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Abstract

In the framework of antenna array synthesis and control, this thesis focus on
the development and analysis of techniques based on the Bayesian Compressive
Sensing (BC'S) for the design of sparse antenna arrays and for the estimation of
the direction of arrival (DoA) of signals impinging on an antenna array. After
formulating the sparse-array synthesis problem in a probabilistic fashion, the
single-task BC'S (ST — BC'S) is applied to the synthesis of symmetrical antenna
arrays with real weights. In order to deal with the synthesis of sparse arrays with
complex weights, the multitask version of the BC'S (MT — BC'S) is employed
to correlate the real and imaginary part of the resulting excitation distribution.
Concerning the DoA estimation problem, starting from the observation that
the signals impinging on the antenna array are sparse in the spatial domain, a
single-snapshot ST — BC'S-based technique is proposed. Moreover, the MT —
BCS-based extension of this technique is introduced in order to enhance the
quality of the estimations through the exploitation of the correlation among
different snapshots. In the numerical validation, an exhaustive analysis has been
performed to assess effectiveness, reliability, but also limitations of the proposed
methodologies. Comparisons with state-of-the-art are reported and discussed, as
well.

Keywords
Array synthesis, Bayesian Compressive Sensing, Direction-of-Arrival Estimation,
Sparse Arrays
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Chapter 1

Introduction

Thanks to its ability to allow the recovering of a signal starting from far
fewer measurements than conventional techniques based on Shannon’s theorem
[85], the Compressive Sensing (CS) paradigm has attracted a lot of attention in
several research areas of information theory, signal processing, computer science
and electrical engineering [80, 81, 85|, enabling the development of completely
new approaches in these fields [80, 81, 85|. Traditional sampling approaches
require that the sampling rate is higher than twice the maximum frequency
value in the measured signal. However, in many applications such as imaging
and radar, the signal to be acquired is often sparse with respect to a proper basis
(i.e. it has a concise representation in that basis). As a consequence, a large
amount of data samples can be represented with a small number of coefficients.
For example, lossy image compression coders encode only the locations and the
values of the most significant coefficients of an image, throwing away the majority
of the coefficients with almost no perceptual loss. This process requires the
acquisition of all the data in order to perform the compression, resulting in a
waste of measuring resources. Differently from traditional compression schemes,
instead of measuring the full signal, the CS acquires only the amount of data that
is not discharged. This feature is useful in many applicative scenarios, where
the acquisition of a large number of measurements is not practical for several
reasons, like the high cost of the measurements, the limited number of sensors
or the large time required for each measurement. The CS approach is based on
finding an approximate solution x to an underdetermined linear problem y = Ax,
minimizing at the same time the number of non-zero entries of x (see Equation
2.1). If suitable conditions are fitted, a high-dimensionality solution x can be
retrieved from a small number of measurements y. In addition to the advantages
over classical sampling schemes, the popularity of the CS is related to (i) the
flexibility and generality of its formulation, allowing its application to a wide
range of problems, (ii) the effectiveness of the corresponding solution techniques
and to (iii) the wide availability of software libraries implementing state-of-the-
art CS algorithms [57, 58, 59, 60| for effectively dealing with complex engineering



problems.

Thanks to their efficiency, CS strategies have gained a lot of interest in the
EM community. For example, in [84], the CS has been applied to radar remote
sensing, a problem where the standard CS requirements (i.e. sparsity of the
solution and linearity) are fitted in a natural way. However, by using suitable
approximations or if some a-priori knowledge is at hand, several electromagnetic
problems can be reformulated in order to fit the CS requirements. In this way,
the CS has been recently extended to several fields of electromagnetics with very
interesting results. These applications include array diagnosis [2], array synthesis
[51, 52|, direction-of-arrival estimation [76], inverse scattering and microwave
imaging [53, 54].

On the other hand, in order to guarantee the practical exploitability of CS-
based techniques, several issues like numerical stability and theoretical conditions
to guarantee their optimality still need to be carefully addressed. Indeed, the
validity of widely adopted assumptions concerning the features of the problems,
such as the Restricted I[sometry Property, cannot be always granted in EM prob-
lems of interest, whose properties are often constrained by the underlying physics
[21, 86]. Accordingly, the use of several popular solvers relying on these assump-
tions, including those based on l1-norm minimization, may not be the optimal
choice in EM synthesis and inverse problems [21, 86]. Recently, a set of effective
techniques have been proposed in order to address the above issues and enable the
effective application of the CS paradigm in EM problems [41, 42]. Such strate-
gies are essentially based on the reformulation of the EM problems in suitable
probabilistic scenarios, following a Bayesian paradigm comprising suitable spar-
sity priors [41, 42]. The arising “Bayesian CS” (BC'S) solution strategies have
been therefore adopted to properly address design/inversion problems arising in
several different scenarios [3, 21, 86, 87, 95|.

Differently from the approaches based on CS, the Bayesian Compressive Sens-
ing (BCS) proposed in [41] searches for the most probable sparse solution fitting
the measured data samples. Thanks to the probabilistic formulation, the kernel
of the problem is not required to satisfy any specific theoretical feature, like the
restricted isometry property (RIP) [85]. The verification of these features is of-
ten very difficult in practical applications. However, while the CS is able (under
certain circumstances) to obtain the exact reconstruction [79][80], this is not the
case of the BC'S. Moreover, due to the real-valued nature of the BC'S solver,
its extension to the sampling/recovery of complex signals is not efficient [41].
In addition, the standard BC'S approach is not able to correlate the informa-
tion obtained from different measurement sets acquired in different time instants
or by different acquisition systems to enhance the estimation performances. In
order to avoid these problems, the Multi-Task Bayesian Compressive Sensing
(MT — BCS) methodology has been introduced in [60]. Differently form the
standard BC'S implementation (ST — BC'S), the MT — BC'S allows the proba-
bilistic correlation [60] of different sets of measurements in order to improve the
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accuracy of the reconstruction. Additionally, the problem of the estimation of
complex signals can be handled in a similar way, by exploiting the MT — BC'S
to correlate the real and imaginary components of complex measured data, en-
abling the methodology to recover complex signals. The basic formulation of the
ST — BCS and MT — BCS approaches is resumed in the following Chapter.

Thesis outline

The thesis is organized as follows. Firstly, the BC'S general formulation is intro-
duced in Chapter 2. In Chapter 3, the problem of the synthesis of sparse linear
arrays with real weights is addressed by means of a ST — BC'S strategy. Suc-
cessively, the methodology is extended in Chapter 4 to the synthesis of antenna
arrays with complex weights by means of a MT — BC'S approach. Chapter 5
presents the problem of the estimation of the DoAs of signals impinging on a
linear antenna array from a BC'S perspective, focusing on both the ST — BC'S
and MT — BC'S. This methodology is then extended to the planar array case in
Chapter 6. Some general conclusions follow in Chapter 7.






Chapter 2

Mathematical Formulation

When the relation between the measured data and the unknowns is linear, the
objective is to determine a K-dimensional vector x € R¥*! starting from a M-
dimensional set of measured data y € RM*!, where x is related to the measured
data y by the relation

y =A x (2.1)

A € RM*E heing a matrix modeling the linear relationship between the data
and the unknowns. However, in many engineering and scientific problems, the
number of measurements M is smaller than the number of unknowns K. In this
case, the system of equations (2.1) results to be underdetermined with a non-
unique solution. therefore, it is not possible to obtain an accurate reconstruction
of the unknown x without adding some informations the problem.

In many circumstances, the unknown signal x can be represented by using
a number of coefficients very small with respect to K. This means that only a
small number of coefficients of the vector x is different from zero. In this case,
the measured vector y is called compressible and the unknown vector x is called
sparse. Under the sparsity hypothesis, the unknown signal x can be retrieved by
solving the following compressive sensing (CS) problem|81, 85]

min ||x||,,  subject to y = Ax (2.2)

where ||x||,, = S lzk|” . However, the problem (2.2) is non-convex, and
its solution can be obtained only with an exhaustive combinatorial search. An
alternative common approach is to consider the problem|81, 85|

min [|x|[, subject to y = Ax (2.3)

where ||x||, = Zszl |z |. This is a convex problem which can be recast as a
linear programming problem and solved in an efficient way[81, 85].
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2.1 Single Task BCS (ST — BCS)

Let us consider the system of linear equations (2.1). Under the ST — BC'S frame-
work, the estimation problem is recast as: given y € R™*! find the most sparse
solution x € RX*! which maximizes the a-posterior probability max, p (x|y). In
other words

Xgr = arg {max [p (X|y)]} subject to x is sparse (2.4)

In order to take into account the sparsity constraints imposed on the solution,
the following sparseness prior is defined

p(x) = / o (x|a) p () da (2.5)

In (2.5) the sparseness of the signal vector x is controlled by the unknown
hyper-parameter a [41]. By assuming a Gamma-distributed hyper-parameter
vector, Equation 2.4 can be rewritten as follows|41]

Xgr = arg {m}z{aux [p (X\y, o, a) © (02, a\y)] } (2.6)

Since the term @ (x|y, 0%, a) in 2.6 is given by the signal model, if a Gaussian
distribution is assumed (which is realistic if AWGN is at hand [41]), it can be
rewritten as [41]

o (xly,0%a) = ! exp{—<x_u) QE(X_M)} (2.7)

(2r) "7 \/det ()

where 2 € RF*X and pu € REX! are equal to

= L . B
= = (;ATA+d1ag(a)) (2.8)
1 _ .7
no= ;‘:A y (2.9)
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T denoting the transpose operation.

As it can be observed, the maximum value of (2.7) occurs when the posterior
mean g is equal to x. Hence, the problem of maximization of (2.6) is solved by
finding the values of the parameters a and o2 that maximizes the term p (o2, aly).
With the help of the Bayes Theory, it is possible to prove that the term g (02, aly)
in (2.6) complies with [41]

p (0% aly) o« ¢(ylo* a)p(c®) p(a) (2.10)

where, according to [41], the terms p (0?) and p (a) can be assumed to be
constant. Hence, the computation of the values of the parameters a and o2
that maximizes p (y|o?,a) and hence the probability appearing in (2.6) can be
performed by maximizing the logarithm of  (y|o?, a).

Accordingly, the problem is solved by finding the parameters o2, and agr
that maximize the following Maximum Likelihood function|[41]

Lsr (0%,a) = log|p (y]o* a)] = (2.11)
% {Nlog (2m) + log [det (Cgsr)] + yTCg}y}

where Cgr = 021+ Adiag (a) ' AT, Cgr € RM*M and T € RM*M s the identity
matrix. By following the guidelines in [41], the optimization of (2.11) is carried
out by using a relevant vector machine (RVM), initialized with a user defined
starting value for 02, 02 = 02. Finally, starting from the computed o2, and agr
values, the estimated solution vector xgr is obtained as

1 (ATA
Xs = —5— (T + diag (aST)) ATy (2.12)
st \ 93T

It is worth noticing that this value correspond to the mean value of (2.7).

2.2 Multi Task BCS (MT — BCS)

As already discussed, the ST — BC'S methodology presented in the previous sec-
tion is not efficient when dealing with multiple data sets (e.g. data sets acquired
at multiple time instants or by different measurement systems) or when complex
data are at hand. In these cases, the linear system (2.1) can be rewritten as

y(w) = A X(w)’ w = 1,...,W (213)

where x®) € REX1 1 =1,...,W, can be, alternatively:

7



2.2. MULTI TASK BCS (MT — BCS)

e the data measured by different sets of sensors or at different time instants
(w=1,..,W).

e the real and imaginary part of a complex signal (w = 1, 2).

The only way to apply the ST — BC'S in this case is by solving W independent
maximization problems (2.11), one for each set of data x™), w = 1,..., W, leading
to independent solutions aé’}w) and a(Su}), w =1,...,W. This is a non-efficient way
of using the data at hand, since the possible relation between different tasks (i.e.
one of the W problems in (2.13)) is neglected. In order to address this limitation,

the problem is formulated in a MT — BC'S framework as follows
L
TMT = ; arg {ril(%( [p (x™), aly™)] } (2.14)

a € RE*! being a shared hyper-parameter vector [42]. By following an ap-
proach similar to the BC'S [42], the optimal value of the hyper-parameter vector
a is computed by maximizing the marginal likelihood function

Lo (@) = —% S {log [det (Cyrr)] + (2.15)
(N +26)) log [(y(“’))T Cury™ + 2/32] } (2.16)

where Cr = I+ Adiag (a) ' AT, Cpr € RM*M and By, 3, are user-defined
parameters. Finally, the MT — BCS estimation of the signal x is computed as
[42]

1 —
Xy = WZ{[ATA + diag (apr)] ATy(w)} (2.17)
w=1

Like in the ST — BCS case, all the terms are unknown except the shared
hyperparameter vector a,;r, whose value is computed by applying a suitable
RVM strategy applied to the multi-task case.



Chapter 3

Real-Weight Sparse Linear Array
Synthesis by Bayesian Compressive
Sensing

An innovative methodology for the synthesis of sparse linear arrays with pre-
scribed pattern features is numerically analyzed when dealing with large aperture
layouts. The technique is based on a probabilistic formulation of the synthesis
problem which is solved through a Bayesian Compressive Sensing (BC'S) tech-
nique. A set of numerical experiments are presented to assess the features and
potentialities of the BC'S design approach when layouts comprising several hun-
dred elements are at hand.



3.1. INTRODUCTION AND MOTIVATION

3.1 Introduction and Motivation

The design of satellite communication systems, radars, and devices for biomedical
imaging and remote sensing applications usually imposes severe constraints on
the pattern features (in terms of peak sidelobe level, directivity, beam footprint
and shape) of the array to be deployed [4]. The necessity of achieving these goals
while obtaining inexpensive, light and simple architectures, especially when deal-
ing with large antenna systems, has lead to the introduction of sparse arrays [4].
Despite their advantages, however, sparse layouts have the main limitation that
they yield a reduced control of the beam shape [4, 11, 24, 9, 19, 29, 72, 18, 28]|. In
order to address this drawback, several different techniques have been proposed
either for the minimization of the PSL in thinned arrays [11, 29, 72, 18, 28|, or for
the synthesis of maximally-sparse arrays with prescribed pattern characteristics
[9, 19, 14]. While the first problem has been widely studied [4, 11, 29, 72, 18, 28],
only few techniques have been introduced for the solution of the latter [21|. In
this framework, numerically inexpensive approaches, such as the steepest descent
method, the iterative least-square technique, the simplex search, and the linear
programming, were among the first methodologies applied to sparse array design
[14, 21]. However, these techniques exhibit some drawbacks in terms of flexibil-
ity, required a-priori information, and final obtained performances [21]. More
recently, in order to overcome these limitations, the simulated annealing [19] and
the Matrix Pencil Method [14] have been successfully applied to the design of
sparse arrays with prescribed pattern features. Nevertheless, despite their ex-
cellent performances, these methodologies can lead either to high computational
costs [19] or to sub-optimal performances when dealing with shaped beams [14].
An innovative approach for the synthesis of sparse arrays with prescribed pattern
features has been recently proposed [21]. This methodology is based on the for-
mulation of the sparse array synthesis problem as a “Compressive Sensing (CS)
retrieval” one, in which the sparseness constraints are imposed on the final array
layout [21]. The arising CS problem is then recast in a probabilistic framework
exploiting the so-called Bayesian Compressive Sensing formulation [41], and then
solved by means of an efficient Relevance Vector Machine (RVM) [45]. Thanks to
this approach, BC'S sparse array synthesis has proved to be effective in dealing
with standard and reference sparse array synthesis problems [21]. However, an
analysis of its performances (in terms of pattern matching accuracy and com-
putational complexity) when dealing with large aperture arrays has never been
presented. This Chapter is aimed at analyzing the performances, features and
limitations of the BC'S-based technique when dealing with the design of sparse
arrays displaced over apertures of width up to several hundred wavelengths. To-
wards this end, a set of array synthesis problems dealing with different layouts
and patterns features are presented to assess the potentialities and drawbacks of
the considered technique.
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CHAPTER 3. REAL-WEIGHT SPARSE LINEAR ARRAY SYNTHESIS BY
BAYESIAN COMPRESSIVE SENSING

3.2 Mathematical Formulation

The problem of finding the sparsest (real and symmetric [21]) linear array with
desired radiating properties can be cast in terms of a pattern matching one as
follows [21]:

Synthesis Problem: given a set of K samples of a reference pattern Frppr =
[Frer (u1) ..., Frer (ug) , ..., Frer (uk)], and a fidelity factor e, find the sparsest
set of array weights w = [wy, ..., wy] such that |Frgr — Fpes||® < e.

where Fpes = [Fpes (u1) ..., Fos (ug) , ..., Fpes (uk)] is the vector of the
samples of the sparse array radiation pattern, whose k-th component is

27Tdnuk

N
Fpes (ug) = anyn coS ( ) L k=1,.., K (3.1)
n=1

A is the wavelenght, ux (k = 1,...,K) are the matching angles, d,, (n =
1,...,N) are the allowed positions for the sparse array elements and v, is the
Neumann’s number |21, 11]. By modeling the radiation pattern as a Gaussian
random variable [21], the above synthesis problem can be recast in the framework
of BC'S to obtain the following equivalent one [21]:

BCS Problem: given Frpp, find w, a and ¢ which maximize the a-posteriori
probability p ([w,a, 02| |[Frer).

where a and o? are, respectively, the hyperparameter vector [45] and the
estimated fidelity variance [21]. Following the RVM approach [41, 45], this BC'S
problem is then solved by the following procedure [21]:

1. Input phase: define the reference pattern samples Frrp, the set of admis-
sible element locations d,, (n = 0,...,N), and the initial estimate of the
fidelity variance;

2. Matriz Definition: calculate the problem ® € CE*N| with & (k,n) =

U, COS (—%d)’f“’“ )

Y

2

3. Hyperparameter Posterior Modes Estimation: find a and ¢° according to

the RVM procedure [21];

4. Array weights estimation: find the optimal sparse weights by w = E®YEppp /o>
—1
, where 2 = <A + ‘M;H> and A = diag(a).

(e

3.3 Numerical Results

In order to assess the performances of the BC'S design method when dealing
with large aperture arrays, a set of experiments has been carried out considering
either Dolph or Taylor reference patterns [4], and evaluating, for each obtained
design, the pattern matching error

11
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53 f 1|FREF — Fpes (u)|2du
f—l |FREF(U)|2 du

where Fpcog (u) and Frpp (u) are the sparse-array pattern and the reference
pattern, respectively. Moreover, the number of elements of the sparse layout
Pgcs and the total array size Lgcog have been compared to those obtained with
a uniform layout, as well.

As a first numerical example, the synthesis of a sparse array exhibiting a
Dolph pattern (uniform array aperture L = 49.5 \, PSL = —30 dB) has been
considered. The final obtained result (Fig. 3.1) indicates that the considered
methodology is able to achieve a good accuracy [Fig. 3.1(b)|, despite the ex-
ploitation of a reduced number of radiating elements [Pgcs = 64 - Fig. 3.1(a)|.
This is actually confirmed by the achieved fidelity factor, which shows a match-
ing error below 0.1% (£ = 5.3 x 107° - Tab. 3.1), as well as by the obtained PSL
value, which turns out very close to the reference one (PSLpcs = —29.5 dB -
Tab. 3.1). Moreover, the uniform and sparse weight arrangements indicate that
a similar envelope is actually followed by both arrays [Fig. 3.1(a)|, therefore
suggesting that the BC'S method actually samples in a nonuniform fashion the
same Dolph distribution of the uniform layout.

, (3.2)

It is also worth pointing out that a reduced synthesis time is observed in this
case (At = 0.23 [s] - Tab. 3.1) notwithstanding the non-negligible problem size
and the exploitation of a laptop for the synthesis (all the simulations have been
performed on a single core PC running at 2.16 GHz). Similar conclusions can
be drawn when dealing with a Taylor reference pattern for the same aperture
(PSL = —30 dB, ’transition index’ T" = 6). Indeed, the significant element
reduction (Ppcg = 66 - Tab. 3.1), the numerical efficiency (At = 0.25 [s]
- Tab. 3.1), and the good matching accuracy both in terms of fidelity factor
(6 =7.8%x107° - Tab. 3.1) as well as of PSL (which actually turns out improved
- Tab. 3.1) are confirmed despite the presence of very low sidelobes at endfire
[right inset of Fig. 3.2(b)]. Moreover, it is again noteworthy that the uniform and
sparse layouts exhibit a similar weight envelope in the whole aperture, although
the BC'S yields a nonuniformly sampled architecture [Fig. 3.2(a)].

