
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

models and systems for managing sensor

and crowd-oriented processes

Stefano Tranquillini

Advisors:

Prof. Fabio Casati and Dr. Florian Daniel

Università degli Studi di Trento

March 2014

Acknowledgments

Since I don’t want to forget anyone, I’ll not write any names here. I’m sure that if you

have to be thanked you will find your place.

I would like to thank the people who gave me the opportunity to do the PhD and

guided me until the end, losing their time but not wasting it. I will be always grateful

to those who gave me the possibility to do a period abroad for the experiences it gave

me. I want to thank all the beautiful people, colleagues and friends, who I met during

these years: the mates, the freunde, and all the amici. I would like to thank all my

friends because they are my friends. I want to thank the people who bear with me and

support me every day, one in particular. I want to say grazie to my family, especially to

my parents that never asked me to find a real job and always supported me in whatever

choice I made.

And I would like to thank you.

Stefano

3

Abstract

Business process modeling refers to the design of business process models, using business

processes languages, to orchestrate the work executed by employees, their interaction with

external entities, and work items that are necessary to achieve a predefined goal. Model-

driven development allows people, generally called modelers, to design also sophisticated

application logic using high-level abstractions. Process modeling is typically connected with

business, hence, existing process languages focus principally on the support and orchestra-

tion of activities executed by employees, or by external entities like web services. However,

there is a wide range of other application logics that are process-driven and that can benefit

from high-level abstractions to model low-level details.

Our initial research focuses on distributed UIs, which are a distributed type of actors,

and then particularly concentrated on Wireless Sensor Networks (WSNs) and crowdsourc-

ing, which are distributed and also autonomous types of actors (they can execute a part

of an application logic in an autonomous and isolated fashion). Developing applications

in these areas requires a deep knowledge of the field and a non-trivial programming effort;

domain experts have to code and orchestrate the logic executed by these actors. Since these

applications are highly process-driven, domain experts could take advantage of high-level,

process-oriented modeling conventions to design the internal logic of these kinds of appli-

cations. However, the intrinsic complexity of these domains and the current state of the

art of modeling paradigms make the design and execution of processes for these new actors

challenging.

In this dissertation we analyze, design, and present modeling formalisms and systems

for managing processes in these contexts. We tackle the challenges of the three areas

with an approach that analyzes and extends existing process modeling languages, to enable

the design of the processes, and with an architecture, similar for the three focuses, to

support the development and execution of processes. Starting from our initial work on the

orchestration of distributed UIs, for which we present a modeling language with a set of

modeling constructs specific for the UIs, we then present our contribution to WSNs and

crowdsourcing domains, which are: a modeling convention for the development of WSN

applications, with high-level modeling constructs that abstract the low-level details of the

networks; and a modeling paradigm to design processes that are partially executed by a

crowd of people. These languages are all equipped with prototypes that contain a modeling

tool to design processes and a runtime environment to support the execution. The impact

of this work is not only to the domains we focused on but also to the business process

domain as we demonstrate how a process modeling is a flexible and suitable formalism to

design processes with very diverging, domain-specific requirements.

Keywords

Process modeling, process languages, process language extensions, BPEL, BPMN, dis-

tributed UIs, mashup, Wireless Sensor Networks, crowdsourcing.

6

Contents

1 Introduction 1

1.1 Challenges . 5

1.2 Methodology . 8

1.3 Contributions and Results 12

1.4 Structure of the thesis . 17

2 Distributed Orchestration of User Interfaces 19

2.1 Introduction . 20

2.2 State of the Art in Orchestrating Services, People and UIs 23

2.3 Distributed User Interface Orchestration: Definitions, Re-

quirements, and Architecture 27

2.3.1 Requirements and approach 28

2.3.2 Architecture . 31

2.4 The Building Blocks: Web Services and UI Components . 35

2.5 The UI Orchestration Meta-Model 41

2.6 Modeling Distributed UI Orchestrations 46

2.6.1 Core UI orchestration design patterns 47

2.6.2 Data transformations 49

2.6.3 Message correlation 49

2.6.4 Graphical layout 51

2.7 Types of UI orchestrations 51

2.7.1 Pure UI synchronizations 52

i

2.7.2 Pure service orchestrations 55

2.7.3 UI-driven UI orchestrations 56

2.7.4 Process-driven UI orchestrations 58

2.7.5 Complex UI orchestrations 59

2.8 Implementing and Running UI Orchestrations 59

2.9 Lessons Learned . 63

2.10 Conclusion . 65

3 Process-Based Design and Integration of Wireless Sensor

Network Applications 67

3.1 Introduction . 68

3.2 Scenario: Convention Center HVAC Management 70

3.3 Relevant Properties of Wireless Sensor Networks 71

3.4 Requirements and Approach 73

3.5 BPMN4WSN . 78

3.5.1 Process Logic . 79

3.5.2 WSN Task Specification 81

3.6 Prototype . 84

3.7 Evaluation of the approach 90

3.8 Discussion and Lessons Learned 94

3.9 Related work . 95

3.10 Conclusion . 97

4 Modeling and Enacting Flexible Crowdsourcing Processes 99

4.1 Introduction . 100

4.2 Crowdsourcing: Concepts and State of the Art 102

4.2.1 Core concepts . 102

4.2.2 Crowdsourcing tactics 104

4.2.3 Crowdsourcing processes 106

4.2.4 Problem statement 107

ii

4.3 Modeling and enacting advanced crowdsourcing processes . 109

4.3.1 Requirments . 110

4.3.2 Approach . 112

4.4 Modeling Crowdsourcing Processes: BPMN4Crowd 116

4.4.1 Crowd task . 116

4.4.2 Data transformation 118

4.4.3 Modeling a crowdsourcing process with BPMN4Crowd

. 123

4.5 The crowd computer . 124

4.6 Modeling crowdsourcing tactics 129

4.6.1 Designing Tactics 129

4.6.2 Tactic configurations 138

4.7 Prototype implementation 142

4.7.1 Model . 143

4.7.2 Compile . 146

4.7.3 Execute . 147

4.8 Evaluation . 148

4.8.1 Scenario: crowd-based pattern mining 148

4.8.2 Implementation . 151

4.8.3 Analysis . 154

4.9 Discussion and Lessons Learned 156

4.10 Related work . 158

4.11 Conclusion . 162

5 Conclusion 165

5.1 Lessons Learned and Limitations 165

5.2 Future work . 169

5.3 Final Remarks . 172

iii

Bibliography 173

iv

List of Figures

1.1 The process model that summarizes our work methodology. 10

2.1 A home assistance application integrating both web services

and UI components into a process-like orchestration logic. 21

2.2 From design time to runtime: overall system architecture of

MarcoFlow. 30

2.3 Graphical rendering and internal logic of a UI component . 36

2.4 Simplified WSDL4UI meta-model (inspired by [23] and ex-

tended – via the gray boxes – toward UI components). . . 37

2.5 Example of WSDL/UI description of a UI component. . . 39

2.6 Simplified BPEL4UI meta-model in UML. White classes

correspond to standard BPEL constructs [89]; gray classes

correspond to constructs for UI and user management. . . 42

2.7 Excerpt of the BPEL4UI home assistance process (new con-

structs in bold) . 45

2.8 Part of the BPEL4UI model of the home assistance process

as modeled in the extended Eclipse BPEL editor (the dashed

and dotted lines/arrows have been overlaid as a means to

explain the model). 46

2.9 The HTML template of the assistant’s web page highlighting

the empty place holders for UI components. 52

2.10 The four types of (UI) orchestration supported by BPEL4UI

and the MarcoFlow system. 53

v

2.11 The extended Eclipse BPEL editor for developing UI orches-

trations at work. 61

2.12 The management console for developers and users allowing

them to deploy, instantiate, and participate in UI orchestra-

tions. 62

3.1 Integration of a convention center’s BP engine with a WSN

for HVAC. 70

3.2 Conceptual model of WSN operations 76

3.3 Architecture . 78

3.4 WSN-specific modeling constructs in BPMN4WSN. 79

3.5 The Startup page for the configuration of the scenario. . . 84

3.6 The editor for the creation of the BPMN process. 85

3.7 The editor for the meta abstraction composition. 85

3.8 The HVAC process of the convention center. 86

3.9 The CO2 and ventilation operations modeled as a script task 87

3.10 The CO2 and ventilation operations modeled with the parametrized

WSN logic constructs [81] 88

3.11 Deployment of the ventilation scenario in Cadiz, Spain. On

the left part an overview of the setup and on the right part

an actuator with the flap. [25] 90

3.12 Task Completion [33] . 93

4.1 The high-level steps of crowdsourcing and the respective actors103

4.2 The most prominent tactics to crowdsource work 104

4.3 A simple crowdsourcing process in BPMN [67]: the text

recognition task is iterated automatically until there are no

doubts left about the correct wording 106

vi

4.4 A crowdsourcing process involving different actors (humans,

machines and the crowd) and possibly different crowdsourc-

ing tactics . 108

4.5 The architecture of our approach. 113

4.6 The visual representation of the layer approach. 115

4.7 The crowd task. 118

4.8 The data transformation notations. 118

4.9 The data and object operations. 119

4.10 The different split data set operations. 120

4.11 The process of the photo scenario modeled with BPMN4Crowd.123

4.12 Functional architecture of the crowd computer. 125

4.13 The crowd computer task to interact with the API. 129

4.14 The process of the marketplace tactic. 130

4.15 The process of the contest tactic. 132

4.16 The process that models the collection of answers during a

contest. 133

4.17 The process of the auction tactic. 135

4.18 The process that models the selection of the winner, in this

case it is the worker that first bids less than the bid level. . 136

4.19 The process of the mailing list tactic. 137

4.20 On the left the process that assign to each worker an in-

stance. On the right the process that collects the worker’s

result and that validates and reward workers. 138

4.21 Processes of four validation configurations. 139

4.22 The implemented architecture of BPMN4Crowd solution. . 143

4.23 The crowdsourcing process of the crowd-based pattern min-

ing pattern mining scenario. 151

vii

4.24 The visual modeling editor with the process of the crowd-

based pattern mining scenario. The Figure has the BPMN4Crowd

palette and the properties window zoomed. 153

viii

List of Tables

3.1 Exercise steps [33] . 92

4.1 List of the API. 128

ix

Chapter 1

Introduction

This dissertation gathers the outcomes of more than three years of research

in the context of business process management. During this time the focus

of the research evolved following a path driven by new possibilities and

applications that emerged in the field of business processes. The research

presented in this dissertation builds on background knowledge acquired

with the orchestration of distributed UIs, an investigation we started al-

ready before enrolling in the PhD program and that inspired the further

work on WSNs and crowdsourcing.

Creating applications that interact with distributed UIs, or a WSN, or

the crowd today requires a manual and non-trivial effort. Applications have

to be programmed to integrate these computational “resources”, which we

also call new actors, and exploit their capabilities. Each resource has its

own characteristics, yet they share a set of features that make them

similar from a technical and conceptual prospective. In particular:

• User interfaces are the means by which people interact with machines.

Recently mashups [26] have focused on the integration and coordina-

tion of pieces of user interfaces, e.g., a Google map, inside simple web

pages. Thus, we have the possibility to combine pieces of UIs from

different sources and create new applications. Yet, mashups typically

1

only focus on single-user applications. With distributed UIs we refer

to the possibility to orchestrate different pieces of UIs that are de-

ployed and executed in a distribute fashion. This means having the

possibility to create an application that supports the collaboration of

multiple users via the orchestration of various pieces of UIs deployed

on separated pages. Yet, UIs can interact in various fashions. UIs can

be synchronized within the same page, as in a conventional mashup,

for example, a map that changes the displayed location when the user

selects a new address in a list. UIs can be synchronized among differ-

ent machines, for example, a chat application used by two users. UIs

can also trigger part of the process, for example, a user that sends a

form for a loan that triggers the process to validate the request.

• A WSN is a network of sensors and actuators able to interact with

the physical world. WSN applications are used in domains like build-

ing automation, control system, remote healthcare, and similar. For

example, a WSN can be used to sense the temperature in a room

and to open a window. Nodes inside a network have different capa-

bilities, for example a node can sense the temperature while another

node can sense the level of CO2. Sensors and actuators may join or

leave a network dynamically, for example, creating a sub set of the

network depending on the type of capabilities each node has. Nodes

may change their role over time, a node can become a getaway, which

is a node in charge of controlling the network and forwarding data

to a server, depending on characteristics evaluated at runtime (e.g.,

charge of the battery). Most importantly, WSNs may form tempo-

rary, ad-hoc self-collaborations for specific tasks, such as computing

an average temperature out of a large number of sensors.

• Crowdsourcing is an activity and business model that is based on

2

CHAPTER 1. INTRODUCTION

the outsourcing, i.e., externalization, of a unit of work to a crowd of

people via an open call for contributions [40]. Crowdsourcing can be

used to outsource tasks that require a huge amount of people to be

solved. For example, a person can divide a set of one million pictures

in small subsets and ask people from a crowd to tag each set of photos.

Crowdsourcing shares some characteristics of the WSNs, thus similar

problematics. Both are networks of executors: on one side we have

sensors and actuators, while on the other there are workers, which are

members of the crowd that perform of crowdsourced work. A worker

of a task is not known a priori when the application is created, he is

selected based on his capabilities and availability (thus if he is willing

to execute the task). Crowdsourcing brings also the need for support-

ing the management of data that each worker has to process. For

example, if the task is to tag one million pictures we have to support

the splitting of pictures into sets that each worker can process (e.g.,

set of 10 pictures), and later collect all the results. Additionally, tasks

for the crowd can have various execution logics, for example a task can

have many instances each of which executed by a single worker (e.g.,

the tagging of picture where each worker tags 10 pictures), or workers

may compete to solve a task (e.g., creating the logo for a company)

where workers submit results but only one is selected as winner. A

crowd task logic also specifies how the workers are rewarded (most of

the worker perform tasks in return of a monetary reward) and how

their work is validated, thus how results are checked by the person

who crowdsources the work.

With these three new actors we have now distributed actors that have their

interactions logic, different capabilities, and that are able to execute a task

of work in an rather autonomous fashion (especially WSNs and the crowd),

such as a WSN that is able to report the average temperature of a room

3

by querying various sensors and by computing the average value.

Most of the applications that include UIs, WSN, or the crowd as ac-

tors share a common characteristic: their logic is highly process-driven.

These applications are of interest for people and companies that already

use software instruments for the modeling, execution and management of

processes. For example, distribute UIs can be used to coordinate the work

of doctors, exchanging information on patients between different wards; a

WSN can be used to track items and rise an alarm when a hazard item is

placed nearby heat sources; a crowd can tag a large set of picture, or tran-

scribe an audio speech in a very short time. For these reasons we focused

the research on extensions of process modeling languages whose goal is to

provide instruments for modelers, people that design processes, to model

and execute processes that interact with the new actors, we called them

extended processes.

Today, instruments for modeling and executing processes are tailored

to different types of actors, namely a machine (e.g., a computer or a web

service) or a person (e.g., an employees). With machines or employees as

actors of a process there is a different type of modeling. Actors’ capabilities

are known and described a priori (e.g., what are the operations of a web

service), they execute one task at a time in an isolated fashion (without

interaction with others), thus one simply invokes them to execute a job.

Distributed UIs, WSNs, and the crowd as actors are different from what

usually is an actor of a process. Thus, to support applications that lever-

age these new actors we have to integrate and unify them within process

modeling and execution instruments. Integration refers to the capacity

of these new actors to execute part of the application logic (for example

a network of sensors that senses the temperature of a room and reports

the average value) whose result triggers the execution of other parts of a

bigger process. There is a need to achieve a tight integration between the

4

CHAPTER 1. INTRODUCTION

actors of a same process. Unification refers to the availability of a single

specification that allows one to create logics that are executed by a central

process and by distributed UIs, or by a WSN, or by the crowd.

1.1 Challenges

To unify and integrate the new actors into business process modeling and

execution languages we have several challenges to tackle. This disserta-

tion addresses the challenges of each research focus one at a time.

First, we started with the orchestration of distributed user interfaces.

The goal is to coordinate distributed mashups by using a process logic to

specify the orchestration of different UIs that are deployed and executed

in a distributed fashion. To do so, there is a need to unify the modeling

language to specify the orchestration of UIs, and to integrate the execution

of processes with the orchestration of UIs. In particular we have to:

• Understand how to componentize UIs, thus how to abstract UIs ca-

pabilities (e.g., a list that can display data, a map that can display a

point) in a way that can be used to construct pages and to orchestrate

the various pieces of UIs in different pages.

• Provide a method to define the logic of an application, so that a

modeler can specify how the UIs interact, for example, how a form

in a page updates a list in another page. However, since most of the

applications are not only a composition of user interfaces this logic

should also give the possibility to interact with other actors, such as

web services, to support the creation of wider types of applications.

• Create a language and a tool to enable the modeling of distributed

UI applications. We aim at having a tool that allows developers to

design and execute their application.

5

1.1. CHALLENGES

• Develop a runtime system that is able to execute the orchestration

of UIs, thus a system that communicates with the UIs, supports the

exchange of data, and interacts with the actors of the process.

Next, we focused on the possibility to orchestrate and manage WSNs

with a process modeling language. As of today, WSN logic is mostly cre-

ated with programming languages [62] and the integration with business

processes is via web-services that expose sensor operations as a set of APIs

[7, 78]. In this focus of the research the goal is to support the creation and

execution of applications whose logic spans across the process and the net-

work of sensors. We do not want only to interact with the sensor, meaning

to have the possibility to query the nodes to gather information, but also

to program the logic of a WSN, thus create the operations that are later

executed by the WSN. For example, we have to find a solution that allows

a modeler to specify the logic to sense the CO2 value of meeting rooms

every 10 minutes without asking him to write code for the WSN. This re-

quires to integrate the execution of the process that runs in the back-end

and of the WSN and to unify the modeling language in a way that both

logics can be specified within a single modeling solution. We have thus the

following challenges:

• To provide an easy access to WSN capabilities. Each node of the

network has its own characteristics (e.g., where it is deployed) that

for a process modeler could be difficult to grasp but that are important

to create an application, for example how to specify a specific sensor

inside a specific room. We have to understand how to abstract the

characteristics of the network, such as sensor types, node locations

and the like, in an easy and understandable way that can be used by

a modeler, which is not an expert of WSNs.

• To provide a set of modeling concepts to enable the specification of

6

CHAPTER 1. INTRODUCTION

sensor network functionality. While a WSN expert could be inter-

ested in having control of the low-level functionality of the network, a

modeler would like to have a more high-level view. We have then to

find a trade-off between the complexity of the sensor network and the

high-level modeling language, hiding low-level network details without

limiting the possibility to specify WSN functionality.

• To provide a unified modeling for WSN applications that seamlessly

embraces the needs of the process applications and of the WSN logic

using a single modeling paradigm.

• To create a tool and a language for the creation of process-driven WSN

applications.

• To support the process execution. We have to enable the hybrid ex-

ecution (on the sensor and on the back-end) and we have to support

the exchange of information between the participants.

Then, we focus on the possibility of integrating the crowd as an actor

into a process. With this focus our goal is to give modelers the possibility

to create applications whose logic is partially executed by a crowd. To do

so, we have to give the modeler the possibility to specify what are the tasks

that are executed by the crowd and how the crowd has to execute them

(e.g, competing for a task, as for the logo creation; or submitting results for

an instance of a huge task, as in the photo tagging). Similarly, we have to

provide support for the management of data that the crowd produces and

consumes. This requires to unify the modeling of the crowd characteristics,

the management of data produced and consumed by crowd tasks within

what the process already supports, and to integrate the execution of crowd

tasks and processes. In detail we have to:

• Understand how to specify tasks for the crowd and how these tasks

7

1.2. METHODOLOGY

can be combined into a process logic.

• Define modeling constructs that allows a modeler to specify how each

task for the crowd is executed, that is, how the results are collected,

how workers are evaluated and rewarded.

• Define a modeling language that is able to orchestrate the crowd and

other participants, such as web services. This language has also to

support the management of the data that are produced and consumed

by the crowd.

• Provide a tool that enables the creation of crowd processes.

• Create a runtime environment that is able to execute the logic of the

application, thus that is able to crowdsource a task, collect the results

and manage the data to be used by other tasks.

1.2 Methodology

By analyzing the challenges of each focus we can see that they are similar

and can be summarized as the need for:

• Abstracting new actors, capabilities and characteristics;

• Defining suitable process modeling constructs to specify tasks for the

new actors;

• Enabling the design of the internal execution logic of each actor’s

tasks;

• Creating a language and tools for the creation of extended processes;

• Supporting the execution of processes that span between all the actors

involved in an extended process.

8

CHAPTER 1. INTRODUCTION

To address the challenges we adopt a similar approach in all the three

cases. In Figure 1.1 we schematize the work methodology as a process

model, which is divided in phases:

• The first phase is the analysis of the requirements for the new actor.

We analyze its characteristics, its capabilities and functionalities that

later have to be abstracted in the language. A reference scenario,

taken from a real use-case, is analyzed to understand its composition

needs, deriving requirements for the process language. The output of

this first phase is a set of requirements, for both the components and

the language, that we have to satisfy.

• The second phase is the creation of the components for the new actor

and of the extensions for the language. The components abstract the

actor in a high-level modeling convention, for example a task specific

for the WSN that has dedicated parameters. These components are

paired with an actor’s descriptor, which is a reference document that

describes, at a high-level, the capabilities of each actor. For example,

an actor’s descriptor for a node of a WSN contains information on the

location where it is deployed and on the operations it can execute. In

this phase we conceptualize the extensions of the language to support

the creation of an extended process. The extensions of the language

have to support the design of extended processes and the design of

the actor’s task logic (e.g., the design of a WSN logic that specifies

the sensing of CO2 in a specific room). At the end of this phase we

have a conceptual set of extensions.

• The third phase is a first evaluation of the extended language. In this

phase we implement, on paper, the scenarios and other possible appli-

cations that we have identified. At the same time, when possible, we

test with the help of experts (e.g., our WSN partners) the effectiveness

9

1.2. METHODOLOGY

Automatize the
deployment

Compiler and
Deployer

Analyisis Creation Evaluation

Implementation

Analysis Development

Evaluation

For different
scenarios

~ ~ ~

~

~

Language satisfies all the requirements

Language does not satisfy all the requirements

Conceptual Software

Analyze actor's
capabilities and
characteritics

Analyze possible
applications and

develop a refences
scenario

Actor's descriptor
 and components.

(on paper)

Requirements
and scenario

Create
components to

abstract the actor

Extend the
language to

support the new
actor.

Requirements

Language extensions.
(on paper)

Evaluate the
language by
modelling the

scenario

Evaluate with the
help of a small set

of experts

Understanding of
the effectiveness
of the language

Analyze Business
Process Suites

(Design and
Runtime)

Extend the
modelling tool

Analysis of
extensibility

and of requirements

Enriched
modelling tool

Extend the runtime
environment for

the process Enriched runtime

Analyze
requirements for
the execution of

actors

Create runtime
environment for
the new actor Platform to

execute the
actor's logic

Analyze how to
create the support
between the two. Requirements to

support the
communication.

Create
communication

channels

Middle-layer to
support the

communication

Analyze how to
automatise the

deployment
Compiler and

Deployer

Analyze
requirements for
the execution of

the process Requirement to
support the
execution of

process.
(e.g., what new
constructs have
to be removed)

Design process of
the scenario.

Evaluation of the
modelling

convention.

Execute the
scenario.

Evaluation of the
effectiveness of

the language

Test with users
User study

Compare the
creation with our

language to a
standard

development
Evaluation of the

approach

Requirement to
support the
execution of

actors

Informative

Figure 1.1: The process model that summarizes our work methodology.

10

CHAPTER 1. INTRODUCTION

of the language. The output of this phase is a first assessment for the

extended modeling language. After this phase, if the language misses

some characteristics, we re-iterate from the first phase, otherwise we

move to the next phase.

• The fourth phase is the implementation of the extended language.

This phase has several activities that can be grouped in two sub-

groups: analysis and development. In the analysis group we analyze

existing tools and software systems to understand what are the limita-

tions we have to overcome and the requirements we have to satisfy to

enable the creation and execution of extended processes. As output of

the analysis phase we have a set of conceptual outputs that we use in

the second group, the development. The development group contains

the activities for the creation of the modeling tool, of the runtime for

the process and for the actors, and of the communication channels.

The output of this phase is a toolchain that enable the design and

execution of extended processes.

• The last phase is the evaluation of the overall solution. In this phase

we evaluate the modeling language, with the help of the tools, by

modeling and executing the scenario and other application logic. We

run user studies, when possible, to measure the effectiveness of the

language, and we apply our approach to the development of the sce-

narios to understand if our language simplifies its development. The

output of this phase is a set of informative documents from which

we can understand the success of our language. After this phase, if

problem arises or if we have new process logic to support, we iterate

from the first phase, otherwise the process is completed.

The technical solution, which enables the design and execution of ex-

tended processes, is similar in the three focuses. We created a framework

11

1.3. CONTRIBUTIONS AND RESULTS

that is divided in three layers (each of which is intended to support a step

for the the creation and execution of the processes): design, deployment

and execution. The design phase enables the creation of processes. In

this phase the process modeler creates the extended process by using our

modeling tool. In the deployment phase the compiler takes the modeled

processes and extracts the information needed to create the logic for the

new actors. For example, each WSN task is translated into code for sen-

sors. The compiler also establishes the communication channels to enable

the exchange of information among the involved actors. The deployer takes

the generated code and the process and deploys the former into the run-

time for the actors and the latter into the process engine. The runtime

phase supports the execution of the extended process: the process and the

actor run their logic autonomously, interacting when needed.

1.3 Contributions and Results

We applied this work methodology to the three research focuses. We

started first with distributed UIs. Later, leveraging on the knowledge ac-

quired from the work on distributed UIs, we focused on WSNs, and, tak-

ing advantage from the similarities that WSNs and the crowd have (e.g.,

they are networks of executors, both can execute tasks in an autonomous

fashion), on crowdsourcing. The contributions of the three works can be

summarized as follows.

Distributed UIs. For distributed UIs we developed a solution based on

WS-BPEL (Web Services Business Process Execution Language)[64], which

is the dominant solution to design and execute processes that interact with

participants through web service operations. The approach allows a mod-

eler to integrate UI components directly in a process model, to specify their

12

CHAPTER 1. INTRODUCTION

deployment, and to orchestrate their execution and interaction [27, 28, 29].

In particular, we contribute with:

• An abstraction of UIs that specifies the characteristics of each UI,

such as operations and events, in a way that can be used in a process

language (we called this WSDL4UI).

• An extension of a WS-BPEL to specify the orchestration of UIs (we

called this BPEL4UI). With this extension we enable the modeling of

distributed UI orchestration.

• A visual editor to model processes for distributed UIs. Thus we im-

plemented a tool that allows a modeler to use the BPEL4UI language

to create their processes.

• A runtime environment to support the execution of the process. This

runtime environment also contains the compiler and deployer for the

translation of the process and creation of the UI coordination logic.

These contributions found their application in the MarcoFlow project,

funded by and jointly conducted with Huawei, China (which also deposited

a patent in China [75]). The goal of the project was to solve the problem

of UI and service integration in the context of the service-oriented archi-

tecture for applications whose user interfaces are distributed over multiple

web browsers. In this project we contributed providing the languages and

a prototype.

The publications for this work are:

• A demo at the 8th international conference on Business Process Man-

agement (2010) titled: “MarcoFlow: Modeling, Deploying, and Run-

ning Distributed User Interface Orchestrations” [27].

• A paper at the 8th international conference on Business Process Man-

agement (2010), which was nominated for the best paper award, titled:

13

1.3. CONTRIBUTIONS AND RESULTS

“From People to Services to UI: Distributed Orchestration of User In-

terfaces” [29].

• An article published in the Information Systems journal, Elsevier

(2012), titled “Distributed orchestration of user interfaces” [28].

WSNs. For WSNs, we extended the BPMN (Business Process Modeling

and Notation)[67], which is a standard notation for business process mod-

eling, adding specific constructs to support WSN characteristics and to

model the execution logic of WSN-dedicated tasks. In details we provide:

• An abstraction of WSN capabilities that allows one to describe, in a

high-level fashion, the characteristics of each node of a network. This

abstraction also enables the description of pre-defined operations that

the network can execute as a sort of library that a modeler can use

out of the shelf.

• An extension of BPMN to specify WSN tasks, thus the tasks that are

executed by the network, as part of a process model.

• A set of modeling constructs for WSNs to allow a modeler to specify

the internal logic of WSN tasks. This modeling solution, which we

called WSN task specification, provides high-level constructs for the

modeling of sensing or actuating operations.

• A graphical editor to model processes for WSNs.

These contributions found application in the makeSense project1 whose

goal was to ease the programming of WSNs and the integration with busi-

ness processes [15, 17, 18, 25, 83]. In this project we tightly collaborated

with SAP AG for the creation of the modeling language that we called

1http://www.project-makesense.eu/

14

http://www.project-makesense.eu/

CHAPTER 1. INTRODUCTION

BPMN4WSN and the implementation of the graphical editor. The process

translator and process runtime environment was developed by SAP AG.

Other partners of the projects provided support for the WSN part, creating

the runtime environment for the sensor networks. The modeling solution

we proposed was tested with a user study run by professionals from SAP

[33]; the overall approach and relative outcomes were tested in a real-world

deployment [25].

The publications for this work are:

• A poster at the 8th European Conference on Wireless Sensor Networks

(EWSN 2011), titled “makeSense: Easy Programming of Integrated

Wireless Sensor Networks” [18].

• A demo at the 9th European Conference on Wireless Sensor Networks

(EWSN 2012), titled “From Business Process Specifications to Sensor

Network Deployments” [17].

• A paper at the 34th ACM/IEEE International Conference on Software

Engineering (ICSE), NIER track 2012, titled: “Towards business pro-

cesses orchestrating the physical enterprise with wireless sensor net-

works” [15].

• A paper at the 10th International Conference on Business Process

Management (2012), titled: “Process-Based Design and Integration

of Wireless Sensor Network Applications” [83].

• A paper at the 4th International Workshop on Networks of Cooperat-

ing Objects for Smart Cities 2013 (CONET/UBICITEC 2013), titled:

“makeSense: Real-world Business Processes through Wireless Sensor

Networks” [25].

15

1.3. CONTRIBUTIONS AND RESULTS

The crowd. To support the crowdsourcing of tasks, we extended BPMN

to enable the modeling and execution of crowd processes, we called the

language BPMN4Crowd [50, 82]. In particular we contribute with:

• An extension of the language to support tasks for the crowd. This

extension contains a task specific for the crowd and tasks for the

management of data created and consumed by the crowd.

• A set of modeling constructs to specify the execution logic of crowd

tasks. That is how the crowd executes a task, if the workers compete

for the task (e.g., the creation of a logo), or if they contribute to a

bigger task (e.g., the tagging of pictures).

• A set of patterns that describe common crowd task logics. These

processes are part of the language and describe the execution logic of

a crowd task. A modeler can use the patterns to specify the execution

logic of each task.

• A visual editor to design crowdsourcing processes based on our lan-

guage.

• A runtime environment to support the execution of these processes.

It is composed of a crowdsourcing platform (crowd computer2), which

enables the crowdsourcing of tasks, a process engine, which executes

the process logic, and a communication mechanism to exchange infor-

mation between the two.

The outcomes of this focus of the research are part of the BPM4People3

project, which aims at providing software for the support of Social Business

Process Management. In this project we contributed with the process

2http://www.crowdcomputer.org/
3http://www.bpm4people.org/

16

http://www.crowdcomputer.org/
http://www.bpm4people.org/

CHAPTER 1. INTRODUCTION

language for crowdsourcing and the implementation of the tool and runtime

environment to support the execution.

The publications for this work are:

• A paper at the 5th International Workshop on Business Process Man-

agement and Social Software(BPMS2 2012), titled “Business Pro-

cesses for the Crowd Computer” [50].

• An article to be submitted to the ACM Transactions on the Web

(TWEB) journal, titled “Modeling and Enacting Flexible Crowdsourc-

ing Processes” [82].

1.4 Structure of the thesis

The rest of this dissertation presents in details each of the three focuses.

Chapter 2 presents the work to orchestrate distributed UIs; this chapter

is based on the work presented in [28] and illustrates an initial step to

orchestrate distribute actors. Chapter 3, based on the work presented in

[83], focuses on distributed and autonomous actors and presents the re-

search work to design process-based WSN applications. Chapter 4 focuses

on distributed, autonomous, and intelligent actors, the crowd, presenting

the research to support the creation of crowd processes; this chapter is

based on the work presented in [82]4. In Chapter 5 we conclude the dis-

sertation with an analysis of the research and lessons learned, highlighting

possible future work. All the material of this thesis, plus videos, and pro-

totypes are available online at: http://phd.stefanotranquillini.me5.

