
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

AUTONOMOUS RESOURCE MANAGEMENT FOR

CLOUD-ASSISTED PEER-TO-PEER BASED SERVICES

Hanna Kavalionak

Advisor:

Prof. Alberto Montresor

Università degli Studi di Trento

December 2013

Abstract

Peer-to-Peer (P2P) and Cloud Computing are two of the latest trends in the
Internet arena. They both could be labelled as large-scale distributed systems,
yet their approach is completely different: based on completely decentralized
protocols exploiting edge resources the former, focusing on huge data centres
the latter. Several Internet startups have quickly reached stardom by exploiting
cloud resources. Instead, P2P applications still lack a well-defined business
model. Recently, companies like Spotify and Wuala have started to explore how
the two worlds could be merged by exploiting (free) user resources whenever
possible, aiming at reducing the cost of renting cloud resource.

However, although very promising, this model presents challenging issues,
in particular about the autonomous regulation of the usage of P2P and cloud re-
sources. Next-generation services need the possibility to guarantee a minimum
level of service when peer resources are not sufficient, and to exploit as much
P2P resources as possible when they are abundant. In this thesis, we answer
the above research questions in the form of new algorithms and systems. We
designed a family of mechanisms to self-regulate the amount of cloud resources
when peer resources are not enough.

We applied and adapted these mechanisms to support different Internet ap-
plications, including storage, video streaming and online gaming. To support
a replication service, we designed an algorithm that self-regulates the cloud
resources used for storing replicas by orchestrating their provisioning. We pre-
sented CLIVE, a video streaming P2P framework that meet the real-time con-
straints on video delay by autonomously regulating the amount of cloud helpers
upon need. We proposed an architecture to support large scale on-line games,
where the load coming from the interaction of players is strategically migrated
between P2P and cloud resources in an autonomous way. Finally, we proposed
a solution to the NAT problem that employs cloud resources to allow a node
behind it to be seen from outside.

Using extensive simulations, we showed that hybrid infrastructures can re-
duce the economical effort on the service providers, while offering a level of
service comparable with centralized architectures. The results of this thesis

proved that the combination of Cloud Computing and P2P is one of the mile-
stones for next generation distributed P2P-based architectures.

Keywords
[Peer-to-Peer; Cloud Computing; Distributed Systems; Self-regulation]

4

"To strive, to seek, to find, and not to yield."
"Ulysses" by Alfred, Lord Tennyson

To my family

5

Acknowledgements

This thesis would not have been possible without the help and support of
many people around me, unfortunately only a small part of which I have space
to acknowledge here.

First of all, I am deeply grateful to Professor Alberto Montresor for giving
me the opportunity to work under his supervision, for encouraging my research
and for allowing me to grow as a scientist. A great influence on my work was
made by Alexei Ivanov, who helped me a lot in understanding what it takes
for being a researcher. Thank you a lot for the philosophical discussions and
support.

I would like to thank the people of Computer Systems Laboratory research
group at SICS, Sweden. In particular a special thank you to Amir H. Payberah
for the delightful and very inspiring work we have done together. Additional
thank you to Fatemeh Rahimian and Amir H. Payberah for their incredible hos-
pitality.

I would like to thank my friends and colleagues in Trento for one of the
best period in my life. A particular thank you to Mikalai Tsytsarau and Yury
Zhauniarovich for their patience and invaluable advices. I wish to thank much
more people but unfortunately I cannot mention here all the names. Therefore,
I thank all my friends for the great help and fruitful motivational "lunch-time"
discussions.

My deepest thanks and love to the most important persons in my life. I thank
my grandparents for the curiosity I feel about life and to my parents for their
absolute support of all my endeavours. I would like to thank my sister Natallia
for supporting and cheering me up during the hard times. Finally, I would like
to thank to my dear Emanuele for his true love, great support, patience and deep
understanding all this time. Writing this thesis without him would have been a
million times harder.

Contents

1 Introduction 1
1.1 Research objectives . 3

1.1.1 Massively multiplayer online games 3
1.1.2 Persistent storage support 5
1.1.3 Live Media Streaming 6
1.1.4 NAT-aware peer-sampling 7

1.2 General approach . 8
1.3 Main Contributions . 10
1.4 Thesis Organisation . 12
1.5 List of Publications . 12

2 Background 15
2.1 Peer-to-peer . 15
2.2 Cloud Computing . 18
2.3 Autonomous systems . 19

3 Persistent storage support 23
3.1 Problem statement . 23
3.2 The algorithm . 25
3.3 Evaluation . 29
3.4 Related Work . 32

4 Video Streaming 35
4.1 Problem statement . 35
4.2 System architecture . 38

4.2.1 The baseline model . 38
4.2.2 The enhanced model 39

i

4.3 System management . 41
4.3.1 The swarm size and upload slot distribution estimation . 42
4.3.2 Estimating the number of infected peers 45
4.3.3 AHs management model 48
4.3.4 Discussion on Tlcw . 49

4.4 Experiments . 51
4.4.1 Experimental setting 52
4.4.2 The effect of Tlcw on system performance 53
4.4.3 PH load in different settings 54
4.4.4 Economic cost . 55
4.4.5 Accuracy evaluation 59

4.5 Related work . 60
4.5.1 Content distribution 60
4.5.2 Self-monitoring and self-configuration systems 62

5 Virtual game environment 65
5.1 Architecture . 65

5.1.1 Distributed MMOG . 66
5.1.2 The proposed architecture 67
5.1.3 State action manager 67
5.1.4 Virtual nodes . 69
5.1.5 Replication and fault tolerance 71

5.2 Problem statement . 72
5.2.1 Quality of service . 73
5.2.2 Problem statement . 76

5.3 Virtual node allocation . 76
5.3.1 Load prediction . 77
5.3.2 Virtual Nodes Assignment 78
5.3.3 Migration . 81

5.4 Experimental Results . 82
5.4.1 Workload Definition 82
5.4.2 Tuning the Virtual Nodes Dimension 84
5.4.3 Tuning the Capacity Threshold 88
5.4.4 Cost over the number of players 89
5.4.5 Qos and Cost Trade-off 92

ii

5.4.6 Behaviour over different churn levels 93
5.5 Related work . 95

5.5.1 Hybrid MMOG architectures 95
5.5.2 Hybrid P2P and cloud architectures 97

6 NAT-traversal systems 99
6.1 Problem statement . 99
6.2 Nat-traversal system model . 101

6.2.1 Modeling AF . 102
6.2.2 The impact of LF . 104

6.3 Nat-aware peer-sampling . 106
6.3.1 Parents management 108
6.3.2 Parent Changing Policy 109

6.4 Related work . 110

7 Conclusion 113

Bibliography 117

iii

List of Tables

3.1 Parameters used in the evaluation 29

4.1 Slot distribution in freerider overlay. 52

5.1 Table of symbols . 73

v

List of Figures

1.1 System regulation mechanisms. 9

2.1 Cloud Computing layers . 18

3.1 Overlay size oscillation . 26
3.2 Overlay size in case of network oscillates daily between 0 and

1024 peers. The single experiment lasted 3 days. 30
3.3 Overlay size in case of network oscillates daily between 0 and

1024 peers. Zooming over a single day. 31
3.4 Cloud in-degree for CLOUDCAST and our protocols in case of

network oscillates daily between 0 and 1024 peers. 32
3.5 Deviation of the overlay size from the sufficient threshold under

different levels of churn with variable epoch intervals. 33

4.1 The baseline model. 37
4.2 The enhanced model. 38
4.3 Live streaming time model. 46
4.4 Calculating the number of peers that is economically reasonable

to serve with PH utilization instead of running an additional AH. 48
4.5 The percentage of the peers receiving 99% playback continuity

with different values of Tlcw (measured in number of chunks). . . 53
4.6 Average playback delay across peers with different values of

Tlcw (measured in number of chunks). 54
4.7 The cumulative PH load with different values of Tlcw 54
4.8 The cumulative PH load with different values of churn rates(LCW =

40 chunks). 55
4.9 Number of AHs in different settings and scenarios. 56

vii

4.10 PH load in different scenarios with dynamic changes of the
number of AHs. 57

4.11 The cumulative total cost for different setting and scenarios. . . 58
4.12 Avg. estimation error. 60
4.13 The comparison between the real number of infected nodes and

the estimated ones. 61

5.1 Overall architecture . 67
5.2 SAM architecture . 68
5.3 Time management . 77
5.4 Migration of a VN from the node A to node B 81
5.5 Objects and avatars placement in the virtual environment 84
5.6 Number of players over time (up) and correspondent load vari-

ation (down) . 85
5.7 Average clients per entity per minute plotted in log-log 86
5.8 Probability density function of RTTs 87
5.9 95th percentile of MT with different amount of objects 87
5.10 Percentage of overloading over LFup for different eps 88
5.11 Total simulation cost over LFup with different eps 89
5.12 Cost per minute over time considering workload 1 90
5.13 Cost per minute over time considering workload 2 90
5.14 Total cost with workload 1 . 91
5.15 Total cost with workload 2 . 92
5.16 QoS over time with different QoS thresholds 93
5.17 Cost per minute with different QoS thresholds 94
5.18 QoS over time with different churn levels 94
5.19 Cost over time with different churn levels 95

6.1 AF of a child node vs. number of its parents for different system
configurations and AS failure rates. 103

6.2 AF derivative for different number of parents in layout without
AS and when all the parents belong to the same AS. α = 0.1
and r = 0.1. 104

6.3 The LF impact for different ratio between public and private
nodes depends on the average number of parents per child. . . . 106

viii

6.4 Maximum number of parent nodes in a child descriptor for max-
imum allowed LF . 107

6.5 Redundant and Critical thresholds for γ = 0.05 and LFmax = 1% 107

ix

List of Algorithms

3.1 Resource management algorithm 28
3.2 idleTime and recovery procedures 28
4.1 Estimating the swarm size, upload slot distribution, and Tlcw av-

erage. 43
4.2 Estimating the swarm size, upload slot distribution, and Tlcw av-

erage. 44
4.3 Lower bound for the diffusion tree size. 47
5.1 Server’s load estimation . 78
5.2 Virtual Nodes Selection . 79
5.3 Destination Selection . 80
6.1 Algorithm executed by child nodes 108

xi

Chapter 1

Introduction

Cloud computing represents an important technology to compete in the world-
wide information technology market. According to the U.S. Government’s Na-
tional Institute of Standards and Technology 1, cloud computing is ’a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applica-
tions, and services)’. Usually cloud services are transparent to the final user
and require minimal interactions with the cloud provider. By giving the illusion
of infinite computing resources, and more importantly, by eliminating upfront
commitments, small- and medium-sized enterprises can play the same game as
web behemoths such as Microsoft, Google and Amazon.

Cloud Computing promises exceptional levels of service quality (QoS), but
all it comes with a cost, possibly requiring significant financial investments.
In addition, despite all the advertising, cloud platforms can suffer from major
outages, as recent data loss incidents have shown 2. Hence, enterprises must
apply and considers mechanisms to protect their data in the cloud, to guarantee
smooth and performant service delivery. Moreover, by relying only on a cloud-
based architecture, a user fully depends on the economical policy of the cloud
service provider.

The rise of cloud computing has progressively dimmed the interest in an-
other Internet trend of the first decade of this century: the peer-to-peer (P2P)
paradigm. P2P systems are composed by nodes (i.e. peers) that simultaneously
play the role of both clients and servers. In this paradigm, tasks are managed in

1http://csrc.nist.gov
2http://www.businessinsider.com/amazon-lost-data-2011-4

1

CHAPTER 1. INTRODUCTION

a distributed fashion without any point of centralization. The lack of centraliza-
tion provides scalability, while exploitation of user resources reduces the service
cost. However, P2P architectures are sensitive to users behaviour. Seasons, and
even the time of the day influence the amount of peers in the network. In case
the number of peers is low, a P2P-based service can suffer from reduced per-
formances and the whole service can even be unavailable in case of extremely
small amount of users. Hence, P2P-based services have limitations concerning
availability and reliability.

P2P held similar promises with respect to cloud computing, but with rele-
vant differences. While P2P remains a valid solution for cost-free services, the
superior QoS capabilities of the cloud makes it more suitable for those who
want to create novel web businesses and cannot afford to lose clients due to the
best-effort philosophy of P2P. One question arises above all others: is it pos-
sible to join the forces of both P2P and cloud technologies and eliminate their
weaknesses? Our works tries to answer positively to this question.

Our research belongs to a “middle ground” that combines the benefits of both
paradigms, offering highly-available services based on the cloud, while lower-
ing the economic cost by exploiting peers whenever possible. As an example,
let us consider a large application running on a cloud, such as a real-time online
game. In such application, the current state of the game is stored on a collec-
tion of machines rented from the cloud. As the number of players increases,
it would be possible to transfer part of the game state to the machines of the
player themselves, by exploiting a P2P approach. This would reduce the eco-
nomical costs of maintaining a cloud infrastructure, yet providing a stable level
of service when peer resources are insufficient or entirely absent.

In this context, we tackle the issue of the resource management between
the cloud and the peers. In other words, the system should use available P2P
resources and, at the same, time rely on the cloud whenever peer resources are
not enough to support the service. The core idea of our approach is to manage
the resources by leveraging the self-organization properties of P2P structured
and unstructured overlay networks. The whole set of self-* properties of these
overlays yields to improved scalability, robustness and performance of systems
and tolerance to network churn.

2

CHAPTER 1. INTRODUCTION 1.1. RESEARCH OBJECTIVES

1.1 Research objectives

In this thesis, we apply cloud-assisted P2P computing model to improve the
performance of multiple application scenarios, such as massively multiplayer
online games [46], persistent storage support [47] and live media streaming
systems [75]. A common trait of general P2P based application is that peers are
required to communicate with each other over the Internet directly. However, as
a large fraction of peers in the Internet are behind Network Address Translation
(NAT) gateways and firewall systems, it is highly important to design systems
that overtake this limitation and therefore be applicable in real contexts. To this
end, we also demonstrate the benefits that the hybrid approach can bring in the
field of NAT-aware protocols (Chapter 6). Each of these applications has its
own particular issues in P2P/Cloud Computing combination exploitation.

1.1.1 Massively multiplayer online games

In the last years, on-line gaming entertainment has acquired an increasing pop-
ularity among both industrial and academic researchers. This attention is jus-
tified by the economic growth of the field, in particular regarding massively
multiplayer online games(MMOG). The market of MMOGs has been evaluated
around 5 billion dollars in 2010, with 20 million users worldwide3.

MMOGs are large-scale distributed applications that allow large communi-
ties of users to share a real-time virtual environment (VE). MMOGs operators
provide the necessary hardware infrastructure to support such communities, ob-
taining their profit from the fees users pay periodically to enjoy the game. Re-
gardless of their business model, operators’ profit is strictly linked to the number
of users who participate in the MMOG; in fact, the more popular is a game, the
more attractive it becomes for new users. For this reason, offering an accept-
able level of service while assuring the infrastructure to sustain a large number
of users is a core goal for MMOG operators.

Currently, most MMOGs rely on a client/server architecture. This central-
ized approach enables a straightforward management of the main functionali-
ties of the virtual environment, such as user identification, state management,
synchronization between players and billing. However, with larger and larger

3http://www.mmodata.net, August 2012

3

1.1. RESEARCH OBJECTIVES CHAPTER 1. INTRODUCTION

numbers of concurrent users, centralized architectures are hitting their scalabil-
ity limits, especially in terms of economical return for the operators.

Indeed, server clusters have to be bought and operated to withstand service
peaks, also balancing computational and electrical power constraints. A cluster-
based centralized architecture concentrates all communication bandwidth at one
data center, requiring the static provisioning of large bandwidth capability. This
may lead to over-provisioning, which leaves the MMOG operators with unused
resources when the load on the platform is not at its peak.

On-demand resources provisioning may alleviate the aforementioned scal-
ability and hardware ownership problems [67, 68]. The possibility of renting
machines lifts the MMOG operators from the burden of buying and maintain-
ing hardware, and offers the illusion of infinity resource availability, allowing
(potentially) unlimited scalability. Also, the pay-per-use model enables to fol-
low the daily/weekly/seasonal access patterns of MMOGs.

However, the exploitation of cloud computing presents several issues. The
recruiting and releasing of machines must be carefully orchestrated in order
to cope with start-up times of on-demand resources and to avoid incurring on
unnecessary expenses due to unused servers. Further, besides server time, band-
width consumption may represents a major expense when operating a MMOG.
Thus, even if an infrastructure based entirely on on-demand resources is feasi-
ble, the exploitation of user-provided resources may further reduce the server
load and increase the profit margin for the MMOG operator.

These aspects have been deeply investigated in the research community in
the last decade. Mechanisms to integrate user-provided resource in an MMOG
infrastructure naturally evolved from the peer-to-peer (P2P) paradigm. How-
ever, P2P-based infrastructures require additional mechanisms to suit the re-
quirements of a MMOG. When a peer leaves the system, its data must be trans-
ferred somewhere else; given that the disconnection may be abrupt, replication
mechanism must guarantee that data will not be lost. The lack of a central au-
thority makes security enforcement more difficult. Moreover, user machines
typically have heterogeneous constraints on computational, storage and com-
munication capabilities, making them complex to be exploited.

4

CHAPTER 1. INTRODUCTION 1.1. RESEARCH OBJECTIVES

1.1.2 Persistent storage support

In recent years, P2P architectures became a popular basis for distributed stor-
age applications. In these applications replicated data is distributed among the
peers. Nevertheless, if the peer that maintains a particular piece of data fails or
goes off-line, the data may be lost or become temporarily unavailable until the
peer returns on-line. The specific problems of P2P networks, i.e., churn rate and
unreliable user resources raise an important issue, which is how to maintain a
certain level of reliability in P2P-based storages.

To improve availability and durability, the usual straightforward approach is
to replicate data several times in the network. Increased replication allows to de-
crease the probability the data to be lost or damaged due to the network churn or
users behaviour. At the same time, replication causes additional issues, such as
replica synchronization and resource look-up. An higher number of data repli-
cas increases the amount of update messages exchange between replica holders.
Hence, there is a trade-off: the more replicas, the higher the traffic overhead.
Furthermore, a P2P system may have a limited amount of storage available, so
increasing the number of replicas of an object decreases the number of replicas
of another one. Finally, the replication cannot solve the issue of small P2P over-
lays. When the number of peers in the P2P network is small the whole network
can be partitioned into separate overlays and the data replicated between peers
of one overlay can be not accessible by peers of another overlay.

The solution for the problems mentioned above can be to store a replica of
each piece of data in a server. For example, the role of such server can be played
by the cloud [106, 63]. Cloud storage servers can guarantee the service to be
reliable while P2P resources are not available, but the cost grows proportionally
to the size of storage space used. Moreover, while the aforementioned works
demonstrate the benefits of hybrid P2P/Cloud computing approach, there is still
space to improve. Indeed, the cloud is used all the time, even when there are
enough P2P resources to support the service itself. In fact, the use of the cloud
can be reduced, therefore decreasing the cost of the service, with an effective
resource management inside the P2P overlay.

As a consequence, one of the problems we address in our work is the regula-
tion of storage resources between cloud and P2P technologies. The problem of
an effective resource management is a complex problem, composed with differ-

5

1.1. RESEARCH OBJECTIVES CHAPTER 1. INTRODUCTION

ent components, namely optimization of a system architecture combined with
an effective resource monitoring and provisioning. Moreover, as P2P overlays
are usually highly dynamic and affected by uncontrollable users behaviour, the
resource management mechanism should be resilient to the rapid changes of the
overlay state.

1.1.3 Live Media Streaming

Peer-to-peer (P2P) live streaming is becoming an increasingly popular tech-
nology, with a large number of academic [27, 28, 72, 74, 78] and commer-
cial [56, 80, 87] products being designed and deployed.

In such systems, one of the main challenges is to provide a good QoS in spite
of the dynamic behavior of the network. For live streaming, QoS means play-
back continuity and short playback delay. To obtain high playback continuity,
or smooth media playback, nodes should receive chunks of the stream with re-
spect to certain timing constraints; otherwise, either the quality of the playback
is reduced or its continuity is disrupted. Likewise, to have a small playback de-
lay, nodes should receive chunks of the media that are close in time to the most
recent part of the media delivered by the provider.

There is a trade-off between these two properties: it is possible to increase
the playback continuity by adopting larger stream buffers, but at the expense of
increasing the delay. On the other hand, reducing playback delay requires that
no bottlenecks are present in either the upload bandwidth capabilities of the
media source and the aggregated upload bandwidth of all nodes in the swarm,
i.e., the nodes forming the P2P streaming overlay [95].

Increasing the bandwidth at the media source is not always an option, and
even when possible, bottlenecks in the swarm have proven to be much more
disruptive [53]. One approach to solve this issue is adding auxiliary helpers to
accelerate the content propagation. A helper could be an active computational
node that participates in the streaming protocol, or a passive storage service that
just provides content on demand. The helpers increase the total upload band-
width available in the system, thus, potentially reducing the playback delay.
Both types of helpers could be rented on demand from an IaaS (Infrastructure
as a Service) cloud provider, e.g., Amazon AWS 4.

4"Amazon Web Services" http://http://aws.amazon.com/

6

CHAPTER 1. INTRODUCTION 1.1. RESEARCH OBJECTIVES

Considering the capacity and the cost of helpers, the problem consists in
selecting the right type of helpers (passive vs. active), and provisioning their
number with respect to the dynamic behavior of the users. If few helpers are
present, it could be impossible to achieve the desired level of QoS. On the other
hand, renting helpers is costly, and their number should be optimized.

This P2P-cloud hybrid approach has already been pursued by a number of
P2P content distribution systems [95, 63]. However, adapting the cloud-assisted
approach to P2P live streaming is still an open issue. Live streaming differs from
content distribution for its soft real-time constraints and a higher dynamism in
the network, as the users may be zapping between several channels and start or
stop to watch a video at anytime [88, 89].

Thus, the problem to be solved is how to guarantee the desired QoS for live
media streaming in the highly dynamic cloud assisted distributed network. The
particular interest is an optimization of total economic cost caused by cloud
computing.

1.1.4 NAT-aware peer-sampling

One important service for distributed system support is the Peer Sampling Ser-
vice (PSS) [75, 47]. PSSs periodically provide nodes with a uniform sampling
of the live nodes in the network, i.e., partial view. This allows to keep the P2P
network updated and connected. Moreover, PSSs increases the resilience of the
overlay to the network churn.

A relevant limitation in the usage of PSSs is that in the Internet, a large
fraction of nodes are behind NATs gateways and firewall systems. Hence, such
nodes cannot establish direct connections to each other, and they become under-
represented in partial views, and traditional PSS become biased [49].

Several works employs Peer-to-Peer (P2P) principles to provide an effective
PSS in presence of NAT. Nodes can be divided into two types: private and
public [21]. Private nodes are behind a NAT or a firewall system and cannot
be reached via a direct communication. Conversely, public nodes can directly
access the network. In this context, they define parent nodes as public nodes
through which the child nodes (private ones) are reachable from outside the
NAT.

However, state-of-art solutions do not tackle the following two relevant is-

7

1.2. GENERAL APPROACH CHAPTER 1. INTRODUCTION

sues:

• Public nodes overloading. Since most of the shuffling is done by public
nodes, the ratio between public and private nodes in the system is an im-
portant parameters for the protocol. In case the ratio is low, existing public
nodes may become overloaded by the increasing intensity of shuffling re-
quests from private nodes.

• Reliability of the service. In case of small networks, the original protocol
cannot provide an effective PSS, for instance when the amount of public
nodes is small or all the available nodes are private. In this case some
private nodes can become isolated from the network.

These limitations can significantly decrease the reliability of the distributed
applications relying on the PSS service. Hence we explore this direction by
resolving the problem aforementioned.

1.2 General approach

The peer-to-peer and cloud computing paradigms have both advantages and dis-
advantages, in terms of availability, economical effort, durability and reliability.

Our solution tries to combine the strengths of peer-to-peer with cloud com-
puting, reducing (as far as possible) their weak points. The goal is to provide,
within a specific application domain, an adaptive system that can either manu-
ally or programmatically control the trade-off between QoS and the economical
effort.

In general, we often recurred to a feedback loop (Figure 1.1(a)) approach
to manage the resources. This approach is not new in the field of autonomous
systems. Nevertheless, we adopted and applied it to our issues (Figure 1.1(b)).
We generally decomposed the resource regulation loop into several steps:

• Observation. In order to tune the resource exploitation it is important to
know the up-to-date state of the target system, for example the amount of
available P2P resources or the current churn rate. Hence, the system pe-
riodically runs monitoring protocols and in distributed or centralized way
collects the required data. Distributed system monitoring provides each

8

CHAPTER 1. INTRODUCTION 1.2. GENERAL APPROACH

ActionAction EffectEffect

FeedbackFeedback

(a) A simple feedback loop

ObservationObservation

ForecastForecast

Control/Control/
CorrectionCorrection

System System
RegulationRegulation

(b) Autonomous system regulation

Figure 1.1: System regulation mechanisms.

node with an aggregated knowledge about the system [76]. In case of cen-
tralized monitoring the knowledge is accumulated in the central point, for
example specially rented server.

• Forecast. Based on the previously and current collected data the system
builds a prediction function for the parameter of interest: as an example,
churn rate or upload bandwidth requirement. The prediction function plays
an important role in the system regulation, since it prevents the system to
eventually arrive in critical states by giving the possibility of reacting in
advance.

• System Regulation. Based on the predicted values the system is optimized
in order to satisfy the required QoS while trying to keep the economical
costs at the minimum. For example, if available P2P resources are ex-
pected to be not enough to meet the QoS requirements, cloud resources
are included in the system in advance.

• Control/Correction. Periodically the predicted values are compared with
real ones. In case the difference between predicted and currently observed
data is more than a maximum allowed error, the system corrects the pre-
diction function according on the new observed data.

9

1.3. MAIN CONTRIBUTIONS CHAPTER 1. INTRODUCTION

1.3 Main Contributions

This thesis presents research on the methods and mechanisms of enabling and
achieving self-managements for internet services built on cloud-based P2P com-
puting. We answered these problems in the form of new algorithms and archi-
tectures, aiming different application contexts.

Massively multiplayer online games. We designed a MMOG architecture
where an operator can decide to have an infrastructure more reliable and re-
sponsive (for example for particularly interactive MMOGs) or to reduce the
economical effort and provide a less powerful infrastructure, perhaps suitable
for less interactive MMOGs [46]. In other words, we let the operator to choose
on how to make profit, either by offering a more controllable service, or by
saving on the cost of infrastructure or in a point in the middle between the two.

