assay. For the SM agar assay using D. discoideum, the scores were

attributed according to the most concentrated droplet for which no
growth was observed, as follows: virulence score of 9 for inhibition of

D. discoideum growth with 20 000 cells; score of 8 for inhibition with
6600 cells, and so on, down to a score of 0 for absence of growth

inhibition, even at the lowest number of cells spotted (Table 2). For
the diluted HL5 assay the same principle was applied: a virulence

score of 9 was attributed to strains inhibiting D. discoideum growth at
0.02 % HL5 medium concentration; a score of 8 for growth inhibition

at 0.04 % concentration, and so on, down to a score of 0 for absence
of growth inhibition, even for the most concentrated HL5 medium

used (Table 2). For the C. elegans assay, the scores were attributed as
follows: a virulence score of 9 for ¢90 % killing; a score of 8 for

killing percentages in the range 80–90 %, and so on, down to a score
of 0 for killing percentages lower than 10 % (Table 2).

Pearson correlation analysis (producing correlation coefficients and P
values) was applied on the virulence scores after averaging the
replicates to check the consistency of the three virulence assays. The

same approach was also employed to test the interdependency
between the virulence profiles and the expression profiles of rhlR and

crc genes, and to study the relationship between their expression
patterns. For testing the hypothetical dependence of the virulence

profiles with respect to the mutually exclusive presence of the exoU
and exoS genes, we adopted the Wilcoxon test.

We investigated the correlation between genotype and virulence
profiles by estimating the genetic versus virulence pairwise distances

among strains and by comparing them using Pearson correlation. For
the genotype profiles, the distance matrix was generated by

computing the all-versus-all minimum branch length distance among
leaf nodes in the phylogenetic tree. For the virulence profiles based on

Virulence range of clinical P. aeruginosa populations
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the three assays described above, the standard Euclidean distance was
employed.

RESULTS AND DISCUSSION

Rep-PCR-based genotyping assays and
phylogenetic analyses

A total of 31 and 26 different electrophoretic bands were
generated by BOX and ERIC PCR amplifications, respect-
ively, and binary data extracted from both genotyping
techniques were merged for subsequent phylogenetic
reconstruction. The 120 clinical strains analysed were
clustered in a total of 27 different clonal lineages with a
Dice coefficient of .15 %. Each clonal lineage included up
to seven strains. In order to comprehensively represent the
genetic diversity of the clinical strain collection, one strain
from each clonal lineage was selected for further phylo-
genetic analyses and virulence assays. In order to determine

the intra-clonal variability of virulence profiles, up to three
strains from each clonal lineage were tested with the SM
agar assay. Hierarchically clustering the genotyping profiles,
a phylogenetic tree depicting the relationships between 31
strains (27 clinical strains and four reference strains) was
reconstructed (Fig. 1), as described in Methods. Several pairs
of strains showed very similar genotyping patterns and were
thus tightly clustered in the tree. The three pairs with highest
similarity were Hpu43/Hpu45 (eight synapomorphic char-
acters), PSUR28/VRSP32 (seven) and LESB58/Hpu106
(seven). On the other hand, several pairs of strains had no
synapomorphic characters (13 % of pairs) or a single one
(41 %).

Virulence assays using D. discoideum NC4

In the first assay on SM agar plates, 5 ml droplets of D.
discoideum culture were applied on a lawn of P. aeruginosa,
with each droplet containing a number of Dictyostelium

Table 2. Parameters used for defining virulence scores for the three assays

Virulence score Model organism

D. discoideum C. elegans

SM agar assay* HL5 medium assayD Fast-killing assayd

0 3 12.5 ,10 %

1 10 6.25 10–20 %

2 30 3.1 20–30 %

3 90 1.5 30–40 %

4 250 0.75 40–50 %

5 750 0.37 50–60 %

6 2200 0.18 60–70 %

7 6600 0.09 70–80 %

8 20 000 0.04 80–90 %

9 .20 000 0.02 .90 %

*Lowest number of D. discoideum cells spotted for which growth was inhibited.

DConcentration of HL5 medium (%) for which D. discoideum growth was inhibited.

dPercentage of C. elegans individuals killed.

Table 1. Sequences of primers (59–39) used in this study

Primers were designed for gene expression analysis of rhlR and crc using rpoD and rplS as housekeeping

genes, and for determining exoU/exoS genotype.

Gene Forward primer Reverse primer

Target genes

rhlR TCCTCGGAAATGGTGGTCTG CGCTCGAAGCTGGAGATGTT

crc TCCTTCCAACTGGACGGCTA AGCAGGGTGGCGATACTCAC

exoU GGAGTATCTGCCAGCGCATC GAACCCGGAGATCACAGACG

exoS CTTCGGCGTCACTGTGGATG AGGTCAGCAGAGTATCGGC

Housekeeping genes

rpoD GCTGCTGTCGTCGCTTTCTT AGCATCCTGGCCGACTACAA

rplS ACCCGCGTATACACCACCAC CACACCCGGAAGGTCCTTTA
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cells ranging from 3 to 20 000 (Fig. 2). Under these
conditions, even 20 000 Dictyostelium cells failed to create a
phagocytic plaque in a lawn of the most virulent P.
aeruginosa clinical strains (Table 3). Plaques instead
appeared around D. discoideum cells spotted on moderately
or weakly virulent strains. The most permissive P.
aeruginosa strains, such as PSUR28 and VRPS32, allowed
D. discoideum growth and radial expansion, even starting
from a very limited number of cells (,250) (Table 3).
Moderately virulent strains allowed D. discoideum growth

when at least several hundred cells were deposited on the
bacterial lawn. The mean virulence scores obtained with
this assay on 43 P. aeruginosa strains ranged from 2.0 to
9.0, with a mean value of 7.14.

In the second virulence assay on diluted HL5 medium, the
number of D. discoideum cells spotted on the bacterial lawn
was constant (about 6000 cells in 2 ml). The serial dilution
of HL5 medium is aimed at reducing the growth capacity
of the strains, presumably rendering them less aggressive,

Fig. 1. Population structure of P. aeruginosa clinical strains according to rep-PCR genotyping, virulence phenotypes, virulence
gene expression and exoU/exoS genotype. Names of strains are indicated on terminal branches. The inner cladogram
represents the phylogenetic relationships between the 31 strains characterized genotypically. The first three inner coloured
rings report the three virulence scores (from 0 to 9) for SM agar, HL5 medium and C. elegans killing assay, while the two
external rings report the expression levels of rhlR and crc genes relative to the less virulent strain PSUR28. Log-ratio gene
expression levels were normalized on a 0–9 scale, winsorizing the highest and the lowest values. The exoU+/exoS” or exoU”/
exoS+ genotype found on individual strains is indicated on leaf spots by ‘U’ or ‘S’, respectively. The colour of spots and of the
radial background represents the mean of the three virulence scores.
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and consequently diminishing their ability to resist
phagocytosis by D. discoideum. Preliminary experiments
showed that the majority of P. aeruginosa strains, including
most of the weakly virulent ones, inhibited D. discoideum
growth on HL5 dilutions ranging from 100 to 25 % (data
not shown). We therefore started the dilution range at
12.5 % and decreased it serially (twofold dilutions) to
0.02 %. The minimal HL5 medium concentration at which
a given bacterial strain allowed D. discoideum growth was
used to define the virulence score of individual strains, as
described in Methods. The HL5 medium virulence scores
were globally consistent with those obtained with the assays
on SM agar (in more than half of the cases the difference
was smaller than 1 unit of virulence score values) and with
a significant correlation (P value 9.761025), although in
four cases a difference of more than 4 virulence score units
was observed. The HL5 assay was more discriminating and
showed less saturation than the SM agar assay for highly
virulent strains, since only a few of the strains with a mean
virulence score of 9 in the SM agar assay (nine strains) also
displayed this value for the HL5 assay (two strains) (Table
3). The virulence scores obtained with this assay on 31 P.
aeruginosa strains ranged from 0.3 to 9.0, with a mean
value of 5.9.

