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Introduction

“The dance of life is spontaneous, self-sustaining, and self-creating.”
Paul Davies, The Fifth Miracle: The Search for the Origin and Mean-
ing of Life

“The reductionist hypothesis does not by any means imply a "construc-
tionist" one: the ability to reduce everything to simple fundamental
laws does not imply the ability to start from those laws and recon-
struct the universe.”
Philip Anderson, More is different

One of the most remarkable features of life is its being a very complex self-
organizing process. It is no less than astonishing how little and very simple
creatures, like bacteria, mosquitoes or snails, are able to do exactly what
they need to survive in a highly dynamical external environment. But even
at a smaller level, the cell is an exceedingly dense crowd of molecular facto-
ries and machines, each accomplishing a complicated task and contributing
altogether to form a highly tuned choreography. Proteins are the most im-
portant molecular devices in every living being, and are able to carry on an
infinite series of different functions in virtue of their ability to self-assembly
in a well defined three-dimensional structure.

All these biological systems are constantly drugged out of thermodynam-
ical equilibrium by a flux of energy and matter. In fact, for a living being real
equilibrium corresponds to death. Complex systems are by definition made
of many components, which can be complex systems themselves, organized
in hierarchical levels. In the simplest case, the evolution of each component
can be described as a function which significantly varies on a typical scale. A
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viii INTRODUCTION

perfect ideal “microscope” would be able to measure any dynamical observ-
ables of a given system at any desired scale (it would be a perfect telescope
if used to measure big things). Let us consider for example an observable
varying over time. Any real measurement of a time dependent quantity is a
discrete process, since the quantity is sampled every given time interval. The
latter determines which phenomena we can measure and which we cannot,
depending on the typical time scale on which a specific process significantly
varies. For example, we could decide to observe the time evolution of a bio-
logical macromolecule, like a protein, in water. Thus, we would set the time
resolution of our ideal microscope large enough to see little but significant
variations in the collective motion of the protein. However, this happens on a
time scale that is orders of magnitude larger than the typical variation of the
position and velocity of the water molecules. In the time elapsed between a
measurement and the following one, water molecules are able to explore their
phase space, hence we perceive them at equilibrium. We can thus forget the
real dynamics of water and treat it according to the average effect it acts
on the molecule. On the other hand, if we measured with a time interval
equivalent to the typical time scale of water dynamics, then we would find
it out of equilibrium. The same picture holds for the evolution of electrons
around a nucleus, where the former are much faster than the latter, and
the decoupling of the timescales makes the well known Born-Oppenheimer
approximation possible. From a radical different point of view, simple cos-
mological models are possible because matter can be treated as homogeneous
at the length scales of the Universe. Not only stars and planets, but entire
galaxies and everything else can be described as a constant mass density fill-
ing the Universe as a whole. This very important examples of scale separation
illustrate that the concept of equilibrium itself depends on the scale on which
we look at the system. Many of the quantitative approaches which nowadays
yield a significant understanding of Nature are indeed possible thanks to this
fact.

We shall refrain from giving a comprehensive definition of what is life, an
indeed daunting task, but we will grab a part of it with safety saying that
everything that is living is a very complex and self-organizing process, which
stubbornly struggles to stay out of equilibrium.

The reductionism dogma inspires a first straightforward attempt to un-
derstand biological systems from a physical point of view. It is hard not
to believe that any complex phenomenon is determined by the fundamental
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laws of physics, which are nowadays fairly well known and settled, since there
is not a single experiment on Earth violating the Standard Model of particle
physics. However, as Anderson illustrated in his manifesto [1], deriving from
first principles the behavior of a complex system, which is determined by
such an overwhelmingly complicated combination of so many fundamental
interactions, is practically impossible. “More is different”, and any level of
complexity is a new “fundamental” level on its own, whose description needs
new concepts, new “elementary” objects which obey to “fundamental” laws
[1]. Indeed, we will presumably never be able to understand what intelligence
is in terms of electromagnetism, but it would be a great success to formulate
an at least semi-quantitative effective theory of the brain.

The hope is that physical methods and concepts which are successful at
a given time, space, or complexity scale, are also able to provide a useful
insight at other scales. This is what happened for example with entropy,
originally developed to measure the efficiency of real engines and now one of
the most general concepts in quantitative sciences.

However, biological systems are also the result of a long evolutionary se-
lection, which complicates the task to find new effective laws. Indeed, when
we investigate a biological system, e.g., a protein, what we see could be the
result of general principles, or of a long history of adaptations due to partic-
ular events, or, even worse, we could look at a “frozen accident”. A physical
approach would be presumably effective only in the first case, but distin-
guishing what is a general feature from what is a particular event is usually
hard. Moreover, there is another risk, that is to invoke an evolutionary adap-
tation to explain a feature that is in fact the subtle result of some general
principles, but we are just not able to find that out.

It is a fact that most of the proteins have to display a well defined three-
dimensional structure in order to accomplish their biological functions. Small
and simple proteins are produced as linear chains and spontaneously fold
under physiological conditions to this functional structure, in what is a self-
assembling process. This feature makes proteins the smallest biological self-
organizing systems, thus an ideal target for a physical investigation.

Decades of experimental and theoretical approaches have produced a com-
mon conceptual framework, known as the free energy landscape theory, which
states that proteins self-assembly efficiently and rapidly in virtue of an en-
ergy bias towards their functional structure. Within this scheme a simple
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description of the folding mechanism is still missing, and several open issues
are still debated. Among this, it is not clear whether proteins can fold to
their functional form by many and diverse mechanisms, as suggested by the
free energy landscape theory. In other words, is it true that “all roads lead
to Rome”?

Molecular Dynamics simulations at atomistic resolution represent one of
the most promising theoretical approach to investigate the theory of protein
folding, at least from the theoretical point of view. A model of the molecule
and the forces between atoms are considered on a computer, which solves a
discrete representation in time of Newton’s equations of the system. This
technique has reached nowadays a maturity under different points of view,
a fact that was also sealed with the Nobel Price in chemistry of this year
(2013), which was awarded to Martin Karplus, Michael Levitt, and Arieh
Warshel, “for the development of multi-scale models for complex chemical
systems”.

Despite this success, all-atom Molecular Dynamics still suffers from fun-
damental limitations. In particular, a sense of impotence rises when we
realize that a huge supercomputer running for months and consuming enor-
mous amounts of power will simulate few microseconds of the dynamics of a
very small protein in water. This is a severe limitation, since proteins self-
assembly on much longer timescales, on the order of milliseconds to minutes.
Hence, in such a simulation one would unlikely be able to see a folding event.
Molecular Dynamics simulations are so demanding because protein’s dynam-
ics is characterized by many relevant timescales, spanning over about twelve
orders of magnitude. An hypothetical ideal microscope should be able to
look at the system with a time resolution high enough to measure the fastest
motion but long enough to appreciate also the slowest ones, i.e., folding it-
self. In the last few years an approximation of this ideal microscope has
been built, the Anton supercomputer, which, thanks to highly specialized
hardware and software, is able to simulate a protein in water on the millisec-
ond scale. Folding of small proteins in realistic models have been repeatedly
observed, and some issues of Molecular Dynamics have been driven away.

Even if we were able to simulate any protein in a reasonable time, would
this mean that the we understand how the protein folds? The answer to this
question crucially relies on one’s philosophical opinions. However, if we agree
that “understanding” means being able to explain with simple principles and
having some predictive power, then the answer should probably be negative.
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Many points have been clarified so far, a general principle (i.e., the free energy
landscape theory) has been proposed, but a simple and predictive theory
is still missing. The insight offered by Molecular Dynamics is invaluable,
and simulations are more and more considered as a special microscope able
to describe the dynamics with a resolution not accessible by experimental
techniques yet.

Due to the need to rationalize observations on one hand, and to enhance
the sampling over longer timescales on the other hand, many researchers
have developed alternative approaches. Usually these techniques give up to
a part of all the details contained in a long Molecular Dynamics simulations
to focus on few particular aspects. However, not all details are relevant in
the same way, and when we develop a simplified approach producing results
compatible with experiments, then maybe we understand a bit more some
aspects of our problem.

In this thesis we introduce and use a novel algorithm in order to character-
ize protein folding trajectories. We give up the power to predict the protein’s
functional structure and to measure physical intervals along the trajectory,
but we gain a high efficiency in portraying the sequence of events by which
the protein self-assemblies.

Although proteins are the smallest self-organizing biological systems, decades
of investigation at the interface of biology, chemistry, physics, and computer
science have just began to return a comprehensive picture. Much has still to
be understood, and the effort to formulate a quantitative theory of protein
folding will demand novel approaches going beyond the separation between
old disciplines. Our humble hope is that the work presented in this thesis
can be a small contribution in this direction.

This thesis is organized as follows:

Chapter 1 We will briefly review few fundamental facts about proteins and
define the protein folding problem. Then, we will introduce and
study the current conceptual framework which explains why fold-
ing is so fast. Some open issues will be outlined, in particular
whether folding happens through parallel pathways and the role
of non-native interactions, which will be investigated in this the-
sis. In the last part, we will explain what a Molecular Dynamics
simulation is and review the current achievements and open prob-
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lems.

Chapter 2 This chapter is devoted to introduce the method developed and
used in this thesis in a self-contained way. We will study in de-
tail the over-damped Langevin equation, which will be assumed
to be a valid description for the dynamics of a protein in water.
We will sketch the derivation of the Wiener path integral repre-
sentation of the transition probability for a diffusive process, and
introduce the Onsager-Machlup action functional. We will then
review some recent results about the existence of a good reaction
coordinate for folding, namely the fraction of native contacts. In
the last section, we will introduce the Dominant Reaction Path-
way (DRP) algorithm, a method to efficiently simulate the re-
active folding pathways, which consists in a biased sampling of
the folding trajectories that are then ranked according to their
probability in the unbiased diffusive dynamics.

Chapter 3 We will use the DRP method introduced in chapter 2 to inves-
tigate the folding of a small 35-residue long WW domain, in
all-atom resolution and with a realistic force field. This system
is a benchmark for the algorithm, and we will show that only
two different folding pathways emerges characterizing many mi-
croscopic trajectories. There are thus only two possible folding
mechanisms, and we will show that this result is compatible with
experimental and numerical investigations.

Chapter 4 We will employ the DRP algorithm to study the folding of a na-
tively knotted protein. As a matter of fact, we will report the
first case of an all-atom folding simulation of a knotted protein
in a realistic force field. We will characterize the folding trajec-
tories, finding that folding happens by a well defined sequence of
events, and that knotting can occur through two main different
mechanisms, determined by the effect of non-native interactions.

Chapter 5 We will simulate the refolding of a 126-residue long chain of the
human cardiac myosin, and analyze the kinetics and thermody-
namics of the trajectories by mean of the Milestoning algorithm.
We will use the results to gain some insight of the bias’ effect in
DRP trajectories.
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Chapter 1

The Protein Folding Problem

“Not all those who wander are lost”

J.R.R. Tolkien - The Lord of the Rings

In this chapter we will briefly introduce proteins, the main characters of this
thesis, by collecting some basic experimental facts about their functions in
every living organism, their structure and the relevant interactions responsi-
ble for their shape in water. This material is highly standard, and appears
in many excellent text books, as for example [2, 3].

We then will extensively introduce the folding problem in the next section,
defining the particular point of view we focus on. Folding is remarkably fast
in nature, although it involves sampling an astronomically large space. In
order to get insight on how this is possible, a historical view of how our
understanding has proceeded is very useful. This is particularly true because,
differently to many other fields in contemporary science, the currently used
terminology, theoretical models and open issues are still deeply related to the
first investigations. Plenty of evidences point to the fact that proteins have an
energy bias to fold to the native state, where the interactions are optimized
to cooperatively stabilize the protein configuration. This result forms the
bulk of the current conceptual framework describing protein folding, and we
will analyze some still debated issues which will be addressed in this thesis.

These open problems can be tackled by means of theoretical and compu-
tational approaches, as Molecular Dynamics simulations in particular, and

1



2 CHAPTER 1. THE PROTEIN FOLDING PROBLEM

we will review the latest achievements in this field, which show that these
techniques are mature enough to validly support experimental investigations.

In writing this chapter I took great advantage of Ref.’s [4] and [2], which
I would strongly suggest to anyone is approaching this fascinating field for
the first time.

1.1 Proteins

Proteins are biomolecules present in all the five kingdoms of life and perform
a great variety of functions and complicate tasks, as we will illustrate with
few examples. Some proteins are passive building blocks of many structural
elements of living beings, as keratin in nails and hair, collagen in cartilages,
or the external coats of viruses. They also carry out more active functions,
like hormones, which transmit signals across the body, or antibodies, which
defend the organism by the malicious threat of viruses and bacteria. Some
proteins are natural springs and bundled together in fibrils are the basic
constituents of muscles, which make possible for any organism to move and
interact with its surrounding environment. Proteins with special shape are
embedded in the cellular membrane forming a channel passing through it,
and regulates which compounds can enter or exit. Other proteins control
when to activate the expression of a gene, the procedure by which the infor-
mation contained in the DNA strand is translated into RNA, which contains
the instruction to build a new protein. These new proteins are assembled in
molecular factories called ribosomes, which are themselves made of proteins
(and RNA). And newly produced proteins can find shelter in another molec-
ular machine, the chaperon, a barrel-shaped assembly of proteins that can be
even closed paying an amount of ATP. Even more impressive protein-based
cellular devices exist, which for example actively transport other compounds
across the cell.

The amount of different tasks proteins carry out is simply astonishing, and
is strictly related to the three dimensional structure that characterizes them.
Indeed, experiments show thats that at physiological conditions almost half
of all the different types of proteins displays a well defined compact structure,
that we will call the native configuration1. As we will abundantly discuss,
the process of getting this particular native conformations is called folding.

1Throughout this work, “conformation” and “configuration” will be used as synonyms.
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Figure 1.1: Peptide bond formation between two amino-acids. Fig. repro-
duced with permission from Wikipedia.

Proteins are heteropolymers, i.e., linear chains made of different types
of “beads”, which are the amino-acids. The shortest polypeptide chain with
protein like properties is only 35 amino-acid long (the villin headpice), while
on the other side giant proteins made of ∼30,000 amino-acid exist ( the titin
protein). The average chain length in Eukaryota is ∼300, sensibly bigger
than in Prokaryota and Archea [5].

The chemical composition of amino-acids has a part that is always the
same, the backbone, and a part that changes, the side-chain or residue. Dif-
ferent amino-acid form peptide covalent bonds linking themselves together
(Fig. 1.1).

Amino-acids, which are also called simply residues, are characterized by
the chemical and stereochemical properties of their side-chains, which range
from the simplest one in glycine, that is simply an hydrogen atom, to very
big and complex aromatic rings, as in tryptophan (Fig. 1.2). The sequence
of resides defines the so-called primary structure of a protein (Fig. 1.3).
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Figure 1.2: The 21 different types of residues. Fig. reproduced with permis-
sion from Wikipedia.
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Figure 1.3: Different amino-acids are linked in a chain by covalent peptide
bonds, and form the primary structure of a protein. Fig. reproduced with
permission from Wikipedia.

Interaction Energy scale

(kcal/mole) kBT

covalent bonds 50-150 80-250

electrostatic 10-20 20-35

ionic bonds 4-7 7-12

hydrogen bonds 5 8

Van der Waals 0.2-0.5 0.3-1

Table 1.1: Different interactions relevant for proteins and their energy scales.
At room temperature T=300 K kBT ≈ 0.6 kcal/mole. Data taken from Ref.
[3]
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1.1.1 Interactions in proteins

Atoms in the primary structure interact in complicated ways between them
and with the atoms of the solvent (which usually is water). Most of these
interactions are quantum in nature, but it is common to define and classify
them according to empirical criteria (Tab. 1.1).

Covalent bonds are the strongest interactions between atoms in proteins,
such that it is impossible to break them at room temperature and at physio-
logical pH, although in the cell, special enzymes can cleave them. The peptide
bond linking different residues in the primary structures is of covalent type.

Atoms are usually neutral, unless they are in an ionic state, since the el-
ementary charges are distributed symmetrically. This even distribution can
get asymmetric when two or more atoms form a chemical bond. Partial
charges are fractional values of the elementary charge that are used to model
these local excesses or lacks in the charge distribution. Electrostatic interac-
tions exist between partial charges and dipoles formed by them. Moreover,
some residues have a net charge at physiological temperature and pH (Fig.
1.2). Electrostatic forces are calculated according to the usual potential scal-
ing with r−1, which makes them the only long range interactions in proteins.
Water effectively screens electrostatic interactions, whose potential energy is
scaled down by a Debye factor exp (−r/r0). The ionic bond is a particu-
lar case of electrostatic interaction, since it involves the attraction between
oppositely charged ions.

Hydrogen bonds (h-bonds) arises when two electronegative atoms share
an hydrogen, and its nature is yet not completely understood and object
of active research [6]. These bonds are formed within the molecule, within
the solvent and between the two. They are highly directional and of utmost
importance in shaping the native structure of proteins.

Van der Waals forces are weak attractive and repulsive interactions due
to transient inhomogeneities in the atomic charge distribution, both in polar
and apolar atoms. They are provoked by different quantum effects, and the
kind of interaction depends on the distance separating two atoms. When
two atoms are very close, almost in contact, the Pauli exclusion principle
prevents the two electronic clouds to overlap. This exclusion manifests as an
effective core repulsion. At an intermediate distance, Van der Waals forces
are attractive. In fact, the symmetrical charge distribution around an atom
is dynamical, and whenever transient inhomogeneities arise, instantaneous
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dipoles emerge. One of these dipoles can induce another dipole in a close
atom, opening the door to a subsequent dipole-dipole attractive interaction.
This effect is known as London dispersion force. At further values of the dis-
tance separating two atoms, Van der Waals interactions vanish to zero. The
overall behavior is usually approximated by a distance dependent Lennard-
Jones potential (see 1.3.2).

To conclude the classification, proteins’ dynamics is also affected by en-
tropic effective interactions, which arises when single residues and protein
are surrounded by water-like (polar) solvents. Residues are experimentally
classified in hydrophobic or hydrophilic depending on whether they tend to
attract or not with each other once put in water. This can be qualitatively
understood considering the different propensity of different amino-acids to
form hydrogen-bonds (h-bonds) with the water molecules. In the bulk of
water transient h-bonds with lifetimes on the order of ∼ ps form a dynamical
network, which is broken when a hydrophobic residue is put in water. H-
bonds between water molecules and the residue are less stabilizing than those
within water. It is energetically more advantageous for water molecules to
saturate all the possible h-bonds with other water molecules, thus forming a
rigid network, a sort of “cage” surrounding the hydrophobic residue, known
as solvation shell. The frozen configuration of this shell correspond to a much
lower entropy, lower than the stability gain granted by the h-bonds. Thus
overall this rigid conformation has a higher free energy than the bulk, making
it less probable, and the difference in free energy is found to be proportional
to the surface of the residue exposed to the solvent. When two hydrophobic
residues are put in water, the most probable configuration of the system is
the one that minimizes the exposed surface to the solvent. This manifests as
an effective attractive interaction between the two residues.

1.1.2 Structures

The native structure can be determined either by X-ray crystallography tech-
niques, if the specific protein actually crystallizes, or by Nuclear Magnetic
Resonance (NMR), which measures the coupling between protons of a protein
in solution. Experimentally determined protein structures are then deposited
and made freely available to anyone on the Protein Data Bank (PDB)2, which
is a world-wide open-access collaboration. The number of deposited struc-

2http://www.rcsb.org/pdb/home/home.do
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tures has increased exponentially, from the first 13 in 1976 to the 95,644
available while these pages are being written, November 2013.

Protein structures display local regular patterns of h-bonds, which form
the so-called secondary structure. The most frequent examples of secondary
structures are the α-helix and β-sheet.

In water all the hydrophobic residues tend to attract among each other
and as an effect bury themselves in the bulk of the protein. Once they are not
longer exposed to the solvent, many h-bonds in the backbone atoms of the
chain previously established with water molecules are not anymore saturated.
They thus tend to form new h-bonds with other atoms in the backbone. Paul-
ing demonstrated that α-helices and β-sheets are the geometrical patterns
which maximize the number of formed h-bonds, hence maximize the stability
of the resulting structure. The hydrophobic interaction is thus responsible for
a compact and collapsed overall configuration, while h-bonds, being highly
directional, yield regular local specific structures [7].

Secondary structures are packed in different ways, or topologies, and the
overall resulting three dimensional conformation of the protein is called the
tertiary structure.

The relative displacement of different tertiary structures in big and com-
plex proteins or assemblies is know as the quaternary structure.

1.2 The protein folding problem

The so called central dogma of molecular biology states that the information
flows from DNA to RNA and to proteins3, which are the molecules entitled to
put that information in action [9]. We talk of transcription when information
is transferred from DNA to a message RNA filament (mRNA). We have
translation when the information encoded in the mRNA is used to produce
a protein. In order to carry out this translation, RNA has to find its way
to the ribosome, that is the cellular factory assigned to the production of
proteins.

Ribosomes “read” the mRNA and assembles the corresponding amino-acid

3The word dogma is used in this case in an erroneous way, since this flow has been
extensively investigated and proved. Indeed, as declared by Crick himself in his autobiog-
raphy [8], he used that word just because it conveyed a catchy sentence.
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in a linear chain, which has to fold to the native structure in order for the
protein to be biologically active. Folding can happen while the chain is being
synthesized by the ribosome (co-translational folding [10, 11]), or after (post-
translational). In both cases one could think that the linear amino-acid chain
is shaped in its native configuration by a plethora of complicated cellular
processes and machineries. Investigating folding in vivo, in the overcrowded
environment of a living cell, is out of reach even using current experimental
techniques. Hence, how can we address the study of the folding of proteins
with this severe limitation?

1.2.1 Proteins are self-assembling systems

We can treat a simplified version of the problem, in vitro, thanks to a series
of very famous experiments carried out by Anfinsen in the ’60s [12]. In
a rather simplified version, he unfolded a sample of the 124-residue long
bovine pancreatic ribonuclease enzyme in a test tube. The complete loss of
secondary and tertiary structures can be obtained raising temperature or, as
Anfinsen did, using urea, that is known to be a very effective denaturant. The
sample of denatured proteins showed no sign of enzymatic activity. Once urea
is removed, hence the environmental conditions are restored to the native
ones, the protein spontaneously refolds to its native configuration, displaying
again its enzymatic activity.

The usual interpretation of these experiments leads to what is known as
the Anfinsen’s dogma: all the information that a protein needs to attain
its native configuration under native environmental conditions is contained
exclusively in its primary structure, i.e., the amino acid sequence which com-
poses the chain. Small globular proteins are able to spontaneously fold once
they are in the right environmental conditions.

This postulate, which is by now verified by many experimental evidences,
is of utmost importance for any investigation of the protein folding problem.
Indeed, by invoking it we can avoid to consider the problem in a living cell
and put our efforts to study it in a test tube, where it appears more simple
and all the experimental conditions can be under control. It was verified
that there is a series of molecular processes modifying the amino acid chain
post-translationally in the cell [4]. Moreover, the folding of real proteins is
facilitated by the presence of molecular chaperones, like the GroEL-GroES
complex, whose shape recalls that of a barrel. As this particular shape sug-
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gests, the function of the GroEL-GroES complex is to shelter a folding chain
from the disturbances of the overcrowded cellular cytoplasm [13]. It is thus
believed that the function of chaperonines is to enhance the folding rate, but
they presence is not essential. Unfortunately we still know very little about
how the real protein folding happens in a cell [10, 14].

Anfinsen’s dogma allows us to forget (at least temporary) all these diffi-
culties, and to focus on the simplified version of the protein folding problem.
We are thus interested in understanding the spontaneous folding and unfold-
ing of a protein or a sample of diluted proteins in water. Following [4], we
quote Fersht [15]:

We can assume that what we learn about the mechanism of folding
of small, fast-folding proteins in vitro will apply to their folding in vivo
and, to a large extent, to the folding of individual domains in larger
proteins.

1.2.2 Investigating the mechanism

Having restricted the problem under study, we want now to better specify
what exactly we aim to understand. Different authors partition the problem
in different ways [4, 16, 17], or even say that the very definition of protein
folding problem has little meaning since protein science has become an entire
flourishing active area of research [17]. We will say, following Karplus [16],
that the problem can be dissected in two main parts:

1. Understanding how the information about the three-dimensional native
structure is fully encoded in the primary structure. In other words, the
ultimate goal is to develop algorithms that predict the native struc-
ture once the amino acid sequence has been given as an input. Great
successes have been accomplished in this direction, but it is widely be-
lieved that this part of the problem is not suited for a physical approach
[4, 16, 17].

2. Understanding which is the mechanism used by a protein to fold. On
one hand, this involves the characterization of the folding pathway,
i.e., the description of the sequence of events connecting the unfolded
to the native conformation. On the other hand, this entails also the
understanding of this process dynamics, of all the relevant interactions
and, as an ultimate goal, a global comprehension of the general rules.
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The second part of the problem is mostly investigated by means of physical
methods, and we will limit our attention on it only.

We will focus in this work exclusively on the folding of small, globular,
single domain proteins. These molecules are by far the most characterized
by experimental and computational investigations [18], since they represent
the simplest systems showing all the typical features of folding. Following
Finkelstein, we can say that globular one-domain proteins are the simplest
biological self-assembling objects [2].

The universe of real proteins is far richer and more complicated [17]. Most
of existing proteins are actually composed of multi-domains, each of which
is able to independently fold. Then there are membrane proteins, which still
present many difficulties upon characterization [19, 20]. Moreover, during
the last years we have understood that nearly half of all eukaryotic proteins
present a large portion of their chain that never displays a folded structure
[21]. It is generally believed that this lack of structure is related with the
need of being versatile in carrying on promiscuous biological functions, but
nonetheless we know very little of the behavior of this so called intrinsically
disordered proteins (IDP) [21].

1.2.3 Folding is described by a two-state kinetics

Anfisen’s experiments have shown that studying protein folding outside the
cell is a well posed problem. We will now briefly review some results about
the kinetics of the process, i.e., how fast a protein (un)folds [2]. Usually
these experiments are carried out by having a sample of folded proteins in
a test tube, then unfolding them by adding chemical denaturants (urea or
guanidinium chloride (GuHCl)) or raising temperature, restoring the native
conditions and measuring how the refolding proceeds by means of several
experimental techniques. It is worth noting that chemical or thermal dena-
tured states are presumably rather different from the initial unfolded state
in a cell.

For most of the simple, small, globular proteins which we will focus on,
the outcome of experiments is rather well described by a two state kinetics
[22, 23]. In this scheme only two states are populated, the native one, N ,
and the denatured one U , and a protein switches from one state to the other
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with a given rate:
U

ku
�
kf
N

A notation that is widely used is to write kf for the rate of transitions from
U to N , and ku for the unfolding. The equations defining the rates are:

dN

dt
= −kuN (t) + kfU (t)

dU

dt
= kuN (t)− kfU (t)

(1.1)

where N (t) and U (t) are the fractions of proteins that populate respectively
the native and the unfolded state at time t, subject to the normalization
condition N (t)+U (t) = 1. After a transient time the system sets to equilib-
rium, and the time derivatives in eq. (1.1) vanish. If we define the equilibrium
constant

Keq ≡
Neq

Ueq

=
kf
ku

and we take U (0) = 1 (i.e., we are analyzing a refolding experiment), then
the system (1.1) admits solution

N (t) =
Keq

1 +Keq

(
1− e−(kf+ku)t

)
. (1.2)

A kinetic characterized by eq. (1.1) and (1.2) is known as single exponential,
and the quantity kf + ku is known as the relaxation rate.

Since for a large ensemble of proteins the fractions N (t) and U (t) are
proportional to the probabilities to populate the two states, if we suppose to
treat the system as in the canonical ensemble, we can express the equilibrium
constant as connected to the stability

∆G ≡ GN −GU = −kBT lnKeq

that is the difference of free energy between the native and the unfolded
state. Regarding proteins at ambient temperature and pressure, the term
p∆V that makes the difference between Helmholtz’s and Gibb’s free energies
is negligible [24], and we will make no distinction from now on. It is found
experimentally that proteins are marginally thermostable, since values of ∆G
usually range from −15 to −5 kcal/mol, far from the maximum stability they
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could attain [25]. The fractions N (t) and U (t) are also proportional to the
concentrations of the two species in a volume V , which are usually written
as [N ] and [U ].

The relaxation rate kf + ku is determined measuring how it varies with
chemical denaturants, representing it in what is known as the chevron plot
[22]. Under native conditions ku ∼ 04, and the dependence of the folding
rate on temperature is well reproduced by an Arrhenius relation

kf = k0e
−∆G‡
kBT

that describes a reaction exponentially hindered by an activation free energy
∆G‡ [2, 26]. The inverse of the folding rate is the mean folding time, which is
in the range of ms to s. Notable exceptions are represented by the ultrafast
folders [27], folding in a time on the µs scale, and by proteins that are very
big or characterized by a complex topology (e.g., knotted proteins), which
fold in minutes or tens of minutes [23].

Plaxco et al. found an interesting correlation between the complexity of
the topology and the folding time in a protein [28, 29]. Two residues i and j
are are said to be in contact in the native structure if their distance is below
a given threshold, which is typically of the order of 7 Å . One can calculate
the contact order of a native structure

CO =
1

LN

N∑
∆Sij

where L is the total number of residues in the protein, N the number of
native contacts, and ∆Sij the distance in sequence between the residues
i and j that are in a contact. Lower values of contact order correspond
to proteins where native contacts have usually a local topology, i.e., the
involved residues are close. Such proteins are usually molecules rich of α-
helix secondary structures. On the contrary, high values of the contact order
corresponds to non-local topologies, mostly determined by the presence of β
structures. The correlation found by Plaxco et al. [28–30] and shown in Fig.
1.4 implies that

kf ∼ e−CO .

4At room temperature, considering a stability of ∼ 10 kcal/mol, Keq =
exp (−∆G/RT ) ∼ 107, which is hence the ratio between the number of folded proteins
over the number of unfolded ones.
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Figure 1.4: Folding rate vs. CO. A clear correlation exist spanning over
several orders of magnitude. Fig. reproduced with permission from Ref. [18]

1.2.4 Why is folding so fast?

The fast and apparently effortless way proteins fold is astonishing if one
considers how complex its dynamics is. Cyrus Levinthal wondered how such
a simple and fast behavior can emerge from a complicated interplay of a large
amount of interatomic interactions. Since then, in his honor this conundrum
has been called the Levinthal’s paradox [31].

Levinthal noted that since at physiological conditions a protein has to
mostly populate its native state, it is natural to think that this state is the
one characterized by the lowest free energy. But a protein can be found
in an astronomical large number of configurations. For instance, we can
consider that an average protein is 100-residues long, and that each amino
acid displays from 2 to 10 degrees of freedom, depending on whether we
consider only the backbone or also the side-chain. The most conservative
estimate of the number of possible conformations is 2100 ∼ 1030 [31]. The
fastest rate by which a protein can change conformation is estimated by
calculating the frequency associated with thermal energy, i.e.,

ν =
kBT

h
∼ 10 ps−1 (1.3)
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where h is the Planck constant. But even with this rate, the exploration of
the huge conformational space would take ∼ 1019 s, which is 20 times the age
of the Universe.

There are two wrong hypotheses behind this famous estimate [4]. First,
the protein can display each conformation with the same probability, there-
fore they all have the same energy. Second, it can hop from one conforma-
tion to any other randomly, and this is for sure not true since we expect the
evolution across the conformational space to be continuous. Basically, the
Levinthal’s paradox presumes a random unbiased sampling of a astronomical
large number of conformations all showing the same energy.

As noted in [4], this paradox has to be meant as a reductio ad absurdum
proof, which clearly shows that the quest for the native state cannot be
completely random. As was shown in [32, 33] by using a kinetic argument,
a non democratic search can take a biological relevant mean time of arrival.
In particular, by exploring the conformational space Ω, individual residues
will happen to find their native configuration. If this does not change the
probability to switch to another conformation, then the Levinthal’s paradox
holds unchanged. But the paradox can be avoided if whenever a residue
displays a native configuration it tends to stay there. It is enough to impose
an energy penalty of few kBT in leaving a native configuration for a “wrong”
one in order to exceedingly reduce the folding time to few seconds. The latter
result is a precious hint on how the exploration of Ω proceeds.

1.2.5 The folding thermodynamics

It seems at this point opportune to illustrate in a more rigorous way the
thermodynamics of the protein folding. This will also be an occasion to
introduce notations and terminology widely used in the literature. We will
mainly follow [2, 4, 24].

We shall set the framework of a microscopic description of the equilibrium
thermodynamics of a protein. Let us consider a protein made of N atoms in
water at fixed temperature T and pressure P and constant number of water
molecules Nw, i.e., we will work in the statistical canonical ensemble. The
results we are going to carry out will be valid also in the scenario of a diluted
solution of non interacting proteins. We will follow the convention to use
lower-case letter for the molecules atoms, and upper-case for the water ones.
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If the system is ergodic, standard equilibrium thermodynamics suggests
that the native state N is the one with the global lowest free energy. Assum-
ing that the system can be correctly described at a classical level, the whole
dynamics is encoded in the Hamiltonian

H (x,X,π,Π) =
∑
i

π2
i

2mi

+
∑
j

Π2
j

2mj

+ V (x,X)

with i = 1, ..., N and j = 1, ..., Nw, where mk is the atomic mass respectively
of the protein (when k = i) and water atoms (when k = j), and V (x,X)
denotes the inter-atomic potential energy.

At equilibrium any thermodynamic quantity can be derived from the
knowledge of the partition function

Z =
1

hN+NwNw!

ˆ
Γ×Γw

dxdXdπdΠe−βH(x,X,π,Π) (1.4)

where as usual β ≡ (kBT )−1, h is the Planck constant, Γ and Γw are the
phase space of the molecule and the solvent, respectively. The factor in front
of the integral represents the elementary cell in the phase space, and takes
into account for the indistinguishably of water molecules.

At this point it is natural to investigate the dynamics of the molecule by
considering an average behavior of the surrounding water. Indeed, it would
be uninteresting and useless to derive an equation which explicitly takes into
account any possible conformation of all the water molecules. For the average
to work, we need for the typical water’s equilibration time to be much faster
than the molecule’s one. Since water sets to equilibrium on the ps scale, this
seems a safe assumption.

The standard way to consider an effective dynamics is to average out
the water degrees of freedom. It is straightforward for the momenta, since
they reduce to a multiple Gaussian integral, returning a multiplicative factor
in front of Eq. (1.4) that depends on temperature and mass of the water
molecules. In the canonical ensemble, thus at fixed temperature, the multi-
plicative factor acts as a normalization constant and can be ignored.

Averaging out water’s conformational degrees of freedom is not trivial,
since they are coupled to the molecule’s one by the potential energy. Never-
theless, this can be done at least formally introducing the potential of mean
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force:
W (x;T ) = −kBT ln

(ˆ
Ωw

dXe−βV (x,X)

)
(1.5)

where the integration is performed over all water conformations Ωw. We shall
stress the fact that this new quantity, which is known as effective energy, is
temperature dependent. To understand this we can think for instance that it
encodes the dynamics of water, its entropy, and consequently the hydrophobic
interaction.

