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Abstra
tIn the framework of antenna array synthesis and 
ontrol, this thesis fo
us onthe development and analysis of te
hniques based on the Bayesian CompressiveSensing (BCS) for the design of sparse antenna arrays and for the estimation ofthe dire
tion of arrival (DoA) of signals impinging on an antenna array. Afterformulating the sparse-array synthesis problem in a probabilisti
 fashion, thesingle-task BCS (ST −BCS) is applied to the synthesis of symmetri
al antennaarrays with real weights. In order to deal with the synthesis of sparse arrays with
omplex weights, the multitask version of the BCS (MT − BCS) is employedto 
orrelate the real and imaginary part of the resulting ex
itation distribution.Con
erning the DoA estimation problem, starting from the observation thatthe signals impinging on the antenna array are sparse in the spatial domain, asingle-snapshot ST − BCS-based te
hnique is proposed. Moreover, the MT −
BCS-based extension of this te
hnique is introdu
ed in order to enhan
e thequality of the estimations through the exploitation of the 
orrelation amongdi�erent snapshots. In the numeri
al validation, an exhaustive analysis has beenperformed to assess e�e
tiveness, reliability, but also limitations of the proposedmethodologies. Comparisons with state-of-the-art are reported and dis
ussed, aswell.KeywordsArray synthesis, Bayesian Compressive Sensing, Dire
tion-of-Arrival Estimation,Sparse Arrays
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Chapter 1Introdu
tion
Thanks to its ability to allow the re
overing of a signal starting from farfewer measurements than 
onventional te
hniques based on Shannon's theorem[85℄, the Compressive Sensing (CS) paradigm has attra
ted a lot of attention inseveral resear
h areas of information theory, signal pro
essing, 
omputer s
ien
eand ele
tri
al engineering [80, 81, 85℄, enabling the development of 
ompletelynew approa
hes in these �elds [80, 81, 85℄. Traditional sampling approa
hesrequire that the sampling rate is higher than twi
e the maximum frequen
yvalue in the measured signal. However, in many appli
ations su
h as imagingand radar, the signal to be a
quired is often sparse with respe
t to a proper basis(i.e. it has a 
on
ise representation in that basis). As a 
onsequen
e, a largeamount of data samples 
an be represented with a small number of 
oe�
ients.For example, lossy image 
ompression 
oders en
ode only the lo
ations and thevalues of the most signi�
ant 
oe�
ients of an image, throwing away the majorityof the 
oe�
ients with almost no per
eptual loss. This pro
ess requires thea
quisition of all the data in order to perform the 
ompression, resulting in awaste of measuring resour
es. Di�erently from traditional 
ompression s
hemes,instead of measuring the full signal, the CS a
quires only the amount of data thatis not dis
harged. This feature is useful in many appli
ative s
enarios, wherethe a
quisition of a large number of measurements is not pra
ti
al for severalreasons, like the high 
ost of the measurements, the limited number of sensorsor the large time required for ea
h measurement. The CS approa
h is based on�nding an approximate solution x to an underdetermined linear problem y = Ax,minimizing at the same time the number of non-zero entries of x (see Equation2.1). If suitable 
onditions are �tted, a high-dimensionality solution x 
an beretrieved from a small number of measurements y. In addition to the advantagesover 
lassi
al sampling s
hemes, the popularity of the CS is related to (i) the�exibility and generality of its formulation, allowing its appli
ation to a widerange of problems, (ii) the e�e
tiveness of the 
orresponding solution te
hniquesand to (iii) the wide availability of software libraries implementing state-of-the-art CS algorithms [57, 58, 59, 60℄ for e�e
tively dealing with 
omplex engineering1



problems.Thanks to their e�
ien
y, CS strategies have gained a lot of interest in theEM 
ommunity. For example, in [84℄, the CS has been applied to radar remotesensing, a problem where the standard CS requirements (i.e. sparsity of thesolution and linearity) are �tted in a natural way. However, by using suitableapproximations or if some a-priori knowledge is at hand, several ele
tromagneti
problems 
an be reformulated in order to �t the CS requirements. In this way,the CS has been re
ently extended to several �elds of ele
tromagneti
s with veryinteresting results. These appli
ations in
lude array diagnosis [2℄, array synthesis[51, 52℄, dire
tion-of-arrival estimation [76℄, inverse s
attering and mi
rowaveimaging [53, 54℄.On the other hand, in order to guarantee the pra
ti
al exploitability of CS-based te
hniques, several issues like numeri
al stability and theoreti
al 
onditionsto guarantee their optimality still need to be 
arefully addressed. Indeed, thevalidity of widely adopted assumptions 
on
erning the features of the problems,su
h as the Restri
ted Isometry Property, 
annot be always granted in EM prob-lems of interest, whose properties are often 
onstrained by the underlying physi
s[21, 86℄. A

ordingly, the use of several popular solvers relying on these assump-tions, in
luding those based on l1-norm minimization, may not be the optimal
hoi
e in EM synthesis and inverse problems [21, 86℄. Re
ently, a set of e�e
tivete
hniques have been proposed in order to address the above issues and enable thee�e
tive appli
ation of the CS paradigm in EM problems [41, 42℄. Su
h strate-gies are essentially based on the reformulation of the EM problems in suitableprobabilisti
 s
enarios, following a Bayesian paradigm 
omprising suitable spar-sity priors [41, 42℄. The arising �Bayesian CS� (BCS) solution strategies havebeen therefore adopted to properly address design/inversion problems arising inseveral di�erent s
enarios [3, 21, 86, 87, 95℄.Di�erently from the approa
hes based on CS, the Bayesian Compressive Sens-ing (BCS) proposed in [41℄ sear
hes for the most probable sparse solution �ttingthe measured data samples. Thanks to the probabilisti
 formulation, the kernelof the problem is not required to satisfy any spe
i�
 theoreti
al feature, like therestri
ted isometry property (RIP) [85℄. The veri�
ation of these features is of-ten very di�
ult in pra
ti
al appli
ations. However, while the CS is able (under
ertain 
ir
umstan
es) to obtain the exa
t re
onstru
tion [79℄[80℄, this is not the
ase of the BCS. Moreover, due to the real-valued nature of the BCS solver,its extension to the sampling/re
overy of 
omplex signals is not e�
ient [41℄.In addition, the standard BCS approa
h is not able to 
orrelate the informa-tion obtained from di�erent measurement sets a
quired in di�erent time instantsor by di�erent a
quisition systems to enhan
e the estimation performan
es. Inorder to avoid these problems, the Multi-Task Bayesian Compressive Sensing(MT − BCS) methodology has been introdu
ed in [60℄. Di�erently form thestandard BCS implementation (ST −BCS), the MT −BCS allows the proba-bilisti
 
orrelation [60℄ of di�erent sets of measurements in order to improve the2



CHAPTER 1. INTRODUCTIONa

ura
y of the re
onstru
tion. Additionally, the problem of the estimation of
omplex signals 
an be handled in a similar way, by exploiting the MT − BCSto 
orrelate the real and imaginary 
omponents of 
omplex measured data, en-abling the methodology to re
over 
omplex signals. The basi
 formulation of the
ST − BCS and MT −BCS approa
hes is resumed in the following Chapter.
Thesis outlineThe thesis is organized as follows. Firstly, the BCS general formulation is intro-du
ed in Chapter 2. In Chapter 3, the problem of the synthesis of sparse lineararrays with real weights is addressed by means of a ST − BCS strategy. Su
-
essively, the methodology is extended in Chapter 4 to the synthesis of antennaarrays with 
omplex weights by means of a MT − BCS approa
h. Chapter 5presents the problem of the estimation of the DoAs of signals impinging on alinear antenna array from a BCS perspe
tive, fo
using on both the ST − BCSand MT −BCS. This methodology is then extended to the planar array 
ase inChapter 6. Some general 
on
lusions follow in Chapter 7.

3
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Chapter 2Mathemati
al FormulationWhen the relation between the measured data and the unknowns is linear, theobje
tive is to determine a K-dimensional ve
tor x ∈ RK×1 starting from a M-dimensional set of measured data y ∈ RM×1, where x is related to the measureddata y by the relation
y = A x (2.1)

A ∈ RM×K being a matrix modeling the linear relationship between the dataand the unknowns. However, in many engineering and s
ienti�
 problems, thenumber of measurements M is smaller than the number of unknowns K. In this
ase, the system of equations (2.1) results to be underdetermined with a non-unique solution. therefore, it is not possible to obtain an a

urate re
onstru
tionof the unknown x without adding some informations the problem.In many 
ir
umstan
es, the unknown signal x 
an be represented by usinga number of 
oe�
ients very small with respe
t to K. This means that only asmall number of 
oe�
ients of the ve
tor x is di�erent from zero. In this 
ase,the measured ve
tor y is 
alled 
ompressible and the unknown ve
tor x is 
alledsparse. Under the sparsity hypothesis, the unknown signal x 
an be retrieved bysolving the following 
ompressive sensing (CS) problem[81, 85℄
min
x

‖x‖ℓ0 subje
t to y = Ax (2.2)where ‖x‖ℓ0 =
∑K

k=1 |xk|
0 . However, the problem (2.2) is non-
onvex, andits solution 
an be obtained only with an exhaustive 
ombinatorial sear
h. Analternative 
ommon approa
h is to 
onsider the problem[81, 85℄

min
x

‖x‖ℓ1 subje
t to y = Ax (2.3)where ‖x‖ℓ1 =
∑K

k=1 |xk|. This is a 
onvex problem whi
h 
an be re
ast as alinear programming problem and solved in an e�
ient way[81, 85℄.5



2.1. SINGLE TASK BCS (ST −BCS)2.1 Single Task BCS (ST − BCS)Let us 
onsider the system of linear equations (2.1). Under the ST−BCS frame-work, the estimation problem is re
ast as: given y ∈ RM×1 �nd the most sparsesolution x ∈ RK×1 whi
h maximizes the a-posterior probability maxx ℘ (x|y). Inother words
xST = arg

{
max

x
[℘ (x|y)]

} subje
t to x is sparse (2.4)In order to take into a

ount the sparsity 
onstraints imposed on the solution,the following sparseness prior is de�ned
℘ (x) =

∫
℘ (x|a)℘ (a) da (2.5)In (2.5) the sparseness of the signal ve
tor x is 
ontrolled by the unknownhyper-parameter a [41℄. By assuming a Gamma-distributed hyper-parameterve
tor, Equation 2.4 
an be rewritten as follows[41℄

xST = arg
{
max

x

[
℘
(
x|y, σ2, a

)
℘
(
σ2, a|y

)]} (2.6)Sin
e the term ℘ (x|y, σ2, a) in 2.6 is given by the signal model, if a Gaussiandistribution is assumed (whi
h is realisti
 if AWGN is at hand [41℄), it 
an berewritten as [41℄
℘
(
x|y, σ2, a

)
=

1

(2π)
K+1

2
√
det (Ξ)

exp

{
−(x− µ)T Ξ (x− µ)

2

} (2.7)where Ξ ∈ R
K×K and µ ∈ R

K×1 are equal to
Ξ =

(
1

σ2
ATA+ diag (a))−1 (2.8)

µ =
1

σ2
ΞATy (2.9)6



CHAPTER 2. MATHEMATICAL FORMULATION
T denoting the transpose operation.As it 
an be observed, the maximum value of (2.7) o

urs when the posteriormean µ is equal to x. Hen
e, the problem of maximization of (2.6) is solved by�nding the values of the parameters a and σ2 that maximizes the term ℘ (σ2, a|y).With the help of the Bayes Theory, it is possible to prove that the term ℘ (σ2, a|y)in (2.6) 
omplies with [41℄

℘
(
σ2, a|y

)
∝ ℘

(
y|σ2, a

)
℘
(
σ2
)
℘ (a) (2.10)where, a

ording to [41℄, the terms ℘ (σ2) and ℘ (a) 
an be assumed to be
onstant. Hen
e, the 
omputation of the values of the parameters a and σ2that maximizes ℘ (y|σ2, a) and hen
e the probability appearing in (2.6) 
an beperformed by maximizing the logarithm of ℘ (y|σ2, a).A

ordingly, the problem is solved by �nding the parameters σ2

ST and aSTthat maximize the following Maximum Likelihood fun
tion[41℄
LST

(
σ2, a

)
= log

[
℘
(
y|σ2, a

)]
= (2.11)

1

2

{
N log (2π) + log [det (CST )] + yTC−1

STy
}where CST = σ2I+Adiag (a)−1

AT , CST ∈ RM×M and I ∈ RM×M is the identitymatrix. By following the guidelines in [41℄, the optimization of (2.11) is 
arriedout by using a relevant ve
tor ma
hine (RVM), initialized with a user de�nedstarting value for σ2, σ2 = σ2
0. Finally, starting from the 
omputed σ2

ST and aSTvalues, the estimated solution ve
tor xST is obtained as
xST =

1

σ2
ST

(
ATA

σ2
ST

+ diag (aST )

)
ATy (2.12)It is worth noti
ing that this value 
orrespond to the mean value of (2.7).2.2 Multi Task BCS (MT − BCS)As already dis
ussed, the ST −BCS methodology presented in the previous se
-tion is not e�
ient when dealing with multiple data sets (e.g. data sets a
quiredat multiple time instants or by di�erent measurement systems) or when 
omplexdata are at hand. In these 
ases, the linear system (2.1) 
an be rewritten as

y(w) = A x(w), w = 1, ...,W (2.13)where x(w) ∈ R
K×1, w = 1, ...,W , 
an be, alternatively:7



2.2. MULTI TASK BCS (MT − BCS)
• the data measured by di�erent sets of sensors or at di�erent time instants(w = 1, ...,W ).
• the real and imaginary part of a 
omplex signal (w = 1, 2).The only way to apply the ST −BCS in this 
ase is by solving W independentmaximization problems (2.11), one for ea
h set of data x(w), w = 1, ...,W , leadingto independent solutions σ2,(w)

ST and a
(w)
ST , w = 1, ...,W . This is a non-e�
ient wayof using the data at hand, sin
e the possible relation between di�erent tasks (i.e.one of theW problems in (2.13)) is negle
ted. In order to address this limitation,the problem is formulated in a MT − BCS framework as follows

xMT =
1

W

W∑

w=1

arg

{
max
x(w)

[
℘
(
x(w), a|y(w)

)]} (2.14)
a ∈ RK×1 being a shared hyper-parameter ve
tor [42℄. By following an ap-proa
h similar to the BCS [42℄, the optimal value of the hyper-parameter ve
tor

a is 
omputed by maximizing the marginal likelihood fun
tion
LMT (a) = −1

2

W∑

w=1

{log [det (CMT )] + (2.15)
(N + 2β1) log

[(
y(w)

)T
CMTy

(w) + 2β2

]} (2.16)where CMT = I+Adiag (a)−1
AT , CMT ∈ RM×M , and β1, β2 are user-de�nedparameters. Finally, the MT − BCS estimation of the signal x is 
omputed as[42℄

xMT =
1

W

W∑

w=1

{[
ATA+ diag (aMT )

]−1
ATy(w)

} (2.17)Like in the ST − BCS 
ase, all the terms are unknown ex
ept the sharedhyperparameter ve
tor aMT , whose value is 
omputed by applying a suitableRVM strategy applied to the multi-task 
ase.
8



Chapter 3Real-Weight Sparse Linear ArraySynthesis by Bayesian CompressiveSensingAn innovative methodology for the synthesis of sparse linear arrays with pre-s
ribed pattern features is numeri
ally analyzed when dealing with large aperturelayouts. The te
hnique is based on a probabilisti
 formulation of the synthesisproblem whi
h is solved through a Bayesian Compressive Sensing (BCS) te
h-nique. A set of numeri
al experiments are presented to assess the features andpotentialities of the BCS design approa
h when layouts 
omprising several hun-dred elements are at hand.

9



3.1. INTRODUCTION AND MOTIVATION3.1 Introdu
tion and MotivationThe design of satellite 
ommuni
ation systems, radars, and devi
es for biomedi
alimaging and remote sensing appli
ations usually imposes severe 
onstraints onthe pattern features (in terms of peak sidelobe level, dire
tivity, beam footprintand shape) of the array to be deployed [4℄. The ne
essity of a
hieving these goalswhile obtaining inexpensive, light and simple ar
hite
tures, espe
ially when deal-ing with large antenna systems, has lead to the introdu
tion of sparse arrays [4℄.Despite their advantages, however, sparse layouts have the main limitation thatthey yield a redu
ed 
ontrol of the beam shape [4, 11, 24, 9, 19, 29, 72, 18, 28℄. Inorder to address this drawba
k, several di�erent te
hniques have been proposedeither for the minimization of the PSL in thinned arrays [11, 29, 72, 18, 28℄, or forthe synthesis of maximally-sparse arrays with pres
ribed pattern 
hara
teristi
s[9, 19, 14℄. While the �rst problem has been widely studied [4, 11, 29, 72, 18, 28℄,only few te
hniques have been introdu
ed for the solution of the latter [21℄. Inthis framework, numeri
ally inexpensive approa
hes, su
h as the steepest des
entmethod, the iterative least-square te
hnique, the simplex sear
h, and the linearprogramming, were among the �rst methodologies applied to sparse array design[14, 21℄. However, these te
hniques exhibit some drawba
ks in terms of �exibil-ity, required a-priori information, and �nal obtained performan
es [21℄. Morere
ently, in order to over
ome these limitations, the simulated annealing [19℄ andthe Matrix Pen
il Method [14℄ have been su

essfully applied to the design ofsparse arrays with pres
ribed pattern features. Nevertheless, despite their ex-
ellent performan
es, these methodologies 
an lead either to high 
omputational
osts [19℄ or to sub-optimal performan
es when dealing with shaped beams [14℄.An innovative approa
h for the synthesis of sparse arrays with pres
ribed patternfeatures has been re
ently proposed [21℄. This methodology is based on the for-mulation of the sparse array synthesis problem as a �Compressive Sensing (CS)retrieval� one, in whi
h the sparseness 
onstraints are imposed on the �nal arraylayout [21℄. The arising CS problem is then re
ast in a probabilisti
 frameworkexploiting the so-
alled Bayesian Compressive Sensing formulation [41℄, and thensolved by means of an e�
ient Relevan
e Ve
tor Ma
hine (RVM) [45℄. Thanks tothis approa
h, BCS sparse array synthesis has proved to be e�e
tive in dealingwith standard and referen
e sparse array synthesis problems [21℄. However, ananalysis of its performan
es (in terms of pattern mat
hing a

ura
y and 
om-putational 
omplexity) when dealing with large aperture arrays has never beenpresented. This Chapter is aimed at analyzing the performan
es, features andlimitations of the BCS-based te
hnique when dealing with the design of sparsearrays displa
ed over apertures of width up to several hundred wavelengths. To-wards this end, a set of array synthesis problems dealing with di�erent layoutsand patterns features are presented to assess the potentialities and drawba
ks ofthe 
onsidered te
hnique. 10



CHAPTER 3. REAL-WEIGHT SPARSE LINEAR ARRAY SYNTHESIS BYBAYESIAN COMPRESSIVE SENSING3.2 Mathemati
al FormulationThe problem of �nding the sparsest (real and symmetri
 [21℄) linear array withdesired radiating properties 
an be 
ast in terms of a pattern mat
hing one asfollows [21℄:Synthesis Problem: given a set of K samples of a referen
e pattern FREF =
[FREF (u1) , ..., FREF (uk) , ..., FREF (uK)], and a �delity fa
tor ε, �nd the sparsestset of array weights w = [w1, ..., wN ] su
h that ‖FREF − FBCS‖2 < ε.where FBCS = [FBCS (u1) , ..., FBCS (uk) , ..., FBCS (uK)] is the ve
tor of thesamples of the sparse array radiation pattern, whose k-th 
omponent is

FBCS (uk) =
N∑

n=1

wnνn cos

(
2πdnuk
λ

)
, k = 1, ..., K (3.1)

λ is the wavelenght, uk (k = 1, ..., K) are the mat
hing angles, dn (n =
1, ..., N) are the allowed positions for the sparse array elements and νn is theNeumann's number [21, 11℄. By modeling the radiation pattern as a Gaussianrandom variable [21℄, the above synthesis problem 
an be re
ast in the frameworkof BCS to obtain the following equivalent one [21℄:

BCS Problem: given FREF , �nd w, a and σ2 whi
h maximize the a-posterioriprobability p ([w, a, σ2] |FREF ).where a and σ2 are, respe
tively, the hyperparameter ve
tor [45℄ and theestimated �delity varian
e [21℄. Following the RVM approa
h [41, 45℄, this BCSproblem is then solved by the following pro
edure [21℄:1. Input phase: de�ne the referen
e pattern samples FREF , the set of admis-sible element lo
ations dn (n = 0, ..., N), and the initial estimate of the�delity varian
e;2. Matrix De�nition: 
al
ulate the problem Φ ∈ CK×N , with Φ (k, n) =
νn cos

