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Chapter 1 - Introduction 

A lots of money are spent every year on the restoration of the concrete on structures and 

manufactured elements deteriorated by different types of degradation. A research was made by 

Cresme for the Progetto Ulisse in the 2006, and the data show that the prize of the 

rehabilitation for degraded concrete structures (17.038 billions €) exceeds the prize for new 

structures (14.525 billions €) in the public administration.  

Degradation of concretes is attributable to inadequate mix-design; anyway some 

environments are so aggressive that requiring additional care in order to increase durability[1] . 

One of the most aggressive environments for concrete is acidic one, such as in the inner 

walls of sewer pipes. There are hundred kilometres of problematic sewer pipes; for example, in 

the Los Angels County over 320 km of pipes are interested by this problem, and the prize of 

the rehabilitation will exceed $1 billion [12]. 

Deterioration of sewer pipes, made in concrete, is a great problem when service life is 

lower than 30 or less years, and maintenance or even replacement of damaged concrete sewer 

pipes are requested.  

The prescriptions to be adopted are described in the European Standard EN 206-1 

(“Concrete part 1: Specification, performance, production and conformity”). The main 

characteristic of this norm consists in the classification of the environments where the concrete 

construction will be erected. These six environment categories, called exposure classes, are 

XO, XC, XS, XF and XA. All the classes are divided into sub-classes, depending on the grade 

of the attack. As regard as the case of a sewer pipe, the exposure class is the XA3. This 

exposure class concerns concrete structures exposed to chemical attacks by sulphate ions and 

aggressive chemical agents (such as CO2, H+, NH4
+, Mg+). 
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In Table 1 the different parameters of the XA3 exposure class related to the aggressive 

water are reported: the composition of the aggressive environment and some prescription like 

the maximum w/c ratio, the minimum strength class and the minimum cement content.   

Table 1 – Exposure class XA: chemical attack 
Environment description      

WATER Exposition 
class SO4

=**   
(mg/l) pH CO2   

(mg/l) 
NH4

+   
(mg/l) 

Mg++   
(mg/l) 

Maximum 
w/c 

Minimum 
strength 

class 
(N/mm2) 

Minimum 
Cement 
Content 
(Kg/m3) 

≥ 200 ≤ 6.5 ≥ 15 ≥ 15 ≥ 300 XA1 
≤ 600 ≥ 5.5 ≤ 40 ≤ 30 ≤ 1000

0,55 37 300 

> 600 <5.5 > 40 > 30 > 1000XA2 
≤ 3000 ≥ 4.5 ≤ 100 ≤ 60 ≤ 3000

0,50 37 320 

> 3000 <4.5 > 60 
XA3 ≤ 

6000 
≥ 

4,0 
> 100 ≤ 

100 
> 3000 0,45 45 360 

 

The problem of the degradation interests all the modern society, not only in term of 

money, but also in term of discomfort and safety. 

To achieve a 30+ design life, materials exhibiting long-term durability have to be 

selected. However an extensive characterization of the most common concrete used for this 

application lacks due to the complexity of the chemical attack during service life. 

The processes leading to corrosion of the concrete sewer pipes are really complex. As 

previously described by some authors [1-15,22], hydrogen sulphide produced by anaerobic 

wastewater is released into the flowing wastewater. Then, it diffuses into the atmosphere and 

re-dissolves in the condensate on the portion of the pipe above the wastewater, where micro-

organisms, such as Thiobacillus thiooxidants, growing on this surface, convert aerobically 

hydrogen sulphite to sulphuric acid, which reacts with the concrete [9]. In most cases the pH on 

the surface is very low (in the worst case the pH is 0.5) [19]. The scheme of this process is 

reported in Figure 1. 
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Figure 1 – Sewer pipe degradation scheme 
 
The acid attacks first the calcium hydroxide and even tobermorite gel, when portlandite 

is not more available. 

Accordingly, under attack, calcium hydroxide forms gypsum and the calcium silicate 

hydrate (C-S-H) forms both anhydrous gypsum and an incoherent mass hydrated silicate as 

reported in the following equations: 

)(24)(42)(2 2)( saqs OHCaSOSOHOHCa ⋅→+    (1) 

)(222)(24)(42)(323 2 ssaqs HSCOHCaSOSOHHSC +⋅→+   (2) 

OHOHSiCaSOSOHOHSiOCaO 2444222 )(2 ++→+⋅⋅   (3) 

This layer is highly porous. The growth rate of the corroded layer is determined by the 

diffusion of the acid through the corroded layer to the reaction front and by the reaction rate of 

the acid with undamaged concrete. In a previous paper [1], it was reported that the rates of 

degradation of standard mortars are influenced by the presence and the thickness of the layer 

generated by the degradation products, e.g. calcium sulphate, which slow the diffusion of 

reactive species. In a second step calcium aluminates hydrate reacts with sodium sulphate ions 

from sulphuric acid to form ettringite: 

OHCaSOOAlCaOOHOHCaSOOHOAlCaO 2432224232 323314)2(363 ⋅⋅⋅→+⋅+⋅⋅ (4) 
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However, different types of sulphate ions can be found in the wastewater. In the 

presence of a sodium sulphate source  (>8000 ppm of SO4
--) [14], calcium hydroxide reacts to 

form secondary gypsum. Consequently, the latter can also participate in secondary ettringite 

formation. It is important to find out how to control these processes in order to increase the life 

of the facilities. The reaction equations in the cases of sodium, magnesium or ammonium 

sulphate are the following: 

NaOHOHCaSOOHSONaOHCa 2210)( 242422 +⋅→⋅+    (5) 

2442 )()( OHMgCaSOMgSOOHCa +→+      (6) 

2344232 )()(23363 OHMgOHAlCaSOMgSOOHOAlCaO ++→+⋅⋅  (7) 

3244242 22)()( NHOHCaSOSONHOHCa +⋅→+     (8) 

The literature results lacking in prediction of the concrete resistance, because the 

experiments neglected both the presence of aggregate and the real conditions in the sewage 

pipes. Actually, it has been observed that the rate of degradation is higher just above the 

waterline at the sides of the pipes, where the fluctuating water level continually wash away the 

sulphate deposits, reducing the degradation resistance. Moreover, anaerobic conditions for 

hydrogen sulphide formation occur mainly when the sewage flow is slow. Given that formation 

of hydrogen sulphide and sulphuric acid is the controlling factor, it is likely that pH is not 

continuously below 4, value for a fast concrete degradation, but shows a not well predictable 

wavy trend. It is worth noting that alternate wetting and drying of the concrete is even more 

detrimental than a continuous exposure to chemical attack. Thus the knowledge of the 

degradation rate is preliminary to the choice of a protection method or to design a suitable 

formulation of the mixes. Aim of this thesis is to develop procedures for evaluating the 

resistance of concrete mixes for sewage pipes. At this regard it seems that the concrete should 

be formulated for resisting cyclically to acid and sulphate attack. Indeed, the previous theories, 

which were developed so far upon testing standard mortars in acidic or sulphate solution, have 
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to be critically revised, taking into account that the real attack involves cyclically both acid and 

sulphates.  

In this work new data, which were recorded on various concretes with different 

composition through a new chemical test, alternating acid and sulphate attack are described and 

discussed. The aim is to discriminate the effect and the behaviour of concrete compositions in 

an aggressive environment, as close as possible to the real attack condition, and in the 

meantime sufficiently fast. The concretes under investigation contain portland-limestone 

cement, blast furnace slag cement, sulphates resistance pozzolanic cement with or without 

silica fume, respectively, at constant water/cement ratio (w/c 0.39), and two type of aggregates, 

limestone and silicates. 

This thesis is divided in two main parts: the first part regards the studies on concrete 

degradation in aggressive environment and the second one describes the development of 

protective system. After an introduction of the degradation problem in the chapter one, the 

chapter two describes the studies on degradation of different concretes prepared with various 

cements and limestone aggregate, using a cyclic acid/sulphate test with sulphuric acid and 

sodium sulphate. Chapter three shows the results regarding the degradation of different 

cements prepared with two type of aggregates, limestone and silicates, using a cyclic test with 

acid sulphuric and a complex (mixed) sulphate solution (containing  sulphates). 

The second part of the thesis describes the development of a pozzolanic coating and the 

results of the cyclic acid/complex sulphate test on a concrete with this protective coating. The 

last chapter shows preliminary results regarding the development of a new hybrid coating, 

which, contains also zirconium oxide, could have a protective effect without the drawbacks 

evidenced upon using pozzolanic addition or coating. 
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Chapter 2 –Degradation of concrete with limestone aggregates in 

sodium sulphate solution 

 2.1 Introduction 

In order to understand the degradation on concrete sewer pipe, different sets of 

experiments were performed on concretes prepared with different cements. In this chapter the 

results on degradation of different concretes prepared with various cements and limestone 

aggregates are presented, using a cyclic acid/sulphate test with sulphuric acid and only sodium 

sulphate. 

2.2 Materials 

Five concrete pipes with limestone aggregate were prepared at the industrial plant 

Eurobeton S.p.a. situated in Salorno (BZ). The pipes have the following dimensions: diameter 30 

cm and height 200 cm. The chemical composition and the concrete mixtures are described in 

details in Table 2 (for more clarity in the text, the labels of the concretes are acronyms, where the 

first three letters indicate the type of cement, and the last the type of aggregate). The physical 

properties of the aggregates are reported in Table 3. The aggregate is ground carbonate (dolomite) 

taken near Salorno (BZ). Two mixtures were prepared with both silica fume and an acrylic 

superplasticizer admixture.  

To comparing the chemical resistance of different cements, a portland limestone cement 

(CEM II-A/LL 42.5 R PTL-L), a pozzolanic cement with a low content of “aluminates” (CEM IV-

A 42.5 PZ-L) and a blast furnace cement (CEM III-A 42.5 BLF-L) were chosen. 
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Table 2 – Concrete mixture prepared with limestone aggregates. 

Mixture n° BLF-L + SF PTL-L PZ-L BLF-L PZ-L + SF 

Elements Measurement kg/m3 

Aggregate Limestone 

Fine 720 722 722 722 720 

Fine 0/4 410 412 412 412 410 

Coarse 3/8 620 621 621 621 620 

Coarse 4/15 205 205 205 205 205 

Cement type CEM III-A  CEM II-A/LL CEM IV-A CEM III-A  CEM IV-A  

Measuring 340 355 355 355 340 

Silica Fume (Meyco, 
MS610) 30 -- -- -- 30 

Acrylic 
Superplasticizer 
(Glenium) 

2.8 -- -- -- 2.8 

Water 133 140 140 140 133 

w/c 0.39 0.39 0.39 0.39 0.39 

Mass Volume Density 
(kg/dm3) 2.490 2.501 2.502 2.532 2.516 

N.B.: The measuring in Table 2 is theoretical. The data are referred to weighting industrial plant 
 
 

Table 3 – Physical characteristic of the aggregates 

Aggregate Mass volume 
density [kg/m3] 

Mass volume 
density (SSD) 

[kg/m3] 

Water 
absorption 

[%] 

Passing at 
0.063 mm 

opening siege 
[%] 

Fine 1 2785 2790 0.20 14.36 

Fine 2 2803 2808 0.17 3.73 

Coarse 3/8 2731 2756 0.90 0.53 

Coarse 8/15 2698 2712 0.52 1.17 
 
The pipes were removed from the mould after one day, then aged in open air. After 30 days, two 

series of cylindrical samples were cored from the pipes with two different sizes: a) diameter 69 

mm, height 140 mm b) diameter 30mm, height 140 mm.  
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2.3 Chemical test  

The chemical resistance was tested by the following types of attack: 

a) A cyclic immersion in sulphate solution with an attack in acid solution at pH=2 by 

sulphuric acid for 6 hours weekly (until 3000 hours of test) and monthly (after 3000 hours 

of test). 

b) Immersion in sulphate solution, replenished weekly (until 3000 hours of test) and monthly 

(after 3000 hours of test). 

The sulphate solution was prepared with 50 g/l of sodium sulphate.  

2.4 Testing program 

Every week or month, the length and weight of each sample were measured. Before the 

weight measurement, samples were dried with a cloth and was used a technical balance with 0.001 

g of sensitivity. The sample length was measured with a digital comparator with 0.001 mm of 

accuracy. The alkalinity level of the concrete samples was checked with the phenolphthalein 

method (EN 9944). 

Morphological analyses were performed using an Environmental Scanning Electron 

Microscope (ESEM) (Philips XL30) and an Energy Dispersive X-ray (EDAX) detection system. 