Having introduced the effective energy, we can build an effective Hamil-
tonian

Heff (x,X,π,Π) =
∑
i

π2
i

2mi

+W (x;T )

and an effective partition function. In the latter we can integrate out as
above the momenta of the molecule’s degrees of freedom, obtaining

Zeff(T ) =

ˆ
Ω

dxe−βW (x;T ) .

where Ω is the configuration space of the molecule. In the following we will
drop the temperature dependence and the effective subscript for the sake of
a lighter notation. With the new partition function, the probability density
function (PDF) of the system reads

p (x) =
e−βW (x)

Z
.

We want to match the microscopic description introduced so far with
the one based on the state concept. According to the outcome of kinetics
experiments, the system can be found either in the native state (N ) or in
the unfolded state (U).5 Since N ∩ U = ∅, we can consider thermodynamic
quantities to be restricted to these states, starting from the partition function

Zi =

ˆ
Ωi

dxe−βW (x) .

Any state Ωi ⊂ Ω has a probability to occur given by

Pi =
Zi
Z

5This is approximately true only in systems displaying a two state kinetics with no long
lived intermediates.
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and and a free energy
Gi = −kBT lnZi .

We can now recover the stability that was introduced discussing about the
kinetics of protein folding and several valid equalities:

∆G ≡ GN−GU = −kBT ln
ZN
ZU

= −kBT ln
PN
PU

= −kBT ln
[N ]

[U ]
= −kBT lnKeq .

Since the conditional PDF of a configuration x in a state Ωi is

pi (x) ≡ p (x|x ∈ Ωi) =
e−βW (x)

Pi

we can calculate the internal energy of a state

Ui ≡ 〈Wi〉 =

ˆ
Ωi

dxW (x) pi (x)

and its entropy

Si = −kB
ˆ

Ωi

dxpi (x) ln pi (x) .

From the latter expression it is possible to recover the basic definition of free
energy, and therefore write any free energy difference as

∆G = ∆U − T∆S .

The mean force acting on a protein that we have written in equation (1.5)
can be thought as a hypersurface W defined as

W : Ω→R
x 7→u = W (x;T )

an energy landscape upon which the protein “navigates” searching for the
native state [34]. It is worth to remember that “energy” here has to be meant
as potential of mean force or effective energy, since it represents the energy
of a configuration x averaged over all the possible configurations of all the
water molecules. The energy landscape is of course not a novel concept per
se, but we will use it in the following as a useful pictorial way to grasp some
understanding on how it should look like regarding the folding problem.



1.2. THE PROTEIN FOLDING PROBLEM 19

As we described, Levinthal’s paradox is based on a random unbiased sam-
pling of the protein’s huge conformational space Ω. This searching strategy
corresponds to an enormous perfectly flat landscape which displays a deep
but extremely narrow well in correspondence of the native state. Wolynes
described this scenario using the felicitous picture of a “drunk playing golf”
[34], and such an energy landscape is now known as a “golf-course” [35].

1.2.6 An energy bias towards the native state

Levinthal himself proposed a solution to his paradox, by introducing the con-
cept of folding pathway6. He speculated that the folded and the unfolded
conformations of a protein are connected by a specific sequence of interme-
diate configurations [36]. This was also motivated by Levinthal’s belief that
a rapid folding and reaching the global free energy minimum were incom-
patible. He thus proposed folding to be kinetically driven, i.e., the native
state is the configuration reachable in the lowest amount of time. As a con-
sequence, initiating the folding from two different denatured configurations
implies reaching two different native structures. The opposite view, in which
the protein finds its most stable state, is known as thermodynamically driven
folding. By taking advantage of a pictorial view of the energy landscape, this
scenario corresponds to a narrow canyon connecting the unfolded configura-
tion to the folded one (Fig. 1.5 panel (b)). In this scenario the rate-limiting
step of the reaction, called Transition State (TS), is a high energy confor-
mation. Levinthal’s pathways have been ruled out, since experiments have
never found such a deterministic sequence of intermediate states.

The random wandering on the golf-course landscape (Fig. 1.5 panel (b))
that inspired Levinthal’s paradox can be paraphrased according to Finkel-
stein [2] as follows: before forming any energetic stabilizing contact, the
amino acid chain has to attain a huge conformational entropy reduction. This
latter yields to an enormous free energy barrier of entropic nature that makes
the transition practically impossible to happen. But the work of Zwanzig et
al. shows that a way to reduce this barrier is to preserve any native inter-
action that is randomly formed [32, 33] during the folding. In this way, the
conformational entropy reduction can be simultaneously and continuously
balanced by the formation of stabilizing energetic interactions. We now de-

6Actually Levinthal’s paper where the idea of pathway had been introduced [36]was
published one year before he gave the talk in which he exposed his famous paradox [31].



20 CHAPTER 1. THE PROTEIN FOLDING PROBLEM

fine a native contact as a couple of residues that in the native state are
closer than a given threshold. They interact attractively stabilizing the na-
tive state. Non-native contacts are transient interactions happening during
the folding between residues which are not close in the native state. These
contacts can be either repulsive or attractive. The simple model proposed by
Zwanzig et al. suggests that a way to solve Levinthal’s paradox is to consider
an energetic bias towards the native state.

The same conclusions were drawn from a different perspective by Bryn-
gelson, Wolynes and Onuchic [34, 35, 37–40]. They were inspired by a sta-
tistical mechanics approach to spin glasses [41, 42]. These systems display a
landscape characterized by the presence of a huge number of similarly deep
minima, with no global energy minimum dominating over all. During their
evolution these systems remain trapped for an infinite time in these minima,
being like a frozen liquid. This happens because there is not a single con-
figuration in which most of the interactions between the components are all
simultaneously stabilizing in a cooperative way. Such an inability to opti-
mize the interplay between the different interactions is called frustration [43].
Typical random heteropolymers display a frustrated energy landscape, with
no hierarchical organization of the minima [44, 45]. Indeed, they are unable
to show the characteristics of folding, i.e., its reliability and efficiency. Thus,
Bryngelson, Wolynes and Onuchic proposed that proteins are very particular
heteropolymers displaying minimal frustration. They postulated that folding
proceeds by forming native contacts, which in average are always stabilizing;
and that non-native interactions, that are considered as a form of frustra-
tion, are distributed randomly along the folding. The native energy bias was
already anticipated in the work of Gō and Taketomy [46].

In order to give a visual representation of this solution to Levinthal’s
paradox, Bryngelson, Wolynes and Onuchic have introduced the funneled
energy landscape (1.5 panel (c)). To be more precise, this picture represents
the free energy surface. Indeed, if the vertical axis corresponds to the effec-
tive energy, then the horizontal axis represents the conformational entropy
. Descending from the top of the funnel, which represents the denatured
state (DS) and displays the highest number of conformations, energy and
entropy decrease. In other words, going down in energy, there are less and
less configurations having that energy. In this sense the famous funnel shape
is due to the reduction of entropy and not of energy [48]. We already know
that the stability ∆G ' 10 kcal/mol, and an estimate of T∆S returns ∼ 100
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(a) (b)

(c) (d)

Figure 1.5: Different types of pictorial representations of the folding energy
landscape. Clockwise starting from the upper left panel: unbiased random
search (golf-course landscape); Levinthal’s pathway; perfectly smooth fold-
ing funnel; rugged landscape due to important non-native interactions. Fig.
reproduced with permission from Ref. [47], which displays a more rich tax-
onomy of possible energy surfaces.



22 CHAPTER 1. THE PROTEIN FOLDING PROBLEM

Figure 1.6: Pictorial representation of the free energy landscape of protein
folding. The effective energy is represented on the vertical axis. It corre-
sponds to any possible interaction (chemical bonds and angle energy, dihedral
angle rotation, inter-atomic Van der Waals, electrostatic, etc.) and entropic
term (solvation free energy, solvent entropy, etc.), except the conformational
entropy of the protein, which is encoded in the width of the funnel. It is
implicitly assumed that there is a good reaction coordinate Q describing the
folding of the protein. Energy and entropy both diminish smoothly going to-
wards the native state, which lies on the bottom of the plot. Any difference
in the slopes of U (Q) and S (Q) originates a free energy activation barrier
according to the elementary relation G (Q) = U (Q) − TS (Q). As noted
by several authors, there has been some confusion about this picture. The
effective energy U is obtained averaging out any solvent degree of freedom,
hence it is technically a free energy itself and is called that way by some
authors. We have preferred to follow [4] in order to remove any possible
ambiguity by calling free energy only the quantity G. Furthermore, Karplus
noted that sometimes it is believed that a protein folds quickly because of the
funnel shape, which is due to the reduction of conformational entropy [48].
In fact, this reduction hinders the folding process. Proteins fold fast because
there is an energy bias to go towards the native state. Fig. reproduced with
permission from Ref. [48].
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kcal/mol. Hence, the effective energy decrease has to be ∆U ∼ 100 kcal/mol,
and the stability is the result of a fine cancellation [24].

Approaching the problem with the instruments of statistical mechanics
has introduced a new stochastic view of the process. Pathways are no more
necessary, since any possible route on the landscape leads to the native state.
Folding is no more a sequential process but an intrinsically parallel one. DS
and transition state (TS) are replaced now with ensembles of possibly very
diverse configurations. This new approach to the folding problem is known
as the “new” view, compared to the old one based on the pathway concepts.
Ref. [16] outlines a historical perspective on how the transition between these
views happened, investigating the various original contributions. A detailed
and illuminating review of the differences between the two scenarios can be
found in Ref. [47].

To summarize, what we have understood in the last decades is that protein
folding can happen spontaneously and efficiently because there is an energetic
favorable bias towards the native state. Together with the observation that
the number of possible conformations decreases as the energy goes down, this
lesson can be summarized in a pictorial way in the well-known funneled free
energy landscape plot 1.6. This view is now widely accepted as the conceptual
framework of the protein folding process.

1.2.7 Rough or smooth landscapes

Panel (c) of Fig. 1.5 shows a smooth landscape, meaning that random frus-
trations, that would correspond to a rough surface, are negligible compared
to the energetic bias towards the native state. This is an extremely idealized
scenario. Even if natural proteins are minimally frustrated, there could still
be a residual presence of non-native interactions. In the funnel picture, we
can imagine them as little bumps (i.e., repulsive non-native interactions) or
little valleys (i.e., attractive interactions), which could act as kinetic traps
hindering the folding process. A rather rough landscape due to frustration
would appear then more like panel (d) of Fig. 1.5. A lower and more uniform
degree of frustration would instead cause the system to feel a sort of friction
when evolving on the landscape.

Which is the amount of frustration and which is its effect on folding in
real protein is still unclear and under active investigation, and will be one of
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the main questions we are going to investigate in this thesis.

1.2.8 There are many diverse bottlenecks for folding

By shortly reviewing the two kinetics of two-state proteins, we have seen that
the dependence of the rate on temperature is well described by an Arrhenius
law, thus by a reaction that has to overcome a free energy barrier ∆G‡. The
question that naturally arises is where this barrier is hidden in the funneled
energy landscape. Indeed, while in the old view of Levinthal’s pathways
the TS was a configuration of particular high energy, in this new view it is
an ensemble of configurations, all acting in a possible different way as the
rate-limiting step to folding. In a perfectly smooth landscape, if there is
an activation free energy barrier, then this is of entropic nature. Indeed, it
would be caused by a different pace in the decrease of energy and entropy,
with the former diminishing not rapidly enough to balance the latter [2, 24].
This can be seen also in a simplified model that is analytically tractable but
displays all the characteristics of the folding on a smooth landscape [49]. In
presence of significant frustration, the rate-limiting step could be due also
to high-energy conformations. In a realistic case, the bottleneck of folding is
formed presumably by different kinds of barriers, namely entropic, energetic,
and topological [47] (i.e., to attain the right conformation the chain should
cross itself).

1.2.9 The two views are not incompatible

The “old” and the “new” views of folding appear to be limit cases of a richer
spectrum of possible energy landscapes [4, 50]. In order to explore this idea
we want to first eliminate the ambiguity that surrounds the word “pathway”.
Therefore, we will solely use it to specify any description of the folding mech-
anism by means of a set of collective variables. Any microscopic realization
of the folding in atomistic detail will be simply called “trajectory”. Thus,
a pathway is a collection of different microscopic trajectories that show a
common pattern at a coarser level of description. This pattern could be for
instance in the order of formation of the secondary structures, of the hy-
drophobic nucleus or of the number of native contacts. A pathway is an
average behavior to some extent insensitive to what happens in the micro-
scopic trajectories which define it. We will use the words “mechanism” and
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“reaction channel” as synonyms for pathway.
In panel (c) of Fig. 1.5 the funnel is perfectly smooth, non-native inter-

actions have no role, and folding is completely heterogeneous, not just at a
microscopic level but also concerning the folding pathways. On the other
side, panel (b) shows a landscape characterized by an utmost severe frustra-
tion, leaving just one open pathway, and folding is perfectly homogeneous.
However, it is possible that in real situations a finite number of pathways
emerges from all the microscopic realizations, due for example to the specific
topology of the protein or the concerted action of non-native interactions.
These interactions would shape the topography of the funnel carving deep
channels traveled by most of the microscopic trajectories. The landscape
would be like in panel (d) of Fig. 1.5, an intermediate version of panel (b)
and (c).

Whether such a pathway description has any validation with reality or
not has been extensively investigated during the last years. Unfortunately,
experimental techniques are mostly based on ensembles analysis, and recov-
ering any information on the actual mechanism (even knowing whether there
is just one or many) is not straightforward at all. Hence, since the seminal
study by Lazaridis and Karplus [50], this problem has been mainly tackled
by means of computational approaches, which we will partially review in the
next section.

The main goal of this thesis is to present and discuss a computational
method able to find and characterize the folding pathways of globular proteins
by means of a numerical simulation of microscopic folding trajectories.

1.2.10 The origin of the funneled landscape

Nowadays, almost everyone accepts that the free energy landscape of folding
appears to be funneled. However, we have not said why it happens to be that
way. In fact, random heteropolymers do not share this peculiarity, displaying
a very rough energy landscape with a lack of a clear hierarchical organization
of the energy minima [44, 45]. It has been postulated that proteins do have a
smooth funneled landscape because they are very particular heteropolymers
selected by evolution during billions of years. A pressure for a rapid and reli-
able folding would have selected only those amino acid sequences displaying
the required characteristics. Although it seems clear that real proteins and



26 CHAPTER 1. THE PROTEIN FOLDING PROBLEM

their properties are the result of an evolutionary selection, it is still unclear
whether there was a positive pressure for a funneled landscape or the latter
is just an emergent feature of a more complicate process [23].

1.3 Investigating the protein dynamics on a com-
puter

We will focus now our attention on how to deal with the determination of
the protein folding mechanism. From a physical point of view, we are thus
interested in solving the dynamics of the amino acid chain in a native-like
environment. Since the system we want to study is usually composed of
thousands of atoms all interacting in a non-trivial way, it is clear that our
purpose is to understand the dynamics of a folding protein by means of
numerical approaches on a computer.

First of all, we can consider several levels of spatial resolution possibly
adopted to describe the molecule. In a coarse-grained (CG) representation
each amino acid is described as a bead located in the position of the Cα-
atom. Instead, all-atom (AA) models explicitly represent all the atoms of
the protein and are those with the highest spatial resolution. In the following,
we will always refer to AA resolution if not differently specified.

In lattice representations, each component of the system can be placed
on the sites of a lattice on discrete positions. This drastic approximation
makes calculations much faster. On the other side, off-lattice representations
simulate the system as embedded in physical space, and are far more accurate
but also more expensive.

Atoms and molecules are quantum objects in nature. Solving the dynam-
ics of a protein would mean solving the Schrödinger equation for all the atoms
and electrons interacting via the Coulomb potential. Such an approach is
known as ab initio, and is in principle the most accurate way to investigate
the time evolution of a molecule. Unfortunately, such an extreme accuracy
comes with a huge computational cost, which makes practical quantum ab
initio calculations feasible only for very small molecules, and absolutely pro-
hibitive for any system of biological interest. Therefore, it is necessary to
approximate the system, neglecting quantum effects and treating atoms and
molecules classically.
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To understand in a rough way whether this approximation is allowed or
not, we can calculate the time and length scale associated to a characteristic
thermal energy kBT , that at normal conditions (T = 25 °C) is≈ 0.6 kcal/mol.
Indeed, for a system at thermal equilibrium a classical approximation works
if

kBT � hν

d� λ =
h√

3mkBT

where ν is the fastest rate of the system, d is the typical length scale, λ the De
Broglie wavelength associated to thermal energy, h is the Planck constant,
and m= 1 atomic mass. We have already seen that the time scale associated
with thermal energy is ∼ 10 ps−1 (eq. (1.3)). Typical rates of motions
in a molecules range from 100 ps−1 for the stretching of an H-O bonding,
to 1 ns−1 for the rotation of dihedral angles. Indeed, our approximation
will badly work in dealing with atomic bonds, which are purely quantum,
whereas it will be a fairly good one regarding all the other time scales in the
system. Since electrons relaxes on a time scale�1 ps, the Born-Oppenheimer
approximation holds and we can avoid to explicitly describe electrons, and
treat them collectively as a potential energy surface describing their ground
state. On the other hand, λ yields the length scale at which quantum effects
arise, and one has λ ∼ 10−10m ∼ atomic dimension. Since λ does not
overlap over several atoms, we can approximate inter-atomic interactions
with classical ones.

We have now understood that in order to describe the folding protein
dynamics we need to solve Newton’s equations numerically

v̇i = − 1

mi

∇U (Xi)

ẋi = vi (t)
(1.6)

for any atom i in the system. This kind of approach is known as Molecular
Dynamics (MD) simulation.

Solving the system of differential Eq.’s (1.6) with a time independent
potential means to simulate the time evolution of a system where energy
in conserved, and is thus equivalent to sample the micro-canonical ensem-
ble. In order to sample the canonical ensemble two main strategies can be
used. One can couple the system described by Eq.’s (1.6) to a thermostat
and thus let the two to exchange energy. Accomplishing this task is not
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trivial, and several algorithms have been proposed [51]. An alternative ap-
proach consists in solving a microscopic diffusion equation (the over-damped
Langevin equation) instead of Eq. (1.6), which automatically samples the
canonical ensemble. This second strategy will be extensively explored in the
next chapter.

1.3.1 The solvent

The system we want to simulate is not only composed of the molecule, but
also of the environment, that is the solvent where the protein is immersed.
In most of the cases this solvent is water with the addition of ions Na+

and Cl− to account for the pH of the solution. Solvent has a fundamental
role in determining the dynamics, and in particular concerning the folding
of proteins. It is responsible for solvent-solvent and solvent-protein hydro-
gen bonds, electrostatic interactions, changes of dielectric properties, and,
most importantly, for the hydrophobic effect, which is considered the main
interaction responsible for the initial stages of folding. As a matter of fact,
proteins fold only in water-like polar solvents.

There are two main different approaches in dealing with the simulation
of the solvent, namely explicit and implicit water. Firstly, one can simulate
explicitly each water molecule by means of different models [52] (e.g., SPC,
TIP3P, SPC/E, TIP4P, etc.). This high level of detail is fundamental when
water’s granularity plays an important role in the specific investigated sys-
tem. AA MD in explicit water is the most detailed description of the protein
folding dynamics, and it comes also with the highest computational cost. In-
deed, one has to add a number of water molecules that is usually at least ten
times the number of atoms in the protein. Most of the CPU time is devoted
to simulate the thermal motion of thousands water molecules in the bulk,
which has mostly no direct consequences on the dynamics of the molecule.
Moreover, by using simulations that adopt an explicit solvent model it is very
difficult to get the solvation free energy, that is the free energy of transferring
the system from vacuum to the solution [24].

To overcome these difficulties and speed-up simulations, one can treat wa-
ter on an average level by going further in the mathematical treatment that
was sketched in section 1.2.5, which yields an implicit solvent model. Em-
pirical models have been proposed introducing an effective ∆Gsolv term and
accounting for the different effects of the solvent on the molecule [24, 53, 54].
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The hydrogen-bonds network that exists between water and molecule’s atoms
cannot be simulated explicitly and has to be taken into account effectively.
Moreover, the hydrophobic effect is implemented by means of an empirical
relation, stating that ∆Gsolv is proportional to the Solvent Accessible Sur-
face Area (SASA). Water viscosity, due to the microscopic impact of water
molecules on the protein, is not reproduced. On one hand this enhances the
rate of conformational sampling of the protein by accelerating simulations,
which are typically 100 times faster than with explicit solvent, but on the
other hand this usually disrupts time scales and makes impossible to get the
correct folding kinetics. Water implicit models are much faster to use but still
suffer from several issues (for example the impossibility to describe buried
water) and are less accurate in reproducing the native state of a protein [53].

1.3.2 Empirical all-atom force fields

In order to calculate forces in Eq. (1.6) we need to know the potential energy
function U (X). In principle, at a classical level this is given by considering
all the electrostatics interactions among all the atoms of the molecule. Using
such a level of detail would yield prohibitively long calculations, and a more
approximate approach is needed. In order to avoid an infinite computational
time and retain a satisfactory accuracy, the so-called empirical Force Fields
(FF) are now of common use [55].

FF are defined by a potential energy function depending on the molecule
configuration X and by the set of free parameters appearing in this function.
All the FF used to simulate biomolecules display the same functional form,
that is

U (X) =
∑
bonds

kb (b− b0)2 +
∑

angles

kθ (θ − θ0)2 +
∑

dihedrals

kχ (1 + cos (nχ− δ)) +

+
∑

impropers

kφ (φ− φ0)2 +
∑
i<j

{
εij

[(
r0
ij

rij

)12

−
(
r0
ij

rij

)6
]

+
qiqj
εrij

}
.︸ ︷︷ ︸

non−bonded

(1.7)
The first term describes bonds vibrational energy, which is approximated
with a harmonic potential acting on the bond distance b, of coupling con-
stant kb and equilibrium distance b0. The same approximation is used in
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the second term to describe the potential of valence angles θ, with coupling
constant kθ and equilibrium angle θ0. The third term describes the energy
of dihedral angles χ rotation, by means of a sinusoidal potential of constant
kχ, multiplicity n, and phase angle δ. The fourth term is again a harmonic
potential acting on the improper dihedral angles φ. kφ is the coupling con-
stant and φ0 the equilibrium value. The terms illustrated so far describe
all bonded interactions, due to the chain topology. Non-bonded interactions
are described in the last two terms contained in the curl brackets, where the
summation runs over all pair of atoms (i, j). The first term approximates in-
teratomic Van der Waals interactions by means of a Lennard-Jones potential.
For any pair of atoms (i, j), rij is their distance, and εij is the depth of the
energy well whose minimum is located at r = r0

ij. The last term represents
the energy of electrostatic interactions between atomic partial charges qi and
qj, ε being the dielectric constant in vacuum.

All the interactions but the electrostatic one are short-ranged, mean-
ing that one can safely neglect them when two atoms are separated by a
given threshold distance (namely 7 Å) thus making calculations faster. Elec-
trostatic are the only long-range interactions, since they scale as r−1, and
imposing a cut-off would be an exceedingly crude approximation, and more
sophisticated tricks are needed. The calculations of this long-range inter-
actions amounts to roughly half of all the CPU time spent to simulate the
system.

The free parameters of the energy function (1.7) are obtained by fitting
experimental data or results of sophisticated quantum ab initio simulations.
The currently most used FF, namely CHARM, AMBER, GROMOS, OPLS,
have all in common the functional form (1.7), but differ on how the free
parameters are calculated and on their values. Refined versions of FF can be
found in which only a handful of parameters has been optimized [56, 57].

The main advantage of using the simplified energy function provided by
empirical FF is that calculations are relatively efficient and, despite the some-
how crude approximations used to write them, they are remarkably accurate
in reproducing experimental data [58, 59].

Among the disadvantages we can list the fact that the chemical bond term
is described by a harmonic oscillator, thus creation and breaking of bonds
are ruled out. Using instead the Morse potential would yield a more realistic
description, but with a 3 or 4 orders of magnitude higher computational cost
[60].
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Empirical FF are relatively computationally cheap because they are fitted
to reproduce a given model in a specific range of thermodynamic parameters,
for example temperature. Thus, they lack the generality of an ab initio
quantum mechanical calculation, and are working at best for the system
and the thermodynamics parameters they were optimized for [24]. Another
caveat is that usually current FF are optimized to be used with a specific
water model, e.g., TIP3P with AMBER and CHARM, and changing model
could yield a loss of accuracy [58]. None of the nowadays standard FF used
to simulate biomolecules can take into account atomic polarizability.

Simulating the dynamics of proteins in explicit water in AA resolution
by employing empirical FF is the most detailed and accurate way to investi-
gate the problem from a currently feasible computational point of view. Al-
though empirical FF are cheap compared to quanto-mechanical calculations,
for most systems it is still impossible to obtain simulations long enough to
overlap with time scales of biological interest. Getting this sort of long MD
trajectories would take an unreasonable amount of time by using most of
the currently available supercomputers, which have routinely access to the
microsecond scale for small systems (∼ 1000 atoms). As a matter of fact,
the first MD simulation with realistic FF of a folding protein was obtained
only in 2010 on a highly specialized machine, which in virtue of a special
hardware architecture can simulate small proteins in water on a millisecond
scale. The latest achievements and issues will be reviewed in section 1.3.4.

1.3.3 Gō-type models

As we have just mentioned, severe limitations exist on the set of phenomena
possible to be investigated by means of AA MD simulations. Besides, even
when the folding of a given protein can be studied in the highest resolution,
it is necessary to collect many events to draw any statistically significant
conclusion.

For these reasons it is very useful and common to employ simplified energy
functions, the most successful of which are the so-called Gō-models [61–63].
These adopt a native-centric view of folding and only native contacts play a
stabilizing role in the native state. In other words, in the standard Gō-model
the energy landscape is a perfect smooth funnel. They can be used both with
an AA and a CG representation of a molecule.
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A typical Gō energy function appears as [64]:

U (X,Xo) =
∑
bonds
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∑
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+
∑

dihedrals

kχ

{[
1− cos (χ− χ0) +

1

2
[1− cos (3 (χ− χ0))]

]}
+

+
∑

(i,j)∈NC

εNC

[
5

(
r0
ij

rij

)12

− 6

(
r0
ij

rij

)10
]

+
∑

(i,j)/∈NC

εNC

(
σNC
rij

)12

︸ ︷︷ ︸
non−bonded

.

(1.8)
The energy function is knowledge-based, because it depends on both the cur-
rent and the native configurations. Indeed, all the equilibrium parameters
(those with the 0 subscripts) are those of the native structure of the pro-
tein one wants to simulate. This automatically guarantees that the native
structure is the minimum energy configuration. The first three terms of (1.8)
take into account the fact that we are simulating an unbreakable chain, and
describe the energy related to stretching of bonds, vibration of angles and
rotation of dihedral. These are different if compared to (1.7) because b0, θ0

and χ0 are average values calculated directly from the native structure of a
particular protein. The non-bonded part is composed by a Lennard-Jones
potential, describing attraction and repulsion, which in this case acts only on
couples of residues (i, j) that are in native contact (NC), and a purely repul-
sive term acting on couples of residues which are distant in the native state
(NC). In this particular case, since σNC is a constant, the non-native repul-
sion is non-specific. All energy parameters kb, kθ, kχ, εNC , and εNC can be
expressed in terms of εNC , and adjusted in order to recover the experimental
stability ∆G.

Eq. (1.8) describes the effective energy of a smooth funnel, but Gō-models
can be complicated to take into account also for non-native attractive inter-
actions, dependent or not on the type of residues in contact. Further details
will be given in Chap.’s 3 and 4.

Gō-models have been successful in reproducing several important observ-
ables of the kinetics and the folding mechanism of a wide range of different
proteins [65], and are now a standard instrument to investigate the dynamics
of biomolecules, and in particular the folding of proteins [61–63].
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Figure 1.7: Panel A. Total duration of the growth of a protein simulation
with time. First point reported is the simulation of Ref. [68], last point is the
first millisecond long simulation reported in Ref. [69]. Scaling is exponential,
with the accessible time scale doubling every year. It should be possible to
simulate the dynamics of a protein on the second scale in 2020. Panel B.
Growth of the total number of atoms of the simulated system with time.
Fig. adapted with permission from Ref. [67].

1.3.4 All-atom MD simulations in the Anton era

The evaluation of the forces acting on a molecule is an extremely time-
demanding computation, making MD calculations highly CPU-intensive. Moore’s
law is a well known empirical observation stating that computational power
of CPUs doubles every 18 months [66]. This enhancement has a direct ef-
fect in the size of the system that is possible to simulate on a computer, as
well as the total time duration of a simulation [67], which have been steadily
increasing since the first MD simulation (Fig. 1.7) .

The attempts of using MD simulations to shed some light on the dy-
namics of proteins, and in particular on the folding problem, began in 1977.
McCammon, Gellin and Karplus simulated for the first time 10 ps of the
bovine pancreatic trypsin inhibitor (BTPI) dynamics on a computer using
an empirical force field [68]. That effort served as a proof of principle, and
somehow contributed to modify the common view at that time of proteins
as rigid and static objects, whereas they are highly dynamic even in their
native state. As a matter of fact, in 1998 Duan and Kollman accomplished
the first serious try to completely fold a protein with a 1 µs long simulation
of the villin headpiece subdomain [70].
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Until few years ago, it was still under debate whether unbiased MD simu-
lations with empirical FF were accurate enough to simulate the spontaneous
folding of a realistic protein in AA resolution [71]. A definitive proof that
this is possible was provided by Shaw et al. in 2010, who simulated the re-
versible folding and unfolding of a small WW Domain and of the BTPI by
means of unbiased MD using the AMBER FF [69]. The obtained millisecond
long equilibrium trajectories show spontaneous folding of the two small pro-
teins to the correct native configurations. Further parameters characterizing
the folding trajectories are in good agreement with experimental data. This
milestone result by Shaw et al. represents the proof that MD and related
computational approaches are a valuable strategy to cope with the protein
folding problem.

Simulating the millisecond scale in AA resolution with explicit solvent
has been possible thanks to several technological improvements [72]. MD
calculations are extremely demanding and have to be distributed on a large
amount of single CPUs by means of parallel algorithms and architectures,
which are both under continuous development. However, the most impor-
tant advancement has been the realization of the Anton supercomputer [73],
named after the Dutch scientist Antonie van Leeuwenhoek. This computer is
build employing special-purpose designed hardware that optimizes the com-
putational steps of an MD simulation. This extreme level of hard-coded
optimization permits to simulate MD steps two orders of magnitude faster
than commercial clusters (Fig. 1.8).

1.3.4.1 Accuracy of current AA FF

The presence of Anton and the possibility to get millisecond long trajectories
has changed the panorama of AA MD simulations, and modified the current
view on three important related issues: the lack of sufficient sampling, the
accuracy of modern empirical FF and a robust interpretation of the high
resolution folding trajectories [60, 71, 74].

Sampling efficiently enough to simulate time scales relevant to biology
has been the most severe limitation of AA MD approaches. This problem
is far from being solved, since reaching the millisecond scale is limited to a
unique supercomputer, whereas all commercial cluster are bounded to the
microsecond scale. Even the millisecond scale is badly insufficient if one
considers that an average protein folds on the second scale. However, looking
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Figure 1.8: Fastest MD simulation evolution during the last years (regardless
of the system’s dimension, measured in simulated ns per day). Last point
corresponds to the performance of the Anton supercomputer, namely several
µs per day. Fig. reproduced with permission from Ref. [72]

at the growth of the simulated time scale during the years (Fig. 1.7) we
can say that a reasonable hope exists that technological developments will
mitigate the sampling problem in the next future [67].

Nonetheless, there is still much room to develop alternative sampling
methods, which give up to all the details of a long equilibrium MD simulation
to focus and enhance the sampling of a specific part of the dynamics under
investigation, as we will see in the next chapter.

Empirical FF of the last generation, based on the functional form reported
in Eq. (1.7), are somehow a drastic simplification of the exceedingly rich
interactions in a real molecule surrounded by water. Therefore it is justifiable
that until few years ago many researchers doubted that such energy functions
could be accurate enough to reproduce experimental results. FF have been
improving over the years, and although issues still exist, they have proved
to be reasonably accurate [58]. Moreover, it is worth observing that FF are
not guaranteed to properly act on timescales they were not optimized for.
The fact that they yield reasonable results on longer available timescales is
not trivial at all. Issues in AA FF (how transferable are they? how good are
they in reproducing thermodynamic quantities? can they properly describe
unfolded configurations?) have been investigated by means of ultra-long
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simulations on the Anton supercomputer in a series of papers [69, 75–79] .
As we mentioned, Shaw et al. have demonstrated in Ref. [69] that spon-

taneous folding and unfolding of two small proteins happen on a long MD
simulation. They extended this result by investigating the folding of 12 dif-
ferent (ultra)fast folder proteins, ranging from 10 to 80 residues in length (see
Fig. 1.9), and all but one spontaneously folded to the experimental structure
[75]. In a total simulated time of ∼ 8 ms about 400 folding and unfolding
events have been observed, with kinetic and thermodynamic data in good
agreement with experiments. The simulated proteins represent three differ-
ent families of structures, namely α, β, and α/β proteins, and were folded
by using the same FF (CHARM22*). This is remarkable considering that
reproducing the correct interplay between α and β secondary structures is
another open issue of realistic FF [57, 80].

Usually the folding rate is the first observable that is measured to attest
the validity of a given MD simulation, and during the years many results
obtained with different techniques have yielded a fairly good match with
experiments. The existence of ultrafast folders as the villin headpice, which
folds in few microseconds, permits to collect tens of (un)folding events on
a millisecond long trajectory, enough to directly compute thermodynamic
averages. Piana et al. used these simulations to show that, beside rates,
also other kinetic and thermodynamic observables are in good agreement
with experiments [77]. This conclusion can be extended beyond fast-folding
proteins, as was shown by long MD simulations of ubiquitin, which folds on
a millisecond scale [78].

Correctly reproducing the dynamics of unstructured proteins, which can
be either found in the DS or because they are IDP, is a challenge. Lindorff-
Larsen et al. investigated the performance of an AA FF by simulating a well
characterized protein in its DS with a 200 microsecond long simulation [76].
As already reported in the literature, the FF was slightly too hydrophobic,
yielding a DS more compact that the experimental one. Moreover, some
transient α secondary structures persisted during all the duration of the
simulation, pointing out that serious sampling issues still persist. Despite
these limitations, the comparison of the dynamics in the DS with NMR
measurements was fairly good [76].