4not yet published
5last time checked February 2014

17

http://phd.stefanotranquillini.me

1.4. STRUCTURE OF THE THESIS

18

Chapter 2

Distributed Orchestration of User

Interfaces

In this chapter we present our research on the orchestration of distributed

UIs. This work is a first step toward the orchestration of actors that are

distributed and that interact with processes in a different way compared to

classical actors. With this work we enable the development of mashup-like

applications that require process support by integrating a process language

(BPEL) with the orchestration of distributed UIs. The content of the chap-

ter is an extract of the journal paper [28], which is an extension of the

paper presented at the Business Process Management conference in 2010

[29]. In the same conference we also presented a demo [27], which is the

implementation of the scenario presented in this chapter. A screen cast of

the demo is available online.

19

2.1. INTRODUCTION

2.1 Introduction

Workflow management systems support office automation processes, in-

cluding the automatic generation of form-based user interfaces (UIs) for

executing human tasks in a process. Service orchestrations and related

languages focus instead on integration at the application level. As such,

this technology excels in the reuse of components and services but does not

facilitate the development of UI front-ends for supporting human tasks and

complex user interaction needs, which is one of the most time consuming

tasks in software development [63].

Only recently, web mashups [90] have turned lessons learned from data

and application integration into lightweight, simple composition approaches

featuring a significant innovation: integration at the UI level. Besides web

services or data feeds, mashups reuse pieces of UI (e.g., content extracted

from web pages or JavaScript UI widgets) and integrate them into a new

web page. Mashups, therefore, manifest the need for reuse in UI devel-

opment and suitable UI component technologies. Interestingly, however,

unlike what happened for services, this need has not yet resulted in ac-

cepted component-based development models and practices.

This chapter tackles the development of applications that require ser-

vice composition/process automation logic but that also include human

tasks, where humans interact with the system via possibly complex and

sophisticated UIs that are tailored to help perform the specific job they

want to carry out. In other words, this work targets the development of

mashup-like applications that require process support , including

applications that require distributed mashups coordinated in real time,

and provides design and tool support for professional developers, yielding

an original composition paradigm based on web-based UI components and

web services.

20

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

Patient DB service

yes

no

Further exams
needed?

Report DB
service

Archive report

Get
patients

1
3

4

5

6

7

8

9

12

13

14

10

11

2

Send info to
book exam

Register
booking

Exam DB
service15 11

Figure 2.1: A home assistance application integrating both web services and UI compo-

nents into a process-like orchestration logic.

This class of applications manifests a common need that today is typ-

ically fulfilled by developing UIs in ad hoc ways and using and manually

configuring a process engine in the back-end for process automation. As an

example, consider the scenario in Figure 2.1: The figure shows a home

assistance application for the Province of Trento whose development we

want to aid in one of our projects. A patient can ask for the visit of a

home assistant (e.g., a paramedic) by calling (via phone) an operator of

the assistance service. Upon request, the operator inputs the respective

details and inspects the patient’s data and personal health history in order

to provide the assistant with the necessary instructions (steps 1-5). There

is always one assistant on duty. The home assistant views the description,

visits the patient, and files a report about the provided service (steps 6-7).

The report is processed by the back-end system and archived (steps 8-9). If

no further exams are needed, the process ends (steps 10-11). If exams are

21

2.1. INTRODUCTION

instead needed, the operator books the exam in the local hospital asking

confirmation to the patient via phone (steps 12-13). Upon confirmation of

the exam booking, the system also archives the booking, which terminates

the responsibility of the home assistance service (steps 14-15).

The application in the scenario includes, besides the process logic, two

mashup-like, web-based control consoles for the operator and the assistant

that are themselves part of the orchestration, need to interact with the

process, and are affected by its progress. In addition, the UIs are them-

selves component-based and created by reusing and combining existing UI

components that are instantiated in the users’ web browsers (both web

pages in Figure 2.1 are composed of four components). The two appli-

cations, once instantiated, allow the operator and assistant to manage an

individual request for assistance; each new request requires starting a new

instance of the application.

In summary, the scenario requires the coordination of the individual

actors in the process and the development of the necessary distributed

user interface and service orchestration logic. Doing so requires addressing

a set of challenges (each leading to a specific contribution):

1. Understanding how to componentize UIs and compose them into web

applications;

2. Defining a logic that is able to orchestrate both UIs and web services ;

3. Providing a language and tool for implementing distributed UI com-

positions; and

4. Developing a runtime environment that is able to execute distributed

UI and service compositions.

In Section 2.2 we introduce the state of the art of the related composi-

tion approaches and technologies. In Section 2.3, we derive requirements

22

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

from the above scenario and outline the approach we follow in this chapter,

including the architecture of our MarcoFlow platform that will serve as a

guide throughout the rest of the chapter. In Section 2.4, we then introduce

the concept of HTML/JavaScript UI component and show how defining

a new type of binding allows us to leverage the standard WSDL [20] lan-

guage to abstractly describe them. We then build on existing composition

languages (in particular WS-BPEL [64]) to introduce the notions of UI

components, pages, and actors into service compositions (Section 2.5) and

explain how such extension can be used to model UI orchestrations (Sec-

tion 2.6). In Section 2.7 we discuss the different types of UI orchestrations

that can be implemented. In Section 2.8, we show how we extended the

Eclipse BPEL editor to support design, and we describe how to run UI

orchestrations. Finally, in Section 2.9 we report on the lessons we learned

with MarcoFlow and conclude the chapter in Section 2.10.

2.2 State of the Art in Orchestrating Services, People

and UIs

Workflow or business process management systems are the tradi-

tional solution to coordinate people; web services have been integrated

over the last decade, while support for UI development is still rather

weak. For instance, the Oracle BPEL Proccess Manager (http://www.

oracle.com/technetwork/middleware/bpel) uses Workflow Services to

handle the work-lists of each user and to allow them to perform their

tasks. The tool provides two solutions for creating user interfaces: auto-

matic generation, where the tool generates the forms, and custom gener-

ation, which enables the modeler to select the template and the param-

eters to display. Both solutions produce a JSP-based form. Bonita Stu-

dio (http://www.bonitasoft.com) has an extension of the tool to create

23

http://www.oracle.com/technetwork/middleware/bpel
http://www.oracle.com/technetwork/middleware/bpel
http://www.bonitasoft.com

2.2. STATE OF THE ART IN ORCHESTRATING SERVICES, PEOPLE AND UIS

forms. The software allows the developer to use existing form templates;

alternatively, forms can be created using a WYSIWYG interface. Forms

can be customized by hand and exported as portlets. Similarly, also the

tool based on the popular workflow language YAWL [39] and its extension

(YAWL4Film [21]) do not go beyond custom or automatically generated

web forms (based on the Java Server Faces technology). WebRatio BPM

[9] allows the developer to generate WebML [19] web application templates

starting from BPMN process models. The templates can then be refined

by the developer to equip each page (for task execution) with the necessary

data and application functionality, which enables the tool to automatically

generate the necessary application code.

All these solutions provide good means to render input and output pa-

rameters of tasks as HTML forms, which can either be based on pre-defined

form templates or custom forms implemented by the developer. None of

the approaches, however, supports the reuse of third-party UIs (e.g., a

Google map) as first-class application components and, hence, they are

not able to orchestrate them. The synchronization of the two pages in our

reference scenario, requiring direct UI-to-UI communications, is thus out

of the reach of these tools.

In service orchestration approaches, such as BPEL [64], there is no

support for UI design. Many variations of BPEL have been developed,

e.g., aiming at the invocation of REST services [68] or at exposing BPEL

processes as REST services [53]. IBM’s Sharable Code platform [58] follows

a slightly different strategy in the composition of REST and SOAP services

and also allows the integration of user interfaces for the Web; UIs are

however not provided as components but as ad-hoc Ruby on Rails HTML

templates filled at runtime with dynamically generated content.

BPEL4People [3] is an extension of BPEL that introduces the concept

of people task as first-class citizen into the orchestration of web services.

24

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

The extension is tightly coupled with the WS-HumanTask [2] specification,

which focuses on the definition of human tasks, including their properties,

behavior and operations used to manipulate them. BPEL4People supports

people activities in the form of inline tasks (defined in BPEL4People) or

standalone human tasks accessible as web services. In order to control the

life cycle of service-enabled human tasks in an interoperable manner, WS-

HumanTask also comes with a suitable coordination protocol for human

tasks, which is supported by BPEL4People. The two specifications focus

on the coordination logic only and do not support the design of the UIs for

task execution.

The systematic development of web interfaces and applications

has typically been addressed by the web engineering community by means

of model-driven web design approaches. Among the most notable and ad-

vanced model-driven web engineering tools we find, for instance, WebRatio

[1] and VisualWade [37]. The former is based on a web-specific visual mod-

eling language (WebML), the latter on an object-oriented modeling nota-

tion (OO-H). Similar, but less advanced, modeling tools are also available

for web modeling languages/methods like Hera [84], OOHDM [74], and

UWE [48]. These tools provide expert web programmers with modeling

abstractions and automated code generation capabilities for complex web

applications based on a hyperlink-based navigation paradigm. WebML has

also been extended toward web services [57] and process-based web appli-

cations [10]; reuse is however limited to web services and UIs are generated

out of dynamically filled HTML templates.

A first approach to component-based UI development is repre-

sented by portals and portlets [80], which explicitly distinguish between

UI components (the portlets) and composite applications (the portals).

Portlets are full-fledged, pluggable Web application components that gen-

erate document markup fragments (e.g., in (X)HTML) that can however

25

2.2. STATE OF THE ART IN ORCHESTRATING SERVICES, PEOPLE AND UIS

only be reached through the URL of the portal page. A portal server

typically allows users to customize composite pages (e.g., to rearrange or

show/hide portlets) and provides single sign-on and role-based personal-

ization, but there is no possibility to specify process flows or web service

interactions; also the WSRP [65] specification only provides support for

accessing remote portlets as web services.

Finally, the web mashup [90] community has produced a set of so-

called mashup tools, which aim at assisting mashup development by means

of easy-to-use graphical user interfaces targeted also at non-professional

programmers. For instance, Yahoo! Pipes (http://pipes.yahoo.com)

focuses on data integration via RSS or Atom feeds via a data-flow compo-

sition language; UI integration is not supported. Microsoft Popfly (http:

//www.popfly.ms; discontinued since August 2009) provided a graphical

user interface for the composition of both data access applications and

UI components; service orchestration was not supported. JackBe Presto

(http://www.jackbe.com) adopts a Pipes-like approach for data mashups

and allows a portal-like aggregation of UI widgets (so-called mashlets) vi-

sualizing the output of such mashups; there is no synchronization of UI

widgets or process logic. IBM QEDWiki (http://services.alphaworks.

ibm.com/qedwiki) provides a wiki-based (collaborative) mechanism to

glue together JavaScript or PHP-based widgets; service composition is not

supported. Intel Mash Maker (http://mashmaker.intel.com) features a

browser plug-in that interprets annotations inside web pages supporting

the personalization of web pages with UI widgets; service composition is

outside the scope of Mash Maker.

In the mashArt [24] project, we worked on a so-called universal integra-

tion approach for UI components and data and application logic services.

MashArt comes with a simple editor and a lightweight runtime environ-

ment running in the client browser and targets skilled web users. MashArt

26

http://pipes.yahoo.com
http://www.popfly.ms
http://www.popfly.ms
http://www.jackbe.com
http://services.alphaworks.ibm.com/qedwiki
http://services.alphaworks.ibm.com/qedwiki
http://mashmaker.intel.com

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

aims at simplicity: orchestration of distributed (i.e., multi-browser) appli-

cations and complex features like transactions or exception handling are

outside its scope. The CRUISe project [69] has similarities with mashArt,

especially regarding the componentization of UIs. Yet, is does not support

the seamless integration of UI components with service orchestration, i.e.,

there is no support for complex process logic. CRUISe rather focuses on

adaptivity and context-awareness. Finally, the ServFace project [35] aims

to support even unskilled web users in composing web services that come

with an annotated WSDL description. Annotations are used to automat-

ically generate form-like interfaces for the services, which can be placed

onto one or more web pages and used to graphically specify data flows

among the form fields. The result is a simple, user-driven web service or-

chestration. None of these projects, however, supports the coordination of

multiple different actors inside a same process.

As this analysis shows, existing development approaches for web-based

applications lack an integrated support for service orchestration, component-

based UI development, and coordination of users, three ingredients that

instead are necessary to fully implement applications like the one described

in our example scenario.

2.3 Distributed User Interface Orchestration: Defi-

nitions, Requirements, and Architecture

If we analyze the home assistance scenario, we see that the envisioned

application (as a whole) is highly distributed over the Web: The UIs for

the actors participating in the application are composed of UI components,

which can be components developed in-house (like the Patient Profile

component) or sourced from the Web (like the Map component); service

orchestrations are based on web services. The UI exposes the state of the

27

2.3. DISTRIBUTED USER INTERFACE ORCHESTRATION: DEFINITIONS,
REQUIREMENTS, AND ARCHITECTURE

application and allows users to interact with the application and to enact

service calls. The two applications for the operator and the assistant are

instantiated in different web browsers, contributing to the distribution of

the overall UI and raising the need for synchronization.

The key idea to approach the coordination of (i) UI components inside

web pages, (ii) web services providing data or application logic, and (iii)

individual pages, as well as the people interacting with them, is to split the

coordination problem into two layers: intra-page UI synchronization and

distributed UI synchronization and web service orchestration. We call an

application that is able to manage these two layers in an integrated fashion

a distributed UI orchestration [29].

2.3.1 Requirements and approach

Supporting the development of distributed UI orchestrations is a complex

and challenging task. Especially the aim of providing a development ap-

proach that is able to cover all development aspects in an integrated fashion

poses requirements to the whole life cycle of UI orchestrations, in particu-

lar, in terms of design, deployment, and execution support.

Indeed, supporting the design of distributed UI orchestrations requires:

• Defining a new type of component, the UI component, which is able

to modularize pieces of UI and to abstract their external interfaces.

For the description of UI components, we slightly extend WSDL [20],

obtaining what we call WSDL4UI, a language that is able to deal

with the novel technological aspects that characterize UI components

by reusing the standard syntax of WSDL.

• Bringing together the needs of UI synchronization and service orches-

tration in one single language. UIs are typically event-based (e.g.,

user clicks or key strokes), while service invocations are coordinated

28

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

via control flows. In this chapter, we show how to extend the standard

BPEL [64] language in order to support UIs. We call this extended

language BPEL4UI.

• Implementing a suitable, graphical design environment that allows

developers to visually compose services and UI components and to

define the grouping of UI components into pages. BPEL comes with

graphical editors and ready, off-the-shelf runtime engines that we can

reuse. For instance, we extend the Eclipse BPEL editor with UI-

specific modeling constructs in order to design UI orchestrations and

generate BPEL4UI in output.

Supporting the deployment of UI orchestrations requires:

• Splitting the BPEL4UI specification into the two orchestration layers

for intra-page UI synchronization and distributed UI synchronization

and web service orchestration. For the former we use a lightweight

UI composition logic, which allows specifying how UI components are

coordinated in the client browser. For the latter we rely on standard

BPEL.

• Providing a set of auxiliary web services that are able to mediate

communications between the client-side UI composition logic and the

BPEL logic. We achieve this layer by automatically generating and

deploying a set of web services that manage the UI-to-BPEL and

BPEL-to-UI interactions.

Supporting the execution of UI orchestrations requires:

• Providing a client-side runtime framework for UI synchronization that

is able to instantiate UI components inside web pages and to propagate

events from one component to other components. Events of a UI

29

2.3. DISTRIBUTED USER INTERFACE ORCHESTRATION: DEFINITIONS,
REQUIREMENTS, AND ARCHITECTURE

Event buffer/
proxy WSDLs

UI engine client (web browser)UI engine client (web browser)

BPEL4UI editor

Web service
WSDLs

UI component
WSDL4UIs

BPEL4UI Compiler

BPEL engine

UI engine server (web server)

UI engine client (web browser)

UI event bus

BPEL4UI

BPEL

UI2BPEL
communication

BPEL2UI
communication

JSON via
HTTP

XML via
SOAP

SOAP web
services

Application
developer

System
configuration

Design time
Deployment time

Runtime

JS via HTTP

Layout and UI
logic generator

BPEL generator

Comm. services
generator

AB
C

UI components

A B C
UI component container

JSON via
HTTP

XML via
SOAP

XML via SOAP

Layout
configurator

UI partner link
configurator

HTML
templates

UI
compositions

Layout and
UI logic

System components

Document flows
System/human communications
Automatically generated elements

Event
forwarder
Event

forwarder
Event

forwarders

Notification
handler

Notification
handler

Notification
handlers

Event
proxy

Event
proxy

Event
buffer

Event
proxy

Event
proxy

Event
proxy

Users

Figure 2.2: From design time to runtime: overall system architecture of MarcoFlow.

30

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

component may be propagated to components running in the same

web page or in other pages of the application as well as to web services.

• Providing a communication middleware layer that is able to run the

generated auxiliary web services for UI-to-BPEL and BPEL-to-UI

communications. We implement this layer by reusing standard web

server technology able to instantiate SOAP and RESTful web services.

• Setting up a BPEL engine, in charge of orchestrating web services

and distributed UI-to-UI communications, and implementing a man-

agement console for both developers and participants in UI orchestra-

tions, enabling them to deploy UI orchestrations, to instantiate them,

and to participate in them as required.

These requirements and the respective hints to our solution show that

the main methodological goals in achieving our UI orchestration approach

are (i) relying as much as possible on existing standards (to start from a

commonly accepted and known basis), (ii) providing the developer with

only few and simple new concepts (to facilitate fast learning), and (iii)

implementing a runtime architecture that associates each concern with the

right level of abstraction and software tool (to maximize reuse), e.g., UI

synchronization is handled in the browser, while service orchestration is

delegated to the BPEL engine.

2.3.2 Architecture

A possible system architecture that meets the above requirements is shown

in Figure 2.2. It is the architecture of our MarcoFlow platform, which

has been developed jointly by Huawei Technologies and the University of

Trento. For presentation purposes, we discuss a slightly simplified version

and partition its software components into design time, deployment time,

and runtime components.

31

2.3. DISTRIBUTED USER INTERFACE ORCHESTRATION: DEFINITIONS,
REQUIREMENTS, AND ARCHITECTURE

The design part comprises a BPEL4UI editor, which comes with a

UI partner link configurator, enabling the setup of UI components inside

a UI orchestration, and a layout configurator, assisting the developer in

placing UI components into pages. Starting from a set of web service

WSDLs, UI component WSDL4UIs, and HTML templates the application

developer graphically models the UI orchestration, and the editor generates

a corresponding BPEL4UI specification in output, which contains in a

single file the whole logic of the UI orchestration.

The deployment of a UI orchestration requires translating the BPEL4UI

specification into executable formats. In fact, as we will see, BPEL4UI is

not immediately executable neither by a standard BPEL engine nor by the

UI rendering engine (the so-called UI engine in the right hand side of the

figure). This task is achieved by the BPEL4UI compiler, which, starting

from the BPEL4UI specification, the set of used HTML templates and UI

component WSDL4UIs, and the system configuration of the runtime part

of the architecture, generates three kinds of outputs:

1. A set of communication channels (to be deployed in the so-called UI

engine server), which mediate communications between the UI engine

client (the client browser) and the BPEL engine. These channels are

crucial in that they resolve the technology conflict inherently present

in BPEL4UI specifications: a BPEL engine is not able to talk to

JavaScript UI components running inside a client browser, and UI

components are not able to interact with the SOAP interface of a

BPEL engine. For each UI component in a page, the compiler there-

fore generates (i) an event proxy that is able to forward events from

the client browser to the BPEL engine and (ii) an event buffer that is

able to accept events from the BPEL engine and store them on behalf

of the UI engine client. The compiler also generates suitable WSDL

files for proxies and buffers.

32

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

2. A standard BPEL specification containing the distributed UI synchro-

nization and web service orchestration logic (see Section 2.6.1). Unlike

the BPEL4UI specification, the generated BPEL specification does no

longer contain any UI-specific constructs and can therefore be exe-

cuted by any standards-compliant BPEL engine. This means that all

references to UI components in input to the compilation process are

rewritten into references to the respective communication channels of

the UI components in the UI engine server, also setting the correct,

new SOAP endpoints.

3. A set of UI compositions1 (one for each page of the application) con-

sisting of the layout of the page, the list of UI components of the page,

the assignment of UI components to place holders, the specification

of the intra-page UI synchronization logic (see Section 2.6.1), and a

reference to the client-side runtime framework. Interactions with web

services or UI components running in other pages are translated into

interactions with local system components (the notification handlers

and event forwarders), which manage the necessary interaction with

the communication channels via suitable RESTful web service calls.

Finally, the BPEL4UI compiler also manages the deployment of the gen-

erated artifacts in the respective runtime environments. Specifically, the

generated communication channels and the UI compositions are deployed

in the UI engine server and the standard BPEL specification is deployed

in the BPEL engine.

The execution of a UI orchestration requires the setting up and co-

ordination of three independent runtime environments: First, the inter-

action with the users is managed in the client browser by an event-based

JavaScript runtime framework that is able to parse the UI composition

1Details about the format and logic of these UI compositions can be found in [24].

33

2.3. DISTRIBUTED USER INTERFACE ORCHESTRATION: DEFINITIONS,
REQUIREMENTS, AND ARCHITECTURE

stored in the UI engine server, to instantiate UI components in their re-

spective place holders, to configure the notification handlers and event

forwarders, and to set up the necessary logic ruling the interaction of the

components running inside the client browser. While event forwarders are

called each time an event is to be sent from the client to the BPEL engine,

the notification handlers are active components that periodically poll the

event buffers of their UI components on the UI engine server in order to

fetch possible events coming from the BPEL engine.

Second, the UI engine server must run the web services implement-

ing the communication channels. In practice we generate standard Java

servlets and SOAP web services, which can easily be deployed in a common

web server, such as Apache Tomcat. The use of web server technology is

mandatory in that we need to be able to accept notifications from the BPEL

engine and the UI engine client, which requires the ability of constantly

listening. The event buffer is implemented via a simple relational database

(in PostgreSQL, http://www.postgresql.org) that manages multiple UI

components and distinguishes between instances of UI orchestrations by

means of a session key that is shared among all UI components participat-

ing in a same UI orchestration instance.

Third, running the BPEL process requires a BPEL engine. Our choice

to rely on standard BPEL allows us to reuse a common engine without

the need for any UI-specific extensions. In our case, we use Apache ODE

(http://ode.apache.org), which is characterized by a simple deployment

procedure for BPEL processes.

We discuss each of the ingredients in the following.

34

http://www.postgresql.org
http://ode.apache.org

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

2.4 The Building Blocks: Web Services and UI Com-

ponents

Orchestrating remote application logic and pieces of UI requires, first of

all, understanding the exact nature of the components to be integrated,

i.e., web services and UI components.

For the integration of application logic, we rely on standard web service

technologies, such as WSDL-SOAP web services, i.e., remote web ser-

vices whose external interface is described in WSDL, which supports inter-

operability via four message-based types of operations: request-response,

notification, one-way, and solicit-response. Most of today’s web services of

this kind are stateless, meaning that the order of invocation of their opera-

tions does not influence the success of the interaction, while there are also

stateful services whose interaction requires following a so-called business

protocol that describes the interaction patterns supported by the service.

For the integration of UI, we rely instead on JavaScript/HTML UI

components , which are simple, stand-alone web applications that can be

instantiated and run inside any common web browser [24]. Figure 2.3 illus-

trates an example of UI component (the Patient Profile UI component

of our reference scenario), along with an excerpt of its JavaScript code. The

figure shows that, unlike web services, UI components are characterized by:

• A user interface . UI components can be instantiated inside a web

browser and can be accessed and navigated by a user via standard

HTML. The UI allows the user to interactively inspect and alter the

content of the component, just like in regular web applications. UI

components are therefore stateful, and the component’s navigation

features replace the business protocol needed for services.

• Events . Interacting with the UI generates system events (e.g., mouse

35

2.4. THE BUILDING BLOCKS: WEB SERVICES AND UI COMPONENTS

 function PatientProfile(id,divId,params){
 this.backgroundColor = params["backgroundColor"]; // Property
 ...

 this.load = function() { // Initialiazation function
 var mydiv= document.getElementById(this.divId);

mydiv.innerHTML="<div style='overflow:auto; background-color:"+
 backgroundColor + “><h2>No patient selected" + ... ;

 }

 this.show=function(patient){ ... } // Internal function

 this.sendPatientCoord= function(inputArray){ // Event
var outputArray= new Array();
outputArray["latitude"]=parseFloat(this.lat);
outputArray["longitude"]=parseFloat(this.lng);
MarcoFlow.FW.raiseEvent(id,"sendPatientCoord",outputArray);

 }

 this.showPatientProfile= function(inputArray){ // Operation
var patient =inputArray["patient"];
this.lat= patient["latitude"];
this.lng= patient["longitude"];
this.show(patient);

 }
 }

The component's
JavaScript code

Event
Graphical rendering
of the Patient Profile
UI component

Figure 2.3: Graphical rendering and internal logic of a UI component

36

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

Definition

Import

Types Service

Port

Binding

Port Type

Operation

Part

Message

1..N

0..N

1..N

1..N

1..1

1..1
located on

1..1

1..1
accessed by

1..N

1..N

1..N1..N

1..N
1..N

0..1

0..1
0..1

1..N
fault

output

input

Constructor

0..N

JS Binding
Version

JS Function
Name

1..N

UIOperationUIEvent

references

WSDL4UI conventions:
(1) All Operations are either UIOperations, UIEvents, or a Constructor.
(2) UIOperations only have inputs.
(3) UIEvents only have outputs.
(4) The Constructor is unique and has only inputs.
(5) The service's port address points to the JavaScript class of the UI component.

Figure 2.4: Simplified WSDL4UI meta-model (inspired by [23] and extended – via the

gray boxes – toward UI components).

37

2.4. THE BUILDING BLOCKS: WEB SERVICES AND UI COMPONENTS

clicks) in the browser used to manage the update of contents. Some

events may be exposed as component events, in order to communicate

state changes. For instance, a click on the “map” link in Figure 2.3

launches a sendPatientCoord event.

• Operations . Operations enact state changes from the outside. Typ-

ically, we can map the event of one component to the operation of

another component in order to synchronize the components’ state (so

that they show related information).

• Properties . The graphical setup of a component may require the

setting of constructor parameters, e.g., to align background colors or

set other style properties.

In order to make UI components accessible to BPEL, each component

must be equipped with a descriptor that describes its events, operations,

and properties in terms of WSDL operations. As already anticipated in

the previous section, doing so requires extending the standard WSDL de-

scription logic, i.e., its meta-model, from web services to UI components.

The result of this extension is called WSDL4UI . Figure 2.4 illustrates its

meta-model, from which we can see that the extension toward UI compo-

nents occurs via two different techniques:

1. First, we introduce a set of conventions of how the abstract WSDL

constructs can be used to describe UI components. The properties of

the UI component are encapsulated by means of a dedicated construc-

tor operation that can be used to set properties at instantiation time

of the component. Next, all operations specified in the description are

either UIOperations, UIEvents, or a constructor. UIOperations have

only inputs; UIEvents have only outputs; the constructor is an oper-

ation. Finally, the port address of the described service corresponds

38

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

 1 <?xml version="1.0" encoding="utf-8"?>
 2 <wsdl:definitions name="PatientProfile" targetNamespace="http://www.unitn.it/
 3 JS/Patient" ... >
 4 <!-- types definition -->
 5 ...
 6 <!-- massages definition -->
 7 ...
 8 <wsdl:portType name="PatientPortType">
 9 <wsdl:operation name="constructor">
10 <wsdl:input message="tns:constructorMessage"/>
11 </wsdl:operation>
12 <wsdl:operation name="ShowPatientProfile">
13 <wsdl:input message="tns:ShowPatientProfileMessage"></wsdl:input>
14 </wsdl:operation>
15 <wsdl:operation name="SendPatientCoord">
16 <wsdl:output message="tns:SendPatientCoordMessage"></wsdl:output>
17 </wsdl:operation>
18 </wsdl:portType>
19
20 <wsdl:binding name="PatientJS" type="tns:PatientPortType">
21 <js:binding version="1.0" />
22 <wsdl:operation name="constructor">
23 <js:operation jsFunction="load" />
24 </wsdl:operation>
25 <wsdl:operation name="ShowPatientProfile">
26 <js:operation jsFunction="showPatientProfile" />
27 </wsdl:operation>
28 <wsdl:operation name="SendPatientCoord">
29 <js:event jsFunction="sendPatientCoord" />
30 </wsdl:operation>
31 </wsdl:binding>
32
33 <wsdl:service name="PatientProfile">
34 <wsdl:port name="PatientJS" binding="tns:PatientJS">
35 <soap:address location="http://www.unitn.it/JS/Patient.js" />
36 </wsdl:port>
37 </wsdl:service>
38 </wsdl:definitions>

Figure 2.5: Example of WSDL/UI description of a UI component.

39

2.4. THE BUILDING BLOCKS: WEB SERVICES AND UI COMPONENTS

to the URL at which the actual UI component can be downloaded for

instantiation (in form of a JavaScript file).

2. Second, we introduce a new JavaScript binding that allows us to as-

sociate to each abstractly defined operation a JavaScript function of

the UI component. Doing so enables the client-side runtime environ-

ment (the UI engine client) to parse the WSDL4UI description of a

component, to invoke its constructor, and to correctly access events

and operations in JavaScript.

Only WSDL files that conform to these rules are considered correct

WSDL4UI descriptors of UI components. Figure 2.5, for instance, shows

the descriptor of the Patient Profile UI component. Its interface is char-

acterized by three WSDL operations: ShowPatientProfile, SendPatientCoord,

and constructor (lines 9-17), corresponding, respectively, to a UIOpera-

tion, to a UIEvent and to the component’s custructor, as stated in the

JavaScript binding (lines 20-31). In the binding, there are also speci-

fied, through the related jsFunction attributes (e.g., line 23), the actual

JavaScript functions implementing the operations, which are contained in

the file located at the URL defined in the service’s port address (line 35).

For the BPEL engine, in order to interact with a component, the BPEL4UI

compiler introduced in Section 2.3.2 generates a respective event buffer

and event proxy for the UI engine server and equips them with two stan-

dard WSDL descriptors. These descriptors contain the abstract service

description as defined in the WSDL4UI file (the event buffer contains all

operations of the UI components, the event proxy all events), yet their

port addresses point to the newly generated services and their JavaScript

binding is turned into a SOAP binding.

40

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

2.5 The UI Orchestration Meta-Model

Starting from web services and UI components, developing a UI orchestra-

tion requires modeling two fundamental aspects: (i) the interaction logic

that rules the passing of data among UI components and web services and

(ii) the graphical layout of the final application. Supporting these tasks in

service orchestration languages (like BPEL) requires extending the expres-

sive power of the languages with UI-specific constructs.

Figure 2.6 shows the simplified meta-model of BPEL4UI, addressing

these two concerns. Specifically, the figure details all the new modeling

constructs necessary to specify UI orchestrations (gray-shaded) and omits

details of the standard BPEL language, which are reused as is by BPEL4UI

(a detailed meta-model for BPEL can be found, for instance, in [89]). The

code snippet in Figure 2.7 exemplifies the syntax that we use, in order to

express the novel concepts in BPEL4UI.

In terms of standard BPEL [64], a UI orchestration is a process that is

composed of a set of associated activities (e.g., sequence, flow, if, assign,

validate, or similar), variables (to store intermediate processing results),

message exchanges, correlation sets (to correlate messages in conversa-

tions), and fault handlers. The services or UI components integrated by a

process are declared by means of so-called partner links, while partner link

types define the roles played by each of the services or UI components in

the conversation and the port types specifying the operations and messages

supported by each service or component. There can be multiple partner

links for each partner link type.

Modeling UI-specific aspects requires instead introducing a set of new

constructs that are not yet supported by BPEL. The constructs, illustrated

in Figure 2.6, are:

• UI type : The introduction of UI components into service composi-

41

2.5. THE UI ORCHESTRATION META-MODEL

Process

Activity Container

Activity

Catch

Message
Exchange

Correlation
Set

Variable
Partner Link

Page
Name
Description
TemplateURL
UIEngineName
isStartPage

Actor
Name

Place Holder
Name

UI Component
Name

UI Type
WSDL-UI

Property
Name
Value
Type

Partner Link Type

fault handlers

accessible to

contains

rendered in

has

described by

0..N

1..1
0..N

1..1
1..N

1..1

1..1

1..1 0..N

1..1

0..N
described by

0..N

1..1

0..N

0..N

0..N

0..N

1..N

0..N

Figure 2.6: Simplified BPEL4UI meta-model in UML. White classes correspond to stan-

dard BPEL constructs [89]; gray classes correspond to constructs for UI and user man-

agement.

42

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

tions asks for a new kind of partner link type. Although syntactically

there is no difference between web services and UI components (the

JavaScript binding introduced into WSDL4UI comes into play only at

runtime), it is important to distinguish between services and UI com-

ponents as (i) their semantics and, hence, their usage in the model

will be different from that of standard web services, and (ii) the UI

orchestration editor must be aware of whether an object manipulated

by the developers is a web service or a UI component, in order to

support the setting of UI-specific properties.

As exemplified in Figure 2.7, we specify the new partner link type like

a standard web service type (lines 7-10). In order to reflect the events

and operations of the UI component, we distinguish the two roles.

Lines 1-5 define the necessary name spaces and import the WSDL4UI

descriptor of the UI component.

