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Abstract

In the distributed development of modern IT systems, contracts play a vital

role in ensuring interoperability of components and adherence to specifica-

tions. The design of embedded systems, however, is made more complex

by the heterogeneous nature of components, which are often described using

different models and interaction mechanisms. Composing such components

is generally not well-defined, making design and verification difficult. Sev-

eral denotational frameworks have been proposed to handle heterogeneity

using a variety of approaches. However, the application of heterogeneous

modeling frameworks to contract-based design has not yet been investigated.

In this work, we develop an operational model with precise heterogeneous

denotational semantics, based on tag machines, that can represent hetero-

geneous composition, and provide conditions under which composition can

be captured soundly and completely. The operational framework is imple-

mented in a prototype tool which we use for experimental evaluation. We

then construct a full contract model and introduce heterogeneous compo-

sition, refinement, dominance, and compatibility between contracts, alto-

gether enabling a formalized and rigorous design process for heterogeneous

systems. Besides, we also develop a generic algebraic method to synthe-

size or refine a set of contracts so that their composition satisfies a given

contract.
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Chapter 1

Introduction

1.1 The Context

Modern computing systems are increasingly being built by composing com-

ponents which can be developed concurrently by different design teams. In

such a development paradigm, the distinction between what is constrained

on environments, and what must be guaranteed by a system given the

constraint satisfaction, reflects the different roles and responsibilities in

the system design procedure. Such distinction can be captured by a com-

ponent model called contract [42]. Formally, a contract (C) is a pair of

assumptions (A) and guarantees (G) (i.e. C = (A,G)) which intuitively

are properties that must be satisfied by all inputs and outputs of a design,

respectively. The separation between assumptions and guarantees supports

the distributed development of complex systems and allows subsystems to

synchronize by relying on associated contracts.

In the particular context of embedded systems, heterogeneity is a typical

characteristic since these systems are usually composed from parts devel-

oped using different methods, time models and interaction mechanisms.

Such heterogeneity usually appears across different layers of abstraction

in the design flow, making the evaluation of whether certain properties

passed from the higher level of abstraction are maintained at the lower
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1.1. THE CONTEXT

level become extremely difficult. It has been often the case that hetero-

geneous compositional mechanism is not sufficiently well-defined to enable

the verification of some system property from the known properties of its

components. To deal with heterogeneity, several modeling frameworks have

been proposed oriented towards the representation and simulation of het-

erogeneous systems, such as the Ptolemy framework [39], or towards the

unification of their interaction paradigms, such as those based on tagged

events [37]. The former is geared towards the representation and simulation

of heterogeneous systems while the latter can capture different notions of

time and interaction paradigms, including physical time, logical time (syn-

chronous and asynchronous), precedence relations, etc., and relate them

by mapping tagged events over a common tag structure [5].

Due to the significant inherent complexity of heterogeneity, there have

been only very few attempts at addressing heterogeneity in the context of

contract-based models. For instance, the HRC model from the SPEEDS

project1 was designed to deal with different viewpoints (functional, time,

safety, etc.) of a single component [7, 19]. However, the notion of hetero-

geneity in general is much broader than that between multiple viewpoints,

and must take into account diverse interaction paradigms. Meanwhile, het-

erogeneous modeling frameworks have not been related to contract-based

design flows. This has motivated us to study a methodology which allows

heterogeneous systems to be modeled and interconnected in a contract-

based fashion.

The central issues when studying such a methodology includes refine-

ment, composition and compatibility between contracts in order to enable

a formalized and rigorous design process for heterogeneous systems. Be-

sides, it is often desirable to study how to fix individual contracts so as to

make their composition satisfies or refines an abstract specification repre-

1www.speeds.eu.com
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CHAPTER 1. INTRODUCTION

sented as another contract. This is an instance of the well-known classical

synthesis problems:

“Can we construct a model that satisfies some given specification?”.

This problem is very popular when designing systems in a top-down de-

composing fashion because the overall contract’s decomposition into sub-

contracts is not always satisfactory.

1.2 Thesis Contributions

Our long term objective is to develop a modeling and analysis framework

for the specification and verification of both heterogeneous components

and contracts.

1.2.1 A Sound Underlying Representation

As a start, we have modeled a simplified version of a distributed Heteroge-

neous Communication System (HCS) such as one that one that could be

found on board of air-crafts [27], using timed automata [1] augmented with

parameters. Different components of a HCS system including server, com-

munication network and devices are modelled as timed automata which al-

lows us to compose them together and reason on their composite behavior.

Since no heterogeneous machinery for composing different components has

been available as will be discussed in Section 2.1, assembling the compo-

nents of HCS is done homogeneously. The case study has provided us with

a valuable understanding regarding how time can be captured in different

models of time such as Uppaal [31], NuSMV [16], HyDI [17] and regarding

the complexity of modeling various components through a homogeneous

machinery such as timed automata.
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1.2. THESIS CONTRIBUTIONS

With this understanding, the framework that we aim at developing

should be able to support formal correctness proofs as obtained in the

HCS case study. To this end it must employ an underlying (or interme-

diate) semantically sound model that can be used to represent different

computation and interaction paradigms uniformly. Because simulation is

an essential design activity, the model must also be executable. At the same

time, the semantic model must be able to retain the individual features of

each paradigm to avoid losing their specific properties. In particular, the

framework must interact with the user through a front end that exposes

familiar models that feel native and natural. In this work, we focus on

the intermediate semantic model and defer the discussion on how specific

front ends may be constructed to our future work. For this purpose, we

advocate the use of Tag Machines (TMs) as a suitable semantic model

for system specification. We have chosen to use this formalism for our

work, as it provides an operational representation based on rigorous and

proven semantics. Tag Machines can be used to represent homogeneous

systems [6] and to achieve our goal, we extend TMs to encompass the

heterogeneous context. In particular, we study the relation between com-

position of TMs with that of their denotational semantics. We first review

and correct certain aspects of TMs, and provide conditions under which the

operational model can fully and compositionally capture the denotational

representation. We have also developed a simulation engine that supports

heterogeneous TMs, with which we experimentally evaluate our results on

a significant case study.

1.2.2 Heterogeneous Contract-based Design Methodology

Our second objective is to develop a methodology for modeling heteroge-

neous systems in a contract-based fashion. In this goal, we build a contract

model on top of heterogeneous TMs and define a full set of operations and

4



CHAPTER 1. INTRODUCTION

relations between contracts such as satisfaction, refinement, composition

and compatibility.

To achieve such goal, we rely on a generic meta-framework [4] that

we extend with tags and mappings between tags to define model inter-

actions. In particular, we study the contract synthesis capability in the

homogeneous and heterogeneous contexts. For homogeneous contracts, we

propose decomposing conditions for a set of contracts {C1, . . . , Cn} under

which the contract decomposition can be verified, and thereby proposing

a generic synthesis strategy for fixing wrong decompositions. For heteroge-

neous contracts, we limit the size of contract set to two in order to make

the synthesis procedure manageable and simple.

1.3 Structure of the Thesis

The rest of the thesis is organized as follows.

• In Chapter 2, we review the state of the art with respect to the evolu-

tion of theories of heterogeneous composition as well as that of theories

of interface and contract.

• In Chapter 3, we present a summary of our preliminary investigation

on modeling a distributed heterogeneous systems.

• In Chapter 4, we recall notions of tags, behaviors, denotational tag

systems and their composition.

• In Chapter 5, we first describe how TMs are extended to represent

heterogeneous systems and then discuss soundness and completeness

of the TM composition. We also demonstrate the application of our

prototype tool to an automotive use case in this chapter.

5
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• In Chapter 6, we present our tag contract framework for modeling

heterogeneous systems built on top of TM operations such as com-

position, quotient, conjunction and refinement. Also in this chapter,

we discuss an application of our methodology to a simplified water

control problem and model it using incrementing TMs. The material

of Chapter 5 and Chapter 6 is mostly taken from [36, 35].

• In Chapter 7, we show how to synthesize a contract set in order to

make their composition refine an overall contract when necessary in

both homogeneous and heterogeneous contexts.

• In Chapter 8, we summarize our contribution and outline possible

directions for future work.

6



Chapter 2

State of the Art

2.1 Theory of Heterogeneous Composition

Heterogeneity theory has been evolving actively to assist designers in deal-

ing with heterogeneous composition of components with various Models of

Computation and Communication (MoCC). The idea behind these theo-

ries and frameworks is to be able to combine well-established specification

formalisms to enable analysis and simulation across heterogeneous bound-

aries. This is usually accomplished by providing some sort of common

mechanism in the form of an underlying rich semantic model or coordina-

tion protocol. In this work we are mostly concerned with these lower level

aspects.

One such approach is the pioneering framework of Ptolemy II [39], where

models, called domains, are combined hierarchically: each level of the hier-

archy is homogeneous, while different interaction mechanisms are specified

at different levels in the hierarchy. In the underlying model, intended for

simulation, each domain is composed of a scheduler (the director) which

exposes the same abstract interface to a global scheduler which coordinates

the execution. This approach, which has clear advantages for simulation,

has two limitations in our context. First, it does not provide access to the

components themselves but only to their schedulers, limiting our ability

7



2.1. THEORY OF HETEROGENEOUS COMPOSITION

to establish relations to only the models of computation, and not to the

heterogeneous contracts of the components. Secondly, the heterogeneous

interaction occurs implicitly as a consequence of the coordination mecha-

nism, and can not be controlled by the user. The metroII framework [20]

relaxes this limitation, and allows designers to build model adapters di-

rectly. However, metroII treats components mostly as black boxes using

a wrapping mechanism to guarantee flexibility in the system integration,

making the development of an underlying theory complex. These and

other similar frameworks are mainly focused on handling heterogeneity at

the level of simulation.

Another body of work is instead oriented towards the formal represen-

tation, verification and analysis of these system. The BIP framework uses

the notion of connector, on top of a state based model, to implement both

synchronous and asynchronous interaction patterns [9]. Their relationship,

however, can not be easily altered, and the framework lacks a native no-

tion of time. Benveniste et al. [5] propose a heterogeneous denotational

semantics inspired by the Lee and Sangiovanni-Vincentelli (LSV) formal-

ism of tag signal models [37], which has been long advocated as a unified

modeling framework capable of capturing heterogeneous MoCC. Starting

from the LSV model, the authors have derived their preferred variation of

tag system model where a system is modeled as a set of behaviors. Each

behavior is modeled as a set of signals which are sequences of events and

each event is characterized by a data value and a tag. In both models, tags

play an important role in capturing various notions of time, where each tag

system has its own tag structure expressing an MoCC and homogeneous

systems share the same tag structure while heterogeneous systems have

different tag structures. Composing such systems is thus done by applying

mappings between different tag structures.

Tag Machines [6] are subsequently introduced as finite representations

8



CHAPTER 2. STATE OF THE ART

of homogeneous tag systems. They are quite expressive, and ways to map

traditional interaction paradigms have been reported in the literature [6].

They have also been applied to model a job-shop specification [23] such

that the composite tag machine represents the overall job-shop specification

and any trace of the machine from the start to the final state results in

a valid job-shop schedule. For the purpose of studying the asymptotic

throughput of an infinite job-shop schedule, the authors have proposed a

new tag structure to capture the aspect of performance evaluation and an

algorithm for evaluating the throughput of job-shop schedules based on

tag machine. The algorithm has also been applied to an SDFG model of

periodic self-timed executions and a heterogeneous system composed of a

dataflow component and a discrete-event component.

Alternatively, tag systems can be represented by functional actors form-

ing a Kleene algebra [24]. The approach is similar to that of Ptolemy II in

that both use actors to represent basic components.

2.2 Theory of Interface and Contract

The notion of contract was first introduced by Bertrand Meyer in his

design-by-contract method [42], based on ideas by Dijkstra [25], Lam-

port [30], and others, where systems are viewed as abstract boxes achiev-

ing their common goal by verifying specified contracts. Such a technique

essentially guarantees that methods of a class provide some post- condi-

tions at their termination, as long as the pre-conditions under which they

operate are satisfied. The class itself can have invariants that must be

true at all states of the class and in order to offer safe substitutability, a

subclass is only allowed to weaken the pre-conditions and strengthen the

post-conditions. Design-by-contract has then been adopted in component-

based applications such as [13, 26]. In those approaches, work-flows and

9



2.2. THEORY OF INTERFACE AND CONTRACT

activities are specified for a designer to follow in order to obtain complete

component specifications which include the component interface, the inter-

component collaboration and a set of contracts in forms of pre-conditions,

post-conditions and invariants that apply to the component. The imple-

mentation patterns for pre-conditions, post-conditions and invariants were

subsequently formalized to automatically generate component skeletons

that already implemented such constraints [18].

To allow effective reuse of components in component-based design flows,

De Alfaro and Henzinger introduced a light-weight formalism based on

automata to document the component specification, called interface au-

tomata [21]. This formalism establishes a more general notion of contract

where pre-conditions and post-conditions, which originally appeared in the

form of predicates, are generalized to behavioral interfaces so as to capture

the temporal Input/Output (I/O) behaviours of a component. The I/O

actions are expressed by transitions labelled with a “?”/”!” correspond-

ingly. Although being syntactically similar to I/O automata proposed by

Lynch [40], interface automata are not necessarily input-enabled and at

each of its states, some inputs may not be accepted. By this, interface

automata express the assumption that the environment may never gener-

ates those inputs and thus input actions are under the environment con-

trol. Meanwhile, all outputs are controlled by the component itself, hence

are under the component responsibility. Although the assumptions and

guarantees are not handled explicitly, interface automata do capture the

different roles and responsibilities of a component and its environment.

The central issues when introducing the formalism of interface automata

are compatibility, composition and refinement. The authors highlight the

issue of checking compatible interfaces from two views: pessimistic versus

optimistic, and advocate the latter view in which two component interfaces

are compatible if they can work together in some environment. Under the

10
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optimistic view, the composition of two interface automata is obtained by

restricting the product automaton to the set of compatible states from

which there is some environment that can prevent going to error states.

Then based on alternating simulation [2], the authors formalize the rela-

tion between an interface specification and its implementation by means

of refinement, stating that an interface refines another if it has weaker in-

put assumptions and stronger output guarantees. This definition allows a

component P to always be replaced with a more refined version Q pro-

vided that they are connected to the environment by the same inputs. An

important connection between refinement and compatibility, which cap-

tures also the essence of component-based design, is also exposed through

this definition. That is the designer of the environment needs to ensure

only compatibility with the component specification P which subsequently

guarantees compatibility with the component implementation Q.

The alternating refinement, in fact, has a drawback when it fails to

enforce that the implementation does any useful activities at all. Larsen

et.al.’s subsequent introduction of modality into the interface theory [32]

helps to rule out such a trivial implementation since as long as some tran-

sition in the specification automata is associated with a must modality, it

must appear in any implementation. In the modal context, modal refine-

ment requires that the specification can mimic all allowed steps (marked

with a may modality 3) made by an implementation and an implemen-

tation needs to match all required steps (marked with a must modality

2) made by the specification. The authors then show that the alternating

refinement actually coincides with the modal refinement if all output tran-

sitions are assigned with 3, inputs with 2 and the may transition relation

is made input-enabled. They further define the composition operator for

modal interface similarly to that of interface automata. However, Raclet

et.al. [45] has recently proved that the operator is indeed incorrect because

11
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it is not monotonic with respect to modal refinement as claimed, thereby

failing to ensure that two compatible interfaces may be implemented sep-

arately (call independent implementability in [32]). A correction has also

been proposed by the authors, resulting in the notion of relaxed composi-

tion. Such notion relaxes all constraints on the future of the runs that drive

the composition to a state where one interface may produce an output that

may not be accepted as input by the other. The relaxed composition refers

to such state as a “universal” state, meaning every action is assigned with

a may modality.

Another core contribution made by Raclet et.al. [45] is the unification

of two theories: interface automata [21] and modal specification [33] into

a new theory addressing also the problem of dissimilar alphabets which

was missing in previous work. It is worth noting that Larsen el.al.’s modal

interfaces [32] can be viewed as a modal specification except for the modal

composition operator and the occurrence of Input/Output distinction.

The contract theory has been evolving in parallel with the interface

theory. Researchers from the SPEEDS project have attempted to use a

set of constraints (i.e. pairs of Assumption/Guarantee), to describe the

expected behaviour of a component (i.e. a set of traces or runs) [7]. The

differentiation between assumptions and guarantees, which is implicit in in-

terface automata or modal specification, is made explicit in the trace-based

contract framework of the SPEEDS HRC model [7, 8]. Relevant notions

such as composability, compatibility and dominance are formalized for con-

tracts. Composability is a purely syntactic criterion on component profiles

which consists of uncontrolled and controlled ports, and compatibility is

defined as the receptiveness of the composite assumption with respect to

the composite ports under the component’s control. That is for any se-

quence of values on the controlled ports, there exists some environment

accepting it. The notion of refinement between contracts is referred to as

12
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dominance to distinguish it from the refinement between implementations

of the contracts, following the usual scheme of weakening the assumptions

and strengthening the guarantees.

The relationship between specifications of component behaviors and

contracts is further studied by Bauer et al. [4] where a contract framework

can be built on top of any specification theory equipped with a composition

operator and a refinement relation which satisfy certain properties. The

mentioned trace-based contract theories [7, 8] are also demonstrated to be

instances of such framework. We take advantage of this formalization in

this work to construct our tag contract theory. In addition, this formal-

ization enables verifying if a contract can be decomposed into two other

contracts by checking if that contract can dominate the others. Therefore

we make a further advantage of such dominating notion and generalize it

to a set of n homogeneous contracts and construct generic decomposing

conditions for the homogeneous contract set.

The verification problem of decomposing a contract into a set of con-

tracts was also studied by Cimatti et al. [15] and was addressed by property-

based proof systems with SMT-based model checking techniques. The

contract specifications allowed in such systems, however, are trace-based

only. Our decomposing conditions can instead deal with generic contract

specifications including both trace-based and modal ones.

Assume-guarantee reasoning has also been applied extensively in declar-

ative compositional reasoning [22] to help prove properties by decomposing

the process into simpler and more manageable steps. Our objective is con-

ceptually different: assumptions specify a set of legal environments and are

used to prove (or disprove) contract compatibility and satisfaction. In con-

trast, classical assume-guarantee reasoning uses assumptions as hypotheses

to establish whether a generic property holds. Naturally, this technique

can be used in contract models, as well, with possibly non-trivial trans-
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formation and formalization. In case of unsuccessful termination, AGR

can also provide a counterexample showing how the property can be vio-

lated. Such a counterexample can then be used to synthesize the model

so as to satisfy a given property [38]. However, this synthesis strategy is

only applicable for systems with trace-based semantics. Viewing the same

assume-guarantee synthesis problem as a game, Chatterjee et al. solve it

by finding a winning strategy on the global system state graph, but the

method does not guarantee the inclusion of all traces satisfying the spec-

ification [12]. The synthesized model was shown to be a subset of that

synthesized by counterexample-based synthesis [38]. Unlike these concrete

notions of synthesis, ours is more generic since it is not tied to the system

semantics. Moreover, while the application of our synthesis strategy to

generic contract-based systems is direct and straightforward, the general-

ization of the previous approaches has not been studied and would require

a conversion process from normalized contracts to un-normalized ones.
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Chapter 3

Modeling and Verification of a

Distributed HCS

In this section, we present a summary of our preliminary work on modelling

a distributed real-time system and refer to our technical paper [34] for the

comprehensive reading.

