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Abstract
Given a dataset, traditional clustering algorithms often only provide a sin-

gle partitioning or a single view of the dataset. On complex tasks, many

different clusterings of a dataset exist, thus alternative clusterings which

are of high quality and different from given trivial clusterings are asked to

have complementary views. The task is therefore a clear multi-objective

optimization problem. However, most approaches in the literature optimize

these objectives sequentially (one after another one) or indirectly (by some

heuristic combination). This can result in solutions which are not Pareto-

optimal. The problem is even more difficult for high-dimensional datasets

as clusters can be located in various subspaces of the original feature space.

Besides, many practical applications require that subspace clusters can still

overlap but the overlap must be below a predefined threshold. Nonetheless,

most of the state-of-the-art subspace clustering algorithms can only gener-

ate a set of disjoint or significantly overlapping subspace clusters.

To deal with the above issues, for full-space alternative clustering, we de-

velop an algorithm which fully acknowledges the multiple objectives, opti-

mizes them directly and simultaneously, and produces solutions approximat-

ing the Pareto front. As for non-redundant subspace clustering, we propose

a general framework for generating K overlapping subspace clusters where

the maximum overlap between them is guaranteed to be below a predefined

threshold. In both cases, our algorithms can be applied for several domains

as different analyzing models can be used without modifying the main parts

of the algorithms.
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Chapter 1

Introduction

The recent advances in sensing and storage technologies, and the growth of

applications like internet search, video or image sharing, etc., have opened

the opportunity to collect very large amounts of complex data. In ad-

dition, the variety and dimensions of available data have also increased

significantly. While storing these datasets can be done efficiently, analyz-

ing them is a challenging task. This requires the development of automatic

techniques to support users in extracting knowledge from collected data.

The term of Knowledge Discovery in Database (KDD) has been intro-

duced for this task. It involves three main steps as in Fig.1.1: prepro-

cessing, data mining, and presenting. First, the KDD process cleanses the

raw data by removing noise, irrelevant features, etc., to improve quality of

the data which is used as the input for the next mining step. In the data

mining step, different algorithms can be used to discover useful and hidden

patterns from the data. Finally, the patterns are presented to users to help

them understand the data characteristics.

This thesis focuses on developing efficient algorithms for the mining step

of the KDD process. More specifically, we concentrate on the clustering

problem, one of the most important tasks in data mining. Clustering is

a very useful unsupervised machine learning technique for detecting the

1



1.1. NON-REDUNDANT CLUSTERING

Figure 1.1: Knowledge Discovery in Database (KDD) process.

important patterns or groups without supervised information like example

labels. The main goal of clustering is to partition a set of objects into

different clusters, such that the objects in the same cluster are very similar

to each other whereas the objects in different clusters are very dissimilar

from each other. Some types of objects can be documents, images, or

nodes in graphs. The feature vectors of objects or the similarities between

objects (represented as a similarity graph) in a dataset can used as the

input for clustering algorithms. The former type is referred to the internal

representation and the latter one is called the external representation.

1.1 Non-Redundant Clustering

1.1.1 Alternative Clustering

Because of being completely unsupervised, clustering is suitable for detect-

ing unknown patterns in areas where little expert knowledge is present. For

more demanding areas where the goal is to find patterns consistent with

background knowledge, the standard clustering algorithms often do not

meet this goal [27, 94]. Therefore, some researchers propose to use addi-

tional information to improve the accuracy of clustering or to guide the

clustering algorithm towards the desired results. This approach is named

semi-supervised clustering (SSC). In the last ten years, SSC has received

significant attention from researchers because of its success in many appli-

cations like document clustering [8, 9, 43, 52, 100], and image clustering

2



CHAPTER 1. INTRODUCTION

[44, 94]. SSC has been shown to improve the clustering performance sub-

stantially with additional instance-level constraints (declaring whether two

objects should be in the same cluster or not) or object labels as side in-

formation which are provided by a supervisor. Although labels can give

more information than constraints, in practical applications, constraints

are easier to obtain than labels, especially if the supervisor does not know

the correct label of a data object. Because of this reason, most studies in

the literature focus on exploiting the knowledge from instance-level con-

straints to improve the clustering performance, a research branch named

as constrained clustering.

An interesting variant of constrained clustering is alternative clustering

or non-redundant clustering which imposes the non-redundancy or diversity

constraints on the partitioning results [3, 42, 74]. The side information is

given as a set of known clusterings, called negative clusterings. The goal is

to find new clusterings which are different from the given negative set but

still of high quality. The motivation behind alternative clustering is that

each object in complex datasets can belong to many clusters, therefore

each clustering only provides a single view of the dataset whereas there

may exist other meaningful views. Therefore, several clustering solutions

should be considered when analyzing such datasets, and the clusterings

should be different from each other, and providing additional knowledge

from the datasets. As users are often not good at describing what they

want but easily present what they are not interested in, users can supply

known clusterings as input and ask the algorithms to produce novel ones

[42].

Although alternative clustering is clearly a multi-objective optimization

problem, most approaches in the literature only optimize the two objec-

tives sequentially (optimizing one objective first and then optimizing the

other one) [25, 74] or indirectly by some heuristics [3, 22]. Other methods

3



1.1. NON-REDUNDANT CLUSTERING

combine the two objectives into a single one and then optimize this single

objective [40, 92]. Solving a multi-objective optimization problem in the

above ways can result in solutions which are not Pareto-optimal, or in a

single or a very limited number of solutions on the Pareto front. The user

flexibility is thus limited because the tradeoff between the different objec-

tives is decided a priori, before knowing the possible range of solutions.

The tradeoff can be decided in a better way a posteriori, by generating

a large set of representative solutions along the Pareto front and having

the user pick the favorite one among them. More practical approaches are

interactive and incorporate machine learning : some initial information is

given but ”intelligent optimization” schemes collect user feedback about

the initial solutions and direct the software to explore the most interesting

areas of the objective space [10, 11]. In addition, most current alternative

clustering algorithms can only accept one negative clustering and generate

an alternative clustering. Therefore, one cannot generate a second alter-

native clustering by rerunning these algorithms. In order to generate a

sequence of alternative clusterings, where each one is different from the

other ones, a more complex algorithm which can accept a set of negative

clusterings is required.

1.1.2 Non-Redundant Overlapping Subspace Clustering

In traditional clustering approaches, the similarity between two objects is

computed by taking into account all features representing them, by using

the Euclidean metric or generalizations thereof. However, this approach

is not suitable for several real-world cases with high-dimensional feature

spaces where interesting clusters can be observed in different subspaces,

and where the similarity between items is not based on traditional p-norm

distances like Manhattan or Euclidean.

As different clusters can exist in different subspaces, preprocessing the

4



CHAPTER 1. INTRODUCTION

datasets by feature selection techniques does not solve the problem. This

motivates subspace clustering algorithms which aim at identifying simulta-

neously both objects in each cluster and the subspace of features associated

with it. For this reason, subspace clusters are also termed biclusters [19].

Several algorithms for biclustering are based on p-norm distances [58,

68]. Three approaches can be distinguished: grid-based, density-based,

and projected-subspace methods [68]. In grid-based approaches, the fea-

ture space is discretized and each subspace cluster is defined as a set of con-

nected grid cells where each cell contains a number of objects greater than a

threshold [98]. Other researchers extend the notion of density-connectivity

of DBSCAN [34] for subspace clustering: clusters are specified as dense

regions separated from sparse ones, and the distance between objects is

computed only on the relevant dimensions of those clusters [55]. Unlike

the two previous schemes searching for individual clusters, the projected-

subspace approaches aim at discovering a whole set of clusters at once,

by optimizing the clustering quality based on some criteria [1]. These al-

gorithms either produce disjoint biclusters or redundant biclusters with

significant overlap. In other words, these algorithms do not allow users to

specify the maximum overlap between the biclusters.

However, in many practical applications like gene expression analysis in

bioinformatics, a gene can be grouped into different functional categories,

thus the biclusters extracted from a gene expression matrix can have over-

lap but the overlap should be below a predefined threshold. Otherwise, we

can have redundant or very similar biclusters. This problem is termed as

non-redundant overlapping clustering. Another issue is that the methods

are often designed and optimized for specific distance metrics like Manhat-

tan [1, 98], or Euclidean [34]. Therefore, it is difficult to apply them to new

datasets or domains with different underlying models, among which gene

expression analysis is a particularly prominent application. In contrast,

5
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specialized algorithms for biclustering on gene expression data also use

very particular models which cannot be generalized to other applications

based p-norm distances.

1.2 Contributions and Structure of the Thesis

To deal with the suboptimal problem of alternative clustering in Section

1.1.1, we propose an explicit multi-objective algorithm with the following

advantages:

• Optimizing directly and simultaneously the predefined objectives (clus-

tering quality and dissimilarity).

• Generating a sequence of alternative clusterings where each newly

generated clustering is guaranteed to be different from previous alter-

native clusterings.

To the best of our knowledge, this is the first time alternative clustering

is solved directly as an multi-objective optimization problem. As our al-

gorithm does not rely on special characteristics of the objective functions

while searching for optimal solutions, any objective function measuring

clustering quality or dissimilarity can be used. Besides, we also propose

techniques for analyzing the Pareto front returned by our algorithm to help

users select the preferred solutions.

For the non-redundant overlapping problem in Section 1.1.2, we intro-

duce a flexible biclustering algorithm which can be applied to different

domains without modifying its overall structure. In addition, it can sequen-

tially generate multiple overlapping subspace clusters where the maximum

overlap is below a predefined threshold. It also allows users to control bi-

cluster shapes by adjusting the relative importance of rows and columns.
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Experiments on real-world datasets demonstrate that our algorithm per-

forms significantly better than the other state-of-the-art algorithms.

The rest of the thesis is organized as follows. We first summarize the

clustering background in Chapter 2. Then, we discuss the multi-objective

optimization problem of alternative clustering and introduce an algorithm

for solving it in Chapter 3. The redundancy and overlap problem of sub-

space clustering and our proposed algorithms are presented in Chapter

4.

1.3 List of Publications

The results during my Ph.D. have been published in the following journals

and papers:

• Duy Tin Truong and Roberto Battiti. A flexible cluster-oriented

alternative clustering algorithm for choosing from the Pareto

front of solutions. Machine Learning [ERA rank A*], 2013. [PDF

Link]

• Duy Tin Truong, Roberto Battiti and Mauro Brunato. Discover-

ing Non-Redundant Biclustering on Gene Expression Data.

In Proceedings of the 13th IEEE International Conference on Data

Mining (ICDM) [ERA rank A*, acceptance rate 11.6% for a regular

paper], 2013. [PDF Link]

• Duy Tin Truong, Roberto Battiti and Mauro Brunato. A Repeated

Local Search Algorithm for BiClustering of Gene Expression

Data. In Proceedings of 2nd International Workshop on Similarity-

Based Pattern Analysis and Recognition (SIMBAD) [acceptance rate

33% for a regular paper], 2013. [PDF Link]
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Chapter 2

Clustering Background

The main topic of this thesis is related to semi-supervised clustering; there-

fore, we summarize the traditional clustering approaches and their exten-

sions, semi-supervised clustering techniques for integrating side informa-

tion.

2.1 Hierarchical Clustering

Hierarchical clustering constructs a cluster hierarchy or a tree of clusters,

also known as dendrogram, from data objects. Hierarchical clustering al-

gorithms are mainly categorized into: agglomerative (bottom-up) and di-

visive (top-down) approach. The agglomerative approach starts with sin-

gleton clusters (each singleton cluster is a data object) and recursively

merges the two most similar clusters until the desired number of clusters is

achieved. In contrast, the divisive approach starts with a cluster consisting

of all data objects, and successively splits each cluster into smaller clusters

until a stopping condition is satisfied.

The main advantages of hierarchical clustering are:

• Ability to work with arbitrary attribute types [12].

• Ability to work with different similarity or distance functions [12].
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2.1. HIERARCHICAL CLUSTERING

• The hierarchical representation is informative and understandable [96].

The common disadvantages of hierarchical clustering are:

• Lack of robustness: it is sensitive to noise and outliers [96].

• It is unable to correct previous misclassification: once an object is

assigned to a cluster, the hierarchical clustering algorithms will not

consider this object again [12, 96].

• The computational complexity of the classic hierarchical clustering

algorithms is at least O(N 2) [12].

In the next sections, the agglomerative and divisive clustering will be

discussed in detail.

2.1.1 Agglomerative Clustering

The general framework of the agglomerative clustering algorithms is sum-

marized in Algorithm 1.

Algorithm 1: Agglomerative Clustering

Start with singleton clusters.

repeat
Calculate the similarity between clusters.

Merge the two closest (most similar) clusters into a new cluster.

until the desired number of clusters is achieved ;

As can be seen from Algorithm 1, the agglomerative clustering algo-

rithms differ from each other by their distance functions. There are two

main strategies to compute the distance between two clusters: graph meth-

ods and geometric methods.

In graph methods, the distance D(Ci, Cj) between two clusters Ci, Cj

is calculated by considering the minimal (single linkage), average (average

linkage), or maximal (complete linkage) distance of all object pairs (x, y)

10



CHAPTER 2. CLUSTERING BACKGROUND

where (x ∈ Ci, y ∈ Cj). SLINK [80], Voorhees’ algorithm [93], CLINK

[30] are one of the first algorithms in data mining which implement single

linkage, average linkage, and complete linkage, respectively. In geomet-

ric methods, each cluster is represented by its geometric center and the

distance between clusters is calculated based on cluster centers. This re-

sults in centroid, minimum variance linkage metrics. These all metrics are

generalized by the Lance-Williams recurrence formula [60]:

D(Cl, (Ci ∪ Cj)) = αiD(Cl, Ci) + αjD(Cl, Cj)+

βD(Ci, Cj) + γ|D(Cl, Ci)−D(Cl, Cj)| (2.1)

where D(Ci, Cj) is the distance between two clusters C1, C2 and αi, αj, β, γ

are the coefficients deciding which metric to be used. Let d(x, y) be the

distance between two objects x, y. Some special cases of the Equation (2.1)

are:

• When αi = αj = 1/2, β = 0, γ = −1/2, Equation (2.1) becomes the

single linkage metric:

D(Cl, (Ci ∪ Cj)) = min(D(Cl, Ci), D(Cl, Cj)) (2.2)

= min
x∈Cl,y∈Ci∪Cj

d(x, y) (2.3)

• When αi = αj = γ = 1/2, β = 0, Equation (2.1) becomes the complete

linkage metric:

D(Cl, (Ci ∪ Cj)) = max(D(Cl, Ci), D(Cl, Cj)) (2.4)

= max
x∈Cl,y∈Ci∪Cj

d(x, y) (2.5)

• When αi = |Ci|/(|Ci|+|Cj|), αj = |Cj|/(|Ci|+|Cj|), β = −αiαj, γ = 0,

11



2.1. HIERARCHICAL CLUSTERING

Equation (2.1) becomes the centroid linkage metric:

D(Cl, (Ci ∪ Cj)) =
|Ci|

|Ci|+ |Cj|
D(Cl, Ci) +

|Cj|
|Ci|+ |Cj|

D(Cl, Cj)

− |Ci||Cj|
(|Ci|+ |Cj|)2

D(Ci, Cj) (2.6)

=
|Ci|

|Ci|+ |Cj|
(cl − ci)2 +

|Cj|
|Ci|+ |Cj|

(cl − cj)2

− |Ci||Cj|
(|Ci|+ |Cj|)2

(ci − cj)2 (2.7)

= (cl −
|Ci|ci + |Cj|cj
|Ci|+ |Cj|

)2 (2.8)

= (cl − cij)2 (2.9)

where ci, cj, cl, cij are the centers of clusters Ci, Cj, Cl, (Ci ∪ Cj),
respectively.

Surveys of linkage metrics of more complicated agglomerative clustering

algorithms based on the Lance-Williams formula including group average

linkage, median linkage, centroid linkage, minimum variance linkage, etc.,

can be found in [28, 70].

2.1.2 Divisive Clustering

The general framework of the divisive clustering algorithms is summarized

in Algorithm 2. As can be seen from Algorithm 2, the main problems

Algorithm 2: Divisive Clustering

Start with a cluster consisting of all objects.

repeat
Select a cluster in a set of current clusters to split.

Split the selected cluster into smaller clusters.

until the desired number of clusters is achieved ;

of divisive algorithms are to decide which cluster to split next and which

12



CHAPTER 2. CLUSTERING BACKGROUND

method to use for splitting it. For the first problem, simple strategies

are often used: a) split every cluster at each level, b) split the clusters

with the largest number of elements, c) split the clusters with the highest

variance with respect to their centroids. Savaresi et al. [77] discussed the

disadvantages of these strategies and proposed a better method based on

cluster shapes. For the second problem, often a cluster is split into two

smaller clusters and this technique is called bisecting. The hierarchical

clusters obtained by the bisecting divisive algorithms are organized as a

binary tree or a binary taxonomy. This is a very useful result in many

applications like document clustering, indexing, etc., [77]. Two of the

most widely used algorithms are Bisecting K-means [81], a special version

of the standard K-means [62], and Principal Direction Divisive Partitioning

(PDDP) [15].

The bisecting K-means algorithm is shown in Algorithm 3. In detail,

given a data matrix D = [d1,d2, ...,dN ] ∈ RM×N where each column of D,

di ∈ RM is a data object, and we want to split D into two sub-matrices (or

sub-clusters) DL and DR with NL and NR elements and NL + NR = N .

Let c be the centroid of D and be computed as c = 1
N

N∑
i=1

di. The K-

means algorithm first picks randomly a point cL and another point cR =

c− (cL − c) in the opposite site of cL through the centroid c. Then each

data point di ∈D is classified into the left sub-cluster DL if di is closer to

cL than cR. Otherwise, that point belongs to the right sub-cluster DR. cL

and cR are then assigned as the centroid of DL and DR. The algorithm

repeats these two steps until cL and cR are not changed anymore. In

contrast, the PDDP algorithm approaches the cluster selection problem by

projecting all data objects in D to the principal direction, the direction

on which the variance of the data object projections is maximal. The data

objects are then split into two groups based on their projection values

(positive or non-positive). The PDDP algorithm is presented in Algorithm

13



2.2. PARTITIONING CLUSTERING

Algorithm 3: Bisecting K-means algorithm

Pick randomly a point cL, and compute cR = c− (c− cL).

Let c′L = cL, c
′
R = cR.

repeat
Let cL = c′L, cR = c′R.

if |di − cL| ≤ |di − cR| then
assign di to DL

else
assign di to DR

end

c′L = 1
NL

∑
di∈DL

di, c
′
R = 1

NR

∑
di∈DR

di

until cL = c′L and cR = c′R;

4. A comparative study of the bisecting K-means and PDDP algorithm

Algorithm 4: Principal Direction Divisive Partitioning (PDDP) algorithm

1. Compute the centroid c of D: c = 1
N

N∑
i=1

di.

2. Let D′ = D− ce where e is a N-dimensional row vector ones, i.e. e = [1, 1, .., 1].

3. Compute the SVD of D′ = UΣV T .

4. Let u be the first column of U .

∀di ∈D : di is assigned to DL if uT (di − c) ≤ 0. Otherwise, di belongs to DR.

can be found in [76].

2.2 Partitioning Clustering

Instead of providing a tree of clusters as the hierarchical clustering, the

partitioning clustering splits the set of data objects into K disjoint clus-

ters where K is provided by the user. Depending on the representation

of data objects (internal representation or external representation), there

are different approaches for partitioning clustering like objective function,

probabilistic, or graph-theoretic approach.

14



CHAPTER 2. CLUSTERING BACKGROUND

In the internal representation, each data object d is represented by an

M -dimensional vector xd and based on this representation, the similarity

or dissimilarity between data objects can be derived. In this case, one com-

mon approach is to define an objective function to measure the clustering

quality. The clustering problem is now transformed into an optimization

problem where the goal is to search for the cluster partitioning with the

minimal (or maximal) objective value. An alternative approach in this

representation is the probabilistic approach in which each cluster is mod-

eled by a probabilistic distribution. The probabilistic approach assumes

that the data objects are generated from a mixture of probabilistic models

whose distributions are unknown and the data partitioning problem be-

comes the problem of identifying such distributions. In the case of external

representation, there is no vector representation for each data object, only

the similarity or dissimilarity between data objects is available. There-

fore, the graph-theoretic approach is more suitable in this case and the

clustering result is an undirected and weighted graph of data objects.

Some representative algorithms of three above approaches will be dis-

cussed in the next sections.

2.2.1 Optimization-Based Clustering

In this approach, the objective function is the most important factor for

the success of the process. One of the most widely used objective function

is the squared error function. In detail, given a set of N data objects

xj ∈ Rd, j = 1, ..., N and the goal is to split them into K clusters C =

{C1, ..., CK}. The within-cluster SW and between-cluster square distance

SB [33] are defined as:

SW (C) =
K∑
i=1

∑
xj∈Ci

|xi − ci|2 (2.10)

15



2.2. PARTITIONING CLUSTERING

SB(C) =
K∑
i=1

Ni(ci − c)(ci − c)T (2.11)

where ci = 1
Ni

∑
xj∈Ci

xj, c = 1
N

N∑
j=1

xj, Ni = |Ci|. The clustering algorithms

now try to minimize the within-cluster square distance SW and maximize

the between-cluster square distance SB.