Some samples were analyzed using XRD (40kV-22.5 mA). It was used an Imaging Plate 

diffractometer (Italstructure) in pure reflection geometry, with Cu-Kα anode and Si multilayer 

monochromator on incident beam and a Ni filter on diffracted beam; the I.P. acquisition system 

was a Perkin-Elmer Pico Cyclon scanner. A full-profile Rietveld refinement was performed using 

MAUD software (Material Analysis Using Diffraction).  
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2.5 Results 

2.5.1 pH solution 

The pH values of the solutions were checked during every types of attack and in Figure 23 

the trend is reported, during the 6 hours of acid attack (a) and during the 28 days of only sulphate 

attack (b). 

a) b) 
Figure 2 – pH values during acid attack (a) and during sulphate attack (b) 

During the 6 hours of acid attack, the pH increases from 2 to 2.3 because degradation 

products release into the solution. In the case of the sulphate attack the pH values of  every samples 

is stable in a range between 8.6 and 8.8 . 

2.5.2 Mass variation 

The concretes were prepared in accordance with EN 206 for the XA3 class with w/c≤0.45 

and Rck≥45 MPa. Figure 3 shows the mass variation vs. time during the sulphate attack in sodium 

sulphate (50 g/l Na2SO4). The trend is similar for all the mixtures and two behaviours appear: a 

sharp increment of the sample mass occurs in the first week due to absorption of the solution; then 

a small mass variation takes place, especially for the mixture prepared without silica fume, due to 

formation  mainly calcium sulphate. 

 



Chapter 2 - Degradation of concrete with limestone aggregates in sodium sulphate solution 
 

 12

 

Figure 3 - Mass variation [%] during the sulphate attack. 
 

The rate of the mass variation in two different periods during the 5 years of testing is 

reported in Table 4. The behaviour is similar for all the specimens but, in the range between 20000 

and 45000 hours, the samples prepared without silica fume show a rate one order higher than the 

others prepared with silica fume. In general the specimens, in sodium sulphate solution, don’t 

have evident degradation until 45000 hours of testing. 

Table 4 – Slope of the straight line of the mass variation during the sulphate attack. The rate is in 10-6 %/hours. 
 

Periods [hour] 5000-20000 20000-45000 

PTL-L 24 30 

BLF-L 25 30 

PZ-L 21 21 

BLF-L + SF 15 7 

PZ-L + SF 3 8 
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Figure 4 shows the Δm (%) of specimens during the cyclic attack with sulphuric acid and 

sulphate solution.  

 

 

Figure 4 - Mass variation [%] during the cyclic acid/sulphate attack. 

The sample mass is steady during the immersion in sulphate solution, but decreases during 

the acid attack. There are two regimes of mass variation: in the first the degradation rate is high 

when the acid attack occurs weekly; it is low in the second one, when the attack is monthly. The 

corrosion rates are calculated as the slope of the best linear interpolation of the experimental 

points, and are reported in Table 5.  
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Table 5 - Slope of the straight line of the mass variation during type cyclic acid/sulphate attack.  The rates are in 
10-6 %/hours. 

 

Periods [hour] 2000-5000 5000-20000 20000-45000 

BLF-L -1160 -296 -433 

PTL-L -1320 -347 -464 

PZ-L + SF -1380 -366 -490 

PZ-L -1420 -387 -495 

BLF-L + SF -1450 -584 -536 

 

The slopes are similar in the period between 2000 and 5000 hours, but in the others two, 

the BLF-L + SF has a high mass loss (Δm = -24% after about 5 years) [9]. The difference between 

the first and the second corrosion regimes depends on the frequency of the acid attack with 

sulphuric acid. The silica fume affects negatively the resistance to this attack. The sulphuric acid 

attacks both the cement phase and the carbonate aggregate. The portlandite and the C-S-H react 

with the sulphuric acid forming calcium sulphate and anhydrite, which are more soluble than 

portlandite. Also, aggregates are covered by incoherent calcium sulphate from the reaction with 

the acid. This is due to the high percentage of aggregate in concrete, which contributes more than 

cement paste to surface depletion.  

 

2.5.3 Deformation 

Figure 5 shows the deformation percentage of the samples subjected only to sulphate attack. 

The sample length is steady during the sulphate attack but, after 15000 hours, a remarkable 

expansion is recorded, especially for the mixtures prepared without silica fume. The slopes of the 

straight line of the expansion in three different periods are reported in Table 6 
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Figure 5 – Deformation [%] during the sulphate attack. 
 

The concretes produced with SF don’t show expansion, but PTL-L and BLF-L show a 

remarkable deformation after 15000 hours of attack. The mixture PZ-L, prepared only with 

pozzolanic cement, shows a little, but constant deformation, just only in the first periods. 

Table 6 - Slope of the straight line of the deformation during the sulphate attack. The rates are in 10-7 %/hour. 
 

Periods [hour] 5000-14000 14000-30000 30000-45000 

PTL-L 13 31 99 

BLF-L 12 31 76 

PZ-L 5 51 37 

BLF-L + SF 8 8 5 

BLF-L + SF 7 4 4 
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The deformations of all specimens subjected to the cyclic acid and sulphate attack are 

reported in Figure 6. It is clear that, just after 13000 hours, PTL-L and BLF-L show a remarkable 

expansion.  

 

 

Figure 6 - Deformation [%] during the cyclic acid/sulphate attack. 
 

The PZ-L shows a linear increase of expansion quicker than the same sample subjected only 

to sulphate attack. The specimens, prepared adding silica fume, don’t show an increase of length 

and the rate of expansion is similar to the values recorded during the only sulphate attack. 

Table 7 shows the rate of deformation during the cyclic acid/sulphate attack, which is 

calculated as the slope of the best linear interpolation of the experimental points. The PLT-L and 

the BLF-L show the highest deformation, compared with the two mixtures prepared adding silica 

fume and acrylic superplasticizer. 
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Table 7 - Slope of the straight line of the deformation during the cyclic acid/sulphate attacks. The value of the 
rates are in 10-7 %/hour. 

 

Periods [hour] 5000-14000 14000-30000 30000-45000 

PTL-L 38 396 780 

BLF-L 28 294 810 

PZ-L 45 53 62 

BLF-L + SF 7 18 6 

PZ-L + SF 15 4 3 

 

The compression strengths of the cylindrical samples were measured and are reported in 

Table 8. The values of Rc meet the minimum requires strength class requested by the XA3 

exposure class. 

 
Table 8 – Concrete compression resistance 

Cement Additives (Typologies and 
quantity) 

Rc (cubic 
sample) (MPa 

± 5) 

Rc 

(cylindrical) 
(MPa ± σ) 

BLF-L + SF (30 kg/m3) Superplasticizer       (3 kg/m3) 72 65.5±3.1 

PTL-L - 79 62.4±4.8 

PZ-L - 73 62.8±6.6 

BLF-L - 80 65.9±4.8 

PZ-L + SF (30 kg/m3) Superplasticizer        (3 kg/m3) 82 57.6±6.8 

 

 

 



Chapter 2 - Degradation of concrete with limestone aggregates in sodium sulphate solution 
 

 18

2.5.4 Characterization after 2000 hours of cyclic acid/sulphate attack 

After 2000 hours of testing, a slice from each sample subjected to acid/sulphate attack, was 

cut and used for microstructural analysis. Using phenolphthalein test (EN 9944), the external 

cutting surface and the core were analyzed: there was an acceptable basic level (Figure 7). 

 
a) PTL-L 

 
b) BLF-L 

 
c) PZ-L + SF 

 

Figure 7 – Phenolphthalein method results (EN 9944) on three mixtures ( a) PTL-L, b) BLF-L and c) PZ-L+SF) 
after 2000 hour of acid/sulphate attack. 

 
The core of all the specimens appeared basic during the phenolphthalein test. Moreover in 

the samples BLF-L and PZ-L + SF the basic response is high up to the border and even on the 

external surface. The BLF-L shows basic level on the cutting surface and on the external part after 

2000 hours of testing. The basic reaction on the surface suggests a limited penetration of the 

sulphate and the acid solution into the materials, probably due to a low and not interconnected 

porosity of the samples. All this conclusions are confirmed by ESEM analysis of the cutting 

surfaces.  

The micrographs of the same samples analysed with the phenolphthalein test are reported 

in Figure 8. 
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a) BLF-L b) PZ-L 

c) PTL-L d) PTL-L 

Figure 8 – Micrographs of the mixtures BLF-L, PZ-L + SF and PTL-L  (a, b and c respectively) after 2000 hours 
of acid/sulphate attack and the PTL-L (d) after 2000 hours of  only sulphate attack. 

 
The cutting surface of the BLF-L (Figure 8 a) doesn’t show any preferential path of the 

acid attack, which seems provide a general erosion of the surface. The acid erosion of the surface 

is consistent even in PZ-L + SF, which showed a rougher surface (Figure 8 b). On the PTL-L 

sample is visible a porous external layer of about 700 µm (Figure 8 c), consisting of a material 

without coherence. This suggests that the acid attack follows a preferential path. To make a 

comparison, Figure 8d shows PTL-L sample after immersion in only sodium sulphate solution, 

which lacks of the external incoherent part. Thus from ESEM observations, it can be deduced that 

the type of attack is depending on the type of cements. 
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The XRD analysis, after 2000 hours of testing, indicates only the presence of calcite and 

dolomite. This is attributable to the high fraction of fine aggregate, which peaks cover those of the 

hydrate compounds of cements or degradation products in XRD spectra.  

2.5.5 Characterization after 45000 hours 

A new series of microstructural analyses were performed in order to understand the 

degradation of all the concretes after about 45000 hours of test. 

2.5.5.1 Phenolphthalein method (EN 9944) 

Figure 9 shows the results of this analysis and an alkalinity level is recorded on all the 

samples. The samples d) and e) show a strong attack, whereas the best performance is showed by 

the PZ-L + SF (a) in both the type of attacks.  
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Sulphate attack 
 

Cyclic acid/sulphate attack 

 

a) PZ-L + SF 

 

 

b) BLF-L + SF 

 

 

c) PZ-L 

 

 

d) BLF-L 

 

 

e) PTL-L 

 

Figure 9 - Phenolphthalein method results (EN 9944) after 45000 hours of sulphate attack (on the left) and 
acid/sulphate attack (on the right). 
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2.5.5.2 Microstructural analysis 

In order to analyse the thickness degradation, elements maps were recorded using the 

EDAX [18] instrument on all specimens subjected to the cyclic acid/sulphate attack. In Figure 10, 

the ESEM micrographs are shown of the left and on the right you can find the corresponding x-ray 

sulphur maps. 
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a) 
PZ-L + SF 

 

 

b) 
BLF-L + SF 

 

 

c) 
PZ-L 

 

 

d) 
BLF-L 

 

 

e) 
PTL-L 

 
Figure 10 - ESEM images (on the left) and X-ray maps for sulphur (on the right) of polished surface subjected to 

cyclic acid/sulphate attack. 
 



Chapter 2 - Degradation of concrete with limestone aggregates in sodium sulphate solution 
 

 24

For the mixtures prepared adding silica fume (PZ-L + SF and BLF-L + SF, Figure 10a and 

Figure 10b respectively), the surface of the sample doesn’t show cracks neither a preferential path 

of the acid attack, which seems instead to provide a general erosion of the surface. This is 

confirmed by the X-ray map for sulphur of the same sample; there is no evidence of cracks, the 

sulphur is present in the voids and entrained air bubbles.  

In  the cutting surface of the sample with pozzolanic cement (Figure 10c), which showed a 

greater expansion compared with the first two previous ones, a few cracks appears quite clearly in 

the cement paste. As it can be seen in the corresponding X-ray map for sulphur, the cracks are filled 

of columnar crystals. 

The micrographs of the concretes with blast furnace and portland cement (Figure 10d and 

Figure 10e, respectively), which showed both the largest expansion values, show an extensive 

cracking, observed around aggregates and through the paste, with occasional cracking through 

aggregate particles. The most of cracks appear black, due to the loss of material during the cutting 

and polishing of samples. Many of the internal cracks were filled with columnar crystals. This is 

confirmed by the X-ray maps which suggest that the acid attacks through a preferential path and 

afterwards sulphate phases crystallize.  

The concretes during cyclic acid/sulphate attack show a peculiar crack pattern, depending on 

the occurred mechanism. The PTL-L micrograph, after 45000 hours of cyclic acid/sulphate attack is 

reported in Figure 11a on the left, and shows a surface with three different zone: a zone with an 

high level of degradation (A), a zone of deposition of the attacks products (B) and an intact core 

(C). Details of the microstructure of the B zone are shown in Figure 11 b on the right. 