Our infrastructure for the management of MMOG objects is based on a Dis-
tributed Hash Table [92]. This choice allowed us to lively migrate objects
among cloud- or user-provided resources with few impact on the QoS. We pro-
vided a model for the QoS and the economical cost of the MMOG on top of the
integrated architecture. In addition, we developed an orchestration algorithm
that, according to the preferences defined by the operator, manages the migra-
tion of the objects. Finally, we tuned and evaluated the architecture through
extensive simulations. The results showed that slightly decreasing the quality
of service yield to cost reductions up to 60%.

Persistent storage support. We applied the concepts of cloud-assisted P2P
systems and autonomous resource regulation to persistent storage support [47].
We propose a protocol based on the distributed resource provisioning, where
each node maintains a resource provisioning function built on the degree of
data replication in the P2P nodes.

The regulation system considers three replicas thresholds: Critical, Suffi-
cient and Redundant. Critical threshold indicates high risk of data loss. In case
the Critical state is expected by the provisioning function, the data is replicated
into the cloud holder in advance. The Sufficient threshold shows the regular
level of replication that corresponds to desired QoS. The replication degree be-
tween Critical and Sufficient requires the system to replicate data into available

10

CHAPTER 1. INTRODUCTION 1.3. MAIN CONTRIBUTIONS

P2P holders. Finally, the Redundant threshold allows to reduce the replication
redundancy and avoid network traffic overhead. The degree of replication is
expected to stay in range between Sufficient and Redundant thresholds. The
thresholds are numerically defined by the type of the application and by the
desired QoS.

Live media streaming. We designed and evaluated CLIVE [75], a novel cloud-
assisted P2P live streaming system that guarantees a predefined QoS level by
dynamically renting helpers from a cloud infrastructure. We modelled the prob-
lem as an optimization one, where the constraints are given by the desired QoS
level, while the objective function is to minimize the total economic cost in-
curred in renting resources from the cloud. We provide an approximate, on-line
solution that is: (i) adaptive to dynamic networks and (ii) decentralized.

CLIVE extends existing mesh-pull P2P overlay networks for video stream-
ing [28, 72, 110], in which each node in the swarm periodically sends its data
availability to other nodes, which in turn pull the required chunks of video from
the neighbours that have them. The swarm is paired with the CLIVE manager
(CM), which participates with other nodes in a gossip-based aggregation pro-
tocol [40, 64] to find out the current state of the swarm. Using the collected
information in the aggregation protocol, the CM computes the number of active
helpers required to guarantee the desired QoS. CLIVE includes also a passive
helper, whose task is to provide a last resort for nodes that have not been able
to obtain their video chunks through the swarm.

To demonstrate the feasibility of CLIVE, we performed extensive simulations
and evaluated our system using large-scale experiments under dynamic realistic
settings. We show that we can save up to 45% of the cost by choosing the right
number of active helpers compared to only using a passive helper to guarantee
the predefined QoS.

Nat-aware peer-sampling. We designed a novel approach that can be applied
to resolve the NAT problem for real network P2P applications. The proposed
mechanism successfully combines P2P and cloud computing technologies for
an effective NAT-aware peer-sampling.

As well as the authors of Croupier protocol [21], our approach considers two
types of entities: child and parent nodes. A child node is connected with nodes

11

1.4. THESIS ORGANISATION CHAPTER 1. INTRODUCTION

on the other side of the NAT via parent nodes. The role of the parent nodes
can be played by P2P or cloud entities. To keep the connection open the child
periodically sends a keep-alive message to the parent. On one side, the more
parent nodes a child node has, the lower the risk that all of them at the same
time are off-line. On the other hand, a high number of parents increases the
costs of network support due to increasing traffic of keep-alive messages.

In this context we investigate the trade-off between availability of child nodes
and alive messages traffic. We developed a model that allows the system to
autonomously switch between P2P and cloud parent nodes based on the upload
bandwidth overhead and node availability.

1.4 Thesis Organisation

The rest of the thesis is organised as follows. In Chapter 2 we present the
required background for this thesis project. The rest of the thesis deals with
the problem of self-management for dynamic hybrid distributed systems. We
present an autonomous regulation mechanism applied for persistent storage sup-
port in Chapter 3. In Chapter 4 we present CLIVE, a novel cloud-assisted P2P
live streaming system, while Chapter 5 presents a cloud-assisted MMOG. Chap-
ter 6 discusses the possibilities of cloud assisted NAT-aware peer-sampling. In
Chapter 7 we conclude the thesis.

1.5 List of Publications

The list of papers published in this work are:

• H. Kavalionak and A Montresor. P2P and cloud: A marriage of con-
venience for replica management. In Proc. of IWSOS’12, pages 60–71.
Springer, 2012

• A.H. Payberah, H. Kavalionak, V. Kumaresan, A. Montresor, and S. Haridi.
CLive: Cloud-Assisted P2P Live Streaming. In Proc. of the 12th Conf. on
Peer-to-Peer Computing (P2P’12), 2012

• H. Kavalionak, E. Carlini, L. Ricci, A. Montresor, and M. Coppola. Inte-
grating peer-to-peer and cloud computing for massively multiuser online
games. Peer-to-Peer Networking and Application, pages 1–19, 2013

12

CHAPTER 1. INTRODUCTION 1.5. LIST OF PUBLICATIONS

• A.H. Payberah, H. Kavalionak, A. Montresor, J. Dowling, and S. Haridi.
Lightweight gossip-based distribution estimation. In Proc. of the 15th
IEEE International Conference on Communications (ICC’13). IEEE, June
2013

• A.H. Payberah, H. Kavalionak, A. Montresor, and S. Haridi. CLive: Hy-
brid P2P-Cloud Live Streaming System. IEEE Transactions on Parallel
and Distributed Systems, 2013. Submitted 01-10-2013

13

1.5. LIST OF PUBLICATIONS CHAPTER 1. INTRODUCTION

14

Chapter 2

Background

The content of this chapter is divided into two parts. The first part (Sections 2.1
and 2.2) presents an overview on the main topics considered in this thesis, like
P2P and Cloud Computing. The second part (Section 2.3) provides an overview
on the main issues related to the field of the autonomous resource management
for the services based on the distributed architecture.

2.1 Peer-to-peer

Generally speaking, a P2P network can be modelled like a collection of peers
that collaborate with each other in order to realize and participate to a service
at the same time. This collaboration often results in peers playing the roles
of both clients and servers of an Internet application. In other words, a peer
consumes resources of the other peers when acting as a client, while provide its
own resources to other peers when acting as a server.

By reducing the load on centralized servers, P2P-based solutions present sev-
eral attractive advantages. First, P2P techniques are inherently scalable – the
available resources grow with the number of users. Second, upon peer failures,
P2P networks are able to self-repair and reorganize, hence providing robust-
ness to the infrastructure. Third, network traffic and computation is distributed
among the users involved, making difficult the creation of bottlenecks. Never-
theless, peers are not reliable, as they may join and leave the system at will.
This phenomenon of peer perturbation is known as network churn.

P2P networks usually implement an abstract overlay topology over existing
physical networks. Nodes in a network overlay are connected through logical

15

2.1. PEER-TO-PEER CHAPTER 2. BACKGROUND

links. Each link corresponds to a path in the underlying physical network. To
join the network, a peer must connect to another peer already participating to
the network, so to acquire knowledge about others peers populating the network.
P2P overlays can be classified in structured and unstructured, according on how
the nodes in the network overlay are linked to each other.

Unstructured overlays. In unstructured overlays, link between nodes are es-
tablished arbitrarily. One of the most notable example of unstructured P2P net-
works is based on epidemic or gossip protocols [99, 100]. The popularity of
these protocols is due to their ability to diffuse information in large-scale dis-
tributed systems even when large amount of nodes continuously join and leave
the system. Such networks have proven to be highly scalable, robust and resis-
tant to failures.

The idea behind epidemic protocols takes inspiration from both the biologi-
cal process of epidemic spreading of viruses, and the social process of spreading
rumors [24]. At the beginning, a single entity (peer) is infected. At each com-
munication round, each infected peer tries and infects another peer at random,
roughly doubling the number of infected peers at each round. The process ends
when all peers have been infected, i.e. when the information is spread.

One of the fundamental challenges of epidemic protocols is how to exploit
local peer’s knowledge to acquire global knowledge on the entire network. Ide-
ally, each node should be aware of all peers in the system, and select randomly
among them. But in large, dynamic networks that is unrealistic: the cost of
updating all peers whenever a new peer joins or leaves is simply too high.

In order to keep the information about the network nodes up-to-date peer
sampling services (PSSs) are widely used in the fields as information dissem-
ination [63], aggregation [40] and overlay topology management [41]. PSSs
provide each node with information about a random sample of the entire pop-
ulation of nodes in the network. In other words, each node maintains a partial
view of the network and using only local data keeps the information about entire
network up-to-date [42, 99].

The protocol execution of a PSS service is divided into cycles. In each cycle
a node selects one node from its partial network view and asks this node to
exchange subsets of their partial view. This process is also known as the active
thread of the node. Together with the active thread, each node executes the

16

CHAPTER 2. BACKGROUND 2.1. PEER-TO-PEER

passive one, that is responsible for processing the shuffling requests coming
from other network nodes. During the shuffling both of the nodes exchange a
random subset of the network peers’ descriptors from their local views.

Structured overlays. A second category of overlays, called structured over-
lays, is based on combining a specific geometrical structure with appropriate
routing and maintenance mechanisms. The routing support is key-based, mean-
ing that object identifiers are mapped to the peer identifier address space. Hence,
an object request is routed to the nearest peer in the peer address space.

A specific type of such overlays is called Distributed Hash Table (DHT).
The identifiers of a DHT are computed using a consistent hash function and
each peer is responsible for a portion of the addresses space defined by the hash
table. To maintain the overlay and to route requests, each node maintains a
list of neighbors, the so called routing table. Examples of DHT overlays are
Pastry [81], Chord [92], Kademlia [60].

One of the critical problems in P2P networks is the problem of network
churn: peers leave the overlay arbitrarily and do not participate in the overlay
for a predictable time. Hence the peers with routing table that contains the links
to the joining/leaving peers need to be updated. In fact, in presence of leaving
peers the latency of message exchange in the network increases and can lead to
timeouts. Higher churn rate may lead to network partitioning [9].

Therefore, maintaining the routing tables in spite of churn is one of the issues
in DHTs. Overlay maintenance require effective routing tables update accord-
ing to the current overlay state and churn rate. Nevertheless, both the look-up
query and overlay maintenance traffic compete for the underlying network re-
sources, i.e., upload bandwidth.

The maintenance of the overlay requires the traffic to be proportional to the
churn rate of the network. Hence, high levels of churn rate may cause exces-
sive overhead and even possibly result in broken networks [8]. Therefore, the
key feature in structured overlay maintenance is in the development of efficient
maintenance algorithms that are able to deal with high network churn rate. For
example, Kademlia [60] maintains a routing table where to each of the entry
corresponds to a set of neighbours. This set of neighbours is ordered according
to the last neighbour update, i.e. the recently connected neighbours are at the
top of the list. Hence, when the current peer in the routing table leaves the net-

17

2.2. CLOUD COMPUTING CHAPTER 2. BACKGROUND

Cloud ApplicationsCloud Applications

Cloud Infrastructure
IaaS

Cloud Infrastructure
IaaS

Cloud InfrastructureCloud Infrastructure

VirtualizationVirtualization

Physical Server and StoragePhysical Server and Storage

Cloud Clients
Example: browsers, mobile devices

Cloud Clients
Example: browsers, mobile devices

Cloud PlatformCloud Platform

SaaS

PaaS

IaaS

Figure 2.1: Cloud Computing layers

work the newer peer from the corresponding list takes its place. This “back up”
list maintenance allows to reduce the effect of high network churn.

One more issue of DHT is to deal with dynamic data [12]. When a piece of
data changes, its position in the address space may change as well. This often
implies data to be exchanged among nodes. When the rate of changing of data
is high, it may generates high network traffic.

2.2 Cloud Computing

Cloud computing has become a significant technology trend that has reshaped
information technology processes and the marketplace, due to the ability of
providing dynamically scalable and virtualized resources. By considering re-
sources as commodity, cloud computing provides unquestionable advantages
for users, including high availability, scalability, and pay-per-use models.

Cloud Computing technology can be viewed as a collection of services,
which can be considered to be built on top of each other (Figure 2.1):

• Software-as-a-Service (SaaS). Saas allows users to access applications re-

18

CHAPTER 2. BACKGROUND 2.3. AUTONOMOUS SYSTEMS

motely. Users typically use thin clients, whereas all computations are exe-
cuted on the server (e.g Google docs, GMail).

• Platform-as-a-Service (PaaS). Provides virtual machines with already in-
cluded operating systems, tools and frameworks required for a particular
application. Clients control the applications that run on the virtual hosting
environment (possibly they having some control over the environment) but
has no access to control the operating system, hardware or network infras-
tructure (e.g. Amazon Elastic MapReduce).

• Infrastructure-as-a-service (IaaS). Provides full access to virtual machines.
Virtual machines are usually characterized with guaranteed processing power
and reserved bandwidth for storage and Internet access. Clients can oper-
ate directly on operative system, storage, deployed application and some-
times firewall. Nevertheless, the customer cannot control the underlying
cloud infrastructure. The most notable example in this category is Amazon
EC2.

One of the key aspects of cloud computing is the high exploitation of virtu-
alization technologies. This allows to share resources among different applica-
tions optimizing the server utilization. In the context of cloud computing this
means that a single hardware resource can be shared among different clients
with different operating systems and configurations.

Trust, security and privacy are also currently hot topics in cloud-related re-
search. The lack of control over the data and the globally distributed infrastruc-
ture can lead to potential data loss or data leaks to third parties, for example
in case of security holes in remote servers. Also, untrustworthy clients may in
principle have access to unlimited cloud computational resources, exposing the
infrastructure to attacks like denial of service. For further details about research
issues related to Cloud Computing, see [85].

2.3 Autonomous systems

The combination of Self-monitoring and self-configuration mechanisms are es-
sential to manage large, complex and dynamic systems in an effective way. The
self-monitoring function detects the current states of system components, while

19

2.3. AUTONOMOUS SYSTEMS CHAPTER 2. BACKGROUND

the self-configuration function adapts system configuration according to the re-
ceived information. Both mechanisms are often implemented based on the P2P
communication model, due to its flexibility and scalability.

Self-monitoring Self-monitoring allows the system to have a view on its cur-
rent utilization. One of the popular approaches for self-monitoring is the ex-
ploitation of P2P networks to achieve decentralized aggregation of monitoring
data.

Decentralized aggregation in large-scale distributed systems has been well-
studied in the past. A popular technique is the hierarchical approach [97, 105,
32, 45], where nodes are organized in tree-like structures, and each node in
the tree monitors its children. Hierarchical approaches provide high accuracy
results with minimum time complexity, but are extremely vulnerable to churn.
An alternative approach is based on gossip protocols [40, 82, 34, 66, 98, 37],
where information about nodes is exchanged between randomly selected part-
ners and aggregated to produce local estimates.

In the field of gossip-based distribution estimation, Haridasan and van Re-
nesse recently proposed EQUIDEPTH [34]. In this protocol, each node initially
divides the set of potential values into fixed-size bins, and over the course of the
execution, bins are merged and split based on the number of received values in
each bin. In EQUIDEPTH, nodes send the entire current distribution estimate in
each message exchange.

Following this research line, Sacha et al. proposed ADAM2 [82], an algo-
rithm that provides an estimation of the cumulative distribution function (CDF)
of a given attribute across the population of nodes. The proposed approach al-
lows nodes to compute their own accuracy and to tune the trade-off between
communication overhead and estimation accuracy.

Alternative gossip-based averaging techniques to overcome message loss,
network churn and topology changes have been proposed by Eyal et al. [25]
and Jesus et al. [43]. In LIMOSENSE [25], each node maintains a pair of values,
e.g., a weight and an estimation, which is continuously updated during node
communication. Jesus et al. [43] propose a technique where each node uses
its current set of neighbours and maintains a dynamic mapping of value flows
across the neighbours.

20

CHAPTER 2. BACKGROUND 2.3. AUTONOMOUS SYSTEMS

Self-configuration Self-configuration is the process that autonomously con-
figures components and protocols according to specified target goals, e.g., reli-
ability and availability. To self-tune according to on-going state, the system can
use an external component that controls the system either via control loops [48]
or in a decentralized way [5, 41, 47]. A relevant example of a self-configuration
mechanism is T-MAN [41], an overlay topology management that uses a ranking
function exploited locally by each peer to choose its neighbours.

21

2.3. AUTONOMOUS SYSTEMS CHAPTER 2. BACKGROUND

22

Chapter 3

Persistent storage support

In order to strike a balance between service reliability and economical costs,
we propose a self-regulation mechanism that focuses on replica management in
cloud-based, peer-assisted applications. Our target is to maintain a given level
of peer replicas in spite of churn, providing a reliable service through the cloud
when the number of available peers is too low.

3.1 Problem statement

We consider a system composed by a collection of peer nodes that communicate
with each other through reliable message exchanges. The system is subject
to churn, i.e. node may join and leave at any time. Byzantine failures are
not considered, meaning that peers follow their protocol and message integrity
is not at risk. Peers form a random overlay network based on peer sampling
service [42].

Beside peer nodes, an highly-available cloud entity is a part of the system.
The cloud can be joined or removed from the overlay according to the current
system state. The cloud can be accessed by other nodes to retrieve and write
data, but cannot autonomously initiate the communication. The cloud is pay-
per-use: storing and retrieving data with a cloud is connected with monetary
costs.

The problem to be solved is the maintenance of an appropriate redundancy
level in replicated storage. Consider a system where a collection of data objects
are replicated in a collection of peers. A data object is available if at least one
replica can be accessed at any time, and is durable if it can survive failures.

23

3.1. PROBLEM STATEMENT CHAPTER 3. PERSISTENT STORAGE SUPPORT

If potentially all peers replicating an object fail or go offline, or are tempo-
rary unreachable, the data may become unavailable or even be definitely lost.
A common approach to increase durability and availability is to increase the
number of replicas of the same data. Nevertheless, the replicas of the same
data should be synchronized among each other and retrieved in case of failure.
Hence, there is a trade-off: the higher amount of replicas, the higher the net-
work overhead. Furthermore, a peer-to-peer system may have a limited amount
of storage available, so increasing the number of replicas of an object can de-
crease the number of replicas of another one.

An alternative approach is to store a replica of each piece of data in the
cloud [106]. This method improves reliability and scalability. Nevertheless, the
economical cost grows proportionally to the size of storage space used.

In order to autonomously support the target level of availability and durabil-
ity and reduce the economical costs we exploit a hybrid approach. The replicas
of the same data object are organized into an overlay. To guarantee reliabil-
ity (durability and availability), the data object must be replicated a predefined
number of times. In case P2P resources are not enough to guarantee the given
level of reliability, the cloud resources are exploited, potentially for a limited
amount of time until P2P resources are sufficient again.

The main goal is thus to guarantee that the overlay maintains a given size,
including the cloud in the overlay only when threats of data loss do exist.

In order to realize such system, the following issues have to be addressed:

• To reach the maximum economical effectiveness of the network services,
we have to effectively provide mechanisms to automatically tune the amount
of cloud resources to be used. The system has to self-regulate the rate of
cloud usage according to the level of data reliability (overlay size) and
service costs.

• To regulate the cloud usage, each peer in the overlay has to know an up-
dated view of overlay size. Hence, one of the key aspects that has to be
considered is the network overhead caused by system monitoring.

• Churn rate may vary due to different reasons such as time of day, day of
the week, period of the year, etc. and average lifetime of nodes can be
even shorter than one minute. Hence, the size of the overlay can change

24

CHAPTER 3. PERSISTENT STORAGE SUPPORT 3.2. THE ALGORITHM

enormously. Data reliability must be supported even in the presence of one
single replica (the replica stored on the cloud), as well as with hundreds of
replicas (when the cloud is not required any more and should be removed
to reduce monetary costs).

3.2 The algorithm

In order to provide a network topology, in our work we make use of a number
of well-known protocols like CLOUDCAST [63] and CYCLON [99] for overlay
maintenance and an aggregation protocol [40] to monitor the overlay size.

We consider the following three thresholds for the overlay size: (1) redun-
dant R, (2) sufficient S and (3) critical C , with R > S > C . The computation
of the actual threshold values is application-dependent; we provide here only a
few suggestions how to select reasonable parameters, and we focus instead on
the mechanisms for overlay size regulation, general enough to be applied to a
wide range of applications.

• The critical threshold C should be the sum of (i) the minimum number of
replicas that are enough for successful data recovering and (ii) the amount
of nodes that will leave during the cloud backup replication phase. The
minimum number of replicas is determined by the chosen redundancy
schema, such as erasure coding or data replication.

• The sufficient threshold S can be computed as the sum of (i) critical thresh-
old and (ii) the amount of nodes that are expected between two successive
recovery phases, meaning that these values depends also on the expected
churn rate.

• The redundant threshold R is an important parameter that allows to opti-
mize the network resources utilization. The redundant threshold depends
on the overlay membership dynamics (i.e. peers continuously join and
leave the network) and on the application type. For example, backup ap-
plications are more sensitive to replica redundancy than content delivery
applications. In a typical backup application, users save their data in the
network and R is determined according to the adopted redundancy schema
and overlay membership dynamics.

25

3.2. THE ALGORITHM CHAPTER 3. PERSISTENT STORAGE SUPPORT

Figure 3.1: Overlay size oscillation

On the other hand, in content delivery applications, popular data is repli-
cated in a high (possibly huge) amount of nodes of the network. In this
case the redundant threshold is not relevant, since peers keep pieces of data
based on their popularity. Nevertheless, the critical and sufficient thresh-
olds are important in order to keep data available during the oscillation of
network population.

In general, the size of the overlay is expected to stay in the range [S ,R].
When the current size is larger than R, some peers could be safely removed;
when it is smaller than S , some peers (if available) should be added. When it is
smaller than C , the system is in a dangerous condition and part of the service
should be provided by the cloud.

Figure 3.1 illustrates the behaviour of our system in the presence of churn.
The size N (t) oscillates around threshold S , with k% deviation. To withstand
the oscillation, a system recovery process is executed periodically, composed of
monitoring phase with duration Tm , a recovery phase with duration Tr and idle
phase of duration Ti . The length of the monitoring phase depends on the partic-
ular protocol used to monitor the system, while the idle phase is autonomously
regulated to reduce useless monitoring and hence overhead.

Monitoring is based on the work of Jelasity et al. [40]. The authors proposed
a gossip protocol to compute the overlay size, that is periodically restarted. The
execution of the protocol is divided into epochs, during which a fixed number

26

CHAPTER 3. PERSISTENT STORAGE SUPPORT 3.2. THE ALGORITHM

of gossip rounds are performed. The number of rounds determines the accuracy
of the measure. At the end of each epoch, each peer obtains an estimate of the
size as measured at the beginning of the epoch.

We have tuned the aggregation protocol in order to fit our system, with a par-
ticular emphasis on reducing network overhead. In our version, each aggrega-
tion epoch is composed by monitoring and idle periods. The monitoring period
corresponds to the aggregation rounds in the original protocol [40], whereas in
idle periods the aggregation protocol is suspended. Our approach allows to re-
duce network overhead by reducing the amount of useless aggregation rounds.

All peers follow the Algorithms 3.1 and 3.2. The system repeats a sequence
of actions forever. The monitoring phase is started by the call to getSize(),
which after Tm time units returns the size of the system at the beginning of the
monitoring phase. Such value is stored in variable Nb . Given that during the
execution of the monitoring phase further nodes may have left the system, the
expected size of the system at the end of the monitoring phase is computed and
stored in variable Ne . Such value is obtained by computing the failure rate fr
as the ratio of the number of nodes lost during the idle phase and the length of
such phase.

According to the size of the overlay, a peer decides to either start the recov-
ering process, delete/create cloud from the overlay or do nothing. If the system
size Ne ≥ S , the peer removes the (now) useless links to the cloud from its
neighbour list; in other words, the system autonomously switch the commu-
nication protocol from CLOUDCAST to CYCLON. Furthermore, if the system
size is larger than threshold R, the excess peers are removed in a decentral-
ized way: each peer independently decide to leave the system with probability
p = (Ne − R)/Ne , leading to an expected number of peers leaving the system
equal to Ne − R.

When the number of peers is between critical and sufficient (C < Ne < S)
a peer invokes function recovery() to promote additional peers to the overlay in
a distributed fashion. Each peer in the overlay has to promote only a fraction
of additional peers Na , computed as the ratio of the number of peers needed to
obtain the desired S (1 + k) nodes and the current overlay size Ne . The ratio
is rounded to the upper bound. Function addNode() adds new peers from the
underlying overlay to the set of replicated entities. To bootstrap new peers to
the overlay, the peer, currently promoting other peers, copies a set of random

27

3.2. THE ALGORITHM CHAPTER 3. PERSISTENT STORAGE SUPPORT

repeat
Nb ← getSize()
fr ← (Nb − Ne)/Ti

Ne ← Nb − Tm · fr
if Ne ≥ S then

removeCloud()
if Ne > R then

p ← (Ne − R)/Ne

leaveOverlay(p)

else if Ne < S then
if Ne ≤ C then

addCloud()

recovery()

Ti ← idleTime(Ne , fr ,Ti)
wait Ti

Algorithm 3.1: Resource management algo-
rithm

procedure idleTime(Ne , fr ,Ti)
if Ne ≤ C then

Ti ← Tmin

else if fr > 0 then
Ti ← S ·k

fr
− Tm

else if Ti < Tmax then
Ti ← Ti + ∆

return Ti

procedure recovery()

Na ← dS(1+k)
Ne
− 1e

for j ← 1 to Na do
V ← copyRandom(view)
if Ne ≤ C then

V ← V ∪ {cloud}
addNode(V)

Algorithm 3.2: idleTime and recovery proce-
dures

descriptors from its own local view copyRandom(view) and sends them as a V
to the new peers. A local view (indicated as view) is a small, partial view of the
entire network [99].

When the overlay size is below critical (Ne ≤ C), a peer first adds to the
local view a reference to the cloud (function addCloud()) and then starts the
recovering process. Moreover, the reference to the cloud is also added to a
set of random descriptors V that is sent to the new peers. Hence, in case of
a reliability risk, the system autonomously switches the protocol back to the
CLOUDCAST (i.e. it includes a reliable cloud node into the overlay).