The most well-known and simplest partitioning clustering algorithm is

K-Means [62]. The K-Means algorithm searches for K disjoint clusters

such that the within-cluster square distance is minimized. The K-Means

algorithm is presented in Algorithm 5.

Algorithm 5: K-Means

Initialize K cluster centers randomly or based on some heuristics.

repeat
Assign each data object xi to the nearest center.

Update each cluster center ci as the mean of all data object belongs to that

cluster, i.e. ci = 1
Ni

∑
xj∈Ci

xj.

until there is no change for each cluster or a maximum number of iterations are

executed ;

Firstly, K-Means initialize K cluster centers randomly or based on

heuristics. Then it assigns each data object xi to the nearest center among

K centers. Next, each center is updated as the mean of all data objects

assigned to that cluster. K-Means repeats the two previous steps until

there is no change in each cluster or until a maximum number of iterations

are executed. Because K-Means is very simple and easy to implement, it

has been used in many practical problems [96]. The time complexity of

K-Means is NKdL where L is the number of iterations. Usually, K and d

are much smaller compared to N , hence K-Means can work well with large

datasets. Also, the parallel version of K-Means was developed by Stoffel

et al. in [82]. However, K-Means has the following disadvantages:
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1. K-Means strongly depends on the cluster initialization. The general

strategy is to run K-Means many times and select the best clustering.

Some classical cluster initialization methods are:

• Random: pick randomly K points as K centers.

• Forgy’s method [37]: pick randomly K data objects as K centers.

• Macqueen’s method [64]: pick randomly K data objects as K

centers. Then following the data object order, assign each data

object to the cluster with the nearest center. After each assign-

ment, the center is recalculated as the mean of the data objects

in that cluster.

• Kaufman’s method [56]: in this method, K centers are selected

sequentially. The first cluster is chosen as the most centrally lo-

cated data object in the dataset. Then, each next center is one

of the remaining data objects with the highest number of data

objects around it estimated by a heuristic function.

The experimental results on the above four methods [73] show that

the random and Kaufman’s method outperform the other two methods

with respect to the effectiveness and robustness of the K-Means algo-

rithm. Also, considering the converge speed, the Kaufman’s method

is recommended by the authors.

2. K-Means requires the number of clusters K is known in advance, but

identifying an effective K is non-trivial. One of the attempts trying

to determine the optimal K is the ISODATA algorithm [5]. The ISO-

DATA algorithm merges and splits the intermediate clusters based on

some predefined thresholds. However, this means that the problem of

identifying the number of clusters turns into the problem of tuning

the threshold parameters.
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3. K-Means suffers from the problem of local minima. A solution is

to formulate the clustering problem as a combinatorial optimization

problem and apply directly well-known combinatorial optimization

techniques like simulated annealing [18], genetic algorithms [59].

4. K-Means is sensitive to outliers. Because every data object is assigned

to a cluster and a cluster center is the mean of all data objects in that

cluster, some noise data objects which are very far from the correct

cluster center can destroy the K-Means algorithm. The K-Medoids

algorithms [35, 56, 91] solve this problem by choosing the data objects

in the dataset as cluster prototypes.

2.2.2 Probabilistic Clustering

In probabilistic clustering, the data objects {x1, ..., xN} are assumed to be

generated from a mixture of probabilistic models. The generation process

of each data object is as follows: first, a model (or a class) cj, 1 ≤ j ≤ K

is picked with the probability of pj and then a data object xi is drawn

from the model cj. Let θj be the parameters of the model cj and Θ =

(p1, ..., pK , θ1, ..., θK) be the parameters of the mixture model. The likeli-

hood of the dataset is the probability that the dataset is drawn from that

given mixture model:

P (X|C) =
N∏
i=1

K∑
j=1

P (xi|cj,Θ)pj (2.12)

Usually, the log-likelihood L(X|C) = logP (X|C) is used as an objec-

tive function and the goal is to find the parameter Θ∗ such that the log-

likelihood is maximum. The popular algorithm for searching such param-

eter Θ∗ is the Expectation-Maximization (EM) algorithm [32, 66]. First,

the EM algorithm initializes the parameter Θ as Θ0 and then it repeats

the two steps E and M until the convergence conditions are satisfied. The
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two steps are as follows. Step E computes P (cj|xi,Θt) given Θt. Step M

updates Θt+1 based on P (cj|xi,Θt) evaluated at Step E.

Let’s assume that the probability distributions p(xi|cj,Θ), p(cj|xi,Θ)

are normal and each model cj is parameterized by its mean µj and vari-

ance Σj, then Θ = (p1, ..., pK , µ1, ..., µK ,Σ1, ...,ΣK). The EM algorithm

of Gaussian mixtures [14] is illustrated as in Algorithm 6. Because EM

Algorithm 6: The EM algorithm for Gaussian Mixtures

Initialize Θ as Θ0 and calculate the log-likelihood.

repeat
Step E: Evaluate the probabilities:

wji = P (cj|xi,Θt) =
P (xi|cj,Θt)pj

K∑
k=1

P (xi|ck,Θt)pk

(2.13)

Step M: update the parameters:

µj =
1

Nj

N∑
i=1

wjixi (2.14)

Σj =
1

Nj

N∑
i=1

wji(xi − µj)(xi − µj)
T (2.15)

pj =
Nj

N
(2.16)

where

Nj =
N∑
i=1

wji (2.17)

Calculate the log-likelihood and check convergence conditions.

until the convergence conditions are satisfied ;

iterates through every data object-class pair and each data object is a M -

dimensional vector, therefore its complexity is O(LM 2NK) where L is the

number of iterations that EM performed. In order to reduce such compu-

tational cost, Moore [67] suggested using the KD-Tree data structure to

organize data objects. The root node keeps all data objects and at each
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non-leaf-node, data objects are divided into two its children by splitting at

the center of the widest attribute. A node is considered as a leaf and left

un-split if the widest attribute of the data objects in that node is less than

some threshold. The E and M steps are performed at the root node after

accumulating sufficient statistic information (e.g., wij) from its two chil-

dren. Each child node recursively sums up the statistic information from

its children. At leaf nodes, the statistic information of all data objects are

approximated as the statistic information of the centroid. This causes the

reduction in the computational cost. Also, a non-leaf-node is pruned and

considered as a leaf node if the difference between the lower bound and

upper bound of the statistic information of all data objects in this node is

less than some threshold.

2.2.3 Graph-Theoretic Clustering

One of the well-known graph theoretic clusterings is Zhan’s algorithm [99]

which first builds the minimum spanning tree of the dataset and then re-

moves the longest edges to split the minimum spanning tree into sub-trees

where each sub-tree forms a cluster. Similarly, Hartuv and Shamir [49] con-

sider clusters as highly-connected sub-graphs with the edge-connectivity

(the minimum number of edges whose removal makes the graph discon-

nected) greater than half of the vertex number of the graph. Recursively,

a graph is checked if it is highly connected. If this condition holds, the

graph is returned, otherwise it is split into two sub-graphs by a minimum

cut procedure which seeks for the smallest number of edges to remove in

order to disconnect the graph. Another algorithm called CLICK [78] also

uses minimum weight cut to partition data objects into clusters. CLICK

first builds a weighted graph of data objects where edge weight wij between

two data objects i and j reflects the probability that i and j are in the

same cluster (i and j in this case are called mates) and it is defined as
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follows:

wij = log
pmatesp(Sij|µT , σT )

(1− pmates)p′(Sij|µF , σF )
(2.18)

where pmates is the probability that two randomly picked data objects are

in the same cluster. p(Sij|µT , σT ) and p′(Sij|µF , σF ) are the probability

that i and j are mates and not mates, respectively, given the similarity

Sij between them. The mean and deviation (µT , σT ), (µF , σF ) of these nor-

mal distributions are estimated by prior knowledge or experiments. Then,

CLICK recursively splits the graph by a minimum weight cut procedure

into two sub-graphs until some stopping conditions are satisfied. Besides,

as the number of sub-graphs can be different from the desired number

of clusters, CLICK merges similar sub-graphs to generate the requested

number of clusters.

2.3 Semi-Supervised Clustering

Semi-supervised clustering (SSC) is the problem of clustering unlabelled

data with the support of side information provided by a supervisor (who

can be an expert or an oracle system). Because of its great success in

recent years, SSC has received significant attention from researchers. The

side information has been shown to guide the clustering algorithms towards

the desired clustering solutions or to help the clustering algorithms escape

from local minima. The side information does contribute not only to the

performance improvement but also to the complexity reduction. An exam-

ple is the car land identifying problem from GPS data where the goal is

to cluster data points into different lanes [94]. This is a difficult clustering

problem for the well-known clustering algorithm K-Means because the lane

clusters have a very special shape which is very elongated and parallel to

the road centerline. In some experiments, the accuracy of K-Means inte-
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grating constraints is 98.6% whereas that of K-Means without constraints

is only 58% [94]. Other applications of SSC can be found in [27].

The SSC algorithms can be classified into one of the following two

schemes: the a-priori scheme, the interactive scheme. In the a-priori

scheme, the side information is given once before executing the SSC al-

gorithm while in the interactive scheme, the side information is collected

iteratively by interacting with the supervisor.

2.3.1 A Priori Scheme

Figure 2.1: A Priori Scheme

In the a priori scheme (shown in Fig. 2.1), the SSC algorithm reads all

side information once and uses these information to improve the clustering

performance. Many works following this scheme have been done in liter-

ature and split into different types of side information like labelled data,

instance-level or cluster-level constraints.

Several techniques utilizing the side information in the form of labeled

data are proposed like:

• Seeded K-Means uses labeled examples to initialize the cluster centers

[7].

• Constrained K-Means also initializes the cluster centers by labelled

data like Seeded K-Means but it keeps the labels of examples in the
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side information unchanged in the assignment step of the clustering

process [7].

The algorithms which uses instance-level constraints provided by users

to improve the clustering performance are classified into three groups:

• Constraint-Based Clustering: in this group, the original clustering

algorithms are modified to integrate the constraints, e.g., in a con-

strained agglomerative clustering algorithm, two clusters are only merged

if the merging does not violate constraints [27], or by adding the

penalty of violating the constraints into the objective function of K-

Means [8, 26, 72]. The clustering solutions must satisfy completely

the constraints [79, 94] or some constraints can be violated [8, 26, 72].

Also, two dominant approaches of the algorithms in this group con-

sist of extending the objective function of K-Means for integrating

constraints [8, 26, 72] or of adding constraints into prior distributions

of probabilistic clustering frameworks. The clustering solutions which

satisfy the constraints are given higher scores to be selected [9, 63, 79].

• Distance-Based Clustering: in this group, only the distance metric is

changed such that if two points are constrained to be in the same clus-

ter, their distance should be smaller than the distance of two points

constrained to be in different clusters [50, 95].

• A unified framework for constraint-based and distance-based cluster-

ing is also proposed by Basu et al. [9].

Finally, cluster-level constraint based algorithms can be divided into

two main classes:

• Balanced-Clustering: where the constraint is that the variance of clus-

ter sizes is as small as possible. Two algorithms for this problem are

proposed by Banerjee et al. [6] and Demiriz et al. [31].
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• Non-Redundant or Alternative Clustering: in this formulation, the

constraint is given as a clustering result and the goal is to find the

new clustering result which is high-quality and different from the given

one. This problem was first introduced by Goldek et al. [41, 42].

2.3.2 Interactive Scheme

Figure 2.2: Interactive Scheme

In the interactive scheme (illustrated in Fig. 2.2), the SSC algorithm

presents the clustering result and a query to a supervisor who can be a

user or an oracle system. Then the supervisor provides feedback to the

SSC algorithm. The SSC algorithm analyses the feedback and adapts

this information to bias the clustering process. The interaction between

the SSC algorithm and the supervisor is stopped when some convergence

condition is satisfied. The feedback can be collected in two following ways

based on the role of the supervisor and the SSC algorithm. If the supervisor

plays the active role, then he actively provides the constraints to the SSC

algorithm. In the case that the SSC algorithm has the active role, the

SSC algorithm will pose queries to the supervisor, and the supervisor is

supposed to answer. The second approach has been shown to outperform

the first approach in literature. The reason is that the first approach
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requires that the supervisor must know which are the most informative

constraints to supply for the SSC algorithm while in the second approach,

this difficult task is on the side of the SSC algorithm, and it is better if

the SSC algorithm is allowed to ask what it is not clear than passively

receives irrelevant feedback from the supervisor. The algorithms in the

first approach will be referred as the passive SSC algorithms, while the

ones in the second approach will be called the active SSC algorithms.

So far, only few works have been done in this scheme. Interactive SSC

algorithms can integrate the constraints by changing the distance metric

[20, 21] and use the farthest distance [8], information gain [52], density

[100] and co-association confidence [43] to select the most informative con-

straints.
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Chapter 3

Alternative Clustering

Supervised alternative clusterings is the problem of finding a set of clus-

terings which are of high quality and different from a given negative clus-

tering. The task is therefore a clear multi-objective optimization problem.

Optimizing two conflicting objectives at the same time requires dealing

with trade-offs. Most approaches in the literature optimize these objec-

tives sequentially (one objective after another one) or indirectly (by some

heuristic combination of the objectives). Solving a multi-objective opti-

mization problem in these ways can result in solutions which are dom-

inated, and not Pareto-optimal. We develop a direct algorithm, called

COGNAC, which fully acknowledges the multiple objectives, optimizes

them directly and simultaneously, and produces solutions approximating

the Pareto front. COGNAC performs the recombination operator at the

cluster level instead of at the object level, as in the traditional genetic

algorithms. It can accept arbitrary clustering quality and dissimilarity ob-

jectives and provides solutions dominating those obtained by other state-

of-the-art algorithms. Based on COGNAC, we propose another algorithm

called SGAC for the sequential generation of alternative clusterings where

each newly found alternative clustering is guaranteed to be different from

all previous ones. The experimental results on widely used benchmarks
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demonstrate the advantages of our approach. The source codes, datasets

and other supplementary materials of our experiments can be found at

http://lion.disi.unitn.it/intelligent-optimization/cognac/.

The content of this chapter is extracted from our published paper [87].

3.1 Introduction

Given a dataset, traditional clustering algorithms often only provide a

single set of clusters, a single view of the dataset. On complex tasks,

many different ways of clustering exist, therefore a natural requirement is

to ask for alternative clusterings, to have complementary views. Clustering

flowers depending on colors and aesthetic characteristics can be suitable for

a florist, but not for a scientist, who usually prefers different organizations.

Recently, many techniques have been developed for solving the alterna-

tive clustering problem. They can be split into two groups: unsupervised

or supervised. In unsupervised alternative clustering, the algorithm au-

tomatically generates a set of alternative clusterings of high quality and

different from each other [13, 23, 24, 45, 54, 71]. Unsupervised alternative

clustering is useful if users do not know what they want and need some

initial options. In other cases, users already know some trivial or negative

clusterings, and they ask for different and potentially more informative

clusterings. These algorithms are called supervised because the user is di-

recting the alternative clustering by explicitly labeling some clusterings as

undesired, or negative.

This chapter focuses on supervised alternative clustering, the problem

of finding new clusterings of good quality and as different as possible from

a given negative clustering. Supervised alternative clustering is a multi-

objective optimization problem with two objectives of clustering quality

and dissimilarity, and the goal is to find a representative set of Pareto-
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optimal solutions. A Pareto-optimal solution is a solution such that there

is no solution which improves at least one objective without worsening the

other objectives. The Pareto front is the set of all Pareto-optimal solutions

in the objective space. Most approaches in the literature only optimize

the two objectives sequentially (optimizing one objective first and then

optimizing the other one) [25, 74] or indirectly by some heuristics [3, 22].

Other methods combine the two objectives into a single one and then

optimize this single objective [40, 92].

Solving a multi-objective optimization problem in the above ways can

result in solutions which are not Pareto-optimal, or in a single or a very

limited number of solutions on the Pareto front. The user flexibility is

thus limited because the tradeoff between the different objectives is de-

cided a priori, before knowing the possible range of solutions. The tradeoff

can be decided in a better way a posteriori, by generating a large set of

representative solutions along the Pareto front and having the user pick

the favorite one among them. More practical approaches are interactive

and incorporate machine learning : some initial information is given but

”intelligent optimization” schemes collect user feedback about the initial

solutions and direct the software to explore the most interesting areas of

the objective space [10, 11].

Some approaches are developed for specific clustering algorithms, and

are therefore limited in their applications, or require setting parameters

which influence the preference between clustering quality and dissimilarity.

Parameter tuning by the final user is a difficult task since some dominating

solutions can be lost because of improper settings.

In addition, most current alternative clustering algorithms can only ac-

cept one negative clustering C and generate an alternative clustering C1

different from C. Therefore, one cannot generate a second alternative

clustering C2 by simply rerunning the algorithm with C1 as the negative
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clustering. The second alternative clustering C2 will be different from C1

but often very similar to C, because C is not considered when computing

C2. In order to generate a sequence of alternative clusterings, where each

one is different from the other ones, a more complex algorithm which can

accept a set of negative clusterings is required.

To deal with the above issues, we propose an explicit multi-objective al-

gorithm, called Cluster-Oriented GeNetic algorithm for Alternative Clusterings

(COGNAC), with the following advantages:

• Optimizing directly and simultaneously the predefined objectives (clus-

tering quality and dissimilarity).

• Generating a sequence of alternative clusterings where each newly

generated clustering is guaranteed to be different from previous alter-

native clusterings.

In [86], we introduced the basic version of COGNAC which is limited

to the case where the number of clusters in both negative clusterings and

alternative clusterings are the same. In this chapter, we extend COGNAC

flexibility to handle cases where the number of clusters can be different

and propose a new algorithm called SGAC for the sequential generation

of alternative clusterings. We also propose techniques for analyzing the

Pareto front returned by COGNAC to help users select the preferred

solutions. Moreover, we present detailed experiments with a thorough

analysis on the Pareto solutions and compare them with the ground truth

alternative solutions.

The rest of this chapter is organized as follows. We first formally de-

fine the alternative clustering problem in Section 3.3.1. In Section 3.3.2,

we summarize the non-dominated sorting framework of Deb et al. [29] and

then detail our algorithm COGNAC. We then propose the new algorithm

SGAC in Section 3.3.3. Some techniques for analyzing and visualizing the
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Pareto front returned by our algorithms are presented in Section 3.3.4. We

describe the test datasets in Section 3.4.1 and the experiments to com-

pare the performance of our algorithm with that of other state-of-the-art

proposals on the first alternative clustering in Section 3.4.2. Then, we il-

lustrate the ability of our algorithm for generating a sequence of different

alternative clusterings in Section 3.4.3. Finally, we analyze the parameter

sensitivity of our method in Section 3.4.4.

3.2 Related Work

Among the first algorithms in supervised alternative clustering is Condi-

tional Information Bottleneck (CIB) [40], based on the information bottle-

neck (IB) method [85]. Their approach in modelling the clustering problem

is similar to that of data compression. Given two variables X representing

objects and Y representing features, and a negative clustering Z, the CIB

algorithm finds an alternative clustering C which is different from Z but

still good in quality by maximizing the mutual information I(C;Y |Z) be-

tween C and Y given Z under the constraint that the mutual information

(or information rate) I(C;X) between C and X is less than a threshold

R. However, this approach requires an explicit joint distribution between

the objects and the features which can be very difficult to estimate.

Bae et al.[3] show that the clusterings found by CIB are not of high

quality if compared with those found by their COALA algorithm, which

extends the agglomerative hierarchical clustering algorithm. Let d1 be the

smallest distance between two arbitrary clusters and d2 be the smallest

distance between two clusters where merging them does not violate the

constraints (generated by the negative clustering). If the ratio d1
d2

is less

than a threshold, then two nearest clusters are merged to preserve the

clustering quality. Otherwise, two clusters with the distance of d2 are
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merged to find dissimilar clusterings. A drawback is that it only considers

cannot-link constraints, hence useful information which can be obtained

through must-link constraints is lost. In addition, the application scope

of the method is limited because it was developed particularly for the

agglomerative clustering algorithms.

To overcome the scope limitation, Davidson et al.[25] propose a method,

called AFDT which transforms the dataset into a different space where

the negative clustering is difficult to be detected and then uses an arbitrary

clustering algorithm to partition the transformed dataset. However, trans-

forming the dataset into a different space can destroy the characteristics

of the dataset. Qi et al.[74] fix this problem by finding a transformation

which minimizes the Kullback-Leibler divergence between the probability

distribution of the dataset in the original space and the transformation

space, under the constraint that the negative clustering should not be de-

tected. This approach requires specifying user preference at the clustering

quality and the clustering dissimilarity. In this thesis, we will refer this

approach as AFDT2.