In the internal part of the crack, there are crystals of the degradation products, which are 

grown perpendicular to the crack direction. EDAX analysis (reported in Figure 12) confirms the 

high content of sulphur in the columnar crystals embedded into cracks, in an atomic Ca/S ratio 

(36.69/35.84) compatible with that of calcium sulphate [33], rather than that of ettringite. 
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In Figure 13 the microstructures of the PTL-L of sulphate attack are reported. This 

specimen doesn’t clearly show the three zones. Small cracks are present only in the external part 

of the section, where degradation products containing sulphur (as confirmed by the EDAX 

analysis) are visible (Figure 13 b).  

In Figure 14a the microstructure of the BLF-L after 45000 hours of cyclic acid/sulphate 

attack (on the left) is reported: the surface is compromised to the presence of cracks due to the 

expansion of the degradation products (Figure 14b), similarly to the sample subjected only to the 

sulphate attack. 

Figure 15 shows the micrographs of the BLF-L sample after 45000 hours of sulphate 

attack. The degradation is similar to that of the acid attack, but the crystals are thin with a needle 

form. 

The concrete prepared with the PZ-L doesn’t show a remarkable degradation but, only 

little cracks within expansion products in the cement matrix and in some aggregates, as reported in 

Figure 16a. The crystals in the crack are very large, in some cases over 40 microns (Figure 16b) 

and the EDAX analysis (reported in Figure 17) confirms the high content of sulphur in the 

columnar crystals embedded into cracks, in an atomic Ca/S ratio (32.72/32.29) compatible with 

that of calcium sulphate [33], rather than that of ettringite.  

The micrographs related to the pozzolanic cement without silica fume during the sulphate 

attack, are reported in Figure 18a. The degradation is limited on the first 1 mm of depth from the 

external surface, with the presence of clear and thin crystals of gypsum (Figure 18b).  

Figure 19 shows the microstructures of the sample produced with the BLF-L + SF during 

the cyclic acid/sulphate attack. 

  The combination of sulphate and acid attacks create only a few cracks in the external part 

of the section, differently from the sample subjected only to the sulphate attack, which doesn’t show 

any sign of degradation (Figure 20). Only very thin and empty cracks are appeared on the section 

due to the cutting and polishing procedure.  
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The microstructure of the samples prepared with the PZ-L + SF (pozzolanic cement and 

silica fume) is reported in Figure 21, showing that no degradation is present under cyclic attack. The 

only cracks presence on the surface are empty, related to the cutting process.  

In Figure 22 is reported the microstructure of the PZ-L + SF after 45000 hours of sulphate 

attack. This specimen doesn’t present any signs of degradation. 

 
a) 

 
b) 

Figure 11 - Micrographs of the PTL-L after 45000 hours of cyclic acid/sulphate attack. 
 

 
Figure 12 – EDAX results of the crystals in the crack reported in Figure 11b. 
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a) 

 
b) 

Figure 13 – Micrographs of the PTL-L after 45000 hours of sulphate attack. 
 

 
a) 

 
b) 

Figure 14 – Micrograph of the BLF-L after 45000 hours of cyclic acid/sulphate attack. 
 

 
a) 

 
b) 

Figure 15 – Micrograph of the BLF-L after 45000 hours of sulphate attack. 
 

 



Chapter 2 - Degradation of concrete with limestone aggregates in sodium sulphate solution 
 

 28

 
a) 

 
b) 

Figure 16 – Micrograph of the PZ-L after 45000 hours of cyclic acid/sulphate attack. 
 

 
Figure 17 - EDAX results of the crystals in the crack reported in Figure 16b. 

 

 
a) 

 
b) 

Figure 18- Micrograph of the PZ-L after 45000 hours of sulphate attack. 
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a) 
 

b) 
Figure 19 – Micrograph of the BLF-L + SF after 45000 hours of cyclic acid/sulphate attack. 

 

 
a) 

 
b) 

Figure 20 – Micrograph of the BLF-L + SF after 45000 hours of sulphate attack. 
 

 
a) 

 
b) 

Figure 21 – Micrograph of the PZ-L + SF after 45000 hours of cyclic acid/sulphate attack. 
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a) 

 
b) 

Figure 22 – Micrograph of the PZ-L + SF after 45000 hours of sulphate attack. 
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2.6 Discussion 

Nowadays, there are no methods to evaluate the performance of hydraulic cements in both 

acid- and sulphate-rich environments. On the other hand, ASTM describes two test methods for 

assessing the performance in sulphate-rich environments (ASTM C452 and C012) and both of 

them have been subjected to criticism, because they seem to not adequately predict field 

performance [31]. Among the several critical aspects of the tests, it is worth noting they are 

performed on mortars and not on concretes, taking into account only expansion due to ettringite 

formation. The acid attack is generally ignored, though it could accelerate the degradation process.  

Accordingly, a reliable accelerated sulphate resistance test method represents a growing 

interest in production of concretes prepared with portland and non-portland cements. In this study, 

the sulphate resistance of concretes was assessed using an accelerated test based upon a method 

including a monthly acid attack. The evaluation of damage involves the measurements of both 

expansion and mass loss. The study involved the comparison with a test performed only in sodium 

sulphate, as it is required by ASTM C012 “Test Method for Length Changes of Hydraulic-Cement 

Mortars Exposed to a Sulphate Solution”. 

In literature [9] [29] [30] it was found that the use of pozzolana or silica fume, which react 

with portlandite to produce C-S-H reducing meantime permeability, improves the resistance 

against the acid or sulphate attack, measured by mass variation, when they act apart. According to 

the data presented in this first part, the silica fume is helpful in preventing expansion, but not in 

reducing mass loss. The use of silica fume improves the resistance against sulphate attack and 

reduce the mass loss percentage when exposed to dilute acids during acid attack, but not to strong 

acids in high concentration. In this study an opposite behaviour with respect the concretes without 

SF, it must be a strong correlation between mass loss and expansion mechanisms, which reduce 

mass loss in concretes without SF. 

The concrete degradation due to the exposure to a sulphate and acid ambient[20], can 

discuss on the base of two mechanisms: dissolution of components and expansive action of the 
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reaction products. The present study relates to both of them and evidences that silica fume is 

helpful in preventing expansion, but not in reducing mass loss during acid attack. 

Dissolution is the loss of the portlandite and/or the calcite (present in the filler and in the 

calcareous aggregate) [22] as effect of the acid reaction (1)  

CH (s) + H2SO4(aq)     CaSO4
. 2H2O (s)   (1) 

The leaching of soluble NaOH decreases the pore solution alkalinity, resulting in loss of 

calcium silicate hydrate, the primary strength-giving component of the cement paste. The concrete 

permeability is a parameter for the degradation kinetics that depends on the diffusion of the 

aggressive and salt species. The geometry and the distribution of the porosity are more important 

than the only porosity value. When concrete is attacked by sulphuric acid, gypsum precipitates 

reducing the acid diffusion through the corroded layer, which in concretes without SF seems to 

promote more expansion than mass loss. Indeed, the quick formation of calcium sulphate limits 

acid could further react directly with calcite of aggregates or C-S-H, at least till portlandite is 

completely wasted. In the concretes with SF, there is not much portlandite available to reaction 

with acid, given that it has been already reacted with SF reducing meanwhile cement paste 

permeability. Accordingly, the acid attack is restricted to surface aggregate and C-S-H in more 

porous zone transition. Although the attack is presumably low, it is mainly focused on the calcium 

silicate hydrate, according the following reaction (2). 

C3S2H3(s)  + H2SO4(aq)   CaSO4
. 2H2O(s)  + C2S2H2(s)   (2) 

The decalcification of tobermorite bonding aggregates and cement paste causes the 

detachment of aggregate from the specimen surface. Indeed, the rate of mass loss of concretes 

with SF is not constant and increases with time. As a consequence, the specimen surface of the 

concretes with SF is generally consumed, even if the acid cannot penetrate the more internal and 

healthy regions. 

Expansion may occur as a result of the formation of gypsum (CaSO4·2H2O), the product of 

both the two reactions previously discussed for acid attack, and/or ettringite 
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(C3A·3CaSO4·32H2O). [15][16] [21] [23] [28][32]. Also the following reaction (3) contributes to 

form and deposit gypsum. 

CH (s) + Na2SO4(aq)  +  2 H    CaSO4
.H2O (s)  + 2 NaOH (aq)   (3) 

The rate of degradation was found to depend on the concentration of aggressive 

substances. Indeed, if the concentration of SO4
2- is high, gypsum will form, whereas if it is low 

ettringite will form. In this work, the accelerated test is performed with a high concentration of 

reagents (33800 ppm of SO4
2-) and a high specific area (the samples have a high area/volume 

ratio)[28]. Accordingly, calcium sulphate instead of ettringite is the main product and crystallizes 

into cracks. Furthermore, previous research results suggest that gypsum formation during sulphate 

attack is expansive [33]. However, ettringite could form afterwards, contributing to expansion. In 

this study the attention was focused on concretes and not mortars specimens, so that no X-ray 

powder diffraction analysis could be performed with the aim to individuate the phases of cement 

paste. Indeed, through EDXA it was found that the columnar crystals embedded into cracks show 

an atomic Ca/S ratio (36.69/35.84) compatible with that of calcium sulphate. Whatever the main 

reaction product, it nucleates during the induction period in the micro-cracks of cement paste or 

transition zone around aggregate, afterwards causing expansion due to the growth of the columnar 

crystal of the sulphate phase opening the cracks. In the concretes with SF, neither gypsum neither 

ettringite could be formed to a great extent in internal cement paste because of both the absence of 

free portlandite and restricted penetration of the attack. Accordingly, the induction period for 

nucleating crystals able to induce expansion is too long in the conditions chosen for this study. 

Indeed the expansion recorded for the concretes with SF is nearly the same in both the two tests: 

only sulphate or cyclic acid and sulphate attack.   
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2.7 Conclusions 

The degradation of five concretes with different compositions were studied in a solution of 

sodium sulphate and for six hours per week/month in a solution of H2SO4 with pH=2. The damage 

extension was evaluated by measuring mass loss and expansion. The results of the test, performed 

for about five years, let the following conclusions be drawn. 

The general trend is that the concretes with SF, which are less expansive, lose mass faster 

rate than those without SF, such as that prepared with PLT-L, which has the bad performance in 

terms of expansion. The concretes prepared with pozzolanic cement with SF have the best 

performance, taking into account both mass loss and expansion percentage. The concrete with 

blast furnace cement and SF showed a similar expansion, but a remarkable mass loss. The use of 

plain pozzolanic cement is not sufficient to minimize expansion in absence of SF. Finally the 

largest expansion and the most severe damage were recorded for BLF-L and PTL-L. In the last 

three cases, a two-stage process is evidenced in the expansion behaviour: the very low initial 

expansion is followed after about 10000 hours by a sudden increase of expansion rate, which 

continues nearly constant. 

ESEM and EDAX analyses indicate that concretes with SF contain a few micro-cracks 

enclosing gypsum, whereas those without SF, especially PTL-L and BLF-L concretes, show a 

very damaged surface, a less deteriorated internal zone and the formation of cracks filled with 

gypsum around the aggregate particles and, where the damage was particularly severe, also in the 

cement paste and through the aggregate particles. 

The behaviour of the concretes was also studied for comparison in sulphate solution. Of 

course, no mass loss was recorded and a continuous slow increase of weight was recorded as the 

effect of sulphate salt deposition. Although at the end of the test the classification of the 

deterioration of the five concretes is the same, the expansion percentage of the concretes without 

SF was remarkable lower than in the cyclic test. Indeed, the typical cracks filled with columnar 

crystals of gypsum can be observed in BLF-L and PTL-L concretes only at very high ESEM 
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magnification. Furthermore, the induction period is longer than that in cyclic test: the differences 

in expansion behaviour of the five concretes appeared almost 40000 hours in sulphate solution, 

whereas only 20000 hours in acid and sulphate solutions. At this regard the cyclic test set up in 

this study can be considered as an accelerated one. 

It is a growing interest of concrete production to know the rate of deterioration, rather than 

its mechanism in order to predict life expectancy of concrete sewer pipes. Although, it cannot 

predict absolute life in quantitative terms, this test lets an evaluation of the behaviour and 

thickness reduction is obtained, surely quicker and more reliable than the present test based on 

simple sulphate attack. It was reported [14][21] that increasing temperature and concentration of 

attacking medium, the rate of deterioration is greater. At this regard an accelerated test could 

involve a weekly acid attack. On the other hand for sewage applications it could be of more 

interest to study the concrete behaviour at temperatures lower than room temperature, as adopted 

in this study. Moreover, the reliability of  an accelerated test in this field could surely take 

advantage from using a complex solution including different salts. This will be the topic of next 

chapter. 
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Chapter 3 – Degradation of concr. with limestone/silicates 

aggregates in complex sulphate solution 

3.1 Introduction  

The first aim of this chapter is to understand the behaviour of the concrete when the 

sulphate attack is composed by different aggressive species, (not only sodium sulphate as in the 

case presented in the previous chapter). The role of this complex sulphate attack is to create an 

environment closer to the actual environment of a sewer. The second aim is to understand the 

behaviour of concrete prepared with the same cement but with two types of aggregates: limestone 

(samples-L) and silicates (samples-S). 

