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Abstract

Finite plane strain bending is solved for a multilayered elastic–incompressible

thick plate. This multilayered solution, previously considered only in the

case of homogeneity, is in itself interesting and reveals complex stress states

such as the existence of more than one neutral axis for certain geometries.

The bending solution is employed to investigate possible in-plane and out-

of-plane incremental bifurcations. The analysis reveals that a multilayered

structure can behave in a completely different way from the corresponding

homogeneous plate. For a thick plate of neo-Hookean material for instance,

the presence of a stiff coating strongly affects the bifurcation critical angle.

Experiments designed and performed to substantiate our theoretical find-

ings demonstrate that the theory can be effectively used as a design tool for

predicting the capability of an elastic multilayered structure.

3



4



Contents

1 Introduction 7

2 Notation and governing equations 15

3 Finite bending of a layered block 19

3.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Examples of multilayered plates under finite bending . . . . . 25

4 In-plane incremental bifurcations 29

4.1 General formulation . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Bifurcation of a bilayer . . . . . . . . . . . . . . . . . . . . . . 34

5 Numerical procedures 47

5.1 The determinantal method . . . . . . . . . . . . . . . . . . . 47

5.2 The compound matrix method for a bilayer . . . . . . . . . . 50

6 Experiments on rubber blocks 57

7 Out-of-plane incremental bifurcations 67

7.1 General formulation . . . . . . . . . . . . . . . . . . . . . . . 67

7.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2.1 The homogeneous block . . . . . . . . . . . . . . . . . 74

7.2.2 A bilayered block . . . . . . . . . . . . . . . . . . . . . 76

5



CONTENTS

8 Conclusions 83

A Matrices of numerical methods 85

References 89

6



1

Introduction

Natural (geological formations, biological materials) and man-made (sand-

wich panels, submarine coatings, microelectronic devices) structures are of-

ten made up of layers of different materials glued together, the so-called

‘multilayers’. The possibility of achieving large deformations in these struc-

tures is limited by the occurrence of various forms of bifurcations. For

instance, compressive strain is limited by buckling and subsequent folding

(see the example reported in Fig. 1.1 on the left), uniform tensile strain may

terminate with shear band formation and growth, while uniform flexure may

lead to the formation of bifurcation modes such as ondulations and creases

(see the example reported in Fig. 1.1 on the centre and right). Bifurcation

is therefore an important factor in the design of multilayered materials, so

that this has been the focus of a thorough research effort, which was ini-

tiated by Maurice A. Biot, Ref. [11], and continued by many others. In

particular, elastic layered structures deformed in plane strain and subject to

a uniform state of stress have been analyzed by Dorris and Nemat-Nasser,

Steif, Papamichos et al., Dowaikh and Ogden, Benallal et al., Triantafyllidis

and Lehner, Triantafyllidis and Leroy, Shield et al., Ogden and Sotiropou-

los and Steigmann and Ogden, Refs. [5, 20, 21, 40, 41, 45–50, 53, 54], on

the basis of the bifurcation problem of an isolated layer subject to uniform

7



1. INTRODUCTION

Figure 1.1: Left: a stiff (30 mm thick, neoprene) layer bonded by two com-

pliant (100 mm thick foam) layers in a rigid wall and confined compression ap-

paratus (note that a separation between sample and wall has occurred on the

right upper edge of the sample). Centre: creases occurring at the compressive

side of a rubber strip, coated at the tensile side with a 0.4 mm thick polyester

transparent film, subject to flexure. Right: bifurcation of a two-layer rubber

block under finite bending evidencing long-wavelength bifurcation modes (the

stiff layer, made up of natural rubber, is at the compressive side of a neoprene

block).

tension or compression, Refs. [30, 35, 57].

In this thesis we have generalized the solution for plane strain bending

of an elastic block given by Rivlin, Ref. [42], and the subsequent analyses of

incremental bifurcations, Refs. [1, 2, 12, 13, 17, 22, 52], determinating the

stress/strain fields during finite bending for elastic multilayers and related

bifurcation analysis.

Finite bending of plates is a phenomenon common in nature and in

engineered processes. Leaves are often subject to large bending for var-

ious reasons: the pinguicola leptoceras, curls its leaf to trap insects, the

geranium–pratensis’ pod suffers a strong bending when seeds are dispersed,

and gramineae leaves deform into a tube to resist dehydratation. Moreover,

arteries unfold when cut longitudinally, on the left, thus showing that the

internal stress state developed during morphogenesis is compatible with a

finite bending. Bending is important in metalworking techniques and tissue-

8

1_introduction/figure/tristrato.eps
1_introduction/figure/bending_crazes.eps
1_introduction/figure/ondine.eps


engineered blood vessels, in which the internal fibroblast sheets are wrapped

around a tubular support, Ref. [31]. In microelectronic devices, we may

mention that flexible solar cells (made up of layers, one of which contain-

ing three-dimensional nanopillar-array photovoltaics) have a 4 mm thickness

and are subject to bending up to a curvature radius of 3 cm, Ref. [23].

Although plates suffering finite bending are often made up of layers1, the

theory of finite elastic bending has been previously developed only under the

assumption of homogeneity, Ref. [27, 34, 42, 55]. Moreover, while certain

elastic multilayers can be bent until the tubular shape is reached without any

appearance of inhomogeneities, crazes develop for other systems (Fig. 1.1, in

the centre, and also Fig. 6.5), severely decreasing the elastic deformational

capability.

Since these crazes can be interpreted as bifurcation modes localized near

the surface, the bifurcation analysis becomes an important tool for design

purposes. However, theoretical, Ref. [12, 13, 17, 22, 28, 52], and experimen-

tal, Ref. [26], approaches to bifurcation of plates subject to finite bending

have only been considered until now under the assumption of material ho-

mogeneity. Therefore, the aims of the present thesis are:

(i.) to provide an analytical solution to finite bending of an elastic multi-

layered thick plate deformed under the plane strain constraint;

(ii.) to analyse and solve the problem of two-dimensional bifurcations pos-

sibly occurring during bending;

(iii.) to validate our theoretical approach with experiments.

Analyzing the incremental problem we found that for several geometries

and stiffness contrasts the first (‘critical’) bifurcation load corresponds to

a long-wavelength mode, which results to be very close to the bifurcation

1Leaves, arteries, and the flexible solar cells, Ref. [23], are complex structures com-

posed of at least three layers.
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1. INTRODUCTION

load associated with the surface instability limit of vanishing wavelength2, a

feature also common to the behaviour of a homogeneous elastic block subject

to finite bending. This feature explains the experimental observation (on

uniform blocks, Ref. [25, 26]) that short-wavelength modes become visible,

instead of the long-wavelength modes that are predicted to occur before.

Therefore, the question was left open whether or not wavelength modes

longer than the short-wavelength modes available at surface instability and

visible in the experiments can be experimentally displayed with a layered

system in which an appropriate selection is made of stiffness and thickness

contrast between layers. We provide a positive answer to this problem in

this thesis, so that our calculations, based now on the compound matrix

method, Ref. [4, 36–38], allow us to conclude that there are situations

in which the long-wavelength modes are well-separated from the surface

instability, so that systems exhibiting bifurcation modes of long wavelength

can be designed. These systems have been realized by us and qualitatively

tested, showing that the theory predictions are generally followed, Fig. 1.1

on the right.

The solution for finite bending of an elastic multilayer discloses the com-

plex stress distributions that can be generated inside such structures as a

result of large strains. For instance, more than one neutral axis may be

present3 (Fig. 3.3) and weakly stressed layers may ‘bond’ a highly stressed

one (Fig. 3.4). The determination of these stress states is of great impor-

tance in the design of multilayered structures, but then the question arises

2 Surface instability occurs in a uniformly strained half space as a bifurcated mode

of arbitrary wavelength, corresponding to a Rayleigh wave of vanishing speed. In the

limit of vanishing wavelength, surface instability can be viewed as a bifurcation mode

‘adaptable’ to every boundary and state of stress of a strained body, so that it becomes a

local instability mode (also called ‘failure of complementing condition’, Ref. [5]).
3 In our examples we have found situations with two (Fig. 3.2) and three (Fig. 3.3)

neutral axes. More than one neutral axis can occur as induced in a multilayer by thermal

loadings or residual stresses, Ref. [15, 16], in our context they occur under pure bending

loading as a consequence of large strains.
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Figure 1.2: Bifurcation in compression of a finely layered metamorphic rock

has induced severe folding, an example of a ‘accomodation structure’ (Treard-

dur Bay, Holyhead, N. Wales, UK; the coin in the photos is a Pound).

if such configurations can be achieved without encountering a previous bi-

furcation. In fact, one conclusion of the bifurcation analysis is that there

is a strong difference between bifurcation loads and geometries when homo-

geneous structures are compared with the corresponding layered structures.

For instance, a stiff and thin coating reinforcing an elastic layer strongly

decreases the bifurcation bending angle of the uncoated structure, a find-

ing fully consistent with the solutions obtained employing a surface coating

model by Dryburgh and Ogden and Gei and Ogden, Ref. [22, 24]. In a

bilayer, two neutral axes typically occur when a stiff layer is placed at the

compressive side of the system, a case in which the differential equations be-

come ‘numerically stiff’, so that we have employed an ‘ad hoc version’ of the

compound matrix method, which is shown to allow systematic investigation

of the situations in which more than one neutral axis occurs. In these cases

we find a sort of ‘inversion’ of the sequence of bifurcation modes with the

aspect ratio of the system, so that high-wavenumber modes are relevant for

lower slender ratios than small-wavenumber modes.

Experimentally, bifurcations of homogeneous elastic strips subject to

11
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1. INTRODUCTION

Figure 1.3: Bifurcation in compression with detachment of layers: a stiff (1

mm thick) plastic coating is detached from a foam substrate to which it was

initially glued (left), three layers of foam fold with detachment, clearly visible

near the edges of the sample (right).

bending have been investigated only by Gent and Cho, Ref. [26], although

the experimental setting is not particularly complex. To extend their analy-

ses to the case of layered plates, we have designed a simple device to impose

a bending angle to elastic strips on which bifurcations in the form of crazes

can be detected by direct visual inspection.

The bifurcation loads and modes are strongly sensible to the bonding

conditions between the layers, which may be perfect (as in the case of the

rock shown in Fig. 1.2), but often they are may involve the possibility of

slip and detachments, the so-called ‘delaminations’ (as in the cases shown

in Figs. 1.3).

A simple way to account for this crucial behaviour is to introduce in-

terfacial laws at the contact between layers. The simplest model of these

laws is linear and can be formulated assuming the interface having null,

Refs. [7, 9, 51], or finite (Refs. [6, 8, 14]) thickness. We will limit our at-

tention to zero-thickness linear interfaces, across which the nominal traction

increments remain continuous, but linearly related to the jump in displace-
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ments, that are unrestricted. For simplicity, the materials forming the mul-

tilayer are assumed hyperelastic and incompressible, according to the gen-

eral framework laid by Biot, Ref. [11], in which Mooney-Rivlin and Ogden

materials, Ref. [39], as well as the J2–deformation theory of plasticity, are

particular cases. All the material in this thesis has been published in two

articles, see Refs. [10, 43, 44].
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2

Notation and governing

equations

The notation employed throughout the present thesis and the main equa-

tions governing equilibrium in finite and incremental elasticity are now

briefly recalled. Let x 0 denote the position of a material point in some

stress-free reference configuration B0 of an elastic body. A deformation ξ

is applied, mapping points of B0 to those of the current configuration B

indicated by x = ξ(x 0). We identify its deformation gradient by F , i.e.,

F = Gradξ, and we define the right, C , and the left, B , Cauchy-Green

tensors as C = FTF and B = FFT .

For isotropic incompressible elasticity the constitutive equations can be

written as a relationship between the Cauchy stress T and B as

T = −πI + α1B + α−1B
−1, detB = 1, (2.1)

where π is an arbitrary Lagrangian multiplier representing a hydrostatic

pressure and α1, α−1 are coefficients which may depend on the deformation.

Alternatively, the principal stresses Ti (i = 1, 2, 3), that are aligned with

the Eulerian principal axes, can be obtained in terms of a strain-energy

function W , which can be viewed as a function of the principal stretches λi

15



2. NOTATION AND GOVERNING EQUATIONS

(i = 1, 2, 3). In the case of an incompressible material these relationships

take the form (index i not summed)

Ti = −π + λi
∂W (λ1, λ2, λ3)

∂λi
, λ1λ2λ3 = 1, (2.2)

Eqs. (2.1) and (2.2) are linked through the following equations (Ref. [7])

α1 =
1

λ2
1 − λ2

2

[

(T1 − T3)λ
2
1

λ2
1 − λ2

3

−
(T2 − T3)λ

2
2

λ2
2 − λ2

3

]

,

α−1 =
1

λ2
1 − λ2

2

[

T1 − T3

λ2
1 − λ2

3

−
T2 − T3

λ2
2 − λ2

3

]

,

(2.3)

that allow to express coefficients α1, α−1 in terms of the strain energy of

the body.

In the absence of body forces, equilibrium is expressed in terms of the

first Piola-Kirchhoff stress tensor S = JTF−T as DivS = 0 , where Div is

the divergence operator defined in B0.

Loss of uniqueness of the plane-strain incremental boundary-value prob-

lem is investigated, so that incremental displacements are given by

u(x ) = ξ̇(x 0), (2.4)

where, henceforth, a superposed dot is used to denote a first-order increment.