Alternative clustering can also be discovered by two orthogonalization

algorithms proposed in [22]. The algorithms first project the dataset into

an orthogonal subspace and then apply an arbitrary clustering algorithm

on the transformed dataset. However, when the objects of the dataset are

in low-dimensional spaces, the orthogonal subspace may not exist [25]. In

addition, a requirement of Cui et al.’s algorithms which is the number of

clusters must be smaller than the number of dimensions in the original

dataset may not be satisfied in many practical cases. In fact, Davidson et

al.[25] show that AFDT outperforms Cui et al.’s algorithms.

The above algorithms can only accept one negative clustering. Recently,

Nguyen et al. [92] propose MinCEntropy++, which can accept a set of

NC negative clusterings. MinCEntropy++ finds an alternative clustering
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C∗ by maximizing the weighted sum:

NCI(C; X)− λ
NC∑
i=1

I(C; Ci)

where I(C; X) is the mutual information between a clustering C and the

dataset X; I(C; Ci) is the mutual information between a clustering C and

a negative clustering Ci; λ is the parameter trading-off the importance

between clustering quality and dissimilarity.

Dasgupta et al.[24] propose an unsupervised algorithm for generating a

set of alternative clusterings. In this thesis, we will refer this algorithm

as Alter-Spect because it is based on the spectral clustering algorithm.

Alter-Spect first forms the Laplacian matrix L of the dataset and then

computes the second through (m+ 1)-th eigenvectors of L where m is the

number of alternative clusterings that users want to generate. Then, it

runs K-Means on these eigenvectors to produce m different alternative

clusterings. The main intuition of Alter-Spect and other subspace clus-

tering approaches [13, 45, 71] is that different alternative clusterings can

exist in different subspaces. In contrast, our algorithm considers all fea-

tures and optimizes two objectives in parallel. In detail, Nui et al. suggest

an algorithm which learns low-dimensional subspaces for different views

by optimizing a fixed single objective which is the combination of two al-

ternative clustering objectives [71], i.e., the quality of all clustering is as

high as possible, and the redundancy between them is as low as possible.

Günnemann et al. also propose a Bayesian framework for determining dif-

ferent views in subspaces [45]. The authors generalize the dataset by using

multiple mixture models where each mixture of Beta distributions presents

a specific view. As these mixtures can compete against each other in the

data generation process, their framework can handle overlapping views and

subspace clusters. Instead of generating alternative clusterings as in other

approaches, De Bie [13] describes an algorithm which generates a sequence
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of different clusters. In each iteration, the algorithm searches for the next

cluster surprising the user most, given the previous clusters. The user

surprise is inversely proportional to the probability that the new cluster

appears under a predefined data distribution. However, as this framework

only focuses on the surprise aspect of the next cluster but does not consider

its quality, a poor quality but highly-surprising cluster can be returned.

For optimizing directly the clustering objectives, Handl et al. [47]

propose an evolutionary algorithm for multi-objective clustering, called

MOCK, which uses the graph-based representation to encode the clus-

tering solutions. Each clustering solution Ct of N data objects {xi}Ni=1 is

represented as a N -dimensional vector and the i-th element Ct(i) stores

the index of the object xj to which the i-th object xi is connected. All data

objects in the same connected components are extracted to form clusters.

The clustering solution returned by MOCK can have an arbitrarily large

number of clusters because the number of connected components can be

varied from 1 to N . The number of clusters in alternative clustering is

often fixed to make it easier to compare different clusterings. Actually,

this is necessary when comparing two clusterings on quality objectives like

Vector Quantization Error (VQE) of K-Means [62], because the value of

VQE decreases when the number of clusters increases. However, fixing

the number of clusters decreases MOCK performance in a radical way,

because many clustering solutions become invalid and are discarded when

applying the standard procedures of initialization, recombination, and mu-

tation. Therefore, it is difficult to extend MOCK for the alternative clus-

tering problem to compare with our algorithm. This is the reason why

we will only compare our algorithm against COALA, AFDT, AFDT2,

MinCEntropy++ and Alter-Spect.
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3.3 A Cluster-Oriented Genetic Algorithm for Alter-

native Clustering

In this section, we first formally define the problem of alternative clustering

in Section 3.3.1 and then detail our algorithm COGNAC to address such

problem in Section 3.3.2. Then, based on COGNAC, we propose another

algorithm (SGAC) for generating a set of different alternative clusterings

in Section 3.3.3. Some techniques for analyzing and visualizing the Pareto

front returned by our algorithm are also presented in Section 3.3.4.

3.3.1 The Alternative Clustering Problem

Given a dataset X = {xi}Ni=1 of N objects, the traditional clustering prob-

lem is to partition this dataset into K disjoint clusters such that the clus-

tering quality is as high as possible. Let C be a clustering solution where

C(i) is the index of the cluster that xi belongs to, D(C,C) be the dissim-

ilarity between two clusterings C and C, and Q(C) be the inner quality

of a clustering C. We defer the definition of D(C,C) and Q(C) to Sec-

tion 3.3.2 where we also present other components of our algorithm and

define in this section the dissimilarity between a clustering and a set of

clusterings, the overall quality of a clustering and the dominance relation

between two clusterings.

Definition 1 (Dissimilarity) The dissimilarity between a clustering C and

a set S of clusterings is the minimum dissimilarity between C and all clus-

terings C ∈ S:

D(C,S) = min
C∈S

D(C,C) (3.1)

In Fig.3.1a and Fig.3.1b, we illustrate the benefit of using minimum dis-

similarity over maximum dissimilarity and average dissimilarity in defining
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(a) Maximum dissimilarity prefers solution Ca

while minimum dissimilarity prefers solution Cb.

(b) Average dissimilarity prefers solution Ca while

minimum dissimilarity prefers solution Cb.

Figure 3.1: The benefit of using minimum dissimilarity over maximum and average dis-

similarity.

the dissimilarity between a clustering and a clustering set. Assume that

the clustering set is S = {C1,C2} and we want to select a clustering be-

tween two clusterings Ca and Cb based on the dissimilarity. As it can be

seen in Fig.3.1a, although Ca is very similar (or can be equal to) C1 but

its maximum dissimilarity to the clustering set S (which is the dissimilar-

ity between Ca and C2) is greater than the maximum dissimilarity of Cb

to S (which is the dissimilarity between Cb and C2). Therefore, based

on the maximum dissimilarity, Ca will be selected. However, from human

interpretation, Cb is more different from the clustering set S than Ca. Sim-

ilarly, in Fig.3.1b, Ca has a higher average dissimilarity to the clustering

set S than Cb and Ca will be selected if the average dissimilarity is used.

However, Cb is clearly more different from the clustering set S than Ca.
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Definition 2 (Overall Clustering Quality) The overall quality of a clus-

tering C is characterized by the following bi-objective function F(C,S):

F(C,S) = [Q(C),D(C,S)] (3.2)

where


S is a given negative clustering set.

Q(C) is the quality of a clustering C.

D(C,S) is the dissimilarity between C and S.

Definition 3 (Clustering Dominance) Given a set S of negative cluster-

ings, a clustering C dominates another clustering C′ w.r.t S, written C �S

C′ iff one quality objective of C is better than or equal to that of C′ and the

other objective of C is strictly better than that of C′. Formally, C �S C′

if and only if the following conditions hold:

(C 6= C′) ∧
[(
Q(C) > Q(C′) ∧ D(C,S) ≥ D(C′,S)

)
∨(

Q(C) ≥ Q(C′) ∧ D(C,S) > D(C′,S)
)]

(3.3)

Finally, the alternative clustering problem is defined as follows:

Definition 4 (Alternative Clustering) Given a set S of negative cluster-

ings, alternative clustering is the problem of finding a representative set

of clusterings C along the Pareto front defined by the bi-objective function

F(C,S).

3.3.2 A Cluster-Oriented Algorithm for Alternative Clustering

In multi-objective optimization problems, usually there are efficient op-

timal solutions which cannot be compared. Therefore, one of the main

goals of multi-objective optimization is to approximate the Pareto front.

Evolutionary algorithms (EAs) possess several characteristics that are well

suitable for multi-objective optimization. EAs approximate the Pareto
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front in a single run by maintaining a solution set or population. In each

iteration, this solution set Q is modified by two basic steps: selection and

variation. The selection step chooses only well-adapted candidates from

Q to form a set P of parent solutions. Then, in the variation step, the

parent candidates in P are used to produce the next generation through

recombination and mutation. The two steps are repeated until a number of

generations is reached. We adapt one of the most popular EAs, NSGAII

[29], for the alternative clustering problem defined in Section 3.3.1.

Applying EAs to the clustering problem is not straightforward because

the traditional recombination and mutation operators of EAs are not very

suitable for the clustering problem. The first reason is that they often can-

not produce offspring solutions with good characteristics inherited from

their parents [51]. Besides, in the case of fixed number of clusters, these

operators can also produce invalid solutions. Therefore, when applying

NSGAII, we replace these operators by two new operators called Cluster-

Oriented Recombination and Neighbor-Oriented Mutation which can pro-

duce a valid offspring with good properties inherited from its parents. We

defer the discussion of the deficiencies of the traditional genetic operators

in Section 3.3.2 and 3.3.2, where we also describe our new genetic operators

in detail. In the next sections, we summarize the NSGAII mechanism and

present our modifications for the alternative clustering problem.

Fast NonDominated Sorting Algorithm (NSGAII)

The pseudo code of NSGAII is shown in Algorithm 7. Let P be the

fixed size of populations generated in the algorithm. The algorithm first

creates an initial parent population P0 and then produces an offspring

population Q0 from P0 by the usual binary tournament selection, recom-

bination, and mutation operators. The binary tournament selection pro-

cedure picks randomly two solutions and returns the nondominated one.
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The set of non-dominated solutions Pbest is initialized as the set of non-

dominated solutions in P0∪Q0. Then for each generation t, the procedure

FastNonDominatedSort(Rt) classifies all solutions in the combined popula-

tion Rt = Pt∪Qt into different dominance fronts (sorted in the ascending

order of dominance depth where the first front is the set of non-dominated

solutions). The pseudo code of the FastNonDominatedSort procedure is

presented in Algorithm 8. We denote np the number of solutions that

dominate a solution p ∈ P and Sp the set of solutions that p dominates.

The solutions p with np = 0 are placed in the first nondominated front.

Then, for each solution p with np = 0, we visit each member q of its

dominated set Sp and reduce its domination count by one. When doing

so, if nq = 0 then we put q in a separate list Q. These members will be-

long the second nondominated front. The above process is repeated until

all solutions are classified. The complexity of this procedure is O(P 2Λ)

where P is the population size, Λ is the number of objectives. In the case

of alternative clustering with two objectives, the complexity of the Fast-

NonDominatedSort procedure is O(P 2). Because the combined population

includes all solutions of the previous parent population Pt and the offspring

population Qt, the non-dominated solutions found in previous generations

are always kept in the next generations.

The algorithm sequentially adds the solutions of the first fronts Fi to the

next parent population Pt+1 if after adding Fi, the size of Pt+1 is still less

than or equal to P . Otherwise, the remaining vacancies of Pt+1 are filled by

P−|Pt+1| solutions of Fi with the largest crowding distances. The crowding

distance of a solution in a population is an estimate of the solution density

around that solution. The crowding distance of a solution p is measured as

the sum of the normalized distances of two solutions on the left and right

side of that solution along each objective. As illustrated in Fig.3.2, the

crowding distance of the solution p is the sum of side lengths of the cuboid
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(shown with a dashed box). The larger the crowding distance of a solution

is, the less the solution density surrounding that solution is. Therefore,

adding the largest crowding distance points encourages the diversity of

the next parent population Pt+1. The parent population Pt+1 is now

used to create a new offspring population Qt+1 by the regular evolutionary

operators like binary tournament selection, recombination, mutation. In

order to create a new solution p, NSGAII selects two parents p1 and

p2 by the binary tournament selection and then apply the recombination

operator on p1 and p2 to produce p. With probability of α, a mutation

operator can be applied on p to increase the perturbation level. Then,

the set Pbest of non-dominated solutions obtained so far is updated by the

non-dominated solutions in Qt+1. The whole process is repeated for the

next generations. The complexity of generating a new offspring population

Qt+1 from its parent population Pt+1 is O(PΩ) where Ω is the complexity

of computing Λ objectives. In alternative clustering problem, we have two

objectives, therefore, the total complexity of NSGAII is O(T (P 2 + PΩ))

where T is the number of generations.

In each generation, the number of nondominated solutions is bounded

by the population size P . Therefore, when running NSGAII with T gen-

erations, the size of the result set Pbest is bounded by PT . However, when

the populations are moved towards the true Pareto front, the solutions at

generation t mostly dominate the solutions of previous generation t − 1.

Therefore, in practice, the size of Pbest is around P and much smaller than

PT . Only when NSGAII has converged at generation t < T , but it is

still running for other T − t generations, then the size of Pbest can grow

up larger than P because of very similar nondominated solutions produced

by NSGAII after converging.

The application of NSGAII to the alternative clustering problem re-

quires the following choices:
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Algorithm 7: NSGAII

Input : The number of generations T , the objective functions fi

Output: The approximate Pareto front Pbest

begin
Initialize the parent population P0.

Create the population Q0 from P0.

Pbest = non-dominated solutions in P0 ∪Q0.

for t = 1 to T do
// Selection phase

Rt = Pt ∪Qt

F = FastNonDominatedSort(Rt)

Pt+1 = ∅
i = 1

while |Pt+1|+ |Fi| ≤ P do
Pt+1 = Pt+1 ∪ Fi

i = i+ 1
end

if |Pt+1| < P then
Sort Fi in the descending order of crowding distances.

Pt+1 = Pt+1 ∪ Fi[1 : (P − |Pt+1|)]
end

// Variation phase

Create the population Qt+1 from Pt+1.

Update Pbest with non-dominated solutions in Qt+1.

end

return Pbest

end

Figure 3.2: Crowding distance

41



3.3. A CLUSTER-ORIENTED GENETIC ALGORITHM FOR ALTERNATIVE
CLUSTERING

Algorithm 8: FastNondominatedSort

Input : A solution set P

Output: Classified fronts Fi of P

begin

for p ∈ P do
Sp = ∅
np = 0

for q ∈ P do

if p � q then
Sp = Sp ∪ {q}

else

if q � p then
np = np + 1

end

end

end

if np = 0 then
prank = 1

F1 = F1 ∪ {p}
end

end

i = 1

while Fi 6= ∅ do
Q = ∅
for p ∈ Fi do

for q ∈ Sp do
nq = nq − 1

if nq = 0 then
qrank = i+ 1

Q = Q ∪ {q}
end

end

end

i = i+ 1

Fi = Q

end

end
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• Two objective functions.

• A genetic encoding of clusterings.

• Recombination and mutation operators to generate a new offspring

population from a parent population.

• An effective initialization scheme.

In the next sections, we present the above components.

Objective Functions

We consider the Vector Quantization Error (VQE) – normally used in K-

Means [62]– for measuring the clustering quality, because the base clus-

tering algorithm used in AFDT and AFDT2 is also K-Means. This

objective has been shown to be very robust for noisy datasets. The VQE

of a clustering solution Ct is the sum of the square distances from each

data object xi to the centroid of the cluster Ck
t where xi belongs to. The

VQE function is:

V QE(Ct) =
∑

Ck
t∈Ct

∑
xi∈Ck

t

||xi − µkt ||2 (3.4)

where Ck
t is a cluster in the clustering solution Ct, µ

k
t is the centroid of

Ck
t , and ||xi − µkt ||2 is the squared Euclidean distance between an item

and its centroid. However, in the text datasets, the cosine distance is

more suitable than the Euclidean distance. Therefore, when measuring

the performance on the text datasets, we replace the Euclidean distance

by the cosine distance. The Cosine VQE is:

CosineV QE(Ct) =
∑

Ck
t∈Ct

∑
xi∈Ck

t

(1− cosine(xi,µkt )) (3.5)

where cosine(xi,µ
k
t ) is the cosine similarity between xi and µkt . The

smaller the VQE is, the better the quality of a clustering is. The cost
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of computing VQE for a clustering Ct is O(ND) where N is the dataset

size and D is the number of dimensions of data objects.

To measure the similarity between two clusterings, we use the popular

Adjusted Rand Index (ARI) [53]. ARI is a normalized version of the Rand

Index (RI) proposed by Rand et al. [75]. The Rand Index RI(C1,C2)

between two clusterings C1 and C2 is simply defined as n11+n00
n11+n10+n01+n00

where

n11 is the number of object pairs that are in the same cluster in both two

clusterings; n00 is the number of pairs that are in different clusters in both

clusterings; n10 is the number of pairs that are assigned in the same cluster

by the clustering C1 and in different clusters by the clustering C2; n01 is

the number of pairs that are assigned in different clusters by the clustering

C1 and in the same cluster by the clustering C2. A problem with RI is

that the expected value for two random clusterings is not constant. Hubert

et al. [53] fix this issue by introducing a normalized version of RI, called

ARI. The ARI between two solutions C1 and C2 is defined as follows:

ARI(C1,C2) =
Index− ExpectedIndex

MaxIndex− ExpectedIndex

ARI(C1,C2) =

∑
ij

(
nij
2

)
−
[∑

i

(
ni.
2

)∑
j

(
n.j
2

)]
/
(
n
2

)
1
2

[∑
i

(
ni.
2

)
+
∑

j

(
n.j
2

)]
−
[∑

i

(
ni.
2

)∑
j

(
n.j
2

)]
/
(
n
2

) (3.6)

where nij is the number of common data objects of two clusters Xi and Xj

produced by the clustering solutions C1 and C2, and ni. =
∑
j

nij, n.j =∑
i

nij. The maximum value of ARI is 1 when two clusterings are identical.

The value of ARI is around zero, or even a negative value, when two clus-

terings are very different. As we prefer different alternative clusterings, the

smaller the ARI is, the better the dissimilarity between two clusterings is.

In other words, we minimize the maximum similarity between the alter-

native clustering and the negative clustering set. Therefore, we define the

similarity between an alternative clustering and a negative clustering set
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(similarly to the dissimilarity definition in Equation 3.1) as the maximum

similarity between that alternative clustering and the clusterings in the

negative clustering set. The complexity of computing ARI between two

clusterings is O(N) where N is the dataset size. Therefore, the total com-

plexity of COGNAC when optimizing VQE and ARI is O(T (P 2+PND))

where T is the number of generations and P is the population size. In other

words, fixing the number of generations and the population size, the com-

plexity of COGNAC increases linearly with the dataset size N and the

number of dimensions D of data objects.

Genetic Encoding of Clusterings

We use the cluster-index based representation to encode clustering solu-

tions. In detail, a clustering solution Ct of N data objects {xi}Ni=1 is a

N -dimensional vector where Ct(i) is the index of the cluster where the

data object xi belongs to. The index of each cluster is in the range of 1 to

K with K is the fixed number of clusters. For example, with a dataset

of 10 objects, and the number of clusters is 3, the clustering solution

Ct = [1113331122] represents there clusters: X1 = {x1,x2,x3,x7,x8},
X2 = {x4,x5,x6}, X3 = {x9,x10}.

Cluster-Oriented Recombination Operator

Although the cluster-index encoding is popular in the literature, its main

disadvantage is that the traditional recombination operators often do not

produce offspring solutions which inherit good properties from their par-

ents. The first problem is that the traditional recombination operators

are performed on the object level whereas the clustering meaning is con-

sidered on the cluster level. In other words, the clusters are the smallest

units containing information about the quality of the clustering solution

to which they belong [36]. Another drawback is that one clustering can
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be represented by many chromosomes, e.g. two chromosomes [123144] and

[314322] represents the same solution of four clusters C1 = {x1,x4},C2 =

{x2},C3 = {x3},C4 = {x5,x6}. Therefore, performing recombination op-

erators without a correct matching of clusters can return invalid solutions

as in the following example:

[1|23|144]

[3|14|322]

[3|23|322]

The offspring [3|23|322] not only has an invalid number of clusters but

also is very different from its parents. In this case, the offspring should

be identical to their parents because they represent the same clustering

solution.

To solve the above problems, we propose a cluster-oriented recombina-

tion operator where recombination is performed on clusters rather than

on separate objects. The idea of performing recombination on clusters

was first proposed by Falkenauer et al. [36] for the bin packing problem.

However, their recombination operator cannot be applied to the clustering

problem as it assumes special characteristics of the bin packing problem. In

addition, their recombination does not perform a matching before merging

clusters of two parents, therefore invalid solutions can still be returned.

