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INTRODUCTION

How do we memorize moments of our life? We take pictures tdurapghe beauty of nature, happy
smiles of our beloved people or the prosperity of the citied tve build. We record videos to mem-
orize our daily life in a more vivid way. Be it a birthday paxy a wedding ceremony. Videos can
perfectly capture each joyful and romantic moment. We dlsotb share those digitalized mem-
ories with our family and friends even when we are not closesibge internet makes us always
connected. Online portals like Flickr and Youtube and dowéwork like Facebook and Instagram
are flourishing all the time. These comprise just a part ohthiimedia data nowadays, not to men-
tion the tremendous number of other news, documentary aweiance resources. The abundant
images and videos serve as a huge information pool that catilized for our daily life. For the
exploitation of them per se, effective indexing techniqaeshighly desired [19].

Images and videos depict semantic contents in differemegsgf richness. Generally speaking,
people tend to record static concepts such as objects,soemoments of human activities. Videos,
in contrast, are used to record dynamic events that are noonelicated than static concepts. For
example, we can capture a flower with an image but a weddirggruamy needs a long lasting video.
Therefore, images and videos consist of the main multimddia and it is important to develop
effective analyzing techniques for both of them. In thissibeve address the problem of image
and video understanding and specifically, we tackle thelprolbvith machine learning techniques.
The generic framework of thesis is displayed in Figure 1 Wishows that the primary techniques
harnessed in our work are comprised of feature selectioni-sepervised learning, intermediate
representation learning and knowledge adaptation.

We begin from image analysis as static concepts are the coemp®of complicated video events.
So what is the basis of image analysis? It is probably theifeatpresentation of an image. In the
literature, many different types of feature have been psefddo capture the semantic information
of images. Impressive progress on image analysis has béeassed based on these feature repre-
sentations. However, it is inevitable that the featureesentation has certain amount of noise and
redundancy. Consequently, the following questions asedailp:

e Is it possible to get a more compact representation? Wowdttalyzing accuracy be im-
proved as a result?

We work on these issues in Chapter 2, which was published B¥ [E-ansactions on Multimedi-
a [52]. Technically, feature selection is utilized to sélecompact subset from the original feature
sets and a novel sparse model formulates our algorithm,hatacresponds to the Module 1 in
Figure 1. Another benefit of feature selection is that theettision of the feature representation is
reduced, thus leading to the improvement of computatioffialency.

To step further, we include videos that contain simple #&@is and human actions into our work
besides images. Is there any common problem existing inetbearch of both of them? We pose
this question as it would really beneficial if we can come ughvéi solution for such a common
problem as it can be applied to both domains. Given a clogds, e notice that both image and
video understanding face a reality that precisely labateagies and videos are difficult to obtain.
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Figure 1: The illustration of our approach for multimedia contentlgsis.

Though images and videos on the Web are usually associatiedags (labels), they are subjective
and sometimes noisy. As for image and video understandingesd to learn models with labeled
training data, noisy and incorrect labels would potentidld to incompetent analyzing models.

Hence, the following question comes up:

¢ Isthere any way to attain reasonable analyzing performaitbeonly few labeled images and

videos are available?

Searching for a possible answer, we propose a semi-supdrfgésture analyzing framework for

image and video understanding in Chapter 3, which was fhddidy IEEE Transactions on Multi-

media [53]. This work corresponds to the Module 2 in Figur&émi-supervised learning is known

to be able to handling the paucity of precise labels by efiplpiboth labeled and unlabeled data.
Our approach is based on semi-supervised learning andtameolusly considers eliminating fea-
ture noise and redundancy. Through extensive experimenitnage and video classification, we

validate that properly utilizing unlabeled data does dbnte to the performance boost.

Following the work on videos with simple activities and humetions in Chapter 3, we move
on to understanding more complicated videos that depict kinmadia event such aending a
fish A multimedia event is a higher level semantic abstractibnideo sequences than a concept
and consists of multiple concepts. In addition, a multimesgient usually lasts much longer than
a concept that can be detected in a shorter video sequencemiirea single frame. Another



INTRODUCTION

challenge is that different video sequences of a parti@uant may have huge variations. Despite
its arduousness, we propose to work on multimedia evenysisas it is more closely related to

user interest. We base our research on the multimedia eegsttibn task that has been drawing
increasing attention recently. Detection task is morelehging than the widely studied annotation
task. Multimedia annotation, also known as recognitiomsato associate a datum with one or
multiple semantic labels (tags). Detection identifies theuorence of a class of interest in a large
pool of data. In contrast with annotation for which both tharing and testing data are from a
fixed number of classes, the training and testing data inctletecan be from an infinite number

of classes. Hence, multimedia event detection has posezbamgsearch challenge. As multimedia
event builds upon several basic elements of objects, s@mbfHuman actions we may refer to
an approach suggested by previous work that uses semantieorepresentation obtained from
concept detectors for event videos [28] [25]. Yet this applorequires the training of many concept
detectors in advance, which is tedious and the video uratetstg performance heavily depends on
the accuracy of those concept detectors. As a result, wk #tiaut the following question:

e Can we skip the explicit concept detection process but laarimtermediate representation
using available multimedia archives related to variousepis for complicated events?

Probing for a positive answer, we propose to learning anrimteiate representation coupled with
the classifier learning for multimedia event detection ira@ler 4, which was published by IEEE
Transactions on Multimedia [56]. Our method correspondt¢oModule 3 in Figure 1. Since the
intermediate representation learning is bounded to thesifier learning, both of them attain mutual
benefit, thus resulting in an optimized event detector thaties more informative cues from the
intermediate representation.

We have witnessed encouraging results in Chapter 4 by lgveyahe idea that a multimedia
event consists of several relevant concepts of objectsgsand actions. The progress motivates us
to further investigate improving multimedia event detewtin this direction. Particularly, we tackle
a similar problem in line with the second problem addresseHis thesis:

e How can we guarantee reasonable multimedia event deteatimmacy when only few posi-
tive exemplars are provided?

Note that we expect a solution tailored for multimedia ewtetiection and Chapter 4 has shed a
light upon us that other concepts-based multimedia datebeamseful. Hence, rather than semi-
supervised learning, we approach the problem by a novel lkauge adaptation algorithm in Chapter
5, the extension of our ACM MM paper [54]. We propose to adaptiinowledge from concept level
to assist in event detection. Specifically, we use the availsdeo corpora with annotated concepts
as our auxiliary resource and event detection is perfornmetthe target videos. Our approach has
another desirable property that it is able to adapt knowdddogm the source to the target even if
the features of them are partially different, but overlagpiAvoiding the requirement that the two
domains are consistent in feature types is desirable asdi¢ation platforms change or augment
their capabilities and we should be able to respond to this ktile or no effort.

The final result of this thesis delivers a comprehension of ive can improve multimedia anal-
ysis through a variety of machine learning techniques. Ritmrepresentation perspective, feature
selection is potentially helpful. From the classificaticergpective, semi-supervised learning and
transfer learning both bring in reasonable performancesiiyguonly few labeled training data.






WEB IMAGE ANNOTATION VIA SUBSPACE-SPARSITY
COLLABORATED FEATURE SELECTION

The number of web images has been explosively growing dueetdévelopment of network and
storage technology. These images make up a large amountehtmultimedia data and are closely
related to our daily life. To efficiently browse, retrievedaarganize the web images, numerous
approaches have been proposed. Since the semantic cooitgtémages can be indicated by label
information, automatic image annotation becomes one @feetechnique for image management
tasks. Most existing annotation methods use image feathetsare often noisy and redundant.
Hence, feature selection can be exploited for a more presisecompact representation of the
images, thus improving the annotation performance. Inc¢hiapter, we propose a novel feature
selection method and apply it to automatic image annotafibere are two appealing properties of
our method. First, it can jointly select the most relevaatdiees from all the data points by using
a sparsity-based model. Second, it can uncover the shabsgate of original features, which is
beneficial for multi-label learning. To solve the objectiumction of our method, we propose an
efficient iterative algorithm. Extensive experiments aegf@grmed on large image databases that
are collected from the web. The experimental results tagetlth the theoretical analysis have
validated the effectiveness of our method for feature sielecthus demonstrating its feasibility of
being applied to web image annotation.

2.1 INTRODUCTION

As digital cameras become very common gadgets in our d&yvie have witnessed an explosive
growth of digital images. On the other hand, the popularitgnany social networks such as Face-
book and Flickr helps boost the sharing of these personaésman the web. In fact, digital images
now take up a very large proportion of multimedia contentthim network and are utilized inten-
sively with different purposes. However, it is not straiginivard to effectively organize and access
these web images because we are facing an overwhelmings/danount of them. Aiming to man-
age the images efficiently, automatic image annotation bas proposed as an important technique
in multimedia analysis. The key idea for image annotatido isorrelate keywords or detailed text
descriptions with images to facilitate image indexingriesal, organization and management.

The sheer amount of web images itself provides us free ahdmage repository for research.
Researchers have been developing many automatic imag¢éationanethods by leveraging the
web scale databases such as Flickr which consist of a laméenof user-generated images anno-
tated with user-defined tags [80]. Appearance-based atimmtavhich is one popular approach, is
generally realized through two processes, namely seayemd mining. Similar images of the unan-
notated images are first found out from the web scale datalths®igh the searching process and
then the mining process extracts annotation from the téktf@mation of these retrieved similar
images. Research work using this approach has demonstratedsing performance for automatic

1 Z. MA, F. NIE, Y. YANG, J. UIJLINGS AND N. SEBE: "WEB IMAGE ANNDTATION VIA SUBSPACE-SPARSITY
COLLABORATED FEATURE SELECTION"IEEE TRANSACTIONS ON MULTIMED|A4(4): 1021-1030, 2012.
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image annotation [86] [69]. Appearance-based image atioothas its effectiveness, but a major
problem is that it can be negatively affected when user-gaed tags do not reflect the concepts
precisely. Learning-based automatic annotation is an@tffiective approach and has gained much
research interest. This approach is dependent on certainrgrof available annotated images as the
training data to learn classifiers for image annotation. Walgorithms have been rendered using
learning-based approach these years with varying degfeegcess for multimedia semantic anal-
ysis [48] [98] [111] [55] [94]. Therefore, this chapter fams on exploiting learning based methods
for image annotation.

Images are normally represented by multiple features, wbém be quite different from each
other [99]. As it is inevitable to bring in irrelevant and/@dundant information in the feature
representation, feature selection can be used to preprtiteslata to facilitate subsequent image
annotation task [89]. Hence, it is of great value to propdfective feature selection methods.
Existing feature selection algorithms are achieved byediifit means. For instance, classical feature
selection algorithms such as Fisher Score [22] compute #ights of different features, rank them
accordingly and then select features one by one. Theseaahafgorithms generally evaluate the
importance of each feature individually and neglect théulggformation of the correlation between
different features. To overcome the disadvantage of setefgatures individually, researchers have
proposed another approach which selects features joirrihga all data points by taking into account
the relationship of different features [89] [62]. These hugls have shown promising performance
in different applications. In this chapter we propose audeaselection technique which builds upon
the latest mathematical advances in sparse, joint feadleet®on and apply this to automatic image
annotation.

Image annotation is basically a classification problem. kl@v, most web images are multi-
labeled, that is to say, an image can reflect several sen@m@epts. This intrinsic characteristic of
web images makes it a complicated problem to classify thesimple way to annotate multi-label
images is to transform the problem to a couple of binary fiaaton problems for each concept
respectively. Thoughiit is easy to implement, this appraoediects the correlation between different
concept labels which is potentially useful. Therefore, yneetent works [32] have proposed to
exploit the shared subspace learning for multi-label thgkiacorporating the relational information
of concept labels into multi-label learning. Inspired bygithsuccess, we apply shared subspace
learning to the problem of feature selection.

To summarize, we combine the latest advances in joint, sgaegure selection with multi-label
learning to create a novel feature selection technique lwhitcovers a feature subspace that is
shared among classes. We name our method Sub-Feature tingavith Sparsity and demonstrate
its effectiveness for automatic web image annotation. Tamrmontributions of our work are:

e Our method leverages the prominent joint feature selegtitmsparsity, which can select the
most discriminative features by exploiting the whole featspace.

e Our method considers the correlation between differenteptlabels to facilitate the feature
selection.

e We conduct several experiments on large scale databadestedlfrom the web. The re-
sults demonstrate the effectiveness of utilizing sparatufe selection and label correlation
simultaneously.

The rest of this chapter is organized as follows. We briefigoisiuce the state of the art on shared
feature subspace uncovering, feature selection and atitoimage annotation in section Il. Then
we elaborate the formulation of our method followed by thepmsed solution in section Ill. We
conduct extensive experiments in section IV to verify theaadage of our method for web image
annotation. The conclusion is drawn in section V.

12
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2.2 RELATED WORK

Our work is geared towards better image annotation perfocedy exploiting effective feature
selection. In this section, we briefly review the three edabpics of our worki.e., shared feature
subspace uncovering, feature selection and automaticeigaigotation.

2.2.1 Shared Feature Subspace Uncovering

Letx be a datum represented by a feature vector. The generalfgugdervised learning is to predict
for the inputx an outputy. To achieve this objective, learning algorithms usuallg training data
{(xi,y1)}i—; to learn a prediction functiofi that can correlate with y. A common approach to
obtainf is to minimize the following regularized empirical error:

min }_loss(f(xi), yi) +nQ(f), (2.1)

i=1

whereloss (+) is the loss function andQ (f) is the regularization with as its parameter.

Itis reasonable to assume that multi-label images shataiceommon attributes. For example, a
picture related to “parade”, “people” and “street" shasedbmponent “people” with another picture
related to “party”, “people."” Intuitively, we can leveragigch label correlations for image annotation.
In multi-label learning problems, Andet al. assume that there is a shared subspace for the original
feature space [7]. The concepts of an image are predicted bgdtor representation in the original
feature space together with the embedding in the sharegaabswhich can be generalized as the
following demonstration:

f(x) =vix+p'QTx, (2.2)

wherev andp are the weight vectors ar@d is a common subspace shared by all the features.
Suppose the images are relatedtooncepts in multi-label learning and there amg training
data{xi}{‘lﬁ belonging to thet-th concept labeled a{gi}l‘lﬁ . Then (2.1) can be redefined as:

min ] (n]u Z loss (fi(xi),yi) + uQ(ft)>

fo Q= i=1 (2.3)
st. QTQ=1
Note that the constraif@ " Q = I in (2.3) is imposed to make the problem tractable.
By incorporating the shared feature subspace uncoveri(@ 2finto (2.3), we get:
c .I my
i — Y1 + Txi,yi ) + 1Q ({ve,
o g 2 (mt ; oss ((ve +Qpe)xi,yi ) + 1 (vt Pt})> 2.4)

st. QTQ=1

Shared feature subspace learning has received incredtntjan for its effectiveness on multi-
label data [32]. Its theory has also been applied in multiamadalysis and proved its advantage. For
instance, Amorest al. have leveraged the idea of sharing feature across muligdses for object-
class recognition and achieved prominent performance A8].a result, we adopt shared feature
subspace uncovering in our feature selection frameworlbaid our mathematical formulation on
(2.4).

13
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2.2.2 Feature Selection

Feature selection is widely adopted in many multimediaysislapplications. Its principle is to
select the most discriminating features from the originsowhile simultaneously eliminate the
noise, thus resulting in better performance in practiceotAer advantage of feature selection lies
in its attribute that it reduces the dimensionality of théimal data, which in turn reduces the
computational cost of the classification.

According to the availability of label information, featuselection algorithms can be classified
into two groups: supervised and unsupervised. Unsupetfésgure selection [40] [87] [12] is used
when there is no label information. An effective way of unsryised feature selection is to use the
manifold structure of the whole feature set to select thetmmesiningful features [12].

In contrast, supervised feature selection is preferablenvthere is available label information
that can be leveraged by using the correlation betweenrfssaand labels. In the literature, plen-
ty of supervised feature selection methods have been pedpdsor example, Fisher Score [22]
and ReliefF [36] are traditional supervised feature s@eaanethods and are exploited widely in
multimedia analysis. However, traditional feature sétectisually neglects the correlation among
different features [12]. Therefore, another approach leehldeveloped recently, namely sparsity-
based feature selection [37] [62] which can exploit thedeatorrelation. This approach is built
upon the comprehension that many real world data can beedpaepresented, thus rendering the
possibility of searching the sparse representation of #ia th realize feature selection. The; -
norm regularization is known to be an effective model forrspdeature selection [107] and has
drawn increasing attention [62] [95].

Thel,,1-norm of an arbitrary matri}V € R4%¢ js defined as:

d
=) \/Z].; W2 (2.5)
i=1

In [62] and [95],1;,1-norm is leveraged to conduct feature selection jointlyoasrthe entire fea-
ture space with promising performance. Their works denratesthat the, 1-norm of W makes

W sparse, meaning that some of its rows shrink to zero. CoestlguVV can be viewed as the
combination coefficients for the most discriminative feal Feature selection is then realized by
W where only the features associated with the non-zero roW¥ iare selected. Sparsity-based
feature selection is efficient as it can select discrimugafeatures jointly across all data points.
However, few works have incorporated sparsity-based feaiection and shared feature subspace
uncovering into one joint framework.

w

2.2.3 Automatic Image Annotation

Image annotation can be viewed as a classification tasknli & correlate concept labels with spe-
cific images by classifying images to different classes. Ollimate goal is that the predicted labels
via annotation algorithms can precisely reflect the realss#im contents of images. Nonetheless,
the web image resources are countless so it is infeasiblertotate all of them manually. Hence,
automatic image annotation becomes an essential tool fatling web scale images for retrieval,
index and other management tasks.

Existing automatic image annotation methods have utilagaethora of techniques [80] [69]
[48] [24] [14]. Since images are usually represented byedffit features, much work [24] [89]
[55] has focused on optimizing the feature selection predegheir annotation frameworks. By
finding the discriminative subset of original features atithi@ating the noise, feature selection
can help improve image annotation performance. For instad@et al. have exploited a sparse

14



2.3 THE PROPOSED FRAMEWORK

selection model to select discriminative features thatkrsely related to image concepts for image
annotation [55].

Thanks to the continuous effort made by researchers, wevhiivessed great advance in automat-
ic annotation for web images. However, the performance tifraatic image annotation is yet to be
satisfactory, thus requiring more research work in this diominspired by the recent advanced tech-
nigues of feature selection and shared feature subspaogentgy, we propose a novel framework
to extract the most discriminating features to boost thegirennotation performance.

2.3 THE PROPOSED FRAMEWORK

In this section, we first illustrate the formulation of ourlSEeature Uncovering with Sparsity (S-
FUS) framework. Then a detailed approach is rendered t@ $bévobjective problem.

2.3.1 Problem Formulation

Our method roots from the shared feature subspace uncgwsigiven by (2.4).

Denote the training data matrix &= [x1,X2, ..., xn) Wherex; € R4(1 < i < n)is thei-th
datum ancdh is the total number of the training data. Dét= [y1,y2, ..., yn]T € {0, 1}*¢ be the
label matrix. ¢ stands for the class number agd € R¢(1 < 1 < n) is the label vector withe
classes. Denot¥ = [v,V3,...,ve] € R4%¢ andP = [P1,P2, - Pc] € Rsdx¢ wheresd is the
dimension of the shared subspace. We can then presentr{Z4)ore compact way as:

min loss ((V+QP)TX,Y) + uQ(V,P)
V,P,Q ( ) (2.6)

st. QTQ=1
By definingW = V + QP whereW € R4*¢, the above function equivalently becomes:

. T
m}n,Q loss (W X, Y) +unQ(V,P)

W,V,P 2.7)

st. QTQ=1

It can be seen from the above function that by applying awmdiffeloss function and regularization,
we can realize shared feature subspace uncovering inafifferays. The least square loss has been
widely used in research which can be iIIustratecﬂXEW — YHIZ: where||-|| denotes the Frobenius
norm of a matrix. By utilizing the least square lossetlal. [32] have proposed to achieve shared
subspace learning in the following way:

2
min HXTW—YH oW+ B [W— QP|?
i ;oW + B[ QPR 08)

st. QTQ=1

In the above functionx |W/||Z + B ||[W — QP|| is the regularization term. The first part regulates
the information to each specific label and the second pattalsrthe complexity of the objective
function. This approach is mathematically tractable andlmeasily implemented. However, there
are two issues worthy of further consideration. First, deest square loss is very sensitive to outliers,
thus demanding a more robust loss function. Second, as weaiomduct effective feature selection,
it is advantageous to exert the sparse feature selectioelsod the regularization term. In [62],
Nie et al. have proved thal, ;-norm based models can handle both the aforementionegissue
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We therefore propose the following objective function asfoundation to realize feature selec-
tion:

arg min_|[X"W Y| +a|W|,;+B[IW—QP|}
o,n | |, Wl + B lIW—QPIF 29

st. QTQ=1

The loss function in our objective, that is to sé "W — Y||, , is robust to outliers as indicated
in [62]. At the same time|W/|, ; in the regularization term guarantees thidis sparse to achieve
feature selection across all data points [95] [62].

