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Is better to remain silent

and be thought a fool

than to open one’s mouth

and remove all doubt.

Mark Twain





Introduction

The optomechanics field of research has been gathering a lot of momentum during

the last couple of years. The technological accomplishments of the last decade have

brought a number of very different experimental realizations right on the threshold,

or just past it, between classical and quantum visions of reality.

The field was pioneered in the 1970s by Braginsky who investigated the role

of radiation pressure coupled to an harmonically suspended end-mirror of a cavity

in the context of interferometric gravitational wave detectors. He showed that the

radiation pressure can induce damping or anti-damping of the mechanical resonance,

an effect that he was able to demonstrate experimentally by using a microwave

cavity [1, 2]. He also investigated quantum fluctuations of radiation pressure [3, 4]

and, together with later works by Caves (i.e., Ref. [5]), established what is nowadays

the standard quantum limit for continuous position detection.

Several theoretical works, published during the 1990s, increased the interest of

the scientific community on the field. Many peculiarly quantum phenomena were

analyzed. Among these, squeezing of light [6, 7], quantum non-demolition (QND)

detection of the light intensity [8], and even the possibility to generate entanglement

between the optical and mechanical degrees of freedom [9, 10]. Achieving these

results experimentally would provide the means to test quantum mechanics on a

macroscopic scale.

However, from an experimental point of view, technological means were not re-

fined enough, at that time, to allow investigation of such phenomena. As a con-

sequence, a race started to develop optomechanical systems with sufficient high

performances, typically in terms of losses and mass, to enter the quantum regime.

As a result, a large variety of systems have been studied. Among these, thin mem-

branes [11], whispering gallery microdisks [12, 13], photonic crystals [14], micropil-

lars [15] and micro-oscillators [16]. We point out that all these systems reached

maturity towards the end of the last decade.

It is only during the last couple of years that some of this quantum phenomena
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Introduction

have been finally observed experimentally: from the direct observation of radia-

tion pressure shot noise [17], to squeezed light generation [18, 19, 20] and to the

cooling of the mechanical resonance to its quantum ground state [21]. All these re-

sults have opened up the quantum age for the field of optomechanics and opened

the way for even more interesting physics such as, for example, the generation of

mechanical squeezed states, entanglement (recently observed in a superconducting

resonator [22]) and even the possibility to investigate Planck scale physics [23].

In this context, as for all other teams, our effort were initially concentrated on

the development of the optomechanical devices. Our progress has been reported

in a number of papers, Refs. [24, 25, 26, 27], and we believe that our latest de-

vices present competitive performances. We have worked towards the generation

and observation of ponderomotive squeezing and we have identified, and experimen-

tally demonstrated, an optomechanical effect that can ease the achievement of this

goal [28]. We have also developed a stabilization technique that have been instrumen-

tal for the success of two experiments: the implementation of the Wiener-Kolmogorov

data analysis [29] and the squeezing of a mechanical thermal oscillator [30]. In the

meanwhile, the research activity for the development of a new generation of devices

did not stop; some insight can be found in Ref.[31].

This thesis is structured as follows. In the first chapter we describe from both a

classical and a quantum point of view the two building blocks of the optomechanics

field, that is, the mechanical and the optical resonators. In particular we discuss the

dynamical behavior of such systems subjected to noise and we introduce (quantum)

Langevin equations. In its second part, we describe the optomechanical interaction

and the physics that derives from it. The model presented here is nowadays well

established, it has been used to describe successfully various systems with a very

different intrinsic size.

The second chapter is divided into two main sections. In the former we present

our design strategy to develop new and competitive devices, while in the latter we

focus on their fabrication. As in many of the systems mentioned earlier, the main

objective is the reduction of thermal decoherence, that derives from mechanical

losses, and that masks, or prevents, the observation of quantum phenomena. We

work with relatively thick silicon oscillators with high reflectivity coating. The design

and, in particular, the geometry optimization is assisted by numerical simulations

based on the finite element method. Our resonators are specifically designed to reach

a regime where the dominant loss mechanism, at cryogenic temperatures, is the

intrinsic dissipation of silicon. We also show that the developed fabrication process,

which integrates the deposition of the high reflectivity coating, does not cause any
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Introduction

degradation of the optical properties of the coating itself.

In Chap 3 we describe our experimental setup, while in Chap. 4 we present the

experimental characterization at room and cryogenic temperatures of the devices

whose design and fabrication has been introduced in Chap. 2. We show that, indeed,

some of our devices are limited by the mechanical losses of silicon while, at the same

time, they present extremely low optical losses. However, some designs presented

mechanical performances worse than our expectations. From the experience gained,

we present design guidelines for the next generation of devices. We also demonstrate

the high reliability of our numerical simulations.

One of the main objectives of the PhD research activity has been the generation

of squeezed light. In Chap. 5 we introduce an optomechanical effect that leads to the

destructive interference of classical frequency/displacement noise, one of the most

detrimental technical noise sources in our system. This effect can strongly facilitate

the generation of ponderomotive squeezing for a given set of operating parameters.

We demonstrate the effect experimentally and we illustrate its relevance with a

detailed theoretical analysis. Despite this identification of the most favorable working

point and having developed mechanical resonators with sufficient low losses, we have

not yet been able to generate ponderomotive squeezing. In Chap. 5 we discuss why

this has been the case.

In Chap. 6 we introduce a novel technique developed to stabilize the effective

mechanical susceptibility of the oscillator by direct active control of the optical

spring. The scheme implemented affects only one quadrature of the oscillator motion

leaving the other unperturbed. We present a theoretical model and the experimental

characterization of this parametric feedback. This technique has been instrumental

for the realization of the two experiments presented in the following chapters.

In Chap. 7 we study quantitatively the characteristics of our micro opto-mechani-

cal system as detector of stochastic force for short measurement times (for quick, high

resolution monitoring) as well as for the longer term observations that optimize the

sensitivity. We compare a simple strategy based on the evaluation of the variance

of the displacement (that is a widely used technique) with an optimal Wiener-

Kolmogorov data analysis. We show that, thanks to the parametric stabilization

of the effective susceptibility, we can more efficiently implement Wiener filtering,

and we investigate how this strategy improves the performance of our system. We

demonstrate the possibility to resolve stochastic force variations well below 1% of

the thermal noise.

Finally, in Chap. 8, we report the confinement of an optomechanical micro-

oscillator in a squeezed thermal state, obtained by parametric modulation of the

vii



Introduction

optical spring. We show that the stabilization technique of Chap. 6 can be efficiently

used to avoid the onset of the parametric instability of the anti-squeezed quadra-

ture, allowing us to surpass the −3 dB limit in the noise reduction, associated with

parametric resonance, with a best experimental result of −7.4 dB. While the present

experiment is in the classical regime, in a moderately cooled system our technique

can allow squeezing of a macroscopic mechanical oscillator below the zero-point

motion.
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Chapter 1

Cavity opto-mechanics

In this chapter we will discuss the dynamical behavior of a mechanical oscillator

coupled to an optical cavity via radiation pressure. More precisely, we want to arrive,

in the end, to a quantum mechanical description of a Fabry-Pérot cavity in which

the end mirror is a mechanical oscillator while the input mirror is a standard silica

mirror that is supposed to be fixed. Despite this seemingly restricting choice, the

results obtained for this system are quite general and can be used to describe more

complex ones, like, for example, whispering galleries or photonic crystals, once the

peculiarities of such systems are taken into account.

In Sec. 1.1 and Sec. 1.2 we describe the mechanical oscillator and the optical

resonator respectively both from a classical and a quantum mechanical point of view.

While in Sec. 1.3 we introduce the optomechanical interaction and the quantum

dynamical equation for the couple system.

1.1 Mechanical oscillator

We are interested in the theoretical description of a realistic mechanical oscilla-

tor. In particular we want to describe its dynamical evolution under the action of

both deterministic and stochastic forces. The latter are treated in the framework

of Langevin equation that we introduce in Sec. 1.1.1 with a classical formalism and

with a quantum mechanical one in Sec. 1.1.2.

1.1.1 Classical description

Whatever is the actual opto-mechanical system that one wants to describe, the

movable mirror can be considered as a simple harmonic oscillator in most cases.

1



Chapter 1. Cavity opto-mechanics

So let us start discussing the simple lumped element model shown in Fig. 1.1. A

massless spring of stiffness k is connected on one side to an ideal constraint and to

a rigid body of mass m on the other. If x(t) is the position of the body at time t,

then the equation of motion is:

mẍ = −Kx (1.1)

Figure 1.1: Lumped element model of a mechanical oscillator.

and the general solution for the free evolution is

x(t) = x0cos(ωmt+ φ) where ωm =
√
k/m (1.2)

The two parameters, x0 and φ, depend exclusively on the initial conditions x(0) and

ẋ(0), since no additional external force is considered. The movement of the mirror

is an oscillation around the equilibrium position at x = 0 with amplitude x0 and

phase φ. The total energy of the system can be calculated as:

Em =
1

2
mẋ2 +

1

2
kx2 (1.3)

it is positive definite and it vanishes for x = 0 and ẋ = 0. The usefulness of this simple

model comes from the fact that it is valid for any potential close to a minimum.

Its expansion around a stable equilibrium position is equivalent, to the first non-

vanishing order, to a quadratic potential. Moreover, it is possible to easily drop

the rigid body assumption by means of the Normal Modes Expansion Model [32].

With it, one can forget about the complexity of the dynamics of a three-dimensional

body and take into consideration only a limited number of normal modes, if not

only one. The mass will be replaced by an effective mass that depends on the mode

under consideration and on how the displacement is actually measured. For the

fundamental mode, however, the effective mass is usually very close to the physical

mass. More details can be found in the appendix (Sec. A).

In order to obtain a more realistic model one needs to include the effect of

losses and the action of external forces. There are several dissipation mechanisms:

clamping losses [33], that are due to the absorbtion of the oscillator elastic energy

2



1.1 Mechanical oscillator

by the environment (constraints, substrate... ); fundamental anharmonic effects such

as thermoelastic damping [34], that is, the dissipation of elastic energy into heat.

This effect is particularly important in thin structures but is often negligible at

cryogenic temperatures; materials-induced losses, that are due to intrinsic defects

in the bulk or the surface of the material [35]; at last, viscous damping, that is,

energy loss through collisions with the (residual) gas surrounding the oscillator.

This mechanism depends strongly on geometry and on the shape of the specific

normal mode (see for example Ref. [36]). All these processes add up incoherently so

that the total mechanical quality factor is given by 1/Qtot =
∑
Qi with i identifying

individual loss mechanisms.

Let us consider the case of viscous damping. The equation of motion for a single

normal mode is

ẍ(t) + γmẋ(t) + ω2
mx(t) =

Fext(t)

meff

(1.4)

where γm = ωm/Qm is the (energy) damping rate while Fext(t) represents the sum of

all external forces acting on the mechanical oscillator. Even when no deterministic

force is present, one needs at least to take into consideration stochastic forces. In

particular, a term that is always present is the thermal Langevin force.

Since thermal noise is a fundamental noise source it is necessary to discuss it in

more details. Assuming thermal equilibrium between the mechanical oscillator and

a reservoir at temperature T , the Langevin force Fth is a stationary Gaussian noise

for which the following relations, given by the Fluctuation-Dissipation Theorem

(FDT) [37, 38], must hold

〈Fth(t)〉 = 0

〈Fth(t)Fth(t′)〉 = 2kBTmeffγmδ(t− t′)
(1.5)

-the brackets 〈...〉 denote the average over the statistical distribution of the noise-.

To solve Eq. 1.4 it is convenient to work in the frequency space, thus we define

the truncated Fourier transform as

xT (ω) =
1√
τ

∫ τ

0

x(t)eiωtdt. (1.6)

Averaging over independent realizations of xT (ω) one obtains the spectral density

〈|xT (ω)|2〉. Now, in the limit of τ →∞, under the assumption that Fth is a stationary

random process and exploiting the ergodic assumption, the Wiener-Khinchin theo-

rem connects 〈|xT (ω)|2〉 to the Fourier transform of the autocorrelation function,

referred to as Sxx(ω), also called the Power Spectral Density (PSD).

3



Chapter 1. Cavity opto-mechanics

Using the definition just mentioned, the displacement PSD is given by

Sxx(ω) =

∫ ∞
−∞
〈x(t)x(0)〉eiωtdt. (1.7)

At this point, we can use standard input-output theory for linear time-invariant

systems to evaluate the mechanical impulse response function whose Fourier trans-

form1, namely the mechanical susceptibility2, is

χ(ω) =
1

meff

1

(ω2
m − ω2)− iωγm

(1.8)

so that Eq. 1.7 becomes

Sxx(ω) = |χ(ω)|2
∫ ∞
−∞
〈Fth(t)Fth(0)〉eiωtdt

= |χ(ω)|2Sff,th
(1.9)

where Sff,th = 2kBTmeffγm is evaluated from Eq. 1.5. Looking at Eq. 1.9 is already

possible to see that in order to have negligible thermal noise (that is low decoherence)

is important to have a high mechanical quality factor. Another important result that

can be obtained from Eq. 1.9 is that the area under the spectral peak at ωm gives

the variance of the displacement noise, that is

1

2π

∫ ∞
−∞

Sxx(ω)dω = 〈x2〉. (1.10)

In the case of low losses the displacement variance is set by the equipartition theorem,

so that 〈x2〉 = kBT/meffω
2
m

1.1.2 Quantum description

When moving to quantum mechanical formalism [39] the physical quantities position

x and momentum p are replaced by the observables X̂ and P̂ obeying the commuta-

tion relation [X̂, P̂ ] = i~ . Thanks to the principle of equivalence in the Heisenberg

representation, the Hamiltonian operator of the system in Fig. 1.1 is obtained by

substituting the corresponding observables in the classical expression of the total

energy, so that

Ĥm =
P̂ 2

2m
+

1

2
kX̂2 (1.11)

1Unless otherwise specified the convention used for the Fourier transform is the following:

x(ω) =
∫∞
−∞ x(t)eiωtdt and x(t) = 1

2π

∫∞
−∞ x(ω)e−iωtdω

2Note that for an high Qm oscillator the near resonance response can be approximated with a

Lorentzian curve.
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1.1 Mechanical oscillator

It is convenient to introduce the dimensionless operators x̂ and p̂, obtained with the

normalizations

x̂ =

√
mωm
~

X̂ p̂ =

√
1

~mωm
P̂ (1.12)

satisfying the relation [x̂, p̂] = i. One can also define the creation b̂† and annihilation

b̂ operators as

b̂ =
1√
2

(x̂+ ip̂) b̂† =
1√
2

(x̂− ip̂) (1.13)

with commutation relation [b̂, b̂†] = 1. Using the latter operators, the Hamiltonian

of the system can be rewritten as

Ĥm = ~ωm
(
b̂†b̂+

1

2

)
. (1.14)

The number operator N̂ = b̂†b̂ has the same eigenfunctions as the Hamiltonian and

it can be show that its eigenvalues are all the natural numbers. The eigenvalues of

the Hamiltonian form a discrete ensemble

En = ~ωm
(
n+

1

2

)
with n = 0, 1, 2, ... (1.15)

and corresponding eigenfunctions

ψn(x) =
1√
2nn!

(mωm
π~

)1/4

e−
x2

2 Hn(x) (1.16)

where the functions Hn(x) are Hermite polynomials. The first few eigenfunction

are shown in Fig. 1.2. If we denote by fn(x) the probability density to find the

oscillator between x and x + dx, then fn(x) = |ψn(x)|2. It is easy to verify that,

any given state n, the mean position 〈X̂〉n =
∫
xfn(x)dx and mean momentum

〈P̂ 〉n = −i ~
∫
fndψn vanish3. On the other hand we can evaluate the root-mean-

square value of the position ∆X̂n and of the momentum ∆P̂n for a generic eigenstate

n, and find

∆X̂n =

√
〈X̂2〉n − 〈X̂〉2n = xzpf

√(
n+

1

2

)

∆P̂n =

√
〈P̂ 2〉n − 〈P̂ 〉2n =

~
xzpf

√(
n+

1

2

) (1.17)

where xzpf =
√

~/2mωm is the zero-point motion. From these two equations we can

recover, as a consequence of the commutation relation, the Heisenberg inequality

∆X̂∆P̂ ≥ ~
2
. (1.18)

3The eigenfunctions are either symmetric or antisymmetric.

5



Chapter 1. Cavity opto-mechanics

If n = 0, then equality holds so that the only minimum uncertainty state among the

energy eigenstates is the fundamental one. Up until now we have been discussing a

Figure 1.2: Potential energy and contour of the first few eigenfunctions for an harmonic

oscillator.

very ideal case. In order to get a more realistic description we need to include in the

model some loss mechanism. The first step is to drop the implicit hypothesis that

the oscillator is perfectly isolated. A realistic system is always coupled, in some way,

to a high (thermal) energy environment. Formally the Hamiltonian of the system is

written as Ĥm + Ĥenv + Ĥc where

Ĥenv =
∑
i

~ωi
(
d̂†i d̂i +

1

2

)
Ĥc =

∑
i

~κid̂†i b̂+ h.c. (1.19)

The term Ĥenv describes the environment as an infinite ensemble of harmonic oscil-

lators while the term Ĥc describes the coupling between the two subsystems. Note

that this means that a state of the harmonic oscillator is not an eigenstate of the

global system. Furthermore, there is never enough information on the environment

to allow an analytical description of the system and of its dynamics. The only pos-

sible approach is a statistical one.

Assuming thermal equilibrium, the global system state is described with a statis-

tic ensemble of its different eigenstates, characterized by the density operator

ρ̂ =
1

Z
e−Ĥm/kBT (1.20)

where Z is the partition function

Z = Tr
(
e−Ĥm/kBT

)
=
∞∑
n=0

e−(n+1/2)~ωm/kBT =
e−~ωm/2kbT

1− e−~ωm/kbT
(1.21)

6



1.1 Mechanical oscillator

from which is possible to calculate the oscillator mean energy at a given tempera-

ture T

〈Ĥm〉T = Tr
(
Ĥmρ̂

)
= ~ωm(nT + 1/2) (1.22)

where nT is the mean number of thermal phonos of the oscillator and is given by

nT =
1

e
~ωm
kBT − 1

=
1

2
coth

(
~ωm
kBT

)
− 1

2
(1.23)

a result quite different from the one obtained with classical statistical physics. In-

deed, the equipartition theorem attributes to every degree of freedom an energy

contribution of 1
2
kBT . For an harmonic oscillator the kinetic and potential energy

sum up to give a mean energy 〈H〉 = kBT . This means that classical and quantum

descriptions are equivalent when the temperature is large compared to the quantum

temperature TQ, defined as

kBTQ = ~ωm (1.24)

while when T � TQ quantum mechanics predicts a minimum energy, the zero point

energy, in keen contrast to the vanishing value predicted by classical physics. This

can be seen neatly in Fig. 1.3. At this point we need to discuss how the coupling to the

Figure 1.3: Mean energy for an harmonic oscillator as a function of bath temperature.

Continuous: quantum evaluation. Dashed: Classical calculation.

reservoir affects the dynamics of the oscillator. This is best done in the framework

of the Quantum Langevin Equations (QLEs) [40] that are the generalization to

quantum mechanics of the Eq. 1.4 and Eqs. 1.5. A formal derivation of the QLE is

outside the scope of this thesis. We will follow Ref. [41] to discuss some key aspects,

7



Chapter 1. Cavity opto-mechanics

in particular concerning the differences with the classical counterpart, but after that,

we will assume their validity and directly discuss the results obtained with them.

Eq. 1.4 is the equation of motion of the system that can be retrieved moving to the

Heisenberg picture4. But, when writing the correlation function Rxx(t) = 〈x̂(t)x̂(0)〉
is necessary to take into account that the position operator does not commute with

itself at different times. Indeed, the correlation function can be expressed as

Rxx(t) = 〈x̂(0)x̂(0)〉cos(ωmt) + 〈p̂(0)x̂(0)〉sin(ωmt). (1.25)

Classically, the second term in the right hand side (RHS) vanishes since x and p

are uncorrelated for an oscillator in thermal equilibrium. This is not so in quantum

mechanics. Using the commutation relation, one can verify that the cross-correlation

term is 〈p̂(0)x̂(0)〉 = −i/2, so that, not only is non-vanishing, but is also complex.

The correlation then becomes

Rxx(t) =
1

2

[
nT e

iωmt + (nT + 1) e−iωmt
]

(1.26)

from which the spectral density can be calculated to be

Sxx(ω) = 2πx2
xpf [nT δ(ω + ωm) + (nT + 1) δ(ω − ωm)] (1.27)

where we have restored physical units. Note that this expression is not symmetric

in frequency. In the classical case the autocorrelation is always a real function from

which follows that Sxx(ω) is always symmetric in frequency. As expected, in the high

temperature limit nT ' nT + 1 so that classical and quantum predictions coincide.

The physical interpretation of this frequency asymmetry can be inferred from the

occupation number; the positive frequency part of the spectral density is related to

the ability of the oscillator to absorb phonons from the bath, while the negative

part is related to the ability to emit phonos5. Moreover, when one want to retrieve a

classical looking equation that relates a stochastic thermal force noise to a damping

term in the equation of motion, it is possible to show that it is the symmetric-

in-frequency part of the force noise spectrum S̄FF (ω) = 1
2
(SFF (ω) + SFF (−ω))

that causes the oscillator to diffuse while the damping rate is proportional to the

asymmetric-in-frequency part of the force noise spectrum, that is γ ∝ SFF (ω) −
SFF (−ω). Note that we introduced the symmetrized PSD that for an operator Â(ω)

is defined as

S̄ÂÂ(ω) =
1

2
(SÂÂ(ω) + SÂÂ(−ω)) (1.28)

4For a generic time independent operator Â the equation of motion is
˙̂
A(t) = − i

~ [Â, Ĥ]
5An even stronger (heuristic) argument for this interpretation resides in the spectral density of

the operators b̂(t) and b̂†(t), since Sb̂b̂(ω) has a peak centered at ω = −ωm while for Sb̂†b̂†(ω) the

peak is centered at ω = ωm.

8



1.2 The Fabry-Pérot cavity

A deeper insight on the physical meaning of the frequency asymmetry and its inter-

pretation can be found again in Ref. [41].

The complete QLEs for a mechanical harmonic oscillator coupled to a thermal

bath are given in Eq. 1.29. They retain the familiar form of the classical counterpart,

associating a stochastic thermal force to a viscous damping force proportional to the

velocity. The complete and rigorous treatment can be found in Ref. [42].

˙̂x = ωmp̂

˙̂p = −ωmx̂− γmp̂+ ξ

〈ξ̂(t)〉 = 0

〈ξ̂(t)ξ̂(t′)〉 =
γm
ωm

∫
dω

2π
e−iω(t−t′)ω

[
coth

(
~ω

2kBT

)
+ 1

] (1.29)

Here, γm is the damping rate, as in the classical equation, and ξ̂(t) is a Gaussian

quantum stochastic process; its correlation function, expressed in Eq. 1.29, is given

by the quantum FDT. In Fig. 1.4 we show the comparison between quantum and

classical predictions for the displacement PSD for three temperature values; for

T = 0.1TQ the mean occupation number nT ' 0 and the displacement PSD is given

by the zero point fluctuations. The spectra are normalized to the low frequency value

calculated for T = TQ.

Figure 1.4: Comparison between quantum (black) and classical (red) prediction for the

displacement PSD normalized to Sxx(0) evaluated for T = TQ.

1.2 The Fabry-Pérot cavity

Also in this section we want to keep the parallelism between a classical and a quan-

tum description. As before we start with the former is Sec. 1.2.1 and move to the

9



Chapter 1. Cavity opto-mechanics

latter in Sec. 1.2.2. We a interested in the dynamical equations to describe the Fabry-

Pérot resonator under the action of both deterministic and stochastic excitations.

1.2.1 Classical description

Consider the simplest cavity composed of two facing partially reflective surfaces

with a distance L between them and an electromagnetic monochromatic plane wave

of frequency ωl and with direction of propagation normal to both surfaces. The

refractive index, both inside and outside the cavity, is n0 = 1. We denote with ti(Ti)

and ri(Ri) the amplitude (power) transmission and reflection coefficients respectively

of the i − th surface and with Σ1, Σ2 the fraction of intensity absorbed or diffused

by the surfaces. Conservation of energy requires Ri + Ti + Σi = 1. The transmitted

and reflected fields are [43]:

Er = Ein

[
−r1 +

t21r2e
i2φ

1− r1r2ei2φ

]
Et = Ein

t1t2e
iφ

1− r1r2ei2φ
(1.30)

where Ein is the amplitude of the field and φ = Lωl/c is the phase difference between

the fields at the two surfaces. From these two equations it is possible to define the

cavity transmission T̆ and reflection R̆ functions

T̆ =
|Et|2

|Ein|2
=

t21t
2
2

(1− r1r2)2

1

1 +Bsin2φ

R̆ =
|Er|2

|Ein|2
=

(ζ/r2)2 +B(1− Σ1)sin2φ

1 +Bsin2φ

(1.31)

where we have defined the coefficient B and the coupling parameter ζ as

B =
4r1r2

(1− r1r2)2
ζ = r2

r1 − r2(r2
1 + t21)

1− r1r2

(1.32)

From Eqs. 1.31 we can see that there are resonant peaks (dips) for φ = nπ, and each

peak will have a halfwidth κφ defined by

4r1r2sin
2κφ = (1− r1r2)2 (1.33)

the distance in frequency between two subsequent peaks is the Free Spectral Range6

FSR = c/2L, so that we can define κν = κ/2π = κφ
FSR
2π

and the resonance condition

can be expressed as ωcav = 2π nFSR. The cavity Finesse is then F = FSR/2κν .

The coupling parameter is the fraction of the incident field amplitude that is re-

flected at resonance. It distinguishes three regimes: for 0 < ζ ≤ 1 the cavity is

6As usual c is the velocity of light in vacuum.

10



1.2 The Fabry-Pérot cavity

said undercoupled, for −1 ≤ ζ < 0 is overcoupled while for ζ = 0 we have optimal

coupling.

Particularly important is the case of a cavity with high Finesse. This assumption

implies κν � FSR and (Ti,Σi)� 1 so that we have

F ' 2π

T1 + T2 + Σ1 + Σ2

=
2π

T
ζ ' T2 − T1 + Σ1 + Σ2

T2 + T1 + Σ1 + Σ2

. (1.34)

The cavity (amplitude) decay rate becomes κ = cT/4L and the transmission and re-

flection functions of Eqs. 1.31, expressed as a function of the dimensionless detuning

∆n = ∆/κ = (ωl − ωcav)/κ, can be simplified to

T̆ ' 4T1T2

(T1 + T2 + Σ1 + Σ2)2

1

1 + ∆2
n

R̆ ' ζ2 + ∆2
n

1 + ∆2
n

. (1.35)

We can also define a reflection response function, that in the high Finesse limit is

Hr(∆n) =
Er
Ein
' ζ − i∆n

1− i∆n

. (1.36)

Moreover, the intracavity power at resonance is Pcav(0) = Pin F
π

(1− ζ) that gives a

clear understanding on the regimes definition according to the coupling parameter.

In Fig. 1.5 we show the cavity response function T̆ and R̆ together with the overall

losses 1−R̆− T̆ for a given set of parameters (see caption). Up until now we used the

Figure 1.5: Cavity transmission (T̆ ,blue), reflection (R̆,red) and overall losses (1− R̆− T̆ ,

dashed-green). Values used for the example are T1 = 300ppm, T2 = 25ppm and Σ =

Σ1 + Σ2 = 25ppm.

plane wave approximation for the input field. A real laser beam is similar in many

respects, however its intensity distribution is not uniform but is concentrated near

the axis of propagation and its phase fronts are slightly curved. Following Ref.[44],

each component of the electric field E(x, y, z, t) satisfies the scalar wave equation

∇2E + k2
0E = 0 (1.37)

11



Chapter 1. Cavity opto-mechanics

For a field travelling in the z direction one writes E = Γ(x, y, z)e−ik0z where Γ is

a slowly varying complex function which represents the difference between a laser

beam and a plane wave, that is, a non uniform intensity distribution and its expan-

sion with distance of propagation and the curvature of the phase front. Inserting

this expression in the wave equation one obtains

∂2

∂x2
Γ +

∂2

∂y2
Γ− 2ik0

∂

∂z
Γ = 0 (1.38)

where it has been assumed that Γ varies so slowly with z that the second derivative

∂Γ2/∂z2 can be neglected. We search solutions to Eq. 1.38 of the form

Γ = ψ(x, y) · exp
(
−i
(
p(z) +

k0

2q(z)
r2

))
(1.39)

where, as usual, r2 = x2 + y2. Here, p(z) and q(z) are complex parameters, the

first describing the variation of phase along z and the beam divergency, the latter

describing the variations in beam intensity with the distance r and the curvature of

the phase front.

The solution with ψ = constant is the case of a coherent light beam with a Gaus-

sian profile and it is perhaps the most important. For convenience one introduces

two real parameters R(z) and w(z) related to q(z) by

1

q(z)
=

1

R(z)
− i λ

πw(z)2
(1.40)

R(z) is the radius of curvature of the wavefront the intersects the z-axis at z and

w(z) is the decay length of the amplitude with the distance from the axis, called

beam spot : the intensity profile in every beam cross section is a Gaussian curve with

width w, whose minimum w0 is called beam waist. In Fig. 1.6(left) is shown the

physical interpretation of these parameters. For a free propagating beam, setting

the waist in z = 0, we have

w2(z) = w2
0

[
1 +

(
λz

πw2
0

)2
]

R(z) = z

[
1 +

(
πw2

0

λz

)2
]

(1.41)

Higher order solutions of Eq. 1.38 are possible and their space profiles are shown

in Fig. 1.6(right). In cartesian coordinate (x, y, z)

ψ(x, y) = Hm(
√

2x/w)Hn(
√

2x/w) (1.42)

where Hm is the m-th order Hermite polynomial while m and n are the (transverse)

mode numbers. In cylindrical coordinates (r, φ, z)

ψ(r, φ) =
(√

2r/w
)l
· Llp[2(r/w)2] · elφ (1.43)
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1.2 The Fabry-Pérot cavity

Figure 1.6: Left: contours of a Gaussian beam and physical interpretation of the param-

eters R(z) and w(z). Right: Different spatial transverse mode. On the center, Laguerre-

Gaussian: labels indicate radial and angular nodes. On the right: Hermite-Gaussian: labels

indicate x and y nodes.

where Llp is a generalized Laguerre polynomial while p and l are the radial and

angular mode numbers respectively. In both cases the parameter q evolves along z

as it does for a Gaussian beam, while the phase parameter depends on the order of

the specific mode.