As a final numerical experiment, the synthesis of a L = 499.5 A\, PSL =
—50 dB, T' = 6 Taylor pattern has been considered to investigate the features of
the considered methodology when dealing with significantly larger apertures and
lower sidelobe levels. Also in this case, the plot of obtained sparse-array pattern
[Fig. 3.3(b)] indicates that a good matching accuracy is obtained in the whole
visible range (£ = 6.4 x 1075 - Tab. 3.1), despite the reduced number of radiating
elements of the sparse layout (Ppcs = 628 - Tab. 3.1). Moreover, while the sparse

12
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Figure 3.1: Dolph reference pattern (L = 49.5\, PSL = —30 dB) - Array layouts
(a) and power pattern (b) of the reference and obtained array.
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Figure 3.2: Taylor reference pattern (L = 49.5\, PSL = —30 dB, T = 6) - Array
layouts (a) and power pattern (b) of the reference and obtained array.
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Figure 3.3: Taylor reference pattern (L = 499.5\, PSL = =50 dB, T' = 6) -
Array layouts (a) and power pattern (b) of the reference and obtained array.

layout turns out slightly smaller than the reference one (Lpcs = 499.3 A - Tab.
3.1) the above observations regarding the similarity of the envelopes shown by
the BC'S sparse and uniform layouts still hold true [Fig. 3.3(a)].

It is even more interesting to notice that, despite the wide aperture compris-
ing several hundred elements, such synthesis was quite efficient also from the
numerical viewpoint (At = 2.24 [s| - Tab. 3.1). These results further confirm
the effectiveness and efficiency of the BC'S synthesis approach in the design of
large sparse layouts possibly comprising several hundreds elements.
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| Reference Pattern | BCS |
| Test Case | L [A] | PSL | Puns | Lpes [N | PSL | <2 [ € [x107°] | At |
Fig. 3.1 [ 495 [ =30 [ 100 | 495 [ —29.5] 0.64 53 023
Fig. 3.2 | 495 | =30 | 100 | 495 | —30.1 | 0.66 78 025
Fig. 3.3 ]499.5 | =50 [ 1000 || 499.3 | —49.2 | 0.62 64 [224

3.4 Discussions

Table 3.1: Array Performance Indexes.

The synthesis of large sparse linear arrays with prescribed pattern features has
been carried out through an innovative methodology based on a Bayesian Com-
pressive Sensing framework. The design approach, which formulates the synthesis
problem in a probabilistic framework and then exploit a fast Relevance Vector
Machine for its solution, has been numerically assessed when dealing with lay-
outs possibly comprising several hundred elements. The presented analysis has

shown that

e sparse layouts providing a good pattern fidelity (¢ < 107%) can be easily
synthesized through the BC'S methodology also when apertures of several
hundred wavelengths are at hand (Tab. 3.1);

e the synthesis approach turns out efficient whatever the aperture size (At <
3 [s] - Tab. 3.1);

e the arising sparse layouts usually exhibit an envelope close to that of their
uniform counterparts, therefore indicating that the BC'S method effectively
tends to 'nonuniformly’ sample the same current distribution [Figs. 3.1(a),

3.2(a), 3.3(a)].
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Chapter 4

Complex-Weight Sparse Linear
Array Synthesis by Multitask
Bayesian Compressive Sensing

In this Chapter, an innovative method for the synthesis of maximally sparse
linear arrays matching arbitrary reference patterns is proposed. In the frame-
work of sparseness constrained optimization, the approach exploits the multi-task
(MT) Bayesian Compressive Sensing (BC'S) theory to enable the design of com-
plex non-Hermitian layouts with arbitrary radiation and geometrical constraints.
By casting the pattern matching problem into a probabilistic formulation, a
Relevance-Vector-Machine (RV M) technique is used as solution tool. The nu-
merical assessment points out the advances of the proposed implementation over
the extension to complex patterns of [21]| and it gives some indications about the
reliability, flexibility, and numerical efficiency of the M'T" — BC'S approach also
in comparison with state-of-the-art sparse-arrays synthesis methods.
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4.1 Introduction and Motivation

Radar tracking, biomedical imaging, satellite and ground communications, and
remote sensing applications require antenna patterns with suitable sidelobes, null
positions, mainlobe size and shape, and directivity [4]. To synthesize shaped-
beam arrays, several approaches especially concerned with uniformly-spaced ar-
rangements [4][5][6][7][8] have been proposed over the last sixty years. Although
successful in some applications, uniform arrays have the limitation to be expen-
sive and heavy when wide apertures are at hand [4] since a huge amount of
radiating elements spaced by % are needed to avoid grating lobes [9]. Therefore,
non-uniform arrangements have been naturally proposed [9][10][11][12][13][14]
because of their advantages over their regularly-spaced counterparts (e.g., reso-
lution [15], sidelobe level control/reduction [16], and efficiency in dealing with
physically constrained geometries [17]). State-of-the-art solutions usually con-
sider thinned regular arrangements to yield a minimum peak sidelobe level (PSL)
[4][13][18][19] or sparse layouts with the minimum number of radiating elements
given a desired pattern [14][20][21]. Whether several techniques as random thin-
ning [22][23], dynamic programming [24], genetic algorithms [25][26][27], analyt-
ical approaches [13][18][28], and hybrid methodologies [29][30][72][32] have been
investigated for array thinning, few methods have been so far proposed for syn-
thesizing sparse arrangements [14][20][21|[33][34]. As for these latter, steepest
descent [35], iterative least squares [36], simplex search [9], and linear program-
ming [37] methodologies have been firstly developed because of their efficiency.
Improved performances have been successively reached by using recursive inver-
sion techniques [38][39], stochastic optimizers [20], generalized Gaussian quadra-
ture approaches [40], and the matrix pencil method (M PM) [14][33][34]. More
recently, a new approach based on the Bayesian Compressive Sensing (BC'S) [41]
has been proposed for the design of sparse layouts matching user-defined reference
patterns [21]. The so-called “BC'S technique” has been formulated starting from
a probabilistic description of the array synthesis [21] then solved by exploiting
an efficient fast relevance vector machine (RV M) [41]. Thanks to its efficiency,
the BC'S syntheses usually positively compares with state-of-the-art methodolo-
gies in terms of flexibility, synthesis time, and number of array elements, while
guaranteeing an excellent pattern matching [21]. However, such a formulation
deals with symmetric purely-real arrangements and its extension to complex syn-
theses is not efficient because of the real-valued nature of the BC'S solver itself
[41]. Consequently, this Chapter is aimed at proposing, still in the framework
of the probabilistic sparseness constrained optimization, an innovative, flexible,
and numerically efficient complements to state-of-the-art approaches for the syn-
thesis of maximally sparse linear arrays matching a (possibly complex) reference
pattern. Following the guidelines in [21] to recast the complex-valued synthesis
in probabilistic terms and suitably reformulating the original pattern-matching
problem in an equivalent 'fictitious’ one (Eq. 4.11), a multi-task Bayesian Com-
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SYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSING

pressive Sensing (MT — BCS) methodology [42]| is applied. Unlike the BC'S
extension where the real and the imaginary components of the sparse excitation
vector are dealt with as independent, a “shared-prior” [42] is exploited to enforce
the synthesis of complex excitations rather than purely real and/or imaginary
weights.

This Chapter is organized as follows. The sparse synthesis of complex-weight
linear arrays is mathematically formulated in a probabilistic fashion and the
MT — BCS method is presented (Sect. 4.2). Representative results of an ex-
tensive set of numerical simulations are presented to validate the proposed ap-
proach, to assess its advances over the BC'S extension to complex patterns, and
to compare its performances with those of state-of-the-art techniques (Sect. 4.3).
Finally, some conclusions are drawn (Sect. 4.4).

4.2 Mathematical Formulation

4.2.1 Array Synthesis Problem

The problem of synthesizing a (complex and non-symmetric) sparse linear array
with a prescribed radiated pattern can be formulated as follows [21]

Array Synthesis Problem - Find the minimum P value and the corre-
sponding sparse array descriptors v = {v,; p=1,...,P}and1={l,; p=1,..., P}
that satisfy the matching constraint

2
Frer (ug) — va exp (12wlu)| <e. (4.1)

1 p=1

]~

i

In (4.1), € is the “fidelity factor”, v, and [, are the complex (v, € C) weight
and the position in wavelengths (I, € R) of the p-th array element, respectively,
while Frpp (ug) € Cis the k-th (k =1, ..., K) sample of the reference pattern at
the observation angle u;, within the angular range [—1, 1]. Similarly to [9][21], the
P element positions are assumed to belong to a user-chosen set of N (N > P)
arbitrary candidate locations d = {d,; n =1, ..., N} to straightforwardly inte-
grate geometrical constraints in the synthesis process [21]. Equation (4.1) is
then recast into the following sparse matrix form [43|[21]

by introducing the sparse' weight vector w = {w,; n=1,..., N}

oy ifd, =1,
Wn _{ 0 otherwise ’ (4.3)

'Tt is worth remarking that w turns out a sparse vector since N > P.
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Step 0. Get input values of N and w,, (n =1,..., N);
Step 1. Set p=1, n=1;

Step 2. If w,, # 0, set [, = d,,, v, = w,, and p=p + 1;
Step 3. If n < N, set n =n+ 1 and goto 2.; else goto 4.
Step 4. Return output values of P, [, and v, (p =1, ..., P)

Figure 4.1: Computation of the complex weights v, € C and element positions
l, €R (p=1,.., P) starting from the sparse vector w € CV.

where FREF = {FREF (Uk), k = 1, ...,K}, D = {Ak, k= ]_,,K} is a vec-
tor of zero-mean complex Gaussian entries with variance o2 proportional to e
[41]44][43], and

exp (i27r§\l1 u1 ) exp (i27rciNu1 )

d 2 : : (4.4)

exp (zQﬂcg\luK) exp (iQ;Td)I\VuK)

is the “observation matrix” [41]. Thanks to this “sparse” description, the Antenna
Synthesis Problem can be also formulated as follows

Sparse Vector Synthesis Problem - Find the minimum /y-norm weight
vector w (w € CV) that satisfies (4.2)

where
N P
Iwllgy 2> wal® =) " Joal* = P. (4.5)
n=1 p=1

Once w is found, the unknowns v and 1 of the Antenna Synthesis Problem are
computed as detailed in Fig. 4.1.

4.2.2 B(CS Synthesis Method

The solution of the Sparse Vector Synthesis Problem cannot be yielded through
the method described in [21], since the BC'S approach addresses purely real-
valued problems [21][41], while (4.2) generally includes complex-valued vectors
and matrices. To directly extend the approach in [21] to the complex formulation
at hand, Equation (4.2) is manipulated as follows

Frpr — ®W =D (4.6)
by defining w = [R{w}, Z{w}] (W € R?™), Fppr = [R{Frer}, Z{Frpr}]
(Fror € RZ), D — [R{D}, Z{D}] (D € R, and & — 723{{;)}} ;zz{f}}

(® € R2E*2N) where R {-} and Z {-} stand for the real and the imaginary part,
respectively. Accordingly, the following extended real-valued problem can be
then formulated
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BCS ‘Deterministic’ Synthesis Problem - Find the minimum /y-norm
“extended” weight vector w (w € R*Y) that satisfies (4.6).,

and successively expressed in the probabilistic framework [21]

BCS ‘Probabilistic’ Synthesis Problem - Find the minimum /y-norm
“extended” weight vector w (w € R*Y) subject to

wBS = arg {mgx? (v~v| ]?‘REF)} (4.7)

whose (real-valued) solution is given by [21]

~ o~ -1

_ 1 oTep ~

WBCS = 52 (52 + aBCS> (I)TFREF (48)
BCS BCS

where 5% is the estimated variance of Ay (k = 1,..., K) and aB%% (aB%S ¢

R is the hyperparameter vector, whose n-th entry, a2, controls the strength
of the sparseness prior over w2 [45]. These parameters are computed by max-

imizing the logarithm of the BC'S “marginal likelihood”, LB (a, 0?) [21]

£7%5 (@,0%) = —L [(2) log 27 + log | €| +

+ﬁ£EF <5> B ﬁREF:| 49

- -l -
where C' 2 02] + @ [A] ®T and A = diag (a).

Finally, the N entries of the weight vector w2S (wpcg € CV) are found as
wl = @B 1wl n=1,..,N. (4.10)

Equation (4.8) provides a direct extension of the method in [21]| to deal with
complex and non-symmetric arrays. However, such a solution bears an intrin-
sic limitation. The real (R {wf“} = wP“ n = 1,..,N) and imaginary
(Z{wBS} = wBC%, n = 1,..,N) parts of the weights are managed as inde-
pendent quantities - see Eq. (4.6) - since each w59 € R (n = 1,...,2N) is
treated as statistically independent. See Eqs. (4)-(6) in [21]. This in turns
leads to sparse BC'S layouts where the array weights v, (p = 1, ..., P) are often
either purely real or purely imaginary, neglecting that sparse complex layouts fre-
quently exhibit non-negligible real and imaginary components at the same array
locations. Such a drawback generally does not enable the approach to synthesize
very sparse layouts with a good reference pattern matching, as it has been con-
firmed by the numerical analysis whose representative results will be presented
in Section 4.3.
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4.2.3 MT — BCS Synthesis Method

To overcome the limitations of BC'S Synthesis Method (Sect. 4.2.2), the MT —
BC'S approach [42] is exploited and suitably customized for statistically mod-
elling the relations between the real and imaginary parts of the array weights.
Towards this end, Equation (4.2) is firstly rewritten in terms of the fictitious
weights vectors wg = R {w} and w; 2 Z{w} (w;,wgr € RY)

{ Fr=9wr=Dr (4.11)
F[ - (I)W[ = D[

where @\R € R?K and 231 € R?K are zero-mean complex Gaussian error vectors
(with variance (’2—2) such that Dy + D; = D, & £ [R{®}, T{®}] is the MT
observation matrix, while F = [R {Fz}, Z{Fg}] and F; = [R{F;}, Z{F}]
(f‘R, F, € R2K). Moreover, Fp € CK and F; € C¥ satisfy the following condition

FR+iF]:FREF. (412)

Accordingly, the multi-task (real-valued) problem turns out to be

MT — BCS ‘Deterministic’ Synthesis Problem - Find the minimum
lo-norm “fictitious” weight vectors wx and w; (wr, wg € RY) that satisfy (4.11)

and as follows into the probabilistic framework [42]

MT — BCS ‘Probabilistic’ Synthesis Problem - Find the minimum £y-
norm “fictitious” weight vectors wg and w; (w;, wr € RY) subject to

W%T_BCS = arg [mawa P <WR| f‘Rﬂ

W}MT*BCS = arg [maxwl P (W[| f‘[)] (4.13)
whose (real-valued) solution are given by
wiT=BOS — <diag (@MT-BOS) 4 @Té)l OTF (4.14)
He{R,I},
while the corresponding estimated weight vector turns out to be
wMT—BCS _ W%T—Bcs + iwMT-BCS, (4.15)

See the Appendix.

4.2.4 MT — BCS Algorithmic Implementations

The algorithmic implementation of the MT — BCS technique consists of the
following steps (Fig. 4.2(b)):

22



CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAY
SYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSING

Input Phase - Set the reference pattern Frpp(u), the grid of admissible lo-
cations (d), the set of pattern sampling points (u), the target variance o2 of the
error term D, and the user-defined scale priors 5, and 5y (Eq. (A.4)) [42];

Matriz Definition - Fill the entries of the vectors f‘R, f‘f, @, ZSR, and ﬁl;

Hyperparameter Posterior Modes Estimation - Find a¥T~5¢9 by maximizing
(A.15) [42];

Array Weights Estimation - Find wMT=BCS by (4.15);

Output Phase - Compute Pyr_pes, vMT=B9 and 1MT=BCS (Fig 4.1).

By comparing the algorithmic descriptions of the BC'S (Sect. III of [21] and
Fig. 4.2(a)) and MT — BC'S (Sect. 4.2.4 - Fig. 4.2(b)), it is observed that both
approaches require d, u, and o2, while the MT — BCS needs the definition of
the scale priors 8; and S, instead of the initial estimates o2 as for the BCS.
Thanks to these differences and unlike the BC'S approach, the MT — BC'S

e enables the explicit model and control of the relationships between the real
and imaginary parts of the array weights thanks to the specification of 3,
and [y in (A.4);

e requires neither some a-priori knowledge/information on the noise (e.g.,
o2) nor the estimation of the noise level (i.e., 32) for determining the prob-
lem solution.

4.3 Numerical Results

The objectives of this section are two-fold: On the one hand, it provides guide-
lines for applying the MT — BC'S method to the synthesis of sparse complex
layouts. On the other hand, it assesses the method’s effectiveness in both reduc-
ing the number of array elements and accurately matching reference patterns,
with the assessment made by comparing the MT" — BC'S results with those of
other reliable, state-of-the-art (regular and sparse) array synthesis methodolo-
gies. For the assessment, the following quantities are analyzed: the normalized
matching error, &,

2
Frpr(u) — 2521 vy exp (i2wl,u)| du

[ | Frer(u)* du

the aperture length, L, (L = |lp —[1]), the mean (AL £ L/P — 1), and the

=

= , (4.16)

.....

4.3.1 Sensitivity Analysis

The first set of numerical experiments is concerned with the sensitivity of the
MT — BCS synthesis on its control parameters, while the reader is referred
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BCS

Feee(U)
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e @ a o -
D
(a)
MT — BCS

rer(U)
u
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d Input Hyperparameter Mode
i - Fill Matrices - S

Phase Estimation [Eq. (49

S stimation [Eg. (49)] 1 Find Weights

; e Ilé A MT-BCS
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B, > R A o} 4
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Figure 4.2: Sparse Synthesis Flowchart: (a) BC'S method (oy being the initial
estimate of o [21]) and (b) MT — BC'S method.
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to [21] for the calibration of the BCS approach. Towards this purpose, the
synthesis of a non-uniform array matching a complex-weight “cosecant” pattern
with L = 7.5\ and PSL = —20 dB is assumed as reference test case (Fig. 4.3(b)).
Such a pattern can be synthesized by a uniform layout of Pyy; = 16 elements
A/2-spaced [5]. The MT — BC'S synthesis is carried out by assuming
2k

and setting the uniform grid of N candidate locations as follows d,, = L (—% + %),
n = 1,..,N. Figure 4.3(a) shows the representative points of the synthe-
sized M'T' — BC'S sparse layouts in the £-Pyrpes plane, along with the as-
sociated Pareto front in such a plane, when varying the control parameters
within the ranges: N = {25,...,800}, K = {10, ...,30}, 02 = {107°,5.0 x 107!},
B = {107%,10%}, and By = {1072,10%}. These results show that the values of
the pattern matching accuracy lie in the range £ € [107%,2] with a number of
array elements ranging from a minimum of Pyrgcs = 5 up to a maximum of
Pyurpes = 25 (Fig. 4.3(a)). By analyzing the synthesized pattern for three
Pareto solutions, namely Pyrpes = {5,13,18} [Fig. 4.3(b)], it turns out that
the sparsest solution (Pyrpcs = 5) yields a poor approximation of the reference
pattern as also confirmed by the corresponding matching error [¢ = 2.86 x 107! -
Fig. 4.3(a)|, while a good fitting is reached when Pyrpecs = 13 active elements
are at hand [¢ = 7.24 x 107° - Fig. 4.3(a)]. A further reduction of the matching
error e.g., £ = 2.83 x 1077 - Fig. 4.3(a)| by using a larger number of elements
(Pyrees = 18) does not provide significant improvements. Therefore, analogous
to the guidelines deduced in [21], an accuracy index close to or below &; = 1074
is identified as the optimal threshold for obtaining a suitable trade-off between
pattern matching and reduction of the number of elements (i.e., %). As
for the associated array structure, the optimal trade-off MT — BC'S layout (i.e.,
Pyrees = 13 - € = 7.24 x 107°) exhibits a distribution of the array weights sim-
ilar to that of the corresponding uniform architecture [5], although with a non-
uniform, and larger, on the average, inter-element spacing [Figs. 4.3(¢)-4.3(d)].
This suggests that the method performs an implicit non-uniform sampling of
the ideal current distribution synthesizing Frprp (u) [Fig. 4.3(¢)-4.3(d)]. On the
contrary, the non-optimal trade-off solutions differ quite significantly from the
uniform distribution case [e.g., ”ﬁiﬁfs ~ 0.4 when Pyrpes =5 - Fig. 4.3(c)].

Figure 4.4 completes the sensitivity analysis carried out for calibrating the
MT — BCS. Each plot gives the values of & and Pyrpcs versus a control
parameter (i.e., K, 02, 31, B2, and N) by setting the others to the optimal
trade-off setup (i.e., Pyrpcs = 13 - K = 33, N = 250, ¢ = 1073, 3, = 103,
By = 10?).