Concluded this phase, the peer has to compute how much it has to wait be-
fore the next monitoring phase starts; this idle time Ti is computed by function
idleTime().

If the overlay size is lower than C , the idle time is set to a minimum value
Tmin . As a consequence, the monitoring phase starts in a shorter period of time.
Reducing of the idle period allows the system to respond quickly to the overlay
changes and keep the overlay size in a safe range. In case the amount of replicas
has decreased (fr > 0), the idle time is computed as the ratio of the deviation
range S · k and the expected failure rate fr . The ratio is decreased in Tm time
entities needed for the next overlay monitoring phase. If the result Ti is less

28

CHAPTER 3. PERSISTENT STORAGE SUPPORT 3.3. EVALUATION

Table 3.1: Parameters used in the evaluation

Parameter Value Meaning
n 0− 1024 Total number of peers in the underlying

network
R 60 Redundant threshold
S 40 Sufficient threshold
C 10 Critical threshold
k 0.2 deviation from sufficient threshold
σcyclon 10s Cycle length of CYCLON

σentropy 10s Cycle length of anti-entropy
σfailure 1s Cycle length of peers failure
c 20 View size
g 5 Cyclon message size
∆ 1s Incremental addition step for the idle pe-

riod Ti

than Tmin , the final Ti is set to Tmin . When either the number of replicas is
stable or it has increased (fr ≤ 0), the idle period is increased by a fixed amount
∆. The duration of the idle phase is limited by the parameter Tmax , which is
decided by the system administrator.

It is important to note that, in order to increase the amount of overlay peers
in the network, a peer has to add them faster then the failure rate. In fact,
the promoting rate of new peers depends on several factors, such as network
topology and physical characteristics of the network.

3.3 Evaluation

The repairing protocol has been evaluated through an extensive number of sim-
ulations based on event-based model of PEERSIM [65].

Unless explicitly stated, the parameters that are used in the current evalua-
tion are shown in Table 3.1. Such parameters are partially inherited from the
CYCLON [99], CLOUDCAST [63] and Aggregation protocols [40]. The choice
of the thresholds parameters in Table 3.1 is motivated by graphical representa-
tion; in reality, the protocol is able to support both smaller and bigger sizes of
the overlay.

29

3.3. EVALUATION CHAPTER 3. PERSISTENT STORAGE SUPPORT

 0

 200

 400

 600

 800

 1000

 1200

6 12 18 24 30 36 42 48 54 60 66 72

N
u
m

b
e
r

o
f
n
o
d
e
s

Time (hours)

overlay size
network size

Figure 3.2: Overlay size in case of network oscillates daily between 0 and 1024 peers. The
single experiment lasted 3 days.

The first aspect that has to be evaluated is protocol scalability: is our pro-
tocol able to support overlay availability in spite of network size oscillation?
Figure 3.2 and Figure 3.3 shows the behaviour of the overlay when network
size oscillates between 0 and 1024 peers in a one-day period. The average peer
life time is around 3 hours.

When the network size grows, the overlay peers promote new peers to the
overlay and its size growths until reaching the sufficient threshold. Then the
protocol supports the sufficient overlay size with k deviation. When all peers
leave the network, the overlay size falls to zero and contains only the cloud peer.
This behaviour repeats periodically.

Figure 3.4 shows the amount of existing links to the cloud in the overlay. The
top figure shows the network size oscillation and the bottom one represents the
cloud in-degree for CLOUDCAST (thin line) and our protocol (thick line). As
you can see, compared with CLOUDCAST, our protocol significantly reduces
the utilization of cloud resources without implications on the overlay reliability.
When the network size is enough to provide the sufficient overlay size, refer-
ences to the cloud are removed; otherwise the overlay peers include cloud node

30

CHAPTER 3. PERSISTENT STORAGE SUPPORT 3.3. EVALUATION

 0

 10

 20

 30

 40

 50

 60

6 12 18 24

N
u
m

b
e
r

o
f
n
o
d
e
s

Time (hours)

overlay size
network size

Figure 3.3: Overlay size in case of network oscillates daily between 0 and 1024 peers. Zooming
over a single day.

into the overlay.

For system monitoring we adopt the work of Jelasity et al. [40]. Figure 3.5
shows the ability of the protocol to support the target overlay size under the
various network churn rates and epoch intervals. The X-axis represents the du-
ration of the epoch intervals. The Y-axis represents the deviation of the overlay
size from the target sufficient threshold. A churn rate p% for the overlay means
that at each second, any peer may abruptly leave the overlay with probability
p%. In this evaluation we do not consider that peers can rejoin the overlay.

As we can see from Figure 3.5, the lines correspond to 0%, 0.1% and 0.01%
shows approximately the same behavior. These results proof that the system
successfully supports the target deviation (k = 0.2). However, with the churn
rate 1% the system is not able to support the overlay with an epoch interval
larger then 30 seconds. Nevertheless, it must be noted that the churn rate of
1.0% corresponds to an average lifetime of less than 2 minutes.

31

3.4. RELATED WORK CHAPTER 3. PERSISTENT STORAGE SUPPORT

 0

 200

 400

 600

 800

 1000

10 20 30 40 50 60 70

N
e
tw

o
rk

 s
iz

e

Time (hours)

network size

 0

 5

 10

 15

 20

 25

10 20 30 40 50 60 70

N
u
m

b
e
r

o
f
lin

k
s
 t
o
 c

lo
u
d
 n

o
d
e
s

Time (hours)

CloudCast
our protocol

Figure 3.4: Cloud in-degree for CLOUDCAST and our protocols in case of network oscillates
daily between 0 and 1024 peers.

3.4 Related Work

One of the most important limitations in P2P-based storage systems is con-
nected with the difficulty to guarantee data reliability. P2P nodes leave or fail
without notification and stored data can be temporarily or permanently unavail-
able.

A popular way to increase data durability and availability is to apply redun-
dancy schemas, such as replication [50, 19], erasure coding [103] or a combi-
nation of them [71]. However, too many replicas may harm performance and
induce excessive overhead. Therefore it becomes a relevant issue to keep the
number of replica around a proper threshold, in order to have predictable infor-
mation on load and performance of the system.

Two main approaches exist for replica control: (1) proactive and (2) reactive.
Proactive approach creates replicas at some fixed rate [86, 71], whereas in reac-
tive approach a new replica is created each time an existing replica fails [50, 19].

The work of Kim [50] proposes a reactive replication approach that uses
lifetime of nodes to select where to replicate data. When the data durability is

32

CHAPTER 3. PERSISTENT STORAGE SUPPORT 3.4. RELATED WORK

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 20 40 60 80 100 120 140 160 180 200

D
e
v
ia

ti
o
n
 f
ro

m
 S

u
ff
ic

ie
n
t
th

re
s
h
o
ld

Epoch interval, seconds

0.00%
0.01%
0.10%
1.00%

Figure 3.5: Deviation of the overlay size from the sufficient threshold under different levels of
churn with variable epoch intervals.

below a threshold the node does replicas in nodes whose lifetime is long enough
to assure durability. Conversely, Chun et al.[19] proposes a reactive algorithm,
where data durability is provided by selecting a suitable amount of replicas.
The algorithm responds to any detected failure and creates a new replica if the
amount of replicas is less then the predefined minimum.

Nevertheless, these approaches are not taking in account the redundancy of
replicas in the network. In fact, increasing the number of replicas affects band-
width and storage consumption [8].

The problem of replica control is a relevant problem and one of the most
complete work in this area is presented by Duminuco et al. [23]. To guarantee
that data is never lost the authors propose an approach that combines optimized
proactive with pure reactive replication. The approach is able to dynamically
measure churn fluctuations and adapt the repair rate accordingly.

Nevertheless, Duminuco et al. consider the estimation of recovering rate,
whereas in our work the attention is devoted for the periods of recovery restart-
ing and network overloads caused by system monitoring. Moreover, Duminuco
et al in their work do not consider the distributed mechanism of regulation the

33

3.4. RELATED WORK CHAPTER 3. PERSISTENT STORAGE SUPPORT

overlay population.
Finally, recent works in the field do not consider the oscillation of the net-

work size and the situation when P2P resources are not enough or not avail-
able. To solve these problems we use the combination of both communication
models: P2P and cloud Computing. Moreover, we propose a mechanism that
automatically includes or excludes the cloud into the overlay, by adapting the
system to the network state.

34

Chapter 4

Video Streaming

Peer-to-peer (P2P) overlays have lowered the barrier to stream live events over
the Internet, and have thus revolutionized the media streaming technology. How-
ever, satisfying soft real-time constraints on the delay between the generation of
the stream and its actual delivery to users is still a challenging problem. Bottle-
necks in the available upload bandwidth, both at the media source and inside the
overlay network, may limit the quality of service (QoS) experienced by users.
A potential solution for this problem is to assist the P2P streaming network by
a cloud computing infrastructure to guarantee a minimum level of QoS. In such
approach, rented cloud resources (helpers) are added on demand to the over-
lay, to increase the amount of total available bandwidth and the probability of
receiving the video on time. Hence, the problem to be solved becomes the min-
imization of the economical cost, provided that a set of constraints on QoS are
satisfied. The main contribution of this chapter is CLIVE, a cloud-assisted P2P
live streaming system that demonstrates the feasibility of these ideas. CLIVE

estimates the available capacity in the system through a gossip-based aggrega-
tion protocol and provisions the required resources from the cloud to guarantee
a given level of QoS at low cost. We perform extensive simulations and evaluate
CLIVE using large-scale experiments under dynamic realistic settings.

4.1 Problem statement

We consider a network consisting of a dynamic collection of nodes that commu-
nicate through message exchanges. Nodes could be peers, i.e., edge computers
belonging to users watching the video stream, helpers, i.e., computational and

35

4.1. PROBLEM STATEMENT CHAPTER 4. VIDEO STREAMING

storage resources rented from an IaaS cloud, and the media source (source for
short), which generates the video stream and starts its dissemination towards
peers.

Each peer is uniquely identified by an ID, e.g., composed by IP address and
port, required to communicate with it. We use the term swarm to refer to the
collection of all peers. The swarm forms an overlay network, meaning that each
peer connects to a subset of peers in the swarm (called neighbours). The swarm
is highly dynamic: new peers may join at any time, and existing peers may
voluntarily leave or crash. Byzantine behaviour is not considered in this work.

There are two types of helpers: (i) an active helper (AH) is an autonomous
virtual machine composed of one or more computing cores, volatile memory
and permanent storage, e.g., Amazon EC2, and (ii) a passive helper (PH) is
a simple storage service that can be used to store (PUT) and retrieve (GET)
arbitrary pieces of data, e.g., Amazon S3. We assume that customers of the
cloud service are required to pay for computing time and bandwidth in the case
of AHs, and for storage space, bandwidth and the number of PUT/GET requests
in the case of PHs. This model follows the Amazon’s pricing model.

We assume the source generates a constant-rate bitstream and divides it into
a number of chunks. A chunk c is uniquely identified by the real time t(c) at
which is generated. The generation time is used to play chunks in the correct
order, as they can be retrieved in any order, independently from previous chunks
that may or may not have been downloaded yet.

Peers, helpers and the source are characterized by different bounds on the
amount of available download and upload bandwidth. A peer can create a
bounded number of download connections and accept a bounded number of up-
load connections over which chunks are downloaded and uploaded. We define
the number of download, and upload slots of a peer p as its number of down-
load and upload connections, respectively. Thanks to the replication strategies
between different data centers currently employed in clouds [31], we assume
that each PH has an unbounded number of upload slots and can serve as many
requests as it receives. Preliminary experiments using PlanetLab and Amazon
Cloudfront show that this assumption holds in practice.

We assume that peers are approximately synchronized; this is a reasonable
assumption, given that some cloud services, like Amazon AWS, are already
synchronized and sometimes require the client machines to be synchronized as

36

CHAPTER 4. VIDEO STREAMING 4.1. PROBLEM STATEMENT

Figure 4.1: The baseline model.

well.
The goal of CLIVE peers is to play the video with predefined playback delay

(the time between the generation of the video and its visualization at the peer)
and playback continuity (the percentage of chunks that are correctly streamed
to users). To reach this goal, CLIVE is allowed to rent PH and/or AH resources
from the cloud.

Deciding about which and how much resources to rent from the cloud can be
modelled as an optimization problem, where the objective function is to mini-
mize the economic cost and the constraints are the following:

1. the maximum playback delay should be less than or equal to Tdelay , mean-
ing that if a chunk c is generated at time t(c) at the source, no peers will
show it after time t(c) + Tdelay ;

2. the maximum percentage of missing chunks should be less than or equal
to Ploss .

Note that different formulations of this problem are possible, such as fixing
a limit on the amount of money to be spent and trying to maximize the playback
continuity. We believe, however, that a company, willing to stream its videos,
should not compromise on the users’ experience, but rather exploit peers when-
ever possible and fall back to the cloud when peers are not sufficient.

37

4.2. SYSTEM ARCHITECTURE CHAPTER 4. VIDEO STREAMING

Figure 4.2: The enhanced model.

4.2 System architecture

The basic elements forming CLIVE have been already introduced: the media
source, a swarm of peers, a single passive helper, and a number of active helpers.
Aim of this section is to discuss how a such diverse collection can be organized
and managed. We present two architectural models, illustrated in Figures 4.1
and 4.2. The baseline model (Figure 4.1) can be described as a P2P streaming
protocol, where peers revert to PH whenever a chunk cannot be retrieved from
other peers. The enhanced model (Figure 4.2) builds upon the baseline, by
considering AHs and by providing a distributed mechanism to provision their
number and appropriately organizing them.

In the rest of the section, we first discuss the baseline model, introducing the
underlying P2P video streaming protocol and showing how it can be modified
to exploit a PH. Then, we add the AHs into the picture and illustrate the diverse
architectural options available when including them.

4.2.1 The baseline model

The baseline model can be seen as a P2P streaming service associated with a
server – as simply as that. We introduce this model as a baseline for comparison
and validation of our enhanced architectural model.

38

CHAPTER 4. VIDEO STREAMING 4.2. SYSTEM ARCHITECTURE

Note that the idea of augmenting a P2P video streaming application by rent-
ing cloud resources is general enough to be applied to several existing video
streaming applications. We adopt a mesh-pull approach for data dissemina-
tion [108], meaning that peers are organized in an unstructured overlay and
explicitly ask the missing chunks from their neighbours. Peers discover each
other using a gossip-based peer-sampling service [21, 39, 73, 99]; then, the ran-
dom partial views created by this service can be used by any of the existing
algorithms to build the streaming overlay [27, 55, 70, 72].

In the mesh-pull model, neighbouring peers exchange their data availability
with each other, and the peers use this information to schedule and pull the
required chunks. There are a number of studies [16, 111] on chunk selection
policies, but here we use the in-order policy, as in COOLSTREAMING [110],
where peers pull the missing chunks with the closest playback time first.

The baseline model builds upon this P2P video streaming protocol by adding
a PH (Figure 4.1). The source, apart from pushing newly created video chunks
to the swarm, temporary stores them on the PH. If a peer p cannot obtain a chunk
c from the swarm at least Tlcw time units before its playback time, it retrieves
c directly from the PH. In other words, in order to guarantee a given level of
QoS, each peer is required to have a predefined amount of chunks buffered
ahead of its playback time, which is called the last chance window (LCW),
corresponding to a time interval of length Tlcw .

4.2.2 The enhanced model

If the P2P substrate does not suffice, the baseline model represents the easiest
solution, but as our experiments will show, this solution could be too expensive,
as an excessive number of chunks could end up being retrieved directly from
the PH. However, even if the aggregate bandwidth of the swarm may be theo-
retically sufficient to serve all chunks to all peers, the soft real-time constraints
on the playback delay may prevent to exploit entirely such bandwidth. No peer
must lag behind beyond a specified threshold, meaning that after a given time,
chunks will not be disseminated any more. We need to increase the amount
of peers that receive chunks in time, and this could be done by increasing the
amount of peers that are served as early as possible. The enhanced model pur-
sues this goal by adding a number of AHs to the swarm (Figure 4.2).

39

4.2. SYSTEM ARCHITECTURE CHAPTER 4. VIDEO STREAMING

AHs receive chunks from the source or from other AHs, and push them to
other AHs and/or to peers in the swarm. To discover such peers, AHs join
the peer sampling protocol [99] and obtain a partial view of the whole system.
We use a modified version of CYCLON [99], such that peers exchange their
number of upload slots along with their ID. AH chooses a subset of root peers
(Figure 4.2) from their partial view and establish a connection to them, pushing
chunks as soon as they become available. Root peers of an AH are not changed
over time, unless they fail or leave the system, or AH finds a peer with more
upload slots than the existing root peers. Clearly, a peer could accept to be
a root peer only for one AH, to avoid to receive multiple copies of the same
chunk. The net effect of adding AHs is an increase in the number of peers that
receive the video stream early in time. The root peers also participate in the
P2P streaming protocol, serving a number of peers directly or indirectly. The
PH still exists in the enhanced model to provide chunks upon demand, but it
will be used less frequently compared to the baseline model.

Architecturally speaking, an important issue is how to organize multiple AHs
and how to feed chunks to them. There are two possible models:

• Flat: the AHs receive all their chunks directly from the source and then
push them to peers in the swarm, acting just as bandwidth multipliers for
the source.

• Hierarchical: the AHs are organized in a tree with one AH at the root; the
source pushes chunks to the root, which pushes them through the tree.

The advantage of the flat model is that few intermediary nodes cause a lim-
ited delay between the source and the peers. However, the source bandwidth
could end up being entirely consumed to feed the AHs; and more importantly,
any communication to the cloud is billed, including the multiple ones from the
source to the AHs. We, thus, decided to adopt the hierarchical model, also con-
sidering that communication inside the cloud is (i) extremely fast, given the use
of gigabit connections, and (ii) free of charge [4].

One important question in the enhanced model is: how many AHs to add?
Finding the right balance is difficult; too many AHs may reduce the PH load,
but cost too much, given that they are billed for the used bandwidth, but also for
each hour of activity. Too few AHs also increases the PH load, and as we show

40

CHAPTER 4. VIDEO STREAMING 4.3. SYSTEM MANAGEMENT

in the experiments, increases the cost. The correct balance dynamically depends
on the current number of peers in the swarm, and their upload bandwidth.

The decision on the number of AHs to include in the system is taken by the
CLIVE manager (CM), a unit that is responsible for monitoring the state of the
system and organizing the AHs. By participating in a decentralized aggrega-
tion protocol [40], the CM obtains information about the number of peers in the
system and the distribution of upload slots among them. Based on this informa-
tion, it adds new AHs or remove existing ones, trying to minimize the economic
cost. The CM role can be played either directly by the source, or by one AH. A
detailed description of the CM is provided in the next section.

4.3 System management

Based on the swarm size and the available upload bandwidth in the swarm,
the CM computes the number of AHs that have to be active to minimize the
economic cost. Then, depending on the current number of AHs, new AHs may
be booted or existing AHs may be shutdown.

The theoretical number of AHs that minimize the cost is not so straight-
forward to compute, because no node has a global view of the system and its
dynamics, e.g., which peers are connected and how many upload slots each
peer has. Instead, we describe a heuristic solution, where each peer runs a small
collection of gossip-based protocols, with the goal of obtaining approximate
aggregate information about the system. The CM joins these gossip protocols
as well, and collects the aggregated results. It exploits the collected informa-
tion to estimate a lower bound on the number of peers that can receive a chunk
either directly or indirectly from AHs and the source, but not from PH. We call
this set of peers as infected peers. The CM, then, uses this information to detect
whether the current number of AHs is adequate to the current size of the swarm,
or if correcting actions are needed by adding/removing AHs.

In the rest of this section, we first explain how the CM estimates the swarm
size and the upload slot distribution, and then we show how it calculates the
number of infected peers using the collected information. We also present how
the CM manages the number of AHs, based on the swarm size and the number of
infected peers, and finally we explain the effect of Tlcw , as an important system
parameter, on the cost and the QoS.

41

4.3. SYSTEM MANAGEMENT CHAPTER 4. VIDEO STREAMING

4.3.1 The swarm size and upload slot distribution estimation

All peers in the system, including the CM, participate in the aggregate compu-
tation (Algorithms 4.1 and 4.2). The procedure round() is called periodically by
all peers, as well as by the CM to estimate (i) the current size of the swarm, (ii)
the probability density function of the upload slots available at peers, and (iii)
the Tlcw average (Section 4.3.4).

The size Nswarm of the current swarm is computed, with high precision,
through the aggregation protocol [40]. On the other hand, knowing the num-
ber of upload slots of all peers is infeasible, due to the large scale of the system
and its dynamism. However, we can obtain a reasonable approximation of the
probability density function of the number of upload slots available at all peers.

Let ω be the actual upload slot distribution among all peers. We adopt
ADAM2 [82] to compute Pω : N → R, an estimate probability density func-
tion of ω. Pω(i), then, represents the proportion of peers that have i upload slots
w.r.t. the total number of peers, so that

∑
i Pω(i) = 1. ADAM2 is a gossip-based

algorithm that provides an estimation of the cumulative distribution function of
a given attribute across all peers.

For our algorithm to work, we assume that each peer is able to estimate its
own number of upload slots, and the extreme values of such distribution are
known to all and static. Otherwise, a simple mechanism proposed by Haridasan
and van Renesse [34] can adjust the set of entries for the case where the extreme
values of a variable are unknown. The maximum value is shown by maxSlot .

Our solution, summarized in Algorithms 4.1 and 4.2, is based on the gos-
sip paradigm: execution is organized in periodic rounds, performed at roughly
the same rate by all peers, during which a push-pull gossip exchange is exe-
cuted [42]. During a round, each peer p sends a REQ message to a peer q, and
waits for the corresponding RES message from q. Information contained in the
exchanged messages are used to update the local knowledge about the entire
system, which is composed by the following information:

• a partial view, or view for short, of the network, stored in variable subview ,
that represents a small subset of the entire population of peers,

• a slot vector (SV), which is used to obtain an approximate and up-to-date
information about the attribute distribution,

42

CHAPTER 4. VIDEO STREAMING 4.3. SYSTEM MANAGEMENT

• a local value (LV), which is used by peers to estimate the network size.

procedure init()
int Tlcw ← Trtt
int slot ← the number of peer’s slots
int maxSlot ← maximum number of slots in the system
for i← 0 to maxSlot do

if i = this.slot then
this.SV [i]← 1

else
this.SV [i]← 0

if this = CM then
this.LV ← 1

else
this.LV ← 0

procedure round()
this.view.updateAge()
q ← selectOldest(this.view)
this.view.remove(q)
pSubview ← this.view.randomSubset(this.view)
pSubview.add(this)
send 〈REQ, pSubview, this.SV, this.LV, this.Tlcw〉 to q

Algorithm 4.1: Estimating the swarm size, upload slot distribution, and Tlcw average.

Partial views are needed to maintain a connected, random overlay topology
over the population of all peers to allow the exchange of information. We man-
age the views through the CYCLON peer sampling service [99]. Each view con-
tains a fixed number of descriptors, composed by a peer ID and a timestamps.
During each round, a peer p identifies the node q with the oldest descriptor in its
view, based on the timestamps through selectOldest() in Algorithms 4.1 and 4.2.
The corresponding descriptor is removed, and a subset of p’s view is extracted
through procedure randomSubset(). This subset is sent to q through a REQ
message. Peer q that receives the REQ message, replies with a RES message
that similarly contains a number of descriptors randomly selected from its local
view.

Whenever p receives a view from q, it merges its own view with the q’view
through procedure mergeView. Peer p iterates through the received view, and

43

4.3. SYSTEM MANAGEMENT CHAPTER 4. VIDEO STREAMING

on event receive 〈REQ, pSubview, pSV, pLV, pTlcw〉 from p do
qSubview ← this.view.randomSubset(this.view)
send 〈RES, qSubview, this.SV, this.LV, this.Tlcw〉 to p
for i← 0 to maxSlot do

this.SV [i]← this.SV [i]+pSV [i]
2

this.LV ← this.LV+pLV
2

this.Tlcw ← this.Tlcw+pTlcw
2

mergeView(this.view, qSubview, pSubview)

on event receive 〈RES, qSubview, qSV, qLV, qTlcw〉 from q do
for i← 0 to maxSlot do

this.SV [i]← this.SV [i]+qSV [i]
2

this.LV ← this.LV+qLV
2

this.Tlcw ← this.Tlcw+qTlcw
2

mergeView(this.view, pSubview, qSubview)

procedure mergeView(view, sentV iew, receivedV iew)
forall n in receivedV iew do

if this.view contains n then
view.updateAge(n)

else if view has free space then
view.add(n)

else
m← sentV iew.poll()
view.remove(m)
view.add(n)

Algorithm 4.2: Estimating the swarm size, upload slot distribution, and Tlcw average.

adds the descriptors to its own view. If p’s view is not full, it adds the peer to its
view, and if a peer descriptor to be merged already exists in p’s view, p updates
its age, if it is newer. If p’ view is full, p replaces one of the peers it had sent
to q with a peer in the received list. The poll method returns and removes the
last peer from the list. The net effect of this process is the continuous shuffling
of views, removing old descriptors belonging to crashed peers and epidemically
disseminating new descriptors generated by active ones. The resulting overlay
network, where the neighbours of a peer are the peers included in the partial
view, closely resembles a random graph, characterized by extreme robustness

44

CHAPTER 4. VIDEO STREAMING 4.3. SYSTEM MANAGEMENT

and small diameter [99].
LV is a local float value maintained at peers and at the CM. Initially, it equals

zero in all peers, and equals one in the CM. In addition to LV , each peer also
maintains SV , which is a vector with maxSlot + 1 entries, such that the index
of each entry shows the number of slots, i.e., from 0 to maxSlot . Initially, all
entries of SV at peer p are set to 0, except p’s one, which is set to 1.

In each shuffle request, peer p sends its LV and SV values, along with its
view. When q receives a REQ message from p, it replies with a message con-
taining a subset of its views, SV , and LV . Peer q, then, goes through the
received SV and updates its own SV entries to the average of the values for
each entry in both SV s, i.e., q.SV [i] ← (q.SV [i] + p.SV [i])/2. Peer q also
updates its LV to (q.LV + p.LV)/2. Likewise, peer p updates its SV and LV ,
when it receives RES from q. After a few exchanges, all peers and the CM
find the distribution of slots in their own SV , such that entry i in SV shows the
probability of peers with i slots. They can also compute the swarm size locally
as:

Nswarm = 1/LV (4.1)

4.3.2 Estimating the number of infected peers

The number of peers that can receive a chunk from either the swarm, the source
or one of the AHs is bounded by the time available to the dissemination process.
This time depends on a collection of system and application parameters:

• Tdelay : No more than Tdelay time units must pass between the generation of
a chunk at the source and its playback at any of the peers.

