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Abstract

Recent advancements in biomedical research and imaging applications

have ignited an intense interest in single-photon detection. Along with

single-photon resolution, nanosecond or sub-nanosecond timing resolution

and high sensitivity of the device must be achieved at the same time. Single-

Photon Avalanche Diodes (SPADs) have proved their prospectives in terms

of shot-noise limited operation, excellent timing resolution and wide spec-

tral range. Nonetheless, the performance of recently presented SPAD based

arrays has an issue of low detection efficiency by reason of the area on the

substrate occupied by additional processing electronics.

This dissertation presents the design and experimental characteriza-

tion of a few compact analog readout circuits for SPAD based arrays. Tar-

geting the applications where the spatial resolution is the key requirement,

the work is focused on the circuit compactness, that is, pixel fill factor re-

finement. Consisting of only a few transistors, the proposed structures are

remarkable for a small area occupation. This significant advancement has

been achieved with the analog implementation of the additional circuitry

instead of standard digital approach. Along with the compactness, the dis-

tinguishing features of the circuits are low power consumption, low output

non-linearity and pixel-to-pixel non-uniformity. In addition, experimental

results on a time-gated operation have proved feasibility of a sub-nanosecond

time window.
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Chapter 1

Introduction

The present chapter comprises the context of the thesis work together

with a brief discussion and description of the faced design challenges and

proposed solutions. Additionally, the innovative aspects of the research

and its distinctive features are summarized. With a short description of

each chapter the structure of the thesis is outlined.

1.1 The Context

At the present time a particular attention is focused towards non-destructive

and non-invasive measurements with optical techniques. Photon counting

applications are becoming popular due to many possible application areas

such as astronomy, chemical, material analysis, biomedical research and

imaging methods as well as the most recent area of quantum cryptogra-

phy. Lately a significant improvement has been achieved in the fluorescence

analysis of the structure and function of biological molecules.

For some applications (3D imaging, Positron Emission Tomography

and Fluorescence Lifetime Imaging) each single photon must be detected.

Without affecting the properties of the sample, low light level detection

allows high precision and high sensitivity measurements. Thus, these mea-

surements are widely used for cell qualitative and quantitative analysis by

1



1.1. THE CONTEXT

detecting fluorescence emitted from cells labeled with a fluorescent dye. In

clinical testing and medical in-vitro diagnosis photon counting technique

is used for blood analysis, blood cell counting, hormone inspection and di-

agnosis of cancer and various infectious diseases. In addition, fluorescence

and luminescence measurements are used for rapid hygienic testing and

monitoring processes in inspections for bacteria contamination.

For these low-level light applications single-photon resolution is not

the only requirement. The detector has to possess picosecond timing reso-

lution and at the same time high sensitivity as the signal may consist only

a few photons per emission. Along with that, the device must provide an

intrinsic amplification to allow the subsequent signal processing.

Currently, there exist several devices ensuring detection of single pho-

tons. Photomultiplier tubes (PMTs) multiply electrical current from free

carrier using dynodes in their structure. The dynodes also may be imple-

mented as channels, known as microchannel plates (MCPs). These two

types of single-photon counters are still the most used detectors assuring

high single-photon detection efficiency and high timing resolution at the

same time. The detector efficiency of PMT is about 35% for the whole

visible range. Cooled with scintillators, PMTs are also used as radiation

detectors in positron emission tomography. However, by reasons of the

high cost, fragility, sensitivity to external magnetic field, their exploitation

is limited to very specific applications. Moreover, a high voltage supply of

1-2 kV is required for the proper operation.

Charge-coupled devices (CCDs) were the first solid-state imager. The

operating principle is based on photon-generated charge transfer between

MOS capacitors. In order to achieve single-photon resolution, an additional

amplification stage and readout should be designed. Such a structure is

called an electron-multiplying CCD (EMCCD). CCDs are not autonomous,

thus, their use is restricted for some applications. Along with that, the

2



CHAPTER 1. INTRODUCTION

device requires an additional cooling system in order to decrease the noise

to acceptable levels.

An active-pixel sensor (APS) contains a photodetector and an am-

plifier used to amplify the photon-generated signal before the conversion

into digital signal. Typically, an APS structure is formed of p-n or p-i-n

reversely biased junctions. The benefit of implementation in CMOS tech-

nology is a relatively low cost of devices. However, these sensors do not

have sufficient time-resolution and sensitivity.

Linear-Mode Avalanche Diodes (APDs) allow amplification of photon-

generated carriers due to ionization, caused by high electric field into p-n

junction of the diode. The applied operating voltages are near the break-

down values. The number of carriers is directly proportional to the number

of detected photons. For single-photon counting APDs lack for timing ac-

curacy and suffer from quite large non-uniformities.

Single Photon Avalanche Diode (SPAD) based devices are currently

gaining the research interest as a perspective alternative solution to PMTs.

The reason of such an interest is the excellent timing resolution of the

detector that reaches a few tens of picoseconds. Along with that, SPADs

have significantly higher quantum efficiency and a large measurement range

from 300 nm to the near infrared.

SPAD is a photodiode biased above its breakdown voltage operating

in the so-called Geiger-mode. The structure of the diode is specially de-

signed to detect photons. It contains an active sensitive area and a guard

ring that is used to prevent edge breakdown. The single-photon resolution

is attainable due to the impact ionization effect taking place into the bulk

of the device. Each single photon hitting the active area of SPAD may

trigger a self-sustaining avalanche current of up to the mA range. This

current continues flowing until the voltage across the junction drops close

to the breakdown value, causing the avalanche to be quenched. Thus, dur-

3



1.1. THE CONTEXT

ing this reset time the detector remains insensitive to impinging photons.

To sustain the diode operating conditions, restore the bias voltage and pre-

vent damage of a SPAD, an additional quenching circuit is required. The

circuit functions are:

− to sense the leading edge of the avalanche current;

− to generate an output pulse corresponding to the avalanche current;

− to quench the avalanche, that is, lower the excess voltage down to the

breakdown voltage;

− to restore the photodiode to the operative level, that is, bias the diode

to a voltage above the breakdown.

The first SPADs were fabricated in a dedicated planar-silicon process.

Recently, SPADs have become feasible for assembling into arrays in CMOS

technology. Although CMOS process is initially not tailored for SPAD fab-

rication, due to technology optimization a few very successful designs have

been lately demonstrated [1, 2, 135]. This breakthrough of CMOS tech-

nology employment has allowed the additional circuitry, which is necessary

for SPAD quenching, data storage and signal processing, to be fabricated

inside the pixel. Along with the compactness and high functionality, the

design has also greatly lower cost.

Since the 2000s many SPAD arrays have been presented with the

design targets on picosecond response and time-gated operation. In spite

of the achieved high performance, there are still a number of issues which

should be addressed in image sensor design. The common drawback of

SPADs is their low fill factor.

4



CHAPTER 1. INTRODUCTION

1.2 The Problem

Even though there are several devices showing single-photon resolution,

their exploitation is limited for mass-production typically by reason of high

cost. Not least importance has the requirement of the intrinsic gain pro-

vided by the device and device uniformity. Among the aforementioned per-

spective devices, the most promising imagers in terms of sub-nanosecond

timing accuracy, robustness and cost at the same time are SPAD based

arrays.

However, a few issues should be addressed in the arrays performance

for wide-field applications. Analysis of the related latest work on SPAD

arrays design reflects an issue of a small pixel fill factor. Fill factor is

restricted by both the SPAD guard ring and the additional circuitry.

To improve the pixel fill factor the area occupied by the guard ring

was shrunk [2]. In addition, an array of optical microlenses aligned with a

SPAD array can be employed to recover the fill factor [3, 9]. Nevertheless,

the good yield and uniformity remains an unsolved issue until now.

Shrinking dimensions in CMOS technology could be exploited to min-

imize the circuitry area and increase the in-pixel functionality at the same

time. Lately there have been several arrays implemented in 0.13 µm CMOS

technology. Each photon detected by SPAD corresponds to an event which

should be stored and processed. To transmit the data a very wide band-

width is required introducing additional parasitic noise. However, this wire

parasitic capacitance can be eliminated with in-pixel design. This leads to

further reduction of pixel fill factor. Signal processing in SPAD arrays is

usually based on Time-To-Digital Converters and in-pixel digital counters.

Typically, digital implementation consists of a few hundreds of transistors

thus limiting the effective photosensitive area to a few percent. This fact

is evident in 2-D arrays [5, 6, 73, 120]. The fill factor achieved in linear
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arrays is slightly better [2, 7, 8]. However, the area occupied by the cir-

cuitry is still much larger compared to the detector active area. In other

words, whereas a high timing resolution is an absolute benefit of SPADs,

low sensitivity worsens the array performance.

1.3 The Solution

In this thesis the challenge of low fill factor of SPAD based image sensors

is addressed. Analysis of the related work suggests that additional in-pixel

electronics should be revised. One of the possible approaches to minimize

the electronics area on chip is technology scaling. A CMOS array fabricated

in scaled technology benefits smaller pixel size, increased resolution and

more functionality integrated on the same chip with the detector.

Along with this, the research is focused on the design of analog in-

pixel readout for photon counting. Whereas a standard digital implemen-

tation is area consuming, an analog circuit can consist of only a few tran-

sistors. At the same time, on the assumption of careful design, analog

approach can assure the accuracy comparable to the digital implementa-

tion. At the present time only few studies have been carried out on the

analog readout circuit design [143, 144, 145, 146]. Nonetheless, the first

results have proved an increase of the pixel fill factor [143] and, hence, the

overall array detection efficiency.

This thesis presents the design and experimental characterization

of several compact analog in-pixel readout circuits for photon counting. A

number of preliminary simulations have been performed in CAD to evaluate

and adapt the circuit performance. The first results have held considerable

promise, the circuits have been assembled into arrays and manufactured

in a standard 0.15 µm CMOS technologies. Along with the compactness,

the design goal was in-pixel functionality. Each pixel is comprises a SPAD,
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a quenching circuit, a time gating circuit and an analog counter. Based

on different operating principles, the number of detected photons is pro-

portional to the voltage decrease at the circuit’s output. Aiming a wide

dynamic range, some proposed structures have a programmable resolution

which can be tuned externally. Additionally, the design was targeted at

low power consumption, good output linearity and high pixel-to-pixel uni-

formity. Also it is necessary that electronic noise of the circuit be low, so

that the signal could be easily derived from the noise background.

The Ph.D. thesis also reports on the experimental characterization

of an array of CMOS analog counters. An array of 20×20 has been manu-

factured in a standard 0.35 µm CMOS technology. The circuit delivers an

output voltage proportional to the input pulse count, with a programmable

voltage step. The resolutions of 7 or 8 bits with a low readout noise and

low output non-uniformity across the array have been measured. Both the

integral and differential non-linearities are comparable to digitally imple-

mented counters. In addition, the circuit has a small power consumption,

which is one of the key parameters for large array assembling.

The analysis of the proposed designs proved analog readout to be a

good alternative for in-pixel signal processing in SPAD based image sensors

of high-spatial resolution.

1.4 Innovative Aspects

This research expands the scope of analog circuits exploited as in-pixel

processing circuitry. The proposed solution would bring significant im-

provements to the state-of-art approaches.

It is required that an additional circuitry be placed with SPAD in

pixel in order to minimize parasitic connections. The basic functions to be

performed are SPAD quenching, time gating, photon counting and storage

7
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of the data.

First of all, given the experimental results, the analog implementa-

tion has achieved characteristics comparable to digital standard circuits.

Programmability of the output is a certain benefit of an analog

counter that has been tested for the Ph.D. It has shown a low non-uniformity,

a low readout noise and low output non-uniformity across the array at res-

olutions of 7 and 8 bits.

Thus, a certain advantage of the second structure reported in Chap-

ter 3.2 is its programmable output, that is, programmable resolution. This

means that the circuit can be easily tailored satisfying any particular de-

mands of applications. This circuit can be particularly efficient for the

applications where a high output linearity is a key requirement.

The circuit structure described in Chapter 3.3 has a benefit of a

low electronic readout noise which remains constant during the acquisition

time. This design is remarkable due to a low non-uniformity among the

pixels (only 1%). Moreover, the time gating function realized within the

circuit achieves sub-nanosecond resolution.

The forth stricture presented in section 3.4 has shown an output

non-linearity of 3.7% and an electrical non-uniformity among the pixel of

3.5%.

Compared to the former designs, all four structures presented in this

dissertation are notable for their compactness. The area occupation of this

analog implementations (less than 300µm2) is a factor 10 smaller than a

digital counter of the same resolution [73].

Along with this, in virtue of a low power consumption per pixel

assembling of large arrays of detectors becomes feasible.

These characteristics are well-suited for single-photon counting ap-

plications. Therefore, the circuits can be suggested as in-pixel counters for

SPAD based image sensors for wide-field applications.
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1.5 Structure of the Thesis

The structure of this dissertation is following. In Chapter 2 the main light

properties are presented together with the figures of merit of semiconductor

photodetectors. Then, a brief historical overview of image sensors devel-

opment is given, including the evolution both in the technology and sen-

sor architecture. The structure, main characteristics and prospectives of

CMOS SPADs as photodetectors possessing single-photon resolution are

presented. The most important figures of merit of imaging sensors are

introduced. The developed SPAD arrays used for photon-counting appli-

cations are discussed with the main interest focused on the implementation

of the addition in-pixel circuitry. Finally, an overview of existing attempts

towards the SPAD based sensors of high spatial resolution are analyzed.

Chapter 3 reports on the design of several analog readout circuits

for SPAD arrays to be implemented in a standard CMOS technology. The

main target of these designs was circuit compactness. Additionally, the

main challenges for the development are also discussed in this Chapter.

The circuits design and their operating performance are described in detail.

In addition, the circuits’ preliminary characterization performed by means

of numerical simulations in CAD is shown. The configurations satisfying

the set goals are presented.

The design of the test array and the experimental setup are discussed

in Chapter 4. An external electronics is required for the following data

transfer and processing and signal triggering. Hence, row and column

decoders and window gating circuit have been implemented in chip. Chip

architecture and chip layout are also presented. The test setups used for

the electro-optical characterization is described.

The pixel design and experimental characterization of the fabricated

CMOS linear test arrays are reported in Chapter 5. The architecture of

9



1.5. STRUCTURE OF THE THESIS

each pixel, including a SPAD, a quenching circuit, a gating circuit and an

analog readout are presented. The results of an electro-optical characteri-

zation of the arrays are discussed. The main characteristics of the circuits

response are given. Along with the architecture and characterization of

designed pixels, the characterization of a large array of counters has been

carried out and the results are also described.

Finally, Chapter 6 contains a critical analysis of the achieved results.

The comparison with the related works is presented. This Chapter also

contains the ideas for further possible improvement of the analog circuits

in order to meet all requirements for single-photon counting applications.
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Chapter 2

State-of-the-Art

2.1 Light Detection: Properties of Semiconductor

Photodetectors

A photodetector is an electronic device, which detects photon flux trans-

forming the photon energy into an electric charge or voltage on its out-

put [22, 23]. The detection principle is based on one of these two effects:

thermo- or photo-electric effect. Thermal detectors convert the photon

energy into heat. However, these devices are rather unsuitable for many

photonic applications by reason of a relatively long time needed for their

temperature change. The photoelectric effect occurs in several materials

due to photon absorption, which cause mobile charge carriers generation

and, therefore, an electric current flow. Photon detectors can be subdivided

in three main classes accordingly to the physical effect of the detector re-

sponse:

− Photoconductive: the photogenerated carriers stay inside the material

lattice and increase its conductivity as a function of the impinging light

intensity (photoconductivity process);

− Photovoltaic: a voltage is generated over a semiconductor p-n junction

when optical energy impinges the device (photoelectric emission);
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− Photoemissive: incident photons release electrons from the surface of

the detector.

The internal photoelectric effect is the basis of operation of many silicon

photodetectors. The energy of light can be transferred to the electrons into

the valence band. The effect can be divided into three basic processes. Dur-

ing the first one – generation – photons, quanta of electromagnetic energy,

are absorbed and generate electrons and holes. These two carriers flow

into different directions, thus, causing a current flow (transport process).

In order to travel through the bandgap Eg and generate an electron-hole

pair, photons should have a sufficient energy Eph at wavelength λ [µm] and

frequency ν

Eph = hν =
hc0
λ
≥ Eg, (2.1)

where h = 6.626 · 10−34 J · s is Plancks constant, c0 = 3 · 108 m/s is the

speed of light in vacuum. The shorter the wavelength, the more energy

each photon contains. Only the photons with the energy Eph equal or

exceeding the bandgap energy of semiconductor Eg can be absorbed. In this

case, the photon absorption excites the electron from the valence band into

the conduction band. As a result, one electron-hole pair is created. The

generated current can be detected in the external circuit. The generated

electrons and holes under a large electric field may liberate more electrons

and holes within the device by a process of impact ionization [22]. This

internal amplification process increases the detector responsivity. Several

photodetectors are capable for amplification of the photocurrent.

Another important parameter for photodetectors is the optical ab-

sorption coefficient α, which represents the capability of the detectors ma-

terial to absorb photons and generate photocurrent. The optical absorption
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coefficient α depends on the semiconductor used for the detector fabrica-

tion and the light wavelength. It determines the light penetration into the

bulk, which decreases with the depth, therefore, the light intensity I can

be described with Lambert-Beers law:

I(x) = I0 exp(−αx). (2.2)

where I0 is the initial beam light intensity. At present, silicon is the most

important material among other semiconductors in terms of cost and tech-

nological effectiveness despite the relatively low optical absorption coeffi-

cient and optical range confined in the visible and near infrared spectrum.

2.2 Figures of Merit of Photodetectors

There are several parameters, so-called, figures of merit, which are used to

estimate the photodetector performance [24].

− Quantum efficiency η (0 ≤ η ≤ 1) of a photodetector is the probability

that a single photon coming into the bulk of the device generates

an electron-hole pair that contributes to the photocurrent. In other

words, η reflects the efficiency and sensitivity of the device to the

incident optical energy. Not every photon impinged on the device

contributes to the current because of a few possible reasons:

a) the probabilistic nature of the absorption process;

b) reflection from the device surface;

c) recombination process (mainly near the detector surface);

d) detector active area limitations (more related to the device rather

to the intrinsic properties).
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Therefore, the quantum efficiency can be described as

η = (1−<)ζ[1− exp(−αd)], (2.3)

where < is the optical power reflection coefficient at the surface, ζ —

the fraction of electron-hole pairs that contribute successfully to the

detector current, α — the optical absorption coefficient of the ma-

terial, d — the photodetector depth. The first component (1 − <)

corresponds to the effect of reflection at the surface of the device

and can be diminished with antireflection coating. The fraction of

electrons and holes, which contribute to the useful photocurrent, is

expressed as ζ. Finally, the last constituent [1 − exp(−αd)] repre-

sents the fraction of the photons absorbed into the bulk. In order to

maximize this factor, the detector should have a high depth. Being

a function of α, the quantum efficiency depends on the wavelength

and the properties of the material used to fabricate the detector. The

quantum efficiency drops to 0 at longer wavelengths λ ≥ λg =
hc0
Eg

as the photon energy becomes insufficient to overcome the bandgap

and to be absorbed. This limiting bandgap wavelength λg is called

long-wavelength limit. For very small values of λ, η also decreases as

the impinging photons are absorbed near to the surface, where elec-

trons and holes recombine before being collected and therefore do not

contribute to the photocurrent (short-wavelength limit).