(
2πdnuk

λ

);3. Hyperparameter Posterior Modes Estimation: �nd a and σ2 a

ording tothe RVM pro
edure [21℄;4. Array weights estimation: �nd the optimal sparse weights byw = ΞΦHEREF/σ
2, where Ξ =

(
A+ ΦΦH

σ2

)−1 and A = diag (a).3.3 Numeri
al ResultsIn order to assess the performan
es of the BCS design method when dealingwith large aperture arrays, a set of experiments has been 
arried out 
onsideringeither Dolph or Taylor referen
e patterns [4℄, and evaluating, for ea
h obtaineddesign, the pattern mat
hing error 11



3.3. NUMERICAL RESULTS
ξ ,

∫ 1

−1
|FREF (u)− FBCS (u)|2 du∫ 1

−1
|FREF (u)|2 du , (3.2)where FBCS (u) and FREF (u) are the sparse-array pattern and the referen
epattern, respe
tively. Moreover, the number of elements of the sparse layout

PBCS and the total array size LBCS have been 
ompared to those obtained witha uniform layout, as well.As a �rst numeri
al example, the synthesis of a sparse array exhibiting aDolph pattern (uniform array aperture L = 49.5 λ, PSL = −30 dB) has been
onsidered. The �nal obtained result (Fig. 3.1) indi
ates that the 
onsideredmethodology is able to a
hieve a good a

ura
y [Fig. 3.1(b)℄, despite the ex-ploitation of a redu
ed number of radiating elements [PBCS = 64 - Fig. 3.1(a)℄.This is a
tually 
on�rmed by the a
hieved �delity fa
tor, whi
h shows a mat
h-ing error below 0.1% (ξ = 5.3×10−5 - Tab. 3.1), as well as by the obtained PSLvalue, whi
h turns out very 
lose to the referen
e one (PSLBCS = −29.5 dB -Tab. 3.1). Moreover, the uniform and sparse weight arrangements indi
ate thata similar envelope is a
tually followed by both arrays [Fig. 3.1(a)℄, thereforesuggesting that the BCS method a
tually samples in a nonuniform fashion thesame Dolph distribution of the uniform layout.It is also worth pointing out that a redu
ed synthesis time is observed in this
ase (∆t = 0.23 [s] - Tab. 3.1) notwithstanding the non-negligible problem sizeand the exploitation of a laptop for the synthesis (all the simulations have beenperformed on a single 
ore PC running at 2.16 GHz). Similar 
on
lusions 
anbe drawn when dealing with a Taylor referen
e pattern for the same aperture(PSL = −30 dB, 'transition index' T = 6). Indeed, the signi�
ant elementredu
tion (PBCS = 66 - Tab. 3.1), the numeri
al e�
ien
y (∆t = 0.25 [s]- Tab. 3.1), and the good mat
hing a

ura
y both in terms of �delity fa
tor(ξ = 7.8× 10−5 - Tab. 3.1) as well as of PSL (whi
h a
tually turns out improved- Tab. 3.1) are 
on�rmed despite the presen
e of very low sidelobes at end�re[right inset of Fig. 3.2(b)℄. Moreover, it is again noteworthy that the uniform andsparse layouts exhibit a similar weight envelope in the whole aperture, althoughthe BCS yields a nonuniformly sampled ar
hite
ture [Fig. 3.2(a)℄.As a �nal numeri
al experiment, the synthesis of a L = 499.5 λ, PSL =
−50 dB, T = 6 Taylor pattern has been 
onsidered to investigate the features ofthe 
onsidered methodology when dealing with signi�
antly larger apertures andlower sidelobe levels. Also in this 
ase, the plot of obtained sparse-array pattern[Fig. 3.3(b)℄ indi
ates that a good mat
hing a

ura
y is obtained in the wholevisible range (ξ = 6.4×10−5 - Tab. 3.1), despite the redu
ed number of radiatingelements of the sparse layout (PBCS = 628 - Tab. 3.1). Moreover, while the sparse12



CHAPTER 3. REAL-WEIGHT SPARSE LINEAR ARRAY SYNTHESIS BYBAYESIAN COMPRESSIVE SENSING

(a)

(b)Figure 3.1: Dolph referen
e pattern (L = 49.5λ, PSL = −30 dB) - Array layouts(a) and power pattern (b) of the referen
e and obtained array.
13



3.3. NUMERICAL RESULTS

(a)

(b)Figure 3.2: Taylor referen
e pattern (L = 49.5λ, PSL = −30 dB, T = 6) - Arraylayouts (a) and power pattern (b) of the referen
e and obtained array.
14



CHAPTER 3. REAL-WEIGHT SPARSE LINEAR ARRAY SYNTHESIS BYBAYESIAN COMPRESSIVE SENSING

(a)

(b)Figure 3.3: Taylor referen
e pattern (L = 499.5λ, PSL = −50 dB, T = 6) -Array layouts (a) and power pattern (b) of the referen
e and obtained array.layout turns out slightly smaller than the referen
e one (LBCS = 499.3 λ - Tab.3.1) the above observations regarding the similarity of the envelopes shown bythe BCS sparse and uniform layouts still hold true [Fig. 3.3(a)℄.
It is even more interesting to noti
e that, despite the wide aperture 
ompris-ing several hundred elements, su
h synthesis was quite e�
ient also from thenumeri
al viewpoint (∆t = 2.24 [s] - Tab. 3.1). These results further 
on�rmthe e�e
tiveness and e�
ien
y of the BCS synthesis approa
h in the design oflarge sparse layouts possibly 
omprising several hundreds elements.15



3.4. DISCUSSIONSReferen
e Pattern BCSTest Case L [λ℄ PSL PUNI LBCS [λ] PSL PBCS

PUNI
ξ [×10−5℄ ∆tFig. 3.1 49.5 −30 100 49.5 −29.5 0.64 5.3 0.23Fig. 3.2 49.5 −30 100 49.5 −30.1 0.66 7.8 0.25Fig. 3.3 499.5 −50 1000 499.3 −49.2 0.62 6.4 2.24Table 3.1: Array Performan
e Indexes.3.4 Dis
ussionsThe synthesis of large sparse linear arrays with pres
ribed pattern features hasbeen 
arried out through an innovative methodology based on a Bayesian Com-pressive Sensing framework. The design approa
h, whi
h formulates the synthesisproblem in a probabilisti
 framework and then exploit a fast Relevan
e Ve
torMa
hine for its solution, has been numeri
ally assessed when dealing with lay-outs possibly 
omprising several hundred elements. The presented analysis hasshown that

• sparse layouts providing a good pattern �delity (ξ < 10−4) 
an be easilysynthesized through the BCS methodology also when apertures of severalhundred wavelengths are at hand (Tab. 3.1);
• the synthesis approa
h turns out e�
ient whatever the aperture size (∆t <
3 [s] - Tab. 3.1);

• the arising sparse layouts usually exhibit an envelope 
lose to that of theiruniform 
ounterparts, therefore indi
ating that the BCS method e�e
tivelytends to 'nonuniformly' sample the same 
urrent distribution [Figs. 3.1(a),3.2(a), 3.3(a)℄.

16



Chapter 4Complex-Weight Sparse LinearArray Synthesis by MultitaskBayesian Compressive SensingIn this Chapter, an innovative method for the synthesis of maximally sparselinear arrays mat
hing arbitrary referen
e patterns is proposed. In the frame-work of sparseness 
onstrained optimization, the approa
h exploits the multi-task(MT ) Bayesian Compressive Sensing (BCS) theory to enable the design of 
om-plex non-Hermitian layouts with arbitrary radiation and geometri
al 
onstraints.By 
asting the pattern mat
hing problem into a probabilisti
 formulation, aRelevan
e-Ve
tor-Ma
hine (RVM) te
hnique is used as solution tool. The nu-meri
al assessment points out the advan
es of the proposed implementation overthe extension to 
omplex patterns of [21℄ and it gives some indi
ations about thereliability, �exibility, and numeri
al e�
ien
y of the MT − BCS approa
h alsoin 
omparison with state-of-the-art sparse-arrays synthesis methods.
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4.1. INTRODUCTION AND MOTIVATION4.1 Introdu
tion and MotivationRadar tra
king, biomedi
al imaging, satellite and ground 
ommuni
ations, andremote sensing appli
ations require antenna patterns with suitable sidelobes, nullpositions, mainlobe size and shape, and dire
tivity [4℄. To synthesize shaped-beam arrays, several approa
hes espe
ially 
on
erned with uniformly-spa
ed ar-rangements [4℄[5℄[6℄[7℄[8℄ have been proposed over the last sixty years. Althoughsu

essful in some appli
ations, uniform arrays have the limitation to be expen-sive and heavy when wide apertures are at hand [4℄ sin
e a huge amount ofradiating elements spa
ed by λ
2
are needed to avoid grating lobes [9℄. Therefore,non-uniform arrangements have been naturally proposed [9℄[10℄[11℄[12℄[13℄[14℄be
ause of their advantages over their regularly-spa
ed 
ounterparts (e.g., reso-lution [15℄, sidelobe level 
ontrol/redu
tion [16℄, and e�
ien
y in dealing withphysi
ally 
onstrained geometries [17℄). State-of-the-art solutions usually 
on-sider thinned regular arrangements to yield a minimum peak sidelobe level (PSL)[4℄[13℄[18℄[19℄ or sparse layouts with the minimum number of radiating elementsgiven a desired pattern [14℄[20℄[21℄. Whether several te
hniques as random thin-ning [22℄[23℄, dynami
 programming [24℄, geneti
 algorithms [25℄[26℄[27℄, analyt-i
al approa
hes [13℄[18℄[28℄, and hybrid methodologies [29℄[30℄[72℄[32℄ have beeninvestigated for array thinning, few methods have been so far proposed for syn-thesizing sparse arrangements [14℄[20℄[21℄[33℄[34℄. As for these latter, steepestdes
ent [35℄, iterative least squares [36℄, simplex sear
h [9℄, and linear program-ming [37℄ methodologies have been �rstly developed be
ause of their e�
ien
y.Improved performan
es have been su

essively rea
hed by using re
ursive inver-sion te
hniques [38℄[39℄, sto
hasti
 optimizers [20℄, generalized Gaussian quadra-ture approa
hes [40℄, and the matrix pen
il method (MPM) [14℄[33℄[34℄. Morere
ently, a new approa
h based on the Bayesian Compressive Sensing (BCS) [41℄has been proposed for the design of sparse layouts mat
hing user-de�ned referen
epatterns [21℄. The so-
alled �BCS te
hnique� has been formulated starting froma probabilisti
 des
ription of the array synthesis [21℄ then solved by exploitingan e�
ient fast relevan
e ve
tor ma
hine (RVM) [41℄. Thanks to its e�
ien
y,the BCS syntheses usually positively 
ompares with state-of-the-art methodolo-gies in terms of �exibility, synthesis time, and number of array elements, whileguaranteeing an ex
ellent pattern mat
hing [21℄. However, su
h a formulationdeals with symmetri
 purely-real arrangements and its extension to 
omplex syn-theses is not e�
ient be
ause of the real-valued nature of the BCS solver itself[41℄. Consequently, this Chapter is aimed at proposing, still in the frameworkof the probabilisti
 sparseness 
onstrained optimization, an innovative, �exible,and numeri
ally e�
ient 
omplements to state-of-the-art approa
hes for the syn-thesis of maximally sparse linear arrays mat
hing a (possibly 
omplex) referen
epattern. Following the guidelines in [21℄ to re
ast the 
omplex-valued synthesisin probabilisti
 terms and suitably reformulating the original pattern-mat
hingproblem in an equivalent '�
titious' one (Eq. 4.11), a multi-task Bayesian Com-18



CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSINGpressive Sensing (MT − BCS) methodology [42℄ is applied. Unlike the BCSextension where the real and the imaginary 
omponents of the sparse ex
itationve
tor are dealt with as independent, a �shared-prior� [42℄ is exploited to enfor
ethe synthesis of 
omplex ex
itations rather than purely real and/or imaginaryweights.This Chapter is organized as follows. The sparse synthesis of 
omplex-weightlinear arrays is mathemati
ally formulated in a probabilisti
 fashion and the
MT − BCS method is presented (Se
t. 4.2). Representative results of an ex-tensive set of numeri
al simulations are presented to validate the proposed ap-proa
h, to assess its advan
es over the BCS extension to 
omplex patterns, andto 
ompare its performan
es with those of state-of-the-art te
hniques (Se
t. 4.3).Finally, some 
on
lusions are drawn (Se
t. 4.4).4.2 Mathemati
al Formulation4.2.1 Array Synthesis ProblemThe problem of synthesizing a (
omplex and non-symmetri
) sparse linear arraywith a pres
ribed radiated pattern 
an be formulated as follows [21℄Array Synthesis Problem - Find the minimum P value and the 
orre-sponding sparse array des
riptors v = {vp; p = 1, ..., P} and l = {lp; p = 1, ..., P}that satisfy the mat
hing 
onstraint

K∑

k=1

∣∣∣∣∣FREF (uk)−
P∑

p=1

vp exp (i2πlpuk)

∣∣∣∣∣

2

≤ ǫ. (4.1)In (4.1), ǫ is the ��delity fa
tor�, vp and lp are the 
omplex (vp ∈ C) weightand the position in wavelengths (lp ∈ R) of the p-th array element, respe
tively,while FREF (uk) ∈ C is the k-th (k = 1, ..., K) sample of the referen
e pattern atthe observation angle uk within the angular range [−1, 1]. Similarly to [9℄[21℄, the
P element positions are assumed to belong to a user-
hosen set of N (N ≫ P )arbitrary 
andidate lo
ations d = {dn; n = 1, ..., N} to straightforwardly inte-grate geometri
al 
onstraints in the synthesis pro
ess [21℄. Equation (4.1) isthen re
ast into the following sparse matrix form [43℄[21℄

FREF − Φw = D (4.2)by introdu
ing the sparse1 weight ve
tor w = {wn; n = 1, ..., N}

wn =

{
vp if dn = lp
0 otherwise

, (4.3)1It is worth remarking that w turns out a sparse ve
tor sin
e N ≫ P .19



4.2. MATHEMATICAL FORMULATIONStep 0. Get input values of N and wn (n = 1, ..., N);Step 1. Set p = 1, n = 1;Step 2. If wn 6= 0, set lp = dn, vp = wn, and p = p + 1;Step 3. If n < N , set n = n+ 1 and goto 2.; else goto 4.Step 4. Return output values of P , lp and vp (p = 1, ..., P )Figure 4.1: Computation of the 
omplex weights vp ∈ C and element positions
lp ∈ R (p = 1, .., P ) starting from the sparse ve
tor w ∈ CN .where FREF = {FREF (uk) ; k = 1, ..., K}, D = {∆k; k = 1, ..., K} is a ve
-tor of zero-mean 
omplex Gaussian entries with varian
e σ2 proportional to ǫ[41℄[44℄[43℄, and

Φ ,




exp
(
i2πd1u1

λ

)
· · · exp

(
i2πdNu1

λ

)... . . . ...
exp

(
i2πd1uK

λ

)
· · · exp

(
i2πdNuK

λ

)


 (4.4)is the �observation matrix� [41℄. Thanks to this �sparse� des
ription, the AntennaSynthesis Problem 
an be also formulated as followsSparse Ve
tor Synthesis Problem - Find the minimum ℓ0-norm weightve
tor w (w ∈ C

N) that satis�es (4.2)where
‖w‖ℓ0 ,

N∑

n=1

|wn|0 =
P∑

p=1

|vn|0 = P. (4.5)On
e w is found, the unknowns v and l of the Antenna Synthesis Problem are
omputed as detailed in Fig. 4.1.4.2.2 BCS Synthesis MethodThe solution of the Sparse Ve
tor Synthesis Problem 
annot be yielded throughthe method des
ribed in [21℄, sin
e the BCS approa
h addresses purely real-valued problems [21℄[41℄, while (4.2) generally in
ludes 
omplex-valued ve
torsand matri
es. To dire
tly extend the approa
h in [21℄ to the 
omplex formulationat hand, Equation (4.2) is manipulated as follows
F̃REF − Φ̃w̃ = D̃ (4.6)by de�ning w̃ = [R{w} , I {w}] (w̃ ∈ R2N ), F̃REF = [R{FREF} , I {FREF}](F̃REF ∈ R2K), D̃ = [R{D} , I {D}] (D̃ ∈ R2K), and Φ̃ =

[
R{Φ} −I {Φ}
I {Φ} R{Φ}

](Φ̃ ∈ R
2K×2N), where R{·} and I {·} stand for the real and the imaginary part,respe
tively. A

ordingly, the following extended real-valued problem 
an bethen formulated 20



CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSING
BCS `Deterministi
' Synthesis Problem - Find the minimum ℓ0-norm�extended� weight ve
tor w̃ (w̃ ∈ R2N ) that satis�es (4.6).,and su

essively expressed in the probabilisti
 framework [21℄
BCS `Probabilisti
' Synthesis Problem - Find the minimum ℓ0-norm�extended� weight ve
tor w̃ (w̃ ∈ R2N ) subje
t to

w̃BCS = arg

[
max
w̃

P
(
w̃| F̃REF

)] (4.7)whose (real-valued) solution is given by [21℄
w̃BCS =

1

σ̃2
BCS

(
Φ̃T Φ̃

σ̃2
BCS

+ ãBCS

)−1

Φ̃T F̃REF (4.8)where σ̃2
BCS is the estimated varian
e of ∆k (k = 1, ..., K) and ãBCS (ãBCS ∈

R2N) is the hyperparameter ve
tor, whose n-th entry, ãBCS
n , 
ontrols the strengthof the sparseness prior over w̃BCS

n [45℄. These parameters are 
omputed by max-imizing the logarithm of the BCS �marginal likelihood�, LBCS (ã, σ2) [21℄
LBCS (ã, σ2) = −1

2

[
(2N) log 2π + log

∣∣∣C̃
∣∣∣+

+F̃T
REF

(
C̃
)−1

F̃REF

] (4.9)where C̃ , σ2I + Φ̃
[
Ã
]−1

Φ̃T , and Ã = diag (ã).Finally, the N entries of the weight ve
tor wBCS (wBCS ∈ CN) are found as
wBCS

n = w̃BCS
n + iw̃BCS

n+N , n = 1, ..., N. (4.10)Equation (4.8) provides a dire
t extension of the method in [21℄ to deal with
omplex and non-symmetri
 arrays. However, su
h a solution bears an intrin-si
 limitation. The real (R{wBCS
n

}
= w̃BCS

n , n = 1, ..., N) and imaginary(I {wBCS
n

}
= w̃BCS

n+N , n = 1, ..., N) parts of the weights are managed as inde-pendent quantities - see Eq. (4.6) - sin
e ea
h w̃BCS
n ∈ R (n = 1, ..., 2N) istreated as statisti
ally independent. See Eqs. (4)-(6) in [21℄. This in turnsleads to sparse BCS layouts where the array weights vp (p = 1, ..., P ) are ofteneither purely real or purely imaginary, negle
ting that sparse 
omplex layouts fre-quently exhibit non-negligible real and imaginary 
omponents at the same arraylo
ations. Su
h a drawba
k generally does not enable the approa
h to synthesizevery sparse layouts with a good referen
e pattern mat
hing, as it has been 
on-�rmed by the numeri
al analysis whose representative results will be presentedin Se
tion 4.3. 21



4.2. MATHEMATICAL FORMULATION4.2.3 MT − BCS Synthesis MethodTo over
ome the limitations of BCS Synthesis Method (Se
t. 4.2.2), the MT −
BCS approa
h [42℄ is exploited and suitably 
ustomized for statisti
ally mod-elling the relations between the real and imaginary parts of the array weights.Towards this end, Equation (4.2) is �rstly rewritten in terms of the �
titiousweights ve
tors wR , R{w} and wI , I {w} (wI ,wR ∈ R

N)
{

F̂R − Φ̂wR = D̂R

F̂I − Φ̂wI = D̂I

(4.11)where D̂R ∈ R2K and D̂I ∈ R2K are zero-mean 
omplex Gaussian error ve
tors(with varian
e σ2

2
) su
h that D̂R + D̂I = D̃, Φ̂ , [R{Φ} , I {Φ}] is the MTobservation matrix, while F̂R = [R{FR} , I {FR}] and F̂I = [R{FI} , I {FI}](F̂R, F̂I ∈ R

2K). Moreover, FR ∈ C
K and FI ∈ C

K satisfy the following 
ondition
FR + iFI = FREF . (4.12)A

ordingly, the multi-task (real-valued) problem turns out to be

MT − BCS `Deterministi
' Synthesis Problem - Find the minimum
ℓ0-norm ��
titious� weight ve
tors wR and wI (wI ,wR ∈ RN) that satisfy (4.11)and as follows into the probabilisti
 framework [42℄