• Tlatency : The maximum time needed for a newly generated chunk to reach
the root peers, i.e., the peers that directly receive the chunks from either
the source or the AHs, is equal to Tlatency . While this value may depend
on whether a particular root peer is connected to the source or to an AH,
we consider it as an upper bound and we assume that the latency added by
AHs is negligible.

• Tlcw : If a chunk is not available at a peer Tlcw time units before its playback
time, it will be retrieved from the PH.

45

4.3. SYSTEM MANAGEMENT CHAPTER 4. VIDEO STREAMING

Figure 4.3: Live streaming time model.

Therefore, a chunk c generated at time t(c) at the source must be played at
peers no later than t(c) + Tdelay , otherwise the QoS contract will be violated.
Moreover, the chunk c becomes available at a root peer at time t(c) + Tlatency ,
and it should be available in the local buffer of any peer in the swarm by time
t(c) + Tdelay − Tlcw , otherwise the chunk will be downloaded from the PH
(Figure 4.3). This means that the lifetime Tlife of a chunk at root peers is equal
to:

Tlife = (Tdelay − Tlatency)− Tlcw (4.2)

Whenever a root peer r receives a chunk c for the first time, it starts dissem-
inating it in the swarm. Biskupski et al. in [7] show that a chunk disseminated
by a pull mechanism through a mesh overlay follows a tree-based diffusion pat-
tern. We define the diffusion tree DT (r , c) rooted at a root peer r of a chunk c
as the set of peers, such that a peer q belongs to DT (r , c), if it has received c
from a peer p ∈ DT (r , c).

Learning the exact diffusion tree for all chunks is difficult, because this
would imply a global knowledge of the overlay network and its dynamics, and
each chunk may follow a different tree. Fortunately, such precise knowledge is
not needed. What we would like to know is an estimate of the number of peers
that can be theoretically reached through the source or the current population of
AHs.

The chunk generation execution is divided into rounds of length Tround . Chunk
uploaded at round i becomes available for upload to other peers at round i+ 1.
The maximum depth, depth, of any diffusion tree of a chunk over its Tlife is
computed as: depth = bTlife/Troundc. We assume that Tround is bigger than the

46

CHAPTER 4. VIDEO STREAMING 4.3. SYSTEM MANAGEMENT

procedure size(DENSITY Pω, int depth)
int min ← +∞
repeat k times

min ← min(min, recSize(Pω, depth))

return min;

procedure recSize(DENSITY Pω, int depth)
int n← 1
int slots ← random(Pω)
repeat slots times

n← n+ recSize(Pω, depth − 1)

return n
Algorithm 4.3: Lower bound for the diffusion tree size.

average latency among the peers in the swarm. Given depth and the probabil-
ity density function Pω, we define the procedure size(Pω, depth) that executes
locally at the CM and provides an estimate of the number of peers of a single
diffusion tree (Algorithm 4.3). This algorithm emulates a large number of diffu-
sion trees, based on the probability density function Pω, and returns the smallest
value obtained in this way.

Emulation of a diffusion tree in a swarm is obtained using the recursive
procedure recSize(Pω, depth). In this procedure, variable n is initialized to 1,
meaning that this peer belongs to the tree. If the depth of the tree is larger than 0,
another round of dissemination can be completed. The number of upload slots
is drawn randomly by function random() from the probability density function
Pω. Variable n is then increased by adding the number of peers that can be
reached by recursive call to recSize(), where the depth is decremented by 1 at
each step before the next recursion.

At this point, the expected number of infected peers, i.e., the total peers
that can receive a chunk directly or indirectly from AHs and the source, but
not from the PH, Nexp , is given by the total number of root peers times the
estimated diffusion tree size, Ntree = size(Pω, depth). The number of root peers
is computed as the sum of the upload slots at the source, Up(s), and AHs,
Up(h), minus the number of slots used to push chunks to the AHs themselves,
as well as to the PH, which is equal to the number of AHs plus one. Considering
AH as the set of all AHs, we have:

47

4.3. SYSTEM MANAGEMENT CHAPTER 4. VIDEO STREAMING

Figure 4.4: Calculating the number of peers that is economically reasonable to serve with PH
utilization instead of running an additional AH.

Nexp =

(
Up(s) +

∑
h∈AH

Up(h)− (|AH|+ 1)

)
·Ntree (4.3)

4.3.3 AHs management model

We define the cost Cah of an AH in one round (Tround) as the following:

Cah = Cvm + m · Cchunk (4.4)

whereCvm is the cost of running one AH (virtual machine) in a round, Cchunk

is the cost of transferring one chunk from an AH to a peer, and m in the number
of chunks that one AH uploads per round. Since we utilize all the available
upload slots of an AH, we can assume that m = Up(h). Similarly, the cost Cph

of pulling chunks from PH per round is:

Cph = Cstorage + r · (Cchunk + Creq) (4.5)

where Cstorage is the storage cost, Creq is the cost of retrieving (GET) one
chunk from PH and r is the number of chunks retrieved from PH per round.
Cchunk of PH is the same as in AH. Moreover, since we store only a few minutes
of the live stream in the storage, Cstorage is negligible.

Figure 4.4 shows howCah andCph (depicted in Formulas 4.4 and 4.5) changes
in one round (Tround), when the number of peers increases. We observe that Cph

48

CHAPTER 4. VIDEO STREAMING 4.3. SYSTEM MANAGEMENT

increases linearly with the number of peers (number of requests), while Cah is
constant and independent of the number of peers in the swarm. Therefore, if
we find the intersection of the cost functions, i.e., the point δ in Figure 4.4, we
will know when is economically reasonable to add a new AH, instead of putting
more load on PH.

δ ≈ Cvm + m · Cchunk

Cchunk + Creq
(4.6)

The CM considers the following thresholds and regulation behaviour:

• Nswarm > Nexp + δ: This means that the number of peers in the swarm is
larger than the maximum size that can be served with a given configuration,
thus, more AHs should be added to the system.

• Nswarm < Nexp + δ −Up(h) ·Ntree : Current configuration is able to serve
more peers than the current network size, thus, extra AHs can be removed.
Up(h) ·Ntree shows the number of peers served by one AH.

• Nexp + δ−Up(h) ·Ntree ≤ Nswarm ≤ Nexp + δ: In this interval the system
has adequate resource and no change in the configuration is required.

The CM periodically checks the above conditions, and takes the necessary
actions, if any. In order to prevent temporary fluctuation, it adds/removes only
single AH in each step.

4.3.4 Discussion on Tlcw

Tlcw is a system parameter that has an important impact on the quality of the
received media at end users, as well as on the total cost. Finding an appropri-
ate value for Tlcw is challenging. With a too small Tlcw peers may fail to fetch
chunks from PH in time for playback, while a too large Tlcw increases the num-
ber requests to PH, thus, increases the cost. Therefore, the question is how to
choose a value for Tlcw to achieve (i) the best QoS with a (ii) minimum cost.

Impact of Tlcw on the QoS

As we mentioned in Section 4.2, each peer buffers a number of chunks ahead
of its playback time, to guarantee a given level of QoS. The number of buffered

49

4.3. SYSTEM MANAGEMENT CHAPTER 4. VIDEO STREAMING

chunks corresponds to a time interval of length Tlcw . The length of Tlcw should
be chosen big enough, such that if a chunk is not received through other peers,
there is enough time to send a request to PH and retrieve the missing chunk
from it in time for playback.

The required time for fetching a chunk from the PH depends on the round
trip time (Trtt) between the peer and the PH, and thus it is not the same for all the
peers. Therefore, each peer measures Trtt locally, which consists of the latency
to send the request to the PH, plus the latency to receive the chunks at the peer’s
buffer. A peer should send a request for a missing chunk to PH no later than Trtt
time units before the playback time, otherwise, the retrieved chunk is useless.
Therefore, each peer sets the minimum value of Tlcw to Trtt .

While Tlcw is a local value at each peer, Tlife , which is used by the CM
to calculate the number of infected peers, depends on the Tlcw value (Equa-
tion 4.2). Therefore, the CM should be aware of the average Tlcw among peers.
To provide this information to the CM, all peers, including the CM, participate
in an aggregation protocol to get the average of Tlcw among all peers. Algo-
rithms 4.1 and 4.2 show that in each shuffle, a peer sends its local Tlcw to other
peers, and upon receiving a reply it updates its Tlcw to the average of its own
Tlcw and the received one.

Impact of Tlcw on the cost

Equation 4.5 shows that the cost of PH increases linearly with the number of
requests in each round. On the other hand, increasing Tlcw increases the PH cost
in a round, as peers send more requests to PH. To have a more precise definition
of PH cost in Equation 4.5, we replace r , which is the number of received
requests at PH, with δ× l , where l is the normalized value of Tlcw at the CM by
the average Tlcw (achieved in the aggregation protocol), i.e., l = Tlcw

avgTlcw
, and δ is

the number of peers sending requests to PH in a round. Therefore, Equation 4.6
can be rewritten as follows:

δ ≈ Cvm + m · Cchunk

l × (Cchunk + Creq)
(4.7)

The CM uses the average Tlcw to tune Tlcw of the system. If the CM finds out
that changing Tlcw can decrease the cost, without violating the QoS, it floods the
new value of Tlcw to the peers. To do that, it sends the new Tlcw to the directly

50

CHAPTER 4. VIDEO STREAMING 4.4. EXPERIMENTS

connected peers, and each peer forwards it to all its neighbours, expect the one
that it receives the message from. In the flooding path, the peers with smaller
Tlcw than the received one update their local Tlcw . However, if Tlcw at a peer is
bigger than the received value, it does not change it, as its current Tlcw is the
minimum required time to get a chunk from PH. Note that in Equation 4.6, we
assumed the local CM Tlcw equals the aggregated average of Tlcw , thus, l = 1.

Figure 4.4 shows the relation between Tlcw and PH cost. The higher Tlcw
is, the steeper the PH cost line is. This means that the cost of PH increases
faster with the bigger Tlcw , since PH receives more requests in a shorter time.
Moreover, smaller values for Tlcw push the PH cost line toward the x-axis. For
example, if Tlcw is zero, i.e., peers never use PH, the PH cost is zero and the line
overlaps the x-axis. However, we cannot set Tlcw to zero, since we use PH as a
backup of the chunks to guarantee the promised QoS.

Increasing the Tlcw not only increases the PH cost, but also increases the
total system cost. We see in Section 4.3.3, that the CM uses two parameters
to manage the AHs, (i) the value of δ, and (ii) the number of infected peers.
As Equation 4.7 shows, the higher Tlcw is, the smaller δ is. On the other hand,
according to Equation 4.2, increasing Tlcw decreases Tlife , and consequently,
decreases the number of infected peers. Hence, increasing Tlcw , decreases both
δ, and number of infected peers, and as a result the CM adds more AHs to the
system, according to the management model in Section 4.3.3, which increases
the total cost.

To summarize, we can say that the best value for Tlcw is the aggregated av-
erage Tlcw , where l = 1. Decreasing Tlcw below the average Tlcw , i.e., l < 1,
decreases the QoS at peers, as they may fail to fetch chunks from PH before
their playback time. On the other hand, although increasing Tlcw may increase
QoS, it also increases the cost (l > 1). Hence, the CM never broadcasts new
value of Tlcw to the system.

4.4 Experiments

In this section, we evaluate the performance of CLIVE using KOMPICS [3], a
framework for building P2P protocols that provides a discrete event simulator
for testing the protocols using different bandwidth, latency and churn scenarios.

51

4.4. EXPERIMENTS CHAPTER 4. VIDEO STREAMING

Table 4.1: Slot distribution in freerider overlay.

Number of slots Percentage of peers
0 49.3%
1 18.7%
2 8.4%

3− 19 5.2%
20 6.8%

Unknown 11.6%

4.4.1 Experimental setting

In our experimental setup, we set the streaming rate to 500kbps, which is di-
vided into chunks of 20kb; each chunk, thus, corresponds to 0.04s of video
stream. Peers start playing the media after buffering it for 15 seconds, and
Tdelay equals 25 seconds. We set the bandwidth of an upload slot and download
slot to 100kbps. Without loss of generality, we assume all peers have enough
download bandwidth to receive the stream with the correct rate. In these ex-
periments, all peers have 8 download slots, and we consider three classes of
upload slot distributions: (i) homogeneous, where all peers have 8 upload slots,
(ii) heterogeneous, where the number of upload slots in peers is picked uni-
formly at random from 4 to 13, and (iii) real trace (Table 4.1) based on a study
of large scale streaming systems [88]. As it is shown in Table 4.1, around 50%
of the peers in this model do not contribute in the data distribution. The media
source is a single node that pushes chunks to 10 other peers. We assume PH
has infinite upload bandwidth, and each AH can push chunks to 20 other peers.
Latencies between peers are modelled using a latency map based on the King
data-set [33].

In our experiments, we used two failure scenarios: join-only and churn. In
the join-only scenario, 1000 peers join the system following a Poisson distribu-
tion with an average inter-arrival time of 10 milliseconds, and after joining the
system they will remain till the end of the simulation. In the churn scenario,
approximately 0.01%, 0.1% and 1% of the peers leave the system per second
and rejoin immediately as newly initialized peers [94]. However, unless stated
otherwise, we did the experiments with 1% churn rate to show how the system

52

CHAPTER 4. VIDEO STREAMING 4.4. EXPERIMENTS

performs in presence of high dynamism.

4.4.2 The effect of Tlcw on system performance

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

P
er

ce
nt

ag
e

of
 th

e
pe

er
s

(%
)

Time (s)

LCW=40
LCW=30
LCW=20
LCW=10
LCW=0

(a) Join scenario

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

P
er

ce
nt

ag
e

of
 th

e
pe

er
s

(%
)

Time (s)

LCW=40
LCW=30
LCW=20
LCW=10
LCW=0

(b) Churn scenario (1% churn rate)

Figure 4.5: The percentage of the peers receiving 99% playback continuity with different values
of Tlcw (measured in number of chunks).

In the first experiment, we evaluate the system behaviour with different val-
ues for Tlcw , measured in number of chunks. In this experiment, we measure
playback continuity and playback delay, which combined together reflect the
QoS experienced by the overlay peers. Playback continuity shows the percent-
age of chunks received on time by peers, and playback delay represents the
difference, in seconds, between the playback point of a peer and the source.

For a cleaner observation of the effect of Tlcw , we use the homogeneous
slot distribution in this experiment. Figure 4.5 shows the fraction of peers that
received 99% of the chunks before their timeout with different Tlcw in the join-
only and churn scenarios (1% churn rate). We changed LCW between 0 to
40 chunks, where zero means peers never use PH, and 40 means that a peer
retrieves up to chunk c + 40 from PH, if the peer is currently playing chunk
c. As we see, the bigger Tlcw is, the more peers receive chunks in time. Al-
though for any value of Tlcw > 0 peers try to retrieve the missing chunks from
PH, the network latency may not allow to obtain the missing chunk in time.
As Figure 4.5 shows, all the peers retrieve 99% of the chunks on time when
LCW = 40. Given that each chunk corresponds to 0.04 seconds, Tlcw = 40
implies 1.6 seconds.

53

4.4. EXPERIMENTS CHAPTER 4. VIDEO STREAMING

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250

A
vg

. p
la

yb
ac

k
la

te
nc

y
(s

)

Time (s)

LCW=0
LCW=10
LCW=20
LCW=30
LCW=40

(a) Join scenario

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250

A
v
g
.
p
la

y
b
a
c
k
 l
a
te

n
c
y
 (

s
)

Time (s)

LCW=0
LCW=10
LCW=20
LCW=30
LCW=40

(b) Churn scenario (1% churn rate)

Figure 4.6: Average playback delay across peers with different values of Tlcw (measured in
number of chunks).

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250

P
as

si
ve

 h
el

pe
r

lo
ad

 (
G

B
)

Time (s)

LCW=0
LCW=10
LCW=20
LCW=30
LCW=40

(a) Join-only.

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250

P
as

si
ve

 h
el

pe
r

lo
ad

 (
G

B
)

Time (s)

LCW=0
LCW=10
LCW=20
LCW=30
LCW=40

(b) Churn (1% churn rate).

Figure 4.7: The cumulative PH load with different values of Tlcw .

The average playback delay of peers is shown in Figure 4.6. In the join-only
scenario, playback delay does not depend on Tlcw , while in the churn scenario
we can see a sharp increase when Tlcw is small.

4.4.3 PH load in different settings

Here, we measured PH load or the amount of fetched chunks from PH with
different Tlcw values and churn rates. Figures 4.7(a) and 4.7(b) show the cumu-
lative load of PH in the join-only and churn scenarios (1% churn rate), respec-
tively. As we see in these figures, by increasing Tlcw , more requests are sent to
PH, thus, increasing its load. Figure 4.8 depicts the cumulative PH load over

54

CHAPTER 4. VIDEO STREAMING 4.4. EXPERIMENTS

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250

P
as

si
ve

 h
el

pe
r

lo
ad

 (
G

B
)

Time (S)

0%
0.01%

0.1%
1%

Figure 4.8: The cumulative PH load with different values of churn rates(LCW = 40 chunks).

time for four different churn rates and LCW equals 40 chunks. As the figure
shows, there is no big change in PH load under low churn scenarios (0.01% and
0.1%), which are deemed realistic in deployed P2P systems [94]. However, it
sharply increases in the presence of higher churn rates (1%), because peers lose
their neighbours more often, thus, they cannot pull chunks from the swarm in
time, and consequently they have to fetch them from PH.

4.4.4 Economic cost

In this experiment, we measure the effect of adding and removing AHs on the
total cost. Note, in these experiments we set LCW to 40 chunks, therefore,
regardless of the number of AHs, all the peers receive 99% of the chunks before
their playback time. In fact, AHs only affect the total cost of the service. In Sec-
tion 4.3, we showed how CM estimates the required number of AHs. Figure 4.9
depicts how the number of AHs changes over time. In the join-only scenario and
the homogeneous slot distribution (Figure 4.9(a)), the CM estimates the exact
value of the peers that receive the chunks on time using the existing resources in
the system, and consequently the exact number of required AHs. Hence, as it is
shown, the number of AHs will be fixed during the simulation time. However,
in the heterogeneous and real trace slot distributions (Figures 4.9(b) and 4.9(c)),

55

4.4. EXPERIMENTS CHAPTER 4. VIDEO STREAMING

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

N
um

be
r

of
 a

ct
iv

e
he

lp
er

s

Time (s)

join only
churn

(a) Homogeneous.

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

N
um

be
r

of
 a

ct
iv

e
he

lp
er

s
Time (s)

join only
churn

(b) Heterogeneous.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600

N
um

be
r

of
 a

ct
iv

e
he

lp
er

s

Time (s)

join only
churn

(c) Real trace.

Figure 4.9: Number of AHs in different settings and scenarios.

CM estimation changes over time, and based on this, it adds and removes AHs.
In the churn scenario (1% churn rate), CM estimation also changes over the
time, thus, the number of AHs fluctuates.

Related to this, we see how PH load changes in different scenarios in the
baseline and enhanced models (Figure 4.10). Figure 4.9(a) shows that three
AHs are added to the system in the join-only scenario and the homogeneous
slot distribution. On the other hand, we see in Figure 4.10(a), in the join-only
scenario, with the help of these three AHs (enhanced model), the load of PH
goes down nearly to zero. It implies that three AHs in the system are enough to
minimize PH load, while preserving the promised level of QoS. Hence, adding
more than three AHs in this setting does not have any benefit and only increases
the total cost. Moreover, we can see in the join-only scenario, if there is no
AH in the system (baseline model), PH load is much higher than the enhanced

56

CHAPTER 4. VIDEO STREAMING 4.4. EXPERIMENTS

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

P
as

si
ve

 h
el

pe
r

lo
ad

 (
M

B
)

Time (s)

join only - baseline
join only - enhanced

churn - baseline
churn - enhanced

(a) Homogeneous.

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

P
a
s
s
iv

e
 h

e
lp

e
r

lo
a
d
 (

M
B

)

Time (s)

join only - baseline
join only - enhanced

churn - baseline
churn - enhanced

(b) Heterogeneous.

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600

P
as

si
ve

 h
el

pe
r

lo
ad

 (
M

B
)

Time (s)

join only - baseline
join only - enhanced

churn - baseline
churn - enhanced

(c) Real trace.

Figure 4.10: PH load in different scenarios with dynamic changes of the number of AHs.

model, e.g., around 90mb, 40mb, and 130mb per second in the homogeneous,
heterogeneous, and real trace, respectively. The same difference appears in the
churn scenario.

Figure 4.11 shows the cumulative total cost over the time in different sce-
narios and slot distributions. In this measurement, we use Amazon S3 as PH
and Amazon EC2 as AHs. According to the price list of Amazon 1, the data
transfer price of S3 is 0.12$ per GB, for up to 10 TB in a month. The cost of
GET requests are 0.01$ per 10000 requests. Similarly, the cost of data transfer
in EC2 is 0.12$ per GB, for up to 10 TB in a month, but since the AHs actively
push chunks, there is no GET requests cost. The cost of a large instance of EC2
is 0.34$ per hour.

Considering the chunk size of 20kb (0.02mb) in our settings, we can measure

1http://aws.amazon.com/, [Online; accessed Nov-2012]

57

4.4. EXPERIMENTS CHAPTER 4. VIDEO STREAMING

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500

C
o
s
t
($

)

Time (s)

join only - baseline
join only - enhanced

churn - baseline
churn - enhanced

(a) Homogeneous.

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500

C
os

t (
$)

Time (s)

join only - baseline
join only - enhanced

churn - baseline
churn - enhanced

(b) Heterogeneous.

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600

C
os

t (
$)

Time (s)

join only - baseline
join only - enhanced

churn - baseline
churn - enhanced

(c) Real trace.

Figure 4.11: The cumulative total cost for different setting and scenarios.

the cost of PH in Amazon S3 per round (second) according to the Formula 4.5:

Cph ≈ r · (Cchunk + Creq)

≈ r × 0.02× 0.12

1000
+
r × 0.01

10000
(4.8)

where r is the the number of received requests by PH in one round (second).
The cost of storage is negligible. Given that each AH pushes chunks to 20
peers with the rate of 500kbps (0.5mbps), then the cost of running one AHs in
Amazon EC2 per second according to Formula 4.4 is:

Cah = Cvm +m · Cchunk

=
0.34

3600
+

20× 0.5× 0.12

1000
(4.9)

58

CHAPTER 4. VIDEO STREAMING 4.4. EXPERIMENTS

Figure 4.11 shows the cumulative total cost for different slot distribution
settings. It is clear from these figures that adding AHs to the system reduces the
total cost, while keeping the QoS as promised. For example, in the high churn
scenario (1% churn rate) and the real trace slot distribution the total cost of
system after 600 seconds is 24$ in the absence of AHs (baseline model), while
it is close to 13$ if AHs are added (enhanced model), which saves around 45%
of the cost.

4.4.5 Accuracy evaluation

In this section we evaluate the accuracy of our estimations in form of evaluat-
ing the accuracy of upload slot distribution, and the accuracy of estimating the
number of infected peers.

Upload slot distribution estimation

Here, we evaluate the estimation of upload slots distribution in the system. We
adopt the Kolmogorov-Smirnov (KS) distance [84], to define the upper bound
on the approximation error of any peer in the system. The KS distance is given
by the maximum difference between the actual slot distribution, ω, and the es-
timated slot distribution, E(ω). We compute E(ω) based on Pω for different
number of slots. Since the maximum error is determined by a single point (slot)
difference between ω and E(ω), it is sensitive to noise. Hence, we measure the
average error at each peer as the average error contributed by all points (slots)
in ω and E(ω). The total average error is then computed as the average of these
local average errors.

We consider three slot distributions in this experiment: (i) the uniform dis-
tribution, (ii) the exponential distribution (λ = 1.5), and (iii) the Pareto dis-
tribution (k = 5, xm = 1). Figure 4.12(a) shows the average error in three
slot distributions, and Figure 4.12(b) shows how the accuracy of the estimation
changes in different churn rates.

Number of infected peers estimation

Finally, we evaluate the estimation accuracy of the number of infected peers.
Figure 4.13 shows the real number of infected peers and estimated ones in three

59

4.5. RELATED WORK CHAPTER 4. VIDEO STREAMING

 0

 0.005

 0.01

 0.015

 0.02

 10 20 30 40 50 60 70 80 90 100

A
vg

. E
st

im
at

io
n

E
rr

or

Round

uniform
exponential

pareto

(a) Avg. error in different slot distributions.

 0

 0.0005

 0.001

 0.0015

 0.002

0 0.01 0.1 1

A
vg

. E
st

im
at

io
n

E
rr

or
Churn rate (%)

(b) Avg. error in different churn rates.

Figure 4.12: Avg. estimation error.

upload slot distributions and in join and churn scenarios. As shown in the ho-
mogeneous and heterogeneous slot distributions, our estimation of the number
of infected peers closely fits the real number of such peer. However, in the real
trace slot distribution, it may happen that a peer without upload slot connects
directly to the source and prevents other peers to join the system, or on the other
hand, a very high upload bandwidth peer joins close to the source and serves
many other peers. That is why we see more difference between the real and
estimated number of infected peers in the real trace slot distribution.

4.5 Related work

4.5.1 Content distribution

Although P2P algorithms are emerging as promising solutions for large scale
content distribution, they are still subject to a number of challenges [108]. A
typical problem is the bottleneck in the aggregated upload bandwidth in the
overlay [53] that can lead to a low stream quality with disruptions. The bot-
tleneck is caused by asymmetric bandwidth of the clients: the download band-
width is usually much higher than upload.

In order to address these issues some recent research works propose to use
the hybrid architecture combining Content Delivery Networks (CDN) and P2P
overlays [57, 35]. Most of these works are focused on the reducing the use
of CDN servers via utilization of P2P available resources whenever it is pos-

60

CHAPTER 4. VIDEO STREAMING 4.5. RELATED WORK

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

N
um

. o
f N

od
es

Time (s)

real
estimated

(a) Homogeneous (join).

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

N
u
m

.
o
f
N

o
d
e
s

Time (s)

real
estimated

(b) Heterogeneous (join).

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

N
um

. o
f N

od
es

Time (s)

real
estimated

(c) Real trace (join).

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

N
um

. o
f N

od
es

Time (s)

real
estimated

(d) Homogeneous (churn).

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

N
um

. o
f N

od
es

Time (s)

real
estimated

(e) Heterogeneous (churn).