An ideal lens leaves the transverse field distribution unchanged but modifies

the parameters R(z) and w(z). In order to have a resonance in a cavity the beam

must return with the same parameters after a roundtrip. This condition is used to

calculate the mode parameters that the beam must satisfy in order to be stable

inside the resonator. While q(z) is independent from the mode numbers, p(z) is

not, so that different optical modes resonate at slightly different frequencies. The

equations derived in the first part of this section are valid for a Gaussian shaped

beam (i.e. the fundamental mode TEM00); for higher orders there are increasing

deviations [45].

The dynamical equation for the intracavity field is easy to obtain under the

assumption of an input field slowly varying on a time scale set by the roundtrip time

τ = 2L/c, so that E(t + τ) = E(t) + τĖ(t) is a valid approximation. Considering

a high Finesse cavity and neglecting losses for the moment, after a roundtrip the

intracavity field, in a frame rotating at ωl, is

E(t+ τ) =
√

1− T1e
iωlτ E(t) +

√
T1Ein(t+ τ). (1.44)

Applying the approximation just mentioned, expanding the square root in the RHS

and assuming Ein(t+ τ) ' Ein(t) the previous equation became

τĖ(t) = (−κφ + iψ)E(t) +
√

2κφEin(t) (1.45)
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Chapter 1. Cavity opto-mechanics

where we used κφ = T1/2 and ψ is the phase detuning from the cavity resonance,

that is ωlτ = n2π + ψ. Note that the phase ψ could be due either to a mismatch of

the cavity length or a mismatch of the light frequency ψ = 2π
(

∆ν0

FSR
+ ∆L

λ/2

)
. Eq. 1.45

can be rearranged as

Ė(t) = (−κ+ i∆)E(t) +

√
2κ

τ
Ein(t) (1.46)

where κ is cavity total loss rate. If we drop the assumption of negligible losses, then

κ = κ1 + κ2 + κΣ
7 but the input field is still just coupled through the input mirror.

Once solved Eq. 1.46 the reflected and transmitted fields are

Er
out(t) = −Ein(t) +

√
2κ1E(t) Et

out(t) =
√

2κ2E(t) (1.47)

1.2.2 Quantum description

The quantization of the electromagnetic fields, obtained by expanding the vector

potential in terms of cavity modes (see for example [46]), leads to a description

based on a simple superposition of independent harmonic oscillators so that quantum

states of each mode may be discussed independently. The Hamiltonian of a single

cavity mode is

Ĥ = ~ωcav
(
â†â+

1

2

)
(1.48)

with commutation relations appropriate for bosons, that is [â, â] = [â†, â†] = 0 and

[â, â†] = 1. Clearly, Eq. 1.48 is identical to Eq. 1.14. This means that many aspects

discussed in the previous section for the mechanical oscillator will remain valid for

the cavity mode. However, before moving to the dynamical equation, let us briefly

review some key properties of quantum optical fields.

Some quantum optic basics

In a completely general way, the ensemble of field quadratures can be defined by

âθ = âe−iθ + â†eiθ. (1.49)

The quadrature operators âθ and âθ+π/2, aside a global phase factor eiθ, allow the

identification of the optical phase space with the complex plane with coordinates

(〈âθ〉/2, 〈âθ+π/2〉/2). They are analogous to the position x̂ and momentum p̂ opera-

tors and since the commutator for â and â† is non-vanishing there is an Heisenberg

7Here κi = cTi

4L and κΣ = cΣ
4L with Σ = Σ1 + Σ2
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1.2 The Fabry-Pérot cavity

inequality imposing a lower bound to the product of their uncertainty, namely

∆âθ∆âθ+π/2 ≥ 1 (1.50)

The eigenstates of the Hamiltonian in Eq. 1.48 are the number or Fock states,

in particular, the vacuum state, is defined by â|0〉 = 0. A more appropriate basis

for typical optical fields are the coherent states. Introduced by Glauber in 1963 [47],

these states have an indefinite number of photons which allows them to have a more

definite phase than a Fock state where the phase is completely random. Coherent

states are generated using the unitary displacement operator D̂(α), defined as

D̂(α) = exp
(
αâ† − α∗â

)
(1.51)

where α is a complex number. When D̂(α) is applied to the vacuum state one obtains

|α〉 = D̂(α)|0〉. (1.52)

If one calculates the expectation values of the quadrature operators for a coherent

state one finds 〈α|âθ|α〉 = α + α∗ and 〈α|âθ+π/2|α〉 = −i(α − α∗) so that α =

1/2 〈âθ + i âθ+π/2〉 = Re[α] + i Im[α] which makes evident that the state |α〉 is

merely a translation of the vacuum state to a point α in phase space. It is easy to

verify that for a coherent state ∆âθ = 1∀θ.
In order to better understand the connection between coherent states and laser

beams, it is useful to introduce the semiclassical description based on the Wigner

distribution. This approximation associate to the generic operators Â and Â† two

classical pseudo-random variables A and A∗, complex conjugate of one another

and having a quasi-probability distribution that coincides with the Wigner dis-

tribution [46, 48]. In this way, classical and quantum expectation values coincide

when the operators are placed in symmetric order. More precisely, for all symmet-

ric functions fS(Â, Â†) of the operators Â and Â† the quantum expectation value

〈fS(Â, Â†)〉 = Tr[fS(Â, Â†)ρ̂] is equal to the mean value fS(Â, Â†) defined from the

semi-classical variables A and A∗ weighed with the Wigner distribution W (A,A∗) :

fS(Â, Â†) =

∫
dAdA∗fS(A,A∗)W (A,A∗) (1.53)

The random variable A completely characterizes the quantum operator Â, moreover,

it can be decomposed into the sum of its mean value A = 〈Â〉 and a fluctuation

term δA = A− A that derives from the quantum nature of Â.

The Wigner distribution for a coherent state is a bivariate Gaussian distribution

of the variables αθ and αθ+π/2, namely, the semi-classical counterpart of the quadra-

tures defined in Eq. 1.49. The distribution is centered in α = 1
2
〈αθ + iαθ+π/2〉, that
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Chapter 1. Cavity opto-mechanics

corresponds to the classical amplitude of the field, and has variance equal to 1 for

all quadratures (since ∀θ,∆âθ = 1). A possible realization of the quantum field can

be written as

α̌ =
√
Ieiφ (1.54)

so that I = |α̌|2 is the instantaneous number of photons of the field and φ =

tan−1(α̌θ+π/2/α̌θ) is the phase of the field. Upon linearization of Eq. 1.54 around

the mean value α =
√
Ieiφ is possible to estimate the fluctuations of the quantum

intensity δI and phase δφ:

δI = |α| δαφ δφ =
1

2|α|
δαφ+π/2 (1.55)

where δαφ are fluctuations parallel to the mean field while δαφ+π/2 are orthogonal to

it. The variance of intensity fluctuations is then ∆I2 = I with relative fluctuations

∆I/I decreasing as 1/
√
I. Since the mean is equal to the variance the statistic

is Poissonian, indeed, this is the quantum shot noise and is a direct consequence

of the discretization of the field. On the other hand, phase variance is inversely

proportional to the mean intensity ∆φ2 = 1/4I. Finally, we can recover the phase-

intensity Heisenberg inequality

∆Î∆φ̂ ≥ 1

2
(1.56)

for a coherent state the equality holds since both intensity and phase, independently,

have the minimum variance.

A more general class of minimum-uncertainty states are the squeezed states. In

general, a squeezed state may have a sub-shot noise variance in one quadrature.

The inequality 1.56 has to hold so that the variance in the other quadrature has to

increase accordingly. They can be generated using the unitary squeeze operator

S(ε) = exp

(
1

2
ε∗ââ− 1

2
εâ†â†

)
(1.57)

where ε = r e2iϕ, so that r indicates the strength of the squeezing while ϕ identifies its

direction in the phase space. The squeezed state |α, ε〉 is obtained by first squeezing

the vacuum and then displacing it

|α, ε〉 = D(α)S(ε)|0〉. (1.58)

The wigner distribution is a bivariate Gaussian distribution, but in this case the

variances are different for the two quadratures. Two special cases are worth dis-

cussing. When ϕ = φ intensity fluctuations are squeezed while phase fluctuations
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1.2 The Fabry-Pérot cavity

are anti-squeezed; viceversa for ϕ = φ+ π/2. If the first case applies, then

∆I =
√
I e−r ∆φ =

er

2
√
I

(1.59)

where it is evident that the inequality 1.56 holds also in this case. In Fig. 1.7 is shown

a schematic representation of a coherent and a squeezed state. The first experimental

observation of squeezed light dates back to 1985 [49].

Figure 1.7: Left: Coherent state. Right: Squeezed state. Here X ≡ αθ and P ≡ αθ+π/2.

The circle and the ellipse are iso-probability curves.

Dynamical equation for a quantum Fabry-Pérot cavity

The equation of motion for the intracavity field in a Fabry-Pérot cavity is obtained

by moving to the Heisenberg representation of the Hamiltonian of Eq. 1.48, however,

as for the mechanical oscillator, for a realistic description of the system dynamics

it is necessary to include in the model fluctuation-dissipation processes. Since the

Hamiltonian for the optical and mechanical resonators is the same, so could be the

treatment in terms of QLEs. The only difference resides in the fact that it is much

more convenient to describe the cavity dynamics in terms of the operator â (and â†)

since coherent states are its eigenstates.

We are interested in the case of a one-sided Fabry-Pérot cavity, since it gives

the best description of our experimental setup. This means that we assimilate the

output mirror (the oscillator) power transmission coefficient into losses, thus, we

define: κe = TmFSR/2, where Tm ≡ T1, κi = ΣFSR/2, where Σ = Σ1 + Σ2 + T2

and, finally, the cavity amplitude decay rate is κ = κe + κi. Assuming a coherent

state as input field and in the frame rotating with the laser frequency ωl ( i.e.,
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Chapter 1. Cavity opto-mechanics

ânew = âolde−iωl t) the equation of motion for the intracavity field is

˙̂a = −(κ− i∆)â+
√

2κe αin +
√

2κe âin +
√

2κi âin,v

〈ân(t)ân(t′)〉 = 〈â†n(t)â†n(t′)〉 = 〈â†n(t)ân(t′)〉 = 0

〈ân(t)â†n(t′)〉 = δ(t− t′) for n = in and n = in, v

(1.60)

Here αin =
√
Pin/~ωl is the input field, Pin in the incident power, âin are quantum

fluctuations coupled to the cavity mode through the input mirror while âin,v is the

vacuum input noise describing all other decay channels (optical losses and transmis-

sion through the end mirror). To see how the coupling constant (
√
κn) between the

cavity mode and the ”photon reservoir” is obtained, look, for example Refs. [50, 51].

Note that the field operators â and âin have a different normalization, the input

field is flux normalized so that 〈â†inâin〉 = Pin/~ωl while the intracavity field in

number normalized so that 〈â†â〉 = nc is number of photons in the cavity at a

given time; this means that the intracavity power is given by Pcav = ~ωlnc/τ . If one

compares Eq. 1.60 with the classical counterpart in Eq. 1.46 the only difference that

catches the eye is a factor
√
τ that accounts for the different normalizations.

Two final remarks have to be made regarding the correlation functions. First,

as already stated they preserve the correct commutation relations between opera-

tors during the time evolution. Second, they are formally identical to those involv-

ing the creation and annihilation operators of the mechanical oscillators, that is,

〈â†(t)â(t′)〉 = nT δ(t − t′) and 〈â(t)â†(t′)〉 = (nT + 1) δ(t − t′), but at optical fre-

quencies nT ' 0 so that the correlation functions reduce to those listed in Eq. 1.60.

Moreover, the cavity mode has more than one decay channel.

1.3 Opto-mechanical coupling

In this section we are going to write the quantum mechanical equations to describe

the opto-mechanical interaction. As stated in the previous section we are interested

in a one-sided Fabry-Pérot cavity. The mechanical oscillator is also the end mirror

of the cavity so that it feels the radiation pressure force F = 2P/c exerted by the

intracavity field. Under the action of this force, the cavity length changes from L to

L + X and in turn the intracavity power is modified since the resonance condition

is different. We have already seen the dependence of detuning on length variations.

With these two simple considerations it is already possible to write the coupled

equations that describe the system in the semiclassical approximation but, since we

18



1.3 Opto-mechanical coupling

have already laid the groundwork, we will directly move to the quantum mechanical

case.

In the following we will assume that the mechanical oscillator motion is slow

compared to the round trip time of a photon in the cavity (adiabatic approximation).

In this way it is possible to keep considering only one optical mode. The Hamiltonian

operator for the coupled system is

Ĥ = ~ωcav (X)â†a+ ~ωm
(
b̂†b̂+

1

2

)
. (1.61)

The cavity resonance frequency is modulated by the (small) motion of the mirror, in

other words the coupling is parametric. Note that the 1/2 term for the optical mode

is missing. The reasons are two: first, when moving to the Heisenberg representation

its contribution disappears. Note that the same apply to the mechanical mode;

second, a more formal derivation (see Ref. [52]) shows that it gives rise to a Casimir

term when one accounts for the different density of optical modes inside and outside

the cavity. This term, however, can be safely neglected for most opto-mechanical

experiments up to date.

Since generally one can safely assume small displacements compared to the cavity

length, we can expand ωcav(X)

ωcav(X) ≈ ωcav +X
∂ωcav(X)

∂X
+ ... (1.62)

generally it is enough to keep the linear term. For the simple cavity we are considering

∂ωcav(X)/∂X = −ωcav/L, reflecting the fact that we are defining X > 0 for an

increase of the cavity length that in turn leads to a decrease in ωcav. The Hamiltonian

in Eq. 1.61 can be written as

Ĥ = ~ωcavâ†a+
1

2
~ωm

(
x̂2 + p̂2

)
− ~g0x̂â

†a (1.63)

where we have defined g0 =
√

2xzpfωcav/L. In the previous equation it is easy to

identify the interaction Hamiltonian as

Ĥint = −~g0x̂â
†â (1.64)

where it is possible to see that the cavity opto-mechanical interaction is funda-

mentally a nonlinear process. The radiation pressure force, then, is given by F̂ =

−dĤint/dX̂.

As in the previous sections, it is necessary to include in the description dissipative

contributions, both optical and mechanical, and the driving by an external laser, αin,
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Chapter 1. Cavity opto-mechanics

described as a coherent state. We just need to add to the QLEs in Eqs. 1.29 and

Eqs. 1.60 the coupling term obtained from Eq. 1.64. In the frame rotating at the

laser frequency ωl the coupled equations of motion are

˙̂x = ωmp̂

˙̂p = −ωmx̂− γmp̂+ g0â
†â+ ξ

˙̂a = − [κ− i (∆0 + g0x̂)] â+
√

2κe αin +
√

2κe âin +
√

2κi âin,v

(1.65)

with correlation functions at temperature T

〈ân(t)ân(t′)〉 = 〈â†n(t)â†n(t′)〉 = 〈â†n(t)ân(t′)〉 = 0

〈ân(t)â†n(t′)〉 = δ(t− t′) for n = in and n = in, v

〈ξ̂(t)〉 = 0

〈ξ̂(t)ξ̂(t′)〉 =
γm
ωm

∫
dω

2π
e−iω(t−t′)ω

[
coth

(
~ω

2kBT

)
+ 1

] (1.66)

where ∆0 is the detuning for a vanishing optomechanical coupling. All noise terms

considered are unavoidable fundamental noise sources. However in a realistic scenario

two additional technical noises can play a relevant role: (i) amplitude noise, which

is taken into account assuming αin → αin + αI(t), where αI(t) is a real, zero-mean

Gaussian stochastic variable; (ii) phase/frequency noise, which is caused both by

the laser frequency fluctuations, and by the fluctuations of the cavity length (and

therefore of its resonance frequency) which are not due to the considered mode of

the mechanical resonator. The latter are typically much more relevant and can be

described writing ωl−ωcav → ∆0 + φ̇(t), where φ̇(t) is a zero-mean frequency noise.

As a consequence eqs. 1.65 become

˙̂x =ωmp̂

˙̂p =− ωmx− γmp+ g0â
†â+ ξ

˙̂a =−
[
κ− i

(
∆0 + φ̇+ g0x̂

)]
â+
√

2κe αin

+
√

2κe αI +
√

2κe âin +
√

2κi âin,v

(1.67)

Amplitude noise acts as additive noise on the cavity modes, while frequency noise is a

multiplicative noise, affecting the cavity field in the same manner of the fluctuations

of the resonator position x̂.

We want to generate and manipulate optical quantum fluctuations and therefore

we consider the motion of the system around a steady state characterized by the

intracavity electromagnetic field in an approximate coherent state of amplitude αs,

and the micro-oscillator at a new position xs, by writing:

x̂ = xs + x p̂ = ps + p â = αs + a (1.68)
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1.3 Opto-mechanical coupling

Substituting Eqs. 1.68 in Eq. 1.67, and retaining only the 0− th order contributions

one gets

ps = 0 xs =
g0

ωm
|αs|2 αs =

√
2κe

κ− i∆
αin (1.69)

where ∆ = ∆0 + g2
0|αs|2/ωm. The exact QLE for the fluctuation operators x,p and

a are given by

ẋ =ωm p

ṗ =− ωmx− γmp+ g0(αsa
† + α∗sa) + ξ + g0a

†a

ȧ =− (κ− i∆)a+ i g0αsx+ iαsφ̇+ i g0x a+ i φ̇a

+
√

2κe(αI + ain) +
√

2κiain,v

(1.70)

The nonlinear terms are g0a
†a, i g0x a and i φ̇a. The first two terms have negligible

effect when |αs| � 1, which is usually satisfied, and therefore they can be safely

neglected. The last term is a multiplicative noise term and it is not obvious if and

when it can be neglected since its evaluation requires the knowledge (or realistic

hypotheses) of the frequency and displacement noise spectrum on a wide frequency

range. Its treatment is outside the purpose of this thesis and we shall neglect this

last term in the following. Keeping only linear terms Eqs. 1.70 become

ẋ =ωm p

ṗ =− ωmx− γmp+ g0(αsa
† + α∗sa) + ξ

ȧ =− (κ− i∆)a+ i g0αsx+
√

2κeãin + Ξ

(1.71)

where we have introduced two noise terms

Ξ = iαsφ̇+
√

2κiain,v

ãin = ain + αI
(1.72)

describing all detrimental fluctuations acting on the cavity field. At this point we

can use Eq. 1.47 to evaluate the reflected field, that is, aout = −ãin+
√

2κe a. Taking

the Fourier transform of Eqs. 1.71 and solving for a(ω) and x(ω) one gets

aout(ω) =A1(ω) ãin(ω) + A2(ω) ã†in(ω)

+ A3(ω) Ξ(ω) + A4(ω)Ξ†(ω) + AT (ω) ξ(ω)

x(ω) =B1(ω)
(√

2κeã
†
in + Ξ†

)
+B2(ω)

(√
2κeãin + Ξ

)
+ χeff (ω) ξ(ω)

(1.73)
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where we have defined the transfer functions

A1(ω) =

[
−1 +

2κe
K(ω)

(
1 + i g2

0|αs|2
χeff (ω)

K(ω)

)]
A2(ω) =

2κe
K(ω)

[
i g2

0α
2
s

χeff (ω)

K∗(−ω)

]
A3(ω) =

√
2κe

K(ω)

[
1 + i g2

0|αs|2
χeff (ω)

K(ω)

]
A4(ω) =

1√
2κe

A2(ω)

AT (ω) =

√
2κe

K(ω)
[i g0αsχeff (ω)]

B1(ω) =g0αs
χeff (ω)

K∗(−ω)

B2(ω) =g0α
∗
s

χeff (ω)

K(ω)

(1.74)

with K(ω) = κ− i(∆ + ω) and where

χeff (ω) = ωm

[
ω2
m − ω2 − i γmω + i ωmg

2
0|αs|2

(
1

K∗(−ω)
− 1

K(ω)

)]−1

(1.75)

is the effective mechanical susceptibility modified by the opto-mechanical coupling.

At this point we are finally ready to discuss some key aspects of the opto-

mechanical interaction.

Bistability

When looking at the steady state solution expressed in Eqs. 1.69 it is possible to

verify that trying to calculate the mean number of photons in the optical mode one

ends up with a third-degree equation, that is

nc

(
κ2 + ∆2

0 +
2g2

0∆0

ωm
nc +

g4
0

ω4
m

n2
c

)
= 2κe|αin|2. (1.76)

This means that above a certain threshold the system shows a bistable behavior.

This is due to the radiation pressure force that modifies the potential felt by the

mechanical oscillator to the point where it shows two minima. Note that the same

effect can be generated by photothermal forces [53].

Dynamical backaction

For a given detuning of the input field from the cavity resonance, the intracavity

field exerts a radiation pressure force on the mechanical oscillator. Under the action
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Figure 1.8: Opto-mechanical bistability. The curve represents the mean number of intra-

cavity photons nc as a function of the dimensionless empty cavity detuning ∆0/κ. Dashed

line indicates the unstable region.

of this force the mean position of the oscillator is changed, in turn this modifies the

optical resonance and thus the intracavity power and the radiation pressure that

goes with it. This closed loop effect, usually referred to as dynamical backaction, is

completely described in the definition of the effective mechanical susceptibility in

Eq. 1.75. The intracavity field essentially modifies the spring constant felt by the

mechanical oscillator. Indeed, we can define the optical spring [54, 55] as

Kopt =mω2
opt = mRe

[
iωmg

2
0|αs|2

(
1

K∗(−ω)
− 1

K(ω)

)]
=2mωmg

2
0|αs|2∆

κ2 + ∆2 − ω2

(κ2 + ∆2 − ω2)2 + 4κ2ω2

(1.77)

The sign of the optical spring depends on the detuning ∆ of the input field. When

∆ < 0 (red-detuned) the mechanical spring is ”softened” so that the effective me-

chanical resonance frequency decreases, viceversa, for ∆ > 0 (blue-detuned) the

mechanical spring is ”hardened”.

Moreover, since the cavity field has finite response time, the radiation pressure

force will be out phase with the mechanical oscillator motion. As for the optical

spring, the sign of this phase depends on the detuning so that the mechanical res-

onance is cooled for ∆ < 0 and is heated for ∆ > 0. Looking again at Eq. 1.75 we
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can define the optical damping rate as

γopt = − 1

ω
Im

[
iωmg

2
0|αs|2

(
1

K∗(−ω)
− 1

K(ω)

)]
= − 4ωmg

2
0|αs|2κ∆

(κ2 + ∆2 − ω2)2 + 4κ2ω2

(1.78)

so that the total mechanical damping rate becomes

γom = γm + γopt (1.79)

the mechanical effective susceptibility can be written as

χeff (ω) =
ωm

(ω2
m + ω2

opt − ω2 − iωγom)
. (1.80)

A clean experimental evidence of these two effects in an opto-mechanical cavity was

reported in 2006 by Arcizet et al. [56]. In Fig. 1.9 it is possible to see the dependance

on the detuning of γom and of the frequency shift induced by the optical spring, for

different values of input power. Note that, when γom vanishes, the system experiences

a parametric instability: any fluctuation grows exponentially up to a saturation

value, leading to an oscillation of the mirror at constant amplitude. This effect is also

referred to as self-induced oscillations (or ”mechanical lasing”). This instability can

be detrimental if one needs to work at small detunings. When the opto-mechanical

coupling (or the input power) is strong enough, the minimum achievable detuning

will be limited by the combined effect of frequency and displacement noise since,

under the action of these noise sources, the oscillator can move to the unstable region

even if the mean position is well outside it. For a given detuning, the ratio between

frequency shift and optical damping rate depends on the ratio ωm/κ: in the resolved

sideband regime (κ � ωm) the backaction effect manifests strongly on the optical

damping rate with negligible frequency shift, and viceversa in the bad cavity regime

(κ� ωm).

As for the case of active feedback cooling, the effect of the dynamical back action

can be viewed as a change in the thermal bath temperature. We define the effective

temperature, assuming small frequency shifts, as

Teff ' Tinit
γm
γom

= Tinit
1

1 + C
(1.81)

where we have introduced the cooperativity C = γopt/γm, a parameter often used as

a figure of merit. Note that this expression derives from classical mechanics and it

ceases to be valid for sufficiently low Teff . A complete quantum mechanical treat-

ment can be found in Ref. [57].
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1.3 Opto-mechanical coupling

Figure 1.9: Opto-mechanical damping ratio (left) and frequency shift (right) as a function

of the dimensionless empty cavity detuning ∆/κ for three values of input power. Shaded

area corresponds to the unstable domain.

Noise properties of the output field quadratures

Another way to see the opto-mechanical backaction starts from the consideration

that, in a Fabry-Pérot cavity, displacement and frequency or phase noise are com-

pletely undistinguishable so that amplitude fluctuations of the cavity fields generate

phase fluctuations (through the mirror motion) that in turn affect amplitude fluctu-

ations. This means that amplitude and phase fluctuations are correlated. In practice,

the same process that gives rise to the optical spring and the cooling/heating of the

mechanical resonance can generate squeezing. In other words, the output field can

present a sub-shot noise statistic. This effect is usually referred to as ponderomotive

squeezing [6, 7].

The noise spectrum of the quadrature at phase θ is defined as

2π Sθout(ω)δ(ω + ω′) = 〈aθ(ω)aθ(ω
′)〉 (1.82)

where aθ is given by Eq. 1.49. Since we are using the correlation functions in the

Fourier domain, it is useful to write them here (the non-null ones), even if they are

derived from Eq. 1.66. For quantum operators we have

〈ain(ω)a†in(ω′)〉 = 2π δ(ω + ω′)

〈ain,v(ω)a†in,v(ω
′)〉 = 2π δ(ω + ω′)

〈ξ(ω)ξ(ω′)〉 = 2π δ(ω + ω′)
γm
ωm

ω

[
coth

(
~ω

2kBT
+ 1

)]
.

(1.83)

For the two technical noise sources, we will assume a white noise spectrum. Even if

in most experimental system this is not the case, as we will see, we are interested
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in a relatively small frequency band centered around the mechanical resonance so

that the white noise assumption is a good approximation. The correlation functions

in the Fourier domain for the additional amplitude and frequency noise are

〈φ̇(ω)φ̇(ω′)〉 = 2π Sφ̇φ̇ δ(ω + ω′)

〈αI(ω)αI(ω
′)〉 = 2π SαIαI

δ(ω + ω′).
(1.84)

At this point we have all that we need, we just have to substitute Eq. 1.73 into

Eq. 1.49 and calculate 〈aθ(ω)aθ(ω
′)〉. After some algebraic manipulations one finds

Sθout(ω) =Sain(ω)
[
|A1(ω)|2 + |A2(−ω)|2 + 2Re

[
A1(ω)A2(−ω) e−2iθ

]]
+ Sain,v

(ω) 2κi
[
|A3(ω)|2 + |A4(−ω)|2 + 2Re

[
A3(ω)A4(−ω) e−2iθ

]]
+ Sξξ(ω)

[
|AT (ω)|2 + |AT (−ω)|2 + 2Re

[
AT (ω)AT (−ω) e−2iθ

]]
+ SαIαI

(ω) |η1(ω)e−iθ + η∗1(−ω)eiθ|2

+ Sφ̇φ̇(ω) |η2(ω)e−iθ + η∗2(−ω)eiθ|2

(1.85)

where we have defined η1(ω) = A1(ω) + A2(ω) and η2(ω) = iαsA3(ω) − iα∗sA4(ω).

Generally the only measurable quantity is the symmetrized spectral density. Using

the definition in Eq. 1.28, we have S
θ

out(ω) =
(
Sθout(ω) + Sθout(−ω)

)
/2 from which it

is possible to evaluate the angle θmin(ω) that minimizes the quadrature spectrum at

every frequency, that is

θmin(ω) =
1

2
arctan

[
2S

π/4

out (ω)− S0

out(ω)− Sπ/2out (ω)

S
0

out(ω)− Sπ/2out (ω)

]
(1.86)

and using θ = θmin(ω) in Eq. 1.85 one can calculate the minimum attainable PSD

Smin(ω). With our normalizations the output quadrature is squeezed at the fre-

quency ω if Smin(ω) < 1. The first observation of squeezed light generated thanks

to the opto-mechanical interaction has been reported by Brooks et al. in 2012 [18]

who exploited an experimental setup where the role of the mechanical oscillator was

played by a cloud of ultra-cold atoms. The same result has been obtained with a

macroscopic mechanical oscillator (a photonic crystal) by Chan et al. in 2013 [19]

and, later on, an even stronger squeezing has been reported by Purdy [20] et al..