2.3.2 Solution

As can be seen in (2.9), our problem involves thg-norm which is non-smooth and cannot be
solved in a closed form. As a result, we propose to solve ibkgvis.

By denotingKTW—Y = [z!, ..., z"]T andW = [w', ..., w4]T, the objective in (2.9) is equivalent
to:

arg min, Tr ((xTw— V)TOXTW - Y)) +aTr (WTDW) +B W —QP|?

(2.10)
st. QTQ =1,
whereD andD are two matrices with their diagonal elemets; = m andDi; = W
respectively. : :
Note that for any arbitrary matrig, ||A||Z = Tr (ATA). Thus, (2.10) becomes:
. T TR ywT T
argv\r/r,%IfQTr((X wW-Y)TD(X W—Y)) +aTr (w DW)
+BTr (W= QP)T(W-QP)) (2.11)
st. QTQ=1,
By setting the derivative of (2.11).r.t P to zero, we have:
B2QTQP-2Q"W) =0 =  P=Q'W (2.12)
SubstitutingP in (2.11) with (2.12) we have:
. T Te T T
argvrr\}}gTr((x W-Y)TD(X W—Y))—i—ocTr (W DW)
+BTr (W=QQ™W)T(W-QQ"w))
. Tw _ WTH (T T 2.13
= arggnin Tr ((x w—Y)TDXTW Y)) +aTr (W DW) (2.13)
+BTr (W I-QQN(1-QQ"W)
st. QTQ=1
Since(I—QQT)(I—-QQT) = (I—QQT), the problem becomes:
argmin Tr ((XTW—=Y)TD(X"™W—Y)) + Tr (WT (aD + BI— QQ "W

st. QTQ=1
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By setting the derivative of (2.14y.r.t W to zero, we get:

2XDXTW —2XDY + 2(aD + BI— BQQT YW =0

= (XDXT + aD + BI—BQQ )W = XDY (2.15)
= W= (M-BQQ") 'XDY '
= W =N""XDy,

whereM = XDXT + aD +BLN=(M—pQQ")TandN =NT,
Note that (2.14) can be rewritten as:

. TviyyvT _ Ty T
argmin Tr (W XDX W) 2Tr (W XDY) +Tr (Y DY)
+Tr (WT(aD +B1-BQQTIW)
. T (v T B T B Ty
= argmin Tr (W (XDXT + aD + BI— BQQ )W) 2Tr (W XDY)
ATy (YTDY> (2.16)
. Ting T _ Ty T TR
= argmin Tr (W (M—BQQ )W) 2Tr (W XDY) +Tr (Y DY)
. T B Ty TH
= argymin Tr (W NW) 2Tr (W XDY) +Tr (Y DY)
st. QTQ =1
By incorporating théV obtained with (2.15) into the above function, we have:
argmin Tr (YTDXTN—’ NN xDv) 2T (YTDXTN—’ XDY) T (YTDY>
— argmin Tr (YTDY> ~Tr (YTDXTN” xDY) (2.17)
Q
st. QTQ=1
The above problem is equivalent to the following one:
argmax Tr (YTDXTN—’ XDY)
Q (2.18)
st. QTQ=1

According to Sherman-Woodbury-Morrison formulbd,”! = (M —BQQT)™' = M~ +
BM1Q(I-BpQ'™M Q)
Q"M ~'. Thus, (2.18) becomes:

argmax Tr (YTDXTM” XDY + BYTDXTQI— Q™ 1Q)1QTM ™! xDY)

(2.19)
st. QTQ =1
which is equivalent to:
argmax Tr (YTDXTM—’ QI-BQ™™M Q) 1Q™™M! XDY)
— argmax Tr (YTDXTM’1 QQTQ-BQ™™ Q) Q™M ! xDY)
Q (2.20)

= argmaxTr (YTDXTM—‘ QIQTI-pM Q! QTM—’XDY)

st. QTQ=1
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Algorithm 1: The algorithm for solving the SFUS objective function.
Input:
The training dat& € R4*™; The training data labels € R™*¢; Parameters andp.
Output:
OptimizedW € R4x*¢,
1: Sett = 0 and initializeW, € R4*¢ randomly;
2: repeat
Computelz!, ...,z T = XTW, —Y;

Compute the diagonal matr; as: D¢ = :

Compute the diagonal matriR; as:D¢ = ;

ComputeM = XD{XT + «D¢ + BI;
ComputeA; =T — M ;
ComputeBy = M 'XDYYTD XM,
ObtainQ+ by the eigen-decomposition aft*1 By;
UpdateW; . ; according to (2.15);
t=t+1.
until Convergence

3. ReturnW.

As for any arbitrary matriced, B andC, Tr (ABC) = Tr (BCA), the above function becomes:
argmax Tr ([QT(I M QITTQTM T IXDYYTDXTM ! Q)
= argmax Tr ((QTAQr1 QTBQ) (2.21)
s.t. QTQ =1,

whereA =1—pM ! andB = M 'XDYYTDXTM 1.

Equation (2.21) can be easily solved by the eigen-decoriposif A~ B. However, as the solv-
ing of Q requires the input dd andD which are related tbV, it is still not straightforward to ge®
andW. To solve this problem, we propose an iterative approactodsirated in Algorithm 1. The
complexity of the proposed algorithm is briefly discussetbdews. The complexity of calculating
the inverse of a few matrices (d3). To obtainQ, we need to conduct eigen-decomposition of
A~ "B, which is also9(d?3) in complexity.

The proposed iterative approach in Algorithm 1 can be vetifieconverge to the optima¥/ by
the following theorem.

Theorem 1 The objective function value shown in (2.9) monotonicadlgrdases in each iteration
until convergence using the iterative approach in Algaritt.

Proof. According to Algorithm 1, it can be inferred from (2.11) tha
Wy =argminTr (XTW=V)TDXTW =) + aTr (WTDW) + B [W - QP|}
st. QTQ=1
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Therefore, we have
Tr ((XTWt+1 T X T Wy — Y)) +aTr (WL] thm)
+B Wit — Qes1Pes IIF
<Tr ((XTWe =) DLXTWe = Y)) 4+ oTr (WIDW ) + B [We — QuPe?

N T W s s 2 a i 112
= Z M +(XZ ” t+.] ”2 +B HWt+1 —Qt+1Pt+1H12:

2{x{We—vil|, & 2(will,
I we — i3 4 wil3 2
< _—— = 4+ x +BHWt QtPtH
;zwwaym 2 3wl '
n n 2
TWe sl ST [P Wer —uill3
X W —vi |, Xi Wit —yi +Z 2 TWe—yi],

i=1 i=

=N

Wi H + “Z i tH | + B [Wer1 — Qe Pestllf
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i=1

n

Wi —i|
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It has been shown in [62] [95] that for any non-zero vectqﬂ$:1 :

Mol M2
Sl =2 T < 2 -2 g

wherer is an arb|trary number. Thus, we can easny get the follovimgjuality:

3

d
i 2
xX{ Wi i1 —yi 5T “Z HWtH Hz +B W1 — Qer1Pesalf

i=1 i=1

3

2
— QtP[f

th yl

i=1

= HX Wi _YH21 +°¢|\Wt+1 o1+ B Wikt — Qe1Peallf
< |XTWa Y]], | lWally g + B IWe— QuPull?

which indicates that the objective function value of (2.9)matonically decreases until converging
to the optimaW through the proposed approach in Algorithm.1
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2.4 EXPERIMENTS

To validate the efficacy of our method when applied to autiriatage annotation, we conduct
several experiments particularly on image databasesnhabdected from the web image resources.

2.4.1 Compared Methods

We compare our method with one baseline and several featleetion algorithms on automatic
image annotation to understand how our method progressesds better annotation performance.
The compared methods are enumerated as follows.

e Using all features (All-Fea): our baseline. It means thatuse the original data without
feature selection for annotation.

e Fisher Score (F-score) [22]: a classical method. It sebbetsnost discriminative features by
evaluating the importance of each feature individually.

e Sparse Multinomial Logistic Regression via Bayesian L1 iR&gsation (SBMLR) [15]: a
sparsity based state of the art method. It realizes spaaseréeselection by using a Laplace
prior.

e Spectral feature selection (SPEC) [106]: a state of the athau using spectral regression. It
selects features one by one by leveraging the work of speptaph theory. The supervised
implementation is used in our experiments for fair comaris

e Group Lasso with Logistic Regression (GLRR) [89]: a receptloposed method based on
a sparse model. It utilizes group lasso extended with limgisgression to select both sparse
and discriminative groups of homogeneous features.

e Feature Selection via Joiit 1 -Norms Minimization (FSNM) [62]: a latest sparse feature
selection algorithm. It employs joinb 1-norm minimization on both loss function and regu-
larization for joint feature selection.

As our framework is expanded upon regularized least sqegression, we use it as the classifier
for all the compared approaches.

2.4.2 Image Databases

Web images cover almost all the concepts people are inéerastthus justifying their advantage to
be used as research corpus for automatic image annotatiothé=sake of the study on multimedia
analysis, researchers have also managed to collect anelgsrhe web images to create good image
databases for experimental purpose.

In our experiments, we select two large scale databasedahécboth made up of web images.
The first one is the MSRA-MM 2.0 database which was created lryddoft Research Asia [43].
This database was collected from the web through a comnheegiech engine and consists of 50,000
images belonging to 100 concepts. However, 7,734 imagdseadbriginal database are not associ-
ated with any labels, we thus have removed these images daithet a subset of 42,266 labeled
images. In 2009, the Lab for Media Search in National Uniteie Singapore proposed another
large scale image database,, NUS-WIDE where all images are from Flickr [17]. NUS-WIDE
includes 269,000 real-world images. The very large amotiNtU5-WIDE, from our perspective,
can well validate the scalability of our framework for reainhd annotation tasks. Hence, we choose
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Table 1. Performance comparisor-Gtandard Deviation) on MSRA-MM 2.0 whdi x c images
work as training data.

MAP MicroAUC MacroAUC
All-Fea 0.062+0.001| 0.840+0.001 | 0.655+0.006
F-score [22] | 0.060+0.002 | 0.861+0.005| 0.655+0.003
SBMLR [15] | 0.056+0.002 | 0.869+0.003| 0.643+0.006
SPEC [106] | 0.058t0.001| 0.852+0.002| 0.650+0.004
FSNM [62] | 0.061£0.002| 0.875:0.002| 0.658+0.006
GLRR [89] | 0.060t0.001| 0.846+0.001| 0.653+0.005

SFUS 0.063+0.001 | 0.878+0.002 | 0.6624-0.005

this database in our experiments as well. Nonetheless533@ages within NUS-WIDE are unla-
beled, we therefore have removed them and used the rem&athg47 labeled images related to
81 concepts as experimental corpus.

Considering the computational efficiency, we combine tHezgure typesij.e., Color Correlo-
gram, Edge Direction Histogram and Wavelet Texture pravide the authors to represent the im-
ages of the two databases. As a consequence, the correspéeature dimensions for MSRA-MM
2.0 and NUS-WIDE are 347 and 345 respectively [43] [17].

2.4.3 Experiment Setup

The procedure of our experiments can be generalized asvillaNVe first randomly generate a
training set comprised ofn x ¢ images for each database similarly to the experimentahgett

in [16]. The remaining images are used as testing sets. Teratzohd the performance variation
w.r.t the number of training data, we setas 10 and 20 respectively and report the corresponding
results. We generate the training and testing sets for Ssteme report the average results for fair
comparison with other methods.

Note that our objective function in (2.9) involves two partersx andf3. We tune both of them
from {10—3,10-2,10~',1,10,10%,103} and report the best results. The number of the selected
features ranges frofi00, 150, 200, 250, 300} and we use the corresponding feature subset to repre-
sent the images. Then the regularized least square remnassapplied as the classifier for image
annotation.

To evaluate the annotation performance, we use three éimluaetrics,i.e., Mean Average
Precision (MAP), MicroAUC and MacroAUC which are all widalged for multi-label classification
tasks [65] [89] [85] [26].

2.4.4 Performance on Image Annotation

Table 1 to Table 4 show the annotation results when ukngc and20 x c training data. The results
in bold indicate the best performance using the correspgnelvaluation metric. According to the
annotation results, we observe that our method demonstatesistently superior performance on
both databases.

Take MAP as an example. First, our method is better than &dl;ife., not using feature selection
for annotation on both data sets. In particular, SFUS obtawmtable improvement over All-Fea
on NUS-WIDE. Second, our method has better annotation paence than the compared feature
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Table 2: Performance comparisoft Standard Deviation) on NUS-WIDE whéf x c images work

as training data.

MAP MicroAUC MacroAUC
All-Fea 0.081+0.002 | 0.842+0.003| 0.7264+-0.003
F-score [22] | 0.080+0.002 | 0.851+0.003| 0.728t0.004
SBMLR [15] | 0.072+0.008 | 0.8714+-0.005| 0.718+0.028
SPEC [106] | 0.078+0.002 | 0.84740.003| 0.722+0.003
FSNM [62] | 0.092t0.001 | 0.869+0.002| 0.753+0.002
GLRR[89] | 0.082t0.002| 0.853+0.002| 0.732+0.003

SFUS 0.09440.003 | 0.877+0.002 | 0.7564-0.003

Table 3: Performance comparisor-Gtandard Deviation) on MSRA-MM 2.0 wha&d x c images

work as training data.

MAP MicroAUC MacroAUC
All-Fea 0.0674:0.004 | 0.859+0.011 | 0.676+-0.013
F-score [22] | 0.066+0.002 | 0.876+0.004 | 0.680+0.004
SBMLR [15] | 0.059+0.001| 0.883+0.004 | 0.666+0.004
SPEC [106] | 0.066+0.001 | 0.868+0.001| 0.679+0.002
FSNM [62] | 0.068+0.001 | 0.8874-0.002| 0.68A-0.002
GLRR[89] | 0.06740.001| 0.866+0.002| 0.680+0.002

SFUS 0.07040.001 | 0.888+-0.002 | 0.6904-0.002

Table4: Performance comparisoft:Standard Deviation) on NUS-WIDE whef x ¢ images work

as training data.

MAP MicroAUC MacroAUC
All-Fea 0.099+0.001| 0.874+0.001| 0.767A0.001
F-score [22] | 0.098+0.004 | 0.88G+0.005| 0.770+0.006
SBMLR [15] | 0.073+0.007 | 0.887A-0.006 | 0.733+0.024
SPEC [106] | 0.094+0.001 | 0.875t0.001| 0.763+0.001
FSNM [62] | 0.105+0.003| 0.888+0.003 | 0.785+0.004
GLRR[89] | 0.105+0.002| 0.885+0.003| 0.780+0.001

SFUS 0.10840.002 | 0.891+0.003 | 0.7894-0.003
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Table 5: Performance comparisor-Gtandard Deviation) using Color Correlogram & Wavelet Tex-
ture on MSRA-MM 2.0 wheri0 x c training data are labeled.

MAP MicroAUC MacroAUC
All-Fea 0.059+0.001 | 0.848t0.002 | 0.652+0.006
F-score [22] | 0.059+0.001 | 0.861+0.006 | 0.651+0.003
SBMLR [15] | 0.053+0.003 | 0.874+0.004 | 0.636+0.006
SPEC [106] | 0.058t0.001 | 0.854+0.003| 0.648+0.004
FSNM [62] | 0.059+0.001| 0.872:0.002| 0.655+0.005
GLRR [89] | 0.060t0.001| 0.858+0.002| 0.652+0.004

SFUS 0.061+0.001 | 0.883+0.002 | 0.659+0.005

selection methods. Usinld x c training data, SFUS outperforms the second best featuzetasi
method by about 2.6% and it is better than other featuretsehealgorithms for both data sets; using
20 x c training data, SFUS is better than the second best featlgetise method by about 1.6%
and 3% on MSRA-MM 2.0 and NUS-WIDE respectively and it demratss good advantage over
other algorithms. Hence, we conclude that our algorithmgead feature selection mechanism for
web image annotation.

The good performance of SFUS for image annotation can bibwtd to the appealing property
that it can select features jointly across the whole feaspare while simultaneously considering
the correlation of multiple labels by exploring the sharealtéire subspace. The incorporation of the
sparse model and shared subspace uncovering facilitadedture selection by finding the most
discriminative features, which can be used subsequendgmotation process.

2.4.5 Influence of Feature Type

To evaluate the effectiveness of our method, we use a differgginal feature sef,e., only Color
Correlogram and Wavelet Texture are combined to reprebenimtages and we present the cor-
responding annotation results. The experiment is condumtethe MSRA-MM dataset with the
results shown in Table 5.

It can be seen that our method still outperforms other featelection algorithms when the images
are represented by color histogram and wavelet texture r@héts demonstrate that our algorithm
is robust for the variance of the original feature set.

2.4.6 Influence of Selected Features

As feature selection is aimed at both accuracy and computdtefficiency, we perform an exper-
iment to study how the number of selected features can affiecannotation performance using
20 x c training data. This experiment can present us the genexdd toff between performance and
computational efficiency for the two image databases.

Figure 2 shows the performance variatiomt the number of selected features in terms of MAP.
We have the following observations: 1) When the number afctetl features is too small, MAP
is not competitive with using all features for annotatiorhieh could be attributed to too much
information loss. For instance, when using less than 150ifea of MSRA-MM 2.0, MAP is worse
than using all features for annotation. 2) MAP increaseb@astimber of selected features increases
up to 200. 3) MAP arrives at the peak level when using 200 featul) MAP keeps stable from using
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Figure 2: Performance variatiow.r.t to the number of selected features using our feature setecti
algorithm.

200 features to using 300 features for MSRA-MM 2.0 while drégr NUS-WIDE. The different
variance shown on the two datasets are supposed to be rtdatesl properties of the datasets. 5)
After all the features are selected, in other words, witHeature selection, MAP is lower than
selecting 200 features for MSRA-MM 2.0 and 100 features folSNWIDE. We conclude that, as
MAP improves on both databases, our method reduces noise.

2.4.7 Parameter Sensitivity Study

Our method involves two regularization parameters, whietdgnoted as andf3 in (2.9). To learn
how they affect the feature selection and consequently énfopnance on image annotation, we
conduct an experiment on the parameter sensitivity. Fatiguhe above experiment, we ua&x ¢
training data for image annotation. MAP is used here to reflexperformance variation.

Figure 3 demonstrates the MAP variationi.t « and3 on the two databases. From Figure 3 we
notice that the annotation performance changes corregmptaddifferent combinations af andf.
The impact of different values of the regularization partereis supposed to be related to the trait
of the database. On our experimental datasets, bettetgesalgenerally obtained whenand 3
are comparable in value.
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(b) MAP-NUS

Figure 3: Performance variatiow.r.t « and 3 when we fix the number of selected features at 200
for annotation. The figure shows different annotation rtssuhen using different values ofand3.
With this setting, we get the best results wher- § = 10~2 for MSRA-MM 2.0 and wherx = 1
andp = 10~2 for NUS-WIDE.

2.4.8 Convergence Study

As mentioned before, the proposed iterative approach moaiezlly decreases the objective func-
tion value in (2.9) until convergence. We conduct an expeninto validate our claim and to under-
stand how the iterative approach works. Following the almyeeriments, we us& x c training
data in this experiment. The two parameterandf3 are both fixed at 1 as that is the median value
of the range from which the parameters are tuned. Figure @shite convergence curves of our
algorithm according to the objective function value in {2.8 can be observed that the objective
function value converges quickly. We also calculate theveagence time which is 17.6 and 10.9
seconds for MSRA-MM 2.0 and NUS-WIDE respectively on a peed®C with Intel Core 2 Quad
2.83GHz CPU. The convergence experiment demonstrateffitierecy of our algorithm.

2.5 CONCLUSION

In this chapter we have proposed a novel feature selectitimad@nd applied it to web image anno-
tation. Our work integrates two state of the art innovatimam shared feature subspace uncovering
and joint feature selection with sparsity, thus endowingroathod the following appealing proper-
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Figure4: Convergence curves of the objective function value in (@st)g Algorithm 1. The figure
shows that the objective function value monotonically dases until convergence by applying the
proposed algorithm.

ties. First, our method jointly selects the most discrirtiireefeatures across the entire feature space.
Additionally, our method considers the correlation betwdi#ferent labels, which has proved to be
an effective way in multi-label learning tasks.

