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1 Introduction
This thesis represents the work I did during my three years of Ph.D. studies. During
my three years of my Ph.D. I worked on two unrelated topics, so I found very difficult
to present my discoveries in a single organic paper. This is why I divided my thesis in
two different blocks.

The first block is based on the research I did during the first year of my Ph.D. studies.
During that time I approached the problem of finding generators for the unit group of
an abelian group ring. This was a continuation of the research I did for my master thesis
in mathematics. In that thesis my focus was to solve the problem of finding generators
of the unit group of a different mathematical object: cyclotomic field Q(ζn). There is
a lot of literature regarding that subject and also a lot of constructions of finite index
subgroups of the group of units. We studied and implemented in particular Greither’s
construction [19]. Starting from his results we tried to find the whole group of units in
the case of cyclotomic fields.
Once solved that problem, we focus on finding a way to obtain the group of units of
abelian group algebras. The main reason is that, thanks to the Wedderburn structure
theorem, every abelian group algebras over Q is isomorphic to a direct sum of cyclo-
tomic fields, so we could use part of ours previous results and algorithms to solve this
problem.
In a joint work with Willem De Graaf and Wilhelm Plesken we were able to produce
and implement an algorithm for obtaining generators of the unit group of the integral
group ring ZG of finite abelian group G. We use our implementation in MAGMA of
this algorithm to compute the unit group of ZG for G of order up to 110. In particular
for those cases we obtained the index of the group of Hoechsmann’s units in the full
unit group. Using the results we obtained we wrote an article, published in Journal of
Algebra on October 2012, “Computing generators of the unit group of an integral
abelian group ring”. [Faccin, De Graaf, Plesken].
I present our work during some conferences: MEGA on may 2011 (Stockholm) and
Advances in Group Theory and Applications on June 2013 (Porto Cesareo Lecce (LE)).
Hoechsmann described in [22] a construction of a set of generators of a finite-index
subgroup of (ZG)∗, called the group of constructible units. Regarding this construction
he wrote:

“Does this method ever yield all units if n = |G| is not a prime power? The
answer seem to be affirmative for n < 74”.

In [22] this situation is not dealt with any further. Also, when n = 74 it is known that
the group of constructible units is of index 3 in the full unit group (see [23]). So the
question remains whether or not the constructible units generate the full unit group if
|G| < 74. Using our implementation of our algorithms in the computer algebra sys-
tem MAGMA [13] we have computed the unit groups for all abelian groups of order
≤ 110. We found 12 groups G of order less than 74 whose unit group is not generated
by Hoechsmann units (namely, the groups of order 40, 48, 60, 63 and 65). It will be
explained in more detailed later, but some of our results depends on the generalized
Rienmann hypothesis.
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The second block of my thesis is bases on the research I did during the second and third
year of my Ph.D. studies. In the last two years I worked with Lie Algebras over R.

The structure and representation theory of complex Lie algebras uses many combinato-
rial objects such as root systems, Weyl groups, weight lattices, Dynkin diagrams, etc.,
which makes the theory accessible for investigation by computer.
The finite dimensional real simple Lie algebras have been classified. However, it seems
there has not been much effort to develop computer packages for investigating real
semisimple Lie algebras by computer yet.
In my joint work with Heiko Dietrich and Willem De Graaf, “Computing with real Lie
algebras: real forms, Cartan decompositions, and Cartan subalgebras”, we developed
a computer algebra package, called CoReLG [53] (“Computing with Real Lie Groups”),
for working with real semisimple Lie algebras given by a multiplication table.
Firstly it is shown how to construct multiplication tables of the real semisimple Lie
algebras. Secondly, we show how to obtain a complete list of Cartan subalgebras or
real simple Lie algebras g, that is a list containing exactly one elements of each G-
conjugacy class of Cartan subalgebras of g, where G is the inner automorphism group
of g. We describe algorithms for performing various tasks related to real simple Lie
algebras. These algorithms form the basis of our software package CoReLG, written
in the language of the computer algebra system GAP4.

After that I worked on problem of finding and classifying the semisimple subalgebras.
This problem has previously been considered in the literature; Cornwell has published
a series of papers on this topic, [50], [51], [67], [68], the last two in collaboration with
Ekins. Their methods require detailed case-by-case calculations, and it is not entirely
clear whether they are applicable to every subalgebra.
Komrakov [61] classified the maximal proper semisimple Lie subalgebras of a real
simple Lie algebra. However, his paper does not give an account of the methods used.
He also has a list of the real forms which contain a maximal S-subalgebra, for g̃c of
exceptional type. We find the same inclusions as Komrakov, except that in type E6 we
find a few more (see Section 5.6).
Here we considered two problems. Let g̃c be a complex semisimple Lie algebra, and
gc a complex semisimple subalgebra of gc. Let then g ⊂ gc be a real form of gc. The
first question is how to list, up to isomorphism, all real forms g̃ ⊂ g̃c of g̃c such that
g ⊂ g̃.
The second problem that we considered is to find the regular semisimple subalgebras
of a simple real Lie algebra. We give an algorithm to list the regular semisimple sub-
algebras of a semisimple real Lie algebra, up to conjugacy by the inner automorphism
group. This uses the algorithm for listing the Cartan subalgebras of g, up to conju-
gacy. We have implemented this algorithm in the language of the computer algebra
system GAP4. Using this implementation we have obtained the regular semisimple
subalgebras of several real simple Lie algebras.
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2 Group Algebras
In this chapter I show our results about the problem of finding generators of the unit
group of an abelian group algebra over Z.
In the next subsection I list some of the classical results that can be found in the liter-
ature about group algebras and I list some well known constructions of generating set
of a finite-index subgroup of the unit group of ZG.
In the second one I start by collecting some well-known facts and immediate observa-
tions concerning lattices, groups, associative algebras and one of the most important
algorithms I use and implement, albeit not the original version; Ge’s algorithm [4]. It
is a very useful mathematical tool that allows to work easily with lattices and finding
relations between units.
In the third one I describe our approach to computing the unit group of the maximal
order in a cyclotomic field. This is a crucial step in our work, because, as I said before,
thanks to Wedderburn’s structure theorem all abelian group algebras over the rationals
QG) are isomorphic to a direct sum of cyclotomic fields. There is strong a relationship
between the units group (ZG)∗ of an abelian group algebra and the unit group Z[ζn]∗

of a cyclotomic field: we have that the index [Z[ζn]∗ : (ZG)∗] is finite and computable.
But no theoretical estimate of this index is given.
The computation of the unit group is achieved by combining a construction by Greither
[19] of a finite-index subgroup of the unit group, along with a MAGMA program by
Fieker for saturating a subgroup at given prime p.
Subsection 4 contains the main algorithm of the paper we published, namely an al-
gorithm for computing the unit group of an order O in a toral algebra A. The main
idea is to split A into its simple ideals eiA where the ei are the orthogonal primitive
idempotents. The eiA are number fields with orders eiO. So in order to compute their
unit group we can use the effective version of the Dirichlet unit theorem (cf. [2], [26]).
The basic step of the algorithm is, given two orthogonal idempotents e1, e2, to obtain
the unit group of (e1 + e2)O given the unit group of eiO, i = 1, 2.
In subsection 5 I describe our method for obtaining generators of unit groups of inte-
gral abelian group rings. Its main ingredients are: the construction of the unit groups
of cyclotomic fields, and the algorithm of section 4. I also give some comments on
the Runtimes of the implementation of the algorithm in MAGMA, and we give a table
containing all abelian groups of order up to 110, where the constructible (or Hoechs-
mann’s) units do not generate the full unit group. For all the groups we find other units
(the so called exotic units) I give the index of the group of constructible units in the full
unit group.

In the main algorithms and implementations we make essential use of Fieker’s imple-
mentation in MAGMA of an algorithm by Ge [4] to obtain a basis of a lattices

{(α1, . . . , αn) ∈ Zn | uα1
1 . . . uαnn = 1}

of the multiplicative relations of given elements u1, . . . , un in a number field.
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2.1 Classical result about unit group of group algebras
Definition 1. Let G be a finite abelian group. For a ring R we let RG be the group
ring over R, consisting of sums of the form

∑
g∈G agg, with ag ∈ R. We take R = Z

and consider the unit groups:

(ZG)∗ = {u ∈ ZG | there is a v ∈ ZG with vu = 1}.

Many mathematicians worked on the problem of finding structure properties of this
group, such as decomposition or rank. Once solved this problem, the next step was to
find a group of generators of it, or at least to find generators for a finite-index subgroup
of (ZG)∗. Here I list some of the classical results that can be found in the literature.
In the 40’s Graham Higman [21] showed that:

Proposition 1. (ZG)∗ = ±G× F , where F is a free abelian group.

But he didn’t give any bound on its rank. This problem was solved thanks to Ayoub
and Ayoub [10] on 1969; they showed that:

Proposition 2.
rk(F ) :=

1

2
(|G|+ 1 + t2 − 2l)

where t2 is the number of elements of G of order 2, and l is the number of cyclic
subgroups of G.

Various construction of finite index subgroups of (ZG)∗ have appeared in the litera-
ture (see [27]). Among these I present two of them. the first one is due to Bass, who
construct a subgroup using what he called Bass cyclic units. The other one is due to
Hoechsmann, his construction is a refinement of the one made by Bass and seems to
yield subgroups of particular small index. To show the differences between Hoechs-
mann’s construction and Bass’s construction we have computed the index of the group
of Bass cyclic units in the group of Hoechsmann units, for some group G.

2.1.1 Bass construction

Here we describe Bass construction of a finite-index subgroup of the unit group (ZG)∗.

Definition 2. Let G be a finite group, and g be an element of G of order n. Set
ĝ =

∑n−1
k=0 g

k. A Bass cyclic unit is an element of the group ring ZG of the form:

µi := (1 + g + · · ·+ gi−1)φ(n) +
1− iφ(n)

n
ĝ

where i is an integer such that 1 < i < n− 1 and gcd(i, n) = 1.

The Bass cyclic units are, in fact, invertible, with inverse:

µ−1
i := (1 + gi + · · ·+ gi(k−1))φ(n) +

1− kφ(n)

n
ĝ

where k is any integer such that ik ≡ 1 mod n. These units are of infinite order in
(ZG)∗. Furthermore, we have the following:

Theorem 1. Let G be a finite abelian group. Then B, the group generated by all Bass
cyclic units of ZG, is of finite index in (ZG)∗.
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2.1.2 The group of Hoechsmann unitH

Here we briefly describe Hoechsmann’s construction [22] of a finite-index subgroup of
the unit group (ZG)∗.

Definition 3. Let C be a cyclic group of order n, generated by the element x. For
i ≥ 0 and y ∈ C we set

si(y) = 1 + y + · · ·+ yi−1.

Let i, j be integers with 0 < i, j < n and gcd(i, n) = gcd(j, n) = 1. Let k, l be
positive integers with li = 1 + kn. Set

ui,j(x) = sl(x
i)si(x

j)− ksn(x).

Then ui,j(x) is a unit in (ZC)∗. Let Θ(C) denote the set of all units constructed in this
way. We let H be the group of units in (ZG)∗ generated by all Θ(C), where C ranges
over the cyclic subgroups of G of order > 2, along with ±G. It is called the group of
constructible units of ZG.

Theorem 2. H is a subgroup of finite index of (ZG)∗. If this index is not one, the
independent units not belonging toH are called exotic units of ZG.

In general the set consisting of the ui,j(x) is a heavily redundant generating set. How-
ever, from [23] we have the following theorem.

Theorem 3. Let m be the exponent of G, and set Hm = (Z/mZ)∗/{±1}. Suppose
thatHm is a cyclic group, and let i ∈ Z induce a generator ofHm. ThenH is generated
by ±G along with ui,i(z), where z runs through G.

This gives a much more efficient way of constructing H. We remark that Hm is cyclic
with only few exceptions. The values of m up to 120, for which Hm is not cyclic, are
24, 40, 48, 56, 60, 63, 65, 72, 80, 84, 85, 88, 91, 96, 104, 105, 112, 117, 120.