The incremental counterpart of equilibrium is expressed by divΣ = 0 , where

div is the divergence in the current configuration. The updated incremental

first Piola-Kirchhoff stress is given by

Σ = ṠFT , Ṡ = ṪF−T −TLTF−T . (2.5)

The linearized constitutive equation is

Σ = CL− π̇I , (2.6)

where L = gradu and C is the fourth-order tensor of instantaneous elastic

moduli (possessing the major symmetries). Incompressibility requires that
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trL = 0. Since Σ = Ṫ −TLT , the balance of rotational momentum yields

Σ12−Σ21 = T2L12−T1L21, and a comparison with eq. (2.6) shows that (no

sum on indices i and j)

Cijji + Ti = Cjiji (i 6= j). (2.7)

For a hyperelastic material, the components of C can be defined in terms of

the strain-energy function W .

For the plane strain problem addressed here the fourth-order tensor C

can be written in terms of 2 incremental moduli µ and µ∗, their explicit

form will be given

µ =
λ

2

(

λ4 + 1

λ4 − 1

dŴ

dλ

)

, µ∗ =
λ

4

(

dŴ

dλ
+ λ

d2Ŵ

dλ2

)

, (2.8)

where Ŵ = W (λ, 1/λ, 1), due to incompressibility. In the following, exam-

ples are given for a neo-Hookean material, which is the initially isotropic

elastic solid with strain energy given by

W =
µ0

2

(

λ2
1 + λ2

2 − 2
)

, (2.9)

where λ1 and λ2 are the principal in-plane stretches. Due to incompressibil-

ity λ = λ1 and λ2 = 1/λ, so that

T1 = µ0(λ
2 − λ−2), and µ = µ∗ =

µ0

2
(λ2 + λ−2), (2.10)

where the former is the uniaxial tension law (along axis x2). Notice that the

ratio between T1 and µ is

T1

µ
=

2(λ2 − λ−2)

λ2 + λ−2
, (2.11)

and its value is always ranging between −2 (infinite compression, λ −→ 0)

and 2 (infinite tension, λ −→ +∞).
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2. NOTATION AND GOVERNING EQUATIONS

In the case of an out-of-plane analysis the fourth-order tensor C is de-

pendent on six moduli µi and µ∗
i (i = 1, 2, 3) (no sum on index), see Refs.

[11, 39], which for a hyperelastic material can be written as

2µ∗
i = λi

∂W

∂λi
+ λ2

i

∂2W

∂λ2
i

−
∑

l 6=i

λiλl

∂2W

∂λi∂λl

+ λjλk

∂2W

∂λj∂λk

(j 6= k 6= i),

2µi = (Tj − Tk)
λ2
j + λ2

k

λ2
j − λ2

k

(j 6= k 6= i).

(2.12)

In the ensuing analysis of multilayers two types of interface conditions

will be employed: perfect bonding, where both incremental tractions and

displacements are continuous and imperfect interface (compliant interface),

where the incremental shear stress is linearly dependent on the jump of

incremental transverse displacement.

In the former case, where the layers are perfectly bonded, the imposed

interfacial conditions are:

• continuity of tractions across the interface

Σ+n = Σ−n ; (2.13)

• continuity of incremental displacements

u+ = u−. (2.14)

In the latter case, we employ a particular case of the compliant interface

model of Suo et al. and Bigoni et al. (Ref. [51] and [9]) for which, in addition

to eqn. (2.13), the radial incremental displacement ur is continuous across

the interface while a compliant law relating the incremental shear stress to

the transverse displacement jump is imposed, namely

Σ
(s)
θr

∣

∣

∣

r=r
(s)
e

= Sθ

(

u
(s+1)+

θ − u
(s)−

θ

)

. (2.15)

Here, Sθ is the instantaneous interface stiffness of dimension [stress/length].
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3

Finite pure bending of an

elastic layered block

The solution for pure bending of an elastic layered thick plate made up of N

layers follows from ‘assembling’ solutions relative to the bending of all layers

taken separately, a solution first given by Rivlin (Ref. [42]). Therefore, we

begin recalling this solution with reference now to a generic layer. To this

purpose, we consider plane-strain flexure of an incompressible rectangular

elastic layered plate, of initial dimensions l0 × h0 (see Fig. 3.1b).

3.1 Kinematics

In the reference stress-free configuration, a Cartesian coordinate system

O
(s)
0 x

0(s)
1 x

0(s)
2 x

0(s)
3 is introduced for each layer denoted by index s, centered

at its centroid (see Fig. 3.1a). Denoting by e0
i (i = 1, 2, 3) the common

cartesian basis, the position of the generic point x 0(s) is given by

x 0(s) = x
0(s)
1 e0

1 + x
0(s)
2 e0

2 + x
0(s)
3 e0

3, (3.1)

with

x
0(s)
1 ∈ [−h

(s)
0 /2, h

(s)
0 /2], x

0(s)
2 ∈ [−l0/2, l0/2], x

0(s)
3 ∈ (−∞,+∞). (3.2)

19



3. FINITE BENDING OF A LAYERED BLOCK

h
(1

)

h
(3)

0

l 0

q
q

e r

r

e q

x1
e

0

1

x2

h
(2

) h
(3

)

r
i

(1)

h

e
0

2

h
(2)

0h
(1)

0

h0

Reference
configuration

Deformed
configuration

x

x
0(s)

1

x
0(s)

2

x
0(s)

O
(s)

0

(b) (c)(a)

s-th layer in the
reference config.

h
(s)

0

Ol 0

Figure 3.1: Sketch of a generic layered thick plate subject to finite bending.

The deformed configuration is a portion of a cylindrical tube of semi-

angle θ̄. It is useful to introduce here a cylindrical coordinate system

O(s)r(s)θ(s)z(s), with basis er, eθ and ez, where points of the s−th layer

are transformed to points identified by

r(s) ∈ [r
(s)
i , r

(s)
i + h(s)], θ(s) ∈ [−θ̄,+θ̄], z(s) ∈ (−∞,+∞).

The deformation is prescribed in a way that a plane at constant x
0(s)
1

transforms to a circular arc at constant r(s), while a plane at constant x
0(s)
2

transforms to a plane at constant θ(s). The out-of-plane deformation is null,

so that x
0(s)
3 = z(s). The incompressibility constraint (conservation of areas)

imposes that

r
(s)
i =

l0h
(s)
0

2θ̄h(s)
−

h(s)

2
, (3.3)

where h(s) is the current thickness of the circular sector, to be determined.

The deformation, in this condition, is described by functions

r(s) = r(s)(x
0(s)
1 ), θ(s) = θ(s)(x

0(s)
2 ), z(s) = x

0(s)
3 , (3.4)
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3.1 Kinematics

so that the deformation gradient takes the form

F (s) =
dr(s)

dx
0(s)
1

er ⊗ e0
1 + r(s)

dθ(s)

dx
0(s)
2

eθ ⊗ e0
2 + ez ⊗ e0

3. (3.5)

The right and left Cauchy-Green tensors are

C (s) =

(

dr(s)

dx
0(s)
1

)2

e0
1 ⊗ e0

1 +

(

r(s)
dθ(s)

dx
0(s)
2

)2

e0
2 ⊗ e0

2 + e0
3 ⊗ e0

3,

B (s) =

(

dr(s)

dx
0(s)
1

)2

er ⊗ er +

(

r(s)
dθ(s)

dx
0(s)
2

)2

eθ ⊗ eθ + ez ⊗ ez,

(3.6)

so that we identify the principal stretches to be

λ(s)
r =

dr(s)

dx
0(s)
1

, λ
(s)
θ = r(s)

dθ(s)

dx
0(s)
2

, and λ(s)
z = 1. (3.7)

Imposition of the incompressibility constraint reduces the deformation to

the simple form

r(s) =

√

2

α(s)
x
0(s)
1 + β(s), θ(s) = α(s)x

0(s)
2 , (3.8)

so that, using eqn. (3.4), the principal stretches can be evaluated as

λ(s)
r =

1

α(s)r(s)
, λ

(s)
θ = α(s)r(s), and λ(s)

z = 1, (3.9)

where α(s) and β(s) are constants which are fixed by boundary conditions.

For the s–th layer of a multilaminated, these are

• at x
0(s)
2 = ±l0/2, θ(s) = ±θ̄, from eqn. (3.8)2, θ(s) = ±α(s)l0/2,

yielding

α(s) =
2θ̄

l0
; (3.10)

note that α(s) is independent of the index s;

• at x
0(s)
1 = −h

(s)
0 /2, r(s) = r

(s)
i , from eqns. (3.3) and (3.8)1, r

(s)
i =

r(s)(−h
(s)
0 /2), yielding

β(s) = r
(s)2

i +
l0h

(s)
0

2θ̄
. (3.11)
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3. FINITE BENDING OF A LAYERED BLOCK

Since the N layers are assumed to be perfectly bonded to each other and

the s–th layer has current thickness h(s), we have

r
(s)
i = r

(s−1)
i + h(s−1) (s = 2, . . . , N), (3.12)

with r
(1)
i given by r

(1)
i = l0h

(1)
0 /(2θ̄h(1))−h(1)/2, see eqn. (3.3). A repeated

use of eqns. (3.3) and (3.12) provides all thicknesses h(s) (s = 2, ..., N)

expressed in terms of the thickness of the first layer h(1), which remains the

sole kinematical unknown of the problem, determined from the solution of

the boundary-value problem described in Section 3.2.

Since eqn. (3.12) is imposed at each of the N − 1 interfaces between

layers, all radial coordinates r(s) share the same origin O of a new cylin-

drical coordinate system Orθz, common to all deformed layers (Fig. 3.1c);

therefore, index s on the local current coordinates will be omitted in the

following so that the deformed configuration will be described in terms of

the global system Orθz.

As a conclusion, the kinematics provides all the stretches in the multi-

layered which can be represented as

λr =
l0
2θ̄r

, λθ =
2θ̄r

l0
, and λz = 1, (3.13)

and the current thickness of the s–th layer, h(s), as a function of h(s−1),

namely

h(s) = −
l0h

(s−1)
0

2θ̄h(s−1)
−
h(s−1)

2
+

√

√

√

√

(

l0h
(s−1)
0

2θ̄h(s−1)
+

h(s−1)

2

)2

−
l0h

(s)
0

θ̄
(s = 2, . . . , N).

(3.14)

Therefore all current thicknesses are known once the thickness of the first

layer, h(1), is known.
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3.2 Stress

3.2 Stress

We are now in a position to determine the stress state within the multilayer.

In particular, the Cauchy stress tensor in generic layer s can be written as

T (s) = T (s)
r er ⊗ er + T

(s)
θ eθ ⊗ eθ + T (s)

z ez ⊗ ez, (3.15)

where, from the constitutive equations (2.2),

T (s)
r = −π(s) + λr

∂W (s)

∂λr

, T
(s)
θ = −π(s) + λθ

∂W (s)

∂λθ

, (3.16)

T (s)
z = −π(s) +

∂W (s)

∂λz

∣

∣

∣

∣

∣

λz=1

.

Since stretches depend only on r, the chain rule of differentiation

d ·

dr
=

∂ ·

∂λr

dλr

dr
+

∂ ·

∂λθ

dλθ

dr
, (3.17)

together with eqns. (3.16) and the derivatives of stretches with respect to r

calculated from eqn. (3.9), can be used in the equilibrium equations

∂T
(s)
r

∂r
+

T
(s)
r − T

(s)
θ

r
= 0,

∂T
(s)
θ

∂θ
= 0, (3.18)

to obtain the identities

dW (s)

dr
= −

T
(s)
r − T

(s)
θ

r
=

dT
(s)
r

dr
. (3.19)

Therefore, identifying λθ with λ, we arrive at the expression

T (s)
r (r) = Ŵ (s)(λ(r)) + γ(s), (3.20)

where

Ŵ (s)(λ(r)) = W (s)(1/λ(r), λ(r), 1), (3.21)

and γ(s) is an unknown integration constant. From eqn. (3.18)1 we finally

obtain

T
(s)
θ (r) =

2θ̄

l0
r
(

Ŵ (s)
)′

+ Ŵ (s) + γ(s), (3.22)
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3. FINITE BENDING OF A LAYERED BLOCK

where the prime denotes, now, differentiation with respect to λ

Constants γ(s) (s = 1, . . . , N) and thickness h(1) can be calculated by

imposing: (i.) continuity of tractions at interfaces between layers (N − 1

equations) and (ii.) traction boundary conditions at the external boundaries

of the multilayer (2 equations). ConsideringN layers, the traction continuity

at the interfaces write as

T (s−1)
r (r

(s−1)
i + h(s−1)) = T (s)

r (r
(s)
i ) (s = 2, . . . , N), (3.23)

while null loading at the external surfaces of the multilayer yields

T (1)
r (r

(1)
i ) = 0, T (N)

r (r
(N)
i + h(N)) = 0. (3.24)

Therefore, γ(N) can be calculated from eqn. (3.24)2

γ(N) = −Ŵ (N)
(

λ(r
(N)
i + h(N))

)

, (3.25)

while employing eqn. (3.23), we obtain the recursive formulae

γ(s−1) = Ŵ (s)
(

λ(r
(s)
i )
)

− Ŵ (s−1)
(

λ(r
(s)
i )
)

+ γ(s) (s = 2, . . . , N). (3.26)

Considering now eqn. (3.24)1 and evaluating γ(1) from eqn. (3.26) writ-

ten for s = 2, we obtain an implicit expression to be solved for h(1)

Ŵ (2)
(

λ(r
(2)
i )
)

− Ŵ (1)
(

λ(r
(2)
i )
)

+ Ŵ (1)
(

λ(r
(1)
i )
)

+ γ(2) = 0, (3.27)

where h(2) and γ(2) are functions of h(1), through eqns. (3.14) and (3.26),

respectively.

