
Università degli Studi di Trento
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Introduction

The graph-theoretical based formulation for the representation of the data-driven
structure and the dynamics of complex systems is rapidly imposing as the paramount
paradigm [1] across a variety of disciplines, from economics to neuroscience, with
biological -omics as a major example. In this framework, the concept of Null Model
borrowed from the statistical sciences identifies the elective strategy to obtain a
baseline points of modelling comparison [2]. Hereafter, a null model is a graph
which matches one specific graph in terms of some structural features, but which
is otherwise taken to be generated as an instance of a random network.

In this view, the network model introduced by Erdos & Renyi [3], where ran-
dom edges are generated as independently and identically distributed Bernoulli
trials, can be considered the simplest possible null model. In the following years,
other null models have been developed in the framework of graph theory, with the
detection of the community structure as one of the most important target[4]. In
particular, the model described in [5] introduces the concept of a randomized ver-
sion of the original graph: edges are rewired at random, with each expected vertex
degree matching the degree of the vertex in the original graph. Although aimed
at building a reference for the community detection, this approach will play a key
role in one of the model considered in this thesis. Note that, although being the
first problem to be considered, designing null models for the community structures
detection is still an open problem [6, 7].

Real world applications of null model in graph theory have also gained pop-
ularity in many different scientific areas, with ecology as the first example: see
[8] for a comprehensive overview. More recently, interest for network null models
arose also in computational biology [9, 10], geosciences [11] and economics [12, 13],
just to name a few.

In the present work the theoretical design and the practical implementation of
a series of algorithms for the construction of null models will be introduced, with
applications ranging from functional genomics to game theory for social studies.
The four chapters devoted to the presentation of the examples of null model are
preceded by an introductory chapter including aa quick overview of graph theory,
together with all the required notations.
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The first null model is the topic of the second chapter, where a suite of novel
algorithms is shown, aimed at the efficient generation of complex networks under
different constraints on the node degrees. Although not the most important ex-
ample in the thesis, the premiment position dedicated to this topic is due to its
strict familiarity with the aforementioned classical null models for random graph
construction. Together with the algorithms definition and examples, a thorough
theoretical analysis of the proposed solutions is shown, highlighting the improve-
ments with respect to the state-of-the-art and the occurring limitations. Apart
from its intrinsic mathematical value, the interest for these algorithms by the
community of systems biology lies in the need for benchmark graphs resembling
the real biological networks. They are in fact of uttermost importance when testing
novel inference methods, and as testbeds for the network reconstruction challenges
such as the DREAM series [14, 15, 16].

The following Chapter three includes the most complex application of null mod-
els presented in this thesis. The scientific workfield is again functional genomics,
namely the combinatorial approach to the modelling of patterns of mutations in
cancer as detected by Next Generation Sequencing exome Data. This problem has
a natural mathematical representation in terms of rewiring of bipartite networks
and mutual-exclusively mutated modules [17, 18], to which Markov chain updates
(switching-steps) are applied through a Switching Algorithm SA. Here we show
some crucial improvements to the SA, we analytically derive an approximate lower
bound for the number of steps required, we introduce BiRewire, an R package im-
plementing the improved SA and we demonstrate the effectiveness of the novel
solution on a breast cancer dataset.

A novel threshold-selection method for the construction of co-expression net-
works based on the Pearson coefficient is the third and last biological example
of null model, and it is outlined in Chapter four. Gene co-expression networks
inferred by correlation from high-throughput profiling such as microarray data
represent a simple but effective technique for discovering and interpreting linear
gene relationships. In the last years several approach have been proposed to tackle
the problem of deciding when the resulting correlation values are statistically sig-
nificant. This is mostly crucial when the number of samples is small, yielding a
non negligible chance that even high correlation values are due to random effects.
Here we introduce a novel hard thresholding solution based on the assumption
that a coexpression network inferred by randomly generated data is expected to
be empty. The theoretical derivation of the new bound by geometrical methods is
shown together with two applications in oncogenomics.

The last two chapters of the thesis are devoted to the presentation of null
models in non-biological contexts.

In Chapter 5 a novel dynamic simulation model is introduced mimicking a
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random market in which sellers and buyers follow different price distributions
and matching functions. The random marked is mathematically formulated by a
dynamic bipartite graph, and the analytical formula for the evolution along time
of the mean price exchange is derived, together with global likelihood function for
retrieving the initial parameters under different assumptions.

Finally in Chapter 6 we describe how graph tools can be used to model ab-
straction and strategy (see [19, 20, 21]) for a class of games in particular the TTT
solitaire. We show that in this solitaire it is not possible to build an optimal (in
the sense of minimum number of moves) strategy dividing the big problems into
smaller subproblems. Nevertheless, we find some subproblems and strategies for
solving the TTT solitaire with a negligible increment in the number of moves. Al-
though quite simple and far from simulating highly complex real-world situations
of decision making, the TTT solitaire is an important tool for starting the explo-
ration of the social analysis of the trajectories of the implementation of winning
strategies through different learning procedures [22].
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Chapter 1

Basics of graphs

The word graph was first introduced by James Joseph Sylvester, an English math-
ematician, in 1878. In his paper, published in Nature, he highlighted the analogy
between ”quantic invariants” and ”co-variants” of algebra and molecular diagrams.
Euler laid the foundations of graph theory in 1735 sixty years before (without us-
ing the word graph!), solving the Seven Bridges of Kønigsberg problem. A century
after the Euler’s paper, Arthur Cayley started to study trees a particular class of
graphs, in order to solve an analytical forms arising from differential calculus. In
1937 George Plya gave its contributions in theoretical chemistry studying some
techniques related to the enumeration of graphs. All these cases prove that, since
from the origins, graph theory has been connoted as an across-the-board inter-
disciplinary subject. Parallel to graph theory, scientist from different fields had
started to use graph elements developing an applicative theory (complex net-
work theory) based on real data. These two paths are not independent since
usually complex-network problems are solved theoretically (strengthen empirical
results), and new theoretical elements can be used to explore and categorise real
graphs. In the last years (complex) graph theory has become very popular thanks
to the many applications in all scientific field starting from mathematics, physics,
chemistry, informatics and bioinformatics, neuroscience, social sciences, economy
and also for the exponential growth of collectable data coming from such fields.
The necessity to store, manage and analyse these data had driven a huge com-
munity of scientist to focus their studies on complex networks theory and, as a
consequence, in graph theory.

In this chapter we will shortly present some useful definitions and notations
about graph theory. We will also introduce some mathematical tools for the ma-
nipulation of graphs. Finally, we will give some important graph’s features.

9
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1.1 Basic definitions

Definition 1. A graph G, called also network, is a ordered couple {V, E} such
that V = {xi}n

i=1 is a finite set whose element are called nodes and E is a set of
e edges, which are 2-element subsets of V (an edge is related with two nodes and
this relation is represented with unordered pair of nodes).

This kind of graph is called also simple (no multiple edges) and undirected.

Definition 2. If E ⊂ V × V , i.e. the edges are ordered pairs of nodes, the the
graph is called digraph or directed graph.

Moreover, if multiple edges are allowed, we are dealing with multigraphs in
the case of undirected graphs or quiver in the case of digraphs. Finally, if at
each edge is associated a weight the resulting graph is called weighted graph
(digraph).

Definition 3. If V can be partitioned into two disjoint sets Vr and Vc such that
there are not edges within these two sets, the graph is called bipartite graph or
bigraph.

In a bipartite graph there are two natural projections: P (Vr) and P (Vc)
defined as P (Vr) = {Vr, {(i, j), i, j ∈ Vr, ∃k ∈ Vc s.t.(i, k), (j, k) ∈ E}} and
P (Vc) = {Vc, {(i, j), i, j ∈ Vc, ∃k ∈ Vr s.t.(i, k), (j, k) ∈ E}}, in other words, in
P (Vr) there is an edge between two nodes if and only if they share a vertex in the
graph G.

Definition 4. A path of length n between two nodes u and v is a sequence of n
edges connecting the two nodes and is denoted by p(u, v). If n is the minimum
number of required edges, than a path of length n is called shortest paths and
indicated with sp(u, v).

Definition 5. A graph is called connected if between each couple of nodes there
is a path.

Definition 6. The distance or geodesic distance d between u, v,∈ G is defined
as d(u, v) = #sp(u, v). The distance of a node u from A ⊂ V (G) is defined as
d(u, A) = minc∈A d(u, c). The number of shortest paths between two nodes u, v
will be denoted with σu,v.

It is easy to see that if G is undirected and connected, then (V (G), d) is a metric
space.

Definition 7. The diameter of a connected graph G is defined as: d(G) =
maxu,v∈V #sp(u, v). We will call diameter also a set of edges realising this maxi-
mum.
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Definition 8. The degree of a node u in a graph G is the number of edges
containing u. If G is a digraph, it is possible to distinguish between indegree, the
number of the (∗, u) edges and outdegree the number of (u, ∗) edges.

Definition 9. Let G be a graph, with G∗ we will denote the representative
graph or dual of G i.e. the graph whose vertexes are representing the edges of G
(see [23] for more details).

1.2 Representation of graphs

The nodes in a graph are visually represented as circle and an edge between them
as an arrow. This representation can be useful to visualise small network and see
the interactions between the nodes. There are a lot of layouts for visualise a graph:
we can dispose the nodes in a circle or in a grid or use some physical ideas (like
force/energy) for drawing graphs in an aesthetically pleasing way. The relations
between the nodes in a graph G can be also represented as a matrix. The most
important matrix associated to a graph is the so called adjacency matrix.

Definition 10. The adjacency matrix A of a graph is a square matrix n × n
such that every entry wi,j represents the relation between the two nodes i and j
according to the type of network.

Some of these adjacency matrices are showed in Tab. 1.1.
From the adjacency matrix we can extrapolate some useful information about

the graph, for example in a digraph the i-th row-sum represent the idegree of the
node i.

If G is a bipartite graph with |Vr| = nr and |Vc| = nc then its the adjacency
matrix A has the following structure:

A =

[
0 B
Bt 0

]
where B is called biadjacency matrix or incidence matrix, i.e. B is a nr×nc(0−
1) matrix and wi,j = 1 if and only if

(
xri

, xcj

)
∈ E.

The representation of G as a matrix (adjacency matrix, degree matrix, Lapla-
cian matrix,. . . ) is also a way to store or visualise graphs but naturally leads to the
spectral graph theory studying, for example, the relations between eigenvectors
and random walk stationary distribution or clusters.

The matricial expression is useful for theoretical purpose but it is memory
consuming in real applications. An other important structure to store a graph is
its edge-list L: an e × 2 matrix such that (li,1, li,2) ∈ E, ∀ i = 1, . . . , e; in the
case of weighted graphs an extra column is required. Finally, the adjacency-list
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A of a graph is a vector of list such that each list Ai = {j : (i, j) ∈ E} contains
the neighbours of the node i.

Type Adjacency matrix Edge-list Visual representation

Graph


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0




1 2
1 3
2 3
3 4



Digraph


0 0 0 0
1 0 0 0
1 1 0 0
0 0 1 0




1 2
1 3
2 3
3 4



Weighted graph


0 0.8 0.3 0

0.8 0 0.2 0
0.3 0.2 0 0.1
0 0 0.1 0




1 2 0.8
1 3 0.3
2 3 0.2
3 4 0.1



Weighted digraph


0 −0.8 −0.3 0

0.8 0 −0.2 0
0.3 0.2 0 −0.1
0 0 0.1 0




1 2 0.8
1 3 0.3
2 3 0.2
3 4 0.1



Bigraph


0 0 1 1
0 0 1 0
1 1 0 0
1 0 0 0


 1 3

1 4
2 3



Tab. 1.1: Adjacency matrices and edge-lists of some introduced graphs.



13 1.3. Features in graph

1.3 Features in graph

The number of nodes and edges, the type of such edges are not the unique features
in a graph. The degree distribution is an important feature characterising a graph,
in fact it is related to the concept of random graphs or scale-free networks (see the
following subsection). An other important group of features are related to central-
ity scores, i.e. the importance of nodes (or edges). This measure, combine with
the concept of robustness, plays a fundamental role in the study of percolation and
transport in a graph (for example power supply) or in the study of the spreading
of an epidemic in a population [24].

Also the mesoscopic structure of a graph, characterised by homogeneous groups
of nodes called modules or communities, is crucial to formulate a mechanisms for
the genesis of the graph and to uncover (possible) relationships between the nodes
not revealed inspecting the whole graph [25].

1.3.1 Degree distribution and centrality scores

A useful feature in graph theory is the degree distribution, i.e. the prpbability
distribution of the nodes’ degrees over the whole graph.

There are two important degree distributions: the binomial (n, p) distribution
(related to random graph) and the power-law α distribution (for the so called
scale-free network). The first kind of networks was intensively studied by Erdős
in [26] in which the authors showd some important structures (like the size of
connected component, largest/giant components, connectivity) based on the prob-
ability p and the number of nodes n. Erdős was an important mathematician so
that his friends create the so called Erdős number, i.e. the length of the shortest
path (in the coauthor network: a scale-free network) between scientist and him.
Approximately 200000 mathematicians have an Erdős number, and some have es-
timated that 90% of the active mathematicians have an Erdős number smaller
than 8 (the so called small world phenomenon)1.

Generate a random (n − p) network is trivial since the whole mechanism can
be controlled by a binomial process.

From a complex network point of view, real networks tend to not to be random,
for example they are highly right-skewed (a large majority of nodes have low degree
but a small number, hubs, have an high degree).

The Internet network, some social networks and biological networks approx-
imately follows the power-law distribution p(k) ∼ k−α with 2 < γ < 3. This
phenomenon has been deeply studied in the last years stating from Price [28] in

1Actually, my Erdős number is equal to 4 because I wrote [27] with Iorio who has Erdős
number is equal to 3. There is a similar number between go players, the so called Shusaku
number (in honour to Honinbo Shusaku).
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1965 and Barabasi [29] in 1999. This last physician is one of the most influential
personality and cited physicists in network science and its aforementioned paper
is the one of the ten most cited paper in physical sciences.

This degree distribution implies some properties in the graph like the small
world phenomenon (six-degree of separation) and the clustering coefficient
(see [30] for details).

Price and, recently Barabasi, gave also a generative model for the construction
of scale-free networks (only for the indegree distribution).

These generative methods (random vs. scale free) are very important whenever
a reconstruction method has been to tested (for example looking at its stability)
and in the following chapter we will see the importance of construction a suitable
benchmark for testing purpose. Moreover we will see the importance of new gen-
erative algorithms in which some features are constrained and where the Erdős
(and Barabasi) model can not be used as benchmark-builder.

The importance of a node in a graph G can be measure looking at its degree
or using a more general centrality measure. A centrality measure can be used
to identify influential person in a social network, the spreaders in an epidemics
and even a hot spot in an urban network. In literature, in addition to the degree
centrality, three more measure has been developed first in sociology and then in
social network analysis. The eigenvector centrality of the i-th node correspond to
the i-th entry of the dominant eigenvector of the adjacency matrix of G. Google’s
PageRank is a variant of this centrality measure. The closeness centrality of a
node u is define as Cc(u) =

∑
v 6=u 2−d(u,v). Finally, the betweenness centrality of

a node u is defined as Cb(u) =
∑

v 6=u 6=s σv,s(u)/σv,s where σv,s(u) is the number of
shortest paths between v and s containing u. In Fig. 1.1 we can see how different
measure of centrality weigh differently the importance of the nodes.

With the same arguments we can give also a centrality measure to the edges;
unfortunately, in this specific field, the literature is poor and only an extension
for the betweenness centrality (counting the edges in the shortest paths) had been
studied.

In section 2.5 we will present a natural solution for extending node centrality
measures to the edges.
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Fig. 1.1: The same graph in which nodes are coloured based on their centrality
scores: (A) degree (B) closeness (B) betweenness (C) eigenvector (from http:

//en.wikipedia.org/wiki/Centrality).
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Chapter 2

Generation of complex networks
with given characteristics

The Erdös-Rény model with n nodes and probability p is the most important
algorithm for the generation of a random graph with n nodes and in which two
nodes are connected with probability p. This algorithm was widely studied and is
currently used in graph theory (we will find it in Chapter 4). But real network are
far to be a random. Let us think for example to the social network or coauthor
networks in which there few hubs and a lot of nodes with low degree. For this
reason scale-free network are more interesting to study.

There are several models for the generation of scale free-network (for example
[31]). Some of them are based on the Price’s idea [28] of preferential attachment,
later reprised by Barabasi [29]. These methods are very useful for mimicking some
well known real cases like the Internet and citations’ networks. All these methods
work on the topology of the network and the edges and/or the nodes are usually
added under certain conditions.

As we introduced above, generative models can be used for the creation of a
statistical baseline for network inference, network reconstruction, algorithm val-
idation and stability. All these features are resumed in the DREAM (Dialogue
for Reverse Engineering Assessments and Methods) challenges started in 2006 [32]
and now at the eighth edition. As we can read from their website the main ob-
jective is to catalyze the interaction between theory and experiment, specifically in
the area of cellular network inference and quantitative model building. DREAM
challenges address how we can assess the quality of our descriptions of networks
that underlie biological systems, and of our predictions of the outcomes of novel
experiments. These are not simple questions. Researchers have used a variety
of algorithms to deduce the structure of biological networks and/or to predict the
outcome of perturbations to their systems. They have also evaluated the success of
their methodologies using a diverse set of non-standardised metrics. What is still

17
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needed, and what DREAM aims to achieve, is a fair comparison of the strengths
and weaknesses of these methods and a clear sense of the reliability of the models
that researchers create.

Also sbv IMPROVER [33] (Systems Biology Verification) is an important chal-
lenge that it is different from other approaches such as DREAM as it focuses on
the verification of processes in an industrial context, and not on basic questions in
science. sbv IMPROVER could allow an organization to benchmark its methods
and verify that these are state of the art performance for their industrial processes.

In this section we shortly present some simple ideas and methods for the con-
struction of scale-free networks starting from its adjacency matrix.

The adjacency matrix A of a graph G is a n×n matrix where n is the number of
nodes. The i, j-th entry of the matrix gives us information about the connectivity
between the node i and the node j. For example in the case of directed and
unweighted network if Ai,j = 1 then (i, j) ∈ E. Generally, in the row of the
adjacency matrix we can read information about indegree, on the columns we can
reed information about the outdegree.

We have implemented some methods for the generation of unweighted digraphs
with some prefixed parameters:

• fixed indegree K and power-law distribution for the oudegree proving that
the parameter of the power-law depends on K (see Prop. 1),

• methods in which both indegree and outdegree have a power-law distribution:

– in Section 2.3 indegree and outdegree have the same distribution,

– in Section 2.4 the two distributions are different,

– and in subsection 2.4.1 we revisited the preferential attachment in the
case of two power-law distributions.

• In Section 2.5 we extend the concept of centrality to the edges and we propose
an innovative growing method based on edge centrality.

2.1 Initial considerations

Let N > 1 and K > 1 be respectively the number of nodes we want to have in our
network and the fixed indegree for each node. Let D ≥ 0 be the minimum desired
outdegree. According to [29], the outdegree distribution has the following form:

p(k) = ck−α with α > 1 .
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The parameter c is a constant such that:

N∑
k=D

ck−α = 1, (2.1)

i.e. p(k) is a probability distribution (for D = 0 we will consider p(k) = c(k + 1)−α).
Note that for different choices of α we obtain different distributions (and thus dif-
ferent normalisation factors c). The value p(k) represents the probability of a
certain node to have outdegree k. This can be viewed as a density and there-
fore (the integer part of) Np(k) can be interpreted as the number of nodes with
outdegree k.

In terms of the adjacency matrix, the outdegree and the indegree of the n-th
node can be respectively computed as as the sum of the elements on the n-th
column and the sum of the n-th row (our graphs are unweighted and direct and
thus the elements of the adjacency matrix are either 0 or 1).

Because of the considered constraints, in each row the total number of ones
(indegree) is equal to K, while the number of ones for each column (outdegree)
follows a power-law distribution. The above considerations allow us to say that
the number of columns with k ones are bNp(k)c.

Therefore, the following identity holds

#{col. with k ones}∑N
k=D

︷ ︸︸ ︷
Nck−α k = NK︸︷︷︸ ,

#{ones in the matrix}

and, consequently, we have

N∑
k=D

ck1−α = K. (2.2)

Because of Eq. 2.1 and Eq. 2.2, we can state the following proposition:

Fixed N, K, D ∈ N such that N > K > D and K < N−D+1
ln N−ln D

there exist
only one α ∈ R+ such that Eq. 2.1 and Eq. 2.2 hold simultaneously.