3.1 HCS Description

We have taken as a case study a simplified version of an HCS system which

consists of a common server and many devices communicating through

Network Access Controllers (NACs) as shown in Figure 3.1.

In the case study, we focus on audio devices which are required to dis-

tribute music and audio announcements to the main cabin. In addition,

the devices must reproduce the audio at synchronized instants, hence the

importance of the server-device clock synchronisation and their implemen-

tation of the Precision Time Protocol (PTP) [44]. The audio stream is

transmitted through the network. Each audio packet is sent by the server

every audPeriod (timeunits or tus) and characterized by the time it has to

be played at the device tplay. The transmission priority of PTP messages

are assumed to be higher than that of audio packets, however, an ongoing
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Figure 3.1: Heterogeneous Communication System

transmission of an audio packet will not be preempted by a PTP message.

The packet streams can be shown logically as in Figure 3.2.

Figure 3.2: Packet streams in HCS

An PTP (Audio) packet transmitted through the network medium in-

curs a transmission delay C1(C2). These two quantities can be considered

as design parameters and are related to the packet size and to the channel

bitrate.

The model of HCS resembles a contract-based model. As long as the

assumption is respected (i.e. the parameter setting of C1 and C2 lies

within the feasible regions), the correct functioning of packet (audio, PTP)

16
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streaming and clock synchronization (i.e. that the system will not en-

counter any Error state) can be guaranteed. In this case study, we are

interested in computing and representing the assumption on HCS environ-

ment, or in other words, verifying whether there are parameter settings

that allow the composite automaton to stay away from an Error state. To

do so, we employ parametric timed automata which are an extension of

the classical timed automata [1] and adapt the methodology for paramet-

ric analysis of real-time systems proposed in [14] to derive regions of free

design parameters that can provide such guarantee.

3.2 Parametric Modelling

Even the simplified HCS is too complex to be parametrically modelled

completely. Therefore, we have worked out an abstraction of the system to

limit the state space and to concentrate in isolation on each outstanding

issue (the non-preemptive scheduler, the different criticality of the timing

constraints, etc.).

The abstract model consists of two parts. The first models the release

of the packets on the network according to a periodic pattern. The second

models the network and device, including the scheduling policy and the

real-time constraints which can be hard or firm real-time constraints.

3.2.1 Packet Release Modeling

We model the release of packets as activation automata, shown in Fig-

ure 3.3. Each stream of packets is characterized by the offset for the first

release (transition from initial state to the second state), and is then pe-

riodic afterwards (self transition on the second state). A release signal is

emitted every time a transition is taken, and is used to synchronize the

automaton with the rest of the system.

17



3.2. PARAMETRIC MODELLING

c<=ptpPeriodc<=ptpOff

Release_PTP!

Release_PTP!

Wait_for_periodWait_for_offset

c=0

c=0

c==ptpPeriod

c==ptpOff

(a)

c<=audPeriodc<=audOff

Release_Audio!

Release_Audio!

Wait_for_periodWait_for_offset

c=0

c=0

c==audPeriod

c==audOff

(b)

Figure 3.3: PTP and audio task activation automata

3.2.2 Schedulability Checker Modeling

The remaining part of the system is modelled as a set of schedulability

checkers [14] that are non-preemptive, i.e. a transmission will not be in-

terrupted if it has already started. The schedulers are also prioritized, so

that when there is no ongoing transmission and many packets are ready,

the PTP packets go first and the audio packets back off.

The scheduler checker for PTP packets is shown in Figure 3.4, where:

• D1 is the deadline of PTP packets,

• C1/C2 are the transmission time of PTP/audio packets

• task denotes the currently-executed task,

• n1 and n2 record the number of PTP and audio packets released during

the current execution

• c is a clock accumulating the time since the task queues were last idle

• r is the sum of the time needed to complete all tasks released since

the checker was last idle.

The model of the Audio checker is similar to but simpler than the PTP

checker because task audio has a lower priority. D2 is the relative deadline
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Error

Busy
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Release_PTP?
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Release_Audio?
task=2, c=0, 
r=C2, n1=0, n2=0

c==r && c<=D1

Release_PTP?
c=0, r=C1

Figure 3.4: Schedulability checker for PTP packets

of audio packets and driftDelta is introduced to account for the offset

time of the local clock compared to the server clock. The worst case hap-

pens when the local clock is substantially slower than the server clock and

thus when an audio packet is received, the actual deadline to be verified

would be D2 − driftDelta instead of D2.

In fact, the requirement of no deadline miss (hard deadline) is difficult to

obtain in real-time environments. Therefore, in order to make the analysis

more practical, the requirement is relaxed by allowing an audio packet to

sometimes miss its deadline (firm real-time constraint). A firm real-time

constraint is given by a deadline and by a couple (m, n) meaning that m

deadlines can be missed every n jobs [41]. In our case study, a packet may

miss its deadline as long as the previous packet has not already missed the
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Figure 3.5: Schedulability checker for audio packets

20



CHAPTER 3. MODELING AND VERIFICATION OF A DISTRIBUTED HCS

deadline (m = 1, n = 2). The checkers for both constraints are shown in

Figure 3.5.

We introduce four new variables: dm is a boolean variable used to cap-

ture the fact that one deadline miss has already happened (dm = true),

r1 is a real variable used to record the total execution time of all PTP in-

stances released after the currently-checked instance and before a deadline

miss or the next audio arrival, r2 marks the next audio arrival whose time

is marked in t.

Intuitively, the transitions can be interpreted as follows:

• The transitions to Idle are taken when the task instance being checked

in Check or a sequence of tasks arrived in Busy, has finished execution.

• The transitions to Busy are taken when an instance of task PTP or

Audio is released. Self-loops are taken to queue the newly-released

instances and to retrieve them when the current execution has finished.

• The transitions to Check are taken when a PTP instance is (non-

deterministically) chosen for checking. Before verifying the deadline,

the execution (or transmission) time of all other PTP instances in the

queue must be taken into account as they would be scheduled before

the current instance.

• The transition to Error is taken when the currently-executed instance

misses its deadline.

3.3 Parametric Analysis

We have performed several experiments with a diverse set of parameters

and the results of two such experiments which differ in the amount of offset

by which packets are issued to the network are briefly summarized in this
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Experiment 1 Experiment 2

ptpOff 0 5

ptpPeriod 40 40

D1 10 10

audOff 0 0

audPeriod 10 10

D2 10 10

Table 3.1: Fixed parameter settings

section. For the checker shown in the previous section, the free parameters

are the transmission times C1 and C2. The values of the fixed parameters

for each of the experiments are shown in Table 3.1.

Modelling the time aspect of HCS is possible in both Uppaal [31] and

NuSMV [16]. However, capturing a specific instant of time cannot be done

in Uppaal as so far it has supported only integer variables. Another impor-

tant limitation of the Uppaal model is that it only answers yes/no to the

verification problem without providing further feedback for the designers

regarding how to adjust parameters so that the system remains feasible.

To do parametric analyses on HCS, we have modelled it using NuSMV

and by adapting the parametric modelling tool [14] built upon NuSMT

[11], we have derived the feasibility (not shaded) and infeasibility (shaded)

regions for the PTP checker shown in Figure 3.6. The regions for the Audio

checker under a hard and firm real-time requirement are also shown in the

same figure where driftDelta (denoted as ∆) is introduced to account for

the offset time of the local clock compared to the server clock. By joining

the PTP and Audio feasibility regions together, we can obtain the regions

which fully describe the assumption on the environment of HCS.
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Figure 3.6: Audio (in)feasibility regions for ∆ = 0, 3, 5, 7 and PTP (in)feasibility regions

in two experiments
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Chapter 4

Tag Systems

We use denotational tag systems as our semantic domain [5, 37]. In intu-

itive terms, a tag system is a representation of the behaviors of a compo-

nent in terms of sets of events that take place at its interface, intended as a

collection of visible ports. Tags, which are associated to every event, char-

acterize the temporal evolution of the behaviors. By changing the structure

of tags, one can choose among different notions of time. Formally, a tag

structure T is a pair (T,≤) where T is a set of tags and ≤ is a partial

order on the tags. To distinguish the tag order of T , we refer to it as ≤T
when necessary. The ordering among tags is used to resolve the ordering

among events at the system interface. For instance, by using the set of real

numbers as tags, with their usual ordering, one can place events anywhere

in real time. Conversely, a set of partially ordered symbolic tags can be

used to express precedence between events in a branching-time setting.

Events occur at the interface of a component. A component exposes a

set V of variables (or ports) which can take values from a set D. An event

is a snapshot of a variable state, capturing the variable value at some point

in time. Formally, an event e on a variable v ∈ V is a pair (τ, d) of a tag

τ ∈ T and a value d ∈ D. The simplest way of characterizing a behavior is

as a collection of events for each variable. In this work, we are interested
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in constructing behaviors incrementally, using an executable model. For

this reason, we index the events of a variable into a sequence, with the

understanding that events later in the sequence have larger tags [5]. A

behavior σ assigns a sequence of events to every variable in V , and is then

a function σ ∈ V 7→ (N 7→ (T ×D)).

A component P with tag structure T , or tag system, is then a tuple

P = (V, T ,Σ), where Σ is a set of behaviors over the set of variables V .

Individual events of a behavior σ ∈ Σ are identified by the tuple (v, n, τ, d),

capturing the n-th occurrence of variable v as a pair of a tag τ and a value

d. In the following, we denote with Σ(V, T ) the universe of all behaviors

over a set of variables V and tag structure T .

4.1 Homogeneous Composition

Combining tag systems over the same tag structure amounts to considering

only those behaviors which are consistent with every component. When

the sets of variables coincide, this operation corresponds to taking the

intersection of the behaviors of all components. When the sets of variables

are different, two behaviors are considered consistent if they agree on the

shared variables. In this case, we say that the behaviors are unifiable.

Composition consists in retaining all and only the unifiable behaviors.

Formally, let P1 = (V1, T ,Σ1) and P2 = (V2, T ,Σ2) be two tag systems

over the same tag structure T . Two behaviors σ1 ∈ Σ1 and σ2 ∈ Σ2 are

unifiable, written σ1 ./ σ2, whenever σ1|V1∩V2 = σ2|V1∩V2, where σ|W denotes

the restriction of behavior σ to the variables in set W . When unifiable, we

may construct a new behavior σ = σ1 t σ2 on the set of variables V1 ∪ V2

as the combination of the two behaviors:

σ(v) = (σ1 t σ2)(v)
def

=

{
σ1(v) for v ∈ V1,

σ2(v) for v ∈ V2.
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Composition for homogeneous tag systems, i.e., tag systems over the same

tag structure, is therefore defined as follows.

Definition 1 ([5]). The homogeneous composition P of two tag systems

P1 = (V1, T ,Σ1) and P2 = (V2, T ,Σ2), written P = P1 ‖ P2, is the tag

system P = (V1 ∪ V2, T ,Σ1 ∧ Σ2), where

Σ1 ∧ Σ2
def

= {σ1 t σ2 : σ1 ∈ Σ1 ∧ σ2 ∈ Σ2 ∧ σ1 ./ σ2}.

An alternative definition uses the inverse of the restriction operator σ|W ,

or inverse projection, to equalize the variables of the behaviors. If σ1 is a

behavior on variables V1, its inverse projection to the set V = V1 ∪ V2 is

the set of behaviors σ ∈ Σ(V, T ) whose restriction is σ1, i.e.,

proj−1
V (σ1) = {σ ∈ Σ(V, T ) : σ|V1 = σ1}.

Inverse projection is naturally extended to sets of behaviors. Hence, Σ1∧Σ2

can also be written as

Σ1 ∧ Σ2
def

= proj−1
V1∪V2(Σ1) ∩ proj−1

V1∪V2(Σ2),

which makes the intersection operator involved with composition explicit.

4.2 Heterogeneous Composition

When the tag systems have different tag structures, we must equalize also

the set of tags. This is done by mapping the tag structures onto a third tag

structure that functions as a common domain. The mappings are called

tag morphisms and must preserve the order.

Definition 2 ([5]). Let T and T ′ be tag structures. A tag morphism from

T to T ′ is a total map ρ : T 7→ T ′ s.t.

∀τ1, τ2 ∈ T , τ1 ≤T τ2 ⇒ ρ(τ1) ≤T ′ ρ(τ2).

27



4.2. HETEROGENEOUS COMPOSITION

Here, the tag orders must be taken on the respective domain. Using

tag morphisms, we can turn a T -behavior σ ∈ V 7→ (N 7→ (T × D)) into

a T ′-behavior σρ ∈ V 7→ (N 7→ (T ′ ×D)) by simply replacing all tags τ in

σ with the image ρ(τ). Abusing the function composition operator ◦, we

may also refer to σρ as σ ◦ ρ.

Unification of heterogeneous behaviors can be done on the common

tag structure. Let P1 = (V1, T1,Σ1) and P2 = (V2, T2,Σ2) be two tag

systems, and let ρ1 : T1 7→ T and ρ2 : T2 7→ T be two tag morphisms

into a tag structure T . We say that two behaviors σ1 ∈ Σ1 and σ2 ∈ Σ2

are unifiable in the heterogeneous sense, written σ1 ./ρ1 ρ2
σ2, if and only if

(σ1 ◦ ρ1) ./ (σ2 ◦ ρ2). When σ1 and σ2 are unifiable, we may construct the

unified behavior σ = (σ1 ◦ ρ1) t (σ2 ◦ ρ2), over T as usual, by considering

the corresponding behaviors in T :

σ = (σ1 ◦ ρ1) t (σ2 ◦ ρ2),

and hence build the composed tag system P = (V, T ,Σ) over the common

tag structure T , where

Σ
def

= {(σ1 ◦ ρ1) t (σ2 ◦ ρ2) : σ1 ∈ Σ1 ∧ σ2 ∈ Σ2 ∧ σ1 ./ρ1 ρ2
σ2}.

It is convenient, however, to retain some information of the original tag

structures in the composition, since they are often referred to in the het-

erogeneous composition, as we will see in the sequel. To do so, we construct

the composition over the fibered product [5] T1 ×ρ1 ρ2
T2 = (T1 ×ρ1 ρ2

T2,≤) of

the original tag structures, extending the order component-wise:

(τ1, τ2) ≤ (τ ′1, τ
′
2) ⇐⇒ (τ1 ≤T1 τ ′1) ∧ (τ2 ≤T2 τ ′2).

where T1 ×ρ1 ρ2
T2 = {(τ1, τ2) ∈ T1 × T2 : ρ1(τ1) = ρ2(τ2)}. We denote by

σ|V1,T1 the restriction of σ to the variables in V1 and to the element T1 of
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the fibered product.1 With this notion, we can define the heterogeneous

composition.

Definition 3 ([5]). Let P1 = (V1, T1,Σ1) and P2 = (V2, T2,Σ2) be tag

systems and let ρ1 : T1 7→ T and ρ2 : T2 7→ T be tag morphisms. The

heterogeneous composition P = P1 ‖ρ1 ρ2
P2 is the tag system P = (V1 ∪

V2, T1 ×ρ1 ρ2
T2,Σ1 ∧ρ1 ρ2

Σ2), where

Σ1 ∧ρ1 ρ2
Σ2

def

= {σ ∈ Σ(V, T1 ×ρ1 ρ2
T2) : σ|V1,T1 ∈ Σ1 ∧ σ|V2,T2 ∈ Σ2}.

1The restriction to T1 can be accomplished using a tag morphism π :T1 ×ρ1 ρ2T2 7→ T1 with π((τ1, τ2)) =

τ1.
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Chapter 5

Tag Machines

Tag machines (TMs) [6] have been introduced to represent tag systems

in a homogeneous context. Since our aim is to provide an operational

representation for heterogeneous systems, we extend the TM formalism to

encompass the heterogeneous context.

In order to construct behaviors, the transitions of a TM must be able

to increment time, i.e., to update the tags of the events. An operation of

tag concatenation on a tag structure is used to accomplish this.

Definition 4 ([6]). An algebraic tag structure is a tag structure T = (T,≤
, ·) where · is a binary operation on T called concatenation, such that:

i) (T, ·) is a monoid with identity element ı̂,

ii) ∀τ, τ ′, τ̄ , τ̄ ′ ∈ T : (τ ≤ τ ′) ∧ (τ̄ ≤ τ̄ ′)⇒ τ · τ̄ ≤ τ ′ · τ̄ ′,

iii) ∃ε ∈ T : ∀τ ∈ T : (ε ≤ τ) ∧ (ε · τ = τ · ε = ε).

Tags are organized in tag vectors ~τ = (τ v1, . . . , τ vn), where n is the

number of variables in V . During transitions, tag vectors evolve according

to a matrix µ : V × V 7→ T called a tag piece [6]. Given a tag vector ~τ and

a tag piece µ, the new tag vector is ~τµ = ~τ · µ given by

τ viµ
def

= max
u∈V

(τu · µ(u, vi))
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where the maximum is taken with respect to the tag ordering. In practice,

one concatenates each element of the tag vector with each tag on a column

of µ, and then takes the largest value; thus the new value of any tag may

depend on the tag increments on the events of the other variables. As the

order is partial, the maximum may not exist, in which case the operation

is not defined.

Intuitively, a tag piece µ represents increments in all variable tags over

a transition and provides a way to operationally renew them. To represent

also changes in variable values, µ can be labeled with a partial assignment

ν : V → D, which assigns new values to the variables. We say that a

labeled tag piece µ has an event for all variables for which ν is defined. We

denote by dom(ν) the domain of such ν and by L(V, T ) the universe of all

labeled tag pieces defined over a variable set V and tag structure T . In

the following, we assume that tag pieces are always labeled and implicitly

associate a labeling function ν to a tag piece µ.

Example 1. The algebraic tag structure (N ∪ {−∞},≤,+) can be used

to capture logical time by structuring tag pieces µ so that they represent

integer increments of 1:

µ(u, v) =


0 if u = v and ν is not defined on v

−∞ if u 6= v and ν is not defined on v

1 if ν is defined on v

.

The least element ε = −∞ is used to cancel the contribution of an entry in

the tag vector. With these definitions, every time a new value must be as-

signed to a variable (i.e., when ν(v) is defined), the tag is also incremented

by 1. Otherwise, the tag is left unchanged and no new event is generated.

For instance, [ 1 3 ] ·
[

0 1
ε 1

]
= [ 1 4 ]. The tag of the second variable is increased

by 1 since the tag piece has an event for it.

Likewise, (R+ ∪ {−∞},≤,+) can capture physical time.
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A tag machine M is a finite automaton where transitions are marked

by labeled tag pieces, or simply labels. Our definition below differs from

that proposed by Benveniste et al. [6] for certain simplifications and for

the addition of a set of accepting states.

Definition 5. A tag machine M is a tuple (V, T , S, s0, F, E), where:

• V is a set of variables,

• T is an algebraic tag structure,

• S is a finite set of states and s0 ∈ S is the initial state,

• F ⊆ S is a set of accepting states,

• E ⊆ S × L(V, T )× S is the transition relation.