− Responsivity relates to the detector output photocurrent per unit of

input optical power at a certain wavelength. A photon flux Φph would

cause an electron flux Φe, therefore, this current can be described as

i = ηeΦe =
ηeP

hν
= RP, (2.4)

where P = hνΦe [W ] is an optical power at frequency ν. The propor-
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tionality factor R [A/W ] is defines as the responsivity of the device

R =
ηe

hν
= η

λ

1.24
. (2.5)

− Linearity — optical detectors are characterized by their linear re-

sponse to the light intensity. The lowest detectable light level is de-

termined by noise, while the upper range depends on the maximum

current, which can be produced by the detector without saturation.

When the optical power reaches excessively large values, the detector

output become irresponsive. This operation mode, called the satura-

tion region, limits the detector dynamic range.

− Spectral response response characterizes the sensor response at dif-

ferent wavelengths. Mainly this parameter depends on the detector

material.

− Noise: the noise in optical detectors can have an internal or external

origin. The external noise is caused by environmental factors outside

the system. The internal noise is generated by internal sources of

noise, delimiting the lower border of the dynamic range. The main

contributions are introduced by:

• Photon noise is the most fundamental source of noise and given by

the fluctuations in the photon arrival rate (described by Poisson

statistics);

• Johnson noise or thermal noise is generated by thermal fluctua-

tions in conducting materials. Each electron in a semiconductor

is in continuous movement, thus, producing a small current;

• 1

f
Noise — sometimes called “flicker noise”. This is a fluctuation

whose spectral density increases for lower frequencies. It occurs
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in most devices and is caused by traps, often near surface inter-

faces. The resulting slow drifts in signal level can be removed by

chopping (modulating) the incident light to bring it to a higher

electrical frequency.

Moreover, if an external circuitry is used for the processing of the

signal from the detector, it as well contributes to the receiver circuit

noise caused by the various components such as resistors and tran-

sistors. Electronic noise is composed by thermal and
1

f
noise. While

a conventional photodiodes noise is pure shot noise, thermal,
1

f
noise

and sometimes additional shot noise are contributed by additional

electronics.

2.3 Image Sensors Evolution: Brief Historical Overview

2.3.1 Photomultiplier tubes

Photomultiplier tube (PMT) developed in 1934 by L. Kubetsky [25, 26]

became the first photodetector with single-photon resolution and it cur-

rently is still being widely exploited. In the core of its operation principle

lays the photoelectric effect and the process of secondary emission. The

structure of PMT is displayed in Figure 2.1. Electrons emitted from the

surface of a photoemissive cathode travel towards an electrode (anode)

passing through a number of secondary emitting dynodes, placed in such

a way that electrons are delivered from each dynode to the neighboring in

series. Emitted electrons are accelerated by the voltage applied to each

dynode and generate secondary electron emission. Thus, a large current

pulse is produced at the anode. For a long time since its development,

PMTs had been the only exploited devices in virtue of their high gain, low

noise, ultra-fast response, excellent timing performance and wide dynamic
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Figure 2.1: Typical structure of photomultiplier tube

range linearity. However, PMTs are costly and fragile devices, sensitive to

ambient light and external magnetic field. In addition, they require high

operating voltages. These disadvantages shrank PMTs exploitation.

2.3.2 Microchannel plates

Later, in 1960th, the idea of extension of PMTs into an array has lead to

the design of microchannel plates (MCPs) [27, 28, 29, 30, 31], which were

originally developed for image intensifiers. A microchannel plate and its

single pore are depicted in Figure 2.2.

At that stage, many photon fluxes could be detected at once assur-

ing spatial resolution. MCPs comprise small bundled electron multiplier

channels made of glass with a resistive coating. Channel diameter varies

from 3 to 15 µm. For the proper operation of the device a high voltage of

a thousand volts is applied to the metallized surfaces of these plates. The

internal surfaces of the pores are semiconducting. A weak current through

each pore produces a uniform electrical field inside each channel. There-

fore, a single photon hitting the channel surface releases a photoelectron.

The strong electrical field accelerates the electron towards the back end of

the channel. This electron will hit the channel wall and may release sec-
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Figure 2.2: A circular microchannel plate (on the right) and its single pore (on the left)

ondary electrons. Thus an electron avalanche occurs in the microchannel

and an amplified current can be collected at the output of the channel.

Due to the small size of a channel and the small distance between them, a

photoelectron transient time as low as 25 ps can be achieved [32, 33, 34, 35].

Similarly to PMTs, signal amplification is produced by secondary electron

emission. Been built later in the 1980s, MCP-based detectors were spread

to diverse fields in virtue of their high spatial resolution, high electron am-

plification, low dark current, high sensitivity. Nonetheless, these detectors

still could not be exploited in low cost systems, as MCPs require expen-

sive high vacuum equipment and high operation voltages power supplies.

Along with the aforementioned drawbacks, a set of complexities lays into

the manufacturing process: limited durability of photocathodes and chan-

nel reproducibility. Since then, many techniques varying from the different

materials of the substrate to additional coating have been applied, but the

detector performance was improved just partially. Not least importance

has a pretty costly manufacturing process of MCPs.
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2.3.3 Charge-coupled devices

A breakthrough in imaging has been done with the progress in solid-state

electronics. Charge-coupled devices (CCDs) invented in 1969 [36, 37, 38,

39] provide high-quality image data and are therefore widely used in profes-

sional, medical and science applications. CCD operates as a shift register

and its operating principle is shown in Figure 2.3.

Figure 2.3: Operating principle of CCD

A CCD consists in a pixel array, where each pixel is a MOS capacitor,

reversely biased and, thus, strongly inverted, and some readout circuitry,

which is needed to convert the photocurrent into a voltage or an electric

charge. An image is projected on the surface of the array through a lens.

Impinging on the surface of semiconductor-oxide photons create propor-

tional electric charges. Each gate pair is connected to an alternate clock

line, which are pulsed in counter-phase. Triggering the gate voltages, the

charge of a single pixel is transferred to its neighboring pixel. The process
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is repeated until it reaches a readout circuit, which converts the total array

charge into a voltage map. Distinguishing features of CCD matrix are high

spatial resolution and its high quantum efficiency (above 70% for back-side

illuminated devices), which can be further improved up to 90% by optical

microlens array deposited on the top of the pixel array. However, the de-

vice suffers from dark current, thus an additional expensive cooling system

is often required. CCDs can be fabricated only in specialized technologies,

which are optimized for charge transfer implementation. Adjustability of

these technologies allows pixel size scaling without significant performance

deterioration. However, other camera functions cannot be integrated in

the same chip.

2.3.4 CMOS Passive, active and digital pixel sensors

In the 1960s there were many research groups putting efforts on image sen-

sor for implementation in a Complementary Metal Oxide Semiconductor

(CMOS) process. The use of this technology could help to dramatically

reduce the manufacturing cost. The first image sensors were the bipolar

and MOS photodiode arrays developed by Westinghouse, IBM, Plessy, and

Fairchild in the late 1960th. The passive-pixel sensors (PPS) was proposed

first by Weckler in 1967 [40]. Nevertheless, the modern CMOS imaging

systems are based on work reported in the mid 1980th. Thereby, until the

early 1990th the PPS fabricated in a CMOS technology [41] became the

sensor of choice. The PPS contains a photodiode and a transistor, fabri-

cated in Bulk CMOS, which performs the function of pixel reset and row

selection for the pixel readout by an external circuitry. In order to keep the

bus voltage constant a charge integrating amplifier (CIA) is set at the end

of each column. The structure of PPS is depicted in Figure 2.4. Figure 2.5

displays a passive-pixel based array.

PPS suffered from high fixed-pattern noise brought by active ele-
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Figure 2.4: A passive pixel sensor structure
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Figure 2.5: An passive-pixel based array

ments of readout, and slow readout speed as the charge of each pixel is

transferred in series. Much later in 2000th, some efforts were taken to

solve the high FPN issue [42, 43], but still PPS are not suitable for a large

array implementation.

As CCDs do not have the drawback of temporal and fixed-pattern

noise,at that time they became the base for image sensor performance.

The main challenges for CCD technology and design have been set at quan-

tum efficiency improvement, high fill factor, dark current reduction, charge

transfer efficiency, low electronics readout noise, gated operation and high

frame rate. A large effort was also applied to reduce the operating voltage

and power supply and has led to the development of many new types of

CCDs.

MOS based sensors were investigated inertly as the achieved results

were unfavorable in comparison to the set criteria. Only in the early 1990th

CMOS image sensors found new prospects for developers not in terms of

excellent performance, but overall system low cost and chip functionality.

23



2.3. IMAGE SENSORS EVOLUTION: BRIEF HISTORICAL OVERVIEW

As a result of intensive work on CMOS imagers, the CMOS active-pixel im-

age sensor (APS), conceived in 1968 [44], was refined in the 1990s [45]. The

structure of a three-transistor active pixel sensor is presented in Figure 2.6.

Figure 2.7 depicts an active pixel based array.
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Figure 2.6: A three-transistor active pixel

sensor
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Figure 2.7: A 3-T APS based structure

from [50]

Each pixel in APS array consists of a photodetector (photodiode) and

an active amplifier. This new sensor solved the problem of its precursor

PPS: an individual pixel amplifier serves to suppress the noise at each

pixel, to buffer the signal and read out the output as voltage. Due to the

advent of CMOS deep-submicron and integrated microlense technologies,

the performance of APS achieved a level comparable and competitive to

CCDs in image resolution, readout speed and noise, power consumption,

dimensions and cost [46, 47, 48, 49, 50]. Moreover, due to the use of CMOS

technology, the image processing circuitry shares the same substrate with

the image sensor, while CCD requires many separated chips with different

functions.

With the progress in technology scaling, digital pixel sensors (DPS)
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were fabricated [51]. Its structure is depicted in Figure 2.8. An analog-to-

digital converter was integrated into each pixel. The parallel conversion and

digital implementation allows a high-speed readout and a wider dynamic

range. There are a few examples of arrays operating at hundreds of frames

per second with megapixel and more functionality in pixel [52, 53, 54]. An

example of array based on DPS is shown in Figure 2.9. Fill-factor in such

sensors is typically in order of 20% [55, 56, 58].

Refinement of in-pixel circuit was addressed in [57]. A test prototype

of 64×64 with a shared column-parallel comparator was presented. Due to

this approach and source follower placed outside the pixel, a 33% fill-factor

was achieved. Moreover, the pixel power consumption is reduced by two

orders of magnitude compared to a conventional 3-T pixel.

Figure 2.8: A digital active pixel sensor structure presented in [51]

Very high resolution imagers nowadays are based on 4T pixels. The

feature that make them fast are on-chip ADCs, either a single one or

column-level, and massive parallelization of the output signals. This break-

through made CMOS sensors perfectly fit for very high-resolution imagers

implementation with megapixel resolution and video applications.
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Figure 2.9: A pixel array based on DPS

2.3.5 Single-photon detectors based on superconducting nanowire

Single-photon detectors based on superconducting nanowire (SNSPDs) have

been recently elaborated and this technology immediately became a very

promising solution for infrared range of wavelength. In 2001 the first time

the single-photon sensitivity at 790nm of a current-biased NbN supercon-

ducting nanowire was demonstrated By Gregory Gol’tsman et al. [11]. The

SNSPD devices possess high efficiency, low dark counts and excellent tim-

ing resolution thus allowing their exploitation in many of applications such

as quantum information science and photon-counting in the 1-1.7 µm wave-

length [21]. Whereas conventional single-photon-detector technologies op-

erate at wavelengths shorter than 1000nm, SNSPDs have a unique perfor-

mance at longer infrared wavelengths. Infrared operation is desirable for

quantum cryptography [13, 14, 15], optical quantum computing [16, 17],

space-to-ground communications [18], characterization of emission from

CMOS circuitry [19, 20] and other sources.

The operation of an SNSPD is based on a phase transition between

the superconducting and resistive states in a current-biased nanowire. A
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thin (less than 10nm) superconducting wire with a width of approximately

100 nm. The detection cycle is shown in Figure 2.10. Initially, this wire

is cooled down well below its superconducting critical temperature. The

direct current is maintained below its critical current value. A single in-

frared photon has energy sufficient to form a resistive barrier or a resistive

hotspot across the width of nanowire (2). This electronic excitations forces

the current flow over the hotspot, therefore, the local current density in-

creases beyond its critical value (3). This leads to an increase of resistance

barrier across the nanowire (4). The growth of the resistive region is also

supported by heating. The current keeps flowing until the external circuits

blocks it and shunts the bias current. Thus, the operation conditions and

bias current are restored to the initial values and the nanowire is super-

conducting.

An electrical equivalent circuit of a SNSPD is presented in Figure 2.11

where LK os the nanowire inductance, RK - the hotspot resistance, Ibias -

the bias current of the nanowire. The switch emulates photon absorption.

The output pulse in the circuit is measured at the load resistor R0.

A simulated output voltage pulse of the nanowire after amplification

is shown in Figure 2.12. The blue and the red lines are the rising and the

falling edges of the SNSPD output pulse, respectively.

Over the past decade engineering approaches and solutions to SNSPDs

have significantly improved the performance of these devices. In the cen-

ter of attention was the design of wire geometry with the goal to cover

the desired active area. Narrower, highly uniform nanowires, optimized

geometries, and improved material selection and deposition have also con-

tributed to higher detection efficiency which has approached 90%. Re-

cently, research group of Rosenberg [10] has presented a packaged SNSPD

system that shows 68% detection efficiency at a photon flux of 100 million

photons per second in the input fiber. A timing resolution of and a dark
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Figure 1.  The basic operation principle of the superconducting nanowire single-photon detector (SNSPD) 
(after Gol’tsman [7], Semenov et al [19] and Yang [20]): (a) A schematic illustrating the detection cycle. (i) The 
superconducting nanowire maintained well below the critical temperature is direct current (DC) biased just 
below the critical current. (ii) When a photon is absorbed by the nanowire creating a small resistive hotspot. (iii) 
The supercurrent is forced to flow along the periphery of the hotspot. Since the NbN nanowires are narrow, the 
local current density around the hotspot increases, exceeding the superconducting critical current density. (iv) 
This in turn leads to the formation of a resistive barrier across the width of the nanowire [7]. (v) Joule heating 
(via the DC bias) aids the growth of resistive region along the axis of the nanowire [20] until the current flow is 
blocked and the bias current is shunted by the external circuit. (vi) This allows the resistive region to subside 
and the wire becomes fully superconducting again.  The bias current through the nanowire returns to the original 
value (i). (b) A simple electrical equivalent circuit of a SNSPD.  Lk is the kinetic inductance of the 
superconducting nanowire and Rn is the hotspot resistance of the SNSPD.  The SNSPD is current biased at Ibias. 
Opening and closing the switch simulates the absorption of a photon. An output pulse is measured across the 
load resistor Z0 [21, 22]. (c) A simulation of the output voltage pulse of the SNSPD (approximating the pulse 
shape typically observed on an oscilloscope after amplification).  Values of Lk = 500 nH and Rn = 500 Ω have 
been used for this simulation (for simplicity the Rn is assumed fixed, although a more detailed treatment [20] 
shows Rn(t)).  The solid blue line is the leading edge of the SNSPD output pulse, whilst the dotted red line is the 
trailing edge of the output pulse.  The time constants relate to the phases of the detection cycle in (a).  

 

where J is the current density through the wire and ρ is the electrical resistivity. The hotspot cools 
down by coupling the energy of the excited electrons to the phonons via electron-phonon scattering, 
with a time constant τe-p (~ 10 ps).  The phonon-phonon scattering then couples the energy into the 
substrate with a time constant τp-sub. A fraction of the energy is backscattered into the electron system 
owing to mechanisms such as the lattice mismatch between the superconducting nanowire and the 

(i)

(ii)

(iii)(v)

(vi)

(iv)

  2

  1

��

���������� ��

Figure 2.10: A schematic illustrating the detection cycle of single photon detector based

on superconsucting nanowire [12]
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Figure 2.11: A simple electrical equivalent

circuit of a SNSPD [12]
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Figure 1. The basic operation principle of the superconducting nanowire single-photon detector (SNSPD) (after Gol’tsman et al [7],
Semenov et al [19] and Yang et al [20]): (a) a schematic illustrating the detection cycle. (i) The superconducting nanowire maintained well
below the critical temperature is direct current (DC) biased just below the critical current. (ii) When a photon is absorbed by the nanowire a
small resistive hotspot is created. (iii) The supercurrent is forced to flow along the periphery of the hotspot. Since the NbN nanowires are
narrow, the local current density around the hotspot increases, exceeding the superconducting critical current density. (iv) This in turn leads
to the formation of a resistive barrier across the width of the nanowire [7]. (v) Joule heating (via the DC bias) aids the growth of resistive
region along the axis of the nanowire [20] until the current flow is blocked and the bias current is shunted by the external circuit. (vi) This
allows the resistive region to subside and the wire becomes fully superconducting again. The bias current through the nanowire returns to
the original value (i). (b) A simple electrical equivalent circuit of a SNSPD. Lk is the kinetic inductance of the superconducting nanowire
and Rn is the hotspot resistance of the SNSPD. The SNSPD is current biased at Ibias. Opening and closing the switch simulates the
absorption of a photon. An output pulse is measured across the load resistor Z0 [21, 22]. (c) A simulation of the output voltage pulse of the
SNSPD (approximating the pulse shape typically observed on an oscilloscope after amplification). Values of Lk = 500 nH and Rn = 500 �
have been used for this simulation (for simplicity the Rn is assumed fixed, although a more detailed treatment [20] shows Rn(t)). The solid
blue line is the leading edge of the SNSPD output pulse, whilst the dotted red line is the trailing edge of the output pulse. The time constants
relate to the phases of the detection cycle in (a).

this simple hotspot theory. Growth of the resistive region
due to Joule heating accounts for the high resistance of the
nanowire (figure 1(a)(v)) [20]. Equation (4) can be modified
to include Joule heating as follows:

Cd
@T
@t

= J2d⇢ + dr2T + ↵(T0 � T) (5)

where J is the current density through the wire and ⇢

is the electrical resistivity. The hotspot cools down by
coupling the energy of the excited electrons to the phonons
via electron–phonon scattering, with a time constant ⌧e�p
(⇠10 ps). The phonon–phonon scattering then couples the
energy into the substrate with a time constant ⌧p�sub. A
fraction of the energy is backscattered into the electron
system owing to mechanisms such as the lattice mismatch
between the superconducting nanowire and the substrate. The
substrate acts as a heat sink at temperature T0 [23]. Then the
nanowire recovers its superconducting state (figure 1(a)(vi)).
The energy of the incident photon is negligible compared to
the energy stored in the kinetic inductance; therefore energy
or photon number resolution is lost due to the Joule heating of
the hotspot [19, 20].

