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SUMMARY - SOMMARIO

In this research work, two ADAS have been proposed, both based on optimal control and manoeuvre jerks as

parameters for threat assessment.

The first is named “Codriver”, and is a system for driver warning. The second is a sort of completion of the

first, since it is designed for autonomous vehicle intervention if the driver does not react to the warnings. The

Codriver has been developed by the Mechatronics Group of the University of Trento, which the author is part

of, in the framework of the European Project “interactIVe”, to warn the driver for all-around threats safety. It has

been then implemented on a real vehicle of Centro Ricerche Fiat, which has been widely tested at the end of

the project. On the other hand, for the second system only the main components have been developed by the

author during a research period at the University of Tokyo, Japan, and its application is restricted to autonomous

obstacle avoidance. In particular, a motion planning algorithm has been used together with a control loop de-

signed to execute the planned trajectories.

Both systems exploit Optimal Control (OC) for motion planning: the Codriver uses OC to plan real-time ma-

noeuvres with humanlike criteria, so that they can be compared to what the driver is doing in order to infer

his/her intentions, and warn him if these are not safe; the second system uses OC instead to plan emergency

manoeuvres, i.e. neglecting driver actuation limitations and pushing the vehicle towards its physical limits.

The initial longitudinal and lateral jerks of the planned manoeuvres are used by both the systems as parameters

for risk assessment. Manoeuvre jerks are proportional to pedal and steering wheel velocities, and their initial

values thus describe the entity of the correction needed by the driver to achieve a given goal. Since human

drivers plan and act with minimum jerk criteria, and are jerk-limited, more and more severe manoeuvres at a

given point are not reachable anymore by a human driver, since they require too high initial jerks: initial jerks can

be thus considered proportional to the risk level of current situation. For this reason, when the manoeuvres to

handle current scenario require jerks beyond a given threshold, the Codriver outputs a warning. This threshold

must be lower than driver limits, so that he/she will be able to react to the warning and still have the chance

to perform a safe manoeuvre. When the required jerks exceed drivers’ actuation limits, the risk level raises

to an upper step, where driver warning would be not effective and autonomous vehicle intervention should be

enabled.

In obstacle avoidance scenarios, it was demonstrated during driving simulator tests that manoeuvre jerks are

more robust parameters for risk assessment than for example time headways, since they are less affected by

driver’s age and gender.



In questo lavoro di ricerca vengono proposti due sistemi di assistenza al guidatore (ADAS), entrambi basati su

controllo ottimo, che utilizzano i jerk di manovra iniziali come parametri per la valutazione dello stato di rischio.

Il primo sistema, denominato Codriver, è un sistema di avviso al guidatore, mentre il secondo, che potrebbe

completarlo, ha invece lo scopo di intraprendere manovre autonome di evasione ostacolo qualora il guidatore

non reagisse agli avvisi. Il Codriver è stato sviluppato dal Gruppo di Meccatronica dell’Università di Trento, di

cui l’autore fa parte, per avvisare il guidatore riguardo tutti i possibili stradali rischi in cui potrebbe incorrere. E’

stato quindi implementato su un veicolo dimostrativo di CRF ed è stato infine testato all’interno del progetto. Il

secondo ADAS è stato invece sviluppato dall’autore solo nelle sue componenti principali, durante un periodo di

ricerca presso l’Università di Tokyo, in Giappone, e tratta solamente l’evasione di ostacoli mediante manovre

di sterzata. In particolare, è stato utilizzato un algoritmo di pianificazione di traiettoria, ed è stato sviluppato un

sistema di controllo automatico per ottenere la manovra desiderata.

Entrambi i sistemi utilizzano il Controllo Ottimo per la pianificazione di manovre: il Codriver per pianificare

manovre con gli stessi criteri di un guidatore, in modo da poterle poi confrontare con quelle che il egli sta

effettivamente utilizzando per stimarne le intenzioni; il secondo sistema utilizza invece il controllo ottimo per

pianificare manovre di emergenza, trascurando i limiti di attuazione del guidatore e spingendo il veicolo al limite

delle sue prestazioni.

I jerk iniziali (longitudinale e laterale) delle manovre pianificate vengono poi utilizzati da entrambi i sistemi come

parametri per la valutazione dello stato di rischio. I jerk di manovra sono infatti proporzionali alle velocità di

attuazione dei pedali e del volante, e descrivono quindi l’entità della correzione che il guidatore deve effettuare

per raggiungere il suo obiettivo. Poiché l’uomo agisce con criteri di jerk minimo, ed è limitato nella velocità

di azione, manovre sempre più severe oltre una certa soglia non sono più attuabili da un guidatore, poichè

richiederebbero jerk troppo elevati: il jerk può quindi essere considerato proporzionale allo stato di rischio.

Per questo motivo, quando le manovre sicure per un certo scenario iniziano a richiedere jerk oltre una certa

soglia, il Codriver avvisa il guidatore del pericolo. La soglia deve ovviamente essere al di sotto dei limiti del

guidatore, affinché questo abbia il tempo di reagire e poter effettuare comunque una manovra sicura. Se però i

jerk superano quelli limite, il livello di rischio cresce ancora, ed il sistema di intervento autonomo deve prendere

il controllo del veicolo.

Per scenari di evasione ostacolo è stato dimostrato con prove al simulatore di guida che i jerk sono parametri

più robusti ad esempio dei time headway come parametri per la valutazione dello stato di rischio, essendo meno

influenzati dell’età e dal sesso del guidatore.
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1
I N T R O D U C T I O N

1.1 Background 1

1.2 Research description 2

1.1 B A C K G R O U N D

According to the European Community database on Accidents on Roads in Europe
(CARE) [17], more than 54000 fatalities occurred for car accidents in 2001 in
Europe. It is estimated that for each death there are 4 permanent disabling
injuries, 8 serious injuries and 50 minor injuries, with significant human and
monetary costs for the European society. The number of fatalities was cut to
30000 in 2011, showing a decreasing trend reported in Figure 1.1.
Research studies such as the 2000 General Estimates System [110] or the 100 car
naturalistic study [114] show that 80% of the accidents is caused by driver faults.
The percentage raises to 93% of the total considering only rear-end collisions,
which constitute the 28% of the total accidents in the US (Figure 1.2) and 32% in
Japan [66], while accidents at crossing paths constitute another 25% of the total.
It is reasonable to infer that the diffusion of ADAS with better capabilities than
those of human drivers, e.g. enhanced sensing, situation analysis and risk assess-
ment capabilities, superior reaction time, precision and absence of drowsiness,
results in road safety enhancements and in accident reduction. This is also con-
firmed by insurance companies statistics [136] and specific field operational tests
such as those conduced during the European Project euroFOT [19].
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For this reason, the European Union is funding research projects and promot-
ing collaboration among car manufacturers and research institutes, in order to
develop a new generation of ADAS for road safety enhancement, addressed to
integration of different functions, anticipation of the warnings and increase of
intervention capabilities. European projects such as PReVENT [10], HAVE-it [15],
DIPLECS [3] or SARTRE [20] are milestones on the way towards the objective
reduction to 15000 of the number of fatalities in Europe by 2020.
In particular, the development of ADAS to avoid collisions with other vehicles
(rear-end collisions) or pedestrians would tackle more than 50% of annual car
accidents. This makes these systems very interesting and effective research topics
worldwide. For this purpose it is possible to develop ADAS for driver warning and
for active vehicle intervention, which can in its turn exploit different principles
such as autonomous avoidance by braking [41] or steering [42].
In particular, autonomous obstacle avoidance by steering is a topic of great in-
terest in research, since no systems are available on market for this purpose,
while it has been estimated that in 40% of the occurring rear-end collisions a
steering manoeuvre would be possible (Gidas database [5]). In many of those
cases, steering or combined braking and steering would be even safer (Adams,
1994 [29]), if not the only possible manoeuvre for collision avoidance, in certain
conditions of high relative velocity when braking would not be effective [42].

1.2 R E S E A R C H D E S C R I P T I O N

The main activities of the research described in this report have been driven
by the considerations above. The objective has been the development of safety
driver assistance systems for driver warning and autonomous vehicle intervention,
mainly addressing collision avoidance, but also other tasks. Namely, two different
ADAS have been developed within two different frameworks, but both based on
optimal control and jerk-based triggering of system actions:

• The first is a system, named Codriver, for continuous driver support with
only warning purposes, which keeps the driver in the control loop but un-
derstands his intentions, and provides him with risk information through
visual, acoustic and haptic devices. This system was developed within
the European Integrating Project “interactIVe” [26], heir of the PReVENT
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Figure 1.1: Statistics on fatalities for car accidents, from CARE website [17]

project, and implemented on a Lancia Delta of Centro Ricerche Fiat. The
system provides real-time holistic support for different driving tasks, such
as obstacle handling, lane keeping, curve approaching and landmark com-
pliance. The system proved to be effective during several tests conduced in
private proving grounds as well as in public roads, and its warnings showed
wide acceptance among the test drivers. In this report, the description will
pay particular attention to its usage for collision avoidance warnings.

• The second system is an ADAS for autonomous obstacle avoidance, devel-
oped at the Hori-Fujimoto Laboratory of the University of Tokyo. The system
exploits the capabilities of the experimental electric vehicle FPEV2-Kanon,
equipped with 4 electric in-wheel motors and front and rear steering sys-
tems, to autonomously execute manoeuvres for obstacle avoidance such as
lane changes. In this case, the system takes over authority from the driver
and autonomously tracks a proper reference avoidance manoeuvre thanks
to a suitable control loop. Even if the system has not been fully engineered
into a unique application, a threat assessment method has been proposed,
and the process of manoeuvre planning and autonomous execution has
been designed and validated in road tests.
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Figure 1.2: Statistics on accident type distribution, from Najm et al., 2003 [110]

Both the systems are based on optimal control, used for understanding driver
intentions in the first case, and for generating reference manoeuvres to be exe-
cuted in the second case. In addition, in both cases the thresholds to release the
warnings or to enable the autonomous manoeuvring are based on the initial jerks
of the reference manoeuvres. Initial longitudinal and lateral jerks are proportional
respectively to pedal rates and to steering wheel velocities, so that they describe
the correction required to achieve a certain goal given current situation. In other
words, they describe the severity of the desired manoeuvre, and they can be used
as parameters for threat assessment.
The two systems, even if developed separately and with different purpose, share
similar principles for core functionalities and could be integrated into an unique
ADAS, which would take care of all the phases to avoid the occurrence of an
accident 1.3. As a matter of fact, the Codriver has been developed for driver
information and warning tasks, while the second application could be enabled if
the driver does not react, so that if the risk level increases the system can take
control of the vehicle and execute autonomous manoeuvres.
This report provides at first a description of state of the art ADAS in Chapter 2, to
clarify the contribution of this work to worldwide research.
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In Chapter 3, the architecture of the Codriver is deeply described, depicting also
the cognitive framework according to which it was designed. Some details of the
technical implementation onboard will be also given, together with a summary of
the results obtained on the field operational tests.
The limits of the Continuous Support function in interactIVe raise in Chapter 4,
where the possibility of extending the Codriver for handling autonomous obstacle
avoidance is considered. A theoretical and experimental analysis of collision
avoidance will show what are the possible strategies and what is required for this
purpose.
Finally, in Chapter 5 a new application, or an extension of the Codriver, is proposed
to meet those requirements, and achieve the autonomous obstacle avoidance
when the situation can no longer be handled by the driver. A threat assessment
method is proposed, together with a framework for planning optimal avoidance
manoeuvres. Finally, a control algorithm to execute them is described and val-
idated, featuring the tracking of yaw rate and sideslip angles and the usage of
disturbance observers for the feedback loop.
At the end, Appendix B contains an introduction to optimal control and its imple-
mentation, being the basis the developed systems are built on.
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2
A DA S F O R C O L L I S I O N AVO I DA N C E

2.1 Introduction 7

2.2 ADAS overview 8

2.2.1 ADAS Classifications 8

2.2.2 ADAS for active safety 9

2.3 State of the art of collision avoidance systems 16

2.3.1 Architecture 16

2.3.2 Details on main aspects of the Decision module 19

2.4 Contribution of this work 25

2.1 I N T R O D U C T I O N

In this chapter, a classification and a description of different ADAS is first reported,
following the approach of the European eSafety programme website [13] and the
work of Lindgren et al, 2006 [100].
Then, a deeper analysis on ADAS for collision avoidance follows, since this is the
focus of this research and the framework where the systems developed in this
work are inserted. The summary will involve the systems already available on the
market as well as the state of the art of the research.
In the last section, the contribution of this work to the state of the art of the ADAS
will be reported.
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2.2 A DA S OV E RV I E W

2.2.1 ADAS Classifications

Nowadays road vehicles are equipped with more and more mechatronic systems
to enhance their performances. These devices carry out a large variety of tasks,
from improving engine efficiency to properly actuating the brakes or informing
the driver on current vehicle state.
Among them, a particular category is that of the ADAS. The purpose of these
systems is to help the driver in his duties, which can range from reducing fuel
consumption to maintaining the vehicle into safe conditions, from keeping a
certain speed with no effort to reaching his destination efficiently, from informing
him about road conditions to enhancing his communication needing.
A subcategory among them is that of the safety ADAS, which are in charge of
helping the driver in maintaining the vehicle into conditions which must be safe
both for him and for the other road users. These systems can be differentiated in
many ways, while the most relevant are:

• Active vs. passive safety systems.
Active safety systems are designed to prevent unsafe situations, such as colli-
sions with obstacles, adherence losses, unintended lane departures, etc. On
the other hand, passive safety systems aim at mitigating the consequences
of such occurrences, when it has not been possible to avoid them. ABS
and ESC are typical examples of active safety systems, while seatbelts and
airbags are different kinds of passive safety systems.

• Informative/warning vs. intervening systems.
The first category is constituted by systems which keep the driver in the
control loop of the vehicle, but inform and warn him about possible dangers
and maybe suggest him proper corrections to avoid them. On the contrary,
intervening systems take over authority from the driver for the control
of the vehicle (Figure 1.3): when the system estimates that the driver
will not be able to make a proper correction anymore, they output proper
control inputs which override those of the driver. Possible examples of
informative/warning systems are those which monitor driver’s drowsiness
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or vehicle blind spot, while ABS and ESC are once again typical examples
of intervening systems.

• Single function vs. holistic systems
Traditional ADAS usually have a single objective, they monitor only a
particular aspect of vehicle behaviour, e.g. tyre slip or lane compliance,
and they only act to prevent dangers coming from those sources. It also
happens that systems equipping the same car are completely separated one
from another, possibly manufactured by different suppliers, with their own
hardware devices. On the other hand, research is pushing on integration of
different systems into a unique one, where different functions share sensors,
computation resources and information, or where there is only one function,
able to consider all-around threats and to take different actions depending
on the cause (i.e. the objective of the Continuous Support function of the
interactIVe project [26]).

• Autonomous vs. cooperative systems.
Autonomous systems rely only on onboard sensors to reconstruct present
situation, and have no outputs to the surrounding environment. These
systems can be further differentiated depending on what they sense: some
only use information about ego vehicle, while others need also information
about the environment, e.g. road conditions, presence of obstacles, etc. On
the other hand, cooperative systems can communicate with other vehicles
and/or with the infrastructure, to receive information and enrich their
knowledge, or to send information which can be useful for the driver or for
the other road users.

2.2.2 ADAS for active safety

ADAS cover a large variety of applications and scenarios, and few possible classi-
fications were reported in the pages above. The analysis hereon is restricted to
only active safety ADAS: here follows a list of the most common, both for warning
and for intervention, i.e the categories where the two systems developed in this
work lie, with a short explanation of their operating principles.

• Warning Systems

9



– Driver drowsiness monitoring
Such systems monitor driver drowsiness analysing his/her actions on
the steering wheel and the pedals, or the motion of the vehicle with
respect to the lane boundaries (Figure 2.1). Others can also check
the movements of his/her head and eye gaze by means of an onboard
camera. Usually, an acoustic warning is then issued if they detect that
the driver is about to fall asleep.

Figure 2.1: Example of driver drowsiness monitoring systems: Volvo’s Driver Alert (Volvo
Cars ADAS, [23])

– Blind spot information systems (BLIS)
These systems use cameras and/or radars to detect whether vehicles
in adjacent lanes are approaching in the mirror blind spot. Usually a
warning is issued in a visual device near the rear-view mirrors, so that
when the driver looks at them before manoeuvring he can notice the
danger (Figure 2.2)

– Curve Warning
Curve management systems are described below, among the interven-
ing systems.

– Lane Departure Warning (LDW)
Lane keeping systems are described below, among the intervening
systems.

10



Figure 2.2: Overview on BLIS systems (euroFOT, [19])

– Collision Warning (CW)
Collision avoidance systems are described below, among the interven-
ing systems.

• Intervening Systems

– Anti-lock Braking System (ABS)
ABS (Figure 2.3) can be considered the first active safety intervening
ADAS made available on market, and is now compulsory on European
cars. It is an intervening system for braking manoeuvres which prevents
wheel locking, and consequently reduces stopping distance and avoids
the loss of vehicle control. When the driver is deeply pushing the
braking pedal, if the wheels are almost locking the system ignores
his input and iteratively releases and increases the pressure in the
hydraulic braking circuit. In this way, the tyre grip is maintained
around its peak value until the braking demand stops, thus maximising
the braking performance.

– Electronic Brake assist System (EBS)
EBS is usually integrated with ABS to strengthen the braking action.
When the driver deeply pushes the braking pedal, the system interprets

11



Figure 2.3: Vehicle configuration for ABS (Bosch Automotive Technologies, [2])

it as an emergency manoeuvre and helps him in obtaining the most
powerful braking possible, adding braking power beyond the threshold
at which the ABS is switched on.

– Electronic Brake force Distribution (EBD)
Vehicle wheels are subject to different loads, which influence their peak
braking force and thus the overall vehicle braking performance. EBD
systems distribute the braking pressure to each wheel proportionally to
its vertical load (Figure 2.4), braking more on wheels with higher ver-
tical load, thus optimising the braking force and preventing excessive
tyre slips.

Figure 2.4: Repartition of braking force according to tyre vertical load (Toyota Safety
Technology, [7])

– Traction Control Systems (TCS)
Traction control systems are the equivalent of EBD during the accel-

12



eration phase. When a vehicle wheel starts slipping because of low
friction or excessive driving torque, its rotational velocity is individually
reduced acting on engine output and eventually also on braking.

– Electronic Stability Control (ESC)
Such systems are used to keep the vehicle in stable conditions, i.e.
to avoid excessive tyre slips and losses of adherence. They work
combining the action of different elementary ADAS such as ABS, TCS,
and EBD. This system regulates the torque output by the engine, and
usually controls the braking force of each wheel independently, to
generate proper corrective yaw moments (Figure 2.5) in order to
reduce vehicle sideslip and excessive yaw. Simpler system only evenly
brake to reduce velocity, while more refined systems such as BMW’s
DSC [1] also use active steering to reduce the sideslip.

Figure 2.5: Yaw moment generated by individual wheel braking to avoid vehicle skidding
in Toyota Vehicle Stability Control - VSC (Toyota Safety Technology, [7])

– Cruise Control (CC) and Adaptive Cruise Control (ACC)
The Cruise Control takes over the control of longitudinal dynamics of
the vehicle and keeps it at the constant speed set by the driver, when
he/she enables it. ACC combines this function, active when the way
ahead is clear, with that of keeping a safe distance from an obstacle
ahead when present, as shown in Figure 2.6. Also in this case the
distance can be manually tuned by the driver.

13



Figure 2.6: Overview on ACC systems (euroFOT, [19])

– Lane keeping systems
Differently from ACC, these systems monitor the vehicle lateral dynam-
ics, and detect if the driver is unintentionally departing from current
lane. Then, they can either warn him about the risk, i.e. constituting
Lane Departure Warning (LDW, Figure 2.7) systems, or autonomously
brake (such as Active Lane Keeping Assist by Mercedes [6]) or steer
(as for Lane Keeping Assist by Toyota [7]) to keep the vehicle within
lane boundaries. However, in such latter systems the amount of torque
applied to the steering wheel is limited, to avoid the driver only rely
on the system.

– Curve Management
Curve Management systems prevent the vehicle approaching a dan-
gerous curve at excessive speed. Such systems exploit road maps
databases and GPS for vehicle positioning on them, know or evaluate
in real-time optimal velocities for the curves ahead, and compare them
with current vehicle state to assess the risk level. If the difference is
beyond a certain threshold, they can either warn the driver (Curve
Speed Warning-CSW systems, Figure 2.8) or autonomously reduce
vehicle speed.

14



Figure 2.7: Overview on LDW systems (euroFOT, [19])

Figure 2.8: Overview on CSW systems (euroFOT, [19])
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– Collision avoidance systems
These systems aim at preventing a collision with front and rear ob-
stacles. They monitor the area behind and in front of the vehicle,
detect obstacles which could collide with it, and assess the risk level,
so that they can then react accordingly. Their reaction can range from
simply warning the driver, e.g. Frontal Collision Warning systems
(FCW, Figure 2.9) to autonomously taking control of the vehicle and
performing an evasive manoeuvre, either by braking and/or steering.
These systems will be described in detail in the next section, being the
main focus of this work.

Figure 2.9: Overview on FCW systems (euroFOT, [19])

2.3 S TAT E O F T H E A RT O F C O L L I S I O N AVO I DA N C E S Y S T E M S

2.3.1 Architecture

Collision Avoidance systems cover a wide range of safety applications which aim
at avoiding collisions with other objects, which can be other vehicles, pedestrians
or other obstacles, e.g. animals, rocks or other rubbish on the road ahead. These
objects can be all around the ego vehicle, and when the systems assesses that the
risk level of a collision is beyond a certain threshold it can both warn the driver
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or take control of the vehicle. This control can use only longitudinal dynamics,
i.e. braking or in some cases accelerating, only lateral dynamics, i.e. steering,
or it can combine the two. The strategy should also take into account traffic
conditions, and choose the proper manoeuvre accordingly, e.g. opting for braking
if there is an oncoming vehicle in opposite direction, as portrayed in Figure 2.10.
To achieve this objective, collision avoidance systems (and ADAS in general) are

Figure 2.10: Braking and Steering strategies for collision avoidance depending on current
scenario (images from video logging of interactIVe project [26])

usually built using the well-known architecture based on the three layers of Per-
ception, Decision and Action, as shown in Figure 2.11, even if Perception-Action
shortcuts can be used, too (Windridge, 2008 [138]), as it will be explained in the
next chapter, while describing the design of the Codriver.
In a general ADAS for collision avoidance, different sensors are in charge of
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perceiving the environment and the ego vehicle state, e.g. GPS, accelerometers
and gyros for ego vehicle, radars, lidars and cameras to detect surrounding ob-
stacles and road local characteristics, and possibly maps for long-horizon road
description. Driver monitoring through sensors on pedals and steering wheel,
as well as with cameras to detect his eyes gaze, is also important to infer his
intentions and tailor system actions. This information is then fused into an unique
environment reconstruction, upon which decisions can be made by the down-
stream module. Since the entire system relies on this data, the development of
efficient sensing and estimation technologies is a basic requirement for future
ADAS. The perception layer must be as fast and accurate possible, and is needed
both for vehicle state estimation and environment detection (Scaramuzza et al.
2009 [123]). This pushes the research in the direction of both better hardware
sensors and enhanced software algorithms for state estimation and environment
representation (Schmuedderich et al. 2010 [124], Windridge et al. 2008 [138]).
It is common in ADAS for safety that the decision module is in charge of mod-
elling the situation and assessing its risk level, usually in a procedural way (i.e.
successive situation modelling, risk assessment, choice of an IWI strategy and
planning of it), and decide whether it is the case to Inform/Warn the driver or
Intervene to directly control the vehicle (i.e. IWI strategy selection), depending
on ADAS purpose. On this side, research is pushing the software algorithms to
enhance all the described steps, towards car which are more and more intelligent,
able to understand driver intentions and predict his behaviour, also learning
from collected data (Wen 2011 [137]) or predict the future evolution of current
scenario (Ferguson, Urmson et al. 2008 [68]), for enhanced decision making.
Finally, in the ADAS there is an action level, composed of actuators which exe-
cute the plan output by the decision layer, if necessary helped by proper control
loops. Actuators can be visual, acoustic and/or haptic devices for information and
warning, or mechanical, electric and/or pneumatic systems to take the control
of the vehicle. For warning strategies, research is conduced to provide more
intuitive and efficient feedbacks (e.g. Flemisch et al. 2008 [71], Abbink et al.
2008 [27]), which can quickly gain driver’s attention and also suggest him/her
proper corrections. On the other hand, for autonomous intervention systems most
effort is concentrated on control techniques (Nagai 2007 [109], Hrovat 2012
[87]).
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In such a system there are key aspects which differentiate one application from
another.

• Purpose: warning or autonomous intervention

• Method for risk assessment: deterministic or probabilistic

• Covered scenarios: urban or extra-urban, fixed or moving obstacles, high or
low vehicle speed, etc.

Examples of state of the art systems will be reported and analysed in the following
sections, focusing the purpose and the method of the decision module, which is
the component of the collision avoidance system which is mainly addressed in
this research work.

2.3.2 Details on main aspects of the Decision module

2.3.2.1 Warning or Intervening Systems

Collision avoidance systems are a large set of safety ADAS, and many of them
are already available on market. Some are used only for warning, as for instance
those developed by Nissan [22] or Ford [18]. Others combine warning and
autonomous braking, such as Volvo Collision Warning with Autobrake (Coelingh
et al. 2007 [50]), and City Safety (Distner et al. 2009 [57]), operating between 0

and 30 km/h and able to avoid collisions when relative velocity is below 15 km/h,
or Mercedes-Benz’s Pre-safe Brake [12], which is instead active at velocities higher
than 30 km/h. Similar systems have been developed within the VolksWagen Group
(e.g VolksWagen’s Front Assist and City Emergency Brake [8]). Toyota’s (Pre-
crash Safety System [7]) and Honda’s (Collision Mitigation Brake System [14])
systems feature autonomous braking as well, but with more mitigation purposes.
No systems available on market execute autonomous avoidance manoeuvres by
steering.
Warning systems use sensors as radars, lidars and cameras to detect obstacle
positions. If they detect an imminent collision, a head-up display usually shows a
warning message, supported by an acoustic feedback. Generally, the brakes are
also pre-charged in order to obtain a prompter response if the driver presses the
pedal. In some cases, the brakes are activated when the driver quickly releases
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the accelerator, before he actually reaches the brake pedal, supposing that he is
about to do it. In such systems, if the driver does not intervene, the vehicle does
not take any initiative, and the collision is not avoided.
On the other hand, it is possible to avoid collision regardless of driver actions
with more sophisticated systems, which integrate also autonomous intervention
if he/she driver does not correct the manoeuvre. Namely, the system warns
the driver when the risk level is beyond a certain threshold, and if the driver
does not correct the manoeuvre after a while, they autonomously intervene.
Autonomous avoidance can basically include braking strategies, i.e. front braking,
rear braking or 4-wheel braking, or steering strategies, i.e. front wheel or 4-wheel
steering, (Alleyne 1997 [30]) or a combination of the two. For those systems on
market, intervention is limited to autonomous braking, but new systems under
development are considering also obstacle avoidance by steering (Brannstrom,
2010 [42], Lidberg et al., 2013 [98]), i.e. the objective of the second ADAS
developed in this work.

