
Statistical Relational Learning for Proteomics:
Function, Interactions, Evolution

Stefano Teso

2013/12/19

International Doctorate School in Information and
Communication Technologies
DIT - University of Trento

Advisor:
Prof. Andrea Passerini

Università degli Studi di Trento

ii

Abstract

In recent years, the field of Statistical Relational Learning (SRL) [1, 2] has
produced new, powerful learning methods that are explicitly designed to solve
complex problems, such as collective classification, multi-task learning and
structured output prediction, which natively handle relational data, noise,
and partial information. Statistical-relational methods rely on some First-
Order Logic as a general, expressive formal language to encode both the data
instances and the relations or constraints between them. The latter encode
background knowledge on the problem domain, and are use to restrict or bias
the model search space according to the instructions of domain experts. The
new tools developed within SRL allow to revisit old computational biology
problems in a less ad hoc fashion, and to tackle novel, more complex ones.
Motivated by these developments, in this thesis we describe and discuss the
application of SRL to three important biological problems, highlighting the
advantages, discussing the trade-offs, and pointing out the open problems.

In particular, in Chapter 3 we show how to jointly improve the outputs
of multiple correlated predictors of protein features by means of a very gen-
eral probabilistic-logical consistency layer. The logical layer — based on
grounding-specific Markov Logic networks [3] — enforces a set of weighted
first-order rules encoding biologically motivated constraints between the pre-
dictions. The refiner then improves the raw predictions so that they least
violate the constraints. Contrary to canonical methods for the prediction
of protein features, which typically take predicted correlated features as in-
puts to improve the output post facto, our method can jointly refine all
predictions together, with potential gains in overall consistency. In order
to showcase our method, we integrate three stand-alone predictors of corre-
lated features, namely subcellular localization (Loctree[4]), disulfide bonding
state (Disulfind[5]), and metal bonding state (MetalDetector[6]), in a way
that takes into account the respective strengths and weaknesses. The ex-
perimental results show that the refiner can improve the performance of the
underlying predictors by removing rule violations. In addition, the proposed
method is fully general, and could in principle be applied to an array of

iii

iv

heterogeneous predictions without requiring any change to the underlying
software.

In Chapter 4 we consider the multi-level protein–protein interaction (PPI)
prediction problem. In general, PPIs can be seen as a hierarchical process
occurring at three related levels: proteins bind by means of specific domains,
which in turn form interfaces through patches of residues. Detailed knowl-
edge about which domains and residues are involved in a given interaction has
extensive applications to biology, including better understanding of the bind-
ing process and more efficient drug/enzyme design. We cast the prediction
problem in terms of multi-task learning, with one task per level (proteins,
domains and residues), and propose a machine learning method that collec-
tively infers the binding state of all object pairs, at all levels, concurrently.
Our method is based on Semantic Based Regularization (SBR) [7], a flexible
and theoretically sound SRL framework that employs First-Order Logic con-
straints to tie the learning tasks together. Contrarily to most current PPI
prediction methods, which neither identify which regions of a protein actu-
ally instantiate an interaction nor leverage the hierarchy of predictions, our
method resolves the prediction problem up to residue level, enforcing con-
sistent predictions between the hierarchy levels, and fruitfully exploits the
hierarchical nature of the problem. We present numerical results showing
that our method substantially outperforms the baseline in several experi-
mental settings, indicating that our multi-level formulation can indeed lead
to better predictions.

Finally, in Chapter 5 we consider the problem of predicting drug-resistant
protein mutations through a combination of Inductive Logic Programming [8,
9] and Statistical Relational Learning. In particular, we focus on viral pro-
teins: viruses are typically characterized by high mutation rates, which allow
them to quickly develop drug-resistant mutations. Mining relevant rules from
mutation data can be extremely useful to understand the virus adaptation
mechanism and to design drugs that effectively counter potentially resistant
mutants. We propose a simple approach for mutant prediction where the in-
put consists of mutation data with drug-resistance information, either as sets
of mutations conferring resistance to a certain drug, or as sets of mutants with
information on their susceptibility to the drug. The algorithm learns a set
of relational rules characterizing drug-resistance, and uses them to generate
a set of potentially resistant mutants. Learning a weighted combination of
rules allows to attach generated mutants with a resistance score as predicted
by the statistical relational model and select only the highest scoring ones.
Promising results were obtained in generating resistant mutations for both
nucleoside and non-nucleoside HIV reverse transcriptase inhibitors. The ap-
proach can be generalized quite easily to learning mutants characterized by

v

more complex rules correlating multiple mutations.

vi

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 1

1.1.1 Protein Feature Predictor Refinement with Markov Logic 3
1.1.2 Multi-level Protein–Protein Interaction Prediction . . . 4
1.1.3 Forecasting Viral Mutants 4
1.1.4 Publications . 5

2 Background 7
2.1 Molecular Biology of Proteins 8

2.1.1 Sequence . 8
2.1.2 Structure and Structural Properties 9
2.1.3 Function . 12
2.1.4 Interactions . 13
2.1.5 Evolution . 14

2.2 Machine Learning . 16
2.2.1 Statistical Learning . 16
2.2.2 Kernel Methods . 20
2.2.3 Probabilistic Graphical Models 23
2.2.4 Relational Learning . 27

2.3 Statistical-Relational Learning 33

3 Joint Refinement of Heterogeneous Predictions 35
3.1 Motivation . 35

3.1.1 Overview of the Proposed Method 37
3.1.2 Related work . 40

3.2 Results and Discussion . 42
3.2.1 Data Preparation . 42
3.2.2 Evaluation Procedure 43
3.2.3 Raw Predictions . 44

vii

viii CONTENTS

3.2.4 Alternative Refinement Pipelines 45
3.2.5 True Subcellular Localization 46
3.2.6 Predicted Subcellular Localization 47
3.2.7 Predicted Subcellular Localization with Predictor Re-

liability . 48
3.2.8 Conclusions . 52

3.3 Methods . 53
3.3.1 Predictors . 53
3.3.2 Markov Logic Networks 53

4 Multi-level Protein Interaction Prediction 57
4.1 Background . 57

4.1.1 Problem definition . 59
4.1.2 Overview of the proposed method 60
4.1.3 Modeling multi-level interactions 64
4.1.4 Related work . 66

4.2 Results and Discussion . 70
4.2.1 Dataset . 70
4.2.2 Evaluation procedure 71
4.2.3 Results . 72
4.2.4 Discussion . 75

4.3 Conclusions . 76

5 Predicting Drug-Resistant Mutants 79
5.1 Background . 79
5.2 Results . 81

5.2.1 Datasets . 81
5.2.2 Learning in first order logic 82
5.2.3 Background knowledge 83

5.3 Methods . 86
5.3.1 Homology Modeling 86
5.3.2 Algorithm overview . 87
5.3.3 Learning from mutations 90
5.3.4 Learning from mutants 92

5.4 Discussion and Future Work 94

6 Conclusions 97

List of Tables

3.1 List of predicates used in the MLN Refiner. 38
3.2 Knowledge Base used in the MLN refiner. 39
3.3 Results for True Sub. Loc. 47
3.4 Results for Predicted Sub. Loc. 49
3.5 Results for True Sub. Loc. with Proxy. 50
3.6 Results for Predicted Sub. Loc. with Proxy. 51

4.1 List of SBR predicates. 64
4.2 List of SBR rules. 65
4.3 Area under the ROC curve values attained by Yip et al. [10],

SBR, and SBR-∃n (SBR equipped with the n-existential quan-
tifier). 72

5.1 List of the ten most frequent rules learned on Dataset 1, sorted
by average number of models they appear in. 92

5.2 List of the ten most frequent learned rules for Dataset 2, sorted
by number of models they appear in. The table also includes
the clause position(C,X), which is present in all models for
different values of X. 94

ix

x LIST OF TABLES

List of Figures

3.1 Diagram of the refinement pipeline. 38

4.1 Two bound proteins and their interacting domains and residues,
captured in PDB complex 4IOP. The proteins are a Killer cell
lectin-like receptor (in violet) and its partner, a C-type lectin
domain protein (in blue). Left: interaction as visible from the
contact surface. Center: the two C-type lectin domains instan-
tiating the interaction. Right: effectively interacting residues
in red. 58

4.2 Visualization of the proposed method applied to a pair of pro-
teins p and p′ and their parts. Circles represent proteins,
domains and residues. Dotted lines indicate a parent-child
relationship between objects, representing the parentpd and
parentdr predicates. Solid lines link pairs of bound objects,
i.e. objects for which the boundp, boundd or boundr predicates
are true. 61

5.1 Summary of the background knowledge facts and rules. Mu-
tID is a mutation or a mutant identifier depending on the type
of the learning problem. 84

5.2 Mutation generation algorithm. 86
5.3 Schema of the mutation engineering algorithm. 87
5.4 An example of hypothesis, learned by Aleph on Dataset 1, for

the NNRTI task with highlighted amino acid positions d by
the hypothesis clauses. 88

5.5 An example of hypothesis, learned by kFOIL on Dataset 2, for
the NNRTI task with highlighted amino acid positions covered
by the hypothesis clauses. 89

xi

xii LIST OF FIGURES

5.6 Mean recall of the generated mutations on the resistance test
set mutations from Dataset 1 by varying the number of satis-
fied clauses. The mean recall values in orange refer to the pro-
posed generative algorithm. The mean recall values in green
refer to a random generator of mutations. 91

5.7 Mean recall of the generated mutations on the resistance test
set mutations from Dataset 2 by varying the threshold on the
prediction confidence, and the corresponding average number
of overall generated mutations (i.e., not necessarily in the test
set), in red. The blue line refers to the random generator of
mutations. 93

Acknowledgments

First of all, I would like to express my gratitude towards my supervisor,
Andrea Passerini, for passionately teaching me the many unwritten rules of
scientific research, which far too often go unnoticed to obtuse slackers like
me. As I came to understand with time, research is a difficult craft, and
problem solving can be a frustrating and utterly unrewarding activity. But
thanks to Andrea’s continuous support, I somehow managed to get over the
difficult times, and had the opportunity to enjoy the state of grace that only
real numbers in the range [0, 1], written in obscure monochromatic LATEX
tables, can give. Other than that, I would like to thank Andrea deeply and
sincerely for being so friendly and generous, despite my embarrassing faults.

I’d also like to thank two paradigmatic figures that I had the chance to
meet here in Trento, Jacopo Staiano and Gabriele Catania. They managed
to single handedly [sic.] transform the incongruous, desolate, fat misplaced
lump of contemporary anti-seismic insanity that is our faculty, into an enjoy-
able workplace. You are like metal water tanks in the middle of the desert:
your faucets may be rusty, but inside you are full of wet. What does it mean?
I do not know. But I think I got it right.

Then I’d like to thank Duy Tin Truong and Umut Avci, my office mates,
for being delightful persons to work with, and for the time spent side-to-
side crunching datasets, running experiments, and often sharing the same
excited/derailed state of mind that positive/negative results cast upon us.

I’d like to extend my gratitude to Elisa Cilia, at the Université Libre
de Bruxelles; to the colleagues at the University of Siena: Claudio Saccà,
Salvatore Frandina, and Michelangelo Diligenti; and to Bruno Lepri at the
Fondazione Bruno Kessler, for the insightful discussions and support.

I’d also like to thank the Rost Lab at the Technische Universität München,
and Gianluca Pollastri at the UCD School of Computer Science and Infor-
matics, for making their software available.

Then there are all my friends, here in Trento and back at my hometown,
too many to list here, who directly and indirectly supported my endeav-
ors in scientific research, and provided many occasions for long sessions of

xiii

xiv LIST OF FIGURES

indiscriminate feasting and guzzling. Thank you.
Finally, my most sincere thanks go to my girlfriend Silvia, and to my

parents Anna and Antonio, whose patience, reliability and constant support
never cease to amaze and flatter me, and who have put so much effort into
teaching me how to be a better person — even though I failed, far too often,
to pay attention. It is to them that I wish to dedicate this thesis.

You all have taught me, once more, that it is through others that life can
be bliss.

Chapter 1

Introduction

1.1 Motivation

The marriage between molecular biology and computer science is a long and
fruitful one. Biologists have embraced computer science since the very be-
ginning of the computer era in order to store the results of biological exper-
iments, analyze the corresponding databases, find regularities, test hypothe-
ses, and perform predictions. Due to the particularly complex and fuzzy
nature of biological annotations, machine learning in particular has played
an important role in biological research, providing many indispensable tools
for forecasting properties of genes, proteins, RNA fragments, and other en-
tities of biological interest. Thanks to their wide applicability and general
success, predictive models have proved to be a valid support to wet exper-
iments, leading to the development of hundred of computational prediction
methods for a variety of protein, DNA and RNA properties, and a florid
research field [11, 12].

Thanks to recent advancements in experimental methods, biological infor-
mation has kept increasing in size and complexity. The rapid accumulation
of huge amounts of data on many aspects of cell life has ushered many new,
important questions. In general, the subject of molecular biology has broad-
ened from the study of individual genes and proteins to a more integrated
view: in the post-genomic era, open problems involve networks of interacting
entities and their evolution, and can only be successfully answered by tak-
ing into consideration the correlations linking the various types of biological
objects.

Unfortunately, the classical tools provided by classical statistical or logical
machine learning methods, such as Hidden Markov Models [13] and Support
Vector Machines [14], are not ideally suited to deal with these problems,

1

2 CHAPTER 1. INTRODUCTION

which are, at once, intimately relational and statistical. Purely logical models,
such as those developed by the sub-field of Inductive Logic Programming [8,
15], do not provide a sound mechanism to handle noisy or incomplete data,
and therefore have issues with biological data. On the other hand, Statistical
Learning methods [16, 17, 18, 19], while designed to very naturally deal with
noise and probabilities, can not be trivially adapted to handle relational data
(in a sound manner): most of these methods are based on the assumption that
examples are independently and identically distributed, which is violated by
relational data. In other words, these two classes of learning methods offer
complementary advantages, and are afflicted by complementary faults. As
a result, neither of them is entirely appropriate for the new requirements
imposed by complex biological prediction tasks.

Prompted by these difficulties, and similar ones arising in other research
fields (e.g. network sociology and computational neuroscience), machine
learners have developed novel methods, grouped under the umbrella term
of Statistical Relational Learning (SRL) [1, 2], which generalize the classical
models and merge the respective advantages. SRL methods are explicitly
designed to perform predictions of complex objects, such as trees, graphs,
multi-graphs and relational databases, and can natively take advantage of
the correlations existing between the individual object parts.

Methods in SRL are typically based on some general, expressive, formal
language, such as First-Order Logic (or subsets thereof), to encode both the
data and a set of relations or constraints. The constraints offer the possi-
bility of including additional human-readable background knowledge within
the learning task, in order to restrict the model search space according to
the instructions of domain experts, with potential gains in predictive accu-
racy and learnability (especially in cases where data is scarce). Contrary to
purely logical methods, where the constraints are deterministic, constraints
in SRL can also be soft, in order to account for errors in the data or in the
constraints. Inference and parameter learning are implemented as logical-
probabilistic reasoning over the formal language, and enable sound handling
of noise and missing data. Notably, the ability to include prior knowledge in
the learning problem goes hand in hand with the formalization effort that is
currently pervading biology and medicine, embodied by the development of
formal ontologies, which are being applied to a growing number of biological
databases [20, 21].

Statistical-relational learning offers new tools that allow to revisit old
problems in a less ad hoc fashion, and to tackle novel, more complex biolog-
ical problems. Motivated by these developments, in this thesis we describe
and discuss three applications of SRL methods to three important biological
problems, highlighting the advantages and discussing the tradeoffs and open

1.1. MOTIVATION 3

problems. In the next few sections we present a high-level overview of the
problems tackled in the next chapters.

1.1.1 Protein Feature Predictor Refinement with Markov
Logic

Computational methods for the prediction of protein features from sequence
are a long-standing focus of bioinformatics. A key observation is that several
protein features are closely inter-related, that is, they are conditioned on
each other. Researchers invested a lot of effort into designing predictors that
exploit this fact. Most existing methods leverage inter-feature constraints by
including known (or predicted) correlated features as inputs to the predictor,
thus conditioning the result.

By including correlated features as inputs, existing methods only rely on
one side of the relation: the output feature is conditioned on the input fea-
tures. In Chapter 3 we show how to jointly improve the outputs of multiple
correlated predictors by means of a probabilistic-logical consistency layer.
The logical layer enforces a set of weighted first-order rules encoding biologi-
cal constraints between the features, and improves the raw predictions so that
they least violate the constraints. In particular, we show how to integrate
three stand-alone predictors of correlated features: subcellular localization
(Loctree[4]), disulfide bonding state (Disulfind[5]), and metal bonding state
(MetalDetector[6]), in a way that takes into account the respective strengths
and weaknesses, and does not require any change to the predictors them-
selves. We compare our methodology against two alternative refinement
pipelines based on state-of-the-art sequential prediction methods.

Our refinement framework is able to improve the performance of the un-
derlying predictors by removing rule violations. We show that different pre-
dictors offer complementary advantages, and our method is able to integrate
them using non-trivial constraints, generating more consistent predictions.
In addition, our framework is fully general, and could in principle be applied
to a vast array of heterogeneous predictions without requiring any change
to the underlying software. On the other hand, the alternative strategies
are more specific and tend to favor one task at the expense of the others,
as shown by our experimental evaluation. The ultimate goal of our frame-
work is to seamlessly integrate full prediction suites, such as Distill[22] and
PredictProtein[23].

4 CHAPTER 1. INTRODUCTION

1.1.2 Multi-level Protein–Protein Interaction Prediction
Protein–protein interactions can be seen as a hierarchical process occurring
at three related levels: proteins bind by means of specific domains, which in
turn form interfaces through patches of residues. Detailed knowledge about
which domains and residues are involved in a given interaction has extensive
applications to biology, including better understanding of the binding process
and more efficient drug/enzyme design. Alas, most current interaction pre-
diction methods do not identify which parts of a protein actually instantiate
an interaction. Furthermore, they also fail to leverage the hierarchical nature
of the problem, ignoring otherwise useful information available at the lower
levels; when they do, they do not generate predictions that are guaranteed
to be consistent between levels.

In Chapter 4 we formalize the problem as a multi-level learning task, with
one task per level (proteins, domains and residues), and propose a machine
learning method that collectively infers the binding state of all object pairs.
Our method is based on Semantic Based Regularization (SBR), a flexible
and theoretically sound machine learning framework that uses First Order
Logic constraints to tie the learning tasks together. We introduce a set of
biologically motivated rules that enforce consistent predictions between the
hierarchy levels.

We study the empirical performance of our method using a standard
validation procedure, and compare its performance against the only other
existing multi-level prediction technique. We present results showing that
our method substantially outperforms the competitor in several experimental
settings, indicating that exploiting the hierarchical nature of the problem
can lead to better predictions. In addition, our method is also guaranteed to
produce interactions that are consistent with respect to the protein–domain–
residue hierarchy.

1.1.3 Forecasting Viral Mutants
Viruses are typically characterized by high mutation rates, which allow them
to quickly develop drug-resistant mutations. Mining relevant rules from mu-
tation data can be extremely useful to understand the virus adaptation mech-
anism and to design drugs that effectively counter potentially resistant mu-
tants.

In Chapter 5, we propose a simple statistical relational learning approach
for mutant prediction where the input consists of mutation data with drug-
resistance information, either as sets of mutations conferring resistance to a
certain drug, or as sets of mutants with information on their susceptibility to

1.1. MOTIVATION 5

the drug. The algorithm learns a set of relational rules characterizing drug-
resistance and uses them to generate a set of potentially resistant mutants.
Learning a weighted combination of rules allows to attach generated mutants
with a resistance score as predicted by the statistical relational model and
select only the highest scoring ones.

Promising results were obtained in generating resistant mutations for both
nucleoside and non-nucleoside HIV reverse transcriptase inhibitors. The ap-
proach can be generalized quite easily to learning mutants characterized by
more complex rules correlating multiple mutations.

1.1.4 Publications
The three chapters are taken from the following papers:

• Stefano Teso, Andrea Passerini – “Joint Probabilistic-Logical Refine-
ment of Multiple Protein Feature Predictors”, BMC Bioinformatics (in
press).

• Claudio Saccà, Stefano Teso, Michelangelo Diligenti, Andrea Passerini
– “Improved Multi-level Protein–Protein Interaction Prediction with
Semantic-based Regularization”, BMC Bioinformatics (submitted).

• Elisa Cilia, Stefano Teso, Sergio Ammendola, Tom Lenaerts, Andrea
Passerini – “Predicting virus mutations through relational learning”, In
ECCB Workshop on Annotation, Interpretation and Management of
Mutations (AIMM-2012), 2012.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

7

8 CHAPTER 2. BACKGROUND

2.1 Molecular Biology of Proteins
This thesis is concerned mostly with problems related to proteins. Proteins
are polypeptides, biological molecules of variable size, often composed of mul-
tiple parts or chains, which carry out many different functions within the cell,
including (but not limited to) metabolism, DNA transcription, translation
and synthesis, regulation of gene expression, signal transduction (in response
to external stimuli or internal events), and antigenic response. Most of the
activities that take place within the cell are enacted by proteins [24, 25], in-
cluding those involved in the mechanisms of inherited and infectious diseases.

Complete details on the composition, properties and concerted behavior
of proteins within the organism (the proteome), are a key factor in elucidating
the genotype-phenotype relationship, with all the scientific and medical con-
sequences it entails. This observation motivates much of the research done
in bioinformatics to predict such information, which are generally difficult or
expensive to annotate experimentally, from the available data.

In this section we give a short exposition of the molecular biology of
proteins, tailored towards the scope of this thesis. We describe the three basic
properties of proteins (sequence, structure, and function) and the relation
between them; we give details about the means by which proteins interact,
and why; and sketch how proteins evolve by natural selection. Of course, our
exposition only scratches the surface of protein biology. For a broader and
deeper treatment of the subject, we refer the reader to the many excellent
textbooks available [24, 25, 26].

2.1.1 Sequence
A protein can be described in terms of its chemical composition. Each pro-
tein is uniquely identified, modulo neutral mutations, by a specific sequence
of twenty canonical amino acids, small organic molecules that have a com-
mon chemical component (an amine and a carboxylic acid functional group)
and a variable component, the side chain. The common part forms the back-
bone of the protein, while the side chain determines the identity, chemical
properties, and size of each amino acid within the protein sequence. From
a computational point of view, a protein sequence can be thus described as
a string of arbitrary length on an alphabet of twenty symbols — with one
character for each amino acid.

Proteins are genetic products. Their sequence is encoded within the ge-
netic material of the cell, the DNA, as a sequence of nucleotides. A region
of DNA that encodes for a protein is called gene, and is often delimited by
special genetic markers in order to be easily identified and processed by the

2.1. MOLECULAR BIOLOGY OF PROTEINS 9

molecular mechanism that operate on them. Given the genetic sequence, it
is possible to derive the corresponding protein sequence by mapping triplets
of nucleotides into amino acids — the mapping between the two alphabets is
the celebrated genetic code. Since whole-genome sequencing is both afford-
able and very efficient, sequence information currently represents the most
abundant form of information on proteins.

The correspondence between genes and proteins, however, is not bijec-
tive, due to two mechanisms: alternative splicing and homology. Alternative
splicing is the process by which, during transcription, different sets of exons
(coding regions) of a gene are shuffled and adjoined, allowing the gene to
encode for multiple proteins. On the other hand, a genome may hold mul-
tiple copies of the same gene, i.e. paralogues, which encode for the same
set of proteins. Despite these issues, there exist rather advanced techniques
that — by aligning a newly sequenced genome to already annotated ones —
allow to determine the majority of the genes (and therefore proteins) in an
organism [27].

A basic assumption in biology is that the sequence, or primary structure,
of a protein completely determines its three-dimensional (tertiary) struc-
ture [28], which in turn is responsible for the biological function expressed
by the protein itself [29]. While the relationship is thought to be (roughly)
deterministic, the exact mechanisms by which the sequence — known for the
majority of proteins — maps to the structure and function of the protein
itself, are still largely unknown. This state of affairs motivates much of the
research done on protein function prediction in computational biology [11].

2.1.2 Structure and Structural Properties
The mismatch between our knowledge of sequence and structure can be at
least partially retraced to the technological gap between current experimen-
tal methods for sequencing and structure determination. Methods in the
latter category, such as nuclear magnetic resonance spectroscopy [30], X-ray
crystallography [31], and electron microscopy [32] are not high-throughput,
requiring time consuming sample preparation, and are not always applica-
ble (e.g. X-ray crystallography requires the protein to be first crystallize,
which is not always feasible). As a result, the number of resolved structures
accounts for only a fraction of the sequenced proteins [33].

Another fundamental problem is our current lack of understanding of
folding [34], that is, the mechanism by which a newly assembled protein
molecule assumes its definitive, working tertiary structure [35]. In accor-
dance to the seminal work by Anfinsen [28], folding is assumed to be a
thermodynamical energy minimization procedure driven by the amino acid

10 CHAPTER 2. BACKGROUND

composition of the protein sequence [36]. Since the major driving forces are
physico-chemical in nature (namely the hydrophobic effect, the formation of
hydrogen bonds and electrostatic interactions, and the conformational en-
tropy due to restricted degrees-of-freedom of the chain [37]), folding takes
place autonomously under suitable conditions. The formation of secondary
structure elements [38] and post-translational modifications [39] (such as the
addition of disulphide bonds [40] and acetyl functional groups [41]) also play
a role in guiding and stabilizing the folding process. Correctly folded struc-
tures are thought to fluctuate around the global minimum of the free-energy
function. In order for proteins to successfully reach said global minimum, the
energy landscape is thought [36] to be shaped like a rough funnel, although
the exact mechanisms are not yet clear. Folding plays a crucial role in bi-
ology: since structure determines function, mis-folded protein may express
impaired, null or toxical activity [42]. As a matter of fact, there are many in-
herited diseases which have been attributed to mutation-induced misfolding,
e.g. Alzheimer’s and Parkinson’s diseases, cystic fibrosis and some neurode-
generative diseases [42, 34].

Several factors contribute to the complexity of the folding problem. An
important component are the non-local contacts, i.e. long-range correlations
between residues, which constrain and stabilize the folding process [43]; these
correlations also render computational simulations of folding very compu-
tationally demanding. It is also difficult to experimentally determine the
folding intermediates sampled during the process and the alternative final
conformations [44]. Furthermore, some proteins are only stabilized by exter-
nal factors such as post-translational modifications [39], which are hard to
capture computationally. Despite the advancements in computer simulations
and machine learning methods for structure predictions, these still have lim-
ited applicability [45], hindering our ability to automatically determine the
structure of newly sequenced proteins.

The tertiary structure of proteins lodges many types of well-defined local
structures which have critical biological roles, and can, notably, be inferred
independently. These characteristic sub-structures include secondary struc-
ture elements, catalytic sites, binding sites, and disordered regions. Knowl-
edge about their displacement can be leveraged to reconstruct the global
structure of the protein, and define its function; this observation stands at
the heart of many hierarchical structure and function prediction methods.

A perfectly folded protein structure can be dissected into roughly two
parts: an inner core, and an outer solvent-accessible layer. Residues in the
core tend to be hydrophobic, and thus form a tightly packed, buried cluster,
not directly in contact with the solvent medium that surrounds the protein
— by definition, their solvent accessible area must be less than 1.4 Å. Due to

2.1. MOLECULAR BIOLOGY OF PROTEINS 11

its strong structural and functional role, the core is the most evolutionarily
conserved region of the protein: mutations that alter the volume of the core
often have a negative impact on protein stability [42].

The secondary structure (SS) of a protein consists of very recognizable
fragments of well defined, stable, and conserved three-dimensional residue
arrangements, the SS elements. The two most frequent configurations are
α-helices and β-sheets [25], which are ubiquitous in protein space. The full
list of secondary structure types is listed in the Dictionary of Protein Sec-
ondary Structures (DSSP) [38], which classifies proteins according to their
secondary structure composition. Contrary to tertiary structure, which is a
global property of the protein sequence, secondary structures are the result
of local contributions of hydrogen bonds between nearby residues [46], and
as such are thought to act as building blocks for intermediates during fold-
ing. Secondary structure elements are tailored towards specific functions.
For instance, α-helices are commonly found in transmembrane proteins [47],
which attach to the lipid bilayer of the cell wall, and are pivotal for enabling
transmembrane proteins to participate to signaling and cell-cell recognition.

Catalytic sites play a central role in enzymes [48], i.e. proteins that cat-
alyze chemical reactions. Thanks to their physico-chemical properties, cat-
alytic sites can recognize and capture the substrates of a reaction, and care-
fully position them in order to facilitate (i.e. lower the activation energy
of) the reaction. Only a fraction of the residues accessible within the ac-
tive sites participate in the reaction; the remaining residues may be inert, or
only help in capturing the substrate. Upon binding, substrates may induce
a conformational change, which may expose other active sites in the protein,
or detach other substrates [49]. In general, catalytic residues owe their ef-
ficacy to both their chemical composition and spatial arrangement, and are
typically highly conserved. Identification of catalytic sites is fundamental
for identifying enzymes and characterizing their function. A complete hand
curated list of annotated catalytic sites can be found in the Catalytic Site
Atlas (CSA) database [48].

Binding sites [50] play a similar role for protein–protein interactions, a
fundamental process by which proteins interact with each other and carry
out their biological function. Matching binding sites in interacting proteins
owe their effectiveness to a combination of shape complementarity, residue
affinity, and structural flexibility [50]. The residue propensity of interfaces
has been shown to be substantially different than that of protein regions not
involved with binding [51]; the same can be said about interfaces mediating
different types of interactions (e.g. transient versus obligate, homodimer
versus heterodimer). Similarly to catalytic sites, binding sites have a lot of
potential as drug targets [52]: drugs may act on a protein by occluding the

12 CHAPTER 2. BACKGROUND

contact surface or clogging the hot spots, i.e. those residues that contribute
the majority of the binding energy [53].

Finally, we end this section with a note on protein flexibility. Protein
structures have long been known to be dynamic, as molecular shape vari-
ations occur naturally as a consequence of thermal fluctuations [54]. More
importantly, many protein — e.g. enzymes — rely on their structure to switch
between alternate conformations, which have different functional roles. For
instance, depending on its current state, a protein may expose different func-
tional regions. However, it has been recently observed that a large fraction
of eukaryotic proteins (over 30% [55]) present structural segments that are
inherently disordered, i.e. segments with no definite secondary or tertiary
structure. Even though their exact role is still unclear [56], inherently disor-
dered proteins have been observed to play a role in intracellular signaling and
regulatory processes [55], and are known to have strong molecular recognition
capabilities [57], enabled by their ability to undergo structural stabilization
upon binding [58]. Disordered proteins have been associated with several
pathological conditions, such as cancer and cardiovascular diseases [59, 60].

2.1.3 Function

Protein function is a compound term to refer to the overall behavior of a
protein and its role within the proteome. Being so diverse, protein function
has been defined in different, often conflicting terms over time. Recently,
however, there has been growing consensus on formalizing protein function
according to the Gene Onotology (GO) [20], a wide vocabulary of shared,
controlled terms. GO terms are organized in a hierarchy according to a
general-to-specific relation: terms in the GO form a tree, where parent terms
are strictly more general than their children [20].

The GO includes keywords for three orthogonal aspects of protein func-
tion: i) what molecular function is displayed by the protein (e.g. enzymatic
reaction), ii) what biological processes it participates in (e.g. cell cycle, gene
regulation, apoptosis), and iii) what cellular components it resides within
(e.g. nucleus, cytosol, mitochondrion, etc.).