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

N
u
m

.
o
f
N

o
d
e
s

Time (s)

real
estimated

(f) Real trace (churn).

Figure 4.13: The comparison between the real number of infected nodes and the estimated ones.

sible. This kind of infrastructures is similar with the baseline model we con-
sider. However, in addition we propose an enhanced architecture that allows
to regulate the amount of upload bandwidth in the swarm via the utilization of
additional cloud resources.

61

4.5. RELATED WORK CHAPTER 4. VIDEO STREAMING

The most relevant work with respect to ours is LIVESKY, developed by Yin
et al. [107]. The authors proposed a commercial deployment of the hybrid ar-
chitecture, addressing several key challenges, including dynamic resource scal-
ing while guaranteeing stream quality. However, while the authors consider
redirection of the users according to available upload resources, we propose an
approach for managing the amount of available upload bandwidth via swarm
feedback processing.

One more possible approach to increase the upload capacity is to use peer
helpers [101, 109]. The helper role can be played by idle [102] or restricted [52]
users. Idle users are peers with spare upload capacity that are not interested in
any particular data, while restricted users are users with limited rights to use
the network service. Another approach suggests to exploit dedicated servers as
helpers to accelerate content distribution [61, 95, 96], where the servers cache
and forward content to other peers. Montresor and Abeni [63] introduced an
alternative way to use dedicated servers. They proposed to merge P2P and
cloud storage to support information diffusion.

In addition to these solutions, Wu et al. proposed a queuing model in [104] to
predict the dynamic demands of the users of a P2P video on demand (VoD) sys-
tem providing elastic amounts of computing and bandwidth resources on the fly
while minimizing the cost. Similarly, Jin et al. presented a cloud assisted system
architecture for P2P media streaming among mobile peers to minimize energy
consumption [44]. Unlike all the described approaches, our work exploits cloud
computing and storage resources as a collection of active and passive helpers.
The combination of both types of helpers together with an effective resource
management, distinguishes our approach from previous work.

4.5.2 Self-monitoring and self-configuration systems

Self-monitoring and self-configuration mechanisms are essential to manage large,
complex and dynamic systems in an effective way. Self-monitoring detects the
current states of system components, while self-configuration is aimed to adapt
system configuration according to the received information.

Self-monitoring allows the system to have a view on its current utilization
and state. One of the popular approaches for monitoring P2P overlays is decen-
tralized aggregation [40]. For example, ADAM2 [82] presents a gossip-based

62

CHAPTER 4. VIDEO STREAMING 4.5. RELATED WORK

aggregation protocol to estimate the distribution of attributes across peers. Sim-
ilarly, Van Renesse and Haridasan [34] propose a distribution estimation mech-
anism, which can be used to aggregate not only the values of different peers but
also how the values are ranked in relation with each others. Another system
that uses aggregation is CROUPIER [21], which is a NAT-aware peer sampling
service and use aggregation protocol to estimate the ratio of open peers in the
network.

Self-configuration is the process that autonomously configures components
and protocols according to specified target goals, e.g., reliability and availabil-
ity. To self-tune according to on-going state, the system can use an external
component that controls the system either via control loops [48] or in a decen-
tralized way [5, 41, 47]. A relevant example of a self-configuration mechanism
is T-MAN [41], an overlay topology management that uses a ranking function
exploited locally by each peer to choose its neighbors. Another system, pro-
posed by Kavalionak and Montresor [47], considers a replicated service on top
of a mixed P2P and cloud system. This protocol is able to self-regulate the
amount of cloud storage resources utilization according to available P2P re-
sources. However, the main goal of the proposed approach is to support a given
level of reliability, whereas in our work we are interested in an effective data dis-
semination that allows to self-configure the amount of active and passive cloud
resources utilization.

63

4.5. RELATED WORK CHAPTER 4. VIDEO STREAMING

64

Chapter 5

Virtual game environment

Cloud computing has recently become an attractive solution for massively mul-
tiplayer online games, also known as MMOGs, as it lifts operators from the
burden of buying and maintaining large amount of computational, storage and
communication resources, while offering the illusion of infinite scalability. Yet,
cloud resources do not come for free: a careful orchestration is needed to min-
imize the economical cost. In this chapter, we describe a novel architecture
for MMOGs that combines an elastic cloud infrastructure with user-provided
resources, to boost both the scalability and the economical sustainability pro-
vided by cloud computing. Our system dynamically reconfigures the platform
while managing the trade-off between economical cost and quality of service,
exploiting user-provided resources whenever possible. Simulation results show
that a negligible reduction in the quality of service can reduce the cost of the
platform up to 60% percent.

5.1 Architecture

This section introduces the overall structure of the proposed MMOG hybrid
architecture. In order to motivate our design choices, we first briefly review the
main characteristics of a classical client/server architecture for MMOGs.

Players connect to a centralized server by means of a game client, whose
main task is to show on the screen the visual representation of the virtual envi-
ronment and to map the actions of the player (i.e. movements and/or interac-
tions with objects) into communications with the server. The virtual environ-
ment is populated with entities, which can be avatars representing players or

65

5.1. ARCHITECTURE CHAPTER 5. VIRTUAL GAME ENVIRONMENT

objects that can be manipulated. The player actions can be classified as posi-
tional actions and state actions [38]. The former correspond to the movement
of entities across the virtual environment, while the latter correspond to changes
to their state, e.g. the act of closing a door or collecting an object.

When an action occurs, the server must spread the information to the other
players. However, not all players are interested in all actions. In fact, players
only receive actions executed inside an area centered at the their virtual position,
called area of interest (AOI). It is a task of the server to dynamically update and
maintain the AOI of the players.

5.1.1 Distributed MMOG

Distributed MMOG architectures have to devise strategies to divide the virtual
world into regions, and to find a proper assignment of these regions to multi-
ple nodes (we use this generic term to indicate either peers run by the user, or
servers run by the MMOG operator, as well as virtual machines run inside a
cloud). Some architectures adopt a spatial division of the virtual environment
into regions, and assign all the entities in a region to a node. Region-based par-
titioning is efficient for AOI resolution; since entities are clustered according to
their spatial position, identifying entities included in an AOI is a relatively easy
task. However, entities distribution is normally not spatially uniform, due to the
presence of hotspots, i.e. regions with high concentration of entities. One of the
drawback of hotspots is that they generate a large amount of load on the nodes
managing them. Furthermore, due to the spatial division, positional actions may
trigger a change into entity-region assignment, implying the transfer of entities
among nodes. This may reduce the interactiveness of the game, given that enti-
ties are not accessible during transfers, in fact denying any possible state action
on it. This is even more critical when considering the rate of transfer that in
turn depends on the rate of positional actions (usually high) and the dimension
of the regions.

By comparison, an hash-based entity assignment presents complementary
characteristics. Since the association of an entity to a node does not depend
on the position of the entity, positional actions do not trigger any migration of
objects among nodes. Also, due to the random assignment, entities in a hotspot
are managed by several nodes, whose load is uniformly distributed. However,

66

CHAPTER 5. VIRTUAL GAME ENVIRONMENT 5.1. ARCHITECTURE

this solution makes AOI resolution impractical (the objects of an AOI may be
spread among different nodes) and therefore it is rarely used in practice.

Overall Architecture

Positional
Action Manager

position
DB

State Action
Manager

state
DB

state
actions

positional
action

Player

Figure 5.1: Overall architecture

5.1.2 The proposed architecture

In order to retain the advantages of both the entity assignment strategies dis-
cussed above, we propose a distributed MMOG architecture (shown in Fig-
ure 5.1) that exploits two components, each one managing a different kind of
actions. The positional action manager (PAM), which we previously presented
in [13]), manages the positions of the entities by organizing a epidemic-based
distributed overlay among players. The state action manager (SAM), which is
the focus of this chapter, stores the entity state and is organized according to a
random entity-to-node assignment. This assignment strategy enables to handle
the state of the entities without any transfer of them across nodes due to posi-
tional actions. Such transfers may anyway occur, but instead of being triggered
by positional actions, they are usually performed to optimize the distribution of
the entities (and as a consequence, of the load) among the nodes.

5.1.3 State action manager

In order to build and maintain an overlay for the management of the entity state
in the MMOG, the state action manager (see Figure 5.2) is based on a distributed

67

5.1. ARCHITECTURE CHAPTER 5. VIRTUAL GAME ENVIRONMENT

VN

VN
VN

VNVN

NODE ANODE B

SAM
Architecutre

CLIENT

CLIENT

DHT RING

CLIENT

object

Manager

Figure 5.2: Black dots are the objects inside the virtual environment. VN boxes corresponds to
virtual nodes. Node A manages 2 VNs, whereas node B manages 3 VNs. Client connects to
the nodes to modify and read the objects. The manager has a global knowledge of the state of
the node and the VNs.

hash table (DHT) [93, 91]. A typical DHT manages a logical address space,
whose size is large enough to avoid clashes among items (i.e. a common size
is 2160). Each entity of the MMOG (avatar, objects) is assigned with an address
in such space, which we refer to as its ID. The IDs are uniformly assigned to
balance the distribution of the entities in the address space. The address space
is partitioned among the nodes, together with the associated entities. Nodes
are then connected to each other by an overlay, for routing and synchronization
purposes. The overlay is built to guarantee O(logN) bounds, where N is the
number of nodes in the DHT, both for the routing hops and for the size of the
routing tables.

In addition to the typical DHT mechanisms, we adopt the virtual node (VN)
paradigm over DHTs proposed by Godfrey et al. [30], to introduce a clear sepa-
ration between the logical and the physical nodes. Each virtual node is in charge
of an address range of the DHT. Several virtual nodes may be allocated on the
same physical node. From a client perspective, a virtual node acts as a state
server for a set of entities. Since the entities that a client is interested in may be
managed in principle by different virtual nodes, each client may have multiple
simultaneous connections to them. For instance, in Figure 5.2, a client is con-
nected with nodeA andB at the same time. As a limit situation, each player can

68

CHAPTER 5. VIRTUAL GAME ENVIRONMENT 5.1. ARCHITECTURE

connect to a different node per each object, so that the number of connections
for each player is bounded by the amount of entities in its AOI. Nevertheless,
it is worth noticing that not all the connections are active altogether, since each
VN pushes the updates of the entities only when they happen.

In our architecture, we define the load of a VN as the upload bandwidth
consumed to broadcast entities state to its associated clients. The load depends
on the amount of entities that correspond to the VN and the amount of clients
accessing them. The load changes over time, according to the interaction pattern
of the avatars. Moreover, load may be unbalanced due to the presence of more
popular entities. For instance, objects belonging to an hotspot receive an higher
amount of updates.

The proposed architecture also includes an additional module, called man-
ager, whose goal is to distribute the load among the nodes, so to exploit their
heterogeneity. DHT nodes periodically notify the manager with their own load
information. The manager periodically computes new assignments node-VNs
based on the received information and, if necessary, the enrollment or the dis-
posal of nodes from the DHT. In this scenario, the adoption of the VN paradigm
yields concrete advantages: (i) more powerful nodes may receive an higher
number of VNs than less powerful ones, (ii) heavy loaded nodes may trade VNs
with unloaded ones, (iii) in case of a physical node failure, its VNs are possibly
transferred/reassigned to different, unloaded, physical nodes, so reducing the
risk of overloaded nodes. Moreover, migrating VN is easy and light. Their mi-
gration does not affect the organization of the address space at the DHT level. It
only requires the exchange of data managed by the VN as well as the update of
the mapping between the logical identifier of the VN and the physical address
of the node hosting it.

5.1.4 Virtual nodes

One of the main advantages of the virtual node approach is the possibility to
easily move entities across the nodes of the DHTs. This ability is a fundamental
requisite for enabling proactive load distribution mechanisms. To better under-
stand the advantages on exploiting virtual nodes, let us spend a few words on
the load distribution in classical DHTs (i.e. that does not employ virtual nodes).
There are essentially two ways to dynamically distribute the load in classical

69

5.1. ARCHITECTURE CHAPTER 5. VIRTUAL GAME ENVIRONMENT

DHTs:

1. Move nodes. An unloaded node (i.e. A) moves to a precise address of the
DHT, so to unload a heavy loaded node (i.e. B). This operation requires A
to leave the DHT and rejoin in a position so that part of the load form B is
transferred to A. Even if this approach may work in a general situation, it
is too time consuming and creates too overhead for a live application as a
virtual environment. To fully understand the process, let us consider C as
the successor of A (i.e. the node that is after A in the ring-shaped space of
the DHT)1. When A leaves, C becomes responsible of the address space
left free by A. This information must be spread in the DHT, so that the
routing for the former A address space points correctly to C. In addition,
before leaving, A must transmit all the data on its entity descriptors to C.
WhenA joins the DHT and becomes the predecessor ofB, this information
must be spread to the DHT to adjust routing path. B also must send to A
the entity descriptors that are in the new address space of A. In addition, A
must build its routing table, in order to be part of the overlay. In summary,
this process requires two entities transferring (from A to C and from B to
A), to spread new information about 3 nodes and to build a new routing
table. All these operation take time, and, most important, imply a large
number of transferred data during which the entities are not reachable from
clients.

2. Move descriptors. This technique requires moving the entity descriptors
among nodes to distribute the load. Practically, an entity descriptor changes
its ID in the ring-shaped address of the DHT. During the transfer of the de-
scriptor, the entity is not accessible by clients. However, the most relevant
drawback of such approach is that any time a client accesses to a new en-
tity, it must query the DHT for its position. This requires to wait up to
logN steps, which may be too long with an high number of nodes.

With virtual nodes, load distribution is lighter and more flexible with respect
to a classical DHT. Node directly exchange virtual nodes (a process that we call
virtual node migration), which offers the following advantages:

1We consider Chord in this example, but with small differences the following considerations are valid for other
DHT implementation as well

70

CHAPTER 5. VIRTUAL GAME ENVIRONMENT 5.1. ARCHITECTURE

• the ID of the entity does not change over time;

• it is possible to transfer load without nodes to leave the DHT;

• a virtual node that has moved does not have to rebuild its entire routing
table. In fact, moving a virtual node requires only to stabilize a few routing
paths, which is less than in a classical DHT system;

• it is possible to partially increase or decrease the load of a node.

During a VN migration, entities of the VN cannot be accessed. In other
words, players cannot interact with the objects inside the VN that is migrating.
Also, it can be the case of a player modifying the state of the object locally,
just to see it reverted back when the migration of the VN is completed. To this
end, it is important to keep the transition time as short as possible, in order to
provide an acceptable level of interactivity for the VE clients.

5.1.5 Replication and fault tolerance

In a distributed system, the need of replication comes from the intrinsic unreli-
ability of nodes. Since we target an heterogeneous system including both peer
and cloud nodes, a fair orchestration of replication is a relevant issue. Our ap-
proach is based on the reasonable assumption that, in general, cloud nodes can
be considered reliable whereas peer nodes are unreliable, due to the high de-
gree of churn which characterizes P2P systems. This difference is mainly due
to the lack of control over peers, which are prone to unexpected failures, and
may leave the system abruptly. On the other hand, cloud nodes generally belong
to a stable infrastructure based on virtualization, and this greatly increases their
robustness and flexibility.

In order to cope with the unreliability of peers, we propose that every VN
assigned to a peer is always replicated. The replica, called backup virtual node
(bVN), is then assigned to a trusted resource, i.e. a cloud node. To keep the
state of the bVN up-to-date with the original, peers send periodic updates to the
cloud nodes. The replica schema adopted is optimistic [83], i.e. players can
access to entities without previous synchronization between the regular VN and
the relative bVN. This schema leads to eventual consistency, favouring avail-
ability over consistency of the entities. The periodic updates from the peer to

71

5.2. PROBLEM STATEMENT CHAPTER 5. VIRTUAL GAME ENVIRONMENT

cloud for synchronizing bVN add further bandwidth requirements. However,
the synchronization is performed at relatively large intervals (e.g. 30 seconds)
with respect to the player updates, to reduce the required bandwidth.

The presence of bVNs guarantees a certain degree of availability in case of
peer failures. Consider a peer P that manages a single VN and cloud node
C that manages the respective bVN. When P departs from the system, either
abruptly or gracefully, C becomes the new manager of the primary replica. As
a consequence, clients connected to P must now connect to C. In the case of
a gracefully departure of P , P itself may inform them about the new role of
C; otherwise, the involuntary departure of P can be detected either by C, since
it receives no more updates from P , or from the DHT neighbors of P , due to
the repairing mechanism of DHTs. These nodes are able to notify the clients to
send their notification to C.

5.2 Problem statement

Let time be subdivided in discrete time steps of length ∆t and denoted by t ∈
N. Let VN be the set of virtual nodes in the system. Then, ∀v ∈ VN we
define vload(t) as the bandwidth consumed by the virtual node v between the
time step of length ∆t between t − 1 and t , with vload(0) = 0. Similarly,
∀v ∈ VN we define vent(t) as the number of entities managed by v at time t ,
with vent(0) = 0. Each virtual node in VN is assigned to a node.

The set N (t) contains the nodes that are in the system at the time t . An
arbitrary node n ∈ N (t) is characterized by the following invariant properties:
(i) bandwidth capacity ncap , (ii) bandwidth cost nbcost , (iii) renting cost nrcost .
Over time, nodes are assigned with virtual nodes. We indicate with nVN (t) the
set of virtual nodes assigned to a node n at time t. The outgoing bandwidth load
imposed on a node at time t is indicated as nload(t) =

∑
v∈nVN (t) vload(t). From

this, we define nLF (t) = nload(t)/ncap as the load factor of n at t. Finally, we
indicate with npl(t) the number of players served by n at time t.

We consider two different kinds of nodes, virtual machines rented from a
cloud and peers provided by users. User-provided resources have no associated
cost for bandwidth and renting, while cloud nodes are assigned with a pricing
model taken from Amazon EC2 2), with the assumption that we can charge

2Amazon Elastic Compute Cloud: "http://aws.amazon.com/ec2/"

72

CHAPTER 5. VIRTUAL GAME ENVIRONMENT 5.2. PROBLEM STATEMENT

Table 5.1: Table of symbols

t generic time step
∆t length of a time step
VN set of virtual nodes

vload(t) upload bandwidth load in byte of v at time t
vent(t) entities managed by v at time t
N (t) set of nodes at time t
ncap capacity of n
nbcost upload bandwidth cost per byte of n
nrcost renting cost of N at t

nload(t) upload bandwidth load in byte of n at time t
nlf (t) load factor of n at time t
nvs(t) the set of virtual nodes managed by n
npl(t) player being served by n at time t
α(t) [0, 1] QoS of the platform at time t
αthres QoS threshold
β(t) cost in USD of the platform at time t

DU (∆t) delayed updates during ∆t
U (∆t) total updates during ∆t

z number of updates per second
E [latencyi ,j] expected latency between nodes i and j

E [failn] expected failure probability for node n

cloud nodes per unit of time ∆t. Hence, it is possible to compute the cost per
time unit as the sum of the bandwidth cost and the renting cost of the nodes,
according on the bandwidth consumed at time t. The total system cost β(t) is
computed as follows:

β(t) =
∑
n∈N(t)

((nload(t) ∗ nbcost) + nrcost) (5.1)

In this formulation the cost due the upload bandwidth changes over time. Rather,
the renting cost depends on the number of cloud nodes exploited.

5.2.1 Quality of service

Each virtual node offers a service that is comparable to a publish/subscribe sys-
tem [36]. Players subscribe to nodes, send inputs and receive back updates at a

73

5.2. PROBLEM STATEMENT CHAPTER 5. VIRTUAL GAME ENVIRONMENT

fixed rate. The specific rate depends on the particular MMOG genre, typically
in the order of few updates per second. Here we define this frequency as z = 4,
corresponding an update every 250ms which fits medium-paced MMOGs [20].
When updates are delayed, players may perceive a clumsy interaction with the
virtual environment. If the number of consequent delayed updates is large, play-
ers might not be able to interact with the environment at all. To favour a fully
interactive virtual environment, the rate of updates should be as stable as possi-
ble. We consider the capacity of the nodes to provide a constant rate of updates
as the metric for the Quality of Service (QoS).

In general, there are two main causes for delayed updates: (i) the network
infrastructure between the node and the client, and (ii) the ability of the node
to send the updates in time. In the first case, since we assume the Internet as
the communication media, latency spikes and jitter are responsible of delayed
updates. In this thesis we do not consider this issue, since it is general for any
architecture. Moreover, several solutions (such as LocalLag [59]) have been
proposed to mitigate the effects of network delays in MMOGs.

In this chapter we consider the second case (i.e. the delays generated by
servers), as it is greatly affected by the exploitation of user-provided resources.
In fact, peers are more prone to delay updates rather than a datacenter server,
given their smaller reliability and limited bandwidth capability.

As QoS measure, let α(t) ∈ [0, 1] be the fraction of updates the nodes send
within time t for all the entities whose state changed at time t−1. For example,
if a given time t the nodes successfully sent only half of the updates for all the
entities whose state is changed at time t − 1, then α(t) = 0.5. Let us define
U(t) as the total number of updates from t− 1 to t and DU (t) as the number of
delayed updates from t− 1 to t. Then:

α(t) = 1− DU(t)

U(t)
(5.2)

There are three cases in which the nodes might incur in delayed updates:

• Virtual node migration. During a migration, the service is unavailable
for the time the entities are transferring between nodes. In this case, the
number of delayed updates depends on the migration time (MT, the times
for a VN to migrate between nodes), which is discussed in Section 5.4.2.

74

CHAPTER 5. VIRTUAL GAME ENVIRONMENT 5.2. PROBLEM STATEMENT

• Overloading. When a node is overloaded, it simply does not have enough
bandwidth to send updates. As a consequence, it either drops or delays
some updates.

• Failures. When a node crashes and a back up node takes its place, the
players need time to “know” the new updates provider. During this time
the players are not receiving new system updates.

In a sense, migrations and overloading can be seen as a “necessary evil”, as
they trade some QoS in exchange of more flexibility. Hence we do not take them
into account when we compute the target QoS for virtual node assignment. The
migration is a graceful process that we can tune to minimize the affection on
the QoS. In particular, the size of the virtual nodes can be chosen so that their
MT remains under a definite time threshold. The details of this aspect and the
tuning are discussed in Section 5.3.3.

Node overloading happens when the prediction function would compute an
under-estimation of the load. In this case, less node than the necessary are re-
cruited, causing a reduction in the QoS. To give the possibility to the operators
to control the overloading, we define LFup as an upper bound for the nodes
load factor. By setting this parameter, operators can force the nodes to work
under their capacity, as a node n will accommodate up to LFup ∗ ncap load. The
LFup parameter has to be carefully selected, as a high value can cause overload-
ing, whereas a low value may cause resource over-provisioning. Ideally, LFup

should be able to cope with the error of the prediction function without affect-
ing the economical cost of the infrastructure. An empirical evaluation of these
factors, as well as the tuning of the LFup , is presented is Section 5.4.

Due to the above considerations, we consider failures as the main cause of
delayed updates. Delayed updates from failures depend on (i) the probability
that a node fails during ∆t and (ii) the time the infrastructure needs to recover
from the failure, and (iii) the number of player accessing the node at the time of
failure.

Assuming a model that describes failures of the nodes over time, we define
E [failn] as the expected probability for a node to fail during an arbitrary time
step. When a node crashes, the backup node becomes the new node (see Section
5.1). The failure time (FT, in seconds) is the time that goes from the failure of
a node to the moment the players have the information about the new node.

75

5.3. VIRTUAL NODE ALLOCATION CHAPTER 5. VIRTUAL GAME ENVIRONMENT

Let us define Tf as the time-out needed for a backup node to notice the failure
of the node. If a node does not communicate for Tf seconds with the backup
node, it is considered failed. Also, let us define as E [latency] as the expected
latency between the backup node and the players. Then, FT = Tf +E [latency].
According to the definitions above we have:

DU(t) = (FT × z)
∑
n∈N(t)

(E[failn]× npl(t)) (5.3)

To let operators control the QoS, we then define the system-wide parameter
αthres . It represents the percentage of successful updates that must be kept by the
platform. For instance, with αthres = 0.99, only 1% of updates can be delayed
due to failures. Note that αthres indirectly controls the assignment of the virtual
nodes between user-provided and cloud nodes.

5.2.2 Problem statement

Our aim is to provide an assignment of the virtual nodes to the nodes that re-
spects the bound defined by the operator to control the quality of service, while
keeping the economical cost as low as possible. Hence, we define the problem
of assigning virtual nodes to nodes as follows:

Problem Statement. Find an assignment of virtual nodes to nodes to minimize
β(t) such that: α(t) ≥ αthres , and nLF (t) < LFup for every n ∈ N(t).

5.3 Virtual node allocation

The task of the manager is to compute a virtual node assignment respecting the
constraints defined in the problem statement in the previous section.

The work of the manager is divided into time intervals, which we refer to as
epochs. Figure 5.3 shows the management of two consecutive epochs. During
an epoch, the manager executes the following: (i) instantiates or releases on-
demand nodes from the cloud, and migrates the virtual nodes according to the
assignment plan done in the prior epoch (Section 5.3.3), and (ii) computes the
new assignment for the next epoch (Section 5.3.2). The new assignment is
computed with an heuristics based on the load prediction for the next ∆t time

76

CHAPTER 5. VIRTUAL GAME ENVIRONMENT 5.3. VIRTUAL NODE ALLOCATION

Nodes

Manager

Epoch

prediction function updates

Time

Time

Compute
AssignmentInstancing + Migration Compute

AssignmentInstancing + Migration

prediction
Δt

Figure 5.3: Time management

units. Over time, the manager receives updates from the nodes about their load.
These updates are not synchronized with the epochs. If an update arrives when
the new assignment computation is already started, it will be considered in the
next epoch.

The duration of an epoch (which we refer to as τepoch) must be tuned to ac-
commodate the instantiation time provided by the cloud platform chosen, which
normally is in the order of few minutes [58]. Due to the fact that we use an
heuristics to compute the assignments, τepoch is largely occupied by the instan-
tiation time. As a consequence, in the following we assume that ∆t ≈ τepoch .

5.3.1 Load prediction

The manager computes the load of the virtual nodes by using a prediction mech-
anism for each of them. The manager stores, for a virtual node v, the data
necessary to forecast the load of v at arbitrary time. We refer to this data as Lv .