Proposition 1

Proof. Let:

f(x, y) =
N∑

k=D

yk−x − 1 and g(x, y) =
N∑

k=D

yk1−x −K.
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Dividing g by K and using f we obtain:

K =

∑N
k=D k1−x∑N
k=D k−x

=
HN,D,x−1

HN,D,x

=
HN,x−1 −HD−1,x−1

HN,x −HD−1,x

,

where HN,x is the N -th generalised harmonic number.

We define h(x) =
HN,D,x−1

HN,D,x
: h(x) is a decreasing function, with initial term

h(1) =
HN,0 −HD,0

HN,1 −HD,1

=
N −D + 1

HN −HD−1

and using the asymptotic expansion of harmonic numbers,

>
N −D + 1

ln N − ln (D − 1)
. (2.3)

Computational considerations lead to state that

lim
x→+∞

h(x) = D.

If D = 1 it is easy to prove also analytically that the limit is 1.
Using the above limit estimation, the Eq. 2.3 and the hypotheses on K we can

find the unique solution to h(x) = K.

2.2 Algorithm and results: fixed indegree and

power-law outdegree

Using Prop. 1, we can design an algorithm to generate a network with the desired
properties.

The workflow of the proposed algorithm reads as follows:

• Given N, K, D compute α (using for example bisection algorithm).

• For each outdegree D ≤ d ≤ N calculate the number of nodes nd with
outdegree d, i.e. nd = Ncd−α.

• Inizialize the adjacency matrix with zeroes.

• Fill the adjacency matrix such that each row has K ones and for each d there
are nd columns with d ones.

• Fill the remaining columns (we are considering the largest natural value
that is not greater than nd and so there are approximation errors i.e. empty
columns) with ones in a way that the rows have K ones.
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N K D α
net1 10000 2 0 2.23028
net2 10000 2 1 2.470964
net3 10000 5 0 1.997803
net4 10000 5 1 2.048527
net5 10000 10 0 1.855389
net6 10000 10 1 1.875867

Tab. 2.1: Parameters of generated networks.

We applied the algorithm described above for the generation of 6 networks
whose properties are summarised in the table 2.1:

The density of some of the 6 networks neti as a function of the outdegree is
shown in Fig. 2.1.
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Fig. 2.1: Log-Log plots distribution for net5 and net6.

In Fig. 2.2(a), and in Fig. 2.2(b) are showed two networks generated using the
method discussed above, and in Fig. 2.2(c) the relative distributions.

The relation between the expected and the obtained characteristics of the con-
structed networks is promising. In particular, the nodes with low outdegree follow
perfectly the power-law distribution.

Some outliers occur, caused by approximation of the distribution (near the
predicted line) and some others (dots in the right side of the plots) caused by the
filling of the remaining columns (last step of the algorithm).
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(a) Generated network with N = 100,
K = 1 and D = 0. In red the diameter.

(b) Generated network with N = 100, K =
2 and D = 1. In red the diameter.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1  10

predicted N=100, K=1, D=0
obtained N=100, K=1, D=0
predicted N=200, K=2, D=1
obtained N=200, K=2, D=1

(c) Distributions retative to the networks in Figs. 2.2(a), 2.2(b).

Fig. 2.2: Topology and Log-Log plot of the distributions for two examples.
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2.3 Scale free directed networks (indegree and

outdegree): same distribution

In this section we propose an alternative method for the generation of a scale-
free directed networks where both indegree and outdegree distributions follow the
power-law distribution. We will prove this important fact:

Let N > 1 and D ≥ 1 be the number of nodes and the minimum degree
desired (the same for the indegree and outdegree), and let p(k) = ck−α

and q(k) = dk−β describe the distributions related to the indegree and
outdegree. Then c = d and α = β

Proposition 2

Proof. According to [29] the mean value for out and indegree is the same, and so:

N∑
k=D

ck1−α =
N∑

k=D

dk1−β.

We can see it using also the adjacency matrix, indeed, as before, if we count the
number of ones in the matrix we obtain:

#{col. with k ones}∑N
k=D

︷ ︸︸ ︷
Nck−α k =

∑N
k=D Ndk−βk︸ ︷︷ ︸,

#{row with k ones}
. (2.4)

Moreover, we have that:

c =
1∑N

k=D k−α
and d =

1∑N
k=D k−β

. (2.5)

Using eq. 2.4 and eq. 2.5 we can write:∑N
k=D k−α∑N

k=D k−α+1
=

∑N
k=D k−β∑N

k=D k−β+1
,

or, using the notation seen in the proof of the theorem 1,

h(α) = h(β).

The function h(x) is strictly decreasing, and so injective and this is sufficient to
conclude that α = β and so c = d.
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The algorithm used for this purpose is quite similar to the algorithm showed
in the previous sections:

• Given N > D ≥ 1 and α calculate, for each degree D ≤ d ≤ N , the number
of nodes nd with degree d, i.e. nd = Ncd−α.

• Inizialize the adjacency matrix with zeroes.

• Fill the adjacency matrix with blocks of ones following the distribution cal-
culated above. This leads to a symmetric matrix which diagonal is filled with
ones. In order to avoid non-connected components and selfloops we need a
further step.

• Shift the rows by m positions where m is the minimum value such that
bNp(m)c = 0.

We applied the algorithm described above for the generation of 3 networks
whose properties are summarised in Tab. 2.2:

N α
net1 10000 1.5
net2 10000 2.0
net3 10000 2.5

Tab. 2.2: Parameters of generated networks.

The density of the 3 networks neti as a function of the outdegree is shown in
Fig. 2.3. A smaller network (N = 200) was generated so that we can explore it
(see Fig.2.4).
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Fig. 2.3: Log-Log plot for net1, net2 and net3.

(a) Generated network with N = 200.
In red the diameter.
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Fig. 2.4: Topology and Log-Log plot distribution for the generated network.
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2.4 Scale free directed networks (indegree and

outdegree): two different distributions

In this section we want to generalise the previous algorithm in order to generate
a network with two different power-law distributions. We have just seen that the
minimum degree can not be the same (this implies that the two distributions have
the same exponent). Fix N, D, E, α and β so that:

p(k) = ck−α k ∈ [D, N ] represents the indegree distribution and

q(k) = dk−β k ∈ [E, N ] represents the outdegree distribution.

Beyond the mathematical constraints1, we want to generate a network for all
possible coherent choice of the parameters. In order to do that we split into three
parts the algorithm:

1. Indegree:

• Compute the number of nodes having k as indegree.

• If D > 0 start from the first row of the adjacency matrix, else start
from the i-th row where i is the number of nodes with indegree 0. In
the same way, start form the first column if E > 0 else from the j-th
where j is the numebr of nodes with outdegree equal to 0.

• Compute M such that
∑M

i=D Nip(i) ≤ N and
∑M+1

i=D Nip(i) > N .
Starting form M fill the adjacency matrix with Np(i) blocks of i ones
with D ≤ i ≤ M so that in each column only 1 one is present if E < 2
or E ones if E ≥ 2.

2. Outdegree

• Compute the number of nodes having k as outdegree.

• From l = M + 1 fill the matrix with max{Np(l), 1} blocks of l starting
from the last row filled in the first step and from the i-th column cho-
sen so that the first i columns have sum coherent with the outdegree
distribution. (For example, if E = 1 then i = Nq(1).)

• Repeat the last step increasing l and completing the outdegree distri-
bution.

• Stop this second part when the last row of the matrix is reached.

1Approximation errors and small value for N weakens the power of Props. 1 and 2.
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3. Balancing

• This step is necessary if you want to produce a connected graph. More-
over at this step we can swap rows and columns for the manipulation
of the network.

We used this algorithm to generate 6 networks which properties are summarised
in Tab. 2.3. We can see that some generated networks have E = D but different
exponents; this choice is made because the approximation errors and the algorithm
leave a certain degree of freedom.

N α D β E
net1 100 2.1 0 1.8 1
net2 1000 2.1 0 1.8 1
net3 10000 2.1 0 1.8 1
net4 100 2.1 1 1.8 1
net5 1000 2.1 1 1.8 1
net6 10000 2.1 1 1.8 1

Tab. 2.3: Parameters of the generated networks.

In Fig. 2.5 we summarise the obtained and predicted outdegree and indegree
distribution for the networks net4 and net5.
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Fig. 2.5: Log-Log plot of the distributions of generated networks net4 and net5.

In Fig. 2.6 we plot the resulting topology of the generated networks neti i =
1, 2, 4.
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(a) Generated network net1. In red the
diameter

(b) Generated network net4. In red the
diameter

(c) Generated network net2. In red the diameter

Fig. 2.6: Topology of (a) net1 (b) net2 and (c) net4.
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2.4.1 Saturation model

In this section we will describe a new method for the generation of directed net-
works based on the idea of preferential attachment proposed in [29]. Let N, D, E, α
and β be numbers so that:

p(k) = c(k + 1)−α k ∈ [D, N ] represents the indegree distribution and

q(k) = d(k + 1)−β k ∈ [E, N ] represents the outdegree distribution.

where c and d are such that p(k) and q(k) are two distribution of probability. Note
that we use k + 1 instead of k in order to allow C and D to be 0. We need to
prove the following proposition:

Let now consider N > 1, D, E ≥ 0 and p(k) = c(k + 1)−α with k ∈ [D, N ]
the indegree distribution for a directed network. Then there exists an
unique value for β and d such that q(k) = d(k + 1)−β represents the
outdegree distribution of the considered network.

Proposition 3

Proof. If D = E the hypotheses of Prop. 2 are satisfied. Suppose than that D 6= E.
Note that once fixed β also d is determined:

N∑
k=D

c(k + 1)−α =
N∑

k=E

d(k + 1)−β = 1.

Moreover, using the same idea used in Prop. 2, we know that:

N∑
k=D

ck(k + 1)−α =
N∑

k=E

dk(k + 1)−β.

Dividing the second equation by the first we obtain:∑N
k=D k(k + 1)−α∑N
k=D(k + 1)−α

=

∑N
k=E k(k + 1)−β∑N
k=E(k + 1)−β

Using the harmonic numbers and rescaling the indices we can write:

HN+1,α−1 −HD,α−1 −HN+1,α + HD,α

HN+1,α −HD,α

=
HN+1,β−1 −HE,β−1 −HN+1,β + HE,β

HN+1,β −HE,β

,
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and so:
HN+1,α−1 −HD,α−1

HN+1,α −HD,α

=
HN+1,β−1 −HE,β−1

HN+1,β −HE,β

.

Notice that the left part of the equation is a number greater than 1 and so we can
use Prop. 1 to conclude the proof.

This proposition states that we can not choose independently α and β.
The proposed method follows these steps:

• Generate N values M1, . . . ,MN representing the indegree distribution, i.e.
the i-th node (Ni) has Mi as indegree.

• Using a bisection method and the indegree distribution compute the outde-
gree distribution. Or better, let W =

∑N
k=1 kMk be the number of edges of

the desired network, find the value of β (unique using Prop. 3) such that the
resulting outdegree distribution has W edges.

• Choose a method to associate indegree with outdegree. For example nodes
with low indegree has low outdegree (or high outdegree).

• Connect the nodes.

The last step is crucial and we will explain it in details. First we have to connect
the nodes in order to obtain a connected graph. This step is similar to the method
described in [29]. We connect N2 to N1, then N3 is connected to N1 or N2, N4

to N1, N2 or N3 and so one. We connect Ni to Nj if Nj is the node having the
maximum indegree remaining among the fist j (i.e. Mj is the maximum among
the previous). Once Ni is connected to Nj we decrease the indegree of Nj (i.e.
decrease Mj) and the outdegree of Ni. This procedure guarantees us to have a
connected graph. Finally, for each (remaining) edge find the two nodes Ni and Nj

such that Ni has the maximum indegree remaining and Nj the maximum outdegree
remaining and they are not already connected. Connect Nj to Ni and decrease
the indegree of Ni and the outdegree of Nj.

The benefit to use this method respect to the previous one is that we can
simulate the distribution for the indegree and outdegree (not using the integer
part of Np(k)). Moreover we can choose the method to associate the indegree to
the outdegree, and finally it is easy to modify this procedure in order to have a
network with outdegree fixed (see section 1), or an undirected network. Indeed,
if we fix the outdegree to K, we have NK ones in the adjacency matrix, and
so we can compute α in order to generate a such network. For the generation
of undirected graphs is sufficient to consider only the indegree distribution as the
degree distribution. Using this algorithm we generated 5 networks which properties
are summarised in Tab. 2.4. The networks net4 and net5 are generated in order to
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simulate two subcase: the graph net4 has the property to have outdegree constant
to 1, and net5 is undirected with N edges (see [29]).

N α D E
net1 100 2.1 0 1
net2 1000 2.1 0 1
net3 100 2.1 1 1
net4 1000 2.245 0 1
net5 1000 3.062 1 Undirected

Tab. 2.4: Parameters of the generated networks.

In Fig. 2.7 and Fig. 2.8 we summarise some results (degree distributions and
topology) for some of the networks neti. In Fig. 2.7(c) and Fig. 2.7(d) , we compare
net5 with a network generated using the method described in [29] using the R-
command barabasi.game(N=1000) in the library igraph.



Chapter 2. Generation of complex networks with given characteristics 32

 1

 10

 100

 1000

 1  10  100  1000

predicted outdegree N=1000, alpha=2.1 , E=1
obtained oudegree  N=1000, alpha=2.1 , E=1

predicted N=1000, alfa=2.1, D=0
obtained N=1000, alfa=2.1, D=0

(a) Degree distributions for net2.

 1

 10

 100

 1000

 1  10  100  1000

predicted outdegree N=1000, alpha=2.245 , E=1
obtained oudegree  N=1000, alpha=2.245 , E=1

predicted N=1000, alfa=2.245, D=0
obtained N=1000, alfa=2.245, D=0

(b) Degree distributions for net4.

(c) Generated network net5. (d) Barabasi game N = 1000.

Fig. 2.7: Log-Log plot of the distributions of generated networks.
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(a) Generated network net1. (b) Generated network net4.

(c) Generated network net3. (d) Generated network net2.

Fig. 2.8: Topology of neti i = 1, 2, 3, 4. In red the diameter’s path.
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2.5 New definitions for edge-centrality and a pref-

erential attachment generative algorithm

In this section we will describe a growing generation model based on the edge
centrality.

The main idea is to use some measures of vertex centrality on G∗, the dual
graph of G in order to implement a growing generation method based on edge
centrality. In this model we add a fixed number of nodes in each step.

The proposed method follows these steps:

• Fix N the number of desired nodes, choose a centrality measure C and define
two selection rules Se and Sv. Initialise G as the connected graph with 3 nodes
and 2 edges and let G∗ be its dual.

• At each step we add the i-th vertex and the i− 1-th edge as follows:

1. Compute he centrality of G∗ using C and the selected edge e according
to Se.

2. Select v, one of the two vertexes of e, according to Sv.

3. Add to G the vertex i and the edge (i, v) and update G∗.

We apply this method using some simple selection functions. An edge e is
chosen by Se directly proportional to the score given by the centrality measure (in
the same way as the preferential attachment described in [29]). Alternatively we
can use non-linear attachment or inverse proportionality.

We perform some simulations using different choice for C, Se and Sv. We con-
sider five kind of centrality measures: PageRank, betweenness, closeness, eigen-
vector and degree two different selection functions Se (L and I) and three for Sv

(R, noR and noR2). For the definition of these last five functions we introduce
some notation. Let c = (x1, . . . , xn) be a vector of edge-centrality measures, i.e.
xi is the score for the i-th edge with xi ≥ 0 and define Wi =

∑
j∈Ai

xj where
Ai = {j s.t. (j, i) ∈ G}, in other words, Wi is the sum of all centrality-scores of
the edge having i as vertex.

The function L returns the edge i with probability xi/
∑N

j=1 xj, conversely, I

returns i with probability 1
xi+1

/
∑N

j=1
1

xj+1
. Let now e = (i, j) be an edge, the

function R returns the vertex i and j with the same probability. A more complex
function could be noR that selects i with probability equal to p = Wi/(Wi + Wj)
or noR2 that selects i with probability 1 − p. This method allows also to add
more than one edge for each new vertex and the generalisation is quite simple.

In Fig. 2.9 we show some resulting networks and dual network. Notice that the
acronyms has to be read as follows:
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• InoR Se = I, Sv = noR, one edge for each vertex

• InoR2 Se = I, Sv = noR2, one edge for each vertex

• LnoR Se = L, Sv = noR, one edge for each vertex

• LnoR2 Se = L, Sv = noR2, one edge for each vertex

• IR Se = I, Sv = R, one edge for each vertex

• LR Se = L, Sv = R, one edge for each vertex

• 2InoR,2InoR2,2LnoR,2LnoR2,2IR,2LR are the same of before but we add
at most two edges for vertex

• DInoR,DInoR2,DLnoR,DLnoR2,DIR,DLR,2DInoR,2DInoR2,2DLnoR,
2DLnoR2,2DIR,2DLR are the dual graphs of the respective graphs.
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Fig. 2.9: Topology for the resulting graphs using betweenness edge centrality.



Chapter 3

Randomisation of graphs
preserving the degree distribution

As we report in the previous chapter, generate a null model for a given graph
is a fundamental task for the creation a baseline for modelling comparison. The
algorithms showed above belong,in the majority, to the class of so-called filling
algorithms (first the degree the of each node is computed and finally the edge set
is created). If the characteristic to be preserved is the degree distribution, the
filling methods can drive into biased sample [34]. In order to avoid this, some
switching methods has been introduced [35, 36, 37]. The importance to preserve
the degree distribution, especially in the case of bipartite graph, is well discuss in
a large number of recent papers [18, 38, 17, 39, 40, 41, 42, 43]. For example, in [18]
the null model, build as a collection of M random version of the initial bigraph, is
used for measuring the mutual exclusivity among genes to recognise groups of genes
involved in the formation and proliferation of cancers. Other biological applications
can be found in Mendelian diseases [44]; drugs and their targets [45, 46]; drugs
and diseases [47]. Also in ecological research (see [34, 48, 49] for presence-absence
of a certain species in a certain habitat and [50, 51] for pollinators-plant relations)
these null models are widely used.

As we outline before, there are two main approaches for generating a random
graph with a prescribed degree distribution: the switching algorithm and the filling
algorithm. This last algorithm, for which an efficient implementation was devel-
oped by Patefield in [52], is based on the join distribution probability read in the
relative adjacency matrices. This method was been criticised [34] for the intro-
duction of systematic biased sample procedure due to the not precise allocation
of 1 in the matrices. For this reason several authors [35, 36, 37] prefer to use the
switching algorithm (described in Section 3.1) composed by N simple switching
steps. This number N is related to the burn-in time (mixing time), i.e. the time
needed to forget the initial graph and typically empiric values are chosen (100e in

37
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[53] where e is the number of edges, 5e in [36], 10e up to 30e in [54]) and little
has been rigorously shown in this direction [55]. The absence of trends in the
time series of network metrics along the path of a Markov chain sampler has been
proposed as a criterion for mixing [36], or at least to give some confidence that the
final sampled networks are fairly random [54].

Due to the importance of this kind of null model in the case of bipartite graph
(see 3.2 for an extendend dissertation), in [27] we derive a theoretical bound for
the number of switching steps N and in what follows we extend the result to
undirected graphs (section 3.3) and then we will show (Prop. 7) that it is possible
to obtain the results for bipartite graph as a special case.

We first introduce the Jaccard Index (JI) [56] between tho graphs in order
to measure the similarity between them. Then we will present the theoretical
derivation for the fixed point x (Lemma 3) of the JI through the SA and the
number of required Switching Steps (SS) N in order to reach, on average, this
fixed point (Prop. 5). Finally we will empirically show (in section 3.5) that our
bound N can be chosen as time convergence (mixing time) for the underlying
Markov chain.

This work is the result of a collaboration with the Julio-Saez Rodriguez group
at the EBI of Cambridge, in which we derive such results for bipartite graphs.