Being so central, information about function is crucial for many biomed-
ical and pharmaceutical tasks. Unsurprisingly, functional annotation is not
growing as steadily as sequence annotation [61], prompting researchers to
develop accurate prediction methods to fill the gap. For a survey on the
subject, please see [62, 63, 61].

2.1. MOLECULAR BIOLOGY OF PROTEINS 13

2.1.4 Interactions
Proteins do not act in isolation. In order to carry out their function, most
proteins interact with (bind to) other proteins. A group of proteins and their
interactions is called a protein–protein interaction network (PIN). PINs cap-
ture a static, protein-level snapshot of the overall topology of protein inter-
actions. The totality of interactions expressed by a proteome is called the
interactome. Physical interactions are the workhorse of cell life and develop-
ment [64], and play an extremely important role both in the mechanisms of
disease [65] and in the design of new drugs [66].

Physical interactions between proteins can be seen at different levels of
detail. At the highest level, proteins interact to perform some joint func-
tion [67], which is effectively mediated by the interaction itself [68]. The
propagation of function at the network-level forms the basis of biological
pathways, evolutionarily conserved sub-modules of the PIN that are spe-
cialized for a particular function. Pathways can be distinguished in three
varieties (metabolic pathways, regulation pathways, and signal transduction
pathways), as accurately annotated in the KEGG encyclopedia [69]. In par-
ticular, signal transduction pathways consist of groups of interacting proteins
that collectively transport information about events in the cell, e.g. apoptosis
(programmed cell death).

At a lower level, the same interaction occurs between a pair of specific
domains appearing in the proteins. Domains are conserved sub-regions of
protein sequence/structure that perform a specific function, e.g. partner
recognition, catalysis, etc. The types of the domains involved in an interac-
tion characterize the functional semantics of the latter [70].

At the lowest level, the interaction is instantiated by the binding of a
pair of protein interfaces, i.e. patches of solvent accessible residues with
compatible shapes and chemical properties [71]. The low-level features of
binding sites determine whether the interaction is transient or permanent,
whether two proteins compete for interaction with a third one, etc.

The topology of the PIN and individual features of interactions are an
essential component of a wide range of biological tasks: inferring protein
function [61] and localization [72], reconstructing signal and metabolic path-
ways [73], discovering candidate targets for drug development [65]. Finer
granularity predictions at the domain level allow to discover affinities be-
tween domain types that can be carried over to other proteins [74, 75];
domain–domain networks have also been assessed as being typically more
reliable than their protein counterparts [76]. Finally, residue-level predic-
tions, i.e., interface recognition, enable the detailed study of the principles
of protein interactions, and are crucial for tasks such as rational drug de-

14 CHAPTER 2. BACKGROUND

sign [66], metabolic reconstruction and engineering [77], and identification of
hot-spots [78] in the absence of structure information.

Notwithstanding the increased availability of interaction data, the nat-
ural question of whether two arbitrary proteins interact, and why, is still
open. The growing literature on protein interaction prediction [79, 80, 81]
is symptomatic of the gap separating the amount of available data and the
effective size of the interaction network [82]. Furthermore, protein–protein
interaction data is under-characterized at the domain and residue levels: the
current databases are relatively lacking when compared to the magnitude of
the existing body of data about protein-level interactions [76]. At the time
of writing, the PDB hosts 84,418 structures, but merely 4,210 resolved com-
plexes1. The latter cover only a tiny fraction of the interactions stored in
databases such as BioGRID [83] and MIPS [84].

2.1.5 Evolution
During the normal life cycle of the cell, DNA may be affected by mutations,
i.e. the addition, removal or substitution of some of its bases [85]. Mutations
have multiple causes, including naturally occurring errors in DNA replica-
tion, mutagens (chemicals, radiation, etc.), and pathogens. In an individual
mutation event, the number of mutated bases is typically low. In particu-
lar, single nucleotide polymorphisms (SNP) comprise the majority of known
mutations [86].

Due to the redundancy of the genetic code a mutation may change a
nucleotide triplet into a new triplet that encodes the same amino acid.
Even though the accumulation of such events, called synonymous mutations,
is thought to play a significant role in evolution [87], individual synony-
mous mutations have no immediate effect at the protein level. Conversely,
non-synonymous mutations can induce different effects, including acquisi-
tion and loss of function. Mutant proteins may exhibit changes in physical
and chemical properties, folding and stability, activity, structure and func-
tion [42, 88, 89, 90]. A single mutation affecting a catalytic site may for
instance alter the efficiency of the enzyme. At the network level, mutations
may disrupt the affinity with binding partners or form novel binding sites,
which in turn influence the interaction network topology and biological path-
ways the proteins participates into.

In general, mutations occurring in functional regions of a protein are
likely to have a deeper impact, and are thus subject to more stringent con-

1According to http://www.rcsb.org/pdb/statistics/holdings.do, retrieved
on 2013/06/20.

2.1. MOLECULAR BIOLOGY OF PROTEINS 15

straints [91]. Mutations affecting protein stability or folding (which may
therefore have immediate detrimental effects on the host), are more likely to
be rapidly removed from the genetic pool by natural selection. It is known
that many serious inherited diseases, e.g. cancer and some neuromuscular
pathologies, are due to mutations [92], and in particular to nsSNPs [93].

While it is true that, at the protein level, evolution rate has changed
significantly in the last 1.5 billion years [94], the overall mutation rate of a
gene depends crucially on the replication rate of an organism, and on the
presence (or rather absence) of genetic error-correction mechanisms. There-
fore, viruses represent an excellent source of genetic variation for the study of
protein evolution. This is particularly true for RNA viruses, such as HIV-1,
whose genetic material is chemically more prone to mutations [95]. Viral mu-
tations are the mechanism by which viruses develop resistance to drugs [96],
making the subject extremely important from a medical point of view, as we
will see in Chapter 5.

16 CHAPTER 2. BACKGROUND

2.2 Machine Learning
Machine learning is a large research field and covers a broad range of method-
ologies and problems, catering techniques from a number of other disciplines,
including (but not limited to) mathematical optimization, statistics, formal
languages, and artificial intelligence. In this section we focus on three areas of
machine learning, namely probabilistic graphical models, kernel methods, and
inductive logic programming, and further provide a short introduction to Sta-
tistical Relational Learning, which form the basis for the methods described
and used in the next chapters.

In the following we will focus on supervised learning, where the goal is
to find a mapping between inputs and outputs that generalizes over unseen
inputs. While learning in a mathematical sense has a broadly accepted foun-
dation, the exact meaning of “generalization”, as well as the performance
measures used to quantify the generalization ability of a learning machine,
depend on the particular learning framework under examination. We will
briefly discuss these details shortly, and refer the reader to any of the several
exhaustive books on the subject [19, 18, 16, 17] for a more detailed treatment.

The other major machine learning flavor of machine learning is unsuper-
vised learning [97], where the goal is to find “interesting” patterns — e.g.
clusters, sub-spaces, latent representations — in the data. We will not make
use of unsupervised learning techniques in this thesis. We will also ignore
other flavors of learning, such as reinforcement learning [98], and postpone a
description of semi-supervised/transductive learning [99] to a later Chapter.

2.2.1 Statistical Learning
Statistical learning is a sub-field of machine learning that borrows tools from
statistics and decision theory to i) formally define the semantics of learning in
a mathematical sense, and ii) solve the resulting numerical problems. Both
kernel machines and probabilistic graphical models are part of statistical
learning.

In supervised statistical learning, the learning algorithm is given a training
set of input-output pairs D := {(xi, yi)}ni=1, with inputs x ∈ X and outputs
y ∈ Y , where the pairs are drawn i.i.d. (independently and identically dis-
tributed) from a fixed but unknown joint distribution:

(xi, yi) ∼ pX,Y (X, Y)

This is the so-called “natural” distribution of the learning problem. The
inputs x ∈ X and the outputs y ∈ Y can be seen as drawn i.i.d. from fixed,

2.2. MACHINE LEARNING 17

but (again) unknown distributions:

x ∼ pX y|x ∼ pY |X

whose product is the joint2. Here we do not impose any restrictions on
the form of the input and output domains X and Y . In classical learning
scenarios, the input domain X is a real-valued vector field Rd (for some
d ≥ 1), called the feature space, and Y is either the set of binary class labels
Y = {0, 1}, in which case learning is a classification problem, or a real-
valued vector field Y = Rd′ (for some d′ ≥ 1), in which case we talk about a
regression problem.

As already hinted to, learning amounts to finding a (predictive) function
(also called model or hypothesis) f : X → Y , taken from a set of possible
models F , that is able to generalize to unobserved samples: learning is in-
ductive, as it aims to discover a general model of the data from a finite set
of examples. A model f on a dataset D has good generalization ability if
its output is “close enough” to the real output for all possible inputs. The
notion of “closeness” can be formalized as a loss function.

Definition 2.2.1 (Loss function) A function ` : Y × Y → R is a loss
function if (i) `(y, y′) ≥ 0 for all y, y′ ∈ Y, and (ii) `(y, y) = 0 for all y ∈ Y.

The quantity `(y, y′) measures the penalty or cost incurred when a model
predicts y′ while the correct output is y. Here, (ii) ensures that there is
no penalty when the predicted output is correct. A loss function implicitly
defines the risk of a learning machine f , which measures the total error f
entails when applied to the full domain X ×Y , i.e. its generalization ability:

Definition 2.2.2 (Risk) Given a loss function `, the risk (or total error)
incurred by a model f is:

R[f] := EpX,Y
[`(Y, f(X)] =

∫
X×Y

`(y, f(x))pX,Y (x, y)d(x, y)

The choice of loss function is problem dependant. Classical loss functions
for classification, assuming that the possible classes are y = 1 and y =
−1, are [100] the zero-one loss function `(y, y′) := I[y = y′], the square
loss `(y, y′) := (1 − yy′)2, and the hinge loss `(y, y′) := max(0, 1 − y · y′).
Loss functions for regression include the square loss `(y, y′) := (y′ − y)2, the
absolute value loss `(y, y′) := |y − y′|, and the ε-insensitive loss `(y, y′) :=
max(|y′ − y| − ε, 0).

By seeking the model f with maximum generalization ability — or equiv-
alently minimum risk — we obtain the so-called risk minimization criterion.

2In the following we will omit the subscripts when they are clear from the context.

18 CHAPTER 2. BACKGROUND

Definition 2.2.3 (Risk minimization) Given a dataset D and a set of
candidate models F , find the model f∗ ∈ F that minimizes the risk:

f∗ := arg min
f∈F

R[f]

The issue is that, of course, the joint pX,Y is unobserved: all the learning
method is allowed to learn from is the dataset D, which (likely) captures only
a very small portion of all possible combinations of inputs and outputs. This
limitation implies that we can not compute the risk functional. Instead,
we can resort to estimating an approximation thereof, the empirical risk,
based on the empirical joint p̂X,Y . This reasoning leads to the empirical risk
minimization procedure.

Definition 2.2.4 (Empirical risk minimization) Given a loss function
`, the empirical risk incurred by a model f over a dataset D = {(xi, yi)}ni=1
is:

R̂[f] := Ep̂X,Y
[`(y, f(x))] = 1

n

n∑
i=1

`(yi, f(xi))

Empirical risk minimization amounts to fininding the model f ∈ F that has
minimizes the empirical risk:

f∗ := arg min
f∈F

R̂[f]

Despite its many forms, empirical risk minimization (ERM) stands at the
heart of many machine learning methods. There are other optimality criteria
used in the literature, such as maximum likelihood for probabilistic graphical
models (which we sketch in Section 2.2.3), which states that the best model is
the one most likely to have generated the data (modulo Bayesian priors), and
maximum entropy, which postulates that the best model is the one that has
maximal uncertainty given the observations [101]. All of these criteria, ERM
included, boil down to mathematical optimization over the set of candidate
functions — and the efficacy of the search algorithm depends crucially on
the structure of F and on the choice of loss function. For the purpose of this
section, for simplicity we will focus on the ERM formulation of learning.

Since the empirical risk is just an estimator of the true risk, it does not
necessarily represent the true risk. Consider, for instance, a model whose
output is always identical to the true output over the training set. Such
a model achieves null empirical risk, but may still have an arbitrarily high
error rate outside the training set. In other words, low empirical risk does
not guarantee learning. This can occur in practice when the joint over the

2.2. MACHINE LEARNING 19

training set p̂X,Y is not a faithful sample for the joint pX,Y as a consequence
of noise or missing data. In such conditions, the model may overfit the data.

To lessen the chances of overfitting, it is useful to restrict the set of
candidate models F , e.g. by penalizing complex hypotheses. This involves
including a regularization term (or prior) over F . How to do so depends on
the method at hand, but the two most common regulariers are the `2 loss,
which can be seen as a Gaussian prior over the model complexity, and the `1
loss, that corresponds to a Laplacian prior and favors more sparse models.

Notwithstanding these commonalities — namely, learning as optimiza-
tion, use of regularizers/priors, reliance on i.i.d. assumptions for the data,
and requiring data to be formatted in a propositional, or attribute-value, rep-
resentation —, statistical learning methods vary greatly, and each method
offers its particular set of trade-offs. We will omit a detailed treatment of
the details, which is far beyond the scope of this work.

Model Selection

In order to perform model selection, i.e. picking a learned model out of
many, it is necessary to estimate its generalization ability by evaluating its
empirical performance on an independent dataset, called the test set. The
test set must be drawn from the same distribution p(X, Y) as the training
set, but must also be as statistically independent from the latter, as to avoid
optimistically inflating the model performance. There are a few alternative
procedures to select the test set [16, 17].

The most widely used procedure is cross-validation (CV). In CV, the
dataset is partitioned into k folds, with k = 10 in typical scenarios. The
procedure consists of k rounds: in each iteration, a model is learned from
of k − 1 folds and tested on the remaining one. The overall performance
is estimated as the average performance over all rounds. Notably, cross-
validation makes use of all the data available for training. Two variants on the
theme are leave-one-out, where there are exactly as many folds as there are
data instances, and stratified cross-validation, where the proportion of classes
is kept fixed between folds — this is particularly important in cases of class
unbalance. It has been shown that cross-validation with moderate choices
of k reduces the variance and increase the bias [102], and that stratification
produces more accurate results.

Another canonical procedure is the bootstrap, whereby a dataset with
n instances is randomly sampled with replacement to form a test set of n
instances, and the procedure can be repeated an appropriate number of times
to obtain multiple test sets. Similarly to cross-validation, bootstrap reduces
variance, but can show large bias under specific circumstances [102].

20 CHAPTER 2. BACKGROUND

Finally, the holdout procedure consists of splitting the dataset into two
mutually exclusive subsets. The bigger one, typically accounting for 2/3
of the data, is used for training, while the rest (the holdout) is used for
testing only. The holdout is a pessimistic estimator [102], whose performance
depends crucially on the selection of the test set. Moreover, since it does
not prescribe repeated trials, the holdout method makes inefficient use of
the data. Because of these issues, and since the cross-validation provides
(under mild conditions [103]) better accuracy, the holdout has been largely
superseded by cross-validation.

2.2.2 Kernel Methods
Kernel methods [104, 105, 106, 107] are one of the most popular classes of
methods in machine learning, due to their efficiency, versatility, and theoret-
ical soundness. Support Vector Machines, in particular, have been applied
almost universally in the field of computational biology (see e.g. [12]), also
thanks to the availability of excellent implementations [108, 109, 110]. Ker-
nel methods come in a multitude of forms, and over time have been adapted
to perform a variety of learning tasks.

The original Support Vector Machine (SVM) classifier, which laid the
groundwork for the whole field, has been published in Vapnik et al. [111]
and in Cortes and Vapnik in [14]. Given a dataset of attribute-value inputs
xi ∈ Rd with binary class labels yi ∈ {−1, 1}, the SVM attempts to find
a separating hyperplane (or weight vector) w ∈ Rd, with offset b ∈ R from
the origin, that maximizes the margin (hence the term max-margin) between
instances belonging to the two classes. Given w and b, predicting the class
of a novel input x amounts to checking on which side of the hyperplane it
resides, i.e. the sign of hyperplane equation:

f(x; w, b) := σ(wTx + b)

where σ(t) = 1 if t ≥ 0, and −1 otherwise. One of the most important
aspects of SVM max-margin training is that it guarantees that the true error
of the learning machine is probabilistically bounded by the training set error
(empirical risk) [112]. This result is one of the key advantages of Support
Vector Machines over more heuristic methods.

The primal form of the training procedure [111] for linearly separable
classes, where a separation hyperplane always exists, is:

arg min
w,b

1
2‖w‖

2

s.t. yi(wTxi − b) ≥ 1, i = 1, . . . , n

2.2. MACHINE LEARNING 21

By minimizing the modulo ‖w‖ of the weight vector, SVMs maximize the
separation between the classes. In the non-separable case, the soft SVM for-
mulation [14] introduces additional slack variables ξi to account for examples
that necessarily violate the separation assumption. The primal form of soft
SVM can be written as:

arg min
w,b,ξ

1
2‖w‖

2 + C
n∑
i=1

ξi

s.t. yi(wTxi − b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n
Here C is a hyper-parameter that balances the model complexity and the
training set error, and can be used to control overfitting. When written in
this form, it is clear that the term ‖w‖2 acts as a regularizer, and behaves
analogously to a Gaussian prior.

The optimization problem in the primal is a quadratic program, which
can be solved by the Lagrange multiplier method. The Lagrangian dual form
of (soft) SVM is:

arg min
n∑
i=0

αi −
1
2
∑
i,j

αiαjyiyjxTi xj

s.t. 0 ≤ αi ≤ C, i = 1, . . . , n;
n∑
i=1

αiyi = 0

where the αi are per-instance variables introduced by the dual transforma-
tion. The instances for which αi > 0 are called the support vectors, and are
typically less than n. The hyperplane w can be reconstructed from the set
of support vectors by means of the linear combination w = ∑

i αiyixi. The
fact that the max-margin hyperplane only relies on a subset of the instances,
namely on the support vectors, renders SVMs more robust to noise.

Most importantly, since the data appears in the dual problem only in
the form of dot products — i.e., xTi xj —, it is possible to substitute to the
canonical dot product of Euclidean space any other dot product. This is the
so-called “kernel trick” [105]. For an arbitrary input domain X , a kernel is a
function k : X × X → R≥0 that satisfies an additional condition.
Definition 2.2.5 (Kernels [113]) Given a function k as described above,
and a set of objects {xi}ni=1 the Gram matrix K ∈ Rn×n is defined as:

Kij := k(xi, xj)

If the Gram matrix of k is positive semi-definite, i.e. if it satisfies the con-
dition: ∑

i,j

ciKijcj ≥ 0

22 CHAPTER 2. BACKGROUND

for all vectors c, then k is a kernel.

Kernel functions are important because they always represent a dot product
in some Reproducing Kernel Hilbert Space (RKHS) [113]. Therefore, kernel
functions can be used in place of regular dot product in SVMs. Furthermore,
the Representer Theorem [113] guarantees that, whenever the function k
is a kernel, SVM training is convex, and its optimum — the max-margin
hyperplane — can be expressed as a kernel expansion of the form:

f(x) =
n∑
i=1

αiK(x, xi)

Representer theorems have been devised for a multitude of kernel methods,
and stand at the basis of the many efficient algorithms for SVMs, including
Sequential Minimal Optimization [114] and the Cutting Plane algorithm [115]

Alternative kernels allow to perform classification with arbitrary objects,
including structured and relational ones. The literature flourishes with ker-
nels for different data types. The most basic kernels include the polynomial
kernel and radial basis functions [113], which allow to include correlations
between instances into the learning problem. Kernels for structured data
also exist, for instance for attributed graphs (useful for representing chem-
ical structures) and relational databases [116]. There are also more exotic
kernels, like the Fisher kernel [117], which allows to define the similarity
between structured objects in terms of a probabilistic graphical model (or
stochastic grammar).

As we have seen, kernel methods have a number of advantages: they are
efficient, since the training problem is convex, they can handle a plethora
of different objects as inputs (even infinite dimensional ones) via the kernel
trick, and they have a very firm theoretical basis. Support Vector Machines
can be currently considered a stock learning method, and have been used as
a black box throughout the computational biology literature. Furthermore,
the core idea of max-margin learning has developed into a wealth of kernel
machines, including regression [118], one-class classification [119], multi-class
classification [120], transductive learning [121], and structured output predic-
tion [122, 123], among many others. Despite its limitations, attribute-value
representations allow kernel machines to easily integrate data from different
sources — simply by concatenating the various features in a single feature
vector x, although there are more complex schemas, and, as always, caveats
— a task often required in computational biology.

Notwithstanding their success, kernel machines of course also have lim-
itations. First, even though SVMs can give a confidence on the prediction
(namely, the margin wTx+b), it is difficult to associate probabilities to their

2.2. MACHINE LEARNING 23

predictions. For binary classification, a practical method is the one proposed
by Platt [124], who suggests to fit a sigmoid to the predicted margin, and
estimate a probability by evaluating the sigmoid. Clearly, this method is
heurisic, as the sigmoid is not a density function. Another issue of most
kernel methods is that they can not handle relational outputs. This restric-
tion has been recently lifted by structured output SVMs [122, 123], but still
affects the majority of kernel methods. Other limitations include the inabil-
ity to natively deal with missing data (requiring the use of heuristics like
the Expectation Maximization algorithm or pre-processing, e.g. removing
instances with missing features) [125] and unbalanced classes. Finally, con-
trarily to logic-based methods, the learned SVM parameters are difficult to
interpret, even for domain experts.

2.2.3 Probabilistic Graphical Models
Probabilistic graphical models (PGMs) are a principled and elegant frame-
work to compactly represent high-dimensional joint distributions, which com-
bines probability theory and graph theory [126, 127]. Joint distributions can
represent arbitrary dependencies between variables, for instance between in-
puts (i.e. observed variables) and outputs of a prediction problem, and thus
offer excellent expressivity and flexibility. Alas, learning a full joint dis-
tribution is infeasible: even in the simplest case, i.e. a multinomial over n
binary variables, fitting is equivalent to learning 2n parameters from the data.
The main insight of PGMs is that, by selectively inserting independencies in
the full joint, we can limit the complexity of the model — i.e., the num-
ber of parameters to be estimated —, drastically improving its learnability
(especially when there is little data available), while retaining its expressive
power. Contrarily to statistical learning methods like kernel machines, PGMs
are designed to deal with relational data, and their predictions are natively
accompanied by a confidence in the form of probabilities.

The basic idea is to define a joint by means of a graph G = (X,E), whose
nodes are random variables, and whose local dependencies are captured by
the topology of the graph. In particular, variables connected by an edge are
conditioned on each other. The exact semantics then depends on whether the
graph is directed or undirected, in which case we talk of Bayesian networks
(BNs) and Markov networks (MNs), respectively. The two classes of models
differ in what distributions they can represent [128]. While the two definitions
are fully general, in the following we will restrict our attention to models with
discrete random variables.

Definition 2.2.6 (Bayesian network) A Bayesian network defined on di-

24 CHAPTER 2. BACKGROUND

rected acyclic graph (DAG) G = (X,E), where X = {Xi}ni=1 is a set of ran-
dom variables and E ⊆ X × X is a set of directed edges, encodes the joint
probabilty distribution:

p(X) =
n∏
i=1

p(Xi | π(Xi))

where π(Xi) is the set of parents of node Xi. Here the functional form of the
conditional distributions is assumed to be known beforehand.

Intuitively, a BN defines a set of causality relations in terms of local in-
fluences between a node and its parents. For discrete random variables, the
local conditional distributions p(Xi | π(Xi)) are multinomials, parameterized
by a conditional probability table (CPT), whose size is proportional to the
number of parents and the number of their states. From a computational
perspective, this cuts the number of parameters needed to specify a discrete
joint distribution on n variables from O(mn) for a complete graph (for ran-
dom variables taking values in {1, . . . ,m} with n parents each) to a much
smaller number that depends only on the graph topology.

Definition 2.2.7 (Markov network) A Markov network defined on an undi-
rected graph G = (X,E), where X = {Xi}ni=1 is a set of random variables,
E ⊆ X ×X is a set of undirected edges, and C is the set of maximal cliques
in G, encodes the joint probabilty distribution:

p(X) = 1
Z

∏
C∈C

ψC(XC) = 1
Z

exp
∑
C∈C

φC(XC)

Here XC is the subset of variables X appearing in a clique C, the φC := logψC
are arbitrary positive real-valued functions, called clique potentials or factors,
that evaluate the compatibility of the variables XC, and Z is a normalization
term.

Rather than on causality, MNs rely on undirected correlations between the
nodes. The clique potentials φC measure the “compatibility” between vari-
ables in a clique, and higher values of φC identify more likely configurations.
The potentials need not be conditional distributions. The normalization term
Z, also called partition function, converts the unnormalized exponential into
a proper probability distribution.

It is worth mentioning that the majority of MNs used in the literature
restrict the clique potentials to a linear form, and thus effectively encode a
log-linear model:

p(X) = 1
Z

exp
∑
C∈C

wT
CfC(XC)

2.2. MACHINE LEARNING 25

Here the functions fC = (f 1
C , . . . , f

d
C) act as feature functions, and their con-

tribution to the potential is modulated by a set of real-valued weights wC .
Positive weights are associated to features that render the configuration more
likely. A natural way to implement the feature function is as indicator func-
tions, that evaluate to 1 if a particular property is satisfied by the configu-
ration of XC , and to 0 otherwise. This very useful reinterpretation of clique
potential has been introduced in the machine learning literature by Lafferty,
McCallum and Pereira in [129].

While conceptually similar, BNs and MNs differ in what kinds of distri-
butions they can represent [126]. In particular, BNs are more fit to model
complex causal processes, and have been applied in computational biology to
problems related to the prediction of bidimensional protein properties (such
as secondary structure [130]), to gene regulation [131], and to collective pro-
tein function prediction [132], among others. Particular instantiations of BNs
include Markov Chains, Hidden Markov Models (HMMs) [13], and Dynamic
Bayesian Networks (DBNs) [133]. On the other hand, MNs are more suited
to problems with no definite directionality, e.g. spatial and relational data,
where the correlations are symmetrical. These cases can not be easily cap-
tured with BNs. MNs and their instantiations, such as Conditional Random
Fields (CRFs) [129], have been applied to a wealth of problems, in particular
in the areas of spatial statistics [134], computer vision [135], natural language
processing [136], and many other tasks.

Inference in PGMs has different variants [137]. In general, given a set of
observed nodes X = x, the evidence, the goal is to compute the most likely
state y∗ of a set of unknown, query nodes Y . This form of inference is called
maximum a-posteriori (MAP), and can be written as:

y∗ = arg max
y

p(y | x) (2.1)

Another type of inference involves computing the conditional probability of
a given state Y = y given the observations X = x, and can be written as:

p(y | x) = p(x, y)
p(x) (2.2)

where the second equality follows from Bayes theorem. It is clear that, in
order to perform the optimization in the first equation, we are required to
evaluate the probability of the various candidates y, which in turn relies on
being able to solve the second problem. Note also that, if there is a set of
nodes W in the graph, which are neither observed nor queried, i.e. if there
are latent variables in the problem, then W needs to be marginalized out in

26 CHAPTER 2. BACKGROUND

order to compute Equation 2.2:

p(y | x) =
∑
w

p(y, w | x) =
∑
w

p(y | x,w)p(w | x) (2.3)

This additional summation renders inference more computationally complex.
Similarly to most other probabilistic models, given a set of m examples

D, learning in graphical models amounts to maximize the likelihood of the
model f with respect to the data D, that is, to compute arg max p(f | D). As
is often the case in machine learning, in order to avoid overfitting, the param-
eters (i.e. CPTs for BNs and weights for log-linear models) are equipped with
suitable priors. Restricting the discussion to log-linear Markov Networks, the
maximum (log) likelihood equation can be written as:

arg max
w

m∑
i=1

1
Z

exp
(
−
∑
C∈C

wT
CfC(xiC)

)

where the xiC are the observed values of variables in clique C for example
i [137]. The log-likelihood, being a concave function of the weights [126],
can be minimized efficiently by stock first-order and second-order continuous
optimization methods.

Alas, evaluating the objective function during the optimization procedure
is equivalent to performing inference in the model, which turns out to be, in
the worst case, intractable [137]: although there are general algorithms to
compute the conditional p(y | x) (e.g. message passing algorithms over the
junction tree [126], which can be applied equally to directed and undirected
graphical models), exact inference in PGMs is NP-complete [126]. In partic-
ular, the complexity of inference depends on the treewidth of the model, i.e.
the size of the largest clique in the junction tree. This fact makes inference
tractable only for models with low treewidth. As already hinted to, exact
weight learning, which employs inference as a subroutine, also learning is
intractable.

For this reason, researchers have developed many approximate algorithms [138],
such as loopy belief propagation [139], approximate message passing [140],
and variational inference [141]. The latter is based, roughly, on fitting a
tractable distribution q(X, Y ; θ) to the full joint p(X, Y) and performing in-
ference on the former. Thanks to its strong mathematical foundation and
excellent flexibility — i.e. the possibility to carefully engineer the set Q from
which q is taken from —, variational inference is routinely employed for hi-
erarchical non-parametric Bayesian models [142], such as the Infinite Hidden
Markov model [143], Latent Dirichlet Allocation (LDA) [144] and extensions,
which have gained substantial momentum in the latest years. Approximate

2.2. MACHINE LEARNING 27

inference in PGMs can also be performed with Markov Chain Monte Carlo
(MCMC) methods [145], such as Gibbs sampling [145] which allow to draw
samples from the joint p(X, Y) and compute approximate expected statistics.
This technique has been employed in very complex models, such as Markov
Logic Networks [146] and extensions [147].

Overall, notwithstanding the serious computational limitations afflicting
exact inference and parameter learning, PGMs offer many important advan-
tages: the they are intimately relational (even if not necessarily first-order),
can deal with non-i.i.d. data natively, enable the designer to model very
complex probabilistic processes with in a clear and intuitive language, and
are naturally suited for tasks such as collective classification. Furthermore,
PGMs have been shown to be very successfull in practice. Tractable mod-
els such as Hidden Markov Models and pairwise Conditional Random Fields
are the workhorse of (computational) gene and protein biology. Intractable
models, which are bound to approximate inference (and learning), have also
found broad application in computational biology. Moreover, PGMs can be
turned into discriminative models, which capture the the conditional prob-
ability p(y | x) directly rather than the full joint, using alternative learning
strategies, such as conditional log-likelihood maximization and max-margin
methods [148, 122, 123].

Finally, PGMs are naturally modular, and we will see that their structure
can be defined by means of a formal language. This property can be exploited
to perform templatization, i.e. to instantiate an arbitrary number of copies
of a single PGM template. Using this technique, it is possible to write short
model descriptions that can be unrolled over a large set of variables — with
shared parameters. We will see later how this technique, when combined
with a formal language to guide the instantiation, leads to first-order SRL
models like Markov Logic Networks [149]. Another consequence, which we
will not explore further, is that templatization by means of a formal language
also facilitates the use of lifted algorithms [150], which exploit the layout of
the template instances to reduce the complexity of inference.

2.2.4 Relational Learning
Relational learning [151] refers to learning from data that have structure,
i.e. collections of objects that have relations between them, or collections
of inherently relational/structured objects, or both. Examples of relational
data include trees, graphs, multi-graphs, and relational databases.

Relational data is fundamentally different from the data considered in
statistical learning, which can be easily represented in attribute-value form.
On the contrary, relational data are not i.i.d, since the individual objects (or

28 CHAPTER 2. BACKGROUND

parts thereof) are correlated, and their properties are somehow tied to each
other. As a consequence, pure statistical learning methods, which ignore the
dependencies between elements, are bound to underperform when applied to
relational domains [152]. In particular, Inductive logic programming (ILP) [8,
15, 153] refers to a branch of relational learning that bridges learning and
logical programming, and serves as a basis for many Statistical Relational
Learning methods. In ILP the goal is, given a dataset, to recover a logic
program h, called hypothesis or concept, which “explains” the data. Both
the data and the hypothesis are described in First-Order Logic, which also
serves as a mechanism to define what we mean by “explanation”. In order
to elucidate these points, in the following we will briefly outline the required
concepts.