Note that if the strain-energy function is the same for all layers, the

multilayer corresponds to a homogeneous elastic block with thickness equal

to the sum of all h(s); in this case eqn. (3.26) shows that γ(s) = γ(N), for

every s, and the uniform layer solution is recovered.
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3.3 Examples of multilayered plates under finite bending

3.3 Examples of multilayered plates under finite

bending

The solution obtained in the previous section is interesting in itself and

can be easily used for design purposes, since it allows determination of the

complex stress and strain fields within a thick, multilayered plate, when

subject to finite bending. To highlight the usefulness of the solution, we

present a few results for finite bending of an elastic thick plate, coated with

a thin and stiff layer, and of a three- and five- layer structures, assuming a

neo-Hookean behaviour for both materials.

Deformed geometries for the coated layer (with l0/h0 = 2, h
(lay)
0 /h

(coat)
0 =

10 and µ(coat)/µ(lay) = 20) are shown in Fig. 3.2, together with graphs of the

dimensionless Cauchy principal stresses Tr(r)/µ
(lay) and Tθ(r)/µ

(lay). The

deformed configurations plotted in the upper part of Fig. 3.2 correspond to

critical configurations at bifurcation (see Section 4.2), while those reported

in the lower part lie beyond the critical bifurcation threshold, so that they

are reported only with the purpose to show the evolution of the solution

of finite bending at very large angles. Note that the transverse stress is

always compressive, while the distribution of Tθ(r) strongly depends on the

stiffness of the layer under consideration and gives a null resultant, so that

it is equivalent to the bending moment loading the plate. For all cases, the

neutral axis (the line corresponding to vanishing circumferential stress) is

drawn, showing the effect of the coating on the global stress state. Note

that in the lower figure on the left, two neutral axes are visible. This is

an important feature, which is also investigated in Fig. 3.3, referred to a

three-layer plate. In this structure, where the initial aspect ratio is 1, the

shear stiffness contrast is 20 and ratio between layer thicknesses is 5, three

neutral axes become visible starting from a bending semi-angle of 56◦, so

that to give evidence to this effect a bending semi-angle of 90◦ is imposed in

Fig. 3.3. Finally, a complex situation with 5 layers with initial aspect ratio
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3. FINITE BENDING OF A LAYERED BLOCK

1
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T / , T /q m m
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r

Figure 3.2: Undeformed (center) and deformed (upper and lower parts)

shapes and internal stress states for finite bending of neo-Hookean coated

plates with l0/h0 = 2, h
(lay)
0 /h

(coat)
0 = 10 and µ(coat)/µ(lay) = 20. Dashed

lines represent the neutral axes. Note that in the picture in the lower part on

the right the neutral axis is almost coincident with the interface between the

two layers, while on the left two neutral axes are visible. Note the scales of

diagrams for dimensionless stresses.
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3.3 Examples of multilayered plates under finite bending
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Figure 3.3: Finite bending of a neo-Hookean three-layer plate showing three

neutral axes.
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Figure 3.4: From left to right: undeformed and progressively more deformed

shapes and internal stress states for finite bending of a neo-Hookean five-layer

plate with l0/h0 = 4, h
(b)
0 /h

(a)
0 = 3.5, µ(a)/µ(b) = 10. Note the scales of

diagrams for dimensionless stresses.
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3. FINITE BENDING OF A LAYERED BLOCK

l0/h0 = 4 is reported in Fig. 3.4, where three configurations are shown at

different bending angles θ̄. The layers are made up of two materials, (a) and

(b), such that h
(b)
0 /h

(a)
0 = 3.5 and µ(a)/µ(b) = 10. As in Fig. 3.2, the two

principal components of the Cauchy stress are drawn. A peculiar feature of

the stress state is the positive sign of the circumferential stress Tθ(r) in the

inner, stiff layer, to be compared to the negative sign in the two adjacent

layers. This situation once more confirms the presence of two neutral axes,

one of which in this case is ‘virtual’, in the sense that it is obtained joining

the ‘peaks’ of the diagram of the positive stresses.
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4

In-plane incremental

bifurcations superimposed on

finite bending of an elastic

layered block

The goal of this section is to address the plane-strain bifurcation problem of

the multilayered thick plate subject to finite bending, considered in Chapter

3.

4.1 General formulation

We begin by analyzing the incremental field equations for an isolated layer

and we continue formulating the multilayered problem by adding the relevant

interfacial and external boundary conditions. We refer to Chapter 2 for the

notation.

The gradient of incremental displacement u(x ) is

L = ur,rer ⊗ er +
ur,θ − uθ

r
er ⊗ eθ +uθ,reθ ⊗ er +

ur + uθ,θ
r

eθ ⊗ eθ, (4.1)
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4. IN-PLANE INCREMENTAL BIFURCATIONS

and the incompressibility condition (trL = 0) can be written in polar coor-

dinates as

rur,r + ur + uθ,θ = 0. (4.2)

For an incompressible isotropic elastic material, the components of the

constitutive fourth-order tensor C [see eqn. (2.6)] can be written as function

of two incremental moduli, denoted µ and µ∗, that depend on the deforma-

tion. The non-vanishing components of C may be expressed as

Crrrr = Cθθθθ = 2µ∗ + p, Cθrθr = µ− Γ,

Crθrθ = µ+ Γ, Crθθr = Cθrrθ = µ+ p,
(4.3)

where

Γ =
Tθ − Tr

2
, p = −

Tθ + Tr

2
(4.4)

describe the state of prestress. For hyperelastic materials, µ and µ∗ can be

given in terms of the strain-energy function Ŵ (λ) as

µ =
λ

2

(

λ4 + 1

λ4 − 1

dŴ

dλ

)

, µ∗ =
λ

4

(

dŴ

dλ
+ λ

d2Ŵ

dλ2

)

. (4.5)

The incremental constitutive equations in terms of the incremental first

Piola-Kirchhoff stress tensor can be written as

Σrr = −π̇ + (2µ∗ + p)ur,r, Σθθ = −π̇ + (2µ∗ + p)
ur + uθ,θ

r
,

Σrθ = (µ + Γ)
ur,θ − uθ

r
+ (µ+ p)uθ,r, Σθr = (µ + p)

ur,θ − uθ
r

+ (µ − Γ)uθ,r.

(4.6)

A substitution of eqns. (4.6) and the use of eqn. (3.18)1 in the incre-

mental equations of equilibrium written in polar coordinates

Σrr,r +
1

r
Σrθ,θ +

Σrr − Σθθ

r
= 0,

Σθr,r +
1

r
Σθθ,θ +

Σθr +Σrθ

r
= 0,

(4.7)
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4.1 General formulation

yields the incremental equilibrium equations written in terms of incremental

displacements and in-plane mean stress

π̇,r =

{

(p+ 2µ∗),r +
2(p + 2µ∗)

r

}

ur,r + (p + 2µ∗)ur,rr

+(µ+ Γ)
ur,θθ − uθ,θ

r2
+ (p + µ)

uθ,rθ
r

,

π̇,θ = [r(µ− Γ),r + µ− Γ]

(

uθ,r +
ur,θ − uθ

r

)

+ r(µ− Γ)uθ,rr + (µ − 2µ∗)ur,θr.

(4.8)

We seek bifurcations in the following separable-variables form


















ur(r, θ) = f(r) cosnθ,

uθ(r, θ) = g(r) sin nθ,

π̇(r, θ) = k(r) cos nθ,

(4.9)

where f(r), g(r) and k(r) are real functions and n is a real number to be

determined by imposing boundary conditions.

Consideration of the incompressibility constraint

g = −
(f + rf ′)

n
, (4.10)

and substitution of representations (4.9) into eqns. (4.8) yields

k′ = Df ′′ +

(

C,r +D,r +
C + 2D

r

)

f ′ +
E(1 − n2)

r2
f,

k =
r2C

n2
f ′′′ +

F + 3C

n2
rf ′′ +

(

F

n2
−D

)

f ′ −
1− n2

n2

F

r
f,

(4.11)

where a prime denotes differentiation with respect to r and in terms of in-

cremental moduli µ and µ∗ and strain-energy function Ŵ (λ), the coefficients

C, D, E and F can be expressed as

C = µ− Γ =
λ

λ4 − 1

dŴ

dλ
, D = 2µ∗ − µ =

λ

2

(

λ
d2Ŵ

dλ2
−

2

λ4 − 1

dŴ

dλ

)

,

E = µ+ Γ =
λ5

λ4 − 1

dŴ

dλ
, F = rC,r + C.

(4.12)
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4. IN-PLANE INCREMENTAL BIFURCATIONS

By differentiating eqn. (4.11)2 with respect to r and substituting it into

eqn. (4.11)1, a single differential equation in terms of f(r) is obtained

Cr4f ′′′′ + 2(F + 2C)r3f ′′′ + [(rF ),r + 4F − 2n2D]r2f ′′

+[(rF − 2rn2D),r − 2F ]rf ′ + (1− n2)(F − rF,r − n2E)f = 0.
(4.13)

Eqn. (4.13) defines the function f(r) within a generic layer. Once f(r) is

known, the other functions, g(r) and k(r), can be calculated by employing

eqns. (4.10) and (4.11)2, respectively. The set of all functions f (s)(r) (s =

1, ..., N) can be obtained imposing the continuity conditions at the interfaces

and the boundary conditions at the external surfaces.

In the case of perfect bonding the continuity of incremental tractions

and displacements at interfaces is imposed, which correspond to

u
(s)
r

∣

∣

∣

r=r
(s)
e

= u
(s+1)
r

∣

∣

∣

r=r
(s+1)
i

, u
(s)
θ

∣

∣

∣

r=r
(s)
e

= u
(s+1)
θ

∣

∣

∣

r=r
(s+1)
i

,

Σ
(s)
rr

∣

∣

∣

r=r
(s)
e

= Σ
(s+1)
rr

∣

∣

∣

r=r
(s+1)
i

, Σ
(s)
θr

∣

∣

∣

r=r
(s)
e

= Σ
(s+1)
θr

∣

∣

∣

r=r
(s+1)
i

,
(4.14)

where r
(s)
e = r

(s)
i + h(s) or, in terms of functions defined in eqn. (4.9),

f (s)
∣

∣

∣

r=r
(s)
e

= f (s+1)
∣

∣

∣

r=r
(s+1)
i

, g(s)
∣

∣

∣

r=r
(s)
e

= g(s+1)
∣

∣

∣

r=r
(s+1)
i

,

{(p+ 2µ∗)f
′ − k}(s)

∣

∣

∣

r=r
(s)
e

= {(p+ 2µ∗)f
′ − k}(s+1)

∣

∣

∣

r=r
(s+1)
i

,

{

Cg′ −
1

r
(nf + g)(p + µ)

}(s)
∣

∣

∣

∣

∣

r=r
(s)
e

=

{

Cg′ −
1

r
(nf + g)(p + µ)

}(s+1)
∣

∣

∣

∣

∣

r=r
(s+1)
i

.

(4.15)

The case of imperfect interface is ensured employing the following bound-

ary conditions:

• continuity of incremental tractions at interfaces:

Σ
(s)
rr

∣

∣

∣

r=r
(s)
e

= Σ
(s+1)
rr

∣

∣

∣

r=r
(s+1)
i

, Σ
(s)
θr

∣

∣

∣

r=r
(s)
e

= Σ
(s+1)
θr

∣

∣

∣

r=r
(s+1)
i

;

(4.16)
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4.1 General formulation

• continuity of the radial component of the incremental displacement at

interfaces;

u
(s)
r

∣

∣

∣

r=r
(s)
e

= u
(s+1)
r

∣

∣

∣

r=r
(s+1)
i

, (4.17)

• imperfect ‘shear-type’ interface, see eqn. (2.15),

Σ
(s)
θr

∣

∣

∣

r=r
(s)
e

= Sθ

(

u
(s+1)+

θ − u
(s)−

θ

)

, (4.18)

where Sθ is a shear stiffness, so that perfect bonding is recovered in

the limit Sθ −→ ∞;

For dead-load tractions on the external surfaces, the boundary conditions

at r = r
(1)
i and r = r

(N)
e are

Σ
(1),(N)
rr

∣

∣

∣

r=r
(1)
i ,r

(N)
e

= 0, Σ
(1),(N)
θr

∣

∣

∣

r=r
(1)
i ,r

(N)
e

= 0,
(4.19)

or, equivalently,

{(p + 2µ∗)f
′ − k}(1),(N)

∣

∣

r=r
(1)
i ,r

(N)
e

= 0,

{

Cg′ −
1

r
(nf + g)(p + µ)

}(1),(N)
∣

∣

∣

∣

∣

r=r
(1)
i ,r

(N)
e

= 0.
(4.20)

On the boundaries θ = ±θ̄ we require that shear stresses and incremental

normal displacements vanish, namely

Σ
(s)
rθ

∣

∣

∣

θ=±θ̄
= 0, u

(s)
θ

∣

∣

∣

θ=±θ̄
= 0, (4.21)

a condition which is achieved if sinnθ̄ = 0 [see eqn. (4.9)] or, equivalently,

using eqn. (3.10), if

n =
2mπ

αl0
(m ∈ N). (4.22)

Since our objective is to employ a numerical method to evaluate the

critical angle for bifurcation θ̄cr, it becomes instrumental to rewrite eqn.