To summarize, during the last three years, by using the unique features
of the Anton supercomputer, Shaw and his group extensively tested the ac-
curacy of modern FF and particularly addressed the most important long-
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Figure 1.9: Twelve (ultra)fast folding proteins simulated on Anton by using
the same FF [75]. For each protein the simulated native structure is shown
in blue, superimposed to the experimentally determined one, which is in red.
The structure representation is accompanied by the name of the protein,
the total amount of simulated time, the RMSD-to-native calculated on all
the residues Cα’s and the average folding time. As it can be seen, all the
simulated native structures are equivalent to the experimental one within
the atomistic resolution of few Å. Fig. reproduced with permission from
Ref. [75].
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Figure 1.10: Comparison of simulated folding time with experimentally mea-
sured one. Different colors refer to different authors. Triangles and circles
represent simulations carried on in implicit and explicit water, respectively.
All but one results are in agreement within one order of magnitude. As
noted by the authors of the review in Ref. [74], this is a reasonable agree-
ment considering that simulations were carried on different temperature and
environmental conditions in general compared to experiments. Reproduced
with permission from Ref. [74].
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standing open issues. The results of these investigations confirm that current
FF are accurate enough to correctly reproduce many experimental measure-
ments, and observed deficiencies highlight areas that need improvements in
the future.

Long MD trajectories are highly complex objects, and extracting all their
dynamical content is not a trivial task [74, 81]. Simplified models and dimen-
sionality reduction techniques are extremely useful instruments to rationalize
and characterize all the details of an AA folding simulation, as we will see in
Chapter 2. Furthermore, sophisticated techniques based on a Markov Chain
reduction have been very popular during the last years, as they provide a rig-
orous quantitative and human readable reduction of the complex dynamics
encoded in MD trajectories. An example based on the Milestoning approach
will be reviewed in Chapter 5.

1.3.5 Folding happens through sequential stabilization

There is plenty of excellent reviews focusing on many different aspects of
the protein dynamics and folding phenomenology. In particular, several
controversial aspects still exist, namely the order of events in folding, the
role of transient secondary structures in the DS, the heterogeneity of folding
pathways, and the role of non-native contacts [18]. Usually, experimental
techniques measure properties of whole ensembles of proteins, and it is un-
fortunately extremely difficult to understand the mechanism of folding in
atomistic detail, since transient structures cannot be resolved yet. The long
MD trajectories produced by Anton and extensively validated represent a
useful opportunity to summarize some general and common features of the
observed folding events.

It appears that local native contacts are formed earlier than non-local
ones, although some of the latter play a key role in stabilizing the TS. Resid-
ual secondary structures are present in the DS, and live on many different
timescales. The longer a given secondary structure lives in the DS, the more
likely it can be found in the NS, thus residual structures and native con-
formations are correlated. According to the definition of pathways we have
already specified, folding as observed on Anton’s simulations is rather homo-
geneous and somehow sequential. Structural elements are mainly formed in
the same order, and a small number of different pathways is found. These
conclusions emerge both from the insight on (ultra)fast folders [75] and on
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the millisecond scale folder ubiquitin [78].
There is an apparent clash between the theoretical expectation based on

the funneled energy landscape theory (i.e., that folding is a highly paral-
lel phenomenon) and the conclusions of AA MD simulations. It is difficult
to discriminate this by means of experiments, because the only way to de-
tect multiple pathways is by analyzing the φ-value, although it is not at all
straightforward.

The sequential view of folding, where local native contacts form earlier
than non local ones, is in qualitative agreement with the “foldon” view. A
foldon is defined as a “cooperative formation of pieces of secondary structures
or loops, often contiguous in sequence, in a process of sequential stabilization”
[18, 82]. Many experimental evidences point out that folding proceeds by
forming this sort of quanta of secondary structures in a sequential way ,
suggesting that the effective energy of a protein is modulated by many local
minima, each of which corresponding to a different foldon [18, 82, 83].

1.3.6 Role of non-native interactions

During the last years different researches carried on several investigations
about the possible role of non-native interactions, i.e., roughness on the fold-
ing energy landscape.

Experimental attempts to shed light on this problem are very difficult,
since it is impossible to follow the evolution of single contacts in time. There-
fore, investigations have been carried on mostly by numerical approaches,
although a frustrated landscape has been detected measuring the so called
internal friction [84]. By employing Gō-models and lattice protein represen-
tations, a controversial picture emerged, where some results find a negligible
role for non-native contacts, whereas other claim their importance [64, 85–
94]. Those studies finding that the presence of non-vanishing frustration
enhances the folding rate agree on the fact that non-native contacts have
to be an energy perturbation compared to native ones. Indeed, when the
contact energy in the two cases is equivalent, the amino acid chain behaves
like a random heteropolymer [87].

We will shortly review the two most recent studies, since they represent
the most systematic analyses carried on so far and stress two different possible
roles of frustration.
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Several authors found evidence that a low degree of frustration can actu-
ally accelerate folding [64, 87, 94, 95]. In particular, in Ref. [64] Contessoto
et al. used a Gō-model with non-specific tunable non-native interactions
to study kinetics and stability of 19 different proteins in Cα resolution by
increasing the magnitude of frustration.

The proteins under attention can be divided in two groups, depending
on the effect of non-native interactions: in one group a moderate frustration
enhances folding rates, in the other it hampers them. The first group contains
proteins displaying a high CO and a high folding activation free energy,
∆G‡. The second group, on the contrary, is composed of proteins rich of
local secondary structures, hence with low ∆G‡ and CO. Thus, Contessoto
et al. found a correlation between topology and frustration, suggesting that
proteins with non-local native conformations take advantage of non-specific
non-native interactions which stabilize the TS and therefore enhance the
folding rate.

By considering a complementary point of view, Best et al. investigated
the role of non-native interactions in determining the folding mechanism [93].
By exploiting the long AA folding trajectories simulated on Anton [75], they
measured how long a given contact lives while a protein folds compared to
its lifetime in the DS. They found that contacts showing high values of this
ratio are positively correlated with native contacts, suggesting that the longer
a contact exists during the folding, the more important it is to determine
the mechanism. In all cases but one they found no statistically significant
non-native contacts compared to the native ones. An additional Bayesian
approach showed that, by following non-native contacts, one is not able to
discriminate between the DS and the reactive part of the folding trajectory.
The authors concluded that non-native interactions play no role in shaping
the mechanism of all the proteins under consideration. The only exception
is represented by α3D, which is a synthetic protein folding to a de novo
structure. Presumably, this is because it was designed to display a stable
folded configuration and this does not automatically imply that it has also a
smooth energy landscape.

A similar difference between natural and artificial proteins was also found
by Zhang and Chan [96], who simulated two almost homologous proteins (i.e.,
same native topology, same length), differing for their kinetics. The natu-
ral protein folds according to an exponential kinetics, whereas the artificial
one folds through a complex multiphase kinetics. By simulating the two
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molecules by means of a Gō-model enriched with non native interactions,
the authors found that frustration has no role in the folding of the natural
protein, whereas it causes a multitude of trapped meta-stable states in the
folding of the artificial one.

Clarke’s group obtained what is presumably the first experimental direct
evidence of a rough landscape [84], which manifests as a measurable internal
friction. The researches extensively characterized three homologous spectrin
domains, which are three α-helices bundle proteins [97–99]. Two of them
display the same folding times, whereas the third needs a longer time to fold.
A solid explanation for this difference is that the slower spectrin domain is
characterized by a much rougher energy landscape, which causes a friction
term that is not related to the solvent and slows down the folding kinetics.
On a microscopic level, this sort of frustration is possibly due to mis-docking
events between the three α-helices [97–99]. Best has tried to rationalize these
findings by employing a Gō-model [100], which yields to a correct description
of the mechanism but is unable to reproduce the different folding times of
the three spectrin domains, compatibly with what found in [93].



Chapter 2

Simulating reactive folding
pathways on a computer

“Everything that is living can be understood in terms of the
jiggling and wiggling of atoms.”

R. Feynman

It is surprising to think that one of the richest area in physics and mathemat-
ics origins from the observations of the botanist Robert Brown concerning the
restless dance of microscopic pollen in water. These small particles are being
scattered around following what everybody would say to be a random walk.
In the first section of this Chapter, we will consider this initial experiment
to derive the Langevin and Smoluchowski equations and briefly outline their
properties. Then we will understand how in Brownian motion the probability
to observe a given transition between two points is given by summing the
probabilities of all the paths connecting the two points. This path integral
representation is known as the Wiener integral. It will be then natural to
introduce the stochastic action functionals, which will play a central role in
the method developed and tested in this thesis. This first section is almost
self-contained, and represents a simple way to derive and understand the
stochastic action and path integral formulations. The material shown is not
original, but based on Ref.’s [101–103].

Historically protein folding is represented as a diffusive process along a
thermally activated free energy barrier. Such a picture relies on the existence

43
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of a good reaction coordinate for folding. The second section will be entirely
devoted to review some recent theoretical and experimental results that show
that indeed a satisfactory reaction coordinate exist, that is the fraction of
native contacts.

We will then assume that diffusion is a good description for folding, and
discuss how it is possible to take advantage of the instruments developed in
the first section to find the statistically dominant folding trajectories and
pathways. Eventually, we will introduce in detail the core-algorithm of this
thesis, which yields representative folding pathways by a sampling and scor-
ing procedure in the functional space of folding trajectories, given that the
denatured and native configurations are provided.

2.1 Stochastic action

The first attempt to theoretically describe Brownian motion would be to
solve Newton’s equations for all the particles in the system, i.e., both the
pollen particles and the water ones. This description considers the solution
of a large number of coupled differential equations. However, we have seen
in Chapter 1 that considering the evolution of the solvent on average greatly
enhances the possibility of a theoretical description.

2.1.1 Langevin equation

We can avoid to explicitly describe the motion of water using an experimen-
tal fact. When an object is dragged in water it feels a resistance that is
proportional to its velocity, which is the friction γ. Averaging the motion of
water molecules, which are far smaller than the pollen one, turns out in an
effective action on the pollen particle.

We thus can write an approximate version of Newton’s equation for the
Brownian particle

mr̈ = −γṙ (2.1)

since the only force acting from outside the system is gravity, that in this
case is irrelevant. The solution of this equation reads

ṙ (t) = ṙ (0) e−
γ
m
t,
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which implies that after a time

t > m/γ

the original velocity would be completely dispersed by the resistance of water.
This is clearly in contradiction with the observation of the constant random
scattering typical of Brownian motion. It is worth noting that the random
collisions of water molecules cannot always happen in such a direction to
hamper the motion of the pollen particle. In fact in many occasions they
would actually impact in the same direction, transferring momentum and
energy from the heat bath to the particle. Hence, we must add a force to
Eq. (2.1) in order to take into account this effect

mr̈ = −γṙ + f (t) (2.2)

This force is intuitively time dependent, and random in nature. This ap-
parently innocent observation bears deep consequences. Indeed, we are now
not able anymore to solve this equation, since we actually do not have any
control on f (t), which is a stochastic function (i.e., it assumes random values
in time). Let us consider again the over-damped time scale. After a rescaling

γ → γ

m

we obtain the equation

ṙ (t) =
1

γ
f (t)

and its solution

r (t) = r (0) +
1

γ

ˆ t

0

dτ f (τ) .

Since we are dealing with random effects, the most we can ask for is to study
the evolution of the system on average, i.e.,

〈r (t)〉 = 〈r (0)〉+
1

γ

ˆ t

0

dτ 〈f (τ)〉 .

The meaning of the average is two-fold. Suppose we have N different jars
containing water, and in each of them we prepare a Brownian particle in
the same initial position r (0). We measure for each of them the different
time evolution r (t). What we expect is this evolution to be isotropic, that
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is to have an equal number of displacements in any direction. Therefore the
average over a high number of different realizations of the same experiment
will return

〈r (t)〉 = 〈r (0)〉
and in this sense we are averaging on an ensemble.

On the other hand, the typical time scale between two different collisions
is much smaller than the one characterizing the evolution of x (t). Therefore,
we demand the time average of the random force on any time interval ∆t
such that

tcoll � ∆t� tevo

where tcoll is the typical time of a collision and tevo that of the particle’s
evolution. Hence, we can set the first characteristic the random force has to
satisfy

〈f (τ)〉 = 0 (2.3)

where the average is a time or an ensemble one.
The next interesting quantity to study is the mean squared displacement

of the particle

〈
(r (t)− r (0))2〉 =

1

γ2

ˆ t

0

dτ

ˆ t

0

dτ ′ 〈f (τ) f (τ ′)〉 . (2.4)

We now demand that two consecutive collisions are uncorrelated after a time
interval such that ∆t� tcoll. This can be approximated as

〈fi (τ) fj (τ ′)〉 = 2Dγ2δijδ (τ − τ ′) (2.5)

which is different from zero only considering kicks at the same time and
in the same direction, 2Dγ2 being the strength of the random force. This
approximation means that the thermal bath instantaneously loses memory
of the direction of a collision. Using Eq. (2.5) in (2.4) we obtain〈

(r (t)− r (0))2〉 = 6Dt . (2.6)

The last equation shows a famous result, stating that the average displace-
ment has a very peculiar

√
〈r (t)〉 ∼

√
t evolution with time, which is a

hallmark of Brownian motion and diffusion. Furthermore, it clarifies the
meaning of D, the diffusion constant, which has the dimension of the square
of a length on a time.
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Intuitively, the strength 2Dγ2 of a kick that the immersed particle suffers
should be related to the physical features of the heath bath. Since we all
have learnt that the macroscopic parameter called temperature T is directly
proportional to the average velocity of the microscopic components of the
system, we expect that Dγ2 depends also on T . To understand this, we
have to recall the Langevin equation (2.2) and solve it. This can be done by
multiplying (2.2) by the factor exp (γt/m), and nothing that

d

dt

(
mṙeγt/m

)
= f (t) eγt/m

which can be immediately solved

ṙ (t) = e−γt/mṙ (0) +
1

m

ˆ t

0

dτ f (τ) eγ(τ−t)/m .

Now, recalling condition (2.3), we can take the average and obtain

〈ṙ (t)〉 = e−γt/mṙ (0) .

This means that for long times the memory of the initial velocity is completely
lost. Again, that does not mean that after a time t� m/γ the particle will
be at rest, but that the velocity due to the constant bombardment of the
environment will be equally likely in any direction. We can now consider the
velocity correlation function

〈ṙi (t) ṙj (t′)〉 =

e−γt/mṙi (0) e−γt
′/mṙj (0) +

1

m

ˆ t

0

dτ

ˆ t′

0

dτ ′e−γ(τ+τ ′−t−t′)/m 〈fi (τ) fj (τ ′)〉 =

〈ṙi (t)〉 〈ṙj (t′)〉+
1

m

ˆ t

0

dτ

ˆ t′

0

dτ ′e−γ(τ+τ ′−t−t′)/m 〈fi (τ) fj (τ ′)〉

where the linear terms in the noise are discarded thanks to Eq. (2.3). By
using property (2.5) and by integrating in τ ′, we get

〈ṙi (t) ṙj (t′)〉 = 〈ṙi (t)〉 〈ṙj (t′)〉+ δij
2Dγ2

m
e−(t+t′)γ/m

ˆ t

0

dτe−2γτ/m

which can be rewritten as

〈ṙi (t) ṙj (t′)〉 = 〈ṙi (t)〉 〈ṙj (t′)〉+ δijDγe
−γ(t′+t)/m

[
e2γt/m − 1

]
= 〈ṙi (t)〉 〈ṙj (t′)〉+ δijDγ

[
e−γ(t′−t)/m − e−γ(t′+t)/m

]
.
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For long times the second exponential in the square brackets dies, and we
retain

〈ṙi (t) ṙj (t′)〉 = 〈ṙi (t)〉 〈ṙj (t′)〉+ δijDγ
[
e−γ(t′−t)/m

]
.

From the last equation we see that m/γ sets the velocity decorrelation time,
i.e., the time after which the Brownian particle has lost the memory of its
initial velocity.

We now want to consider the equilibrium, when enough time has passed
to damp any initial velocity, i.e. 〈ṙi (t)〉 = 0, and the residual one is due only
to the interaction with the environment. Equilibrium establishes for long
times, and mathematically speaking we have to take the limit

lim
t−t′→∞

e−γ(t′−t)/m = 1

and the velocity correlation function reduces to〈
ṙ2
〉

= 3Dγ .

We know that at equilibrium the equipartition theorem holds, that is, any
degree of freedom appearing quadratically in the Hamiltonian brings an av-
erage thermal energy of 1/2kBT , where kB is the Boltzmann constant. Hence
in this case we can write

E =
1

2
m
〈
ṙ2
〉

=
3

2
mDγ =

3

2
kBT,

using which we can get

D =
kBT

mγ

which is known as the Einstein relation and is one of the simplest instances
of the so-called fluctuation-dissipation theorem. In this case, the theorem
states that the scale of mobility due to the thermal kicks D is intimately
related to the dissipation due to the friction γ through temperature. Indeed,
both are different manifestations of the effect of the thermal bath, depending
on whether the microscopical collisions transfer energy and momentum to
the system or remove them.
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2.1.2 Smoluchowski equation

The over-damped Langevin equation describing diffusion (Eq. (2.2)) is a
stochastic differential equation, and the subtle instruments of stochastic cal-
culus are needed in order to deal with it. We look thus for an alternative
description in terms of an ordinary differential equation, describing the same
physics of Eq. (2.2) but on an statistical level. The easiest way to find this
equation is by exploiting again an experimental fact. In a system of particles
which diffuse in a solvent at equilibrium one has that

j (r, t) = −D∇ρ (r, t)

where j (r, t) is the probability density current (probability over time and unit
area) and ρ (r, t) the probability density function (PDF) to find a particle of
the system.

In a closed system particles are never created nor destroyed and thus
their number is constant. Any variation in a given volume Ωi ⊂ Ω with given
boundary ∂Ωi is due to the current passing through this boundary. Gauss’s
theorem yields

ˆ
Ωi

dω
∂ρ

∂t
= −
ˆ
∂Ωi

dσ · j = −
ˆ

Ωi

dω∇ · j .

But since the integration volume and boundary are arbitrary, this relation
has to hold also for the integrand functions, and we have

∂ρ

∂t
= D∇2ρ (r, t) (2.7)

which is called the diffusion equation, and describes the statistical evolution
in time of the system we were looking for. The diffusion equation can be
solved by using standard techniques [102, 103], and the result is

ρ (r, t) =
1

(4πDt)3/2
e−

r2

4Dt

which satisfies the normalization condition
ˆ

Ω

drρ (r, t) = 1
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since the particles of the system have to be somewhere. For the sake of
notation we focus on the one-dimensional case. Generalization to higher
dimensions is straightforward.

The transition probability or propagator or kernel K is defined by

K (xt, t|x0, 0) dxt ≡P {x (t) ∈ [xt, xt + dxt] , x (0) = 0} (2.8)

and represents the conditional PDF that the system prepared in x0 at time t0
is found at position x at time t. Brownian motion has all the characteristics
of a memoryless or Markovian process, in which the propagator (2.8) time-
evolves the PDF of the system according to

ρ (x, t) =

ˆ +∞

−∞
dx0K (x, t|x0, t0) ρ (x0, t0) (2.9)

and the future evolution of the system does not depend on all the previous
history. Using Eq. (2.9) in Eq. (2.7) yields

∂K (x, t|x0, t0)

∂t
= D

∂2K (x, t|x0, t0)

∂t2

which is again a diffusion equation, that by considering the initial condition

K (x, t|x0, t0) −→t→t0 δ (x− x0)

is solved by

K (x, t|x0, t0) =
1√

4πD (t− t0)
e
− (x−x0)2

4D(t−t0) . (2.10)

The kernel has to respect the normalization condition
ˆ +∞

−∞
dxK (x, t|x0, t0) = 1

i.e., at any time t the system has to be somewhere.
The space and time dependence in Eq. (2.10) simplifies if the system is

homogeneous
K (x, t|x0, t0)→ K (x− x0, t|t0)

and if the diffusive process is stationary

K (x, t|x0, t0)→ K (x, t− t0|x0)
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as in the case of Brownian motion.
The diffusion equation (2.7) can be derived also from the microscopic

Langevin equation [102, 103]. This permits to generalize the result to an
over-damped Langevin equation in an external potential

ṙ =
1

γ
(f (t)−∇U (r)) (2.11)

which has a corresponding so-called Smoluchowski equation for the transition
probability (2.8)

∂K

∂t
=

1

γ
∇ · (K∇U) +D∇2K (2.12)

which is a particular form of the Fokker-Planck equation. The equilibrium
solution for a general potential U is

ρ (x) ∝ e−βU(x)

i.e., the equilibrium Boltzmann distribution.

2.1.3 Wiener path integrals

The transition kernel of Eq. (2.10) satisfies the very general Chapmann-
Kolmogorov relation. Let us consider three PDFs describing the system,
ρ(x0, t0), ρ(x′, t′) and ρ (x, t), s.t. t0 < t′ < t. We can use the definition of
kernel of Eq. (2.9) to write them down

ρ (x, t) =

ˆ +∞

−∞
dx′K (x, t|x′, t′) ρ (x′, t′)

ρ (x, t) =

ˆ +∞

−∞
dx0K (x, t|x0, t0) ρ (x0, t0)

ρ (x′, t′) =

ˆ +∞

−∞
dx0K (x′, t′|x0, t0) ρ (x0, t0) .

If the last relation is used in the first, and the result is compared with the
second line, this combination yields

K (x, t|x0, t0) =

ˆ +∞

−∞
dx′K (x, t|x′, t′)K (x′, t′|x0, t0) (2.13)



52 CHAPTER 2. SIMULATING REACTIVE FOLDING PATHWAYS

Figure 2.1: Pictorial representation of the Chapmann-Kolmogorov relation
(Eq. (2.13)). On the left panel only one intermediate time is considered. In
the central panel, the total time is sliced more often but still in finite number,
whereas in the panel on the right the number of slices is infinite. Adapted
with permission from Ref. [102].

which states that when a Brownian particle diffuses to x at time t, provided
that it was at position x0 at time t0, if we check at an intermediate time
t′, we will find the particle at point x′ somewhere in between (Left panel
of Fig. 2.1). This very general result is based on the causality principle,
according to which the system cannot disappear during its evolution from
an initial to a final point, and holds for any Markovian process. If we check
more often, i.e., we thicken the time slicing, Eq. (2.13) becomes

K (x, t|x0, t0) =

ˆ +∞

−∞
dxN−1 . . .

ˆ +∞

−∞
dx2

ˆ +∞

−∞
dx1K (x, t|xN−1, tN−1)× . . .

. . .×K (x2, t2|x1, t1)K (x1, t1|x0, t0)

and the total propagator is given by the convolution of all the propagators
to intermediate positions x1, x2, . . . , xN−1 corresponding to the time slices
t1, t2, . . . , tN−1, as represented in the middle panel of Fig. 2.1. We can intu-
itively guess that by thickening infinitely the time slicing, the total propaga-
tor would be given by the contribution over all microscopic paths connecting
the initial and the final positions (Right panel Fig. 2.1).

We know want to formalize this intuitive insight. By the definition of
PDF, the probability to find a Brownian particle at any time t in a given
interval of positions is given by

P {x (t) ∈ [A,B]} =

ˆ B

A

dxρ (x, t) . (2.14)
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Brownian motion is memoryless, hence each displacement has a probability
to occur that is independent on the others. It is thus easy to calculate the
joint probability of a set of events as the product of the probabilities of each
event, i.e.,

E ≡P {x (t1) ∈ [A1, B1] , x (t2) ∈ [A2, B2] , . . . , x (tN) ∈ [AN , BN ]} =

= P {x (t1) ∈ [A1, B1]} ×P {x (t2) ∈ [A2, B2]} × . . .×P {x (tN) ∈ [AN , BN ]}

=

ˆ B1

A1

dx1√
4πDt1

exp

{
− x2

1

4Dt1

}ˆ B2

A2

dx2√
4πD (t2 − t1)

exp

{
− (x2 − x1)2

4D (t2 − t1)

}
× . . .

×
ˆ BN

AN

dxN√
4πD (tN − tN−1)

exp

{
− (xN − xN−1)2

4D (tN − tN−1)

}
.

(2.15)
This equation is the joint probability that the trajectory of a Brownian parti-
cle passes through N gates [Ai, Bi], which are located at different times. We
now shall thicken the gates, shrinking the time interval ∆ti = ti − ti−1 = ∆t
and raising N , thus considering the limit{

∆t→ 0

N →∞

keeping the total time N∆t constant. We shall apply this limit to Eq. (2.15),
and consider gates of infinitesimal width dxi

lim
∆t→0,N→∞

E = lim
∆t→0,N→∞

exp

{
−

N∑
i=1

(xi − xi−1)2

4D∆t

}
N∏
i=1

dxi√
4πD∆t

= lim
∆t→0,N→∞

exp

{
− 1

4D

N∑
i=1

(
xi − xi−1

∆t

)2

∆t

}
N∏
i=1

dxi√
4πD∆t

= exp

{
− 1

4D

ˆ t

0

dτ ẋ2 (τ)

} t∏
τ=1

dx (τ)√
4πDdτ

(2.16)
Note that the infinitesimal gate width remowes the integration over the ar-
rival position. Therefore, the last line of the expression represent the proba-
bility that a Brownian particle goes through an infinite number of infinitesi-
mal gates located at any time instant between the initial and the final points.
Stated more simply, last line of Eq. (2.16) is the probability for a Brownian
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particle to follow a given trajectory x (τ). Elementary principles of probabil-
ity prescribe that to evaluate the probability to go from one point to a set of
points [A,B] one has to sum the contribution given by each trajectory,

P {x (t) ∈ [A,B]} =

ˆ x(t)∈[A,B]

x(0)=0

t∏
τ=1

dx (τ)√
4πDdτ

exp

{
− 1

4D

ˆ t

0

dτ ẋ2 (τ)

}
=

ˆ x(t)∈[A,B]

x(0)=0

Dx (τ) exp

{
− 1

4D

ˆ t

0

dτ ẋ2 (τ)

}
=

ˆ B

A

dx

4πDt
exp

{
− x2

4Dt

}
(2.17)

where the last equivalence is due to Eq. (2.14). The integral sign is a formal
way to say sum over all possible paths connecting the initial to the final
point. We have introduced the formal measure

Dx (τ) ≡
t∏

τ=1

dx (τ)√
4πD∆t

which represents the “volume” associated to each path x (τ). We have to
note that this is really just a formal way of writing, since being a product
of infinite terms (Eq. (2.16)), its finiteness and existence are not guaranteed.
Integrals of the type of Eq. (2.17) are known as Wiener integrals.

If we ask the probability to go just to a single point, that is we put A = B,
then by definition (2.8) we get the kernel

K (xt, t|x = 0, t = 0) =

ˆ x(t)=xt

x(0)=0

Dx (τ) exp

{
− 1

4D

ˆ t

0

dτ ẋ2 (τ)

}
=

1

4πDt
exp

{
− x2

4Dt

} (2.18)

where in the last line we used Eq. 2.10. The link between the kernel and the
probability is given by

ˆ x(t)∈[A,B]

x(0)=0

Dx (τ) exp

{
− 1

4D

ˆ t

0

dτ ẋ2 (τ)

}
=

=

ˆ +∞

−∞
dxtχ[A,B] (xt)

ˆ x(t)=xt

x(0)=0

Dx (τ) exp

{
− 1

4D

ˆ t

0

dτ ẋ2 (τ)

}
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where we have introduced the characteristic function of the interval [A,B]
defined as usual as

χ[A,B] (x) =

{
1 x ∈ [A,B]

0 otherwise
.

Eq.s (2.17) and (2.18) express the probability of a given transition as a
sum over all possible paths connecting the initial to the final configurations,
and for this reason they are known as (Wiener) path integrals. These results,
which at this point seem just a more complicate way to write down basic
results, are the naturally extension of a PDF of functions to the realm of
functionals, which are “functions of functions”, and are usually represented
as F [x (τ)]. More precisely we define a functional F acting on a set of
functions defined in a domain D

F : D → R
x (τ) 7→ F [x (τ)] .

The Wiener path integral contains the generalization of the PDF to a Prob-
ability Density Functional (PDFl). Indeed, if we define

Ψ [x (τ)] ≡ exp

{
− 1

4D

ˆ t

0

dτ ẋ2 (τ)

}
(2.19)

then it is natural to make the analogy

ρ (x1, x2, . . . , xN) −→ Ψ [x (τ)] .

A PDF is defined to convey the probability s.t.

ρ (x1, x2, . . . , xN) dx1dx2. . . dxN ∝ P {y1 ∈ [x1, x1 + dx1] , . . . , yN ∈ [xN , xN + dxN ]}

so extending the analogy we can write that

Ψ [x (τ)]Dx (τ) ∝P {y (τ) = x (τ) + δx (τ)}

which describes the probability of finding a function y (τ) in the infinitesimal
tube around a given function x (τ), with y (τ), x (τ), and δx (τ) living in the
same domain. Going on further, we can average any functional F [x (τ)] over
all the Brownian trajectories writing

〈F [x (τ)]〉Ψ =

´
Dx (τ) Ψ [x (τ)]F [x (τ)]´
Dx (τ) Ψ [x (τ)]

.
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Mathematicians define the Wiener measure as

dWx (τ) ≡ Dx (τ) Ψ [x (τ)] .

which has to be normalized according to
ˆ Ω

xi

dWx (τ) =

ˆ Ω

xi

Dx (τ) exp

{
− 1

4D

ˆ t

0

dτ ẋ2 (τ)

}
= 1.

2.1.3.1 Brownian trajectories are not differentiable

We shall recall that Eq. (2.6) is a hallmark of Brownian motion and diffusive
processes. But it is also cause of a problem, since the limit

lim
t→0

√〈
x (t)2〉
t

∼ lim
t→0

t1/2

t
→ +∞

diverges, thus derivatives are not defined and Brownian trajectories are not
differentiable. On the other hand, the transition probability (2.10) satisfies

lim
t→0

K (x, t|x0, t0) = lim
t→0

1√
4πD (t− t0)

e
− (x−x0)2

4D(t−t0) = δ (x− x0) (2.20)

which means that after an infinitesimal time the Brownian particle is in-
finitesimally close to x0. But Brownian motion is memoryless, hence the
initial point x0 can be any point along a trajectory x (τ), which means that
the trajectory is continuous.

Brownian trajectories are continuous but non differentiable, therefore all
the time derivatives symbols ṙ that we have used starting from Eq. (2.2) are
just a formal expression, and remain ambiguous unless a discretization crite-
rion is defined. This has also be provided to numerically solve the Langevin
equation.

It is useful to rescale the stochastic noise function

f (t) = γ
√

2Dη (t)

s.t. the new noise η has zero mean and unity variance. One of the most com-
mon choice is the Itō discretization rule, in which the over-damped Langevin
equation describing free Brownian motion becomes

xi+1 − xi =
√

2D∆tηi . (2.21)
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This result yields also an easy way to show that the noise is described by
Gaussian random variable ηn. From Eq. (2.21) it follows that the propagator
expressed in terms of the noise and in term of a finite displacement are related
by

K (ηi) = J(∆x, ηi)K (∆x,∆t)

where ∆x ≡ xi+1 − xi and J(∆x, ηi) ≡ ∂∆x/∂η =
√

2D∆t is the Jacobian
of the variable transformation. Thus, we get that

K (ηi) =
1√
2π
e−

η2
i
2 (2.22)

which is exactly the PDF of a Gaussian with unity variance. The stochastic
force that we have introduced at the beginning of our analysis of Brownian
motion is thus simply a Gaussian random variable with a variance fixed by
the fluctuation-dissipation theorem. This simple model of the stochastic force
is also known as white noise.

2.1.4 Stochastic action functionals

We want know to generalize the Wiener path integral to trajectories which
are solution of the over-damped Langevin equation in presence of an external
potential (Eq. (2.11)). This is obtained performing the change of variable
ẋ (τ)→ ẋ′ (τ ′) + 1

γ
∇U (x′) s.t.

Dx (τ) exp

{
− 1

4D

ˆ t

0

dτ ẋ2 (τ)

}
→

J (τ, τ ′)Dx′ (τ ′) exp

{
− 1

4D

ˆ t

0

dτ ′
(
ẋ′ (τ ′) +

1

γ
∇U (x′)

)2
}

in Eq. (2.19), but the Jacobian is not trivial to calculate. It can be shown
that [102, 103]

J (τ, τ ′) =
δx (τ)

δx′ (τ ′)
= exp

{
1

2γ

ˆ
dτ∇2U

}
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and the new propagator corresponding to a diffusive dynamics in presence of
an external field is

K (xt, t|x = 0, t = 0) =ˆ x(t)=xt

x(0)=0

Dx (τ) exp

{
− 1

4D

ˆ t

0

dτ

(
ẋ (τ) +

1

γ
∇U (x)

)2

+
1

2γ

ˆ t

0

dτ∇2U

}
.

The double product resulting from the square in the exponential can be
immediately integrated by part

1

2Dγ

ˆ t

0

dτ ẋ (τ)∇U (x) =
1

2Dγ

ˆ t

0

dτU̇ (x) =
1

2Dγ
[U (xt)− U (x0)]

and since it is not path-dependent it can be written outside the integral
symbol. We can recollect the remaining terms in the exponential to get

K (xt, t|x = 0, t = 0) =

exp

{
1

2Dγ
[U (xt)− U (x0)]

}ˆ x(t)=xt

x(0)=0

Dx (τ) exp

{
−
ˆ t

0

dτ
ẋ2 (τ)

4D
− V [x (τ)]

}
(2.23)

where we have defined the effective potential

V [x (τ)] =
1

2γ
∇2U (x)− 1

4Dγ2
(∇U (x))2 . (2.24)

and the path independent contribution ∆U ≡ U(xt)− U(x0).
To avoid the calculation of the nasty Jacobian, by paying the price of

a smaller insight, we can derive Eq. (2.23) by exploiting another analogy.
Indeed, if we perform the change of variable K → K ′ s.t.

K (xt, t|x0, t0) = e−
U(x)
2γDK ′ (xt, t|x0, t0)

in the Smoluchowski equation (2.12), we obtain

∂K ′

∂t
= D∇2K ′ +

(
1

2γ
∇2U − 1

4γ2D
(∇U)2

)
K ′

which is analogous to the Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (x)ψ
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once we introduce the effective potential defined in Eq. (2.24). It is well
known that the evolution of the wave function ψ is described alternatively by
Feynman’s path integrals, which express the quantum probability amplitude
as

〈xt, t|x0, 0〉 ∝
ˆ x(t)=xt

x(0)=0

Dx (τ) exp

{
ı

~

ˆ t

0

dτ
ẋ2 (τ)

2m
− V [x (τ)]

}
. (2.25)

If we consider the Schrödinger equation in imaginary time, by performing a
so-called Wick rotation

t→ ıτ

and we identify
~

2m
←→ D

the Wiener and Feynman path integrals coincide. We must bear in mind that
there are important differences between the two path integrals. In quantum
mechanics Eq. (2.25) yields a probability amplitude describing the propaga-
tion, whereas Eq. (2.23) yields already a probability. Moreover, the potential
term appearing in the standard Feynman integral is the actual potential
energy characterizing the system. In the stochastic counterpart written in
Eq. (2.23), it is instead an effective potential related to the potential energy
through Eq. (2.24), and does not have the dimension of an energy but that
of a frequency.