MT − BCS `Probabilisti
' Synthesis Problem - Find the minimum ℓ0-norm ��
titious� weight ve
tors wR and wI (wI ,wR ∈ RN) subje
t to




wMT−BCS
R = arg

[
maxwR

P
(
wR| F̂R

)]

wMT−BCS
I = arg

[
maxwI

P
(
wI | F̂I

)] . (4.13)whose (real-valued) solution are given by
wMT−BCS

H =
(
diag

(
âMT−BCS

)
+ Φ̂T Φ̂

)−1

Φ̂T F̂H ,

H ∈ {R, I} ,
(4.14)while the 
orresponding estimated weight ve
tor turns out to be

wMT−BCS = wMT−BCS
R + iwMT−BCS

I . (4.15)See the Appendix.4.2.4 MT − BCS Algorithmi
 ImplementationsThe algorithmi
 implementation of the MT − BCS te
hnique 
onsists of thefollowing steps (Fig. 4.2(b)): 22



CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSINGInput Phase - Set the referen
e pattern FREF (u), the grid of admissible lo-
ations (d), the set of pattern sampling points (u), the target varian
e σ2 of theerror term D, and the user-de�ned s
ale priors β1 and β2 (Eq. (A.4)) [42℄;Matrix De�nition - Fill the entries of the ve
tors F̂R, F̂I , Φ̂, D̂R, and D̂I ;Hyperparameter Posterior Modes Estimation - Find âMT−BCS by maximizing(A.15) [42℄;Array Weights Estimation - Find wMT−BCS by (4.15);Output Phase - Compute PMT−BCS, vMT−BCS, and lMT−BCS (Fig 4.1).By 
omparing the algorithmi
 des
riptions of the BCS (Se
t. III of [21℄ andFig. 4.2(a)) and MT −BCS (Se
t. 4.2.4 - Fig. 4.2(b)), it is observed that bothapproa
hes require d, u, and σ2, while the MT − BCS needs the de�nition ofthe s
ale priors β1 and β2 instead of the initial estimates σ2
0 as for the BCS.Thanks to these di�eren
es and unlike the BCS approa
h, the MT − BCS

• enables the expli
it model and 
ontrol of the relationships between the realand imaginary parts of the array weights thanks to the spe
i�
ation of β1and β2 in (A.4);
• requires neither some a-priori knowledge/information on the noise (e.g.,
σ2
0) nor the estimation of the noise level (i.e., σ̃2) for determining the prob-lem solution.4.3 Numeri
al ResultsThe obje
tives of this se
tion are two-fold: On the one hand, it provides guide-lines for applying the MT − BCS method to the synthesis of sparse 
omplexlayouts. On the other hand, it assesses the method's e�e
tiveness in both redu
-ing the number of array elements and a

urately mat
hing referen
e patterns,with the assessment made by 
omparing the MT − BCS results with those ofother reliable, state-of-the-art (regular and sparse) array synthesis methodolo-gies. For the assessment, the following quantities are analyzed: the normalizedmat
hing error, ξ,

ξ ,

∫ 1

−1

∣∣∣FREF (u)−
∑P

p=1 vp exp (i2πlpu)
∣∣∣
2 du

∫ 1

−1
|FREF (u)|2 du , (4.16)the aperture length, L, (L , |lP − l1|), the mean (∆L , L/P − 1), and theminimum (∆Lmin , minp=1,...,P−1 {|lp+1 − lp|}) inter-element spa
ing.4.3.1 Sensitivity AnalysisThe �rst set of numeri
al experiments is 
on
erned with the sensitivity of the

MT − BCS synthesis on its 
ontrol parameters, while the reader is referred23



4.3. NUMERICAL RESULTS

BCS

(a)
MT − BCS

(b)Figure 4.2: Sparse Synthesis Flow
hart: (a) BCS method (σ0 being the initialestimate of σ [21℄) and (b) MT − BCS method.
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CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSINGto [21℄ for the 
alibration of the BCS approa
h. Towards this purpose, thesynthesis of a non-uniform array mat
hing a 
omplex-weight �
ose
ant� patternwith L = 7.5λ and PSL = −20 dB is assumed as referen
e test 
ase (Fig. 4.3(b)).Su
h a pattern 
an be synthesized by a uniform layout of PUNI = 16 elements
λ/2-spa
ed [5℄. The MT − BCS synthesis is 
arried out by assuming

uk = −1 +
2k

K
k = 1, ..., K (4.17)and setting the uniform grid ofN 
andidate lo
ations as follows dn = L

(
−1

2
+ n

N

),
n = 1, ..., N . Figure 4.3(a) shows the representative points of the synthe-sized MT − BCS sparse layouts in the ξ-PMTBCS plane, along with the as-so
iated Pareto front in su
h a plane, when varying the 
ontrol parameterswithin the ranges: N = {25, ..., 800}, K = {10, ..., 30}, σ2 = {10−5, 5.0× 10−1},
β1 = {10−2, 103}, and β2 = {10−2, 103}. These results show that the values ofthe pattern mat
hing a

ura
y lie in the range ξ ∈ [10−8, 2] with a number ofarray elements ranging from a minimum of PMTBCS = 5 up to a maximum of
PMTBCS = 25 (Fig. 4.3(a)). By analyzing the synthesized pattern for threePareto solutions, namely PMTBCS = {5, 13, 18} [Fig. 4.3(b)℄, it turns out thatthe sparsest solution (PMTBCS = 5) yields a poor approximation of the referen
epattern as also 
on�rmed by the 
orresponding mat
hing error [ξ = 2.86×10−1 -Fig. 4.3(a)℄, while a good �tting is rea
hed when PMTBCS = 13 a
tive elementsare at hand [ξ = 7.24× 10−5 - Fig. 4.3(a)℄. A further redu
tion of the mat
hingerror [e.g., ξ = 2.83 × 10−7 - Fig. 4.3(a)℄ by using a larger number of elements(PMTBCS = 18) does not provide signi�
ant improvements. Therefore, analogousto the guidelines dedu
ed in [21℄, an a

ura
y index 
lose to or below ξth = 10−4is identi�ed as the optimal threshold for obtaining a suitable trade-o� betweenpattern mat
hing and redu
tion of the number of elements (i.e., PMTBCS

PUNI
). Asfor the asso
iated array stru
ture, the optimal trade-o� MT −BCS layout (i.e.,

PMTBCS = 13 - ξ = 7.24×10−5) exhibits a distribution of the array weights sim-ilar to that of the 
orresponding uniform ar
hite
ture [5℄, although with a non-uniform, and larger, on the average, inter-element spa
ing [Figs. 4.3(
)-4.3(d)℄.This suggests that the method performs an impli
it non-uniform sampling ofthe ideal 
urrent distribution synthesizing FREF (u) [Fig. 4.3(
)-4.3(d)℄. On the
ontrary, the non-optimal trade-o� solutions di�er quite signi�
antly from theuniform distribution 
ase [e.g., LMTBCS

LUNI
≈ 0.4 when PMTBCS = 5 - Fig. 4.3(
)℄.Figure 4.4 
ompletes the sensitivity analysis 
arried out for 
alibrating the

MT − BCS. Ea
h plot gives the values of ξ and PMTBCS versus a 
ontrolparameter (i.e., K, σ2, β1, β2, and N) by setting the others to the optimaltrade-o� setup (i.e., PMTBCS = 13 - K = 33, N = 250, σ = 10−3, β1 = 103,
β2 = 102).By analyzing the behaviour of ξ as a fun
tion of K [Fig. 4.4(a) ℄, it turnsout that in
reasing the number of samples of the referen
e pattern up to the25
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CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSINGNyquist threshold (KNyquist = 2 × PUNI − 1 = 31 [14℄) gives a non-negligibleredu
tion of the mat
hing error ξ, while further in
rements only slightly modifythe mat
hing a

ura
y or PMTBCS. A

ordingly, a sampling threshold within
K ∈ [KNyquist, 1.2KNyquist] has been assumed in the following analyses.Con
erning the dependen
e of ξ and PMTBCS on σ2, Figure 4.4(b) shows thatthe values of the two indexes are almost 
onstant when σ2 ≤ 3×10−2, while theyin
rease otherwise. Su
h a behavior is a
tually expe
ted from the MT − BCStheory. See Se
t. 4.2.3 and the Appendix. Indeed, larger σ2 values 
orrespondto less a

urate pattern approximations [see Eq. (4.2)℄ as well as less sparsely�lled layouts. Consequently, good trade-o�s between a

ura
y and sparsenessare expe
ted by 
hoosing σ2 ∈ [10−4, 10−2].With referen
e to theMT−BCS sensitivity to the s
ale prior β1, ξ redu
es as theprior value is enlarged [Fig. 4.4(
)℄, even though su
h a mat
hing improvementis obtained by in
reasing the number of radiating elements when β1 > 104 [Fig.4.4(
)℄. Larger values of β2 yield more sparsely �lled layouts, while smaller priorsprovide higher a

ura
ies [Fig. 4.4(d)℄. Consequently, the ranges for the s
alepriors have been set to β1 ∈ [102, 104] and β2 ∈ [5× 101, 5× 102], respe
tively.As far as the latti
e grid is 
on
erned, Figure 4.4(e) shows that the mat
hinga

ura
y is quite stable if N & 2LUNI

λ
, while larger/smaller N values result in asharp in
rease of PMTBCS/ξ. This is mainly 
aused by the in
reased numeri
al
omplexity of the problem at hand sin
e its size grows with N . A trade-o� valuewithin N ∈

[
5LUNI

λ
, 50LUNI

λ

] is then suggested.The obtained tradeo� margins range from a 1 : 1.2 ratio [for K - Fig. 4.4(a)℄ toa 1 : 100 ratio [for β1 and σ2 - Figs. 4.4(b) and 3.4(
)℄. Su
h a behaviour, 
ausedby the di�erent physi
al meaning of ea
h parameter (see dis
ussion above), doesnot a
tually represent a big issue for the proposed design methodology. In fa
t,quite wide ranges exist for whi
h the method performan
es are almost 
onstant.Furthermore, the MT -based BCS exhibits a �smoother� dependen
e on its 
on-trol parameters than the single-task BCS approa
h. Indeed, unlike the BCS[21℄, ξ generally exhibits nearly monotone behaviour versus 
ontrol parameters[e.g., Figs. 4.4(a)-4.4(e)℄ and PMTBCS presents redu
ed os
illations given verylarge parameter variations [e.g., Fig. 4.4(
)℄. Thus MT − BCS provides betterstability and robustness than BCS for any referen
e pattern or aperture.4.3.2 MT −BCS AssessmentFor numeri
al assessment, we 
onsider both un
onstrained (Se
t. 4.3.2.1) and
onstrained problems (Se
t. 4.3.2.2), where forbidden regions are de�ned inthe pattern region (Se
t. 4.3.2.2.1) or on the array geometry (Se
t. 4.3.2.2.2).Con
erning the un
onstrained syntheses, the analysis aims at performing a 
on-sisten
y 
he
k to assess the reliability of theMT−BCS in dealing with problemsalso manageable by the original BCS approa
h [21℄ (Se
t. 4.3.2.1.1) and su

es-sively detailing theMT −BCS performan
e applied to the synthesis of arbitrary27
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CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSINGReferen
e Pattern BCS MT −BCS

L [λ℄ PUNI Type ξ [×10−4℄ PBCS

PUNI

∆Lmin

λ/2
∆L
λ/2

LBCS

L
∆t ξ [×10−4℄ PMTBCS

PUNI

∆Lmin

λ/2
∆L
λ/2

LMTBCS

L
∆t

7.5 16 Tab. II [6℄ 1.33× 102 1.18 0.12 0.81 0.97 0.17 0.59 0.81 0.2 1.20 0.96 0.21

18 37 Dolph 1.04 0.65 1.44 1.57 1.00 0.26 2.81 0.65 1.5 1.57 1.00 1.60

7.0 14 Tab. III [6℄ 0.52 1.47 0.018 0.65 0.98 0.52 0.22 0.73 0.93 1.38 0.98 0.45Table 4.1: Un
onstrained Synthesis - Array performan
e indexes.un
onstrained patterns also in 
omparison with state-of-the-art methods (Se
ts.4.3.2.1.2-4.3.2.1.3).4.3.2.1 Un
onstrained Synthesis4.3.2.1.1 Consisten
y Che
k (Hermitian Patterns2) In order to 
om-pare BCS and MT − BCS approa
hes when dealing with Hermitian patterns,let us 
onsider a L = 18λ equi-ripple referen
e pattern (PSL = −14.45 dB)synthesized with the uniform array design method in [6℄ (PUNI = 37). Theplots of the Pareto fronts in the ξ-P plane indi
ate that, as expe
ted, the twosolutions' results are very 
lose over a range of P [Fig. 4.5(a)℄. The optimaltrade-o�s [PMTBCS = PBCS = 24, ξ ≈ ξth - Fig. 4.5(a)℄ turn out similar inboth patterns [Fig. 4.5(b)℄ and weights [Fig. 4.5(
)℄ as also 
on�rmed by the�gures of merit in Table 4.1, notwithstanding the di�erent synthesis pro
esses.Both BCS and MT −BCS behave similarly with Hermitian referen
e patterns,sin
e a key di�eren
e between BCS and MT − BCS is the numeri
al handlingof the relation between the real and imaginary parts of the array weights, and
I (vp) = 0 (p = 1, ..., P ) when the referen
e pattern is Hermitian [Fig. 4.5(b)℄.To further assess that su
h a behaviour is due to the symmetry properties ofthe pattern at hand, the next numeri
al experiment is 
on
erned with a set ofHermitian patterns derived from [20℄. The results of the synthesis of the threelayouts with L = {19.5 λ, 25 λ, 50 λ} are presented in Table 4.2 and 
omparedwith the sparse arrangements generated by a sto
hasti
 methodology based onsimulated-annealing (SA) [20℄. As it 
an be observed, the BCS and MT −
BCS pro
edures a
hieve similar performan
es for ea
h qualitative index (e.g., themat
hing a

ura
y and the array aperture) with an element saving equal or betterthan that of the sto
hasti
 approa
h (Table 4.2). This is also visually 
on�rmedby the plots in Fig. 4.6 related to the representative example 
hara
terized by
L = 25λ and PSL = −14.45 dB [20℄. With referen
e to the layout with PBCS =
PMTBCS = 20 elements, it turns out that an a

eptable �delity [ξ ≤ 4.3 × 10−3- Fig. 4.6(b)℄ is yielded by both BCS-based methods despite the redu
tion ofthe array elements with respe
t to the SA-optimized sparse solution (PSA = 24).The similarities are not limited to the patterns, but as expe
ted, are apparentalso in the distribution of the real array 
oe�
ients [Fig. 4.6(
)℄.2Hermitian Pattern means symmetri
 pattern amplitude and anti-symmetri
 pattern phasethat 
an also be generated by only real array weights.29
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L [λ℄ PSL [dB℄ P ξ P

PREF

∆Lmin

λ/2
∆L
λ/2

L
LREF

∆t[20℄ 19.50 −5.10 16 − 1.00 2.00 2.60 1.00 -
BCS 19.50 −5.10 16 2.34× 10−7 1.00 2.00 2.60 1.00 0.48

MT −BCS 19.50 −5.10 16 2.14× 10−8 1.00 2.00 2.60 1.00 0.30[20℄ 25.00 −14.45 24 − 1.00 1.00 2.17 1.00 -
BCS 24.94 −13.63 20 3.58× 10−3 0.83 0.95 2.62 1.00 1.11

MT −BCS 24.95 −13.30 20 4.3× 10−3 0.83 1.00 2.62 1.00 2.23[20℄ 50.00 −14.45 25 − 1.00 1.00 4.17 1.00 -
BCS 32.99 −11.70 22 2.06× 10−2 0.84 0.50 4.02 0.76 5.04

MT −BCS 32.99 −12.92 21 7.19× 10−3 0.84 1.00 3.30 0.76 4.52Table 4.2: Un
onstrained Synthesis (Hermitian Pattern: PREF = PUNI [20℄) -Array performan
e indexes.4.3.2.1.2 Symmetri
 Power Patterns Unlike Hermitian patterns, BCSand MT −BCS syntheses are expe
ted to di�er when only the referen
e powerpattern is symmetri
. The results from the synthesis of a non-Hermitian �at-toparray (PUNI = 14 - [6℄) with symmetri
 power pattern [Fig. 4.7(a)℄ and asymmet-ri
 phase distribution [Fig. 4.7(b)℄ reveal the enhan
ed e�e
tiveness of the MTpro
edure, whi
h is due to its improved a

ura
y in modelling the statisti
al rela-tions between the (non-negligible) real and imaginary parts of the array weights.As far as the optimal BCS-based trade-o� solutions are 
on
erned, it turns outthat there is a halving of the array elements [PBCS = 22 vs. PMTBCS = 11- Table 4.1℄ along with similar mat
hing a

ura
ies [ξBCS = 0.52 × 10−4 vs.
ξMTBCS = 0.22 × 10−4 - Table 4.1℄. This latter is mainly due to the intrinsi
limitation of the BCS approa
h to deal with the two 
omponents of the arrayex
itations as 
orrelated unknowns [Eq. (4.6)℄. Indeed, several BCS weightsturn out either purely real or purely imaginary [∠ vp⌋BCS ∈

{
0,±π

2
,±π

} - Fig.4.7(d)℄ unlike the MT − BCS 
oe�
ients.4.3.2.1.3 Asymmetri
 Power Patterns The improvements of the MT −
BCS approa
h are expe
ted to be even more impressive when asymmetri
 pat-terns are at hand. In order to analyze su
h a 
ase, the next example dealswith the synthesis of a L = 7.5λ 
ose
ant pattern from [6℄ [PUNI = 16, Fig.4.8(b)℄. The Pareto BCS solutions in the ξ-P plane [Fig. 4.8(a)℄ 
learly in-di
ate that the multi-task pro
edure is far more e�
ient than the single-taskone. Indeed, the MT − BCS yields sparser layouts for a �xed ξ threshold [e.g.,
PMTBCS/PBCS = 0.68 when ξ ≈ ξth - Fig. 4.8(a)℄, and a higher a

ura
y for agiven P [e.g., ξMTBCS/ξBCS ≈ 8.0 × 10−5 when P = 15 - Fig. 4.8(a)℄. As anillustrative example, the patterns [Fig. 4.8(b)℄ and the array 
oe�
ients [Figs.4.8(
)-4.8(d)℄ of the representative solutions 
ir
led in Fig. 4.8(a) [PBCS = 19vs. PMTBCS = 13℄ are shown. As far as the array layouts are 
on
erned, it isworth noti
ing that an element saving of ≈ 20% (PMTBCS/PUNI = 0.81) and32
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ant ', L = 7.5λ, PREF = PUNI = 16 [6℄) - (a) MT − BCS and BCSPareto fronts in the (ξ, P ) plane. Power patterns (b), ex
itation amplitudes (
),and ex
itation phases (d) of the uniform array [6℄ and of the optimal trade-o�
BCS and MT − BCS layouts.an aperture redu
tion of ≈ 4% (LMTBCS/LUNI = 0.96) with respe
t to the uni-form solution are obtained by theMT −BCS without 
ompromising the patternmat
hing a

ura
y (Table 4.1), while the BCS fails in redu
ing the array ele-ments (PMTBCS/PUNI = 1.18). Moreover, the behaviour of the array ex
itationsover the aperture 
on�rms that the non-uniformMT −BCS distribution followsthe uniform one sin
e the pattern mat
hing refers to the 
omplex referen
e pat-tern and not only to the power pattern, thus 
onstraining both amplitudes andphases of the array 
oe�
ients.To provide a more exhaustive 
omparison of the BCS methodologies, the re-sults of an extensive analysis on asymmetri
 `
ose
ant' referen
e patterns with
onstant sidelobes are presented. More spe
i�
ally, the referen
e patterns havebeen 
hosen su
h that L ∈ {12 λ, 19.5 λ} (i.e., PUNI ∈ {25, 40}) and PSL =
{−20 dB,−30 dB,−40 dB}. The plots of P for the optimal (i.e., ξ ∼ ξth) trade-o� BCS and MT − BCS layouts are shown in Fig. 4.9 as a fun
tion of PUNI .By observing the 
ase of the referen
e pattern with PSL = −20 dB, the MT34
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PSL [dB℄ of the referen
e pattern.te
hnique always outperforms the single-task method with signi�
antly sparsersolutions (PMTBCS

PBCS
∈ [0.59, 0.66] - Table 4.3). This holds true also when low-ering the sidelobe level (Fig. 4.9). On the other hand, although more arrayelements are ne
essary as PUNI in
reases, the MT − BCS always enables a re-du
tion of the array elements with respe
t to the uniform ar
hite
tures (Fig. 4.9- PMTBCS < PUNI), while the 
ondition PBCS > PUNI is mandatory for the BCSto rea
h the a

ura
y threshold ξ ∼ 10−4 [PMTBCS

PUNI
∈ [0.76, 0.84] vs. PBCS

PUNI
= 1.28- Table 4.3℄.