First-order Logic

The syntax of FOL accounts for four kinds of symbols: constants, variables,
functions and predicates. Given a set of objects, constants identify specific
objects in the domain, and are written in upper case; variables are place-
holders for any object in the domain, written in lower case; functions map
tuples of objects into an object; a term is either a constant, a variable, or a
function applied to a set of terms.

Predicates are syntactic symbols, with a given arity, that describe either
properties if a given object (if 1-ary) or relations between objects (if n-ary,
with n > 1). Examples of predicates are:

enzyme(p) bound(p, p′)

which capture the fact that a protein p may be an enzyme, or that two
proteins p, p’ interact, respectively. Predicates are associated with a Boolean
truth value (True or False) that represents the fact that the predicate holds
or not. For practical reasons, in most learning settings terms are typed.

An atom is a predicate instantiated on a tuple of terms. Well-defined
formulae (or simply formulae) are inductively defined as either i) atoms, or
ii) formulae connected by logical operators. The logical connectives define
both the syntax and the semantics of the formulae, by determining how the
truth value can be inferred from the sub-formulae. Given two formulae F and
G, the logical connectives are:

• negation. ¬F is True if and only if F is False.

• conjunction. F ∧ G is True iff both F and G are True.

• disjunction. F ∨ G is True iff either F or G is True.

2.2. MACHINE LEARNING 29

• implication. F⇒ G is True iff G is True or F is False.

• double implication. F⇔ G is True iff F and G have the same truth value.

• universal quantifier. ∃x F(x) is True iff there is at least one object x in
the domain X for which F(x) is True.

• existential quantifier. ∀x F(x) is True iff F(x) is True for each and every
object x in the domain X .

Terms, atoms and formulae containing no variables are called ground.
A literal is an atomic formula or its negation. A formula in conjunctive

normal form (CNF) is a conjunction of clauses, where each clause is a dis-
junction of literals. Thus a CNF formula with n clauses and m variables each
can be written as:

n∧
i=1

m∨
j=1

xij

where the same variable can occur in different clauses. A Horn clause is a
clause which contains at most one positive literal (the head), and can thus
be written as:

head⇐ l1 ∨ . . . ∨ lm

Here the set of literals lj is called the body of the clause. A clause with no
head is called a fact. A definite logic program, is a set of Horn clauses with
exactly one head each. Definite logic programs are frequently used in ILP
to represent the model (hypothesis). A knowledge base KB is a collection of
implicitly conjoined formulae:

KB :=
∧
i

Fi

An interpretation is a truth assignment to all predicates. An interpre-
tation is a model for a formula F if it satisfies the formula, i.e. if it makes
it true. Given two formulae F and G, F logically entails G if all models of F
are also models of G. Checking whether a formula logically entails another,
a common problem in e.g. theorem proving, is called the satisfiability prob-
lem for First-Order Logic. Explicitly enumerating the models that satisfy
F in order to check whether they also satisfy G is infeasible, so solvers for
satisfiability must rely only on the syntax of the two formulae. Unfortu-
nately, FOL is only semidecidable, meaning that i) if F does logically entail
G, then there exists an algorithmic procedure that produces a proof of the
entailment; but ii) if F does not entail G, then there is no way to decide
whether it is. In other words, the proof procedure may never terminate.

30 CHAPTER 2. BACKGROUND

The canonical algorithm for solving First-Order satisfiability is the Davis-
Putnam-Logemann-Loveland (DPLL) procedure [154, 155].

When the domain of constants is finite, as is in most relational learning
tasks, then First-Order inference can be lowered to propositional satisfiabil-
ity, by merely grounding the First-Order formulae. Given a (propositional)
formula F in conjunctive normal form with clauses Ci on literals lij:

F :=
∧
i

Ci =
∧
i

∨
j

lij

propositional satisfiability (SAT) requires to find an interpretation to the
variables such that all clauses are satisfied. SAT is the prototypical NP-
complete problem, but can be solved in practice by means of local search
heuristics. A more complex extension of SAT, MAX-SAT, involves solving an
optimization problem for weighted clauses, and is also NP-complete. Again,
there are heuristic optimization procedures that work well in practice.

Inductive Logic Programming

The high level goal of ILP is to learn a deterministic hypothesis or concept,
in the form of a logic program, that (intensionally) describes the relational
data. In other words, the learned hypothesis can be interpreted as a logical
theory that entails, or explains, the data at hand.

More formally, given a dataset D that includes n facts xi, i = 1, . . . , n,
annotated with a (positive or negative) class label yi, a background knowledge
B of logical formulae, and a language bias L that describes the hypothesis
space, the goal of ILP is to induce a logical program H that entails all positive
examples and none of the negatives. That is, the learned hypothesis ought to
be both complete and consistent with respect to the background knowledge
B and the data D.

In order to define completeness and consistency, we define the indicator
function covers(H,B, x), which evaluates to 1 if the example x logically
follows from the data and background knowledge, i.e. if H ∪ B ⇒ x. By
extension, we define covers(B,H,X), which returns the set of elements in
X ⊆ D that are logically entailed by B and H. Completeness and consistency
can then be defined as follows:

Definition 2.2.8 (Completeness) A hypothesis H is complete with re-
spect to background knowledge B and examples D, whose positive part is
D+, if and only if:

covers(B,H,D+) = D+

2.2. MACHINE LEARNING 31

Definition 2.2.9 (Consistency) A hypothesis H is consistent with respect
to background knowledge B and examples D, whose negative part is D−, if
and only if:

covers(B,H,D−) = ∅

Learning in ILP amounts to searching the hypothesis space for a complete
and consistent hypothesis. Clearly, as a result of noise or wrong assumptions
in the background knowledge, it is not always possible to find one, so ILP
methods are restricted to find the best scoring hypothesis according to the
number of false positives and false negatives.

In order to evaluate the quality of a candidate hypothesis H, the ILP
procedure needs to compute the function covers(B,H, x). Since inference
in FOL is only semi-decidable, in order to facilitate computing the covers
function, the rules in H and B are written in a decidable subset of FOL,
typically Horn clauses. The model can thus be interpreted as a series of if-
then rules. Chaining procedures or SLD-resolution rules of inference can be
used in practice to compute the value of covers [15].

The space of hypotheses that must be searched during learning is struc-
tured as a partial order through a generality relation between clauses, called
θ-subsumption, as follows.

Definition 2.2.10 (Substitution) A substitution θ = {X1/t1, . . . , Xn/tn}
is a function from variables to terms. The application Fθ of a substitution θ
to a well-formed formula F is obtained by replacing all occurrences of each
variable Xi in F by the term i.

Definition 2.2.11 (Subsumptions) A program clause c θ-subsumes an-
other program clause c′ if there exists a substitution θ such that cθ ⊆ c′. Two
clauses c, c′ are θ-subsumption equivalent if they both θ-subsume each other.
A clause c is reduced if it is not θ-subsumption equivalent to any proper subset
of itself.

θ-subsumption embodies the syntactic equivalent of the notion of gener-
ality: if c θ-subsumes c′ then it is at least as general than c′, written c ≤ c′.
The latter operator is a partial ordering, and as such turns the set of reduced
clauses into a lattice. This means that any two clauses c and c′ have a least
upper bound and a greatest lower bound, unique up to variable renaming.

Definition 2.2.12 (Least general generalization) The least general gen-
eralization (lgg) of two reduced clauses c and c′, denoted by lgg(c, c′), is the
least upper bound of c and c′ in the θ-subsumption lattice.

32 CHAPTER 2. BACKGROUND

The definition of lgg provides the basis for the two basic ILP hypothe-
sis learning techniques we will be concerned with here: bottom-up learning,
which involves building least general generalizations from the dataset (and
the background knowledge), and top-down learning, which defines the search
of refinement graphs. Despite differing on the details, all current ILP meth-
ods belong to one of these two classes. Among them there are Golem [156],
Progol [157], FOIL [158] and Aleph [159].

Bottom-up methods search the hypothesis space in a bottom-up fashion,
starting from the most specific clause allowed by the language bias that cover
a given example, and then generalize it until it can not be further generalized
without covering a negative example. The generalization is carried out using
a generalization operator

ρ(c) := {c′ | c′ ∈ L, c′ < c}

which can perform two types of operations: (i) apply an inverse substitution
to the clause, i.e.substitute a constant with a variable, and (ii) remove a
literal from the body of the clause (which necessarily makes the clause more
general, given the DNF form.)

Top-down methods work in the opposite direction, starting from an empty
clause (which entails all examples) and gradually specializing it. The spe-
cialization is carried out using a refinement operator

ρ(c) := {c′ | c′ ∈ L, c < c′}

and typically compute only the set of most general specialization of a clause
under θ-subsumption. The two basic syntactic operations are (i) apply a
substitution to the clause, thus introducing a constant in place of a variable,
and (ii) add a literal to the body of the clause.

ILP is very versatile, and has been applied successfully to a variety of
settings. Focusing on the biological domain, ILP has been employed for
classical computational tasks such as predicting sequence-based homology
and gene/protein function [160], finding regularities in microarray data [161],
modeling protein–ligand [162] and protein–protein interactions [163], infer-
ring signal transduction pathways [74], discoverying pharmacophores [164],
analyzing the inhibition of enzymes in metabolic networks [165], and to drug
design [166, 167].

The biggest advantages of ILP over other classes of methods are that
it naturally deals with relational data — any learning problem that can be
expressed in FOL is a candidate for ILP. Another advantage is that ILP ex-
plicitly enables the user to include background knowledge B, separate from

2.3. STATISTICAL-RELATIONAL LEARNING 33

the data, in the learning problem: B allows to restrict the space of hy-
potheses, reducing the amount of data required for learning and providing
additional cues to reduce overfitting. ILP methods also allow to learn con-
cepts from one-class data alone (i.e. from positive examples only citemuggle-
ton1997learning), which is an essential capability in many domains. Finally,
the learned concept (logic program) is not only predictive, but may also
serve as an intensional description of the data. The concept consists of few
rules, FOL sentences that are close to natural language and can be readily
understood by domain experts.

Alas, the bottom-up and top-down search strategies are indeed heuris-
tic. Since the hypothesis space is exponentially large and highly non-convex,
learning is not guaranteed to find the globally optimal hypothesis. This lim-
itation affects all ILP systems. To alleviate this issue, the language bias can
be used as a mechanism to control the quality of the learned concept by re-
stricting and biasing the search. Additionally, many ILP methods can revise
the learned concept as a post-processing pass to prune irrelevant (too-generic
or too-specific) clauses.

Ignoring these complexity issues, Inductive Logic Programming, due to its
logical background, is afflicted by two serious limitations. First, it provides
no sound mechanism for handling noise and uncertainty. To the best of
our knowledge, all ILP methods published to date rely on heuristics to pre-
process the data prior to learning. Second, ILP is not designed for dealing
with similarities and distances, a fundamental quantity in many learning
tasks. In general, logic is not well fit for representing numerical attributes,
nor arithmetic. The issue is even more dire for rational values, which require
quantization and a consequent loss of precision. These two issues prevent
ILP from being immediately applicable to many central learning tasks.

2.3 Statistical-Relational Learning
As already anticipated in the previous Chapter, the field of Statistical Rela-
tional Learning (SRL), sometimes also called Probabilistic Logic Program-
ming, was born out the need for methods that could deal with relational data
in a probabilistically sound way. The methods developed in SRL often repre-
sent generalizations of either kernel methods, probabilistic graphical models,
or relational learning techniques. Given their very broad and diverse back-
ground, methods in SRL are very varied, and the relation between them has
not been explored entirely. This state of affairs is often referred to as the SRL
“alphabet soup” [168, 169]. In this section we will not attempt an exhaustive
enumeration of the plethora of methods SRL has to offer, but rather overview

34 CHAPTER 2. BACKGROUND

some of the most peculiar ones and hint at their properties. For more details
on the subject, please refer to any of the following monographs [1, 170].

Just like in ILP, in SRL the data is given in relational form. Objects
are composed of Boolean variables, i.e. predicates, sometimes associated
with a prior probability. As a general rule, what distinguishes SRL methods
from other statistical or probabilistic structured output methods — such as
structured output SVMs and probabilistic graphical models — is the fact that
they encode a First-Order model, rather than a propositional one: rather
than describing the relations between individual variables directly, FOL is
used to define rules, or constraints, or logic programs, which indirectly define
the structure of the model. How this is done depends on the particular model
at hand.

We will distinguish between three classes of models, namely those that
define a probability distribution over possible worlds, or Herbrand interpre-
tations; those that procedurally define a probabilistic semantics according
to a logic-program or equivalent formalism; and those that do not explicitly
define a probability distribution, but still leverage statistical induction.

Models in the first class include Markov Logic Networks (MLN) [171],
where the probability of an interpretation — or truth assignment to all pred-
icates — is defined by how many weighted FOL constraints it satisfied. We
describe MLNs more thoroughly in Chapter 3.

Models in the second class include Statistical Logic Programs [172], PRISM [173]
and Church [174], where a Prolog- or Lisp-like logical language is used to de-
fine a logic program, whose derivation trees then define the probability of the
outputs. We will not further discuss this class of models, for simplicity.

In the last class there are models like nFOIL and kFOIL, which employ a
(dynamic) propositionalization technique to flatten a First-Order logic pro-
gram into a propositional representation manageable through canonical sta-
tistical learning methods. Semantic Based Regularization (SBR) [7] also falls
in this group. SBR is based on a multi-task kernel learning paradigm, where
each predicate is modeled as a kernel classifier; the learning tasks are con-
strained by a background knowledge of First Order rules. We will give a more
thorough explanation of SBR in Chapter 4, and of kFOIL in Chapter 5.

All models in SRL provide great flexibility and expressive power, but
those come at the cost of computational complexity. Methods that derive
from probabilistic graphical models inherit the same type of intractable infer-
ence; furthermore most other probabilistic models require sampling to com-
pute output probabilities. This is to be expected, because relational learning
problems are distinctly more complex than propositional ones.

Chapter 3

Joint Refinement of
Heterogeneous Predictions

3.1 Motivation

Automatic assessment of protein features from amino acid sequence is a
fundamental problem in bioinformatics. Reliable methods for inferring fea-
tures such as secondary structure, functional residues, subcellular localiza-
tion, among others, are a first step towards elucidating the function of newly
sequenced proteins, and provide a complement and a reasonable alternative
to difficult, expensive and time-consuming experiments. A wealth of predic-
tors have been developed in the last thirty years for inferring many diverse
types of features, see e.g. Juncker et al. [175] for a review.

A key observation, often used to improve the prediction performance, is
that several protein features are strongly correlated, i.e. they impose con-
straints on each other. For instance, information about solvent accessibility
of a residue can help to establish whether the residue has a functional role in
binding other proteins or substrates [176], whether it affects the structural
stability of the chain [86], whether it is susceptible to mutations conferring
resistance to drugs [177], whether it occurs within a flexible or disordered
segment [178], etc. There are several other examples in the literature.

Researchers have often exploited this observation by developing predictors
that accept correlated features as additional inputs. This way, the output
is conditioned on the known value of the input features, thus reducing the
possible inconsistencies. It is often the case that the additional input features
are themselves predicted. Highly complex prediction tasks like 3D protein
structure prediction from sequence are typically addressed by splitting the
problem into simpler subproblems (e.g. surface accessibility, secondary struc-

35

36CHAPTER 3. JOINT REFINEMENT OF HETEROGENEOUS PREDICTIONS

ture), whose predictions are integrated to produce the final output. Follow-
ing this practice, multiple heterogeneous predictors have been integrated into
suites (see e.g. Distill [22], SPACE [179] and PredictProtein [23]) providing
predictions for a large set of protein features, from subcellular localization to
secondary and tertiary structure to intrinsic disorder.

However, existing prediction architectures (with a few specific exceptions,
e.g. [180] and [10]) are limited in that the output feature can’t influence a
possibly mis-predicted input feature. In other words, while feature relations
establish a set of mutual constraints, all of which should simultaneously hold,
current predictors are inherently one-way.

Motivated by this observation, we propose a novel framework for dealing
with the integration and mutual improvement of correlated predicted fea-
tures. The idea is to explicitly leverage all constraints, while accounting for
the fact that both the inputs, i.e. the raw predictions, and the constraints
themselves are not necessarily correct. The refinement is carried out by
a probabilistic-logical consistency layer, which takes the raw predictions as
inputs and a set of weighted rules encoding the biological constraints relat-
ing the features. To implement the refiner, we use Markov Logic Networks
(MLN) [149], a statistical-relational learning method able to perform statisti-
cal inference on first-order logic objects. Markov logic allows to easily define
complex, rich first-order constraints, while the embedded probabilistic infer-
ence engine is able to seamlessly deal with potentially erroneous data and
soft rules. We rely on an adaptation of MLN allowing to include grounding-
specific weights (grounding specific Markov Logic Networks) [3], i.e. weights
attached to specific instances of rules, corresponding in our setting to the
raw predictions. The resulting refining layer is able to improve the raw pre-
dictions by removing inconsistencies and constraint violations.

Our method is very general. It is designed to be applicable, in principle, to
any heterogeneous set of predictors, abstracting away from their differences
(inference method, training dataset, performance metrics), without requiring
any changes to the predictors themselves. The sole requirement is that the
predictions be assigned a confidence or reliability score to drive the refinement
process.

As an example application, we show how to apply our approach to the
joint refinement of three highly related features predicted by the PredictPro-
tein Suite [23]. The target features are subcellular localization, generated
with Loctree [4]; disulfide bonding state, with Disulfind [5]; and metal bond-
ing state, with MetalDetector [6]. We propose a few simple, easy to inter-
pret rules, which represent biologically motivated constraints expressing the
expected interactions between subcellular localization, disulfide and metal
bonds.

3.1. MOTIVATION 37

The target features play a fundamental role in studying protein structure
and function, and are correlated in a non-trivial manner. Most biological pro-
cesses can only occur in predetermined compartments or organelles within
the cell, making subcellular localization predictions an important factor for
determining the biological function of uncharacterized proteins [4]; further-
more, co-localization is a necessary prerequisite for the occurrence of physical
interactions between binding partners [72], to the point that lack thereof is
a common mean to identify and remove spurious links from experimentally
determined protein-protein interaction networks. Disulfide bridges are the
result of a post-translational modification consisting in the formation of a
covalent bond between distinct cysteines either in the same or in different
chains [40]. The geometry of disulfide bonds is fundamental for the stabi-
lization of the folding process and the final three-dimensional structure by
fixing the configuration of local clusters of hydrophobic residues; incorrect
bond formation can lead to misfolding [181]. Furthermore, specific cleav-
age of disulfide bonds directly controls the function of certain soluble and
cell-membrane proteins [182]. Finally, metal ions provide key catalytic, reg-
ulatory or structural features of proteins; about 50% of all proteins are esti-
mated to be metalloproteins [183], intervening in many aspects of of the cell
life.

Subcellular localization and disulfide bonding state are strongly corre-
lated: a reducing subcellular environment makes it less likely for the protein
to form disulfide bridges [184]. At the two extremes we find the cytosol,
which is clearly reducing, and the extra-cellular environment for secreted
proteins, which is oxydizing and does not hinder disulfide bonds, with the
other compartments (nucleus, mitochondrion, etc.) exhibiting milder behav-
iors. Similarly, due to physicochemical and packing constraints, it is unlikely
for a cysteine to link both another cysteine (or more than one) and a ligand;
with few exceptions, cysteines are involved in at most one of these bonds [6].

This is the kind of prior knowledge we will use to carry out the refinement
procedure. We note that all these constraints are not hard: they hold for a
majority of proteins, but there are exceptions [184]. In the following, we will
show that that different predictors offer complementary advantages, and how
our method is able to integrate them using non-trivial constraints, resulting
in an overall improvement of prediction accuracy and consistency.

3.1.1 Overview of the Proposed Method
In this chapter we propose a framework to jointly refine existing predictions
according to known biological constraints. The goal is to produce novel, re-
fined predictions from the existing ones, so as to minimize the inconsistencies,

38CHAPTER 3. JOINT REFINEMENT OF HETEROGENEOUS PREDICTIONS

Figure 3.1: Diagram of the refinement pipeline.

PredDis(p,n,w) PredMet(p,n,w) PredLoc(p,l,w)

IsDis(p,n,w) IsMet(p,n,w) IsLoc(p,l,w)

Inference Engine (gs-MLN)
{DL1: IsLoc(p,l)=>!IsDis(p,n)

DM: !(IsDis(p,n)^IsMet(p,n))
etc.

KB =

Rule weights

Table 3.1: List of predicates used in the MLN Refiner.

Predicate Meaning
PredLoc(p,l,w) Protein p is predicted in compartment l with confidence w
PredDis(p,n,w) Cysteine at position n is predicted disulf. bound with confidence w
PredMet(p,n,w) Cysteine at position n is predicted metal bound with confidence w
IsLoc(p,l) Protein p is in compartment l
IsDis(p,n) Cysteine at position n is disulf. bound
IsMet(p,n) Cysteine at position n is metal bound
ProxyLoc(p,l) Proxy predicate to account for estimated Loctree performance
ProxyDis(p,n) Proxy predicate to account for estimated Disulfind performance
ProxyMet(p,n) Proxy predicate to account for estimated MetalDetector performance

in a way that requires minimal training and no changes to the underlying
predictors. The proposed system takes the raw predictions, which are as-
sumed to be associated with a confidence score, and passes them through a
probabilistic-logical consistency layer. The latter is composed of two parts:
a knowledge base (KB) of biological constraints relating the features to be
refined, encoded as weighted first-order logic formulae, which acts as an input
to the second part of the method; and a probabilistic-logical inference engine,
implemented by a grounding-specific Markov Logic Network (gs-MLN) [6].
For a graphical depiction of the proposed method see Figure 3.1.

An example will help to elucidate the refinement pipeline. For simplicity,
let’s assume that we are interested in refining only two features: subcellu-
lar localization and disulfide bonding state. The first step is to employ two
arbitrary predictors to generate the raw predictions for a given protein P.
Note that disulfide bonding state is a per-cysteine binary prediction, while
subcellular localization is a per-protein n-ary prediction; both have an asso-
ciated reliability score, which can be any real number. For a complete list of
predicates used in this chapter, see Table 3.1.

3.1. MOTIVATION 39

Table 3.2: Knowledge Base used in the MLN refiner.

Name Weight Rule Description
I1 per-protein PredLoc(p,l,w) ∧ IsLoc(p,l) Input rule for sub. loc.
I2 per-cysteine PredDis(p,n,w) ∧ IsDis(p,n) Input rule for dis. bonding state
I3 per-cysteine PredMet(p,n,w) ∧ IsMet(p,n) Input rule for metal bonding state

I1P per-protein PredLoc(p,l,w) ∧ ProxyLoc(p,l) Input rule for proxy sub. loc.
I2P per-cysteine PredDis(p,n,w) ∧ ProxyDis(p,n) Input rule for proxy dis. bonding state
I3P per-cysteine PredMet(p,n,w) ∧ ProxyMet(p,n) Input rule for proxy metal bonding state
PX1 from data ProxyLoc(p,l) ⇔ IsLoc(p,l) Proxy rule for sub. loc.
PX2 from data ProxyDis(p,n) ⇔ IsDis(p,n) Proxy rule for dis. bonding state
PX3 from data ProxyMet(p,n) ⇔ IsMet(p,n) Proxy rule for metal bonding state
DL1 from data IsLoc(p,l) ⇒ !IsDis(p,n) Compartment l hinders the formation of dis. bonds
DL2 from data IsLoc(p,l) ⇒ IsDis(p,n) Compartment l favors the formation of dis. bonds
DM from data !(IsDis(p,n) ∧ IsMet(p,n)) Half-cysteines can’t bind metal atoms
L1 ∞

∨
l IsLoc(p,l) A protein must belong to at least one compartment

L2 ∞ ∀l1 IsLoc(p,l1) ∧
∧

l2 !IsLoc(p,l2) A protein must belong to at most one compartment

Let’s assume that the predictions are as follows:

PredLoc(P,Nuc,0.1) PredLoc(P,Cyt,1.2)
!PredLoc(P,Mit,0.8) PredLoc(P,Ext,1.0)

PredDis(P,20,0.8) PredDis(P,26,0.6)

where “!” stands for logical negation. The first four predicates encode the
fact that protein P is predicted to reside in the nucleus with confidence 0.1, in
the cytosol with confidence 1.2, etc. The remaining three predicates encode
the predicted bonding state of three cysteines at positions 11, 20 and 26: the
first cysteine is free with confidence 0.2, the remaining two are bound with
confidence 0.8 and 0.6, respectively. In this particular example, the protein
is assigned conflicting predictions, as the cytosolic environment is known to
hinder the formation of disulfide bridges. We expect one of them to be wrong.

Given the above logical description, our goal is to infer a new set of
refined predictions, encoded as the predicates IsLoc(p,l) and IsDis(p,n).
To perform the refinement, we establish a set of logical rules describing the
constraints we want to be enforced, and feed it to the inference engine. For
a list of rules, see Table 3.2.

First of all, we need to express the fact that the raw predictions should
act as the primary source of information for the refined predictions. We
accomplish this task using the input rules I1 and I2. These rules encode
how the refined prediction predicates IsDis and IsLoc depend primarily on
the raw predicates PredDis and PredLoc. The weight w is computed from
the estimated reliability output by the predictor, and (roughly) determines
how likely the refined predictions will resemble the raw ones.

Next we need to express the fact that a protein must belong to at least

40CHAPTER 3. JOINT REFINEMENT OF HETEROGENEOUS PREDICTIONS

one cellular compartment, using rule L1, and, as normally assumed when
performing subcellular localization prediction, that it can not belong to more
than one, using rule L2. In this example, and in the rest of the chapter,
we will restrict the possible localizations to the nucleus, the cytosol, the
mitochondrion, and the extracellular space. The two above rules are assigned
an infinite weight, meaning that they will hold with certainty in the refined
predictions.

The last two rules used in this example are DL1 and DL2, which express
the fact that the cytosol, mitochondrion and nucleus tend to hinder the
formation of disulfide bridges, while the extracellular space does not. In this
case, the weights associated to the rules are inferred from the training set,
and reflect how much the rules hold in the data itself.

Once we specify the raw predictions and knowledge base, we feed them to
the gs-MLN. The gs-MLN is then used to infer the set of refined predictions,
that is, the IsLoc and IsDis predicates. The gs-MLN allows to query for
the set of predictions that is both most similar to the raw predictions, and
at the same time violates the constraints the least, taking in account the
confidences over the raw predictions and the constraints themselves. See
the Methods section for details on how the computation is performed. In
this example, the result of the computation is the following: IsLoc(P,Ext),
IsDis(P,11), IsDis(P,20), IsDis(P,26). The protein is assigned to the
second most likely subcellular localization, “extracellular”, and the cysteine
which was predicted as free with a low confidence is changed to disulfide
bonded.

It is easy to see that this framework allows to express very complicated
rules between an arbitrary number of features, without particular restrictions
on their type (binary, multi-label) and at different levels of detail (per-residue
or per-protein). Furthermore, this approach minimizes the impact of overfit-
ting: there is only one learned weight for each rule, and very few rules. To
assess the performance of our refiner, we experiment with improving subcel-
lular localization together with disulfide bonding state and metal bonding
state. The knowledge base used for localization and disulfide bridges was
introduced in this section. As for metals, the information is input using rule
I3, and we model the interaction with disulfide bonds through rule DM, which
states that the two types of bonds are mutually exclusive.

3.1.2 Related work
There is a vast body of work dedicated to the issue of information integra-
tion, and in particular to the exploitation of correlated protein features. In
many cases, the proposed methods are limited to augmenting the inputs us-

3.1. MOTIVATION 41

ing correlated features (either true or predicted) as additional hints to the
predictors. In this setting, a work closely related to ours is [185], in which
Savojardo and colleagues propose a prediction method for disulfide bridges
that explicitly leverages predicted subcellular localization [186]. As in the
other cases, the authors implement a one-way approach, in which a predicted
feature (localization) is employed to improve a related one (disulfide bond-
ing state). The protein prediction suites briefly mentioned above (Distill [22],
SPACE [179] and PredictProtein [23]) provide another clear example of one-
way architectures. Prediction suites are built by stacking multiple predictors
on top of each other, with each layer making use of the predictions computed
by the lower parts of the stack. In this case, the main goal is the computa-
tion of higher-level features from simpler ones. Note however that the issue
of two-way consistency is ignored: these architecture do not back-propagate
the outputs of the upper layers to the bottom ones. On the other hand, our
approach allows to jointly improve all predictions by enforcing consistency
in the refined outputs.

Another popular way to carry out the prediction of correlated features
is multi-task learning. In this setting, one models each prediction task as
a separate problem and trains all the predictors jointly. The main benefit
comes from allowing information to be shared between the predictors during
the training and inference stages. These methods can be grouped in two
categories: iterative and collective.

Iterative methods exploit correlated predictions by re-using them as in-
puts to the algorithm, and iterating the training procedure until a stopping
criterion is met. This approach can be found in, e.g. Yip et al. [10], which
proposes a method to jointly predict protein-, domain-, and residue-level in-
teractions between distinct proteins. Their proposal involves modeling the
propensity of each protein, domain and residue to interact with other objects
at the same level as a distinct regression task. After each iteration of the
training/inference procedure, the most confident predictions at one level are
propagated as additional training samples at the following level. This simple
mechanism allows for information to bi-directionally flow between different
tasks and levels. Another very relevant work is [180], in which Maes et al.
jointly predict the state of five sequential protein features: secondary struc-
ture (in 3 and 8 states), solvent accessibility, disorder and structural alphabet.
Also in this case, distinct predictors are run iteratively using the outputs at
the previous time slice as additional inputs. Collective methods instead fo-
cus on building combinations of classifiers, e.g. neural network ensembles,
using shared information in a single training iteration. As an example, [187]
describes how to maximize the diversity between distinct neural networks
with the aim of improving the overall accuracy. However most applications

42CHAPTER 3. JOINT REFINEMENT OF HETEROGENEOUS PREDICTIONS

in biology focus on building ensembles of predictors for the same task, as is
the case in Pollastri et al. [188] for secondary structure.

The main differences with our method are the following: (a) There exist
a number of independently developed predictors for a plethora of correlated
features. It would be clearly beneficial to refine their predictions in some way.
Our goal is to be able to integrate them without requiring any change to the
predictors themselves. The latter operation may be, in practice, infeasible,
either because the source is unavailable, or because the cost of retraining
after every change is unacceptably high. All of the methods presented here
are designed for computing predictions from the ground up; our method is
instead designed for this specific scenario. (b) Our method allows one to con-
trol the refinement process by including prior knowledge about the biological
relationships affecting the features of interest; furthermore the language used
to encode the knowledge base, first-order logic, is well defined and flexible.
The other methods are more limited: any prior knowledge must be embed-
ded implicitly in the learning algorithm itself. (c) The weights used by our
algorithm are few, simple statistics of the data, and do not require any com-
plex training. On the other hand, all the methods presented here rely on a
training procedure, and have a higher risk of incurring in overfitting issues.

3.2 Results and Discussion

3.2.1 Data Preparation
We assessed the performance of our framework on a representative subset of
the Protein Data Bank [189], the 2010/06/16 release of PDBselect [190]. The
full dataset includes 4,246 unique protein chains with less than 25% mutual
sequence similarity.