2.3.2.2 Threat assessment and driver modelling

All the three levels of the architecture are of key importance for the overall
performance of the ADAS. In the perception layer, accurate and fast sensors are
required for environment reconstruction, while from the action point of view,
proper IWI strategies are needed for the effectiveness of the system, to give clear
warnings when needed, and avoid annoying the driver with too much information
or taking over authority when it is not required.
However, in this section the attention is focused on the decision module, and
especially on the threat assessment method, i.e. the analysis of current situation
to understand whether a collision is imminent or not. Another task of the decision
module could be the evaluation of better manoeuvres to be suggested to the
driver, which can be either enhancements of current manoeuvre or alternative
ones, with different purposes, e.g. steering instead of braking. The threat
assessment strategy influences the timing of the warning or intervention of the
system, and its reliability. The objective is both avoiding false negatives, i.e.
missing the detection of dangerous situations, and false positives, i.e. assessing a
safe situation as dangerous, and thus giving useless warnings. Threat assessment
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is usually based on the estimation of future evolution of current situation, to
which a risk level is then assigned. This requires to infer the evolution both of ego
vehicle state, where the identification of driver intentions and its modelling have
key importance, and of other vehicles behaviour (these considerations will be
repeated in next chapter, while describing the principles of the Codriver). There
are two possible approaches for forecasting the evolution of the scenario:

• probabilistic approach

• deterministic approach

In the first case, the evolution of current situation is estimated calculating the
probability of a collision, based on the statistical evolution of ego vehicle and
obstacle states taking into account different scenarios. On the other hand, the
deterministic approach assumes a certain future behaviour for the scenario actors,
and calculates its future evolution based on this stated models, without taking
into account other possibilities.

Probabilistic approach
The probabilistic approach forecasts future evolutions of the scenario as a probabil-
ity distribution. Starting from current situation, possible evolutions are generated,
both for ego vehicle and for the obstacles, assuming likely behaviour patterns
and taking into account feasibility limits. Different manoeuvres are generated for
each vehicle involved, and a probability is assigned to each of them. In this way
it is possible to evaluate also the probability of ego vehicle - obstacle manoeuvre
combinations which lead to collisions, and the system can be tuned to warn and
intervene when the probability of collision is beyond given thresholds.
The key features of this approach are the criterium for the generation of possible
evolutions, and the assignment of a probability to them and to the complete sce-
nario (these considerations will be further analysed in Chapter 5, while describing
possible path planning algorithms). Broadhurst et al. [43] proposed in 2005 a
warning system which takes into account two different goals for each obstacle,
i.e. straight line following and road following. These determine different control
histories which result in different vehicle behaviours, obtained integrating simple
equations of motion. For ego vehicle, different goals are investigated, i.e. stop,
turn and stop, change lane, turn, overtake, random trajectory. It is important
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that the manoeuvres achieving these goals try to mimic human behaviour [62],
taking into account in this case the distance to an intended path, deviations from
desired velocity, longitudinal accelerations and steering angles. The probability
of a collision is obtained using the widespread method of Monte Carlo sampling
(also in Althoff et al. 2012 [32] and Thrun 2011 [130]), and warnings can be
released accordingly. However, this approach can be very demanding in terms of
computational load, due to the several possibilities the system has to take into
account.
For this reason, Eidehall and Petersson [59] proposed an enhancement of this sys-
tem, increasing its calculation efficiency. The authors basically take into account
only the safe manoeuvres, neglecting at an early stage the colliding manoeuvres,
and they assume that the obstacles will try to avoid the ego vehicle with higher
probability than that of ignoring its presence. Furthermore, obstacles in the
frontal field of view are weighted more, to resemble that driver’s attention will
be focused more in that area, and curvilinear coordinates are used to ease the
calculations (as in the Codriver equations of motion (3.1)). In this way, higher
evaluation velocities are obtained, but still there are no examples of real-time
application on a real vehicle.
A probabilistic method for risk assessment has been instead really tested by Sand-
blom and Brännström [121], but considering only braking manoeuvres for ego
vehicle. An interesting feature is the inclusion of a driver model in the algorithm,
as it was done in both the applications developed in this work. Instead of es-
timating his intent, the model directly understands if the driver will consider
an intervention as motivated, to avoid false positives in the warnings. The au-
thors introduce the concept of driver safety margins and acceptability of system
interventions, and use a decision-making process based on probabilistic driver ac-
ceptance and need of intervention. Warnings are then triggered based on required
longitudinal accelerations for braking manoeuvres, taking also into account the
availability of evasive steering manoeuvres, as expressed by Brännström et al.
2011 [41].

Deterministic approach
The second way for threat assessment is the deterministic approach, which has
been also followed for the development of the applications described in this work,
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thanks to its higher real-time capabilities. In this case, specific assumptions are
made on the future evolution of the scenario, and warning/intervention strategies
are decided on this basis. In other words, while the probabilistic way takes into
account different possible simple evolutions assigning them a probability value,
the deterministic way tries to directly predict the real evolution, possibly based on
more comprehensive models. The advantage of this kind of systems is the rapidity
of the calculations necessary for the threat assessment: there are not anymore
different possible evolutions taken into account, and the future is forecast using
specific expressions. As it happens for the probabilistic approach, it is possible to
even simplify the problem in atomic subproblems, such as splitting longitudinal
and lateral dynamics. On the other hand, it is necessary to simplify the current
situation and make assumptions on future evolutions of the scenario, which may
result in inaccuracies such as false positives, false negatives and wrong timing
for system warning or intervention. In fact, even only considering the prediction
of ego-vehicle state, inaccuracies on driver behaviour can regard from high level
objectives such as maintaining current route or changing road, to lower level such
as overtaking or queueing, as it will be described for the Codriver architecture.
To avoid this inconvenience and better predict future evolution, including driver
models has a key importance in deterministic threat assessment, and enhances the
performance of ADAS anticipating and smoothing their intervention, with higher
effectiveness and user acceptance (Sjöberg et al. 2010 [127]). In general, several
studies have been indeed conduced for modelling driver behaviour and obtain
control laws which resemble human driving, based on collected experimental
data. For instance, Shino et al. ([126], [125]) focused for instance on reaction
times, time headway policies and time to intersection policies, while Malta et
al. [102] analysed driver actions on braking pedal during hazardous situations,
using the data from CIAIR Driving Corpus. This field of research has historically
interested not only the engineering area, but also psychology and cognitive
sciences (further insight is given in section 3.2.2). The general idea is a key
concept for the development of new ADAS: using Sjöberg’s [127] words, systems
which intervene when it is physically impossible to avoid a collision are less effective
than others, which anticipate the intervention to when it is judged impossible for the
driver to avoid a collision. In this family, there are systems which only monitor
driver attention to decide if he can correct the current manoeuvre or not. In more
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sophisticated cases, the usual controls applied by the drivers are parametrized in
deterministic laws, such as steering with constant rate and then constant angle, or
braking with constant jerk and then constant acceleration (Brännström et al. 2011
[42]). Even more accurate models take into account also the dynamics of the
closed loop system composed of driver and vehicle. Falcone et al. [65] developed
an algorithm for safe lateral dynamics, including a driver model assuming his
steering behaviour as a weighted sum of two contributions: a pursuing part such
as that previously described, and a closed loop corrective part. Their weights
could be in general time variant, and they could be also identified online.
Another interesting approach for driver modelling is the usage of minimum jerk
theory, i.e. the attitude of humans of acting and planning motion with minimum
jerk. An application of this principle for driver modelling, even if used only on
simulator and not on a real vehicle, has been developed by Hiraoka et al. in 2005
[81]. This has also found real-time applications in the University of Trento team
involved in the development of the Codriver, i.e. by Da Lio, Biral and Bertolazzi in
the SASPENCE and INSAFES subprojects within the PReVENT European project
([33],[36]), where minimum jerk was used as the objective of an optimal control
problem, thus obtaining smooth and humanlike manoeuvres which could be used
as references for warning triggering. This basis has been also used to develop the
Codriver, as described in next chapter.
Once the system composed by driver and vehicle has been modelled, it can be
used for forecasting system evolution and assessing the risk level. In the collision
avoidance system described by Coelingh et al. 2007 [50], warning timing is based
on relative velocity and driver reaction times, while autonomous intervention is
activated when the system estimates that the accelerations necessary to avoid
a collision will be too high to be obtained by a driver. In the work of Falcone
et al [65], threat assessment is considered as a constraint satisfaction problem,
i.e. assuming that the vehicle will remain within lane boundaries, with small slip
angles errors in orientation. Threat assessment is generated via a reachability
analysis of safe state sets starting from current situation, and the system intervenes
when it estimates that the constraints will be exceeded.
In order to anticipate warnings even more, research was conduced to understand
driver intentions, so that the support can start before threats can be foreseen by
usual ADAS. The basic approaches are the usage of sensors on pedal and steering
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wheel to analyse current driver behaviour and a camera to detect his eye-gaze
(resumed by Doshi and Trivedi, 2011 [58]), and the usage of optimal control
(Saroldi, Da Lio et al. 2012 [122]), which will be deeply explained in the next
chapters.

2.4 C O N T R I B U T I O N O F T H I S W O R K

In this work, two different ADAS have been developed, one for driver warning
and one for vehicle autonomous intervention. Both the systems exploit optimal
control, which allows not only to foresee driver actions as advanced deterministic
systems, but also to ground them to some goals as some mentioned stochastic
threat assessment systems. On the other hand, the execution is very fast as in
deterministic systems, as it will be explained in next chapters.
Both systems include into the OCP a driver model to resemble his/her path
planning criteria and his/her actuation limits. In this way, it is possible to obtain a
non-invasive system, with reduced false positives and increased user acceptance,
as suggested in the mentioned literature sources.
Furthermore, manoeuvre jerks have been used as unique parameters for risk
assessment, both for longitudinal and lateral dynamics, since they describe the
corrections required by the driver to reach his goal, starting from current situation.
This has a solid theoretical basis coming from the naturalistic driving studies
presented above, and allows reducing significantly the parameters to be tuned to
obtain proper timing for system actions.
Finally, the warning system covers a wide set of scenarios and operating ranges,
both in urban and extra-urban environments, and merges several safety functions
providing holistic support.
The system for autonomous intervention, in his turn, exploits robust planning
and novel fast control techniques to obtain the vehicle follow the desired evasive
path, as it will be specifically described in next chapters.
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3.1 I N T R O D U C T I O N

3.1.1 The interactIVe project

This chapter describes the activities carried on during the project interactIVe,
describing in detail the architecture of the Continuous Support application, and
of the Codriver developed for it by the University of Trento. Finally, qualitative
results of the Continuous Support function during the project will be shown. On
the other hand, a special focus on the usage of the Codriver for collision avoidance
applications will be given in Chapter 4.
However, here follows first a short overview of the overall project and its purposes.
“interactIVe” is currently the flagship European project in the area of Intelligent
Vehicles [26], and it inherits the results of the PReVENT project [10]. The con-
sortium (Figure 3.1) includes almost all the major european car manufacturers
(OEMs), some of their suppliers and several research institutes and universities.
The objective of the project is to provide holistic support to the driver according

Figure 3.1: The consortium of the interactIVe project, including several OEMs, suppliers
and research institutes [26]
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to the needing of the scenario, as explained in Figure 3.2. Namely, different

Figure 3.2: Overview of the interactIVe project applications [26]

applications have been built for the different phases of danger occurrence, i.e. for
normal driving conditions, to prevent dangerous situations through continuous
driver support, for increasing hazard situations, with the usage of autonomous
collision avoidance strategies, and for unavoidable collision scenarios, with colli-
sion mitigation strategies.
The project was organised in different sub-projects (SP), which are reported in
Figure 3.3 together with their leader institutions. SP1 was only intended for top
level management. SP2 was in charge of providing a Perception Platform com-
mon to each application, while SP3 had to support the development of suitable
HMI for each application. SP4, SP5 and SP6 developed instead the complete
applications described above: in SECONDS, the continuous support functions
have been developed, while INCA dealt with autonomous collision avoidance and
EMIC with collision mitigation. A final SP was then in charge of evaluating the
performances and the safety impact of each application.
Different applications were developed within each SP and implemented on differ-
ent demonstrator vehicles, according to the OEMs needs (Figure 3.4).
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Figure 3.3: The subprojects interactIVe is divided into [26]

Figure 3.4: The demonstrator vehicles developed in interactIVe [26]
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3.1.2 The continuous support function in CRF demonstrator

The activity of the University of Trento was inserted in the SECONDS subproject,
to develop an application, named Codriver, to be integrated in the Continuous
Support function (Da Lio et al., 2013 [55]) with warning capabilities (Figure 3.5)
of Centro Ricerche Fiat (CRF).
The novel feature of the application is that it considers safety in a holistic way,

Figure 3.5: Continuous Support application working point, oriented to driver warning
with limited system intervention, i.e. haptic feedback [26]

including into an unique application the prevention of all-around threats, such as
collisions with obstacles, lane departures, adherence losses, bad speed limit and
landmark compliance etc. In other words, the application comprehends in itself
several functions which are usually found in different devices, with advantages
both in system effectiveness (Kusano and Gabler, 2011, [93]) and in the usage of
sensors and computational units, which can be shared.
The architecture of the continuous support function is based on Perception-Action
behaviours, organised in hierarchies, as it will be explained in the next section. In
this section, the focus will be on the applications which surround the hierarchical
Codriver, i.e. the Perception Platform and the HMI for driver warning. The per-
ception level has been developed within SP2, and exploits front and rear radars
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Figure 3.6: Architecture of the continuous support function

and a front lidar for obstacle detection, a camera for lane recognition, vehicle
positioning with the respect to the road and obstacle classification, and a GPS
combined with a map database for vehicle absolute positioning (Figure 3.7). This
information is fused to provide a complete scenario reconstruction, and is output
to the decision layer together with information from onboard sensors concerning
vehicle state, e.g. vehicle velocity and acceleration, and driver behaviour, e.g.
steering wheel position and velocity and pedal positions.
The Codriver is then in charge for the threat assessment and the warning man-

agement, and is described in detail in section 3.2. A key feature of the system is
that it bases its warning strategies on the estimation of driver intentions, which
is a wide topic of research worldwide, with applications which take advantage
of driver modelling (MacAdam, 2003 [101], Liebner et al. 2012 [99] and moni-
toring (McCall and Trivedi, 2006 [105]). A review on this systems can be found
in Doshi and Trivedi, 2011 [58]. However, the approach in this work has been
to ground his actions to an objective by means of optimal control-based motion
planning, as it will be described in detail.
Another basic aspect is the strategy to identify driver intended manoeuvre. Each
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Figure 3.7: Sensors and HMI actuators in the CRF demonstrator [26]

manoeuvre is described and identified by only two parameters, i.e. their initial
longitudinal and lateral jerks, which describe the entity of the correction required
to obtain a given objective. Comparing driver’s jerks to the initial jerks required by
several manoeuvres with different purposes, evaluated in real time, it is possible
to find the best-matching pair among them, which is identified as its intended
manoeuvre.
Downstream to the Codriver, a suitable HMI for driver warning has been devel-
oped within SP3 in collaboration with CRF, comprehensive of acoustic warnings,
visual descriptions and haptic feedback (vibrating seatbelt in case of collision risk,
steering wheel feedback in case of unintended lane departures). In particular,
a visual display shows an icon of the ego-vehicle surrounded by an all-around
“Safety Shield”, divided into 3 sectors, i.e. front, rear left and rear right threats.
Depending on the direction the hazard is coming, one or more of them can be
painted in yellow or red, depending on risk level (yellow alarm, red alarm). Other
details are added to better describe the threat, e.g. a front vehicle appears if
the threat is a possible rear-end collision, and adjacent lanes are turned red if
unintended departures are preview.
The entire application has been integrated on the CRF demonstrator vehicle, a
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Figure 3.8: The visual display of the continuous support function, with the “Safety Shield”
metaphor. Examples of: normal driving, yellow alarm for unintended lane
departure, red alarm for drift to side barrier, exceeded speed limit, yellow
alarm for vulnerable road users presence, red alarm for rear-end collision,
yellow and read alarms for vehicles in the blind spot, and yellow and red
alarms for excessive speed in a curve [26]

Lancia Delta with robotic gearbox (Figure 3.8). A separate PC is dedicated to
the Perception Platform, managed by Elektrobit ADTF [21] modules, which send
environment reconstruction via UDP protocol to the Codriver. This is installed on
a Ubuntu Linux PC (Intel Atom N270 with 1.6 GHz, 2 GB DDR2 RAM), embedded
in a dSpace MicroAutoboxII [24]. The dSpace then outputs its responses on a CAN
bus, connected to the device which manages the HMI. The continuous support
function works at 10 Hz. While the codriver is working, it is possible to check
its outputs an a wide display onboard, thanks to a Qt application I developed
(Figure 3.9). This is installed on the embedded PC, and is also useful for real-time
perceived scenario visualisation. In this chapter, the general architecture of the
system and its principles will be described in section 3.2, while results from field
operational tests will be described in section 3.3, especially focusing obstacle
avoidance.
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Figure 3.9: The Qt-based tool for real-time scenario visualisation together with the re-
sponses of the Codriver
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3.2 T H E C O D R I V E R

3.2.1 Concept overview

The objective of the project was to build a system which continuously interacts
with the driver and supports him in his decisions, to prevent dangerous situations.
Our answer to this, i.e. the Codriver, is thus inserted in the framework of smart
vehicle-human interaction (Flemisch et al. 2003 [70], Inagaki, 2008 [90], Wen,
Li et al. 2011 [137] and 2012 [97], Da Lio et al., 2012 [53]), to build systems
which share different levels of authority with the driver in an integrated and
continuous way (as in the European Project HAVEit [15] or in Biral et al., 2010
[38]).
The Codriver can be defined as an artificial agent, which is able both to drive like
a human, and to infer human intentions interacting accordingly, including the
correction of actions he/she has executed by mistake (Da Lio et al. 2014 [54],
from which the following sections take wide inspiration).
The guideline for its development has been to imitate “natural” co-drivers: for
instance, a driving license tutor has knowledge of human motion patterns and
is able to infer the trainee’s intentions, thus acting on the vehicle controls in
accordance with the trainee’s needs, given the current scenario.
However, this relationship is not limited to humans: the rider-horse metaphor
(or H-metaphor) [70] describes a symbiotic system, in which an animal can
read human intentions, and, reciprocally, the rider can read those of the animal,
with the horse trying to maximally reduce the human’s riding burdens consistent
with their intentions. This latter metaphor stresses the symbiotic nature of the
collaboration between the two, and in particular constitutes an original solution
for the sharing and dynamic reallocation of authority.
Having thus outlined an appropriate control metaphor for the co-driver ideal, the
problem is now its technological implementation. To implement the reciprocal
understanding, the like-me theory (Meltzoff, 2007 [107]) has been followed, so
that an agent with a planning architecture as similar as possible to that of human
drivers was built, to better reproduce and understand the driver’s states of mind,
as it will be explained in the following pages.
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3.2.2 Theoretical cognitive basis for the architecture of the Codriver

3.2.2.1 Sense-think-act versus hierarchical perception-action

The usual architecture for ADAS is the so called sense-think-act procedure (case
(a) of Figure 3.10). This architecture corresponds to the traditional view of psy-
chology and artificial intelligence (Pylyshyn, 1984 [119]) which divides the agent
function in sequential steps. The objective of perception is in this case to make an
internal model of the world, which is thereafter symbolically manipulated and
then output.
A contrasting view is the behavioural architecture introduced by Brooks, 1986
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Figure 3.10: Comparison between the traditional sense-think-act architecture (a) and the
proposed perception-action behaviours organised in hierarchies (b)

[44]. This architecture starts with simple sensory-motor loops, representing
elementary behaviours (e.g. steering, accelerating, etc.) and grows by adding
behavioural layers that subsume (i.e. set the goals for) the already implemented
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lower ones, to achieve newer more complex functions. In contrast to the sense-
think-act architecture, the agent is now decomposed by horizontal levels, enabled
via control loops without explicit internal models of the world.
The two views have been extensively debated, not only in terms of questioning the
idea of cognition as symbol manipulation, but also in terms of the related concept
of internal (symbolic) representation. Although some researchers supported the
idea of intelligence without any representation at all (e.g., Brooks, 1991 [45]),
other researchers have developed novel concepts of representation, among which
emulators (Grush, 2004 [77]), which can be used for anticipation of sensory
input, predictive and optimal control, deliberation (i.e. going beyond reactive
behaviour), imitation, learning, co-operation, etc. A review of these can be found
in Hesslow, 2012 [80].
The sense-think-act architecture has hitherto been the natural choice in the past
for systems that were fully engineered by design, as is the case of most driver
assistance systems (e.g. in the PREVeNT project [36], [33]). However, as the
complexity of the driver support function grows, the shortcomings of this type of
architecture become evident, e.g. the rigidity and non-scalability of a priori sym-
bol systems, and the lack of flexibility inherent in pre-programmed approaches.
Indeed, predefined symbol systems inherent in the computer metaphor impose
a rigidity that inhibits evolution and adaptation of the agent. However, even if
it was possible to a priori enrich the internal model representation with all the
relevant information, the result would be a copy of the external world, with its
complexities and without any indication of which is the important information
and how it should be used. In this way, the task of extracting the relevant infor-
mation is only postponed to the symbol manipulation stage. Thus, in case (a) of
Figure 3.10, the perception layer has the purpose of producing a symbolic copy
of the world. On the other hand, in case (b) perception is intrinsically linked to
action, emphasising the notion that cognitive representation is meaningful only
as far as it relates behaviourally to the potential for action.
This latter behavioural architecture has also been used in intelligent vehicles, in
particular within the European Project DIPLECS [3], which adopted the archi-
tecture of case (b) of Figure 3.10, with layers inspired by the Extended Control
Model (ECOM), described by Hollnagel, 1999 and 2002 [84], [83]. ECOM is a
psychological driver model, which describes the driving as a hierarchy of con-
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current subsuming control loops, occurring at different time rates. DIPLECS
implemented the three bottom-most ECOM layers: tracking (minute chassis con-
trol and disturbance rejection), regulating (producing space-time trajectories)
and monitoring (keeping track of the progress towards destination and setting
related short term goals, e.g., overtaking). Each layer was built from learned
perception-action cycles [67], used both to model human intentions and to carry
out these intentions.
In the perception-action (PA) framework, the embodied cognitive agent’s envi-
ronment is represented only in the domain it is able to handle, thus eliminating
much of the representational redundancy in standard approaches. In this way,
environment representation and action planning are no longer separated.
In hierarchical PA systems a task-subsuming hierarchy exists, consisting of pro-
gressively higher-level (more abstract) perceptions and actions loops. The idea is
that higher levels of the hierarchy switch sub-tasks on and off in the levels below,
as required by the situation, with each subtask having an associated perceptual
goal set from the level above, in a slightly different view from Brooks [44]). In
driving terms, a hierarchical PA representation of a human driver’s intentions
considers only those entities relevant to a particular task level, e.g. roads at the
very high level of the PA hierarchy, and kerb at the lower level (thus the high level
goal “navigate junction” also includes the lower-level sub goal “avoid hitting the
kerb”).
Following the example of DIPLECS, hierarchical ECOM layers have been chosen
as the architecture for the Codriver instead of the traditional sense-think-act
procedure, since it granted flexibility and scalability to adapt to complex scenarios
and progressively add advanced functionalities. The main reason, however, lays
in the need to interact with the driver in an effective way, which can be achieved
with a system resembling the driver’s states of mind, as it will be explained in
next section.

3.2.2.2 The empathic link and joint action

In the H-metaphor, rider and horse can “read” each other [70]. However, the
question of how to form such empathic links between two agents is a general
research topic in human-robot interaction, and an active field of studies in neuro-
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sciences, psychology, social sciences.
For the implementation of the Codriver, inspiration has been taken from the
Simulation Theory of Cognition. This is a conceptual framework [80] which
essentially states that thinking is simulation of interactions, carried out as covert
motor-sensory activity, e.g. Hesslow, 2002 [79]. Understanding of others’ inten-
tions is thus also a simulation process, this time carried out via the mirroring of
observed motor activities of the others, e.g. the like-me framework by Meltzoff,
2007 [107], who summarises the concept as: others who act like me have internal
states like me, which implies similarity of the two agents sensory-motor strategies.
With this respect, also the discovery of the mirror neurone system has to be
mentioned [48].
Inference of intentions has also been further studied by Wolpert et al., e.g. [140]
and Demiris et al. e.g. [56]: their approach is to generate agent behaviours under
a number of alternative hypotheses, which are then tested by comparison with
observed behaviours. This means that multiple simulations are run in parallel,
and the most salient one(s) are selected. This method of intention prediction is
named the generative approach, and it has been used for the development of the
Codriver, testing different possible driver purposes and matching the actions they
require with the actual driver’s behaviour.
An alternative could have been the descriptive approach, which does not rely on
the like-me modelling strategy. It rather predicts the probability of the next move
based on the classification of motor stereotypes, which are learnt for instance by
means of a variety of machine learning algorithms. These approaches thus extrap-
olate the recent motor pattern of e.g. drivers, often with no link to meaningful
targets and states on the road. A recent review is given by Doshi and Trivedi [58].
Hurley, in 2008, combined many ideas into a Shared Circuit Model [89], showed
in Figure 3.11, which is useful for introducing the various contributions to the
development of the Codriver. Overall, Figure 3.11 shows an agent, which inter-
acts with the environment (the feedback dashed loop) in agreement with the
embodied cognition approach. The first element of its internal structure is the
internal loop that goes backwards from action to perception. i.e. a forward
emulator, which predicts the effect of agent motor activity. The presence of this
element in the Codriver is due to Grush [77], who proposed the idea that human
brain, while interacting with the body and the environment, constructs neural
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Figure 3.11: Architecture of a cognitive agent featuring emulation and mirroring, capable
of imitation, mind reading and deliberation, i.e. Hurley’s Shared Circuit
Model [89]

circuits that model the body and environment forward dynamics. This function
is analogue to control theory, where predictive models can be used to stabilise
sparse noisy sensory input (in analogy for instance to Kalman Filters), to enhance
the processing of sensorial information, as trackers (retaining awareness of things
coming into and out of the senses), and to implement efficient (model) predictive
control. The usefulness of forward emulators extends to covert motor activity,
where they may be used offline to produce motor imagery, to estimate the effect
of hypothetical actions, to develop and evaluate plans, such as model-based
planning in control theory (e.g., model predictive control and Optimal Control),
and to simulate the observed actions of other people.
On the other hand, the forward loop, i.e. mirroring, should reproduce human
action planning. Many researchers have focused on human movement, and how
it accords to basic motion rules that have an origin in the central nervous system.
In this respect, work by Todorov [131], Viviani [135], and many others (going
back to the 1970s) show evidence that human beings move according to optimal
criteria, such as minimum jerk and others. Viviani says that human movement
responds to minimum jerk, Todorov suggests the existence of a trade-off between
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elementary cost terms.
Optimal Control (OC) thus reproduces simple sensory-motor primitives. OC
modelling of human motor strategies is thus general: where alternative models of
the neural control of movement require a detailed description of how the desired
goal should be accomplished, with Optimal Control it emerges naturally from
basic principles. Application of OC with a Receding Horizon scheme explains
another observed fact, known as the minimum intervention principle [132], which
states that task-irrelevant deviations are left uncorrected. Viviani [135] also
showed that lateral acceleration in movements approaches a limit that depends
upon speed and curvature (the two-thirds power law, and the related isochrony
principles). Moving to driving tasks, it has been determined that similar principles
apply to path planning: in particular minimum jerk (sometimes as a trade-off with
minimum time) can explain how human drivers generate trajectories (Cossalter et
al. 1999 [51], Da Lio et al. [52], Bertolazzi et al, 2009 [36]. There also exists an
analogy of the two-thirds power law by which human drivers use only a limited
amount of acceleration, which is called the willingness envelope [40].