A run r of a TM is a sequence of states and transitions

r : s0
µ1→ s1

µ2→ s2 . . . sm−1
µm→ sm

such that (si−1, µi, si) ∈ E for 1 ≤ i ≤ m. Intuitively, a TM is used to

construct a behavior by following its labeled transitions over a run, and

applying the tag pieces sequentially to the initial tag vector of the TM. A

new event is added to the behavior whenever a new value is assigned by

the label function νi. In order to formalize the language of a tag machine,

we must keep track of both the tags and the number of events that have

occurred for each variable. Thus, for every state si along run r, we define

a tag vector ~τi computed by accumulating the tag pieces:

~τi = ~τi−1 · µi,

and an index vector ~ki computed by updating the event index at every new

event:

~ki(v) =

{
~ki−1(v) if v 6∈ dom(νi)
~ki−1(v) + 1 if v ∈ dom(νi)

.
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For state s0, the tag vector is initialized to the identity element ı̂T , while the

index vector is initialized to 0. The behavior σ(r)1 of a run r is constructed

incrementally by starting from an empty behavior σ0 and computing:

σi(v, k) =


σi−1(v, k) if v 6∈ dom(νi)

σi−1(v, k) if v ∈ dom(νi) ∧ k < ~ki(v)

(~τi(v), νi(v)) if v ∈ dom(νi) ∧ k = ~ki(v)

A run r of M is valid if the concatenation is always defined along the run,

and if sm ∈ F . The language L(M) of M is given by the label sequences

of all valid runs and the behavioral semantics Σ(M) of M is the set of

behaviors obtained from its language.

5.1 Composition of Tag Machines

Tag machines are composed in parallel by taking a form of product between

their structures. Synchronization occurs by sharing variables. In particu-

lar, over every transition, the TMs involved in the composition must agree

on the tag increment and on the value of the shared variables.

5.1.1 Homogeneous Composition

Let M1 = (V1, T1, S1, s01, F1, E1) and M2 = (V2, T2, S2, s02, F2, E2) be TMs.

We first examine the composition of homogeneous TMs, by adapting the

original definition [6] and assuming that T1 = T2 = T . Two labeled tag

pieces µ1 ∈ L(V1, T ) and µ2 ∈ L(V2, T ) are unifiable, written µ1 ./ µ2,

if and only if they are the same on the shared variables. That is, if we

denote the set of shared variables with W = V1 ∩ V2, then for all pairs

1We sometimes refer to σ(r) as σ(ω) where ω = µ1µ2 . . . µm
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(w, v) ∈ W ×W :

µ1(w, v) = µ2(w, v),

ν1(v) = ν2(v).

When unifiable, their unification µ = µ1 t µ2 is given by:

µ(w, v) =


µ1(w, v) if (w, v) ∈ V1 × V1

µ2(w, v) if (w, v) ∈ V2 × V2

εT otherwise

ν(v) =

{
ν1(v) if v ∈ V1

ν2(v) if v ∈ V2

.

Homogeneous composition can then be defined as follows.

Definition 6. The homogeneous composition of tag machines M1 and M2

is the tag machine M1 ‖M2 = (V, T , S, s0, F, E) such that

• V = V1 ∪ V2, S = S1 × S2, s0 = (s01, s02), F = F1 × F2,

• E = {((s1, s2), µ1 t µ2, (s
′
1, s
′
2)) : (s1, µ1, s

′
1) ∈ E1 ∧ (s2, µ2, s

′
2) ∈ E2 ∧

µ1 ./ µ2}.

5.1.2 Heterogeneous Composition

When T1 6= T2, heterogeneous TMs can be composed if there exists a pair

of morphisms which map the tag structures T1 and T2 to a common tag

structure T , preserving the concatenation operator. We refer to such mor-

phisms as algebraic morphisms.

Definition 7. A tag morphism ρ : T 7→ T ′ is algebraic if ρ(̂ıT ) = ı̂T ′,

ρ(εT ) = εT ′, and ∀τ1, τ2 ∈ T : ρ(τ1 ·T τ2) = ρ(τ1) ·T ′ ρ(τ2).

The newly-composed TM is then defined on T1 ×ρ1 ρ2
T2 = (T1 ×ρ1 ρ2

T2,≤, ·),
where ≤def

= (≤T1,≤T2) and · def

= (·T1, ·T2). This fibered tag structure is shown

to be algebraic in the next lemma.

35



5.1. COMPOSITION OF TAG MACHINES

Lemma 1. Tag structure T1 ×ρ1 ρ2
T2 = (T1 ×ρ1 ρ2

T2,≤, ·) where ≤def

= (≤T1,≤T2)
and · def

= (·T1, ·T2) is algebraic as defined in Definition 4.

Proof. i) Let (τ1, τ2), (τ
′
1, τ
′
2) ∈ T1 ×ρ1 ρ2

T2, then

(τ1, τ2) · (τ ′1, τ ′2) = (τ1 ·T1 τ ′1, τ2 ·T2 τ ′2).

By Definition 7, we have that:

ρ1(τ1 ·T1 τ ′1) = ρ1(τ1) ·T ρ1(τ
′
1),

ρ2(τ2 ·T2 τ ′2) = ρ2(τ2) ·T ρ2(τ
′
2).

Besides, the membership assumption of (τ1, τ2) means ρ1(τ1) = ρ2(τ2)

and that of (τ ′1, τ
′
2) means ρ1(τ

′
1) = ρ2(τ

′
2). Therefore

ρ1(τ1 ·T1 τ ′1) = ρ2(τ2 ·T2 τ ′2)

and this implies (τ1 ·T1 τ ′1, τ2 ·T2 τ ′2) ∈ T1 ×ρ1 ρ2
T2. Hence (T1 ×ρ1 ρ2

T2, ·) is

a monoid with the identity element (̂ıT1, ı̂T2) as

(τ1, τ2) · (̂ıT1, ı̂T2) = (τ1 ·T1 ı̂T1, τ2 ·T2 ı̂T2) = (τ1, τ2).

ii) Let (τ1, τ2), (τ
′
1, τ
′
2), (τ̄1, τ̄2), (τ̄

′
1, τ̄
′
2) ∈ T1 ×ρ1 ρ2

T2 such that

(τ1, τ2) ≤ (τ ′1, τ
′
2) and (τ̄1, τ̄2) ≤ (τ̄ ′1, τ̄

′
2).

We then have the following:

(τ1, τ2) · (τ̄1, τ̄2) = (τ1 ·T1 τ̄1, τ2 ·T2 τ̄2),

(τ ′1, τ
′
2) · (τ̄ ′1, τ̄ ′2) = (τ ′1 ·T1 τ̄ ′1, τ ′2 ·T2 τ̄ ′2).

By assumption,

(τ1, τ2) ≤ (τ ′1, τ
′
2) means (τ1 ≤T1 τ ′1) ∧ (τ2 ≤T2 τ ′2),

(τ̄1, τ̄2) ≤ (τ̄ ′1, τ̄
′
2) means (τ̄1 ≤T1 τ̄ ′1) ∧ (τ̄2 ≤T2 τ̄ ′2).
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Therefore, (τ1 ·T1 τ̄1) ≤T1 (τ ′1 ·T1 τ̄ ′1) and (τ2 ·T2 τ̄2) ≤T2 (τ ′2 ·T2 τ̄ ′2) implying

(τ1 ·T1 τ̄1, τ2 ·T2 τ̄2) ≤ (τ ′1 ·T1 τ̄ ′1, τ ′2 ·T2 τ̄ ′2), or

(τ1, τ2) · (τ̄1, τ̄2) ≤ (τ ′1, τ
′
2) · (τ̄ ′1, τ̄ ′2).

iii) The least element is (εT1, εT2) as for any (τ1, τ2) ∈ T1 ×ρ1 ρ2
T2, it is true

that (εT1 ≤T1 τ1) ∧ (εT2 ≤T2 τ2), hence (εT1, εT2) ≤ (τ1, τ2). In addition,

(εT1, εT2) · (τ1, τ2) = (εT1 ·T1 τ1, εT2 ·T2 τ2) = (εT1, εT2).

Referring to the previous notation, two tag pieces µ1 and µ2 are unifiable

under morphisms ρ1 and ρ2, written µ1 ./ρ1 ρ2
µ2, whenever for all pairs

(w, v) ∈ W ×W :

ρ1(µ1(w, v)) = ρ2(µ2(w, v)),

ν1(v) = ν2(v).

When unifiable, their unification µ = µ1 tρ1 ρ2
µ2 defined over algebraic tag

structure T1 ×ρ1 ρ2
T2 is any of the members of the unification set of pieces

given by:

µ(w, v) =



(µ1(w, v), µ2(w, v)) if (w, v) ∈ W ×W
(µ1(w, v), τ2) if w ∈ V1, v ∈ V1 \ V2

(µ1(w, v), τ2) if w ∈ V1 \ V2, v ∈ V1

(τ1, µ2(w, v)) if w ∈ V2 \ V1, v ∈ V2

(τ1, µ2(w, v)) if w ∈ V2, v ∈ V2 \ V1

(εT1, εT2) otherwise

where τ2 ∈ T2 is such that ρ2(τ2) = ρ1(µ1(w, v)), and similarly τ1 ∈ T1 is

such that ρ1(τ1) = ρ2(µ2(w, v)). The labeling function is the same as in

the homogeneous case:

ν(v) =

{
ν1(v) if v ∈ V1

ν2(v) if v ∈ V2

.
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The composition M1 ‖ρ1 ρ2
M2 of heterogeneous TMs can then be defined

exactly as in Definition 6, having replaced the operators for the unification

of the tag pieces on the transition with the heterogeneous ones.

Definition 8. The heterogeneous composition of M1 and M2 under alge-

braic morphisms ρ1 and ρ2 is the tag machine M1 ‖ρ1 ρ2
M2 = (V, T1 ×ρ1 ρ2

T2, S, s0, F, E) such that

• V = V1 ∪ V2,

• T1 ×ρ1 ρ2
T2 = (T1 ×ρ1 ρ2

T2,≤, ·) where ≤= (≤T1,≤T2) and · = (·T1, ·T2),

• S = S1 × S2, s0 = (s01, s02), F = F1 × F2,

• E = {((s1, s2), µ1 tρ1 ρ2
µ2, (s

′
1, s
′
2)) : (s1, µ1, s1) ∈ E1 ∧ (s2, µ2, s2) ∈

E2 ∧ µ1 ./ρ1 ρ2
µ2} where µ1 tρ1 ρ2

µ2 extends to all the members of the

unification set.

It is noticeable here that homogeneous composition is a special case of the

heterogeneous one with identity morphisms.

5.2 Interoperable TMs and Composition Soundness

Ideally, we would like there to be a direct correspondence between tag

systems and TMs. Let Σi and Σ be the behavioral semantics of Mi and

composition M1 ‖ρ1 ρ2
M2 respectively, we expect that every behavior of Σ

be obtained by composing some pair of behaviors from Σi. When this is

the case, we say that composition is sound. Example 2 shows that this

property generally does not hold even for homogeneous systems.

Example 2. We consider two sets of behaviors Σ1 and Σ2 defined on two

sets, V1 = {x, y} and V2 = {x, z} respectively, of variables with values

in D = {true}. Since D is a singleton set, we shall omit mentioning
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(a) TM accepting Σ1 (b) TM accepting Σ2

(c) TM accepting Σ1 ∧ Σ2

Figure 5.1: Non-interoperable TMs

the variable value in the rest of the example. These behavioral sets are

expressed formally as follows. Let σi ∈ Σi and enumσi(vi) be the total

number of events on variable vi ∈ Vi in behavior σi where i ∈ {1, 2} and

let k ≥ 1:

Σ1 :


σ1(x, k) = 2 ∗ k − 1

σ1(y, k) = k

enumσ1(y) = 2 ∗ enumσ1(x)− 1

Σ2 :


σ2(x, k) = 2 ∗ k
σ2(z, k) = k

enumσ1(z) = 2 ∗ enumσ1(x)

Let reaction be a maximal set of events with identical tags in a behavior [6],
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these behavioral sets can be organized in terms of successive reactions:

Σ1 :
x : 1 3 5 . . .

y : 1 2 3 4 5 6 . . .

Σ2 :
x : 2 4 6 . . .

z : 1 2 3 4 5 6 . . .

We use algebraic tag structure (N ∪ {ε},6,+) and the tag piece structure

described in Example 1 to model the behaviors in Σi as TMs where ε
def

=

−∞, the row and column designation orders are (x, y) in Figure 5.1(a),

(x, z) in Figure 5.1(b) and (x, y, z) in Figure 5.1(c). The initial states are

double-circled and the accepting states are shaded.

Tagging the shared variable x can depend on tagging non-shared vari-

ables y or z even though there is no real dependence between their tags.

Going from s01 to s11, TM 5.1(a) tags x and y simultaneously and equally.

It then can go back to s01, tagging only y and subsequently repeating the

tagging cycle at this state. TM 5.1(b) instead tags only z initially and

goes to s22. It then tags both x and z at the same time and goes to s12

where it again tags only z before returning to s22. It is easy to verify that

TM 5.1(a) and 5.1(b) accept the behavioral sets Σ1 and Σ2 respectively.

When composing them, the composed TM should not to accept any be-

havior since Σ1 ∧ Σ2 = ∅. Its set of accepted behavior is, however, not

empty as shown in Figure 5.1(c) because TM 5.1(a) can stay silent while

TM 5.1(b) is tagging z. The two TMs then synchronize and tag all vari-

ables simultaneously, after which they can go on tagging their own internal

variable.

Remarkably, the fact that TM composition is not sound was not previ-

ously observed in the homogeneous context [6]; since homogeneous compo-

sition is not sound, the same is true for heterogeneous composition. The

consequence is that the operational model overestimates the behaviors of
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composition, therefore building an abstraction. This may or may not be a

problem, depending on what is done with the models. For instance, ver-

ification of safety properties would be correct, albeit less precise. On the

other hand, the emergence of unexpected behaviors may adversely affect

the design process, where a refinement rather than an abstraction would

instead be more appropriate. It is therefore useful to look for conditions

that guarantee soundness. In our example, the dependency effects of tag-

ging non-shared variables on others, especially shared ones, are shown to

be the critical factor. The cause lies in the fact that in the applications of

tag pieces, the max tag evaluations for a shared variable can be different

even though the pieces are unifiable. It is therefore desirable to eliminate

such effects to make the composition sound. To this end, we propose an

interoperability condition to prevent TMs from producing such effects.

The intuition behind TM interoperability is that tagging shared vari-

ables should not depend on tagging non-shared variables. Because such

dependency is visible only internally inside components, it cannot be taken

into account in the composition. A set V ⊆ V is said to be locally indepen-

dent in tag machine M = (V, T , S, s0, F, E), written lind(M,V ), if tagging

v ∈ V depends only on tagging variables in V . If we define the following

predicate

lind(µ, V )
def

= (∀w ∈ V \ V ,∀v ∈ V : µ(w, v) = ε),

then the local independence of V in M is defined as

lind(M,V )
def

= (∀(s, µ, s′) ∈ E : lind(µ, V )).

The interoperability between M1 and M2 is then formally defined as below.

Definition 9. Two TMs M1 and M2 are said to be interoperable, written

M1 ./ M2, if their shared variables are locally independent in both TMs:

M1 ./ M2
def

= lind(M1, V1 ∩ V2) ∧ lind(M2, V1 ∩ V2).
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Interoperability behaves well under multiple composition.

Lemma 2. Let M1,M2, . . .Mn be n pair-wise interoperable TMs, where

n ≥ 2. If M is the composition of M1,M2, . . .Mn−1, then M ./ Mn.

Proof. We prove the lemma by inductive reasoning.

• The base case n = 2 is trivial.

• For the step case, we assume the lemma holds for k = n−1 and prove

that it also holds for k + 1 = n. Let Vi be the variable set, µi a label

of Mi, µ the unification of µ1, µ2 . . . , µn−1, T the fibered product of

T1, T2, . . . , Tn−1 and V = V1 ∪ V2 . . . ∪ Vn−1.

It is easy to see that lind(µ, V ∩ Vn) holds. Let w ∈ V \ (V ∩ Vn),
then it must be that w ∈ V and w /∈ Vn and so w ∈ Vj \ Vn for some

1 ≤ j ≤ n − 1. Likewise, let v ∈ V ∩ Vn, then v ∈ Vr ∩ Vn for some

1 ≤ r ≤ n − 1. We show that µ(w, v) = εT is true despite the choice

of j and r.

i) If j and r can coincide, i.e., j = r, then w and v can be in the same

variable set. Since Mr ./ Mn, by the interoperability definition it

is true that µr(w, v) = εTr and thus µ(w, v) = εT .

ii) Otherwise, i.e., j 6= r, then w and v cannot be in the same variable

set and the wv−entries of the composed label µ are set to εT , by

the label composition rule in Section 5.1.

To show that lind(µn, V ∩ Vn) holds, we consider w ∈ Vn \ (V ∩ Vn)
and v ∈ V ∩Vn. The latter means v ∈ Vr ∩Vn for some 1 ≤ r ≤ n− 1.

The former means w ∈ Vn and w /∈ Vj for all 1 ≤ j ≤ n − 1 which

implies w ∈ Vn \Vr. This together with the interoperability Mn ./ Mr

implies µn(w, v) = εTn.
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(a) Interoperable TM accepting Σ1 (b) Interoperable TM accepting Σ2

(c) Interoperable Composition ac-

cepting Σ1 ∧ Σ2

Figure 5.2: Interoperable TMs

Example 3. We use the algebraic tag structure in Example 2 but restruc-

ture the tag pieces so that they can represent any integer time increment

n ∈ N.

µuv =


0 if u = v and µ has no event for v

n if u = v and µ has an event for v

ε otherwise

Interoperable TMs representing Σi are depicted in Figure 5.2(a) and 5.2(b).

Tagging the shared interface variable x is now made locally independent in

both machines, hence they can be composed interoperably. The composed

TM is shown in Figure 5.2(c) where no behavior can be accepted since

the accepting state is not reachable from the initial state. This is because

TM 5.2(a) has to stutter in s01 while TM 5.2(b) tags its internal variable

and moves to s22. The two TMs then have to stutter there forever since

only the stuttering labels
[

0 ε
ε 0

]
are unifiable.

Example 4. We consider a simplified version of the water controlling sys-

tem proposed by Benvenuti et al. [8]. It consists of two components: a
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water tank and a water level controller, connected in a closed-loop fashion.

We assume that the water level x(t) is changed linearly as follows:

x(t)
def

=

{
∆t ∗ (fi − fo) when command is Open

H−∆t ∗ fo when command is Close
(5.1)

where fi and fo denote the constant inlet and outlet flow, respectively, H

denotes the height when the tank is full of water and ∆t denotes the time

elapsed since t0 at which the tank reaches the maximum/minimum water

level H, i.e. ∆t = t− t0.
Let P1 = (V1, T1,Σ1) and P2 = (V2, T2,Σ2) be two tag systems rep-

resenting the tank and the water controller, respectively, where T1 =

(R+ ∪ {ε1},+), T2 = (N ∪ {ε2},+), ε1 = ε2 = −∞, and V1 = V2 = {m,x}.
Variable m denotes the command values, which can be Open (p) or Close

(l), and variable x denotes the water level, which is of positive real type,

i.e. Dm = {p, l} and Dx = R+. Assume that fi = 2, fo = 1,H = 1,

we model in this example a linear water level evolution of a water con-

trolling system. The tank component shown in Figure 5.3(a) depicts the

water level linear evolution as specified in (5.1). Upon knowing of the tank

emptiness/fullness, the controller component in Figure 5.3(b) will issue an

Open/Close command. Intuitively, the controller behaviors ensure that

controlling commands are always issued timely (i.e., Open when the tank

is empty and Close when it is full), no matter how the water level evolves,

while the tank behaviors accept untimely controlling commands and allow

water spillages or shortages, given that the water level evolves linearly.