Fast-killing virulence assays using C. elegans N2

We used an additional virulence and pathogenesis assay
that consists of measuring killing percentages of the soil
nematode C. elegans by P. aeruginosa. Previous studies
using C. elegans as a virulence model have shown that,
depending on the growth medium, P. aeruginosa causes
different outcomes: slow or fast killing, lethal paralysis and
red death (Tan et al., 1999). We tested all P. aeruginosa

clinical strains selected in the present study for their ability
to kill C. elegans using the fast-killing assay, as described in
Methods. As for the D. discoideum assays, a wide range of
virulence phenotypes was observed (Table 3). Ten out of 31
P. aeruginosa strains were found to be highly aggressive,
killing more than 80 % of the worms in 4 h (virulence
score .8). The lowest percentage of killing was observed
with strains Hpu28, Hpu56 and PSUR28 (20–30 % killing,
mean virulence score of 2.3). The virulence scores obtained
with this assay on 31 P. aeruginosa strains ranged from 2.3
to 9.0, with a mean value of 6.8.

Virulence gene expression and assessment of
exoU/exoS genotype

The expression of rhlR and crc genes in 26 clinical strains
and four reference strains of P. aeruginosa was analysed and
is reported in Fig. 1 and Table 3. A single strain (Hpu27)
was not analysed for gene expression as good quality RNA
could not be obtained. The PSUR28 strain, which on
average presented the lowest score for the three virulence
assays (Table 3), was selected as a reference to evaluate the
fold change in the other strains. For rhlR, all tested strains
(n530) showed a much higher level of expression
compared with strain PSUR28. The fold change values
(expressed as log10 values) obtained for this gene ranged
from 3.04 in strain Hpu47 to 4.55 in strain Hpu103 (Table
3). In contrast, most of the tested strains presented a lower
expression level (negative fold change value) of the crc gene
with respect to PSUR28. The fold change values for this
gene ranged from 20.43 (in Hpu45) to 0.21 (in Hpu55)
(Table 3).

In addition, the presence in individual strains of genes
encoding the type III secretion system effectors ExoU and

Fig. 2. Quantitative assessment of D. discoi-

deum growth using SM agar assays in the
presence of P. aeruginosa. For each bacterial
strain, the most concentrated Dictyostelium

spot is at the top left; concentration decreases
serially to the bottom-left spot. (a) Highly
virulent strain PA14 (mean virulence score
9.0); (b, c) moderately virulent strains Hpu105
and Hpu106 (mean virulence scores 5.7 and
4.3, respectively); (d) weakly virulent strain
PSUR28 (mean virulence score 2.0).
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ExoS was evaluated by PCR amplification. Our results
confirm that both genes are mutually exclusive. The exoU+/
exoS2 genotype was less prevalent (found in 26.7 % of the
strains) than the exoU2/exoS+ genotype (73.3 %), as
reported earlier (Feltman et al., 2001; Wareham & Curtis,
2007) (Fig. 1, Table 3).

Virulence score consistency and virulence range

All three virulence profiling approaches were statistically
significantly correlated. In particular, the two D. discoideum
NC4 assays were strongly correlated (r50.66, P value5

3.961025), and both showed a slightly lower correlation
with the C. elegans N2 assay (r50.58 and P value50.0005 for
the SM agar assay, and r50.48, P value50.006 for the HL5
medium assay). Both assays using D. discoideum as a model

organism showed saturation for highly virulent strains.
These strains completely inhibited D. discoideum growth,
even at high concentrations (20 000 cells per droplet) in the
SM agar assay, whereas some of them also prevented D.
discoideum growth at the lowest HL5 dilution (0.02 %). We
noted that it was not possible to perform the HL5 assay by
further decreasing the concentration of the medium below
0.02 %, as in these conditions the availability of nutrients
was apparently insufficient to support bacterial growth, and
consequently the formation of the lawn did not occur.
Likewise, most of the strains also killed 90–100 % of the
population using the C. elegans fast-killing assay. This
implies that the assays cannot accurately quantify eventual
differences between highly and ‘extremely virulent’ strains.
Conversely, the virulence assays worked remarkably well in
determining and quantifying the virulence phenotype of

Table 3. Virulence assay scores using D. discoideum or C. elegans expressed as the mean of three replicates, rhlR and crc gene
expression values (mean±SD, values expressed as log10) relative to PSUR28 strain values, and exoU+/exoS” (U) or exoU”/exoS+

(S) genotype

Data were obtained from 27 clinical P. aeruginosa strains belonging to different clonal lineages and from reference strains PAO1, PA14, LESB58 and

PA2192. Non-pathogenic E. coli DH5a was used as a control strain for virulence assays. ND, Not determined.

