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AbstratIn the framework of antenna array synthesis and ontrol, this thesis fous onthe development and analysis of tehniques based on the Bayesian CompressiveSensing (BCS) for the design of sparse antenna arrays and for the estimation ofthe diretion of arrival (DoA) of signals impinging on an antenna array. Afterformulating the sparse-array synthesis problem in a probabilisti fashion, thesingle-task BCS (ST −BCS) is applied to the synthesis of symmetrial antennaarrays with real weights. In order to deal with the synthesis of sparse arrays withomplex weights, the multitask version of the BCS (MT − BCS) is employedto orrelate the real and imaginary part of the resulting exitation distribution.Conerning the DoA estimation problem, starting from the observation thatthe signals impinging on the antenna array are sparse in the spatial domain, asingle-snapshot ST − BCS-based tehnique is proposed. Moreover, the MT −
BCS-based extension of this tehnique is introdued in order to enhane thequality of the estimations through the exploitation of the orrelation amongdi�erent snapshots. In the numerial validation, an exhaustive analysis has beenperformed to assess e�etiveness, reliability, but also limitations of the proposedmethodologies. Comparisons with state-of-the-art are reported and disussed, aswell.KeywordsArray synthesis, Bayesian Compressive Sensing, Diretion-of-Arrival Estimation,Sparse Arrays
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Chapter 1Introdution
Thanks to its ability to allow the reovering of a signal starting from farfewer measurements than onventional tehniques based on Shannon's theorem[85℄, the Compressive Sensing (CS) paradigm has attrated a lot of attention inseveral researh areas of information theory, signal proessing, omputer sieneand eletrial engineering [80, 81, 85℄, enabling the development of ompletelynew approahes in these �elds [80, 81, 85℄. Traditional sampling approahesrequire that the sampling rate is higher than twie the maximum frequenyvalue in the measured signal. However, in many appliations suh as imagingand radar, the signal to be aquired is often sparse with respet to a proper basis(i.e. it has a onise representation in that basis). As a onsequene, a largeamount of data samples an be represented with a small number of oe�ients.For example, lossy image ompression oders enode only the loations and thevalues of the most signi�ant oe�ients of an image, throwing away the majorityof the oe�ients with almost no pereptual loss. This proess requires theaquisition of all the data in order to perform the ompression, resulting in awaste of measuring resoures. Di�erently from traditional ompression shemes,instead of measuring the full signal, the CS aquires only the amount of data thatis not disharged. This feature is useful in many appliative senarios, wherethe aquisition of a large number of measurements is not pratial for severalreasons, like the high ost of the measurements, the limited number of sensorsor the large time required for eah measurement. The CS approah is based on�nding an approximate solution x to an underdetermined linear problem y = Ax,minimizing at the same time the number of non-zero entries of x (see Equation2.1). If suitable onditions are �tted, a high-dimensionality solution x an beretrieved from a small number of measurements y. In addition to the advantagesover lassial sampling shemes, the popularity of the CS is related to (i) the�exibility and generality of its formulation, allowing its appliation to a widerange of problems, (ii) the e�etiveness of the orresponding solution tehniquesand to (iii) the wide availability of software libraries implementing state-of-the-art CS algorithms [57, 58, 59, 60℄ for e�etively dealing with omplex engineering1



problems.Thanks to their e�ieny, CS strategies have gained a lot of interest in theEM ommunity. For example, in [84℄, the CS has been applied to radar remotesensing, a problem where the standard CS requirements (i.e. sparsity of thesolution and linearity) are �tted in a natural way. However, by using suitableapproximations or if some a-priori knowledge is at hand, several eletromagnetiproblems an be reformulated in order to �t the CS requirements. In this way,the CS has been reently extended to several �elds of eletromagnetis with veryinteresting results. These appliations inlude array diagnosis [2℄, array synthesis[51, 52℄, diretion-of-arrival estimation [76℄, inverse sattering and mirowaveimaging [53, 54℄.On the other hand, in order to guarantee the pratial exploitability of CS-based tehniques, several issues like numerial stability and theoretial onditionsto guarantee their optimality still need to be arefully addressed. Indeed, thevalidity of widely adopted assumptions onerning the features of the problems,suh as the Restrited Isometry Property, annot be always granted in EM prob-lems of interest, whose properties are often onstrained by the underlying physis[21, 86℄. Aordingly, the use of several popular solvers relying on these assump-tions, inluding those based on l1-norm minimization, may not be the optimalhoie in EM synthesis and inverse problems [21, 86℄. Reently, a set of e�etivetehniques have been proposed in order to address the above issues and enable thee�etive appliation of the CS paradigm in EM problems [41, 42℄. Suh strate-gies are essentially based on the reformulation of the EM problems in suitableprobabilisti senarios, following a Bayesian paradigm omprising suitable spar-sity priors [41, 42℄. The arising �Bayesian CS� (BCS) solution strategies havebeen therefore adopted to properly address design/inversion problems arising inseveral di�erent senarios [3, 21, 86, 87, 95℄.Di�erently from the approahes based on CS, the Bayesian Compressive Sens-ing (BCS) proposed in [41℄ searhes for the most probable sparse solution �ttingthe measured data samples. Thanks to the probabilisti formulation, the kernelof the problem is not required to satisfy any spei� theoretial feature, like therestrited isometry property (RIP) [85℄. The veri�ation of these features is of-ten very di�ult in pratial appliations. However, while the CS is able (underertain irumstanes) to obtain the exat reonstrution [79℄[80℄, this is not thease of the BCS. Moreover, due to the real-valued nature of the BCS solver,its extension to the sampling/reovery of omplex signals is not e�ient [41℄.In addition, the standard BCS approah is not able to orrelate the informa-tion obtained from di�erent measurement sets aquired in di�erent time instantsor by di�erent aquisition systems to enhane the estimation performanes. Inorder to avoid these problems, the Multi-Task Bayesian Compressive Sensing(MT − BCS) methodology has been introdued in [60℄. Di�erently form thestandard BCS implementation (ST −BCS), the MT −BCS allows the proba-bilisti orrelation [60℄ of di�erent sets of measurements in order to improve the2



CHAPTER 1. INTRODUCTIONauray of the reonstrution. Additionally, the problem of the estimation ofomplex signals an be handled in a similar way, by exploiting the MT − BCSto orrelate the real and imaginary omponents of omplex measured data, en-abling the methodology to reover omplex signals. The basi formulation of the
ST − BCS and MT −BCS approahes is resumed in the following Chapter.
Thesis outlineThe thesis is organized as follows. Firstly, the BCS general formulation is intro-dued in Chapter 2. In Chapter 3, the problem of the synthesis of sparse lineararrays with real weights is addressed by means of a ST − BCS strategy. Su-essively, the methodology is extended in Chapter 4 to the synthesis of antennaarrays with omplex weights by means of a MT − BCS approah. Chapter 5presents the problem of the estimation of the DoAs of signals impinging on alinear antenna array from a BCS perspetive, fousing on both the ST − BCSand MT −BCS. This methodology is then extended to the planar array ase inChapter 6. Some general onlusions follow in Chapter 7.
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Chapter 2Mathematial FormulationWhen the relation between the measured data and the unknowns is linear, theobjetive is to determine a K-dimensional vetor x ∈ RK×1 starting from a M-dimensional set of measured data y ∈ RM×1, where x is related to the measureddata y by the relation
y = A x (2.1)

A ∈ RM×K being a matrix modeling the linear relationship between the dataand the unknowns. However, in many engineering and sienti� problems, thenumber of measurements M is smaller than the number of unknowns K. In thisase, the system of equations (2.1) results to be underdetermined with a non-unique solution. therefore, it is not possible to obtain an aurate reonstrutionof the unknown x without adding some informations the problem.In many irumstanes, the unknown signal x an be represented by usinga number of oe�ients very small with respet to K. This means that only asmall number of oe�ients of the vetor x is di�erent from zero. In this ase,the measured vetor y is alled ompressible and the unknown vetor x is alledsparse. Under the sparsity hypothesis, the unknown signal x an be retrieved bysolving the following ompressive sensing (CS) problem[81, 85℄
min
x

‖x‖ℓ0 subjet to y = Ax (2.2)where ‖x‖ℓ0 =
∑K

k=1 |xk|
0 . However, the problem (2.2) is non-onvex, andits solution an be obtained only with an exhaustive ombinatorial searh. Analternative ommon approah is to onsider the problem[81, 85℄

min
x

‖x‖ℓ1 subjet to y = Ax (2.3)where ‖x‖ℓ1 =
∑K

k=1 |xk|. This is a onvex problem whih an be reast as alinear programming problem and solved in an e�ient way[81, 85℄.5



2.1. SINGLE TASK BCS (ST −BCS)2.1 Single Task BCS (ST − BCS)Let us onsider the system of linear equations (2.1). Under the ST−BCS frame-work, the estimation problem is reast as: given y ∈ RM×1 �nd the most sparsesolution x ∈ RK×1 whih maximizes the a-posterior probability maxx ℘ (x|y). Inother words
xST = arg

{
max

x
[℘ (x|y)]

} subjet to x is sparse (2.4)In order to take into aount the sparsity onstraints imposed on the solution,the following sparseness prior is de�ned
℘ (x) =

∫
℘ (x|a)℘ (a) da (2.5)In (2.5) the sparseness of the signal vetor x is ontrolled by the unknownhyper-parameter a [41℄. By assuming a Gamma-distributed hyper-parametervetor, Equation 2.4 an be rewritten as follows[41℄

xST = arg
{
max

x

[
℘
(
x|y, σ2, a

)
℘
(
σ2, a|y

)]} (2.6)Sine the term ℘ (x|y, σ2, a) in 2.6 is given by the signal model, if a Gaussiandistribution is assumed (whih is realisti if AWGN is at hand [41℄), it an berewritten as [41℄
℘
(
x|y, σ2, a

)
=

1

(2π)
K+1

2
√
det (Ξ)

exp

{
−(x− µ)T Ξ (x− µ)

2

} (2.7)where Ξ ∈ R
K×K and µ ∈ R

K×1 are equal to
Ξ =

(
1

σ2
ATA+ diag (a))−1 (2.8)

µ =
1

σ2
ΞATy (2.9)6



CHAPTER 2. MATHEMATICAL FORMULATION
T denoting the transpose operation.As it an be observed, the maximum value of (2.7) ours when the posteriormean µ is equal to x. Hene, the problem of maximization of (2.6) is solved by�nding the values of the parameters a and σ2 that maximizes the term ℘ (σ2, a|y).With the help of the Bayes Theory, it is possible to prove that the term ℘ (σ2, a|y)in (2.6) omplies with [41℄

℘
(
σ2, a|y

)
∝ ℘

(
y|σ2, a

)
℘
(
σ2
)
℘ (a) (2.10)where, aording to [41℄, the terms ℘ (σ2) and ℘ (a) an be assumed to beonstant. Hene, the omputation of the values of the parameters a and σ2that maximizes ℘ (y|σ2, a) and hene the probability appearing in (2.6) an beperformed by maximizing the logarithm of ℘ (y|σ2, a).Aordingly, the problem is solved by �nding the parameters σ2

ST and aSTthat maximize the following Maximum Likelihood funtion[41℄
LST

(
σ2, a

)
= log

[
℘
(
y|σ2, a

)]
= (2.11)

1

2

{
N log (2π) + log [det (CST )] + yTC−1

STy
}where CST = σ2I+Adiag (a)−1

AT , CST ∈ RM×M and I ∈ RM×M is the identitymatrix. By following the guidelines in [41℄, the optimization of (2.11) is arriedout by using a relevant vetor mahine (RVM), initialized with a user de�nedstarting value for σ2, σ2 = σ2
0. Finally, starting from the omputed σ2

ST and aSTvalues, the estimated solution vetor xST is obtained as
xST =

1

σ2
ST

(
ATA

σ2
ST

+ diag (aST )

)
ATy (2.12)It is worth notiing that this value orrespond to the mean value of (2.7).2.2 Multi Task BCS (MT − BCS)As already disussed, the ST −BCS methodology presented in the previous se-tion is not e�ient when dealing with multiple data sets (e.g. data sets aquiredat multiple time instants or by di�erent measurement systems) or when omplexdata are at hand. In these ases, the linear system (2.1) an be rewritten as

y(w) = A x(w), w = 1, ...,W (2.13)where x(w) ∈ R
K×1, w = 1, ...,W , an be, alternatively:7



2.2. MULTI TASK BCS (MT − BCS)
• the data measured by di�erent sets of sensors or at di�erent time instants(w = 1, ...,W ).
• the real and imaginary part of a omplex signal (w = 1, 2).The only way to apply the ST −BCS in this ase is by solving W independentmaximization problems (2.11), one for eah set of data x(w), w = 1, ...,W , leadingto independent solutions σ2,(w)

ST and a
(w)
ST , w = 1, ...,W . This is a non-e�ient wayof using the data at hand, sine the possible relation between di�erent tasks (i.e.one of theW problems in (2.13)) is negleted. In order to address this limitation,the problem is formulated in a MT − BCS framework as follows

xMT =
1

W

W∑

w=1

arg

{
max
x(w)

[
℘
(
x(w), a|y(w)

)]} (2.14)
a ∈ RK×1 being a shared hyper-parameter vetor [42℄. By following an ap-proah similar to the BCS [42℄, the optimal value of the hyper-parameter vetor

a is omputed by maximizing the marginal likelihood funtion
LMT (a) = −1

2

W∑

w=1

{log [det (CMT )] + (2.15)
(N + 2β1) log

[(
y(w)

)T
CMTy

(w) + 2β2

]} (2.16)where CMT = I+Adiag (a)−1
AT , CMT ∈ RM×M , and β1, β2 are user-de�nedparameters. Finally, the MT − BCS estimation of the signal x is omputed as[42℄

xMT =
1

W

W∑

w=1

{[
ATA+ diag (aMT )

]−1
ATy(w)

} (2.17)Like in the ST − BCS ase, all the terms are unknown exept the sharedhyperparameter vetor aMT , whose value is omputed by applying a suitableRVM strategy applied to the multi-task ase.
8



Chapter 3Real-Weight Sparse Linear ArraySynthesis by Bayesian CompressiveSensingAn innovative methodology for the synthesis of sparse linear arrays with pre-sribed pattern features is numerially analyzed when dealing with large aperturelayouts. The tehnique is based on a probabilisti formulation of the synthesisproblem whih is solved through a Bayesian Compressive Sensing (BCS) teh-nique. A set of numerial experiments are presented to assess the features andpotentialities of the BCS design approah when layouts omprising several hun-dred elements are at hand.
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3.1. INTRODUCTION AND MOTIVATION3.1 Introdution and MotivationThe design of satellite ommuniation systems, radars, and devies for biomedialimaging and remote sensing appliations usually imposes severe onstraints onthe pattern features (in terms of peak sidelobe level, diretivity, beam footprintand shape) of the array to be deployed [4℄. The neessity of ahieving these goalswhile obtaining inexpensive, light and simple arhitetures, espeially when deal-ing with large antenna systems, has lead to the introdution of sparse arrays [4℄.Despite their advantages, however, sparse layouts have the main limitation thatthey yield a redued ontrol of the beam shape [4, 11, 24, 9, 19, 29, 72, 18, 28℄. Inorder to address this drawbak, several di�erent tehniques have been proposedeither for the minimization of the PSL in thinned arrays [11, 29, 72, 18, 28℄, or forthe synthesis of maximally-sparse arrays with presribed pattern harateristis[9, 19, 14℄. While the �rst problem has been widely studied [4, 11, 29, 72, 18, 28℄,only few tehniques have been introdued for the solution of the latter [21℄. Inthis framework, numerially inexpensive approahes, suh as the steepest desentmethod, the iterative least-square tehnique, the simplex searh, and the linearprogramming, were among the �rst methodologies applied to sparse array design[14, 21℄. However, these tehniques exhibit some drawbaks in terms of �exibil-ity, required a-priori information, and �nal obtained performanes [21℄. Morereently, in order to overome these limitations, the simulated annealing [19℄ andthe Matrix Penil Method [14℄ have been suessfully applied to the design ofsparse arrays with presribed pattern features. Nevertheless, despite their ex-ellent performanes, these methodologies an lead either to high omputationalosts [19℄ or to sub-optimal performanes when dealing with shaped beams [14℄.An innovative approah for the synthesis of sparse arrays with presribed patternfeatures has been reently proposed [21℄. This methodology is based on the for-mulation of the sparse array synthesis problem as a �Compressive Sensing (CS)retrieval� one, in whih the sparseness onstraints are imposed on the �nal arraylayout [21℄. The arising CS problem is then reast in a probabilisti frameworkexploiting the so-alled Bayesian Compressive Sensing formulation [41℄, and thensolved by means of an e�ient Relevane Vetor Mahine (RVM) [45℄. Thanks tothis approah, BCS sparse array synthesis has proved to be e�etive in dealingwith standard and referene sparse array synthesis problems [21℄. However, ananalysis of its performanes (in terms of pattern mathing auray and om-putational omplexity) when dealing with large aperture arrays has never beenpresented. This Chapter is aimed at analyzing the performanes, features andlimitations of the BCS-based tehnique when dealing with the design of sparsearrays displaed over apertures of width up to several hundred wavelengths. To-wards this end, a set of array synthesis problems dealing with di�erent layoutsand patterns features are presented to assess the potentialities and drawbaks ofthe onsidered tehnique. 10



CHAPTER 3. REAL-WEIGHT SPARSE LINEAR ARRAY SYNTHESIS BYBAYESIAN COMPRESSIVE SENSING3.2 Mathematial FormulationThe problem of �nding the sparsest (real and symmetri [21℄) linear array withdesired radiating properties an be ast in terms of a pattern mathing one asfollows [21℄:Synthesis Problem: given a set of K samples of a referene pattern FREF =
[FREF (u1) , ..., FREF (uk) , ..., FREF (uK)], and a �delity fator ε, �nd the sparsestset of array weights w = [w1, ..., wN ] suh that ‖FREF − FBCS‖2 < ε.where FBCS = [FBCS (u1) , ..., FBCS (uk) , ..., FBCS (uK)] is the vetor of thesamples of the sparse array radiation pattern, whose k-th omponent is

FBCS (uk) =
N∑

n=1

wnνn cos

(
2πdnuk
λ

)
, k = 1, ..., K (3.1)

λ is the wavelenght, uk (k = 1, ..., K) are the mathing angles, dn (n =
1, ..., N) are the allowed positions for the sparse array elements and νn is theNeumann's number [21, 11℄. By modeling the radiation pattern as a Gaussianrandom variable [21℄, the above synthesis problem an be reast in the frameworkof BCS to obtain the following equivalent one [21℄:

BCS Problem: given FREF , �nd w, a and σ2 whih maximize the a-posterioriprobability p ([w, a, σ2] |FREF ).where a and σ2 are, respetively, the hyperparameter vetor [45℄ and theestimated �delity variane [21℄. Following the RVM approah [41, 45℄, this BCSproblem is then solved by the following proedure [21℄:1. Input phase: de�ne the referene pattern samples FREF , the set of admis-sible element loations dn (n = 0, ..., N), and the initial estimate of the�delity variane;2. Matrix De�nition: alulate the problem Φ ∈ CK×N , with Φ (k, n) =
νn cos

(
2πdnuk

λ

);3. Hyperparameter Posterior Modes Estimation: �nd a and σ2 aording tothe RVM proedure [21℄;4. Array weights estimation: �nd the optimal sparse weights byw = ΞΦHEREF/σ
2, where Ξ =

(
A+ ΦΦH

σ2

)−1 and A = diag (a).3.3 Numerial ResultsIn order to assess the performanes of the BCS design method when dealingwith large aperture arrays, a set of experiments has been arried out onsideringeither Dolph or Taylor referene patterns [4℄, and evaluating, for eah obtaineddesign, the pattern mathing error 11



3.3. NUMERICAL RESULTS
ξ ,

∫ 1

−1
|FREF (u)− FBCS (u)|2 du∫ 1

−1
|FREF (u)|2 du , (3.2)where FBCS (u) and FREF (u) are the sparse-array pattern and the referenepattern, respetively. Moreover, the number of elements of the sparse layout

PBCS and the total array size LBCS have been ompared to those obtained witha uniform layout, as well.As a �rst numerial example, the synthesis of a sparse array exhibiting aDolph pattern (uniform array aperture L = 49.5 λ, PSL = −30 dB) has beenonsidered. The �nal obtained result (Fig. 3.1) indiates that the onsideredmethodology is able to ahieve a good auray [Fig. 3.1(b)℄, despite the ex-ploitation of a redued number of radiating elements [PBCS = 64 - Fig. 3.1(a)℄.This is atually on�rmed by the ahieved �delity fator, whih shows a math-ing error below 0.1% (ξ = 5.3×10−5 - Tab. 3.1), as well as by the obtained PSLvalue, whih turns out very lose to the referene one (PSLBCS = −29.5 dB -Tab. 3.1). Moreover, the uniform and sparse weight arrangements indiate thata similar envelope is atually followed by both arrays [Fig. 3.1(a)℄, thereforesuggesting that the BCS method atually samples in a nonuniform fashion thesame Dolph distribution of the uniform layout.It is also worth pointing out that a redued synthesis time is observed in thisase (∆t = 0.23 [s] - Tab. 3.1) notwithstanding the non-negligible problem sizeand the exploitation of a laptop for the synthesis (all the simulations have beenperformed on a single ore PC running at 2.16 GHz). Similar onlusions anbe drawn when dealing with a Taylor referene pattern for the same aperture(PSL = −30 dB, 'transition index' T = 6). Indeed, the signi�ant elementredution (PBCS = 66 - Tab. 3.1), the numerial e�ieny (∆t = 0.25 [s]- Tab. 3.1), and the good mathing auray both in terms of �delity fator(ξ = 7.8× 10−5 - Tab. 3.1) as well as of PSL (whih atually turns out improved- Tab. 3.1) are on�rmed despite the presene of very low sidelobes at end�re[right inset of Fig. 3.2(b)℄. Moreover, it is again noteworthy that the uniform andsparse layouts exhibit a similar weight envelope in the whole aperture, althoughthe BCS yields a nonuniformly sampled arhiteture [Fig. 3.2(a)℄.As a �nal numerial experiment, the synthesis of a L = 499.5 λ, PSL =
−50 dB, T = 6 Taylor pattern has been onsidered to investigate the features ofthe onsidered methodology when dealing with signi�antly larger apertures andlower sidelobe levels. Also in this ase, the plot of obtained sparse-array pattern[Fig. 3.3(b)℄ indiates that a good mathing auray is obtained in the wholevisible range (ξ = 6.4×10−5 - Tab. 3.1), despite the redued number of radiatingelements of the sparse layout (PBCS = 628 - Tab. 3.1). Moreover, while the sparse12



CHAPTER 3. REAL-WEIGHT SPARSE LINEAR ARRAY SYNTHESIS BYBAYESIAN COMPRESSIVE SENSING

(a)

(b)Figure 3.1: Dolph referene pattern (L = 49.5λ, PSL = −30 dB) - Array layouts(a) and power pattern (b) of the referene and obtained array.
13



3.3. NUMERICAL RESULTS

(a)

(b)Figure 3.2: Taylor referene pattern (L = 49.5λ, PSL = −30 dB, T = 6) - Arraylayouts (a) and power pattern (b) of the referene and obtained array.
14



CHAPTER 3. REAL-WEIGHT SPARSE LINEAR ARRAY SYNTHESIS BYBAYESIAN COMPRESSIVE SENSING

(a)

(b)Figure 3.3: Taylor referene pattern (L = 499.5λ, PSL = −50 dB, T = 6) -Array layouts (a) and power pattern (b) of the referene and obtained array.layout turns out slightly smaller than the referene one (LBCS = 499.3 λ - Tab.3.1) the above observations regarding the similarity of the envelopes shown bythe BCS sparse and uniform layouts still hold true [Fig. 3.3(a)℄.
It is even more interesting to notie that, despite the wide aperture ompris-ing several hundred elements, suh synthesis was quite e�ient also from thenumerial viewpoint (∆t = 2.24 [s] - Tab. 3.1). These results further on�rmthe e�etiveness and e�ieny of the BCS synthesis approah in the design oflarge sparse layouts possibly omprising several hundreds elements.15



3.4. DISCUSSIONSReferene Pattern BCSTest Case L [λ℄ PSL PUNI LBCS [λ] PSL PBCS

PUNI
ξ [×10−5℄ ∆tFig. 3.1 49.5 −30 100 49.5 −29.5 0.64 5.3 0.23Fig. 3.2 49.5 −30 100 49.5 −30.1 0.66 7.8 0.25Fig. 3.3 499.5 −50 1000 499.3 −49.2 0.62 6.4 2.24Table 3.1: Array Performane Indexes.3.4 DisussionsThe synthesis of large sparse linear arrays with presribed pattern features hasbeen arried out through an innovative methodology based on a Bayesian Com-pressive Sensing framework. The design approah, whih formulates the synthesisproblem in a probabilisti framework and then exploit a fast Relevane VetorMahine for its solution, has been numerially assessed when dealing with lay-outs possibly omprising several hundred elements. The presented analysis hasshown that

• sparse layouts providing a good pattern �delity (ξ < 10−4) an be easilysynthesized through the BCS methodology also when apertures of severalhundred wavelengths are at hand (Tab. 3.1);
• the synthesis approah turns out e�ient whatever the aperture size (∆t <
3 [s] - Tab. 3.1);

• the arising sparse layouts usually exhibit an envelope lose to that of theiruniform ounterparts, therefore indiating that the BCS method e�etivelytends to 'nonuniformly' sample the same urrent distribution [Figs. 3.1(a),3.2(a), 3.3(a)℄.
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Chapter 4Complex-Weight Sparse LinearArray Synthesis by MultitaskBayesian Compressive SensingIn this Chapter, an innovative method for the synthesis of maximally sparselinear arrays mathing arbitrary referene patterns is proposed. In the frame-work of sparseness onstrained optimization, the approah exploits the multi-task(MT ) Bayesian Compressive Sensing (BCS) theory to enable the design of om-plex non-Hermitian layouts with arbitrary radiation and geometrial onstraints.By asting the pattern mathing problem into a probabilisti formulation, aRelevane-Vetor-Mahine (RVM) tehnique is used as solution tool. The nu-merial assessment points out the advanes of the proposed implementation overthe extension to omplex patterns of [21℄ and it gives some indiations about thereliability, �exibility, and numerial e�ieny of the MT − BCS approah alsoin omparison with state-of-the-art sparse-arrays synthesis methods.
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4.1. INTRODUCTION AND MOTIVATION4.1 Introdution and MotivationRadar traking, biomedial imaging, satellite and ground ommuniations, andremote sensing appliations require antenna patterns with suitable sidelobes, nullpositions, mainlobe size and shape, and diretivity [4℄. To synthesize shaped-beam arrays, several approahes espeially onerned with uniformly-spaed ar-rangements [4℄[5℄[6℄[7℄[8℄ have been proposed over the last sixty years. Althoughsuessful in some appliations, uniform arrays have the limitation to be expen-sive and heavy when wide apertures are at hand [4℄ sine a huge amount ofradiating elements spaed by λ
2
are needed to avoid grating lobes [9℄. Therefore,non-uniform arrangements have been naturally proposed [9℄[10℄[11℄[12℄[13℄[14℄beause of their advantages over their regularly-spaed ounterparts (e.g., reso-lution [15℄, sidelobe level ontrol/redution [16℄, and e�ieny in dealing withphysially onstrained geometries [17℄). State-of-the-art solutions usually on-sider thinned regular arrangements to yield a minimum peak sidelobe level (PSL)[4℄[13℄[18℄[19℄ or sparse layouts with the minimum number of radiating elementsgiven a desired pattern [14℄[20℄[21℄. Whether several tehniques as random thin-ning [22℄[23℄, dynami programming [24℄, geneti algorithms [25℄[26℄[27℄, analyt-ial approahes [13℄[18℄[28℄, and hybrid methodologies [29℄[30℄[72℄[32℄ have beeninvestigated for array thinning, few methods have been so far proposed for syn-thesizing sparse arrangements [14℄[20℄[21℄[33℄[34℄. As for these latter, steepestdesent [35℄, iterative least squares [36℄, simplex searh [9℄, and linear program-ming [37℄ methodologies have been �rstly developed beause of their e�ieny.Improved performanes have been suessively reahed by using reursive inver-sion tehniques [38℄[39℄, stohasti optimizers [20℄, generalized Gaussian quadra-ture approahes [40℄, and the matrix penil method (MPM) [14℄[33℄[34℄. Morereently, a new approah based on the Bayesian Compressive Sensing (BCS) [41℄has been proposed for the design of sparse layouts mathing user-de�ned referenepatterns [21℄. The so-alled �BCS tehnique� has been formulated starting froma probabilisti desription of the array synthesis [21℄ then solved by exploitingan e�ient fast relevane vetor mahine (RVM) [41℄. Thanks to its e�ieny,the BCS syntheses usually positively ompares with state-of-the-art methodolo-gies in terms of �exibility, synthesis time, and number of array elements, whileguaranteeing an exellent pattern mathing [21℄. However, suh a formulationdeals with symmetri purely-real arrangements and its extension to omplex syn-theses is not e�ient beause of the real-valued nature of the BCS solver itself[41℄. Consequently, this Chapter is aimed at proposing, still in the frameworkof the probabilisti sparseness onstrained optimization, an innovative, �exible,and numerially e�ient omplements to state-of-the-art approahes for the syn-thesis of maximally sparse linear arrays mathing a (possibly omplex) referenepattern. Following the guidelines in [21℄ to reast the omplex-valued synthesisin probabilisti terms and suitably reformulating the original pattern-mathingproblem in an equivalent '�titious' one (Eq. 4.11), a multi-task Bayesian Com-18



CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSINGpressive Sensing (MT − BCS) methodology [42℄ is applied. Unlike the BCSextension where the real and the imaginary omponents of the sparse exitationvetor are dealt with as independent, a �shared-prior� [42℄ is exploited to enforethe synthesis of omplex exitations rather than purely real and/or imaginaryweights.This Chapter is organized as follows. The sparse synthesis of omplex-weightlinear arrays is mathematially formulated in a probabilisti fashion and the
MT − BCS method is presented (Set. 4.2). Representative results of an ex-tensive set of numerial simulations are presented to validate the proposed ap-proah, to assess its advanes over the BCS extension to omplex patterns, andto ompare its performanes with those of state-of-the-art tehniques (Set. 4.3).Finally, some onlusions are drawn (Set. 4.4).4.2 Mathematial Formulation4.2.1 Array Synthesis ProblemThe problem of synthesizing a (omplex and non-symmetri) sparse linear arraywith a presribed radiated pattern an be formulated as follows [21℄Array Synthesis Problem - Find the minimum P value and the orre-sponding sparse array desriptors v = {vp; p = 1, ..., P} and l = {lp; p = 1, ..., P}that satisfy the mathing onstraint

K∑

k=1

∣∣∣∣∣FREF (uk)−
P∑

p=1

vp exp (i2πlpuk)

∣∣∣∣∣

2

≤ ǫ. (4.1)In (4.1), ǫ is the ��delity fator�, vp and lp are the omplex (vp ∈ C) weightand the position in wavelengths (lp ∈ R) of the p-th array element, respetively,while FREF (uk) ∈ C is the k-th (k = 1, ..., K) sample of the referene pattern atthe observation angle uk within the angular range [−1, 1]. Similarly to [9℄[21℄, the
P element positions are assumed to belong to a user-hosen set of N (N ≫ P )arbitrary andidate loations d = {dn; n = 1, ..., N} to straightforwardly inte-grate geometrial onstraints in the synthesis proess [21℄. Equation (4.1) isthen reast into the following sparse matrix form [43℄[21℄

FREF − Φw = D (4.2)by introduing the sparse1 weight vetor w = {wn; n = 1, ..., N}

wn =

{
vp if dn = lp
0 otherwise

, (4.3)1It is worth remarking that w turns out a sparse vetor sine N ≫ P .19



4.2. MATHEMATICAL FORMULATIONStep 0. Get input values of N and wn (n = 1, ..., N);Step 1. Set p = 1, n = 1;Step 2. If wn 6= 0, set lp = dn, vp = wn, and p = p + 1;Step 3. If n < N , set n = n+ 1 and goto 2.; else goto 4.Step 4. Return output values of P , lp and vp (p = 1, ..., P )Figure 4.1: Computation of the omplex weights vp ∈ C and element positions
lp ∈ R (p = 1, .., P ) starting from the sparse vetor w ∈ CN .where FREF = {FREF (uk) ; k = 1, ..., K}, D = {∆k; k = 1, ..., K} is a ve-tor of zero-mean omplex Gaussian entries with variane σ2 proportional to ǫ[41℄[44℄[43℄, and

Φ ,




exp
(
i2πd1u1

λ

)
· · · exp

(
i2πdNu1

λ

)... . . . ...
exp

(
i2πd1uK

λ

)
· · · exp

(
i2πdNuK

λ

)


 (4.4)is the �observation matrix� [41℄. Thanks to this �sparse� desription, the AntennaSynthesis Problem an be also formulated as followsSparse Vetor Synthesis Problem - Find the minimum ℓ0-norm weightvetor w (w ∈ C

N) that satis�es (4.2)where
‖w‖ℓ0 ,

N∑

n=1

|wn|0 =
P∑

p=1

|vn|0 = P. (4.5)One w is found, the unknowns v and l of the Antenna Synthesis Problem areomputed as detailed in Fig. 4.1.4.2.2 BCS Synthesis MethodThe solution of the Sparse Vetor Synthesis Problem annot be yielded throughthe method desribed in [21℄, sine the BCS approah addresses purely real-valued problems [21℄[41℄, while (4.2) generally inludes omplex-valued vetorsand matries. To diretly extend the approah in [21℄ to the omplex formulationat hand, Equation (4.2) is manipulated as follows
F̃REF − Φ̃w̃ = D̃ (4.6)by de�ning w̃ = [R{w} , I {w}] (w̃ ∈ R2N ), F̃REF = [R{FREF} , I {FREF}](F̃REF ∈ R2K), D̃ = [R{D} , I {D}] (D̃ ∈ R2K), and Φ̃ =

[
R{Φ} −I {Φ}
I {Φ} R{Φ}

](Φ̃ ∈ R
2K×2N), where R{·} and I {·} stand for the real and the imaginary part,respetively. Aordingly, the following extended real-valued problem an bethen formulated 20



CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSING
BCS `Deterministi' Synthesis Problem - Find the minimum ℓ0-norm�extended� weight vetor w̃ (w̃ ∈ R2N ) that satis�es (4.6).,and suessively expressed in the probabilisti framework [21℄
BCS `Probabilisti' Synthesis Problem - Find the minimum ℓ0-norm�extended� weight vetor w̃ (w̃ ∈ R2N ) subjet to

w̃BCS = arg

[
max
w̃

P
(
w̃| F̃REF

)] (4.7)whose (real-valued) solution is given by [21℄
w̃BCS =

1

σ̃2
BCS

(
Φ̃T Φ̃

σ̃2
BCS

+ ãBCS

)−1

Φ̃T F̃REF (4.8)where σ̃2
BCS is the estimated variane of ∆k (k = 1, ..., K) and ãBCS (ãBCS ∈

R2N) is the hyperparameter vetor, whose n-th entry, ãBCS
n , ontrols the strengthof the sparseness prior over w̃BCS

n [45℄. These parameters are omputed by max-imizing the logarithm of the BCS �marginal likelihood�, LBCS (ã, σ2) [21℄
LBCS (ã, σ2) = −1

2

[
(2N) log 2π + log

∣∣∣C̃
∣∣∣+

+F̃T
REF

(
C̃
)−1

F̃REF

] (4.9)where C̃ , σ2I + Φ̃
[
Ã
]−1

Φ̃T , and Ã = diag (ã).Finally, the N entries of the weight vetor wBCS (wBCS ∈ CN) are found as
wBCS

n = w̃BCS
n + iw̃BCS

n+N , n = 1, ..., N. (4.10)Equation (4.8) provides a diret extension of the method in [21℄ to deal withomplex and non-symmetri arrays. However, suh a solution bears an intrin-si limitation. The real (R{wBCS
n

}
= w̃BCS

n , n = 1, ..., N) and imaginary(I {wBCS
n

}
= w̃BCS

n+N , n = 1, ..., N) parts of the weights are managed as inde-pendent quantities - see Eq. (4.6) - sine eah w̃BCS
n ∈ R (n = 1, ..., 2N) istreated as statistially independent. See Eqs. (4)-(6) in [21℄. This in turnsleads to sparse BCS layouts where the array weights vp (p = 1, ..., P ) are ofteneither purely real or purely imaginary, negleting that sparse omplex layouts fre-quently exhibit non-negligible real and imaginary omponents at the same arrayloations. Suh a drawbak generally does not enable the approah to synthesizevery sparse layouts with a good referene pattern mathing, as it has been on-�rmed by the numerial analysis whose representative results will be presentedin Setion 4.3. 21