The pseudo-code of our cluster-oriented recombination operator is pre-

sented in Algorithm 9. We first find a perfect matching M between clusters

of two parents such that the number of common objects between them is

largest. In this chapter, we use the perfect matching algorithm proposed

by Munkres et al.[69]. The complexity of the matching algorithm is O(K4)

(or O(K3) if optimized) where K is the number of clusters. Often, K

is very small compared to the dataset size N , therefore the overhead of

computing a perfect matching is relatively small.
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Then, we perform uniform crossover on clusters as follows. First, we

select a set I of K/2 random positions in {1, .., K} to copy clusters Ci
p1

(where i ∈ I) of the first parent Cp1 to the offspring Co. Let U be the set of

all unassigned objects. Then, for each remaining position i ∈ {1, .., K} \ I,

we compute the set C
M(i)
p2 ∩U of unassigned objects in the cluster C

M(i)
p2 of

the second parent Cp2. If all objects in C
M(i)
p2 are assigned, it means that

C
M(i)
p2 is strictly included in some cluster of the first parent. Therefore, we

move all objects in C
M(i)
p2 to cluster i to avoid empty clusters. Otherwise,

we simply assign the unassigned objects in C
M(i)
p2 ∩U to cluster i. After

merging clusters from two parents, there are still unassigned (or orphan)

objects. These orphan objects will be assigned to the clusters of one ran-

domly chosen parent. We assign the orphan objects to the clusters of only

one parent to preserve good characteristics from that parent.

An example of a dataset with 12 objects is in Fig.3.3a. The number

of clusters is 3. The clusters of two parents are as in Fig.3.3b, 3.3c. The

perfect matching M will match: C1
p1
→ C

M(1)=3
p2 , C2

p1
→ C

M(2)=1
p2 , C3

p1
→

C
M(3)=2
p2 as in Fig.3.3d. Assume that I = {1}. We copy cluster C1

p1
from

Cp1, and move the unassigned objects in two clusters C
M(2)=1
p2 , C

M(3)=2
p2

from Cp2 to the offspring, as in Fig.3.3e. Then, we assign the orphan

object 5 to the cluster C2
o as in the first parent to obtain the offspring as in

Fig.3.3f. As it can be seen, the offspring inherits all good properties from

its parents and converges to a correct clustering solution.

Neighbor-Oriented Mutation Operator

In the traditional mutation operators, usually some objects are selected

and moved randomly to different clusters. However, moving an object xi

to a random cluster Ck can radically decrease the clustering quality when

xi is too far from Ck. Also, if only few objects are moved to new clusters,

the resulting perturbation can be too small for escaping local minima. But
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Algorithm 9: Cluster-Oriented Recombination Operator

Input : Two parent solutions Cp1 ,Cp2 , the number of clusters K, the dataset X.

Output: An offspring solution Co.

begin
Initialize Co: ∀i ∈ {1, .., N} : Co(i) = −1.

Let Ci
pj

be the i-th cluster of parent Cpj .

Find a maximum perfect matching M where Ci
p1

is matched to C
M(i)
p2 .

Let I be the set of K/2 indices selected randomly from {1, .., K}.
// Perform uniform crossover on clusters.

Copy clusters Ci
p1

where i ∈ I to the offspring: ∀xt ∈ Ci
p1

: Co(t) = i.

for i ∈ {1, .., K} \ I do
U = {xj : xj ∈ X ∧Co(j) = −1}.
if C

M(i)
p2 ∩U = ∅ then

∀xt ∈ C
M(i)
p2 : Co(t) = i.

else

∀xt ∈ C
M(i)
p2 ∩U : Co(t) = i.

end

end

// Assign orphan objects.

if rand() % 2 = 0 then

for i ∈ {1, .., K} \ I do
∀xj. xj ∈ Ci

p1
∧Co(j) = −1 : Co(j) = i.

end

else

for i ∈ I do

∀xj. xj ∈ C
M(i)
p2 ∧Co(j) = −1 : Co(j) = i.

end

end

return Co

end
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(a) The dataset (b) Parent 1 (c) Parent 2

(d) Matching (e) The offspring after

merging clusters.

(f) The offspring after

adding orphan objects.

Figure 3.3: Cluster-Oriented Recombination Operator Example.

if many objects are moved to random clusters, the quality of the offspring

can be strongly degraded. Therefore, determining the set of items to move

is a difficult task. As it was the case for recombination, the traditional

mutation operators can also produce invalid solutions when moving an

object in a singleton cluster to a new cluster without checking the validity.

To solve these problems, we replace the traditional mutation operators

with a new operator called the Neighbor-Oriented Mutation operator.

The pseudo-code of the new mutation operator is presented in Algorithm

10. In detail, with the probability of ρ, each data object xi in a cluster with

size greater than 1 is moved to the cluster of one of its γ nearest neighbors

xj. In other words, a proportion ρ of the data objects will be selected

randomly and moved to the clusters of one of their nearest neighbors.

Besides, we do not move objects of singleton clusters, therefore the validity

of the offspring solution is guaranteed. Moving an item in this manner

avoids assigning it to a very far cluster, therefore the search space is reduced

significantly, but the clustering solution is still of good quality. Besides,

this operator can also produce arbitrarily-shaped clusters by linking near
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objects, e.g., a long cluster can be formed as a chain of near objects. Note

that moving an object to one of the clusters of its nearest neighbors is

different from moving that object to the nearest cluster: the first strategy

allows arbitrary-shape clusters whereas the second one favors spherical

clusters. To reduce the computational cost, the nearest neighbors of all

objects will be computed only once before calling the neighbor-oriented

mutation operator. For high-dimensional datasets, the distance between

the objects can be computed by a suitable kernel. In this chapter, we

simply use the Euclidean distance.

The larger the value of ρ is, the more perturbed the offspring is. On

the contrary, with small values of ρ, the search space is restricted, and

as a result, the probability of remaining stuck in local minima increases.

A similar issue also regards the number of nearest neighbors (parameter

γ). A large value of γ allows moving an object xi to far clusters and a

small value of γ permits moving xi only to near clusters. Setting γ too

large results in random moves of data objects and thus wasting a lot of

computing resources because very far objects can be assigned to the same

cluster. But setting γ too small can limit the search space too much and

keep the algorithm confined close to local minima.

To solve the above problems, we propose a method inspired by Simulated

Annealing [57]. At the beginning, both parameters are assigned large values

to allow the algorithm to explore potential solution regions. Then, these

parameters are gradually decreased to help the algorithm exploit the most

promising regions. This scheme automatically shifts in a gradual manner

from diversification to intensification. In detail, in the first generation,

ρ is assigned to ρmax and then in the next generations, ρ is decreased

sequentially by multiplying by a decay factor ρdec such that the value of

ρ in the last generation is ρmin. Mathematically, the probability ρt of

moving an object at the t-th generation is computed as ρt = ρmaxρ
t
dec and
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Algorithm 10: Neighbor-Oriented Mutation Operator

Input : A solution Co, the perturbation probability ρ, the number of nearest

neighbors γ.

Output: The perturbed solution Co.

begin

for each object xi ∈ X do
Let Xnn be the set of the first γ nearest neighbors of the object xi.

Pick randomly a nearest neighbor xj ∈ Xnn.

if the number of objects in the cluster of xi is greater than 1 then
With the probability of ρ, moving xi to the cluster of xj by assigning:

Co(i) = Co(j).

end

end

return Co

end

ρmaxρ
T
dec = ρmin where T is the number of generations. Formally, ρdec is

computed based on ρmin and ρmax as follows:

ρdec = T

√
ρmin
ρmax

(3.7)

Similarly, the number of nearest neighbours γ is first set to γmax and then

sequentially decreased by multiplying by a decay factor γdec. However,

we only decrease γ in the first T/2 generations and keep γ as γmin in the

remaining generations to guarantee a large enough perturbation for the

algorithm to escape from local minima. In detail, for the t-th generation

where t < T/2, γt = γmaxγ
t
dec where γdec is computed such that γmaxγ

T/2
dec =

γmin. In other words, γdec is computed as:

γdec = T/2

√
γmin
γmax

(3.8)

For the t-th generation where t ≥ T/2, γt is set to γmin. In the imple-

mentation, γt is a double variable and rounded to an integer by a built-in

ceiling function when calling the Neighbor-Oriented Mutation operator.
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Initialization

The initialization phase plays an important role in guiding the algorithm

towards the true Pareto front. If the initial population contains only ran-

dom solutions which are very different from the negative clusterings, then

the algorithm explores well the region where the dissimilarity of the alter-

native clusterings and the negative ones is high. Analogously, if solutions

similar to the negative clusterings are included into the initial set, then

the algorithm often produces high-quality clusterings but similar to the

negative ones. Here we assume that the negative clusterings are of high

quality because they are usually obtained from single objective clustering

algorithms. From this observation, we generate the initial population such

that half of them are dissimilar clusterings and the rest are high-quality

clusterings as follows.

Generating dissimilar clusterings: Let P be the initial population size

and Kneg and Kalter be the number of clusters in negative clusterings and

alternative clusterings, respectively. We generate P/2 dissimilar solutions

from pairs of negative clusterings and individual negative clusterings as

follows.

For each pair of two negative clustering solutions C1 and C2, we first

find a perfect matching M between their clusters. Then, for each pair

of matched clusters Ci
1 → C

M(i)
2 , we compute a common cluster Ci

com =

Ci
1∩C

M(i)
2 , and a xor cluster Ci

xor = (Ci
1∪C

M(i)
2 )\Ci

com. Then we randomly

merge two nearest common clusters or xor clusters until their total number

equals Kalter to generate a dissimilar offspring Co. The distance between

two common clusters or two xor clusters is computed as the Euclidean

distance between their centroids. The offspring is very dissimilar from its

parents because in their parents, the objects in two common or two xor

clusters are in different clusters, but in the offspring they are placed into
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the same cluster. Note that we do not merge a common cluster and a xor

cluster because they can reproduce a cluster which equals one of parents’

clusters. If the number of clusters in two negative solutions are different,

before matching, we sequentially split the largest cluster of the solution

with the smaller number of clusters into two sub-clusters by K-Means

until the number of clusters in two solutions are the same.

For individual negative clustering C1, we first extract its Kneg clusters

{Ci
1}
Kneg

i=1 . Next, for each cluster Ci
1, we use K-Means [62] to partition

this cluster into Kalter sub-clusters {Cij
1 }

Kalter

j=1 . The remaining objects in

X \ Ci
1 are assigned to the j-th nearest sub-cluster C

ij
1 , with probability

α−j/
K∑
t=1

α−t to form a dissimilar offspring Co. The parameter α is a factor

determining the perturbation level of the offspring solution. In other words,

the probability of assigning an unassigned object to its (j+1)-th nearest

sub-cluster is α times smaller than the probability of assigning that object

to the j-th nearest sub-cluster. The smaller α is, the more perturbed

the offspring is, therefore we vary α from αmin = 2 to αmax = 10 to

generate a diverse set of dissimilar solutions. In detail, from each cluster Ci
1

and a value α ∈ {αmin, .., αmax}, we generate
P/2−NC(NC−1)/2

NCKneg(αmax−αmin+1) dissimilar

offspring where NC is the number of negative clusterings. The distance

between an object and a sub-cluster is computed as the Euclidean distance

between that object and the sub-cluster centroid. The offspring generated

by the above strategy is very dissimilar to their parents because the objects

in each cluster Ci
1 of their parents C1 are now assigned to different clusters.

This strategy is similar to the ensemble clustering algorithm proposed by

Gondek et al.[42], but different because of the perturbation parameter α

to diversify the offspring set.

Generating high-quality clustering: We generate P/2
NC

high quality off-

spring from each negative clustering C1 as follows. First, we extract

its Kneg clusters {Ci
1}
Kneg

i=1 . If Kneg > Kalter, we merge sequentially two
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nearest clusters until the number of clusters is Kalter. In the case where

Kneg < Kalter, we split iteratively the largest cluster into two sub-clusters

by K-Means until the number of clusters equals Kalter. Then, we compute

the cluster centroids {µi1}
Kalter

i=1 and assign each object to its i-th nearest

centroid with the probability α−i/
Kalter∑
t=1

α−t to obtain a new offspring. Sim-

ilar to the procedure of generating dissimilar offspring, we also vary α from

αmin = 2 to αmax = 10 for diversifying the high-quality offspring set.

3.3.3 Sequential Generation of Alternative Clusterings

Based on the COGNAC algorithm (presented in Section 3.3.2), we pro-

pose the algorithm SGAC (the abbreviation of Sequential Generation of

Alternative Clusterings) to generate a sequence of alternative clusterings

as in Algorithm 11. First, the negative clustering set contains only the

initial negative clustering and the alternative clustering set is empty. This

initial negative clustering is often obtained from popular single objective

clustering algorithms like K-Means [62], Hierarchical Clustering [60].

Then in each iteration, the user will select one of the alternative clusterings

returned by COGNAC. We defer the detailed discussion of the selection

technique in Section 3.3.4. This alternative clustering is added to both sets

of negative and alternative clusterings. Therefore, the alternative cluster-

ing generated in each next iteration is guaranteed to be different from the

previous alternative clusterings. Finally, the set of all different alternative

clusterings is returned to the user.

3.3.4 Analyzing the Pareto front

In order to reduce the number of solutions presented to users, we apply

a traditional clustering algorithm like K-Means to partition the solution

set into K clusters. Because the range of dissimilarity and quality are
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Algorithm 11: SGAC

Input : The initial negative clustering solution C, the number of alternative

clusterings M

Output: The set of alternative clusterings

begin

S = {C}
S′ = ∅
for m = 1 to M do

S∗ = COGNAC(S)

The user selects one alternative clustering C′ from S∗.

S = S ∪ {C′}
S′ = S′ ∪ {C′}

end

return S′

end

different, when clustering the solutions, we normalize their dissimilarity

and quality as follows:

D′(C,S) =
D(C,S)− µD

σD
(3.9)

Q′(C) =
Q(C)− µQ

σQ
(3.10)

where µD, σD, µQ, σQ are the mean and standard deviation of dissimilarity

and quality of the solution set, respectively. For each cluster of solutions

Si, the ranges of its dissimilarity and quality are represented in two border

solutions: the one with the highest dissimilarity and lowest quality, and

the other one with the highest quality and lowest dissimilarity. Therefore,

users only need to consider the two border solutions of each cluster and

quickly discard unsuitable clusters. If the user is satisfied with one of the

border solutions, the algorithm can stop. Otherwise, the user selects a

cluster of solutions with a reasonable range of dissimilarity and quality.

Then, he can analyze that cluster more deeply by partitioning it again into
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Figure 3.4: Analyzing the Pareto front with clustering.

sub-clusters and repeating the above process until a satisfactory solution

is met.

Fig.3.4 shows an example of partitioning the Pareto solutions into 3

clusters. In cluster 2, the solution C2a is the solution with the highest

dissimilarity and lowest quality, and the solution C2b is the solution with

the highest quality and lowest dissimilarity. Assume that the range of

dissimilarity and quality of two solutions C2a and C2b satisfies the users’

requirement. If they satisfy with one of the two border solutions, they can

stop the algorithm. Otherwise, if users want to have finer solutions, they

can run a traditional clustering algorithm like K-Means [62] to partition

cluster 2 into three other sub-clusters and repeat the whole process.

Besides, when plotting all solutions, the figures are very difficult to

read, therefore, we filter the similar solutions on the Pareto front as fol-

lows. First, we sort all solutions in the descending order of the dissimilarity

objective. Then, we add the first solution with the highest dissimilarity

to the filtered Pareto front Sfiltered. For each next solution C, we com-

pute the normalized difference on each objective between C and the pre-

viously added solution C′. Denote S∗ the Pareto solution set returned

by COGNAC. The normalized difference (w.r.t a negative clustering set

S) in dissimilarity ∆D and in quality ∆Q of two solutions C and C′ are
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computed as:

∆D(C,C′) =
|D(C,S)− D(C′,S)|

Dmax − Dmin
(3.11)

Dmax = max
C∈S∗

D(C,S) (3.12)

Dmin = min
C∈S∗

D(C,S) (3.13)

∆Q(C,C′) =
|Q(C)−Q(C′)|
Qmax −Qmin

(3.14)

Qmax = max
C∈S∗

Q(C) (3.15)

Qmin = min
C∈S∗

Q(C) (3.16)

If the normalized difference on two objectives ∆D(C,C′) and ∆Q(C,C′)

between two solutions C and C′ are equal to or greater than a threshold

δ, then C is added to the filtered Pareto front Sfiltered. The above process

is repeated until all solutions are considered. This technique can also be

applied before partitioning the approximated Pareto front into K clusters

to remove similar solutions.

3.4 Experiments

In this section, we describe the test datasets in Section 3.4.1 and the ex-

periments to compare the performance of our algorithm with that of other

state-of-the-art algorithms on the first alternative clustering in Section

3.4.2. Then, we illustrate the ability of our algorithm for generating a

sequence of different alternative clusterings and compare the result with

that of other two algorithms in Section 3.4.3. Finally, we analyze the pa-

rameter sensitivity of COGNAC in Section 3.4.4.
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(a) The Flowers image.(b) The Flowers image

obtained by K-Means.

(c) The Birds image. (d) The Birds im-

age obtained by K-

Means.

Figure 3.5: Escher images.

3.4.1 Datasets

In order to measure the performance of alternative clustering algorithms,

we use four datasets with ”ground truth” alternative clusterings. The first

and second dataset are two Escher images with multiple interpretations to

the human eye as in Fig.3.5a, 3.5c. The Flowers and Birds images’ size

are 120 × 119 and 106 × 111, respectively. The RGB color space of each

image is then converted in the L*a*b* color space (an important attribute

of the L*a*b*-model is the device independence: the colors are defined

independently of the device that they are displayed on). The difference in

the color of two pixels can be computed as the Euclidean distance between

their a* and b* values. The negative clustering of each image in Fig.3.5b,

3.5d is obtained by running K-Means to partition each image into two

clusters.
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Dataset Cardinality Number of dimensions Number of clusters

CMUFaces 624 39 20

WebKB 1041 500 4

Birds 11766 2 2

Flowers 14280 2 2

Table 3.1: Dataset characteristics.

The third dataset is the CMU Face dataset on the UCI repository [38].

We use all 624 face images of 20 people taken with varying pose (straight,

left, right, up), expression (neutral, happy, sad, angry), eyes (wearing sun-

glasses or not). The size of each image is 960(32 × 30). We then apply

PCA as in [92] to reduce the number of dimensions to 39. The labelling of

each image by the name of the person in that image is used as the negative

clustering of this dataset.

The fourth dataset is the WebKB1 dataset. It contains HTML docu-

ments collected mainly from four universities: Cornell, Texas, Washington,

Wisconsin, and classified under four groups: course, project, faculty, stu-

dents. We select 500 features with highest information gain (conditioned

on group names) to reduce the number of dimensions. Then, we remove

stop words, stemming, and use TF-IDF weighting to construct the feature

vectors. The resulting dataset consists of 1041 documents. The labelling

on four groups is used as the negative clustering.

Table 3.1 summarizes the datasets.

3.4.2 Comparisons on The First Alternative Clustering

We compare the performance of our algorithm COGNAC on the first

alternative clustering with that of four other state-of-the-art algorithms,

namely COALA[3], AFDT[25], AFDT2 [74], MinCEntropy++[92] on

four datasets in Section 3.4.1.
1 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/

59

http://www.cs.cmu.edu/afs/cs.cmu.edu/project /theo-20/www/data/


3.4. EXPERIMENTS

Number of generations 200

Population size 200

Mutation rate 0.2

ρmax 0.3

ρmin 0.1

γmax 40

γmin 10

Table 3.2: Parameter setting for COGNAC.

Experimental Setup

The parameters of COGNAC are set as in Table 3.2. For a specific

configuration, COALA, and AFDT2 can only produce one solution. In

order to generate a set of different solutions from COALA, the param-

eter declaring user reference on clustering quality and dissimilarity w is

changed from 0.1 to 1.0 with step of 0.1. Large w values imply better

clustering quality and smaller clustering dissimilarity. Similarly, the trade-

off parameter a of AFDT2 is changed from 1.0 to 2.8 with step of 0.2.

Increasing a improves the clustering dissimilarity and decreases the clus-

tering quality. The default values for w and a are set to 0.6 [3] and 2.0

[74], respectively. AFDT has no parameters and can only produce one

solution. For MinCEntropy++, we also vary its trade-off parameter m

from 1 to 10 for generating a diverse set of solutions.

Except for the CMUFaces dataset where the number of clusters in al-

ternative clusterings Kalter is set to 4, on other datasets, Kalter is set as

the number of clusters in negative clusterings. Besides, on each dataset,

COGNAC, MinCEntropy++ and the base algorithm K-Means of AFDT

and AFDT2 are run 10 times to reduce the randomness effect. COGNAC2

and COALA3 are implemented in C++ and Java, respectively. The other

2http://lion.disi.unitn.it/intelligent-optimization/cognac/
3http://ericbae.com/2011/05/11/clown-clustering-package/

60



CHAPTER 3. ALTERNATIVE CLUSTERING

three algorithms AFDT, AFDT24 and MinCEntropy++5 are imple-

mented in Matlab. All algorithms are run on a machine with Intel(R)

Xeon(R) CPU E5440 @ 2.83GHz, and the Ubuntu 9.10 Operating System.