Inspired by the formal analogy, we can define in Eq. (2.23) an effective
Lagrangian

L =
ẋ2 (τ)

4D
− V [x (τ)]

having the dimension of an inverse time, and the corresponding action

SOM [x (τ)] = −β
2

∆U +

ˆ t

0

dτ
ẋ2 (τ)

4D
− V [x (τ)] (2.26)

which is a dimensionless number, known as the Onsager-Machlup stochastic
action functional (OM action) [104, 105], that will have a central role in this
work. The path integral formulation of the propagator of a diffusive process
in presence of an external field can be thus cast in the attractive form

K (xt, t|x0, 0) =

ˆ x(t)=xt

x(0)=0

Dx (τ) e−SOM[x(τ)] (2.27)
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To summarize, the last equation states that the probability for a Brownian
process to evolve from an initial position to a given final one at time t is
given by all the possible paths connecting the initial and final positions, each
contributing with a weight proportional to exp{−SOM [x (τ)]}.

2.2 Folding as diffusion along a reaction coor-
dinate

As we have seen in Chapter 1, protein folding is a complicate process which
depends on a huge amount of degrees of freedom. From a formal dynamical
point of view, its evolution takes place in a highly dimensional space, which
is qualitatively represented to gain a more intuitive grasp as a bidimensional
funneled landscape. On the other hand, experimental kinetics of small glob-
ular proteins is mostly well described as characterized by two stable states
separated by a high free energy barrier. It is thus very convenient and widely
used to interpret the folding as a thermally activated reaction between the
native and unfolded states, which are both minima of a one-dimensional free
energy function.

The simplest description is to consider folding as a diffusive process de-
termined by a Langevin equation. Thanks to the so-called Mori-Zwanzig
formalism, it is always possible to formally project the dynamics of a system
described by Classical Mechanics on a smaller number of degrees of freedom.
In particular, this projection technique can yield the extreme dimensional
reduction needed to transform the exceedingly complicated dynamics of a
protein in water into one evolving along a single coordinate. In general,
though, the result is described by a non-Markovian generalized Langevin
equation displaying memory kernels [101], and is thus depending on the his-
tory of the system. However, the projection would be memoryless if the
system admits a good reaction coordinate. This is in general a function Q
of the conformational space Ω of the system, s.t. Q (x) : Ω → R, and we
can intuitively think of it as the privileged direction along which most of
the probability current describing the evolution of the system flows. A good
reaction coordinate not only separates the folded and the unfolded state, and
measures the proceeding of the reaction, but also controls the dynamics [106].

There is not guarantee that for a generic system a good reaction coordi-
nate exists. But since protein folding proceeds forming native contacts, it is
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natural to consider the fraction of formed native contacts Q as the putative
reaction coordinate. Indeed, on a perfectly smooth funnel, if the denatured
configurations were uniformly distributed on the top of it, then Q would be
the exact reaction coordinate [49], suggesting that Q should be a satisfactory
choice at least for the folding simulated by using Gō-like models. Best and
Hummer have tested this hypothesis in a series of papers [95, 106–108]. The
1-d Smoluchowski equation projected on Q can be rewritten as

∂K

∂t
= LK

where we have introduced the diffusion operator

L =
∂

∂Q
D (Q) e−βG(Q) ∂

∂Q
eβG(Q) (2.28)

where K(Qt, t|Q0, 0) is the projected propagator, β is the usual Boltzmann
factor, G (Q) is the potential of mean force obtained by averaging out all
the other degrees of freedom. Note that in general the projected Eq. (2.28)
displays a position-dependent diffusion constant D (Q). This implies that, in
order to describe the dynamics, the knowledge of two independent functions
is needed, whereas the interpretation of G (Q) alone is no more straight-
forward. By analyzing reversible folding trajectories simulated using CG
Go-models, Best and Hummer found that Q is a good reaction coordinate
according to a maximum likelihood criterion [106]. In general it is possible
to find a coordinate transformation such to have a position-independent dif-
fusion coefficient. The latter is a well appreciated feature since it permits
to have a direct interpretation of the free energy profile G (Q), and this is
particularly important especially with experimental results. In another pa-
per, the two authors showed that by using Q as a reaction coordinate, D is
almost position-independent [95]. This two results prove that Q is a good
reaction coordinate at least for Gō-models, which is a reasonable conclusion
since they are based on a smooth natively biased energy function. Moreover,
in Ref. [93] the accuracy of Q was tested by means of the same maximum
likelihood criterion as in Ref. [106] also on AA MD trajectories produced by
Anton [75]. Even in this case, the fraction of native contacts turned out to
be a satisfactory reaction coordinate, although the realistic FF determining
the dynamics of these trajectories is rougher than a Gō-model.

This series of results makes us more confident that a decent reaction
coordinate exists describing the folding of proteins, at least for the small,
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globular ones with a simple topology. Furthermore, these findings put on
a more solid theoretical ground the possibility to model the folding as a
diffusion on a 1-d free energy barrier. This model is analytically tractable
and widely investigated in the literature. Kramers found a closed expression
for the mean first passage time (MFPT) to diffuse from the unfolded to the
native state, that in a two-state model is the inverse of the folding rate, that
is the barrier hopping frequency. If the process is thermally activated, i.e.,
the two basins are separated by a free energy barrier ∆G‡f (Q)� kBT , then
the MFPT is [109, 110]

τf =
1

kf
=

2π

βD‡ωuω‡
eβ∆G‡f (2.29)

where D‡ is the diffusion coefficient and ω‡ is the curvature both evaluated
on the top of the barrier, while ωu is evaluated in the unfolded basin. The
segment of a long trajectory which exits the DS and goes straight to the NS
before going back again to the DS is called Transition Path (TP), as its time
reversal. This is the part where the protein actually “hops” the barrier. By
simulating the process on a computer, it can be immediately seen that the
protein spends the overwhelming majority of the time oscillating by thermal
motion in the two basins. The transition along the TP is actually extremely
short. This observation agrees with the expression of the transition path
time (TPT) τTP , as it was analytically calculated by Szabo [112]

τTP ≈
1

βD‡ (ω‡)2 ln
(

2eγEβ∆G‡f

)
(2.30)

where γE is the Euler-Mascheroni constant (≈ 0.577...). The big difference
between the two time scales is caused by the fact that Eq. (2.29) depends
exponentially on ∆G‡f whereas Eq. (2.30) only logarithmically. Only very
recently single molecule experiments gained access to the TPT time scales of
real folding proteins. Chung et al. reported the measurement of the TPT for
the folding of two different proteins [111, 113], a short WW domain displaying
a folding time ∼ 10−4 s, and the GB1, an α/β protein with a folding time
∼ 1 s. By using sophisticated FRET techniques, which employ counting of
single photons, the authors measured the TPT for the two proteins, which
turned out to be ∼ 2µs for the WW domain and < 10µs for GB1. Thus,
although the folding times differ by for four orders of magnitude, the TPT
are almost the same, that is compatible with Eq.s (2.29) and (2.30).
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Figure 2.2: Schematic representation of the folding of a two-state protein
as diffusion over a 1-d free energy landscape. Panel A: The double well free
energy vs. Q, fraction of native contacts. The unfolded and folded basins
are separated by a barrier � kBT . The TP is a successful jump from one
basin to the other. Panel B: Value of Q vs. time. The protein is spending
most of the time in the basins, whereas overcoming the barrier seems an
instantaneous process. Adapted with permission from Ref. [111].
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2.3 Characterizing the reactive folding path-
ways

Given the results reviewed in last section, we are legitimate to think of a
protein that folds to its native state as a Brownian particle in a double well.
The protein wanders around in the DS basin, due to thermal motion, until
a rare series of fluctuations push all in the same direction and the molecule
can overcome the barrier ∆G‡f , and eventually the protein folds. In a long
equilibrium microscopic trajectory, the almost instantaneous TP contains
all the relevant information regarding the folding mechanism, and is thus
the most interesting part to elucidate the mechanism. As we have seen in
Chapter 1, an MD simulation is the most straightforward and standard way
to numerically obtain such a long equilibrium trajectory. Unfortunately, MD
is also extremely time-demanding, and a large part of the biologically relevant
timescales is yet not accessible. This is due to the presence of many time
scales in the dynamics of the protein folding: chemical bonds vibrate on the
fs scale, dihedral angles rotate on the ns one; the formation of α−helices
and β−sheets takes ∼ 100 ns and ∼ µs respectively; folding occurs on a
scale ranging from µs to minutes. In order to have a numerically stable MD
simulation, the time step in Newton’s discretized equations has to be of the
order of the fastest motion in the protein, and therefore usually a 2 fs time
step is used. This implies that a MD simulation has to overcome a huge gap
in the time scales, and that for a millisecond folder a number of 1012 time
steps has to be evaluated.

Most of the intense computational effort of an MD simulation is devoted
to simulate the thermal motion of the protein in the DS, whereas the more
interesting part in which the protein actually folds is contained in the very
short successful transition over the free energy barrier. Thus, during the
years, several groups have proposed diverse methods which aim to focus the
computational effort to directly obtain and characterize the TP [114].

In particular, in the following we will introduce and discuss a recent TP-
based method which we will use to characterize the folding of two different
realistic proteins. We assume that the over-damped Lanvengin equation
correctly describes the dynamics of each atom which composes the protein
in water. Then, we are able to use the instruments derived in Section 2.1
to give a path integral representation of the probability to be in the native
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configuration at time t as

Pf (t) =

ˆ
Ω

dxfχNS (xf )

ˆ
Ω

dxiχDS (xi) ρi (xi)

ˆ xf

xi

Dx (τ) e−SOM[x(τ)]

(2.31)
where Ω is the entire conformational space of the protein; χNS(xf ) and
χDS(xi) the characteristic functions of the NS and DS, respectively; ρi(xi)
is the equilibrium distribution of the protein’s initial configuration; the last
path integral is the propagator K(xf , t|xi, 0), where xf ∈ ΩNS is the native
conformation while xi ∈ ΩDS is the denatured one.

2.3.1 The saddle-point approximation

Eq. (2.31) provides a microscopic representation of the folding probability,
formulated in terms of the Langevin trajectories x (τ) in configuration space
Ω. We now want to develop a scheme to find the statistically most represen-
tative trajectories, that is those which account for most of folding probability
Pf (t).

Firstly, we shall approximate Pf (t) ≈
∑

iK(xf , t|xi, 0), where the sum
runs over different initial configurations, hence considering that the result of
the remaining integrations in Eq. (2.31) contributes in the same way for each
folding trajectory. Now we can focus on the propagator K, and look for the
most probable microscopic trajectory connecting xi to xf , that is clearly the
one that minimizes the OM action 2.26. Since usually folding is a thermally
activated process, thus it requires to overcome a free energy barrier � kBT ,
we can take advantage of the saddle point approximation to determine the
most probable folding trajectories.

The saddle-point approximation (also known as stationary phase approx-
imation) is an extension of the standard Laplace approximation method for
real-valued Riemann integrals, and is a standard tool in theoretical physics.
The basic idea is the following: if the integrand function displays one clear
maximum, then it can be approximated with the value it assumes in such an
extremal point.

Without loss of generality, we consider only one dimension and firstly
suppose the existence of just one path x̄ (t) which extremizes SOM [x (τ)].
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That saddle-point trajectory is defined by requiring that

δSOM [x (τ)]

δx (t)

∣∣∣∣
x=x̄

= 0 (2.32)

together with the boundary conditions

x (0) = xi

x (t) = xf

Note that in Eq. 2.26 the path independent term can be ignored in the func-
tional derivative 2.32, and in the following we shall consider only the integral
part. It is well known that when the action is in the so-called Lagrangian
form, i.e., when the integrand function is the difference of a kinetic and a
potential energy, as in the case of SOM, then the functional derivative (2.32)
is given by the Euler-Lagrange equations

δSOM [x (τ)]

δx (t) x=x̄

= 0⇐⇒ d

dt

∂

∂ẋ
L− ∂

∂x
L = 0 . (2.33)

Hence, the stationary request is equivalent to solving the equation

¨̄x (τ)

2D
= ∇V [x̄ (τ)] (2.34)

whose solution is the saddle-point trajectory x̄ (t).
Now we can perform a functional Taylor expansion of the action around

the stationary path x̄ (τ)

SOM [x (τ)] = SOM [x̄ (τ) + δx (τ)]

= SOM [x̄ (τ)] +
1

2

ˆ t

0

dτ

ˆ t

0

dτ ′δx (τ ′)F (τ, τ ′) δx (τ) +O
(
δx3
)

(2.35)
where we have introduced the fluctuations around the saddle-point trajectory

x (τ) = x (τ) + δx (τ)

which have to obey the boundary conditions

δx (0) = δx (τ) = 0
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and we have also introduced the fluctuation operator

F (τ, τ ′) ≡ δ2SOM [x (τ)]

δx (τ) δx (τ ′)

∣∣∣∣
x=x̄

. (2.36)

We can now insert Eq. (2.35) in Eq. (2.27), obtaining

K ≈ e−SOM[x̄(τ)]

ˆ
Dδx (t) e−

1
2

´
dτ
´

dτ ′δx(τ ′)F (τ,τ ′)δx(τ) . (2.37)

The remaining part of the integral is a Gaussian path integral of the fluctu-
ations δx (τ), and it can be solved by calculating the so-called fluctuations
determinantˆ

Dδx (τ) exp

[
−1

2

ˆ
dτ

ˆ
dτ ′δx (τ ′)F (τ, τ ′) δx (τ)

]
∝ (detF )−1/2 .

(2.38)
Finally, the saddle-point approximation yields the result

K ≈
ˆ
Dx (τ) e−SOM[x(τ)] ≈ (detF )−1/2 e−SOM[x̄(τ)] (2.39)

whereas if many saddle-points xi exist, it can be straightforwardly generalized
as

K ≈
ˆ
Dx (τ) e−SOM[x(τ)] ≈

∑
i

e−SOM[x̄i(τ)] (detFi)
−1/2 (2.40)

In order to understand the last two equations, we can assist our intuition
thinking at how high mountains, as the Alps, were historically crossed. The
probability of a given path is given by the fraction of people using it in a
given time interval. Clearly, most of the people used paths going through
the pass, that is a saddle point, i.e., the lowest accessible point on the top
of a mountain. Considering a steep and high mountain, with a narrow pass
on the top of it, the total probability to cross it is well approximated by the
probability of the path going through the pass. A qualitatively similar picture
holds also in the highly dimensional conformational space Ω of a protein,
if there is a high barrier and a number of clearly distinct non-overlapping
saddle-points on the top of it.

In Eq. 2.39 the exponential is calculated on the saddle-point trajectory
x̄i (τ), which is solution of the ordinary differential Eq. 2.34, and is therefore
a smooth differentiable trajectory. However, a stochastic process as diffusion
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would never happen through such a trajectory. In fact, in Eq. 2.39 we have to
take into account also the determinant of fluctuations 2.38, which measures
the volume in a path space of a small bundle of trajectories in the functional
vicinity of x̄i (τ). The latter trajectory has to be considered as a motif around
which stochastic trajectories take place, with most of them contained in the
tube due to thermal fluctuations, at least in a low temperature regime [115].

2.3.2 The Dominant Reaction Pathway approach

The most probable microscopic trajectories connecting the unfolded and the
folded basins can be in principle found by minimizing the path-dependent
part of the OM action functional in Eq. (2.26) for different initial configu-
rations. If the saddle-point approximation holds, each resulting trajectory
x̄i (τ) is a representative of a set of stochastic trajectories which only differ
for the effect of small thermal fluctuations ∼ kBT . We get as many tubes
of microscopic trajectories as the different initial configurations that we con-
sider. We can now characterize each tube at a more coarse-grained level, by
measuring a given set of order parameters, and eventually cluster together
all the tubes which are equivalent in this coarse description. Each cluster
represents a different pathway, that is a different folding mechanism as we
have defined it in Chapter 1.

However, if we directly minimized the action (2.26), we would clash again
with the timescale separation that is the reason for which MD simulations
are so demanding. Indeed, the path-dependent part of the action would be
discretized as

∆t
Nt∑
i=1

[
(x(i+ 1)− x(i))2

4D∆t2
− V [X(i)]

]
(2.41)

where V is the effective potential (Eq. (2.24)). In order to cover a timescale
relevant for folding by using a time step ∆t ∼ fs, the total number of steps
Nt would be enormous, making any numerical minimization practically in-
feasible.

A possible way to overcome this severe limitation is given by the fact that
Eq. (2.34), with the effective potential (2.24), conserves an effective energy

Eeff =
1

4D
˙̄x2 (t) + V [x̄ (t)] .
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Thanks to this observation, we can use the Hamilton-Jacobi formulation of
classical mechanics, and minimize, instead of Eq. (2.41), an Hamilton-Jacobi
effective action

SHJ =
∑
i=1

∆li,i+1

√
1

D
(Eeff + Veff [X(i)]) (2.42)

where time is not the independent variable anymore. Indeed, Eq. (2.42)
is still a functional of the path, but the latter is written now in terms of
the curvilinear abscissa dl =

√
dx2, that is the elementary displacement in

configuration space. It is possible to use large length steps ∆l since there is
no separation in length scales in the Euclidean distance l covered during the
folding. Thus, it is sufficient to discretize Eq. (2.42) with ∼ O (100) steps,
by making a direct numerical relaxation feasible at least for small molecules.
This idea has been developed in a series of papers [115–128], and in particular
tested on chemical reactions [116], conformational changes [117, 121] of small
molecules, and protein folding in simplified CG Gō models [122, 124]. The
results of these tests and investigations are in good agreement with standard
MD simulations, which are feasible since the systems are relatively simple
and small, although obtained at a much lower computational cost.

In the natural following step, we applied the outlined minimization scheme
to a small protein in AA resolution with realistic FF. The procedure requires
to produce some initial trajectory, which can be obtained for example by an
MD simulation at high temperature that unfolds the protein rather quickly.
Then a minimization algorithm is applied on the target functional (2.42) cal-
culated on the initial trajectory. However, the minimization of Eq. (2.42)
is a hard task, since it can assume complex values and depends on all the
degrees of freedom of a folding trajectory. For a small protein of ∼ 103

atoms, considering 102 displacement steps ∆l, the degrees of freedom enter-
ing the functional are ∼ 3 × 105. We have carried on several attempts to
obtain folding trajectories of a realistic protein, but unfortunately the prob-
lem turned out to be intractable. Even by using state-of-the-art minimization
algorithms, like e.g. [129], the initial trajectory and the minimized one are
strongly correlated, almost identical, differing for little local relaxations only.
Presumably the exceedingly high number of degrees of freedom and the com-
plexity and roughness of realistic FF cause the initial trajectory to remain
trapped in local minima, thus making an efficient sampling of the path space
practically impossible .
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2.3.3 Biased sampling of the path space

A direct numerical relaxation of the target functional (2.42) seems impossi-
ble, and an alternative strategy has to be envisaged. The solution we propose
requires to change the point of view of the problem: instead of minimizing
the action to get a trajectory with two fixed endpoints, let us consider many
trajectories connecting the given initial and final configurations and then
score them according to their value of the action. Of course, if we want to
characterize the folding in AA resolution and in realistic FF we cannot use
a standard MD simulation, since this is often infeasible, and we still want to
avoid to consume computational resources to simulate thermal fluctuations
in the DS. Moreover, in order to significantly sample the functional trajec-
tory space, we prefer to use a rather inexpensive algorithm, which yields a
significant number of folding trajectories in a reasonable computational time.

For these reasons, we adopted a biased MD algorithm known as the
ratchet-and-pawl Molecular Dynamics (rMD) [130–136]. This computational
scheme can be easily implemented upon any standard MD simulation using
any FF, and permits to efficiently obtain a large number of trajectories go-
ing from an initial to a final configuration. It consists of two parts, the
functional form of the biasing potential, and the coordinate which sets the
direction along which the system is biased. The functional form was origi-
nally proposed by Marchi and Ballone [130] and used by Paci and Karplus to
bias the protein unfolding in implicit solvent [131, 132]. Camilloni and Tiana
then used it to fold proteins in realistic FF and explicit solvent [134], by bi-
asing along a particular distance introduced in Ref. [133], which is built by
considering the native contacts formation in a protein. In the following, we
will present and use the rMD formulation proposed by Tiana and Camilloni
[134].

Following Ref. [133], we shall define a protein contact map Cij [x (t)] of a
trajectory, which at each time step is a matrix Na×Na with entries calculated
according to

Cij [x (t)] =


1−

(
rij
r0

)6

1−
(
rij
r0

)10 rij < rcut

0 rij > rcut

(2.43)

where r0, rcut are constant values, and rij is the Euclidean distance between
atoms i and j in the conformation x (t). Note that the entries are calculated
for each couples of atoms in the protein. Eq. (2.43) is a smooth interpolation
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of the step function which is usually used to calculate a contact map. Indeed,
if two atoms are close and form a contact, i.e., rij < r0, then Cij ≈ 1; in the
other case, i.e., r0 < rij < rcut, Cij ≈ 0. The native contact map Cij(xnat) is
simply obtained evaluating Eq. (2.43) on native conformation. We can now
define a distance z [x (t)] separating a configuration at time t from the native
one [133]

z [x (t)] =
N∑

i>(j+35)

[Cij [x (t)]− Cij(xnat)]
2 (2.44)

where the summation is extended over all atoms with a separation in se-
quence > 35. The value of this distance is ≈ 0 if the protein has reached its
native state. Indeed, any time a native contact (i, j) forms, then Cij [x (t)]−
Cij(xnat) ≈ 0 and z [x (t)] diminishes. If a native contact has not formed
yet, or a non-native contact forms, then [Cij [x (t)] − Cij(xnat)]

2 ≈ 1 and
the value of z [x (t)] increases. Eq. (2.44) thus measures the geometrical and
topological similarity of a configuration with the native one.

The biasing potential, instead, is a time dependent harmonic potential
defined as

VrMD (x, t) =

{
k (z [x (t)]− zmin (t))2 z [x (t)] > zmin (t)

0 otherwise
(2.45)

characterized by
zmin (t) = min

t′<t
z [x (t′)]

that is the lowest reached value of the distance in the contact map space up
to time t, and the coupling constant k, which has the dimension of an energy.
The potential (2.45) has then just to be added to the energy function of the
particular FF that are used to perform an MD simulation. The value of k
is a result of a trade-off between having very fast simulations and keeping
the bias as soft as possible. Usually a reasonable choice is to have a biasing
force that is two or three orders of magnitude smaller than the typical forces
acting on the protein.

In a rMD simulation, the system is let to fluctuate spontaneously when-
ever it decreases the distance (2.44) to the native configuration, whereas the
time-dependent harmonic potential (2.45) hinders fluctuations decreasing the
overall similarity with the native state. In other words, the system is free
to follow its spontaneous dynamics, while a Maxwell’s demon uses a spring
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to select only the fluctuations with the right “sign”, s.t. z is decreased. In
this sense rMD is different than a steered MD simulation [137], where the
molecule is pulled with a constant force or velocity along a given biasing
coordinate.

On the other hand, it is well known that biasing along a “wrong coor-
dinate” yields highly artificial trajectories. To understand this intuitively,
we can think at a bi-dimensional free energy landscape, displaying two deep
wells which are separated by a barrier. By definition, the most likely trajec-
tories connecting the two wells are located along the reaction coordinate of
the system. If we biased along the direction perpendicular to the reaction
coordinate, then the system would never cross the barrier and stay stuck
in the reactant state. This is the worst case, but even by biasing along a
direction which forms an angle with the reaction coordinate, we would force
the molecule to visit unlikely high free energy conformations, and the result-
ing trajectories would not be representative of the spontaneous transition.
Therefore, we understand that it is of utmost importance to bias along a
direction close enough to the system’s reaction coordinate. The great advan-
tage of the rMD scheme as proposed by Camilloni and Tiana [134] is that
the biasing potential (2.45) acts on the distance in the contact map (2.44),
which is very similar to the fraction of native contacts. Although there is
no systematic investigation on how this two quantities are quantitatively re-
lated, we shall assume as a working hypothesis that the distance in the contact
map (2.44) is a satisfactory reaction coordinate for the folding of small and
globular proteins.

As a matter of fact, Camilloni, Tiana and a Beccara have carried out
several attempts to fold proteins by using the potential (2.45) acting along
diverse geometrical order parameters, but despite high values of the biasing
force, trajectories remain stuck in non-native conformations and folding is
never observed.

The rMD biasing scheme has proved to be very efficient in sampling the
folding trajectory space [134]. Folding trajectories are obtained at a rather
cheap computational cost, since fluctuations are filtered out and meta-stable
states are removed. This high efficiency comes with a high cost, since time
intervals measured along the trajectories are highly unphysical, and thus
both kinetics and thermodynamics are disrupted. This is a severe drawback
indeed, and we cannot directly compute rates and free energies, which are
usually employed to compare experimental results.
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2.3.4 Sampling and scoring

We have now and instrument, the rMD algorithm, to produce many protein
folding trajectories connecting an initial unfolded configuration to a folded
one. These are the results of a bias, pushing the system along a direction
that we assume to be related to the real reaction coordinate of the system.
Nonetheless, this is only approximately true, and the bias will always intro-
duce spurious effects in the trajectories. In order to soften them, we can
rank the biased folding trajectories according to the value of the OM ac-
tion functional (2.26). If we consider a rMD folding trajectory x (τ), then
exp{−SOM [x (τ)]} is approximately proportional to the probability for that
trajectory to happen in the unbiased diffusive dynamics. We score a set of
rMD trajectories with fixed endpoints and select the one which minimizes
SOM, which is thus the one with highest weight in the unbiased dynamics. In
other words, we produce a set of reasonable folding “trial” trajectories, score
them with an unbiased weight, and pick up the best one.

2.3.4.1 Characterizing the folding pathways: the algorithm

We are now ready to sketch the algorithm we will test and use to portray
the folding of realistic protein models.

1. Provide the protein native structure at atomistic resolution.

2. Produce as many as possible denatured conformations, e.g. by doing
a short high-temperature MD followed by an unbiased MD at environ-
mental temperature to relax the structure. Denatured conformations
should be selected according to the equilibrium Boltzmann distribution.

3. For each unfolded configuration, produce as many as possible folding
trajectories running rMD simulations, which we shall call trial trajec-
tories. Any realistic FF can be used, although in implicit solvent only.

4. Calculate the value of the OM action for each of the successful rMD
trajectories, retain only the one displaying the lowest value, hence the
less biased one, which we shall call a dominant folding trajectory and
discard all the others. This scoring and selecting procedure returns our
best guess for the folding trajectory connecting fixed initial and final
configurations.
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Figure 2.3: For given initial denatured and final folded configurations we pro-
duce many folding trial trajectories by meas of biased rMD simulations. We
score the trajectories according to their probability in an unbiased diffusive
dynamics, and select the less biased one.
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5. Characterize all the trajectories according to order parameters, by clus-
tering in a dominant reaction pathway those which share the same fold-
ing mechanisms.
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Chapter 3

Folding a WW Domain

In this chapter we investigate the folding mechanism of the WW domain
Fip35 using a realistic atomistic FF, by applying the DRP algorithm in-
troduced in the last section of chapter 2. In the first section we will show
evidence for the existence of only two folding pathways, which differ by the
order of formation of the two hairpins composing the WW Domain. We will
then show in the second section how this result is consistent with the analysis
of the experimental data on the folding kinetics of very similar WW domains.
Then, the we will compare our results with those obtained from ultra-long
equilibrium MD simulations of this system performed on the Anton super-
computer.

We will show how free energy calculations performed in two CG models
support the robustness of the two pathways picture. Moreover, turning on
and off non-native interactions, we will find evidence that the qualitative
structure of the folding pathways is mostly shaped by the native interactions
and the chain topology.

This chapter is based on the original research paper of Ref. [138]:

• S. a Beccara, T. Škrbić, R. Covino, and P. Faccioli, PNAS 109 (2012)

3.1 Folding pathways of a WW Domain

Ultrafast folding proteins are a perfect target for any MD based approach,
and indeed are often used as a benchmark system. The Fip35 WW Domain

77
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Figure 3.1: Native structure of Fip35 WW Domain [139], mutant of pro-
tein human pin1 (pdb code: pin1). The primary sequence of Fip35 is:
EEKLPPGWEKRMSADGRVYYFNHITNASQWERPSG. Fig. reproduced
with permission from Ref. [138]
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is a engineered mutant of the human Pin 1 protein, which folds in only 14µs,
being the fastest folding WW domain [139]. It is only 35-residues long, and
displays a simple topology, made of two β−hairpins of different length sharing
a common strand. The first hairpin (H1) spans over the residues 8-23, and
the second hairpin (H2), spans over residues 17-30.

Fip35 and other very similar WW domains have been widely characterized
both experimentally [139–141] and numerically [75, 142–157]. In particular,
the first AA MD simulation on the millisecond scale performed on Anton has
shown reversibly folding and unfolding [69]. In this first paper, Shaw et al.
described only one folding mechanism, where H1 folds first, followed then
by H2. On the other hand, Ensign et al. found a completely heterogeneous
folding by means of a Markov-state-model analysis of short out-of-equilibrium
trajectories [142].

3.1.1 Two folding pathways

In order to investigate the folding mechanism of the Fip35 WW domain, we
produced several dominant folding trajectories by means of the DRP algo-
rithm. In Fig. 3.2 we show our set of atomistic dominant folding trajectories,
projected onto the plane defined by the Root-Mean-Square-Deviation to na-
tive (RMSD) [70] of the Cα-atoms in H1 and H2. We can clearly identify
two distinct folding pathways, which differ by the order of formation of the
hairpins: in about half of the computed dominant folding trajectories H1
consistently folds before H2 (Left part of Fig. 3.3), while in about the other
half, we observe that the two hairpins form in the reversed order (Right part
of Fig. 3.3).

It is noteworthy that not all the rMD trial trajectories computed starting
from a given initial condition follow one of the two folding pathways discussed
above. Indeed, as shown in Fig. 3.4, many of them involve a simultaneous
formation of native contacts in both hairpins. These are systematically ex-
cluded when scoring and selecting the dominant trajectories according to the
lowest OM action criterion. We can thus say that folding events in which the
hairpins form simultaneously are much less frequent than those in which the
two secondary structures form in sequence.

Another result emerging from our simulations is the existence of a cor-
relation between the structure of the initial configurations from which the
transition is initiated and the pathway taken to fold. If at the beginning of
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Figure 3.2: The set of dominant folding trajectories for Fip35, obtained from
atomistic DRP simulations, projected on the plane defined by the RMSD of
the two hairpins to the corresponding native structures. Fig. reproduced
with permission from Ref. [138].



3.1. FOLDING PATHWAYS OF A WW DOMAIN 81

Figure 3.3: Schematic representation of the structure of the two dominant
folding pathways obtained in our simulations. Fig. reproduced with permis-
sion from Ref. [138]
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Figure 3.4: The set of trial trajectories connecting a given denatured config-
uration, on the upper right corner of the plot, to the NS, which is in the lower
left corner, used in the search for the dominant trajectory, projected on the
plane defined by the RMSD to native of the two hairpins. The darker path is
the selected dominant reaction trajectory. Fig. reproduced with permission
from Ref. [138].
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the transition H1 has a RMSD smaller than H2, then the first pathway is
most likely chosen. In the opposite case, i.e., when H2 has a smaller RMSD
to native than H1, then the second pathway is generally preferred.

3.1.2 Little role for non-native interactions

In order to further support these results and gain insight into the folding
mechanism, we have performed simulations in a native centric Gō-like simpli-
fied model, computing equilibrium properties using the CG models described
in Section 3.4. In Fig. 3.5 we show the free energy landscape at the 300 K,
as a function of the RMSD to native of the two hairpins for the two models.
The upper panel considers only stabilizing native contacts, whereas the lower
panel was calculated by considering also attractive non-native interactions.
In both cases, we observe the existence of two valleys in the free energy
landscape, which correspond to the two folding pathways discussed above.

The fact that the two free energy landscapes in Fig. 3.5 are remarkably
similar suggests that non-native interactions have a vanishing role in the
folding the Fip35 WW Domain.

3.1.3 Locating the TS

According to a widely used definition, the TS is the set of configurations xTS

such that the probability to reach the NS is equal to that of going back to
the denatured configuration [121]. In order to locate the TS we consider the
approximation

P (xTS → xi)

P (xTS → xf)
≈ e−SOM(xTS→xN )

e−SOM(xTS→xD)
= 1

where xN and xD are the first native and denatured configurations visited
along the dominant trajectory, starting from xTS. We thus only take into
account the “reactive” part of the trajectory, that is the one which leaves
the DS and, without recrossing, goes straight to the NS. To satisfy this
requirement, we considered the total RMSD vs. frame index curve. The
typical trend of this curve for most of the dominant trajectories is shown
in Fig. 3.6. It consists in an initial plateau, followed by a rather steep fall,
and then by another flat region, where the system oscillates in the NS. The
reactive part of the path was identified with the region of steep fall in this
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(a)

(b)

Figure 3.5: The free energy surface at T = 300 K as a function of the RMSD
to native of the two hairpins, obtained from the MC simulations in two CG
models, described in Section 3.4. In the upper panel the model accounts for
native interactions only [158], whereas in the lower panel both native and
non-native attractive interactions are considered [159]. The free energy as
a function of the RMSD of the two hairpins (potential of mean force) was
obtained from the frequency histogram calculated from long MC trajectories.
Fig. reproduced with permission from Ref. [138].
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Figure 3.6: The typical evolution of the RMSD in the second folding pathway
is shown. H2 (green) folds first followed by H1 (red). The gray shaded area
corresponds to the reactive part considered to calculate the TS, which is
represented with the dashed black line. Fig. reproduced with permission
from Ref. [138].

curve. In particular, the beginning of the reaction was set to the frame at
which the derivative of the total RMSD curve changes sign, from positive to
negative.

Following this prescription we are able to qualitatively locate the TS,
which is found at the “turn” of the pathways; i.e., is formed by configurations
in which H1 is folded while H2 is largely unstructured in one pathway, and
by configurations where the opposite is true in the other (see Fig. 3.3).

3.1.4 Relative weight of the pathways

Trajectories simulated by means of the rMD display unphysical time intervals
and are far from equilibrium. Thus, it is not possible to directly calculate
kinetic quantities as the folding rate, or thermodynamics as free energy differ-
ences. However, in order to be able to compare our results with experimental
investigations, we have to provide an at least qualitative estimate of the fold-
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ing rate. We therefore decide to consider the following approximation

k1

k2

≈ e−β(G
‡
1−G

‡
2), (3.1)

where k1 and k2 are the folding rates, G‡1 and G‡2 are the free energies of the
TS’s of the first and second folding pathways respectively. Eq. (3.1) expresses
the ratio between the probabilities to see a folding event along one of the two
pathways as a free energy difference. Such an expression is based on the
assumption that each folding pathway is a thermally activated process. The
free energy barriers corresponds to the two different TS’s located along the
dominant folding trajectories, where, as discussed in section 3.1.3, either H1
or H2 are formed. We then project the location of the TS’s obtained on the
dominant folding trajectories on the free energy landscapes represented in
Fig. 3.5, and measure G‡1 − G

‡
2. In this way we find that the probability of

the pathway where H1 forms first is ∼ 70%, whereas the probability of the
second pathways is ∼ 30%. We stress that this result has to be considered
only as semi-quantitative, but nonetheless it opens the door to a comparison
with other kind of studies of the same system.