(4.13) as a linear system of first-order ODEs. This and the procedure to

derive numerically the bifurcation condition is described in Chapter 5.
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4. IN-PLANE INCREMENTAL BIFURCATIONS

Eqn. (5.14) provides the critical angle for bifurcation, θ̄cr, for a multi-

layered elastic plate subject to bending in terms of initial aspect ratios and

stiffness contrast between layers. Once this angle is known, eqn. (3.13)2

yields the critical stretch λcr = 2θ̄crr
(1)
i /l0.

4.2 Bifurcation of a bilayer

Although our analysis covers the case of a N -layer system, we will limit ex-

amples to the simple geometry of a two-layered system, also experimentally

investigated, where one of the layers is taken thin and rigid with respect to

the other, so that it acts as a sort of stiff coating. Both layers are made up

of neo-Hookean material (for which the response always remains elliptic).

The critical angle θ̄cr and the critical stretch λcr (at the compressive

side of the specimen) at bifurcation are reported in Figs. 4.1 and 4.2 as

functions of the aspect ratio l0/h0 (unloaded height of the specimen is l0

and global thickness is h0, see Fig. 3.1), for the thickness and stiffness

ratios h
(lay)
0 /h

(coat)
0 = 10 and µ(coat)/µ(lay) = 20, respectively. In the figures,

bifurcation curves are reported for different values of the integer parameter

m which, through eqn. (4.22), defines the circumferential wavenumber n.

Obviously, for a given value of l0/h0 the bifurcation threshold is set by the

value of m providing the minimum (or maximum) value of the critical angle

(or stretch). The difference between Fig. 4.1 and Fig. 4.2 is that the coating

layer is at the tensile side of the specimen in the former case, while it is at

the compressive side in the latter. In the same figures, also the threshold

is reported for surface instability of the ‘soft’ layer material (λsurf ≈ 0.545,

Ref. [11]). It can be deduced from the figures that a diffuse mode setting

the bifurcation threshold always exists before surface instability, for each

aspect ratio l0/h0
1. It is important to observe that the occurrence of the

1 For a single elastic block, Triantafyllidis, Ref. [52], claims that surface instability

occurs before diffuse modes, while Coman and Destrade, Ref. [17], on the contrary demon-

strate that the first instability mode is diffused. However, the two points of view can be
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Figure 4.1: Critical angle θ̄cr and critical stretch λcr (evaluated at the internal

boundary, r = r
(1)
i ) versus aspect ratio l0/h0 of a neo-Hookean coated bilayer

subject to bending with h
(lay)
0 /h

(coat)
0 = 10 and µ(coat)/µ(lay) = 20. The

coating is located at the tensile side. In both plots, a small circle denotes a

transition between two different integer values of m (the parameter which sets

the circumferential wavenumber). The small ‘square’ on the bifurcation curve

indicates the configuration studied in Fig. 3.2, top-left position.
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Figure 4.2: Critical angle θ̄cr and critical stretch λcr (evaluated at the in-

ternal boundary, r = r
(1)
i ) versus aspect ratio l0/h0 of a neo-Hookean coated

bilayer subject to bending with h
(lay)
0 /h

(coat)
0 = 10 and µ(coat)/µ(lay) = 20.

The coating is located at the compressed side. In both plots, a small circle

denotes a transition between two integer values of m (the parameter which sets

the circumferential wavenumber). The small ‘square’ on the bifurcation curve

indicates the configuration studied in Fig. 3.2, top-right position.
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Figure 4.3: Comparison between the critical angle θ̄cr at bifurcation versus

aspect ratio l0/h0 of two neo-Hookean coated bilayers subject to bending with

coating at the tensile side with µ(coat)/µ(lay) = 20 and h
(lay)
0 /h

(coat)
0 = 10 and

20, respectively. In every curve, a small symbol denotes a transition between

two different integer values of m (the parameter which sets the circumferential

wavenumber). Bifurcation angles for a single, uncoated layer are also reported.

critical diffuse mode is very close to the surface instability when the coating is

located at the tensile side of the specimen (Fig. 4.1), while the two thresholds

become well separated in the other case, namely, when the coating is located

at the compressive side (Fig. 4.2). This is because, in the latter, bifurcation

takes place with a buckling-like mode in the coating, then occurring at a

low axial stretch in the stiff layer. We can also observe from Fig. 4.1 (Fig.

4.2) that for l0/h0 > 10 (for l0/h0 > 6) the coated structures can be bent to

the annular configuration without ‘encountering’ any instability.

reconciled, since for a single layer the surface instability and the instability in diffused

modes are very close and may be taken to coincide in a first approximation.
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Figure 4.4: Comparison between the critical angle θ̄cr at bifurcation versus

aspect ratio l0/h0 of two neo-Hookean coated bilayers subject to bending with

coating at the compressed side with µ(coat)/µ(lay) = 20 and h
(lay)
0 /h

(coat)
0 = 10

and 20, respectively. In every curve, a small symbol denotes a transition be-

tween two different integer values of m (the parameter which sets the circum-

ferential wavenumber). Bifurcation angles for a single, uncoated layer are also

reported.

Some typical finite configurations and stress distributions at bifurcation

corresponding to l0/h0 = 2 in Figs. 4.1 and 4.2 (indicated by small ‘square

symbols’ on the bifurcation curve) are sketched in Fig. 3.2 for both positions

of the stiff layer.

The critical angle at bifurcation is reported in Figs. 4.3 and 4.4 as

a function of the aspect ratio l0/h0 for two values of coating thickness,

h
(lay)
0 /h

(coat)
0 = {10, 20} when the coating layer is on the tensile and on the

compressive side, respectively. In the same figures the case of the uncoated

layer is also reported for comparison. Note that results reported in Fig. 4.3

are similar to those reported in Fig. 6.1, since the coating is in the same
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4.2 Bifurcation of a bilayer

position, though the stiffness ratio between coating and layer is different and

equal to 20 in the former case and 500 in the latter. It is evident from the

figures that the bifurcation solution for a single layer is approximated by a

straight line, so that we can write down the approximated solution

θ̄cr = 0.712 l0/h0, (4.23)

which has passed unnoticed until the present work.

We may also notice that a linear relation between θ̄cr and l0/h0 is also

evident in the cases of Figs. 6.1, 4.1, and 4.3, while such a linear relation

holds only at high values of l0/h0 in the cases of Figs. 4.2 and 4.4. Moreover,

the inclination of such lines depends on the elastic and thickness contrasts

between layers, so that a simple formula like eqn. (4.23) is hard to be

obtained.

Results for bifurcation of bent configurations for bilayers are presented

in Figs. 4.5 and 4.6, in terms of critical semi-angle θ̄cr (upper part) and

critical stretch at the compressed side of the specimen [λcr(r
(1)
i ), lower part]

as a function of the ‘global’ aspect ratio (the initial length divided by the

initial total thickness). The ratios between the thicknesses and the shear

coefficients µ0 of the layers are (1 mm)/(5 mm) and (7 N/mm2)/(1 N/mm2)

for Fig. 4.1, respectively, and (3 mm)/(40 mm) and (2.687 N/mm2)/(0.095

N/mm2) for Fig. 4.2. The various curves reported in Figs. 4.5 and 4.6

represent solutions corresponding to different bifurcation modes, singled out

by the circumferential wavenumber m. The mode visible in an experiment

is that corresponding to the lower value of the critical semi-angle, θ̄cr, or to

the higher value of critical stretch at the compressed side, λcr. Note that

the gray zone represents the range of aspect ratios and bending semi-angle

for which two neutral axes occur.

Within the set of aspect ratios and stiffness contrast analyzed in Fig. 4.5,

a bifurcation only appears when two neutral axes have been formed, while it

may occur when two or one neutral axes are present in Fig. 4.6. In all cases
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analyzed, including Figs. 4.5 and 4.6, we have found that the gray zone in the

θ̄cr–l0/h0 graphs is bounded by a straight line, becoming a horizontal line in

the λcr–l0/h0 representation. The special feature emerging from Fig. 4.5 is

that the mode m =1 of bifurcation becomes the critical mode for sufficiently

high slenderness, so that here long-wavelength bifurcations (corresponding

to small m) become well-separated from surface modes (corresponding to

high m) and thus fully visible. This feature is also present in Fig. 4.6, which

has been produced with values of parameters corresponding to commercially

available rubbers (and tested by me, see Chapter 6). In this way it has been

possible to produce the two samples shown in Figs. 6.6 and 6.8, differing only

in the aspect ratio (taken equal to 2 for the sample shown in Fig. 6.6 and

1.5 for that shown in Fig. 6.8) and evidencing long-wavelength bifurcation

modes.

We provide a justification of the finding that, when two neutral axes

occur in a bilayer, the stretch (at the compressed side) is independent of

the global aspect ratio l0/h0, so that the gray zone (corresponding to the

presence of two neutral axes) is bounded by a horizontal (inclined) line in

the λcr–l0/h0 (in the θ̄cr–l0/h0) representation, Figs. 4.5 and 4.6.

The explanation of this effect is based on two observations. (i.) During

progressive bending of a bilayer with the stiff layer under compression, one

neutral axis is present from the beginning of the bending within the soft

layer, while the second neutral axis always nucleates at the interface between

the two layers (and then moves in the stiff layer). (ii.) When the second

neutral axis nucleates, the radial Cauchy stress Tr at the interface between

layers takes a value independent of the initial aspect ratio l0/h0. We can

therefore operate on a single layer by imposing, in addition to the usual

bending, a pressure P ext at one of its external sides (of initial length l0) to

correspond to the radial stress at the interface between layers. In particular,

we can apply P ext at the side where the longitudinal stretch is greater than

1.
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Figure 4.5: Critical angle θ̄cr and critical stretch λcr (evaluated at the internal

boundary, r = r
(1)
i ) versus aspect ratio l0/h0 for a Mooney-Rivlin bilayer

coated with a stiff layer and subject to bending with h
(1)
0 /h

(2)
0 =(1 mm)/(5

mm) and µ
(1)
0 /µ

(2)
0 =(7 N/mm2)/(1 N/mm2). The stiff layer is located at

the side in compression. In both plots, a small circle denotes a transition

between two integer values of m (the parameter which sets the circumferential

wavenumber). In the lower plot, the insert contains a magnification of the

region where bifurcations occur at low l0/h0. Two neutral axes occur in the

region marked gray. 41
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Figure 4.6: Critical angle θ̄cr and critical stretch λcr (evaluated at the internal

boundary, r = r
(1)
i ) versus aspect ratio l0/h0 for a Mooney-Rivlin bilayer

coated with a stiff layer and subject to bending with h
(1)
0 /h

(2)
0 =(3 mm)/(40

mm) and µ
(1)
0 /µ

(2)
0 =(2.687 N/mm2)/(0.095 N/mm2). The stiff layer is located

at the side in compression. In both plots, a small circle denotes a transition

between two integer values of m (the parameter which sets the circumferential

wavenumber). In the lower plot, the insert contains a magnification of the

region where bifurcations occur at low l0/h0. Two neutral axes occur in the

region marked gray.
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4.2 Bifurcation of a bilayer

To operate in dimensionless form, we introduce, from eqns. (3.9) and

(3.13), the kinematic unknowns

ᾱ =
2θ̄

a
, r̄ =

r

h0
, h̄ =

h

h0
, (4.24)

where a = l0/h0 is the aspect ratio of the undeformed configuration. The

internal and external non-dimensional radii, from eqn. (3.3), are

r̄i =
a

2θ̄h̄
−

h̄

2
, r̄e = r̄i + h̄. (4.25)

As we want to write the bending problem in terms of the variable λi = λ(r̄i),

we calculate θ̄ as a function of a, h̄ and λi, so that eqn. (3.13)2 gives

θ̄ =
a

h̄

(

1

h̄
− λi

)

, (4.26)

and the condition λe = λ(r̄e) becomes

λe =
2

h̄
− λi. (4.27)

The boundary conditions for the layer under consideration are now

Tr(r̄i) = 0, Tr(r̄e) = P ext, (4.28)

where

Tr =
µ0

2

(

λ2 +
1

λ2

)

+ γ,

can be written from eqn. (3.16)1. Eqn. (4.28)2 provides the coefficient γ in

the form

γ = P ext −
µ0

2

(

λ2
e +

1

λ2
e

)

, (4.29)

while, on the other hand, eqn. (4.28)1 is equivalent to

λ2
i +

1

λ2
i

+ 2
P ext

µ0
−

[

(

2

h̄
− λi

)2

+

(

2

h̄
− λi

)−2
]

= 0, (4.30)
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Figure 4.7: Critical angle θ̄cr at bifurcation versus the ‘global’ aspect ratio

l0/h0 of two Mooney-Rivlin identical layers jointed through a ‘shear type’ im-

perfect interface. The dimensionless stiffness Sθh0/µ0 takes the values 1, 5,

and 10. The insert specifies the different values of m (the parameter which

sets the circumferential wavenumber) at bifurcation for Sθh0/µ0 = 1.

from which it is clear that the unknown h̄ is independent of a (but remains

dependent on λi, µ0, and P ext). Therefore, since a neutral axis corresponds

to

Tθ(r̄e) = 0, (4.31)

eqns. (3.16)2, (4.29), and (4.27) show that the neutral axis condition is

independent of a, so that the solution in terms of λi becomes only a function

of µ0 and P ext. The effects of an imperfect interface on bifurcations of a

layered block under bending has never been analyzed, so that we limit the

discussion to a simple situation, while a more detailed presentation will be

the subject of future research. The simple example analyzed in Figs. 4.7
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Figure 4.8: Bifurcation angles θ̄ at fixed circumferential number m versus

the ‘global’ aspect ratio l0/h0 for two Mooney-Rivlin identical layers jointed

through a ‘shear type’ imperfect interface as in Fig. 4.7. Left: m=1; right:

m=2. A small number near a curve denotes the value of the dimensionless

stiffness Sθh0/µ0.

and 4.8 pertains to a uniform elastic block divided into two parts through

an imperfect interface of dimensionless stiffness Sθh0/µ0. Note that the

interface is placed along the initial neutral axis. Results presented in Fig.