Experimental Results

Fig.3.6 shows the performance of five algorithms on four datasets. In the

figures, we also plot the negative clusterings to present the trade-off be-

tween clustering quality and dissimilarity. We denote the negative cluster-

ings as NC in the plots. Besides, in order to keep the figures readable, we

only plot some representative solutions on the Pareto front produced by

COGNAC (by applying the filter procedure as in Section 3.3.4). On two

large datasets Birds and Flowers, COALA cannot finish after 24 hours of

CPU time.

As it can be observed, on most datasets our COGNAC provides diverse

sets of high quality (in both clustering quality and dissimilarity) solutions.

All solutions of COALA, AFDT and AFDT2 are above the Pareto front

of COGNAC. Thus, for each clustering solution produced by these three

algorithms, there is always a solution produced by COGNAC of better

quality in both objectives. Especially, on the WebKB and Birds datasets,

our algorithm produces solutions of much higher quality. When comparing

COGNAC and MinCEntropy++, on the Birds dataset, the solution of

MinCEntropy++ on the left-up corner is outperformed significantly by

other solutions of COGNAC. On the other datasets, the solutions of two

algorithms slightly dominate each other. However, COGNAC provides a

much more diverse set of solutions compared to that of MinCEntropy++.

In other words, increasing the trade-off parameter of MinCEntropy++

with equal intervals does not guarantee to obtain a diverse set of solutions.

4http://wwwcsif.cs.ucdavis.edu/~qiz/code/code.html
5https://sites.google.com/site/vinhnguyenx/publications
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(b) WebKB
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Figure 3.6: Performance comparison of five algorithms on four datasets.
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Dataset COALA AFDT AFDT2 MinCEntropy++ COGNAC

CMU Faces 0.16 0.60 0.01 0.01 2.49

WebKB 60.17 62.24 0.32 0.53 19.58

Birds NT 3050.70 8.45 13.25 63.43

Flowers NT 5418.13 12.54 20.50 132.87

Table 3.3: Run-time (in seconds) of five algorithms. NT means “Not Terminate after

running for 24 hours”.

Table 3.3 shows the average run-time (in seconds) of five algorithms. Al-

though approximating the whole Pareto front, COGNAC is much faster

than COALA and AFDT. When comparing with AFDT2 and MinCEntropy++,

COGNAC is slower than these algorithms because in a single run, COGNAC

searches for the whole Pareto front whereas the other two algorithms only

compute one solution. However, the run-time of COGNAC is relatively

small and scales up linearly with the dataset size and the number of gen-

erations.

Analyzing the Pareto front: We also apply the analysis procedure

in Section 3.3.4 to identify meaningful alternative clusterings returned by

COGNAC. In all datasets, we partition the Pareto front into 5 groups

and check the border solutions. On the CMUFaces dataset, we perform

another step of partitioning on the last group. Please see Appendix A.1

for the plots of all border solutions. As for the other algorithms, we select

the solutions returned when running them with their default parameters.

In order to see whether the alternative clusterings discovered by COGNAC

are similar to the expected alternative clusterings, on the CMUFaces and

WebKB dataset, we compute the ratio of dominant poses and university-

based documents in each cluster, respectively. Table 3.4a and 3.4b show the

cluster statistics of alternative clusterings of five algorithms on the CMU-

Faces and WebKB dataset. As it can be seen, with the negative clusterings

of 20 people for the CMUFaces dataset, and of 4 groups {course, faculty,
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3.4. EXPERIMENTS

Algorithm Cluster 1 Cluster 2 Cluster 3 Cluster 4

COALA up(0.32) left(0.87) right(0.52) right(0.58)

AFDT up(0.30) straight(0.34) left(0.33) right(0.30)

AFDT2 up(0.29) straight(0.28) left(0.32) right(0.71)

MinCEntropy++ up(0.54) straight(0.75) left(0.86) right(0.89)

COGNAC up(0.63) straight(0.44) left(0.70) right(0.86)

(a) Alternative Clusterings of five algorithms on CMUFaces

Algorithm Cluster 1 Cluster 2 Cluster 3 Cluster 4

COALA texas(0.85) cornell(0.97) wisconsin(0.93) washington(0.94)

AFDT texas(0.39) texas(1.00) cornell(0.98) wisconsin(0.39)

AFDT2 wisconsin(0.50) wisconsin(0.29) wisconsin(0.67) washington(1.00)

MinCEntropy++ texas(1.00) cornell(1.00) wisconsin(0.69) washington(1.00)

COGNAC texas(0.98) cornell(0.99) wisconsin(0.82) washington(0.97)

(b) Alternative Clustering on WebKB

Table 3.4: Alternative Clusterings on CMUFaces and WebKB

students, staff} for the WebKB dataset, COGNAC and MinCEntropy++

produce the alternative clusterings matching closely to the expected al-

ternative clusterings of the two datasets. On the CMUFaces dataset,

COALA can only detects three alternative clusters {up, left, right}. Al-

though AFDT and AFDT2 can also discover all four alternative clusters

of the CMUFaces dataset, their dominant ratios are much smaller than

those of COGNAC and MinCEntropy++. On the WebKB dataset,

COALA, MinCEntropy++, and COGNAC return the solutions which

are very similar to the expected alternative clustering. In contrast, AFDT

and AFDT2 produce poor solutions in this case. Especially, AFDT2 can

only discover two alternative clusters.

As for the Birds and Flowers dataset, we select the images which are

meaningful to human-eye interpretation from the border solution set of

COGNAC. Fig.3.7f and 3.8f show these alternative clusterings. It can

be seen that COGNAC has discovered successfully the high-quality al-
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CHAPTER 3. ALTERNATIVE CLUSTERING

(a) The Birds image (b) Negative clustering (c) AC of AFDT

(d) AC of AFDT2 (e) AC of

minCEntropy++

(f) AC of COGNAC

Figure 3.7: The alternative clusterings (AC) of four algorithms on the Birds dataset

ternative clusterings of these images. Although AFDT2 also finds two

meaningful solutions on these datasets, its solutions are much noisier than

those of COGNAC. Besides, AFDT fails on both datasets as its solu-

tions (in Fig.3.7c and Fig.3.8c) are very similar to the negative clusterings.

Likewise, on the Flowers dataset, minCEntropy++ also returns the al-

ternative solution (in Fig.3.8e) which is almost the same as the negative

one.

3.4.3 Sequential Generation of Alternative Clusterings

In this section, we use a synthetic dataset with multiple clusterings and the

Flowers dataset to illustrate the effectiveness of COGNAC for generating

a set of different alternative clusterings (by applying the SGAC procedure

in Algorithm 11). We also compare our algorithm with MinCEntropy++

and Alter-Spect.
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3.4. EXPERIMENTS

(a) The Flowers image (b) Negative clustering (c) AC of AFDT

(d) AC of AFDT2 (e) AC of

minCEntropy++

(f) AC of COGNAC

Figure 3.8: The alternative clusterings of four algorithms on the Flowers dataset

Experimental Setup

The synthetic dataset consists of six Gaussian sub-clusters with the cen-

troids at {(0, 0), (6, 0), (8, 4), (6, 8), (0, 8), (−2, 4)} and the standard devia-

tion of 0.5 for each coordinate. Each sub-clusters consists of 20 points as

plotted in Fig.3.9. Because this dataset has six natural sub-clusters, when

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-2  0  2  4  6  8

Figure 3.9: The Six-Gaussians dataset.

setting the number of clusters to three, there are many possible ways to
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CHAPTER 3. ALTERNATIVE CLUSTERING

partition it. The parameters of COGNAC are set as in Table 3.2. For

MinCEntropy++, the parameter m (declaring that quality is m times

important than dissimilarity) is set to its default value. We run both

COGNAC and MinCEntropy++ 10 times with different random seeds

and record the best results. We apply the analysis procedure in Section

3.3.4 to select the best alternative clustering solution.

Experimental Results

We run COGNAC, MinCEntropy++ and Alter-Spect on the Six-

Gaussians dataset with the initial negative clustering as in Fig.3.10b.

The sets of different alternative clusterings returned by three algorithms

are shown in Fig.3.10. We plot one more solution for Alter-Spect be-

cause its first solution can be very similar to the negative clustering.

It can be seen that the alternative clusterings obtained by COGNAC

are very different from each other and of high quality. On the contrary,

MinCEntropy++ can only generate the first two alternative clusterings

in Fig.3.10f, Fig.3.10g. The third solution generated by MinCEntropy++

in Fig.3.10h is very similar to the first solution in Fig.3.10f with some

mistakes. Although Alter-Spect can also produce a set of alternative

clusterings, these solutions are less meaningful to human interpretation

because very far sub-clusters are grouped together, as in the third solution

in Fig.3.10k.

The results on the Flowers dataset are plotted in Fig.3.11. COGNAC

successfully discovers the other two alternative clusterings (with red and

yellow colors) as depicted in Fig.3.11c, 3.11d. On the contrary, minCEntropy++

produces alternative clusterings which are very similar to the negative clus-

tering, as plotted in Fig.3.11e, 3.11f. As for Alter-Spect, only its second

solution in Fig.3.11h is meaningful because the other two solutions are very

similar to the negative clustering.
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(b) The negative clustering.

0

1

2

3

4

5

6

7

8

9

-2 0 2 4 6 8

0

1

2

3

4

5

6

7

8

9

-2 0 2 4 6 8

0

1

2

3

4

5

6

7

8

9

-2 0 2 4 6 8

(c) 1st AC of COGNAC
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(d) 2nd AC of COGNAC
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(e) 3rd AC of COGNAC
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(f) 1st AC of

minCEntropy++
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(g) 2nd AC of

minCEntropy++
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(h) 3rd AC of

minCEntropy++
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(i) 1st AC of Alter-Spect
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(j) 2nd AC of Alter-Spect
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(k) 3rd AC of Alter-Spect
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(l) 4th AC of Alter-Spect

Figure 3.10: Alternative clusterings (AC) of three algorithms on the Six-Gaussians

dataset. 68
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(a) The Flowers

dataset.

(b) The negative clus-

tering.

(c) 1st AC of

COGNAC

(d) 2nd AC of

COGNAC

(e) 1st AC of

minCEntropy++

(f) 2nd AC of

minCEntropy++

(g) 1st AC of Alter-

Spect

(h) 2nd AC of Alter-

Spect

(i) 3rd AC of Alter-

Spect

Figure 3.11: Alternative clusterings of three algorithms on the Flowers dataset.
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3.4.4 Parameter Sensitivity Analysis

In this section, we perform three experiments to study the sensitivity of

COGNAC to parameters ρmax, ρmin, γmax, γmin. In all experiments, we fix

the number of generations to 100 and run the algorithm on the reduced

CMUFaces dataset containing images of four people (an2i, at33, boland,

ch4f). Besides, there is no parameter in the Cluster-Oriented Recombi-

nation operator, therefore we only use the Neighbor-Oriented Mutation

operator to modify the solutions,

We first fix the perturbation probability (ρmax, ρmin) to (0.3, 0.1) and

set the maximum and minimum number of nearest neighbors (γmax, γmin)

to (100, 90), (30, 10), (5, 1), respectively. The first setting with large values

can be considered as the representative for the traditional mutations, where

an object can be assigned to arbitrary (or very far) clusters. As it can

be seen in Fig.3.12a, setting (γmax, γmin) to very large value like (100, 90)

leads to the poorest performance. Because in this case, COGNAC can

put very far objects to the same cluster but according to local structures

of the dataset, the near objects are often partitioned in the same cluster.

However, setting (γmax, γmin) to very small value like (5, 1) can make the

algorithm stuck at local minima, hence a moderate setting of (γmax, γmin)

like (30, 10) results in the best performance.

To study the sensitivity to the perturbation probability, we fix the num-

ber of nearest neighbors (γmax, γmin) to (30, 10), and set the perturbation

probability (ρmax, ρmin) to (1.0, 0.9), (0.3, 0.1), and (0.05, 0.01). Fig.3.12b

shows that setting (ρmax, ρmin) to large values like (1.0, 0.9) results in the

poorest performance because large perturbation levels can destroy the good

properties of current objects. However, small perturbation levels are not

enough for COGNAC to escape from local minima, therefore similarly

to the case of the number of nearest neighbors (γmax, γmin), a moderate
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(a) COGNAC performance on the CMUFaces dataset with dif-

ferent configurations on the number of nearest neighbors.
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(b) COGNAC performance on the CMUFaces dataset with dif-

ferent configurations on the perturbation probability.

Figure 3.12: COGNAC performance on the CMUFaces dataset
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Figure 3.13: COGNAC performance on the CMUFaces dataset with different configu-

rations.

setting often results in the best performance as presented in Fig.3.12b.

Finally, we compare three configurations of {(γmax, γmin)− (ρmax, ρmin)}
in the decreasing order of perturbation level which are: {(100, 90)−(1.0, 0.9)},
{(30, 10) − (0.3, 0.1)}, {(5, 1) − (0.05, 0.01)}. The middle configuration

{(30, 10) − (0.3, 0.1)} outperforms the other configurations, as shown in

Fig.3.13.

3.5 Conclusion

In this chapter, we proposed an explicit multi-objective algorithm for al-

ternative clustering, called COGNAC and a derived algorithm called

SGAC for the sequential generation of alternative clusterings. COGNAC

and SGAC not only provide solutions outperforming those produced by

other state-of-the-art algorithms, but they also possess attractive features.

Firstly, they are very flexible and they can accept arbitrary objectives,

therefore they can be used as a baseline when comparing with different

alternative clustering algorithms. In addition, SGAC can be used to gen-
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erate a sequence of alternative clusterings by adding the newly found alter-

native clustering to the negative clustering set and re-running COGNAC.

Each newly generated clustering is guaranteed to be different from the pre-

viously found ones. Finally, COGNAC approximates the whole Pareto

front in a single run, but its complexity only scales up linearly with the

dataset size, when deployed with two objectives VQE and ARI.

Currently, COGNAC simply returns the whole Pareto front to the

user. Then, the user applies some techniques proposed in this chapter to

analyze and visualize the obtained solution set. Although judging the best

solution from the Pareto front is a responsibility of the users, helping users

to explore the Pareto front interactively in a more efficient manner is an

interesting and non-trivial task. In the future, we plan to integrate interac-

tive techniques in multi-objective optimization [11, 17] with our algorithm

so that users can quickly direct the search to explore the regions of their

interest.
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Chapter 4

Non-Redundant Overlapping

Subspace Clustering

Traditional clustering approaches based on feature selection techniques are

often not suitable for high-dimensional datasets, as different feature sub-

sets may be relevant to different clusters. Subspace clustering algorithms

aim at the simultaneous identification of a cluster and of a subspace of

features associated with it. However, these methods are often designed

and optimized for specific cases of Lp spaces, e.g., based on the Manhattan

or Euclidean distance, and cannot be easily applied to new domains with

different underlying models, like gene expression analysis in bioinformat-

ics. In contrast, specialized algorithms for biclustering on gene expression

data also use very particular models which cannot be generalized to other

applications on Lp spaces. Besides, most of the state-of-the-art algorithms

can either generate a disjoint set of subspace clusters or a very large set of

possible clusters that can overlap significantly.

In this chapter, we propose a novel algorithm, FLEXBIC, which can be

applied to different domains without modifying its overall structure. In ad-

dition, it can sequentially generate multiple overlapping subspace clusters

where the maximum overlap is below a predefined threshold, and it also al-

lows users to control bicluster shapes by adjusting the relative importance
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of rows and columns. Experiments on real-world datasets demonstrate

that FLEXBIC performs significantly better than the other state-of-the-

art algorithms. The source codes, datasets and other supplementary ma-

terials of our experiments can be found at http://lion.disi.unitn.it/

intelligent-optimization/flexbic/.

4.1 Introduction

The goal of clustering is to associate the objects to different sets (clus-

ters) such that the objects in the same cluster are similar and the ones

in different clusters are dissimilar. Clustering is a fundamental building

block in science and in general human activities (distinguishing group of

entities with different names —like for different animal species— is in fact

a form of clustering). In traditional clustering approaches, the similarity

between two objects is computed by taking into account all features rep-

resenting them, by using the Euclidean metric or generalizations thereof.

However, this approach is not suitable for several real-world cases with

high-dimensional feature spaces where interesting clusters can be observed

in different subspaces, and where the similarity between items is not based

on traditional p-norms.

As different clusters can exist in different subspaces, preprocessing the

datasets by feature selection techniques does not solve the problem. This

motivates subspace clustering algorithms which aim at identifying simulta-

neously both objects in each cluster and the subspace of features associated

with it. For this reason, subspace clusters are also termed biclusters [19].

Several algorithms for biclustering are based on p-norm distances like

Manhattan or Euclidean [58, 68]. Three approaches can be distinguished:

grid-based, density-based, and projected-subspace methods [68]. In grid-

based approaches, the feature space is discretized and each subspace cluster
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is defined as a set of connected grid cells where each cell contains a num-

ber of objects greater than a threshold [98]. Other researchers extend the

notion of density-connectivity of DBSCAN [34] for subspace clustering:

clusters are specified as dense regions separated from sparse ones, and the

distance between objects is computed only on the relevant dimensions of

those clusters [55]. Unlike the two previous schemes searching for individ-

ual clusters, the projected-subspace approaches aim at discovering a whole

set of clusters at once, by optimizing the clustering quality based on some

criteria [1]. Again, the methods are often designed and optimized for spe-

cific distance metrics like Manhattan [1, 98], or Euclidean [34]. Therefore,

it is difficult to apply them to new datasets or domains with different un-

derlying models, among which gene expression analysis in bioinformatics

is a particularly prominent application.

Let us summarize the bioinformatics context. Gene expression is the

process by which information from a gene is used in the synthesis of pro-

teins. Microarray experiments provide the expression level of a large num-

ber of genes under different experimental conditions [4]. From the gene ex-

pression data, one would like to find maximal subsets of genes and subsets

of conditions, where the genes exhibit highly similar patterns (co-regulation

and co-expression) under these conditions. This problem is called biclus-

tering by Cheng and Church [19]. Several algorithms have been proposed

for gene expression biclustering based on special models [19, 61, 65], and

are therefore difficult to extend for other applications. Besides, they of-

ten only either produce disjoint [19] or redundant biclusters with arbitrary

overlap [61, 97]. However, in practice, some genes can belong to multiple

functional categories, thus the biclusters extracted from a gene expres-

sion matrix should be allowed to overlap, while maintaining the overlap

below a predefined threshold to avoid getting too similar —and therefore

redundant— biclusters. This problem is similar to alternative clustering,
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with the goal of generating high-quality clusterings different from a given

trivial set [42, 87]. However, alternative clustering algorithms cannot be

used directly for non-redundant biclustering because redundancy is mea-

sured between whole clusterings, and not between biclusters. Günnemann

et al. propose an algorithm to search for non-redundant overlapping biclus-

ters in high-dimensional spaces [46]. However, their model is not suitable

for analyzing gene expression data as dissimilarity is measured by the Eu-

clidean distance.

In this chapter, we present a FLEXible BIClustering algorithm, named

FLEXBIC, which can return multiple biclusters such that the overlap

between each pair is less than a user-defined threshold. While other algo-

rithms often search for K biclusters at once [61, 97], FLEXBIC produces

one bicluster in each of K iterations. Each newly generated bicluster is

different from the previous ones but can overlap with them in a controlled

manner. This work builds upon basic versions [88, 89] limited to the ap-

plication to gene expression data, and extends the approach to design a

general-purpose, flexible algorithmic framework able to handle more gen-

eral applications. Besides, this new method also allows users to control

bicluster shapes, i.e., to specify the preference for clusters with more rows

vs. clusters with more columns, and therefore to avoid suboptimal results

if only the bicluster’s overall size is considered.

The rest of this chapter is organized as follows. In Section 4.2, we for-

mally define the problem of non-redundant subspace clustering. Then, we

describe our algorithm in Section 4.3. Finally, we present the application

of our algorithms to the search for disjoint subspace clusters with the Eu-

clidean metric in Section 4.4 and to discover non-redundant overlapping

biclusters on gene expression data in Section 4.5.
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4.2 Non-Redundant Overlapping Subspace Cluster-

ing Problem

Following the notation in [65], let A = (X, Y ) be a data matrix with the set

of rows X and the set of columns Y , aij be the value of a cell in the matrix

A representing the relation between row i and column j. A subspace cluster

is represented by a submatrix (I, J). To abstract a notion of “coherence”

of a cell value with the other cells of the cluster we proceed in two steps.

First, we introduce modeling functions M : R|X||Y |×N|I|×N|J |×N×N→ R
predicting the proper value of a coherent cell in the cluster from the other

contained cells: âij = M(A, I, J, i, j), where âij is the estimated value for

the cell aij by the model M. Then we measure the dissimilarity between

the modeled value and the actual cell value. Let’s note that we permit a

slight abuse of notation: the modeling functions depend on the number of

rows and columns in the cluster but have the same structural form.