Although the group B is of finite index in the group (ZG)∗, it is not a good approxima-
tion of it. We computed the index [H : B] for some small groups and listed the results
in the next table. From the literature it is known that H is bigger than B, but this table
give us an insight of how much H is an improvement of B even for small values of n.
We note that, if |G| is a prime number, the index [H : B] tends to be large and grows
up very quickly. Moreover, the gain of using H instead of B also increases with the
growth of the rank of the group (ZG)∗.
Hoechsmann was very confident of his method; regarding this construction he wrote:

“Does this method ever yield all units if n = |G| is not a prime power? The
answer seem to be affirmative for n < 74”.

In [22] this situation is not dealt with any further. Also, when n = 74 it is known
that the group of constructible units is of index 3 in the full unit group (see [23]).
So the question remains whether the constructible units generate the full unit group if
|G| < 74. Using our implementation of our algorithms in the computer algebra system
MAGMA [13] we have computed the unit groups for all abelian groups of order ≤ 110.
We found 12 groups G of order less than 74 whose unit group is not generated by
Hoechsmann units (namely, the groups of order 40, 48, 60, 63 and 65).
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Group G Index [H : B] Rank of (ZG)∗

C10 4 2
C11 2000 4
C12 2 1
C2 × C6 1 0
C17 33554432 7
C18 144 4
C3 × C6 1 0
C19 1224440064 8
C24 512 5
C2 × C12 4 2
C2 × C2 × C6 1 0
C27 14693280768 10
C3 × C9 1728 6
C3 × C3 × C3 1 0
C30 65536 8
C31 31886460000000000000 14

Table 1: Index [H : B] for some group G

2.2 Lattices
In this section I will outline some algorithm to compute a basis for a lattice and for
computing the intersection of lattices.

Definition 4. A lattice in Zm is a finite generated subgroup of it. A lattice Λ ⊂ Zm
has a basis, that is a subset u1, . . . , ur such that every u ∈ Λ can uniquely be written
as u =

∑
i=1,r αiui, with αi ∈ Z. The lattice Λ ⊂ Zm is called pure if Zm/Λ is

torsion-free (See [14], §III.16.)

Let Λ ⊂ Zm be a lattice with basis u1, . . . , ur. we form the r×m-matrix B with rows
consisting of the coefficients of the ui with respect to the standard basis of Zm. By
computing the Smith normal form of B we can effectively compute the homorphism
Ψ : Zm → Zm/Λ [ref]. Let T denote the torsion submodule of Zm/Λ. Then Ψ−1(T ) is
the smallest pure lattice containing Λ So in particular, the Smith normal form algorithm
gives a method to compute a basis of the lattice V ∩Zm where V is a subspace of Qm.
For example, we can compute the intersection of lattices in this way.
As shown in (See [14], §III.16.), a lattice is pure if and only if it is a direct summand
of Zm. So in that case, by computing the Smith normal form, we can compute a basis
of Zm such that the first r basis elements for a basis of Λ.

2.2.1 Ge’s algorithm

We now describe Ge’s algorithm for computing multiplicative relations among alge-
braic integers. It has been published in his thesis. This is a very important algorithm
for our purposes because it allows us, not only to compute multiplicative relations be-
tween units, but also to find a basis for a lattice and even to easily computing the index
of two subgroups.

8



Let K ⊃ Q be a number field, and ε1, . . . , εs algebraic integers in K. The problem is
to find a basis of the lattice:

Λ = {(e1, . . . , es) ∈ Zs |
s∏
i=1

εeii = 1}.

In [4], Guoqiang Ge developed an attractive algorithm for this. Here we describe his
algorithm. Combining it with a bound due to Masser [6], leads to a, more efficient
version of the algorithm. We divide this section into two subsections.
At first we present an algorithm for finding a basis of what we call the perp-lattice of a
lattice. As its main step it uses the LLL lattice basis reduction algorithm. After that, we
consider the original problem, i.e. computing multiplicative relations among algebraic
integers. It is shown that it can be solved by computing a basis of the perp-lattice of a
certain lattice.

2.2.2 Finding a basis of the perp-lattice

Definition 5. A lattice in Rn is a subset of it of the form:

{
s∑
i=1

αivi | αi ∈ Z}

where v1, . . . , un ∈ Rn are linearly independent.

It can be shown that L ∈ Rn is a lattice if and only if it is a subgroup and there is a
λ > 0 such that ‖‖v‖‖ > λ for all v ∈ L.

Let v1, . . . , vs ∈ Rn be given. Set:

L := {
∑s
i=1 αivi | αi ∈ Z} and Λ0 := {(e1, . . . , es) ∈ Zs |

∑s
i=1 eivi = 0}.

Then Λ0 ⊂ Zs is also a lattice over Z. We call it the perp-lattice of L. We suppose
that:

• L is a lattice in Rn, and

• a λ > 0 is given with ‖v‖ > λ for all nonzero v ∈ L.

• we have approximations of the vi, i.e., wi ∈ Rn with 10twi ∈ Zn and

|wij − vij | ≤ 10−t (where by wij we denote the j-th coordinate of wi).

• we are given an M > 0 such that Λ0 has a basis consisting of elements u with
‖u‖ ≤M .

Below we will describe how t should be chosen. The problem considered in this section
is to find a basis of Λ0. Throughout ` will denote the rank of Λ0 (which we do not
assume to be known). For 1 ≤ i ≤ s let bi = (fi | 10twi) ∈ Zn+s, where fi ∈ Zn has
a 1 on position i, and all other coordinates equal to 0. So the matrix with rows b1, . . . , bs
is obtained by appending to the identity matrix the matrix with rows 10twi. Let Lt be
the lattice spanned by b1, . . . , bs. For e = (e1, . . . , es) ∈ Zs we set ê =

∑s
i=1 eibi.

Then a straightforward calculation shows that:

‖ê‖2 = ‖e‖2 + 102t‖
∑s
i=1 eiwi‖2.
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We set εi = wi − vi. Then ‖εi‖2 ≤ 10−2tn.

Proposition 3. Let u ∈ Λ0 be such that ‖u‖ ≤M . Then ‖û‖ ≤
√

1 + snM .

Proof. Write u = (u1, . . . , us). Observe that
∑
j ujwj =

∑
j ujεj . Using this, and

the Cauchy-Schwarz inequality we get:

‖û‖2 = ‖u‖2 + 102t‖
s∑
j=1

ujεj‖2 ≤ ‖u‖2 + 102t‖u‖2
s∑
j=1

‖εj‖2 ≤M2(1 + ns).

Proposition 4. Let U > 0, and choose t such that 10t ≥ U(
√
sn+ 1)/λ. Let u ∈ Zs

be such that u 6∈ Λ0. Then ‖û‖ > U .

Proof. If ‖u‖ ≥ U then this is clear; so suppose ‖u‖ < U . Let us write u =
(u1, . . . , us). Then:

‖û‖ > 10t‖
s∑
i=1

uiwi‖ = 10t‖
s∑
i=1

uivi +

s∑
i=1

uiεi‖ ≥ 10t

(
‖

s∑
i=1

uivi‖ − ‖
s∑
i=1

uiεi‖

)

≥ 10t

(
λ−

s∑
i=1

|ui|‖εi‖

)
≥ 10t

λ−
√√√√ s∑

i=1

u2
i

√√√√ s∑
i=1

‖εi‖2


≥ 10t(λ− U

√
sn10−t) ≥ U.

Next we need the celebrated LLL-algorithm. The next theorem is [5], Proposition 1.12
(and also [2], Theorem 2.6.2(5)).

Theorem 4. Let Λ ⊆ Zr be a lattice. Suppose that Λ contains linearly independent
elements x1, . . ., xl of norm ‖xi‖ ≤ D. Then for an LLL-reduced basis b1, . . ., bk of
Λ we have:

‖bi‖2 ≤ 2r−1D2 for 1 ≤ i ≤ l.

Now we have all ingredients for the algorithm for finding a basis of Λ0, which runs as
follows.

1. Set U = 2
s+n

2
√

1 + snM , and choose t such that 10t ≥ U(
√
sn+ 1)/λ.

2. Let b̂1, . . . , b̂s be an LLL-reduced basis of Lt.

3. Let `0 be such that ‖b̂i‖ ≤ U for 1 ≤ i ≤ `, and ‖b̂i‖ > U for i > `0.

4. Then Λ0 is spanned by b1, . . . , b`0 and ` = `0.

10



Remark 2.1. Note that by Proposition 3, Lt contains ` linearly independent elements
ûi with ‖ûi‖ ≤

√
1 + snM . Therefore, by Theorem 4, ‖b̂i‖ ≤ U for 1 ≤ i ≤ `. By

Proposition 4 the bi lie in Λ0 for i ≤ `. Observe that b1, . . . , bs form a basis of Zs.
So an u ∈ Λ0 can be written u =

∑s
i=1 αibi, with αi ∈ Z. If v =

∑s
i=`+1 αibi is

nonzero, then Λ0 contains ` + 1 linearly independent vectors (i.e., b1, . . . , b`, v). But
that is impossible. It follows that b1, . . . , b` are a basis of Λ0. For the last statement
note that by Proposition 4, b1, . . . , b`0 lie in Λ0. Hence `0 ≤ `. But since ‖b̂i‖ ≤ U for
1 ≤ i ≤ ` it follows that `0 ≥ `.

2.2.3 The lattice

In this subsection we show how we can use the algorithm of the previous subsection to
get a basis of the lattice Λ.
For a z = reiθ ∈ C we have log(z) = log(r) + iθ, where we take θ ∈ [0, 2π). This
means that log(z1z2) = log(z1) + log(z2) mod 2πi. For z ∈ C we denote its norm by
|z|. Let σ1, . . . , σn : K → C be all embeddings of K into C.
For a z ∈ C we write |z + iZ| = minm∈Z |z + im|.
Proposition 5. Let 0 6= ε ∈ K be an algebraic integer. If | 1

2π log(σj(ε)) + iZ| ≤ 1
10

for i ≤ j ≤ n, then ε = 1.

Proof. Let z ∈ C with |z| ≤ 1
10 . Then:

|e2πz − 1| = |
∞∑
k=1

(2πz)k

k!
| ≤

∞∑
k=1

|2πz|k

k!
= e|2πz| − 1 ≤ e

2π
10 − 1 < 1.

For 1 ≤ j ≤ n there is aj ∈ Z with | 1
2π log(σj(ε)) + iaj | ≤ 1

10 . Hence:

|σj(ε)− 1| = |e2π
1

2π log(σj(ε)) − 1| = |e2π(
1

2π log(σj(ε))+aji) − 1| < 1.

Therefore |N(ε − 1)| =
∏
j |σj(ε) − 1| < 1. But, since ε − 1 is an algebraic integer,

the norm of ε− 1 is an integer. Hence its norm is 0, and ε = 1.

Now we define σ : K → R2n by:

σ(a) = 1
2π (<(log(σ1(a))),=(log(σ1(a))), . . . ,<(log(σn(a))),=(log(σn(a)))).

For 1 ≤ j ≤ n let vj be the element of R2n with a 1 on position 2j, and zeros
elsewhere. Let V ⊂ R2n be the space spanned by the vectors vj . Then we have
that σ(ab) = σ(a) + σ(b) mod V . Let ε1, . . . , εs ∈ K be algebraic integers, and set
uj = σ(εi). Let L ⊂ R2n be the Z-module generated by u1, . . . , us, v1, . . . , vn.

Proposition 6. Let w ∈ L be nonzero. Then ‖w‖ ≥ 1
10 . In particular, L is a lattice in

R2n.

Proof. We have w =
∑
j αjuj +

∑
k βkvk, where αj , βk ∈ Z. Set ε =

∏s
j=1 ε

αj
j .

Then σ(ε) =
∑
j αjuj mod V . If ε 6= 1, then it follows that

‖w‖ ≥ max
1≤j≤n

| 1
2π log(σj(ε)) + Zi| ≥ 1

10
,

by Proposition 5. On the other hand, if ε = 1, then the odd coordinates of w are zero,
whereas the even coordinates are integers. Hence ‖w‖ ≥ 1.