Displacement spectrum

The total displacement Spectrum can be evaluate from Eqs. 1.73, Eqs. 1.74 and the

definitions of the correlation functions for the various noise sources given previously.
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We are going to separate the total spectrum into three contributions: Sth(ω) due to

thermal noise, Sq(ω) due to quantum fluctuations of the intracavity field and Scl(ω)

due to classical amplitude and frequency noise. These can be calculated to be

Sth(ω) = |χeff (ω)|2 Sξ(ω)

Sq(ω) = 2κe|B2(ω)|2 Sain(ω) + 2κi|B2(ω)|2 Sain,v
(ω)

Scl(ω) = |i αsB2(ω)− i α∗sB1(ω)|2 Sφ̇φ̇(ω)

+ 2κe|B1(ω) +B2(ω)|2 SαIαI
(ω)

with

Sxx(ω) =Sth(ω) + Sq(ω) + Scl(ω)

(1.87)

where, to restor physical unit, one just multiplies Sxx(ω) by 2 x2
zpf . The term Sth(ω)

of the cooled(heated) mechanical resonance, with the right parameters set, can be

extremely close to what one would expect from just the zero point motion. The

first experimental evidence of a mechanical oscillator on its ground state in an opto-

mechanical cavity has been reported only in 2011 by Chan et al. [21]. The term Sq(ω)

represents the effect of the radiation pressure shot noise (RPSN) that can excite the

mechanical resonance and in principle give a contribution dominant with respect to

thermal force noise. The first direct observation of its effects in an optomechanical

cavity has been reported in 2013 by Purdy et al. [17].

1.3.1 Noise budget

In this section we want to discuss the different contributions of the various noise

sources to the quadrature of the reflected field and the displacement spectrum of the

mechanical oscillator. To do this, we are going to use opto-mechanical parameters

that are relevant to our experimental setup, as we will show in the next chapters. For

the mechanical oscillator these are: effective mass m = 10−7Kg, resonance frequency

ωm/2π = 105Hz and a quality factor of Q = 106. As for the optical parameters,

we are going to consider an input field of wavelength λ = 1064nm with power

Pin = 1mW , a cavity of length Lcav = 0.5mm with optimal coupling, that is

ζ = 0, and power transmission coefficients Tm = Tl = 50 ppm, where Tl includes

optical losses due to absorption, diffusion and transmission through the end mirror

(oscillator). With these parameters we are considering FSR = 300GHz and a cavity

half-linewidth κ/2π = 2κe/2π = 2κi/2π = 2.4MHz so that the optical Finesse is

F ' 63000.

We also need to define the spectral densities of the noise sources. With our nor-

malization the shot noise is Sain(ω) = Sain,v
(ω) = 1; for thermal noise we will assume
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thermal equilibrium with a bath at the liquid Helium temperature Tbath = 4.2K. As

for the classical amplitude noise we consider an input power PSD that is 3dB over the

shot noise at P0 = 20mW , meaning that we have SαIαI
(ω) = Pin/4P0. The overall

frequency noise is a combination of displacement noise due to other modes of the sys-

tem not directly included in the model and the actual excess frequency noise of the

input field. We assume for the former Sdisp
φ̇

(ω) = g2
0 (5 10−35m2/Hz) (rad/s)2/Hz

while for the latter we use Sαin

φ̇
(ω) = 0.5Hz2/Hz. The total frequency noise PSD

is then Sφ̇φ̇(ω) = Sdisp
φ̇

(ω) + (2π)2 Sαin

φ̇
(ω). The remaining free parameters are the

detuning and the angle θ that defines the quadrature we want to analyze. We fix

the former to ∆n = ∆/κ = −0.01, in this way the mechanical resonance is cooled

and shifted to lower frequencies. The latter is fixed at θn = θmin(ωm) = −18mrad.

Note that all given spectral densities are bilateral.

Figure 1.10: The black curve is Smin(ω) while the curves from red to yellow are S
θ
out

at fixed values of θ, increasing from −20mrad(red) to −16mrad (yellow) with steps of

1mrad. All curved are normalized to the shot noise level (dashed gray line). The lower

dashed line indicates the maximum squeezing ' 0.75.

Before discussing the noise budget, we show in Fig. 1.10 the optimum spectrum

Smin(ω) together with S
θ

out for different values of θ around θn. Note that S
θ

out is the

only measurable quantity (for example with homodyne detection) and by changing

28
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θ, that is choosing a different quadrature of the output field, one can control the

maximum measurable squeezing and its bandwidth.

Figure 1.11: Noise budget of S
θ
out (Black) with θ = θn. All noise sources contributions

are shown: thermal ξ(red), quantum input ain(green), vacuum fluctuations ain,v (blue),

classical amplitude αI(dashed-dark yellow) and classical frequency noise (dashed-green).

We show in Fig. 1.11 the noise budget for Sθout(ω) with θ = θn. Thermal noise con-

tribution (red) shows a peak at the effective mechanical resonant frequency; a lower

Q factor, or bath temperature, would mask all quantum correlations at frequencies

close to ωeff thus stating the need for a cryogenic environment and justifying efforts

to increase the performances of the mechanical oscillator in terms of losses. Vacuum

fluctuations give the most detrimental contribution when looking at frequencies far

from the mechanical resonance, where the contribution of the quantum noise through

the input mirror (green) is extremely small. Reducing its contribution at a given Fi-

nesse would not only increase the opto-mechanical coupling thanks to the higher

intracavity field but would also increase the bandwidth upon which squeezing is at-

tained. Classical frequency noise (dashed green) has a strong wideband contribution,

it becomes the dominant term for a sufficiently low effective temperature (strong

input field or large detuning) since the mechanical spectral peak gets buried in the

displacement noise floor. However, it has the peculiarity that it gives a vanishing
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contribution at the bare mechanical resonance frequency(see Chap. 5). Finally, clas-

sical amplitude noise (dashed-yellow) gives a negligible contribution for the chosen

parameters but particulare care has to be taken to reach the assumed value for

SαIαI
(ω).

Figure 1.12: Noise budget of Sxx(ω) (Black). All noise sources contributions are shown:

thermal (red), quantum (green) and classical (blue). We also show the nominal thermal

noise of the free oscillator (dashed-gray), the frequency/displacement noise floor (dashed-

blue) and the ”measurable” total displacement noise (dashed-black).

We show in Fig. 1.12 the noise budget for Sxx(ω) (black). The mechanical spectral

peak is shifted to lower frequencies, with ωeff = 99.2 kHz, has an effective quality

factor Qeff = 750 (cooperativity C = 1.33 103) and an effective temperature of

Teff = 3.1mK(〈nT 〉 = 650). The quantum backaction Sq(ω) (green) and thermal

noise Sth(ω) (red) give an equivalent contribution implying that, in principle, the

direct effect of RPSN could be measurable. However, the classical excess noise Scl(ω)

(blue) is the dominant term and can easily mask the RPSN contribution. As for the

quadrature spectra, classical amplitude noise is negligible so that Scl(ω) is entirely

due to frequency noise.

Measurements of the displacement PSD are usually performed with interferomet-

ric techniques, typically the Pound-Drever-Hall (PDH) detection scheme [58, 59],

where the frequency noise (dashed blue line in Fig. 1.12) behaves as an additive

30
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noise source to the detection output. A rough estimation of the signal-to-noise ratio

is given by the sum S
meas

xx (ω) = Sxx(ω)+Sφ̇φ̇/g
2
0 (shown in Fig. 1.12 with the dashed

black line). However, keep in mind that Sxx(ω) and Sφ̇φ̇ are correlated so that the

correct calculation of the measurable displacement spectra needs to take into account

the details of the measurement technique and how this correlation manifests.
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Chapter 2

Design and fabrication of low loss

MOMS resonators

In this chapter we describe the design strategies and the developed fabrication pro-

cess of opto-mechanical devices specifically designed to ease the detection of pon-

deromotive squeezing. As we have seen in the previous chapter, the main difficulty

for the observation of this phenomenon is due to the overwhelming effects of classical

noise sources of thermal origin with respect to the weak quantum fluctuations of the

radiation-pressure. Therefore, a low thermal noise background is required, together

with a weak interaction between the micro-mirror and this background (i.e., high

mechanical quality factors Q). The device should also be capable to manage a rel-

atively large amount of dissipated power at cryogenic temperatures (down to a few

K).

In the development of our opto-mechanical devices, we are exploring an approach

focused on relatively thick silicon oscillators with high reflectivity coating [60, 61].

The relatively high mass is compensated by the capability to manage high power

at low temperatures (down to 1 K), owing to a favorable geometric factor (thicker

connectors compared to other commonly used devices) and the excellent thermal

conductivity of silicon crystals at cryogenic temperatures [62]. Many experiments

have demonstrated that silicon mechanical resonators (10× 10× 10 cm3) can show

at such temperatures a loss angle, that models structural damping, as small as

Q−1 = 10−9, and that in smaller systems this figure reduces proportionally to their

characteristic size (either thickness or width) [33, 35, 63]. Therefore, the expected

loss angle for a device with a thickness of 70 µm is Q−1 ' 10−6, provided that all

other loss mechanisms are kept under control. In particular, the loss angle of the high

reflectivity coating remains of the order of φc = 5× 10−4 [64] even at liquid helium
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temperature. Indeed, a quality factor of the order of ∼ 106 should be high enough to

allow, in principle, the detection of squeezed light in the 100 kHz frequency range,

as we have shown at the end of Chap. 1.

Actually, for our latest generation of devices, we measured mechanical quality

factors up to 2 106 and optical finesse ranging from F ' 4 104 to F ' 6.5 104 at

cryogenic temperatures. These results are published in Refs. [24, 25, 26].

In Sec. 2.1 we present the design strategy used to develop the micro-resonators

that allowed us to obtain the results just mentioned. In particular, we devised three

novel geometries. In Sec. 2.2 we describe the fabrication steps specifically developed

to integrate the high-reflective coating deposition(See Ref. [27]).

2.1 Design strategy

According to the description of the cavity dynamics, some fundamental requirements

for the oscillator may be derived by comparing the power spectral density (PSD) of

the radiation-pressure noise and the PSD of the thermal noise. For instance, in view

of the production of ponderomotive squeezing, we require that the radiation-pressure

force noise, due to quantum fluctuations, dominates over displacement thermal noise

at temperature T [6, 7]:

~ωlPin
4

c2

(
2Tm
Tm + Σ

)2(F
π

)2

> 2kBT
mωm
Q

(2.1)

this simple relation is valid in the bad-cavity regime (ωm � κ) and for vanishing

detuning. This equation defines the region where the generation of squeezed light can

be obtained as a result of the quantum opto-mechanical correlations between field

quadratures. Focusing on the right-hand side, we see that the thermal noise should be

minimized by reducing the effective mass of the resonator and its frequency (on the

contrary, for studying the ground state of the oscillator high frequencies are favored

by the requirement ~ωm > kBT ). Furthermore, the quality factor must be enhanced.

From the left-hand side, we see that F should be as high as possible together with

the laser input power Pin, provided that the device is capable of dissipating the

resulting power with a tolerable temperature increase and that one can avoid the

rise of static or dynamic instabilities.

Let us start by addressing the enhancement of the quality factor. As we have

already mentioned at the beginning of Chap. 1, there are three main loss processes

that need to be controlled.
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Inhomogeneous structural damping

Materials-relate dissipation, usually referred to as structural damping, described by

an imaginary part of the Young’s modulus in a homogeneous body, is caused by a

uniform distribution of impurities and dislocations. However, due to the presence of

the high-reflective coating, the typical device has an inhomogeneous loss distribution.

Actually, the overall mechanical performances of the device are mainly limited by

the optical coating despite its typical thickness being of the order of 6µm, small

compared a the total thickness of the device that is around 70µm. If φs(r) is the

loss factor at position r, the energy dW dissipated in one cycle in the volume element

dV is E(r)φs(r)dV, where E(r) is the energy stored in the volume element during

the motion. In the device, the total dissipated energy on one cycle is

∆Ws =

∫
E(r)φs(r)dV (2.2)

where both the energy density and the loss factor depend on the position. As a

consequence, the total loss depends on the shape of the displacement within the

resonator: modal shapes involving large strain in more dissipative parts imply higher

losses than modal shapes where the same part are less strained.

This suggests two courses of action. First and foremost, the coated surface should

be as small as possible. How small it depends on the specific Fabry-Pérot cavity that

one wants to implement. Since it is necessary to keep negligible diffraction losses,

the coated area should be at least several cavity waists. This conclusion may seem

trivial, but is challenging from a technological point of view. Second, the device

structure have to be designed is such a way that, for the normal mode of interest,

the coated substrate is subjected to the smallest strain possible during the motion.

This leads to complicated cleaver geometries.

Thermoelastic damping

Thermoelastic dissipation was first investigated by Zener [34]. When a solid, with a

nonzero coefficient of thermal expansion, undergoes a vibration other than a pure

torsion, the strain field generates a thermal gradient and thus a heat flow which

dissipates elastic energy. This fundamental mechanism sets the loss in micro opto-

mechanical systems (MOMS) devices and precision instrumentation at room tem-

perature. For this reason, it is the subject of an active area of experimental [65, 66],

theoretical [67] and numerical [68] research. Just in the case of pure flexure, the loss
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factor can be calculated analytically as

φZ =
Y α2Tbath
ρCV

ωτZ
1 + ω2τ 2

Z

(2.3)

where, α is the thermal expansion coefficient, CV is the specific heat per unit volume

of the material, Y the Young modulus, ρ is the density and Tbath is the temperature.

The oscillator thickness h is involved through the material relaxation time τZ =
h2ρCV

π2κ
, where κ is the thermal conductivity. These equations give some insight on

the behavior of this mechanism, even though real losses depend on the geometry and

the anisotropy the elastic structure. For instance, in the case of a silicon cantilever

with h = 70µm, we have τZ = 0.3µs and the expected loss angle at 250 kHz is

about 7 10−5. This figure limits the Q factor of a silicon flexure to Q < 1.4 104

at room temperature, while better performances could be achieved at cryogenic

temperatures thanks to the changes in the thermal properties of the material [33].

We also note that at these frequencies the thermoelastic dissipation of the optical

coating is negligible, as its average thermal conductivity is 10 times smaller than in

silicon [69] and the thermoelastic heat flow is accordingly smaller.

Clamping losses

The third source of loss in the system is the coupling between the main resonant

mode of the device and the internal modes of the wafer. Actually, the loss factor of

the wafer is well above the intrinsic loss of silicon, due to the dissipation introduced

by the sample holder. Moreover, some kind of coupling with the device is practically

unavoidable, as the membrane modes of the wafer cover the full frequency spectrum

with a spacing that, in our case, is of the order of 2 kHz. To address this problem,

the main resonator is connected to the wafer through a heavy suspended frame that

acts as a passive isolation stage. The frame can be seen as a second oscillator with

fundamental resonance frequency much lower than that of the mode of interest of

the main resonator.

If we consider only a simple one-dimensional model, it is straightforward to solve

the three-mode model and evaluate the effective loss factor of the resonator mode

when a lossy wafer mode is at a nearby frequency. We assume for the suspended

frame a mass of Ms = 7mg and a resonant frequency fixed at 30 kHz, while for the

mirror we consider Mr ' 100µg and ωm/2π = 130 kHz. The equivalent mass of a

typical wafer mode at 100 kHz is MW = 0.2 g1. According to the results shown in

Fig. 2.1(a), a resonator with a loss angle φ ' 5 10−6 is not affected by a wafer mode

1These figures are typical results of numerical simulations on our devices, as we will see shortly.
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with loss angle φ = 10−3, resonating at the same frequency. On the other hand, the

loss of the same resonator directly attached to the wafer would be increased up to

10−3(Fig. 2.1 (b)).

Figure 2.1: Filtering effect of the suspended frame. (a) Simulated loss factor of the main

resonator mode with the isolation wheel. For each mode, elastic constants K are obtained by

the values of resonant frequency and equivalent mass. Even if a loss angle as low as 5 10−6

is assigned to the resonator and the suspended frame, the resulting total loss factor of the

resonator mode can just worsen by less than one order of magnitude, depending on the

frequency and the loss of the wafer mode. (b) Simulated loss factor of the main resonator

mode without the isolation frame. In this case, the resulting loss factor is strongly correlated

to the loss of the wafer mode.

Overall mechanical design

From the above discussion, it is clear that the dissipative contribution from different

phenomena can be taken into account only by means of numerical simulations. This

usually done with software based on the Finite Element Method (FEM), in our case,

ANSYS Multiphysics. The FEM model of the device is based on a three-dimensional
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mesh that discretizes the structure, making the problem solvable. The mechanical

response of the device is evaluated when it is driven by a harmonic pressure over the

surface of the mirror. To be consistent with measurements, the spatial distribution

is the same as the laser beam intensity profile (Gaussian shape) and the resulting

displacement of the mirror’s surface is weighted by the same gaussian profile (see

App. A). The model can simulate, separately or in a cumulative way, all the three

kinds of dissipation under study. Thermoelastic loss is evaluated from material prop-

erties while structural damping requires as input the loss angle of silicon and of the

optical coating. When thermoelastic losses can be made negligible, the structural

loss of silicon wafers is found well below the value of φSi = 10−6 [70, 71], mentioned

earlier, and that we assume as reference in our calculation. As for the coating, the

loss angle is still in the range φ = (3− 6) 10−4 [64, 72] in spite of the large amount

of theoretical and experimental developments carried on by scientific community in-

terested in gravitational wave detectors. Therefore, we assume as reference the value

φ = 5 10−4 that well represents the state of-the-art for optical coatings like the one

on top of our silicon surface.

For each resonant mode under study the quality factor is calculated as Q = φ−1
T ,

with φT , the total loss angle, defined as

φT =
∆WT

2πWT

. (2.4)

Here, WT is the total energy stored in the resonant mode and ∆WT the total energy

loss per oscillation cycle due to all the dissipation processes. In our case, the device

is made of subsystems with different, but homogeneous, loss angle, namely the res-

onator (R), the coating (C) and the frame (F). As a consequence, we can separate

the integral in Eq. 2.2 into three contributions

∆WT = φF

∫
F

E(r)dV + φR

∫
R

E(r)dV + φC

∫
C

E(r)dV (2.5)

where the volume integrals are evaluated over each subsystem and φF , φR, φC are

respectively the loss factors of the frame, the resonator(silicon) and the coating.

Therefore, the total loss is given by the sum of the loss angles of each subsystems,

weighted by the ratio of the strain energy in the respective subsystem to the total

strain energy of the mode

φT = φF
WF

WT

+ φR
WR

WT

+ φC
WC

WT

. (2.6)

In the geometry optimization the first and the last terms have to be minimized.
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Another aspect that has to be considered, regards higher order modes of the

frame. Particular care has to be used in order to avoid that one of these modes

ends up with a resonance frequency too close to the mode of interest of the main

resonator. If this happens, the two modes become coupled and the quality factor of

the mirror’s mode is spoiled by the low Q mode of the frame.

Optical properties

As stated at the beginning of this section, optical losses are a critical aspect of

the device. The finesse F is critically dependent from the initial wafer roughness

and the mirror’s surface cleanliness. Roughness and inhomogeneity of the coating

structure are inherent in any integrated optical device and their more conspicuous

effect is to scatter light thus leading to power attenuation [73]. As a first step, we

set the requirements on the optical losses of the device. Such requirements give

rise to an upper limit on the RMS roughness that should be preserved during the

fabrication steps. A quantity that we evaluate for controlling the mirror quality is

the total integrated scatter (TIS), that is the ratio of the integrated scatter power

to the reflected specular power, evaluated from Davies’ formula [74, 75]. The TIS is

considered together with the relation of the finesse with the transmission and the

optical losses

Σ =

(
4π

λ

)2

σ2 +A

F =
2π

Tm + Σ

(2.7)

where λ is the wavelength (for our Nd:YAG laser λ = 1064nm); A is the contribu-

tion to the total optical losses of absorption and diffraction due to finite mirror size;

σ2 =
∫
G(r)d(r) d2r. Here d(r) stands for the differences between the mirror surface

and the ellipsoidal best interpolated surface, and G(r) is the Gaussian weight corre-

sponding to the laser beam intensity on the mirror: G(r) = (2/πω2
0) exp(−2r2/ω2

0)

where ω0 is the beam waist.

Equations 2.7 set the constraint for the upper limit of the RMS roughness of

the wafer according to the cavity specifications. We consider for instance a Fabry-

Pérot cavity with a Tm = 50 ppm silica input mirror having a nominal laser waist

of 43µm and that allows negligible diffraction losses on its surface. According to

Equations 2.7, a RMS roughness lower than 0.5nm is needed to obtain an optical

loss ≤ 35 ppm. This level of roughness must be guaranteed in a circular region with

a diameter of about 250µm, corresponding to 5 − 6 times the laser waist. These
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requirements are very tight and a proper choice of the process steps should be taken

into account.

Device geometries

With the strategy and methodology described up until now, we designed three ty-

pologies of MOMS. In Fig. 2.2 and Fig. 2.3 we show the scanning electron microscope

(SEM) images for typical devices. All three geometry types include the isolation

frame realized from the full thickness of the wafer. In Fig. 2.2(a) (and (b)) we show

Figure 2.2: SEM images of the double wheel ”Low-deformation” oscillator; (a) front and

(b) back side. The device has the outer massive frame working as mechanical filtering

system and decoupling the inner resonators from the supporting wafer. The mirror can be

seen as a bright disk on the resonating structure.

the front (back) side of the ”low-deformation mirror” [25] (also called double wheel

oscillator). The resonator is formed by the central mirror, covered with the highly

reflective optical coating (visible as the brighter disk at the center), suspended by a

specifically designed elastic structure. This structure made of alternate torsional and

flexural springs allows the displacement in the direction orthogonal to the mirror

surface with a minimal internal deformation of the mirror itself. For these devices

the strain energy ratio of the coating WC/WT is of the order of 4 10−3. We produced

several different versions of the design, resonating in the range 35 − 250 kHz and

with equivalent masses in the range 70− 250µg. The diameter of the coated surface

ranges from 800µm in larger devices, resonating at low frequencies, to 400µm in the

high frequency versions. Such large mirrors allow negligible diffraction losses even
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in non critical cavities. The fundamental modes of the heavy frame is about 30 kHz

for all devices. The second type of resonator, Fig. 2.3(c) (and (d)) is based on the

Figure 2.3: SEM images (front and back side) of: double paddle oscillator (c,d) and quad-

paddle oscillator (e,f). Both devices have the outer massive frame working as a mechanical

filtering system and decoupling the inner resonators from the supporting wafer. The mirrors

can be seen as bright disks on the resonating structures.

double paddle oscillator (DPO) design [76], and consists of two inertial members, a

head and a couple of wings, that are connected by a torsion rod, called the neck (see

Fig. 2.4(a)). The wings are connected to the outer frame by another torsion rod, the

leg. This system can be visualized as a coupled oscillator consisting of two masses

(head and wings) and of two springs (neck and leg) that twist or bend in different

directions, originating several composite vibration modes [66]. The antisymmetric

torsion modes (AS) consist of a twist of the neck around the DPO symmetry axis
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and a synchronous oscillation of the wings. The head rotates around the neck axis

while the wings rotate around an axis that is roughly orthogonal to it. The rotation

can be concordant (AS1) or discordant (AS2). For these AS modes the elastic energy

is primarily located at the neck, where the maximum strain field occurs during the

oscillations, while the leg remains at rest and the foot can be supported by the outer

frame with negligible energy dissipation. The third type of devices, the quad paddle

Figure 2.4: DPO and QPO oscillators. (a) Modal shape of the AS1 mode of the DPO.

(b) Modal shape of the AS1 mode of the QPO. (c) Modal shape of the AS2 mode. The

contour graph plotted over the modal shapes shows the average elastic energy stored in the

device during an oscillation cycle (relative values of energy from 0 to the maximum value).

In both cases the maximum value is in the neck.

oscillator (QPO), is an innovative design derived from the DPO. It consists of three

inertial members, the head and two couples of wings, connected by the neck torsion

rods (see Fig. 2.4(b) and (c)). Here again, some modes induce only a very small

strain in the legs and can be supported by the outer frame with a negligible energy

dissipation. We are dealing in particular, again, with the antisymmetric modes (AS1

and AS2). Due to the considerable modal density of this device, special care has been

taken to avoid the superposition of the AS with a low-Q flexural modes. It is also

possible to exploit the wing torsion (WT) mode, where the head remains at rest

because the neck is twisted in opposite directions by the synchronized flapping of

the wings. Obviously, the vibration of the WT mode can be detected only by using

mirrors placed over the wings.

The remarkable properties of the AS and WT modes is that they are nodally

suspended so that the frame strain energy ratio WF/WT is of the order of 10−4.

This figure means that only a small fraction of the oscillation energy is stored in the

frame and is therefore liable to be transferred to the sample holder. As an order-

of-magnitude estimate, from this distribution of strain energy we see that a mode

with loss Q−1 = 10−6 can tollerate a loss factor of 10−2 in the frame without being
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spoiled. Concerning the coating energy ratio WC/WT , it is of the order of 10−3 for

both the DPO and the QPO, so that a mode with loss Q−1 = 10−6 can tollerate a

loss factor of 10−3 in the coating. As we have seen, this value is within the range of

what is expected for our coating.

As mentioned at the beginning of this chapter, an important characteristic that

must be evaluated in micro-oscillators is their capability to dissipate the relatively

large amount of heat produced by the absorbed power. This feature actually deter-

mines the maximum field amplitude that can be employed in the experiment. The

absorbed power in a resonant Fabry-Pérot cavity is

Pabs =
4Tm

(Tm + Σ)2
APin (2.8)

where A is the mirror absorption coefficient. For high reflectivity coatings, A can

be below 10−6 [77]; however, we are going to take as reference the more conservative

value of A = 4 10−6 measured in Ref. [78] for the same coating as ours, deposited

on a silicon substrate. Using FEM simulations we evaluated the thermal gradient

Figure 2.5: Steady-state thermal analysis of a low deformation mirror: FEM simulation

showing the effect of the laser beam power absorption. (a) Temperature mapping with the

background at liquid helium temperature, with an absorbed power of 1mW . (b) Temperature

mapping with the background at 300mK and an absorbed power of 0.1mW . In both cases,

the total laser power is applied on a circular surface of diameter 0.1mm at the center of

the mirror.

that arises either from an absorbed power of 1mW , assuming a background at

liquid helium temperature, or an ultra-cryogenic environment with Tbath = 300mK

and a lower absorbed power of 0.1mW . In Fig. 2.5 we show the results for a ”low

deformation mirror”, while in Fig. 2.6 those for the QPO. The maximum thermal
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gradient, when we consider a 4.2K background, is of the order of 0.1K for the

double wheel oscillator while it reaches 0.26K in the case of the QPO. In both

cases the temperature increase of the devices is extremely small thanks to their

relatively large thickness and to the high thermal conductivity of silicon. Moreover,

the temperature is very homogeneous within the main oscillator. This feature is

important to avoid effects of non-equilibrium thermal noise [79]. Furthermore, it is

clear that even a larger dissipated power could be managed.

Figure 2.6: Steady-state thermal analysis of a QPO micromirror: FEM simulation show-

ing the effect of the laser beam power absorption. (a) Temperature mapping with the back-

ground at liquid helium temperature, with an absorbed power of 1mW . (b) Temperature

mapping with the background at 300mK and an absorbed power of 0.1mW . In both cases,

the total laser power is applied on the left of the QPO head on a circular surface of diameter

0.1mm at the center of the mirror.

We remark that, if we consider the optimally coupled cavity of Chap. 1 (Tm =

Σ = 50 ppm) and the value for A chosen as reference, an absorbed power of 1mW

implies an input power of 12.5mW with an intracavity power as high as 250W .

When we move to simulations of the ultra-cryogenic environment, the sample

temperature remains relatively high, that is 1.3K for the double wheel while the

QPO reaches 1.6K. Thus, there is only a moderate improvement with respect to

the previous configuration. This is due to the strong dependance of the thermal

conductivity of silicon on temperature (in the cryogenic range, it increases roughly

as ∼ T 3). We also remark that in this range the simulations give just a rough

estimation since phononic mean free path is here well over ∼ 100µm and thermal

conductivity depends on geometric effects, while in our simulations we used the

value measured in silicon samples of 5mm in diameter [62].
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2.2 Fabrication

During the development and optimization of the fabrication steps one should keep

in mind that any misalignment affects the frequency of the vibrational modes, due

to the resulting mass unbalance, and the mechanical losses, since the coating layer

would cover areas with higher strain. As the typical alignment error of a mirror

obtained by a hard-mask at the end of the process can be as high as 100µm [24], we

defined the coating by an intermediate lithographic step. The standard projection

lithography technique introduces no more than 2µm of alignment mismatch between

the markers of two consecutive photo-lithographic masks, and an error of no more

than 3µm from front to back alignment in the lithography. Hence, in the worst case

the maximum alignment error is 7µm according to the process steps. This mismatch

is not critical for the coating centering, as it corresponds to 1.75% of the diameter

of the smallest mirror.

Another important factor to be considered is that linear positioning errors could

produce a large difference on the effective mass of the external frame, affecting its

filtering properties from the vibrations of the wafer’s modes. Angular alignment

errors can significantly alter the resonant modes of the device and consequently the

opto-mechanical coupling, due to the anisotropic properties of silicon crystals.

Finally, the process is made of several steps where the etching of silicon is done

by deep-RIE and the oxides are etched by chemical baths that could significantly

affect the coating roughness and the geometry of the device. To ensure a good

process repeatability we measured the RMS roughness of the coating after the main

chemical baths.

For the micro-fabrication of the resonators we have used 100mm diameter<100>

Silicon-on-Insulator (SOI) wafers (400 ± 5µm thick handle wafer and 70 ± 1µm

device layer wafer) from Icemos Technology Ltd. The buried oxide layer thickness

was 1µm. These wafers were etched from both sides to realize high-aspect ratio

three-dimensional structures, using the buried oxide as etch stop layer. To avoid

mechanical losses from doping species or other trapped impurities like oxygen, we

employed Floating Zone (FZ) wafers with resistivity higher than (1kΩ− cm), both

for the handle and the device layers. For the reason described above, to control op-

tical losses due to the surface roughness we selected wafers with a surface roughness

RMS (ISO 4287/1) better than 0.5nm, when measured in small areas (5µm× 5µm

and 3µm× 3µm) by Atomic Force Microscopy (AFM) in different wafer positions.