3.2.3 Architecture of the Codriver

3.2.3.1 Overall Architecture

The Codriver used on the CRF demonstrator is a cognitive agent designed on the
principles described above. Figure 3.12 shows its architecture: the agent’s body is
the vehicle, its environment is the road and the other users, and the moro input is
the longitudinal and lateral control. With respect to Figure 3.11, the perception-
action link is expanded into a subsuming hierarchy of different PA loops, able
to control the switch between covert and over actions. In this way the Codriver
is able to analyse many hypothetical actions, i.e. goals, matching them with
observed driver behaviour, and thus selecting which action the driver is sending
to execution, and, what is most, knowing why. A key feature of the application is
included in the FIE box, which contains forward and inverse emulators. Forward
emulators model the dynamics of the body and the environment: they receive
efferent copies of motor commands and ultimately anticipates sensory input. On
the other hand, the inverse dynamics, i.e. the problem of how to achieve desired
perceptual goals, is obtained, in our implementation, by optimal control, which
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Figure 3.12: Architecture of the Codriver for Continuous Support on CRF demonstrator
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is justified by the considerations given at the end of previous section, where the
advantages of modelling driver planning by means optimal control were pointed
out. The optimality criteria used for the optimal control problem selects the
inverse model from among the potentially infinite number of ways of inverting
the dynamics.
The other key feature is the ECOM box, containing the implementation of the Ex-
tended Control Model. Four layers have been used, ranging from motor primitives
(the lowest regulating level) up to the topmost strategy layer, which manages the
inference of intentions and interactions.
Here follows a description of all the blocks composing the Codriver.

3.2.3.2 Forward emulators

In this implementation, emulators are focused on the prediction of the lateral and
longitudinal ego vehicle dynamics. In addition, very simple predictive models for
the dynamics of the other objects are used.
There are many vehicle dynamics models in the literature that might be adopted as
forward emulators, remembering that modelling simplifications and assumptions
affect the accuracy of the results, so that the choice of the model depends on the
form of analysis that has to be carried out. In this context, models are used to
test the viability of different hypotheses of human driving intentions, which is
accomplished by comparing observed to predicted behaviour. Thus, the aim is
to develop human-like coupled inverse/forward models, which should resemble
more the idea the driver has of vehicle dynamics rather than the real vehicle
dynamics themselves.
Thus, quasi-static models have been used, which ignore transient phenomena
that are unlikely to be conducted by humans because of the limited frequency
response of humans in either sensing or actuation (humans are actually able to
handle vehicle dynamics until a certain frequency, but to keep the problem simple
and obtain closed-form solution this trade-off has been adopted). On the other
hand, these models capture phenomena like under-steering, which, if otherwise
ignored, would lead to mismatch between human and the Codriver. Lateral and
longitudinal dynamics are considered in a separate way.
For lateral dynamics, classical steady-state cornering is used, as in Chapter 3.3 of
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Abe, 2008 [28]. The equations are then written in curvilinear coordinates as in
Cossalter et al., 1999 [51] (Figure 3.13):

ṡn(t) = u0 sin(α(t)) (3.1)

α̇(t) = − κ(ss(t))

sn(t)κ(ss(t))
u0 cos(α(t)) + u0∆(t)

∆̇(t) =
1

k1 + k2u2
0

j∆(t)

Three state variables are considered: the curvilinear ordinate sn, the angle

O K(ss(t))

ss(t)

sn(t)
!(t)

Figure 3.13: Curvilinear coordinates ss(t), sn(t), and α(t) for a given road geometry (i.e.
curvature profile κ(ss(t)))

between vehicle velocity and lane direction α, and the curvature of current
trajectory ∆. κ is lane curvature, which is a function of the curvilinear abscissa,
ss. Longitudinal velocity is considered constant at the value of u0, so that:

ss(t) = uot (3.2)

The control input is j∆, the steering rate applied by the driver, which is also pro-
portional to lateral jerk. These equations aim at describing how the driver intends
the lateral control: the relation in the third equation means that he perceives
the curvature as proportional to steering angle, with a gain which depends on
speed. The constants k1 and k2 describe the vehicle understeer behaviour, and
take into account also the steering wheel ratio and vehicle wheelbase. These
constants have been designed based on vehicle parameters and validated using
real measurements on vehicle yaw rate and steering angle.
The model for longitudinal dynamics is simpler:

ṡs(t) = u(t) (3.3)

u̇(t) = a(t)

ȧ(t) = jp(t)

45



In this case, the variables are the curvilinear abscissa ss, forward velocity u and
acceleration a. The control input is longitudinal jerk jp, which is a non-linear
function of the accelerating and braking pedal rates.

3.2.3.3 Inverse models

Inverse models are produced by means of optimal control (OC). In this way, motor
primitives are obtained, which require only the forward model already described
in equations 3.1 and 3.3 and an optimality criterion.
Inverse models link perceptual goals to the actions needed to achieve those goals
(Figure 3.12). For the dynamic system described in the previous section 3.1, 3.3,
perceptual goals are the desired states to be achieved at some time horizon T .
Thus, inverse models answer to the question of how to reach a desired state at
some future time T in an optimised way (which, formulated in this way, is indeed
an optimal control problem). Since there may be several types of final states
and optimisation criteria, the inversion problem produces one solution each,
which constitute different motor primitives. Thus, in the proposed architecture
in Figure 3.12, the block labeled “inversion by OC” contains the algorithm for
solving the optimal control problem, while the lowest level behaviours of the
ECOM architectures are the motor primitives, which may be conceptually thought
of as instantiations of optimal control problems.

3.2.3.4 First ECOM layer: Motor Primitives

A motor primitive is a class of inverse model produced by certain types of final
conditions and optimisation criteria. A few motor primitives have been deter-
mined to be relevant for the Codriver application, which will be described below,
divided into longitudinal and lateral.
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Longitudinal motor primitives
Longitudinal motor primitives deal with the adaptation of speed. They are
generated by the following Optimal Control problem:

Minimise : Js =

∫ T

0

wT + j2
p(t)dt (3.4)

Subject to

Vehicle dynamics : Equations (3.3)

Initial conditions : ss(0) = ss,0

u(0) = u0

a(0) = a0

Final conditions : Manoeuvre goal

where : T = FREE

The cost functional Js is a tradeoff between minimum jerk jp and minimum time
T , since minimising the integral of a constant wT from 0 to free T means in the
end to minimise T . This allows modelling a variety of longitudinal behaviours,
from minimum effort (setting wT = 0) to different amounts of driver hurry, with
ideally minimum time manoeuvring for wT → ∞. Thus, wT plays the role of a
motivation parameter, modelling how fast the intention can be executed, and in
this sense it will be set by higher ECOM layers.
At the bottommost level, instead, only the different basic driver goals are set,
using different final conditions (and initial conditions are set according to actual
state):

Speed Matching (SM)
The first motor primitive achieves a desired uniform speed uT at a given location
xT . It is thus produced by the final conditions:

ss(T ) = ss,T (3.5)

u(T ) = uT

a(T ) = 0
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The solution of this simple OCP can be defined as:

ss(t) = ss,SM(t, ss,T , uT , wT ) (3.6)

u(t) = uSM(t, ss,T , uT , wT )

a(t) = aSM(t, ss,T , uT , wT )

jp(t) = jp,SM(t, ss,T , uT , wT )

Namely, the SM motor primitives are functions of time which depend also on
parameters such as target final states ss,T and uT and the time pressure wT . In
Cognitive System terminology, ss,T and uT would be defined as the perceptual
goals which are set at the immediately higher layer, while wT would stand for
an inner motivation state, and is thus set at even higher level. The functions 3.6
are not executed in reality, so that they represent a covert motor activity of the
Codriver, i.e. motor imagery.
The output of this lowest level of the ECOM architecture is jp,SM , i.e. the action
required to achieve the perceptual goal.
The time horizon TSM which optimises 3.4 is also a function of the perceptual
goals and of the internal state:

T = TSM(xT , uT , wT ) (3.7)

The computation of the solution (3.6) and (3.7) could be carried out in differ-
ent ways: online Perception-Action learning was used in DIPLECS (Felsberg et
al., 2010 [67] and Windridge et al., 2012 [139]), but the OCP could be also
solved in real-time, as it was done in [35], [33], [36]. Training of perception-
action learning could be also done synthetically with offline computed solutions
of the OCP. However, with these simple models, the solution of the OCP can
be found in a closed form (which cannot be published here), as a function of
its parameters, and this way has been used within the project. This allowed
fast computation of several solutions, updating all the parameters in a discrete
range and thus investigating a large variety of driver objectives and internal states.

Speed Adaptation (SA)
A second type of longitudinal motor primitive is the adaptation of speed. It differs
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from SM in that the location at which speed uT has to be reached is unconstrained.
Thus, final conditions are:

ss(T ) = FREE (3.8)

u(T ) = uT

a(T ) = 0

In a similar fashion to SM, SA motor primitives can be defined as parametric
functions of target speed uT and driver motivation wT , obtaining equations
analogous to 3.6 and 3.7:

ss(t) = ss,SA(t, uT , wT ) (3.9)

u(t) = uSA(t, uT , wT )

a(t) = aSA(t, uT , wT )

jp(t) = jp,SA(t, uT , wT )

T = TSA(uT , wT ) (3.10)

Lateral motor primitives
Lateral motor primitives deal instead with the adaptation of travel direction and
lateral position. They are generated by the following Optimal Control problem:

Minimise : Jn =

∫ T

0

j2
∆(t)dt (3.11)

Subject to

Vehicle dynamics : Equations (3.1)

Initial conditions : sn(0) = sn0

α(0) = α0

∆(0) = ∆0

Final conditions : Manoeuvre goal

where : T = SET

In this case, there is not the equivalent of wT of equations 3.11. For this reason
the problem is formulated in an alternative way, and final time is set at T . Final
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time T at which the motor primitive should be completed has thus the same role
as wT in the longitudinal case.
The different driver goals for longitudinal dynamics are resumed below.

Lateral Displacement (LD)
This motor primitive involves adjusting the lateral position in the lane. This is
described by the following final conditions:

sn(T ) = sn,T (3.12)

α(T ) = 0

∆(T ) = κT

This means that, at the end of a manoeuvre of given duration T , the lateral
position must be sn, T , the final travel direction must be parallel to the lane, and
the trajectory curvature must match the lane curvature κT .
The motor primitive is thus made of functions parametric in sn,T and T (one
motor goal and one motivation parameter):

sn(t) = sn,LD(t, sn,T , T ) (3.13)

α(t) = αLD(t, sn,T , T )

∆(t) = ∆LD(t, sn,T , T )

j∆(t) = j∆,LD(t, sn,T , T )

Lane Alignment (LA)
This primitive assumes that, sooner or later, the travel direction will be realigned
with the lane and the curvature will match the lane curvature κT . This process
is supposed to occur in a time T and describes the lane- following task in so far
as the driver is not concerned about lateral position. The goals for this motor
primitive are:

sn(T ) = FREE (3.14)

α(T ) = 0

∆(T ) = κT
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The corresponding primitive may be concisely summarized as a function of one
parameter only, i.e. the time T necessary for the alignment.

sn(t) = sn,LA(t, T ) (3.15)

α(t) = αLA(t, T )

∆(t) = ∆LA(t, T )

j∆(t) = j∆,LA(t, T )

Summing up, 4 motor primitives have been defined: one that achieves a
specified speed at a specified location, another that adapts speed, a third that
reaches a target lateral position and a final one which realigns the travel direction
to the lane. These yield both the space/time trajectory and the control necessary
to obtain them, thereby forming the bottom layer of the ECOM architecture of
Figure 3.12. Other primitives are of course possible, but these were sufficient for
implementing the remaining part of the ECOM architecture.
Both lateral and longitudinal primitives include a parameter that represents a
desired “quickness”, modelling the fundamental fact that human sensory-motor
activities are always a tradeoff between movement accuracy and time. For the
longitudinal control, this parameter was introduced as a minimum-time term in a
free time OC problem; for the lateral case an alternative formulation was given,
with a fixed final time, in which the final time is thus used to model temporal
requirements.

3.2.3.5 Second ECOM layer: Simple trajectories dealing with obstacles or lanes

The second behavioural layer of Figure 3.12 starting from the bottom combines
the above motor primitives in order to achieve simple manoeuvres that individ-
ually deal with one obstacle, or one lane or road feature (curve or landmark)
at a time. In the hierarchical architecture, upper layers set the goals for lower
layers, which practically means that this layer sets the perceptual goals of the
motor primitives, i.e. their final states ss,T , uT , sn,T , κT . As in the case of motor
primitives, the trajectories can be divided into different categories, depending on
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the objectives they set.

Obstacles
To deal with obstacles, a predictive model of obstacle motion is first needed. One
approach would be to carry out inference of the observed vehicle intentions the
same inference of host vehicle intentions is carried out, namely: re-using the
framework here developed. In other words, in this case the Codriver might also
“stand in the shoes” of the other vehicle users as well, which actually is what
people do when driving.
However, although fascinating, this approach has not been used for a number
practical reasons: the speed and direction of travel of other vehicles is known
with less accuracy than that of ego-vehicle, acceleration measurement tends
not to be reliable, other driver controls are not directly observable and a view
of the road network from the host vehicle perspective is not available (e.g., at
intersecting roads, where the direction observed vehicles might be travelling in is
not sufficiently known). Thus, obstacle forward models had to be simplified.
The different strategies to deal with obstacles are listed below.

Follow Object (FO)
The purpose of this manoeuvre is to approach a preceding vehicle, as in Figure
3.14 using manoeuvre a, producing a desired time headway gap th.
The obstacle longitudinal motion model assumes that longitudinal velocity vo

(i.e., the obstacle velocity projected into lane direction) is fairly constant. To deal
with accelerating obstacles it is necessary to rely on the continuous updating of
motor plans of the receding horizon iterations. Such updating of motor plans
to improve robustness of human sensory-motor strategies are described, for
example, by Todorov [132], and they are also implicit in artificial systems in
schemes like Receding Horizon Optimal Control and Model Predictive Control,
which is essentially what is proposed here.
The Follow Object manoeuvre is thus a perception-action map, which takes as
input the object, the desired time headway, and the time pressure parameter wT
and returns a Speed Matching (SM) primitive such as 3.6:

FollowObject : (object, th, wT )→ SM(ss,T , uT , wT ) (3.16)
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Figure 3.14: A possible scenario, where ego vehicle travels in traffic, with road intersec-
tions, landmarks and multiple possible goals for all road users

This means computing the target distance ss,T and velocity uT that correspond to
following the object as required, namely:

uT = vo (3.17)

xT = so + voT − voth − lo

where lo is the longitudinal distance that accounts for the lengths of host vehicle
and obstacle plus any extra desired clearance, voth is the time headway gap, so
is the initial distance of the object and T is the manoeuvre duration, which is
obtained by solving 3.17 together with 3.7.
The Follow Object function thus instantiates an SM primitive after computing its
input parameters. In Figure 3.12 arrows descending from a level to the one below
indicate this form of input relationship. The details of the control movement (if
needed) are given by the primitive 3.6. The current value of the longitudinal
control:

jp,0 = jp,SM(0, ss,0, u0, wT ) (3.18)

53



is here of particular significance, because it indicates how the Codriver should
drive in order to follow the object, which can be directly compared with the
longitudinal control that the human driver is currently employing.
As in the case of the motor primitives, these second-layer perception-action cycles
may be either overt or covert, representing, in the latter case, manoeuvres under
evaluation.
Finally, the followed object does not need to be in the host vehicle’s lane for this
function to apply. If it is travelling in a parallel lane, including the case where it
is behind the host car, then this function may be used to compute manoeuvres
that, for instance, open a gap before a lane change may be executed.

Clear Object (CO)
The purpose of this manoeuvre is to clear a frontal object on either side of the
host vehicle, as showed in Figure 3.15.
As indicated, understanding the directional intentions of the object vehicle would

T°

T

r

l

ego vehicle

Figure 3.15: Possible evasive manoeuvres for obstacle handling

ideally require knowing the road network in order to find which lane the obstacle
might be following. However, in the present version of the system only the
geometry of ego vehicle road/lane is known, so that it is only possible to assess
whether the object is moving in ego vehicle road, or whether it is moving across
the road, in which case the understanding of its intentions will be correspondingly
degraded.
If the object was moving in ego vehicle road, its lateral movement would follow
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a model similar to (3.15), i.e., the object would sooner or later realign with the
lane. Since it is not possible to measure the curvature of the object trajectory
directly, the problem is simplified by setting ∆0 = 0 in boundary conditions 3.11,
and κ(.) = 0 in 3.1. With these simplifications, the OCP given by (3.11), (3.1),
and (3.14) can be solved analytically, yielding the approximate predictive model
for object lateral motion employed here:

sn(t) = sn,0 + vnt

[
1−

(
t

T ∗

)2

+
1

2

(
t

T ∗

)3
]

(3.19)

The model contains the parameter T ∗, which stands for how long the object
manoeuvre will last: in essence, a kind of intentional assessment. At this point T ∗

is not estimated, but the heuristically-derived value of T ∗ ' 2.5 s is used. Thus,
the maximum lateral displacement of the object will be achieved at t = T ∗:

sn,max = sn,0 + vn
T ∗

2
(3.20)

If this position falls within one lane of the current object lane then model (3.19)
is confirmed (i.e., the object is assumed to follow our road, possibly changing one
lane only). If not, the object is considered to be crossing ego vehicle road. In this
case its transverse motion is taken to be uniform:

sn(t) = sn,0 + vnt (3.21)

With an object predictive model (in this case the simple equations (3.17)-first,
(3.19), (3.21)) it is now possible to compute evasive manoeuvres, as Figure 3.15
shows. The blue vehicle is the obstacle and the blue trajectory is its predicted
motion. Even if a more sophisticated obstacle intention prediction was available,
the process hereafter would be the same: first compute the encounter time T o by
combining the longitudinal motion models; then produce an LD primitive (i.e.,
parameters sn,T and T ) so that a specified clearance co, is obtained at T o.
The ClearObject function returns two LD primitives, one for clearing on the left
(l), another for clearing on the right (r):

ClearObject : (object, co)→ LD(sn,T , T ) (3.22)

The format above implies that the second layer function “ClearObject” produces
the parameters sn,T and T of the first layer “Lateral Displacement” motor primitive
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(thus subsuming it) that clears the specified object at the specified distance co,
which necessarily accounts for the width of the two vehicles plus any desired
clearance. The sign of co may be conveniently used to specify whether the clearing
occurs to the right or to the left.
The ClearObject behaviour above is simplified: firstly there is only one hypothesis
for T ; secondly there is also one hypothesis only for the longitudinal control used
during the evasive manoeuvre, which is FF (below) with a plausible value for wT .

Lanes

Free Flow (FF)
This manoeuvre produces a SA primitive by guessing a target speed uT . This is
achieved by assuming a plausible value for T and solving (3.10 ) for uT .

FreeFlow : (wT , T )→ SM(uT , wT ) (3.23)

In theory, FreeFlow should be a function of two parameters, with T dictating how
long the acceleration lasts. However, since T weakly influences the first part of
the manoeuvre, the Codriver always generates only one hypothesis for T (which
is T = 5 s) and relies on receding horizon updates to refine the estimate of the
latter part of the manoeuvre.

Lane Follow (LF)
This is a wrapper for the LA/LD motor primitives. It takes as input a desired
lateral position in a specified lane (in lane units) and the manoeuvre time T and
returns a LD primitive. The final lateral position may alternatively be “free”, in
which case the LA primitive is before converted into a LD one.

LaneFollow : (lane, position, T )→ LD(sn, T ) (3.24)

Landmark/SpeedLimit (LM)
Landmarks are used to represent speed limits at specified locations. These are
set in salient locations, e.g. a pedestrian crossing, and at the beginning of a road
section with a posted speed limit. The Landmark function takes the speed limit
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and position and returns a SM primitive (making only one hypothesis for wT ).
This is a manoeuvre that aims at matching the speed limit, and which thus serves
to assess in advance whether the driver is going to observe that limit.

LandMark : (speedLimit, position)→ SM(ss,T , uT , wT ) (3.25)

Curve (CU)
This returns a SM primitive that approaches a curve with the correct speed.
The existence of a curvature-acceleration-speed relationship has already been
mentioned [135]. Curvature data from ADAS digital maps is used to compute the
appropriate location and speed [40]. Two hypotheses are made representing two
different percentiles of driver lateral acceleration. Only one hypothesis is made
for wT .

Curve : (curve, driverPercentile)→ SM(ss,T , uT , wT ) (3.26)

3.2.3.6 Third Layer: Navigation

So far, the functions of the second layer may be regarded as operators that trans-
late simple goals, into motor primitives. Except for Clear Object, they return
either a longitudinal or a lateral primitive. The third layer is thus responsible
of require executable navigation plans, putting together these potential motor
tasks. This means that combined longitudinal and lateral control, i.e., couplings
of longitudinal-lateral primitives, are produced, such that each couple accounts
for all the obstacles simultaneously.
In other words, the third layer produces manoeuvres that represent higher-level
goals/intentions, such as a, b, c, d of Figure 3.14.
It is worth noting that this layer still produces multiple manoeuvres. For an
autonomous system, they represent covert motor alternatives, such as in 3.14,
from among which to choose. For the Codriver, they constitute hypotheses to be
tested against the observed behaviour of the driver.
The Codriver thus need to produce a number of hypothetical motor activities
spanning the space of possible intentions. To generate a complete set of hypothe-
ses, the Codriver starts guessing what the lateral intentions of the driver might
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be. For a single road, with possibly multiple lanes, it thus generates an array of
Lane Follow (LF) motor tasks as shown in Figure 3.16. Three of these, labeled

4

ego vehicle
3

9

14

12

Figure 3.16: Possible lateral intentions of the driver

1-3, are of type LA, with three hypotheses for the alignment time T ∈ {T1, T2, T3}.
These will be used to test whether the driver is going to simply realign with
the lane without any particular care for the exact lateral position in it. In this
implementation implementation the times are set at:

T1 = 3 s (3.27)

T2 = 1.5 s

T3 = 1 s

with the first two turning out to be the most frequent matches. In addition the
co-driver makes 11 hypotheses of type LD, labeled from 4 to 14, in which the
final lateral position sn,T spans three lanes, from the adjacent right lane to the
left lane in steps of 0.25 lane widths. The hypothesis labeled 9, corresponds
to sn,T = 0, which represents the intention to return to the center of the lane.
Hypotheses 8 and 10 are respectively 0.25 lanes off-center, which is approximates
to the intention to move near one edge or the other of the lane. Hypotheses 7 and
11 represent the intention to go over the lane divider (possibly as the beginning
of a lane change) and the remaining hypotheses are complete lane changes. Even
if in the situation of Figure 3.16 there is no right lane at all, hypotheses 4-7 are
nonetheless generated, which represent “running out” of the lane. The reason
for this excess hypothesis generation is also to test for possibly incorrect driver
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actions. For these LD primitives, only one hypothesis is made for the final time T
in initial conditions of (3.11).
In the case of road forks, such as in Figure 3.14, another array of hypotheses like
the above would be needed to accommodate the bifurcation, but this has not
been implemented in the system.
The following step is the association of each lateral motor plan with one or more
longitudinal plans. Obstacles are first considered: for each, the Follow Object
and Clear Object manoeuvres are computed. For consistency with the matching
lateral manoeuvre, the final time T used in (3.13) has been also used in (3.22).
At this stage, two cases can happen:

1. if the i-th lateral manoeuvre of Figure 3.16 clears all the obstacles, this is
associated to a FreeFlow longitudinal primitive representing the intention
of travelling along a non-colliding path. For simplicity, only one hypothesis
is made for the FF parameter, wT , i.e. a value for low hurry driving, since it
is not as important to understand how fast the driver wishes to drive in this
case.

2. if the i-th lateral manoeuvre Figure 3.16 falls within the left-right boundaries
of one or more objects, then the FollowObject manoeuvre for the most
demanding object is selected. In this case, two hypotheses for the time
headway th are made:

th,1 = 1.1 s (3.28)

th,2 = 0.6 s

Then, curves are also considered: for every curve the CU primitive is computed
and the most demanding one retained. This is associated with all the trajectories
sharing the same road path, e.g. in Figure 3.14 a, c, d share the most demanding
curve primitive of the main road path, and b of the bifurcation path.
Lastly, landmarks and speed limits are considered the same way as for curves.
After the above process, a list of manoeuvres is obtained, with both lateral and
longitudinal control of two types: the first are trajectories that do not collide
with obstacles which are associated to FreeFlow longitudinal control; the second
are trajectories that might collide with an object which are associated with two
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hypotheses for longitudinal control, corresponding to tight and very tight time
headway. In addition, every manoeuvre is also associated to an alternative curve
and a landmark longitudinal primitive. The reason for keeping the longitudinal
primitives separate, instead of taking the most critical one, is the same as for
the out-of-lane hypotheses of Figure 3.16. Namely, the purpose is also to test for
mistakes, such as a driver approaching the front vehicle correctly but not a curve
within the same road.