11



Now set: Λ0 = {(α1, . . . , αs, β1, . . . , βn) ∈ Zs+n |
∑s
j=1 αjuj +

∑n
k=1 βkvk = 0},

i.e., Λ0 is the perp-lattice of L. Next we show that Λ0 has a basis consisting of vectors
whose norm is bounded by an explicitly given constant. For this we use a bound due
to Masser [6], as well as the discussion in [3].
We need the logarithmic height h : K → R, which is defined as follows.

Definition 6. For α ∈ K we let f ∈ Z[x] be its minimal polynomial, with positive
leading coefficient. We write f = a(x− α1) · · · (x− αd) and set:

M(α) = a
∏d
i=1 max(1, |αi|).

Then:

h(α)
.
= log(M(α))/d.

We let h0 be the maximum of the h(εi), if that maximum is positive. Otherwise we set
h0 = log(2) and we note that n = [K : Q]. If n ≥ 3 we set:

η0 = 1
4n

(
log logn

logn

)3

,

and η0 = log(1.17)/2 if n = 2. Furthermore: R = ss−1(n+ 1)2
(
h0

η0

)s−1

.

As before set Λ = {(e1, . . . , es) ∈ Zs |
∏s
j=1 ε

ej
j = 1}.

Lemma 1. Λ has a basis consisting of elements e = (e1, . . . , es) with |ei| ≤ R.

Proof. In [6] it is shown that Λ has a basis consisting of the vectors e with |ei| ≤
ss−1ω(h/η)s−1. Here η is the infimum of h(α) with α ∈ K not a root of unity. It
was shown by Voutier [9] that h(α) > η0 if n ≥ 3. But for n = 2 it is known that
M(α) > 1.17 (cf. [1]). Next, h is the maximum of the h(εi) and η. Since the height
of 2 is log(2), we get h ≤ h0. Finally, ω is the maximal order of a root of unity in K.
This means that ϕ(ω) ≤ n, where ϕ is the Euler function. But ϕ(ω) >

√
ω − 1.

Define φ : Λ0 → Λ by φ(α1, . . . , βn) = (α1, . . . , αs). Then the map φ is bijective; so
computing a basis of Λ0 solves the problem.

Proposition 7. Λ0 has a basis consisting of elements of norm bounded by M =
R
√
s(1 + ns).

Proof. Consider an embedding σk : K → C, and write:

log(σk(εj)) = log(rk,j) + iθk,j , with 0 ≤ θk,j < 2π.

Let e = (e1, . . . , es) ∈ Λ, be such that it satisfies |ej | ≤ R. Taking the logarithm of
εe11 · · · εess = 1 we obtain:∑s

j=1 ej log(σk(εj)) = i
∑s
j=1 ejθk,j

The last sum is equal to r · 2π with |r| ≤
∑s
j=1 |ej | ≤ sR. Hence under φ, we have

that e corresponds to (e1, . . . , es, β1, . . . , βn) ∈ Λ0 with |βi| ≤ sR. Combining this
with Lemma 1 we get the statement of the proposition.
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Now we have all data necessary to apply the algorithm of Section 2.2.2 to the lattice L.
Indeed, λ = 1

10 and M = R
√
s(1 + ns). In order to apply the algorithm of Section

2.2.2 we need to compute log(σi(εj)) to a given precision.
There are algorithms for computing the complex roots of a polynomial to a given preci-
sion (for example Schönhage’s algorithm, [8]). Using this for the minimal polynomial
of a primitive element of K, we approximately find the embeddings σi. Also there are
algorithms to compute approximations for the logarithm (cf. [7]). Ge’s thesis contains
a result stating the precision to which the roots of the minimum polynomial of a prim-
itive element have to be computed in order to reach a given precision of log(σi(εj)).
Here we do not go into this.
Also, in order to compute the number R we need to compute approximations for the
heights of the εj . For this we use the definition, along with the algorithm for computing
approximations of the roots of a polynomial.

Remark 2.2. Instead of the boundM , Ge derived a bound using an upper bound on the
norm of the vectors vi (notation as in Section 2.2.2). This yields a bound that depends
on the degree of K, n, like (2n)2n.
The bound that is used is much more sensitive to the number of algebraic integers εi.
As in our application this number is usually rather low, whereas the degree can grow
arbitrarily, this works better for our purposes.

Example.
Let K be the field Q(

√
2) and ε1 = 12

√
2 + 17, ε2 = −1, ε3 = −408

√
2 + 577. Note

that all of them are a units in Q(
√

2). We want to find a basis of the lattice Λ consisting
of all (e1, e2, e3) ∈ Z3 with εe11 ε

e2
2 ε

e3
3 = 1.

Using MAGMA we compute approximations:

h(ε1) = 1.76, h(ε2) = 0, h(ε3) = 3.525.

Hence we can take h0 = 3.6. Also, η0 = log(1.17)/2 > 0.078. With this we get
that M = 790697.68 (cf. Proposition 7). In the notation of Section 2.2.2, using M as
above, n = 4, s = 5 and λ = 1

10 , we get:

U = 81988905.7, and U(
√
sn+ 1)/λ = 4486544391.0.

So we can use t = 10. Using approximations of log(εi) we get that L10 is spanned by
the rows of the following matrix:

1 0 0 0 0 5610998523 0 −5610998523 0
0 1 0 0 0 0 5 · 109 0 5 · 109

0 0 1 0 0 −11221997046 0 11221997046 0
0 0 0 1 0 0 1010 0 0
0 0 0 0 1 0 0 0 1010

 .

An LLL-reduced basis of L10 is given by the rows of the following matrix:


2 0 1 0 0 0 0 0 0
0 −2 0 1 1 0 0 0 0
1 0 0 0 0 5610998523 0 −5610998523 0
0 1 0 0 0 0 5 · 109 0 5 · 109

0 −1 0 1 0 0 5 · 109 0 −5 · 109

 .

Hence Λ is spanned by (2, 0, 1) and (0,−2, 0).
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2.2.4 Pure Lattices

A lattice Λ ⊂ Zm has a basis, that is a subset u1, · · · , ur such that every u ∈ Λ can
uniquely be written as u =

∑r
i=1 αiui, with αi ∈ Z. The integer r is called the rank of

Λ. Let Λ ⊂ Zm be a lattice with basis u1, · · · , ur. We form the r ×m-matrix B with
rows consisting of the coefficients of the ui with respect to the standard basis of Zm.
There are algorithms to compute the Smith normal form ofB (cf. [27]), that is, integral
matrices S, P , Q with the following properties:

• P and Q are, respectively, r × r and m×m unimodular matrices.

• S is an r×m-matrix with zeros outside the diagonal, and the di = S(i, i) satisfy
di|di+1.

• S = PBQ.

We note that this implies that the rows q1, · · · , qm of Q−1 are a basis of Zm such that
diqi ∈ Λ for 1 ≤ i ≤ r.

Definition 7. We say that a lattice Zm is pure if for all u ∈ Λ and λ ∈ Q we have that
λv ∈ Zm implies that λv ∈ Λ.

Let Λ ⊂ Zm be a lattice with basis u1, · · · , ur, and form the matrix B as above.
Let S = PBQ be its Smith normal form. Let S′ be the matrix obtained from S by
replacing all diagonal entries by 1. Set B′ = P−1S′Q−1. Let Λ′ be the lattice spanned
by the rows of B′. Then Λ′ is pure; in fact, it is the smallest pure lattice containing Λ.
We call the lattice Λ′ the saturation of Λ.

Proposition 8. Λ ⊂ Zm is pure if and only if there is a basis u1, · · · , um of Zm such
that u1, · · · , ur is a basis of Λ.

Proof. Let B be the r ×m-matrix corresponding to a basis of Λ. Let S = PBQ be
its Smith normal form. If Λ is pure, then S has 1-s on the diagonal. Hence the rows
u1, ..., um of Q−1 are a basis of Zm with the property that 1ui ∈ Λ for 1 ≤ i ≤ r. In
other words, u1, · · · , ur is a basis of Λ.
For the converse, suppose that such a basis exists. Let v ∈ Λ and λ ∈ Q such that
λv ∈ Zm. Then λv =

∑m
i=1 αiui, with αi ∈ Z. But v =

∑m
i=1 βiui. Hence αi = 0

for i > r, and λv ∈ Λ.

The proof also gives a method to compute a basis as in the proposition. Indeed, we
compute the Smith normal form S = PBQ of B, and take the rows of Q−1.

Corollary 1. Let Λ1 ⊂ Λ2 ⊂ Zm be pure lattices of ranks r1 < r2. Then there exists
a basis u1, · · · , ur2 of Λ2 such that u1, · · · , ur1 is a basis of Λ1.

Proof. By last proposition there exists a basis v1, · · · , vm of Zm such that v1, · · · , vr2
is a basis of Λ2. Now let σ : Λ2 → Zr2 be the map sending a v ∈ Λ2 to its coefficient
vector with respect to this basis. Then σ is an isomorphism. Now σ(Λ1) is a pure
lattice in Zr2 . So we get a basis w1, · · · , wr2 of Zr2 such that w1, · · · , wr1 is a basis
of σ(Λ1). Then the choice ui = σ−1(wi) does the job.
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Here also the proof suggests a method for computing a basis as in the corollary. As
seen above we can compute a basis v1, · · · , vm of Zm such that v1, · · · , vr2 is a basis
of Λ2. Using that we compute the map σ and the lattice σ(Λ1) ⊂ Zr2 . We compute a
basis w1, · · · , wr2 of Zr2 as in the proof, and map the wi back.

In the section concerning cyclotomic fields and their unit group we give an example of
how we use Ge’s algorithm to compute a basis of a generating set of units.

2.3 Toral algebras
In this section we give some basis definitions about toral algebras and some construc-
tive algorithms to see a toral algebra A as sum of field extensions of the rationals.

Definition 8. We say that an associative algebra A over Q is toral if it is semisimple,
abelian and has an identity element, which we will denote by e. For example the
algebra QG of a finite abelian group G is toral.

By the Wedderburn structure theorem (cf. [25], §3.5) a toral algebra A is a direct sum
A := A1⊕· · ·⊕As, where theAi are ideals that are isomorphic (as associative algebra)
to field extension of Q.

Definition 9. A nonzero element e0 ∈ A is said to be an idempotent if e2
0 = e0. Two

idempotents e1,e2 are called orthogonal if e1e2 = 0. Furthermore, an idempotent is
called primitive if it is not the sum of orthogonal idempotents.

Now, the decomposition of A into a direct sum of simple ideals correspond to a de-
composition of the identity element e ∈ A as sum of primitive orthogonal idempotents,
e = e1 + · · ·+ es. Here ei is the identity element of Ai, and vice versa Ai = eiA. We
describe now an algorithm to compute the ei given a basis of A (cf. [16], [17]).

2.3.1 Splitting elements in toral algebras

Here we let K be a field of characteristic 0. By Mn(K) we denote the associative
algebra of n× n-matrices with coefficients in K.

Definition 10. A subalgebra T ⊂Mn(K) is toral if it is semisimple and commutative.
This is an equivalent definition as the one given before.

Definition 11. A subalgebra T is said to be toral if and only if its elements can simul-
taneously be diagonalized. The latter condition means that there is an extension field
F ⊃ K and an X ∈ GLn(F ) such that XTX−1 consists only of diagonal matrices.

In this subsection we review some algorithms for computing the structure of a toral
algebra. For a more in-depth discussion of these matters we refer to [17] and [18].

Let T ⊂ Mn(K) be toral, and suppose that T contains the identity. For a ∈ T we
write K[a] for the subalgebra with one generated by a. An a ∈ T is called a splitting
element if K[a] = T . The next lemma, which is similar to the theorem of the primitive
element in field theory, implies that splitting elements exist.
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Lemma 2. Let T ⊂ Mn(K) be toral, containing the identity. Write m = dimT . Let
Ω ⊂ K be a subset of size at least m(m−1)

2 + 1. Let a, b ∈ T be such that a 6∈ K[b].
Then there is an ω ∈ Ω such that dimK[a+ ωb] > dimK[b].