By analyzing the behaviour of £ as a function of K [Fig. 4.4(a) |, it turns
out that increasing the number of samples of the reference pattern up to the
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Figure 4.3: MT —BC'S Sensitivity Analysis (Shaped Pattern Synthesis: L = 7.5\
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Nyquist threshold (Kpnyquist = 2 X Pyny — 1 = 31 [14]) gives a non-negligible
reduction of the matching error £, while further increments only slightly modify
the matching accuracy or Pyrpcs. Accordingly, a sampling threshold within
K € [Knyquists 1. 2K Nyquist] has been assumed in the following analyses.
Concerning the dependence of ¢ and Pyrpos on o2, Figure 4.4(b) shows that
the values of the two indexes are almost constant when o2 < 3 x 1072, while they
increase otherwise. Such a behavior is actually expected from the MT — BCS
theory. See Sect. 4.2.3 and the Appendix. Indeed, larger 0% values correspond
to less accurate pattern approximations [see Eq. (4.2)] as well as less sparsely
filled layouts. Consequently, good trade-offs between accuracy and sparseness
are expected by choosing o? € [1074,1072].
With reference to the M'T'— BC'S sensitivity to the scale prior 3, & reduces as the
prior value is enlarged [Fig. 4.4(c)], even though such a matching improvement
is obtained by increasing the number of radiating elements when 3, > 10* [Fig.
4.4(c)]. Larger values of 35 yield more sparsely filled layouts, while smaller priors
provide higher accuracies [Fig. 4.4(d)]. Consequently, the ranges for the scale
priors have been set to 3; € [10%,10%] and 3, € [5 x 10,5 x 10?], respectively.
As far as the lattice grid is concerned, Figure 4.4(e) shows that the matching
accuracy is quite stable if N 2 2%, while larger/smaller N values result in a
sharp increase of Pyrpcos/E. This is mainly caused by the increased numerical
complexity of the problem at hand since its size grows with N. A trade-off value
within N € [SLUTNI, E’OL%] is then suggested.
The obtained tradeoff margins range from a 1 : 1.2 ratio [for K - Fig. 4.4(a)] to
a 1:100 ratio [for 3; and o2 - Figs. 4.4(b) and 3.4(c)]. Such a behaviour, caused
by the different physical meaning of each parameter (see discussion above), does
not actually represent a big issue for the proposed design methodology. In fact,
quite wide ranges exist for which the method performances are almost constant.
Furthermore, the M7T-based BC'S exhibits a “smoother” dependence on its con-
trol parameters than the single-task BC'S approach. Indeed, unlike the BC'S
[21], £ generally exhibits nearly monotone behaviour versus control parameters
le.g., Figs. 4.4(a)-4.4(e)] and Pyrpes presents reduced oscillations given very
large parameter variations |e.g., Fig. 4.4(¢)|. Thus MT — BC'S provides better
stability and robustness than BC'S for any reference pattern or aperture.

4.3.2 MT — BCS Assessment

For numerical assessment, we consider both unconstrained (Sect. 4.3.2.1) and
constrained problems (Sect. 4.3.2.2), where forbidden regions are defined in
the pattern region (Sect. 4.3.2.2.1) or on the array geometry (Sect. 4.3.2.2.2).
Concerning the unconstrained syntheses, the analysis aims at performing a con-
sistency check to assess the reliability of the MT — BC'S in dealing with problems
also manageable by the original BC'S approach [21] (Sect. 4.3.2.1.1) and succes-
sively detailing the MT'— BC'S performance applied to the synthesis of arbitrary
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‘ Reference Pattern H BCS ” MT — BCS
_ S AL, - ) — S —— A T BOS
‘ LA ‘ Punrt | Type H € [x10~] ‘ % Ly | AL ‘ Lncs ‘ At || £[x1079] %75'165 Ly | AL | Luzpos | py ‘
7.5 16 Tab. II [6] 1.33 x 102 1.18 0.12 0.81 0.97 0.17 0.59 0.81 0.2 1.20 0.96 0.21
18 37 Dolph 1.04 0.65 1.44 1.57 1.00 0.26 2.81 0.65 1.5 1.57 1.00 1.60
7.0 14 Tab. III [6] 0.52 1.47 0.018 0.65 0.98 0.52 0.22 0.73 0.93 1.38 0.98 0.45

Table 4.1: Unconstrained Synthesis - Array performance indexes.

unconstrained patterns also in comparison with state-of-the-art methods (Sects.
4.3.2.1.2-4.3.2.1.3).

4.3.2.1 Unconstrained Synthesis

4.3.2.1.1 Consistency Check (Hermitian Patterns®) In order to com-
pare BC'S and MT — BC'S approaches when dealing with Hermitian patterns,
let us consider a L = 18\ equi-ripple reference pattern (PSL = —14.45 dB)
synthesized with the uniform array design method in [6] (Pyy; = 37). The
plots of the Pareto fronts in the £&-P plane indicate that, as expected, the two
solutions’ results are very close over a range of P [Fig. 4.5(a)]. The optimal
trade-offs [Pyrpcs = Ppes = 24, £ = &, - Fig. 4.5(a)] turn out similar in
both patterns [Fig. 4.5(b)] and weights [Fig. 4.5(¢)] as also confirmed by the
figures of merit in Table 4.1, notwithstanding the different synthesis processes.
Both BC'S and MT — BC'S behave similarly with Hermitian reference patterns,
since a key difference between BC'S and MT — BC'S is the numerical handling
of the relation between the real and imaginary parts of the array weights, and
Z(v,) =0 (p=1,..., P) when the reference pattern is Hermitian [Fig. 4.5(b)].

To further assess that such a behaviour is due to the symmetry properties of
the pattern at hand, the next numerical experiment is concerned with a set of
Hermitian patterns derived from [20]. The results of the synthesis of the three
layouts with L = {19.5X,25X,50 A} are presented in Table 4.2 and compared
with the sparse arrangements generated by a stochastic methodology based on
simulated-annealing (SA) [20]. As it can be observed, the BC'S and MT —
BC'S procedures achieve similar performances for each qualitative index (e.g., the
matching accuracy and the array aperture) with an element saving equal or better
than that of the stochastic approach (Table 4.2). This is also visually confirmed
by the plots in Fig. 4.6 related to the representative example characterized by
L = 25X and PSL = —14.45 dB [20]. With reference to the layout with Ppcg =
Pyrees = 20 elements, it turns out that an acceptable fidelity [¢ < 4.3 x 1073
- Fig. 4.6(b)| is yielded by both BCS-based methods despite the reduction of
the array elements with respect to the S A-optimized sparse solution (Pss = 24).
The similarities are not limited to the patterns, but as expected, are apparent
also in the distribution of the real array coefficients [Fig. 4.6(c)].

2 Hermitian Pattern means symmetric pattern amplitude and anti-symmetric pattern phase
that can also be generated by only real array weights.
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[LIN[PSLIABI[ P & [ mge | S5 | o | g | A |
200 [1950] —510 |16 1.00 | 2.00 |2.60 | 1.00

BCS 19.50 —5.10 16 | 2.34 x 1077 | 1.00 | 2.00 |2.60 | 1.00 | 0.48
MT — BCS | 19.50 —5.10 16 | 2.14 x 1078 | 1.00 | 2.00 |2.60 | 1.00 | 0.30
[20] 25.00 | —14.45 |24 — 1.00 | 1.00 | 2.17 | 1.00 -
BCS 24.94 | —13.63 |20 |358x 1072 | 0.83 | 0.95 |2.62| 1.00 | 1.11
MT — BCS | 24.95| —13.30 [20| 43 x 1073 | 0.83 | 1.00 | 2.62| 1.00 | 2.23
[20] 50.00 | —14.45 |25 — 1.00 | 1.00 | 4.17 | 1.00 -
BCS 3299 | —11.70 |22 2.06x 1072 | 0.84 | 0.50 | 4.02 | 0.76 | 5.04
MT — BCS [ 3299 | —12.92 |21 [719x1073| 0.84 | 1.00 |3.30 | 0.76 | 4.52

Table 4.2: Unconstrained Synthesis (Hermitian Pattern: Prpp = Pyys [20]) -
Array performance indexes.

4.3.2.1.2 Symmetric Power Patterns Unlike Hermitian patterns, BCS
and MT — BC'S syntheses are expected to differ when only the reference power
pattern is symmetric. The results from the synthesis of a non-Hermitian flat-top
array (Pyn; = 14 - [6]) with symmetric power pattern [Fig. 4.7(a)] and asymmet-
ric phase distribution [Fig. 4.7(b)| reveal the enhanced effectiveness of the MT
procedure, which is due to its improved accuracy in modelling the statistical rela-
tions between the (non-negligible) real and imaginary parts of the array weights.
As far as the optimal BC'S-based trade-off solutions are concerned, it turns out
that there is a halving of the array elements [Ppcs = 22 vs. Pyrpes = 11
- Table 4.1] along with similar matching accuracies [Epcs = 0.52 x 107 vs.
Emrpes = 0.22 x 107% - Table 4.1]. This latter is mainly due to the intrinsic
limitation of the BC'S approach to deal with the two components of the array
excitations as correlated unknowns [Eq. (4.6)]. Indeed, several BCS weights
turn out either purely real or purely imaginary |£ v,] 5g € {0,+%,£7} - Fig.
4.7(d)| unlike the MT — BC'S coefficients.

4.3.2.1.3 Asymmetric Power Patterns The improvements of the MT —
BCS approach are expected to be even more impressive when asymmetric pat-
terns are at hand. In order to analyze such a case, the next example deals
with the synthesis of a L = 7.5\ cosecant pattern from [6] [Pyn; = 16, Fig.
4.8(b)]. The Pareto BC'S solutions in the £-P plane [Fig. 4.8(a)| clearly in-
dicate that the multi-task procedure is far more efficient than the single-task
one. Indeed, the MT — BC'S yields sparser layouts for a fixed £ threshold [e.g.,
Pyrees/Ppes = 0.68 when € ~ &, - Fig. 4.8(a)|, and a higher accuracy for a
given P |e.g., &vrpes/Epos ~ 8.0 x 107° when P = 15 - Fig. 4.8(a)]. As an
illustrative example, the patterns [Fig. 4.8(b)] and the array coefficients [Figs.
4.8(¢)-4.8(d)| of the representative solutions circled in Fig. 4.8(a) |[Pgcs = 19
vs. Pyrpcs = 13| are shown. As far as the array layouts are concerned, it is
worth noticing that an element saving of ~ 20% (Pyrpcs/FPunr = 0.81) and
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Figure 4.7: Comparative Assessment (Symmetric Power Pattern Synthesis: *Flat
top’, L = T\, Prgr = Pyn; = 14 [6]) - Pattern amplitudes (a), pattern phases
(b), excitation amplitudes (¢), excitation phases (d) of the uniform array [6] and
of the optimal trade-off BC'S and MT — BC'S layouts.
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Figure 4.8: Comparative Assessment (Asymmetric Power Pattern Synthesis:
"Cosecant’, L = 7.5\, Prer = Pyn; = 16 [6]) - (a) MT — BCS and BCS
Pareto fronts in the (£, P) plane. Power patterns (b), excitation amplitudes (¢),
and excitation phases (d) of the uniform array [6] and of the optimal trade-off
BCS and MT — BCS layouts.

an aperture reduction of ~ 4% (Lyrpcs/Lunr = 0.96) with respect to the uni-
form solution are obtained by the MT — BC'S without compromising the pattern
matching accuracy (Table 4.1), while the BC'S fails in reducing the array ele-
ments (Pyraces/Punr = 1.18). Moreover, the behaviour of the array excitations
over the aperture confirms that the non-uniform MT — BC'S distribution follows
the uniform one since the pattern matching refers to the complex reference pat-
tern and not only to the power pattern, thus constraining both amplitudes and
phases of the array coefficients.

To provide a more exhaustive comparison of the BC'S methodologies, the re-
sults of an extensive analysis on asymmetric ‘cosecant’ reference patterns with
constant sidelobes are presented. More specifically, the reference patterns have
been chosen such that L € {12\, 19.5\} (i.e., Pyns € {25,40}) and PSL =
{—=20dB,—-30dB,—40dB}. The plots of P for the optimal (i.e., £ ~ &) trade-
off BC'S and MT — BC'S layouts are shown in Fig. 4.9 as a function of Pyyy.
By observing the case of the reference pattern with PSL = —20 dB, the MT
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Figure 4.9: Comparative Assessment (Asymmetric Power Pattern Synthesis:
"Cosecant’, Prpr = Py [6]) - Plot of P vs. Pyyy for different values of the
PSL [dB| of the reference pattern.

technique always outperforms the single-task method with significantly sparser
solutions (P];;;ic'fscs € [0.59,0.66] - Table 4.3). This holds true also when low-
ering the sidelobe level (Fig. 4.9). On the other hand, although more array
elements are necessary as Py increases, the MT — BC'S always enables a re-
duction of the array elements with respect to the uniform architectures (Fig. 4.9
- Pyreos < Pynr), while the condition Pgeg > Py is mandatory for the BC'S
to reach the accuracy threshold & ~ 1074 [% € [0.76,0.84] vs. % =1.28
- Table 4.3].

The effectiveness of the MT — BC'S to reduce the number of elements in the array
arrangement is pictorially highlighted in the representative example analyzed
in Fig. 4.10 (PSL = —40 dB). Whatever the matching accuracy, the MT —
BC'S patterns exhibit a higher sparseness |[Figs. 4.10(a)-4.10(b), 4.10(¢)-4.10(d),
4.10(e)-4.10(f)| than the BC'S. Furthermore, the pattern matching of the M7 —
BC'S solution is always better for a given value of P [Figs. 4.10(a), 4.10(¢),
4.10(e)|.
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‘ Reference Pattern H BCS H MT — BCS ‘
L[ PSL | Puny | € [x1077 | fee= Af;;w SE | e T AE [ & [x107 7 | Brees [ Blen T 3L T Lancs 1A \
12 | =20 | 25 3.00 1.28 | 0.048 | 0.77 | 1.00 | 0.29 0.53 0.76 0.74 | 1.33 | 1.00 |7.73
12 —30 25 2.86 1.28 | 0.048 | 0.77 | 1.00 | 0.38 0.38 0.84 0.51 1.2 1.00 1.39
12 —40 25 0.24 1.28 | 0.49 | 0.77| 1.00 | 0.23 0.11 0.84 0.72 1.2 1.00 0.87
14.5 | =20 30 0.48 1.2 0.59 | 0.83 | 1.00 | 0.23 0.46 0.80 0.49 | 1.26 1.00 0.56
14.5 | =30 30 1.29 1.23 | 0.058 | 0.8 | 0.99 | 0.44 1.47 0.80 0.63 | 1.26 1.00 2.85
14.5 | —40 30 0.96 147 | 0.33 | 0.67| 1.00 | 0.25 0.81 0.77 0.40 | 1.28 0.98 3.82
19.5 | =20 40 3.75 1.3 0.67 | 0.75] 0.98 | 0.24 2.27 0.78 0.54 | 1.30 1.00 6.19
19.5 | =30 | 40 1.29 143 | 0.31 |0.70 | 1.00 | 1.30 0.80 0.78 0.19 | 1.30 | 1.00 |6.99
19.5 | —40 40 0.83 1.35 | 0.39 | 0.74 | 1.00 | 0.36 0.44 0.78 0.52 | 1.30 1.00 4.38

Table 4.3: Unconstrained Synthesis (Asymmetric Pattern: ’Cosecant’, Prpp =
Pynr [6]) - Array performance indexes.

The BC'S approach is usually faster® than the multi-task procedure, although
both methods do not require heavy computations [At < 8 s - Table 4.3]. This
is expected since neglecting the relationships between real and imaginary parts
of the array excitations (see Sect. 4.2) simplifies the problem, but significantly
degrades the synthesis performance with complex layouts.

As for the state-of-the-art comparisons, let us refer to recently introduced
approaches based on the Matrix Pencil Method (M PM) [14][33][34][47]. Such
a choice is mainly due to their effectiveness and numerical efficiency usually
outperforming other sparse-synthesis methods in terms of convergence speed,
reliability, and accuracy [14][33][34].

The first set of comparisons is concerned with the benchmark case in [46].
The synthesis results are reported in Figs. 4.11(a)-4.11(b) and quantitatively
compared in Table 4.4. With reference to the (¢, P)-plane [Fig. 4.11(a)|, the
stand-alone matrix pencil method [33] is, as expected, significantly less accurate
(P =19: &yrpar = 1.43 x 1071 [Fig. 4.11(b)] vs. Eyrpes = 3.53 x 1073 - Table
4.4) than the sub-optimal (i.e., £ > &) MT — BC'S because of the shaped-beam
reference pattern [14], while the hybrid TABU — M PM (T MPM) [47| reaches
a comparable pattern matching (P = 19: &ypar_7rapy = 3.21 x 1073 - Table 4.4)
although requiring a non-negligible computational burden [47] because of the
T ABU-based stochastic optimization in the second step of the hybrid procedure.

Concerning the so-called forward-backward version of the matrix pencil method
(FBMPM) |34], the results in Figs. 4.11(¢)-4.11(f) derived from [48][49] (also
discussed in [34]) point out that the FFBM PM exhibits performance close to that
of the MT — BC'S when dealing with shaped-pattern problems [e.g., P = 13:
Epprpym = 8.09 X 1079 vs. Evraos = 5.32 X 1075 - Table 4.5 and Fig. 4.11(0);
P =15: éFBMPM =4.94 x 10_5 VS. éMTBCS = 1.68 x 10_4 - Table 4.6 and Flg
4.11(e)|.

3In all cases, the synthesis time At refers to the execution of the Matlab code on a single
core laptop running at 2.16 GHz.
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| [ | | | Optimal Tradeoff (€ < &u) || Sub-Optimal Tradeoff (€ > &u,) |

Uniform [46] [ MPM [47] [ TMPM [47] BCS MT — BCS BCS MT — BCS

L\ 14.5 14.47 14.14 14.5 14.5 11.28 13.00
P 30 19 19 35 24 20 19

P 0.63 0.63 117 0.8 0.66 0.63
e 1.15 1.20 0.29 0.058 0.29 0.075
N 1.61 1.57 0.85 1.26 1.19 1.45
—— 1 0.93 1.00 1.00 0.78 0.90
t[s] - - 0.24 0.53 0.22 0.97

1431071 [ 321 x 10" [[9.85x107° | 815x10° [[3.71x 102 3.53x107°

Table 4.4: Unconstrained Synthesis (Asymmetric Pattern: ’Cosecant’, L =
145\, Prer = Pyyr = 30 [46]) - Array performance indexes.

| | [48] | FBMPM [34] | BCS | MT — BCS |

L[\ |75 7.51 7.50 7.46
P 16 13 14 13
P - 0.81 0.88 0.81

UNT
Rlmin | 1.06 0.042 0.74
AL
= - 1.25 1.15 1.24
= - 1 1 1
UNT
tls] | - — 0.16 1.00
3 — || 8.09x10° [1.89x10°%] 5.32x10°°

Table 4.5: Unconstrained Synthesis (Asymmetric Pattern: *Cosecant’, L = 7.5\,
Prepr = Pyni = 16 [48]) - Array performance indexes.

| | [49] | FBMPM [34] | BCS | MT —BCS |

LA ] 95 9.375 9.5 9.34

P | 20 15 15 15

o - 0.75 0.75 0.75
Aloin
s | - 1.23 0.39 0.97
= - 1.34 1.36 1.35

T - 0.99 1.00 0.98

UNT

tls] | - — 0.18 0.98

3 — 4.94 x 107° | 4.62 x 1072 || 1.68 x 10~*

Table 4.6: Unconstrained Synthesis (Asymmetric Pattern: *Cosecant’, L = 9.5\,
Prer = Pynir = 20 [49]) - Array performance indexes.
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Figure 4.11: Comparative Assessment (Asymmetric Power Pattern Synthesis:
"Cosecant’, Prpr = Pyyr) - Representative points in the (£, P) plane of the BC'S
and MT — BC'S Pareto fronts and of the M PM-based methods (left column),
power patterns of the reference uniform array, the M PM-based methods, and
the optimal trade-off BC'S and MT — BC'S solutions (right column). (a)(b)
L = 145\ (Pyn; = 30) [46], (¢)(d) L = 7.5\ (Pyn; = 16) [48], and (e)(f)
L =95\ (Pyn; = 20) [49].
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| | [50] - Puns =20, Lyns = 9.5) | Pynr =30, Lyny = 14.5) |
| [ FBMPM |  BCS |[|MT—-BCS[ FBMPM | BCS [MT—BCS |
L 9.5 9.46 9.5 14.5 14.5 14.5
P 16 29 16 24 44 24
o 0.8 1.45 0.8 0.8 1.47 0.8
N 0.97 0.019 0.31 0.00324 0.34 0.45
N 1.27 0.68 1.27 1.26 0.67 1.26
o 1.00 1.00 1.00 1.00 1.00 1.00
tls] | 7831071 [558x107" ] 6.70x 10" [ 9.61x 10| 2.5x 10" 1.43
€ [679%x1073[714x107°]927x107° [[3.98x 107 %[ 9.62x10° [ 7.93x 10"

Table 4.7: Unconstrained Synthesis (Asymmetric Pattern: ’Cosecant’, Prrpp =
Pynr) - Array performance indexes.