2.2.4. Modelling device performance metrics. The
phenomenological model described above gives insight into
some of the SNSPD performance metrics, namely the

device recovery time (⌧ ), timing jitter (1t) and dark count
rates, discussed further in sections 2.3.4 and 2.3.8. The
other paramount performance metric is the system detection
efficiency ⌘sde. Equation (1) specifies the factors that must be
considered, however the model described only affects the third
term, ⌘registering, the probability that a pulse is emitted from the
SNSPD (assuming the associated counting electronics in the
system register every pulse from the detector). Improvements
in the registering probability are discussed in section 2.3.3.

For the SNSPD, ⌘coupling describes the challenge of
efficiently illuminating the potentially sub-micrometre device
area (discussed in sections 2.3.1 and 2.4.2). If the illumination
is perpendicular to the device surface, ⌘absorption describes
the probability that the photon is absorbed into the
superconducting nanowire as opposed to being transmitted
through or reflected by the thin film and any surrounding
optical structure. This can be simply modelled as a solution of
Fresnel equations for light moving between media of differing
refractive indices if the optical properties of the substrate
and superconductor are known [24]. Progress in increasing
the absorption probability is discussed in section 2.3.2. The
sub-100 nm fine structure of the detector (commonly an
order of magnitude less than the wavelength of the incident
light) is a small perturbation of this result [25], described in
section 2.3.7.

4

Figure 2.12: A simulation of the output

voltage pulse of the SNSPD [12]

count rate of a few kcounts/s has been demonstrated.

SNSPD’s design targets larger arrays, new optical coupling and pack-

aging approaches and a high-speed readout. A drawback of the system at

present is the cryogenic operating temperatures. This complicates and

limits the exploitation of nanowires.

The SNSPD detectors are currently in their early stage of research.

However, further development of SNSPD devices might allow their ex-

ploitation for a wider range of high-speed single-photon applications.
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2.4 Single-Photon Avalanche Diodes

At present there are many photonics applications that require highly ef-

ficient and ultra-fast photodetectors. Moreover, single-photon sensitivity

is an assigned priority for many applications, for instance, advanced mi-

croscopy applications (Fluorescence Lifetime Imaging Microscopy (FLIM) [59,

60, 61, 62, 63], Raman spectroscopy [68, 69, 70, 71], Positron Emission To-

mography (PET) [65, 66, 67], space-to-ground communications [72], 2-D

imaging [64] and 3-D ranging [73]. The devices have to also possess high

timing resolution and provide a sufficient internal amplification to deliver

a useful output pulse for each single detected photon.

As the photocurrent caused by single photons is too little to be dis-

criminated, the photodetector should provide an internal gain at the ab-

sence of thermal background noise. The phenomenon of multiplication of a

single photoelectron in semiconductors is named avalanche effect. In order

to obtain such a regime, a photodiode operate at a reverse voltage high

enough that the photo carriers break off new electron-hole pair from the

material lattice. Single-photon avalanche diodes (SPADs), first designed

in 1981 [78, 79], at present attract an increasing attention due to their

high timing resolution, high sensitivity and shot-noise limited operation.

For the first time the physical phenomena of avalanche multiplication as

a result of single-photons entering p-n junction was observed in the early

1960th [80, 81, 82]. Initially the diode was not conceived as a photode-

tector. In comparison to PMTs, SPADs also benefit of a wider spectrum

range including red and near infrared regions.

A SPAD is a photodetector, consisting in a p-n junction operating

above its breakdown voltage. This regime is also called Geiger mode. A

cross-section of SPAD is represented in Figure 2.13.

The reverse voltage applied to the device creates a depleted region
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II. SPAD DESIGN 

In the design reported hereafter we have adopted a 1P6M 
0.15-µm standard CMOS technology. Although this is neither 
an imaging nor a High-Voltage process, it offers an n-type 
buried layer, used for isolating the pwell from the substrate. 
This isolation layer, combined with more standard nwell, 
pwell, p+ and n+ layers was used to form two different SPAD 
structures, shown in Fig. 1. The first structure is similar to the 
one presented in [12], where the active area is a pwell/niso 
junction and the guard ring at the borders of the junction is 
obtained thanks to the graded doping profile of the buried 
isolation layer. A poly-Si gate was used to keep the STI oxide 
at a certain distance from the active area. STI is known to 
introduce a large dark current due to the high defectivity of the 
oxide-silicon interface, which causes a large dark count rate in 
the SPAD [6]. The second structure was based on a p+/nwell 
active area junction, with a guard ring obtained by blocking 
both pwell and nwell at the borders of the junction. In this 
way, a low-doped ring surrounds the junction avoiding 
premature edge breakdown [8]. In both structures, a metal 
shield is formed both in metal 1 and in the top metal to shield 
all the non-active areas from light. 

 

Figure 1. Cross section of the implemented SPAD structures 

A simple front-end circuit was implemented on-chip to 
ease the testing of the SPAD devices. The circuit, whose 
schematic diagram is shown in Fig. 2(a), is composed of a 5V 
front-end and a 1.8V comparator followed by a digital buffer. 
The SPAD is connected to a 5-V quenching transistor M1, 
whose gate is biased with an externally tunable voltage VBQ, 
offering the possibility to change the recharge time. A 

clamping transistor M2 is used to limit the maximum voltage 
reaching the following part of the circuit working at 1.8V. In 
this way, the SPAD can be biased far beyond 1.8V, but the 
fast comparator and digital buffer could be made with 
compact 1.8V transistors. A layout of a p+/nwell SPAD 
structure with 10-µm active-area diameter followed by the 
front-end circuit is shown in Fig. 2(b). 

 

Figure 2. Schematic diagram (a) and layout (b) of a test SPAD (10-um active 
area diameter) with on-chip front-end circuit 

III. EXPERIMENTAL RESULTS 

Both SPADs had 10-µm active area diameter and were 
connected to the same front-end circuit. Since the devices 
were fabricated through a Multi Project Wafer design, a 
limited number of bonded samples (10) was available for 
testing. The breakdown voltage at room temperature was 
23.1V and 16.1V respectively for pwell/niso and p+/nwell 
structures, with a chip-to-chip variation lower than 0.1V pk-pk 
in both cases for all the available samples. 
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Figure 3. Avalanche charge as a function of excess voltage 

180

Figure 2.13: Cross-section of SPAD presented in [133]

into the bulk of the device. A single photon coming into the bulk generates

and electron-hole pair. Then, these carriers are accelerated by the electric

field at the junction to an extent that they gain energy sufficient to over-

come the energy gap. This effect is called impact ionization and therefore

an electron-hole pair may occur. These carriers accelerated by the electric

field can produce another electron-hole pair. This behavior explains the

carrier multiplication arising in SPAD. The current increases rapidly up

to milliampere range due to the internal gain (Figure 2.14), therefore, no

additional amplification is required. Thus, the time of the photon arrival

can be estimated. Sometimes the avalanche might be mis-triggered by the

thermal carriers and photons trapped into the bulk. These spurious igni-

tions are called dark counts and present the intrinsic noise of the device.

It should be noted that SPAD is a binary device, thus, the current does

not represent a number of photons that ignited the diode, but the ignition

event. The current keeps flowing until the voltage across the device drops

close to the breakdown.

The main difference from an avalanche photodiode (APD) is that

APD is operated close to the breakdown voltage of semiconductor, but still

slightly below this value. The applied high electric field assures an internal

30



CHAPTER 2. STATE-OF-THE-ART

multiplication gain of few hundreds, which is less than the gain of SPAD.

The resulting avalanche current is linearly proportional to the intensity

of optical signal. In comparison to APD, SPAD, being biased above the

breakdown voltage, is able to detect each single photon. Whereas the APD

is a linear amplifier for the input optical signal with limited amplification

gain, for the SPAD definition of gain is meaningless.

Figure 2.14: SPAD Current-voltage charac-

teristic

Figure 2.15: SPAD Current-voltage charac-

teristic showing on- and off-states

The SPAD sustains the avalanche current when a photon triggers an

avalanche. This event corresponds to ON state in Figure 2.15. When no

carrier has been generated, no current flow is observed through the SPAD

(OFF state). If the ignition event occurs while SPAD is biased above

breakdown voltage, the OFF-state turns rapidly into the ON-state.

2.4.1 Key parameters for SPAD performance characterization

A complete characterization of SPAD performance should be based on the

following main figures of merit:

− Photon Detection Efficiency (PDE) is the ratio between the number of

the detected photons to the number of the incident photons. The ideal

100% PDE is unattainable in reality due to three main factors: self

31



2.4. SINGLE-PHOTON AVALANCHE DIODES

reflection, absorption (discussed 2.2) and self-quenching. A common

approach to minimize the reflectance from the surface is to use an

antireflection coating. In order to increase the impact ionization, thus

reducing the self-quenching effect, the applied bias voltage should be

high enough to ensure very high electric fields.

− Dark count rate (DCR) — the number of avalanche ignition events

contributed by tunneling effect, the thermally generated carriers and,

for thickSPADs, the carriers trapped into the bulk. DCR linearly de-

pends on the overvoltage as it increases the probability of an avalanche

ignition. As the thermal generation is one of the main constituents,

the increase in temperature entails an exponential increase of DCR.

This effect can be reduced by exploiting a cooling system.

− Afterpulsing probability — the probability of a secondary avalanche

ignition caused by the carriers trapped into the bulk of photodetector

and then released later. The charge trapping is caused by impurities

and defects of semiconductor. This factor can be minimized only with

the fabrication process and technology improvement.

− Time resolution (jitter) the precision of the photon arrival time es-

timation represented either in a standard deviation of photon arrival

time distribution or with the full-width half-maximum [FWHM] of

photon arrival time distribution. The jitter is modeled as an Gaussian

distribution that represents the timing uncertainty by the statistical

nature of the impact ionization process. Time resolution reduces as

the overvoltage increases.

− Dead time is the time needed to the detector to recover after an

avalanche event. For passive quenching this time has two constituents:

the time needed to quench the avalanche current and the time needed
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to reset the detector to its operating conditions. For active quenching,

there is an additional hold-off time that can be programmed either dig-

itally or with a monostable circuit. During this period, the detector

remains insensitive to the impinging photons. Obviously, to ensure

high photon counting dynamic range, the dead time should be re-

duced. As previously discussed, active quenching circuits guarantee a

better performance compared to passive ones. However, reduced dead

time leads to an increase of afterpulsing probability.

− Breakdown voltage — the minimum reverse voltage value applied be-

tween the anode and the cathode of the device and sufficient to gen-

erate a diverging avalanche current.

− Crosstalk is a phenomenon that takes place into arrays of SPADs,

when an undesired avalanche in one SPAD is caused by an avalanche

of a neighboring SPAD.

2.4.2 Technology requirements for SPAD implementation

To be used as a SPAD, the structure of a p-n junction diode should meet

several conditions. First of all, the exploited technology has to assure a

structure free from local lattice imperfections in order to prevent a prema-

ture breakdown. In order to avoid edge breakdown, a guard ring should be

formed. The intrinsic noise of the detector depends on the substrate mate-

rial purity. Its value, expressed as dark count, should be low. Finally, the

probability of afterpulsing should be low. At the dawn of SPAD develop-

ment, the technology simply could not satisfy all fabrication requirements

to the substrate quality. In the 80s, several diodes were implemented in

planar-silicon technology [78, 79]. Even though CMOS processes became

widely available in the 1980s, the first CMOS SPAD was demonstrated only

in 2003. In 2000s the photodiode could be implemented in the same sub-

33



2.4. SINGLE-PHOTON AVALANCHE DIODES

strate with an additional circuitry needed for quenching or signal process-

ing. Moreover, design has a high degree of complexity at low dimensions

and reasonably low fabrication cost. The first CMOS SPAD [96] was im-

plemented in a high-voltage 0.8 µm CMOS technology. This device showed

a 50ps timing resolution and was favor- ably compared with commercially

available PMT. This SPAD was the forerunner of array assembling. This

finding opened the way to the development of compact and cost-effective

large SPAD based imagers that could be potentially competitive with CCD

cameras.

At the present time, silicon remains the main semiconductor suitable

for SPAD fabrication due to its advanced technology. Currently there are

three main processes used for SPAD implementation:

− Standard CMOS process is a CMOS process with no modifications.

The process does not completely correspond to the all technologi-

cal requirements imposed by SPAD fabrication. As consequence, a

high DCR and low PDE are typically obtained with standard process.

However, the main advantage of the process is its accessibility at low

cost for prototyping.

− High voltage CMOS process : Not only single detectors, but also inte-

grated arrays containing an additional circuitry have been presented.

HV process provides high voltage devices from 20 V to 120V for the

absolute maximum rating voltage. Such devices may have different

structures and dopant concentration in order to provide particular ca-

pabilities for operating at particular voltages. However, the junctions

between low voltage and high voltage CMOS technologies shrinks the

scope for large integration.

− Fully customized CMOS compatible process targets to obtain the best

SPAD performance [97] in terms of dark count rate and crosstalk. The
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technology is suitable for implementation of small arrays only [98, 99],

but on-chip circuitry large-scale integration is limited.

Recently, a new generation of CMOS process has been developed

which became a new stage in image sensor technology. Scientific CMOS

(sCMOS) technology has overcome the drawback of conventional CMOS in

imaging applications. Thus, sCMOS based cameras achieved extremely low

noise, fast frame rates, wide dynamic range, high resolution and quantum

efficiency. These sensors show a peak quantum efficiency above 55% with-

out deterioration neither spatial nor temporal resolution. sCMOS image

cameras recently presented by PCO-TECH Inc. [100, 101] have promis-

ing performance for low-light conditions, but precise localization is still

unattainable for this technology when it comes to single-photon detec-

tion [102, 103].

Currently, InGaAs/InP SPADs are also being investigated due to

the material properties [104, 105, 106, 107]. These devices benefit of high

photo detection efficiency within the wide spectral range (from 900nm up

to 1600 nm). Their main drawbacks are a high dark count rate and a

high afterpulsing probability requiring a long dead time up to a several

microseconds. Nonetheless, recently a few InGaAs SPAD based modules

have become commercially available: “CountQ” by LaserComponents [108]

and “InGaAs SPAD” by Micro Photon Devices [109]. “InGaAs SPAD”

achieved a remarkable PDE up to 40% and state-of-the-art timing resolu-

tion of 150 ps. Along with that, gate width can be adjusted from 0.2 to

10 ns, gate repetition frequency can reach values up to 133 MHz. How-

ever, the dark count of this device is high in order of 10-40 kcps. Module

“CountQ” shows PDE of maximum 10%, instead, the detector achieved

a dark count rate of only 1kcps, only 1% of afterpulsing probability and

requires low operating voltages (12 V). Both devices are thermoelectri-

cally cooled down. The future progress in InGaAs/InP SPADs completely
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depends on front-end circuit design and the device fabrication technology.

2.4.3 Quenching circuits

In order to restore the photodetector to its operating condition, to bias

the voltage down below the breakdown value, and prevent the avalanche

destroying the diode, an additional quenching circuit is needed. Several

different active and passive quenching circuits have already been proposed

in the literature [83, 85, 86, 87, 88, 89]. An example of passive quenching

circuit (PQC) is depicted in Figure 2.16 and consists of a ballast resistor

connected in series.The value of the ballast resistor is typically in order of

a few hundred kΩ. When an avalanche occurs, the current rises to its peak

value which corresponds to the ratio between the excess bias voltage Vex

and the SPAD’s series resistance RS. This current, therefore, discharges

the parasitic capacitance CP of the cathode of SPAD at a constant time τ

that can be expressed as:

τ = CP (RS‖RB) (2.6)

The diode becomes conductive and the voltage over it drops to VB,

therefore, the current flows though the diode and the load. The current

final value is the excess bias voltage over the ballast resistance:

IF '
Vex
RB

. (2.7)

This value defines whether the avalanche is self-sustaining or self-

quenching. If IF is large enough, there are enough carriers present in the

space charge region and the avalanche current maintains flowing. On the

other hand, if the value of IF is small enough, avalanche multiplication can

stop since there are no more carriers in the space charge region. That is, the

avalanche is self-quenched. Practically, IF tends to be approximately 100
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µA, named ”quenching threshold”. Figure 2.17 displays cathode voltage

(a) and diode current (b) over the SPAD during its ignition. The voltage

across the diode drops down below the breakdown in a few nanoseconds.

The quenching time can be calculated as

tQ = τ ln
( I0 − IF
IS − IF

)
, (2.8)

where I0 =
Vex
RS

is the maximum value of the avalanche current correspond-

ing to the beginning of the ignition and IS is the quenching threshold.

The parasitic capacitance of the connection between the SPAD and

an external ballast resistor is typically large. That fact does affect the

quenching time of SPAD which typically is around 150 ns [84, 122]. How-

ever, ballast resistor integrated directly with SPADs can significantly lower

the value of CP by a factor of 10. Therefore, the quenching time in this

case is also 15 ns, which is 10 time smaller in comparison to the external

resistance.

Circuit simplicity and compactness are the main features of PQC.

Since PQC occupies much smaller area by comparison with the detector

itself, fabrication of large SPAD arrays becomes feasible. By reason of un-

desirable afterpulsing effect, which may occur due to the carriers trapped

into the trapping centers and then released after a random time, an ad-

ditional hold-off time should be kept. This time should be sufficient so

that all the carriers can be released from the trapping center without caus-

ing a spurious avalanche. PQC are not able to provide this time and an

additional circuitry must be designed. Additionally, SPAD may create a

current avalanche before its complete recharge to the initial operating con-

ditions, thus causing distortion in the timing response. That means that

afterpulsing effect can be an issue even with a low repetition rate.

To solve this issue, active quenching circuits (AQC) based on an
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Figure 2.16: Basic quenching circuits with current output (on the left) and voltage output

(on the right) [88]

Figure 2.17: Cathode voltage (a) and diode current waveforms (b) for a SPAD connected

to passive quenching circuit [88]

electronic circuit were developed by S.Cova and co-workers [83, 85, 87,

90, 88]. The key idea of the design was to shorten the time needed for

quenching and diode reset by using a feedback circuit. An example of
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AQC is presented in Figure 2.18. Avalanche is detected by a comparator

whose output brings the bias voltage below the breakdown value. In the

reported implementation, the quenching circuit reduced the excess bias

voltage of the photodiode below its breakdown value for 20-50 ns. This

hold-off time can be precisely adjusted by the bias voltage control. Then,

the circuit restores the voltage over the SPAD to its initial state within a

few ns and the device is ready to detect a new photon. The voltage on the

cathode (a) and the current waveform (b) of SPAD quenched by means of

active circuit are depicted in Figure 2.19. Quenching circuit exploitation

allows for quenching times in order of a few nanoseconds.

Figure 2.18: A basic active quenching

circuit [88]

Figure 2.19: Cathode voltage (a) and diode cur-

rent waveforms (b) for a SPAD connected to

active quenching circuit [88]

AQC assures the best exploitation of the physical limits of SPAD.