For example, by considering a prediction mechanism based on a simple ex-
ponential smoothing:

vload(t+ 1) = α(
T∑
i=0

vload(i)(1− α)i−1) (5.4)

then Lv would be the historical observations of the load of v up to time t . Over
time, the manager receives renewed load estimation functions from the nodes.
Indeed, Lv is computed locally by each node, and then sent to the manager (see
Algorithm 5.1). Periodically nodes check the error between the observed load
value and the predicted value computed using Lv on the manager. If the error

77

5.3. VIRTUAL NODE ALLOCATION CHAPTER 5. VIRTUAL GAME ENVIRONMENT

is larger than a predefined threshold ξest , then Lv is updated and sent to the
manager.

Data: managerAddress , the IP of the manager
repeat

foreach v ∈ VN do
if |predictedLoad(Lv)− observedLoad | ≥ ξest then

Lv ← update(observedLoad)
msg ← add(v, Lv)

if msg .size 6= 0 then
send(msg , managerAddress)

until true
Algorithm 5.1: Server’s load estimation

In our implementation we exploited an exponential smoothing function [29]
to predict load trends. This model assured a good prediction power in spite of
its simplicity. Nevertheless, the described approach in principle allows us to
apply a wide range of statistical models for the load estimation, as for example
autoregressive models for data prediction such as ARMA or ARIMA [62]. The
choice of the model depends on the expected data fluctuations and the desired
accuracy of the prediction ξest . ξest represents a reasonable error in the load
estimation due to the choice of the estimation model. High accuracy estimation
models predict the load trend for large times interval ∆t ahead. On the other
hand, these models require intensive computation and are not suitable for fast-
pace applications like virtual environments. An in-depth analysis of different
prediction mechanisms is left as future work.

5.3.2 Virtual Nodes Assignment

The virtual node assignment is computed exploiting an heuristics and according
to the predicted system state and the thresholds defined by the operator. For the
sake of presentation, we divide the heuristics in two sub-tasks, virtual node
selection, and destination selection.

Virtual Node Selection The aim of this task is to mark the virtual nodes to be
migrated, adding them to vnpool . Note that in this phase the manager works on
an in-memory representation of the system, and that the actual migrations are
executed once the virtual node assignment plan is defined.

78

CHAPTER 5. VIRTUAL GAME ENVIRONMENT 5.3. VIRTUAL NODE ALLOCATION

input : LFup , upper load factor threshold
input : Psize , the min amount of VNs to consider per epoch
input : αtresh , QoS threshold
output: vnpool , the list of virtual nodes to migrate

// Add VNs of overloaded nodes
foreach n ∈ N (t) do

while nLF (t+ 1) > LFup do
vnpool ← maxDerivative(nvn(t))

// Add VNs to control QoS
while α(t+ 1) ≥ αtresh do

VP ← v ∈ VN : v is assigned to a user resource
vnpool ← maxDerivative(VP)

// Add backed up VN
vnpool ← vnpool ∪ backUp()

// Removing VN from unused clouds
if size(vnpool) < Psize then

VC ← v ∈ VN : v is assigned to a cloud resource
Sort VC in ascending order according to nodes predicted load factor
vnpool ← (Psize − size(vnpool)) VNs from VC ;

// Anyway perturb the system
if size(vnpool) < Psize then

vnpool ← (Psize − size(vnpool)) random VN

Algorithm 5.2: Virtual Nodes Selection

The pseudo-code of this task is presented in Algorithm 5.2. Initially, the
manager marks virtual nodes from overloaded nodes. Note that the manager
compares the predicted load factors of the node at time t+ 1 against LFup . The
removal order of the virtual node considers the derivative of the virtual nodes’
load trend. A virtual node with an high derivative would probably have a burst
in the load soon, and migrating it may avoid overloading. Hence, the virtual
nodes with the highest derivative are marked for migration as first.

Afterwards, the manager marks virtual nodes for migration until α(t + 1)
is over the αthresh defined by the operator. In this phase, only virtual nodes
assigned to user-provided resources are considered. Moreover, the manager
adds the virtual nodes currently managed by the back-up cloud nodes to vnpool

(see Section 5.1.5).

79

5.3. VIRTUAL NODE ALLOCATION CHAPTER 5. VIRTUAL GAME ENVIRONMENT

If, after these steps, the number of virtual nodes in vnpool is less than Psize ,
additional virtual nodes are taken from cloud nodes with the lowest predicted
load factor. This would lead to a removal of the unused cloud resources over
time. If the size of the vnpool is still lower than Psize , additional random virtual
nodes are marked, to guarantee a constant level of perturbation to the system,
useful to avoid being stuck in local optimal solutions.

input : vnpool , the list of virtual server to migrate
input : LFup , upper load factor threshold
output: Actions , the list of migrations to execute

foreach v ∈ vnpool do
Chosen = Null
nodepool ← nodepool ∪ (n ∈ N (t) : (n⊕ v)LF (t) < LFup)
if nodepool is ∅ then

Chosen ← recruitNewCloud()
else

nodepool ← (n ∈ nodepool : α(t+ 1) given (n⊕ v) > αthres)
if nodepool = ∅ then

Chosen ← recruitNewCloud()
else

Sort nodepool ascending according the cost
Chosen ← nodepool .getFirst()

Actions ← migrate(v,Chosen)

executeActions()
releaseUnusedCloud()

Algorithm 5.3: Destination Selection

Destination Selection The aim of this task is to assign the virtual nodes from
vnpool to nodes. The idea is to find, for each virtual node in vnpool , a set of candi-
date nodes (nodepool), and then assign the virtual node to the node candidate that
minimizes the cost. The pseudo-code of this task is presented in Algorithm 5.3.
Note that in the code we use the notation n ⊕ v to indicate a system where the
node n would manage the virtual node v.

For each virtual node v in vnpool , the manager first selects the node candi-
dates such that, if assigned v, their predicted load factor would be less than
LFup . If no node satisfies this requirement, a new cloud node is recruited and v
is assigned to it. Otherwise, the manager removes from nodepool all the nodes

80

CHAPTER 5. VIRTUAL GAME ENVIRONMENT 5.3. VIRTUAL NODE ALLOCATION

that would decrease the QoS below αthres . If no candidates remain in nodepool
after this further selection, a new cloud node is recruited. Otherwise, among
the candidates left in nodepool , the manager selects the one minimizing the cost.
Whenever all the virtual nodes are assigned, the manager performs all the mi-
grations (see next section) and releases unused cloud nodes.

5.3.3 Migration

At the start of the epoch, the manager executes the migrations that comes as
output from the assignment computation of the previous epoch.

M
I
G

Manager Node A Node B Players

1. initTransfer
2. startTransfer

state action
state-action

3a. endTransfer

Migration
Time

3b. changeServer
L
E
A
V
E

J
O
I
N

DHT STABLIZATION

Figure 5.4: Migration of a VN from the node A to node B

The migration procedure has been originally presented in our prior work [14].
We briefly explain it here with an example. Suppose that a virtual node V mi-
grates from a source node A to a destination node B. The actions involved
(presented in the sequential diagram of Figure 5.4) are the following:

1. The manager send a reference to V and the address of recipient node B to
node A.

2. A sends V to B, together with the list of users connected to V . In the
transient time that is needed to complete the transfer, players still send
entity update messages to A, which in turn forwards them to B. Note that
in this transient period, entities may go out-of-sync and, as a consequence,
players may perceive some visual inconsistencies.

81

5.4. EXPERIMENTAL RESULTS CHAPTER 5. VIRTUAL GAME ENVIRONMENT

3. Once received the message, node B notifies the clients that it has became
the manager of V . From this point on, clients are able to modify the state
of the entities included in V . However, the routing tables of the DHT have
to be updated to assure correct routing resolutions.

4. To this end, V executes a join operation having B as target in order to
update its references in the DHT. This operation updates the routing table
of the node that are in the path from V to B, still leaving dangling refer-
ences to A as the manager of V . To make consistent all references, the
stabilization process of the DHT is executed.

5. Finally, a leave operation is executed by V on A in order to complete the
process.

Since during the transfer the objects inside the VN are not accessible to the
clients, this phase might affect users experience. To avoid this problem, it is
important to limit the migration time of a virtual node, which largely depends
on its size. A detailed tuning of the virtual nodes dimension is described in
Section 5.4.2.

5.4 Experimental Results

The first part of this section presents the characteristics of the workloads used in
our simulations. Then, we propose an empirical analysis to tune the dimension
of the virtual servers and the maximum capacity threshold. Finally, we discuss
the simulation results that consider cost and QoS varying different parameters,
such as the number of players, the QoS threshold, and the churn level.

5.4.1 Workload Definition

A realistic simulation of the bandwidth load is central to properly evaluate a
MMOG infrastructure3. The bandwidth load is sampled according to a discrete
time step model. We define each step t to have a duration equal to ∆t . For
each step we compute the outgoing bandwidth requirement for the broadcasting

3We consider the load related to the management of the users. We do not take into account the bandwidth
consumed for other tasks, like backup management, intra-server communications, and other services at application
level (e.g. voice over IP).

82

CHAPTER 5. VIRTUAL GAME ENVIRONMENT 5.4. EXPERIMENTAL RESULTS

of the entities of the players. The pricing model for bandwidth and renting
is the one of Amazon EC2. In the following, we briefly describe the aspects
considered when building the synthetic workload for our experimental setup; a
more complete analysis is provided in [15])

Mobility models for players. Avatars move according to realistic mobility
traces that have been computed exploiting the mobility model presented by
Legtchenko et al. [54], which simulates avatars movement in a commercial
MMOG, Second Life [1]. We have presented this implementation, as well as a
comparison with other mobility models, in [11]. In the model, players gather
around a set of hotspots, which usually corresponds to towns, or in general to
points of interest of the virtual world. A circular area characterized by a center
and a radius defines each hotspot. Movements are driven by a finite-state au-
tomaton, whose transition probabilities are taken from the original paper [54].

The objects distribution. To place objects over the virtual environment, we
use the same space characterization of hotspot areas used by the mobility model.
A fraction of the objects is placed inside hotspot areas, so that their concentra-
tion follows a Zipfian distribution [69], with a peak in the hotspot center. The
rest of the objects is randomly placed outside of hotspots. Figure 5.5 shows a
snapshot of the placement of avatars and objects in the virtual environment.

The variation of the players number over time. Evaluating how the infras-
tructure adapts itself to variations in the number of players is an important task.
In particular, since the load is in direct correspondence with the number of play-
ers, we are interested on how an increasing (and decreasing) load is managed by
the infrastructure. We used two variation patterns of the players number. The
first simulates the arrival and the leaving of a player according to a seasonal
pattern, like the one described in Figure 5.6. In this pattern, the minimum value
is set equal to the 10% of the maximum. The second pattern considers a stable
number of users, i.e. their number does not change during the simulation.

We generated two different workload from these patterns. In the rest of this
section, we refer to the workload with the seasonal pattern as W1, and to the
pattern with no variation as W2.

83

5.4. EXPERIMENTAL RESULTS CHAPTER 5. VIRTUAL GAME ENVIRONMENT

Figure 5.5: Objects and avatars placement in the virtual environment

5.4.2 Tuning the Virtual Nodes Dimension

As we stated in Section 5.2, the migration time (MT) may affect the interactivity
of the virtual environment. The more time a migration takes, the more the users
perceive the virtual environment as “frozen”.

The MT of a virtual node mostly depends on its size; indeed, it is impor-
tant to tune this size to minimize this problem. The size of the virtual node
depends on several factors: (i) the size of the routing table, (ii) the number of
the clients accessing the virtual node, and (iii) the number of entities handled.
In the following we enter in details of these three aspects.

The size of the routing table. The routing table of the virtual node contains
the references to other DHT nodes, and depends on the particular DHT imple-
mentation chosen. In general, the routing table size is logarithmic with respect
to the number of nodes participating in the DHT [91]. In our implementation
we use Chord DHT [93] where each entry of the table is composed by a DHT-
ID (160 bits) and a IP (32 bits). By considering a large DHT with 10K virtual
nodes, the routing table contains 14 entries. Hence, the size of the routing table
is 336 bytes.

84

CHAPTER 5. VIRTUAL GAME ENVIRONMENT 5.4. EXPERIMENTAL RESULTS

 0

 200

 400

 600

 800

 1000
N

u
m

b
e

r
o

f
p

la
y
e

rs

 0

 2

 4

 0 50 100 150 200

L
o

a
d

 (
M

B
/s

)

Ticks

Figure 5.6: Number of players over time (up) and correspondent load variation (down)

The number of the clients accessing the virtual node. Any virtual node
maintains a list of accessing clients. In order to estimate the number of con-
nected clients per virtual node entity, we conducted an empirical analysis. We
counted the clients per entity per minute (hence, we consider a quite large times-
pan) in a simulation with synthetic generated avatars movements. The move-
ments and the placement of the objects in the virtual environment were gener-
ated as described in Section 5.4.1. Figure 5.7 shows the histogram of the clients
(in percentage) plotted in a log-log scale. The trend of the plot resembles a
power law, i.e. a function of the form y(x) = Kx−α. By fitting the data, we
derived K = 0.5 and α = 1.4 (the corresponding function is also plotted in the
figure). We exploited a number generator based on this function to generate the
number of accessing clients list for a virtual node, which is then multiplied for
the size of the entry. Each entry of this list contains a UID (32 bits), a IP (32
bits) and a port (32 bits).

The number of entities handled. The content of an entity is composed by
(i) a UID (32 bits), (ii) a DHT-ID (160 bits), (iii) a point representing the two-
dimensional position in the virtual environment of the entity (32 + 32 bits), and
(iv) a list of attributes, where to each entry name (32 bits) corresponds a re-
spective values (64 bits). Let us assume that the dimension of the attribute list

85

5.4. EXPERIMENTAL RESULTS CHAPTER 5. VIRTUAL GAME ENVIRONMENT

10
-6

â��

10
-5

â��

10
-4

â��

10
-3

â��

10
-2

â��

10
-1

â��

10
0
â��

 1 10 100 1000 10000

data

k=0.5 α=1.4

Figure 5.7: Average clients per entity per minute plotted in log-log

is arbitrarily fixed for all entities to 10 elements. We argue that this value is
a good average estimate to contain enough information for a general MMOG.
Summing up, each entity descriptor has a size of about 140 bytes.

We aim to determine the maximum size of a virtual node such that in the 95%
of the cases the MT takes less than the interactivity delay users may tolerate in
response of their actions. This delay spans from few hundreds of milliseconds
in fast-paced MMOGs up to two second in slow-paced MMOGs [20]. Here
we stay in the middle, and consider the interactivity delay under 1 second as
tolerable, which fits medium-paced game genre.

In order to find the maximum size of a virtual node we needed a MT model.
The size of the virtual nodes were generated by considering the aspects (size of
routing table, accessing clients and entities handled) detailed above. To model
MT we have exploited (with some minor modification) the model for TCP la-
tency proposed by Cardwell et al. [10]. This TCP latency model requires Round
Trip Times (RTTs) as input parameter. We model RTT delays according to the
traces of the king dataset [33]. The probability density function (PDF) of the
RTTs is shown in Figure 5.8.

Based on the MT model we conducted experiments to study the influence of
a size of virtual node on MT. Figure 5.9 shows that virtual nodes managing less

86

CHAPTER 5. VIRTUAL GAME ENVIRONMENT 5.4. EXPERIMENTAL RESULTS

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 100 200 300 400 500 600 700 800

Figure 5.8: Probability density function of RTTs

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 0 5 10 15 20 25 30 35 40 45 50

m
ill

is
e

c
o

n
d

s

number of objects

MT 95th

Figure 5.9: 95th percentile of MT with different amount of objects

than 15 entities have an MT less than one second with the 95th percentile. In
the following, we use 15 as a maximum number of entities per virtual node.

More generally, this result may be used in two ways. Given a virtual environ-
ment with a predictable number of entities, it is possible to define the minimum
number of virtual nodes to employ. On the other side, if it is a necessity to have

87

5.4. EXPERIMENTAL RESULTS CHAPTER 5. VIRTUAL GAME ENVIRONMENT

 0

 1

 2

 3

 4

 5

 6

 7

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o
v
e

rl
o

a
d

in
g

LFup

0.05 εest
0.25 εest

0.5 εest

Figure 5.10: Percentage of overloading over LFup for different eps

a specific number of virtual nodes, it is possible to know the maximum number
of entities the system can support.

5.4.3 Tuning the Capacity Threshold

In this section we discuss the evaluation of two parameters: (i) the maximum
node capacity LFup (see Section 5.2) and (ii) the error of the load prediction
ξest (see Section 5.3). A proper tuning of these parameters is essential to avoid
nodes overloading as well as resource under- and over-provisioning.

Figure 5.10 shows the percentage of overloading load for different LFup val-
ues. As we can see from this figure, for a low LFup the selection of epsilon
is irrelevant. In particular, until LFup = 0.8 the percentage of overloading re-
mains around 0%. Nevertheless, the ξest = 0.05 allows to tune LFup = 0.9
without nodes overloading and shows better results in terms of resource utiliza-
tion. By comparison, with ξest = 0.25 or higher, traces of overloading starts
at LFup = 0.8. However, if we use all the capacity of the nodes (LFup = 1),
the percentage of overloading grows up to 7%. This can be explained with the
tendency of our prediction mechanism to under-predict the load of the virtual
nodes, causing the utilization of less resources then needed.

As we can see in Figure 5.11, the system cost decreases as LFup increases.

88

CHAPTER 5. VIRTUAL GAME ENVIRONMENT 5.4. EXPERIMENTAL RESULTS

 30

 35

 40

 45

 50

 55

 60

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c
o

s
t

in
 U

S
$

LFup

0.5 εest
0.25 εest
0.05 εest

Figure 5.11: Total simulation cost over LFup with different eps

Nevertheless, for a high LFup (LFup = 0.9) the selection of the ξest is not rele-
vant. The fact that with ξest = 0.05 we yield better results in terms of resource
utilization, candidates LFup = 0.9 and ξest = 0.05 as good values for the pa-
rameters. Note that these results hold for the chosen prediction mechanism, and
should be recomputed if other prediction techniques are used.

5.4.4 Cost over the number of players

In this section, we analyse the cost per minute over time and the total cost of
a simulation with the seasonal (W1) and fixed (W2) access patterns, and with
different number of players (from 1 up to 10 thousand). The QoS threshold,
αthres , is set to 0.95, LFup = 0.9 and ξest = 0.05.

Figure 5.12 and 5.13 show the cost per minute over time with W1 and W2

respectively. From the figures is evident that the cost largely depends on the
number of players. The cost with W1 has evident peaks and falls, and the cost
per minute grows accordingly with the number of players. In this sense, the
ability to exploit user-provided resources in situation of low load yields a clear
advantage. On the contrary, the cost with W2 is more stable, as the load is
imposed only by the movements of the players in the virtual world and not by
their access patterns. However, it is interesting to notice that the cost growing

89

5.4. EXPERIMENTAL RESULTS CHAPTER 5. VIRTUAL GAME ENVIRONMENT

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 100 200 300 400 500

c
o

s
t

in
 U

S
$

time

10000 players
5000 players
2000 players
1000 players

Figure 5.12: Cost per minute over time considering workload 1

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 100 200 300 400 500

c
o

s
t

in
 U

S
$

time

10000 players
5000 players
2000 players
1000 players

Figure 5.13: Cost per minute over time considering workload 2

is not linear in terms of number of players and the cost for 10k users is almost
4 times higher than for 5k. This occurs since with a dramatic growing of load,
user-provided resources became less able to serve virtual nodes.

Figure 5.14 and 5.15 depict the cost of a ten hours simulation for different
number of players for W1 and W2 respectively. As it was expected, the cost with

90

CHAPTER 5. VIRTUAL GAME ENVIRONMENT 5.4. EXPERIMENTAL RESULTS

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

c
o

s
t

in
 U

S
$

max number of players

1 αthresh
0.99 αthresh
0.97 αthresh
0.95 αthresh

Figure 5.14: Total cost with workload 1

W2 is higher due to the larger number of concurrent players participating to the
virtual world. Moreover, as we can see from the figures, a lower QoS threshold
allows to significantly reduce the total system cost. However, if for W1 the
difference of total cost between αthres = 1 and αthres = 0.99 is 20%, it drops
to 1% with W2. Furthermore, the difference from av = 1 and αthres = 0.95
is around 60% in W1, whereas it is still 1% in W2. This suggests that with a
fixed, maximum number of players, some virtual nodes are too heavily loaded
to be managed by user-provided resources, even if those resources are available.
This results in a larger utilization of cloud resources, which in turn increases the
cost. Nevertheless, the system with W2 shows good results in case of medium
size load (around 5k users) and allows to reduce up to 60% of the cost between
av = 1 and αthres = 0.95.

Figures 5.14 and 5.15 also introduce another interesting observation. The
cost of the two workloads when αthres is 0.95 and 0.97 are basically the same.
This suggests that a further reduction in the αthres would have no impact on
the cost of the platforms. This occurs because no virtual nodes can assigned
to user-provided resources, due to their limited bandwidth capabilities. The
correspondence of results with αthres equal to 0.95 and 0.97 is also present in
the next section.

91

5.4. EXPERIMENTAL RESULTS CHAPTER 5. VIRTUAL GAME ENVIRONMENT

 0

 20

 40

 60

 80

 100

 120

 140

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

c
o

s
t

in
 U

S
$

number of players

1 αthresh
0.99 αthresh
0.97 αthresh
0.95 αthresh

Figure 5.15: Total cost with workload 2

5.4.5 Qos and Cost Trade-off

One of the strength of our approach is to provide MMOG operators the abil-
ity to set the desired level of QoS of the platform. The operator chooses the
QoS threshold, αthres , which affects the assignment of virtual node to node. In
general, the higher the threshold, the less virtual nodes are assigned to user-
provided resources. As a consequence, this threshold indirectly controls the
operational cost of the platform.

To evaluate the trade-off between cost and QoS we considered the workload
W1, ξest = 0.05, LFup = 0.9 and 5k players. Figure 5.16 shows how the ar-
chitecture maintains the QoS in the system above the specified QoS level. At
first, as we can see from the figure, the architecture successfully maintains a
level of QoS above the threshold. However, the system QoS never reaches the
threshold of 0.95. This is because all the virtual nodes that can be assigned to
user-provided resources have been already assigned. One more point is when
the level of the QoS raises up, regardless of the threshold. These increments
occur when cloud resources are exploited to supply the low number of user-
provided resources. For instance, around the 200th and 400th ticks according
to the seasonal pattern there are no available user-provided resources to support
the system (see Figure 5.6).

92

CHAPTER 5. VIRTUAL GAME ENVIRONMENT 5.4. EXPERIMENTAL RESULTS

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 100 200 300 400 500

Q
o

S

time

0.99 αthresh
0.97 αthresh
0.95 αthresh

Figure 5.16: QoS over time with different QoS thresholds

Figure 5.17 shows the cost per minute for different QoS thresholds. In the sit-
uations of peak load and lack of user-provided resources the utilization of cloud
increases, in fact increasing the cost as well. This suggests that on-demand
resources are essential in order to support the MMOG.

5.4.6 Behaviour over different churn levels

In our work we consider two types of churn: from the seasonal trend of the ac-
cesses (Figure 5.6) and from players that interchange during a cycle. Although
both kinds of churn affect performances, in our evaluation we varied only the
percentage of players interchange during a cycle, the churn level in the follow-
ing.

Figure 5.18 shows the QoS over time with different levels of churn. In the
experiments we used αthresh = 0.95. The figure suggests that the level of churn
directly affects the minimum level of QoS reached. In case of high churn level,
the amount of user-provided resources is reduced to maintain an acceptable
level of QoS. For instance, with a churn level of 0.05 the QoS stays around
0.99, whereas with a churn level of 0.5 the QoS drops to the threshold parameter
0.95. This is confirmed in Figure 5.19, which measures the cost at the same
conditions. As we can see with a churn level of 0.5 the cost is significantly

93

5.4. EXPERIMENTAL RESULTS CHAPTER 5. VIRTUAL GAME ENVIRONMENT

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 100 200 300 400 500

c
o

s
t

in
 U

S
$

time

1 αthresh
0.99 αthresh
0.97 αthresh
0.95 αthresh

Figure 5.17: Cost per minute with different QoS thresholds

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 100 200 300 400 500 600

Q
o

S

time

0.05

0.10

0.5

Figure 5.18: QoS over time with different churn levels

higher than in the other cases.

94

CHAPTER 5. VIRTUAL GAME ENVIRONMENT 5.5. RELATED WORK

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 100 200 300 400 500 600

c
o

s
t

in
 U

S
$

time

0.05
0.1
0.5

Figure 5.19: Cost over time with different churn levels

5.5 Related work

Our work can be compared with two orthogonal areas of research, namely hy-
brid architectures for MMOGs and integration of P2P and cloud computing. In
the rest of this section, we collect and compare approaches on these fields that,
to the best of our knowledge, are more relevant with respect to our proposal.

5.5.1 Hybrid MMOG architectures

Last decade has seen the rising of several P2P-based architectures targeting
large-scale on-line games. Among them, the hybrid MMOG architectures fo-
cused on the combination of centralized resources with P2P paradigms to sup-
port MMOGs. Unlike our contribution, these works do not explicitly consider
cloud computing as centralized resources and hence they lack an economic
model. To the best of our knowledge, this work is the first proposing the in-
tegration of P2P and cloud computing as a solution for MMOGs.

Hybrid MMOG architectures aim to exploit and combine user-provided re-
sources (peers) and centralized resources (servers) in a seamless infrastructure.

A central issue for hybrid MMOGs is to define a partitioning of the virtual
environment, so that it is possible to assign specific tasks to peers. A widely-

95

5.5. RELATED WORK CHAPTER 5. VIRTUAL GAME ENVIRONMENT

used method is spatial partitioning, i.e. the virtual environment is divided into
regions or cells, whose dimension can be either fixed or variable. These regions
are in turn assigned to a peer or a server, that becomes the manager of the
entities in such regions.

The work proposed by Kim et al. [51] belongs to the first category. The au-
thors consider square regions, initially managed by a central server. The first
peer with enough computational and bandwidth capabilities to enter a cell be-
comes the cell manager. Afterwards, a fixed number of peers entering the same
cell act as backup managers in order to increase failure robustness. Similarly,
Barri et al. [6] proposes an hybrid system including a central server and a pool
of peers. The central server runs the MMOG and, as soon as it reaches the
maximum of its capacity, it delegates part of the load to the peers.

Other approaches employ a functional partitioning of the MMOG, where
only subset of functions are delegated to peers. For instance, Chen and Muntz [18]
proposes a functional partition of the MMOGs tasks. Central servers are re-
sponsible for user authentication and game persistence while manage only re-
gions characterized by high-density user interactions, whereas peers support
low-density interaction regions.