To validate the efficacy of our method for web image annomatice conducted experiments on
two popular image databases consisting of web images. bbeaeen from the experimental results
that our method outperforms classical and state-of-thalgorithms for image annotation. Based
on the observations from the experiments, we conclude timatm@thod is robust and its feature
subspace sharing foundation makes it particularly suétédslthe multi-labeled web image sets used
in this work. However, we would point out that our method mhgw different performance when
different features or different datasets are used. This&abse the hypothesis of our method is
that the concepts of the target images are correlated atft#ooriginal feature set is noisy and
redundant. When the hypothesis does not hiodd, the concepts have little correlation and/or the
original feature set is already compact, we may not attaifop@ance gain by using our method.
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DISCRIMINATING JOINT FEATURE ANALYSIS FOR MULTIMEDIA
DATA UNDERSTANDING!

In this chapter, we propose a novel semi-supervised featuagyzing framework for multimedia
data understanding and apply it to three different apptioat image annotation, video concept de-
tection and 3D motion data analysis. Our method is built uppamadvancements of the state of
the art: (1)1,,7-norm regularized feature selection which can jointly setbe most relevant fea-
tures from all the data points. This feature selection apginavas shown to be robust and efficient
in literature as it considers the correlation between diffi¢ features jointly when conducting fea-
ture selection; (2) manifold learning which analyzes thetdee space by exploiting both labeled
and unlabeled data. It is a widely used technique to extenayralgorithms to semi-supervised
scenarios for its capability of leveraging the manifoldisture of multimedia data. The proposed
method is able to learn a classifier for different applicadiby selecting the discriminating features
closely related to the semantic concepts. The objectivetimm of our method is non-smooth and
difficult to solve, so we design an efficient iterative algom with fast convergence, thus making
it applicable to practical applications. Extensive exmenmts on image annotation, video concept
detection and 3D motion data analysis are performed orrdiffeeal-world data sets to demonstrate
the effectiveness of our algorithm.

3.1 INTRODUCTION

The explosive increase of multimedia data,, text, image and video has brought the challenge of
how to effectively index, retrieve and organize these resesl A common approach is to analyze
the semantic concepts of multimedia data and to correlateaqi labels with them for management
tasks. Within the realm of multimedia data understandimgge and video concept understanding
have obtained increasing research interest as both of teeonte prevalent with the popularity of
the social web sites such as Flickr and YouTube. To effdgtineex, retrieve and manage these mul-
timedia resources, it is necessary and beneficial to studgeg analyzing techniques. Multimedia
data are usually represented by different types of featlre=svious works have shown that feature
selection is able to reduce irrelevant and/or redundaatinétion in the feature representation, thus
facilitating subsequent analyzing tasks such as imagetatio [89] [88].

Existing feature selection algorithms are achieved byedifit means. For instance, classical
feature selection algorithms such as Fisher Score [22] aterthe weights of different features and
then select features one by one. These classical algorghnezally evaluate the importance of each
feature individually but neglect the useful informationtié correlation between different features.

Z. MA, F. NIE, Y. YANG, J. UIJLINGS, N. SEBE AND A. G. HAUPTMANI: “DISCRIMINATING JOINT FEATURE

ANALYSIS FOR MULTIMEDIA CONTENT UNDERSTANDING". |IEEE TRANSACTIONS ON MULTIMED|A4(6):

1662-1672, 2012. IDEA PREVIOUSLY APPEARED IN: Z. MA, Y. YANG-. NIE, J. UIJLINGS AND N. SEBE: “EX-
PLOITING THE ENTIRE FEATURE SPACE WITH SPARSITY FOR AUTOMAT IMAGE ANNOTATION". IN PRO-
CEEDINGS OF THE ACM INTERNATIONAL CONFERENCE ON MULTIMEMAGES 283-292, 2011.
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Another problem is that they only use labeled training s&asfdbr feature selection, which have an
excessive costin human labor. Semi-supervised learnimgtawvn to be an effective tool for saving
labeling cost by using both labeled and unlabeled data. Wdi@il by this fact, semi-supervised
feature selection has also been proposed. For exampleQ%},[Zhaoet al. have presented an
algorithm based on the spectral graph theory but similarkisher Score [22], their method selects
features one by one. To overcome the disadvantage of sejdetatures individually, a plethora
of state of the art approaches such as [89] [88] [62] have peaposed to extract features jointly
across all data points. Nonetheless, [89] [88] [62] implehtkeir methods in a supervised way.

Our semi-supervised feature selection method combinestthagths of joint feature selection
[62] [89] [107] and semi-supervised learning [63] [75]. tiliaes both labeled and unlabeled data to
select features while simultaneously consider the cdiogldetween them. We name the proposed
method Structural Feature Selection with Sparsity (SFSS).

In this chapter, we apply our method to three different mudiilia analyzing taskge., image an-
notation, video concept detection and human action arsiymin 3D motion data. Image annotation
correlates labels that describe semantic concepts to Bndpgis basically a classification problem
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3.2 RELATED WORK

as it has to decide which classes an image may belong to. Atmois realized by exploiting the
correspondence between visual features and semanticptsrufehe images. Video concept detec-
tion is another important tool for multimedia resource ngeraent. Similarly to image annotation,
it aims to assign different concept labels to videos. We tamithlly apply SFSS to human action
analysis from 3D motion data.

Taking image annotation as an example, we illustrate themgéanalyzing process of our method
in Figure 5. All the training and testing images are first esgnted by different types of features,
followed by the graph Laplacian construction. Then spaes¢ure selection and label prediction
are conducted simultaneously by satisfying both label istersce with the training data labels and
manifold fitting on the data structure. The obtained spaosdficients can be applied to the feature
vectors for selection and be directly leveraged for clasatifn.

The main contributions are as follows:

e We combine the recent advances of feature selection andssgrarvised learning into a sin-
gle framework.

e The advantage of manifold learning, which is known to beatife in exploring relationship
among multimedia data, is incorporated into our framework.

We apply our method to different applications for which wewhpromising performance.
Our method is especially competitive when few labeled samate available.

A fast iterative algorithm is proposed to solve our objezfunction.

3.2 RELATED WORK

In this section, we briefly review the research on featurecsigin and semi-supervised learning.

3.2.1 Feature Selection

Feature selection is an effective tool in multimedia datdarstanding by selecting discriminating
features and reducing the noise from the original data)tregun more efficient and accurate mul-
timedia analysis results.

In literature, there are many different feature selectigo@hms. Some classical feature selec-
tion methods such as Fisher Score [22] evaluate the relevaiha feature according to the label
distribution of the data. Although these classical methoalgee good performance when used in
different applications, they have two major drawbacksstiia lot of human labor is consumed as
they require all the training data to be labeled to explatdtbrrelation between features and labels
for feature selection. Second, their computational casigh as they evaluate features one by one.

To progress beyond these classical methods, researcherph@posed sparsity-based feature
selection to extract features jointly [107] [62] [95] [52]e. each feature either has small scores
or large scores over all data points, thus facilitating deatselection. Among various methods
using this approacH, 1-norm regularization based algorithms have gained ingrgasterest for
the sparsity, joint selection way and the ability to exptbié pairwise correlation among groups
of features. For example, Zha al. use spectral regression with 1 -norm constraint to select
features jointly and effectively remove redundant feaimg107]. Nieet al. exploit jointl; 1-norm
minimization on both loss function and regularization feature selection in [62]. Feature selection
usinglz 1 models has shown its prominent performance. Therefore weose to leverage it in
our feature selection framework. However, the state of theisingl,; models mostly conducts
feature selection in a supervised scenario. Since in palabel information is expensive to obtain,
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we design out; 1-norm based feature selection in a semi-supervised waytwdda utilize both
labeled data and unlabeled data.

3.2.2 Semi-supervised Learning

Semi-supervised learning is widely used in many applicatioith the appealing feature that it
can use both labeled and unlabeled data [109]. The benefiilafng semi-supervised learning
is that we can save human labor cost for labeling a large abwfutiata because it can exploit
unlabeled data to learn the data structure. Thus, the hualseling cost and accuracy are both
considered which gives semi-supervised learning a greéanfial to boost the learning performance
when properly designed [18].

Among the different methods, graph Laplacian based sep@rsised learning has gained most
research interest. Yargs al. have proposed a semi-supervised approach for cross mexdevak
in [96]. In [63], Nie et al. have proposed a Flexible Manifold Embedding frameworkthyplon
graph Laplacian and demonstrated its advantage for dimealiiy reduction over other state of
the art semi-supervised algorithms. In [94], a new semestiped algorithm based on a robust
Laplacian matrix is proposed for relevance feedback. Smipervised learning has proved to be
able to bring in promising performance by leveraging the lehdata distribution for multimedia
data understanding in these previous works [96] [63] [94].

3.3 METHODOLOGY

In this section, we illustrate the detailed approach of dgodthm.

3.3.1 Problem Formulation

We aim to select features that are mostly related to the qaacé the training data. Suppose that
X € RYX™ indicate the training dat&] € R™*¢ are the labels accordinglyl is the dimension
of the original featuren is the number of the training data, ands the number of concepts. We
propose to use a projection mati¥ to correlateX with Y for feature selection. A%V is used

to select features from the original feature space and ikpeeted to be related to the semantic
conceptsWV is ad x ¢ matrix. The problem is subsequently to design an objectiaetion to obtain
W for feature selection. In our method, we propose to exphatls 1-norm based sparse feature
selection due to its efficacy shown in recent works. The-norm based methods select features
by exploiting the correlations between different featuaed select them jointly [107] [62] [95] [52].
The boosted feature selection performance can conseyd@cititate other applicationg, 1-norm
based algorithms can be generalized as the following dbgefetnction:

min loss(W) + W, , (3.1)

whereW is a projection matrix used for feature selection aogk(W) is the loss functiony is a
regularization parameter. The definition|pV||, ; is:

d
Cc
Wl = \/Zii] Wi (3.2)
i

The regularization terfiW||, ; in the above function makes the optim&d sparse, according to
[62] [95]. As a resultWV can be regarded as the combination coefficients for the nisxgiminative
features to achieve feature selection.

30



3.3 METHODOLOGY

Our goal is to design a robust loss function of (3.1) throudictv we obtain théV for feature
selection. In literature, most works built upon (3.4)g, [8] [107] [62], are realized through super-
vised learning. However, we want to incorporate semi-stiped learning into (3.1) as it is known
to be an effective tool for saving cost while simultaneouslintaining or enhancing the learning
performance when properly designed [18]. To this end, we@@se to leverage semi-supervised
learning by using the widely adopted graph Laplacian.

To begin with, we have following notationX. = [x1, x>, ..., xn] is the training data matrix where
m data are labeledk; € R4(1 < i < n) is thei-th datum anch is the total number of the training
data.Y = [y1,Y2, - Y, Y1, -or yn]T € {0, 1}™*¢ is the label matrix and indicates the class
number.y; € R¢(1 < i < n) is the label vector witle classes.Y;; denotes thg-th datum ofy;
andYj; = 1if x; is in thej-th class, whileY;; = 0 otherwise. Ifx; is not labeledy; is set to a
vector with all zerosi.e., Vi > m, yiliL ;1) = 0°*".

A typical way to construct the graph Laplacian is as followgst, we define a matrixc whose
elementGy; weighs the similarity betweex; andx; as

Goi— 1 xi andx; arek nearest neighbors;
K2 0  otherwise.

In (3.3), we use the Euclidean distance to evaluate whetleeinto samples; andx; are within the
k nearest neighbors in the original feature space. Seconidgarthl matrixD is formulated with
Dii = Z}; Gy;. Finally, the graph Laplaciah is constructed through=D — G.

The graph Laplacian is the basis of semi-supervised legrniwe further leverage Manifold
Regularization [11] built upon the graph Laplacian to egtenir framework to a semi-supervised
scenario. Manifold Regularization is adopted becauseimettia data has been normally shown to
possess a manifold structure [98] [44] and Manifold Rededdion can explore it. Consequently, by
applying Manifold Regularization to the loss function iniBwe obtain:

~ Ty T T T 2
argmmin Tr (W XLX W) n pHX1W+ Tnb —Y1HF Y Wl - (3.3)

whereTr (-) denotes the trace operatdf, andY; denote the labeled training data and their ground
truth labels respectivelr € R€ is the bias term andl, € R™ denotes a column vector with all its
n elements being lu andy are regularization parameters.

As can be seen, the optimdl obtained from (3.3) is affected by the known ground truttelab
Y. However, inspired by the transductive classification athm proposed in [110] [109], we
expect all the labels of the training data to contribute ® diptimization ofW. To achieve this
goal, we denote a predicted label matrixras: [fq,... fn]T € R™*¢ for all the training data irX.
fi € R¢(1 <1< n)isthe predicted label vector &f € X. According to [63],F should satisfy the
smoothness on both the ground truth labels of the trainitey alad the manifold structure. Hence, it
can be obtained as follows [110] [109]:

argmin Tr (FTLF) FTr ((F—Y)TU(F—Y)). (3.4)

In the above function, we define a selecting diagonal matrixhose diagonal elemeht;; = co
if x; is labeled andl;; = 1 otherwise. This definition is to make the predicted lalfet®nsistent
with the ground truth label¥. In practice, we can use a very large valegy. 10'° to approximate
Q.
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Following the methodology in [63], we incorporate (3.4)dir{8.3) and meanwhile consider all
the training data with their labels (note that now we XsandF instead ofX; andY; respectively).
Consequently, our objective function becomes:

2
. T T _ T T
arg min Tr (F LF) LT ((F Y)TU(F Y)) n “HX W+ 1nb FHF
+Y [Wll2,1 - (3.5)
From (3.5) we can see that we are able to lgeW and b simultaneously. Additionally, the

optimalW obtained through (3.5) can be utilized directly for classifion as\V selects the features
most related to the class labels.

3.3.2 Solution

Our objective function involves thig ;-norm which is non-smooth. Hence, it is not straightforward
to optimize it. We propose to solve the problem as follows.

By setting the derivative of (3.5).r.t. b to zero, we obtain:
1
n
Substitutingb " in (3.5) with (3.6), the problem becomes:

b = —(1TF—11XTW). (3.6)

argmin Tr (FTLF) +Tr ((F —Y)Tu(F— Y))

2

1 1
1= S EXTW = 1= T Dy Wi 3.7
F

wherel is an identity matrix. LeH represent — %1n1l, the objective becomes:
2
argmin Tr (FTLF) S+ Tr ((F V) TU(F— Y)) fu HHXTW— HFHF
+Y IWl2,q - (3.8)
Note thatH = HT = H2. By setting the derivative of (3.8).r.t. F to zero, we have:
F=PQ, (3.9

whereP = (L + U+ pH)~ T andQ = UY + uHXTW. SubstitutingF in (3.8) with (3.9), we arrive
at:

argmin Tr (QTPT(L +WPQ—-QPTUY—YTUPQ + pWTXHXTW .10)
—uWTXHPQ — pQ PTHXTW + uQTPTHPQ) +y Wiy, - '
AsTr(QTPTUY) = Tr(YTUPQ) andTr(uWTXHPQ) = Tr(uQTPTHXTW), (3.10) becomes:
argmin Tr (QTPTQ ~2QTPTQ + uWTXHXTW) +y Wil -
By substitutingQ = UY + uHXTW in the above function, we get:
argmin Tr (WT(XH(pI — 2P HXNW — ZuYTUPHXTW) +v Wiy, -
DenotingA = XH(ul — p2P)HXT andB = pXHPUY, the objective function becomes:

argmin Tr (WTAW) =271 (BTW) 4y [ W], (3.11)
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3.3.3 Algorithm
(3.11) is a quadratic problem. First we have the followinghea to show that it is solvable.

Lemmal The objective of our framework is convex.

Proof. To proveLemma 1is actually to prove that for any non-zexXp A defined in (3.11) is positive
semi-definite. We therefore prove as follows:

A = XH(ul—p?P)HXT
= pXHX" = 2u?XHPHXT + u?XHPP~TPHXT
= uXHX" — 22 XHPHX" + u?XHP(L + U + uH)PHXT
= w( (X" =puPHXD)THXT — uPHXT) + uXHP(L + U)PHXT )
— (MTHM + uXNXT) (3.12)

whereM = XT —uPHXT, N = HP(L+ U)PH. AsH andN are both larger than zero, we can easily
draw the conclusion thatM THM + u2XNXT is greater than zero. Thua, = XH(pul — u?P)HXT
is positive semi-definite, demonstrating that the probléwun framework is convex.

Algorithm 2: The optimization algorithm for SFSS.
Input:
The training datX € R4x™;
The training data labelg € R™*¢;
Parameterg andy.
Output:
ConvergedV € R4xc,
: Construct the graph Laplacian matfixc R™*™;
: Compute the selecting matrix € R™*™;
H=1-1117;
cP=(L+U4puH)T;
- A = XH(ul — u?P)HXT;
: B = uXHPUY;
. Sett = 0 and initializeW, € R9*¢ randomly;
: repeat

0N OO A®WN R

1
_ 2[wil],
Compute the diagonal matriR; as:D¢ =
d
2w,
UpdateW, 1 as:Wy 1 = (DA +vI)~'DB;
t=t+1.
until Convergence
9: Returnw.

To solve (3.11), we first reformulate it with the Lagrangiandtion as:

£(W) = Tr (WTAW) = 2Tr (BTW) + v [W]),, (3.13)
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DenotingW = w', ..., w4]T with w! as itsi-th row, we define a diagonal matrix whose diagonal
elementd;; =2 ||wl ]2. Then by setting the derivative of (3.18)r.t. W to zero, we obtain:

2AW —2B+2yD~'W =0
= W= (A+yD')"'B= (DA +v1)"'DB. (3.14)

According to the mathematical deduction aforementionedpwmpose an iterative approach to solve
the problem in (3.11). The iterative algorithm is illus&dtin Algorithm 2 and it converges. We
briefly discuss the computational complexity. Computing tfiaph Laplacian i€)(n?). During
the training, learningV involves calculating the inverse of a few matrices, amongivkhe most
complex part ig9(n3). Denoten. as the number of testing data. Once we\gétit takesc x d x
n¢e Multiplications to predict the categories of the testingpddor large scale data setg. > ¢
andn¢. > d. Thus, the classification complexity is approximately #ine.r.t. n¢., which is very
efficient.

The convergence of Algorithm 2 can be proved following thelknn [62] [95] [55].

3.4 EXPERIMENTS

We evaluate our method on image annotation, video concégttittn and 3D motion data analysis
respectively. Additional analyzing experiments are alsdgrmed to assess the overall performance
of our method. These include a parameter sensitivity stadysaconvergence study.

3.4.1 Compared Algorithms

To evaluate the advantage of our method for multimedia daderstanding, we compatre it with the
following algorithms:

e Fisher Score (FISHER) [22]: a classical method. It seldwsnost discriminative features by
evaluating the importance of each feature individually.

e Sparse Multinomial Logistic Regression via Bayesian L1 iR&gsation (SBMLR) [15]: a
sparsity based state of the art method. It realizes spaaseréeselection by using a Laplace
prior.

e Group Lasso with Logistic Regression (GLLR) [89]: a recgmptioposed method based on a
sparse model. It utilizes group lasso extended with lagistgression to select both sparse
and discriminative groups of homogeneous features.

e Feature Selection via Joib ;-Norms Minimization (FSNM) [62]: a recent sparse feature
selection algorithm. It employs joins 1 -norm minimization on both loss function and regu-
larization for joint feature selection.

e Semi-supervised Feature Selection via Spectral AnalgSsléct) [105]: a semi-supervised
feature selection method based on spectral analysis.

e Locality sensitive semi-supervised feature selectionOEB[104]: a semi-supervised ap-
proach based on two graph constructios, within-class graph and between-class graph.

We use the regularized least square regression for claggificafter FISHER, SBMLR, FSNM,
sSelect and LSDF finish the feature selection. In contradtReand SFSS can learn the classifiers
directly when performing feature selection.

Table 6 illustrates the different properties of each metiset in our experiments.
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Table 6: A brief comparison between the different methods.

Method S| SP| J-FS| I-FSY] One-Step
FISHER [22] v v

SBMLR [15] NARY

GLLR [89] NARY v
FSNM [62] NARY

sSelect [105]|| +/ vV

LSDF [104] || / v

SFSS v v v

& semi-supervised.

b supervised.

¢ feature selection across all data points.
d feature selection one by one.

€ simultaneous classifier learning.

3.4.2 Experimental Data Sets

Image Annotation

Three data sets,e., Corel-5K [30] [29], MSRA-MM [43] and NUS-WIDE [17] are used our
experiments. The following is a brief description of thesthdata sets.

Corel-5K: In our experiment, we use the standard data set used in [9])] (2orel-5K consists
of 5,000 images from 50 different categories. Three typeotdr features (color histogram, color
moment, and color coherence) and three types of texturarsa{Tamura coarseness histogram,
Tamura directionality, and MSRSAR texture) are used toasgnt the images.