4.7 are in terms of the critical bending angle for bifurcation θ̄cr, versus the

initial ‘global’ aspect ratio l0/h0, while similar results are reported in Fig.

4.8, but for a fixed circumferential wave number m. Therefore, θ̄ reported

in Fig. 4.8 is not ‘critical’, in the sense that it is the bifurcation angle at

fixed m, while θ̄cr is the smaller θ̄ for every m.

The results in Figs. 4.7 and 4.8 strongly depend on the dimension-

less parameter Sθh0/µ0 representing the interfacial stiffness, which yields an

important decrease in the bifurcation angles with respect to the perfectly

bonded case, which is approached at Sθh0/µ0 −→ ∞.
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5

Numerical procedures to

determine the critical angle

θ̄cr at bifurcation.

5.1 The determinantal method

The bifurcation condition can be numerically determined by introducing,

for each layer, the vector

z (r) = [f(r) f ′(r) f ′′(r) f ′′′(r)]T , (5.1)

so that the differential eqns. (4.13) can be rewritten as

z ′ = Nz , (5.2)

where the matrix N takes the form

N =















0 1 0 0

0 0 1 0

0 0 0 1

−N41 −N42 −N43 −N44















. (5.3)
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Adopting the notation X
(s)
e = X (s)(r

(s)
e ) and X

(s)
i = X (s)(r

(s)
i ) for vec-

tors or matrices referred to a generic layer s, and using eqns. (4.11)–(4.10),

the continuity of incremental tractions and displacements at an interface

between layers, eqns. (4.15), can be represented in matrix form as

[

Q
(s)
e −Q

(s+1)
i

]





z
(s)
e

z
(s+1)
i



 = 0 , (5.4)

where

Q(r) =















F (n2 − 1) r[F − n2(2D + C − Tr)] r2(F + 3C) r3C

(n2 − 1)(C − Tr) r(C + Tr) r2C 0

1 0 0 0

1 r 0 0















,

(5.5)

while boundary conditions (4.20) can conveniently be rewritten as

P
(1)
i z

(1)
i = 0 , P (N)

e z (N)
e = 0 , (5.6)

where

P(r) =





F (n2 − 1) r[F − n2(2D + C)] r2(F + 3C) r3C

n2 − 1 r r2 0



 . (5.7)

We are now in a position to set the numerical solution procedure. Since

in our examples we have always addressed systems with few layers, we use

the simple following numerical procedure.

1) Employing a numerical integration based on an explicit Runge-Kutta

(4,5)-formula, we solve, for each layer (index s has been dropped for

simplicity), four initial-value problems. These are based on system

(5.2), with the following four initial conditions:

z (1)i = [1 0 0 0]T , z (2)i = [0 1 0 0]T ,
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z (3)i = [0 0 1 0]T , z (4)i = [0 0 0 1]T .

In this way, we find four integrals,

z (m)(r) (m = 1, . . . , 4), (5.8)

for each layer.

2) The general solution for each layer can be constructed by linear com-

bination of the four functions (5.8), so that we obtain

z (r) = C1z (1)(r) + C2z (2)(r) + C3z (3)(r) + C4z (4)(r), (5.9)

where the unknown constants Ci (i = 1, . . . , 4) set the amplitude of

the bifurcation mode. These can be collected for each layer in a vector

c = [C1 C2 C3 C4]
T .

3) Boundary and interfacial conditions for the multilayer can be recast

in matrix form as































P̂
(1)
i : 0

Q̂
(1)
e −Q̂

(2)
i :

Q̂
(1)
e :

.. .. .. .. ..

: Q̂
(N−1)
e −Q̂

(N)
i

0 : P̂
(N)
e



























































c(1)

c(2)

..

..

c(N−1)

c(N)





























= 0 , (5.10)

or equivalently as

W̄ ĉ = 0 , (5.11)

where

P̂
(s)
i,e =







P
(s)
1j z

(s)
(1)j P

(s)
1j z

(s)
(2)j P

(s)
1j z

(s)
(3)j P

(s)
1j z

(s)
(4)j

P
(s)
2j z

(s)
(1)j P

(s)
2j z

(s)
(2)j P

(s)
2j z

(s)
(3)j P

(s)
2j z

(s)
(4)j







r=ri,re

, (5.12)
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and

Q̂
(s)
i,e =

























Q
(s)
1j z

(s)
(1)j Q

(s)
1j z

(s)
(2)j Q

(s)
1j z

(s)
(3)j Q

(s)
1j z

(s)
(4)j

Q
(s)
2j z

(s)
(1)j Q

(s)
2j z

(s)
(2)j Q

(s)
2j z

(s)
(3)j Q

(s)
2j z

(s)
(4)j

Q
(s)
3j z

(s)
(1)j Q

(s)
3j z

(s)
(2)j Q

(s)
3j z

(s)
(3)j Q

(s)
3j z

(s)
(4)j

Q
(s)
4j z

(s)
(1)j Q

(s)
4j z

(s)
(2)j Q

(s)
4j z

(s)
(3)j Q

(s)
4j z

(s)
(4)j

























r=ri,re

, (5.13)

so that bifurcation corresponds to the condition that system (5.10)

admits a non-trivial solution, namely,

detW̄ = 0, (5.14)

which provides the critical semi-angle θ̄cr.

5.2 The compound matrix method for a bilayer

The compound matrix method was initially proposed by Backus and Gilbert,

Ref.[4], and applied to problems of fluid mechanics, Refs.[3, 36–38, 56], and

solid mechanics, Refs. [32, 33]. Haughton and Orr, Ref. [29], used the

method in incremental elasticity, while Refs. [18, 19, 22, 28] employed it to

investigate instabilities of a homogeneous block subjected to finite flexure.

Our aim is to show the application to elastic multilayers subject to finite

bending in the simple case of a bilayer.

The differential equation (4.13) can be re-written as a linear system of

first-order ODEs, that in the case of two elastic layers can be cast in the

following standard form
y ′ = Ay ,
z ′ = Bz ,

(5.15)

where vectors y and z are defined as

y(r) = [f (1)(r)
(

f (1)
)′

(r)
(

f (1)
)′′

(r)
(

f (1)
)′′′

(r)]T ,

z (r) = [f (2)(r)
(

f (2)
)′

(r)
(

f (2)
)′′

(r)
(

f (2)
)′′′

(r)]T ,
(5.16)
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and matrices A and B , which depend on the radial coordinate r, as

A(r) =















0 1 0 0

0 0 1 0

0 0 0 1

A41 A42 A43 A44















, B(r) =















0 1 0 0

0 0 1 0

0 0 0 1

B41 B42 B43 B44















.

(5.17)

The components of A and B , as well as those of other matrices and vectors

introduced in this Chapter are listed in Appendix A.

The boundary conditions at the two external surfaces of the layer, eqns.

(4.20), are equivalent to

Cy(ri) = 0 , Dz (re) = 0 , (5.18)

where ri = r
(1)
i , re = r

(2)
i + h(2) and matrices C and D are

C =





C11 C12 C13 C14

C21 C22 C23 0



 , D =





D11 D12 D13 D14

D21 D22 D23 0



 .

(5.19)

Continuity conditions between the two layers, eqns. (4.15), can be written

as

Gy(rm) +Hz (rm) = 0 , (5.20)

where rm = r
(1)
i + h(1) and matrices G and H are defined as

G =















G11 G12 G13 G14

G21 G22 G23 0

G31 0 0 0

G41 G42 0 0















, H =















H11 H12 H13 H14

H21 H22 H23 0

H31 0 0 0

H41 H42 0 0















.

(5.21)

It is instrumental now to re-arrange the four solutions of eqns. (5.15):

two for the first layer, y I , yII , and two for the second layer, z I , z II , [these

solutions already satisfy the boundary conditions (5.18), but still not the
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interface conditions (5.21)] into two matrices sharing the following common

structure














∗I1 ∗II1

∗I2 ∗II2

∗I3 ∗II3

∗I4 ∗II4















, (5.22)

(where the symbol ‘∗’ stands for either y or z) and defining the so-called

‘compound matrices’. Moreover, we introduce the vectors φy
i (i = 1, ..., 6)

and φz
i (i = 1, ..., 6) collecting the components of the minors of matrices

(5.22) as

φ∗
1 = ∗I1 ∗

II
2 − ∗I2 ∗

II
1 , φ∗

4 = ∗I2 ∗
II
3 − ∗I3 ∗

II
2 ,

φ∗
2 = ∗I1 ∗

II
3 − ∗I3 ∗

II
1 , φ∗

5 = ∗I2 ∗
II
4 − ∗I4 ∗

II
2 ,

φ∗
3 = ∗I1 ∗

II
4 − ∗I4 ∗

II
1 , φ∗

6 = ∗I3 ∗
II
4 − ∗I4 ∗

II
3 .

(5.23)

With the definitions (5.22) and (5.23), the differential problem (5.15)

can be shown (Ref. [36]) to be equivalent to the new problem

(φy)′ = MAφy, (φz)′ = MBφz, (5.24)

where, introducing the symbol ‘�’, equal to A (to B) for φy (for φz), we

define

M � =

























0 1 0 0 0 0

0 0 1 1 0 0

�42 �43 �44 0 1 0

0 1 0 0 1 0

−�41 0 0 �43 �44 1

0 −�41 0 −�42 0 �44

























. (5.25)

The system of differential eqns. (5.24) has to be solved using a Runge-

Kutta (4,5) numerical method (we have used MatlabR© ver. 7.9) to determine

the vectors φy and φz.
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The solution of the bifurcation problem can be written as a linear com-

bination of the solutions y I , y II , z I , and z II ,

y = ξ1y
I + ξ2y

II ,

z = ξ3z
I + ξ4z

II ,
(5.26)

where the arbitrary coefficients ξi (i = 1, ..., 4), which set the amplitude

of the bifurcation mode, remain undefined in a linearized analysis. The

conditions at the internal interface (5.20) can be recast as

W ξ = 0 , with ξ = [ξ1 ξ2 ξ3 ξ4]
T , (5.27)

where

W =



















(
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(
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2
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(
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3

(
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3

(
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)

3
(
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4

(
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4

(
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)

4

(
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)

4



















, (5.28)

so that the bifurcation condition, depending on the bending semiangle θ̄,

the undeformed aspect ratios l0/h0 and h
(1)
0 /h

(2)
0 , and the stiffness ratio

µ
(1)
0 /µ

(2)
0 , becomes

det(W ) = 0. (5.29)

Condition (5.29) can be rewritten as the sum of 2×2-determinants as

1
∑

i=0

(−1)i


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∣

∣

∣
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∣
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∣
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∣

∣

∣

∣

∣
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


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(5.30)
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Figure 5.1: The compound matrix method (dashed line) against the de-

terminantal method (solid line): det(M ) is evaluated at different angles θ̄,

for l0/h0 =0.1, h
(1)
0 /h

(2)
0 =(1 mm)/(5 mm) and µ

(1)
0 /µ

(2)
0 =(7 N/mm2)/(1

N/mm2). Bifurcation corresponds to the vanishing of det(M ); note the ‘spu-

rious’ oscillations of the latter method.

The determinants can be expressed in terms of the wctors φy and φz as
∣

∣

∣

∣

∣

∣

Wk1 Wk2

Wl1 Wl2

∣

∣

∣

∣

∣

∣

= (Gk1Gl2 −Gk2Gl1)φ
y
1 + (Gk1Gl3 −Gk3Gl1)φ

y
2

+(Gk1Gl4 −Gk4Gl1)φ
y
3 + (Gk2Gl3 −Gk3Gl2)φ

y
4

+(Gk2Gl4 −Gk4Gl2)φ
y
5 + (Gk3gl4 −Gk4Gl3)φ

y
6,
(5.31)

and
∣

∣

∣

∣

∣

∣

Wk3 Wk4

Wl3 Wl4

∣

∣

∣

∣

∣

∣

= (Hk1Hl2 −Hk2Hl1)φ
z
1 + (Hk1Hl3 −Hk3Hl1)φ

z
2

+(Hk1Hl4 −Hk4Hl1)φ
z
3 + (Hk2Hl3 −Hk3Hl2)φ

z
4

+(Hk2Hl4 −Hk4Hl2)φ
z
5 + (Hk3Hl4 −Hk4Hl3)φ

z
6,
(5.32)

in which indices k and l take the values corresponding to the representation

(5.30). Once the undeformed aspect ratios l0/h0 and h
(1)
0 /h

(2)
0 and the stiff-

ness ratio µ
(1)
0 /µ

(2)
0 have been fixed, the bifurcation condition (5.29), through
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5.2 The compound matrix method for a bilayer

representation (5.30), becomes a function of the bending semiangle θ̄ only,

to be solved numerically (we have used the function ‘fzero’ of MatlabR© ver.