Furthermore, this simple scheme enables us to address the question of
the dependence on temperature of the relative weights of the two channels.
Repeating the calculation at a higher temperature of 380 K, assuming that
the structure of the TS’s is not significantly modified, we find k1/k2 ≈ 1.6,
which corresponds to a branching ratio of the first pathway of about 60%.
Hence, the rate limiting role of the second channel grows with temperature,
and this can be understood as follows. The folding of one of the hairpins gen-
erates an entropy loss proportional to the number of native contacts formed.
The TS in the first folding channel involves forming a longer hairpin, namely
H1, hence reaching it produces a larger entropy loss (but also larger gain
of native energy). The role of the entropy loss relative to the energy gain
in forming the hairpins grows with temperature, hence disfavoring the first
folding channel compared to the second.

3.1.5 Varying the force

The rMD simulations depend on an external parameter k, which sets the
strength of the biasing force. At very low values of k, rMD trajectories are
minimally biased, and the system does not perform any folding transition in
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Figure 3.7: Typical evolution of the ratcheting coordinate z (t) in two rMD
simulations. Fig. reproduced with permission from Ref. [138]

a typical simulation time. Thus, there is an insufficient gain in this regime
in using this biasing scheme, compared to an unbiased MD simulation.

In the opposite high k limit, the dynamics is affected by a significant
bias since the external force becomes comparable with the physical internal
forces acting on the atoms. In this regime, if the ratcheting coordinate z is a
bad reaction coordinate, the system is driven into large free energy regions.
The unbiased statistical weight given by the exponent of the OM action is
expected to penalize these trajectories.

Fig. 3.7 shows the evolution of the biasing coordinate z, in two typical
folding rMD trial trajectories.

It is important to study to what extent a given folding trajectory depends
on the specific value of the bias constant k adopted in rMD simulations. In
Fig. 3.8 we plot the dominant reaction trajectories obtained starting from the
same initial condition, using different values of k, which span over almost two
orders of magnitude. We see that in most simulations the folding is described
by the same qualitative mechanism, in which H1 forms before H2. Only in
one case, for a low value of the coupling constant k, we find that the protein
travels across the DS before taking a different pathway, in which the order
of formation of the hairpins is reversed.
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Figure 3.8: Dominant trajectory connecting the same initial and final config-
uration calculated with a rMD coupling constant k varying over two orders
of magnitude. Fig. reproduced with permission from Ref. [138].

3.2 Comparison with experiments

The so-called φ−values analysis represents the main experimental technique
that is able to characterize the TS [15, 160, 161]. The latter is by definition
made of transient short-lived configurations, which cannot be resolved by
standard approaches as X-ray crystallography and NMR.

Let us consider a small one-domain two-state folding protein. If we mutate
a residues in the wild-type protein we can measure the φ−value defined as

φ =

(
∆G‡−DS

wt −∆G‡−DS
m

)
(
∆GNS−DS

wt −∆GNS−DS
m

) =
∆∆G‡−DS

∆∆GNS−DS
(3.2)

where ∆G‡−D is the folding free energy barrier, which separates the DS from
the TS, calculated for the wild-type (wt) and the mutant (m). ∆GNS−DS

is instead the free energy difference between the NS from the DS, i.e., the
stability, again calculated for the wild-type and the mutant. Thus, a φ−value
measures to which extend a given mutation of a residue perturbs the TS
compared to the NS.
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Figure 3.9: Schematic representation of how φ−values are used to character-
ize the TS. Fig. reproduced with permission from Ref. [15].

To interpret the resulting numbers, a series of hypothesis is usually con-
sidered: that there is a strict correlation between the interactions in the TS
and its structure; that stabilizing interactions in the TS are only native-like;
that a mutation can only destabilize the TS or the NS, thus excluding a
possible stabilizing effect. If these key assumptions hold, then a φ−value
measures the amount of native structure formed in the chain around the mu-
tated residue (Fig. 3.9 left panel). If φ = 0, then the NS is destabilized but
the TS is not, and this means that the mutated residue is still unstructured
in the TS. On the contrary, if φ = 1, then the TS and the NS have been
destabilized in the same way, thus a native structure is already formed in the
TS in the location of the mutated residue (Fig. 3.9 right panel).

Non-canonical φ−values, which are neither 0 nor 1, cannot be interpreted
unequivocally. Negative values can be caused by a stabilizing effect of the
mutation either on the NS or the TS. On the other hand, values between 0
and 1 may be caused by an heterogeneous TS, which is usually interpreted as
the existence of more folding pathways. In this sense, the φ−values analysis is
also the main experimental instrument to investigate the folding mechanism.

Jäger et al. extensively measured the φ−values on different temperatures
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Figure 3.10: φ−values analysis of the human Pin 1 WW Domain. Left
panel: φ−values are represented on the vertical axis, while the location of
the mutated residue is on the horizontal one. The third dimension represents
the temperature at which the folding has been characterized. H1 corresponds
to the region including Strand 1, Loop 1 and Strand 2. H2 is composed of
Strand 2, Loop 2 and Strand 3. Right panel: same data represented in a
φ−values vs. temperature plane to clearer show the temperature dependence.
Fig. reproduced with permission from Ref. [140].
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for the human Pin 1 WW Domain, the wild-type precursors of Fip35 [140].
Their result, reported here in Fig. 3.10, shows a majority of non-canonical
φ−values, which can be interpreted only qualitatively. The TS is heteroge-
neous, with most of formed structures located on H1, while on H2 a smaller
amount is also present, which notably increases with rising temperatures.
This picture can be explained invoking two possible folding pathways where
the hairpins form in a different order, and is thus compatible with our find-
ings, but we have to use a model to quantitatively interpret the experimental
data of Fig. 3.10.

Weikl provided such a model and the related interpretation in a series
of papers [151, 162, 163]. The core assumption is inspired by the foldon
picture, since H1 and H2 are considered cooperative folding units that can
be either folded or unfolded in the TS. Thus, a mutation can affect (stabilizing
or destabilizing) one of the two hairpins, and Eq. (3.2) can be accordingly
recast

φ =
ρ1∆∆G‡−DS

1 + ρ2∆∆G‡−DS
2

∆∆GNS−DS
,

where ρ1 is the probability, or fraction, of the TS conformations in which H1
is formed, and ρ2 = 1 − ρ1 is the probability of the TS conformation with
H2 formed. This model displays a single free parameter, and it is enough
to fit it to the experimental data to satisfactorily explain the φ−values in
Fig. (3.10). The fitting procedure yields the probability of each pathway,
with ρ1 = 0.69± 0.05 and ρ2 = 0.36± 0.05. The pathway in which H1 forms
first is about twice more populated than the other one, where instead H2
forms first.

This results provides a solid interpretation of the data shown in Fig. (3.10)
and is in good agreement with the semi-quantitative estimate calculated in
section 3.1.4 on our folding trajectories.

3.3 Comparison with numerical investigations

In the last decade, the folding of WW Domains has been investigated ex-
tensively by considering different models and FF’s. Some studies reported
the coexistence of the two folding pathways where hairpins form sequentially
[144, 146, 152, 155, 164–166], whereas other described a more heterogeneous
picture displaying many possible folding mechanisms [142, 147–149].
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Fip35 has been one of the first proteins investigated by means of mil-
lisecond long MD simulations performed on Anton. In a first paper, Shaw et
al. reported the existence of only one dominant folding mechanism, where
H1 folds before H2 [69]. An independent analysis of the folding trajectories
[153], and further simulations by the same group [75], revealed also the pres-
ence of the less frequent second pathway, where the order of formation of the
hairpins is inverted. In particular, Krivov estimated the probability of each
reaction channel, finding 80% for the pathway where H1 forms first, and 20%
for the second one [153]. Moreover, Krivov built the free energy landscape
surface projected on two optimized coordinates, which are obtained from
the native contacts in each hairpin. He found that the TS in each pathway
displays conformations where the tip of the corresponding hairpin is formed
[153]. Berezovska et al. found a qualitatively similar picture by using a
Markov-state-model [154].

Noteworthy, it is still debated whether Fip35 is a “downhill folder” or a
standard two-state folder. In the first case there is no thermally activated
barrier separating the DS from the NS, and folding time is due presumably
to diffusion on a rough energy landscape [69, 139, 141], whereas in the second
case, instead, a clear barrier exist [153, 154].

To summarize, the result of our investigation by means of the DRP algo-
rithm shows that the Fip35 WW Domain folds along two different pathways,
defined by the order of formation of the two main structural elements, H1
and H2. This finding is in agreement with the interpretation of experimental
φ-values data and long unbiased MD simulations, as well as with alternative
methods.

Remarkably, simulating the set of folding trajectories we have studied in
this chapter took only two days of calculations on 48 CPU’s.

3.4 Computational details

3.4.1 Atomistic DRP simulations

The AA DRP calculations were performed using DOLOMIT, a home written
code, which calls a librarized version of GROMACS 4.5.2 [167], in order to
calculate the molecular potential energy and its gradient. We employed the
AMBER ff99SB FF [56] in implicit solvent with Generalized Born formalism.
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The Born radii were calculated according to the Onufriev-Bashford-Case al-
gorithm [54].

We defined the NS as the set of conformations with a RMSD to the crystal
structure of the Cα in the hairpins smaller than 3.5 Å. A configuration was
considered denatured if the RMSD to native of both hairpins was larger than
6 Å. The stability of the NS within the present FF was checked by running
12 unbiased 2 ns long MD simulations at the room temperature (300 K). In
all such trajectories the protein remained in the NS.

We then generated 44 independent initial conditions, by running a 50 ps
MD at 1,600 K, starting from the energy minimized NS, followed by a 100
ps relaxation at 300 K. The time step employed in all the simulations was
1 fs. From 24 starting configurations we computed 96 trial trajectories each
consisting of 50,000 rMD steps. For each of the remaining 20 initial condi-
tions, the number of trial paths was limited to 48. In such rMD simulations,
the ratchet spring constant was set to k = 0.02 kcal/mol. Using this value,
the modulus of the biasing force was always found to be at least one order of
magnitude smaller than the modulus of the total force acting on the system.
We observed that 5 of the 44 initial conditions did not correspond to DS,
hence they were rejected. In addition, in 13 of the remaining 39 sets, more
than 80% of the trial trajectories did not reach the native state within the
simulation time. In these cases the exploration of the path space was limited
to very few trial trajectories, so the corresponding dominant trajectories were
discarded. For the remaining 26 sets of trajectories, we identified the most
probable by computing the OM action.

3.4.2 CG native-centric calculations

To study the equilibrium properties of the folding of the Fip35WW domain
we used the CG model recently developed in Ref.’s [106, 159]. In that model,
amino acids are represented by spherical beads centered at the Cα positions.
The non-bonded part of the potential energy contains both native and non-
native interactions. The former are the same used in the Gō-type model
of Ref. [158], while the latter consist of a quasi-chemical potential, which
accounts for the statistical propensity of different amino acids to be found
in contact in native structures, and of a Debye-screened electrostatic term.
In this model, the average potential energy due to native interactions in
the folded phase is typically one order of magnitude larger than that due
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to non-native interactions. Above the folding temperature, this ratio drops
to about four. This model was shown to provide an accurate description
of protein-protein complexes with low and intermediate binding affinities
[159]. We calculated the specific heat, evaluated from MC simulations at
different temperatures, which indicates that this model yields the correct
folding temperature for this WW domain [138].

The simulations were performed using a MC algorithm based on a com-
bination of Cartesian, crankshaft and pivot moves. Details can be found in
Ref. [168].



Chapter 4

Folding a knotted protein

The existence of proteins which spontaneously fold to a self-tied conformation
of their backbone is a surprising fact that has been discovered and investi-
gated during the last decade. Unraveling the subtle interplay that is required
between all the interactions in order to fold and avoid any sort of traps is
still an open issue. Simulating and understanding the folding mechanism of
knotted proteins is a challenge and a testing ground for any computational
approach.

In the first section we will briefly review what is currently known about
knots in protein. In particular, we will discuss how to operatively define them
and what we learnt exploring the knotting process by using both experimental
and computational methods.

We will completely devote the second section to describe our original
results, obtained by investigating the folding of the smallest known knotted
protein by means of the DRP computational scheme. We will explain how
our findings point out a crucial role for non-native interactions in determining
the probability and mechanism of folding in the little knotted protein.

This chapter is based on the original research paper of Ref. [169]:

• S. a Beccara, T. Škrbić, R. Covino, C. Micheletti, and P. Faccioli, PLoS
Computational Biology 9 (2013)

and the perspective article of Ref. [170]:

• R. Covino, T. Škrbić, S. a Beccara, P. Faccioli and C. Micheletti,
Biomolecules 4, 1 (2013).
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Furthermore, in writing this chapter I took great advantage of fruitful dis-
cussions with Patrícia Faísca and Joanna Sułkowska, whom I deeply thank.

4.1 Knots in proteins

From a mathematical point of view, a knot can be defined only in closed
strings. Indeed, in an open one it is always possible to find a set of moves able
to untangle it. Nonetheless, the concept of physical knot has been introduced
to describe long-lived self-entangled configurations in open strings.

Loop closure is the main strategy to systematically search knots in pro-
teins [171]. One can artificially close the open polypeptide by extending the
termini of the protein far enough to be able to connect the chain without
crossing it by using an arc at “infinity”. This approach is suitable because in
most of the cases the protein termini are exposed to the surface and can be
extended with no risk to create spurious knots. Once the chain is closed, it is
possible to calculate topological invariants defined for mathematical knots,
for instance the Alexander polynomial, which we have employed in our work
[171].

A slipknot is another interesting non-trivial topology that can be found
in an open chain and thus also in a protein [172, 173]. It is obtained by
threading a loop through another one, in such a way that the chain is globally
unknotted. In other words, and to give a more operative definition, a knot
is tightened if its termini are pulled, whereas the same action would untie a
slipknot.

In 1994 Mansfield was the first to systematically survey the PDB looking
for the presence of knots [174](curiously, at that time the database contained
only 400 structures), but concluded that there were none. Only in 2000
Taylor reported the finding of the first deeply embedded knot in a protein
[175]. Since then, the number of protein structures deposited in the PDB
has increased exponentially. Several groups surveyed again the data bank
[176? –181], and many structures representing knotted proteins have been
found. According to the latest data [? ], 620 knots and slipknots were found
considering 74.223 structures, accounting hence for about the 0.85% of the
total amount of known protein structures. All knots are found in enzymes
[182]. One can hence conclude that knots in proteins do exist, although they
are very rare.
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Figure 4.1: Knot types found in natural protein structures stored in the PDB.
Figure adapted from Wikipedia.

A knot is classified according to the minimum number of crossings found
projecting it on a plane. The simplest topology is the trefoil knot 31, with
three crossings. Then, raising the number of crossings, one gets more types,
namely 41, 51, 52, 61, 62, 63. So far only the 31, 41, 52, 61 knot types have
found to occur in proteins [182](see Fig. 4.1)

The size of the knot is the smallest number of amino acids that have to
be cleaved at either termini in order to make the knot disappear. We say the
knot is shallow when the size measures up to about 20 residues, otherwise it
is a deep one.

Most of the knots found in native structures are the simplest possible one,
the trefoil topology, and ∼ 2/3 are indeed very shallow [182, 183].

Knots in naturally-occurring proteins differ for at least two major as-
pects with respect to flexible polymers of equivalent length. First, they are
statistically much rarer [184]. Secondly, the type, location and length of
knots occurring in open flexible homopolymers have a stochastic character
[185], whereas for natively-knotted proteins they are specific and robustly
reproduced in repeated folding experiments [186].

4.1.1 Function and evolution

It is still under debate whether the presence of a knot provides a protein with
a precise biological functional advantage. Several possible effects have been
proposed, in particular an enhanced thermal, kinetic or mechanical stability
[176, 179, 180, 187–192], but no clear proof exists and the questions is still
open.

The latter debate is related with the understanding of which evolutionary
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path led to the emergence of knotted proteins. It is interesting to note,
following Shacknovich [184], that the use of an evolutionary argument has
been completely reversed in few years. Indeed, it was believe that, as in
collapsed homopolymers, knots would have to be ubiquitous also in proteins.
To explain their actual absence, researchers invoked an evolutionary pressure
eliminating knots in proteins, since they would have severely hindered the
folding reliability and efficiency. On the contrary, after that a significant
number of knotted structures were identified, an opposite selective pressure
is now considered. This is supposed to preserves these occurrences because
of their presumable role in a still unknown important function. This idea is
also supported by the evidence that knots are preserved among and across
protein families [176, 177, 179? ].

Recently, the creation of an artificial protein able to spontaneously fold
to a knotted native conformation [173] suggested that such a pressure might
not be necessary [184]. Indeed, the Yeats group was able to create and ar-
tificially knotted protein starting from an existing dimer using the domain
fusion technique [173]. The original dimer is composed of two proteins which
naturally intertwine, and by adding a linker made of 8 residues connecting
them, a new trefoil knotted protein was obtained. King et al. also engi-
neered a version of the dimer connected by a cysteine bond, thus linked but
topological unknotted. This permitted them to experimentally characterize
the thermodynamic and folding kinetic properties of the artificially knotted
protein, and compare them with the test cases represented by the natural
and the linked dimer. Having such a control case, usually represented by cou-
ples of homologous proteins, is of utmost importance when investigating the
cause and effect of a given characteristic, as also shown in [168, 190]. It was
found that the new artificial protein folds more slowly than the natural one,
albeit displaying a folding time of ∼ 20 s, compatible with most unknotted
proteins, and only 20 times higher compared to the test cases. Furthermore,
there are evidences that the protein unfolds by untying the knot in chemical
denaturants, a characteristic that is not shared by naturally knotted proteins
[193], as will be soon described. Hence this artificial protein could be a par-
ticular case showing peculiar characteristics. Nonetheless, the domain fusion
mechanism by which it was obtained suggests a general molecular mechanism
possibly exploited by evolution in shaping knotted proteins.
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4.1.2 Experimental characterization

The most experimentally investigated knotted proteins are the bacterial α/β-
knotted methyltransferases YibK from Haemophilus influenzae and YbeA
from Escherichia coli1. Both are single-domain homodimeric proteins and
display a deep trefoil knot (∼ 40 a.a.). Their folding was extensively char-
acterized by Mallam and Jackson [182, 186, 193–200], in the following we
particularly refer to their latest work [186]. Here, the authors studied the
folding and knotting process by building a cell-free transcription-translation
system, that is an in vitro set-up containing all the essential components to
synthesize the proteins, but nothing more. In this way, considering newly
translated chains, they were sure to follow the folding starting from an un-
knotted initial unfolded configuration. Mallam and Jackson could therefore
conclude that YibK and YebA can spontaneously fold to their native knot-
ted configuration in an efficient way (i.e., with no trace of misfolded species),
and with no aid from any cellular machinery. Knotting is hence a post-
translational event.

In a previous work [193], the same authors found that in urea-denatured
conformations of YibK and YebA, although all secondary structures were
disrupted, the backbone was still self-tied. Since unknotting has never been
experimentally observed, they suggest that knotted configurations could be
kinetically trapped and knotting itself irreversible.

They also measured the folding rate starting from a newly translated
chain and the refolding time of a chemically denatured one [186]. Results
are reported here in table 4.1. It can be seen that folding from an unknotted
configuration is a slow process, displaying folding times of about 10−20 min.

To investigate the role of chaperones in the folding of YibK and YebA,
Mallam and Jackson added the GroEL-GroES complex to the cell-free transcription-
translation system [186]. They found that chaperones enhance the rates and
thus accelerate the folding and knotting process. Moreover, the accelerated
rates are compatible with those measured considering the refolding of config-
urations denatured in urea, which are conversely not significantly accelerated
by chaperones. Mallam and Jackson were hence able to conclude that, for

1YibK is 160 residues long (PDB 1MXI) and YbeA is 155 residues long (PDB 1NS5)
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YibK YbeA

newly translated 0.05 0.09

urea denatured 1.8 0.3

Table 4.1: Folding rates for YibK and YebA using newly translated (unknot-
ted) configurations, and chemically denatured (knotted) ones. Rates values
are in min−1. Data are taken from Ref. [186].

this pair of proteins, knotting is the rate-limiting step, which is specifically
enhanced by the presence of chaperones [186].

4.1.3 Computational approaches

Experimental techniques are not able to resolve the knotting mechanism
yet. This latter is the specific sequence of conformational changes leading a
terminus to thread one or more loops, consequently tying the backbone. In
order to unravel it, the insight offered by computational approaches becomes
fundamental [201].

Several studies appeared during the last years, ranging from lattice models
of proteins [191, 202, 203], CG and AA representations employed with Gō-
type energy functions [168, 172, 187, 204–207], to AA simulations using a
realistic force-field in implicit [169] and explicit solvent [188, 192, 208].

Despite the many methodological differences, a rather homogeneous sce-
nario emerges. Indeed, all the results generally agree pointing out that a
protein knots by threading a terminus through a native loop. This process
can occur following two possible pathways. The first one is characterized by
the threading of a straight terminus through a native loop, as a string in the
eye of a needle. In the second one the terminus threads the loop in a hairpin-
like configuration (i.e., partially bent backwards), thus by proceeding as a
temporary slipknot, and only at the end by forming the physical knot folding
to its native straight configuration. We shall refer to the former mechanism
as direct threading and to the latter as slipknotting (see Fig. 4.2).These two
mechanisms are not only related to proteins but have proven to be quite
general [185].

Remarkably, by using Gō-type potentials alone, thus just considering
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direct !
threading! slipknotting!

Figure 4.2: Sketches representing the two general knotting mechanisms, di-
rect threading and slipknotting. Fig. reproduced with permission from
Ref. [170].

native-like attractive interactions, it is possible to obtain the knotting of
AA models of several proteins starting from fully extended configurations
[205–207]. Hence, we can conclude that the funneled energy landscape pic-
ture still holds even for a complicated topology, or in other words, that the
fraction of native contacts is a reasonable reaction coordinate also for the
folding of knotted proteins.

Slipknotting is more frequent when Gō-models are used to simulate the
folding. In particular, Noel et al. have shown that MJ0366, the smallest
known knotted protein, could fold by following both pathways [205]. How-
ever, raising temperature or using a longer threading terminus dramatically
favoured the slipknotting mechanism, which became the dominant one, oc-
curring in all the cases. Since Gō-type FF only promote the formation of
native interactions, with the same favorable contact energy, it is plausible to
deduce that slipknotting is entropically favored.

Non-native interactions could be nevertheless important. This effect was
first explored in a seminal study by Wallin et al., who simulated the folding
of an AA representation of YibK in a Gō-type force field [204]. The authors
obtained correctly knotted native conformations only by promoting a specific
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Figure 4.3: MJ0366, the smallest known knotted protein [209]. The PDB
structure (2efv) is only 82-residues long, and displays a shallow trefoil knot
at its C-terminus. Figure reproduced with permission from Ref. [169].

subset of non-native contacts, effectively mimicking an hydrophobic attrac-
tive interaction between a native loop and the threading terminus. They
concluded that non-native contacts made the knotted configuration more
kinetically accessible, presumably by stabilizing the TS.

4.2 Folding the smallest knotted protein with
a realistic force field

In 2010 MJ0366 the smallest known knotted protein was reported in Ref. [209].
This protein, isolated in M.jannaschii, is only 92-residues long, but only 82
have been resolved and are available on the PDB (code: 2efv). We specifi-
cally used the latter reduced structure, reported here in Fig. 4.3, which dis-
plays a shallow trefoil knot located at the C-terminus, with a size of about
5 amino-acids. The knot is composed by the C-terminal α4–helix (green)
which protrudes a native loop formed by α1 and α2 helices (blue) and two
unstructured coil segments of the chain. A highly non-local β–sheet (red) is
formed by β–strands β1 and β2 , which are separated in the sequence by 38
amino-acids, and is responsible for locking the native blue loop.

Since we considered the investigation on the folding dynamics of the WW
domain to be a successful benchmark, this little protein displaying a non-
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trivial topology is a natural test case to further validate and “stretch” the
applicability domain of the DRP computational approach. We therefore sim-
ulated the folding by considering almost 100 unfolded initial configurations
and a total of almost 4000 rMD trial trajectories. Eventually, we selected the
most probable ones according to the DRP reweighting criterion and ended
up with 31 folding trajectories in which the knot was correctly formed (for
the computational details refer to section 4.2.5). To our best knowledge,
the results shown and discussed in this section represent the first instance
where a realistic FF is employed to follow the folding of initially unfolded and
unknotted AA conformations into a knotted native state, albeit in implicit
solvent and in presence of a native bias.

The experimental results have determined that knotting is a post-translational
process [186]. It is hence a well-posed endeavor to use our folding trajecto-
ries to investigate some of the open questions that rise from the computa-
tional studies already done on the spontaneous knotting of proteins. We
therefore particularly focused in characterizing the knotting event, trying to
understand when it happens, whether the protein can fold following different
pathways and by which particular mechanism the terminus threads through
the loop. Furthermore, using a realistic force field, which naturally takes into
account not only native attractive interactions but also non-native ones, is
a valuable opportunity to probe the role of the latter in the folding of this
particular class of proteins.

4.2.1 Characterizing the folding trajectories

Most of the attempted rMD folding simulations did not converge to the
correct knotted native conformation. Eventually, we obtained 31 folding
trajectories each starting from a different initial configuration. In all cases,
the knotting event corresponded to the formation of the native trefoil knot
(i.e., we did not see any non-specific knot), thus indicating that incorrect
knot formation is not a major source of kinetic trapping for MJ0366.

We carried out several different analyses in order to characterize the mech-
anism leading to the formation of the knot.



104 CHAPTER 4. FOLDING A KNOTTED PROTEIN

0.00

0.05

0.10

0.15

0.20

0.25

0.30

60% 65% 70% 75% 80% 85% 90% 95% 100%

P
ro

b
a
b

ili
ty

 o
f 

th
e
 fi

rs
t 

kn
o
tt

e
d

 f
ra

m
e
s

Percentage of native contacts

Figure 4.4: Probability of detecting a knot for the first time in a frame
vs. fraction of native contacts in that frame. All the selected DRP folding
trajectories were considered. The first knotting event occurs at a rather late
stage of the folding. Fig. reproduce with permission from Ref. [169].

4.2.1.1 When the knot forms

As a first step we identified the folding stage at which the backbone self-ties
into a knot. Accordingly, for each trajectory we calculated the percentage of
native contacts that were formed when the first knotting event had occurred
(a backtracking event spontaneously unknotting the molecule is almost im-
possible in the rMD scheme). The distribution of these overlaps for the
considered trajectories is shown in Fig. 4.4. The distribution is peaked at
about 90% overlap. This indicates that the knot is typically formed at a
rather late stage of the folding process.

4.2.1.2 Measuring the pathway heterogeneity

To quantitatively measure the folding pathways diversity we implemented
the analysis described by Camilloni et al. [134], that will be shortly summa-
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rized in the following. Here we consider a folding mechanism as the specific
sequence of formation of native contacts. Hence, for each path we measured
the time of formation of each native contact as the frame of the trajectory
where the contact is firstly formed. Given tik as the time of formation of
the ith native contact in the kth trajectory, we computed for each path k the
matrix Mij (k) defined as:

Mij (k) =


1 tik < tjk

0 tik > tjk
1
2

tik = tjk

(4.1)

containing all the information regarding the folding mechanism as defined
above. For each pair of pathways k, k′ it is possible to compute a similarity
s defined as

s (k, k′) =
1

Nc (Nc − 1)

∑
i<j

δ (Mij (k)−Mij (k′)) (4.2)

Nc being the total number of native contacts. This similarity ranges from
0, i.e., a completely different mechanism, to 1, which means exactly the
same mechanism. This quantity measures the consistency of the temporal
succession in which the native contacts are formed in two given pathways.

Finally, it is possible to compute the (un-normalized) distribution

p (s) =
∑
k<k′

δ (s− s (k, k′)) (4.3)

of the similarity parameter for all the folding pathways and plot it. A sin-
gle narrow peak in this plot can be interpreted as a homogeneous folding
mechanism, meaning that for any couple of trajectories the s parameter is
equivalent. On the contrary, a broad distribution (or, as a limit case, two
distinct peaks) is likely to represent a heterogeneous folding. In this lat-
ter case, the similarity analysis is not able to yield the number of different
mechanisms.

The value of s depends only on the time order of native contact formation
events, and not on their exact timing. Thus this scheme can be properly
applied to analyze our DRP trajectories.

To have a robust indication of the degree of heterogeneity of the success-
fully knotting trajectories, we computed the distribution of s over all possible
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Figure 4.5: In red the un-normalized distribution of the similarity parameter
calculated for the successful folding trajectories of the Fip35 domain. In
green the same calculation for the knotted MJ0366 protein. Fig. reproduced
with permission from Ref. [169].

pairs of trajectories, see Fig. 4.5. As a term of reference term, the same Fig.
shows the s distribution computed over previously studied folding trajecto-
ries of the unknotted WW domain FIP35, that we have already discussed
in Chapter 3. It can be seen that the distribution of MJ0366 is narrower
and shifted towards significantly higher values of s than for the unknotted
protein. Indeed, the former has a peak at s ≈ 0.75 whereas the latter has
it at s ≈ 0.5. This means that in the pairwise taken folding trajectories of
the knotted protein 75% of native contacts are formed with the same order.
This overlap reduces to 50% in the unknotted protein folding trajectories.
Moreover, the spread of the distribution is rather different in the two cases.
Regarding the unknotted protein, we can find trajectory pairs in which only
25% of native contacts forms with the same order, or other pairs sharing 90%.
This variance is significantly reduced for the knotted protein case, since the
distribution ranges from ≈ 65% to ≈ 90%.

The relatively low value of s and the distribution broadness is typical of
folding processes that proceed by multiple pathways, as we have shown Fip35
does. The different characteristics of the s distribution for MJ0366 therefore
strongly suggest the existence of one dominant folding pathway.
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4.2.2 How the knot forms

To gain further insight in the knotting mechanism, we profiled the folding
trajectories along two relevant order parameters: the RMSD to the native
structure and the RMSD to the native β–sheet. The first collective variable
monitors the overall progress towards the native geometry. The second one,
instead, carries information about one of the expected entropic bottlenecks
of the folding process. In fact to form the native anti parallel β–sheet amino-
acid pairs wit a sequence separation as large as 38 have to meet. Since in
the native MJ0366 structure the C-terminal helix protrudes through a native
loop that is locked by the two paired β–strands, monitoring the formation of
the β–sheet is relevant to understand whether the sheet is formed before or
after the knot.

The results shown in the left panel of Fig. 4.6, where we plotted the
negative of the logarithm of the probability of each bin. Following Ref. [207],
we will call this plot a “kinetic free energy surface”, since it is calculated as
a thermodynamic free energy but lacking the equilibrium condition.

Inspection of the plot indicates that the β–sheet is fully formed quite
early, when the total RMSD to native of the chain is about 15 Å. At this
stage the fraction of formed native contacts is about 40-50%. The self-tying of
the molecule into a trefoil knot typically occurs after the formation of the β–
sheet. This is evident from the placement of the diamond symbols in Fig. 4.6,
which mark the first occurrence of knots for each of the 31 trajectories. It
is seen that all first-knotting events occur when the β–sheet is fully formed,
with only two exceptions that will be discussed later.

A detailed inspection of the trajectories highlights the particular mecha-
nism by which the knot forms (Fig. 4.7) . We found that this happens almost
invariably through the direct threading mechanism. Indeed, in 26 DRP tra-
jectories over a total of 31, the C-terminal α–helix (residues 74-87) directly
enters, without bending, the open region between amino acids 17-54 involv-
ing helices α1 and α2 and the intertwining loop. In this case, the threaded
region and the β–sheet (respectively shown in blue and red in Fig. 4.7) es-
tablish a tertiary contact before the terminal helix penetrates into the open
region in between the helices α1 and α2.

In three other cases, the folding was found to occur through the slipknot-
ting. In all the three instances the C terminus entered the loose α1–α2 region
in a hairpin–like conformation, as shown in the central panel of Fig. 4.7.
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Figure 4.6: Kinetic free energy surface calculated for the RMSD to native
of the non-local β–sheet and the RMSD of the global structure. The scale
on the left corresponds to the logarithm of the number of times a given spot
is visited by the DRP trajectories. Panel (A) shows the surface obtained
using successful knotting trajectories. The diamonds mark the collective
coordinates at the time of knot formation. Panel (B) was obtained using
unsuccessful trajectories. Figure adapted from Ref. [169].

Figure 4.7: The three different types of knotting mechanisms observed in our
atomistic DRP simulations. Fig. reproduced with permission from Ref. [169].



4.2. FOLDING THE SMALLEST KNOTTED PROTEIN 109

Finally, in two further cases we observed another knotting mechanism
which involves a concerted backbone movement that had not been previously
reported for MJ0366. Namely, in these two trajectories when the β–sheet
and the terminal α–helix are already formed and closed in an unknotted
configuration, the loop performs a “mousetrap-like” movement establishing
the native knotted topology. This movement is schematically represented in
the right panel Fig. 4.7. Mousetrap knotting events correspond to the two
outlying diamonds reported in Fig. 4.6, with collective coordinates (6 Å, 8 Å
) and (12 Å, 10 Å ).

4.2.3 What happens when knotting fails

To investigate what happens when knotting does not succeed, we have carried
out a comparative analysis of the reaction mechanism in successful and unsuc-
cessful folding trajectories. Trajectories can be unsuccessful either when the
final structure is not similar to the native one (high RMSD to native values),
or when it is similar (low RMSD values) but the knot is not properly formed.
Specifically, we considered the successful set of the 26 trajectories displaying
the dominant direct threading knotting mechanism. The unsuccessful set
included an equal number of trajectories that reached an unknotted config-
uration and nevertheless had a good native similarity (namely an RMSD to
the crystal structure less than 5 Å).

The projection of the unsuccessful trajectories along the two collective
coordinates considered before is shown in Fig. 4.6. The qualitative difference
with respect to the analogous plot for the successful ones shown in panel
(A) is striking. In particular, it is seen that in successful trajectories the
formation of the sheet involving strands β1 and β2 occurs rather early and
prior to the establishment of the overall tertiary organization of MJ0366. In
fact, the total RMSD to native decreases appreciably only after the β–sheet
is established. By converse, for unsuccessful trajectories, this hierarchy of
contact formation is not observed, and the β–sheet formation proceeds in
parallel with the acquiring of the overall native structure. Therefore it is
possible to conclude that the early formation of the β–sheet provides the
most appropriate conditions for knotting.

This conclusion is supported by the detailed inspection of the unsuccessful
trajectories, which are exemplified in the sequence of snapshots shown in
Fig. 4.8. As it is visible in this figure, the C–terminal helix threads the correct
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Figure 4.8: Typical example of unsuccessful trajectory. The α4-terminus
threads the loop at an early stage, whereas the late formation of the β–sheet
traps the N-terminus on the “wrong” side of the loop and prevents attaining
the (native) knotted topology. Fig. taken from Ref. [169].

region between strands β1 and β2 prior to the formation of the β–sheet. When
the latter is finally established, the N–terminal segment remains trapped on
the wrong side of the loop bridging β2 and α3, and for steric reasons cannot
go past it and attain the native knotted topology. The relevance of this
mechanism for misfolding is highlighted by the fact that all unsuccessful
trajectories displays a late formation of the β–sheet.