Proof. Let F ⊃ K be an extension with the property that there is an element X ∈
GLn(F ) such that XTX−1 consists of diagonal matrices. For i ≤ i ≤ n let αi : T →
F be the function that maps a ∈ T to the coefficient on position (i, i) of XaX−1. Let
i1, . . . , is be such that the αik(b) are exactly the distinct elements of the set {αi(b)}.
Then the dimension of K[b] is equal to s. (b is semisimple, so the number of distinct
eigenvalues of b is equal to the degree of the minimal polynomial of b, which in turn is
equal to dimK[b].) Moreover, we define a K-homomorphism φ : T →Ms(F ) by:

φ(u) = diag(αi1(u), . . . , αis(u)).

Restricted to K[b], the map φ is injective. Suppose that αi(b) = αj(b) implies that
αi(a) = αj(a). Then the restriction of φ to K[a, b] is also injective, implying that
K[a, b] = K[b], which is a contradiction. So there are i 6= j such that αi(b) = αj(b)
and αi(a) 6= αj(a). Now consider the following equations in the unknown x:

αik(a) + xαik(b) = αil(a) + xαil(b), for k < l.

Each equation has at most one solution in K. So since there are at most m(m−1)
2 such

equations, there is an ω ∈ Ω that is not a solution to any of them. Let i 6= j be such
that αi(b) = αj(b) and αi(a) 6= αj(a). Then it holds that αi(a + ωb) 6= αj(a + ωb).
Hence the number of distinct eigenvalues of a + ωb is strictly bigger than the number
of distinct eigenvalues of b. Hence dimK[a+ ωb] > dimK[b].

Remark 2.3. We note that the lemma also yields a straightforward deterministic algo-
rithm for computing a splitting element of T .

Next we indicate how a splitting element a ∈ T yields the decomposition of T as a
direct sum of simple ideals.

Let f = p1 · · · ps be the factorization of the minimal polynomial of a into distinct
irreducible factors. For 1 ≤ i ≤ s let qi be the product of all factors, except pi. Then
we have that gcd(q1, . . . , qs) = 1. So using the extended Euclidean algorithm we can
compute polynomials hi with h1q1 + · · ·+ hsqs = 1. Now set ei = hiqi(a). Since f
divides hiqihjqj we get eiej = 0 for i 6= j. Moreover, the relation e1 + · · · + es = 1
implies ei = ei(e1 + · · ·+ es) = e2

i . So the ei are orthogonal idempotents.
Set Fi = eiT . Then T = F1⊕· · ·⊕Fs is a direct sum decomposition of T . Moreover,
we have that T = K[a] ∼= K[x]/(f) which, by the chinese remainder theorem, is
isomorphic to the direct sum of the algebras K[x]/(pi). So the decomposition of T
cannot be further refined, and the Fi are field extensions of K.
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2.3.2 Decomposition via irreducible character of G

When A = QG, with G a finite abelian group, there is a very efficient way to compute
the primitive idempotents. Let χ : G→ C∗ be an irreducible character of G. Then

eχ =
1

|G|
∑
g∈G

χ(g−1)g

is an idempotent in CG. Moreover, the eχ, as χ runs over all irreducible charac-
ters, are primitive orthogonal idempotents with sum e (cf. [14], Theorem 33.8). In
particular, they form a basis of CG. Let m denote the exponent of G, then all irre-
ducible characters χ have values in the cyclotomic field Q(ζm). So the Galois group
Gal(Q(ζm)/Q) ∼= (Z/mZ)∗ acts on the irreducible characters. Now we sum the eχ,
for χ in an orbit of Gal(Q(ζm)/Q), and obtain the primitive orthogonal idempotents
of QG.

Definition 12. A subset O of a toral algebra A, containing the identity of A, is said to
be an order (or, more precisely, a Z-order) if there is a basis a1, . . . , am of A such that
O = Za1 + · · ·+ Zam and aiaj ∈ O for 1 ≤ i, j ≤ m.

For example, ZG is an order in QG. The unit group of O is:

O∗ = {a ∈ O | there is b ∈ O with ab = e}.

We consider the problem of obtaining a basis of the lattice L of multiplicative relations.

L = {(α1, . . . , αr) ∈ Zr | aα1
1 · · · aαrr = e},

where a1, . . . , ar are given elements of the group O∗. Note that each eiA is number
field. So using Ge’s algorithm [4] we can compute basis of the lattices

Lj = {(α1, . . . , αr) ∈ Zr | (eja1)α1 · · · (ejar)αr = ej}.

Moreover, L = ∩jLj so we can compute a basis of L (see Section 2.2).

2.3.3 Standard generating sets

Definition 13. Let U be a finitely-generated abelian group. We say that a set of gener-
ators g1, . . . , gr of U is standard if:

1. for 1 ≤ i ≤ s the order of gi is di,

2. for s+ 1 ≤ i ≤ r the order of gi is infinite,

3. di|di+1 for i < s,

and there are no other relations.

So a standard set of generators immediately gives an isomorphism of U into the direct
sum Z/d1Z⊕ · · · ⊕ Z/dsZ⊕ Zr−s. Giving finitely-generated abelian groups by stan-
dard generating sets yields straightforward algorithms for several computational tasks
concerning these groups, such as computing the index of a subgroup, and computing
the kernel of a homomorphism.
If an abelian group is given by a non-standard set of generators, then we can compute
a standard one by computing the lattice of all relations of the generators, followed by
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a Smith normal form computation (cf. [28], §8.3). So, using the algorithm indicated
in the previous section, we can compute a standard set of generators for a finitely-
generated subgroup of O∗, where O is an order in a toral algebra.
For many computational problems regarding finitely-generated abelian groups it suf-
fices to compute a Hermite normal form of the relation lattice. However, in our appli-
cations the main computational problem is to obtain the relation lattice the subsequent
computation of the Smith normal form does not bear heavily on the running time.
Therefore, for our purposes, a Smith normal form is the most convenient.

2.4 Cyclotomic fields Q(ζn)

Wedderburn’s structure theorem says that every toral algebraA is isomorphic to a direct
sum of number fields F1 ⊕ · · · ⊕ Fr. When A = QG with G abelian those number
fields are cyclotomic fields Q(ζ). So A ∼= Q(ζn1) ⊕ · · · ⊕ Q(ζnr ). We also know
that using this isomorphism (ψ) we have that ψ((ZG)∗) has finite index in the group
of units of that direct sum of cyclotomic fields. So in order to compute (ZG)∗ we need
to be able to compute Z[ζni ]

∗.
How can we obtain generators of the unit group, Z[ζn]∗? There are algorithms for this
that work for any number field (cf. [2]); but their complexity is such that it is only
practical to use them for n up to about 20 (depending on the hardware one uses, of
course). For this reason, we sketch a different approach, using several results from
the literature. The situation is straightforward when n is a prime power, see Section
2.4.1. Then in Section 2.4.2 we describe what can be done when n is not a prime
power. Using these methods we obtained a list of the generators of the unit groups
Z[ζn]∗, for n < 130. However, for several n the correctness of this list depends on
the Generalized Riemann Hypothesis, that is for n prime between 67 and 127, and for
n = 115, 119, 121, 123, 125, 129 (so 19 cases in total).

Theorem 5. Let n be a positive integer, not equal to 2 mod 4. Consider the cyclotomic
field Q(ζn), where ζn is a primitive n-th root of unity. Then the ring of integers of this
field is Z[ζn] and the unit group Z[ζn]∗ is equal to T × F , where F is a free abelian
group of rank 1

2ϕ(n)− 1, and T is the group of roots of unity of Q(ζn).

Throughout we set Q(ζn)+ = R ∩ Q(ζn); then Q(ζn)+ = Q(ζn + ζ−1
n ). By h+

n we
denote the class number of Q(ζn)+.

2.4.1 When n is a prime power

Suppose that n = pm is a prime power. For 1 < a < n
2 with gcd(a, p) = 1 set

ξa = ζ
1−a

2
n

1− ζan
1− ζn

.

Then ξa lies in the unit group of Q(ζn)+. Let Un be the group generated by −1,
ζn and all ξa. Then for the index we have [Z[ζn]∗ : Un] = h+

n (this is obtained by
combining Corollary 4.13, Lemma 8.1 and Theorem 8.2 in [29]). For small n it is
known that h+

n = 1: if ϕ(n) < 66, and if ϕ(n) < 162 assuming the Generalized
Riemann Hypothesis (see the Appendix in [29]). So for those n we have generators of
the unit group.

18



2.4.2 When n is not a prime power

Here the situation is more difficult. First of all we assume that n 6= 2 mod 4, as for
n = 2 mod 4 we have that Q(ζn) and Q(ζn

2
) are isomorphic. By E+ denote the unit

group of Q(ζn)+. We use a finite-index subgroup ofE+ defined by Greither [19]. Here
we briefly describe his construction.
Let G = Gal(Q(ζn)/Q), and write the elements of G as σa, where gcd(a, n) = 1 and
σa(ζn) = ζan. For α =

∑
amaσa ∈ ZG and x ∈ Q(ζn) define:

xα =
∏
a

σa(x)ma .

Let n =
∏s
i=1 p

ei
i be the factorization of n in distinct prime powers. Set S =

{1, . . . , s} and PS = {I ⊂ S | I 6= S}. For I ∈ PS we set nI =
∏
i∈I p

ei
i .

We consider arbitrary maps β : S → ZG, which we extend to maps (denoted by the
same symbol) β : PS → ZG by:

β(∅) = 1, β({i}) = β(i), and β(I ∪ J) = β(I)β(J) if I ∩ J = ∅.

Now let z ∈ Q(ζn). For I ∈ PS set zI = 1− znI , and z(β) =
∏
I∈S z

β(I)
I .

Set t = −
∑
I∈S nIβ(I) ∈ ZG. Then for a with 1 < a < n

2 and gcd(a, n) = 1 we
consider:

ξa(β) = ζdan
σa(z(β))

z(β)
, where da =

(1− σa)t

2
.

(Note that for n odd, ζ
1
2
n lies in Z[ζn], whereas for n even we have a odd and hence

1−a
2 is an integer.) Following Greither we describe a good choice for β.

First a small piece of notation: if g is an element of order m of a group, then we set
Ng = 1 + g + · · · + gm−1, which lies in the corresponding integral group ring. Now
consider an i ∈ S. Let Gi denote the Galois group of Q(ζn/peii

)+ over Q. This group
contains the Frobenius automorphism Fi (by definition: Fi(ζn/peii ) = ζpi

n/p
ei
i

). This

yields the element NFi in ZGi. Now we define β(i) to be a lift of NFi to ZG.
Let Cβ be the subgroup of E+ generated by −1 and the ξa(β). Greither proved that
Cβ does not depend on the choice for the lifts of the NFi , and that it is of index h+

n iβ
in E+, where

iβ =

s∏
i=1

egi−1
i f2gi−1

i ;

here ei, fi and gi are respectively the ramification, inertial and decomposition degree of
pi in Q(ζn)+ (so that eifigi = 1

2ϕ(n)). Now let Un denote the group generated by ζn
and the groupCβ . Then using [29], Corollary 4.13, we get that [Z[ζn]∗ : Un] = 2h+

n iβ .

2.4.3 Explicit Construction of Greither ’s Units

Now, we will show an example of the construction of Greither’s units when n = 15. In
this case we can work in Gal(Q(ζn)/Q) instead of Gal(Q(ζn)+/Q).