3.2 Materials 

Six concrete pipes were prepared at the industrial plant Eurobeton situated in Salorno 

(BZ), three with limestone aggregates and the others with siliceous aggregates. The pipes have the 

following dimensions: diameter 30 cm and height 200 cm. The chemical composition and the 

concrete mixtures are described in details in Table 9 (for more clarity in the text, the labels of the 

concretes are acronyms, where the first three letters indicate the type of cement, and the last the 

type of aggregate). The aggregates are ground limestone (dolomite) taken near Salorno and 

ground silicates taken near Piacenza, and both of them are regularly used in local plants for 

concrete preparation. Two mixtures were prepared with both silica fume and an acrylic 

superplasticizer admixture.  

For comparing the chemical resistance of different cements, a portland limestone cement 

(CEM II-A/LL 42.5 R PTL-L), a pozzolanic cement with a low content of “aluminates” (CEM IV-

A 42.5 PZ-L) and a blast furnace cement (CEM III-A 42.5 BLF-L) were chosen. 
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The pipes were removed from the mould after one day, then aged in open air. After 30 

days, a series of cylindrical samples were extracted from the pipes with the following dimensions: 

diameter 30 mm and height 140 mm.  

Table 9 – Concrete mixtures made with siliceous aggregates 

Mixture PTL-L BLF-L PZ-L + SF Mixture PTL-S BLF-S PZ-S + SF 

Elements Measuring kg/m3 

Aggregate Limestone Aggregate Silicates 

Fine 722 722 720 Fine 0/2 460 460 460 

Fine 0/4 412 412 410 Fine 0/5 460 460 460 

Coarse 3/8 621 621 620 Coarse 3/6 400 400 400 

Coarse 4/15 205 205 205 Coarse 9/14 680 680 680 

Cement type CEM II-
A/LL 

CEM 
III-A CEM IV-A Cement type CEM II-

A/LL 
CEM 
III-A CEM IV-A 

Measuring 355 355 340 Measuring 400 400 400 

Silica Fume (Meyco, 
MS610) -- -- 30 Silica Fume 

(Meyco, MS610) - - 30 

Acrylic 
Superplasticizer 

(Glenium) 
--  2.8 

Acrylic 
Superplasticizer 

(Glenium) 
-- -- 2.8 

Water 140 140 133 Water 155 155 155 

w/c 0.39 0.39 0.39 w/c 0.39 0.39 0.39 

Mass Volume 
Density (kg/dm3) 2.501 2.532 2.516 Mass Volume 

Density (kg/dm3) 2.303 2.309 2.349 

N.B.: The measuring in the Table 9 is theoretical. The data are referred to weighting industrial plant 

3.3 Chemical test 

The chemical resistance was tested by the following types of attack: 

a) A cyclic immersion in a complex sulphate solution with an attack in acid solution at pH=2 

by sulphuric acid for 6 hours weekly (until 3000 hours of test) and monthly (after 3000 

hours test).  

b) Immersion in a complex sulphate solution, replenished weekly (until 3000 hours of test) 

and monthly (after 3000 hours of test). 
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For this experiment, a complex sulphate solution was used, and its composition is 

reported in Table 10.  

Table 10 – Composition of attack sulphate solution 

 g/l 

Na2SO4 30 

(NH4)2SO4 15 

MgSO4 10 

NaCl 10 

KH2PO4 3 

Glucose 1 
 

For each composition of the samples-L, 3 specimens were immersed cyclically in the 

acid/sulphate solutions and 1 in the mixed sulphate attack. Two specimens for each 

composition of samples-S were studied with each type of attack. 

In order to obtain reference data, a samples of each composition, was stored only in 

water, replenished every week or month, combined with the measures of the attacks a and b. 

 

3.4 Testing program 

Every week or month, the length and weight of each sample were measured. Before the 

weight measurement, the samples were dried with a cloth and was used a technical balance with 

0.001 g of sensitivity. The sample length was measured with a digital comparator with 0.001 mm 

of accuracy. The alkalinity level was checked with the phenolphthalein method (EN 9944). 

Morphological analyses were performed using an Environmental Scanning Electron 

Microscope (ESEM) (Philips XL30) and an Energy Dispersive X-ray (EDAX) detection system. 

The silicates aggregates were analyzed using XRD (40kV-22.5 mA). It was used an Imaging Plate 

diffractometer (Italstructure) in pure reflection geometry, with Cu-Kα anode and Si multilayer 

monochromator on incident beam and a Ni filter on diffracted beam; the I.P. acquisition system 



Chapter 3 – Degradation of concr. with limestone/silicates aggregates in complex sulphate solution 

 40

was a Perkin-Elmer Pico Cyclon scanner. A full-profile Rietveld refinement was performed using 

MAUD software (Material Analysis Using Diffraction). Thermal analyses were performed using a 

TG-DTA instrument (SETARAM) heating the samples from 25°C to 1000°C at the rate of 

10°C/min, fluxing air. 
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3.5 Results 

3.5.1 Analysis of samples-L 

3.5.1.1 pH and permeability in water 

The pH values of all the solutions were checked during every types of attack and in Figure 

23 is reported the trend during the 6 hours of acid attack (a) and during the 28 days of mixed 

sulphate attack (b). 

a) b) 
Figure 23 – pH values during acid attack (a) and during complex sulphate attack (b) 

During the 6 hours of acid attack the pH increase from 2 to 3.5 because degradation products 

release into the solution. In the case of the sulphate attack during the first week, the pH increases 

from 5.8 to 6.1 and after one month the value is stable at 6.3. 

The specimens stored in water show no signs of a degradation process occurs. No mass 

variation and no deformation appeared during the testing time, after the initial expansion and its 

change of mass is due only to the water absorption.  

3.5.1.2 Mass variation 

Three mixtures of concrete, prepared with three different types of cement and limestone 

aggregate, were analyzed using both a complex sulphate (the composition is reported in Table 10) 

and a cyclic test using acid sulphuric and a complex sulphate solution. 

In Figure 24 the mass variation of the samples prepared with limestone aggregates during 

the sulphate attack is reported.  
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Figure 24 – Mass variation [%] during complex sulphate attack. 
 

Different behaviours can be seen: the first, during the first week, consists of a large mass 

increase due to the absorption of the solution and the second consists of a loss of mass due to the 

effect of the sulphate attack. All the mixtures have a similar mass loss. After about 38000 hours, 

the sulphate attack produces only a change of mass between Δm=-3.2% and Δm=-3.5% for PTL-L 

and for sulphate resistance cements respectively. In order to check the mass variation, after 38000 

hours, the frequency of the acid attack returns weekly, an increase of the mass loss was recorded. 

In Table 11 the rates of the mass variation in the middle period (9000-33000 hours) and in 

the final period, when the frequency of the solution replenishment returns weekly, are reported.  
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Table 11 - Slope of the straight line of mass variation during the complex sulphate attack. The values of the rate 
are in 10-4 %/hour. 

 

Periods [hours] 9000-33000 38000-39000

PTL-L -1.52 -32.20 

BLF-L -1.68 -31.00 

PZ-L + SF -1.96 -32.50 

 

The rate is the same for all the specimens, but in the final periods, in a range between 

38000 and 39000 hours, the rates are one order higher than in the previous interval. 

In Figure 25 the Δm of the samples during the cyclic acid/sulphate attack is reported. 

There are different behaviours: the first, for the first week, is a high incremental of the mass due to 

the absorption of the solution; the second, when the frequency of the attack is weekly, is a 

constant mass loss due to the effect of the acid attack; the third, is a quite mass loss, when the 

frequency of the attack is monthly, until 38000 hours. 
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Figure 25 - Mass variation [%] (mean value of three samples for each typologies) during the cyclic 
acid/(complex)sulphate attack. 

 
 

Although the trend of the curve of Δm vs. time is similar for every samples, after 38000 

hours of testing, the BLF-L specimens  prepared with blast furnace slag cement shows the lowest 

value of Δm = -9.2%. The others two mixtures, PTL-L and PZ-L + SF, show Δm values of -10.7% 

and -11.3%, respectively. 

 
Table 12 - Slope of the straight line of mass variation during the cyclic acid/(complex)sulphate attack. The values 

of the rate are in 10-4 %/hour. 

Periods [hours] 200-2000 9000-35000 38000-39000 

BLF-L -5.25 -3.3 -16.9 

PTL-L -7.85 -3.7 -18.2 

PZ-L + SF -6.30 -4.1 -14.9 

 



Chapter 3 – Degradation of concr. with limestone/silicates aggregates in complex sulphate solution 
 

 45

In Table 12 the values of the rate of mass loss are reported, after a linear regression of the 

experimental data in three different periods, corresponding to the different frequency of attack. 

After 38000 hours of accelerated test, when the frequency of the attack returns weekly, the rates of 

mass loss become one order higher than the velocities in the first periods (200-2000 hours) with the 

same type of attack. 

3.5.1.3 Deformation 

In Figure 26 the percentage deformation during the sulphate attack is reported. After the 

initial deformation due to the solution absorption, no expansion was recorded 20000 hours with no 

deformation for all the three mixtures. 

 

Figure 26 – Deformation [%] during the complex sulphate attack. 
 

The PTL-L shows a deformation percentage higher than that of BLF-L and PZ-L + SF. In 

Table 13 the rates of expansion in two different periods are reported, before and after the start of the 

expansion phenomena of PTL-L. 
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Table 13 – Slope of the straight line of the deformation during the complex sulphate attack.  The values of the 
rate are in  10-7 %/hour. 

 

Periods [hours] 4000-20000 25000-40000

PTL-L 4.5 130 

BLF-L 7.8 29 

PZ-L + SF 2.5 47 

 

In Figure 27 the expansion of the specimens subjected to the cyclic acid/sulphate attack is 

reported. Similarly to the sulphate attack, a deformation is recorded during the first weeks due to the 

solution absorption. Subsequently, no significant change of length occur until 20000 hours of 

analysis (induction period), unless PTL-L. 

 

 

Figure 27 – Deformation [%] (mean value of three samples for each typologies) during cyclic acid/(complex) 
sulphate attack. 
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In this case, the PTL-L specimen shows an expansion of ε = 0.2% after 4.5 years of test. The 

other two mixtures, BLF-L and PZ-L +SF, show a final average deformation of ε = 1.2% and ε = 

1.35%, respectively.  

In Table 14 the slope of the regression line that performs the best fit in two different interval 

are reported, before and after the start of the remarkable deformation for all the samples. 

Table 14 – Slope of the straight line of the deformation during the cyclic acid/(complex)sulphate attack. The 
values of the rate are in 10-7 %/hour. 

Periods [hours] 4000-20000 25000-40000

PZ-L + SF 18 900 

BLF-L 42 890 

PTL-L 16 52 

 

During the first interval, the mixtures PTL and PZ-L + SF have similar rates. After 2.5 years 

the rates of the mixtures prepared with blast furnace slag and pozzolanic cement have  an increase  

of deformation of two orders of magnitude. 

3.5.1.4 Characterization after 40000 hours 

A new series of microstructural analyses were performed in order to understand the 

degradation of all the concretes after about 40000 hours of test. 

3.5.1.4.1 Phenolphthalein method (EN 9944) 

Figure 28 shows the results of the phenolphthalein test. In the column on the left, there are 

the micrographs concerning the samples after the sulphate attack and on the right the micrographs 

regarding those subjected to the cyclic acid/sulphate attack. In the PTL-L (1a) alkalinity is 

acceptable after the sulphate attack, but in the other case an external layer of about 3 mm, doesn’t 

show the pink colour. The same phenomena are obtained with the BLF-L (see 2a and 2b in the 

figure) and with the PZ-L + SF (3a and 3b in the figure). In this last case, only an area of the cutting 

section with about 10 mm of diameter has an acceptable response. 
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Complex sulphate attack  Cyclic acid/(complex)sulphate attack

 1a)  

PTL-L 

1b) 

2a)  

BLF-L 

2b) 

3a) 

PZ-L + SF 

3b) 

  Figure 28 - Phenolphthalein methods results (EN 9944) 

The micrographs of the samples stored only in water show no signs of degradation and 

carbonation and alkaline reaction is visible on the whole cutting section. 

3.5.1.4.2 Microstructural analysis 

In order to analyse the thickness degradation of an elements maps are recorded using the 

EDAX instrument on all specimens subjected to the cyclic acid/sulphate attack. In Figure 29, the 

ESEM micrographs are shown on the left and on the right you can find the corresponding x-ray 

sulphur maps. 