For the sake of simplicity, the events described by the tank component

are timestamped periodically every 0.5 time unit. While the tank system

uses physical time to stamp its behaviours, the controller system instead

timestamps its events logically, described by the integer tag set N. For the

sake of expressiveness, some of the labels can be represented symbolically.

For example, to capture any event of variable x happening at a specific
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(a) TM representing the behaviors of the tank (b) TM representing the be-

haviors of the controller

(c) TM representing the behaviors of the tank-

controller composition

Figure 5.3: A simple water tank system

time point, we attach expressions such as x ∈ Dx to the tag piece capturing

that time point, meaning that in such an event x can take any value in

its domain. Since the tank and the controller capture different behaviors,

composing them is only possible under the presence of morphisms such as

ρ1 : T1 7→ T1 and ρ2 : T2 7→ T1 given by ρ1(τ1) = τ1, ρ2(τ2) = 0.5 ∗ τ2.

Figure 5.3(c) shows their composition, where accepted behaviors ensure

timely controlling commands and linear water evolution.

The following theorem shows that composition of interoperable TMs is

sound.
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Theorem 1. Any behavior σ‖ of the composition M1 ‖ρ1 ρ2
M2, where M1

and M2 are interoperable, is obtained by composing some behavior σ1 of

M1 and σ2 of M2, i.e., Σ ⊆ Σ1 ∧ρ1 ρ2
Σ2.

Proof. Since behavior σ‖ is accepted by the composition M1 ‖ρ1 ρ2
M2, there

must exist a valid run r in the composition

r : s0
µ1→ s1

µ2→ s2 . . .
µn→ sn

such that σ(µ1µ2 . . . µn) = σ‖. In addition, it must be that sk = (sk1, sk2)

where ski ∈ Si, for 0 ≤ k ≤ n and for 1 ≤ i ≤ 2. Thus there must exist a

valid run ri in Mi:

ri : s0i
µ1i→ s1i

µ2i→ s2i . . .
µni→ sin

such that µk1 ./ρ1 ρ2
µk2 and µk = µk1 tρ1 ρ2

µk2. Let σi = σ(µ1iµ2i . . . µni)

and ~τk/~τki be tag vectors obtained at states sk/ski in run r/ri, in order to

prove σ‖ = σ1 tρ1 ρ2
σ2, we show by inductive reasoning that

i) the composed tag vector ~τk is defined on the fibered product tag struc-

ture: τwk ∈ T1 ×ρ1 ρ2
T2 for w ∈ V1 ∪ V2, and

ii) the restriction of the composed tag vector ~τk to variables Vi and tag

structure Ti is exactly ~τki, i.e: ~τk|V1,T1 = ~τk1 and ~τk|V2,T2 = ~τk2.

Let w ∈ V1 ∪ V2, v
′ ∈ V1 ∩ V2, vi ∈ Vi \ (V1 ∩ V2), µ

vw denote µ(v, w) and

max /maxT /maxTi be the maximum operator performed respectively on

T1 ×ρ1 ρ2
T2/T /Ti.

• The base case k = 0 is trivial: τwk = (̂ıT1, ı̂T2) ∈ T1 ×ρ1 ρ2
T2 by Lemma 1,

and ~τ0|Vi,Ti = ~τ0i is true since ~τ0i is initialized to ı̂Ti by the TM defini-

tion.

• For the step case, we assume the statements hold for k ≤ n − 1 and

prove it for k = n.
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First, each tag element of the composed vector is computed as follows:

τwn = max(τ v
′

n−1 · µv
′w
n , τ v1n−1 · µv1wn , τ v2n−1 · µv2wn ) (5.2)

Because T1 ×ρ1 ρ2
T2 is algebraic (by Lemma 1), concatenating its ele-

ments is another element of itself. In addition, the max computation

is well-defined since run r is valid. Therefore, τwn must belong to

T1 ×ρ1 ρ2
T2.

Second, restricting vector ~τn to variables V1 and tag structure T1 is a

vector composed of the first tag components of τwn where w ∈ V1. By

construction, the v2w−entries of the composed label µn are set to the

least tag (εT1, εT2) of T1 ×ρ1 ρ2
T2 which are then canceled out from the

tag concatenation (5.2).

i) Indeed, if variable w is shared, i.e., w ∈ V1 ∩ V2, then by the

interoperability assumption, µv2wn2 = εT2 and this implies µv2wn =

(εT1, εT2).

ii) Otherwise, w ∈ V1\V2, then w and v2 are not in the same variable

set and by the label composition rule, the v2w−entries of the

composed label µn are set to the least tag (εT1, εT2).

Thus, for w ∈ V1, the tag concatenation (5.2) becomes:

τwn = max(τ v
′

n−1 · µv
′w
n , τ v1n−1 · µv1wn , τ v2n−1 · (εT1, εT2))

= max(τ v
′

n−1 · µv
′w
n , τ v1n−1 · µv1wn )

By the hypothesis: τ v
′

n−1 = (τ v
′

(n−1)1, τ
v′

(n−1)2) and τ v1n−1 = (τ v1(n−1)1, τ2),

for some tag τ2 ∈ T2. If w ∈ V1 ∩ V2, then µv
′w
n = (µv

′w
n1 , µ

v′w
n2 ) and

µv1wn = (µv1wn1 , τ
′
2). Hence (5.2) becomes:

τwn = max((τ v
′

(n−1)1 ·T1 µv
′w
n1 , τ

v′

(n−1)2 ·T2 µv
′w
n2 ), (τ v1(n−1)1 ·T1 µ

v1w
n1 , τ2 ·T2 τ ′2))

=
(maxT1(τ

v′

(n−1)1 ·T1 µv
′w
n1 , τ

v1
(n−1)1 ·T1 µ

v1w
n1 ),

maxT2(τ
v′

(n−1)2 ·T2 µv
′w
n2 , τ2 ·T2 τ ′2)

)
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If w ∈ V1\V2, then µv
′w
n = (µv

′w
n1 , τ

′′
2 ) and µv1wn = (µv1wn1 , τ

′
2). Hence (5.2)

becomes:

τwn = max((τ v
′

(n−1)1 ·T1 µv
′w
n1 , τ

v′

(n−1)2 ·T2 τ ′′2 , (τ
v1
(n−1)1 ·T1 µ

v1w
n1 , τ2 ·T2 τ ′2))

=
(maxT1(τ

v′

(n−1)1 ·T1 µv
′w
n1 , τ

v1
(n−1)1 ·T1 µ

v1w
n1 ),

maxT2(τ
v′

(n−1)2 ·T2 τ ′′2 , τ2 ·T2 τ ′2)

)
The first component of τwn is always maxT1(τ

v′

(n−1)1·T1µv
′w
n1 , τ

v1
(n−1)1·T1µ

v1w
n1 )

in either case which is exactly equivalent to the tag concatenation of

τwn1, hence ~τn|V1,T1 = ~τn1. Likewise, we can prove also ~τn|V2,T2 = ~τn2.

5.3 Self-synchronizing TMs and Composition Com-

pleteness

To establish the correspondence between tag systems and TMs, TM com-

positions need to be not only sound but also complete. Composition

completeness requires two behaviors to always be operationally composed

whenever they are semantically unifiable, and Example 5 below shows that

this property generally does not hold even for homogeneous systems. The

reason of this incompleteness is due to the TM non-unique behavior repre-

sentations. Indeed, for tag machine M , it is true that |Σ(M)| ≤ |L(M)| as

different TM runs can represent the same behavior. This in turn causes the

operational composition on two behaviors to sometimes become impossible

(while the denotational one may be possible) because their representations

contain non-unifiable labels.

Example 5. Figure 5.4 shows two different TMs representing the same

set of behaviors as Σ1, yet their composition does not accept Σ1. This is

because the TMs cannot synchronize on updating their variable tags.
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(a) TM accepting Σ1

(b) A different TM accepting Σ1

Figure 5.4: Interoperable TMs accepting Σ1

As demonstrated in Example 5, the TM composition represents incom-

pletely the tag system composition when Mi fails to include all represen-

tations of some behavior. Therefore, it is a natural condition for com-

pleteness that Mi be self-synchronizing. The notion of self-synchronization

for homogeneous composition [6] requires the label semantics L(M) of

M = (V, T , S, s0, F, E) to be ∼-closed, where ∼ is a binary relation such

that ∀ω, ω′ ∈ L(V, T )∗ : ω ∼ ω′ ⇔ σ(ω) = σ(ω′).

In order to make machine Mi self-synchronize, all possible runs of any

behavior of Mi must be added to the machine. In order for the TM seman-

tics to remain unaffected, any sub-run’s behavior should be excluded from

the machine language. This, however, is not guaranteed by the original

TM definition [6] because TMs there do not have accepting states. Our

TM definition (Definition 5) cares for such a need and thus can preserve

the TM semantics under the self-synchronizing operation.

Self-synchronization is however not sufficient to guarantee completeness

of composition, as two unifiable behaviors do not always have unifiable

representations, which in turn is caused by the choice of tag structures and

morphisms. We recall that events of a variable v are indexed into a sequence
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of (v, 1, τ1, d1), (v, 2, τ2, d2) . . . , (v, n, τn, dn) where τ1 ≤ τ2 . . . ≤ τn. If the

tag increments between two successive events can always be mapped into

the same increment under morphisms ρi, then completeness of composition

is ensured by the following theorem.

Theorem 2. Let σ1 and σ2 be accepted respectively by M1 and M2 s.t.:

i) M1 and M2 are self-synchronizing,

ii) ∀i ∈ {1, 2},∀(v, j, τji, dji) ∈ σi,∃δji ∈ Ti :

τji = τ(j−1)i ·Ti δji where τ0i
def

= ı̂Ti,

iii) ∀i ∈ {1, 2},∀δi ∈ Ti,∀(τ1, τ2), (τ
′
1, τ
′
2) ∈ T1 ×ρ1 ρ2

T2 :

τ ′i = τi · δi ⇒ ∃δ3−i ∈ T3−i :
( (δ1, δ2) ∈ T1 ×ρ1 ρ2

T2 ∧
(τ ′1, τ

′
2) = (τ1, τ2) · (δ1, δ2)

)
.

If σ1 ./ρ1 ρ2
σ2 holds and there exists σ ∈ Σ(V1 ∪ V2, T1 ×ρ1 ρ2

T2) such that

σ|V1,T1 = σ1 and σ|V2,T2 = σ2, then σ is also accepted by M1 ‖ρ1 ρ2
M2,

i.e. Σ1 ∧ρ1 ρ2
Σ2 ⊆ Σ.

Proof. We define the greatest number ni to be max(enumσi(vi)) where

enumσi(vi) is the total number of events on variable vi ∈ Vi of behavior

σi.

We then build a sequence of labels ω1 = µ11µ21 . . . µn11 where the diag-

onal entries of µj1 are δj1 specified in item (ii) and the entries outside the

diagonal are all εT1. At the end, we pad ω1 with max(n1, n2)−n1 stuttering

labels where the diagonal entries are the identity element ı̂T1 and entries

outside the diagonal are εT1.

We next build ω2 = µ12µ22 . . . µn22 where the diagonal entries of µj2 are

δj2 specified in item (iii) and other entries are all εT2. We also pad ω2 with

max(n1, n2) − n2 stuttering labels where the diagonal entries are ı̂T2 and

other entries are εT2.

50



CHAPTER 5. TAG MACHINES

Since σ(ωi) = σi, the self-synchronizing condition guarantees that ωi ∈
L(Mi) and ensures the existence of a valid run ri in Mi over ωi. By The-

orem 2. (iii), it is obvious that µj1 ./ρ1 ρ2
µj2 is true, and this implies

that there exists a run r in M1 ‖ρ1 ρ2
M2 over the following sequence of

labels ω = (µ11 tρ1 ρ2
µ12) . . . (µmax(n1,n2)1 tρ1 ρ2

µmax(n1,n2)2) where σ(r)|V1∩V2 =

σ|V1∩V2 since σ(r)|V1,T1 = σ1 and σ(r)|V2,T2 = σ2, σ(r)|V1\V2 = σ|V1\V2 and

σ(r)|V2\V1 = σ|V2\V1 because of condition (iii), thus σ(r) = σ.

5.4 An Automotive Case Study

In this section, we demonstrate the application of TM composition in deal-

ing with the problem of heterogeneity in a practical use case of an auto-

motive system.

5.4.1 Description

We consider a simplified version of the automotive engine control model

proposed by Balluchi et al. [3]. It consists of a sub-model capturing the

piston sequential behavior and another capturing the power-train behavior

under a cut-off control policy. The goal of the control policy is to reduce the

unpleasant oscillations when the driver releases the gas pedal and requests

no torque to the engine. The piston model is naturally expressed by a

finite state machine while the power-train model can be represented by a

continuous time equation. Thus, in order to understand the behavior of the

car, it is important for designers to be able to compose these heterogeneous

models.

A piston abstractly cycles through four phases:

i) the intake (I) phase during which the piston loads the air-fuel mix

q ∈ R+;
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Piston Controller Power-train

(a) An overview of the model (b) Piston model

(c) A bang-bang controller

(d) Power-train model

Figure 5.5: An automotive engine control model

ii) the compression (C) phase in which the loaded mix is compressed;

iii) the expansion (E) phase in which the compressed mix is combusted,
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producing the spark ignition;

iv) the exhaust (H) phase during which the piston expels combustion ex-

haust gases.

We assume the torque evolution u(t) to be a piece-wise constant function

which is u(t) = 0 everywhere except in the E-phase where u(t) = G ∗ q
and when the spark ignition is set with G is the mix-to-torque gain. The

continuous time power-train behavior is modeled by the following linear

system:

.

ζ = Apζ + bpu
.

φc = ωc

where ζ = [αe, ωc, ωp] represents the axle torsion angle, the crankshaft

revolution speed and the wheel revolution speed, and φc represents the

crankshaft angle.

In this use case, we model the bang-bang control law [3] where the fuel

injection is cut when vTx ≥ 0. The reduced state x = [x1, x2]
T represents

the system’s oscillation component and is obtained by applying the state

transformation
.
x(t) = Ax(t) + bu(t) where A =

[
λ −µ
µ λ

]
and λ ± jµ are

the conjugate complex poles of Ap. The oscillation acceleration can then

be computed based on x as a(t) = cx(t). The starting point of the cut-

off control horizon is the time at which all the loaded cylinders’ potential

torques are at the steady value M = G ∗ q0.

The piston model needs only information about the sequencing of events,

while the power-train model requires the exact timing of events. Thus we

can use T1 = (N∪{ε1},+) and T2 = (R+∪{ε2},+) where ε1 = ε2 = −∞, to

model them. Figure 5.5(b) shows the piston behavior where the transitions

of the automaton occur when a piston reaches the bottom or top dead

point, i.e. when the flag rot is set. Figure 5.5(c) and 5.5(d) describe the
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bang-bang control policy and the evolution of the power-train, respectively.

We have approximated the power-train using the forward integration Euler

method with a step of δ. The state variables are fixed as follows [3]:

Ap =

 0 1 −7.556

−448.1 −5.186 30.87

3.042 0.02773 −0.2105

 , bp =

 0

15.05

0

 ,
A =

[
−2.671 −21.54

21.54 −2.671

]
, b =

[
1.92339

−14.32309

]
, v =

[
0.01

−1

]
,

c =
[
0.0379945 −0.00257

]
,M = 12.41, δ = 0.001181.

5.4.2 Tag Machine Script Language

(a) A piston TM

(b) Its morphism

Figure 5.6: High-level description of a piston TM and its morphism

We have implemented a prototype tool to simulate the heterogeneous

TM composition under morphisms. Our simulator, written in approxi-

mately 5000 lines of C++ code, supports a high level script language to

specify TMs. Each TM is described as a module consisting of a set of
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Tag Machines Morphisms

Input

SIMULATOR Interactive Shell

Simulation choices 1,...,n

Choice k

Figure 5.7: Basic schema of TM simulator

constraints on the declared variables. In particular, a module must con-

tain declarations about the machine tag structure (TAGSTRUCT), the state

(MSTATE) and label (MLABEL) variable. Declarations about the machine

variables (MVAR), initial state (INIT), accepting states (FINAL) and transi-

tions (EDGE) are optional. A morphism associated with a machine can be

declared likewise. Figure 5.6 shows an example of our script language.

5.4.3 Tag Machine Simulator

The inputs to our simulator are TMs and morphisms under which the TMs

can be composed as shown in Figure 5.7. Our simulator performs step-by-

step exploration on composition of TM transitions. Specifically, the TM

simulator keeps track of the tag vector and value assignment of all variables

of the TMs. At every simulation step, the simulator looks for transitions

where the tag vectors and value assignments agree with each other over

the shared variables as detailed in Section 5.1. It then exposes through

an interactive shell to users all the possible choices for the next transitions

which can be carried out randomly or interactively. In a random mode,

the choice of transition is done by the simulator whereas such choice is
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Figure 5.8: Basic schema of TM simulator

provided by users in an interactive mode. Figure 5.8 shows an example

of the initial simulation choices for the automotive model in an interactive

mode.

5.4.4 Evaluation

We have described the cut-off problem using our prototype TM-simulator

and performed simulations of 2000 steps to evaluate the effect of the cut-off

control on the oscillation acceleration. We present here the results of two
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Figure 5.9: The evolutions of x(t) and a(t) without and with control
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such simulations on the above set of parameters and under the presence of

morphisms such as ρi : Ti 7→ T2 given by ρ1(τ1) = δ ∗ τ1 and ρ2(τ2) = τ2.

Consistent with the previous result [3], Figure 5.9 shows that better

acceleration peaks and driving comfort are obtained when cut-off control

is enforced. This consistent result can assist automotive engineers and

designers in estimating the impact of the control implementation on the

engine performance, thereby justifying and selecting suitable system pa-

rameter values to obtain a desirable performance.

Another important advantage offered by the heterogeneity methodology

is in terms of component modeling. While the components in [3] had to

be modeled in the same domain in order to solve the cut-off control prob-

lem, they can now be expressed in their natural domain. The component

interaction can then be precisely quantified and modeled by means of mor-

phisms. This advantage becomes much more crucial when designers have

to deal with large and complex systems.
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Tag Contracts

Our goal is to use TMs as an operational means for modeling heterogeneous

systems in contract-based design flows. To this end, we equip TMs with

extra operators and relations such as refinement, quotient and conjunction

to relate their sets of behaviors (Section 6.1). Moreover, we limit TMs to

their deterministic form where labeled tag pieces annotated on transitions

going out of a state are all different. On top of these TM operators, we

propose a heterogeneous contract theory for TM-based specifications with

universal contract operators such as composition, refinement and compat-

ibility (Section 6.2).

6.1 Tag Machine Operators

6.1.1 Tag Machine Refinement

Two TMs can be related in a refinement relation when the behavior set of

one machine is included in that of the other under the morphisms. From

the operational point of view, the refined TM can always take a transition

unifiable with that taken by the refining TM. LetMi = (Vi, Ti, Si, s0i, Fi, Ei)

be TMs and ρi : Ti 7→ T be algebraic tag morphisms, where i ∈ {1, 2}.
The TM refinement is defined as follows.
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Definition 10. M1 refines M2, written M1 �ρ1 ρ2
M2, if there exists a

binary relation R ⊆ S1×S2 such that (s01, s02) ∈ R and for all (s1, s2) ∈ R
and (s1, µ1, s

′
1) ∈ E1, there exist (s2, µ2, s

′
2) ∈ E2 such that

µ1 ./ρ1 ρ2
µ2 ∧ (s′1, s

′
2) ∈ R ∧ (s′1 ∈ F1 ⇒ s′2 ∈ F2).