Measurements results are summarized in Tab. 2.1.

To enhance the process yield and minimize surface roughness deterioration, for
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Figure 2.7: Process sequence P1 for the MOMS fabrication: (a) Oxidation - Crystal axis

alignment - TMAH (b) Oxide strip - lithography on the handle layer (back SOI wafer) -

Deep-RIE on the handle wafer (c) IBS of optical coating - lift-off - coating stabilization

(d) lithography on the device layer (front SOI wafer) with the support wafer (e) Deep-RIE

on the device layer - resist strip with piraña etch (f) BHF for removing the buried oxide -

RCA cleaning.

the fabrication of the resonators we set up two process sequences named P1 (Fig. 2.7)

and P2 (Fig. 2.8). Both processes were carried out in a 10 − 100 class clean room

facility, performing in appropriate order the fundamental steps detailed below:

1. Detection of the < 110 > plane. We aligned our main markers to the < 110 >

crystallographic direction by TMAH etching, as the main flat orientation with

respect to the crystal is not sufficiently accurate, having a misalignment in the

range of 0.2 to 0.8 degrees. The first step consists of an optical lithography with

a wagon-wheel based structure in a 200nm thermally grown oxide. Wafers were

then etched in TMAH to a depth of about 8µm to expose the crystallographic

direction < 110 >. The thermally grown oxide was then removed completely

by a BHF/BOE 7 : 1 solution in 2 min to free the surface before the mirror

deposition. The surface roughness of the silicon surface remains unchanged by

this step.
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Figure 2.8: Process sequence P2 for the MOMS fabrication: (a) Oxidation - Crystal axis

alignment - TMAH (b) IBS of optical coating - lift-off - coating stabilization (c) lithography

on the device layer (front SOI wafer) (d) Deep-RIE on the device layer - resist strip with

piraña etch (e) lithography on the handle layer (back SOI wafer) (f) Deep-RIE on the

handle wafer - BHF for removing buried oxide layer - RCA cleaning.

2. Deep-RIE of the handle wafer. The SOI wafer was spin-coated with a AZ4562

resist with a thickness 10µm to withstand the etching process. The litho-

graphic mask designed to pattern the handle wafer is optically aligned with

the marker prepared in the front side to detect the crystallographic direction.

Then an ICP (inductive coupled plasma) Alcatel Deep-RIE AMS 200 machine

based on the Bosch process is used to remove the full thickness of 400µm

of the handle wafer. The etching time is about 32 min (average etching rate

12.5µm/min). The chuck temperature and He cooling gas pressure are tai-

lored to optimize both etch rate and etch depth uniformity, and to guarantee

a good plasma stability, avoiding the formation of any residual structures at

the bottom or around the edge of the frame structure, or near the holes. We

obtained smooth edges with a scalloping below 1µm, as it is shown in Fig. 2.9.

3. High-reflective coating deposition. Each mirror has a total thickness of 5.9µm

and is made of 38 alternate Ta2O5/SiO2 quarter-wave coating layers deposited
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by Ion Beam Sputtering (IBS) by ATFilms (Fig. 2.10). The coating procedure

makes the films dense (not porous) and harder than the silicon substrate, as

covalent bonds are formed during deposition. To integrate the coating deposi-

tion with our process we developed a lift-off procedure by using as sacrificial

layer a negative high-thickness nLOF2070 resist, patterned by a lithographic

mask with circular regions corresponding to the mirrors positions in the wafer.

We obtained a 7.8µm thick resist (higher that the mirror coating thickness)

by using a spin speed of 3000 rpm; the measured undercut is less than 3µm.

To avoid moisture adsorption during transportation we stabilized the sacrifi-

cial resist by a soft baking at 120 ◦C. The mirror were then realized by IBS

and after the deposition the resist sacrificial layer was removed in a hot ace-

tone bath at 90 ◦C. A heat treatment at 430 ◦C was done to reduce the Ta2O5

dissipation. During the resist removal some small pieces of the coating were

released due to the coating edge delamination. For this reason we performed

RCA cleaning in our clean room facility to avoid any further contamination

during the following steps.

4. Deep-RIE of the device wafer. The front side structures were defined by a

lithographic step, optically aligned with markers on the back side achieving

a maximum alignment error of 3µm. The front surface was covered again

with a 10µm thick layer of AZ4562 resist using a spin coating EVG machine.

This resist covers all the surfaces and works as protection layer for the optical

coating during the Deep-RIE Bosch process. In addition we glued a support

wafer on the back side in four points with resist drops and we performed a soft

bake heat treatment to harden this structure. This auxiliary wafer is needed for

the protection of the machine chuck. In this way we avoid any chuck damage

due to plasma that could break the buried oxide layer on a pass-trough hole.

We calibrated the etching process with an etch rate of 7.7µm/min to engrave

the full thickness of the device layer in 9min.

5. Wet-etch of the buried oxide. At the end of this process a piranha etch solution

was used to remove the resist, and the residual buried oxide on the device layer

was removed by a 15 min BHF wet etch. This chemical bath does not affect

the mirror coating because the outer Ta2O5 reacts very slowly with this acid

solution and acts as a protection layer for the mirror coating.

Both process sequences start with the detection of the crystalline plane < 110 >

(i). After that in P1 we performed the back-side etching on the handle layer (ii),
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Figure 2.9: SEM image showing details of a double wheel resonator. Sidewall scalloping

due to the Deep-RIE Bosch process is lower that 1µm.

the coating deposition (iii), the etching of the resonating structures on the device

layer (iv) and the wet etch of the buried oxide (v). In the process P2 the coating

was deposited first (iii), then the resonating structures were etched on the device

layer (iv) and the back-side structures on the handle layer (ii); the buried oxide was

finally removed by wet etch (v).

To verify the quality of the mirrors, we measured the dimensional characteristics

at different scales. First, an AFM scan on a 5µm×5µm and a 3µm×3µm (Table 2.1)

areas show that the RMS roughness is about 0.5nm as in the original wafer. Second,

we measured with a Zygo NewView 6000 profilometer the roughness on a circular

region with a diameter of 100µm, that is, the dimensional scale of the waist of our

cavities. Results are in agreement with those obtained with AFM technique, both

in the mirror center (Fig. 2.11a) and near the coating edge (Fig. 2.11b). Third, we

measured the curvature radius and the diameter of the mirrors by a Leica DCM

3D optical profiler (Figs. 2.12-2.13). The radius of curvature, due to residual stress
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Figure 2.10: SEM image of the mirror over the device layer. The coating is made of 19

pairs of high-low refraction index dielectrics deposited by Ion Beam Sputtering at ATFilms.

The thickness is 5.9 µm.

effects, is 100 mm for the small mirrors (400 µm nominal diameter) and 90 mm for

the large mirrors (800 µm nominal diameter). The actual diameter, measured along

two orthogonal directions, ranges from 377 to 387 µm for the small mirrors and

from 772 to 797 µm for the large mirrors. These small differences from the nominal

value are due to the lift-off process accuracy and the mirrors edge delamination

during processing. Both the curvature radius and the diameter variation do not

affect the device overall performances because the laser waist in our cavities ranges

from ∼ 40µm to ∼ 80µm.

Table 2.1: Results of the RMS roughness measurement performed by AFM.

5µm× 5µm 3µm× 3µm

Number of sampling points 65536 65536

Max height [nm] 11.80 11.42

Min height [nm] -1.82 -1.84

RMS roughness [nm] 0.52 0.53

Average height [nm] 0.40 0.39
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Figure 2.11: Zygo surface profile for a circular area near the mirror center (a) and near

the mirror edge (b). Raw data are elaborated subtracting the best fit 3D paraboloid.

Figure 2.12: The profile of the mirror (diameter 800 µm) is measured by a Leica DCM 3D

optical profiler. The figure shows some delamination problems along the edges and some

debris over the surface close to the mirror edge (red spots).
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Figure 2.13: 2D and 3D images of the coating curvature and the coating morphology

obtained by the Leica DCM 3D optical profiler using confocal mode with blue light with

an objective magnification of 100×, for the D1 = 400µm mirror diameter (top) and the

D2 = 800µm mirror diameter (bottom).
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Experimental apparatus

In this chapter we are going to describe the typical experimental setup. Clearly, many

variations have been used in attaining the results that are presented in the following

chapters but the scheme in Fig. 3.1 well represent the backbone of our apparatus.

Furthermore, more details are provided in the Appendix for crucial subsystems.

The light source is a Mephisto cw Nd:YAG operating at λ = 1064nm manufac-

tured by InnoLight GmbH1 with a maximum output power of 500mW (for more

details see Sec. B.1). After a 40 dB optical isolator, the laser radiation is split into

two beams. The first one (beam A) is mainly used to lock the laser frequency to the

cavity resonance, while the second one (beam B) is used to inject high power (with

respect to beam A) into the cavity. Along the path of beam A, a resonant electro-

optic modulator (EOM1) provides phase modulation at 13.3MHz with a depth of

about 1 rad used for a PDH detection scheme (Sec. C and Refs. [58, 59]). Beam A is

also frequency shifted thanks to one or two acousto-optic. This shift is necessary for

two reasons: first, we need to finely control the detuning from the cavity resonance

of beam B, second, we need to compensate for the difference between the resonance

frequencies of orthogonally polarized fields originated by stress-induced birefringence

in the cavity. The actual birefringence depends strongly on the specific micromirror

under study, with correspondent frequency shifts ranging from a few hundreds of

kHz to about 100MHz. As a consequence we use either one or two AOM according

to the specific situation. If two AOM are used, they are set to work on opposite

first diffraction order (discarding all other orders), allowing a fine control of the

frequency difference between the two beams. Along the path of beam B a second,

wideband, electro-optic modulator (EOM2) followed by a polarizer allows intensity

control with two typical application: coherent mechanical excitation by radiation

1Nowadays owned by the Coherent group.
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Figure 3.1: Typical basic scheme of the experimental apparatus. Optical isolator (OI);

acousto-optic modulator (AOM); electro-optic modulator (EOM); half-wave plate (H);

quarter-wave plate (Q); polarizing beam splitter (PBS); polarizer (POL); extended-cavity

diode laser (ECL); electromagnetically driven mirror (MR); Faraday rotator (FR); photo-

diode (PD); servo-loop electronics (PID); Lock-in amplifier (LA); digital scope and acqui-

sition system (DOS); delay line for phase control (Φ). Black lines indicate the electronic

part of the setup.
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pressure or intensity noise reduction by implementing a noise eater feedback loop

(not shown in the figure). Both beams are, then, sent to the second part of the ap-

paratus (a second optical bench) by means of single-mode, polarization maintaining,

optical fibers whose terminations can be exchanged.

After one fiber, the exit (beam C) is aligned in a Michelson interferometer fol-

lowed by a balanced homodyne detection. In details, a polarizing beam-splitter

(PBS2) divides the beam into two parts, orthogonally polarized, forming the Michel-

son interferometer arms. At the end of the first one (reference arm) an electro-

magnetically-driven mirror MR is used for phase-locking the interferometer in the

condition of maximum displacement sensitivity. A double pass through a quarter-

wave plate rotates by 90 ◦ the polarization of the this beam, which is then reflected

by PBS2. The polarization of the second arm (sensing arm), sent to the sample

holder in the cryostat vacuum chamber, is instead rotated by a double pass through

a Faraday rotator. The sensing beam is focused with a waist ranging from about

40 to 80µm on the coated oscillator (or mode-matched to the cavity when it is

present), and after reflection it is totally transmitted by PBS2, where it overlaps

with the reference beam reflected by MR. The overlapped beams are then monitored

by an homodyne detection, consisting of a half-wave plate, rotating the polarizations

by 45 ◦, and a polarizing beam-splitter (PBS3) that divides the radiation into two

equal parts sent to the photodiodes PD1 and PD2, whose outputs are subtracted.

The signal obtained is a null-average, sinusoidal function of the path difference in

the interferometer. Such a scheme (polarization Michelson interferometer: PMI) is

barely sensitive to laser power fluctuations. The difference signal is used as error

signal in the PMI locking servo-loop (the locking bandwidth is about 1 kHz) and

also sent to the acquisition and measurement instruments (DOS).

The beam exiting from the second fiber (beam D), after an optical isolator, is

mode-matched and overlapped to the sensing beam of the PMI, with orthogonal

polarization, in a further polarizing beam-splitter (PBS4). The reflected beam is

then diverted by the input polarizer of the optical isolator and collected by a fast

photodiode for the PDH signal detection. The frequency shift between beams C

and D, obtained thanks to the AOM, allows to eliminate any spurious interference

and reduce the cross-talk between the two beams in the photo-detection. After the

demodulation the PDH signal in sent to both the DOS and, if needed, to the cavity

locking servo actuators.

The standard configuration sees fiber A connected to the output collimator of

fiber D so that beam A-D can be used for the PDH frequency locking while fiber

B is connected to fiber C so that beam B-C can be used for high power injection
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into the cavity and, at the same time, the Michelson can be exploited to analyze the

reflected field quadratures.

For the accurate measurement of the cavity length, we have used an auxiliary

extended-cavity semiconductor laser (ECL), with optical feedback from a grating in

the Littrow configuration, working around 1064nm. This laser can be coarse tuned

by rotating the grating in a range covering several hundreds of GHz, wide enough to

scan 2− 3 FSR of our shortest cavity. Fine tuning is accomplished using the supply

current and a piezo-electric transducer which translates the grating.

3.1 The sample holder

Each sample contains 9 micro-oscillators, set in a 3×3 matrix placed on a 35×35mm2

wafer sector. In Fig. 3.2 is shown the design of the sample holder assembly. The sam-

ple is housed on the main body (Fig. 3.2(3)), oscillators are not drawn) with the

coated surface facing the front and blocked with a locking plate (Fig. 3.2(5)). A

thermalization plate (Fig. 3.2(4)), made of OFHC copper, placed in between. Both

plates have holes in correspondence of the oscillators, to allow a clear view for a

IR CCD camera monitoring the oscillators for TEM modes identification. The main

body size is 54× 45× 8mm. The thermalization plate is directly linked to the cold

finger with a bundle of thin (diameter 10µm) copper wires for mechanical decou-

pling, with an overall cross section of ∼ 3mm2. Furthermore, a thin foil (0.1mm) of

OFHC copper is placed between the sample and the main body to increase the cross

section of the thermal link. The thermalization plate has also the role of damping

wafer modes.

On the front side two translation stages, one vertical (Fig. 3.2(2)) and one hor-

izontal (Fig. 3.2(1)), allow the alignment of the input mirror to form a cavity on

the micromirror selected from all nine possibilities. The actual cavity that can be

realized depends on the mirror holder and the mirror housed on it. We designed

two versions of the mirror holder, one to obtain a cavity of length between 8and

9mm and the other one for a shorter cavity with length between 0.5 and 1mm. In

both cases the mirror is a standard silica mirror with high reflectivity coating on

one side, an anti-reflection coating on the other side and a concave curvature radius

of 50mm. Assuming a concave-plane configuration, the maximum cavity waist is

nominally 81µm for the long cavity and 49µm for the short one. In the case of

the short cavity, due to the limited tunability of our laser, we need to mount the

input mirror on a piezo-electric actuator (see Sec. C for more details) to coarsely

tune the cavity resonance by changing its length. The mirror (Fig. 3.3(1)) is glued
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3.1 The sample holder

Figure 3.2: (Top) Front view. (Bottom) Back view. (1) horizontal translation stage with

seat for the input mirror holder; (2) vertical translation stage; (3) Main body; (4) ther-

malization plate; (5) locking plate.

Figure 3.3: Top row: Back view. Bottom row: front view. Short cavity mirror holder (1)to

(4). In details: (1) input silica mirror; (2) invar adapter ring; (3) piezo-electrical actuator;

(4) main body. (5) Long cavity mirror holder.
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to the actuator (Fig. 3.3(3)) that in turn is glued to the main body (Fig. 3.3(4)) of

the mirror holder. An adapter ring (Fig. 3.3(2)) is not just required for the different

diameter of the mirror and the actuator, but it is also useful to match the coefficient

of thermal expansion of silica. For this reason the adapter ring is made of Invar.

On the contrary, the design of the mirror holder for the long cavity (Fig. 3.3(5))

is much simpler since in this case the tuning range of the laser is enough to cover

more than one FSR. Clearly, both designs can be directly mounted on the horizontal

translation stage of Fig. 3.2(1).
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Chapter 4

Experimental characterization

In this chapter we are going to describe the experimental results, and the methods

used in obtaining them, concerning the opto-mechanical characterization of the de-

vices whose design and fabrication have been described in Cap. 2. We are going to

start with the measurement of the mechanical parameters at room and cryogenic

temperatures, to move then to the optical ones.

4.1 Mechanical parameters

The characterization of the oscillators mechanical parameters is usually performed

with the setup in the standard configuration, but with the beam A-D blocked. How-

ever, a simple variation is quite useful, especially at low temperature. By reversing

the fibers connections and turning off the resonant EOM (EOM1), we can use beam

B-D to generate a mechanical excitation by modulating its intensity and, at the

same time, perform a displacement measurement with the PMI using beam A-C.

We will refer to this configuration as conf 2. In both cases, the output of the ho-

modyne detection is used to lock the PMI in the position of maximum sensitivity,

corresponding to a null average signal. The lock bandwidth is about 1 kHz.

The output of the PMI can be written as Vout = (Vpp/2)sin(4π∆x/λ), where

Vpp is the peak-to-peak value of the PMI interference fringes and ∆x the unbalance

between the PMI arms. Once the PMI is actively locked around Vout ' 0, the output

signal has a linear dependance on the mirror displacement, provided that the residual

fluctuations remain within the linear region of the sinusoidal function. Power spectra

are calculated and acquired using the integrated Fast Fourier Transform (FFT)

analysis software of the digital scope. The measured spectrum SV , in V 2/Hz, is

calibrated through the expression Sxx = SV (λ/2πVpp)
2 where Sxx is the displacement
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Chapter 4. Experimental characterization

Figure 4.1: Displacement noise spectrum and area below the mechanical peaks for a

QPO design. Also shown are the displacement fields of identified normal modes. Inset:

Integrated displacement around the AS2 mechanical resonance, at room (a) and cryogenic

temperature (b).

PSD in m2/Hz. An example of such a spectrum is shown in Fig. 4.1. The reported

spectra were recorded during the characterization of a QPO. We also show the

normal mode identification, accomplished by comparing the spectral peaks with the

expected resonance frequencies evaluated with FEM simulations, together with the

displacement field of each mode. The sensing beam of the PMI was incident on one

of the two coated areas on the head of the QPO so that not all the normal modes

were detectable.

As we have shown in Chap. 1, the area A underlying a mechanical spectral peak

is connected to the mechanical parameters through the relation A = kBT
mω2

m
. This

equation can be used to either extract the effective noise temperature or, assuming

that the oscillator is at thermal equilibrium with the environment at temperature

Tbath, to deduce its effective mass m. The area of the interesting mechanical peaks is

measured by directly integrating over the spectrum, on a region wide several times

the peak width. The procedure is illustrated in the inset of Fig. 4.1. The contribu-

tion of the (white) background noise is evaluated with a linear fit (dark gray lines)

before and after the peak. The offset difference of the two lines provides the value

of the peak area. We have verified that the result does not depend on the choice

of the FFT windowing and sampling rate. Typical spectra are taken with a record
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4.1 Mechanical parameters

length of 250 kSp and a resolution of 10Hz (sampling at 2.5MSp/s). Our measure-

ments of A have an accuracy of about 30% (evaluated from their reproducibility).

The ratio between the mass values given by A and by FEM simulations, evaluated

for different oscillators, is on the average 1.25± 0.30, where the uncertainty reflects

one standard deviation. This value is compatible with experimental and numerical

uncertainty. Such agreement shows the self-consistency of our approach and justifies

the assumption on the thermal origin of the excitation. A stronger argument in fa-

vor of this assumption is provided by the scaling of A with temperature. Assuming

Tbath = 300K at room temperature, we first evaluate the effective mass. With its

value we calculate the noise temperature of the mode when the oscillator is placed

in the cryogenic environment. In order for the assumption to be justified, the calcu-

lated temperature and the measured one1 have to be in agreement. This is always

the case, within experimental uncertainties, for modes with a resonance frequency

above about 30 kHz. A third possibility to test this assumption is to perform a

measurement of the effective mass independently from thermal noise. This is done

with the setup in conf 2, in order to measure the mechanical transfer function by

recording the coherent response to the radiation pressure excitation. Also in this

case the results support the assumption under test.

In order to measure the mechanical quality factors we adopted two methods.

For a good Q factor the typical spectral resolution, mentioned earlier, is not high

enough. This is clearly visible in Fig. 4.2, where we show the spectral peak of the

AS2 mode of our QPO both at room and at cryogenic temperature. Especially at

low temperature, the mechanical line is not well resolved. We have used then a

digital lock-in amplifier2, whose internal local oscillator is tuned at 110Hz from the

peak involved in the measurement. The beat note filtered by the output integrator

of the lock-in, with a time constant of 640µs, is then analyzed by the scope with a

resolution of 0.1Hz. An example of the spectrum recorded in this way is shown in

the left inset of Fig. 4.2 together with the fitting function composed of a mechanical

resonance plus a flat background.

However, in some cases, even a resolution of 0.1Hz is not enough. This always

happens for the QPO and DPO designs at low temperature. We have therefore

adopted a time-resolved detection technique. We used, again, intensity modulation

of beam B-D (conf 2), at a frequency very close to the mechanical resonance, for few

minutes. Then, the modulation is switched off and the amplitude of the mechanical

oscillation, monitored with the PMI, is measured by the lock-in amplifier whose

1We have two sensors, one on the cold finger and one on the sample holder.
2A Dual phase DSP lock-in amplifier model 7265 manufactured by Signal Recovery
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Figure 4.2: Main panel: PSD around the peak corresponding to the AS2 mode of the QPO;

room temperature data are shown in purple and low-temperature in orange. (a) Frequency

downshifted spectra of the same spectral line plus fit. (b) Amplitude exponential decay plus

fit.

output quadratures are acquired by the scope. The oscillation amplitude is evaluated

off-line and the mechanical quality factor is then given by the simple relation Q =

ωmτm/2, where τm is the time constant of the amplitude decay. An example of the

temporal evolution of the oscillation amplitude is shown in the right inset of Fig. 4.2,

where we also display the fitting exponential decay.

We characterized a set of oscillators with different geometrical and mechanical

parameters and the results are summarized in Tab. 4.1. The labels D1 − 4 refer

to double wheel oscillators. The device that shows the best performances in terms

of mechanical losses is the QPO with a Q = 2.6 106 which indicate that for this

design the device can actually reach a regime where the dominating loss mechanism

is the intrinsic structural dissipation of silicon, as expected from FEM simulations.

However, the situation is a bit different for the double wheel oscillators. The typical

quality factor at low temperature is of the order of 104, and just in one instance

we measured a quality factor that reached the nonetheless remarkable value of 105.

We point out that this figure represents an improvement of more than one order of
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4.1 Mechanical parameters

magnitude with respect to our previous generation of double wheel oscillators [24].

Moreover, it indicates that this design is, indeed, effective in reducing losses from

the coating layer.

On the other hand, the rather low Q values observed for other devices sug-

gest that an additional or a stronger than expected loss mechanism is dominating.

We attribute this behavior to the coupling of the mirror mode to modes of the

wafer/sample holder so that one can infer that the suspended frame does not pro-

vide sufficient isolation. Indeed, in some cases we observed a wide range of variation

of the Q factor, at room temperature, depending on the clamping of the sample,

especially for those oscillators with quality factors well below expectation. We re-

mark that this is not the case for the DPO and QPO since the AS1 and AS2 modes

are nodally suspended. The sample mounting changes the density and overall loss

of wafer modes at the resonator frequency in an unpredictable and irreproducible

way. We believe that the more effective solution is the improvement of the isolation

by introducing a second isolation wheel, or designing a geometry that realizes a

nodal suspension for the mirror mode of interest. We could even implement both

solutions. As a final remark on the characterization of the mechanical parameters of

Mass Freq. Q Q

(kg) (kHz) T = 300K T = 10K

±30% ±1% ±10% ±10%

D1 1.4 10−7 129.0 2.8 104 1.0 105

D2 2.2 10−7 81.4 4.8 103 1.2 104

D3 2.0 10−7 94.0 9.7 103 1.4 104

D4 8.8 10−8 210.6 1.0 104 2.8 104

DPO AS1 1.1 10−6 30.4 6.8 104 1.1 106

AS2 1.6 10−6 46.2 8.7 104 8.5 105

QPO AS1 2.7 10−7 65.2 8.7 104 8.5 105

AS2 3.0 10−7 85.5 1.5 105 2.60 106

DPO AS1 9.0 10−8 70.9 1.5 105

AS2 1.1 10−6 86.4 1.5 105

Table 4.1: Parameters of the micro-mirrors measured at room and cryogenic tem-

perature.

our devices, we show in Tab. 4.1 the comparison between FEM predictions and the

actual measured values for our best micro-oscillator, namely the QPO. The table
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Chapter 4. Experimental characterization

could be extended to all the devices and the agreement would be the same with the

only exception of the Q factor for double wheel oscillators other than D1.

FEM Low T Exp.

Freq. Mass Q Freq. Mass Q

(kHz) (kg) T = 4.2K (kHz) (kg) T = 10K

±5% ±30% ±10% ±1% ±30% ±10%

QPO AS1 67.0 2.2 10−7 4.0 106 65.2 2.7 10−7 8.5 105

AS2 89.0 2.2 10−7 2.0 106 85.5 3.0 10−7 2.6 106

Table 4.2: Parameters of the micro-oscillators measured at cryogenic temperature in

comparison with FEM simulation results.

4.2 Optical parameters

The optical losses are characterized by constructing two cavities. The first one is

0.6mm long (with the mirror holder assembly of Fig. 3.3(1 − 4)), with an input

mirror with intensity transmission of Tm = 50 ppm. The second one is 8.3mm long

(mirror holder of Fig. 3.3(5)) with Tm = 110 ppm. The characterization consists in

determining the overall optical losses by measuring the cavity linewidth 2κ.

The cavities are pre-aligned in a nominally class100 laminar flow cabinet. The

cleanliness of the surfaces is a critical aspect. Usually, many attempts are necessary in

order to attain a good cavity. Prior to each attempt the input coupler and the coated

surface of the device are cleaned with spectroscopic grade acetone. We have realized

a simple setup inside the cabinet to detect the field reflected from the cavity in order

to perform a pre-screening based on a rough estimation of the optical linewidth. If

the results are satisfactory, the sample holder with the formed cavity is mounted

inside the cryostat vacuum chamber without ever leaving the cabinet. Once the

chamber is closed, it is then moved to its seat on the optical bench. For both beam

D and C, a mode matching to the cavity of 85−90% is easily attained while a value

of 95− 96% is usually reached with some effort.

For both cavities, the linewidth measurement is performed by scanning the res-

onance with the phase-modulated beam A-D and using the sidebands frequencies

to calibrate the scan. For the long cavity this is accomplished by scanning the laser

wavelength while for the short one we actually change the cavity length with the

piezo-actuator that holds the input mirror. In practice, one can fit the PDH signal
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4.2 Optical parameters

(see Chap. C) or the Lorentzian dips in the intensity of the reflected field. An exam-

ple of the latter is shown in Fig. 4.3. Particular care has to be taken in order to avoid

Figure 4.3: Signal obtained by detecting the laser beam reflected by the short cavity; the

dips are fitted with five Lorentzian peaks for the carrier and the FM modulation sidebands

used for calibrating the scanning.

any phenomena that can deform the optical response while performing the scan. In

particular, photothermal effects, that deform the Lorentzian in a different way de-

pending from the direction of the scan (blue to red or viceversa), or displacement

noise that modulates the cavity resonance. Indeed, the beam intensity should be low

enough to avoid the former while, for the latter, the scan should be fast compared

to the typical frequencies of acoustic noise (usually ≤ 1−2 kHz) but slow compared

to the response time of the cavity, or of the photodiode, whichever is the smallest.

An important example of how this aspect can complicate the measurement has

been the characterization of the QPO. Indeed, to avoid such deformation effects we

had to use a more refined technique. Namely, we used ∼ 3µW in both beam A-D

and B-C (sensing arm) and instead of recording the dips in the reflected intensity,

we used the PMI to increase the signal-to-noise ratio: the reference beam of the PMI

works as local oscillator for the field reflected from the cavity. The signal detected

in the PMI is proportional to
√
IRISRe[(1 − η + η Hr) exp(−iθ)], where the phase

θ = 4π
λ

∆L is determined by the imbalance ∆L of the two arms, with intensities IR

(reference - IR = 1mW ) and IS (sensing - IS = 3µW ). Normalizing to the fringe

amplitude with the cavity out of resonance, i.e., with ∆n → ∞, we can write the
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PMI signal as

SPMI = cosθ

[
1− C

1 + ∆2
n

]
+ sinθ

C∆n

1 + ∆2
n

(4.1)

with C = η(1 − ζ). The coefficient η accounts for the mode-matching both in the

coupling to the cavity and between the arms of the PMI. We estimated both, the

former from the residual power in the cavity transverse modes while the latter from

the fringe contrast seen by the homodyne photodiodes. Both are above 90%.

Figure 4.4: Measurement of the Finesse in a Fabry-Pérot cavity built with a mirror on the

head of a QPO. The field reflected from the cavity is measured in a Michelson interferome-

ter, where the cavity resonance appears as a dip on the bright fringe (an upper and a lower

bright fringes are shown respectively as green and red traces in the left panel). The depth

of the peak gives the coupling coefficient of the cavity, while its width (see on the right

an enlarged view of the peak in the lower fringe) gives the cavity linewidth. The frequency

calibration in this latter measurement is provided by the distance between the sidebands of

the PDH signal (shown above the peak), detected at the same time in a reference beam.