• Page : The distributed UI of the overall application consists of one or

more web pages, which can host instances of UI components. Pages

have a name, a description, a reference to the pages’ layout template,

the name of the UI engine they will run on, and an indication of

whether they are a start page of the application or not (as we will see

in Section 2.7, inside a process model, not all pages allow the correct

instantiation of the process).

The code lines 13-20 in Figure 2.7 show the definition of a page called

“operator”, along with its layout template and the name of the UI

engine on which the page will be deployed; the page is a start page

for the process.

• Place holder : Each page comes with a set of place holders, which

are empty areas inside the layout template that can be used for the

graphical rendering of UI components. Place holders are identified by

43

2.5. THE UI ORCHESTRATION META-MODEL

a unique name, which can be used to associate UI components.

Place holders are associated with page definitions and specified as

sub-elements, as shown in lines 16-19 in Figure 2.7.

• UI component : UI types can be instantiated as UI components. For

instance, there may be one UI type but two different instances of the

type running in two different web pages. Declaring a UI component

in a BPEL4UI model leads to the creation of an instance of the UI

component in one of the pages of the application. Each component

has a unique name.

We specify UI component partner links by extending the standard

partner link definition of BPEL with three new attributes, i.e., isUiCom-

ponent, pageName, and placeHolderName. Lines 25-32 in Figure 2.7

show how to declare the Patient Profile component of our example

scenario.

• Property : As we have seen in the previous section, UI components

may have a constructor that allows one to set configuration properties.

Therefore, each UI component may have a set of associated properties

than can be parsed at instantiation time of the component. We use

simple name-value pairs to store constructor parameters.

Properties extend the definition of UI component link types by adding

property sub-elements to the partner link definition, one for each con-

structor parameter, as shown in lines 30-31 in Figure 2.7.

• Actor : In order to coordinate the people in a process, pages of the

application can be associated with individual actors, i.e., humans,

which are then allowed to access the page and to interact with the UI

orchestration via the UI components rendered in the page. As for now,

we simply associate static actors to pages (using their names); yet,

44

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

 1 <bpel:process name="HomeAssistance" targetNamespace="http://www.unitn.it/
 2 example/HomeAssistance" xmlns:wsdl6="http://www.unitnt.it/JS/Patient" ...>
 3 <bpel:import namespace="http://www.unitnt.it/JS/Patient"
 4 location="Patient.wsdl" importType="http://
 5 schemas.xmlsoap.org/wsdl/" />
 6 ...
 7 <bpel:partnerLinkType name="PatientPL">
 8 <bpel:role name="receive" portType="wsdl6:PatientPortTypeReceive"/>
 9 <bpel:role name="invoke" portType="wsdl6:PatientPortTypeInvoke"/>
10 </bpel:partnerLinkType>
11 ...
12 <bpel4ui:pages>
13 <bpel4ui:page name="operator" templateURL="operator.html"
14 uiEngineName="HAEngine" actorName="SteS"
15 description="the operator page" isStartPage="true" >
16 <bpel4ui:placeHolder name="marcoflow-top-left" />
17 <bpel4ui:placeHolder name="marcoflow-top-right" />
18 <bpel4ui:placeHolder name="marcoflow-bottom-left" />
19 <bpel4ui:placeHolder name="marcoflow-bottom-right" />
20 </bpel4ui:page>
21 ...
22 </bpel4ui:pages>
23
24 <bpel:partnerLinks>
25 <bpel:partnerLink name="PatientProfileUI_operator"
26 partnerLinkType="tns:PatientPL"
27 myRole="receive" partnerRole="invoke"
28 isUiComponent="yes" pageName="operator"
29 placeholderName="marcoflow-top-left">
30 <bpel4ui:property name="backgroundColor" type="xsd:string"
31 value="white" />
32 </bpel:partnerLink>
33 ...
34 </bpel:partnerLinks>
35
36 <!-- orchestration logic definition -->
37 ...
38 </bpel:process>

Figure 2.7: Excerpt of the BPEL4UI home assistance process (new constructs in bold)

actors can easily be assigned also dynamically at deployment time or

at runtime by associating roles instead of actors and using a suitable

user management system.

Actors are simply added to page definitions by means of the actor-

Name attribute, as highlighted in line 14 in Figure 2.7.

The addition of these new concepts to BPEL turns the service orches-

tration language into a language that, in addition to service invocation

logic, is also able to specify the organization of an application’s UI and its

distribution over multiple servers and actors. Our goal in doing so was to

45

2.6. MODELING DISTRIBUTED UI ORCHESTRATIONS

UI operations of the
Exams and Map UI
components

Intra-page UI
synchronization

that can be
executed entirely
on the client side

Distributed UI synchronization and service orchestration that requires mediation
by the BPEL engine. The two events (Receive activities) are correlated by means of a
BPEL correlation set composed of the parameter tuple <UIOrchestrationID, VisitID>,
i.e., an identified assigend by the UI engine and the identifier of the re-quested visit
(carried in the report).

UI events
coming from
the client side

Figure 2.8: Part of the BPEL4UI model of the home assistance process as modeled in the

extended Eclipse BPEL editor (the dashed and dotted lines/arrows have been overlaid as

a means to explain the model).

keep the number of new concepts as small as possible, while providing a

fully operational specification language for UI orchestrations.

2.6 Modeling Distributed UI Orchestrations

The code example in Figure 2.7 shows that the UI-specific modeling con-

structs have a very limited impact on the syntax of BPEL and are mostly

concerned with the abstract specification of the layout and the declaration

of UI partner links. The actual composition logic, instead, relies exclu-

sively on standard BPEL constructs. Yet, since UI components are differ-

ent from web services (e.g., it is important to know in which page they are

46

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

running), modeling UI orchestrations requires a profound understanding

of the necessary modeling constructs and their semantics. In particular,

it is important to understand the effect that individual modeling patterns

have on the execution of the final application, i.e., the semantics of the

patterns, and which other modeling tasks (data transformations, message

correlations, and layout design) are necessary to fully specify a working UI

orchestration.

2.6.1 Core UI orchestration design patterns

The first step toward this understanding is mastering the core design pat-

terns that characterize UI orchestrations. As hinted at in Section 2.3 and

illustrated in Figure 2.8, we distinguish three main design patterns:

• Intra-page UI synchronization : The small model block (a BPEL

sequence construct) in the right part of Figure 2.8 shows the internals

of step 7 in Figure 2.1. When the assistant clicks on the “map” link,

the patient’s address is shown on the Google map. In BPEL terms,

we receive a message from the Patient Profile UI component (the

event) and forward it to the operation of the Map component, both

running inside the web page of the assistant. The pattern, hence,

implements a so-called intra-page UI synchronization, i.e., a synchro-

nization of UI components that run inside a same page. From a run-

time point of view, this kind of UI synchronization can be performed

entirely on the client side without requiring support from the BPEL

engine.

• Distributed UI synchronization : The bigger model block (again

a BPEL sequence construct) in the left part of the figure, instead,

contains a distributed UI synchronization that cannot be executed on

the client side only, as the two UI components involved in the com-

47

2.6. MODELING DISTRIBUTED UI ORCHESTRATIONS

munication (Visit Report and Exams Booking) run in different web

pages. The event generated upon submission of a new report is pro-

cessed by the BPEL engine, which then decides whether an additional

exam needs to be booked by the operator or not. As such, the BPEL

engine manages two independent concerns, i.e., the forwarding of the

event from one UI component to another and the evaluation of the

condition, of which only the former is necessary to implement a dis-

tributed UI synchronization pattern. The execution of a distributed

UI synchronization pattern always requires the cooperation of both

the BPEL engine and the client-side runtime environment.

• Service orchestration : The distributed UI synchronization also

involves the orchestration of the Report DB and Exam DB web services,

as well as some BPEL flow control constructs. In fact, the modeled

logic checks whether the report expresses the need for further exams

or not. In either case, the further processing of the report involves the

invocation of either one or both the web services, in order to correctly

terminate the handling of a visit request. The pure invocation of web

services represents a service invocation pattern, whose execution can

be entirely managed by the BPEL engine without requiring support

from the client-side runtime environment.

The BPEL4UI excerpt in Figure 2.8 shows that, when modeling a UI or-

chestration, it is important to keep in mind who communicates with whom

and which UI component will be rendered where. Depending on these two

considerations, the modeled composition logic will either be executed on

the client side, in the BPEL engine, or in both layers. For instance, it

suffices to associate the Map component with a different page, in order to

turn the intra-page UI synchronization in the right hand side of Figure 2.8

into a distributed UI synchronization and, hence, to require support from

48

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

the BPEL engine.

2.6.2 Data transformations

When composing services or UI components, it is not enough to model

the communication flow only. An important and time-consuming aspect is

that of transforming the data passed from one component to another. With

BPEL4UI we support all data transformation options provided by BPEL by

means of its Assign construct. This allows us to leverage on technologies,

such as XPath, XQuery, XSLT, or Java, for the implementation of also

very complex data transformations.

Yet, it is important to keep in mind that the type of data transfor-

mation may affect the logic of the UI orchestration: For instance, if the

SetPosition activity in the top-right corner of Figure 2.8 does not trans-

form data at all or only performs simple parameter mappings (with the

BPEL Copy construct), we fully support the execution of the intra-page

UI synchronization in the client browser. If instead a more complex trans-

formation is needed, we rely on the BPEL engine to perform it.

The reason for this choice is that UI synchronization typically requires

the exchange of only simple data (e.g., parameter-value pairs), which do not

require complex transformation capabilities like the ones we need when in-

teracting with web services. Supporting only simple parameter-parameter

mappings on the client side allows us to keep the client-side runtime frame-

work as lightweight as possible, without however giving up any of BPEL’s

data transformation capabilities.

2.6.3 Message correlation

Independently of the format of data, UI orchestrations may require a care-

ful design of the messages used in the orchestration and of how these must

49

2.6. MODELING DISTRIBUTED UI ORCHESTRATIONS

be correlated, in order to enable the runtime environment to dispatch each

message to its correct UI orchestration instance. In fact, just like in con-

ventional workflow or service orchestration engines, there may be multiple

instances of UI orchestrations running concurrently in a same BPEL/UI

engine. Message correlation is required in all those cases where the or-

chestration involves multiple entry points into the orchestration logic (e.g.,

callbacks from external web services or a condition that requires input from

two different events).

If we look at our modeling example in Figure 2.8, we see that the intra-

page UI synchronization in the top-right corner does not involve multiple

entry points. It is therefore not necessary to implement any correlation

logic in BPEL4UI, in order to propagate the SendPatientCoord event

from the Patient Profile UI component to the ShowPoint operation

of the Map UI component. Since both UI components involved in this

synchronization run inside the same web page and, therefore, there is no

ambiguity regarding which instance of the Map UI component is the target

of the SendPatientCoord event. In Section 2.7, we will see that this is not

always the case.

The distributed UI synchronization, instead, involves two UI events from

two different actors and, hence, different pages: ReportCompleted and

BookingConfirmed. In this case, it is necessary to configure a so-called

correlation set (in BPEL terminology) that allows the BPEL engine to

understand when two instances of those events belong to a same process

instance. In the example in Figure 2.8, we use UIOrchestrationID (pro-

vided by the UI engine) and VisitID (part of the report) as correlation

set.

50

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

2.6.4 Graphical layout

Finally, the complete definition of a UI orchestration also requires the

design of suitable HTML templates and the assignment of UI components

to their place holders inside the pages. As our goal is the development of an

enabling middleware layer for UI orchestrations, for the layout templates

we rely on standard web design instruments and technologies (e.g., Adobe

Dreamweaver). The only requirement the templates must satisfy is that

they provide place holders in the form of HTML DIV elements that can

be indexed via standard HTML identifiers following a predefined naming

convention: <div id="marcoflow-..."></div>.

Figure 2.9, for instance, depicts the empty HTML template of the as-

sistant’s web page, whose filled version we have already seen in Figure

2.1. The template is a simple HTML page with a page title and the four

uniquely identified placeholders to be filled with UI components at runtime.

Differently from dynamic HTML and most of the approaches discussed in

Section 2.2, in which the template typically also contains the formatting

logic for the data to be rendered inside the place holders, in our case the

template only identifies the location of the UI components; the rendering

of content is then managed autonomously by the UI components.

Once all HTML templates for all pages in the UI orchestration are de-

fined, the definition of the pages and the association of UI partner links

with place holders therein proceeds as exemplified in Section 2.6.

2.7 Types of UI orchestrations

So far we have seen how BPEL4UI supports the development of distributed

UI orchestrations. Yet, developing correct UI orchestrations is still a non-

trivial task, in that the distribution of UI synchronizations and service

orchestrations over two different runtime engines (the UI engine and the

51

2.7. TYPES OF UI ORCHESTRATIONS

PlaceHolder
 marcoflow-top-left

PlaceHolder
 marcoflow-bottom-right

PlaceHolder
 marcoflow-top-right

PlaceHolder
 marcoflow-bottom-left

Figure 2.9: The HTML template of the assistant’s web page highlighting the empty place

holders for UI components.

BPEL engine) complicates the instantiation logic of distributed UI orches-

trations, an aspect that developers should understand thoroughly. As illus-

trated in Figure 2.10, we identify four main types of UI orchestrations that

can be implemented by means of the core patterns described in Section

2.6.1, i.e., pure UI synchronizations, pure service orchestrations, UI-driven

UI orchestrations, and process-driven UI orchestrations. The developer

needs to master these configurations if he doesn’t want to encounter unex-

pected behaviors or errors at runtime. We discuss each of these configura-

tions next.

2.7.1 Pure UI synchronizations

From a UI point of view, the basic type of UI orchestration is represented by

applications that involve UI components only and, hence, exclusively focus

on the synchronization of UIs via events. Typical examples of this type of

UI orchestration are UI-based mashups, portlets/portals, applications that

integrate widgets/gadgets, or similar component-based UI applications.

52

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

Page 2

Page 1

Page 2

A

a

B

C

A

B C

b c

dd

a

c

b

f

e

Page 1

Page 1

A B

Page 2

C D

a

c

b

f

e

d

Legend

Page 1

A

a

Page with one
UI component

Invocation of a web service

UI synchronization event

Data flow

Start node End node

(a) Pure UI synchronization of multiple UI components

(b) Pure service orchestration of multiple web service invocations

(c) UI-driven UI orchestration with UI components
triggering the execution of service orchestration
instances

(d) Process-driven UI orchestration with
the process instance enabling/disabling the
access to pages

Orchestration part
that is instantiated
multiple times

Incoming message/event

Figure 2.10: The four types of (UI) orchestration supported by BPEL4UI and the Mar-

coFlow system.

53

2.7. TYPES OF UI ORCHESTRATIONS

Figure 2.10(a) illustrates a simple example: There are two concurrent

pages, possibly associated with two different users and with a total of three

UI components, one in Page 1 and two in Page 2. By interacting with

the UI component A, the user can generate an event that synchronizes

component B in the other page; likewise, another user can interact with

B and synchronize both A and C, while C allows the user to synchronize

again B. The three UI components are instantiated in their web pages and

run until the users close their web browsers or navigate to another web

page. As such, UI components are stateful: their UI constantly reflects

the interaction state of the users with the component (e.g., in terms of

selections or navigation actions performed). During their lifetime, each UI

component may generate multiple events as output and accept multiple

events as input. That is, while in one instance of the UI orchestration in

Figure 2.10(a) each UI component is instantiated only once, there may be

multiple instances of synchronization events (the dashed arrows).

Supporting the execution of this type of UI orchestration requires the

presence of both a client-side runtime environment and a server-side envi-

ronment. Specifically, the intra-page UI synchronization of B and C can be

handled in the client, since both UI components run inside the same web

page, i.e., web browser. The synchronization of A and B, instead, requires

help from the server side, in that they implement a distributed UI synchro-

nization. Therefore, the event proxy on the server side (cf. Figure 2.2) is

needed, in order to forward communications among the two web pages.

Sending an event through the event proxy raises the need for correla-

tion, in that there may be multiple instances of a same UI orchestration

running concurrently and, therefore, it is necessary to identify which event

belongs to which instance. The solution we adopt is to add to each gen-

erated UI event a so-called UIOrchestrationID, which uniquely identifies

the UI orchestration instance. The identifier is generated by the UI engine

54

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

at application startup and shared with all the users participating in the

orchestration. This feature is automated in our runtime framework and

does not require any specific modeling at design time.

2.7.2 Pure service orchestrations

From a web service point of view, the basic type of UI orchestration is

the one that completely comes without UI, i.e., a common web service

orchestration. Although this configuration represents a “degenerated” UI

orchestration (given that there is no UI), it is fully supported by BPEL4UI

and deserves an explanation in that it represents the building block for the

next UI orchestration types. Typical examples are order processing logics

or payment processes.

Figure 2.10(b) provides an example: There are six web service invo-

cations (specifically, synchronous request-response invocations) and one

incoming event arranged in a typical service orchestration. For presenta-

tion purpose, we adopt a data flow logic to model the orchestration, as for

the discussion in this section it is not important to explicitly distinguish

between control and data flow. The important aspect of the model is that,

upon instantiation of the service orchestration, each element in the model

is instantiated exactly once – including the data flow connectors (differ-

ently from what happened with the UI synchronization events in Figure

2.10(a)). The data flow connectors rule both which service invocation can

be performed and how data are passed from one invocation to another.

Executing such a service orchestration requires support from an orches-

tration engine/server, such as a BPEL engine, which is able to instantiate

on orchestration model, to invoke the services as prescribed by the model,

to transform data formats between service invocations, to accept incoming

notifications or events, and to keep the state of the progress in the orches-

tration instance. The actual services run remotely, and are outside the

55

2.7. TYPES OF UI ORCHESTRATIONS

scope of the orchestration environment.

The important aspect of the model in Figure 2.10(b) is the incoming

event (graphically represented by the letter in the circle), as the event

raises the need for correlation in the service orchestration. In fact, without

the incoming event, the model would consist only of synchronous service

invocations, which could be processed easily step by step by the orches-

tration engine. The engine would simply invoke a service, wait for its

response, pass the response to the next service, and so on till the whole

orchestration logics ends. In the presence of the incoming event, instead,

the engine must be able to correlate each incoming event it receives with

the correct target orchestration instance of the event. Doing so requires

sharing at least a simple key or identifier (the correlation set) among the

running orchestration instance and the incoming event. For instance, the

name of the person who starts the orchestration instance could be used as

correlation identifier, as such could be known to both the engine and the

external service sending the event – provided that there is always only one

instance per person running in the engine.

2.7.3 UI-driven UI orchestrations

A “full” UI orchestration, however, is characterized by the joint use of both

UI synchronizations and service orchestrations inside a same application.

Depending on which of these two ingredients dominates the behavior of

the application, we can have either UI-driven orchestrations (where ser-

vice orchestrations are enacted by the UI) or process-driven orchestrations

(where the UIs are enacted by the service orchestration). Here we focus on

the former type, in the next section we discuss the latter. For instance, a

web mashup that integrates RSS data from a Yahoo! Pipe may invoke the

pipe processing logic multiple times while running.

Figure 2.10(c) abstracts this type of UI orchestration: There are two

56

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

pages with respective UI components and two service orchestration flows.

While the intra-page UI synchronization of B and C does not involve any

web service, the distributed UI synchronizations of A and B are based on

intermediate service invocations in both directions. Just like we can have

multiple UI synchronization events (the dashed arrows) for each instance

of UI component, we now also have for each synchronization of A and B

a new instance of the intermediate service orchestration logic (graphically

represented by the dashed box around the service orchestrations).

In order to execute such a UI-driven UI orchestration, we need to join

also the power of the runtime environments of the two previous configu-

rations. Specifically, UI synchronizations involving service invocations can

no longer be performed with a simple event proxy on the server side only

(like in pure UI orchestrations); instead, the synchronization requires a

tight integration of the client-side runtime environment for UIs with the

server-side service orchestration engine. Specifically, a UI synchronization

event from one page must be able to instantiate and provide input to a

service orchestration logic on the server side, which, in turn, must be able

to deliver its output in form of a UI synchronization event sent to another

page. That is, we need to have a full two-way communication channel be-

tween the two runtime environments, a feature that is implemented by the

UI components’ event proxies and event buffers in the UI engine server.

In terms of correlation, all UI synchronization events carry the UIOrchestrationID,

as already introduced for pure UI orchestrations, while the service or-

chestration parts may require additional correlation information inside

BPEL4UI, depending on their individual topology. For instance, the ser-

vice orchestration enacted by propagating an event from B to A only involves

synchronous service invocations and does therefore not require any addi-

tional correlation information. The other service orchestration in Figure

2.10(c), instead, also involves the reception of an external event, which re-

57

2.7. TYPES OF UI ORCHESTRATIONS

quires the setup of an additional correlation identifier, as already described

for Figure 2.10(b).

2.7.4 Process-driven UI orchestrations

Finally, we have a process-driven UI orchestration each time we have an

application that brings together UI synchronizations and service orches-

trations in which the service orchestration dominates over the UI synchro-

nization. For instance, workflow management or, more in general, business

process management applications that integrate both web services and UI

components and that orchestrate tasks (work items) to be performed by

either users or automated resources, such as our reference scenario, can be

considered of this type of UI orchestration.

Figure 2.10(d) schematically illustrates the situation: The application

starts with a pure service orchestration that enacts a set of services and,

only after the successful processing of services a, b, c, and d, allows the

users to access their respective web pages. Inside the pages, there are

UI components that allow the users to interact with the pages and to

perform and conclude their tasks, which causes the UI orchestration to

leave again and disable the pages and to proceed with the processing of

the remaining part of the service orchestration. That is, in process-driven

UI orchestrations pages are invoked like services, but they are targeted at

users and, therefore, expose a UI the users can interact with. The overall

UI orchestration keeps waiting until the user successfully completes his/her

task, which is communicated via an outgoing UI synchronization event.

In terms of required execution support, process-driven UI orchestrations

are similar to UI-driven UI orchestrations, with the difference that the main

service orchestration is instantiated only ones, not multiple times.

Correlation requirements are similar, too. As shown in Figure 2.10(d),

if there is an incoming event that needs to be injected into a running in-

58

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

stance of the UI orchestration, correlation is needed; otherwise, the whole

UI orchestration can also be processed without correlation. UI synchro-

nization events are again managed via the orchestration’s unique identifier

associated by the UI engine.

2.7.5 Complex UI orchestrations

The four types of UI orchestrations above represent those classes of UI or-

chestrations that characterize the most important application scenarios we

encountered throughout the development of the MarcoFlow system. Yet,

UI orchestrations may easily also get more complex. For instance, it is

possible to use a process-driven UI orchestration (including again UIs and

actors) in place of any of the simple service orchestrations in Figure 2.10(c),

or it is possible to expand the simple pages in Figure 2.10(d) into complete

UI-driven UI orchestrations (including new service orchestrations), or we

could establish UI synchronizations among the two pages in Figure 2.10(d),

and similar. While these kinds of UI orchestrations are theoretically possi-

ble and supported by BPEL4UI and MarcoFlow, luckily it is hard to find

practical examples that indeed require such a level of complexity.

2.8 Implementing and Running UI Orchestrations

In order to ease the development, deployment, and execution of UI or-

chestrations, MarcoFlow comes with two tools that aid the different actors

involved: a graphical BPEL4UI editor for developers and a web-based man-

agement console for both developers and users.

The graphical BPEL4UI editor for developers has been implemented

as an extension of the Eclipse BPEL editor (http://www.eclipse.org/

bpel/) and comes with (i) a panel for the specification of the pages in

which UI components can be rendered and (ii) a property panel that al-

59

http://www.eclipse.org/bpel/
http://www.eclipse.org/bpel/

2.8. IMPLEMENTING AND RUNNING UI ORCHESTRATIONS

lows the developer to configure the web pages, to set the properties of UI

partner links, and to associate them to place holders in the layout.

The screenshot in Figure 2.11 shows the editor at work. The layout

structure of the editor is the same of the standard Eclipse editor, except

for some differences in the right and bottom side. On the right side, now

it is also possible to define the pages of the UI orchestration (as elements

of the Pages group). Selecting a page in the list shows the respective

details in the Properties panel in the lower part of the figure and allows

the developer to assign the actor, i.e., the user that will be allowed to access

the page, and the HTML template for the page. Still on the right side,

where usually there are only partner links for web services, now it is also

possible to define UI partner links for UI components. Selecting a partner

link from the list again shows its details in the Properties panel. Ticking

the UI component checkbox turns the partner link into a UI partner link

and allows the developer to define in which page and place holder inside

the page the UI component will be rendered. The actual composition logic

is specified in the modeling canvas in the central part of the editor.

The web-based management console helps (i) developers deploy

ready UI orchestrations and (ii) users in instantiating and participating in

running UI orchestrations. Deploying a new UI orchestration requires the

developer to pack all the project files (web service WSDLs, UI component

WSDL4UIs, BPEL4UI specification, HTML templates, and the system

configuration) into a single archive file and to upload it to the manage-

ment console. Doing so allows the developer to deploy the application

by means of a simple mouse click, which invokes the BPEL4UI compiler

and generates the standard BPEL file, the event buffers and event proxies,

their respective WSDL files, and the UI compositions and then deploys all

generated artifacts in the respective runtime environments.

Figure 2.12, instead, shows the interface of the management console

60

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

Figure 2.11: The extended Eclipse BPEL editor for developing UI orchestrations at work.

for regular users, where they can see which UI orchestrations have been

deployed they have also access to. Specifically, a user can either start a new

instance of UI orchestration (via the upper list in the figure) or participate

in an already running instance of UI orchestration (via the lower list in the

figure), which – in the case of the operator and assistant in our example

scenario – leads him/her, for example, to one of the pages in Figure 2.1.

The operator is allowed to instantiate the orchestration, and the assistant

is enabled to participate.

The MarcoFlow system shown in Figure 2.2 is fully implemented and

running (a demo of the tool is available at http://goo.gl/XqdK79). In

our test setting, we run the UI engine server and the BPEL engine on

the same machine, yet these components could also easily be distributed

over different physical machines, a feature that is already supported by

our code generator. Developing the MarcoFlow platform in a way that is

61

http://goo.gl/XqdK79

2.8. IMPLEMENTING AND RUNNING UI ORCHESTRATIONS

Figure 2.12: The management console for developers and users allowing them to deploy,

instantiate, and participate in UI orchestrations.

fully functioning required taking some decisions on the technologies to be

used. As shown in this chapter, we opted for BPEL as service orchestration

engine, since BPEL natively supports communication with SOAP/WSDL

web services, a requirement that stems from our scenario. We opted for

JavaScript UI components, as this represents the current trend in mashups

and web-based UI development. Yet, the contributions of this chapter are

independent of these choices and more conceptual than technological (cf.

Section 2.7). In fact, we can easily imagine substituting the BPEL editor

with a BPMN editor, of course adding the necessary UI-specific exten-

sions to it. Given the standardized mapping from BPMN 2.0 to BPEL,

this would not affect the runtime part of the architecture. If we substi-

tute the BPEL engine with another workflow or business process engine

(provided that such already supports interaction with web services), this

would require a change in the runtime architecture and the generated pro-

cess model. But it would be straightforward and not change the philosophy

62

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

of the overall platform. Similarly, if we want to manage UI integration at

the server-side (e.g., via server-side scripting languages like Perl or PHP,

ASP.Net or JSP), this could be achieved, but for the cost of lower perfor-

mance. User interaction occurs at the client side and, hence, UI events are

generated inside the client browser. Using server-side technologies means

going through the server each time we have a simple intra-page UI syn-

chronization, which degrades the overall user experience. It could however

be possible to use different client-side UI componentization technologies,

such as W3C widgets (again based on JavaScript), for which we are already

studying suitable mashup models [88].

2.9 Lessons Learned

We conclude the chapter with a few considerations on lessons learned while

developing and applying MarcoFlow.

One observation is that developers seem to prefer a web-based environ-

ment rather than an Eclipse-based one. We had chosen Eclipse because

it already comes with an open-source editor for BPEL, and we felt it was

rather powerful and reasonably easy to extend as opposed to developing a

new editor. In the end, working with the editor took a lot of time, so that

we did not get the benefits of a web-based editor nor the time savings we

hoped for.

A second issue relates to the number of conversions of messages from

SOAP to REST and vice versa. In the current approach, even when two

REST services are communicating we always need to SOAP-ify them.

While we aim to minimize this kind of conversions as much as possible

(by keeping intra-page UI synchronizations on the client), this limits the

scalability if a single UI engine is used.

A limitation of the current implementation is that our notification han-

63

2.9. LESSONS LEARNED

dlers inside the client browser continuously poll the server-side event buffers

for updates, which further produces communication overhead and possibly

delays the forwarding of events. With the growing support for HTML 5

web sockets, we will approach this limitation by pushing events from the

server to the client.

Another limitation is the hard-coded assignment of users to pages. In

our future work we will address this by investigating how resource managers

known from workflow management systems can be adapted to our needs.

Instead of assigning concrete users, we will therefore assign users roles to

pages, which can then be instantiated either at deployment time or runtime.

An interesting finding we did not realize in the beginning is that, since

UI orchestrations intermix stateless elements (web service invocations)

with stateful elements (UI components) the need for correlation in UI or-

chestrations is higher than in pure web service orchestrations. Design-time

and runtime constructs here may be needed to simplify specifications and

make the engine more scalable.

However the main considerations that will drive our research are in

terms of usability and applicability. While working with BPEL was a

strong requirement initially, many companies are increasingly considering

mashup languages for non mission-critical applications, targeting relatively

simple ways to integrate and present web-accessible data. This would fit

well with the MarcoFlow approach, which can be extended to deal with

mashup languages.

Finally, working with MarcoFlow and experimenting its usage helped us

strengthen our belief that BPEL, its variations, and actually even mashup

languages are not suitable for end users, no matter how good development

tools are. Our conclusion here is that if we want to bring development

power to the end users or at least to knowledge workers we need to define

domain-specific models and tools rather than general purpose ones. This

64

CHAPTER 2. DISTRIBUTED ORCHESTRATION OF USER INTERFACES

is what is presented in [16] by members of our research group. Yet, we also

recognize that UI orchestrations are intrinsically complex, an observation

that already inspired a critical survey paper on “process mashups” [26], in

which we conclude that the kind of development scenarios supported by

MarcoFlow hardly suits the capabilities of less-skilled developers or end

users.

In summary, we are confident that the technological limitations of Mar-

coFlow (no web-based editor, message conversations, polling, user assign-

ments) can easily be addressed in our future work. The conceptual limi-

tations, that is, the intrinsic complexity of UI orchestrations, however, we

cannot eliminate.

2.10 Conclusion

The spectrum of applications whose design intrinsically depends on a struc-

tured flow of activities, tasks or capabilities is large, but current workflow

or business process management software is not able to cater for all of

them. Especially lightweight, component-based applications or Web 2.0

based, mashup-like applications typically do not justify the investment in

complex process support systems, either because their user basis is too

small or because there is a need only for few, simple applications. Yet,

these applications too demand for abstractions and tools that are able to

speed up their development, especially in the context of the Web with its

fast development cycles.

We introduced an approach to what we call distributed UI orchestra-

tion, a component-based development technique that introduces a new

first-class concept into the workflow management and service composition

world, i.e., UIs, and that fits the needs of many of today’s web applica-

tions. We proposed a model for UI components and showed how dealing

65

2.10. CONCLUSION

with them requires extending the expressive power of a standard service

composition language, such as BPEL. We equipped the language with a

modeling environment and a code generator able to produce artifacts that

can be executed straightaway by our runtime environment, which sepa-

rates intra-page UI synchronization from distributed UI synchronization

and service orchestration. The result is an approach to distributed UI

orchestration that is comprehensive and free.

A strong point of the described approach is that it recognizes the need

for abstraction and more expressive models and languages at design time,

while – thanks to its strong separation of concerns and powerful code gen-

erator – it does not require any new language or system at runtime.

While the intrinsic complexity of UI orchestrations prevents the adop-

tion of MarcoFlow by less skilled developers or end users (which was never

the goal of the project), MarcoFlow does provide skilled developers with

more expressive power compared to their current instruments: the experi-

enced BPEL developer is able to integrate UIs and people into his service

compositions; the mashup developer is able to design mashups that also

involve long-running service orchestrations and user collaborations.

66

Chapter 3

Process-Based Design and

Integration of Wireless Sensor

Network Applications

In this chapter, leveraging on the knowledge gained from the research on

distributed UIs, we focus on actors that are not only distributed but also

autonomous. We present here the work to enable the modeling and exe-

cution of processes that integrate, coordinate, and control Wireless Sensor

and Actuator Networks (WSNs). As in the previous chapter also in this we

present an extension of a process language (BPMN) with domain-specific

constructs and with modeling components to abstract the capabilities of a

network at an higher level. This chapter is an extension of the work pre-

sented at the Business Process Management conference in 2012 [83]. In

this chapter we added an explanation of the new constructs we introduced

and a section on the evaluation of the approach made within the makeSense

project.

In the same context we also published other papers that present the over-

all approach [15, 17, 18, 25] which are collected and available online.