3.2.3.7 Fourth Layer: Strategy

The topmost layer is where the highest-level functions are produced. For instance
an autonomous agent would here deliberate upon which manoeuvre of the third
layer to execute. For the Codriver, this level is where inference of intentions is
completed and interactions are born.
In order to correctly infer driver intentions, the hypotheses generated at layer 3
must thus be tested. A saliency-based approach is used, which considers both
the difference between the hypothesis and actual driver behaviour and also the
plausibility of the hypothesis itself. For the i-th candidate manoeuvre, a penalty is
therefore computed as follows:

Ji = w∆ ||j∆,i − j∗∆||
2 + wp

∣∣∣∣jp,i − j∗p∣∣∣∣2 + wnJn (3.29)

The first term is the square of a proper difference function between actual Codriver
steering control j∆ and driver’s control j∗∆ with weight w∆. The second term
is the distance between the longitudinal controls, jp versus j∗p with weight wp.
These two together measure a kind of distance between the driver and the i-th
Codriver hypothesis. The third term is the steering cost of the manoeuvre, i.e. the
objective function of (3.11). Adding this term means that manoeuvres with higher
steering costs are considered less plausible. Thus, for instance, a manoeuvre that
requires less steering activity such as going straighter would be preferred to one
that steers more, for the same distance to the driver behaviour. A similar term for
the longitudinal control has not been included, though.
The computation of the distance between driver and Codriver manoeuvres implies
a time window for the comparison, which determines a tradeoff between accuracy
and delay of inferred intentions (longer observations may be more accurate but
cause more delay). This implementation aims at discriminating quickly among
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the tactical manoeuvres of layer 3, and thus uses nearly instantaneous comparison
windows: for every hypothesis the current values of the predicted longitudinal and
lateral controls, j∆,i(0) and jp,i(0), are respectively compared with a 200 ms first-
order filtered value of the steering wheel rate j̄∗∆ and with a Kalman estimation
of the longitudinal jerk j̄∗p . Equation (3.29) then becomes:

Ji = w∆f
− (j∆,i(0)− j̄∗∆)

2
+ wp

(
jp,i(0)− j̄∗p

)2
+

1

T
Jn (3.30)

The function f−(.) is the negative part, returning zero if the codriver is faster
than the human driver.
For better comprehension of how the upper layer infers driver’s intentions, is
useful to introduce the chart in Figure 3.17, where the control output space is
represented: the steering wheel rate j∆ is reported in abscissa and the longitudi-
nal jerk jp in ordinate. A manoeuvre is represented here by a curve parameterised
by time, as it happens in the last relations of Equations (3.6), (3.9), (3.13) and
(3.15). Conceptually, this chart may be regarded as a projection of the internal
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produced. For instance an autonomous agent would here de-
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In order for the correct inference of intentions, the hypothe-
ses generated at layer 3 must thus be tested. We use a salien-
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“plausibility” of the hypothesis itself. For the i-th candidate 
maneuver, a penalty is therefore computed as follows: 
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instance, a maneuver that requires less steering activity such 
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which determines a tradeoff between accuracy and delay of 
inferred intentions (longer observations may be more accurate 
but cause more delay). 
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The function f – is the negative part, returning zero if the co-

driver is faster than the human driver. 
 
Let us, for convenience, introduce the representation of 

Fig.7, which shows the control output space: the steering 
wheel rate j! in abscissa and the longitudinal jerk jp in ordi-
nate. A maneuver is represented here by a curve parameterized 
by time, such as in the last terms of (12) and (7). 

Conceptually, this chart may be regarded as a projection of 
the internal state of the cognitive systems onto the motor out-
put space. This is inspired by embodied cognition, in which 
perception-action links imply that internal perceptual states of 
the system may be represented in terms of their motor output 
or a common code [127] (thus, for example, heard words may 
be represented by the motor activity necessary to produce 
them [128], [129]).  

 
In the chart, the vertical lines labeled 1-14 represent the lat-

eral control j!(0) of each lateral motor primitive generated at 
layer 3, e.g., those of Fig.6. The two rectangles stand for two 
vehicles, which can be seen in the inset (shapes are limited to 
rectangles due to the simplifications made in the clear object 
section). The tallest rectangle is the nearer car; the other is the 
farther van. Rectangles are bounded by the left and right 
ClearObject maneuvers, and by the FollowObject maneuver at 
the bottom side. The rectangles look darker where they over-
lap.  

The cross markers (!) are the maneuvers produced at layer 
3. Maneuvers 4, 13 and 14 clear both objects and are associat-
ed with FF longitudinal primitives, whereas the others are as-
sociated with the FO primitives of the critical object. Since 
there are two hypotheses for time headway (th = 1.1 s and th = 
0.6 s) there are indeed two FO primitives for each trajectory. 
For clarity we show only one (th = 0.6 s), except for trajectory 
11, in which the second one is shown in light gray (th = 1.1 s).  

In the case given here, there is no critical curve and no 
landmark in front of the vehicle. If there were, additional ma-
neuvers would be generated for every trajectory according to 
the limiting jerk of curves and landmarks, such as those shown 
in dotted circles, for example trajectory 11. 

The filled and empty circles, respectively trajectory 7; time 
headway 0.6 s, and trajectory 4; free flow, are the matching 
co-driver maneuvers.  

The filled circle “co-driver (1)” corresponds to criterion 
(27) with wp=0. By weighting only the lateral control, this 
maneuver represents the intentional trajectory of the driver. 
Conversely, maneuver “co-driver (2)” uses a large weight wp 
and typically preserves the longitudinal speed, producing an 

 

 
 

Fig. 7. Chart representing the projection of the system states onto the motor 
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Figure 3.17: Chart representing the projection of system states into the motor output
space

state of the cognitive systems onto the motor output space. This is inspired by
embodied cognition, in which perception-action links imply that internal percep-
tual states of the system may be represented in terms of their motor output or a
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common code (Hommel et al., 2001 [85]).
In the chart, the vertical lines labeled 1-14 represent the lateral control j∆(0)

of each lateral motor primitive generated at layer 3, i.e. those of Figure 3.16.
The two red rectangles stand for two vehicles, which can be seen also in the
corresponding image at top right, acquired during the real tests. The shapes are
limited to rectangles due to the simplifications made in the clear object section.
The tallest rectangle is the nearest car; the other is the far van. Rectangles are
bounded by the left and right ClearObject manoeuvres, and by the FollowObject
manoeuvre at the bottom side. The rectangles look darker where they overlap.
The cross markers (x) are the manoeuvres produced at layer 3. Manoeuvres 4,
13 and 14 clear both objects and are associated with FF longitudinal primitives,
whereas the others are associated with the FO primitives of the critical object.
Since there are two hypotheses for time headway (th = 1.1 s and th = 0.6 s)
there are indeed two FO primitives for each trajectory. For clarity, only that with
th = 0.6 s is showed, except for trajectory 11, in which the second one is shown
in light gray th = 1.1 s.
In the case given here, there is no critical curve and no landmark in front of
the vehicle. If there were, additional manoeuvres would be generated for every
trajectory according to the limiting jerk of curves and landmarks, such as those
shown in dotted circles, for example trajectory 11.
The filled and empty circles, respectively trajectory 7 with time headway th = 0.6 s,
and trajectory 4 with free flow, are the matching Codriver manoeuvres. The filled
circle “co-driver (1)” corresponds to criterion (3.30) with wp = 0. By weighting
only the lateral control, this manoeuvre represents the intentional trajectory of
the driver. Conversely, manoeuvre “co-driver (2)” uses a large weight wp and
typically preserves the longitudinal speed, producing an evasive manoeuvre.

3.2.4 Implementation of the Codriver for continuous support

In the CRF application, the Codriver is used as a peer, exploiting the two alter-
native manoeuvres above. It was already pointed out that the Codriver makes
hypotheses, not just for correct behaviours, but also for incorrect behaviours. For
example, 3.17 shows four longitudinal control hypotheses for trajectory 11; and
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Figure 3.16 shows hypothetical trajectories that fall outside of the road area. For
manoeuvre “co-driver (1)”, the Codriver seeks to determine what the intentional
trajectory is, and, within this trajectory, what the intentional longitudinal policy
is. Thus it seeks to determine whether the longitudinal control corresponds to
a correct manoeuvre or, if not, which longitudinal control should be used to
implement the correct manoeuvre. For example, if the “co-driver (1)” manoeuvre
was a trajectory with th = 0.6 s, the correct manoeuvre should be th = 1.1 s (not
considering landmarks or curves that might be present), and the Codriver would
also then implicitly know how to correct the driver’s incorrect behaviour. This
information is thus used by the HMI of the Continuous Support function, which
is inactive when the driver’s manoeuvring is correct, but produces a feedback
with the required correction (and the cause of activation) if greater than a set
threshold.
The Codriver also establishes whether the lateral control is correct, and this
information is also used by the HMI for lateral feedback. For instance, trajectories
11-14 of Figure 3.17 correspond to a non-existent lane, and would produce HMI
interactions if they were chosen by the driver (the same happens if the driver
selects a lane which is occupied by a lateral/rear vehicle).
On the other hand, the evasive manoeuvre “co-driver (2)” is an alternative option
for rectifying driver mistakes, which acts on the lateral control instead. By way of
example, in Figure 3.17 the Codriver estimates that it is possible to change lane
to the right to preserve FF longitudinal control. Within the CRF implementation,
evasive manoeuvres are used to a limited extent in two cases:

1. if the evasive manoeuvre is within the same lane of manoeuvre (1) (which
happens for example if manoeuvre (1) is affected by an obstacle that occu-
pies only part of the lane, such as a vehicle on a nearby lane but very close
or slightly inside our lane), in which case this manoeuvre is selected for
generating feedback in place of the original manoeuvre. Thus, if there is an
in-lane evasive manoeuvre, the driver will not receive longitudinal feedback
but rather a lateral feedback, e.g., because he/she should open a greater
clearance with respect to a vehicle very close or slightly inside his/her lane.
It is worth noting how this feature, which is an adaptive lane keeping, is
thus produced from more basic principles that reproduce human driving.
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2. if manoeuvre “co-driver (1)” is a dangerous lane change and “co-driver (2)”
is in the current lane; i.e., the driver is changing lane but there is a problem
in longitudinal control. In this case “co-driver (2)” is used for HMI feedback,
indicating to the driver he/she should better remain in the current lane.

3.3 R E S U LT S A N D O T H E R F E AT U R E S E M E R G E D F R O M FI E L D O P E R AT I O N A L

T E S T S

3.3.1 Test description

The Continuous Support application, i.e. the described Codriver combined with
its Perception Platform upstream and the HMI downstream, has been tested
extensively in two different sessions. One was required for a technical assessment,
while the other regarded user-related issues [61].
The technical tests took place at the “Centro Sicurezza” private proving ground
at CRF headquarters in Orbassano (TO), Italy (Figure 3.18). The vehicle was

Figure 3.18: Centro Sicurezza in Orbassano (TO), Italy, the proving ground for the
technical assessment tests [61]

conduced by professional drivers in predefined use cases:
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• Rear-end collisions

• Blind-spot collisions

• Collisions with vulnerable road users

• Unintended lane/road departure accidents

• Traffic-rule violations

and objective performance was evaluated, e.g. number of false negatives and
false positives, timing of the warnings, repeatability, etc. However, the results of
these tests are subject to non-disclosure agreements and can not be detailed here.
On the other hand, user-related tests were conduced on real roads, on a test track
(Figure 3.19) including urban, extra-urban and motorway scenarios, 53 km long,
which took between 40 and 45 minutes to be completed. 24 drivers (employees

Figure 3.19: Test track around Orbassano (TO), Italy for the user-related assessment tests,
comprehensive of urban, extra-urban and motorway environments

at CRF not involved in the interactIVe project) of different age and gender (Table
3.1) have driven on the test track twice, with the system always on, but the HMI
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switched once off and once on (in a random order).
Before the tests, all the drivers were informed that the objective was to evaluate
the performance of the system and not theirs, and that all data collected would
be anonymous. The drivers were also instructed to drive as normal as possible
and ask for whatever doubts or questions they might have during the test. Before
the usage of the system, a brief explanation was given them, too.
During the tests, the drivers were observed by means of an in-car observation
method (Wiener Fahrprobe method [49]) by two observers, one (the coding
observer) studying standardised variables such as speed behaviour, yielding be-
haviour, lane changes and interaction with other road users, and the other carrying
out other observations such as conflicts, communication and other special events.
The main objectives of the observation were to determine whether the driver’s
behaviour changes when the system is switched on and off, his/her workload
is relieved by the application or increased, and he/she trusts and accepts the
intervention of the application.
At the end of the test, questionnaires were issued to the drivers to assess their
comprehension of and experiences with the system, their subjective workload,
the usefulness and satisfaction of the system, perceived benefits of the system, as
well as willingness to have and pay for the system.
In total, the system has been tested for more than 35 hours and 2500 km. The

45-64 25-44 Total
Male 6 7 13
Female 2 9 11
Total 8 16 24

Table 3.1: Distribution of age and genders among test drivers for the interactIVe
project[61]

results of the tests are summarised in next paragraph.
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3.3.2 Observed behaviour of the Codriver

3.3.2.1 Inference of intentions

A relevant aspect of the Codriver regards the inference of driver’s intentions,
which has been analysed on logged data from the tests. The inference is achieved
by matching the observed behaviour of the driver with sensory-motor hypotheses
of another agent. In other words, the Codriver observes driver behaviour and
interprets it in terms of its own internal states that would produce it. This is the
reason why, for the effectiveness of the Codriver, it is necessary to design it with
a sensory-motor architecture as human-like as possible, so that its outputs will
resemble human behaviour and motivations.
A perfect matching between the two is obviously not feasible: the hypotheses of
the Codriver are simplified and in a limited number, which may result in missing
or approximating the real case. For instance, in Figure 3.17 the observed driver
lateral control is between trajectory 7 and 6. However the former is a borderline
in-lane manoeuvre, while the latter definitely constitutes a lane change: the two
options are qualitatively different, and the Codriver switches the driver control
onto trajectory 7 because it is closer, but also because it is more intrinsically
plausible. In fact, it is useful to recall that equation (3.29) describes how each
manoeuvre is assigned a penalty expression, whose last term is its likelihood.
At this point, it could both happen that the driver’s intended trajectory is really
somewhere between the two, so that the switching produces an approximation,
but also that measurement noise affects the accuracy of Codriver hypotheses. In
the showed case, analysing the following frames it was clear that the intended
trajectory laid between 7 and 8 in reality: the plausibility term combined with
the discrete set of hypotheses worked properly, and even helped to improve the
signal-to-noise ratio thanks to behavioural discretisation. However, this could
also cause inaccuracy of the inference in other cases, so that denser discretisation
could be required, but this should be also accompanied by an improvement in
the accuracy of the perception platform, to avoid the occurrence of very accurate
hypotheses made on inaccurate premises.
Differently from final lateral displacement, there are other states for which only
one hypothesis is made, e.g. the duration T of FreeFlow manoeuvres, the time T ∗

in equation (3.19) for ClearObject manoeuvres, time pressure wT for FollowObject
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(3.16) manoeuvres and T and the longitudinal motor primitive SA used in the
ClearObject function (3.22) etc. Apart from simplifying the problem, this is done
also because the dimensionality of the cognitive system states is much greater
than the motor output space. For instance, considering the LD primitive (3.13),
there are different combinations of sn,T and T which produce the same j∆(0).
These represent osculating trajectories that cannot be discriminated in the short-
term observations possible for real-time applications. Thus, only one plausible
value for T is used in the application, while this method could be improved e.g.
using multiple time-scales for fast and slow varying states. Generally, short-time
observations of the motor output (i.e. driver jerks) discriminate easily between
manifolds in the state spaces (i.e. the resulting manoeuvre), but the entire
manifold of possible manoeuvres projects onto very similar motor output, and
would require much longer observations in order to distinguish states.
Finally, the sensory-motor system is not complete, and it lacks of perception-action
loops at each layer of the ECOM architecture. For example, there is not a built-in
behaviour for navigating around an object. This functionality may be obtained
with a sequence of three lower-level behaviours such as, i.e. change lane (LD
primitive), free flow until the object is passed (FF), and lane change back (LD).
However, this sequence is not implemented at the higher level, so that the Codriver
is not able to conceive overtaking manoeuvres, even though it can understand the
single phases of the manoeuvre. Moreover, in the case that the third phase starts
before having completely passed the obstacle, the Codriver can only interpret the
situation in terms of the motor plans it is aware of, i.e. follow object (FO) and
clear object (CO). The former involves returning to the lane behind the vehicle,
which would be evaluated as dangerous, while the latter would mean maintaining
lateral safety clearance, probably resulting in a lane change delay. In any case, the
Codriver never forms the behavioural hypothesis “returning to the lane in front
of the obstacle”, because no such behaviour is represented in its sensory-motor
system. The described situation has been observed several times, but interpret
ing the situation in terms of either clearing or following the obstacle anyway
produces the warning to “keep clear”. In this way,the system is somehow robust
to the lack of complex motor plans, which can be decomposed into simpler units
of which the system is aware. However, it has been already emphasised that
the behavioural architecture would allow to easily extend and scale the system,
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adding possible complex manoeuvres such as overtaking without changing the
design and the interfaces of the application.

3.3.2.2 Behaviours from basic principles

It was described how adaptive lane keeping manoeuvres can be generated from
basic principles, but this is not the only such case. In fact, a system that works by
producing human-like behaviours is very likely to give birth to complex behaviours
that have not been programmed explicitly. Some of these cases have been
observed during the tests, while the most relevant case is probably that depicted
in Figure 3.17. The car remains in the right lane at the very beginning of a change
of lane. Nonetheless, the Codriver uses its motor imagery to predict its own
and other road users behaviour, and concludes that the car, invading ego vehicle
lane, will block manoeuvres from 5 to 10, which will require braking, with the
only available alternative being changing to the right lane. In subjective human
evaluation, the warning produced by the system was indeed appreciated, being
both appropriate and anticipated, giving the impression that the system could
understand the road situation and correctly anticipate its outcomes.

3.3.2.3 Limitations

During the tests, some limitations of the system have also raised, the most relevant
being noise and inaccuracy of the perception platform upstream the Codriver.
For example, it has been observed that errors in the measurements of the lateral
speed of other vehicles can cause false warnings, inducing the Codriver think they
will invade ego vehicle lane.
Another limitation comes from incompleteness of the sensorial data. For example,
knowing only the geometry of the host vehicle lane, and not that of the intersect-
ing lanes, caused some false alarms in which vehicles moving to other lanes could
not be predicted accurately. A typical example is the entrance into a roundabout,
where the vehicle exiting in the opposite lane may seem again to invade the ego
vehicle lane. One of these false warnings occurred during the user tests.
Other limitations are instead due to the Codriver architecture, i.e. to its incom-
pleteness and to the simplifications of the sensory-motor system. For example,
the FollowObject manoeuvre assumes that the obstacle is moving with only a
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little longitudinal acceleration, while no information about obstacle acceleration
is provided. If this is true, then the small errors due to the model assumptions
in equation (3.17) are corrected by the receding horizon scheme. However, in
the technical tests it happened that the obstacle hard braked, so that the Codriver
was continuously underestimating the deceleration needed by the FO manoeuvre,
resulting in a late warning. A better perception and tracking of the objects com-
bined with improved motor primitives could of course fix this limitation.

3.3.3 User response on the Continuous Support function

Analysing then the results of the entire Continuous Support application, a sum-
mary of the results is here reported. For further details, the reader can refer to
Fahrenkrog et al., 2013 [61], i.e. the final report of the subproject 7 of interactIVe,
in charge for test and evaluation of the developed applications.
Looking first at drivers’ behaviour with respect to speed limits, it can be said that
they did not change driving style with and without the system HMI, and there
were no significant changes in the number and in the length of the warnings (it is
useful to remember that the system was active in both cases, so that the warnings
were always issued by the Codriver, by only during one test these activated also
the HMI).
Sensible changes happened instead in the velocities used for curves, showing the
effectiveness of the system: roundabouts were travelled at significantly lower
velocity (p-value p ≤ 0.05) when the warnings were on. Furthermore, driving
too fast according to the situation was observed significantly less often while the
warning system was active.
The same can be said also for lateral dynamics, where driving too close to
lane/road boundaries and dangerous lane changes were observed statistically
significantly less often when the system warned the drivers about the risk. Finally,
the test persons chose a wrong lane when driving through an intersection or
roundabout less frequently when driving with the system active.
On the other hand, however, slightly later speed adaptations were observed be-
fore intersections and obstacles with the active system. In addition, statistically
significantly more errors regarding dangerous distance to the side were observed
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with the system active, and only during driving with the system active it was
observed that the test persons turned with too high speed. This possibly shows
the tendency of the drivers to excessively relax when the system is on, relying on
it and thus paying lower attention to what is happening.
Another issue concerns the tuning of the Codriver for collision warning, since the
profiles of velocities and accelerations show that in some cases the warnings were
late, so that the drivers had already started to brake when the warnings were
issued. This can be avoided raising the jerk thresholds the warnings are released
at, being careful not to increase also the number of false positives in that way.
In all the other aspects, no significant differences were detected in the behaviour
with and without the HMI.
Finally, analysing the questionaries it was clear that the system was perceived as
useful by the drivers. They felt that the system would enhance safety, especially
while overtaking in motorways thanks to the blind-spot monitoring, and help also
in maintaining the speed below the limits, and thus also in avoiding fines. The
users also appreciated that the system was not too invasive, with a reasonable
number of warnings. In other words, the number of false positives was very low.
Looking at the weaknesses of the system, they also required the elimination of
those few false alarms which still occurred, and they noticed the delay at which
some frontal collision warnings were issued.
However, the drivers mainly also asked for some improvements in the HMI. First,
longer permanence of the visual explanation of the warnings was wished, since
in some cases the driver could not realise why a warning was issued, and they
also criticised the position of the cluster display, partially covered by the steering
wheel. Furthermore, they suggested to adapt the strength of the seatbelt vibration
proportionally to the collision risk level, and to eliminate this feedback for other
situations such as excessive speed. On the other hand, they wished an additional
haptic feedback for blind-spot warnings.
In the end, when the drivers were asked if they would pay to have this system
on their cars, all of them answered affirmatively. This seems to confirm the
overall impression of having obtained good results with a system people would
considerably pay for, even if on the market it would be probably necessary to
double those amounts to make it profitable.
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4.1 I N T R O D U C T I O N

In the previous chapter, the Codriver was described together with its architecture.
It has been widely explained how it was designed resembling human states
of mind and human motion planning criteria, which are necessary to identify
driver intentions. Some limits of the Codriver have already been emphasised
when discussing the results of the interactIVe project, but here some additional
considerations will be drawn from a different point of view, i.e. possible other
applications the Codriver can be used for.
The Codriver has been conceived for driver warning, and has proved to be a
suitable way to achieve this objective and increase road safety, but it could also
happen that the driver does not react to the warnings, and an autonomous
intervention of the system would be required. The objective is now to understand
if the Codriver can be extended to plan this intervention. Applying the concept
to the interactIVe project, the idea is to see if the Codriver could be used for a
unique application both for the SECONDS and INCA subprojects, to handle both
driver intention inference and eventually the planning of evasive manoeuvres to
be executed when the risk level raises.
This discussion focuses only obstacle avoidance, neglecting all the other threats
which the Codriver addresses. For this purpose, in this chapter it will emerge that
the manoeuvres planned by the Codriver, without any modification, can not be
directly used for this purpose, for two main reasons:

• The plans of the Codriver are the result of extremely simplified OCPs mod-
elling only kinematic relations, which was necessary to obtain closed-form
solutions for fast evaluation, while for autonomous intervention the vehicle
dynamics and their physical limits must be taken into account

• The plans of the Codriver are humanlike, with limited actuation rates, while
autonomous intervention could exploit faster an more accurate actuation

On the other hand, they can provide good guess functions to feed more complex
OCPs and accelerate their convergence.
In this chapter, an analysis of humanlike driving is carried on in section 4.2,
based on real data collected during tests on a Driving simulator for steering and
braking manoeuvres, which confirmed some results of traditional research on
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driver behaviour (Summala, 1981 [129], McGehee et al., 1999 [106]). These
data can be used to set the thresholds for risk assessment and driver warning,
but they give no idea of the margins left for autonomous intervention. To do
this, more accurate models must be developed, to be included in more complex
OCPs which push the vehicle to its limits (Section 4.3). Finally, the plans of the
Codriver are compared with the limit manoeuvres coming from these accurate
OCPs, to derive indications on which simplifications can be done and which detail
is necessary for autonomous intervention systems (Section 4.4). Furthermore,
the detailed OCPs are there used to compare emergency brake-to-avoid and
steer-to-avoid manoeuvres and derive information on which of the two is more
suitable depending on the scenario. Proving that steering manoeuvres are more
effective at high relative velocity, these are pushed to the limits investigating the
improvements achievable by means of four-wheel-steering.