We can measure how good is a mixing procedure using a index of similarity
between two graphs with the same number of nodes n. A natural choice of sim-
ilarity index could be the normalised Hamming distance between two incidence
matrices. In biology is preferable to use the JI computed on the adjacency matri-
ces A = {yi,j}n

i,j=1,B = {wi,j}n
i,j=1 of the two graphs using the so called Tanimoto

index defined, in this specific case, as:

JI(A,B) =

∑n
i=1

∑i
j=1 yi,j ∧ wi,j∑n

i=1

∑i
j=1 yi,j ∨ wi,j

=

∑n
i=1

∑i
j=1 yi,jwi,j∑n

i=1

∑i
j=1(yi,j + wi,j − yi,jwi,j)

(3.1)

We will consider N sufficient for generating a random version of the initial graph
G if the mean value of JI(G,G(N)) does not change, in mean, if we increase N . The
condition is often checked [57] to solve the problem of monitoring convergence of
the sampler quantifying the forgetting of the initial state. Moreover, we want also
that also the pairwise similarity between two instances of the SA to be less similar
than each of the two respect to the original. We will see that this first condition
is satisfied whenever the first is satisfied.

3.1 The Switching Algorithm

Let G be a graph. The SA is composed by N basic SS in which:
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1. two edge (a, b) and (c, d) are uniformly and independently randomly selected;

2. If a 6= c, a 6= d, b 6= c, b 6= d:

• If (a, d), (c, b), (a, c) and (d, b) are not already in E:

– with probability p = 0.5 the edges (a, d) and (c, b) are added to G
while (a, b) and (c, d) are removed.

– with probability q = 1−p = 0.5 the edges (a, c) and (d, b) are added
to G while (a, b) and (c, d) are removed.

• else:

– If (a, d) and (c, b) are not already in E the edges (a, d) and (c, b)
are added to G while (a, b) and (c, d) are removed.

– else

∗ If (a, d) and (c, b) are not already in E the edges (a, d) and (c, b)
are added to G while (a, b) and (c, d) are removed.

It is clear that this algorithm preserve the degree distribution. In Fig. 3.1 we can
see a schematic representation of the SA.

Fig. 3.1: Scheme of a SS in the SA.
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3.2 Motivation: NGS data analysis

In the past few years, next generation sequencing (NGS) technologies have pro-
gressed very swiftly and currently hundreds of genomes can be simultaneously
sequenced in a matter of weeks, at more affordable costs. This opens a wide
range of new avenues in biological and biomedical research. In particular, due
to the established impact of the genomic background on disease progression and
response to drug treatment, cancer research has significantly benefited from these
advances. Comprehensive catalogues of mutations in multiple cancer types have
been assembled and fruitfully used to identify new diagnostic, prognostic and ther-
apeutic targets [58, 59, 60, 61]. Existing large scale projects, such as the Cancer
Genome Atlas (TCGA)[60], the International Cancer Genome Consortium (ICGC)
data portal [58] and, more recently, the Genomics of Drug Sensitivity in Cancer
(GDSC) [59] and the Cancer Cell Line Encyclopedia (CCLE) [61], provide invalu-
able opportunities to explore molecular alterations that could potentially play a
crucial role in a plethora of different cancer types and their response to therapy
[62]. A key task in these projects is to distinguish between driver mutations (i.e.,
those conferring selective clonal growth advantage) and functionally neutral pas-
senger mutations (which do not contribute to tumour development) [63, 64]. Once
key driver mutated genes are identified, a fruitful analysis is to consider them in
the context of the pathways where they operate. This allows the identification of
cancer driver biological networks, whose altered functionality results in the acqui-
sition of a cancer hallmark [65, 66]. One of the ideas exploited to identify these
networks is based on the assumption that sets of mutations exhibiting statistically
significant levels of mutual exclusivity are likely to alter genes involved in a com-
mon biological process that drives cancer development. Hence, driver mutations
in cancer occur in a limited number of pathways and lesions in the same pathway
do not tend to occur in the same patient [38]. A possible biological explanation
is that if a crucial node is altered in an oncogenic pathway, a secondary muta-
tion on the same pathway is unlikely to provide further selective advantages to
the cancer cell, thus it does not tend to be evolutionary selected. On the other
hand, mutations of genes participating in different biological pathways may exert
a synergistic effect in conferring growth advantages to tumour cells. As a conse-
quence, the combinatorial effects of gene mutations may play key roles in cancer
initiation and progression. Therefore investigations have been devoted to searching
for groups of genes that are simultaneously mutated more often than expected by
random chance [17, 39]. Based on these premises, the emergence of combinatorial
properties among patterns of genomic events has been investigated in a number of
recent studies, through the application of novel statistical measures quantifying,
for example, the mutual exclusivity or the co-occurrence of different genomic le-
sions [38, 40, 43, 41, 18]. Among these studies, those aimed at identifying groups
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of genes whose mutation patterns tend to mutual exclusivity are based on the same
principle and are conceptually similar [14-16], although they differ in two crucial
methodological aspects: (i) the way sets of genes to be tested for mutual exclusivity
are selected and (ii) the way mutual exclusivity (ME) of a gene set is assessed and
its statistical significance is quantified. To select candidate sets of genes for ME
testing, Vandin et al [43] and Miller et al [41] adopted a data-driven approach,
making use of genomic data only. In [43], authors search for sets of candidate
sets of genes by solving a modified version of the Maximum Coverage Exclusive
Submatrix (MCES) problem, were the objective is to maximise a weight function
that specifies a trade-off between mutual exclusivity and coverage. In [15], authors
used an online machine-learning algorithm to identify signal of exclusivity against
the noisy background of passenger mutations in many irrelevant genes. Differently
from the previous two methods, Ciriello et al [18] designed MEMo, a computa-
tional framework in which gene sets to be tested for ME are derived from cliques
(i.e. groups of genes pair-wisely connected) identified in functional networks, as-
sembled from publicly available signaling- and pathway-maps. For the statistical
assessment of ME authors of these works follow heterogeneous strategies. After
solving the MCES problem on relatively small datasets (containing few hundreds
of samples and genes), authors of [43] perform a significance test simulating a null
model by independently permuting the mutations of each gene across patients,
thus preserving the mutation frequency gene-wisely (but not sample-wisely). In
[41] authors make use of tools from coding theory and the ME significance for a
set of genes is computed algorithmically, based on the minimal length of the code
needed to compress the corresponding genomic data. This is based on the consid-
eration that the genomic event sub-matrix composed by the patterns of mutations
of a set of mutually exclusively mutated genes is less entropic than that of genes
that tend to be co-mutated. As a consequence it should be easily compressible
(i.e. by using a code of short length). In contrast to these two methods, MEMo
[18] quantifies the sample coverage (SC) of a set of genes in terms of the number
of samples in which at least one of them is mutated. Then the ME of the gene set
under consideration is computed as the divergence of its SC from expectation. To
this aim a null model is generated by randomly permuting the analysed dataset,
while preserving the overall distribution of observed alterations across both genes
and samples. This is crucial to preserve tumour specific alterations, heterogene-
ity in mutation/copy-number-alteration rates across patients, and to let the SC
significance be proportional to the gene set ME. Compared to the methods in
[43, 41], the functional relations occurring among a set of mutual-exclusive genes
outputted by MEMo are more easily interpretable and the considered null model
reflects more comprehensively the statistical properties of the analysed genomic
dataset. In order to generate this null model, the authors make use of a per-
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mutation strategy based on a random network generation model referred as the
switching-algorithm [18]. Empirical p-values are then generated to estimate the
significance of the deviation of the observed SC of each gene set from this null
model.

NGS data are naturally represented as a bipartite graph in which the two
classes of nodes are respectively the genes and the samples and an edge between
these two classes indicates a mutation of the gene in the patient. Alternatively it
is also used the incidence matrix of the bipartite graph a particular 0 − 1 table
described in the first chapter.

In ecological research 0-1 tables, called presence-absence matrices (PAMs) [34],
in which rows correspond to different species and columns to different habitats,
are randomised to evaluate the deviation of observed phenomena, such as the
co-occurrence of different species in the same habitat, from random expectations
[67, 48, 68]. Several algorithms exist to generate constrained and non-constrained
null models depending on which basic features of the PAM are retained in the
computations [48]. In particular, a class of stochastic algorithms (i.e. swap and fill
algorithms) generate null models in which the row-wise and column-wise sums of
the PAM are preserved [49]. Nevertheless the randomisation of moderately large
matrices in a short space of time is still challenging. To the aim of identifying novel
cancer driver networks, Ciriello et al [18] took advantage of tools from graph the-
ory by considering a BEM as the incidence matrix of a bipartite graph [69] (Figure
1 (B)). They adapted an algorithm for network randomisation with node degree
preservation to the problem of randomising a BEM while preserving its row- and
column-wise sums [53]. A bipartite graph (or network) is the natural abstraction
of a set of objects and the relationships occurring among them. Bipartite graphs
are a subset of networks in which the set of objects (i.e. vertices) are partitioned
into two independent sets, so that within each set there are no connected nodes.
Bipartite networks occur frequently in biology and in many other fields, and are
widely used in bioinformatics and computational biology. Through bipartite net-
works it is possible to model ontologies with concepts and instances, simulations
as Petri nets, biochemical reactions, and anchored maps for genomic mappings
[70]. They are very useful in describing complex ecosystems as networks of inter-
acting components and mutual interactions such as plants and their pollinators,
plants and seed dispersers, prey and predators. In such situations, the study of
the distribution of the number of links per species, or degree distribution, provides
insights into the modeled system [50, 51]. In immunology, the immune reactions of
a sample of patients to a panel of antigens can be represented as a bipartite graph.
Data of unprecedented detail can now be obtained by applying serum sampled
from patients to microarrays of purified antigens. For example, patients suffering
from allergies can be screened against a large panel of putative allergens. The



43 3.2. Motivation: NGS data analysis

resulting bipartite graph can be used as a starting point for the construction of a
co-sensitisation graph on the set of antigens [71]. Further examples occur in molec-
ular biology, involving high specificity recognition and signalling between various
classes of macromolecules. In a recent work [32], bipartite graphs have been used to
represent data on the regulation of protein expression by miRNAs (microRNAs).
One set of nodes represents the miRNAs, and the other set of nodes represent the
proteins. The presence of an arc between a miRNA node and a protein node indi-
cates that the protein is regulated by the miRNA. The aim is then to use this data
(in the form of a bipartite graph) to construct a co-regulation graph on the set of
proteins. The criteria for including an arc between two nodes (proteins) in this
new graph is based on a comparison of the number of shared miRNAs between the
proteins in the observed bipartite graph, with the distribution of these numbers in
randomly generated bipartite graphs. Additionally, many kinds of semantic and
functional interactions can be easily represented through bipartite networks such
those between genes and diseases to uncovers important properties of the nature
of Mendelian diseases [44]; drugs and their targets [45, 46]; drugs and diseases [47].
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3.3 Bound for the number of SS in the SA

Let G = (V, E) be an undirected network with e edges without loops and B its n×n
symmetric binary adjacency matrix; we can denote the node-set as V = {1, . . . , n}.
In what follows, we indicate with 1 (respectively 0) the entries of a matrix (or vec-
tor) assuming value 1 (resp. 0). The number of edges in a complete undirected

graph n(n−1)
2

will be indicated with t.

Let B(k) be the adjacency matrix of G(k) after k SS and s(k) the JI between B
and B(k). Since each switching step does not alter the node degrees of G, the total
number of 1 in B does not change, as well as its row- and column-wise sums, the
JI in Eq. 3 reads:

s(k) = JI(B,B(k)) =
x(k)

2e− x(k)
(3.2)

where x(k) ∈ {n : n = 0, . . . , e} is equal to the total the number of common edges
in the two corresponding networks.

In Tab. 3.1 a scheme of the proof is provided.

1. Computation of the mean-field equation for x(k+1) and consequently for
Eq. 3.2 (see Prop. 4 below).

2. Derivation of the fixed point x and the convergence time N for the mean-field
equation found in Prop. 4 (see Prop. 5 below).

3. Proof that the SA can be used to create null models for G through N switch-
ing steps (see Prop. 6 and section 3.5 below).

Tab. 3.1: Proof Scheme

Let pr = P (PR) be the probability to perform a rewiring step (PR) and d = e
t

the edge density in the network G.

The mean-field equation for x(k+1) is equal to

x(k+1) = mx(k) + q =
e− 2pr − ed

(d− 1)e
x(k) +

2edpr

(1− d)e
. (3.3)

Proposition 4
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Proof. After a switching step, turning B(k) into B(k+1), 5 possible values can be
assumed by x(k+1):

1. x(k+1) = f1(x
(k)) = x(k) + 1: unitary increment. The switching step is

successfully performed (for exaple we rewire (a, b), (c, d) with (a, d), (c, b))
and one of the following conditions is verified:

• (a, b), (c, d) 6∈ E and only one between (a, d) and (c, b) is in E;

• only one between (a, b) and (c, d) is in E and (a, d), (c, b) ∈ E.

2. x(k+1) = f2(x
(k)) = x(k) − 1: unitary decrement. The rewiring step is suc-

cessfully performed (for exaple we rewire (a, b), (c, d) with (a, d), (c, b)) and
one of the following conditions is verified:

• (a, b), (c, d) ∈ E and only one between (a, d) and (c, b) is in E;

• only one between (a, b) and (c, d) is in E and (a, d), (c, b) 6∈ E.

3. x(k+1) = f3(x
(k)) = x(k) + 2: maximal increment. The rewiring step is

successfully performed (for example we rewire (a, b), (c, d) with (a, d), (c, b))
and (a, b), (c, d) 6∈ E while (a, d), (c, b) ∈ E.

4. x(k+1) = f4(x
(k)) = x(k) − 2: maximal decrement. The rewiring step is

successfully performed (for example we rewire (a, b), (c, d) with (a, d), (c, b))
and (a, b), (c, d) ∈ E while (a, d), (c, b) 6∈ E.

5. x(k+1) = f5(x
(k)) = x(k): null variation. Otherwise.

Tab.3.2 contains a summary of the five possible values assumable by x(k+1).

f1 f2 f3 f4 f5

+1 −1 +2 −2 +0

Tab. 3.2: Possible values of x(k+1).

If we indicate with p
(k)
i = P (x(k+1) = fi(x

(k))) (i.e. probability of each case, for
i = 1, . . . , 5), then x(k+1) is equal, on average, to:

x(k+1) =
5∑

i=1

p
(k)
i fi(x

(k)). (3.4)
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Proposition 4

Lemma 1

Lemma 2

Fig. 3.2: Scheme for the proof of Prop.4.

Explicating the p
(k)
i for i = 1, . . . , 5 (see Lemma 1 and Lemma 2 below) reduces

Eq. 3.4 to Eq. 3.3.

The scheme of this proof is summarized in Fig. 3.2

In order to prove Lemma 1 and Lemma 2, we will make use of the following
additional notation.

Let us consider now a, b, c, d defined in step 2 of the SA and w
(k)
i,j the i, j-th

element of the adjacency matrix of the graph B(k).

With

( 0 α β γ
α 0 δ σ
β δ 0 τ
γ σ τ 0

)(k)

we will indicate the submatrix of B(k) collecting the sixteen

positions α = w
(k)
a,b , β = w

(k)
a,c , γ = w

(k)
a,d, δ = w

(k)
b,c , σ = w

(k)
b,d , τ = w

(k)
c,d . In what

follow, when an entry of the

( 0 α β γ
α 0 δ σ
β δ 0 τ
γ σ τ 0

)(k)

can be neglected then it will be indicated

with the · symbol. When k = 0 we denote

( 0 α β γ
α 0 δ σ
β δ 0 τ
γ σ τ 0

)(0)

with

( 0 α β γ
α 0 δ σ
β δ 0 τ
γ σ τ 0

)
. Since,

for practical and notation purpose, all these values are not required, we will use

a more compact notation. Let suppose, w.l.o.g, that

(
0 1 · 0
1 0 0 ·
· 0 0 1
0 · 1 0

)(k)

, i.e. PR can be

perform and

(
0 0 · 1
0 0 1 ·
· 1 0 0
1 · 0 0

)(k+1)

, i.e. the SA rewires (a, b), (c, d) with (a, d), (c, b). This

situation can be easily described using a 4× 4 matrix:
(

α γ
δ τ

)(k)
and so in this case(

1 0
0 1

)(k)
and

(
0 1
1 0

)(k+1)
. Also in this case, when k = 0, we denote

(
α β
γ δ

)(0)
with(

α β
γ δ

)
.

Let we introduce four more probabilities and eighth new events:
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q(k)
s = P (QS+

k ) = P
((

1 ·
· ·
)
|
(

1 0
0 1

)(k)
)

= P (QS−
k ) = P

(( · ·
· 1

)
|
(

1 0
0 1

)(k)
)

,

p(k)
s = P (PS+

k ) = P
((

0 ·
· ·
)
|
(

1 0
0 1

)(k)
)

= P (PS−
k ) = P

(( · ·
· 0

)
|
(

1 0
0 1

)(k)
)

,

q
(k)
f = P (QF+

k ) = P
((

· 1
· ·
)
|
(

1 0
0 1

)(k)
)

= P (QF−
k ) = P

(( · ·
1 ·
)
|
(

1 0
0 1

)(k)
)

,

p
(k)
f = P (PF+

k ) = P
((

· 0
· ·
)
|
(

1 0
0 1

)(k)
)

= P (PF−
k ) = P

(( · ·
0 ·
)
|
(

1 0
0 1

)(k)
)

.

For example, the value q
(k)
s is the probability of having wa,b = 1 = wc,d in the

initial graph knowing that the rewiring step is performed. The other events and
probabilities have similar interpretations.

In the above notation:

q(k)
s ' x(k)

e
, p(k)

s ' e− x(k)

e
, q

(k)
f ' e− x(k)

t− e
, p

(k)
f ' t− 2e + x(k)

t− e
.

Lemma 1

Proof. Let us suppose that at the step k there are x(k) ones in common between
B(k) and B, and that w

(k)
a,b = 1, then the probability that in the initial graph

wa,b = 1 is x(k)

e
(positive cases divided by possible cases). Similarly, for q

(k)
f the

possible cases are t− e, i.e. the number of available position in which the new non
null entry can be placed, and the positive cases are e− x(k); then

q
(k)
f ' e− x(k)

t− e
. (3.5)

All the approximations above follow from the simplifications x(k) − 1 ∼ x(k) and
e− 1 ∼ e. The rest of the proof can be deduced observing that p

(k)
s = 1− q

(k)
s and

p
(k)
f = 1− q

(k)
f .
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The probabilities p
(k)
i , i = 1, . . . , 5 are equal to:

p
(k)
1 ' 2(x(k) − e)3(2e− 2x(k) − t)

(e2 − et)2
pr, p

(k)
4 ' x(k)(x(k) + t− 2e)2x(k)

(te− e2)2
pr,

p
(k)
2 ' 2(e− x(k))(x(k) + t− 2e)(2x(k) + t− 2e)x(k)

(te− e2)2
pr, p

(k)
3 ' (x(k) − e)4

(te− e2)2
pr,

p
(k)
5 = 1− p

(k)
4 − p

(k)
3 − p

(k)
2 − p

(k)
1 .

Lemma 2

Proof. Using the definition of f1(x
(k)) in Prop.4 and the four probabilities in Fact.1,

it follows that:

p
(k)
1 = P (PR ∧ (

((PS+
k ∧ PS−

k ) ∧ ((QF+
k ∧ PF−

k ) ∨ (QF−
k ∧ PF+

k )))

∨
(((QS+

k ∧ PS−
k ) ∨ (QS−

k ∧ PS+
k )) ∧ (QF+

k ∧QF−
k ))

)).

This can be rewritten (omitting the probabilities of the prior events, for sake of
simplicity) as:

p
(k)
1 = P

[(
1 0
0 1

)(k) ∧
{[(

0 ·
· 0

)
∧
[(

· 1
0 ·
)
∨
(
· 0
1 ·
)]]

∨
[[(

1 ·
· 0

)
∨
(

0 ·
· 1

)]
∧
(
· 1
1 ·
)]}]

= P
[(

1 0
0 1

)(k) ∧
[(

0 ·
· 0

)
∧
[(

· 1
0 ·
)
∨
(
· 1
0 ·
)]]]

+ P
[(

1 0
0 1

)(k) ∧
[[(

1 ·
· 0

)
∨
(

0 ·
· 1

)]
∧
(
· 1
1 ·
)]]

' pr

[
p2

s(1− p2
f − q2

f ) + (1− p2
s − q2

s)q
2
f

]
.