7.9). An example of the advantage related to the use of the compound ma-

trix method over the ‘usual’ determinantal method is reported in Fig. 5.1,

where det(W ) is plotted as a function of θ̄ for a ‘stiff’ case, in which the

superiority of the former approach is evident (note the ‘spurious’ oscillations

of the determinantal method). In this particular case, the 2-norm condition

number of the matrix W is equal to 9.37×1027, a value confirming that the

matrix is bad conditioned.
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6

Experiments on coated and

uncoated rubber blocks

under bending

To substantiate the theoretical results on bifurcation of layered structures

subject to finite bending, Roccabianca et al. (Refs. [43] and [44]) have de-

signed and performed experiments, in the way initiated by Gent and Cho

(Refs. [26] and [25]). In particular, we have imposed a finite bending to

uncoated and coated elastic strips (made of natural rubber), employing the

device shown in Fig. 6.2, in which a rubber strip is glued to two metal-

lic platelets along the longer sides (using Loctite c©) and these platelets are

forced to impose a bending to the strip, using a simple screw-loading de-

vice. Two different coatings have been tested, both realized using 0.2 mm

thick polyester transparent films (commercial copier films), glued singular

or double (using Loctite c©) to the rubber strip. During finite bending, the

appearance of crazes has been detected by direct visual inspection.

The natural rubber and the polyester films (4 dog-bone shaped stan-

dard ISO 5277-1/1BA 30 mm × 5 mm samples for each material) have been

tested under uniaxial stress, thus obtaining the results shown in Fig. 6.3,
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Figure 6.1: Experimental results versus theoretical predictions for the bifur-

cation opening semi-angle θ̄cr of uncoated and coated rubber strips subject to

finite bending, versus the aspect ratio l0/h0 of the undeformed configuration.

The shear moduli ratio µ(coat)/µ(lay) of the coated layers has been taken equal

to 500, while two thickness ratios h
(lay)
0 /h

(coat)
0 equal to 20 and 10 have been

considered. The critical theoretical configurations (for h
(lay)
0 /h

(coat)
0 = 20) cor-

responding to bifurcation points Ωi (i = 1, . . . , 4) are sketched in the right part

of the figure.
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rubber block

scale for bending angle measure

screw loading device

Figure 6.2: Device used to impose finite bending (of a semi-angle θ̄ equal to

25◦ on the left and to 45◦ on the right, with reference to Fig. 3.1) to coated

and uncoated rubber strips (an uncoated 10 mm × 100 mm × 4 mm rubber

strip is subject to bending in the photo).
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Figure 6.3: Uniaxial tests on and material characterizations of the natural

rubber and the polyester film employed in the specimens. Note that the neo-

Hookean interpolation has been selected to be valid only within the ‘range of

interest’ to experimentally-detected bifurcations.
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6. EXPERIMENTS ON RUBBER BLOCKS

where the true stress is plotted versus the stretch. It may be interesting

to note that, while the response of the rubber is typical of these materials,

the stress/stretch curve of the polyester film is highly nonlinear, exhibit-

ing a peak and a softening regime. In the plots, the interpolation with the

neo-Hookean material selected for the calculations is also included (giving

µ(lay) ' 1 kN/mm2 and µ(coat) ' 500 kN/mm2). This interpolation curve

may seem poor at a first glance, but we should point out that all the bi-

furcations found in the experiments have occurred with maximum stretches

ranging between 1.52 and 1.9 (1.38 and 1.64 for samples with thick coating)

in the rubber and between 1.02 and 1.04 (1.01 and 1.02 for samples with

thick coating) in the polyester. For this reason, the selected neo-Hookean

interpolation is much more accurate than it may appear and is taken valid

either in tension or in compression. The progression of bending is shown in

Fig. 6.4, referred to a 20 mm × 4 mm × 100 mm rubber strip coated with

two 0.2 mm thick films at the tensile side of the specimens ( in which the

larger dimension is that out-of-plane, taken sufficiently large to simulate the

plane strain condition). At a certain stage of finite bending, namely at a

certain bending semi-angle θ̄cr, crazes can be detected to appear on the sur-

face of the sample. This circumstance has been identified with appearance

of small wavelength bifurcations1 and compared with theoretical predictions

for uncoated layers and for layer with a stiff coating at the tensile side of

the specimen. Details of the surface of the block suffering compression are

reported in Fig. 6.5 at different bending semi-angles (30◦, 40◦, 50◦), from

which we may note that crazes appear at an opening semi-angle lying be-

tween 30◦ and 40◦. The results of experiments and theoretical predictions

are summarized in Table 6.1, where bifurcation semi-angles are reported for

1 Theoretical predictions indicate that the critical mode is always a diffuse mode,

which –for obvious reasons– cannot be detected by direct visual inspection. However,

for the geometries tested by us (an uncoated layer and layers coated at the side under

tension) this mode is very close to a high-wavenumber mode, which is that detected by

visual inspection.
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Figure 6.4: Finite bending of a 20 mm × 4 mm × 100 mm rubber block

coated with two polyester 0.2 mm thick films, imposed with the device shown

in Fig. 6.2. From the top to the bottom, left to right: specimen before loading;

specimen bent at a semi-angle of 30◦ (crazes are still not visible, see the detail

reported in Fig. 6.5); specimen bent at a semi-angle of 40◦ (crazes become

visible, see the detail reported in Fig. 6.5); specimen bent at a semi-angle of

50◦ (crazes invade the whole specimen, see the detail reported in Fig. 6.5).

the different geometries tested, and in Fig. 6.1. Despite the fact that our

loading device does not exactly impose the correct boundary conditions on

the planar sizes of the bent specimen (where the specimen should be free of

sliding), the experimental results are in a fairly well agreement with the the-

oretical predictions (with a tendency toward overestimation of bifurcation

angles) in all cases of uncoated and coated (two coating thicknesses, 0.2 and

0.4 mm, have been investigated) strips. In the second set of experiments

to detect bifurcation, we have imposed finite bending to bi-layered systems

made up of a natural rubber strip (3 mm thick) and a neoprene block (40

mm thick). In these case we have obtained only qualitative results. The

bilayer is obtained by gluing the neoprene block to the natural rubber srtrip

(we have used ethyl-cyanoacrylate, Pattex c©), Fig. 6.6. Four dog-bone
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6. EXPERIMENTS ON RUBBER BLOCKS

Figure 6.5: Details of Fig. 6.4. Crazes become visible in the photo taken

at an opening semi-angle of 40◦ (centre) and invade the whole sample at 50◦

(lower part), while these remain undetected at 30◦ (upper part).

Table 6.1: Summary of experimental results (in terms of critical semi-angle

at bifurcation, θ̄expcr ) and theoretical predictions (θ̄cr) (the percentage error is

denoted by ‘err.’) for rubber samples of thickness h
(lay)
0 = 4 mm, uncoated

and coated with a stiff 0.2 mm or 0.4 mm coating. θ̄cr = 180◦ means that the

annular configuration can be reached without bifurcation.

l0 h
(coat)
0 = 0 h

(coat)
0 = 0.2 mm h

(coat)
0 = 0.4 mm

mm θ̄expcr (θ̄cr) θ̄expcr (θ̄cr) err. [%] θ̄expcr (θ̄cr) err. [%]

10 58◦ (101.99◦) – –

15 100◦ (142.09◦) 31◦ (39.01◦) 20.53 25◦ (33.88◦) 26.21

20 180◦ (180◦) 50◦ (54.79◦) 8.74 38◦ (48.44◦) 21.55

30 180◦ (180◦) 73◦ (75.54◦) 3.36 64◦ (72.61◦) 11.86

40 180◦ (180◦) 102◦ (101.99◦) 0.01 80◦ (93.31◦) 14.26

50 180◦ (180◦) 140◦ (133.64◦) 4.75 110◦ (120.38◦) 8.62
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Figure 6.6: Bifurcation of a two-layer rubber block under finite bending

evidencing long-wavelength bifurcation modes. Stiffness and thickness ratios

between the layers are (2.687 N/mm2)/(0.095 N/mm2) and (3 mm)/(40 mm),

respectively. The stiff layer (86 mm × 3 mm × 150 mm, made up of natural

rubber, marked with a white pencil on the sample) is at the compressive side

and coats a neoprene layer (86 mm × 40 mm × 150 mm).
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Figure 6.7: Uniaxial tests and material characterization of the natural rubber

and the neoprene plate employed for the specimens to be subject to bending.

Dotted curves represent Mooney-Rivlin interpolations employed in the analy-

sis.
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6. EXPERIMENTS ON RUBBER BLOCKS

Figure 6.8: Progressive bending of a two-layer rubber block (undeformed

configuration is shown on the left, a bent configuration in the centre), evidenc-

ing bifurcation with long-wavelength bifurcation modes (shown on the right).

Stiffness and thickness ratios between layers is (2.687 N/mm2)/(0.095 N/mm2)

and (3 mm)/(40 mm), respectively. The stiff layer (64.5 mm × 3 mm × 150

mm, made up of natural rubber, marked with a white pencil on the sample) is

at the compressive side and coats a neoprene layer (64.5 mm × 40 mm × 150

mm).

shaped standard ISO 5277-1/1BA 30 mm × 5 mm specimens have been

sampled from the two materials to characterize them in terms of Mooney-

Rivlin model. Result of the tests (performed at room temperature with a

Messphysik Midi 10 testing machine equipped with Doli Edc 222 acquisition

and control electronics) are shown in Fig. 6.7, in terms of true stress versus

stretch. The selected ranges of stress and stretch for the tests correspond

to the values expected in the bending experiments. In the plots, the inter-

polation with the Mooney-Rivlin material (which provides a nearly-linear

response at the stretch under consideration) selected for the calculations

is also included. The least square method provides for the natural rub-

ber c
(natrub)
1 = 0.007 N/mm2, c

(natrub)
2 = 2.68 N/mm2 (corresponding to

µ
(natrub)
0 ' 2.687 N/mm2) and for the neoprene c

(neopr)
1 = 0.09 N/mm2,

c
(neopr)
2 = 0.005 N/mm2, giving µ

(neopr)
0 ' 0.095 N/mm2. The progression of

bending is shown in Fig. 6.8, referred to a 64.5 mm × 3 mm × 150 mm rub-

ber strip glued to a 64.5 mm × 40 mm × 150 mm neoprene plate (in which

the larger dimension is that out-of-plane, taken sufficiently large, 150 mm,

to simulate the plane strain condition). At a certain stage of finite bending,

namely at a certain bending semi-angle θ̄cr, a long-wavelength mode can be
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detected to appear on the surface of the sample (Fig. 6.8, right-hand side),

which qualitatively confirms our findings.

From a quantitative point of view, the critical semi-angle for bifurcation

results from modelling to be equal to 39.40◦ for the sample shown in Fig.

6.6 and 35.49◦ for that shown in Fig. 6.8, values that are definitely higher

than those found experimentally (30◦ for the former sample and 21◦ for the

latter). The fact that the theoretical predictions correspond to bifurcation

angles larger than those observed experimentally is also common to all pre-

vious experiments Refs. [26, 44] and can be explained as the usual effect of

imperfections (so that for instance the bending mode associated to the Eu-

ler buckling is always experimentally observed to become visible before the

achievement of the critical load). The fact that the discrepancy between the-

oretical and experimental values is larger in the cases reported in the present

article can be motivated in terms of the effect of the different sensitivity to

imperfections. In fact, short-wavelength undulations introduced in the ref-

erence configuration start to amplify and to ‘become visible’ much closer

to the bifurcation threshold than long-wavelength imperfections, a feature

demonstrated through finite element numerical simulations performed with

a commercial program Abaqus/CAER© ver.6.9. Plots of Fig. 6.9 have been

evaluated with a stiffness and thickness ratios between layers equal to (2.687

N/mm2)/(0.095 N/mm2) and (3 mm)/(40 mm), respectively, which repro-

duce the tested sample shown on the right in Fig. 6.8 (undeformed global

aspect ratio l0/h0 = 1.5). In the FEM analysis, a long-wavelength undula-

tion with an amplitude of 0.2 mm has been introduced in the undeformed

configuration (see Fig. 6.9, on the right) to simulate an initial imperfection.
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(Avg: 75%)

S, Mises

+0.000e+00
+8.333e-02
+1.667e-01
+2.500e-01
+3.333e-01
+4.167e-01
+5.000e-01
+5.833e-01
+6.667e-01
+7.500e-01
+8.333e-01
+9.167e-01
+1.000e+00
+2.523e+08

Figure 6.9: Finite element analysis of a bilayered block with stiffness and

thickness ratios between the layers are (2.687 N/mm2)/(0.095 N/mm2) and (3

mm)/(40 mm), respectively. A red solid line represent the interface between

layers.
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7

Out-of-plane incremental

bifurcations superimposed on

finite bending of an elastic

layered block

The goal of this section is to address the three-dimensional bifurcation prob-

lem of the multilayered body considered in Chapter 3 subjected to finite

bending. The finite bending solution for a three-dimensional elastic layered

block is similar to that described in Chapter 2.