4.2 D R I V E R L I M I T S : A N A LY S I S O F D R I V E R B E H AV I O U R F R O M D R I V I N G

S I M U L AT O R DATA

4.2.1 The driving simulator

In previous section it was anticipated that a driving simulator was used to collect
data on drivers’ behaviour during braking and steering manoeuvres. In particular,
the driving simulator (Zendri, 2012 [144]) used has been that developed within
the Mechatronics Group [16] at the Department of Industrial Engineering of the
University of Trento (Figure 4.1).
The simulator is composed of hardware components which resemble a real car

cabin, and a PC which manages all the components. The cabin is reproduced using
a real car seat, a gearbox stick featuring both manual and sequential behaviour, a
pedal box and a dashboard, all provided by Dynamotion [4]. In the dashboard,
a steering system is hosted, i.e. a TRW Active Steering Wheel System 2. Three
50” plasma monitors surround the driver and resemble what he/she could see
from the windscreen, the lateral windows and the rear mirrors. An audio system
completes the simulator, reproducing engine and environment sounds.
The management of the simulator is handled by a PC equipped with a dual
core processor Intel Core i7-2600 CPU @ 3.40GHz, running a 32 bit Windows
7 OS which exploits 3 of 8 available GB RAM. Moreover, a CAN board (Adlink
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Figure 4.1: The driving simulator of the University of Trento

7841) has been installed to communicate with the simulator steering wheel.
Here the OKTAL SCANeR software is installed, which receives driver inputs from
the steering wheel, the pedals and the gearbox, and accordingly commands the
graphics and the sound thanks to interval vehicle and road models, and also the
traffic.
The steering wheel position is directly sent to the software via CAN-bus, measured
by a built-in encoder. On the other hand, the pedal positions are sensed by Linear
Variable Displacement Transducers (LVDT) and the requested gear is measured by
Hall Effect sensors, and their values are acquired using a cheap micro-controller,
an Arduino Mega 2560, which then outputs them to the SCANeR software.
The software also allows wide customisation, letting the user develop his own
scenarios, and developing his own modules for logging, etc. Thus, different
modules have been developed to represent sensors equipping real vehicles, to
acquire vehicle, obstacle and road states and use them both for logging and for
real-time exploitation (i.e. sending them to another custom module representing
an ADAS). In this way, custom scenarios have been developed, and simulation
data have been logged for offline analysis.
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4.2.2 Test description

4.2.2.1 Braking scenario

In order to derive indications on how drivers behave in emergency manoeuvres,
two different tests have been set up on the driving simulator: one for obstacle
avoidance by steering, and one for braking.
The braking scenario takes place in a straight road. The driver is asked to follow
a vehicle ahead at a distance as close as possible, but which he/she still perceives
as safe in the case the obstacle reduces its speed. The driver is not allowed to
overtake it or anyway use the steering wheel to avoid it. The vehicle ahead
has variable speed, performing 5 braking manoeuvres with different constant
decelerations and different final velocities. The braking manoeuvres are activated
when the driver reaches a given time-headway, i.e. the time required to reach
obstacle current position at present constant speed, in order to be sure that the
ego vehicle is close enough and a braking will be required. However, the given
time headway could be too short for the driver, which may prefer remaining
at a safer combination of relative speed and distance, thus never activating the
braking manoeuvre in the obstacle. To avoid this inconvenience, a more complex
procedure has been adopted to activate the braking: when ego-vehicle reaches a
high time headway th,a = 2.5 s, a very safe condition which is always exceeded by
the drivers, the algorithm is ready to make the obstacle brake when a shorter limit
time headway th,b0 < th,a is reached. However, if this value is not reached within
some seconds, this value is iteratively raised to values th,b so that th,b0 < th,b < th,a,
until th,b meets the actual time headway of the vehicle. When this happens, the
obstacle starts braking and the the ego vehicle is forced to brake as well. The
velocity profile of the obstacle is showed in Figure 4.2. Namely, the obstacle
reaches a constant speed ui,1 = 50 km/h and performs a first braking with
deceleration a1 = −0.5g until it stops at uf,1 = 0 km/h, then it remains a while at
this final velocity and accelerates again to ui,2. Four other braking manoeuvres
are performed with the same procedure, i.e. from ui,k a generic deceleration ak
is applied until a generic final velocity uf,k is reached, which is kept for a while,
and then left to reach again ui,k+1. The values of the decelerations and the final
velocities are reported in Table 4.1.
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Figure 4.2: Velocity profile of the obstacle in the brake-to-avoid scenario

Braking Initial velocity Deceleration Final velocity
manoeuvre k ui,k [km/h] ak [g] uf,k [km/h]

1 50 0.5 0
2 50 0.7 20
3 50 0.3 20
4 50 0.5 20
5 50 0.7 0

Table 4.1: Characteristics of braking manoeuvres on the driving simulator
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4.2.2.2 Steering scenario

The steering manoeuvre takes place again in a straight two-lane road, with a
fixed obstacle wo = 2.5 m wide which occupies the lane of the ego vehicle,
at a distance Lo = 500 m ahead (Figure 4.3). The driver is asked now to ap-

uo = 0

Lo 

wo 

u(t) = u

wL 
wR 

Figure 4.3: The steer-to-avoid scenario on the driving simulator

proach the obstacle at a constant speed, between 60 and 70 km/h, which can
be easily achieved within the Lo distance, and then to avoid it at the instant he
judges as the last possible, by means of only steering, without braking. How-
ever, the steering manoeuvre is constrained to remain within road boundaries:
the driver is asked to change lane and remain in it, until the simulation is stopped.

4.2.2.3 Test procedure

Given the scenarios described in previous paragraphs, 20 drivers (students and
employees of the University of Trento) have been chosen according to the same
criteria of different age and gender used in the interactIVe project (Table 3.1). In
this case the repartition between the categories has been more rigorous, featuring
10 male and 10 female, 5 younger than 40 and 5 older for each gender, as
reported in Table 4.2. Each driver was required to perform this sequence of tests:

1. 5 steering scenario tests

2. 1 braking scenario test, with th,b0 = 1.0 s

3. 5 steering scenario tests
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40-60 19-39 Total
Male 5 5 10
Female 5 5 10
Total 10 10 20

Table 4.2: Distribution of age and genders among test drivers for the driving simulator

4. 1 braking scenario test, with th,b0 = 1.6 s

In this way, each driver performed in the end 10 braking manoeuvres and 10
steering manoeuvres. The sequence of tests lasted around 25 min for each driver,
during which several variables were logged by suitably developed modules in the
driving simulator. These values have been stored in anonymous form, where each
driver was assigned an ID according to Table 4.3. The results are summarised in

40-60 19-39
Male 1→ 5 6→ 10

Female 11→ 15 16→ 20

Table 4.3: Driver anonymous IDs assignation, based on age and gender

next section.

4.2.3 Results and discussion

4.2.3.1 Braking tests

In this paragraph, some key variables of the braking tests will be showed and
discussed. First, it is useful to look at the time headways at which the drivers
started braking, distinguishing between the scenario where the iterative braking
procedure started from th,b0 = 1.0 s (Figure 4.4) and that where it was th,b0 = 1.6 s

(Figure 4.5). In both scenarios the behavioural difference between men and
women is evident: men tend to follow other vehicles much closer than women
regardless of the age, at time headways 1 ≤ th,M ≤ 1.4 s while women are
positioned at 1 ≤ th,M ≤ 2.6 s. This allows to derive a first important conclusion:
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Figure 4.4: Distribution of time headways at which each driver started the braking ma-
noeuvre, when th,b0 = 1.0 s
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Figure 4.5: Distribution of time headways at which each driver started the braking ma-
noeuvre, when th,b0 = 1.6 s
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time headway is not a good parameter to trigger ADAS warnings and interventions
for obstacles, since situations around th,M = 1.6 s would be perceived as dangerous
by women, while man would be annoyed by warnings in those situations.
Analysing other characteristics of driver behaviour, it is interesting to show the
distribution of driver maximum applied pedal positions (Figure 4.6) and velocities
the pedals were pressed with (Figure 4.7), which are proportional respectively
to vehicle longitudinal accelerations and jerks. Under the hypothesis that
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Figure 4.6: Distribution of maximum values for braking pedal positions

approximately 0.8 − 1 g decelerations can be obtained with the braking pedal
completely pressed (i.e. pb = 1), these values of braking decelerations and jerks
are consistent with others found in literature, e.g. in Brännström et al., 2012
[42].
Looking at the distributions, both for the accelerations and jerks there are not
significant differences between genders and ages, apart from a tendency in
younger women to use low jerks. However, it is quite clear that almost all the
drivers use pedal velocities jp ≤ 2− 2.5 s−1, apart from the exceptions of drivers
2, 10 and 18 which use a wider range of velocities. These cases, however, can
be also seen as exceptional emergency manoeuvres or not reasonable actuations,
probably due to the characteristics of the test, conduced on a simulator instead of
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Figure 4.7: Distribution of maximum values for braking pedal velocities

the a real vehicle. Anyway, this allows to state that longitudinal jerks can be used
as more robust parameters for risk assessment (e.g. in accordance to Viviani, 1995,
[135]) since they are limited within well specified boundaries, and avoidance
manoeuvres requiring higher values can be classified as not humanlike.
The distribution of all the longitudinal jerk values is showed in Figure 4.8. Looking
at the whole dataset it is even more clear that normal drivers barely exceed the
value of jp = 2.5 s−1 even for emergency manoeuvres such as those of the
simulated scenario, meaning that drivers may not be prompt or even capable of
acting with higher rates. This could be used to assess that manoeuvres requiring
higher jerks may be not feasible by a driver. However, this does not mean that
harder braking manoeuvres would not be feasible: if a faster actuation was
available, there may be still the margin for an autonomous intervention system to
perform them before reaching the physical limits of the vehicle.
This idea can be used to build a risk assessment method: given an ADAS which
continuously plans manoeuvres to handle current scenario in a safe way, risk
levels could be assigned basing on the jerks required by these manoeuvres, e.g.
as described in section 5.4, where this principle is proposed for the autonomous
obstacle avoidance ADAS. For warning purposes, assuming that drivers are not
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Figure 4.8: Distribution of all the braking pedal velocities for each driver
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able to apply longitudinal jerks higher than jp,Max = 2.5 s−1, warnings could be
issued if safe manoeuvres require jerks slightly slower, e.g. jp,Warn = 2 s−1, to
give them time to react and still be able of avoid a collision, which is actually the
value used by the Codriver. If the situation worsens to the point that jerks higher
than jp,Max are required, autonomous intervention could be triggered, actuating
harder manoeuvres which a driver would not be able to perform, but still in the
feasibility range for faster actuators, and still within the physical limits of the
vehicle.

4.2.3.2 Steering tests

Analysing then the steering manoeuvres, similar conclusions can be derived. Even
if for the steering the time headways showed lower influence of the gender of
the driver (Figure 4.9). Even in this case, however, the steering wheel angular
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Figure 4.9: Distribution of time headways at which each driver started the steering
manoeuvre

velocity (Figure 4.11), which is proportional to lateral jerk and is thus analogue
to pedal velocity, can be used to set proper thresholds for ADAS triggering. In this
case, it is reasonable to assume values of jδ > 500− 700 deg/s as not feasible by
human drivers, so that an ADAS should issue the warnings at a lower threshold,
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when safe manoeuvres require velocities higher than jδ,Warn > 400 deg/s. These
maximum values are actually a bit higher than the thresholds used in the already
cited work of Brännström [42], which uses a value of jδ,Max > 400 deg/s. On the
other hand the maximum value of the steering wheel angle is lower than 180 deg,
while Brännström [42] considers the maximum available angle, i.e. 720 deg The
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Figure 4.10: Distribution of maximum values for steering wheel angles

distributions of the entire set of steering wheel velocities used by the drivers is
finally showed in Figure 4.12, where it is clear that for the great majority of the
time, steering velocities higher than jδ = 500 deg/s are not required.

4.2.3.3 Further discussion

The proposed thresholds for warnings and interventions consider manoeuvres
requiring only braking or only steering. However, when a braking manoeuvre
for obstacle avoidance requires too high longitudinal jerks, it is not correct to
directly issue a warning, since steering manoeuvres may be still perfectly feasible
by the driver. In other situations the contrary may happen as well, i.e. steering
manoeuvres not feasible while there is still time to start a braking manoeuvre.
Furthermore, there is a third category of manoeuvres which combines both
steering and braking which should be taken into account, even if in this case
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Figure 4.11: Distribution of maximum values for steering wheel angular velocities

longitudinal and lateral dynamics cannot be decoupled, and the complexity of
the models increases.
In general, in a given situation with an obstacle in front of ego vehicle, to avoid
a collision the driver can choose to brake, steer, or combine the two. One or
more of these options may be precluded by the characteristics of the scenario,
depending on relative velocity, relative position, road geometry, traffic conditions
etc.
A detailed analysis of this situation will be given in section 4.4, but it will be
necessary first to illustrate the models needed for calculating limit manoeuvres,
i.e. leaving the humanlike simplified manoeuvres of the Codriver for more
complex considerations, which must take into account the vehicle dynamics.
These manoeuvres may be not reachable by human drivers, both for their limits
in the actuation and for their lack of knowledge of the complex dynamics of the
vehicle, but may be still planned by an optimal control problem and actuated by
superior automatic equipment.
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Figure 4.12: Distribution of all the steering wheel angular velocities for each driver
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4.3 M A N O E U V R E S T O WA R D S V E H I C L E L I M I T S : M O R E A C C U R AT E O C P S

A N D S U I TA B L E M O D E L S

4.3.1 Optimal control formulation for obstacle avoidance

It has been explained that human drivers use optimised controls while driving,
and in particular they try to minimise the longitudinal and lateral jerks, along
with other criteria depending on road, scenario and personal goals [52].
It has been also demonstrated how this planning strategy can be reproduced
using optimal control, as it has been done developing the Codriver. However,
optimal control can be used for more complex problems, taking into account
constraints for variables and controls. In this way, it will be sure that the resulting
manoeuvres, even if very severe, are physically feasible. In Appendix B, the entire
formulation and the solving details are reported, while here the specific features
of the formulation of the optimal control problem for avoidance manoeuvres will
be presented.
In particular, braking manoeuvres and steering manoeuvres will be presented
separately, together with the decoupled vehicle models of longitudinal and lateral
dynamics they require.

4.3.2 OCP formulation for brake-to-avoid manoeuvres

4.3.2.1 Vehicle model

A first set of OCP problems is that for avoidance manoeuvres by braking. In this
case, a simple bicycle model can be used, but which considers also the traction
and braking forces in this case, so that the equations are a bit more complex than
(3.3).

dx(t)

dt
= u(t) (4.1)

m
du(t)

dt
= Fxf,T (p(t)) + Fxr,T (p(t)) + Fxf,B(p(t)) + Fxr,B(p(t))− kv u2(t)

dp(t)

dt
= jp(t)
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Without considering longitudinal tyre sideslips, the expression for the traction and
braking forces can be directly assumed as proportional to traction and braking
torques according to wheel radius:

Fxf,T (p(t)) =
Txf,T (p(t))

rf
(4.2)

Fxr,T (p(t)) =
Txr,T (p(t))

rr

Fxf,B(p(t)) =
Txf,B(p(t))

rf

Fxr,B(p(t)) =
Txr,B(p(t))

rr

The torques applied to the wheels are a function of pedal position p(t) ∈ [−1, 1].
Engine and brake maps can be used for this purpose, or simpler linear models
such as the following example:

Txf,T (p(t)) = kTf TT,Maxp(t) (4.3)

Txr,T (p(t)) = kTr TT,Maxp(t)

Txf,B(p(t)) = kBf TB,Maxp(t)

Txr,B(p(t)) = kBr TB,Maxp(t)

While the torque repartition coefficients for a common front traction vehicle can
be:

kTf = 1 if p(t) > 0; 0 otherwise (4.4)

kTr = 0

kBf = 0.6 if p(t) < 0; 0 otherwise

kBr = 0.4 if p(t) < 0; 0 otherwise

To help the convergence of the system, these piecewise values should be regu-
larised. In this way, this simple model can be used to describe the longitudinal
dynamics of the vehicle, and can constitute the differential constraints of equation
(B.1). In this case, the system is expressed in cartesian coordinates instead of the
curvilinear coordinates of the Codriver, and pedal velocity jp(t) is once again the
control input.
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4.3.2.2 OCP formulation

For braking manoeuvres, the objective of the optimisation of (B.1) can be a unique
weighted Mayer term which requires minimum time T :

J = wT T (ζT ) (4.5)

Manoeuvre time T is not a-priori known, since it depends on the controls which
will be applied. To leave it free, an additional differential equation is written:

Ṫ = 0 (4.6)

simply meaning that T is a constant, and an auxiliary variable ζ(t) ∈ [0, 1] is
introduced instead of t. ζ is a fraction of final time T , so that:

dζ(t)

dt
=

1

T (ζ)
(4.7)

Differently from the Codriver formulation, in this case, constraints are set on
state variables or other expressions. In particular, it can be required that tyre
longitudinal forces do not exceed adherence limits, taking into account the friction
coefficients between the tyre and the terrain µx, i.e.:

Fxf,T (t) + Fxf,B(t) ≤ µxfNf (t) (4.8)

Fxr,T (t) + Fxr,B(t) ≤ µxrNr(t)

where the vertical loads N(t) can be defined to take into account also longitudinal
load transfers.
If humanlike manoeuvres need to be simulated, constraints should be set also
on the control jp(t), which should be bounded according to the thresholds e.g.
found in Section 4.2.
Finally, to require braking manoeuvres it is necessary to set boundary conditions.
Initial conditions must be fixed, since they describe current situation, which could
be:

x(ζ = 0) = 0 (4.9)

u(ζ = 0) = u0

p(ζ = 0) = free

T (ζ = 0) = free
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while final conditions describe the desired final state.

x(ζ = 1) = xo − rV − rO (4.10)

u(ζ = 1) = 0

p(ζ = 1) = 0

T (ζ = 1) = free

so that the vehicle will stop before the obstacle position xo taking into account
also the dimensions of the two agents.
Examples of manoeuvres resulting from this kind of OCP will be described in
Section 4.4.

4.3.3 OCP formulation for steer-to-avoid manoeuvres

4.3.3.1 Vehicle model

For steering manoeuvres, the OCP formulation is slightly different, since other
aspects rise in this case. In this case, the manoeuvre is similar to a single lane
change (Figure 4.13). To handle this scenario, a vehicle model with constant

y

xO

x
u0

vO = 0

LH

ỹ

 ̃

yO

 O

Figure 4.13: A general steer-to-avoid manoeuvre

forward velocity u0 has been derived to be used in the optimal control formulation.
The model (4.11) is once again a single track model, which this time includes
tyre lateral force saturation, tyre linear dynamics (4.11c),(4.11d) and also first
order approximation of the actuator (4.11e),(4.11f) dynamics (Figure 4.14).
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Figure 4.14: Bicycle model adopted in the Optimal Control formulation. Main geometrical
parameters described.

mu0

(
dβ(t)

dt
+ γ(t)

)
= Fyf (t) + Fyr(t) (4.11a)

Iz
dγ(t)

dt
= Lf Fyf (t)− Lr Fyr(t) (4.11b)

ly
u0

dFyf (t)

dt
= Fyf0(t)− Fyf (t) (4.11c)

ly
u0

dFyr(t)

dt
= Fyr0(t)− Fyr(t) (4.11d)

pr
dδr(t)

dt
= krδr(t)− δrc(t) (4.11e)

pf
dδf (t)

dt
= kfδf (t)− δfc(t) (4.11f)

Absolute vehicle position and orientation are then described as function of vehicle
velocities projected in vehicle frame:

dx(t)

dt
= u0 cos(ψ(t))− v(t) sin(ψ(t)) (4.12)

dy(t)

dt
= u0 sin(ψ(t)) + v(t) cos(ψ(t))

dψ(t)

dt
= γ(t)
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The lateral tyre forces as modelled with the Pacejka magic formula (Pacejka, 2002
[117]), thus already incorporating the saturation of the force, so that a constraint
such as equation (4.8) will not be required:

Fyf0 = Df sin(Cfatan(Bfαf − Ef (Bfαfatan(Bfαf )))) (4.13)

Fyr0 = Dr sin(Cratan(Brαf − Er(Brαratan(Brαr))))

The lateral tyre slip angles are used in their linear form since it is assumed that
the optimal control will not generate manoeuvres over the force peak, being it a
non-optimal condition:

αf (t) = β(t) +
Lfγ(t)

u0

− δf (t) (4.14)

αr(t) = β(t)− Lrγ(t)

u0

− δr(t)

The steering angle δr is zero for a 2-wheel-steering (2WS) vehicle model. Since the
model features constant forward velocity and has only one track, load transfers
are not considered in this case, so that vertical loads correspond to the steady
static conditions:

Nf = mg
Lr

Lr + Lf
(4.15)

Nr = mg
Lf

Lr + Lf

4.3.3.2 OCP formulation

The general target function in this case can be described as:

J =wTT (ζf ) (4.16a)

+ wψ

(
ψ(ζf )− ψ̃

∆ψ

)2

+ wy

(
y(ζf )− ỹ

∆y

)2

(4.16b)

+

∫ 1

0

wββ
2(ζ)dζ (4.16c)

The Mayer terms 4.16a and 4.16b are respectively used to require the minimisa-
tion of manoeuvre time T (ζf ), free as in previous case, using the same auxiliary
variable and of the final conditions on vehicle heading ψ and lateral position y (as
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shown in Figure 4.13). ỹ and ψ̃ are the desired final state values to be reached as
close as possible according to the values of ∆ψ and ∆y, which are the tolerances
(in least square sense) for each final conditions. This is to take into account that
final conditions may not be satisfied exactly. However, it is possible to deactivate
such conditions by setting to zero their weights, wψ and wy and force the exact
final conditions. Boundary conditions can be set as:

x(ζ = 0) = 0 (4.17)

y(ζ = 0) = 0

ψ(ζ = 0) = 0

β(ζ = 0) = 0

γ(ζ = 0) = 0

δf (ζ = 0) = 0

δr(ζ = 0) = 0

T (ζ = 0) = free

x(ζ = 1) = xo (4.18)

y(ζ = 1) = ỹ

ψ(ζ = 1) = ψ̃

β(ζ = 1) = 0

γ(ζ = 1) = 0

δf (ζ = 1) = 0

δr(ζ = 1) = 0

T (ζ = 0) = free

The objective function considers this time also a Lagrange term 4.16c minimises
the side slip angle β which is used for improving the comfort of the manoeuvre.
The objective can be once again subjected to inequality constraints. In particular,
the novel aspect is equation (4.19), which requires that the distance d(t) between
the centre of the vehicle and the obstacle is greater than the sum of their main
dimensions, as showed in Figure 4.15.

d(t) ≥ (rV + rO) (4.19)
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where:
d(t) = 2

√
(x(t)− xo(t))2 + (y(t)− yo(t))2 (4.20)

In other words, it is assumed that both vehicle and obstacle are inscribed in circles

rV

rO

d 

Figure 4.15: Meaning of distance d(t) between vehicle and obstacle modelled as circles.

respectively of radius rV and rO (see Figure 4.15). The assumption is in favour
of safety and easier to implement. An alternative approach which considers the
rectangular shape of the vehicles was used for instance in [33]. If obstacle position
(xo(t), yo(t)) is not constant, i.e. if the obstacle is moving, a motion description
must be defined, which could be derived from assumptions and estimations on
its future evolution, for instance as it was done in the interactIVe project for the
ClearObject manoeuvres (equation (3.19)).
The inequality constraints:

|δfc(t)| ≤ δfcmax , |δrc(t)| ≤ δrcmax (4.21)

limit the maximum front and rear steering angles. Otherwise, for the 2WS vehicle
with a driver in the loop, they are constraints on state variables and the control is
the derivative of the steering angle vδfc(t), described in an additional differential
equation:

δ̇fc(t) = vδfc(t)) (4.22)

Finally, the inequality constraint (4.23):

|vδfc(t)| ≤ vδfmax (4.23)

limits the maximum front steering rate. It is used only to simulate humanlike ma-
noeuvres and it is implemented with a special penalty function which is quadratic
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in the centre of admissible controls and it is constrained at the borders. This
special penalty simulates the minimisation of steering rates when the scenarios
do not require aggressive manoeuvres but it allows the maximum steering rate
for extreme manoeuvres.

4.4 A N A LY S I S O F O C P M A N O E U V R E S W I T H D I FF E R E N T M O D E L S A N D F O R -
M U L AT I O N S

4.4.1 Codriver and more complex OCP manoeuvres for warning

Once the criteria to tune the humanlike manoeuvres of the Codriver have been
stated, and the models and OCPs increase the representativeness of the manoeu-
vres have been presented, it is possible to compare the two approaches.
In particular, the objective is to determine if the simplifications of the Codriver
formulation affect the quality of the results, and, in this case, how they limit its
applications. The parameter for the performance analysis is the initial jerk they
require, being the parameter used for the risk assessment and the release of the
warnings by the Codriver.
This difference between the two approaches has been tested by simulation, gen-
erating manoeuvres to handle a particular obstacle avoidance scenario, i.e. ego
vehicle approaching a fixed obstacle ahead (Figure 4.16), using optimal brake-to-
avoid and steer-to-avoid manoeuvres, generated with the two approaches. For
the braking scenario, the solved OCP are the FollowObject manoeuvres (equation
(3.16)) for the Codriver, and the more detailed OCP described in section 4.3.2.
For the steering scenario, the Codriver manoeuvres have been instead of type
ClearObject (equation (3.22)), while the more detailed OCP used the formulation
of section 4.3.3.
Several scenarios have been tested, in particular all the combinations of relative
velocity (i.e. ego vehicle velocity, since the obstacle is fixed) and relative position
(i.e. obstacle position xo, since initial vehicle position is always xi = 0) within a
certain range.
In particular, for each velocity the optimal manoeuvres are calculated starting
from a high distance obstacle, and iteratively reducing obstacle distance, thus
increasing scenario severity. What happens is that at a given point the situation
will be so severe to require jerks beyond the usual ranges found during the tests
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Figure 4.16: Brake-to-avoid and steer-to-avoid manoeuvres at different combinations of
relative speed and distance

at the driving simulator (i.e. figures 4.8 and 4.12), so that a warning would
be issued. Limiting the longitudinal and lateral jerks respectively to the values
of 2 m/s3 and 500 rad/s, the results are showed in figures 4.17 and 4.18. In
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Figure 4.17: Initial jerk levels for brake-to-avoid manoeuvres at different relative velocity
and distance, calculated by the Codriver and by more detailed OCPs

both figures, the dark red areas are those where jerks beyond the cited limits
are required, i.e. the emergency manoeuvres. The difference is noticeable both
for braking and steering manoeuvres, showing that the detailed OCPs require
higher jerks than the Codriver. This is because the former formulation takes into

98



velocity [km/h]

di
st

an
ce

 [m
]

Codriver

20 40 60 80 100

20

40

60

80

100

velocity [km/h]
di

st
an

ce
 [m

]

Detailed OCP

20 40 60 80 100

20

40

60

80

100

Figure 4.18: Initial jerk levels for steer-to-avoid manoeuvres at different relative velocity
and distance, calculated by the Codriver and by more detailed OCPs

account the physical limits of the vehicle, i.e. delays in the actuation (e.g. the first
order delays considered in the generation of lateral forces and steering angles),
adherence limits etc., while the Codriver simplifies the situation, assuming that
the required dynamics are instantaneous and without saturations. In this way,
the complex OCP require faster driver actions to compensate the delays and the
saturations of the physical limits, thus requiring higher jerks.
However, while for the braking manoeuvres the behaviour is almost similar, big
differences can be noticed for lateral dynamics, where the jerks required by the
Codriver are much lower, especially at high speed. To understand what happens,
the transfer functions between steering angle and vehicle trajectory curvature
of the two vehicle models have been compared at different longitudinal veloc-
ities. Namely, the Codriver equations for the curvature (equations (3.1)) were
compared to the more detailed model (4.11), where however linear tyre model
with no saturation was considered. These latter equations have been also first
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put into curvilinear coordinates to obtain the curvature equation and make the
comparison possible:

dss(t)

dt
= u0 (4.24)

dsn(t)

dt
= v(t) + α(t)u0

dα(t)

dt
= u0∆(t)

dv(t)

dt
= −u2

0∆(t)− (CyfLf − CyrLr)∆(t)

m
− (Cyf + Cyr)v(t)

m
+
Cfδ(t)

m
d∆(t)

dt
=
−CyfL2

f − CyrL2
r)∆(t) + CyfLfδ(t)

u0Iz
+

(−CyfLf + CyrLr)v(t)

u0Iz

The result is showed in Figure 4.19. Looking at their shape the reason of the

Figure 4.19: Transfer functions between trajectory curvature and steering wheel angle for
the Codriver model (dashed) and the one considering also lateral velocity
(solid)

different behaviour is clear: the Codriver considers higher gains between the
output curvature and the input steering wheel angle even if the model parameters
have been the same. This means that the model of the Codriver requires lower
steering angles to achieve a given curvature, which then results in lower jerks.
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Furthermore, when the steering angle frequency increases, the curvature of the
more complex model low-pass filters the value of the steering wheel. On the
other hand, integrating the third element of equations (3.1), the transfer function
of the Codriver is a constant:

∆(s)

δ(s)
=

1

k1 + k2u0

(4.25)

This difference allows to derive a first conclusion: the dynamics equations of
the Codriver neglect important dynamics. Its assumptions proved to be suitable
to generate warnings, but now it is clear that they cannot be used to control
the vehicle. As a matter of fact, more than representing vehicle behaviour, the
manoeuvres of the Codriver are designed to represent the internal model of vehicle
dynamics the driver has in mind, which is not particularly accurate for emergency
manoeuvres, and especially concerning the lateral dynamics.
These plans can be thus used for warning purposes, but not to directly control
the vehicle in emergency manoeuvres. These will be investigated in next section,
using only the more refined OCPs.