Bacterial

strain

D. discoideum

SM agar

D. discoideum

HL5 medium

C. elegans

fast-killing

rhlR expression crc expression exoU/exoS

genotype

Hpu5 9.0 8.7 9.0 4.35±0.08 20.20±0.07 S

Hpu10 8.3 8.7 7.3 4.27±0.03 20.32±0.02 S

Hpu14 9.0 9.0 6.7 4.05±0.12 0.17±0.03 S

Hpu15 9.0 8.3 9.0 4.30±0.02 20.23±0.02 U

Hpu23 8.7 6.7 7.7 3.98±0.03 20.34±0.00 S

Hpu26 8.3 3.0 7.7 3.45±0.05 20.31±0.08 S

Hpu27 5.3 0.3 5.7 ND ND ND

Hpu28A 7.3 0.3 6.0 3.62±0.10 20.11±0.07 S

Hpu28 5.7 3.0 2.3 3.52±0.01 20.15±0.05 S

Hpu30 9.0 4.3 8.3 3.93±0.01 20.14±0.03 S

Hpu43 8.7 8.3 9.0 4.29±0.03 0.03±0.09 S

Hpu44 8.3 8.0 8.7 4.33±0.02 20.24±0.04 U

Hpu45 9.0 8.7 8.3 3.71±0.06 20.43±0.04 S

Hpu47 5.7 2.3 7.3 3.04±0.01 20.28±0.12 S

Hpu49 9.0 8.0 8.7 3.83±0.03 20.27±0.01 S

Hpu54 9.0 8.7 8.3 4.06±0.07 20.32±0.02 U

Hpu55 5.3 7.7 6.3 4.08±0.06 0.21±0.14 U

Hpu56 8.3 8.7 2.3 3.64±0.04 20.05±0.02 U

Hpu61 8.3 4.7 6.7 3.93±0.04 20.23±0.12 S

Hpu75 8.3 3.3 2.7 3.63±0.00 20.23±0.00 S

Hpu76 9.0 8.7 8.7 3.89±0.10 20.22±0.11 S

Hpu92 6.7 4.7 5.0 4.40±0.02 20.03±0.00 U

Hpu103 6.3 8.3 6.7 4.55±0.05 20.06±0.07 S

Hpu105 5.7 1.7 7.3 3.50±0.19 20.15±0.12 S

Hpu106 4.3 5.0 5.3 3.41±0.01 20.09±0.11 U

VRSP32 3.3 0.3 5.7 3.15±0.02 20.28±0.07 S

PSUR28 2.0 1.7 2.3 0.00±0.00 0.00±0.00 S

PA2192 9.0 9.0 8.3 4.21±0.02 20.27±0.02 S

PAO1 6.3 5.3 6.7 4.06±0.08 20.13±0.04 S

PA14 9.0 8.7 8.7 4.05±0.05 20.33±0.06 U

LESB58 8.3 8.0 7.0 3.98±0.04 20.12±0.05 S

E. coli DH5a 0.0 0.0 0.0 2 2 2
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weakly and moderately virulent bacterial strains. Globally, a
surprisingly high virulence range was noted for the clinical
strains, indicating that P. aeruginosa strains showing reduced
or altered virulence are not exclusively a characteristic of
chronic infections.

Correlation between virulence profiles and rep-
PCR genotyping

By comparing genotyping with virulence profiling (Fig. 1),
it can be noted that two pairs of genotipically more similar
strains, Hpu43/Hpu45 and PSUR28/VRSP32, showed
almost identical virulence patterns: the former is highly
virulent (values higher or equal to 8.3 for all six mean
scores), whereas the latter has much lower virulence values
(means of the three scores of 2.0 and 3.1, respectively).
Several other patterns of convergence between virulence
and genotyping profiling were observed for the pairs
Hpu92/Hpu28 and Hpu10/Hu15. In other cases, however,
virulence was clearly uncoupled from genetic similarity, with
the most striking examples being the pairs Hpu28A/Hpu44,
Hpu47/PA14, HPu5/Hpu105 and LESB58/Hpu106.

Intra-clonal virulence variation was investigated for eight
distinct lineages, testing multiple strains for each lineage
with the SM agar assay. The three lineages represented by
LESB58, VRSP32 and Hpu75 showed a marked virulence
consistency, with a maximum variation lower than 1
virulence score unit (ranges 8.3–9.0, 2.7–3.3 and 8.0–9.0,
respectively). In the other cases with three clonal strains
tested, one clone with reduced virulence was detected;
specifically, these cases were Hpu40 with score 2.0 in the
Hpu44 lineage (score 8.3), Hpu105 with a smaller score
(5.7) than its clonal counterparts Hpu6 and Hpu9, and
Hpu39 (score 3.0), which was much less virulent than
Hpu35 (8.7) and Hpu45 (9.0). Markedly different virulence
phenotypes also characterized the two tested lineages with
two clonal variants, as Hpu33 (score 2.3) and Hpu106
(score 4.3) were less virulent than their clonal counterparts
Hpu43 and Hpu101, respectively (both 8.7). These data
indicate that even closely related strains can present
marked differences in their virulence profiles. Although
more clonal strains should be investigated to test this
hypothesis, it seems that variation of the virulence
phenotype is due to the loss of virulence in a fraction of
strains belonging to a given clonal lineage.

The global correlation between virulence profiles and geno-
typing distance was not statistically significant, but this
appeared to be mainly due to genotypically distant strains.
Given that few or no informative genotypic characters are
shared by the most distantly related strains, precise long-
range branching relations cannot be reliably estimated. For
these reasons, we compared short-range genotyping dis-
tance (Euclidean distance below 1.0) with virulence dis-
tance. Under these conditions, a clear correlation (r50.68,
P value 6.561025) between virulence profiles and geno-
typing distance was found. The observation that some pairs
of strains presented quite different virulence patterns

despite their genetic closeness can have multiple explana-
tions. Firstly, divergent genotypes are not necessarily also
divergent in the virulence phenotype, as multiple virulence
determinants may have evolved independently or have been
transmitted horizontally. Additionally, rep-PCR genotyping
targets specific repeated regions in the core genome and does
not take into consideration either the variability in the
accessory genome or mutations in virulence genes from the
core genomes that could affect the virulence phenotype. The
marked ability of P. aeruginosa to acquire or discard genes
and genomic segments is considered to be the main factor
explaining its capacity to colonize and survive in different
host environments. While most known virulence factors
located in the core genome of P. aeruginosa show a high
degree of conservation (Wolfgang et al., 2003), this
bacterium possesses a large accessory genome consisting of
blocks of genes distributed in several dozen regions of
genomic plasticity (Mathee et al., 2008). As a consequence,
one may hypothesize that the genotypically closely related
strains analysed in the present study that showed very
different virulence patterns likely either differ in the
composition of their accessory genome, as a consequence
of the acquisition or deletion of virulence determinants, or
have accumulated mutations in virulence genes located in
the core genome.

Correlation between virulence profiles and
virulence gene expression

We observed that the expression of the rhlR gene strongly
and significantly correlated with all three virulence assays
(correlations of 0.60, 0.73 and 0.50 for SM agar, HL5
medium and C. elegans assays, respectively; P values of
4.161023, 5.361026 and 4.861023), confirming that
quorum sensing, and in particular the rhl system, plays an
important role in P. aeruginosa virulence (Cosson et al.,
2002). Such a strong correlation indicates that as an
alternative to virulence assays, rhlR gene expression experi-
ments can provide a reliable estimation of the aggressiveness
of individual strains of P. aeruginosa.

In contrast, only a weak and negative correlation between
crc expression and virulence was observable (correlations of
0.39, 0.68 and 0.42 for SM agar, HL5 medium and C. elegans
assays, respectively; all P values .0.01). Accordingly, no
significant patterns of co-expression could be detected for
the rhlR and crc genes. The C. elegans assay seems to capture
a partially distinct virulence phenotype, as it is more strongly
correlated with rhlR expression than D. discoideum assays
and is completely uncoupled from crc expression. It has been
reported that a P. aeruginosa strain lacking the Crc regulator
shows defects in type III secretion, motility and expression
of quorum sensing-regulated virulence factors, and is less
virulent against D. discoideum (Linares et al., 2010). Crc is a
global metabolic regulator controlling different cellular path-
ways, and its deletion apparently globally weakens physio-
logical performance. Our results indicate that crc expression
is either not correlated or negatively correlated with virulence,
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and therefore do not support the hypothesis of a direct role of
Crc in the aggressiveness of P. aeruginosa.