The surface of the sample PTL-L (Figure 29a),  doesn’t show cracks neither a preferential 

path of the acid attack, which seems instead to provide a general erosion of the surface. This is 
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confirmed by the X-ray map for sulphur of the same sample. There is no evidence of cracks, the 

sulphur is present in the voids and entrained air bubbles.  

In  the cutting surface of the sample with blast furnace cement BLF-L (Figure 29b), which 

showed a greater expansion compared with the previous one, a few cracks appears quite clearly in 

the cement paste. As it can be seen in the corresponding X-ray map, the sulphur is present 

everywhere and some little the cracks are filled of columnar crystals. 

The micrograph of the concretes with pozzolanic cement adding silica fume PZ-L + SF ( 

Figure 29c), shows an extensive cracking, observed around aggregates and through the paste, with 

an occasional cracking through aggregate particles. The most of the cracks appears black, due to the 

loss of material during the cutting and polishing of samples. 

Many of the internal cracks were filled with columnar crystals. The X-ray maps indicate 

sulphur in the cracks, so that after that the acid attack favours the microcracks formation afterwards 

sulphate phases crystallize.  
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a) 
 

PTL-L 

 

b) 
 

BLF-L 

 

c) 
 

PZ-L + SF 

Figure 29 ESEM images (on the left) and X-ray maps for sulphur (on the right) of polished surface subjected to 
cyclic acid and complex sulphate attack. 

 
Polished samples were prepared cutting a slice with 5 mm of thickness from every 

cylindrical specimen, and analyzed by Environmental Scanning Electron Microscope (ESEM). 

In Figure 30a the micrographs of the mixture prepared with limestone portland cement after 

40000 hours of cyclic acid/sulphate attack are reported. They exhibit a peculiar crack pattern, which 

occurs as a direct result of the degradation mechanism. The microstructure shows a disintegrated 

surface zone (A), followed by a zone of deposition of the attack products (B). The interior of the 

concrete doesn’t show degradation (C). Extensive cracking is observed around aggregates and 
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through the cement paste. The Figure 30b shows a crack between cement paste and aggregates are 

filled by degradation products.  

In Figure 31, the micrographs of the PTL-L after 40000 hours of sulphate attack are 

reported. The degradation is limited to the external part of the samples as reported in the picture on 

the left. The gypsum is found in some crack between the cement paste and aggregate in a needle 

form (Figure 31b) with a width of few microns. 

In Figure 32a the micrograph of the BLF-L samples after 40000 hours of cyclic 

acid/sulphate attack is reported. The depth of the attack and the number of cracks, are higher than in 

the case of the mixture prepared with portland cement type CEM II-A/LL as reported in Figure 30a.  

Large crystals of degradation products are present in all the cracks, especially in those 

formed between the aggregates and the cement paste. In some cases the aggregate is completely 

surrounded by degradation products (Figure 32b).  

In Figure 33a the micrographs of the BLF-L after 40000 hours of sulphate attack are 

reported. The degradation is limited only in the external part of the specimens and the degradation 

products are needle like. In this case the crystals are very thin as in the micrograph reported in the 

Figure 33b.  

Figure 34a shows the specimen PZ-L + SF after 40000 hours of cyclic acid/sulphate attack 

and a large number of cracks. Sometimes, the aggregates are directly affected by the attack as 

shown in Figure 34a. In the internal part of the crack, Figure 34b, there are crystals of the 

degradation products, which are grown perpendicular to the crack direction. EDAX analysis 

(reported in Figure 35) confirms the high content of sulphur in the columnar crystals embedded into 

cracks, and the atomic Ca/S ratio (38.57/28.90) is compatible with that of calcium sulphate [33], 

rather than that of ettringite. 

In Figure 36a, the presence of an aggregate of large dimension shows that the deep 

degradation. The degradation products are crystals and filled the cracks as reported in Figure 36 on 

the right, for the PZ-L + SF after 40000 hours of sulphate attack. 
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In the Figure 37 the micrographs analysis of the specimens, stored in water for all the time 

are reported. The sample doesn’t show signs of attack as cracks, but only a thin layer (light grey in 

the figure) on the external surface rich of Ca and C as measured by the EDAX analysis. This layer 

(30-40 μm) affected by carbonation. The microstructure is the same in all the analysed samples. 

 
a) 

 
b) 

Figure 30 - Micrograph of PTL-L after 40000 hours of cyclic acid/(complex) sulphate attack. 
 

 
a) 

 
b) 

Figure 31 - Micrograph of PTL-L after 40000 hours of complex sulphate attack. 
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a) 

 
b) 

Figure 32 - Micrograph of BLF-L after 40000 hours of cyclic acid/(complex)sulphate attack. 
 

 
a) 

 
b) 

Figure 33 - Micrograph of BLF-L after 40000 hours of complex sulphate attack. 
 

 
a) 

 
b) 

Figure 34 – Micrograph of the PZ-L + SF after 40000 hours of cyclic acid/(complex) sulphate attack. 
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Figure 35 - EDAX results of the crystals in the crack reported Figure 34b. 
 

 
a) 

 
b) 

Figure 36 - Micrograph of PZ-L + SF after 40000 hours of complex sulphate attack. 
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a) PTL-L 

 
b) BLF-L 

 
c) PZ-L + SF 

 

Figure 37 – Micrograph of the mixtures stored in water after 40000 hours. 
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3.5.2 Analysis of samples-S 

3.5.2.1 pH and permeability in water 

The pH values of all the solutions were checked during every types of attack and in Figure 

23 is reported the trend during the 6 hours of acid attack (a) and during the 28 days of only sulphate 

attack (b). 

a) b) 
Figure 38 – pH values during acid attack (a) and during complex sulphate attack (b) 

During the 6 hours of acid attack the pH increases from 2.1 to 2.2 because degradation 

products release into the solution. In the case of the sulphate attack during the first 2 weeks, the pH 

increases from 5.9 to 6.3 and after one month the value is stable at 6.4 . 

The specimens stored in water, show no signs of degradation. No mass variation and no 

deformation appeared during the testing time, after the initial expansion and its change of mass is 

due only to the water absorption.  

3.5.2.2 Aggregate analysis 

In order to confirm and quantify the silicates nature of the aggregates, thermal analysis and 

powder XRD analysis were performed on the four fractions of the raw materials. In Table 15 the 

percentages of the calcium carbonate measured with the thermal analysis are reported. 
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Table 15 – TG results 
 % CaCO3

Sand 0/2 18.18 

Sand 0/5 25.54 

Gravel 3/6 54.12 

Gravel 9/14 40.48 

 

Calcium carbonate amount is around about the 20% in the sand fraction and increase with 

the size dimension of the aggregates. 

Table 16 –XRD results - % in weight (± 1%) 
 Quartz Calcite Feldspar

Sand 0/2 52 12 36 

Sand 0/5 47 22 31 

Gravel 3/6 32 51 17 

Gravel 9/14 31 62 7 

 

The XRD analyses, reported in Table 16, indicate nearly the 50%wt of quartz in the sand 

and 30%wt for the gravel. 
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3.5.2.3 Mass variation 

In Figure 39 the mass variation vs. time of the samples during the sulphate attack is 

reported. 

 

 

Figure 39 – Mass variation [%] during the complex sulphate attack (mean value of two samples). 
 

There are different trends: the first, during the first week, is a large mass increase; its Δm = 

1.5% for BLF-S and PTL-S and it’s Δm = 2.7% for PZ-S + SF, due to the absorption of the sulphate 

solution; the second, is a low and constant loss of mass due to the effect of the sulphate attack. The 

trend of Δm(%) vs. time is similar for all the three mixtures. The rates of the mass variation after a 

linear fitting in an interval of 2.5 years are reported in Table 17. PZ-S + SF shows the lowest mass 

loss rate. 
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Table 17 - Slope of the straight line of mass variation during the complex sulphate attack. The values of the rate 
are in 10-4 %/hour. 

Periods [hours] 400-22000

PZ-S + SF -0.22 

BLF-S -0.36 

PTL-S -0.70 

 

The Δm during the cyclic acid/sulphate attack is reported in Figure 40. After 2.5 years, all 

the typologies of mixtures have a high mass loss and, in particular, the mixture PZ-S + SF shows 

Δm = -16% whereas the others two show Δm = -14%.  

 

 

Figure 40 – Mass variation [%] during the cyclic acid/(complex) sulphate attack (mean value of two samples). 
 

The rate of mass loss doesn’t change in the sample PZ-S + SF changing the frequency of the 

acid attack and the initial increase of mass is higher than the others two. The rates of mass variation, 

measured in three different intervals, are reported in Table 18: in the first, the slopes are similar but 

in the others two intervals, the rates of the mixtures BLF-S and PTL-S increase of one order of 

magnitude. 
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Table 18 - Slope of the straight line of mass variation during the cyclic acid/(complex)sulphate attack. The values 
of the rate are in 10-4 %/hour. 

 

Periods [hours] 200-3000 3000-8000 8000-18000 

PZ-S + SF  -12.3 -6.9 -10.3 

BLF-S -11.1 -3.1 -7.3 

PTL-S -14.4 -3.1 -7.9 

 

3.5.2.4 Deformation results 

The deformation vs. time during the only sulphate attack is reported in Figure 41. The 

mixture PZ-S + SF started to expand already in the first week. 

 

 

Figure 41 – Deformation [%] during the complex sulphate attack (mean value of two samples). 
 

The PZ-S + SF and BLF-S samples show an increase of the deformation and after 2.8 years 

the value is ε = 0.5%. On the other hand, PTL-S sample expanded with a steady low increase. This 

is confirmed by the rates of deformation reported in Table 19. 
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Table 19 - Slope of the straight line of the deformation during the complex sulphate attack. The values of the rate 
are in 10-5 %/hour. 

 

Periods [hours] 300-2000 2500-22000

PZ-S + SF 0.32 1.00 

BLF-S 0.65 1.80 

PTL-S 0.74 0.72 
 

In Figure 42, the deformation during the cyclic acid/sulphate attack is reported. After the 

initial absorption of the solution, a period without any length variation followed.  

 

 

Figure 42 – Deformation [%] during the cyclic acid/(complex) sulphate attack (mean value of two samples). 
 

The use of silicates aggregates decreases the induction time compared with the analysis 

performed on the concretes prepared with the same cements but limestone aggregate. Indeed, after 

only 2500 hours, the mixtures PZ-S + SF  and BLF-S show a constant expansion until ε = 3% in 

25000 hours. (ε = 1% was measured for PTL-L). In Table 20 the rates of deformation during the 

cyclic acid/sulphate attack are reported. In the first period the expansion of the PTL-S sample is 
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low. The others two mixtures show the same constant expansion rate. After the induction period, 

deformation occurs in all the specimens. However PZ-S + SF and BLF-S show a remarkable 

expansion. 

Table 20 - Slope of the straight line of the deformation during cyclic acid/(complex)sulphate attack. The values of 
the rate are in 10-5 %/hour. 

 

Periods [hours] 300-2000 2500-22000

PZ-S + SF 1.45 14.20 

BLF-S 1.11 14.30 

PTL-S 0.09 6.10 

 

2.5.2.5 Characterization after 25000 hours 

A new series of microstructural analyses were performed in order to understand the 

degradation of all the concretes after about 25000 hours of test. 

2.5.2.5.1 Phenolphthalein method (EN 9944) 

Figure 43 shows the results of the phenolphthalein test. On the column on the left, there are 

the micrographs concerning the samples after the sulphate attack and on the right the micrographs 

regarding those subjected to the cyclic acid/sulphate attack. 
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Complex sulphate attack 
 

Cyclic acid/(complex)sulphate attack

3a) 

PTL-S 

3b) 

2a) 

BLF-S 

2b) 

1a) 

PZ-S + SF 

1b) 
Figure 43 - Phenolphthalein methods (EN 9944) results on concretes prepared with silicates aggregate. 

 

In the mixture PTL-S subjected to the sulphate attack (1a) the alkalinity level is acceptable, 

but the other case of the cyclic attack produces an increase of the degradation depth. The same 

results are obtained in the mixture BLF-S (2a and 2b) and in the mixture PZ-S +SF (3a and 3b). In 

the lat, the entire cutting section is compromised by the acid and the sulfatic attacks (3b), with no 

change of colour. The phenolphthalein test performed on the mixtures stored in water shows an 

acceptable alkalinity on the whole section. 

3.5.2.5.2 Microstructural analyses 

In order to analyse the thickness degradation, elements maps are recorded using the EDAX 

instrument on all specimens subjected to the cyclic acid/sulphate attack. In Figure 44 the ESEM 
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micrographs are shown on the left and on the right you can see the corresponding x-ray sulphur 

maps. 