Let K be Q(ζ15)/Q, where ζ15 is a 15-th primitive root of unity. Observe that:

15 =
∏2
i=1 p

ei
i = 31 × 51 and φ(15) = φ(3)φ(5) = (3− 1)(5− 1) = 8;
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hence:

G0 = Gal(Q(ζ15)/Q) ≡ U15 = {1, 2, 4, 7, 8, 11, 13, 14}

where we identified σi ∈ G0 with i ∈ U15, and we have that σi(ζ) = i(ζ) = ζi.
It also holds that:

• [Q(ζ15) : Q] = [Q(ζ15) : Q(ζ5)][Q(ζ5) : Q] = 2× 4 = 8

• [Q(ζ15) : Q] = [Q(ζ15) : Q(ζ3)][Q(ζ3) : Q] = 4× 2 = 8

And these ones are all the possibly chains of intermediate fields. In order to apply Gre-
ither ’s construction, let S = {1, 2} so PS = {{1}, {2}, ∅}, and let p1 = 3 and p2 = 5.
Our aim is to construct a multiplicative function β : PS → ZG0, by using opportune
lifting of NFi to ZG0.

Let us work with p1 = 3.
First we have to find the order of F1 = Frob3, the Frobenius automorphism of expo-
nent 3, in Gal(Q(ζ5)/Q).

• F1(ζ5) = ζ3
5 ;

• F 2
1 (ζ5) = F1(ζ3

5 ) = F1(ζ5)3 = ζ9
5 = ζ−1

5 ,

• F 3
1 (ζ5) = F1(ζ5)−1) = F1(ζ5)−1 = ζ−3

5

• F 4
1 (ζ5) = F1(ζ5)−3) = F1(ζ5)−3 = ζ−9

5 = ζ5 = Id(ζ5)

So the order of F1 is 4. Hence it follows that: NF1
= 1 +F1 +F 2

1 +F 3
1 . We now have

to find a lifting of F1 to G0 and we will use some Galois theory for that purpose. We
know that, since G0 is a cyclic group, it is abelian, so every subgroup is normal and
hence it makes sense to take the quotient. Let:

H = {i ∈ U15 | i ≡ 1 (mod 5)} = {1, 11};

this is a subgroup of G0 isomorphic to Gal(Q(ζ3)/Q). So it follows that the quotient
group G1 = G0/H ≡ {H, 2H, 4H, 8H} is isomorphic to Gal(Q(ζ5)/Q).
To find a lifting of F1 it suffices to choose an element t of G1 such that we have
t(ζ5) = F1(ζ5). We have:

• 1(ζ5) = ζ5

• 2(ζ5) = ζ2
5

• 4(ζ5) = ζ4
5

• 8(ζ5) = ζ8
5 = ζ3

5 = F1(ζ5)

So a lifting of F1 is 8 or, better, σ8. Therefore we have:

β({1}) = β(1) = 1 + σ8 + σ2
8 + σ3

8 = 1 + σ8 + σ4 + σ2.
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Let us work with p2 = 5.
First we have to find the order of F2 = Frob5, the Frobenius automorphism of expo-
nent 5, in Gal(Q(ζ3)/Q.

• F2(ζ3) = ζ5
3 = ζ2

3 = Id(ζ3);

• F 2
2 (ζ3) = F2(ζ2

3 ) = F2(ζ3)2 = ζ10
3 = ζ3 = Id(ζ3);

So the order of F2 is 2. Hence it follows that: NF2 = 1 + F2. We now have to find
a lifting of F2 to G0 and we will use again some Galois theory for that purpose. We
know that, since G0 is a cyclic group, it is abelian, so every subgroup is normal and
hence it makes sense to take the quotient. Let:

H = {i ∈ U15 | i ≡ 1 (mod 3)} = {1, 4, 7, 13};

this is a subgroup of G0 isomorphic to Gal(Q(ζ5)/Q). So it follows that the quotient
group G2 = G0/H ≡ {H, 2H} is isomorphic to Gal(Q(ζ3)/Q). To find a lifting of
F2 it suffices to choose an element t of G2 such that t(ζ3) = F2(ζ3). We have:

• 1(ζ3) = ζ3

• 2(ζ3) = ζ2
3 = ζ5

3 = F2(ζ3)

So a lifting of F2 is 2 or, better, σ2. Therefore we have:

β({2}) = β(2) = 1 + σ2

Greither ’s construction.
We have defined our multiplicative function β : PS → ZG0 as:

• β(∅) = 1

• β(1) = 1 + σ8 + σ4 + σ2

• β(2) = 1 + σ2

To not make the notation too heavy we put ζ = ζ15 We have:

1. n∅ = 1, n1 = 3, n2 = 5

2. z∅ = 1− ζ, z1 = 1− ζ3, z2 = 1− ζ5

3. z(β) =
∏
I∈PS z

β(I)
I = z

n∅
∅ z

n1
1 zn2

2 =

= (1− ζ)1(1− ζ15)1+σ8+σ4+σ2(1− ζ5)1+σ2 =

= (1− ζ)(1− ζ3)(1− ζ6)(1− ζ12)(1− ζ9)(1− ζ5)(1− ζ10)

4. t =
∑
I∈PS nIβ(I) = 1 + 3(1 + σ8 + σ4 + σ2) + 5(1 + σ2) ≡ 1 mod 15

We also observe that n/2 = 7.5, hence we have to work only with
a ∈ {2, 4, 7}. We have:

• σ2(z(β)) = σ2((1− ζ)(1− ζ3)(1− ζ6)(1− ζ12)(1− ζ9)(1− ζ5)(1− ζ10)) =

= (1− ζ2)(1− ζ6)(1− ζ12)(1− ζ24)(1− ζ18)(1− ζ10)(1− ζ20) =

= (1− ζ2)(1− ζ6)(1− ζ12)(1− ζ9)(1− ζ3)(1− ζ10)(1− ζ5)
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• σ4(z(β)) = σ4((1− ζ)(1− ζ3)(1− ζ6)(1− ζ12)(1− ζ9)(1− ζ5)(1− ζ10)) =

= (1− ζ4)(1− ζ12)(1− ζ9)(1− ζ3)(1− ζ6)(1− ζ5)(1− ζ10)

• σ7(z(β)) = σ7((1− ζ)(1− ζ3)(1− ζ6)(1− ζ12)(1− ζ9)(1− ζ5)(1− ζ10)) =

= (1− ζ7)(1− ζ6)(1− ζ12)(1− ζ9)(1− ζ3)(1− ζ5)(1− ζ10))

The Greither ’s units are:

• ξ2(β) = ζ
(1−σ2)t

2
σ2(z(β))
z(β) = −2ζ7 + ζ5 − ζ4 + ζ3 − ζ + 1

• ξ4(β) = ζ
(1−σ4)t

2
σ4(z(β))
z(β) = ζ5 +−ζ4 − ζ3 + 2ζ2 − ζ

• ξ7(β) = ζ
(1−σ7)t

2
σ7(z(β))
z(β) = −ζ6 + ζ4 − ζ

Hence our subgroup Cβ is 〈−1, ξ2(β), ξ4(β), ξ7(β)〉 Let’s calculates its index in the
group of units E+

15. We first have to find for each i the parameters fi, gi, ei. From a
previous remark we know that figiei = [Q(ζ15)+] = φ(15)/2 = 4, and we also know
that if s ≥ 2 then ei = φ(peii ), so:

e1 = φ(3) = 2 and e2 = φ(5) = 4.

Thanks to MAGMA, we computed the factorization in Q(ζ15)+ of the ideals 〈3〉O and
〈5〉O, where O is the ring of integers of Q(ζ15)+ We obtain:

• 〈3〉O = P 2
1

• 〈5〉O = P 4
2

where, Pi are prime ideals of Q(ζ15)+. Since the gi represent the number of factors,
we have g1 = g2 = 1. Hence f1 = 2 and f2 = 4, so:

iβ =
∏s
i=1 e

gi−1
i f2gi−1

i = 20214011 = 2

Now we will use the algorithms presented before, to try to find the full group of units
of Q(ζn) for some n. The Greither units are :

Cβ = {−2ζ7 + ζ5 − ζ4 + ζ3 − ζ + 1, ζ5 +−ζ4 − ζ3 + 2ζ2 − ζ,−ζ6 + ζ4 − ζ,−1}

We write Cβ = {w1, w2, w3, w4}. So the subgroup H of E15 we start from is H =
〈Cβ , ζn〉 = 〈w1, w2, w3, w4, w5〉. Therefore group G is:

G = 〈Cβ ∪ {ζ15} ∪ {ai
.
= 1− ζi15 | (i, 15) = 1}〉

and we write G = 〈w1, w2, w3, w4, w5, a1, a2, a4, a7, a8, a11, a13, a14〉
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So, G is generated by these elements, but they are not independent generators of G.
The multiplicative relationships between them are:

w1 w2 w3 w4 w5 a1 a2 a4 a7 a8 a11 a14 a14

1 0 0 0 0 0 0 0 1 14 15 14 16
0 1 0 0 0 0 0 0 0 3 4 3 2
0 0 1 0 0 0 0 0 1 7 7 7 6
0 0 0 1 0 0 0 0 1 0 1 1 1
0 0 0 0 1 0 0 0 0 13 13 13 13
0 0 0 0 0 1 0 0 1 13 14 14 13
0 0 0 0 0 0 1 0 1 11 12 11 12
0 0 0 0 0 0 0 1 1 7 7 8 8
0 0 0 0 0 0 0 0 2 0 2 2 2
0 0 0 0 0 0 0 0 0 15 15 15 15

Viewed as matrix B its Normal Smith Form S is:

1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0

S = 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 30 0 0 0

So G is spanned by the rows of Q−1:

0 1 0 0 0 0 0 0 0 3 4 3 2
0 0 0 1 0 0 0 0 1 0 1 1 1
0 0 0 0 1 0 0 0 0 13 13 13 13
1 0 0 0 0 0 0 0 1 14 15 14 16
0 0 1 0 0 0 0 0 1 7 7 7 6
0 0 0 0 0 1 0 0 1 13 14 14 13

Q−1 = 0 0 0 0 0 0 1 0 1 11 12 11 12
0 0 0 0 0 0 0 1 1 7 7 8 8
0 0 0 0 0 0 0 0 -14 15 1 1 1
0 0 0 0 0 0 0 0 -1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1

Note Q−1 is spanned from its last four rows, i.e, the product of the associate units are
the independent generators of G. Hence G is generated by g1 = (a−1

7 · a8), g2 = a11,
g3 = a13, g4 = a14. Let us compute the index of G in H .
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The the matrix P of the multiplicative relations is:

29 0 -1 1
18 1 0 -1

P = 7 -1 -1 -2
15 0 0 0
28 0 0 0

That means that:

• w1 = g29
1 · g0

2 · g−1
3 · g1

4

• w2 = g18
1 · g1

2 · g0
3 · g−1

4

• w3 = g7
1 · g7

2 · g−1
3 · g0

4

• w4 = g15
1 · g0

2 · g0
3 · g0

4

• w5 = g28
1 · g0

2 · g0
3 · g0

4

The matrix J of the Hermite form of P is:

1 0 0 0
0 1 0 0

J = 0 0 1 0
0 0 0 4
0 0 0 0

Hence, the index [G : H] = 1 · 1 · 1 · 4 = 4.
From a previous section we know that the index:

[E15 : H] = 2 · h+
15 · iβ = 4.

So in this case, since we have found a subgroup G of E15 whose index in H is 4, we
found the full group of units.

2.4.4 Fieker’s program

Greither’s construction is very useful but it does not always give the whole group of
units of the cyclotomic filed. In those cases we need to find more units to enlarge our
subgroup. The only thing that we know are how big our group need to be and we know
the prime dividing the index [E15 : H] = 2 · h+

15 · iβ .
To solve this problem we used a program that Claus Fieker has written in MAGMA,
V2.17-2. This program, given a finite-index subgroup V of Z[ζn]∗, and a prime p,
computes a subgroup Ṽ of Z[ζn]∗, containing V , and such that the index [Z[ζn]∗ : Ṽ ]
is not divisible by p. We used this starting with the group Un. For n < 130 and
ϕ(n) ≤ 72 we have h+

n = 1, and assuming the Generalized Riemann Hypothesis, we
have h+

n = 1 for all n < 130 ([29], Appendix). Therefore we can compute [Z[ζn]∗ :
Un], and get all primes dividing it. So in the end we arrived at the full unit group Z[ζn]∗

for all n < 130.
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2.5 Unit groups of orders in toral matrix algebras
This section contains the main algorithm of the paper we published, namely an algo-
rithm for computing the unit group of an order O in a toral algebra A. The main idea
is to split A into its simple ideals eiA where the ei are the orthogonal primitive idem-
potents. The eiA are number fields with orders eiO. So in order to compute their unit
group we can use the effective version of the Dirichlet unit theorem (see [2], [26]). The
basic step of the algorithm is, given two orthogonal idempotents e1, e2, to obtain the
unit group of (e1 + e2)O given the unit group of eiO, i = 1, 2.