4.2. MATHEMATICAL FORMULATION4.2.3 MT − BCS Synthesis MethodTo overome the limitations of BCS Synthesis Method (Set. 4.2.2), the MT −
BCS approah [42℄ is exploited and suitably ustomized for statistially mod-elling the relations between the real and imaginary parts of the array weights.Towards this end, Equation (4.2) is �rstly rewritten in terms of the �titiousweights vetors wR , R{w} and wI , I {w} (wI ,wR ∈ R

N)
{

F̂R − Φ̂wR = D̂R

F̂I − Φ̂wI = D̂I

(4.11)where D̂R ∈ R2K and D̂I ∈ R2K are zero-mean omplex Gaussian error vetors(with variane σ2

2
) suh that D̂R + D̂I = D̃, Φ̂ , [R{Φ} , I {Φ}] is the MTobservation matrix, while F̂R = [R{FR} , I {FR}] and F̂I = [R{FI} , I {FI}](F̂R, F̂I ∈ R

2K). Moreover, FR ∈ C
K and FI ∈ C

K satisfy the following ondition
FR + iFI = FREF . (4.12)Aordingly, the multi-task (real-valued) problem turns out to be

MT − BCS `Deterministi' Synthesis Problem - Find the minimum
ℓ0-norm ��titious� weight vetors wR and wI (wI ,wR ∈ RN) that satisfy (4.11)and as follows into the probabilisti framework [42℄

MT − BCS `Probabilisti' Synthesis Problem - Find the minimum ℓ0-norm ��titious� weight vetors wR and wI (wI ,wR ∈ RN) subjet to




wMT−BCS
R = arg

[
maxwR

P
(
wR| F̂R

)]

wMT−BCS
I = arg

[
maxwI

P
(
wI | F̂I

)] . (4.13)whose (real-valued) solution are given by
wMT−BCS

H =
(
diag

(
âMT−BCS

)
+ Φ̂T Φ̂

)−1

Φ̂T F̂H ,

H ∈ {R, I} ,
(4.14)while the orresponding estimated weight vetor turns out to be

wMT−BCS = wMT−BCS
R + iwMT−BCS

I . (4.15)See the Appendix.4.2.4 MT − BCS Algorithmi ImplementationsThe algorithmi implementation of the MT − BCS tehnique onsists of thefollowing steps (Fig. 4.2(b)): 22



CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSINGInput Phase - Set the referene pattern FREF (u), the grid of admissible lo-ations (d), the set of pattern sampling points (u), the target variane σ2 of theerror term D, and the user-de�ned sale priors β1 and β2 (Eq. (A.4)) [42℄;Matrix De�nition - Fill the entries of the vetors F̂R, F̂I , Φ̂, D̂R, and D̂I ;Hyperparameter Posterior Modes Estimation - Find âMT−BCS by maximizing(A.15) [42℄;Array Weights Estimation - Find wMT−BCS by (4.15);Output Phase - Compute PMT−BCS, vMT−BCS, and lMT−BCS (Fig 4.1).By omparing the algorithmi desriptions of the BCS (Set. III of [21℄ andFig. 4.2(a)) and MT −BCS (Set. 4.2.4 - Fig. 4.2(b)), it is observed that bothapproahes require d, u, and σ2, while the MT − BCS needs the de�nition ofthe sale priors β1 and β2 instead of the initial estimates σ2
0 as for the BCS.Thanks to these di�erenes and unlike the BCS approah, the MT − BCS

• enables the expliit model and ontrol of the relationships between the realand imaginary parts of the array weights thanks to the spei�ation of β1and β2 in (A.4);
• requires neither some a-priori knowledge/information on the noise (e.g.,
σ2
0) nor the estimation of the noise level (i.e., σ̃2) for determining the prob-lem solution.4.3 Numerial ResultsThe objetives of this setion are two-fold: On the one hand, it provides guide-lines for applying the MT − BCS method to the synthesis of sparse omplexlayouts. On the other hand, it assesses the method's e�etiveness in both redu-ing the number of array elements and aurately mathing referene patterns,with the assessment made by omparing the MT − BCS results with those ofother reliable, state-of-the-art (regular and sparse) array synthesis methodolo-gies. For the assessment, the following quantities are analyzed: the normalizedmathing error, ξ,

ξ ,

∫ 1

−1

∣∣∣FREF (u)−
∑P

p=1 vp exp (i2πlpu)
∣∣∣
2 du

∫ 1

−1
|FREF (u)|2 du , (4.16)the aperture length, L, (L , |lP − l1|), the mean (∆L , L/P − 1), and theminimum (∆Lmin , minp=1,...,P−1 {|lp+1 − lp|}) inter-element spaing.4.3.1 Sensitivity AnalysisThe �rst set of numerial experiments is onerned with the sensitivity of the

MT − BCS synthesis on its ontrol parameters, while the reader is referred23



4.3. NUMERICAL RESULTS

BCS

(a)
MT − BCS

(b)Figure 4.2: Sparse Synthesis Flowhart: (a) BCS method (σ0 being the initialestimate of σ [21℄) and (b) MT − BCS method.
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CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSINGto [21℄ for the alibration of the BCS approah. Towards this purpose, thesynthesis of a non-uniform array mathing a omplex-weight �oseant� patternwith L = 7.5λ and PSL = −20 dB is assumed as referene test ase (Fig. 4.3(b)).Suh a pattern an be synthesized by a uniform layout of PUNI = 16 elements
λ/2-spaed [5℄. The MT − BCS synthesis is arried out by assuming

uk = −1 +
2k

K
k = 1, ..., K (4.17)and setting the uniform grid ofN andidate loations as follows dn = L

(
−1

2
+ n

N

),
n = 1, ..., N . Figure 4.3(a) shows the representative points of the synthe-sized MT − BCS sparse layouts in the ξ-PMTBCS plane, along with the as-soiated Pareto front in suh a plane, when varying the ontrol parameterswithin the ranges: N = {25, ..., 800}, K = {10, ..., 30}, σ2 = {10−5, 5.0× 10−1},
β1 = {10−2, 103}, and β2 = {10−2, 103}. These results show that the values ofthe pattern mathing auray lie in the range ξ ∈ [10−8, 2] with a number ofarray elements ranging from a minimum of PMTBCS = 5 up to a maximum of
PMTBCS = 25 (Fig. 4.3(a)). By analyzing the synthesized pattern for threePareto solutions, namely PMTBCS = {5, 13, 18} [Fig. 4.3(b)℄, it turns out thatthe sparsest solution (PMTBCS = 5) yields a poor approximation of the referenepattern as also on�rmed by the orresponding mathing error [ξ = 2.86×10−1 -Fig. 4.3(a)℄, while a good �tting is reahed when PMTBCS = 13 ative elementsare at hand [ξ = 7.24× 10−5 - Fig. 4.3(a)℄. A further redution of the mathingerror [e.g., ξ = 2.83 × 10−7 - Fig. 4.3(a)℄ by using a larger number of elements(PMTBCS = 18) does not provide signi�ant improvements. Therefore, analogousto the guidelines dedued in [21℄, an auray index lose to or below ξth = 10−4is identi�ed as the optimal threshold for obtaining a suitable trade-o� betweenpattern mathing and redution of the number of elements (i.e., PMTBCS

PUNI
). Asfor the assoiated array struture, the optimal trade-o� MT −BCS layout (i.e.,

PMTBCS = 13 - ξ = 7.24×10−5) exhibits a distribution of the array weights sim-ilar to that of the orresponding uniform arhiteture [5℄, although with a non-uniform, and larger, on the average, inter-element spaing [Figs. 4.3()-4.3(d)℄.This suggests that the method performs an impliit non-uniform sampling ofthe ideal urrent distribution synthesizing FREF (u) [Fig. 4.3()-4.3(d)℄. On theontrary, the non-optimal trade-o� solutions di�er quite signi�antly from theuniform distribution ase [e.g., LMTBCS

LUNI
≈ 0.4 when PMTBCS = 5 - Fig. 4.3()℄.Figure 4.4 ompletes the sensitivity analysis arried out for alibrating the

MT − BCS. Eah plot gives the values of ξ and PMTBCS versus a ontrolparameter (i.e., K, σ2, β1, β2, and N) by setting the others to the optimaltrade-o� setup (i.e., PMTBCS = 13 - K = 33, N = 250, σ = 10−3, β1 = 103,
β2 = 102).By analyzing the behaviour of ξ as a funtion of K [Fig. 4.4(a) ℄, it turnsout that inreasing the number of samples of the referene pattern up to the25



4.3. NUMERICAL RESULTS
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CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSINGNyquist threshold (KNyquist = 2 × PUNI − 1 = 31 [14℄) gives a non-negligibleredution of the mathing error ξ, while further inrements only slightly modifythe mathing auray or PMTBCS. Aordingly, a sampling threshold within
K ∈ [KNyquist, 1.2KNyquist] has been assumed in the following analyses.Conerning the dependene of ξ and PMTBCS on σ2, Figure 4.4(b) shows thatthe values of the two indexes are almost onstant when σ2 ≤ 3×10−2, while theyinrease otherwise. Suh a behavior is atually expeted from the MT − BCStheory. See Set. 4.2.3 and the Appendix. Indeed, larger σ2 values orrespondto less aurate pattern approximations [see Eq. (4.2)℄ as well as less sparsely�lled layouts. Consequently, good trade-o�s between auray and sparsenessare expeted by hoosing σ2 ∈ [10−4, 10−2].With referene to theMT−BCS sensitivity to the sale prior β1, ξ redues as theprior value is enlarged [Fig. 4.4()℄, even though suh a mathing improvementis obtained by inreasing the number of radiating elements when β1 > 104 [Fig.4.4()℄. Larger values of β2 yield more sparsely �lled layouts, while smaller priorsprovide higher auraies [Fig. 4.4(d)℄. Consequently, the ranges for the salepriors have been set to β1 ∈ [102, 104] and β2 ∈ [5× 101, 5× 102], respetively.As far as the lattie grid is onerned, Figure 4.4(e) shows that the mathingauray is quite stable if N & 2LUNI

λ
, while larger/smaller N values result in asharp inrease of PMTBCS/ξ. This is mainly aused by the inreased numerialomplexity of the problem at hand sine its size grows with N . A trade-o� valuewithin N ∈

[
5LUNI

λ
, 50LUNI

λ

] is then suggested.The obtained tradeo� margins range from a 1 : 1.2 ratio [for K - Fig. 4.4(a)℄ toa 1 : 100 ratio [for β1 and σ2 - Figs. 4.4(b) and 3.4()℄. Suh a behaviour, ausedby the di�erent physial meaning of eah parameter (see disussion above), doesnot atually represent a big issue for the proposed design methodology. In fat,quite wide ranges exist for whih the method performanes are almost onstant.Furthermore, the MT -based BCS exhibits a �smoother� dependene on its on-trol parameters than the single-task BCS approah. Indeed, unlike the BCS[21℄, ξ generally exhibits nearly monotone behaviour versus ontrol parameters[e.g., Figs. 4.4(a)-4.4(e)℄ and PMTBCS presents redued osillations given verylarge parameter variations [e.g., Fig. 4.4()℄. Thus MT − BCS provides betterstability and robustness than BCS for any referene pattern or aperture.4.3.2 MT −BCS AssessmentFor numerial assessment, we onsider both unonstrained (Set. 4.3.2.1) andonstrained problems (Set. 4.3.2.2), where forbidden regions are de�ned inthe pattern region (Set. 4.3.2.2.1) or on the array geometry (Set. 4.3.2.2.2).Conerning the unonstrained syntheses, the analysis aims at performing a on-sisteny hek to assess the reliability of theMT−BCS in dealing with problemsalso manageable by the original BCS approah [21℄ (Set. 4.3.2.1.1) and sues-sively detailing theMT −BCS performane applied to the synthesis of arbitrary27
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CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSINGReferene Pattern BCS MT −BCS

L [λ℄ PUNI Type ξ [×10−4℄ PBCS

PUNI

∆Lmin

λ/2
∆L
λ/2

LBCS

L
∆t ξ [×10−4℄ PMTBCS

PUNI

∆Lmin

λ/2
∆L
λ/2

LMTBCS

L
∆t

7.5 16 Tab. II [6℄ 1.33× 102 1.18 0.12 0.81 0.97 0.17 0.59 0.81 0.2 1.20 0.96 0.21

18 37 Dolph 1.04 0.65 1.44 1.57 1.00 0.26 2.81 0.65 1.5 1.57 1.00 1.60

7.0 14 Tab. III [6℄ 0.52 1.47 0.018 0.65 0.98 0.52 0.22 0.73 0.93 1.38 0.98 0.45Table 4.1: Unonstrained Synthesis - Array performane indexes.unonstrained patterns also in omparison with state-of-the-art methods (Sets.4.3.2.1.2-4.3.2.1.3).4.3.2.1 Unonstrained Synthesis4.3.2.1.1 Consisteny Chek (Hermitian Patterns2) In order to om-pare BCS and MT − BCS approahes when dealing with Hermitian patterns,let us onsider a L = 18λ equi-ripple referene pattern (PSL = −14.45 dB)synthesized with the uniform array design method in [6℄ (PUNI = 37). Theplots of the Pareto fronts in the ξ-P plane indiate that, as expeted, the twosolutions' results are very lose over a range of P [Fig. 4.5(a)℄. The optimaltrade-o�s [PMTBCS = PBCS = 24, ξ ≈ ξth - Fig. 4.5(a)℄ turn out similar inboth patterns [Fig. 4.5(b)℄ and weights [Fig. 4.5()℄ as also on�rmed by the�gures of merit in Table 4.1, notwithstanding the di�erent synthesis proesses.Both BCS and MT −BCS behave similarly with Hermitian referene patterns,sine a key di�erene between BCS and MT − BCS is the numerial handlingof the relation between the real and imaginary parts of the array weights, and
I (vp) = 0 (p = 1, ..., P ) when the referene pattern is Hermitian [Fig. 4.5(b)℄.To further assess that suh a behaviour is due to the symmetry properties ofthe pattern at hand, the next numerial experiment is onerned with a set ofHermitian patterns derived from [20℄. The results of the synthesis of the threelayouts with L = {19.5 λ, 25 λ, 50 λ} are presented in Table 4.2 and omparedwith the sparse arrangements generated by a stohasti methodology based onsimulated-annealing (SA) [20℄. As it an be observed, the BCS and MT −
BCS proedures ahieve similar performanes for eah qualitative index (e.g., themathing auray and the array aperture) with an element saving equal or betterthan that of the stohasti approah (Table 4.2). This is also visually on�rmedby the plots in Fig. 4.6 related to the representative example haraterized by
L = 25λ and PSL = −14.45 dB [20℄. With referene to the layout with PBCS =
PMTBCS = 20 elements, it turns out that an aeptable �delity [ξ ≤ 4.3 × 10−3- Fig. 4.6(b)℄ is yielded by both BCS-based methods despite the redution ofthe array elements with respet to the SA-optimized sparse solution (PSA = 24).The similarities are not limited to the patterns, but as expeted, are apparentalso in the distribution of the real array oe�ients [Fig. 4.6()℄.2Hermitian Pattern means symmetri pattern amplitude and anti-symmetri pattern phasethat an also be generated by only real array weights.29
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4.3. NUMERICAL RESULTS
L [λ℄ PSL [dB℄ P ξ P

PREF

∆Lmin

λ/2
∆L
λ/2

L
LREF

∆t[20℄ 19.50 −5.10 16 − 1.00 2.00 2.60 1.00 -
BCS 19.50 −5.10 16 2.34× 10−7 1.00 2.00 2.60 1.00 0.48

MT −BCS 19.50 −5.10 16 2.14× 10−8 1.00 2.00 2.60 1.00 0.30[20℄ 25.00 −14.45 24 − 1.00 1.00 2.17 1.00 -
BCS 24.94 −13.63 20 3.58× 10−3 0.83 0.95 2.62 1.00 1.11

MT −BCS 24.95 −13.30 20 4.3× 10−3 0.83 1.00 2.62 1.00 2.23[20℄ 50.00 −14.45 25 − 1.00 1.00 4.17 1.00 -
BCS 32.99 −11.70 22 2.06× 10−2 0.84 0.50 4.02 0.76 5.04

MT −BCS 32.99 −12.92 21 7.19× 10−3 0.84 1.00 3.30 0.76 4.52Table 4.2: Unonstrained Synthesis (Hermitian Pattern: PREF = PUNI [20℄) -Array performane indexes.4.3.2.1.2 Symmetri Power Patterns Unlike Hermitian patterns, BCSand MT −BCS syntheses are expeted to di�er when only the referene powerpattern is symmetri. The results from the synthesis of a non-Hermitian �at-toparray (PUNI = 14 - [6℄) with symmetri power pattern [Fig. 4.7(a)℄ and asymmet-ri phase distribution [Fig. 4.7(b)℄ reveal the enhaned e�etiveness of the MTproedure, whih is due to its improved auray in modelling the statistial rela-tions between the (non-negligible) real and imaginary parts of the array weights.As far as the optimal BCS-based trade-o� solutions are onerned, it turns outthat there is a halving of the array elements [PBCS = 22 vs. PMTBCS = 11- Table 4.1℄ along with similar mathing auraies [ξBCS = 0.52 × 10−4 vs.
ξMTBCS = 0.22 × 10−4 - Table 4.1℄. This latter is mainly due to the intrinsilimitation of the BCS approah to deal with the two omponents of the arrayexitations as orrelated unknowns [Eq. (4.6)℄. Indeed, several BCS weightsturn out either purely real or purely imaginary [∠ vp⌋BCS ∈

{
0,±π

2
,±π

} - Fig.4.7(d)℄ unlike the MT − BCS oe�ients.4.3.2.1.3 Asymmetri Power Patterns The improvements of the MT −
BCS approah are expeted to be even more impressive when asymmetri pat-terns are at hand. In order to analyze suh a ase, the next example dealswith the synthesis of a L = 7.5λ oseant pattern from [6℄ [PUNI = 16, Fig.4.8(b)℄. The Pareto BCS solutions in the ξ-P plane [Fig. 4.8(a)℄ learly in-diate that the multi-task proedure is far more e�ient than the single-taskone. Indeed, the MT − BCS yields sparser layouts for a �xed ξ threshold [e.g.,
PMTBCS/PBCS = 0.68 when ξ ≈ ξth - Fig. 4.8(a)℄, and a higher auray for agiven P [e.g., ξMTBCS/ξBCS ≈ 8.0 × 10−5 when P = 15 - Fig. 4.8(a)℄. As anillustrative example, the patterns [Fig. 4.8(b)℄ and the array oe�ients [Figs.4.8()-4.8(d)℄ of the representative solutions irled in Fig. 4.8(a) [PBCS = 19vs. PMTBCS = 13℄ are shown. As far as the array layouts are onerned, it isworth notiing that an element saving of ≈ 20% (PMTBCS/PUNI = 0.81) and32
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PBCS
∈ [0.59, 0.66] - Table 4.3). This holds true also when low-ering the sidelobe level (Fig. 4.9). On the other hand, although more arrayelements are neessary as PUNI inreases, the MT − BCS always enables a re-dution of the array elements with respet to the uniform arhitetures (Fig. 4.9- PMTBCS < PUNI), while the ondition PBCS > PUNI is mandatory for the BCSto reah the auray threshold ξ ∼ 10−4 [PMTBCS

PUNI
∈ [0.76, 0.84] vs. PBCS

PUNI
= 1.28- Table 4.3℄.