For the PTL-S sample (Figure 44a), the surface doesn’t show cracks neither a preferential 

path of the acid attack, which seems instead to provide a general erosion of the surface. This is 

confirmed by the X-ray map for sulphur of the same sample: there is no evidence of cracks and the 

sulphur is present in the voids and entrained air bubbles and on the external surface. The cutting 

surface of the sample BLF-S (Figure 44b) a few cracks appear in the cement paste. As it can be seen 

in the corresponding X-ray map, the sulphur is present everywhere especially in the cracks. The 

micrograph of the PZ-S + SF sample (Figure 44c) shows an extensive cracking, observed around 

aggregates and through the paste, with occasional cracking through aggregate particles. The most of 

cracks appears black, due to the loss of material during the cutting and polishing of samples.  
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a) 
 

PTL-S 

 

b) 
 

BLF-S 

 

c) 
 

PZ-S + SF 

Figure 44 - ESEM images (on the left) and X-ray maps for sulphur (on the right) of polished surface subjected to 
cyclic acid and complex sulphate attack. 

 

The micrographs of PTL-S sample subjected to the sulphate attack are reported in Figure 

45a. The degradation is not clearly visible in the external part of the cylinder at low magnification, 

as reported on the left. The degradation products are founded in the cracks between the cement 

paste and aggregate in a needle form (Figure 45b).  

Figure 46 shows the micrographs of the PTL-S subjected to the cyclic acid/sulphate attack: 

the surface is completely destroyed. The degradation products are presented in deep over 2-4 mm 

from the surface after 2.9 years of attack surrounding every aggregates. The gap between the 

aggregates and the cement matrix is over 40 um, as reported in Figure 46. EDAX analysis (reported 
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in Figure 47) confirms the high content of sulphur in the columnar crystals embedded into cracks, 

and the atomic Ca/S ratio (30.75/26.14) compatible with that of calcium sulphate [33], rather than 

that of ettringite.  

The micrographs of the mixture BLF-S subjected to the sulphate attack are reported in 

Figure 48.  

The degradation is clearly visible in the external part of the section, even at low 

magnification. The attack affects the internal part of the aggregate and the cracks are filled by 

crystals (Figure 48b).  

The micrographs of the BLF-S subjected cyclic acid/sulphate attack are reported in Figure 

49. The degradation is clearly visible in the section of the sample, even at low magnification. The 

needle like crystal of gypsum is visible in the cracks between the cement paste and aggregate 

(Figure 49b). It is visible the void leaved by an aggregate and the crystals of gypsum. 

The micrographs of PZ-S + SF during the sulphate attack are reported in Figure 50. A web 

of cracks is visible in the cross section, surrounding nearly every aggregates. In Figure 50b the 

crystals embedding in the cracks are visible.  

The results of the microstructural analysis for the PZ-S + SF are reported in Figure 51. Also 

in this case the products of degradation are around every aggregate particles. The magnification of 

the gap between the cement matrix and the aggregate filled by crystals of large dimensions is shown 

in Figure 51b. EDAX analysis (reported in Figure 52) confirms the high content of sulphur in the 

columnar crystals embedded into cracks, and the atomic Ca/S ratio (31.22/29.65) compatible with 

that of calcium sulphate[33], rather than that of ettringite.  

In Figure 53 the microstructural analysis of the mixtures stored only in water is reported. In 

every typologies of specimens, there are no signs that degradation processes occur after 2.9 years of 

testing.  

Only a thin layer of a few microns of carbonation, is present in external part of the section of 

all the samples stored in water. 
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a) 

 
b) 

Figure 45 - Micrograph of PTL-S after 25000 hours of complex sulphate attack. 
 

 
a) 

 
b) 

Figure 46 – Micrograph of PTL-S after 25000 hours of cyclic acid/(complex)sulphate attack. 
 

 

Figure 47 - EDAX results of the crystals in the crack reported Figure 46b. 
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a) 

 
b) 

Figure 48 – Micrograph of the mixture BLF-S after 25000 hours of complex sulphate attack. 
 

 
a) 

 
b) 

Figure 49 – Micrograph of the BLF-S after 25000 hours of cyclic acid/(complex)sulphate attack. 
 

 
a) 

 
b) 

Figure 50 – Micrograph of PZ-S + SF after 25000 hours of complex sulphate attack. 
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a) 

 
b) 

Figure 51 – Micrograph of the PZ-S + SF after 25000 hours of cyclic acid/(complex)sulphate attacks. 
 

 
Figure 52 - EDAX results of the crystals in the crack reported Figure 51b 
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a) PTL-S 

 
b) BLF-S 

 
c) PZ-S + SF 

 

Figure 53 – Micrographs of the mixtures stored in water. 
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3.6 Discussion and conclusion 

Currently, there are no methods to evaluate the performance of hydraulic cements in both 

acid- and sulphate-rich environments. On the other hand, ASTM describes two test methods for 

assessing the performance in sulphate-rich environments (ASTM C452 and C012) and both of 

them have been subjected to criticism, because they seem to not adequately predict field 

performance. Among the several critical aspects of the tests, it is worth noting they are performed 

on mortars and not on concretes immersed in sodium sulphate, as it is required by ASTM C012 

“Test Method for Length Changes of Hydraulic-Cement Mortars Exposed to a Sulphate Solution”. 

They take into account only expansion due to ettringite formation, whereas the acid attack is 

generally ignored, though it causes mass loss and could accelerate the degradation process. 

Furthermore, one more critical aspect of the actual tests is that even considering also the acid 

attack alternating to that of sodium sulphate, the environment of a sewer pipe contains more than a 

single aggressive component.  

Accordingly, a reliable accelerated sulphate resistance test method represents a growing 

interest in production of concretes prepared with Portland and non-portland cements. In this study, 

the sulphate resistance of concretes was assessed using an accelerated test based upon a method 

including a monthly acid attack. The evaluation of damage involved the measurements of both 

expansion and mass loss. Moreover, the study involved also the comparison with the results of 

samples of same composition immersed in a solution of mixed salts, among them sodium, 

ammonium and magnesium sulphate.  In some recent studies the effect of each of those species 

have been studied and in this new test, both the presence of all the species and the sulphuric acid 

are taken into account. 

It is known that sodium sulphate reacts with the portlandite to forms expansive products 

like gypsum, which in the presence of aluminates forms ettringite [27].  

NaOHOHCaSOOHSONaOHCa 2210)( 242422 +⋅→⋅+  
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It is also known that when the attacking solution contains just magnesium ions (MgSO4), 

the formation of magnesium hydroxide are observed [14][17]. Magnesium sulphate reacts directly 

with the cement paste forming magnesium silicate hydrated (M-S-H) and gypsum, which after 

long time, could transform in ettringite . 

2442 )()( OHMgCaSOMgSOOHCa +→+  

2344232 )()(23363 OHMgOHAlCaSOMgSOOHOAlCaO ++→+⋅⋅  

Actually, the concrete deterioration by ammonium sulphate [27] overwhelms any other 

attack because only expansive products like gypsum are produced. An intensive dissolution occurs 

on the cement hydrates at the same time of the expansion.   

3244242 22)()( NHOHCaSOSONHOHCa +⋅→+  

At this regard the complex solution modifies the rates of expansion with respect to the 

same mixtures reported chapter 2 by the only sodium sulphate attack. As reported in literature 

[28],  for attack by sodium sulphate solution, at a low concentration of sulphates (<1000 ppm 

SO4
2-), the primary product deposited is ettringite, while at high concentrations(>8000 ppm SO4

2-

), gypsum is the main product. In the intermediate range (1000–8000 ppm SO4
2-), both gypsum 

and ettringite are observed. In magnesium sulphate attack, ettringite production is observed at a 

low concentration(<4000 ppm SO4
2-), a mixture of ettringite and gypsum forms at an intermediate 

concentration (between 4000 and 7500 ppm SO4
2-), and magnesium corrosion dominates at high 

concentrations (>7500 ppm SO4
2-). In this work, the accelerated test is conducted with a high 

concentration of reagents  (see Table 10) and with a high area/volume ratio. 

In the previous chapter, [F. Girardi, W. Vaona, R. Di Maggio, Accelerated test for 

measuring sulphate resistance of concrete pipe prepared with different hydraulic cements, 2009, 

Cement and Concrete Research, submitted.][9][29][30], it has been reported that the use of silica 

fume with the pozzolanic or blast furnace cements is able to reduce expansion to negligible 

values, even if a monthly attack with sulphuric acid determines a certain mass loss. In that 
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experiment with cyclic immersion of the samples in acid sulphuric and sodium sulphate solutions, 

PTL concretes were found to expand to a remarkable extent, although with a lower mass loss. 

Accordingly to these results, PZ+SF, BFL and PTL cements have been chosen for this study along 

with two different aggregate, limestone- or silicate-rich as typically available in many regions of 

Italy. Generally, the degradation of S-samples is much greater than that of the L-samples, 

confirming that silicate-rich aggregate is not the most suited choice for concretes, which have to 

be used in a very aggressive environment. Finally, all the samples lose mass, even in absence of 

acid sulphuric attack. This phenomenon is attributable to the acidity, even if low, of the mixed 

sulphate solution, which favours dissolution of portlandite. The pH of the solutions of attack 

increases with time similarly for all the samples. Indeed, degradation during the concrete exposure 

to both acid and mixed sulphate environment, can be discussed on the base of two mechanisms: 

dissolution of components and expansive action of the reaction products.  

Actually, the larger phenomenon of dissolution occurs during the immersion in sulphuric 

acid, mainly due to the reaction portlandite with acid [22] according the following reaction (1): 

CH (s) + H2SO4(aq)     CaSO4
•2H2O (s)   (1) 

Gypsum precipitates reducing the acid diffusion through the corroded layer, at least till 

portlandite is completely wasted. In the concretes containing a minor amount of portlandite, there 

is not much of it available to the reaction with acid, given that it has been already reacted with SF 

or slag, the acid attack is restricted to surface aggregate and secondary calcium silicate hydrate 

(CSH) according the following reaction (2). 

C3S2H3(s)  +  H2SO4(aq)   CaSO4
.2H2O(s) +  C2S2H2(s)   (2) 

The decalcification of tobermorite, which bonds aggregates and cement paste, causes the 

detachment of aggregate from the specimen surface. As a consequence, the surface of the 

concretes with SF is generally consumed and even the acid can penetrate the more internal zones.  

Expansion may occur as a result of the formation of gypsum (CaSO4
.2H2O), the product of 

both the two reactions previously discussed for acid attack, and/or ettringite 
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(C3A.3CaSO4
.32H2O).[15-16,21-23,28,32] However, the following reaction (3) contributes to 

form and deposit gypsum during ammonium sulphate exposure: 

CH (s) +  (NH4)2SO4(aq)     CaSO4
.2H2O (s)  + 2 NH3 (aq)   (3) 

The NH3 is leached, decreasing the pore solution alkalinity and resulting in loss of calcium 

silicate hydrate, the primary strength-giving component of the cement paste.  

The concrete permeability is an important parameter for the degradation kinetics, which 

depend by the diffusion of the aggressive species. The geometry and the distribution of the 

porosity are more important than the whole porosity volume. The rate of degradation depends also 

on the concentration of aggressive substances. Indeed, if the concentration of SO4
2- is high, 

gypsum will form, whereas if it is low, ettringite will form. In this work, the test is performed with 

a high concentration of reagents (33800 ppm of SO4
2-) exposing a high specific area (the samples 

have high area/volume ratio)[28]. However, the analysis EDXA of the columnar crystals 

embedded into cracks indicated an atomic Ca/S ratio (36.69/35.84), compatible with that of 

calcium sulphate, rather than that of ettringite. Accordingly, calcium sulphate instead of ettringite 

is the main product. In this study the attention was focused on concretes and not mortars 

specimens, so that no X-ray powder diffraction analysis could be performed with the aim to 

individuate the phases of cement paste in a very accurate way. Whatever the main reaction 

product, it nucleates in the micro-cracks of cement paste or in transition zone around aggregate.  

Afterwards, the growth of the columnar crystals enlarges the cracks and causes expansion, in 

agreement with the research results of Tian et al. suggest that gypsum formation during sulphate 

attack is expansive [33]. 

The cyclic immersion in sulphuric acid solution has the effect to bring the attack through 

the depassivation layer, so that the gypsum forms in more internal zone. The final effect is to 

reduce the dormant period, necessary to observe macroscopic expansion. 
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As regards expansion, PTL samples showed always the opposite behaviour with respect 

the other composition: they expand less of the others, unless in the mixed sulphate solution when 

containing limestone-rich aggregates.  