Similarly:

p
(k)
2 = P

[(
1 0
0 1

)(k) ∧
{[(

1 ·
· 1

)
∧
[(

· 1
0 ·
)
∨
(
· 0
1 ·
)]]

∨
[[(

1 ·
· 0

)
∨
(

0 ·
· 1

)]
∧
(
· 0
0 ·
)]}]

= P
[(

1 0
0 1

)(k) ∧
[(

1 ·
· 1

)
∧
[(

· 1
0 ·
)
∨
(
· 0
1 ·
)]]]

+ P
[(

1 0
0 1

)(k) ∧
[[(

1 ·
· 0

)
∨
(

0 ·
· 1

)]
∧
(
· 0
0 ·
)]]

' pr

[
q2
s(1− p2

f − q2
f ) + (1− p2

s − q2
s)p

2
f

]
.

p
(k)
3 = P

[(
1 0
0 1

)(k) ∧
(

0 ·
· 0

)
∧
(
· 1
1 ·
)]
' prp

2
sq

2
f .
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p
(k)
4 = P

[(
1 0
0 1

)(k) ∧
(

1 ·
· 1

)
∧
(
· 0
0 ·
)]
' prq

2
sp

2
f .

The mean-field equation for the Tanimoto index s(k+1) resulting combining
Eq.3.2 and Eq.3.3 reads:

s(k+1) =
e2x(k) + (2x(k)t− 2e2)pr − ex(k)t

2e3 + (2e2 − 2x(k)t)pr − e2x(k) − 2e2t + ex(k)t− 2prx(k)t
. (3.6)

The mean-field equation Eq. 3.6 is an approximation because Eq. 3.5 does not
consider the preservation of the degree distributions. To take this constrain into
account, we slightly modify Eq. 3.5 as follows:

q
(k)
f ' e− x(k)

t− e− z
, (3.7)

where t − e − z represents the number of available positions where the new non
null entry can be placed. The value z depends on the initial graph G that can be
neglected (as explained in the demonstration of Prop. 5).

If reformulating Lemma 1, Lemma 2 and Prop. 4 accordingly to this modifica-
tion the mean-field equation for x(k+1) is equal to:

x(k+1) = m(z)x(k) + q(z) =

=
et− 2pr(t− z)− e2 − ez

(t− e− z)e
x(k) +

2e2pr

(t− e− z)e
. (3.8)

The demonstration of Prop. 5 follows from Prop. 4, Lemma 3 and Lemma 4
(as summarized in Fig.3.3).

The unique fixed point x of Eq.3.8 is:

x =
e2

t− z
. (3.9)

Lemma 3
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Proposition 4

Lemma 1

Lemma 2

Lemma 3

Lemma 4 Proposition 5

Fig. 3.3: Scheme for the proof of Prop.5.

Proof. Let us solve x(k+1) = x(k) = x:

0 = p1(x)(x + 1) + p2(x)(x− 1) + p3(x)(x + 2) + p4(x)(x− 2) + p5(x)x− x

= p1(x)− p2(x) + 2p3(x)− 2p4(x)

=
2(e2 + xz − xt)pr

(t− e− z)e

= xz − xt + e2

x =
e2

t− z
.

Fixed a positive real number ε ≤ 1, then
∣∣x(k) − x

∣∣ < ε for all k > N with

N = logm(z) g(z, ε) with g(z, ε) =
ε(t− z)

(t− e− z)e
.

Lemma 4
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Proof. From Eq.3.8 it follows that:

x(k+1) = m(z)x(k) + q

= (m(z) + 1)x(k) −m(z)x(k−1), that is a second-order linear recursive sequence admitting

F (x) = x2 − (m(z) + 1)x + m(z) as characteristic polynomial. As shown in [72] we can write

x(k+1) = ark+1 + bsk+1, where r and s are the two roots of F and a and b are constants

= am(z)k+1 + b, in our case r = m(z), s = 1,

=

(
e− q(z)

1−m(z)

)
m(z)k+1 +

q(z)

1−m(z)
(3.10)

given that x(0) = e and x(1) = m(z)e + q(z).

Fixed ε ≤ 1,

|x(N) − x| < ε ⇐⇒
∣∣∣∣(e− q(z)

1−m(z)

)
m(z)k

∣∣∣∣ < ε ⇐⇒

N> logm(z) g(z, ε) with g(z, ε) =
ε(t− z)

(t− e− z)e
. (3.11)

Since 0 < m(z) ≤ 1 the previous inequality holds.

Let d denotes the edge density of G, namely d = e
t
∈ [0, 1] and ε = 1, then

N is equal to:
e(1− d)

2pr

ln(e− de). (3.12)

Proposition 5

Proof. Since m′(z) = −2pr

(e+z−t)2
< 0 and ∂

∂z
g(z, ε) = − (t−z)2

e2 < 0, the maximum value
for N of Eq. 3.11 is reached for z = 0 and its value is:

N = log et−2pr(t−z)−e2−ez
(t−e−z)e

t2

t2e− e2t

= log1+ 2prt
(e−t)e

1

e− de

=
ln 1

e−de

ln 1 + 2prt
(e−t)e

∼ (t− e)e

2prt
ln(e− de) using ln[1 + x] ∼ x for |x| < 1

=
(1− d)e

2pr

ln(e− de).
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Remark 1. For an implementative point of view, the value pr is not important
because we can count only the number of SSs correctly perform i.e. consider pr = 1.
For some sparse and regular graphs (see [27]) it is possible to compute pr but for
a general graph this probability depends strongly by the degree distribution.

3.4 Pairwise-similarity

Let r(k) = s(B(k), C(k)) where B(k) and C(k) are the adjacency matrices of two
rewired version of G, obtained through the SA with at the k-th SSs. In this
section we will show that the similarity between any pair of rewired versions of
G obtained through different instances of the SA, with k SSs, is lower than their
individual similarity to G.

Using the same notation and Prop. 4 and Prop. 5, with z = 0 it follows
that:

r(k+1) = mr(k) + q =
et− e2 − 4prt

te− e2
r(k) +

4e2pr

te− e2
.

Lemma 5

Proof. Similarly to Prop. 4 the value r(k+1) can be estimated as:

r(k+1) =
9∑

i=1

q
(k)
i gi(r

(k)),

where the values of gi are listed below and summarise in Tab.3.3.

g1 g2 g3 g4 g5 g6 g7 g8 g9

+4 −4 +3 −3 +2 −2 +1 −1 +0

Tab. 3.3: Possibilities for r(k+1).

Using the letters a, b, c, d for B(k) and α, β, γ, δ for C(k) and introducing F (k) as

the set of the common edges between B(k) and C(k) and using
( · ·
· ·
)(k)

instead of(
0 · · ·
· 0 · ·
· · 0 ·
· · · 0

)(k)

we have:

1. g1(r
(k)) = r(k) + 4: we gain four ones. The two rewiring steps are per-

formed (one for B(k) and one for C(k)) and (a, b), (c, d), (α, β), (γ, δ) 6∈ F (k)

and (a, d), (c, b), (α, δ), (γ, β) ∈ F (k).
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2. g2(r
(k)) = r(k) − 4: we lose four ones. The two rewiring steps are performed

and (a, b), (c, d), (α, β), (γ, δ) ∈ F (k) and (a, d), (c, b), (α, δ), (γ, β) 6∈ F (k).

3. g3(r
(k)) = r(k) +3: we gain three ones. The two rewiring steps are performed

and:

• (a, b), (c, d), (α, β), (γ, δ) 6∈ F (k) and only three among (a, d), (c, b), (α, δ), (γ, β)
are elements of F (k) or

• One among (a, b), (c, d), (α, β), (γ, δ) is in F (k) and (a, d), (c, b), (α, δ), (γ, β) ∈
F (k).

4. g4(r
(k)) = r(k)− 3: we lose three ones. The two rewiring steps are performed

and:

• (a, b), (c, d), (α, β), (γ, δ) ∈ F (k) and only one among (a, d), (c, b), (α, δ), (γ, β)
is a element of F (k) or

• Three among (a, b), (c, d), (α, β), (γ, δ) are in F (k) and (a, d), (c, b), (α, δ), (γ, β) 6∈
F (k).

5. g5(r
(k)) = r(k) + 2: we gain two ones.

• The two rewiring steps are performed and:

– (a, b), (c, d), (α, β), (γ, δ) 6∈ F (k) and only two among (a, d), (c, b), (α, δ), (γ, β)
are elements of F (k).

– (a, b) ∈ F (k) (or one of the other) and

∗ if (a, d) ∈ F (k) two among (c, b), (α, δ), (γ, β) are in F (k),

∗ if (a, d) 6∈ F (k) (c, b), (α, δ), (γ, β) ∈ F (k).

– (a, b)(c, d) ∈ F (k) (or any other couple) and (a, d), (c, b), (α, δ), (γ, β) ∈
F (k).

• Only one of the two rewiring steps are performed (let say B(k)) and:

– (a, b), (c, d) 6∈ F (k) and (a, d), (c, b) ∈ F (k).

6. g6(r
(k)) = r(k) − 2: we lose two ones.

• The two rewiring steps are performed and:

– (a, b), (c, d), (α, β), (γ, δ) ∈ F (k) and only two among (a, d), (c, b), (α, δ), (γ, β)
are elements of F (k).

– (a, b) 6∈ F (k) (or one of the other) and

∗ if (a, d) 6∈ F (k) one among (c, b), (α, δ), (γ, β) is in F (k),

∗ if (a, d) ∈ F (k) (c, b), (α, δ), (γ, β) 6∈ F (k).
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– (a, b)(c, d) 6∈ F (k) (or any other couple) and (a, d), (c, b), (α, δ), (γ, β) 6∈
F (k).

• Only one of the two rewiring steps are performed (let say B(k)) and:

– (a, b), (c, d) ∈ F (k) and (a, d), (c, b) 6∈ F (k).

7. g7(r
(k)) = r(k) + 1: we gain a one.

• The two rewiring steps are performed and:

– (a, b), (c, d), (α, β), (γ, δ) 6∈ F (k) and only one among (a, d), (c, b), (α, δ), (γ, β)
is an element of F (k).

– (a, b) ∈ F (k) (or one of the other) and

∗ if (a, d) ∈ F (k) one among (c, b), (α, δ), (γ, β) is in F (k),

∗ if (a, d) 6∈ F (k) two among (c, b), (α, δ), (γ, β) are in F (k).

– (a, b)(c, d) ∈ F (k) (or any other couple) and

∗ if (a, d), (c, b) ∈ F (k) one among (α, δ), (γ, β) is in F (k),

∗ if (a, d) ∈ F (k) and (c, b) 6∈ F (k) (or viceversa) (α, δ), (γ, β) ∈
F (k).

– Three among (a, b), (c, d), (α, β), (γ, δ) are in F (k) and (a, d), (c, b), (α, δ), (γ, β) ∈
F (k).

• Only one of the two rewiring steps are performed (let say B(k)) and:

– (a, b), (c, d) 6∈ F (k) and only one among (a, d) and (c, b) is an element
of F (k) or

– (a, b) ∈ F (k),(c, d) 6∈ F (k) and (a, d), (c, b) ∈ F (k).

8. g8(r
(k)) = r(k) − 1: we lose a one.

• The two rewiring steps are performed and:

– (a, b), (c, d), (α, β), (γ, δ) ∈ F (k) and three among (a, d), (c, b), (α, δ), (γ, β)
are elements of F (k).

– One among (a, b), (c, d), (α, β), (γ, δ) is in F (k) and (a, d), (c, b), (α, δ), (γ, β) 6∈
F (k).

– (a, b)(c, d) ∈ F (k) (or any other couple) and

∗ if (a, d), (c, b) 6∈ F (k) one among (α, δ), (γ, β) is in F (k),

∗ if (a, d) ∈ F (k) and (c, b) 6∈ F (k) (or viceversa) (α, δ), (γ, β) 6∈
F (k).

– (a, b) 6∈ F (k) (or one of the other) and

∗ if (a, d) 6∈ F (k) two among (c, b), (α, δ), (γ, β) are in F (k),

∗ if (a, d) 6∈ F (k) one among (c, b), (α, δ), (γ, β) is in F (k).
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• Only one of the two rewiring steps are performed (let say B(k)) and:

– (a, b), (c, d) ∈ F (k) and only one among (a, d) and (c, b) is an element
of F (k) or

– (a, b) ∈ F (k),(c, d) 6∈ F (k) and (a, d), (c, b) 6∈ F (k).

9. g9(r
(k)) = r(k): no variation.

The rest of proof follows from the explication of the probabilities q
(k)
i i =

1, . . . , 9 given in Lemma 6, as summarised in Fig. 3.4).

Proposition 4

Lemma 1

Lemma 2

Lemma 3

Lemma 4 Proposition 5

Lemma 6 Lemma 5 Proposition 6

Fig. 3.4: Scheme for the proof of Prop.6.
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From the definition of the probabilities in Lemma 3 we can compute

q
(k)
1 , i = 1, . . . , 9:

q
(k)
1 ∼ (e− r(k))8pr

2

(e2 − te)4
.

q
(k)
2 ∼ r(k)4(2e− r(k) − t)4pr

2

(e2 − t2)4
.

q
(k)
3 ∼ 4 ∗ (r(k) − e)7(2e− 2r(k) − t)pr

2

(e2 − te)4
.

q
(k)
4 ∼

4(e− r(k))(2e− 2r(k) − t)
(
r(k)(2e− r(k) − t)

)3
pr

2

(e2 − te)4
.

q
(k)
5 ∼ 2(e− r(k))4(11e4pr − 52e3prr

(k) − 10e3prt + 82e2prr
(k)2 + 38e2prr

(k)t + 2e2prt
2 − 56eprr

(k)3

(e2 − te)4

+
−40eprr

(k)2t− 6eprr
(k)t2 + 14prr

(k)4 + 14prr
(k)3t + 3prr

(k)2t2 + e4 − 2e3t + e2t2)pr

(e2 − te)4
.

q
(k)
6 ∼ 2(2e− r(k) − t)2(11e4pr − 52e3prr

(k) − 10e3prt + 82e2prr
(k)2 + 38e2prr

(k)t + 2e2prt
2 − 56eprr

(k)3

(e2 − te)4
+

+
−40eprr

(k)2t− 6eprr
(k)t2 + 14prr

(k)4 + 14prr
(k)3t + 3prr

(k)2t2 + e4 − 2e3t + e2t2)prr
(k)2

(e2 − te)4
.

q
(k)
7 ∼ −4(e− r(k))3(2e− 2r(k) − t)(3e4pr − 22e3prr

(k) − 2e3prt + 39e2prr
(k)2 + 15e2prr

(k)t− 28eprr
(k)3

(e2 − te)4
+

+
−18eprr

(k)2t− 2eprr
(k)t2 + 7prr

(k)4 + 7prr
(k)3t + prr

(k)2t2 + e4 − 2e3t + e2t2)pr

(e2 − te)4
.

q
(k)
8 ∼ 4(e− r(k))(2e− 2r(k) − t)(2e− r(k) − t)(3e4pr − 22e3prr

(k) − 2e3prt + 39e2prr
(k)2 + 15e2prr

(k)t

(e2 − te)4
+

+
−28eprr

(k)3 − 18eprr
(k)2t− 2eprr

(k)t2 + 7prr
(k)4 + 7prr

(k)3t + prr
(k)2t2 + e4 − 2e3t + e2t2)prr

(k)

(e2 − te)4
.

q
(k)
9 ∼ 1−

8∑
i=1

q(k).

Lemma 6

Proof. A key point for the calculation of these probabilities is that the number
of admissible configuration should be correctly enumerated. As an example, to
compute q

(k)
7 , i.e. probability of unitary increment, factors 4 and 24 are defined

considering that if originally all the four selected edges are not in F (k) we gain a
one if and only if one of the rewired edge is a element of the set, and there are
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exactly 4 configurations possible since the rewired edge in the set could be one of
the four possible edges. If we are in the second case the possible configurations
are summarised in Fig.3.5

Fig. 3.5: All the 24 configurations producing a unitary increment in the second
case. The four columns represent the edges and those in blue are elements of F (k).
The first row of each bloc represents the configuration before the rewiring step,
while the second one represents the situation after the step.

Similarly to the proof of Prop.4:

q
(k)
1 = P (PRb ∧ PRc ∧ (PS+

b ∧ PS−
b ∧ PS+

b ∧ PS−
b ) ∧ (QF+

c ∧QF−
c ∧QF+

c ∧QF−
c )) ∼ p2

rp
4
sq

4
f .

q
(k)
2 = P (PRb ∧ PRc ∧ (QS+

b ∧QS−
b ∧QS+

b ∧QS−
b ) ∧ (PF+

c ∧ PF−
c ∧ PF+

c ∧ PF−
c )) ∼ p2

rq
4
sp

4
f .

q
(k)
3 = P (PRb ∧ PRc ∧ (

((PS+
b ∧ PS−

b ∧ PS+
b ∧ PS−

b )∧
((QF+

c ∧QF−
c ∧QF+

c ∧ PF−
c ) ∨ (QF+

c ∧QF−
c ∧ PF+

c ∧QF−
c )∨

(QF+
c ∧ PF−

c ∧QF+
c ∧QF−

c ) ∨ (PF+
c ∧QF−

c ∧QF+
c ∧QF−

c ))

) ∨ (

((PS+
c ∧ PS−

c ∧ PS+
c ∧QS−

c ) ∨ (PS+
c ∧ PS−

c ∧QS+
c ∧ PS−

c )∨
(PS+

c ∧QS−
c ∧ Ps+

c ∧ PS−
c ) ∨ (QS+

c ∧ PS−
c ∧ PS+

c ∧ PS−
c ))∧

(QF+
b ∧QF−

b ∧QF+
b ∧QF−

b )))) ∼ p2
r(4p

4
sq

3
fpf + 4p3

sqsq
4
f ).

Similarly:
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q
(k)
4 ∼ p2

r(4q
4
sqfp

3
f + 4q3

spsp
4
f ).

q
(k)
5 ∼ p2

r(6q
2
fp

2
fp

4
s + 16q3

fpfp
3
sqs + 6q4

fp
2
sq

2
s) + 2pr(1− pr)(q2

fp
2
s).

q
(k)
6 ∼ p2

r(6q
2
fp

2
fq

4
s + 16p3

fqfq
3
sps + 6p4

fp
2
sq

2
s) + 2pr(1− pr)(p

2
fq

2
s).

q
(k)
7 ∼ p2

r(4qfp
3
fp

4
s + 24p2

fq
2
fp

3
sqs + 24pfq

3
fp

2
sq

2
s + 4q4

fpsq
3
s) + 2pr(1− pr)(2p

2
sqfpf + 2psqsq

2
f ).

q
(k)
8 ∼ p2

r(4q
3
fpfq

4
s + 24q2

fp
2
fq

3
sps + 24qfp

3
fp

2
sq

2
s + 4p4

fqsp
3
s) + 2pr(1− pr)(2q2

spfqf + 2psqsp
2
f ).

Let x(k) defined as in Lemma 4 and z = 0 then the fixed point r of Eq.3.12
is

r =
e2

t
,

and for all k = 1, . . . , N , follows that:

r(k) ≤ x(k).

Proposition 6

Proof. From Eq.3.12, r is a fixed point if and only if:

0 = r(k+1) − r(k) =
−4(t− e)2(e2 − r(k)t)

e(e− t)t2
.

for which the unique admissible root is e2

t
. The sequence in Eq.3.12 is again a

second order linear sequence for which a closed form can be computed as shown
in [72]:

r(k) =
te− e2

t

(
te− e2 − 4prt

te− e2

)k

+
e2

t
and

x(k) =
te− e2

t

(
te− e2 − 2prt

te− e2

)k

+
e2

t
so

r(k) ≤ x(k) ⇐⇒ te− e2 − 4prt

te− e2
≤ te− e2 − 2prt

te− e2
⇐⇒ −2pr ≤ 0.

In conclusion r(k) ≤ x(k).

Finally, in Prop. 4, we prove how to derive the bound showed in [27] for bipartite
graphs.
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Let G = ({Vr, Vc}, E) represents a bipartite graph such that |E| = e, then
the bound for N in Prop. 5 reads as:

N =
e

2(1− d)
ln(e− de).

Proposition 7

Proof. Let t be number of edges in the complete bipartite graph, i.e. t = |Vr||Vc|,
and let d = e

t
be the graph’s density. It is easy to see that pr = (1 − d)2 and so

the thesis.

3.5 Markov chain empirical convergence

3.5.1 Simulations

Let Xn be the Markov chain underlying the SA. It is easy to see that this Markov
chain is irreducible, aperiodic with a finite space state, and so there exists a unique
stationary distribution π. In Prop. 5 we derive a convergence bound for the mean
value of Xn, i.e. we prove that E(Xn) converges after N SSs, and clearly E(Xn) →
E(π). In this section we will show that this bound can be chosen as convergence
time for all the distribution. Also if the transition matrix associate to the SA
could be easily written (using the probabilities computed in Lemma 2), it is no
trivial to compute a closed form for the probability density function Fn of Xn (this
closed form could be used to write π and so check the distance from the stationary
distribution).