MSRA-MM:The data set used in our experiments is a subset of the driglBBA-MM 2.0 data
set, which includes 50,000 images related to 100 concetsekbr, 7,734 images within it are not
associated with any labels. We have removed these imagesbéamided a subset of 42,266 labeled
images. Three feature types used in [89], namely Color Gxgram, Edge Direction Histogram
and Wavelet Texture are combined in our experiments.

NUS-WIDE:It consists of 209,347 labeled real-world images colledtedh Flickr which are
associated with 81 concepts. The images are also reprddmntee combination of Color Correlo-
gram, Edge Direction Histogram and Wavelet Texture.

Video Concept detection

We choose the Kodak consumer video data set [46] and the @aliaMata set [1].

Kodak: It consists of 1,358 consumer video clips and 5,166 key-&mare extracted accordingly.
Among these key-frames, 3590 ones are annotated. We ube alhhotated key-frames belonging
to 22 concepts in our experiments for video concept detectimlor Correlogram, Edge Direction
Histogram and Wavelet Texture are used to represent thérames.

CareMedia: The video data set was collected by Carnegie Mellon Unityetsiprovide useful
statistics to help doctors’ diagnosis and patients’ hetttus assessment. 15 geriatric patients’ ac-
tivities in public spaces were recorded in a nursing homeH test the performance by annotating
the following 5 concepts which are concerned with patiedésailed behaviors: Pose and/or Motor
Action (e.g. Tremors), Positived.g. Smiles and Dancing), Physically Aggressieeg. Punching),
Physically Non-aggressivesg. Eating), and Staff Activities€.g. Feeding). The MoSIFT fea-
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ture [100] is used to represent each video sequence. Inxperienent, we use a subset consisting
of 3913 video sequences recorded by one camera in the dimimg. r

3D Motion Data Analysis

We choose the HumanEva 3D motion database [74]. There argyffigs of actions, namely boxing,
gesturing, jogging, walking and throw-catch performed bfedent subjects in this database. We
randomly sample 10,000 data of two subjects (5,000 per st)igjenilarly to [97] [64] in our exper-
iment. The action of the two subjects is considered to bedfit. We simultaneously recognize
the identities and actions, which comes to 10 semantic oategin total. Each action is encoded
as a collection of 16 joint coordinates in 3D space, thusltiegLin a 48 dimensional feature vector.
On top of that, we compute the Joint Relative Features betwégerent joints and get a feature
vector with 120 dimensions. The two kinds of feature vectoesfurther combined to generate a
168 dimensional feature.

3.4.3 Experimental Setup

First, a training set for each data set is generated randoonlgisting ofn samples, among which
m% samples are labeled. The detailed settings are given ire TablThe remaining data of each
data set work as the corresponding testing set. We genbmtatning and testing sets 5 times and
report the average results with standard deviation.

Table 7: The settings of the training sets.

Size (1) | Labeled Percentagen()?
Corel-5K 2500 2,5, 10, 25,50, 100
MSRA-MM 10000 1,5, 10, 25, 50, 100
NUS-WIDE || 10000 1,5, 10, 25, 50, 100

Kodak 2000 2,5,10, 25,50, 100
CareMedia 1000 1,5, 10, 25, 50, 100
HumanEva 3000 1,5, 10, 25, 50, 100

In the experiments, we have to tune two types of parametersisthe parametérthat specifies
thek nearest neighbors used to compute the graph Laplacian. \Wafik5 following the setting in
our previous work [55]. The other one is the regularizatiangpeters which are representedias
andy in (3.5). We tune them frorfl0—3,10-2,10~",1,10, 102,103} and report the best results.

To evaluate the classification performance, we use Meana@yegPrecision (MAP) as the evalua-
tion metric for its stability and discriminating capahylit

3.4.4 Multimedia Understanding Performance

In this section, we report the experimental results on insagetation, video concept detection and
3D motion data analysis respectively.

2 Note that the settings of the labeled training data on Esiehnd Kodak are slightly different from others to guarantieat
each concept class has at least one labeled training data.
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Image Annotation

Figure 6 shows the annotation results when different péages of data are labeled. Table 8 to
Table 10 show the results when 2% (Corel-5K) or 1% (MSRA-BINUS-WIDE), 5% and 10%
of the training data are labeled. We have the following oleisns from the experimental results:
1) As the number of labeled training data increases, theopaence increases. 2) Our method is
the only one which has consistently high scores on all thege sets. Other methods have varying
degrees of success on each data set. 3) When 25% or more oditiiag data are labeled, our
method is competitive with the best algorithms comparedattelb Yet the more labeled data is
available, the smaller our advantage is over other supshatgorithms. On the Corel-5K data set
GLLR [89] slightly outperforms our method; on the NUS-WIDBtd set our method is competitive
with GLLR [89]; on the MSRA-MM data set our method outperfarail other methods. 4) Finally,
when less than 25% of the data are labeled, our method centysbutperforms other methods on
all three data sets. This is especially visible on the C6kebnd MSRA-MM data sets.
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Figure6: Performance comparison of image annotatiart. the percentage of labeled training data.
When 10% or less of the data are labeled our method outpesfalimther algorithms. When 25%
or more of the data are labeled, our method yields top pedooa or, on the MSRA-MM data set
significantly better performance.

Video Concept Detection

We illustrate the video concept detection results in Figuréable 11 and Table 12. It can be seen
from Figure 7 that our method has the top one performanceaer algorithms. Table 11 and
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Table 8: Performance comparison of image annotation (MAandard Deviation) when 2%

(Corel-5K) or 1% (MSRA-MM&NUS-WIDE) training data are labeled.

Table 9: Performance comparison of image annotation (MARandard Deviation) when 5% train-

Corel-5K MSRA-MM | NUS-WIDE
SFSS 0.090+£0.008 | 0.047+0.002 | 0.065+0.002
FISHER [22] | 0.069£0.006 | 0.0410.002| 0.058+-0.003
GLLR [89] 0.066£0.008 | 0.032:0.008 | 0.046+0.007
FSNM [62] | 0.078t0.007 | 0.043+0.002| 0.059+0.002
SBMLR [15] | 0.052+0.004 | 0.040+0.002| 0.056+0.003

ing data are labeled.

Table 10: Performance comparison of image

Corel-5K MSRA-MM | NUS-WIDE
SFSS 0.112+0.009 | 0.059+0.002 | 0.087+0.003
FISHER [22] | 0.083£0.007 | 0.055+0.002| 0.078+:0.002
GLLR [89] 0.085£0.010| 0.052£0.001| 0.079+0.001
FSNM [62] | 0.101:£0.007 | 0.0510.002| 0.082+0.002
SBMLR [15] | 0.078+0.005| 0.050+0.002| 0.071£0.003

training data are labeled.

0.5r

0.4r

MAP

0.3f

0.2

annotation (M&ARandard Deviation) when 10%

Corel-5K MSRA-MM | NUS-WIDE
SFSS 0.147+0.009 | 0.065+0.001 | 0.09740.002
FISHER [22] | 0.113£0.003| 0.061-0.002| 0.086+0.003
GLLR [89] 0.126£0.015| 0.059+0.001| 0.094+-0.002
FSNM [62] | 0.133t0.009| 0.06G+0.001| 0.093+0.003
SBMLR [15] | 0.113t0.013| 0.055+0.002| 0.075+0.007
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ing data. Our method is consistently better than other coetp@ethods.
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Table 11: Performance comparison of video concept detection (MSERndard Deviationjv.r.t.
2%, 5% and 10% labeled data on Kodak data set.

2% labeled 5% labeled | 10% labeled
SFSS 0.259+0.015 | 0.303+0.023 | 0.346+0.027
FISHER [22] | 0.185+0.021 | 0.23G+0.009 | 0.298+0.022
GLLR [89] 0.220+£0.028 | 0.249+0.015 | 0.283+0.024
FSNM [62] 0.210+£0.025 | 0.24G+0.009 | 0.291+0.019
SBMLR [15] | 0.189+0.029 | 0.222+-0.009 | 0.269+-0.026

Table 12: Performance comparison of video concept detection (MS&ERndard Deviationjv.r.t.
1%, 5% and 10% labeled data on CareMedia data set.

1% labeled 5% labeled | 10% labeled
SFSS 0.257+0.018 | 0.293+0.009 | 0.301+0.014
FISHER [22] | 0.235+0.017 | 0.279+0.012 | 0.286+0.014
GLLR [89] 0.220+0.017 | 0.276+:0.017 | 0.286+0.011
FSNM [62] 0.236+:0.014 | 0.278+:0.011 | 0.286+0.014
SBMLR [15] | 0.202+0.003 | 0.22°A-0.004 | 0.249+0.007

Table 12 give the detailed results when 2% or 1%, 5% and 10Miricadata are labeled. We
observe that our method is especially competitive when faiming data are labeled.

Table 13: Performance comparison of 3D motion data analysis (M&Randard Deviationv.r.t.
1%, 5% and 10% labeled data.

1% labeled datgd 5% labeled datgd 10% labeled data
SFSS 0.860-:0.021 0.984-+0.015 0.994-+0.012
FISHER [22]| 0.453+0.016 0.608+0.022 0.678+0.019
GLLR [89] 0.559+-0.037 0.645:0.024 0.666+0.013
FSNM [62] 0.480+0.013 0.615:0.024 0.696+0.018
SBMLR [15] 0.126+0.055 0.554+0.022 0.608:0.024

—@— SFSS
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=t FSNM
0.2 —a¢— GLLR |
=—P— SBMLR
1510 25 50 100

Percentage of labeled training data

Figure 8: Performance comparison of 3D motion data analysid. the percentage of labeled
training data. Our method has much advantage over otheritlgs. Good performance can be
achieved even when very few training data are labeled.
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3D Motion Data Analysis

The results of 3D motion data analysis are illustrated inddB and Figure 8. From Table 13 and
Figure 8 we observe that our method gains huge advantagethercompared approaches. We
also notice that SFSS gets satisfactory performance whigrbé training data are labeled and it
shows nearly perfect performance (close to 1 in terms of MA&Rgn over 10% training data are
labeled. Intuitively, this indicates that the exploitatiof the manifold structure has contributed
considerably to the whole analyzing performance.

3.4.5 Comparison with Other Semi-supervised Feature Selectietihdtls
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Figure 9: Performance comparison with semi-supervised approachdsferent applicationsv.r.t.
the percentage of labeled training data. Our method owped sSelect and LSDF for all settings
and has much advantage when few training data (2% and 5% (zeket.

In this section, we compare SFSS with two state of the art seqpérvised feature selection
algorithms, namely sSelect and LSDF. The experiments andumtied on Corel-5K, CareMedia
and HumanEva data sets for different applications. To bsistant, 2%, 5%, 10%, 25% and 50%
training data are labeled in this experiment for all data.s&he results are shown in Figure 9. It
can be observed that our method consistently outperfortinsd®elect and LSDF. The advantage is
especially visible when only few training data are labeled, 2% or 5%. Semi-supervised methods
are used for the cases when we only have limited number oigdiv&ining data. We thus conclude
that SFSS is much better than sSelect and LSDF as it has mghbrhiccuracy when only few
labeled training data are available.
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3.4 EXPERIMENTS

3.4.6 Influence of the Unlabeled Data

To study the influence of unlabeled training data on the maltlia understanding performance, we
conduct an experiment correspondinaly.
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Figure 10: The influence of unlabeled data on different multimedia ariat tasks. The blue bar
stands for the performance of SFSS. The yellow bar indidhtesesults that are obtained by using
only labeled data (no unlabeled data). The comparisonsdegtihe two approaches show that using
unlabeled data improves the analyzing performance.

The unlabeled data in the training set are left out and we wsdylabeled training data to conduct
feature analysis. Then we compare the results with the dregsate achieved by using the entire
training set including both labeled and unlabeled data. &periment is performed on Corel-5K,
Kodak and HumanEva data sets for each application respécti?% (Corel-5K, Kodak) or 1%
(HumanEva), 5%, 10%, 25% and 50% training data are labelaliffesent settings. Figure 10
illustrates the comparisons.

It can be seen that using unlabeled data besides the lakakegidlds better results over using the
labeled data alone. When 10% of the data are labeled, by silsg unlabeled data we obtain relative
improvements of 13% on the Corel-5K data set and 18% on thalddta set. Yet the situation is
different for the HumanEva data set. The largest improvend&i®o, is obtained when only 1% of
the data are labeled. However, as the percentage of lalvalathyy data grows, the performance by
using only labeled training data increases dramaticale feason could be that the HumanEva data
setis clean and easy to analyze. Moreover, the MAP closaslrafter 5% training data are labeled,
which makes the contribution of the unlabeled data on théopaance limited. The improvements
in semi-supervised learning are due to the learning of theifiold structure. In theory, the more
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MAP

(a) Corel-5K (b) Kodak

(¢) HumanEva

Figure 11: Performance varianos.r.t. L andy. The figure displays different results when using
differenty andy.

data points that one has, the better the manifold struchatecin be learned. This saturates with
enough data. The Corel-5K data set still has huge benefits fising all data instead of 50% for
learning the manifold structure. For the HumanEva dateheetrtanifold structure is very important
as without this manifold the performance is much lower inagrah(see Figure 8). Figure 10c shows
that this manifold is learned well using 25% of the data,rafteich performance is close to optimal
for both the fully supervised and semi-supervised settings

3.4.7 Parameter Sensitivity Study

In Figure 11, we show the influence of the two parameteasdy on the performance of different

applications using Corel-5K, Kodak and HumanEva data sbtnwl0% training data are labeled.
It can be seen that the MAP is generally higher wieandy are comparable for Corel-5K and

Kodak data sets. In contrast, there is no analogous ruléifidérte about when the optimal results
are obtained for HumanEva data set. The phenomenon dematsstinat the parameter sensitivity
is presumably related to the properties of the differerd dats.

3.4.8 Convergence Study

In the previous section, we have proved that the objectiaetfan in (3.5) converges by using the
proposed algorithm. For practical applications it is iet#ing how fast our algorithm converges.
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Figure12: Convergence curves of the objective function value in (@sk)g Algorithm 2. The figure
shows that the objective function value monotonically dases until convergence by applying the
proposed algorithm.

Figure 12 shows the convergence curves of our optimizatgoristhmw.r.t. the objective function
value in (3.5) on Corel-5K, Kodak and HumanEva wheandy are fixed at 1. It can be seen that
our algorithm converges within as few as 10-20 iterations.

3.5 CONCLUSION

We have proposed a new multimedia analyzing method builhudpature analysis. The method
takes advantage of joint feature selection with sparsignifold regularization and transductive
classification. Additionally, to solve the non-smooth alijge function of our algorithm, we have
proposed an iterative approach. Our method is general anbeapplied to different application-
s. In this chapter, we evaluate its performance on imagetatian, video concept detection and
3D motion data analysis. The experimental results have detraded that our method consistent-
ly outperforms the other compared algorithms for differ@malyzing tasks. Our method considers
the characteristic of multimedia data, the labeling cdst,domputational efficiency and the adapt-
ability. As shown in the experiments, our method is suitdblesome multimedia understanding
applications. It is, however, worth mentioning that whea dataset has no structured manifold, the
manifold learning embedded in our algorithm may lose its @owhus leading to little performance
gain. Additionally, if the original feature set is alreadigatiminating enough, the feature analysis
function in our method is likely to contribute less to the @leperformance boost.
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MULTIMEDIA EVENT DETECTION USING A CLASSIFIER-SPECIFIC
INTERMEDIATE REPRESENTATION

Multimedia event detection (MED) plays an important rolemiany applications such as video in-
dexing and retrieval. Current event detection works mdimtyis on sports and news event detection
or abnormality detection in surveillance videos. Diffefgnour research aims to detect more com-
plicated and generic events within a longer video sequelncine past, researchers have proposed
using intermediate concept classifiers with concept letachelp understand the videos. Yet it is
difficult to judge how many and what concepts would be sufficfer the particular video analysis
task. Additionally, obtaining robust semantic concepssifiers requires a large number of positive
training examples, which in turn has high human annotatast.cln this chapter, we propose an
approach that exploits the external concepts-based vigled®vent-based videos simultaneously
to learn an intermediate representation from video featuf@ur algorithm integrates the classifi-
er inference and latent intermediate representation intdnd framework. The joint optimization
of the intermediate representation and the classifier mifdegs mutually beneficial and reciprocal.
Effectively, the intermediate representation and thesifies are tightly correlated. The classifier de-
pendent intermediate representation not only accuragéigats the task semantics but is also more
suitable for the specific classifier. Thus we have created@idiinative semantic analysis frame-
work based on a tightly coupled intermediate represemtafiaxtensive experiments on multimedia
event detection using real-world videos demonstrate tleetfeness of the proposed approach.

4.1 INTRODUCTION

Research on video indexing and retrieval has long been faitedhe challenge of semantic gap be-
tween low-level features and high-level semantic contestdption of videos [28] [77]. To bridge
the semantic gap, various approaches have been proposetptartalyze the semantic content of
videos, either at concept level or at event level.

According to [54], a “concept" means an abstract or gendesl inferred from specific instances
of objects, scenes and actions sucfists outdoorandboxing Concepts are lower level descriptions
of multimedia data which usually can be inferred with a sinighage or a few video frames. An
“event” refers to an observable occurrence that interesstssu Compared with concepts, events are
higher level descriptions of multimedia data. A meaningfént builds upon many concepts and is
unlikely to be inferred with a single image or a few video fesnFor example, the evdanhding a
fishincludes many concepts such@ople fish fishing rodtogether with the actiolanding and it

Z. MA, Y. YANG, N. SEBE, K. ZHENG, A. G. HAUPTMANN: “MULTIMEDIA EVENT DETECTION USING A
CLASSIFIER-SPECIFIC INTERMEDIATE REPRESENTATIONIEEE TRANSACTIONS ON MULTIMED|A5(7):1628-
1637, 2013. IDEA PREVIOUSLY APPEARED IN: Z. MA, Y. YANG, A. GJAUPTMANN AND N. SEBE: “CLASSIFIER-
SPECIFIC INTERMEDIATE REPRESENTATION FOR MULTIMEDIA TASEK". IN PROCEEDINGS OF THE ACM IN-
TERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAQ12.
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usually happens in a longer video sequence. We cannot teisia landing a fishevent if we only
see a person sitting on a boat in one image or a few frames.

Annotation and detection are two different topics of bothaept and event analysis [54]. Multi-
media annotation, also known as recognition, aims to aatoaidatum with one or multiple seman-
tic labels (tags) [54]. Many approaches have been proposatprove annotation accuracy for both
images and videos [79]. Detection identifies the occurrefieeclass of interest in a large pool of
data. In contrast with annotation for which both the tragramd testing data are from a fixed number
of classes, the training and testing data in detection cdrobean infinite number of classes [54].
Hence, detection is a more challenging problem.

The TREC Video Retrieval Evaluation (TRECVID) communityshaotably contributed to the
research of video concept or event detection [4] [60] [7@]tHe field of multimedia, many other
works have also focused @oncept detectigre.g., [78] [91] [45]. However, the research on video
event detections still in its infancy. Most existing research on event @étan is limited to the
sport events, news events, events with repetitive pattémsunningor unusual events in surveil-
lance videos [71] [73] [83] [5]. The “Event detection in Imtet multimedia (MED}" launched by
TRECVID aims to encourage new technologies for detectingermomplicated events, g, feeding
an animal Ma et al. have made the first attempt on Ad Hoc detection of this typevehts, for
which only 10 positive example are available for training][5For this kind of events, there are
huge intra-class variations. For example, an event “fagdimanimal” can be either feeding a cat at
home with cat food in a small container, or feeding a horsefamra with a bundle of grass. Besides,
they are usually characterized by long video sequenceshwigicessitates the exploration of all the
sequences for analysis.

Recent research has shown that the performance of mul@sediantic analysis can be improved
through proper machine learning approaches [41] [94] [LUBErefore, it is reasonable to leverage
good low-level features as well as effective machine learaigorithms on video data for MED. We
propose a new algorithm for MED, which is extended from oevpyus work [51]. Our method has
the following attributes:

1) Our algorithm learns an intermediate representatioridgas by exploiting théarget videos
andexternal videaarchives together. In this chapter, the target videos a&itteos depicting the
event to be detected. The external videos are the auxikdmgléd video archives that are used to
help learn the intermediate representation. The interatedepresentation is a compact vector rep-
resentation derived from the Bag-of-Words features of ideas through a transformation, during
which the discriminative information is encoded.

2) Our algorithm integrates representation inference gassifier training into a joint framework.
In this way, the intermediate representation is tightlymled with the loss function used for the
classifier.

3) A robust loss function is used in our objective functiorakimg the performance more robust
to outliers.