Indeed, ammonium sulphate produces a concrete deterioration: only expansive gypsum is 

formed. There are little data available concerning ammonium sulphate attack; however, some of it 

indicates that this salt is very harmful to concrete [3][4][6]. There occurs not only expansion due 

to the formation of gypsum and ettringite [3], but also intensive dissolution of cement hydrates. In 

PTL concretes, this generalized deterioration is comparable with acid attack, indeed the expansion 

values don’t change significantly.  

Differently, the role of admixtures such as silica fume or blast furnace slag on the 

improvement in the ammonium sulphate resistance of concrete is negative. Indeed, they react with 

portlandite producing C-S-H. The low presence of free portlandite focuses the acid attack on CSH. 

In order to predict life expectancy of concrete sewer pipes, it is a growing interest of 

concrete production to have a tool, even phenomenological, to compare the resistance and the 

behaviour of different concrete mixtures in cyclic contact with sulphuric acid and sodium 

sulphate. Although, it cannot predict absolute life in quantitative terms, the results of the cyclic 

test of this study lets an evaluation of the behaviour and thickness reduction be obtained, surely in 

a quicker and more reliable way than the test based on simple sulphate attack. It was reported that 

increasing temperature and concentration of attacking medium, the rate of deterioration is 

greater[14][21][28]. At this regard this accelerated test could be improved for example using a 

weekly acid attack. On the other hand for sewage applications it could be of more interest to study 

the concrete behaviour at temperatures lower than room temperature[28]. Moreover, the reliability 

of an accelerated test in this field could surely take advantage from using a complex solution 

prepared mixing different salts. 

 





Part 2 - development of protective system 

 77

 

 

Part 2 

 

 

Development of a protective system





Chapter 4 – Silica coating 

 79

Chapter 4 – Silica coating 

4.1 Introduction 

In order to reduce the degradation on concrete sewer pipe, different sets of experiments 

were performed on one type of concrete with different coatings. In this chapter the study of a new 

coating based on a silica sol is presented.. 

4.2 Materials 

A typical concrete for sewer pipes was prepared at the industrial plant Eurobeton S.p.a. 

situated in Salorno (BZ) using limestone aggregates and portland limestone cement (CEM II-B/LL 

32.5 R). The chemical composition and the concrete mixture are described in details in Table 21. 

The aggregate is ground limestone (dolomite) taken near Salorno (BZ).  

The cement choice (CEM II-B/LL 32.5 R) is the same to compare the different chemical 

resistance between concretes protected with two different amount of coating (labelled HC for 

High amount of Coating and LC for Low amount of Coating) and concretes protected with an 

additional hydrophobic layer (labelled LCP: Low amount of Coating and hydroPhobic 

component). In order to obtain reference data a sample was analyzed without coating (labelled 

WC). 
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Table 21 - Concrete mixture and for silica coating. 

 Concrete Label WC HC LC LCP 

Elements Measuring 
kg/m3 Silica Sol - 70.3 

g/m2 
7.3 

g/m2 7.3 g/m2 

Aggregate Limestone Hydrophobic 
component - - - 2.0 g/m2 

Fine 0/2 700 Notes Without 
Coating 

High 
amount of 
Coating 

Low 
amount of 

coating 

Low amount of 
coating + hydrophobic 

component 

Fine 0/4 400 

Coarse 3/15 800 

Cement type 
CEM II-

B/LL 
32.5 R 

Measuring 300 

Water 100 

w/c 0.43 

Mass Volume 
Density 
(kg/dm3) 

2.383 

N.B.: The measuring in the Table 21 is theoretical. The data are referred to weighting industrial plant 

 

The concrete samples have the following dimensions: diameter 36 mm and height 102 mm and 

were extruded from a cylindrical mould few minutes after the forming process. The samples HC, 

LC and LCP were coated by spraying directly on the wet concrete after the de-moulding. 

The coating is a silica sol, applied on the external surface of the cylindrical specimens by a spray 

system on wet concretes. Commercially available reagents were used without further purification. 

Tetraethyl orthosilicate (TEOS), ethanol and water were mixed under air atmosphere, adding 

some drops of  hydrochloric acid (HCl) and the final composition of the sol are reported in Table 

22. The silica sol is stable and long lasting, with high time of gelification. 
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Table 22 – Silica sol composition 

Components Mass (g)

H2O 52.5 

TEOS 86.9 

Ethanol 287.3 

HCl drops  
 

The hydrophobic layer was prepared adding an hydrophobic component (Fluorine alkyl 

silane - FAS) to the TEOS in order to produce a layer that reduce the wettability.  

 

4.3 Chemical test 

The chemical resistance was tested by the following types of attack: 

c) A cyclic immersion in a complex sulphate solution with an attack in acid solution at pH=2 

by sulphuric acid for 6 hours weekly (until 3000 hours of test) and monthly (after 3000 

hours test).  

d) Immersion in a complex sulphate solution, replenished weekly (until 3000 hours of test) 

and monthly (after 3000 hours of test). 

For this experiment a complex sulphate solution was used, and its composition is 

reported in Figure 23.  

Table 23 – Composition of attack sulphate solution 

 g/l 

Na2SO4 30 

(NH4)2SO4 15 

MgSO4 10 

NaCl 10 

KH2PO4 3 

Glucose 1 



Chapter 4 – Silica coating 

 82

Two specimens for each composition were studied with each type of attack. In order to 

obtain reference data, two samples of each composition were stored only in water, replenished 

every week or month, combined with the measures of the attacks a and b. 

4.4 Testing program 

Every week or month, the length and weight of each sample were measured. Before the 

weight measurement, the samples were dried with a cloth and was used a technical balance with 

0.001 g of sensitivity. The sample length was measured with a digital comparator with 0.001 mm 

of accuracy. The alkalinity level was checked with the phenolphthalein method (EN 9944). 
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4.5 Results 

4.5.1 Mass variation 

In the second part of this thesis, the development of a protective system that increase the 

durability of the concrete pipes is presented. With this aim, a pozzolanic coating, like colloidal 

silica, is applied on the concrete surface and analyzed by the same chemical test used in the 

previous chapters. The concretes, for sewers or aggressive ambient in accordance with EN 206 for 

the XA3 class, have the following parameter: w/c≤0.45, Rck≥45 MPa. The concretes are in the 

XA3 exposition class. The concrete were analyzed with a new accelerated test using a complex 

sulphate (the composition is reported in Figure 23). 
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The mass variation vs. time during the sulphate attack is reported in Figure 54. The Δm vs. 

time trend is similar for every typologies and it is composed by an high incremental of the mass due 

to the adsorption of the solution during the first week, followed by a strongly decrease until 3000 

hour when the replenishment of the sulphate solution is weekly. When the frequency becomes 

monthly the Δm(%) is weakly. After 20000 hours of sulphate attack, the samples WC and HC, 

show the lowest mass variation. The others two typologies of samples, LC and LCP, show the 

highest mass variation. 

 

Figure 54 – Mass variation [%] during the complex sulphate attack (mean value of two samples). 
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The mass variation during the cyclic acid/sulphate attack is reported in Figure 55. The Δm 

trend is similar for every samples, and after about 20000 hours of testing, the WC sample shows a 

Δm = -13%, LC and LCP samples show the same Δm = -12% and the HC sample shows the lowest 

mass loss (Δm = -3%). The trend of Δm(%) vs. time, is that the coating reduces the mass loss, 

especially when acid attack is monthly.   

 

Figure 55 - Mass variation [%]during the acid/(complex)sulphate attack. 
 

The specimens stored only in water show no signs that a degradation process occurs. No 

mass variation appears during the testing time, after the initial Δm due to the water absorption.  
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4.3.1 Deformation 

The deformation during the sulphate attack is reported in Figure 56. The behaviour of the 

expansion is similar for all the samples in analysis, but in the LCP specimen the initial deformation 

arrives to ε = 0.16% after 2000 hours. The others typologies show an initial deformation of ε = 

0.08%, ε = 0.09% and ε = 0.1% for the LC, WC and HC, respectively and after 2000 hours the 

value is constant. As evidenced in chapter 3 the induction period occurs at times more  larger then 

those 20000 hours. 

 

 
Figure 56 – Deformation [%] during the complex sulphate attack. 
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 Figure 57 shows the deformation during the cyclic acid/sulphate attack. When the attack is 

cyclic, there aren’t remarkable differences with the corresponding sample subjected to the only 

sulphate attack during the first 10000 hours. In the range between 10000 and 15000 hours, the WC 

sample shows an expansion and after 20000 hours is ε = 0.22%. The others typologies of samples 

have similar trend, a initial expansion due to the solution absorption followed by no significant 

deformation until the end of the periods of analysis. In particular the LC shows the same initial 

deformation of the WC (ε = 0.1%) and for HC and LCP ε = 0.13% and 0.18% respectively. 

 
 

 
Figure 57 – Deformation [%] during the cyclic acid/(complex)sulphate attack. 

 
The specimens stored only in water, show no signs that a degradation process occurs. No 

deformation appear during the testing time, after the initial expansion due to the water absorption.  
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The presence of glucose in the complex sulphate solution is the cause of the formation of 

algae  and weed on the surface of the solution during the time. This formation starts few days after 

the renewing of the complex sulphate solution. After 5000 hours, the algae appear directly on the 

surface of the specimens, and they are green if the samples are stored on the sun light or they are 

black if the specimens are stored in a closet. The presence of the silica coating reduce the formation 

of this biological elements on the coated surface. In Figure 58 pictures of three different typologies 

of samples are reported. On the surface of the WC sample are present a lot of grey/black stain, but 

in the coated specimens this number decrease, specially for the LC. 

 
 

 
 

 
a) LC 

 

 

 
b) LCP 

 

 
c) WC 

 
 

Figure 58 – Effect of the silica coating on the grow of algae.
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4.5.2 Test on hardened concrete 

For a preliminary test, the coating were applied directly on the hardened concrete. The 

silica sol has a  good wettability on the surface, as reported in Figure 59a, but after 1 hour 

different flakes appear on the external surface. Some of these pieces of the silica coating are 

reported in  Figure 59b. 

 
a) 

 
b) 

Figure 59 – Silica coating applied on hardened concrete. 
 

On the base of this results, the coating were applied by spraying directly on the wet 

specimens, few minutes after the extrusion process. 

4.5.3 Phenolphthalein and wettability tests 

In order to evaluate the alkalinity level on the concretes, phenolphthalein testes were 

performed on the surface after the hardened periods of 28 days at 20°C and 95% R.H., according to 

the EN 9944. The results regarding the specimens covered with 7.3 g/m2 of silica coating (LC) are 

reported in Figure 60. The purple stains appear on the surface only after 30 seconds. 
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a) After 2 seconds 

 
b) After 30 seconds 

Figure 60 - Phenolphthalein methods (EN 9944) results on LC sample. 
 

A wettability test was performed in order to understand the behaviour of the coating in 

contact with the water. The results of this test are reported in Figure 61. The WC sample (Figure 

61a) shows a good wettability; in fact the drop of water has a low contact angle, typical of an 

hydrophilic surface. The specimen LCP (Figure 61b and Figure 61c) shows an opposite behaviour, 

with an high contact angle, and the water drop is resistance to the gravity, if the surface is rotated of 

90 degrees. 

 

a) WC 

 

 

b) LCP 

 

c) LCP 

Figure 61 - Wettability test of WC (a) and LCP (b, c). 
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4.6 Discussion 

Nowadays, there are different commercially solutions and methods to protect the concrete 

in aggressive environments. The use of co-axial PVC pipes introduces some problems, like de-

bonding phenomena between the polymer and the concrete. Moreover, the production of this type 

of pipes is more complex and the system of vibro-compression is not suitable. 

In order to obtain a long durability, various parameters are take into account, like the type 

of the cement and the possibility to use a protective coating. An appropriate selection of the 

cement is based on the results of the previous part of this work, showing that the use of a portland 

limestone cement is very recommended. 

A potential protective system is coating the pipes with materials resistant to acid attack, as 

reactive silica. The role of this components is to induce a pozzolanic reaction in the layer directly 

in contact with  the aggressive fluids. The good stability of the starting solution (high time of 

gelification) and the feasibility increase the industrial implementation, with automatic spraying 

system. 

The application immediately after the de-moulding process is in agreement with the typical 

production time. In fact after the de-moulding, the pipes are stored in open air for few days before 

the commercialization. 

The analysis of the rate of the mass loss, during the sulphate attack, shows a similar change 

trend in all the samples, with a weak Δm due to the dissolution processes involved by the 

magnesium and the ammonium sulphate of the complex sulphate solution. The WC and HC show 

the same behaviour. 