However, it cannot be neglected that the M PM (and, consequently, the
FBMPM) can present some numerical instabilities (or no convergence) as it was
pointed out in [14][18] and confirmed by the synthesis results of the ’cosecant’
pattern with PSL = —40 dB generated by the uniform aperture L = 14.5\ (Fig.
4.13) as well as for the test case in [50] (Fig. 4.12). Unlike the BCS-based
approaches, the fitting with the reference pattern of the FBMPM*, (pparpur,
does not monotonically improve as P grows |[Fig. 4.12(a) and Fig. 4.13(a)].
For example |Fig. 4.12(a)|, the MT — BCS reaches the matching threshold
&~ & (e, Emurpos]poyg = 9.27 x 107° - Table 4.7) just adding an element
to the array with Pyrpcs = 15, while the FBM PM accuracy worsens when
moving from Prpypy = 14 to Preypyr = 16 (SFBMPMJP:14 =850 x 107 vs.
Ermpm ] p_ig = 6.79 x 107?). Therefore, the MT — BC'S faithfully reconstructs
the reference pattern [Fig. 4.12(b)| reducing the uniform array elements of %
unlike the FBM PM that does not provide the same accuracy (i.e., £ < 107%)
unless using more radiators (Prpypy = 19 = Eppvpm] p_yg = 4.60 x 107°).

Similar outcomes can be drawn from the test case in Fig. 4.13 (Table 4.7)
that allows us to point out also another interesting feature of the BC'S-based
approaches. By observing the FBM PM arrangement in Fig. 4.13(¢), it turns
out that the minimum inter-element spacing is very small and equal to AL,,;, =
1.62 x 1073 X\ (Table 4.7). On the contrary, the BC'S rationale with the choice of
the candidate locations for the array elements, d, gives the user the possibility to
a-priori impose the lower bound for the distance between two adjacent elements.
As for the C'PU-time, the indexes in Table 4.7 indicate that the synthesis time for
the MT — BC'S and the FBM PM is generally of the same order in magnitude
(e.g., AtFBMPM = 7.83 X 10_1 [S] VS. AtMTBCS = 6.70 X 10_1 [S])

*A MATLAB implementation of the FBMPM (based on the mpencil function
http://www.mathworks.se/matlabcentral /index.html) have been used assuming the parameters
suggested in [34] for the following numerical tests.
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4.3.2.2 Constrained Synthesis

Previous discussions gave some insights about the efficiency of the MT — BC'S
in dealing with shaped reference patterns as well as about its advances in terms
of element sparseness, matching accuracy, final layout properties, and numerical
efficiency over the standard BC'S or in comparison with reference state-of-the-
art methodologies. The final set of experiments, concerned with an equi-ripple
(PSL = —30 dB) cosecant reference pattern generated by a uniform aperture of
L = 19.5\, points out the flexibility of the BC'S-based methodology to handle
constrained sparse-array syntheses. Performing constrained sparse synthesis is
not a trivial task for a wide range of state-of-the-art methods, except for op-
timization methods which, however, usually involve heavy computations when
high-dimension solution spaces are at hand.

4.3.2.2.1 Pattern Constraints The first test case has been designed by
limiting the reference pattern samples Frpp(ux) to the angular region u €
(—0.7,0.9) [i.e., up ¢ {[—1,—0.7JU[0.9,1]}, k = 1,...,K]|. As expected, the
optimal trade-off MT — BCS and BCS patterns faithfully match the refer-
ence pattern only within the constrained region [{yrpes]pogy = 2.35 X 107°
vs. &pos)poyy = 4.96 x 107°- Fig. 4.14(a)| guaranteeing a reduction, more
significant for the BC'S even though still Py = 44 > Pyny = 40, of the ele-

ment number with respect to the full-constrained case (%J MTBOS = 1.07 and
PCOn o
B2 s = 129).

4.3.2.2.2 Geometry Constraints The last cases model aperture blockage
constraints within the BC'S syntheses by setting forbidden regions for the ra-
diating elements [see Sect. 4.2]. More specifically, two different scenarios have
been investigated either defining symmetric (d,, ¢ {[—6A, —=bA] U [6A, 6]}, n =
1,...,N) or asymmetric (d, ¢ {[—7\,—6A]U[3\,4A\]}, n = 1,..., N) forbidden
regions. The plots of the optimal trade-off layouts and associated patterns (Fig.
4.15) show that both compressive-sampling procedures succeed in carefully re-
producing the reference pattern [£y7pcs = 1.01 x 1072 vs. Epog = 2.32 x 1075 -
Figs. 4.15(a); Eyrpos = 6.08x 1075 vs. Epes = 9.68 x 1077 - Figs. 4.15(b)| while
also complying with the geometrical constraints [Figs. 4.15(¢)-4.15(e) and Figs.
4.15(d)-4.15(f)| despite the non-negligible aperture blockage (> 10% in both
cases). Furthermore, the MT — BC'S technique confirms also in those scenarios
its higher efficiency (than the BC'S) in minimizing the array elements [Ppcg = 63
VS. PMTBCS = 37 - FlgS 415(0)—415(6), PBCS = 58 vs. PMTBCS = 34 -
Figs. 4.15(d)-4.15(f)| also with respect to the (unconstrained) uniform solution
[Faracs — 0.92 - Figs. 4.15(c)-4.15(e); 24208 = (.85 - Figs. 4.15(d)-4.15(f)].
Of course, the element saving turns out to be lower than that for the 'uncon-
strained’ BC'S-based syntheses because of the greater complexity of the synthesis
at hand [i.e., %J vrpos — 1.18 and %J pos = 1.09 (symmetric forbidden
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Figure 4.14: Flezibility Check (Constrained Pattern Synthesis: 'Cosecant’, L =
Power patterns (a) and array coefficients (b)(c) of the optimal trade-off BC'S
and MT — BCS layouts.
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= 1.09 and 2

JMTBCS PumoJBCS = 1.02 (asymmetric forbidden

region) and %
region)].

4.4 Discussions

An innovative, flexible, and efficient complement to the existing approaches for
the synthesis of sparse layouts with arbitrary radiation features has been pro-
posed. The proposed method extends the range of applicability of the technique
in [21]| by considering a MT Bayesian methodology. Towards this end, the origi-
nal pattern matching problem has been formulated in a Bayesian fashion within
the framework of the sparseness constrained optimization and afterwards it has
been solved by a suitable RV M-derived methodology. Selected results from an
extensive numerical validation have been presented to provide an evaluation of
the sensitivity of the MT — BC'S method to its control parameters as well as
on its accuracy, flexibility, and computational efficiency. Advantages and limi-
tations of the proposed approach have been pointed out using comparisons with
state-of-the-art approaches. In summary:

e the MT — BC'S technique is simpler to calibrate than the single-task BC'S
approach thanks to its smoother dependency on the control parameters
(Sect. 4.3.1);

e the M'T'— BC'S methodology outperforms the single-task BC'S procedure
since, generally, the BC'S extension to complex layouts often yields to (sub-
optimal) arrangements mostly comprising purely-real and purely-imaginary
excitations. As expected, BC'S-based procedures provide very similar re-
sults when symmetric real layouts are at hand (Sub-Sect. 4.3.2.1.1);

e on average, the MT — B(C'S guarantees an element saving with respect to

(3-spaced) uniform layouts of about % € [0.65,0.81] when complex-
or real-valued symmetric patterns are at hand still providing an excellent
pattern matching [¢ < 1074];

e the MT — BCS favorably compares with state-of-the-art sparse array de-
sign procedures in terms of pattern matching accuracy, element saving,
numerical efficiency, and stability;

e additional constraints on the radiation pattern and/or the geometrical fea-
tures of the sparse array can be easily and efficiently dealt with (Sect.
4.3.2.2).

In addition, other main and innovative contributions of this Chapter consist in
the following methodological novelties:
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Figure 4.15: Flexibility Check (Constrained-Geometry Pattern Synthesis: *Cose-
cant’, L = 19.5\, PSL —30 dB, Prgr = Pyni 40) - Power pat-
terns (a)(b), excitation amplitudes (¢)(d), and excitation phases (e)(f) of the
(unconstrained) uniform array and of the optimal trade-off constrained BC'S
and MT — BCS layouts when d,, ¢ {[—6\, =5\ U [5X,6A]} (left column) and
dy & {[—T\, —6A] U [3X,4\]} (right column).
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an extension to the complex-valued synthesis problems of the BC'S approach
in [21];

an innovative and equivalent ’fictitious’ formulation of the complex-weight
pattern matching problem for enabling the application of the MT — BC'S,

an innovative M'T — BC'S method for dealing with complex-valued sparseness
constrained optimization by statically correlating the real and the imaginary
components of the sparse unknowns.

Future works, out-of-the-scope of the present Chapter, will be aimed at an-
alyzing the mutual coupling effects between real elements in the sparse layouts
as well as at taking into account in the synthesis process the presence of di-
rective elements. Furthermore, the derivation of array processing algorithms
(e.g., DO A-estimation [55] and adaptive beamforming [56| techniques) based on
MT — BC'S geometries will be the subject of future analyses aimed at exploiting
and integrating the features of such a sparse arrangements in an effective and
customized way.
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Chapter 5

Direction-of-Arrival Estimation in
Linear Arrays Through Bayesian
Compressive Sensing Strategies

In this Chapter, the estimation of the directions of arrival (DoAs) of narrow-band
signals impinging on a linear antenna array is addressed within the Bayesian com-
pressive sensing (BC'S) framework. Unlike several state-of-the-art approaches,
the voltages at the output of the receiving sensors are directly used to determine
the DoAs of the signals thus avoiding the computation of the correlation matrix.
Towards this end, the estimation problem is properly formulated to enforce the
sparsity of the solution in the linear relationships between output voltages (i.e.,
the problem data) and the unknown DoAs. Customized implementations exploit-
ing the measurements collected at a unique time instant (single-snapshot) and
multiple time instants (multiple-snapshots) are presented and discussed. The
effectiveness of the proposed approaches is assessed through an extensive nu-
merical analysis addressing different scenarios, signal configurations, and noise
conditions. Comparisons with state-of-the-art methods are reported, as well.
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5.1 Introduction

Estimating the DoAs of signals is a topic of great interest in several research fields
like electromagnetic, acoustic, and geophysical /seismic sensing [61][62][63][64].
As a matter of fact, the knowledge of the DoAs of the signals incoming on a
receiver can be suitably exploited to localize the positions of the corresponding
sources as well as to enable the adaptive beam forming of the receiving antenna
pattern either to enhance the system sensitivity towards desired signal directions
or to suppress unwanted interferences.

State-of-the-art literature gives to the interested reader several and effective ap-
proaches proposed in the last decades. The methods are most commonly used
are: the multiple signal classification (MUSIC) [65][66], the signal estimation
parameter via rotational invariance technique (ESPRIT) [67][68][69], and the
maximum likelihood (ML) DoAs estimator [96][71]. A main drawback of these
techniques is the need of an a-priori knowledge of the number of signals, which
is rarely available especially nowadays with the huge proliferation of wireless
devices/services and the presence of non-collaborative users. To avoid such a
constraint, a learning-by-example (LBF) approach based on a support vector
machine (SV M) has been proposed in [72] where the DoA estimation problem
has been recast to a probabilistic framework looking for the identification of the
smallest angular regions where the presence of incoming signals is most prob-
able. While efficient for some applications, the rough estimation of the DoAs
of the signals coming from the processing of the arising probability map is not
adequate for high-resolution analyses since spatially-close signals cannot be satis-
factorily detected. Therefore, the approach has been improved by implementing
a multi-resolution strategy [72].

Despite the positive and attractive features of previous approaches, all of them
share the same bottleneck. Indeed, they require the evaluation of the covariance
matrix estimated from the measurements of each sensor at different time-instants
(i.e., the snapshots). This implies an unavoidable increase of the receiver com-
plexity and a delay in the DoAs recovery although LBFE-based methods have
proved to be promising solutions also for real-time localizations [73|[74][75].

Starting from the key observation that the signals impinging on the antenna
array are intrinsically sparse in the spatial domain, efficient strategies for DoAs
estimation have been proposed [76|[77][78] where the sparsity constraints have
been imposed through a [;-norm minimization. In this framework, approaches
based on the compressive sensing (C'S) theory [81] have recently been introduced
because of the computationally efficiency, the accuracy, and the robustness to
the noise. Thanks to these features, C'S-based strategies have already been
applied to a variety of applications in electromagnetic engineering [82][83][84].
However, the main issue to cope with when applying C'S is the fact that the so-
called ’sampling matrix’ must satisfies the restricted isometry property (RIP) for
guaranteeing reliable estimations. Unfortunately, such a condition cannot easily
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verified since it results computationally demanding [85]. Alternatively, innovative
approaches based on the Bayesian compressive sensing (BC'S) [41] have been
proposed. In such a case, the original deterministic problem is reformulated
in its probabilistic counterpart then efficiently solved with the relevance vector
machine (RV M) [45]. In this line of reasoning, preliminary attempts in the
electromagnetic framework have been out to deal with microwave imaging [86|[87]
and array synthesis [21] (see also Chapter 4).

In this Chapter, the DoA estimation problem is formulated within the BCS
framework thus avoiding constraints on the sampling (or observation) matrix,
which directly links the measurements (i.e., voltages/currents) at the output
of the array elements to the unknown signal directions. More specifically, two
different strategies, extending and completing those preliminary introduced in
[88] and [C3|, are presented. The former is concerned with single time-instant
measurements (i.e., single snapshot) to enable the real-time estimation, while the
latter is aimed at giving high-resolution estimations, thanks to the processing
over multiple snapshots, still avoiding any a-priori information on the number
and the intensity of the unknown impinging signals.

The rest of the Chapter is organized as follows. The DoAs estimation problem is
mathematically formulated in Sect. 5.2 where the single-snapshot and multiple-
snapshots BC'S-based approaches are described, as well. A set of representative
numerical results is then reported and discussed in Sect. 5.3 where a comparative
analysis with reference DoAs estimation methods is also performed. Finally,
some conclusions are drawn (Sect. 5.4).

5.2 Mathematical Formulation

5.2.1 DoAs Estimation - Problem Formulation

~

Let us consider a set of L electromagnetic plane waves Ei"° (r) = Ejn¢ ¢i8@ sinfi+z cost) g
[ =1,..., L arriving from unknown directions #;, [ = 1, ..., L on a linear array com-
posed by M sensors placed along the x-axis with uniform inter-element spacing d
(Fig. 5.1). The incident signals are supposed being narrow-band and character-
ized by the same frequency content. At the sensor locations, z,, = (m — @) d,
m = 1,..., M, the electromagnetic field can be assumed being the linear com-
bination of the signals impinging on the antenna. Accordingly, the relationship
between the (complex) open-circuit voltage induced on the receiving elements
and the measured signal strengths and propagation delays across the array ele-

ments [89] turns out to be [72]

L
Uy = Z Einey - fedfrmsind Lo om=1,..., M (5.1)
=1

where 5 = 27”, A being the free space wavelength, f is the antenna effective length
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Figure 5.1: Sketch of the reference scenario: linear adaptive antenna array and
impinging signals.

supposed identical for all elements', and n,, is the m-th (m = 1,..., M) sample
from a Gaussian distribution with zero mean that models the additive noise. In
matrix form, (6.2) can be rewritten as follows

v=A(0)s+n (5.2)

where v = [v, vg, ..., vM]T is a column vector of M complex entries (v € CM*1) T
indicates the transpose, @ = [01,..,0.], A(0) = [a(0,),a (), ...,a(0,)] € CM*L
is the matrix of the steering vectors whose [-th column is given by a(f;) =
[ejﬁxlsmal, eiBrasindy - ejﬁ’“Msmel}T eCMl | =1,.. L s=|E" Ei, .., E}J"C]T
CE¥L and n = [y, na, ...,ny]" € CM*1. It worth noticing that the problem at
hand is non-linear with respect to the unknowns, 6;, [ = 1, .., L, which are present
in the exponential terms of the elements of the matrix A.

To apply the BC'S approach, the visible angular range is discretized with K > L
samples (Fig. 5.2) such that A (5) € CM*K in (5.2) and the DoAs of the incom-
ing signals are assumed to belong to the set of the K directions O, k=1,...K.

Now, the estimation problem turns out to be that of recovering the sparse sig-
nal vector § € CX*! in correspondence with the user-defined K-sampling of the

angular range, 0 = [51, . 5;(} Since the problem is linear with respect to the

unknown § and the solution is sparse in the spatial domain (i.e., few entries of §
such that 6, = 6; are non-null), the BC'S theory can be properly applied.

'Without loss of generality, isotropic elements are assumed (i.e., f = 1). Extensions to
directive or non-uniform arrangements is straightforward.
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Figure 5.2: Angular region discretization.

5.2.2 Single-Snapshot B(CS-Based Sparse Signal Estima-
tion

By applying the guidelines of the BC'S approach in [21] for dealing with complex
data, (5.2) is firstly rewritten as

{%{V} } [ w{a(e)} -s{a(9)} [%{g} } N
S {v} s{a(6)} wn{a(e)} |3 (5.3)
R{n}
(3]
R{-} and I {-} being the real and the imaginary part, respectively, to yield a
real-valued problem suitable for BC'S. As a matter of fact, although vectors and
matrices in (5.3) have double dimensions compared to those in (5.2), all entries
are now real. The sparse signal vector 8 = [R {8}, {8}]" € R*!*! satisfying
(5.3) and having minimum {¢y-norm is then obtained in a probabilistic way by
solving the following [21]

Spog = arg mgaXPr ( [@, o?, p] ‘ V) (5.4)

where o2 is the (unknown) variance of the Gaussian noise and p is the hyper-
parameter vector to be determined and controlling the sparseness of the signal
vector S [45]. By virtue of the fact that

Pr([s. 0% p]|v) =Pr (8l [v, o> p]) Pr ([o* p]| ) (5-5)

and the first term on the right of (5.5) is chosen, in the BC'S-based approach,
equal to the multivariate Gaussian distribution [21]

Pr(3l[v. %, pl) = et =

2m det(Z)
exp {_(g_H)ng—l(g_“) (5:6)
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whose maximum Spcg coincides with the mean value, the maximization of the
posterior probability (5.5) is obtained through the definition of the couple of pa-

AT ~ = -1
rameters o3¢ and ppos maximizing Pr ([o2, p]| v). In (5.6), Z = (0—12A (0) A (0) + diag (p))

N H
and p = O%EA <0) v, where
4 @ [ w{a ~3 {A (5)} .

3{A »{4(0)}

is the real-valued matrix of the steering vectors and H denotes the conjugate
transpose operation. Since

), DY

Pr( [02, p} } V) o Pr (v| [02, p]) Pr (02) Pr(p) (5.8)

and the two terms Pr (6%) and Pr (p) are constant according to the guidelines of
[45], the optimal parameters 0%,4 and ppcg are computed through the relevance
vector machine (RV M) by maximizing the logarithm of Pr (v|[0?, p]) defined
as [21]

1
L% (6%, p) = —3 [(2K) log 21 + log |Cpes| + v Cpigv] (5.9)

2

where an user-defined initial value for o2, 0% = 02, is chosen. Moreover in (5.9),

o AT
Cpos 2 021 + A <0> diag (p) " A <0) . Once 0%,4 and ppcgs are determined,
the estimated solution turns out to be

(1016

—1

/S\BCS = 3 5 +diag (chs) X
OBcs OBcs
AT
A(e) v. (5.10)

5.2.3 Multiple-Snapshot MT — BCS-Based Sparse Signal
DoA Estimation

Unlike the ST — BC'S, the MT — BC'S approach [60] correlates the DoAs es-
timation over multiple snapshots, thus avoiding the strong dependence of the
estimation performance on the noise level of the collected measurements. With
reference to the multiple-snapshots version of Eq. (5.2)

vy =A(0)sy, + 1y, w=1,..., W, (5.11)
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W being the number of snapshots, the sparse signal vector S is here determined

as follows
w

~ 1 "
SMT-BCS = W ; {arg |:I%3XPT<[SU)7 p| Vw)} } (5.12)
where s, w = 1, ..., W, are statistically-correlated through a proper definition of
the “shared” hyperparameter vector correlating the different snapshots. The opti-
mal value of p, par—gcs, is computed as puyr—pes = arg max,, { L7595 (p)}
through the RV M according to the guidelines in Chapter 4, being

LMT-BCS () = _% Z@szlzl {log (|Cyr—Besl|) + (5.13)

(K + 2¢n)log [V (Cyur—pes) Vo + 2] }

B AT
where Cyr_pes = [+ A (0) diag (p)_lA <0> and vy, 1, are user-defined

parameters [60]. Unlike the BC'S approach, the knowledge/estimation of the
variance o2 of the noise samples is not required in the M7T — BC'S based method
(see Chapter 4). Finally, the solution estimated by means of the MT — BCS
turns out equal to

SMT BCS =
{ 2 +dza9(pMT BC‘S)] (é)TVw} (5-14)
W .