4.4.2 Strategies for obstacle avoidance

4.4.2.1 Steering versus braking

The differences between the simplified manoeuvres generated by the Codriver
and the more complete OCPs have been showed in previous section. In particular,
it was demonstrated that while for warning purposes the Codriver accomplishes
its tasks, its results are not completely reliable if one wants to use them for vehicle
control.
This can be achieved instead using the more complete models, which can be
used to evaluate plans for emergency manoeuvres for obstacle avoidance. These
have been planned for the same scenarios of the previous section, i.e. different
combinations of relative velocity and position. However, instead of stopping
increasing the severity of the scenario when the jerks reached a given thresholds
(i.e. when the manoeuvres were not feasible anymore by a human driver), this
was done only when the manoeuvres started violating the constraints (i.e. when
the manoeuvres were not physically feasible anymore). It is important to note that
the difference between the two represents the margin for autonomous intervention
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when the driver can not intervene successfully anymore (see also Figure 4.23). The
duration of the last feasible manoeuvre is thus reported as a limit TTC together with
the corresponding velocity.
The performance analysis of the braking and steering manoeuvres is conduced
comparing their Time To Collision (TTC), as described also in Brännström et
al., 2010,[42]. TTC is here defined as the duration of the limit manoeuvre.
A limit manoeuvre is that which handles the limit scenario, i.e. the already
mentioned combination of relative velocity and position which allows the last
feasible manoeuvre to avoid the collision without violating the constraints. The
results are showed in Figure 4.20 for the braking manoeuvres and in Figure 4.21
for the steering manoeuvres (using a front steering vehicle). In the upper charts,
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Figure 4.20: Times to collision and obstacle limit position as functions of relative speed
for braking manoeuvres

their TTCs are showed as functions of relative velocity (i.e. the duration of the
manoeuvre at that velocity which could avoid the nearest obstacle possible). The
corresponding distances are reported in the lower chart. The lines describe the
limit scenarios: those over the lines can be safely handled, while below the lines
the scenario is too severe and obstacle avoidance is not possible anymore. In
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Figure 4.21: Times to collision and obstacle limit position as functions of relative speed
for steering manoeuvres

braking manoeuvres, the TTCs increase almost linearly with vehicle velocities,
meaning that higher and higher distances from the obstacle are needed for start
braking and successfully avoid it. On the contrary, steering manoeuvre require
almost constant TTCs after some high values at low velocities. This means that at
high speed, the time required to avoid an obstacle by steering is almost the same.
Merging them into the interesting Figure 4.22, important conclusions can be
derived on the two avoidance approaches. The meaning of the figure, which
well matches the results of Brännström et al. [42] (the same numerical values
cannot be obtained, since they depend on vehicle performances, obstacle side and
position, etc), is in fact simple. At low velocities, approximately below 30 km/h,
the braking curve is below the steering curve, while at higher velocities the
contrary happens. This means that braking manoeuvres at low velocities allow
the avoidance of closer and more dangerous obstacles or, in other words, that at
low velocity obstacles at a given distance can be avoided by braking at higher (but
still low) relative velocity than by steering. On the contrary, given a high relative
velocity, steering manoeuvres allow avoiding closer obstacles, or, again, at high

103



0 10 20 30 40 50 60 70 80
0

2

4

6

Ti
m

e 
to

 C
ol

lis
io

n 
[s

]

0 10 20 30 40 50 60 70 80
0

20

40

60

80

O
bs

ta
cle

 D
ist

an
ce

 [m
]

Relative Velocity [km/h]

Possible to
avoid a collision by

Steering and Braking
Possible by

Steering 
Possible by

Braking 
Collision not avoidable: brake to mitigate

Figure 4.22: Brake TTCs and limit obstacle distances (purple) compared with those of
the Steering manoeuvres (red)

velocity obstacles at a given distance can be avoided by steering at an even higher
relative velocity than by braking.
These conclusions are very important for an ADAS for obstacle avoidance, which,
depending on the scenario, will a priori know if it is the case to enable a braking
or a steering manoeuvre, remembering that the threshold of 30 km/h is only valid
for the sample vehicle and obstacle modelled here. However, while autonomous
braking manoeuvres have been already widely analysed worldwide, and ADAS
with these capabilities are already available on market, the analysis now will
focus autonomous emergency steering manoeuvre.

4.4.2.2 Two-wheel steering versus four-wheel steering

Focusing now the analysis on autonomous steering manoeuvres, the objective is
how to design vehicles with more and more effective emergency steering charac-
teristics.
In this paragraph it will be showed that an optimally driven four-wheel-steering
(4WS) vehicle achieves superior performance with respect to a 2WS vehicle in
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emergency obstacle avoidance manoeuvres. This result is in contrast with the
achievement of Lee, 1995 [95], where it is shown that there is not a sensible
improvement in lane-change manoeuvres with 4WS compared to those obtained
by proficient drivers with 2WS vehicles. The point is that here the focus is on
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Figure 4.23: Times to collision and obstacle limit position as functions of relative speed,
with humanlike 2WS (green), autonomous 2WS (red), comfortable 4WS
(orange) and minimum time 4WS (blue)

autonomous avoid by steer manoeuvres instead of evaluating the two steering
systems (i.e. 2WS versus 4WS) using a human-like driver model. In fact, what Lee
does is to compare humanlike manoeuvres, i.e. some kind of Codriver manoeu-
vres even if more refined, on 2WS and 4WS vehicles, while here the detailed OCP
will exclude humanlike planning criteria, thus exploiting vehicle performances
to its limits thanks to automatic actuation, instead of limiting them considering
driver limits.
The analysis regards four OCP problems, which compare front steering humanlike
manoeuvres (but calculated with the detailed OCP and not that of the Codriver),
front steering autonomous manoeuvres (those already showed in Figure 4.21),
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and front and rear steering autonomous manoeuvres (comfortable or requiring
maximum performance). Humanlike manoeuvres model a human-driven vehicle,
considering his/her limits in the steering wheel velocity and minimising lateral
jerk. On the other hand, the autonomous manoeuvres push the vehicle to its
limits in a minimum time manoeuvre (wT = 1 in equation (4.16)). The resulting
manoeuvre with a 4WS vehicle could be uncomfortable due to the high lateral ve-
locity and almost zero yaw rate. Therefore, comfortable autonomous manoeuvres
that minimise side slip angleshave been evaluated as well (wβ = 1).
The difference between their performances is clear in Fig. 4.23. In an analogue
way to Figure 4.22: combined front and rear steering manoeuvres at a given speed
allow the avoidance of closer and more dangerous obstacles or, in other words,
obstacles at a given distance can be avoided with 4WS even if relative velocity
is higher. Moreover, autonomous 2WS manoeuvres allow handling more severe
scenarios than when a driver, with slower actuation capabilities, is controlling the
vehicle and that minimum sideslip 4WS manoeuvres are less effective than pure
minimum time manoeuvres.

The reason is clearer in Fig. 4.24 which shows similar trajectories at the highest
velocity at which collisions can be avoided in all cases: when minimum sideslip
is required, the trajectory and the yaw angle are very smooth, while with only
minimum time the manoeuvre exploits rear steering to obtain almost pure trans-
lation, with yaw close to zero. This allows the saturation of lateral forces earlier
and for longer period which means avoiding the at higher velocities (Figures 4.27
and 4.28). This behaviour is possible by means of steering front and rear wheels
in phase, i.e. with the same sign, while to obtain minimum lateral velocity the
wheels are initially steered with opposite sign. This detailed analysis allows also
to notice the much slower and smoother steering angle profiles obtainable by
human drivers, which result in lower performances (Figure 4.25).
The difference between the 2WS humanlike manoeuvre and the most effective
4WS manoeuvre is the margin for an ADAS for autonomous avoidance to in-
tervene, exploiting also rear wheel steering. Quantitatively, it is shown that at
60 km/h there are still 10 m to intervene for the ADAS when the driver cannot act
effectively anymore, which result in approximately more than 0.6 s more to handle a
dangerous situation, values that are the double of those achievable by autonomous
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Figure 4.24: Limit trajectories for forward velocity u0 = 60 km/h, with only front steering
and minimum jerk, only front steering and combined front and rear steering

2WS. For this reason, in next chapter an ADAS for autonomous obstacle avoidance
by means of 4WS will be proposed.
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Figure 4.25: Humanlike manoeuvre characteristics at u0 = 60 km/h with only front
steering, solid for front axle and dashed for rear axle
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Figure 4.26: Limit manoeuvre characteristics at u0 = 60 km/h with only front steering,
solid for front axle and dashed for rear axle
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Figure 4.27: Comfortable manoeuvre characteristics at u0 = 60 km/h with front and rear
steering, solid for front axle and dashed for rear axle

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−20

0

20

st
ee

rin
g 

[°
]

 

 

Front
Rear

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

0

1

en
ga

ge
m

en
ts

 [−
]

 

 

Front
Rear

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

0

1

ya
w

 r
at

e 
[r

ad
/s

]

time [s]
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5.6.2 Results 146

5.1 I N T R O D U C T I O N

This chapter regards the second part of this research work, namely the design
of an ADAS for autonomous obstacle avoidance in emergency manoeuvres. As
it was explained in previous section, the focus of the ADAS is on steer-to-avoid
manoeuvres, exploiting an autonomous front and rear steering system to get the
best best performance possible out of the vehicle, as described in the previous
Chapter.
Neglecting the perception layer, this kind of ADAS mainly requires a threat assess-
ment method, and the ability of planning and executing safe manoeuvres when
the risk level is beyond a certain threshold. The research activities have regarded
both these aspects.
The risk assessment method is based on manoeuvre initial lateral jerks: if a safe
manoeuvre requires an initial jerk beyond a certain threshold, it means that a
high correction is required and the safety function must be activated. A second
stage of the activity regarded the calculation of optimal manoeuvres for collision
avoidance, and the development of control algorithms to make the vehicle track
them, if enabled by the threat assessment stage. This part has been successfully
implemented and tested during a research period at the Hori-Fujimoto Laboratory
[25] of the University of Tokyo, Japan. In particular, the electric experimental
vehicle FPEV2-Kanon (Kanon hereon) has been used, developed within the same
laboratory (Fujimoto et al. [73],[76] and Figure 5.1), which successfully tracked
single-lane change manoeuvres which allowed to avoid a dummy obstacle.
In this activity, the two components of threat assessment and motion planning/ex-

ecution have not been merged into an unique application, due to hardware and
time limitations during the activity at the Hori-Fujimoto Lab. However, the pos-
sible objectives and architecture of such a complete ADAS will be described in
section 5.2, followed by some specific characteristics of optimal control problem
formulation to generate avoidance manoeuvres (section 5.3.3), which is actually
similar to that described in Section 4.3.3. The risk assessment strategy is then
described in Section 5.4 (and based on the considerations made in 4.2.3.2 ),
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Figure 5.1: The experimental vehicle FPEV2-Kanon

while the control algorithms design and implementation are reported in section
5.5). Finally, results will be presented and discussed in section 5.6.

5.2 OV E RV I E W

5.2.1 Objectives

The objective of this activity is the development of an ADAS for autonomous
obstacle avoidance, i.e. an ADAS for active safety, which autonomously takes
over the authority from the driver when it judges it is not possible anymore for
him to make a correction. In particular, the system focuses obstacle avoidance by
autonomous 4WS steering at constant speed, as the result of tracking an optimal
manoeuvre.
As a first activity, it has been investigated when the intervention of such system
should be triggered, implementing a threat assessment algorithm. This work
proposes a method based on manoeuvre jerks: if a corrective manoeuvre requires
an initial jerk beyond a certain threshold, i.e. if the correction required is too high,
the system assumes that the driver will not be able to do it anymore, so that the
situation is not safe and the safety function must be activated. It has been already
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demonstrated in section 4.2 that initial manoeuvre jerks can be used as efficient
parameters to assess the risk level and enable the autonomous intervention with
proper timing.
The second topic described here is the planning and control of the avoidance
manoeuvre. The implemented manoeuvre is an optimal single lane-change to
avoid obstacles in front of the ego vehicle, obtained solving an optimal control
problem. The resulting manoeuvre is then used as a reference for a proper control
algorithm, which has been developed to make the vehicle track the desired
trajectory. In particular, it will be showed that tracking the yaw rate and the
sideslip profiles output by optimal control is sufficient to obtain the vehicle follow
the desired path, without using GPS and position control. Furthermore, it will
be showed that good tracking of the desired manoeuvre can be obtained using
quite cheap and standard sensors, substituting expensive sensors with good state
observers as in the case of vehicle lateral velocity.
The activity is limited to the separate development of these two components,
which have not been merged into an unique ADAS. For the completion of it, also
a perception platform for obstacle detection would have been necessary.
As it was anticipated, this intervention ADAS could be also merged to the warning
functions of the interactIVe project described in Chapter 3, to build a complete
ADAS for active safety which takes care of all the phases before a possible accident
(Figure 1.3), even though this integration has not been even tried during this
research.
As a final remark, even though the objective of this activity is the autonomous
execution of steer-to-avoid manoeuvres because they allow the avoidance of
closer obstacles than brake-to-avoid when speed is high, during the activity only
low-speed steer-to-avoid manoeuvres have been autonomously executed. This is
because of the internal rules of the campus where the test field lays, which did
not allow the Kanon to travel faster than 30 km/h. The objective is thus restricted
to the validation of the planning-execution method. Different velocities have been
tested up to 20 km/h without requiring tuning modifications, so that here it is
assumed that nothing would change beyond 30 km/h.
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5.2.2 The FPEV2-Kanon vehicle

For the threat assessment algorithm, the data coming from the driving simulator
test campaign can be used to set the thresholds. The process for data logging
and the used tools have already been described in Section 4.2. On the other
hand, for the testing of manoeuvre tracking, the electric vehicle FPEV2-Kanon
has been used. The vehicle has been designed and developed by the Fujimoto Lab
of the University of Yokohama and then further improved at the Hori-Fujimoto
Laboratory of the University of Tokyo. The vehicle has one seat to host one driver.
Its main characteristics are reported in Table 5.1, while others, identified during
the development of the application, are reported in next sections. The vehicle is

Parameter Value
Mass [kg] 870
Yaw Inertia [kgm2] 631
Wheelbase [m] 1.7
Front axle distance from CoG [m] 0.999
Rear axle distance from CoG [m] 0.701
Track (front and rear) [m] 1.3
Wheel radius (front and rear) [m] 0.302
Front wheel rolling inertia [kgm2] 1.26
Rear wheel rolling inertia [kgm2] 1.24

Table 5.1: Vehicle parameters

electric, equipped with 4 in-wheel motors (IWM) produced by Toyo-Denki Seizo
K.K. Ltd., connected to the tyres by direct drive, which allow independent control
of the torque of each wheel. Their characteristics are resumed in Table 5.2 ([76]).
Furthermore, another key feature of the vehicle is the capability of both front and
rear steering. Front steering can be actuated both by the driver using the steering
wheel, and by electric actuators controlled by an Electronic Power Steering (EPS)
device. Rear steering can be only controlled by its dedicated EPS. Their main
features are reported in Table 5.3. Finally, the vehicle is equipped with several
sensors to reconstruct its state, whose positions are reported in Figure 5.2. First
of all, a GPS and an IMU are positioned on the centre of gravity of the vehicle, to
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Characteristic Front Rear
Manufacturer Toyo Denki
Type Direct Drive System
Rated torque [Nm] 110 137
Maximum torque [Nm] 500 340
Rated power [kW ] 6.0 4.3
Maximum power [kW ] 20.0 10.7
Maximum speed [rpm] 1113 1500
Weight [kg] 32 26
Cooling system Air cooling

Table 5.2: Electric motor characterisitics

Parameter Value
Front steering angle range[rad] ±0.4

Rear steering angle range[rad] ±0.08

Table 5.3: Steering parameters
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Figure 5.2: Sensors equipping Kanon vehicle for state reconstruction

measure its position, accelerations and rotational velocities. To reconstruct also
vehicle velocity both in longitudinal and lateral directions, a non-contact optical
sensor is used, i.e. “Correvit” manufactured by Corrsys-Datron. This sensor is
positioned at the centre of front axle and not in the CoG, so that measured lateral
velocity and sideslip angle must be corrected of the term due to vehicle yawrate:

v(t) = vM(t)− Lfγ(t) (5.1)

β(t) = βM(t)− Lf
γ(t)

u(t)

Finally, on the wheels common odometers are installed to measure their rotational
velocity, and it is also possible to easily determine the torque applied by the mo-
tors measuring their current. In addition, novel lateral force sensors are installed
in each wheel, and allow the direct estimation of tyre forces without estimating
tyre slips (Nam et al. 2011 and 2012 [111],[112],[113]). Such sensors, named
Multi-Sensing Hubs (MSHub) have been developed by NSK Ltd [116].
The vehicle is then equipped with Lithium batteries as power storage devices,
which supply all the electronic equipment through suitable inverters. Finally, the
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complete vehicle is controlled by a dSpace Autobox DS1103, with a power PC
750GX controller board running at 933 MHz, with a 16-channel analog-to-digital
converter and an 8-channel digital-to-analog converter, which is also used for
data logging.

5.2.3 System Architecture

A complete ADAS for autonomous obstacle avoidance could be designed with the
architecture reported in Figure 5.3. As a first attempt, it could be built with the

ActionPerception Decision

Perception
Platform Lookup

Avoidance
Manoeuvre

Risk
Assessment

Database of
Optimal Manoeuvres

Nearest
Scenario

Control
Loop

Vehicle

Road

Obstacle

Figure 5.3: Possible architecture for an ADAS for autonomous obstacle avoidance

usual three-layered architecture, with Perception, Decision and Action modules.
A perception platform, not developed during this activity, should be in charge of
reconstructing current scenario, i.e. sensing vehicle state, road characteristics
and obstacle states.
The decision module should then assess the risk level, for which it is proposed to
use initial jerks as manoeuvre parameters, and steer-to-avoid manoeuvre planning,
proposed here by means of optimal control. Since it was demonstrated that for the
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planning of autonomous avoidance manoeuvres detailed models and OCP should
be used, this task can be very demanding in terms of computational power, so
that the system could be provided with a database of pre-evaluated manoeuvres,
so that it is only necessary to lookup among them instead of calculating them in
real-time, in a manner inspired by Urmson et al., 2007 [134]. The manoeuvres
should cover all the possible scenarios addressed by the system, and could be
used both for threat assessment and as references for motion control, as it will
be explained later. This means that the manoeuvres should take into account
different initial states of the vehicle, i.e. velocities and yaw rates, and different
positions of the obstacles, as showed in Figure 5.4. Evasive manoeuvres would
be the result of optimal control problems, and could consider avoidance both on
the left and the right side. The system should lookup in the database, and choose

V1

sn1

sn2

sn3

sn4

V2

ss1ss2

Figure 5.4: Example of possible scenarios covered by the manoeuvre database: different
ego vehicle initial velocities, different obstacle positions with respect to ego
vehicle
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the manoeuvre for collision avoidance which handles the scenario which best
matches current scenario: current vehicle state, obstacle position and possibly
motion, availability of free space on the left and on the right, etc. In other words,
the system should look for the manoeuvre which allows safe collision avoidance
in current scenario, as if it was calculated in real-time for the same situation. The
database scenarios would be probably discrete, so that it could happen that the
chosen manoeuvre is designed for a slightly different one, chosen in favour of
safety. Another alternative would be to try interpolating between the discrete
values have been evaluated, thus constituting a multi-dimensional plane where
also the manoeuvres in between match the current scenario perfectly.
Once the closest scenario is chosen, one manoeuvre will be related to it: this could
be used for threat assessment, since it represents the optimal way for handling
current scenario. The manoeuvre is known, and thus so are its initial jerks. If they
are too high, beyond given thresholds and thus requiring too sudden corrections,
this means that the driver may not be able to perform the manoeuvres, so that
autonomous intervention can be enabled. It was already showed in paragraph
4.4.2.2 that beyond the limits of human actuation there is still a considerable
margin for autonomous intervention.
If this is the case, the Action module is enabled, and it is in charge to generate
proper control inputs which override those of the driver to achieve the given goal.
In this work, this was successfully achieved designing a control algorithm tracking
yaw rate and lateral velocity profiles, using front and rear steering as inputs to
the vehicle and keeping constant velocity.

5.3 M A N O E U V R E G E N E R AT I O N W I T H O C P

5.3.1 General strategies for manoeuvre planning

Vehicle trajectory planning and execution is a very important research topic
worldwide, which deals with increasing automation of transport systems and
autonomous driving. A survey on motion planning algorithms is reported in this
section, followed by the approach chosen for this activity, while state-of-the art
trajectory execution and the algorithm developed in this work will be reported in
section 5.5.
Real-time trajectory planning is a relatively recent research topic, due to the
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difficulties in environment perception and to the demanding calculation resources
needed for this purpose (Stentz and Hebert, 1995 [128], [91]), and only in the
last years it has been possible to achieve real-time motion planning in complex
scenarios. The accomplishment of this task has been heavily pushed by the
2007 DARPA Urban Challenge [11], where a large variety of algorithms has
been developed for autonomous navigation in a nearly urban environment. The
algorithm used in the winning vehicle Boss, described in Ferguson et al., 2009
[69], used a database of pre-evaluated parametric manoeuvres as guess solutions
for an optimisation problem, which adapted them to desired goals and contingent
constraints such as final desired relative position and orientation. The algorithm
distinguishes between planning manoeuvres which follow road geometry, and
others in a not organised environment, such as intersections, parking lots, etc.,
which instead are built using the lattice idea, again in [69].
The same feature was also used in Junior, the vehicle which arrived second
in the race (Montemerlo et al., 2009 [108]). The high level plans were made
using dynamic programming (Howard, 1960[86]), while low level trajectory was
selected among a set including smoothed road centreline and similar trajectories
with different discrete final lateral displacements. However, in non organised
environments such as intersections, a version of A* algorithm (Hart et al. 1960
[78]) was used to generate an overall path, which was later smoothed using
Conjugate Gradient. A* was also used in the third vehicle, Odin [120], which
also has in common with the others the separation of trajectory planning and
velocity planning. A different approach is that used in Talos vehicle [96], which
uses Rapidly exploring Random Tree (La Valle and Kuffner, 2001 [94]), i.e. a
fast generation of random points followed by forward integration to check the
feasibility of the path.
All these algorithms feature the separation of longitudinal and lateral dynamics,
which is a widely used approach also outside the environment of the DARPA
challenges. Althoff et al. [31] propose the generation of several polynomials
both for trajectory description and vehicle velocity. Also in this case, a set of
manoeuvres is first generated, and their feasibility is assessed only afterwards,
checking if they cause collisions etc. (Frazzoli et al. 2002 [72])
In other words, to the author’s knowledge it seems that there is not an approach
available to handle the entire problem into an unique formulation, which takes
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into account combined lateral and longitudinal dynamics, initial and final desired
state, constraints such as obstacles and road boundaries, and only outputs one
result manoeuvre as the unique optimal solution to handle the situation according
to given goals. In this way, the approach of manoeuvre generation using OCP
as described below appears to be an innovation in common practice for vehicle
motion planning, with the advantage of obtaining a globally optimal manoeuvre
as a result, and not the sub-optimal best manoeuvre in a discrete set. The
obtained manoeuvres can be also humanlike, and they are the natural output
of the algorithm if the problem is properly set, instead of being the result of
closed loop empirical rules fitting driver behaviour (e.g. the Rule-based trajectory
planner used by Broggi et al. [141] in the DARPA Urban Challenge).
This holistic OCP approach, in his turn, has also some drawbacks. As an example
applied to the framework where this research is collocated, some issues raise
when more obstacles are present in the scenario: in this case, multiple solutions
may be available, and very robust solvers should be used to avoid finding local
optima. For the sake of simplicity, however, in this work only one obstacle is
considered.