We emphasize again that, according to our simulations, the correct knot-
ting of the chain is not promoted by the formation of specific contacts which
fail to form in misfolding events. Instead, for the chain to acquire the native
topology, it is essential that the native contacts form in the correct order.

4.2.4 Discussion: the role of non-native interactions

So far we have shown that the DRP algorithm is able to fold the MJ0366
protein to the correct knotted configuration. Analyzing the 31 trajectories
in atomistic detail, we found that knotting occurs at a very late stage of the
folding and that native contacts form in a rather similar order. Moreover, we
characterized the knotting mechanism, and although three possible pathways
are detected, only one (for instance direct threading) is far more likely than
the others.

Unfortunately, the folding of MJ0366 has not been experimentally char-
acterized yet. It is thus natural to discuss our results by comparing them
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Figure 4.9: Free energies plots calculated from folding simulations MJ0366
using a native-centric potential. (A) Free energy calculated for the fraction of
native contacts of the non-local β–sheet vs. the overall one. (B) Fraction of
native contacts between the threading C-terminal α4–helix and the α2–helix
from the native loop. Fig. reproduced with permission from Ref. [207].

with those obtained by means of Gō-type potentials [205, 207] and unbiased
MD in explicit solvent [208].

Li et al. have investigated the folding of MJ0366 using an advanced Gō-
type potential displaying residue specific interactions and flexibility based on
a statistical potential [207]. They reversibly folded and knotted the protein,
and calculate two free energy landscapes, reported here for convenience of
the reader in Fig. 4.9.

In panel A the authors show the free energy landscape calculated using
the fraction of native contacts formed between the two β strands and those
formed by the whole structure. They conclude that the β–sheet has to form to
its native conformation before the overall structure can increase the fraction
of native contacts. It can be seen that the basin of the intermediate state
where the β–sheet is formed is separated from the native one by the TS.
Hence, they conclude that knotting is the rate limiting step [207].

In panel B Li et al. show the free energy landscape calculated using the
fraction of native contacts formed by the threading helix and a helix compos-
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ing the native loop, and again the overall value of Q. Since no intermediate
state is detected, the authors draw the conclusion that knotting is the last
event of folding and happens at a late stage [207]. Ref. [205] claims similar
conclusions.

The scenario emerging from these results is in fairly good agreement with
our findings, as already discussed and shown in Fig.’s 4.4 and 4.6.

4.2.4.1 Slipknotting vs. direct threading

As already mentioned, Noel et al. [205] simulated the reversible folding
of MJ0366 using a Gō force field both in CG and AA resolution. They
obtained knots with a very low efficiency in both the representations of the
molecules. Using the AA resolution enhanced the yield of knotting events
and, most importantly, avoided the formation of knots in non-native locations
of the amino-acid chain. They concluded that taking into account side-chains
lowers the probability of the protein to be locked in a topological trap and
dramatically enhances the specificity of the knot.

Noel et al. also characterized the knotting mechanism. Notably, they
found two possible pathways, direct threading2 and slipknotting. At the melt-
ing temperature and using the crystal structure of MJ0366 with a “shorter”
C-terminal α–helix, the pathways were followed with approximately the same
weight (direct threading 55%, slipknotting 45%) . But by lowering the tem-
perature and by using the extended conformation of the knotted protein
(which displays 5 more residues on the C-terminus), direct threading was
not detected anymore and slipknotting accounted for all the knotting events
[205]. This competition between the two mechanisms might be a hallmark
of a subtle enthalpic-entropic balance. In fact, a threading terminus has to
severely reduce its conformational entropy to enter a loop. The subsequent
increase in free energy can be mitigated by stabilizing interactions between
the terminus and the loop (native or non-native), which would favour a di-
rect threading mechanism. Conversely, as stated in [205], temporary contacts
could form also in a slipknot conformation of the terminus, balancing the cost
of the entropic reduction and creating an effectively shorter terminus. Since
the entropy loss required for threading increases with the length of the ter-
minus, a shorter terminus would enhance the probability to thread the loop.

2In paper [205] they refer to the direct threading mechanism as “plugging”.
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4.2.4.2 Turning non-native interactions on and off

One of the major difference between our approach and the one exploited
by Noel et al. is the presence of non-native interactions. In fact, in the
Gō-type force field employed in Ref. [205] these are absent, since only native
attractive interactions are taken into account. Whereas attractive non-native
interactions are naturally considered in a realistic force field as AMBER99SB-
ILDN [56], which was used in our study.

In order to investigate a possible role for non-native interactions, we gen-
erated several folding trajectories for MJ0366 using simplified CG models
and two Gō-type energy functions where the effect of non-native interac-
tions could be easily turned on or off, which we have already described in
Chapter 3. Specifically, we considered a first model with only native-centric
interactions, and a second one additionally incorporating non-native interac-
tions. The latter included quasi-chemical and screened electrostatic pairwise
interactions, effectively mimicking non-native and hydrophobic interactions.
These two force fields have already been applied to a knotted protein in the
recent study of the early folding stages of a trefoil-knotted carbamoyltrans-
ferases [168].

The folding process presents major differences in the two models. First,
they differ significantly in terms of knotting probability. In particular, for
each model we considered an extensive set of 10,000 uncorrelated configura-
tions, equilibrated at the nominal temperature of 300 K. In the native-only
case, 12% of the sampled configurations were knotted, while this number had
a sixfold increase, up to 75%, in presence of non-native interactions. This
result aptly complements the atomistic DRP simulations, for it highlight the
helping role of non-native interactions in the formation of the native knotted
topology of MJ0366.

Second, productive trajectories obtained by a dynamical MC simulation
follow different dominant mechanisms in the two models. Namely, when the
pure native-centric force field is used, 8 out of 10 trajectories involved the
slipknotting mechanism, while the threading one is observed in all trajectories
(10 out of 10) with the additional non-native interactions. The latter result,
which is in full accord with the atomistic DRP simulations, reinforces the
concept that non-native interactions can promote the correct order of contact
formation following the direct threading mechanism.

This point is further supported by the inspection of the density plots in
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Figure 4.10: Kinetic free energy surfaces calculated using folding pathways
obtained from CG MC simulations with local crankshaft moves which mimic
the chain dynamics, projected on the plane selected by the total RMSD to
native and by the RMSD to native of the β–sheet. Panel (A) refers to the
model with only native interactions, while panel (B) refers to the model with
both native and non-native interactions. The diamonds denote the values of
the collective coordinates at the time of knot formation. The scale on the
left is the logarithm of the number of times the point is visited by folding
trajectories, in analogy with free-energy landscape plots. Fig. reproduced
with permission from Ref. [169]

Fig. 4.10. Indeed, non-native interactions are more clearly associated to the
early formation of the β–sheet than in the native-only case.

Notably, we shall remember that, as already shown in Chapter 3, the
same analysis yielded no differences in the folding of the Fip35 WW domain.

4.2.4.3 The role of non-native interactions

The enhanced knot formation discussed above can be explained by observing
that in the simplified model the early formation of the β–sheet is promoted by
the fact that the non-native quasi-chemical interaction generates an overall
attractive interaction between the residues in β1 and those in β2. Consistently
with the misfolding events previously discussed, it is possible to argue that
the weaker drive of the native-centric model to form the β–sheet early on is
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also responsible for its lower knotting propensity.
According to these results, we can conclude that mutations in the β–

sheet regions with residues characterized by a weaker effective attraction
would delay the formation of the β–sheet in the folding process, and make
the chain more prone to reach the unknotted misfolded state. This prediction
may be verified experimentally.

The impact of non-native interactions in driving the knotting has also
been proved by Škrbić et al. in [168]. Here the authors considered two ho-
mologous evolutionary-related proteins, similar in sequence and structure but
differing by the presence in one of them of a knot3. The initial stage of the
folding of these big proteins was investigated employing the same two sim-
plified Go-type potentials described above. The authors’ striking conclusion
is that non-native interactions have a relevant role only in proteins display-
ing a native knot, where they dramatically enhance the knot’s probability to
form in an early stage of the folding. This happens because they effectively
introduce an attractive interaction between the threading terminus and the
hydrophobic core where the native loop is located [168]. A similar effect of
non-native interactions was also suggested by Wallin et al. in their already
mentioned study [204].

Noel el al. recently published the result of several folding simulations of
MJ0366, by means of AA unbiased MD in explicit solvent, carried on the AN-
TON supercomputer [208]. They considered the extended crystal structure of
the protein, characterized by a knot size of 15 amino-acid. Simulations were
initiated from 15 almost folded configurations, where a slipknot was formed
and had already threaded 10 over 15 residues through the loop. Using 2µs for
each configuration the authors reported several cases, namely completion of
the knotting process, backtracking of the slipknot, and trajectories where the
slipknot was trapped during all the time. In all this instances a multitude
of temporary salt-bridges was detected, which either stabilized temporary
conformations or trapped them [208].

To conclude, our findings suggest a crucial role for non-native interactions
in enhancing the probability to correctly form a knot and determine the
actual self-tying mechanism.

3Specifically the two proteins are the trefoil-knotted N-acetylornithine carbamoyltrans-
ferase (AOTCase, PDB 2g68, 332- residues long), whereas the other is an unknotted or-
nithine carbamoyltransferase (OTCase, PDB 1pvv, 313-residues long)
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4.2.5 Computational details

4.2.5.1 DRP algorithm

We used the crystal structure of the monomeric unit of the natively-knotted
MJ0366 protein that can be found in the PDB (2evf), which is 82-residues
long.

We first generated an ensemble of 100 denatured configurations by un-
folding the crystal structure using 100 ps of atomistic MD simulations at
high temperature (1600 K) followed by 100 ps of thermalization at 300 K.
All unfolded configurations were unknotted.

The folding and knotting dynamics of MJ0366 was then studied by car-
rying out 48 folding attempts for each of the 100 denatured configurations
by means of the rMD algorithm, for a total of about 4000 attempted folding
trajectories. Notably, the biased rMD evolution promotes only the overall ge-
ometrical similarity with the native state and does not reward the formation
of specific contacts that could lead to knotting.

All the simulations were carried on in atomistic detail using the AMBER99SB-
ILDN [56] force field in implicit solvent within the Generalized Born formal-
ism implemented in GROMACS 4.5.2 [167]. The Born radii are calculated
according to the Onufriev-Bashford-Case algorithm [54]. The hydrophobic
tendency of non-polar residues is taken into account through an interaction
term proportional to the solvent-accessible-surface-area [210].

All the trajectories associated to the various knotting modes do not
present significant quantitative differences regarding the overall solvent acces-
sibility of polar and non-polar residues during the folding process [169]. This
result provides a quantitative basis for expecting that the relative weight of
the knotting mechanisms should not depend critically on the specific model
adopted to describe the solvent-induced interactions.

Next, we applied the DRP approach and retained only one productive
pathway per initial condition, namely the one with the highest statistical
weight. This weight corresponds to the probability that each trial trajectory
is generated by an overdamped Langevin dynamics. Because the weights are
calculated with reference to an unbiased diffuse dynamics, the DRP selection
criterion lessens a posteriori the rMD steering effects.
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4.2.5.2 Coarse grained simulations

We used the schemes already described in Chapter 3, hence the CG folding
simulations were based on the model developed in Ref.’s [95, 156, 159], and
the simulations for protein MJ0366 were performed using a MC algorithm
described in detail in Ref. [168].

The folding dynamics of CG model with native and non-native interac-
tions was simulated by generating 200 MC trajectories, while the dynamics
of the model with only native interactions was investigated by generating
500 MC trajectories. For both CG models, trajectories consist of 1.5 × 108

attempted MC moves, corresponding to 1.5 × 104 saved frames. The em-
ployed MC moves were the local crank-shaft and Cartesian moves, whose
boldness was chosen such that the acceptance rate was nearly constant and
approximately equal to 50%. In both cases, we have collected a total of 10
folding transitions, leading to native configurations with the correct knotted
topology.

In order to compute the frequency of knotted configurations at thermal
equilibrium, we performed MC simulations which combine local moves and
global pivot moves.

4.2.5.3 Knot detection

The conformations visited during the MC dynamics were analyzed to estab-
lish their global and local knotted state. The global topological state was
established and assigned by computing the Alexander determinants after
suitable closure of the whole protein chain into a ring. For each configura-
tion, this entailed 100 alternative closures where each terminus is prolonged
far out of the protein along a stochastically chosen direction, and the end of
the prolonged segments are closed by an arc “at infinity” (i.e., not intersect-
ing the protein). As in Ref. [168], in order to avoid considering back-turning
closures, stochastic exit directions are picked uniformly among those which
form an angle of more than 90◦ with the oriented segment going from each
terminus to the C-α at a sequence distance of 10. If the majority of the
100 stochastic closures return non-trivial Alexander determinants, then the
whole conformation can be considered as globally knotted. Because protein
knotting can occur through slipknot formation [206], the global topology in-
vestigation was complemented by a local one. In deed, a slipknot can be
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detected by identifying a non-trivially knotted portion of the chain that has
a different global topology, in our case the unknotted one. To this purpose,
we repeated the above-mentioned statistical closure scheme for all possible
sub-portions of length 20, 30, 40, ... of the protein chain so as to identify the
smallest knotted, or pseudo-knotted, chain portion [171].



Chapter 5

Projecting a complex dynamics
on a simple network: Milestoning

In this last chapter we will show some partial and preliminary results of
an attempt to analyze in a more sophisticated way the folding trajectories
produced by the DRP algorithm. In particular, we will use the Milestoning
method to better assess in a quantitative way what is the effect of the bias
applied by the rMD on the folding kinetics.

Milestoning and Markov-State-Models have been originally developed to
overcome the timescale sampling limitation of MD simulations ([74, 81, 149,
211–215] and references therein). Both methods are able to use short MD
trajectories to obtain important information on much longer timescales, as
the MFPT of a conformational transition, by “gluing” the short pieces to-
gether. The most famous and peculiar application in this sense is for sure
Folding@Home1, a massively parallel world-wide community effort, which
uses the idle resources of personal computers owned by volunteers.

During the last years though, Milestoning and Markov-State-Models have
been also used as an effective way to extract the dynamical content of an MD
trajectory, thus as a sophisticated analysis tool [74, 146, 147, 154, 216–218].
Through a coarse graining, both approaches are able to reduce a trajectory to
a network which gives a quantitative description of the transitions occurring
in the trajectory. This network can be simple enough to be human-readable,
thus offering the invaluable opportunity of an intuitive insight.

1http://folding.stanford.edu/home/

119
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Figure 5.1: A pictorial representation of the Milestoning coarse graining pro-
cedure. A trajectory connecting initial and final configurations (blue areas)
is separated in many pieces according to a tessellation of the configuration
space. The tiles are called anchors, and the borders that separate a pair of
tiles are the milestones. For the sake of clarity, in this Fig. there is no dis-
tinction between incoming and outgoing milestones. Fig. reproduced with
permission from Ref. [216].

The work shown in this chapter was partially done during a visiting period
at Prof. Ron Elber’s group at University of Austin,. I deeply thank him,
his group, and Steven Kreuzer for being so friendly, and for the interesting
discussions we had during my staying there.

Unfortunately, due to technical difficulties, the results of our investigation
are only partial and no clear and robust conclusion can be drawn. Results
shown in this chapter are unpublished.

5.1 The Milestoning algorithm

Let us consider a very long MD trajectory, or equivalently a set of shorter
trajectories, which display the evolution of a system. MD trajectories are
complex objects, and it is not trivial to extract all their dynamical content.
Analyzing molecular conformational transitions by tracking the value of few
geometrical order parameters gives a first overview of the dynamics, but a
more sophisticated scheme is needed to gain further and deeper insights. This
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can be achieved by using the Milestoning algorithm, and in this section we
will follow [216] and briefly review the formalism and theory. For a more
rigorous and complete overview of the method we suggest Ref. [213].

First of all, we have to coarse-grain the conformational space Ω by defining
several subsets Ωi ⊂ Ω which will be called anchors. Intuitively, an anchor is
a set of conformations which we can consider to be equivalent at a resolution
lesser than the atomic one. A possible way to define and find anchors is
to cluster together conformations which are close according to some metric,
e.g., when the RMSD between them is under a given threshold. Following
this choice anchors correspond to meta-stable states. Another way is to use
one’s chemical intuition and define anchors based on the particular structure
of the investigated molecule. We will use this second approach, which will
be thus clearer in the following.

The coarse-graining procedure is a sort of tessellation of Ω, and we define
the boundary between two anchors, i.e., the border separating two tiles of
this tessellation, as milestone. An evolving system in an MD simulation
travels across Ω, spending some time in an anchor, then leaving it to go to
another one, and in this way it hits the milestone separating the two anchors.
In the following, we will use Latin letters for anchors and Greek letters for
milestones. Milestoning analysis consists in neglecting all the details of the
microscopic trajectory but just two: at which milestone the trajectory was
seen last time, and when. We will use a specific flavor of the algorithm, that is
the Directional Milestoning, where crossing the same boundary between two
anchors in opposite directions defines two different milestones, the incoming
one and the outgoing one. In symbols, given two connected anchors i and
j, we define milestone α : i → j, and milestone β : j → i. We will use the
notation xα to say that a given configuration x ∈ Ω belongs to the set of
configurations where milestone α is located.

We shall define the following quantities:

pα (xα, t) the probability that at time t the last milestone to be
crossed was α at the configuration xα.

qα (xα, t) the probability density that exactly at time t a given tra-
jectory hits milestone α at configuration xα.

Kγα (xα, t|xγ, t′) the propagator between milestones, that is the condi-
tional probability density that a trajectory hits milestone
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α at time t, given that it last hit milestone γ at time t′.

The above quantities have to satisfy probability conservation, which yields
to three relations. The first one reads

pα (xα, t) =

ˆ t

0

dt′qα (xα, t
′)

1−
∑

γ∈N (α)

ˆ t−t′

0

dτ

ˆ
V(γ)

dxγKαγ (xγ, t
′ + τ |xα, t′)

 ,

(5.1)
where N (α) is the “neighborhood” of milestone α, that is the set of mile-
stones directly connected with milestone α; V (γ) ∈ Ω is the hyper-volume
in configuration space which defines milestone γ. Eq. (5.1) states that the
probability that the last crossed milestone was α is given by the probability
that α was first crossed at a previous time t′, minus the probability that in
the time interval t− t′ the trajectory moved away and crossed a contiguous
milestone γ.

The probability density qα instead satisfies the following Eq.

qα (xα, t) = pα (xα, 0) δ (t)+
∑

γ∈N (α)

ˆ t

o

dt′
ˆ
V(γ)

dxγqγ (xγ, t
′)Kγα (xα, t|xγ, t′) .

(5.2)
This Eq. states that to touch milestone α exactly at time t, a trajectory can
be already on milestone α at time t = 0, or it can transit from a milestone γ
directly connected to α that was touched at a previous time t′.

Eq.’s (5.1), (5.2) are rigorous but practically not solvable in cases of in-
terest, thus they have to be simplified. We will consider a stationary process,
s.t. the time dependence of the propagator depends only on time differences

Kαγ (xγ, t
′|xα, t) = Kαγ (xγ, t

′ − t|xα) .

Furthermore, we will suppose that milestones are distant enough, s.t. when
a trajectory crosses a milestone γ it does not remember the specific point
where it started on milestone α, i.e.,

Kαγ (xγ, t
′ − t|xα) ≈ Kαγ (xγ, t

′ − t) .

We now want to obtain a series of relations that depends only on the
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milestone indexes, and therefore we introduce the following quantities

pα (t) =

ˆ
V(α)

dxαpα (xα, t)

qα (t) =

ˆ
V(α)

dxαqα (xα, t)

Kαγ (t) =

ˆ
V(α)

dxαKαγ (xα, t)

where integration removes the explicit dependence on coordinates. We can
thus integrate over Eq.’s (5.1) and (5.2), and get

pα (t) =

ˆ t

0

dt′qα (t′)

1−
∑

γ∈N (α)

ˆ t−t′

0

dτKαγ (τ)


qα (t) = pα (0) δ (t) +

∑
γ∈N (α)

ˆ t

0

dt′qγ (t′)Kαγ (t− t′)

(5.3)

which are the fundamental equations of the Milestoning method. They still
express a probability balance, but now only in terms of milestones. Note
that pα (t) is a probability, whereas qα (t) is a probability flux in time, and
thus has the dimension of an inverse time.

We now assume that, for long times, a stationary probability distribution
describing the system exists. It is possible to solve Eq.’s (5.3) looking for the
time independent probability and flux, i.e.,

pα = lim
t→∞

pα (t)

qα = lim
t→∞

qα (t)

by using the stationary kernel

Kαγ =

ˆ ∞
0

dt′Kαγ (t′) (5.4)

and in this way we get the very simple relation [216]

q (1−K) = 0 (5.5)
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where bold characters correspond to matrices and vectors. This remarkable
result permits to practically compute the stationary probability flux distribu-
tion. The meaning of the stationary probability distribution is the following:
if we observe the stationary system for a time interval ∆t, the (unnormal-
ized) probability to see a trajectory hitting milestone α is ∝ qα∆t. Once the
stationary flux is calculated, one can define the net probability flux flowing
between two anchors i and j as the difference qα − qβ, where α and β are
incoming and outgoing milestones through the same surface. Note that in
Eq. (5.4) Kαγ is now a probability, thus has to obey the normalization con-
dition

∑
γKαγ = 1, since the system has to hit a milestone once it leaves

α.
Furthermore, stationary probability and flux are related through

pα = qα 〈tα〉

where 〈tα〉 is the milestone average lifetime. This is the time interval that
a trajectory needs on average to hit a new milestone γ after having left
milestone α, i.e.,

〈tα〉 =
∑
γ

ˆ ∞
0

dt · t ·Kαγ (t) . (5.6)

The MFPT to hit a final milestone is written as follows

〈τ〉 =

ˆ ∞
0

dτ · τ · qf (τ)

that is the probability to hit this final milestone exactly at time τ , integrated
over all times. This expression greatly simplifies and can be cast in a form
that can be used in practical cases,

〈τ〉 = p · (I−K)−1 〈t〉

where I is the identity matrix, and 〈t〉 the vector made of elements in
Eq. (5.6).

The outcome of a Milestoning analysis applied on a set of atomistic
trajectories is a directed weighted network. The nodes represent the an-
chors, whereas the edges are the observed transitions between two anchors
weighted by the stationary probability fluxes hitting the corresponding mile-
stone. Once the trajectories have been reduced to such a network, if the
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number of anchors is limited, then we get a sort of human-readable repre-
sentation of the complex dynamics contained in the microscopic trajectories,
that permits to have an overall qualitatively and intuitive picture. Further-
more, we can use the numerical value of the probability fluxes across the
milestones and build with them many observables to have a more quantita-
tive assessment of the dynamical content in the analyzed trajectories.

In particular, since we have in mind to use the Milestoning algorithm to
analyze complex conformational changes in a molecule, we can look for all
the connected paths on the network that lead from the initial configuration to
the final one. Each of this paths is defined by a set of stationary probability
fluxes, and has a global weight given by the sum of all these fluxes. The
Maximum Flux Path (MFP) is the path connecting the initial and final
configurations along which the highest amount of probability flux flows [219,
220]. If in a given molecular transition the MFP accounts for most of the
total probability flux, then it can be identified as a reaction coordinate of
the system [216].

In order to practically use the Milestoning algorithm, the two objects
that have to be populated from a long MD trajectory or a set of short ones,
are the stationary transition matrix K and the vector of milestone lifetimes
〈t〉. This can be done simply by projecting the atomistic trajectories on the
anchor space, thus obtaining a discrete trajectory (it1 , it2 , . . . , itn , . . .), i.e.,
the sequence of visited anchors i in time. One can count how many times
milestone α is hit, nα, and how many times a transition α→ β is seen, nαβ,
and in this way estimate

Kαβ =
nαβ
nα

.

The average milestone lifetime, instead, is simply estimated by the average
number of frames that have to pass in order to see the trajectory hitting a
new milestone, that is

. . . i , i ,

α︷︸︸︷
i, j , j , j , . . . ,

β︷︸︸︷
j , k , k , k , . . .

with nα frames before milestone β is hit. Once matrix K has been populated
with the trajectories, Eq. (5.5) can be solved by means of standard techniques
and the stationary probability flux obtained. With this and 〈t〉, we can
further calculate all other quantities.
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If we use the Milestoning algorithm to analyze an ideal infinitely long equi-
librium MD simulation, then stationarity is natural. But if we use it to get
an insight from one or several short trajectories that are out of equilibrium,
as for instance the ones produced by the DRP algorithm, then stationarity
has to be imposed. This can be done by imposing cyclic boundary conditions
on K once an emitting and an absorbing milestones have been defined. For
example, we can be interested in simulating the formation of three h-bonds
in an α−helix, starting from a completely unfolded configuration where none
are present. The latter configuration would define the emitting milestone, the
former the absorbing one. We can use very short simulations that show the
folding to the final configuration to populate matrix K. Then we artificially
impose a cyclic boundary condition by demanding that all the trajectories
hitting the absorbing milestone disappear and immediately reappear with
probability one at the emitting milestone.

On the other hand, if we want to calculate the MFPT to transit from
an initial milestone to a final one, then the latter has to be an absorbing
boundary condition, Kαβ = 0, ∀ β. In other words, the trajectory dies as
soon as it hits the final milestone α.

We reported this brief overview of the Milestoning method for the sake
of completeness. For a self contained and rigorous illustration we shall rec-
ommend Ref. [213], whereas for a more exhaustive operative implementation
we shall refer to Ref. [216].

5.2 Refolding a long myosin chain

We investigate the refolding by means of rMD simulations of chain A of the
human cardiac β-myosin S2 structure, which is in its native state a 126-
residue long α−helix (PDB: 2fxm). We took advantage of several unfolding
simulations of the same model performed by using unbiased MD simulations
[217, 218]. These studies focus on the first unfolding event, which is the
first residue that looses its native configuration. Kreuzer et al. showed that
unfolding is characterized by a complex diffusive behavior, and a residue visits
different conformations before it unfolds. In order to describe this diffusive
process, the author introduced a set of anchors, upon which the dynamics of
a given residue has to be projected [217]. In particular, they defined anchors
depending on the number and kind of h-bonds spanning a given residue, and
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Figure 5.2: Anchors definitions. A given residue (orange) is projected to
an anchor depending on the number and kind of h-bonds spanning it, and
the value of its dihedral ψ angle. The residue is folded when ψ < 0 and
three α h-bonds are formed (anchor α3), whereas it is unfolded when the
dihedral angle is open and h-bonds are completely absent (anchor ψ > 0).
Fig. reproduced with permission from Ref. [217], which we refer to also for
all the details of the anchors definition.
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the value of the ψ dihedral angle of that residue (Fig. 5.2). Three different
types of h-bonds are considered: the usual α types, π h-bonds, which are
slightly longer, and 310, which on the contrary are slightly shorter. H-bonds
are defined according to an exclusively geometrical criterion. A residue is
folded when ψ < 0 and three α h-bonds span it, and we say it is in anchor
α3; on the contrary, it is unfolded when the dihedral angle is wide open and
h-bonds are completely absent, case in which it is in the anchor ψ > 90◦. As
we said, while unfolding a residue diffuses through all the remaining anchors
represented in Fig. 5.2. Kreuzer et al. estimated an unfolding MFPT (in a
FF different than the one we employed) of ≈ 5 ns.

A milestone is hit when the residue we are projecting on the anchor space
changes its conformation going from one anchor to another. This means that
the number of h-bonds spanning it can change, or the type, or the value of
ψ.

With this anchor space at hand, we can investigate the effect of simulating
the refolding of the myosin chain with the rMD algorithm.

5.2.1 Marginally thermally activated transitions

In simulations performed by Kreuzer et al., the rate-limiting-step of the un-
folding process is the transition 0◦ < ψ < 90◦ → ψ > 90◦, i.e., the final
step that completely opens the dihedral angle. The authors produced also
a free energy landscape by using long unbiased unfolding simulations, and
concluded that the rate-limiting-step just described is the only thermally
activated transition [217]. All the other milestones, h-bond forming and
breaking and partial opening of ψ, are thus considered only marginally ther-
mally activated. Although we use a different FF in implicit solvent, and
moreover we simulate refolding instead that unfolding, we shall assume the
same separation of free energies to exists also in our model.

First of all, we want to assess the effect of the rMD simulation on a
marginally thermally activated transition. We thus simulated the refolding
of the myosin protein starting from a configuration where a single residue is
partially unfolded. We considered two residues:

case A The initial configuration is characterized by parameters ψ =
−75.74◦, 310 = 0, α = 0, π = 2, corresponding to anchor π12,
which is partially folded.
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residue number temperature (K) % of folded traj.’s MFPT (ps)

Case B 290 72 8.9±0.6
310 69 9.1±0.6

Case A 290 60 13.7±0.7
310 71 12.6±0.6

(a) Temperature dependence. Data showed are calculated on 98 unbiased MD trajectories
for each row.

Table 5.1

case B The initial configuration is characterized by parameters ψ =
87.72◦, 310 = α = π = 0, and the corresponding anchor is
0◦ < ψ < 90◦, which is partially unfolded.

To investigate the extend of temperature effects on the refolding from this two
initial configurations, we simulated the refolding trajectories with a value of
the rMD constant k = 0 (thus an unbiased MD simulation in implicit solvent)
of case A and B at the nominal temperatures of 290 and 310 K (table 5.1a).
There is a rather weak scaling with temperature, suggesting that indeed we
are dealing with marginally thermally activated transitions.

In order to study the effect of the bias in our algorithm, we performed
the refolding simulation varying in a wide range the rMD free parameter k,
which sets the strength of the biasing force. In particular, we considered 30
values lying in the interval [4× 10−7 ÷ 2] kcal/mol. Moreover, a simulation
at k = 0 (unbiased MD) was performed. For each value of k 96 folding
trajectories were attempted. Each of this trial trajectories share the same
initial configuration but has different initial velocities, that are generated
randomly changing the seed. Hence, if n of these 96 trial trajectories fold
in the given simulation time, then we have n independent realizations of the
same refolding. A further independent set of simulations was performed for
the values of k ranging from 4 × 10−5 to 1.6 × 10−2 kcal/mol. Thus, a total
amount of 3168 trajectories was simulated and analyzed.
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5.2.1.1 Case A (partially folded conformation)

Percentage of folded trajectories

It is important to check that most of the trajectories hit the final anchor,
in order to have a sufficiently broad sample. In Fig. 5.3, red data, we can
see that for all values of k, more than half of the 96 trial trajectories fold
in the given time. Data seems to have a logarithmic scaling with k, and is
consistent with the case k = 0, in which the percentage of folded trajectories
is ≈ 61%. Almost all the trajectories fold for k > 2× 10−2 kcal/mol.

Mean First Passage Time

MFPT was calculated for all values of k using both the straightforward defi-
nition and the milestone approach. In the first case, we averaged the time to
reach the absorbing anchor (corresponding to the folded residue) amid the
set of folded trial trajectories for each value of k. Error bars are given by
standard deviation over

√
N , being N the number of correctly folded trial

trajectories. In the second we applied the milestoning protocol to the same
set of trajectories. Results can be seen in Fig. 5.4.

First of all, we can say that there is an excellent agreement between the
two calculations, which witnesses that milestoning is effective and that its
working hypotheses can be considered to be satisfied in rMD simulations.
The latter observation is surely non trivial.

In the plot we have represented the unbiased MFPT as a blue line. The
value of 13.3 ± 0.7 ps refers to a refolding from a partially folded initial
configuration, and hence corresponds to the formation of several h-bonds. It
is not too far from the one found in the unbiased simulation in explicit solvent
reported in Ref. [217], in which the timescale for h-bond forming/breaking
is ∼ 10 ps. One has the biggest acceleration using k = 2 kcal/mol, although
this gain consist at most only in a factor equal to 3. The scaling of the MFPT
with k is compatible with a logarithmic one.

Max Flux Path

The MFP was calculated for all the considered 30 values of k. In 25 cases the
path is π12 → π34 → π/α1 → α1 → α2 → α3, while in the remaining 5 cases
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Figure 5.3: Percentage of folded trajectories in the simulation time (∼ 50
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(a) k = 2 kcal/mol. (b) k = 0.04 kcal/mol.

(c) Unbiased simulation.

Figure 5.5: Weighted and directed networks obtained by applying the mile-
stoning algorithm on rMD simulations. The simulated transition describes
refolding of the myosin chain in the case A, i.e., with starting anchor π12.
The nodes of the graphs represent anchors, while the edges represent the
observed connections between visited anchors. The thickness of the arrows
is proportional to the net flux conveyed on that edge. The three networks
describe simulations obtained by using three different values of the biasing
constant k. Although minor differences exist, the networks are remarkably
similar both qualitatively and quantitatively.
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it is π12 → π34 → π/α1 → α1 → α3. In both cases the first transition is fixed
since it is used as emitting milestone. It seems there is no trivial correlation
between the two slightly different paths and the value of k. Hence, we can
say that the MFP is not affected by the rMD. Fig. 5.5 shows the transition
networks calculated for three values of k. It appears that the MFP and the
general structure of the network are highly conserved varying the value of k.

It is interesting now to understand why the MFPT is raising with the
lowering of k. It might be that the bigger k, the bigger the fraction of net
flux that is conveyed by the MFP instead of wandering around thoroughly
the possible states, and/or that the number of reversible transitions between
anchors is suppressed by an increasing k.

Regarding the first hypothesis it can be seen in Fig. 5.6 (upper panel)
that a correlation exists, although a non dramatic one. In fact, the plotted
fraction depends little on the value of k, and taking into account average and
standard deviation, one has 0.61 ± 0.08, which is fully compatible with the
unbiased value 0.59.

Regarding the second hypothesis, we introduced the r parameter, calcu-
lated to have a measure of how much the dynamics is reversible. Given two
anchors i and j and the stationary fluxes connecting them, qi→j and qj→i,
one calculates

r =

∣∣∣∣qi→j − qj→iqi→j + qj→i

∣∣∣∣
that is the absolute value of the ratio of the net stationary flux and the sum
of the (gross) fluxes. This quantity ranges from 0, when the dynamics is
completely reversible, to 1, when it is completely directional.

We calculated the weighted average of the r parameter over the folded
trial trajectories for each k. Since we want this average to reflect the behavior
of the most probable transitions, we used as weights the net stationary fluxes
connecting anchors. In Fig. 5.7 (upper panel) it can be seen that again
a correlation exists. Noteworthy, the value for the unbiased simulation is
relatively high, i.e. ≈ 0.60.

Using instead as weights the sum of the (gross) stationary flux connecting
two anchors, one is actually calculating (indexes range over all anchors)

〈r〉2 =

∑
i 6=j |qi→j − qj→i|∑
i 6=j (qi→j + qj→i)

,

which has the property to range from 0, if all the transitions are completely
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Figure 5.6: Fraction of net flux conveyed by the MFP over total.
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reversible, to 1, if all transitions have only one direction. The results of this
second calculation is shown in Fig. 5.10 (upper panel), and it can be seen
that this is more correlated to k than the previous weighted average.