7.1 General formulation

In this Chapter we analyze the out of plane bifurcation modes. In this

framework in the reference stress-free configuration, denoting by e0
i (i =

1, 2, 3) the common cartesian basis, the position of the generic point x 0(s) is

given by

x 0(s) = x
0(s)
1 e0

1 + x
0(s)
2 e0

2 + x
0(s)
3 e0

3, (7.1)
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7. OUT-OF-PLANE INCREMENTAL BIFURCATIONS

with

x
0(s)
1 ∈ [−h

(s)
0 /2, h

(s)
0 /2], x

0(s)
2 ∈ [−l0/2, l0/2], x

0(s)
3 ∈ (0, L), (7.2)

where the difference from eqn. (3.2) is only in the definition of the domain

for x
0(s)
3 . Following the same approach, in the deformed configuration points

of the s−th layer are transformed to points identified by

r(s) ∈ [r
(s)
i , r

(s)
i + h(s)], θ(s) ∈ [−θ̄,+θ̄], z(s) ∈ (0, L),

as λz = 1, see eqn.(3.7).

We first analyse the incremental field equations for a single layer and

then we formulate the complete problem adding the pertinent interface con-

ditions between layers and external boundary conditions of the multilayered

system. We refer to Chapter 2 for the notation. The gradient of incremental

displacement u(x ) is now given by

L = ur,rer ⊗ er +
ur,θ−uθ

r
er ⊗ eθ + ur,zer ⊗ ez + uθ,reθ ⊗ er

+
ur+uθ,θ

r
eθ ⊗ eθ + uθ,zeθ ⊗ ez + uz,rez ⊗ er +

uz,θ

r
ez ⊗ eθ + uz,zez ⊗ ez,

(7.3)

and the incompressibility condition (trL = 0) is

rur,r + ur + uθ,θ + ruz,z = 0. (7.4)

If the coordinate system of the current state is aligned to a principal

directions of stress, the non-vanishing components of C may be expressed

as

Crrrr = 2µ∗
1 − Tr, Cθθθθ = 2µ∗

2 − Tθ, Czzzz = 2µ∗
3 − Tz,

Crθrθ = µ3 + Γ3, Crθθr = µ3 + p3, Cθrθr = µ3 − Γ3,

Crzrz = µ2 + Γ2, Crzzr = µ2 + p2, Czrzr = µ2 − Γ2,

Cθzθz = µ1 + Γ1, Cθzzθ = µ1 + p1, Czθzθ = µ1 − Γ1,

(7.5)
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7.1 General formulation

where

Γ1 =
Tz − Tθ

2
, Γ2 =

Tz − Tr

2
, Γ3 =

Tθ − Tr

2
,

p1 = −
Tz + Tθ

2
, p2 = −

Tz + Tr

2
, p3 = −

Tθ + Tr

2
.

(7.6)

For a hyperelastic material the six independent moduli µi and µ∗
i (i =

1, 2, 3) (no sum on index) may be written as

2µ∗
i = λi

∂W

∂λi
+ λ2

i

∂2W

∂λ2
i

−
∑

l 6=i

λiλl

∂2W

∂λi∂λl

+ λjλk

∂2W

∂λj∂λk

(j 6= k 6= i),

2µi = (Tj − Tk)
λ2
j + λ2

k

λ2
j − λ2

k

(j 6= k 6= i).

(7.7)

The incremental constitutive equations in terms of the incremental first

Piola-Kirchhoff stress tensor can be written as

Σrr = −π̇ + (2µ∗
1 − Tr)ur,r,

Σθθ = −π̇ + (2µ∗
2 − Tθ)

ur + uθ,θ
r

,

Σzz = −π̇ + (2µ∗
3 − Tz)uz,z,

Σrθ = (µ3 + Γ3)
ur,θ − uθ

r
+ (µ3 + p3)uθ,r,

Σθr = (µ3 + p3)
ur,θ − uθ

r
+ (µ3 − Γ3)uθ,r,

Σrz = (µ2 + Γ2)ur,z + (µ2 + p2)uz,r,

Σzr = (µ2 + p2)ur,z + (µ2 − Γ2)uz,r,

Σθz = (µ1 + Γ1)uθ,z + (µ1 + p1)
uz,θ
r

,

Σzθ = (µ1 + p1)uθ,z + (µ1 − Γ1)
uz,θ
r

,

(7.8)

Consider the incremental equations of equilibrium, in polar coordinates,

Σrr,r +
1

r
Σrθ,θ +Σrz,z +

Σrr − Σθθ

r
= 0,

Σθr,r +
1

r
Σθθ,θ +Σθz,z +

Σθr +Σrθ

r
= 0,

Σzr,r +
1

r
Σzθ,θ +Σzz,z +

Σzr

r
= 0,

(7.9)
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7. OUT-OF-PLANE INCREMENTAL BIFURCATIONS

so that a substitution of eqns. (7.8) in eqns.(7.9) provides

π̇,r =

{

(2µ∗
1),r +

2µ∗
1 + p3 − Γ3)

r

}

ur,r + (2µ∗
1 + p3 + Γ3)ur,rr

+(µ3 + Γ3)
ur,θθ − uθ,θ

r2
+ (µ3 + p3)

uθ,rθ
r

+ (µ2 + Γ2)ur,zz

+(µ2 + p2)uz,rz − (2µ+
2 + p3 − Γ3)

ur + uθ,θ
r

,

π̇,θ = [r(µ3 − Γ3),r]

(

uθ,r +
ur,θ − uθ

r

)

+ r(µ3 − Γ3)uθ,rr

+(µ3 + p3)ur,θr + (2µ∗
2 + p3 − Γ3)

ur,θ + uθ,θθ
r

+r(µ1 + Γ1)uθ,zz + (µ1 + p1)uz,θz,

π̇,z = [r(µ2 − Γ2),r]
uz,r
r

+ [r(µ2 − p2),r]
ur,z
r

+ r(µ2 − Γ2)uz,rr

+(µ2 + p2)ur,zr + (2µ∗
3 + p1 − Γ1)uz,zz + (µ1 − Γ1)

uz,θθ
r

+(µ1 + p1)
uθ,zθ
r

.

(7.10)

We seek bifurcations in the following separable variable form































ur(r, θ, z) = f(r) cosnθ cos ηz

uθ(r, θ, z) = g(r) sin nθ cos ηz

uz(r, θ, z) = h(r) cos nθ sin ηz

π̇(r, θ, z) = k(r) cos nθ cos ηz

, (7.11)

where f(r), g(r), h(r) and k(r) are real functions and n is a real number

to be determined by boundary conditions. Substitution of representations
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7.1 General formulation

(7.11) in eqns. (7.10) yields

k′ =
f ′

r
{2r(µ∗

1),r + 2µ∗
1 − µ2 + Γ1 + Γ3}+ f ′′ (2µ∗

1 − µ2 + Γ2)

−
f

r2
{

(µ3 + Γ3)n
2 + (µ2 + Γ2)r

2η2 + 2µ∗
2 − µ2 − p1 − p3

}

−
g′n

r
(µ2 − µ3 − 2µ∗

2 − Γ1) +
gn

r2
(µ2 − µ3 − 2µ∗

2 − Γ1) ,

nk = f ′ (µ3 − µ1 + Γ2) +
f

r
(2µ∗

2 − µ1 + Γ1)− g′ [r(µ3 + p3)],r

+
g

r

{

[r(µ3 − Γ3)],r + r2η2(µ1 + Γ1) + n2(2µ∗
2 − µ1 + Γ1)

}

ηk =
f ′′′

η
(µ2 − Γ2) +

f ′′

rη
{r(µ2 − Γ2),r + 2(µ2 − Γ2)}

+f ′

{

1

r2η

[

r(µ2 − Γ2),r − (µ2 − Γ2)− n2(µ1 − Γ1)
]

+η [µ2 − 2µ∗
3 + Γ2] }+ f

{

1

r3η

[

−r(µ2 − Γ2),r − n2(µ1 − Γ1)

+µ2 − Γ2] +
η

r
[r(µ2 + p2),r + µ2 − 2µ∗

3 + Γ2]
}

+ g′′
n

rη
(µ2 − Γ2)

+g′
n

r2η
{r(µ2 − Γ2),r − (µ2 − Γ2)}+ g

{

n

r3η
[(µ2 − Γ2)

−n2(µ1 − Γ1)− r(µ2 − Γ2),r
]

+
nη

r
[µ1 − 2µ∗

3 + Γ1]
}

,

(7.12)

where a prime denotes differentiation with respect to r, note that the in-

compressibility condition

h = −
(ng + f + rf ′)

rη
, (7.13)

has been employed to arrive at eqns. (7.12).

By differentiating eqns. (7.12)2,3 with respect to r and substituting in

eqn. (7.12)1, a system of two differential equations is obtained which defines

the function f(r), g(r) within a generic layer. Once f(r) and g(r) are known,

the other functions, h(r) and k(r), can be calculated by employing eqns.
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7. OUT-OF-PLANE INCREMENTAL BIFURCATIONS

(7.12)1 and (7.13)2, respectively. The set of all functions f (s)(r), g(s)(r)

and (s = 1, ..., N) can be obtained imposing continuity conditions at the

interfaces and external boundary conditions.

Continuity of incremental tractions and displacements at interfaces can

be represented as

u(s)r

∣

∣

∣

r=r
(s)
e

= u(s+1)
r

∣

∣

∣

r=r
(s+1)
i

,

u
(s)
θ

∣

∣

∣

r=r
(s)
e

= u
(s+1)
θ

∣

∣

∣

r=r
(s+1)
i

u(s)z

∣

∣

∣

r=r
(s)
e

= u(s+1)
z

∣

∣

∣

r=r
(s+1)
i

,

Σ(s)
rr

∣

∣

∣

r=r
(s)
e

= Σ(s+1)
rr

∣

∣

∣

r=r
(s+1)
i

,

Σ
(s)
θr

∣

∣

∣

r=r
(s)
e

= Σ
(s+1)
θr

∣

∣

∣

r=r
(s+1)
i

,

Σ(s)
zr

∣

∣

∣

r=r
(s)
e

= Σ(s+1)
zr

∣

∣

∣

r=r
(s+1)
i

,

(7.14)

where r
(s)
e = r

(s)
i + h(s). For dead-load tractions on the external curved

surfaces, the boundary conditions at r = r
(1)
i and r = r

(N)
e are

Σ
(1),(N)
rr |

r
(1)
i ,r

(N)
e

= 0, Σ
(1),(N)
θr |

r
(1)
i ,r

(N)
e

= 0, Σ
(1),(N)
zr |

r
(1)
i ,r

(N)
e

= 0.

(7.15)

On the boundaries θ = ±θ̄ we require that shear stresses and incremental

normal displacements vanish, namely

Σ
(s)
rθ

∣

∣

∣

θ=±θ̄
= 0, u

(s)
θ

∣

∣

∣

θ=±θ̄
= 0, (7.16)

a condition which is achieved if sinnθ̄ = 0 [see eqn. (??)] or, equivalently,

using eqn. (3.10), if

n =
2mπ

αl0
(m ∈ N). (7.17)

To obtain the axial compression we can imagine that the plate is com-

pressed between rigid, lubricated plates. The appropriate end conditions are

then

Σ(s)
rz

∣

∣

∣

z=0,L
= 0, Σ

(s)
θz

∣

∣

∣

z=0,L
= 0, u(s)z

∣

∣

∣

z=0,L
= 0. (7.18)
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7.1 General formulation

To ensure this we require

sin ηL = 0 (7.19)

so η = κπ/L, for some integer κ.
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Figure 7.1: Plot of critical angle at bifurcation θ̄cr against aspect ratio l0/h0

(in-plane modem = 1), for homogeneous plates of dimensionless height L/h0 =

50. In each curve a small number denote the value of κ (the parameter which

sets the out-of-plane wavenumber). The dash-dotted curve represent the in-

plane bifurcation.

Since our goal is to employ a numerical method to evaluate the critical

angle at bifurcation θ̄cr, it becomes instrumental to rewrite eqns. (7.12) as a

linear system of first-order ODEs. The procedure to derive numerically the

bifurcation condition can be derived from the once described Chapter 5.

Eqns. (7.12) provide the critical angle at bifurcation (θ̄cr) for a multi-

layered elastic system subjected to bending in terms of initial aspect and

stiffness ratios between layers. Once this angle is known, eqn. (3.13)2 yields

the critical stretch λcr = 2θ̄crr
(1)
i /l0.
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7. OUT-OF-PLANE INCREMENTAL BIFURCATIONS

7.2 Examples

7.2.1 The homogeneous block

The first example consists in the analysis of the three-dimensional bifurca-

tions of a homogeneous, neo-Hookean elastic thick plate. This problem has

been chosen as a benchmark but also to compare our results with those given

by Haughton, Ref. [28]. In Fig. 7.1 the critical angle θ̄cr is reported as func-

tions of the aspect ratio l0/h0. Solid lines correspond to three-dimensional

modes and numbers close to them denote parameter κ which, through eqn.