The e�etiveness of theMT−BCS to redue the number of elements in the arrayarrangement is pitorially highlighted in the representative example analyzedin Fig. 4.10 (PSL = −40 dB). Whatever the mathing auray, the MT −
BCS patterns exhibit a higher sparseness [Figs. 4.10(a)-4.10(b), 4.10()-4.10(d),4.10(e)-4.10(f )℄ than the BCS. Furthermore, the pattern mathing of theMT −
BCS solution is always better for a given value of P [Figs. 4.10(a), 4.10(),4.10(e)℄. 35
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CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSINGReferene Pattern BCS MT − BCS

L [λ℄ PSL PUNI ξ [×10−4℄ PBCS

PUNI

∆Lmin

λ/2
∆L
λ/2

LBCS

LUNI
∆t ξ [×10−4℄ PMTBCS

PUNI

∆Lmin

λ/2
∆L
λ/2

LMTBCS

LUNI
∆t

12 −20 25 3.00 1.28 0.048 0.77 1.00 0.29 0.53 0.76 0.74 1.33 1.00 7.73
12 −30 25 2.86 1.28 0.048 0.77 1.00 0.38 0.38 0.84 0.51 1.2 1.00 1.39
12 −40 25 0.24 1.28 0.49 0.77 1.00 0.23 0.11 0.84 0.72 1.2 1.00 0.87
14.5 −20 30 0.48 1.2 0.59 0.83 1.00 0.23 0.46 0.80 0.49 1.26 1.00 0.56
14.5 −30 30 1.29 1.23 0.058 0.8 0.99 0.44 1.47 0.80 0.63 1.26 1.00 2.85
14.5 −40 30 0.96 1.47 0.33 0.67 1.00 0.25 0.81 0.77 0.40 1.28 0.98 3.82
19.5 −20 40 3.75 1.3 0.67 0.75 0.98 0.24 2.27 0.78 0.54 1.30 1.00 6.19
19.5 −30 40 1.29 1.43 0.31 0.70 1.00 1.30 0.80 0.78 0.19 1.30 1.00 6.99
19.5 −40 40 0.83 1.35 0.39 0.74 1.00 0.36 0.44 0.78 0.52 1.30 1.00 4.38Table 4.3: Unonstrained Synthesis (Asymmetri Pattern: 'Coseant ', PREF =
PUNI [6℄) - Array performane indexes.The BCS approah is usually faster3 than the multi-task proedure, althoughboth methods do not require heavy omputations [∆t ≤ 8 s - Table 4.3℄. Thisis expeted sine negleting the relationships between real and imaginary partsof the array exitations (see Set. 4.2) simpli�es the problem, but signi�antlydegrades the synthesis performane with omplex layouts.As for the state-of-the-art omparisons, let us refer to reently introduedapproahes based on the Matrix Penil Method (MPM) [14℄[33℄[34℄[47℄. Suha hoie is mainly due to their e�etiveness and numerial e�ieny usuallyoutperforming other sparse-synthesis methods in terms of onvergene speed,reliability, and auray [14℄[33℄[34℄.The �rst set of omparisons is onerned with the benhmark ase in [46℄.The synthesis results are reported in Figs. 4.11(a)-4.11(b) and quantitativelyompared in Table 4.4. With referene to the (ξ, P )-plane [Fig. 4.11(a)℄, thestand-alone matrix penil method [33℄ is, as expeted, signi�antly less aurate(P = 19: ξMPM = 1.43 × 10−1 [Fig. 4.11(b)℄ vs. ξMTBCS = 3.53 × 10−3 - Table4.4) than the sub-optimal (i.e., ξ > ξth)MT −BCS beause of the shaped-beamreferene pattern [14℄, while the hybrid TABU −MPM (TMPM) [47℄ reahesa omparable pattern mathing (P = 19: ξMPM−TABU = 3.21×10−3 - Table 4.4)although requiring a non-negligible omputational burden [47℄ beause of the
TABU-based stohasti optimization in the seond step of the hybrid proedure.Conerning the so-alled forward-bakward version of the matrix penil method(FBMPM) [34℄, the results in Figs. 4.11()-4.11(f ) derived from [48℄[49℄ (alsodisussed in [34℄) point out that the FBMPM exhibits performane lose to thatof the MT − BCS when dealing with shaped-pattern problems [e.g., P = 13:
ξFBMPM = 8.09× 10−5 vs. ξMTBCS = 5.32× 10−5 - Table 4.5 and Fig. 4.11();
P = 15: ξFBMPM = 4.94× 10−5 vs. ξMTBCS = 1.68× 10−4 - Table 4.6 and Fig.4.11(e)℄.3In all ases, the synthesis time ∆t refers to the exeution of the Matlab ode on a singleore laptop running at 2.16 GHz. 37



4.3. NUMERICAL RESULTS
Optimal Tradeo� (ξ ≤ ξth) Sub-Optimal Tradeo� (ξ > ξth)Uniform [46℄ MPM [47℄ TMPM [47℄ BCS MT − BCS BCS MT − BCS

L [λ] 14.5 14.47 14.14 14.5 14.5 11.28 13.00
P 30 19 19 35 24 20 19
P

PUNI
� 0.63 0.63 1.17 0.8 0.66 0.63

∆Lmin

∆LUNI
� 1.15 1.20 0.29 0.058 0.29 0.075

∆L
∆LUNI

� 1.61 1.57 0.85 1.26 1.19 1.45
L

LUNI
� 1 0.98 1.00 1.00 0.78 0.90

t [s] � � � 0.24 0.53 0.22 0.97
ξ � 1.43× 10−1 3.21× 10−3 9.85× 10−5 8.15× 10−5 3.71× 10−2 3.53× 10−3Table 4.4: Unonstrained Synthesis (Asymmetri Pattern: 'Coseant ', L =

14.5λ, PREF = PUNI = 30 [46℄) - Array performane indexes.[48℄ FBMPM [34℄ BCS MT − BCS

L [λ] 7.5 7.51 7.50 7.46
P 16 13 14 13
P

PUNI
� 0.81 0.88 0.81

∆Lmin

∆LUNI
� 1.06 0.042 0.74

∆L
∆LUNI

� 1.25 1.15 1.24
L

LUNI
� 1 1 1

t [s] � � 0.16 1.00
ξ � 8.09× 10−5 1.89× 10−2 5.32× 10−5Table 4.5: Unonstrained Synthesis (Asymmetri Pattern: 'Coseant ', L = 7.5λ,

PREF = PUNI = 16 [48℄) - Array performane indexes.[49℄ FBMPM [34℄ BCS MT − BCS

L [λ℄ 9.5 9.375 9.5 9.34
P 20 15 15 15
P

PUNI
� 0.75 0.75 0.75

∆Lmin

∆LUNI
� 1.23 0.39 0.97

∆L
∆LUNI

� 1.34 1.36 1.35
L

LUNI
� 0.99 1.00 0.98

t [s] � � 0.18 0.98
ξ � 4.94× 10−5 4.62× 10−2 1.68× 10−4Table 4.6: Unonstrained Synthesis (Asymmetri Pattern: 'Coseant ', L = 9.5λ,

PREF = PUNI = 20 [49℄) - Array performane indexes.38
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4.3. NUMERICAL RESULTS[50℄ - PUNI = 20, LUNI = 9.5λ PUNI = 30, LUNI = 14.5λ

FBMPM BCS MT − BCS FBMPM BCS MT −BCS

L [λ] 9.5 9.46 9.5 14.5 14.5 14.5
P 16 29 16 24 44 24
P

PUNI
0.8 1.45 0.8 0.8 1.47 0.8

∆Lmin

∆LUNI
0.97 0.019 0.31 0.00324 0.34 0.45

∆L
∆LUNI

1.27 0.68 1.27 1.26 0.67 1.26
L

LUNI
1.00 1.00 1.00 1.00 1.00 1.00

t [s] 7.83× 10−1 5.58× 10−1 6.70× 10−1 9.61× 10−1 2.5× 10−1 1.43
ξ 6.79× 10−3 7.14× 10−5 9.27× 10−5 3.98× 10−3 9.62× 10−5 7.93× 10−5Table 4.7: Unonstrained Synthesis (Asymmetri Pattern: 'Coseant ', PREF =

PUNI) - Array performane indexes.However, it annot be negleted that the MPM (and, onsequently, the
FBMPM) an present some numerial instabilities (or no onvergene) as it waspointed out in [14℄[18℄ and on�rmed by the synthesis results of the 'oseant'pattern with PSL = −40 dB generated by the uniform aperture L = 14.5λ (Fig.4.13) as well as for the test ase in [50℄ (Fig. 4.12). Unlike the BCS-basedapproahes, the �tting with the referene pattern of the FBMPM4, ξFBMPM ,does not monotonially improve as P grows [Fig. 4.12(a) and Fig. 4.13(a)℄.For example [Fig. 4.12(a)℄, the MT − BCS reahes the mathing threshold
ξ ∼ ξth (i.e., ξMTBCS⌋P=16 = 9.27 × 10−5 - Table 4.7) just adding an elementto the array with PMTBCS = 15, while the FBMPM auray worsens whenmoving from PFBMPM = 14 to PFBMPM = 16 (ξFBMPM⌋P=14 = 8.50× 10−4 vs.
ξFBMPM⌋P=16 = 6.79×10−3). Therefore, the MT −BCS faithfully reonstrutsthe referene pattern [Fig. 4.12(b)℄ reduing the uniform array elements of 1

5unlike the FBMPM that does not provide the same auray (i.e., ξ ≤ 10−4 )unless using more radiators (PFBMPM = 19 → ξFBMPM⌋P=19 = 4.60× 10−6).Similar outomes an be drawn from the test ase in Fig. 4.13 (Table 4.7)that allows us to point out also another interesting feature of the BCS-basedapproahes. By observing the FBMPM arrangement in Fig. 4.13(), it turnsout that the minimum inter-element spaing is very small and equal to ∆Lmin =
1.62×10−3 λ (Table 4.7). On the ontrary, the BCS rationale with the hoie ofthe andidate loations for the array elements, d, gives the user the possibility toa-priori impose the lower bound for the distane between two adjaent elements.As for the CPU-time, the indexes in Table 4.7 indiate that the synthesis time forthe MT −BCS and the FBMPM is generally of the same order in magnitude(e.g., ∆tFBMPM = 7.83× 10−1 [s℄ vs. ∆tMTBCS = 6.70× 10−1 [s℄).4A MATLAB implementation of the FBMPM (based on the mpenil funtionhttp://www.mathworks.se/matlabentral/index.html) have been used assuming the parameterssuggested in [34℄ for the following numerial tests.40



CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSING

10-10

10-8

10-6

10-4

10-2

100

 5  10  15  20  25  30

ξ 
[a

rb
itr

ar
y 

un
it]

P

Cid et al. 1999, L=9.5 λ

MT-BCS
BCS

FBMPM
-50

-40

-30

-20

-10

 0

-1 -0.5  0  0.5  1

N
or

m
al

iz
ed

 v
al

ue
 [d

B
]

u

Cid et al. 1999, L=9.5 λ

|EREF(u)|2,PREF=20

|EMT-BCS(u)|2,PMT-BCS=16

|EBCS(u)|2, PBCS=29

|EFBMPM(u)|2,PFBMPM=16

(a) (b)
 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2  0  2  4

A
rr

ay
 e

xc
ita

tio
n 

[A
m

pl
itu

de
]

x [λ]

[Cid,1999], L=9.5 λ

[Cid,1999], P=20
MT-BCS Array, PMT-BCS=16

BCS Array, PBCS=29
FBMPM Array, PFBMPM=16

-π

-π/2

0

π/2

π

-4 -2  0  2  4

A
rr

ay
 e

xc
ita

tio
n 

[P
ha

se
]

x [λ]

[Cid,1999], L=9.5 λ

[Cid,1999], P=20
MT-BCS Array, PMT-BCS=16

BCS Array, PBCS=29
FBMPM Array, PFBMPM=16() (d)Figure 4.12: Comparative Assessment (Asymmetri Power Pattern Synthesis:'Shaped Coseant ', PREF = PUNI = 20, L = 9.5λ [50℄) - FBMPM , BCS, and

MT −BCS solutions: (a) Pareto fronts in the (ξ, P ) plane, (b) power patterns,() exitation amplitudes, and exitation phases (d).

41



4.3. NUMERICAL RESULTS

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 15  20  25  30  35  40  45

ξ 
[a

rb
itr

ar
y 

un
it]

P

Cosecant, L=14.5 λ, PSL=-40 dB

MT-BCS
BCS

FBMPM
-60

-50

-40

-30

-20

-10

 0

-1 -0.5  0  0.5  1

N
or

m
al

iz
ed

 v
al

ue
 [d

B
]

u

Cosecant, L=14.5λ, PSL=-40 dB

|EREF(u)|2

|EMT-BCS(u)|2, PMT-BCS=24

|EBCS(u)|2, PBCS=44

|EFBMPM(u)|2, PFBMPM=24

Mask

(a) (b)
 0

 0.2

 0.4

 0.6

 0.8

 1

-8 -6 -4 -2  0  2  4  6  8

A
rr

ay
 e

xc
ita

tio
n 

[A
m

pl
itu

de
]

x [λ]

Cosecant, PSL=-40 [dB], L=14.5 λ

Uniform Array
MT-BCS Array, PMT-BCS=24

BCS Array, PBCS=44
FBMPM Array, PFBMPM=24

-π

-π/2

0

π/2

π

-8 -6 -4 -2  0  2  4  6  8

A
rr

ay
 e

xc
ita

tio
n 

[P
ha

se
]

x [λ]

Cosecant, PSL=-40 [dB], L=14.5 λ

Uniform Array
MT-BCS Array, PMT-BCS=24

BCS Array, PBCS=44
FBMPM Array, PFBMPM=24() (d)Figure 4.13: Comparative Assessment (Asymmetri Power Pattern Synthesis:'Coseant ', L = 19.5λ, PREF = PUNI = 40, PSL = −40 dB [6℄) - FBMPM ,

BCS, andMT −BCS solutions: (a) Pareto fronts in the (ξ, P ) plane, (b) powerpatterns, () exitation amplitudes, and exitation phases (d).

42



CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSING4.3.2.2 Constrained SynthesisPrevious disussions gave some insights about the e�ieny of the MT − BCSin dealing with shaped referene patterns as well as about its advanes in termsof element sparseness, mathing auray, �nal layout properties, and numeriale�ieny over the standard BCS or in omparison with referene state-of-the-art methodologies. The �nal set of experiments, onerned with an equi-ripple(PSL = −30 dB) oseant referene pattern generated by a uniform aperture of
L = 19.5λ, points out the �exibility of the BCS-based methodology to handleonstrained sparse-array syntheses. Performing onstrained sparse synthesis isnot a trivial task for a wide range of state-of-the-art methods, exept for op-timization methods whih, however, usually involve heavy omputations whenhigh-dimension solution spaes are at hand.4.3.2.2.1 Pattern Constraints The �rst test ase has been designed bylimiting the referene pattern samples FREF (uk) to the angular region u ∈
(−0.7, 0.9) [i.e., uk /∈ {[−1,−0.7] ∪ [0.9, 1]}, k = 1, ..., K℄. As expeted, theoptimal trade-o� MT − BCS and BCS patterns faithfully math the refer-ene pattern only within the onstrained region [ξMTBCS⌋P=29 = 2.35 × 10−5vs. ξBCS⌋P=44 = 4.96 × 10−5- Fig. 4.14(a)℄ guaranteeing a redution, moresigni�ant for the BCS even though still P unc

BCS = 44 > PUNI = 40, of the ele-ment number with respet to the full-onstrained ase ( P con

Punco

⌋
MTBCS

= 1.07 and
P con

Punco

⌋
BCS

= 1.29).4.3.2.2.2 Geometry Constraints The last ases model aperture blokageonstraints within the BCS syntheses by setting forbidden regions for the ra-diating elements [see Set. 4.2℄. More spei�ally, two di�erent senarios havebeen investigated either de�ning symmetri (dn /∈ {[−6λ,−5λ] ∪ [5λ, 6λ]}, n =
1, ..., N) or asymmetri (dn /∈ {[−7λ,−6λ] ∪ [3λ, 4λ]}, n = 1, ..., N) forbiddenregions. The plots of the optimal trade-o� layouts and assoiated patterns (Fig.4.15) show that both ompressive-sampling proedures sueed in arefully re-produing the referene pattern [ξMTBCS = 1.01× 10−5 vs. ξBCS = 2.32× 10−5 -Figs. 4.15(a); ξMTBCS = 6.08×10−5 vs. ξBCS = 9.68×10−5 - Figs. 4.15(b)℄ whilealso omplying with the geometrial onstraints [Figs. 4.15()-4.15(e) and Figs.4.15(d)-4.15(f )℄ despite the non-negligible aperture blokage (> 10% in bothases). Furthermore, the MT −BCS tehnique on�rms also in those senariosits higher e�ieny (than the BCS) in minimizing the array elements [PBCS = 63vs. PMTBCS = 37 - Figs. 4.15()-4.15(e); PBCS = 58 vs. PMTBCS = 34 -Figs. 4.15(d)-4.15(f )℄ also with respet to the (unonstrained) uniform solution[PMTBCS

PUNI
= 0.92 - Figs. 4.15()-4.15(e); PMTBCS

PUNI
= 0.85 - Figs. 4.15(d)-4.15(f )℄.Of ourse, the element saving turns out to be lower than that for the 'unon-strained' BCS-based syntheses beause of the greater omplexity of the synthesisat hand [i.e., P con

Punco

⌋
MTBCS

= 1.18 and P con

Punco

⌋
BCS

= 1.09 (symmetri forbidden43
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CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSINGregion) and P con