The e�e
tiveness of theMT−BCS to redu
e the number of elements in the arrayarrangement is pi
torially highlighted in the representative example analyzedin Fig. 4.10 (PSL = −40 dB). Whatever the mat
hing a

ura
y, the MT −
BCS patterns exhibit a higher sparseness [Figs. 4.10(a)-4.10(b), 4.10(
)-4.10(d),4.10(e)-4.10(f )℄ than the BCS. Furthermore, the pattern mat
hing of theMT −
BCS solution is always better for a given value of P [Figs. 4.10(a), 4.10(
),4.10(e)℄. 35
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CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSINGReferen
e Pattern BCS MT − BCS

L [λ℄ PSL PUNI ξ [×10−4℄ PBCS

PUNI

∆Lmin

λ/2
∆L
λ/2

LBCS

LUNI
∆t ξ [×10−4℄ PMTBCS

PUNI

∆Lmin

λ/2
∆L
λ/2

LMTBCS

LUNI
∆t

12 −20 25 3.00 1.28 0.048 0.77 1.00 0.29 0.53 0.76 0.74 1.33 1.00 7.73
12 −30 25 2.86 1.28 0.048 0.77 1.00 0.38 0.38 0.84 0.51 1.2 1.00 1.39
12 −40 25 0.24 1.28 0.49 0.77 1.00 0.23 0.11 0.84 0.72 1.2 1.00 0.87
14.5 −20 30 0.48 1.2 0.59 0.83 1.00 0.23 0.46 0.80 0.49 1.26 1.00 0.56
14.5 −30 30 1.29 1.23 0.058 0.8 0.99 0.44 1.47 0.80 0.63 1.26 1.00 2.85
14.5 −40 30 0.96 1.47 0.33 0.67 1.00 0.25 0.81 0.77 0.40 1.28 0.98 3.82
19.5 −20 40 3.75 1.3 0.67 0.75 0.98 0.24 2.27 0.78 0.54 1.30 1.00 6.19
19.5 −30 40 1.29 1.43 0.31 0.70 1.00 1.30 0.80 0.78 0.19 1.30 1.00 6.99
19.5 −40 40 0.83 1.35 0.39 0.74 1.00 0.36 0.44 0.78 0.52 1.30 1.00 4.38Table 4.3: Un
onstrained Synthesis (Asymmetri
 Pattern: 'Cose
ant ', PREF =
PUNI [6℄) - Array performan
e indexes.The BCS approa
h is usually faster3 than the multi-task pro
edure, althoughboth methods do not require heavy 
omputations [∆t ≤ 8 s - Table 4.3℄. Thisis expe
ted sin
e negle
ting the relationships between real and imaginary partsof the array ex
itations (see Se
t. 4.2) simpli�es the problem, but signi�
antlydegrades the synthesis performan
e with 
omplex layouts.As for the state-of-the-art 
omparisons, let us refer to re
ently introdu
edapproa
hes based on the Matrix Pen
il Method (MPM) [14℄[33℄[34℄[47℄. Su
ha 
hoi
e is mainly due to their e�e
tiveness and numeri
al e�
ien
y usuallyoutperforming other sparse-synthesis methods in terms of 
onvergen
e speed,reliability, and a

ura
y [14℄[33℄[34℄.The �rst set of 
omparisons is 
on
erned with the ben
hmark 
ase in [46℄.The synthesis results are reported in Figs. 4.11(a)-4.11(b) and quantitatively
ompared in Table 4.4. With referen
e to the (ξ, P )-plane [Fig. 4.11(a)℄, thestand-alone matrix pen
il method [33℄ is, as expe
ted, signi�
antly less a

urate(P = 19: ξMPM = 1.43 × 10−1 [Fig. 4.11(b)℄ vs. ξMTBCS = 3.53 × 10−3 - Table4.4) than the sub-optimal (i.e., ξ > ξth)MT −BCS be
ause of the shaped-beamreferen
e pattern [14℄, while the hybrid TABU −MPM (TMPM) [47℄ rea
hesa 
omparable pattern mat
hing (P = 19: ξMPM−TABU = 3.21×10−3 - Table 4.4)although requiring a non-negligible 
omputational burden [47℄ be
ause of the
TABU-based sto
hasti
 optimization in the se
ond step of the hybrid pro
edure.Con
erning the so-
alled forward-ba
kward version of the matrix pen
il method(FBMPM) [34℄, the results in Figs. 4.11(
)-4.11(f ) derived from [48℄[49℄ (alsodis
ussed in [34℄) point out that the FBMPM exhibits performan
e 
lose to thatof the MT − BCS when dealing with shaped-pattern problems [e.g., P = 13:
ξFBMPM = 8.09× 10−5 vs. ξMTBCS = 5.32× 10−5 - Table 4.5 and Fig. 4.11(
);
P = 15: ξFBMPM = 4.94× 10−5 vs. ξMTBCS = 1.68× 10−4 - Table 4.6 and Fig.4.11(e)℄.3In all 
ases, the synthesis time ∆t refers to the exe
ution of the Matlab 
ode on a single
ore laptop running at 2.16 GHz. 37



4.3. NUMERICAL RESULTS
Optimal Tradeo� (ξ ≤ ξth) Sub-Optimal Tradeo� (ξ > ξth)Uniform [46℄ MPM [47℄ TMPM [47℄ BCS MT − BCS BCS MT − BCS

L [λ] 14.5 14.47 14.14 14.5 14.5 11.28 13.00
P 30 19 19 35 24 20 19
P

PUNI
� 0.63 0.63 1.17 0.8 0.66 0.63

∆Lmin

∆LUNI
� 1.15 1.20 0.29 0.058 0.29 0.075

∆L
∆LUNI

� 1.61 1.57 0.85 1.26 1.19 1.45
L

LUNI
� 1 0.98 1.00 1.00 0.78 0.90

t [s] � � � 0.24 0.53 0.22 0.97
ξ � 1.43× 10−1 3.21× 10−3 9.85× 10−5 8.15× 10−5 3.71× 10−2 3.53× 10−3Table 4.4: Un
onstrained Synthesis (Asymmetri
 Pattern: 'Cose
ant ', L =

14.5λ, PREF = PUNI = 30 [46℄) - Array performan
e indexes.[48℄ FBMPM [34℄ BCS MT − BCS

L [λ] 7.5 7.51 7.50 7.46
P 16 13 14 13
P

PUNI
� 0.81 0.88 0.81

∆Lmin

∆LUNI
� 1.06 0.042 0.74

∆L
∆LUNI

� 1.25 1.15 1.24
L

LUNI
� 1 1 1

t [s] � � 0.16 1.00
ξ � 8.09× 10−5 1.89× 10−2 5.32× 10−5Table 4.5: Un
onstrained Synthesis (Asymmetri
 Pattern: 'Cose
ant ', L = 7.5λ,

PREF = PUNI = 16 [48℄) - Array performan
e indexes.[49℄ FBMPM [34℄ BCS MT − BCS

L [λ℄ 9.5 9.375 9.5 9.34
P 20 15 15 15
P

PUNI
� 0.75 0.75 0.75

∆Lmin

∆LUNI
� 1.23 0.39 0.97

∆L
∆LUNI

� 1.34 1.36 1.35
L

LUNI
� 0.99 1.00 0.98

t [s] � � 0.18 0.98
ξ � 4.94× 10−5 4.62× 10−2 1.68× 10−4Table 4.6: Un
onstrained Synthesis (Asymmetri
 Pattern: 'Cose
ant ', L = 9.5λ,

PREF = PUNI = 20 [49℄) - Array performan
e indexes.38



CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSING

10-6

10-5

10-4

10-3

10-2

10-1

100

 10  15  20  25  30  35  40

ξ 
[a

rb
itr

ar
y 

un
it]

P

[Akdagli,2003], L=14.5 λ

[Liu,2008] - MPM

[Liu,2008] - MPM+TABU

MT-BCS
BCS

-50

-40

-30

-20

-10

 0

-1 -0.5  0  0.5  1

|E
(u

)|
2  -

 N
or

m
al

iz
ed

 v
al

ue
 [d

B
]

u

[Akdagli,2003], L=14.5 λ

REF, P=30

MT-BCS, P=24
BCS, P=35

MPM, P=19TMPM, P=19

(a) (b)
10-6

10-5

10-4

10-3

10-2

10-1

100

 5  10  15  20

ξ 
[a

rb
itr

ar
y 

un
it]

P

[Marcano,2000], L=7.5 λ

[Liu,2010]

MT-BCS
BCS

-50

-40

-30

-20

-10

 0

-1 -0.5  0  0.5  1

N
or

m
al

iz
ed

 v
al

ue
 [d

B
]

u

[Marcano,2000], L=7.5 λ

|EREF(u)|2, PREF=16

|EMT-BCS(u)|2, PMT-BCS=13

|EBCS(u)|2, PBCS=14

|EFBMPM(u)|2, PFBMPM=13

(
) (d)
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 10  15  20  25  30

ξ 
[a

rb
itr

ar
y 

un
it]

P

[Akdagli,2006], L=9.5 λ

[Liu,2010]

MT-BCS
BCS

-50

-40

-30

-20

-10

 0

-1 -0.5  0  0.5  1

N
or

m
al

iz
ed

 v
al

ue
 [d

B
]

u

[Akdagli,2006], L=9.5 λ

|EREF(u)|2, PREF=20

|EMT-BCS(u)|2, PMT-BCS=15

|EBCS(u)|2, PBCS=15

|EFBMPM(u)|2, PFBMPM=15

(e) (f )Figure 4.11: Comparative Assessment (Asymmetri
 Power Pattern Synthesis:'Cose
ant ', PREF = PUNI) - Representative points in the (ξ, P ) plane of the BCSand MT − BCS Pareto fronts and of the MPM-based methods (left 
olumn),power patterns of the referen
e uniform array, the MPM-based methods, andthe optimal trade-o� BCS and MT − BCS solutions (right 
olumn). (a)(b)
L = 14.5λ (PUNI = 30) [46℄, (
)(d) L = 7.5λ (PUNI = 16) [48℄, and (e)(f )
L = 9.5λ (PUNI = 20) [49℄.
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4.3. NUMERICAL RESULTS[50℄ - PUNI = 20, LUNI = 9.5λ PUNI = 30, LUNI = 14.5λ

FBMPM BCS MT − BCS FBMPM BCS MT −BCS

L [λ] 9.5 9.46 9.5 14.5 14.5 14.5
P 16 29 16 24 44 24
P

PUNI
0.8 1.45 0.8 0.8 1.47 0.8

∆Lmin

∆LUNI
0.97 0.019 0.31 0.00324 0.34 0.45

∆L
∆LUNI

1.27 0.68 1.27 1.26 0.67 1.26
L

LUNI
1.00 1.00 1.00 1.00 1.00 1.00

t [s] 7.83× 10−1 5.58× 10−1 6.70× 10−1 9.61× 10−1 2.5× 10−1 1.43
ξ 6.79× 10−3 7.14× 10−5 9.27× 10−5 3.98× 10−3 9.62× 10−5 7.93× 10−5Table 4.7: Un
onstrained Synthesis (Asymmetri
 Pattern: 'Cose
ant ', PREF =

PUNI) - Array performan
e indexes.However, it 
annot be negle
ted that the MPM (and, 
onsequently, the
FBMPM) 
an present some numeri
al instabilities (or no 
onvergen
e) as it waspointed out in [14℄[18℄ and 
on�rmed by the synthesis results of the '
ose
ant'pattern with PSL = −40 dB generated by the uniform aperture L = 14.5λ (Fig.4.13) as well as for the test 
ase in [50℄ (Fig. 4.12). Unlike the BCS-basedapproa
hes, the �tting with the referen
e pattern of the FBMPM4, ξFBMPM ,does not monotoni
ally improve as P grows [Fig. 4.12(a) and Fig. 4.13(a)℄.For example [Fig. 4.12(a)℄, the MT − BCS rea
hes the mat
hing threshold
ξ ∼ ξth (i.e., ξMTBCS⌋P=16 = 9.27 × 10−5 - Table 4.7) just adding an elementto the array with PMTBCS = 15, while the FBMPM a

ura
y worsens whenmoving from PFBMPM = 14 to PFBMPM = 16 (ξFBMPM⌋P=14 = 8.50× 10−4 vs.
ξFBMPM⌋P=16 = 6.79×10−3). Therefore, the MT −BCS faithfully re
onstru
tsthe referen
e pattern [Fig. 4.12(b)℄ redu
ing the uniform array elements of 1

5unlike the FBMPM that does not provide the same a

ura
y (i.e., ξ ≤ 10−4 )unless using more radiators (PFBMPM = 19 → ξFBMPM⌋P=19 = 4.60× 10−6).Similar out
omes 
an be drawn from the test 
ase in Fig. 4.13 (Table 4.7)that allows us to point out also another interesting feature of the BCS-basedapproa
hes. By observing the FBMPM arrangement in Fig. 4.13(
), it turnsout that the minimum inter-element spa
ing is very small and equal to ∆Lmin =
1.62×10−3 λ (Table 4.7). On the 
ontrary, the BCS rationale with the 
hoi
e ofthe 
andidate lo
ations for the array elements, d, gives the user the possibility toa-priori impose the lower bound for the distan
e between two adja
ent elements.As for the CPU-time, the indexes in Table 4.7 indi
ate that the synthesis time forthe MT −BCS and the FBMPM is generally of the same order in magnitude(e.g., ∆tFBMPM = 7.83× 10−1 [s℄ vs. ∆tMTBCS = 6.70× 10−1 [s℄).4A MATLAB implementation of the FBMPM (based on the mpen
il fun
tionhttp://www.mathworks.se/matlab
entral/index.html) have been used assuming the parameterssuggested in [34℄ for the following numeri
al tests.40
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CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSING4.3.2.2 Constrained SynthesisPrevious dis
ussions gave some insights about the e�
ien
y of the MT − BCSin dealing with shaped referen
e patterns as well as about its advan
es in termsof element sparseness, mat
hing a

ura
y, �nal layout properties, and numeri
ale�
ien
y over the standard BCS or in 
omparison with referen
e state-of-the-art methodologies. The �nal set of experiments, 
on
erned with an equi-ripple(PSL = −30 dB) 
ose
ant referen
e pattern generated by a uniform aperture of
L = 19.5λ, points out the �exibility of the BCS-based methodology to handle
onstrained sparse-array syntheses. Performing 
onstrained sparse synthesis isnot a trivial task for a wide range of state-of-the-art methods, ex
ept for op-timization methods whi
h, however, usually involve heavy 
omputations whenhigh-dimension solution spa
es are at hand.4.3.2.2.1 Pattern Constraints The �rst test 
ase has been designed bylimiting the referen
e pattern samples FREF (uk) to the angular region u ∈
(−0.7, 0.9) [i.e., uk /∈ {[−1,−0.7] ∪ [0.9, 1]}, k = 1, ..., K℄. As expe
ted, theoptimal trade-o� MT − BCS and BCS patterns faithfully mat
h the refer-en
e pattern only within the 
onstrained region [ξMTBCS⌋P=29 = 2.35 × 10−5vs. ξBCS⌋P=44 = 4.96 × 10−5- Fig. 4.14(a)℄ guaranteeing a redu
tion, moresigni�
ant for the BCS even though still P unc

BCS = 44 > PUNI = 40, of the ele-ment number with respe
t to the full-
onstrained 
ase ( P con

Punco

⌋
MTBCS

= 1.07 and
P con

Punco

⌋
BCS

= 1.29).4.3.2.2.2 Geometry Constraints The last 
ases model aperture blo
kage
onstraints within the BCS syntheses by setting forbidden regions for the ra-diating elements [see Se
t. 4.2℄. More spe
i�
ally, two di�erent s
enarios havebeen investigated either de�ning symmetri
 (dn /∈ {[−6λ,−5λ] ∪ [5λ, 6λ]}, n =
1, ..., N) or asymmetri
 (dn /∈ {[−7λ,−6λ] ∪ [3λ, 4λ]}, n = 1, ..., N) forbiddenregions. The plots of the optimal trade-o� layouts and asso
iated patterns (Fig.4.15) show that both 
ompressive-sampling pro
edures su

eed in 
arefully re-produ
ing the referen
e pattern [ξMTBCS = 1.01× 10−5 vs. ξBCS = 2.32× 10−5 -Figs. 4.15(a); ξMTBCS = 6.08×10−5 vs. ξBCS = 9.68×10−5 - Figs. 4.15(b)℄ whilealso 
omplying with the geometri
al 
onstraints [Figs. 4.15(
)-4.15(e) and Figs.4.15(d)-4.15(f )℄ despite the non-negligible aperture blo
kage (> 10% in both
ases). Furthermore, the MT −BCS te
hnique 
on�rms also in those s
enariosits higher e�
ien
y (than the BCS) in minimizing the array elements [PBCS = 63vs. PMTBCS = 37 - Figs. 4.15(
)-4.15(e); PBCS = 58 vs. PMTBCS = 34 -Figs. 4.15(d)-4.15(f )℄ also with respe
t to the (un
onstrained) uniform solution[PMTBCS

PUNI
= 0.92 - Figs. 4.15(
)-4.15(e); PMTBCS

PUNI
= 0.85 - Figs. 4.15(d)-4.15(f )℄.Of 
ourse, the element saving turns out to be lower than that for the 'un
on-strained' BCS-based syntheses be
ause of the greater 
omplexity of the synthesisat hand [i.e., P con

Punco

⌋
MTBCS

= 1.18 and P con

Punco

⌋
BCS

= 1.09 (symmetri
 forbidden43



4.3. NUMERICAL RESULTS
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k (Constrained Pattern Synthesis: 'Cose
ant ', L =
19.5λ, PSL = −30 dB, PREF = PUNI = 40, uk /∈ {[−1,−0.7] ∪ [0.9, 1]}) -Power patterns (a) and array 
oe�
ients (b)(
) of the optimal trade-o� BCSand MT −BCS layouts. 44



CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSINGregion) and P con

Punco

⌋
MTBCS

= 1.09 and P con

Punco

⌋
BCS

= 1.02 (asymmetri
 forbiddenregion)℄.4.4 Dis
ussionsAn innovative, �exible, and e�
ient 
omplement to the existing approa
hes forthe synthesis of sparse layouts with arbitrary radiation features has been pro-posed. The proposed method extends the range of appli
ability of the te
hniquein [21℄ by 
onsidering a MT Bayesian methodology. Towards this end, the origi-nal pattern mat
hing problem has been formulated in a Bayesian fashion withinthe framework of the sparseness 
onstrained optimization and afterwards it hasbeen solved by a suitable RVM-derived methodology. Sele
ted results from anextensive numeri
al validation have been presented to provide an evaluation ofthe sensitivity of the MT − BCS method to its 
ontrol parameters as well ason its a

ura
y, �exibility, and 
omputational e�
ien
y. Advantages and limi-tations of the proposed approa
h have been pointed out using 
omparisons withstate-of-the-art approa
hes. In summary:
• theMT −BCS te
hnique is simpler to 
alibrate than the single-task BCSapproa
h thanks to its smoother dependen
y on the 
ontrol parameters(Se
t. 4.3.1);
• the MT −BCS methodology outperforms the single-task BCS pro
eduresin
e, generally, the BCS extension to 
omplex layouts often yields to (sub-optimal) arrangements mostly 
omprising purely-real and purely-imaginaryex
itations. As expe
ted, BCS-based pro
edures provide very similar re-sults when symmetri
 real layouts are at hand (Sub-Se
t. 4.3.2.1.1);
• on average, the MT −BCS guarantees an element saving with respe
t to(λ

2
-spa
ed) uniform layouts of about PMTBCS

PUNI
∈ [0.65, 0.81] when 
omplex-or real-valued symmetri
 patterns are at hand still providing an ex
ellentpattern mat
hing [ξ . 10−4℄;