For these reason, we generate a random graph with n = 2000 and d = 10% and
we perform 2000 independent runs of the SA. We assume that π is reached after
100e ∼ 35N SSs we compute the first five moments of Xn each 1000 SSs, and the
Kolmogorov distance and the total variation distance between Fn and π.

In Fig. 3.6 we plot the trend of the first five normalised moments and in Fig. 3.7
we plot the trend of the two distances. Moreover, in the small box in Fig. 3.7, we
plot also the evolution of the Fn during the SA.
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Fig. 3.6: The first five normalized moments of Fn computed every 1000 successful
SSs (log-log plot). After N SSs all these moments tend to converge. In the small
figure: trend of the mean value in black with the 95% CI in gray.
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Fig. 3.7: The trend of two measure (Kolmogorov in red and total variation in blue)
between Fn and π plotted between 1 and 2N successful SSs. The distances tend
to converge after N SSs (dotted black line). In the small figure: the evolution of
Fn form 2000 up to N SSs. The distributions are plotted every 20000 SSs. The
distribution FN (blue line) can be consider as π (black line).
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3.5.2 Autocorrelation time

Following the same strategy described in [36], we can determinate the mixing time
of the underlying Markov chain looking at the autocorrelation time.

Definition 11. The autocorrelation At(X) of a signal X = (x1, . . . , xn) is the
covariance of itself and the same signal given a lag time t:

At(X) =
E[(xi − µ)(xi+t − µ)

σ2
,

where µ and σ are respectively, the mean and the variance of X.

If the samples X are sampled from the stationary distribution, the relative
value of autocorrelation would be near to 0 as n, the number of samples, increases.
Varying the lag time t and monitoring At(X) we can control the mixing time of
the Markov chain. We can compute At(X) as:

At(X) = C(t)/C(0) where C(t) =
1

n− t

n−t∑
i=1

(xi − µ)(xi+t − µ) (3.13)

The signals considered here, following [36], are the presence/absence of the
whole set of possible edges. Looking at the values of At(X) for increasing values of
t it is possible to determinate when the autocorrelation assume a random behaviour
(and so the signal at lag time t can be consider uncorrelated.

Since the presence/absence of an edge can be read in the adjacency matrix,
since we prove that after N SS the number of common edge reach its minimum
(further SSs does not decrease it), and that the common edges tend not to be
the same for multiple rewired graphs, and since the rewired edges are selected
uniformly, we can state that a lag time t = N guarantees an acceptable level of
autocorrelation between the samples.

In Ex.1 we will show how the Jaccard index (or more generally, the number of
common edges x(k)) is correlated with the autocorrelation (Fig.3.8) and that our
bound N can be effectively considered a good autocorrelation time (Fig.3.9). Here
we obtain compatible results respect to which obtained in [27] for bipartite graphs.

Example 1. We generate a random undirected network with n = 400, e = 10632
and density d = 6.6%. Using Eq.3.12 with pr = 1, counting only successful SS, we
obtain a bound for the number of SS N equal to 44836. We run the SA for 20N SS
and extract a sample each 250 SS. For each lag time t ∈ {250, 500, . . . , 179500} (it
is unfeasible to extract samples for unitary increment of t) we compute At(X) using
Eq.3.13 for a tenth of the possible edges. We plot the trend of the autocorrelation
for nine of these 7980 edges and the mean value. In Fig.3.8 we can see that there
is a strong correlation between the (mean) autocorrelation and the mean Jaccard
index and in Fig.3.9 we plot the lag time t versus the autocorrelation.
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Fig. 3.8: The (log-log) scatterplots of the mean Jaccard Index VS (the absolute
value of) the autocorrelation. In the lowest box we clearly see a strong autocorre-
lation between the mean Jaccard Index and the mean value of the autocorrelation.
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Fig. 3.9: The (log-log) plots relative to the trend of (the absolute value of) the
autocorrelation for nine random edges. In red we draw our bound N and in green
a value of (the absolute value of) autocorrelation equal to 0.01.
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3.6 Package short description

We collect some useful functions related to the SA into a R-package called BiRewire.
It is possible to download the package from http://www.ebi.ac.uk/~iorio/

BiRewire and install it with the shell-command:

R CMD INSTALL BiRewire_xx.yy.zz.tar.gz

or with biocLite() directly in R:

source("http://bioconductor.org/biocLite.R")

biocLite("BiRewire")

To load BiRewire use the following commands:

library(BiRewire)

BiRewire requires the R package igraph (see [73]) available at the CRAN repos-
itory, or downloadable at http://cran.r-project.org/web/packages/igraph/
index.html.

Most of the functions in the package are written in C and then wrapped in R.
It is possible to work (at low dimensions) directly using the incidence matrix (for
bipartite) or adjacency matrix(for undirected) or using edge-lists (for bipartite) or
adjacency-lists (for undirected). These choices make the implemented functions
very fast. For instance, for a random undirected graph with 1000 nodes and 50000
edges the igraph routine rewire needs ∼ 52 s in order to perform 10000 SS, while
the BiRewire routine birewire.rewire (working on adjacency lists) needs ∼ 0.035 s.

In the package is also included a real dataset of breast cancer samples and their
respective mutations downloaded from the Cancer Cancer Genome Atlas [60] at
the address http://tcga.cancer.gov/dataportal/ and a vignette in which we
show all the functionalities of this package.

3.6.1 Function description

In this subsection are described all the functions implemented in BiRewire with
a simple practical example in which a real breast cancer dataset is modeled as
a bipartite network, and randomised preserving the mutation-rate both across
samples and genes (i.e. the corresponding bipartite network is rewired). In each of
the following functions it is possible to perform N successful switching steps, as
discussed before, using the flag exact=TRUE. To prevent a possible infinite loop,
the program performs at maximum MAXITER MUL*max.iter iterations.

First of all, we create a bipartite network modeling a genomic breast cancer
dataset downloaded from the Cancer Genome Atlas (TCGA) projects data portal
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http://tcga.cancer.gov/dataportal/. From this dataset germline mutations
were filtered out with state-of-the-art softwares; synonymous mutations and muta-
tions identified as benign and tolerated were also removed. The resulting bipartite
graph has nr = 757 nodes (corresponding to samples), nc = 9, 757 nodes (corre-
sponding to genes), and e = 19, 758 edges connecting a node in nr to a node in nc if
the gene corresponding to the node in nr is mutated to the samples corresponding
to the node in nC . The edge density of this network is 0.27%.

The genomic dataset (in the form of a binary matrix in which rows correspond
to samples, columns correspond to genes and the (i, j) entry is non null if the i-th
sample harbours a mutation in the j-th gene) can be loaded and modeled as a
bipartite graph, with the following R commands:

data(BRCA\_binary\_matrix)##loads an binary genomic event matrix

##for the breast cancer dataset

g=birewire.bipartite.from.incidence(BRCA_binary_matrix)##models

##the dataset as igraph bipartite graph

Once the bipartite graph is created it is possible to conduct the analysis by
calling the birewire.analysis function, using the following commands:

step=5000

max=100*sum(BRCA_binary_matrix)

scores<-birewire.analysis(BRCA_binary_matrix,step,verbose=FALSE,

max.iter=max)

plot(x=step*seq(1:length(scores$similarity_scores)),

y= scores$similarity_scores,

type=’l’, xlab="Number of switching steps",

ylab="Jaccard Similarity Score",ylim=c(0,1))

legend(max*0.8,1, c("Jaccard Similarity","N"),

cex=0.9, col=c("black","red"), lty=1:1,lwd=3)

abline(v=scores$N,col=’red’)

plot(x=step*seq(1:length(scores$similarity_scores)),

y= scores$similarity_scores,

type=’l’,xlab="Number of switching steps",

ylab="Jaccard Similarity Score",log="xy",main="Log-Log plot")

legend("topright", c("Jaccard Similarity","N"),

cex=0.9, col=c("black","red"), lty=1:1,lwd=3)

abline(v=scores$N,col=’red’)

The function birewire.analysis returns the Jaccard similarity sampled every
5000 SSs. In the resulting plots the value of the analytically derived lower bound
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to the number of switching steps is also visualised $N . For more details see the
the documentation.

The same analysis can be performed on general undirected networks (not bi-
partite).

g.und<-erdos.renyi.game(directed=F,loops=F,n=1000,p.or.m=0.01)

m.und<-get.adjacency(g.und,sparse=FALSE)

step=100

max=100*length(E(g.und))

scores.und<-birewire.analysis.undirected(m.und,step=step,

verbose=FALSE,max.iter=max)

plot(x=step*seq(1:length(scores.und$similarity_scores)),

y= scores.und$similarity_scores,

type=’l’, xlab="Number of switching steps",

ylab="Jaccard Similarity Score",ylim=c(0,1))

legend(max*0.8,1, c("Jaccard Similarity","N"),

cex=0.9, col=c("black","red"), lty=1:1,lwd=3)

abline(v=scores.und$N,col=’red’)

plot(x=step*seq(1:length(scores.und$similarity_scores)),

y= scores.und$similarity_scores,

type=’l’,xlab="Number of switching steps",

ylab="Jaccard Similarity Score",log="xy",main="Log-Log plot")

legend("topright", c("Jaccard Similarity","N"),

cex=0.9, col=c("black","red"), lty=1:1,lwd=3)

abline(v=scores.und$N,col=’red’)

To rewire a bipartite graph two modalities are available. Both of them can
be used with the analytical bound N as number of switching steps or with a user
defined value. The function takes in input an incidence matrix B or the an igraph
bipartite graph.

m2<-birewire.rewire.bipartite(BRCA_binary_matrix,verbose=FALSE)

g2<-birewire.rewire.bipartite(g,verbose=FALSE)

The first function gives in output the incidence matrix of the rewired graph
while the second one a rewired igraph graph. See documentation for further details.

To rewire a general undirected graph the following functions can be used:

m2.und<-birewire.rewire(m.und,verbose=FALSE)

g2.und<-birewire.rewire(g.und,verbose=FALSE)
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This function computes the Jaccard index between two incidence matrices with
same dimensions and node degrees.

sc=birewire.similarity(BRCA_binary_matrix,m2)

sc=birewire.similarity(BRCA_binary_matrix,t(m2))#also works

The following functions execute the Switching Algorithm and computes similar-
ity trends across its switching steps for the two natural projections of the starting
bipartite graph

#use a smaller graph!

gg <- simplify(graph.bipartite( rep(0:1,length=100),

c(c(1:100),seq(1,100,3),seq(1,100,7),100,seq(1,100,13),

seq(1,100,17),seq(1,100,19),seq(1,100,23),100)))

result=birewire.rewire.bipartite.and.projections(gg,step=10,

max.iter="n",accuracy=1,verbose=FALSE)

plot(result$similarity_scores.proj2,type=’l’,col=’red’,ylim=c(0,1))

lines(result$similarity_scores.proj1,type=’l’,col=’blue’)

legend("top",1,c("Proj2","Proj1"),cex=0.9,col=c("blue","red"),lwd=3)



Chapter 4

Null model for co-expression
network based on Pearson
correlation

Universally acknowledged by the scientific community as the basic task of the
systems biology, the network inference is the prototypal procedure for moving from
the classical reductionist approach to the novel paradigm of data-driven complex
systems in the interpretation of biological processes [1]. The core of all the network
inference (or network reconstruction) procedures is the detection of the topology
of a graphy, i.e., its wiring diagram, whose nodes are a given set of biological
entities, starting from measurements of the entities themselves. In the last 15
years, the reconstruction of the regulation mechanism of a gene network and of
the interactions among proteins from high-throughput data such as expression
microarray of, more recently, from Next Generation Sequencing data has become
a major line of research for laboratories worldwide. The proposed solutions rely on
techniques ranging from deterministic to stochastic, and their number is constantly
growing in the literature. Nonetheless, network inference is still considered an
open, unsolved problem [74]. In fact, in many practical cases, the performances of
the reconstruction algorithms are poor, due to several factors limiting the inference
accuracy [75, 76] to the point of making it no better than coin tossing in some
situations [15]. The major problem is the underdeterminacy of the task [77], due to
the overwhelming number of interactions to predict starting from a usually small
number of available measurements. In general, size and quality of available data
are critial factors for all inference algorithms.

In what follows the impact of data size is discussed for one of the simplest in-
ference techniques, i.e., the gene coexpression network, where interaction strength
between two genes is a function of the correlation between the corresponding ex-
pression levels across the available tissue samples. The biological underlying hy-

69
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pothesis is that functionally related genes have similar expression patterns [78],
and thus that coexpression is correlated with functional relationships, although
this does not imply causality. In particular, as highlighted in [79], correlation can
help unveiling the underlying cellular processes, since coordinated coexpression of
genes encode interacting proteins, and Pearson correlation coefficient can be used
as the standard measure. However, as noted in [80], correlation between genes
may sometimes be due to unobserved factors affecting expression levels. Coex-
pression analysis has been intensively used as an effective algorithm to explore the
system-level functionality of genes, sometimes outperforming much more refined
approaches [81, 82]. The observation that simpler approaches such as correla-
tion can be superior even on synthetic data has been explained by some authors
[83, 84] with the difficulties of complex algorithm in detecting the subtleties of
the combinatorial regulation. Moreover, coexpression network can capture more
important features that the conventional differential expression approach [85], and
its use has been extended to other tasks, for instance the investigation of com-
plex biological traits [86]) Finally, these network can be crucial for understanding
regulatory mechanisms [87], for the development of personalised medicine [88] or,
more recently, in metagenomics [89].

Despite its success, a major issue affects coexpression networks: deciding when
a given correlation value between two nodes can be deemed statistically significant
and thus worthwhile assigning a link connecting them. This translates mathemat-
ically into choosing (a function of) a suitable threshold, as in the case of mutual
information and relevance networks [90]. As reported in [91], in literature statis-
tical methods for testing the correlations are underdeveloped, and thresholding is
often overlooked even in important studies [92]. The two main approaches known
in literature can be classified as soft or hard thresholding. The soft thresholding is
adopted in a well-known framework called Weighted Gene Coexpression Network
Analysis (WGCNA) [93], recently used also for other network types [94, 95]. All
genes are mutually connected, and the weight of the link is a positive power of
the absolute value of the Pearson correlation, where the exponent is chosen as the
best fit of the resulting network according to a scale-free model [28, 29]. This ap-
proach, without discarding any correlation, promotes high correlation values and
penalises low values. In the hard thresholding approach, instead, only correlation
values larger than the threshold are taken into account, and an unweighted link
is set for each of these values, so that a binary network is generated (see [96] for
one of the earliest references). Clearly, an incorrectly chosen threshold value can
jeopardize the discussed results with false negative links (for too strict threshold)
or false positive links (for too loose threshold). Many different heuristics have been
proposed for setting the threshold values, such as using the False Discovery Rate
[97, 98, 99, 100], or the p-value of the correlation test [88], or employing partial cor-
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relation [101], or using rank-based techniques [102, 103, 104] or more complex ran-
domization techniques [105]. Alternatively, correlation distribution has been stud-
ied, experimentally [106] or at level of single interaction, not as whole network [107].
However, in many studies in literature, the threshold is not chosen accordingly to
a soundly bases procedure, but referring to standard choices [108, 109, 110, 111],
or to heuristics not directly related to the correlation values, but rather with the
resultining network topology [112, 113, 114, 115, 116, 117, 118, 119, 120]. In
[121] a comparison of some coexpression thresholds is shown on a few microarray
datasets.

Here we propose a new a priori and non-parametric model for the computation
of an hard threshold based on the assumption that a random coexpression graph
should not have any edge. The threshold is theoretically derived by means of a
geometric approach based on the work of Bevington [122], and, as a deterministic
independent null model, it depends only on the dimensions of the starting data
matrix, with assumptions on the skewness of the data distribution compatible with
the structure of gene expression levels data [123, 124]. By definition, this threshold
is aimed at minimising the possible false positive links, paying a price in terms of
false negative detected edges.

To conclude with, we show four applications, in both the large and the small
sample size settings. The first two are examples in a large sample size settings, with
a synthetic dataset and with an ovarian epithelial carcinoma dataset on a large
cohort of 285 cases [125, 126]. Two more applications in the opposite situations are
demonstrated on two publicly available datasets, the former regarding a pancreatic
cancer study [127] on a tiny cohort of six patients, and the latter on a Alzheimer
dataset with 28 samples on two different phenotypes [128, 129, 130].

4.1 Distribution of Pearson correlation

Let x, y ∈ Rn with n ≥ 3. The Pearson correlation coefficient ρ between x
and y is defined as:

ρ(x, y) =

n∑
i=1

(xi − x)(yi − y)√
n∑

i=1

(xi − x)2

√
n∑

i=1

(yi − y)2

,

where w denotes the arithmetic mean 1
n

∑n
i=1 wi of the n-dimensional vector w.

The first step towards the construction of a null model for random absolute
Pearson coexpression network is the estimation, for 0 < p < 1, of the function
F (n, p) = P (|ρ(x, y)| > p), where x and y are two independent normal vectors of
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length n. Define two new random variable x̃ and ỹ as follows:

x̃ =
x− x

σx

√
n− 1

, and ỹ =
y − y

σy

√
n− 1

, (4.1)

where σx and σy are the standard deviations of x and y. From the definition, the
following identities immediately descend:

n∑
i=1

x̃i = 0 =
n∑

i=1

ỹi

n∑
i=1

x̃2
i = 1 =

n∑
i=1

ỹ2
i

ρ(x, y) = ρ(x̃, ỹ) =
n∑

i=1

x̃ỹ . (4.2)

We can now state and prove two key results.

Let x, y, x̃, ỹ be defined as in Eq. 4.1. Then x̃, ỹ ∈ Sn−1 ∩ H ∼ Sn−2,
where H is the vectorial hyperplane defined as

∑n
i=1 wi = 0 and wi are

the coordinates of Rn.

Proposition 8

Proof. Since ‖x̃‖ = 1, the following identity holds:

n∑
i=1

x̃i =
n∑

i=1

xi − x

σx

√
n− 1

=
1

σx

√
n− 1

n∑
i=1

(xi − x)

=
1

σx

√
n− 1

[(
n∑

i=1

xi

)
− nx

]
=

1

σx

√
n− 1

(nx− nx) = 0 ,

and the same holds for ỹ, too.

An example for n = 3 of the situation described in Prop. 8 is plotted in Fig. 4.2.
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Let x, y be as in Prop. 8 and 0 < p < 1 be a real number. Then the
function F (n, p) has the following close form

F (n, p) = P (|ρ(x, y)| > p) =
2√
π

Γ
(

n−1
2

)
Γ
(

n−2
2

) ∫ arccos p

0

sinn−3(ϑ)dϑ , (4.3)

where Γ(x) is the gamma function Γ(x) =
∫ +∞

0
tx−1e−tdt.

Proposition 9

Proof. Using Eq. 4.1 and Eq. 4.2, we have that

ρ(x, y) = ρ(x̃, ỹ) = x̃ỹ = cos β , (4.4)

where β is the angle between the two vectors x̃ and ỹ. Eq. 4.4 and Prop. 8 yields
that P (|ρ(x, y)| > p) is the proportion between the area of the spherical cap in
n − 2 dimensions included within an angle β from x and the whole surface of
the n− 2-dimensional sphere [131]. A compact formula for the area Acap

n−1(r) of a
n− 2-spherical cap is given in [132] as:

Acap
n−1(r) =

2π(n−2)/2

Γ
(

n−2
2

) rn−2

∫ β

0

sinn−3(ϑ)dϑ ,

and, since the area of the whole surface is

Sn−2(r) =
2π(n−1)/2

Γ
(

n−1
2

) rn−2 ,

the thesis follows from the setting r = 1.

An alternative derivation of the same result can be found in [122].
In Prop. 8 the transformed vectors are assumed to be uniformly distributed on

the spherical surface. This assumption holds in the case of a normal distribution,
but it does not hold in general. However, in the following paragraph we show that
is a good approximation, since x and y are independent. In fact, Prop. 4.3 can be
generalised to other distributions [133, 134, 135, 136]), when data skewness can be
bounded [131].