Punco

⌋
MTBCS

= 1.09 and P con

Punco

⌋
BCS

= 1.02 (asymmetri forbiddenregion)℄.4.4 DisussionsAn innovative, �exible, and e�ient omplement to the existing approahes forthe synthesis of sparse layouts with arbitrary radiation features has been pro-posed. The proposed method extends the range of appliability of the tehniquein [21℄ by onsidering a MT Bayesian methodology. Towards this end, the origi-nal pattern mathing problem has been formulated in a Bayesian fashion withinthe framework of the sparseness onstrained optimization and afterwards it hasbeen solved by a suitable RVM-derived methodology. Seleted results from anextensive numerial validation have been presented to provide an evaluation ofthe sensitivity of the MT − BCS method to its ontrol parameters as well ason its auray, �exibility, and omputational e�ieny. Advantages and limi-tations of the proposed approah have been pointed out using omparisons withstate-of-the-art approahes. In summary:
• theMT −BCS tehnique is simpler to alibrate than the single-task BCSapproah thanks to its smoother dependeny on the ontrol parameters(Set. 4.3.1);
• the MT −BCS methodology outperforms the single-task BCS proeduresine, generally, the BCS extension to omplex layouts often yields to (sub-optimal) arrangements mostly omprising purely-real and purely-imaginaryexitations. As expeted, BCS-based proedures provide very similar re-sults when symmetri real layouts are at hand (Sub-Set. 4.3.2.1.1);
• on average, the MT −BCS guarantees an element saving with respet to(λ

2
-spaed) uniform layouts of about PMTBCS

PUNI
∈ [0.65, 0.81] when omplex-or real-valued symmetri patterns are at hand still providing an exellentpattern mathing [ξ . 10−4℄;

• the MT − BCS favorably ompares with state-of-the-art sparse array de-sign proedures in terms of pattern mathing auray, element saving,numerial e�ieny, and stability;
• additional onstraints on the radiation pattern and/or the geometrial fea-tures of the sparse array an be easily and e�iently dealt with (Set.4.3.2.2).In addition, other main and innovative ontributions of this Chapter onsist inthe following methodologial novelties:45
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CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSINGan extension to the omplex-valued synthesis problems of the BCS approahin [21℄;an innovative and equivalent '�titious' formulation of the omplex-weightpattern mathing problem for enabling the appliation of the MT −BCS;an innovativeMT−BCS method for dealing with omplex-valued sparsenessonstrained optimization by statially orrelating the real and the imaginaryomponents of the sparse unknowns.Future works, out-of-the-sope of the present Chapter, will be aimed at an-alyzing the mutual oupling e�ets between real elements in the sparse layoutsas well as at taking into aount in the synthesis proess the presene of di-retive elements. Furthermore, the derivation of array proessing algorithms(e.g., DOA-estimation [55℄ and adaptive beamforming [56℄ tehniques) based on
MT −BCS geometries will be the subjet of future analyses aimed at exploitingand integrating the features of suh a sparse arrangements in an e�etive andustomized way.
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Chapter 5Diretion-of-Arrival Estimation inLinear Arrays Through BayesianCompressive Sensing StrategiesIn this Chapter, the estimation of the diretions of arrival (DoAs) of narrow-bandsignals impinging on a linear antenna array is addressed within the Bayesian om-pressive sensing (BCS) framework. Unlike several state-of-the-art approahes,the voltages at the output of the reeiving sensors are diretly used to determinethe DoAs of the signals thus avoiding the omputation of the orrelation matrix.Towards this end, the estimation problem is properly formulated to enfore thesparsity of the solution in the linear relationships between output voltages (i.e.,the problem data) and the unknownDoAs. Customized implementations exploit-ing the measurements olleted at a unique time instant (single-snapshot) andmultiple time instants (multiple-snapshots) are presented and disussed. Thee�etiveness of the proposed approahes is assessed through an extensive nu-merial analysis addressing di�erent senarios, signal on�gurations, and noiseonditions. Comparisons with state-of-the-art methods are reported, as well.
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5.1. INTRODUCTION5.1 IntrodutionEstimating theDoAs of signals is a topi of great interest in several researh �eldslike eletromagneti, aousti, and geophysial/seismi sensing [61℄[62℄[63℄[64℄.As a matter of fat, the knowledge of the DoAs of the signals inoming on areeiver an be suitably exploited to loalize the positions of the orrespondingsoures as well as to enable the adaptive beam forming of the reeiving antennapattern either to enhane the system sensitivity towards desired signal diretionsor to suppress unwanted interferenes.State-of-the-art literature gives to the interested reader several and e�etive ap-proahes proposed in the last deades. The methods are most ommonly usedare: the multiple signal lassi�ation (MUSIC) [65℄[66℄, the signal estimationparameter via rotational invariane tehnique (ESPRIT ) [67℄[68℄[69℄, and themaximum likelihood (ML) DoAs estimator [96℄[71℄. A main drawbak of thesetehniques is the need of an a-priori knowledge of the number of signals, whihis rarely available espeially nowadays with the huge proliferation of wirelessdevies/servies and the presene of non-ollaborative users. To avoid suh aonstraint, a learning-by-example (LBE) approah based on a support vetormahine (SVM) has been proposed in [72℄ where the DoA estimation problemhas been reast to a probabilisti framework looking for the identi�ation of thesmallest angular regions where the presene of inoming signals is most prob-able. While e�ient for some appliations, the rough estimation of the DoAsof the signals oming from the proessing of the arising probability map is notadequate for high-resolution analyses sine spatially-lose signals annot be satis-fatorily deteted. Therefore, the approah has been improved by implementinga multi-resolution strategy [72℄.Despite the positive and attrative features of previous approahes, all of themshare the same bottlenek. Indeed, they require the evaluation of the ovarianematrix estimated from the measurements of eah sensor at di�erent time-instants(i.e., the snapshots). This implies an unavoidable inrease of the reeiver om-plexity and a delay in the DoAs reovery although LBE-based methods haveproved to be promising solutions also for real-time loalizations [73℄[74℄[75℄.Starting from the key observation that the signals impinging on the antennaarray are intrinsially sparse in the spatial domain, e�ient strategies for DoAsestimation have been proposed [76℄[77℄[78℄ where the sparsity onstraints havebeen imposed through a l1-norm minimization. In this framework, approahesbased on the ompressive sensing (CS) theory [81℄ have reently been introduedbeause of the omputationally e�ieny, the auray, and the robustness tothe noise. Thanks to these features, CS-based strategies have already beenapplied to a variety of appliations in eletromagneti engineering [82℄[83℄[84℄.However, the main issue to ope with when applying CS is the fat that the so-alled 'sampling matrix' must satis�es the restrited isometry property (RIP ) forguaranteeing reliable estimations. Unfortunately, suh a ondition annot easily50



CHAPTER 5. DIRECTION-OF-ARRIVAL ESTIMATION IN LINEARARRAYS THROUGH BAYESIAN COMPRESSIVE SENSING STRATEGIESveri�ed sine it results omputationally demanding [85℄. Alternatively, innovativeapproahes based on the Bayesian ompressive sensing (BCS) [41℄ have beenproposed. In suh a ase, the original deterministi problem is reformulatedin its probabilisti ounterpart then e�iently solved with the relevane vetormahine (RVM) [45℄. In this line of reasoning, preliminary attempts in theeletromagneti framework have been out to deal with mirowave imaging [86℄[87℄and array synthesis [21℄ (see also Chapter 4).In this Chapter, the DoA estimation problem is formulated within the BCSframework thus avoiding onstraints on the sampling (or observation) matrix,whih diretly links the measurements (i.e., voltages/urrents) at the outputof the array elements to the unknown signal diretions. More spei�ally, twodi�erent strategies, extending and ompleting those preliminary introdued in[88℄ and [C3℄, are presented. The former is onerned with single time-instantmeasurements (i.e., single snapshot) to enable the real-time estimation, while thelatter is aimed at giving high-resolution estimations, thanks to the proessingover multiple snapshots, still avoiding any a-priori information on the numberand the intensity of the unknown impinging signals.The rest of the Chapter is organized as follows. The DoAs estimation problem ismathematially formulated in Set. 5.2 where the single-snapshot and multiple-snapshots BCS-based approahes are desribed, as well. A set of representativenumerial results is then reported and disussed in Set. 5.3 where a omparativeanalysis with referene DoAs estimation methods is also performed. Finally,some onlusions are drawn (Set. 5.4).5.2 Mathematial Formulation5.2.1 DoAs Estimation - Problem FormulationLet us onsider a set of L eletromagneti plane waves Einc
l (r) =Einc

l ejβ(x sinθl+z cosθl)ŷ,
l = 1, ..., L arriving from unknown diretions θl, l = 1, ..., L on a linear array om-posed byM sensors plaed along the x-axis with uniform inter-element spaing d(Fig. 5.1). The inident signals are supposed being narrow-band and harater-ized by the same frequeny ontent. At the sensor loations, xm =

(
m− M+1

2

)
d,

m = 1, ...,M , the eletromagneti �eld an be assumed being the linear om-bination of the signals impinging on the antenna. Aordingly, the relationshipbetween the (omplex) open-iruit voltage indued on the reeiving elementsand the measured signal strengths and propagation delays aross the array ele-ments [89℄ turns out to be [72℄
vm =

L∑

l=1

Einc
l ŷ · fejβxmsinθl + nm , m = 1, ...,M (5.1)where β = 2π

λ
, λ being the free spae wavelength, f is the antenna e�etive length51



5.2. MATHEMATICAL FORMULATION
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Figure 5.1: Sketh of the referene senario: linear adaptive antenna array andimpinging signals.supposed idential for all elements1, and nm is the m-th (m = 1, ...,M) samplefrom a Gaussian distribution with zero mean that models the additive noise. Inmatrix form, (6.2) an be rewritten as follows
v = A (θ) s + n (5.2)where v = [v1, v2, ..., vM ]T is a olumn vetor ofM omplex entries (v ∈ CM×1), Tindiates the transpose, θ = [θ1, .., θL], A (θ) = [a (θ1) , a (θ2) , ..., a (θL)] ∈ CM×Lis the matrix of the steering vetors whose l-th olumn is given by a (θl) =[

ejβx1sinθl, ejβx2sinθl, ..., ejβxMsinθl
]T ∈ C

M×1, l = 1, ..., L, s = [Einc
1 , Einc

2 , ..., Einc
L ]

T ∈
CL×1, and n = [n1, n2, ..., nM ]T ∈ CM×1. It worth notiing that the problem athand is non-linear with respet to the unknowns, θl, l = 1, .., L, whih are presentin the exponential terms of the elements of the matrix A.To apply the BCS approah, the visible angular range is disretized with K ≫ Lsamples (Fig. 5.2) suh that A(θ̃) ∈ CM×K in (5.2) and the DoAs of the inom-ing signals are assumed to belong to the set of the K diretions θ̃k, k = 1, ..., K.Now, the estimation problem turns out to be that of reovering the sparse sig-nal vetor s̃ ∈ CK×1 in orrespondene with the user-de�ned K-sampling of theangular range, θ̃ =

[
θ̃1, .., θ̃K

]. Sine the problem is linear with respet to theunknown s̃ and the solution is sparse in the spatial domain (i.e., few entries of s̃suh that θ̃k = θl are non-null), the BCS theory an be properly applied.
1Without loss of generality, isotropi elements are assumed (i.e., f = 1). Extensions todiretive or non-uniform arrangements is straightforward.52
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Figure 5.2: Angular region disretization.5.2.2 Single-Snapshot BCS-Based Sparse Signal Estima-tionBy applying the guidelines of the BCS approah in [21℄ for dealing with omplexdata, (5.2) is �rstly rewritten as
[
ℜ{v}
ℑ {v}

]
=


 ℜ

{
A
(
θ̃
)}

−ℑ
{
A
(
θ̃
)}

ℑ
{
A
(
θ̃
)}

ℜ
{
A
(
θ̃
)}



[
ℜ{s̃}
ℑ {s̃}

]
+

+

[
ℜ{n}
ℑ {n}

]
,

(5.3)
ℜ{·} and ℑ{·} being the real and the imaginary part, respetively, to yield areal-valued problem suitable for BCS. As a matter of fat, although vetors andmatries in (5.3) have double dimensions ompared to those in (5.2), all entriesare now real. The sparse signal vetor ŝ = [ℜ{s̃} ,ℑ{s̃}]T ∈ R2K×1 satisfying(5.3) and having minimum ℓ0-norm is then obtained in a probabilisti way bysolving the following [21℄

ŝBCS = arg

[
max

ŝ
Pr
([
ŝ, σ2, p

]∣∣v
)] (5.4)where σ2 is the (unknown) variane of the Gaussian noise and p is the hyper-parameter vetor to be determined and ontrolling the sparseness of the signalvetor ŝ [45℄. By virtue of the fat that

Pr
([
ŝ, σ2, p

]∣∣v
)
= Pr

(
ŝ|
[
v, σ2, p

])
Pr
([
σ2, p

]∣∣v
) (5.5)and the �rst term on the right of (5.5) is hosen, in the BCS-based approah,equal to the multivariate Gaussian distribution [21℄

Pr ( ŝ| [v, σ2, p]) = 1

(2π)
2K+1

2
√

det(Ξ)
×

exp
{
− (ŝ−µ)HΞ−1(ŝ−µ)

2

} (5.6)53



5.2. MATHEMATICAL FORMULATIONwhose maximum ŝBCS oinides with the mean value, the maximization of theposterior probability (5.5) is obtained through the de�nition of the ouple of pa-rameters σ2
BCS and pBCS maximizingPr ( [σ2, p]|v). In (5.6), Ξ =

(
1
σ2 Â

(
θ̃
)T

Â
(
θ̃
)
+ diag (p)

)−1and µ = 1
σ2ΞÂ

(
θ̃
)H

v, where
Â
(
θ̃
)
=


 ℜ

{
A
(
θ̃
)}

−ℑ
{
A
(
θ̃
)}

ℑ
{
A
(
θ̃
)}

ℜ
{
A
(
θ̃
)}


 (5.7)is the real-valued matrix of the steering vetors and H denotes the onjugatetranspose operation. Sine

Pr
([
σ2, p

]∣∣v
)
∝ Pr

(
v|
[
σ2, p

])
Pr
(
σ2
)
Pr (p) (5.8)and the two terms Pr (σ2) and Pr (p) are onstant aording to the guidelines of[45℄, the optimal parameters σ2

BCS and pBCS are omputed through the relevanevetor mahine (RVM) by maximizing the logarithm of Pr (v| [σ2, p]) de�nedas [21℄
LBCS

(
σ2,p

)
= −1

2

[
(2K) log 2π + log |CBCS|+ vTC−1

BCSv
] (5.9)where an user-de�ned initial value for σ2, σ2 = σ2

0, is hosen. Moreover in (5.9),
CBCS , σ2I + Â

(
θ̃
)
diag (p)−1 Â

(
θ̃
)T . One σ2

BCS and pBCS are determined,the estimated solution turns out to be
ŝBCS =

1

σ2
BCS



Â
(
θ̃
)T

Â
(
θ̃
)

σ2
BCS

+ diag (pBCS)




−1

×

Â
(
θ̃
)T

v . (5.10)5.2.3 Multiple-Snapshot MT − BCS-Based Sparse SignalDoA EstimationUnlike the ST − BCS, the MT − BCS approah [60℄ orrelates the DoAs es-timation over multiple snapshots, thus avoiding the strong dependene of theestimation performane on the noise level of the olleted measurements. Withreferene to the multiple-snapshots version of Eq. (5.2)
vw = A (θ) sw + nw, w = 1, ...,W, (5.11)54



CHAPTER 5. DIRECTION-OF-ARRIVAL ESTIMATION IN LINEARARRAYS THROUGH BAYESIAN COMPRESSIVE SENSING STRATEGIES
W being the number of snapshots, the sparse signal vetor ŝ is here determinedas follows

ŝMT−BCS =
1

W

W∑

w=1

{
arg

[
max
ŝw

Pr ( [̂sw, p]|vw)

]} (5.12)where ŝw, w = 1, ...,W , are statistially-orrelated through a proper de�nition ofthe �shared� hyperparameter vetor orrelating the di�erent snapshots. The opti-mal value of p, pMT−BCS, is omputed as pMT−BCS = argmaxp
{
LMT−BCS (p)

}through the RVM aording to the guidelines in Chapter 4, being
LMT−BCS (p) = −1

2

∑W
w=1 {log (|CMT−BCS|) +

(K + 2ψ1) log
[
vT
w (CMT−BCS)vw + 2ψ2

]} (5.13)where CMT−BCS , I + Â
(
θ̃
)
diag (p)−1 Â

(
θ̃
)T and ψ1, ψ2 are user-de�nedparameters [60℄. Unlike the BCS approah, the knowledge/estimation of thevariane σ2 of the noise samples is not required in theMT −BCS based method(see Chapter 4). Finally, the solution estimated by means of the MT − BCSturns out equal tô

sMT−BCS =

=

∑W
w=1

{[
Â(θ̃)

T
Â(θ̃)+diag(pMT−BCS )

]
−1

Â(θ̃)
T
vw

}

W
.