5.2.4 DoA Estimation Procedure

In principle, the estimated number of impinging signals, Z, can be determined by
simply counting the non-zero elements of the recovered signal vector s. However,
many entries of s can assume amplitudes close but not equal to zero that do not
correspond to any actual signal due to the presence of the noise. Accordingly, the
original L-sparse signal turns out being a compressible one where the strongest
L signals have to be selected. Towards this aim, an energetic thresholding is
applied to remove the lowest-energy components of s in order to improve the
reliability of the DoAs estimation. More specifically, the entries of the estimated
sparse signal s are sorted according to their energy content, \Ek\g, k=1,.. K,
such that & = max;, {|§k|2} and £x = miny, {|§k|2} Successively, only the first
L directions such that

=1

Z& <n (5.15)
(Zk 1 k)

are kept and assumed as those of the actual signals, 1 being a user-defined
threshold (Fig. 5.3). Accordingly, the k-th thresholded element of s turns out to

be )
~ 0 s if skt > &
SkJ" N { 0 otherwise (5.16)
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Figure 5.3: Sketch of the energy thresholding strategy for the estimation of the
number of incident signals L.

and the estimated DoAs, 5;, l=1,.., E, are determined as follows

1. Set l =k =1;
2. 1f 3], # 0 then 6, = 0y, | =1 + 1

3. If k < K then k =k + 1 and goto 2; else stop.

5.3 Numerical Results

In the following, a set of numerical results is reported and discussed to show the
behavior of the proposed approaches as well as to point out their advantages and
drawbacks also in a comparison with state-of-the-art methods. Firstly, an analy-
sis on the sensitivity on the calibration parameters (namely, the energy threshold
n and the noise parameter o2) is carried out. Successively, the estimation ca-
pabilities of the BC'S-based strategies are assessed dealing with single-snapshot
and multiple-snapshots acquisitions. As for the MT — BC'S, the parameters /1,

1y are set as in [95].
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5.3.1 Sensitivity Analysis

In order to determine the optimal values of the control parameters o2 and 7,

the following benchmark test case has been considered: an antenna array of
M = 20 isotropic sensors equally-spaced by d = % along the z-axis and a set of
L =1{2, 4, 6} binary phase-shift keying (BPSK) signals (E/" = +1) impinging
on the array from 6, € [-90°,90°], I = 1, ..., L. The signals have been supposed
arriving on the antenna with equal strength in order to perform an unbiased
analysis of the accuracy of the method with respect to the angles of arrival. The
minimum angular distance between the DoAs of two adjacent signals has been
set to Af,,;, = 1°, while the angular range has been uniformly discretized into
K = 181 samples. The measured data are characterized by signal-to-noise ratio
equal to SNR = {2, 5, 10, 20} dB, defined as

ZM }UNoiseless}Q
m=1 m

= (5.17)

SNR =10log [

where o2 is the variance of the additive Gaussian noise and voiseless iy =1, .. M
are the noise-free data. Since the actual DoAs are randomly chosen, @) = 250
different, scenarios (i.e., Ql(q), Il =1,..,L g = 1,...,Q) have been taken into
account for each combination of L and SNR to give a consistent statistical
validation. The BC'S-based estimation has been applied varying the calibration
parameters within the ranges n € [0.0, 1.0] and o2 € [107¢, 1.0].

The optimal setup of the control parameters has been defined by choosing the
values of 7 and 02 that minimize the modified root-mean-square error (RMSFE)

(o5, m) (o) _ arg{ min [RMSE (03,1)] } (5.18)

(o3n)

where
RMSE (o3,n) =
B RMSE(o3n|SNR,L)
=2 fSNR max ){RMSE(og,mszvR,L)}

2,

and RMSE = § zle RMSE®W, RMSE® being an indicator of the reliability
of the method in predicting the g-th scenario. This latter takes into account both
the errors in estimating the signal number L@ and the corresponding DoAs Hl(q),

l=1,.., L@, Tt is defined as follows

RMSE® =
\/{le_(j)lﬁl—gfq)IQ—i—‘L—z(q)|(A0max)2} e
_ - if W <L (5.20)
N Ol S A O Ol B
bt AT
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where 6, and gfq) are the [-th actual and the closest (among the L(® estimates)
retrieved DoA, respectively, while Af,,,.. is a penalty term equal to the maximum
admissible localization error (i.e., Af,,., = 180°) and applied when the number
of estimated signals is smaller than the actual one. Moreover,

} . (5.21)

It is worth pointing out that (5.20) coincides with the standard RMSE definition
of the literature when L@ = L, while it penalizes the cases when L@ < [ since
it is assumed that, at the receiver, it is preferable to identify at least the signals
which are really present in the environment, also admitting the prediction of non-
existing signals, than missing the identification of one or more actual signals.

g9 — i ‘ — 9
0; arg{ehrlrél[lln’u 0, — 0,
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Figure 5.4: BC'S-Calibration (M = 20; d = 0.5\; L = {2, 4, 6}; 6, € [-90°,90°];
SNR = {2, 5,10, 20} dB; Q = 250; o2 € [1075,1.0]; n € [0,1]). Normalized
average RMSE (5.18) vs o2 and 1.
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RMSE (a3,m)" ™ Py (a2, )" %]
SNR [dB]|[L=2|L=4|L=6|L=2|L=4|L=6
2 35.01 | 43.75 | 74.23 18.4 20.0 20.0
5 14.88 | 41.47 | 70.92 64.4 43.2 22.8
10 7.05 | 32.12 | 66.47 89.2 55.2 24.4
20 8.14 | 27.15 | 49.20 92.4 59.2 24.4

Table 5.1: Single Snapshot (W = 1) DoA FEstimation (M = 20, d = 0.5\;
L =1{2 4,6}, 0, € [-90°,90°], Q = 250; SNR = {2, 5, 10, 20} dB; 02 = 0.46 ,
n = 0.95). Average RMSE and Py, values.

Figure 5.4 shows the plot of the normalized RMSFE (o2,n), where the minimum

value of RMSE occurs at (02,1) " = (0.46, 0.95) which is assumed as the
optimal setup hereinafter. As an example, Table 5.1 gives the RMSE values
for a set of representative combinations of L and SN R when setting (o3, n)(om).
As expected, the estimation accuracy improves for higher SN Rs and decreasing

ﬁ values. For completeness, the percentage of faithfully detected scenarios (i.e.,

L@ =1), P

Q
1
Py (02,7|SNR, L) = ] > P (2 y|SNR, L) (5.22)
q=1
where _
1 if L9 =1L

,q=1,...,0, (5.23)

(9) _
Frf (a§,n|SNR, L) _{ 0 otherwise

is reported, as well (Tab. 5.1). Similarly to the RM SFE behavior, the P, improves
when the noise level decreases and the number of impinging signals is smaller
than the number of array sensors.

5.3.2 Performance Assessment (Single-Snapshot BC'S-Based
Estimation Approach)

With reference to the single-snapshot acquisition, let us consider the test case
characterized by L = 4 and SNR = 10dB. To illustrate the behavior of the
BCS-based estimation approach, the results in Fig. 5.5 refer to three repre-
sentative situations: L9 = L [Figs. 5.5(a)-(b)], L@ > L [Figs. 5.5(c)-(d)],
and L@ < L [Fig. 5.5(¢)] corresponding to low [Figs. 5.5(a)-(c)] or high [Figs.
5.5(b)-(d)] RMSE [when L@ < L the RMSE value turns out being always high
due to the presence of the penalty term in (5.20)]. For illustrative purposes, the
symbols + and x indicate the actual DoAs and those estimated after thresh-
olding, while the green dots are the BC'S estimates before thresholding. Since
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Figure 5.5: Single Snapshot (W = 1) DoA Estimation (M = 20, d = 0.5\,
L =4; SNR =10dB; o = 0.46, n = 0.95). Representative examples of actual
and estimated DoAs when (a) L = L and low RMSE, (b) L = L and high
RMSE, (¢) L > L and low RMSE, (d) L > L and high RMSE, and (e)
L < L.
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‘ Figure H 0 H 0 ‘ RMSE
5.5(a) || [-79,—59,—41,10] || [-80,—59,—41,10] | 0.50
[—86, +27,

5.5(b) [27, 38,42, 90] 135, +40] 62.13
o ka0 [—71,—70, =59,

5.5(¢) || [-69,—59, —34,57] 34,57 1.12
[—76,—70, =50,

5.5(d) || [-89,—T71,—50, —41] 41, 474] 58.87

5.5(¢e) [—77,—31,16,87] [—81, —31, 16] 90.02

Table 5.2: Single Snapshot (W = 1) DoA Estimation (M = 20, d = 0.5\; L = 4;
SNR = 10dB; 02 = 0.46, n = 0.95). Actual directions and estimated DoAs.
RMSFE values.

(fl v [ 2 [3[4[5[6]
L—L—4

0 23 [ 38 [41[47]— | -

0| 23 | 37 |39]46] — | =

—L=6

9 —50] —17

9| =59 | 17

31 | 35 | 47
31|35 48

6
6

Table 5.3: Single Snapshot (W = 1) DoA Estimation (M = 20, d = 0.5);
SNR = 2dB; o3 = 0.46, n = 0.95). Actual and estimated DoAs when L = L:
L=4and L =6.

the method determines the signal vector S, the estimated signal strengths are
reported, as well, to prove that several entries are null because of the sparsity
constraint enforced through the BC'S.

Because of the limited information from the single-snapshot acquisition and the
unavoidable presence of the noise, the main concern is the detection of impinging
sources located close to the end-fire angular direction [Fig. 5.5(b) - 64 = 90°,
Fig. 5.5(d) - 6, = —89°, Fig. 5.5(e) - 02 = 87°] as pointed out by the RMSFE
values in Tab. 5.2 where both actual and estimated DoAs are reported, as well.
Otherwise, the DoAs are retrieved with a high precision |e.g., RMSE = 0.50° -
Fig. 5.5(a) and RMSE = 1.12° - Fig. 5.5(¢)] even in most severe noisy condi-
tions (e.g., SNR = 2dB) for both more [Fig. 5.6(a)| and less [Fig. 5.6(b)]
densely distributed signals. Quantitatively, the estimation errors amount to
RMSE_4 = 1.22° [Fig. 5.6(a)] and RMSE;_¢ = 0.41° [Fig. 5.6(b)], respec-
tively, and Tab. 5.3 reports the values of the actual and estimated DoAs.
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Figure 5.6: Single Snapshot (W = 1) DoA Estimation (M = 20, d = 0.5);
SNR = 2dB; o2 = 0.46, n = 0.95). Actual and estimated DoAs when L = L:
(a) L =4 and (b) L =6.
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To draw more general outcomes on the behavior of the single-snapshot BC'S-
based DoA estimator, further experiments have been carried out varying the
number of receiving elements M, the minimum spacing between the signals A6,
and the signal-to-noise ratio. The values of RMSE (5.20) and P;, (5.23) aver-
aged over ) = 100 simulations for each scenario at hand have been assumed as
reliability /accuracy indicators. More specifically, the RMSFE has been computed
either without or with the a-priori knowledge on the number of incident signals,
L. In this latter case, the energetic thresholding has not been applied and the
first L signals having higher strength have been selected.

With reference to the representative test case with L = 2 and SNR = 7dB
(Fig. 5.7), Figure 5.7(a) shows that, as expected, increasing the number of
data when using more sensors (i.e., using larger arrays since d = % has been set),
drastically reduces the RMSE of more than one order of magnitude when L is a-
priori known (RMSEy—5 = 14.75° — RM S E)y;—3y = 0.47°) or totally unknown
(RMSE)y—5 = 39.11° = RMSE)—3 = 1.55°). Analogously, P, improves from
Pr] s ~40% up to Pr] ;30 90%.

Similar conclusions hold true for the analyses whose results are summarized in
Figs. 5.7(b)-5.7(¢). Except for the behavior of P, in Fig. 5.7(¢), where an almost
constant threshold is yielded from SNR = 10dB, both RMSE and P, behave
as in Fig. 5.7(a). Of course, the knowledge of L gives reduced errors, but the gap
between the two estimates is still close whatever the variable at hand (i.e., M,
AO, SNR): ARMSE = 0.64 [Fig. 5.7(a)] (ARMSE £ BMSELtnows M5By )

RMSEL un
ARMSE = 0.63 [Fig. 5.7(h)], and ARMSE = 0.52 [Fig. 5.7(c)]. Such a result
further confirms a key-feature of the BC'S estimation, that is, its high reliability

also when no information on the scenario is available.

5.3.3 Performance Assessment (M1 — BCS-Based Estima-
tion Approach)

Dealing with multiple-snapshots, the MT implementation of the BC'S-estimator
(MT — BCS) has been used. Firstly, the same test cases of Fig. 5.5 have been
considered to perform a comparison with the ST — BC'S performances. Towards
this end, W = 25 consecutive time instants have been considered for modeling
the multi-snapshots acquisition. Figure 5.8 shows the MT — BC'S estimates,
while the corresponding RMSFE values are given in Tab. 5.4. As it can be
observed, the MT — BC'S (Tab. 5.4) outperforms the single-snapshot (W = 1)
ST — BCS (Tab. 5.2) whatever the scenario at hand. As a matter of fact,
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Figure 5.7: Single Snapshot (W = 1) DoA Estimation (d = 0.5\; L = 2). Plots of
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Figure 5.8: Multiple Snapshots (W = 25) DoA FEstimation (M = 20, d = 0.5,
L =4; SNR = 10dB; o2 = 0.46, n = 0.95). Actual and estimated DoAs by
means of the MT — BC'S and the multi-snapshots ST — BC'S.
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| [ MT—BCS, W =2 | ST—BCS,W=2 |

Figure 0 RMSE 0 RMSE
5.8(a) [__7491”_18? ’ 0.00 [__7491”_18? ’ 0.00
5.8(b) || [27,38,42,89] | 0.50 || [-86,27,39,40] | 83.25
5.8(c) [:63947_5?? * | 0.00 [:63347_5?? ’ 2.06
5.8(d) [__59(?7’ __4711]’ 0.50 [__Z; ’ __jf]’ 57.96
5.8(e) [—17(;,5%?1, 0.50 [—81,—31,16] | 90.02

Table 5.4: Multiple Snapshots (W = 25) DoA Estimation (M = 20, d = 0.5,
L =4; SNR = 10dB). DoAs estimated with the MT — BC'S and the multi-
snapshots ST — BC'S. RMSEFE values.

although the intrinsic difficulty to correctly retrieve the DoAs of signals close to
end-fire due to the fact that the antenna effective aperture tends to zero, better
estimations than Fig. 5.5 have been obtained for such critical situations thanks
to the MT — BC'S features [see Fig. 5.8(b), Fig. 5.8(d), and Fig. 5.8(e)]. On the
other side, the DoAs of signals far from directions # = +90° are instead precisely
estimated (Tab. 5.4).

To investigate whether such an improvement is due to the MT" implementation or
only arises from the multi-snapshots acquisition, the multi-snapshot data (W =
25) have been processed with the ST — BC'S as follows

Zavg _
SsT-BCS = »
s | (zi(f)Tﬁ(éudmg(chs Jw)> A(6) v, (5.24)
"Bchw "Bchw
W

~avg

then applying the energetic filtering (5.15) on S¢f pog. The results of such a
processing are reported in Fig. 5.8 with the RMSE values in Tab. 5.4. It is
worth noting that the performance of the multi-snapshots ST — BC'S (W = 25)
does not significantly improve and the errors in estimating the DoAs turn out
almost unaltered. This is caused by the impossibility for the ST — BC'S to
correlate the estimates from different snapshots although related to the same
scenario.
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Figure 5.9: Multiple Snapshots (W = 25) DoA FEstimation (M = 10, d = 0.5,
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\ | | MT — BCS, W =25 | ST — BCS, W =25 \
| Fig. | 0 | 0 | RMSE || 0 | RMSE |
5.9(a) [0,7,35] [0,7,35] 0.0 [3,4,35] 2.45
5.9(b) | [-37,-20,0,7,22,35] | [-37,-20,0,7,22,35] | 0.0 | [-38,—37,—36,—20,3,4] | 24.62
[—67,-37,—20,-9, | [-67,—37,—20,—9, [—66,—31, —19, 14,
5-5(c) 0,7,22,35,54] 0,7,22,35,54] 00 —10,-5, 4,3, 4] 2238

Table 5.5: Multiple Snapshots (W = 25) DoA Estimation (M = 10, d = 0.5);
SNR = 7dB; L € {3,6,9}). DoAs estimated with the MT — BCS and the
multi-snapshots ST — BCS. RMSFE values.

These conclusions are further confirmed from the results in Fig. 5.9 and Tab.
5.5 concerned with an array of M = 10 elements spaced by d = % and different
incident signals, L = {3, 6, 9}, in an environment characterized by SNR =
7dB. As expected, the ST — BC'S, although in its multi-snapshots version, over-
estimates the unknown number of incident signals thus unavoidably increasing
the RMSFE, while the MT — BC'S correctly identifies the actual signal directions

in all the examples [Figs. 5.9(a)-5.9(¢)].

Still dealing with multiple sequential acquisitions, the final numerical analysis is
concerned with a comparative assessment of the MT'— BC'S and state-of-the-art
approaches such as ESPRIT [91] and ROOT — MUSIC [90]. Figure 5.10 plots
the RMSE averaged over () = 100 simulations for each scenario and yielded by
the MT'— BC'S, the multi-snapshot ST — BC'S, and the two reference methods as
a function of W, the minimum spacing between two adjacent signals Af, and the
SNR. Asshown in Fig. 5.10(a), the accuracy of the MT—BC'S improves with W
and at the upper value (W = 25) the error is of some order in magnitude below
that of the ST — BCS [RMSEMTfBCS = (47 X 1073)0 vs RMSEsr_pcs =
2.90°]. Unlike the ST — BC'S, the larger the number of snapshots, the better
is the estimation of the actual DoAs for both the matrix-correlation approaches
and the MT — BCS. Moreover, the M'T'— BC'S performs better than ESPRIT
and ROOT — MUSIC with a non-negligible and increasing enhancement of the
estimation accuracy as the acquisition time grows [Fig. 5.10(a)]. As a matter
of fact, both ESPRIT and ROOT — MUSIC do not further improve their
estimates after W = 10, while the precision of the MT — BC'S monotonically
enhances [RMSEyr_pcs ] y—qs < (1072)°].

As for the results when varying A6 and SN R, the arising outcomes still point
out the effectiveness of the MT — BC'S and its enhanced accuracy if compared
to state-of-the-art methods. As expected, the ST — BC'S turns out to be very
reliable when the angular spacing is quite large [Fig. 5.10(b)].
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5.4 Discussions

In this Chapter, innovative strategies for the estimation of the directions of ar-
rival of signals impinging on linear arrays of electromagnetic sensors have been
presented and assessed. Starting from a sparse representation of the problem so-
lution, the DoA estimation problem has been addressed by means of two method-
ologies based on the BC'S paradigm, the one devoted to the single-snapshot
processing, the other exploiting multiple-snapshot acquisitions. Advantages and
limitations of those implementations have been analyzed and highlighted also in
comparison with well-assessed state-of-the-art DoA estimation strategies.

The proposed approaches have shown being able to:

e directly work on the voltages measured at the output of the array elements
without requiring the computation of the covariance matrix;

e provide accurate and reliable DoAs estimation also without the a-priori
knowledge on the number of incident signals;

e estimate the DoAs just processing a single snapshot, with more precision
for signals closer to the boresight direction;

e provide robust and very accurate estimates when correlating the informa-
tion from multiple snapshots.