67

3.1. INTRODUCTION

3.1 Introduction

Today there is still lack of high-level, model-driven programming tools for

Wireless Sensor and Actuator Network (WSN) applications and the in-

tegration with enterprise services requires significant effort and expertise

in embedded programming of WSNs. Organizations are reluctant to in-

stall large-scale WSNs, as this still requires significant, costly, low-level

programming of sensing and actuation logic for the WSN, in addition to

the physical deployment of the WSN nodes (e.g., inside a building). Ad-

ditionally, setting up the communication channel between a WSN and an

enterprise’s information system requires an even larger set of technologies

and manually writing of custom code. Domain experts typically lack the

necessary low-level programming skills.

To foster widespread adoption and more efficient use of sensor networks

for enterprise information systems, a need for a specifically tailored integra-

tion technique that is able to bring together sensor networks and business

applications [43] is perceived. The aim is to drastically improve the ease

of programming of WSNs by enabling the graphical modeling of WSN ap-

plications, leaving low-level details to a model compiler and a run-time

system. WSN programming should be accessible to domain experts, such

as business process modelers. They should further be empowered to de-

sign the WSN’s interaction with enterprise information systems using the

methods of business process modeling they are familiar with. Our approach

aims to:

• Provide a conceptual model that abstracts typical WSN programming

knowledge into reusable tasks that can be integrated into modeling

notations, such as the Business Process Modeling Notation (BPMN).

• Develop an extension of BPMN [67], BPMN4WSN, that enables the

graphical modeling of WSN applications and their integration with

68

CHAPTER 3. PROCESS-BASED DESIGN AND INTEGRATION OF WIRELESS
SENSOR NETWORK APPLICATIONS

BPs based on an abstraction layer that hides low-level details of the

sensor network.

• Introduce tools that enable the design, deployment, and execution

of integrated WSN/BP applications. We do not reuse existing APIs

toward the WSN; we program the WSN and automatically generate

the necessary APIs.

• Evaluate our approach with a realistic prototype deployment, includ-

ing a self-optimizing run-time system layer, and a report on the first

experiences with its usage in the context of the EU project makeSense.

In order to create applications that span both a BPMN process and a

WSN application, knowledge in both fields is required. We do not expect

the application developer (the domain expert) to model an executable pro-

cess. Rather, we suggest a two-phase approach, where a descriptive process

model is created by the developer, which is then refined by a more tech-

nical system developer using the WSN extension integrated in the process

diagram.

In the following, we outline an application scenario to better describe our

approach. Then, in Section 3.3, the typical characteristics and components

of WSNs are analyzed. In Section 3.4 it is outlined how the challenges

identified in the scenario are approached conceptually, and in Section 3.5

the according extension of BPMN is described. Subsequently in Section 3.6

the implementation of the prototype, including the code generation logic

for WSNs is described. Section 3.8 critically discusses the results achieved

so far. Section 3.9 reviews related work before concluding the chapter.

69

3.2. SCENARIO: CONVENTION CENTER HVAC MANAGEMENT

CO2

Temp Presence
Ventilation

Temp CO2

Ventilation

Humidity

Presence

Room: Mars

Room: Moon

1st Floor
+-+

+-+

Reporting

+-+

Booking

04

'12

APRIL '12

GatewayActuatorSensor

Data flows
System/human communications

Management

Secretary

Process engine

Convention Center Building Convention Center Information System

Figure 3.1: Integration of a convention center’s BP engine with a WSN for HVAC.

3.2 Scenario: Convention Center HVAC Management

Our application scenario showcases the operation of a convention center

(see Figure 3.1) that has a variety of meeting rooms, which can be booked

for various events. Each room can be booked at a rate that partly depends

on room characteristics (e.g., its size) and partly on the energy consumption

of the event organized in the room. For this purpose, the convention cen-

ter is equipped with a Heating, Ventilation, and Air Conditioning (HVAC)

system including a WSN, which ensures comfortable levels of temperature,

humidity, and CO2 for each individual room for the booked duration of the

respective event. In order to do so, the HVAC system must be instructed

automatically by the convention center’s information system about when

to activate the ventilation and how long to control the room’s temper-

ature and CO2 concentration for each room. Room conditions are only

maintained during the booked times to save energy and only if presence

of people is detected by presence sensing; air conditioning is shut off when

70

CHAPTER 3. PROCESS-BASED DESIGN AND INTEGRATION OF WIRELESS
SENSOR NETWORK APPLICATIONS

a meeting is not attended at all or ends prematurely. In turn, the HVAC

system feeds back sensor data to the information system, which allow the

information system to precisely compute the HVAC cost for each individ-

ual event. The information system is used for the booking of rooms, the

reporting on energy consumption, and the billing of customers. This mode

of operation is more energy efficient that today’s common practice, where

one would simply run the HVAC system at a fixed rate, independently

of room occupation or environmental conditions — a practice that wastes

much energy.

Technically, it is necessary to develop (i) the BP logic running inside the

BP engine, (ii) the code running on the nodes inside the WSN, and (iii) a

suitable set of communication endpoints supporting the interaction of the

BPM with the WSN and vice versa. Note that it is not the goal of this

work to optimize convention center operation or more generally building

automation, but to provide a basic set of abstractions, tools, and method-

ologies that can be used in all scenarios where also WSNs are used. We

use it merely as a device to depict a concrete application of our approach.

3.3 Relevant Properties of Wireless Sensor Networks

Before going into the details of the approach, the special properties of

WSNs that are relevant at the application layer and that therefore underpin

our model of the system are explained. A WSN is a distributed system,

namely a network of wireless, battery-powered, autonomous, small-scale

devices, so called nodes, each of which is equipped with one or more sensors

or actuators or both. Nodes are battery-powered and replacing the battery

is mostly not intended or not feasible from a Total Cost of Ownership

(TCO) perspective. Therefore, they make use of ultra-low-power hardware,

that is drastically limited in processing power, memory, and transmission

71

3.3. RELEVANT PROPERTIES OF WIRELESS SENSOR NETWORKS

bandwidth and the application software running on the nodes, including

wireless communication protocols, needs to be optimized for low power

consumption to extend network lifespan. These limits typically prevent

executing a regular BPMN engine on the devices that interprets BPMN

models serialized as XML.

Sensors are used to sense information from the real world (e.g., temper-

ature) while actuators perform actions that change the state of the envi-

ronment (e.g., control a motor or a lamp). The typical number of nodes

inside a network can vary from a few to hundreds or even thousands. Via

radio links, a node can generally communicate with all other nodes in its

transmission range and with nodes further away by multi-hop, routed com-

munication. WSNs are able to self-organize, overcome network failure, and

execute distributed computation logic, such as computing the average of

sensor values while those are routed to a destination node. Often, WSNs

are composed of heterogeneous nodes, each equipped with a custom set of

sensors, so that, for example, one type of node can sense CO2 and humidity

while another type of node is able to control an automatic door, while a

third has enough special hardware to compute complex arithmetics.

As a basis for modeling WSN application logic, a very simple model of

the physical set-up that is sensed and acted upon is assumed: A given WSN

monitors real world entities, each is referred to as an Entity of Interest (EoI)

which can be a location or a thing. A thing is any physical object, while a

location is a space that the sensor network is monitoring, e.g., a room or

a building. A domain expert is usually only interested in the EoIs and the

operations that can be applied to them, but not in the technical layer of

sensors that sense or the actuators that influence them.

To overcome the limitations of WSN hardware and to maximize effi-

ciency of operations, the research community has introduced a large num-

ber of programming abstractions to program wireless sensor networks [62].

72

CHAPTER 3. PROCESS-BASED DESIGN AND INTEGRATION OF WIRELESS
SENSOR NETWORK APPLICATIONS

By abstracting existing programming concept into high-level constructs

[15] (described in Section 3.5.2) and assuming that all existing function-

ality can be expressed using them, one can use high-level constructs as

basic building blocks for graphical modeling. Usually, a sensor network

will perform some or all of these tasks:

Sensing: measuring one or more environmental parameters of an EoI, such

as temperature or humidity, making use of the sensing equipment of

the nodes.

Actuation: enacting operations physically affecting an EoI, e.g., control-

ling or moving it or flashing a LED. WSNs are often used to actuate

or control the environment in reaction to sensed parameters, creat-

ing a control loop (as the actuation eventually triggers changes in the

sensed values).

Task distribution: distributing operations that coordinate a subset of

nodes, e.g., any in-network aggregation on the input values or the elec-

tion of a controller node based on certain criteria. As WSNs consist of

several nodes, several of which can monitor the same EoI, especially

data aggregation operations are often required, e.g., to compute the

average temperature of a room observed by many sensor nodes.

From the perspective of a domain expert, it is irrelevant which part of a

WSN performs a task, e.g., whether an operation is carried out by a single

node or the network as a whole as long as the operations are addressable

by an EoI.

3.4 Requirements and Approach

In the convention center scenario, there is a need for collaboration between

the reservations and billing systems in the back-end and the sensor network

73

3.4. REQUIREMENTS AND APPROACH

that executes the sensing and actuating operations. Thus, the application

runs on different types of systems which can be seen as two distinct partic-

ipants in the process. This raises the need to model both the intra-WSN

logic and its interactions with back-end systems as a collaboration of two

process participants. While the back-end part is orchestrated using classi-

cal Business Process Management (BPM), modeling the process logic to be

executed inside the WSN needs certain provisions (e.g., model extensions)

to enable the specification of WSN logic in a high-level fashion and the

creation of code that can be executed in the network.

Typically, the integration of WSNs into BPs is based on the invocation

of services exposed by the network [6, 36, 78]. This results in a modeling

approach that uses the network as set of available operations on which

a process can be constructed, but that prohibits the programming of the

WSN itself. This limits the possibility to define custom WSN logic to be

carried out by the network as part of the process. Instead, the key idea

of our approach is to develop a business process modeling notation that

allows a domain expert to program both the BP and the actual network

logic, without the need to know and specify all the low-level details. The

created process model is later used to derive the code that will be executed

by the WSN. In this way, the WSN logic is fully specified at the process

level.

The specific requirements we identify can be divided into supporting

modeling, deployment and runtime. Supporting modeling means defining

a modeling paradigm that fits the needs of a domain expert and integrates

back-end business processes and WSN logic using a single modeling lan-

guage. This requires to:

• Provide an easy to understand and familiar way of expressing WSN

logic; enable integrating WSN processes into back-end processes, cou-

pling them and allowing for easy data sharing.

74

CHAPTER 3. PROCESS-BASED DESIGN AND INTEGRATION OF WIRELESS
SENSOR NETWORK APPLICATIONS

• Define a set of concepts to describe the logic and operations that

can be combined for creating reusable, high-level WSN modeling con-

structs. We have to supply the modeler with the possibility to specify

operations like sense, actuate and aggregate for measurements over

EoIs.

• Model WSN capabilities and details. WSNs are usually heterogeneous

regarding the type of sensors and actuators. Knowing the characteris-

tics of the network is fundamental to have an overview of which things

and locations can be controlled and monitored by the WSN as well as

which operations the WSN is able to perform. Having such a model

will give the domain expert the ability to express the desired processes

in the familiar terms of EoIs and irrespective of technical systems.

• Supporting the modeler in designing only feasible processes by re-

stricting the available modeling constructs to him to what the WSN

is capable of executing.

Supporting the deployment of the process requires to:

• Split the process model into an intra-WSN part and a WSN-aware part

(back-end). The process is divided between two actors that participate

in the execution. These two parts of the process have to be separated

and handled differently.

• Create WSN binary code. The intra-WSN part of the process has to

be translated to binary code and injected into the nodes. This code

is generated based on the flow of the process model and tasks that

describe the operations.

• Create the endpoints and communication channels to handle the mes-

sages from and to the network. After having split the process in two

75

3.4. REQUIREMENTS AND APPROACH

WSN
Operation

WSN
TaskEoI

Node

Location Thing Sense Actuate Aggregate

WSN
Logic construct

Tell Report Collect Local

Has

Has

Has target
WSN logic composition

CO2 Ventilation AVG Generic component
Scenario specific component

Represents
Covered by BPMN4WSN

in
st

an
ce

 o
f

in
st

an
ce

 o
f

in
st

an
ce

 o
f

Figure 3.2: Conceptual model of WSN operations

parts and after having translated the WSN part into binary code the

communication between these two participants has to be guaranteed.

To do so, the endpoints and the communication channels through

which the messages will be sent/received need to be available.

Supporting the execution requires to:

• Provide a process engine to execute the WSN-aware business process

part. The process engine also handles the communication with the

WSN.

• Run the code in the WSN. Part of the process actually runs inside

the network without the need for external communication and con-

trol. The process is executed on the gateways and the actions are

distributed on the nodes, guaranteeing the correctness of the process

depicted by the modeler.

Figure 3.2 illustrates the conceptual model of how we approach WSN

programming. The model is not meant to be an extension of the BPMN

meta-model. Only part of it is related to BPMN4WSN, the other part is

related to our own modeling formalism for the definition of low-level WSN

logic. The two entities on the top represent the physical WSN, which we

76

CHAPTER 3. PROCESS-BASED DESIGN AND INTEGRATION OF WIRELESS
SENSOR NETWORK APPLICATIONS

abstract as composed of a set of Nodes (sensor or actuator nodes) support-

ing a set of native operations, the so-called WSN Operations, such as sense

CO2 for a sensor or open for a valve actuator. We allow the domain expert

to use WSN operations by abstracting away from the network topology,

i.e., nodes, and instead allowing him to reason in terms of EoIs via a ded-

icated task type, the WSN Tasks. A WSN Task is a generic action that

can be used to express sense, actuate, and aggregate operations and that

can be executed by the network. The WSN Task is logically connected

to an EoI, which allows the modelers to scope the action. That is, the

EoI specifies where the action will be executed; it could be a thing or a

location. WSN Task and EoI represent the high-level constructs used to

model WSN logic in BPMN4WSN. This level of abstraction is however not

enough to describe all the needed details to generate binary code that runs

on the nodes, which instead requires taking into account the topology of

the network. The detailed specification is based on WSN logic constructs,

which abstract operations that can be configured (e.g., by adding a con-

crete target node resolving a logical EoI) and translated into binary code.

The composition of WSN logic constructs (the WSN logic composition box)

allows the system developer to refine the process model designed by the

domain expert and to fill WSN tasks with concrete logic.

Figure 3.3 shows the architecture of the tool chain for developing WS-

N/BP applications containing an extended BPMN editor in which the pro-

cess is modeled, and a compiler for translating the high-level specifications

into low-level executable binary code for the sensor network and for the

process engine. Next, the modeling and deployment part are discussed in

more detail; a first prototype of the tool is discussed afterwards.

77

3.5. BPMN4WSN

BPMN4WSN editor

BPMN4WSN Compiler

Process engine

Communication proxy

Process and WSN
Logic compositions

Application
developer

Design time Deployment time Runtime

Process analysis

End point
generation

WSN Logic
CompositionProcess

Document flows
System/human communications
Automatically generated elements

System
developer

Binary code

Executable
process

WSNs

Proxy
configuration

Binary code
generation

System
description

Figure 3.3: Architecture

3.5 BPMN4WSN

As illustrated in Figure 3.3, two types of developers jointly develop a pro-

cess model: the application developer and the system developer. The

application developer is the person who models the coarse process; he is an

expert of the domain with experience in business process modeling and has

some WSN background. The system developer is a WSN expert and has

the task of creating the refined, XML-formated model of the system (see

the bottom left corner of Figure 3.3). This model contains information of

the network such as the EOIs, nodes and available sense and actuate oper-

ations. The two roles collaborate mainly in the design of WSN Tasks. The

application developer creates a process that crosses the system boundary

between standard IT and WSN including the specification of the behavior

of the latter. He defines a descriptive, not yet executable version of the

process. For instance, in the convention center use case, the application

developer would specify a task for reading the latest sensor values or driv-

78

CHAPTER 3. PROCESS-BASED DESIGN AND INTEGRATION OF WIRELESS
SENSOR NETWORK APPLICATIONS

Room: Moon

W
SN

 A
wa

re
In

tra
 W

SN

Task Name
EoI

Performance

Configuration
Performance annotation

"classic" business process
which only interacts with

the WSN

Process part
which models the
logic of the WSN

Messages exchanged
between the two parts

Report: Stream

Local: Read CO2

Read CO2
Room: Moon

WSN Task

WSN Logic Component

Process Logic WSN Task specification

Read CO2

Figure 3.4: WSN-specific modeling constructs in BPMN4WSN.

ing an actuator based on the system descriptor model. Later, the system

developer would refine this model by adding WSN logic components to

make the tasks that involve the WSN executable.

3.5.1 Process Logic

In our solution the design of the business process is mainly carried out

by the application developer, who uses BPMN [87] with some additions

based on the extension points defined in the standard (without touching

the BPMN meta model), designed to model the salient characteristics of

the WSN. The extended language is referred to as BPMN4WSN. This

extended version comprises both new components and modeling rules.

A BPMN4WSN process must be composed of at least two pools: an

intra-WSN pool and WSN-aware pool; Figure 3.4 contains a minimal ex-

ample. The intra-WSN pool is the part where the WSN logic is specified,

while the WSN-aware pool is a classical BPMN process. The splitting into

process logic executed inside and outside the WSN forces the modeler to

79

3.5. BPMN4WSN

explicitly model interactions between the two parts as messages, directly

mapping the run-time behavior (where messages are the only way of inter-

action between the parts) to the model. This separation also enables the

clean generation of code.

In the intra-WSN pool, constructs that directly orchestrate WSN func-

tionality (made available through high-level abstractions) are needed. This

need is addressed by introducing a new activity type: the WSN Task, that

can only be used in the intra-WSN part. It has two properties: a reference

to a set of WSN logic construct definitions and the EoI to which the re-

spective operations should be applied (see Figures 3.4 and 3.2). It has an

antenna on the top-left corner to distinguish it from other tasks; if speci-

fied, the EoI value is written below the task name. For example, setting

the EoI value to “room Moon” will execute the task on those nodes that

belong to the “room Moon”. In a nutshell it specifies where (i.e., by which

subset of nodes) each WSN Task is executed.

The referenced WSN logic construct definition is the set of operations

that have to be performed by the network. For simplifying the modeling

of such low-level programming specification, a set of WSN logic constructs

that describe the common operations and the way they can be combined

is created.

To support the shift of the center of orchestration from the gateway

node to one or more nodes in the WSN, we introduce the script tasks

by extending sub-processes with annotations. With these sub-processes a

modeler can define WSN logics that is executed and controlled by a subset

of the network, rather than have a central gateway node that controls the

whole network. To specify the nodes that execute the operation we intro-

duce a target attribute for the sub-process. The target of the sub-process

is specified with a static element and a dynamic element. The former ele-

ment tells the makeSense tool chain on which kind of nodes the generated

80

CHAPTER 3. PROCESS-BASED DESIGN AND INTEGRATION OF WIRELESS
SENSOR NETWORK APPLICATIONS

subprocess code should be deployed, based on static node attributes that

can be evaluated at deployment time (e.g., all the CO2 sensors). The lat-

ter defines where to run the code, depending on runtime parameters, for

example the roomNumber parameter.

In addition to the WSN Task and extended sub-processes, a performance

annotation element, i.e., an extension of the BPMN group element which

shows the chosen performance configuration on the top-left corner, is intro-

duced. It is used for describing the network behavior from a performance

point of view. This new component allows the application developer and

system developer to decide when the network performance goal has to be

changed (e.g., to optimize battery lifetime). For example, when a room is

empty, the network will be set to low energy consumption mode in order

to save battery and prolong node network lifetime at the cost of lower re-

activeness and possibly less reliable message transfer. In cases where high

performance is needed (at the cost of battery power), other performance

annotations are used. At run-time the execution semantics of these anno-

tations is that one performance mode is set for the whole WSN, depending

on the number of the tasks in each performance group. The group that

contains the most tasks to be executed sets the performance mode.

3.5.2 WSN Task Specification

WSN Tasks are modeled in two steps: (i) the process design and (ii) the

process refinement. The process design is generally carried out by the

application developer. He just specifies a WSN Tasks with a speaking

name, which can be a sense, actuate, or aggregate operation and the EoI

on which the operation has to be executed. This part of the modeling

is represented in Figure 3.2 by the items inside the BPMN4WSN dashed

rectangle.

The process refinement (an example is shown in Figure 3.4), instead, is

81

3.5. BPMN4WSN

generally performed by the system developer. Its goal is to transform all

high-level WSN Tasks into executable operations by combining WSN logic

constructs which model the network behaviors. As shown in Figure 3.2,

each WSN Task represents WSN logic constructs that are the basic func-

tionality and instances of so called meta abstractions [15] that must be

configured and instantiated:

Local actions are executed locally on each sensor node.

• The tell/report actions represent one-to-many/many-to-one commu-

nication.

• The tell action enables a node to delegate an embedded action to a

set of other nodes.

• The report action enables the gathering of information from many

nodes.

• Collective actions enable distributed, many-to-many collaborations.

Each of these distributed actions has a target, which is used to select the

subset of nodes the action refers to (obtained by resolving logical EoIs into

physical nodes, based on the system description). In addition there is also

the possibility to specify data operators useful to perform mathematical

operations during transmission of data (e.g., to compute the average). The

composition of WSN logic constructs requires the system developer to nest

WSN logic constructs one into the other, creating the logic he wants to

specify as shown in Figure 3.2 and in Figure 3.8.

Each specific WSN deployment has its unique system-description, which

is the starting point for modeling. It describes the details of the network

and it is used as configuration for the model editor. The document provides

a high-level description of application-specific details of the concrete WSN

deployment to the business process editor and to the model compiler. It

82

CHAPTER 3. PROCESS-BASED DESIGN AND INTEGRATION OF WIRELESS
SENSOR NETWORK APPLICATIONS

is used by the editor to list only those attributes to the system developer

that are actually available in a concrete deployment, such as the list of

EoIs (simple or composed ones like “First Floor” comprising “room1” and

“room2”) and to restrict the selectable operations (e.g., CO2 sensing can

only be selected if EoI “room2” has been selected, because only that room

is equipped with CO2 sensors).

In the context of the project makeSense our partner SAP AG extended

the modeling languge introducing a different modeling approach for both

the process logic and WSN task specification [81]. For convention we call

the modeling presented so far as composed WSN logic constructs while the

newer as parametrized WSN logic constructs. The main difference between

the two version is that the parametrized WSN logic constructs introduces

additional WSN Task parameters to specify the WSN logic constructs.

Thus, meta abstraction composition are now specified with parameters.

For example the tOperation parameter is used to discriminate between a

sense or an actuate operation. Distribute actions, which before required

to nest a local action within a collective action, are created with the com-

mand action parameter set as true, which means that this operations tells

to other sensors what to do, and by specifying the target operation (e.g.,

sense CO2) and the return operation (e.g., average). With this approach

each WSN Task can be configured to be executed on specific nodes of the

network, with static and dynamic targeting. This removes the need of sub-

processes, which are not present in the parametrized WSN logic construct

version. The other components for modeling WSN process logic (i.e., WSN

pool and performance annotations) are still present. Although this mod-

eling does not require one to model the composition of meta abstraction

it still requires the system developer to specify the same attributes of the

meta abstraction composition that we presented here. In other word, it

abstracts the WSN logic constructs composition with a set of configuration

83

3.6. PROTOTYPE

Figure 3.5: The Startup page for the configuration of the scenario.

parameters for the WSN Tasks.

3.6 Prototype

The approach described in the previous sections has been implemented

as a proof-of-concept prototype. Figure 3.3 depicts the architecture of

the prototype, showing the document flow and the actors involved. The

modeling process, defined by our tool chain, is divided into three phases:

modeling, translation, and execution.

Modeling.

For the modeling part of the prototype, a well-known web-based BPMN

editor called Signavio Core Components (http://code.google.com/p/

signavio-core-components) has been extended. The editor has been

modified by adding a start page for scenario selection and a model editor

for the WSN logic constructs .

The start page (Figure 3.5) is used to select or create a separate workspace

for each scenario to enable development for distinct WSN set-ups, each with

its on system-description. In each workspace, only operations that can ac-

tually be executed inside the corresponding network are enabled, helping

the modeler in creating correct executable processes. For instance, in our

example scenario there would be the possibility to sense CO2 and presence

but no other environmental parameters as the WSN is only equipped with

84

http://code.google.com/p/signavio-core-components
http://code.google.com/p/signavio-core-components

CHAPTER 3. PROCESS-BASED DESIGN AND INTEGRATION OF WIRELESS
SENSOR NETWORK APPLICATIONS

Figure 3.6: The editor for the creation of the BPMN process.

Figure 3.7: The editor for the meta abstraction composition.

these sensors.

BPMN extension points have been used to realize WSN Tasks, script

tasks, and performance annotations as explained in Section 3.5 and in

Figure 3.4. To support the design, the modeling tool has been extended

with these three components (Figure 3.6). The editor also have library

functions which are WSN Tasks that implement specific operations created

ad-hoc for the chosen workspace. This feature has been introduced to

provide to the application developer a set of operations that he can use

without the need for composing WSN logic constructs

The WSN logic construct composition has been enabled by creating a

new meta model inside the tool (Figure 3.7). By doing so, the modeler is

85

3.6. PROTOTYPE

Co
nf

er
en

ce
 C

en
te

r B
ui

ld
in

g
- W

SN
-A

wa
re

Co
nf

er
en

ce
 C

en
te

r I
S

In
tra

-W
SN

Store Data Change User

Create Report
Meeting.endTime()>Now()

Check Presence
Meeting.room

Check CO
Meeting.room

2

Increase Ventilation
Meeting.room

Decrease Ventilation
Meeting.room

Check Presence
Meeting.room

Stop ventilation
Meeting.room

wait(Meeting.start()=now())
CO2.value<=threshold
|| presence.detected

CO2.value > threshold
&& presence.detected

wait(5m)

wait(5m)

presence
no presence

Meeting.endTime()<now()
lowEnergyConsumption

lowEnergyConsumption

lowEnergyConsumption

lowEnergyConsumption

ReliableTransmission

ReliableTransmission

ReliableTransmission

\ \

\

Meeting data Ventilation system usage Charge user for extra time

Meeting end

Target:LN DataOperation: average

LocalActon: CO2SensingLocalAction

ReportAction:Stream

Figure 3.8: The HVAC process of the convention center.

given the possibility to compose WSN logic construct blocks by dragging

and dropping and nesting them according to predefined composition rules

that are checked by the tool. The composition is later translated into an

internal format, and the files are used by the compiler to create the binary

code for sensors. The editor shows only the WSN logic construct that are

compatible with the chosen workspace.

Example.

In Figure 3.8 there is a screen shot of the process that models the scenario

explained in Section 3.2. For the sake of clarity, in the intra-WSN process

only CO2 measurement and presence detection are modeled. For the CO2

sensing operation we add the meta abstraction composition logic. This

compositions is executed by the gateway and tells to the nodes that can

sense the CO2 to report the average value.

A new process instance is started when a new meeting is scheduled. The

86

CHAPTER 3. PROCESS-BASED DESIGN AND INTEGRATION OF WIRELESS
SENSOR NETWORK APPLICATIONS

CO2.value<threshold-10

CO2.value > threshold+10

Check CO2

Increase
Ventilation

Decrease
Ventilation

1 minute

CO2Sensing (static: flapActuator, dynamic: roomNumber)

Figure 3.9: The CO2 and ventilation operations modeled as a script task

WSN will be set to low energy consumption mode until the actual meeting

starts. Throughout the duration of the meeting, the network checks the

room conditions, increasing the ventilation when sensor values exceed a

given threshold and a human presence is detected. After the scheduled

meeting end time, the network checks if someone is still in the room, in

which case the information system is informed, charging the user for extra

time.

In Figure 3.9 there is modeled a script task, thus a sub process, for

the sensing of the CO2 that triggers the ventilation. This subprocess is

deployed in all the rooms with flapActuators (static target) and run when

the roomNumber correspond to the actual room. The CO2 sensing opera-

tion is the same as before. In this case it is not executed by the gateway

but by the static target, thus the actuator. The actuator instructs the

CO2 sensors to report the average CO2 value. Thus, the sensing operation

is performed remotely while the actuating operation locally by the actua-

tors. The solution of Figure 3.8 and the one with sub-processes are both

effective. The former executes the control on the gateway, while the latter

directly on the sensor of each room.

In Figure 3.10 there is modeled the same logic as of Figure 3.9 with

the WSN modeling convention presented in [81]. The “Calculate CO2

Average” task specifies the action to sense the CO2 value and report the

87

3.6. PROTOTYPE

Figure 3.10: The CO2 and ventilation operations modeled with the parametrized WSN

logic constructs [81]

average value. The icon on top-right part shows how the task is a command

tasks with a return operation, which tells the nodes of the room (room

number is an input of this process) to execute sense CO2 and to report

the average value; the icon on the left-top of the task indicates that it

is a sense operation (the question mark is in bold). Similarly, the tasks

for the management of the ventilation are specified as command action,

yet this time they execute an actuate operation (icon on top-right with

the exclamation mark in bold) to trigger the ventilation. As for the sub-

process, this modeling allows the deployment of the logic in multiple parts

of the network. For example, this logic can be deployed in all the meeting

rooms. Differently from the previous abstraction, the meta abstraction

logic is specified with parameters instead of nesting operations.

88

CHAPTER 3. PROCESS-BASED DESIGN AND INTEGRATION OF WIRELESS
SENSOR NETWORK APPLICATIONS

Translation and Execution.

The WSN-aware part of the process is a standard BPMN model that can

be executed by a process engine exterior to the WSN. The intra-WSN

part, instead, is translated into executable code. A tool for translation

called model compiler takes this part of the process and generates code

implementing a custom execution engine. The executable program hence

behaves similar to a regular BPMN engine interpreting the given BPMN

model. The generated program implements a finite state machine, real-

izing the execution semantics of the translated process model including

instance management and message correlation, and of course keeps track

of all execution tokens in each process instance as specified in the BPMN

2.0 specification.

For example, an exclusive diverging gateway will be translated into a se-

ries of if statements (mapping the conditions on the outgoing flows) in the

“main loop” of the program. Each WSN Task is translated using the WSN

logic construct composition describing sensor logic. This is the most exten-

sive generation step, as these sub-models need to be mapped to an API for

instantiating, managing, and using those programming abstractions. The

system-description describes the characteristic of each node of the network

and it is used as input for the translator. The EoI of a WSN Task is

mapped to attribute matching at run-time, e.g. if a WSN Task has been

configured to operate on EoI “Floor 1” and the system developer contains

information which room ids belong to that floor, this could be mapped to

the expression location=’room1.1’ or location=’room1.2’.

The two parts of the process can now be executed separately. To make

them communicate, the model compiler maps the message flows between

intra-WSN and WSN-aware process to communication endpoints that are

created automatically on either side, enabling each part to receive and send

89

3.7. EVALUATION OF THE APPROACH

Figure 3.11: Deployment of the ventilation scenario in Cadiz, Spain. On the left part an

overview of the setup and on the right part an actuator with the flap. [25]

messages. As the message format and transmission encoding are out of

scope of the BPMN specification, a simple message format and an efficient

transmission encoding are defined and implemented in both the generated

intra-WSN executable and as an extension to a regular BPMN execution

engine. In order to support the coordination of multiple instances, each

message contains a field that is used for instance correlation and the exe-

cution of message start events creates instance IDs that need to be used

by either side of a same process instance.

3.7 Evaluation of the approach

Within the makeSense project we run an evaluation to test the effective-

ness of the modeling language and of the overall approach in a real-world

deployment. Both are described in details in [33] and here we summarize

the outcomes.

Evaluation of the makeSense approach A deployment of the ventilation sce-

nario, similar to what we presented here as scenario, was deployed in Cadiz,

Spain. A student dorm was equipped with sensors and actuators. A pro-

cess was modeled to adjust the ventilation inside a student’s room based

90

CHAPTER 3. PROCESS-BASED DESIGN AND INTEGRATION OF WIRELESS
SENSOR NETWORK APPLICATIONS

on the level of CO2 and presence. The system ran correctly for a week,

triggering the ventilation when the CO2 level was above the threshold and

the student was inside his room.

This real world deployment shows how the makeSense approach can be

effectively used to model real-world applications. An estimation of the

costs [33] shows how the presented approach can save more than 60% of

the final cost compared to a conventional deployment.

Evaluation of BPMN4WSN To test if the BPMN4WSN approach simpli-

fies the development of WSN process, our partner SAP AG ran a user

study with 6 developers that did not have any previous knowledge of

BPMN4WSN. The test was conducted on the composed WSN logic con-

structs, which is the version presented in this work, and that is the language

integrated in the toolchain of the makeSense project. Among the partic-

ipants one was familiar with WSN; three had an average knowledge of

BPMN; and the others had little or no knowledge of both fields. The test

case was based on the Cadiz deployment [25], and participants were asked

to perform different modeling operations with various degree of difficulty,

form opening the editor to specify static and dynamic targets (Table 3.1

shows the steps). Results of each modeling tasks were collected using a

three values scale: no success, success with help, and success. After the

modeling exercise a questionnaire was given to the users to collect feed-

backs on a 7-point scale.