• the MT − BCS favorably 
ompares with state-of-the-art sparse array de-sign pro
edures in terms of pattern mat
hing a

ura
y, element saving,numeri
al e�
ien
y, and stability;
• additional 
onstraints on the radiation pattern and/or the geometri
al fea-tures of the sparse array 
an be easily and e�
iently dealt with (Se
t.4.3.2.2).In addition, other main and innovative 
ontributions of this Chapter 
onsist inthe following methodologi
al novelties:45
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k (Constrained-Geometry Pattern Synthesis: 'Cose-
ant ', L = 19.5λ, PSL = −30 dB, PREF = PUNI = 40) - Power pat-terns (a)(b), ex
itation amplitudes (
)(d), and ex
itation phases (e)(f ) of the(un
onstrained) uniform array and of the optimal trade-o� 
onstrained BCSand MT − BCS layouts when dn /∈ {[−6λ,−5λ] ∪ [5λ, 6λ]} (left 
olumn) and
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CHAPTER 4. COMPLEX-WEIGHT SPARSE LINEAR ARRAYSYNTHESIS BY MULTITASK BAYESIAN COMPRESSIVE SENSINGan extension to the 
omplex-valued synthesis problems of the BCS approa
hin [21℄;an innovative and equivalent '�
titious' formulation of the 
omplex-weightpattern mat
hing problem for enabling the appli
ation of the MT −BCS;an innovativeMT−BCS method for dealing with 
omplex-valued sparseness
onstrained optimization by stati
ally 
orrelating the real and the imaginary
omponents of the sparse unknowns.Future works, out-of-the-s
ope of the present Chapter, will be aimed at an-alyzing the mutual 
oupling e�e
ts between real elements in the sparse layoutsas well as at taking into a

ount in the synthesis pro
ess the presen
e of di-re
tive elements. Furthermore, the derivation of array pro
essing algorithms(e.g., DOA-estimation [55℄ and adaptive beamforming [56℄ te
hniques) based on
MT −BCS geometries will be the subje
t of future analyses aimed at exploitingand integrating the features of su
h a sparse arrangements in an e�e
tive and
ustomized way.
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Chapter 5Dire
tion-of-Arrival Estimation inLinear Arrays Through BayesianCompressive Sensing StrategiesIn this Chapter, the estimation of the dire
tions of arrival (DoAs) of narrow-bandsignals impinging on a linear antenna array is addressed within the Bayesian 
om-pressive sensing (BCS) framework. Unlike several state-of-the-art approa
hes,the voltages at the output of the re
eiving sensors are dire
tly used to determinethe DoAs of the signals thus avoiding the 
omputation of the 
orrelation matrix.Towards this end, the estimation problem is properly formulated to enfor
e thesparsity of the solution in the linear relationships between output voltages (i.e.,the problem data) and the unknownDoAs. Customized implementations exploit-ing the measurements 
olle
ted at a unique time instant (single-snapshot) andmultiple time instants (multiple-snapshots) are presented and dis
ussed. Thee�e
tiveness of the proposed approa
hes is assessed through an extensive nu-meri
al analysis addressing di�erent s
enarios, signal 
on�gurations, and noise
onditions. Comparisons with state-of-the-art methods are reported, as well.
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5.1. INTRODUCTION5.1 Introdu
tionEstimating theDoAs of signals is a topi
 of great interest in several resear
h �eldslike ele
tromagneti
, a
ousti
, and geophysi
al/seismi
 sensing [61℄[62℄[63℄[64℄.As a matter of fa
t, the knowledge of the DoAs of the signals in
oming on are
eiver 
an be suitably exploited to lo
alize the positions of the 
orrespondingsour
es as well as to enable the adaptive beam forming of the re
eiving antennapattern either to enhan
e the system sensitivity towards desired signal dire
tionsor to suppress unwanted interferen
es.State-of-the-art literature gives to the interested reader several and e�e
tive ap-proa
hes proposed in the last de
ades. The methods are most 
ommonly usedare: the multiple signal 
lassi�
ation (MUSIC) [65℄[66℄, the signal estimationparameter via rotational invarian
e te
hnique (ESPRIT ) [67℄[68℄[69℄, and themaximum likelihood (ML) DoAs estimator [96℄[71℄. A main drawba
k of thesete
hniques is the need of an a-priori knowledge of the number of signals, whi
his rarely available espe
ially nowadays with the huge proliferation of wirelessdevi
es/servi
es and the presen
e of non-
ollaborative users. To avoid su
h a
onstraint, a learning-by-example (LBE) approa
h based on a support ve
torma
hine (SVM) has been proposed in [72℄ where the DoA estimation problemhas been re
ast to a probabilisti
 framework looking for the identi�
ation of thesmallest angular regions where the presen
e of in
oming signals is most prob-able. While e�
ient for some appli
ations, the rough estimation of the DoAsof the signals 
oming from the pro
essing of the arising probability map is notadequate for high-resolution analyses sin
e spatially-
lose signals 
annot be satis-fa
torily dete
ted. Therefore, the approa
h has been improved by implementinga multi-resolution strategy [72℄.Despite the positive and attra
tive features of previous approa
hes, all of themshare the same bottlene
k. Indeed, they require the evaluation of the 
ovarian
ematrix estimated from the measurements of ea
h sensor at di�erent time-instants(i.e., the snapshots). This implies an unavoidable in
rease of the re
eiver 
om-plexity and a delay in the DoAs re
overy although LBE-based methods haveproved to be promising solutions also for real-time lo
alizations [73℄[74℄[75℄.Starting from the key observation that the signals impinging on the antennaarray are intrinsi
ally sparse in the spatial domain, e�
ient strategies for DoAsestimation have been proposed [76℄[77℄[78℄ where the sparsity 
onstraints havebeen imposed through a l1-norm minimization. In this framework, approa
hesbased on the 
ompressive sensing (CS) theory [81℄ have re
ently been introdu
edbe
ause of the 
omputationally e�
ien
y, the a

ura
y, and the robustness tothe noise. Thanks to these features, CS-based strategies have already beenapplied to a variety of appli
ations in ele
tromagneti
 engineering [82℄[83℄[84℄.However, the main issue to 
ope with when applying CS is the fa
t that the so-
alled 'sampling matrix' must satis�es the restri
ted isometry property (RIP ) forguaranteeing reliable estimations. Unfortunately, su
h a 
ondition 
annot easily50



CHAPTER 5. DIRECTION-OF-ARRIVAL ESTIMATION IN LINEARARRAYS THROUGH BAYESIAN COMPRESSIVE SENSING STRATEGIESveri�ed sin
e it results 
omputationally demanding [85℄. Alternatively, innovativeapproa
hes based on the Bayesian 
ompressive sensing (BCS) [41℄ have beenproposed. In su
h a 
ase, the original deterministi
 problem is reformulatedin its probabilisti
 
ounterpart then e�
iently solved with the relevan
e ve
torma
hine (RVM) [45℄. In this line of reasoning, preliminary attempts in theele
tromagneti
 framework have been out to deal with mi
rowave imaging [86℄[87℄and array synthesis [21℄ (see also Chapter 4).In this Chapter, the DoA estimation problem is formulated within the BCSframework thus avoiding 
onstraints on the sampling (or observation) matrix,whi
h dire
tly links the measurements (i.e., voltages/
urrents) at the outputof the array elements to the unknown signal dire
tions. More spe
i�
ally, twodi�erent strategies, extending and 
ompleting those preliminary introdu
ed in[88℄ and [C3℄, are presented. The former is 
on
erned with single time-instantmeasurements (i.e., single snapshot) to enable the real-time estimation, while thelatter is aimed at giving high-resolution estimations, thanks to the pro
essingover multiple snapshots, still avoiding any a-priori information on the numberand the intensity of the unknown impinging signals.The rest of the Chapter is organized as follows. The DoAs estimation problem ismathemati
ally formulated in Se
t. 5.2 where the single-snapshot and multiple-snapshots BCS-based approa
hes are des
ribed, as well. A set of representativenumeri
al results is then reported and dis
ussed in Se
t. 5.3 where a 
omparativeanalysis with referen
e DoAs estimation methods is also performed. Finally,some 
on
lusions are drawn (Se
t. 5.4).5.2 Mathemati
al Formulation5.2.1 DoAs Estimation - Problem FormulationLet us 
onsider a set of L ele
tromagneti
 plane waves Einc
l (r) =Einc

l ejβ(x sinθl+z cosθl)ŷ,
l = 1, ..., L arriving from unknown dire
tions θl, l = 1, ..., L on a linear array 
om-posed byM sensors pla
ed along the x-axis with uniform inter-element spa
ing d(Fig. 5.1). The in
ident signals are supposed being narrow-band and 
hara
ter-ized by the same frequen
y 
ontent. At the sensor lo
ations, xm =

(
m− M+1

2

)
d,

m = 1, ...,M , the ele
tromagneti
 �eld 
an be assumed being the linear 
om-bination of the signals impinging on the antenna. A

ordingly, the relationshipbetween the (
omplex) open-
ir
uit voltage indu
ed on the re
eiving elementsand the measured signal strengths and propagation delays a
ross the array ele-ments [89℄ turns out to be [72℄
vm =

L∑

l=1

Einc
l ŷ · fejβxmsinθl + nm , m = 1, ...,M (5.1)where β = 2π

λ
, λ being the free spa
e wavelength, f is the antenna e�e
tive length51



5.2. MATHEMATICAL FORMULATION
θ1

θ2

Einc
1

Einc
2

M1 m

d

z

x

Figure 5.1: Sket
h of the referen
e s
enario: linear adaptive antenna array andimpinging signals.supposed identi
al for all elements1, and nm is the m-th (m = 1, ...,M) samplefrom a Gaussian distribution with zero mean that models the additive noise. Inmatrix form, (6.2) 
an be rewritten as follows
v = A (θ) s + n (5.2)where v = [v1, v2, ..., vM ]T is a 
olumn ve
tor ofM 
omplex entries (v ∈ CM×1), Tindi
ates the transpose, θ = [θ1, .., θL], A (θ) = [a (θ1) , a (θ2) , ..., a (θL)] ∈ CM×Lis the matrix of the steering ve
tors whose l-th 
olumn is given by a (θl) =[

ejβx1sinθl, ejβx2sinθl, ..., ejβxMsinθl
]T ∈ C

M×1, l = 1, ..., L, s = [Einc
1 , Einc

2 , ..., Einc
L ]

T ∈
CL×1, and n = [n1, n2, ..., nM ]T ∈ CM×1. It worth noti
ing that the problem athand is non-linear with respe
t to the unknowns, θl, l = 1, .., L, whi
h are presentin the exponential terms of the elements of the matrix A.To apply the BCS approa
h, the visible angular range is dis
retized with K ≫ Lsamples (Fig. 5.2) su
h that A(θ̃) ∈ CM×K in (5.2) and the DoAs of the in
om-ing signals are assumed to belong to the set of the K dire
tions θ̃k, k = 1, ..., K.Now, the estimation problem turns out to be that of re
overing the sparse sig-nal ve
tor s̃ ∈ CK×1 in 
orresponden
e with the user-de�ned K-sampling of theangular range, θ̃ =

[
θ̃1, .., θ̃K

]. Sin
e the problem is linear with respe
t to theunknown s̃ and the solution is sparse in the spatial domain (i.e., few entries of s̃su
h that θ̃k = θl are non-null), the BCS theory 
an be properly applied.
1Without loss of generality, isotropi
 elements are assumed (i.e., f = 1). Extensions todire
tive or non-uniform arrangements is straightforward.52
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Figure 5.2: Angular region dis
retization.5.2.2 Single-Snapshot BCS-Based Sparse Signal Estima-tionBy applying the guidelines of the BCS approa
h in [21℄ for dealing with 
omplexdata, (5.2) is �rstly rewritten as
[
ℜ{v}
ℑ {v}

]
=


 ℜ

{
A
(
θ̃
)}

−ℑ
{
A
(
θ̃
)}

ℑ
{
A
(
θ̃
)}

ℜ
{
A
(
θ̃
)}



[
ℜ{s̃}
ℑ {s̃}

]
+

+

[
ℜ{n}
ℑ {n}

]
,

(5.3)
ℜ{·} and ℑ{·} being the real and the imaginary part, respe
tively, to yield areal-valued problem suitable for BCS. As a matter of fa
t, although ve
tors andmatri
es in (5.3) have double dimensions 
ompared to those in (5.2), all entriesare now real. The sparse signal ve
tor ŝ = [ℜ{s̃} ,ℑ{s̃}]T ∈ R2K×1 satisfying(5.3) and having minimum ℓ0-norm is then obtained in a probabilisti
 way bysolving the following [21℄

ŝBCS = arg

[
max

ŝ
Pr
([
ŝ, σ2, p

]∣∣v
)] (5.4)where σ2 is the (unknown) varian
e of the Gaussian noise and p is the hyper-parameter ve
tor to be determined and 
ontrolling the sparseness of the signalve
tor ŝ [45℄. By virtue of the fa
t that

Pr
([
ŝ, σ2, p

]∣∣v
)
= Pr

(
ŝ|
[
v, σ2, p

])
Pr
([
σ2, p

]∣∣v
) (5.5)and the �rst term on the right of (5.5) is 
hosen, in the BCS-based approa
h,equal to the multivariate Gaussian distribution [21℄

Pr ( ŝ| [v, σ2, p]) = 1

(2π)
2K+1

2
√

det(Ξ)
×

exp
{
− (ŝ−µ)HΞ−1(ŝ−µ)

2

} (5.6)53



5.2. MATHEMATICAL FORMULATIONwhose maximum ŝBCS 
oin
ides with the mean value, the maximization of theposterior probability (5.5) is obtained through the de�nition of the 
ouple of pa-rameters σ2
BCS and pBCS maximizingPr ( [σ2, p]|v). In (5.6), Ξ =

(
1
σ2 Â

(
θ̃
)T

Â
(
θ̃
)
+ diag (p)

)−1and µ = 1
σ2ΞÂ

(
θ̃
)H

v, where
Â
(
θ̃
)
=


 ℜ

{
A
(
θ̃
)}

−ℑ
{
A
(
θ̃
)}

ℑ
{
A
(
θ̃
)}

ℜ
{
A
(
θ̃
)}


 (5.7)is the real-valued matrix of the steering ve
tors and H denotes the 
onjugatetranspose operation. Sin
e

Pr
([
σ2, p

]∣∣v
)
∝ Pr

(
v|
[
σ2, p

])
Pr
(
σ2
)
Pr (p) (5.8)and the two terms Pr (σ2) and Pr (p) are 
onstant a

ording to the guidelines of[45℄, the optimal parameters σ2

BCS and pBCS are 
omputed through the relevan
eve
tor ma
hine (RVM) by maximizing the logarithm of Pr (v| [σ2, p]) de�nedas [21℄
LBCS

(
σ2,p

)
= −1

2

[
(2K) log 2π + log |CBCS|+ vTC−1

BCSv
] (5.9)where an user-de�ned initial value for σ2, σ2 = σ2

0, is 
hosen. Moreover in (5.9),
CBCS , σ2I + Â

(
θ̃
)
diag (p)−1 Â

(
θ̃
)T . On
e σ2

BCS and pBCS are determined,the estimated solution turns out to be
ŝBCS =

1

σ2
BCS



Â
(
θ̃
)T

Â
(
θ̃
)

σ2
BCS

+ diag (pBCS)




−1

×

Â
(
θ̃
)T

v . (5.10)5.2.3 Multiple-Snapshot MT − BCS-Based Sparse SignalDoA EstimationUnlike the ST − BCS, the MT − BCS approa
h [60℄ 
orrelates the DoAs es-timation over multiple snapshots, thus avoiding the strong dependen
e of theestimation performan
e on the noise level of the 
olle
ted measurements. Withreferen
e to the multiple-snapshots version of Eq. (5.2)
vw = A (θ) sw + nw, w = 1, ...,W, (5.11)54
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W being the number of snapshots, the sparse signal ve
tor ŝ is here determinedas follows

ŝMT−BCS =
1

W

W∑

w=1

{
arg

[
max
ŝw

Pr ( [̂sw, p]|vw)

]} (5.12)where ŝw, w = 1, ...,W , are statisti
ally-
orrelated through a proper de�nition ofthe �shared� hyperparameter ve
tor 
orrelating the di�erent snapshots. The opti-mal value of p, pMT−BCS, is 
omputed as pMT−BCS = argmaxp
{
LMT−BCS (p)

}through the RVM a

ording to the guidelines in Chapter 4, being
LMT−BCS (p) = −1

2

∑W
w=1 {log (|CMT−BCS|) +

(K + 2ψ1) log
[
vT
w (CMT−BCS)vw + 2ψ2

]} (5.13)where CMT−BCS , I + Â
(
θ̃
)
diag (p)−1 Â

(
θ̃
)T and ψ1, ψ2 are user-de�nedparameters [60℄. Unlike the BCS approa
h, the knowledge/estimation of thevarian
e σ2 of the noise samples is not required in theMT −BCS based method(see Chapter 4). Finally, the solution estimated by means of the MT − BCSturns out equal tô

sMT−BCS =

=

∑W
w=1

{[
Â(θ̃)

T
Â(θ̃)+diag(pMT−BCS )

]
−1

Â(θ̃)
T
vw

}

W
.

(5.14)
5.2.4 DoA Estimation Pro
edureIn prin
iple, the estimated number of impinging signals, L̃, 
an be determined bysimply 
ounting the non-zero elements of the re
overed signal ve
tor s̃. However,many entries of s̃ 
an assume amplitudes 
lose but not equal to zero that do not
orrespond to any a
tual signal due to the presen
e of the noise. A

ordingly, theoriginal L-sparse signal turns out being a 
ompressible one where the strongest
L̃ signals have to be sele
ted. Towards this aim, an energeti
 thresholding isapplied to remove the lowest-energy 
omponents of s̃ in order to improve thereliability of the DoAs estimation. More spe
i�
ally, the entries of the estimatedsparse signal s̃ are sorted a

ording to their energy 
ontent, |s̃k|2, k = 1, ..., K,su
h that ξ1 , maxk

{
|s̃k|2

} and ξK , mink

{
|s̃k|2

}. Su

essively, only the �rst
L̃ dire
tions su
h that

1(∑K
k=1 ξk

)
L̃∑

l=1

ξl < η (5.15)are kept and assumed as those of the a
tual signals, η being a user-de�nedthreshold (Fig. 5.3). A

ordingly, the k-th thresholded element of s̃ turns out tobe
s̃k⌋η =

{
s̃k if |s̃k|2 > ξL̃
0 otherwise

(5.16)55
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h of the energy thresholding strategy for the estimation of thenumber of in
ident signals L̃.and the estimated DoAs, θ̃l, l = 1, ..., L̃, are determined as follows1. Set l = k = 1;2. If s̃k⌋η 6= 0 then θ̃l = θ̃k, l = l + 1;3. If k < K then k = k + 1 and goto 2; else stop.
5.3 Numeri
al ResultsIn the following, a set of numeri
al results is reported and dis
ussed to show thebehavior of the proposed approa
hes as well as to point out their advantages anddrawba
ks also in a 
omparison with state-of-the-art methods. Firstly, an analy-sis on the sensitivity on the 
alibration parameters (namely, the energy threshold
η and the noise parameter σ2

0) is 
arried out. Su

essively, the estimation 
a-pabilities of the BCS-based strategies are assessed dealing with single-snapshotand multiple-snapshots a
quisitions. As for the MT −BCS, the parameters ψ1,
ψ2 are set as in [95℄. 56



CHAPTER 5. DIRECTION-OF-ARRIVAL ESTIMATION IN LINEARARRAYS THROUGH BAYESIAN COMPRESSIVE SENSING STRATEGIES5.3.1 Sensitivity AnalysisIn order to determine the optimal values of the 
ontrol parameters σ2
0 and η,the following ben
hmark test 
ase has been 
onsidered: an antenna array of

M = 20 isotropi
 sensors equally-spa
ed by d = λ
2
along the x-axis and a set of

L = {2, 4, 6} binary phase-shift keying (BPSK) signals (Einc
l = ±1) impingingon the array from θl ∈ [−90o, 90o], l = 1, ..., L. The signals have been supposedarriving on the antenna with equal strength in order to perform an unbiasedanalysis of the a

ura
y of the method with respe
t to the angles of arrival. Theminimum angular distan
e between the DoAs of two adja
ent signals has beenset to ∆θmin = 1o, while the angular range has been uniformly dis
retized into

K = 181 samples. The measured data are 
hara
terized by signal-to-noise ratioequal to SNR = {2, 5, 10, 20} dB, de�ned as
SNR = 10 log

[∑M
m=1

∣∣vNoiseless
m

∣∣2

Mσ2

] (5.17)where σ2 is the varian
e of the additive Gaussian noise and vNoiseless
m ,m = 1, ...,Mare the noise-free data. Sin
e the a
tual DoAs are randomly 
hosen, Q = 250di�erent s
enarios (i.e., θ(q)l , l = 1, ..., L, q = 1, ..., Q) have been taken intoa

ount for ea
h 
ombination of L and SNR to give a 
onsistent statisti
alvalidation. The BCS-based estimation has been applied varying the 
alibrationparameters within the ranges η ∈ [0.0, 1.0] and σ2

0 ∈ [10−6, 1.0].The optimal setup of the 
ontrol parameters has been de�ned by 
hoosing thevalues of η and σ2
0 that minimize the modi�ed root-mean-square error (RMSE)
(
σ2
0, η
)(opt)

= arg

{
min
(σ2

0 ,η)

[
RMSE

(
σ2
0, η
)]
} (5.18)where

RMSE (σ2
0, η) =

=
∑

L

∫
SNR

RMSE(σ2
0 ,η|SNR,L)

max
(σ2

0,η)
{RMSE(σ2

0 ,η|SNR,L)}dSNR
(5.19)and RMSE = 1

Q

∑Q
q=1RMSE(q), RMSE(q) being an indi
ator of the reliabilityof the method in predi
ting the q-th s
enario. This latter takes into a

ount boththe errors in estimating the signal number L̃(q) and the 
orresponding DoAs θ̃(q)l ,

l = 1, ..., L̃(q). It is de�ned as follows
RMSE(q) =

=





√{∑L̃(q)

l=1

∣∣∣θl−θ̃
(q)
l

∣∣∣
2
+|L−L̃(q)|(∆θmax)

2

}

L
if L̃(q) ≤ L√{∑L

l=1

∣∣∣θl−θ̃
(q)
l

∣∣∣
2
+
∑L̃(q)

j=L+1

∣∣∣θ̃(q)j −θ
(q)
j

∣∣∣
2
}

L
if L̃(q) > L

(5.20)57



5.3. NUMERICAL RESULTSwhere θl and θ̃(q)l are the l-th a
tual and the 
losest (among the L̃(q) estimates)retrieved DoA, respe
tively, while∆θmax is a penalty term equal to the maximumadmissible lo
alization error (i.e., ∆θmax = 180o) and applied when the numberof estimated signals is smaller than the a
tual one. Moreover,
θ
(q)

j = arg

{
min

θl, l∈[1,L]

∣∣∣ θl − θ̃
(q)
j

∣∣∣
}
. (5.21)It is worth pointing out that (5.20) 
oin
ides with the standard RMSE de�nitionof the literature when L̃(q) = L, while it penalizes the 
ases when L̃(q) < L sin
eit is assumed that, at the re
eiver, it is preferable to identify at least the signalswhi
h are really present in the environment, also admitting the predi
tion of non-existing signals, than missing the identi�
ation of one or more a
tual signals.