AQC assures much faster reset of the photodetector and a adjustable hold-

off time. However, the circuit design is more complex, its implementation

requires much larger area on the substrate and also higher power con-

sumption [91]. In other words, AQC is not very suitable for applications

foe which high fill factor is a key requirement.
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Attempts to reduce the circuit area and combine the advantages

of both approaches led to the design of mixed passive-active and active-

passive quenching circuits [88, 92, 93, 94, 95]. Most mixed circuits are im-

plemented with active reset. An example of mixed active-passive quenching

circuit is represented in Figure 2.20.

Figure 2.20: A mixed active-passive quench-

ing circuit [88]

Figure 2.21: Cathode voltage (a) and diode

current waveforms (b) for a SPAD con-

nected to mixed active-passive quenching

circuit [88]

The first stage of the quenching is passive as the avalanche current

flow over the ballast resistor and the process is identical to PQC operation.

Then, the active circuitry senses the rising edge of avalanche, holds SPAD

off and restores it to the bias voltage. Therefore, at this point the circuit

operation corresponds to AQC. Cathode voltage and current diagrams of

the circuit are represented in Figure 2.21.

The proposed passive-active circuit approach benefits low afterpuls-

ing probability and shorter hold-off time. The circuit is not very compact,

hence, it could not be suitable for a high-resolution array implementation.
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2.5 SPAD Arrays

2.5.1 Figures of merit

There are several parameters used for characterization of the overall SPAD

array performance. Among the key parameters are photon detection effi-

ciency, pixel pitch and pixel fill factor.

− The resolution and performance of image sensors can be characterized

by the modulation transfer function (MTF) from the subject to the

image. In other words, this function reflects the ability to transfer

contrast and reproduce details from the object to the image produced

by the imager.

MFT depends on:

• Fill factor(FF) reflects the ratio of the active pixel, sensitive to the

impinging light, to the total pixel area. Generally, FF is limited

by a SPAD guard ring and by the additional in-pixel circuitry.

The MTF is depressed as the fill factor decreases. Low light and

low contrast conditions require detectors with large sensitive area

as fewer photons arrive at the detector.

• Pixel Pitch (PP) is the distance between the centers of neighbor-

ing pixels. Larger PP, higher the spatial resolution of the detector.

− Non-uniformity of sensor is affected by:

• Temporal noise — the noise resulting from photodetector shot

noise, pixel reset and readout circuit noise. This noise contribu-

tion is different from one frame to another.

• Fixed Pattern Noise (FPN) is the pixel-to-pixel output variation

in the same light conditions due to device, dark current and in-

ternal interconnection mismatches. This variation includes offset
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FPN, which is constant and independent on pixel signal, and gain

FPN, a.k.a. photo response non-uniformity (PRNU).

In SPAD arrays, both temporal noise and FPN are entirely due to SPADs.

In conventional image sensors, the readout circuit is the major contributor

of noise at low light levels.

2.5.2 Array assembling and pixel design

The first implementation of a 32x32 pixels SPAD array was performed in

2005 [110]. Each pixel of the matrix consists of an independent SPAD,

quenching, inverter and column-access circuitry. Time-resolved measure-

ments were performed off-chip. The architecture of Random Access Read-

out is simple, but it is highly inefficient and only low frame rates can be

achieved. The device presented has a major disadvantage: only one pixel

at a time can be connected to the external read-out, so that the output of

the other pixels is lost.

The integration of column readout circuits solving this problem was

later proposed in [111, 112, 113, 114]. Event-driven architectures pro-

posed in [111, 112, 113] allowed non-sequential row-wise and simultaneous

column-wise detection. Therefore, no data on the photon arrival time gets

lost. Using this approach, the output of all pixels in the same column

are processed simultaneously. The column operates similarly to a digital

bus consisting of a high-speed line with N addresses corresponding to the

number of pixels in the column. When a SPAD ignition event is detected,

the generated pulse is transferred to the bottom of the line. Calculated

photon-detection time carries the information of the place of the pixel that

was ignited as the pulse is well-defined in correspondence with the location

in the pipeline [115, 116, 117]. Data processing can be performed outside

the pixel array. However, the architecture has a long dead-time
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The main problem of readout channels placed outside of the pixel is

the parasitic capacitance of bus sharing and interconnections to an external

circuitry. This fact significantly increases the total parasitic capacitance,

thus, limiting the array scalability.

Another approach is in-pixel readout which implies that the circuit

for quenching and preliminary processing is placed in the same pixel with

the SPAD. The pixels can be read out in parallel thus processing is done

simultaneously and less time-consuming. Moreover, this approach allows

low power consumption as no continuous readout is required. The circuit

is enabled for a short time of photon arrival. The complexity of the im-

plementation is dependent on the functions performed at the pixel level.

However, there are some design challenges for in-pixel Fully Parallel Pro-

cessing architecture. First of all, circuit area is limited to a few hundreds

of µm2 in order to obtain a reasonable pixel fill-factor and pitch. Power

consumption per pixel should be low to large allow array size. To provide

high image quality, the circuit should assure a low non-uniformity among

the pixels’ time resolution without any additional calibration.

Since the first CMOS SPAD was designed, several image sensors with

in-pixel architecture based on CMOS technology have been presented [64,

118, 119, 120]. Each pixel contains additional circuitry that provides

quenching of SPAD, data storage and preliminary processing. Even though

these devices present remarkable timing resolution, a small fill-factor of

only a few percent could be achieved on account of the area occupation

of guard-ring and readout circuitry. The summary of the characteristics

achieved in the latest SPAD arrays is presented in Table 2.1

Currently, SPAD arrays perform the fastest measurements (300 kfps)

and have shown the best precision (10%) compared to CCD and sCMOS

cameras [121]. They would be ideal detectors due to their single-photon

sensitivity and shot-noise limited operation. Nonetheless, their restricted
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Research group CMOS

Technology

Pixel

size

Fill

Factor

PDP

(max)

Readout

Guerrieri [64] 0.35 µm HV 100µm 3.14% 43% Digital Counter

Niclass [111] 0.35 µm HV 25 µm 6% 35.4% Time-to-Digital Converter

Walker [119] 0.13 µm 45 µm 3.17% 5% Digital Phase-Domain ∆Σ

Veerappan [120] 0.13 µm 50 µm 1% 27.5% Time-to-Digital Converter

Pancheri [143] 0.35 µm HV 25 µm 20.8% 31% Analog gated counter

Maruyama [6] 0.35 µm HV 25 µm 4.5% 20% Gating+1bit digital memory

Gesrbach [124] 0.13 µm 32µm 2% 25% Time-to-Digital Converter

Table 2.1: SPAD arrays characteristics

quantum efficiency below 35% and fill factor of 2-4% still significantly lim-

its the range of possible applications. Several research efforts have been

directed towards technology scaling, in order to reduce pixel size, increase

resolution and integrate more functionality at the pixel level. Single SPADs

were implemented in deep-submicron CMOS technologies and presented

in [128, 129, 130, 131, 132, 133]. A few SPAD arrays were fabricated in

0.13 µm CMOS technology [122, 123, 124, 125, 126]. Despite the benefits

of the advanced technologies in terms of design compactness, the fabrica-

tion of SPADs with good output characteristics is not a trivial task. A

few challenges in deep-submicron technology have to be faced to produce

low-noise SPADs [127]. First of all, the interface between Shallow Trench

Isolation (STI) oxide and silicon includes a high density of generation cen-

ters [128]. Second, in order to prevent punch through between the source

and drain of the transistor, a large doping concentration is used in the well

regions. As it was shown in [123], a large doping brings to a large dark

count rate due to carrier tunneling. Recently, good results were achieved

in the implementation of SPAD in 0.18 µm High Voltage CMOS technolo-
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gies [129]. In addition, low-noise SPADs were recently demonstrated in 0.13

µm CIS process [132]. The area occupied by the guard ring was decreased.

Two different SPAD structures for 0.15 µm technology were fabricated and

characterized [133] offering a good dark count rate and timing resolution.

Although they are still not optimized in every respect, these devices can

be employed for the realization of single-photon image sensor prototypes.

A challenge to the spatial resolution and array scaling is the SPAD

size attainable without deterioration of the device performance. In [134,

135, 136] SPADs with different diameters of active area (from 100 µm down

to 2 µm) were compared in terms of DCR and timing performance. The

median DCR increases more than linearly with the SPAD area. In [135]

it was observed that the breakdown voltage is lower for SPADs with a

larger area. Regarding time resolution, the smaller detectors have a lower

jitter due to a lower lateral avalanche spreading time. The main problem

for pixel size scaling is found in DCR. Smaller the pixel, higher DCR. So,

for instance, for a SPAD active area of 8 µm the smallest feasible DCR

is expected to be about 100Hz [137, 138, 130, 139]. The SPAD reported

in [135] a SPAD, having a 4-µm active area diameter, achieved a DCR lower

than 30 Hz. For a device with an active area of 2 µm the DCR reaches

hundreds of kilohertz [128]. However, the high DCR could be explained

with the lack of a real guard ring. The future progress in the SPAD detector

miniaturization fully depends on the semiconductor process innovation.

Different geometric shapes of SPADs have also been explored. Cur-

rently most of the SPADs have been designed with a circular shape that

ensures the absence of electric field peaks in the device periphery. Although

there are a few works [137, 140] that employed octagonal and square ge-

ometries, no direct comparison with circular design was carried out. Only

the work in [135] reports a comparison among photodetectors having circu-

lar, square and square with rounded edges geometries. The results in [135]
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show that DCR is lower for the circular shaped devices. The fill factor can

also be improved by using microlens arrays, offering a way to enhance light

collimation and collection efficiency [141, 142]. In [141] a SPAD array with

microlens array concentrator was presented. Exploiting this approach the

photon detection efficiency can be enhanced by factor of 35, thus, signifi-

cantly recovering a fill factor. Also microlens arrays are promising for large

array. However, even though the proposed technique enables acquisition

of photons outside active area, it is also sensitive to noise generated in

the guard ring region. Thus, a technique to improve signal-to-noise ratio

should be considered.

2.5.3 Read-out circuitry for in-pixel implementation

In addition to the aforementioned activities on SPAD scaling, research is

also being done on smart readout circuitry able to deal with the large

amount of data generated by SPAD arrays. As presented in Table 2.1, in

most of the SPAD pixels presented so far, the active area is only a few

percent of the total pixel area. The advantages offered by single-photon

sensitivity are therefore spoiled by the low pixel fill factor. Since a dig-

ital readout channel typically consists of a few hundreds of transistors

and is thus area consuming, a solution to overcome this problem could be

found in replacement of digital counter and active quenching by analog cir-

cuit. This approach allows reduction of the number of in-pixel transistors

without loss of functionality. A few recent research works have proposed

to implement compact analog readout circuits to improve the fill factor

[143, 144, 145, 146]. A carefully designed analog scheme can achieve the

same count accuracy with lower number of transistors than a digital im-

plementation.

Researchers at Fondazione Bruno Kessler (FBK) [143, 144] presented

an in-pixel analog circuit for time-resolved image sensing. The circuit
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consists of only 12 NMOS transistors and includes a passive quenching

transistor, a gating circuit and an analog counter (Figure 2.22).
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of a few 100 s of picoseconds. The shortened pulse is then
convoluted with a gating window (WIN) through an AND gate.
The pulse shortening is needed to maintain a subnanosecond
timing resolution that would be lost without this operation.
Another possibility to obtain ultrafast gating is the use of
an edge-triggered flip-flop [18], [27], which would, however,
require a larger area and has therefore been discarded in this
implementation.

The pulses at node (C) are passed to an analog counter
circuit, delivering an output voltage (D) proportional to the
number of input counts. Using an analog approach, the count-
ing function can be implemented with a very compact circuit,
at the expense of an additional A/D conversion after pixel
readout. If the voltage step !V corresponding to a photon
detection is much larger than the pixel noise, however, it is still
possible to discriminate the single photons in the analog output
signal and a shot-noise-limited operation can be maintained.
As in a conventional active pixel, a source follower and a
select transistor complete the pixel schematic.

The monostable circuit can be implemented with an inverter
and an AND gate, as shown in Fig. 4(a). The capacitance after
the inverter is used to increase the pulsewidth of the output
pulse, thus improving the uniformity at the expense of timing
resolution. A more compact implementation of the gating
circuit is shown in Fig. 4(b), where the two AND gates are
merged in a single three-input AND gate. This configuration
minimizes the number of transistors and was therefore chosen
for the actual pixel implementation.

A transistor-level schematic of the pixel is shown in Fig. 5.
The pixel electronics entirely consists of n-type MOSFETs,
to minimize the pixel pitch while obtaining an acceptable fill
factor. Because of the absence of p-MOSFETs, no n-type wells
are needed, and all the transistors can share the same p-well.
In addition, in HV technologies, p-wells can be implemented

Fig. 6. Cross-section and layout of a group of pixels.

inside a deep n-tub, so that it is possible to share the same
n-tub among SPADs and electronics, as shown in the cross-
sectional drawing in Fig. 6.

The signal from a passively quenched SPAD is limited by
a clamping transistor (M2). Both the quenching (M1) and
the clamping transistor are realized with a thick gate oxide,
thus allowing the operation of the SPAD with an excess bias
>3.3 V, while the following pixel electronics works at 3.3 V.
A test transistor (M3) has been included in the pixel to ease
the electrical characterization.

The gating circuit has been implemented with an adapta-
tion of the circuit shown in Fig. 4(b), requiring only five
transistors. A delayed inverted replica of the SPAD signal is
generated with an inverter, formed by M4 and M5, followed
by capacitance C1. The three-input NAND gate is composed
of two driving transistors (M6 and M7) and a load (M8),
with the inverted WIN signal applied directly to the source
of transistor M6. This implementation allows not only to save
silicon area, but also to increase the speed of the AND port
reducing the number of transistors in series configuration. To
efficiently exploit this solution, however, row buffers with a
good driving strength have to be implemented to distribute
the fast WIN signal over the whole pixel array. The n-type
load transistors M5 and M8 are conducting current only during
events detection. In the presence of a low to moderate activity,
such as the one encountered in wide-field FLIM detection, the
current consumption caused by the nMOS loads does not affect
the correct sensor operation.

It is worth noting that if the source of M6 is maintained
at ground (WIN = high), the gating circuit is transparent to
the SPAD pulses and continuous operation is enabled. In this
operation mode, the same WIN signal can be used as a global
shutter with 100% efficiency, defining the pixel integration
time and being disabled during the sensor readout phase.

The analog counter circuit consists of a switch transistor
(M9) and a storage capacitance CINT. When the source of M9
is pulled down by the short negative pulses generated by the
gating circuit, a charge packet is removed from the capaci-
tance, thus generating a voltage step !V at the output. The
amplitude of !V depends on the input pulsewidth, the current
gain of M9, the value of CINT, and the gate bias voltage VbAC.

Figure 2.22: Circuit schematic of the analog counter presented in [143, 144]

A 32x32 pixel array was manufactured in a 0.35 µm high voltage

CMOS technology. A pixel pitch of 25 µm was achieved with a remarkable

fill factor of 20.8% and 1.1ns minimum gate width. The state-of-the-art

fill factor was obtained not only due to the circuit compactness, but also

to the SPAD rectangular shape. One of the problems of this circuit lies

in the large current consumption of the NMOS-load inverter circuit, which

makes it difficult to realize larger SPAD arrays. Another shortcoming

of this design is related to its non-uniformity, which is affected not only

by threshold voltage mismatches of the resistive switch, but also by the

shortened pulse width non-uniformity.

Researchers from the University of Oxford proposed an analog counter

suitable for manufacturing in a 0.18 µm UMC process [145]. The schematic

of the circuit is displayed in Fugire 2.23. Each pixel of the proposed circuit

contains a quenching circuit, an inverter, a counter and a source follower.

Also in this implementation, the operation relies on a MOS switch dis-
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charging a storage element, a capacitor, by a constant voltage value at

each avalanche. Thus, the circuit output voltage is proportional to the

number of SPAD pulses. The key idea of the design was to place the addi-

tional circuitry in the free area between the circular SPADs. At the chosen

pixel pitch of 30 µm and 10 µm SPAD active area, an area of only 12x12

µm2 was available for the design. The capacitor is a Metal-insulator-Metal

capacitor and is formed into the upper metal layers (Figure 2.24).

 

 

voltage, and VNEG, a negative voltage. To achieve the optimum signal to noise ratio in 16ms the SPAD is operated with 
an over voltage of 1.2V. When a photon is detected, the SPAD voltage across the photodiode drops until its overvoltage 
is zero. Once avalanching is quenched the voltage is then increased by the current provided by Mq. The SPAD node is 
connected to a digital inverter which amplifies the changes in the SPAD node voltage. This also means that transistor Ms 
only conducts whilst the photodiode is recovering from a charge pulse and is therefore only conducting for a short period 
of time tON. This time depends on recovery time of the SPAD, and threshold voltage of the inverter. Although the 
threshold voltage of the inverter is determined during the design stage and is then fixed, the SPAD biasing voltages 
VPOS and VNEG can be varied to change the relationship between the voltage swing at the SPAD node and the 
threshold voltage of the inverter. The SPAD biasing voltages have been chosen so that the threshold voltage of the 
inverter is half way between the maximum and minimum SPAD node voltages. When Ms is conducting the current 
flowing through transistor Md discharges CMIM. At the beginning of each integration time CMIM is reset to VDD by the 
reset pulse. Every incident photon then removes a small charge from CMIM. If Md acts as a constant current source, then 
the change in the voltage on CMIM during a time interval tint is proportionate to the number of photons detected in this 
time interval. If the gate of Miso is grounded, so that this device is always conducting, then the voltage on CMIM can be 
detected using the source follower circuit. This n-type source follower has a SEL switch to enable its output and a 
biasing transistor Mb, whose gate voltage is set to 1.0V during experiments. 

 

3.1 Linear Mode 

Fig [7] shows the output voltage of the pixel when it is operated in this linear mode with the gate voltage of Md set to 
0.68V so that each photon discharges CMIM by approximately 140mV. Using this bias condition it is easy to see the effect 
of each photon on the pixel. However, with a limited voltage swing of 2V only 14 photons can be detected with this bias 
condition. Assuming that the output voltage will be sampled using an  analogue to digital converter then during normal 
operation Vdis should be set so that each photon causes a voltage change that is equivalent to a change on 1 bit in the 
ADC output. With a 10 bit ADC this means that Vdis was set so that each photon discharged CMIM by approximately 
2mV. Fig [8] shows the response of the pixel at different light levels when the integration time of the pixel is set to 
16ms. The dark count rate of the SPAD means that the average dark count in this period is approximately 450 counts. 
Hence, the measured output voltage of the pixel in the dark is approximately 1.1V. The results in Fig [8] show that at 
low light levels the response of the pixel is linear as expected. However, there is a clear departure from linearity when 
the light intensity is more than 1lux. Measurement and simulation results show that this departure from linearity arises 
because transistor Md is not an ideal constant current source. The linearity of the pixel can therefore be improved by 
making this device longer in future designs.  