In Fig. 4.4 we report portions of the PMI signal taken with θ around 0 ◦ and

180 ◦, when ∆L is slowly swept. The θ axes are calibrated from fits with a cosine

function on signal regions outside the cavity resonance (fitting dashed lines are

shown in the figure). During the signal acquisition, the cavity detuning is scanned

around resonance; in the shown portions of the signal the cavity resonance condition

∆n = 0 happens in near-coincidence with the extremal values of cos θ, therefore the
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4.2 Optical parameters

dip shapes are close to Lorentzian functions. Both dips touch the null value of the

signal, visibly demonstrating that the cavity is very close to optimal coupling (ζ ' 0).

Also in this case, the calibration of ∆n is obtained thanks to the PDH signal, recorded

simultaneously to the PMI signal, but the fits of the dip shapes are performed using

the complete expression of SPMI . The fitting procedure gives a cavity resonance full

linewidth of 2κ = 3.9 ± 0.2MHz, and a peak depth C = 0.96 ± 0.2 (uncertainties

evaluated from repeated measurements). The linewidth, together with the value of

FSR= 252GHz (see below the description of the measurement), corresponds to a

Finesse of 65000±3000. Using Eq. 1.34, together with the input coupler transmission

of Tm = 50 ± 5 ppm, allows to calculate cavity losses of Σ = 47 ± 10 ppm and a

coupling coefficient of ζ = −0.03 ± 0.16. From this last value and the measured C

we extract η = 0.93 ± 0.14, in agreement with the independent evaluation of the

mode-matching.

The linewidth estimation is usually simpler with the longer cavity since a suf-

ficiently low uncertainty in the measurements is achieved with the fits of the PDH

signal. Indeed, we measured a Finesse of 40000±4000 that, together with the nominal

input coupler transmission of 110± 5 ppm, gives a total cavity loss of 47± 20 ppm.

The theoretical transmission of the mirror coated in the oscillators is below

10 ppm. This is indeed obtained in a test silica substrate coated together with the Si

wafer. The same coating on super-polished silica substrates allowed us to measure

finesse exceeding 2× 105. As we have shown, we observed with the short cavity an

overall optical loss of Σ ' 50 ppm. This value is compatible with the ∼ 40 ppm that

are calculated using Eq. 2.7 with the roughness measured by AFM: the residual

10 ppm is a very satisfactory estimation for the losses due to absorption and trans-

mission on the MOMS mirror and absorption and scattering on the input coupler.

On the other hand, such a value of Finesse, while obtained on different samples,

is only achieved on some regions of the MOMS mirrors. Changing the position of the

beam on the sample, the measured Finesse of the short cavity varies, indeed, between

60000 and 40000, yielding losses between 50 ppm and 100 ppm. With the long cavity,

the Finesse varies between 40000 and 22000, and the corresponding calculated losses

between 50 ppm and 180 ppm. In any case, the contribution of diffraction losses due

to the finite MOMS mirror size is estimated to be negligible. Indeed, we have taken

care to avoid beam positions too close to the mirror edge, and the measurements

with the long cavity are just taken with the larger mirror diameters.

We point out that the longer cavity has a larger waist, therefore the mirror must

be good in a wider region to guarantee a high finesse. Moreover, when one takes

into account the MOMS mirrors convexity, the calculated beam size on the mirror
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increases from 43µm to ∼ 50µm for the shorter cavity, while for longer one it can

reach a value up to ∼ 90µm from the nominal 79µm. Actually, the spread of the

loss measurements with the short cavity (i.e., with the smaller waist), as well as the

larger losses generally experienced by the long cavity, can in part be attributed to

edge debris sticking to the mirror surface (see figure 2.12). An appropriate cleaning

sequence for the removal of such debris is still to be developed, as all wet processes,

while cleaning the surface, could generate new particles from the edge of the mirror

oxide multilayer. A further feature that is probably crucial for explaining our results

is the macro-shape of the mirrors, that is determined by the original wafer waviness,

on the scale of several tens µm, and by the stress induced by the coating.

A further systematic investigation of this aspect can be performed by comparing

surface profiles, weighted over appropriate Gaussian functions, with Finesse mea-

surements along the surface. Such investigation, possibly performed after the dif-

ferent steps of fabrication, would clarify this issue and help to further optimize the

process and the final experimental setup.

We also measured the distance between cavity transverse modes that allowed

us to deduce the local curvature of the MOMS mirror according to the following

equation [44]

νm,n − ν0,0

FSR
=

1

π
arccos

[√(
1− Lcav

R

)(
1− Lcav

RMOMS

)]
(m+ n) (4.2)

here ∆ν = νm,n− ν0,0 is the frequency difference between a longitudinal mode and a

transverse mode (m,n), where m and n are mode numbers (i.e., number of zeros) in

the case of a rectangular geometry (for a cylindrical one, the term (m+n) is replaced

by (2 p + l) where p and l are the radial and angular mode numbers respectively).

We find that the coated MOMS have convex surfaces with radii generally varying

between 0.1 and 0.3m. Such evaluations confirm the direct measurements performed

with the profilometer, described in Chap. 2.

A fundamental parameter of the cavity is its length. While for the longer cav-

ity mechanical tolerances and simple measurements with a micrometer allows the

determination of Lcav with a good accuracy (∼ 1%), the matter is different for the

shorter one. In this latter case, to determine Lcav we measured the FSR by means

of an auxiliary ECL, sent to the cavity together with the Nd:YAG laser beam. The

cavity length is slowly scanned over one FSR, and the ECL is tuned in order to

be on resonance at the same time as the Nd:YAG, but on a different longitudinal

mode. The two laser frequencies are then measured by means of a wave-meter with

an accuracy of 100MHz. From their difference one obtains the FSR, or a multiple
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of it, from which is determined Lcav.

The last relevant parameter is the birefringence that arises from the coating

induced stress. We observe large variations from one sample to the other, as well

as a dependance on the position within each sample and on the sample mount.

The phase difference in the reflection coefficient between orthogonal polarizations is

generally in the range (0.3− 10) 10−4 rad.

In Chap. 2 we described two process sequences developed in order to increase the

process yield and to study the effects of different production strategies on the final

performances of the devices. Both sequences induce small variations of the mirror’s

surface roughness with respect to the initial level, whereas the overall performances

of the device are not affected. The first sequence (P1) allows an easier manipulation

of the wafers inside the Deep-RIE chamber, as loading issues may occur when using

a resist layer as protection layer in the second process sequence (P2). On the other

hand, the second sequence eases the handling during the coating deposition by IBS.

With the experimental characterization presented in this chapter we have verified

that the processes guarantee both high quality and high aspect ratio structures by

preserving the original roughness of the mirror’s surfaces.

As an example of the obtained overall performances, considering the mechanical

and optical characteristics that we have measured in the cavity with a quad-paddle

oscillator, we can infer [26] that at 4.5K with an input laser power of 2mW , the

radiation pressure quantum noise equals the thermal noise. In table 4.4 we sum-

marize the performance of our devices in comparison with a number of oscillating

mirrors described in the literature. Other kinds of opto-mechanical systems (such

as refractive membranes, nano-photonic systems, breathing cavities with whispering

gallery modes, etc.) are also very useful tools for quantum mechanics [80, 81, 82],

however we restrict our analysis to devices allowing a more direct comparison with

ours.

The last column reports the ratio between radiation pressure quantum noise

and thermal noise at a background temperature of 4K, Sqn/Sth, evaluated when

the input power Pin is such that temperature increase at the mirror due to power

absorption is ∆T = 1K. We have used the estimated thermal impedance esti-

mated from the oscillators thickness, a form factor deduced from the shape, and

the thermal conductivities at 4K in Tab. 4.3. For all the mirrors we consider an

absorption coefficient of 10 ppm. This is a conservative value for Si substrates (few

ppm is a realistic value), it is over-estimated for the silica mirror (where the ab-

sorption is probably around 1 ppm), and probably under-estimated for GaAlAs and

gold mirrors. A more accurate evaluation (using FEM simulations) is reported for
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our devices in Refs. [25, 26]. To evaluate the thermal noise Sth we have used the

parameters reported in Tab. 4.4 even when they are measured at room temperature;

some variations are expected at 4K (in particular a higher Q), but we have not tried

any extrapolation. Due to the several approximations, this figure must be considered

Table 4.3: Thermal conductivities used for the evaluation of the thermal impedance R4K

at 4K reported in Tab. 4.4.

k WmK−1

Si [62] 300

Silica [83] 0.12

oxides m.l.a [78] 0.07

SiN [84] 0.1

quartz [85] 400

AlGaAs [86] 300

a m.l. stands for multi-layer

as an order-of-magnitude estimate. It is however useful to compare different kinds

of micro-oscillators. In particular, it shows that thin oscillators allow to obtain a

low mass and are useful for several kinds of opto-mechanical experiments, for which

they are usually conceived (e.g., on optical cooling, pulsed opto-mechanics, strong

opto-mechanical coupling, quantum superposition), while the relatively higher bear-

able power makes our systems particularly suitable for experiments aiming to create

ponderomotive squeezing.
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Chapter 5

Toward squeezed light detection

In this chapter we start discussing experimental results achieved in the pursuit of

ponderomotive squeezed light generation and detection. In particular we discuss,

in section 5.1, an optomechanical effect affecting frequency noise that was already

discussed in the literature but whose relevance in aiding squeezing generation was not

recognized. The results presented here on this topic can be found also in Ref. [28]. In

section 5.2 we discuss how the PDH cavity locking affects the dynamical backaction

and we show that it can lead to dynamical instability if a mechanical mode with

sufficient low effective mass is inside the frequency lock bandwidth. In this latter

section we clarify why, for the moment, we have not been able to generate squeezed

light despite having devices with, in theory, sufficiently high performances.

5.1 Frequency noise cancellation

Ponderomotive squeezing has been demonstrated experimentally, as we mentioned

in Chap. 1, with a maximum noise reduction below the shot noise of 1.7 dB [20] at

frequencies in the MHz range. However, quadrature squeezing is particularly useful

for improving sensitivity at lower frequencies, in the audio-band, for example for

improving the sensitivity of gravitational wave (GW) interferometers [97]. At lower

frequencies, however, various sources of technical noise have detrimental effects on

squeezing, making low-frequency ponderomotive squeezing much more difficult to

achieve. Indeed, we included in the model presented in Chap. 1 classical intensity and

frequency/displacement noise. In this section we show that the latter, the strongest

technical noise source in our system, can be almost completely canceled around the

bare mechanical resonance frequency thanks to the destructive interference between

the frequency noise directly affecting the cavity and the same frequency noise trans-
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Chapter 5. Toward squeezed light detection

duced by the mechanical resonator. We demonstrate such an effect experimentally

in a frequency band around 100 kHz.

The existence of this cancellation can already be predicted looking at Eq. 1.73.

Indeed, using the definition in Eq. 1.72, the contribution to the output signal pro-

portional to φ̇ is

aout(ω) = i [αsA3(ω)− α∗sA4(ω)] φ̇(ω) ∝ χeff (ω)

χ0(ω)
φ̇(ω) (5.1)

where

χ0(ω) = ωw
(
ω2
m − ω2 − iωγm

)−1
(5.2)

is the bare susceptibility of the mechanical resonator. In the usual case of a large

mechanical quality factor, at the unperturbed mechanical resonance ω = ωm, χ0 di-

verges and the output signal is unaffected by frequency noise. Therefore we expect a

narrow bandwidth around ω = ωm where noise is strongly suppressed. This cancella-

tion takes place at any cavity detuning except at resonance, when χeff (ω) = χ0(ω).

In this case in fact, the oscillator is sensitive only to intensity noise and cannot

transduce phase/frequency noise.

This frequency noise cancellation is related to the backaction amplification of a

signal discussed in Refs. [56, 98] and demonstrated in Ref. [94], that was considered

as a possible way to increase the sensitivity GW interferometers. Indeed, both effects

are described by the same ”amplification” ratio χeff (ω)/χ0(ω), because the system

responds in the same way to cavity length variations due either to an external

signal or to frequency noise modulations. However, here we exploit this interference

phenomenon for a different purpose, i.e., for reducing phase/frequency noise in the

optical output rather than for amplifying an external signal. We shall see later that

such a noise cancellation is essential for the possibility of generating and detecting

ponderomotive squeezing at hundreds of kHz.

The physical origin of the phenomenon of noise cancellation can be understood

also with a simple model. As we have seen, a single classic variable (in our notation,

φ̇) describes the fluctuations in the cavity detuning, and it can be used to take into

account both the laser frequency noise and the cavity length fluctuations excluding

the oscillator modes with low effective mass, for which it is necessary to include

in the description their response to radiation pressure. As a consequence, we can

consider in this simple model all such noise sources as contributions to effective

position fluctuations of the input cavity mirror.

The system can be sketched (see Fig. 5.1) as a first mirror with position y(t),

that is subjected to displacement noise, linked by the optical spring Kopt, defined in
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5.1 Frequency noise cancellation

Eq. 1.77, to the micromirror that in turn is bound, with elastic constant Km, to a

rigid frame. Assigning a mass m to the micromirror whose position x(t) is fluctuating

around equilibrium, the equation of motion for x, neglecting the damping, is

mẍ+Kmx−Kopt(y − x) = 0 (5.3)

giving the solution, for the Fourier-transformed variables x̃(ω) and ỹ(ω),

x̃ =
Kopt

Km +Kopt −mω2
ỹ =

ω2
opt

ω2
m + ω2

opt − ω2
ỹ (5.4)

and for the distance (y−x), that corresponds to the cavity detuning in real systems,

we have

ỹ − x̃ =
ω2
m − ω2

ω2
m + ω2

opt − ω2
ỹ =

χeff
χ0

ỹ. (5.5)

We have therefore a cancellation of the effect of the mirror position noise on the

cavity length when χ0 � χeff , i.e., around the bare oscillator resonance. The can-

cellation on the cavity detuning is effective also on the intracavity and output fields.

Figure 5.1: Scheme of the simplified model explaining the effect of noise cancellation.

The oscillating micromirror is linked by a mechanical spring (Km) to a fixed frame and

by the optical spring Kopt to the input mirror, modeled as a rigid fluctuating bound.
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Chapter 5. Toward squeezed light detection

Residual phase noise in homodyne detection

Before moving to the experimental demonstration of the frequency noise cancella-

tion effect, we introduce an additional noise term that is usually unavoidable when

measuring the noise properties of a quadrature of the cavity output field, that is, the

residual phase fluctuations of the local oscillator. We assume a homodyne detection

scheme for the measurements of quadrature spectra.

To evaluate the effects of this additional noise source, it is convenient to express

the quadrature output spectra at phase θ in the frame defined by the cavity output

field. The quadrature noise spectrum Sθout(ω)1 is then written in terms of the noise

spectra of the amplitude (Xout ≡ a0) and phase (Y out ≡ aπ/2) quadratures, SX(ω)

and SY (ω) respectively, and their symmetrized correlation spectrum SX,Y (ω), as

Sθout(ω) =
SX(ω) + SY (ω)

2
+
SX(ω)− SY (ω)

2
cos(2θ) + SX,Y (ω)sin(2θ). (5.6)

We recall that, with our normalizations, the output light is squeezed at phase θ

when Sθout(ω) < 1, since 1 represents the shot noise level, and that the Heisenberg

uncertainty relation implies the inequality SX(ω)SY (ω)− [SX,Y (ω)]2 ≥ 1.

When the phase of the local oscillator has residual random fluctuations, the

homodyne noise spectrum must be averaged over the distribution of the fluctuating

phase θ, which we take as a Gaussian variable with variance ∆θ and mean value θ̄,

i.e.,

S̄ θ̄∆θ(ω) =
1√

2π∆θ

∫ ∞
−∞

dθ′exp

[
−(θ′ − θ̄)2

2(∆θ)2

]
Sθ

′

out(ω), (5.7)

which gives

S̄ θ̄∆θ(ω) =
SX(ω) + SY (ω)

2
+
SX(ω)− SY (ω)

2
e−2(∆θ)2

cos(2θ̄)

+ SX,Y (ω) e−2(∆θ)2

sin(2θ̄).

(5.8)

As a consequence of this additional noise source, the optimum squeezing spectrum

is modified and can be expressed as

2S̄min(ω) =SX(ω) + SY (ω)− e−2(∆θ)2

×
√

[SX(ω)− SY (ω)]2 + 4[SX,Y (ω)]2.
(5.9)

In Appendix D can be found general expressions of the output homodyne noise

spectra of: he amplitude quadrature SX(ω), phase quadrature SY (ω) and of their

correlation SX,Y (ω) as a function of the input noise sources spectral density.

1To ease the notation we shall assume in this section that every spectrum has already been

symmetrized so that Sx(ω) (without the overline) indicates a symmetrized spectrum.
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5.1 Frequency noise cancellation

Experimental demonstration of frequency noise cancellation

The experiment is carried out with a Fabry-Pérot cavity of length L = 0.57mm

and the D1 double wheel oscillator as end mirror. The cavity Finesse is F = 57000

so that the half linewidth is κν = 2.3MHz. Even though the Finesse is slightly

lower than the maximum reported in Chap. 4, optical losses are comparable and

the cavity is almost optimally coupled also in this case. We report here also the

mechanical parameters: resonance frequency ωm/2π = 12891Hz, effective mass m =

1.35 10−7Kg, and a mechanical quality factor of Q = 16000, slightly lower than the

value reported in Tab. 4.1. This can be attributed to an higher contribution of

clamping losses, thus remarking the need of stronger isolation in future generations

of devices. We point out that the quality factor has a marginal role in the following

measurements as long as γopt > γm holds.

We have experimentally verified the cancellation of frequency noise in a narrow

band around the bare mechanical resonance in two different ways: (i) looking at

the dynamics of the PDH signal, which is approximately proportional to the cavity

detuning and is therefore suitable to test the physics of the frequency noise cancel-

lation; (ii) measuring the intensity of the field reflected by the cavity, which is the

variable typically observed in ponderomotive squeezing experiments.

In both cases, we have studied the response functions of the system to a modula-

tion of the laser frequency generated by the internal oscillator of the lock-in amplifier,

applied to the piezo transducer of the laser cavity (fast actuator, see App. B.1). The

transduction efficiency of the laser piezo actuator has been calibrated by means of

the PMI (that has unequal arm lengths). We express the frequency modulation as

φ̇ = κAincos(ωt) (5.10)

that is, we are normalizing the modulation amplitude to the cavity damping rate.

The dynamics of the PDH signal has been measured with the setup in the stan-

dard configuration but with beam B-C blocked and by measuring the coherent re-

sponse, of the PDH signal itself, to the frequency modulation with the lock-in am-

plifier. For a direct comparison between experimental results and theory, the PDH

signal is normalized to its peak-to-peak amplitude in order to obtain the frequency

modulation of the output field normalized again to κ. Indeed, the PDH signal can

be considered as a measurement of the output phase quadrature Yout, if the de-

tuning and its fluctuations remain small with respect to the cavity linewidth. The

amplitude of the measured modulation normalized in this way is APDH .

In Fig. 5.2 we show the normalized experimental data APDH/Ain for three val-

ues of steady state detuning ∆n and an input power of P = 0.09mW , along
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Chapter 5. Toward squeezed light detection

with theoretical predictions. These can be obtained by calculating the frequency

noise/modulation transfer function using Eq. 1.73, Eqs. 1.74, and the definition of

Yout(ω), that is

Aφ̇(ω) = i(αsA3(ω)− α∗sA4(ω)− h.c.) (5.11)

and by normalizing it to its value A0
φ̇

far from the mechanical resonance. This means

calculating the low frequency value of Aφ̇(ω) at resonance (∆ = 0) and in the limit

of vanishing optomechanical coupling (ωm →∞), that is, A0
φ̇

= 4κeαin/κ
2. Finally,

one obtains
APDH
Ain

=
|Aφ̇(ω)|
A0
φ̇

=
κ2

4κeαin
|Aφ̇(ω)|. (5.12)

Figure 5.2: Normalized PDH response functions for three different values of the steady

state detuning: ∆n = −0.0047 (red inverted triangles), ∆n = −0.028 (green dots) and

∆n = −0.052 (blue triangles). Error bars express the statistical uncertainty on ∼ 5 re-

peated measurements. The Full lines correspond to the theory prediction with no fitting

parameters, but with minor adjustments as explained in the main text.

Fig. 5.2 shows a dip that is always exactly at ω = ωm. For increasing detun-

ing, the cancellation bandwidth increases and the dip is more pronounced, as it is

expected from the cancellation factor χeff/χ0 of Eq. 5.1. In fact, the cancellation

effect is larger when the effect of the optomechanical coupling on the modified ef-

fective susceptibility χeff is larger, i.e., for larger detuning ∆ and effective coupling

|g0αs|2. We point out that the theoretical curves in Fig. 5.2 are obtained with no

fitting parameters, but with just minor adjustments to the driving power and to the
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5.1 Frequency noise cancellation

vertical scale (∼ 20%), both compatible with experimental uncertainties. Moreover,

we have added a supplementary detection noise, due to the electronics, that limits

the depth of the dips.

To further enhance the dependance of the cancellation effect on the effective cou-

pling strength, we repeated the measurement with beam B-C injected into the cavity,

with the higher power of P = 1mW . In this case, the PDH beam is maintained on

resonance and can thus be considered as a weak probe, compared to the strong and

detuned beam B-C. Theoretical predictions can be calculated again from Eq. 5.12

setting ∆ = 0, but where the effective susceptibility is determined by the dynamical

backaction of beam B-C. In Fig. 5.3 we show the same theoretical curves of Fig. 5.2,

along with the experimental data and predictions for this second configuration. Here,

the beam B-C is injected with a detuning of ∆n = −0.023. The agreement between

theory and experiment is very good, the cancellation effect is much stronger and is

again centered at ω = ωm. In the second part of the experiment we have measured

Figure 5.3: The same three theoretical curves of Fig. 5.2 for the normalized PDH signal,

together with an additional data set (purple dots) corresponding to the PDH signal in

presence of the strong pump beam B-C (P = 1mW and ∆n = −0.023) which induces

a much stronger dynamical backaction. The full black line corresponds to the theoretical

predictions with no fitting parameters, except for an additional detection noise due to

electronics.

the response of the system by detecting the intensity modulation of the reflected

pump beam B-C. The sum of the photodiodes PD1 and PD2 (with the reference

arm of the PMI blocked) were sent to the lock-in amplifier. In this case, the ampli-
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Chapter 5. Toward squeezed light detection

tude of the measured intensity modulation normalized to the height of the reflection

dip, giving APDS. Theoretical predictions can be calculated again using Eq. 1.73 and

Eqs. 1.74 as follows. The reflected field is αR =
√

2κeαs − αin and the amplitude of

the photon flux modulation due to the laser frequency modulation φ̇ (see Eq. 5.10)

is

Iφ̇(ω) = i {α∗R [αsA3(ω)− α∗sA4(ω)]− h.c.} φ̇, (5.13)

the normalization constant is I0 = 2αinκi/κ and, finally, we find

APDS
Ain

=
|Iφ̇(ω)|
I0

κ =
κ2

2αinκi
|Iφ̇(ω)|. (5.14)

In Fig. 5.4 we show the normalized experimental data along with theoretical predic-

tion calculated with Eq. 5.14, obtained with three different values of detuning for

the pump beam. Also in this case, theoretical curves well reproduce the data without

fitting parameters apart the addition of detection noise. This set of measurements

Figure 5.4: Normalized response functions of the reflected field versus frequency for three

different values of detuning, ∆n ' 0.0056 (magenta inverted triangles), ∆n ' 0.015 (yel-

low dots) and ∆n =' 0.021 (cyan triangles). The full lines correspond to the theoretical

predictions with no fitting parameters, except for the addition of a detection noise.

is more significative in view of the detection of ponderomotive squeezing, since the

reflected field is exactly where quadrature squeezing caused by radiation pressure

manifests. Also in these transfer functions we see the same features already under-

lined in the PDH dynamics: (i) the cancellation dip is exactly at the bare mechanical

resonance ωm; (ii) the cancellation effect is more pronounced for larger detunings

and couplings, i.e., for a larger optical spring effect.
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5.1 Frequency noise cancellation

Effect of noise cancellation for generating ponderomotive squeezing at

low frequency

In this last section we show that the experimental setup studied above, if slightly

improved, can be employed for generating ponderomotive squeezing at frequencies

around 100 kHz, i.e., considerably lower than those of Refs. [19, 20]. We demonstrate

that the cancellation mechanism illustrated above is of fundamental importance for

the detection of squeezing. This can be seen by considering the prediction for the

output homodyne noise spectrum defined by Eq. 1.82 at a fixed phase θ̄, which

we have chosen as the optimal phase of Eq. 1.86 evaluated at the bare mechanical

frequency θ̄ = θmin(ωm). We have considered a slightly improved version of the

setup, that is, the same optical cavity (i.e., same length and Finesse), the same

resonator mass and frequency, and considered only an improved mechanical quality

factor, Q = 105 as reported in Chap. 4 (and Ref. [25]), liquid He temperatures, T =

4 K, and larger input power, P = 30mW . As we have shown in Chap. 2, the double

wheel design is able to work with high intracavity powers without a significant

increase of the local temperature. Indeed, the input power considered here would

generate a temperature increase with respect to the cold finger of few tenth of K,

and a dissipated power of a couple of mW , well within reach of a standard liquid

He cryostats.

In the device employed here, frequency noise is dominated by background noise

and we have observed Sbg ∼ 10−34 ÷ 10−33m2/Hz in the ∼ 100 kHz region with

up to 25mW of input power; similar figures are shown by other groups [61]. We

have in fact independently verified that laser frequency noise gives a negligible

contribution, which amounts to 0.5Hz2/Hz. For our predictions we take conser-

vatively the upper limit 10−33m2/Hz, that is equivalent to the frequency noise

Sφ̇φ̇ = (dωcav/dx)2Sbg ' (2π)2 300Hz2/Hz. For what concerns laser amplitude noise

αI , the present apparatus, including an additional external noise eater, shows an

excess noise 3 dB above the shot noise for a 30mW laser beam (the work described

in Ref. [99] has been recently extended in the ∼ 100 kHz range for this purpose).

The excess amplitude noise could be further decreased by 20 dB using a standard

(20 cm long, 30000 Finesse) filter cavity [100] and at this level, it would provide a

negligible contribution to the output spectrum. As a consequence, we have neglected

the laser amplitude noise contribution in the predictions below, with the exception

of Fig. 5.6.

Fig. 5.5 shows the homodyne noise spectrum S θ̄out at phase θ̄ = 178.6◦, together

with the various noise contributions, i.e., the quantum noise, the frequency and
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Chapter 5. Toward squeezed light detection

Figure 5.5: Homodyne spectrum S θ̄out at the fixed phase θ̄ = θmin(ωm) (black solid curve),

together with its contribution from: quantum noise S θ̄,qout (yellow dash-dotted curve), due to

both input field and vacuum fluctuations, frequency noise S θ̄,φ̇out (cyan dashed curve) and

thermal noise S θ̄,thout (magenta dotted curve). Ponderomotive squeezing is achieved in a

narrow band around the bare mechanical resonance. The detuning assumed here is ∆ =

2π32 kHz (∆n = 0.014).

thermal contributions. It is evident that one generates ponderomotive squeezing in

a narrow bandwidth around the bare mechanical frequency ωm, only due to the

frequency noise cancellation described above. In fact such noise is dominant ev-

erywhere except in this narrow band, where the detected homodyne spectrum is

bounded below by the quantum noise contribution, in this set of parameters.

An enlarged view of the homodyne spectrum around ωm is given by Fig. 5.6,

where we show S θ̄out at different values of the frequency noise Sφ̇φ̇ (left) and of laser

amplitude noise SαIαI
(right). A larger Sφ̇φ̇ implies narrowing the squeezing band-

width, and we see that one can tolerate an appreciable amount of laser amplitude

noise (see the figure caption for details). About 1 dB of squeezing is achievable in

this parameter regime, comparable to that achieved in Refs. [19, 20]. Deeper and

wider squeezing can be obtained for lower masses, higher Q, lower frequency noise

and an overcoupled cavity (with κi � κe) to reduce the effect of vacuum noise

entering through optical losses.

The reason why frequency noise (in this case mostly due to background displace-

ment noise) is so important is that it is transformed into strong intracavity laser
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5.1 Frequency noise cancellation

Figure 5.6: Enlarged view of the homodyne noise spectrum S θ̄out around ω = ωm. In

the figure on the left, S θ̄out is shown at different values of frequency noise: Sφ̇φ̇/(2π)2 =

3 102Hz2/Hz (black solid), Sφ̇φ̇/(2π)2 = 3 103Hz2/Hz (blue dotted) and Sφ̇φ̇/(2π)2 =

3 104Hz2/Hz (yellow dot-dashed). On the right figure, S θ̄out is shown at different values

of laser amplitude noise: SαIαI = 0 (black solid), SαIαI = 0.1Hz/Hz (blue dotted) and

SαIαI = 0.5Hz/Hz (yellow dot-dashed). This last value correspond to an excess noise of

3 dB above the shot noise. Other parameters as in Fig. 5.5.

intensity noise by the frequency-dependent resonance curve of the Fabry-Pérot. The

conversion factor is roughly proportional to the derivative of the Lorentzian (at least

in the bad cavity limit), therefore typical calculations of achievable squeezing with

realistic background noise are forced to consider very small detuning [60, 26]. A

similar problem is found when aiming to measure quantum correlations induced by

ponderomotive effect [101]. Such a small detuning means that the working point is

quite close to the edge of the stability region, and that the requirement on the accu-

racy and stability of both the detuning and the homodyne phase are very tight. On

the other hand, a further and crucial advantage of the frequency noise cancellation

mechanism around ω = ωm is that it allows to significantly relax the requirements

on the stability and precision in the detuning and the detection phase in order to get

ponderomotive squeezing. This is illustrated in Fig. 5.7, where the homodyne noise

spectrum Sθout at fixed frequency ω = ωm is plotted as a function of the normalized

detuning and of the homodyne detection phase, with the same set of parameters

of Fig. 5.5. The sub-shot noise region becomes wider and wider by increasing the

detuning and, consequently, by departing from the phase of the amplitude quadra-

ture θ = 0 = π. At larger detunings it is sufficient to stabilize the detection phase

and the detuning itself at better than 1% level in order to detect squeezing. On the

contrary, closer to resonance ∆ = 0, the sub-shot noise region is much narrower and
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Chapter 5. Toward squeezed light detection

one has much more stringent stability requirements on ∆ and θ.