Further advances, currently under investigation and out-of-the-scope of this Chap-
ter, will consider potential improvements of the estimation accuracy thanks to
a multi-resolution strategy, the possibility to estimate the DoAs of wideband
signals by correlating the information available in the measurements at different
frequencies thanks to the MT — BC'S, and the definition of alternative sparse
representations of the problem unknowns for straightforwardly exploiting simi-
lar formulations when dealing with different estimation problems still concerned
with adaptive arrays. It is also important to point out that from a method-
ological viewpoint, the extension of the proposed strategies to deal with planar
(2D) or conformal (3D) antenna configurations is straightforward. In this case,
the number of array elements, usually larger than the linear array case, and the
highest number of samples of the angular range, due to the fact that both # and
¢ directions are present, will unavoidably increase the computational cost.

70



Chapter 6

Direction-of-Arrival Estimation in
Planar Arrays by Bayesian
Compressive Sensing

In this Chapter, the Bayesian Compressive Sensing (BC'S) is applied to esti-
mate the directions-of-arrival (DoAs) of narrow-band electromagnetic signals
impinging on planar antenna arrangements. Starting from the measurement of
the voltages induced at the output of the array elements, the performance of
the BC'S-based approach is evaluated when data are acquired at a single time
instant and at consecutive time instants, respectively. Different signal configu-
rations, planar array geometries, and noise conditions are taken into account, as
well.
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6.1 Introduction

In the last few years, we assisted to an extraordinary and still growing develop-
ment and use of Compressive Sensing (C'S)-based methods [81] in a wide number
of applicative contexts such as communications [92], bio-medicine [93], radar [94],
and microwave imaging [86][95]. C'S has proven to be a very effective resolution
tool when the relationship between the problem data and the unknowns is lin-
ear and these latter are sparse (or they can be sparsified) with respect to some
representation bases.

In this Chapter, a probabilistic version of the C'S, namely the Bayesian Compres-
sive Sensing (BCS) [41], is used for estimating the directions of arrival (DoAs)
of electromagnetic signals impinging on an array of sensors in a planar arrange-
ment. Since the DoAs of the incoming signals are few with respect to the whole
set of angular directions, they can be modeled as a sparse vector. Accordingly,
the estimation problem at hand can be reformulated as the retrieval of such a
sparse signal vector whose non-null entries are related to the unknown angular
directions of the signals.

Compared to the state-of-the-art estimation methods (e.g., the multiple signal
classification (MUSIC') [65], the signal parameters via rotational invariance tech-
nique (ESPRIT) [67], the maximum likelihood (ML) DoAs estimators [96],
and the class of techniques based on learning-by-examples (LBE) strategies
[73]|74][72]), CS-based approaches have shown several interesting advantages.
Likewise L BFE-based methods, the computationally-expensive calculation of the
covariance matrix is not necessary since the voltages measured at the output
of the array elements can be directly processed. CS-based methods turn out
to be fast and also work with single time-instant (snapshot) data acquisitions.
Moreover, unlike MUSIC and ESPRIT that require the incoherence of the
impinging signals and a set of measurements larger than the number of signals,
careful DoA estimates can be yielded also when the number of arriving signals
is greater than the array sensors as well as in the presence of highly-correlated
sources.

Within the class of C'S-based approaches, deterministic strategies recover the
signal vector by enforcing the sparsity constraints through the /;-norm, while the
l>-norm is adopted to quantify the mismatch between measured and estimated
data as shown in [97] for the localization of narrowband sources when using a
circular array. Hybrid /;-norm and l5-norm formulations have been considered
[98][99], as well. Others C'S-based methods have been proposed [76][100][101]
also dealing with the DoAs estimation of correlated sources [102]. Unfortunately,
common formulations of the C'S (i.e., based on deterministic strategies) require
a minimum number of measurements equal to twice the number of impinging
signals to satisfy the necessary condition for the well-posedness of the problem
(i.e., the restricted isometry property of the sapling matrix). To overcome such
an issue, probabilistic C'S-based approaches have been taken into account [103]
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(see also Chapter 5) as the one considered in this Chapter.

The outline of the Chapter is as follows. The DoAs estimation problem, its
sparse reformulation, and the BCS-based DoAs estimation approach are pre-
sented in Sect. 6.2. A selected set of representative numerical results is reported
in Sect. 6.3 to discuss, in a comparative fashion, the performance of the single
and multiple snapshot implementations of the two-dimensional extension of the
BC'S method presented in Chapter 5 for different array architectures. Eventu-
ally, some conclusions are drawn (Sect. 6.4).

6.2 Mathematical Formulation

Let us consider a planar antenna array made of N isotropic sensors located on the
x — vy plane. An unknown set of I signals s; (r,t) = ay (1) ?@rfottker) Gy — 1 T
is supposed to impinge on the array from the unknown directions ¥; = (6;, ¢;),
t=1,...,1, being 0° < 0; < 90° and 0° < ¢; < 360°. Such signals are modeled
as narrowband electromagnetic plane waves (i.e., a; (t) ~ «;, i = 1,...,I) at the
carrier frequency fo, k; (¢ =1, ..., I) being the i-th wave vector having amplitude
k= k;| = 27”, Vi=1,...,1, where X is the free space wavelength.

By modelling the background noise as an additive Gaussian process with zero
mean and variance o2, the phasor voltage measured at the n-th element is equal

to

Un(T) = Z Vin(T) + 1 (T) (6.1)

where 7 is the measurement time-instant/snapshot and 7, (7) is the noise sample
at the same instant. Moreover,

Vin (7-) =q; (T)GJQTW (2, sin 6; cos ¢j+yn sin O; sin ¢;) (62)

is the open circuit voltage induced by the i-th impinging wave at the n-th planar
array element located in the position r, = (2, yy).

The relationship between the measured data (i.e., v,(7), n = 1,...,N, 7 =
1,...,T) and the unknown DoAs [i.e., ¥; = (0;,¢;), i = 1,...,I| can be then
represented in a compact matrix form as follows

v(r) = HW)s(r)+n(r), r=1,...,T (6.3)
where v(7) = [v1(7), v2(T), ..., n(7)]" is the complex measurement vector, *
denoting the transpose operation, and H(¥) = [h(¥y), h(¥,),..., h(¥;)] is
the steering vector matrix where h (U;) = [h; 1, hia, ..., hi n]" being
hiy = ¢ 5 (@n sinbi cos gi+yn sinfisinéi)  \[oreogver, s(7) = [ay(7), ao(7), ..., ay(7)]" is
the signal vector and 1(7) = [1(7), 72(7), ..., ny(7)]" is the noise vector.

It is simple to observe that the solution of (6.3) is neither linear nor sparse with
respect to the problem unknowns W, = (0;,¢;), ¢ = 1,...,I, while it is linear
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versus s(7), V7. In order to apply the BC'S to the DoAs estimation in planar
arrays, the method in Chapter 5 for linear arrays has been exploited and here
suitably customized to the dimensionality (2D) at hand.

To reformulate the original problem as a sparse one, the observation domain
composed by all angular directions 0° < 6 < 90° and 0° < ¢ < 360° is partitioned
(Fig. 6.1) in a fine grid of K samples satisfying the condition K > I. Therefore,
the terms H (¥) and s(7) in (6.3) turn out being equal to

(%) = [ (80) 5 () b (), (5] 0

S(7) = [au(7), Ga(7), , --a(7), -.oey A (T)]" (6.5)
By substituting (6.4) and (6.5) in (6.3), the problem is still linear with respect
to also s(7), but §(7) [unlike s(7)] is now sparse since K > I. Accordingly, only
few coefficients (1), k = 1, ..., K are expected to differ from zero and exactly

and

in correspondence with the steering vectors h (‘ilk> at the angular direction Uy
where the wave is estimated to impinge on the array. Accordingly, the original
problem of determining the DoAs, ¥; = (6;,¢;), i = 1,...,1, is reformulated
as the estimation of the (sparse) signal vector §(7). The signal DoAs are then
retrieved as the directions Uy = ék, ngSk whose corresponding signal amplitudes

&g (7) are non null.

For single time-instant (7' = 1) acquisitions, the Single-Task Bayesian Compres-
sive Sensing (ST — BC'S) is used and the sparsest vector §(7) is retrieved by
maximizing the posterior probability (see Chapter 5)

P ([8(r), 6% a(r)][ v(7)) (6.6)

where 62 is the estimate of the noise power, supposed not varying in time, and
a(7) is the hyper-parameter vector [45] enforcing the sparseness of the solution
8(7) at the 7-th snapshot. Accordingly, the analytic form of the solution turns
out to be

3(r) = = () w(¥) (%) o) (67)

5 pe + diag (a(T))

where all terms are real since the BCS works only with real numbers. The
signal vector, 8(7) = [Re{8(7)}; Im{s(7)}]", has dimension 2K x 1, 0(7) =
[Re{O(7)}; Im{o(r)}]" is a 2N x 1 vector, while

o [refE()) (@)

i (ql) - (6.8)

fm{H(E)} R ()]
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Angular sampling points «(8,,®,)

Figure 6.1: Sketch of the discretized observation domain for C'S-based DoAs
estimations.

is 2N x 2K matrix, Re {-} and I'm {-} being the real and imaginary part, respec-
tively. The two control parameters in (6.7), a(t) and 2, are obtained through
the maximization of the function

o (62, atr) = 5 o ) — LEI0UL T N @NT00) g

by means of the relevance vector machine (RVM). In (6.7), Q(1) £ 61 +
H (\TI) diag (a(t)) "' H (\Ivl> where I is the identity matrix.

When a set of consecutive snapshots is available, the Multi-Task BC'S (MT —
BC'S) implementation is used to statistically correlate the estimates derived for
each snapshot by setting a common hyper-parameter vector: a(7) = a, V7 =
1,...,T. Hence, the final MT — BC'S solution is given by (see Chapter 4 and
Chapter 5)

§ = %ET:{[H (\If)H (xp) + diag (a)]_lﬂ (\1‘3)*@(7)} (6.10)

where a is computed through the RV M maximization of the following function
1 Z

My (a) = =5 D {log (12]) + (K + 261) log [(6(7))” Q0(r) + 28]} (6.11)
=1

75



6.3. NUMERICAL RESULTS

where Q £ I+ H <\i') diag (a) ' H <lil>* and f; and B, are two user-defined
parameters [60].

Although the condition dy(7) ~ 0 or &; ~ 0 usually holds true, the number
of non-null coefficients in either §(7) (ST — BCS) or § (MT — BC'S) could be
larger because of the presence of the noise. Hence, the energy thresholding tech-
niques described in Chapter 5 is exploited to firstly count the number of arriving
signals, f, and then to estimate the corresponding DoAs. More in detail, the co-
efficients &y (7) (or ay) are firstly sorted according to their magnitude, then only
the first I coefficients whose cumulative power content is lower than a percent-
age x of the totally received signal power, namely ||§(7)| = Sr_, (é@x(7))> (or
8] = 32K, (43)?), are preserved. Hence, I is selected such that Y7 (&(7))* <

XIS (or 3274 (é9)* < xII8-

6.3 Numerical Results

The planar array BC'S-based estimation method is assessed by means of the
following analysis devoted to evaluate (a) the performance of its different im-
plementations in correspondence with single snapshot (7" = 1) or multiple-
snapshots (7" > 1) acquisitions and (b) the impact of different array configu-
rations. Throughout the numerical assessment, the array elements have been
assumed uniformly-spaced of d, = % and d, = % along the z-axis and y-axis,
respectively, and all signals have been characterized with the same amplitude
a;(T) = a;y1(7), i = 1,...,1 — 1. The measurements have been blurred with
an additive Gaussian noise of variance o2 such that the resulting signal-to-noise

ratio turns out to be

SNR =10 x log O Ui (6.12)
No? '
pro—noise (n =1 ..., N) being the voltage measured at the n-th array element in

the noiseless case. The angular observation domain (Fig. 6.1) has been parti-
tioned with a uniform grid characterized by a sampling step equal to Af = 1.25°
and A¢ = 1.25° along the elevation and azimuthal direction, respectively. The
energy threshold has been set to x = 0.95 according to the calibration results
presented in Chapter 5.

In order to quantify the reliability and the effectiveness of the DoA estimation,
the following indexes have been computed. For each i-th signal, the location
index [72] is defined as

A P (\1127 ilz)
& =¢ (\II\II> 2 —gptman X 100 (6.13)
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| (U, =(0;, ¢;),i=1,.... 1} |
{(25, 60); (60, 140)}
{(25, 60); (60, 140); (70, 210); (60, 300)}
{(25, 60); (60, 140); (70, 210); (60, 300); (40, 210); (80, 45); (15, 5); (30, 350)}

QO = Nl M~

Table 6.1: Fully Populated Array - (N = 25; d, = d, = 0.5X; [ € [2:8];
SNR =10dB; C = 50) - Actual DoAs of the impinging signals.

where

® (\1/ \1/) -

\/<sin 0; cos ¢; — sin éz cos q@l>2 + (sin 0; sin ¢; — sin él sin q@l>2 + (cos 0; — cos é2>2
(6.14)

and ®mer) — maxy, g, {CI) <\Ili, \ilz>} = 2 is the maximum admissible error in

the DoA retrieval. Since the number of arriving signals I is unknown and it

is derived from the BC'S processing, the global location index has been also
evaluated as in Chapter 5

T [Z; § (\If \If> + (I — f) 50’@"““@/)} if I<1I
= (6.15)
7 [Z; § <\I’\I’) 0, ¢ @@)] if 1>1

where gPenalty) — maxy g {&} = 100 is the maximum of (6.13) and ¥; =

arg{mini:Hl [f <\Ifl,\ifl>] } Since it is preferred to detect all signals really

present in the scenario, although overestimating their number then missing some
of them, the penalty is considered only when I < I .

A. Single and Multiple Snapshot BCS-based DoAs Estimation Tech-
niques

Let us consider the fully populated array of Fig. 6.2 with N = N, x N, = 25
elements, N, = N, = 5 being the number of elements along the x and y axes,
collecting the data v(7). Several different electromagnetic scenarios have been
considered in which I =2, I = 4, and [ = 8 signals are supposed to impinge on
the planar array from the directions indicated in Tab. 6.1() !

(D) In the numerical results, the actual DoAs are chosen lying on the sampling grid of
the observation domain. Whether this condition does not hold true, off-grid compensation
methods [104][105], already proposed in the state-of-the-art literature, can be profitably used.
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y/A

00 05 10 15 20 x/A

Figure 6.2: Geometry of the receiving fully populated array (VN = 25).

The power of the background noise has been set to yield SNR = 10dB. In order
to test the behavior of the ST — BC'S and the MT — BC'S, the simulation for
each signal configuration has been repeated C' = 50 times, while varying the noise
samples on the data. The DoAs estimation error has been therefore evaluated
through the average location index defined as

C
1
g(avg) — 6 E g(C) (6.16)
c=1

¢ being computed as in (6.15).
As for the ST — BC'S, a single snapshot has been processed each time (7' = 1).
Figure 6.3 shows the best (Fig. 6.3 - left column) and the worst (Fig. 6.3 -

-----

.....

C = 50 DoAs estimations carried out when [ = 2 [Figs. 6.3(a)-6.3(0)], [ = 4
[Figs. 6.3(¢)-6.3(d)], and I = 8 [Figs. 6.3(e)-6.3(f)]. In Fig. 6.3, the actual
DoAs are denoted with a point at the center of a circle, while the color points
indicate the estimated signal locations and amplitudes. For the sake of clarity,
the retrieved DoAs are also reported in Tab. 6.2 where the number of estimated
signals I is given, as well. As it can be observed, the strength of the estimated
signals is different (Fig. 6.3), even though they impinge on the antenna with
the same energy, because of the presence of the noise. On the other hand, the
DoAs are predicted with a high degree of accuracy when I = 2 and I = 4 as
confirmed by the values of the location error (Tab. 6.3). As a matter of fact,
the error values are low also for the worst solutions among the C' trials (i.e.,
f(m‘wﬁ)}jzz = 3.80% and f(m‘”)}ljl = 3.89%). It is worth also noting that for
I = 2 the location error is small even though the number of detected signals are

= 3) because of two signals have very

greater than the actual ones (J(#s!)
=2
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I i {000 = (800, 600 i =1, 1} |
3] 2 {(25, 60); (60, 140)}

1] 4 {(23.75, 65); (60, 140) ; (63.75, 300); (70, 210)}

S| 7 | {(23.75, 345); (325, 65); (67.5, 145) , (71.25, 300) , (72.5, 300) , (82.5, 40), (90, 205)}
I | s {0 = (000, 600 i =1, 1} |
3] 3 {(225, 60); (57.5, 135); (58.75, 137.5)]

1 14 {(23.75, 55); (63.75, 145); (61.25, 300) ; (77.5, 210)}

S {(21.25, 315); (28.75, 70); (55, 210); (90, 45)]

Table 6.2: Fully Populated Array - (N = 25; d, = d, = 0.5\; [ € [2:8];
SNR = 10dB; T = 1; C = 50) - Values of the DoAs for the best and worst
estimation obtained by means of the ST — BCS among the C' different noisy
scenarios.

(T €™ | e | gow | g | 1@ [sed |

ST — BCS

2 0.00 3.80 1.36 1.24 448 x 101

A 1.34 3.70 2.07 6.02 x 101 1.37

8 3.02x 10T [8.23x 10T | 6.06 x 10T | 2.96 x 102 1.77
MT — BCS

2 0.00 2.18 8.01 x 1071 [ 4.06 x 10~ * 3.07

4545 x 101 1.91 1.37 119 x 107 6.44

8 5.27 331 x 101 | 1.81 x 10! | 5.94 x 10" 7.80

Table 6.3: Fully Populated Array - (N = 25; d, = d, = 0.5X\; [ € [2:8];
SNR =10dB; T = {1, 2}; C = 50) - Statistics (minimum, maximum, average,
and variance) of the location index £ among C' different noisy scenarios when
using the ST — BC'S (T = 1) and the MT — BCS (T = 2).

close DoAs (as compared to the sampling steps Af and A¢). However, if the
ST — BC'S shows being robust and accurate in such scenarios (/ = 2 and [ = 4),
it is not able to correctly locate the actual DoAs when the number of signals
increases to I = 8 [Figs. 6.3(e)-6.3(f) - Tab. 6.2]. Indeed, the location error
significantly increases as indicated by the indexes in Tab. 6.3.

As for the computational efficiency, the ST'— BC'S is able to perform the DoAs
estimation in a limited CPU time (¢t(®*9) < 2.0 [sec] - Tab. 6.3)®? also thanks
to the single-snapshot processing.

In order to investigate the effects of the SINR on the DoAs estimation capabilities
of the ST — BC'S, the SN R has been varied from —5dB up to 30dB with a step

2(2)

The simulations have been run using a standard processing unit (i.e., 2.4GHz PC with
2GB of RAM) with a non-optimized code.
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Figure 6.3: Fully Populated Array - (N = 25; d, = d, = 0.5\; I € [2:8];
SNR =10dB; T = 1; C = 50) - Plot of the best (left column) and worst (right
column) estimations obtained by means of the ST — BC'S among the C' different
noisy scenarios when (a)(b) I =2, (¢)(d) I =4, and (e)(f) I =8.
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103 T T T T T T T T

10% | |
S 10t | ]
M

10° £ 1

101

5 0 5 10 15 20 25 30
SNR dB
=2 ——— =4 |=8 -eeeeeenens

Figure 6.4: Fully Populated Array - (N = 25; d, = d, = 0.5\; I € [2:8];
SNR € [-5:30]dB; T = 1; C = 50) - Behavior of the location index &(@v)
averaged among C' different noisy scenarios versus the SNR when using the

ST — BCS.

of 5dB, while keeping the same DoAs of Tab. 6.1. In Fig. 6.4, the values of
the average location index are reported. As it can be noticed, the location index
£@9) for I = 2 and I = 4 monotonically decreases, as one should expect, with
the increment of the SINR. However, the ST — BCS estimates when I = 8
turn out to be still non-reliable also for higher SN R confirming the difficulty of
dealing with such a complex scenario just processing one snapshot.