While the relative prevalence of exoU and exoS genes
encoding type III secretion effectors has been shown to be
associated with infection type (chronic infections in CF
patients versus blood infections) (Wareham & Curtis,
2007) or even with specific hospital departments (Bradbury
et al., 2010), we showed here that the presence of either
exoU or exoS was not associated with specific virulence
patterns, which is not surprising. While almost no strain
encodes or secretes all four known type III secretion
effectors, the commonly found combinations of ExoU/
ExoT or ExoS/ExoT provide redundant and failsafe
mechanisms to cause mucosal barrier injury, and inhibit
many arms of the innate immune response (Engel &
Balachandran, 2009). Although ExoU has been shown to
have a slightly greater impact on virulence than ExoS in the
mouse lung (Shaver & Hauser, 2004), it is generally
accepted that the secretion of different combinations of
type III effectors does not translate into a synergistically
significant enhancement of disease severity (Shaver &
Hauser, 2006).

In the present study, we have shown that the parallel
application of virulence assays can be used to quantitatively
assess this complex, multifactorial phenotypic trait. A wide
range of virulence phenotypes was observed, from weakly
to highly aggressive, indicating that clinical strains isolated
from acute infections can present a reduced or altered
virulence phenotype, as known for chronic P. aeruginosa
infections in CF patients (Bragonzi et al., 2009; Lelong
et al., 2011). However, the time required by the host to
exert selection pressure for mutations and reduced
expression in CF patients is not applicable to P. aeruginosa
isolates from acute infections. The low virulence of some of
the strains analysed here may be due instead to their
intrinsic reduced aggressiveness. Alternatively, they may
have been previously involved in chronic infections.
Further studies of P. aeruginosa clinical populations at
the genomic, transcriptomic and proteomic levels are
needed to better understand the molecular determinants
and mechanisms underlying the wide virulence range of P.
aeruginosa in acute infections.
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a b s t r a c t

Technologies proposed in the last decades for the reduction of the sludge production in

wastewater treatment plants and based on the mechanism of cell lysis-cryptic growth

(physical, mechanical, thermal, chemical, oxidative treatments) have been widely inves-

tigated at lab-, pilot- and, in some cases, at full-scale but the effects on cellular lysis have

not always been demonstrated in depth. The research presented in this paper aims to

investigate how these sludge reduction technologies affect the integrity and per-

meabilisation of bacterial cells in sludge using flow cytometry (FCM), which permits the

rapid and statistically accurate quantification of intact, permeabilised or disrupted bacteria

in the sludge using a double fluorescent DNA-staining instead of using conventional

methods like plate counts and microscope.

Physical/mechanical treatments (ultrasonication and high pressure homogenisation)

caused moderate effects on cell integrity and caused significant cell disruption only at high

specific energy levels. Conversely, thermal treatment caused significant damage of

bacterial membranes even at moderate temperatures (45e55 �C). Ozonation significantly

affected cell integrity, even at low ozone dosages, below 10 mgO3/gTSS, causing an increase

of permeabilised and disrupted cells. At higher ozone dosages the compounds solubilised

after cell lysis act as scavengers in the competition between soluble compounds and

(particulate) bacterial cells. An original aspect of this paper, not yet reported in the liter-

ature, is the comparison of the effects of these sludge reduction technologies on bacterial

cell integrity and permeabilisation by converting pressure, temperature and ozone dosage

to an equivalent value of specific energy. Among these technologies, comparison of the

applied specific energy demonstrates that achieving the complete disruption of bacterial

cells is not always economically advantageous because excessive energy levels may be

required.

ª 2010 Elsevier Ltd. All rights reserved.
1. Introduction increase the cost of disposal, which is currently in the range of
In the future, excess sludge quantities produced in waste-

water treatment plants (WWTPs) can be expected to increase

and further restrictions on disposal options will probably
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200e650 V/t of dry weight. Since the mid ‘90s, various tech-

nologies have been developed and proposed on themarket for

the reduction of sludge production (expressed as drymass and

not only in volume) directly on-site, very diverse and based on
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physical, mechanical, chemical, thermal or biological treat-

ments (inter alia Foladori et al., 2010).

Most sludge reduction (SR) technologies are aimed at solids

solubilisation, the disintegration of the biological floc struc-

ture and the disruption of bacterial cells. In this way the cells

undergo lysis and the intracellular compounds are released

and further degraded in biological reactors, through the

mechanisms of cell lysis-cryptic growth (inter alia Gaudy et al.,

1971).

To investigate the efficiency of an SR technology to damage

or lysate bacterial cells, conventional cultivation methods

using selective media have been widely used, but it is well

known that the culture-dependent analysis of microbial

populations in activated sludge produces partial and heavily

biased results (Wagner et al., 1993), because only a small

proportion (about 5%) are able to grow in nutrient media. In

fact, most bacteria in activated sludge are in a physiological

state known as “viable-but-not-culturable” (Nebe-von-Caron

et al., 2000). Microscopic observations of biological flocs have

also been carried out frequently to investigate the efficiency of

SR technologies with the aim of evaluating the disaggregation

or dispersion of flocs, as frequently shown in photos in the

literature, rather than observing single cells embedded in the

highly aggregated structure of activated sludge, which inter-

feres with the microscopic images.

Often, the fact that SR technologies cause bacteria damage

and lysis is assumed as an obvious statement or a reliable

expected result, which is not always fully confirmed by

experimental results. Only a few, recent contributions have

investigated in depth the effect of SR technologies on bacteria

integrity, activity, permeabilisation or death (Prorot et al.,

2008; Yan et al., 2009) by using direct advanced approaches,

which allow us to obtain a more realistic view of bacteria

populations in activated sludge and the assessment of their

physiological status.

The research presented in this paper aims to investigate

how some SR technologies, exploiting the mechanism of cell

lysis-cryptic growth, affect integrity and permeabilisation of

bacterial cells in sludge using flow cytometry (FCM), which

allows us to quantify bacteria using fluorescent DNA-staining.

The advantages of FCM for the rapid quantification of intact or

permeabilised cells in bacterial population in various envi-

ronments have been highlighted many times in the

environmental field (inter alia Porter et al., 1997; Steen, 2000;

Vives-Rego et al., 2000). FCM, capable of counting more than

1000 cells per second, is a powerful multi-parametric and

single-cell analysis, which is faster and able to give a more

precise quantification of free cells in a suspension compared

to conventional observation of bacteria suspensions under the

microscope.

Four SR technologies which cause cell lysis-cryptic growth,

of certain growing interest were selected (Fig. 1) and applied at

lab-scale: (1) physical treatment: ultrasonication at specific

energy up to 53,000 kJ kgTSS�1, (2) mechanical treatment: high

pressure homogenisation, at pressure up to 1500 bar, (3)

oxidation treatment: ozonation at low ozone dosages up to

0.028 gO3 gTSS�1, (4) thermal treatment at moderate temper-

atures up to 90 �C. As a consequence of these SR treatments

a reduction of intact cells is expected, as is an increase in

permeabilised cells or a net loss when disrupted. Biological
processes based on a side-stream anaerobic reactor such as

the Oxic-Settling-Anaerobic (OSA) process or the Cannibal�

process were not investigated in this paper. Various,

intriguing explanations have been given in the literature to

describe the basic mechanism of these last processes:

uncoupled metabolism, cell lysis-cryptic growth, release of

organic matter associated with iron (Saby et al., 2003; Chen

et al., 2003; Novak et al., 2007; Sun et al., 2010), but some

uncertainties remain.