Jardine and Zappala [38] provide a distinction between positional and state-
changing actions. They propose an hybrid architecture where peers manage
positional actions, that are more frequent and prone to be maintained locally.
Central servers handle state-changing actions, that are not transitory and require
a larger amount computational power.

By comparison, our general architecture exploits a similar characterization
of actions, while the functional partitioning is done at the level of components
rather than at resource type. In other words, we employ two different compo-
nents that respectively manage positional and state-changing actions.

With respect to the state of the art, we stay somewhere in the middle. On one
hand, we consider some functionalities, like authentication, to be handled by
centralized and full controllable servers. On the other hand, other functionalities
may be mapped to both central servers and peers. This requires a more flexible,
dynamic strategy for region distribution, to allow for a fine-grained management
of the resources by the MMOG operator. Resources control is very important
for our approach, because the seamless combination of cloud computing and
P2P requires to keep under control the cost and effectively deal with the implicit

96

CHAPTER 5. VIRTUAL GAME ENVIRONMENT 5.5. RELATED WORK

uncertainty related to peers.

5.5.2 Hybrid P2P and cloud architectures

Combined cloud and P2P infrastructures recently gained attention from the re-
search community. These infrastructures aim to resolve the issues typical of
pure P2P solutions.

A common problem is the asymmetry in the bandwidth capability of user-
provided resources, where the download bandwidth is usually much higher than
upload. In content distribution and information dissemination, a widely used
approach to enable the upload of the content from user-provided resources is to
use the so called helpers, i.e. additional cloud nodes supporting the delivery of
content [61, 95, 96, 63].

A MMOG infrastructure can be seen as a content delivery system, where the
content is represented the state of the virtual environment. In this sense, the
addition of cloud to support user-provided servers in the management of the
MMOG, is comparable to adding helpers. However, unlike classical content
delivering, the state of the MMOG is modified by the players themselves, so
servers shall manage not only the diffusion but also the consistency and correct-
ness of the information.

An essential property in hybrid P2P-cloud architectures is self-configuration:
components and protocols are autonomically configured according to specific
target goals (such as reliability and availability). In dynamic contexts, self-
configuration is often supported by forecasting the resource utilization [104]
and orchestrating the leasing and releasing of pay-per-use resources. In one of
our work [47] we exploited a resource prediction mechanism to self-tune the
amount of replicas on top of an hybrid P2P and cloud system. We leveraged
this experience to proactively assign the objects of the MMOG to the nodes of
the infrastructure.

97

5.5. RELATED WORK CHAPTER 5. VIRTUAL GAME ENVIRONMENT

98

Chapter 6

NAT-traversal systems

The recent rise of P2P systems as building blocks for many distributed appli-
cations posed issues on their real applicability. Last decade most of the work
in the field concentrated on improving P2P overlays characteristics, i.e., eco-
nomical effectiveness, reliability and performance. Most of the proposed P2P
solutions are based on the assumption that all the on-line peers can communi-
cate with each other via Internet. Nevertheless, over last decades the Internet IP
architecture has undergone steady changes. One of the most important changes
is the spreading of NAT approaches, which have progressively led to the loss of
end-to-end addressability.

The peer-sampling service is a fundamental mechanism for gossip-based
communication protocols (Section 2.1). In this chapter we developed a spe-
cific protocol to run the peer sampling service in NAT systems. In details, we
propose a robust NAT traversal solution that is assisted by cloud entities. As
a matter of fact, our solution demonstrates how the combination of cloud and
P2P technologies can solve the problem of P2P services application in the real
Internet.

6.1 Problem statement

We consider a network that contains two type of nodes: private and public.
Private nodes, i.e., child nodes, are the nodes that are behind NAT and cannot
be accessed directly. Public nodes, i.e., parent nodes, are opened for an end-to-
end communication. To allow child nodes to participate in P2P communication,
each child node keeps a list of its parent nodes.

99

6.1. PROBLEM STATEMENT CHAPTER 6. NAT-TRAVERSAL SYSTEMS

In our work we aim to implement the so called NAT-traversal hole punch-
ing technique [26]. Hence to contact a child node, the communication is done
through the available rendezvous server, which role is played by one of the par-
ent nodes belonging to the child. We do not consider here the adaptation of the
hole pouncing technique to different types of NAT systems and communication
protocols [79]. Rather, we concentrate on the problem of rendezvous servers
overloading and reliability.

The number of the parent nodes assigned to each child clearly affects the
availability of child nodes. For this reason, we introduce a measure of quality
of service, which we define as the percentage of nodes with an Availability
Factor (AF) larger than a predefined value. AF is the probability for a node
in the system to be accessible for communication. More precisely, an on-line
parent node is by definition always accessible (i.e. it has a public IP), therefore
its AF is equal or really close to 1. At the same time, the AF of a child node
depends on the failure probability of its parents, and ranges in the interval [0..1].
For example, if a child node has no alive parents, its AF is equal to 0.

Therefore, maintaining the AF as higher as possible for child nodes requires
a large number of parent nodes. Unfortunately, this is not generally possible as
it may happen that the total number of parent nodes is not enough to satisfy all
the child nodes. In order to overcome this problem and increase the AF for child
nodes we propose to use cloud parents nodes as always available and reliable
parent nodes.

In case a child node has not enough reliable parents, it could use a cloud
parent to be accessible from behind the NAT. However, renting a cloud node to
perform as a parent comes with a cost. Intensive cloud utilization can hinder
in the economical sustainability of the approach. Therefore it is important to
strike a balance between the amount of cloud resource used and the overall QoS
of the system.

More generally, in this chapter we address the issue of autonomously regu-
late the utilization of resources between the cloud and a set of available P2P pub-
lic nodes, while maximizing the QoS. To this end, we propose a self-regulation
mechanism that focuses on parent nodes management in cloud-assisted NAT-
traversal. Our target is to meet a desired level of QoS while keeping the mini-
mum possible economical cost.

We consider the AF as the critical parameter for parent selection mechanism.

100

CHAPTER 6. NAT-TRAVERSAL SYSTEMS 6.2. NAT-TRAVERSAL SYSTEM MODEL

As a consequence, the problem of a self-regulation mechanism can be divided
into two parts: (i) modelling the AF, and (ii) self-regulation and cost minimiza-
tion. In details:

• Each child node has to determine the number of parents Nparents to keep.
Nparents is a function of the Load Factor (LF) (% of upload bandwidth
channel of a parent node required to support child-parent connection) and
its current and predicted AF.

• Determine the constraints for P2P parent selection considering parent sta-
bility. In particular, in case the parents are from the same subnetwork, their
failure probability is not independent.

• The system has to self-regulate the amount of used cloud resources accord-
ing to the current and predicted AF and cost.

6.2 Nat-traversal system model

Each node in the system is represented by a descriptor {Nid ,Nattype , {Pi}},
where Nid is the unique node identifier, Nattype indicates a public/private type
of the node and {Pi} lists the parent nodes assigned.

The role of the parent can be played by P2P or cloud entities. We con-
sider a model that allows the system to switch autonomously between P2P and
cloud parent nodes. As an example, consider a PSS protocol where each child
node has only a cloud node as parent. Child node’s descriptor would look like
{Nid ,Nattype , {C}}, where C is the cloud parent node descriptor. As the num-
ber of available P2P public nodes increases, it would be possible, based on the
current AF level, to include additional P2P parent nodes into a child descriptor
(i.e. {Nid ,Nattype , {P1 ,P2 , . . . ,Pi ,C}}) and even totally rely on P2P parent
nodes (i.e. {Nid ,Nattype , {P1 ,P2 , . . . ,Pi}}). Instead, when the number of pub-
lic nodes is below some Critical threshold, to guarantee a reliable PSS and to
avoid the nodes overloading, cloud parent nodes may be inserted back into the
child node’s descriptor (i.e. {Nid ,Nattype , {P1 ,P2 , . . . ,Pi ,C}}).

The critical threshold for the number of parent nodes depends on the prob-
ability of the parents to fail (we describe it in more details in Section 6.2.1).
On one side, the higher the number of parent nodes, the lower the risk to be

101

6.2. NAT-TRAVERSAL SYSTEM MODEL CHAPTER 6. NAT-TRAVERSAL SYSTEMS

offline at the same time for all of them. On the other side, a child periodically
sends a keep alive message to its parents to keep the connection open. Hence,
a high number of parents increases the network overhead, due to the traffic of
keep-alive messages.

To avoid network overhead we introduce the Redundant threshold for the
number of parent nodes. The redundant threshold limits the maximum number
of parents that is reasonable to keep for a child node. The detailed analysis of
the redundant threshold is presented in Section 6.2.2.

6.2.1 Modeling AF

In this section we present the model for the AF, which allows each child node
to compute, according to the desired Qos, the number of parents to keep. To
compute the AF for a child node we have to compute the probability that all its
parents are off-line at the same period of time τ .

In our work we consider two issues that can lead to a parent failure: (i) Sub-
network failure and (ii) network churn rate. We assume that each of the nodes
belongs to some sub-network, for example to some Autonomous System (AS).
We consider AS to be a connected group of some IP prefixes that is run by one
or more network operators with single routing policy. As it is shown in the work
of Sriram et al. [90], ASs can be subject to malicious attacks that can lead to AS
isolations. In this case, isolated AS cannot support child nodes. Moreover, we
also consider the actual churn rate of the network, that shows the percentage of
nodes that leaves the network over a specific time interval.

More formally, each parent belongs to some AS i that has a failure rate αi .
Moreover, each of the parents Pj has a failure rate πj due to the network churn
rate. As an example, we consider a descriptor of the child node with three
parents P1 ,P2 ,P3 , in which P1 ,P2 ∈ AS 1 and P3 ∈ AS 2. To compute the AF
of such node, we have to define the probability that at least one of these parents
is available during the next τ time interval. The probability that P1 and P2 are
not available at the same time is defined with the multiplication of their nodes
failure rates π1 ×π2 . Hence the probability that at least one of them is available
is 1 − π1π2 . At the same time, if AS i is not available, all the nodes belonging
to it are not available as well. Hence, at least one of the parents P1 or P2 is
available only if the AS 1 is available at the same time: (1 − α1)(1 − π1π2).

102

CHAPTER 6. NAT-TRAVERSAL SYSTEMS 6.2. NAT-TRAVERSAL SYSTEM MODEL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

A
v
a
ila

b
ili

ty
 F

a
c
to

r

Number of parents

no AS differentiation
AS=0.001
AS=0.01
AS=0.1

(a) AF of a child node vs. number of its parents

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1 2 3 4 5

A
v
a
ila

b
ili

ty
 F

a
c
to

r

Number of parents

no AS differentiation
AS=0.001
AS=0.01
AS=0.1

(b) Zoomed part of our interest

Figure 6.1: AF of a child node vs. number of its parents for different system configurations and
AS failure rates.

In all other cases, either both parents are not available or the whole AS 1 is not
available:1− (1−α1)(1−π1π2) = π1π2 +α1 (1−π1π2). Following the same
logic for AS 2, the probability that parents belonging to AS 2 are not available is
π3 + α2 (1 − π3). Hence the probability that during the τ time no parents are
available is (π1π2 +α1 (1−π1π2))(π3 +α2 (1−π3)). Thus the AF for this child
node is AF = 1− (π1π2 + α1 (1− π1π2))(π3 + α2 (1− π3)). To simplify the
computation, we assume a network with churn rate of r . Hence, in our model
π1 = π2 = · · · = r . In the same way, the general formula for AF of a child
node is:

AF = 1−
∏
i∈AS

[αi + rki(1− αi)] (6.1)

where ki is the number of parents belongs to AS i.
Figures 6.1(a) and 6.1(b) show the impact on AF from ASs with different

failure rates. To simulate a stress situation, we consider the network with high
churn rate r = 0.1. In our experiment we consider the worst case of parents
layout according to the AS systems. In other words, we consider all the parents
belong to the same AS. We consider the following ASs failure rates: 0.001,
0.01, 0.1.

Moreover, Figure 6.2 shows the AF derivative changing with a number of
parents. Here we consider two possible cases: (1) all the parents belong to the
same AS (Equation (6.2)), and (2) no ASs are considered (Equation (6.3)).

103

6.2. NAT-TRAVERSAL SYSTEM MODEL CHAPTER 6. NAT-TRAVERSAL SYSTEMS

 0

 0.5

 1

 1.5

 2

 2.5

 0 1 2 3

D
e

ri
v
a

ti
v
e

 o
f

A
v
a

ila
b

ili
ty

 F
a

c
to

r

Number of parents

all parents are in the same AS
no AS differentiation

Figure 6.2: AF derivative for different number of parents in layout without AS and when all the
parents belong to the same AS. α = 0.1 and r = 0.1.

AF ′1 = [1− α + rk(1− α)]′ = rkln(r)(α− 1) (6.2)

AF ′2 = [1− rk]′ = −rkln(r) (6.3)

As we can see, in all the cases AF converges to its maximum when the num-
ber of parents is around 3. However, the maximum possible AF for each AS is
different and limited by AS failure rate. Therefore the parents layout in terms
of AS does not significantly influence on the optimum number of parents for a
child node, but impacts on the maximum AF that can be reached. Arguing as
above, we see that a number of parents greater than 3 yields high AF even in
case of high network churn rate. Therefore, we set the critical threshold to 3.

6.2.2 The impact of LF

The support of our NAT-traversal protocol requires the communication of keep-
alive messages between child and parent nodes. The higher the number of par-
ents in a descriptor of a child, the more bandwidth is needed to support the
keep-alive messages exchange.

104

CHAPTER 6. NAT-TRAVERSAL SYSTEMS 6.2. NAT-TRAVERSAL SYSTEM MODEL

The upload bandwidth usually is a bottleneck in P2P systems. Hence it is
important to consider the consumption of parent node upload bandwidth caused
by the maintenance of the NAT-traversal protocol LFNAT :

LFNAT =
NprivatemNATNparents

NpublicU
=
mNATNparents

γU
(6.4)

γ =
Npublic

Nprivate
(6.5)

Nparents =
1

Nprivate

∑
p∈Nprivate

Nparents(p) (6.6)

where mNAT is the bandwidth rate of keep-alive messages, Nparents is the
average number of parent nodes per child, Nprivate is the number of private nodes
in the network, Npublic is the number of public nodes in the network and U is an
average available upload bandwidth per parent node.

To compute the Redundant threshold we consider the maximum load factor
LFmax in the Equation 6.4:

Redundant = bLFmaxγU
mNAT

c (6.7)

The Equation 6.7 shows that the Redundant threshold is a dynamic parame-
ter and has to be computed based on the current γ. Another important parameter
to compute is γcritical , that indicates the minimum required ratio between public
and private nodes that satisfies LFmax ≤ 1%, Nparents > Critical : γcritical =

mNATNparents

LFmaxU

Nparents > Critical

(6.8)

Case studies. In order to evaluate the model presented previously we consider
a "stress test" for the system where keep-alive messages are sent every 30 sec-
onds. In general, the interval between two consecutive keep-alive messages
depends on the NAT type and can various from seconds to minutes. Therefore,
to evaluate the upload bandwidth consumption caused by NAT-traversal support
we chose a 30 seconds keep-alive interval as a reasonable stress condition. A

105

6.3. NAT-AWARE PEER-SAMPLING CHAPTER 6. NAT-TRAVERSAL SYSTEMS

 0

 0.5

 1

 1.5

 2

 0 0.05 0.1 0.15 0.2 0.25L
o
a
d
 F

a
c
to

r,
 %

 o
f
u
p
lo

a
d
 b

a
n
d
w

id
th

 u
s
e
d

A ratio between public and private nodes

parents=3
parents=6

parents=10
parents=20

(a) Normal scale

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1L
o
a
d
 F

a
c
to

r,
 %

 o
f
u
p
lo

a
d
 b

a
n
d
w

id
th

 u
s
e
d

A ratio between public and private nodes

parents=3
parents=6

parents=10
parents=20

(b) Logarithmic scale

Figure 6.3: The LF impact for different ratio between public and private nodes depends on the
average number of parents per child.

generic keep-alive message contains no payload and it is composed only by the
header, which results in a TCP/IP message of 41 bytes.

Figure 6.3 shows a graphical representation of Equation (6.4), where U =
512 Kbps and mNAT = 11 bps. The curves are shown for different Nparents . The
graph shows that the number of parent nodes used in a child descriptor does not
significantly affect the LF. However, when γ is low (less than 0.5) and public
nodes are few the risks of overloading increases.

Figure 6.4 shows the required minimum of γ to support an average number
of parents per child Nparents with a maximum allowed LFmax .

It follows that a child with more parents in the descriptor should reduce its
number of parents to avoid overtaking the maximum LF. At the same time, the
number of parents cannot be less than the critical threshold (which is around 3
according to the AF model). The grey area on the Figure 6.5 corresponds to a
“safe area” in which the maximum LF and the required AF are respected for
γ = 0.05.

6.3 Nat-aware peer-sampling

In summary, each child node in the network executes the following tasks: (i)
peer-sampling, (ii) parent-child connection support and (iii) NAT-traversal par-
ents management.

For the peer sampling, we consider the CLOUDCAST peer-sampling ser-

106

CHAPTER 6. NAT-TRAVERSAL SYSTEMS 6.3. NAT-AWARE PEER-SAMPLING

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

A
 r

a
ti
o

 b
e

tw
e

e
n

 p
u

b
lic

 a
n

d
 p

ri
v
a

te
 n

o
d

e
s

Average number of parents per child node

maximum LF=0.5%
maximum LF=1%
maximum LF=2%

Figure 6.4: Maximum number of parent nodes in a child descriptor for maximum allowed LF

Figure 6.5: Redundant and Critical thresholds for γ = 0.05 and LFmax = 1%

107

6.3. NAT-AWARE PEER-SAMPLING CHAPTER 6. NAT-TRAVERSAL SYSTEMS

vice [63]. As we already mentioned, the communication with child nodes is
done via one of its parents. Currently, we consider the model where the parent
for a child contact is chosen randomly among a child parents list. The parent-
child connection support is realized by simply allowing the child to periodically
exchange keep-alive messages with the parents. Whenever a child node detects
the failure of one of its parents it starts the NAT-traversal parents management
protocol immediately.

The NAT-traversal parents management is the actual core of our work and is
described in the next section.

6.3.1 Parents management

Pseudocode of the parents management is described in Algorithm 6.1. The
algorithm execution is divided into time intervals ∆T , which a parameter of the
system. Nevertheless, as we can see after, the minimum reasonable ∆T is equal
to the time interval of the PSS shuffling.

repeat
γi ← getCurrentRatio()
γi+1 ← getEstimation(γi−1, γi)

Redundant i+1 ← bLFmaxγi+1U
mNAT

c

if Redundant i+1 ≤ Critical then
if Descriptor .Parents ! contain(cloud) then

addParent(cloud)

if Nparents > Redundant i+1 then
removeParent()

[candidates]← findBetterParent(view)
parentOptimization([candidates])

AF i ← getCurrentAF()
AF i+1 ← getEstimation(AF i−1,AF i)
if AF i+1 ≤ AFCritical then

addParent(cloud)

execute(Actions)

wait ∆T

Algorithm 6.1: Algorithm executed by child nodes

108

CHAPTER 6. NAT-TRAVERSAL SYSTEMS 6.3. NAT-AWARE PEER-SAMPLING

At the start of each cycle a child requests information about current ratio
between public and private nodes in the network γi getCurrentRatio (Equa-
tion (6.5)). According to the data from previous i−1 and current i iterations the
system estimates getEstimation of γi+1 and computes the redundancy threshold
Redundant i+1 for the next i+ 1 protocol iteration (Equation 6.7).

In case (1) the estimated redundancy threshold is less or equal to the critical
threshold and (2) the child descriptor does not contain any cloud as a parent
node, then the child includes a cloud as one of its parents. Otherwise, if the cur-
rent number of parent nodes is higher than the expected redundancy threshold,
then a child virtually removes redundant parent nodes from its descriptor. The
decision about the parent to remove is based on how the parent nodes impact
on the AF. In particular, the most unreliable parents are the candidates to be
removed.

Each child node monitors the partial view view given by the PSS to find par-
ent nodes with better characteristics findBetterParent, such as the connection
latency or more stable behaviour. Such parents are called candidates. After-
wards, a child adds the candidate parents to its descriptor up to redundancy
threshold or replaces the parents are in the descriptor with better ones from
candidates parentOptimization (Section 6.3.2).

Finally a child computes the current AF i and the expected AF i+1 for the
next iteration getEstimation. In case of AF i+1 is less than the defined critical
availability threshold AFCritical , a child includes a cloud entity as a parent node
to guarantee service reliability.

6.3.2 Parent Changing Policy

A child node continuously monitors the network to find "better" parents. A
"better" parent is a parent that provides less connection latency or more stable
behaviour in the network increasing AF of the child.

Whenever a child switches a parent, it takes τ period of time to update its
descriptors in the network. Since we are using CLOUDCAST for PSS, nodes for
shuffling are chosen according to their age and the nodes with the higher age in
the partial view are contacted first. Hence, the τ period is limited to a number
of cycles equal to the cache size [99]:

109

6.4. RELATED WORK CHAPTER 6. NAT-TRAVERSAL SYSTEMS

τ ∼ t × c (6.9)

where c is the cache size and t is the average time of a shuffling between two
neighbours.

Two main cases drive the decision process about the updating of a child
descriptor. The first case is when a child decides to change one of its parents
for a better one. In this case we can use the mechanism that prevents the AF
decreasing during the exchange period. Whenever a child decides to change an
alive parent, the former parent remains the parent for the next τ time. In other
words, for the next τ time the child has Nparents +1 available parents and the AF
factor is temporarily increased. Hence, this process does not decrease AF, even
temporary. The second case is when a child changes one of its failed parents.
During the period of time τ following the parent failure, this peer has Nparents−1
available parents. Hence the AF of this peer is decreasing. Nevertheless, the
probability of a parent failure is already counted in the AF model.

6.4 Related work

Gossip-based PSSs are a widely used building block to support P2P overlay
networks. They provide peers with a random sample of the nodes in the net-
work. Most of the PSSs rely on the assumption that any time each peer is able
to communicate with any peer in its sample. Nevertheless, in the modern Inter-
net architecture a large part of the peers sit behind the NATs [17]. Such nodes
become under represented in the partial views and traditional PSS cannot guar-
antee the uniform randomness of the samples.

There are two main approaches to deal with NAT: relaying [73] and hole
punching [26]. Relaying technique is based on sending messages via a third
party relay. The disadvantages of this method are that it consumes resources of
relay entity and increases the communication latency. Nevertheless, the relaying
technique is the only one that deals with all the types of NAT. Hole punching
enables two nodes to establish direct connection with the help of a rendezvous
server, even if both of the nodes are behind NATs. This NAT traversal technique
is preferable when large amount of traffic is expected to be sent between nodes,
for example video streaming or on-line games systems.

110

CHAPTER 6. NAT-TRAVERSAL SYSTEMS 6.4. RELATED WORK

One of the first work that deals with NATs for PSS is the work of Drost et
al. [22]. In their ARRG protocol each node maintains a list of the nodes with
whom it had a successful contact in the past. In case the shuffling request fails,
the next node to shuffle is chosen from this list. Nevertheless, such approach
fails to create random network samples, because the nodes that are in the list
are contacted more frequently than others.

Kermarrec et al. [49] propose a NAT-aware PSS based on the hole punch-
ing. They propose to use both public and private nodes as rendezvous servers.
Whenever two nodes shuffle the views they become the rendezvous server for
each other. Hence, when a node initiates a gossip exchange with a private node
it uses a chain of rendezvous servers to execute a hole punching. Nevertheless,
the length of such chain is not limited making the approach sensitive for the
network dynamics and increasing the connection latencies.

In our work we are concentrated on hole punching mechanism for NAT-
traversal protocols. In particular, we focus on the application of autonomous
resource management between two types of rendezvous servers (what we called
parent nodes): P2P public and cloud computing nodes. Our approach, even if
designed for the PSS, is general enough to be applied to a wide range of P2P-
based network services.

111

6.4. RELATED WORK CHAPTER 6. NAT-TRAVERSAL SYSTEMS

112

Chapter 7

Conclusion

The goal of the thesis is the realization of an efficient and scalable way to man-
age resources between technologies as P2P and Cloud Computing. The effec-
tive autonomous management could open new horizons in applying P2P com-
munication paradigm by reducing the economical effort on the service providers,
while offering a level of service compatible with centralized architectures. We
addressed the problem of autonomous management by developing a collection
of protocols that tackle the issues of resource bottlenecks, reliability and scala-
bility. In order to evaluate the effectiveness of our strategies, we have applied
them to different distributed services and applications.

Our extensive simulations of autonomous P2P/Cloud resources management
showed good results for all applications in terms of system scalability and reli-
ability. However, reducing the economical costs in comparison with pure cloud
utilization required the ability to trade some of the application QoS. For exam-
ple, in the cases of the video streaming and multiplayer online games, interac-
tivity and consistency are traded to achieve economical efficiency.

The first application where we applied the combination of P2P and Cloud
is a replica management service. We have designed a protocol for replica man-
agement that is able to self-regulate the amount of cloud (pay-per-use) resources
when peer resources (free) are not enough. The case study we considered shows
the benefits in terms of reliability that can be obtained from such approach. The
protocol has been tested in different scenarios, showing the effectiveness of the
approach even in highly dynamic networks.

Further, we applied the self-regulation mechanism to address load balancing
in video streaming. We described and developed CLIVE, a P2P live streaming

113

CHAPTER 7. CONCLUSION

system that integrates cloud resources (helpers) whenever the peer resources
are not enough to guarantee a predefined QoS. Two types of helpers are used
in CLIVE, active ones (virtual machines participating in the streaming proto-
col, AH) and passive ones (represented by a storage service that provides con-
tent on demand, PH). CLIVE estimates the available capacity in the system
through a gossip-based aggregation protocol and provisions the required re-
sources (AHs/PHs) from the cloud to guarantee a given level of QoS at low
cost. We implemented a prototype of CLIVE system based on Amazon’s ser-
vices like EC2 and S3. To demonstrate the feasibility of CLIVE, we performed
extensive simulations and evaluated our system using large scale experiments
under dynamic realistic settings. We showed that we can save up to 45% of the
cost by properly choosing the right number of AHs compared to only using a
PH to guarantee the predefined QoS.