Focusing only on proteins containing cysteines, we extracted the true
disulfide bonding state using the DSSP software [38], and the true metal
bonding state from the PDB structures using a contact distance threshold
of 3 Å. Metals considered in this experiment are the same used for training
MetalDetector, a total of 33 unique metal atoms and 75 molecular metals.
See Passerini et al. [191] for more details.

Subcellular localization was recovered using the annotations in DBSubLoc
[192] and UniProt [193]; we translated between PDB and UniProt IDs using
the chain-level mapping described by Martin [194], dropping all proteins that
could not be mapped. To increase the dataset coverage, we kept all those
proteins whose true localization did not belong to any of the classes predicted
by Loctree (which for animal proteins amount to cytosol, mitochondrion,

3.2. RESULTS AND DISCUSSION 43

nucleus and extracellular – secreted), was ambiguous or missing, and marked
their localization annotation as “missing”. Loctree is also able to predict
proteins in a fifth, composite class, termed “organelle”, which includes the
endoplasmic reticulum, Golgi apparatus, peroxysome, lysosome, and vacuole.
The chemical environment within these organelles can be vastly different, so
we opted for removing them from the dataset, for simplicity.

Subcellular localization prediction requires different prediction methods
for each kingdom. The preprocessing resulted in a total of 1184 animal pro-
teins, and a statistically insignificant amount of plant and bacterial proteins;
we discarded the latter two. Of the remaining proteins, 526 are annotated
with a valid subcellular localization (i.e. not “missing”). The data includes
5275 cysteines, of which 2456 (46.6%) are half cysteines (i.e. involved in a
disulfide bridge) and 458 (8.7%) bind metal atoms. We also have two half
cysteines that bind a metal (in protein 2K4D, chain A); we include them in
the dataset as-is.

3.2.2 Evaluation Procedure

Each experiment was evaluated using a standard 10-fold cross-validation pro-
cedure. For each fold, we computed the rule weights over the training set, and
refined the remaining protein chains using those weights. The rule weights
are defined as the log-odds of the probability that a given rule holds in the
data, that is, if the estimated prediction reliability output by the predictor
is r, the weight is defined as w = log(r/(1− r)). Given the weights, we refine
all the raw features of proteins in the test set. If the subcellular localization
for a certain protein is marked as “missing”, we use the predicted localization
to perform the refinement. In this case, the refined localization is not used
for computing the localization performance, and only the disulfide and metal
bond refinements contribute to the fold results, in a semi-supervised fashion.

For binary classification (i.e. disulfide and metal bonding state predic-
tion) let us denote by Tp, Tn, Fp and Fn the number of true positives, true
negatives, false positives, and false negatives, respectively, and N the total
number of instances (cysteines). We evaluate the performance of our refiner
with the following standard measures:

Q = Tp + Tn
N

(3.1)

P = Tp
Tp + Fp

(3.2)

44CHAPTER 3. JOINT REFINEMENT OF HETEROGENEOUS PREDICTIONS

R = Tp
Tp + Fn

(3.3)

F1 = 2 · P ·R
P +R

(3.4)

The accuracy Q, precision P and recall R are standard performance metrics.
The F1 score is the harmonic mean of precision and recall, and is useful as
an estimate balancing the contribution of the two complementary measures.
We report the average and standard deviation of all above measures taken
over all folds of the cross-validation.

For multi-class classification (subcellular localization) we compute the
confusion matrix M over all classes, where each element Mij counts the
number of instances whose true class is i and were predicted in class j. The
more instances lie on the diagonal of the confusion matrix, the better the
predictor.

We note that, in general, it is difficult to guarantee that our test set
does not overlap with the training set of the individual raw predictors. This
may result in an artificial overestimate of the performance of the raw predic-
tors. However, training in our model consists in estimating the rule weights
from the raw predictions themselves. As a consequence, the results of our
refiner may be underestimated when compared with the inflated baseline
performance. We also note that, since our model requires estimating very
few parameters, i.e. one weight per rule, it is less susceptible to overfitting
than methods having many parameters which rely on a full-blown training
procedure.

3.2.3 Raw Predictions
We generate the predictions for subcellular localization, disulfide bridges,
metal bonds and solvent accessibility using the respective predictors. All
predictors were installed locally, using the packages available from the Pre-
dictProtein Debian package repository1, and configured to use the default
parameters. For all protein chains predicted in the “organelle” class, we
marked the prediction as “missing”, for the reasons mentioned above.

For Disulfind and MetalDetector, we converted the per-cysteine weighted
binary predictions into two binary predicates for each cysteine, PredDis/3
and PredMet/3, using as prediction confidence w the SVM margin. For Loc-
tree, we output four PredLoc/3 predicates for each protein, one for each
possible subcellular localization, and computed the confidence by using a
continuous version of the Loctree-provided output-to-confidence mapping.

1https://www.rostlab.org/owiki/index.php/Packages

3.2. RESULTS AND DISCUSSION 45

The raw predictor performance can be found alongside with the refiner per-
formance in Tables 3.3 to 3.6.

3.2.4 Alternative Refinement Pipelines
In order to assess the performance of our method, we carried out comparative
experiments using two alternative refinement architectures. Both architec-
tures are based on state-of-the-art sequential prediction methods, namely
Hidden Markov Support Vector Machines (HMSVM) [195] and Bidirectional
Recurrent Neural Networks (BRNN) [196]. Both methods can naturally per-
form classification over sequences, and have been successfully applied to sev-
eral biological prediction tasks.

The alternative architectures are framed as follows. The predictors are
trained to learn a mapping between raw predictions and the ground truth,
using the same kind of pre-processing as the MLN refiner. Cysteines belong-
ing to a protein chain form a single example, and all cysteines in an example
are refined concurrently. The input consists of all three raw predictions in
both cases.

The two methods were chosen as to validate the behavior of more standard
refinement pipelines relying on both hard and soft constraints. In the case of
HMSVMs, the model outputs a single label for each residue: a cysteine can
be either free, bound to another cysteine, or bound to a metal. This encoding
acts as a hard constraint on the mutual exclusivity between the two labels.
In the case of BRNNs, each cysteine is modeled by two independent outputs,
so that all four configurations (free, disulfide bound, metal bound, or both)
are possible. The BRNN is given the freedom to learn the (soft) mutual
exclusivity constraint between the two features from the data itself.

Pure sequential prediction methods, like HMSVMs, are at the same spe-
cialized for, and limited to, refining sequential features, in our case disulfide
and metal bonding state. Therefore, we can’t use the HMSVM pipeline for
localization refinement. As a result, the alternative pipeline is faced with a
reduced, and easier, computational task. While BRNN are also restricted
to sequential features, more general recursive neural networks [197] can in
principle model arbitrary network topologies. However, they cannot explic-
itly incorporate constraints between the outputs, which is crucial in order to
gain mutual improvement between subcellular localization and bonding state
predictions. As experimental results will show, these alternative approaches
already fail to jointly improve sequential labeling tasks.

We performed a 10-fold inner cross-validation to estimate the model hy-
perparameters (regularization tradeoff for the HMSVM, learning rate for the
neural network), using the same fold splits as the main experiment. The

46CHAPTER 3. JOINT REFINEMENT OF HETEROGENEOUS PREDICTIONS

results can be found in Table 3.3 through 3.6.

3.2.5 True Subcellular Localization
As a first experiment, we evaluate the effects of using the true subcellular
localization to refine the remaining predictions, i.e. we supply the refiner with
the correct IsLoc directly, while querying the IsDis and IsMet predicates.
The experiment represents the ideal case of a perfect subcellular localization
predictor, and we can afford to unconditionally trust its output.

The experiment is split in four parts of increasing complexity.
• In the ‘Dis. + Met.’ case we refine both IsDis and IsMet from the

respective raw predictions, using only the DM rule (see Table 3.2) to co-
ordinate disulfide and metal bonding states; the localization in this case
is ignored. The experiment is designed to evaluate wheter combining
only disulfide and metal predictions is actually useful in our dataset.

• In the ‘Dis. + Loc.’ case we refine IsDis from the raw disulfide pre-
dictions and the true localization, using the DL1 and DL2 rules.

• In the ‘Dis. + Met. + Loc.’ case we refine IsDis and IsMet making
the refined disulfide bonding state interact with metals (using the DM
rule), solvent accessibility (with the DA rule), and subcellular localiza-
tion (with DL1 and DL2.)

The results can be found in Table 3.3.
Three trends are apparent in the results. First of all, we find subcellular

localization to have a very strong influence on disulfide bonding state, as
expected. In particular, in the ’Dis. + Loc.’ case, which includes no metal
predictions, the accuracy and F1 measure improves from 0.804 and 0.811
(raw) to 0.857 and 0.856 (refined), respectively. The change comes mainly
from an increase in precision: the true subcellular localization helps reducing
the number of false positives.

The interaction between metals and disulfide bonds is not as clear cut:
in the ‘Dis. + Met.’ case, which includes no subcellular localization, the
refined disulfide predictions slightly improve, in terms of F1 measure, while
the metal predictions slightly worsen. The latter case is mainly due to the
drop in recall, from 0.827 to 0.739. This is to be expected, as the natural
scarcity of metal residues makes the metal prediction task harder (as can
be seen observing the differential behavior of accuracy and F1 measure). As
a consequence the confidence output by MetalDetector is lower than the
confidence output by Disulfind. In other words, in the case of conflicting raw
predictions, the disulfide predictions usually dominate the metal predictions.

3.2. RESULTS AND DISCUSSION 47

Table 3.3: Results for True Sub. Loc.

Disulfide Bonding State
Experiment Q P R F1
Raw predictions 0.804± 0.03 0.720± 0.06 0.917± 0.04 0.811± 0.04
Dis. + Met. 0.832± 0.04 0.767± 0.05 0.913± 0.04 0.833± 0.04
Dis. + Loc. 0.857± 0.03 0.801± 0.04 0.921± 0.03 0.856± 0.03
Dis. + Met. + Loc. 0.867± 0.03 0.819± 0.04 0.919± 0.03 0.865± 0.03
HMSVM 0.874± 0.03 0.884± 0.06 0.851± 0.03 0.866± 0.03
BRNN 0.892± 0.02 0.900± 0.03 0.863± 0.05 0.880± 0.03

Metal Bonding State
Experiment Q P R F1
Raw predictions 0.952± 0.02 0.686± 0.09 0.827± 0.10 0.747± 0.09
Dis. + Met. 0.950± 0.02 0.711± 0.09 0.739± 0.14 0.713± 0.09
Dis. + Loc. – – – –
Dis. + Met. + Loc. 0.952± 0.02 0.709± 0.08 0.783± 0.11 0.736± 0.07
HMSVM 0.950± 0.02 0.741± 0.12 0.697± 0.08 0.711± 0.07
BRNN 0.948± 0.02 0.683± 0.09 0.763± 0.11 0.715± 0.07

Finally, in ‘Dis. + Met. + Loc.’ case, both disulfide and metal bonds
improve using the true subcellular localization compared to the above set-
tings. In particular, metal ligand prediction, while still slightly worse than
the baseline (again, due to class unbalance, as mentioned above) sees a clear
gain in recall (from 0.739 in the ‘Dis. + Met.’ case to 0.783). This is an effect
of using localization: removing false disulfide positives leads to less spurious
conflicts with the metals.

The two alternative pipelines behave similarly. They both manage to
beat the Markov Logic Network on the easier of the two tasks, disulfide
refinement, while performing worse on the metals. We note that the HMSVM
and BRNN, contrary to our method, both have a chance to rebalance the
raw metal predictions with respect to the disulfide predictions during the
training stage, learning a distinct bias/weight for the inputs. Nevertheless,
they still fail to improve upon our refined metals.

3.2.6 Predicted Subcellular Localization
This experiment is identical to the previous one, except we use predicted
subcellular localization in place of the true one. Similarly to the previous
section, we consider three sub-cases. In the ‘Dis. + Loc.’ case, we refine
localization and disulfide bonding state, while in the ‘Dis. + Met. + Loc.’

48CHAPTER 3. JOINT REFINEMENT OF HETEROGENEOUS PREDICTIONS

case we refine all three predicted features together. The results can be found
in Table 3.4. The ‘Dis. + Met.’ case is reported as well for ease of comparison.

Here we can see how our architecture can really help with the mutual
integration of protein features. In general, we notice that refined disulfide
bonds are enhanced by the integration of localization, even if less so than
in the previous experiment. At the same time, localization also benefits by
the interaction with disulfide bonds, as can be seen in the ‘Dis. + Loc.’
case. The biggest gain is obtained for the ExtraCellular and Nucleus classes,
which are also the most numerous classes in the dataset: several protein
chains are moved back to their correct class. The introduction of metals
improves directly disulfide bonds and indirectly localization, even though its
effect is relatively minor.

On the downside, refined metal predictions worsen in all cases. This is
due, again, to the unbalance of the small number of metal binding residues
found in the data, and to the difference between the confidences output by
Disulfind and MetalDetector.

Surprisingly, the alternative pipelines are not as affected by the worsening
of the localization information: their performance is on par as with the true
localization. This is in part explained by the simpler task the alternative
methods carry out, as it does not involve refinement of the raw localization
itself. It turns out that using predicted localization itself, the alternative
methods manage to perform better than us also for metal refinement. In the
following, we will show an improvement to our pipeline to address this issue.

3.2.7 Predicted Subcellular Localization with Predictor Re-
liability

The previous experiment shows that our refiner performs suboptimally on the
metal refinement task due to class unbalance. A common way to alleviate
this issue is to re-weight the classes according to some criterion. In our case,
the positive metal residues are dominated by the negative ones, making the
overall accuracy of MetalDetector higher than that of Disulfind. Our method
naturally supports the re-weighting of predictors with different accuracy:
the weight assigned to a Pred predicate can be strengthened or weakened
depending on our estimate of the predictor accuracy.

To implement this strategy, we add an intermediate proxy predicate,
weighted according to the actual predictor performance over the training
set. The proxy predicate mediates the interaction between the raw predic-
tion (the Pred predicate) and the refined prediction (the Is predicate). The
actual proxy predicates are ProxyLoc, ProxyDis and ProxyMet, used by rules

3.2. RESULTS AND DISCUSSION 49

Table 3.4: Results for Predicted Sub. Loc.

Disulfide Bonding State
Experiment Q P R F1
Raw predictions 0.804± 0.03 0.720± 0.06 0.917± 0.04 0.811± 0.04
Dis. + Met. 0.832± 0.04 0.767± 0.05 0.913± 0.04 0.833± 0.04
Dis. + Loc. 0.809± 0.03 0.732± 0.06 0.923± 0.04 0.815± 0.04
Dis. + Met. + Loc. 0.843± 0.03 0.779± 0.04 0.919± 0.04 0.843± 0.03
HMSVM 0.882± 0.03 0.890± 0.05 0.856± 0.04 0.872± 0.04
BRNN 0.884± 0.03 0.895± 0.03 0.847± 0.05 0.870± 0.03

Metal Bonding State
Experiment Q P R F1
Raw predictions 0.952± 0.02 0.686± 0.09 0.827± 0.10 0.747± 0.09
Dis. + Met. 0.950± 0.02 0.711± 0.09 0.739± 0.14 0.713± 0.09
Dis. + Loc. – – – –
Dis. + Met. + Loc. 0.949± 0.02 0.707± 0.09 0.731± 0.14 0.705± 0.08
HMSVM 0.952± 0.02 0.755± 0.07 0.707± 0.09 0.725± 0.06
BRNN 0.950± 0.02 0.694± 0.09 0.768± 0.11 0.723± 0.08

Subcellular Localization
Raw predictions

Cytosol ExtraCell. Mitoch. Nucleus
Cytosol 14 11 2 5
ExtraCell. 17 206 2 29
Mitoch. 12 8 6 8
Nucleus 46 67 15 78

Dis. + Loc.
Cytosol 15 10 2 5
ExtraCell. 18 223 2 11
Mitoch. 12 223 2 8
Nucleus 48 55 16 87

Dis. + Met. + Loc.
Cytosol 15 9 2 6
ExtraCell. 18 223 2 11
Mitoch. 12 6 8 8
Nucleus 48 44 21 93

50CHAPTER 3. JOINT REFINEMENT OF HETEROGENEOUS PREDICTIONS

Table 3.5: Results for True Sub. Loc. with Proxy.

Disulfide Bonding State
Experiment Q P R F1
Raw predictions 0.804± 0.03 0.720± 0.06 0.917± 0.04 0.811± 0.04
Dis. + Met. 0.838± 0.03 0.776± 0.04 0.912± 0.04 0.838± 0.04
Dis. + Loc. 0.853± 0.03 0.796± 0.05 0.921± 0.03 0.853± 0.03
Dis. + Met. + Loc. 0.865± 0.03 0.817± 0.04 0.917± 0.03 0.863± 0.03
HMSVM 0.874± 0.03 0.884± 0.06 0.851± 0.03 0.866± 0.03
BRNN 0.892± 0.02 0.900± 0.03 0.863± 0.05 0.880± 0.03

Metal Bonding State
Experiment Q P R F1
Raw predictions 0.952± 0.02 0.686± 0.09 0.827± 0.10 0.747± 0.09
Dis. + Met. 0.952± 0.02 0.696± 0.08 0.795± 0.11 0.739± 0.08
Dis. + Loc. – – – –
Dis. + Met. + Loc. 0.952± 0.02 0.695± 0.08 0.807± 0.10 0.743± 0.08
HMSVM 0.950± 0.02 0.741± 0.12 0.697± 0.08 0.711± 0.07
BRNN 0.948± 0.02 0.683± 0.09 0.763± 0.11 0.715± 0.07

I1P to I3P, and PX1 to PX3. See Tables 3.1 and 3.2 for the details. The re-
sults can be found in Table 3.6. For completeness, we also include the proxy
results for true subcellular localization in Table 3.5.

The proxy helps the MLN refiner: the refined metal predictions are on-
par with the raw ones, while at the same time improving the disulfide bonds.
The effects are especially clear when comparing the ‘Dis. + Met.’ cases
of Tables 3.3 (true localization, no proxy) and 3.5 (true localization, with
proxy), with F1 scores changing from 0.833 and 0.713 for bridges and metals,
respectively, to 0.838 and 0.739. We note that our method is the only one
able to recover the same performance as MetalDetector while also improving
the other two refined features. On the contrary, the alternative pipelines
tend to favor one task (disulfide bridges) over the other, and fail in all cases
to replicate the baseline performance.

The down-side is that localization refinement is slightly worse: the raw
Nucleus predictions are less accurate than the Cytosol ones, leading to the
Cytosol being assigned a higher proxy weight. Since both compartments
prevent disulfide bonds, the MLN refiner tends to assign chains with no half
cysteines to the latter.

3.2. RESULTS AND DISCUSSION 51

Table 3.6: Results for Predicted Sub. Loc. with Proxy.

Disulfide Bonding State
Experiment Q P R F1
Raw predictions 0.804± 0.03 0.720± 0.06 0.917± 0.04 0.811± 0.04
Dis. + Met. 0.838± 0.03 0.776± 0.04 0.912± 0.04 0.838± 0.04
Dis. + Loc. 0.803± 0.03 0.727± 0.05 0.922± 0.04 0.811± 0.04
Dis. + Met. + Loc. 0.846± 0.03 0.784± 0.04 0.918± 0.04 0.845± 0.04
HMSVM 0.882± 0.03 0.890± 0.05 0.856± 0.04 0.872± 0.04
BRNN 0.884± 0.03 0.895± 0.03 0.847± 0.05 0.870± 0.03

Metal Bonding State
Experiment Q P R F1
Raw predictions 0.952± 0.02 0.686± 0.09 0.827± 0.10 0.747± 0.09
Dis. + Met. 0.952± 0.02 0.696± 0.08 0.795± 0.11 0.739± 0.08
Dis. + Loc. – – – –
Dis. + Met. + Loc. 0.952± 0.02 0.706± 0.08 0.782± 0.10 0.735± 0.06
HMSVM 0.952± 0.02 0.755± 0.07 0.707± 0.09 0.725± 0.06
BRNN 0.950± 0.02 0.694± 0.09 0.768± 0.11 0.723± 0.08

Subcellular Localization
Raw predictions

Cytosol ExtraCell. Mitoch. Nucleus
Cytosol 14 11 2 5
ExtraCell. 17 206 2 29
Mitoch. 12 8 6 8
Nucleus 46 67 15 78

Dis. + Loc.
Cytosol 13 13 2 4
ExtraCell. 22 224 0 8
Mitoch. 12 6 8 8
Nucleus 61 56 14 75

Dis. + Met. + Loc.
Cytosol 14 12 2 4
ExtraCell. 22 224 0 8
Mitoch. 12 6 8 8
Nucleus 67 41 17 81

52CHAPTER 3. JOINT REFINEMENT OF HETEROGENEOUS PREDICTIONS

3.2.8 Conclusions
In this chapter we introduced a novel framework for the joint integration and
refinement of multiple related protein features. The method works by resolv-
ing conflicts with respect to a set of user-provided, biologically motivated
constraints relating the various features. The underlying inference engine,
implemented as a grounding-specific Markov Logic Network [3], allows to
perform probabilistic reasoning over rich first-order logic rules. The designer
has complete control over the refinement procedure, while the inference en-
gine accounts for potential data noise and rule fallacy.

As an example, we demonstrate the usefulness of our framework on three
distinct predicted features: subcellular localization, disulfide bonding state,
metal bonding state. Our refiner is able to improve the predictions by re-
moving violations to the constraints, leading to more consistent results. In
particular, we found that subcellular localization plays a central role in deter-
mining the state of potential disulfide bridges, confirming the observations of
Savojardo et al. [185]. Our method however also allows to improve subcellular
localization in the process, helping to discriminate between chains residing
in reducing and oxydizing cellular compartments, especially nuclear and se-
creted chains. We also found that disulfide predictions benefit from metal
bonding information, although to a lesser extent, especially when used in
conjunction with localization predictions. On the other hand metals, which
are in direct competition with the more abundant disulfide bonds, are harder
to refine. We presented a simple and natural re-weighting strategy to alle-
viate this issue. The task would be further helped by better localization
predictions, which tend to improve the distribution of disulfide bridges, as
shown by the experiments with true subcellular localization.

We compared our refinement pipeline with two alternatives based on
state-of-the-art sequential prediction methods, Hidden Markov Support Vec-
tor Machines and Bidirectional Recursive Neural Networks. These methods
have two fundamental advantages: they are run through a full-blown training
procedure, and are only asked to refine the two sequential features, a task
for which they are highly specialized. However, the results show that they
tend to favor the easier task (disulfide bridges) over the other, struggling to
achieve the same results of the baseline on the harder task (metals). On the
contrary, our method is more general, and does not favor one task at the
expense of the others.

Our framework is designed to be very general, with the goal of refining
arbitrary sets of existing predictors for correlated features, such as Distill [22]
and PredictProtein [23], for which re-training is difficult or infeasible. As a
consequence, our framework does not require any change to the underlying

3.3. METHODS 53

predictors themselves, only requiring that they provide an estimated relia-
bility for their predictions.

3.3 Methods

3.3.1 Predictors
Disulfind [5] is a web server for the prediction of disulfide bonding state and
binding geometry from sequence alone. Like other tools for the same problem,
Disulfind splits the task in two simpler sub-problems as follows. First an
SVM binary classifier is employed to independently infer the bonding state
of each cysteine in the input chain. The SVM is provided with both local and
global information. Local information includes a window of position-specific
conservations derived from multiple alignment, centered around each target
cysteine. Global information represent global features of the whole chain,
such as length, amino acid composition, and average cysteine conservation.
Then a bidirectional recursive neural network (BRNN) is used to collectively
refine the possibly incorrect SVM predictions, assigning a revised binding
probability to each cysteine. Finally, the predictions are post-processed with
a simple finite-state automaton to enforce an even number of positive disulfide
bonds. For the technical details, see Vullo et al. [198].

MetalDetector [191] is a metal bonding state classifier, whose architecture
is very similar to Disulfind. It is split in two stages, an SVM classifier for
local, independent per-residue

Loctree [4] is a multiclass subcellular localization predictor based on a
binary decision tree of SVM nodes. The topology of the tree mimics the
biological structure of the cellular protein sorting system. It is designed to
predict the subcellular localization of proteins given only their sequence, and
uses multiple input features: a multiple alignment step is performed against
a local, reduced redundancy database of UniProt proteins, and makes use of
a stripped, specially tailored version of Gene Ontology vocabulary terms to
improve its performance. It also uses psort 3.0 [199]. The predictor incor-
porates three distinct topologies, one for each of the considered kingdoms:
prokaryotes, eukariotic plants (viridiplantae), eukariotic non-plants (meta-
zoa).

3.3.2 Markov Logic Networks
A Markov Logic network (MLN) [171, 149], is a Statistical Relational Learn-
ing method (see Chapter 2 to define a probability distribution over all possible

54CHAPTER 3. JOINT REFINEMENT OF HETEROGENEOUS PREDICTIONS

worlds (truth assignments) of a set of formulae allowing to perform reasoning
over possibly wrong or conflicting facts.

A MLN consists of a finite domain of objects (constants) C and a knowl-
edge base KB of logical rules. Each formula Fi in KB is associated a real-valued
weight wi, representing the confidence we have in that rule. Weights close to
zero mean that the formula is very uncertain, while larger weights mean that
it is likely to hold (if positive) or not (if negative). Contrarily to pure FOL, in
Markov Logic the formulae in the KB are explicitly fallible; as a consequence,
Markov Logic admits interpretations that don’t satisfy all the constraints.

Instantiating all the formulae in KB using all possible combinations of
constants in C leads to a grounding of the knowledge base. As an example,
if C consists of three objects, a protein P and two cysteines at position 4
and 19, and the knowledge base consists of the formula DM = !(IsDis(p,n)
∧ IsMet(p,n)), then the grounding will be the set of ground formulae:
{DM(P, 4), DM(P, 19)}. A possible world is a truth assignment of the ground-
ing of KB. Markov Logic defines a way to assign to each possible world a
probability, determined by the weight of the formulas that it satisfies.

A MLN defines a joint probability distribution over the set of inter-
pretations (i.e. truth assignments) of the grounding of KB. In the previ-
ous example, if the formula DM has a positive weight, then the assignment
DM(P, 4) ∧ DM(P, 19) will be the most likely, while !DM(P, 4)∧!DM(P, 19) will be
the least likely, with the other possible worlds standing in between. In addi-
tion, if an assignment satisfies a formula with a negative weight, it becomes
less likely.

Given a set of ground atoms x of known state, and a set of atoms y
whose state we want to determine, we can define the conditional distribution
generated by a MLN as follows:

p(y | x ; w) = 1
Z(x) exp

∑
Fi∈KB

wini(x, y)

Here ni(x, y) counts how many times the formula Fi is satisfied by groundings
of world (x, y), and Z(x) is a normalization term. In other words, the above
formula says that the probability of y being in a given state is proportional to
the weighted number of formulae in KB that the interpretation (x, y) satisfies.
We can query a MLN for the most likely state of the unknown predicates y
from the known facts x by taking the truth assignment of y that maximizes
the above conditional probability.

Maximum a-posteriori (MAP) inference, i.e. the task of finding the most
likely interpretation for query predicates y given a set of evidence predicates
x, involves finding the interpretation of the variables y that maximizes the

3.3. METHODS 55

weighted sum of the constraints. Even though MLNs can be defined over
non-finite FOL [200], in practice the dataset and knowledge bases are always
finite. Consequently, MAP inference is equivalent to a MAX-SAT problem
over the grounded network. As we have already seen in Chapter 2, MAX-SAT
is NP-complete, rendering exact inference intractable. There are however a
number of heuristic methods [201] which can quickly find reasonable approx-
imate solutions. Given a MAX-SAT solution, estimating the probabilities of
the output can be performed approximately by Gibbs sampling [149].

A very promising alternative to brute-force MAX-SAT is lifted inference,
which has recently gained momentum in the SRL field. Lifted inference
exploits the symmetries imposed by the high-level relational description of
the model (in the MLN case, the formulae) by working on equivalence classes
of objects rather than on individual instances. Lifted inference has been
developed for MLNs in, e.g. [202, 203, 204]. For a short introduction to
lifted inference for probabilistic and statistical-relational models, see [150].

Markov Logic can be trained either as a generative model [149] with
a canonical log-likelihood maximization procedure (see Chapter 2) or as a
discriminative model. Discriminative techniques has attained by either max-
imizing the conditional log-likelihood [149], using a voted perceptron ana-
logue [205], and by max-margin methods [206].

An issue with standard Markov Logic is that distinct groundings of the
same formula Fi are assigned the same weight wi. This is not the case for
our raw predictions, which are specific for each protein (e.g. subcellular
localization) or each residue within a protein (e.g. metal or disulfide bonding
state).

To overcome this issue, we make use of grounding-specific Markov Logic
Networks (gs-MLN), introduced in Lippi et al. [3], an extension that adds
the ability of specifying per-grounding weights. The idea is to substitute
the fixed per-formula weight w with a new function ω that depends on the
particular grounding. The conditional distribution is modified to be of the
form:

p(y|x; θ) = 1
Z(x) exp

∑
Fi∈KB

∑
g∈G(Fi)

ω(g, θi)nij(x, y)

Here the variable g ranges over all satisfied groundings of formula Fi, and the
function ω evaluates the weight of the given grounding g according to a set
of per-formula parameters θi.

56CHAPTER 3. JOINT REFINEMENT OF HETEROGENEOUS PREDICTIONS

Chapter 4

Multi-level Protein Interaction
Prediction

4.1 Background

Physical interactions between proteins are the workhorse of cell life and de-
velopment [64], and play an extremely important role both in the mechanisms
of disease [65] and in the design of new drugs [66]. In recent years, there has
been enormous interest in reverse engineering the protein–protein interac-
tion (PPI) networks of several species, particularly due to the availability of
high-throughput experimental techniques, leading to an abundance of large
databases on all aspects of PPIs [80].

Notwithstanding the increased availability of interaction data, the natu-
ral question of whether two arbitrary proteins interact, and why, is still open.
The growing literature on protein interaction prediction [79, 80, 81] is symp-
tomatic of the gap separating the amount of available data and the effective
size of the interaction network [82]. The present chapter is a contribution
towards filling this gap.

Our work is based on the observation that physical interactions can be
viewed at three levels of detail. At a higher level, two proteins interact to per-
form some function within a biological pathway (e.g. metabolism, signaling,
regulation, etc.) [67]. At a lower level, the same interaction occurs between a
pair of specific domains appearing in the proteins; the types of the domains
involved characterize the functional semantics of the interaction [70]. At the
lowest level, the interaction is instantiated by the binding of a pair of protein
interfaces, patches of solvent accessible residues with compatible shapes and
chemical properties [71]. The low-level features of the binding sites determine
whether the interaction is transient or permanent, whether two proteins com-

57

58CHAPTER 4. MULTI-LEVEL PROTEIN INTERACTION PREDICTION

pete for interaction with a third one, etc. Figure 4.1 illustrates the multi-level
mechanisms with an example taken from the PDB.

Despite the significance of low-level details in elucidating the mechanics
of protein–protein interactions, most of the current experimental data comes
from high-throughput screening techniques, such as yeast two-hybrid (Y2H)
assays [207]. These techniques do not provide information on domain- or
residue-level interactions, which require solving the three-dimensional struc-
ture of each protein-protein complex, an expensive and time consuming task
addressed by X-Ray crystallography, NMR, or electron microscopy tech-
niques [208]. As a consequence, protein–protein interaction data is under-
characterized at the domain and residue levels: the current databases are
relatively lacking when compared to the magnitude of the existing body of
data about protein-level interactions [76]. At the time of writing, the PDB
hosts 84,418 structures, but merely 4,210 resolved complexes (according to
http://www.rcsb.org/pdb/statistics/holdings.do, retrieved on 2013/06/20).
The latter cover only a tiny fraction of the interactions stored in databases
such as BioGRID and MIPS.