Figure 5.7: Homodyne noise spectrum Sθout at fixed frequency ω = ωm as a function of

detuning ∆n and of the homodyne phase θ. Parameters as in Fig. 5.5. The sub-shot noise

region widens for increasing detunings and departing from θ = 0 = π.

The fact that one can tolerate a significantly larger uncertainty in the detection

phase by operating around the noise cancellation point ω = ωm, and at larger

detunings, can be seen also in the averaged homodyne noise spectrum S̄θ∆θ(ω) of

Eq. 5.8 which takes into account the presence of a detection phase uncertainty ∆θ.

This is shown in Fig. 5.8, where S̄θ∆θ(ω) is plotted versus ω and ∆θ at fixed detuning

and detection phase (namely, ∆n = 10−3 and the corresponding optimal phase

θ̄ = θmin(ωm) = 179.9◦ in the left panel, and ∆n = 0.063 and θ̄ = θmin(ωm) = 173.8◦

in the right panel). We see that, at small detunings, squeezing vanishes already for

an uncertainty ∆θ ' 0.015◦, while at larger detunings ponderomotive squeezing is

detectable up to a phase detection uncertainty ∆θ ' 1◦. Further increase of the

detuning is not convenient because, at fixed input power, there is an interval of

values of ∆ for which the system is unstable [102]. At larger values of the detuning

the system is again stable, but the achievable squeezing is lower. Similar results can

be obtained by considering the uncertainty in the detuning ∆.

Achieving ponderomotive squeezing with the present optomechanical device pre-

sents some practical advantages with respect to the use of the setups of Refs. [19, 20],

which are characterized by higher mechanical frequencies and much lower masses.

In this latter setups, radiation pressure effects are much stronger and therefore

ponderomotive squeezing is easier to achieve. However, the mechanical frequency

is much less stable and reproducible, because of significant stress drifts induced by
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5.2 Effects of frequency locking on the dynamical backaction

thermal effects associated with optical absorption [103]. On the contrary, in the

present thicker silicon micromechanical mirror, the expected temperature variation

is just around 0.1K in a cryogenic environment, due to the low thermal impedance

of the device. This is confirmed by the fact that we could see no relevant drift in the

mechanical resonance frequency by illuminating the sample from its back surface

(where the light is partially absorbed by silicon) with laser power in the mW range.

Figure 5.8: Averaged homodyne noise spectrum S̄ θ̄∆θ as a function of frequency ω/2π

and detection phase uncertainty ∆θ at fixed detuning (∆n = −10−3 in the left panel and

∆n = −0.063 in the right panel) and fixed detection phase (θ̄ = 179.9◦ in the left panel and

θ̄ = 173.8◦ in the right panel. Notice the different scale of the ∆θ axes. Other parameters

as in Fig. 5.5 )

5.2 Effects of frequency locking on the dynamical

backaction

In this section we are going to discuss how the frequency lock loop can modify

the dynamics of the optomechanical cavity. In particular, we show that: (a) it can

introduce the dynamical instability for some mechanical modes, with sufficiently

low mass and frequencies, even if the steady state detuning is well inside the stable

region; (b) it can affect the dynamical back action even at frequencies much greater

than the lock bandwidth. While the latter problem can be addressed rather easily,

the former is much more difficult to avoid especially for the QPO designs.

The problem can be discussed starting from Eq. 1.73. Since we want to treat the

classical contribution of the control loop, we can neglect the quantum backaction

and all additional classical noise terms in the equation for the oscillator position, so
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Chapter 5. Toward squeezed light detection

that it can be rewritten as

x(ω) = χ0(ω) [ξ(ω) + Frad(ω)] (5.15)

where Frad(ω) is the position dependent radiation pressure force that is given by

Frad(ω) =− i g2
0|αs|2

[
1

K∗(−ω)
− 1

K(ω)

]
=− 2∆n

g2
0

κ

nmaxc

1 + ∆2
n

1

(1− i ω/κ)2 + ∆2
n

x

(5.16)

where nmaxc is the mean number of intracavity photons at resonance. Note that,

χeff (ω) = ωm[ω2
m − ω2 − iγmω − Frad(ω)/x(ω)]−1

The cavity lock loop modifies the laser frequency to maintain the input field at a

fixed normalized detuning ∆n from the cavity resonance. Its effect can be included

in the model by replacing, in Eq. 5.16, ∆n with its closed loop value, that is

∆n →
∆n

1 +Glk(ω)
(5.17)

where Glk(ω) is the overall PDH loop gain (see Sec. C). This substitution makes

evident that the radiation pressure force is strongly modified by the control loop as

long as the frequency is of the order of the lock bandwidth. At higher frequencies the

loop contribution rapidly decreases and the radiation pressure is again well described

by Eq. 5.16. However, depending on the cavity parameters, residual effects could still

be not negligible at ω = ωm. This is most evident in the optomechanical damping

rate γom. The modified optical damping rate γlkopt(ω) is now given by

γlkopt(ω) =
1

ω
Im

[
Frad(ω)

x(ω)

]
=

1

ω
Im

[
− 2∆n

1 +Glk(ω)

nmaxc

1 + ( ∆n

1+Glk(ω)
)2

1

(1− i ω/κ)2 + ( ∆n

1+Glk(ω)
)2

] (5.18)

so that we have γom(ω) = γm + γlkopt(ω). If we take into consideration the cavity

parameters given in the previous section and the typical loop gain in Sec. C for a

lock bandwidth ωlk/2π ' 12 kHz, the resulting γom is quite different from the one

evaluated with Eq. 1.78, as is clearly shown in Fig. 5.9 where the two are compared.

Such a dramatic difference is to ascribe at the fact that, in the bad cavity regime,

the imaginary part of Frad is small compared to its modulus, so that any resid-

ual phase contribution from Glk can result in strong modifications to γom, even if

ωm/ωlk ' 10.

86



5.2 Effects of frequency locking on the dynamical backaction

Figure 5.9: Optomechanical damping rate normalized to the bare mechanical one and

calculated at angular frequency ωm, evaluated with γlkopt (blue) and evaluated without the

effects of the frequency lock loop (red dashed).

The easiest way to deal with this problem is to ensure that Glk is negligible at

ω = ωm in such a way to avoid the deterioration of the lock loop performances. To

do this, we have included in the electronic of the servo loop two passive notch filters

in cascade, with a maximum rejection factor of about 100, centered at ωm. Note that

the Q of these filters has to be high enough to provide a sufficient rejection but, at

the same time, low enough to guaranty a rejection bandwidth sufficiently wide to

comprehend the frequency shift of the mechanical resonance at low temperature.

While the notch filters ensure that γom(ωm) is not affected by the frequency lock

loop, at lower frequencies this is not true. Furthermore, the effect of the loop is so

strong that the resulting γom can actually change sign. This means that mechanical

normal modes with effective mass comparable to that of the oscillator and reso-

nance frequency ω0 < ωm can be brought to the dynamical instability region by the

frequency lock loop.

To clarify this concept, we show in Fig. 5.10 the ratio γlkopt(ω)/γm (blue curves)

as a function of frequency and at two fixed values of the normalized detuning ∆n =

−0.01 (left) and ∆n = −0.003 (right). The corresponding, roughly constant, ratio

calculated for γopt(ω) is also shown in both panels (black curves). Note that, thanks

to the additional notch filters, γlkopt(ωm) and γopt(ωm) coincide on a reasonably wide
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Chapter 5. Toward squeezed light detection

Figure 5.10: Modified optical damping rate, normalized to the bare mechanical one, as

a function of frequency for two different values of normalized detuning (blue curves). In

both panels: (black curves) nominal γopt(ω); (red curves) reference value γlkopt/γm = 1. The

dashed gray vertical lines correspond to ωm ' 129 kHz.

frequency bandwidth.

We recall that for γlkopt(ω)/γm ≤ −1 the system is dynamically unstable since

the threshold value implies a vanishing optomechanical linewidth. However, here

we show γlkopt(ω)/γm also in the unstable region. The reason is simple. The curves

shown in Fig. 5.10 are calculated for the effective mass m = 1.35 10−7 kg of the

oscillator mode considered previously. Showing the full range of γlkopt(ω)/γm allows

us to roughly estimate how heavier should be the effective mass of a mechanical mode

with resonance frequency in the unstable domain. In Eq. 5.18 the mass comes into

play through g2
0 ∝ 1/m so that, for example, if ∆n = −0.01, a mode with resonance

frequency ω0 = 30 kHz should have an effective mass roughly 120 times higher than

that of the main oscillator mode in order to be stable, while at ∆n = −0.003 a factor

of about 30 would be sufficient.

These figures can be directly compared with actual values of secondary normal

modes of the structures presented in Chap. 2. For the double wheel oscillators, the

only relevant mode is the fundamental one of the suspension wheel. The effective

mass of this mode, that has a resonance frequency ω0 ' 30 kHz for all designs,

is typically in the range (0.5 − 1.0) 10−5 kg indicating that for the 1mW input

power considered in evaluating the curves in Fig. 5.10, the fundamental wheel mode

would self-oscillate for ∆n = −0.01 while it would be stable for ∆n = −0.003.

Note that it exists a parameter region for which both, the oscillator and the wheel

modes, are stable, but one is cooled and the other is heated, or viceversa. All these

effects induced by the frequency lock loop have been observed experimentally. We
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5.2 Effects of frequency locking on the dynamical backaction

remark that additional measures have to be implemented otherwise the parameters

region discussed in the previous section would remain out of reach. Fortunately, this

can be achieved quite efficiently in two possible ways. The first one requires the

implementation of an active feedback cooling on the wheel mode, while the second

one consists in modifying the PDH loop. Both have been realized and the latter is

found to be the most effective.

Figure 5.11: PDH spectrum of our best QPO oscillator acquired with the long cavity at low

input power and for a low Finesse cavity. The numbers identify the low frequency normal

modes discussed in the text. (1) ω1/2π ' 8 kHz and m ∼ 1 10−6 kg. (2) ω2/2π ' 15 kHz

and m ∼ 2 10−7 kg. (3) ω3/2π ' 20 kHz and m ∼ 4 10−7 kg. (4) ω4/2π ' 34 kHz and

m ∼ 4 10−7 kg. Also identified are the AS1 and AS2 modes. The blue arrow indicates the

calibration spectral line (see Sec. C).

The situation is quite different for the QPO and DPO designs. For these oscilla-

tors, a relevant number of normal modes are present at frequencies lower than those

of the AS modes. This was already clear in the PMI spectrum of our best QPO shown

in Fig. 4.1 where 4 of these modes were identified. To remark the importance of this

aspect we show in Fig. 5.11 a PDH spectrum of the same QPO acquired with the

long cavity (Lcav = 8.3mm). In this case, the low input power and the low Finesse
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Chapter 5. Toward squeezed light detection

(we had F ' 10000) have assured that the dynamical backaction, both the naturally

occurring and the PDH loop induced, was negligible. The lowest frequency mode, at

about 8 kHz, has an effective mass of ∼ 1 10−6 kg while the following three modes

have masses in the range (2 − 4) 10−7 kg. These figures essentially assure that no

stable configuration can be found when the Finesse reaches the value of F = 65000

measured with the short cavity.

The gravity of this problem was not foreseen in the development phase but for

the following generation we added the requirement that the lowest mode of the

structure should have a resonance frequency greater than ∼ 40 kHz.
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Chapter 6

Parametric stabilization of the

effective mechanical susceptibility

Opto-mechanical systems are suitable to investigate a large variety of quantum phe-

nomena that involve the degrees of freedom of both the optical field and the me-

chanical motion. In many instances, however, the precise knowledge of the effective

mechanical parameters is a crucial aspect. For the typical experimental setup this

may not be trivial. Indeed, the effective susceptibility can be influenced in many

ways. For example, slow thermal drifts of the environmental temperature can mod-

ify the resonance frequency of the oscillator or, more subtle, they change the cavity

overall birefringence limiting the possibility of maintaining a fixed detuning when a

two beam setup, like ours, is used.

The issue of the stabilization of the effective mechanical parameters has been

recently considered by few groups [104, 105]. In this chapter we introduce the imple-

mentation of a control loop that stabilizes the effective mechanical susceptibility by

controlling the optical spring effect, thus realizing a parametric feedback. In Sec. 6.1

we introduce the theoretical model to describe it and its experimental realization.

To do so, we use a model based on the semiclassical approach that is sufficient to

describe all the experimental results presented here. Finally, we discuss, in Sec. 6.2,

its characterization.

6.1 Parametric control loop model

We consider the experimental setup in the standard configuration so that the weak

probe beam (A-D) measures the position x(t) of the oscillator with detection noise

n(t) and back action force fBA(t), that are considered uncorrelated and with spectra
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Chapter 6. Parametric stabilization of the effective mechanical susceptibility

Sn and SBA bounded by SnSBA ≥ ~2/4. The pump beam (B-C) is used for high power

injection into the cavity, actually determining the effective mechanical parameters.

We want to describe the dynamical evolution of the optomechanical oscillator under

the action of a stochastic force noise and an additional coherent oscillating force of

constant amplitude Fe cos ωet. Then, Eq. 1.4 becomes

ẍ(t) + γomẋ(t) + ω2
effx(t) =

1

m
[fst + Fe cos ωet] (6.1)

where γom and ωeff =
√
ω2
m + ω2

opt are the effective mechanical parameters and

fst is the stochastic noise force term that includes the thermal noise contribution

and the backaction of the measurement. The result of the position measurement is

xm(t) = x(t) + n(t).

The motion of the oscillator can be decomposed into two quadratures X(t) and

Y (t) in a frame rotating at angular frequency ωe, according to

x(t) = X(t) cos ωet + Y (t) sin ωet. (6.2)

Assuming |ωe − ωeff | � ωeff and γom � ωeff , the evolution equations for the two

slowly-varying quadratures, derived form Eq. 6.1, can be written as

Ẋ +
γom
2
X − (ωeff − ωe)Y =

1

mωe
f

(1)
st

Ẏ +
γom
2
Y + (ωeff − ωe)X =

1

mωe

[
f

(2)
st +

Fe
2

] (6.3)

where the stochastic force term has a correlation function 〈f (i)
st (t)f

(j)
st (t′)〉 = δijδ(t−

t′)Sst/2 (i,j=1,2) and where all noise sources in fst are assumed uncorrelated with

each other. In the experiment, the two quadratures are measured by sending xm(t)

to a lock-in amplifier whose reference signal is derived from the oscillator modulating

the coherent force Fe. The outputs of the lock-in are Xm = X+n(1) and Ym = Y +n(2)

with 〈n(i)(t)n(j)(t′)〉 = δijδ(t− t′)Sn/2.

The steady state solutions of Eqs. 6.3 are the usual components of the oscillator

response, as a function of the frequency difference between resonance and excitation

δω = ωeff − ωe:

X̄(δω) =
Fe

2mωe

δω
γ2
om

4
+ (δω)2

Ȳ (δω) =
Fe

2mωe

δω
γ2
om

4
+ (δω)2

.

(6.4)

We remark that X̄ is an odd function of δω, therefore it can be efficiently exploited to

control and lock ωeff . TheXm quadrature is indeed integrated and sent to control the
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resonance frequency ωeff by modifying the optical spring constant. This is obtained

in the experiment by acting on the detuning of the pump beam according to

ωl(t) = ω0
l −

∫ t

−∞
G(t, t′)Xm(t′)dt′ (6.5)

where ω0
l is the initial detuning and the kernel G(t, t′) is constant in the case of

an integral feedback loop. Given that ωl determines the effective frequency ωeff via

Eq. 1.77, we can write

ωeff (t) = ω0
eff (t)−

∫ t

−∞
Ḡ(t, t′)Xm(t′)dt′ (6.6)

where ω0
eff (t) is the free-running optomechanical frequency and Ḡ ∝ G. We point

out that, in the bad cavity limit, the optomechanical damping rate can be expressed

as γopt = 2Kopt/mκ so that the shift in the resonance frequency ωeff due to the

optomechanical backaction is larger than the variation in the total damping rate

γom, as mentioned in Chap. 1. This means that, when considering small variations

of ∆ around the working point, the variations of γeff due to the feedback loop can

be neglected. We also remark that the control of the optical spring can be considered

as a classical effect, and its noise neglected in a first order treatment. In any case,

such noise (for us, the radiation pressure noise of the pump beam) can be included in

fst. At the purpose of analyzing the effect of the control loop, we first consider slow

fluctuations in the opto-mechanical resonance frequency ωeff , that can be treated

as adiabatic changes of the system, keeping the validity of Eqs. 6.3. In the absence

of drift in ω0
eff (t), the steady-state solution is δω = 0, i.e., ωeff = ωe (long term

drifts in ω0
eff (t) can be corrected by additional integrators, as in standard servo-

loop systems). In the phase plane of a reference frame rotating at ωe, the oscillator

motion is now represented by a vector R = (X, Y ) fluctuating around the average

value (0, Y0) with Y0 = Ȳ (0) = Fe/mωeγom (in Fig. 6.1 we report an experimental

example). The feedback loop corrects the fluctuations by counter-rotating R towards

the Y axis. If R remains close to (0, Y0), i.e., if 〈X2 + (Y − Y0)2〉 � Y 2
0 , we can

approximate the angle θ between R and the Y axis with θ ≈ X/Y0. In this limit, the

feedback loop (that acts on θ) just influences the fluctuations in the X quadrature,

leaving free Y fluctuations. This is expressed by a linear expansion of Eqs. 6.3 around
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Figure 6.1: Experimental measurement of the temporal evolution of the mechanical oscil-

lator in the phase plane with active parametric control.

the steady state, with ωeff = ωe + δω(t), X = X̄ + δX and Y = Y0 + δY :

δẊ +
γom
2
δX − δω(t)Y0 =

1

mωe
f

(1)
st

δẎ +
γom
2
δY =

1

mωe
f

(2)
st

δω(t) = δω0
eff (t)−

∫ t

−∞
Ḡ(t, t′) [δX(t′) + n(1)(t′)] dt′.

(6.7)

We have few important remarks on the above relations. The first one is that the

equation governing the fluctuations of the Y quadrature is the same that we would

have without feedback, therefore δY behaves as in a free oscillator and, for example,

it can be used to reliably measure any external force. Second point, we have a well

defined phase plane: the oscillator is not just frequency stabilized, but also phase-

locked to the reference. Third issue, the response function of the Y quadrature is

stable, with a peak frequency defined a priori (at ω = 0, corresponding to ωe for

the evolution of x) and, as a consequence, stable width γom and peak signal-to noise

ratio.

The spectrum of the measured Ym quadrature calculated from Eq. 6.7 can be
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written in the form

SYm = L(ω)Sst + Sn/2 (6.8)

with

L(ω) = A γom
ω2 + (γom

2
)2

(6.9)

where A =
∫∞
−∞ L(ω)dω/2π = 1/(2γomm

2ω2
e) and Sst is the total force noise spectral

density.

Concerning the measured Xm quadrature, its spectrum can be calculated as-

suming an integral feedback loop. As mentioned earlier, in this case the kernel is

constant, that is, Ḡ(t, t′) = G0. The equation for δω(t) in Eqs. 6.7 becomes

δω = δω0
eff (t)−G0

∫ t

−∞

[
δX(t′) + n(1)(t′)

]
dt′. (6.10)

Moving to Fourier1 space and solving for δX(ω) we find that the spectrum of the

measured Xm quadrature is

SXm = R(ω)Sst + B(ω)Sn/2 +D(ω)Sδω0
eff
/2 (6.11)

where Sδω0
eff

is the spectral density of the fluctuations of δω0
eff (t) and where we

defined

R(ω) =γomA

∣∣∣∣∣ 1

i ω + γom
2

+ G0Y0

i ω

∣∣∣∣∣
2

= γomA |r(ω)|2

B(ω) =

∣∣∣∣1− r(ω)
Y0

i ω

∣∣∣∣2
D(ω) = |r(ω)Y0|2 .

(6.12)

It is possible to show that for sufficiently high gain in the feedback loop B(ω) ' 1.

As a consequence Eq. 6.11 simplifies to

SXm ' R(ω)Sst + Sn/2 +D(ω)Sδω0
eff
/2 (6.13)

The treatment presented here includes slow fluctuations of ω0
eff as well as its

fast, although weak, variations that can be considered as phase fluctuations. The

case of strong and fast variations of ω0
eff , producing trajectories in the phase plane

that take R far from the region with θ < 1, requires numerical integration of Eq. 6.3

and the approximation of a free Y quadrature is no longer reliable.

1To comply with the conventions for the Fourier transforms used in electronics we use in

this chapter the following definition: x(ω) =
∫∞
−∞ x(t)e−iωtdt and x(t) =

1
2π

∫∞
−∞ x(ω)eiωtdω
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Chapter 6. Parametric stabilization of the effective mechanical susceptibility

By excluding the coherent excitation and the frequency control, the spectrum of

both quadratures, for an opto-mechanical resonance at ω0
eff = ωe + δω, is

SXm = SYm =
1

2
[L(ω − δω) + L(ω + δω)] SFst +

Sn
2

(6.14)

and, in case of slow fluctuations of δω, the spectral peaks assume the shape of a

Voigt profile, maintaining a constant area.

6.2 Experimental characterization

The optomechanical system that has been used for the characterization of the control

loop is the same described in Chap. 5. We report here its fundamental parameters,

cavity length Lcav = 0.57mm, Finesse 57000, coupling parameter ζ = 0.09, mode

matching 96%, mechanical resonance frequency ωm/2π = 128961Hz, effective mass

m = 1.4 10−7Kg and a mechanical quality factor of Q = 16000. The measurements

are performed at room temperature with a probe beam power in the carrier of

PPDH ' 0.040mW and a pump power of Ppump = 1.0mW .

The coherent excitation is generated by sending the internal oscillator of the lock-

in amplifier to the EOM2 along the pump beam path. The PDH signal is sent to a

digital scope and to the lock-in for demodulation. In order to obtain the dispersive

curve of Eq. 6.4 for the X quadrature, the phase of the coherent excitation has to

be properly adjusted. This is achieved by measuring the transfer function of the X

quadrature itself and by determining the required phase through a fit of the data.

The control of the optical spring is obtained by sending the X quadrature output of

the lock-in to the driver of the AOM after it has been integrated. Both the X and Y

output signal of the lock-in amplifier are acquired by a digital scope with a resolution

of 12 bit and a sampling interval of 21µs. During the data analysis the time traces,

that are about 20 second long (corresponding to ∼ 106 data points), are divided into

1 s long segments. For each segment the power spectrum is calculated using a FFT

algorithm, and corrected for the transfer function of the lock-in amplifier.

We can rewrite Eq. 6.12 (and Eq. 6.13) taking the inverse of a high pass filter as

transfer function for the integrator, that is

1

i ω
→ 1 + i ω/ωc

i ω/ωc
(6.15)

where ωc/2π = 160Hz is the filter cut-off angular frequency, and replacing Y0G0 →
Y̆0GAOMGopt. Then, R(ω) can be expressed as

R(ω) = γomA
∣∣∣∣ 1

i ω + γom
2

+Gloop(ω)

∣∣∣∣2 (6.16)
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where

Gloop(ω) = Y̆0
1 + iω/ωc
iω/ωc

GAOM Gopt. (6.17)

Here, Y̆0 is the average of the time trace of the Y quadrature expressed in Volts,

GAOM/2π is the overall transduction efficiency of the AOM (expressed in Hz/V) and

Gopt = dωeff/d∆ is the optomechanical gain, that can be assumed as a constant

in the bad cavity regime and for small detuning. This last parameter has been

directly measured to attain a good accuracy. Indeed, it could be estimated from

the theoretical model and the input parameters, however, the uncertainty would be

much higher. Expressing the open loop gain as in Eq. 6.17 allows us to obtain a

model for the X quadrature PSD that is less affected by calibration errors.

Figure 6.2: Measured Ym quadrature (green dots) and Xm quadrature (black dots) spectra

along with theoretical curves (red lines). Inset: calibration of Gopt, we show ωeff as a

function of small frequency shifts of the pump beam around an initial working point set at

∆νlaser = 0.

In the following measurements the dominant stochastic force is due to thermal

noise. In Fig. 6.2 we show an example of the experimental quadrature spectra of

the Ym quadrature (green dots) and of the Xm quadrature (black dots) along with

theoretical curves obtained with Eq. 6.8 and Eq. 6.13. We remark that, to evaluate

these curves, the only free parameter is the effective mechanical damping rate. The

model well reproduces the experimental data. In the inset of Fig. 6.2 we show an
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Chapter 6. Parametric stabilization of the effective mechanical susceptibility

example of the calibration of Gopt obtained by shifting the pump beam frequency of a

known quantity, with the AOM2, and by measuring the resulting effective resonance

frequency ωeff (blue squares). Also shown is the linear fit of the data (red line).

With the characterization of the control loop we want to define the parameters

set that allows the maximum noise reduction in the X quadrature while remaining

stable and maintaining valid the small angle approximation used in the derivation of

the model. This second requirement is the most fundamental one since it guaranties

that the Y quadrature can be used for measurement purposes. Keeping constant

Gopt we have two ways to change on the loop gain. With reference to Eq. 6.17, we

can modify the coherent excitation, to change Y̆0, and/or modify the electronic gain

of the AOM driver thus changing GAOM . To test their effect on the overall behavior

of the loop we have acquired 3 data sets. For the first one we have increased the

lock bandwidth of the loop by increasing GAOM ; we identify this data set as set1.

For the second one we have increased the lock bandwidth but modifying Y̆0 keeping

GAOM constant (set2 ). For the last set we have increased the coherent excitation

while compensating with the reduction of GAOM (set3 ) in order to keep constant

the lock bandwidth. All three data sets are obtained with the mechanical resonance

locked at ωe = 127400Hz and with Gopt = 7.2 10−3, so that the normalized detuning

is ∆n ' 0.09.

We show in Fig. 6.3 and in Fig. 6.4 the quadratures spectra of set1 and set2

respectively. Qualitatively, in both data sets the low frequency part of the spectral

density of the X quadrature is reduced as the loop gain, and consequently the

lock bandwidth, are increased. Over a certain threshold, however, an instability of

the control loop appears, manifested by a spurious peak (”servo bump”) at about

1.1 kHz. The Y quadrature spectra remains unchanged as the loop gain is increased.

Even when the servo bumps are present, SYm is only slightly affected. On the other

hand, if the loop gain were to be increased further, the servo bump peak value would

increase and its effect on the Y quadrature spectra would increase as well.

The lock bandwidth (LBW) has been evaluated by fitting the ratio SXm/SYm
with a high pass transfer function to evaluate the cut frequency. As expected, LBW

has a linear dependence on the loop gain, as is shown in Fig. 6.5. The maximum

value is LBW ' 260Hz, that is greater than the optomechanical half linewidth

γom/4π, for both set1 and set2.

In Fig. 6.6 are shown the quadratures spectra for the data set3. We recall that,

2The AOM actually changes the frequency of the probe beam but the cavity lock electronics

compensate this shift by modifying the laser frequency, thus keeping the probe beam on resonance.

The net result is a shift of the pump beam with respect to the cavity resonance.
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6.2 Experimental characterization

Figure 6.3: Quadratures spectra of the set1 measurements obtained while increasing

GAOM . Left: SXm. Right: SYm.

for this data set, we wanted to maintain a constant LBW, while increasing Y̆0.

Indeed, in all configurations we obtained LBW= 41 ± 4Hz. An interesting aspect

that emerges from these measurements is a nonlinear effect that appears in the X

quadrature spectrum. The low frequency part of the PDH spectrum is up-converted
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Figure 6.4: Quadratures spectra of the set2 measurements obtained while increasing Y̆0.

Left: SXm. Right: SYm.

to the frequency ωe by the strong coherent excitation. Indeed, the amplitude of the

peak at ∼ 4Hz ( a mechanical resonance of the sample holder suspension stage)

increases proportionally to Fe as well as other spectral lines recognizable in the PDH

spectra.
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6.2 Experimental characterization

Figure 6.5: Lock bandwidth (LBW) as a function of the relevant parameter determining

the overall loop gain, that is, GAOM for set1 (left) and amplitude of the lock-in reference

signal for set2 (right).

To characterize quantitatively the behavior of the control loop we evaluated for

every configuration in the three data sets the product Aγom, where A is the area

of the quadratures spectra. This product is independent from the actual dynamical

backaction. Indeed, we have

AZ γom = γom

∫ ∞
−∞

SZm(ω)dω =
kBT

mω2
e

γm (6.18)

where Z = X, Y . The relevance of this product comes from the fact that we observed

a slow drift of γom during the long time necessary to accumulate the data. This can be

attributed to variations of the pump beam intensity, either due to a drift of the laser

intensity itself or to a loss of alignment. If the intensity changes while the control loop

is active, the mechanical resonance remains locked at ωe, but this implies a change

of the steady state detuning, that in turns gives a different optomechanical damping

rate. We observed variations of γom up to 30% over a time period of about 5 hours.

Choosing the product Aγom as estimator allows us to get rid of the effects of these

slow additional drifts, and evaluate the performances of the control loop. We show,

in Fig. 6.7 (left), the AY γom product for the Y quadrature for all the configurations

corresponding to the three data sets, as a function of the ratio 2πLBW/(γom/2.

Within the experimental uncertainties, we find a constant value for such product.