Let A be a toral algebra with identity e, and O ⊂ A an order. First we consider some
special cases.

2.5.1 A simple toral algebra

Let A be a simple toral algebra. In other words, it is isomorphic to a finite extension
of Q. Now there are algorithms for computing generators of an order in a number field
(the effective version of the Dirichlet unit theorem, see [2], [26]). We use these to
compute generators of O∗ as well.

2.5.2 Two idempotents

Let A be a toral algebra with identity e, and e1, e2 ∈ A orthogonal (but not necessarily
primitive) idempotents with e1 + e2 = e. Set Ai = eiA, then A = A1 ⊕ A2. Let
O be an order in A, then Oi = eiO is an order in Ai. Here we suppose that we have
generators of O∗i , i = 1, 2, and the problem is to find generators of O∗.
Set J = (e1O ∩O) + (e2O ∩O). Since this is an ideal in O we can form the quotient
R = O/J . Consider the maps ϕi : eiO → R defined by ϕi(eia) = a+ J , for a ∈ O.
(Note that this is well-defined: if e1a = e1b then a − b = e2(a − b) so it lies in J .)
These are surjective ring homomorphisms with respective kernels eiO ∩O.

Lemma 3. O = {a1 + a2 | ai ∈ eiO and ϕ1(a1) = ϕ2(a2)}.

Proof. Let a ∈ O and set ai = eia then a = a1 + a2 and ai ∈ eiO. Moreover
ϕ1(a1) = a + J = ϕ2(a2). Conversely, let a, b ∈ O be such that ϕ1(a1) = ϕ2(a2),
where a1 = e1a and a2 = e2b. Then a− b ∈ J , whence a = b+ u1 + u2 where ui ∈
eiO∩O. Therefore e1a = e1b+u1 so that a1+a2 = e1a+e2b = e1b+e2b+u1 = b+u1

which lies in O.

Corollary 2. O∗ = {a1 + a2 | ai ∈ (eiO)∗ and ϕ1(a1) = ϕ2(a2)}.

So in order to compute generators of O∗ we perform the following steps:

1. Compute bases of Oi = eiO.

2. Compute bases of Oi ∩ O, of J = (O1 ∩ O) + (O2 ∩ O), and set R = O/J .

3. Compute generators of the groups Hi = ϕi(O∗i ) ⊂ R∗ and H = H1 ∩H2.

4. Compute generators of the groups Mi = ϕ−1
i (H) ⊂ O∗i .

5. Compute generators of the group O∗ = {a1 + a2 | ai ∈ Mi and ϕ1(a1) =
ϕ2(a2)}.
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2.5.3 Implementation

We comment on the implementation of the steps of the algorithm. Step (1) is done
by a Hermite normal form computation. The intersections in Step (2) are computed
using the techniques indicated in Section 2.2. Note that a basis of J is obtained by
concatenating the bases of Oi ∩ O. The ring R = O/J can be constructed by a Smith
normal form computation.
For Step (3) we assume that e2A is isomorphic to a number field (in other words, that e2

is a primitive idempotent). When using the algorithm, this can always be arranged (see
Section 2.5.4). Then e2O an order in it. We set I = e2O∩O and use the isomorphism
R ∼= (e2O)/I . Subsequently we use algorithms described in [20], [24] to compute a
standard generating set of (e2O/I)∗. So computing H1, H2 as subgroups of (e2O/I)∗

we can perform the operations of Step (3).
In Step (4) we view ϕi as a homomorphism O∗i → Hi. We use this to compute
generators of the kernel of ϕi as well as pre-images of the generators of H . Together
these generate the group Mi. As remarked in Section 2.3.3, we can compute standard
generating sets of the groupsO∗i . Using these, it is straightforward to obtain a standard
generating set for the subgroups Mi. Then we restrict ϕi to obtain a homomorphism
ϕi : Mi → H .
Now we come to Step (5). Let h1, . . . , hr, a1, . . . , as, b1, . . . , bt be standard generating
sets of H , M1 and M2 respectively. Set

Λ = {(α1, . . . , αs, β1, . . . , βt) ∈ Zs+t | ϕ1(aα1
1 · · · aαss ) = ϕ2(bβ1

1 · · ·β
et
t )}.

Then:

O∗ = {aα1
1 · · · aαss + bβ1

1 · · · b
βt
t | (α1, . . . , αs, β1, . . . , βt) ∈ Λ}.

Moreover, Λ is a lattice, hence has a finite basis. Furthermore, the elements of O∗
corresponding to the elements of a basis of Λ generate O∗. So the problem of finding
a generating set of O∗ is reduced to finding a basis of Λ.
Define µij , νij ∈ Z by

ϕ1(ai) =

r∏
j=1

h
µij
j

ϕ2(bi) =

r∏
j=1

h
νij
j .

A small calculation shows that (α1, . . . , αs, β1, . . . , βt) ∈ Λ if and only if

s∑
i=1

µijαi −
t∑

k=1

νkjβk = 0 mod ord(hj) (2.1)

for 1 ≤ j ≤ r (and where ord(hj) denotes the order of hj). Let S be the integral
matrix with columns

(µ1j , . . . , µsj ,−ν1j , . . . ,−νtj , ord(hj))

for 1 ≤ j ≤ r. We compute a basis the integral kernel of S, which is the set of all
v ∈ Zs+t+1 such that vS = 0. For each v in this basis we take the vector consisting of
the first s+ t coordinates. This way we obtain a basis of Λ.
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2.5.4 The general case

Now letA be a toral algebra, e1, . . . , em its primitive orthogonal idempotents with sum
e, and Ai = eiA the corresponding simple ideals. Let O be an order in A; then eiO
is an order in Ai, and as indicated in Section 2.5.1, we can compute generators of the
unit groups (eiO)∗. Then for j = 2, 3, . . . we set εj = e1 + · · ·+ ej and we apply the
algorithm of Section 2.5.2 to the algebra εjA with its order εjO, and two idempotents
εj−1 and ej , yielding the unit group (εjO)∗. When the algorithm terminates we have
the unit group O∗.

2.6 Units of integral abelian group rings
Let G be an abelian group. As seen in Section 2.3.1, it is straightforward to compute
primitive orthogonal idempotents e1, . . . , er ∈ QG such that ei(QG) is isomorphic to
a field extension of Q. Let m denote the exponent of G, then (cf. [10])

QG ∼=
⊕
d|m

td⊕
i=1

Q(ζd),

where Q(ζd) is the cyclotomic field of order d, and td is the number of cyclic subgroups
of G of order d. In particular, ei(QG) ∼= Q(ζdi). We consider the order ZG in QG.
We have that ei(ZG) is isomorphic to Z[ζdi ], and by the results of Section 2.4, we have
generators of Z[ζdi ]

∗ for di < 130. So for small groups G we can apply the algorithm
of Section 2.5 to obtain generators of the unit group (ZG)∗. Using our implementation
of the algorithms in MAGMA, we have carried this out for all abelian groups of orders
up to 110. In Table 2 we collect some timings and other data related to the algorithm.

G ϕ(exp(G)) |digits| tm ttot

C70 24 7.4 314 328
C80 32 63.4 1131 1183
C90 24 159.5 1043 1078
C91 72 3.7 2352 2446
C96 32 31.2 2322 2373
C2 × C48 16 181.3 1575 1781
C2 × C2 × C24 8 54.6 1031 1267
C2 × C4 × C12 4 22.5 537 725
C100 40 217.6 3822 3942
C2 × C50 20 66352.6 414569 426654
C5 × C20 8 379.7 1227 1425
C10 × C10 4 275.2 1131 1332

Table 2: Runtimes (in seconds) for the algorithm to compute generators of (ZG)∗. The
first column lists the isomorphism type of G, and the second the value of the Euler
ϕ-function on the exponent ofG. The third column has the average number of digits of
the coefficients of the units output by the algorithm (with respect to the standard basis
of ZG). The fourth column displays the time spent to compute multiplicative relations
in cyclotomic fields. The last column has the total time spent by the algorithm.
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From Table 2, we see that the running time is dominated by the time needed to compute
multiplicative relations in cyclotomic fields (Ge’s algorithm). This algorithm needs to
work harder if the degrees of the fields that occur are higher. Indeed, the Runtimes
generally increase when ϕ(exp(G)) increases (note that this is the highest degree of a
cyclotomic field occurring in the decomposition of QG). However, also the size of the
elements of which we need to compute multiplicative relations plays a role. For some
groups the average number of digits of a unit, as output by the algorithm, is very high.
This is seen most dramatically for C2 × C50. Note also that the size (i.e., the average
number of digits of their coefficients) of the units output by the algorithm is far from
being optimal; indeed, for G = C2 × C50, the unit group (ZG)∗ is also generated by
the Hoechsmann units (see below).
We let Hind(G) be the index ofH in (ZG)∗, and we call this number the Hoechsmann
index. We have computed the Hoechsmann indices for all abelian groups of orders up
to 110. For most groups the index is 1. The groups for which it is not 1 are listed in
Table 3, along with the corresponding Hoechsmann indices.
From Table 3 we see that on many occasions when Hind(G) 6= 1 we have that |G| =
m, with Hm not cyclic. Also, for the groups considered, if for one group G of order m
we have Hind(G) 6= 1, then the same holds for all groups of that order (except when
(ZG)∗ has rank 0).

G Hind(G) G Hind(G)
C40 2 C84 2
C2 × C20 2 C2 × C42 2
C2 × C2 × C10 2 C85 2
C48 2 C90 3
C2 × C24 2 C3 × C30 3
C2 × C2 × C12 2 C91 3
C4 × C12 4 C96 8
C60 2 C2 × C48 16
C2 × C30 2 C2 × C2 × C24 32
C63 3 C2 × C2 × C2 × C12 16
C3 × C21 3 C2 × C4 × C12 64
C65 2 C4 × C24 64
C74 3 C98 7
C80 4 C7 × C14 343
C2 × C40 8 C104 2
C2 × C2 × C20 16 C2 × C52 2
C2 × C2 × C2 × C10 32 C2 × C2 × C26 2
C4 × C20 8 C105 4

Table 3: Hoechsmann indices for abelian groups of orders up to 110, for which this
index is not 1.

Remark 2.4. For the groups Cp, with p a prime between 67 and 120 the correctness of
our computation depends on the Generalized Riemann Hypothesis (see Section 2.4).
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3 Lie algebras
The classification of the finite dimensional complex simple Lie algebras is one of the
main results in modern mathematics, with a wide range of applications in such fields
as group theory, geometry, and theoretical physics. Their structure and representation
theory uses many combinatorial objects such as root systems, Weyl groups, weight
lattices, Dynkin diagrams, etc., which makes the theory accessible for investigation
by computer. For these reasons, since the 60’s, many computer algebra packages and
programs have been developed for dealing with various aspects of complex simple Lie
algebras and their representations. As examples, we mention the package LiE [35], and
the computer algebra systems MAGMA [13] and GAP4 [37], which have large libraries
for computing with semisimple Lie algebras.
Also the finite dimensional real simple Lie algebras have been classified. As in the
complex case, there exists a beautiful and detailed structure theory, and they are applied
in various fields like differential geometry (cf. [41]) and physics (cf. [31]). However, it
seems there has not been much effort yet to develop computer packages for investigat-
ing real semisimple Lie algebras by computer. An exception is the ATLAS project (cf.
[30, 34]), which aims to study the unitary dual of a real Lie group.
In the next chapters I show the results about my work on Lie algebras over R. Most of
my work is done by computer, implementing well-known constructions from the litera-
ture and constructing algorithms to do so. I divided the rest of the thesis in two chapters.