 
Figure 6. A schematic diagram of the pixel circuit. The photodiode and quenching device are on the left. These devices are 

connected to the rest of the circuit by an inverter.  
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Figure 2.23: Schematic and the design proposed in [145]

Figure 2.24: The area be-

tween the SPADs avail-

able for the circuit design

This approach allows using the inactive pixel area to create a reason-

ably large capacitance (400 fF), thus, increasing the circuit dynamic range.

With this implementation, however, only 14 photons could be counted at

the threshold voltage needed for MOS switch operation. Moreover, the

proposed circuit is not suitable to be used in time-resolved detection ap-

plications.

Recently, an analog readout circuit based on 11 NMOS transistors

was proposed by researchers from the University of Edinburgh [146]. The

circuits schematic is shown in Figure 2.25. A 0.13 µm CMOS imaging

technology was chosen for fabrication of a 3x3 pixel array. Each pixel if the
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array comprises a SPAD with an active area of 2 µm, a quenching circuit,

a time gating, a charge transfer amplifier (CTA) and a standard source

follower. Due to the technology scaling a state-of-the-art 9.8 µm pixel pitch

with a fill factor of 3% was demonstrated. An advantage of the design is the

output programmability (from 13.1mV/event to 0.15mV/event) allowing

the accumulation of up to 1000 events by the analog counter. The readout

also benefits of a relatively low PRNU of 2% for the range 5.5mV to 13.1

mV per event. However, the characterization of the time-gated operation

is not reported.

Figure 2.25: Circuit schematic of the analog readout presented in [146]
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Chapter 3

Analog Readout Circuits for

Single-Photon Pixels

In this section, the design and simulation of four different analog counting

circuits are presented. Consisting of only a few transistors, the proposed

circuits can be integrated into compact SPAD-based pixels benefiting from

a larger fill factor and smaller pixel pitch with respect to a standard digital

counting readout. The circuits have been designed in CAD Cadence to be

implemented in a standard CMOS technology. The key design guidelines

were sub-nanosecond timing resolution, low power consumption and a good

uniformity between the pixels in a small area. The main challenges for the

circuit design are listed hereafter:

− Compactness — in order to improve pixel fill factor and reduce pixel

pitch

− Low power consumption is the key factor for large pixel array assem-

bling;

− Sub-nanosecond gating allows observing fast optical signals;

− Uniformity of pixel response;

− Linearity of the output;
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− Good dynamic range — to achieve at least 100-200 counts within one

acquisition.
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3.1 Circuit I. Analog Readout Circuit Based on Charge

Sharing

The circuit described in this paragraph was designed in SOI, FBK, before

the starting of my PhD term, and fabricated in a 0.35 µm technology. In

the first part of my PhD work, I have been in charge of the experimental

characterization of the circuit reported here. Besides that, I carried out

additional circuit simulations to ease the interpretation of experimental

results. The readout circuit of the counter is based on the charge transfer

concept. Its schematic is shown in Figure 3.1.

Figure 3.1: Analog counter circuit based on charge-transfer principle

Table 3.1 contains dimensions of the MOS transistors in Circuit I.

Figure 3.2 presents the timing diagram of the most meaningful signals

at nodes. The circuit does not contain either SPAD or quenching circuit.

For the test purpose an externally applied digital signal IN was

used with a pulse width corresponding to the SPAD ignition event. The
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Transistor Name W/L, µm Transistor Name W/L, µm

M1 0.7/0.35 M5 0.7/0.35

M2 0.7/1.0 CM6 22.5/5.0

M3 0.4/0.35 M7 0.8/0.35

M4 0.7/2.8 M8 2.0/0.35

Table 3.1: Dimensions of the MOS transistors in Circuit I

duration of the SPAD output pulse is usually in the range from a few

tens to a few hundreds of nanoseconds. The inverter X1 has to buffer the

signal, isolating the SPAD from the rest of the circuitry. Initially, during

the RESET phase, the MOS capacitance CM6 and node B are pre-charged

to VDD through transistor M2 and M1 respectively. When no photon is

detected (IN=Low), the high level of X1 output keeps transistor M5 in its

ON state. Thus, node C and parasitic capacitance CP are charged to the

reference voltage VREF2, which is typically close to ground. In order to

prevent a direct current path during input transients between node D and

VREF2, charge transfer is controlled by two complementary transistors M3

and M4 driven by slightly delayed signals. Transistor M1 is used to preset

node B to the reset voltage VDD, properly defining the initial state of the

circuit. When a photon is detected (IN=High), transistors M3 and M5,

both driven by X1, are forced to switch on and off respectively, while the

voltage at the gate of transistor M4 (node A) changes from ground to a

reference voltage VREF1, supplied by the inverter X2. This voltage change,

being VREF1 > VREF2, causes a proportional positive voltage change at

node C equal to (VREF1− VREF2− VTHM4) which, consequently, generates

a charge transfer ∆Q through M4 and towards node C equal to

∆Q = (VREF1 − VREF2 − VTHM4) · CP , (3.1)

where VTHM4
is the threshold voltage of transistor M4. This charge passes
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through transistor M4 towards node C and then is sequentially extracted

from capacitor M6 at each counted by SPAD photon. The discharge of the

MOS capacitor M6 creates a proportional voltage step ∆VD at the output

of the circuit (node D) equal to

∆VD ≈ (VREF1 − VREF2 − VTHM4) ·
CP

CM6
. (3.2)

Equation 3.2 asserts that the output voltage step ∆VD is defined by

the capacitance ratio
CP

CM6
, set to be �1, and by the voltage difference

VREF1−VREF2, fixed externally, which allows to program the charge packet

transfer and thus the resolution of the counter.

During the falling edge of IN (corresponding to the end of the SPAD

dead time) transistor M3 is switched off, sampling the node D, while M5

turns on, pre-charging again node C to VREF2. In this condition, the circuit

is ready to generate a new voltage step at the next incoming pulse. During

this transition, the counterbalance of charge at output node is dominated

by clock feedthrough and charge injection from M3, causing a positive

voltage step. This effect, confirmed by simulation and experimental results,

is represented in Figure 3.2. In order to minimize this effect, a minimum

size transistor M3 was used while the output capacitance CM6 was designed

as large as possible. The cycle is repeated several times, leading to a

multistep decrease of signal at node D, as it can be seen from Figure 3.2.

At the end of the integration time, the output signal is read out. To

this purpose, transistors M7 and M8 play the role of source follower and

select switch, respectively, like in standard three-transistor active pixel

implementations.
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Figure 3.2: Timing diagram

3.1.1 Simulation results. Transient response

According to Equation 3.2, the step size, hence, the number of steps per

acquisition (which should preferably be large) depends on the CP to CM6

capacitance ratio. While CP is a parasitic capacitance depending on the

technological characteristics and layout design of transistors M4 and M5,

the value of CM6 is designed as big as possible proportionally to the occu-

pied area of transistor M6. In order to obtain shot-noise limited operation,

the capacitance ratio should be large enough to provide a voltage step con-

siderably larger than the noise background. The main noise contribution

at the output is due to the thermal noise of the readout chain, which can

be estimated in the order of 1 mV RMS. Therefore, a voltage step of at

least 3-5 mV is desirable to guarantee a single-photon counting resolution.

For the current design the capacitance CM6 is set to 350 fF, whereas CP

is estimated to be 1.5 fF. The voltage step ∆VD, and therefore the count-

ing resolution, can be adjusted by changing the reference values VREF1

and VREF2. To quantify the tunability of ∆VD, a set of simulations was

performed where VREF1 was varied from 1.2 to 3.2 V and VREF2 was in
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the range 0.1-0.3 V. Figure 3.3 shows the results of a transient simulation,

where the IN signal had a pulse period of 2 µs, a pulse width of 100 ns,

and the reference voltage VREF1 was kept at 2 V. Easy to notice that a

larger voltage step could be achieved at higher voltage VREF2.

The output voltage step as a function of count number is presented

in Figure 3.4. As it can be seen, a wider voltage step could be achieved

with a higher voltage VREF2 assuring a linear output for a large fraction of

the available output range. From the graph it is evident, the output step

remains linear for about 150 steps, corresponding to a counting resolution

of at least 7 bits. Then, the voltage step decreases as VDS of transistor M4

approaches 0 turning the transistor off.
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The circuit layout for a standard 0.35 µm CMOS technology is de-

picted in Figure 3.5. The circuit occupied area is 230 µm2.

Figure 3.5: Counter layout
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3.2 Circuit II. Analog Readout Circuit Based on Re-

sistive Switch Principle

This circuit is based on the work previously reported in [143, 144] by FBK.

The design in [143, 144] included only NMOS transistors and had the short-

comings of high power consumption in inverter and high non-uniformity

of 11%. In order to improve the circuit performance, PMOS transistors

were exploited. This design modification leads to an increase of the cir-

cuit area as n-well regions should be included to accommodate the p-type

MOSFETs.The non-uniformity was improved with a careful design based

on Monte Carlo simulations.

The readout circuit consists of a passive quenching circuit, an in-

verter, a gating circuit and an analog counter. The gating circuit works

as a shutter, enabling pulse transmission to the next stage only when an

event is detected inside a predefined observation window. The last circuit

block, which provides the same functionality as a digital counter but in

a reduced area, delivers an output voltage proportional to the number of

counts inside the observation window. The schematic of Circuit II is shown

in Figure 3.6.

Table 3.2 contains dimensions of the MOS transistors in Circuit II.

Figure 3.7 depicts the most relevant signals. The operation principle

is described in the following. The SPAD is connected to a passive quenching

circuit formed by transistor M1. The circuit quenches the SPAD after

each avalanche event and recharges the detector to the initial operating

conditions. Transistor M2 is used to clamp the voltage pulse at node 2.

This approach is used to isolate the circuit from high excess bias voltage

applied to the SPAD, which may damage transistorsM3 andM4. Moreover,

it reduces the impact of SPAD pulse amplitude non-uniformity. Thus, a

SPAD ignition creates a positive clamped pulse at node 2. Then, the pulse
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Figure 3.6: Schematic of Circuit II, based on resistive switch counter

Transistor Name W/L, µm Transistor Name W/L, µm

M1 0.80/7.0 M8 3.5/0.35

M2 3.0/0.35 M9 0.80/0.35

M3 0.80/2.4 M10(1 version) 0.80/4.0

M4 2.4/1.6 M10(2 version) 0.80/7.2

CM5 2.0/1.2 CM10 3.0/3.0

M6 0.80/0.80 M12 3.0/0.80

M7 1.6/0.70 M13 3.0/0.35

Table 3.2: Dimensions of the MOS transistors in Circuit II

is negated by the inverter composed by M3 and M4, thus, a slightly delayed

negative pulse is created at node 3. The gating circuit is a NAND gate

composed by transistors M7 and M8 with a resistive PMOS load M6. The

gating signal WIN applied at the source of M8 defines the time window

when the avalanche event can be counted. The negative pulse width at

node 4 depends on the delay between signals at nodes 2 and 3. Thus,

its value is adjusted by changing the value of MOS capacitor CM5. The
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Figure 3.7: Voltage signals in Circuit II

circuit is capable of counting photon arrival event only when the gating

signal WIN is in low state. The pulse at node 4 opens transistor M10 for a

few hundreds picoseconds, so that a small charge packet is extracted from

the MOS capacitance CM11. As a consequence, a voltage step ∆V appears

at the circuit output. This voltage step can be adjusted by biasing the

reference voltage of M10, VB. If an avalanche event is triggered outside the

gating window (signal WIN is high), no voltage drop is observed. The

last part of the circuit is the same as used in conventional 3T active pixels.

Transistor M9 is used to reset the capacitance CM11 back to the value VRST ,

while transistors M12 and M13 play the role of source follower and select

switch, respectively.

3.2.1 Simulation results. Transient response

A set of simulations has been performed in order to better understand the

circuit behavior and to adjust MOSFET parameters to the desired circuit

characteristics. Transient simulations have been used to analyze the dy-

namic operation of the circuit, while Monte Carlo have been used to obtain

61



3.2. CIRCUIT II. ANALOG READOUT CIRCUIT BASED ON RESISTIVE SWITCH
PRINCIPLE

an estimation about the circuit non-uniformity. The circuit design has tar-

geted the optimization in terms of timing resolution and area occupation.

The pulse width at the gating circuit output node 4 has been set to be ap-

proximately 300 ps, ensuring a good compromise between gating resolution

and uniformity of the response among different pixels. The channel length

of transistor M10 has been carefully designed in order to find a compromise

between the voltage step size and pulse width uniformity along the whole

discharge ramp.

In order to achieve a relatively wide dynamic range for photon count-

ing, the step size should be kept low. On the other hand, this voltage

step has to be large enough to be easily discriminated from the electronic

noise background that is typically in order of hundreds of µV - 1 mV. The

simulations have been performed for different sizes of length and width of

transistor M10. The simulation results for two different widths of transistor

M10 4.0 µm and 7.2 µm are represented in Figure 3.8.
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3.2.2 Simulation results. Monte Carlo simulation

The mismatches between the different pixels of the array have been esti-

mated with Monte Carlo simulation. The simulations have been performed

for different sizes of length and width of transistor M10. The simulation

results for two different widths of transistor M10 4.0 µm and 7.2 µm are

represented in Figure 3.9 as these sizes are found to be a good trade-off

between the step size and non-uniformity. The results show that uni-

formity among the pixels is below 10% for the whole range of VB. The

non-uniformity is lower at higher values of reference voltage VB, since the

threshold voltage mismatch of M10 becomes less relevant.
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3.2.3 Simulation results. Gated operation

Simulation results illustrating circuit operation in gated mode are reported

in Figure 3.19. In this simulation, the SPAD generates an avalanche event

every 50 µs, and a gating window signal WIN of 1 ns duration is applied in

proximity of the avalanche discharge (Figure 3.18). At the beginning of the
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simulation, signal WIN occurs 1 ns before the avalanche ignition. In this

case, no discharge is observed in the circuits output. At each next cycle

an additional delay of 50 ps is applied. After 20 cycles, which correspond

to 1 ns additional delay, the gating window and the avalanche event of

SPAD start overlapping, therefore, a voltage step appears at the output.

The discharge continues for another 20 cycles, until the onset of avalanche

events exits the gating window and the output capacitance discharge stops.

The voltage step as a function of time delay is shown in Figure 3.12. The

width of the curve is determined by the overlapping of two signals: of

the width of the gating circuit output pulse at node 4 and the width of

the gating window WIN. The steepness of the edges limits the minimum

applicable gating window. For the present configuration, the minimum

width is in the order of a few hundred ps, thus supporting the feasibility

of sub-nanosecond time-gated operation.

Figure 3.10: Timing diagram of gating window and avalanche events used in the simulation
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3.3 Circuit III. Analog Readout Circuit Based on

Charge Sharing

The circuit schematic is shown in Figure 3.13. The passive quenching cir-

cuit and the time gating circuit remain the same as in Circuit I (Figure 3.6),

the analog counter based on charge sharing between a small parasitic ca-

pacitance CP and NMOS capacitor CM12 connected in parallel. Table 3.3

contains dimensions of the MOS transistors in Circuit III.

Figure 3.13: Schematic of the analog readout circuit based on charge sharing

The passive quenching circuit, the inverter and window gating circuit

are realized similarly to Circuit II described in 3.2. At the beginning of an

operation cycle, the capacitance CM12 is reset to VRST voltage. Transistor

M9 provides a small current to charge CP at the reference voltage VB.

The reference voltage VB ensures a continuous reset of CP . The current

flowing through transistor M9 can be adjusted so that capacitance CP is

fully discharged during the SPAD dead time, while the contribution of the

current flowing through M9 when M10 is closed is negligible. The MOS

switch M10 is exploited to enable the charge transfer between CM12 and

CP , which takes approximately a few hundreds picoseconds. The pulse at
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Transistor Name W/L, µm Transistor Name W/L, µm

M1 0.80/0;7 M9 0.80/0.35

M2 3.0/0.35 M10 0.80/0.35

M3 0.80/2.4 M11 0.80/0.35

M4 2.4/2.6 CM12(1 version) 8.0/8.0

CM5 2.0/1.2 CM12(2 version) 8.0/4.0

M6 0.80/0.80 CM12(3 version) 4.0/4.0

M7 1.6/0.70 M13 2.0/0.80

M8 3.5/0.35 M14 2.0/0.35

Table 3.3: Dimensions of the MOS transistors in Circuit III

node D is wide enough to open transistor M10 for at the time required for

a complete charge sharing. At each avalanche event, the switch M10 closes

the circuit, and the voltage on the node B decreases by ∆V :

∆V =
CP

CP + CM12
(VOUT − VB) (3.3)

After reset phase VOUT = VRST , equation 3.3 can be used to calculate

the initial step size. As in the previous circuit, a source follower (M13) and

a selection switch (M14) complete the pixel.

3.3.1 Simulation results. Transient response

Transient simulations of the circuit output have been performed and are

shown in Figure 3.14. Following the Equation 3.3, the amplitude of the

following steps progressively reduces.

The ratio between capacitances CP and CM12 determines the max-

imum number of counts that can be accumulated by the circuit. The

capacitance CP should be preferably much smaller than CM12 to obtain a

significant number of steps (100-200) per acquisition before performing a

read-out operation. A calibration is required to estimate the actual num-
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ber of counts from the pixel output, due to the non-linear dependence of

output voltage on count number. Despite the complexity of the calibration,

the intrinsic signal compression may be exploited to expand the dynamic

range.

A set of simulations was performed to evaluate the influence of the

capacitance CM12 on the step height and the non-linearity of the circuit.

Figure 3.14 shows the results of a transient simulation in the presence of an

avalanche pulse train with 50 µs period. During this simulation the gating

signal WIN was kept low, thus, all the avalanche events were counted.

The simulation result represents the pixel output voltage at several dif-

ferent values of the capacitance CM12. The value of parasitic capacitance

CP remained unchanged. As expected, a larger capacitance value of CM12

causes a smaller voltage step. This implies that a larger number of counts

can be accumulated until the full discharge of the capacitance. The draw-

back of a larger capacitance is a large pixel area. To obtain an output

voltage step in the range of 8 to 18 mV, the optimal capacitance of tran-

sistor CM12 lays between 200 and 400 fF .
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The comparison of the obtained results with the exponential expected

decay helps to predict and evaluate the measurement error. Figure 3.15
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shows the deviation of the simulated curve from the theoretical fitting

according to Equation 3.3. As it can be seen, the curves concur and thus

the accuracy can be easily calibrated.

3.3.2 Simulation results. Monte Carlo simulation

The circuit non-uniformity mainly depends on the mismatch between ca-

pacitances C1 and CM12 and might degrade if the value of CP is too

small. An optimized configuration can be found with simulations on the

circuit parameters. Monte Carlo method was exploited to estimate the

non-uniformity of output voltage step ∆V among all pixels in an array.

Figure 3.16 displays the dependence of average voltage step height on the

value of capacitance CM12. Evidently, lower voltage step can be obtained

with larger capacitance.
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Figure 3.17: Dependence of output non-

uniformity on the value of capacitance CM12

Output step non-uniformity as a function of the value of capacitance

CM12 is represented in Figure 3.17.