Let us now analyze the MT — BC'S behavior. Firstly, the same problems ad-
dressed by means of the ST — BC'S in Fig. 6.3 are considered by taking into
account only 7' = 2 snapshots. The best and worst MT — BC'S results are re-
ported in Fig. 6.5 and the corresponding DoAs are given in Tab. 6.4. Unlike
the ST — BC'S (Tab. 6.2), the number of impinging signals is always correctly
identify in the best case (Fig. 6.5 - left column), while in the worst case (Fig. 6.5
- right column), I =1 only when I =2 and I = 4 signals. As a matter of fact,
the average location error when I = 8 is still high (£(@v9) ’128 = 18.1%). The use
of only T' = 2 snapshots does not guarantee reliable performance also with the
MT — BCS, even though the advantages in terms of accuracy of the M'T'— BC'S
over the ST — BC'S are non-negligible as pointed out by the values in Tab. 6.3.
On the opposite, the computational cost of the MT — BC'S is higher than that
of the ST — BCS (Tab. 6.3).
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Figure 6.5: Fully Populated Array - (N = 25; d, = d, = 0.5\; I € [2:8];
SNR =10dB; T = 2; C = 50) - Plot of the best (left column) and worst (right
column) estimations obtained by means of the MT — BC'S among the C' different
noisy scenarios when (a)(b) I =2, (¢)(d) I =4, and (e)(f) I =8.
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‘ T ‘ Jost) ‘ {@Ebst) _ (égbst)7 Qggm}) =1, m’]} ‘
2 2 {(25, 60); (60, 140)}
4 4 {(25, 60); (58.75, 300); (60, 140); (71.25, 210)}
8 8 {(22.5, 350); (23.75, 350); (32.5, 70); (40, 205); (57.5, 300); (61.25, 140); (75, 210); (90, 45)}
7 (o0~ (60 300y i1 |
2 2 {(26.25, 55); (62.5, 140)}
4 4 {(26.25, 60); (57.5, 300); (60, 140); (75, 210)}
8 6 {(22.5, 350); (42.5, 210); (60, 145); (62.5, 295); (65, 210); (76.25, 45)}

Table 6.4: Fully Populated Array - (N = 25; d, = d, = 0.5X; [ € [2:8];
SNR = 10dB; T = 2; C = 50) - Values of the DoAs for the best and worst
estimation obtained by means of the MT — BC'S among the C' different noisy
scenarios.

More reliable M'T' — BC'S estimations can be yielded when processing a larger
number of snapshots. Figure 6.6 shows that, also for complex electromagnetic
scenarios (i.e., [ = 8 - Tab. 6.1), the average location error gets lower when T
increases. By considering SNR = 10dB as a representative example, one can
observe that £(@9) reduces of almost one order of magnitude from §(‘“’9)}I:8 =
18.1% (T = 2) to f(‘”’g)}lzs = 2.20% (T = 5). As expected, more accurate
estimations arise with even more data (i.e. §(‘“’9)}I:8 = 1.23% when I = 10 and
¢(avg) ‘128 = 0.95% when I = 25 - Fig. 6.6). The benefits from the correlation of
the information coming from different time instants thanks to the MT — BC'S
are also highlighted by the behavior of the plots in Fig. 6.6: £(*9) more rapidly
decreases for higher values of T when the quality of the data improves (i.e., higher
SNR).

As long as the applications at hand do not require the fast or real-time identifi-
cation of the DoAs and there is the possibility to collect the data at consecutive
time instants, the robust estimation of a larger number of impinging signals is al-
lowed. In this context, Figure 6.7 shows the results obtained with the MT —BC'S
when [ = 12 [Figs. 6.7(a)-(b)] and I = 18 [Figs. 6.7(¢)-(d)] (SNR = 10dB). As
for the case I = 12, the DoAs are estimated with a good degree of accuracy also
in the worst case within the C' experiments [Fig. 6.7(b) - f(m‘”)’I:lQ = 1.77%],
while the average location error amounts to é(‘“’g)‘ —2 = 1.04%. Differently
, the average error is 5(‘”’9)}1118 = 4.70% and in the worst case [Fig. 6.7(d)]
is §(m‘”)’I:18 = 7.85% when I = 18. For the sake of completeness, the best
solutions are reported in Figs. 6.7(a) and 6.7(c) when [ = 12 and [ = 18,
respectively.

B. DoAs Estimation Performance for Different Array Geometries

In this section, the behavior of the BC'S-based single-snapshot and multiple-
snapshots DoAs estimators is analyzed for different array architectures. The
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Figure 6.6: Fully Populated Array - (N = 25; d, = d, = 0.5\; I = 8; SNR €
[—5:30]dB; T € [2: 25]; C = 50) - Behavior of the location index £(®¢) averaged
among C' different noisy scenarios versus the SN R when using the MT — BC'S
with different number of available snapshots T'.

three array geometries in Fig. 6.8 are taken into account. As it can be noticed,
the first array [Fig. 6.8(a)| has the same number of elements of the fully pop-
ulated one but the sensors are randomly located on the antenna aperture. The
other two arrays [Figs. 6.8(b) and 6.8(c)| have less elements (i.e., N = 9) but
same aperture length of the fully populated array along the two coordinate axes.

In the first example, the performance of the ST — BC'S is assessed when chang-
ing the number of impinging signals from I = 2 up to I = 8, while keeping
the noise level to SNR = 10dB. Figure 6.9 shows the average location error
(C' = 50) obtained in correspondence with the three arrays. Unlike the fully
populated arrangement enabling good estimation features especially until I = 4

(5(“”9)111234 < 2.00%), both the L-shaped array and the cross-shaped one do

not allow reliable estimations also for the simplest scenario (i.e., £(@v9) L=Shaped _

=2
7.69% and &(@v9) f;;ss_s}wped = 10.87%). This is due, on the one hand, to the lim-
ited information collected from a single snapshot acquisition and, on the other
hand, to the fact that the number of sensors is one third the elements of the
fully-populated configuration (i.e., NFully—Populated /N L/Cross=Shaped — 9 78)  Ag
for the random array, the achieved performance are almost equal to those of the
fully populated solution thus confirming the higher reliability when having at

disposal a larger number of sensors. When using the M7T — BC'S, no significant
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Figure 6.7: Fully Populated Array - (N = 25; d, = d, = 0.5)\; I = {12, 18};
SNR =10dB; T = 25; C = 50) - Plot of the best (left column) and worst (right
column) estimations obtained by means of the MT — BC'S among the C' different
noisy scenarios when (a)(b) I =12 and (¢)(d) I = 18.
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Figure 6.8: Array Geometries Comparison - (N = {9, 25}; d, = d, = 0.5);
I€[2:8]; SNR=10dB; T =1, C = 50) - Behavior of the location index £(@v¢)
averaged among C' different noisy scenarios versus the number of arriving signals
I when using the ST — BC'S.
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Figure 6.9: Array Geometries Comparison - (N = {9, 25}; d, = d, = 0.5);
I€[2:8); SNR=10dB; T = 1; C = 50) - Behavior of the location index ¢(@v¢)
averaged among C' different noisy scenarios versus the number of arriving signals
I when using the ST — BC'S.

improvements occur in comparison with the ST — BC'S when T' = 2, since av-
erage errors higher than £(®9 = 2.00% [Fig. 6.10(a)] are obtained with both
the L-shaped or cross-shaped array. Whether 7" = 25 snapshots are at disposal
[Fig. 6.10(b)], it turns out that the estimates from the L-shaped array present
average location errors below &9 = 2.00% until ] = 5. Differently, always
worse performance are achieved with the cross-shaped array [Fig. 6.10(b)].

In order to give some insight on the effects of the SN R, let us consider the case
I = 2 as a representative example. The results from the ST — BC'S and the
MT — BCS are reported in Fig. 6.11(a) and Fig. 6.11(b), respectively. The
location error tends to reduce as the SN R increases for all array structures, even
though the L-shaped array outperforms the cross-shaped one and the random
array behavior is always very close to that of the fully populated configuration.

6.4 Discussions

The BCS method has been customized for the DoAs estimation of multiple
signals impinging on planar arrays. Two different implementations, one requiring
the data measured at a single snapshot and the other using the data collected
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Figure 6.10: Array Geometries Comparison - (N = {9, 25}; d, = d, = 0.5X;
I€[2:8); SNR=10dB; T = {2, 25}; C = 50) - Behavior of the location index
£@ve) averaged among C' different noisy scenarios versus the number of arriving
signals I when using the MT — BC'S with (a) T' = 2 snapshots and (b) 7" = 25
snapshots.
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Figure 6.11: Array Geometries Comparison - (N = {9, 25}; d, = d, = 0.5X;
I =2, SNR =10dB; T = {1, 25}; C = 50) - Behavior of the location index
¢(@ve) averaged among C different noisy scenarios versus the SNR when using
(a) the ST — BCS with T' = 1 snapshot and (b) the MT — BC'S with T' = 25
snapshots.
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at multiple snapshots, have been tested on a wide number of different scenarios
as well as using different array arrangements. Likewise the linear array case, the
reported results have shown that:

e the two BC'S-based implementations provide effective DoAs estimates al-
though just processing the sensors output voltages and not the covariance
matrix;

e the joint estimation of the signals number and DoAs is enabled;

e the correlation capability of the MT" — BC'S allows one to yield better
results than the ST — BC'S at the expenses of an increased computational
burden.

As for the behavior of the two approaches versus the planar array geometry, it
is possible to conclude that:

e the fully-populated and the random arrays give the best performance as
compared to both the L-shaped and the cross-shaped array, but using a
larger number of sensors;

e under the assumption of the same number of elements, the L-shaped con-
figuration always outperforms the precision from the cross-shaped arrange-
ment.
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Chapter 7

Conclusions and future
developments

In this chapter, some conclusions and ideas for future research are presented.
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In this thesis, the problem of the synthesis and control of antenna arrays
within the Bayesian Compressive Sensing (BC'S) framework has been investi-
gated. More in detail, the BC'S method has been customized in order to deal
with (i) the problem of the synthesis of linear antenna arrays and (ii) the prob-
lem of Direction-of-Arrival (DoA) estimation of signals impinging on an antenna
array.

The array pattern synthesis problem has been reformulated in a Bayesian
Compressive fashion as a pattern matching problem with sparseness constraints
ad then it has been solved by using a suitable RVM approach. In addition,
the M'T'— BC'S approach has been adopted to extend the BC'S array synthesis
method in order to deal with the synthesis of asymmetrical patterns (arrays with
complex weights). A set of representative results have been presented in order
to assess the performances of the proposed method. Comparisons with the state
of the art have been shown and discussed, as well. The main features shown by
the proposed technique are summarized in the following:

e the BC'S methodology is able to approximate the pattern produced by a
uniform array arrangement with a high degree of accuracy, providing at
the same time a consistent reduction in the total element count.

e the MT — BC'S approach improves the ST — BC'S one, allowing the accu-
rate and efficient synthesis of complex-weights arrays with non-symmetrical
patterns.

e with the proposed BC'S strategy is very easy to take into account of appli-
cation specific constraints in the radiation pattern or in the array geometry.

e the BC'S-based proposed methodology positively compares with recently
introduced state-of-the-art approaches, such as the FBMPM.

The DoA estimation problem has been addressed by means of two methodolo-
gies based on the Bayesian Compressive Sensing paradigm, one exploiting single-
snapshot measurements, the other one devoted to the processing of multiple-
snapshots data. A set of representative examples concerning the DoA estimation
in different scenarios have been presented and discussed. Some additional numer-
ical results concerning the comparison with other state-of-the art methodologies
have been presented, as well. The main outcomes of this work are:

e the computation of the covariance matrix is not required and the estimation
can be performed by directly processing the measured voltages.

e the a-priori knowledge of the number of incoming signals is not required in
order to obtain an accurate and reliable estimation.

e the method is able to provide accurate results with a limited number of
snapshots. In some scenarios is is possible to obtain good estimations with
only one snapshots.
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e the MT — BCS approach outperforms the ST — BC'S one thanks to the
efficient correlation of multiple snapshots data.

e the approach has been extended to the azimuth-elevation estimation with
planar arrays, achieving accurate results also in this case.

Concerning the array synthesis problem, future works will concern the analysis of
the mutual coupling effect in the synthesized configuration and directive elements
synthesis. In addition, the synthesis of reconfigurable arrays as well as arrays for
wideband applications will be matter of future studies.

Regarding the DoA estimation problem, future study will deal with the synthesis
of wideband signals by correlating the information available at multiple frequen-
cies. Moreover, in order to reduce the computational burden of the algorithm,
suitable multiresolution strategies will be implemented and assessed.

93



94



Bibliography

1]

2]

3]

[4]

[5]

(6]

7]

8]

9]

[10]

O. M. Bucci, M. D. Migliore, G. Panariello, and G. Sgambato, “Accurate di-
agnosis of conformal arrays from near-field data using the matrix method,”
IEEE Trans. Antennas Propag., vol. 53, no. 3, pp. 1114-1120, Mar. 2005.

M. D. Migliore, “A compressed sensing approach for array diagnosis from
a small set of near-field measurements,” IEEE Trans. Antennas Propag.,
vol. 59, no. 6, pp. 2127-2133, Jun. 2011.

G. Oliveri, P. Rocca, and A. Massa "Reliable diagnosis of large linear ar-
rays - a Bayesian Compressive Sensing approach”, IEEE Trans. Antennas
Propag., vol. 60, no. 10, pp. 4627-4636, Oct. 2012.

R. J. Mailloux, Phased Array Antenna Handbook, 2nd ed. Norwood, MA:
Artech House, 2005.

R.S. Elliot and J. G. Stern, “Optimizing synthesis of shaped beam antenna
patterns,” IEEE Trans. Antennas Propag., vol 32, no. 10, pp. 1129-1133,
Oct. 1984.

T. Isernia, O. M. Bucci, and N. Fiorentino, “Shaped beam antenna syn-
thesis problems: Feasibility criteria and new strategies,” J. Electromagn.
Waves Appl., vol. 12, pp. 103-137, 1998.

T. Isernia and G. Panariello, “Optimal focusing of scalar fields subject to
arbitrary upper bounds,” Electron. Lett, vol. 34, no. 2, pp. 162-164, Jan
1998.

O. M. Bucci, L. Caccavale, and T. Isernia, “Optimal far-field focusing of
uniformly spaced arrays subject to arbitrary upper bounds in nontarget
directions,” IEEFE Trans. Antennas Propag., vol. 50, no. 11, pp. 1539-1554,
Nov. 2002.

R. M. Leahy and B. D. Jeffs, “On the design of maximally sparse beamform-
ing arrays”, IEEE Trans. Antennas Propagat., vol. 39, no. 8, pp. 1178-1187,
Aug. 1991.

R. F. Harrington, “Sidelobe reduction by nonuniform element spacing,”
IEEE Trans. Antennas Propagat., vol. 9, p. 187, Mar. 1961.

95



BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

M. G. Andreasan, “Linear arrays with variable interelement spacings,”
IEEE Trans. Antennas Propagat., vol. 10, pp. 137-143, Mar. 1962.

A. Tshimaru, “Theory of unequally-spaced arrays,” IEEE Trans. Antennas
Propagat., vol. 11, pp. 691-702, Nov. 1962.

D. G. Leeper, “Isophoric arrays - massively thinned phased arrays with
well-controlled sidelobes,” IEEE Trans. Antennas Propag., vol. 47, no. 12,
pp. 1825-1835, Dec. 1999.

Y. Liu, Z. Nie, and Q. H. Liu, “Reducing the number of antenna elements
in a linear antenna array by the matrix pencil method,” IEEE Trans. An-
tennas Propagat., vol. 56, no. 9, pp. 2955-2962, Sep. 2008.

D. King, R. Packard, and R. Thomas, “Unequally spaced, broad-band an-
tenna arrays,” IRE Trans. Antennas Propagat., vol. 8, pp. 380-384, Jul.
1960.

A. Maffett, “Array factors with nonuniform spacing arrays,” IRE Trans.
Antennas Propagat., vol. 10, pp. 131-136, Mar. 1962.

N. Balakrishan, P. Murthy, and S. Ramakrishna, “Synthesis of antenna ar-
rays with spatial and excitation constraints,” IEEE Trans. Antennas Prop-
agat., vol. 29, pp. 690-696, Sep. 1962.

G. Oliveri, M. Donelli, and A. Massa, “Linear array thinning exploiting
almost difference sets,” IEEE Trans. Antennas Propag., vol. 57, no. 12,
pp- 3800-3812, Dec. 2009.

V. Murino, A. Trucco, and C. S. Regazzoni, “Synthesis of unequally spaced
arrays by simulated annealing,” IEEE Trans. Signal Processing, vol. 44,
no. 1, pp. 119-123, Jan. 1996.

A. Trucco and V. Murino, “Stochastic optimization of linear sparse arrays,”
IEEE J. Oceanic Engineering, vol 24, no. 3, pp. 291-299, Jul. 1999.

G. Oliveri and A. Massa, “Bayesian compressive sampling for pattern syn-
thesis with maximally sparse non-uniform linear arrays,” IEEE Trans. An-
tennas Propag., vol. 59, no. 2, pp. 467-481, Feb. 2011.

Y. T. Lo, “A mathematical theory of antenna arrays with randomly spaced
elements,” IEEE Trans. Antennas Propag., vol. 12, no. 3, pp. 257-268, May
1964.

B. Steinberg, “The peak sidelobe of the phased array having randomly
located elements,” IEEE Trans. Antennas Propag., vol. 20, no. 2, pp. 129-
136, Mar. 1972.

96



BIBLIOGRAPHY

[24]

[25]

[26]

27]

28]

[29]

[30]

[31]

[32]

33]

[34]

[35]

M. I. Skolnik, G. Nemhauser, and J. W. Sherman, “Dynamic programming
applied to unequally-space arrays”, IRE Trans. Antennas Propagat., vol.
AP-12, pp. 35-43, Jan. 1964.

R. L. Haupt, “Thinned arrays using genetic algorithms,” IEEE Trans. An-
tennas Propag., vol. 42, no. 7, pp. 993-999, Jul. 1994.

T. G. Spence and D. H. Werner, “Thinning of aperiodic antenna arrays for
low side-lobe levels and broadband operation using genetic algorithms,”
Proc. IEEE Antennas and Propagation Society International Symposium,
pp. 2059-2062, 9-14 Jul. 2006.

R. L. Haupt and D. H. Werner, Genetic algorithms in electromagnetics.
Hoboken, NJ: Wiley, 2007.

G. Oliveri, L. Manica, and A. Massa, “ADS-based guidelines for thinned
planar arrays," IEEE Trans. Antennas Propag., vol. 58, no. 6, pp. 1935-
1948, Jun. 2010.

S. Caorsi, A. Lommi, A. Massa, and M. Pastorino, “Peak sidelobe reduction
with a hybrid approach based on GAs and difference sets,” IEFEE Trans.
Antennas Propag., vol. 52, no. 4, pp. 1116-1121, Apr. 2004.

P. J. Bevelacqua and C. A. Balanis, “Minimum sidelobe levels for linear
arrays,” IEEFE Trans. Antennas Propag., vol. 55, pp. 2210-2217, Dec. 2007.

M. Donelli, A. Martini, and A. Massa, “A hybrid approach based on PSO
and Hadamard difference sets for the synthesis of square thinned arrays,”
IEEE Trans. Antennas Propag., vol. 57, no. 8, 2491-2495, Aug. 2009.

G. Oliveri and A. Massa, “Genetic algorithm (GA)-enhanced almost differ-
ence set (ADS)-based approach for array thinning,” IET Microw. Antennas
Propag., vol. 5, no. 3, pp. 305-315, Feb. 2011.

Y. Liu, Z. Nie, and Q. H. Liu, “A new method for the synthesis of non-
uniform linear arrays with shaped power patterns,” Prog. FElectromagn.
Res., vol. 107, pp. 349-363, 2010.

Y. Liu, Q. H. Liu, and Z. Nie, “Reducing the number of elements in the
synthesis of shaped-beam pattern by the forward-backward matrix pencil
method,” IEEE Trans. Antennas Propag., vol. 58, no. 2, pp. 604-608, Feb.
2010.

J. Perini and M. Idselis, “Note on antenna pattern synthesis using numerical
iterative methods,” IEEFE Trans. Antennas Propag., vol. 19, no. 2, pp. 284-
286, Mar. 1971.

97



BIBLIOGRAPHY

[36]

[37]

38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

R. W. Redlich, “Iterative least-squares of nonuniformly spaced linear ar-
rays,” IEEE Trans. Antennas Propag., vol. 21, no. 1, pp. 106-108, Jan.
1973.

S. Holm, B. Elgetun, and G. Dahl, “Properties of the beampattern of
weight- and layout-optimized sparse arrays,” IEEE Trans. Ultrason., Fer-
roelectr., Freq. Control, vol. 44, no. 5, pp. 983-991, Sep. 1997.