1 Open editor, select scenario

P
art

1

2 Open properties table

3 create Business Model Diagram

4 Create additional BPMN Pool and name ”reservation system”

5 Create WSN Pool and name ”WSN”

6 Create Start Event in WSN pool that reacts on a message

91

3.7. EVALUATION OF THE APPROACH

7 Create message flow from reservation system to newly created start

event

8 Create a message that is assigned to the message flow

9 Use the message flow to trigger a room reservation. Search the

XML file for the appropriate message name.

10 Use a data object to store the in the previously defined message

(use context menu of message object)

11 Name the newly created data object ”master data”

12 Create event for delayed start of next process step

13 Configure delayed time event to ”15 min. before start of meeting”

14 Create WSN Task and name it CO2 monitoring

15 Select the sensor nodes that should be addressed by this task by

entering the right type in the StaticTargetExp field

16 Use the DynamicTargetExp field for specifying the correct location

as indicated in the received message.

Start abstraction editor and open property pane

17 Instruct the previously identified sensor node to report values.

P
art

2

18 Instruct the previously identified sensor node to sense CO2 values.

Make this local action a part of the reporting task. (save abstraction

composition)

19 Store the sensor sensing result in a data object call CO2Data

20 Use gateway to specify if ventilation is turned on or not. * model

decision with two outcomes based on CO2 values

21 Configure out-going edges in such a way that ventilation is turned

on if CO2 is greater than 1000 ppm otherwise ventilation is not

turned on. Manually label the edge with value ¿1000 ”CO2 too

high”, the other edge ”CO2 ok”.

22 Label the WSN task ”start ventilation” and ”stop ventilation”

23 Chose the appropriate static and dynamic targets for turning on

and off the ventilation. Program the actuators (vans). Hint: set

the correct parameter for the local action in the abstraction editor.

24 Ensure energy efficiency while process instance is sleeping until

meeting starts

Table 3.1: Exercise steps [33]

92

CHAPTER 3. PROCESS-BASED DESIGN AND INTEGRATION OF WIRELESS
SENSOR NETWORK APPLICATIONS

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Success Rates per Task (All Users, All Tasks)

No Success

Success (with help)

Success

Figure 3.12: Task Completion [33]

The results (Figure 3.12) of the tests showed how, out of 24 modeling

tasks, 22 were completed by all the users. Most challenging tasks were

the ones that asked to specify static and dynamic targets with boolean

expressions (only one user completed it without any help, and two were not

able to complete the tasks at all). Yet, a similar tasks, which was presented

later in the study (next to the last task), was successfully completed by

all the users, showing how the required skill can be learned in a short

time period. From the questionnaire emerged a positive feedbacks but also

some difficulties in the use of the modeling tool, especially related to the

meta-abstraction compositions and to the specification of the target for

actions.

From the data collected with the user study emerges that the BPMN4WSN

can be easily learned and used to create rather complex application in

short time period. This study demonstrates how people with low or no

prior knowledge of WSN were able to use the BPMN4WSN to model and

program a WSN application. Part of the modeling relative to the WSN

abstraction may be too complex for non technical people, yet their com-

position rules can be learned in a rather short time. Overall, from the

study emerges that the BPMN4WSN achieves the goals we fixed: it can

be used by people, even by non domain experts, to create and maintain

93

3.8. DISCUSSION AND LESSONS LEARNED

WSN applications, yet it still requires to learn the modeling language and

how to use the new modeling components.

3.8 Discussion and Lessons Learned

Our approach was guided by the core requirement presented in Section 3.4,

i.e., to integrate WSN programming into business process modeling. We

address this requirement by offering unified modeling in one model editor,

hiding model artifacts that are not relevant in a given modeling context,

splitting work between application developer and system developer, and

providing model compilation and execution as a custom engine in the WSN.

The work described in this chapter integrates WSNs with BPs, combin-

ing classical business process modeling with ad-hoc extensions for WSNs

that hide low-level network details. This integration allows an application

developer to design process logic both inside and outside the sensor net-

work, without requiring intimate knowledge of how to program distributed

computations inside a WSN; an intuitive understanding of EoIs and sens-

ing and actuating actions is enough. The system developer instead only

focuses on the refinement of WSN Tasks. The described tool-chain takes

care of splitting the two logics (intra-WSN and WSN-aware) and of the bi-

nary code generation. Endpoints for communication between the business

process and the network are created following the model of the process.

The main limitation, which also emerges from the user study, is that the

modeling language may not suits application developers that do not have

the competence of a system developer. In this work we tried to abstract

WSN details to a high-level modeling language. However, the intrinsic

complexity of WSN cannot be fully hidden. WSN logic constructs provide

a high level modeling of WSN operations, yet this modeling convention

may not be easy to use by people not familiar with WSNs. With the li-

94

CHAPTER 3. PROCESS-BASED DESIGN AND INTEGRATION OF WIRELESS
SENSOR NETWORK APPLICATIONS

braries, which are present in the editor, we tried to provide users with

workspace-specific operations that can be used without additional config-

urations. This could foster the adoption and non experts can use WSN

operations without the need to ask a refinement by a system developer.

Similarly, the specification of static and dynamic targets is not always a

simple task. We tried to simplify this operation by adding EoIs as the

way to abstract targeting of WSN nodes. However, in some case the spec-

ification of EoIs may not be enough (e.g., for the sub-process which are

executed on specific nodes of a room) that then requires to specify static

and dynamic targets.

In summary, this work is of help for application developers that have

to create applications for specific contexts, for which the operations are

already defined and available in the editor, and for application developer

that can be helped by system developer (or that have the knowledge of

a system developer) for the refinement of the process. We do not see

BPMN4Crowd as a solution that can be used by any user, due to the

unavoidable complexity for the specification of WSN details.

3.9 Related work

Building commercially relevant applications on resource-constrained, net-

worked embedded systems (the front-end) such as WSNs while integrating

them into business processes of an enterprise (the back-end) is a complex,

challenging task that has to be repeated for each combination of front-end

and back-end. Numerous efforts have been made, aiming also at demon-

strating the business benefit.

Approaching the problem bottom-up, i.e., from the WSNs, several solu-

tions have been proposed to simplify programming. Although many pro-

gramming abstractions have been introduced, most of them aim at simpli-

95

3.9. RELATED WORK

fying the activities of skilled WSN programmers [62]and cannot be used

directly to specify high-level process constructs by domain experts without

WSN expertise.

The COBIS project (www.cobis-online.de) aimed at integrating het-

erogeneous WSNs with back-end systems by providing a web service facade

to the WSN’s functionality. The proof of concept was trialled in an en-

vironment, health, and safety application scenario, more specifically by

enforcing physical storage rules for hazardous goods managed in an enter-

prise system [78, 79].

The SOCRADES project (www.socrades.eu) targeted industrial au-

tomation with the goal to almost eliminate the need for any proprietary in-

termediate layers between embedded services and the business back-end by

directly service-enabling devices themselves [43]. The approach was based

on the WS-* family of web service standards and only for very resource-

constrained and legacy devices a gateway/service-mediator concept was

developed to enable those to participate in service orchestrations.

Other proposed solutions for modeling sensor network applications using

a process-based design include the Graphic Workflow Execution Language

for Sensor Network (GWELS) [36], which enables the design of data-flow

as workflow, and an ad-hoc architecture for handling the communication.

Similarly, [6] uses a process paradigm for defining WSN applications, eas-

ing the configuration for non-experts of the field. Mash-up composition is

also promising; in [38], the authors wrap smart-objects with web services,

introducing an architecture and a web-based mash-up tool for composi-

tion and execution. These solutions enable the modeling of WSN logic in

a model-driven fashion but without deriving the executable logic of the

network.

Recently, BPMN has gained interest as method to program WSNs.

Caracas et al. [13, 14] presented studies on the expressiveness of the lan-

96

www.cobis-online.de
www.socrades.eu

CHAPTER 3. PROCESS-BASED DESIGN AND INTEGRATION OF WIRELESS
SENSOR NETWORK APPLICATIONS

guage and its potential to be compiled into source code for WSN nodes. As

results they produce a system that creates WSN applications by compiling

BPMN processes. The outcomes highlight that, as it is, BPMN is power-

ful enough for specifying the high-level behavior (if modeled with correct

patterns) more than low-level one. At the same time they prove how a

process can be compiled into native source code for WSNs, without losing

too much performance compared to hand-written code. These preliminary

works show the possibility to compile the BPMN for creating binary code.

However, the example shown in this work users a higher-level API, that

does not allow one to fine-tune communication in the WSN as it is possible

with our approach.

In the past months, extensions of BPMN for modeling smart objects

have been proposed as outcome of the IoT-A (www.iot-a.eu) project [59,

77], an idea that shares some common ground with our approach. The idea

is to extend the BPMN language to model Internet of Things (IoT) aspects.

However, this approach differs as they propose modeling extensions that

affect the language at a high level of abstraction; in fact their goal is to

use this language to model IoT services instead of creating the logic from

the process.

Approaches like SysML [86] are only remotely related to our approach.

This modeling framework, derived from UML, allows the modeling of low-

level details of a WSN system. Yet, SysML models are graphical models

without a standard serialization, therefore they are not directly usable for

process-based integration.

3.10 Conclusion

In the era of the IoT, collaboration and integration of non-conventional IT

devices, such as entertainment and automotive equipment, RFID devices

97

www.iot-a.eu

3.10. CONCLUSION

and tags, or WSNs, with Enterprise services is of paramount importance

[43]. In this chapter, we focused on one relevant representative of this

need, i.e., WSNs, which typically still represent isolated and impenetrable

realities from a business IT point of view. We proposed a layered approach

for developing, deploying and managing WSN applications that natively

interact with enterprise information systems, such as a business process en-

gine and the processes running therein. We did not try to crack the whole

problem at once, e.g., by aiming at a business-view-only approach to WSN

application development, and rather foster current practice, equipping both

the application developer (holding the process knowledge) and the system

developer (holding the WSN knowledge) with effective languages and in-

struments to co-develop advanced, process-based WSN applications with

non-trivial distributed sensing and actuation logics.

98

Chapter 4

Modeling and Enacting Flexible

Crowdsourcing Processes

This chapter focuses on distributed, autonomous (and intelligent) actors,

as the crowd of worker is, and presents our research to support the design

and execution of processes whose logic is partially executed by a crowd of

workers. We present the extensions of a process language (BPMN) that

add domain-specific constructs to orchestrate tasks executed by the crowd

and to design their internal execution logic (called tactics). As part of this

work we also present the crowd computer, a flexible crowdsourcing platform

that, by making available crowdsourcing operations, enable the execution of

crowd tasks without imposing pre-defined choices or tactics. This chapter

is an extract of [82]. On the same topic, we have also published a paper [50]

that introduces the ideas and concepts that are developed in this chapter.

99

4.1. INTRODUCTION

4.1 Introduction

Since their invention, computers were the main source of computational

power able to generate solutions in a split second. However, even with the

advancements in IT, computers are still not able to solve all the kinds of

problems that one may face, such as to identify a good enough picture to

advertise a new restaurant. These are tasks that human beings can solve

easily, but that are less efficient with pure computations.

Crowdsourcing is a relatively new approach to execute tasks that also

require human capabilities instead of only machine computations. It refers

to the practice of outsourcing a work to an undefined and large network

of people via an open call for contribution [40]. This approach is based

on crowdsourcers (companies or individuals that crowdsource a work) that

make available their tasks of work to the crowd instead of assigning them

to employees. Workers, people who execute a task, can accept and perform

the tasks, receiving a reward when the crowdsourcer decides that their re-

sult is accepted. The power of crowdsourcing lays in its workforce, the

crowd, which is large, always available, and can be requested on demand.

Crowdsourcing platforms, which are web applications such as Amazon Me-

chanical Turk (AMT), help crowdsourcers in managing the crowd (e.g.,

with solutions to select workers based on skills), tasks (e.g., with systems

to post and dispatch tasks and collect results), and connect crowdsourcers

and workers. Ideally, platforms should allow crowdsourcers to create any

kind of crowdsourcing task, even as complex as writing an encyclopedia like

Wikipedia. However, existing platforms implement fixed and pre-defined

logics, such as how tasks can be executed by the crowd and how results are

collected, logics that instead may differ from one crowd task to another.

Today, crowdsourcing is typically adopted to solve atomic tasks many

of which are creative (e.g., logo creation) and micro (e.g. tagging of pic-

100

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

tures) tasks. Crowdsourcing processes (CP), which require more than one

atomic task or a more sophisticated execution logic, are created with ad-

hoc solutions [51]. This type of logic requires to specify the control flow,

to describe in which order tasks are executed, and the data flow, to de-

scribe how data is produced or consumed by each task. This makes the

applications highly-process driven [45, 50, 60, 72].

The goal of this work is to enable the creation and execution of crowd-

sourcing processes. We propose a new kind of crowdsourcing platform and

a modeling language to program crowdsourcing processes. The platform

is inspired by the idea of a computer that, instead of pure CPUs, has hu-

mans and machines as computational units; we call it crowd computer 1.

The crowd computer exposes a set of API each of which abstract the oper-

ation of the units, the blocks of the platform, each of which has a specific

goal, such as managing the crowd. To specify this logic, i.e., to program

the crowd computer we present a modeling language created to be used at

different levels of granularity: one level to specify the logic of the process

with human, crowd, an machine tasks; one level to specify the execution

logic of crowd tasks, and a level to specify the configuration of crowd task

internal based on reusable patterns. With this abstraction a modeler (the

person who creates the process) can specify the logic of the whole appli-

cation and also define and refine the internal execution logic of each task.

The contributions of this work are:

• A crowdsourcing platform, the crowd computer (as extension of [50]),

that supports the development of applications where the key work

performer is the crowd.

• A BPMN-based modeling language that support the modeling of crowd-

sourcing processes and tasks and the management of data which is

1www.crowdcomputer.org

101

www.crowdcomputer.org

4.2. CROWDSOURCING: CONCEPTS AND STATE OF THE ART

generated and consumed by the crowd. A visual modeling environ-

ment to allow crowdsourcer to program crowdsourcing processes.

• A compiler that transforms crowdsourcing processes into executable

processes and that enable the deployment of processes on a process

engine for their execution and their integration with the crowd com-

puter.

The chapter is structured as follow, in Section 4.2 we introduce crowd-

sourcing. In Section 4.3 we introduce the requirements and explain our

approach toward a solution. In Section 4.5 we present the crowd com-

puter. Section 4.4 and Section 4.6 are dedicated to the explanation of the

process language extensions, specifically to the crowdsourcing processes

and crowd tasks, with relative tactic and configurations. In Section 4.7 we

discuss our implementation of the solution, and in Section 4.8 evaluate it

with an use case. In Section 4.10 we review related work.

4.2 Crowdsourcing: Concepts and State of the Art

Crowdsourcing is a young, yet already complex practice, especially as for

what regards the different ways work can be outsourced and harvested. In

the following, we conceptualize the necessary background and define the

problem we approach in this article.

4.2.1 Core concepts

Howe [40] defines crowdsourcing generically as “the act of taking a job

traditionally performed by a designated agent (usually an employee) and

outsourcing it to an undefined, generally large group of people in the form

of an open call.” We specifically focus on crowdsourcing in the context

of the Web and on work that is crowdsourced with the help of so-called

102

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

Crowd task

Task description

Workers
Task instances

Crowdsourcer Crowdsources or platform Worker(s)

Workers to be
rewarded ()

Crowdsourcer or platform

Task
publication

Worker
pre-selection

Task
execution

Validation &
rewarding

Figure 4.1: The high-level steps of crowdsourcing and the respective actors

crowdsourcing platforms, which are on-line brokers of work that mediate

between the crowdsourcer (who offers work) and the workers (who perform

the work). These latter form the crowd.

Crowdsourcing a task using a platform typically involves the steps il-

lustrated in Figure 4.1 (not all steps are mandatory): The crowdsourcer

publishes a description of the task (the work) to be performed, which the

crowd can inspect and possibly express interest for. In this step, the crowd-

sourcer typically also defines the reward workers will get for performing the

task and how many answers he would like to collect from the crowd. Not

everybody of the crowd may, however, be eligible to perform a given task,

either because the task requires specific capabilities (e.g., language skills)

or because the workers should satisfy given properties (e.g., only female

workers). Deciding which workers are allowed to perform a task is com-

monly called pre-selection, and it may be done either by the crowdsourcer

manually or by the platform automatically (e.g., via questionnaires). Once

workers are enabled to perform a task, the platform creates as many task

instances as necessary to collect the expected number of answers. Upon

completion of a task instance (or a set thereof), the crowdsourcer may

inspect the collected answers and validate the respective correctness or

quality. Work that is not of sufficient quality is not useful, and the crowd-

sourcer rewards only work that passes the possible check.

103

4.2. CROWDSOURCING: CONCEPTS AND STATE OF THE ART

Tag picture Design logo Bid Implement SW

(a) Marketplace task (b) Contest task (c) Auction task

Figure 4.2: The most prominent tactics to crowdsource work

4.2.2 Crowdsourcing tactics

Depending on the acceptance criteria by both the crowdsourcer and the

worker to enter a mutual business relationship (after all, this is what crowd-

sourcing is about), different negotiation models may be adopted to crowd-

source a piece of work. For simple tasks (e.g., tagging a photo), it is

typically not worth to start a complex negotiation process; more complex

tasks (e.g., designing a logo or developing a piece of software), instead,

may justify a process in which crowdsourcer and worker commonly agree

on either the quality of the delivered work or its reward. Since it is the

crowdsourcer who starts the crowdsourcing process and approaches the

crowd, we call these negotiation models crowdsourcing tactics (often also

called crowdsourcing models).

Three major tactics have emerged so far (see Figure 4.2):

(a) Marketplace: The marketplace tactic targets so-called micro-tasks of

limited complexity, such as tagging a picture or translating a piece

of text, for which the crowdsourcer typically (but not mandatorily)

requires a large number of answers. Usually, the acceptance criteria

by the crowdsourcer for this kind of tasks are simple and clear, e.g.,

all answers are valid or only answers that pass a given correctness

check. Rewards for micro-tasks commonly range from nothing (work-

ers perform tasks for fun or glory), to few cents or dollars, without

104

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

any margin for negotiation. If workers find the offer fair, they per-

form the task, otherwise they skip it. Prominent examples of crowd-

sourcing platforms that implement the marketplace tactic are Amazon

Mechanical Turk (https://www.mturk.com), Microworkers (http://

microworkers.com), and CrowdFlower (http://crowdflower.com).

(b) Contest : The contest tactic is particularly suitable to creative tasks

for which the crowdsourcer knows the budget he is willing to spend,

while he does not have clear criteria to decide which work to accept.

Designing a logo or the layout of a web page are examples of tasks

that fall into this category. In order to enable the crowdsourcer to

clarify his criteria, this tactic invites workers to conceive a solution to

a task and to participate with it in a contest. Once a given number of

contributions or a deadline is reached, the crowdsourcer can inspect all

contributions and choose the solution he likes most, thereby electing

the winner of the contest (there could be multiple winners). Only

the winner gets rewarded. Examples of crowdsourcing platforms that

implement the contest tactic are 99designs (http://99designs.com),

InnoCentive (http://www.innocentive.com), and IdeaScale (http:

//ideascale.com).

(c) Auction: The auction tactic targets tasks for which the crowdsourcer

has relatively clear acceptance criteria, but for which he is not able

to estimate a just reward. Coding a piece of software is an example

of this kind of task. An auction allows the crowdsourcer to publish

his requirements and workers to express the reward for which they

are willing to perform the task. Typically, but not mandatorily (this

depends on the adopted auction model), the worker with the lowest

offer gets assigned the task and is payed accordingly upon delivery of

the agreed on work. An auction can thus be seen as a combination of

105

https://www.mturk.com
http://microworkers.com
http://microworkers.com
http://crowdflower.com
http://99designs.com
http://www.innocentive.com
http://ideascale.com
http://ideascale.com

4.2. CROWDSOURCING: CONCEPTS AND STATE OF THE ART

Recognize text
Doubts left?

yes

no

Marketplace tactic,
1 instance at a time

Figure 4.3: A simple crowdsourcing process in BPMN [67]: the text recognition task is

iterated automatically until there are no doubts left about the correct wording

a contest (to win the auction) and a marketplace task with pre-defined

worker assignment (to perform the task). An example of auction-based

crowdsourcing platform is Freelancer (http://www.freelancer.com),

which allows programmers to bid for the implementation of software

projects.

The latter two tactics aim at producing one results that satisfies the

crowdsourcer’s need. The marketplace tactic, instead, most of the times

aims at producing a large number of results that jointly satisfy the crowd-

sourcer’s need. For instance, the quality of a translation is higher the more

workers contribute to it. Aggregating results and coordinating workers, is

however out of the scope of crowdsourcing platforms.

4.2.3 Crowdsourcing processes

We call the structuring of multiple crowd tasks and task instances, in order

to achieve a common goal, a crowdsourcing process. The goal of crowd-

sourcing processes is to distribute work to workers, coordinate workers,

check quality, and/or integrate individual results into an aggregated one –

all aspects that otherwise the crowdsourcer would have to manage manu-

ally. For example, the model of the crowdsourcing process illustrated in

Figure 4.3 shows how to iteratively crowdsource the recognition of a line

of text until the last worker has no doubts left (inspired by [55]).

Since these kinds of crowdsourcing processes are not natively supported

by crowdsourcing platforms, a set of programming frameworks and higher-

106

http://www.freelancer.com

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

level platforms have emerged, which are built on top of existing crowd-

sourcing platforms (most notably, Mechanical Turk) and extend them with

additional features for the management of processes. Turkit [55], for in-

stance, proposes a JavaScript-based scripting language for the development

of human computation algorithms, e.g., based on iterative, sequential task

executions. Jabberwocky [4] is a parallel programming framework inspired

by MapReduce [30], with an own scripting language and support for crowd

and machine tasks. CrowdForge [47] is similar in spirit to Jabberwocky, but

the map and reduce steps are both performed by the crowd. Turkomatic

[51] proposes a collaborative, divide and conquer approach in which the

crowdsourcer and the workers can split tasks arbitrarily and merge results

without the need for programming or to follow the rather rigid structure

of MapReduce. Finally, CrowdWeaver [45] proposes an own graphical no-

tation to model crowd processes with dedicated operators for data flows

and transformations.

4.2.4 Problem statement

All aspects from the publication of a single task and the selection of a

suitable crowdsourcing tactic to the design of an integrated crowdsourcing

process affect the quality of the final outcome of a crowdsourced work.

Making each step right makes crowdsourcing complex.

In this chapter, we focus on the model-driven development and execution

of (i) custom crowdsourcing tactics and (ii) crowdsourcing processes. We do

not further elaborate on how to most effectively describe tasks or on how

to fine-tune rewards, so as to maximize crowd participation or quality.

These are aspects that very strongly depend on the specific task to be

crowdsourced, and good studies of the topic already exist [5, 32, 41].

As for the tactics, the three tactics described above are just the most

prominent ones emerged today. The problem is that these tactics are cur-

107

4.2. CROWDSOURCING: CONCEPTS AND STATE OF THE ART

Publish photo
contest

Advertise
contest

Submit photos

Rank photos
Notify
winner

Publish
results

Marketplace tactic, n instances

Human task Machine task
Marketplace tactic, m instances

Figure 4.4: A crowdsourcing process involving different actors (humans, machines and

the crowd) and possibly different crowdsourcing tactics

rently hard-coded inside crowdsourcing platforms; each platform has its

own tactic with proprietary pre-selection, quality assessment and reward-

ing logics; and they all require a significant amount of manual labor by

the crowdsourcer. It is not possible to freely choose and fine-tune how to

negotiate a task with the crowd.

The process in Figure 4.4 illustrates how to implement a photo contest

where the crowd both submits photos and ranks photos (crowd tasks),

while the crowdsourcer takes care of initiating the contest, advertising it

and notifying the winner (human tasks). The process is closed by a machine

task that automatically publishes the results of the contest. The two crowd

tasks internally adopt a marketplace tactic, which logic could be designed

by the crowdsourcer just like he designed the process model in the figure.

There are multiple contexts that may benefit from this kind of advanced

crowdsourcing processes, such as:

• Product design: Early feedback to new products is crucial to success.

Crowdsourced feedback or even testing, if properly integrated into

production processes, can be a significant competitive advantage.

• Social marketing : Marketing campaigns are increasingly conducted

online. The integration of crowdsourcing into common marketing

processes may allow organizations to boost and monitor their social

presence.

108

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

• Idea management : Increasingly, organizations engage the crowd to

ideate new products or services. Common social networks do not pro-

vide adequate support for this, and idea management systems may be

too rigid. Custom crowdsourcing processes may make the difference.

• e-Democracy : In line with recent trends, crowdsourcing may enable

the participation of the civil society to politics. How to involve society

(e.g., via voting, promoting petitions or similar) is as crucial as election

laws are. Each party may have its own preferences and goals, i.e.,

crowdsourcing processes.

• Human computation: Despite the increasing computing power of ma-

chines, there are still tasks that only humans can solve, e.g., telling

whether a portrait photo is beautiful or not. Advanced crowdsourcing

processes enable the flexible integration of both humans and machines,

unleashing the computing power of both.

For the crowdsourcing processes, the state of the art is that they are

still mostly executed manually. The frameworks introduced above do pro-

vide limited support for automation, alleviating the burden on the crowd-

sourcer. What is still missing is support for crowdsourcing processes that

are natively integrated with common business process management prac-

tices, that bring together the crowd, individual actors and the machine, and

that allow for the crowdsourcing of tasks using different tactics, depending

on the specific needs of the crowdsourcer.

4.3 Modeling and enacting advanced crowdsourcing

processes

Supporting the modeling and enacting of crowdsourcing processes is a com-

plex task, especially if the aim is to provide a solution to create both crowd-

109

4.3. MODELING AND ENACTING ADVANCED CROWDSOURCING PROCESSES

sourcing processes and crowdsourcing tactics with a single abstraction. A

solution that can be used by crowdsourcers with various backgrounds and

not only by technicians or expert of the field. We envision the typical

crowdsourcer that uses our solution as a person that has: a background on

business process, thus that knows the basics of process modeling; knowl-

edge of crowdsourcing; a basic development knowledge of web pages; and

that is able to understand how data are generated and consumed by the

task he creates. We require the crowdsourcer to create web pages because

we see crowd applications as complex and structured processes that may

need different user interfaces (UIs) for different tasks. For this reason we

envision a system where a crowdsourcer creates the UIs that are later pre-

sented to workers. Similarly, the crowdsourcer also needs to have a clear

idea about what type of data are created and consumed by each task, this

to manage and transform the data of tasks.

4.3.1 Requirments

We analyzed extensively crowdsourcing processes and we derived the re-

quirements for the creation of crowdsourcing processes and for the execu-

tion. For the modeling we need to support:

R1 Crowd tasks. Crowd tasks are the essential part of crowdsourcing pro-

cesses. They describe the work that is assigned to the crowd. This

task has to allow a crowdsourcer to specify the task characteristics,

such as the description of the task.

R2 Crowdsourcing tactics. The execution logic of a crowd task, the tactic,

may differ from task to task even if they are in the same crowdsourcing

process. Then, we need to be able to personalize the tactic, deciding

its type, and to configure the logic in which rewarding and validation

are executed. This to allow the crowdsourcer to decide and configure

110

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

the execution aspects of every crowd task.

R3 Human tasks. Human tasks are used when a task has to be executed by

a designated human actor (not the crowd), such as the crowdsourcer.

Human tasks are important, in that they allow a person to control

the execution of the process, for example the crowdsourcer has the

possibility to validate the task results.

R4 Machine tasks. Not all the logic of crowdsourcing processes can be

executed with only human or crowd tasks. There may be the need for

executing logics that can be performed by a machine, for example an

operation to compute the average of a series of data extracted from

the crowd results. For this reason we need the possibility to execute

machine tasks.

R5 Control flow. Crowdsourcing processes are composed of various tasks.

It is then necessary to be able to specify the order in which tasks are

executed. The control flow does not only define the order, but also

contains control flow statements (decision points) whose results may

change the path to follow (e.g., an if condition).

R6 Data flow. Control flow specifies the execution order of the tasks. Yet,

tasks produce and consume data, thus they need to have access to

information. Data can be propagated in different fashion, e.g., sharing

data with all the tasks or following a flow. Having a solution to specify

the data flow, and how information are propagated, is then important.

Data flow gives to a crowdsourcer the possibility to define clearly what

data are produced and consumed by each task and where these data

have to be sent or from where they have to be read.

R7 Data transformation. Data transformation is another fundamental as-

pect in crowdsourcing processes since crowd tasks consume and pro-

111

4.3. MODELING AND ENACTING ADVANCED CROWDSOURCING PROCESSES

duce data. For example, input data of a crowd task has to be divided

into partitions to be handled by each worker, while the task outputs

have to be merged into a unique solution. Data have also to be loaded

from external sources or filtered to remove results that are not satis-

factory, operations that right now are implemented by crowdsourcers

in external applications.

For the execution we need to support:

R8 Engine for crowdsourcing processes. To run a crowdsourcing process

we need an engine able to execute all the tasks that are permitted in a

crowdsourcing process. Thus, the engine has to support the execution

of crowd, human, machine, and task for the transformation of data.

R9 Deployment of tasks on crowdsourcing platforms. Crowd tasks are ex-

ecuted on crowdsourcing platforms. This requires to support the au-

tomatic deployment of tasks and tactics on crowdsourcing platforms.

The deployment requires to create a communication channel to receive

crowd task results and to send task parameters and runtime informa-

tion to the crowdsourcing platform from the process engine.

R10 Management of data. The platform has to offer support for data

management, providing a solution to execute common data operations

that are configured by the crowdsourcer in the model of the process.

Since the crowdsourcing process specifies the data and control flow the

platform has to support the execution of both accordingly to what is

designed in the process model.

4.3.2 Approach

In Figure 4.5 we depicted a possible architecture of our approach. It is

divided in three parts: one for the creation, thus the modeling of the

112

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

services

Crowd Computer

BPMN Engine

App, User and
process data

BPMN
Process

CroCo Crowd

Human actors

Crowd
Process

Compiler
and

Deployer

Crowdsourcer

BPMN4Crowd editor

Web Editor

Task pages

search

execute

invoke

do

do

Compile Execute

Le
ge

nd

Crowdsourcer

Task web pages

Document
flows
System/human
 communications
Automatically
generated elements

Model

Figure 4.5: The architecture of our approach.

crowdsourcing process (model); one where the process is translated into

executable code (compile); and a third part where the process is executed

(execute).

For the execution of crowdsourcing processes (right part of the Fig-

ure 4.5) we use a business process (BP) engine, since it already supports

part of the requirements (R8). A BP engine gives support for the exe-

cution of human task, machine task, control flow, and data flow. Data

management operations are not part of a BP engine, thus we add to the

engine the logic to support data operations (R10). For crowd tasks and

crowdsourcing tactics we introduce the crowd computer (CroCo) that

supports the development of applications where the key work performer is

not the CPU but the people. The crowd computer provides primitives to,

e.g., start and stop tasks, to assign them, to approve or reject the results,

to reward, and it is able to keep track of work assigned, done, pending,

and of the performances of each worker. With these primitives, program-

mers can specify programs and strategies on top. Therefore, tactics are

encoded as reusable program templates or developed ad hoc by a crowd-

sourcer. Instead, we do not see the crowd computer as providing specific

113

4.3. MODELING AND ENACTING ADVANCED CROWDSOURCING PROCESSES

support to the execution of the human task per se, the task execution

data, and the computer-human interface. Each application has its own

requirements needs for a specific UI. In our approach UIs are created by

the crowdsourcers as external web pages.

The compile part of the architecture transforms crowdsourcing processes

into process that can be executed by the engine, adding information that

are needed for the execution. In this phase the system also deploys tasks on

crowdsourcing platforms (R9), retrieving the information from the process

model.

For the modeling of crowdsourcing processes we create an editor called

BPMN4Crowd editor. This editor allows the creation of crowdsourcing

process with the BPMN4Crowd language. This language is an extension

of a business process modeling language, specifically BPMN (Business Pro-

cess and Modeling notation) [67]. Already in [50] we proposed the use of

BPMN as an intuitive way to express a crowdsourcing process that coor-

dinates the work of a multitude of crowd members. The rationale behind

the choice of a process language as BPMN is that crowdsourcing applica-

tion logics can be expressed as processes. Moreover, by its nature, BPMN

already satisfies some of the requirements we have, in particular: the possi-

bility to model human tasks (R3) and machine tasks (R4), and to specify

the control flow (R5) and the data flow (R6). Yet, the BPMN language

lacks of components to model crowdsourcing processes. We approach this

problem with a modeling notation to support crowdsourcing processes,

called BPMN4Crowd. Based on the idea to have access to operations for

basic crowdsourcing components (e.g., crowd, task, reward and quality),

which are provided by the crowd computer, the BPMN4Crowd abstracts

the operations and crowdsourcing functionalities with ad-hoc constructs,

such as one for the crowd task or for data tasks. We introduce three con-

ceptual layers of modeling (depicted in Figure 4.6). The layers abstract,

114

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

Pr
oc

es
s

C
ro

w
d

Ta
sk

 T
ac

tic

C
ro

w
d

Ta
sk

in

te
rn

al

co
nfi

gu
ra

tio
ns

Receive
Result

Validate
Result Reward UserAssign task

Vote

Vote

Vote

Agreement

Crowd task

+

Create task

Figure 4.6: The visual representation of the layer approach.

with different granularities, the aspects that crowdsourcers have to specify

to crowdsource a process: (i) the crowdsourcing process logic that contains

the crowd, machine, human and, data tasks ; (ii) the tactic of each task;

(iii) and the configuration of each tactic. Each layer abstracts one of these

points:

1. The first, high-level abstraction, is the process layer. This is the place

where crowdsourcers model the process logic, which describes the con-

trol flow (R5) and data flow (R6) of crowd (R1), human (R3), ma-

chine (R4), and data tasks (R7). It is at this level that the logic of

the crowdsourcing process is modeled.