(5.14)
5.2.4 DoA Estimation ProedureIn priniple, the estimated number of impinging signals, L̃, an be determined bysimply ounting the non-zero elements of the reovered signal vetor s̃. However,many entries of s̃ an assume amplitudes lose but not equal to zero that do notorrespond to any atual signal due to the presene of the noise. Aordingly, theoriginal L-sparse signal turns out being a ompressible one where the strongest
L̃ signals have to be seleted. Towards this aim, an energeti thresholding isapplied to remove the lowest-energy omponents of s̃ in order to improve thereliability of the DoAs estimation. More spei�ally, the entries of the estimatedsparse signal s̃ are sorted aording to their energy ontent, |s̃k|2, k = 1, ..., K,suh that ξ1 , maxk

{
|s̃k|2

} and ξK , mink

{
|s̃k|2

}. Suessively, only the �rst
L̃ diretions suh that

1(∑K
k=1 ξk

)
L̃∑

l=1

ξl < η (5.15)are kept and assumed as those of the atual signals, η being a user-de�nedthreshold (Fig. 5.3). Aordingly, the k-th thresholded element of s̃ turns out tobe
s̃k⌋η =

{
s̃k if |s̃k|2 > ξL̃
0 otherwise

(5.16)55
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ξ3 ξ5 ξ6 ξ7 ξ9 ξ12 ξ13ξ8Figure 5.3: Sketh of the energy thresholding strategy for the estimation of thenumber of inident signals L̃.and the estimated DoAs, θ̃l, l = 1, ..., L̃, are determined as follows1. Set l = k = 1;2. If s̃k⌋η 6= 0 then θ̃l = θ̃k, l = l + 1;3. If k < K then k = k + 1 and goto 2; else stop.
5.3 Numerial ResultsIn the following, a set of numerial results is reported and disussed to show thebehavior of the proposed approahes as well as to point out their advantages anddrawbaks also in a omparison with state-of-the-art methods. Firstly, an analy-sis on the sensitivity on the alibration parameters (namely, the energy threshold
η and the noise parameter σ2

0) is arried out. Suessively, the estimation a-pabilities of the BCS-based strategies are assessed dealing with single-snapshotand multiple-snapshots aquisitions. As for the MT −BCS, the parameters ψ1,
ψ2 are set as in [95℄. 56



CHAPTER 5. DIRECTION-OF-ARRIVAL ESTIMATION IN LINEARARRAYS THROUGH BAYESIAN COMPRESSIVE SENSING STRATEGIES5.3.1 Sensitivity AnalysisIn order to determine the optimal values of the ontrol parameters σ2
0 and η,the following benhmark test ase has been onsidered: an antenna array of

M = 20 isotropi sensors equally-spaed by d = λ
2
along the x-axis and a set of

L = {2, 4, 6} binary phase-shift keying (BPSK) signals (Einc
l = ±1) impingingon the array from θl ∈ [−90o, 90o], l = 1, ..., L. The signals have been supposedarriving on the antenna with equal strength in order to perform an unbiasedanalysis of the auray of the method with respet to the angles of arrival. Theminimum angular distane between the DoAs of two adjaent signals has beenset to ∆θmin = 1o, while the angular range has been uniformly disretized into

K = 181 samples. The measured data are haraterized by signal-to-noise ratioequal to SNR = {2, 5, 10, 20} dB, de�ned as
SNR = 10 log

[∑M
m=1

∣∣vNoiseless
m

∣∣2

Mσ2

] (5.17)where σ2 is the variane of the additive Gaussian noise and vNoiseless
m ,m = 1, ...,Mare the noise-free data. Sine the atual DoAs are randomly hosen, Q = 250di�erent senarios (i.e., θ(q)l , l = 1, ..., L, q = 1, ..., Q) have been taken intoaount for eah ombination of L and SNR to give a onsistent statistialvalidation. The BCS-based estimation has been applied varying the alibrationparameters within the ranges η ∈ [0.0, 1.0] and σ2

0 ∈ [10−6, 1.0].The optimal setup of the ontrol parameters has been de�ned by hoosing thevalues of η and σ2
0 that minimize the modi�ed root-mean-square error (RMSE)
(
σ2
0, η
)(opt)

= arg

{
min
(σ2

0 ,η)

[
RMSE

(
σ2
0, η
)]
} (5.18)where

RMSE (σ2
0, η) =

=
∑

L

∫
SNR

RMSE(σ2
0 ,η|SNR,L)

max
(σ2

0,η)
{RMSE(σ2

0 ,η|SNR,L)}dSNR
(5.19)and RMSE = 1

Q

∑Q
q=1RMSE(q), RMSE(q) being an indiator of the reliabilityof the method in prediting the q-th senario. This latter takes into aount boththe errors in estimating the signal number L̃(q) and the orresponding DoAs θ̃(q)l ,

l = 1, ..., L̃(q). It is de�ned as follows
RMSE(q) =

=





√{∑L̃(q)

l=1

∣∣∣θl−θ̃
(q)
l

∣∣∣
2
+|L−L̃(q)|(∆θmax)

2

}

L
if L̃(q) ≤ L√{∑L

l=1

∣∣∣θl−θ̃
(q)
l

∣∣∣
2
+
∑L̃(q)

j=L+1

∣∣∣θ̃(q)j −θ
(q)
j

∣∣∣
2
}

L
if L̃(q) > L

(5.20)57



5.3. NUMERICAL RESULTSwhere θl and θ̃(q)l are the l-th atual and the losest (among the L̃(q) estimates)retrieved DoA, respetively, while∆θmax is a penalty term equal to the maximumadmissible loalization error (i.e., ∆θmax = 180o) and applied when the numberof estimated signals is smaller than the atual one. Moreover,
θ
(q)

j = arg

{
min

θl, l∈[1,L]

∣∣∣ θl − θ̃
(q)
j

∣∣∣
}
. (5.21)It is worth pointing out that (5.20) oinides with the standard RMSE de�nitionof the literature when L̃(q) = L, while it penalizes the ases when L̃(q) < L sineit is assumed that, at the reeiver, it is preferable to identify at least the signalswhih are really present in the environment, also admitting the predition of non-existing signals, than missing the identi�ation of one or more atual signals.

Averaged RMSE Map, M=20, K=181
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RMSE (σ2

0, η)
(opt)

PL (σ
2
0 , η)

(opt) [%℄
SNR [dB] L = 2 L = 4 L = 6 L = 2 L = 4 L = 6

2 35.01 43.75 74.23 18.4 20.0 20.0
5 14.88 41.47 70.92 64.4 43.2 22.8
10 7.05 32.12 66.47 89.2 55.2 24.4
20 8.14 27.15 49.20 92.4 59.2 24.4Table 5.1: Single Snapshot (W = 1) DoA Estimation (M = 20, d = 0.5λ;

L = {2, 4, 6}, θl ∈ [−90o, 90o], Q = 250; SNR = {2, 5, 10, 20} dB; σ2
0 = 0.46 ,

η = 0.95). Average RMSE and PL values.Figure 5.4 shows the plot of the normalized RMSE (σ2
0, η), where the minimumvalue of RMSE ours at (σ2

0, η)
(opt)

= (0.46, 0.95) whih is assumed as theoptimal setup hereinafter. As an example, Table 5.1 gives the RMSE valuesfor a set of representative ombinations of L and SNR when setting (σ2
0 , η)

(opt).As expeted, the estimation auray improves for higher SNRs and dereasing
L
M

values. For ompleteness, the perentage of faithfully deteted senarios (i.e.,
L̃(q) = L), PL:

PL

(
σ2
0, η|SNR,L

)
=

1

Q

Q∑

q=1

P
(q)
L

(
σ2
0, η|SNR,L

) (5.22)where
P

(q)
L

(
σ2
0 , η|SNR,L

)
=

{
1 if L̃(q) = L
0 otherwise

, q = 1, ..., Q, (5.23)is reported, as well (Tab. 5.1). Similarly to theRMSE behavior, the PL improveswhen the noise level dereases and the number of impinging signals is smallerthan the number of array sensors.5.3.2 Performane Assessment (Single-Snapshot BCS-BasedEstimation Approah)With referene to the single-snapshot aquisition, let us onsider the test aseharaterized by L = 4 and SNR = 10 dB. To illustrate the behavior of the
BCS-based estimation approah, the results in Fig. 5.5 refer to three repre-sentative situations: L̃(q) = L [Figs. 5.5(a)-(b)℄, L̃(q) > L [Figs. 5.5()-(d)℄,and L̃(q) < L [Fig. 5.5(e)℄ orresponding to low [Figs. 5.5(a)-()℄ or high [Figs.5.5(b)-(d)℄ RMSE [when L̃(q) < L the RMSE value turns out being always highdue to the presene of the penalty term in (5.20)℄. For illustrative purposes, thesymbols + and × indiate the atual DoAs and those estimated after thresh-olding, while the green dots are the BCS estimates before thresholding. Sine59
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CHAPTER 5. DIRECTION-OF-ARRIVAL ESTIMATION IN LINEARARRAYS THROUGH BAYESIAN COMPRESSIVE SENSING STRATEGIESFigure θ θ̃ RMSE5.5(a) [−79,−59,−41, 10] [−80,−59,−41, 10] 0.505.5(b) [27, 38, 42, 90]
[−86,+27,
+35,+40]

62.135.5() [−69,−59,−34, 57]
[−71,−70,−59,

−34, 57]
1.125.5(d) [−89,−71,−50,−41]

[−76,−70,−50,
−41,+74]

58.875.5(e) [−77,−31, 16, 87] [−81,−31, 16] 90.02Table 5.2: Single Snapshot (W = 1) DoA Estimation (M = 20, d = 0.5λ; L = 4;
SNR = 10 dB; σ2

0 = 0.46, η = 0.95). Atual diretions and estimated DoAs.
RMSE values.

l 1 2 3 4 5 6

L = L̃ = 4
θ 23 38 41 47 − −
θ̃ 23 37 39 46 − −

L = L̃ = 6
θ −59 −17 6 31 35 47

θ̃ −59 −17 6 31 35 48Table 5.3: Single Snapshot (W = 1) DoA Estimation (M = 20, d = 0.5λ;
SNR = 2 dB; σ2

0 = 0.46, η = 0.95). Atual and estimated DoAs when L̃ = L:
L = 4 and L = 6.the method determines the signal vetor s̃, the estimated signal strengths arereported, as well, to prove that several entries are null beause of the sparsityonstraint enfored through the BCS.Beause of the limited information from the single-snapshot aquisition and theunavoidable presene of the noise, the main onern is the detetion of impingingsoures loated lose to the end-�re angular diretion [Fig. 5.5(b) - θ4 = 90o,Fig. 5.5(d) - θ1 = −89o, Fig. 5.5(e) - θ2 = 87o℄ as pointed out by the RMSEvalues in Tab. 5.2 where both atual and estimated DoAs are reported, as well.Otherwise, the DoAs are retrieved with a high preision [e.g., RMSE = 0.50o -Fig. 5.5(a) and RMSE = 1.12o - Fig. 5.5()℄ even in most severe noisy ondi-tions (e.g., SNR = 2 dB) for both more [Fig. 5.6(a)℄ and less [Fig. 5.6(b)℄densely distributed signals. Quantitatively, the estimation errors amount to
RMSEL=4 = 1.22o [Fig. 5.6(a)℄ and RMSEL=6 = 0.41o [Fig. 5.6(b)℄, respe-tively, and Tab. 5.3 reports the values of the atual and estimated DoAs.61
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CHAPTER 5. DIRECTION-OF-ARRIVAL ESTIMATION IN LINEARARRAYS THROUGH BAYESIAN COMPRESSIVE SENSING STRATEGIESTo draw more general outomes on the behavior of the single-snapshot BCS-based DoA estimator, further experiments have been arried out varying thenumber of reeiving elements M , the minimum spaing between the signals ∆θ,and the signal-to-noise ratio. The values of RMSE (5.20) and PL (5.23) aver-aged over Q = 100 simulations for eah senario at hand have been assumed asreliability/auray indiators. More spei�ally, the RMSE has been omputedeither without or with the a-priori knowledge on the number of inident signals,
L. In this latter ase, the energeti thresholding has not been applied and the�rst L signals having higher strength have been seleted.With referene to the representative test ase with L = 2 and SNR = 7 dB(Fig. 5.7), Figure 5.7(a) shows that, as expeted, inreasing the number ofdata when using more sensors (i.e., using larger arrays sine d = λ

2
has been set),drastially redues the RMSE of more than one order of magnitude when L is a-priori known (RMSEM=5 = 14.75o → RMSEM=30 = 0.47o) or totally unknown(RMSEM=5 = 39.11o → RMSEM=30 = 1.55o). Analogously, PL improves from

PL⌋M=5 ≃ 40% up to PL⌋M=30 90%.Similar onlusions hold true for the analyses whose results are summarized inFigs. 5.7(b)-5.7(). Exept for the behavior of PL in Fig. 5.7(), where an almostonstant threshold is yielded from SNR = 10 dB, both RMSE and PL behaveas in Fig. 5.7(a). Of ourse, the knowledge of L gives redued errors, but the gapbetween the two estimates is still lose whatever the variable at hand (i.e., M ,
∆θ, SNR): ∆RMSE = 0.64 [Fig. 5.7(a)℄ (∆RMSE , RMSELknown−RMSELunk

RMSELunk
),

∆RMSE = 0.63 [Fig. 5.7(b)℄, and ∆RMSE = 0.52 [Fig. 5.7()℄. Suh a resultfurther on�rms a key-feature of the BCS estimation, that is, its high reliabilityalso when no information on the senario is available.
5.3.3 Performane Assessment (MT −BCS-Based Estima-tion Approah)Dealing with multiple-snapshots, theMT implementation of the BCS-estimator(MT − BCS) has been used. Firstly, the same test ases of Fig. 5.5 have beenonsidered to perform a omparison with the ST −BCS performanes. Towardsthis end, W = 25 onseutive time instants have been onsidered for modelingthe multi-snapshots aquisition. Figure 5.8 shows the MT − BCS estimates,while the orresponding RMSE values are given in Tab. 5.4. As it an beobserved, the MT − BCS (Tab. 5.4) outperforms the single-snapshot (W = 1)
ST − BCS (Tab. 5.2) whatever the senario at hand. As a matter of fat,63
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5.3. NUMERICAL RESULTS
MT − BCS, W = 25 ST −BCS, W = 25Figure θ̃ RMSE θ̃ RMSE5.8(a) [−79,−59,
−41, 10]

0.00
[−79,−59,
−41, 10]

0.005.8(b) [27, 38, 42, 89] 0.50 [−86, 27, 39, 40] 83.255.8() [−69,−59,
−34, 57]

0.00
[−63,−59,
−34, 57]

2.065.8(d) [−90,−71,
−50,−41]

0.50
[−77,−50,
−45,−41]

57.965.8(e) [−77,−31,
16, 86]

0.50 [−81,−31, 16] 90.02Table 5.4: Multiple Snapshots (W = 25) DoA Estimation (M = 20, d = 0.5λ;
L = 4; SNR = 10 dB). DoAs estimated with the MT − BCS and the multi-snapshots ST −BCS. RMSE values.although the intrinsi di�ulty to orretly retrieve the DoAs of signals lose toend-�re due to the fat that the antenna e�etive aperture tends to zero, betterestimations than Fig. 5.5 have been obtained for suh ritial situations thanksto theMT −BCS features [see Fig. 5.8(b), Fig. 5.8(d), and Fig. 5.8(e)℄. On theother side, the DoAs of signals far from diretions θ = ±90o are instead preiselyestimated (Tab. 5.4).To investigate whether suh an improvement is due to theMT implementation oronly arises from the multi-snapshots aquisition, the multi-snapshot data (W =
25) have been proessed with the ST − BCS as follows

s̃
avg
ST−BCS =

=

∑W
w=1



 1

σ2
BCS⌋w

(
Â(θ̃)T Â(θ̃)

σ2
BCS⌋w

+diag(pBCS⌋w)
)

−1

Â(θ̃)
T
vw





W

(5.24)then applying the energeti �ltering (5.15) on s̃
avg
ST−BCS. The results of suh aproessing are reported in Fig. 5.8 with the RMSE values in Tab. 5.4. It isworth noting that the performane of the multi-snapshots ST −BCS (W = 25)does not signi�antly improve and the errors in estimating the DoAs turn outalmost unaltered. This is aused by the impossibility for the ST − BCS toorrelate the estimates from di�erent snapshots although related to the samesenario. 66
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CHAPTER 5. DIRECTION-OF-ARRIVAL ESTIMATION IN LINEARARRAYS THROUGH BAYESIAN COMPRESSIVE SENSING STRATEGIES
MT −BCS, W = 25 ST −BCS, W = 25Fig. θ θ̃ RMSE θ̃ RMSE5.9(a) [0, 7, 35] [0, 7, 35] 0.0 [3, 4, 35] 2.455.9(b) [−37,−20, 0, 7, 22, 35] [−37,−20, 0, 7, 22, 35] 0.0 [−38,−37,−36,−20, 3, 4] 24.625.9() [−67,−37,−20,−9,

0, 7, 22, 35, 54]
[−67,−37,−20,−9,

0, 7, 22, 35, 54]
0.0

[−66,−31,−19,−14,
−10,−5,−4, 3, 4]

22.38Table 5.5: Multiple Snapshots (W = 25) DoA Estimation (M = 10, d = 0.5λ;
SNR = 7 dB; L ∈ {3, 6, 9}). DoAs estimated with the MT − BCS and themulti-snapshots ST −BCS. RMSE values.These onlusions are further on�rmed from the results in Fig. 5.9 and Tab.5.5 onerned with an array of M = 10 elements spaed by d = λ

2
and di�erentinident signals, L = {3, 6, 9}, in an environment haraterized by SNR =

7 dB. As expeted, the ST −BCS, although in its multi-snapshots version, over-estimates the unknown number of inident signals thus unavoidably inreasingthe RMSE, while theMT −BCS orretly identi�es the atual signal diretionsin all the examples [Figs. 5.9(a)-5.9()℄.
Still dealing with multiple sequential aquisitions, the �nal numerial analysis isonerned with a omparative assessment of theMT −BCS and state-of-the-artapproahes suh as ESPRIT [91℄ and ROOT −MUSIC [90℄. Figure 5.10 plotsthe RMSE averaged over Q = 100 simulations for eah senario and yielded bytheMT−BCS, the multi-snapshot ST−BCS, and the two referene methods asa funtion ofW , the minimum spaing between two adjaent signals ∆θ, and the
SNR. As shown in Fig. 5.10(a), the auray of theMT−BCS improves withWand at the upper value (W = 25) the error is of some order in magnitude belowthat of the ST − BCS [RMSEMT−BCS = (4.7× 10−3)

o vs RMSEST−BCS =
2.90o℄. Unlike the ST − BCS, the larger the number of snapshots, the betteris the estimation of the atual DoAs for both the matrix-orrelation approahesand the MT −BCS. Moreover, the MT −BCS performs better than ESPRITand ROOT −MUSIC with a non-negligible and inreasing enhanement of theestimation auray as the aquisition time grows [Fig. 5.10(a)℄. As a matterof fat, both ESPRIT and ROOT − MUSIC do not further improve theirestimates after W = 10, while the preision of the MT − BCS monotoniallyenhanes [RMSEMT−BCS⌋W=25 < (10−2)

o℄.As for the results when varying ∆θ and SNR, the arising outomes still pointout the e�etiveness of the MT − BCS and its enhaned auray if omparedto state-of-the-art methods. As expeted, the ST − BCS turns out to be veryreliable when the angular spaing is quite large [Fig. 5.10(b)℄.69