The following theorem shows that our TM theory supports (homoge-

nous) independent implementability [29]: refinement is preserved when com-

posing components.

Theorem 3. Let M ′
i be TMs defined on Ti and Vi :

(M1 �M ′
1) ∧ (M2 �M ′

2)⇒ (M1 ‖ρ1 ρ2
M2) � (M ′

1 ‖ρ1 ρ2
M ′

2).

Proof. For every run r : s0
µ1→ s1 . . .

µn→ sn in the composition M1 ‖ρ1 ρ2
M2,

there exists a run ri : s0i
µ1i→ s1i . . .

µni→ µni in Mi such that µk = µ1k tρ1 ρ2
µ2k

for 1 ≤ k ≤ n. Because Mi � M ′
i and Mi,M

′
i are defined on the same

variable set Vi, there must exist another run r′i : s′0i
µ1i→ s′1i . . .

µni→ µ′ni in M ′
i

matching ri on all the labels and accepting states. Composing runs r′1 and

r′2 results in a run r′ : s′0
µ1→ s′1 . . .

µn→ s′n for which r is a refinement.

We remark that Theorem 3 only holds for homogenous TM refinement,

and note that heterogeneous refinement in general is not preserved even by

homogeneous composition. The reason is that tag morphisms are generally

many-to-one functions and can map two different tags into the same tag.

Example 6. We consider an example where

• T1 = {τ1}, T2 = {τ2, τ
′
2},

• V1 = V2 = {z}, Dz = {>},

• ρ1(τ1) = ρ2(τ2) = ρ2(τ
′
2) = τ.
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Let Mi,M
′
i be defined on Ti and Vi where i ∈ {1, 2}. For the sake of

simplicity, assume all TMs have a single state which is both initial and

accepting state. In addition, there is only one self-loop at this state anno-

tated with µi for machine Mi and µ′i for machine M ′
i such that µ1 = µ′1 =

[τ1], µ2 = [τ2], µ
′
2 = [τ ′2], ν1(z) = ν ′1(z) = ν2(z) = ν ′2(z) = >. It is easy to

see that M1 �ρ1 ρ2
M2 since µ1 ./ρ1 ρ2

µ2 and M ′
1 �ρ1 ρ2

M ′
2 since µ′1 ./ρ1 ρ2

µ′2.

However, (M1 ‖M ′
1) �ρ1 ρ2

(M2 ‖M ′
2) since the right composition is empty

while the left is not.

6.1.2 Tag Machine Quotient

While the refinement operator enables us to compare two TMs in terms

of sets of behaviors, the composition and quotient operators allow us to

synthesize specifications. The TM composition computes the most general

specification that retains all unifiable behaviors of two TMs. The dual

operator to TM composition is TM quotient which computes the maximal

specification as follows.

Definition 11. The quotient M1 /ρ1 ρ2
M2 is M = (V, T12, S, s0, F, E), where:

• V = V1 ∪ V2, T12
def

= T1 ×ρ1 ρ2
T2, s0 = (s01, s02),

• S = (S1 × S2) ∪ {u}, where u is a new universal state,

• F = ((S1×S2)\((S1\F1)×F2))∪{u} = (F1×F2)∪(S1×(S2\F2))∪{u},

• E =

{((s1, s2), µ1 tρ1 ρ2
µ2, (s

′
1, s
′
2)) |

(µ1 ./ρ1 ρ2
µ2) ∧ ((s1, µ1, s

′
1) ∈ E1) ∧ ((s2, µ2, s

′
2) ∈ E2)}∪

{((s1, s2), µ1 tρ1 ρ2
µ2, u) |

(∀s′2 ∈ S2 : (s2, µ2, s
′
2) /∈ E2) ∧ (∃µ1 ∈ L(V1, T1) : µ1 ./ρ1 ρ2

µ2)}∪
{(u, µ, u)|µ ∈ L(V, T12)}.

The dual relation between composition and quotient is presented in the

next theorem.
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Theorem 4. Quotient M satisfies refinement (M ‖proj2 id2
M2) �

proj′1 id1
M1

where:

∀i ∈ {1, 2},∀τi ∈ Ti : idi(τi) = τi (6.1)

∀i ∈ {1, 2},∀(τ1, τ2) ∈ T12 : proji((τ1, τ2)) = τi (6.2)

∀(τ12, τ2) ∈ T12 ×proj2 id2
T2 : proj′1((τ12, τ2)) = proj1(τ12) (6.3)

∀(τ12, τ1) ∈ T12 ×proj1 id1
T1 : proj′2((τ12, τ1)) = proj2(τ12) (6.4)

Moreover, for M ′ defined on T12 and V :

(M ′ ‖proj2 id2
M2) �proj′1 id1

M1 ⇒M ′ �M. (6.5)

Proof. We first construct a refinement relation R and then show that the

quotient is the most general TM defined on the T12 and V satisfying the

refinement.

Initially, (((s01, s02), s02), s01) ∈ R. If there is a transition from state

((sk1, sk2), sk2) in the left TM of the refinement, i.e.,

∃((sk1, sk2), µ, s) ∈ E,∃(sk2, µ2, s
′
k2) ∈ E2 : µ ./proj2 id2

µ2,

then s = (s′k1, s
′
k2) for some s′k1 ∈ S1. Indeed, the unifiability µ ./proj2 id2

µ2

implies µ = µ1 tρ1 ρ2
µ2 for some uniquely defined piece (by determin-

ism) µ1 ∈ L(V1, T1) such that µ1 ./ρ1 ρ2
µ2, implying (sk1, µ1, s

′
k1) ∈ E1,

by definition of quotient. Hence s = (s′k1, s
′
k2). It is easy to see that

(µ tproj2 id2
µ2) ./

proj′1 id′1
µ1 and so (((s′k1, s

′
k2), s

′
k2), s

′
k1) ∈ R. In addition, if

((s′k1, s
′
k2), s

′
k2) is an accepting state, then (s′k1, s

′
k2) ∈ F and s′k2 ∈ F2 from

which we can infer that s′k1 ∈ F1 by construction of F .

Assuming there exists some runs r′ in M ′ where the last transition s′n
µn→

cannot be matched by M . There are two cases that can happen, r′ can

unify fully with some run r2 in M2 or partially with every such run. In

the first case, the composition of r′ and r2 then refines some run r1 in M1.

The existence of r1 and r2 together implies the existence of a run r in M
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which can fully match r′ and contradicts the assumption. Similarly, in the

second case, assume that r′ is unifiable with r2 only for the first k − 1

transitions. Then the k−th label µ′k of r′ can be decomposed uniquely

into µ1 ∈ L(V1, T1) and µ2 ∈ L(V2, T2) such that µ′k = µ1 tρ1 ρ2
µ2 and

∀s̄2 : (s2, µ2, s̄2) /∈ E2. So there exists some run r in M that can match

the first k transitions of r′ and also the remaining transitions of r′ since it

can go to a universal state at the k−th transition. This also contradicts

the assumption. Hence the assumption is wrong and such r′ can always be

matched by M .

We next assume that M ′ can reach an accepting state s′n in r′. As

before, it can unify fully with some run r2 in M2 or partially with every

such run. In the first case, the last state of r is (sn1, sn2) where sni is the

last state of run ri. If sn2 ∈ F2 then sn1 ∈ F1 (since the composition of r′

and r2 refines r1 by assumption) and so (sn1, sn2) ∈ F . Else, i.e. sn2 /∈ F2,

by construction (sn1, sn2) ∈ F . In the second case, the last state of run r

is u which is also an accepting state. Therefore M ′ �M .

Thus, the quotient M is the greatest, in the (homogeneous) refinement

preorder, of all TMs M ′ defined in Theorem 4. This universal property is

generally expected of quotients [4], and it alone implies that the quotient

is uniquely defined up to two-sided homogeneous refinement [28]. As an

example, Figure 6.2(c) shows a homogeneous quotient.

6.1.3 Tag Machine Conjunction

The operator of heterogeneous conjunction, denoted ρ1fρ2, is defined as the

greatest lower bound of the refinement order. Conjunction, thus, amounts

to computing the intersection of the behavior sets, in order to find the

largest common refinement. Thus, for TMs, conjunction can be computed

similarly to composition. The two operators, however, serve very different
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purposes, and must not be confused. Indeed, when applied to contracts,

they must be computed differently.

6.2 Tag Contracts

We use the term tag contract to mean that in our framework each contract

is coupled with an algebraic tag structure, thereby allowing the contract

assumption and guarantee to be represented as TMs.

Definition 12. A tag contract is a homogeneous pair of TMs (A,G) where

A - the assumption and G - the guarantee are TMs defined over the same

tag structure T and variable set V .

Example 7. We consider the simplified water controlling system in Exam-

ple 4 and present a contract for each component. To simplify the behavioral

construction, we rely on a special clock inc added to the variable set of both

components. Tag pieces µ are then structured to represent an increment of

δ by always assigning δ to µ(inc, inc) and assigning δ to all entries µ(inc, v)

where v ∈ dom(µ), and the least element −∞ to other entries. The tags of

x and m are thus renewed to the tag of clock inc over every transition. To

keep the figures readable we represent tag pieces as [δ]. In addition, the

clock value is always equal to its tag and thus is omitted from the labeling

function.

Figure 6.1 depicts the tank contract Ct = (At,Gt) which guarantees a lin-

ear evolution of the water level x(t) upon receiving controlling commands.

The controller contract is shown Figure 6.2, where it assumes the tank to

be empty initially (Figure 6.2(a)), i.e., x = 0 and places no requirement on

its output which is the command signal. As long as such assumption is sat-

isfied, the controller guarantees (Figure 6.2(b)) to send a proper command

upon knowing of the tank emptiness or fullness.
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(a) At

(b) Gt

Figure 6.1: The tank contract

(a) Ac (b) Gc

(c) Gc/Ac

Figure 6.2: The controller contract
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Similar to Example 4, the controller contract ensures timely control

over the water evolution while the tank contract accepts untimely con-

trol and allow water spillages or shortages. In addition, we use the same

tag structures, which are T1 = (R+ ∪ {ε1},+) and T2 = (N ∪ {ε2},+),

in Example 4 to describe the tank and controller contracts respectively.

We also use the same morphisms ρ1 : T1 7→ T1 and ρ2 : T2 7→ T1 given

by ρ1(τ1) = τ1, ρ2(τ2) = 0.5 ∗ τ2 when composing the two contracts. For

the sake of expressiveness, some of the labeled tag pieces can also be rep-

resented symbolically. For example, to capture any event of variable x

happening at a specific time point within an interval, we label with the

tag piece expressions such as x ∈ (0, 1), meaning that in such an event x

can take any value between 0 and 1. Similarly, m ∈ {p, l,−} means the

command value can either be Open, Close or Unknown. In addition, we

use µ0t to denote the universe set of labels L(V1, T1) and µ0c the set of

labels L(V2, T2).

The tag contract semantics is subsequently defined through the notions

of contract environments and implementations. Let I and E be TMs de-

fined over tag structure T and variable set V in Definition 12. We call E
an environment of contract C when E refines A. Let 〚C〛e be the set of all

such environments, we call I an implementation of contract C, if it holds

that ∀E ∈ 〚C〛e : I ‖ E � G ‖ E . The set of implementations is similarly

denoted by 〚C〛p. Hence, the implementation checking is done based on

instantiating all possible environments of a contract. When the contract

is normalized, such a check can be done independently of the assumption

instantiation and is reduced to finding a refinement relation between two

tag machines.

Definition 13. Tag contract C is said to be normalized if and only if

∀I : I ∈ 〚C〛p ⇔ I � G.
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Lemma 3. G � G/A.

Proof. By contraposition, assuming that G � G/A. There are two possible

cases. In one case, there must exist run rg in G and r in G/A:

rg : s0g
µ1→ s1g . . . s(n−1)g

µn→ sng

r : s0
µ1→ s1 . . . sn−1

µn
−→

where n ≥ 1. It is easy to see that state si is not universal for all 0 ≤ i ≤
n − 1 since the last state sn−1 does not allow at least a transition labeled

with µn. Thus, si = (sig, sia) by the definition of quotient. However,

sn−1

µn
−→ implies that s(n−1)g

µn
−→ and s(n−1)a

µn→. The former implication

obviously contradicts the existence of the last transition of rg. In the other

case, sn−1 allows a transition labeled with µn but state sn is not accepting

while state sng is accepting. Therefore, state sn is not universal and has

a form of (sng, sna) where sng is not accepting and sna is accepting by the

definition of quotient. This contradicts the hypothesis which assumes that

sng is accepting. As a result, the refinement G � G/A holds.

Normalization can be done by performing quotient between the con-

tract guarantee and assumption, i.e. replacing G with Gn = G/A. Indeed,

this normalization is a weakening operation on the guarantee w.r.t. the

assumption as shown in Lemma 3. This operation preserves the tag con-

tract semantics, i.e. a contract and its normalized form have exactly the

same set of environments and implementations as shown in the following

theorem.

Theorem 5. Tag contract (A,G/A) is in normalized form and has the

same semantics as C = (A,G) does.

Proof. Let Ḡ = G/A and Mq = Ḡ/A, then the refinement Mq � Ḡ must

hold. Indeed, assume that there exists some run rq in Mq and rḠ in Ḡ
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where the last transition of rq cannot be simulated by rḠ.

rq : s0q
µ0→ . . . snq

µn→

rḠ : s0Ḡ
µ0→ . . . snḠ

µn9

This means the snḠ is not universal. The construction of rḠ then implies

the existence of runs rA in A and rG in G:

rG : s0G
µ0→ . . . snG

µn9

rA : s0A
µ0→ . . . snA

µn→

The construction of rq and rA imply the existence of r′Ḡ : s0Ḡ
µ0→ . . . s′nḠ

µn→
in Ḡ. By determinism, skḠ ≡ s′kḠ for 1 ≤ k ≤ n and so snḠ

µn→, contradicting

the assumption. So, every run rq ∈ Mq can always be matched by some

run rḠ ∈ Ḡ. In addition, if snq ∈ Fq, then one of the following cases can

happen:

i) snq ≡ uq : this implies snḠ ≡ uḠ since all possible transitions allowed

by snq must be simulated by snḠ,

ii) snq ∈ FḠ × FA : then snḠ ∈ FḠ by construction of rq,

iii) snq ∈ SḠ × (SA \ FA) : then snA ∈ SA \ FA and so snḠ = (snG, snA) ∈
SG × (SA \ FA), implying snḠ ∈ FḠ.

We next show that C̄ = (A, Ḡ) is in a normalized form by showing that

I ∈ 〚C̄〛p ⇔ I � Ḡ.

• ⇒: I ∈ 〚C̄〛p means ∀E ∈ 〚C̄〛e : (I ‖ E) � (Ḡ ‖ E). Since they are

defined on the same tag structure and variable set, we can infer the

refinement (Ḡ ‖ E) � Ḡ. Thus, ∀E ∈ 〚C̄〛e : (I ‖ E) � Ḡ. By the

quotient definition, we can then infer ∀E ∈ 〚C̄〛e : I � (Ḡ/E) from

which it follows that:

I � ‖
∀E∈〚C̄〛e

(Ḡ/E) � Ḡ/A � Ḡ.
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• ⇐: I � Ḡ ⇒ ∀E ∈ 〚C̄〛e : (I ‖ E) � (Ḡ ‖ E). Thus, I ∈ 〚C̄〛p.

We finally show that C and C̄ have the same environment and implemen-

tation sets. The former holds since they have the same assumption. The

latter holds because of two facts. First, (G‖E) � (Ḡ‖E) as G � (G/A) ≡ Ḡ.

Second, (Ḡ ‖E) � (G‖E) since any sequence of labels ω = µ0 . . . µn of E also

exists in A and if it exists in Ḡ as well, it does in G, too, by the quotient

construction of Ḡ.

Thus implementation checking can be reduced to finding a refinement

relation between an implementation and the normalized guarantee.

Example 8. We use the tag contracts in Example 7 and perform the

quotient between the guarantees and assumptions in order to normalize

them. Since the tank assumption is the universe of all possible behaviors,

i.e., Σ(V1, T1), normalizing the tank guarantee adds no more behaviors to

the guarantee, i.e., Gt/At ≡ Gt. Figure 6.2(c), on the other hand, shows

the normalized controller guarantee having more behaviors than the un-

normalized one. Relying on the special clock inc to restructure the tank and

controller machines in Example 4, it is easy to see that the tank machine

refines Gt while the controller machine does not refine Gt/At . Therefore,

the tank machine is an implementation of the tank contract while the

controller machine is not an implementation of the controller contract.

As we will see later, working with normalized tag contracts can simplify

the formalization of contract operators (e.g. contract refinement and dom-

inance) as well as provide a unique representation for equivalent contracts,

thus we will often assume contracts to be in normalized form hereafter.

6.2.1 Tag Contract Refinement

The refinement relation between two tag contracts is subject to the tag

morphisms and is determined by that between their sets of implementations
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and environments as follows. Let Ci = (Ai,Gi) be tag contracts defined on

Ti and Vi and ρi : Ti 7→ T be algebraic tag morphisms where i ∈ {1, 2}.

Definition 14. Contract C1 refines contract C2 under morphisms ρ1 and

ρ2, written C1 �ρ1 ρ2
C2, if the following two conditions hold:

i) ∀E2 ∈ 〚C2〛e : ∃E1 ∈ 〚C1〛e : E2 �ρ2 ρ1
E1

ii) ∀I1 ∈ 〚C1〛p : ∃I2 ∈ 〚C2〛p : I1 �ρ1 ρ2
I2

The following theorem shows that checking refinement between two tag

contracts can be done at the syntactic level, i.e., by finding the TM refine-

ment relation between their assumptions and normalized guarantees.

Theorem 6. C1 �ρ1 ρ2
C2 ⇔ (A2 �ρ2 ρ1

A1) ∧ (Gn1 �ρ1 ρ2
Gn2)

Proof.

• ⇒: C1 �ρ1 ρ2
C2 and Gn1 ∈ 〚C1〛p together implies

∃I2 ∈ 〚C2〛p : Gn1 �ρ1 ρ2
I2,

by the second condition of Definition 14. Since I2 � Gn2 , we can infer

that Gn1 �ρ1 ρ2
Gn2 . Using a similar line of reasoning, we can also infer

that A2 �ρ2 ρ1
A1.

• ⇐: Since C1 is assumed to be normalized, it follows that

∀I1 ∈ 〚C1〛p : I1 � Gn1 .

Together with the fact of Gn1 �ρ1 ρ2
Gn2 , this implies I1 �ρ1 ρ2

Gn2 . Using

a similar line of reasoning, we can also deduce that E2 �ρ2 ρ1
A1 for

any environment E2 of contract C2.
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6.2.2 Tag Contract Dominance

In composing two heterogeneous tag contracts, it is essential to guarantee

that composing implementations of each contract results in a new imple-

mentation of the composite contract. In addition, every environment of

the composite contract should be able to work with any implementation

of one contract in a way that their composition does not violate the other

contract assumption. In fact, there exists a class of contracts, including

the composite contract, able to provide such desirable consequences. We

refer to them as dominating contracts [4].