Definition 5 A bicluster or subspace cluster is a submatrix (I, J) (where

I ⊂ X, J ⊂ Y ) whose error ErrM(I, J) with respect to predictive model M
is below a given threshold δ.

Depending on applications and data, different dissimilarity or error func-

tions can then be used to measure the discrepancy between the actual cell

values aij and the values âij predicted by model M. In this chapter, we

consider the error function given as the cell error average:

ErrM(I, J) =
1

|I||J |
∑
i∈I

∑
j∈J

cellErrM(aij, âij) (4.1)

where cellErrM(aij, âij) measures the approximation error of the model M
for the data cell aij. Some examples of cellErrM(aij, âij) are |aij − âij| or

(aij − âij)2. Similarly, given a bicluster (I, J), the error or residue of a row
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i or a column j are defined as:

rowErrIJM (i) =
1

|J |
∑
j∈J

cellErrM(aij, âij) (4.2)

colErrIJM (j) =
1

|I|
∑
i∈I

cellErrM(aij, âij). (4.3)

Definition 6 Biclustering or Largest Subspace Cluster Problem — Given

a data matrix A = (X, Y ), a model M and an error function ErrM : 2X ×
2Y → R, the biclustering problem is the problem of searching for the largest

bicluster (I, J):

Maximize: size(I, J) = |I||J | (4.4)

subject to: ErrM(I, J) ≤ δ

I ⊂ X, J ⊂ Y.

Some formulations of the maximum bicluster problem have been proven

to be NP-hard, starting from Cheng and Church [19].

Definition 7 Overlap Between Two Biclusters

The overlap of a bicluster (I1, J1) on a bicluster (I2, J2) is:

Overlap
(
(I1, J1), (I2, J2)

)
=
|I1 ∩ I2||J1 ∩ J2|
|I1||J1|

. (4.5)

Definition 8 Overlap Between A Bicluster and A Set of Biclusters

The overlap of a bicluster (I1, J1) with a set B of biclusters is:

Overlap
(
(I1, J1),B

)
= max

(I2,J2)∈B
Overlap

(
(I1, J1), (I2, J2)). (4.6)

Definition 9 Non-Redundant Subspace Clustering Problem

Given a data matrix A = (X, Y ), a model M and an error function ErrM :

2X × 2Y → R, a set of biclusters B, the non-redundant subspace clustering
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problem is the problem of searching for the largest bicluster (I, J) such that

the overlap with the other biclusters in B less than a threshold γ:

Maximize: size(I, J) = |I||J | (4.7)

subject to: ErrM(I, J) ≤ δ

Overlap
(
(I, J),B

)
≤ γ

I ⊂ X, J ⊂ Y.

Given an algorithm that solves this problem, we can extract a set of

K non-redundant biclusters by rerunning it for K times. The set B of

constraining biclusters can be empty at the beginning. Then, after each

run, the newly discovered bicluster is added to B to guarantee that the

next bicluster will be sufficiently different from the members of B. As

the biclustering problem is NP-hard, we will present a heuristic algorithm

which can find reasonably good solutions in polynomial time.

4.3 A Core-Node Search Algorithm for Non-Redundant

Subspace Clustering

FLEXBIC is based on a repeated local search module for searching for the

largest bicluster which is presented in this section. Later, this module will

be used to discover K non-redundant biclusters.

4.3.1 Repeated Local Search for Largest Bicluster

The pseudocode of our REpeated Local Search module for BIClustering,

named BICRELS, is shown in Algorithm 12. We first generate the ini-

tial bicluster seeds by combining rows and column clusters. In detail, we

partition the row set into Kr clusters by applying the K-means procedure

[62] on the column-normalized data where each row is an instance, and
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Algorithm 12: BICRELS

Input : data matrix A, residue threshold δ

Output: A bicluster (I, J)

begin
pool = create a set of initial seed biclusters.

largestBicluster = ∅
for i = 1 to numberOfRestarts do

bicluster = pick randomly a bicluster from pool.

Remove bicluster from pool.

bicluster = replaceNodes(bicluster)

bicluster = deleteNodes(bicluster, δ)

repeat
bicluster = replaceNodes(bicluster)

bicluster = addNodes(bicluster, δ)

until no change;

bicluster = deleteNodes(bicluster, δ)

if |bicluster| > |largestBicluster| then
largestBicluster = bicluster

end

end

end

return largestBicluster
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each column is a feature. The normalization to eliminate the difference in

attribute ranges is obtained by subtracting the mean value from each col-

umn and then dividing the results by its standard deviation. Similarly, we

divide the columns into Kc clusters on the row-normalized data. Then, we

pick randomly a cluster of row and a cluster of column to form a bicluster.

In the experiments of this chapter, we create Kr ×Kc seed biclusters.

Algorithm 13: replaceNodes

Input : (I, J) are the sets of rows and columns

Output: (I ′, J ′) with smaller or equal residue

begin

repeat
// Replace columns

repeat

maxJ = arg max
j∈J

colErrIJM (j)

minJ = arg min
j∈Y \J

colErrIJM (j)

J ′ = J ∪ {minJ} \ {maxJ}
if ErrM(I, J) > ErrM(I, J ′) then

J = J ′

end

until J is not modified ;

// Replace rows

repeat

maxI = arg max
i∈I

rowErrIJM (i)

minI = arg min
i∈X\I

rowErrIJM (i)

I ′ = I ∪ {minI} \ {maxI}
if ErrM(I, J) > ErrM(I ′, J) then

I = I ′

end

until I is not modified ;

until I, J are not modified ;

end

return (I, J)
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The local search procedure (line 4 to 14) is restarted for a number of

runs to explore different local minima. The normalized data is used only

to create the initial bicluster set, while local search runs on the original

data. In each run, the algorithm first picks randomly a bicluster from the

initial set and removes it. Next, it reduces the bicluster’s residue by the

procedure replaceNodes. Function replaceNodes shrinks the residue by

replacing the column (or row) with the highest residue in that bicluster by

an external column (or row) with the smallest residue, if the replacement

reduces the residue. The replacement is repeated until a locally minimal

residue is obtained. If the residue is still greater than the threshold, some

rows or columns are deleted in the deleteNodes procedure of Algorithm

14, following the proposal by Cheng and Church [19]. deleteNodes keeps

deleting the columns and rows with highest mean residues, until the residue

drops below the threshold. The parameter θ declares the relative impor-

tance between rows and columns. A large value of θ leads to biclusters with

more columns, a smaller value to biclusters with more rows. The default

value θ = 1, implies equal weights of rows and columns. Although both re-

placeNodes and deleteNodes can decrease the residue, replaceNodes

keeps the bicluster size unchanged whereas deleteNodes reduces it.

At this point, the residue is guaranteed to be lower than or equal to

the threshold. The algorithm starts repeating two steps: replaceNodes

and addNodes until convergence. The main scheme is that while fixing

the bicluster volume, we try to reduce the residue and then while keep-

ing the residue below the threshold, we try to increase the volume. The

addNodes procedure in Algorithm 15 iteratively adds a column or a row

with the smallest residue, until the residue exceeds the threshold. Finally,

to guarantee that the residue is less than or equal to the threshold, we per-

form deleteNodes before returning the bicluster. As the number of rows

and columns is finite, the loop of two steps replaceNodes and addNodes
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Algorithm 14: deleteNodes

Input : (I, J) are the sets of rows and columns, threshold δ, preference for

columns θ

Output: (I ′, J ′) with residue smaller than threshold δ

begin

while ErrM(I, J) > δ do

maxJ = arg max
j∈J

colErrIJM (j)

maxI = arg max
i∈I

rowErrIJM (i)

if colErrIJM (maxJ) < θrowErrIJM (maxI) then
I = I \ {maxI}

else
J = J \ {maxJ}

end

end

end

return (I, J)

Algorithm 15: addNodes

Input : (I, J) are the sets of rows and columns, threshold δ

Output: (I ′, J ′) with greater or equal size

begin

while ErrM(I, J) < δ do

minJ = arg min
j∈Y \J

colErrIJM (j)

minI = arg min
i∈X\I

rowErrIJM (i)

if colErrIJM (minJ) < θrowErrIJM (minI) then
J = J ∪ {minJ}

else
I = I ∪ {minI}

end

end

end

return I, J
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always terminates after a finite number of iterations (which is less than or

equal to (|X|+ |Y |)).

4.3.2 Discovering Non-Redundant Biclusters

Local Minima Distribution

Repeated local search produces locally optimal solutions (local minima),

which cannot be further improved by local changes. In many cases, kicking

the system out of local minima but still searching in their vicinity can be

effective to discover even better solutions [10]. This is caused by the “big

valley” hypothesis of local search: in many relevant problems, local minima

tend to be clustered with a rich structure, and Iterated local Search (ILS)

methods aiming at moving between nearby local minima are particularly

efficient.

To motivate our proposal for discovering non-redundant biclusters, and

to validate the “big valley” hypothesis for our problem, we study the local

minimum distribution. We run BICRELS for 1000 restarts with random

clusters of columns and rows on the Yeast dataset [84]. The details of the

experimental setup are presented in Section 4.5.3. Let X, Y be the set of

columns and rows of the dataset. Each random cluster of rows or columns

are sampled uniformly from the power set 2Y and 2X of rows and columns.

In this case, we use random row and column clusters instead of the ones

obtained by K-means to have a uniform distribution of initial solutions.

All duplicated local minima are removed from the analysis. We measure

the distance between two local minima (I1, J1) and (I2, J2) by the Jaccard

distance:

JaccardDistance
(
(I1, J1),

(
I2, J2)

)
=

= 1− |I1 ∩ I2||J1 ∩ J2|
|I1||J1|+ |I2||J2| − |I1 ∩ I2||J1 ∩ J2|

.
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Figure 4.1: Local Minimum Hierarchical Cluster Tree

A small Jaccard distance between two local minima means that the number

of overlapping cells between them is large.

For the sake of convenience, we shall refer to a row or a column as a

“node” hereafter. The smallest (or largest) node is the one with the lowest

(or highest) residue. A node rank is the order in which that node appears

in the ascending order of all node residues, i.e., the smallest node is the

one having the smallest rank and vice versa. We plot hierarchical cluster

tree of the local minima obtained by running a Hierarchical Clustering

algorithm (using the Single Linkage method) [80] in Fig.4.1. The second

column of Table 4.1 shows the statistics on the percentage of local minima

(I, J) sharing at least (1− JaccardDistance)|I||J | cells with another local

minimum where |I||J | is the number of cells of such local minima. The third

column presents the average percentage of common nodes whose ranks less

than (1− JaccardDistance)(|I| + |J |). It can be seen that a large portion

of local minima have a significant overlap with other local minima, e.g.,

76.98% of local minima share at least 70% of their cells with at least another

local minimum; and 95.40% of the common nodes having ranks less than
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Jaccard Distance Percentage of Percentage of

Local Minima (%) Smallest Nodes (%)

0.1 26.19 100.00

0.2 63.49 98.68

0.3 76.98 95.40

0.4 79.37 88.42

0.5 81.75 78.87

0.6 85.71 65.81

0.7 92.86 49.70

0.8 100.00 32.52

Table 4.1: The second column shows the percentage of local minima (I, J) sharing at

least (1 − JaccardDistance)|I||J | cells with another local minimum where |I||J | is the

number of cells of such local minima. The third column presents the average percentage

of common nodes whose ranks less than (1− JaccardDistance)(|I|+ |J |).

0.7(|I| + |J |) or the overlap contains mostly the rows and columns with

smallest residues.

The above quantitative results demonstrate that an optimal solution is

often surrounded by other near locally optimal solutions and shares some

common structures with them. To discover such optimal solutions from a

local minimum, an effective algorithm should therefore modify the current

solution to move to nearby local optima rather than restarting from scratch.

From this observation, we develop our FLEXible BIClustering algo-

rithm, called FLEXBIC, based on the notion of core rows or columns

in a bicluster.
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The core nodes

In a δ-bicluster (I, J), the nodes can be divided into two groups: core nodes

and loose nodes. In detail, a row i ∈ I is a core row if and only if:

rowErrIJM (i) ≤ βr

where

0 ≤ βr < max
i∈I

(rowErrIJM (i)).

Similarly, a column j ∈ I is a core column if and only if:

colErrIJM (j) ≤ βc

where

0 ≤ βc < max
j∈J

(colErrIJM (j)).

For a pair of (βr, βc), we can identify the boundary between the core and

loose nodes. Fig.4.2 shows an example of core nodes for a specific pair of

(βr, βc). The blue rows and the columns from 1 to 6 are core nodes because

these rows show more similar patterns in these columns. The remaining

rows and columns are loose nodes.

For the visual presentation, we often rearrange rows and columns of

a δ-bicluster in ascending order of their residues as in Fig.4.3a. After

sorting, the core and loose nodes are traversed from left to right and from

top to bottom as in Fig.4.3b. Because of the tight relationship between

core nodes, i.e., some rows can only show similar behaviors through some

columns, the core-node set of a bicluster is often included also in other

locally optimal biclusters in the neighborhood. Fig.4.3c and 4.3d illustrate

this relationship (assuming that we can rearrange the rows and columns

of two biclusters). The first bicluster consists of the red and blue part.

The second one is the combination of the red and green part. The two

share a core set denoted as the black part. Therefore, when we expand a
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Figure 4.2: A core node example of a δ-bicluster.

bicluster around its core set, we can quickly identify a family of locally-

optimal biclusters. We do not have to build or search from scratch. Besides,

different core sets can exist in different regions of the data matrix. Thus,

discovering these core sets and searching in the neighborhood helps to

extract the representative biclusters of the data matrix.

The Flexible Biclustering Algorithm

FLEXBIC has three main steps which are motivated and illustrated in

Fig.4.4. At the beginning, local search is used to identify the first locally

optimal bicluster denoted by Core 1 and Loose 1 in Fig.4.4a. From there,

it searches for other locally optimal solutions around the core set by ex-

panding columns (and reducing rows) or reducing columns (and expanding

rows). After identifying the optimal bicluster around the first core set (de-

noted by Core 1∗ and Loose 1∗ in Fig.4.4b), it restricts the search area in

the largest submatrix (the grey area in this case) having no intersection

with the first optimal bicluster. The whole process is repeated to identify

the next optimal bicluster as in Fig.4.4c and Fig.4.4d. Note that the second
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(a) The arrange-

ment of all nodes in

a δ-bicluster in a se-

quential order.

(b) The arrange-

ment of all nodes

in a δ-bicluster

according to their

residues.

(c) The arrange-

ment of all nodes of

two neighborhood

δ-biclusters in a se-

quential order.

(d) The arrange-

ment of all nodes

of two δ-biclusters

according to their

residues.

Figure 4.3: The arrangement of all nodes in δ-biclusters.

optimal bicluster (consisting of Loose 1∗, 2∗, Core 2∗, Loose 2∗ in Fig.4.4d)

overlaps with the first optimal one (in the Loose 1∗, 2∗ part) because of

the expansion steps.

Intuitively, restricting the search area guarantees that the sub-matrix

formed by the new core set is disjoint from those formed by previous core

sets. This new sub-matrix thus reveals a non-redundant view of the data

matrix. The algorithm subsequently expands around this core set to search

for overlapping nodes.

The pseudo-code of FLEXBIC is shown in Algorithm 16. In each

iteration, the algorithm searches for the largest bicluster satisfying the

residue and overlap constraints.
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Algorithm 16: FLEXBIC

B = ∅
for k = 1 to numberOfBiclusters do

// Restrict search region

(Î , Ĵ) = restrictRegion(A,B)

// Identify the core bicluster

(I, J) = BICRELS(AÎĴ , δ)

(I∗, J∗) = (I, J)

// Search for variants of the core bicluster

for n = (1− α1)|J | to (1 + α2)|J | do
(I1, J1) = (I, J)

if n < |J | then
Remove |J | − n smallest columns from (I1, J1)

else
Add n− |J | smallest columns to (I1, J1)

end

τ = (1− γ) n
|J |

I =
√
τ |I| smallest rows in I

J =
√
τ |J | smallest columns in J

(I1, J1) = replaceNodes2(I1, J1, A, I, J)

if ErrM(I1, J1) < δ then
Add smallest rows to (I1, J1) s.t. adding them does not violate the

overlap limit until ErrM(I1, J1) ≥ δ or no such rows exist.

Remove the last added row from (I1, J1) if ErrM(I1, J1) > δ .

else
Delete largest rows from (I1, J1) s.t. deleting them does not violate the

overlap limit until ErrM(I1, J1) ≤ δ or no such rows exist.

end

if |I∗||J∗| > |I1||J1| and ErrM(I1, J1) ≤ δ then
(I∗, J∗) = (I1, J1)

end

end

B = B ∪ {(I∗, J∗)}
end

return B
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(a) Identify the first

core node set and search

around this core set

(b) Confine search

area to the largest

disjoint submatrix

(c) Identify a new

core node set

(d) Search around

this core set

Figure 4.4: Main steps of the FLEXBIC algorithm.

FLEXBIC starts by finding the largest submatrix without no nodes in

common with any of previous optimal bicluster in B by calling procedure

restrictRegion presented in Algorithm 17. After starting from the full ma-

trix, this procedure identifies the bicluster in B having the largest overlap.

If the ratio of common rows is greater than the ratio of common columns,

the common columns are removed from the restricted matrix. Otherwise,

the common rows are removed. The whole process is repeated until there is

no overlap. Through incremental computation, the complexity of this pro-

cedure is O(M +N) where M and N are the number of rows and columns,

respectively.

To find a locally optimal bicluster in the restricted area, we use BI-

CRELS as it is effective and efficient for this goal. The characteristic of
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Algorithm 17: restrictRegion

Input: data matrix A with rows X and columns Y , bicluster set B

(Î , Ĵ) = (X, Y )

repeat

(I2, J2) = arg max
(I1,J1)∈B

|(I1, J1) ∩ (Î , Ĵ)|

if |I2∩Î|
|Î| > |J2∩Ĵ |

|Ĵ | then

Ĵ = Ĵ \ (J2 ∩ Ĵ)

else

Î = Î \ (I2 ∩ Î)

end

until I2 = ∅ or J2 = ∅;
return (Î , Ĵ)

the bicluster (I, J) returned by BICRELS can fall into two cases. First,

only a subset of columns in the current biclusters are core nodes. The

number of core columns is then identified by each core column threshold

βc. However, setting precisely βc is difficult, therefore we assume that the

number of core columns varies from (1−α1)|J | to |J |. The second situation

is where all columns of the current bicluster are core nodes and included in

a larger core set. In this case, we assume that the number of core columns

can be from |J | to (1+α2)|J |. In other words, the algorithm tries reducing

and expanding the column size from (1−α1)|J | to (1 +α2)|J | where α1, α2

are parameters controlling the reduction and expansion size. Large values

of (α1, α2) mean that the algorithm searches for more potential solutions

and consumes more run-time. To guarantee the overlap limit, α2 must

satisfy α2 ≤ γ
1−γ (where γ is the overlap threshold). To prove this, we

observe that the core bicluster has no common cells with other biclusters,

and the overlapping cells can only come from adding α2|J | columns to

the current bicluster. When the column size is (1 + α2)|J |, the maximum
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Algorithm 18: replaceNodes2

Input: a bicluster (I, J), tabu row and column set I, J

Î = X \ I, Ĵ = Y \ J
repeat

// Replace columns

repeat

maxJ = arg max
j∈J\J

colErrIJM (j)

minJ = arg min
j∈Ĵ

colErrIJM (j)

J ′ = J ∪ {minJ} \ {maxJ}
if ErrM(I, J ′) < ErrM(I, J) then

J = J ′

Ĵ = Ĵ \ {minJ}
end

until J is not modified or Ĵ = ∅;

// Replace rows

repeat

maxI = arg max
i∈I\I

rowErrIJM (i)

minI = arg min
i∈Î

rowErrIJM (i)

I ′ = I ∪ {minI} \ {maxI}
if ErrM(I ′, J) < ErrM(I, J) then

I = I ′

Î = Î \ {minI}
end

until I is not modified or Î = ∅;
until I, J are not modified ;

return (I, J)
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overlap between the current bicluster and the other biclusters in B is:

α2|J ||I|
(1 + α2)|J ||I|

=
α2

1 + α2
≤ γ

⇔ α2 ≤
γ

1− γ
.

To reduce (or increase) the columns size, our algorithm removes (or

adds) the columns with largest residue from (or to) the core bicluster.

It then calls replaceNodes2 in Algorithm 18 to reduce residue. This

procedure is an extension of procedure replaceNodes in BICRELS for

controlling the overlap limit. Specifically, the replaceNodes2 procedure

replaces nodes which are not in
√
τ |I| rows and

√
τ |J | columns with small-

est residue where τ = (1 − γ) n
|J | ≤ 1 and n is the number of columns in

the new bicluster. As the submatrix formed by these rows and columns

is included in the core bicluster, it has no overlap with other biclusters.