The simulation shows that the circuit can achieve a remarkable non-

uniformity of approximately 1%. This value can be considered independent
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on the value of capacitance CM12 value. According to design requirements,

the choice of the capacitance size depends on the area available for the

circuit design and the desirable number of counts per acquisition.

3.3.3 Simulation results. Gated operation

The circuit output voltage with gated operation is shown in Figure 3.18.

Similarly to Circuit I, a 1-ns gating window with an additional delay of

50 ps at each step was applied. Thus, in the beginning of the simulation

avalanche events are outside the observation window. After 20 steps, cor-

responding 1 ns delay, the avalanche event and time window start overlap-

ping, thus, activating the counting circuit. An output discharge ramp is ob-

served while the two pulses overlap. After another nanosecond, avalanche

events fall again outside of the window and the discharge ramp is stopped.
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The output voltage step as a function of applied time delay is shown

in Figure 3.19. In comparison to Circuit I, the step size is not constant as

it can be seen from the middle part of the curve. The non-linearity is due

to the non-linear charge sharing process.
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3.4 Circuit IV. Analog Readout Circuit with High-

Pass Filter

The circuit described in this paragraph was designed in SOI, FBK and fab-

ricated in a 0.15 µm technology on the same chip with the circuits presented

in 3.2 and 3.3. I have been involved into the experimental characterization

of the circuits reported hereafter.

3.4.1 Operating principle: First Version

The analog readout circuit is realized on only 9 NMOS transistors and con-

sists of a passive quenching circuit, a gating circuit and an analog counter.

The schematic of the analog circuit is represented in Figure 3.20. Table 3.4

contains dimensions of the transistors used in 1st structure.

Figure 3.20: Circuit IV. Schematic of the first version

The operating principle is described in the following. To reset SPAD

to its operating conditions after each detection event, a passive quenching
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Transistor Name W/L, µm Transistor Name W/L, µm

M1 0.80/3.0 CM6 2.0/1.0

M2 1.0/2.0 CM7 1.0/7.0

M3 1.0/1.0 M8 3.0/0.8

M4 1.0/0.35 M9 3.0/0.35

M5 0.8/2.0

Table 3.4: Dimensions of the MOS transistors. First version

circuit is realized on transistor M1 connected to the anode of SPAD. Tran-

sistors M2 and M3 operate as a passive first-order high-pass filter, realized

by RC circuit. The positive ignition pulse from SPAD at node 1 passes

through this filter and, therefore, a reduced short positive pulse appears

at node 2. The pulse width depends on the dimensions of transistor M2

and M3 and typically is designed to be of a few hundreds of picoseconds.

The gating signal WIN is applied at the source of M5 and defines the time

window when the avalanche event can be counted. The circuit is capable

of counting photons only when the gating signal WIN is in low state. The

pulse at node 2 is delivered to the gate of transistor M5 and turns it on for

a few hundreds of picoseconds, so that a small charge packet is extracted

from the MOS capacitances CM6 and CM7. As a result, a voltage step ∆V

appears at the circuit output. This voltage step can be adjusted by chang-

ing the reference voltage VB, thus, changing R constant in RC circuit. If

an avalanche event is triggered outside the gating window (signal WIN is

high), no voltage drop is observed in the output. Transistor M4 is used to

reset the capacitances CM6 and CM7. As a consequence the capacitance

is recharged to the mean between VRST − VTHM4 and VDD as the chip has

been designed so that VDD is the reset voltage. Transistors M8 and M9

realize a source follower and select switch, respectively.

The timing diagram of the main meaningful signals at the nodes is
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represented in Figure 3.21.

Figure 3.21: Timing diagram of the first structure

3.4.2 Simulation results. Transient response

A set of simulations has been performed to analyse the circuit behaviour

and set the operating range. To estimate the dynamic range of the circuit,

transient simulations have been performed. The key parameter assuring

a wide dynamic range is the value of reference voltage VB. Applied to

the gate, voltage VB changes its conductivity of transistor M3, thus, RC

constant in high-pass filter formed by CM2 and M3. In order to estimate

the step size linearity and dynamic range of the circuit as a function of VB,

the simulations have been performed for different VB values. The transient

response at different values VB are shown in Figure 3.22. Figure 3.23 shows

the output voltage step size in dependence on VB. According to this data,

the dynamic range and non-linearity has also been estimated.
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sient response at different values VB

0 

5 

10 

15 

20 

25 

30 

35 

0 50 100 150 200 250 

St
ep

 si
ze

, m
V

 

SPAD counts 

1.8 V 
2 V 
2.2 V 
2.4 V 
2.6 V 

Figure 3.23: Circuit IV: first version. Out-

put voltage step size as a function of SPAD

counts

3.4.3 Simulation results. Monte Carlo simulation

Non-uniformity between the different pixels has been calculated with Monte

Carlo simulation. The simulations have been performed for different refer-

ence voltage values VB and are shown in Figure 3.24. A 7% non-uniformity

among the pixels was achieved for the range of VB from 1.8 to 2.6 V. As

at higher voltages of VB nMOS transistor M3 exits from ohmic region into

saturation, the step size stops increasing. The non-uniformity is slightly

larger for smaller steps (8.7%). Average circuit non-linearity in dependence

on voltage VB is shown in Figure 3.25.
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3.4.4 Operating principle: Second version

Similarly to the structure described in 3.4.1, this circuit of analog read-

out comprises a passive quenching circuit, a gating circuit and an ana-

log counter. The circuit is composed by 10 NMOS transistors. Circuit

schematic is represented in Figure 3.26.

Figure 3.26: Circuit IV. Schematic of the second version

Table 3.5 contains dimensions of the transistors used in 2nd structure.

Transistor Name W/L, µm Transistor Name W/L, µm

M1 0.80/7.0 M6 1.5/0.35

M2 5.0/1.0 M7 1.5/6.0

M3 5.6/4.5 CM8 5.0/5.0

M4 2.5/2.0 M9 3.0/0.8

M5 5.0/0.7 M10 3.0/0.35

Table 3.5: Dimensions of the MOS transistors. Second version
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The operating principle is described in the following. A passive

quenching circuit restoring SPAD after photon detection is realized on

transistor M1 that is connected to the anode of SPAD. Transistors M2, M3

and MOS capacitances CM3 and CM4 form a high-pass filter. The positive

ignition pulse from SPAD at node 1 passes through this filter and, there-

fore, a reduced short positive pulse is appears at node 2. The pulse width

depends on the dimensions of transistor M2, CM3, CM4 and M5.

The main difference from the structure reported in 3.4.1 is that the

circuit implements a sort of ”dynamic” RC circuit, as Vg in M5 (thus, the

R in the RC circuit) varies during the event. The goal was to generated at

node 2 a pulse which is higher but shorter in time compared to the previous

configuration. The circuit works as following: before the avalanche, resistor

M5 is off, as node 1 is tied to ground through transistor M1. When a photon

is detected, the pulse in node 1 appears in node 2. As the R is almost 0

at the very beginning of the event, the pulse in node 2 is higher than in

the previous circuit 3.4.1. Few tens of picoseconds after the rising edge of

the event, the pulse is transferred to the gate of M5 through transistor M2,

thus increasing the R in the RC circuit. In this way, the pulse is node 2 is

clamped.

The gating circuitry is enabled withWIN signal applied at the source

of M7. WIN defines the time window when the avalanche event can be

counted. Thus, photons can be counted only when the gating signal WIN

is in low state. The SPAD pulse at node 2 is delivered to the gate of

transistor M7 and turns it on for a few hundreds picoseconds, and a small

charge packet is extracted from the MOS capacitance CM8. As a result, a

voltage step ∆V is observed at the circuit output. This voltage step can be

adjusted by changing the reference voltage VB, thus adjusting the reaction

time of the RC circuit. A higher VB generates shorter but lower pulses at

node 2. If an avalanche event is triggered outside the gating window (signal
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CHAPTER 3. ANALOG READOUT CIRCUITS FOR SINGLE-PHOTON PIXELS

WIN is high), no voltage drop is observed in the output. Transistor M6 is

used to restore the capacitance CM8 to the initial value VRST . Transistors

M9 and M10 function as a source follower and select switch, respectively.

The timing diagram of the main meaningful signals at the nodes is

represented in Figure 3.27.

Figure 3.27: Timing diagram of the second structure

3.4.5 Simulation results. Transient response

Simulations on transient response have been carried out to evaluate the

circuit performance and adjust parameters. Dynamic range depends on the

voltage step that was calculated in dependence on the value of reference

voltage VB. Similarly to the circuit 3.4.1, VB changes R parameter in high-

pass filter formed by CM3, CM4, M2 and M5. The transient response at

different values VB are shown in Figure 3.28.

Figure 3.29 shows the output voltage step size in dependence on VB.

According to this data, the dynamic range and non-linearity has also been

estimated.
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Figure 3.28: Circuit IV: second version.

Transient response at different values VB
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Figure 3.29: Circuit IV: second version.

Output voltage step size as a function of

SPAD counts

3.4.6 Simulation results. Monte Carlo simulation

Non-uniformity between the different pixels has been calculated with Monte

Carlo simulation. The simulations have been performed for different refer-

ence voltage values VB and are shown in Figure 3.30. A 7% non-uniformity

among the pixels was achieved for the range of VB from 1.8 to 2.6 V. As

at higher voltages of VB nMOS transistor M3 exits from ohmic region into

saturation, the step size stops increasing. The non-uniformity is slightly

larger for smaller steps (8.7%). Average circuit non-linearity in dependence

on voltage VB is shown in Figure 3.31.
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Figure 3.30: Circuit IV: second version.

Output step non-uniformity as a function

of reference voltage VB
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Chapter 4

Chip Design and Experimental Setup

In this Chapter the architecture and the layout of the chip comprising

Circuit II, Circuit III and Circuit IV are presented. In addition, the setup

of the experimental bench used for the pixel optical characterization and

time-gated operation is described.

4.1 SPAD Structure Implemented in Pixel

The SPAD structure presented in [133] has been chosen for integration into

these arrays. This photodetector was designed in a 0.15 µm CMOS tech-

nology. Its cross-section is depicted in Figure 4.1. The structure is based

on a p+/n-well active area junction, surrounded by a guard ring formed

by a low-doped region where both p-well and n-well implantations were

blocked. This low-doped guard ring formed around the junction prevents

premature edge breakdown [85]. A metal shield created with the upper

metal layers is used to stop the photons incident in non-active areas of the

device.

The SPAD has an active area diameter of 10 µm and a breakdown

voltage of 16.1 V. The SPAD has a high timing resolution of 60 ps and low

dark count rate of 160 cps. This structure also possesses a low afterpulsing

probability of 1.3% at 30 ns dead time and a photon detection probability
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4.2. CHIP ARCHITECTURE

II. SPAD DESIGN 

In the design reported hereafter we have adopted a 1P6M 
0.15-µm standard CMOS technology. Although this is neither 
an imaging nor a High-Voltage process, it offers an n-type 
buried layer, used for isolating the pwell from the substrate. 
This isolation layer, combined with more standard nwell, 
pwell, p+ and n+ layers was used to form two different SPAD 
structures, shown in Fig. 1. The first structure is similar to the 
one presented in [12], where the active area is a pwell/niso 
junction and the guard ring at the borders of the junction is 
obtained thanks to the graded doping profile of the buried 
isolation layer. A poly-Si gate was used to keep the STI oxide 
at a certain distance from the active area. STI is known to 
introduce a large dark current due to the high defectivity of the 
oxide-silicon interface, which causes a large dark count rate in 
the SPAD [6]. The second structure was based on a p+/nwell 
active area junction, with a guard ring obtained by blocking 
both pwell and nwell at the borders of the junction. In this 
way, a low-doped ring surrounds the junction avoiding 
premature edge breakdown [8]. In both structures, a metal 
shield is formed both in metal 1 and in the top metal to shield 
all the non-active areas from light. 

 

Figure 1. Cross section of the implemented SPAD structures 

A simple front-end circuit was implemented on-chip to 
ease the testing of the SPAD devices. The circuit, whose 
schematic diagram is shown in Fig. 2(a), is composed of a 5V 
front-end and a 1.8V comparator followed by a digital buffer. 
The SPAD is connected to a 5-V quenching transistor M1, 
whose gate is biased with an externally tunable voltage VBQ, 
offering the possibility to change the recharge time. A 

clamping transistor M2 is used to limit the maximum voltage 
reaching the following part of the circuit working at 1.8V. In 
this way, the SPAD can be biased far beyond 1.8V, but the 
fast comparator and digital buffer could be made with 
compact 1.8V transistors. A layout of a p+/nwell SPAD 
structure with 10-µm active-area diameter followed by the 
front-end circuit is shown in Fig. 2(b). 

 

Figure 2. Schematic diagram (a) and layout (b) of a test SPAD (10-um active 
area diameter) with on-chip front-end circuit 

III. EXPERIMENTAL RESULTS 

Both SPADs had 10-µm active area diameter and were 
connected to the same front-end circuit. Since the devices 
were fabricated through a Multi Project Wafer design, a 
limited number of bonded samples (10) was available for 
testing. The breakdown voltage at room temperature was 
23.1V and 16.1V respectively for pwell/niso and p+/nwell 
structures, with a chip-to-chip variation lower than 0.1V pk-pk 
in both cases for all the available samples. 
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180

Figure 4.1: Cross-section of the SPAD included in the pixels [133]

of 26% at λ=470nm.

4.2 Chip Architecture

The readout circuits presented in 3.2, 3.3 and 3.4 have been assembled with

SPADs into pixels and integrated into linear arrays. The sample layout of

one of the pixels is shown in Figure 4.2. The layout of the pixels was not

Figure 4.2: Pixel layout of Circuit II
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CHAPTER 4. CHIP DESIGN AND EXPERIMENTAL SETUP

optimized for high fill factor because information about the minimum guard

ring size and device distance was still missing. Therefore, this design was

mainly focused on the analysis of circuit functionality. In parallel, SPAD

arrays with different distances and guard ring sizes have been implemented

to independently optimize the detectors.

Several linear arrays of 40 pixels each have been fabricated in the

same chip in 0.15 µm CMOS technology. The chip also includes peripheral

electronics needed for proper array operation. The chip block diagram is

depicted in Figure 4.3. The chip consists of the pixel linear arrays, row and

Figure 4.3: Block diagram of the chip

column decoders, column and output amplifiers, window generator and a

buffer for each row. 6×40 array of pixels includes two rows with Circuit II

in two different configurations, while Circuit III was implemented in three

versions, each one in a different row. Circuit IV was included in the last

row, with 15 pixels for each version.

Row and column decoders select one single row or column connecting

the pixel outputs to the column amplifiers for readout. The decoders were

implemented as shift registers with D-type flip-flops connected in series.

While RESET signal is shared with the row decoder, clock signals CLK

are independent. Column and output amplifiers are composed of source

followers.
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4.2. CHIP ARCHITECTURE

The window generator has the function to combine two edges of the

START and STOP signal, externally provided, and create an internal gat-

ing signal. This signal is then distributed to the pixel arrays through several

digital buffers. The simulated timing diagram of the window generator is

shown in Figure 4.4. The time window is generated according to START

and STOP signals provided externally. The signals START and STOP

are combined through a NAND gate. In this way, a time window WIN as

short as a few tens of picoseconds can be generated internally. This WIN

signal is buffered and then delivered to the arrays. As it can be noted

from the simulations in Figure 4.4 for a single pixel, WINbuffered signal

maintains the sharpness of the edges of WIN .
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Figure 4.4: Simulations of the window generator operation

All these parts have been integrated in the same chip together with
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CHAPTER 4. CHIP DESIGN AND EXPERIMENTAL SETUP

other test circuits. The layout of the chip is is depicted in Figure 4.5 and

a micrograph of the chip is shown in Figure 4.6.

Table 4.1 describes the input/output analog/digital signals required

for pixel array operation.

A summary of the different pixels implemented in the array is pre-

sented in Table 4.2
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Chip*layout*and*pads*

)
Figure 4.5: Chip layout. The SPAD pixel arrays are highlighted in red

Figure 4.6: Chip micrograph
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Signal Name Value Function Circuit

Power supply

VSPAD.II >19 V SPAD bias voltage

VSPAD.III >19 V SPAD bias voltage

VSPAD.IV >19 V SPAD bias voltage

VDD(1.8) 1.8 V Pixel supply voltage

VDD(3.3) 3.3 V Pixel supply voltage

VSS(1.8) 1.8 V Digital supply voltage

VSS(3.3) 3.3 V Digital supply voltage

Analog signals

VBQ 2 V Gate voltage of the quenching transistor M1

VCLAMP 3 V Voltage on the clamping transistor M2 C.II, C.III

VRST 2.6...3.3 V Reset voltage value

VB 1.4...2.6 V M10 gate voltage C.II

VB 1.65 V M9 gate voltage C.III

VB 1.8...2.6 V M2 gate voltage C.IV (1v)

VB 1.6...2.6 V M3 gate voltage C.IV (2v)

VDC 1 V M9 source bias voltage C.III

Digital signals

START 0...3.3 V Gating window START

STOP 0...3.3 V Gating window STOP

RST 0...3.3 V Pixel reset

SEL 0...3.3 V Pixel select

RST DEC 0...3.3 V Column and row decoder reset

CLK ROW 0...3.3 V Column and row decoder clock

CLK COL 0...3.3 V Column and row decoder clock

Reference currents

Col.Amp 9 µA Bias current of column amplifier

Out.Amp 100 µA Bias current of output amplifier

Output voltage

VOUT Output analog voltage

Table 4.1: Supply, analog and digital I/O required for chip operation
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4.2. CHIP ARCHITECTURE

Counter type Configuration Linear array

Resistive switch Different switch M10 dimensions

1 W=0.8 µm; L=4.2 µm 40 pixels, 1st row

2 W=0.8 µm; L=7.0 µm 40 pixels, 2nd row

Charge sharing Different MOS capacitor M12 dimensions

1 W=8.0 µm; L=8.0 µm 40 pixels, 3rd row

2 W=8.0 µm; L=4.0 µm 40 pixels, 4th row

3 W=4.0 µm; L=4.0 µm 40 pixels, 5th row

High-pass filter Different HPF structures

1 first version of HPF 15 pixels, 6th row

2 second version of HPF 15 pixels, 6th row

Table 4.2: Circuit configurations implemented in the chip
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4.3 Experimental Setups

In order to characterize the circuit performance several types of measure-

ments have been carried out:

− counter characterization, to extract voltage step, electronic noise, lin-

earity and non-uniformity;

− pixel optical characterization, to estimate both pixel output signal and

noise as a function of incident light intensity;

− time-gated operation, to extract minimum observation window width

at gated operation.

LabView software was used for signal control and for data analysis.

4.3.1 Counter characterization

Characterization of counter performance has been conducted using the

setup shown in Figure 4.8. This setup was used for Circuits, II, III and

IV, while for Circuit I the counter was characterized using electrical pulses.