5.3.2 Vehicle Modelling and Identification

5.3.2.1 Vehicle Model

Vehicle modelling is the first step to generate the database of optimal avoidance
manoeuvres. As it is described in Appendix B, a model of vehicle dynamics is
required for optimal control formulation, to be included as an ODE constraint.
This allows the resulting manoeuvre to be physically feasible. The vehicle model
used for the autonomous motion planning is very similar to that for lateral
dynamics developed in section 4.3.3.1. The parameters used for the model are
those of the Kanon vehicle of the Hori-Fujimoto Laboratory of the University of
Tokyo. While some of them were already known (i.e. tables 5.1, 5.2 and 5.3)
others had to be identified, as it will be described in next paragraph.
The model is a classic bicycle model, as represented in Figure 4.14, where the
meaning of the symbols is reported in Appendix C. In this model, constant forward
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vehicle velocity is considered, considering manoeuvres for avoidance by means of
only steering, without braking, so that:

u(t) = u0 (5.2)

The equations for lateral dynamics and yaw rate are described according to Abe
[28], and are those already mentioned in paragraph 4.3.3.1, i.e. (4.11a) and
(4.11b) For convenience they are reported here again:

mu0

(
dβ(t)

dt
+ γ(t)

)
= Fyf (t) + Fyr(t) (5.3)

Iz
dγ(t)

dt
= Lf Fyf (t)− Lr Fyr(t)

while position and orientation are again described by projection equations 4.12:

dx(t)

dt
= u0 cos(ψ(t))− v(t) sin(ψ(t)) (5.4)

dy(t)

dt
= u0 sin(ψ(t)) + v(t) cos(ψ(t))

dψ(t)

dt
= γ(t)

Dynamics for tyre force generation are again included as first order lags (see
equations (4.11d) and (4.11c) ), to consider the time necessary for the generation
of reference tyre forces Fyf0 and Fyr0 and their transmission to the chassis:

ly
u0

dFyf (t)

dt
= Fyf0(t)− Fyf (t) (5.5)

ly
u0

dFyr(t)

dt
= Fyr0(t)− Fyr(t)

This time, however, the Pacejka Model (4.13) was not used: since the model
should have the correct parameters of the Kanon, it would be necessary to identify
4 parameters for each wheel on a complex model, which was not possible in the
limited amount of time of the research. Thus, a simpler linear model has been
using, assuming that the saturation of the forces would never been reached (it is
useful to remember that the vehicle could not exceed 30 km/h):

Fy0f (t) = −Cyfαf (t) (5.6)

Fy0r(t) = −Cyrαr(t)
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where lateral tyre slips are defined with constant forward velocity, and consider
also non-zero rear steering angle:

αf (t) = β(t) +
Lfγ(t)

u0

− δf (t) (5.7)

αr(t) = β(t)− Lrγ(t)

u0

− δr(t)

In an analogue way to equations (4.11e) and (4.11f), also the dynamics for the
actuation of front and rear steering angles have been considered. In fact, once the
reference steering angle is set to the EPS, the combined dynamics of inner control
loop and actuation are not negligible. However, this time the steer dynamics have
been identified and modelled for the Kanon as of second order:

Mf
d2δf (t)

dt2
+ Cf

dδf (t)

dt
+Kfδf (t) = δ0f (t) (5.8)

Mr
d2δr(t)

dt2
+ Cr

dδr(t)

dt
+Krδr(t) = δ0r(t)

The identification process which lead to this conclusion will be better described
in section 5.3.2.2.
Since the model features constant forward velocity and has only one track, load
transfers have not been considered, so that vertical load repartition is only based
on the distance of vehicle CoG from rear and front axle. Cornering stiffnesses are
thus described as constant parameters:

Cyf = KyfFzf = Kyfmg
Lr

Lr + Lf
(5.9)

Cyr = KyrFzr = Kyrmg
Lf

Lr + Lf

In the end, the model has 9 states, which can be extended to 11 when the two
second order equations 5.8 are split into four first order equations:

X(t) =

{
β(t), γ(t), x(t), y(t), ψ(t), Fyf (t), Fyr(t),

dδf (t)

dt
,
dδr(t)

dt
, δf (t), δr(t)

}T
(5.10)

and 2 inputs, which will be autonomously controlled by the system:

U(t) = {δ0f (t), δ0r(t)}T (5.11)
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Longitudinal dynamics are not considered in optimal motion planning, and there
will be a separate control loop in charge of keeping constant longitudinal velocity
acting on the driving torques of the 4 wheels, which was already available on
Kanon and which will not be described here.

5.3.2.2 Model Identification

Given the model of the section above, it has been necessary to identify some
key parameters, in order to generate manoeuvres which resemble as much as
possible real vehicle dynamics. In this way, properly tracked references in vehicle
sideslip and yaw rate, generated by means of optimal control, result in the desired
trajectories without using position control, i.e. tracking of longitude and latitude
profiles.
Some model parameters, such as vehicle mass and yaw inertia, CoG position,
time lag for lateral force generation and others have not been identified during
this activity, relying on previous research results, e.g. Zendri, 2010 [143], and
data already available within the Hori-Fujimoto Laboratory. Special attention has
been put on vehicle cornering stiffnesses and steering dynamics instead.
Cornering stiffnesses
To identify cornering stiffnesses Cyf and Cyr, offline data from a curve manoeuvre
at constant speed have been used, filtered at 5Hz (forward and backwards, to
avoid filtering lags). The general idea is to find estimated cornering stiffnesses
solving the tyre model equations 4.13 for them:

CyfE = −FyfE(t)

αfE(t)
(5.12)

CyrE = −FyrE(t)

αrE(t)

so that it is necessary to estimate lateral forces and tyre sideslips. Lateral forces
are estimated using lateral dynamics equations 5.3:

FyfE(t) = Lrm

(
ayM(t) + Iz

dγM(t)

dt

)
(5.13)

FyrE(t) = Lfm

(
ayM(t)− Iz

dγM(t)

dt

)
where the suffix E means estimated variables, while M means those directly
measured. In this case, the measurement of γM(t) comes from the gyros, and
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is then filtered and numerically derived to obtain yaw acceleration dγM (t)
dt

, while
lateral acceleration ayM is measured by accelerometers. Another way for obtaining
it, which has been investigated as well, is to use the expression of equation 5.3:

ayM(t) = u0

(
dβC(t)

dt
+ γM(t)

)
=
dvC(t)

dt
+ u0γM(t) (5.14)

approximating:

β(t) = arctan

(
v(t)

u0

)
' v(t)

u0

(5.15)

The additional information on corrected lateral velocity is obtained by Correvit
measurements vM(t), corrected of the yawrate term due to the longitudinal
displacement of the sensor at Lf distance from vehicle CoG:

vC(t) = vM(t)− LfγM(t) (5.16)

In order to complete the estimation of cornering stiffnesses, it is necessary to
determine tyre sideslips. These are obtained using definition 5.7:

αfE(t) =
vC(t) + LfγM(t)

u0

− δfM(t) (5.17)

αrE(t) =
vC(t)− LrγM(t)

u0

− δrM(t)

where the measurements of real steering angles δfM and δrM are directly output
by EPS. Estimated quantities are represented in Figure 5.5 For lateral forces
estimation, the direct measurement of ayM(t) has been used instead of equation
5.14, since it is less noisy. In the lower part of Figure 5.5, the identified values
are represented: cornering stiffnesses Cyf and Cyr on the left, friction coefficient
derivatives on the rightKyf andKyr, considering no load transfer. Only the central
values of the dataset are used, which correspond to the steering manoeuvre, and
RLS algorithm (Recursive Least Squares) has been used to find those unique
values which best fit relation 5.12, finding these values:

CyfE = 15835 [N/rad] (5.18)

CyrE = 36380 [N/rad]

KyfE = 4.60 [−]

KyrE = 7.42 [−]
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Figure 5.5: Identification of cornering stiffnesses: estimated lateral forces, estimated
sideslips, final cornering stiffnesses and lateral friction slopes Kyf,r in the
hypothesis of no load transfer
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The identification process is quite rough, but it will be demonstrated that it has
been sufficient to find results accurate enough to plan manoeuvres reproducible
by the real vehicle.

Steering dynamics
Steering dynamics have been modelled as of second order, according to equation
5.8. However, this solution has not been determined a priori, but it is the result
of an identification process, exploiting again the RLS algorithm. Helped by the
System Identification Toolbox of Matlab, first order and second order models
have been tested, looking for that which best resembled the lag in steering angle
generation which was evident in logged data, e.g. the lane change showed in
Figure 5.6. The RLS algorithm has been applied only to the first steering portion
of the manoeuvre, between 3 and 5 seconds approximately. Identification results
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Figure 5.6: Lane change manoeuvre with rear steering
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are portrayed in detail in Figure 5.7. The reference value is plotted in green,
while real steering angles measured by EPS are showed in red, so that it is evident
that the control and actuation chain causes a lag in steering tracking. A first
order model previously developed within the laboratory is showed in yellow, but
it was identified when the vehicle was lifted on blocks, with its tyres not attached
to the ground. A new first order model has been identified using least squares,
which showed better behaviour both for front and rear steer, but which was not
satisfactory still. For this reason, a new second order model has been then used
and identified, which showed much better behaviour, so that it has been used in
the model. The final transfer function has been:

δf (s)

δ0f (s)
=

kf
s2 + afs+ bf

(5.19)

δr(s)

δ0r(s)
=

kr
s2 + ars+ br

where the identified parameters have been for front and rear axles:

kf = 563.4 (5.20)

af = 46.0

bf = 563.8

kr = 556.6

ar = 34.4

br = 527.6

5.3.3 Example optimal manoeuvres for Kanon: double lane changes

This section focuses the practical calculation of some obstacle avoidance ma-
noeuvres on Kanon model to avoid the obstacle and return at the same lateral
displacement, i.e. double lane changes as that portrayed in Figure 5.8. In par-
ticular, it is explained which settings have been used to obtain them referring to
the OCP formulation of section 4.3.3. These manoeuvres are not those which
have been then really executed by the vehicle, but they allow deriving some
considerations in a more evident way.
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Figure 5.8: Example of obstacle avoidance manoeuvre with null final lateral position
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Figure 5.8 represents a scenario where ego vehicle is travelling straight, and
it approaches a stationary obstacle. If an ADAS such as that of section 5.2.3 is
active on ego vehicle, and the driver is taking no action to avoid the collision, the
system could judge that an intervention is needed when the vehicle is travelling
at u0 longitudinal speed, and the obstacle is xo metres ahead (as described in
section 5.4). In that instant, autonomous intervention is enabled and if traffic
and road conditions are favourable, the manoeuvre of Figure 5.8, stored in the
database, is executed.
The first step to obtain that desired manoeuvre is to set the described model
equations (from 5.3 to 5.8) as ODE constraints in ζ domain, adding also that for
the final time T , as described in equation 4.6. For this change of variables, in
the dynamics equations it is only necessary to substitute t with ζ since they are
proportional, and to multiply the contribution of equation 4.7 to each derivative,
reminding that, given a general variable y and a function of its f(y), when a new
variable z(y) is used the relation is:

df(y)

dy
=

df(z(y))

dz

d(z)

dy
(5.21)

After this step, these simple boundary conditions were set:

b (x(a), p(a)) =

{
β(0) = 0, γ(0) = 0, x(0) = 0, y(0) = 0, ψ(0) = 0, (5.22)

Fyf (0) = 0, Fyr(0) = 0,

dδf (ζ)

dζ

∣∣∣∣
ζ=0

= 0,
dδr(ζ)

dζ

∣∣∣∣
ζ=0

= 0, δf (0) = 0, δr(0) = 0,

T (0) = free

}T

e (x(b), p(b)) =

{
β(1) = 0, γ(1) = 0, x(1) = xf , y(1) = 0, ψ(1) = 0, (5.23)

Fyf (1) = 0, Fyr(1) = 0,

dδf (ζ)

dζ

∣∣∣∣
ζ=1

= 0,
dδr(ζ)

dζ

∣∣∣∣
ζ=1

= 0, δf (1) = 0, δr(1) = 0,

T (1) = free

}T
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Each scenario can be described at each time step in a fixed reference frame, whose
origin is placed at ego vehicle initial CoG, so that initial position and orientations
are always null. If the vehicle is travelling straight, also all the other initial values
are null as well. In an analogue way, if the goal is to finish the manoeuvre with
the same lateral displacement and oriented in the same way, final conditions must
be set null as well, with the exception of final longitudinal displacement, which
can be set at any xf > xo, according to the user’s desire.
The constraints used are similar to those of the formulation in section 4.3.2, here
reported for completeness. One is the limit on minimum distance between vehicle
and obstacle (i.e. equation (4.19), Figure 4.15)

d(t) ≥ (rV + rO) (5.24)

Another one is analogous to equation 4.21 to limit the steering angles, but here
the limit is applied to the real ones instead of to the references, since the second
order dynamics could cause some overshoots with respect to the references:

δfMin
≤ δf (t) ≤ δfMax

(5.25)

δrMin
≤ δr(t) ≤ δrMax

In addition, the tyre model 4.13 used here is linear, and the saturation of the
forces is not taken into account, as it happens in more complex models such as
Pacejka’s used in section 4.3.3. This means that the tyres would provide unlimited
force, i.e. all that necessary to perform even the hardest manoeuvres. To avoid
this unrealistic behaviour, one last constraint has been put on tyre frictions µf,r, in
an analogue way to the brake OCP case of section 4.3.2 (equation (4.8)), where
no longitudinal tyre model was considered:

− 1 ≤ µf (t) ≤ 1 (5.26)

−1 ≤ µr(t) ≤ 1

where

µf (t) = Fyf/Nf (5.27)

µr(t) = Fyr/Nr

Those described above are the constraints included in the OCP solved to generate
some test manoeuvres. It is interesting to note that there is no equivalent of

132



equation (4.23) to limit steering wheel velocity: here it is assumed that the
manoeuvre will be executed by the automatic control, which is thought with
much higher actuation capabilities.
Finally, since here the aim is to move from the theoretical analysis of previous
chapter towards a real implementation, it would possible to add more constraints
to really handle the scenario, e.g. keep vehicle’s trajectory into road limits, etc.,
but this is not comprehended in the objective of the function.
All the settings above are already sufficient to obtain a manoeuvre which starts
at t = 0 from current vehicle state and finishes at t = T with desired final state,
avoiding the obstacle in the middle and remaining within the physical limits of
the vehicle. However, there would be at the moment several ways to accomplish
this task: the desired one should be described setting the objective function, the
only function among equations B.1 to be still defined. The target for the Bolza
problem can be defined as:

wβ

(∫ 1

0

β2(ζ)T (ζ)dζ

)
+ wT (T (1)) (5.28)

i.e. the same objective of equation 4.16 after setting wψ = 0 and wy = 0, thus
requiring strict observance of final conditions set in equation 5.22. Namely, the
objective is the weighted sum of a Lagrange term which tries to minimise sideslip
β along the whole manoeuvre, and a Mayer term which requires minimum final
time T . wβ and wT are the weights of the two contributions and in general they
must be carefully tuned to obtain the desired behaviour. In the Lagrange term, the
square of lateral speed is necessary to require minimum velocities both towards
the left (positive) and the right (negative). The multiplication of the integral by
T (zeta) is a necessary scaling factor when changing the differentials from dt to
dζ. This objective is set to obtain low lateral velocities, so that the manoeuvre
is easier to be tracked, but it is also required to perform it in a short time, to
resemble that it is still an emergency manoeuvre. The difference between the
two contributions is clear when one of the two weights is alternatively set to 0.
The results of these OCP, which consider u0 = 20 km/h, xo = 20 m, xf = 40 m

and rO = rV = 1.5 m are reported in Figure 5.9, showing the optimal trajectories
and the steering angle time histories necessary to obtain them. It is interesting to
note that in the first case, with only minimum time requirements, the trajectory
is shorter: since the manoeuvre is performed at constant speed, the only way to
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Figure 5.9: Avoidance manoeuvres for minimum time (left) and minimum lateral velocity
(right)

reduce manoeuvring time is to travel the least distance possible. This is obtained
concentrating the whole steering in a short time, at the beginning, around the
obstacle and at the end, and thus travelling straight for the rest of the manoeuvre,
as it is evident by the history of the steering angles and the shape of the trajectory
respectively. On the other hand, when minimum lateral velocity is required, the
trajectory is much smoother, and so the steering angles are. Another interesting
aspect is the sign of the steering angles: in the first case they are in phase, to
generate high lateral translations and shorten the path, but causing high sideslips,
while in the second case they have opposite sign, in order to yaw as much as
possible to lower vehicle sideslip.

5.4 T H R E AT A S S E S S M E N T

It was already described that a system like this basically needs a threat assessment
module to enable the autonomous execution of emergency manoeuvres, and a
control loop to make the vehicle physically realise the desired manoeuvre.
Concerning the threat assessment, the strategy imagined looking at the driving
simulator tests on naturalistic driving (section 4.2.3) can be used. Namely, since
drivers showed to be jerk limited, initial manoeuvre jerks could be used as the
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parameters for risk assessment: if database manoeuvres require jerks beyond a
given threshold, the drivers would not be able to perform them, ant the vehicle
could take over the control of the vehicle.
The mechanism of real-time threat assessment was not implemented on the
Kanon, so that a tuning the thresholds could not be done. However, some first
attempt numerical values will be assigned here, just to give a hint on how it would
work. For the case of steering manoeuvres, it is reasonable to assume that values
of jδ > 500− 700 deg/s as not feasible by human drivers. Thus, an ADAS should
issue the warnings at a lower threshold, when safe manoeuvres require velocities
higher than jδ,Warn > 400 deg/s, and then enable the autonomous intervention
when these will require values of jδ > 700 deg/s.
Even if it not the purpose of this system, an analogue approach could be used for
risk assessment of longitudinal avoidance manoeuvres. For instance, assuming
that drivers are not able to apply longitudinal jerks higher than jp,Max = 2.5 s−1,
warnings could be issued at jp,Warn = 2 s−1, and autonomous intervention at
jp,Max.

5.5 C O N T R O L A L G O R I T H M S

5.5.1 General strategies for trajectory tracking

Another important feature of the proposed approach is the control algorithm to
obtain the desired planned manoeuvre. Looking at the participants of DARPA
Urban Challenge, the Talos vehicle [96] used for instance a simple PI controller
for velocity tracking, and a modified version of the pure pursuit control law (Kelly
and Stentz, 1997 [92] and Park et al., 2007 [118]) for the steering angle. The
control law was defined as:

δf = − tan−1

(
L sin η

L1

2
+ la cos η

)
(5.29)

where la is the distance between the pure pursuit anchor point and the rear axle,
η is the angle between vehicle heading and the reference path direction, and L1

is the look-ahead distance. A similar approach is used in Hoffmann et al., 2007
[82], even if the control law for the steering is slightly different, with a term
designed to have null regime errors and a correction proportional to yaw rate
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error.
Other approaches use Model Predictive Control (Mayne et al, 2000 [104], Falcone
et al. 2007 [63], Falcone et al. 2009 [64]) as a Receding Horizon Control (Boyd
et al. 2011 [103]), applying only the first control value for each plan, and then
make a new plan at the following step for the new situation and actuate it only
for the first value, in a cyclic way.
The novel approach hereby proposed proves that desired trajectory is also obtain-
able by properly tracking yaw rate and sideslip profiles (Ellefsen, 2012 [60]), in
a robust way with respect to model uncertainties.

5.5.2 Early algorithms

Since the solution of optimal control includes also the control inputs to obtain
the desired behaviour according to the model, the first trial has been to simply
use the optimal profiles for δ0f (t) and δ0r(t) as inputs to the vehicle, in open loop.
The inner loop of the EPS was then in charge of making the steering angles track
the references. However, despite the identification process to make the model
as close as possible to real behaviour, the final trajectory did not resemble the
desired one of Figure 5.16, and after passing the obstacle the vehicle remained
with a heading ψ > 0, so that final lateral position was yf > 3.
The next step has been to try adding a closed loop contribution to the reference
angles, using a PID controller on the error on the yaw rate γ(t), as shown in Figure
5.10. Since there was only one feedback contribution for two inputs, this has
been added to both, with a scaling factor k for the rear to minimise sideslip angle,
as described in Abe, 2009 [28], pp. 222. The control loop was first simulated
using Matlab, after exporting there the model developed in Maple. The simulated
yaw rate showed almost perfect tracking of the reference (Figure 5.11). Once
this control loop has been implemented on the vehicle, the tracking of yaw rate
has showed better behaviour than the simple open loop, but this did not improve
the tracking of final trajectory, which in the end was very similar to that of the
open loop configuration. Figure 5.11 shows this situation. Yaw rate tracking is
portrayed on the left part, where reference and measured yaw rates show a good
matching, while the trajectory logged with a GPS on the desired path (in green)
and the real path (yellow), besides the sensor errors, have a completely different
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shape, and the drift towards the left is evident. This is due to the fact that, on the
other hand, vehicle sideslip, without any feedback, was not tracked at all. This is
visible in Figure 5.12.
In order to obtain better results, a new control algorithm has been tried, adding
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Figure 5.12: Bad tracking of sideslip angle β without feedback

feedback also on vehicle sideslip. In this way, two feedbacks are needed, i.e. yaw
rate γ and sideslip angle β, and two vehicle inputs were available, i.e. δ0f and
δ0r. A possible technique to handle this situation was the traditional decoupling
control. The general concept of this technique is to use one input to control one
variable, and the other input to control the other variable.
In particular, it has been chosen to use front steering to control yaw rate γ, and
rear steering to control vehicle sideslip β, and the control loop shown in Figure
5.13. The choice has not been casual: looking at transfer functions between the
two inputs and the two outputs in a linearised model (in an analogue way to the
Relative Gain Array technique [39]), it was clear that while the sensibility of yaw
rate to both the inputs is almost the same, sideslip angle is much more sensible to
rear steering.

The key aspect of this approach is the definition of the decoupling transfer
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Figure 5.13: Control algorithm with decoupling control

functions G1 and G2. The idea is that front steering is the sum of the optimal one
and the correction due to the feedback on yaw rate, but it has also an effect on
sideslip, and the same interference happens for rear steering, which has an effect
on yaw rate. This superimposition of effects could lead to instability, so that it is
necessary to neutralise the effect of each input on the variable it is not designed to
control. Defining the problem in mathematical terms, the input-output relations
are:

Γ(s) = Fδf→γ(s)∆f (s) + Fδr→γ(s)∆r(s) (5.30)

B(s) = Fδf→β(s)∆f (s) + Fδr→β(s)∆r(s)

and the objective would be to obtain a system so that:

Γ(s) = Fδf→γ(s)∆f (s) (5.31)

B(s) = Fδr→β(s)∆r(s)
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The control scheme in Figure 5.13 can be a solution to obtain this desired be-
haviour. In fact, in that way the inputs to the model are:

∆f (s) = ∆fc(s)−G2(s)∆r(s) (5.32)

∆r(s) = ∆rc(s)−G1(s)∆f (s)

so that Equations 5.30 become:

Γ(s) = Fδf→γ(s)∆fc(s) +
(
Fδr→γ(s)− Fδf→γ(s)G2(s)

)
∆r(s)

B(s) = Fδr→β(s)∆rc(s) +
(
Fδf→β(s)− Fδr→β(s)G1(s)

)
∆f (s)

In this way, defining the decoupling transfer functions G1(s) and G2(2) so that:

G1(s) = F−1
δr→β(s)Fδf→β(s) (5.33)

G2(s) = F−1
δf→γ(s)Fδr→γ(s)

the contribution of the undesired inputs are compensated, and the desired be-
haviour of Equation 5.31 is obtained.
Using this algorithm, a good overall behaviour has been obtained, with final
trajectory resembling the reference. However, the control loop generated oscil-
lating steering angles, as it is shown in Figure 5.14 for front steering, which is
not acceptable. Its behaviour is due to errors in Correvit measurements, and also
to uncertainties in the models, which make the compensations of equations 5.1
not accurate. For this reason, decoupling control has not been chosen as the final
algorithm, and the Correvit sensor has been replaced by a proper state observer,
which has given the double advantage of stabilising the estimation of β input to
the controller, and replacing the usage of an expensive sensor. The final algorithm
is described in next section.

5.5.3 Final algorithm

In order to fix the sensibility of the decoupling control to model errors, a new
approach has been chosen, based on the inversion of vehicle model dynamics and
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Figure 5.14: Oscillating front steering angle generated by decoupling control

on disturbance observers. The method has been already experimented within the
Hori-Fujimoto Laboratory, even if applied to different models (Fujimoto, 2011
[73], Fujimoto, 2010 [75], or Yamauchi and Fujimoto, 2008 [142]). Their inputs
were front steering δf and yaw moment Nz, given by the driving and braking
torques applied to the wheels, instead of front and rear steering angles. In the
cited papers, this method proved to provide better disturbance rejection than
decoupling control, and has thus be adapted to the new model, to control rear
steering instead of yaw moment generated by the torques. A sideslip observer has
been also introduced to replace Correvit measurements, and reference steering
angles coming from optimal control are not taken into account anymore. The final
control scheme is reported in Figure 5.15. The first step of the algorithm is to use
the optimal references in yaw rate γ∗ and sideslip β∗ to generate correspondent
references on total yaw moment M∗∗

z and total lateral forces F ∗∗y . This is done
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by inverting the transfer functions Pγ(s) and Pβ(s) easily derivable from vehicle
model, where:

Γ(s) = Pγ(s)Mz(s) (5.34)

B(s) = Pβ(s)Fy(s)

The references are then filtered, so that multiplying them by the improper frac-
tions P−1

γ (s) and P−1
β (s), proper transfer functions are obtained again. These

references are then corrected with two contributions: one from a PI controller
on errors with real variables (i.e. measured yaw rate and observed sideslip), and
another one generated by the disturbance observers developed in the already
cited works ([73],[75],[142]), one for yaw moment (YMO) and one for lateral
force (LFO). The references M∗

z and F ∗y obtained in this way are then used to
generate references on sideslip angles α∗f and α∗r by substituting tyre model 5.6
into the right hand side of vehicle dynamics equations 5.3, and setting them equal
to Fy and Mz respectively. The “Force Distribution” block solves these equations
for αf and αr and gives the references on tyre sideslips, in an analogue way to the
process described by Fujimoto, 2011 [74], but neglecting yaw moment Nz. The
“Steer Angle Calculation” block then substitutes the sideslips into their definitions
5.7, inverts the relations and solves them for steering angles. These are the final
values for the controls δf and δr, which are then input to the vehicle.
The feedback loops use filtered measures from the gyroscope for yaw rate γ, and
an observed value for sideslip angle β instead of the direct measurement from
the Correvit sensor. As a matter of fact, a linear observer has been designed for β
basing on that developed by Aoki et al., 2006 [34], adapting again the model to
the different vehicle inputs, where δr has replaced Nz. In particular, the observer
is described by the same equations:

˙̂x(t) = Ax̂(t) +Bu(t)−K(ŷ(t)− y(t)) (5.35)

ŷ(t) = Cx̂(t) +Du(t)

where:

x =

{
β

γ

}
, y =

{
γ

ay

}
, u =

{
δf

δr

}
(5.36)
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and the hat sign stands for estimated values. In other words, measurements on
yaw rate γ and lateral acceleration ay are used to estimate vehicle sideslip, on the
basis of the developed model, condensed in the matrices A, B, C and D. Gain
matrix K has been chosen to maximise robustness, with a procedure analogue to
that described in [34]. The resulting expressions are quite long, and it is useless
to report them here. On the other hand, tuned values of:

λ1 = −35 (5.37)

λ2 = −30

have been set for the observer poles, which must be faster than the outer feedback
dynamics. This algorithm has lead to good results in trajectory tracking, which
will be reported in section 5.6.