5.4. DISCUSSIONS5.4 DisussionsIn this Chapter, innovative strategies for the estimation of the diretions of ar-rival of signals impinging on linear arrays of eletromagneti sensors have beenpresented and assessed. Starting from a sparse representation of the problem so-lution, the DoA estimation problem has been addressed by means of two method-ologies based on the BCS paradigm, the one devoted to the single-snapshotproessing, the other exploiting multiple-snapshot aquisitions. Advantages andlimitations of those implementations have been analyzed and highlighted also inomparison with well-assessed state-of-the-art DoA estimation strategies.The proposed approahes have shown being able to:
• diretly work on the voltages measured at the output of the array elementswithout requiring the omputation of the ovariane matrix;
• provide aurate and reliable DoAs estimation also without the a-prioriknowledge on the number of inident signals;
• estimate the DoAs just proessing a single snapshot, with more preisionfor signals loser to the boresight diretion;
• provide robust and very aurate estimates when orrelating the informa-tion from multiple snapshots.Further advanes, urrently under investigation and out-of-the-sope of this Chap-ter, will onsider potential improvements of the estimation auray thanks toa multi-resolution strategy, the possibility to estimate the DoAs of widebandsignals by orrelating the information available in the measurements at di�erentfrequenies thanks to the MT − BCS, and the de�nition of alternative sparserepresentations of the problem unknowns for straightforwardly exploiting simi-lar formulations when dealing with di�erent estimation problems still onernedwith adaptive arrays. It is also important to point out that from a method-ologial viewpoint, the extension of the proposed strategies to deal with planar(2D) or onformal (3D) antenna on�gurations is straightforward. In this ase,the number of array elements, usually larger than the linear array ase, and thehighest number of samples of the angular range, due to the fat that both θ and

φ diretions are present, will unavoidably inrease the omputational ost.
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Chapter 6Diretion-of-Arrival Estimation inPlanar Arrays by BayesianCompressive SensingIn this Chapter, the Bayesian Compressive Sensing (BCS) is applied to esti-mate the diretions-of-arrival (DoAs) of narrow-band eletromagneti signalsimpinging on planar antenna arrangements. Starting from the measurement ofthe voltages indued at the output of the array elements, the performane ofthe BCS-based approah is evaluated when data are aquired at a single timeinstant and at onseutive time instants, respetively. Di�erent signal on�gu-rations, planar array geometries, and noise onditions are taken into aount, aswell.
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6.1. INTRODUCTION6.1 IntrodutionIn the last few years, we assisted to an extraordinary and still growing develop-ment and use of Compressive Sensing (CS)-based methods [81℄ in a wide numberof appliative ontexts suh as ommuniations [92℄, bio-mediine [93℄, radar [94℄,and mirowave imaging [86℄[95℄. CS has proven to be a very e�etive resolutiontool when the relationship between the problem data and the unknowns is lin-ear and these latter are sparse (or they an be sparsi�ed) with respet to somerepresentation bases.In this Chapter, a probabilisti version of the CS, namely the Bayesian Compres-sive Sensing (BCS) [41℄, is used for estimating the diretions of arrival (DoAs)of eletromagneti signals impinging on an array of sensors in a planar arrange-ment. Sine the DoAs of the inoming signals are few with respet to the wholeset of angular diretions, they an be modeled as a sparse vetor. Aordingly,the estimation problem at hand an be reformulated as the retrieval of suh asparse signal vetor whose non-null entries are related to the unknown angulardiretions of the signals.Compared to the state-of-the-art estimation methods (e.g., the multiple signallassi�ation (MUSIC) [65℄, the signal parameters via rotational invariane teh-nique (ESPRIT ) [67℄, the maximum likelihood (ML) DoAs estimators [96℄,and the lass of tehniques based on learning-by-examples (LBE) strategies[73℄[74℄[72℄), CS-based approahes have shown several interesting advantages.Likewise LBE-based methods, the omputationally-expensive alulation of theovariane matrix is not neessary sine the voltages measured at the outputof the array elements an be diretly proessed. CS-based methods turn outto be fast and also work with single time-instant (snapshot) data aquisitions.Moreover, unlike MUSIC and ESPRIT that require the inoherene of theimpinging signals and a set of measurements larger than the number of signals,areful DoA estimates an be yielded also when the number of arriving signalsis greater than the array sensors as well as in the presene of highly-orrelatedsoures.Within the lass of CS-based approahes, deterministi strategies reover thesignal vetor by enforing the sparsity onstraints through the l1-norm, while the
l2-norm is adopted to quantify the mismath between measured and estimateddata as shown in [97℄ for the loalization of narrowband soures when using airular array. Hybrid l1-norm and l2-norm formulations have been onsidered[98℄[99℄, as well. Others CS-based methods have been proposed [76℄[100℄[101℄also dealing with the DoAs estimation of orrelated soures [102℄. Unfortunately,ommon formulations of the CS (i.e., based on deterministi strategies) requirea minimum number of measurements equal to twie the number of impingingsignals to satisfy the neessary ondition for the well-posedness of the problem(i.e., the restrited isometry property of the sapling matrix). To overome suhan issue, probabilisti CS-based approahes have been taken into aount [103℄72



CHAPTER 6. DIRECTION-OF-ARRIVAL ESTIMATION IN PLANARARRAYS BY BAYESIAN COMPRESSIVE SENSING(see also Chapter 5) as the one onsidered in this Chapter.The outline of the Chapter is as follows. The DoAs estimation problem, itssparse reformulation, and the BCS-based DoAs estimation approah are pre-sented in Set. 6.2. A seleted set of representative numerial results is reportedin Set. 6.3 to disuss, in a omparative fashion, the performane of the singleand multiple snapshot implementations of the two-dimensional extension of the
BCS method presented in Chapter 5 for di�erent array arhitetures. Eventu-ally, some onlusions are drawn (Set. 6.4).6.2 Mathematial FormulationLet us onsider a planar antenna array made of N isotropi sensors loated on the
x− y plane. An unknown set of I signals si (r, t) = αi (t) e

j(2πf0t+ki·r), i = 1, ..., Iis supposed to impinge on the array from the unknown diretions Ψi = (θi, φi),
i = 1, ..., I, being 0◦ ≤ θi ≤ 90◦ and 0◦ ≤ φi ≤ 360◦. Suh signals are modeledas narrowband eletromagneti plane waves (i.e., αi (t) ≃ αi, i = 1, ..., I) at thearrier frequeny f0, ki (i = 1, ..., I) being the i-th wave vetor having amplitude
k = |ki| = 2π

λ
, ∀i = 1, ..., I, where λ is the free spae wavelength.By modelling the bakground noise as an additive Gaussian proess with zeromean and variane σ2, the phasor voltage measured at the n-th element is equalto

υn(τ) =
I∑

i=1

υi,n(τ) + ηn(τ) (6.1)where τ is the measurement time-instant/snapshot and ηn(τ) is the noise sampleat the same instant. Moreover,
υi,n(τ) = αi(τ)e

j 2π
λ
(xn sin θi cos φi+yn sin θi sinφi) (6.2)is the open iruit voltage indued by the i-th impinging wave at the n-th planararray element loated in the position rn = (xn, yn).The relationship between the measured data (i.e., υn(τ), n = 1, ..., N , τ =

1, ..., T ) and the unknown DoAs [i.e., Ψi = (θi, φi), i = 1, ..., I℄ an be thenrepresented in a ompat matrix form as follows
υ(τ) = H (Ψ) s(τ) + η(τ) , τ = 1, ..., T (6.3)where υ(τ) = [υ1(τ), υ2(τ), ..., υN(τ)]

∗ is the omplex measurement vetor, ∗denoting the transpose operation, and H (Ψ) = [h (Ψ1) , h (Ψ2) , ..., h (ΨI)] isthe steering vetor matrix where h (Ψi) = [hi,1, hi,2, ..., hi,N ]
∗ being

hi,n = ej
2π
λ
(xn sin θi cosφi+yn sin θi sinφi). Moreover, s(τ) = [α1(τ), α2(τ), ..., αI(τ)]

∗ isthe signal vetor and η(τ) = [η1(τ), η2(τ), ..., ηN (τ)]
∗ is the noise vetor.It is simple to observe that the solution of (6.3) is neither linear nor sparse withrespet to the problem unknowns Ψi = (θi, φi), i = 1, ..., I, while it is linear73



6.2. MATHEMATICAL FORMULATIONversus s(τ), ∀τ . In order to apply the BCS to the DoAs estimation in planararrays, the method in Chapter 5 for linear arrays has been exploited and heresuitably ustomized to the dimensionality (2D) at hand.To reformulate the original problem as a sparse one, the observation domainomposed by all angular diretions 0◦ ≤ θ ≤ 90◦ and 0◦ ≤ φ ≤ 360◦ is partitioned(Fig. 6.1) in a �ne grid of K samples satisfying the ondition K ≫ I. Therefore,the terms H (Ψ) and s(τ) in (6.3) turn out being equal to
H̆
(
Ψ̆
)
=
[
h̆
(
Ψ̆1

)
, h̆
(
Ψ̆2

)
, ..., h̆

(
Ψ̆k

)
, ..., h̆

(
Ψ̆K

)] (6.4)and
s̆(τ) = [ᾰ1(τ), ᾰ2(τ), , ...ᾰk(τ), ...., ᾰK(τ)]

∗ . (6.5)By substituting (6.4) and (6.5) in (6.3), the problem is still linear with respetto also s̆(τ), but s̆(τ) [unlike s(τ)℄ is now sparse sine K ≫ I. Aordingly, onlyfew oe�ients ᾰk(τ), k = 1, ..., K are expeted to di�er from zero and exatlyin orrespondene with the steering vetors h̆(Ψ̆k

) at the angular diretion Ψ̆kwhere the wave is estimated to impinge on the array. Aordingly, the originalproblem of determining the DoAs, Ψi = (θi, φi), i = 1, ..., I, is reformulatedas the estimation of the (sparse) signal vetor ŝ(τ). The signal DoAs are thenretrieved as the diretions Ψ̂k =
(
θ̂k, φ̂k

) whose orresponding signal amplitudes
α̂k(τ) are non null.For single time-instant (T = 1) aquisitions, the Single-Task Bayesian Compres-sive Sensing (ST − BCS) is used and the sparsest vetor ŝ(τ) is retrieved bymaximizing the posterior probability (see Chapter 5)

P
([
ŝ(τ), σ̂2, a(τ)

]∣∣υ(τ)
) (6.6)where σ̂2 is the estimate of the noise power, supposed not varying in time, and

a(τ) is the hyper-parameter vetor [45℄ enforing the sparseness of the solution
ŝ(τ) at the τ -th snapshot. Aordingly, the analyti form of the solution turnsout to be

ŝ(τ) =
1

σ̂2



Ĥ
(
Ψ̆
)∗

Ĥ
(
Ψ̆
)

σ̂2
+ diag (a(τ))




−1

Ĥ
(
Ψ̆
)∗

υ̂(τ) (6.7)where all terms are real sine the BCS works only with real numbers. Thesignal vetor, ŝ(τ) = [Re {ŝ(τ)} ; Im {ŝ(τ)}]∗, has dimension 2K × 1, υ̂(τ) =
[Re {υ̂(τ)} ; Im {υ̂(τ)}]∗ is a 2N × 1 vetor, while

Ĥ
(
Ψ̆
)
=


 Re

{
H̆
(
Ψ̆
)}

−Im
{
H̆
(
Ψ̆
)}

Im
{
H̆
(
Ψ̆
)}

Re
{
H̆
(
Ψ̆
)}


 (6.8)74
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Figure 6.1: Sketh of the disretized observation domain for CS-based DoAsestimations.is 2N×2K matrix, Re {·} and Im {·} being the real and imaginary part, respe-tively. The two ontrol parameters in (6.7), a(τ) and σ̂2, are obtained throughthe maximization of the funtion
ΠST

(
σ̂2, a(τ)

)
= K log

(
1

2π

)
− log |Ω(τ)|+ (υ̂(τ))∗ (Ω(τ))−1

υ̂(τ)

2
(6.9)by means of the relevane vetor mahine (RVM). In (6.7), Ω(τ) , σ̂2I +

Ĥ
(
Ψ̆
)
diag (a(τ))−1

Ĥ
(
Ψ̆
)∗ where I is the identity matrix.When a set of onseutive snapshots is available, the Multi-Task BCS (MT −

BCS) implementation is used to statistially orrelate the estimates derived foreah snapshot by setting a ommon hyper-parameter vetor: a(τ) = a, ∀τ =
1, ..., T . Hene, the �nal MT − BCS solution is given by (see Chapter 4 andChapter 5)

ŝ =
1

T

T∑

τ=1

{[
Ĥ
(
Ψ̆
)∗

Ĥ
(
Ψ̆
)
+ diag (a)

]−1

Ĥ
(
Ψ̆
)∗

υ̂(τ)

} (6.10)where a is omputed through the RVM maximization of the following funtion
ΠMT (a) = −1

2

T∑

τ=1

{log (|Ω|) + (K + 2β1) log [(υ̂(τ))
∗
Ωυ̂(τ) + 2β2]} (6.11)75



6.3. NUMERICAL RESULTSwhere Ω , I + Ĥ
(
Ψ̆
)
diag (a)−1

Ĥ
(
Ψ̆
)∗ and β1 and β2 are two user-de�nedparameters [60℄.Although the ondition α̂k(τ) ≃ 0 or α̂k ≃ 0 usually holds true, the numberof non-null oe�ients in either ŝ(τ) (ST − BCS) or ŝ (MT − BCS) ould belarger beause of the presene of the noise. Hene, the energy thresholding teh-niques desribed in Chapter 5 is exploited to �rstly ount the number of arrivingsignals, Î, and then to estimate the orresponding DoAs. More in detail, the o-e�ients α̂k(τ) (or α̂k) are �rstly sorted aording to their magnitude, then onlythe �rst Î oe�ients whose umulative power ontent is lower than a perent-age χ of the totally reeived signal power, namely ‖ŝ(τ)‖ =

∑K
k=1 (α̂k(τ))

2 (or
‖ŝ‖ =

∑K
k=1 (α̂k)

2), are preserved. Hene, Î is seleted suh that∑Î
i=1 (α̂i(τ))

2 <

χ ‖ŝ(τ)‖ (or ∑Î
i=1 (α̂i)

2 < χ ‖ŝ‖).6.3 Numerial ResultsThe planar array BCS-based estimation method is assessed by means of thefollowing analysis devoted to evaluate (a) the performane of its di�erent im-plementations in orrespondene with single snapshot (T = 1) or multiple-snapshots (T > 1) aquisitions and (b) the impat of di�erent array on�gu-rations. Throughout the numerial assessment, the array elements have beenassumed uniformly-spaed of dx = λ
2
and dx = λ

2
along the x-axis and y-axis,respetively, and all signals have been haraterized with the same amplitude

αi(τ) = αi+1(τ), i = 1, ..., I − 1. The measurements have been blurred withan additive Gaussian noise of variane σ2 suh that the resulting signal-to-noiseratio turns out to be
SNR = 10× log

[∑N
n=1 |υno−noise

n |2

Nσ2

] (6.12)
υno−noise
n (n = 1, ..., N) being the voltage measured at the n-th array element inthe noiseless ase. The angular observation domain (Fig. 6.1) has been parti-tioned with a uniform grid haraterized by a sampling step equal to ∆θ = 1.25◦and ∆φ = 1.25◦ along the elevation and azimuthal diretion, respetively. Theenergy threshold has been set to χ = 0.95 aording to the alibration resultspresented in Chapter 5.In order to quantify the reliability and the e�etiveness of the DoA estimation,the following indexes have been omputed. For eah i-th signal, the loationindex [72℄ is de�ned as

ξi = ξ
(
Ψi, Ψ̂i

)
,

Φ
(
Ψi, Ψ̂i

)

Φ(max)
× 100 (6.13)76
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I {Ψi = (θi, φi) , i = 1, ..., I}
2 {(25, 60) ; (60, 140)}
4 {(25, 60) ; (60, 140) ; (70, 210) ; (60, 300)}
8 {(25, 60) ; (60, 140) ; (70, 210) ; (60, 300) ; (40, 210) ; (80, 45) ; (15, 5) ; (30, 350)}Table 6.1: Fully Populated Array - (N = 25; dx = dy = 0.5λ; I ∈ [2 : 8];
SNR = 10 dB; C = 50) - Atual DoAs of the impinging signals.where

Φ
(
Ψi, Ψ̂i

)
=√(

sin θi cosφi − sin θ̂i cos φ̂i

)2
+
(
sin θi sinφi − sin θ̂i sin φ̂i

)2
+
(
cos θi − cos θ̂i

)2(6.14)and Φ(max) = maxΨi,Ψ̂i

{
Φ
(
Ψi, Ψ̂i

)}
= 2 is the maximum admissible error inthe DoA retrieval. Sine the number of arriving signals Î is unknown and itis derived from the BCS proessing, the global loation index has been alsoevaluated as in Chapter 5

ξ =





1
I

[∑Î

i=1
ξ
(
Ψi, Ψ̂i

)
+
(
I − Î

)
ξ(penalty)

]
if Î < I

1
I

[∑I

i=1
ξ
(
Ψi, Ψ̂i

)
+
∑Î

i=I+1
ξ
(
Ψi, Ψ̂i

)]
if Î ≥ I

(6.15)where ξ(penalty) = maxΨi,Ψ̂i
{ξi} = 100 is the maximum of (6.13) and Ψi =

arg
{
mini=I+1

[
ξ
(
Ψi, Ψ̂i

)]}
. Sine it is preferred to detet all signals reallypresent in the senario, although overestimating their number then missing someof them, the penalty is onsidered only when Î < I .A. Single and Multiple Snapshot BCS-based DoAs Estimation Teh-niquesLet us onsider the fully populated array of Fig. 6.2 with N = Nx × Ny = 25elements, Nx = Ny = 5 being the number of elements along the x and y axes,olleting the data υ(τ). Several di�erent eletromagneti senarios have beenonsidered in whih I = 2, I = 4, and I = 8 signals are supposed to impinge onthe planar array from the diretions indiated in Tab. 6.1(1) 1.1(1) In the numerial results, the atual DoAs are hosen lying on the sampling grid ofthe observation domain. Whether this ondition does not hold true, o�-grid ompensationmethods [104℄[105℄, already proposed in the state-of-the-art literature, an be pro�tably used.77
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x/λFigure 6.2: Geometry of the reeiving fully populated array (N = 25).The power of the bakground noise has been set to yield SNR = 10dB. In orderto test the behavior of the ST − BCS and the MT − BCS, the simulation foreah signal on�guration has been repeated C = 50 times, while varying the noisesamples on the data. The DoAs estimation error has been therefore evaluatedthrough the average loation index de�ned as
ξ(avg) =

1

C

C∑

c=1

ξ(c) (6.16)
ξ(c) being omputed as in (6.15).As for the ST − BCS, a single snapshot has been proessed eah time (T = 1).Figure 6.3 shows the best (Fig. 6.3 - left olumn) and the worst (Fig. 6.3 -right olumn) solutions in terms of minimum (ξ(min) = minc=1,...,C

{
ξ(c)
}) andmaximum (ξ(max) = maxc=1,...,C

{
ξ(c)
}) loation error, respetively, among the

C = 50 DoAs estimations arried out when I = 2 [Figs. 6.3(a)-6.3(b)℄, I = 4[Figs. 6.3()-6.3(d)℄, and I = 8 [Figs. 6.3(e)-6.3(f )℄. In Fig. 6.3, the atual
DoAs are denoted with a point at the enter of a irle, while the olor pointsindiate the estimated signal loations and amplitudes. For the sake of larity,the retrieved DoAs are also reported in Tab. 6.2 where the number of estimatedsignals Î is given, as well. As it an be observed, the strength of the estimatedsignals is di�erent (Fig. 6.3), even though they impinge on the antenna withthe same energy, beause of the presene of the noise. On the other hand, the
DoAs are predited with a high degree of auray when I = 2 and I = 4 ason�rmed by the values of the loation error (Tab. 6.3). As a matter of fat,the error values are low also for the worst solutions among the C trials (i.e.,
ξ(max)

∣∣
I=2

= 3.80% and ξ(max)
∣∣
I=4

= 3.89%). It is worth also noting that for
I = 2 the loation error is small even though the number of deteted signals aregreater than the atual ones ( Î(wst)

∣∣∣
I=2

= 3) beause of two signals have very78
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I Î(bst)

{
Ψ̂

(bst)
i =

(
θ̂
(bst)
i , φ̂

(bst)
i

)
, i = 1, ..., I

}

2 2 {(25, 60) ; (60, 140)}
4 4 {(23.75, 65) ; (60, 140) ; (63.75, 300) ; (70, 210)}
8 7 {(23.75, 345) ; (32.5, 65) ; (67.5, 145) , (71.25, 300) , (72.5, 300) , (82.5, 40) , (90, 205)}
I Î(wst)

{
Ψ̂

(wst)
i =

(
θ̂
(wst)
i , φ̂

(wst)
i

)
, i = 1, ..., I

}

2 3 {(22.5, 60) ; (57.5, 135) ; (58.75, 137.5)}
4 4 {(23.75, 55) ; (63.75, 145) ; (61.25, 300) ; (77.5, 210)}
8 4 {(21.25, 345) ; (28.75, 70) ; (55, 210) ; (90, 45)}Table 6.2: Fully Populated Array - (N = 25; dx = dy = 0.5λ; I ∈ [2 : 8];
SNR = 10 dB; T = 1; C = 50) - Values of the DoAs for the best and worstestimation obtained by means of the ST − BCS among the C di�erent noisysenarios.