All analog and digital signals were generated with general purpose PXI-

Analog/Digital test board PCI-6542 by National Instruments. During the

measurements the window signal WIN was maintained in low state so that

all the impinging photons could be detected. The chip was illuminated

using a variable intensity wide-spectrum halogen light source. To generate

a uniform light distribution, the sensor was exposed to the light through a

diffuser. During the measurements the light intensity was varied to cover

the whole dynamic range of the sensor from the dark to the saturation

region. The output signal from the sensor board was acquired with the

analog board. The sensor board is shown in Figure 4.7

89



4.3. EXPERIMENTAL SETUPS

Figure 4.7: Sensor board

Through data analysis, the main counter performance parameters

were obtained: dynamic range, linearity of the circuit, non-uniformity of

the pixel response, and the electronic noise of the circuit.

Figure 4.8: Test setup used for counter characterization measurements
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A histogram of the output voltage calculated at 1 million of acqui-

sitions has been acquired from each pixel. An example of a histogram of

a single pixel is represented in Figure 4.9. Each peak of the histogram

represents a number of detected photons. The right-most peak position

is equal to the reset value, which includes the cases when after integra-

tion time no photons have been detected. The second peak corresponds

to one photon detected and each additional peak represents an additional

detected photon.

Figure 4.9: Pixel output voltage histogram

From the output voltage histogram the step size ∆VOUT can be ex-

tracted for each pixel. The standard deviation of ∆VOUT is related to pixel

electronic noise. If the histogram covers the entire dynamic range, statistics

on integral (INL) and differential (DNL) non-linearities can be extracted.

INL was calculated as the deviation from the pixel output voltage to a

linear fitting line. DNL represents the maximum deviation of an actual

analog output step from the average step value calculated from the fitting

line.
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In order to ensure a high dynamic range, the step size should be set

as small as possible. On another hand, the peak width, i.e. electronic noise,

affects the minimum detectable step size. The standard deviation of each

peak for each pixel can be estimated from the histogram assuming that

the peaks follow a Gaussian distribution. Electronic noise is composed of

a constant term, representing pixel readout noise, and a term proportional

to the number of counts N :

σN =
√
σ20 +Nσ2P (4.1)

where σN is the noise at N counts, σ0 is the reset noise calculated at 0

counts, and σP is the noise introduced by each count.

The mismatch bentween transistors and capacitors in the counter

circuits causes a non-uniformity of the average output voltage step deliv-

ered by different pixels. The non-uniformity of the output voltage step was

extracted analyzing the output histograms of all the pixels in an array.

4.3.2 Pixel optical characterization

The pixel optical characterization has been carried out to measure the pixel

overall response in the presence of light with variable intensities. The setup

is shown in Figure 4.10

The pixel output signal was measured as a function of incident light

power. The same wide-spectrum lamp used for counter characterization

was used here. In these measurements a set of neutral-density filters (an

optical filter wheel) were used to ensure a wide range of light intensities.

The optical power density was measured with an optical power meter.

This setup was used to measure both pixel output signal and noise

as a function of incident light intensity. In addition, Photo Response Non-

Uniformity (PRNU) could also be characterized by analyzing the response

of different pixels. In this measurement it is highly important to sup-
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Figure 4.10: Test setup used for pixel optical characterization

press the non-uniformity of the light source. Therefore, special attention

is needed to create a uniform illumination that was obtained by meeting

the following conditions:

− large distance between the light source and the sensor, ensuring that

the light intensity is sufficient to cover the whole dynamic range of

the sensor.

− use of a diffuser in front of the image sensor.

4.3.3 Time-gated operation

An analysis of the pixels in time-gated operation was conducted in or-

der to extract the minimum observation window that could be obtained.

The measurement setup used for time-gated measurements is shown in

Figure 4.11.

In this measurement campaign, a picosecond pulsed laser (Picoquant,

λ = 470nm, pulse width 70ps FWHM) was used. The sensor was exposed

to the laser emission through a diffuser. A pulse generator (HP8110) was
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Figure 4.11: Test setup used for time-gated measurements

exploited to trigger the laser at 50 MHz repetition rate. The same in-

strument was used to generate START and STOP signals with different

time delays ∆T1 and ∆T2. In this way, an observation window with pro-

grammable width W = ∆T1 −∆T2 was obtained. The timing diagram of

the signals used to generate the window is shown in Figure 4.12.

Figure 4.12: Timing diagram of the signals for time-gated measurements

94



Chapter 5

Experimental results

This chapter covers experimental results obtained on the different test ar-

rays of pixels. The main target of the characterization was the validation

of the proposed pixels designs and their comparison. If their performance

were demonstrated to be comparable with the digital standard implemen-

tation, analog counting circuits would improve spatial resolution of sensors.

Experimental results on counter characterization are presented in

this chapter.

5.1 Circuit I.

This section presents the experimental characterization of Circuit I, which

was also published in [150].

Circuit I, whose design is discussed in section 3.1, was implemented

in a 20×20 array and fabricated in a standard 0.35 µm CMOS technology.

An input signal emulating SPAD ignitions was externally provided through

by digital board.
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5.1.1 Reference voltage dependence

An experimental characterization was carried out in order to evaluate the

circuit performance. All the measurements presented hereafter were con-

ducted on all the analog counters in the array. The mean output voltage

step of the array is dependent on the different reference values of VREF1

and VREF2 and displayed in Figure 5.1. During the measurement, the ref-
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Figure 5.1: Output voltage step as a function of VREF1 and VREF2

erence voltage VREF1 was varied from 1.2 to 3.2 V and VREF2 was varied

from 0.1 to 0.3 V. The experimental value of parasitic capacitance CP is

estimated to be 0.8 fF, lower than the preliminary simulation results, as

in the actual layout implementation the source diffusion of M4 was shared

with the drain diffusion of M5. This estimated value is in good agreement

with the post-layout simulations.

From Figure 5.1 the average voltage output step shows a linear de-

pendency only for values of VREF1 lower than 2.6 V while a non-linearity

appears for higher values. For a better explanation of this behavior, an

analysis of the circuit depicted in Figure 3.1 during the falling edge of

96



CHAPTER 5. EXPERIMENTAL RESULTS

node IN has been performed. During this transient the delay introduced

by inverter X2 keeps transistor M4 on for a short time before M3 is closed

and M5 is opened, causing a direct current path from node D to VREF2.

This extra charge packet causes a non-linear increase of the voltage step

of the counter with VREF1. In a first approximation, the error introduced

during this transient depends on the width of the temporal interval ∆T in

which M5 starts conducting and M4 is still open. A possible way to reduce

∆T , as shown in Figure 5.1, is to increase VREF2 delaying the opening of

M5, or decrease VREF1, turning off M4 earlier.

A secondary effect of this current is also the discharge of parasitic

capacitance at node B towards VREF2. As a result, an additional charge

packet, caused by the charge sharing between the node B and the output,

is introduced into equation 3.1, turning into a voltage step modification.

The reference voltages VREF1 and VREF2 also affect the voltage step

non-uniformity, measured as the standard deviation of ∆VD over the whole

array (see Figure 5.2). As it is seen in the graph, the measurements show

a non-uniformity below 4% for VREF1 ranging from 1.5 to 3 V and VREF2

voltages exceeding 0.2 V.

The main advantage of the proposed circuit is its low output non-

uniformity by comparison with the implementation in [143, 144]. These

two circuits are based on completely different principles. The proposed

approach is based on charge transfer between two capacitances. As it

follows from equation 3.2, the step non-uniformity is mostly caused by

the mismatches of capacitances CP and CM6 and the threshold voltage

of transistor M4. In order to minimize the overall mismatch, the value of

CM6 was chosen as large as possible, taking into consideration the available

area. In the previous work [143, 144] the SPAD pulse is shortened before

feeding a resistive switch in its core. The non-uniformity was then caused

not only by threshold voltage mismatches, but also by the shortened pulse
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Figure 5.2: Voltage step non-uniformity in dependence on reference voltages VREF1 and

VREF2

width non-uniformity.

It should be noted that the storage capacitor CM6 might discharge

with time by leakage currents. In order to estimate the impact of a possible

leakage, the array was read out after an integration time of a few tens of

milliseconds in dark conditions (i.e., with no pulses applied), and only a

slight change in the output voltage (lower than 1 mV) was observed. This

effect might be neglected as the circuit is expected to operate in low light

level conditions in real time (20 frames per second).

The readout output noise of each counter has also been measured

at room temperature. Across the whole reference voltages range the noise

does not exceed s=1.2 mV. This value is in good agreement with expec-

tations and determines the minimum voltage step for shot-noise limited

operation.

The circuit power consumption estimation was carried out at 1 MHz

repetition rate of the input signal and power supply voltage VDD=3.3 V.

A power consumption of 190 nW was measured for each pixel.
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5.1.2 Non-linearity estimation

One of the advantages of the present circuit is its programmable resolution

that can be adjusted accordingly to the application demands.

The circuit provides a programmable resolution that can be tuned

precisely for application requirements. Two sets of reference voltage values

were identified providing a number of steps at the output corresponding

to 7- and 8-bit resolution. Taking into account the step size (Figure 5.1)

and step non-uniformity (Figure 5.2) results, two sets of reference voltages

were chosen (Table 5.1):

Ref.voltages values, V Step Size Step Non-uniformity,% σē

Set 1 VREF1 2.0 4.1 ≈ 3.8 0.3

VREF2 0.15

Set 2 VREF1 3.1 8.1 ≈ 4.2 0.15

VREF2 0.2

Table 5.1: Circuit I characteristics

As a figure of merit for the single-event discrimination capability of

the circuit, we can use the ratio between the readout noise to the step size

and refer to it as an equivalent noise in electrons. (Equation 5.1)

σ[ē] =
σ0

∆V
, (5.1)

where σ0 — electronic noise of the circuit, ∆V — voltage step size, σ[ē] —

electronic noise of the circuit expressed in electrons.

Thus, the readout noise for a single voltage step is 0.15 and 0.3

electrons for the two sets, respectively. The expected non-linearity for

the both setting is approximately 4%. A characterization of the output

voltage linearity was carried out on all the analog counters. The output

voltage values of each counter in the array were acquired for all the possible
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numbers of input pulses spanning the ranges 0-128 and from 0 to 256

to assure 7 and 8-bit resolution settings, respectively. From these data,

integral (INL) and differential (DNL) non-linearity were extracted. The

envelope of INL and DNL curves for all the pixels for 8-bit resolution

setting are depicted in Figures 5.3. INL slightly exceeds ±1 LSB error,

DNL is in order of ±0.6 LSB error.

Figure 5.3: Integral (INL) and differential (DNL) non-linearity for 8-bit resolution (Set

1)

Figures 5.4 shows the INL and DNL envelopes for 7-bit resolution

setting. For 7-bit the INL remains within ±0.6 LSB range. At the same

time, DNL is considerably smaller than ±1 LSB error, its values are within

±0.3 LSB.

Generally speaking, a DNL value greater than 0.5 LSB would not be

acceptable in a Digital-to-Analog Converter. Despite this fact, a DNL value

100



CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.4: Integral (INL) and differential (DNL) non-linearity for 7-bit resolution (Set

2)

of 0.6 LSB can still be suitable for such application, where the uncertainty

of the shot noise related to photon counting is typically larger than 1 LSB.

Moreover, Figure 5.3 shows that there are only a few occurrences in the

whole array with a DNL higher than 0.5 LSB, so that only a very limited

number of codes might be missed. Hence, 8-bit resolution ensures higher

dynamic range, while 7-bit resolution might be used in such applications

where good uniformity and sensitivity are more important features.

5.1.3 Period and pulse width dependence

The output voltage step can be affected by the frequency of the SPAD

pulse events. In order to estimate this influence, the frequency of the IN

signal was changed from 1 to 500 kHz while keeping a constant pulse width
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of 200 ns. The reference voltages were set to the values providing 7- and

8-bit resolution. The mean step size, calculated as an average on the whole

array of analog counters, is shown in Figure 5.5 as a function of pulse pe-

riod. Over the whole time range the step size increases by approximately

6.3% for 7-bit resolution setting and 7.6% for 8-bit resolution setting. The

observed increase in step size values at high pulse period values could be

explained by a leakage current of transistor M4. SPAD dead time typically
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Figure 5.5: Output step size as a function of the pulse period
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Figure 5.6: Output step size as a function of pulse width

lasts from a few tens to a few hundreds of nanoseconds. Thus, the impact
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of the pulse width upon the voltage step has been also estimated. The

measurement was performed with different values of pulse width between

20 ns to 1200 ns while keeping a constant pulse period of 2 µs.

The reference voltages were set as in the previous case, to obtain 7

and 8-bit resolution. Figure 5.6 shows a mean value increase by approxi-

mately 4.9% for 7-bit and 9.4% for 8-bit resolution. In this case the voltage

step size increases because the charge transfer is affected by sub-threshold

operation of transistor M4.
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5.2 Circuit II.

This section presents the characterization results of the resistive-switch

pixel, which was described in section 3.2. The analog counter circuit has

been fabricated in two configurations with different length for transistor

M10 in order to estimate the influence of transistor size on the pixel non-

uniformity. The area occupied by the circuit is slightly larger with respect

to the previous implementation in 0.35 µm process [143, 144] (238 µm2

versus 200 µm2).

5.2.1 Counter characterization

A first experimental campaign was performed to measure the electrical

characteristics of the counter, independently from the features of the SPAD.

Since an electrical test input was not included in the pixels, the SPAD itself

was used to stimulate the counter. For this reason the arrays have been

exposed to a light of tunable intensity and reference voltage VB was varied

in order to obtain a voltage step in the range 5...50 mV. Values of VB and

resulting output voltage steps are displayed in Table 5.2.

During the measurements the window signal WIN was maintained in

low state so that all the impinging photons could be detected. An example

of pixel circuit output signal has been acquired with oscilloscope. The out-

put trace is presented in Figure 5.7. The initial voltage corresponds to the

reset value VRST . With each pulse coming from SPAD it can be observed a

voltage step in the output (determined by the length of transistor M4 and

bias voltage VB).

A histogram of the output voltage calculated at 1 million of acqui-

sitions has been acquired for each pixel. The light conditions were varied

from a low light intensity level (a few photons) to the detector satura-

tion. A short integration time was used to reduce count non-uniformity
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Transistor M10 Dimensions Reference voltage VB Output Step Size

W=0.8 µm, L=4 µm 1.51 V 5.33 mV

1.68 V 10.27 mV

1.80 V 16.3 mV

2.0 V 29.99 mV

2.28 V 48.95 mV

W=0.8 µm, L=7.2 µm 1.68 V 4.79 mV

1.88 V 9.45 mV

1.98 V 12.75 mV

2.32 V 28.9 mV

2.79 V 58.42 mV

Table 5.2: Dimensions of the MOS transistors in Circuit II
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Figure 5.7: Oscilloscope trace of pixel output: each voltage step represents a detected

photon

due to the distribution of Dark Count Rates. A great advantage of this

circuit is its output programmability. The step size was adjusted by vary-

ing reference voltage VB. The step was set at values close to 5, 15, 30 and

50 mV, and circuit electronic noise and non-linearity were evaluated at the

different settings. Figure 5.8 shows a histogram of a single pixel. In this
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example, the distance between two peaks, and therefore the step size, is

close to 10mV. The peaks positions in the histogram were calculated for
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Figure 5.8: Pixel output voltage histogram

each pixel. Figure 5.9 and Figure 5.10 show the average peak position as

a function of number of counts at three different settings for VB.

The width of each peak is related to the electronic noise. The stan-

dard deviation of each peak has been extracted for each pixel. Figure 5.11

and Figure 5.12 show the average standard deviation as a function of pixel

count for two different sizes of transistor M10. Electronic noise increases

with the number of counts due to the additional noise introduced by each

count described in Equation 4.1

The reset noise is the same for both configurations of Circuit II. As

it can be observed in the graphs, a smaller noise contribution is related to

a smaller step. At high count numbers, a smaller noise is present in the

second circuit configuration having a longer channel of transistor M10.

In Figure 5.13 a comparison between simulated and experimental

output voltage step as a function of reference voltage VB is presented. The
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Figure 5.9: Average pixel output voltage as

a function of pixel counts for transistor M10

(W=0.8 µm, L=4.0 µm). Data relevant to

three values of reference voltage VB are com-

pared
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Figure 5.10: Average pixel output voltage

as a function of pixel counts for transistor

M10 (W=0.8 µm, L=7.2 µm). Data relevant

to three values of reference voltage VB are

compared
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Figure 5.11: Histogram peak standard devi-

ation as a function of pixel counts, for two

different sizes of transistor M10: (W=0.8

µm, L=4.0 µm). Data acquired with three

values of reference voltage VB
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Figure 5.12: Histogram peak standard devi-

ation as a function of pixel counts, for two

different sizes of transistor M10: (W=0.8

µm, L=7.2 µm). Data acquired with three

values of reference voltage VB

measurements are in good agreement with the simulations.

The step linearity and non-uniformity among the pixels in the ar-

ray were calculated from the experimental data. A comparison between
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the simulated and experimental output voltage step non-uniformity as a

function of reference voltage VB is presented in Figure 5.14.
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Figure 5.13: Experimental and simulated

average pixel output voltage as a function

of reference voltage VB for both configura-

tions of transistor M10
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Figure 5.14: Experimental and simulated

average pixel non-uniformity as a function

of output voltage step for both configura-

tions of transistor M10

A summary of the characterization results is presented in Table 5.3.

The pixels with longer transistor M10 gate have shown a 10% improvement

of the pixel non-uniformity. However, transistor M10 is approximately two

times larger. Non-uniformity is also dependent on the set step size and is

larger at smaller step values. The number of steps used for the counter

characterization does not represent the maximum output range, but the

number of steps that could be easily discriminated without any additional

calibration of the gaussian distribution calculation. Due to the additional

noise contributed with each count, at higher number of counts the ”finger”

in the pixel output histogram (Figure 5.8) can have a few peaks. This

effect should be further taken into account in the signal processing.
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TransistorM10

Dimensions

Step Size N.

steps

σ0 σP Pixel Non-

uniformity

INL

W=0.8 µm;

L=4.0 µm

5.33 mV 35 0.620 mV 0.054 mV 11.8% 3.55%

10.27 mV 40 0.612 mV 0.062 mV 10.1% 3.39%

16.30 mV 45 0.578 mV 0.066 mV 6.96% 3.16%

29.99 mV 45 0.583 mV 0.094 mV 5.47% 2.73%

48.95 mV 25 0.589 mV 0.078 mV 5.23% 2.58%

W=0.8 µm;

L=7.2 µm

4.79 mV 35 0.721 mV 0.025 mV 10.7% 3.61%

9.452 mV 45 0.721 mV 0.027 mV 8.4% 3.41%

12.75 mV 50 0.633 mV 0.045 mV 5.96% 3.15%

28.92 mV 45 0.596 mV 0.067 mV 4.86% 2.77%

58.42 mV 20 0.623 mV 0.076 mV 4.37% 2.69%

Table 5.3: Circuit II characteristics. VRST is set to 3.0 V

At high values of VRST in range of 3...3.3 V, an effect of non-linearity

of the first steps have been observed. In these conditions, voltage of SE-

LECT switch VDD=3.3 V is not high enough, thus, the transistor works

in sub-threshold regime. This effect reduces the size of the first few steps.