From a purely biological perspective, predictions at different levels have
several important applications. The network topology and individual fea-
tures of protein interactions are an essential component of a wide range of
biological tasks: inferring protein function [61] and localization [72], recon-
structing signal and metabolic pathways [73], discovering candidate targets
for drug development [65]. Finer granularity predictions at the domain level
allow to discover affinities between domain types that can be carried over to
other proteins [74, 75]; domain–domain networks have also been assessed as
being typically more reliable than their protein counterparts [76]. Finally,
residue-level predictions, i.e., interface recognition, enable the detailed study

Figure 4.1: Two bound proteins and their interacting domains and residues,
captured in PDB complex 4IOP. The proteins are a Killer cell lectin-like
receptor (in violet) and its partner, a C-type lectin domain protein (in blue).
Left: interaction as visible from the contact surface. Center: the two C-type
lectin domains instantiating the interaction. Right: effectively interacting
residues in red.

4.1. BACKGROUND 59

of the principles of protein interactions, and are crucial for tasks such as
rational drug design [66], metabolic reconstruction and engineering [77], and
identification of hot-spots [78] in the absence of structure information.

Given the usefulness of knowing the details of protein–protein interactions
at diverse levels of detail, in this chapter we address the problem of collec-
tively predicting the binding state of all proteins, domains, and residues in
a network. We call this task the multi-level protein interaction prediction
problem (MLPIP for short).

From a computational point of view, the most important feature of the
multi-level prediction problem is its inherently relational nature. Proteins,
domains and residues are organized in a hierarchy, which dictates constraints
on the binding state of pairs of objects at the different levels, as follows. On
the one hand, whenever two proteins are bound, at least two of their domains
must also be bound, and, similarly, there must be residues in the two domains
that form an interface. On the other hand, if no residues of the two proteins
interact, neither do their domains, nor the proteins themselves. In other
words, predictions at different levels must be consistent.

In this chapter we cast the multi-level prediction problem as a statistical-
relational learning task, leveraging the latest developments in the field. Our
prediction method is based on Semantic Based Regularization [7], an elegant
semi-supervised prediction framework that caters both the effectiveness of
kernel machines and the expressivity of First-Order Logic (FOL). The con-
straints described above are encoded as FOL rules, which are used to enforce
consistent predictions at all levels of the interaction hierarchy. By computing
multi-level predictions, our method can not only infer which protein pairs are
likely to interact, but also provide details about how the interactions take
place. Our empirical evaluation shows the effectiveness of this constraint-
based approach in boosting predictive performance, achieving substantial
improvements over both an unconstrained baseline and the only existing al-
ternative MLPIP method [10].

4.1.1 Problem definition
PPI networks are most naturally formalized as graphs, where nodes represent
proteins and edges represent interactions. Given a set of features describing
the properties of the proteins in the network (e.g. primary structure, localiza-
tion, tertiary structure —when available—, etc.), inferring the PPI network
structure amounts to determining those pairs of proteins that are likely to
interact. This task is often cast as a pairwise classification problem, where
a binary classifier takes as input a pair of proteins (or rather their feature-
based representations) and predicts whether they interact or not. Standard

60CHAPTER 4. MULTI-LEVEL PROTEIN INTERACTION PREDICTION

binary classification methods, such as Support Vector Machines [14], can be
used to implement the pairwise classifier. In this setting, the interaction de-
pends only on the features of the two incident nodes, and is independent of
all other nodes. Interactions between domains or residues can be predicted
similarly.

The most straightforward way to address the MLPIP problem is to cast
the three interaction prediction problems, for proteins, domains and residues
respectively, as independent pairwise classification tasks. However, as pre-
viously discussed, these problems are clearly strongly related: two proteins
interact via one or more domains, which in turn contain patches of residues
that constitute the interaction surface. Ignoring these relationships can lead
to heavily suboptimal, inconsistent predictions, where, e.g. two proteins are
predicted to interact but none of their domains are predicted to be involved
in this interaction. Making these relationships explicit and forcing predictors
to satisfy consistency constraints is the key contribution of this work. In the
machine learning community, this kind of scenario characterized by multi-
ple related prediction tasks is usually cast as a statistical-relational learning
problem [1, 2], where the goal is to collectively classify the state of all objects
of interest, taking into account the relations existing between them. The
solution we adopt is grounded in this learning framework.

4.1.2 Overview of the proposed method
In this chapter we propose solving the multi-level prediction problem adapt-
ing a state-of-the-art statistical-relational learning framework, namely Se-
mantic Based Regularization (SBR) [7]. SBR ties multiple learning tasks,
which are themselves addressed by kernel machines, using constraints ex-
pressing First-Order Logic knowledge. In the following we give an overview
of the SBR framework, also pictured in Figure 4.2; see Methods for further
details.

Let X be a set of objects. In most scenarios, objects are typed, so that
objects of the same type can be considered as belonging to the same group.
In our setting, object types are proteins, domains and residues, with corre-
sponding sets XP ,XD and XR respectively. Predicates represent properties
of objects or relationships between them. Depending on the scenario, some
predicates are always known (called given predicates), some other are known
only for a subset of the objects, and their value should be predicted when
unknown (query or target predicates). The parendpd(p, d) predicate, for in-
stance, specifies that domain d ∈ XD is part of protein p ∈ XP , i.e. the
predicate is true for all (p, d) pairs for which d is a domain of p, and false
otherwise. The value of this predicate is known for all objects in our domain;

4.1. BACKGROUND 61
b
ou
n
d
p
(p
,p
')

p

p'

PROTEINS RESIDUES

b
ou
n
d
r(
r,
r'
)

parentpd(p,d) parentdr(d,r)

DOMAINS

b
ou
n
d
d
(d
,d
')

d d d

d' d' r' r' r' r'

r r r r r1 2 3

1 2

1 2 3 4 5

1 2 3 4

Figure 4.2: Visualization of the proposed method applied to a pair of proteins
p and p′ and their parts. Circles represent proteins, domains and residues.
Dotted lines indicate a parent-child relationship between objects, represent-
ing the parentpd and parentdr predicates. Solid lines link pairs of bound
objects, i.e. objects for which the boundp, boundd or boundr predicates are
true.

note that there indeed are many proteins whose domains are unknown, but
in this case there is no corresponding domain object in our data). The
boundp(p, p′) predicate specifies whether two proteins p and p′ are inter-
acting. This is one of the target predicates, whose truth value should be
predicted for novel protein-protein pairs. Similar predicates are defined for
domain and residue level bindings. Target predicates are modelled as binary
classifiers, i.e. functions trained to predict the truth value of the predicate.
Relationships between predicates can be introduced in order to enforce con-
straints known to hold in the domain. SBR allows to exploit the full power
of First-Order Logic in doing this. As a matter of example, the notion that
two interacting proteins should have at least one interacting domain can be
modelled as (see Methods for details on First-Order Logic notation):

∀ (p, p′)boundp(p, p′) ⇒ ∃ (d, d′) boundd(d,′ d) ∧
parentpd(p, d) ∧
parentpd(p′, d′)

Each binary classifier is implemented in the SBR framework as a kernel ma-
chine [105]. The key component of kernel machines is the kernel function,
which measures the similarity between objects in terms of their represen-
tations. A protein, for instance, can be represented as the sequence of its

62CHAPTER 4. MULTI-LEVEL PROTEIN INTERACTION PREDICTION

residues, plus additional information as its subcellular localization and/or its
phylogenetic profile. Having the same subcellular localization, for instance,
should increase the similarity between two proteins, as having a similar amino
acid composition. Designing appropriate kernels is a crucial component of a
successful predictor. A kernel machine is a function which predicts a certain
property of an object x in terms of a weighted sum of similarities to other
objects for which the property is known, i.e.:

f(x) =
∑
i

wiK(x, xi)

A kernel machine could for instance predict whether a protein is an enzyme or
not (binary classification), in terms of weighted similarity to other proteins.
Being similar to an enzyme xi will drive the prediction towards the positive
(enzyme) class (positive weight wi), while being similar to a non-enzyme xj
will drive the prediction towards the opposite class (negative weight wj).

In the interaction prediction setting, target predicates actually predict
properties of pairs of objects (proteins, domains or residues). We thus employ
a pairwise kernel machine classifier to model the target predicate:

f(x, x′) =
∑
i

wiK((x, x′), (xi, x′i))

Here the kernel function measures the similarity between two pairs of objects,
so that, e.g. two proteins will be predicted as interacting if they are similar
to protein pairs which are known to interact, and dissimilar from pairs known
to not interact.

Given a kernel between objects K(x, x′), it is possible to construct a
pairwise kernel by means of a the following transformation [209]:

K((xi, xj), (xk, xl)) = K(xi, xk) ·K(xi, xl) +
K(xj, xk) ·K(xj, xl)

(4.1)

This transformation guarantees that, if the input function K is a valid kernel,
so is the resulting pairwise function.

As already explained, in SBR each target predicate is implemented as
a kernel machine, and the state of a predicate for an uncharacterized pair
of proteins can be inferred by querying the machine. Positive predictions
correspond to true predicates, i.e. bound protein pairs, and negative pre-
dictions to false ones. The confidence of the kernel machine, also called
margin, embodies the confidence in the state of the predicate, that is, how
strongly two proteins are believed to interact (or not). Given the output of
the kernel machines for all target predicates, SBR uses the First-Order Logic

4.1. BACKGROUND 63

rules to condition the state of the correlated predicates. It does so by first
translating the FOL rules into continuous constraints, which we discuss more
thoroughly in Methods. The variables coming into play into the continuous
constraints are the confidences of all target predicates (and the state of all
given predicates) appearing in the equivalent FOL constraint. The amount
of violation is reflected by the value of the continuous constraints: if the pre-
dicted predicates satisfy a FOL rule, the corresponding constraint will have
a value equal to 1; on the other hand, the closer the constraint value to zero,
the more the FOL rule is violated.

SBR computes a solution to the inference problem, i.e. deciding the truth
value of all target predicates, that maximizes both the confidence of individ-
ual predicates and the amount of satisfaction of all constraints. Informally,
the optimal assignment to all predicates, i.e. the binding state of protein,
domain and residue pairs, y∗, is a solution to the following optimization
problem:

y∗ = arg max
y

consist(y, f) + consist(y,KB)

where the first term accounts for consistency between inferred truth values
and confidence of the individual predictions, and the second incorporates
information on the degree of satisfaction of the constraints build from the
FOL knowledge. Contrarily to standard kernel methods, this optimization
problem is non-convex. This is commonly the case for complex statistical-
relational learning tasks [1], and implies that we are restricted to finding
local optima. We will see in the Results section that, in practice, this does
not compromise the quality of the solutions.

SBR is a semi-supervised method [99], meaning that the set of target
proteins is given beforehand and can be exploited during the learning stage
to fine-tune the model. Semi-supervised learning is known to enhance the
prediction ability when appropriately used [210], and can be applied very
naturally to PPI prediction, as the full set of proteins is always known.

To summarize, at each level the state of an uncharacterized pair of objects,
e.g. proteins p and p′, is mainly inferred by the similarity of the pair (p, p′)
to other pairs that are known to interact or not, through the pairwise kernel
function K and the learned weights w. Thus the kernel allows to propagate
information horizontally within the same level. At the same time, the FOL
constraints allow to propagate information vertically between the levels, by
keeping the interaction pattern along the protein-domain-residue hierarchy
consistent.

64CHAPTER 4. MULTI-LEVEL PROTEIN INTERACTION PREDICTION

Table 4.1: List of SBR predicates.

target predicates
boundp(p, p′) true iff the protein pair (p, p′) is bound
boundd(d, d′) true iff the domain pair (d, d′) is bound
boundr(r, r′) true iff the residue pair (r, r′) is bound

given predicates
parendpd(p, d) true iff protein p is parent of domain d
parenddr(d, r) true iff domain d is parent of residue r
parendpr(p, r) true iff protein p is parent of residue r
hasdom(p) true iff protein p has at least one domain
hasres(d) true iff domain d has at least one residue

4.1.3 Modeling multi-level interactions
As already explained, we use two distinct kinds of predicates: given pred-
icates and target predicates. Given predicates encode a priori knowledge
about the problem, in our case the structure of the multi-level object hier-
archy. In particular, given a protein p and a domain d, the parendpd(p, d)
predicate is true if and only if domain d occurs in protein p; the parentdr
predicate is the analogous for domains and residues. This simple represen-
tation suffices to encode the whole protein–domain–residue hierarchy. To
simplify the notation, we also introduce the hasdom(p) predicate to encode
the fact that protein p has at least one domain. More formally:

hasdom(p) := ∃ d parendpd(p, d)

The hasdom predicate can be computed directly by SBR using the above
definition; we instead pre-compute its value for all protein pairs for run-time
efficiency.

The boundp(p, p′) target predicate models the binding state of two dis-
tinct proteins. Its state is known for certain protein pairs, i.e. those in the
training set, and our goal is to predict its state on the remaining ones. The
boundd(d, d′) predicate plays the same role for domains. For a complete list
of predicates, see Table 4.1.

In what follows we describe how to design inter-level FOL constraints
to properly enforce consistency between predictions at different levels. We
focus on modeling the constraints tying proteins and domains; it is easy to
see that the ones between domains and residues can be modelled similarly
(with one peculiar exception that will be pointed out later). Table 4.2 reports
the complete list of rules.

4.1. BACKGROUND 65

Table 4.2: List of SBR rules.

Name Definition
P→D ∀ (p, p′) hasdom(p) ∧ hasdom(p′) ⇒

boundp(p, p′) ⇒ ∃ (d, d′) boundd(d, d′) ∧ parendpd(p, d) ∧ parendpd(p′, d′)
D→P ∀ (p, p′) ∃ (d, d′)

boundd(d, d′) ∧ parendpd(p, d) ∧ parendpd(p′, d′) ⇒ boundp(p, p′)
D→R ∀ (d, d′) hasres(d) ∧ hasres(d′) ⇒

boundd(d, d′) ⇒ ∃n (r, r′) boundr(r, r′) ∧ parenddr(d, r) ∧ parenddr(d′, r′)
R→D ∀ (d, d′) ∃ (r, r′)

boundr(r, r′) ∧ parenddr(d, r) ∧ parenddr(d′, r′) ⇒ boundd(d, d′)
P→R same as D→R, with proteins in place of domains
R→P same as R→D, with proteins in place of domains

Inter-level constraints can be seen as propagating information from the
upper layer to the lower one and in the opposite direction. To model this
mechanism, we use two distinct constraints: the P→D rule and the D→P rule.
A simplified version of the P→D rule is:

∀ (p, p′) boundp(p, p′) ⇒ ∃(d, d′) boundd(d, d′) ∧
parendpd(p, d) ∧
parendpd(p′, d′)

Intuitively, the rule means that whenever two proteins are bound (and there-
fore the left-hand side (LHS) of the implication is true) then there must be
at least one pair of child domains that are bound (the right-hand side (RHS)
is true). In classical First-Order Logic the rule would require that, when-
ever none of the child domains is bound (the RHS is false), then the parent
proteins must not be bound (the LHS is false).

Note that, in the above formulation, the rule is applied indiscriminately
to all protein pairs, even to those that have no known child domains in
the considered dataset. Therefore, the rule can be reformulated in order to
enforce it only for those protein pairs that do in fact have child domains,
using the hasdom predicate, as follows:

∀ (p, p′) hasdom(p) ∧ hasdom(p′)⇒(
boundp(p, p′) ⇒ ∃(d, d′) boundd(d, d′)∧

parendpd(p, d)∧
parendpd(p′, d′)

)
This is the complete P→D rule. The left-hand side is always false for proteins
without domains, making the rule always satisfied in this case (effectively

66CHAPTER 4. MULTI-LEVEL PROTEIN INTERACTION PREDICTION

disabling the effect of the rule on the learning process). We define the com-
plementary D→P rule as follows:

∀(p, p′)
(
∃(d, d′) boundd(d, d′) ∧

parendpd(p, d) ∧
parendpd(p′, d′)
⇒ boundp(p, p′)

)
This rule is applied to all protein pairs, demanding that if there is a pair
of bound children domains then the proteins must be bound too, and vice
versa that if the parent proteins are unbound so are the domains. The P→D
and D→P rules could be merged into a single equivalent rule using the double
implication (⇔). However, the rules have been considered separately to keep
their effects on the results separated and easier to analyze.

To simulate the unidirectional information propagation between levels, as
done by Yip et al. [10] (see Related Work), we modified how SBR converts
logic implications by using the t-norm residuum, which states that a logic
implication is true if the RHS is at least as true as the LHS. This modification
also removes a bias in the translation of the implication that was affecting the
original formulation of SBR, whose effect is to often move the LHS toward
the false value. See Methods for details.

The constraints for domains and residues can be similarly defined with
one important exception. The P→D rule described above (correctly) re-
quires at least one domain couple to be bound for each interacting protein
pair. However, when two domains are bound, the interaction interface in-
volves more than one residue pair: for instance, binding sites collected in the
protein–protein docking benchmark version 3.0 [211] consist of 25 residues
on average [212]. We integrate this observation in the D→R rule using the
n-existential operator ∃n in place of the regular existential (see Table 4.2 for
the complete formulation), so that whenever two domains are bound, at least
n pairs of their residues must be bound. Since interfaces in the employed
dataset are typically 5 residues long, n = 5 has been used in the experiments.
Our results demonstrate that this seemingly small modification has a rather
extensive impact on the prediction of domain and residue level interactions.

4.1.4 Related work
In this section we briefly summarize previous PPI interaction prediction ap-
proaches using methods that are most closely related to the present chapter:
kernel methods, semi-supervised methods, and logic-based methods. For a

4.1. BACKGROUND 67

broader exposition of interaction prediction methods, please refer to one of
the several surveys on the subject [213, 80, 81, 70].

The earliest attempt to employ kernel methods [105] for PPI prediction
is the work of Bock et al. [214], which casts interaction prediction as pairwise
classification, using amino-acid composition and physico-chemical properties
alone. Ben-Hur et al. [209] extended previous work by applying pairwise ker-
nels and combining multiple data sources (primary sequence, Pfam domains,
Gene Ontology annotations and interactions between orthologues). Succes-
sive works focused primarily into aggregating more diverse sources, including
phylogenetic profiles, genetic interactions, and subcellular localization and
function [81]. Kernel machines have also been applied to the prediction of
binding sites from sequence, as resumed in [71]. The appeal of supervised
kernel methods is that they provide a proved and theoretically grounded set
of techniques that can easily integrate various information sources, and can
naturally handle noise in the data. However, they have two inherent limi-
tations: (i) the binding state of two proteins is inferred independently from
the state of all other proteins, and (ii) due to their supervised nature, they
do not take advantage of unsupervised data, which is very abundant in the
biological network setting.

Semi-supervised learning (SSL) techniques [210, 99] attempt to solve these
issues. In the SSL setting the set of target proteins is known in advance,
meaning that the learning algorithm has access to their distribution in fea-
ture space. This way the inference task can be simplified by introducing
unsupervised constraints that assign the same label to proteins that are,
e.g., close enough in feature space, or linked in the interaction network, actu-
ating a form of information propagation. There are several works in the PPI
literature that embed the known network topology using SSL constraints.
Qi et al. [215] employ SSL methods to the special case of viral-host protein
interactions, where supervised examples are extremely scarce. Using sim-
ilar methods, You et al. [216] attempt to detect spurious interactions in a
known network by projecting it on a low-dimensional manifold. Other studies
[217, 218] applied SSL techniques to the closely related problems of gene–
protein and drug–protein interaction prediction. Despite the ability of SSL
to integrate topology information, no study so far has applied it to highly
relational problems such as the MLPIP.

An alternative strategy for interaction prediction is Inductive Logic Pro-
gramming (ILP) [219], a group of logic-based formalisms that extract rules
explaining the likely underlying causes of interactions. ILP methods were
studied in the work of Tran et al. [163] using a large number of features:
SWISS-PROT keywords and enzyme properties, Gene Ontology functional
annotations, gene expression, cell cycle and subcellular localization. Further

68CHAPTER 4. MULTI-LEVEL PROTEIN INTERACTION PREDICTION

advances in this direction, with a special focus on using domain informa-
tion, can be found in [74, 75]. The advantage of ILP methods over purely
statistical methods is that they are inherently able to deal with relational
information, making them ideal candidates for solving the MLPIP problem.
Alas, contrary to kernel methods, they tend to be very susceptible to noise,
which is a very prominent feature of interaction dataset, and are less ef-
fective in exploiting complex feature representations, e.g. involving highly
non-linear interactions between continuous features.

Recently, some works highlighted the importance of the multi-level nature
of protein–protein interactions. Gonzalez et al. [220] propose a method to
infer the residue contact matrix from a known set of protein interactions using
SVMs; on the contrary, our goal is to predict the interactions concurrently
at all levels of the hierarchy. Another study [76] highlights the relevance of
domain-level interactions, and the unfortunate lack of details thereof, and
formulates a method to reinterpret a known PPI network in terms of its
constituent domain interactions; our has a different focus and a more general
scope.

Most relevant to this chapter is the work of Yip et al. [10], where the
authors propose a procedure to solve the MLPIP problem based on a mixture
of different techniques. The idea is to decompose the problem as a sequence
of three prediction tasks, which are solved iteratively. Given an arbitrary
order of the three levels (e.g. proteins first, then domains, then residues),
their procedure involves computing putative interactions in the first level
(in this case proteins), then using the most confident predictions as novel
training examples at the following level (i.e., domains). The procedure is
repeated until a termination criterion is met.

Intra-level predictions are obtained with Support Vector Regression (SVR) [118].
In particular, each object has an associated SVR machine that models its
propensity to bind any other object in the same level. The extrapolated
values act as confidences for the predictions themselves. The mechanism for
translating the most confident predictions at one level into training examples
for the next level depends on the relative position of the two levels in the
hierarchy. Downward propagation (e.g. from proteins to domains) simply as-
sociates to each novel example the same confidence as the parent prediction:
in other words, if two proteins are predicted as bound with high confidence,
all their domains will be considered bound with the same confidence. Up-
ward propagation (e.g. from domains to proteins) is a bit more involved: the
confidence assigned to the example is a noisy-OR combination of confidences
for all the involved child objects (domains).

While this method has been shown to work reasonably well, it is afflicted
by several flaws. First of all, while the iterative procedure is grounded in co-

4.1. BACKGROUND 69

training [221], the specific choice of components is not as theoretically sound.
For instance, the authors apply regression techniques on a classification task,
which may lead to sub-optimal results. The inter-level example propagation
mechanisms are ad hoc, do not exploit all the information at each level (only
the most confident predictions are propagated), and are designed to merely
propagate information between levels, not to enforce consistency on the pre-
dictions. In particular, the downward propagation rule is rather arbitrary: it
is not clear why all domains of bound proteins should be themselves bound
with the same confidence. Finally, these rules, which are intimately tied to
the specific implementation, are not defined using a formal language, and are
therefore difficult to extend. For instance, it would be difficult to implement
in said framework something similar to an n-existential propagation rule,
which is extremely useful for dealing with residue interactions.

Semantic Based Regularization seems to have many obvious advantages in
this context. A first advantage is that it decouples the implementation of the
functions from how consistency among levels is defined. Indeed, consistency
is implemented via a set of constraints, which are applied over the output of
the predictors. However, there is no limitation in which kind of predictors
are used. For example, we used kernel machines as basic machinery for
implementing the predictor, where different state-of-the-art kernels can be
used at the single levels, while still be able to define a single optimization
problem.

Furthermore, SBR allows to natively propagate the predictions of one
level to the other levels. Since the predictions and not the supervisions are
propagated, SBR accuracy can get advantage of the abundant unsupervised
data. The availability of an efficient implementation of the n-existential
quantifier is also a crucial advantage: if two proteins or domains are inter-
acting, a small set of residues must be interacting as well. SBR does not
simply propagate a generic prior to all the residues for a protein or domain,
which could decrease accuracy of the reductions for the negative supervisions.
SBR instead performs a search process in order to select a subset of residue
candidates, where to enforce the interaction. As shown in the experimental
results, this greatly improves residue prediction accuracy. Finally, the cir-
cular dependencies that make learning difficult are dealt in the context of a
general and well defined framework, which implements various heuristics to
make training effective.

70CHAPTER 4. MULTI-LEVEL PROTEIN INTERACTION PREDICTION

4.2 Results and Discussion

4.2.1 Dataset
In this work we use the dataset of Yip et al. [10], described here for complete-
ness. The dataset represents proteins, domains and residues using features
gathered from a variety of different sources:

• Protein features include phylogenetic profiles derived from COG, sub-
cellular localization, cell cycle and environmental response gene expres-
sion; protein-pair features were extracted from Y2H and TAP-MS data.
The gold standard of positive interactions was constructed by aggre-
gating experimentally verified or structurally determined interactions
taken from MIPS, DIP, and iPfam.

• At the domain level, the dataset includes both features for domain fam-
ilies and for domain instances based on frequencies of domains within
one or more species and phylogenetic correlations of Pfam alignments.
The gold standard of positive interactions was built from 3D structures
of complexed proteins taken from PDB.

• Residue features consist of sequence-based properties, namely charge
complementarity, Psi-Blast [222] profiles, predicted secondary struc-
ture, and predicted solvent accessibility.

Kernels computed from the individual features were combined additively into
a single kernel function for each level, and then transformed into pairwise
kernels using Equation (4.1); the resulting functions were used as inputs to
SBR.

This procedure yields a dataset of 1681 proteins, 2389 domains, and 3035
residues, with a gold standard of 3201 positive (interacting) protein pairs,
422 domain pairs, and 2000 residue pairs. Since interaction experiments can
not determine which pairs do not interact, the gold standard of negative pairs
is built by randomly sampling, at each level, a number of pairs that are not
known to interact (i.e. not positive). This is a common approach to negative
labeling in the PPI prediction literature [223]. To keep the dataset balanced,
the number of sampled negative pairs is identical to the number of objects in
the gold standard of positives. For more details on the dataset preparation,
please refer to [10].

Turning our attention to the resulting dataset, we note that most of the
supervision is located at the protein level: out of all possible interactions be-
tween pairs of proteins, which are 1

2(1681× 1680), 0.226% are known (either

4.2. RESULTS AND DISCUSSION 71

positive or negative). On the contrary, the other levels hold much less infor-
mation: only 0.042% of all possible residue pairs, and 0.014% of all possible
domain pairs, are in the dataset. As briefly mentioned above, this is due to
the different requirements for experimentally determining interactions at the
three levels.

4.2.2 Evaluation procedure

In this work we compare our method to that of Yip et al. [10], where the
authors evaluated their method using a 10-fold inner cross-validation proce-
dure. To keep the comparison completely fair, we repeated said procedure
with SBR, reusing the very same train/test splits. Since correlated objects,
e.g. a protein and its domains/residues, share information, the folds were
structured as to avoid such information to leak between train and test folds:
this was achieved by keeping correlated objects in the same fold.

SBR has two scalar hyper-parameters that control the contribution of
various parts of the objective function: λc is the weight associated to the
constraints (how much the current solution is consistent with respect to the
rules) and λr, which controls the model complexity (see the Methods sec-
tion for more details). The λr parameter was optimized on the first fold by
training the model without the logic rules and it was then kept fixed for all
the folds of the k-fold cross-validation. The resulting value is λr = 0.1. The
λc parameter has not been optimized and kept fixed at λc = 1. Please note
that further significant gains for the proposed method could be achieved by
fine-tuning this meta-parameter. However, since the dataset from Yip et al.
does not include a validation split, no sound way to optimize this parameter
was possible without looking at the test set, or redefining the splits (making
difficult to compare against Yip’s reported results). Therefore, we decided
to not perform any tuning for this meta-parameter.

In this work we use the same performance measure as our competitors,
the Area Under the Receiver Operating Characteristic Curve (AUCROC, or
AUC for short). The AUC measures the ability of to correctly discriminate
between positives and negatives, or alternatively, the ability to rank positives
above the negatives. It is independent of any classification threshold, and
thus particularly fit in scenarios of heavy class unbalance. We computed the
average AUC of our method and that of our competitor over all folds of the
cross-validation; the results can be found in Table 4.3.

72CHAPTER 4. MULTI-LEVEL PROTEIN INTERACTION PREDICTION

Table 4.3: Area under the ROC curve values attained by Yip et al. [10], SBR,
and SBR-∃n (SBR equipped with the n-existential quantifier).

Independent Unidirectional Bidirectional Full
Level P→D D→R P→R P↔D D↔R P↔R

Results for Yip et al. [10]
Proteins 0.715 0.720 0.723 0.726
Domains 0.521 0.585 0.701 0.680 0.699
Residues 0.568 0.513 0.530 0.618 0.658 0.736

Results for SBR
Proteins 0.811 0.823 0.822 0.822
Domains 0.605 0.820 0.832 0.890 0.946
Residues 0.591 0.668 0.673 0.681 0.675 0.689

Results for SBR-∃n
Proteins 0.811 0.823 0.822 0.823
Domains 0.605 0.820 0.832 0.888 0.951
Residues 0.591 0.745 0.760 0.777 0.772 0.797

4.2.3 Results

To evaluate the effects of the constraints on the performances of SBR, we per-
formed three independent experiments using rules of increasing complexity.
This setup follows closely that of Yip et al. [10].

Independent Levels

As a baseline, we estimate the performance of our method when constraints
are ignored. This is equivalent to the method of Yip et al. when no in-
formation flow between level is allowed. The results can be found in the
“Independent” column of Table 4.3.

In absence of constraints SBR reduces to standard `2-regularized SVM
classification: learning and inference become convex problems, and the method
computes the globally optimal solution. Thus, the only differences between
our method and the competitor are: (i) using classification versus regression,
and (ii) using pairwise classification, instead of training a single model for
each entity (protein, domain, residues) predicting its interactions. These dif-
ferences alone produce a significant boost in performance for proteins and
domains, amounting to about +0.1 AUC each, while the improvement for
residues is less marked, only +0.01.

4.2. RESULTS AND DISCUSSION 73

Unidirectional Constraints

In the second experiment, we evaluate the effect of introducing unidirectional
constraints between pairs of levels. In the P→D case only the P→D rule is
active, meaning that bound protein pairs enforce positive domain pairs and
negative domain pairs enforce negative protein pairs. The D→R and P→R
cases are defined similarly. In all three cases, the level not appearing in the
rule (e.g. the residue level in the P→D case) is predicted independently. This
setup makes it easy to study the effects of propagating information from one
level to the other without interferences. The results can be found in the
“Unidirectional” column of Table 4.3. In the same column we also show the
results for Yip et al. for the unidirectional flow setting, where examples are
propagated from one level to the next but not vice versa. However, since the
competitor’s algorithm is iterative, information about lower levels can indeed
affect the upper levels in successive iterations.

The results show that introducing unidirectional constraints in SBR im-
proves the predictions in all cases. In particular, using (predicted and known)
protein interactions helps inferring correct domain and residue interactions:
the former improve by about +0.2 AUC (P→D case) and the latter by +0.08
(P→R case). Residues also benefit from domain-level information, with a
0.07 increase in performance (D→R case). Interestingly, proteins tend to
help residue predictions slightly more than domains, despite the indirection
between the two levels; this is likely an effect of the larger percentage of
supervised pairs available.

Compared to SBR, the method of Yip et al. does not benefit as much
from unidirectional information flow. The effect of protein-level information
on the domains is marginal (+0.06 AUC for P→D), and residue predictions
are in fact worse than in the independent case (−0.05 and −0.04 AUC in the
D→R and P→R cases, respectively).