Definition 15. A contract C = (A,G) is said to dominate the tag contract

pair (C1, C2) under morphisms ρ1 and ρ2 if C is defined over tag structure

T12
def

= T1 ×ρ1 ρ2
T2 and variable set V = V1 ∪ V2 and the following conditions

hold:

i) ∀I1 ∈ 〚C1〛p,∀I2 ∈ 〚C2〛p : I1 ‖ρ1 ρ2
I2 ∈ 〚C〛p

ii) ∀E ∈ 〚C〛e :

{
∀I1 ∈ 〚C1〛p : (E ‖proj1 id1

I1) �
proj′2 id2

A2 ∧
∀I2 ∈ 〚C2〛p : (E ‖proj2 id2

I2) �
proj′1 id1

A1

where the morphisms are defined in (6.1), (6.2), (6.3), (6.4) of Theorem 4.

These dominance conditions are shown to be equivalent to simpler for-

mulas in the following theorem.

Theorem 7. Condition (i) is equivalent to condition hDC-1) and condi-

tion (ii) equivalent to the conjunction of hDC-2a) and hDC-2b) :

Gn1 ‖ρ1 ρ2
Gn2 � Gn (hDC-1)

(A ‖proj1 id1
Gn1) �proj′2 id2

A2 (hDC-2a)

(A ‖proj2 id2
Gn2) �proj′1 id1

A1 (hDC-2b)

Proof. Condition (i) is equivalent to condition hDC-1) because:
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• ⇒: Let Ii = Gni , then:

(I1 ‖ρ1 ρ2
I2) ∈ 〚C〛p ⇒ (Gn1 ‖ρ1 ρ2

Gn2) ∈ 〚C〛p ⇒ (Gn1 ‖ρ1 ρ2
Gn2) � Gn

• ⇐: Ii � Gni ⇒ (I1 ‖ρ1 ρ2
I2) � (Gn1 ‖ρ1 ρ2

Gn2) � Gn ⇒ (I1 ‖ρ1 ρ2
I2) ∈ 〚C〛p

Condition (ii) is equivalent to the conjunction of hDC-2a) and hDC-2b)

as:

• ⇒: Let E = A, Ii = Gni .

• ⇐: By the definition of environment and implementation, we have:

(E ‖proj1 id1
I1) � (A ‖proj1 id1

Gn1) �proj′2 id2
A2

(E ‖proj2 id2
I2) � (A ‖proj2 id2

Gn2) �proj′1 id1
A1

6.2.3 Tag Contract Composition

The composition of heterogeneous tag contracts can then be defined as

follows.

Definition 16. The composition of tag contracts C1 and C2, written as

C1 ‖ρ1 ρ2
C2, is the tag contract ((A1 /ρ1 ρ2

Gn2) f (A2 /ρ2 ρ1
Gn1)swap,Gn1 ‖ρ1 ρ2

Gn2)

where swap : T2 ×ρ2 ρ1
T1 7→ T1 ×ρ1 ρ2

T2 is such that swap((τ2, τ1)) = ((τ1, τ2))

and Mswap is M where all pieces µ are replaced with µ ◦ swap.

Such composition dominates the individual contracts and is the least, in

the homogeneous refinement order, of all contracts dominating them under

the same morphisms.

Theorem 8. Let C = C1 ‖ρ1 ρ2
C2, then:

i) C dominates the contract pair (C1, C2) under morphisms ρ1 and ρ2.
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ii) If C ′ dominates (C1, C2) under morphisms ρ1 and ρ2 then C � C ′.

Proof. Let C = (A,G) = ((A1 /ρ1 ρ2
Gn2) f (A2 /ρ2 ρ1

Gn1)swap,Gn1 ‖ρ1 ρ2
Gn2). Con-

tract C dominates (C1, C2) under ρ1 and ρ2 as:

a) C is defined over T12 = T1 ×ρ1 ρ2
T2 and V = V1 ∪ V2, by Definition 16.

b) Ii ∈ 〚Ci〛p ⇒ Ii � Gni (by Theorem 5). Thus, (I1 ‖ρ1 ρ2
I2) � (Gn1 ‖ρ1 ρ2

Gn2),

or equivalently (I1 ‖ρ1 ρ2
I2) ∈ 〚C〛p.

c) We observe that proj1(τ21) = proj1 ◦ swap(τ21) for τ21 ∈ T2 ×ρ2 ρ1
T1 and

proj
′
2((τ21, τ1)) = proj2 ◦ swap(τ21) for (τ21, τ1) ∈ (T2 ×ρ2 ρ1

T1) ×
proj1 id1

T1.

Then by the quotient construction:

((A1 /ρ1 ρ2
Gn2) ‖proj2 id2

Gn2) �proj′1 id1
A1 ⇒ ((A1 /ρ1 ρ2

Gn2) ‖proj2 id2
Gn2) �proj′1 id1

A1

((A2 /ρ2 ρ1
Gn1) ‖

proj1 id1
Gn1) �

proj
′
2 id2

A2 ⇒ ((A2 /ρ2 ρ1
Gn1)swap ‖proj1 id1

Gn1) �proj′2 id2
A2

In addition, E ∈ 〚C〛e means E � A. Therefore:

E � (A1 /ρ1 ρ2
Gn2)⇒ (E ‖proj2 id2

I2) � ((A1 /ρ1 ρ2
Gn2) ‖proj2 id2

Gn2) �proj′1 id1
A1

E � (A2 /ρ2 ρ1
Gn1)swap ⇒ (E ‖proj1 id1

I1) � ((A2 /ρ2 ρ1
Gn1)swap ‖proj1 id1

Gn1) �proj′2 id2
A2

Since C and C ′ are defined on the same tag structure and variable set, to

prove C � C ′, we first show that A′ � A. Since A′ ∈ 〚C ′〛e and Gi ∈
〚Ci〛p and C ′ dominates (C1, C2) under the same morphisms ρ1 and ρ2, the

following holds:

((A′ ‖proj1 id1
Gn1) �proj′2 id2

A2) ∧ ((A′ ‖proj2 id2
Gn2) �proj′1 id1

A1)

implying (A′ � (A2 /ρ2 ρ1
Gn1)swap) ∧ (A′ � (A1 /ρ1 ρ2

Gn2)) or A′ �A, by Theo-

rem 4. We next show that an implementation of C is also an implementation

of C ′.

I ∈ 〚C〛p ⇒ ∀E ∈ 〚C〛e : I ‖ E � G ‖ E

⇒ ∀E ∈ 〚C ′〛e : I ‖ E � G ‖ E , as A′ � A ⇒ 〚C ′〛e ⊆ 〚C〛e
⇒ ∀E ∈ 〚C ′〛e : I ‖ E � G ′ ‖ E , as C ′ dominates (C1, C2)⇒ G ∈ 〚C ′〛p
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Consequently, I ∈ 〚C ′〛p.

Let C ′i be tag contracts defined on Ti and Vi such that C ′i � Ci. The

next theorem is another of independent implementability : homogeneous tag

contract refinement is preserved under the heterogeneous contract compo-

sition.

Theorem 9. If C dominates (C1, C2) under morphisms ρ1 and ρ2 then it

also dominates (C ′1, C ′2) under the same morphisms. In addition, (C ′1 ‖ρ1 ρ2

C ′2) � (C1 ‖ρ1 ρ2
C2).

Proof. The first statement holds because the first two conditions in Defi-

nition 15 can be deduced from the fact that 〚C ′1〛p ⊆ 〚C1〛p, 〚C ′2〛p ⊆ 〚C2〛p,
A1 � A′1, A2 � A′2 and C dominates (C1, C2) under ρ1 and ρ2. Consid-

ering C = C1 ‖ρ1 ρ2
C2, the second statement follows directly from the first

statement of this theorem and the second property of Theorem 8.

6.2.4 Tag Contract Compatibility

Of particular interest is the notion of compatibility between contracts. This

notion depends critically on the contract profiles. Tag contract C can also

be associated with a profile π = (V i, V o) which is a partition of its variables

into inputs and outputs, i.e. V = V i∪V o and V i∩V o = ∅. When composing

contracts Ci with profiles πi, we enforce the property that each output port

should be controlled by at most one contract, i.e., V o
1 ∩ V o

2 = ∅. The

composite contract profile is then π = ((V i
1 ∪ V i

2) \ (V o
1 ∪ V o

2 ), V o
1 ∪ V o

2 ).

Example 9. The tank and controller contracts in Example 7 are naturally

associated with profiles πt = ({m}, {x}) and πc = ({x}, {m}) respectively.

The profile of their composition is then π = (∅, {x,m}).

Intuitively, a contract can only constrain its inputs provided by its envi-

ronment and provide certain guarantees on its outputs. This is visualized
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by enforcing the contract assumption to be output-enabled and the contract

guarantee to be input-enabled. Certain models are not input-enabled, e.g.

interface automata, because they use input refusal to represent assumptions

implicitly. We instead can afford this desirable property as assumptions

are represented separately in our framework. A tag machine is said to

be input(output)-enabled when it accepts all possible combinations of the

input(output) values.

When composing different contracts, it is often desirable to ensure that

there exists some environment which can discharge all assumptions made

by the composition. The contract compatibility is therefore essential in

caring for such a need. Two tag contracts C1 and C2 are said to be

compatible if there exists a contract Ce defined over the composite tag

structure T12 = T1 ×ρ1 ρ2
T2 and variable set V = V1 ∪ V2 with profile

πe = (V o
1 ∪ V o

2 , (V
i

1 ∪ V i
2) \ (V o

1 ∪ V o
2 )) such that:

• Ae ≡ Mu, c.f. Figure 6.3, meaning that Ce makes no assumptions on

its inputs and accepts all possible behaviors defined on L(V, T12). In

addition, the composition of C1 ‖ρ1 ρ2
C2 = (A,G) = ((A1 /ρ1 ρ2

Gn2) f

(A2 /ρ2 ρ1
Gn1)swap,Gn1 ‖ρ1 ρ2

Gn2) and Ce should also weaken the assumption

made on its environment to the greatest extent. That is (Ae/Gn) f
(A/Gne ) ≡Mu as well.

• Ge is input-enabled so as to make contract Ce consistent.

In looking for such a contract, it is important to notice that Ae ≡Mu, thus

the condition of (Ae/Gn) f (A/Gne ) ≡Mu holds when Gne is a refinement of

A. Hence, the compatibility check is reduced to finding a refinement of A
such that it is input-enabled.

Example 10. We consider again the water tank controlling problem in

Example 7 and the two contracts on the tank and the controller. Since

At �ρ1 ρ2
Gnc and Ac �ρ2 ρ2

Gnt , the composite assumption of these two
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Figure 6.3: Mu

contracts which is the conjunction (At /ρ1 ρ2
Gnc )∧ (Ac /ρ2 ρ1

Gnt )swap accepts all

behaviors defined on variable set V = {x,m} and tag structure T1 ×ρ1 ρ2
T2.

Therefore Gne can always refine (At /ρ1 ρ2
Gnc )∧(Ac /ρ2 ρ1

Gnt )swap. Hence the two

contracts are compatible.
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Contract Synthesis

Component-based and contract-based design has been shown to be a rigor-

ous and effective approach for designing concurrent systems [43, 4, 42, 21].

Different components of the same system can be developed by different

teams in an independent and concurrent manner provided that their as-

sociated contracts can synchronize and satisfy predefined properties. The

separation between assumptions and guarantees allows an efficient reuse of

already-designed components, thereby supporting the distributed develop-

ment of complex systems effectively.

Components can be formed by a bottom-up composition of simpler pre-

defined components. They can alternatively be formed by a top-down de-

composition into sub-components defined by a set of sub-contracts, as long

as the composition of the sub-contracts satisfies or refines the contract of

the intended component. When this condition is not satisfied, i.e., the sub-

contract composition does not refine the overall contract, designers must

refine the sub-contract specifications until the system is proved correct. In

this chapter, we deal with the problem of checking if a contract C can be

decomposed into a set of n homogeneous contracts or of 2 heterogeneous

contracts. We also address the problem of synthesizing the contract set

in order to make their composition refine C when necessary. In particular,
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we study decomposing conditions under which the contract decomposition

can be verified, and thereby proposing a generic synthesis strategy for fix-

ing wrong decompositions. We present in this chapter contract synthesis

strategies for homogeneous and heterogeneous systems.

7.1 Homogeneous Contract Synthesis

For our formalization we follow the notation introduced by Bauer et al. [4]

which is built on top of a specification theory equipped with a refinement

(�) and a composition (‖) operator. Note that these operators are meta-

theoretical or uninterpreted operators, meaning that we do not need to

know their exact semantics as long as they satisfy certain properties [10].

In particular, monotonicity:

(S ′ � S) ∧ (T ′ � T )⇒ (S ′ ‖ T ′) � (S ‖ T ).

In addition, composition is commutative and associative while refinement

is reflexive and transitive. Two other operators that can be defined on top

of composition and refinement are quotient (/):

((S ‖ (T/S)) � T ) ∧ ((S ‖ R) � T ⇒ R � T/S)

and conjunction (f):

((S f T ) � S) ∧ ((S f T ) � T ) ∧ (R � S ∧R � T ⇒ R � (S f T ))

While the refinement operator can relate concrete and abstract specifica-

tions, the composition and quotient, which are dual to each other, can

combine specifications to create new ones. In particular, the conjunction

operator computes the greatest lower bound in the refinement order of the

original specifications.

Assuming the existence of such underlying specification theory, we recall

that a contract of a component can be defined formally as a pair of speci-

fications, i.e., assumptions and guarantees : C = (A,G). The specification
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A expresses what is constrained on the environments of the component

and the specification G describes what the component can guarantee given

the assumption satisfaction. An implementation of the component satis-

fies its contract whenever it satisfies the contract guarantee, subject to the

contract assumption. The contract semantics is therefore defined through

the notions of such environments and implementations. An environment

E satisfies contract C when E � A. Let 〚C〛e be the set of environments of

C, an implementation I satisfies contract C if ∀E ∈ 〚C〛e : I ‖ E � G ‖ E
holds. We denote the set of all possible implementation similarly by 〚C〛p.

Two contracts have identical semantics and are equivalent if they pos-

sess the same set of environments and implementations. Without loss of

generality [4], we assume that for every contract C = (A,G), there exists

contract Cn = (A,Gn) which is equivalent to C and where the implemen-

tation check can be done independently of the assumption presence. We

call Cn the normalized form of C and derive Gn using the normalization

operator � which can be defined on top of the basic operators �, ‖, /, f:

Gn = G �A. In addition, the following holds:

I ∈ 〚Cn〛p ⇔ I � Gn.

A refinement relation between contracts can then be established based on

that between their environment sets and implementation sets. Formally,

contract C is said to refine C ′, written C � C ′, when it can accept more

environments and fewer implementations than contract C ′:

〚C ′〛e ⊆ 〚C〛e ∧ 〚C〛p ⊆ 〚C ′〛p.

7.1.1 Contract Composition

Composing contracts is formalized so that the compositionality between

their implementations can be respected, i.e., composing such implementa-

tions results in an implementation of the composite contract. In addition,
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every environment of the composite contract should be able to work with

any implementation of an individual contract in a way that their compo-

sition does not violate the other contract assumption. In fact, there exists

a class of contracts, including the composite contract, able to provide such

desirable consequences. These are referred to as dominating contracts [4]

and the composite contract is the least in the refinement order of all dom-

inating contracts, as we shall see in Section 7.1.1.

This notion of dominance thus enables the compositionality of the im-

plementation relation, an important principle in reusing components and

decomposing systems into existing components. Before studying contract

decomposition (Section 7.1.2), we first generalize the notion of dominance

and composition from two contracts [4] to a set of n contracts.

Definition 17. A contract C = (A,G) is said to dominate the contract set

{C1, . . . , Cn} if the following conditions hold:

i) ∀I1 ∈ 〚C1〛p, . . . ,∀In ∈ 〚Cn〛p :
f

1≤i≤n
Ii ∈ 〚C〛p,

ii) ∀E ∈ 〚C〛e,∀I1 ∈ 〚C1〛p, . . . ,∀In ∈ 〚Cn〛p,∀1 ≤ i ≤ n :

E ‖
n

1≤j 6=i≤n

Ij � Ai.

The following theorem reduces checking the two conditions in Defini-

tion 17 to checking simpler formulas.

Theorem 10. Checking condition (i) is equivalent to checking

n

1≤i≤n
Gni ∈ 〚C〛p,

and checking condition (ii) is equivalent to checking

∀1 ≤ i ≤ n : A ‖
n

1≤j 6=i≤n

Gnj � Ai.
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Proof.

i) ⇒: Consider Ii = Gni .

⇐: By normalization, Ii � Gni and therefore:

∀E ∈ 〚C〛e : (E ‖
n

1≤i≤n
Ii) � (E ‖

n

1≤i≤n
Gni )

⇒ ∀E ∈ 〚C〛e : (E ‖
n

1≤i≤n
Ii) � (E ‖ G)

⇒
n

1≤i≤n
Ii ∈ 〚C〛p.

ii) ⇒: Consider E = A, Ij = Gnj .

⇐: By definition of environments, normalization and the composition-

refinement relation:

(E ‖
n

1≤j 6=i≤n

Ij) � (A ‖
n

1≤j 6=i≤n

Gnj ) � Ai.

The composition of a set of contracts can then be defined as follows.

Definition 18. The composition of a set of contracts {C1, . . . , Cn}, written
f

1≤i≤n
Ci, is the contract C = (A,G) = (

c

1≤i≤n
(Ai/

f

1≤k 6=i≤n
Gnk),

f

1≤j≤n
Gnj ).

Let contracts Ci, C ′i be such that C ′i � Ci. The following theorem states

that the composition of a set of contracts dominates the individual con-

tracts and is the least, in the refinement order, of all contracts dominating

them.

Theorem 11. Let C be the composition of {C1, . . . , Cn}, then:

i) C dominates the contract set {C1, . . . , Cn}.

ii) ∀C ′ : C ′ dominates {C1, . . . , Cn} ⇔ C � C ′.

81



7.1. HOMOGENEOUS CONTRACT SYNTHESIS

iii) If C ′ dominates {C1, . . . , Cn} then:

a) it dominates also {C ′1, . . . , C ′n},

b) (
f

1≤i≤n
C ′i) � (

f

1≤i≤n
Ci).

Proof. Let A/h
def

= Ah/
f

1≤k 6=h≤n
Gnk , then A =

c

1≤h≤n
A/h.

i) C dominates {C1, . . . , Cn} because:

a)
f

1≤i≤n
Ii ∈ 〚C〛p, by Theorem 10 and G ∈ 〚C〛p.

b) By Theorem 10 and by the quotient property:

A ‖
n

1≤j 6=i≤n

Gnj � A
/
i ‖

n

1≤j 6=i≤n

Gnj

� (Ai/
n

1≤k 6=i≤n

Gnk) ‖
n

1≤j 6=i≤n

Gnj

� Ai.

ii) ⇒: C � C ′ because of the following:

– By the dominance of C ′ over {C1, . . . , Cn} and by Theorem 10:

A′ ‖
n

1≤j 6=i≤n

Gnj � Ai ⇒ A′ � Ai/
n

1≤j 6=i≤n

Gnj

⇒ A′ �
k

1≤i≤n
(Ai/

n

1≤j 6=i≤n

Gnj )

⇒ A′ � A

⇒ 〚C ′〛e ⊆ 〚C〛e.