B. P. Kumar and G. R. Branner, “Design of unequally spaced arrays for
performance improvement,” IEEE Trans. Antennas Propag., vol. 47, pp.
511-523, Mar. 1999.

B. P. Kumar and G. R. Branner, “Generalized analytical technique for
the synthesis of unequally spaced arrays with linear, planar, cylindrical or
spherical geometry,” IEEE Trans. Antennas Propag., vol. 53, pp. 621-633,
Feb. 2005.

F. B. T. Marchaud, G. D. de Villiers, and E. R. Pike, “Element position-
ing for linear arrays using generalized Gaussian quadrature,” IEEE Trans.
Antennas Propag., vol. 51, no. 6, pp. 1357-1363, Jun. 2003.

S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans.
Signal Process., vol. 56, no. 6, pp. 2346-2356, Jun. 2008.

S. Ji, D. Dunson and L. Carin, “Multi-task compressive sampling,” IEEE
Trans. Signal Process., vol. 57, no. 1, pp. 92-106, Jan. 2009.

M. E. Tipping and A. C. Faul, “Fast marginal likelihood maximization for
sparse Bayesian models,” in Proc. 9th Int. Workshop Artificial Intelligence
and Statistics, C.M. Bishop and B. J. Frey, Eds., 2003 [Online|. Available:
http://citeseer.ist.psu.edu,/611465.html

A. C. Faul and M. E. Tipping, “Analysis of sparse Bayesian learning,”
in Advances in Neural Information Processing Systems (NIPS 14), T. G.
Dietterich, S. Becker, and Z. Ghahramani, Eds., 2002, pp. 383-389 [Online|.
Available: http://citeseer.ist.psu.edu/faul01analysis.html

M. E. Tipping, “Sparse bayesian learning and the relevance vector ma-
chine”, J. Machine Learning Res., vol 1, pp. 211-244, 2001.

A. Akdagli and K. Guney, “Shaped-beam pattern synthesis of equally and
unequally spaced linear antenna arrays using a modified tabu search algo-
rithm,” Microwave Opt. Technol. Lett., vol. 36, no. 1, pp. 16-20, 2003.

S. Yang, Y. Liu, and Q. H. Liu, “Combined strategies based on matrix
pencil method and tabu search algorithm to minimize elements of non-
uniform antenna array”’, Prog. Electromagn. Res. B, vol. 18, pp. 259-277,
2009.

98



BIBLIOGRAPHY

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

D. Marcano and F. Duran, “Synthesis of antenna arrays using genetic al-
gorithms,” IEEE Antennas Propag. Mag., vol. 42, no. 3, pp. 12-22, Jun.
2000.

A. Akdagli and K. Guney, “Touring Ant Colony Optimization algorithm for
shaped beam pattern synthesis of linear antenna arrays,” Electromagnetics,
vol. 25, no. 6, pp. 615-628, Aug. 2006.

J. M. Cid, J. A. Rodriguez, and F. Ares, “Shaped power patterns pro-
duced by equispaced linear arrays: Optimized synthesis using orthogonal
sin(Nx)/sin(x) beams,” J. FElectromagn. Waves Appl., vol. 13, no. 7, pp.
985-992, 1999.

B. Fuchs, “Synthesis of Sparse Arrays With Focused or Shaped Beampat-
tern via Sequential Convex Optimizations,” IEEE Transactions on Anten-
nas and Propagation, vol. 60, no. 7, pp. 3499-3503, Jul. 2012.

G. Prisco and M. D’Urso, “Maximally sparse arrays via sequential convex
optimizations,” IEEE Antenna Wireless Propag. Lett., vol. 11, pp. 192-195,
2012.

A. Fannjiang, P. Yan, and T. Strohmer, “Compressed remote sensing of
sparse objects,” arXiv, 0904.3994v2, pp. 1-22, 2009.

A. C. Fannjiang, “Compressive inverse scattering II. SISO measurements
with Born scatterers,” Inverse Problems, vol. 26, no. 3, pp. 1-17, Mar. 2010.

S. A. Vorobyov, A. B. Gershman, and K. W. Wong, “Maximum likelihood
direction-of-arrival estimation in unknown noise fields using sparse sensor
arrays’, IEEE Trans. Signal Process., vol. 53, no. 1, pp. 34-43, Jan. 2005.

L. Lei, J. P. Lie, A. B. Gershman, and C. M. Samson See, “Robust adap-
tive beamforming in partly calibrated sensor arrays”, IEEFE Trans. Stgnal
Process., vol. 58, no. 3, pp. 1661-1667, Mar. 2005.

E. Candes and J. Romberg, L1-Magic Code [online]. Available:
http://users.ece.gatech.edu/~justin/l1magic/

V. Stodden, L. Carin, D. Donoho, I. Drori, D. Dunson, M. Elad, S. Ji, J.-L.
Starck, J. Tanner, V. Temlyakov, Y. Tsaig, and Y. Xue, SparseLab Code
[online|. Available: http://sparselab.stanford.edu/

K. Koh, S.-J. Kim, and S. Boyd, ell-1LS Code [online]. Available:
http://www.stanford.edu/ " boyd /11 _1s/

S. Ji, Y. Xue, and L. Carin, “Single-task and multi-task
Bayesian compressive sensing code”, 2009 [Online|]. Available:
http:/ /people.ee.duke.edu/ "lihan/cs/

99



BIBLIOGRAPHY

[61]

[62]

[63]

[64]

[65]

[66]

67]

68]

[69]

[70]

71]

Y. Nagata, T. Fujioka, and M. Abe, “Two-dimensional DOA estimation of
sound sources based on weighted Wiener gain exploiting two-directional
microphones,” IEEE Trans. Audio, Speech, Language Process., vol. 15, no.
2, pp. 416-429, Feb. 2007.

P. Stoica, P. Babu, L. Jian, “SPICE: A sparse covariance-based estimation
method for array processing” IEEE Trans. Signal Process., vol. 59, no. 2,
pp. 629-638, Feb. 2011.

L. Fulai, W. Jinkuan, S. Changyin, and D. Ruiyan, “Spatial differencing
method for DOA estimation under the coexistence of both uncorrelated
and coherent signals,” IEEE Trans. Antennas Propag., vol. 60, no. 4, pp.
2052-2062, Apr. 2012.

C. H. Niow and H. T. Hui, “Improved noise modeling with mutual cou-
pling in receiving antenna arrays for direction-of-arrival estimation,” IEFEE
Trans. Wireless Comm., vol. 11, no. 4, pp. 1616-1621, Apr. 2012.

R. O. Schmidt, “Multiple emitter location and signal parameter estima-
tion,” IEFEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276-280, Mar.
1986.

A. Swindlehurst and T. Kailath, “A performance analysis of subspace-based
methods in the presence of model errors. I. The MUSIC algorithm,” IEEE
Trans. Signal Process., vol. 40, no. 7, pp. 1578-1774, Jul. 1992.

R. Roy and T. Kailath, “ESPRIT-Estimation of signal parameters via ro-
tational invariance techniques,” IEEE Trans. Acoust., Speech, Signal Pro-
cess., vol. 37, no. 7, pp. 984-995, Jul. 1989.

M. D. Zoltowski, M. Haardt, and C. P. Mathews, “Closed-form 2-D angle
estimation with rectangular arrays in element space or beamspace via uni-
tary ESPRIT,” IEEE Trans. Signal Process., vol. 44, no. 2, pp. 316-328,
Feb. 1996.

F. Gao and B. Gershman, “A generalized ESPRIT approach to direction-of-
arrival estimator,” IEEE Signal Process. Lett., vol. 12, no. 3, pp. 254-257,
Mar. 2005.

[. Ziskind and M. Wax, “Maximum likelihood localization of multiple
sources by alternating projection,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 36, no. 10, pp. 1553-1560, Oct. 1988.

P. Stoica and A. B. Gershman, “Maximum-likelihood DOA estimation by
data-supported grid search,” IEEE Signal Process. Lett., vol. 6, no. 10, pp.
273-275, Oct. 1999.

100



BIBLIOGRAPHY

[72]

73]

[74]

[75]

[76]

7]

78]

[79]

[80]

[81]

[82]

83]

M. Donelli, F. Viani, P. Rocca, and A. Massa, “An innovative multi-
resolution approach for DOA estimation based on a support vector clas-
sification,” IEEE Trans. Antennas Propag., vol. 57, no. 8, pp. 2279-2292,
Aug. 2009.

A. H. El Zooghby, C. G. Christodoulou, and M. Georgiopulos, “A neural
network-based smart antenna for multiple source tracking,” IEEE Trans.
Antennas Propag., vol. 48, no. 5, pp. 768-776, May 2000.

M. Pastorino and A. Randazzo, “The SVM-based smart antenna for esti-
mation of the directions of arrival of electromagnetic waves,” IEEE Trans.
Antennas Propag., Vol 55, No. 6, pp. 1918-1925, Dec. 2006.

A. Randazzo, M. A. Abou-Khousa, M. Pastorino, and R. Zoughi, “Direction
of arrival estimation based on support vector regression: Experimental
validation and comparison with MUSIC,” IEEE Antennas Wireless Propag.
Lett., vol. 6, pp. 379-382, 2007.

D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal reconstruction
perspective for source localization with sensor arrays,” IEEE Trans. Signal
Process., vol. 53, no. 8, pp. 3010-3022, Aug. 2005.

M. M. Hyder and K. Mahata, “A robust algorithm for joint-sparse recov-
ery,” IEEE Signal Process. Lett., vol. 16, no. 12, pp. 1091-1094, Dec. 2009.

Z.-M. Liu, z.-T. Huang, and Y.-Y. Zhou, “Direction-of-arrival estimation
of wideband signals via covariance matrix sparse representation,” IFEFE
Trans. Signal Process., vol. 59, no. 9, pp. 4256-4270, Sep. 2011.

E. J. Candes, J. K. Romberg, and T. Tao, "Robust uncertainty principles:
exact signal reconstruction from highly incomplete frequency information,"
IEEE Transactions on Information Theory, vol. 52, n. 2, pp. 489-509, 2006.

Donoho D., “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4,
pp. 1289-1306, Apr. 2006

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,”
IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21-30, Mar. 2008.

M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed
sensing MRI,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 72-82, Mar.
2008.

W. L. Chan, M. Moravec, R. Baraniuk, and D. Mittleman, “Terahertz
imaging with compressed sensing and phase retrieval,” Optics Lett., vol.
33, pp. 974 - 976, 2008.

101



BIBLIOGRAPHY

[84]

[85]

[86]

187]

88]

[89]

[90]

[91]

[92]

193]

[94]

[95]

L. C. Potter, E. Ertin, J. T. Parker, and M. Cetin, “Sparsity and com-
pressed sensing in radar imaging,” Proc. IEEE, vol. 98, no. 6, pp. 1006-
1020, Jun. 2010.

R. G. Baraniuk, “Compressive sampling,” IEEE Signal Process. Mayg., vol.
24, no. 4, pp. 118-124, Jul. 2007.

G. Oliveri, P. Rocca, and A. Massa, “A Bayesian compressive sampling-
based inversion for imaging sparse scatterers,” IEEE Trans. Geosci. Remote
Sens., vol. 49, no. 10, pp. 3993-4006, Oct. 2011.

G. Oliveri, L. Poli, P. Rocca, and A. Massa, “Bayesian compressive optical
imaging within the Rytov approximation,” Optics Lett., vol. 37, no. 10, pp.
1760-1762, 2012.

S. Lei and W. Huali, “Direction-of-arrival estimation based on modified
Bayesian compressive sensing method,” Proc. 2011 Int. Conf. Wireless
Comm, Sig. Proc. (WCSP), Nanjing,China, 9-11 Nov. 2011, pp. 1-4

J. Foutz, A. Spanias, and M. K. Banavar, Narrowband direction of arrival
estimation for antenna arrays. Morgan & Claypool, 2008.

Bhaskar. D. Rao, and K. V. S. Hari, “Performance analysis of Root-Music,”
IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 12, pp. 1939-
1949, Dec. 1989.

B. Otterstern, M. Viberg and T. Kailath, “Performances analysis of the
total least squares ESPRIT algorithm,” IEEE Trans. Signal Process., vol.
39, no. 5, pp. 1122-1135, May 1991.

W. U. Bajwa, J. Haupt, A. M. Sayeed, and R. Nowak, “Compressed channel
sensing: A new approach to estimating sparse multipath channels,” IEEE
Proc., vol. 98, no. 6, pp. 1058-1076, Jun. 2010.

A. Majumdar, R. K. Ward, and T. Aboulnasr, “Compressed sensing based
real-time dynamic MRI reconstruction,” IEFEFE Trans. Medical Imaging,
vol. 31, no. 12, pp. 2253-2266, Dec. 2012.

J. Yang, J. Thompson, X. Huang, T. Jin, Z. Zhou, “Random-frequency
SAR imaging based on compressed sensing,” IEEE Trans. Geosci. Remote
Sens., vol. 51, no. 2, pp. 983-994, Feb. 2013.

L. Poli, G. Oliveri, P. Rocca, and A. Massa, “Bayesian compressive sens-
ing approaches for the reconstruction of two-dimensional sparse scatterers
under TE illuminations,” IEEFE Trans. Geosci. Remote Sens., vol. 51, no.
5, pp- 2920-2936, May 2013.

102



BIBLIOGRAPHY

[96] I. Ziskind and M. Wax, “Maximum likelihood localization of multiple

197]

98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

sources by alternating projection,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 36, no. 10, pp. 1553-1560, Oct. 1988.

J.-J. Fuchs, “On the application of the global matched filter to DOA es-
timation with uniform circular arrays,” IEEFE Trans. Signal Process., vol.
49, no. 4, pp. 702-709, Apr. 2001.

D. Model and M. Zibulevsky, “Signal reconstruction in sensor arrays using
sparse representations,” Signal Process., vol. 86, pp. 624-638, 2006.

A. C. Gubruz, V. Cevher, and J. H. McClellan, “Bearing estimation via
spatial sparsity using compressive sensing,” IEEE Trans. Aerospace Elec-
tron. Syst., vol. 48, no. 2, pp. 1358-1369, Apr. 2012.

M. M. Hyder and K. Mahata, “Direction-of-arrival estimation using a mixed
12,0 norm approximation,” IEEE Trans. Signal Process., vol. 58, no. 9, pp.
4647-4655, Sep. 2010.

H. Zhu, G. Leus, and G. B. Giannakis, “Sparsity-cognizant total least-
squares for perturbed compressive sampling,” IEEE Trans. Signal Process.,
vol. 59, no. 5, pp. 2202-2016, May 2011.

I. Bilik, “Spatial compressive sensing for direction-of-arrival estimation of
multiple sources using dynamic sensor arrays,” IEEE Trans. Aerospace
Electron. Syst., vol. 47, no. 3, pp. 1754-1769, Jul. 2011.

Z. Zhang and B. D. Rao, “Sparse signal recovery with temporally correlated
source vectors using sparse Bayesian learning,” IEEFE J. Select. Topic Signal
Process., vol. 5, no. 5, pp. 912-926, Sep. 2011.

E. T. Northardt, I. Bilik, and Y. I. Abramovich, “Spatial compressive sens-
ing for direction-of-arrival estimation with bias mitigation via expected
likelihood,” IEEE Trans. Signal Process., vol. 61, no. 5, pp. 1183-106, Mar.
2013.

Z. Yang, L. Xie, and C. Zhang, “Off-grid direction of arrival estimation
using sparse Bayesian inference,” IEEE Trans. Signal Process., vol. 61, no.
1, pp. 38-43, Jan. 2013.

103



BIBLIOGRAPHY

104



Appendix A

Derivation of (4.14)

To solve (4.13), the conditional probability P <WH| f‘H) is written according to
the Bayes theorem, as

P <f‘H‘ WH> P (wy)
P (Fx)
where P (f‘H’wH> is the ‘likelihood’, whereas P (f‘H> and P (wy) are the

priors of Fy and wyy, respectively. Equation (A.1) is substituted in (4.13) to
yield

P (wnlFy) 2 (A1)

wT-BCS _ are { max P (f‘H’ WH) P (wi)

e
Analogously to the BC'S case, P (wy) in (A.2) is used to enforce the ‘sparseness’
of wy (i.e., the minimization of ||wg||, ) [21], but besides the BC'S definition,
the MT — BC'S prior also establishes the interrelationships between wr and wy.

Towards this end, a shared prior is placed across the two (i.e., H = Rand H = I)
C'S “tasks” in Eq. (A.2) [42]. Mathematically, it is assumed that [42]

(A.2)

P(wy) = / P (wp|a,0%) P (a) P (c°) dads” (A.3)

where a = {G,; n=1,...,N}, a € R, is the “shared” hyperparameters vector
[42], whose associated hyperpriors still comply with the Gamma distribution [42]

N 1~ \B1=1 __pya,
p@zHF”W o

A4
J e tdt (4.4)

n=1

as for the BC'S [see Eq. (5) - [21]]. Moreover, a “shared” Gamma hierarchical
prior is enforced on 7?2 [42] with the same form as in the BC'S (see Eq. (6) -
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[21]) ,
() e
[t et

where the user-defined coefficients (-3, are the so-called ‘scale priors’ [42].
Concerning P (wg|a,5?), the following hierarchical Gaussian model is as-
sumed [42]

P (%) (A.5)

N al [ (wH)2
P (wyla,5%) = [(27r8)_ ]H @y exp —TA; _ (A.6)
n=1
Back substituting (A.3) in (A.2), it results that
whT-BCS _
= arg {mawa {f P(WH|3732)737()1(’;}|1V)VH)73(5)P(82)dada\Q] } (A7)

and, by integrating over 62 and performing simple mathematical manipulations,
the relation (A.7) can be rewritten as

wMT=BCS _ apg {max {/P (wnlFy.a) P (a )ﬁH) dﬁ} } . (A.8)

WH

As far as the first term in (A.8) is concerned, one can notice that [42]
P (walFir.8) = /79 (wnlFir.8,5°) P (5) do” (A.9)

whose integrand is given by

P(Fu|wy,62)P(wulas?)P(s?)
JP(Fu|wu,5%)P(wya,62)dwy

(A.10)

P <wH| Fi.a, 32) P (2) =

according to Bayes’ theorem. By using (A.5) and (A.6), and observing that
[see (4.11)]

P (f‘H) WH,GQ) = %exp (—%?2 2) : (A.11)

27152) K/
it results that

P (WH|ﬁH,§> — (fow t51+N/27167tdt) x
1 (B1+N/2) (A.12)

[1+ﬁ(wH*ﬁH)T§71(WH*uH)]
(J5o tP1-tetdt) (2m2) N2\ /|3

o~ ~ o~ ~ o~ 1 -~
where fig 2 S®TFy and 5 2 <A n c1>T<1>) , being A 2 diag (3).
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APPENDIX A. DERIVATION OF (4.14)

By analyzing the expression of P (WH| f‘H,§>, it is worth noticing that the

posterior distribution over wy is now a multivariate Student-t distribution (A.12)
instead of the multivariate Gaussian distribution of the BC'S (Eq. (9) - [21]).
Moreover, the scale terms 3 and (34, do not have to be specified unlike 5; and [,
since the corresponding distributions are not explicitly required for the compu-
tations.

Concerning the remaining term in the integral of (A.8), a “delta-function”
approximation is adopted analogously to the BC'S case [42] since its closed-form
computation is not feasible. Towards this end, let us firstly notice that

P (a|Fy) P (Fula) P (@)
or in a different fashion

P (a]ﬁH) oc [fP (ﬁH]wH,a2)7:(wH|a,a2) X (A13
x P (62) dwyds?] P (3) '

whose mode (over the two tasks H € {R, I}) can be computed, by using (A.11),
(A.5), and (A.6), as [42]

aMT= B — argmax {£MTP% (@)} (A.14)

where LMT-BCS(Q) is the logarithm of the MT — BCS “marginal likelihood”
given by

+

LMT-BCS (3) — 1Y {log ('I +3|4] g } s

~ ~T~-1 ~ ~
+ (N +281) log [Fg (1 + @ [A} @T) Fr + 26

By using (A.14), the delta-function approximation is then applied to obtain
P (a|Fy) ~ 6 (@—avmres). (A.16)

By substituting (A.12) and (A.16) in (A.8) and since the mode of a multi-variate
Student-t distribution is equal to its average value (i.e., fiy), it turns out that

WHJMTBCS = R
= arg { Maxy,, | [ P (WH| FH,§> ) (ﬁ — ﬁMT_BCS) dﬁ}} =

= arg { MaXy,, | P <WH| f‘H’a)Jé\:aMT—BCS} }

~
= MHJ A—aMT—-BCS -

(A.17)

107