Let Gδ(p, n) be an empirical distribution generated by k couples of two vectors
x, y ∈ Rn sampled according to a given distribution function δ. Let then

Et(F, Gδ) =

(∫ 1

0

|F (p, n)−Gδ(p, n)|tdp

) 1
t
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Gδ(p, 8) x
U(0, 1) N(0, 1) L(2, 3)

U(0, 1) 0.001832 0.00137 0.021202
y N(0, 1) 0.001195 0.00142 0.001432

L(2, 3) 0.022961 0.00139 0.080803

Gδ(p, 20) x
U(0, 1) N(0, 1) L(2, 3)

U(0, 1) 0.0016851 0.0007752 0.0248819
y N(0, 1) 0.0008008 0.0014559 0.0008381

L(2, 3) 0.0238804 0.0011422 0.1038271

Gδ(p, 100) x
U(0, 1) N(0, 1) L(2, 3)

U(0, 1) 0.0006978 0.0008244 0.015630
y N(0, 1) 0.0009281 0.0007388 0.001441

L(2, 3) 0.0159969 0.0014090 0.104998

Tab. 4.1: Error function E2(F, Gδ), for n = 8, 20, 100 and different distributions δ.

be the t-error function evaluating the difference between the theoretical distri-
bution F (p, n) and the empirical distribution Gδ(p, n). Hereafter we report the
results of the simulations for k = 50000 and n = 8, 20, 100, where δ is one of the
following three distribution functions:

• U(0, 1), the uniform distribution in [0, 1];

• N(m, s), the normal distribution with mean m and standard deviation s;

• L(ml, sl), the lognormal distribution with mean-log ml and standard deviation-
log sl.

In particular, in Tab. 4.1 we list the values of E2(F, Gδ) and in Fig. 4.1 we display
the curves of the cumulative distribution functions (CDF) of Gδ(p, n) correspond-
ing to the three functions δ, separately for the different values of n.

Regardless of the value of n, the empirical distribution fits the exact formula
Eq.4.3 when x and y are uniformly sampled, while it does not fit the same equation
when the two vectors come from extremely skewed distributions such as the log-
normal. Note that non-Gaussian asymmetric distributions can occasionally being
detected in some array studies [124]: however, techniques for reducing the skew-
ness are routinely applied during preprocessing [123], and thus the aforementioned
results can be safely used in the microarray framework.
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Finally, we conclude this paragraph deriving the mean and the variance of the
function |ρ|. Starting from Eq. 4.3, the density function f(p, n) can be computed
as

f(p, n) =
2√
π

Γ
(

n−1
2

)
Γ
(

n−2
2

)(1− p2)
n−4

2 .

Using the above expression for f(p, n), the two moments follow straightforwardly:

E(|ρ|, n) =

∫ 1

0

pf(p, n)dp

=
2√
π

Γ
(

n−1
2

)
(n− 2)Γ

(
n−2

2

)
Var(|ρ|, n) =

∫ 1

0

p2f(p, n)dp− E2(p, n)

=
1

n− 1
−

4Γ2
(

n−1
2

)
π(n− 2)2Γ2

(
n−2

2

) .

4.2 Coexpression network and threshold selec-

tion

The results derived in the previous section are used here to construct a null model
for the correlation network, thus yielding a threshold for the inference of a coex-
pression network from nodes’ data.
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Fig. 4.1: CDFs relative to the different distributions δ = U and δ = L compared
with the theoretical curve F (n, p), for the three cases n = 8 (a), n = 20 (b) and
n = 100 (c). In all cases, the red curve of F (n, p) and the black curve for the
double uniform distribution U − U are almost coincident.
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Let X = {ix}m
i=1 be a set such that ix ∈ U [0, 1]n ∀i = 1, . . . m. Then the

coexpression p-graph Gp = {V, Ep} is the graph where

V = {v1, . . . , vm} and (vi, vj) ∈ Ep ⇐⇒ |ρ(ix, jx)| > p .

The first result characterises the coexpression graphs in terms of null mod-
els:

The graph Gp is an Erdös-Rényi model [3] with m nodes and probability
p as in Eq. 4.3.

Proposition 10

Proof. The proof follows immediately from the definition of Gp and Eq. 4.3.

Example Consider a dataset Y consisting of n = 3 samples described by m =
100 genes. Then Y can be represented by 100 points in [0, 1]3 ⊂ R3 as shown in
Fig. 4.2(a). The new variables ix̃ are built through a two-stages procedure applied
to each gene. First the mean is subtracted, so the transformed dataset lies on the
hyperplane H described in Prop. 8 as displayed in Fig. 4.2(b,c). Finally. each gene
is normalised to unitary variance, and the resulting dataset lies on Sn−1∩H, which
is the circumference in Fig. 4.2(d). Using the results in the previous section, it is
now possible to define, for n nodes measured on m samples, the secure threshold
p̄ as the minimum value of p such that the corresponding random coexpression
network Gp̄ is on average an empty graph, that is

p̄ = min
p∈(0,1]

{
F (n, p)

m(m− 1)

2
< 1

}
. (4.5)
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Fig. 4.2: Transformation of the initial dataset preserving the Pearson correlation.
(a) Original dataset (b,c) Mean substraction (d) Variance normalisation. In green
the hyperplane H.
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H
H

H
H

HHn
m

100 500 1000 2000 10000 50000 100000

8 0.95629 0.98520 0.99070 0.99415 0.99800 0.99932 0.99957
15 0.81681 0.89170 0.91323 0.93036 0.95800 0.97456 0.97949
20 0.73825 0.82388 0.85077 0.87330 0.91286 0.93973 0.94852
30 0.62814 0.71776 0.74817 0.77485 0.82534 0.86367 0.87729
50 0.50225 0.58534 0.61513 0.64213 0.69607 0.74036 0.75705
75 0.41647 0.49026 0.51740 0.54238 0.59353 0.63709 0.65394
100 0.36343 0.42999 0.45477 0.47774 0.52537 0.56662 0.58279

Tab. 4.2: A subset of values of the secure threshold p̄ for different number of
samples m and genes n.
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Fig. 4.3: Contour plot of the function p̄(m, n) on (a) a large (m, n) range and (b)
zoomed on the small sample size area.

The underlying hypothesis for Eq. 4.5 is the assumption that in a random dataset
we do not expect an kind of edge, i.e. any kind of relation. Due to its definition,
the secure threshold p̄ is biased towards avoiding the false positive links, paying a
price in terms of false negatives. In fact, all the links passing the filter are induced
by correlation only due to the inference data, while all links whose correlation
value can be generated either by relation between data or by random noise are
discarded. In Tab. 4.2 a collection of values of p̄ is lisetd for different m and n,
while in Fig. 4.3 the contourplot of the function p̄(n, m) is shown first on a large
range of values and then zooming on the small sample size area. In the Tab. 4.3
we show the comparison on a set of synthetic and array datasets of the secure
threshold p̄ with another well known hard thresholding methods, the clustering
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coefficient-based threshold C∗ [117] and with the statistical thresholds based on
the adjusted p-values of 0.01, 0.05 or 0.1. In almost all cases, the threshold p̄ is
the strictest. As shown in the previous section, for not very skewed distribution,
the good approximation provided by the exact formula for F (n, p) given in Eq. 4.3
guarantees the effectiveness of the secure threshold p̄ in detecting actual links
between nodes. Nonetheless, whenever a stricter threshold is needed, it is still
possible to follow the construction proposed, with the following refinement. The
edge-creation process in the Erdös-Rény model follows a binomial distribution,
where n is the number of trials and p the probability associated to the success of
a trial. The mean np of this distribution is one of the contributing term in the
definition of secure threshold Eq. 4.5. To further restrict the number of falsely
detected links, the variance term (np(1− p) for the binomial distribution) can be
added to the formula through the Chebyshev’s inequality

P (|X − µ| ≥ kσ) ≤ 1

k2
,

Dataset type #samples #nodes C∗ B0.01 B0.05 B0.1 p̄
Simulated 50 1000 0.57 0.58 0.54 0.52 0.6152
Simulated 25 1000 0.69 0.76 0.72 0.70 0.7956
H-U133P 23 897 0.72 0.78 0.74 0.72 0.8125
H-U133P 10 897 0.78 0.96 0.94 0.93 0.9723
H-U133P 10 675 0.77 0.96 0.93 0.92 0.9681
H-U133P 9 897 0.79 0.97 0.96 0.95 0.9821
H-U133P 8 897 0.81 0.98 0.97 0.96 0.98999
H-U133P 7 897 0.81 0.99 0.99 0.98 0.99558
H-U133P 6 897 0.86 >0.99 >0.99 0.99 0.99872
H-U133P 5 897 0.92 >0.99 >0.99 >0.99 0.99984
H-U133P 4 897 0.99 >0.99 >0.99 >0.99 > 0.9999
H-U133A 4 675 0.99 >0.99 >0.99 >0.99 > 0.9999

H-I6 4 675 0.99 >0.99 >0.99 >0.99 > 0.9999
M-U74 4 401 0.97 >0.99 >0.99 >0.99 0.9999

Tab. 4.3: Comparison of the secure threshold p̄ with the clustering coefficient-based
threshold C∗ [117] and the statistical thresholds based on the adjusted p-values
B0.01, B0.05 or B0.1 on a collection of synthetic and array datasets.
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H
H

H
H

HHn
m

100 500 1000 2000 10000 50000 100000

8 0.97584 0.99179 0.99484 0.99675 0.99889 0.99962 0.99977
15 0.86282 0.91826 0.93437 0.94723 0.96810 0.98065 0.98439
20 0.78966 0.85726 0.87876 0.89686 0.92883 0.95068 0.95784
30 0.68082 0.75573 0.78151 0.80425 0.84759 0.88074 0.89256
50 0.55034 0.62269 0.64902 0.67302 0.72135 0.76137 0.77651
75 0.45887 0.52436 0.54881 0.57145 0.61820 0.65834 0.67394
100 0.40153 0.46116 0.48369 0.50471 0.54865 0.58703 0.60214

Tab. 4.4: A subset of values of the secure threshold p̃2 for different number of
samples m and genes n.

Tab. 4.5: A subset of values of the secure threshold p̃5 for different number of
samples m and genes n.

HHHH
HHn
m

100 500 1000 2000 10000 50000 100000

8 0.98553 0.99508 0.99691 0.99805 0.99934 0.99978 0.99986
15 0.89287 0.93585 0.94842 0.95849 0.97486 0.98474 0.98768
20 0.82530 0.88080 0.89858 0.91361 0.94025 0.95853 0.96454
30 0.71934 0.78401 0.80647 0.82636 0.86445 0.89373 0.90420
50 0.58686 0.65162 0.67541 0.69720 0.74130 0.77803 0.79198
75 0.49164 0.55125 0.57373 0.59463 0.63803 0.67552 0.69015
100 0.43124 0.48595 0.50683 0.52640 0.56752 0.60368 0.61796

where µ and σ are the mean and the standard deviation of X. Thus, the definition
of secure threshold can be sharpened to p̃k as follows:

p̃k = min
p∈(0,1]

{
F (n, p)

m(m− 1)

2
+ k

√
(1− F (n, p))F (n, p)

m(m− 1)

2
< 1

}
.

For instance, the binomial distribution, for large value of n, can be approximated
as a normal distribution for which the 95.45% of the values lie in the interval
(µ− 2σ, µ + 2σ). In Tab 4.4 we show, for p̃2, the analogous of Tab. 4.2 for p̄.

Finally, the Chebyshev’s inequality implies that at least the 96% of the values
lie in the interval (µ − 5σ, µ + 5σ): the corresponding threshold values for k = 5
are listed in Tab. 4.5.
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4.3 Applications in functional genomics

4.3.1 Large sample size

Synthetic dataset First a correlation matrix MG on 20 genes G1, . . . G20 is cre-
ated, together with a dataset G of the corresponding expression G1000

i across 1000
synthetic samples, so that MG(i, k) = |cor(G1000

i , G1000
j )| is the absolute Pearson

correlation between the expression of the genes Gi and Gj from G.
In particular, MG has two 10×10 blocks highly correlated on the main diagonal,

and two 10×10 poorly correlated blocks on the minor diagonal, as shown in Fig. 4.4.
These blocks derived from the following generating rule, given uncorrelated starting
element G1000

1 and G1000
11 :

|cor(G1000
k , G1000

j )| ≈

{
1− 0.03j for k = 1, 2 ≤ j ≤ 10

0.7− 0.015j for k = 11, 12 ≤ j ≤ 20
.

Outside the two main blocks, all correlation values range between 0.002 and 0.074.
In Fig. 4.4 we also show the heatmap of the gene expression dataset G. Then
a subset of ns samples is selected from the starting 1000, and the corresponding
coexpression networks is built, for the 100 hard threshold values 0.01j, for 1 ≤ j ≤
100. The secure threshold for these cases are respectively 0.799, 0.596 and 0.389.
These procedure is repeated 500 times for each value ns = 10, 20, 50. The same
experiment is then repeated adding a 20% and a 40% level of Gaussian noise to
the original data. Using MG as the ground truth where all values outside the two
main blocks are thresholded to 0, for each hard threshold 0.01j we evaluate the
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ratio of False Positive links, the ratio of False Negative links and the Hamming-
Ipsen-Mikhailov (HIM) distance from the gold standard1 The graphs summarising
the experiments, separately for sample size, are displayed in Fig. 4.5.

In all cases, the secure threshold p̄ corresponds to the strictest value yielding a
coexpression network with no false positive links included, which its characterising
property. Moreover, in almost all displayed situations, thresholding at p̄ still guar-
antees an acceptable HIM distance from the ground truth, and a false negative
ratio always smaller than 0.4.

Ovarian cancer The aforementioned results obtained in a synthetic case are
then tested here in a large array study on 285 patients of ovarian cancer at dif-
ferent stages [126], recently used in a comparative study on conservation of coex-
pressed modules across different pathologies [125]. In details, a whole tumor gene
expression profiling was conducted on 285 predominately high-grade and advanced
stage serous cancers of the ovary, fallopian tube, and peritoneum; the samples were
hybridized on the Affymetrix Human Genome HG-U133 Plus 2.0 Array, including
54621 probes. The goal of the original study was to identify novel molecular sub-
types of ovarian cancer by gene expression profiling with linkage to clinical and
pathological features. As a major result, the authors presented two ranked gene
lists supporting their claim that molecular subtypes show distinct survival charac-
teristics. The two gene lists characterise the Progression Free Survival (PSF) and
the poor Overall Survival (OS), respectively.

Following the procedure of the previous, synthetic example, first we individu-
ate the sample subset corresponding to the homogeneous cohort of 161 grade three
patients and a set T of 20 genes, belonging to the top good OS and PFS genes
(EDG7, LOC649242, SCGB1D2, CYP4B1, NQO1, MYCL1, PRSS21, MGC13057,
PPP1R1B, KIAA1324, LOC646769) and to the top poor OS/PFS genes (THBS2,
SFRP2, DPSG3, COL11A1, COL10A1, COL8A1, FAP, FABP4, POSTN), thus
generating a dataset OT of dimension 161 samples and 20 features. The corre-
sponding absolute Pearson correlation matrix OT is then used as the ground truth
for the subsampling experiments: the levelplot of OT and the heatmap of OT is
shown in Fig. 4.6. In these experiments, a random subdataset of ns samples is
extracted from OT , and the corresponding absolute Pearson coexpression network
on the nodes T is built, for increasing threshold values. In Fig. 4.7 we report the
HIM and the ratio of False Positive and False Negative links for 500 runs of the
experiments, separately for ns = 5, 10, 20 and 50.

Again, the secure threshold p̄ corresponds to the smallest Pearson value war-
ranting no false positive links included. Moreover, in almost all displayed situa-

1The HIM distance [137, 138] is a metric between networks having the same nodes, ranging
between 0 for identical networks and 1, attained comparing the clique with the empty graph.
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Fig. 4.5: Coexpression inference of the MG network from random subsampling of
the G dataset, witouth noise (a,b,c), with 20% Gaussian noise (d,e,f) and with 40%
Gaussian noise (g,h,i), on 10 (a,d,g), 20 (b,e,h) and 50 (c,f,i) samples. Solid lines
indicate mean over 500 replicates of HIM distance (black), ratio of False Positive
(blue) and ratio of False Negative (red); dotted lines of the same color indicate
+/- 1σ, while grey vertical dashed lines correspond to the secure threshold p̄.
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Fig. 4.6: Levelplot of the structure of the correlation matrix OT (left) and heatmap
of the Ovarian dataset OT restricted to the set of 20 selected genes T . Solid lines
separate the group of good and poor PFS/OS top genes.

tions, the threshold p̄ is approximately the value where the HIM distance starts
growing quicker, while the false positive rate remains under 0.8.

4.3.2 Small sample size

When the sample size is very small, the novel hard thresholding introduced here
can severely limit the conclusions than can be drawn without incurring in the
risk of discussing false positive links. This problem can be particularly evident
in differential network analysis tasks [139, 140, 141, 100, 142], where loosening
the threshold may lead to consider unsupported variations between networks in
different conditions. In what follows we show two cases of (almost) negative re-
sults, where the experimental conditions tightly bound the possible differential
coexpression network analysis.

Pancreatic Cancer The first example is based on a pancreatic cancer dataset,
publicly available at GEO http://www.ncbi.nlm.nih.gov/geo/, at the accession
number GDS4329 and originally analysed in [127]. The dataset consists of 24 sam-
ples from 6 patients suffering from pancreatic ductal adenocarcinoma, divided in 4
subgroup samples, i.e., circulating tumor cells (C), haematological cells (G), orig-
inal tumour (T), and non-tumoural pancreatic control tissue (P). The aim of the
original study was to develop a circulating tumor cells gene signature and to assess
its prognostic relevance after surgery, while here we concentrate on the feasibility
of a differential coexpression network analysis. Namely, we explore the Pearson
correlation networks build separately on the four classes of samples on a specific
set of genes S, defined by the differential expression analysis. In particular, the



Chapter 4. Null model for co-expression network based on Pearson correlation84

Threshold

H
IM

 d
is

ta
nc

e 
&

 fa
ls

e 
lin

ks
 fr

ac
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

HIM
False Positive
False Negative

Threshold

H
IM

 d
is

ta
nc

e 
&

 fa
ls

e 
lin

ks
 fr

ac
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

HIM
False Positive
False Negative

(a) (b)

Threshold

H
IM

 d
is

ta
nc

e 
&

 fa
ls

e 
lin

ks
 fr

ac
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

HIM
False Positive
False Negative

Threshold

H
IM

 d
is

ta
nc

e 
&

 fa
ls

e 
lin

ks
 fr

ac
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

HIM
False Positive
False Negative

(c) (d)

Fig. 4.7: Coexpression inference of the coexpression network from subsampling of
the OT dataset, on 5 (a), 10 (b), 20 (c) and 50 (d) samples. Solid lines indicate
mean over 500 replicates of HIM distance (black), ratio of False Positive (blue)
and ratio of False Negative (red); dotted lines of the same colour indicate +/- 1σ,
while grey vertical dashed lines correspond to the secure threshold p̄.
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Fig. 4.8: Correlation networks on the set S for the four classes T, G, C and P,
thresholded at Pearson correlation coefficien 0.8508.

set S include as nodes the genes resulting upregulated in the C subgroup and
associated with both the p38 mitogen-activated protein kinase (MAPK) signaling
pathway and the cell motility pathway, which were ranked as the pathways with
the highest expression ratio. In details, the nine genes are Talin-1 (TLN1), sig-
nal transducer and activator of transcription 3 (STAT3), Vinculin (VCL), CCL5,
autocrine motility factor receptor (AMFR), Tropomyosin alpha-4 chain (TPM4),
arachidonate 12-lipoxygenase (ALOX12), Rho-guanine nucleotide exchange factor
2 (ARHGEF2), and engulfment and cell motility protein (ELMO1), respectively
denoted by 1, . . . , 9 in the plots.

Following the formula in Definition 4.5, the secure threshold for nine genes and
six samples is 0.8508: hard thresholding the four coexpression networks results in
the graphs collected in Fig. 4.8. As shown by the plots, the number of edges that
result statistically significant over the secure threshold 0.8508 is small: namely 6
for the class G, 4 for the classes C and P and none for the primary tumoral cells T.
In particular, the classes C and G share the links VCL–CCL5 and VCL–ALOX12,
while P and G share the link TPM4–ALOX12 and P and C have no common
links. Clearly, the paucity of statistically significant links prevents any further
quantitative comparison: in Fig 4.9 we show, for each networks, the number of
links at a given correlation.