Bidirectional Constraints

In the third experiment we study the impact of using bidirectional constraints
between pairs of levels; the level not appearing in the rules is predicted
independently, as above. In the P↔D case, both the P→D and D→P rules are
active, meaning that the protein and domain levels are enforced to be fully
consistent; the P↔R and D↔R cases are defined analogously. This experiment
is comparable to the bidirectional flow setting of Yip et al.. The results can
be found in the “Bidirectional” column of Table 4.3.

We observe that the new constraints have a positive effect on predictions
at all three levels: proteins change from 0.811 AUC to 0.823, domains from

74CHAPTER 4. MULTI-LEVEL PROTEIN INTERACTION PREDICTION

0.820 to 0.832 and residues from 0.673 to 0.681. The change is not as marked
as between the independent and unidirectional experiments. In particular,
domains see the largest increase in performance (+0.02 AUC), while proteins
and residues are less affected. The result is unsurprising for proteins, which
hold most of the supervision and are thus (i) more likely to be predicted
correctly in the independent setting, and (ii) less likely to be assisted from
hints coming from the other, less supervised levels.

As for the method of Yip et al., the bidirectional flow mostly affects
the domain and residue levels, whose improvement is +0.2 AUC and +0.05,
respectively; the change for protein interactions is negligible. Regardless
of the relative performance increase, SBR is able to largely outperform the
competitor in all three cases.

We note that the fact that all three cases (P↔D, P↔R and D↔R) improve
over both the independent and the unidirectional experiments shows that not
only the bidirectional constraints are in fact sound, but also that, despite
the increased computational complexity, SBR is still able to exploit them
appropriately.

All Constraints

In the final experiment we activate the P→D, D→P, D→R and R→D rules, as
defined in Table 4.2, making all levels interact. This is the most complex
setting, and produces fully consistent predictions through the hierarchy. It
is comparable to the “PDR” bidirectional setting of Yip et al.. The AUC
scores can be found in column “Full” of Table 4.3.

In this experiment the P→R and R→P constraints are not used. Direct
information flow between proteins and residues is not needed, because it
would be redundant: from a formal logic point of view, this corresponds to
the observation that the logic rule expressing protein to residue consistency
is implied by other consistency rules. Indeed, we have experimentally verified
that adding this propagation flow does not significantly affects the results.

In this experiment, protein predictions are stable with respect to the
previous experiments, confirming the intuition that the abundance of super-
vision at this level makes it less likely to benefit from predictions at the other
ones. On the contrary, domains see a large performance upgrade, from 0.890
to 0.946 AUC, when made to interact with both proteins and residues. The
improvement for residues is instead marginal.

The results for Yip et al. are mixed, with proteins and domains faring
almost identically to the previous experiment, and residues improving by a
large amount (about +0.08 AUC) over the bidirectional P↔R case. This
result stands in contrast with that of SBR, and is the only case in which

4.2. RESULTS AND DISCUSSION 75

the method of Yip and colleagues works better than SBR. The issue lies
within our formulation of the D→R rule: whenever two domains are bound,
the rule is satisfied when at least one residue pair is bound. As already
mentioned above, this is not realistic: protein interfaces span more than two
residues, typically five or more. We therefore extended SBR to support the n-
existential quantifier, which allows to reformulate the D→R rule to take this
observation into account (see the Methods section for more details on the
n-existential quantifier). The new D→R rule, shown in Table 4.2, requires
for each pair of bound domains at least n = 5 residues to be bound. We
chose the constant n = 5 to be both realistic and, since the computational
cost increases with n, small enough to be easily computable. We applied the
same modification to the P→R rule.

The complete results for the resulting method, termed SBR-∃n, can be
found at the bottom of Table 4.3. When comparing to standard SBR, i.e.,
without the n-existential, we see that the performance of residues improves
drastically in all cases (unidirectional, bidirectional, and with all constraints
activated), allowing SBR-∃nto always outperform the method of Yip et al.
by a significant margin also on the residue interactions. As a side effect of
the better residue predictions, thanks to the D→R and R→D rules domains
also improve in the all-constraints experiment. In particular, in the “Full”
experiment the AUC improvement of SBR-∃nover Yip et al. is +0.1 AUC
for proteins and +0.06 for residues, with domains seeing a rather impressive
improvement of +0.25.

Finally, these results highlight the ability of SBR to enforce constraints
even with highly complex combinations of rules, allowing the modeler to fully
exploit the flexibility and performance improvement offered by non-standard
FOL extensions like the n-existential operator.

4.2.4 Discussion
The results presented in the previous section offer a clear perspective on the
advantages of the proposed method. By employing appropriate classification
techniques and training a single global pairwise model per level, rather than
relying on the less than optimal local (per-object) regression models of Yip
et al., a considerable improvement was achieved even in the unconstrained
experiment. Furthermore, when enforcing consistency among the protein,
domain and residue levels and using the n-existential quantifier, the experi-
mental results are significantly better than both the unconstrained baseline
and the corresponding results of Yip and colleagues, at all levels and in all
experimental settings.

It is worth noting that SBR performance improves monotonically with the

76CHAPTER 4. MULTI-LEVEL PROTEIN INTERACTION PREDICTION

increase of constraint complexity in the reported experiments. This result is
far from obvious, and confirms both that the biologically-motivated knowl-
edge base is useful, and that SBR is able to effectively apply it. In contrast,
the competitor’s method does not always improve in a similar manner.

In general, the performance gain brought forth by inter-level propagation
is not homogeneously distributed between the three levels. We register a
large improvement for domains and residues, especially when SBR is used
in conjunction with the n-existential quantifier. Proteins are less affected by
consistency enforcement, most likely due to the availability of more super-
vised examples.

We note that the FOL rules have a twofold effect. Firstly, they propagate
information between the levels, enabling predicted interactions at one level
to help inferring correct interactions at the other two levels. This is espe-
cially clear in the “Full” experiment with the n-existential quantifier: in this
case, better residue level predictions increase the overall quality of domain
predictions as well. Secondly, the rules also guarantee that the predictions
are consistent along the object hierarchy. hierarchy.

4.3 Conclusions
In this work we described the multi-level protein interaction prediction (MLPIP)
problem, which requires to establish the binding state of all uncharacter-
ized pairs of proteins, domains and residues. Contrary to standard protein–
protein interaction prediction, the MLPIP problem offers many advantages
and opens up new challenges. The primary contribution of this chapter is the
extension and application to the MLPIP task of a state-of-the-art statistical
relational learning technique called Semantic Based Regularization.

SBR is a flexible framework to inject domain knowledge into kernel ma-
chines. In this chapter SBR has been used to tie together protein, domain
and residue interaction predictions tasks. In particular, the domain knowl-
edge expresses that two proteins interact if and only if there is an interaction
between at least one pair of domains of the proteins. Similarly two domains
can interact if and only if there are at least some residues interacting. While
these tasks could be learned separately, tying them together has multiple
advantages. First the predictions will be consistent and more accurate, as
the predictions at one level will help the predictions at the other levels. Sec-
ondly, the domain knowledge can be enforced also on the unsupervised data
(proteins, domains and residues for which interactions are unknown). Un-
supervised data is typically abundant in protein interaction prediction tasks
but often neglected. This methodology allows to powerfully leverage it, sig-

4.3. CONCLUSIONS 77

nificantly improving the prediction accuracy.
While other work in the literature has exploited the possibility of tying

the predictions at multiple levels, the presented methodology employs a more
principled inference process among the levels, where the domain knowledge
can be exactly represented and precisely enforced. The experimental results
confirm the theoretical advantages by showing significant improvements in
domain and residue interaction prediction accuracy both with respect to ap-
proaches performing independent predictions and the only previous approach
attempting at linking the prediction tasks.

Given the flexibility offered by SBR, the proposed method can be ex-
tended in several ways. The simplest extension involves engineering a more
refined rule set, for instance by introducing (soft) constraints between the
binding state of consecutive residues, which are likely to share the same
state. More ambitious goals, requiring a redesign of the experimental dataset,
include encoding selected information sources, such as domain types, subcel-
lular co-localization and Gene Ontology annotations, as First-Order Logic
constraints rather than with kernels, to better leverage their relational na-
ture.

78CHAPTER 4. MULTI-LEVEL PROTEIN INTERACTION PREDICTION

Chapter 5

Predicting Drug-Resistant
Mutants

5.1 Background

HIV is a pandemic cause of lethal pathologies in more than 33 million peo-
ple. Its horizontal transmission trough mucosae is difficult to control and
treat because the virus has a high virulence and it infects several type of im-
mune surveillance cells, such as those characterized by CD4 receptor (CD4+
cells). The major problem in treating the human virus infection is the drug
selectivity since the virus penetrates in the cell where it releases its genetic
material to replicate itself by using the cell mechanisms. A drug target is
the replicating apparatus of the cell. HIV antiviral molecules will be directed
against several cells such as macrophages or lymphocytes T to interfere with
viral replication. The HIV releases a single-strand RNA particle, a reverse
transcriptase and an integrase into the cell cytoplasm. Quickly the RNA
molecule is retro-transcribed in a DNA double strand molecule, which is
integrated into the host genome. The integration events induce a cellular
response, which begins with the transcription of the Tat gene by the RNA
polymerase II. Tat is a well-known protein responsible for the HIV activation
since it recruits some cytoplasm host proteins involved in the expression of
viral genes. Remarkably, HIV can establish a life-long latent infection by sup-
pressing its transcription, thus making ineffective the large part of antiviral
drugs aimed at controlling the viral replication. However replicating viruses
adopt several drug resistance strategies, for instance, HIV induces amino
acid mutations reducing the efficacy of the pharmaceutical compounds. The
present work is aimed at gaining knowledge on mutations that may occur into
the viral RNA transcriptase [224]. This is an important target to develop

79

80 CHAPTER 5. PREDICTING DRUG-RESISTANT MUTANTS

antiretroviral medicines and different types of molecules have been found ac-
tive: the Nucleoside Reverse Transcriptase Inhibitors (NRTI) and Non NRTI
(NNRTI). Although RNA RT inhibitors are active, the HIV virus is capable
of quickly changing the RNA RT encoding sequence thus acquiring drug re-
sistance. The antiviral therapy is based on the use of cocktails of molecules
including new RNA RT inhibitors. A computational approach to predict
possible mutation sites and their sensibility to drug is thus an important
tool in drug discovery for the antiretroviral therapy.

Computational methods can assist here by exploring the space of potential
virus mutants, providing potential avenues for anticipatory drugs [225]. To
achieve such a goal, one first needs to understand what kind of mutants may
lead to resistance. A general engineering technique for building artificial
mutants is referred to as rational design [226]. The technique consists in
modifying existing proteins by site directed mutagenesis. It relies on a deep
domain knowledge in order to identify candidate mutations that may affect
protein structure or function. The process typically involves extensive trial-
and-error experiments and is also aimed at improving the understanding
mechanisms of a protein behavior.

In this work we report on our initial investigation to develop an artificial
system mimicking the rational design process. We consider two increas-
ingly complex learning settings and corresponding learning techniques. In
the first one we rely on a training set made of single amino acid mutations
known to confer resistance to a certain class of inhibitors (we will refer to
this as mutation-based learning). An Inductive Logic Programming (ILP)
learner [227] is trained for each class of inhibitors in order to extract gen-
eral rules describing mutations conferring resistance to the drug class. The
learned rules are then used to infer novel mutations which may induce similar
resistance. In the second setting we learn directly from mutants (compris-
ing of up to 51 amino acid mutations) that have been experimentally tested
for their resistance to the same classes of inhibitors (we will refer to this as
mutant-based learning). This second setting is actually the most common
situation, in which one is presented with a number of mutants together with
some evidence of their susceptibility to certain treatments, but no clear infor-
mation on which mutation is responsible for their behaviour. In this setting
we employ a statistical relational learning approach [228] capable of learn-
ing weighted combinations of relational rules discriminating between groups
of instances, drug-resistant vs drug-susceptible mutants in our case. The
learned model is then used to generate novel mutants together to a score
indicating their predicted resistance.

Many machine learning methods have been applied in the past to mu-
tation data for predicting single amino acid mutations on protein stability

5.2. RESULTS 81

changes [88] and the effect of mutations on the protein function [89, 90] or
drug susceptibility [96]. To the best of our knowledge this is the first at-
tempt to learn relational features of mutations affecting a protein behavior
and use them for generating novel relevant mutations. Furthermore, even
if we focus on single amino acid mutations in our experimental evaluation,
our approach can be quite easily extended to multiple point mutations, and
we are actively working in this direction. Note that the other approaches
first generate all potential mutations and then decide which of them leads to
resistance, resulting in a combinatorial explosion if trying to predict multiple
mutations, whereas we constraint the search space generating the predicted
relevant ones directly.

We report an experimental evaluation focused on HIV RT. RT is a well-
studied protein: a large number of mutants have been shown to resist to
one or more drugs and databases exist that collect those data from different
sources and make them available for further analyses [229]. We tested the
ability of our approach to generate drug-resistant amino acid mutations for
NRTI and NNRTI. Our results show statistically significant improvements
for both drug classes over the baseline results obtained through a random
generator. A preliminary version of this work was presented in [230]. We
extend those findings by substantially augmenting the background knowledge
and introducing the statistical relational learner which allows for much more
refined mutant scores and improved results.

The approach can be in general applied in mutation studies aimed at
understanding protein function. By searching for residues most likely to
have a functional role in an active site, the approach can for instance be used
in the engineering of enzyme mutants with an improved activity for a certain
substrate.

5.2 Results

5.2.1 Datasets
We applied our approach to predict HIV RT mutations conferring resistance
to two classes of inhibitors: NRTI and NNRTI. The two classes of inhibitors
differ in the targeted sites and rely on quite different mechanisms [231, 232].
NNRTI inhibit the reverse transcriptase by binding to the enzyme active
site, therefore directly interfering with the enzyme function. NRTI are in-
stead incorporated into the newly synthesized viral DNA for preventing its
elongation.

We collected datasets for both mutation-based and mutant-based learn-

82 CHAPTER 5. PREDICTING DRUG-RESISTANT MUTANTS

ing. The former (Dataset 1) is a dataset of amino acid mutations derived from
the Los Alamos National Laboratories (LANL) HIV resistance database1 by
Richter et al. [233], who used it to mine relational rules among mutations.
It consists of 95 amino acid mutations labeled as resistant to NRTI and
56 labeled as resistant to NNRTI, over a set of 581 observed mutations.
(Dataset 2) HIV RT mutation data from the Stanford University HIV Drug
Resistance Database. The database provides a dataset of selected mutants
of HIV RT with results of susceptibility studies to various drugs, and was
previously employed [96] for predicting drug resistance of novel (given) mu-
tants2. It is composed of 838 different mutants annotated with susceptibility
levels (low, medium and high) to drugs belonging to the NRTI (639 mutants)
and NNRTI (747 mutants) drug classes. We considered a setting aimed at
identifying amino acid mutations conferring high susceptibility (with respect
to medium or low), and considered a mutant as highly susceptible to a drug
class if it was annotated as being highly susceptible to at least one drug from
that class.

5.2.2 Learning in first order logic
Our aim is to learn a first-order logic hypothesis for a target concept, i.e.
mutation conferring resistance to a certain drug, and use it to infer novel
mutations consistent with such hypothesis. We rely on definite clauses which
are the basis of the Prolog programming language. A definite clause is an
expression of the form h ← b1 AND ... AND bn, where h and the bi are
atomic literals. Atomic literals are expressions of the form p(t1, ..., tn)
where p/n is a predicate symbol of arity n and the ti are terms, either con-
stants (denoted by lower case) or variables (denoted by upper case) in our
experiments. The atomic literal h is also called the head of the clause, typi-
cally the target predicate, and b1 AND ... AND bn its body. Intuitively, a
clause represents that the head h will hold whenever the body b1 AND ...
AND bn holds. For instance, a simple hypothesis like res against(A,nnrti)
← mutation(A,C) AND close to site(C) would indicate that a mutation
C in the proximity of a binding site confers to mutant A resistance against
a nnrti. Learning in this setting consists of searching for a set of definite
clauses H = {ci, ..., cm} covering all or most positive examples, and none or
few negative ones if available. First-order clauses can thus be interpreted as
relational features that characterize the target concept. The main advantage
of these logic-based approaches with respect to other machine learning tech-

1http://www.hiv.lanl.gov/content/sequence/RESDB/
2downloadable at http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi

5.2. RESULTS 83

niques is the expressivity and interpretability of the learned models. Models
can be readily interpreted by human experts and provide direct explanations
for the predictions. On the other hand, purely logic-based approaches fail
to incorporate uncertainty in the hypotheses they produce, and different de-
grees of importance of the clauses of which hypotheses are made. Statistical
relational learning [1, 170] techniques aim at filling this gap by combining
statistics and expressive representational languages in developing predictive
models. A simple and effective solution consists of learning a weighted com-
bination of clauses, where clauses and their weights are jointly learned in
trying to model the concept of interest.

5.2.3 Background knowledge
We built a relational knowledge base for the problem domain. In Table 5.1
we summarize the predicates that we included as a background knowledge.
We represented the amino acids of the reference wild type (consensus se-
quence) with their positions in the primary sequence (aa/2) and the specific
mutations characterizing them (mut/4). Target predicates were encoded as
resistance of the mutation or mutant to a certain drug (res against/2).

Note that this encoding considers mutations at the amino acid rather
than nucleotide level, i.e. a single amino acid mutation can involve up to
three nucleotide changes. Focusing on single nucleotide changes would have
drastically expanded the space of possible mutations. We thus kept the fo-
cus on amino acid mutations but we included the cost (in terms of nucleotide
changes) of a certain amino acid mutation to further refine our search pro-
cedure as explained in the following.

This additional background knowledge was included in order to highlight
characteristics of residues and the mutations:

typeaa/2 indicates the type of the natural amino acids according to the
Venn diagram grouping based on the amino acids properties proposed
in [234]. For example, a serine is a tiny and polar amino acid.

color/2 indicates the type of the natural amino acids according to the col-
oring proposed in [235]. For example the magenta class includes basic
amino acids as lysine and arginine while the blue class includes acidic
amino acids as aspartic and glutamic acids. These groups of amino
acids do not overlap as in the previous case.

same type aa/3 indicates whether two residues belong to the same type T,
i.e. a change from one residue to the other conserves the type of the
amino acid.

84 CHAPTER 5. PREDICTING DRUG-RESISTANT MUTANTS

Figure 5.1: Summary of the background knowledge facts and rules. MutID
is a mutation or a mutant identifier depending on the type of the learning
problem.

Background Knowledge Predicates
aa(Pos,AA) indicates a residue in the wild type sequence
mut(MutID,AA,Pos,AA1) indicates a mutation: mutation or mutant

identifier, position and amino acids involved,
before and after the substitution

res against(MutID,Drug) indicates whether a mutation or mutant is re-
sistant to a certain drug

color(Color,AA) indicates the coloring group of a natural amino
acid

typeaa(T,AA) indicates the type (e.g. aliphafatic, charged,
aromatic, polar) of a natural amino acid

same color type(R1,R2) indicates whether two residues belong to the
same coloring group

same typeaa(R1,R2,T) indicates whether two residues are of the same
type T

same color type mut(MutID, Pos) indicates a mutation to a residue of the same
coloring group

different color type mut(MutID, Pos) indicates a mutation changing the coloring
group of the residue

same type mut t(MutID, Pos, T) indicates a mutation to a residue of the same
type T

different type mut t(MutID, Pos) indicates a mutation changing the type of the
residue

aamutations(Pos,R1,R2,Num) indicates whether a given mutation requires at
least a single, double, or triple nucleotide sub-
stitution

close to site(Pos) indicates whether a specific position is close to
a binding or active site if any

location(L,Pos) indicates in which fragment of the primary se-
quence the amino acid is located

conservation(Pos,ConsClass) indicates whether a position is highly con-
served or not

in ss(SS,N,Pos) indicates whether a mutation occurs within
the Nth secondary structure element of a given
type

in motif(Pos,Motif) indicates whether a mutation occurs within a
known sequence motif

catalytic propensity(AA,CP) indicates whether an amino acid has a high,
medium or low catalytic propensity

mutated residue cp(Rw,Pos,Rm,CPold,CPnew) indicates how, in a mutated position, the cat-
alytic propensity has changed (e.g. from low
to high)

5.2. RESULTS 85

same color type/2 indicates whether two residues belong to the same col-
oring group, i.e. a change from one residue to the other conserves the
coloring group of the amino acid.

same type mut t/3 indicates that a residue substitution at a certain posi-
tion does not modify the amino acid type T with respect to the wild
type. For example mutation i123v conserves the aliphatic amino
acid type while mutation i123d does not (i.e. different type mut t/3
holds for it).

same color type mut/2 indicates that a residue substitution at a certain
position does not modify the amino acid coloring group with respect to
the wild type. For example mutation d123e conserves the blue amino
acid group while mutation d123a does not (i.e. different color type mut/2
holds for it).

aamutations/4 indicates whether a given amino acid mutation can be trig-
gered by a single, double, or triple nucleotide substitution. For instance
to change an alanine a into an aspartic acid d a single nucletotide sub-
stitution can be sufficient as in the case a: gct → d: gat.

Other background knowledge facts and rules were added in order to ex-
press structural relations along the primary sequence, secondary structure,
and catalytic propensity of the involved residues:

close to site/1 indicates whether a specific position is less than 5 posi-
tions away from a residue belonging to a binding or active site. In our
specific case, the background theory incorporates knowledge about a
metal binding site and a heterodimerization site.

location/2 indicates in which fragment of the primary sequence the amino
acid is located. Locations are numbered from 0 by dividing the sequence
into fragments of 10 amino acid lenght.

conservation/2 indicates whether a position is highly conserved or not.
Conservation is defined in terms of positional variation (entropy) among
a curated multiple-alignment of reverse transcriptase sequences, taken
from the LANL HIV resistance database3.

in ss/3 indicates whether a mutation occurs within a known secondary
structure element. We encoded position specific knowledge for the four

3http://www.hiv.lanl.gov/

86 CHAPTER 5. PREDICTING DRUG-RESISTANT MUTANTS

secondary structure classes: helix, strand, turn, and coil. This infor-
mation was derived from the 3D model of the RT structure by using
the DSSP program [38].

in motif/2 indicates whether a mutation occurs within a known sequence
motif. Our background theory includes information about PROSITE [236]
and Pfam motifs [237].

catalytic propensity/2 indicates whether an amino acid has a high, medium
or low catalytic propensity according to [238].

mutated residue cp/5 indicates how, in a mutated position, the catalytic
propensity has changed (e.g. from low to high).

5.3 Methods

5.3.1 Homology Modeling
Two models of the RT tertiary structure have been produced from the con-
sensus sequence on which each dataset (described in Results) is based. Each
3D model has been produced by using the modelling package Modeller 9.10
[239], starting from the template structures of two close homologues in the
unbound form, which are available in the Protein Data Bank (PDB)[240]:
1DLO and 1HMV.

1: input: background knowledge B, learned model H
2: output: rank of the most relevant mutations R
3: procedure GenerateMutations(B, H)
4: Initialize M← ∅
5: A← find all assignments a that satisfy at least one clause ci ∈ H
6: for a ∈ A do
7: m← mutation corresponding to assignment a
8: score← SH(m) . score m according to model H
9: M←M∪ {(m, score)}

10: end for
11: R ← RankMutations(M) . rank relevant mutations
12: return R
13: end procedure

Figure 5.2: Mutation generation algorithm.

5.3. METHODS 87

Figure 5.3: Schema of the mutation engineering algorithm.

5.3.2 Algorithm overview
The proposed approach is sketched in Figure 5.1.

Step 1: Learning phase

The first step is the learning phase. A learner is fed with a logical repre-
sentation of the data D and of the domain knowledge B to be incorporated,
and it returns a first-order logical hypothesis H for the concept of mutation
conferring resistance to a certain class of inhibitors.

In this context there are two suitable ways to learn the target concept,
depending on the type of input data and their labeling:

a) the one-class classification setting, learning a model from positive in-
stances only. This is the approach we employ for Dataset 1: positive
examples are mutations for which experimental evidence is available
that shows resistance to a drug, but no safe claim can be made on
non-annotated mutations.

b) the binary classification setting, learning to discriminate between pos-
itive and negative instances. This setting is appropriate for Dataset 2:
positive examples are in our experiments mutants labelled as highly sus-
ceptible to the drug class, negative examples are those with medium or
low susceptibility.

88 CHAPTER 5. PREDICTING DRUG-RESISTANT MUTANTS

Figure 5.4: An example of hypothesis, learned by Aleph on Dataset 1, for
the NNRTI task with highlighted amino acid positions d by the hypothesis
clauses.

...HHHHHHHT...EEECC...EEETTEEEEE...HHHHTTCCCCCCCCCCCCCEEET...HHHHHHHHHHHHHCCCCCC...

>wt ...CTEMEKEG...VLDVG...YQYMDDLYVG...HLLRWGFTTPDKKHQKEPPFLWM...QKLVGKLNWASQIYPGIKV...

| | | | | | | | | |

38 45 108 112 181 190 208 229 258 273

D DD

mut(A,B,C,D) AND in motif(C,’prf:RT POL’)

mut(A,B,C,D) AND strand(C)

mut(A,B,C,D) AND color(red,B) AND in motif(C,’pfam fs:RVT thumb’)

mut(A,B,C,D) AND same type mut t(A,C,nonpolar)

1

In the one-class classification case we employ the Aleph (A Learning En-
gine for Proposing Hypotheses) ILP system4, which learns first order logic
hypotheses in a bottom-up fashion. It incrementally builds a hypothesis try-
ing to cover all positive examples. The hypothesis search is guided by a
Bayesian evaluation function, described in [241], scoring candidate solutions
according to an estimate of the Bayes’ posterior probability that allows to
tradeoff hypothesis size and generality. Aleph adds clauses to the hypothesis
based on their coverage of training examples. Given a learned model, the
first clauses are those covering most training examples and thus usually the
most representative of the underlying concept.

In Figure 5.2 we show a simple example of learned hypothesis covering
a set of training mutations from Dataset 1. The learned hypothesis models
the ability of a mutation to confer resistance to NNRTI and is composed
of four first-order clauses, each one covering different sets of mutations of
the wild type as highlighted in colors: yellow for the first clause, blue for
the second, red for the third, and green for the fourth one. Some mutations
are covered by more than one clause as shown by the color overlaps. For
instance, a mutation of the glycine in position 190 satisfies three clauses: the
first, the second and the fourth. On top of the RT consensus sequence we
also report the corrisponding secondary structure annotation, by highlighing
in magenta the helices and in blue the β-strands. The PROSITE and Pfam
motifs prf:RT POL and pfam fs:RVT thumb appearing in the clauses identify
specific regions along the RT sequence. Bold letters in the picture indicate
residues involved in the RT metal binding site (D110, D185 and D186).

In the binary classification case, we employ kFOIL [228], a statistical rela-
tional approach which learns a weighted combination of clauses discriminat-

4http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/aleph.html

5.3. METHODS 89

Figure 5.5: An example of hypothesis, learned by kFOIL on Dataset 2, for the
NNRTI task with highlighted amino acid positions covered by the hypothesis
clauses.

...CCCCCEEEEEECC...CEEEEETTEEEEEECCCHHHHHHHHHHHHH...

>wt ...LKKKKSVTVLDVG...IVIYQYMDDLYVGSDLEIGQHRTKIEELRQ...

| | | | | | |

100 103 106 112 178 190 207

D DD

mut(A,B,C,D) AND position(C,103) AND typeaa(neutral,D)

mut(A,B,C,D) AND aminoacid(B,y) AND typeaa(neutral,D) AND strand(C)

mut(A,B,C,D) AND position(C,190)

mut(A,B,C,D) AND position(C,106) AND typeaa(tiny,D)

1

ing positive from negative instances. kFOIL is a kernel-based approach [242],
capable of learning hypotheses made of complex non-linear combinations of
clauses. For the sake of interpretability we limit ourselves to second degree
polynomial kernels, where the predictive model is a combination of conjuc-
tions of up to two clauses.

In Figure 5.3 we show an example of (part of) a learned hypothesis. As
in the above example, the model is composed of four first-order clauses, each
contributing to the characterization of NNRTI resistance mutations. Three of
the four clauses specify positions 103, 106 and 190 directly as likely targets
for resistance conferring mutations. The second clause, which is position
aspecific, specifies mutations of thyrosines occurring within a strand, where
the mutation is a non-charged aminoacid. The conjunction of any of the
position aspecific with any of the position specific further details the features
that likely resistant mutations are expected to exhibit.

Step 2: Generative phase

The second step of our approach is the generative phase, in which the learned
hypothesis is employed to find novel mutations that can confer drug resistance
to an RT mutant. A set of candidate mutations can be generated by using
the Prolog inference engine starting from the rules in the learned model. The
rules are actually constraints on the characteristics that a mutation of the
wild type should have in order to confer resistance to a certain inhibitor,
according to the learned hypothesis.

Algorithm 5.2 details the mutation generation procedure. We assume, for
simplicity, to have a model H for a single drug class. The procedure works by

90 CHAPTER 5. PREDICTING DRUG-RESISTANT MUTANTS

querying the Prolog inference engine for all possible variable assignments that
satisfy the hypothesis clauses, each representing a mutation by its position
and the amino acid replacing the wildtype residue. The set of mutations
generated by the model is ranked according to a scoring function SH before
being returned by the algorithm. When using Aleph, we define SH as the
number of clauses in H that a candidate mutation m satisfies. When using
kFOIL, SH is the value of the weighted combination of the satisfied clauses.
The latter case allows a much more refined scoring, as will be showed in the
experimental evaluation.

Consider the example model in Figure 5.2. Among the mutations gen-
erated using the model are all those changing the glycine in position 190 in
a non polar amino acid: 190P, 190A, 190F, 190I, 190L, 190V, 190M. Here
190P indicates a change of the wild type amino acid at position 190 into a
proline. Each of these mutations satisfies the first, the second and the fourth
clause, receiving a score of three. Note that mutation 190A is part of the
known NNRTI surveillance mutations (see [243]).

As for the model in Figure 5.3, the position specific rules all identify
known surveillance mutations: 103N, 103S, 106M, 106A, 190A, and 190S.
Clause two affects position 181, a thyrosine occurring within a strand, and
corresponds to surveillance mutations 181C, 181I, 181V.

5.3.3 Learning from mutations
We first learn general rules characterizing known resistance mutations (from
Dataset 1) to be used for predicting novel candidate ones.

We divided the dataset of mutations into a training and a test set (70/30)
in a stratified way, which means by preserving, both in the train and test set,
the proportion of examples belonging to one of the two drug classes. This
produces a training set of 106 mutations and a test set of 45 ones.

We trained the ILP learner on the training set and we evaluated on the
test set the set of mutations generated using the learned model. The eval-
uation procedure takes the set of generated mutations and computes its en-
richment in test mutations. We compare the recall of the approach, i.e.
the fraction of test mutations generated by the model, with the recall of a
baseline algorithm that chooses at random a set (of the same cardinality) of
possible mutations among all legal ones.

We computed 30 random 70/30 train/test splits and performed 30 runs of
our algorithm on each split (Aleph has a random component generating the
seed for the hypothesis search). Figure 5.4 reports results averaged over all
runs for both NNRTI and NRTI tasks. In this setting, the average size of the
learned hypotheses for NNRTI and NRTI are 10 and 14 rules respectively.

5.3. METHODS 91

Figure 5.6: Mean recall of the generated mutations on the resistance test set
mutations from Dataset 1 by varying the number of satisfied clauses. The
mean recall values in orange refer to the proposed generative algorithm. The
mean recall values in green refer to a random generator of mutations.