An original aspect of this paper is the comparison of the

effects of the SR technologies on bacterial cell integrity and

permeabilisation using the effective applied energy level, to

help to answer the following question, which has not yet been

fully investigated: “What is the energy level required to

destroy the bacterial cell structure, release intracellular

compounds and favour cell lysis-cryptic growth in biological

processes such as activated sludge?” This paper contributes in

this direction, demonstrating that not all the SR technologies

are able to disrupt bacteria at operational conditions which

favour energy savings and sustainable application, but the

damage to bacterial cells often requires an energy level which

may exceed economical feasibility.
2. Materials and methods

2.1. Activated sludge

Activated sludge samples were collected from the municipal

wastewater treatment plant (WWTP) of Trento Nord (Italy),

characterised by an oxidation-nitrification configuration, with

a sludge age of about 12 d and an average organic load of

0.15 kgBOD5 kgTSS�1 d�1. Grab samples of sludge used in the

experimental tests were taken from the oxidation tank with

a typical Total Suspended Solid (TSS) concentration around

4 kgTSS m�3.

Soluble COD (SCOD) and TSS concentrations in sludgewere

measured according to Standard Methods (APHA, 1998).

2.2. Sludge reduction (SR) technologies

2.2.1. Ultrasonication
Ultrasonication was applied to 100-mL activated sludge by

using a Branson 250 Digital Ultrasonifier operating at 20 kHz

with a horn tip. The main parameters considered in ultra-

sonication were: (1) transferred power, P, expressed in W; (2)

time, t, expressed in seconds; (3) treated volume, V; (4) and TSS

concentration in sludge, expressed in gTSS L�1. These

parameters were used to calculate the specific energy (Es) as

reference parameter and expressed in kJ kgTSS�1

(Es¼ P t V�1 TSS�1). The use of the transferred power instead of

applied power is preferable for Es calculation, to obtain results

comparable with results from different instruments. Calo-

rimetry was used to measure the transferred power input

(Mason et al., 1992). In this research Es up to 53,000 kJ kgTSS�1

was used.

2.2.2. High pressure homogenisation
The high pressure homogeniser (HPH) at lab-scale consisted of

a high pressure pump which compressed sludge up to

http://dx.doi.org/10.1016/j.watres.2010.07.030
http://dx.doi.org/10.1016/j.watres.2010.07.030
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pressures of 1500 bar and an adjustable homogenisation valve

where sludge decompression to atmospheric pressure took

place. Themain parameters in HPH are: (1) applied pressure, P,

expressed in bar and (2) the number of passages through the

homogenisation valve, considered as 1 in this research. For

the calculation of the specific energy, Es, a linear relationship

between Es and the applied pressure was considered

(Engelhart et al., 2000). Es was calculated considering

a conversion factor of 23.8 kJ/L to increase the pressure by

100 bar (own data), multiplied by the pressure up to the

desired value and divided by the TSS concentration of sludge.

2.2.3. Thermal treatment
The temperature range of 20e90 �C was investigated with

a contact time of 30 min at the fixed temperature, while about

15e20 min were required to heat the sludge and reach the

desired temperature. The heating energy expressed as Es was

calculated considering the specific heat capacity of water

(4.18 kJ kg�1 �C�1), divided by the TSS concentration of sludge

and multiplied by the increase of temperature from 20 �C
(environmental temperature) to the desired final temperature.

The heat losses in the contact reactor during the treatment

were not taken into account, due to the short contact time.

2.2.4. Ozonation
Ozone was generated by a generator fed with filtered and

dehumidified air. The ozone gas was injected into a column

(diameter 7 cm; height 2 m) using a loop equipped with

a booster pump and an injector. The ozone dosage was up to

0.028 gO3 gTSS�1
treated. To calculate an equivalent amount of

energy (Es), a conversion factor of 20 kWh (corresponding to

72,000 kJ) for the production of 1 kg of ozone was assumed

(Böhler and Siegrist, 2007; Goel et al., 2003).
2.3. Bacterial cell fluorescent staining þ FCM

To distinguish intact and permeabilised bacteria, cells were

stained with SYBR-Green I (SYBR-I, 1:30 dilution of commer-

cial stock; from Invitrogen, USA; lex ¼ 495 nm, lem ¼ 525 nm)

diluted in dimethyl sulfoxide (DMSO, Merck, Germany) and

Propidium Iodide (PI, stock solution concentration 1 mgmL�1;

Invitrogen, USA; lex ¼ 536 nm, lem ¼ 617 nm). An amount of

10 mL of both fluorochromes was added to 1 mL of bacterial
suspension containing about 106e107 cells/mL. Samples were

incubated in the dark for 15 min at room temperature. SYBR-I

is capable of staining all cells, whereas the polarity of PI allows

it to penetrate only cells with permeabilised membranes,

which can be considered as dead (Ziglio et al., 2002). In the

permeabilised cells, the simultaneous staining with SYBR-I

and PI activates energy transfer between the fluorochromes.

As a consequence, intact bacteria emit green fluorescence,

while permeabilised bacteria emit red fluorescence.

FCM analyses were performed with an Apogee-A40 flow

cytometer (Apogee Flow Systems, UK) equipped with an Ar

laser (488 nm). Collected signals were green and red fluores-

cence, acquired with logarithmic gain and Forward Angle

Light Scatter (FALS), which is related to cell size (Foladori et al.,

2008). Data acquisition gates were set on green and red fluo-

rescence distribution to eliminate non-bacterial particles and

debris. At least 10,000 cells were analysed for each sample in

a fewminutes, providing good statistical data. The accuracy of

the staining method and the FCM analysis was previously

evaluatedwith epifluorescencemicroscopy (Ziglio et al., 2002).
2.4. Outline of the procedure for testing SR technologies

Fig. 2 shows the whole procedure for the quantification of

intact and permeabilised cells in activated sludge by FCM after

the application of each of the four SR technologies. Without

any previous pre-treatment, activated sludge underwent

ultrasonication, HPH, thermal treatment or ozonation with

variations in the operational parameters. After each treat-

ment, 2 quantities of activated sludge were collected and

underwent 2 different procedures (Fig. 2):

1) Quantification of free cells: these include the cells free in

the suspension as single cells and not aggregated in flocs;

2) Quantification of total cells: these include cells both free in

the suspension and aggregated in flocs. To quantify total

cells, activated sludge underwent a disaggregation step

performed by sonication (US) at volumetric specific energy

of 80 kJ/L. This disaggregation step was previously defined

as optimal, since it provides a very extensive, although

incomplete, disaggregation of flocs and the release of the

maximum possible number of free cells in the suspension,

while avoiding cell damage or death (Foladori et al., 2007).

http://dx.doi.org/10.1016/j.watres.2010.07.030
http://dx.doi.org/10.1016/j.watres.2010.07.030
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In fact, since FCM analysis is a single-cell analysis, acti-

vated sludge flocs must be previously disaggregated and

dispersed to obtain free cell suspensions whilemaintaining

bacterial integrity.