Entropy

Once we have calculated the stationary probability distribution of each mile-
stone, p, we can calculate a Gibbs entropy of the milestones network, defined
as

S = −
∑
α

pα ln pα

In Fig. 5.8 the scaling of entropy vs. k can be seen. It is logarithmic up
to k = 2× 10−2 kcal/mol, after which it converges to a value slightly smaller
than in the case k = 0, which acts as a sort of upper bound.

5.2.1.2 Case B (almost unfolded initial configuration)

Used procedures are the same compared to the analysis on Case A, and we
will report only results.

Percentage of folded trajectories

Also in this case (Fig. 5.3 green data) for all values of k in the trial trajectories
majority the cracked residue refolds correctly. Again the scaling seems to be
logarithmic and all trajectories fold for k > 2×10−2 kcal/mol. The percentage
for k = 0 is ≈ 79%, which would indicate that the different values for the
two sets of data in the region k < 2 × 10−5 kcal/mol is due to the different
initial configurations used and not to a different behavior of the rMD.

Mean First Passage Time

Also in this case we have an excellent agreement between direct determination
of MFPT and the one using milestoning (Fig. 5.9). Regarding the scaling,
same considerations done for case A hold.
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Figure 5.8: Gibbs entropy of the network (in kB units).
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Max Flux Path

In 11 cases the MFP is 0◦<ψ < 90◦ → none→ α1 → α2 → α3, in 18 0◦ <
ψ < 90◦ → none → α1 → α3 and in only one 0◦ < ψ < 90◦ → none →
α2 → α3. Furthermore, in this case only the anchor 0◦ < ψ < 90◦ is given
as input, while the anchor none is found to be the second one in all the
simulations. So, the MFP is not depending on k and almost constant up to
small variations.

For case B the fraction of net flux conveyed by the MFP scales in a similar
way as for case A (Fig. 5.6). Similar resemblance can be found in the plot
for 〈r〉 calculated in both ways (Fig. 5.7 and Fig. 5.10).

Entropy

A striking similarity is relevant also for the calculation of entropy as a func-
tion of k (Fig. 5.8).

5.2.2 Thermally activated transition

We consider now three configurations in which there is clearly an unfolded
residue (i.e., the initial anchor is ψ > 90◦). For each of them we simulated
98 refolding trajectories varying the value of k, for a total amount of several
thousands of simulated and analyzed trajectories.

The important difference with respect to the previous set of simulations
is represented in Fig. 5.11a, showing the percentage of folded trajectories.
For values k < 2 × 10−2 kcal/mol the number of folded trajectories drops
significantly, reaching 20%, whereas in Fig. 5.3 it is never lower than ≈ 60%.
This means that the MFPT is much higher than in the previous case, and
that the value calculated from this simulations (Fig. 5.11b) is not reliable for
k < 2×10−2 kcal/mol due to the low amount of statistics. It also presumably
means that rMD is not able to significantly enhance the folding efficiency
with this free energy barrier if the strenght of the biasing force is too low.
Nonetheless, we can repeat the analysis performed for the previous initial
configurations, bearing in mind that it will be statistically significant only
for values k > 2× 10−2 kcal/mol .

We tried to perform an refolding unbiased MD simulations, but we did
not see a significant increase in the percentage of the successful refolding
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Figure 5.12: Percentage of the net probability flux conveyed by the MFP.

trajectories in several simulations up to the ns scale. This is presumably
due to the FF we employed, and in particular the implicit solvent, since we
checked that the native structure of the myosin chain is not stable at normal
temperature.

The MFP is again very stable, since in most cases it is ψ > 90◦ →
0◦<ψ < 90◦ → none→ α1 → α2 → α3, with few variations where anchor α2

is not visited. Excluding the different starting anchor, this MFP is identical
to the one studied in marginally thermally activated transition described
in case B. The percentage of net flux carried by the MFP is reported in
Fig. 5.12. Notably, values are not significantly higher than those referred
to the unbiased cases reported in Fig.’s 5.6, where presumably no big free
energy barrier is crossed. Gibbs entropy of the milestones and the weighted
average of the reversibility parameter can be seen in Fig. 5.13. Again, the
statistically meaningful values (those for k > 2 × 10−2 eV) are not far from
values referred to unbiased simulations for case A and B, reported above.
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5.2.3 Discussion

We conducted an extensive study on the refolding of an unfolded or partially
folded residue in a long α−helix by means of the rMD algorithm. In order to
assess the effects of the bias on the dynamics in our trajectories, we varied
the coupling constant, which determines the strength of the biasing force, on
seven orders of magnitude.

The milestoning algorithm yields a quantitative description of the prob-
ability fluxes flowing across a coarse grained representation of the system.
In particular, we can calculate the path connecting the unfolded and folded
configurations, which conveys the highest amount of net probability flux, i.e.,
the MFP. If the net flux in the MFP is an important fraction of the overall
flux, then the MFP represents the most probable mechanism for refolding,
or, as claimed in [216], a reaction coordinate of the system. Notably, in the
system we analyzed the MFP is not depending on k, but is determined by the
FF and the initial configuration. We can thus conclude that, in this system,
the refolding mechanism is not changed by the effect of the rMD algorithm,
but is exclusively determined by the FF. This conclusion is clear in the case
where simulations are started from partially folded and unfolded configura-
tions, where the refolding mechanism is not depending on k and equivalent
in unbiased and biased simulations. Unfortunately, since due to problems
with the FF we did not obtain unbiased simulations starting from fully un-
folded configurations, the same conclusion is not as robust in simulating the
thermally activated process.

The MFPT is the one of the most important observables in kinetics inves-
tigations, and the main advantage of using the rMD biasing scheme is that
simulated folding times are dramatically reduced. As can be seen by the val-
ues of the MFPT in the unbiased simulations of case A and B, simulations
in implicit solvent are extremely fast. Moreover, in these cases the reduction
of the MFPT is weak and amounts at most to a factor 3. The scenario is
rather different in the simulations that start from a fully unfolded configura-
tion. There is a steady acceleration for relatively high values of k, but after a
given threshold, which is k < 2×10−2 kcal/mol, no further gain is measured,
and the estimated MFPT remains constant. At the same time, below the
same threshold the fraction of successfully folded trajectories in the simula-
tion time drops significantly. Both observations can be explained assuming
that rMD stops to efficiently accelerate refolding in the k < 2×10−2 kcal/mol
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regime. It is likely that, in the regime in which rMD works, the MFPT is
accelerated exponentially.

For the sake of understanding why the system is lowering its MFPT as k
is raised, we studied the fraction of net flux conveyed by the MFP over its
total amount and the degree of reversibility of the simulations. Conclusions
can be drawn only qualitatively, but both quantities are weakly dependent on
k, hence it would seem that both are involved in the behavior of kinetics. In
other words, the effect of the bias is to slightly concentrate the probability flux
along the MFP and reduce the reversibility of transitions between anchors.

As a final remark, we found that in the FF and implicit solvent we em-
ployed, conformations displaying π h-bonds are not stable.

5.2.4 Computational details

Simulations were performed using DOLOMIT, the software written by our
lab that calls GROMACS 4.5.2 [167] as an external library to calculate forces.
The all atom force field Amber ff99SB [56] was used, along with the general-
ized Born OBC implicit solvent model [54]. Nominal temperature and time
step of respectively 300 K and 1 fs were used. Frames in the output pdb file
have been saved every 100 fs. Simulation time was 9 hours for the biggest val-
ues of k and 12 for all the others on 48 CPUs, corresponding to ∼ 50 ps. All
the simulations were performed on the Aurora cluster. We gratefully thank
Steven Kreuzer, who provided us with the unfolded myosin conformations
obtained by unbiased MD simulations [217, 218].
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Conclusions

We introduced and validated the DRP method, which is an approximate nu-
merical method that yields an atomistic detailed description of the protein
folding mechanism by employing computer simulations. In order to identify
statistically significant folding paths, provided that the unfolded and folded
configurations are known, the method consists of two steps: first, we can
efficiently produce many microscopic folding trajectories thanks to a biased
sampling protocol; second, we rank them according to their statistical signif-
icance in a unbiased diffusive dynamics.

We investigated a small WW domain, which displays a protein-like folding
widely characterized during the last years. We produced a set of statistically
significant folding trajectories at atomistic resolution by means of the DRP
algorithm in a realistic force field. The analysis of the simulated trajectories
reveals the existence of two dominant folding pathways, defined by the se-
quential formation of two β−hairpins, which are the structural sub-motifs of
the WW domain. Indeed, the most probable mechanism displays a formation
of the first hairpin followed by the folding of the second one, whereas in the
less probable pathway the hairpin formation is reversed. This result is com-
patible with both experimental investigations and unbiased MD simulations
on the millisecond scale, showing spontaneous folding and unfolding. We
then calculated the free energy for the same molecule by employing simpli-
fied native-centric models, which confirm the existence of the same two fold-
ing mechanisms. The free energy landscape remains qualitatively unaltered
by further considering attractive non-native interactions, thus suggesting the
folding mechanisms to be completely determined by native interactions only.
We stress the high computational efficiency of our approach, since producing
the set of statistically significant trajectories took only two days of calcula-
tions on 48 CPU’s.
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As second study we investigated the folding of a protein which displays a
knot in its native conformation by applying the DRP computational scheme.
We obtained the first set of atomistic folding trajectories of a knotted protein
in a realistic force field ever reported in literature. These trajectories permit
to study the concerted conformational changes leading to the formation of
the knot starting from a fully unfolded configuration. By analyzing them,
we showed that folding is rather homogeneous, mostly following just one
pathway defined by a specific sequence of secondary structure formations.
The vast majority of knotting events occur by directly threading the molecule
C-terminus through a native loop, whereas a far less frequent mechanism is
due to slipknotting, i.e., the terminus threading the same loop in a hooked
conformation. Both mechanisms were already reported in several studies
by different authors. A comparison with the folding described in the same
simplified models mentioned above shows that slipknotting is the favored
knotting mechanism when only native interactions are taken into account.
On the other hand, turning non-native interactions on not only strongly
promotes a direct threading of the loop, but also enhances the probability to
correctly form the knot.

Although general conclusions about folding cannot be drawn from few
examples, we can sketch the picture emerging from the two cases studied in
this thesis. In both proteins, folding is a homogeneous process, since most
microscopic trajectories effectively describe a well defined sequence of events.
Non-native attractive interactions play a constructive role in folding to a non-
trivial topology, as in the case of the knotted protein, by facilitating knotting
and determining the specific mechanism. On the contrary, frustration has a
vanishing role in the folding pathways of the simple WW domain.

The trajectories we used are very short and far from equilibrium, nonethe-
less we showed that the folding mechanisms we found are plausible and, in
the case of the WW domain, compatible with experiments and long unbiased
MD simulations. We interpret this as an evidence that the coordinate along
which we bias our simulations, i.e., the contact map distance to the native
conformation, is a satisfactory reaction coordinate for folding. This seems
reasonable, since this coordinate is clearly related to the fraction of native
contacts. A preliminary investigation in a simplified native-centric model
has indeed shown that the mapping is linear [221], but it would be useful to
further look into this point.

The DRP algorithm we discussed in this thesis displays several open issues



149

and important drawbacks, and we will briefly outline the most significant ones
in the following.

When sampling the probability to fold to the native configuration in a
given time, the initial configuration should be selected according to the equi-
librium Boltzmann distribution. However, calculating the latter in the un-
folded basin of a protein is not a trivial task since a huge number of possible
conformations has to be sampled and the result could be biased by inaccura-
cies of the force fields. In our studies, we used initial unfolded configurations
obtained by short MD simulations at high temperature, followed by a relax-
ation at normal conditions. In general, for very short relaxation times, such a
set of configurations is not expected to be distributed according to the correct
equilibrium probability density. A first qualitative assessment of the system-
atic error introduced by this choice of unfolded configurations can be found
in a paper in preparation by Cazzolli et al., who investigated the folding of
immunity proteins IM7 and IM9 within the DRP approach [222]. They em-
ployed denatured initial configurations obtained both by high-temperature
unfolding and by constructing random-coils with knowledge-based param-
eters. The atomistic trajectories connecting these two sets of denatured
configurations to the native one describe qualitatively overlapping folding
mechanisms.

All the results discussed in this thesis were obtained performing MD sim-
ulations in implicit solvent. This is a natural choice, since the stochastic
action formalism, which we employed to rank and select the most significant
trajectories, is based on the assumption that the solvent degrees of freedom
can be averaged out. On the other hand, it is well known that explicit solvent
models represents more accurately the interactions between water and the
protein and returns more reliable simulated time scales. Although the rMD
sampling protocol can be easily used with explicit water, it is not obvious
how to adapt the stochastic action functional to take into account an ex-
plicit solvent representation. Two possible solutions are trying to “remove on
average” (i.e., renormalize) the effect of simulated water from the Onsager-
Machlup action functional, and using a hybrid solvent model with an explicit
description of the solvation shell and an implicit one for the bulk.

The most severe drawback is for sure the loss of physical time durations
measured along the folding trajectories, due to the biasing potential of the
rMD algorithm. Restoring a physical time scale would be a fundamental
improvement of our method, indispensable to obtain more quantitative in-
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formation from the statistically significant folding trajectories. For example,
it would be possible to get insights in folding kinetics, that is one of the most
important observables in experimental studies. Therefore, we have conducted
some attempts to re-weight the biased trajectories and estimate the needed
time rescaling factor. Unfortunately, the problem has proved to be tech-
nically very hard, and although we have found some interesting results, it
stands still unsolved.

In this thesis we used the DRP scheme to specifically investigate the
folding of proteins, but this technique is valid to characterize any kind of
molecular conformational transition. In particular, it can be a valuable choice
to study rare transitions in big molecules, when an unbiased MD simulation
is unfeasible even on the most powerful computers. Following this direction,
Cazzolli et al. have undertaken an atomic-level characterization of a rare
conformational transition in serpins, an enzyme family of great biological
interest [223].

We discussed the first application of the DRP method to realistic models
of proteins and validated the results against more standard and experimen-
tal techniques. Much work has still to be done in order to gain more solid
theoretical control and validation. Nevertheless, we think that these first en-
couraging results suggest that the DRP method can be a valid alternative to
qualitatively characterize protein folding and rare conformational transitions
in biological molecules at a rather low computational cost.



Credits

My daily work and what shown in this thesis would hardly be possible if
I could not take advantage of free and open software, and shared knowl-
edge instruments on the web. Thus, a special thanks and credits go to the
Community and all those diverse people who created, maintain and make
freely available these precious instruments: the molecular visual software
VMD; the Molecular Dynamics simulation suite GROMACS; the wonderful
Python and Scipy programming language. Moreover, this thesis was written
using LYX, which is based on LATEX. Images were processed with Gimp and
Inkscape, and all the job was done on Ubuntu systems. And finally, a sincere
thanks for their great and passionate job to the Wikipedia Community and
the StackOverflow.com people.

151



152 CREDITS



Acknowledgments

My first and most sincere thanks goes with no hesitation to my supervisor,
Pietro. I came to him with a completely different (and maybe useless) back-
ground than biological physics, and he taught me so much in such a short
time. Most importantly, he instilled in me the love for physics and science
“che se magna”, which makes doing research so much funnier. Working with
him is always a sort of thrill, sometimes maybe more than necessary. The
two of us are rather different persons, but we found a good way get along.
I am so grateful for his passion, enthusiasm and great humanity, for they
fostered me as a scientist and human being. He and Lidia are to me a life
example to follow, and I hope to be able to share their friendship also in
future.

I often use to say that a highly developed skill is basically indistinguish-
able from magic. This is exactly what I thought the first time I saw Silvio a
Beccara and Enrico Tagliavini in front a computer. With patience and gen-
erosity, they both taught me how to use a computer not just to read emails
and surf the web. I have learned much more by reverse engineering their
codes than by reading any manual.

I had the luck to collaborate with Prof. Ron Elber and Prof. Cristian
Micheletti, and I want to thank them for being so kind with me and share a
little part of their insights.

Tatjana Skrbic is to me a genuine example of unbounded dedication to
physics. Besides, on a more funny side, she is an example of an apparently
unlimited power to screw up any computer or technological device.

The results presented in this thesis is an inherently group effort, thus I
really want to thank Tatjana, Silvio, Cristian and Pietro for the work done
together and the fun in doing it.

I cannot thank enough my PhD mates, for their infinite patience and

153



154 ACKNOWLEDGMENTS

generosity, and because we had the utmost luck to become real friends. I
will always remember the stimulating discussions on science and life, which
enriched the long hours spent closed in our office. Together with many more
friends and mates met during this three years, we had the funniest days and
wildest nights. I do hope that for all of them the time we spent together has
been as much as happy as for me. Our common path is now over, and we
will soon part and spread over Europe and the World. Our friendship will
change, but no nostalgia will ever be able to suppress the consciousness of
the privilege of having met, and the confidence that whenever we will meet
again, it will be like we never parted.

At last, my endless gratitude goes to Nicolò, who extensively proofread
the draft of the thesis and adjusted my English. And besides, because he
makes my life so much happier. We made it so far, we will make in future.

Meglio aggiungere vita ai giorni che non giorni alla vita.

Rita Levi Montalcini



Bibliography

[1] P. W. Anderson, Science 177, 393 (1972).

[2] Finkelstein and O. B. Ptitsyn, Protein Physics (Academic Press, 2002).

[3] K. Huang, Lectures On Statistical Physics And Protein Folding , illus-
trate ed. (World Scientific Pub Co Inc, 2005).

[4] P. Echenique, Contemporary Physics 48, 53 (2007), arXiv:0705.1845 .

[5] L. Brocchieri and S. Karlin, Nucleic acids research 33, 3390 (2005).

[6] X.-Z. Li, B. Walker, and a. Michaelides, Proceedings of the National
Academy of Sciences 108, 6369 (2011).

[7] R. E. Hubbard and M. K. Haider, eLS 1, 1 (2001).

[8] F. Crick, What Mad Pursuit: A Personal View of Scientific Discovery
(Basic Books, New York, 1988).

[9] F. Crick, Nature 227, 561 (1970).

[10] D. V. Fedyukina and S. Cavagnero, Annual review of biophysics 40,
337 (2011).

[11] H. Krobath, E. I. Shakhnovich, and P. F. N. Faísca, The Journal of
Chemical Physics 138, 215101 (2013).

[12] C. B. Anfinsen, Science (New York, N.Y.) 181, 223 (1973).

[13] A. H. Elcock, Current opinion in structural biology 20, 196 (2010).

[14] F. U. Hartl and M. Hayer-Hartl, Nature structural & molecular biology
16, 574 (2009).

155

http://www.tkm.kit.edu/downloads/TKM1_2011_more_is_different_PWA.pdf
http://www.google.it/books?id=Vbb01Eo8VBAC&redir_esc=y
http://www.worldcat.org/isbn/9812561439
http://dx.doi.org/10.1080/00107510701520843
http://arxiv.org/abs/0705.1845
http://dx.doi.org/10.1093/nar/gki615
http://dx.doi.org/10.1073/pnas.1016653108
http://dx.doi.org/10.1073/pnas.1016653108
http://dx.doi.org/10.1002/9780470015902.a0003011.pub2
http://books.google.it/books/about/What_Mad_Pursuit.html?id=azHIbT79PE8C% &redir_esc=y
http://dx.doi.org/10.1038/227561a0
http://dx.doi.org/10.1146/annurev-biophys-042910-155338
http://dx.doi.org/10.1146/annurev-biophys-042910-155338
http://dx.doi.org/10.1063/1.4808044
http://dx.doi.org/10.1063/1.4808044
http://www.ncbi.nlm.nih.gov/pubmed/4124164
http://dx.doi.org/10.1016/j.sbi.2010.01.008
http://dx.doi.org/10.1038/nsmb.1591
http://dx.doi.org/10.1038/nsmb.1591


156 BIBLIOGRAPHY

[15] A. R. Fersht and V. Daggett, Cell 108, 573 (2002).

[16] M. Karplus, Folding and Design , 69 (1997).

[17] K. a. Dill and J. L. MacCallum, Science (New York, N.Y.) 338, 1042
(2012).

[18] T. R. Sosnick and D. Barrick, Current opinion in structural biology 21,
12 (2011).

[19] Y. Arinaminpathy, E. Khurana, D. M. Engelman, and M. B. Gerstein,
Drug discovery today 14, 1130 (2009).

[20] J. L. MacCallum and D. P. Tieleman, Trends in biochemical sciences
36, 653 (2011).

[21] V. N. Uversky, C. J. Oldfield, and A. K. Dunker, Annual review of
biophysics 37, 215 (2008).

[22] S. E. Jackson and a. R. Fersht, Biochemistry 30, 10428 (1991).

[23] B. Gillespie and K. W. Plaxco, Annual review of biochemistry 73, 837
(2004).

[24] T. Lazaridis and M. Karplus, Biophysical chemistry 100, 367 (2003).

[25] R. A. Goldstein, Proteins 79, 1396 (2011).

[26] J. M. Sanchez-Ruiz, Biophysical chemistry 148, 1 (2010).

[27] R. B. Dyer, Current opinion in structural biology 17, 38 (2007).

[28] K. W. Plaxco, K. T. Simons, and D. Baker, Journal of molecular
biology 277, 985 (1998).

[29] K. W. Plaxco, K. T. Simons, I. Ruczinski, and D. Baker, Biochemistry
39, 11177 (2000).

[30] V. Daggett and A. Fersht, Nature reviews. Molecular cell biology 4,
497 (2003).

[31] C. Levinthal, in Mössbaun Spectroscopy in Biological Systems Proceed-
ings , Vol. 24 (1969) pp. 22–24.

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2040886&tool=pmcentrez&rendertype=abstract
http://www.sciencedirect.com/science/article/pii/S1359027897000679
http://dx.doi.org/10.1126/science.1219021
http://dx.doi.org/10.1126/science.1219021
http://dx.doi.org/10.1016/j.sbi.2010.11.002
http://dx.doi.org/10.1016/j.sbi.2010.11.002
http://dx.doi.org/10.1016/j.drudis.2009.08.006
http://dx.doi.org/10.1016/j.tibs.2011.08.003
http://dx.doi.org/10.1016/j.tibs.2011.08.003
http://dx.doi.org/10.1146/annurev.biophys.37.032807.125924
http://dx.doi.org/10.1146/annurev.biophys.37.032807.125924
http://www.ncbi.nlm.nih.gov/pubmed/1931967
http://dx.doi.org/10.1146/annurev.biochem.73.011303.073904
http://dx.doi.org/10.1146/annurev.biochem.73.011303.073904
http://www.ncbi.nlm.nih.gov/pubmed/12646378
http://dx.doi.org/10.1002/prot.22964
http://dx.doi.org/10.1016/j.bpc.2010.02.004
http://dx.doi.org/10.1016/j.sbi.2007.01.001
http://dx.doi.org/10.1006/jmbi.1998.1645
http://dx.doi.org/10.1006/jmbi.1998.1645
http://dx.doi.org/10.1021/bi000200n
http://dx.doi.org/10.1021/bi000200n
http://dx.doi.org/10.1038/nrm1126
http://dx.doi.org/10.1038/nrm1126
http://www.cc.gatech.edu/~turk/bio_sim/articles/proteins_levinthal_1969.pdf
http://www.cc.gatech.edu/~turk/bio_sim/articles/proteins_levinthal_1969.pdf


BIBLIOGRAPHY 157

[32] R. Zwanzig, A. Szabo, and B. Bagchi, Proceedings of the National
Academy of Sciences 89, 20 (1992).

[33] R. Zwanzig, Proceedings of the National Academy of Sciences of the
United States of America 92, 9801 (1995).

[34] P. G. Wolynes, J. Onuchic, and D. Thirumalai, Science 267, 1619
(1995).

[35] J. D. Bryngelson and P. G. Wolynes, The Journal of Physical Chemistry
93, 6902 (1989).

[36] C. Levinthal, Journal de Chimie Physique et de Physico-Chimie Bi-
ologique 65, 44 (1968).

[37] J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G. Wolynes,
Proteins: Structure, Function, and Bioinformatics 21, 53 (1994),
arXiv:9411008 [chem-ph] .

[38] J. N. Onuchic, Z. Luthey-Schulten, and P. G. Wolynes, Annual review
of physical chemistry 48, 545 (1997).

[39] S. S. Plotkin and J. N. Onuchic, Quarterly reviews of biophysics , Vol. 35
(2002) pp. 205–86.

[40] J. N. Onuchic and P. G. Wolynes, Current opinion in structural biology
14, 70 (2004).

[41] M. Mezard, G. Parisi, M. A. Virasoro, and D. J. Thouless, Physics
Today 41, 109 (1988).

[42] K. H. Fischer and J. A. Hertz, Spin Glasses (Cambridge University
Press, Cambridge, 1991).

[43] P. W. Anderson, Journal of the Less Common Metals 62, 291 (1978).

[44] E. Shakhnovich, G. Farztdinov, A. Gutin, and M. Karplus, Physical
Review Letters 67, 1665 (1991).

[45] J. Miller, C. Zeng, N. S. Wingreen, and C. Tang, Proteins 47, 506
(2002).

http://dx.doi.org/10.1073/pnas.89.1.20
http://dx.doi.org/10.1073/pnas.89.1.20
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=40890&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=40890&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1126/science.7886447
http://dx.doi.org/10.1126/science.7886447
http://dx.doi.org/10.1021/j100356a007
http://dx.doi.org/10.1021/j100356a007
http://www.biochem.wisc.edu/courses/biochem704/Reading/Levinthal1968.pdf
http://www.biochem.wisc.edu/courses/biochem704/Reading/Levinthal1968.pdf
http://arxiv.org/abs/chem-ph/9411008
http://arxiv.org/abs/9411008
http://dx.doi.org/10.1146/annurev.physchem.48.1.545
http://dx.doi.org/10.1146/annurev.physchem.48.1.545
http://www.ncbi.nlm.nih.gov/pubmed/12599750 http://www.ncbi.nlm.nih.gov/pubmed/12197302
http://dx.doi.org/10.1016/j.sbi.2004.01.009
http://dx.doi.org/10.1016/j.sbi.2004.01.009
http://dx.doi.org/10.1063/1.2811676
http://dx.doi.org/10.1063/1.2811676
http://dx.doi.org/10.1017/CBO9780511628771
http://dx.doi.org/10.1016/0022-5088(78)90040-1
http://dx.doi.org/10.1103/PhysRevLett.67.1665
http://dx.doi.org/10.1103/PhysRevLett.67.1665
http://dx.doi.org/ 10.1002/prot.10107
http://dx.doi.org/ 10.1002/prot.10107


158 BIBLIOGRAPHY

[46] N. Go and H. Taketomi, Proceedings of the National Academy of Sci-
ences of the United States of America 75, 559 (1978).

[47] K. A. Dill and H. S. Chan, Nature Structural Biology 4, 10 (1997).

[48] M. Karplus, Nature chemical biology 7, 401 (2011).

[49] D. J. Bicout and A. Szabo, Protein science : a publication of the Protein
Society 9, 452 (2000).

[50] T. Lazaridis and M. Karplus, Science 278, 1928 (1997).

[51] P. H. Hünenberger, Advanced Computer Simulation , 105 (2005).

[52] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and
M. L. Klein, The Journal of Chemical Physics 79, 926 (1983).

[53] M. Feig and C. L. Brooks, Current opinion in structural biology 14,
217 (2004).

[54] A. Onufriev, D. Bashford, and D. A. Case, Proteins 55, 383 (2004).

[55] A. D. Mackerell, Journal of computational chemistry 25, 1584 (2004).

[56] K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis,
R. O. Dror, and D. E. Shaw, Proteins 78, 1950 (2010).

[57] R. B. Best and J. Mittal, The journal of physical chemistry. B 114,
8790 (2010).

[58] K. Lindorff-Larsen, P. Maragakis, S. Piana, M. P. Eastwood, R. O.
Dror, and D. E. Shaw, PloS one 7, e32131 (2012).

[59] S. Piana, K. Lindorff-Larsen, and D. E. Shaw, Biophysical journal
100, L47 (2011).

[60] P. L. Freddolino, C. B. Harrison, Y. Liu, and K. Schulten, Nature
physics 6, 751 (2010).

[61] C. Clementi, Current opinion in structural biology 18, 10 (2008).

[62] H. S. Chan, Z. Zhang, S. Wallin, and Z. Liu, Annual review of physical
chemistry 62, 301 (2011).

http://dx.doi.org/10.1073/pnas.75.2.559
http://dx.doi.org/10.1073/pnas.75.2.559
http://dx.doi.org/10.1038/nsb0197-10
http://dx.doi.org/10.1038/nchembio.565
http://dx.doi.org/10.1110/ps.9.3.452
http://dx.doi.org/10.1110/ps.9.3.452
http://dx.doi.org/10.1126/science.278.5345.1928
http://dx.doi.org/10.1007/b99427
http://dx.doi.org/10.1063/1.445869
http://dx.doi.org/10.1016/j.sbi.2004.03.009
http://dx.doi.org/10.1016/j.sbi.2004.03.009
http://dx.doi.org/10.1002/prot.20033
http://dx.doi.org/10.1002/jcc.20082
http://dx.doi.org/ 10.1002/prot.22711
http://dx.doi.org/10.1021/jp102575b
http://dx.doi.org/10.1021/jp102575b
http://dx.doi.org/ 10.1371/journal.pone.0032131
http://dx.doi.org/10.1016/j.bpj.2011.03.051
http://dx.doi.org/10.1016/j.bpj.2011.03.051
http://dx.doi.org/10.1038/nphys1713
http://dx.doi.org/10.1038/nphys1713
http://dx.doi.org/10.1016/j.sbi.2007.10.005
http://dx.doi.org/ 10.1146/annurev-physchem-032210-103405
http://dx.doi.org/ 10.1146/annurev-physchem-032210-103405


BIBLIOGRAPHY 159

[63] S. Takada, Current opinion in structural biology 22, 130 (2012).

[64] V. G. Contessoto, D. T. Lima, R. J. Oliveira, A. T. Bruni, J. Chahine,
and V. B. P. Leite, Proteins 81, 1727 (2013).

[65] A. N. Adhikari, K. F. Freed, and T. R. Sosnick, Physical Review
Letters 111, 028103 (2013).

[66] G. E. Moore, Proceedings of the IEEE 86, 82 (1998).

[67] M. Vendruscolo and C. M. Dobson, Current biology : CB 21, R68
(2011).

[68] J. A. McCammon, B. R. Gelin, and M. Karplus, Nature 267, 585
(1977).

[69] D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. O. Dror,
M. P. Eastwood, J. a. Bank, J. M. Jumper, J. K. Salmon, Y. Shan,
and W. Wriggers, Science (New York, N.Y.) 330, 341 (2010).

[70] Y. Duan and P. a. Kollman, Science 282, 740 (1998).

[71] R. B. Best, Current opinion in structural biology 22, 52 (2012).

[72] R. O. Dror, R. M. Dirks, J. P. Grossman, H. Xu, and D. E. Shaw,
Annual review of biophysics 41, 429 (2012).

[73] D. E. Shaw, K. J. Bowers, E. Chow, M. P. Eastwood, D. J. Ierardi,
J. L. Klepeis, J. S. Kuskin, R. H. Larson, K. Lindorff-Larsen, P. Mara-
gakis, M. A. Moraes, R. O. Dror, S. Piana, Y. Shan, B. Towles, J. K.
Salmon, J. P. Grossman, K. M. Mackenzie, J. A. Bank, C. Young,
M. M. Deneroff, and B. Batson, in Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis - SC
’09 , c (ACM Press, New York, New York, USA, 2009) p. 1.

[74] T. J. Lane, D. Shukla, K. a. Beauchamp, and V. S. Pande, Current
Opinion in Structural Biology , 1 (2012).

[75] K. Lindorff-Larsen, S. Piana, R. O. Dror, and D. E. Shaw, Science
(New York, N.Y.) 334, 517 (2011).

http://dx.doi.org/10.1016/j.sbi.2012.01.010
http://dx.doi.org/ 10.1002/prot.24309
http://dx.doi.org/10.1103/PhysRevLett.111.028103
http://dx.doi.org/10.1103/PhysRevLett.111.028103
http://dx.doi.org/10.1109/JPROC.1998.658762
http://dx.doi.org/10.1016/j.cub.2010.11.062
http://dx.doi.org/10.1016/j.cub.2010.11.062
http://dx.doi.org/10.1038/267585a0
http://dx.doi.org/10.1038/267585a0
http://dx.doi.org/ 10.1126/science.1187409
http://dx.doi.org/10.1126/science.282.5389.740
http://dx.doi.org/10.1016/j.sbi.2011.12.001
http://dx.doi.org/ 10.1146/annurev-biophys-042910-155245
http://dx.doi.org/10.1145/1654059.1654126
http://dx.doi.org/10.1145/1654059.1654126
http://dx.doi.org/10.1145/1654059.1654126
http://dx.doi.org/10.1016/j.sbi.2012.11.002
http://dx.doi.org/10.1016/j.sbi.2012.11.002
http://dx.doi.org/10.1126/science.1208351
http://dx.doi.org/10.1126/science.1208351


160 BIBLIOGRAPHY

[76] K. Lindorff-Larsen, N. Trbovic, P. Maragakis, S. Piana, and D. E.
Shaw, Journal of the American Chemical Society 134, 3787 (2012).

[77] S. Piana, K. Lindorff-Larsen, and D. E. Shaw, Proceedings of the
National Academy of Sciences of the United States of America 109,
17845 (2012).

[78] S. Piana, K. Lindorff-Larsen, and D. E. Shaw, Proceedings of the
National Academy of Sciences of the United States of America 110,
5915 (2013).

[79] S. Piana, K. Lindorff-Larsen, and D. E. Shaw, The journal of physical
chemistry. B (2013), 10.1021/jp4020993.

[80] R. B. Best and J. Mittal, Proteins 79, 1318 (2011).

[81] G. R. Bowman, V. a. Voelz, and V. S. Pande, Current opinion in
structural biology 21, 4 (2011).

[82] A. a. Nickson, B. G. Wensley, and J. Clarke, Current opinion in struc-
tural biology 23, 66 (2013).

[83] E. Haglund, M. O. Lindberg, and M. Oliveberg, The Journal of bio-
logical chemistry 283, 27904 (2008).

[84] B. G. Wensley, S. Batey, F. a. C. Bone, Z. M. Chan, N. R. Tumelty,
A. Steward, L. G. Kwa, A. Borgia, and J. Clarke, Nature 463, 685
(2010).

[85] E. Paci, M. Vendruscolo, and M. Karplus, Proteins: Structure, Func-
tion, and Bioinformatics 47, 379 (2002).

[86] A. R. Viguera, C. Vega, and L. Serrano, Proceedings of the National
Academy of Sciences of the United States of America 99, 5349 (2002).

[87] C. Clementi and S. S. Plotkin, Protein Science 13, 1750 (2004).