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13"

m
ea
n%
re
ca
ll%

number%of%sa.sfied%clauses%per%generated%muta.on%

NNRTI"

NNRTI"(rand)"

NRTI"

NRTI"(rand)"

The figure shows the mean recall on the test set when increasing the score
threshold for accepting a mutation, i.e. the number of clauses a mutation
must satisfy in order to be accepted. The results of the random baseline
consider the same number of mutations selected by the method for each
threshold. The recall trend is shown in orange for our approach and in green
for the random generator for both classes of inhibitors. Recall differences are
statistically significant according to a paired Wilcoxon test (α=0.01).

We finally learned a model on the whole dataset in order to generate a
single set of mutations for further inspection. We report five examples of
novel mutations with the highest score for each one of the tasks: S105Y,
S105T, S105N, S105G, S105C for NNRTI and 50A, 63A, 63M, 159L, 195V
for NRTI.

For NNRTI, known resistance mutations are found in positions 103 and
106, possibly explaining the high score of mutations at position 105. In [244],
the authors found a set of novel mutations conferring resistance to efavirenz
and nevirapine, which are NNRTI. Our mutation generation algorithm par-
tially confirms their findings. Apart from mutation 138Q, not generated by
our model, all other mutations have been generated, with 90I satisfying two
out of five clauses and 101H, 196R, and 28K satisfying one.

Table 5.2 reports the most commonly learned clauses for both NNRTI
and NRTI classification tasks. The rules for NNRTI resistance give relevance
to mutations in β-strands, while for NRTI, mutations on turns and coils seem
to be more relevant. It is also evident that the most susceptible region for

92 CHAPTER 5. PREDICTING DRUG-RESISTANT MUTANTS

Table 5.1: List of the ten most frequent rules learned on Dataset 1, sorted
by average number of models they appear in.

models learned clause
NNRTI

21.8 mut(A,B,C,D) AND strand(C)
20.5 mut(A,B,C,D) AND location(11,C)
17.1 mut(A,B,C,D) AND strand(C) AND in motif(C,’prf:RT POL’)
9.9 mut(A,B,C,D) AND in motif(C,’pfam fs:RVT 1’)
9.4 mut(A,B,C,D) AND same type mut t(A,C,neutral) AND strand(C)
7.9 mut(A,B,C,D) AND color(red,D) AND in motif(C,’prf:RT POL’)
7.3 mut(A,B,C,D) AND same type mut t(A,C,nonpolar)
6.8 mut(A,B,C,D) AND in motif(C,’prf:RT POL’)
6.1 mut(A,B,C,D) AND color(red,B)
5.9 mut(A,y,C,D)

NRTI
25.2 mut(A,B,C,D) AND location(7,C)
18.8 mut(A,B,C,D) AND in motif(C,’prf:RT POL’)
16.1 mut(A,B,C,D) AND turn(C) AND in motif(C,’prf:RT POL’)
11.3 mut(A,B,C,D) AND coil(C) AND conservation(C, high)
11.1 mut(A,B,C,D) AND conservation(C, high)
11 mut(A,B,C,D) AND same color type mut(A,B) AND in motif(B,’prf:RT POL’)
8.7 mut(A,B,C,D) AND same color type mut(A,B)
7.3 mut(A,B,C,D) AND in motif(C,’pfam fs:RVT 1’)
7.3 mut(A,B,C,D) AND color(red,B) AND in motif(C,’prf:RT POL’)

developing resistance to these inhibitors is the region between positions 54
and 234 along the primary sequence, corresponding to the motif prf:RT POL.
In addition, for the resistance to NNRTI the region between positions 98 and
107 is more relevant, while for NRTI it is the region between positions 64
and 71 (see the location predicate).

5.3.4 Learning from mutants
The next set of experiments is focused on learning mutations from mutant
data (Dataset 2). Learned models are still limited to single amino acid mu-
tations, and so are novel mutants generated by the system.

We randomly assigned the mutants in Dataset 2 to 30 train/test set splits,
by avoiding having mutants containing the same resistance mutation (accord-
ing to the labelling used in Dataset 1) in both training and test sets. For
each of the 30 splits, we evaluated the recall of the generated mutations on
the known resistance mutations (from Dataset 1), by first removing all the
mutations that were also present in the training set. Comparison is again
made on a baseline algorithm generating random legal mutations.

Results averaged on the 30 random splits are reported in Figure 5.5. The
curve shows the average recall of the generated mutations while varying the

5.3. METHODS 93

Figure 5.7: Mean recall of the generated mutations on the resistance test
set mutations from Dataset 2 by varying the threshold on the prediction
confidence, and the corresponding average number of overall generated mu-
tations (i.e., not necessarily in the test set), in red. The blue line refers to
the random generator of mutations.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 50 100 150 200 250 300 350

A
ve

ra
g
e
 r

e
ca

ll

Average number of generated mutants

(a) NNRTI

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 50 100 150 200 250 300 350

A
ve

ra
g
e
 r

e
ca

ll

Average number of generated mutants

(b) NRTI

1

threshold over their confidence, and the corresponding number of overall
generated mutations. For NNRTI, we can see that we obtain an average
recall of 25% while generating only 250 mutants, and can reach up to 27%
with about 300 generated mutants. In both cases the results are statisti-
cally significantly higher than those achieved by a random generator (paired
Wilcoxon test, α=0.01).

The hypothesis for the resistance to NNRTI identifies more than half (12
out of 18) of the known resistance survaillance mutations reported in [243]:
103N, 103S, 106A, 181C, 181I, 181V, 188L, 188C, 190A, 190S, 190E, all with
very high confidence. The model also predicts other not previously reported
mutations as being resistant with high confidence, for instance 183F and
232A, very close to known surveillance mutations 181C and 230L.

Also in the case of NRTI the generative algorithm suggests most (32 of
34) known survaillance mutations reported in [243]: all of them except those
targeting position 69 (including an insertion).

As previously stated, in our experiments we constrain the learner to
weighted combinations of conjunctions of up to two clauses. Note that two
clauses with distinct position predicates cannot be simultaneously satisfied
by the same mutation. Conjuctions of two clauses will thus typically involve
one position-specific and one position-aspecific clause.

Table 5.3 lists the most frequently learned clauses in the 30 distinct mod-

94 CHAPTER 5. PREDICTING DRUG-RESISTANT MUTANTS

Table 5.2: List of the ten most frequent learned rules for Dataset 2, sorted
by number of models they appear in. The table also includes the clause
position(C,X), which is present in all models for different values of X.

models learned clause
NNRTI

all mut(A,B,C,D) AND position(C,X)
9 mut(A,B,C,D) AND position(C,103) AND typeaa(neutral,D)
6 mut(A,B,C,D) AND position(C,106) AND typeaa(tiny,D)
6 mut(A,y,C,D) AND typeaa(neutral,D) AND strand(C)
6 mut(A,y,C,D) AND strand(C)
5 mut(A,B,C,a) AND position(C,106)
5 mut(A,y,C,D) AND typeaa(neutral,D)
4 mut(A,B,C,D) AND position(C,90) AND correlated mut(A,C,E)
4 mut(A,B,C,D) AND position(C,143) AND same type aa(D,B,polar)
3 mut(A,B,C,D) AND typeaa(aromatic,B) AND strand(C) AND

AND typeaa(neutral,D)
NRTI

all mut(A,B,C,D) AND position(C,X)
17 mut(A,m,C,D) AND same type aa(B,D,nonpolar)
13 mut(A,m,C,D) AND highconservation(C)
12 mut(A,w,C,D)
9 mut(A,m,C,D) AND inMotif(C,pfam ls:RVT 1)
9 mut(A,m,C,D)
9 mut(A,p,C,D)
6 mut(A,B,C,D) AND position(C,165) AND correlated mut(A,C,E)
6 mut(A,B,C,D) AND position(C,188) AND correlated mut(A,C,E)
6 mut(A,m,C,D) AND inMotif(C,prf:RT POL)
6 mut(A,m,C,D) AND inMotif(C,pfam fs:RVT 1)

els learned during the cross-validation procedure.
It is easy to see that the most frequent clauses tend to favor mutations to

positions 103, 106, and 143 for NNRTI resistance and 165 and 188 for NRTI
resistance, among other less frequent positions. The clauses also specify
properties of the mutations occurring at these positions. On the one hand,
NNRTI resistant mutations are predicted to have a strong preference for
strand residues (with strand occurring three times in Table 5.3) and for
non-charged mutations. On the other hand, NRTI resistant mutations are
predicted to occur within PROSITE motif RT POL and Pfam motif RVT 1;
mutations to highly conserved methionine positions are also predicted to
confer resistance, as confirmed by surveillance mutation 184V.

5.4 Discussion and Future Work
The results shown in the previous section are a promising starting point to
generalize our approach to more complex settings. We showed that the ap-

5.4. DISCUSSION AND FUTURE WORK 95

proach scales from few hundreds of mutations as learning examples to almost
a thousand of complete mutants. Moreover the learned hypotheses signifi-
cantly constrain the space of all possible single amino acid mutations to be
considered, paving the way to the expansion of the method to multi-site mu-
tant generation. This represents a clear advantage over alternative existing
machine learning approaches, which would require the preliminary genera-
tion of all possible mutants for their evaluation. Restricting to RT mutants
with two mutated amino acids, this would imply testing more than a hun-
dred million candidate mutants. At the same time our statistical relational
learning approach cannot attain the same accuracy levels of a sophisticated
technique modelling for instance the three dimensional rearrangements of the
resulting mutant. We plan to combine the respective advantages of the two
approaches by using our statistical relational model as a pre-filtering stage,
producing candidate mutants to be further analysed by complex modelling
techniques and additional tools evaluating, for instance, a mutant stability.
An additional direction to refine our predictions consists of jointly learning
models of resistance to different drugs (e.g. NNRTI and NRTI), possibly
further refining the joint models on a per-class basis. On a predictive (rather
than generative) task, this was shown [245] to provide improvements over
learning distinct per-drug models.

Our approach is not restricted to learning drug-resistance mutations in
viruses. More generally, it can be applied to learn mutants having certain
properties of interest, e.g. improved or more specific activity of an enzyme
with respect to a substrate, in a full protein engineering fashion.

96 CHAPTER 5. PREDICTING DRUG-RESISTANT MUTANTS

Chapter 6

Conclusions

In this thesis we presented three applications of Statistical Relational Learn-
ing methods to old and novel problems in computational biology, which high-
light how SRL can indeed be very effective in dealing with a range of different
problems.

In Chapter 3 we showed how to jointly improve the outputs of multiple
correlated predictors of protein features with a probabilistic-logical consis-
tency layer. Given a set of correlated predictions and a set of weighted First-
Order Logic rules that represent biologically motivated constraints between
the predicted features, the proposed consistency layer, renders the predic-
tions consistent by removing rule violations. We have presented promising
experimental results for the task of refining subcellular localization, disulfide
bonding state, and metal bonding state. We stress the fact that the consis-
tency layer is fully general, and could in principle be applied to an array of
arbitrary heterogeneous predictors; moreover, it does not require any change
to the underlying software.

We are currently planning to extend this approach in two ways. First of
all, we want to include more features into the refinement process, in order
to increase the chance of improving the overall consistency. The proposed
framework is indeed designed to be as modular as possible: adding a new
predictor is just a matter of encoding the appropriate FOL rules. Ideally,
we would apply the refiner to one of the large scale prediction hierarchies
available, such as Distill [22], SPACE [179] and PredictProtein [23].

Clearly, broadening the scope of the refiner to more features assumes that
gs-MLNs [3] can scale up easily, which has not yet been proven. However,
there are at least two promising alternatives to gs-MLNs, with roughly the
same expressive power, which are actively supported and may be worth con-
sidering: Semantic Based Regularization [7] (or rather a supervised version
thereof), which we illustrated in Chapter 4, and Probabilistic Similarity Logic

97

98 CHAPTER 6. CONCLUSIONS

(PSL) [246]. Both methods leverage t-norms to translate FOL formulae into
continuous analogues, and include support for similarity measures (kernels)
between relational entities. In both cases training requires solving complex
optimization tasks, but their authors have already provided efficient com-
putational procedures that have proven effective in practice. Even though
not strictly required, as shown in Chapter 3, effective weight learning may
improve the performance of the refiner.

In Chapter 4 we proposed a solution to the multi-level protein–protein
interaction (PPI) prediction problem, i.e. the problem of inferring the bind-
ing state of all proteins, domain and residue pairs in an interaction network.
Given the hierarchical nature of interactions (proteins bind by means of spe-
cific domains, which in turn form interfaces through patches of residues),
predictions at different levels are indeed correlated. We proposed a Statis-
tical Relational Learning method, based on Semantic Based Regularization
(SBR) [7], that collectively infers the binding state of all object pairs. SBR is
a multi-task learning method based on kernel machines, that employs First
Order Logic constraints to tie the learning tasks together. Our experimental
evaluation stressed how SBR substantially outperforms the baseline in sev-
eral experimental settings, indicating that exploiting the hierarchical nature
of PPIs can indeed lead to more accurate, and more consistent, predictions.

Given the success of SBR on the multi-level PPI task, we plan to fur-
ther investigate its applicability. Specifically, the idea is to augment the
current experiment with protein function prediction, i.e. prediction of Gene
Ontology terms [20], including subcellular localization information. Protein
function labels are hierarchical, arranged as nodes in a rooted tree represent-
ing a general-to-specific relation. Predictions therefore consist of multiple,
interdependent labels, one for each node in the tree, a fact that can be trans-
lated into FOL by requiring that, if a node u is predicted true, so must be all
nodes on the path from u to the root. We plan to integrate the interaction
and function prediction tasks by introducing FOL constraints between their
outputs, according to these observations: i) interacting proteins often share
the same function; ii) proteins residing in different sub-cellular locations are
not likely to interact. Moreover, there is a strong correlation between local-
ization and function (e.g. proteins that manipulate the DNA are likely to
reside in the nucleus), and function and interactions (e.g. certain enzymes
lose their catalytic ability when bound). One major challenge is that some
proteins may exhibit multiple functions, and may reside in multiple cellular
components. We plan to explicitly take this ambiguity into account by using
soft (non deterministic) constraints. The resulting method would be able to
collectively predict function, localization and interactions for a whole set of
proteins, and would guarantee the outputs to be consistent as a whole.

99

In a second step, we plan to extend the above experiment to include
signal transduction pathway information. Biological pathways are typically
mined from experimentally validated, functionally annotated PINs, in a semi-
manual fashion. Pathways can be exploited in two manners. On one hand,
since most organisms and cell types rely on the same basic biological func-
tions, they also share the same fundamental pathways. Given a database of
known pathways, we can constrain the predicted interaction/function net-
work to include/exclude said pathways. This is indeed not an easy task,
as it requires to develop a way to perform (soft) labeled sub-graph match-
ing. The problem may be reduced by extracting small common motifs from
the pathways, which capture the most frequent function-interaction patterns,
and encoding them as weighted FOL rules. Of course, there are still open
problems with this approach.

Finally, in Chapter 5 we proposed a simple statistical relational algorithm
for mining relational patterns characterizing mutations conferring drug re-
sistance to viral proteins. The input consists of mutation data labeled with
drug-resistance information, either as sets of mutations conferring resistance
to a certain drug, or as sets of mutants with information on their susceptibil-
ity to the drug. The learned rules can be used to generate a set of potentially
resistant mutants. Promising results were obtained in generating resistant
mutations for both nucleoside and non-nucleoside HIV reverse transcriptase
inhibitors.

As already mentioned, our approach can be generalized quite easily to
learning mutants characterized by more complex rules correlating multiple
mutations, i.e. multi-point mutations. This is a very interesting topic, as
current methods are limited to single-point mutations. Research on this
extension, however, is hampered by the lack of exhaustive labeled mutation
datasets.

100 CHAPTER 6. CONCLUSIONS

Bibliography

[1] Lise Getoor and Ben Taskar. Introduction to Statistical Relational
Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2007.

[2] Luc De Raedt, Paolo Frasconi, Kristian Kersting, and Stephen Muggle-
ton, editors. Probabilistic Inductive Logic Programming - Theory and
Applications, volume 4911 of Lecture Notes in Computer Science, 2008.

[3] M. Lippi and P. Frasconi. Prediction of protein β-residue contacts by
markov logic networks with grounding-specific weights. Bioinformatics,
25(18):2326–2333, 2009.

[4] R. Nair and B. Rost. Mimicking cellular sorting improves prediction of
subcellular localization. Journal of molecular biology, 348(1):85–100,
2005.

[5] A. Ceroni, A. Passerini, A. Vullo, and P. Frasconi. Disulfind: a disul-
fide bonding state and cysteine connectivity prediction server. Nucleic
Acids Research, 34(suppl 2):W177–W181, 2006.

[6] M. Lippi, A. Passerini, M. Punta, B. Rost, and P. Frasconi. Metalde-
tector: a web server for predicting metal-binding sites and disulfide
bridges in proteins from sequence. Bioinformatics, 24(18):2094–2095,
2008.

[7] Michelangelo Diligenti, Marco Gori, Marco Maggini, and Leonardo
Rigutini. Bridging logic and kernel machines. Machine learning,
86(1):57–88, 2012.

[8] Stephen Muggleton and Luc De Raedt. Inductive logic programming:
Theory and methods. The Journal of Logic Programming, 19:629–679,
1994.

[9] S. Džeroski and I. Bratko. Handling noise in inductive logic program-
ming. In S. Muggleton, editor, ILP92, Report ICOT TM-1182, 1992.

101

102 BIBLIOGRAPHY

[10] K.Y. Yip, P.M. Kim, D. McDermott, and M. Gerstein. Multi-level
learning: improving the prediction of protein, domain and residue in-
teractions by allowing information flow between levels. BMC bioinfor-
matics, 10(1):241, 2009.

[11] Pierre Baldi et al. Bioinformatics: the machine learning approach. The
MIT Press, 2001.

[12] Bernhard Schèolkopf, Koji Tsuda, and Jean-Philippe Vert. Kernel
methods in computational biology. The MIT press, 2004.

[13] Lawrence Rabiner and B Juang. An introduction to hidden markov
models. ASSP Magazine, IEEE, 3(1):4–16, 1986.

[14] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-
chine learning, 20(3):273–297, 1995.

[15] Nada Lavrac and Saso Dzeroski. Inductive logic programming. E. Hor-
wood, 1994.

[16] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition
and machine learning, volume 1. springer New York, 2006.

[17] Kevin P Murphy. Machine learning: a probabilistic perspective. The
MIT Press, 2012.

[18] Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James
Franklin. The elements of statistical learning: data mining, inference
and prediction. The Mathematical Intelligencer, 27(2):83–85, 2005.

[19] Andrew R Webb. Statistical pattern recognition. Wiley. com, 2003.

[20] Michael Ashburner, Catherine A Ball, Judith A Blake, David Bot-
stein, Heather Butler, J Michael Cherry, Allan P Davis, Kara Dolinski,
Selina S Dwight, Janan T Eppig, et al. Gene ontology: tool for the
unification of biology. Nature genetics, 25(1):25–29, 2000.

[21] Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard,
William Bug, Werner Ceusters, Louis J Goldberg, Karen Eilbeck,
Amelia Ireland, Christopher J Mungall, et al. The obo foundry: coor-
dinated evolution of ontologies to support biomedical data integration.
Nature biotechnology, 25(11):1251–1255, 2007.

BIBLIOGRAPHY 103

[22] D. Baú, A. Martin, C. Mooney, A. Vullo, I. Walsh, and G. Pollas-
tri. Distill: a suite of web servers for the prediction of one-, two-and
three-dimensional structural features of proteins. BMC bioinformatics,
7(1):402, 2006.

[23] B. Rost, G. Yachdav, and J. Liu. The predictprotein server. Nucleic
acids research, 31(13):3300–3304, 2003.

[24] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, and
Keith Roberts. Molecular biology of the cell 4th edition. National
Center for Biotechnology InformationÕs Bookshelf, 2002.

[25] Harvey Lodish, Arnold Berk, Chris A. Kaiser, Monty Krieger,
Hidde Ploegh Anthony Bretscher and, Angelika Amon, and Matthew P.
Scott. Molecular Cell Biology. 2012.

[26] William Cohen. A computer scientist’s guide to cell biology: a travel-
ogue from a stranger in a strange land. Springer, 2007.

[27] David R Bentley, Shankar Balasubramanian, Harold P Swerdlow, Ge-
offrey P Smith, John Milton, Clive G Brown, Kevin P Hall, Dirk J
Evers, Colin L Barnes, Helen R Bignell, et al. Accurate whole hu-
man genome sequencing using reversible terminator chemistry. Nature,
456(7218):53–59, 2008.

[28] Christian B Anfinsen. Studies on the principles that govern the folding
of protein chains. Science, 181:223–30, 1973.

[29] Jeremy M Berg, John L Tymoczko, and Lubert Stryer. Biochemistry.
2002.

[30] LD Hall. Nuclear magnetic resonance. Advances in Carbohydrate
Chemistry, 19:51–93, 1964.

[31] MS Smyth and JHJ Martin. x ray crystallography. Molecular Pathol-
ogy, 53(1):8–14, 2000.

[32] Hl E Huxley. Electron microscope studies on the structure of natu-
ral and synthetic protein filaments from striated muscle. Journal of
molecular biology, 7(3):281–IN15, 1963.

[33] John-Marc Chandonia and Steven E Brenner. The impact of structural
genomics: expectations and outcomes. Science, 311(5759):347–351,
2006.

104 BIBLIOGRAPHY

[34] F Ulrich Hartl and Manajit Hayer-Hartl. Converging concepts of pro-
tein folding in vitro and in vivo. Nature structural & molecular biology,
16(6):574–581, 2009.

[35] Mary-Jane Gething and Joseph Sambrook. Protein folding in the cell.
1992.

[36] Jose Nelson Onuchic and Peter G Wolynes. Theory of protein folding.
Current opinion in structural biology, 14(1):70–75, 2004.

[37] A Szilágyi, J Kardos, S Osváth, L Barna, and P Závodszky. Protein
folding. In Handbook of Neurochemistry and Molecular Neurobiology,
pages 303–343. Springer, 2007.

[38] Wolfgang Kabsch and Christian Sander. Dictionary of protein sec-
ondary structure: pattern recognition of hydrogen-bonded and geo-
metrical features. Biopolymers, 22(12):2577–2637, 1983.

[39] George A Khoury, Richard C Baliban, and Christodoulos A Floudas.
Proteome-wide post-translational modification statistics: frequency
analysis and curation of the swiss-prot database. Scientific reports,
1, 2011.

[40] W.J. Wedemeyer, E. Welker, M. Narayan, and H.A. Scheraga. Disulfide
bonds and protein folding. Biochemistry, 39(15):4207–4216, 2000.

[41] Chunaram Choudhary, Chanchal Kumar, Florian Gnad, Michael L
Nielsen, Michael Rehman, Tobias C Walther, Jesper V Olsen, and
Matthias Mann. Lysine acetylation targets protein complexes and co-
regulates major cellular functions. Science, 325(5942):834–840, 2009.

[42] Christopher M Dobson. Protein folding and misfolding. Nature,
426(6968):884–890, 2003.

[43] Kresten Lindorff-Larsen, Peter Rogen, Emanuele Paci, Michele Vendr-
uscolo, and Christopher M Dobson. Protein folding and the organiza-
tion of the protein topology universe. Trends in biochemical sciences,
30(1):13–19, 2005.

[44] AV Finkelstein and OV Galzitskaya. Physics of protein folding. Physics
of Life Reviews, 1(1):23–56, 2004.

[45] Ken A Dill, S Banu Ozkan, M Scott Shell, and Thomas R Weikl. The
protein folding problem. Annual review of biophysics, 37:289, 2008.

BIBLIOGRAPHY 105

[46] Walter Pirovano and Jaap Heringa. Protein secondary structure predic-
tion. In Data Mining Techniques for the Life Sciences, pages 327–348.
Springer, 2010.

[47] Anders Krogh, BjoÈrn Larsson, Gunnar Von Heijne, and Erik LL
Sonnhammer. Predicting transmembrane protein topology with a hid-
den markov model: application to complete genomes. Journal of molec-
ular biology, 305(3):567–580, 2001.

[48] Craig T Porter, Gail J Bartlett, and Janet M Thornton. The catalytic
site atlas: a resource of catalytic sites and residues identified in enzymes
using structural data. Nucleic acids research, 32(suppl 1):D129–D133,
2004.

[49] Mireia Garcia-Viloca, Jiali Gao, Martin Karplus, and Donald G Truh-
lar. How enzymes work: analysis by modern rate theory and computer
simulations. Science, 303(5655):186–195, 2004.

[50] Julian Mintseris and Zhiping Weng. Structure, function, and evolution
of transient and obligate protein–protein interactions. Proceedings of
the National Academy of Sciences of the United States of America,
102(31):10930–10935, 2005.

[51] Yanay Ofran and Burkhard Rost. Analysing six types of protein–
protein interfaces. Journal of molecular biology, 325(2):377–387, 2003.

[52] James A Wells and Christopher L McClendon. Reaching for high-
hanging fruit in drug discovery at protein–protein interfaces. Nature,
450(7172):1001–1009, 2007.

[53] Irina S Moreira, Pedro A Fernandes, and Maria J Ramos. Hot spot-
sâĂŤa review of the protein–protein interface determinant amino-
acid residues. Proteins: Structure, Function, and Bioinformatics,
68(4):803–812, 2007.

[54] Hans Frauenfelder. New looks at protein motions. Nature, 338:623–624,
1989.

[55] Jörg Gsponer and M Madan Babu. The rules of disorder or why disor-
der rules. Progress in biophysics and molecular biology, 99(2):94–103,
2009.

[56] Recep Colak, TaeHyung Kim, Magali Michaut, Mark Sun, Manuel
Irimia, Jeremy Bellay, Chad L Myers, Benjamin J Blencowe, and

106 BIBLIOGRAPHY

Philip M Kim. Distinct types of disorder in the human proteome:
functional implications for alternative splicing. PLoS computational
biology, 9(4):e1003030, 2013.

[57] Yongqi Huang and Zhirong Liu. Smoothing molecular interactions:
The âĂĲkinetic bufferâĂİ effect of intrinsically disordered proteins.
Proteins: Structure, Function, and Bioinformatics, 78(16):3251–3259,
2010.

[58] Steven J Metallo. Intrinsically disordered proteins are potential drug
targets. Current opinion in chemical biology, 14(4):481–488, 2010.

[59] Vladimir Uversky, Christopher Oldfield, Uros Midic, Hongbo Xie,
Bin Xue, Slobodan Vucetic, Lilia Iakoucheva, Zoran Obradovic, and
A Keith Dunker. Unfoldomics of human diseases: linking protein in-
trinsic disorder with diseases. BMC genomics, 10(Suppl 1):S7, 2009.

[60] Calvin Yu-Chian Chen and Weng Ieong Tou. How to design a drug
for the disordered proteins? DRUG DISCOVERY TODAY, 18(19-
20):910–915, 2013.

[61] Predrag Radivojac, Wyatt T Clark, Tal Ronnen Oron, Alexandra M
Schnoes, Tobias Wittkop, Artem Sokolov, Kiley Graim, Christopher
Funk, Karin Verspoor, Asa Ben-Hur, et al. A large-scale evaluation of
computational protein function prediction. Nature methods, 2013.

[62] Robert Rentzsch and Christine A Orengo. Protein function prediction–
the power of multiplicity. Trends in biotechnology, 27(4):210–219, 2009.

[63] Tobias Hamp, Rebecca Kassner, Stefan Seemayer, Esmeralda Vicedo,
Christian Schaefer, Dominik Achten, Florian Auer, Ariane Boehm, Tat-
jana Braun, Maximilian Hecht, et al. Homology-based inference sets the
bar high for protein function prediction. BMC bioinformatics, 14(Suppl
3):S7, 2013.

[64] Ozlem Keskin, Attila Gursoy, Buyong Ma, Ruth Nussinov, et al. Prin-
ciples of protein-protein interactions: what are the preferred ways for
proteins to interact? Chemical reviews, 108(4):1225–1244, 2008.

[65] Andrew L Hopkins. Network pharmacology: the next paradigm in drug
discovery. Nature chemical biology, 4(11):682–690, 2008.

[66] Peter Csermely, Tamás Korcsmáros, Huba JM Kiss, Gábor London,
and Ruth Nussinov. Structure and dynamics of molecular networks:

BIBLIOGRAPHY 107

A novel paradigm of drug discovery. Pharmacology & Therapeutics,
138(3):333–408, 2013.

[67] Michael P Cary, Gary D Bader, and Chris Sander. Pathway information
for systems biology. FEBS letters, 579(8):1815–1820, 2005.

[68] Simon C Lovell and David L Robertson. An integrated view of molec-
ular coevolution in protein–protein interactions. Molecular biology and
evolution, 27(11):2567–2575, 2010.

[69] Minoru Kanehisa and Susumu Goto. Kegg: kyoto encyclopedia of genes
and genomes. Nucleic acids research, 28(1):27–30, 2000.

[70] Benjamin A Shoemaker and Anna R Panchenko. Deciphering protein–
protein interactions. part ii. computational methods to predict protein
and domain interaction partners. PLoS computational biology, 3(4):e43,
2007.

[71] Iakes Ezkurdia, Lisa Bartoli, Piero Fariselli, Rita Casadio, Alfonso
Valencia, and Michael L Tress. Progress and challenges in pre-
dicting protein–protein interaction sites. Briefings in bioinformatics,
10(3):233–246, 2009.

[72] Jonathan Q Jiang and Maoying Wu. Predicting multiplex subcellular
localization of proteins using protein-protein interaction network: a
comparative study. BMC bioinformatics, 13(Suppl 10):S20, 2012.

[73] Xing-Ming Zhao, Rui-Sheng Wang, Luonan Chen, and Kazuyuki Ai-
hara. Uncovering signal transduction networks from high-throughput
data by integer linear programming. Nucleic acids research, 36(9):e48–
e48, 2008.

[74] Thanh Phuong Nguyen, Tu Bao Ho, et al. Discovering signal trans-
duction networks using signaling domain-domain interactions. Genome
Informatics, 17(2):35–45, 2006.

[75] Thanh-Phuong Nguyen and Tu-Bao Ho. An integrative domain-based
approach to predicting protein–protein interactions. Journal of Bioin-
formatics and Computational Biology, 6(06):1115–1132, 2008.

[76] Vesna Memǐsevič, Anders Wallqvist, and Jaques Reifman. Reconstitut-
ing protein interaction networks using parameter-dependent domain-
domain interactions. BMC Bioinformatics, 14:154, 2013.

108 BIBLIOGRAPHY

[77] Esa Pitkänen, Juho Rousu, and Esko Ukkonen. Computational meth-
ods for metabolic reconstruction. Current opinion in biotechnology,
21(1):70–77, 2010.

[78] Nurcan Tuncbag, Attila Gursoy, and Ozlem Keskin. Identification of
computational hot spots in protein interfaces: combining solvent ac-
cessibility and inter-residue potentials improves the accuracy. Bioin-
formatics, 25(12):1513–1520, 2009.

[79] Anna CF Lewis, Ramazan Saeed, and Charlotte M Deane. Predicting
protein–protein interactions in the context of protein evolution. Molec-
ular BioSystems, 6(1):55–64, 2010.

[80] Nurcan Tuncbag, Gozde Kar, Ozlem Keskin, Attila Gursoy, and Ruth
Nussinov. A survey of available tools and web servers for analysis of
protein–protein interactions and interfaces. Briefings in Bioinformat-
ics, 10(3):217–232, 2009.

[81] Lucy Skrabanek, Harpreet K Saini, Gary D Bader, and Anton J En-
right. Computational prediction of protein–protein interactions. Molec-
ular biotechnology, 38(1):1–17, 2008.