2. The second level is the tactic layer. At this level crowdsourcers decide

how to approach the crowd and how to manage the internal logic, the

tactic, of each crowd task (R2).

3. The third, and lower, level is the configuration layer. This is the

level where crowdsourcers decide the internal aspects of a tactic, the

configuration (R2), such as the pre-selection of workers, how to reward

115

4.4. MODELING CROWDSOURCING PROCESSES: BPMN4CROWD

workers, and how to validate their work, aspects that typically can be

implemented with various logics.

Tactics and configurations of tasks are very particular processes, which are

not easy to model. We approach this problem by creating and providing

various patterns that describe rigorously the most important tactics and

configurations. These patterns are part of the language and can be used

by crowdsourcers by choosing the desired one and set the parameters for

the execution. With this approach we allow a crowdsourcer to choose and

execute the most common tactics without modeling their processes.

4.4 Modeling Crowdsourcing Processes: BPMN4Crowd

In this section we introduce the higher level of modeling, which is where

crowdsourcing processes are created. This level abstracts crowdsourcing

concepts at an high level, hiding the detail to lower levels, allowing also non

developer to create crowdsourcing processes. In the top part of Figure 4.6

there is depicted the most simple crowdsourcing process.

To enable the modeling of crowdsourcing processes we have to introduce

new construct to the BPMN language to model crowdsourcing aspects and

operations, for example a task to give the modeler the possibility to specify

a task for the crowd. At this level of abstraction we introduce two new

tasks: the crowd task, to create the tasks that have to be executed by the

crowd; and data tasks, which implements the operations to manipulate the

data that are produced or consumed by the tasks of a process.

4.4.1 Crowd task

First construct that we introduce is the crowd task to describe the work

that the crowd has to execute. The crowd task (Figure 4.7) does not differ

116

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

from a standard BPMN task only by its icon, which represents a crowd,

but also by the fact that this task is deployed and executed on the crowd

computer. Within the task definition we introduced additional parameters

to specify crowd related information, which are:

• Description: to specify the instructions that workers have to follow.

• User interface: to specify what UI has to be used as task interface.

• Number of instances: the number of task instances that have to be

created, this represents how many instances must be created and ex-

ecuted.

• Deadline: a date and time after which the task expires.

• Validation strategy: to specify how the validation of worker results is

conducted.

• Reward: to specify what is the reward for the job (e.g., 10 dollars).

• Reward strategy: how the reward will be give (e.g., to the best).

An important aspect of crowdsourcing is the pre-selection of the crowd.

Standard BPMN grammar uses the concept of lanes and pools to define

the actors. Yet, the task assignment to an actor is made at modeling

time and the actor has to be clearly identified. In crowdsourcing, clearly

identifying the person who executes a task at modeling time is not possible.

The practice in crowdsourcing is that the requester defines a set of skills

that a worker has to meet to be eligible to execute a task. For the crowd

selection, instead of extend the lane, we decided that the pre-selection

criteria is specified directly inside the properties of crowd tasks. This to

limit the number of lanes that could be created if a process requires a

different crowd for each task.

117

4.4. MODELING CROWDSOURCING PROCESSES: BPMN4CROWD

Crowd Task

Figure 4.7: The crowd task.

a) Data Object
 Set of sets

Split Data Merge Data Join ObjectsSplit ObjectsFilter Data

c) Split Data Set e) Merge Data Set f) Join Data Strucutred) Split Data Structureb) Filter Data

Figure 4.8: The data transformation notations.

4.4.2 Data transformation

BPMN has artifacts to specify the data objects and connections elements

to specify the association of data. While the association arrow is enough

to specify the data flow, the data object is not enough to specify the data

that are produced or consumed by a crowd task. This artifact does not

communicate any information on the structure of the data, making diffi-

cult for a modeler to understand the data structure that a task produces

or consumes. In the standard BPMN data objects of any form (set of ob-

ject or set of set of objects) are represented with the same element: the

collection, which is a data object with three vertical line at the bottom. To

discriminate the two structures of the data we introduce the collection of

collections (set of sets) data object (the first element on the Figure 4.8).

Data management embraces also the possibility to execute operations

on data. In crowdsourcing processes there is a need for split, merge and

filter data. To help modelers we introduce a set of data tasks that repre-

sent common data operations. The benefit of this extension is to give to

modelers a set of reusable operations that they can use and configure. To

be more general, and to support different use cases, we created two sets

118

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

splt data set split data structure

join data structure
(white block as shared key)merge data set

Figure 4.9: The data and object operations.

of operations: one to manage the data set and one to manage the data

structure. The former work on a set level and are used to manage process

data , such as inputs or outputs of a task (e.g., the set containing all the

workers results) while the latter on the structure of the data(e.g., works on

the data of a single worker’s result). These operations are:

• Filter data. This function is created to filter a set of items, thus main-

taining the data that match the condition and removing the others.

It takes as input a set of elements and produces as output a sub-set of

elements. For example, it can be used to filter the work of the crowd

keeping the result sent by workers who did answer correctly at the

question of the task. The filter data task is represented in Figure 4.8

item b). It takes in input a data item and returns a data items.

• Split data set. This function is used to split in partitions a dataset,

it takes as input a set of items and produces as output a set of sets.

The split data set task is represented in Figure 4.8 item c). The

Figure4.9 (left part) shows how the split data works, it divides the

list of objects in two lists (the dotted plan is where the cut is made).

The split data operation does not have a singular execution logic, in

fact there are different ways in which a dataset can be split into sub-

sets. In Figure 4.10, we depict the visual representation of the split

operations that we introduce here. The first element on the left is

119

4.4. MODELING CROWDSOURCING PROCESSES: BPMN4CROWD

1 2 3 4 5

1 2

3 4

5

1 2 3

4 5

1 2 3

4 53

1 2

2 3

3 4

4 5

1 2 3

2 41

1 2 5

3 41

1 3 5

4 51

2 3 4

4 52

4 53

a) Initial dataset b) SplitN(2) c) SplitForN(2) d) SplitN
withM (2,1)

e) SplitforN
withM (2,1) f) Combination(3)

5 1

Figure 4.10: The different split data set operations.

the initial dataset while the others are the result of the operations.

Operations that are:

– SplitN: this function is one of the most used, it splits the dataset

in subset of N elements each. It is used when a requester wants to

decide the size of the partition instead of the number of resulting

subsets. In Figure 4.10 b) the result of the splitN (with N equal

2) applied on the initial dataset a). In this case the operations

creates three sets, the first two of 2 elements while the last is of

1 element, the remaining one. This operation is generally used

when the crowdsourcer wants to assign to each instance a precise

number of item without worrying of how many instances will be

created.

– SplitForN: in this function the number N is used to specify how

many partitions have to be created. This operation is useful when

there is the need for splitting the data in exact N subsets. In

Figure 4.10 c) the result of the splitForN (with N equal 2). The

operation creates two sets, one of 3 elements and one of 2. This

operation is used when the crowdsourcer wants to have the control

on how many instances will be created (each split set generally

is assigned to an instance).

120

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

– withM: this function can be combined with the previous two. It

implies the fact that, among the partition, M elements are shared

with another partition. In Figure 4.10 c) and in d) the result of

the splitNwithM (with N equal 2 and M equal 1) and of the split-

ForNwithM (with N equal 2, M equal 1). The former operation

creates six sets each of which composed of 2 elements 1 of which

shared with the following set. The latter operation crates 2 sets

with 1 element shared among the two. This operation is used to

create redundancy of elements and then have more data that can

be used to validate the workers results, such as checking if the

answer of two workers on the same data is the same or not.

– Combination: this function generates all the possible combina-

tions of K elements, thus some elements are shared among the

combinations. The operation uses the value K as number of el-

ements of each combination. Also this operation is used to have

redundancy of results.

• Split data structure This operation splits the structure of each item

instead of separate the items of a set as the data split. The split data

structure task is represented in Figure 4.8 item d). The Figure 4.9

(right part) shows how the split data structure works, it divides the

the items contaned by each object. In this case the white rectangle is

in the middle of the cut, thus it is placed in both the results (last part

of the Figure). The split object logic is unique and what changes is the

configuration that specifies how to split the item structure (where the

cut is made). The requester selects the attributes from the structure

of the object and in which new object they will be placed. This

configuration allow the requester to split the object into various other

sub-objects. The operation takes as input an item and produces as

121

4.4. MODELING CROWDSOURCING PROCESSES: BPMN4CROWD

output two, or more, items that are sub-parts of the initial item. If

in input is given a set of items, the split operation is repeated for

every item in the list. For example, this operation can split an object

that has id; name; description; tag; attributes into two objects one

composed of id; name; description and one of id and tag.

• Merge Data set This operation is used to merge, thus recompose into a

unique set, various set of items. It is the counter part of the split data

set, and it results is shown in Figure 4.9 (left part) where the result of

the split is merged back into a unique set. The merging logic is unique

and works at the item level, thus no configuration is required. It takes

as input a set of sets and produces a set of items. This operation is

generally used to recompose the results of all various tasks or task

instances into a unique set of results. This operation is the counter

part of the split data operation. If the merge data is applied on the

result of the split data operation what comes out is the initial dataset.

The split merge data set is represented in Figure 4.8 item e).

• Join data structure This operation is similar to the merge data but

executed on the structure of items. In this operation two or more

objects are joint together. It is the counter part of the split data

structure, and it results is shown in Figure 4.9 (right part) where the

result of the split data structure is merged back into a the sets. The

logic of the operation is unique but requires a configuration to specify

a shared key (which in the Figure is the white block) that is used to

identify what are the items to merge among the whole set (this is the

same logic of a join in sql, where an ID is used to merge the data of two

tables). For example it can be used to join the results of two different

tasks (two list of items) into an unique set of items, using the id of

the user as identification key. The join data structure is represented

122

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

Publish resultsPublish
Contest

Advertise
Contest

Notify Winner

Upload Photo

Rank Photos Filter winner

Figure 4.11: The process of the photo scenario modeled with BPMN4Crowd.

in Figure 4.8 item f).

4.4.3 Modeling a crowdsourcing process with BPMN4Crowd

In Figure 4.11 we modeled the process of the photo contest scenario with

the BPMN4Crowd constructs. In the process we modeled two crowd tasks

with relative data items and data flow. The first crowd task, the upload

photos, asks the crowd to upload photos. For this task the crowdsourcer

creates the task page, in which workers upload the picture, and set the

parameters of the task accordingly to its need. The result of this task is a

set of photos that the crowd has to rank. The entire set of photos is used

as input for the the rank photos task, which has a similar configuration as

the upload photos task and a dedicated page created by the crowdsourcer.

In this task the crowd is asked to rank the photos. The result of this task

is sent to a filter data task that is used to keep only the most voted picture.

The other tasks of the process are modeled as human tasks, assigned to

the crowdsourcer, and as a machine task that automatically uploads the

contest results on the website. With BPMN4Crowd we are able to cre-

ate a crowdsourcing process for the photo contest scenario. However, at

this point we are not (yet) able to define the tactic of each task. Task

and tactics heavily depend on the crowdsourcing platform one wants to

use and existing platforms generally implement a single tactic. To have

the possibility to model and decide tactics of tasks we need a crowdsourc-

123

4.5. THE CROWD COMPUTER

ing platform that supports the creation and execution of various tactics

without imposing pre-defined choices.

4.5 The crowd computer

For the execution of crowdsourcing processes we need a BPMN engine,

which is in charge of executing the process, and a crowdsourcing platform

to crowdsource the crowd tasks. Existing platforms only allow a limited

personalization of crowd tasks (e.g., it is not possible to decide the tactic

of a task), and often implement predefined choices that one cannot change

(e.g., the type of payment). The crowd computer (CroCo) is created to

provide a platform that gives a basic support to crowdsource various types

of crowd tasks without imposing pre-defined tactics or configurations.

Figure 4.12 illustrates the essentials of the crowd computing environ-

ment. The crowd computer is composed of a central unit, the crowd en-

gine, that receives the API calls and routes them to the different sub units

(task, crowd, quality and reward managers). This give us the possibility to

use the crowd computer to execute crowd tasks with various tactics, since

tactics can be specified with different sequence of API calls. The crowd

computer can also be used as proxy to publish a task into other crowd-

sourcing platforms. Yet, in this case, the execution of a tactic, different

from what the chosen platform supports, is not possible.

To have a flexible execution of crowd tasks we designed the crowd com-

puter with different units, each of which offers specific functions:

Task manager comprises a set of operations for task life cycle management

and data propagation among tasks. Operations are activating a crowd

task so that it can be instantiated (executed) by the crowd, assigning

it to a crowd worker, canceling it while in execution, re-running it,

deactivating it, enacting machine tasks, etc. These operations parse

124

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

Crowd engineTask manager

Reward manager

Crowd manager

Plugin manager

API interface

Metadata

Web services Payment services

Crowd computer

Quality manager

Crowd Task
definitionCrowdCS Platform

Figure 4.12: Functional architecture of the crowd computer.

125

4.5. THE CROWD COMPUTER

the task definition with its configuration parameters (e.g., for the in-

vocation of machine tasks), runtime parameters (e.g., for control flow

decisions), and input and output data objects. Each task can be in-

stantiated multiple times, so as to collect the amount of data the task

is required to produce as output. Data objects store only references

the application’s task data repository; these are provided at runtime

by the application to support data splitting and merging inside the

CroCo. Data properties enable the association of descriptive informa-

tion to data objects and enable, e.g., the definition of custom quality

controls or the correlation of task instances referring to a same data

object.

Crowd manager is in charge of human resource management and pre-selection.

It comprises a set of operations for the management of users, such as

resolving user roles, pre-selecting potential workers, keeping track of

which user executed which task, sending direct invitations to people,

ensuring separation of duties, etc.

Quality manager provides for the tracking of quality assessment tasks and

respective evaluations. Specific operations are, for example, setting

quality evaluations, checking threshold levels, filtering input data based

on quality, etc. Quality is assessed via regular human/machine tasks;

the CroCo only stores metadata. Quality control logics are imple-

mented as reusable program templates or designed ad hoc. Data ob-

jects may have an associated quality and a quality threshold level. We

propose that quality be simply expressed via numbers from 1-10, so as

to equip the CroCo with a notion of quality that is can use to manage

tasks. The threshold level separates “good” from “bad”. The actual

semantics of these quality levels and their computation is up to the

application developer.

126

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

Reward manager is in charge of keeping track of which process instances

have been rewarded, i.e., paid, and how. It provides for payment

management. Each task may have an associated reward and payment

service, yet actual payments may occur for individual task instances,

bundles of task instances and similar. The crowd computer does also

not impose any reward logic. Also reward logics can be implemented

as reusable program templates or specified ad hoc. For example, pro-

cesses that are modeled in the lower modeling layer (as presented in

Figure 4.6) are process templates that the BPMN4Crowd offers for

the reward of workers. These processes, which can be chosen from a

repository, execute the logic of the reward and interact this unit only

when the user has to be rewarded. The crowd computer does further

not impose any concrete payment platform (e.g., PayPal, VISA); such

can be plugged in dynamically by the developer.

The crowd computer exposes a set of API (explained in Table 4.1) that

can be accessed by external applications. The API wraps the operations

that each unit can perform. This approach allows developers to interact

with the platform and create various crowdsourcing tactics and tasks. To-

gether, these operations form an instruction set that supports a reasonably

large class of programs, while keeping the instruction set focused to the core

crowd management issues and, hence, simple, manageable and efficient.

Unit Operation Parameters Description

Task create task information Creates a task in the crowd

computer. This operation is

used to store the information

given by the crowdsourcer.

start task id Starts the specified task.

When a task is started it is

visible to the crowd.

127

4.5. THE CROWD COMPUTER

stop task id Stops the specified task. When

a task is stopped it is invisible

to the crowd. Workers’ results

for stopped tasks are not ac-

cepted.

createInstance task id Creates an instance of the

specified task. This operation

also starts the instance, mak-

ing it available for workers.

stopInstance task instance id Stops the specified instance.

assignInstance task instance id, user

id

Assigns the specified task in-

stance to the specified user.

storeResult task instance id, data Stores the data for the speci-

fied task instance.

updateInstance task instance id, data Updates the status of the spec-

ified instance.

updateInstances task instance ids (ar-

ray), data

Updates the status of all the

specified instances.

Crowd preselect user id, task id Executes the pre-selection,

checking if the specified user

meets the requirement for the

specified task. This opera-

tion interacts with the Task

unit from where receives the

information of the task

Quality validate task instance id, data Assigns the value (passed as

parameter) for the quality of

the selected instance.

Reward give user id, reward Assigns the reward to corre-

sponding worker

Table 4.1: List of the API. 2

2 Each unit implements CRUD operations and additional operations, which are not shown here. In

this table we grouped only the operations that are used to model the processes that we present later in

the chapter.

128

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

Crowd Computer

Figure 4.13: The crowd computer task to interact with the API.

4.6 Modeling crowdsourcing tactics

The crowd computer exposes operations that can be programmatically

accessed to execute various type of tactics. A crowd task is not an atomic

action executed only by an actor. It is a composition of various tasks

executed by multiple actors, namely the worker, the requester and the

platform. To create a tactic we have to program the crowd computer. To

do so we introduced a secon level of modeling (as shown in Figure 4.6)

in which a crowdsourcer can create the tactic of the task. In this section

we introduce the components that allow one to create a tactic and also

processes of most common tactics. The most basic process of a tactic is

modeled in Figure 4.6 in the central part, it is the composition of the five

main tasks.

4.6.1 Designing Tactics

In BPMN4Crowd we create a dedicated task that interacts with the crowd

computer API, depicted in Figure 4.13. With this task it is possible to

execute operations on the crowd computer and then enable the execution

the desired tactic. To understand how the tactics are created we show in

this section how the most important tactics, namely marketplace, contest

and bid [52, 56, 70, 85], can be modeled with our notations. Since the

tactics are complex process that requires a consistent modeling, for example

each task instance created has to have a correspondent execution operation,

we introduce in BPMN4Crowd the tactics as reusable processes. In addition

129

4.6. MODELING CROWDSOURCING TACTICS

C
ro
w
dC

om
pu
te
r

Receive
Result

Retrive Task
Definition Validate

Result
Reward

User
Assign

Instance

Set Instance as
expired

Set remaining
Instance as

expired

Create an
Instance

Worker

task.read
task.createInstance

task.assignInstance
(Crowd.preselect)

task.storeResult

task.updateInstance(expired)

reward.give

task.updateRemainingInstances(expired)

task.stop
task.start

task.stopInstance
quality.validate

Figure 4.14: The process of the marketplace tactic.

to the three most used tactics we introduce here the mailing list tactic,

which can be useful in many crowdsourcing scenario as it targets a precise

group of people, for example for user studies. The list of tactics presented

here is not complete but covers the most common ones. Yet, our modeling

language allows modelers to create additional processes for the tactics, thus

additional and new logic can be used to crowdsource work. The models

of the tactic are designed with the use of the crowd computer task that

calls the relative APIs. To make the models more understandable we gave

meaningful names to the crowd computer tasks, annotating each task with

the relative API call.

Marketplace

The marketplace is one of the most common tactics. The typical execution

logic of this approach is that the requester posts in a shared space - the

market - a task, which can have various instances that are decided by the

requester. The crowd has the possibility to look through the list of available

tasks and to accept to work on tasks. This tactic allows only one worker

for each task instance and the instances are independent entities: there

130

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

is no exchange of information between workers or instances of the same

task. Once executed the result is (generally) validated and, if accepted,

the worker is rewarded, otherwise no reward is given. The reward is often

a small amount of money (less than a dollar) but the reward is generally

given when the answer is correct.

Figure 4.14 shows a process that represents one possible implementation

of the marketplace. The model expresses the prospective of the crowd

computer. The process starts with the platform loading the task definition

that is stored in the crowd computer (created when the requester deployed

the process). This operation interrogates the task management unit that

replies with the task definition. The task definition is used for the creation

of the task instances. In the model we created a multiple parallel sub-

process that is used for the execution of the instances. In the subprocess

the first operation creates a new task instance. The sub-process than waits

for a worker to accept the task. When a worker sends the message that

he has accepted the task, the platform execute the operation to assign

the instance. The assign operation also performs the pre-selection: if the

worker meets the requirements the instance is started and assigned to the

worker, otherwise the instance is released and the process goes back waiting

for another worker. When the instance is assigned the platform waits until

the worker sends the result. The result sent from the worker is used to

update the instance information inside the task unit of the crowd computer.

In case of timeout (when a worker does not submit results on time) the

platform updates the task instance information setting it as expired. After

the process runs the validation task, which is a sub-process. The validation

sub-process is modeled by the modeler and executed forwarding the task

instance metadata. In its internal logic, the validation sub-process calls

the API relative to the quality unit, updating the validation value with

the result of the process execution. Later, the process executes the reward

131

4.6. MODELING CROWDSOURCING TACTICS

Worker

Retrive Task
Definition

Decide
winner(s) Reward User(s)Collect Results

C
ro

w
dC

om
pu

te
r

task.read
task.start

task.stopreward.givequality.validate

Figure 4.15: The process of the contest tactic.

task, which logic is configured by the requester. The execution logic of

this task calls the reward unit API that is used to give the reward to

users. Generally, in the marketplace tactic, the reward logic pays all the

workers whose work has been validate as positive; yet requester can use

other strategies such as pay all and give bonuses to certain workers. The

sub-process that manages the task instances has a timer that is triggered if

the instances are not completed, or accepted, within a time window. This

timer triggers a task that sets as expired all the remaining instances, this

ensures that all the instances are terminated. When all the instances are

completed, or expired, the process stops the task.

This is only one possible representation of the marketplace and other

exists, for example the minimal marketplace. The minimal marketplace is a

marketplace with a single instance and without validation and reward. To

model and execute it with BPMN4Crowd and crowd computer the process

needs to have a task to retrieve the task definition. Then, without any

sub-process, a task to create an instance, one to assign the instance and a

task to receive the results. This is the minimal set of tasks that our solution

needs to create a marketplace tactic.

132

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

Recive ResultCheck
Preselection

Set Instance
as expired

Remove the
instance

Collect Results

Create an
Instance

task.createInstance

task.assignInstance
(Crowd.preselect)

task.deleteInstance

task.updateInstance(expired)

task.storeResult

task.update(contestStop)task.update(contestStart)

Figure 4.16: The process that models the collection of answers during a contest.

Contest

Another tactic is the contest, in which the negotiation is more articulated

than in the marketplace tactic. When the task is published on the platform,

all the workers can submit results. Usually there is no limit to the number

of workers that can participate and neither to the number of solutions that

each worker can submit. In this tactic the instances are dependent: the

workers submit results for the same task, competing for the reward. Only

after a specific time, when the contest closes, the requester (or someone

else on his behalf) decides which work is the most valuable, thus the worker

that gets the reward.

This tactic creates a competition among workers that are aware of this.

The contest tactic is used to collect a widespread set of answers from

various workers and then decide which are the best solutions. For this

reason this tactic is used generally for creative task where the solution is

subjective to the requester and more solutions can be evaluated as correct,

for example the creation of a logo. To make the competition interesting for

workers, reward is generally high (when monetary in the order of hundreds

or thousands of dollars) but only the winner (best result), or few people

133

4.6. MODELING CROWDSOURCING TACTICS

receive it. Thus, even with correct or good solution the workers may not

receive the reward.

In Figure 4.15 and Figure 4.16 we model the process of the typical con-

test tactic. The process of the tactic is divided in two parts: the main

process that is in charge of starting the task, validating the results, and

rewarding the workers; and a sub-process that manages the contest execu-

tion. The main process (Figure 4.15) has similarities with the marketplace.

The first task reads the task definition, that are used in the collect results

task (a sub-process). Once the results are collected, the process executes

the task to decide the winner, which is a sub-process (as in the market-

place) that interacts with the quality unit, and after executes the reward

task that calls the reward unit API. However, the execution logic of the

task instances is different from the marketplace. While in the marketplace

each task instance has a task to collect the results, a validation task, and

a reward task, in the contest the validation and reward are executed once

for all the instances at the same time.

In the collect results sub-process (Figure 4.16) we modeled the collec-

tion of workers’ answers. The sub-process starts and triggers a timer that

after a predefined amount of time ends the sub-process closing the contest;

this emulates the deadline of the contest. While the contest is open the

sub-process collects answers from workers. For each worker that wants

to participate the platform receives a message. This message triggers the

event-based sub-process (the part surrounded by a dotted rectangle) that

creates an instance, then executes the instance assignment, and if assigned

waits to receive the answer from the worker (similar to the marketplace tac-

tic). This event-based process can be trigged as many time as the workers

submits data, and is automatically stopped when the timer reaches the

deadline set by the requester. When the contest is closed all the answers

are passed to the tasks that decide the winner and reward users.

134

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

C
ro

w
dC

om
pu

te
r

Receive ResultRetrive Task
Definition

Set Task as
expired

Review Result Reward User

Set Task as
expired

WorkerCrowd

Check Bids

task.read
task.start

task.updateInstance(expired)

reward.givequality.validate
task.storeResult

task.stop

Figure 4.17: The process of the auction tactic.

Also for the contest various implementations exist, such as the minimal

contest. For the minimal contest, in the the main process, a crowdsourcer

can remove the rewarding. The other three tasks cannot be removed, one

is needed to read the task definition, one for the execution, and the last to

decide the winner. The logic of the collect result sub-process, instead, is

standard and one cannot modify it much. What a crowdsourcer may want

to change is the logic to decide the winner. In a minimal contest this logic

could be of picking randomly one result or to select the first result sent.

In more complex, and real, cases this logic can involve the crowdsourcer to

decide the winner or can ask the crowd to rank the results and then, with

a machine task, compute the average and find the winner.

Auction

The auction tactic is different from the previous two tactics we presented.

While in the marketplace and contest reward is specified at the beginning,

in the auction the reward is decided by the workers. There are various

execution of the auctions, which for crowdsourcing are executed in a reverse

fashion - where the winner is the worker who bids less than the others.

135

4.6. MODELING CROWDSOURCING TACTICS

Create Instance

User.bid < Task.bid_level

True

Check Bids

Check
Preselection

task.assignInstance

Assign Instance

Crowd.preselect
task.createInstance

Figure 4.18: The process that models the selection of the winner, in this case it is the

worker that first bids less than the bid level.

Among the existing mechanisms there is the (reverse) English auction,

where workers bid against the others for a fixed amount of time. After

this time the lowest bid wins. Another common auction mechanism is the

(reverse) Dutch auction. The requester specifies an initial reward, if no

workers accept the contract the reward is increased of a small amount. The

first worker that accepts the reward wins. This type of auctions require

a fair amount of time to participate in the bid, time that is not paid

and that may discourage workers from participate. In crowdsourcing a

common and used mechanism is the (reverse) sealed first-price auction. In

this case the requester specifies the maximum amount of reward he is eager

to pay. The first worker that bids less than this value wins. The auction

tactic is generally used by platforms that have professional workers, such

as programmers or freelancers. The idea is to offer rather complex tasks

(e.g. development of a piece of code) to a crowd of competent people that

will do the work for a reward that is lower than the one specified.

In Figure 4.17 and Figure 4.18 we modeled one possible process of the

auction tactic, for this process we implemented the sealed first-price auc-

tion. The process shares common parts with the contest and the market-

place. From the contest tactic it borrows the idea of having multiple actors

competing, in this case not for the work but for the bid (check bids). As

soon as a worker bids less than the threshold the system creates an instance

136

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

C
ro

w
dC

om
pu

te
r

Assign TasksRetrive Task
Definition

Set remaining
Instance as expired

Retrieve User
List

Worker

Collect Results

task.read
task.start

crowd.getList

task.updateRemainingInstances(expired)

task.stop

Figure 4.19: The process of the mailing list tactic.

and assigns it to the winning worker. Later, the worker performs the task

sending back the solution that is validated, within the sub-process that

models the logic of the evaluation; the worker is rewarded (generally if the

work is evaluated as positive). The second part is similarly to the mar-

ketplace, where for each instance there is a worker that executes it, then

the validation of the work, and after the reward based on the validation of

results.

As said, other possible auction processes can be created. In this case,

for the minimal auction what can be eliminated is the review result task,

which assumes that the worker submits a satisfactory result. The reward

task is mandatory, since the tactic is based on a negotiation of the reward.

The bid logic (the sub-process) can be created with different auctions, what

we modeled here is one of the simplest logics.

Mailing list

The idea of the mailing list tactic is to push the task to a group of people.

This logic is the opposite of the other tactics, where are the workers that

select the task they are willing to solve. Some platforms implement similar

approach, for example AMT allows a requester to assign a task to a specific

person. This tactic can be used to target a specific group, such as a mailing

137

4.6. MODELING CROWDSOURCING TACTICS

Assign instance
to UserCreate Instance

Receive Result Validate Result Reward User

Set Instance as
expired

Collect Results

Assign Tasks

task.createInstance task.assignInstance

task.storeResult reward.give

task.updateRemainingInstances(expired)

quality.validate

Figure 4.20: On the left the process that assign to each worker an instance. On the right

the process that collects the worker’s result and that validates and reward workers.

list of expert in some area, and ask them to participate in the task.

In Figure 4.19 we model the process of a possibler mailing list tactic.

Differently from previous approaches, the instances are created and as-

signed to each selected worker in advance (repeating subprocess). This

assignment is made to store the information of which user does which in-

stance, information that are useful in the validation and reward. Later the

platform waits for workers’ solutions. Each time a worker sends a solution,

the system stores the results. The solution is validated and reward given,

generally all the workers are rewarded, even though for this tactic a non-

monetary reward can be used. If the assigned worker are not willing to

participate the system has a timer that after a predefined time set the re-

maining instances as expired. Different approaches exist. Here the system

creates an instance for each worker. In other cases the system can create

a number of instances accessible via a single link. The requester can then

spread the link to a group of workers and the first people that access the

link executes the task. For the minimal mailing list tactic one can remove

the validation of the results and the rewarding, as in the marketplace.

4.6.2 Tactic configurations

With the tactic layer abstraction a modeler is able to decide and create a

tactic for each task. Parts of the tactic can be executed without specifying

138

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

Validate w3

Validate w2

Accept

Reject

Check Gold
data questions

% correct answers
>

threshold

Agreement

Evaluate
(expert)

Accept

Reject

yes

Expert

Vote

Gold data

Check Result
(w1)

Check Result
(w2)

Check Result
(w3)

w1.validation
=

w2.validation

Collect Votes validation
with avg

Compute
average

human task
quality.update(no)

quality.update(no)

machine task

quality.update(yes)

quality.update(no)

quality.update(w3.answer)

quality.update(w2.answer)

crowd task
crowd task machine task quality.update(avg)

Figure 4.21: Processes of four validation configurations.

the execution logic, for example in our solution the pre-selection criteria

are already specified in the task creation. Other parts need be configured

to be executed, precisely what a requester has to specify is the validation

process and the reward strategy. For these two tasks we created a list

of patterns that one can reuse, patterns that describe some of the most

common logics. This modeling is also present in our approach, it is the

lower layer of Figure 4.6.

Validation

The quality unit allows the requester to control all the results sent by

workers. In each tactic process there is a task that is used to validate, thus

specify the quality value of the workers’ results. To do so there are various

logic that one can use and here we present a list of the most common.

Validation logics are processes and with the BPM4Crowd we give the pos-

sibility to model a process to create a validation logic. Since some logics

are well known and used, we add in the language these logics as reusable

patterns. The patterns (process modeled in Figure 4.21) that we create

are:

139

4.6. MODELING CROWDSOURCING TACTICS

• Requester/expert: this validation is done by the requester himself/her-

self or by another person, an expert. The validator (the requester or

an exeprt) executes a crowd task to validate the worker’s result. The

answer of the validator is used as value for decision, if positive the

work is accepted otherwise rejected.

• Gold data: this validation relies on gold questions - their answers are

known a priori - that are automatically checked by the platform [66].

This validation gives only an estimation of the task quality by checking

control questions, and not a real evaluation of all the answers. In fact

what is checked by the gold data method are only some of all the

question of the task, and on this information an estimated quality is

computed. On the other side, this validation is straightforward and

does not require additional time or human activities for its execution.

The validation process starts with in input the worker’s answer and

the gold data. A machine task compares the worker’s answers with the

gold data present in the system computing the percentage of correct

answers. This value is compared with the threshold (decided by the

modeler when creates the process), and if greater a positive validation

is given, otherwise a negative one.

• Agreement: this validation assumes that two, or more, workers have

to find an agreement on the validation. Two distinct workers are

asked to validate the same result. If workers are in agreement, the

agreed value (true or false) is chosen as validation. In the case the

two workers are not in an agreement, the validation task is given to a

third worker that does the validation. The third worker result is used

as validation value, since he is in agreement with one of the previous

two.