In particular, for the set3 (Red) all the points are close together indicating that,

indeed, we have been able to keep a constant LBW . The dashed line in Figs. 6.7

is the nominal value of Aγom = 2.4 10−24m2rad/s. Despite the fact that all the

experimental data are very close to this value, it is possible to infer the presence

of a systematic error whose nature is easy to fathom. Indeed, a residual dynamical
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Chapter 6. Parametric stabilization of the effective mechanical susceptibility

Figure 6.6: Quadratures spectra of the set3 measurements obtained while increasing Y̆0

and reducing GAOM in order to maintain constant the lock bandwidth. Left: SXm. Right:

SYm.

backaction of the weak probe beam, due to a non vanishing detuning, would explain

the difference between experimental data and the theoretical value, since the value
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6.2 Experimental characterization

Figure 6.7: Aγom products for all configurations in the three data sets. Left: Y quadrature.

Right: X quadrature. In both panels: set1 blue points, set2 black points, set3 red points.

of γm to consider in Eq. 6.18 would be slightly higher.

In Fig. 6.7 (right), we show the AX γom product for the X quadrature. As the

loop gain is increased, the rms fluctuations are reduced up to a factor of 3 dB, except

for the the data points of set3 (red). For both data set1 (blue) and data set2 (black),

the reduction of AX γom saturates roughly when 4πLBW/γom > 1. In particular, the

saturation value for the data set1 is slightly higher than that of data set2 indicating

a stronger incidence of the control loop instability.
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Chapter 7

Detection of weak stochastic force

A frequent crucial task in many applications of optomechanical systems is the de-

tection of weak variations of an external force on a strong background. For instance,

this force (that we call signal force) can be due to the quantum fluctuations in the

radiation pressure, that are usually overwhelmed by background thermal noise (a

significant exception is reported in [17]). In this chapter we demonstrate the pos-

sibility to resolve stochastic force variations well below 1% of the thermal noise,

thanks to the implementation of the Wiener-Kolmogorov filter [106, 107] and the

parametric stabilization of the mechanical effective susceptibility described in the

previous chapter. These results can be found also in Ref. [29].

To put the problem under a wide, general perspective, let us discuss the task

of detecting a weak signal force with flat spectral density (white spectrum) in the

presence of a white background force, taking into account a given sensitivity to the

displacement of the sensing mass (i.e., a flat readout noise spectrum). These as-

sumptions are meaningful since the sensitive band with respect to a typical input

force is limited by the narrow width of the mechanical resonance. The signal force

detection can be performed näıvely by measuring the area of the resonance peak

emerging from the displacement noise spectrum, as we have done in the previous

chapter. With this estimator, the rate of improvement of the statistical uncertainty

for increasing measurement time tmeas depends on the correlation time τc of the oscil-

lator motion, with a relative uncertainty scaling as ∼
√
τc/tmeas. It seems therefore

useful to decrease τc, i.e., to enhance the damping of the oscillator. However, the

fluctuation-dissipation theorem implies that such operation would increase the spec-

tral density of thermal noise. Improved results can instead be achieved by means of

a cold damping, e.g. the optical cooling [56, 88, 108], that modifies the effective sus-

ceptibility and decreases the correlation time without introducing additional noise
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sources. This technique does not increase the signal-to-noise ratio of input excita-

tions, because it changes the response to both signal and background force in the

same way. However, as long as the cold damped peak still emerges from the dis-

placement spectral noise, it allows a faster accumulation of statistically independent

data bringing therefore, in a given measurement time, to a smaller final uncertainty

in the variance of the oscillator motion.

An important remark is that the correlation time of the signal force is by hypoth-

esis very short, therefore the statistics can in principle be much faster than what

allowed by the oscillator motion. In other words, the variance of the displacement is

not a very efficient indicator, and more refined data analysis can be profitable. In the

case of stationary and white input the optimal approach to the measurement is pro-

vided by the Wiener-Kolmogorov filtering theory [106, 107]. This technique requires

the preliminary knowledge of the exact response function to the input force, and of

the signal-to-noise ratio. While the second requirement can be relaxed with a sub-

optimal but robust filter using a conservative estimate of the sensitivity [109], the

accurate knowledge of the susceptibility is a crucial request. Without its stabiliza-

tion, the direct measurement of the spectral peak area could be the only applicable

strategy in several kinds of opto-mechanical systems, and techniques that reduce the

effective coherence time of the oscillator motion, such as cold damping or feedback,

represent therefore a way to effectively improve the measurement capabilities of the

system [110]. However, it has been remarked that optimal resolution is not really

improved in this way [111, 112], and that appropriate data filtering can completely

replace these hardware techniques even in the case of non-stationary, non-Gaussian

input [113]. In spite of these correct remarks, the problem of the instability in the

oscillator parameters and dynamics remains practically difficult to face, and the

implementation of optimal analysis requires sophisticated techniques of adaptive fil-

tering. The experimental demonstration in Ref. [113] keeps indeed short (∼ ms)

measurement times. Therefore, even when willing to apply an efficient data analy-

sis, stabilization and feedback techniques, such as the one presented in Chap. 6, are

crucial.

7.1 Measurement strategies

In the following we consider the same experimental setup described in the previous

chapter, so that the dynamical equation describing the motion of the oscillator is

again given by Eq. 6.1 with the difference that we include in the stochastic force

term fst an additional contribution from a stochastic signal force fs, with spectral
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density Ss, and whose effects and variations we want to resolve. We consider two

possible measurement strategies to detect fs, that we assume hidden by the ther-

mal background. In other words, we are seeking for a precise measurement of the

stochastic force in order to resolve its weak variations due to changes in Ss. We

are not dealing with measurement accuracy and reproducibility, that both depend

critically on absolute calibrations.

The first strategy is simply measuring the area, that we indicate here with σ2,

of the resonance peak. The advantage of this method is that frequency stability of

the opto-mechanical oscillator is not crucial: the peak area can be calculated by

direct integration of the spectrum of x within an appropriate frequency interval,

provided that ωeff is well within the integration band, and the latter is extended

to few γom yet maintaining a negligible contribution of the background noise Sn.

The same measurement can be performed, with equal efficiency, on the spectrum of

a quadrature. The estimated force spectral density is E{SF} = σ2/A, where A is

defined as in Eq. 6.9. The drawback of this method is the rather slow improvement of

the statistical uncertainty, decreasing as ∝
√
τc/tmeas where the correlation time is

now τc = 1/γom. The reason is that this strategy does not exploit the full information

contained in the signal, whose spectrum around resonance is dominated by the effect

of the force fluctuations even well beyond the width γom.

The second strategy is a close approximation of the Wiener filtering, that rep-

resents the optimal choice in case of stationary noise. The non-causal Wiener filter,

applied to the spectrum SYm of Eq. 6.8, is defined as

|W (ω)|2 =
1

L(ω)

[
1

1 + Γ L(0)
L(ω)

]2

(7.1)

and the maximum information on SF from the experimental SYm is obtained from

the filtered spectrum SW = |W |2SYm . The 1/L factor in Eq. 7.1 is a whitening

and calibration function, while the term between the square brackets is a weight

function that requires preliminary estimate of the noise-to-peak-signal ratio Γ. Its

optimal value is Γopt = Sn/2L(0)SF , but an efficient, even if sub-optimum, filter can

choose a Γ > Γopt [109]. In any case, a preliminary fit of a spectrum SYm allows to

extract the parameters γom and Γ for the following application of the Wiener filtering

procedure. The correlation time of the filtered signal is now τc ∼
√

Γ/γom, yielding a

faster improvement of the statistics with tmeas with respect to the previous strategy.

For an optimum filter (with Γ = Γopt), 1/τc corresponds to the effective sensitivity

bandwidth, i. e., to the frequency band where the effect of force noise falls below the

measurement sensitivity (i.e., L(ω)SF = Sn/2). An example of the application of
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the whitening function and the complete Wiener filter to a real spectrum is shown

in Fig. 7.1.

Figure 7.1: Measured spectral density in the Y quadrature (SYm) (orange circles); whitened

spectrum (blue triangles); with complete Wiener filtering (green squares).

The force spectral density is estimated by integrating the filtered spectrum SW

and dividing the result by the effective bandwidth ∼ 1/τc. In our real data some

spurious peaks appear in the spectrum at few kHz from the opto-mechanical res-

onance, therefore the integration is truncated at ωcut/2π = 3 kHz, slightly below

1/τc.

As we have seen, the application of the Wiener filtering requires the knowledge of

the transfer function between force noise and output. For this reason, the parametric

control strongly facilitates the filtering procedure, by fixing both the opto-mechanical

resonance at ωeff = ωe and, as a consequence, its width γom. Without control,

optimal filtering would require an adaptive tuning of the parameters, that we are

not trying to apply here.
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7.2 Measurements and data analysis

The experiment has been performed with the same optomechanical cavity and ex-

perimental setup used in the characterization of the control loop presented in the

previous chapter. In this experiment, however, we want to evaluate the performances

of the two measurement strategies presented earlier in two configurations: with and

without the parametric control. In this way we can also investigate further the per-

formances of the control loop. When it is active, the effective resonance is fixed,

as before, at ωeff = ωe = 127400Hz with a corresponding resonance width of

γeff/2π = 200Hz. Since we wanted to apply a more refined data analysis we have

chosen a loop gain for which LBW/γo < 1, in this way the control is always stable

and in both quadratures the servo bump peak is absent. When the control loop is

switched off, the effective mechanical resonance is moved to about 127400Hz by

hand tuning the pump beam. In this second configuration the lock-in reference fre-

quency is set at 127200Hz, so that the well defined resonance peak at ∼ 200Hz

allows to measure more accurately its parameters.

The Y quadrature time trace at the output of the lock-in is acquired with the

same sampling interval (21µs), but in this experiment data are collected in 35

consecutive time traces, each one lasting about 20 second covering in all nearly 12

minutes, then stored in a hard disk. Several of such series are taken separated by

periods of few minutes (necessary to write the data on disk), for a total observation

time of several tens of minutes. Here, the time series are divided into 100ms long

segments.

The spectra corresponding to the first 20 seconds are averaged, and the averaged

spectrum is fitted with Eq. 6.8 (when the parametric control is active) or to Eq. 6.14

(without control). An example of the averaged spectra and the fits are shown in

Fig. 7.2. From the fitting procedure we obtain the resonance width, signal maximum

and, in the absence of the control, also the resonance frequency. The signal maximum

Max is just exploited to define the value of the parameter Γ to be used for Wiener

filtering. At this purpose, we consider a conservative value of the background additive

noise on Y , at Sbg = 8 10−33m2/Hz (one order of magnitude larger than the real

Sn), and define Γ = Sbg/Max. A typical value of Γ is 10−3.

From each of the following spectra (after the first 20 s) we calculate the force

spectral density SF using the different methods described previously (i.e., from the

peak area and using Wiener filtering, both in the configuration with parametric

feedback and with free-running oscillator). For the case with the control active,

we report in Fig. 7.3 the average S̄F (tmeas) of SF accumulated over m consecutive
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Figure 7.2: Spectral densities (single-sided) of the Y quadrature (SYm), for an oscillator

without (upper panel) and with (lower panel) parametric control. With a solid line we show

the respective fitting functions.

spectra, corresponding to a measurement time tmeas = mτ , where τ = 100ms is the

time interval used for calculating each spectrum. The relative standard error σREL

is used to calculate the confidence regions (1±σREL)S̄F , where S̄F is the average at

the end of the measurement period. The figure shows the expected convergence of

the measured S̄F (tmeas), which is clearly faster for the filtered data.
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Figure 7.3: Average over a measurement time tmeas of the force noise spectral density SF ,

measured on the oscillator with parametric control using the peak area (orange circles) and

the Wiener filtered spectra (violet squares). The confidence bands (respectively dashed and

dash-dotted lines), correspond to one standard error.

The relative standard error can be calculated as follows. Generally speaking, we

are considering a Gaussian, zero mean stochastic process x(t) with finite variance

σ2
x, correlation function Cxx, and power spectral density Sxx. The estimate of the

mean square of x(t) in the interval [0, tmeas] has expectation value σ2
x and standard

deviation [109, 114]

STD '
[

2

tmeas

∫ ∞
−∞

C2
xx(τ)dτ

] 1
2

. (7.2)

The relative standard deviation is defined as σREL = STD/σ2
x, and it can be ex-

pressed in terms of the spectral densities using

σ2
x =

∫ ∞
−∞

Sxx(ω)
dω

2π

STD '
[

2

tmeas

∫ ∞
−∞

S2
xx(ω)

dω

2π

] 1
2

(7.3)
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For a spectrum given by Sxx(ω) ∝ L(ω) we obtain the relative standard devia-

tion [109]

σREL =
2√

tmeasγom
. (7.4)

This expression can be used for the relative uncertainty in the measurement of SF

using the peak area, since in this case we can neglect the measurement noise Sn and

the finite integration band defined by ωcut. Indeed, the one σ confidence region in

Fig. 7.3 (dashed lines) for the peak area measurement is calculated using Eq. 7.4.

For the Wiener-filtered process, using Eq. 6.8, Eq. 7.1 and the expressions of SW

and Γopt we can write the output spectrum in the form

Sxx ∝ L(ω)
L(ω) + L(0)Γopt

(L(ω) + L(0))2 (7.5)

and the relative standard deviation as

σREL =
2√

tmeasγom

(
Γ

1 + Γ

) 1
4

√
π
∫ yc

0

[
1+gy2

(1+y2)2

]2

dy∫ yc
0

1+gy2

(1+y2)2dy

yc =ωcut
2

γom

√
Γ

1 + Γ

g =
Γopt(1 + Γ)

Γ(1 + Γopt)
.

(7.6)

Using these last equations and the parameters given earlier, we evaluated the one σ

confidence region in Fig. 7.3 (dashed-dotted lines) for the filtered data.

For the case of the free-running resonator, the spectrum is formed by a couple of

symmetric Lorentzian peaks centered at ±δω (see Eq. 6.14). The relative standard

deviation, when measuring directly the peaks area, becomes

σREL =
2√

tmeasγom

√
γ2
om + 2δω2

γ2
om + 4δω2

. (7.7)

The Wiener filter is obtained from the expression for a single peak, given in Eq. 7.1,

by replacing L(ω)→ 0.5(L(ω−δω)+L(ω+δω)). Due to the flattening action of the

Wiener filter, the filtered output is very similar to the case of the single peak. As

a consequence, for our typical parameters, the two theoretical values of σREL differ

by less than 1%.

These calculations, however, are just valid for a stationary system. A more reli-

able assessment on the measurement stability on the long term and on the achievable
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resolution is provided by the Allan variance [115]. In our case, its estimator is de-

fined as

σ2
A(m) =

1

N − 2m+ 1

N−2m+1∑
k=1

(x̄k+m − x̄k)2

2

x̄k(m) =
1

m

k+m−1∑
n=k

SF (n)

(7.8)

where SF (n) is the value of force spectral density calculated from the n-th spectrum

and N is the total number of spectra. The Allan deviation σ2
A(m) estimates the

one sigma uncertainty that can be obtained with a measurement lasting tmeas =

mτ , and is equal to σREL in the absence of excess fluctuations (typically, for short

measurement times).

Figure 7.4: Relative Allan deviation concerning the measurement of the input stochas-

tic force SF , performed with four different procedures. Solid lines, from the upper to the

lower curve (as seen in the left region of the graph): measurement from the peak area,

with parametric control (orange); the same, without control (red); measurement from the

Wiener-filtered data, without parametric control (deep blue); the same, with control (light

blue). Dashed lines display the expected behavior in the absence of long-term effects, given

by Eq. 7.4 (upper line), Eq. 7.7 (middle line), and Eq. 7.6 (considering an implementation

of the optimal filter; lower line).
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Figure 7.5: Relative Allan deviation for the measurement of SF using the Wiener filtered

data, for different values of the cutoff frequency. The dashed lines correspond to the cal-

culated σREL for ωcut/2π = 500Hz, 1 kHz, 3 kHz and 5 kHz (from the upper to the lower

line). The solid curves are the experimental results for the same cutoff frequencies. In the

inset, the experimental relative Allan deviation at tmeas = 0.1 s, normalized to the corre-

sponding σ∞REL, is reported for the same values of ωcut and compared with the theoretical

behavior shown with a solid line.

The calculated relative Allan deviation (i.e., σA divided by SF ) is reported in

Fig. 7.4 for the different measurement strategies. We can derive two main considera-

tions: a) as expected, the measurement with Wiener filtering improves the statistical

uncertainty much faster than the measurement from the peak area. For the former,

a 1% resolution is obtained after 10 s and the best resolution of 0.4% is achieved,

thanks to the parametric stabilization, after one minute; for the latter, the necessary

measurement periods are about three times longer, in agreement with the ratio be-

tween the respective σREL; b) for measurement periods exceeding 1 s, the parametric

control is crucial for the application of Wiener filtering. The measurement resolution

does not improve any more after one minute: with the parametric control it remains

constant, while it becomes even worse without control. It means that the parametric
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control also allows a much more relaxed choice of the optimal measurement time.

The last aspect that has to be discussed is the choice of ωcut and its implications.

In our experiment, yc = 1 for ωcut/2π ' 3600Hz. In Fig. 7.5 we report the mea-

sured relative Allan deviation as a function of tmeas for different values of the cutoff

frequency, together with its expected behavior. When ωcut/2π surpasses 3 kHz, the

presence of additional peaks starts to influence the measurement. Indeed, we can see

that the data extracted with the cutoff at 5 kHz overtake the curve corresponding

to ωcut/2π = 3 kHz. It is useful, at this point, to consider the two limits yc → ∞
and yc � 1, that for g � 1 and Γ� 1 can be written respectively as

σ∞REL '
√

10

tmeasγom/
√

Γ
(7.9)

and

σREL '
√

2π

tmeasωcut
. (7.10)

In the inset of Fig. 7.5 (solid line) we show the behavior of σREL/σ
∞
REL as a function of

yc. The relative accuracy is just 20% worse if the integration is limited to yc = 1. On

the other hand, for the 5 kHz cutoff frequency, that is with yc > 1, the experimental

point for σREL/σ
∞
REL deviates from the theoretical curve. Indeed, as for the Allan

deviation, this is due to spurious peaks that affect Sym . In conclusion, with the

cutoff at ωcut/2π = 3 kHz we are close to the maximum precision allowed by our

background, yet rejecting spurious statistic of the spectrum.
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Chapter 8

Squeezing a thermal mechanical

oscillator

A recent major breakthrough in experimental quantum mechanics is the possibility

of preparing macroscopic systems close to their fundamental quantum state. In par-

ticular, micro-and nano-oscillators have been recently cooled down to an occupation

number close to unity or even below it [21, 116, 117, 118, 119]. While remaining in a

thermal state, such systems display peculiar quantum properties such as asymmetric

modulation sidebands induced in a probe field [120]. A further interesting develop-

ment would be the creation of a qualitatively different quantum state, for instance,

a mechanical squeezed state. To this purpose, possible techniques are backaction

evading measurements [121, 122, 123, 124] and degenerate [125, 126] or nearly de-

generate [127, 128, 129] parametric modulation. Mechanical oscillators operate in

the degenerate parametric regime when their spring constant is modulated at twice

the oscillator resonance frequency. In such a condition, the response of the oscillator

to an external excitation acting close to resonance is enhanced, until the parametric

modulation depth reaches a threshold marking the birth of self-oscillations (para-

metric resonance) [130]. More precisely, the response is amplified in the quadrature

of the motion in phase with the parametric modulation, and deamplified in the or-

thogonal quadrature (π/2 quadrature). Therefore the distribution of fluctuations in

the phase plane caused by stochastic excitation is squeezed and, in particular, its

variance is reduced below its free-running value in the π/2 quadrature. As a con-

sequence, the parametric effect can be used to produce quadrature squeezed states

of a macroscopic oscillator, similarly to what is commonly obtained for the electro-

magnetic field in optical parametric oscillators [46, 50]. This effect has already been

demonstrated for thermal oscillators [125, 126, 129], and is expected even for the
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Chapter 8. Squeezing a thermal mechanical oscillator

quantum noise [127, 128]. However, since the amplified quadrature evolves into self-

oscillations for an excitation strength approaching the threshold, the corresponding

noise reduction in the π/2 quadrature, monotonic with the parametric excitation, is

limited to −3 dB. This is a general feature of parametric squeezing [46, 50]. Recent

proposals to surpass this limit are based on continuous weak measurements and a

detuned parametric drive [127], or unbalanced sidebands modulation [131].

A recent experiment [129] shows, indeed, that the uncertainty in the knowledge of

the oscillator trajectory in the phase space (localization) is squeezed with a minimal

variance reduced by −6.2 dB with respect to that of a free thermal oscillator. The

authors also suggest that, using the information on the oscillator position in an

appropriate feedback loop, even the confinement of the oscillator in a strongly (>

3 dB) squeezed state could be obtained, though such a result has not yet been

demonstrated. Here, we follow Ref. [129] to identify two very different approaches to

the issue. We call localization the identification of the location in the phase plane of

the oscillator trajectory, achieved through highly refined data analysis, to distinguish

it from the confinement in a chosen limited (squeezed) region in the phase plane.

In this chapter, we report on the observation of the confinement of a micro-

oscillator in a squeezed thermal state, obtained by parametric modulation of the

optical spring constant [54, 55]. We exploit the parametric feedback loop introduced

in Chap. 6 to stabilize the amplified quadrature allowing us to surpass the 3 dB

barrier on noise reduction, with a best experimental result of −7.4 dB. The results

that we present here have been recently published and can be found in Ref. [30].

8.1 Stabilized modulation of the optical spring

We start with the description of the dynamical evolution of an optomechanical

oscillator under the action of the stochastic thermal force fT , and whose effective

spring constant is modulated at twice its effective resonance frequency. Later on,

we discuss, the simultaneous action of the parametric stabilization. The equation of

motion we consider is then

ẍ+ γomẋ+ ω2
eff [1 + ε cos(2ωeff t+ θ2f )] =

fT
m

(8.1)

where, as usual, γom and ωeff are the effective mechanical parameters, fT is the

stochastic thermal force and the modulation depth ε is assumed to be small compared

to 1. As was done in the previous chapters, we decompose the oscillator motion

into two quadratures X(t) and Y (t) in a frame rotating at angular frequency ωeff ,
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8.1 Stabilized modulation of the optical spring

according to

x(t) = X(t) cos ωeff t+ Y (t) sin ωeff t. (8.2)

Assuming γom � ωeff and neglecting terms at 3ωeff , caused by the spring modula-

tion, the evolution equation for the two quadratures can be written as

Ẋ +
γom
2
X +

εωeff
4

[sin(θ2f )X + cos(θ2f )Y ] =
f

(1)
T

mωeff

Ẏ +
γom
2
Y +

εωeff
4

[cos(θ2f )X − sin(θ2f )Y ] =
f

(2)
T

mωeff

(8.3)

where the stochastic force term has correlation function 〈f (i)
T (t)f

(j)
T (t′)〉 = δijδ(t −

t′)ST/2 (i, j = 1, 2). By choosing θ2f = −π/2 we can recover two uncoupled equa-

tions and, expressing the modulation amplitude as ε = 2γom
ωeff

g, we find

Ẋ +
γom
2

(1− g)X =
f

(1)
T

mωeff

Ẏ +
γom
2

(1 + g)Y =
f

(2)
T

mωeff

(8.4)

so that, when moving to the Fourier domain, the quadratures PSD are evaluated to

be

SX =σ2
0

γom
ω2 + [γom

2
(1− g)]2

SY =σ2
0

γom
ω2 + [γom

2
(1 + g)]2

(8.5)

where σ2
0 = kBTeff/mω

2
eff is the area of the spectra when the modulation is absent.

The spectral densities maintain a Lorentzian shape with width multiplied, respec-

tively, by (1− g) and (1 + g). In the X − Y plane, we find an elliptical probability

distribution thus identifying a thermal squeezed state (see Fig. 8.1(d)). The ellipse

is aligned so to have the major axis parallel to X. The area of the spectra, that is,

the two quadratures variances, are

σ2
X = 〈X2〉 =

σ2
0

1− g

σ2
Y = 〈Y 2〉 =

σ2
0

1 + g

.

(8.6)

From Eqs. 8.5 and Eqs. 8.6 it is easy to see that the variance σ2
X diverges for g → 1,

thus limiting σ2
Y to values greater than 0.5σ2

0 (the mentioned −3 dB limit).
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Chapter 8. Squeezing a thermal mechanical oscillator

Figure 8.1: Sketch of the experimental techniques applied to the oscillator to obtain the

bright squeezed state (e) from the thermal state (a).

When the coherent excitation, necessary for the parametric stabilization, is

switched on, the center of the ellipse is just shifted to (0, Ȳ0/(1 + g)), where Y0, de-

fined as in Chap. 6, is the steady state value of the oscillator response to the coherent

excitation (in the absence of the parametric modulation). The configuration in phase

space is now equivalent to that of an optical field with bright squeezing [132, 133]

(see Fig. 8.1(e)). Moreover, the phase θ2f acquires a more definite meaning: it is the

phase difference, between the coherent excitation and the modulation at 2ωeff , nec-

essary to obtain the squeezing of the Y quadrature in the phase plane X−Y defined

by the coherent excitation. However, we remark that the fluctuations along X still

increase with g and the squeezing remains limited to 3 dB. On the other hand, by

activating the parametric feedback we can depress the parametric amplification and

prevent the divergence of 〈X2〉. As a consequence, the parametric gain can now be

increased above unity. As we have shown, SX depends on the electronic servo loop,

but its standard deviation can be maintained close to its thermal value. The crucial

issue is that the Y quadrature is not affected by the feedback loop, as we showed

in Chap. 6. The fluctuations on Y maintain a Gaussian distribution, SY keeps a

Lorentzian shape and the Y variance σ2
Y = 〈(Y − Y0)2〉 can be reduced below the

−3 dB barrier, continuing to follow Eq. 8.6.
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8.2 Experimental setup and results

8.2 Experimental setup and results

The experiment is performed with the same optomechanical cavity used in the ex-

periments described in the previous chapters. For completeness, and to help the

readability, we report here again the fundamental parameters: cavity length Lcav =

0.57mm, Finesse 57000, coupling parameter ζ = 0.09, mechanical resonance fre-

quency ωm/2π = 128961Hz, effective mass m = 1.35 10−7Kg and a mechanical

quality factor of Q = 16000. The measurements are performed at room temperature

with a probe beam power in the carrier of PPDH ' 0.040mW and a pump power of

Ppump = 1.0mW .

Figure 8.2: Scheme of the experimental apparatus. Optical isolator (OI); acousto-optic

modulator (AOM); electro-optic modulator (EOM); half-wave plate (H); quarter-wave plate

(Q); polarizing beam splitter (PBS); polarizer (POL); Faraday rotator (FR); photodiode

(PD); lock-in amplifier (LA); voltage controlled oscillator (VCO); delay line for phase

control (Φ); high voltage amplifier (HV). Black lines indicate the electronic part of the

setup.

The experimental setup, shown in Fig. 8.2, is an extension of the two beam stan-

dard configuration to implement the parametric control and the 2ωeff modulation

of the optical spring. As before, the PDH signal is sent to the lock-in amplifier for
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Chapter 8. Squeezing a thermal mechanical oscillator

demodulation to obtain the two quadratures of the oscillator motion. The feedback

loop is implemented as described in Chap. 6, that is, the X quadrature output signal

is integrated and sent to the AOM driver to control the detuning of the pump beam.

The main difference, here, is that we use an external reference for the lock-in, pro-

vided by a two channels wave-function generator. The signal of the first channel, in

addition to being used for the reference at ωe, is also used to generate the coherent

excitation. The maximum modulation depth used is 0.5% peak-to-peak, giving an

intracavity modulated force with amplitude Fmax
e ' 2 10−10N . The signal of the

second channel, set at angular frequency 2ωe, is sent to the fast actuator of the laser

to generate a modulation of the detuning, that is, of the optical spring. The two

channels are phase locked to each other so that an arbitrary phase difference θ2f ,

between the two signals can be set. The X and Y quadrature signals are simulta-

neously acquired by a digital scope with a resolution of 12 bit, sampling interval of

21µs and a total observation time of about 20 s (∼ 106 data).

Figure 8.3: Phase space PDFs for the two configurations named, respectively (a) and

(d) in Fig. 8.1. Left: thermal oscillator (a) at the effective temperature Teff ' 15K

(γeff/2π = 110Hz). Right: parametrically squeezed oscillator (d), with parametric gain

g = 0.83.

The stabilization loop and the 2ωeff modulation are independent of each other

and can be activated simultaneously or one at a time. Indeed, the first stage of

the experiment has been the generation of a squeezed thermal state without the

feedback loop. We acquired several time series with an increasing parametric gain g.

For these measurements the initial (at g = 0) effective mechanical parameters were

ωeff = 127400Hz and γom/2π = 160Hz, corresponding to an effective temperature
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of 10K. In Fig. 8.3, we show the phase space probability density functions (PDFs)

for the maximum achieved parametric squeezing (right) and, for comparison, of the

thermal oscillator (left). Also shown are the marginal distributions for the oscillator

quadratures.

In the second stage of the experiment we activate also the parametric control. In

this case the measurements have been performed in two different working points: the

first is identical to the one used in the first stage, that is, at ωeff/2π = 127400Hz,

while, in the second point, the effective resonance is at ωeff/2π = 128000Hz where

γeff/2π = 110Hz, corresponding to an effective temperature of Teff ' 15K. In both

cases, the amplitude of the coherent excitation has been adapted during the measure-

ment in order to keep a constant value of the coherent component in the oscillator

motion, i.e., a constant 〈Y 〉 ' Y0, compensating the parametric de-amplification.