[82] Mark N Wass, Alessia David, and Michael JE Sternberg. Challenges
for the prediction of macromolecular interactions. Current opinion in
structural biology, 21(3):382–390, 2011.

[83] Andrew Chatr-aryamontri, Bobby-Joe Breitkreutz, Sven Heinicke, Lor-
rie Boucher, Andrew Winter, Chris Stark, Julie Nixon, Lindsay Ram-
age, Nadine Kolas, Lara OâĂŹDonnell, et al. The biogrid interaction
database: 2013 update. Nucleic acids research, 41(D1):D816–D823,
2013.

[84] Philipp Pagel, Stefan Kovac, Matthias Oesterheld, Barbara Brauner,
Irmtraud Dunger-Kaltenbach, Goar Frishman, Corinna Montrone,
Pekka Mark, Volker Stümpflen, Hans-Werner Mewes, et al. The
mips mammalian protein–protein interaction database. Bioinformat-
ics, 21(6):832–834, 2005.

[85] Richard Durbin. Biological sequence analysis: probabilistic models of
proteins and nucleic acids. Cambridge university press, 1998.

[86] Yana Bromberg and Burkhard Rost. Snap: predict effect of non-
synonymous polymorphisms on function. Nucleic acids research,
35(11):3823–3835, 2007.

BIBLIOGRAPHY 109

[87] Andreas Wagner. Neutralism and selectionism: a network-based rec-
onciliation. Nature Reviews Genetics, 9(12):965–974, 2008.

[88] Emidio Capriotti, Piero Fariselli, Ivan Rossi, and Rita Casadio. A
three-state prediction of single point mutations on protein stability
changes. BMC bioinformatics, 9 Suppl 2:S6, 2008.

[89] Chris J Needham, James R Bradford, Andrew J Bulpitt, Matthew a
Care, and David R Westhead. Predicting the effect of missense mu-
tations on protein function: analysis with Bayesian networks. BMC
bioinformatics, 7:405, 2006.

[90] Yana Bromberg and Burkhard Rost. SNAP: predict effect of non-
synonymous polymorphisms on function. Nucleic acids research,
35(11):3823–35, January 2007.

[91] Johan A Grahnen, Priyanka Nandakumar, Jan Kubelka, and David A
Liberles. Biophysical and structural considerations for protein sequence
evolution. BMC evolutionary biology, 11(1):361, 2011.

[92] David N Cooper and Michael Krawczak. Human gene mutation
database. Human genetics, 98(5):629–629, 1996.

[93] Vasily Ramensky, Peer Bork, and Shamil Sunyaev. Human non-
synonymous snps: server and survey. Nucleic acids research,
30(17):3894–3900, 2002.

[94] Cédric Debès, Minglei Wang, Gustavo Caetano-Anollés, and Frauke
Gräter. Evolutionary optimization of protein folding. PLoS computa-
tional biology, 9(1):e1002861, 2013.

[95] Rafael Sanjuán, Miguel R Nebot, Nicola Chirico, Louis M Mansky,
and Robert Belshaw. Viral mutation rates. Journal of virology,
84(19):9733–9748, 2010.

[96] Soo-Yon Rhee, Jonathan Taylor, Gauhar Wadhera, Asa Ben-Hur, Dou-
glas L Brutlag, and Robert W Shafer. Genotypic predictors of hu-
man immunodeficiency virus type 1 drug resistance. Proceedings of
the National Academy of Sciences of the United States of America,
103(46):17355–60, November 2006.

[97] Richard O Duda, Peter E Hart, and David G Stork. Unsupervised
learning and clustering. Pattern classification, page 571, 2001.

110 BIBLIOGRAPHY

[98] Marco Wiering and Martijn van Otterlo. Reinforcement Learning:
State-of-the-art, volume 12. Springer, 2012.

[99] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien, et al. Semi-
supervised learning, volume 2. MIT press Cambridge, 2006.

[100] Lorenzo Rosasco, Ernesto De Vito, Andrea Caponnetto, Michele Pi-
ana, and Alessandro Verri. Are loss functions all the same? Neural
Computation, 16(5):1063–1076, 2004.

[101] Adwait Ratnaparkhi. A simple introduction to maximum entropy mod-
els for natural language processing. IRCS Technical Reports Series,
page 81, 1997.

[102] Ron Kohavi et al. A study of cross-validation and bootstrap for ac-
curacy estimation and model selection. In IJCAI, volume 14, pages
1137–1145, 1995.

[103] Avrim Blum, Adam Kalai, and John Langford. Beating the hold-out:
Bounds for k-fold and progressive cross-validation. In Proceedings of
the twelfth annual conference on Computational learning theory, pages
203–208. ACM, 1999.

[104] Shigeo Abe. Support vector machines for pattern classification.
Springer, 2010.

[105] Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel
methods in machine learning. The annals of statistics, pages 1171–1220,
2008.

[106] Bernhard Schölkopf and Alexander J Smola. Learning with kernels.
The MIT Press, 2002.

[107] Christopher JC Burges. A tutorial on support vector machines for
pattern recognition. Data mining and knowledge discovery, 2(2):121–
167, 1998.

[108] Thorsten Joachims. Svmlight: Support vector machine. SVM-Light
Support Vector Machine http://svmlight. joachims. org/, University of
Dortmund, 19(4), 1999.

[109] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin. Liblinear: A library for large linear classification. The
Journal of Machine Learning Research, 9:1871–1874, 2008.

BIBLIOGRAPHY 111

[110] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support
vector machines. ACM Transactions on Intelligent Systems and Tech-
nology (TIST), 2(3):27, 2011.

[111] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A
training algorithm for optimal margin classifiers. In Proceedings of the
fifth annual workshop on Computational learning theory, pages 144–
152. ACM, 1992.

[112] Vladimir N Vapnik and A Ya Chervonenkis. On the uniform conver-
gence of relative frequencies of events to their probabilities. Theory of
Probability & Its Applications, 16(2):264–280, 1971.

[113] Bernhard Schölkopf and Alexander J Smola. Learning with kernels.
2002.

[114] John Platt et al. Sequential minimal optimization: A fast algorithm
for training support vector machines. 1998.

[115] Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-
plane training of structural svms. Machine Learning, 77(1):27–59, 2009.

[116] Thomas Gärtner. Kernels for structured data, volume 72. World Sci-
entific, 2008.

[117] Uwe Dick and Kristian Kersting. Fisher kernels for relational data. In
Machine Learning: ECML 2006, pages 114–125. Springer, 2006.

[118] Alex J Smola and Bernhard Schölkopf. A tutorial on support vector
regression. Statistics and computing, 14(3):199–222, 2004.

[119] Bernhard Schölkopf, Alex J Smola, Robert C Williamson, and Pe-
ter L Bartlett. New support vector algorithms. Neural computation,
12(5):1207–1245, 2000.

[120] Jason Weston and Chris Watkins. Support vector machines for multi-
class pattern recognition. In ESANN, volume 99, pages 61–72, 1999.

[121] Lorenzo Bruzzone, Mingmin Chi, and Mattia Marconcini. A novel
transductive svm for semisupervised classification of remote-sensing
images. Geoscience and Remote Sensing, IEEE Transactions on,
44(11):3363–3373, 2006.

112 BIBLIOGRAPHY

[122] Ben Taskar, Vassil Chatalbashev, Daphne Koller, and Carlos Guestrin.
Learning structured prediction models: A large margin approach. In
Proceedings of the 22nd international conference on Machine learning,
pages 896–903. ACM, 2005.

[123] Thorsten Joachims, Thomas Hofmann, Yisong Yue, and Chun-Nam
Yu. Predicting structured objects with support vector machines. Com-
munications of the ACM, 52(11):97–104, 2009.

[124] John Platt et al. Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods. Advances in large
margin classifiers, 10(3):61–74, 1999.

[125] Kristiaan Pelckmans, Jos De Brabanter, Johan AK Suykens, and Bart
De Moor. Handling missing values in support vector machine classifiers.
Neural Networks, 18(5):684–692, 2005.

[126] Daphne Kollar and Nir Friedman. Probabilistic graphical models: prin-
ciples and techniques. The MIT Press, 2009.

[127] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann, 1988.

[128] Daphne Koller, Nir Friedman, Lise Getoor, and Ben Taskar. Graphi-
cal models in a nutshell. STATISTICAL RELATIONAL LEARNING,
page 13, 2007.

[129] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Condi-
tional random fields: Probabilistic models for segmenting and labeling
sequence data. 2001.

[130] Kiyoshi Asai, Satoru Hayamizu, and Ken’ichi Handa. Prediction of
protein secondary structure by the hidden markov model. Computer
applications in the biosciences: CABIOS, 9(2):141–146, 1993.

[131] Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe’er. Using
bayesian networks to analyze expression data. Journal of computational
biology, 7(3-4):601–620, 2000.

[132] Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P
Xing. Mixed membership stochastic blockmodels. The Journal of Ma-
chine Learning Research, 9:1981–2014, 2008.

[133] Kevin P Murphy. Dynamic bayesian networks. Probabilistic Graphical
Models, M. Jordan, 2002.

BIBLIOGRAPHY 113

[134] Charles Kervrann and Fabrice Heitz. A markov random field model-
based approach to unsupervised texture segmentation using local and
global spatial statistics. Image Processing, IEEE Transactions on,
4(6):856–862, 1995.

[135] Stan Z Li. Markov random field modeling in computer vision. Springer-
Verlag New York, Inc., 1995.

[136] Fei Sha and Fernando Pereira. Shallow parsing with conditional ran-
dom fields. In Proceedings of the 2003 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics on Hu-
man Language Technology-Volume 1, pages 134–141. Association for
Computational Linguistics, 2003.

[137] Lise Getoor and Ben Taskar. Introduction to Statistical Relational
Learning. 2007.

[138] Michal Rosen-Zvi, Michael I Jordan, and Alan Yuille. The dlr hierarchy
of approximate inference. arXiv preprint arXiv:1207.1417, 2012.

[139] Tom Heskes et al. Stable fixed points of loopy belief propagation are
minima of the bethe free energy. Advances in neural information pro-
cessing systems, 15:359–366, 2003.

[140] Martin J Wainwright, Tommi S Jaakkola, and Alan S Willsky. Map es-
timation via agreement on trees: message-passing and linear program-
ming. Information Theory, IEEE Transactions on, 51(11):3697–3717,
2005.

[141] Martin J Wainwright and Michael I Jordan. Graphical models, expo-
nential families, and variational inference. Foundations and Trends R©
in Machine Learning, 1(1-2):1–305, 2008.

[142] Yee Whye Teh and Michael I Jordan. Hierarchical bayesian nonpara-
metric models with applications. Bayesian Nonparametrics: Principles
and Practice, pages 158–207, 2010.

[143] Matthew J Beal, Zoubin Ghahramani, and Carl E Rasmussen. The
infinite hidden markov model. In Advances in neural information pro-
cessing systems, pages 577–584, 2001.

[144] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet
allocation. the Journal of machine Learning research, 3:993–1022, 2003.

114 BIBLIOGRAPHY

[145] George Casella and Edward I George. Explaining the gibbs sampler.
The American Statistician, 46(3):167–174, 1992.

[146] Pedro Domingos and Matthew Richardson. Markov logic: A unifying
framework for statistical relational learning. STATISTICAL RELA-
TIONAL LEARNING, page 339, 2007.

[147] Jue Wang and Pedro Domingos. Hybrid markov logic networks. In
AAAI, volume 8, pages 1106–1111, 2008.

[148] BTCGD Roller. Max-margin markov networks. Proc. Advances in
Neural Information Processing Systems, MIT Press, page 25, 2004.

[149] M. Richardson and P. Domingos. Markov logic networks. Machine
learning, 62(1):107–136, 2006.

[150] Kristian Kersting. Lifted probabilistic inference. In ECAI, pages 33–38,
2012.

[151] Hendrik Blockeel. Statistical relational learning. In Handbook on Neural
Information Processing, pages 241–281. Springer, 2013.

[152] David Jensen and Jennifer Neville. Linkage and autocorrelation cause
feature selection bias in relational learning. In ICML, volume 2, pages
259–266, 2002.

[153] Stephen Muggleton, Luc De Raedt, David Poole, Ivan Bratko, Peter
Flach, Katsumi Inoue, and Ashwin Srinivasan. Ilp turns 20. Machine
Learning, 86(1):3–23, 2012.

[154] Martin Davis and Hilary Putnam. A computing procedure for quan-
tification theory. Journal of the ACM (JACM), 7(3):201–215, 1960.

[155] Martin Davis, George Logemann, and Donald Loveland. A machine
program for theorem-proving. Communications of the ACM, 5(7):394–
397, 1962.

[156] Stephen Muggleton and Cao Feng. Efficient induction of logic pro-
grams. Inductive logic programming, 38:281–298, 1992.

[157] Stephen Muggleton. Inverse entailment and progol. New generation
computing, 13(3-4):245–286, 1995.

[158] J. Ross Quinlan and R. Mike Cameron-Jones. Induction of logic pro-
grams: Foil and related systems. New Generation Computing, 13(3-
4):287–312, 1995.

BIBLIOGRAPHY 115

[159] The aleph manual.

[160] Ross D King. Applying inductive logic programming to predicting gene
function. AI Magazine, 25(1):57, 2004.

[161] Einar Ryeng and Bjorn K̊are Alsberg. Microarray data classification
using inductive logic programming and gene ontology background in-
formation. Journal of Chemometrics, 24(5):231–240, 2010.

[162] Jose A Santos, Houssam Nassif, David Page, Stephen Muggleton, and
Michael E Sternberg. Automated identification of protein-ligand inter-
action features using inductive logic programming: a hexose binding
case study. BMC bioinformatics, 13(1):162, 2012.

[163] Tuan Nam Tran, Kenji Satou, and Tu Bao Ho. Using inductive logic
programming for predicting protein-protein interactions from multiple
genomic data. In Knowledge Discovery in Databases: PKDD 2005,
pages 321–330. 2005.

[164] Paul Finn, Stephen Muggleton, David Page, and Ashwin Srinivasan.
Pharmacophore discovery using the inductive logic programming sys-
tem progol. Machine Learning, 30(2-3):241–270, 1998.

[165] Alireza Tamaddoni-Nezhad, Raphael Chaleil, Antonis Kakas, and
Stephen Muggleton. Application of abductive ilp to learning metabolic
network inhibition from temporal data. Machine Learning, 64(1-
3):209–230, 2006.

[166] Ross D King, Stephen Muggleton, Richard A Lewis, and MJ Stern-
berg. Drug design by machine learning: The use of inductive logic
programming to model the structure-activity relationships of trimetho-
prim analogues binding to dihydrofolate reductase. Proceedings of the
national academy of sciences, 89(23):11322–11326, 1992.

[167] Kazuhisa Tsunoyama, Ata Amini, Michael JE Sternberg, and
Stephen H Muggleton. Scaffold hopping in drug discovery using induc-
tive logic programming. Journal of chemical information and modeling,
48(5):949–957, 2008.

[168] Thomas G Dietterich, Pedro Domingos, Lise Getoor, Stephen Muggle-
ton, and Prasad Tadepalli. Structured machine learning: the next ten
years. Machine Learning, 73(1):3–23, 2008.

116 BIBLIOGRAPHY

[169] Luc De Raedt, Bart Demoen, Daan Fierens, Bernd Gutmann, Gerda
Janssens, Angelika Kimmig, Niels Landwehr, Theofrastos Mantadelis,
Wannes Meert, Ricardo Rocha, et al. Towards digesting the alphabet-
soup of statistical relational learning.

[170] Luc De Raedt, Paolo Frasconi, Kristian Kersting, and Stephen Mug-
gleton, editors. Probabilistic Inductive Logic Programming - Theory
and Applications, volume 4911 of Lecture Notes in Computer Science.
Springer, 2008.

[171] Pedro Domingos, Stanley Kok, Hoifung Poon, Matthew Richardson,
and Parag Singla. Unifying logical and statistical ai. In AAAI, vol-
ume 6, pages 2–7, 2006.

[172] Stephen Muggleton. Learning structure and parameters of stochas-
tic logic programs. In Inductive Logic Programming, pages 198–206.
Springer, 2003.

[173] Taisuke Sato and Yoshitaka Kameya. Prism: a language for symbolic-
statistical modeling. In IJCAI, volume 97, pages 1330–1339. Citeseer,
1997.

[174] Noah Goodman, Vikash Mansinghka, Daniel Roy, Keith Bonawitz,
and Daniel Tarlow. Church: a language for generative models. arXiv
preprint arXiv:1206.3255, 2012.

[175] A.S. Juncker, L.J. Jensen, A. Pierleoni, A. Bernsel, M.L. Tress,
P. Bork, G. Von Heijne, A. Valencia, C.A. Ouzounis, R. Casadio, et al.
Sequence-based feature prediction and annotation of proteins. Genome
Biol, 10(2):206, 2009.

[176] M.D. Toscano, K.J. Woycechowsky, and D. Hilvert. Minimalist active-
site redesign: Teaching old enzymes new tricks. Angewandte Chemie
International Edition, 46(18):3212–3236, 2007.

[177] R.M. Bush et al. Predicting adaptive evolution. Nature Reviews Ge-
netics, 2(5):387–391, 2001.

[178] Predrag Radivojac, Zoran Obradovic, David K Smith, Guang Zhu,
Slobodan Vucetic, Celeste J Brown, J David Lawson, and A Keith
Dunker. Protein flexibility and intrinsic disorder. Protein Science,
13(1):71–80, 2004.

BIBLIOGRAPHY 117

[179] V. Sobolev, E. Eyal, S. Gerzon, V. Potapov, M. Babor, J. Prilusky, and
M. Edelman. Space: a suite of tools for protein structure prediction
and analysis based on complementarity and environment. Nucleic acids
research, 33(suppl 2):W39–W43, 2005.

[180] Francis Maes, Julien Becker, and Louis Wehenkel. Iterative multi-
task sequence labeling for predicting structural properties of proteins.
ESANN 2011, 2011.

[181] Carolyn S Sevier and Chris A Kaiser. Formation and transfer of disul-
phide bonds in living cells. Nature reviews Molecular cell biology,
3(11):836–847, 2002.

[182] Philip J Hogg. Disulfide bonds as switches for protein function. Trends
in biochemical sciences, 28(4):210–214, 2003.

[183] K. Degtyarenko. Bioinorganic motifs: towards functional classification
of metalloproteins. Bioinformatics, 16(10):851–864, 2000.

[184] A. Rietsch and J. Beckwith. The genetics of disulfide bond metabolism.
Annu Rev Genet., 32(1):163–184, 1998.

[185] C. Savojardo, P. Fariselli, M. Alhamdoosh, P.L. Martelli, A. Pierleoni,
and R. Casadio. Improving the prediction of disulfide bonds in eukary-
otes with machine learning methods and protein subcellular localiza-
tion. Bioinformatics, 27(16):2224–2230, 2011.

[186] A. Pierleoni, P.L. Martelli, P. Fariselli, and R. Casadio. Bacello: a bal-
anced subcellular localization predictor. Bioinformatics, 22(14):e408–
e416, 2006.

[187] Md M Islam, Xin Yao, and Kazuyuki Murase. A constructive algorithm
for training cooperative neural network ensembles. Neural Networks,
IEEE Transactions on, 14(4):820–834, 2003.

[188] Gianluca Pollastri, Darisz Przybylski, Burkhard Rost, and Pierre Baldi.
Improving the prediction of protein secondary structure in three and
eight classes using recurrent neural networks and profiles. Proteins:
Structure, Function, and Bioinformatics, 47(2):228–235, 2002.

[189] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, TN Bhat, H. Weis-
sig, I.N. Shindyalov, and P.E. Bourne. The protein data bank. Nucleic
acids research, 28(1):235–242, 2000.

118 BIBLIOGRAPHY

[190] S. Griep and U. Hobohm. Pdbselect 1992–2009 and pdbfilter-select.
Nucleic Acids Research, 38(suppl 1):D318–D319, 2010.

[191] A. Passerini, M. Punta, A. Ceroni, B. Rost, and P. Frasconi. Identifying
cysteines and histidines in transition-metal-binding sites using support
vector machines and neural networks. Proteins: Structure, Function,
and Bioinformatics, 65(2):305–316, 2006.

[192] T. Guo, S. Hua, X. Ji, and Z. Sun. Dbsubloc: database of protein sub-
cellular localization. Nucleic acids research, 32(suppl 1):D122–D124,
2004.

[193] A. Bairoch, R. Apweiler, C.H. Wu, W.C. Barker, B. Boeckmann,
S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Magrane, et al. The
universal protein resource (uniprot). Nucleic acids research, 33(suppl
1):D154–D159, 2005.

[194] A.C.R. Martin. Mapping pdb chains to uniprotkb entries. Bioinfor-
matics, 21(23):4297–4301, 2005.

[195] Yasemin Altun, Ioannis Tsochantaridis, Thomas Hofmann, et al. Hid-
den markov support vector machines. In MACHINE LEARNING-
INTERNATIONAL WORKSHOP THEN CONFERENCE-, vol-
ume 20, page 3, 2003.

[196] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural
networks. Signal Processing, IEEE Transactions on, 45(11):2673–2681,
1997.

[197] Paolo Frasconi, Marco Gori, and Alessandro Sperduti. A general frame-
work for adaptive processing of data structures. IEEE Transactions on
Neural Networks, 9:768–786, 1998.

[198] A. Vullo and P. Frasconi. Disulfide connectivity prediction using re-
cursive neural networks and evolutionary information. Bioinformatics,
20(5):653–659, 2004.

[199] J. Dyrlov Bendtsen, H. Nielsen, G. von Heijne, and S. Brunak. Im-
proved prediction of signal peptides: Signalp 3.0. Journal of molecular
biology, 340(4):783–795, 2004.

[200] Parag Singla and Pedro Domingos. Markov logic in infinite domains.
arXiv preprint arXiv:1206.5292, 2012.

BIBLIOGRAPHY 119

[201] Armin Biere. Handbook of satisfiability, volume 185. IOS Press, 2009.

[202] R Braz, Eyal Amir, and Dan Roth. Lifted first-order probabilistic
inference. In Proceedings of the 19th international joint conference on
Artificial intelligence, pages 1319–1325. Citeseer, 2005.

[203] Parag Singla and Pedro Domingos. Lifted first-order belief propagation.
In AAAI, volume 8, pages 1094–1099, 2008.

[204] Brian Milch, Luke S Zettlemoyer, Kristian Kersting, Michael Haimes,
and Leslie Pack Kaelbling. Lifted probabilistic inference with counting
formulas. In Aaai, volume 8, pages 1062–1068, 2008.

[205] Parag Singla and Pedro Domingos. Discriminative training of markov
logic networks. In AAAI, volume 5, pages 868–873, 2005.

[206] Tuyen N Huynh and Raymond J Mooney. Max-margin weight learn-
ing for markov logic networks. In Machine Learning and Knowledge
Discovery in Databases, pages 564–579. Springer, 2009.

[207] Stanley Fields and O Song. A novel genetic system to detect protein
protein interactions. Nature, 340(6230):245–246, 1989.

[208] Benjamin A Shoemaker and Anna R Panchenko. Deciphering protein–
protein interactions. part i. experimental techniques and databases.
PLoS computational biology, 3(3):e42, 2007.

[209] Asa Ben-Hur and William Stafford Noble. Kernel methods for predict-
ing protein–protein interactions. Bioinformatics, 21(suppl 1):i38–i46,
2005.

[210] Xiaojin Zhu. Semi-supervised learning literature survey. Computer
Science, University of Wisconsin-Madison, 2:3, 2006.

[211] Howook Hwang, Brian Pierce, Julian Mintseris, Joël Janin, and Zhip-
ing Weng. Protein–protein docking benchmark version 3.0. Proteins:
Structure, Function, and Bioinformatics, 73(3):705–709, 2008.

[212] Bin Li and Daisuke Kihara. Protein docking prediction using predicted
protein-protein interface. BMC bioinformatics, 13(1):7, 2012.

[213] Yanjun Qi and William Stafford Noble. Protein interaction networks:
Protein domain interaction and protein function prediction. In Hand-
book of Statistical Bioinformatics, pages 427–459. 2011.

120 BIBLIOGRAPHY

[214] Joel R Bock and David A Gough. Predicting protein–protein interac-
tions from primary structure. Bioinformatics, 17(5):455–460, 2001.

[215] Yanjun Qi, Oznur Tastan, Jaime G Carbonell, Judith Klein-
Seetharaman, and Jason Weston. Semi-supervised multi-task learning
for predicting interactions between hiv-1 and human proteins. Bioin-
formatics, 26(18):i645–i652, 2010.

[216] Zhu-Hong You, Ying-Ke Lei, Jie Gui, De-Shuang Huang, and Xiaobo
Zhou. Using manifold embedding for assessing and predicting protein
interactions from high-throughput experimental data. Bioinformatics,
26(21):2744–2751, 2010.

[217] Zheng Xia, Ling-Yun Wu, Xiaobo Zhou, and Stephen TC Wong. Semi-
supervised drug-protein interaction prediction from heterogeneous bi-
ological spaces. BMC systems biology, 4(Suppl 2):S6, 2010.

[218] Thanh-Phuong Nguyen and Tu-Bao Ho. Detecting disease genes based
on semi-supervised learning and protein–protein interaction networks.
Artificial Intelligence in Medicine, 54(1):63–71, 2012.

[219] Luc De Raedt. Inductive logic programming. 2010.

[220] Alvaro J González, Li Liao, and Cathy H Wu. Prediction of contact
matrix for protein–protein interaction. Bioinformatics, 2013.

[221] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data
with co-training. In Proceedings of the eleventh annual conference on
Computational learning theory, pages 92–100. ACM, 1998.

[222] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui
Zhang, Zheng Zhang, Webb Miller, and David J Lipman. Gapped blast
and psi-blast: a new generation of protein database search programs.
Nucleic acids research, 25(17):3389–3402, 1997.

[223] Shawn M Gomez, William Stafford Noble, and Andrey Rzhetsky.
Learning to predict protein–protein interactions from protein se-
quences. Bioinformatics, 19(15):1875–1881, 2003.

[224] M. Götte, X. Li, and M.A. Wainberg. Hiv-1 reverse transcription:
a brief overview focused on structure-function relationships among
molecules involved in initiation of the reaction. Archives of biochem-
istry and biophysics, 365(2):199–210, 1999.

BIBLIOGRAPHY 121

[225] Zhi Wei Cao, Lian Yi Han, Chan Juan Zheng, Zhi Lang Ji, Xin Chen,
Hong Huang Lin, and Yu Zong Chen. Computer prediction of drug
resistance mutations in proteins REVIEWS. Drug Discovery Today:
BIOSILICO, 10(7), 2005.

[226] Donn N Rubingh. Protein engineering from a bioindustrial point of
view. Current Opinion in Biotechnology, 8(4):417–422, 1997.

[227] Stephen Muggleton and Luc De Raedt. Inductive logic programming:
Theory and methods. University Computing, pages 629–682, 1994.

[228] Niels Landwehr, Andrea Passerini, Luc De Raedt, and Paolo Frasconi.
kfoil: learning simple relational kernels. In Proceedings of the 21st
national conference on Artificial intelligence - Volume 1, pages 389–
394. AAAI Press, 2006.

[229] R.W. Shafer. Rationale and uses of a public hiv drug-resistance
database. Journal of Infectious Diseases, 194(Supplement 1):S51–S58,
2006.

[230] Elisa Cilia, Stefano Teso, Sergio Ammendola, Tom Lenaerts, and An-
drea Passerini. Predicting virus mutations through relational learning.
In Proceedings of the ECCB Workshop on Annotation, Interpretation
and Management of Mutations (AIMM), 2012.

[231] E. De Clercq. Hiv inhibitors targeted at the reverse transcriptase. AIDS
research and human retroviruses, 8(2):119–134, 1992.

[232] R.A. Spence, W.M. Kati, K.S. Anderson, and K.A. Johnson. Mecha-
nism of inhibition of hiv-1 reverse transcriptase by nonnucleoside in-
hibitors. Science, 267(5200):988–993, 1995.

[233] Lothar Richter, Regina Augustin, and Stefan Kramer. Finding Rela-
tional Associations in HIV Resistance Mutation Data. In Proceedings
of Inductive Logic Programming (ILP), volume 9, 2009.

[234] M.J. Betts and R.B. Russell. Amino-acid properties and consequences
of substitutions. Bioinformatics for geneticists, pages 311–342, 2003.

[235] W. R. Taylor. The classification of amino acid conservation. Journal
of Theoretical Biology, 119(2):205–218, March 1986.

[236] Marco Punta, Penny C Coggill, Ruth Y Eberhardt, Jaina Mistry, John
Tate, Chris Boursnell, Ningze Pang, Kristoffer Forslund, Goran Ceric,

122 BIBLIOGRAPHY

Jody Clements, et al. The pfam protein families database. Nucleic
acids research, 40(D1):D290–D301, 2012.

[237] Christian JA Sigrist, Lorenzo Cerutti, Edouard De Castro, Petra S
Langendijk-Genevaux, Virginie Bulliard, Amos Bairoch, and Nicolas
Hulo. Prosite, a protein domain database for functional characteriza-
tion and annotation. Nucleic acids research, 38(suppl 1):D161–D166,
2010.

[238] GJ Bartlett, CT Porter, N Borkakoti, and JM Thornton. Analysis of
catalytic residues in enzyme active sites. Journal of Molecular Biology,
324(1):105–121, 2002.

[239] Narayanan Eswar, Ben Webb, Marc A Marti-Renom, MS Madhusud-
han, David Eramian, Min-yi Shen, Ursula Pieper, and Andrej Sali.
Comparative protein structure modeling using modeller. Current Pro-
tocols in Protein Science, pages 2–9, 2007.

[240] Frances C Bernstein, Thomas F Koetzle, Graheme JB Williams,
Edgar F Meyer, Michael D Brice, John R Rodgers, Olga Kennard,
Takehiko Shimanouchi, and Mitsuo Tasumi. The protein data bank.
European Journal of Biochemistry, 80(2):319–324, 2008.

[241] Stephen Muggleton. Learning from positive data. In Inductive Logic
Programming Workshop, pages 358–376, 1996.

[242] Niels Landwehr, Andrea Passerini, Luc Raedt, and Paolo Frasconi.
Fast learning of relational kernels. Mach. Learn., 78(3):305–342, March
2010.

[243] Diane E Bennett, Ricardo J Camacho, Dan Otelea, Daniel R Kuritzkes,
Hervé Fleury, Mark Kiuchi, Walid Heneine, Rami Kantor, Michael R
Jordan, Jonathan M Schapiro, Anne-Mieke Vandamme, Paul Sand-
strom, Charles a B Boucher, David van de Vijver, Soo-Yon Rhee,
Tommy F Liu, Deenan Pillay, and Robert W Shafer. Drug resistance
mutations for surveillance of transmitted HIV-1 drug-resistance: 2009
update. PloS one, 4(3):e4724, 2009.

[244] Koen Deforche, Ricardo J Camacho, Zehave Grossman, Marcelo a
Soares, Kristel Van Laethem, David a Katzenstein, P Richard Har-
rigan, Rami Kantor, Robert Shafer, and Anne-Mieke Vandamme.
Bayesian network analyses of resistance pathways against efavirenz and
nevirapine. AIDS (London, England), 22(16):2107–15, October 2008.

BIBLIOGRAPHY 123

[245] Elisa Cilia, Neils Landwehr, and Andrea Passerini. Relational feature
mining with hierarchical multitask kfoil. Fundamenta Informaticae,
113(2):151–177, December 2011.

[246] Matthias Brocheler, Lilyana Mihalkova, and Lise Getoor. Probabilistic
similarity logic. arXiv preprint arXiv:1203.3469, 2012.