– By this result and G ∈ 〚C ′〛p, we have:

I ∈ 〚C〛p ⇒ ∀E ∈ 〚C〛e : I ‖ E � G ‖ E

⇒ ∀E ′ ∈ 〚C ′〛e : I ‖ E ′ � G ‖ E ′ � G ′ ‖ E ′

⇒ I ∈ 〚C ′〛p
⇒ 〚C〛p ⊆ 〚C ′〛p.
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⇐: The refinement relation C � C ′ means 〚C〛p ⊆ 〚C ′〛p and 〚C ′〛e ⊆
〚C〛e. By Theorem 10, C ′ then dominates {C1, . . . , Cn} because of

the following:

–
f

1≤i≤n
Gni ∈ 〚C ′〛p as G ∈ 〚C〛p and 〚C〛p ⊆ 〚C ′〛p.

– In addition,

〚C ′〛e ⊆ 〚C〛e ⇒ A′ � A

⇒ A′ � A/i
⇒ (A′ ‖

n

1≤j 6=i≤n

Gnj ) � Ai.

iii) a) By Theorem 10, C ′ dominates {C ′1, . . . , C ′n} because of the following:

• First, C ′i � Ci ⇒ 〚C ′i〛p ⊆ 〚Ci〛p ⇒ I ′i ∈ 〚Ci〛p ⇒
f

1≤i≤n
I ′i ∈ 〚C ′〛p

(the last implication is because of the dominance of C ′ over

{C1, . . . , Cn}).
• Second,

C ′i � Ci ⇒ G ′ni � Gni
⇒ A′ ‖

n

1≤j 6=i≤n

G ′nj � A′ ‖
n

1≤j 6=i≤n

Gnj � Ai � A′i.

b) A direct consequence of items (i), (ii), (iiia) of Theorem 11.

7.1.2 Contract Decomposition

As a direct consequence of Theorem 11, a contract C refined by the com-

position of a set of contracts {C1, . . . , Cn} will dominate that contract set

and provide desirable compositional consequences formalized in items (i)

and (ii) of Defition 17. This contract set is then considered to be a decom-

position of C, allowing the components associated with the contract set or
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their refinements to be plugged into a system satisfying contract C without

breaking the contract satisfaction.

Verifying if C can be decomposed into {C1, . . . , Cn} is therefore equivalent

to checking the dominance of C over {C1, . . . , Cn} which, by Theorem 10,

corresponds to the two decomposing conditions (DCs):

DC-1)
n

1≤i≤n
Gni ∈ 〚C〛p, or equivalently

n

1≤i≤n
Gni � Gn

DC-2) ∀1 ≤ i ≤ n : A ‖
n

1≤j 6=i≤n

Gnj � Ai.

Moreover, our extension on the dominance notion is more generic than that

of Cimatti et al. [15] and can support the construction of property-based

proof systems such as that proposed by the same authors. In fact, we

built our system in a generic way using a set of meta-theoretical operators

including composition, refinement, quotient and conjunction. By adapting

these operators suitably, our extension can be applied to different contract

frameworks. For example, trace-based contract system development [15]

can be derived by instantiating the composition and refinement between

specifications as the intersection and set inclusion as follows:

i)
⋂

1≤i≤n
Gni ∈ 〚C〛p, or equivalently

⋂
1≤i≤n

Gni ⊆ Gn

ii) ∀1 ≤ i ≤ n : A ∩
⋂

1≤j 6=i≤n
Gnj ⊆ Ai.

Likewise, modal contract system development can be based on the modal

alternating refinement ≤m and the modal composition ‖m on shared ac-

tions [4].

7.1.3 Contract Synthesis

When a set of contracts does not satisfy the decomposing conditions estab-

lished in Section 7.1.2, we must adjust the specification of some of them.
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Figure 7.1: Commutative diagram for � and f

We propose a synthesis strategy based on the following condition which

says the conjunction operator can be distributed over the normalizing op-

erator � as follows:

(G �A) fX = (G fX) � (A�X) (7.1)

Although this condition poses certain limitations on contract systems, it

is a desirable property because it shows that the semantics of a model

is invariant when commuting (appropriately) normalization � and con-

junction f (Figure 7.1). Better flexibility in the design process can also

be gained when these operators are commutative. Since conjunction and

normalization amount to strengthening and weakening operations respec-

tively, strengthening X causes a semantic reduction in the two sides of

equation (7.1). Thus, when this property does not hold, we can keep

strengthening X until we reach a fixed point in semantic equivalence as we

shall see later in Section 7.1.5.

Contract synthesis consists of finding suitable refinements for the in-

dividual contracts. Our synthesis strategy is based on strengthening the

normalized guarantees, which can be reduced to strengthening the un-

normalized guarantees and weakening the corresponding assumptions. Be-

cause such operations either strengthen the left sides or weaken the right

sides of the decomposing conditions, their refinement relation are either

maintained or changed from false to true.

To satisfy DC-1, we select a guarantee Gnk to be strengthened. By
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taking advantage of the quotient, we can find the least specification

X = Gn/(
n

1≤i 6=k≤n

Gni )

which ensures the satisfaction of DC-1. The newly strengthened normal-

ized guarantee Ḡnk is then:

Ḡnk = Gnk fX = (Gk �Ak) fX = (Gk fX) � (Ak �X) (7.2)

Since conjunction and normalization amount to strengthening and weaken-

ing operations respectively, the above equation shows that strengthening a

normalized guarantee amounts to strengthening its un-normalized version

and weakening its coupled assumption. Overall, it amounts to refining the

contract Ck. It is also important to notice that strengthening Gnk as above

either maintains the refining property established in DC-2 or may change

it from false to true, but not vice-versa because:

Ak � Ak �X, for i = k,

A ‖ Ḡnk ‖
n

1≤j 6=k,i≤n

Gnj � A ‖
n

1≤j 6=i≤n

Gnj , for i 6= k.

In order to satisfy the i-th clause of DC-2, we select a guarantee Gnki to be

strengthened where ki 6= i. Similarly, we can also find the least specification

Yi = Ai/(A ‖
f

1≤j 6=i,ki≤n
Gnj ) which ensures the satisfaction of the i-th clause.

As done for condition 1, Gnki is strengthened to Ḡnki
def

= Gnki f Yi:

Ḡnki = Gnki f Yi = (Gki �Aki) f Yi = (Gki f Yi) � (Aki � Yi) (7.3)

Synthesis Strategy:

Based on equation (7.1) and the above analysis, we propose a strategy

for synthesizing {C1, . . . , Cn} in order to make it a decomposition of C as

follows:
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1. If DC-1 is not satisfied, select a contract Ck to be refined and ap-

ply (7.2).

2. While DC-2 is not satisfied:

(a) Let i be the index of an unsatisfied clause, select contract Cki to

be refined and apply (7.3).

(b) Repeat step (2a) until DC-2 is satisfied.

Our conditions and synthesis strategy for homogeneous systems can be

applied to generic homogeneous contract frameworks equipped with speci-

fication operators (e.g., composition, refinement) including popular frame-

works like trace-based or modal contract frameworks. We next demonstrate

our strategy in synthesizing trace-based and modal contract sets.

7.1.4 Trace-based Contract Synthesis

In trace-based contract system where conjunction is simply intersection

and normalization is identical to quotient, i.e. G �A = G/A = G ∪ ¬A, it

is easy to prove that equation (7.1) is satisfied:

(G ∪ ¬A) ∩X = (G ∩X) ∪ ¬(A ∪ ¬X).

Therefore, we can apply the synthesis strategy proposed above directly.

It is also interesting to notice that for trace-based models, to satisfy the

i-th clause of DC-2, an alternative is to weaken Ai to Āi
def

= Ai ∪Zi where

A∩
⋂

1≤j 6=i≤n
Gnj ⊆ Zi. This operation has a nice consequence in strengthening

the corresponding normalized guarantee which is

Ḡni = Gi ∪ ¬(Ai ∪ Zi) = Gi ∪ (¬Ai ∩ ¬Zi)

since (¬Ai ∩ ¬Zi) ⊆ ¬Ai ⇒ Ḡni ⊆ Gni .
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(a) High-level view of BSCU

(b) Contract specification of BSCU and BSCUi

Figure 7.2: Structure and contract models of BSCU
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Example 11. We consider a variant of the contract model of the Brake

System Control Unit (BSCU) described in [19] and shown in Figure 7.2(a).

The BSCU takes as inputs the positions of the two brake pedals Pedal Pos1

and Pedal Pos2 and outputs two control signals Valid and CMD AS to con-

trol the braking process of a wheel-brake system.

The BSCU component is further decomposed into a Select Switch and

two smaller control units: a primary BSCU1 and a backup BSCU2. When

BSCU1 fails, the Select Switch puts the backup signal from BSCU2 through.

The signal failure in a control unit BSCUi is indicated by its signal Validi

going down and is caused by a basic fault which is either a monitor fault

fault Monitori or a command fault fault Commandi with i ∈ {1, 2}. A

safety requirement on the BSCU is to ensure that Valid1∨Valid2 is always

true when at most one of the basic faults fault Monitori or fault Commandi

can occur. This is specified as contract C = (A,G) in Figure 7.2(b). The

safety contract specification Ci = (Ai,Gi) on BSCUi in the same figure guar-

antees that signal Validi remains true when neither of its basic faults

occurs. The contracts are specified in symbolic logic [15] where sets of

traces are represented by logical formulas. Thus checking the two DCs

amounts to checking the following formulas in symbolic logic:

i)
∧

1≤i≤n
Gni ⇒ Gn

ii) ∀1 ≤ i ≤ n : A ∧
∧

1≤j 6=i≤n
Gnj ⇒ Ai.

where =nG∨¬A and Gni = Gi∨¬Ai. To verify if C can be decomposed into

C1 and C2, we verify the satisfaction of the two DCs. It is obvious that the

contracts Ci are in normal form, thus Gni ≡ Gi. Moreover, G1 ∧ G2 ⇒ Gn is

correct (DC-1 is satisfied) while A ∧ G1 ⇒ A2 and A ∧ G2 ⇒ A1 are not

(DC-2 is not satisfied). Applying step (2a) of our synthesis strategy twice,

we refine C1 w.r.t. Y2
def

= (A ⇒ A2) and C2 w.r.t. Y1
def

= ((A ∧ A2) ⇒ A1).
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Table 7.1: Rules for combing modal specification using modal operators �m, ‖m, /m,fm

�m s2
α

99K s′2 s2
α
99K′

s1
α→ s′1 (s1, s2)

α→ (s′1, s
′
2) (s1, s2)

α
99K u

s1
α

99K s′1 (s1, s2)
α

99K (s′1, s
′
2) (s1, s2)

α
99K u

s1
α
99K′ (s1, s2)

α
99K u

‖m s2
α→ s′2 s2

α
99K s′2

s1
α→ s′1 (s1, s2)

α→ (s′1, s
′
2) (s1, s2)

α
99K (s′1, s

′
2)

s1
α

99K s′1 (s1, s2)
α→ (s′1, s

′
2) (s1, s2)

α
99K (s′1, s

′
2)

/m s2
α→ s′2 s2

α
99K s′2 s2

α
99K′

s1
α→ s′1 (s1, s2)

α→ (s′1, s
′
2) (s1, s2) is inconsistent (s1, s2) is inconsistent

s1
α

99K s′1 (s1, s2)
α

99K (s′1, s
′
2) (s1, s2)

α
99K (s′1, s

′
2) (s1, s2)

α
99K u

s1
α
99K′ (s1, s2)

α
99K u

fm s2
α→ s′2 s2

α
99K s′2 s2

α
99K′

s1
α→ s′1 (s1, s2)

α→ (s′1, s
′
2) (s1, s2)

α→ (s′1, s
′
2) (s1, s2) is inconsistent

s1
α

99K s′1 (s1, s2)
α→ (s′1, s

′
2) (s1, s2)

α
99K (s′1, s

′
2)

s1
α
99K′ (s1, s2) is inconsistent

Alternatively, we can weaken Ai w.r.t. any Zi such that (A ∧ G3−i) ⇒ Zi

is correct. The simplest option could be Zi = TRUE and this derives the

original safety contracts [15]. Our approach therefore provides a wider set

of options which allows designers to explore the refinement space.

7.1.5 Modal Contract Synthesis

Modal contracts are defined over modal transition systems (MST) where

transitions are annotated with action labels and with may or must modal-

ities modeling behaviors which can be (optionally) or must be (compul-

sorily) implemented respectively. Formally, an MST is a tuple M =

(S, s0,Σ, 99K,→) where S is the set of states, s0 ∈ S is the initial state, Σ

is the set of actions and 99K,→⊆ S × Σ × S are the may,must transition

relation respectively such that →⊆99K [4].
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For the sake of comprehension, we use our notations with m−subscripts

when referring to modal operators. The modal operators for combining

modal transitions are described in Table 7.1 where u denotes a new uni-

versal state in which there is a looping may transition for every action.

In addition, a pruning procedure is applied to the newly combined system

in order to prune away inconsistent states [4]. The modal refinement is

defined as follows [4]. An MST M1 = (S1, s01,Σ1, 99K1,→1) refines another

MST M2 = (S2, s02,Σ2, 99K2,→2), written M1 ≤m M2, if there exists a

relation R ⊆ S1 × S2 such that (s01, s02) ∈ R and for all (s1, s2) ∈ R and

α ∈ Σ:

((s1, α, s
′
1) ∈ 99K1 ⇒ ∃(s2, α, s

′
2) ∈ 99K2: (s′1, s

′
2) ∈ R) ∧

((s2, α, s
′
2) ∈ →2 ⇒ ∃(s1, α, s

′
1) ∈ →1: (s′1, s

′
2) ∈ R)

Consider a simple modal contract C = (A,G) specified in Figure 7.3(a)

and Figure 7.3(b) and a specification X in Figure 7.3(d) where the initial

states are marked by bold circles. Equation (7.1) is shown to be violated

as demonstrated in Figure 7.3(h) and Figure 7.3(i). The reason is that nor-

malization may introduce a universal state with a looping may transition

for every action. Whereas, during conjunction, such universal state could

be pruned away. To avoid such inconsistency, A �m X should contain all

may transitions appearing in X. This can be obtained by tightening X to

X̄
def

= X fm A as shown in Figure 7.3(l) and Figure 7.3(m).

Theorem 12. (G �m A) fm X̄ = (G fm X̄) �m (A�m X̄).

Proof. To prove the satisfaction of Equation (7.1), we show that every path

in (G �m A) fm X̄ can be simulated by (G fm X̄) �m (A�m X̄) and vice

versa.

• Let pl : ((g0, a0), x̄0)
α0
99K ((g1, a1), x̄1) . . .

αn
99K ((gn, an), x̄n) be a path in

(G�mA)fm X̄. Then by definition of fm, there exist pga in (G�mA),
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0

(a) A

0 1

(b) G

0 u

1

(c) G �m A

0 1

(d) X

0 1

(e) X̄ = X fm A

0 1

(f) G fm X

0 1 u

(g) A�m X

0

1

2

(h) (G�mA)fmX

0 u

1

(i) (G fm X) �m (A�m X)

0 1

(j) G fm X̄

0 u

1

(k) A�m X̄

0 1

(l) (G�mA)fm X̄

0 1

(m) (G fm X̄) �m (A�m X̄)

Figure 7.3: A modal contract

px̄ in X̄ and pa in A:

pga : (g0, a0)
α0
99K (g1, a1) . . .

αn
99K (gn, an)

px̄ : x̄0
α0
99K x̄1 . . .

αn
99K x̄n

pa : a0
α0
99K a1 . . .

αn
99K an.

By definition of �m, the existence of pga and pa implies that of path

pg in G:

pg : g0
α0
99K g1 . . .

αn
99K gn.

Next pg, px̄ and pa implies the existence of path pr in (G fm X̄) �m

(A�m X̄):

pr : ((g0, x̄0), (a0, x̄0))
α0
99K . . .

αn
99K ((gn, x̄n), (an, x̄n)).
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In addition, assume there is a must transition

((gi, ai), x̄i)
αi→ ((gi+1, ai+1), x̄i+1)

somewhere in pl. By definition of fm, either (gi, ai)
αi→ (gi+1, ai+1) or

x̄i
αi→ x̄i+1 holds and implies (gi, x̄i)

αi→ (gi+1, x̄i+1). Thus there is also

a must transition in pr:

((gi, x̄i), (ai, x̄i))
αi→ ((gi+1, x̄i+1), (ai+1, x̄i+1)).

• Let pr : ((g0, x̄0), (a0, x̄
′
0))

α0
99K . . .

αn
99K ((gn, x̄n), (an, x̄

′
n)) be a path in

(G fm X̄) �m (A�m X̄). By induction, we prove that for 0 ≤ i ≤ n,

((gi, x̄i), (ai, x̄
′
i)) is not the universal state and x̄i ≡ x̄′i.

– Base case i = 0: trivial.

– Step case: assume the induction holds up to the i-th state of

pr. By contraposition, assume the (i + 1)-th state which is state

((gi+1, x̄i+1), (ai+1, x̄
′
i+1)) is universal. Then it must be that the

fact (ai, x̄i)
αi
99K′ holds by definition of �m. This implies

(ai
αi
99K′ ) ∧ (x̄i

αi
99K x̄i+1).

As X̄ = X fmA, the latter then implies ai
αi
99K ai+1 by definition

of fm, contradicting with the former. Thus the (i+ 1)-th state of

pr is not universal and this implies, by definition of �m, that

((ai, x̄i)
αi
99K (ai+1, x̄

′
i+1)) ∧ ((gi, x̄i)

αi
99K (gi+1, x̄i+1)

which then implies (ai, x̄i)
αi
99K (ai+1, x̄i+1)). Hence, x̄i+1 ≡ x̄′i+1 by

the deterministic assumption on modal automata.

The induction also infers the existence of pg in G, px̄ in X̄, pa in A:

pg : g0
α0
99K . . .

αn
99K gn

px̄ : x̄0
α0
99K . . .

αn
99K x̄n

pa : a0
α0
99K . . .

αn
99K an
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which together implies that of pl in (G �m A) fm X̄:

pl : ((g0, a0), x̄0)
α0
99K . . .

αn
99K ((gn, an), x̄n).

In addition, if there is a must transition

((gi, x̄i), (ai, x̄i))
αi→ ((gi+1, x̄i+1), (ai+1, x̄i+1))

somewhere in pr, then there must be (gi, x̄i)
αi→ (gi+1, x̄i+1) by defini-

tion of �m. Thus either gi
αi→ gi+1 or x̄i

αi→ x̄i+1 holds and implies that

there is a must transition in pl:

((gi, ai), x̄i)
αi→ ((gi+1, ai+1), x̄i+1).

Example 12. We consider the simple message system System with con-

tract specification (ASystem,GSystem) studied by Bauer et al. [4] and shown

in Figure 7.4(a) and Figure 7.4(b) where may transitions underlying must

transitions are not drawn for simplicity. In addition, we retain the User

component and make a minor modification to the assumption of the Server

component by disallowing the authentication code reception after a mes-

sage is sent to the user (Figure 7.4(f)). Decomposing the message system

into these two components is only possible when the system contract can

also be decomposed into their associated contracts. However, the compo-

sition of the Server and User normalized guarantees, i.e., GnServer ‖m GnUser
does not refine GnSystem since the authentication code reception is allowed

by the former and forbidden by the latter. We next apply our synthesis

strategy in Sect. 7.1.3 to synthesize the Server contract w.r.t. X̄ shown in

Figure 7.4(i). The newly-synthesized Server contract provides the same

guarantee under a more general assumption (Figure 7.4(j)). It is then easy

to verify that its composition with the User contract refines the overall

System contract.
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0 1

(a) ASystem

0 1

(b) GSystem

0 1

u

(c) GnSystem

0

(d) AUser

0

(e) GUser ≡ GnUser

0 1

2

(f) AServer

0 1

2

(g) GServer

0 1

2

u

(h) GnServer

0 1

2 3 4

(i) X̄ = (GnSystem /GnUser) fm AServer

0 1

2 3 4

u

(j) AServer �m X̄

Figure 7.4: Modal contracts for a simple message system

7.2 Heterogeneous Contract Synthesis

When tag contracts are used to represent properties of heterogeneous sub-

components in a system, verifying whether composing the sub-components’
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properties retains the system’s property amounts to verifying whether com-

posing the sub-components’ associated contracts refines the system’s over-

all contract. To enable such verification, we rely on the fact that the

composition of two tag contracts C1 and C2 refines a contract C if and only

if C dominates C1 and C2 w.r.t. the same morphisms that are used in com-

posing them. When the verification is negative, i.e. one of the conditions

described in Theorem 10 is not satisfied, we must adjust or synthesize the

individual contracts in order to gain the dominance satisfaction.