We name our method Semantic Analysis via Intermediate Reptation (SAIR). The interme-
diate representation is dependent on the classifier whdecltissifier training benefits from the
representation. The mutual benefit and reciprocality betwtbe intermediate representation and
the classifier endows the classification framework good lmifipafor multimedia event detection.

4.2 RELATED WORK

In this section, we briefly review some related works, whiokier multimedia representation and
semantics understanding.

2 http://www.nist.gov/itl/iad/mig/med11.cfm

46



4.2 RELATED WORK
4.2.1 Multimedia Low-level Feature Representation

A common approach for low-level feature representatioo isxtract the key frames of videos and
then generate features based on these frames. For examagigonal features include Color Correl-
ogram, Edge Direction Histogram, Wavelet Textuets,. Newly designed features,g, SIFT draw
more research interest for their discriminating capabjiz]. Some other features can capture the
spatial-temporal informatiore.g, STIP feature [39] and MoSIFT feature [100], and have shown
promising performance in video semantic analysis.

Apart from visual features, some other modalities, whichvjite different yet complementary
information, can also be used to represent videos. For eleamegtual representation based on Au-
tomatic Speech Recognition (ASR) and Optical Characteogaition (OCR), and auditory features
based on Mel-frequency Cepstral Coefficients (MFCC) hase béen frequently used to represent
videos [108].

4.2.2 Learning to Refine Multimedia Representation

Multimedia representation refinement aims to obtain a morapact as well as accurate feature
representation of multimedia data [31] [73] [98] [94] [8Zhyuet al. propose a subspace based
data mining framework for video concept/event detecti@].[To exploit the semantic relatedness a-
mong multiple modalities, Yanet al. propose a manifold learning based algorithm to infer a whifie
representation of different media types for cross medigeretl [98]. Based on users’ feedbacks, a
long term relevance feedback algorithm is proposed in [84gfine the multimedia representation
for better retrieval performance. In [82], a sparse progecinethod is proposed to infer a sparse
representation for videos, by which the efficiency of vidissification is improved. These research
efforts have shown that multimedia data can be refined bygsnoyachine learning algorithms, thus
resulting in better performance for multimedia analysiewidver, in most of these works, the refine-
ment and the classifier training are independent from edwr.0As it is uncertain which classifiers
benefit the most from these refinement algorithms, the padace improvement could be limited.
Instead, we propose an integrated framework which leare$irged representation and a classifier
jointly. As the refined representation is correlated wité biss function used in the classifier, the
classifier dependent intermediate representation notawdyrately reflects the task semantics but
is also more suitable for the specific classifier, thus ramylh boosted classification accuracy.

4.2.3 Concepts-based Representation

Recently, some researchers suggest using concepts-legsedantation for video semantic under-
standing. A number of researchers have been building atyarfisemantic concept detectors, such
as those related to people (face, anchor), acoustic (speisic), genre (weather, financial, sports),
scenegtc.[28], and a series of concept lexica have been establishgdl SCOM [61] and Medi-
aMill [78]. 346 concepts have been defined for the TRECVID28&mantic indexing task. With
these annotation corpora, different concept detectordearained. Therefore, videos can be rep-
resented by the concept detection results of those desdetof. If sufficient concept detectors are
properly trained and appropriately applied, the conceptsed representation of videos, which is a
set of textual descriptors, is more capable of reflectingeisemantics. However, such approach is
still confronted with some problems. First, it requires m#abeled data to train intermediate con-
cept classifiers, which costs much human labor. For examige the full LSCOM set contains
over 2600 concepts, many of them are unannotated or contgimsitive instances [61]. Second,
only concept-based archives have been used to infer thes@msation so far. In recent years, sev-
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eral event-based video archives have been presented irotheunity. Effective usage of these
event-based videos for learning intermediate representabuld be another potential solution for
improving multimedia event detection.

4.3 THE PROPOSED ALGORITHM

In this section, our algorithm is presented in details foktd by an algorithm for solving the objec-
tive function. Classifier-specifiin our method means being tightly coupled with the particldas
function used by the classifier.

4.3.1 Learning An Intermediate Representation

We first illustrate the traditional approach of conceptsdubrepresentation for multimedia analysis.
Then we formulate our method which goes beyond the traditiapproach.

Traditional Approach

Suppose there are example videos, whose low-level features &g, ..., xn}. Herex; € R4
denotes the low-level feature of the video athds the dimension of the featurex; is either a
positive or negative example for a particular event, or angxe of the external videos used to help
learn the intermediate representation. 4ebe the label ok;, indicating category of;. A general
approach to train a classifiéican be formulated as minimizing the following objective dtion

mmZE (xi),yi) + xQ(f), (4.2)

wherel(-, -) is a loss function an€)(f) is a regularization function ofiwith « as a regularization
parameter. Clearly, there are three main components todpegy designed, which are the feature
representation;, the loss functior(-, -), and the regularization functian(-).

Using the concepts-based representation as in [27] [28hfdtimedia event detection, we need
anothem annotated videos, 1, ..., xn-+m } fromc classes with groundtruth labélig,, 1, ..., yn+m}-
For thek-th class there aren positive examples. The videds,, 1, ..., xn+m} are used to pre-
train c classifiersgy|;_;, one for each intermediate concept. For each training dingesideo
xi(1 <1 < n), the classifierg|;_; are applied to detect the intermediate concepts. In this way
xi(1T < 1 < n) is represented by a dimensional vector, with each dimension corresponding to
an intermediate concept. More specifically, the following tsteps are taken. In the first step,
classifierd gy, ..., gc} are trained by minimizing the following objective function

Cc

Jmin > ZE 9k (¥n+5), Un+3) + (g, (4.2)
""" k=1 j=1

where?(-, - andﬁ(f) are the loss function and the regularization function repely and« is a
parameter. Once theclassifierdgs, ..., gc} are obtained, we convert the original feature representa-
tion x; (1 < 1 < n) to the concepts-based representatips- (214, ..., z¢i) € R€ by zxi = gk (%)

(1 €k < ¢). Inthe second step, the event detectoan be trained based on the new representation
zi (1 <1< n)inthe same way of (4.1).e.,

mmZ(’, (z1),Yyi) + «Q(f ;»mmZe 1), yi) + xQ(f), (4.3)
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whereg(xi) = [g1(xi), .-, gc(xi)]. For each testing video:., the decision score;. indicating
whether the event occurs in the videg. is given by

ste = f(g(xte)) - (4.4)

Although the traditional concepts-based representafl8h[R7] is expected to be more precise
than low-level features, this kind of approach suffers fremme practical problems in implementa-
tion. First, it is time-consuming to find and annotate a lsageunt of positive examples to train
many concept classifiers. Second, the number of concepitsited and it remains unclear how
many concepts (and what concepts as well) would be suffil@rgome applicationsg.g, multi-
media event detection. Third, the pre-trained concepsiflass are yet to be sufficiently reliable.
Fourth, given a particular event to detect, only some cotscage discriminative while others are
comparatively useless or even noisy. Taking “landing a fesként as an example, some concepts
like “fish" and “boat" are very discriminative, while “closiand “face" are less informative. Itis a
nontrivial task to define the ontology for different evemtbjich are dynamic and diverse.

Joint Learning of Classifier and Representation with ExééNideos

In the traditional way of multimedia event detection usimgcepts-based representation, the con-
cept classifierg [ _; and multimedia event detectérare trained individually, as shown in (4.2)
and (4.3). There is no guarantee, however, that the two ginéyticorrelated. Besides, training
a large number oy [;_; is time consuming, while it remains unclear how largshould be. A
guestion then comes up: Can we learn an intermediate repatiss closely related to a particu-
lar multimedia event, and the event detector without réagimany pre-labeled data? As demon-
strated in [54], the classifier of external concepts-basdeos and the event detector have shared
components. Exploiting such information is beneficial fanltimedia event detection. Differen-

t from [54],we assume that the external concepts-basedsidad the event-based videos have a
common intermediate representation. Specifically, we @gsepto simultaneously leamand an
intermediate representation built upgpl;, _; from the external videos angl.; 1, g.> from the
positive and negative examples of the particular event tiebected:

n+m

f,{g]r?.i,ng} ; E(f(lg1 (x4), s ger2(x3)]), yi) + Q(f), (4.5)

wherex;i(1 < i1 < m+n) is either a positive or negative example of a particular gvenan
example of external videos used to help learn the internedégpresentation. In (4.5) the classifier
and the intermediate representation are jointly optimizguch explicitly guarantees that the two
are correlated. Inspired by [33], we defif{e;) andg(x;) as follows:

flglxi)) =WTg(xi), (4.6)
g(Xl) = [e-]rxi/ ceey e-cr+2X1] - @Txi- (47)
Then we rewrite (4.5) as
n—+m
min 2 ¢(WT(@Tx0), 1) + W .8)
1=

In our previous work [51], we used tHg 1-norm based loss function and obtained good perfor-
mance for multimedia understanding. In this extension, p@ethe(, ,,-norm 0 < p < 2) based
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loss function as we can adjust the value»db search for the optimal loss. In this way, our previous
work is a special case of this new formula. For an arbitraryrina. € R4*¢, [All,,, is defined
as:

o=

d c
Al =1 (O AyE ] (4.9)

i=1 j=1

We propose our objective function as:

in [[XeW+ 1, mb" —YH w2,
Jmin H +Tnsm 2 TV (4.10)
st0'e =1

In (4.10), X = [X1,X2, oy Xr, Xnt 1, s Xnim] € RMTMIXd s the data matrix including the
positive and negative examples, x», ..., x, Of a particular event together with the external videos
XnatlsooXnim- Y = [Y1,Y2, Y, Ynal, - Ynaml € RMFEMIX(e+2) indicate their labels.
Note that the external videos hawelasses and the positive and negative examples for an esent a
treated as two classes so we have 2 classes in totall, ., € R™T™ is a column vector with

all ones anc € R°*2 is the bias. The bias is added for unbalanced data but we egmquess
the data by centering them. The orthogonal const@it® = I is added for two considerations: 1)
to avoid arbitrary scaling of the intermediate represéma®) to preserve as much information as
possible [35]. Suppose the data are centered, (4.10) become

min |[XOW —Y||, , + «|[W|2.
w,e P (4.11)
stele=1

Note that although (4.11) looks similar to the objectivedtion in [33], our proposed method is
different from that of [33]. The primary difference is thaetmotivation of [33] is to address multi-
label classification whereas ours manages to learn an iatBate representation coupled with the
specific loss function. When the loss function changes, tierinediate representatione., ©
changes accordingly. Another difference is that we usé;gianorm based loss function which is
more robust.

Next, we discuss how the proposed approach tackles the foltgms below (4.4) that are faced
by the traditional concepts-based representation methds, to obtain good concept classifiers, it
usually requires a large amount of labeled training data.rethod, however, does not directly use
the concept classifiers but learns an intermediate repias@amso not many data are required, which
is also validated by our experiment. To detect the efesding an animakraditional methods would
train the concept classifier of “animal.” However, it is haydknow what concepts else can be useful.
If the event happens indoor, concepts such as “floor" would. h# the event happens outdoor,
“grass land" is more informative. It is tricky to decide witaincepts should be trained in advance.
Differently, our method learns an intermediate repregemtawhich does not directly use the pre-
defined concept classifiers to perform MED. As can be seennetinod jointly optimizes the loss
function and the intermediate representation. In this,dagdoss function is optimized fdeeding
an animal As this learning process is coupled with the detector dbie to adjusg(x) for the event.
When the event is changel,andY in (4.11) will also be different. Consequently, the optir@al
will be different, which means that different intermediagpresentations are learned for different
events. However, traditional approach uses the same cbdetgztion results for different events,
and therefore the selection of concepts turns to a criticadlpm for the traditional concepts-based
representation. Third, traditional methods directly dsedutput from trained concept classifiers as
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input for event detection. If the output of the pre-traintdsifiers is not reliable, the performance of
MED degrades. Differently, our method learns a discrimigaintermediate representation, which
dose not directly use the output of concept clarifiers astirfpaurth, if we use traditional pre-trained
concept classifiers for event detection, we have to deciddwance what concept classifiers to use.
In contrast, our method leargsandf jointly with the assumption that concept classifiers ancheve
detector have an intermediate representation. Consdgusatdo not need to select the concepts
for a particular event.

4.3.2 Solution

The{; ,-norm in our framework is non-smooth which makes (4.11)dliffito solve. To deal with
this problem, we propose the following solution. By dengtk®OW —Y = [z!,..,z"t™]T  the
objective of (4.11) is equivalent to:

: ERVALES _ 2
vn\}gTr((X@W Y)TD(xew Y))+cx|\WHF,

(4.12)
st. @Te=1
whereD is a matrix with its diagonal elemeni3;; = W By setting the derivativer.r.t. W
= zl 5
to 0, we have: !
w=A"e"X"Dy, (4.13)

whereA = ©TXTDXO + «I andI is an identity matrix. The above procedure needs to calettihat
inverse ofA. A = ©TXTDXO + al = (XO)TD(XO) + «I. As D is semi-positive(X0) D (XO)

is semi-positive.I is positive definite. ThusA is non-singular and invertible. Substituting (4.13)
into (4.12), it becomes:

min Tr (YTDX@A* O@TXTDXO —2A + x)A ! @TXTDY)

(4.14)
st. 8'e=1
As A = OTXTDXO + «l, (4.14) becomes:
max Tr ((@Tu(a)—’@TV@),
2] (4.15)

st. '@ =1

wherell = XTDX + ol andV = XTDYYTDX.

The objective function of (4.15) can be readily solved by ¢figen-decomposition ofl—'V.
However, the solving o® requires the input oD that is related td/V, so it is not handy to ged
andW. Therefore, we propose an iterative approach demonstirasidgorithm 3. It can be proved
that the objective function value shown in (4.11) monotatlycdecreases in each iteration until
convergence using the iterative approach in Algorithm 3e @bmplexity of calculating the inverse
of a few matrices i©)(d3). To obtain®, we need to conduct eigen-decompositiotlof' V, which
is alsoO(d3) in complexity.

4.3.3 Nonlinear SAIR

As nonlinear classifiers generally have better perform#menelinear ones for event detection [108],
we extend our algorithm SAIR to a nonlinear classifier byizitilg kernel tricks. Assuming that
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Algorithm 3: The SAIR algorithm.
Input:
The training datX and the label matri¥;
Parametew.
Output:
Converged® andW.
1. Sett = 0 and initialize®,, W, randomly;
2: repeat
Computelz], ..,z T™T = XO W —Y;

]
N N B
Compute the diagonal matriR as:D¢ = :
1
S
Computelly = XTD X + al;
ComputeVy = XTD{YYTDX;
Obtain®; 1 by the eigen-decomposition bf;1 Vyi;
ComputeA; = O] XTD¢XO¢ + «l;
UpdateW, ;1 asW; 1 = A '@/ XTDyY;
t=t+1.
until Convergence
3: Return® andW.

there is a transformation functigm: R4 — . Then, the objective function of the nonlinear SAIR
can be written as:
min X)G(O@W — Y], , +«||WZ,
wmin [OOGOW =Y, + o [WIE @16
st. ¢©)T¢pO) =1

It has been proved in [103] that if we map the data into a HilspaceXH by Kernelized Princi-
pal Component Analysis (KPCA) [72], (4.16) can be solved isirailar way as (4.11) using the
representations ifi(.

4.4 EXPERIMENTS

In this section, we present the experimental results. Wehesgonlinear SAIR with? kernel. Our
method is compared to the following algorithms: AdaBoostyldrBoost [70], SVM, Linear Dis-
criminant Analysis (LDA) [23] followed by ridge regressiamd Semantic Concept Representation
(SCR). For SCR, we use the existing concept-based videausdagolearn the representation of the
event-based videos. Then SVM wigl kernel is applied for classification.

4.4.1 Datasets

We use the TRECVID MED 2011 (MED13evelopment set in our experiments, which includes
15 eventsAttempting a board trickEO1),Feeding an animalE02),Landing a fisHE03),Wedding
ceremony(E04), Working on a woodworking proje¢EO05), Birthday party(E06), Changing a ve-
hicle tire (E07),Flash mob gatheringE08),Getting a vehicle unstugiE09), Grooming an animal

3 http://www.nist.gov/itl/iad/mig/med11.cfm
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(E10),Making a sandwicl{E11),Parade(E12),Parkour (E13),Repairing an appliancéE14) and
Working on a sewing proje¢E15). We perform event detection for these 15 events.

Another two video sets,e., the TRECVID MED 2010 (MED1)and the development set from
TRECVID 2011 semantic indexing task are used as externabviburces. We use them to help
learn the intermediate representation for MED11. MED1Quides 3 events. The video set for
semantic indexing task covers 346 concepts. We used 65 ptasrgggested by [20]. These concepts
are related to human, environment and object. For conveajeme denote the resulting dataset as
Semantic Indexing dataset(SIN11). Recall that in (4M&) R(™+m)x(c+2) wherec = 3465 =
68 in our setting. According to the task definition from NISTchavent is detected independently.
In our experiments, there are 15 individual detection tasks

4.4.2 Setup

The training data comprise three parts. The first part ctmsis100 positive examples and 500
negative examples randomly selected from MED11. The separtdncludes 309 positive examples
from MED10. The third part is SIN11 which has 2529 video fram&he remaining videos in
MED11 are our testing data.

We use a 4096 dimension Bag-of-Words feature to represehtwdeo using SIFT, CSIFT [81]
and MoSIFT separately. The three feature types are furthreratenated. We ran our program on the
Carnegie Mellon University Parallel Data Lab cluster, whoontains 300 cores, to extract features
and perform the bag-of-words mapping.

The parameters of all algorithms in our experiments aredunea “grid-search” strategy from
{1073,1072,---,102%,103}. We use two evaluation metrics. The first one, Minimum NDCr{Mi
NDC) [2], is defined as follows:

CmMPM(S, E)P + CpaPEA(S,E) (1 —PEa(S, E))
MINUMUM (CriPr, Cri(1—P1)) '

MinNDC(S, E) = (4.17)

wherePa (S, E) is the missed detection probability for syst&meventE while P (S, E) is the
false alarm probability for syste§y eventE. CM = 80 is the cost for missed detectioigs = 1

is the cost for false alarm arll = 0.001. Lower MinNDC indicates better detection performance.
The second one is Average Precision (AP). Higher AP indichédter performance.

4.4.3 MED Results

The MED results are displayed in Table 14 using the two ev@oanetrics. It can be seen that our
method SAIR is consistently competitive compared with othethods. Zooming into details, we
have the following observations: 1) In terms of MinNDC, SAdRins the best performance for 9
events and the second best performance for another 5 e&AiR. outperforms all other methods
for the average accuracy over all the 15 events. 2) In termdPpSAIR is the best method for 8

events and the second best one for the other 7 events. SA#stihe top performance for the
average accuracy over all the 15 events. Notably, it oubpers the runner-up SVM by 8%. 3)

SVM and SCR have varying degree of success for some eventgseugo when considering the

overall performance, they are not as consistently robuS#dR. 4) As a linear approach, LDA has
weak performance. Hence, it is preferable to use kerneladsthThe better performance of SAIR
indicates that leveraging other concept-based and/ot-éas®d videos is beneficial for multimedia
event detection.