5.6 T E S T S A N D R E S U LT S

5.6.1 Experiment details

Real tests have been conduced on some sample manoeuvres, to prove the feasibil-
ity and the advantages of the proposed control method, based on OCP-generated
references in yaw rate and sideslip, which can be properly tracked by a control
loop based on disturbance observers and force distribution and result in the
desired trajectory.
The real tests on the vehicle did not regard the complete ADAS, but only the
control algorithm: the database of all the manoeuvres for all the scenarios has
not been built, and neither the lookup algorithm for the choice of the closest to
current situation. The threat assessment has not been integrated in the system,
too.
The tests have been performed on simpler manoeuvres than those described
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in previous section 5.3.3, which more resemble the single lane-change idea, as
shown in Figure 5.16. To obtain them, test parameters have been set to:

xf = 40 m (5.38)

yf = 3 m

xo = 30 m

r1 = 1.5 m

r2 = 1.5 m

u0 = 10− 15− 20− 25 km/h

Namely, different manoeuvres have been calculated with the same obstacle

xf

y

xo x

u0 uo = 0
yf

Figure 5.16: Manoeuvres used for real tests, with xo = 30 m, xf = 40 m and yf = 3 m

position and characteristics, with the same final position for ego vehicle, but
with increasingly demanding manoeuvre speed, from 10 km/h to 25 km/h. The
objective function required minimum lateral velocity, with a very light contribution
of minimum time, namely:

wV = 1 (5.39)

wT = 0.001

One may object that these are not properly emergency manoeuvres, since the
vehicle speed is not so high. This is true, but on the other hand the tests were only
intended to define a method and prove its feasibility more than really building
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the manoeuvre database for the real application. It is also true that when velocity
increase, the method could be not valid anymore due to higher nonlinearities
when the manoeuvre approaches vehicle limits. However, it was not possible to
implement more demanding manoeuvres because of speed limits imposed to the
vehicle by the authorities of Kashiwa-no-ha Campus, where the test track lays.
Also the possibility of implementing double lane changes would have caused some
complications, since the test track is hardly sufficiently long, so that there was
not sufficient safety margin. Each manoeuvre in fact required also approximately
20 m before the beginning of the steering, in order to let the vehicle reach the
desired constant speed in a stable way.
The test sequence was very simple: after compensating all the offsets in the
sensors, the driver switched on an autonomous speed controller developed by
the Hori-Fujimoto Laboratory, to make the vehicle reach and keep the desired
speed. At a fixed spot 30 m before the imagined obstacle position, the driver
simulated the output of a threat assessment algorithm which judged autonomous
intervention necessary, turning on the reference manoeuvre availability and the
EPS control to follow it. Forward velocity is kept constant in the meanwhile
by the speed catch up algorithm. In the meanwhile, sensors are logged by a
proper Controldesk sheet. At the end of the manoeuvre, the drivers turns off the
EPS, finalises the logging and goes back to starting position, ready to repeat the
procedure at increasing speed.

5.6.2 Results

The results have showed good tracking of the desired manoeuvre at velocities
up to 20 km/h. At 25 km/h an initial instability probably due to a sensor offset
happened, and for safety reasons it has not been tried to repeat the test, even
after the error had been corrected. Steering angles and consequent variable
tracking are showed in figures 5.17 and 5.18. Final good trajectory tracking
is reported in Figure 5.19. Looking at steering angles, the improvement with
respect to decoupling control is evident, with the rejection of the oscillation which
was excessive instead in Figure 5.14. It is useful to remind that according to
the control scheme of Figure 5.15, the optimal steering profiles are not used as
references. However, in the front case the profiles are very similar, while in the
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Figure 5.17: Steering angles on test for at 15 kph
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Figure 5.18: Variable tracking on test for at 15 kph
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Figure 5.19: Trajectories

second case the control algorithm generates a different pattern.
The tracking of the variables is very good for γ, and satisfactory for β, even
if, in this case, during the initial transitory the values do not match at all, and
some further tuning would be required. The figure allows also to appreciate
the advantage of using the β observer instead of the Correvit sensor, whose
measurements oscillate excessively and overestimate the real value.
These results prove the feasibility of the approach of generating references with
optimal control, which result in the desired real optimal manoeuvres when tracked
by a proper control algorithms. In particular, it has been also proved that to obtain
desired trajectory it is possible to only track yaw rate and sideslip profiles.
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6
C O N C LU S I O N S

6.1 General considerations 149

6.2 A Codriver for driver warning 150

6.3 From driver warning to autonomous intervention 152

6.4 Autonomous collision avoidance 153

6.5 Future develoments 154

6.1 G E N E R A L C O N S I D E R AT I O N S

In this research work, two ADAS have been proposed, both based on optimal
control and manoeuvre jerks as parameters for threat assessment.
The first is named “Codriver”, and is a system for driver warning. The second
is a sort of completion of the first, since it is designed for autonomous vehicle
intervention if the driver does not react to the warnings. The Codriver has been
developed by the Mechatronics Group of the University of Trento, which the
author is part of, in the framework of the European Project “interactIVe”, to warn
the driver for all-around threats safety. It has been then implemented on a real
vehicle of Centro Ricerche Fiat, which has been widely tested at the end of the
project. On the other hand, for the second system only the main components
have been developed by the author during a research period at the University of
Tokyo, Japan, and its application is restricted to autonomous obstacle avoidance.
In particular, a motion planning algorithm has been used together with a control
loop designed to execute the planned trajectories.
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Both systems exploit Optimal Control (OC) for motion planning: the Codriver
uses OC to plan real-time manoeuvres with humanlike criteria, so that they can
be compared to what the driver is doing in order to infer his/her intentions,
and warn him if these are not safe; the second system uses OC instead to plan
emergency manoeuvres, i.e. neglecting driver actuation limitations and pushing
the vehicle towards its physical limits.
The initial longitudinal and lateral jerks of the planned manoeuvres are used
by both the systems as parameters for risk assessment. A first premise to this
is that manoeuvre jerks are proportional to the velocities of driver inputs, i.e.
pedal velocity and steering wheel velocity, and their initial values describe the
entity of the correction needed by the driver to achieve a given goal. The second
premise is that it is known in literature, and it was confirmed by experimental
tests conduced on the driving simulator of the University of Trento, that human
drivers plan and act with minimum jerk criteria, and are jerk-limited. Thus, more
and more severe manoeuvres would require higher and higher initial jerks, which
at a given point could not be reachable anymore by a human driver. In this way,
initial jerks can be considered proportional to the risk level of current situation.
For this reason, when the manoeuvres to handle current scenario require jerks
beyond a given threshold, the Codriver outputs a warning. This threshold must
be lower than driver limits, so that he/she will be able to react to the warning
and still have the chance to perform a safe manoeuvre. When the required jerks
exceed drivers’ actuation limits, the risk level raises to an upper step, where driver
warning would be not effective and autonomous vehicle intervention should be
enabled.
In obstacle avoidance scenarios, it was demonstrated during driving simulator
tests that manoeuvre jerks are more robust parameters for risk assessment than
for example time headways, since they are less affected by driver’s age and gender.

6.2 A C O D R I V E R F O R D R I V E R WA R N I N G

The objective of the Codriver is to infer driver intentions, and warn him if these
may lead to dangerous situations. The idea to achieve this purpose is to design
it as an artificial driver, similar as much as possible to the real driver in his/her
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decision processes for motion planning: if they have similar architectures, their
states of mind will be similar, allowing better reciprocal understanding.
Thus, its architecture is based on perception-action hierarchical layers inspired by
cognitive science theories, the higher settings goals for the lower, as it happens
for a driver: from higher states of mind (e.g. being in a hurry), navigation plans
are made (e.g. overtaking instead of following an object), which then set the
objectives for decomposed simpler problems (i.e. steering to reach a desired
lateral position and accelerating to reach a desired final velocity), for which the
lowest layer finally finds the control laws necessary to obtain them (i.e. the pedal
velocity and steering velocity profiles or, in other words, longitudinal and lateral
jerks) by means of optimal control. Actually, several OCPs are evaluated by the
Codriver in real-time, in order to cover a large variety of possible driver goals,
each requiring certain initial jerks. Matching these jerks (i.e. Codriver inputs)
with those the real driver is actuating, the Codriver is able then to understand
which manoeuvre the driver intends to perform, and all the way up to the the
intentions which animate him/her.
The Codriver considers all around threats in its plans, addressing collisions, un-
intended lane departures, excessive curve velocities, bad compliances of speed
limits and landmarks, i.e. it plans optimal manoeuvres which allow handling all
these aspects, and assigns them a risk level: if the driver’s identified goal requires
too high jerks, a warning is output. Warnings can be yellow or red, depending on
the risk level, i.e. on the jerk the manoeuvres require.
The Codriver is part of a Continuous Support function implemented on a Lancia
Delta: it receives data from a perception platform in charge of environment recon-
struction, it assesses the risk level of current situation and eventually the threat
source as it was described, and then sends the warnings to an HMI management
system which activates the warning interface, which exploits visual, acoustic and
haptic feedback. The warning HMI has two levels of invasiveness, depending on
the warning level (yellow or red).
The Continuous Support application has been widely tested within the interactIVe
project, both from the technical (objective performance, i.e. warning timing
etc.)and user-related point of view (i.e. warning acceptance, interface issues, etc).
The tests took place respectively in the “Centro Sicurezza” private proving ground
of Centro Ricerche Fiat on predefined use cases, and on a public 53 km test track
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featuring urban, extra-urban and motorway portions. The results have been
satisfactory in both cases, proving the goodness of the approach, i.e. inference of
driver intention exploiting a layered subsuming architecture, humanlike motion
planning by means of optimal control, and threat assessment based on manoeuvre
jerks.

6.3 F R O M D R I V E R WA R N I N G T O AU T O N O M O U S I N T E RV E N T I O N

A general driver warning ADAS should warn the driver when the severity of safe
manoeuvres for a given scenario reaches a given threshold, at which an action of
the driver would still be possible and safe. However, if the driver does not react
in a given time, he will be not able anymore to avoid the dangerous situation.
However, it has been showed that at that point there would be still a margin
for properly controlled actuators, with higher capabilities (i.e. bandwidth and
accuracy), to perform safe manoeuvres within vehicle physical limits.
An unique ADAS could handle both the warning and the intervention phase,
but it is not the case of the Codriver, which could not be used as it is for this
purpose. It was demonstrated that the simplifications it makes (motivated by
the need of solving multiple OCPs in real-time) lead to planned manoeuvres
which do not resemble those obtainable in reality, especially for lateral dynamics.
Neglecting nonlinearities, saturations, delays etc., the Codriver manoeuvres are
in fact designed to resemble the model of vehicle dynamics the driver has in mind
more than the real dynamics model. While this has proved to be a good approach
for warning purposes, the manoeuvres it generates can not be used to directly
control the vehicle. At most, they could be used as good guess functions to solve
more complex OCPs, which should take into account also physical and other
constraints, and which should be based on more representative vehicle dynamics
models, in order to push the manoeuvres towards vehicle limits.
These more detailed OCPs have been set up focusing obstacle avoidance scenarios,
by steering and braking, obtaining emergency manoeuvres which could be used
as motion plans for autonomous intervention. In particular, it was proved that, at
high relative velocities, steering emergency manoeuvres are more effective than
braking manoeuvres to avoid an obstacle (the contrary happens at low velocity).
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Being autonomous steering more interesting by the research point of view than
autonomous braking (which is already available on the market), further analysis
was conduced to see how to even improve its performance. In particular, it
was showed that high avoidance performance can be obtained by autonomous
steering manoeuvres if also rear steering wheel was available. In this case, lateral
displacement can be obtained by almost pure translational manoeuvres (i.e. null
yaw rate), with high lateral velocities.

6.4 AU T O N O M O U S C O L L I S I O N AVO I DA N C E

After theoretically demonstrating that superior steering performance obtainable
by means of four-wheel steering (4WS), the activity at the University of Tokyo has
regarded the development of an ADAS for 4WS autonomous obstacle avoidance
at constant speed.
Even though the complete ADAS has not been entirely built, the feasibility of an
approach based on motion planning by means of optimal control and manoeuvre
execution by proper control loops has been proved. In particular, it has been
demonstrated that the manoeuvres output by OCPs are representative of the real
ones when the model is sufficiently accurate and its parameters are identified
correctly.
From the control point of view, it has been proved that it is possible to obtain the
desired trajectory by tracking reference profiles (solutions of the OCP) of yaw
rate and sideslip angle, using front and rear steering angles as control inputs.
In particular, this result was achieved using disturbance observers for required
lateral force and yaw moment to compensate a feedback PID control on yaw rate
and sideslip angle. In addition, a linear observer has been developed for sideslip
estimation, necessary for the feedback control, which allowed to replace the
expensive Correvit sensor and to obtain better results. This approach generated a
simple and low-demanding control algorithm, which proved to be more stable
and robust than traditional decoupling control.
The described control algorithm has been implemented on the experimental
electric vehicle “FPEV2-Kanon” of the University of Tokyo, and successfully tested
in lane-change-like minimum-sideslip obstacle avoidance manoeuvres at different
velocities up to 20 km/h, obtaining in each case the desired trajectory.
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6.5 F U T U R E D E V E L O M E N T S

In a wide research area as that covered by this research, there are several possible
improvements and the aspects which would require further analysis.
Concerning the Codriver, it would be interesting to enrich the set of the possible
manoeuvres it conceives, e.g. overtaking, which could be obtained concatenating
more of its motor primitives. The boundary conditions the different portions meet
at should be in their turn optimised solving another OCP as well, but extending
its possible behaviour range should enhance its inference of driver intentions.
The Codriver could be also designed to enrich the interaction with the driver
towards a peer-to-peer relationship, in a sort of horse-rider metaphor. Instead of
only warning, it would be probably quite easy to implement a more advanced
haptic HMI on the steering wheel and on the pedals, where the Codriver could
also physically suggest to the driver safer manoeuvres etc.
Considering the collision avoidance analysis, it would be certainly interesting to
see the performance of emergency manoeuvres which combine steer and brake.
Thinking this issue in terms of time to collision (TTC), it would probably happen
that this kind of manoeuvres lowers the limit curves, thus reducing the range of
scenarios where collisions can not be avoided.
Many issues have remained opened also concerning the autonomous obstacle
avoidance. First of all, it was showed that the tracking of the sideslip angle is not
perfect still, and the cause should be investigated and removed.
After fixing this inaccuracy, the robustness of the control algorithm should be then
tested on more scenarios, starting from minimum time manoeuvres, i.e. those
which require almost translational behaviour and the highest lateral velocities.
Finally, the proposed threat assessment method should be tuned in its thresholds,
and then the entire application should be built, enriching the database with all
the possible scenarios, implementing a lookup algorithm and integrating the
perception platform with additional sensors (e.g. radars, lidars and/or cameras)
to perceive the obstacle in real time and send this information to the lookup
module.
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A
A P P E N D I X - L I S T O F S Y M B O L S

Table A.1: List of OCP Parameters

Parameter Unit Meaning
xo [m] Obstacle x position in cartesian ref. frame
yo [m] Obstacle y position in cartesian ref. frame
ss,o [m] Obstacle long. position in curvilinear coordinates
sn,o [m] Obstacle lat. position in curvilinear coordinates
rV [m] Ego vehicle bounding circle radius
rO [m] Obstacle bounding circle radius
wT [−] Weight for minimum time term in OCP objective
wβ [−] Weight for minimum sideslip term in OCP objective
wψ [−] Weight to relax final conditions on heading
wy [−] Weight to relax final conditions on lateral pos.
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Table A.2: List of Vehicle Parameters

Parameter Unit Meaning
t [s] Time
g [m/s2] Gravity
m [kg] Vehicle mass
Iz [kg m2] Vehicle yaw moment of inertia
Lf [m] Distance from vehicle CoG to front axle
Lr [m] Distance from vehicle CoG to rear axle
L [m] Vehicle wheelbase
rf [m] Vehicle front tyre radius
rr [m] Vehicle rear tyre radius
kv [N s2/m2] Vehicle aerodynamic coefficient
n [−] Vehicle steering ratio between tyre and steering wheel
Cyf [N/rad] Vehicle front tyre cornering stiffness
Cyr [N/rad] Vehicle rear tyre cornering stiffness
Kyf [rad−1] Vehicle front lateral friction slope
Kyr [rad−1] Vehicle rear lateral friction slope
µxf [−] Vehicle front tyre longitudinal friction coeff.
µxr [−] Vehicle rear tyre longitudinal friction coeff.
µyf [−] Vehicle front tyre lateral friction coeff.
µyr [−] Vehicle rear tyre lateral friction coeff.
Bf , Cf , Df , Ef [−] Front tyre Pacejka coefficients
Br, Cr, Dr, Er [−] Front tyre Pacejka coefficients
kTf [−] Traction repartition on front axle coeff.
kTr [−] Traction repartition on rear axle coeff.
kBf [−] Braking repartition on front axle coeff.
kBr [−] Braking repartition on rear axle coeff.
ly [s] Time constant for first order lateral force dynamics
kf [−] Gain for TF of front steering first order lag
kr [−] Gain for TF of rear steering first order lag
pf [s] Time constant for first order front steering dynamics
pr [s] Time constant for first order front steering dynamics
uo [m/s] Ego vehicle constant velocity
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Table A.3: List of Vehicle Variables

Parameter Unit Meaning
x(t) [m] Vehicle x position in cartesian coordinates
y(t) [m] Vehicle y position in cartesian coordinates
ψ(t) [rad] Vehicle yaw angle in cartesian coordinates
ss(t) [m] Vehicle longitudinal pos. in curvilinear coordinates
sn(t) [m] Vehicle lateral pos. in curvilinear coordinates
α(t) [rad] Vehicle yaw angle in curvilinear coordinates
β(t) [rad] Vehicle sideslip angle
u(t) [m/s] Vehicle longitudinal velocity
v(t) [m/s] Vehicle lateral velocity
γ(t) [rad/s] Vehicle yaw rate
∆(t) [m−1] Vehicle trajectory curvature in curvilinear coord.
αf (t) [−] Vehicle front tyre sideslip angle
αr(t) [−] Vehicle rear tyre sideslip angle
p(t) [−] Vehicle traction/braking pedal position
δf (t) [rad] Vehicle front steering angle
δr(t) [rad] Vehicle rear steering angle
jp(t) [s−1] Vehicle pedal velocity
jdelta(t) [rad/s] Vehicle steering wheel velocity
Fxf,T (t) [N ] Vehicle front traction force
Fxr,T (t) [N ] Vehicle rear traction force
Fxf,B(t) [N ] Vehicle front braking force
Fxr,B(t) [N ] Vehicle rear braking force
Fyf (t) [N ] Vehicle front lateral force
Fyr(t) [N ] Vehicle rear lateral force
Fyf0(t) [N ] Vehicle front nominal lateral force
Fyr0(t) [N ] Vehicle rear nominal lateral force
Nf (t) [N ] Vehicle front vertical force
Nr(t) [N ] Vehicle rear vertical force
Txf,T (t) [Nm] Vehicle front traction torque
Txr,T (t) [Nm] Vehicle rear traction torque
Txf,B(t) [Nm] Vehicle front braking torque
Txr,B(t) [Nm] Vehicle rear braking torque
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A P P E N D I X - O P T I M A L C O N T R O L

B.1 Overview 159

B.2 Optimal control formulation and solution 160

B.3 Tools for OCP developed by the University of Trento 162

B.1 OV E RV I E W

In the automotive field, optimal control has been used for a long time in many
different applications, from powertrain to active suspensions or steering systems
management, exploiting different techniques such as LQR, LQG, MPC and many
others (Bryson, 2002 [46]). Optimal control can be used in all the components
of an ADAS. In the Perception layer, optimal control could help estimating non-
observable states, e.g. obstacle future evolution: given position and velocities
of a vehicle ahead, minimum jerk motion can be hypothesised for it and future
positions can be the solutions of the optimisation problem. On the Decision side,
optimal control can find an interesting usage in warning systems, as described in
Chapter 3. However, it is in the Action layer that Optimal Control usually finds its
widest application. In fact, it is possible to use optimal manoeuvres as references
for conventional control algorithms, but also to set up an optimal tracking of
them, as it happens in MPC. This process can be also repeated at every time
step, using only the first value of the output controls and then re-evaluating the
optimal tracking, thus implementing a Receding Horizon Control. LQR and LQG
are other optimal control techniques used for motion planning and control.
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This appendix briefly describes Optimal Control principles for the generation of
optimal manoeuvres which achieve a given goal, and, in particular, the approach
used within the Mechatronics Group of the University of Trento to generate and
solve the problem in an efficient and robust manner. However, further details on
optimal control formulation and solving can be found in Bryson and Ho, 1975
[47], Troutman, 1996 [133] or Betts, 2009 [37], while for numerical solving tech-
niques a recommended source is Nocedal and Wright, 2006 [115]. The approach
used in this work for OCP solving, though summarised hereon, is explained in
Bertolazzi et al., 2007 [35].

B.2 O P T I M A L C O N T R O L F O R M U L AT I O N A N D S O LU T I O N

A constrained optimisation problem can be defined in general as:

find u to minimise: M (x(b), u(b), p(b)) +

b∫
a

J (x(s), u(s), p(s)) ds

under the following constraints: (B.1)

ODE constraints: A (x(s), p(s)) ẋ = f(x(s), u(s), p(s)),

Initial BC: b (x(a), p(a)) = 0,

Final BC: e (x(b), p(b)) = 0,

One side constraints: gk (x(s), u(s), p(s)) ≤ 0, k ε I1

Two side constraints: −1 ≤ gk (x(s), u(s), p(s)) ≤ 1, k ε I2

where I1 and I2 are two index sets such that I1 ∩ I2 = ∅.
Namely, the objective is to find proper state x and input u histories which min-
imise an objective function, subject to given constraints. When applied to motion
planning for vehicles, the solution of the optimal control problem is a manoeu-
vre which reaches a desired final state, in a way which minimises the objective
function. This definition of manoeuvre, as the solution of an OCP, includes both
the evolution of vehicle states, e.g. its position, velocity, etc., and of the controls
necessary to obtain them, e.g. steering angle, pedal positions, etc. This evolution
can be intended in time domain or in space domain, depending on how the
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problem is defined.
Looking in detail into equation B.1, the objective, called Bolza target, is given by
the sum of two contributions: a Lagrange term, which is the integrand J along the
whole planning horizon, and a Mayer term M , which is instead only a function of
the final state. In other words, the objective can be to minimise either a quantity
all over the manoeuvre, e.g. a manoeuvre which minimises jerk, or a quantity at
the end, e.g. final lateral displacement, or a weighted sum of the two.
It is then possible to include different constraints. ODE constraints are used to
include vehicle dynamics in the optimisation, to grant that the manoeuvre will be
physically meaningful. Boundary conditions can be set as well for the states of
the ODE system. In particular, for real-time motion planning the initial conditions
are set equal to the current vehicle state, so that the manoeuvre will start from
current situation. On the other hand, final conditions describe a final desired
state at the end of the manoeuvre, e.g. a suitable final lateral displacement
for lane-change manoeuvres, null final velocity for braking manoeuvres, etc. It
is not necessary to set all the boundary conditions: sometimes it is difficult to
specify requirements on final state, so that those constraints can be substituted by
respective transversal conditions (details can be found in Troutman, [133], pp.
156). Finally, more constraints can be set in form of inequalities, both on vehicle
states and on the controls, according to simulation purposes. For instance, it is
possible to include the adherence limits of the tyre requiring lateral forces within
a given range, the mechanical limits of the steering system setting steering angle
lower than a certain threshold, or humanlike criteria on motion planning, setting
requirements on combined vehicle accelerations [52] .
Once the problem is set, it is necessary to solve it. There are several ways to
solve optimal control problems, which can be found in already mentioned sources
([133], [115]). A fast and robust indirect solution method has been developed
at the University of Trento in the last years, which has proved to be effective
also for real-time application, such as those of the PREVeNT ([36],[33]) and
Michelangelo ([9]) projects.
The first step is to eliminate the constraints to transform the problem into uncon-
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strained optimisation. For the inequalities, different penalty functions pk are used,
e.g. quadratic, logarithmic, etc., so that their contribution Jp:

Jp (x(s), u(s), p(s)) =
∑
k

pk (gk(x(s), u(s), p(s))) (B.2)

can be added to the Lagrange term of the Bolza function:∫ b

a

(J (x(s), u(s), p(s)) + Jp (x(s), u(s), p(s))) ds (B.3)

For the equalities, i.e. ODE and BC constraints, Lagrange multipliers are used
(again in Troutman, [133], pp. 160). Neglecting the transcription of the indepen-
dent variable s, the final objective function F can be defined as:

F (x, u, v, λ, µ, ν) =

∫ b

a

(J (x(s), u(s), p(s)) + Jp (x(s), u(s), p(s))) ds

+

∫ b

a

λ (A(x, p)ẋ− f(x, u, p)) ds (B.4)

+ µ (b(x(a), p(a)))

+ ν (e(x(b), p(b)))

The problem can be now solved as an unconstrained optimisation problem, finding
the stationary points of F . To do this, the first variation of F is calculated (e.g.
in Hull, 2003 [88]), obtaining a boundary value problem (BVP), which is then
discretised using finite differences (FD), e.g. in Nocedal, 2009 [115] In this way,
a nonlinear system is obtained, which can then be solved using optimised code
which implements Newton-Broyden, Hyness and Conjugate Gradient algorithms.

B.3 T O O L S F O R O C P D E V E L O P E D BY T H E U N I V E R S I T Y O F T R E N T O

The described steps can be automatically done using the tools developed at the
University of Trento. In particular, a vehicle model can be developed with Maple,
a software for symbolic math, which can be then used also for the generation of
the OCP. In fact, the Mechatronics group has developed a Maple library named
“XOptima”, which provides suitable commands to generate the complete problem.
In this way it is possible to define the objective, and set the boundary conditions
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and the constraints, including the ODE model previously developed, according to
the user’s needing. It is also possible to preset problem parameters, e.g. model
data, objective weights, constraint thresholds, penalty weights, boundary condi-
tion values etc, which can be also modified later, during the solution of the OCP.
In fact, this library finally outputs C++ code which describes the problem, and
CMakeLists instructions to automatically build projects in different environments,
such as Mac OSX, Linux and Windows. These projects include also the “Mecha-
tronix Framework”, again developed at the University of Trento, which contains
indispensable tools such as the interfaces with the described problem, the non-
linear solvers, etc. Once the project is built, it is possible to run it and obtain
the solution of the OCP. Different settings can be tried to achieve better solution
without need of compiling the project again, thanks to suitable configuration files
written in Ruby or Lua languages.
The results are then output in a plain text format, so that it is easy to import
and plot them with several softwares the user may prefer, such as Matlab, Excel
or Datagraph. Diagnostics information are also available among the outputs, to
check the convergence steps of the algorithm if a solution cannot be obtained at
the first attempt.
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2012.

[100] A. Lindgren and F. Chen. State of the art analysis: An overview of ad-
vanced driver assistance systems (adas) and possible human factors issues.
In Proceedings of the Swedish Human Factors Network (HFN) Conference
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