The first one show my results regarding the implementation of algorithms related to
simple real Lie algebras constructed from their multiplicative table.
In my joint work with Heiko Dietrich and Willem De Graaf, “Computing with real Lie
algebras: real forms, Cartan decompositions, and Cartan subalgebras”, we developed
a computer algebra package, called CoReLG [53] (“Computing with Real Lie Groups”),
for working with real semisimple Lie algebras given by a multiplication table (which
the ATLAS software does not do). The emphasis on representing a Lie algebra by a
multiplication table allows a detailed investigation of its structure (cf. [40]). On the
other hand, it also presents a range of algorithmic problems.
It is shown how to construct multiplication tables of the real semisimple Lie algebras
Secondly, we show how to obtain a complete list of Cartan subalgebras or real simple
Lie algebras g. That is a list containing exactly one elements of eachG-conjugacy class
of Cartan subalgebras of g, where G is the inner automorphism group of g.
The subject of the second one is the problem of finding semisimple subalgebras of real
semisimple Lie algebras. The analogous problem for complex Lie algebras has been
widely studied (see for example [56], [57], [62], [70]).
Let g̃ be a real semisimple Lie algebra with adjoint group G̃. A classification of the
semisimple subalgebras of g̃, up to G̃-conjugacy, appears to be completely out of reach.
Therefore we consider a weaker problem. Note that if g ⊂ g̃, then also for the com-
plexifications, gc = C ⊗ g, g̃c = C ⊗ g̃ we have that gc ⊂ g̃c. So assume that we
know an inclusion gc ⊂ g̃c. This leads to the following problem: let g̃c be a complex
semisimple Lie algebra, and gc a complex semisimple subalgebra of it. Let g ⊂ gc be a
real form of gc. The question is how to list, up to isomorphism, all real forms g̃ ⊂ g̃c

of g̃c such that g ⊂ g̃.
For real semisimple Lie algebras the problem of finding and classifying the semisimple
subalgebras has previously been considered in the literature. Cornwell has published a
series of papers on this topic, [50], [51], [67], [68], the last two in collaboration with
Ekins. Their methods require detailed case-by-case calculations, and it is not entirely
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clear whether they are applicable to every subalgebra. For example, no S-subalgebras
are considered in these publications (except for some S-subalgebras of type A1 in the
Lie algebras of types G2 and F4).
Komrakov [61] classified the maximal proper semisimple Lie subalgebras of a real
simple Lie algebra. However, his paper does not give an account of the methods used.
He also has a list of the real forms which contain a maximal S-subalgebra, for g̃c of
exceptional type. My advisor and I find the same inclusions as Komrakov, except that
in type E6 we find a few more (see Section 5.6).
Next we turn our attention to regular semisimple subalgebras of simple real Lie algebra
g. We give an algorithm to list the regular semisimple subalgebras of a semisimple real
Lie algebra, up to conjugacy by the inner automorphism group. This uses the algo-
rithm for listing the Cartan subalgebras of g, up to conjugacy. We have implemented
this algorithm in the language of the computer algebra system GAP4. Using this imple-
mentation we have obtained the regular semisimple subalgebras of several real simple
Lie algebras.

In the remaining of this chapter I give only preliminary results, definitions that can
easily be found in the literature, that are the foundations of our work. In the first section
I start by collecting some well-known facts and immediate observations concerning
real forms, realifications, real structures, Killing form and Cartan subalgebras. In the
second section I focus more on theory behind complex simple Lie algebras, give some
other definitions about root space decomposition, root system, simple roots, Chevalley
basis and canonical generators. Those are important notions that will be used later as
basic step in our algorithms.

3.0.1 Comment on the notation

In my work I only deal with finite dimensional Lie algebras over the real or complex
numbers. So, first of all, it is important to give some indications about the symbolic
convention I use throughout this part of the thesis.

If the base field of a Lie algebra is the complex field C, then it is emphasized by at-
taching a superscript “c”, for example gc. Lie algebras that are denoted without such
a superscript have R as base field. If g is a real simple Lie algebra, then gc denotes
its complexification, so gc = g⊗RC. We use the same convention for subspaces
and subalgebras: if h ⊆ g is a subspace, then hc ⊆ gc denotes its complexification
hc = h⊗RC. If v is a subspace of g and h ⊆ g a subalgebra, then zv(h) denotes the
centralizer of h in v, that is, it is the space consisting of all v ∈ v such that [v, h] = 0. If
we deal with a real vector space v, then vc will denote its complexification, vc = v⊗C.
I denote the imaginary unit in C by ı.
I use standard notation and terminology for Lie algebras, as can for instance be found
in the books of Humphreys [59] and Onishchik [63]. Lie algebras will be denoted
by fraktur symbols (like g). The adjoint representation of a Lie algebra g is defined
by adg x(y) = [x, y]. I also just use ad if no confusion can arise about which Lie
algebra is meant. Let v be a subspace of the Lie algebra g. Then by Ng(v), Cg(v) I
denote the normalizer, and centralizer of v in g, i.e., Ng(v) = {x ∈ g | [x, v] ⊂ v},
Cg(v) = {x ∈ g | [x, v] = 0}.
Let gc be a complex semisimple Lie algebra, then its adjoint group, denoted Gc, is
defined as the connected subgroup of Aut(gc) with Lie algebra ad gc. It is the group of
inner automorphisms of gc; it is generated by the elements exp(adx) for x ∈ gc. For
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a real semisimple Lie algebra g its adjoint group, denoted G, is defined as the analytic
subgroup of Aut(g), with Lie algebra ad g. Also here this group is generated by the
elements exp(adx) for x ∈ g (see for example [41], Chapter II, §5). If gc = C ⊗ g,
then G = Gc(R), i.e., the set of real points of Gc, or in other words, the set of g ∈ Gc
such that g(g) = g.
I denote the real forms of the simple Lie algebras using the convention of [60], Ap-
pendix C.3 and C.4, see also [63], Table 5.

3.0.2 Comment on the base field

In order to define a Lie algebra by a multiplication table over the reals, it usually suf-
fices to take a subfield of the real field as base field. However, many algorithms need
a Chevalley basis (see Section 3.2) at hand, which is defined over the complex field.
For this reason, we require that the base field contains the imaginary unit ı =

√
−1.

We remark that computations with such a Chevalley basis take place behind the scenes,
and the result is again defined over the reals.
In some algorithms it is necessary to take square roots of elements of the base field,
so the ideal base field would contain the imaginary unit, as well as being closed under
taking square roots. However, such a field is difficult to construct and to work with on a
computer. As a compromise, we have provided the field Q

√
= Q({√p | p a prime});

see [36, App A.1] for a comment on the implementation. We remark, however, that also
over Q

√
(ı) a computation may fail because we cannot construct a particular square

root; our observation is that this happens rather sporadically.

3.1 Real simple Lie algebras
In this section I give some basic definitions and properties regarding real Lie algebras.
Most of the structures and properties are well known and can be easily be found in the
literature. My first approach to the problems related to real Lie algebras was to be able
to investigate many properties using a computational approach. As I said before there
are not many computational tools in this field, so the first step was to implement the
basis constructions for subalgebras, Cartan subalgebras real forms, etc. As first step to
achieve that I list some of mathematical definition related to real Lie algebras.

Definition 14. Let gc be a complex simple (non-abelian) Lie algebra. A real form
of gc is a real subalgebra g whose complexification is isomorphic to gc; in this case
we can suppose that gc = g⊕ı g. The realification gc(R) of gc is the Lie algebra gc

considered as real.

Theorem 6. Both algebras g and gc(R) are simple, and every real simple Lie algebra
is of this kind.

Remark 3.1. I want to stress that this theorem is very important for our purpose,
because it says that if we know how to implement an algorithm to construct a complex
simple Lie algebras, its real forms and the the procedure of the realification we can
obtain all real Lie algebras.

Definition 15. Associated with a real form g is the real structure σ : gc → gc defined
by σ(a+ ıb) = a− ıb for a, b ∈ g.
In this construction, the compact real form u is of importance; this is a real form with
the property that the restriction of the Killing form of gc is negative definite.
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The Killing form of gc is the map κ(x, y) = tr(adx ◦ ad y) where adx(z) = [x, z]
for x, y, z ∈ gc.

Proposition 9. The real forms of gc are, up to isomorphism, parametrized by conju-
gacy classes of involutive automorphisms of gc, see [47, Prop 2.1].

Remark 3.2. Thanks to this proposition we see that if we can somehow characterize
the involutive automorphisms of a complex simple Lie algebras we find an algorithm
to do that, we can implement all real forms of it.

Since one of the basic tools I work with are Cartan subalgebras of complex semisimple
Lie algebra, now I give some definitions and basic properties related to them.

Definition 16. Let gc be a semisimple Lie algebra over C. A nilpotent subalgebra hc

is said to be a Cartan subalgebra of gc, if it holds:

L0(hc) := {y ∈ gc | ∀x ∈ hc ∃t > 0 such that (adgcx)t(y) = 0} = hc

or equivalently if Ngc(hc)) = hc

There are many algorithms to construct a Cartan subalgebra. Moreover, a Lie algebra
gc in general has more than one Cartan subalgebra, but in the case of algebraic closed
fields it holds:

Theorem 7. Let gc be a finite dimensional Lie algebra over an algebraic closed field of
characteristic 0. Let hc, h′c be two Cartan subalgebras of gc. then there is an element
p ∈ Int(gc) such that p(hc) = h′c

So in the case of complex simple Lie algebra gc it is sufficient to know the group of
inner automorphism of it to compute all its Cartan subalgebras. This is not the case
when we work on the field of real number R.

3.2 Constructing complex semisimple Lie algebras
The content of this section is well-known and can be found, for example, in [42, 71, 46].
Let gc be a semisimple Lie algebra over C, with Cartan subalgebra hc. Denote by (hc)?

the dual space consisting of all linear maps hc → C.

Definition 17. For α ∈ (hc)∗ set:

gα = {x ∈ gc | [h, x] = α(h)x for all h ∈ hc}

and let Φ be the set of non-zero α such that gα 6= 0. This yields the root space
decomposition of gc

gc = hc⊕
⊕

α∈Φ
gα

and each root space gα has dimension 1.

Let κ(x, y) = tr(adx ◦ ad y) be the killing form of gc; since κ is non-degenerate, for
every α ∈ Φ there is a unique tα ∈ hc with α(h) = κ(tα, h) for all h ∈ hc. Now
(α, β) = κ(tα, tβ) = α(tβ) defines an inner product in V , the real space spanned by
Φ, and Φ is a root system of this space.
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Definition 18. A finite spanning set Φ′ of a real space V with inner product ( , ) is a
root system if the following holds:

1. if α ∈ Φ′, then cα ∈ Φ′ if and only if c = ±1;

2. Φ′ is invariant under the reflection β 7→ β − (2(β, α)/(α, α))α for all α ∈ Φ′;

3. if α, β ∈ Φ′, then 2(β, α)/(α, α) ∈ Z.