Averaged RMSE Map, M=20, K=181
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CHAPTER 5. DIRECTION-OF-ARRIVAL ESTIMATION IN LINEARARRAYS THROUGH BAYESIAN COMPRESSIVE SENSING STRATEGIES
RMSE (σ2

0, η)
(opt)

PL (σ
2
0 , η)

(opt) [%℄
SNR [dB] L = 2 L = 4 L = 6 L = 2 L = 4 L = 6

2 35.01 43.75 74.23 18.4 20.0 20.0
5 14.88 41.47 70.92 64.4 43.2 22.8
10 7.05 32.12 66.47 89.2 55.2 24.4
20 8.14 27.15 49.20 92.4 59.2 24.4Table 5.1: Single Snapshot (W = 1) DoA Estimation (M = 20, d = 0.5λ;

L = {2, 4, 6}, θl ∈ [−90o, 90o], Q = 250; SNR = {2, 5, 10, 20} dB; σ2
0 = 0.46 ,

η = 0.95). Average RMSE and PL values.Figure 5.4 shows the plot of the normalized RMSE (σ2
0, η), where the minimumvalue of RMSE o

urs at (σ2

0, η)
(opt)

= (0.46, 0.95) whi
h is assumed as theoptimal setup hereinafter. As an example, Table 5.1 gives the RMSE valuesfor a set of representative 
ombinations of L and SNR when setting (σ2
0 , η)

(opt).As expe
ted, the estimation a

ura
y improves for higher SNRs and de
reasing
L
M

values. For 
ompleteness, the per
entage of faithfully dete
ted s
enarios (i.e.,
L̃(q) = L), PL:

PL

(
σ2
0, η|SNR,L

)
=

1

Q

Q∑

q=1

P
(q)
L

(
σ2
0, η|SNR,L

) (5.22)where
P

(q)
L

(
σ2
0 , η|SNR,L

)
=

{
1 if L̃(q) = L
0 otherwise

, q = 1, ..., Q, (5.23)is reported, as well (Tab. 5.1). Similarly to theRMSE behavior, the PL improveswhen the noise level de
reases and the number of impinging signals is smallerthan the number of array sensors.5.3.2 Performan
e Assessment (Single-Snapshot BCS-BasedEstimation Approa
h)With referen
e to the single-snapshot a
quisition, let us 
onsider the test 
ase
hara
terized by L = 4 and SNR = 10 dB. To illustrate the behavior of the
BCS-based estimation approa
h, the results in Fig. 5.5 refer to three repre-sentative situations: L̃(q) = L [Figs. 5.5(a)-(b)℄, L̃(q) > L [Figs. 5.5(
)-(d)℄,and L̃(q) < L [Fig. 5.5(e)℄ 
orresponding to low [Figs. 5.5(a)-(
)℄ or high [Figs.5.5(b)-(d)℄ RMSE [when L̃(q) < L the RMSE value turns out being always highdue to the presen
e of the penalty term in (5.20)℄. For illustrative purposes, thesymbols + and × indi
ate the a
tual DoAs and those estimated after thresh-olding, while the green dots are the BCS estimates before thresholding. Sin
e59
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CHAPTER 5. DIRECTION-OF-ARRIVAL ESTIMATION IN LINEARARRAYS THROUGH BAYESIAN COMPRESSIVE SENSING STRATEGIESFigure θ θ̃ RMSE5.5(a) [−79,−59,−41, 10] [−80,−59,−41, 10] 0.505.5(b) [27, 38, 42, 90]
[−86,+27,
+35,+40]

62.135.5(
) [−69,−59,−34, 57]
[−71,−70,−59,

−34, 57]
1.125.5(d) [−89,−71,−50,−41]

[−76,−70,−50,
−41,+74]

58.875.5(e) [−77,−31, 16, 87] [−81,−31, 16] 90.02Table 5.2: Single Snapshot (W = 1) DoA Estimation (M = 20, d = 0.5λ; L = 4;
SNR = 10 dB; σ2

0 = 0.46, η = 0.95). A
tual dire
tions and estimated DoAs.
RMSE values.

l 1 2 3 4 5 6

L = L̃ = 4
θ 23 38 41 47 − −
θ̃ 23 37 39 46 − −

L = L̃ = 6
θ −59 −17 6 31 35 47

θ̃ −59 −17 6 31 35 48Table 5.3: Single Snapshot (W = 1) DoA Estimation (M = 20, d = 0.5λ;
SNR = 2 dB; σ2

0 = 0.46, η = 0.95). A
tual and estimated DoAs when L̃ = L:
L = 4 and L = 6.the method determines the signal ve
tor s̃, the estimated signal strengths arereported, as well, to prove that several entries are null be
ause of the sparsity
onstraint enfor
ed through the BCS.Be
ause of the limited information from the single-snapshot a
quisition and theunavoidable presen
e of the noise, the main 
on
ern is the dete
tion of impingingsour
es lo
ated 
lose to the end-�re angular dire
tion [Fig. 5.5(b) - θ4 = 90o,Fig. 5.5(d) - θ1 = −89o, Fig. 5.5(e) - θ2 = 87o℄ as pointed out by the RMSEvalues in Tab. 5.2 where both a
tual and estimated DoAs are reported, as well.Otherwise, the DoAs are retrieved with a high pre
ision [e.g., RMSE = 0.50o -Fig. 5.5(a) and RMSE = 1.12o - Fig. 5.5(
)℄ even in most severe noisy 
ondi-tions (e.g., SNR = 2 dB) for both more [Fig. 5.6(a)℄ and less [Fig. 5.6(b)℄densely distributed signals. Quantitatively, the estimation errors amount to
RMSEL=4 = 1.22o [Fig. 5.6(a)℄ and RMSEL=6 = 0.41o [Fig. 5.6(b)℄, respe
-tively, and Tab. 5.3 reports the values of the a
tual and estimated DoAs.61



5.3. NUMERICAL RESULTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-90 -75 -60 -45 -30 -15  0  15  30  45  60  75  90

S
ig

na
l E

ne
rg

y,
 a

bs
{s

k}
2

Angular Direction,  θk [deg]

Actual
Estimated

Thresholded, η=0.95(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-90 -75 -60 -45 -30 -15  0  15  30  45  60  75  90

S
ig

na
l E

ne
rg

y,
 a

bs
{s

k}
2

Angular Direction,  θk [deg]

Actual
Estimated

Thresholded, η=0.95(b)Figure 5.6: Single Snapshot (W = 1) DoA Estimation (M = 20, d = 0.5λ;
SNR = 2 dB; σ2

0 = 0.46, η = 0.95). A
tual and estimated DoAs when L̃ = L:(a) L = 4 and (b) L = 6.
62



CHAPTER 5. DIRECTION-OF-ARRIVAL ESTIMATION IN LINEARARRAYS THROUGH BAYESIAN COMPRESSIVE SENSING STRATEGIESTo draw more general out
omes on the behavior of the single-snapshot BCS-based DoA estimator, further experiments have been 
arried out varying thenumber of re
eiving elements M , the minimum spa
ing between the signals ∆θ,and the signal-to-noise ratio. The values of RMSE (5.20) and PL (5.23) aver-aged over Q = 100 simulations for ea
h s
enario at hand have been assumed asreliability/a

ura
y indi
ators. More spe
i�
ally, the RMSE has been 
omputedeither without or with the a-priori knowledge on the number of in
ident signals,
L. In this latter 
ase, the energeti
 thresholding has not been applied and the�rst L signals having higher strength have been sele
ted.With referen
e to the representative test 
ase with L = 2 and SNR = 7 dB(Fig. 5.7), Figure 5.7(a) shows that, as expe
ted, in
reasing the number ofdata when using more sensors (i.e., using larger arrays sin
e d = λ

2
has been set),drasti
ally redu
es the RMSE of more than one order of magnitude when L is a-priori known (RMSEM=5 = 14.75o → RMSEM=30 = 0.47o) or totally unknown(RMSEM=5 = 39.11o → RMSEM=30 = 1.55o). Analogously, PL improves from

PL⌋M=5 ≃ 40% up to PL⌋M=30 90%.Similar 
on
lusions hold true for the analyses whose results are summarized inFigs. 5.7(b)-5.7(
). Ex
ept for the behavior of PL in Fig. 5.7(
), where an almost
onstant threshold is yielded from SNR = 10 dB, both RMSE and PL behaveas in Fig. 5.7(a). Of 
ourse, the knowledge of L gives redu
ed errors, but the gapbetween the two estimates is still 
lose whatever the variable at hand (i.e., M ,
∆θ, SNR): ∆RMSE = 0.64 [Fig. 5.7(a)℄ (∆RMSE , RMSELknown−RMSELunk

RMSELunk
),

∆RMSE = 0.63 [Fig. 5.7(b)℄, and ∆RMSE = 0.52 [Fig. 5.7(
)℄. Su
h a resultfurther 
on�rms a key-feature of the BCS estimation, that is, its high reliabilityalso when no information on the s
enario is available.
5.3.3 Performan
e Assessment (MT −BCS-Based Estima-tion Approa
h)Dealing with multiple-snapshots, theMT implementation of the BCS-estimator(MT − BCS) has been used. Firstly, the same test 
ases of Fig. 5.5 have been
onsidered to perform a 
omparison with the ST −BCS performan
es. Towardsthis end, W = 25 
onse
utive time instants have been 
onsidered for modelingthe multi-snapshots a
quisition. Figure 5.8 shows the MT − BCS estimates,while the 
orresponding RMSE values are given in Tab. 5.4. As it 
an beobserved, the MT − BCS (Tab. 5.4) outperforms the single-snapshot (W = 1)
ST − BCS (Tab. 5.2) whatever the s
enario at hand. As a matter of fa
t,63
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5.3. NUMERICAL RESULTS
MT − BCS, W = 25 ST −BCS, W = 25Figure θ̃ RMSE θ̃ RMSE5.8(a) [−79,−59,
−41, 10]

0.00
[−79,−59,
−41, 10]

0.005.8(b) [27, 38, 42, 89] 0.50 [−86, 27, 39, 40] 83.255.8(
) [−69,−59,
−34, 57]

0.00
[−63,−59,
−34, 57]

2.065.8(d) [−90,−71,
−50,−41]

0.50
[−77,−50,
−45,−41]

57.965.8(e) [−77,−31,
16, 86]

0.50 [−81,−31, 16] 90.02Table 5.4: Multiple Snapshots (W = 25) DoA Estimation (M = 20, d = 0.5λ;
L = 4; SNR = 10 dB). DoAs estimated with the MT − BCS and the multi-snapshots ST −BCS. RMSE values.although the intrinsi
 di�
ulty to 
orre
tly retrieve the DoAs of signals 
lose toend-�re due to the fa
t that the antenna e�e
tive aperture tends to zero, betterestimations than Fig. 5.5 have been obtained for su
h 
riti
al situations thanksto theMT −BCS features [see Fig. 5.8(b), Fig. 5.8(d), and Fig. 5.8(e)℄. On theother side, the DoAs of signals far from dire
tions θ = ±90o are instead pre
iselyestimated (Tab. 5.4).To investigate whether su
h an improvement is due to theMT implementation oronly arises from the multi-snapshots a
quisition, the multi-snapshot data (W =
25) have been pro
essed with the ST − BCS as follows

s̃
avg
ST−BCS =

=

∑W
w=1



 1

σ2
BCS⌋w

(
Â(θ̃)T Â(θ̃)

σ2
BCS⌋w

+diag(pBCS⌋w)
)

−1

Â(θ̃)
T
vw





W

(5.24)then applying the energeti
 �ltering (5.15) on s̃
avg
ST−BCS. The results of su
h apro
essing are reported in Fig. 5.8 with the RMSE values in Tab. 5.4. It isworth noting that the performan
e of the multi-snapshots ST −BCS (W = 25)does not signi�
antly improve and the errors in estimating the DoAs turn outalmost unaltered. This is 
aused by the impossibility for the ST − BCS to
orrelate the estimates from di�erent snapshots although related to the sames
enario. 66
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MT −BCS, W = 25 ST −BCS, W = 25Fig. θ θ̃ RMSE θ̃ RMSE5.9(a) [0, 7, 35] [0, 7, 35] 0.0 [3, 4, 35] 2.455.9(b) [−37,−20, 0, 7, 22, 35] [−37,−20, 0, 7, 22, 35] 0.0 [−38,−37,−36,−20, 3, 4] 24.625.9(
) [−67,−37,−20,−9,

0, 7, 22, 35, 54]
[−67,−37,−20,−9,

0, 7, 22, 35, 54]
0.0

[−66,−31,−19,−14,
−10,−5,−4, 3, 4]

22.38Table 5.5: Multiple Snapshots (W = 25) DoA Estimation (M = 10, d = 0.5λ;
SNR = 7 dB; L ∈ {3, 6, 9}). DoAs estimated with the MT − BCS and themulti-snapshots ST −BCS. RMSE values.These 
on
lusions are further 
on�rmed from the results in Fig. 5.9 and Tab.5.5 
on
erned with an array of M = 10 elements spa
ed by d = λ

2
and di�erentin
ident signals, L = {3, 6, 9}, in an environment 
hara
terized by SNR =

7 dB. As expe
ted, the ST −BCS, although in its multi-snapshots version, over-estimates the unknown number of in
ident signals thus unavoidably in
reasingthe RMSE, while theMT −BCS 
orre
tly identi�es the a
tual signal dire
tionsin all the examples [Figs. 5.9(a)-5.9(
)℄.
Still dealing with multiple sequential a
quisitions, the �nal numeri
al analysis is
on
erned with a 
omparative assessment of theMT −BCS and state-of-the-artapproa
hes su
h as ESPRIT [91℄ and ROOT −MUSIC [90℄. Figure 5.10 plotsthe RMSE averaged over Q = 100 simulations for ea
h s
enario and yielded bytheMT−BCS, the multi-snapshot ST−BCS, and the two referen
e methods asa fun
tion ofW , the minimum spa
ing between two adja
ent signals ∆θ, and the
SNR. As shown in Fig. 5.10(a), the a

ura
y of theMT−BCS improves withWand at the upper value (W = 25) the error is of some order in magnitude belowthat of the ST − BCS [RMSEMT−BCS = (4.7× 10−3)

o vs RMSEST−BCS =
2.90o℄. Unlike the ST − BCS, the larger the number of snapshots, the betteris the estimation of the a
tual DoAs for both the matrix-
orrelation approa
hesand the MT −BCS. Moreover, the MT −BCS performs better than ESPRITand ROOT −MUSIC with a non-negligible and in
reasing enhan
ement of theestimation a

ura
y as the a
quisition time grows [Fig. 5.10(a)℄. As a matterof fa
t, both ESPRIT and ROOT − MUSIC do not further improve theirestimates after W = 10, while the pre
ision of the MT − BCS monotoni
allyenhan
es [RMSEMT−BCS⌋W=25 < (10−2)

o℄.As for the results when varying ∆θ and SNR, the arising out
omes still pointout the e�e
tiveness of the MT − BCS and its enhan
ed a

ura
y if 
omparedto state-of-the-art methods. As expe
ted, the ST − BCS turns out to be veryreliable when the angular spa
ing is quite large [Fig. 5.10(b)℄.69



5.4. DISCUSSIONS5.4 Dis
ussionsIn this Chapter, innovative strategies for the estimation of the dire
tions of ar-rival of signals impinging on linear arrays of ele
tromagneti
 sensors have beenpresented and assessed. Starting from a sparse representation of the problem so-lution, the DoA estimation problem has been addressed by means of two method-ologies based on the BCS paradigm, the one devoted to the single-snapshotpro
essing, the other exploiting multiple-snapshot a
quisitions. Advantages andlimitations of those implementations have been analyzed and highlighted also in
omparison with well-assessed state-of-the-art DoA estimation strategies.The proposed approa
hes have shown being able to:
• dire
tly work on the voltages measured at the output of the array elementswithout requiring the 
omputation of the 
ovarian
e matrix;
• provide a

urate and reliable DoAs estimation also without the a-prioriknowledge on the number of in
ident signals;
• estimate the DoAs just pro
essing a single snapshot, with more pre
isionfor signals 
loser to the boresight dire
tion;
• provide robust and very a

urate estimates when 
orrelating the informa-tion from multiple snapshots.Further advan
es, 
urrently under investigation and out-of-the-s
ope of this Chap-ter, will 
onsider potential improvements of the estimation a

ura
y thanks toa multi-resolution strategy, the possibility to estimate the DoAs of widebandsignals by 
orrelating the information available in the measurements at di�erentfrequen
ies thanks to the MT − BCS, and the de�nition of alternative sparserepresentations of the problem unknowns for straightforwardly exploiting simi-lar formulations when dealing with di�erent estimation problems still 
on
ernedwith adaptive arrays. It is also important to point out that from a method-ologi
al viewpoint, the extension of the proposed strategies to deal with planar(2D) or 
onformal (3D) antenna 
on�gurations is straightforward. In this 
ase,the number of array elements, usually larger than the linear array 
ase, and thehighest number of samples of the angular range, due to the fa
t that both θ and