To obtain the satisfaction of hDC-1, one could try to synthesize for

example Gn1 by doing the following steps. First, a heterogeneous quotient

operation between Gn and Gn2 (which could be Gn /proj2 id2
Gn2) is computed.

Since the tag structure of the quotient is a fibered product defined over T1

and T2, a second step is to extract from it behaviors over T1 only, obtain-

ing Ḡn1 in the end. However, doing so can still retain in the composition

behaviors which cannot be simulated by Gn as shown in Example 13, i.e.

Ḡn1 ‖ρ1 ρ2
Gn2 � Gn. This is because the tag morphisms can be many-to-one

mappings in general.

Example 13. We consider an example where:

• T1 = {(−∞,−∞), (0, 0), (k, 2k)} with k ∈ N ∧ k ≥ 1.

• T2 = {(−∞,−∞), (0, 0), (i+ 2j, 2i+ j)} with i, j ∈ N ∧ i, j ≥ 0.

• ≤1≡≤2 and is defined such that

(τ1, τ2) ≤1 (τ ′1, τ
′
2)⇔ (τ1 ≤ τ ′1) ∧ (τ2 ≤ τ ′2).

• +1 ≡ +2 and is defined such that

(τ1, τ2) +1 (τ ′1, τ
′
2) = (τ1 + τ ′1, τ2 + τ ′2).

It is easy to see that T1
def

= (T1,≤1,+1) and T2
def

= (T2,≤2,+2) and T def

=

(N ∪ {−∞},≤,+) are algebraic tag structures. Assuming that we have
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(a) Gn1 (b) Gn2 (c) Gn

(d) Gn /proj2 id2
Gn2 (e) Ḡn1

Figure 7.5: Synthesis based on heterogeneneous quotient and projection

the algebraic tag morphisms ρ1 : T1 7→ T and ρ2 : T2 7→ T such that

ρ1((τ1, τ2)) = ρ2((τ1, τ2)) = τ1 +τ2. We consider three sets of behaviors rep-

resented by TMs Gn1 , Gn2 and Gn as shown in Figure 7.5(a), 7.5(b) and 7.5(c)

respectively. These three sets are defined on tag structures T1, T2, T1 ×ρ1 ρ2
T2

and on the same variable set V1 ≡ V2 ≡ V = {x} with the domain of value

Dx = {>}.
It is obvious that the composition Gn1 ‖ρ1 ρ2

Gn2 does not refine Gn. Because

machine Gn1 can take a transition labeled by tag piece µ11
def

= [(1, 2)] at state

G01 and machine Gn2 can take that labeled by µ12
def

= [(2, 1)] at state G02, both

agreeing on assigning variable x to >. However, there is no transition with

label µ11 tρ1 ρ2
µ12 allowed at state G0 of machine Gn, hence the refinement

failure.

Figure 7.5(d) shows the result of performing a heterogeneous quotient

between Gn and Gn2 where n, pn, qn ∈ N ∧ n ≥ 2 ∧ pn + qn = n and µ0 is

any label of the universe set L(V, T1 ×ρ1 ρ2
T2). The result of projecting the

quotient on the tag domain T1 is shown in Figure 7.5(e) where µ01 is any
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label of the universe set L(V, T1). Its composition with machine Gn2 still

does not refine machine Gn. This is because the morphisms are many-to-

one mappings and the projection operation erases the tag fibered relations

formed by these morphisms.

The above example shows that undesirable behaviors cannot be elimi-

nated in the heterogeneous quotient because morphisms can be many-to-

one in general. In fact, whenever the unification of two behaviors cannot be

simulated, one of them should be pruned away completely. The following

procedure demonstrates how this can be done.
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Input:

Gn1 = (V1, T1, Sg1, s0g1, Fg1, Eg1);

Gn2 = (V2, T2, Sg2, s0g2, Fg2, Eg2);

Gn = (V, T1 ×ρ1 ρ2
T2, Sg, s0g, Fg, Eg);

Output: Ḡn1 = (V1, T1, Sg1, s0g1, F̄g1, Ēg1) such that Ḡn1 ‖ρ1 ρ2
Gn2 � Gn

F̄g1 = Fg1, Ēg1 = Eg1, R
′ = ∅, R = {((s0g1, s0g2), s0g)};

while (R 6= R′) do

R′ = R;

for every ((skg1, skg2), skg) ∈ R′ do

for every (skg1, µ1, s(k+1)g1) ∈ Ēg1 do

for every (skg2, µ2, s(k+1)g2) ∈ Eg2 do

if (µ1 ./ρ1 ρ2
µ2) then

if (@(skg, µ, s(k+1)g) ∈ Eg : µ = µ1 tρ1 ρ2
µ2) then

Remove (skg1, µ1, s(k+1)g1) from Ēg1;

else

if (s(k+1)g1 ∈ F̄g1) ∧ (s(k+1)g2 ∈ Fg2) ∧ (s(k+1)g /∈ Fg)
then

Remove s(k+1)g1 from F̄g1;

end

Add ((s(k+1)g1, s(k+1)g2), s(k+1)g) to R;

end

end

end

end

end

end
Algorithm 1: Modifying Gn1 so as to satisfy hDC-1

Lemma 4. Ḡn1 � Gn1 .

Proof. Straightforward since Algorithm 1 only removes transitions and final

states from Gn1 and does not add transitions or states to it.
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Lemma 5. Ḡn1 ‖ρ1 ρ2
Gn2 � Gn.

Proof. By contraposition, assuming that Ḡn1 ‖ρ1 ρ2
Gn2 � Gn and consider the

runs which cause the refinement violation:

r̄1 : s0g1
µ11→ s1g1 . . .

µn1→ sng1

r2 : s0g2
µ12→ s1g2 . . .

µn2→ sng2

where µk1 ./ρ1 ρ2
µk2 for 1 ≤ k ≤ n. There are two possible cases. In the

first case, there exists run r : s0g
µ1→ s1g . . .

µn
−→ sng where µk = µk1 tρ1 ρ2

µk2

and the last transition (s(n−1)g, µn, sng) is not included in E. This causes

a contradiction since performing Algorithm 1 will remove the transition

(s(n−1)g1, µn1, sng1) from Ē1. In the second case, there exists a run r : s0
µ1→

s1 . . .
µn→ sn where the last state sng is not an accepting state while sng1 and

sng2 are. This similarly causes a contradiction since performing Algorithm 1

will remove sng1 from F̄g1.

Lemma 6. Algorithm 1 finally terminates in finite time.

Proof. Obvious since the number of states ((sk1, sk2), sk) is finite.

Since the normalization Ḡn1/A1 does not always coincide Ḡn1 , we need to

further modify A1 into Ā1 so as to make Ḡn1/Ā1 = Ḡn1 . This can be done

by using the following algorithm.
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Input:
Ḡn1 = (V1, T1, Sg1, s0g1, F̄g1, Ēg1);

A1 = (V1, T1, Sa1, s0a1, Fa1, Ea1);

Output: Ā1 = (V1, T1, S̄a1, s0a1, F̄a1, Ēa1) such that Ḡn1/Ā1 � Ḡn1
S̄a1 = Sa1, F̄a1 = Fa1, Ēa1 = Ea1;

R′ = ∅, R = {((s0g1, s0a1), s0g1)};
while (R 6= R′) do

R′ = R;

for every ((skg1, ska1), skg1) ∈ R′ do

for every (skg1, µ1, s(k+1)g1) ∈ Ēg1 do

if ∃(ska1, µ1, s(k+1)a1) ∈ Ēa1 then

Add ((s(k+1)g1, s(k+1)a1), s(k+1)g1) to R;

if s(k+1)a1 /∈ F̄a1 then

Add s(k+1)a1 to F̄a1;

end

else

Add a new state s(k+1)a1 to S̄a1 and F̄a1;

Add (ska1, µ1, s(k+1)a1) to Ēa1;

Add ((s(k+1)g1, s(k+1)a1), s(k+1)g1) to R;

end

end

Qg1 = L(V1, T1) \ {µ1|∃(skg1, µ1, s(k+1)g1) ∈ Ēg1};
Qa1 = L(V1, T1) \ {µ1|∃(ska1, µ1, s(k+1)a1) ∈ Ēa1};
if (Qg1 ∩Qa1 6= ∅) then

Add a new state s(k+1)a1 to S̄a1;

for every µ1 ∈ (Qg1 ∩Qa1) do

Add (ska1, µ1, s(k+1)a1) to Ēa1;

end

end

end

end
Algorithm 2: Weakening A1 to Ā1 so that Ḡn1/Ā1 � Ḡn1 holds
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Lemma 7. A1 � Ā1.

Proof. Straightforward since Algorithm 2 only adds more transitions and

states to A1.

Lemma 8. Ḡn1/Ā1 = Ḡn1 .

Proof. It is obvious that Ḡn1/Ā1 � Ḡn1 by Algorithm 2 and Ḡn1 � Ḡn1/Ā1 by

Lemma 3.

Finally, composing Ḡn1 together with Ā1 obtains the guarantee Ḡ1 which

yields exactly Ḡn1/Ā1 through normalization. In other words, contract

(Ā1, Ḡ1) is semantically equivalent to contract (Ā1, Ḡn1). In addition, the

former is more compact and convenient than the latter in terms of repre-

sentation.

Lemma 9. Let Ḡ1 = Ḡn1 ‖ Ā1. Then Ḡn1/Ā1 = Ḡ1/Ā1.

Proof. We show that i) Ḡn1/Ā1 � Ḡ1/Ā1, ii) and Ḡ1/Ā1 � Ḡn1/Ā1. First,

the refinement Ḡn1 � Ḡ1/Ā1 holds by the assumption of Ḡn1 ‖ Ā1 � Ḡ1 and

by the Quotient Property (6.5). Second, the refinement Ḡn1/Ā1 � Ḡn1 also

holds by Lemma 8. Hence, item i) follows immediately. By construction,

Ḡ1 � Ḡn1 holds and by the Quotient Property (6.5), the refinement (Ḡ1/Ā1)‖
Ā1 � Ḡ1 also holds, implying (Ḡ1/Ā1) ‖ Ā1 � Ḡn1 . Hence item ii) follows

immediately.

It is important to notice that strengthening Gn1 as above either maintains

the refining property established in hDC-2 or may change it from false to

true, but not vice-versa because:

A1 � Ā1,

A ‖proj1 id1
Ḡn1 � A ‖proj1 id1

Gn1 .

In order to satisfy hDC-2a and hDC-2b, we can strengthen the nor-

malized guarantees by following respectively Algorithm 3 and 4 which are
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similar to Algorithm 1. We then invoke Algorithm 2 to weaken also the

associated assumptions.

Input:

Gn1 = (V1, T1, Sg1, s0g1, Fg1, Eg1);

A2 = (V2, T2, Sa2, s0a2, Fa2, Ea2);

A = (V, T1 ×ρ1 ρ2
T2, Sa, s0a, Fa, Ea);

Output: Ḡn1 = (V1, T1, Sg1, s0g1, F̄g1, Ēg1) such that

(A ‖proj1 id1
Ḡn1) �

proj′2 id2
A2

F̄g1 = Fg1, Ēg1 = Eg1, R
′ = ∅, R = {((s0a, s0g1), s0a2)};

while (R 6= R′) do

R′ = R;

for every ((ska, skg1), ska2) ∈ R′ do

for every (ska, µ, s(k+1)a) ∈ Ea do

for every (skg1, µ1, s(k+1)g1) ∈ Ēg1 do

if (µ ./proj1 id1
µ1) then

if (@(ska2, µ2, s(k+1)a2) ∈ Ea2 : µ = µ1 tρ1 ρ2
µ2) then

Remove (skg1, µ1, s(k+1)g1) from Ēg1;

else

if (s(k+1)a ∈ Fa) ∧ (s(k+1)g1 ∈ F̄g1) ∧ (s(k+1)a2 /∈ Fa2)
then

Remove s(k+1)g1 from F̄g1;

end

Add ((s(k+1)a, s(k+1)g1), s(k+1)a2) to R;

end

end

end

end

end

end
Algorithm 3: Refining Gn1 so as to satisfy hDC-2a
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Input:

Gn2 = (V2, T2, Sg2, s0g2, Fg2, Eg2);

A1 = (V1, T1, Sa1, s0a1, Fa1, Ea1);

A = (V, T1 ×ρ1 ρ2
T2, Sa, s0a, Fa, Ea);

Output: Ḡn2 = (V2, T2, Sg2, s0g2, F̄g2, Ēg2) such that

(A ‖proj2 id2
Ḡn2) �

proj′1 id1
A1

F̄g2 = Fg2, Ēg2 = Eg2, R
′ = ∅, R = {((s0a, s0g2), s0a1)};

while (R 6= R′) do

R′ = R;

for every ((ska, skg2), ska1) ∈ R′ do

for every (ska, µ, s(k+1)a) ∈ Ea do

for every (skg2, µ2, s(k+1)g2) ∈ Ēg2 do

if (µ ./proj2 id2
µ2) then

if (@(ska1, µ1, s(k+1)a1) ∈ Ea1 : µ = µ1 tρ1 ρ2
µ2) then

Remove (skg2, µ2, s(k+1)g2) from Ēg2;

else

if (s(k+1)a ∈ Fa) ∧ (s(k+1)g2 ∈ F̄g2) ∧ (s(k+1)a1 /∈ Fa1)
then

Remove s(k+1)g2 from F̄g2;

end

Add ((s(k+1)a, s(k+1)g2), s(k+1)a1) to R;

end

end

end

end

end

end
Algorithm 4: Refining Gn2 so as to satisfy hDC-2b

Lemma 10. (A ‖proj1 id1
Ḡn1) �

proj′2 id2
A2 and (A ‖proj2 id2

Ḡn2) �
proj′1 id1

A1

Proof. Similar to the proof of Lemma 4.
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(a) At

(b) Gnt ≡ Gt

Figure 7.6: The tank contract

Synthesis Strategy

Based on the above analysis, we propose a strategy for synthesizing the

composition C1 ‖ρ1 ρ2
C2 so that it can refine C as follows:

1. Apply Algorithm 1 so that hDC-1 is satisfied.

2. Repeat applying Algorithm 3 or Algorithm 4 until hDC-2 is satisfied.

Example 14. We consider again the simplified water controlling system

in Example 4 as shown in Figure 6.1. Figure 7.6 depicts the tank contract

Ct = (At,Gt) which guarantees a linear evolution of the water level x(t)

upon receiving controlling commands. The controller contract is shown

Figure 7.7, where it assumes the tank to be empty initially (Figure 7.7(a)),

i.e., x = 0 and places no requirement on its output which is the com-

mand signal. As long as such assumption is satisfied, the controller (Fig-

ure 7.7(b)) can send a proper command upon knowing of the tank empti-

ness or fullness. Intuitively, the controller contract ensures timely control
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(a) Ac (b) Gc

(c) Gnc = Gc/Ac

Figure 7.7: The controller contract

over the water evolution while the tank contract accepts untimely control

and allow water spillages or shortages.

We use the same tag structures, which are T1 = (R+ ∪ {ε1},+) and

T2 = (N ∪ {ε2},+), in Example 4 to describe the tank and controller

contracts respectively. We also use the same morphisms ρ1 : T1 7→ T1

and ρ2 : T2 7→ T1 given by ρ1(τ1) = τ1, ρ2(τ2) = 0.5 ∗ τ2 when composing

the two contracts. For the sake of expressiveness, some of the labeled tag

pieces can also be represented symbolically. For example, to capture any

event of variable x happening at a specific time point within an interval, we

label with the tag piece expressions such as x ∈ (0, 1), meaning that in such

an event x can take any value between 0 and 1. Similarly, m ∈ {p, l,−}
means the command value can either be Open, Close or Unknown. In

addition, we use µ0t to denote the universe set of labels L(V1, T1) and µ0c

the set of labels L(V2, T2).

We consider the specification C = (A,G) where it makes no assump-
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(a) A (b) Gn ≡ G

Figure 7.8: The desirable water control behavior

(a) Ḡnc (b) Ḡc

Figure 7.9: Controller synthesis

tions, i.e. µ0 denotes the universe set of labels L(V, T1 ×ρ1 ρ2
T2) and ensures

timely control over the water evolution as shown in Figure 7.8. It is easy

to verify that the guarantees of the two contracts C and Ct remain intact

through the normalization operation. This is because the contracts accept

all assumption made to their variables. Meanwhile, the controller normal-

ized guarantee specifies more behaviors than its un-normalized version as

the controller does have some assumption on its input.

Composing Ct and Cc under morphisms ρ1 and ρ2, however, does not

satisfy contract C. This is because Gnt ‖ρ1 ρ2
Gnc � Gn which in turn is caused

by the fact that both the tank and controller guarantees allow the water

to be filled into the tank without issuing any Open command. Applying

Algorithm 1 to synthesize the controller guarantee, the transitions labeled
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with µ2c are removed as shown in Figure 7.9(a). The controller assumption

needs not be weaken since Ḡnc /Ac ≡ Ḡnc and a simpler un-normalized version

of Ḡnc can then be computed as in Figure 7.9(b). The new composition of

the tank and controller contracts can now satisfy the desirable specification

C.
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Chapter 8

Conclusion

We have presented a modeling methodology based on contracts for design-

ing heterogeneous distributed systems. Heterogeneous systems are usually

characterized by their heterogeneity of components which can be of very

different nature, e.g. real-time component or logical control component.

Without a heterogeneous mechanism, modeling the interaction between

components may not be feasible, thereby making it difficult to do verifica-

tion and analysis based on the known properties of the components. This

problem is further complicated for distributed systems where components

are developed concurrently by different design teams and are synchronized

by relying on their associated contracts. To deal with such problem, we

adopt the TM formalism for specifying components in terms of operational

behaviors and extend TMs, which were introduced to represent only homo-

geneous tag systems, to the heterogeneous context. We subsequently pro-

pose a contract methodology for synchronizing heterogeneous components

based on a set of useful operations on TMs such as composition, quotient

and refinement. In addition, it is often desirable to verify if a general re-

quirement C can be decomposed into a set of requirements {C1, . . . , Cn}. To

this end, we have presented a set of decomposing conditions for verifying

such decomposition of a contract into a set of contracts in the homoge-
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neous context and a pair of contracts in the heterogeneous context. To

provide for a complete design methodology, we have also proposed syn-

thesis strategies which can correct wrong contracts causing the condition

failure in both contexts.

Our future work includes the implementation of our proposed theoret-

ical contract framework and perform extensive evaluation on analysis and

verification performance.
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