Then the cell suspensions were diluted with Phosphate-

Buffered-Saline (PBS, 3 g K2HPO4, 1 g KH2PO4 and 8.5 g NaCl per

Litre; pH ¼ 7.2) to reach 106e107 cells/mL (optimal for FCM

analysis) and filtered on 20-mm membranes (Celltrics, Partec)

in order to eliminate coarse particles which may clog the

nozzle of the flow cytometer. The coarse particles excluded

from the FCM analysis were:

1) Most flocs during the quantification of free cells (aggregated

cells are excluded);

2) Less than 3% of the initial flocs total (as estimated under

epifluorescence microscope) during the quantification of

total cells (aggregated cells are included).

The cells suspension obtained was lastly stained with

fluorescent dyes SYBR-I þ PI and underwent FCM analysis.
3. Results and discussion

3.1. COD solubilisation of sludge

SR technologies based on physical, mechanical, thermal or

oxidation are expected to generate soluble organic matter

by the disintegration of sludge solids and/or the oxidation

of organic polymers. Production of soluble COD in the
application of an SR technology is in fact generally correlated

with TSS disintegration.

COD solubilisation (SCOD) is usually calculated with the

following expression, as a percentage (inter alia Bougrier et al.,

2005; Cui and Jahng, 2006; Benabdallah El-Hadj et al., 2007; Yan

et al., 2009):

COD solubilisation ¼ SCOD

�
%

�
¼ SCODt � SCOD0

COD0 � SCOD0
� 100

where:SCOD0 ¼ concentration of soluble COD in the

untreated sludge; SCODt ¼ concentration of soluble COD in

the sludge after the application of the SR technology;

COD0 ¼ concentration of total COD in the untreated sludge.

SCOD is the immediate result of the application of an SR

treatment and depends strongly on the specific energy applied

per mass of solids treated (Es) as compared in Fig. 3. Data

indicated in Fig. 3 allows an immediate comparison between

the SR technologies. SCOD rose for increasing values of Es in

a linear way for thermal treatment and ozonation, while data

from physical/mechanical treatments (ultrasonication, HPH)

fit better with a sigmoid function, due to the need for

a minimal energy input to initiate solubilisation and slower

solubilisation at the highest energy level. SCOD refers to the

release of soluble COD after the application of an SR tech-

nology, excluding the contribution of COD mineralisation and

biodegradation in the subsequent biological stages.

From a theoretical point of view, SCOD is the result of the

action of an SR technology against both non-biotic organic

matter, and the disruption of bacterial cells. SCOD gives us no

information about the damage or disruption of bacterial cells,

although the sludge solubilisation is often approximately

used to identify the occurrence of bacteria lysis. From the

http://dx.doi.org/10.1016/j.watres.2010.07.030
http://dx.doi.org/10.1016/j.watres.2010.07.030
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comparison in Fig. 3, very different solubilisation levels were

obtained depending on the type of SR technology applied. But,

what about the lysis of cells? Are there different results among

the SR technologies, as per SCOD?

3.2. Quantification of intact, permeabilised and
disrupted bacteria by FCM

Intact and permeabilised cells were identified simultaneously

on the basis of their membrane integrity by applying the

double fluorescent staining PI (a dye which can enter only

damaged or permeabilised cells) and SYBR-I (which can enter

all cells, intact or permeabilised) (Ziglio et al., 2002; Foladori

et al., 2007). Membrane integrity demonstrates the protec-

tion of constituents in intact cells and the potential capability

of metabolic activity/repair and potential reproductive

growth. Cells without an intact membrane are considered

permeabilised and can be classified as dead cells. As their

structures are freely exposed to the environment they will

eventually decompose (Nebe-von-Caron et al., 2000).
The use of the two dyes (SYBR-I þ PI) and the setting of two

thresholds on red and green fluorescences generate four

regions in the FCM cytograms as shown in the example in

Fig. 4. Depending on the intensity of the green and red fluo-

rescences emitted, the following regions are distinguished:

permeabilised cells (red), intact cells (green), small aggregates

(both red and green) and instrument background or noise (red

and green below thresholds). Activated sludge contains some

small aggregates, formed by clusters of intact and per-

meabilised cells clumped together, appearing fluorescent both

in red and green. In spite of the optimization of disaggrega-

tion, a moderate presence of small aggregates may remain.

Some significant FCM cytograms obtained for the most

relevant operating conditions when applying the 4 SR tech-

nologies are summarised in Fig. 5 which shows an immediate

comparison of the effects of the SR technologies on the total

cells (free þ aggregated), distinguished as intact and per-

meabilised cells. For a better comparison of effects, operating

conditions such as pressure, temperature and ozone dosage

were converted to an equivalent value of Es.

http://dx.doi.org/10.1016/j.watres.2010.07.030
http://dx.doi.org/10.1016/j.watres.2010.07.030


Fig. 4 e Example of an FCM cytogram of activated sludge

with the indication of the four regions to distinguish intact

cells and permeabilised cells.
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Physical/mechanical treatments (ultrasonication and HPH)

did not cause a significant shift from the region of intact cells

to permeabilised ones, while thermal treatment differed

significantly due to the significant damage to bacteria causing

cell permeabilisation. The effects of ozonation are interme-

diate and a moderate increase of permeabilised cells was

observed.

In the untreated sludge þ disaggregation (first column in

Fig. 5), the mean concentration of intact cells was

3.8 � 0.16E þ 12 cells/L (75.6 � 4.3% of total cells), while the

mean concentration of permeabilised cells was

1.01 � 0.15E þ 12 cells/L (20 � 3.4% of total cells); small

aggregates were 0.46 � 0.06Eþ12 per Litre. Total cells in the

untreated sludge þ disaggregation (indicated as N0) were

considered as the sum of intact cells, permeabilised cells and

small aggregates, which are considered to be approximately

composed of two cells. After an SR treatment, damage to the

membrane structure of bacteria may occur, leading to

a progressive loss of membrane integrity, permeabilisation or

cell disruption. With regard to disrupted cells, their concen-

tration was calculated as the difference N0eNt, where Nt was

the concentration of total cells after the application of an SR

technology.

The variations of the concentrations of total, intact, per-

meabilised and disrupted cells in the sludge after the appli-

cation of ultrasonication, HPH, ozonation and thermal

treatment are discussed and compared in the following

sections.
3.3. Ultrasonication

Ultrasonication is a “no touch and no moving mechanical

parts” technique (Winter, 2002), based on ultrasonic cavita-

tion. In Fig. 6 the percentages of intact, permeabilised and

disrupted cells (calculated referring to N0) are indicated for
increasing Es levels. Fitting curves in Fig. 6 are only indicated

for easier observation of the data.