φ dire
tions are present, will unavoidably in
rease the 
omputational 
ost.
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Chapter 6Dire
tion-of-Arrival Estimation inPlanar Arrays by BayesianCompressive SensingIn this Chapter, the Bayesian Compressive Sensing (BCS) is applied to esti-mate the dire
tions-of-arrival (DoAs) of narrow-band ele
tromagneti
 signalsimpinging on planar antenna arrangements. Starting from the measurement ofthe voltages indu
ed at the output of the array elements, the performan
e ofthe BCS-based approa
h is evaluated when data are a
quired at a single timeinstant and at 
onse
utive time instants, respe
tively. Di�erent signal 
on�gu-rations, planar array geometries, and noise 
onditions are taken into a

ount, aswell.
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6.1. INTRODUCTION6.1 Introdu
tionIn the last few years, we assisted to an extraordinary and still growing develop-ment and use of Compressive Sensing (CS)-based methods [81℄ in a wide numberof appli
ative 
ontexts su
h as 
ommuni
ations [92℄, bio-medi
ine [93℄, radar [94℄,and mi
rowave imaging [86℄[95℄. CS has proven to be a very e�e
tive resolutiontool when the relationship between the problem data and the unknowns is lin-ear and these latter are sparse (or they 
an be sparsi�ed) with respe
t to somerepresentation bases.In this Chapter, a probabilisti
 version of the CS, namely the Bayesian Compres-sive Sensing (BCS) [41℄, is used for estimating the dire
tions of arrival (DoAs)of ele
tromagneti
 signals impinging on an array of sensors in a planar arrange-ment. Sin
e the DoAs of the in
oming signals are few with respe
t to the wholeset of angular dire
tions, they 
an be modeled as a sparse ve
tor. A

ordingly,the estimation problem at hand 
an be reformulated as the retrieval of su
h asparse signal ve
tor whose non-null entries are related to the unknown angulardire
tions of the signals.Compared to the state-of-the-art estimation methods (e.g., the multiple signal
lassi�
ation (MUSIC) [65℄, the signal parameters via rotational invarian
e te
h-nique (ESPRIT ) [67℄, the maximum likelihood (ML) DoAs estimators [96℄,and the 
lass of te
hniques based on learning-by-examples (LBE) strategies[73℄[74℄[72℄), CS-based approa
hes have shown several interesting advantages.Likewise LBE-based methods, the 
omputationally-expensive 
al
ulation of the
ovarian
e matrix is not ne
essary sin
e the voltages measured at the outputof the array elements 
an be dire
tly pro
essed. CS-based methods turn outto be fast and also work with single time-instant (snapshot) data a
quisitions.Moreover, unlike MUSIC and ESPRIT that require the in
oheren
e of theimpinging signals and a set of measurements larger than the number of signals,
areful DoA estimates 
an be yielded also when the number of arriving signalsis greater than the array sensors as well as in the presen
e of highly-
orrelatedsour
es.Within the 
lass of CS-based approa
hes, deterministi
 strategies re
over thesignal ve
tor by enfor
ing the sparsity 
onstraints through the l1-norm, while the
l2-norm is adopted to quantify the mismat
h between measured and estimateddata as shown in [97℄ for the lo
alization of narrowband sour
es when using a
ir
ular array. Hybrid l1-norm and l2-norm formulations have been 
onsidered[98℄[99℄, as well. Others CS-based methods have been proposed [76℄[100℄[101℄also dealing with the DoAs estimation of 
orrelated sour
es [102℄. Unfortunately,
ommon formulations of the CS (i.e., based on deterministi
 strategies) requirea minimum number of measurements equal to twi
e the number of impingingsignals to satisfy the ne
essary 
ondition for the well-posedness of the problem(i.e., the restri
ted isometry property of the sapling matrix). To over
ome su
han issue, probabilisti
 CS-based approa
hes have been taken into a

ount [103℄72



CHAPTER 6. DIRECTION-OF-ARRIVAL ESTIMATION IN PLANARARRAYS BY BAYESIAN COMPRESSIVE SENSING(see also Chapter 5) as the one 
onsidered in this Chapter.The outline of the Chapter is as follows. The DoAs estimation problem, itssparse reformulation, and the BCS-based DoAs estimation approa
h are pre-sented in Se
t. 6.2. A sele
ted set of representative numeri
al results is reportedin Se
t. 6.3 to dis
uss, in a 
omparative fashion, the performan
e of the singleand multiple snapshot implementations of the two-dimensional extension of the
BCS method presented in Chapter 5 for di�erent array ar
hite
tures. Eventu-ally, some 
on
lusions are drawn (Se
t. 6.4).6.2 Mathemati
al FormulationLet us 
onsider a planar antenna array made of N isotropi
 sensors lo
ated on the
x− y plane. An unknown set of I signals si (r, t) = αi (t) e

j(2πf0t+ki·r), i = 1, ..., Iis supposed to impinge on the array from the unknown dire
tions Ψi = (θi, φi),
i = 1, ..., I, being 0◦ ≤ θi ≤ 90◦ and 0◦ ≤ φi ≤ 360◦. Su
h signals are modeledas narrowband ele
tromagneti
 plane waves (i.e., αi (t) ≃ αi, i = 1, ..., I) at the
arrier frequen
y f0, ki (i = 1, ..., I) being the i-th wave ve
tor having amplitude
k = |ki| = 2π

λ
, ∀i = 1, ..., I, where λ is the free spa
e wavelength.By modelling the ba
kground noise as an additive Gaussian pro
ess with zeromean and varian
e σ2, the phasor voltage measured at the n-th element is equalto

υn(τ) =
I∑

i=1

υi,n(τ) + ηn(τ) (6.1)where τ is the measurement time-instant/snapshot and ηn(τ) is the noise sampleat the same instant. Moreover,
υi,n(τ) = αi(τ)e

j 2π
λ
(xn sin θi cos φi+yn sin θi sinφi) (6.2)is the open 
ir
uit voltage indu
ed by the i-th impinging wave at the n-th planararray element lo
ated in the position rn = (xn, yn).The relationship between the measured data (i.e., υn(τ), n = 1, ..., N , τ =

1, ..., T ) and the unknown DoAs [i.e., Ψi = (θi, φi), i = 1, ..., I℄ 
an be thenrepresented in a 
ompa
t matrix form as follows
υ(τ) = H (Ψ) s(τ) + η(τ) , τ = 1, ..., T (6.3)where υ(τ) = [υ1(τ), υ2(τ), ..., υN(τ)]

∗ is the 
omplex measurement ve
tor, ∗denoting the transpose operation, and H (Ψ) = [h (Ψ1) , h (Ψ2) , ..., h (ΨI)] isthe steering ve
tor matrix where h (Ψi) = [hi,1, hi,2, ..., hi,N ]
∗ being

hi,n = ej
2π
λ
(xn sin θi cosφi+yn sin θi sinφi). Moreover, s(τ) = [α1(τ), α2(τ), ..., αI(τ)]

∗ isthe signal ve
tor and η(τ) = [η1(τ), η2(τ), ..., ηN (τ)]
∗ is the noise ve
tor.It is simple to observe that the solution of (6.3) is neither linear nor sparse withrespe
t to the problem unknowns Ψi = (θi, φi), i = 1, ..., I, while it is linear73



6.2. MATHEMATICAL FORMULATIONversus s(τ), ∀τ . In order to apply the BCS to the DoAs estimation in planararrays, the method in Chapter 5 for linear arrays has been exploited and heresuitably 
ustomized to the dimensionality (2D) at hand.To reformulate the original problem as a sparse one, the observation domain
omposed by all angular dire
tions 0◦ ≤ θ ≤ 90◦ and 0◦ ≤ φ ≤ 360◦ is partitioned(Fig. 6.1) in a �ne grid of K samples satisfying the 
ondition K ≫ I. Therefore,the terms H (Ψ) and s(τ) in (6.3) turn out being equal to
H̆
(
Ψ̆
)
=
[
h̆
(
Ψ̆1

)
, h̆
(
Ψ̆2

)
, ..., h̆

(
Ψ̆k

)
, ..., h̆

(
Ψ̆K

)] (6.4)and
s̆(τ) = [ᾰ1(τ), ᾰ2(τ), , ...ᾰk(τ), ...., ᾰK(τ)]

∗ . (6.5)By substituting (6.4) and (6.5) in (6.3), the problem is still linear with respe
tto also s̆(τ), but s̆(τ) [unlike s(τ)℄ is now sparse sin
e K ≫ I. A

ordingly, onlyfew 
oe�
ients ᾰk(τ), k = 1, ..., K are expe
ted to di�er from zero and exa
tlyin 
orresponden
e with the steering ve
tors h̆(Ψ̆k

) at the angular dire
tion Ψ̆kwhere the wave is estimated to impinge on the array. A

ordingly, the originalproblem of determining the DoAs, Ψi = (θi, φi), i = 1, ..., I, is reformulatedas the estimation of the (sparse) signal ve
tor ŝ(τ). The signal DoAs are thenretrieved as the dire
tions Ψ̂k =
(
θ̂k, φ̂k

) whose 
orresponding signal amplitudes
α̂k(τ) are non null.For single time-instant (T = 1) a
quisitions, the Single-Task Bayesian Compres-sive Sensing (ST − BCS) is used and the sparsest ve
tor ŝ(τ) is retrieved bymaximizing the posterior probability (see Chapter 5)

P
([
ŝ(τ), σ̂2, a(τ)

]∣∣υ(τ)
) (6.6)where σ̂2 is the estimate of the noise power, supposed not varying in time, and

a(τ) is the hyper-parameter ve
tor [45℄ enfor
ing the sparseness of the solution
ŝ(τ) at the τ -th snapshot. A

ordingly, the analyti
 form of the solution turnsout to be

ŝ(τ) =
1

σ̂2



Ĥ
(
Ψ̆
)∗

Ĥ
(
Ψ̆
)

σ̂2
+ diag (a(τ))




−1

Ĥ
(
Ψ̆
)∗

υ̂(τ) (6.7)where all terms are real sin
e the BCS works only with real numbers. Thesignal ve
tor, ŝ(τ) = [Re {ŝ(τ)} ; Im {ŝ(τ)}]∗, has dimension 2K × 1, υ̂(τ) =
[Re {υ̂(τ)} ; Im {υ̂(τ)}]∗ is a 2N × 1 ve
tor, while

Ĥ
(
Ψ̆
)
=


 Re

{
H̆
(
Ψ̆
)}

−Im
{
H̆
(
Ψ̆
)}

Im
{
H̆
(
Ψ̆
)}

Re
{
H̆
(
Ψ̆
)}


 (6.8)74
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Figure 6.1: Sket
h of the dis
retized observation domain for CS-based DoAsestimations.is 2N×2K matrix, Re {·} and Im {·} being the real and imaginary part, respe
-tively. The two 
ontrol parameters in (6.7), a(τ) and σ̂2, are obtained throughthe maximization of the fun
tion
ΠST

(
σ̂2, a(τ)

)
= K log

(
1

2π

)
− log |Ω(τ)|+ (υ̂(τ))∗ (Ω(τ))−1

υ̂(τ)

2
(6.9)by means of the relevan
e ve
tor ma
hine (RVM). In (6.7), Ω(τ) , σ̂2I +

Ĥ
(
Ψ̆
)
diag (a(τ))−1

Ĥ
(
Ψ̆
)∗ where I is the identity matrix.When a set of 
onse
utive snapshots is available, the Multi-Task BCS (MT −

BCS) implementation is used to statisti
ally 
orrelate the estimates derived forea
h snapshot by setting a 
ommon hyper-parameter ve
tor: a(τ) = a, ∀τ =
1, ..., T . Hen
e, the �nal MT − BCS solution is given by (see Chapter 4 andChapter 5)

ŝ =
1

T

T∑

τ=1

{[
Ĥ
(
Ψ̆
)∗

Ĥ
(
Ψ̆
)
+ diag (a)

]−1

Ĥ
(
Ψ̆
)∗

υ̂(τ)

} (6.10)where a is 
omputed through the RVM maximization of the following fun
tion
ΠMT (a) = −1

2

T∑

τ=1

{log (|Ω|) + (K + 2β1) log [(υ̂(τ))
∗
Ωυ̂(τ) + 2β2]} (6.11)75



6.3. NUMERICAL RESULTSwhere Ω , I + Ĥ
(
Ψ̆
)
diag (a)−1

Ĥ
(
Ψ̆
)∗ and β1 and β2 are two user-de�nedparameters [60℄.Although the 
ondition α̂k(τ) ≃ 0 or α̂k ≃ 0 usually holds true, the numberof non-null 
oe�
ients in either ŝ(τ) (ST − BCS) or ŝ (MT − BCS) 
ould belarger be
ause of the presen
e of the noise. Hen
e, the energy thresholding te
h-niques des
ribed in Chapter 5 is exploited to �rstly 
ount the number of arrivingsignals, Î, and then to estimate the 
orresponding DoAs. More in detail, the 
o-e�
ients α̂k(τ) (or α̂k) are �rstly sorted a

ording to their magnitude, then onlythe �rst Î 
oe�
ients whose 
umulative power 
ontent is lower than a per
ent-age χ of the totally re
eived signal power, namely ‖ŝ(τ)‖ =

∑K
k=1 (α̂k(τ))

2 (or
‖ŝ‖ =

∑K
k=1 (α̂k)

2), are preserved. Hen
e, Î is sele
ted su
h that∑Î
i=1 (α̂i(τ))

2 <

χ ‖ŝ(τ)‖ (or ∑Î
i=1 (α̂i)

2 < χ ‖ŝ‖).6.3 Numeri
al ResultsThe planar array BCS-based estimation method is assessed by means of thefollowing analysis devoted to evaluate (a) the performan
e of its di�erent im-plementations in 
orresponden
e with single snapshot (T = 1) or multiple-snapshots (T > 1) a
quisitions and (b) the impa
t of di�erent array 
on�gu-rations. Throughout the numeri
al assessment, the array elements have beenassumed uniformly-spa
ed of dx = λ
2
and dx = λ

2
along the x-axis and y-axis,respe
tively, and all signals have been 
hara
terized with the same amplitude

αi(τ) = αi+1(τ), i = 1, ..., I − 1. The measurements have been blurred withan additive Gaussian noise of varian
e σ2 su
h that the resulting signal-to-noiseratio turns out to be
SNR = 10× log

[∑N
n=1 |υno−noise

n |2

Nσ2

] (6.12)
υno−noise
n (n = 1, ..., N) being the voltage measured at the n-th array element inthe noiseless 
ase. The angular observation domain (Fig. 6.1) has been parti-tioned with a uniform grid 
hara
terized by a sampling step equal to ∆θ = 1.25◦and ∆φ = 1.25◦ along the elevation and azimuthal dire
tion, respe
tively. Theenergy threshold has been set to χ = 0.95 a

ording to the 
alibration resultspresented in Chapter 5.In order to quantify the reliability and the e�e
tiveness of the DoA estimation,the following indexes have been 
omputed. For ea
h i-th signal, the lo
ationindex [72℄ is de�ned as

ξi = ξ
(
Ψi, Ψ̂i

)
,

Φ
(
Ψi, Ψ̂i

)

Φ(max)
× 100 (6.13)76



CHAPTER 6. DIRECTION-OF-ARRIVAL ESTIMATION IN PLANARARRAYS BY BAYESIAN COMPRESSIVE SENSING
I {Ψi = (θi, φi) , i = 1, ..., I}
2 {(25, 60) ; (60, 140)}
4 {(25, 60) ; (60, 140) ; (70, 210) ; (60, 300)}
8 {(25, 60) ; (60, 140) ; (70, 210) ; (60, 300) ; (40, 210) ; (80, 45) ; (15, 5) ; (30, 350)}Table 6.1: Fully Populated Array - (N = 25; dx = dy = 0.5λ; I ∈ [2 : 8];
SNR = 10 dB; C = 50) - A
tual DoAs of the impinging signals.where

Φ
(
Ψi, Ψ̂i

)
=√(

sin θi cosφi − sin θ̂i cos φ̂i

)2
+
(
sin θi sinφi − sin θ̂i sin φ̂i

)2
+
(
cos θi − cos θ̂i

)2(6.14)and Φ(max) = maxΨi,Ψ̂i

{
Φ
(
Ψi, Ψ̂i

)}
= 2 is the maximum admissible error inthe DoA retrieval. Sin
e the number of arriving signals Î is unknown and itis derived from the BCS pro
essing, the global lo
ation index has been alsoevaluated as in Chapter 5

ξ =





1
I

[∑Î

i=1
ξ
(
Ψi, Ψ̂i

)
+
(
I − Î

)
ξ(penalty)

]
if Î < I

1
I

[∑I

i=1
ξ
(
Ψi, Ψ̂i

)
+
∑Î

i=I+1
ξ
(
Ψi, Ψ̂i

)]
if Î ≥ I

(6.15)where ξ(penalty) = maxΨi,Ψ̂i
{ξi} = 100 is the maximum of (6.13) and Ψi =

arg
{
mini=I+1

[
ξ
(
Ψi, Ψ̂i

)]}
. Sin
e it is preferred to dete
t all signals reallypresent in the s
enario, although overestimating their number then missing someof them, the penalty is 
onsidered only when Î < I .A. Single and Multiple Snapshot BCS-based DoAs Estimation Te
h-niquesLet us 
onsider the fully populated array of Fig. 6.2 with N = Nx × Ny = 25elements, Nx = Ny = 5 being the number of elements along the x and y axes,
olle
ting the data υ(τ). Several di�erent ele
tromagneti
 s
enarios have been
onsidered in whi
h I = 2, I = 4, and I = 8 signals are supposed to impinge onthe planar array from the dire
tions indi
ated in Tab. 6.1(1) 1.1(1) In the numeri
al results, the a
tual DoAs are 
hosen lying on the sampling grid ofthe observation domain. Whether this 
ondition does not hold true, o�-grid 
ompensationmethods [104℄[105℄, already proposed in the state-of-the-art literature, 
an be pro�tably used.77



6.3. NUMERICAL RESULTS
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x/λFigure 6.2: Geometry of the re
eiving fully populated array (N = 25).The power of the ba
kground noise has been set to yield SNR = 10dB. In orderto test the behavior of the ST − BCS and the MT − BCS, the simulation forea
h signal 
on�guration has been repeated C = 50 times, while varying the noisesamples on the data. The DoAs estimation error has been therefore evaluatedthrough the average lo
ation index de�ned as
ξ(avg) =

1

C

C∑

c=1

ξ(c) (6.16)
ξ(c) being 
omputed as in (6.15).As for the ST − BCS, a single snapshot has been pro
essed ea
h time (T = 1).Figure 6.3 shows the best (Fig. 6.3 - left 
olumn) and the worst (Fig. 6.3 -right 
olumn) solutions in terms of minimum (ξ(min) = minc=1,...,C

{
ξ(c)
}) andmaximum (ξ(max) = maxc=1,...,C

{
ξ(c)
}) lo
ation error, respe
tively, among the

C = 50 DoAs estimations 
arried out when I = 2 [Figs. 6.3(a)-6.3(b)℄, I = 4[Figs. 6.3(
)-6.3(d)℄, and I = 8 [Figs. 6.3(e)-6.3(f )℄. In Fig. 6.3, the a
tual
DoAs are denoted with a point at the 
enter of a 
ir
le, while the 
olor pointsindi
ate the estimated signal lo
ations and amplitudes. For the sake of 
larity,the retrieved DoAs are also reported in Tab. 6.2 where the number of estimatedsignals Î is given, as well. As it 
an be observed, the strength of the estimatedsignals is di�erent (Fig. 6.3), even though they impinge on the antenna withthe same energy, be
ause of the presen
e of the noise. On the other hand, the
DoAs are predi
ted with a high degree of a

ura
y when I = 2 and I = 4 as
on�rmed by the values of the lo
ation error (Tab. 6.3). As a matter of fa
t,the error values are low also for the worst solutions among the C trials (i.e.,
ξ(max)

∣∣
I=2

= 3.80% and ξ(max)
∣∣
I=4

= 3.89%). It is worth also noting that for
I = 2 the lo
ation error is small even though the number of dete
ted signals aregreater than the a
tual ones ( Î(wst)

∣∣∣
I=2

= 3) be
ause of two signals have very78
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I Î(bst)

{
Ψ̂

(bst)
i =

(
θ̂
(bst)
i , φ̂

(bst)
i

)
, i = 1, ..., I

}

2 2 {(25, 60) ; (60, 140)}
4 4 {(23.75, 65) ; (60, 140) ; (63.75, 300) ; (70, 210)}
8 7 {(23.75, 345) ; (32.5, 65) ; (67.5, 145) , (71.25, 300) , (72.5, 300) , (82.5, 40) , (90, 205)}
I Î(wst)

{
Ψ̂

(wst)
i =

(
θ̂
(wst)
i , φ̂

(wst)
i

)
, i = 1, ..., I

}

2 3 {(22.5, 60) ; (57.5, 135) ; (58.75, 137.5)}
4 4 {(23.75, 55) ; (63.75, 145) ; (61.25, 300) ; (77.5, 210)}
8 4 {(21.25, 345) ; (28.75, 70) ; (55, 210) ; (90, 45)}Table 6.2: Fully Populated Array - (N = 25; dx = dy = 0.5λ; I ∈ [2 : 8];
SNR = 10 dB; T = 1; C = 50) - Values of the DoAs for the best and worstestimation obtained by means of the ST − BCS among the C di�erent noisys
enarios.