Alzheimer data A similar situation occurs with the Alzheimer dataset studied
in [128, 129, 130] and available at GEO http://www.ncbi.nlm.nih.gov/geo/, at
the accession number GSE4226. The dataset collect the expression of peripheral
blood mononuclear cells from normal elderly control (NEC) and Alzheimer disease
(AD) subjects. The NEC and AD subjects were matched for age and education; the
Mini-Mental State Examination (MMSE) [143] was administered to all subjects,
and the mean MMSE score of the AD group was significantly lower than that
of the NEC subjects. Targets from biological replicates of female (F) and male
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(M) NEC and female and male AD were generated and the expression profiles
were determined using the NIA Human MGC custom cDNA microarray. Each
combinations of the sex and disease phenotypes has a cohort size of seven samples.

The original aim of the studies was the comparison between NEC and AD
and the identification of genes with disease and gender expression patterns. In
what follows, we show that, given the small sample size, very little can be as-
sessed by a differential coexpression network analysis (see [144] for a recent larger
miRNA coexpression study on a cohort of 363 individuals). In particular, from
the KEGG Database http://www.genome.jp/kegg/ [145, 146] we extracted the
Alzheimer’s disease pathway in Homo sapiens (KEGG accession hsa05010) and we
extracted, from the original 32 genes included in the pathway, the 10 genes spot-
ted on the platform with no missing value across the 28 total samples. The ten
resulting genes are apolipoprotein E (APOE), amyloid beta (A4) precursor pro-
tein (APP), glycogen synthase kinase 3 beta (GSK3B), cyclin-dependent kinase
5 (CDK5), microtubule-associated protein tau (MAPT), presenilin 2 (Alzheimer
disease 4) (PSEN2), amyloid beta A4 precursor protein-binding, family B, mem-
ber 1 Fe65 (APBB1), lipoprotein lipase (LPL), synuclein alpha non A4 compo-
nent of amyloid precursor (SNCA) and anterior pharynx defective 1 homolog A
(APH1A), numbered from 1 to 10 in the above order in what follows. The re-
sulting heatmap is shown in Fig. 4.10. The coexpression networks for the four
combinations of sex (M/F) and disease (NEC/AD) are shown in Fig. 4.11, where
the secure threshold is p̄ = 0.8166. Again, the number of links whose correlation
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Fig. 4.9: Number of links with correlation values larger than a given threshold for
the coexpression networks C, P, T, and G; the vertical gray dashed line corresponds
to Pearson correlation 0.8508, the secure threshold for 9 nodes and 6 samples.
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value is above the secure threshold is very small: however, all the retrieved links are
well known in literature [147] and in dedicated webservers such as GeneMANIA
http://www.genemania.org [148]. Clearly, if we consider the two main classes
AD and NEC, the number of samples grows to 14 for each class, and the thresh-
old p̄ can be relaxed down to 0.5943. The two resulting networks are displayed
in Fig. 4.12, together with the trend of the HIM distance between AD and NEC
as a function of the threshold, both globally and separately for gender, where we
can see that the selected threshold, in all cases, falls after the maximal distance
between disease and control group. As a major effect emerging when comparing
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Fig. 4.11: Correlation networks on the Alzheimer dataset S for the four classes M-
AD, M-NEC, F-AD, F-NEC, thresholded at Pearson correlation coefficient 0.8166.
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the coexpression network of the AD patients versus the NEC individuals we note
that the connections between CDK5 and PSEN2, APBB1, LPL, SNCA are lost in
the disease networks, while connections appear bewteen APP and APOE, CDK5,
MAPT, PSEN2; changing of regulation of CDK5 and APP in AD patients are well
known in literature: see for instance [149, 150, 151].

4.4 Conclusion

A simple a priori, theoretical and non-parametric method is proposed for the selec-
tion of an hard threshold for the construction of correlation networks. This model
is based on the requirements of filtering random data due to noise and reducing the
number of false positive, and it is implemented by means of geometric properties
of the Pearson correlation coefficient. This new approach can be especially useful
in small sample size case, probably the most common situation in profiling studies
in functional genomics. Finally, when the number of samples increase, coupling
this method with soft thresholding approaches, can help recovering false negative
links neglected by too strict thresholds.



Chapter 5

Null model for random markets

5.1 Introduction

Recent years have seen an increasing use of computational techniques for the study
of human behaviour and economic systems [152], motivated by these facts in this
chapter we extend the ideas about null models of networks to the analysis of
institutional rules and behaviour in simple markets.

There is a long tradition in economics on the role that behavioural rules, specif-
ically rationality, have on the dynamics of markets starting from [153] which first
noted how individual random behaviour is enough for the emergence of system
properties typical of markets. Following works from [154] focused the market dy-
namics of randomly choosing agents in a double auction [155] [156] institution, i.e.
a set of rules typical of financial markets which obliges sellers to propose asks lower
than the lowest ask proposed and sellers to bids more then the highest bid. Lead-
ing to interesting insights on the ability of the double auction rules to efficiently
extract wealth from exchanges in absence of optimal behaviour. More recently the
same concept has been applied by [157] to deduce the departure from randomness
of trades behaviour in financial markets. Here, inspired from the definition of mi-
croeconomic system of [158], we extend this framework by defining a generative
network model of stochastic trading that under specific assumptions over the dis-
tribution functions generating the behaviour and the matching of agents can be
suitably be used as a null-model.

We model markets as a bipartite temporal network of agents linked by the con-
tracts they sign, limiting to the simple case of two agents classes, buyers and sellers,
that trades one commodity for a currency,. At each time step, edges are generated
by an underlying matching and bargaining process. The first is expressed as a
probability distribution over the permutation set of buyer-seller dyads while the
latter is modelled as the probability density function of contracts that increase the
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wealth of both agents under random bargaining proposals. In our final formulation
the probability of links creation is constant during the process, but different among
all the possible couples, leading to a simple expression of the likelihood function
for the temporal sequence of networks.

5.2 Random Market

5.2.1 Notation

With S = (s1, . . . , sT ) we will represent the T sellers while with B = (b1, . . . , bT )
the T buyers. Let L be the maximum number of timesteps considered in the system
described above. Let M(k) = {(i, σ(i)) i ∈ 1, . . . , T} be the random matching at
the time k where σ is an element of ST the set of all permutation of T elements.
Let m and M respectively be the maximum and the minimum price in the market.
Let also si and bi be respectively the minimum price acceptable for the sellers and
the maximum for the buyers, which correspond the bound below (above) which
they would not gain from the trade. Let Xi = X be the the random variable
associated to the price of the i-th seller with support ΩX = [s, M ] and density
function fX(x) and with Yi = Y we will indicate the random variable associated
to the price of the i-th buyer with support ΩY = [m, bi] and density function fY (x).
Let finally Zi = Z be the random variable associate to X − Y , i.e. the difference
of price between the seller and the buyer. An edge between i and σ(i) is created
if and only if Z ≤ 0.

5.2.2 Uniform Random Market

We first start by the definition of a random market where preferences are constant
across buyers and seller, agents choose uniformly in their acceptable range and
they are matched uniformly. That is b = b and s = s respectively for each buyer
and seller, with s < b, and X and Y are independent and uniforms.
Then we can study the wealth extracted by the interaction of two agents studying
Z.:

1. if s−m < M − b:

fZ(z) =


z−(s−b)

(M−s)(b−m)
s− b ≤ z < s−m

z
M−s

s−m ≤ z < M − b
−z+(M−m)

(M−s)(b−m)
M − b ≤ z < M −m

0 otherwise
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2. if s−m > M − b:

fZ(z) =


z−(s−b)

(M−s)(b−m)
s− b ≤ z < M − b

z
b−m

M − b ≤ z < s−m
−z+(M−m)

(M−s)(b−m)
s−m ≤ z < M −m

0 otherwise

3. if s−m = M − b:

fZ(z) =


z−(s−b)

(M−s)(b−m)
s− b ≤ z < M − b

−z+(M−m)

(M−s)(b−m)
s−m ≤ z < M −m

0 otherwise

Where

c1 =
(s− b)2

2(M − s)(b−m)
(5.1)

c3 =
−(M −m)2

2(M − s)(b−m)
+ 1

c2 =
(s−m)2 − 2(s− b)(s−m)

2(M − s)(b−m)
+

s−m

M − s
+ c1 in case 1

=
(M − b)2 − 2(s− b)(M − b)

2(M − s)(b−m)
+

M − b

b−m
+ c1 in case 2.

In this simple situation, P (Z ≤ 0) = c1 in any case because s − m ≥ 0 and
M − b ≥ 0.

Moreover, from fz it is possible to compute the mean value Ẑ of Z as:

Ẑ =
1

c1

∫ 0

s−b

zfz(z)dz =
1

c1

∫ 0

s−b

z2 − z(s− b)

(M − s)(b−m)
dz =

(s− b)3

6c1(M − s)(b−m)
=

s− b

3
,

and define the mean value of the trade v := − Ẑ
2
. We are interested to study also

the profit of the sellers and the buyers after L steps. We have to compute the
mean value of the sellers (and buyers) when a trade is performed (Z ≤ 0):

ŝ : = E(X|Z ≤ 0) = E(X|X − Y ≤ 0) = E(X|X ≤ Y )

=
1

c1

∫ b

s

∫ b

x

xfx,y(x, y) dy dx

=
1

c1

∫ b

s

∫ b

x

x

(M − s)(b−m)
dy dx =

2s + b

3
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b̂ : = E(Y |Z ≤ 0) = E(Y |X − Y ≤ 0) = E(Y |Y ≥ X)

=
1

c1

∫ b

s

∫ b

x

yfx,y(x, y) dy dx

=
1

c1

∫ b

s

∫ b

x

y

(M − s)(b−m)
dy dx =

s + 2b

3
.

Finally we can estimate the mean profit of the sellers, ps, and buyers, pb and
the mean weight of each edge v as:

ps = (ŝ + v − s)Lc1 =

(
2s + b

3
+

b− s

6
− s

)
c1L =

b− s

2
c1L

pb = (b− b̂− v)Lc1 =

(
b− 2b + s

3
+

b− s

6

)
c1L =

b− s

2
c1L

v = −ẐLc1 =
Lc1(b− s)

3
.

Example 2. We simulate a simple random market with parameters: T = 6, m =
10, M = 110, b = 60, s = 30 and follow its evolution for L = 10000 timestep. In
Fig.5.1 we can see some snapshots of the entire process.

buyer3 buyer5buyer1 buyer6buyer4buyer2

seller6seller2 seller3 seller4 seller5seller1

buyer3 buyer5buyer1 buyer6buyer4buyer2

seller6seller2 seller3 seller4 seller5seller1

buyer4 buyer6buyer5buyer3buyer1 buyer2

seller2 seller4 seller5seller3 seller6seller1

buyer5buyer4buyer3buyer1 buyer6buyer2

seller3 seller5seller2 seller6seller4seller1

Fig. 5.1: Evolution of the bipartite weighted graph.
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5.2.3 Random market with exponential and negative ex-
ponential distribution

More sophisticated hypothesis on behaviour can be implemented by modifying the
distribution of agents choices. As an example we show how the intuitive idea that
buyers tries to buy low and sellers try to sell high by using skewed distributions.
Let suppose that the sellers follow a truncate exponential distribution and the
buyers a negative exponential distribution, in other words:

fX(x) = k1e
µx =

µeµx

eMµ − esµ
, fY (y) = k2e

−λy =
λe−λy

e−mλ − e−bλ
.

Since we are interested at the market only when X − Y ≤ 0, we shall compute
FZ(z) only for negative values of z:

FZ(z) =

∫ ∫
D

fX,Y (x, y)dxdy where D is the domain for which X < Y

=

∫ ∫
D

fX(x)fY (y)dxdy using the independence between X and Y

= k1k2

∫ b+z

s

∫ b

x−z

e−λyeµxdydx

=
k1k2

λ

∫ b+z

s

e−λ(x−z)+µx − eµx−λbdx

=
k1k2

λ

[
eb(µ−λ)+µz − es(µ−λ)+λz

µ− λ
− eb(µ−λ)+µz − eµs−λb

µ

]
=

k1k2

λµ(µ− λ)

[
µeµs−λb − µes(µ−λ)+λz + λeb(µ−λ)+µz − λeµs−λb

]
(5.2)

fZ(z) = F ′
Z(z) =

k1k2

µ− λ

[
eb(µ−λ)+µz − es(µ−λ)+λz

]
.

From Eq.5.2 we get:

c1 = FZ(0) =
k1k2

λµ(µ− λ)

[
µeµs−λb − µes(µ−λ) + λeb(µ−λ) − λeµs−λb

]
.
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We can compute now he mean value of z as:

Ẑ =
1

c1

∫ 0

s−b

zfz(z)dz =
k1k2

(µ− λ)c1

∫ 0

s−b

z
[
eb(µ−λ)+µz − es(µ−λ)+λz

]
dz

=
k1k2

(µ− λ)c1

[
1

µ

(
zeb(µ−λ)+µz − eb(µ−λ)+µz

µ

)
− 1

λ

(
zes(µ−λ)+λz − es(µ−λ)+λz

λ

)] ∣∣∣∣0
s−b

=
k1k2

(µ− λ)c1

[
1

µ

(
(b− s)eµs−λb +

eµs−λb − eb(µ−λ)

µ

)
− 1

λ

(
(b− s)eµs−λb +

eµs−λb − es(µ−λ)

λ

)]

=
k1k2e

µs−λb

(µ− λ)c1

[
1

µ

(
(b− s) +

1− eµ(b−s)

µ

)
− 1

λ

(
(b− s) +

1− eλ(b−s)

λ

)]
.

As before we can compute ŝ and b̂:

ŝ : = E(X|Z ≤ 0) = E(X|X − Y ≤ 0) = E(X|X ≤ Y )

=
1

c1

∫ b

s

∫ b

x

xfx,y(x, y) dy dx

=
1

c1

∫ b

s

∫ b

x

k1k2xe−λyeµx dy dx

=
k1k2

c1λ

∫ b

s

xe(µ−λ)x − eµx−λb dx

=
k1k2

c1λ

[
xe(µ−λ)x

µ− λ
− e(µ−λ)x

(µ− λ)2
− xeµx−λb

µ
+

eµx−λb

µ2

] ∣∣∣∣b
s

=
k1k2

c1λ

[
be(µ−λ)b

µ− λ
− e(µ−λ)b

(µ− λ)2
− beµb−λb

µ
+

eµb−λb

µ2
− se(µ−λ)s

µ− λ
+

e(µ−λ)s

(µ− λ)2
+

seµs−λb

µ
− eµs−λb

µ2

]
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b̂ : = E(Y |Z ≤ 0) = E(Y |X − Y ≤ 0) = E(Y |Y ≥ X)

=
1

c1

∫ b

s

∫ b

x

yfx,y(x, y) dy dx

=
1

c1

∫ b

s

∫ b

x

k1k2ye−λyeµx dy dx

=
k1k2

c1λ2

∫ b

s

λxex(µ−λ) + ex(µ−λ) − λbexµ−λb − exµ−λb dx

=
k1k2

c1λ2

[
λxex(µ−λ)

µ− λ
− λex(µ−λ)

(µ− λ)2
+

ex(µ−λ)

µ− λ
− λbexµ−λb

µ
− exµ−λb

µ

] ∣∣∣∣b
s

=
k1k2

c1λ2

[
λbeb(µ−λ)

µ− λ
− λeb(µ−λ)

(µ− λ)2
+

eb(µ−λ)

µ− λ
− λbebµ−λb

µ
− ebµ−λb

µ
− λses(µ−λ)

µ− λ
+

λes(µ−λ)

(µ− λ)2
− es(µ−λ)

µ− λ
+

+
λbesµ−λb

µ
+

esµ−λb

µ

]
.

Finally we can estimate the mean profit of the sellers, ps, and buyers, pb, as:

ps = (ŝ + v − s)Lc1

pb = (b− b̂− v)Lc1.

Notice that it is possible to recover s and b (and so ps and pb) also for other
probability distributions (and a closed form can be computed based on the kind
of integral functions we are dealing with).

5.2.4 Heterogeneous Agents

Assumption on the heterogeneity of preferences are implementable by modeling
choices with distributions over different different supports. Here we study the case
of uniform distributions over heterogeneous supports:
Let B and S be two random variables with support ΩB = ΩS = [m, M ] and with
uniform density functions fB and fS. i.e. for i ∈ 1, . . . , T the random variable
Xi has support ΩXi

= [si, M ] and Yi has support ΩYi
= [m, bi] for some value

of si and bi choosing according to fS and fB. Let Zi,j = Xi − Yj the difference
between the i-th seller and the j-th buyer. Let W = S−B the difference between
the two random variables introduced above. The value of Zi,j depends on the
distribution of W so it is necessary to study first this random variable. Using the
same argumentation showed above we get:
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fW (w) =


w−(m−M)
(M−m)2

m−M ≤ w < 0
−w+(M−m)

(M−m)2
0 ≤ w < M −m

0 otherwise

FW (w) =


0 w < m−M
w2−2w(m−M)

2(M−m)2
+ 1

2
m−M ≤ w < 0

−w2+2w(M−m)
2(M−m)2

+ 1
2

0 ≤ w < M −m

1 M −m ≤ z

These considerations lead us to compute P (W ≤ 0) = FW (0) = 1
2

and the mean

value of W , Ŵ = m−M
3

and the mean value of b and s, whenever W ≤ 0, indicated

with b̃ = m+2M
3

and s̃ = 2m+M
3

. Let δ(a, b) a function such that δ(a, b) = 1 if

a > b and δ(a, b) = 0 if a ≤ b. If the values bi, sj are known using the same
augmentations showed above we can compute V = vi,j, i, j ∈ 1, . . . , T as:

V = L


δ(b1, s1)

c1,1(s1 − b1)

3T
· · · δ(bT , s1)

c1,T (s1 − bT )

3T
...

. . .
...

δ(b1, sT )
cT,1(sT − b1)

3T
· · · δ(bT , sT )

cT,T (sT − bT )

3T


where ci,j is the value c1 of Eq.(1) with parameters si, bj.

Viceversa, if the values bi, sj are unknown, the mean value of V is

V̂ =
1

2
Lc1


b̃− s̃

3T
· · · b̃− s̃

3T
...

. . .
...

b̃− s̃

3T
· · · b̃− s̃

3T


where c1 is the value c1 of Eq. 5.1 with parameters b̃, s̃.

5.3 Likelihood Function

5.3.1 Uniform with constant preferences case

In this section we will derive the likelihood function in the case of uniform distri-
butions. In order to do this, we will assume that M and m are given. Moreover we
suppose that the buyers and sellers follow a uniform distribution for their prices
and that all matching are equiprobable.
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The observed data is the effective price of exchange between the seller and the
buyer. This amount of money is, in terms of random variables, equal to W = Y + Z

2

if Z < 0 i.e. the exchange success or equal to W = 0 otherwise. These two events
have probability respectively c1 and 1−c1. In order to write the likelihood function
we need to compute the probability distribution of W conditioned to Z < 0, using
that X and Y are independent and so the join probability fXY is the product
fXfY :

FW |Z≤0(t) = P

(
Y +

Z

2
≤ t
∣∣∣Z ≤ 0

)
=

P (X + Y ≤ 2t ∨X − Y ≤ 0)

c1

=

∫ t

s

∫ 2t−x

x

fY (y)fX(x)dy dx

=
1

(M − s)(b−m)c1

∫ t

s

∫ 2t−x

x

1dy dx

=
1

(M − s)(b−m)c1

∫ t

s

2t− 2xdx

=
t2 − 2ts− s2

(M − s)(b−m)c1

=
2(t2 − 2ts− s2)

(s− b)2

fW |Z≤0(t) =
4(t− s)

(s− b)2

Let now N+ = {xi}i set of non-null observed prises and let n0 the number
failed bargain. The log-likelihood function related to W is:

L
(
s, b|{xi}i

)
=
∑

xi∈N+

log
4(xi − s)

(s− b)2
+ n0 log

2(M − s)(b−m)− (s− b)2

2(M − s)(b−m)
. (5.3)

So we can recover the initial data b, s maximising L
(
s, b|{xi}i

)
under the fol-

lowing constrains:

• m < s < b < M ,

• b > max(xi; xi > 0),

• s < min(xi; xi > 0).

5.3.2 Different preferences and matching probabilities

Analogously to the previous section we extend the specification of the likelihood
function to the more general case where:
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• buyers and sellers may have different preferences,

• the matching function g(si, bj) between the i-th seller and j-th buyer is not
uniform, but depends on i and j, i.e. g(si, bj) = g(i, j). An other way to see
this matching function is like a stochastic matrix (a non-negative matrix s.t.
the row-sum and column-sum is equal to one and the (i, j)-th entry represent
the probability to match the i-th seller and the j-th buyer.