The output voltage step for a few pixels with LM10=7.2µm and with VRST

set to 3.3 V is shown in Figure 5.15. The linearity of the circuit can be

further improved by decreasing reference voltage VRST . Figure 5.16 shows

the output voltage step of the same pixels when measured with a reset

voltage VRST=2.7 V.

Preliminary experimental results for VRST set to 2.7 V are presented

in Table 5.4. A remarkable linearity of 1.1% can be achieved at the price

of a narrower dynamic range.

Integral and differential non-linearities of the counters have also been

calculated. Figure 5.17 presents INL and DNL calculated over 45 steps at
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Figure 5.15: Pixel step size as a function of

the number of counts. Configuration with

transistor M10 (W=0.8 µm; L=7.2 µm) and

VRST=3.0 V
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Figure 5.16: Pixel step size as a function of

the number of counts. Configuration with

transistor M10 (W=0.8 µm; L=7.2 µm) and

VRST=2.7 V

Transistor

M10 Dimen-

sions

Step Size N.steps σ0 σP Pixel Non-

uniformity

INL

W=0.8 µm;

L=4.0 µm

4.48 mV 30 0.711 mV 0.025 mV 12.06% 1.4%

9.96 mV 10 0.694 mV 0.048 mV 10.10% 1.14%

W=0.8 µm;

L=7.2 µm

4.629 mV 30 0.720 mV 0.039 mV 10.7% 1.39%

9.45 mV 10 0.711 mV 0.026 mV 8.66% 1.23%

Table 5.4: Circuit II characteristics at VRST set to 2.7 V. Configuration with transistor

M10 (W=0.8 µm; L=7.2 µm)

15 mV step size. INL does not exceed ± 0.5 LSB for both structures. DNL

is lower than ±0.1 for both pixels for the output range. The higher values

of INL and DNL are explained by non-linearities of the first steps at high

values of VRST .

The pixel current consumption has been simulated to be 280 nA

at 100 kHz repetition rate.

110



CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.17: INL and DNL of the circuit at

15 mV step size. Configuration with transis-

tor M10 (W=0.8 µm; L=4.0 µm). VRST=3

V

Figure 5.18: INL and DNL at 15 mV step

size. Configuration with transistor M10

(W=0.8 µm; L=7.2 µm). VRST=3 V
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5.2.2 Pixel optical characterization

Pixel output characteristics have been measured as a function of incident

light power. In the measurements the chip was illuminated with a wide

spectrum halogen lamp. Light intensity was varied using a set of neutral-

density filters. In order to measure the optical power density a calibrated

photodiode was used. Figure 5.19 and Figure 5.20 depict the pixel output

voltage signal and noise as a function of incident optical power density for

the first and the second pixel structure, respectively.

0.1 

1 

10 

100 

1000 

0.000001 0.00001 0.0001 0.001 0.01 

N
um

be
r 

of
 c

ou
nt

s 

Optical Power, W/cm2 

Signal 

Noise 

Linear fit 

SQRT fit 

Figure 5.19: Pixel output signal and noise

as a function of optical power density. Con-

figuration with transistor M10 (W=0.8 µm;

4.0 µm)
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Figure 5.20: Pixel output signal and noise

as a function of optical power density. Con-

figuration with transistor M10 (W=0.8 µm;

L=7.2 µm)

The integration time was set to 10 µs. The output signal is linearly

proportional to the incident power until the upper bound of the dynamic

range is reached. The noise is proportional to the square root of the optical

power. This behavior proves shot-noise limited operation of the pixel. In

Figure 5.21 and 5.22, these two curves cross at a voltage value of 15 mV,
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Figure 5.21: Pixel output signal and noise

in voltage as a function of optical power

density. Configuration with transistor M10

(W=0.8 µm; 4.0 µm)
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Figure 5.22: Pixel output signal and noise

in voltage as a function of optical power

density. Configuration with transistor M10

(W=0.8 µm; L=7.2 µm)

which for this pixel setting is the output voltage corresponding to the

detection of one single photon.
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5.2.3 Time-gated operation

A characterization of pixel output in time-gated operation was conducted

using the setup described in Chapter 4. The average output voltage for two

different gate widths as a function of time delay is presented in Figure 5.23,

showing that a minimum gate width lower than 1ns can be obtained. The

time window could be reduced to a minimum 0.9 ns. Below this value, the

output signal level strongly decreases.
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Figure 5.23: Average pixel output signal as a function of time delay for two different gate

width settings
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5.3 Circuit III

5.3.1 Pixel design and circuit configuration

Three linear arrays of pixels based on Circuit III were included in the test

chip fabricated in 0.15 µm CMOS technology. The analog counter circuit

has been fabricated in three different configurations with different sizes of

storage MOS capacitor CM12. The capacitor sizes included in the chip are

shown in Table 5.5. The capacitor size affects the output step size and,

therefore, the circuit dynamic range.

The area occupied by the circuit is 306 µm2 and is the same for all

three configurations.

5.3.2 Counter characterization

As was done for the other pixels, an experimental campaign was performed

to measure the electrical characteristics of the counter. During the mea-

surements, the pixels have been exposed to light with variable intensity and

the observation window was kept always open, with signal WIN main-

tained in low state. The circuit output signal has been observed with

oscilloscope and two output traces are shown in Figure 5.24. The ini-

tial voltage corresponds to the reset value VRST . Each pulse coming from

SPAD corresponds to a voltage step in the output voltage. Variability in

the photons arrival times causes the difference between these two traces.

The output voltage as a function of number of counts is shown in

Figure 5.25. As shown in the simulations discussed in 3.3.2, the amplitude

of the following steps progressively reduces.

As for the pixels previously presented, a large number of acquisitions

of the pixel output signals and its distribution analysis is used to evaluate

the pixel performance. Thus, the histograms, one of a few of which are

depicted in Figure 5.26, have been acquired for each pixel in the three
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Figure 5.24: Pixel output oscilloscope traces
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Figure 5.25: Circuit output as a function of count number

versions. The histogram acquisition was carried out under different light

conditions in order to estimate the circuit dynamic range. Figure 5.26

shows that, the single photons can be easily discriminated for all three

structures, as in all cases the peaks appear well separated.

The width of the histogram peaks is related to the electronic noise.

Assuming a gaussian distribution for each peak, electronic noise at each

photon detection event has been calculated. Figure 5.27 represents the cir-

cuit electronic noise at different voltage steps. This noise is lower than 1mV

and approximately independent from the number of pixel counts for the
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Figure 5.26: Output voltage histogram at low light intensity for the three different pixel

structures

entire dynamic range. This means that the noise contribution introduced

by the single steps is negligible.

Pixel step non-uniformities among pixels have been estimated and
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Figure 5.27: Electronic noise for the three different structures

CM10 Dimensions Step Size Pixel Non-uniformity σ0 σP

8×8 µm2 (290 fF) 15.6 mV 1.1% 0.695 mV ≈0

4×8 µm2 (145 fF) 28.8 mV 0.75% 0.654 mV ≈0

4×4 µm2 (72 fF) 47.8 mV 1.1 % 0.675 mV ≈0

Table 5.5: Circuit III characteristics

reported in Table 5.5 for the three structures. A non-uniformity of 1.1%

was observed that is in good agreement with the Monte-Carlo simulations,

described in 3.3.2.

5.3.3 Pixel optical characterization

The pixel output signal was measured as a function of incident light power.

A wide-spectrum halogen lamp was the source of the illumination. An

optical filter wheel was used for light intensity attenuation. The optical

power density was measured with a calibrated photodiode. Pixel output

voltage and noise as a function of the optical power density are represented

in Figure 5.29 for the third structure at 10 µs integration time.
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Figure 5.28: Pixel output signal and noise

as a function of optical power density

0.001 

0.01 

0.1 

1 

10 

0.000001 0.00001 0.0001 0.001 0.01 

O
ut

pu
t v

ol
ta

ge
, V

 

Optical Power, W/cm2 

Signal 
Noise 
Linear fit 
SQRT fit 

Figure 5.29: Pixel output signal and noise

as a function of optical power density

The output voltage range of the circuit is 1.4 V. At low light inten-

sity, the output signal is linearly proportional to the incident power, while

the noise is proportional to the square root of the optical power. In ad-

dition, the intersection of these two curves is at a voltage value of 15mV.

This output voltage corresponds to the detection of one single photon and

is an additional confirmation that the pixel works in shot-noise limited

operation.

The pixel response non-uniformity (PRNU) was estimated at white

light illumination. A PRNU = 1.9% was measured in the linear region

for the first pixel structure. This value is partly due to the 1.1% counter

non-uniformity and partly to the photodetector response non-uniformity.
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5.3.4 Time-gated operation

A picosecond pulsed laser source (Picoquant, λ = 470nm, pulse width 70ps

FWHM) was used to characterize time-gated operation of the pixel arrays.

The test setup used in this measurement has been described in section 4.3.3

(Figure 4.11).

The average output voltage for two different gate window widths as

a function of time delay is presented in Figure 5.30.

The window repetition frequency was set at 50 MHz. The circuit is

capable of sub-nanosecond time-gated operation. A minimum gate width

of 0.53 ns can be achieved.

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0 1 2 3 4 5 6 

O
ut

pu
t s

ig
na

l [
V

] 

Time delay [ns] 

FWHM = 0.53ns FWHM = 1.22ns 

Figure 5.30: Pixel output as a function of time delay for two different gating window

widths
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5.4 Circuit IV.

5.4.1 Optical pixel characterization: First version

The area occupied by the counter circuit is 171 µm2. The pixel output

voltage histogram was acquired at low illumination levels. The gating

signal WIN was maintained low during the acquisition. Figures 5.31 shows

one of the histograms of the output voltage that were calculated with 1

million of acquisitions for each pixel.
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Figure 5.31: Histogram of photon counts. First structure

The step size was set to be about 10 mV by adjusting reference volt-

age VB. With this setting, a non-uniformity of 3.3% has been calculated.

The peaks positions in the histogram and the average standard de-

viation were calculated for each pixel. The average output signal and

electronic noise are shown in Figure 5.32 and Figure 5.33 as a function of

number of counts, respectively.

As it can be noted, the standard deviation increases with the number

of counts. Equation 4.1 describes the dependence of standard deviation on

the number of counts N . Based on the histograms, the voltage step size
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Figure 5.32: Pixel output signal as a func-

tion of optical power density
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Figure 5.33: Electronic noise as a function

of optical power density

and standard deviation across the whole array were calculated. The reset

noise is σ0=0.888 mV, while σP≈0.543 mV. Such a high level of additional

noise limits the least discriminable voltage step and shrinks the circuit

dynamic range. Observing the histogram depicted in Figure 5.31 it is clear

that at 10 mV step size maximum 5 counts could be distinguished. Since it

was clear that this problem severely impairs the usefulness of this circuit,

no further characterization was held.

5.4.2 Optical pixel characterization: Second version

The area occupied by the counter circuit is 263 µm2. Figures 5.34 shows

the output voltage histogram of one pixel tuned at 10 mV step size.

The step size was varied in range from 15 to 50 mV by adjusting

reference voltage VB. At average step size of 10 mV, the non-uniformity of

3.7% has been calculated.

The pixel output voltage as a function of counts is represented in
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Figure 5.34: Histogram of photon counts. Second version

Figure 5.35. An analysis of the measurements shows that a non-linearity

of 3% can be achieved.

The average standard deviation was calculated for each pixel and

represented in Figure 5.36 as a function of number of counts.

As it can be noted, the standard deviation increases with the number

of counts, but the increment is a bit smaller than in the first version. Based

on the histograms, the voltage step size and standard deviation across the

whole array were calculated. The reset noise of the present circuit is σ0=0.6

mV, while σP≈0.2 mV. Similarly to the circuit presented in 5.4.1, high

electronic noise limits the least discriminable voltage step and shrinks the

circuit dynamic range.

Table 5.6 summarizes the characteristics of both high-pass filter cir-

cuit versions.
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Figure 5.35: Second structure: output voltage as a function of counts
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Figure 5.36: Electronic noise. Second structure

Structure Step Size N. steps Step Non-uniformity% σ0 σē Non-linearity

I 10 mV 10 3.5% 0.88 mV ≈ 0.54 —

II 15.74 mV 25 3.70% 0.58 mV 0.2 mV 3.54%

28.16 mV 20 3.14% 0.6 mV 0.3 mV 3.67%

50 mV 17 2.37% 0.59 mV 0.5 mV 3.61%

Table 5.6: Circuit IV. Summary of preliminary output characteristics
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Chapter 6

Conclusions and Future Work

The goal of this thesis has been the design and characterization of sev-

eral readout circuits to be implemented in SPAD-based pixels for photon

counting applications. The main design goals were compactness, good uni-

formity, low power consumption and sub-nanosecond timing resolution. A

few linear test arrays have been fabricated in different CMOS technologies.

The performance of four circuits based on different operating principles has

been investigated.

First of all, the compact design of all four structures has been achieved

due to the analog implementation of the readout. The area occupied by

each of the circuits is not greater than 300 µm2 that is a factor 10 improve-

ment in comparison to a digital implementation [73].

The performance of Circuit I based on charge transfer principle has

been evaluated (see section 5.1). An array of these counters, not including

SPAD and gating electronics, was fabricated in a 0.35 µm CMOS process

and has been experimentally characterized. The area occupied by the

circuit is 230 µm2 and the power consumption is 190 nW per pixel at

1MHz repetition rate. The circuit has a programmable resolution with a

4% non-uniformity of the output voltage step. An INL of 0.6 and 1 LSB

error and a DNL of 0.3 and 0.6 LSB have been measured at 7- and 8-bit
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resolution, respectively. These characteristics are acceptable for photon-

counting applications and the circuit is suitable as in-pixel counter in SPAD

based image sensors.

The circuit non-uniformity worsened by the parasitic current path

through transistor M4 and the clock feedthrough. However, this effect is

significantly reduced within a range of reference values VREF1 and VREF2

assuring non-linearity of approximately 4%. As the pixel does not contain a

detector, for the future work it would be interesting to implement a SPAD

array based on this concept, including also a gating circuit.

Circuit II (section 3.2), based on resistive switch principle, is a re-

finement of the design presented in [143, 144]. The design in [143, 144],

which has the shortcomings of high power consumption in inverter and

high non-uniformity of 11%. In order to improve the circuit performance,

pMOS transistors were introduced, thus sacrificing the circuit compact-

ness. Two linear test arrays of pixels with two different switch dimensions

have been fabricated in a 0.15 µm CMOS technology and an electro-optical

characterization has been performed. In comparison to [143], the area oc-

cupied by the circuit is slightly larger (230 µm2 versus 200 µm2 in [143])

due to pMOS transistors exploitation. On another hand, the circuit non-

uniformity has been improved by 10%. The pixel current consumption has

been measured to be 280 nA at 100 kHz repetition rate which is almost two

times lower than the value presented in [143] (500 nA at 100 kHz). Also,

time-gated measurements have shown that a sub-nanosecond time window

of 0.95 ns at FWHM can be achieved (1.1 ns in [143]). A great advantage

of the present circuit is its programmable voltage step which can be tuned

taking into account application requirements and, therefore, providing a

trade-off between the resolution and output non-uniformity. In addition,

due to the low INL and DNL no additional calibration is needed.

The measurement results also suggest that a better non-uniformity
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can be obtained at a larger gate of the nMOS switch M10, thus making

technological mismatch less significant. However, larger M10 leads to the

increase of the occupied area on the substrate, the layout can still be

improved in the future designs. The present work was focused on the

analysis of the circuit performance, therefore, the layout was not optimized

for the compactness and its design can still be improved.

The third readout circuit is based on charge sharing principle. The

circuit includes only 14 transistors and occupies an area of 255 µm2. Three

structures with different capacitor sizes have been chosen for a test imple-

mentation. The pixels, comprising also a SPAD, have been assembled into

a linear array of 40 pixels. Characterization measurements have demon-

strated that the present circuit type benefits an excellent non-uniformity

of approximately 1% among the pixels. This number represents a factor 10

improvement over the value obtained in [143]. Low PRNU of 1.9% assures

a uniformity of the outputs among different pixels, therefore, additional

non-uniformity adjustment is not necessary. Moreover, a remarkable fea-

ture of the circuit is its constant in time electronic noise equal to the reset

noise. Thus, even very small step could be still discriminated with applied

noise subtraction. A sub-nanosecond time window of 0.53 ns FWHM has

been obtained in the time-gated measurements. This value is two times

lower compared to Circuit II. The pixel current consumption has been mea-

sured to be 350 nA at 100 kHz repetition rate that is 30% lower than the

current consumption value presented in [143].

The dynamic range of Circuit III depends on the charge capacitance

value. That is, larger dimensions of transistor M10 assures smaller the

step size and, hence, a wider dynamic range. On another hand, a large

capacitance would increase the pixel size. A pixel array based on this de-

sign should therefore take into account the particular application demands

in terms of dynamic range. As the output voltage step size is gradually
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decreasing with each SPAD count due to the output voltage non-linear

dependence, an additional non-linear calibration is needed. Despite the

complexity of this adjustment, the intrinsic signal compression may be ex-

ploited to expand the dynamic range. Low electronic noise and low PRNU

suggest that this circuit is the better solution for a large array assembling.

Two versions of the circuit presented in section 3.4.1, which includes

a high-pass filter and a resistive switch, were realized and manufactured

in a 0.15 µm CMOS technology. A preliminary optical characterization of

the first configuration (section 5.4.1) has been conducted. The reset noise

for the present type of circuit is σ0=1.3 mV, while the additional noise

at each step is σP≈0.288 mV. Such a high level of noise limits the least

discriminable voltage step and reduces the circuit dynamic range. For this

reason, no further characterization of this HPF type was conducted. The

second circuit configuration, described in section 3.4.4, has shown an out-

put non-linearity of 3.7% and an electrical non-uniformity among the pixel

of 3.5%. The reset noise of σ0=0.6 mV, while σP≈0.2 mV. Similarly to

the circuit presented in 3.4.1, high electronic noise limits the least discrim-

inable voltage step and reduces the circuit dynamic range. Therefore, also

for this configuration no time-gated measurement have been performed.

The counter in these circuits operates on a resistive switch principle.

Therefore, deviation of the pulse width at the gate of transistor M7 is the

main reason of the high electronic noise and high non-linearity of these

structures. Sacrificing the circuit area, an inverter could be introduced to

stabilize the pulse width duration. For future work it could be interesting

to implement this type of circuit with the counter described in 3.3. Being

less sensitive to the pulse duration, the circuit could show better results.

Along with the circuit refinement in the future design, the array

should be assembled with high resolution and improved peripheral elec-

tronics. Pixel fill factor and pixel pitch could be further improved not only
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with circuit layout design, but also with a new geometry of SPAD and a

reduced guard ring.

The summary Table 6.1 compares the related works discussed in the

state-of-the-art (Chapter 2) with the circuits presented in this dissertation.
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