I ξ(min) ξ(max) ξ(avg) ξ(var) t(avg) [sec]

ST −BCS
2 0.00 3.80 1.36 1.24 4.48× 10−1

4 1.34 3.70 2.07 6.02× 10−1 1.37
8 3.02× 101 8.23× 101 6.06× 101 2.96× 102 1.77

MT − BCS
2 0.00 2.18 8.01× 10−1 4.06× 10−1 3.97
4 5.45× 10−1 1.91 1.37 1.19× 10−1 6.44
8 5.27 3.31× 101 1.81× 101 5.94× 101 7.80Table 6.3: Fully Populated Array - (N = 25; dx = dy = 0.5λ; I ∈ [2 : 8];

SNR = 10 dB; T = {1, 2}; C = 50) - Statisti
s (minimum, maximum, average,and varian
e) of the lo
ation index ξ among C di�erent noisy s
enarios whenusing the ST −BCS (T = 1) and the MT − BCS (T = 2).
lose DoAs (as 
ompared to the sampling steps ∆θ and ∆φ). However, if the
ST −BCS shows being robust and a

urate in su
h s
enarios (I = 2 and I = 4),it is not able to 
orre
tly lo
ate the a
tual DoAs when the number of signalsin
reases to I = 8 [Figs. 6.3(e)-6.3(f ) - Tab. 6.2℄. Indeed, the lo
ation errorsigni�
antly in
reases as indi
ated by the indexes in Tab. 6.3.As for the 
omputational e�
ien
y, the ST −BCS is able to perform the DoAsestimation in a limited CPU time (t(avg) < 2.0 [sec] - Tab. 6.3)(2)2 also thanksto the single-snapshot pro
essing.In order to investigate the e�e
ts of the SNR on theDoAs estimation 
apabilitiesof the ST −BCS, the SNR has been varied from −5dB up to 30dB with a step2(2) The simulations have been run using a standard pro
essing unit (i.e., 2.4GHz PC with
2GB of RAM) with a non-optimized 
ode. 79
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(e) (f)Figure 6.3: Fully Populated Array - (N = 25; dx = dy = 0.5λ; I ∈ [2 : 8];
SNR = 10 dB; T = 1; C = 50) - Plot of the best (left 
olumn) and worst (right
olumn) estimations obtained by means of the ST −BCS among the C di�erentnoisy s
enarios when (a)(b) I = 2, (c)(d) I = 4, and (e)(f) I = 8.80
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SNR ∈ [−5 : 30] dB; T = 1; C = 50) - Behavior of the lo
ation index ξ(ave)averaged among C di�erent noisy s
enarios versus the SNR when using the
ST − BCS.of 5dB, while keeping the same DoAs of Tab. 6.1. In Fig. 6.4, the values ofthe average lo
ation index are reported. As it 
an be noti
ed, the lo
ation index
ξ(avg) for I = 2 and I = 4 monotoni
ally de
reases, as one should expe
t, withthe in
rement of the SNR. However, the ST − BCS estimates when I = 8turn out to be still non-reliable also for higher SNR 
on�rming the di�
ulty ofdealing with su
h a 
omplex s
enario just pro
essing one snapshot.Let us now analyze the MT − BCS behavior. Firstly, the same problems ad-dressed by means of the ST − BCS in Fig. 6.3 are 
onsidered by taking intoa

ount only T = 2 snapshots. The best and worst MT − BCS results are re-ported in Fig. 6.5 and the 
orresponding DoAs are given in Tab. 6.4. Unlikethe ST − BCS (Tab. 6.2), the number of impinging signals is always 
orre
tlyidentify in the best 
ase (Fig. 6.5 - left 
olumn), while in the worst 
ase (Fig. 6.5- right 
olumn), Î = I only when I = 2 and I = 4 signals. As a matter of fa
t,the average lo
ation error when I = 8 is still high (ξ(avg)∣∣

I=8
= 18.1%). The useof only T = 2 snapshots does not guarantee reliable performan
e also with the

MT −BCS, even though the advantages in terms of a

ura
y of theMT −BCSover the ST −BCS are non-negligible as pointed out by the values in Tab. 6.3.On the opposite, the 
omputational 
ost of the MT − BCS is higher than thatof the ST − BCS (Tab. 6.3). 81
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(e) (f)Figure 6.5: Fully Populated Array - (N = 25; dx = dy = 0.5λ; I ∈ [2 : 8];
SNR = 10 dB; T = 2; C = 50) - Plot of the best (left 
olumn) and worst (right
olumn) estimations obtained by means of theMT−BCS among the C di�erentnoisy s
enarios when (a)(b) I = 2, (c)(d) I = 4, and (e)(f) I = 8.82
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I Î(bst)

{
Ψ̂

(bst)
i =

(
θ̂
(bst)
i , φ̂

(bst)
i

)
, i = 1, ..., I

}

2 2 {(25, 60) ; (60, 140)}
4 4 {(25, 60) ; (58.75, 300) ; (60, 140) ; (71.25, 210)}
8 8 {(22.5, 350) ; (23.75, 350) ; (32.5, 70) ; (40, 205) ; (57.5, 300) ; (61.25, 140) ; (75, 210) ; (90, 45)}
I Î(wst)

{
Ψ̂

(wst)
i =

(
θ̂
(wst)
i , φ̂

(wst)
i

)
, i = 1, ..., I

}

2 2 {(26.25, 55) ; (62.5, 140)}
4 4 {(26.25, 60) ; (57.5, 300) ; (60, 140) ; (75, 210)}
8 6 {(22.5, 350) ; (42.5, 210) ; (60, 145) ; (62.5, 295) ; (65, 210) ; (76.25, 45)}Table 6.4: Fully Populated Array - (N = 25; dx = dy = 0.5λ; I ∈ [2 : 8];
SNR = 10 dB; T = 2; C = 50) - Values of the DoAs for the best and worstestimation obtained by means of the MT − BCS among the C di�erent noisys
enarios.More reliable MT − BCS estimations 
an be yielded when pro
essing a largernumber of snapshots. Figure 6.6 shows that, also for 
omplex ele
tromagneti
s
enarios (i.e., I = 8 - Tab. 6.1), the average lo
ation error gets lower when Tin
reases. By 
onsidering SNR = 10 dB as a representative example, one 
anobserve that ξ(avg) redu
es of almost one order of magnitude from ξ(avg)

∣∣
I=8

=

18.1% (T = 2) to ξ(avg)
∣∣
I=8

= 2.20% (T = 5). As expe
ted, more a

urateestimations arise with even more data (i.e. ξ(avg)∣∣
I=8

= 1.23% when I = 10 and
ξ(avg)

∣∣
I=8

= 0.95% when I = 25 - Fig. 6.6). The bene�ts from the 
orrelation ofthe information 
oming from di�erent time instants thanks to the MT − BCSare also highlighted by the behavior of the plots in Fig. 6.6: ξ(avg) more rapidlyde
reases for higher values of T when the quality of the data improves (i.e., higher
SNR).As long as the appli
ations at hand do not require the fast or real-time identi�-
ation of the DoAs and there is the possibility to 
olle
t the data at 
onse
utivetime instants, the robust estimation of a larger number of impinging signals is al-lowed. In this 
ontext, Figure 6.7 shows the results obtained with theMT−BCSwhen I = 12 [Figs. 6.7(a)-(b)℄ and I = 18 [Figs. 6.7(
)-(d)℄ (SNR = 10dB). Asfor the 
ase I = 12, the DoAs are estimated with a good degree of a

ura
y alsoin the worst 
ase within the C experiments [Fig. 6.7(b) - ξ(max)

∣∣
I=12

= 1.77%℄,while the average lo
ation error amounts to ξ(avg)
∣∣
I=12

= 1.04%. Di�erently, the average error is ξ(avg)∣∣
I=18

= 4.70% and in the worst 
ase [Fig. 6.7(d)℄is ξ(max)
∣∣
I=18

= 7.85% when I = 18. For the sake of 
ompleteness, the bestsolutions are reported in Figs. 6.7(a) and 6.7(
) when I = 12 and I = 18,respe
tively.B. DoAs Estimation Performan
e for Di�erent Array GeometriesIn this se
tion, the behavior of the BCS-based single-snapshot and multiple-snapshots DoAs estimators is analyzed for di�erent array ar
hite
tures. The83
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[−5 : 30] dB; T ∈ [2 : 25]; C = 50) - Behavior of the lo
ation index ξ(ave) averagedamong C di�erent noisy s
enarios versus the SNR when using the MT − BCSwith di�erent number of available snapshots T .three array geometries in Fig. 6.8 are taken into a

ount. As it 
an be noti
ed,the �rst array [Fig. 6.8(a)℄ has the same number of elements of the fully pop-ulated one but the sensors are randomly lo
ated on the antenna aperture. Theother two arrays [Figs. 6.8(b) and 6.8(
)℄ have less elements (i.e., N = 9) butsame aperture length of the fully populated array along the two 
oordinate axes.In the �rst example, the performan
e of the ST −BCS is assessed when 
hang-ing the number of impinging signals from I = 2 up to I = 8, while keepingthe noise level to SNR = 10dB. Figure 6.9 shows the average lo
ation error(C = 50) obtained in 
orresponden
e with the three arrays. Unlike the fullypopulated arrangement enabling good estimation features espe
ially until I = 4(ξ(avg)∣∣

I=2,3,4
< 2.00%), both the L-shaped array and the 
ross-shaped one donot allow reliable estimations also for the simplest s
enario (i.e., ξ(avg)∣∣L−Shaped

I=2
=

7.69% and ξ(avg)∣∣Cross−Shaped

I=2
= 10.87%). This is due, on the one hand, to the lim-ited information 
olle
ted from a single snapshot a
quisition and, on the otherhand, to the fa
t that the number of sensors is one third the elements of thefully-populated 
on�guration (i.e., NFully−Populated/NL/Cross−Shaped = 2.78). Asfor the random array, the a
hieved performan
e are almost equal to those of thefully populated solution thus 
on�rming the higher reliability when having atdisposal a larger number of sensors. When using the MT −BCS, no signi�
ant84
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(c) (d)Figure 6.7: Fully Populated Array - (N = 25; dx = dy = 0.5λ; I = {12, 18};
SNR = 10 dB; T = 25; C = 50) - Plot of the best (left 
olumn) and worst (right
olumn) estimations obtained by means of theMT−BCS among the C di�erentnoisy s
enarios when (a)(b) I = 12 and (c)(d) I = 18.
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I ∈ [2 : 8]; SNR = 10dB; T = 1; C = 50) - Behavior of the lo
ation index ξ(ave)averaged among C di�erent noisy s
enarios versus the number of arriving signals
I when using the ST −BCS.improvements o

ur in 
omparison with the ST − BCS when T = 2, sin
e av-erage errors higher than ξ(avg) = 2.00% [Fig. 6.10(a)℄ are obtained with boththe L-shaped or 
ross-shaped array. Whether T = 25 snapshots are at disposal[Fig. 6.10(b)℄, it turns out that the estimates from the L-shaped array presentaverage lo
ation errors below ξ(avg) = 2.00% until I = 5. Di�erently, alwaysworse performan
e are a
hieved with the 
ross-shaped array [Fig. 6.10(b)℄.In order to give some insight on the e�e
ts of the SNR, let us 
onsider the 
ase
I = 2 as a representative example. The results from the ST − BCS and the
MT − BCS are reported in Fig. 6.11(a) and Fig. 6.11(b), respe
tively. Thelo
ation error tends to redu
e as the SNR in
reases for all array stru
tures, eventhough the L-shaped array outperforms the 
ross-shaped one and the randomarray behavior is always very 
lose to that of the fully populated 
on�guration.6.4 Dis
ussionsThe BCS method has been 
ustomized for the DoAs estimation of multiplesignals impinging on planar arrays. Two di�erent implementations, one requiringthe data measured at a single snapshot and the other using the data 
olle
ted87
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6.4. DISCUSSIONSat multiple snapshots, have been tested on a wide number of di�erent s
enariosas well as using di�erent array arrangements. Likewise the linear array 
ase, thereported results have shown that:
• the two BCS-based implementations provide e�e
tive DoAs estimates al-though just pro
essing the sensors output voltages and not the 
ovarian
ematrix;
• the joint estimation of the signals number and DoAs is enabled;
• the 
orrelation 
apability of the MT − BCS allows one to yield betterresults than the ST −BCS at the expenses of an in
reased 
omputationalburden.As for the behavior of the two approa
hes versus the planar array geometry, itis possible to 
on
lude that:
• the fully-populated and the random arrays give the best performan
e as
ompared to both the L-shaped and the 
ross-shaped array, but using alarger number of sensors;
• under the assumption of the same number of elements, the L-shaped 
on-�guration always outperforms the pre
ision from the 
ross-shaped arrange-ment.

90



Chapter 7Con
lusions and futuredevelopmentsIn this 
hapter, some 
on
lusions and ideas for future resear
h are presented.
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In this thesis, the problem of the synthesis and 
ontrol of antenna arrayswithin the Bayesian Compressive Sensing (BCS) framework has been investi-gated. More in detail, the BCS method has been 
ustomized in order to dealwith (i) the problem of the synthesis of linear antenna arrays and (ii) the prob-lem of Dire
tion-of-Arrival (DoA) estimation of signals impinging on an antennaarray.The array pattern synthesis problem has been reformulated in a BayesianCompressive fashion as a pattern mat
hing problem with sparseness 
onstraintsad then it has been solved by using a suitable RVM approa
h. In addition,the MT −BCS approa
h has been adopted to extend the BCS array synthesismethod in order to deal with the synthesis of asymmetri
al patterns (arrays with
omplex weights). A set of representative results have been presented in orderto assess the performan
es of the proposed method. Comparisons with the stateof the art have been shown and dis
ussed, as well. The main features shown bythe proposed te
hnique are summarized in the following:
• the BCS methodology is able to approximate the pattern produ
ed by auniform array arrangement with a high degree of a

ura
y, providing atthe same time a 
onsistent redu
tion in the total element 
ount.
• the MT −BCS approa
h improves the ST −BCS one, allowing the a

u-rate and e�
ient synthesis of 
omplex-weights arrays with non-symmetri
alpatterns.
• with the proposed BCS strategy is very easy to take into a

ount of appli-
ation spe
i�
 
onstraints in the radiation pattern or in the array geometry.
• the BCS-based proposed methodology positively 
ompares with re
entlyintrodu
ed state-of-the-art approa
hes, su
h as the FBMPM .The DoA estimation problem has been addressed by means of two methodolo-gies based on the Bayesian Compressive Sensing paradigm, one exploiting single-snapshot measurements, the other one devoted to the pro
essing of multiple-snapshots data. A set of representative examples 
on
erning the DoA estimationin di�erent s
enarios have been presented and dis
ussed. Some additional numer-i
al results 
on
erning the 
omparison with other state-of-the art methodologieshave been presented, as well. The main out
omes of this work are:
• the 
omputation of the 
ovarian
e matrix is not required and the estimation
an be performed by dire
tly pro
essing the measured voltages.
• the a-priori knowledge of the number of in
oming signals is not required inorder to obtain an a

urate and reliable estimation.
• the method is able to provide a

urate results with a limited number ofsnapshots. In some s
enarios is is possible to obtain good estimations withonly one snapshots. 92



CHAPTER 7. CONCLUSIONS AND FUTURE DEVELOPMENTS
• the MT − BCS approa
h outperforms the ST − BCS one thanks to thee�
ient 
orrelation of multiple snapshots data.
• the approa
h has been extended to the azimuth-elevation estimation withplanar arrays, a
hieving a

urate results also in this 
ase.Con
erning the array synthesis problem, future works will 
on
ern the analysis ofthe mutual 
oupling e�e
t in the synthesized 
on�guration and dire
tive elementssynthesis. In addition, the synthesis of re
on�gurable arrays as well as arrays forwideband appli
ations will be matter of future studies.Regarding the DoA estimation problem, future study will deal with the synthesisof wideband signals by 
orrelating the information available at multiple frequen-
ies. Moreover, in order to redu
e the 
omputational burden of the algorithm,suitable multiresolution strategies will be implemented and assessed.
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Appendix ADerivation of (4.14)
To solve (4.13), the 
onditional probability P

(
wH | F̂H

) is written a

ording tothe Bayes theorem, as
P
(
wH | F̂H

)
,

P
(
F̂H

∣∣∣wH

)
P (wH)

P
(
F̂H

) (A.1)where P
(
F̂H

∣∣∣wH

) is the `likelihood', whereas P
(
F̂H

) and P (wH) are thepriors of F̂H and wH , respe
tively. Equation (A.1) is substituted in (4.13) toyield
wMT−BCS

H = arg



max

wH



P
(
F̂H

∣∣∣wH

)
P (wH)

P
(
F̂H

)





 (A.2)Analogously to the BCS 
ase, P (wH) in (A.2) is used to enfor
e the `sparseness'of wH (i.e., the minimization of ‖wH‖ℓ0) [21℄, but besides the BCS de�nition,the MT −BCS prior also establishes the interrelationships between wR and wI .Towards this end, a shared prior is pla
ed a
ross the two (i.e., H = R and H = I)

CS �tasks� in Eq. (A.2) [42℄. Mathemati
ally, it is assumed that [42℄
P (wH) =

∫
P
(
wH | â, σ̂2

)
P (â)P

(
σ̂2
)
dâdσ̂2 (A.3)where â = {ân; n = 1, ..., N}, â ∈ RN , is the �shared� hyperparameters ve
tor[42℄, whose asso
iated hyperpriors still 
omply with the Gamma distribution [42℄

P (â) =
N∏

n=1

[
ββ1
2 (ân)

β1−1 e−β2ân

∫∞

0
tβ1−1e−tdt

] (A.4)as for the BCS [see Eq. (5) - [21℄℄. Moreover, a �shared� Gamma hierar
hi
alprior is enfor
ed on σ̂2 [42℄ with the same form as in the BCS (see Eq. (6) -105



[21℄)
P
(
σ̂2
)
=
ββ3

4

(
1
σ̂2

)(β3−1)
e−

β4
σ̂2

∫∞

0
tβ3−1e−tdt

(A.5)where the user-de�ned 
oe�
ients β1-β4 are the so-
alled `s
ale priors' [42℄.Con
erning P (wH | â, σ̂2), the following hierar
hi
al Gaussian model is as-sumed [42℄
P
(
wH | â, σ̂2

)
=
[
(2πσ̂)−N

] N∏

n=1

√
ân exp

[
− ân

(
wH

n

)2

2σ̂2

]
. (A.6)Ba
k substituting (A.3) in (A.2), it results that

wMT−BCS
H =

= arg

{
maxwH

[∫ P(wH |â,σ̂2)P( F̂H|wH)P(â)P(σ̂2)
P(F̂H)

dâdσ̂2

]} (A.7)and, by integrating over σ̂2 and performing simple mathemati
al manipulations,the relation (A.7) 
an be rewritten as
wMT−BCS

H = arg

{
max
wH

[∫
P
(
wH | F̂H , â

)
P
(
â

∣∣∣F̂H

)
dâ

]}
. (A.8)As far as the �rst term in (A.8) is 
on
erned, one 
an noti
e that [42℄

P
(
wH | F̂H , â

)
=

∫
P
(
wH | F̂H , â, σ̂

2
)
P
(
σ̂2
)
dσ̂2 (A.9)whose integrand is given by

P
(
wH | F̂H , â, σ̂

2
)
P (σ̂2) =

P( F̂H|wH ,σ̂2)P(wH |â,σ̂2)P(σ̂2)
∫
P( F̂H|wH ,σ̂2)P(wH |â,σ̂2)dwH

(A.10)a

ording to Bayes' theorem. By using (A.5) and (A.6), and observing that[see (4.11)℄
P
(
F̂H

∣∣∣wH , σ̂
2
)
=

1

(2πσ̂2)K/2
exp

(
− 1

2σ̂2

∥∥∥F̂H − Φ̂wH

∥∥∥
2
)
, (A.11)it results that

P
(
wH | F̂H , â

)
=

(∫∞

0
tβ1+N/2−1e−tdt

)
×

×
[
1+ 1

2β2
(wH−µ̂H )T Σ̂−1(wH−µ̂H )

]
−(β1+N/2)

(
∫
∞

0 tβ1−1e−tdt)(2πβ2)
N/2

√
|Σ̂|

(A.12)where µ̂H , Σ̂Φ̂T F̂H and Σ̂ ,
(
Â + Φ̂T Φ̂

)−1, being Â , diag (â).106



APPENDIX A. DERIVATION OF (4.14)By analyzing the expression of P (wH | F̂H , â
), it is worth noti
ing that theposterior distribution overwH is now a multivariate Student-t distribution (A.12)instead of the multivariate Gaussian distribution of the BCS (Eq. (9) - [21℄).Moreover, the s
ale terms β3 and β4 do not have to be spe
i�ed unlike β1 and β2sin
e the 
orresponding distributions are not expli
itly required for the 
ompu-tations.Con
erning the remaining term in the integral of (A.8), a �delta-fun
tion�approximation is adopted analogously to the BCS 
ase [42℄ sin
e its 
losed-form
omputation is not feasible. Towards this end, let us �rstly noti
e that

P
(
â

∣∣∣F̂H

)
∝ P

(
F̂H

∣∣∣ â
)
P (â)or in a di�erent fashion

P
(
â

∣∣∣F̂H

)
∝
[∫

P
(
F̂H

∣∣∣wH , σ̂
2
)
P (wH | â, σ̂2) ×

× P (σ̂2) dwHdσ̂
2]P (â)

(A.13)whose mode (over the two tasks H ∈ {R, I}) 
an be 
omputed, by using (A.11),(A.5), and (A.6), as [42℄
âMT−BCS = argmax

â

{
LMT−BCS (â)

} (A.14)where LMT−BCS (â) is the logarithm of the MT − BCS �marginal likelihood�given by
LMT−BCS (â) = −1

2

∑
H

{
log

(∣∣∣∣I + Φ̂
[
Â
]−1

Φ̂T

∣∣∣∣
)
+

+ (N + 2β1) log

[
F̂T

H

(
I + Φ̂

[
Â
]−1

Φ̂T

)
F̂H + 2β2

]}
.

(A.15)By using (A.14), the delta-fun
tion approximation is then applied to obtain
P
(
â

∣∣∣F̂H

)
≈ δ

(
â− âMT−BCS

)
. (A.16)By substituting (A.12) and (A.16) in (A.8) and sin
e the mode of a multi-variateStudent-t distribution is equal to its average value (i.e., µ̂H), it turns out that

wH⌋MTBCS =

= arg
{
maxwH

[∫
P
(
wH | F̂H , â

)
δ
(
â− âMT−BCS

)
dâ
]}

=

= arg
{
maxwH

[
P
(
wH | F̂H , â

)⌋
â=âMT−BCS

]}

= µ̂H⌋â=âMT−BCS .

(A.17)
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