This guarantees that the overlap is always below the threshold γ. This is

because, when the column size is n and we keep
√
τ |I| and

√
τ |J | smallest

rows and columns, the maximum overlap is:

1−
√
τ |I|
√
τ |J |

|I|n
= 1− τ |J |

n
≤ γ

⇔ τ ≥ (1− γ)
n

|J |
.

After performing replaceNodes2, if the residue is smaller than the thresh-

old δ, our algorithm traverses the rows in the ascending order of residue and

adds the ones permitted by the overlap limit. The process is repeated until

the residue exceeds the threshold or no such rows exist. If necessary, the

last added row is removed to guarantee the residue constraint. Similarly,

if the bicluster residue is larger than the threshold δ, the algorithm keeps

deleting the largest rows without violating the overlap constraint until the

residue is below the threshold or no such rows exist. Finally, if the current
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bicluster is valid and better, the best bicluster is updated and added to

the set B before moving to the next iteration.

The complexity of BICRELS is O((M + N)MN) where M and N

are the number of rows and columns. Removing or adding a column (line

11 to 14) requires the computation of all column residues colErrIJM with

the complexity of O(MN). Thus, the complexity of this step is O(MN 2).

As only one column is modified each time, the incremental update can be

used to reduce the complexity from O(MN 2) to O(N 2). The complexity

of replaceNodes2 is O((M + N)MN) because the maximum number of

rows and columns which can be replaced is M +N . For each replacement

step, we need to compute all row or column residues with the complexity of

O(MN). Besides, from line 20 to 23, searching for the smallest or largest

rows requires the computation of all row residues rowErrIJM with the com-

plexity of O(MN). In the worst case, all rows can be added and therefore

complexity of this part is O(M 2N). However, in each step, only one row

is added or removed, thus their residues can be updated incrementally to

reduce the complexity from O(M 2N) to O(M 2). In total, the complexity

of our algorithm is O((M +N)MN).

4.4 Discovering Disjoint Biclusters in Euclidean Space

Most subspace clustering algorithms using p-norm distances are often de-

veloped to find a set of disjoint or all valid biclusters. Therefore, in this

section, we illustrate the application of our algorithm for searching dis-

joint biclusters where the dissimilarity between items is measure by the

Euclidean distance.
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4.4.1 State-of-the-art Benchmark Algorithms

A representative set of the most competitive subspace clustering algorithms

have been selected as benchmark for our experiments. Let’s summarize

their principles [68].

In the grid-based approaches, each subspace cluster is defined as a set

of connected grid cells where each cell contains a number of objects greater

than a threshold. A cell is specified by intervals Ii per dimension i. If the

dimension i belongs to the subspace of that cluster, then the cell interval Ii

is strictly a part of the domain [Li, Ui] of dimension i where Li, Ui are the

lower and upper bound that dimension. On other non-relevant dimensions,

the cell intervals are the full domains. The algorithms in this scheme can

generate all possible clusters or only high-quality ones, the quality being

measured by an external function µ. MineClus [98] picks at each iteration

a random point p from the dataset and identifies the cluster centered at p.

To this end, MineClus transforms the subspace clustering problem into

the problem of mining frequent itemsets in transactional databases. Each

point q is replaced with an itemset as follows. If the difference between the

value of q and p in dimension i is less than a threshold w, then dimension

i is included into the corresponding itemset of q. Then, MineClus runs a

frequent itemset mining algorithm to find the best dimensions and objects

for the cluster centered at p. The process is repeated for a number of ran-

dom medoids and the cluster with the highest quality is selected. After a

cluster is discovered, the objects in that clusters are removed and the pro-

cess is applied again to the remaining objects to identify the next cluster.

Finally, clusters are merged if users want to have at most K clusters.

Instead of using grids, other researchers extend the notation of density-

connectivity of DBSCAN [34] for subspace clustering: clusters are specified

as dense regions separated from sparse regions where the distance between
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objects is computed only on the relevant dimensions of those clusters. One

of the fist density-based subspace clustering algorithms is SUBCLU [55],

a bottom-up, greedy algorithm. SUBCLU first searches for all clusters in

1-D subspaces by running DBSCAN on these subspaces. Then, based on

the k-dimensional clusters and subspaces obtained, it builds a list of (k +

1)-dimensional subspace candidates and runs DBSCAN on this candidate

list to generate the (k + 1)-dimensional clusters. The whole procedure

is repeated until no clusters are found. Because of the monotonicity of

density-connected sets, the algorithm can quickly eliminate all subspaces

that cannot contain clusters. However, as there is no mechanism to control

the redundancy, the number of clusters generated by SUBCLU is often

large and the clusters can overlap significantly.

Unlike the two previous schemes searching for individual clusters, the

projected-subspace approaches aim at discovering a whole set of clusters

at once. PROCLUS, an algorithms in this approach [1], starts by picking

a set M of K random points from a superset of βK farthest points to

form a set of K medoids where β > 1 controls the superset size. Then, it

identifies the best dimensions for all medoids and assigns each point to the

nearest medoid to form clusters. The distance between each point and a

medoid is computed under the dimensions assigned to that medoid. The

quality of a medoid set is considered as the clustering quality. At the end

of an iteration, the bad medoids whose clusters contain fewest points are

replaced by random points in the superset of medoid. The whole procedure

is repeated for many iterations until the medoid set cannot be improved

any more. Although PROCLUS is robust, it requires users to specify the

average number of dimensions for biclusters and this parameter is often

unknown in practice.
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4.4.2 Model and Error Function

For the experiments of this section, the distance between objects in I under

some subspace J is defined by their Euclidean distance. The model M is

the following one:

âij =
1

|I|
∑
i∈I

aij (4.8)

and the squared cell error:

cellErrM(aij, âij) = (aij − âij)2. (4.9)

Under this model, the error function ErrM(I, J) is defined as:

ErrM(I, J) =
1

|I||J |
∑
i∈I

∑
j∈J

(aij − âij)2 (4.10)

=
1

|I||J |
∑
i∈I

||aJi − aJI ||2 (4.11)

where aJi = {aij}j∈J is the vector representing the object i under the

subspace J , and aJI = 1
|I|a

J
i is the centroid vector of the subspace cluster

(I, J). As can be seen, ErrM(I, J) in Equation (4.11) is actually the vector

quantization error used in the K-means algorithm [62]. In other words, a

valid δ-bicluster (I, J) under this model is a set I ⊂ X of objects under a

subspace J ⊂ Y such that the normalized vector quantization error of this

bicluster is less than a threshold δ.

4.4.3 Experiments

In this section, we compare our algorithms BICRELS with the other

state-of-the-art algorithms: PROCLUS [1], MineClus [98], and SUB-

CLU [55].
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Table 4.2: UCI dataset characteristics

Dataset Number of Average number of Number of

Objects Dimensions Clusters

Iris 150 4 3

Wine 178 13 3

Glass 214 9 6

IrisWine 328 9 6

IrisGlass 364 7 9

WineGlass 392 11 9

Experimental Setup: We embed UCI datasets Iris, Wine, Glass and

their combinations into high-dimensional space and run all subspace clus-

tering algorithms on these datasets and check whether the ground truth

biclusters can be recovered.

In detail, all original UCI data sets are normalized (subtracting the

mean and dividing by the standard deviation) before embedding them into

a high-dimensional space. For a dataset A = (X, Y ), we append (ϕ−1)|Y |
dimensions to each object to form a new dataset with ϕ|Y | dimensions. The

value of each object under the new dimensions are random values from 0

to 100. The order of objects in the dataset is randomized. Similarly, we

embed pairs of datasets into high-dimensional space to test whether the

algorithms can discover biclusters with different number of dimensions.

For a pair of two datasets A1 = (X1, Y1) and A2 = (X2, Y2), we embed

them into a space of ϕmax(|Y1|, |Y2|) dimensions following the previous

procedure.

The number of biclusters on each dataset is set as the number of clus-

ters in the original one. To obtain K biclusters, BICRELS is run for

K times. Following the Cheng and Church suggestion [19], we replace

the values of the cells in the subspace cluster found the (k − 1)-th run

by random values from 0 to 100 before the k-th run. The parameters
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numberOfRestarts and the residue threshold δ of BICRELS are set

to 10 and 1, respectively. Parameters Kr and Kc of BICRELS are set to

min(|Y |/10, 100) and min(|X|/10, 100) where |Y |, |X| are the number of

rows and columns. As for SUBCLU, its parameter minPoints and ra-

dius ε are set to 10 and 1, respectively. Because SUBCLU generates a set

CSUBCLU biclusters which can overlap significantly, we select only K bi-

clusters from this set to compare with the other algorithms as follows. For

each true bicluster Ct = (It, Jt) of a dataset DB, we choose the bicluster

Cp = (Ip, Jp) ∈ CSUBCLU having the highest overlap with Ct, i.e.:

Cp = arg max
Cq=(Iq,Jq)∈CSUBCLU

|Iq ∩ It||Jq ∩ Jt|. (4.12)

This reduction procedure helps us to check whether the true biclusters

are included in the bicluster set CSUBCLU generated by SUBCLU. The

parameters of MineClus are set as follows: α = 0.5/K, β = 0.1, w =

1, k = K where K is the true number of clusters in each dataset. Fi-

nally, the average number of dimensions and the number of biclusters in

PROCLUS are set to the ground truth values on each dataset as in Table

4.2. BICRELS is implemented in Matlab while three other algorithms

PROCLUS, MineClus and SUBCLU are implemented in Java under

the framework described in [68].

The performance of all algorithms is evaluated as the matching between

the clusterings produced by these algorithms and the ground truth clus-

terings, measured by the Adjusted Rand Index (ARI) [53]. ARI computes

the matching between two clusterings on full dimensional space as the ratio

between the number of object pairs in the same cluster or in different clus-

ters in both clusterings and the total number of pairs. The maximum value

of ARI is one when two clusterings are identical and is around zero when

they are very different. ARI is popular as it guarantees that the expected

matching of two random clusterings is zero. To measure the matching of
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two clusterings where their clusters are located in subspaces, we consider

each cell in the data matrix as an object, and all cells of a subspace cluster

are assigned to the same cluster. The cells which do not belong to any

bicluster are grouped to a noise cluster.

Experimental Result: Fig.4.5 shows the adjusted rand index of all sub-

space clustering algorithms on six datasets. BICRELS outperforms the

other algorithms on most datasets. On two datasets Iris and Wine, the

performance of BICRELS and PROCLUS are approximately the same.

However, on the Glass datasets and on the combined datasets where the

number of dimensions in biclusters can be different, BICRELS produces

much better results than PROCLUS. Besides, BICRELS performance

is more stable when changing the dataset dimensions.

4.5 Discovering Non-Redundant Overlapping Biclus-

ters on Gene Expression Data

In this section, we illustrate the application of our algorithm on gene ex-

pression data to generate K overlapping biclusters where the maximum

overlap between them is below a predefined threshold.

4.5.1 Related Work on Biclustering of Gene Expression Data

The algorithms proposed for solving the biclustering problem can be clas-

sified into different groups [65]:

• Iterative row and column clustering combination: applying the stan-

dard clustering methods on rows and columns of the data matrix and

then combining the row and column clusters to form biclusters [39].

• Divide and conquer: breaking the problem into smaller problems, solv-

ing them recursively, and combining the solutions of sub-problems to
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Figure 4.5: Performance comparison of four algorithms on UCI datasets embedded in

high-dimensional space. The x-axis corresponds to the ratio ϕ between the number of

dimensions in the high-dimensional space and that of the original space of each dataset.
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form the solution for the original problem [48].

• Greedy iterative search: removing rows or columns to reduce the bi-

cluster residue below the threshold and adding rows or columns to

increase the bicluster volume while the constraint on residue is still

satisfied [19].

• Exhaustive bicluster enumeration: enumerating all possible biclusters

to identify the best ones in exponential time [83].

• Distribution parameter identification: assuming the data is generated

from a model and trying to fit parameters of that model by minimizing

a certain criterion [61].

However, the biclustering algorithms can optimize different “coherence”

criteria [65]. Therefore, in the experiments of Section 4.5, we only compare

our algorithm, FLEXBIC, with those based on the additive model.

One of the first additive models is proposed by Cheng and Church [19].

They define a bicluster (I, J) (with I and J are the row and column sets)

as a δ-bicluster if and only if its mean squared residue MSR(I, J) below a

threshold δ with:

MSR(I, J) =
1

|I|J |
∑

i∈I, j∈J

(aij − aiJ − aIj + aIJ)2

where aiJ , aIj and aIJ are the ith row mean, the jth column mean and the

bicluster mean. Similarly, the residue of a row or a column is computed

as the average residue of all cells in that row or column. Their algorithm

to search for the largest δ-bicluster starts from the initial bicluster con-

taining all rows and columns and iteratively deletes a set of nodes (rows

or columns) with large residues until the mean squared residue is below

the threshold. A set of outside nodes is then added to the bicluster to

increase its volume while obeying the residue constraint. This algorithm
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is deterministic and very fast, as a set of nodes can be deleted or added

at the same time. Its complexity is O((M +N)MN) where M and N are

the number of genes and conditions. However, modifying a set of nodes

simultaneously can also leads to non-optimal solutions. Besides, in each

run, the algorithm can only generate one largest bicluster. To generate a

set of disjoint biclusters, the cell values in the previously discovered biclus-

ters are replaced by random values and the algorithm is rerun on the new

data. We denote this algorithm as ChengChurch.

To overcome its limitation, Yang et al. [97] propose a probabilistic

method named FLOC (Flexible Overlapped Clusters) which can discover

a set of K biclusters in a run. The algorithm starts from a set of ran-

dom initial biclusters. They are formed by selecting randomly a subset of

rows and a subset of columns, such that the bicluster residue is below a

threshold. Then FLOC iteratively performs the best action for each row

and column to improve the bicluster quality. The actions are deleting or

adding a row or a column to one of K biclusters. The best action is the

one that gives the highest improvement in a gain function which is the

sum of the reduction ratio in mean squared residue and the increase ra-

tio in volume. As two objectives (volume and residue) are considered at

the same time, FLOC can return biclusters with very small volume while

their residues are much lower than the threshold. Besides, FLOC is very

sensitive to the initial biclusters and its complexity is O((M+N)2×K×p)
where M , and N are the number of genes and conditions, K is the number

of biclusters, and p is the number of iterations the algorithm runs until

convergence.

Lazzeroni and Owen introduce the plaid model to analyze the under-

lying structure of a gene expression matrix [61] allowing overlap between

biclusters. The data matrix is described as the sum of different layers

where each layer corresponds to a bicluster. In detail, a gene expression
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level aij of the ith gene and the jth condition is modeled as:

aij =
K∑
k=0

(µk + αik + βjk)ρikκjk (4.13)

where µk, αik and βjk are the mean, the ith gene and the jth condition

effects in the kth layer. ρik and κjk are binary variables describing the

membership of the ith gene and the jth condition. Layer zero (k = 0)

describes the background. It is fitted before adding the next layers one

by one until the predefined number of biclusters is reached or no more

significant biclusters are found. While fitting the model parameters, the

authors relax the membership variables ρik and κjk as real variables shifted

towards binary solutions during the optimizing process. Turner et al. find

that “the gradual shifting of estimates introduces a discontinuity which

may prevent the algorithm converging to a superior solution to the final

result” [90]. Therefore, they propose an optimization method using binary

bicluster membership to preserve continuity and speed up convergence. We

refer to this improved version as ImpPlaid.

4.5.2 Model and Error Function

To discover biclusters in a data matrix of co-expression patterns, we use

the additive model M proposed by Cheng and Church [19]:

âij = aiJ + aIj − aIJ , (4.14)

where

aiJ =
1

|J |
∑
j∈J

aij,

aIj =
1

|I|
∑
i∈I

aij,

aIJ =
1

|I||J |
∑
i∈I

∑
j∈J

aij =
1

|I|
∑
i∈I

aiJ =
1

|J |
∑
j∈J

aIj.
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Figure 4.6: An example of a bicluster with 9 genes and 6 conditions.

The biological motivation for the model is that, in a gene regulatory net-

work, the gene expression level is proportional to a sum of a term char-

acterizing the gene plus a term characterizing the experimental condition

which is activating the specific network. Let’s note that, if logarithms of

the original measures are taken, the model is multiplicative in the origi-

nal measures. Fig.4.6 shows an example of a bicluster with 9 genes and

6 conditions.

The error measure is the squared cell error:

cellErrM(aij, âij) = (aij − âij)2. (4.15)

The error function ErrM(I, J) is defined as:

ErrM(I, J) =
1

|I||J |
∑
i∈I

∑
j∈J

(aij − âij)2 (4.16)

=
1

|I||J |
∑
i∈I

(aij − aiJ − aIj + aIJ)2. (4.17)
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4.5.3 Experiments

In this section, we compare the performance of all algorithms for finding

the overlapping biclusters, the largest biclusters and the coverage of K

biclusters.

Experimental Setup

In the following experiments, we set the number of biclusters generated

by each algorithm to K = 10. Parameter α1, α2 and γ of FLEXBIC

are set to 0.5. Parameter α of ChengChurch is set to its default value

(α = 1.2). The number of initial rows and columns in FLOC are set to

9 and 2, respectively as in [89]. The number of biclusters produced by

FLOC in each run is set to 10. FLOC is run for 10 times to eliminate

the randomness effect. In each run, BICRELS is restarted for 10 times

(numberOfRestarts = 10). As BICRELS can only return the largest bi-

cluster in each run, to generate K = 10 biclusters, we also apply the

random masking process of ChengChurch. In the initialization phase of

BICRELS, the K-means algorithm uses cosine similarity to measure the

difference between two rows or columns. The reason is that two very sim-

ilar patterns with large difference in feature magnitude should still have a

small distance. Besides, the parameters Kr and Kc of BICRELS are set

to min(|Y |/10, 100) and min(|X|/10, 100) where |Y |, |X| are the number

of rows and columns, respectively. Because ImpPlaid is non-deterministic

and the number of biclusters is identified automatically, we run ImpPlaid

10 times on each dataset with different random seeds, and select the result

from the run which produces at least two biclusters and has the highest

coverage. The parameters of ImpPlaid are set to the default values in the

source code of the biclust R package 1.

1http://cran.r-project.org/web/packages/biclust/
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In the experiments, we use two real datasets Yeast [84] and Lymphoma [2].

The Yeast dataset consists of 2884 genes and 17 conditions. The Lym-

phoma dataset has 4026 genes and 96 conditions. These datasets are pre-

processed by Cheng and Church2. The missing values are processed as

in [19]. The residue threshold of all algorithms on the Yeast and Lym-

phoma dataset are set to 300 and 1200 as in [19, 89].

Identifying the overlapping biclusters

Fig.4.7 shows the biclusters found by four algorithms on two synthetic

datasets. We denote the first and second bicluster with the green and blue

color and the overlap part with the red color. In other to plot the overlap

part, we arrange the columns such that these overlapping columns are at

the end of the first bicluster and at the beginning of the second bicluster.

We plot the overlap part after plotting two biclusters, therefore the overlap

part is always visual if any. For each algorithm, we only plot two biclus-

ters with maximum overlap. When there is no overlap between biclusters,

we plot the two largest biclusters of that algorithm. It can be seen that

FLEXBIC has discovered different overlapping biclusters through the ex-

pansion steps. Besides, FLOC can only produce disjoint biclusters with

a very small number of columns. Although ImpPlaid can also discover

reasonably large biclusters on Dataset 1, these biclusters have no overlap.

This comes from the fact that after subtracting the first layer correspond-

ing to the first bicluster, the values of all cells in the overlap regions are

also removed, i.e., in the remaining residue matrix, these values are almost

the same as the background. Therefore, when adding the second layer,

ImpPlaid cannot include the rows and columns in such overlap region.

Similarly, on Dataset 2, ImpPlaid only produces a pair of biclusters with

very few overlapping nodes. In contrast, ChengChurch produces very

2http://arep.med.harvard.edu/biclustering
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(a) Dataset 1, FLEXBIC biclusters:

6000(200× 30), 3960(396× 10)

(b) Dataset 2, FLEXBIC

biclusters: 4000(400 × 10),

3500(100× 35)

(c) Dataset 1, FLOC biclusters: 27(9×
3), 27(9× 3)

(d) Dataset 2, FLOC biclusters:

24(12× 2), 20(10× 2)

(e) Dataset 1, ImpPlaid biclusters:

2400(200× 12), 2000(200× 10)

(f) Dataset 2, ImpPlaid biclusters:

3180(212× 15), 120(12× 10)

(g) Dataset 1, ChengChurch biclus-

ters: 2470(130× 19), 286(143× 2)

(h) Dataset 2, ChengChurch biclus-

ters: 406(203× 2), 398(199× 2)

Figure 4.7: Biclusters found by four algorithms on two synthetic datasets. Each bicluster’s

information is presented in the format V olume(numberOfRows×numberOfColumns).
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(a) Yeast, FLEXBIC biclusters:

4689(521× 9), 5880(840× 7)

(b) Lymphoma, FLEXBIC

biclusters: 13664(976 × 14),

10832(1354× 8)

(c) Yeast, FLOC biclusters:

1500(750× 2), 2709(903× 3)

(d) Lymphoma, FLOC biclus-

ters: 948(316× 3), 885(295× 3)

(e) Yeast, ImpPlaid biclusters:

555(185× 3), 512(128× 4)

(f) Lymphoma, ImpPlaid bi-

clusters: 816(48×17), 51(3×17)

(g) Yeast, ChengChurch biclus-

ters: 2540(508×5), 2058(686×3)

(h) Lymphoma, ChengChurch

biclusters: 39026(1027 × 38),

10697(563× 19)

Figure 4.8: Biclusters found by four algorithms on two real datasets. Each bicluster’s

information is presented in the format V olume(numberOfRows×numberOfColumns).
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poor results in these two datasets with quite small biclusters. We also run

BICRELS with the random masking process of the ChengChurch algo-

rithm and observe that BICRELS can only discover the largest bicluster

but cannot find the second largest one with the overlap part. For the sake

of space, we do not plot the BICRELS biclusters.