The application of Es up to 30,000 kJ kgTSS�1 produced

a further disaggregation of small aggregates and an increase

in the number of intact and permeabilised cells, without an

appreciable loss of membrane integrity or increase in cell

disruption. The ratio between permeabilised and intact cells

was around 0.18, indicating that the increase of permeabilised

cells is not caused by progressive cell damage, but is mainly

due to the disaggregation of small clusters in which per-

meabilised cells are embedded. Thus the simple per-

meabilisation of intact cells is negligible.

Disruption of cells started only for Es above 30,000 kJ/

kgTSS, but the amount of destroyed bacteria remained

moderate (�22.5% of intact cells and �6.5% of permeabilised

cells at 53,000 kJ kgTSS�1) and intact and permeabilised cells

were destroyed with a similar trend.

The slight cell disruption during ultrasonication does not

agreewith the high COD solubilisation shown in Fig. 3. Similar

findings by Salsabil et al. (2009) using FCM analysis indicated

that organic matter solubilisation after ultrasonication was

not due to cell membrane breakage but more probably to floc

disintegration and especially to EPS destructuration

promoting the solubilisation of extracellular proteins and

polysaccharides and increasing soluble COD.

3.4. High pressure homogenisation

Passing through the homogenisation valve the sludge speed

increases by up to fifty times (up to 300m/s), due to the intense

restriction, causing a rapid drop of pressure to below vapour

pressure (cavitation). These conditions favour disaggregation

of flocs and the damage of cells (Fig. 7) which depend on the

applied pressure and the Es level:

1) moderate pressures below 400 bar causedmodification and

physical destruction of the network of sludge, increasing

the number of free cells in the bulk liquid as well appre-

ciable in Fig. 7B, inwhich the very significant increase in the

number of free intact cell and free permeabilised cells can

be observed. These pressures did not induce a loss of cell

integrity or significant cell damage or permeabilisation

(Fig. 7A);

2) pressures in the range 400e1500 bar caused high shear

stress, significant damage to cellular structures, leading to

the immediate disruption of a portion of total cells: at

1500 bar intact cells decreased by �40.7% of N0 and per-

meabilised cells decreased by �9.7% of N0 (Fig. 7A). Conse-

quently the number of disrupted cells increased linearly, up

to 52% of N0 at 1500 bar (Fig. 7A). The ratio between per-

meabilised and intact cells (free þ aggregated) was around

0.18 and remained approximately constant for increasing Es
values, indicating that the mechanical action (shear forces)

affects intact or permeabilised cells similarly, independent

of their functional status.

Similar findings have already been reported and confirmed

by other authors (Camacho et al., 2002; Strünkmann et al.,

2006), who observed that the supplied energy is initially

used to disrupt non-covalent forces between cells (embedded

http://dx.doi.org/10.1016/j.watres.2010.07.030
http://dx.doi.org/10.1016/j.watres.2010.07.030


Fig. 5 e FCM cytograms of total cells (free D aggregated), distinguished in intact and permeabilised cells, after the

application of the 4 SR technologies. Regions of the cytograms are indicated above in Fig. 4.
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in flocs), and then to disrupt the cell walls (covalent and

non-covalent bonds). However, in practice and in full-scale

applications, excessively high pressures are uneconomic.

Furthermore, we should consider that some bacteria pop-

ulations are able to resist high pressures, even up to 1000 bar

(Pagán and Mackey, 2000; Hayakawa et al., 1998).
3.5. Thermal treatment

Thermal treatment affected bacterial integrity especially after

the application of temperatures in the range 45e60 �C for

30 min, which led immediately to a decrease in intact cells

(free þ aggregated, see Fig. 8A) from 77.9% of N0 at 45 �C to

http://dx.doi.org/10.1016/j.watres.2010.07.030
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17.4% of N0 at 60 �C and a consequent increase in per-

meabilised cells. The same behaviour was observed for free

cells heated to 45e60 �C, applying the thermal treatment as an

independent treatment without the disaggregation step

(Fig. 8B). As shown in Fig. 8B, thermal treatment over 45 �C
caused a decrease of the small number of free intact cells and

a rapid and significant increase in free permeabilised cells.

The reason is because thermal treatment causes cell per-

meabilisation and affects sludge properties, with the release

of EPS and a partial deflocculation. The result is the release of

permeabilised cells from the flocs to the bulk liquid, which are

detected as free permeabilised cells by FCM.

These results are in agreement with other recent findings

in the literature; it was demonstrated that after 1 h of thermal

treatment at 60 �C nearly 98% of the mesophilic and

psychrophilic microorganisms in sludge die and the proteins

of the bacterial membrane undergo the defolding of their

structure causing cell permeabilisation, leaving 2% of ther-

mophilic microorganisms, which are able to secret proteases

and grow (Yan et al., 2008).
A

Fig. 7 e Profiles of percentages of intact, permeabilised and dis

cells (free D aggregated); (B) free cells (excluding aggregated).
An increase in the number of total cells (free þ aggregated)

was observed after heating in the range 45e55 �C compared to

the value N0 (Fig. 8A). In fact, the concentration of total cells

increased fromN0¼ 4.9Eþ 12 cells/L in the untreated sludge to

7.04Eþ 12 cells/L (140% of N0) after the application of 55 �C. It is
not clear why the number of total cells increased when the

temperature was raised. We hypothesized that the thermal

treatment caused a denaturation of cell membranes with

a consequent loss of bacterial integrity and the rupture of

some cells in a few fragments of sizes which can be detected

by FCM as single fluorescent particles. The reduction of

particle size after thermal treatment was demonstrated using

the Forward Angle Light Scatter (FALS) signal acquired by FCM

(data not shown) using an innovative method to convert the

FALS signal into particle sizes (Foladori et al., 2008).

The thermal treatment at temperatures over 45 �C and up

to 90 �C for 30 min did not cause the complete disruption of

cells and thus the profile of disrupted cells is not indicated in

Fig. 8A. The thermal treatment causes bacteria permeabilisa-

tion but not complete disruption of the cells and further

enzymatic hydrolysis of the permeabilised cells would be

needed during real sludge digestion to obtain effective sol-

ubilisation. Appels et al. (2010) confirmed that a temperature

of 70 �C seems to be too low for effective solubilisation.

It is well known that the enzymatic hydrolysis of solids

may be the rate-limiting step in the digestion process. In

practice, the sludge reduction expected during thermophilic

digestion (which reaches 40e45% of VSS or 30% of TS), is

similar to mesophilic digestion, but by changing from meso-

philic to thermophilic digestion, the retention time can be

reduced from 20 to 30 d to 10e12 d (Nielsen and Petersen, 2000)

due to the acceleration of cell lysis and biochemical reactions

by heat stable exoenzymes and the physical/chemical effect

of the heat shock when the sludge enters a warm environ-

ment at 50e60 �C.
3.6. Ozonation

The ozone dosages used in the various studies in the literature

cover a very wide range, from less than 0.01 gO3 gTSS�1 to

much high dosages of 1 gO3 gTSS�1. Nowadays, the recom-

mended ozone dosage in full-scale applications does not

exceed 0.03e0.05 gO3 gTSS�1 to achieve a balance between
B

rupted cells calculated referring to N0 during HPH: (A) total
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Fig. 8 e Profiles of percentages of intact, permeabilised and disrupted cells calculated referring to N0 during thermal

treatment: (A) total cells (free D aggregated); (B) free cells (excluding aggregated).
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sludge reduction efficiency and costs (Foladori et al., 2010).