In this case the likelihood function has the following expression:

L
(
{si}i, {bj}j|{xi}i

)
=

T∑
i=1

T∑
j=1

 ∑
xi∈Ni,j

log
4(xi − si)

(si − bj)2

+(g(i, j)L− |Ni,j|) log
2(M − si)(bj −m)− (si − bj)

2

2(M − si)(bj −m)

+
∑
k 6=j

g(i, k)(L− |Ni,j|) log
2(M − si)(bk −m)− (si − bk)

2

2(M − si)(bk −m)

)
.

Where g(i, j)L − |Ni,j| is the number of failed bargains between the seller i and
the buyer j and g(i, k)(L − |Ni,j|) is the number of failed bargains between the
seller i and the buyer k.

5.4 Conclusion

We propose a flexible framework to model simple markets in a probabilistic fashion
for the case of agents with linear preferences, and showed how different intuitions
over behavioural or institutional rules can be introduced modifying the parameters
of the model. The successful ability of the model in retrieving its own parameters
from simulation suggests the possibility to generate interesting experiments by
fitting the model on ad hoc simulated and human data. As an example it might
be possible to measure the impact of complicated institutional rules like the double
auction by fitting the random model to the data: a good fit would indicate a small
effect from the new rules while a bad fit would indicate radical changes generated by
the rules. Analogously it might be possible to investigate the distance of human
behaviour from randomness, i.e. a null model, by fitting the model to human
experimental data.



Chapter 6

Graph and game modelization:
TTT solitaire

The TTT (Target the Two) solitaire was first introduced by Cohen and Bacadayan
in 1994 [19] to show how individuals store their components of organisational rou-
tines in procedural memory and so that the procedural memory may be the source
of distinctive properties reported bu observers of organisational routines. This soli-
taire was used two years later by Narduzzo and Egidi in [21] in order to understand
how individuals tend to divide into subproblems and to routinize their behaviours
accordingly to an induced strategy. The authors show that the game admits a
large number of configurations and some of them can be more easily solved by
adopting one (locally optimal) strategy, while others can be easily solved by a
different, locally optimal, strategy. The authors focused their attention to the
different choice made by the players after different training sessions, in particular
they observe the persistence of some player to use only the strategy learnt before
, experimentally showing a certain degree of routinisation in players’ behaviour.
In 2003 Egidi [20] formalise the concept of strategy, subproblems and categories
showing that decomposition patterns are usually non invariant and therefore the
final result is not an optimal strategy. Egidi showed that when the initial problem
is divided into smaller subproblems (using heuristic decomposition patterns), the
players (consciously or not) introduces hidden sub-optimalities also if each sub-
problem is solved in the optimal way. Here we will embed the TTT solitaire in its
natural graph representational world and we will try to formalise some concepts
introduced in the mentioned bibliography under the light of network theory. In
this framework, there are natural formalisations for the ideas aforementioned that
allows a practically systematic treatise of pattern decomposition strategies. Under
these new elements, it is quite easy to show that there is not a non-trivial decom-
position pattern solving this solitaire in the optimal way, but we can show that
more elaborate is a strategy, less we move away from the optimum.

99
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After a brief introduction about the solitaire in Section 6.2 we show a simple
algorithm for generating the whole graph game. After that, the definition of
abstraction and strategies are introduced and finally a new approach solve the
solitaire in the case of hidden cards is showed.

6.1 Description

The TTT solitaire is played using six cards 2♣, 3♣, 4♣, 2♥, 3♥ and 4♥ (these
cards form the set we will call P) arranged into two lines of three cards. We
will indicate the positions of the cards using numbers from 1 to 6, i.e. 1,2 and
3 for the first line from left to right and 4,5 and 6 for the second line. There
are three special positions: 1 is called colour (CC), 2 is called target and 3 is
the number (NN). At the beginning of the game we choose a starting point S
between CC and NN, a target card (originally 2♥) and we arrange cards face-up
in position 1, 2, 3, 5 and face-down for 4 and 6. At each turn we can perform
one of the following moves: pass (PASS), switch the card from S to 4, 5 or 6
without restriction (N4, C4, N5, C5, N6, C6), switch from S to 2 (N2, C2) only if
the two cards agree (if S=CC then 2 must have the same colour of S, otherwise
the same number). After we switch two cards (or we pass) we must change S
(if S is CC then the next move starts with NN and viceversa). The goal is to
put the target card in position 2 using the least number of moves. We will call
M = {PASS,N2, C2, N4, C4, N5, C5, N6, C6} the set of possible moves.

6.2 Graph game construction

In this first part we will assume to play with the cards in position 4 and 6 face-up
like the others. In this section we will see how to build the directed graph G in
which each node represents a configuration and each edge the move between two
congurations.

We can represent a generic configuration using 7 symbols, six for the cards and
one for S. It is easy to see that there are 2 · 5 · 5! + 2 · 4! + 4! = 1272 possible
configurations:

• 2 · 5 · 5!, considering 2♥ not in position 2 there are 5 possibilities for position
2, and 5! for the others; moreover we must multiply these position by 2, the
different values of S.

• 2 ·4!, considering 2♥ in target and S=NN we must have a red card in 1 (there
are 2 possibilities) and 4! for the others.
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• 4!, considering 2♥ in target and S=CC we must have 2♣ in 3 and 4! for the
others.

All the configurations, composing the set indicated with C, are stored in 7-ulpes
in which the first sixth slots indicate the cards in the respective positions and the
last indicates the status of S. As a matter of notation, if c ∈ C we will indicate
with c[i] the card in i-th position if i ≤ 6 or the value of S if i = 7. Sometimes we
will write also c ∈ G.

Definition 12. A set T ⊂ C is called target set. The most important target set
is indicated with T ∗ and defined as T ∗ = {c ∈ C | c[2] = 2♥}.

Let m ∈ M and c ∈ C, with m(c) we indicate the position reached from
c performing the move m if this move is possible, the empty set otherwise. If
(m1, . . . ,mk) = M ∈ Mk for some k ∈ N and c ∈ C with the expression M(c) we
indicate the position mk(mk−1(. . . (m1(c) . . .))) if all moves are possible, the empty
set otherwise.

The next step is to build the edge’s set, indicate with E(G). For each pair of
different configurations, p1 and p2, we can state if there is a move m between the
two configurations or not following these steps:

1. if p1[2] = 2♥: m = ∅ else

2. if p1[7] = p2[7]: m = ∅ else

3. if p1[i] = p2[i] ∀ i ≤ 6: m = PASS else

4. if #{i | p1[i] = p2[i]} 6= 4: m = ∅ else

5. if p1[1] = p2[1]: m = ∅ else

6. if p1[3] = p2[3]: m = ∅ else

7. if p1[7] = CC:

• if p1[1] = p2[2] and p1[2], p1[1] have a different colour: m = ∅ else

• m = Cx where x is such that p1[x] = p2[1].

8. else:

• if p1[3] = p2[2] and p1[2], p1[3] have a different number: m = ∅ else

• m = Nx where x is such that p1[x] = p2[3].
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The game-graph G (in Fig. 6.1) is a digraph in which the node set V (G) =
C and E(G) as howed above. This graph has 1272 nodes and 5159 edges.

Fact 1

Fig. 6.1: Representation of G. In red we can see the target set T ∗.

Definition 13. Let T be a non empty target set. The set defined as Ln = {c ∈
C s.t. d(c, T ) = n} is called n-layer; where d(c, T ) = mind∈T d(c, d) and d(c, d)
the standard geodesic distance.

Let d̄ = maxc∈C d(c, T ) then, for c ∈ Ln and t ∈ T , the following properties
are verified:

• Ld̄+n = ∅ for all n > 0 and Ln

⋂
Lm = ∅ if m 6= n.

• d(c, Ln−1) = 1 for all 2 ≤ n ≤ d̄ and c ∈ Ln.

• If (c, cn, . . . , c1, t) is the sequence of a shortest path then d(c, T ) =
n + 1 and ci ∈ Li for all i.

• with the target set T ∗ we have d̄ = 5 and the cardinality of its layers:

#T #L1 #L2 #L3 #L4 #L5

72 72 96 312 552 168

Fact 2
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In Fig.6.2(a) we can see a representation of the graph G in which the different
layers have different colours.

Definition 14. Let G and T ∗ be as before. The shortest path spanning graphs
G∗ is the graph such that V (G∗) = C and in which there are only edges form Lm

to Lm−1 for all m = 1, . . . , 5.
If the value or the number of a card is not important, we will indicate it with

the symbol #.

(a) (b)

(c) (d)

Fig. 6.2: (a) Representation of G. In red we can see the target set T ∗, in orange
L1, in yellow L2, in green L3, in blue L4 and in purple L5. (b) Representation of
G∗. In (c) and (d) are showed the two connected component of G∗.

In Fig.6.2(a) we can see a representation of the graph G∗ and in (b) we
can recognise the two clusters of G∗: the subgraph related to the final posi-
tion (##, 2♥, 2♣, ##, ##, ##, CC), (c), and the subgraph related to position
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(#♥, 2♥, ##, ##, ##, ##, NN),(d). Moreover, it is easy to prove that the part
of the cluster (c) related to 4♥ is isomorphic to the part related to 3♥.

The introduction of generic cards ## leads us to introduce the concept of
abstraction discussed in the following section.

6.3 Abstractions and strategies

Definition 15. Let S ⊂ P be a subset of cards. Let ∼ be an equivalence relation
on C defined as:

p ∼ q ⇐⇒ p[i] = q[i] ∀i s.t. p[i] ∈ S.

Definition 16. Let T be a target set. We defined a subproblem the couple
(S, T ). The induced quotient graph (whose edges can be created as before) is
called S-abstraction to T .

Example 3. Let consider now S = {2♥, 2♣} and T = T ∗ . In this case the
relative graph contains 60 nodes and 169 edges which topology is showed in
Fig.6.3. For example position (##, ##, 2♣, ##, ##, 2♥, CC) can be connected
to (2♥, ##, 2♣, ##, ##, ##, NN) using the move C6. Notice that there are two
clusters: one in which p[2] ∈ S (the interesting one) and the other in which there
is a generic card in position 2.

2R2N subproblem

##2R2N######CC

Fig. 6.3: Topology of of {2♥, 2♣}-abstraction to T ∗.

For each k = 2, 3, 4 we can consider the subsets of P of k elements. Since there
are

(
6
k

)
subset of k elements, we can build the

∑4
k=2

(
6
k

)
= 50 basic abstractions.
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Definition 17. We would to define a strategy as a collection of subproblems
coupled with a set of rules P saying in which conditions we look at a particular
abstraction. We will call this set of rules decision path.

Formally, a finite set S = {(Si, Ti),P i ≤ n} is called strategy if (Si, Ti) is a
subproblem, with Gi as abstraction, for each i = 1, . . . , n and P is a decision path
such that:

1. ∀ p ∈ G ∃! i ≤ n s.t. P(p) ∈ Gi

2. d(P(p), Ti) < +∞

3. ∀ p ∈ G ∃ I = {i1, . . . , iN} s.t. :

• d(P(p), Ti1) < +∞,

• d(P(Tij), Tij+1
) < +∞ 1 ≤ j ≤ N − 1,

• d(P(TiN−1
), T ∗) < +∞.

The first requirement says that for all starting position the decision path select
just one abstraction, in which, using the second requirement, we can reach it’s
target. The last condition ensures that we can reach the target set starting from
any initial position following a finite number of steps.

Example 4. Let S be the strategy summarised in Tab.6.1:

index Si Ti

1 {2♥, #♥} {(#♥, 2♥, ##, ##, ##, ##, NN)}
2 {2♥, 2♣ } {(##, 2♥, 2♣##, ##, ##, CC)}
3 {3♥, 3♣ } {(##, 3♥, 3♣, ##, ##, ##, CC)}
3 {4♥, 4♣ } {(##, 4♥, 4♣, ##, ##, ##, CC)}

Tab. 6.1: Abstractions and targets used in S

We need also a decision path P for a generic position p ∈ G1:

• if p[2] = #♥: select 1 else

• if p[2] = 2♣: select 2 else

• if p[2] = 3♣: select 3 (then 1)

• if p[2] = 4♣: select 4 (then 1)

1In this case p is a complete position.
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This simple strategy show us a common decision process: we look at the target
set, if there is a red card we try to put 2♥ in position 1, if there is 2♣ in target
we try to put 2♥ in position 3, if there is a black card, we first change it with its
corresponding red card using number and then we apply the first abstraction. It
is quite simple to show that S is actually a strategy. The third abstraction and
the relative rule in P increase the distance of some configuration living in this
abstraction. In Tab.6.2 we summarise the two distributions:

distance # nodes in G # nodes in S diff. #
0 72 72 +0 892
1 72 72 +1 56
2 96 84 +2 140
3 312 228 +3 172
4 552 360 +4 0
5 168 156 +5 12
6 0 120
7 0 144
8 0 36

Tab. 6.2: Comparison between real distances and distances though S.

Let now be S′ = S ∪ ({2♣, #♣ }, {(#♣, 2♣, ##, ##, ##, ##, NN)}) and
finally changing P as:

• if p[2] = #♥: select 1

• if p[2] = 2♣: select 2

• if p[2] = #♣ and p[1] 6= 2♣ select 3 (then 1)

• if p[2] = #♣ and p[1] = 2♣ select 4 (then 2)

In Tab.6.3 we can see the last column of Tab.6.2 related to this new strategy:

+0 +1 +2 +3 +4 +5
1108 56 164 112 0 0

Tab. 6.3: Differences of distance between S′ and the complete game.

The strategy S′ is more complex than S but we need in terms of distance.
Such strategy is not optimal, so the next question is: is there any small set of
abstractions and a correlated optimal strategy?
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Let t = (##, 2R, ##, ##, ##, ##, ##) be a generic target configuration.
We can reach t from two generic position: c = (2R, #R, ##, ##, ##, ##, CC)
and n = (##, 2N, 2R, ##, ##, ##, NN). We can find now all the generic con-
figuration reaching c and n and so one, building a tree called minimal backward
tree B containing all generic position. With generic position we mean a position
in which the cards (suit or/and number) appearing are the minimal information
needed. In Fig.6.4 we plot the first 4 levels of the tree.

CC_2

NN_2

NN_2 NN_2 NN_4 NN_5 NN_6 PASS

CC_2 CC_4 CC_5 CC_6 PASS

CC_2

CC_4 CC_5

CC_6

PASS

CC_2
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CC_5 CC_6
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CC_2
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Fig. 6.4: First 4 levels of the minimal backward tree.

The following fact justifies the construction of B:

∀ p ∈ C ∃b ∈ B s.t. d(b, t) = d(p, T )

Fact 3

Which is the smallest set of symbols needed to describe an optimal solution?
Obviously, the same position p can be seen in different abstraction in B.

After some calculations, we find out that for each initial position there exists
one or two possible abstraction satisfying Fact 6.3: 1116 positions admit only a
(minimal) abstraction at desired distance, and 168 admit two abstractions. Con-
sidering only minimal abstractions does not allow us to create a strategy better
than the complete graph G, in other words, the union of all symbols present in all
minimal abstraction is the entire set P .
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6.4 Extension to covered cards

In this section we want study the game when, at the beginning of the game, cards
in position 4 and 6 are face-down. We will indicate this new set of configuration
as U = C

⋃
I where I = {(a, b, c, #, d, #, S) a, b, c, d ∈ P and b 6= 2♥}. We

assume the following property:

Let c ∈ U be a configuration, once an unknown card (#) is flipped we can
replace the unknown values with the real values and consider c ∈ C.

Fact 4

In other words, once we have flipped an unknown card we can play with all face-up
cards. We can split C into three disjoint sets C46, C64 and T satisfying:

p ∈ C46 ⇐⇒ ∃q ∈ C64 s.t. p[i] = q[i] for i 6= 4, 6, p[6] = q[4], p[2] 6= 2♥.

It is easy to see that #C46 = #C64 = (1272−#T )/2 = 600.

Definition 18. An element c ∈ I is called superposition and its value could be
pi ∈ C46 or qi ∈ C64.

The set I represent at the same time the two sets C46 and C64 in a quantistic
sense: a superposition has the same role of the Schrödinger’s cat, i.e. we can not
know its real value until we observe it.

For each pair (p, q) we have that d(pi, T ) = d(qi, T ).

Fact 5

Let c ∈ I be a configuration, its distance dc = d(c, T ) is well defined but with
dc we want to empathise that we do not know the shortest path; this is a sort of
quantistic distance.

Can we reach the target set T starting from c using dp moves independently
form the real expression of c? If the answer to this question is negative, how much
we have to increase the number of moves in order to solve the quantistic effect
(independently from the real value of c)?
If c ∈ I could be p ∈ C46 or q ∈ C64 than holds:

We can reach T using at most dp + 4 moves.

Fact 6
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Proof. We can use four moves to know the values of # cards and return back to
the initial configuration.

In this way we can resolve the quantistic effect knowing the values of #. The
aim of the game is to reach the target using the least number of moves, and the
strategy used in Fact 6 is not optimal.

Definition 19. Under the previous notation, we define the orbit of p to be O(p) =
{M ∈Mdp | M(p) = t with t ∈ T }. Let v ∈ O(p) and w ∈ O(q) be two elements
in the respective orbits. We define the two paths v and w to be equimovements
(indicate with v ∼ w) if:

• v = w or

• vi = wi for all i ≤ dp − 2, vdp−1 = PASS and wdp−1 6∈ {N2, C2} or viceversa,
or

• vi = wi for all i < k̄ and, for some k < k̄, happens that vk ∈ {N4, C4, N6, C6}.

Under the previous notations, if v ∼ w than we can reach the target using
exactly dc moves.

Fact 7

Proof. Directly from the definition of equimovements.

In this case the quantistic effect can be solved without additional costs and the
number of this kind of pairs is 304.

Definition 20. Let us generalise the definition of orbit: for every n ∈ N let On(p)
be the n-th orbit of p define as On(p) = {M ∈ Mdp+n | M(p) = t with t ∈ T }.
We can also generalise the definition of equimovements: two paths v ∈ On(p) and
w ∈ Om(q) are m+n

2
-equimovements (indicate with v ∼(m+n)/2 w) if:

• vi = wi for all i = 1, . . . , min{n, m} or

• m = n and vi = wi for all i ≤ dp + n − 2, vdp+n−1 = PASS and wdp+n−1 6∈
{N2, C2} or viceversa, or

• vi = wi for all i < k̄ and, for some k < k̄, happens that vk ∈ {N4, C4, N6, C6}.
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The number dp + (m + n)/2 indicates the mean of the distances from c to C:
for example suppose that dp = 5, n = 1, m = 0 and that there exists v and w such
that v ∼1/2 w, since c ∈ I it could be at the same time the configuration p and q.
This means that we can reach the target using the path v with a length dp + 1 or
using the path w with a length dp. Since the the two positions are equiprobable,
the mean of the length to the target is (dc +1+dc)/2 = 1/2+dc = (m+n)/2+dc.

For all superpositions, using a computer, we can calculate the minimum cost
to resolve the quantistic effect. The results are summarised in Tab.6.4.

m+n
2

number of pairs rate
0 304 50.7%
1
2

104 17.3%
1 172 (m = 0, n = 2) +20 (m = n = 1) 32%

Tab. 6.4: Minimum costs to solve quantistic effect.

Among the 20 couples with m = 1 and n = 1 there are 16 couples that have
also m = 0 and n = 2.

We can create a network J using as nodes the set I and creating edges using
a set of moves N = {PASS,N2, C2, N5, C5} ⊂ M. Now we can create the final
graph H = G

⊔
J adding some extra links between I and C.

More precisely, p ∈ I is connected to q ∈ C if the move m such that m(p) = q
belongs to any equimovements2.

In other words for each starting position p ∈ J we can stay in J using the set
N or decide to discover a covered card. We are allow to flip an uncovered card if
the resulting position q (pi ∈ C46 or qi ∈ C64) belongs to a equimovement starting
from p.

Notice that once we arrive into G, we can follow the minimum path to the
target.

6.5 Conclusion

We show that concepts of strategy, abstraction and subproblem can be easily
formalise using basic elements of network theory. In particular quotient graphs
and shortest constrained paths results to be useful tools for our analysis. Further
studies can be made both in order to understand how a strategy is created (or
selected) and to apply these ideas to a (particular) class of games.

2In this case m(p) represents both configurations: pi ∈ C46 and qi ∈ C64
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