I ξ(min) ξ(max) ξ(avg) ξ(var) t(avg) [sec]

ST −BCS
2 0.00 3.80 1.36 1.24 4.48× 10−1

4 1.34 3.70 2.07 6.02× 10−1 1.37
8 3.02× 101 8.23× 101 6.06× 101 2.96× 102 1.77

MT − BCS
2 0.00 2.18 8.01× 10−1 4.06× 10−1 3.97
4 5.45× 10−1 1.91 1.37 1.19× 10−1 6.44
8 5.27 3.31× 101 1.81× 101 5.94× 101 7.80Table 6.3: Fully Populated Array - (N = 25; dx = dy = 0.5λ; I ∈ [2 : 8];

SNR = 10 dB; T = {1, 2}; C = 50) - Statistis (minimum, maximum, average,and variane) of the loation index ξ among C di�erent noisy senarios whenusing the ST −BCS (T = 1) and the MT − BCS (T = 2).lose DoAs (as ompared to the sampling steps ∆θ and ∆φ). However, if the
ST −BCS shows being robust and aurate in suh senarios (I = 2 and I = 4),it is not able to orretly loate the atual DoAs when the number of signalsinreases to I = 8 [Figs. 6.3(e)-6.3(f ) - Tab. 6.2℄. Indeed, the loation errorsigni�antly inreases as indiated by the indexes in Tab. 6.3.As for the omputational e�ieny, the ST −BCS is able to perform the DoAsestimation in a limited CPU time (t(avg) < 2.0 [sec] - Tab. 6.3)(2)2 also thanksto the single-snapshot proessing.In order to investigate the e�ets of the SNR on theDoAs estimation apabilitiesof the ST −BCS, the SNR has been varied from −5dB up to 30dB with a step2(2) The simulations have been run using a standard proessing unit (i.e., 2.4GHz PC with
2GB of RAM) with a non-optimized ode. 79
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(e) (f)Figure 6.3: Fully Populated Array - (N = 25; dx = dy = 0.5λ; I ∈ [2 : 8];
SNR = 10 dB; T = 1; C = 50) - Plot of the best (left olumn) and worst (rightolumn) estimations obtained by means of the ST −BCS among the C di�erentnoisy senarios when (a)(b) I = 2, (c)(d) I = 4, and (e)(f) I = 8.80
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I=8
= 18.1%). The useof only T = 2 snapshots does not guarantee reliable performane also with the

MT −BCS, even though the advantages in terms of auray of theMT −BCSover the ST −BCS are non-negligible as pointed out by the values in Tab. 6.3.On the opposite, the omputational ost of the MT − BCS is higher than thatof the ST − BCS (Tab. 6.3). 81
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(e) (f)Figure 6.5: Fully Populated Array - (N = 25; dx = dy = 0.5λ; I ∈ [2 : 8];
SNR = 10 dB; T = 2; C = 50) - Plot of the best (left olumn) and worst (rightolumn) estimations obtained by means of theMT−BCS among the C di�erentnoisy senarios when (a)(b) I = 2, (c)(d) I = 4, and (e)(f) I = 8.82
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I Î(bst)

{
Ψ̂

(bst)
i =

(
θ̂
(bst)
i , φ̂

(bst)
i

)
, i = 1, ..., I

}

2 2 {(25, 60) ; (60, 140)}
4 4 {(25, 60) ; (58.75, 300) ; (60, 140) ; (71.25, 210)}
8 8 {(22.5, 350) ; (23.75, 350) ; (32.5, 70) ; (40, 205) ; (57.5, 300) ; (61.25, 140) ; (75, 210) ; (90, 45)}
I Î(wst)

{
Ψ̂

(wst)
i =

(
θ̂
(wst)
i , φ̂

(wst)
i

)
, i = 1, ..., I

}

2 2 {(26.25, 55) ; (62.5, 140)}
4 4 {(26.25, 60) ; (57.5, 300) ; (60, 140) ; (75, 210)}
8 6 {(22.5, 350) ; (42.5, 210) ; (60, 145) ; (62.5, 295) ; (65, 210) ; (76.25, 45)}Table 6.4: Fully Populated Array - (N = 25; dx = dy = 0.5λ; I ∈ [2 : 8];
SNR = 10 dB; T = 2; C = 50) - Values of the DoAs for the best and worstestimation obtained by means of the MT − BCS among the C di�erent noisysenarios.More reliable MT − BCS estimations an be yielded when proessing a largernumber of snapshots. Figure 6.6 shows that, also for omplex eletromagnetisenarios (i.e., I = 8 - Tab. 6.1), the average loation error gets lower when Tinreases. By onsidering SNR = 10 dB as a representative example, one anobserve that ξ(avg) redues of almost one order of magnitude from ξ(avg)

∣∣
I=8

=

18.1% (T = 2) to ξ(avg)
∣∣
I=8

= 2.20% (T = 5). As expeted, more aurateestimations arise with even more data (i.e. ξ(avg)∣∣
I=8

= 1.23% when I = 10 and
ξ(avg)

∣∣
I=8

= 0.95% when I = 25 - Fig. 6.6). The bene�ts from the orrelation ofthe information oming from di�erent time instants thanks to the MT − BCSare also highlighted by the behavior of the plots in Fig. 6.6: ξ(avg) more rapidlydereases for higher values of T when the quality of the data improves (i.e., higher
SNR).As long as the appliations at hand do not require the fast or real-time identi�-ation of the DoAs and there is the possibility to ollet the data at onseutivetime instants, the robust estimation of a larger number of impinging signals is al-lowed. In this ontext, Figure 6.7 shows the results obtained with theMT−BCSwhen I = 12 [Figs. 6.7(a)-(b)℄ and I = 18 [Figs. 6.7()-(d)℄ (SNR = 10dB). Asfor the ase I = 12, the DoAs are estimated with a good degree of auray alsoin the worst ase within the C experiments [Fig. 6.7(b) - ξ(max)

∣∣
I=12

= 1.77%℄,while the average loation error amounts to ξ(avg)
∣∣
I=12

= 1.04%. Di�erently, the average error is ξ(avg)∣∣
I=18

= 4.70% and in the worst ase [Fig. 6.7(d)℄is ξ(max)
∣∣
I=18

= 7.85% when I = 18. For the sake of ompleteness, the bestsolutions are reported in Figs. 6.7(a) and 6.7() when I = 12 and I = 18,respetively.B. DoAs Estimation Performane for Di�erent Array GeometriesIn this setion, the behavior of the BCS-based single-snapshot and multiple-snapshots DoAs estimators is analyzed for di�erent array arhitetures. The83
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6.4. DISCUSSIONSat multiple snapshots, have been tested on a wide number of di�erent senariosas well as using di�erent array arrangements. Likewise the linear array ase, thereported results have shown that:
• the two BCS-based implementations provide e�etive DoAs estimates al-though just proessing the sensors output voltages and not the ovarianematrix;
• the joint estimation of the signals number and DoAs is enabled;
• the orrelation apability of the MT − BCS allows one to yield betterresults than the ST −BCS at the expenses of an inreased omputationalburden.As for the behavior of the two approahes versus the planar array geometry, itis possible to onlude that:
• the fully-populated and the random arrays give the best performane asompared to both the L-shaped and the ross-shaped array, but using alarger number of sensors;
• under the assumption of the same number of elements, the L-shaped on-�guration always outperforms the preision from the ross-shaped arrange-ment.

90



Chapter 7Conlusions and futuredevelopmentsIn this hapter, some onlusions and ideas for future researh are presented.
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In this thesis, the problem of the synthesis and ontrol of antenna arrayswithin the Bayesian Compressive Sensing (BCS) framework has been investi-gated. More in detail, the BCS method has been ustomized in order to dealwith (i) the problem of the synthesis of linear antenna arrays and (ii) the prob-lem of Diretion-of-Arrival (DoA) estimation of signals impinging on an antennaarray.The array pattern synthesis problem has been reformulated in a BayesianCompressive fashion as a pattern mathing problem with sparseness onstraintsad then it has been solved by using a suitable RVM approah. In addition,the MT −BCS approah has been adopted to extend the BCS array synthesismethod in order to deal with the synthesis of asymmetrial patterns (arrays withomplex weights). A set of representative results have been presented in orderto assess the performanes of the proposed method. Comparisons with the stateof the art have been shown and disussed, as well. The main features shown bythe proposed tehnique are summarized in the following:
• the BCS methodology is able to approximate the pattern produed by auniform array arrangement with a high degree of auray, providing atthe same time a onsistent redution in the total element ount.
• the MT −BCS approah improves the ST −BCS one, allowing the au-rate and e�ient synthesis of omplex-weights arrays with non-symmetrialpatterns.
• with the proposed BCS strategy is very easy to take into aount of appli-ation spei� onstraints in the radiation pattern or in the array geometry.
• the BCS-based proposed methodology positively ompares with reentlyintrodued state-of-the-art approahes, suh as the FBMPM .The DoA estimation problem has been addressed by means of two methodolo-gies based on the Bayesian Compressive Sensing paradigm, one exploiting single-snapshot measurements, the other one devoted to the proessing of multiple-snapshots data. A set of representative examples onerning the DoA estimationin di�erent senarios have been presented and disussed. Some additional numer-ial results onerning the omparison with other state-of-the art methodologieshave been presented, as well. The main outomes of this work are:
• the omputation of the ovariane matrix is not required and the estimationan be performed by diretly proessing the measured voltages.
• the a-priori knowledge of the number of inoming signals is not required inorder to obtain an aurate and reliable estimation.
• the method is able to provide aurate results with a limited number ofsnapshots. In some senarios is is possible to obtain good estimations withonly one snapshots. 92



CHAPTER 7. CONCLUSIONS AND FUTURE DEVELOPMENTS
• the MT − BCS approah outperforms the ST − BCS one thanks to thee�ient orrelation of multiple snapshots data.
• the approah has been extended to the azimuth-elevation estimation withplanar arrays, ahieving aurate results also in this ase.Conerning the array synthesis problem, future works will onern the analysis ofthe mutual oupling e�et in the synthesized on�guration and diretive elementssynthesis. In addition, the synthesis of reon�gurable arrays as well as arrays forwideband appliations will be matter of future studies.Regarding the DoA estimation problem, future study will deal with the synthesisof wideband signals by orrelating the information available at multiple frequen-ies. Moreover, in order to redue the omputational burden of the algorithm,suitable multiresolution strategies will be implemented and assessed.
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Appendix ADerivation of (4.14)
To solve (4.13), the onditional probability P

(
wH | F̂H

) is written aording tothe Bayes theorem, as
P
(
wH | F̂H

)
,

P
(
F̂H

∣∣∣wH

)
P (wH)

P
(
F̂H

) (A.1)where P
(
F̂H

∣∣∣wH

) is the `likelihood', whereas P
(
F̂H

) and P (wH) are thepriors of F̂H and wH , respetively. Equation (A.1) is substituted in (4.13) toyield
wMT−BCS

H = arg



max

wH



P
(
F̂H

∣∣∣wH

)
P (wH)

P
(
F̂H

)





 (A.2)Analogously to the BCS ase, P (wH) in (A.2) is used to enfore the `sparseness'of wH (i.e., the minimization of ‖wH‖ℓ0) [21℄, but besides the BCS de�nition,the MT −BCS prior also establishes the interrelationships between wR and wI .Towards this end, a shared prior is plaed aross the two (i.e., H = R and H = I)

CS �tasks� in Eq. (A.2) [42℄. Mathematially, it is assumed that [42℄
P (wH) =

∫
P
(
wH | â, σ̂2

)
P (â)P

(
σ̂2
)
dâdσ̂2 (A.3)where â = {ân; n = 1, ..., N}, â ∈ RN , is the �shared� hyperparameters vetor[42℄, whose assoiated hyperpriors still omply with the Gamma distribution [42℄

P (â) =
N∏

n=1

[
ββ1
2 (ân)

β1−1 e−β2ân

∫∞

0
tβ1−1e−tdt

] (A.4)as for the BCS [see Eq. (5) - [21℄℄. Moreover, a �shared� Gamma hierarhialprior is enfored on σ̂2 [42℄ with the same form as in the BCS (see Eq. (6) -105



[21℄)
P
(
σ̂2
)
=
ββ3

4

(
1
σ̂2

)(β3−1)
e−

β4
σ̂2

∫∞

0
tβ3−1e−tdt

(A.5)where the user-de�ned oe�ients β1-β4 are the so-alled `sale priors' [42℄.Conerning P (wH | â, σ̂2), the following hierarhial Gaussian model is as-sumed [42℄
P
(
wH | â, σ̂2

)
=
[
(2πσ̂)−N

] N∏

n=1

√
ân exp

[
− ân

(
wH

n

)2

2σ̂2

]
. (A.6)Bak substituting (A.3) in (A.2), it results that

wMT−BCS
H =

= arg

{
maxwH

[∫ P(wH |â,σ̂2)P( F̂H|wH)P(â)P(σ̂2)
P(F̂H)

dâdσ̂2

]} (A.7)and, by integrating over σ̂2 and performing simple mathematial manipulations,the relation (A.7) an be rewritten as
wMT−BCS

H = arg

{
max
wH

[∫
P
(
wH | F̂H , â

)
P
(
â

∣∣∣F̂H

)
dâ

]}
. (A.8)As far as the �rst term in (A.8) is onerned, one an notie that [42℄

P
(
wH | F̂H , â

)
=

∫
P
(
wH | F̂H , â, σ̂

2
)
P
(
σ̂2
)
dσ̂2 (A.9)whose integrand is given by

P
(
wH | F̂H , â, σ̂

2
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P (σ̂2) =

P( F̂H|wH ,σ̂2)P(wH |â,σ̂2)P(σ̂2)
∫
P( F̂H|wH ,σ̂2)P(wH |â,σ̂2)dwH

(A.10)aording to Bayes' theorem. By using (A.5) and (A.6), and observing that[see (4.11)℄
P
(
F̂H

∣∣∣wH , σ̂
2
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1

(2πσ̂2)K/2
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− 1

2σ̂2

∥∥∥F̂H − Φ̂wH
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)
, (A.11)it results that
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(A.12)where µ̂H , Σ̂Φ̂T F̂H and Σ̂ ,
(
Â + Φ̂T Φ̂

)−1, being Â , diag (â).106



APPENDIX A. DERIVATION OF (4.14)By analyzing the expression of P (wH | F̂H , â
), it is worth notiing that theposterior distribution overwH is now a multivariate Student-t distribution (A.12)instead of the multivariate Gaussian distribution of the BCS (Eq. (9) - [21℄).Moreover, the sale terms β3 and β4 do not have to be spei�ed unlike β1 and β2sine the orresponding distributions are not expliitly required for the ompu-tations.Conerning the remaining term in the integral of (A.8), a �delta-funtion�approximation is adopted analogously to the BCS ase [42℄ sine its losed-formomputation is not feasible. Towards this end, let us �rstly notie that

P
(
â

∣∣∣F̂H

)
∝ P

(
F̂H

∣∣∣ â
)
P (â)or in a di�erent fashion

P
(
â

∣∣∣F̂H
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∝
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∣∣∣wH , σ̂
2
)
P (wH | â, σ̂2) ×

× P (σ̂2) dwHdσ̂
2]P (â)

(A.13)whose mode (over the two tasks H ∈ {R, I}) an be omputed, by using (A.11),(A.5), and (A.6), as [42℄
âMT−BCS = argmax

â

{
LMT−BCS (â)

} (A.14)where LMT−BCS (â) is the logarithm of the MT − BCS �marginal likelihood�given by
LMT−BCS (â) = −1
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(A.15)By using (A.14), the delta-funtion approximation is then applied to obtain
P
(
â

∣∣∣F̂H

)
≈ δ

(
â− âMT−BCS

)
. (A.16)By substituting (A.12) and (A.16) in (A.8) and sine the mode of a multi-variateStudent-t distribution is equal to its average value (i.e., µ̂H), it turns out that
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= µ̂H⌋â=âMT−BCS .

(A.17)
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