[88] A. Zarrine-Afsar, S. Wallin, a. M. Neculai, P. Neudecker, P. L. Howell,
A. R. Davidson, and H. S. Chan, Proceedings of the National Academy
of Sciences of the United States of America 105, 9999 (2008).

[89] A. Azia and Y. Levy, Journal of molecular biology 393, 527 (2009).

http://dx.doi.org/ 10.1021/ja209931w
http://dx.doi.org/10.1073/pnas.1201811109
http://dx.doi.org/10.1073/pnas.1201811109
http://dx.doi.org/10.1073/pnas.1201811109
http://dx.doi.org/10.1073/pnas.1218321110
http://dx.doi.org/10.1073/pnas.1218321110
http://dx.doi.org/10.1073/pnas.1218321110
http://dx.doi.org/10.1021/jp4020993
http://dx.doi.org/10.1021/jp4020993
http://dx.doi.org/10.1002/prot.22972
http://dx.doi.org/10.1016/j.sbi.2010.10.006
http://dx.doi.org/10.1016/j.sbi.2010.10.006
http://dx.doi.org/10.1016/j.sbi.2012.11.009
http://dx.doi.org/10.1016/j.sbi.2012.11.009
http://dx.doi.org/10.1074/jbc.M801776200
http://dx.doi.org/10.1074/jbc.M801776200
http://dx.doi.org/10.1038/nature08743
http://dx.doi.org/10.1038/nature08743
http://dx.doi.org/10.1002/prot.10089
http://dx.doi.org/10.1002/prot.10089
http://dx.doi.org/10.1073/pnas.072387799
http://dx.doi.org/10.1073/pnas.072387799
http://dx.doi.org/10.1110/ps.03580104.Theoretical
http://dx.doi.org/ 10.1073/pnas.0801874105
http://dx.doi.org/ 10.1073/pnas.0801874105
http://dx.doi.org/10.1016/j.jmb.2009.08.010


BIBLIOGRAPHY 161

[90] B. C. Gin, J. P. Garrahan, and P. L. Geissler, Journal of molecular
biology 392, 1303 (2009).

[91] P. F. N. Faísca, A. Nunes, R. D. M. Travasso, and E. I. Shakhnovich,
Protein science : a publication of the Protein Society 19, 2196 (2010).

[92] R. J. Oliveira, P. C. Whitford, J. Chahine, J. Wang, J. N. Onuchic,
and V. B. P. Leite, Biophysical journal 99, 600 (2010).

[93] R. B. Best, G. Hummer, and W. A. Eaton, Proceedings of the Na-
tional Academy of Sciences of the United States of America 110, 17874
(2013).

[94] S. S. Plotkin, 345, 337 (2001).

[95] R. B. Best and G. Hummer, Proceedings of the National Academy of
Sciences of the United States of America 107, 1088 (2010).

[96] Z. Zhang and H. S. Chan, Proceedings of the National Academy of
Sciences of the United States of America 107, 2920 (2010).

[97] B. G. Wensley, L. G. Kwa, S. L. Shammas, J. M. Rogers, S. Brown-
ing, Z. Yang, and J. Clarke, Proceedings of the National Academy of
Sciences of the United States of America 109, 17795 (2012).

[98] B. G. Wensley, L. G. Kwa, S. L. Shammas, J. M. Rogers, and J. Clarke,
Journal of molecular biology 423, 273 (2012).

[99] A. Borgia, B. G. Wensley, A. Soranno, D. Nettels, M. B. Borgia,
A. Hoffmann, S. H. Pfeil, E. a. Lipman, J. Clarke, and B. Schuler,
Nature communications 3, 1195 (2012).

[100] R. B. Best, The journal of physical chemistry. B 117, 13235 (2013).

[101] R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University
Press, USA, 2001).

[102] D. Tong, “Lectures on Theoretical Physics,” .

[103] M. Chaichian and A. Demichev, Path Integrals in Physics: Volume
I Stochastic Processes and Quantum Mechanics , Institute of physics
series in mathematical and computational physics (Taylor & Francis,
2001).

http://dx.doi.org/10.1016/j.jmb.2009.06.058
http://dx.doi.org/10.1016/j.jmb.2009.06.058
http://dx.doi.org/10.1002/pro.498
http://dx.doi.org/ 10.1016/j.bpj.2010.04.041
http://dx.doi.org/10.1073/pnas.1311599110
http://dx.doi.org/10.1073/pnas.1311599110
http://dx.doi.org/10.1073/pnas.1311599110
http://dx.doi.org/10.1002/prot.1154
http://dx.doi.org/10.1073/pnas.0910390107
http://dx.doi.org/10.1073/pnas.0910390107
http://dx.doi.org/10.1073/pnas.0911844107
http://dx.doi.org/10.1073/pnas.0911844107
http://dx.doi.org/ 10.1073/pnas.1201793109
http://dx.doi.org/ 10.1073/pnas.1201793109
http://dx.doi.org/ 10.1016/j.jmb.2012.08.003
http://dx.doi.org/ 10.1038/ncomms2204
http://dx.doi.org/10.1021/jp403305a
http://www.worldcat.org/isbn/0195140184
http://www.damtp.cam.ac.uk/user/dt281/teaching.html
http://books.google.it/books?id=-XDP-8mrmQYC
http://books.google.it/books?id=-XDP-8mrmQYC


162 BIBLIOGRAPHY

[104] L. Onsager and S. Machlup, Physical Review 91, 1505 (1953).

[105] A. B. Adib, The journal of physical chemistry. B 112, 5910 (2008).

[106] R. B. Best and G. Hummer, Proceedings of the National Academy of
Sciences of the United States of America 102, 6732 (2005).

[107] R. B. Best and G. Hummer, Physical Review Letters 96, 228104 (2006).

[108] R. B. Best and G. Hummer, Physical chemistry chemical physics :
PCCP 13, 16902 (2011).

[109] H. A. Kramers, Physica 7, 284 (1940).

[110] P. Hänggi, P. Talkner, and M. Borkovec, Reviews of Modern Physics
62 (1990).

[111] H. S. Chung, K. McHale, J. M. Louis, and W. a. Eaton, Science 335,
981 (2012).

[112] A. Szabo, K. Schulten, and Z. Schulten, The Journal of Chemical
Physics , 4350 (1980).

[113] H. S. Chung and W. a. Eaton, Nature (2013), 10.1038/nature12649.

[114] C. Hartmann, R. Banisch, M. Sarich, T. Badowski, K.-z. Zentrum, and
C. Schütte, Submitted to Entropy , 1 (2013).

[115] G. Mazzola, S. a Beccara, P. Faccioli, and H. Orland, J Chem Phys
134, 164109 (2011).

[116] S. a Beccara, G. Garberoglio, P. Faccioli, and F. Pederiva, The Journal
of chemical physics 132, 111102 (2010).

[117] S. a Beccara, P. Faccioli, M. Sega, F. Pederiva, G. Garberoglio, and
H. Orland, The Journal of chemical physics 134, 024501 (2011).

[118] E. Autieri, P. Faccioli, M. Sega, F. Pederiva, and H. Orland, The
Journal of chemical physics 130, 064106 (2009).

[119] O. Corradini, P. Faccioli, and H. Orland, Phys Rev E Stat Nonlin Soft
Matter Phys 80, 61112 (2009).

http://dx.doi.org/10.1103/PhysRev.91.1505
http://dx.doi.org/10.1021/jp0751458
http://dx.doi.org/10.1073/pnas.0408098102
http://dx.doi.org/10.1073/pnas.0408098102
http://dx.doi.org/10.1103/PhysRevLett.96.228104
http://dx.doi.org/10.1039/c1cp21541h
http://dx.doi.org/10.1039/c1cp21541h
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
http://rmp.aps.org/abstract/RMP/v62/i2/p251_1
http://rmp.aps.org/abstract/RMP/v62/i2/p251_1
http://dx.doi.org/10.1126/science.1215768
http://dx.doi.org/10.1126/science.1215768
http://link.aip.org/link/?JCPSA6/72/4350/1
http://link.aip.org/link/?JCPSA6/72/4350/1
http://dx.doi.org/10.1038/nature12649
http://publications.mi.fu-berlin.de/1307/2/RareEvent220713.pdf
http://dx.doi.org/10.1063/1.3581892
http://dx.doi.org/10.1063/1.3581892
http://dx.doi.org/10.1063/1.3355866
http://dx.doi.org/10.1063/1.3355866
http://dx.doi.org/ 10.1063/1.3514149
http://dx.doi.org/ 10.1063/1.3074271
http://dx.doi.org/ 10.1063/1.3074271
http://dx.doi.org/10.1103/PhysRevE.80.061112
http://dx.doi.org/10.1103/PhysRevE.80.061112


BIBLIOGRAPHY 163

[120] P. Faccioli, M. Sega, F. Pederiva, and H. Orland, Phys Rev Lett 97,
108101 (2006).

[121] M. Sega, P. Faccioli, F. Pederiva, G. Garberoglio, and H. Orland, Phys
Rev Lett 99, 118102 (2007).

[122] P. Faccioli, The journal of physical chemistry. B 112, 13756 (2008).

[123] P. Faccioli, The Journal of chemical physics 133, 164106 (2010).

[124] P. Faccioli, A. Lonardi, and H. Orland, The Journal of chemical physics
133, 045104 (2010).

[125] P. Faccioli, Journal of Physics: Conference Series 336, 012030 (2011),
arXiv:1108.5074 .

[126] R. Elber and D. Shalloway, The Journal of Chemical Physics 112, 5539
(2000).

[127] A. E. Cárdenas and R. Elber, Proteins 51, 245 (2003).

[128] A. Ghosh, R. Elber, and H. a. Scheraga, Proceedings of the National
Academy of Sciences of the United States of America 99, 10394 (2002).

[129] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch,
Physical Review Letters 97, 170201 (2006).

[130] M. Marchi and P. Ballone, The Journal of chemical physics 110, 3697
(1999).

[131] E. Paci and M. Karplus, J Mol Biol 288, 441 (1999).

[132] E. Paci and M. Karplus, Proceedings of the National Academy of Sci-
ences of the United States of America 97, 6521 (2000).

[133] M. Bonomi, F. L. Gervasio, G. Tiana, D. Provasi, R. a. Broglia, and
M. Parrinello, Biophysical journal 93, 2813 (2007).

[134] C. Camilloni, R. a. Broglia, and G. Tiana, The Journal of chemical
physics 134, 045105 (2011).

http://dx.doi.org/10.1103/PhysRevLett.97.108101
http://dx.doi.org/10.1103/PhysRevLett.97.108101
http://dx.doi.org/ 10.1103/PhysRevLett.99.118102
http://dx.doi.org/ 10.1103/PhysRevLett.99.118102
http://dx.doi.org/10.1021/jp805762d
http://dx.doi.org/10.1063/1.3493459
http://dx.doi.org/10.1063/1.3459097
http://dx.doi.org/10.1063/1.3459097
http://dx.doi.org/10.1088/1742-6596/336/1/012030
http://arxiv.org/abs/1108.5074
http://dx.doi.org/10.1063/1.481131
http://dx.doi.org/10.1063/1.481131
http://dx.doi.org/10.1002/prot.10349
http://dx.doi.org/10.1073/pnas.142288099
http://dx.doi.org/10.1073/pnas.142288099
http://dx.doi.org/ 10.1103/PhysRevLett.97.170201
http://dx.doi.org/10.1063/1.478259
http://dx.doi.org/10.1063/1.478259
http://dx.doi.org/10.1006/jmbi.1999.2670
http://dx.doi.org/10.1073/pnas.100124597
http://dx.doi.org/10.1073/pnas.100124597
http://dx.doi.org/ 10.1529/biophysj.107.106369
http://dx.doi.org/10.1063/1.3523345
http://dx.doi.org/10.1063/1.3523345


164 BIBLIOGRAPHY

[135] P. O. Heidarsson, I. Valpapuram, C. Camilloni, A. Imparato, G. Tiana,
F. M. Poulsen, B. B. Kragelund, and C. Cecconi, Journal of the Amer-
ican Chemical Society 134, 17068 (2012).

[136] G. Tiana and C. Camilloni, The Journal of chemical physics 137,
235101 (2012).

[137] B. Isralewitz, M. Gao, and K. Schulten, Curr Opin Struct Biol 11, 224
(2001).

[138] S. A Beccara, T. Škrbić, R. Covino, and P. Faccioli, Proceedings of
the National Academy of Sciences of the United States of America 109,
2330 (2012).

[139] F. Liu, D. Du, A. a. Fuller, J. E. Davoren, P. Wipf, J. W. Kelly, and
M. Gruebele, Proceedings of the National Academy of Sciences of the
United States of America 105, 2369 (2008).

[140] M. Jäger, H. Nguyen, J. C. Crane, J. W. Kelly, and M. Gruebele,
Journal of molecular biology 311, 373 (2001).

[141] F. Liu, M. Nakaema, and M. Gruebele, The Journal of chemical physics
131, 195101 (2009).

[142] D. L. Ensign and V. S. Pande, Biophysical journal 96, L53 (2009).

[143] P. L. Freddolino, F. Liu, M. Gruebele, and K. Schulten, Biophysical
journal 94, L75 (2008).

[144] J. Juraszek and P. G. Bolhuis, Biophysical journal 98, 646 (2010).

[145] J. Karanicolas and C. L. Brooks, Proceedings of the National Academy
of Sciences of the United States of America 100, 3954 (2003).

[146] E. H. Kellogg, O. F. Lange, and D. Baker, The journal of physical
chemistry. B 116, 11405 (2012).

[147] T. J. Lane, G. R. Bowman, K. Beauchamp, V. A. Voelz, and V. S.
Pande, Journal of the American Chemical Society 133, 18413 (2011).

[148] G. G. Maisuradze, R. Zhou, A. Liwo, Y. Xiao, and H. a. Scheraga,
Journal of molecular biology 420, 350 (2012).

http://dx.doi.org/ 10.1021/ja305862m
http://dx.doi.org/ 10.1021/ja305862m
http://dx.doi.org/10.1063/1.4769085
http://dx.doi.org/10.1063/1.4769085
http://www.hubmed.org/display.cgi?uids=11297932 http://www.ncbi.nlm.nih.gov/pubmed/11297932
http://www.hubmed.org/display.cgi?uids=11297932 http://www.ncbi.nlm.nih.gov/pubmed/11297932
http://dx.doi.org/10.1073/pnas.1111796109
http://dx.doi.org/10.1073/pnas.1111796109
http://dx.doi.org/10.1073/pnas.1111796109
http://dx.doi.org/10.1073/pnas.0711908105
http://dx.doi.org/10.1073/pnas.0711908105
http://dx.doi.org/ 10.1006/jmbi.2001.4873
http://dx.doi.org/10.1063/1.3262489
http://dx.doi.org/10.1063/1.3262489
http://dx.doi.org/10.1016/j.bpj.2009.01.024
http://dx.doi.org/10.1529/biophysj.108.131565
http://dx.doi.org/10.1529/biophysj.108.131565
http://dx.doi.org/10.1016/j.bpj.2009.10.039
http://dx.doi.org/10.1073/pnas.0731771100
http://dx.doi.org/10.1073/pnas.0731771100
http://dx.doi.org/10.1021/jp3044303
http://dx.doi.org/10.1021/jp3044303
http://dx.doi.org/ 10.1021/ja207470h
http://dx.doi.org/ 10.1016/j.jmb.2012.04.027


BIBLIOGRAPHY 165

[149] F. Noé, C. Schütte, E. Vanden-Eijnden, L. Reich, and T. R. Weikl,
Proceedings of the National Academy of Sciences of the United States
of America 106, 19011 (2009).

[150] S. Piana, K. Sarkar, K. Lindorff-Larsen, M. Guo, M. Gruebele, and
D. E. Shaw, Journal of molecular biology 405, 43 (2011).

[151] T. R. Weikl, Biophysical journal 94, 929 (2008).

[152] J. Xu, L. Huang, and E. I. Shakhnovich, Proteins 79, 1704 (2011).

[153] S. V. Krivov, The journal of physical chemistry. B , 6 (2011).

[154] G. Berezovska, D. Prada-Gracia, and F. Rao, The Journal of chemical
physics 139, 035102 (2013).

[155] P. Ferrara and A. Caflisch, Proceedings of the National Academy of
Sciences of the United States of America 97, 10780 (2000).

[156] J. Karanicolas and C. L. Brooks, Proc Natl Acad Sci U S A 101, 3432
(2004).

[157] D. K. Klimov and D. Thirumalai, Journal of molecular biology 353,
1171 (2005).

[158] J. Karanicolas, C. L. Brooks, and C. L. Brooks III, Protein Sci 11,
2351 (2002).

[159] Y. C. Kim and G. Hummer, Journal of molecular biology 375, 1416
(2008).

[160] A. Matouschek, J. T. Kellis, L. Serrano, and A. R. Fersht, Nature
(1989).

[161] A. Fersht, Structure and mechanism in protein science: a guide to
enzyme catalysis and protein folding (Macmillan, 1999).

[162] C. Merlo, K. a. Dill, and T. R. Weikl, Proceedings of the National
Academy of Sciences of the United States of America 102, 10171
(2005).

[163] T. R. Weikl, Communications in Computational Physics 7, 283 (2009).

http://dx.doi.org/10.1073/pnas.0905466106
http://dx.doi.org/10.1073/pnas.0905466106
http://dx.doi.org/ 10.1016/j.jmb.2010.10.023
http://dx.doi.org/10.1529/biophysj.107.109868
http://dx.doi.org/10.1002/prot.22993
http://dx.doi.org/10.1021/jp208585r
http://dx.doi.org/10.1063/1.4812837
http://dx.doi.org/10.1063/1.4812837
http://dx.doi.org/10.1073/pnas.190324897
http://dx.doi.org/10.1073/pnas.190324897
http://dx.doi.org/10.1073/pnas.0304825101
http://dx.doi.org/10.1073/pnas.0304825101
http://dx.doi.org/10.1016/j.jmb.2005.09.029
http://dx.doi.org/10.1016/j.jmb.2005.09.029
http://dx.doi.org/10.1110/ps.0205402
http://dx.doi.org/10.1110/ps.0205402
http://dx.doi.org/10.1016/j.jmb.2007.11.063
http://dx.doi.org/10.1016/j.jmb.2007.11.063
http://www.haverford.edu/biology/Courses/Bio303/rf_bio303_fersht.pdf
http://www.haverford.edu/biology/Courses/Bio303/rf_bio303_fersht.pdf
http://books.google.it/books/about/Structure_and_Mechanism_in_Protein_Scien.html?id=QdpZz_ahA5UC&redir_esc=y
http://books.google.it/books/about/Structure_and_Mechanism_in_Protein_Scien.html?id=QdpZz_ahA5UC&redir_esc=y
http://dx.doi.org/10.1073/pnas.0504171102
http://dx.doi.org/10.1073/pnas.0504171102
http://dx.doi.org/10.1073/pnas.0504171102
http://dx.doi.org/10.4208/cicp.2009.08.202


166 BIBLIOGRAPHY

[164] F. Rao, G. Settanni, E. Guarnera, and A. Caflisch, The Journal of
chemical physics 122, 184901 (2005).

[165] G. Settanni, F. Rao, and A. Caflisch, Proceedings of the National
Academy of Sciences of the United States of America 102, 628 (2005).

[166] W. Han and K. Schulten, The journal of physical chemistry. B (2013),
10.1021/jp404331d.

[167] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, Journal of
Chemical Theory and Computation 4, 435 (2008).

[168] T. Škrbić, C. Micheletti, and P. Faccioli, PLoS computational biology
8, e1002504 (2012).

[169] S. a Beccara, T. Škrbić, R. Covino, C. Micheletti, and P. Faccioli,
PLoS Computational Biology 9, e1003002 (2013).

[170] R. Covino, T. Škrbić, S. a Beccara, P. Faccioli, and C. Micheletti,
Biomolecules 4, 1 (2013).

[171] L. Tubiana, E. Orlandini, and C. Micheletti, Physical Review Letters
107, 188302 (2011).

[172] J. I. Sułkowska, P. Sułkowski, and J. Onuchic, Proceedings of the
National Academy of Sciences of the United States of America 106,
3119 (2009).

[173] N. P. King, A. W. Jacobitz, M. R. Sawaya, L. Goldschmidt, and T. O.
Yeates, Proceedings of the National Academy of Sciences of the United
States of America 107, 20732 (2010).

[174] M. L. Mansfield, Nature Structural Biology 1, 213 (1994).

[175] W. R. Taylor, Nature 406, 916 (2000).

[176] P. Virnau, L. a. Mirny, and M. Kardar, PLoS Comput Biol 2, e122.
DOI: 10.1371/journal.pcbi.0020122 (2006).

[177] R. C. Lua and A. Y. Grosberg, PLoS computational biology 2, e45
(2006).

http://dx.doi.org/10.1063/1.1893753
http://dx.doi.org/10.1063/1.1893753
http://dx.doi.org/10.1073/pnas.0406754102
http://dx.doi.org/10.1073/pnas.0406754102
http://dx.doi.org/10.1021/jp404331d
http://dx.doi.org/10.1021/jp404331d
http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/10.1371/journal.pcbi.1002504
http://dx.doi.org/10.1371/journal.pcbi.1002504
http://dx.doi.org/10.1371/journal.pcbi.1003002
http://dx.doi.org/10.3390/biom4010001
http://dx.doi.org/10.1103/PhysRevLett.107.188302
http://dx.doi.org/10.1103/PhysRevLett.107.188302
http://dx.doi.org/10.1073/pnas.0811147106
http://dx.doi.org/10.1073/pnas.0811147106
http://dx.doi.org/10.1073/pnas.0811147106
http://dx.doi.org/ 10.1073/pnas.1007602107
http://dx.doi.org/ 10.1073/pnas.1007602107
http://dx.doi.org/10.1038/nsb0494-213
http://dx.doi.org/10.1038/35022623
http://dx.doi.org/10.1371/journal.pcbi.0020122
http://dx.doi.org/10.1371/journal.pcbi.0020122
http://dx.doi.org/10.1371/journal.pcbi.0020045
http://dx.doi.org/10.1371/journal.pcbi.0020045


BIBLIOGRAPHY 167

[178] M. Kardar, The European Physical Journal B 64, 519 (2007).

[179] N. P. King, E. O. Yeates, and T. O. Yeates, J Mol Biol 373, 153
(2007).

[180] T. O. Yeates, T. S. Norcross, and N. P. King, Curr Opin Chem Biol
11, 595 (2007).

[181] K. C. Millett, E. J. Rawdon, A. Stasiak, and J. I. Sułkowska, Bio-
chemical Society transactions 41, 533 (2013).

[182] P. Virnau, A. Mallam, and S. Jackson, J Phys Condens Matter 23,
33101 (2011).

[183] R. Potestio, C. Micheletti, and H. Orland, PLoS Comput Biol 6,
e1000864 (2010).

[184] E. Shakhnovich, Nature materials 10, 84 (2011).

[185] L. Tubiana, A. Rosa, F. Fragiacomo, and C. Micheletti, Macro-
molecules 46, 3669 (2013).

[186] A. L. Mallam and S. E. Jackson, Nature chemical biology 8, 147 (2012).

[187] J. I. Sułkowska, P. Sulkowski, P. Szymczak, and M. Cieplak, Pro-
ceedings of the National Academy of Sciences of the United States of
America 105, 19714 (2008).

[188] J. Dzubiella, Biophysical journal 96, 831 (2009).

[189] T. Bornschlögl, D. M. Anstrom, E. Mey, J. Dzubiella, M. Rief, and
K. T. Forest, Biophysical journal 96, 1508 (2009).

[190] T. C. Sayre, T. M. Lee, N. P. King, and T. O. Yeates, Protein engi-
neering, design & selection : PEDS 24, 627 (2011).

[191] M. a. Soler and P. F. N. Faísca, PloS one 8, e74755 (2013).

[192] J. Dzubiella, The Journal of Physical Chemistry Letters 4, 1829 (2013).

[193] A. L. Mallam, J. M. Rogers, and S. E. Jackson, Proceedings of the
National Academy of Sciences of the United States of America 107,
8189 (2010).

http://dx.doi.org/10.1140/epjb/e2007-00347-4
http://dx.doi.org/10.1016/j.jmb.2007.07.042
http://dx.doi.org/10.1016/j.jmb.2007.07.042
http://dx.doi.org/10.1016/j.cbpa.2007.10.002
http://dx.doi.org/10.1016/j.cbpa.2007.10.002
http://dx.doi.org/10.1042/BST20120339
http://dx.doi.org/10.1042/BST20120339
http://dx.doi.org/10.1088/0953-8984/23/3/033101
http://dx.doi.org/10.1088/0953-8984/23/3/033101
http://dx.doi.org/10.1371/journal.pcbi.1000864
http://dx.doi.org/10.1371/journal.pcbi.1000864
http://dx.doi.org/10.1038/nmat2953
http://dx.doi.org/10.1021/ma4002963
http://dx.doi.org/10.1021/ma4002963
http://dx.doi.org/10.1038/nchembio.742
http://dx.doi.org/10.1073/pnas.0805468105
http://dx.doi.org/10.1073/pnas.0805468105
http://dx.doi.org/10.1073/pnas.0805468105
http://dx.doi.org/10.1016/j.bpj.2008.10.019
http://dx.doi.org/ 10.1016/j.bpj.2008.11.012
http://dx.doi.org/10.1093/protein/gzr024
http://dx.doi.org/10.1093/protein/gzr024
http://dx.doi.org/10.1371/journal.pone.0074755
http://dx.doi.org/10.1021/jz400748b
http://dx.doi.org/10.1073/pnas.0912161107
http://dx.doi.org/10.1073/pnas.0912161107
http://dx.doi.org/10.1073/pnas.0912161107


168 BIBLIOGRAPHY

[194] A. L. Mallam and S. E. Jackson, J Mol Biol 346, 1409 (2005).

[195] A. L. Mallam and S. E. Jackson, Journal of molecular biology 359,
1420 (2006).

[196] A. L. Mallam and S. E. Jackson, Journal of molecular biology 366, 650
(2007).

[197] A. L. Mallam, S. C. Onuoha, J. G. Grossmann, and S. E. Jackson,
Mol Cell 30, 642 (2008).

[198] A. L. Mallam, E. R. Morris, and S. E. Jackson, Proceedings of the
National Academy of Sciences of the United States of America 105,
18740 (2008).

[199] A. L. Mallam, FEBS J 276, 365 (2009).

[200] F. I. Andersson, D. G. Pina, A. L. Mallam, G. Blaser, and S. E.
Jackson, The FEBS journal 276, 2625 (2009).

[201] J. I. Sułkowska, J. K. Noel, C. a. Ramírez-Sarmiento, E. J. Rawdon,
K. C. Millett, and J. N. Onuchic, Biochemical Society transactions 41,
523 (2013).

[202] P. F. N. Faísca, R. D. M. Travasso, T. Charters, A. Nunes, and
M. Cieplak, Physical biology 7, 16009 (2010).

[203] M. a. Soler and P. F. N. Faísca, PloS one 7, e52343 (2012).

[204] S. Wallin, K. B. Zeldovich, and E. I. Shakhnovich, Journal of molecular
biology 368, 884 (2007).

[205] J. K. Noel, J. I. Sułkowska, and J. N. Onuchic, Proceedings of the
National Academy of Sciences of the United States of America 107,
15403 (2010).

[206] J. I. Sułkowska, J. K. Noel, and J. N. Onuchic, Proceedings of the
National Academy of Sciences of the United States of America 109,
17783 (2012).

[207] W. Li, T. Terakawa, W. Wang, and S. Takada, Proceedings of the
National Academy of Sciences of the United States of America 109,
17789 (2012).

http://dx.doi.org/10.1016/j.jmb.2004.12.055
http://dx.doi.org/10.1016/j.jmb.2006.04.032
http://dx.doi.org/10.1016/j.jmb.2006.04.032
http://dx.doi.org/10.1016/j.jmb.2006.11.014
http://dx.doi.org/10.1016/j.jmb.2006.11.014
http://dx.doi.org/10.1016/j.molcel.2008.03.019
http://dx.doi.org/10.1073/pnas.0806697105
http://dx.doi.org/10.1073/pnas.0806697105
http://dx.doi.org/10.1073/pnas.0806697105
http://dx.doi.org/10.1111/j.1742-4658.2008.06801.x
http://dx.doi.org/ 10.1111/j.1742-4658.2009.06990.x
http://dx.doi.org/10.1042/BST20120342
http://dx.doi.org/10.1042/BST20120342
http://dx.doi.org/10.1088/1478-3975/7/1/016009
http://dx.doi.org/10.1371/journal.pone.0052343
http://dx.doi.org/10.1016/j.jmb.2007.02.035
http://dx.doi.org/10.1016/j.jmb.2007.02.035
http://dx.doi.org/10.1073/pnas.1009522107
http://dx.doi.org/10.1073/pnas.1009522107
http://dx.doi.org/10.1073/pnas.1009522107
http://dx.doi.org/10.1073/pnas.1201804109
http://dx.doi.org/10.1073/pnas.1201804109
http://dx.doi.org/10.1073/pnas.1201804109
http://dx.doi.org/ 10.1073/pnas.1201807109
http://dx.doi.org/ 10.1073/pnas.1201807109
http://dx.doi.org/ 10.1073/pnas.1201807109


BIBLIOGRAPHY 169

[208] J. K. Noel, J. N. Onuchic, and J. I. Sulkowska, The Journal of Physical
Chemistry Letters 4, 3570 (2013).

[209] D. Bölinger, J. I. Sułkowska, H.-p. Hsu, L. A. Mirny, M. Kardar,
J. N. Onuchic, P. Virnau, and D. Bo, PLoS computational biology
6, e1000731 (2010).

[210] M. Schaefer, C. Bartels, and M. Karplus, Journal of molecular biology
284, 835 (1998).

[211] V. S. Pande, K. Beauchamp, and G. R. Bowman, Methods (San Diego,
Calif.) 52, 99 (2010).

[212] J.-H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J. D.
Chodera, C. Schütte, and F. Noé, The Journal of chemical physics
134, 174105 (2011).

[213] E. Vanden-Eijnden, M. Venturoli, G. Ciccotti, and R. Elber, The Jour-
nal of chemical physics 129, 174102 (2008).

[214] A. M. a. West, R. Elber, and D. Shalloway, The Journal of chemical
physics 126, 145104 (2007).

[215] P. Májek and R. Elber, Journal of chemical theory and computation
6, 1805 (2010).

[216] S. Kirmizialtin and R. Elber, The journal of physical chemistry. A 115,
6137 (2011).

[217] S. M. Kreuzer, R. Elber, and T. J. Moon, The journal of physical
chemistry. B 116, 8662 (2012).

[218] S. M. Kreuzer, T. J. Moon, and R. Elber, The Journal of chemical
physics 139, 121902 (2013).

[219] S. Huo and J. E. Straub, The Journal of Chemical Physics 107, 5000
(1997).

[220] R. Zhao, J. Shen, and R. D. Skeel, Journal of chemical theory and
computation 6, 2411 (2010).

[221] P. Faccioli and F. Pederiva, Physical Review E 86, 061916 (2012).

http://dx.doi.org/10.1021/jz401842f
http://dx.doi.org/10.1021/jz401842f
http://dx.doi.org/ 10.1371/journal.pcbi.1000731
http://dx.doi.org/ 10.1371/journal.pcbi.1000731
http://dx.doi.org/10.1006/jmbi.1998.2172
http://dx.doi.org/10.1006/jmbi.1998.2172
http://dx.doi.org/10.1016/j.ymeth.2010.06.002
http://dx.doi.org/10.1016/j.ymeth.2010.06.002
http://dx.doi.org/10.1063/1.3565032
http://dx.doi.org/10.1063/1.3565032
http://dx.doi.org/10.1063/1.2996509
http://dx.doi.org/10.1063/1.2996509
http://dx.doi.org/10.1063/1.2716389
http://dx.doi.org/10.1063/1.2716389
http://dx.doi.org/10.1021/ct100114j
http://dx.doi.org/10.1021/ct100114j
http://dx.doi.org/10.1021/jp111093c
http://dx.doi.org/10.1021/jp111093c
http://dx.doi.org/10.1021/jp300788e
http://dx.doi.org/10.1021/jp300788e
http://dx.doi.org/10.1063/1.4811366
http://dx.doi.org/10.1063/1.4811366
http://dx.doi.org/10.1063/1.474863
http://dx.doi.org/10.1063/1.474863
http://dx.doi.org/10.1021/ct900689m
http://dx.doi.org/10.1021/ct900689m
http://dx.doi.org/10.1103/PhysRevE.86.061916


170 BIBLIOGRAPHY

[222] G. Cazzolli, P. Faccioli, F. Wang, and P. Wintrode, in preparation ().

[223] G. Cazzolli, F. Wang, S. a Beccara, A. Gershenson, P. Faccioli, and
P. Wintrode, submitted ().


	Contents
	Introduction
	List of abbreviations
	The Protein Folding Problem
	Proteins
	Interactions in proteins
	Structures

	The protein folding problem
	Proteins are self-assembling systems 
	Investigating the mechanism
	Folding is described by a two-state kinetics
	Why is folding so fast?
	The folding thermodynamics
	An energy bias towards the native state
	Rough or smooth landscapes
	There are many diverse bottlenecks for folding
	The two views are not incompatible
	The origin of the funneled landscape

	Protein dynamics on a computer
	The solvent
	Empirical all-atom force fields
	Gō-type models 
	All-atom MD simulations in the Anton era
	Accuracy of current AA FF 

	Folding happens through sequential stabilization 
	Role of non-native interactions


	Simulating reactive folding pathways
	Stochastic action
	Langevin equation
	Smoluchowski equation
	Wiener path integrals
	Brownian trajectories are not differentiable

	Stochastic action functionals

	Diffusion along a reaction coordinate
	Characterizing the reactive folding pathways
	The saddle-point approximation
	DRP
	Sampling the path space
	Sampling and scoring
	Characterizing the folding pathways: the algorithm



	Folding a WW Domain
	Folding pathways of a WW Domain
	Two folding pathways 
	Little role for non-native interactions 
	Locating the TS
	Relative weight of the pathways
	Varying the force

	Comparison with experiments
	Comparison with numerical investigations
	Computational details
	Atomistic DRP simulations
	CG native-centric calculations


	Folding a knotted protein
	Knots in proteins
	Function and evolution
	Experimental characterization
	Computational approaches

	Folding the smallest knotted protein
	Characterizing the folding trajectories
	When the knot forms
	Measuring the pathway heterogeneity

	How the knot forms
	What happens when knotting fails
	Discussion: the role of non-native interactions
	Slipknotting vs. direct threading
	Turning non-native interactions on and off
	The role of non-native interactions

	Computational details
	DRP algorithm
	Coarse grained simulations
	Knot detection



	Milestoning
	The Milestoning algorithm
	Refolding a long myosin chain
	Marginally thermally activated transitions
	Case A (partially folded conformation)
	Case B (almost unfolded initial configuration)

	Thermally activated transition
	Discussion
	Computational details


	Conclusions
	Credits
	Acknowledgments
	Bibliography