4 http://nist.gov/itl/iad/mig/med10.cfm
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Table 14: MED performance comparison. Note that LOWER MinNDC / HIGHER indicates
BETTER performance. The best results are highlighted id.bol

Event Metric AdaBoost | TaylorBoost| SVM | LDA | SCR | SAIR
E01 MinNDC 1.218 0.995 0.826 | 0.998 | 0.742 | 0.775
AP 0.086 0.094 0.225| 0.131| 0.274 | 0.248

£02 MinNDC 1.343 1.001 0.963 | 1.001 | 0.981 | 0.964
AP 0.037 0.043 0.087 | 0.045| 0.079 | 0.089

£03 MinNDC 1.119 0.932 0.665 | 0.938 | 0.704 | 0.626
AP 0.065 0.097 0.260 | 0.103 | 0.234 | 0.281

£04 MinNDC 1.015 1.001 0.466 | 1.001 | 0.582 | 0.441
AP 0.084 0.067 0.483 | 0.073 | 0.322 | 0.493

£05 MinNDC 1.203 1.001 0.726 | 1.001 | 0.940 | 0.711
AP 0.055 0.046 0.294 | 0.096 | 0.091 | 0.283

£06 MinNDC 1.211 1.001 0.885| 1.001 | 0.939 | 0.882
AP 0.030 0.019 0.079 | 0.021 | 0.051 | 0.076

£07 MinNDC 1.187 1.001 0.670 | 1.001 | 0.862 | 0.636
AP 0.006 0.006 0.023 | 0.006 | 0.013 | 0.030

£08 MinNDC 1.139 1.001 0.629 | 1.001 | 0.509 | 0.568
AP 0.050 0.042 0.198 | 0.059 | 0.291 | 0.228

£09 MinNDC 1.031 0.902 0.802 | 0.970 | 0.586 | 0.711
AP 0.019 0.027 0.051 | 0.018 | 0.107 | 0.083

E10 MinNDC 1.317 1.001 0.856 | 0.925 | 0.814 | 0.856
AP 0.006 0.013 0.046 | 0.025 | 0.056 | 0.047

E11 MinNDC 1.355 1.001 0.821 | 1.001 | 0.843 | 0.858
AP 0.008 0.009 0.034 | 0.010 | 0.029 | 0.030

E12 MinNDC 1.091 0.991 0.654 | 1.001 | 0.712 | 0.632
AP 0.035 0.028 0.093 | 0.019 | 0.083 | 0.108

£13 MinNDC 1.156 0.955 0.570 | 1.001 | 0.566 | 0.449
AP 0.014 0.005 0.047 | 0.009 | 0.050 | 0.055

E14 MinNDC 0.971 1.001 0.550 | 0.822 | 0.664 | 0.508
AP 0.027 0.018 0.102 | 0.029 | 0.056 | 0.109

E15 MinNDC 1.188 1.001 0.706 | 0.974 | 0.833 | 0.612
AP 0.012 0.008 0.037 | 0.016 | 0.027 | 0.054

Average MinNDC 1.163 0.986 0.719 | 0.976 | 0.752 | 0.682
AP 0.035 0.035 0.137 | 0.044 | 0.118 | 0.148

4.4.4 Performancew.r.t. Fewer Concepts

To study whether the number of concepts selected affectédEHi2 performance, we conduct an ex-
periment by reducing the 65 concepts to 30 concepts. TheWdemes related to these 30 concepts
in SIN11 are used to help learn the intermediate representat/e also enlist the performance vari-
ance of SCR as it also leverages the SIN dataset to obtainceptmbased representation for MED.
The first three eventse., Attempting a board trickFeeding an animahndLanding a fishare used
as showcases. Table 15 displays the corresponding refudtsn be seen that the performance of
SAIR does not vary much when using only 30 concepts for inéeliate representation. However,
the performance of SCR drops drastically. For example, S@Resforms SAIR for the evert-
tempting a board trickvhen using 65 concepts but SAIR beats SCR when using 30 ctsnddps,
our method SAIR is more robust to the selection of conceptset videos compared to SCR.
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Table 15: Performance comparison between using 30 concepts and@sicgncepts from SIN11.

Event|| Metric || SCR(30C)| SCR(65C)| SAIR(30C) | SAIR(65C)
£o1 || MinNDC 0.811 0.742 0.764 0.775
AP 0.215 0.274 0.246 0.248
Eoz || MinNDC 0.976 0.981 0.961 0.964
AP 0.071 0.079 0.091 0.089
£o3 || MinNDC 0.722 0.704 0.625 0.626
AP 0.214 0.234 0.286 0.281

4.4.5 Using More Negative Examples

We further conduct an experiment to evaluate whether negatiamples contribute much to the

detection accuracy by increasing the number of negativenphes to 1000. Figure 13 shows the

performance comparison between using 500 negative exarapte1000 negative examples. It can
be seen that using 1000 negative examples is clearly blettemerely using 500 negative examples,
which indicates that negative examples do help improve #teation accuracy. Since negative

examples are quite easy to obtain in the real world, it isaeakle and beneficial to leverage such
free resources for boosted detection accuracy.

4.4.6 Parameter Sensitivity

In our experiments we have tuned the regularization pammein (4.11). Thus, we conduct an
experiment to study how the parametein (4.11) affects the detection performance. Similarly,
we useAttempting a board trickFeeding an animalLanding a fishin this experiment. Figure 14
demonstrates the performance variationt «. For these three events, the best results are obtained
whene is small.

4.4.7 Convergence

In the previous section, we have proved that the objectimetfan in (4.11) converges through the
proposed algorithm. For practical applications it is ietging how fast our algorithm converges. In
our convergence experiment we foat 1.

Figure 15 shows the convergence curve of our optimizatigoréghm. It can be seen that our
algorithm converges within 10 iterations, which is effidien

4.4.8 Nonlinear SAIR vs Linear SAIR

We have mentioned before that usually nonlinear classi€ibtain better performance than linear
classifiers for event detection. For better performancehawe extended our algorithm SAIR to a
nonlinear classifier. To understand the performance ingr@ant from linear method to nonlinear
method, we use the linear SAIR for MED. The comparison betwvtiee two approaches is displayed
in Figure 16. It can be seen that nonlinear SAIR has remagkattVantage over linear SAIR in

terms of MinNDC and AP. The result demonstrates that it ifieial to implement our method as

a nonlinear classifier for MED.
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Figure 13: Performance comparison between using 500 negative exampieusing 1000 negative
examples. Note that LOWER MinNDC/HIGHER AP indicates BER gerformance.

4.5 CONCLUSION

Multimedia event detection is important for video indexengd retrieval. We have proposed a new
learning framework for multimedia event detection by leging the classifier-specific intermediate
representation from low-level features. The intermediafesentation of videos is automatically
optimized together with the classifier. As a result, therimiediate representation is able to better
reveal the video semantics and at the same time is prefeiatitee classifier learning. Specifically,
we have used external videos in the learning process, whimbige extra informative cues. The
joint learning of the intermediate representation and thssifier results in a respectable framework
for multimedia event detection. To validate its efficacy, @@ducted several experiments using
real-world video archives. The results showed that our pekttonsistently yields competitive or
better accuracy than other methods. However, it is impotlet the concepts from external videos
for learning the intermediate representations should la¢ed to the target event. If the concepts
have little correlation with the event, we may be unable td 8hared components in the subspace
on which the intermediate representation is based. Coesdigulittle or no extra informative cues
from the concepts can be incorporated into the classifienieg for event detection. Meaning: It
is unlikely to witness much improvement for event detecti@nother limit of our method is that it
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Figure 16: Performance comparison between using nonlinear SAIR aimg lisear SAIR. Note
that LOWER MinNDC/HIGHER AP indicates BETTER performance.

is unable to help us understand the semantic meaning of & @v¢he intermediate representation
is latent and uninformative. Therefore, our method is wasle for applications such as multime-
dia event recounting as no explicit concepts characteyiaim event can be inferred by using our
approach.
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KNOWLEDGE ADAPTATION WITH PARTIALLY SHARED FEATURES
FOR EVENT DETECTION USING FEW EXEMPLARS

Multimedia event detection (MED) is an emerging area ofaes®e Most related works mainly fo-
cus on sports and news event detection or abnormality detdatsurveillance videos. In contrast,
we focus on detecting more complicated and generic eveatgyttin more users’ interest, and we
explore an effective solution for MED. Moreover, our satutionly uses few positive examples since
precisely labeled multimedia content is scarce in the realdyv As the information from these few
positive examples is limited, we propose using knowledgeptation to facilitate event detection.
Different from the state of the art, our algorithm is able tapt knowledge from another source
for MED even if the features of the source and the target argajig different, but overlapping.
Avoiding the requirement that the two domains are consistefeature types is desirable as data
collection platforms change or augment their capabilitied we should be able to respond to this
with little or no effort. We perform extensive experimentsreal-world multimedia archives con-
sisting of several challenging events. The results shotahiaapproach outperforms several other
state-of-the-art detection algorithms.

5.1 INTRODUCTION

With ever expanding multimedia collections, multimediatmt analysis is becoming a fundamen-
tal research issue for many applications such as indexidgretnieval,etc. Multimedia content
analysis aims to learn the semantics of multimedia data.oT&od it has to bridge the semantic gap
between the low-level features and the high-level semanoiitent description [28] [94]. Different
approaches have been proposed to bridge the semantic daplitetature, either at concept level
or event level.

We first highlight the difference between a concept and anteve“concept" means an abstract
or general idea inferred from specific instances of objestishes and actions suchfes, outdoor
andboxing Concepts are lower level descriptions of multimedia ddtectvusually can be inferred
with a single image or a few video frames. In multimedia resteaa major thrust for multimedia
content analysis is to learn the semantic concepts of thénmadia data and to use these concepts
for multimedia indexing and retrieval. Multimedia conceptalysis has been widely studied for
images and videos [50] [78] [73]. However, as shared petsadao collections, news videos
and documentary videos have explosively proliferateddlyesrs, video event analysis is gradually
attracting more research interest. An “event" refers tolzseovable occurrence that interests users,

Z. MA, Y. YANG, N. SEBE AND A. G. HAUPTMANN: “"KNOWLEDGE ADAPTATION WITH PARTIALLY SHARED
FEATURES FOR EVENT DETECTION USING FEW EXEMPLARS". PENDINGINOR REVISION IN IEEE TRANS-
ACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENZIH3. IDEA PREVIOUSLY APPEARED IN: Z.
MA, Y. YANG, Y. CAIl, N. SEBE AND A. G. HAUPTMANN: “KNOWLEDGE ADAPTATION FOR AD HOC MULTIME-
DIA EVENT DETECTION WITH FEW EXEMPLARS". INPROCEEDINGS OF THE ACM INTERNATIONAL CONFER-
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e.g. celebrating the New YeaCCompared with concepts, events are higher level desoniptdf
multimedia data. A meaningful event builds upon many coteapd is unlikely to be inferred with a
single image or a few video frames. For example, the eveking a cakeonsists of a combination
of several concepts such eake people kitchentogether with the actiomakingwithin a longer
video sequence.

Annotation and detection are two different topics of bothaapt and event analysis. Multimedia
annotation, also known as recognition, aims to associatat@dwith one or multiple semantic
labels (tags). Many approaches have been proposed to imfinevannotation accuracy for both
images and videos [50] [79] [59]. A typical annotation apgrofirst pre-trains a series of classifiers,
one for each class, and then applies the pre-trained ctassifi predicting the class label of each
testing datum. In contrast to annotation, detection idiestthe occurrence of a class of interest.
The main difference between annotation and detection tsithannotation each testing datum is
guaranteed to be a positive sample of one of the predefinededavhile the negative examples
in detection are from a set of infinite classes. In other wolbbdsh the training and testing data in
annotation tasks are from a fixed number of classes but thenigaand testing data in detection
tasks can be from an infinite number of classes. We have noatloet all the concepts or events
these negative examples include. This provides very lomitaining information for obtaining a
robust detector, thus making detection a challenging prabl

Figure 17: Some sample frames from two videos of the evanting a fish

The TREC Video Retrieval Evaluation (TRECVID) community s notably contributed to the
research of video concept and event detection by providognamon testbed for evaluating differ-
ent detection approaches [60]. In the field of multimedianynather works have also focused on
concept detectiare.g., [78] [91] [45]. However, the research on vidaeent detectiois still in its
infancy. Before 2011, most existing research on event tetewas limited to the events in sport-
s [71] [90] [73] and news video archives [84], or those withettive patterns likeunning[83] or
unusual events in surveillance videos [5] [101] [68]. In @0the TRECVID community launched
the task of “Event detection in Internet multimedia (MED)hish aims to encourage new tech-
nologies for detecting more generic and complicated eyemngs landing a fish For this kind of
events, there are huge intra-class variations. Besideg,cédn only be characterized by long video
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sequences, which necessitates the exploration of all ipgesees for analysis. Figure 17 shows
some frames from two videos of the same evanting a fish At the first glance, we may consider
Video 1 to beskiingas it contains theonceptof “outdoor with snow" which is not a typical scene
for landing a fish The scene of Video 2 is more typical, in contrast, thouglait also be a scene
for sailing. The comparison of these two videos aims to demonstrateute imtra-class variation
of complex events. On the other hand, the information fromy arfew frames is patchy, as shown
in Figure 17. Thus, the entire video is needed for analysis.

SVM has been used in few systems designed for the MED task movegbto be highly effec-
tive [10] [13] [108]. These systems commonly use sufficiensifive examples (about 100) for
reliable performance. Recently, NIST has proposed a pnobfdhow to attain respectable detection
accuracy when there are very few positive examples sincagelg labeled multimedia content is
scarce in the real world. In this paper, we focus on develppim effective method for MED with
few exemplars. Though SVM is effective in current systenssperformance would likely be less
robust when there are only a few positive examples for tnginHumans often adapt knowledge ob-
tained from previous experiences to improve learning of tesks. Therefore, in the same manner,
it is advantageous to leverage and adapt knowledge front ceteted domains or tasks to address
the problem of an insufficient number of labeled exampleshémultimedia community, there are
some available video archives with annotated conceptdabéiich can be leveraged to facilitate
MED with few exemplars. Inspired by [91] [34] [21], we progot adapt the knowledge from
concept level to assist in our task. Specifically, we use Haflable video corpora with annotated
concepts as our auxiliary resource and MED is performed enalget videos. The concepts are
supposed to be relevant to the event to be detected.

Currently, most knowledge adaptation algorithms requied the features extracted from the raw
data in the source domain and the target domain must be oflgfae same type. In many applica-
tions, such a requirement may be too restrictive, as daleatiain platforms change or augment their
capabilities. In practice, the data in MED and those in thadlalsle concept-based video archives
usually only have partially shared data features. For exampany video archives are key-frame
based so they cannot be represented by audio features sMIFCG(S. These kinds of features are
commonly used for MED and provide additional informatiom éwent detection. Hence, we pro-
pose to study how to effectively adapt knowledge from one @arto another when the available
feature sets are partially different, but overlapping, dgample if new or different features have
more or better instrumentation for observations.

This chapter is the extension of our previous work [54]. Weasiarize the main contributions of
this chapter are as follows:

e We perform the first exploration of MED with few exemplars bpposing a novel approach
built atop knowledge adaptation.

e Unlike many knowledge adaptation methods, our approack doe require that auxiliary
videos have the same events as the target videos. We exjoleds/with several semantic
conceptgo facilitate theEventDetection on the target videos; the event differs from the
concepts and the video collections are different from edlcbro

e Another merit is that our method is able to adapt knowledgmfother sources to the target
videos when only parts of the feature space are shared bythédmains. This is an intrinsic
difference from most state-of-the-art knowledge adapieigorithms.
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5.2 RELATED WORK

In this section, we briefly review the related works on videerd detection and knowledge adapta-
tion.

5.2.1 Video Event Detection

Event detection is a challenging problem that has not beesuféiciently studied. Based on its
difficulty, event detection can be roughly categorized gitople event detection, predefined MED
and Ad Hoc MED.

Simple Event Detection

Much effort has been dedicated to the detection of sportsteyeews events, unusual surveillance
events or those with repetitive patterns. For exampleeai. propose using web-casting text and
broadcast video to detect events from live sports game [80]84], a model based on a multi-
resolution, multi-source and multi-modal bootstrappirapfework has been developed for events
detection in news videos. Adaet al. present an algorithm using multiple local monitors which
collect low-level statistics to detect certain types of sumal events in surveillance videos [5]. Wang
et al. have proposed a new motion feature by using motion relgiritl visual relatedness for event
detection [83]. Their approach primarily applies to evahtd have repetitive motion attributes and
are usually describable by a single shmg. walkinganddancing The aforementioned events are
usually simple, well-defined and describable by a shortosskuence.

Multimedia Event Detection

In 2010, “Event detection in Internet multimedia (MED)" wiagtialized in the TRECVID compe-
tition by NIST for detecting more complicated events. Coneplato the simple events mentioned
above, the events in MED usually contain many people andjeicts, various human actions, mul-
tiple scenes and have significant intra-class variatioaslittonally, these events take place in much
longer and more complex video clips. For instano@king a cakéncludes objects such as water
and bowl; can happen either in the kitchen or outdoor; is mpamied by specific motions such
as getting the flour, adding water and baking within a longdee sequence. Though MED is an
arduous problem, researchers have been making steadyaeffiof10] [13] [108] [57] [93].

NIST introduced the predefined MED competition as followackteam is given the event kits
about 5 months before the submission of the detection systéemce, there is enough time for
the system to be tailored particularly for a specific everivMSs widely used and shows good
performance for predefined MED. We may also use some reantat-the-art classifiers for MED.
For example, a new family of boosting algorithms is propdsgd0] and demonstrates prominent
performance on a variety of applications. In predefined M&B can identify some event-specific
rules or templates to facilitate detection of the particelaent.

To address the generalizability of the MED system, NISToidtrced Ad Hoc MED competitich
in 2012. Ad Hoc MED differs from predefined MED in the sensé thashould not tailor the system
for a specific event. For this purpose, NIST releases thetitsrto each team only about 12 days
before the submission of the detection system. In this aasenow the testing events when we
build the system but the short time period does not allow pec&l tuning for a specific event.

For both predefined MED and Ad Hoc MED, NIST has introduced anemore challenging
problem,i.e., using few labeled positive exemplars to build a detectigstesn to deal with the

2 http://www.nist.gov/itl/iad/mig/med12.cfm
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scarcity of labeled multimedia content. Our work focuseghis problem by adapting knowledge
from auxiliary concept-based data. As we do not select auyitoncepts for a particular event, our
work is different from predefined MED. Moreover, the time dee for building our system satisfies
the time constraint regulated by NIST. Consequently, oukvgets as close as possible to Ad Hoc
MED in the intended understanding of NIST.

5.2.2 Knowledge Adaptation for Multimedia Analysis

Knowledge adaptation, also known as transfer learnings anpropagate the knowledge from an
auxiliary domain to a target domain [91] [34] [21]. Sevenrglaithms have been proposed but most
of them require that: 1) the auxiliary domain and the targehdin have the same classes; 2) the
features extracted from the raw data in the source domaithenthrget domain must be using the
exact same raw sensor output. However, MED deals with vamyptioated events that come from
an unlimited semantic space. Furthermore, the requirenfeieature consistency may be too re-
strictive, as data collection platforms change or augmiesit ttapabilities. Hence, most existing
methods are not capable of adapting knowledge for MED whehave heterogeneous feature type
between the source and the target. For example, ¥t@ag) have proposed to use Adaptive SVMs
for cross-domain video concept detection [91]. The methatdioed encouraging results but has
some shortcomings. The proposed approach requires thatifileary videos and the target videos
have the same video concepts. However, in MED the eventsoanplicated and collecting many
auxiliary videos with the same event description as thestargleos within limited time is imprac-
tical. Jianget al. [34] have used the image context of Flickr to select concepéators. These
pre-selected detectors are then refined by the semantiextdransfer from the target domain. In
this way, more precise concept detectors are obtained deoviearch. The proposed method is in-
teresting but the selected concept detectors cannot béyased for event detection without other
sophisticated algorithms. Besides, as in our problem wewale very few positive examples, using
these examples to refine the concept detectors is not rlidblother algorithm proposed by Duan
et al. [21] realizes event recognition of consumer videos by lagarg web videos. Their method
does not require that the auxiliary domain and the targetailoinave the same events. However,
the approach is very time consuming. Leal. have presented an object classification method by
casting prior features learned from auxiliary images iti@irt multiple kernel learning framework
and obtained advantageous performance [49]. Yet this apphraorks in a two-step fashione.,
training prior features using auxiliary data and then ipooating them into the following step. In
contrast, our method works in a unified framework which cantfp optimize the knowledge from
the auxiliary domain and the target domain. Besides thasialiions mentioned above, existing
knowledge adaptation algorithms mostly require that tlauiiees in the source domain and the tar-
get domain be of exactly the same type. However, in pradticerequirement may be too restrictive
as MED videos can be represented by different types of feaiarcontrast with the auxiliary video
archives. Our previous work in [54] has some advantages aoedo the existing knowledge adap-
tation algorithms such as no requirement for the same ddmteveen the auxiliary domain and the
target domain, efficiencgtc. But it still ignores the reality that the auxiliary domaincatie target
domain possibly have heterogenous feature type.