In order to estimate the distribution of a global attribute value (i.e. the avail-
able capacity) in CLIVE, we developed a lightweight gossip-based protocol,
where nodes periodically exchange their local information and update it to con-
verge towards a global aggregate value. We compared our protocols with state-
of-the-art solutions, like EQUIDEPTH [34] and ADAM2 [82]. We showed that
the maximum error of the enhanced model is comparable to ADAM2, and both
are smaller than EQUIDEPTH and the baseline. Moreover, we show that the av-
erage error of the enhanced model is also less than EQUIDEPTH, and finally we
show that the total network overhead of the baseline and enhanced model are
1% and 10% those of the EQUIDEPTH and ADAM2, respectively.

We employed the concept of combining P2P and cloud computing for large
scale applications, particularly designing an architecture support of large scale
on-line games. Our architecture merges the different characteristics of P2P and
cloud nodes to provide an efficient and effective provisioning of resources, load
balancing, while scaling in economical cost and quality of service. Our ap-
proach tackles these issues by strategically migrating the load and recruiting
new resources. We also provide the ability to control the behaviour of the plat-
form. By selecting a desired QoS level, it is possible to control the amount of
cloud and user-provided resources to exploit. This allows performing aggres-
sive strategies in terms of cost reduction. We demonstrated that trading a small
amount of QoS cuts the cost of the service up to 60%, with respect to a pure
cloud solution.

114

CHAPTER 7. CONCLUSION

As the last point, we approached the problem of NAT-traversal in P2P ser-
vices by proposing an approach that exploits cloud resources. We designed
a cloud-assisted solution for hole punching that increases the effectiveness of
P2P-based services in real Internet network. Despite of the considered PSS ex-
ample the approach can be applied to variety of P2P-based Internet services and
applications.

However, while our research opens new possibilities to exploit heteroge-
neous resources in distributed systems, there is still work to be done. First of
all, we would like to extend the evaluation of the NAT-traversal approach we
described in this thesis. Then, we did the general assumption that the all par-
ticipants of P2P network behave like honest contributors, while often the big
part of the network clients, the so-called free-riders, in fact consuming much
more resources than their actual contribution [2]. Another limitation of resource
management is the additional bandwidth consumptions that are caused by the
necessity of the system synchronization in order to manage the network. For
example, in the multiplayer on-line game, additional bandwidth overhead is re-
quired to maintain the consistency of backup replicas. These limitations hinder
the flexibility and generality of our work, but at the same time they open addi-
tional research paths that can be explored, such as:

• It would be interesting to consider scenarios in which the users cannot
consume network resources without contributing themselves. The form of
contributions can be different and can vary from computational resources
to money.

• In our application scenarios we mostly consider one influencing parameter
- upload bandwidth of nodes. Even if bandwidth is often the bottleneck
of P2P networked applications, at the same time it would be interesting to
consider also other important nodes characteristics, such as computational
resources or node uptime and locality.

• Another interesting improvement would be to exploit the possibility to use
different cloud providers at the same time. It would decrease the depen-
dency of the application on the economical policy of only one cloud pro-
vide. Moreover, the economical effectiveness can be increased due to the

115

CHAPTER 7. CONCLUSION

autonomous switching between cloud resources, according to the suitabil-
ity of the price model and service conditions.

• A possible future direction could be to integrate together the cloud-assisted
NAT-traversal mechanism with the described applications (e.g. CLIVE or
on-line games) and deploy them in the real Internet network.

As ultimate analysis, our thesis proposed and validated the combination of
cloud and P2P for a collection of heterogeneous applications with promising re-
sults. Therefore, we strongly believe that the combination of Cloud Computing
and Peer-to-Peer is the next milestone for distributed P2P-based architectures.

116

Bibliography

[1] Second life website. http://secondlife.com/, [Online; accessed Jan-2013].

[2] E. Adar and B.A. Huberman. Free riding on gnutella. First Monday,
5(10), 2000.

[3] C. Arad, J. Dowling, and S. Haridi. Developing, simulating, and deploy-
ing peer-to-peer systems using the Kompics component model. In Proc.
of the Fourth Int. ICST Conf. on COMmunication System softWAre and
middlewaRE (COMSWARE’09), NY, USA, 2009. ACM.

[4] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. A view of cloud com-
puting. Communications of the ACM, 53(4):50–58, 2010.

[5] O. Babaoglu and M. Jelasity. Self-* properties through gossiping. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 366(1881):3747–3757, 2008.

[6] I. Barri, F. Giné, and C. Roig. A Scalable Hybrid P2P System for
MMOFPS. 2010 18th Euromicro Conference on Parallel, Distributed
and Network-based Processing, pages 341–347, February 2010.

[7] B. Biskupski, M. Schiely, P. Felber, and R. Meier. Tree-based analysis
of mesh overlays for peer-to-peer streaming. In Proc. of DAIS’08, pages
126–139. Springer, 2008.

[8] C. Blake and R. Rodrigues. High availability, scalable storage, dynamic
peer networks: pick two. In Proc. of the 9th conf. on Hot Topics in Oper-
ating Systems - Volume 9, Berkeley, CA, USA, 2003. USENIX Associa-
tion.

117

BIBLIOGRAPHY BIBLIOGRAPHY

[9] J. Buford, H. Yu, and E.K. Lua. P2P Networking and Applications. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[10] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP latency.
In INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, volume 3,
pages 1742–1751. IEEE, 2000.

[11] E. Carlini, M. Coppola, and L. Ricci. Evaluating compass routing based
AOI-cast by mogs mobility models. In Proceedings of the 4th Interna-
tional Conference on Simulation Tools and Techniques, pages 328–335.
ICST, 2011.

[12] E. Carlini, M. Coppola, and L. Ricci. Probabilistic dropping in push
and pull dissemination over distributed hash tables. In Computer and
Information Technology (CIT), 2011 IEEE 11th International Conference
on, pages 47–52, 2011.

[13] E. Carlini, M. Coppola, and L. Ricci. Reducing Server Load in MMOG
via P2P Gossip. In Proceedings of the 11th Annual Workshop on Network
and Systems Support for Games (NetGames), 2012.

[14] E. Carlini, L. Ricci, and M. Coppola. Flexible load distribution for hybrid
distributed virtual environments. Future Generation Computer Systems,
2012.

[15] Emanuele Carlini. Combining Peer-to-Peer and Cloud Computing for
Large Scale On-line Games. PhD thesis, IMT Institute for Advanced
Studies Lucca, 2012.

[16] N. Carlsson and D. Eager. Peer-assisted on-demand streaming of stored
media using BitTorrent-like protocols. In Proc. of NETWORKING’07,
pages 570–581. Springer, 2007.

[17] M. Casado and M.J. Freedman. Peering through the shroud: the effect
of edge opacity on ip-based client identification. In Proceedings of the
4th USENIX conference on Networked systems design & implementation,
NSDI’07, Berkeley, CA, USA, 2007. USENIX Association.

118

BIBLIOGRAPHY BIBLIOGRAPHY

[18] A. Chen and R.R. Muntz. Peer clustering: a hybrid approach to dis-
tributed virtual environments. In Proceedings of 5th ACM SIGCOMM
workshop on Network and system support for games, page 11. ACM,
2006.

[19] B.G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. F.
Kaashoek, J. Kubiatowicz, and R. Morris. Efficient replica mainte-
nance for distributed storage systems. In Proc. of the 3rd Conf. on
Networked Systems Design & Implementation (NSDI’06), San Jose, CA,
2006. USENIX.

[20] M. Claypool and K. Claypool. Latency and player actions in online
games. Communications of the ACM, 49(11):40–45, 2006.

[21] J. Dowling and A.H. Payberah. Shuffling with a croupier: Nat-aware
peer-sampling. In Proc. of ICDCS’12, pages 102–111. IEEE, 2012.

[22] N. Drost, E. Ogston, R. van Nieuwpoort, and H.E. Bal. ARRG: real-
world gossiping. In Proceedings of the 16th International Symposium on
High-Performance Distributed Computing (HPDC-16 2007), 25-29 June
2007, Monterey, California, USA, pages 147–158. ACM, 2007.

[23] A. Duminuco, E. Biersack, and T. En-najjary. Proactive replication in dis-
tributed storage systems using machine availability estimation. In Con-
ference on Emerging Network Experiment and Technology, 2007.

[24] P.Th. Eugster, R. Guerraoui, A.M. Kermarrec, and L. Massouli. Epi-
demic information dissemination in distributed systems. IEEE Computer,
37(5):60–67, 2004.

[25] I. Eyal, I. Keidar, and R. Rom. LiMoSense – live monitoring in dynamic
sensor networks. In 7th Int. Symp. on Algor. for Sensor Syst., Wireless Ad
Hoc Networks and Autonomous Mobile Entities, 2011.

[26] B. Ford, P. Srisuresh, and D. Kegel. Peer-to-peer communication across
network address translators. In Proceedings of the annual conference on
USENIX Annual Technical Conference, ATEC ’05, Berkeley, CA, USA,
2005. USENIX Association.

119

BIBLIOGRAPHY BIBLIOGRAPHY

[27] R. Fortuna, E. Leonardi, M. Mellia, M. Meo, and S. Traverso. QoE in
pull based P2P-TV systems: overlay topology design tradeoffs. In Proc.
of P2P’10, pages 1–10. IEEE, 2010.

[28] D. Frey, R. Guerraoui, A.M. Kermarrec, and M. Monod. Boosting gossip
for live streaming. In Proc. of P2P’10, pages 1–10. IEEE, 2010.

[29] E.S. Gardner. Exponential smoothing: The state of the art—part II. In-
ternational Journal of Forecasting, 22(4):637–666, 2006.

[30] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica.
Load balancing in dynamic structured P2P systems. In INFOCOM 2004.
Twenty-third Conference of the IEEE Computer and Communications So-
cieties, pages 2253–2262. IEEE, 2004.

[31] S. Goel and R. Buyya. Data replication strategies in wide area distributed
systems. Technical report, Idea Group Inc., Hershey, PA, USA, 2006.

[32] K. Graffi, A. Kovacevic, S. Xiao, and R. Steinmetz. SkyEye.KOM: An in-
formation management over-overlay for getting the oracle view on struc-
tured P2P systems. In Int. Conf. on Parallel and Distributed Systems,
2008.

[33] K.P. Gummadi, S. Saroiu, and S.D. Gribble. King: Estimating latency
between arbitrary internet end hosts. In Proc. of the SIGCOMM Internet
Measurement Workshop, 2002.

[34] M. Haridasan and R. van Renesse. Gossip-based distribution estimation
in peer-to-peer networks. In Proc. of IPTPS’08. USENIX, 2008.

[35] C. Hu, M. Chen, C. Xing, and B. Xu. EUE principle of resource schedul-
ing for live streaming systems underlying CDN-P2P hybrid architecture.
Peer-to-Peer Networking and Applications, 5(4):1–11, 2012.

[36] S.Y. Hu. Spatial Publish Subscribe. Proc. of IEEE Virtual Reality (IEEE
VR) workshop, Massively Multiuser Virtual Environment (MMVE), 2009.

[37] S. Idreos, M. Koubarakis, and Ch. Tryfonopoulos. P2P-DIET: an extensi-
ble P2P service that unifies ad-hoc and continuous querying in super-peer

120

BIBLIOGRAPHY BIBLIOGRAPHY

networks. In Proc. of the ACM Int. Conf. on Management of data (SIG-
MOD’04). ACM, 2004.

[38] J. Jardine and D. Zappala. A hybrid architecture for massively multi-
player online games. In Proceedings of the 7th ACM SIGCOMM Work-
shop on Network and System Support for Games, page 60. ACM, 2008.

[39] M. Jelasity and A. Montresor. Epidemic-style proactive aggregation in
large overlay networks. In Proc. of ICDCS’04, pages 102–109. IEEE,
2004.

[40] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based aggregation
in large dynamic networks. ACM Transactions on Computer Systems
(TOCS), 23(3):219–252, 2005.

[41] M. Jelasity, A. Montresor, and O. Babaoglu. T-Man: Gossip-based fast
overlay topology construction. Computer Networks, 53(13):2321–2339,
2009.

[42] M. Jelasity, S. Voulgaris, R. Guerraoui, A.M. Kermarrec, and M. van
Steen. Gossip-based peer sampling. ACM Trans. Comput. Syst., 25, 2007.

[43] P. Jesus, C. Baquero, and P.S. Almeida. Fault-tolerant aggregation for
dynamic networks. In SRDS, pages 37–43, 2010.

[44] X. Jin and Y. Kwok. Cloud assisted P2P media streaming for bandwidth
constrained mobile subscribers. In Proc. of IPDPS’10, pages 800–805.
IEEE, 2010.

[45] D. Jurca and R. Stadler. H-GAP: estimating histograms of local vari-
ables with accuracy objectives for distributed real-time monitoring. IEEE
Transactions on Network and Service Management, 7(2):83–95, 2010.

[46] H. Kavalionak, E. Carlini, L. Ricci, A. Montresor, and M. Coppola. Inte-
grating peer-to-peer and cloud computing for massively multiuser online
games. Peer-to-Peer Networking and Application, pages 1–19, 2013.

[47] H. Kavalionak and A Montresor. P2P and cloud: A marriage of con-
venience for replica management. In Proc. of IWSOS’12, pages 60–71.
Springer, 2012.

121

BIBLIOGRAPHY BIBLIOGRAPHY

[48] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Com-
puter, 36(1):41–50, 2003.

[49] A.M. Kermarrec, A. Pace, V. Quéma, and V. Schiavoni. NAT-resilient
gossip peer sampling. In ICDCS, pages 360–367. IEEE Computer Soci-
ety, 2009.

[50] K. Kim. Lifetime-aware replication for data durability in P2P storage
network. IEICE Trans. on Communications, E91-B:4020–4023, 2008.

[51] K.C. Kim, I. Yeom, and J. Lee. HYMS: A hybrid mmog server architec-
ture. IEICE Transactions on Information and Systems, E87:2706–2713,
2004.

[52] R. Kumar and K.W. Ross. Optimal peer-assisted file distribution: Single
and multi-class problems. In Proc. of HOTWEB’06. IEEE, 2006.

[53] R. Kumar and K.W. Ross. Peer-assisted file distribution: The minimum
distribution time. In Proc. of HOTWEB’06, pages 1–11. IEEE, 2006.

[54] S. Legtchenko. Blue Banana: resilience to avatar mobility in distributed
MMOGs. Networks, pages 171–180, 2010.

[55] B. Li, S. Xie, Y. Qu, G.Y. Keung, C. Lin, J. Liu, and X. Zhang. In-
side the new Coolstreaming: Principles, measurements and performance
implications. In Proc. of INFOCOM’08, pages 1031–1039. IEEE, 2008.

[56] Y. Lu, B. Fallica, F.A. Kuipers, R.E. Kooij, and P.V. Mieghem. Assessing
the quality of experience of Sopcast. International Journal of Internet
Protocol Technology, 4(1):11–23, 2009.

[57] Z.H. Lu, X.H. Gao, S.J. Huang, and Y. Huang. Scalable and reliable
live streaming service through coordinating CDN and P2P. In Proc. of
ICPADS’11, pages 581–588. IEEE, 2011.

[58] N. Markatchev, R. Curry, C. Kiddle, A. Mirtchovski, R. Simmonds, and
T. Tan. A cloud-based interactive application service. In e-Science, 2009.
e-Science’09. Fifth IEEE International Conference on, pages 102–109.
IEEE, 2009.

122

BIBLIOGRAPHY BIBLIOGRAPHY

[59] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg. Local-lag and timewarp:
Providing consistency for replicated continuous applications. IEEE
Transactions on Multimedia, 6(1):47–57, 2004.

[60] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer informa-
tion system based on the xor metric. In Revised Papers from the First
Int. Workshop on Peer-to-Peer Systems, IPTPS’01, pages 53–65, Lon-
don, UK, 2002. Springer-Verlag.

[61] P. Michiardi, D. Carra, F. Albanese, and A. Bestavros. Peer-assisted
content distribution on a budget. Computer Networks, 56(7):2038–2048,
2012.

[62] D.C. Montgomery, C.L. Jennings, and M. Kulahci. Introduction to time
series analysis and forecasting, volume 526. Wiley, 2011.

[63] A. Montresor and L. Abeni. Cloudy weather for P2P, with a chance
of gossip. In Proc. of the 11th IEEE P2P Conference on Peer-to-Peer
Computing (P2P’11), pages 250–259. IEEE, August 2011.

[64] A. Montresor and A. Ghodsi. Towards robust peer counting. In Proc. of
P2P’09, pages 143–146. IEEE, 2009.

[65] A. Montresor and M. Jelasity. PeerSim: A scalable P2P simulator. In
Proc. of the 9th Int. Conference on Peer-to-Peer (P2P’09), pages 99–100,
Seattle, WA, September 2009.

[66] A. Montresor, M. Jelasity, and Ö. Babaoglu. Decentralized ranking in
large-scale overlay networks. In SASO Workshops, pages 208–213, 2008.

[67] V. Nae, A. Iosup, S. Podlipnig, R. Prodan, D. Epema, and T. Fahringer.
Efficient management of data center resources for Massively Multiplayer
Online Games. 2008 SC - International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages 1–12, 2008.

[68] V. Nae, R. Prodan, A. Iosup, and T. Fahringer. A new business model
for massively multiplayer online games. In Proceeding of the second
joint WOSP/SIPEW international conference on Performance engineer-
ing, pages 271–282. ACM, 2011.

123

BIBLIOGRAPHY BIBLIOGRAPHY

[69] M.E.J. Newman. Power laws, pareto distributions and zipf’s law. Con-
temporary physics, 46(5):323–351, 2005.

[70] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. Mohr. Chain-
saw: Eliminating trees from overlay multicast. In Proc. of IPTPS’05,
pages 127–140. Springer, 2005.

[71] L. Pamies-Juarez and P. Garcia-Lopez. Maintaining data reliability with-
out availability in P2P storage systems. In Proc. of the 2010 ACM Symp.
on Applied Computing, SAC’10, pages 684–688, Sierre, Switzerland,
2010. ACM.

[72] A.H. Payberah, J. Dowling, and S. Haridi. Glive: The gradient over-
lay as a market maker for mesh-based P2P live streaming. In Proc. of
ISPDC’11, pages 153–162. IEEE, 2011.

[73] A.H. Payberah, J. Dowling, and S. Haridi. Gozar: NAT-friendly peer
sampling with one-hop distributed NAT traversal. In Proc. of DAIS’11,
pages 1–14. Springer, 2011.

[74] A.H. Payberah, J. Dowling, F. Rahimian, and S. Haridi. Gradientv:
Market-based P2P live media streaming on the gradient overlay. In Proc.
of DAIS’10, pages 212–225. Springer, 2010.

[75] A.H. Payberah, H. Kavalionak, V. Kumaresan, A. Montresor, and
S. Haridi. CLive: Cloud-Assisted P2P Live Streaming. In Proc. of the
12th Conf. on Peer-to-Peer Computing (P2P’12), 2012.

[76] A.H. Payberah, H. Kavalionak, A. Montresor, J. Dowling, and S. Haridi.
Lightweight gossip-based distribution estimation. In Proc. of the 15th
IEEE International Conference on Communications (ICC’13). IEEE,
June 2013.

[77] A.H. Payberah, H. Kavalionak, A. Montresor, and S. Haridi. CLive: Hy-
brid P2P-Cloud Live Streaming System. IEEE Transactions on Parallel
and Distributed Systems, 2013. Submitted 01-10-2013.

[78] A.H. Payberah, F. Rahimian, S. Haridi, and J. Dowling. Sepidar: Incen-
tivized market-based P2P live-streaming on the gradient overlay network.
In Proc. of ISM’10, pages 1–8. IEEE, 2010.

124

BIBLIOGRAPHY BIBLIOGRAPHY

[79] R. Roverso, S. El-Ansary, and S. Haridi. NATCracker: NAT Combina-
tions Matter. Computer Communications and Networks, International
Conference on, pages 1–7, 2009.

[80] R. Roverso, S. El-Ansary, and S. Haridi. SmoothCache: HTTP-live
streaming goes peer-to-peer. In Proc. of NETWORKING’12, pages 29–
43. Springer, 2012.

[81] A.I.T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Proc. of
the IFIP/ACM Int. Conf. on Distributed Systems Platforms Heidelberg,
Middleware’01, pages 329–350, London, UK, 2001. Springer-Verlag.

[82] J. Sacha, J. Napper, C. Stratan, and G. Pierre. Adam2: Reliable distri-
bution estimation in decentralised environments. In Proc. of the 30th Int.
Conf. on Distr. Comput. Systems (ICDCS’10), Italy, 2010. IEEE Com-
puter Society.

[83] Y. Saito and M. Shapiro. Optimistic replication. ACM Computing Surveys
(CSUR), 37(1):42–81, 2005.

[84] G. Schay. Introduction to probability with statistical applications.
Birkhäuser, 2007.

[85] L. Schubert and European Commision. The Future of Cloud Computing:
Opportunites for European Cloud Computing Beyond 2010, 2010.

[86] E. Sit, A. Haeberlen, F. Dabek, B.G. Chun, H. Weatherspoon, R. Morris,
M.F. Kaashoek, and J. Kubiatowicz. Proactive replication for data dura-
bility. In 5th Int. Workshop on Peer-to-Peer Systems, IPTPS’06, 2006.

[87] S. Spoto, R. Gaeta, M. Grangetto, and M. Sereno. Analysis of PPLive
through active and passive measurements. In Proc. of IPDPS’09, pages
1–7. IEEE, 2009.

[88] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang. The feasibility
of supporting large-scale live streaming applications with dynamic appli-
cation end-points. ACM SIGCOMM Computer Communication Review,
34(4):107–120, 2004.

125

BIBLIOGRAPHY BIBLIOGRAPHY

[89] K. Sripanidkulchai, B. Maggs, and H. Zhang. An analysis of live stream-
ing workloads on the internet. In Proc. of IMC’04, pages 41–54. ACM,
2004.

[90] K. Sriram, D. Montgomery, O. Borchert, Okhee Kim, and D.R. Kuhn.
Study of BGP peering session attacks and their impacts on routing per-
formance. IEEE J.Sel. A. Commun., 24(10):1901–1915, October 2006.

[91] R. Steinmetz and K. Wehrle. Peer-to-Peer Systems and Applications,
volume 3485. Lecture Notes in Computer Science, 2005.

[92] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. Com-
puter Communication Review, 31(4):149–160, 2001.

[93] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Protocol for Internet Applications. IEEE/ACM Transactions on Network-
ing (TON), 11(1):17–32, 2003.

[94] D. Stutzbach and R. Rejaie. Understanding churn in peer-to-peer net-
works. In Proc. of IMC’06, volume 25, pages 189–202, 2006.

[95] R. Sweha, V. Ishakian, and A. Bestavros. Angels in the cloud: A
peer-assisted bulk-synchronous content distribution service. In Proc. of
CLOUD’11, pages 97–104. IEEE, 2011.

[96] R. Sweha, V. Ishakian, and A. Bestavros. AngelCast: cloud-based peer-
assisted live streaming using optimized multi-tree construction. In Proc.
of MMsys’12, pages 191–202. ACM, 2012.

[97] R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A robust and
scalable technology for distributed system monitoring, management, and
data mining. ACM Trans. Comput. Syst., 21:164–206, 2003.

[98] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure de-
tection service. In Proc. of the IFIP Int. Conf. on Distributed Systems
Platforms and Open Distributed Processing (Middleware’98), London,
UK, 1998. Springer-Verlag.

126

BIBLIOGRAPHY BIBLIOGRAPHY

[99] S. Voulgaris, D. Gavidia, and M. van Steen. Cyclon: Inexpensive mem-
bership management for unstructured P2P overlays. Journal of Network
and Systems Management, 13(2):197–217, 2005.

[100] S. Voulgaris and M. van Steen. Epidemic-style management of semantic
overlays for content-based searching. In Proc. of the 11th Int. Euro-Par
Conference, volume 3648 of LNCS, pages 1143–1152, Lisbon, Portugal,
August 2005. Springer.

[101] J. Wang and K. Ramchandran. Enhancing peer-to-peer live multicast
quality using helpers. In Proc. of ICIP’08, pages 2300–2303. IEEE, 2008.

[102] J. Wang, C. Yeo, V. Prabhakaran, and K. Ramchandran. On the role
of helpers in peer-to-peer file download systems: Design, analysis and
simulation. In Proc. of IPTPS’07, 2007.

[103] Ch. Williams, Ph. Huibonhoa, J. Holliday, A. Hospodor, and Th.
Schwarz. Redundancy management for P2P storage. In Proc. of the Sev-
enth IEEE Int. Symp. on Cluster Computing and the Grid, CCGRID’07,
pages 15–22, Washington, DC, USA, 2007. IEEE Computer Society.

[104] Y. Wu, C. Wu, B. Li, X. Qiu, and F.C.M. Lau. Cloudmedia: When cloud
on demand meets video on demand. In Proc. of ICDCS’11, pages 268–
277. IEEE, 2011.

[105] Praveen Yalagandula and Mike Dahlin. A scalable distributed informa-
tion management system. In Proc. of the Conf. on Applications, technolo-
gies, architectures, and protocols for computer communications (SIG-
COMM’04), pages 379–390, New York, NY, USA, 2004. ACM.

[106] Zh. Yang, B.Y. Zhao, Y. Xing, S. Ding, F. Xiao, and Y. Dai. Amazing-
Store: available, low-cost online storage service using cloudlets. In Proc.
of the 9th Int. Workshop on Peer-to-peer Systems, IPTPS’10, San Jose,
CA, 2010. USENIX.

[107] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, Ch. Lin, H. Zhang, and
B. Li. Design and deployment of a hybrid CDN-P2P system for live
video streaming: experiences with LiveSky. In Proc. of Multimedia’09,
pages 25–34. ACM, 2009.

127

BIBLIOGRAPHY BIBLIOGRAPHY

[108] W.P.K. Yiu, X. Jin, and S.H.G. Chan. Challenges and approaches in
large-scale P2P media streaming. MultiMedia, 14(2):50–59, 2007.

[109] H. Zhang, J. Wang, M. Chen, and K. Ramchandran. Scaling peer-to-
peer video-on-demand systems using helpers. In Proc. of ICIP’09, pages
3053–3056. IEEE, 2009.

[110] X. Zhang, J. Liu, B. Li, and Y.S.P. Yum. CoolStreaming/DONet: a data-
driven overlay network for peer-to-peer live media streaming. In Proc. of
INFOCOM’05, pages 2102–2111. IEEE, 2005.

[111] B.Q. Zhao, J. Lui, and D.M. Chiu. Exploring the optimal chunk selection
policy for data-driven P2P streaming systems. In Proc. of P2P’09, pages
271–280. IEEE, 2009.

128