• Vote: asks the crowd to vote the results of workers, the decision is

140

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

based on the votes. This strategy is divided into two parts. In the

first part people can vote on workers’ results. Once the contest for

voting ends, votes are collected and the system computes the average.

Reward

Reward is important in crowdsourcing since it drives the motivation of

workers to perform the task. Here we present a list of logics that contains

the most used one:

• All / none. This is the most trivial one. All the workers are paid (or

none of them), even if the work is not satisfactory. This choice is not

used often, yet, it is usually automatically executed by a platform if

no instruction is given within a predefined amount of time.

• On validation. The payment on validation is one of the most used.

Only the works that pass the validation step are rewarded. This type

of strategy works well with tactics where workers are rewarded only if

the result is satisfactory.

• The best. The reward is given only to the winner, or the best worker/s.

This reward is used together with the voting strategy as validation.

It is generally adopted in tactics where workers compete for the re-

ward, thus send result for the same task where only one is accepted

as correct.

In addition, these reward logics can be combined with other strategies,

that are:

• Bonus. Reward is fixed and specified when a task is created. How-

ever, workers might provide astonishing results. For this reason, bonus

rewards might be given to chosen workers. This strategy can be com-

bined with the on validation and winner. It can be given also to

people that were not awarded with the other strategy.

141

4.7. PROTOTYPE IMPLEMENTATION

• On milestone. Some tasks can require a long collaboration between

the worker and the requester. For example, when the task is on writ-

ing an application, which can be done with milestones. In this case

the reward is also given on milestone. Before starting the task, the

requester and workers agree on milestones and deadlines. At each

milestone, if the work is done, the worker receives the corresponding

reward. This reward strategy is generally used by platforms where

workers have long-term tasks.

With this set of reward it is possible to cover most of the possible sce-

narios that a crowdsourcer may face. In addition the strategies are not

mutual exclusive, thus they can be combined. For example a crowdsourcer

can pay all and after give bonus to specific workers.

4.7 Prototype implementation

In this section we present the tools we implemented to ease the creation

and execution of crowdsourcing processes:

• An enriched BPMN process editor to support the design of crowd-

sourcing processes (we called it BPMN4Crowd editor), based on the

Activiti3 modeling tool .

• A code generator (process compiler) to transform the crowdsourcing

processes into executable BPMN processes and to extract data for

the execution of crowd tasks and a process deployer to enable the

deployment of crowdsourcing processes into the BPMN engine and

crowd tasks into the crowd computer.

• An extended BPMN engine (based on the Activiti engine), which con-

tains the libraries to enable the communication between the engine
3www.activiti.org

142

www.activiti.org

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

Document flows

System/human
 communications
Automatically
generated elements

Crowd Computer

BPMN Layer

Crowd
mgmt

Crowd
engine UI

Engine CroCo
Lib

Internal
UIBPMN

Process

App, User and
process data

3rd party platform
(AMT)

Task
creation

Task
results

Create task

Task Data

Task Data

Crowd
Process

Compiler/Deployer

Process
compiler

Process
deployer

BPMN4Crowd editor

Crowd
ComponentsProcess

Web Editor

services

CroCo Crowd

Human actors

Crowdsourcer

search

execute

invoke

do

do

Compile ExecuteModel

Task web pages

Application
(with croco lib)

Reward
mgmt

Quality
mgmt

Task
mgtmmetadata

Crowdsourcer

Figure 4.22: The implemented architecture of BPMN4Crowd solution.

and the crowd computer.

These three tools are components of our architecture, depicted in Fig-

ure 4.22. This figure, which is an extension of the one presented in the

approach (Figure 4.5), shows in details the tools we created with their in-

ternal components. In this section we present how we implemented the

three parts of the architecture, which are: model, compile and execute.

4.7.1 Model

To model crowdsourcing processes we extended the Activiti designer, which

is a plugin for eclipse4, adding the BPMN4Crowd components. The tool

has dedicated extension points to create additional tasks, but it misses the

possibility to create new artifacts for other elements, such as a new data

item object. At the same time also the engine does not implement fully

the BPMN specification. For this reason, in the BPMN4Crowd editor

4www.eclipse.org

143

4.7. PROTOTYPE IMPLEMENTATION

we did not create all the extensions as we presented them before, but

for few components we used a different abstraction. For example, the

data items are not specified with data item artifacts connected to the

task, but as parameters of tasks. Due to other limitations of the engine,

tactics are implemented in the crowd computer, and made available as

tasks in the editor. This limitation is also an advantage: crowdsourcers

can use the tactic without implementing them as processes, but simply

using the corresponding task. This change of paradigm does not limit

the crowdsourcer (except the fact that tactics cannot be created) . The

different layers of modeling (process, tactic, configuration of the tactic) are

present, as well as, data transformation tasks and control and data flows.

With the BPMN4Crowd editor a crowdsourcer can create his own crowd-

sourcing process. In Figure 4.24 there is a screenshot of the editor. In the

right part there is the palette that contains the crowd tasks (A), data tasks

(B), and crowd computer API tasks (C). The crowd tasks (A) implement

the crowd tactics (e.g., contest or marketplace) or give the possibility to

post tasks on other platforms (e.g., the TurkTask to post task on AMT).

We also added a machine task, differently from what BPMN already has,

to ease the integration of external web services with the crowd computer.

The machine task can be used to get data that are used in the process (load

data) or to post data to execute external services. Each data task (B) im-

plements a specific data operation (e.g., merge or split). For the crowd

computer API tasks (C) we implemented only the task to call the quality

unit, which is the only API that crowdsourcer can use in this implementa-

tion. Since the tactics are not implemented as processes, the crowdsourcer

does not need to have access to all the APIs that are needed to create a

tactic. What the crowdsourcer needs is the possibility to update the qual-

ity value from the validation process, for this reason we implemented only

a single crowd computer task for the quality unit.

144

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

In the central part the BPMN4Crowd editor has the canvas where the

process is modeled. The crowdsourcer can drag-and-drop the tasks from

the palette and create his own crowdsourcing process. In Figure 4.24 we

modeled a piece of the process of a scenario we developed for another

project of our group (more information is given in Section 4.8). For each

BPMN4Crowd task, which can be data transformation or crowd task, the

crowdsourcer has to specify the parameters. By selecting a task in the

process the editor opens the property tab where the parameters of the task

are shown (lower part of Figure 4.24). The parameters are the same of

what we introduced in the definition of the crowd tasks (Section 4.4.1),

plus additional fields that are used as the new abstractions of components.

In fact, there are additional fields to specify the data items used as inputs

and outputs, and others that refer to the configuration of the tactic, such

as the validation process and reward parameters. To create an executable

crowd task, the crowdsourcer has to specify (letters correspond to the ones

in Figure 4.24):

(a) Description of the task. This is the text that is presented to the worker

when he starts the task. It should describe what the worker has to do

to complete the task.

(b) Task duration. This parameter specifies for how long the task will be

active. After this time the task will be automatically stopped by the

system (deadline).

(c) Number of instances. With this parameter the crowdsourcer specifies

how many instances of the task have to be created. In our implementa-

tion the instances are also correlated to the task and the data in input.

Thus, if the dataset in input is a set of 5 pictures, and the number of

instance parameter is set to 2, the system creates 2 instances for each

set. In total the task will have 10 instance running, 2 instances for

145

4.7. PROTOTYPE IMPLEMENTATION

each one of the 5 pictures.

(d) Page URL. This is the parameter that specifies the task interface of

a crowd task. The crowdsourcer specifies here the URL of the pages

that he created before.

(e) Validation process. Since each crowd task has its own validation pro-

cess, the crowdsourcer can specify here what process has to be exe-

cuted. In this implementation the crowdsourcer creates the process

with our tool and writes in this field the process name. This parame-

ters is used at runtime to execute the process when the tactic arrives

to the validation task.

(f) Reward. this parameters is to specify the quantity of the reward that

will be given to workers.

(g) Reward platform. The crowd computer has a plugin interface able to

support various types of payments. With this parameter the crowd-

sourcer is able to decide what type of reward is given to workers.

(h) Reward strategy. The reward strategy is part of the configuration

of the tactic. This parameter allows the crowdsourcer to select the

strategy that has to be used for the reward.

(i) Input data name. This parameter is used to specify the name of the

data item to read.

(j) Output data name. As above, this parameter specifies the name of the

data item to write.

4.7.2 Compile

The second step after the modeling is the compilation and deployment of

the process. For this we created a tool (code generator) that takes in input

146

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

a crowdsourcing process, modifies it, and creates a zip file that contains

executable BPMN processes (the crowdsourcing process and all the valida-

tion processes). The code generator modifies the process in various ways.

It changes process information to make it unique, this to ensure a correct

execution. It adds a receive message after each crowd task. Crowd tasks

are executed on the crowd computer that notifies the process when the task

is completed. The receive message event is used to receive the notification

from the crowd computer.

The compilation is repeated for all the validation processes linked to

each crowd task. Once the compilation is finished, the crowdsourcer can

take the zip file and upload it to the deployer. The deployer unzips the file,

extracts crowd-related information, creating the necessary data structure

to handle the execution of crowd tasks, and deploys the process on the

BPMN engine. Then, the crowdsourcing process can be executed.

4.7.3 Execute

The start message for the process is sent by the deployer and received by

the BPMN engine that executes the process. To handle the execution of a

crowd task on the crowd computer we extended the engine with additional

logic (Java classes). For every crowd task there is a Java class that sends

to the platform (via an API call) the task parameters, which are specified

in the process model, and runtime data such as the output of previous

tasks. The crowd computer receives the data and creates a crowd task,

which is a web page that embeds the UI created by the crowdsourcer.

Once the task is created, the platform executes the crowd task following

the tactic specified by the crowdsourcer. When the tactic reaches the

validation task, thus when workers have sent responses for the task, the

crowd computer invokes the validation process. This process receives as

input the workers’ information and their data, and updates the quality

147

4.8. EVALUATION

metadata of each worker’s result. Once all the workers’ results have been

validated, the process engine continues the execution of the tactic that

(generally) invokes the reward strategy. The reward gives the reward to

workers following the logic specified by the crowdsourcer. This terminates

the execution of the crowd task. When a crowd task is terminated, all

its metadata are stored in the crowd computer and sent to the BPMN

engine within the message that notifies the completion of the crowd task.

The engine receives the message and then continues the execution of the

process.

Data tasks are executed in a similar fashion via API calls. For data tasks

the execution is straightforward: the APIs accept in input data, execute

the selected operations, and return the result to the engine.

4.8 Evaluation

In this section we evaluate our language introducing a real-case scenario

and showing how it can be implemented with, and without, BPM4Crowd.

4.8.1 Scenario: crowd-based pattern mining

Harvesting knowledge from large datasets - data mining - is a domain where

computers outperform humans when there is a large dataset and the al-

gorithm is configured to understand what patterns have to be searched.

When the dataset is small and algorithms cannot be trained to under-

stand what a pattern is, humans may outperform machines. In [71] we use

human capabilities to identify recurrent patterns in a set of mashup/work-

flow models called pipes. The goal is to test if and how different crowd

algorithms - combinations and configurations of crowd tasks - enable the

mining of patterns and with which quality. Moreover, we also want to test

148

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

if the crowd can be exploited for the quality assessment of crowdsourcing

results. To test this, we created three experiments:

Naive: presents to a worker a single pipe and asks the worker to identify

pieces of reusable knowledge (patterns);

Random3: presents three different pipes to the worker and asks to identify

patterns that recur in at least two of the pipes;

ChooseN: allows the worker to select N pipes from a list of 10 pipes that

are used as dataset for the second step where the worker identifies the

recurring patterns

Each task for the crowd also includes a survey that is used to measure the

knowledge of the topic by the workers.

Although the three algorithms may look different, their crowdsourcing

logics can be abstracted into one configurable process:

• Initialize and load pipes dataset: the system loads the dataset of pipes.

• Partition dataset and map to tasks: the dataset is split in smaller

subsets and for each study there is a different splitting algorithm (e.g.,

in sets of 1 element for Naive, in set of 3 elements for Random3). Each

partition is mapped to an atomic task.

• Deploy tasks on a crowdsourcing platform: the tasks are deployed on

a crowd platform and made available to the crowd.

• Manage task execution and collect patterns : tasks are executed. Once

all the instances are performed, the patterns are collected.

• Filter the results : results from workers with poor performance (results

of the survey) are eliminated.

149

4.8. EVALUATION

As output of the three algorithms we have a series of patterns. To decide

what algorithm performs best we:

• Evaluate the output : we evaluate the patterns, checking if the results

meets our requirements (e.g., patterns need to have at least three

connected elements).

• Choose algorithm: compare the results of the three algorithm and

decide what is the algorithm that performs better.

As output of this process we have the algorithm that performs best. To

understand if the crowd can also be used to asses the quality, we create

another process that:

• Loads pattern dataset : the system loads the patterns of the winning

algorithm.

• Assesses quality (crowd): The results of the patter mining are given

to other workers that perform the assessment of the quality.

• Assesses quality (crowdsourcer): We asses the quality of the same set

of patterns.

• Compares quality assessments : The quality assessment given by the

crowd are compared to our assessment values.

• Choose assessment strategy : We chose the strategy based on the result

of the comparison.

From this additional process we have the information on the quality as-

sessment executed by the crowd.

In Figure 4.23 we modeled the logic of these processes in an unique

crowdsourcing processes created with the BPMN4Crowd language.

150

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

Naive

Load data

Split1 Filter
Patterns

Random3Split3 Filter
Patterns

Choose10Split10 Filter
Patterns

Evaluate Choose
algorithm

Assess
quality

Split1 Assess
quality

Merge
results

Choose
assess
strategy

Figure 4.23: The crowdsourcing process of the crowd-based pattern mining pattern mining

scenario.

4.8.2 Implementation

In this section we show how the scenario implementation changes with and

without (which is what we did for the work in [71]) BPMN4Crowd.

Without BPMN4Crowd To execute the scenario we created three sepa-

rated web applications, one for each study. In each application we devel-

oped the UI of the task, which was composed of an interactive form where

workers could select the patterns. We manually configured the database

and implemented the logic to load the dataset. We created the algorithms

(one for each application) to divide the dataset and we manually mapped

each partition to a task instance. We created in our application as many

task instances as the partitions in order to have a task instance, thus a

worker, for each partition. A crowdsourcing platform, CrowdFlower5, was

used to make the identification of patterns accessible to the crowd. We

created a task on the CrowdFlower platform that contained a survey, to

evaluate workers’ expertises, plus a link to our web application where work-

ers could access a task and identify patterns. The survey results were used

as discriminant to accept or reject the identification results: workers who

had a poor result in the survey had their results eliminated. The filter-

5www.crowdflower.com

151

www.crowdflower.com

4.8. EVALUATION

ing operation, which for us was fundamental to have a high quality result,

was done manually: data were downloaded from CrowdFlower and from

our web application and matched. In the same filtering operation we also

check if the patterns meet the requirements, eliminating the one who does

not. When all the three applications were completed we compared the

results and we decided which one was the best.

Consequently, we created an additional application to crowdsource the

quality assessment. For this application we coded the logic that splits the

set of pipes and that implements the interface for the assessment task. For

each pipe we created an instance of the task on our application, creating a

task also on CrowdFlower (as before). Results of these tasks were manually

recombined to create statistic of the quality.

With BPMN4Crowd The modeling of the process in Figure 4.23 with

BPMN4Crowd editor is almost straightforward. We replicated the logic

within the editor, configuring each task. In Figure 4.24 we show the editor

with the first part of the process and the parameters of the naive crowd

task. The naive task is a marketplace tactic task, with an evaluation of

the results based on gold data (created with a process that uses the logic

presented in Figure 4.21) and a reward of 0.5$ based on validation. The

description of the task tells what is the goal and the rules. The deadline is

set to 1 month; the page url, the interface of the task, points to the page

we created, which is deployed on a separate server. Data items for input

and output are set to the “data naive” variable. The other crowd tasks are

configured in a similar fashion, yet with parameters specific for each task

(such as the UI page).

The Figure 4.24 annotates data tasks with a description that shows

how they are configured. For example, in the first branch, the split task

is configured to divide the list of pipes into group of one element. Each

152

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

A

B

C

Data items

a

i

j

h

g

f

e

d

c

b

Url: http://ec2…
Output: data

Op: split in N
N: 1
Input: data
output:data_naive

con: quality.validation==true
input:data_naive
output: data_naive

input: data_naive,
data_random,
data_choose
output: data_algo

Op: split in N
N: 3
Input: data
output:data_random

Op: split in N
N: 10
Input: data
output:data_choose

con: quality.validation==true
input:data_random
output: data_random

con: quality.validation==true
input:data_choose
output: data_choose

Figure 4.24: The visual modeling editor with the process of the crowd-based pattern

mining scenario. The Figure has the BPMN4Crowd palette and the properties window

zoomed.

153

4.8. EVALUATION

branch of the process has a different data item (data naive, data random,

data choose) to keep the results of the three studies separate. Results are

merged after the filtering, which is based on the validation of the work.

For the execution of this process we created the web pages that are

used as task interfaces. The pages are similar to the ones created for the

implementation without BPMN4Crowd: they contain an interactive form

where workers can select the patterns. Yet, pages have less logic than

in the previous implementation. The pages take in input the metadata

from the process, which in this case are the IDs of the pipes, and load the

corresponding data from the internal database displaying it to workers.

The assessment part does not require an additional process as in the

manual development. This part is modeled (not visible in the figure) in

the same process as in Figure 4.23. The human tasks are created with

standard BPMN constructs and assigned to ourselves (the crowdsourcer),

while for the crowd part we use a split task (split in 1) and a marketplace

crowd task.

4.8.3 Analysis

The two approaches for the implementation of the scenario are both ef-

fective, yet they require a significantly different amount of time for their

development. The manual development of the process is made with four

different applications, which are developed almost from scratch every time

and that have various tasks that require the intervention of a person to be

executed. Each data management task is either executed inside the appli-

cation (e.g., the split tactic) or executed manually (e.g., the filter of data).

Split tasks require writing the logic of the splitting, which is different for

each case. Filter tasks require going through the whole set of results from

the crowd manually and selecting the ones that do not match the quality

conditions, the same is true for the merge result tasks.

154

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

The differences are not only in the creation and execution of the process,

but also in the creation of the task interfaces. Without BPMN4Crowd the

interfaces are developed within the process application and implement the

logic to load the data from database, split and display the data to workers,

and to collect the answers that are also merged into a unique structure.

With our approach each page receives the metadata (IDs of the pipes plus

information that are necessary for the execution, such as the quality in

the filter task) of the instance assigned to the worker that has opened

the page. Each page uses the metadata to load the corresponding pipes

data from the application database. This makes the creation of the pages

easier, since the data logic does not have to be implemented. On the

other hand, implementing pages for crowd tasks within the BPMN4Crowd

language requires the knowledge of the library we implemented for sending

and receiving data.

The execution of the scenario without BPMN4Crowd requires to: exe-

cute the three studies separately; to manually evaluate the results selecting

the algorithm that produced better results; and to use the pattern data

to execute the assessment application in a separated application. With

BPMN4Crowd we created a single process that implements the three cases.

The studies are executed in parallel, which has an impact on the overall

execution time. Data management operations are automatically managed

by the platform, thus there are no manual tasks to execute to filter results.

The assessment part of the process is executed directly after the collection

of patterns, and even in this case there is no need for any manual effort.

The advantage of BPMN4Crowd is in the automation of all the op-

erations that before where done manually. The BPMN4Crowd approach

automates 9 (all the data tasks) of the 17 total tasks of the process and

makes easies the creation of crowd tasks and the connection among the

two part of the scenario (algorithms and assessment). In addition, the vi-

155

4.9. DISCUSSION AND LESSONS LEARNED

sual modeling of the process, and the possibility to change parameters of

each task, allows crowdsourcers to fine tune the process and re-execute it

without spending time to code and create new applications.

4.9 Discussion and Lessons Learned

In this work we presented BPMN4Crowd, a process-based modeling lan-

guage for enabling the design of crowdsourcing processes. Our targeted

end-user is a modeler that wants to crowdsource complex and structured

crowdsourcing processes. The possibility to intermix tasks executed by a

crowd with tasks executed by other actors, such as the requester himself,

makes the creation of structured logic feasible, compared to what crowd-

sourcing platforms support, and easier, compare to a programmatical ap-

proach. However, for simple tasks, which do not require particular logics

or that do not need data management, our solution is still effective but

may be too sophisticated. To crowdsource a single crowd task, a crowd

platform is easier to use. Yet, the kinds of applications we support are

crowdsourcing processes rather than single crowd tasks.

The choice of extending an existing process language, and relative tech-

nologies (e.g., a BPMN engine) has a twofold benefit: (i) it can foster

the adoption of our extended language since BPMN is widely known and

adopted by many people to model their business processes; (ii) people that

already use BPMN can integrate our extensions and have tasks executed

by the crowd in their existing processes. On the contrary, for people not

familiar with the composition paradigm, our approach requires to learn the

modeling language and the additional logic we introduced for the support

of crowdsourcing; the respective complexity is only slightly bigger than

that of BPMN.

In this work we proposed a different crowdsourcing platform, compared

156

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

to the existing ones, that provides a set of accessible crowd operations and

that allow the implementation of various tactics. We have not yet tried to

build a crowd of workers for our platform. Not having a crowd of workers

limits the possibility to create applications and test their execution with

real workers. To overcome this problem, which does not affect the language

per se, we started the integration of existing platforms (i.e., Amazon Me-

chanical Turk), enabling the possibility to post tasks on these external

platforms. This approach overcomes the problem of having a crowd but it

introduces a limitation. Existing platforms implement a predefined tactic

for the execution of crowd tasks and this limits the possibility to define, or

use, different tactics on the same platform.

BPMN4Crowd supports the creation and specification of crowd tasks.

What we require crowdsourcers to do is to create the UI of tasks as sep-

arated pages. On the one hand, this gives to crowdsourcers the freedom

to create any UIs for the tasks, including any element and deciding what

type of data have to be submitted to the platform and what data remain on

their application. On the other hand, this requires knowing a programming

language to create the task pages and to inject our library. Thus, creating

a platform to help crowdsourcers in the creation of task UIs, or providing a

set of ready-to-use pages, could foster the adoption of our solution also for

crowdsourcers that do not have the knowledge to create a task interface.

The prototype we created contains the tools that are needed to design,

deploy, and execute crowdsourcing processes. Building a platform like this

is a complex and non-trivial development effort. It requires integrating

different technologies, creating communication channels, and guaranteeing

that the execution follows the modeled process. The result is that, besides

being functional, the setup of the editor, the compilation, and deployment

are not intuitive steps. We developed the platform with the goal of having

a prototype to test our claims rather than having a product ready for the

157

4.10. RELATED WORK

market.

In addition to the language, we also proposed the crowd computer, an

attempt to create a flexible and programmable crowdsourcing platform.

While existing platforms are suitable mostly for the crowdsourcing of sin-

gle tasks, we believe that flexible and programmable platforms are funda-

mental to support the crowdsourcing of more sophisticated and structured

processes. These types of platforms require programming skills and knowl-

edge of crowdsourcing to build applications on top of them and to specify

the logic of the tactics. In our work we provided the tactics also as pre-

implemented tasks, simplifying the work of less expert modelers. However,

to exploit the full potential of crowdsourcing we cannot eliminate its in-

trinsic complexity.

4.10 Related work

Recently, human computation, the use of human abilities to solve problems,

has been investigated and adopted as effective way to solve task of work.

Crowdsourcing [40] is one aspect of human computation. Similarly, social

computing, which studies social human behaviors facilitated by computers

(example are blogs and wikis), is another aspect of human computation

[70]. Social BPM is a recent trend of research that fuses social interac-

tions, trough social software, and business process management to improve

its life-cycle [34, 42]. Primary, in BPM, social aspects are used to improve

the design of processes [49] or to enable coordination and collaboration

during process execution [31]. Yet, there are social BPM approaches that

extend business process languages, as we did, to support social interactions

among online users. BPM4People [11, 12] proposes a set of extensions of

BPMN to enable the modeling and deploying of social interactions over

social networks, such as collection of votes or comments. With these ex-

158

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

tensions a modeler can define the action that actors have to do on a social

network platform. BPM4People supports social computing on social net-

work platforms, where work is mostly implicitly executed and actors may

not be aware of taking part in a task of work. Instead, in our work, we

focus on crowdsourcing, where the task of work is explicitly defined and

where actors participate to offer or execute tasks of work.

Many researchers [22, 46, 52, 85] have highlighted how solutions that

manage human and software based work with BPM or workflows are needed

for crowdsourcing. The integration can be achieved in various ways. For

example, [44] presents an extension of a BPMN engine capable to ensure

the competition of crowd tasks before a deadline by adapting, at run-

time, crowd task parameters, as the reward, and the required execution

time. Among the different approaches there are some that involve busi-

ness process modeling and that have people from a crowd as task execu-

tors. In [76] the authors use Human-Provided Services (HPS) [73], which

abstract human capabilities as web services easing the interaction with

people and integration with SOA systems, to create processes where task

are executed by people taken from a social network. Schall et al. [72] in

which some authors contributed in the previous discussed work, extended

BPEL4People, an extension of the process language BPEL, with parame-

ters to specify requirements specific to crowdsourcing, such as user skills

and deadlines. Both approaches tackle the problem of crowdsourcing by

abstracting worker capabilities within the definition of tasks or services.

Approaches that are used to identify workers in a social network and that

focus on the integration of the crowd within a service-oriented computation

paradigm rather than providing a solution to model and enact crowdsourc-

ing processes.

Our work provides a language and a platform to create and enact pro-

cesses that have crowd, data, machine, and human tasks involved. In liter-

159

4.10. RELATED WORK

ature similar problems have been addressed from three main prospectives:

process composition, parallel computing, and procedural programming.

Process composition Similarly to what we have presented in this work,

other researchers have adopted a process composition solution to enact

crowdsourcing processes. CrowdWeaver [45] is a process modeling tool

built on top of CrowdFlower. The CrowdWeaver system offers a visual

tool, with a graphic notation, to create and execute data-driven processes

composed of machine and crowd tasks. Despite the fact that the work is

oriented at providing a visual modeling solution for crowdsourcing process,

it has similarity with the BPMN4Crowd. CrowdWeaver provides a visual

modeling solution to create the process logic, supporting crowd and data

tasks. On the other hand this solution is abstracting CrowdFlower opera-

tions at a higher level. This approach does not support crowd tactics and

neither the possibility to execute a process into other crowd platforms.

CrowdLang [60, 61] is a model-driven language for programming generic

human computations. Similarly to our solution, it expresses data and

control flows, describes application logics with tasks executed by the crowd

or machines, and supports operations to manage data. Yet, CrowdLang

has an own notation, which may not be easy to understand for all the

crowdsourcers. It is partially based on workflow modeling objects, such

as rounded rectangle for tasks and diamond for conditions, but it also

introduces additional concepts, such as the decision, which is modeled with

a circle shape. Its modeling convention is not very effective, each task

in CrowdLang is modeled as a task instance, thus crowdsourcers should

create a task for each instance they need, which may require to insert a

huge number of tasks.

Even thought both approaches are suitable to model crowdsourcing pro-

cesses, they do not fully support crowdsourcing processes with the possi-

160

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

bility to define tactics and configuration. In our work we also support

the integration with BPM, which makes the modeling more accessible to

people that already know the language. Approach that also automates

some of the steps of the process, such as human tasks that are executed by

crowdsourcers.

Parallel computing Other researchers see a crowdsourcing process as a

complex task that is made of smaller and simpler tasks executed in paral-

lel. Crowdforge [47] and Turkomatic [51] adapt the Map-Reduce approach

[30] to crowdsourcing to solve complex jobs. These frameworks model a

complex job as a set of split and recombine tasks executed by workers.

Workers have the possibility to solve a task or to split it in smaller tasks

(sub-tasks), in this case the worker is in charge of recombining the so-

lutions of sub-tasks into an unique solution. Similarly, Jabberwocky [4],

implements a map-reduce approach. In addition, it offers a full-stack solu-

tion, providing not only a language but also an omni-comprehensive sys-

tem. The Jabberwocky architecture is composed of three different pieces:

Dormouse that provides operations to interact with machines and humans;

ManReduce, similar to Crowdforge and Turkomatic, that implements the

Map-Reduce idea having Dormouse as workers; Dog, a scripting language

that can be used to specify the details of applications, e.g., defining users

or task goals, which implements also the ManReduce.

The works of this type give one the possibility to use human computa-

tion and machine computation in a single application. Compared to our

approach these systems support the creation of applications whose process

is composed of a parallel executions of tasks, which can be replicated in

BPMN4Crowd, but neglecting the possibility to create different process

logics. In addition, this type of abstraction may be not suitable for crowd-

sourcers that are business analyst or are not experienced with programming

161

4.11. CONCLUSION

paradigms.

Procedural programming Researchers have applied programming to the

creation of crowdsourcing process, inventing new languages able to cover

crowdsourcing aspects. Turkit [54] is a programming language based on

JavaScript that adds support for human computation. Turkit uses Amazon

Mechanical Turk as platform where the human tasks are executed. Using

Turkit, programmers can write software applications that use both human

computation and machine computation. Automan [8] is a system for hu-

man computation, by integrating human computations into a programming

language (Scala).

All these works abstract application logic at a programming language

level. Programming languages allow crowdsourcers to create a variety of

crowdsourcing processes, yet neglecting the support for tactic definitions

and configuration. Moreover, implementing crowdsourcing process is not

an easy task, as we also showed in our evaluation, even with frameworks

that support it. Crowdsourcers that use these systems (or any program-

ming language) are forced to code entirely their application logic. Coding

operation that is not trivial and that makes difficult the maintenance and

modification of its execution logic. As for the parallel computing, also with

procedural programming its use is limited to people that are programmers,

making it not accessible to others such as business analysts or people that

have to conduct a user study as in our evaluation case.

4.11 Conclusion

In this work we introduced a language and the relative tool-chain to de-

sign and execute crowdsourcing processes. Our approach extends BPMN

to provide support to crowdsourcing, with tasks dedicated for the crowd

162

CHAPTER 4. MODELING AND ENACTING FLEXIBLE CROWDSOURCING
PROCESSES

and for the management of data, enriching the language with the defi-

nition of tactics and configurations that crowdsourcers can use or adapt.

We equipped the language with a modeling tool and a set of software

components able to transform the crowdsourcing processes into executable

processes. To execute crowdsourcing tasks we created the crowd computer,

a platform for crowdsourcing that gives the possibility to select, configure,

and execute various crowd tactics, without imposing pre-defined logics.

The result is an approach to the modeling of crowdsourcing processes that

is comprehensive.

As future work, we plan to add the support for tactics modeled as

processes in the prototype. We also plan to provide an online repository

where common tactics, configurations, and processes can be shared by

crowdsourcers, this to create a reusable knowledge base for crowdsourcing.

The advantage of our language lies in the automation of operations that

otherwise require manual or non-trivial programming effort. The number of

applications that can benefit for this work is large, both for individuals and

companies. In fact, we enable the design of crowdsourcing processes, mak-

ing it easier compared to the development with programming languages,

and going beyond the single-task applications commonly supported by cur-

rent crowdsourcing platforms.

163

4.11. CONCLUSION

164

Chapter 5

Conclusion

We conclude this dissertation with an analysis of the overall work. First

we analyze our approach and results and we present the lesson we learned,

then we conclude with possible future works and final remarks.

5.1 Lessons Learned and Limitations

The work of this dissertation is based on extensions of process languages.

This choice was driven by the intrinsic process-driven nature that the ap-

plications of the three focuses have, and by the possibilities that the new

actors could offer to people who already use process management systems

in their activities. Commonly, processes are sketched by an analyst and

designed by a skilled modeler who knows how to create an executable pro-

cess. In our proposed languages we envision process design as a two phase

process where first the high-level process is designed and later refined by

an expert of the field. The visual aid given by the modeling tools eases the

creation of these processes. Yet, from a usability point of view modeling

a process requires knowledge of the modeling language and of the selected

domain. Other modeling paradigms or ad-hoc languages could be investi-

gated as an effective language to design extended processes. Nevertheless,

due to the intrinsic complexity of these topics, and their adoption by do-

165

5.1. LESSONS LEARNED AND LIMITATIONS

main experts, we do not foresee an immediate need for a modeling language

that can be used by any kind of end-user. Similarly, we do not see our

languages to be used by any end-user, but rather by domain experts that

want to speed up the creation of applications, or by modelers that have

interest for the integration of the new actors into their processes.

The languages presented in each chapter support and ease the devel-

opment of the respective scenarios and of similar applications. Part of

the work that before required manual and non-trivial programming effort

(e.g., the programming of a WSN), with our languages is now automated

and integrated in a high-level modeling convention; there is no need for

further development effort. This is our evaluation to measure the suc-

cess of our contributions: we made the work of people easier. We did

this evaluation comparing the implementation of the scenarios with and

without (that is a development with classical programming languages) our

language. From this comparison we saw how the languages and software

we proposed simplify part of the work by providing specifically targeted

solutions that helps in the creation of the processes and software that au-

tomate the deployment and execution and that do not require the creation

of code. The user study on the language for WSNs highlights how it can

be effectively and efficiently used by modelers (after they are introduced to

the new constructs) even if they are not experts of the domain. This claim

can be extended to the other languages since the modeling conventions are

similar. Yet, additional user studies could test in depth our claims and

provide useful information regarding the usefulness of the language and on

the use of different modeling languages to allow different types of users to

design extended processes.