Fig.4.8 shows the biclusters found by four algorithms on two real datasets

Yeast and Lymphoma. The figures show that FLEXBIC can find much

more interesting non-redundant overlapping biclusters compared to those

of the other algorithms. FLOC can only discover the overlapping biclus-

ters on the Yeast dataset. However, the small bicluster is mostly included

in the larger bicluster. In other words, the small bicluster is redundant

when we already had the larger bicluster. As for ImpPlaid, on the Yeast

dataset, ImpPlaid can produce a pair of small biclusters with a few over-

lapping rows and columns. However, it cannot find the overlapping ones on

the Lymphoma dataset. ChengChurch can return biclusters with small

overlap on the Yeast dataset and no overlap on the Lymphoma dataset.

It is also noticeable that although the biclusters of ChengChurch share

some common columns, ChengChurch cannot find at the same time com-

mon rows due to certain effects of the random masking process. Similarly,

BICRELS also produces no overlapping biclusters on these datasets. In

summary, on four datasets, FLEXBIC can produce non-redundant over-

lapping biclusters whereas the other algorithms either return disjoint or

redundant biclusters.

Table 4.3 shows the run-time comparison between five algorithms on

four datasets. FLEXBIC is slower than BICRELS, ChengChurch.

This comes from the fact that FLEXBIC aims at solving the overlapping

biclustering problem which is much more complex the disjoint biclustering

problem considered by ChengChurch and BICRELS. However, com-

paring with two other algorithms allowing the overlapping, FLEXBIC is
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Dataset Dataset 1 Dataset 2 Yeast Lymphoma

Algorithm

FLEXBIC 22.88 25.19 112.88 718.76

FLOC 2833.59 3462.77 16428.79 5891.46

BICRELS 13.01 13.11 33.04 108.34

ChengChurch 7.44 9.31 0.40 1.56

ImpPlaid 36.89 41.96 44.49 62.93

Table 4.3: Run-time Comparison (in seconds) of five algorithms on four datasets.

much faster than FLOC and comparable to ImpPlaid.

Analyzing the overlapping biclusters

To test whether the overlapping genes actually belong to meaningful gene

ontology terms, we perform gene ontology analysis on the two first over-

lapping biclusters discovered by FLEXBIC (in Fig.4.8a) on the Yeast

dataset. We use the GO::Term Finder software 3 [16] to find significant

gene clusters on the gene sets of two biclusters. The statistical significance

for functional category enrichment called p-value is measured by using a

cumulative hypergeometric distribution to compute the chance probability

of observing the number of genes from a particular gene ontology category

within each cluster. In detail, the chance probability of obtaining at least

k genes from a specific functional category within a cluster of size n is:

p = 1−
k−1∑
i=0

(
f
i

)(
g−f
n−i
)(

g
n

) (4.18)

where f is the total number of genes within that functional category and

g is the total number of genes within the genome [84]. Often, a test with

p-value ≤ 0.05 is considered as having statistical significance.

We search for pairs of gene clusters with largest overlap where one cluster

3http://go.princeton.edu/cgi-bin/GOTermFinder
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in the pair belonging to the first bicluster and the other in the second biclus-

ter. We also remove pairs with identical functions or having parent-child

relation. Table 4.4 shows 10 such pairs of gene clusters. The common genes

can be classified in the biological process having the properties of both

clusters or in another different process. For example, searching for gene

ontology terms of the common genes in the first pair (the cellular process

and the metabolic process), we find a group of 167/169 overlapping genes

belonging to the cellular metabolic process with p-value= 3.64×10−37, i.e.,

the chance probability of obtaining at least 167 genes from the cellular

metabolic process within a cluster of size 169 is 3.64 × 10−37. Similarly,

149/150 common genes of the second pair (the single organism process

and the cellular process) are clustered in the single-organism cellular pro-

cess with p-value = 2.84×10−50. Testing on the common genes of the other

pairs, we also see that most common genes are grouped into significant gene

ontology terms.

Comparison on the largest bicluster

In this section, we compare the largest biclusters produced by five algo-

rithms. In some cases, some algorithms like FLOC can be stuck in lo-

cal minima and return biclusters with very small volumes whereas their

residues are much lower than the threshold. Therefore, for a clearer com-

parison, we set different residue thresholds in our algorithm to produce

biclusters with similar residues as in those of the other algorithms. The

overlap constraint is not necessary in comparison as the largest bicluster

with residue below a threshold is found with no overlap constraint, i.e.,

when the given bicluster set is empty (B = ∅). Besides, we cannot set the

overlap constraint for the other algorithms either.

Table 4.5 shows the performance comparison of all algorithms on the

largest biclusters. It can be seen that FLEXBIC produces much larger
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Pair Gene Clusters in Bi-

cluster 1

Gene Clusters in Bi-

cluster 2

Overlapping Cluster

Function (Size), Function (Size), Function (Size / To-

tal),

p-value p-value p-value

1
cellular process (415),

p-value = 4.02×10−10

metabolic process

(536),

p-value = 2.87×10−08

cellular metabolic pro-

cess (167/169),

p-value = 3.64×10−37

2

single organism pro-

cess (283),

p-value = 4.25×10−09

cellular process (664),

p-value = 2.45×10−15

single-organism cellu-

lar process (149/150),

p-value = 2.84×10−50

3
localization (149),

p-value = 1.88×10−09

single organism cellu-

lar process (414),

p-value = 1.29×10−07

cellular localization

(59/75),

p-value = 1.87×10−38

4

establishment of local-

ization (139),

p-value = 4.14×10−09

cellular localization

(135),

p-value = 2.05×10−06

establishment of local-

ization in cell (51/55),

p-value = 6.08×10−44

5
transport (135),

p-value = 7.77×10−09

macromolecule local-

ization (128),

p-value = 3.05×10−06

organic substance

transport (49/51),

p-value = 1.38×10−41

6

cellular protein modi-

fication process (82),

p-value = 1.56×10−07

cellular metabolic pro-

cess (517),

p-value = 4.80×10−09

cellular protein

metabolic process

(51/51),

p-value = 2.58×10−31

7

protein modification

process (82),

p-value = 1.56×10−07

macromolecule

metabolic process

(417),

p-value = 5.70×10−09

cellular protein mod-

ification process

(51/51),

p-value = 4.28×10−51

8

phosphorus metabolic

process (90),

p-value = 2.61×10−06

organic substance

metabolic process

(512),

p-value = 7.05×10−09

organophosphate

metabolic process

(27/46),

p-value = 4.39×10−18

9

cell communication

(58),

p-value = 2.33×10−07

biological regulation

(242),

p-value = 2.88×10−07

regulation of cellular

process 26/26,

p-value = 1.43×10−16

10

organic substance

transport (97),

p-value = 3.76×10−08

primary metabolic

process (498),

p-value = 1.43×10−08

macromolecule local-

ization (20/22),

p-value = 3.63×10−15

Table 4.4: Gene Clusters of two biclusters discovered by FLEXBIC on the Yeast dataset.

Each line corresponding to a pair of two gene clusters in two biclusters.
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biclusters with smaller residues compared to those of the other algorithms.

The biclusters of the other algorithms have residues ErrM much lower than

the defined threshold, e.g., on the Yeast dataset, with the residue thresh-

old 300, FLOC and ChengChurch can only find largest solutions with

ErrM of 183.17 and 237.33, respectively. These algorithms may converge

prematurely by grouping heterogeneous nodes in the early phases, and

have no mechanism to resolve this premature convergence problem later.

BICRELS and FLEXBIC instead can overcome this issue by replacing

unsuitable nodes in a bicluster with more suitable external nodes during

the replaceNodes procedure.

Comparison on the coverage of K biclusters

We compare the coverage percentage of 10 first biclusters generated by the

five algorithms in Table 4.6. The residue thresholds of all algorithms are

set to the same values (300 and 1200 on the Yeast and Lymphoma dataset,

respectively). When computing the coverage, we only count the overlap

part once, so the overlap constraint does not affect the coverage. The cov-

erage of FLOC is computed as the mean coverage of 10 runs. It can be

seen that FLEXBIC covers significantly larger areas compared to those

of the other algorithms. For example, on the Yeast dataset, FLEXBIC

explores more than 60%, 15%, 20% and 70% of the data matrix compared

to FLOC, BICRELS and ChengChurch, ImpPlaid respectively. In

other words, not only can FLEXBIC produce large and overlapping bi-

clusters, but it can also discover the regions that are omitted by the other

algorithms.

Balancing rows and columns

In some cases, users want to increase the number of columns in biclusters

to have more evidence on the coherence of rows. In other cases, the number
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Algorithm Max Volume (|I| × |J |) ErrM

FLEXBIC (δ = 300) 16968 (1414× 12) 299.99

FLOC (δ = 300) 2709 (903× 3) 183.17

FLEXBIC (δ = 183.10) 8910 (1485× 6) 182.97

BICRELS (δ = 300) 16577 (1507× 11) 299.93

FLEXBIC (δ = 299.90) 16956 (1413× 12) 299.83

ChengChurch (δ = 300) 12012 (1001× 12) 237.33

FLEXBIC (δ = 237.30) 12490 (1249× 10) 237.26

ImpPlaid 564 (141× 4) 270.37

FLEXBIC (δ = 270.30) 14772 (1231× 12) 270.15

(a) On the Yeast dataset

Algorithm Max Volume (|I| × |J |) ErrM

FLEXBIC (δ = 1200) 45878 (1582× 29) 1199.65

FLOC (δ = 1200) 948 (316× 3) 460.31

FLEXBIC (δ = 460.30) 13796 (3449× 4) 460.03

BICRELS (δ = 1200) 43907 (1909× 23) 1199.50

FLEXBIC (δ = 1199.50) 45663 (1473× 31) 1199.41

ChengChurch (δ = 1200) 39026 (1027× 38) 1101.52

FLEXBIC (δ = 1101.50) 40185 (2115× 19) 1101.08

ImpPlaid 816 (48× 17) 2323.56

FLEXBIC (δ = 2323.50) 113435 (2315× 49) 2323.02

(b) On the Lymphoma dataset

Table 4.5: Performance comparison of five algorithms on the largest biclusters.

Algorithm Coverage

Percentage

FLEXBIC 75.43%

FLOC 17.06%

BICRELS 61.44%

ChengChurch 56.59%

ImpPlaid 5.63%

(a) On the Yeast dataset

Algorithm Coverage

Percentage

FLEXBIC 37.56%

FLOC 0.77%

BICRELS 33.29%

ChengChurch 17.96%

ImpPlaid 0.22%

(b) On the Lymphoma dataset

Table 4.6: The coverage percentage of 10 biclusters of fives algorithms over the full matrix.
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of columns can be decreased to find more similar rows. To this end, our

algorithm allows users to control the role of rows and columns by adjusting

the balance factor θ of BICRELS and the search range parameter (α1, α2)

of FLEXBIC.

To illustrate this, we set different values for the balance factor θ of

BICRELS and assign the search range parameter (α1, α2) of FLEXBIC

to (0, 0.5). Other settings are the same as in previous sections. Table 4.7

and Table 4.8 show the largest biclusters obtained by two algorithms on

the two datasets. By increasing the balance factor BICRELS produces

biclusters with a larger numbers of columns. A similar behavior can be

observed for FLEXBIC. However, there exists in some special situations

a larger balance factor for FLEXBIC does not increase the number of

columns. For example, on the Lymphoma dataset, the bicluster obtained

with θ = 1.0 contains 29 columns whereas the bicluster returned by θ = 2.5

contains 28 columns. The main reason is that if two balance factors produce

core biclusters with similar numbers of columns, then the expansion step

of FLEXBIC will search in similar ranges of numbers. In addition, as

the core biclusters of two balance factors are different, FLEXBIC starts

the expansion step from two different initial points. From these facts, if

two balance factors are very close, then a bicluster with a larger number

of columns can be obtained with a smaller balance factor.

4.6 Conclusion

In this chapter, we proposed a novel algorithm for subspace clustering.

Our algorithm is flexible and can be applied in different domains as differ-

ent analyzing models can be used without modifying its overall structure.

Besides, FLEXBIC can generate K overlapping biclusters where the max-

imum overlap between them is below a predefined threshold. Our algorithm
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Balance Max Volume

Factor (θ) (|I| × |J |)
1.0 16577 (1507× 11)

1.5 16968 (1414× 12)

2.0 16458 (1266× 13)

2.5 15148 (1082× 14)

3.0 13056 (816× 16)

3.5 11832 (696× 17)

(a) On the Yeast dataset

Balance Max Volume

Factor (θ) (|I| × |J |)
1.0 43907 (1909× 23)

2.5 40575 (1623× 25)

4.0 35048 (674× 52)

5.5 16492 (217× 76)

7.0 10323 (111× 93)

8.5 10323 (111× 93)

(b) On the Lymphoma dataset

Table 4.7: Largest biclusters produced by BICRELS with different balance factors on

two real datasets.

Balance Max Volume

Factor (θ) (|I| × |J |)
1.0 16968(1414× 12)

1.5 16968(1414× 12)

2.0 16458(1266× 13)

2.5 15148(1082× 14)

3.0 13056(816× 16)

3.5 11832(696× 17)

(a) On the Yeast dataset

Balance Max Volume

Factor (θ) (|I| × |J |)
1.0 45878(1582× 29)

2.5 42700(1525× 28)

4.0 35048(674× 52)

5.5 16492(217× 76)

7.0 10323(111× 93)

8.5 10323(111× 93)

(b) On the Lymphoma dataset

Table 4.8: Largest biclusters produced by FLEXBIC with different balance factors on

two real datasets.
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also allows users to control the bicluster shape by adjusting the relative

row and column weight. When implemented with different and specific

metrics and various ways to measure the bicluster quality, the experimen-

tal results confirm that our algorithm can discover different overlapping

biclusters on gene expression data and disjoint biclusters on UCI datasets.

Besides, under the same constraints, our algorithm produces much larger

and higher-quality biclusters when compared to those of the other state-

of-the-art algorithms.
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Chapter 5

Conclusion and Future Work

In this thesis, we discussed the main issues of alternative clustering and

non-redundant overlapping subspace clustering, and proposed novel algo-

rithms for solving them effectively.

In Chapter 3, after observing that alternative clustering is a multi-

objective optimization problem, and most state-of-the-art approaches solve

it sequentially or indirectly, we proposed a direct multi-objective framework

for approximating the Pareto front of solutions. Our method not only pro-

duces better solutions than those of the competition algorithms, but it also

is more flexible because it allows the use of different clustering objectives

instead of fixing them as in the previous approaches.

In Chapter 4, to deal with the redundancy and overlap problem in sub-

space clustering, we introduced a biclustering algorithm which can produce

overlapping biclusters where the maximum overlap between them is below

a predefined threshold. The bicluster shape can also be controlled by set-

ting the relative row and column weight. In addition, different analyzing

models can be used under our algorithm. Hence, it can be applied to

several domains without modifying its main structure.

In the future, we plain to develop parallel versions of our algorithms and

to test them on very large datasets. As our algorithms do not depend on
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specific domains, extending them to new applications will be an interesting

topic.
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Appendix A

Appendix

A.1 Analysis of the Pareto front

In this section, we plot all border solutions of COGNAC on four datasets

(Section 3.4.2) by applying the analysis procedure in Section 3.3.4. We

arrange the solutions in the ascending order of dissimilarity.

Table A.1a and A.1b show the 10 border solutions of the first parti-

tioning and 20 border solutions of the second partitioning (on the last

group) on the CMUFaces dataset, respectively. Table A.2 presents the 10

border solutions of the first partitioning on the WebKB dataset. Fig.A.1

and Fig.A.2 depict the 10 border solutions of the first partitioning on the

Birds and Flowers dataset. As it can be seen, the first alternative solu-

tion is very similar to the negative solution, but then the dissimilarity is

increased gradually, and at some point, the solution is transformed into a

completely different one. Besides, as the border solution with the highest

dissimilarity of a group and the border solution with the highest quality of

the next group are very close to each other, therefore their results are very

similar.
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A.1. ANALYSIS OF THE PARETO FRONT

Cluster 1 Cluster 2 Cluster 3 Cluster 4

up(0.26) straight(0.39) left(0.77) right(0.93)

up(0.35) straight(0.31) left(0.88) right(0.86)

up(0.35) straight(0.32) left(0.80) right(0.87)

straight(0.34) left(0.77) left(0.41) right(0.84)

straight(0.34) left(0.77) left(0.44) right(0.83)

straight(0.33) left(0.63) right(0.89) right(0.63)

straight(0.33) left(0.65) right(0.89) right(0.59)

straight(0.41) left(0.62) left(0.70) right(0.84)

straight(0.41) left(0.67) left(0.71) right(0.85)

straight(0.41) left(1.00) left(0.70) right(0.86)

(a) 10 alternative clusterings in the first partitioning

Cluster 1 Cluster 2 Cluster 3 Cluster 4

straight(0.41) left(0.67) left(0.71) right(0.85)

straight(0.41) left(0.80) left(0.70) right(0.85)

straight(0.41) left(0.70) left(0.77) right(0.86)

straight(0.41) left(0.89) left(0.71) right(0.86)

straight(0.41) left(0.92) left(0.70) right(0.85)

straight(0.40) left(0.94) left(0.70) right(0.86)

straight(0.41) left(0.94) left(0.70) right(0.86)

straight(0.41) left(0.70) left(0.97) right(0.86)

straight(0.40) left(0.97) left(0.70) right(0.86)

straight(0.41) left(0.64) left(1.00) right(0.86)

straight(0.38) left(0.91) left(0.72) right(0.88)

up(0.63) straight(0.44) left(0.70) right(0.86)

up(0.63) straight(0.44) left(0.70) right(0.86)

up(0.36) straight(0.42) left(0.70) right(0.86)

straight(0.42) straight(0.35) left(0.70) right(0.87)

up(0.39) straight(0.42) left(0.70) right(0.86)

up(0.41) straight(0.42) left(0.70) right(0.86)

straight(0.42) left(0.43) left(0.69) right(0.86)

up(0.42) straight(0.41) left(0.70) right(0.86)

straight(0.41) left(1.00) left(0.70) right(0.86)

(b) 20 alternative clusterings in the second partitioning on the last group

Table A.1: Alternative clusterings (in two partitionings) of COGNAC on the CMUFaces

dataset 140
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(a) The Birds image (b) Negative clustering (c) 1st AC

(d) 2nd AC (e) 3rd AC (f) 4th AC

(g) 5th AC (h) 6th AC (i) 7th AC

(j) 8th AC (k) 9th AC (l) 10th AC

Figure A.1: 10 alternative clusterings (AC) of COGNAC in the first partitioning on the

Birds dataset
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(a) The Flowers image (b) Negative clustering (c) 1st AC

(d) 2nd AC (e) 3rd AC (f) 4th AC

(g) 5th AC (h) 6th AC (i) 7th AC

(j) 8th AC (k) 9th AC (l) 10th AC

Figure A.2: 10 alternative clusterings (AC) of COGNAC in the first partitioning on the

Flowers dataset
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Cluster 1 Cluster 2 Cluster 3 Cluster 4

texas(0.98) cornell(0.99) wisconsin(0.82) washington(0.97)

texas(1.00) cornell(1.00) wisconsin(0.65) washington(1.00)

texas(1.00) cornell(1.00) wisconsin(0.64) washington(1.00)

texas(1.00) cornell(1.00) wisconsin(0.57) washington(1.00)

texas(1.00) cornell(1.00) wisconsin(0.56) washington(1.00)

texas(1.00) cornell(1.00) wisconsin(0.51) washington(0.99)

texas(1.00) cornell(1.00) wisconsin(0.50) washington(1.00)

texas(1.00) cornell(1.00) wisconsin(0.45) washington(1.00)

texas(1.00) cornell(1.00) wisconsin(0.44) washington(1.00)

texas(1.00) cornell(1.00) wisconsin(0.37) washington(1.00)

Table A.2: 10 alternative clusterings (in the first partitioning) of COGNAC on the

WebKB dataset
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