(7.19), defines the out-of-plane wavenumber η. In Fig. 7.1 we are look-

ing to circumferential mode m = 1, the dash-dotted line represent in-plane

bifurcation corripondent to the same circumferential wavenumber. When

the parameter κ is equal to 1 we have a bifurcation mode which can be

compared with that of the Euler beam instability. In Fig. 7.2 the criti-

cal angle θ̄cr is reported as functions of the aspect ratio l0/h0. The plots

represent a plate of dimensionless height L/h0 = 50 in the upper part of

the figure, and with L/h0 = 10, 5 in the lower part on the left and on the

right, respectively. In addictionin this plot however in-plane bifurcations

(the lower boundary of gray regions corresponds to the occurence of an in-

plane bifurcation modes) and surface instability threshold occurring at the

compressed side (represented by a solid line in the plot) are also reported

in order to determine the exact global behaviour of a solid block. It is im-

portant to observe that for values of the parameter m larger than one, the

critical angle θ̄cr evaluated for in-plane and out-of-plane problems are very

closed each other, so that the gray region is also very well bounded by the

three-dimensional bifurcation curves for m > 1. It is clear that, for a plate

with L/h0 = 50, all blocks having l0/h0 < 4.17 loose uniqueness showing a

prevalent plane-strain mode (almost independent of the z-direction), while

for 4.17 < l0/h0 < 14.27 three-dimensional modes play an important role.

If we consider L/h0 = 10, 5 as in the lower part of Fig. 7.2, we can see that
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Figure 7.2: Plot of critical angle at bifurcation θ̄cr against aspect ratio l0/h0

(out-of-plane mode κ = 1) for plates of dimensionless height L/h0 = 50 top

position, and L/h0 = 10, 5 bottom-left and bottom-right position, respectively.

In each curve, a small circle denote a transition between two different integer

values of m (the parameter which sets circumferential wavenumber). In the

region marked gray the bifurcation is due to an in-plane mode. A solid line is

used to plot the threshold of the surface instability.

the interval of aspect ratio in which the out-of-plane modes are important
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7. OUT-OF-PLANE INCREMENTAL BIFURCATIONS

decreases, being equal to 3.72 < l0/h0 < 6.15 on the left, or disappears,

as it happens on the right. As a conclusion, we can state that for a bent

plate the three-dimensional bifurcation investigation is important for slender

specimens (high L/h0) while for stub blocks (low L/h0) the most restrictive

limit is that obtained from a plane strain analysis.

7.2.2 A bilayered block

Although our analysis covers the case of a N -layer system, we will limit

examples to the simple geometry of a two-layered system where, similarly

to cases investigated in the previous Chapter, one of the layers is taken thin

and rigid with respect to the other, so that it acts as a sort of stiff coating.

Both layers are made up of neo-Hookean material.

The critical angle θ̄cr at bifurcation is reported in Fig. 7.3 as functions of

the global aspect ratio l0/h0 (unloaded height of the specimen is l0 and global

thickness is h0, see Fig. 3.1), for a plate of dimensionless height L/h0 = 50.

The thickness and stiffness ratios used for the examples are h
(lay)
0 /h

(coat)
0 =

10 and µ(coat)/µ(lay) = 20, respectively. The difference between the upper

and the lower part of the figure is that the coating layer is at the tensile

side of the specimen in the former case, while it is at the compressive side in

the latter. In the figures, bifurcation curves are reported for different values

of the integer parameter κ which sets the wavenumber η in the z-direction.

In Fig. 7.3 the circumferential wavenumber is set imposing the value of the

parameter m = 1; in each plot a dash-dotted line represents the appropriate

in-plane bifurcation correspondent to the same circumferential mode. We

can see that, for an in-plane mode m = 1, the three-dimensional and the

bidimensional analysis produce values of the critical angle at bifurcation very

different (beyond l0/h0 = 3.04 in the upper plot and l0/h0 = 1.64 in the

lower plot) and the out-of-plane bifurcation curves those setting the onset

of the insatbility.
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In Fig. 7.4 the critical angle θ̄cr is reported as functions of the aspect

ratio l0/h0. The plots represent a plate of dimensionless height L/h0 = 50

on the left, and of dimensionless height L/h0 = 10 on the right, respectively.

The thickness and stiffness ratios used for these examples are h
(lay)
0 /h

(coat)
0 =

10 and µ(coat)/µ(lay) = 20. Again, in the upper part the coating is located

at the tensile side while the coating is compressed in the lower part of the

figure. Moreover, in these plots in-plane bifurcations (the lower boundary

of gray regions corresponds to in-plane bifurcation modes) and the surface

instability threshold occurring at the compressed side (represented by a

solid line in the plot) are also reported. Bifurcation curves are reported

for different values of the integer parameter m which, through eqn. (7.17),

defines the circumferential wavenumber n. Obviously, for a given value

of l0/h0 the bifurcation threshold is set by the value of m providing the

minimum value of the critical angle. As in the case of a uniform block,

for m > 1 the critical angle θ̄cr evaluated for in-plane and for out-of-plane

problems are very closed each other, so that the gray region is also very

well bounded by the three-dimensional bifurcations curves, independently

of the position of the coating. As a partial conclusion, we can state that

out-of-plane (3D) bifurcations are critical for slender plates (high values of

L/h0), while the in-plane analysis predicts the correct critical bending angle

for relatively stub structures (low values of L/h0).

To highlight the effect of the coating on the instability behaviour, we

have produced Fig. 7.5 for the same geometries and mechanical properties.

Solid lines represent the onset of bifurcation for the coated layers (copied

from Fig. 7.4), while dashed curves set the critical configurations for the

uncoated uniform block (see Fig. 7.2). We can appreaciate that the presence

of the coating changes strongly the behaviour of the block: if the coating is

located at the tensile side θ̄cr decreases considerably, while if it is compressed

the behaviour is more complex, inducing an increase of the bifurcation angle
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for low in-plane aspect ratios (l0/h0 < 0.84), the opposite for high values of

l0/h0.
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Figure 7.3: Plot of critical angle at bifurcation θ̄cr against global aspect ratio

l0/h0 (in-plane mode m = 1), for plates of dimensionless height L/h0 = 50 of

a neo-Hookean coated bilayer subject to bending with h
(lay)
0 /h

(coat)
0 = 10 and

µ(coat)/µ(lay) = 20. The coating is located at the tensile side in the upper part

and at the compressed side in the lower part of the figure. In each curve a

small number denote the value of κ (the parameter which sets the out-of-plane

wavenumber). The dash-dotted curve represent the in-plane bifurcation.
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Figure 7.4: Plot of critical angle at bifurcation θ̄cr against global aspect ratio

l0/h0 (out-of-plane mode κ = 1) for plates of dimensionless height L/h0 =

50, 10 on the left and on the right, respectively. The bifurcation curves are

evaluated for a coated bilayer with thickness and stiffness ratios h
(lay)
0 /h

(coat)
0 =

10 and µ(coat)/µ(lay) = 20. The coating is located at the tensile side in the

upper part and at the compressed side in the lower part of the figure. In each

curve, a small circle denote a transition between two different integer values

of m (the parameter which sets circumferential wavenumber). In the region

marked gray the bifurcation is due to an in-plane mode. A solid line is used

to plot the threshold of the surface instability.
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7.2 Examples
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Figure 7.5: Plot of critical angle at bifurcation θ̄cr against global aspect ratio

l0/h0 (out-of-plane mode κ = 1) for plates of dimensionless height L/h0 =

50, 10 on the left and on the right, respectively. The bifurcation curves are

evaluated for an homogenous block (dashes line) and for a coated bilayer (solid

line) with thickness and stiffness ratios h
(lay)
0 /h

(coat)
0 = 10 and µ(coat)/µ(lay) =

20. The coating is located at the tensile side in the upper part and at the

compressed side in the lower part of the figure. In each curve, a small circle

denote a transition between two different integer values of m (the parameter

which sets circumferential wavenumber).
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7. OUT-OF-PLANE INCREMENTAL BIFURCATIONS
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Conclusions

A new plane strain solution for finite bending of a thick, elastic multilay-

ered plate has been studied, revealing the complex stress state developing

in multilayered structures subject to large flexure, evidencing, for instance,

more than one neutral axis. This solution allows treatment of two and

three–dimensional bifurcations, highlighting the strong influence on criti-

cal configurations of geometry and stiffness contrast between layers. This

analysis has been performed semi-analytically, developing, for the computa-

tion of the instability bending angles, a special application of a numerical

method based on compound matrices, particularly well-performing for ‘stiff’

problems, as those where multiple neutral axes are present.

The case of coated plates has been considered in detail, investigating

in-plane and three-dimensional instability modes. The following conclusions

can be drawn:

- the presence of a stiff coating, both on the tensile or on the compressed

sides, generally decreases the bifurcation bending angle;

- the occurrence of a critical diffuse mode is very close to the surface

instability when the coating is located at the tensile side, while the two

thresholds become well separated when the coating is located at the com-

pressive side. This is because, in the latter, bifurcation takes place with a
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buckling-like mode in the coating, then occurring at a low axial stretch in

the stiff layer;

- the three-dimensional bifurcation analysis is significative only for rel-

atively slender plates, independently of the position of the coating. In the

other case, the plane strain investigation captures well the instability thresh-

olds of the coated block.

The predictions of bifurcation configurations have been confirmed by

performing simple experimental tests on rubber blocks coated by stiff layers,

which give full evidence to short or long- wavelength modes depending on the

considered specimen. It may be concluded that the theory can be effectively

used to predict limits to the deformation capability of multilayered materials.
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Appendix A

Matrices of numerical

methods

O41(r) = (1− n2)(F − rF,r − n2E)/(Cr4),

O42(r) = [(rF + 2rn2D),r − 2F ]/(Cr3),

O43(r) = [(rF ),r + 4F − 2n2D]/(Cr2),

O44(r) = 2(F + 2C)/(Cr).

(A.1)

A41(r) = (n2 − 1)(F (1) − rF
(1)
,r − n2E(1))/(C(1)r4),

A42(r) = [2F (1) − (rF (1) + 2rn2D(1)),r]/(C
(1)r3),

A43(r) = [2n2D(1) − (rF (1)),r − 4F (1)]/(C(1)r2),

A44(r) = −2(F (1) + 2C(1))/(C(1)r).

(A.2)

B41(r) = (n2 − 1)(F (2) − rF
(2)
,r − n2E(2))/(C(2)r4),

B42(r) = [2F (2) − (rF (2) + 2rn2D(2)),r]/(C
(2)r3),

B43(r) = [2n2D(2) − (rF (2)),r − 4F (2)]/(C(2)r2),

B44(r) = −2(F (2) + 2C(2))/(C(2)r).

(A.3)
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C11 = F (1)(n2 − 1), D11 = F (2)(n2 − 1),

C12 = ri[F
(1) − n2(2D(1) + C(1))], D12 = re[F

(2) − n2(2D(2) +C(2))],

C13 = r2i (F
(1) + 3C(1)), D13 = r2e(F

(2) + 3C(2)),

C14 = r3iC
(1), D14 = r3eC

(2),

C21 = n2 − 1, D21 = n2 − 1,

C22 = ri, D22 = re,

C31 = r2i , D23 = r2e .

(A.4)

G11 = F (1)(n2 − 1), H11 = F (2)(1− n2),

G12 = rm[F (1) − n2(2D(1) +C(1) − T
(1)
r )], H12 = rm[n2(2D(2) + C(2) − T

(2)
r )− F (2)],

G13 = r2m(F (1) + 3C(1)), H13 = −r2m(F (2) + 3C(2)),

G14 = r3mC(1), H14 = −r3mC(2),

G21 = (n2 − 1)(C(1) − T
(1)
r ), H21 = (1− n2)(C(2) − T

(2)
r ),

G22 = rm(C(1) + T
(1)
r ), H22 = −rm(C(2) + T

(2)
r ),

G23 = r2mC(1), H23 = −r2mC(2),

G31 = 1, H31 = −1,

G41 = 1, H41 = −1,

G42 = rm, H42 = −rm.

(A.5)
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PA
31 = [2F (1) − (rF (1) + 2rn2D(1)),r]/(C

(1)r3),

PA
32 = [2n2D(1) − (rF (1)),r − 4F (1)]/(C(1)r2),

PA
33 = −2(F (1) + 2C(1))/(C(1)r),

PA
51 = (1− n2)(F (1) − rF

(1)
,r − n2E(1))/(C(1)r4),

PA
54 = [2n2D(1) − (rF (1)),r − 4F (1)]/(C(1)r2),

PA
55 = −2(F (1) + 2C(1))/(C(1)r),

PA
62 = (1− n2)(F (1) − rF

(1)
,r − n2E(1))/(C(1)r4),

PA
64 = [(rF (1) + 2rn2D(1)),r − 2F (1)]/(C(1)r3),

PA
66 = −2(F (1) + 2C(1))/(C(1)r).

(A.6)

PB
31 = [2F (2) − (rF (2) + 2rn2D(2)),r]/(C

(2)r3),

PB
32 = [2n2D(2) − (rF (2)),r − 4F (2)]/(C(2)r2),

PB
33 = −2(F (2) + 2C(2))/(C(2)r),

PB
51 = (1− n2)(F (2) − rF

(2)
,r − n2E(2))/(C(2)r4),

PB
54 = [2n2D(2) − (rF (2)),r − 4F (2)]/(C(2)r2),

PB
55 = −2(F (2) + 2C(2))/(C(2)r),

PB
62 = (1− n2)(F (2) − rF

(2)
,r − n2E(2))/(C(2)r4),

PB
64 = [(rF (2) + 2rn2D(2)),r − 2F (2)]/(C(2)r3),

PB
66 = −2(F (2) + 2C(2))/(C(2)r).

(A.7)
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