This value is 〈Y 〉 ' 300 fm, i.e., at least 6 times larger than the standard deviation

of the thermal distributions. This assures, together with the stabilization of the X

quadrature, that the condition φ ' X/Y0 � 1 is satisfied. In Fig. 8.4, we show the

phase space PDFs for the maximum achieved parametric squeezing with coherent

excitation and frequency feedback (right) and, for comparison, of the thermal oscil-

lator (left). Also shown are the marginal distributions for the oscillator quadratures.

Figure 8.4: Phase space PDFs for the two configurations named, respectively (a) and (e) in

Fig. 8.1. Left: thermal oscillator (a) at the effective temperature Teff ' 15K (γeff/2π =

110Hz). Right: parametrically squeezed oscillator with coherent excitation and frequency

feedback (e), with parametric gain g = 5.4.
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In Fig. 8.5, we plot the variances for the X and Y quadratures, normalized

to their free-running value in the absence of parametric modulation, for all data

collected in the two phases of the experiment. These are calculated from the integral

of the spectra with a statistical uncertainty typically around 3%, calculated from

several independent time series. For the second stage of the experiment we just give

the feedback-independent Y variance. The solid lines are given by the expression

1/(1− g) and 1/(1 + g) (see Eqs. 8.6) with g = V2f/Vth, where V2f is the amplitude

of the modulation sent to the laser fast actuator, and the threshold Vth is obtained

by fitting Eq. 8.6 to the variance of Y . The maximum noise reduction is −7.4 ±
0.2 dB, limited by the appearance of instabilities in the control loop, namely, the

servo bumps discussed in Chap. 6. An optimization of the loop parameters, not yet

performed, would likely allow a wider working range and a stronger squeezing.

Figure 8.5: Normalized measured variances of the X and Y quadratures, as a function

of the parametric gain g. Squares: parametric modulation without coherent excitation and

parametric feedback: ωeff/2π = 127400Hz (γom/2π = 160Hz, Teff = 10K at g =

0). Circles: parametric modulation in the presence of coherent excitation and parametric

feedback for ωeff/2π = 127400Hz; triangles: ωeff/2π = 128000Hz (γom/2π = 110Hz,

Teff = 15K at g = 0). Solid lines represent the theoretical curves.

In order to emphasize that the Y quadrature behaves, indeed, as for a squeezed

free-running oscillator, even for the strongest 2ωeff modulation amplitude used and

even with the parametric feedback active, we show in Fig. 8.6(b) the PSD measured

with g = 5.9; also shown is the spectrum for the free thermal state and, for both
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spectra, the Lorentzian fit to the data that allow to deduce the correlation times of

each time series.

Figure 8.6: Upper panel: experimental PDFs of the Y quadrature. Violet histogram: ther-

mal oscillator at Teff = 15K. Orange histogram: squeezed oscillator with g = 5.9. Solid

lines show Gaussian fitting functions. In the inset the same histograms are shown in loga-

rithmic scale, with statistical error bars. Lower panel: corresponding PSD with Lorentzian

fitting functions.

In Fig. 8.6(a) are reported the histograms representing the experimental PDFs

of the Y quadrature for both thermal and squeezed state. For the latter the mean

value is shifted to 〈Y 〉 ' 300 fm by the coherent excitation. Also shown are the

Gaussian fitting functions (solid lines). For calculating these histograms we have

first applied to the time series an additional digital low-pass filter at ∼ 1 kHz to

reduce the effect of spurious peaks that appear above 5 kHz. This cutoff is still well

above the half-width of the opto-mechanical resonance, that even with the largest
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parametric gain is around 300Hz. We have then reduced the number of samples by

keeping one data point every correlation time, in order to obtain sets of uncorrelated

samples that have been used to calculate the probability distributions (PDFs). In

the inset of Fig. 8.6(a) the same histograms are shown in logarithmic scale with error

bars that reflect the standard error on each bin. The reduced χ2 of a Gaussian fit is

around unity for both the PDFs of the thermal state and that of the Y quadrature

in the squeezed state, indicating that, indeed, even in the latter case the fluctuations

are stochastic with Gaussian-Lorentzian statistics [134].
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Chapter 9

Conclusions and final remarks

We have presented in this thesis our research activity in the field of optomechanics

performed, during my PhD program, over a two years period. As customary, we have

started, in Chap. 1, with a theoretical description of the optomechanical interaction.

The quantum mechanical model, that has been presented here, is nowadays well

established, thus we have given a compact, but complete and general description,

that does not rely on too many assumptions regarding the considered parameters

regimes. We also have included in the model the principal (classical) technical noise

sources in a fully consistent way.

We have shown in Chap. 2 and Chap. 4 the development and the characterization

of our micro-oscillators. We have presented two novel designs, the ”low deformation”

double wheel and the quad/double paddle oscillators, that represent an improvement

of more than one order of magnitude (two in the case of the QPO) in terms of me-

chanical losses with respect to our previous generation of devices, while keeping the

same high optical performances. We have also identified possible ways to increment

even further the achievable quality factors especially for what concerns the double

wheel species. Preliminary experimental results, on the third generation of devices

realized with these guidelines1, show that, indeed, quality factors in the range of 106

can be achieved even for the double wheel type.

One of the major goals in the field of optomechanics has been, for quite a long

time, the generation and detection of ponderomotive squeezed light whose first the-

oretical analysis (Refs. [6, 7]) dates back to 1994. This result has been achieved,

almost 20 years later, initially using a mechanical mode of an ultracold atomic gas

inside an optical cavity and, later on, using a silicon micromechanical resonator and

a thin semi-transparent membrane within a Fabry-Pérot cavity (Refs. [18, 19, 20]).

1See Ref. [31] for some insight on the third generation designs.
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However, quadrature squeezing (in a cw beam) is particularly useful for improving

sensitivity in the audio-band, while the mentioned experimental demonstrations are

achieved around the mechanical resonance in the MHz range. At lower frequen-

cies, obtaining ponderomotive squeezing is much more difficult due to the presence

of typically stronger technical noise sources, in particular, frequency/displacement

noise.

In Chap. 5 we have identified an optomechanical effect that leads to the cancel-

lation of frequency noise around the bare mechanical resonance frequency. This can-

cellation is due to the destructive interference between the frequency noise directly

affecting the cavity and the same frequency noise transduced by the mechanical res-

onator. We have demonstrated experimentally this effect and we have shown that

it could strongly facilitate the generation and detection of ponderomotive squeezing

in the audio-band.

However, we have also shown, in the second part of Chap. 5, that we have not

been able to exploit the exceptional optomechanical properties of our best micro-

oscillator, namely, the QPO. The cause is to ascribe to the cavity locking feedback

loop that changes the radiation pressure phase in a frequency dependent way and

that leads to the dynamical instability of low frequency normal modes that would

otherwise be stable. This effect can be avoided for the double wheel designs but

not for the QPO and DPO ones. The third generation of devices has been designed

taking this aspect into account and we are confident that it will allow us to generate

ponderomotive squeezing.

In the final chapters, we have presented two relevant experiments that rely on

the stabilization technique described and characterized in Chap. 6. This technique

consists in a feedback loop that directly acts on the optical spring to lock the effective

mechanical resonance at the desired frequency. We have shown that the control

loop affects only one quadrature of the oscillator motion, leaving the other one

unperturbed.

In the first of these experiments (Chap. 7), we have exploited the stabilization

of the effective mechanical susceptibility to implement the Wiener-Kolmogorov fil-

tering, a data analysis technique that, in this context, allows a fast accumulation of

statistics in the measurement of the stochastic forces acting on the micro-oscillator.

This method requires the precise knowledge of the mechanical transfer function, so

that the stabilization of the effective mechanical parameters is of fundamental im-

portance for its application. We have shown that, by combining these techniques,

we are able to resolve stochastic force variations below 1% of the thermal noise af-

ter 10 s of observation time, and about 0.4% after 60 s, with a sensitive bandwidth
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of about 3 kHz. This experiment has been carried out at room temperature, we

remark that a comparable peak-signal to noise ratio can be achieved at cryogenic

temperatures by choosing a working point with a smaller detuning with respect to

the one used to obtain the reported figures. The same techniques can be applied

in a large variety of micro- and nano-mechanical systems, including those based on

electric measurements and microwave radiation. Detecting a weak stochastic signal

on a stronger background is an important task in the research field of quantum

mechanics with macroscopic oscillators, in particular when exploring the properties

of oscillators with low occupation number, or, e.g., in a squeezed state or other

peculiarly quantum states.

In the second experiment (Chap. 8), we have performed the parametric excitation

of the mechanical oscillator at twice its resonance frequency by directly modulating

the optical spring. When applied to a thermal noise driven oscillator, the excitation

generates a reduction in the variance of one quadrature of the oscillator motion

and an increase in the other one, resulting in a squeezed thermal state. However,

the maximum noise reduction in the squeezed quadrature is normally limited to a

−3 dB factor due to the rise of a dynamical instability in the anti-squeezed one. Also

in this case the stabilization technique of Chap. 6 has been instrumental. Indeed,

by carefully selecting the phase of the parametric excitation, we can squeeze the

quadrature unaffected by the control loop and anti-squeeze the other. Then, the

parametric feedback avoids the rise of the instability allowing to break the 3 dB

barrier. We have observed a maximum noise reduction of −7.4 dB.

The model for the stabilization loop, presented here, is based on a classical

description. Furthermore, the conclusion that one quadrature of the oscillator motion

is not affected by the control loop, it is true only to first order. A complete quantum

mechanical description, that we are currently developing, must include quadratic

terms. Indeed, the backaction introduced by the feedback loop will ultimately sets a

limit to the maximum achievable noise reduction. Nevertheless, we remark that the

technique is based on a weak measurement with sensitivity well below the standard

quantum limit, so that the effects of the measurement backaction should become

relevant only for high parametric gain. Thus, we are convinced that the achievable

squeezing will be enough to allow to start from a moderately cooled oscillator, with

an occupation number significantly above unity, a condition that can even be reached

in the bad cavity configuration exploited throughout this thesis. As a consequence,

the scheme described in Chap. 8 can be efficiently exploited to produce a macroscopic

mechanical oscillator in a bright squeezed state, opening the way to further studies

of quantum phenomena in macroscopic systems.
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Appendix A

The normal mode expansion

The equation of motion of an elastic body of density ρ, forced by a force density

F(r, t), can be summarized as [32]

ρ
∂2u(r, t)

∂t2
− L[u(r, t)] = F(r, t) (A.1)

with the appropriate initial and boundary conditions. Here, u(r, t) is the displace-

ment field of the elastic body and L[u(r, t)] is defined as

L[u] = (λ+ µ)∇(∇ · u) + µ∇2u. (A.2)

The Lamè coefficients λ and µ depend on the Poisson ratio σp and on the Young

modulus Y of the material

λ =
Y σp

(1 + σp)(1− 2σp)
, µ =

Y

2(1 + σp)
. (A.3)

The displacement normal modes wn(r) are defined as the solutions of the eigenvalue

equation

− ρω2
nwn = L[wn] (A.4)

with the boundary conditions defined by the requirement that components of the

stress normal to the body surfaces vanish on the body surfaces. The normal modes

constitute a complete ortho-normal basis and the solution of Eq. A.1 can be written

as

u(r, t) =
∞∑
n=1

wn(r)qn(t) . (A.5)

The determination of the coefficients qn(t) is simple if the excitation can be factor-

ized as F(r, t) = Gt(t)Gr(r). Indeed, using the eigenvalue equation and taking the

projection on the mode wm, Eq. A.1 can be rewritten as

M
∂2qm(t)

∂t2
+Mω2

mqm(t) = Gt(t)

∫
V

dVGr(r) ·wm(r) (A.6)
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where it is easy to see that the m-th mode has the same dynamic of a driven harmonic

oscillator.

When measuring the position of the mass, or of a smaller surface of it, the

observable physical quantity X(t) may be defined as

X(t) =

∫
S

dsP(r) · u(r, t) =
∑
n

qn(t)

∫
S

dsP(r) ·wn(r) . (A.7)

Here, P(r) is a weighting function and the integral is performed on the chosen surface

S. The spatial form of P(r) reflects the measurement strategy, and in our case, is

proportional to the Gaussian beam spot power profile. Notice that for an optical

driving force the weighting function is identical. Indeed, in this case the force density

in Eq. A.1 reduces to a surface force that can be written as F(r, t) = 2P(t)
c

P(r) (for a

reflected beam). Moving to the frequency domain and introducing a damping term,

the observable X can be expressed as

X(ω) =
2P(ω)

cM

∑
n

[
∫
S
dsP(r) ·wn(r)]2

(ω2
n − ω2) + iωnγn

. (A.8)

From this equation it is clear the the effective mass m of each normal modes depends

on the scalar product between the specific normal mode displacement field and P(r).

The actual number of normal modes that one needs to consider depends on many

factors, such as the frequency separation of the modes with respect to the bandwidth

of interest or the sensing surface size compared to the wavelength of the modes. In

many cases, only a limited number of modes is necessary since, for a given sensing

surface, high order modes tend to give a vanishing average displacement and the

contribution of modes other than the ones of interest, that are sufficiently separated

in frequency, can be limited to their tails and regarded as a displacement noise floor.
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Additional information on the

experimental setup

B.1 Laser system

The light source is a Mephisto cw tunable Nd:YAG operating at λ = 1064nm

manufactured by InnoLight GmbH1 with a maximum output power of 500mW .

The frequency can be tuned by a temperature controller (slow) and a piezo-electric

controller (fast), both driven by a voltage signal. The slow controller gain is Gs =

−3GHz/V , with a response bandwidth of ∼= 1Hz, a continuous tuning range of

about 8GHz (limited by mode hopping) and a total one of about 30GHz. The

fast controller has a gain of Gfast = 1.14MHz/V , with a response bandwidth of

∼ 100 kHz above which the gain start to decrease and is affected by resonances in

the electro-mechanical response of the piezo actuator. The laser electronics has a

built-in noise eater feedback loop circuit to reduce amplitude noise. In Fig. B.1 we

show the measured relative amplitude noise spectra Slaser/Sshot for different power

levels and with the noise eater switched on and off, from which is clear that additional

noise reduction is necessary to approach the shot noise level.

The laser spectral linewidth is of the order of 1 kHz.

B.2 The cryostat

The cryostat in our experimental setup is a continuous flow cryostat manufactured by

Janis, model ST-100, slightly customized to increase the maximum allowed sample

size by modifying the thermal shield diameter. which is 60mm. The distance between

1Nowadays owned by the Coherent group.
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Figure B.1: Relative noise spectra Slaser/Sshot for different power levels (namely, 280mW

for an input current of 1A and 460mW for 1.3A)and with the noise eater switched on and

off. The spectra are measured with a power Pmeas of a few mW in a balanced detection,

then corrected with the Mandel factor [46] to obtain the relative noise at the laser output.

the cold finger and the shield bottom is 70mm for an overall useful volume of 0.2 l.

The nominal cooling power is 3W .

The thermal shield has two 25mm diameter access holes that allow to explore

several oscillators on the same wafer, when working with the Michelson interferom-

eter. Such holes limit the achievable minimum temperature to about 10K, while

limiting the apertures to few mm2, when working with the cavity, allows to descend

below 4.5K.
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The Pound-Drever-Hall technique

The Pound-Drever-Hall technique [58, 59] is nowadays a standard method to lock a

laser frequency to the resonance of a Fabry-Pérot cavity, or viceversa. It allows to

extract a signal that is proportional to the frequency difference between the light

beam and the cavity. However, as we will see shortly, this difference must be small

compared to the cavity linewidth. The error signal obtained with the PDH technique

can be fed to a servo actuator in a closed feedback loop. If the servo modifies the

beam frequency, then the laser frequency will be locked to the cavity resonance, on

the contrary, if it modifies the cavity length the cavity resonance will be locked to

the laser frequency.

Without loss of generality, we can describe the beam as a plane wave E(t) =

E0 e
iωlt that before entering the cavity is phase modulated (EOM1 of Fig. 3.1) at

frequency Ωs, much smaller than the FSR. In the frame rotating at angular frequency

ωl the input field can be expressed as

Ein =E0 exp(iβ sin(Ωst))

'E0

∞∑
n=−∞

Jn(β)ei nΩst
(C.1)

where β is the modulation depth and we used the Jacobi-Anger expansion1. The

electric field is then composed of a carrier at angular frequencies ωl, and sidebands

at angular frequencies ωl±nΩs. Before entering the cavity, the field passes through

an optical circulator (in our setup we use the OI2) so that we can measure the

reflected field intensity with a photodiode (PD3).

If we indicate with Hr(ω) the cavity response function for the reflected field,

1The Jacobi-Anger expansion is defined as ei zsin θ =
∑∞
n=−∞ Jn(z)ei n θ where Jn(z) in the

n-th Bessel function.
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given by Eq. 1.36, the field incident on the photodiode is

Er(t) 'E0

∞∑
n=−∞

HnJn(β)einΩst (C.2)

where we have defined

Hn = Hr(∆ + nΩs) (C.3)

and where ∆ = ωl − ωcav is, as usual, the laser detuning from the cavity resonance.

The intensity impinging on the photodiode is given by the square modulus of the

field, thus

Ir ∝ |Er|2 ∝
∞∑

n,m=−∞

JnJmHnH
∗
me

i (n−m) Ωst . (C.4)

At this point a phase sensitive detection technique is applied. The photodiode volt-

age output is mixed with the signal that was used to generate the original phase

modulation and then low pass filtered. This means that we interested only in the

terms, in Eq. C.4, for which n −m = ±1. The signal at the low pass filter output

depends on the phase difference between the photodiode response and the reference.

If we write it as

V ∝
∞∑

n=−∞

JnHn

(
Jn−1H

∗
n−1e

iΩst + Jn+1H
∗
n+1e

−iΩst
)

(C.5)

and we define

A =
∞∑

n=−∞

JnJn−1HnH
∗
n−1, (C.6)

the voltage output becomes2

V ∝ AeiΩst + A∗e−iΩst = 2ReA cos Ωst+ 2ImA sin Ωst (C.7)

where it is possible to see that detecting the component in phase with V (∝ sin Ωst)

one obtains 2ReA, detecting the component in quadrature one obtains 2ImA, and,

for a generic phase, a linear combination of the two.

We can work a little more on A. Using the following generic relation

∞∑
n=−∞

an =
∞∑
n=0

an +
−1∑

n=−∞

an =
∞∑
n=0

an +
∞∑
n=1

a−n =
∞∑
n=0

an +
∞∑
n=0

a−(n+1)

=
∞∑
n=0

(an + a−(n+1))

(C.8)

2Note that A∗ =
∑∞
n=−∞ JnJn−1H

∗
nHn−1 =

∑∞
n′=−∞ Jn′+1Jn′H∗n′+1Hn′ , and by comparison

with Eq. C.5 one gets Eq. C.7
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and the property J−n = (−1)nJn, we can rewrite Eq. C.6 as

A =
∞∑

n=−∞

JnJn−1HnH
∗
n−1 =

∞∑
n=0

JnJn+1

(
H∗nHn+1 −H∗−(n+1)H−n

)
. (C.9)

In this last equation, we can see that the terms of the summation becomes smaller

and smaller as n increases. For a small modulation depth, or for a narrow linewidth

(κ � Ωs) it is possible to keep only the first term. Furthermore, in this limit, we

have that H(Ωs) ' 1, so that Eq. C.9 reduces to

A ' J0J1 (−2iIm[H(∆)] +H(∆− Ωs)−H∗(∆ + Ωs)) (C.10)

and is now clear that if one detects the component in phase with V , the signal

vanishes at resonance (∆ = 0), while for the component in quadrature one obtains

the imaginary part of H that has a dispersive shape. Indeed, near resonance, the

error signal D is proportional to the frequency difference ∆ according to

D ' −Cη|E0|2J0(β)J1(β)(1− ζ)
∆

κ
(C.11)

where Cη is a coefficient that accounts for the efficiency of the photodiode, its sen-

sitivity, the mixer gain and other possible electronic gains. Note that the slope of

D is proportional to the Finesse, so that a higher one implies an higher sensitivity

even though at the expenses of the dynamic range.

Experimentally, the detection phase is selected by means of a delay line on the

path of the reference signal, and the resulting delay time can be adjusted until one

obtains the needed value T = 2π
4Ωs

.

By scanning the laser frequency and acquiring the demodulated signal D(∆),

one get the picture in Fig. C.1, where we show an experimental measurement (black

dots) along with a fit to the data (red line) for a 0.57mm long cavity with Finesse

F = 57000 and a half linewidth of κ/2π = 2.3MHz, and where the modulation

frequency is Ωs/2π = 13.3MHz. One should keep in mind that, in order to have

also the contributions from the ±2Ωs sidebands in the expression for D(∆) higher

order terms in the expansion of Eq. C.9 must be included in the calculations. While

the first order approximation is good as long as κ� Ωs, higher order terms become

increasingly more relevant as κ approaches Ωs. Note that a very good and useful

approximation for the near resonance behavior of D is (blue line in Fig. C.1)

D ' −
V PDH
pp

κ
∆ (C.12)

where V PDH
pp is the maximum peak-to-peak voltage measured while scanning the

laser frequency.
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Figure C.1: Pound-Drever-Hall signal. Experimental data (black dots), best fit of data

(red) and near resonance approximation (blue). Vertical dashed lines are sidebands central

frequencies at multiples of Ωs/2π = 13.3MHz.

The PDH spectra are calibrated by means of a sinusoidal modulation at fcal ∼
20 kHz sent to the laser fast actuator. The ratio between the laser frequency and

the cavity length allows to convert the detuning into cavity displacement. The cali-

bration spectral line is affected by the servo loop, therefore, it is necessary to always

acquire simultaneously the PDH and the error signal. If SPDH(f) is the PSD of the

PDH signal and Serr(f) is the PSD of the error signal, both expressed in V 2/Hz,

the PDH spectrum SPDHxx (f) expressed in m2/Hz is given by

SPDHxx (f) =
nc
np

[
Gfast

2πLcav
ωl

]2

SPDH(f) (C.13)

where nc = Serr(fcal), np = SPDH(fcal) and Gfast is the transduction efficiency of

the fast actuator of the laser assembly (see Sec. B.1). The overall calibration has an

accuracy of ∼ 20%.
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C.1 Typical noise budget of the cavity frequency

locking

A noise analysis of the frequency control loop is required to verify whether addi-

tional noise filtering is needed or not. We are going to apply standard linear control

theory [135, 136, 137] to develop a simple model to address the performance of our

”typical” setup. Several configurations have been used, here we consider a sort of

worst case scenario and show that the total frequency noise is well below the typical

background displacement noise.

Most experimental results are obtained with a cavity length between 0.5 and

1mm, with a corresponding FSR between 150 and 300GHz. This means that the

FSR is always much larger than the tuning capabilities of the laser, so that a piezo-

electric actuator (PZT) is needed to finely modify the cavity length and perform a

coarse tuning of the cavity resonance. The PZT modifies the position of the cavity

input mirror and requires a (noisy) high voltage (HV) drive.

Figure C.2: Block diagram of the frequency lock apparatus.

In Fig. C.2 is shown the block diagram of our frequency lock apparatus. The

tuning piezo is included in the loop to compensate for slow thermal drifts. Its high

dynamic range makes it perfect for the job, provided that the effect of the strong

voltage noise of the HV amplifier, is made negligible. For this reason the signal that

drives the PZT is low pass filtered (LPF) with a cut frequency of 1.6Hz. The ”high

frequency” corrections are handled by the fast piezo actuator of the laser. Particular
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care has to be taken for the crossover between the two actuators.

We take into consideration four noise sources, all of them measured at the output

of their respective generating element and assumed to be additive and uncorrelated

to each other. The noise sources are: laser frequency noise with (monolateral) PSD

Sff = 2π 104

ω
Hz2/Hz, PDH detection noise with a PSD of SV,PDH = 3 10−13 V 2/Hz,

output voltage noise of the PID electronics with a PSD of SV,servo = 7 10−13 V 2/Hz,

and HV amplifier output voltage noise with a PSD of SV,HV = 2 10−8 V 2/Hz, that

is by far the strongest noise source.

The PDH gain, as described earlier, is GPDH = D = −V PDH
pp /κν , G

HV
amp = 36,

the piezo electric transduction coefficient is GPZT = 3.8 10−9m/V , while the cavity

gain is Gcav = g0/2π = ωl/2πLcav. The low pass filters and PID transfer functions

are3

HLPF (f) =

[
1

1 + i f
1.6

]2
1 + i f

500

1 + i f
10000

Glock(f) =0.8
1 + i f

32900

i f
32900

1 + i f
143000

1 + i f
27400

1

1 + i f
300000

(C.14)

for the sake of simplicity we also define the overall actuators transfer function as

Gatt(f) = Gfast +GHV
ampHLPF (f)GPZT Gcav (C.15)

The total closed loop frequency noise is then

Sff,cl(f) =
Sff + SV,PDH |GattGlock|2 + SV,servo|Gatt|2 + SV,HV |HLPFGPZTGcav|2

|1 +Gatt(f)Glock(f)GPDH |2
(C.16)

however, we are more interested in the equivalent total displacement PSD that is

Sxx,cl(f) = Sff,cl(f)/|Gcav|2.

In Fig. C.3 we show the noise budget calculated with Eq. C.16. Relevant cavity

parameters for the case under study are: F = 57000, Lcav = 0.57mm and an almost

optimally coupled cavity with ζ = −0.09. The peak-to-peak voltage of the PDH

signal used in the calculation is V PDH
pp = 1V , giving a lock bandwidth of about

12 kHz. The total equivalent displacement noise is well below the typical actual

displacement noise measured in our opto-mechanical cavities (dashed gray line).

3As in Chap. 6 we use the same conventions for the Fourier transform used in electronics.
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Figure C.3: Equivalent cavity displacement noise. Total (black) and individual contribu-

tion: Sff (red), SV,servo (blue), SV,PDH (green) and SV,HV (violet). Dashed red line is the

open-loop frequency noise while dashed gray line is typical displacement noise.
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General formulas for the

homodyne noise spectra

Using Eq. 1.73 and the definition for the Xout and Yout quadratures of the reflected

field given in Chap. 5 we can decompose the total noise in each quadrature into

the contribution from the various input noise sources. This approach does not really

add new information with respect to the treatment given in Chap. 1 but it has

two advantages: first, it allows to write a direct expression for the cross-spectral

densities coming from the optomechanical interaction; second, the treatment of the

phase noise in the homodyne detection is made rather easy. The decomposition is

obtained as follows.

Here, we identify four input noise sources, quantum, which includes input and

vacuum fluctuations, frequency, amplitude and thermal. For the Xout quadrature

the symmetrized spectral density is1

SX(ω) = SqX(ω) + SfreqX (ω) + SamplX (ω) + SthX (ω) (D.1)

we also define the following additional function

λ±ij = Ai(ω)± A∗j(−ω) (D.2)

1To simplify notation we drop from here on in this section the subscript out.
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using which we have

SqX(ω) =
1

2

[
|λ+

12(ω)|2 + |λ+
12(−ω)|2

]
+ κi

[
|λ+

34(ω)|2 + |λ+
34(−ω)|2

]
SfreqX (ω) = {|λ+

34(ω) + λ+,∗
34 (−ω)|2 − 2Re[(1 + e2iθ∆)λ+

34(ω)λ+
34(−ω)]}|αs|2Sφ̇φ̇(ω)

SamplX (ω) = |λ+
12(ω) + λ+,∗

12 (−ω)|2SαIαi
(ω)

SthX (ω) = |AT (ω) + A∗T (−ω)|2 γm
ωm

ω coth

(
~ω

2kBT

)
.

(D.3)

in the same way,

SY (ω) = SqY (ω) + SfreqY (ω) + SamplY (ω) + SthY (ω) (D.4)

where

SqY (ω) =
1

2

[
|λ−12(ω)|2 + |λ−12(−ω)|2

]
+ κi

[
|λ−34(ω)|2 + |λ−34(−ω)|2

]
SfreqY (ω) = {|λ−34(ω) + λ−,∗34 (−ω)|2 − 2Re[(1 + e2iθ∆)λ−34(ω)λ−34(−ω)]}|αs|2Sφ̇φ̇(ω)

SamplY (ω) = |λ−12(ω) + λ−,∗12 (−ω)|2SαIαi
(ω)

SthY (ω) = |AT (ω) + A∗T (−ω)|2 γm
ωm

ω coth

(
~ω

2kBT

)
.

(D.5)

To write the cross-spectra it is convenient to define three additional functions, that

is

ξij(ω) = Ai(ω)Aj(−ω) + Ai(−ω)Aj(ω)

ηij(ω) = Ai(ω)Ai(−ω)− A∗j(ω)A∗j(−ω)

µ34(ω) = [A3(ω) + A4(ω)] [A3(−ω) + A4(−ω)].

(D.6)

Finally, the total cross spectral density is

SX,Y (ω) = SqX,Y (ω) + SfreqX,Y (ω) + SamplX,Y (ω) + SthX,Y (ω) (D.7)

where

SqX,Y (ω) = Im[ξ34(ω)] + 2κi Im[ξ34(ω)]

SfreqX,Y (ω) = 2|αs|2 Im[µ34(ω)− (1 + e2iθ∆)η34(ω)]Sφ̇φ̇

SamplX,Y (ω) = 2Im[µ12(ω)]SαIαI

SthX,Y (ω) = 2Im[AT (ω)AT (−ω)]
γm
ωm

ω coth(
~ω

2kBT
).

(D.8)

In all previous equations θ∆ = −arctan(∆/κ) is the argument of αs.
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Typical basic scheme of the experimental apparatus. Optical isolator (OI); acousto-optic

modulator (AOM); electro-optic modulator (EOM); half-wave plate (H); quarter-wave plate

(Q); polarizing beam splitter (PBS); polarizer (POL); extended-cavity diode laser (ECL);

electromagnetically driven mirror (MR); Faraday rotator (FR); photodiode (PD); servo-

loop electronics (PID); Lock-in amplifier (LA); digital scope and acquisition system (DOS);

delay line for phase control (Φ). Black lines indicate the electronic part of the setup.
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