The research is continuously oriented towards the optimisa-

tion of the ozonation process, both in the reactor configura-

tion and in gas transfer systems, with the aim of minimising

ozone dosages (inter alia Yan et al., 2009; Foladori et al., 2010).

For this reason we investigated a range of very low ozone

dosages, below 30 mgO3 gTSS
�1 (Fig. 9).

As shown in Fig. 9A, intact cells decreased significantly at

low ozone dosages up to 10 mgO3 gTSS
�1 (from 78% to 40% of

N0) while for higher dosages the percentage of intact cells

decreased more slowly. Below 10 mgO3 gTSS�1, intact cells

underwent a progressive permeabilisation and significant

disruption, while above 10mgO3 gTSS
�1 the disruption of cells

levelled off (Fig. 9A).

This behaviour is due to the competition for ozone in

reaction between soluble and particulate organic matter. The

reaction between ozone and sludge occurs only near the

gaseliquid interface, a liquid filmwith a thickness to the order

of mm (El-Din and Smith, 2001). It is expected that the applied

ozone will react first with soluble compounds and then attack

the particulate solids (Cesbron et al., 2003). Even at low sol-

ubilisation levels, hydroxyl radicals produced by ozone

react quickly with solubilised compounds which act as scav-

engers of particulate solids. On the basis of these assump-

tions, we can consider that ozone initially attacks bacterial

cells in the flocs near the gaseliquid interface producing
A

Fig. 9 e Profiles of percentages of intact, permeabilised and dis

total cells (free D aggregated); (B) free cells (excluding aggregate
soluble compounds and small sized colloids (Paul and

Debellefontaine, 2007). Subsequently, as the concentration of

solubilised compounds gradually increases, they may have

a screening effect on the further lysis of bacterial cells espe-

cially when aggregated in clusters or microcolonies and

located in the inner part of flocs and thus protected against

oxidation.

Ozonation did not cause a significant disaggregation of

flocs, as can be observed from the data of free cells shown in

Fig. 9B. A part an initial slight increase in the number of free

intact cells, they decrease for ozone dosages higher than

5 mgO3 gTSS
�1 (Fig. 9B). On contrary, free permeabilised cells

increase continuously, indicating that ozonation causes both

cell permeabilisation and the detachment of cells from the

flocs. The hypothesis is that ozonation act against cell struc-

ture but also against Extracellular Polymeric Substances

which have a role in bacteria aggregation.

3.7. Comparison of SR technologies using Es

A qualitative comparison regarding themain effects on sludge

structure and bacterial cells by the 4 SR technologies tested is

indicated in Table 1 and is a synthesis of the observations

made in the sections above.

A quantitative comparison among SR technologies should

take into account energy consumption. SCOD is compared
B

rupted cells calculated referring to N0 during ozonation: (A)

d).
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Table 1 e Synthesis of the main effects on sludge structure and bacterial cells by the SR technologies tested.

Effect caused by SR technology SR technology

Ultrasonication HPH Thermal treatment Ozonation

COD solubilisation þþ þ þþ þ
Sludge flocs disaggregation and release of free cells from flocs þþ þþ þ þ
Permeabilisation of intact cells e e þþ þ
Disruption of intact cells þ þ e þþ
Disruption of permeabilised cells þ þ e þþ
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in Fig. 10A, while the percentage of intact cells (free þ
aggregated) referred to the initial number of total cells (N0) are

shown in Fig. 10B as a function of the specific energy, Es (a

logarithmic scale was chosen due to the very wide range of Es
levels used with the SR technologies tested). To convert oper-

ational parameters for each SR treatment into an equivalent Es
value the assumptions described in the “Materials and

Methods” section were used.

The conservation of intact cells (freeþ aggregated) after an

SR treatment was also evaluated as the ratio log(IE/I0), where:

- IE is the number of intact cells after the application of an SR

technology at a certain ES level;

- I0 is the initial number of intact cells in untreated sludge.
C
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Fig. 10 e (A) Profiles of SCOD, (B) percentages of intact bacteria (c
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This ratio log(IE/I0) is similar to that often used in the

literature to describe the survival of viable cells. In a semi-

logarithmic plot (Fig. 10C) linear survival curves were used as

a good fit for the experimental data for the 4 SR treatments,

with the slope indicated in the diagram. A slow inactivation

rate was observed for ultrasonication, while ozonation

showed a faster inactivation rate.

Among physical/mechanical treatments, ultrasonication

produces the highest SCOD and the maximum loss of

membrane integrity, but resulted in an excessive energy

consumption similar to thermal treatment. In the thermal

treatment, theneed toheat thesludge leads tohighoperational

costswhena thermal source is not availablewithin theWWTP.

However, thermal treatmentmay becomemore feasible when
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solid content of sludge is increased by sludge thickening and

the specific energy consumption per unit of TSS is thus

reduced. In spite of the low SCOD released, ozonation caused

a significant loss ofmembrane integrity, achievable in practice

without excessive energy levels. Mechanical disintegration is

not so energy-hungry to achieve significant damage to cells,

but the equipment is often considered tohavehigh investment

costsand there is a technological limit in theapplicationofvery

high pressures (risk of clogging, wear, etc.).
4. Conclusions

FCM was effectively used for the assessment of damage to

bacterial membranes in activated sludge after the application

of the 4 SR technologies selected for this research. In all cases

the damage to cells increased for increasing levels of applied

energy, but to a different extent:

- ultrasonication and HPH (belonging to physical/mechanical

treatments): they act in a similar manner against both intact

and permeabilised cells causing their disruption indepen-

dently of the functional status. The HPH mechanism gener-

atesstrongshearforceswhichcausescellulardamageat lower

ES than ultrasonication which is based on ultrasonic waves;

- Thermal treatment, even when applied at moderate

temperatures (up to 90 �C) causes significant cell per-

meabilisation, due to denaturation phenomena, which also

produces a biased increase in the number of fluorescent

particles at temperatures above 45e55 �C compared to 20 �C;
- Ozonation causes both permeabilisation and disruption of

cells, but permeabilisation occurs to a lesser extent. At low

ozone dosages, ozone firstly causes the lysis of bacteria free

in suspension or in the external parts of flocs,while at higher

dosages ozone reacts preferentially with the solubilised

compounds released by cell lysis and floc disaggregation.

Among these SR technologies, the comparison of applied ES
demonstrated that it is often not so economic to reach the

complete disruption of bacterial cells which usually requires

very high energy levels. Therefore, to reduce sludge produc-

tion it is probably more advantageous to cause sludge floc

disintegration and only partial damage to bacterial cells, in

order to promote better interaction between bacteria,

enzymes and substrates to favour the biodegradation process.
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