The languages that we created satisfy the initial set of requirements we

found during the analysis of each new actor and relative scenarios. We do

not solve all the problems and requirements of any possible application in

166

CHAPTER 5. CONCLUSION

each field. For each language we proposed a set of domain-specific compo-

nents that are the core to implement and cover the requirements of most

of the possible processes in each field. The design of actor execution logic

(i.e., UI interactions, WSN task composition logic, and crowdsourcing tac-

tics) gives to modelers the possibility to create a wide range of applications.

An important aspect of our languages is, in fact, the possibility to design

the logic that is executed by the new actors. For WSNs and the crowd we

do not only orchestrate tasks whose logic is already defined a priori, but

we give to modelers the possibility to design the internal execution logic of

these tasks.

The tools and systems we implemented support the design and execu-

tion of extended processes. At the current status, the setup, which is the

installation of the editor, compiler, and runtime environment, is not an

easy procedure. It requires some knowledge to install and configure the

packages and additional software (e.g., databases and servers). Our pri-

mary goal was not to create a tool-chain that can be easily used by any

person but rather implement prototypes to test and execute our scenarios

and similar applications, that is, to prove that the concepts and solutions

conceived indeed work.

An important lesson we learned is how complex it is to work on topics

that require a transversal knowledge and that demand an important effort

to build prototypes to test the outcomes. While working on mashups and

distributed UIs was a natural evolution of the work conducted within our

group, and for which we already had some knowledge, the research on

WSNs was a new and challenging topic. Nodes of WSNs have a limited

memory and processing capacity. Providing a high-level modeling language

was thus a very ambitious goal, and a non trivial effort was the translation

of process logic into executable WSN logic. We had several iterations with

WSN experts to understand a WSN’s capabilities and to find the right

167

5.1. LESSONS LEARNED AND LIMITATIONS

abstractions between what a network of sensors can do and what can be

modeled in a process. The fruitful collaboration with WSN experts made

the creation of WSN code feasible and efficient, making it also possible to

have a final prototype.

The difficulties in developing applications in these contexts can be sum-

marized in the following points: (i) to develop the logic of the applications,

that is, to write the code to coordinate the actors and the code that is

executed by the actors; (ii) to create a platform that is able to support

the execution of the application, which is composed of a runtime envi-

ronment for the actors and a runtime environment for the coordination

logic, plus a platform that manages the communication; (iii) to deploy

and generate the code for the actors, the coordination logic, and the com-

munication channels. In our work we provided: (i) high-level modeling

languages to develop the logic with a process-based convention, which has

domain-specific modeling components for the design of the actor logic; (ii)

an architecture that supports the design, deployment, and execution of

extended processes; (iii) and an automated system for the code generation

and deployment of processes and of the actor logic. With our languages

we simplify the work required to develop applications in these contexts,

providing also an integration of business process languages with additional

actors. Our simplification requires a modeler to learn the few new notions

we introduced to abstract the new actor details. In fact, we simplified the

creation of process-driven application logic but the intrinsic complexity

of the new actors cannot be completely eliminated, only abstracted at a

different level included in the modeling convention.

168

CHAPTER 5. CONCLUSION

5.2 Future work

As discussed in the previous section, the research may benefit from some

improvements; as future work we envision:

• To improve the languages with additional constructs to satisfy new

requirements. With the proposed languages we support an initial set

of requirements that comes from the analysis of the actors and of

possible scenarios. There are new scenarios and possible applications

that may arise in the future and that may need additional constructs

to create processes, especially for WSNs and crowdsourcing that are

becoming more and more adopted. In particular, we see as possible

extensions:

WSN

– To enable the execution of multiple processes on the same net-

work. Our toolchain supports the execution of a single process

on a network since nodes do not have enough power and memory

to execute multiple logics. However, when the nodes will permit

it, an improvement will be enabling the deployment and the con-

current execution of various processes. The modeling language

should not be changed, what needs a further refinement is the

code generation and the runtime environment that will have to

manage and coordinate the messages of different processes.

– To create a runtime monitor. The set of tools we developed focus

on the support of the modeling and execution of the process. To

improve the usability and to have a better overview of the pro-

cess execution a runtime monitor can be created. This monitor

should give feedback on the status of the network, the status of

169

5.2. FUTURE WORK

the execution, and possible problems that may arise at runtime

(e.g., a node that stops its normal functionalities).

– To ease the composition of meta abstractions. Our language for

WSN gives the possibility to create WSN task logic by composing

meta abstractions. As emerged by the user study, this abstraction

may be difficult to grasp for modelers that are not also domain ex-

perts. As started by our partner in the makeSense project (SAP),

a newer modeling convention to specify WSN task logic could

ease the creation and maintenance of WSN processes. Ideally, the

newer composition language should not only abstract the WSN

specific components to a different paradigm, but also provide the

possibility to reuse existing implemented logic. For example, cre-

ate a repository of implemented WSN logics accessible as libraries,

or a repository of specific WSN patterns (e.g, a control loop for

the sensing of CO2) that a moder can easily access and use.

Crowd

– To support the creation of task UIs. Our language and toolchain

assume that the task UIs are developed by crowdsourcers. This

is an effective approach that also allows crowdsourcers to specify

any type of UI for their tasks. However, a platform that helps

a modeler to develop task pages, or that provides a repository

of pages ready to use, can foster the adoption of our tools also

by people that may not know how to create pages for the crowd

tasks.

– To extend the support for additional existing platforms. We pro-

vided an implementation of our language and a platform that

supports the creation and execution of crowdsourcing processes.

170

CHAPTER 5. CONCLUSION

Our toolchain enables also the possibility to post crowd tasks

on a third-party platform (Amazon Mechanical Turk). Adding

support for other platforms, such as CrowdFlower, will have two

benefits: (i) foster the adoption by additional crowdsourcers that

are already familiar with these platforms, (ii) avoid the problem

of finding a crowd of workers.

– To extend the language to enable the execution of tasks instance-

by-instance. Generally, in process languages all the instances of

a task have to be completed before it is possible to execute the

following task. For example, image a process that has a task to

upload a picture (A) followed by a task to tag a picture (B); each

task has ten instances. If we model this process with BPMN and

execute it, we have to first execute all the ten instances of A (we

collect all the images) and only then start the instances of B (we

tag all the images). However, it would make more sense that as

soon as a picture is uploaded (an instance of A is executed) an

instance of the task to tag the picture starts (an instance of B).

This new execution logic requires an extension of the language

and an extension of the runtime environment.

• To improve the adoption of the languages and create communities of

end-users. Having a large community of users gives the opportunity to

test the languages and to have feedback and suggestions on additional

requirements to satisfy. This requires: (i) to improve the usability of

the modeling tools with additional libraries, to help modelers in the

design, and with an online, easy to access, platform; (ii) to make the

toolchain more stable and to create a portable and an online version

of the runtime environment to allow people to easily access and use

our toolchains.

171

5.3. FINAL REMARKS

• To conduct further user studies and analysis of the languages. Fur-

ther user studies, with larger groups of people, ideally end-users that

actively use our languages and tools, can give better feedback on how

to fine-tune the language and on extensions that could be introduced.

This requires to have an active community and to implement survives

and software to analyze how end-users interact with the tools and how

the language is used to model processes.

• To release all the code as open-source software to foster collabora-

tion with other researchers and interested people and to improve the

quality of the code.

5.3 Final Remarks

In this dissertation we presented modeling languages to design distrib-

uted UI, sensor, and crowd-oriented processes. We contributed to each

area with a set of extensions for existing process languages, components

to abstract the actors’ capabilities, and with tools that support the de-

sign, deployment and execution of processes modeled with our languages.

The proposed languages support the development of the scenarios, which

reflect common application needs in the focused on domains. With our

research we contributed to various projects, publicly and privately funded.

Research outcomes were published in peer-reviewed conferences and jour-

nals specific to business process management domain and also specific to

the domains we focused on. This demonstrates the viability of the work

and its relevance not only to the specific domains but also to the business

process management community.

172

Bibliography

[1] R. Acerbis, A. Bongio, M. Brambilla, S. Butti, S. Ceri, and P. Fraternali. “Web

Applications Design and Development with WebML and WebRatio 5.0.” In: Objects,

Components, Models and Patterns. Vol. 11. LNBIP. Springer, 2008, pp. 392–411.

isbn: 978-3-540-69824-1.

[2] Active Endpoints, Adobe, BEA, IBM, Oracle, SAP. Web Services Human Task

(WS-HumanTask) Version 1.0. Tech. rep. 2007.

[3] Active Endpoints, Adobe, BEA, IBM, Oracle, SAP. WS-BPEL Extension for People

(BPEL4People) Version 1.0. Tech. rep. 2007.

[4] S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar. “The jabberwocky programming

environment for structured social computing.” In: UIST’11. 2011, pp. 53–64. isbn:

978-1-4503-0716-1.

[5] M. Allahbakhsh, B. Benatallah, A. Ignjatovic, H. R. Motahari-Nezhad, E. Bertino,

and S. Dustdar. “Quality Control in Crowdsourcing Systems: Issues and Directions.”

In: IEEE Internet Computing 17.2 (2013), pp. 76–81. issn: 1089-7801.

[6] I. Amundson, M. Kushwaha, X. Koutsoukos, S. Neema, and J. Sztipanovits. “Effi-

cient Integration of Web Services in Ambient-aware Sensor Network Applications.”

In: BaseNets 2006. 2006.

[7] J. Anke, J. Müller, P. Spieß, and L. Chaves. “A service-oriented middleware for

integration and management of heterogeneous smart items environments.” In: DI

FCUL TR 06 10 (2006).

[8] D. W. Barowy, C. Curtsinger, E. D. Berger, and A. McGregor. “AutoMan: a plat-

form for integrating human-based and digital computation.” In: SIGPLAN Not.

47.10 (Oct. 2012), pp. 639–654. issn: 0362-1340.

[9] M. Brambilla, S. Butti, and P. Fraternali. “WebRatio BPM: A Tool for Designing

and Deploying Business Processes on the Web.” In: ICWE. Springer, 2010, pp. 415–

429.

173

BIBLIOGRAPHY

[10] M. Brambilla, S. Ceri, P. Fraternali, and I. Manolescu. “Process modeling in Web

applications.” In: ACM Trans. Softw. Eng. Methodol. 15 (4 2006), pp. 360–409. issn:

1049-331X.

[11] M. Brambilla, P. Fraternali, and C. Vaca. “A Notation for Supporting Social Busi-

ness Process Modeling.” In: BPMN. 2011, pp. 88–102.

[12] M. Brambilla, P. Fraternali, and C. K. Vaca Ruiz. “Combining social web and BPM

for improving enterprise performances: the BPM4People approach to social BPM.”

In: Proceedings of the 21st international conference companion on World Wide Web.

WWW ’12 Companion. Lyon, France: ACM, 2012, pp. 223–226. isbn: 978-1-4503-

1230-1.

[13] A. Caracas and A. Bernauer. “Compiling business process models for sensor net-

works.” In: DCOSS. IEEE, 2011, pp. 1–8.

[14] A. Caracas and T. Kramp. “On the Expressiveness of BPMN for Modeling Wireless

Sensor Networks Applications.” In: 3rd internation workshop on BPMN. 2011.

[15] F. Casati, F. Daniel, G. Dantchev, J. Eriksson, N. Finne, S. Karnouskos, P. M.

Montero, L. Mottola, F. Oppermann, G. Picco, A. Quartulli, K. Römer, P. Spiess, S.

Tranquillini, and T. Voigt. “Towards Business Processes Orchestrating the Physical

Enterprise with Wireless Sensor Networks.” In: ICSE 2012. 2012.

[16] F. Casati, F. Daniel, A. D. Angeli, M. Imran, S. Soi, C. R. Wilkinson, and M.

Marchese. “Developing Mashup Tools for End-Users: On the Importance of the

Application Domain.” In: IJNGC 3.2 (2012).

[17] F. Casati, F. Daniel, G. Dantchev, J. Eriksson, N. Finne, S. Karnouskos, P. M. Mon-

tero, L. Mottola, F. J. Oppermann, G. P. Picco, A. Quartulli, K. Römer, P. Spiess,

S. Tranquillini, and T. Voigt. “From Business Process Specifications to Sensor Net-

work Deployments.” In: 9th European Conference on Wireless Sensor Networks,

Trento, Italy. 2012.

[18] F. Casati, F. Daniel, A. Dunkels, S. Karnouskos, P. M. Montero, L. Mottola, F. J.

Oppermann, G. P. Picco, K. Römer, P. Spieß, S. Tranquillini, P. Valleri, and T.

Voigt. “makeSense: Easy Programming of Integrated Wireless Sensor Networks.”

In: 8th European Conference on Wireless Sensor Networks (EWSN 2011). IEEE

Press, 2011.

[19] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera. Designing

Data-Intensive Web Applications. Morgan Kauffmann, 2002.

174

BIBLIOGRAPHY

[20] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services De-

scription Language (WSDL) 1.1. W3C Note. http://www.w3.org/TR/wsdl: W3C,

2001.

[21] O. Chun, M. La Rosa, A. ter Hofstede, M. Dumas, and K. Shortland. “Toward Web-

Scale Workflows for Film Production.” In: IEEE Internet Computing 12.5 (2008),

pp. 53 –61. issn: 1089-7801.

[22] S. Curran, K. Feeney, R. Schaler, and D. Lewis. “The management of crowdsourcing

in business processes.” In: Integrated Network Management-Workshops, 2009. IM

’09. IFIP/IEEE International Symposium on. 2009, pp. 77–78.

[23] A. D’Ambrogio. “A Model-driven WSDL Extension for Describing the QoS of Web

Services.” In: ICWS’06. 2006, pp. 789–796.

[24] F. Daniel, F. Casati, B. Benatallah, and M.-C. Shan. “Hosted Universal Compo-

sition: Models, Languages and Infrastructure in mashArt.” In: ER’09. Gramado,

Brazil: Springer, 2009, pp. 428–443. isbn: 978-3-642-04839-5.

[25] F. Daniel, J. Eriksson, N. Finne, H. Fuchs, A. Gaglione, S. Karnouskos, P. M. Mon-

tero, L. Mottola, F. J. Oppermann, G. P. Picco, K. Römer, P. Spieß, S. Tranquillini,

and T. Voigt. “makeSense: Real-world Business Processes through Wireless Sensor

Networks.” In: CONET/UBICITEC. 2013, pp. 58–72.

[26] F. Daniel, A. Koschmider, T. Nestler, M. Roy, and A. Namoun. “Toward Process

Mashups: Key Ingredients and Open Research Challenges.” In: Mashups’10. ACM,

2010.

[27] F. Daniel, S. Soi, S. Tranquillini, F. Casati, H Chang, and Y Li. “MarcoFlow:

Modeling, Deploying, and Running Distributed User Interface Orchestrations.” In:

Proceedings of the 8th International Conference on Business Process Management

Demo Track. 2010, pp. 23–27.

[28] F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng, and L. Yan. “Distributed

orchestration of user interfaces.” In: Inf. Syst. 37.6 (2012), pp. 539–556.

[29] F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng, and L. Yan. “From People

to Services to UI: Distributed Orchestration of User Interfaces.” In: BPM’10. 2010,

pp. 310–326.

[30] J. Dean and S. Ghemawat. “MapReduce: simplified data processing on large clus-

ters.” In: Commun. ACM 51.1 (Jan. 2008), pp. 107–113. issn: 0001-0782.

175

http://www.w3.org/TR/wsdl

BIBLIOGRAPHY

[31] F. Dengler, A. Koschmider, A. Oberweis, and H. Zhang. “Social Software for Co-

ordination of Collaborative Process Activities.” In: Business Process Management

Workshops. Ed. by M. Muehlen and J. Su. Vol. 66. Lecture Notes in Business In-

formation Processing. Springer Berlin Heidelberg, 2011, pp. 396–407. isbn: 978-3-

642-20510-1.

[32] S. Dow, A. Kulkarni, S. Klemmer, and B. Hartmann. “Shepherding the crowd yields

better work.” In: Proceedings of the ACM 2012 conference on Computer Supported

Cooperative Work. CSCW ’12. Seattle, Washington, USA: ACM, 2012, pp. 1013–

1022. isbn: 978-1-4503-1086-4.

[33] J. Eriksson, N. Finne, L. Mottola, T. Voigt, F. Casati, F. Daniel, A. Gaglione, D.

Molteni, G. P. Picco, S. Tranquillini, B.-O. Holländer, F. J. Oppermann, K. Romer,

S. Doeweling, N. Oertel, F. Probst, P. Spiess, and P. M. Montero. Final application

implementations and evaluation of system & Final evaluation of the programming

model. Tech. rep. EU FP7 Project makeSense Deliverable D3.6 & D5.4, 2013.

[34] S. Erol, M. Granitzer, S. Happ, S. Jantunen, B. Jennings, P. Johannesson, A.

Koschmider, S. Nurcan, D. Rossi, and R. Schmidt. “Combining BPM and Social

Software: Contradiction or Chance?” In: J. Softw. Maint. Evol. 22.67 (Oct. 2010),

pp. 449–476. issn: 1532-060X.

[35] M. Feldmann, T. Nestler, K. Muthmann, U. Jugel, G. Hübsch, and A. Schill.

“Overview of an end-user enabled model-driven development approach for inter-

active applications based on annotated services.” In: WEWST’09. Eindhoven, The

Netherlands: ACM, 2009, pp. 19–28. isbn: 978-1-60558-776-9.

[36] N. Glombitza, M. Lipphardt, C. Werner, and S. Fischer. “Using graphical process

modeling for realizing SOA programming paradigms in sensor networks.” In: WONS

2009. 2009, pp. 61 –70.

[37] J. Gómez, A. Bia, and A. Parraga. “Tool Support for Model-Driven Development

of Web Applications.” In: WISE’05. Vol. 3806. LNCS. Springer, 2005, pp. 721–730.

[38] D. Guinard, V. Trifa, and E. Wilde. Architecting a Mashable Open World Wide Web

of Things. Technical Report 663. Institute for Pervasive Computing, ETH Zurich,

2010.

[39] A. Hofstede, W. van der Aalst, M. Adams, and N. Russell. Modern Business Process

Automation: YAWL and its Support Environment. Springer, 2009. isbn: 364203120X,

9783642031205.

176

BIBLIOGRAPHY

[40] J. Howe. Crowdsourcing: Why the Power of the Crowd Is Driving the Future of Busi-

ness. 1st ed. New York, NY, USA: Crown Publishing Group, 2008. isbn: 0307396207,

9780307396204.

[41] P. G. Ipeirotis, F. Provost, and J. Wang. “Quality management on Amazon Mechani-

cal Turk.” In: Proceedings of the ACM SIGKDD Workshop on Human Computation.

HCOMP ’10. Washington DC: ACM, 2010, pp. 64–67. isbn: 978-1-4503-0222-7.

[42] P. Johannesson, B. Andersson, and P. Wohed. “Business Process Management with

Social Software Systems – A New Paradigm for Work Organisation.” In: Business

Process Management Workshops. Ed. by D. Ardagna, M. Mecella, and J. Yang.

Vol. 17. Lecture Notes in Business Information Processing. Springer Berlin Heidel-

berg, 2009, pp. 659–665. isbn: 978-3-642-00327-1.

[43] S. Karnouskos, D. Savio, P. Spiess, D. Guinard, V. Trifa, and O. Baecker. “Real

World Service Interaction with Enterprise Systems in Dynamic Manufacturing En-

vironments.” In: Artificial Intelligence Techniques for Networked Manufacturing En-

terprises Management. Springer, 2010.

[44] R. Khazankin, B. Satzger, and S. Dustdar. “Optimized execution of business pro-

cesses on crowdsourcing platforms.” In: CollaborateCom. 2012, pp. 443–451.

[45] A. Kittur, S. Khamkar, P. André, and R. Kraut. “CrowdWeaver: visually managing

complex crowd work.” In: Proceedings of the ACM 2012 conference on Computer

Supported Cooperative Work. CSCW ’12. Seattle, Washington, USA: ACM, 2012,

pp. 1033–1036. isbn: 978-1-4503-1086-4.

[46] A. Kittur, J. V. Nickerson, M. Bernstein, E. Gerber, A. Shaw, J. Zimmerman, M.

Lease, and J. Horton. “The future of crowd work.” In: Proceedings of the 2013 con-

ference on Computer supported cooperative work. CSCW ’13. San Antonio, Texas,

USA: ACM, 2013, pp. 1301–1318. isbn: 978-1-4503-1331-5.

[47] A. Kittur, B. Smus, S. Khamkar, and R. E. Kraut. “CrowdForge: crowdsourcing

complex work.” In: UIST’11. 2011, pp. 43–52. isbn: 978-1-4503-0716-1.

[48] N. Koch, A. Kraus, and R. Hennicker. “The Authoring Process of the UML-based

Web Engineering Approach.” In: IWWOST’01. 2001.

[49] A. Koschmider, M. Song, and H. A. Reijers. “Social software for business process

modeling.” In: JIT 25.3 (2010), pp. 308–322.

177

BIBLIOGRAPHY

[50] P. Kucherbaev, S. Tranquillini, F. Daniel, F. Casati, M. Marchese, M. Brambilla, and

P. Fraternali. “Business Processes for the Crowd Computer.” In: Business Process

Management Workshops. Ed. by M. Rosa and P. Soffer. Vol. 132. Lecture Notes in

Business Information Processing. Berlin Heidelberg: Springer, 2013, pp. 256–267.

isbn: 978-3-642-36284-2.

[51] A. Kulkarni, M. Can, and B. Hartmann. “Collaboratively Crowdsourcing Work-

flows with Turkomatic.” In: Proceedings of the ACM 2012 Conference on Computer

Supported Cooperative Work. CSCW ’12. Seattle, Washington, USA: ACM, 2012,

pp. 1003–1012. isbn: 978-1-4503-1086-4.

[52] G. La Vecchia and A. Cisternino. “Collaborative workforce, business process crowd-

sourcing as an alternative of BPO.” In: Proceedings of the 10th international con-

ference on Current trends in web engineering. ICWE’10. Vienna, Austria: Springer-

Verlag, 2010, pp. 425–430. isbn: 3-642-16984-8, 978-3-642-16984-7.

[53] T. v. Lessen, F. Leymann, R. Mietzner, J. Nitzsche, and D. Schleicher. “A Manage-

ment Framework for WS-BPEL.” In: ECOWS’08. IEEE, 2008, pp. 187–196. isbn:

978-0-7695-3399-5.

[54] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller. “Exploring iterative and par-

allel human computation processes.” In: Proceedings of the ACM SIGKDD Work-

shop on Human Computation. HCOMP ’10. Washington DC: ACM, 2010, pp. 68–

76. isbn: 978-1-4503-0222-7.

[55] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller. “TurKit: human compu-

tation algorithms on mechanical turk.” In: Proceedings of the 23nd annual ACM

symposium on User interface software and technology. UIST ’10. New York, New

York, USA: ACM, 2010, pp. 57–66. isbn: 978-1-4503-0271-5.

[56] T. W. Malone, R. Laubacher, and C. Dellarocas. Harnessing Crowds: Mapping the

Genome of Collective Intelligence. Tech. rep. MIT Center for Collective Intelligence,

2009.

[57] I. Manolescu, M. Brambilla, S. Ceri, S. Comai, and P. Fraternali. “Model-driven de-

sign and deployment of service-enabled web applications.” In: ACM Trans. Internet

Technol. 5 (3 2005), pp. 439–479. issn: 1533-5399.

[58] E. M. Maximilien, A. Ranabahu, and K. Gomadam. “An Online Platform for Web

APIs and Service Mashups.” In: IEEE Internet Computing 12 (2008), pp. 32–43.

issn: 1089-7801.

178

BIBLIOGRAPHY

[59] S. Meyer, K. Sperner, C. Magerkurth, and J. Pasquier. “Towards modeling real-

world aware business processes.” In: Proceedings of the Second International Work-

shop on Web of Things. WoT ’11. San Francisco, California: ACM, 2011, 8:1–8:6.

isbn: 978-1-4503-0624-9.

[60] P. Minder and A. Bernstein. “CrowdLang - First Steps Towards Programmable

Human Computers for General Computation.” In: Human Computation. 2011.

[61] P. Minder and A. Bernstein. “CrowdLang: A Programming Language for the Sys-

tematic Exploration of Human Computation Systems.” In: Social Informatics. Ed.

by K. Aberer, A. Flache, W. Jager, L. Liu, J. Tang, and C. Guéret. Vol. 7710.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 124–137.

isbn: 978-3-642-35385-7.

[62] L. Mottola and G. Picco. “Programming wireless sensor networks: Fundamental

concepts and state of the art.” In: ACM Computing Surveys (CSUR) 43.3 (2011),

p. 19.

[63] B. A. Myers and M. B. Rosson. “User interface programming survey.” In: SIGCHI

Bull. 23 (2 1991), pp. 27–30. issn: 0736-6906.

[64] OASIS. Web Services Business Process Execution Language Version 2.0. Tech. rep.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, 2007.

[65] OASIS. Web Services for Remote Portlets. Tech. rep. www . oasis - open . org /

committees/wsrp, 2003.

[66] D. Oleson, A. Sorokin, G. P. Laughlin, V. Hester, J. Le, and L. Biewald. “Pro-

grammatic Gold: Targeted and Scalable Quality Assurance in Crowdsourcing.” In:

Human Computation. 2011.

[67] OMG. Business Process Model and Notation (BPMN), Version 2.0. http://www.

omg.org/spec/BPMN/2.0. 2011.

[68] C. Pautasso. “BPEL for REST.” In: BPM’08. 2008, pp. 278–293.

[69] S. Pietschmann, M. Voigt, A. Rümpel, and K. Meißner. “CRUISe: Composition of

Rich User Interface Services.” In: ICWE’09. San Sebastian, Spain: Springer, 2009,

pp. 473–476. isbn: 978-3-642-02817-5.

[70] A. J. Quinn and B. B. Bederson. “Human computation: a survey and taxonomy of

a growing field.” In: Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. CHI ’11. Vancouver, BC, Canada: ACM, 2011, pp. 1403–1412.

isbn: 978-1-4503-0228-9.

179

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
www.oasis-open.org/ committees/wsrp
www.oasis-open.org/ committees/wsrp
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0

BIBLIOGRAPHY

[71] C. Rodriguez, E. Zaupa, F. Daniel, and F. Casati. Crowd-Based Pattern Mining -

On the Crowdsourcing of Reusable Knowledge Identification from Mashup Models.

Deliverable. UNITN, 2013.

[72] D. Schall, B. Satzger, and H. Psaier. “Crowdsourcing tasks to social networks in

BPEL4People.” English. In: World Wide Web (2012), pp. 1–32. issn: 1386-145X.

[73] D. Schall, H.-L. Truong, and S. Dustdar. “Unifying Human and Software Services in

Web-Scale Collaborations.” In: IEEE Internet Computing 12.3 (May 2008), pp. 62–

68. issn: 1089-7801.

[74] D. Schwabe, G. Rossi, and S. D. J. Barbosa. “Systematic Hypermedia Application

Design with OOHDM.” In: HYPERTEXT’96. Bethesda, Maryland, United States:

ACM Press, 1996, pp. 116–128. isbn: 0-89791-778-2.

[75] Service composition realization method compiler. CN Patent 102,158,516. 2013.

[76] F. Skopik, D. Schall, H. Psaier, M. Treiber, and S. Dustdar. “Towards Social Crowd

Environments Using Service-Oriented Architectures.” In: it - Information Technol-

ogy 53.3 (2011), pp. 108–116.

[77] K. Sperner, S. Meyer, and C. Magerkurth. “Introducing Entity-based Concepts to

Business Process Modeling.” In: 3rd International Workshop and Practitioner Day

on BPMN. 2011.

[78] P. Spiess, H. Vogt, and H. Jutting. “Integrating sensor networks with business pro-

cesses.” In: Real-World Sensor Networks Workshop at ACM MobiSys. 2006.

[79] P. Spiess and S. Karnouskos. “Maximizing the Business Value of Networked Em-

bedded Systems through Process-Level Integration into Enterprise Software.” In:

ICPCA 2007. 2007, pp. 536–541.

[80] Sun Microsystems. JSR-000168 Portlet Specification. Tech. rep. http://jcp.org/

aboutJava/communityprocess/final/jsr168/, 2003.

[81] C. Sungur, P. Spiess, N. Oertel, and O. Kopp. “Extending BPMN for Wireless

Sensor Networks.” In: Business Informatics (CBI), 2013 IEEE 15th Conference on.

2013, pp. 109–116.

[82] S. Tranquillini, P. Kucherbaev, F. Daniel, and F. Casati. “Modeling and Enacting

Flexible Crowdsourcing Processes.” To be submitted to ACM TWEB. 2014.

180

http://jcp. org/aboutJava/communityprocess/final/jsr168/
http://jcp. org/aboutJava/communityprocess/final/jsr168/

BIBLIOGRAPHY

[83] S. Tranquillini, P. Spiess, F. Daniel, S. Karnouskos, F. Casati, N. Oertel, L. Mot-

tola, F. Oppermann, G. Picco, K. Römer, and T. Voigt. “Process-Based Design and

Integration of Wireless Sensor Network Applications.” In: Business Process Man-

agement. Ed. by A. Barros, A. Gal, and E. Kindler. Vol. 7481. Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 2012, pp. 134–149. isbn: 978-3-642-

32884-8.

[84] R. Vdovjak, F. Frasincar, G.-J. Houben, and P. Barna. “Engineering Semantic Web

Information Systems in Hera.” In: Journal of Web Engineering 2.1-2 (2003), pp. 3–

26.

[85] M. Vukovic. “Crowdsourcing for Enterprises.” In: Services - I, 2009 World Confer-

ence on. 2009, pp. 686 –692.

[86] T. Weilkiens. Systems engineering with SysML/UML: modeling, analysis, design.

Morgan Kaufmann, 2007.

[87] S. White. “Introduction to BPMN.” In: IBM Cooperation (2004).

[88] S. Wilson, F. Daniel, U. Jugel, and S. Soi. “Orchestrated User Interface Mashups

Using W3C Widgets.” In: ComposableWeb’11 (ICWE 2011 Workshop Proceedings).

Springer, 2011.

[89] WSPER.org. WS-BPEL 2.0 Metamodel. Tech. rep. http://www.ebpml.org/wsper/

wsper/ws-bpel20.html, 2007.

[90] J. Yu, B. Benatallah, F. Casati, and F. Daniel. “Understanding Mashup Develop-

ment.” In: IEEE Internet Computing 12 (2008), pp. 44–52. issn: 1089-7801.

181

http://www.ebpml.org/wsper/wsper/ws-bpel20.html
http://www.ebpml.org/wsper/wsper/ws-bpel20.html

	Introduction
	Challenges
	Methodology
	Contributions and Results
	Structure of the thesis

	Distributed Orchestration of User Interfaces
	Introduction
	State of the Art in Orchestrating Services, People and UIs
	Distributed User Interface Orchestration: Definitions, Requirements, and Architecture
	Requirements and approach
	Architecture

	The Building Blocks: Web Services and UI Components
	The UI Orchestration Meta-Model
	Modeling Distributed UI Orchestrations
	Core UI orchestration design patterns
	Data transformations
	Message correlation
	Graphical layout

	Types of UI orchestrations
	Pure UI synchronizations
	Pure service orchestrations
	UI-driven UI orchestrations
	Process-driven UI orchestrations
	Complex UI orchestrations

	Implementing and Running UI Orchestrations
	Lessons Learned
	Conclusion

	Process-Based Design and Integration of Wireless Sensor Network Applications
	Introduction
	Scenario: Convention Center HVAC Management
	Relevant Properties of Wireless Sensor Networks
	Requirements and Approach
	BPMN4WSN
	Process Logic
	WSN Task Specification

	Prototype
	Evaluation of the approach
	Discussion and Lessons Learned
	Related work
	Conclusion

	Modeling and Enacting Flexible Crowdsourcing Processes
	Introduction
	Crowdsourcing: Concepts and State of the Art
	Core concepts
	Crowdsourcing tactics
	Crowdsourcing processes
	Problem statement

	Modeling and enacting advanced crowdsourcing processes
	Requirments
	Approach

	Modeling Crowdsourcing Processes: BPMN4Crowd
	Crowd task
	Data transformation
	Modeling a crowdsourcing process with BPMN4Crowd

	The crowd computer
	Modeling crowdsourcing tactics
	Designing Tactics
	Tactic configurations

	Prototype implementation
	Model
	Compile
	Execute

	Evaluation
	Scenario: crowd-based pattern mining
	Implementation
	Analysis

	Discussion and Lessons Learned
	Related work
	Conclusion

	Conclusion
	Lessons Learned and Limitations
	Future work
	Final Remarks

	Bibliography