To progress beyond these aforementioned works, we propese knowledge adaptation method
for MED with few exemplars from heterogeneous features.imuthe training phase, the partially
shared features of the source domain and target domain eviéikploited to establish a correspon-
dence between the two domains. Meanwhile, the instrumentabtained from the particular MED
features is incorporated into our framework. The two kinflaforementioned knowledge are then
integrated to refine the detector of the target videos.
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5.3 FRAMEWORK OVERVIEW

Figure 18 illustrates our framework for MED with few exemsla The video archive where the
MED is to be conducted is our target domain. The homogeneaatsies of the auxiliary and target
videos, denoted by Modality A, are transformed to nonlimegresentations based on which the
shared knowledge between them is to be explored. Spedffieadiperform KPCA [72] to complete
the mapping. The video concept classifier and the video eleteictor obtained from the homo-
geneous features presumably have common components wdnthirt irrelevance and noise. We
propose to remove such components by optimizing the contagsifier and the event detector joint-
ly, thereby bringing discriminating knowledge for the ev@atector. On the other hand, we have the
heterogeneous features for MED videos and they are comiiitadhe homogeneous features to
form Modality B as indicated in Figure 18. Another event dé&te of MED videos is subsequently
trained based on Modality B. Then we integrate the two evetgalors for optimization, after which
the decision values from both are fused for the final preaficti

Auxiliary Concept-based Videos  Target Training Videos Target Testing Videos
feature Q extraction feature extraction feature extraction
} Modality A ‘ ’ Modality B ‘ ’ Modality B ‘ } Modality A
nonlinear@ lnapping nonlinear mapping nonlinear mapping

Auxiliary
Representation A concept labels
Training Prediction ﬂ

Rey ion A )
data labels consistency Decision Decision
________________________________ | values AB values A

] S
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components E E E E e E = E E E irrelevance
mining | —EHE-SHE—SHEHE-E——8-|  and noise
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Figure 18: The illustration of our framework. We first map the homogarefeatures of the aux-
iliary and target videosi.e., Modality A into a Hilbert Space. The video concept classiéiad
the video event detector obtained from the homogeneousréssapresumably have common com-
ponents which contain irrelevance and noise. We proposentove such negative information by
optimizing the concept classifier and the event detectartljoi Meanwhile, another event detec-
tor of MED videos is trained based on Modality B. Then we inseg the two event detectors for
optimization, after which the decision values from bothfased for the final prediction.

5.4 CONCEPTS ADAPTATION ASSISTED EVENT DETECTION

Next, we explain how we adapt knowledge for MED with few exéanpwhen the two domains
have heterogeneous features. Our approach is groundedaomponents: one is the knowledge
from the available target training examples and the otheristthe knowledge propagated from the
auxiliary concepts-based videos.

We first demonstrate how to exploit the knowledge from thgedatraining examples. Denote the
nonlinear representations of the target training videasguslodality B asZ; = [z{,z%, o Zit €
R4=xnt wheret stands for the target], is the feature dimension and; is the number of the
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training data.y: = [y}, yZ,..,yi1T € {0, 1}"*" are the labels for the target training videos.
yt = 1if the ith videoz! is a positive example wherea$ = 0 otherwise. To begin with, we
associate the low-level representations and high-levebséics of videos by a decision functién
which, for an input video sequengepredicts an outpwj. In this paper, we defing as:

fo(Ze) = Z{ Py + 1¢by, (5.1)

whereP; € R9:*1 s an event detector which correlatés with their labelsy¢, by € R'isa
bias term and; € R™*! denotes a column vector with all onds.is decided by minimizing the
following objective based on the training examplgsand their labels)::

rr]}in loss (ft(Z¢),yt) - (5.2)
t

loss(-,-) is a loss function. Different loss functions such as the éitags and the least square
loss can be used. In this paper, we use{the-norm based loss function because it is robust to
outliers [52]. Thus, Eq. (5.2) is reformulated as:
i . 5.3
fin (5.3)

ZIP +1¢by _yt‘ .

,

Now we show how to adapt the knowledge from auxiliary videddclv are associated with d-
ifferent concepts and are represented only by the homogerfeaturesj.e., Modality A to as-
sist in MED with few exemplars. Denote the nonlinear repnéstgons of the auxiliary videos as
Xq = [7211,72%1,...,%2“] e RdnxMa wherea stands for the auxiliary domaid;, is the feature di-
mension anch,, is the number of the auxiliary video¥, = [y, y2, .., yael" € {0, 1j"exCa is
their label matrix where indicates that there arg, dif“feren_t_concepts\(éj denotes theth class
of yi, andYy = 1if xi belongs to thg'™ concept, whileyy = 0 otherwise. The fundamental
step is to mine the correlation between the low-level regmtstions and high-level semantics of the
auxiliary concepts-based videos. Similarly to Eq. (5.33, walize that by the following objective

function:

min (5.4)

i XIWa +14ba — Ya

2,1

where a concept classifiev, € R9n*¢a s used to correlat&, with their labelsYy, b, € R1*¢a
is a bias term andl, € R™«*! is a column vector with all ones.

Next, we illustrate how to adapt knowledge from the auxylieoncepts-based videos for a more
discriminating event detector. To begin with, we also used®ity A for the target videos in ac-
cordance with the auxiliary videos. Denote the correspogdionlinear representations Xg =
[1,%2,..., %] € R4n<Mt We can similarly find an event detectdf; based oiX¢. Wy € R4n*1
is used to correlat¥; with their labelsys.

Considering each domain separately, it is reasonable tovesshat for classification purposes
some noisy and irrelevant features will not be used, whidiiin makes the corresponding rows of
the projection matriW, or W; identically equal to zero. Considering the two domains toge
the auxiliary concept videos and the event videos can beleded in the semantic leved,g, the
conceptdish water, peopleare basic elements of the evdanding a fish Previous work on multi-
task learning has suggested that this kind of correlatiarallysresults in common components in
the feature level shared across related tasks [9] [66] [B2hur scenario, the semantically related
auxiliary videos and event videos can be treated as relatts because the events build upon the
related concepts. When we represent videos from both demaih the same type of feature such
as SIFT Bag-of-Words using the same centroid, they woula: lsmme shared components. For
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example, assuming that the event vidaoding a fishhas SIFT Bag-of-Words dfsh, we may find
similar SIFT Bag-of-Words in an image éish Hence, some shared components in the features
between them need to be uncovered. Note that the event aeigetctually a mapping function
from features to event labels. Intuitively, not all the Bafgwords are related to semantic labels.
Given certain Bag-of-Words, if they are irrelevant to a#t toncepts, it is very likely that these Bag-
of-Words are also irrelevant to the events, because the evanilt on top of the concepts. Recalling
that the corresponding rows &V, or W; are identically equal to zero for the irrelevant or noisy
features, we should be able to find similar patterns in theildigion of these rows by learning/q
andW, jointly. Thus, we exploit the concept classifidr, to help remove the noise W; for a
more discriminative event detector.

DenoteW, = W, .., wd"T, W, = [wl,...,wfh]T. Then we combine them and define a
joint analyzerW = [w',..,wd"]T wherew! is the vertical concatenation ofl andwi, i.e,
wt = [wi;wi]. In this sensew! reflects the joint information from the auxiliary videos aine
target training videos. Through proper optimizationgf, we can remove the shared irrelevant or
noisy components. Previous work has shown that sparse madelseful for feature selection by
eliminating redundancy and noise [9] [55] [52]. The sparsmleils are used to make some of the
feature coefficients shrink to zeros to achieve featurecele The “shrinking to zero" idea can
be applied to uncover the common distribution of the “idesity equal to zero" rows oV, and
W, discussed before. In this way, we can remove the shareevienete and noise, thus obtaining a
more discriminativéV;.

Now we introduce the technical details of our joint sparsitydel. Specifically, we propose to

dn cq+1 P
exploit [Wll,, = | X | .Z] IWi;[)2 | to achieve that goal|-||,, denotes the ,-norm

i=1 j=

(0 < p < 2). By minimizing |\W||‘23/p, we can reduce the negative impact of the irrelevant or noisy
wi’s. Our model has the flexibility of characterizing diffetelegree of relevance between concepts
and eventsp is used to control the degree of shared structures. The jpvgethe more semantically
correlated are the auxiliary concepts and the target eBntontrast, when the auxiliary concepts
and the target event have less relevance, we can use apargéren we increasp to 2, we do not
impose sharing on the two domains. To step further, it is etquethat the predicted labelsdf, on
Xt be consistent with those & on Z, thus resulting in more accurae andW;. In this way,P
from the heterogeneous features of the target\hdrom the knowledge adaptation would jointly
augment the observations for MED. We achieve this by mirimgif X{ W — Z] Py ||]2; where]|-||2
indicates the Frobenius norm of a matrix.

To this end, we propose the following objective function D with few exemplars:

2
C LR R
P, Wy, Wy, by, bg tht tot— Yt 2,1 t t tht F (5 5)

+[KIWa + Taba Yo, | +aIWIB, + BUWLIE + IWall?)

where(||Wq |2 + |[W¢||2) is added to avoid over-fittingx andp are regularization parameters.

OncePy andW; are obtained, we apply them to the nonlinear representatibrthe testing
videos for event detection. The decision values of them armalized and then their weighted sum
based on the feature numbers are the final decision valuég ¢ésting videos. Our method builds
upon 1) the knowledge adaptation from concepts-based sigeevent-based videos by leveraging
the shared structures between them; and 2) the augmenten/atisn from the particular features
that are only owned by MED videos. We therefore name our nuktieterogenous Features based
Structural Adaptive Regression (HF-SAR).
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5.5 OPTIMIZING THE EVENT DETECTOR

In this section, we present our solution for obtaining thrgeétevent detector. Our problem in Eq.
(5.5) involves thet; ;-norm and the; ,,-norm which are both non-smooth and cannot be solved in
a closed form. We propose to solve it as follows.

DenoteZ] Py —y¢ = [u!,..,u™T, XIW, — Y, = ',...,v*a]T. Next, we define three

diagonal matrice@t, D, andD with their diagonal element®it = 1 Di = 1
B 2[[ut, 2[[vi,
D' = -———— respectively. The objective in Eq. (5.5) is equivalent to:

T(ZTP 1¢be —ye) TDL(ZT Py + 1¢by — )
thtv\}nbtb T (Zg Py 4+ 1¢by —yt) De(Zy Pe + T¢be —yi)

+ H)ZIWt - ZIPtHF +Tr (XIWa + 1aba — Vo) TDa(XIWa + 1aba —Ya)) (5.6)
+aTr (WTDW) + B([Wallf + Wi )
whereTr (-) denotes the trace operator. By setting the derivative of(E@)w.r.t. b, to zero, we
get:

1 T 1o
by = n_a1ZY“ — n—aﬂxlwa. (5.7

Similarly, we obtainby as:

1
by = n—]Tyt - —1TzTPt (5.8)

Substituting Eq. (5.7) and Eg. (5.8) into Eq. (5.6), it beesm

min Tr ((HtZIPt — tht)TDt(HtZIPt — tht))

Pt/WtrWu
. 2 i i
n Hxth - ZIPtHF +Tr ((HGXZWQ “HaYa) Da(HaXIW, — HaYa)) (5.9)

+alTr (WIDW) + B(|[Wallf + IW4]1?)

whereH; = I — —1 1 He=1q— —1 11 andly € R™t*Mt [, € R™e*Ma are two identity
matrices. Setting the derlvatlve of Eq (5v9)rt Wq to zero, we get:

Wo = (XaHaDaHoX! 4+ aD + Blq) "XaHaDaHaYa (5.10)

wherely € R4n*dn js an identity matrix. Note that D is treated as a constanhis step as we
adopt an alternating optimization approach here. In theesaanner, we obtain the event detector
W; as:

Wi = A7 X Z Py (5.11)

whereA = oD + BIg + XX[.
To optimizePy, the problem equals to:

. T3 T T3 oT Ty |I?
min Tr(P] ZyH(D(H(Z{ Py — 2PT Z He D Heye) + th We—ZTP, H
2 F (5.12)

+aTr(WDW,) + BTr(W] wWy)
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Substituting Eq. (5.11) into Eq. (5.12) and defining
] =ZH{DiH Z] —Z XTAT'X 2T + 2, 2] (5.13)
K =2Z{H{D{Hyy, (5.14)
the problem becomes:
rrlgitn Tr(P] Py — P K) (5.15)
By setting the derivative of the above functimr.t. Py to zero, we get:

Py = %]4K (5.16)

Algorithm 4: Optimizing the event detector.

Input:
The target training datd; € R9=*"t, X; € R4nxMt yy ¢ RMtx1;

The auxiliary dat&, € R4n*na Y, € RMaX¢a;
Parameters, (3 andp.

Output:
OptimizedP; € R4=*T W, € R4n*1 andb; € R'.

1. Sett = 0, initialize Py € R4=*1, W, € R4n*T andW, € R4n*¢a randomly;

2: repeat
ComputeZ Py —y¢ = [u!, .., u™T, XIW, — Yo = ', ..., v™a]T and
wW=m!, ., wiT;

i t pt t i it _ 1 i _ 1
Compute the diagonal matrR;, D andD* according taDi* = 2] Z,Da = 3

andD'* = -—1_ respectively;
Flwil

UpdateW!t! assWit! = (XqHoDEXT + oDt + BI4) 'XqHaDoHa YL,
Updateb," ! as:bit! = 11y, — L 1IXTWEHT,

UpdateP!*! according to Eq. (5.13), Eq. (5.14) and Eq. (5.16);
Updatew!*! as:wit! = A-1X, ZTptHT;

Updatent " asiot = Ly ITZIWE

t=t+1.
until Convergence

3: ReturnPy, W; andby.

Next, we propose Algorithm 4 to solve the objective functiorEq. (5.5). The computational
complexity of Algorithm 4 is as follows. For training, it i8(d3) asd, > dj,. Note thatd, > n
because usually there are few training examples in Ad Hoc MHEIDs, the training process is not
very computationally expensive. During testing, compgitkernels between the testing data and
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the training data is the most expensive process. Supposedhen.. testing videos, we need to
computenn. kernels. Each datum &, dimensional so the complexity &(d n¢mne).

It can be proved by the following Theorem that the objectivection value of Eq. (5.5) mono-
tonically decreases in each iteration converging to lopghoum using Algorithm 4.

5.6 EXPERIMENTS

In this section, we present the experiments which evalleggerformance of our Heterogenous
Features based Structural Adaptive Regression (HF-SARMIED with few exemplars.

5.6.1 Datasets

NIST has provided so far the largest video corpora for MEDr. ©&gperiments on MED with few ex-
emplars are conducted on the TRECVID MED 2010 (MED10) and CRIB MED 2011 (MED11)
development set. MED£0ncludes 3 events defined by NIST, which Making a cakeBatting a
run, andAssembling a shelteMED11* includes 15 events.e., Attempting a board trickFeeding

an animal Landing a fishWedding ceremonyVorking on a woodworking projedBirthday party
Changing a vehicle tiregFlash mob gatheringGetting a vehicle unstucksrooming an animalMak-
ing a sandwichParade Parkour, Repairing an appliancandWorking on a sewing projeciThe
two datasets are combined together (MED10-11 for shortpimegperiments so we have a dataset
of 9746 video clips.

We first use the development set from TRECVID 2012 semantleximg task (SIN12) as the
auxiliary videos. SIN12 covers 346 concepts but some of thawe few positive examples. Addi-
tionally, “events" usually refer to “semantically meanfaihuman activities, taking place within a
selected environment and containing a number of necesb@gte" [42]. Hence, we removed the
concepts with few positive examples and selected 65 cosdkat are related to human, environ-
ment and objects. We thus use a subset with 3244 video fra@eghe other hand, multimedia
events are usually accompanied by human actions, whicrestgthat we may find similar motion
features between event videos and basic human action vithsoge, we additionally use UCF50
dataset [67] to test whether it is able to facilitate multiti@eevent detection.

We ran our program on the Carnegie Mellon University ParBliga Lab cluster, which contains
300 cores, to extract features and perform the Bag-of-Waralsping for all the videos. When uti-
lizing SIN12 dataset, we extract SIFT [47] and CSIFT [81}éees for the videos in MED10-11 and
SIN12. Then we use 1x1, 2x2 and 3x1 spatial grids to gendrategatial BowW representation [58].
For each grid, we use a standard BoW representation witt64jBensions, thus resulting in a
32,768 dimension spatial BoW feature for SIFT/CSIFT to espnt each video. When utilizing
UCF50 dataset, we extract STIP [39] feature for the videddiiD10-11 and UCF50 since STIP
has proved to be robust for analyzing action videos. A sinpitacedure is followed to generate the
spatial BoW representation. Apart from visual featuremaother features, which provide different
yet complementary information, can also be used to reptegigns. For example, auditory features
based on Mel-frequency Cepstral Coefficients (MFCC) hase been frequently used [108]. We
additionally use this feature for MED videos and the dimends 4096. Thus, when using the
SIN12 dataset, our two domains have SIFT and CSIFT as sheatut€ type while MFCC works as
the heterogeneous feature for MED videos; when using UCRB&dsdt, our two domains have STIP
as shared feature type while MFCC is the heterogeneousédatuMED videos.

3 http://nist.gov/itl/iad/mig/med10.cfm
4 http://www.nist.gov/itl/iad/mig/med11.cfm
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According to the MED task definition from NIST, each event &tetted independently. There-
fore, there are 18 individual detection tasks. NIST has ddfthat the number of positive training
examples is 10 for MED with few exemplars [3]. However, thisreo standard training and testing
set partition provided by NIST. Hence, we randomly split MED10-11 dataset into two subsets,
one as the training set and the other one as the testing sefolie the definition given by NIST
and randomly select 10 positive examples for each evenerQ00 negative examples are selected
and combined with the positive examples as the training. dElt@ remaining 8736 videos are our
testing data. The experiments are independently repeaieteS with randomly selected positive
and negative examples. The average results are reported.

We use three evaluation metrics. The first one, Minimum ND@{#DC), is officially used by
NIST in TRECVID MED 2011 evaluation [2]. Lower MinNDC inditas better detection perfor-
mance. The second one is the Probability of Miss-Detectaset on the Detection Threshold 12.5.
This evaluation metric is used by NIST in TRECVID MED 2012 {8Jevaluate MED performance.
We denote it as Pmd@TER=12.5 for short. Likewise, lower Pr8@&=12.5 indicates better per-
formance. For more details about the above two evaluatidricegplease see the TRECVID 2011
and 2012 evaluation plans [2] [3]. The third one is Averageciion (AP). Higher AP indicates
better performance.

5.6.2 Comparison Algorithms

In this section, we show the MED results using Heterogen@agufes based Structural Adaptive
Regression (HF-SAR) and other state-of-the-art algorithénbrief introduction of the comparison
algorithms is as follows:

e HF-SAR: the proposed new method which is designed for knidgéeadaptation based on
heterogeneous features. Tké kernel is used for its advantageous performance on video
analysis.

e Structural Adaptive Regression (SAR) [54]: our previowggithm on knowledge adaptation
for MED with few exemplars. Similarly, thg? kernel is used.

e Adaptive Multiple Kernel Learning (A-MKL) [21]: a recent kmvledge adaptation algorithm
built upon SVM.

e Multiple Kernel Transfer Learning (MKTL) [49]: a recent ntia€lass transfer learning algo-
rithm built within a multiple kernel learning framework. @loriginal algorithm in [49] has
used RBF kernel. For fair comparison, we implement it withkernel.

e SAR&SVM: We use SAR based on SIFT+CSIFT features betweenuk#iary domain and
the target domain. In addition, we use SVM based on MFCC fedtuthe target domain.
Then we fuse the decision values obtained by both of themhignatay, we can evaluate the
performance of combining homogeneous transfer learnidgfze classifier on the heteroge-
neous feature.

e SVM: the most widely used and robust event detector for MBEB]110] [28] [83]. Similarly,
we use the¢? kernel for it.

e TaylorBoost [70]: a state-of-the-art classifier extendedf AdaBoost.

For SVM, we use LIBSVM, and for A-MKL, MKTL and TaylorBoost wese the code shared by
the authors. During the training and predicting, we comi§ite€rl, CSIFT and MFCC features of the
MED210-11 dataset for SVM and TaylorBoost. SAR, A-MKL and MK@re knowledge adaptation
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Table 16: Average detection accuracy of different methods. Bettgulte are highlighted in bold.

5.6 EXPERIMENTS

Metric SAR | A-MKL | MKTL | SAR&SVM | SVM | TaylorBoost| HF-SAR
MinNDC 0.860 | 0.881 0.873 0.841 0.850 0.902 0.817
Pmd@12.5(|| 0.601| 0.617 0.610 0.572 0.575 0.677 0.549
AP 0.162 | 0.144 0.153 0.183 0.181 0.080 0.201

based algorithms, which utilize the SIN12 dataset as aryildata. However, they require that
the target domain and the auxiliary domain have the homagenteature representation so only
SIFT and CSIFT are used for them. HF-SAR leverages SIN12 fBDMvith few exemplars on
MED10-11 and it is capable of using SIFT, CSIFT and MFCC thget All the regularization
parameters are tuned frih001, 0.1, 10, 1000}, and the parametgrof HF-SAR and SAR is tuned
from{0.5,1,1.5}. We report the best results for each algorithm.