When the samples are subjected to a cyclic acid/sulphate attack, the mass loss increases, 

especially for the WC. The silica coating reduces this trend especially when the concrete is 

protected with 70.3 g/m2 of silica sol (HC). In fact, after 10000 hours, the HC sample shows a Δm 

= -2% and at the same time, WC shows Δm = -12% and the others two, LC and LCP, Δm = -10% 
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and Δm = -11% respectively. As the results reported in the chapter 3, the behaviour depends on 

the frequency of the acid attack, and all the coated samples show the best trend. 

During the only sulphate attack, every specimens don’t show signs that an expansion 

occurs. But the concrete degradation due to the exposure to a sulphate and acid ambient, as the 

results presented in the chapter 3, can be discuss on the base of two mechanisms: dissolution of 

components and expansive action of the reaction products.  

After about 15000 hours, an expansion phenomenon appears in the sample without coating 

and confirms that the acid-sulphate attack is a two-stage process also for the limestone portland 

cement type CEM II-B/LL 32.5R. The samples coated with the silica layer seems to increase the 

induction periods of the first stage. In fact, after over 20000 hours of testing,  there are no signs 

that a degradation process occurs. 

When the sulphate attack is monthly, the silica coating reduce the formation of algae due 

to the presence of glucose in the complex sulphate solution. This is clear when the samples are 

stored in a closed, without the presence of the sun light. 

An increase of the silica coating amount is good, because decrease the severity of the acid 

attack. In fact comparing the data for the mass variation in the samples prepared with 7.3 g/m2 

(LC) and 70.3 g/m2 (HC), the increase of silica sol sprayed on the concrete surface reduces Δm 

from -12% to -2.5%. 
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4.7 Conclusions 

The degradation of a concrete covered with different silica coatings, prepared with 

limestone portland cement (CEM II-B/LL) and limestone aggregates were studied in a complex 

sulphate solution and for six hours weekly/monthly in a solution of H2SO4 with pH=2. The 

damage extension was evaluated by measuring mass loss and expansion. The results of the test, 

performed for about 20000 hours, let the following conclusions be drawn. 

The concretes coated with the silica sol show the best performance, taking into account 

both mass loss and deformation percentage when subjected to a cyclic acid and sulphate attack. 

The concrete without coating shows an expansion after 15000 hours with a two stage process. The 

amount of the coating is important, and an increase of this coating reduces the mass loss but 

increases the initial expansion. 

The behaviour of the concretes was also studied to comparison in only a complex sulphate 

solution. A little mass loss was recorded due to the attack produces by the aggressive ions of the 

complex sulphate solution. At the end of the test after about 20000 hours, the classification of the 

concretes in terms of damage resistance is the same and the expansion percentage is remarkable 

lower than in the acid and sulphate solutions. The mixtures stored only in water show a continuous 

and slow increase of weight as the effect of the water absorption.  

The use of a silica coating increase the life of a sewer pipe and for the easy use is good 

candidate for an industrial implementation, such as a spray system. 
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Chapter 5 – Hybrid coating 

5.1 Hybrid coating 

This last chapter shows preliminary results regarding the development of a new hybrid 

coating, which, contains also zirconium oxide, could have a protective effect without the 

drawbacks evidenced upon using pozzolanic addition or coating. 

5.2 Materials 

Commercially available reagents were used without further purification. Vinylacetic acid 

(VAA)  and zirconium n-propoxide were mixed in the molar ratio of 4:1, at the aim to substitute 

each alkoxy group, under inert atmosphere and left aside until precipitation of crystals. After that, 

the precipitate product, labelled ZrNBB, was separated and dried. Elemental analysis (C, 36.74; H, 

4.14; Zr, 25.20 wt%) suggests the following theoretical formula: 

[Zr6O4(OH)4(OOCCH2CHCH2)12(n-PrOH)]2·4(CH2CHCH2COOH). 

Crystals have been dissolved in tetrahydrofurane (THF) and stirred with vinyl 

trimethoxysilane (VTMS) in different Zr:Si molar ratio (1:1, 1:2, 1:4, 1:10) in air at room 

temperature with the addition of benzoyl peroxide (BPO, 1 wt% with respect to VTMS).  

The solution was evaporated to dryness under vacuum, leaving a yellowish transparent 

xerogel (ZrNBB/VTMS). Differential Scanning Calorimetry analyses were performed by a DSC92 

SETARAM, from 30°C to 200°C in N2 with a heating rate of 10°C/min. Thermo-Gravimetric 

Analysis (TGA) was performed from 30°C to 1000°C in air with a heating rate of 10°C/min, using a 

Labsys SETARAM thermobalance. Dynamic mechanical spectroscopy (DMS) was performed in 

shear mode on cured prism having planar and parallel faces 12 mm2 large and 3.5 mm thick, by 

using a Seiko DMS 6100 instrument at a frequency of 1 Hz, with a displacement 0.005 mm along 

the diameter direction. The scan maximum temperature was 200°C with heating rate 2°C/min. 

Shear storage modulus (G’), loss modulus (G’’) and tan δ were measured. FT-IR spectra were 

recorded in transmission mode in the range 4000–400 cm-1 on KBr pellets (64 scans and 2 cm-1 
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resolution), using a Thermo Optics Avatar 330 FTIR instrument. Solid state NMR analyses were 

carried out with a Bruker 400 WB instrument applying a carrier frequency of 400.13 MHz (1H). 1D 

experiments were based on single pulse sequence under the following conditions: 29Si at 79.50 

MHz with p/2 4.3 ls at -2 dB and 10 s delay time; 13C at 100.07 MHz, p/2 3.5 ls at -1.7 dB, 5.3 ls 

decoupling pulse and 10 s delay time; 2D 13C-1H hector experiments with LG-RF 73529 Hz, delay 

time 2.5 s, contact time 200 ls, decoupling & excitation pulse -4.2 ls. Samples were packed in 4 

mm-zirconia rotors, which were spun at 9.5 kHz under air flow.  

5.3 Result and discussion 

The zirconium oxo-cluster was prepared according to previous studies of Schubert et al. [34] 

[35] and it can be described as a dimer of Zr6 clusters, having chelating, bridging and terminal 

vinylacetate ligands. Each mer consists of a zirconia core containing six zirconium atoms. ZrNBB 

appears colourless and does not swell in water. The reaction between ZrNBB and vinyltrimethoxy 

silane (VMTS) leads to a gel which polymerizes upon heating, in the presence of a thermal 

polymerisation initiator, such as benzoyl peroxide. The polymerisation of the gel was followed by 

differential scanning calorimetry. Figure 62, on the left, presents the recorded curve, for the 1:4 

Zr:Si ratio, featuring a large exothermal peak. The Tonset is 98°C and the maximum of the peak is 

140°C. 

 

Figure 62 - DSC curve of the solution VTMS/ZrNBB/BPO; Zr:Si 1:4 on the left; different ratio on the right. 
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The polymerization heat, calculated including the shoulder, was 214 J/g and the mass loss 

was 9%. The absence of an endothermic peak at low temperature due to the evaporation of VMTS 

indicates that the vinylalkoxysilane should have reacted with the zirconium oxocluster through a 

condensation process.  

Moreover, a high temperature shoulder is present on the main polymerization peak in the 

DSC curve, indicating that two separate thermal events of polymerization occurred. The shoulder is 

attributed to the polymerization of steric hindered vinyl groups of the zirconium oxocluster. This 

has been already observed, in a preliminary study on polymerization of organic methacrylate 

monomer and zirconium oxocluster. In Figure 62 on the right are reported the DSC curves of the 

other Zr:Si ratios. Increasing the content of  oxocluster, the polymerization peaks shift from lower 

to higher temperatures, becoming meantime quite sharp. A shoulder at higher temperature is always 

present and relies on the polymerization of vinyl groups, less available to radical reaction, such as 

those on ZrNBB. DSC curve of the Zr:Si molar ratio 1:1 shows an endothermic peak due to the 

decomposition of zirconium oxo-clusters.   

As a consequence, the choice of polymerization parameters, such as the temperature or time, 

can affect the polymerization degree and accordingly the final properties of the hybrid polymer. In 

this chapter, bulk samples were obtained heating the xerogel up to 130°C, after an isothermal step at 

90°C. This thermal treatment produces a glassy dense hybrid material as presented in Figure 63, 

where the typical cylinder used for the thermo-mechanical test is shown.  

 

Figure 63 – Bulk sample obtained heating the xerogel up to 130°C for 1 h 



Chapter 5 – Hybrid coating 

 98

The FT-IR spectra of the reagents and of the hybrid ZrNBB/VTMS xerogel are reported in 

Figure 64 on the left. The spectrum of the hybrid sample shows the features of the reagents VTMS 

and ZrNBB, along with the peaks relating to siloxane bonds and the signals due to Zr–OH and Zr–

O bonds (υOH 3400 cm-1, υZr–O 653 cm-1).  

 

  

 

Figure 64 - FTIR spectra of reagents (ZrNBB and VTMS) and hybrid gel 

Moreover, the complexity of the spectrum of the hybrid material is due to the different 

vinylacetate species, as reported above. Finally, the typical peaks of zirconium oxocluster are still 

visible in the FT-IR spectra of hybrid material recorded after thermal treatments, reported in Figure 

64 on the right, indicating the ZrNBB are stable, at least up to 200°C. The 29Si MAS spectra, 

reported in Figure 65 on the left, and recorded after different thermal treatments, indicate that the 

condensation degree of the siloxane counterpart is low and the main species are T2 units 

{RSi(OSi)2ORO0}. 13C MAS spectra, reported in Figure 65 on the right, confirm the low 

condensation of the vinyltrimethoxy silane, given that the peak of methoxy groups are still present 

in the hybrid material even at high temperature 
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Figure 65 - Evolution with temperature of 29Si MAS spectra of ZrNBB/VTMS hybrid materials on the left - 13C 
spectra of VAA and VTMS in d8-THF and 13C MAS spectra of ZrNBB and ZrNBB/VTMS hybrid material 

treated at different temperatures on the right. 
 

The complexity of CH2 and COOH regions in the spectrum of ZrNBB suggests the presence 

of different vinylacetate species, probably due to different isomeric species. A decrease of the 

intensity of =CH and =CH2 signals derived from VTMS and ZrNBB is observed with increasing 

temperature, along with an increase in the intensity and broadening of the aliphatic region, 

indicating an advancement of the polymerization process with double bond breaking and growth of 

longer carbon chains. In Figure 66 are reported the curves of tan δ, storage and loss moduli (G’ and 

G’’, respectively) for the materials with Zr:Si 1:4 moral ratio. A very slight increase of modulus is 

observed from room temperature up to the glass transition temperature. This is measured as the 

temperature of the maximum of the peak of the loss modulus curve and is 180°C.  
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Figure 66 - Viscoelastic properties of sample ZrNBB/VTMS (Zr:Si 1:4) hybrid material vs. temperature 

Correspondingly, the value of tan δ is quite low, indicating a strong interconnectivity of the 

network, so that there is no viscous flow [36]. Moreover, the specimens underwent to other runs as 

shown in Figure 67: the increase of the storage modulus is clear from the first to fifth run due to the 

occurrence of further  polymerization. For the sake of clarity, the 3rd curve was The last run was 

performed in a larger temperature range just in order to measure the new Tg, which exceeds the 

previous temperature range. Indeed the new Tg increases up to 240°C. At this regard, it is worth 

noting that the dynamical-mechanical test, using shear configuration, requires two specimens of the 

same size. Both of them were recovered after the runs without failure and presented a whole mass 

loss of 8.3%. 

 

Figure 67 - Storage modulus (Zr:Si 1:4) vs. temperature of the same samples, subjected to five consecutive DMS 
tests 
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5.4 Conclusions 

A hybrid polymer composite has been obtained by co-polymerization of vinylacetate 

zirconium oxocluster and vinyltrimethoxy silane. The hybrid inorganic–organic polymer contains 

high amount of SiO2–ZrO2 and bulk specimens were prepared in order to evaluate their structure 

and thermo-mechanical properties. The Zr–Si ratio can be modified and the final samples could be 

films or bulk specimens, with the desired size and shape. The structural characterization has 

indicated a low extent of the inorganic condensation and of the polymerization of vinyl groups, 

particularly those belonging to the pristine VMTS. 

The materials showed high stiffness (G’) and glass transition temperature (Tg). These 

properties are even improved increasing temperature or repeating the thermal tests: 145 MPa and 

240°C for G’ and Tg, respectively. This result is interesting because it was recorded in absence of a 

remarkable mass loss. The polymer has the potentiality for applications requiring high thermal 

stability and aggressive environment, and the Zr–Si molar ratio can be varied, tailoring the final 

architectures and properties of hybrid polymer. 
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