5.6.3 MED Results

The detection performance of different algorithms is digpld in Figure 19, Figure 20, Figure 21
and Table 16 where all the knowledge adaptation methodséxaieited SIN12 dataset. Note that
LOWER MinNDC and Pmd@TER=12.5 indicate BETTER performandSHER AP indicates
BETTER performance. The proposed method HF-SAR is comgigteompetitive for all the events.
Zooming into details, we have the following observationswhen using MinNDC as metric, HF-
SAR gains the best performance for 17 events; 2) when usird@itR=12.5 as metric, HF-SAR
gains the best performance for 15 events;2) when using APetiscyHF-SAR is the best method
for 14 events; 3) HF-SAR obtains the top performance for terage accuracy over all the 18
events; 4) SAR&SVM is generally the second competitive atgm. This indicates that incor-
porating the additional information contained in the hegemous feature into a robust knowledge
adaptation algorithm based on homogeneous features ididiaheHowever, it is unclear which
algorithms should be combined together for the best pedana as they may work with different
mechanisms; 5) SAR, A-MKL and SVM have varying degrees o€ess on some events. However,
they are generally worse than HF-SAR and SAR&SVM. It mearstedge adaptation based on
homogeneous features loses useful information from trerbgenous feature, and SVM utilizes all
the features but it cannot leverage knowledge from othercgsu In contrast, the newly proposed
method HF-SAR transfer knowledge between homogeneousé&satvhile simultaneously exploits
the heterogeneous feature to get boosted performance.

Next we show the detection results by exploiting UCF50 dsdtass HF-SAR has already shown
its advantage over other knowledge adaptation algorithmstlais experiments aims to show that
we can even adapt useful action knowledge for Ad Hoc MED, wlg oampare HF-SAR to the
best baseline classifier SVM. Similarly, we combine STIP B#eCC features of the MED10-11
dataset for SVM. The detailed results are illustrated inl§dly. As can be seen, HF-SAR beats
SVMon 17, 17, 15 events and the average performance ovéreallg events in terms of MinNDC,
Pmd@TER=12.5, AP respectively. Moreover, for those eventawhich HF-SAR is better, we can
observe noticeable performance improvement.

5.6.4 Influence of Knowledge Adaptation

Itis interesting to understand how the knowledge adaptditam the auxiliary concept-based videos
impacts the Ad Hoc MED. We base our study on two scenariost,Rire setx in Eq (5.5) to 0 so
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Figure 19: Performance Comparison on MED with few exemplars.
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Figure 20: Performance Comparison on MED with few exemplars.
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Table 17: Detection results by exploiting UCF50 dataset in comparisith SVM.

Event Metric SVM | HF-sAR | Relatve
Improvement
MinNDC 0884 | 0922 N/A
EO1 || PmJ@TER=125|| 0.546 | 0.569 N/A
AP 0.247 | 0.206 N/A
MinNDC 1.000 | 0.999 0.1%
E02 || Pmd@TER=125|| 0.938 | 0.877 7.0%
AP 0.037 | 0.046 24.3%
MinNDC 1.000 | 0.990 1.0%
E03 || Pmd@TER=125|| 0.928 | 0.815 13.9%
AP 0.035 | 0.061 74.3%
MinNDC 0936 | 0912 2.6%
E04 || Pmd@TER=125|| 0.870 | 0.770 13.0%
AP 0.044| 0132 200%
MinNDC 0975 | 0.946 31%
EO5 || Pmd@TER=125|| 0.914 | 0817 11.9%
AP 0.061 | 0.097 59.0%
MinNDC 0992 | 0973 2.0%
EO6 || Pmd@TER=125|| 0917 | 0.797 15.1%
AP 0.049 | 0.077 57.1%
MinNDC 1.000 | 0.992 0.8%
E07 || Pmd@TER=125|| 0.944 | 0.881 7.2%
AP 0.033| 0032 N/A
MinNDC 0945 | 0833 13.4%
E08 | PmJ@TER=125|| 0.862 | 0.676 27.5%
AP 0.094 | 0173 84.0%
MinNDC 0970 | 0.928 4.5%
E09 | PmJ@TER=125|| 0.804 | 0.703 14.4%
AP 0.072| 0.093 29.2%
MinNDC 0997 | 0.991 0.6%
E10 | Pmd@TER=125|| 0.933 | 0.862 8.2%
AP 0.035 | 0.043 22.9%
MinNDC 0995 | 0.982 1.3%
E1l | PmJd@TER=125|| 0.904 | 0.835 8.3%
AP 0.037 | 0.041 10.8%
MinNDC 0975 | 0.940 9.4%
E12 || PmJ@TER=125|| 0.889 | 0.770 4.5%
AP 0.052 | 0.077 13.7%
MinNDC 0970 | 0.957 3%
E13 | PmJ@TER=125|| 0.711 | 0.689 3.2%
AP 0.004 | 0.078 N/A
MinNDC 0919 | 0819 12.2%
El4 | PmJ@TER=125|| 0.840 | 0.687 22.3%
AP 0.083| 0.191 130.1%
MinNDC 0.964 | 0.945 2.0%
E15 | Pmd@TER=125|| 0.880 | 0.794 10.8%
AP 0.059 | 0.066 11.9%
MinNDC 0975 | 0937 41%
E16 | PmJ@TER=125|| 0.864 | 0.796 8.5%
AP 0.045 | 0.053 17.8%
MinNDC 0.893| 0.736 21.3%
E17 | Pmd@TER=125|| 0.766 | 0585 30.9%
AP 0125 | 0.253 102.4%
MinNDC 0982 | 0.967 1.6%
E18 | PmJd@TER=125|| 0.922 | 0.836 10.3%
AP 0.036 | 0.041 13.9%
MinNDC 0.965 | 0.932 35%
Average | Pmd@TER=12.5|| 0.857 | 0.764 12.2%
AP 0.069 | 0.098 42.0%
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Figure 21: Performance Comparison on MED with few exemplars.
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Figure 22: Performance comparison between using auxiliary knowledgknot using auxiliary
knowledge.

there is no knowledge adaptation; Second, since in our thgeftinction the itemx ||W||12”p con-
trols the effect of the knowledge adaptation, we inveséigaé influence by varying the parameter
o andp after fixing 3 at its optimal values.

For the first scenario, we show the performance comparistveles using auxiliary data and not
using it in Figure 22. MinNDC is used as metric due to the spimai. It can be seen that using
auxiliary data has clear advantage over not using it, wharh@hstrates that through proper design,
the auxiliary knowledge contributes notably to the MED wiishv exemplars.

For the second scenario, we similarly use MinNDC as metrghtaw the performance variation.
We show the results on the first 6 events in Figure 23 as shescél¢e observe from Figure 23 that
the best results are generally obtained when 0.5 or p = 1. For the other parameterthere is no
obvious rule, which is presumably data-dependent. Lgwadicates that the model is more sparse,
thereby eliminating more redundancy and noise.
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Figure23: The detection performance varianggt. x andp.

5.6.5 Using Fewer Concepts

In this experiment, we test the performance variance of thpgsed algorithm by varying the num-
ber of auxiliary concepts as 5, 10, 20, 30, 50 and 65. Figurgigdlays the corresponding results
in terms of Minimum NDC. We have the following observatioa$:Generally, the performance of
using only 5 auxiliary concepts is noticeably worse thangsill the 65 auxiliary concepts; 2) From
using 5 auxiliary concepts to using 30 auxiliary concepis gerformance is gradually improved for
most events; 3) From using 30 auxiliary concepts to usingwliary concepts, the performance
does not vary much, which suggests that the performanceasasuat the point when 30 auxiliary
concepts are used. Our observation indicates that whemthber of auxiliary concepts is very few,
which also means few auxiliary videos, the performance galimited. To get more performance
boost, we may want to incorporate more auxiliary videos wilbre concepts. However, how to
decide the optimal number of auxiliary concepts is still @em problem and is out of the scope of
this chapter. It would be an interesting topic in our futuerkv

5.6.6 Do Negative Examples Help?

We further conduct an experiment to evaluate whether negatiamples contribute much to the de-
tection accuracy by reducing the number of negative exasiplB00 and 100. Figure 25 shows the
performance comparison between using 100, 500 and 100@iveeggamples. Similarly, Minimum
NDC is chosen as the evaluation metric.

From Figure 25 we have the following observations: 1). Udifg0 or 500 negative examples is
better than using only 100 negative examples. 2). The pedoce difference between using 1000
and using 500 negative examples is quite small. This exgarinmdicates that negative examples
are helpful in improving the detection accuracy in some degiFor example, when 500 or 1000
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Figure 24: Performance comparison between using 5, 10, 20, 30, 50 aadxdlary concepts.
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Figure 25: Performance comparison between using 100, 500 and 100€ivesggamples.

negative examples are used, the performance is generdér lean using 100 negative examples
only. However, as the number of negative examples useddress the performance gain does not
increase accordinglg.g, from using 500 negative examples to using 1000 negativepbes. How
many negative examples would bring in the most performaaaeig still an open problem, which
is out of the scope of this chapter. However, since negakae@les are quite easy to obtain in the
real world, it is natural to leverage such cheap resouradsdosted detection accuracy.

5.6.7 Parameter Sensitivity Study

There are two regularization parameters, denoted asd 3 in Eq. (5.5). To learn how they affect
the performance on image annotation, we conduct an experiomethe parameter sensitivity. We
still only show the results on the first 6 events in Figure 2@onk Figure 26 we notice that for
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Figure 26: The detection performance variangg.t. « andf.

some eventse.g, Birthday party the performance is sensitive to the two parameters. Foesom
other events liked~eeding an animathe performance does not change much. However, we can
generally obtain good performance for these events whand 3 are comparable. For example,
good performance is obtained when= 3 = 0.001 for Attempting a board trickFeeding an
animal Landing a fislandWedding ceremonwanda = 3 = 10 for Birthday party Similar pattern

is observed for other events as well.

5.6.8 Convergence Study

We solve our objective problem using an iterative approdohpractice, how fast our algorithm
converges is crucial for the whole computational efficiendgnce, we conduct an experiment to
show the convergence curve of our algorithm. As we have aimreisults on all the 18 events, we only
present the convergence curve on the first event. All thenpatiers involved are fixed at 1. Figure
27 shows the convergence curve. It can be seen that the igbjaatction value converges within
10 iterations. The convergence experiment demonstragesfficiency of our iterative algorithm.

5.7 COMPLEMENTARY EXPERIMENT ON MULTI-CLASS CLASSIFICATION

Our proposed algorithm can be easily extended to othereadjuihs such as multi-class classifi-
cation. In this section, we conduct a complementary expartron image annotation to show its
effectiveness for multi-class classification.

We use the Animals with Attributes (AwA) dataset [38] for kiagtion. The reason is that the
dataset has both animal categories and the associatddittri Similarly to our assumption, differ-
ent animal categories may share common attributes. Thussevthe 10 animal categories specified
in [38] as our target annotation categories and the rest mawdliary data. Note that for the aux-
iliary data we use their attribute labels since these aitei are the shared components with the
target animal categories. The 10 target categoriepargian cat hippopotamusleopard hump-
back whaleseal chimpanzegrat, giant pandapig andraccoon For the 10 classes to be annotated,
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Figure 27: Convergence curve of the objective function value in Ecb)(Bsing Algorithm 4. The

figure shows that the objective function value monotonycaddicreases until convergence by apply-
ing the proposed algorithm.

Table 18: Performance comparison of different methods on image atioat The best result is

highlighted in bold.

Evaluation Metric||| SAR | A-MKL | MKTL | SAR&SVM | SVM | TaylorBoost| HF-SAR
Accuracy 0.257| 0.248 0.232 0.265 0.310 0.264 0.373

we randomly select 10 samples per category to form the mgisét and the remaining data of these
categories are our testing data. We use the SIFT feature &®thogeneous feature and the Locality
Similarity Histogram (LSH) feature as the heterogeneoatiie for image representation. In other
words, the images of the 10 target categories are represbpt8IFT and LSH while those of the
auxiliary categories are represented by SIFT only.

The annotation comparison between different algorithrdgsiglayed in Table 18. We can see that
HF-SAR is much better than other comparison algorithms. S¥8&cond best algorithm. Especial-
ly, other transfer learning algorithms have weaker peréoroe as only one feature is exploited.

The reported accuracy in [38] is 40.5%. But we point out tinaf38] six features have been
used whereas we only use two features. We did not use all gtarés used in [38] because we
were concerned with the computational efficieneyg, the comparison algorithms A-MKL and
TaylorBoost are computationally expensive. On the othadhto be consistent with our previous
experiment on MED with few exemplars, we select 10 samplas feach target category to form
the training set, making our training set also differentrirthat in [38]. Thus, we cannot directly
compare the annotation accuracy of our method and that ¢f [38

This complementary experiment has demonstrated that oilvoi@lso has the potential for other
applications.

5.8 CONCLUSION

In this paper, we have introduced the research explorafidED with few exemplars. This is

an important research issue as it focuses on more genenmplicated and meaningful events that
reflect our daily activities. In addition, the situation wee daced in the real world requires that
only few positive examples are used. To achieve good peeoos, we have proposed to borrow
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strength from available concepts-based videos for MED ¥eith exemplars. A notable difference
between our proposed algorithm and most existing knowladgetation algorithms is that it is built
upon heterogeneous featurés,, the features of the source and the target are partiallgrdifit,
but overlapping. Specifically, we first mine the shared @vahce and noise between the auxiliary
videos and the target videos based on the homogeneousefgailinen a sophisticated method is
exerted to alleviate the negative impact of the irrelevaart noise to optimize the event detector.
Meanwhile, another event detector of MED videos is trainagelol on the heterogeneous feature.
Then we integrate the two event detectors for optimizatadter which the decision values from
both are fused for the final prediction. Extensive experitnesing real-world multimedia archives
were conducted with results showing that our method outpers all the comparison algorithms.
The results validate that: 1) it is beneficial to leverageilaary knowledge for MED when we
do not have sufficient positive examples; and 2) the capglufiknowledge adaptation based on
heterogeneous features is realistic and advantageous.

We would like to point out that the effectiveness of our meltimgrounded on the condition that
the auxiliary concepts be relevant to the target eventbeltoncepts and the events are not related,
it is unlikely for us to mine the shared noise and redundatintys improving the event detection.
This is a limitation as it is difficult to generalize our methim Ad Hoc MED as we are not supposed
to look into the events and tune our system accordingly. $aat, the selected auxiliary concepts
would possibly have little correlation to an Ad Hoc event)gHimiting its helpfulness for event
detection. However, a possible solution to address thiblpno is to enlarge the repository of the
auxiliary concepts to thousands of concepts covering a wadge of objects, scenes and actions.
This approach, for sure, would cause computational burdémbuld be worth a try with the fast
development of our computing facilities. Our method is &lased on the hypothesis that the feature
representations from both domains are noisy and redundfaeten more discriminating features
with little noise or redundancy is developed in the futune; method would lose its capability of
harnessing the shared noise or redundancy. Hence, themparfoe gain from using our method
would be presumably limited.
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In this thesis we have addressed multimedia analysis wéldbus on different applicationse.,
image and video annotation, and multimedia event detection

Multimedia analysis is a fundamental tool for many applmas. The primary problem of this
topic is to overcome the semantic gap between the low-leatiifes and high-level semantics. That
said, features work as the basis for understanding mulisnezhtent. Extracting discriminating
features, therefore, plays an important role in attainingdgperformance. What else can we do
except the feature design itself? The generation of feagmeesentations would presumably bring
in noise and redundancy. Hence, the feature representatiobe improved from two aspects. By
removing the noise we can get more accurate representatiereas by removing the redundancy
we can reduce the dimension of the representation. As atrésid helpful for attaining better
analyzing accuracy and efficiency. A widely used technicqurettiis purpose is feature selection.
Though plenty of feature selection algorithms have beepgsed in the literature, most of them
select the features in a one-by-one fashion. Meaning: Thalyate the feature importance indepen-
dently, thus ignoring the correlation between differettees. Aiming to address this shortcoming,
we have proposed to do feature selection in a batch mode wiplaise model in Chapter 2. In this
way, the correlation between different features is takém &wcount. As we have focused on Web
image annotation where many of the images have multiple sgécriabels|.e., one image can depict
multiple concepts, we further incorporate the subspaamileg scheme to uncover the correlation
between different labels. The experimental results on Wedges have validated the effectiveness
of our method.

Following the progress in the feature level, we have comsilenaking some effort for multime-
dia analysis in the classifier level. Particularly, we askedselves one question: what can be a
common problem for both image and video analysis? Theregiglexist many common problems
but the scarcity of precise labeled images and videos getattantion. Tons of images and videos
are uploaded to the Internet every day. Users tend to addigises to their uploaded images and
videos but such descriptions can be subjective and noisyeaor ierelevant to the real semantic con-
cepts. However, learning a robust analyzing model reqpiresise labels to associate the low-level
features with the high-level semantic concepts. For sureamemanually label images and videos
but it requires expertise and much human labor. Previou& was shown that semi-supervised
learning is a good way to handle the paucity of accurate $adelit simultaneously exploits labeled
and unlabeled training data. Hence, we have developed d sewd-supervised feature analysis
algorithm for image and video annotation in Chapter 3. Outhwe has integrated manifold learn-
ing, inductive learning and a sparse model, thus resultintg icapability of utilizing discriminative
features for classifying out-of-sample data when only fateled training data are provided. The
method has been applied to image and video annotation withueaging performance.

The videos focused in Chapter 3 contain mostly simple objettenes and activities. Yet in our
daily life, users are more interested in complicated mudtiia events such d3og show Having
noticed that, we decided to work towards more complicatemhebased video analysis. A multi-

81



CONCLUSION

media event builds upon several related concepts such astslaind actions. It is more difficult to
understand multimedia event as it usually exists in longw®idlips with huge intra-class variations.
Furthermore, we have focused on multimedia event deteettdoh is way more difficult than an-
notation since the we have to detect a particular event froinfanite pool of unknown classes. We
have leveraged the fact that events contain concepts hyimggan intermediate representation from
both event videos and auxiliary concept-based videos. fiteemediate representation is optimized
together with the event detector so we would expect impraletdction accuracy. The proposed
approach has been evaluated on a large-scale multimedi vdeo archive. The experimental
results show that our approach works better than the mesasstclassifier SVM.

Having achieved encouraging progress on multimedia eweetction, we further pushed the re-
search on this topic to an even more challenging probiemdetection with only few positive ex-
emplars in Chapter 5. This problem also corresponds to theityaf precisely labeled multimedia
data. In contrast with the semi-supervised approach weinggtapter 3, we have investigated the
efficacy of transfer learning for our problem. The reasoms &irst, multimedia events are higher-
level multimedia contents based on objects, scenes arahagctvhich means the two domains have
certain shared components; Second, the research comrhagigjready contributed many precisely
labeled multimedia archives related to objects, scenesetiohs; Third, the assumption of transfer
learning is that we have abundant labeled data in the apxiiemain while few labeled data in the
target domain. Technically, we assumed that videos inotydbjects, scenes and actions and those
including complex events have shared noise and irrelevaf@ehis end, we have taken advantage
of novel sparse models on both domains to jointly remove thieenand irrelevance. On top of
that, we have investigated another meaningful directiotrémsfer learning. Most existing transfer
learning algorithms require that the features of the taaigdtauxiliary domains are of the same type.
Nonetheless, in many applications such a requirement magdeestrictive. In practice, the data
of multimedia event videos and those in the available corbaped video archives usually only
have partially shared data features. Hence, we have extentealgorithm to be able to effectively
adapt knowledge from one domain to another when the avaifebture sets are partially different,
but overlapping, for example if new or different featuresénanore or better instrumentation for
observations. Our newly proposed method was tested on-$a@e multimedia event videos and
the results have shown that it outperforms mainstreamifilgsssuch as SVM and several other
state-of-the-art transfer learning algorithms.

In summary, in this thesis we have studied different machiaming techniques for multimedia
analysis. Our work suggests that proper usage of featueetaml, semi-supervised learning and
transfer learning does help improve the overall understaaf multimedia contents. Hence, in the
future we will continue our research on this direction witle following possible pursuits:

e With the advance of computer vision research, a variety afuies have been proposed to
represent images and videos. Focusing on different crarstits of multimedia data, these
features intuitively should complement each other. That, sais highly possible to further
boost the analysis performance by proper use of multipleifea. Hence, it would be inter-
esting to study on novel algorithms that are capable of lsaing different features jointly as
symbiotic solutions.

¢ New automatic methodologies will be developed for effextxploitation of knowledge in
large-scale sensor data with emphasis on spatial infoomat/e will still focus on the com-
mon problem that when systems are creating knowledge franptx data, there are not
enough examples of the phenomena interest that have besdeddly analysts for an automat-
ed system to accurately classify and label. Our researdHaailitate knowledge adaptation
that leverages unlabeled data through exploitation of kedge in multiple related domains
and knowledge adaptation between two domains that havialpashared data features.
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e All the research effort on multimedia analysis is esselgtifdr serving users. Therefore,
we will be interested in investigating user-centric resbgroblems. How to conduct user
behavior analysis, user emotional analysis, user peiigpagiderstanding, user attention un-

derstanding and user need mining would be of great benefitdtithcare, commercial, art,
esthetics anétc
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