Every partial order “<” on V defines a set of positive elements, namely, those v ∈ V
with 0 < v. One can choose “<” such that for every non-zero α ∈ Φ either α or
−α is positive, and such that the sum of positive elements and any positive multiple of
a positive element are positive. For example, take “<” to be the lexicographic order
defined on the coefficient vectors with respect to a fixed basis.
Such an ordering partitions Φ into positive and negative roots Φ = Φ+ ∪ Φ− where
Φ− = −Φ+. The corresponding basis of simple roots ∆ = {α1, . . . , α`} consists of
those α ∈ Φ+ which cannot be written as α = β + γ with β, γ ∈ Φ+. The set ∆
is a basis of V and every α ∈ Φ is an integral linear combination of elements in ∆
with either all coefficients non-negative or all coefficients non-positive. For α, β ∈ V
define:

〈α, β∨〉 = 2(α, β)/(β, β);

this expression is linear only in the first component.
Consider the converse situation and start with an abstract root system Φ in an `-
dimensional Euclidean space V with inner product ( , ). Let ∆ = {α1, . . . , α`} be
a basis of simple roots, and consider the associated multiplication table (4.1) on ab-
stract elements h1, . . . , h` and xα with α ∈ Φ. If the signs of the Nα,β have been
chosen such that this multiplication table satisfies the Jacobi identity, then we have
constructed a complex semisimple Lie algebra with root system Φ. This approach to
constructing complex semisimple Lie algebras from root systems was first proposed by
Tits [48], cf. [42, Notes p. 151]. However, his method for determining the signs does
not immediately lead to an algorithm. Later, algorithmic methods for determining the
signs appeared, see for example [33, 40, 44, 49].

3.2.1 Chevalley basis

Let gc be a semisimple Lie algebra over C. Let hc be a fixed Cartan subalgebra of gc,
and let Φ denote the corresponding root system. By ∆ = {α1, . . . , α`} we denote a
basis of simple roots of Φ, corresponding to a choice of positive roots Φ+. For α, β ∈ Φ
we let r, q be the maximal integers such that β− rα and β+ qα lie in Φ, and we define
〈β, α∨〉 = r − q. For α ∈ Φ we denote by gc

α the corresponding root space in gc.

Proposition 10. There is a basis of gc formed by elements h1, . . . , h` ∈ hc, along with
xα ∈ gc

α for α ∈ Φ such that:

[hi, hj ] = 0

[hi, xα] = 〈α, α∨i 〉xα
[xα, x−α] = hα

[xα, xβ ] = Nα,βxα+β ,

where hα is the unique element in [gcα, g
c
−α] with [hα, xα] = 2xα.
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For convenience, when we refer to a multiplication table of this form, we defineNα,β =
0 and xα+β = 0 whenever α, β ∈ Φ with α+ β /∈ Φ ∪ {0}.
This implies that hαi = hi for 1 ≤ i ≤ `. Furthermore, Nα,β = ±(r + 1), where r is
the maximal integer with α− rβ ∈ Φ. Also we define xγ = 0 if γ 6∈ Φ.
A basis with these properties is called a Chevalley basis of gc (see [59], §25.2).

3.2.2 Canonical generators

For 1 ≤ i ≤ ` let gi, xi, yi be elements of gc such that

[gi, gj ] = 0

[gi, xj ] = 〈αj , α∨i 〉xj
[gi, yj ] = −〈αj , α∨i 〉yj
[xi, yj ] = δijgi.

(3.1)

A set of 3` elements with these commutation relations is called a canonical generating
set of gc ([71], §IV.3).

Proposition 11. We have the following:

• A canonical generating set of gc generates gc.

• Sending one canonical generating set to another one uniquely extends to an au-
tomorphism of gc.

Let hc be a Cartan subalgebra with basis h1, . . . , hl with associate root system Φ. An
example of a canonical generating set is the following: gi = hi, xi = xαi , yi = x−αi ,
where α ∈ Φ is a positive root.
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4 Real Forms
The aim of this chapter is to describe an efficient construction of the realification and
the real forms of gc by computer, the results of my joint work with Heiko Dietrich and
Willem De Graaf, “Computing with real Lie algebras: real forms, Cartan decomposi-
tions, and Cartan subalgebras”.
In a computer algebra system, a Lie algebra is usually represented by a structure con-
stants table with respect to a chosen basis. Using the known classification of the au-
tomorphisms of gc, it is a technical exercise to write down bases for all real forms of
gc up to isomorphism, see [36, §2] for a recent description. Computing the structure
constants table from such a basis in the conventional way requires n(n−1)/2 multipli-
cations in gc, where gc has dimension n, and for each multiplication O(n2) additions
are necessary to write the product as a linear combination of the basis elements; this
yields an algorithm which needs O(n4) algebra operations. Here we describe an al-
ternative. Namely, we determine the structure constants of a real form theoretically,
which allows us to write down the structure constants table directly, leading to an al-
gorithm which needs O(n2) algebra operations. Moreover, for each real form (and
the realification), our analysis allows us to write down explicitly a basis of a Cartan
subalgebra which splits over the Gaussian rationals. For this Cartan subalgebra we can
readily compute the corresponding root system, and a Chevalley basis. The real simple
Lie algebras we construct come with all this information;

We proceed as follows. In Section one I explain our algorithmic results, in the second
section I show how to construct of the compact form u of a real Lie algebras given a
complex simple Lie algebra gc and one of its Cartan subalgebras hc with root system
Φ. Here the main ingredient is the Chevalley basis associate to hc and Φ. We give
directly the multiplication table of u with respect to a chosen basis.
In section three I explain how to construct all non compact real form starting from the
compact one. This is done by classifying all involutive automorphism associate to gc.
This can conveniently be done using KAC diagrams associated to gc. We give directly
the multiplication table of those real forms with respect to a chosen basis. In section
four I show the construction of the realifications of gc. Section five contains some
definitions concerning Cartan decomposition of a real form of g of gc. Classification of
strongly orthogonal root systems are the key to achieve these results. In the last section
I show some example of runtimes of our algorithms.

4.1 Main results
Let gc be a complex simple Lie algebra; let g be a real semisimple Lie algebra with
adjoint group G. In my joint work with Heiko Dietrich and the professor De Graaf
Willem, “Computing with real Lie algebras: real forms, Cartan decompositions, and
Cartan subalgebras” we describe algorithms for the following two tasks:

(a) Up to isomorphism, construct all real forms of gc;
(b) Up to G-conjugacy, construct all Cartan subalgebras of g;

More details and precise definitions are given in the corresponding sections.
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Our approach for (a) is to exploit the known theoretical classification of real forms
of gc (which in turn requires the classification of involutive automorphisms of gc);
we construct these real forms by writing down explicitly a structure constants table
with respect to some basis. Our implementation of (b) is a constructive version of a
classification theorem due to Sugiura [73].

4.1.1 Comment on Cartan subalgebras

There exist efficient algorithms to construct a Cartan subalgebra of a Lie algebra given
by a multiplication table, cf. [39, 40]. However, we do remark that the computation of
the associated root system may fail because the program does not succeed in splitting
the Cartan subalgebra over the base field (or an extension thereof of small degree).
The problem of finding Cartan subalgebras which can be split is very difficult, cf. [43].
Therefore, if in our algorithms we have to construct a Cartan subalgebra, we assume
that it has a small splitting field. Constructing the corresponding root system can then
be done with linear algebra methods.

4.2 Constructing the compact form
In this section I describe the construction of the compact form u of the complex simple
Lie algebra gc.
Let gc be a complex simple Lie algebra and hc a Carta subalgebra; as said before there
exists a Chevalley basis, {h1, . . . , h`, xα | α ∈ Φ} of gc, where {h1, . . . , h`} is a
basis of hc, each xα ∈ gα, and the following commutation relations are satisfied; let
α, β ∈ Φ and i, j ∈ {1, . . . , `}:

[hi, hj ] = 0, [hi, xα] = 〈α, α∨i 〉xα, [xα, x−α] = hα, (4.1)

[xα, xβ ] = Nα,βxα+β if α+ β ∈ Φ, and [xα, xβ ] = 0 if α+ β /∈ Φ ∪ {0}.

On these relations we remark the following. First,

|Nα,β | = r + 1 and Nα,β = −N−α,−β ,

where r ≥ 0 is the largest integer such that β − rα ∈ Φ. Second, hi = hαi , and

hα =
∑`

i=1
nαi hi

where nαi is defined by α∨ =
∑`
i=1 n

α
i α
∨
i ; recall that Φ∨ = {α∨ | α ∈ Φ} with

α∨ = (2/(α, α))α is a root system with basis of simple roots {α∨1 , . . . , α∨` }; thus, if
α ∈ Φ, then nα1 , . . . , n

α
` are integers and either all non-negative, or all non-positive.

Remark 4.1. Except from the signs of the Nα,β , all coefficients in the multiplication
table (4.1) are determined completely by the root system and choice of simple roots.

Let gc be a complex simple Lie algebra with multiplication table (4.1) defined with
respect to a Chevalley basis {h1, . . . , h`, xα | α ∈ Φ}.

Proposition 12. The compact real form u of gc is unique up to conjugacy [47].
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For α ∈ Φ define:

Hα = ıhα, Xα = xα − x−α, Yα = ı(xα + x−α).

Since X−α = −Xα and Y−α = Yα, these elements are not linearly independent;
however,

Bu = {Hα, Xβ , Yβ | α ∈ ∆, β ∈ Φ+}
is linearly independent. If u = SpanR(Bu) is the R-span of the elements in Bu, then
u is closed under taking Lie brackets and gc = u⊕ı u, hence u is a real form of gc. It
follows from the proof of [46, Thm 6.11] that u is compact; the associated real structure
τ : gc → gc satisfies

τ(hα) = −hα and τ(xα) = −x−α.

If α− β ∈ Φ− then Xα−β = −Xβ−α with Xβ−α ∈ Bu and Yα−β = Yβ−α ∈ Bu.
Using (4.1), one can determine the following multiplication table of u with respect to
Bu; let α, β ∈ Φ with α 6= β:

[Hα, Hβ ] = 0, [Hα, Xβ ] = 〈β, α∨〉Yβ ,

[Xα, Xβ ] = Nα,βXα+β −Nα,−βXα−β , [Hα, Yβ ] = −〈β, α∨〉Xβ ,

[Xα, Yβ ] = Nα,βYα+β +Nα,−βYα−β , [Hα, Xα] = 2Yα,

[Yα, Yβ ] = −Nα,βXα+β −Nα,−βXα−β , [Hα, Yα] = −2Xα,

[Xα, Yα] = 2Hα.
(4.2)

The corresponding structure constants table has integral entries only. The subspace
of u spanned by {Hα1 , . . . ,Hα`} has dimension ` and is a Cartan subalgebra of u.
Using (4.2), it is straightforward to write down the associated root system. Similarly,
we can express the given Chevalley basis {h1, . . . , h`, xα | α ∈ Φ} as Q(ı)-linear
combinations of the basis elements Bu.

xα = 1
2 (Xα − iYα) x−α = − 1

2 (Xα + iYα) hα = −iHα

(4.3)

4.3 Constructing non-compact real forms
We retain the notation of the previous section and show how to construct the non-
compact real forms of gc from the compact form u. For this purpose, let θ be an
involutive automorphism of gc, commuting with the real structure τ . Then θ leaves u
invariant and we have a decomposition u = u+⊕ u− of u into the ±1-eigenspaces of
θ. Setting k = u+ and p = ı u−, we get that

g = g(u, θ) = k⊕ p

is a real form of gc whose associated real structure is σ = τ ◦ θ = θ ◦ τ .
Conversely, every real form of gc is isomorphic to g(u, θ) for some involutive automor-
phism θ commuting with τ , and, moreover, g(u, θ) and g(u, θ′) are isomorphic if and
only if θ and θ′ are conjugate in Aut(gc), see [47, Prop 2.1 and Thm 3.2]. By running
over all involutions θ (up to conjugacy) commuting with τ , one can construct all real
forms of gc up to isomorphism.
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4.3.1 Kac diagrams

The finite order automorphisms of gc are, up to conjugacy, classified by so-called Kac
diagrams, see [38, §3.3.7] or [41, §X.5]. It follows that, up to conjugacy, an involutive
automorphism of gc can be given by two pieces of data. The first is an involutive per-
mutation π of {1, . . . , `} such that 〈απ(i), α

∨
π(j)〉 = 〈αi, α∨j 〉 for all i, j ∈ {1, . . . , `}; in

[47] this is called an automorphism of ∆. This permutation π induces a map (denoted
by the same symbol) π : Φ → Φ defined by π(

∑`
i=1miαi) =

∑`
i=1miαπ(i); this is

an automorphism of the root system Φ. The second piece of data is a list (ε1, . . . , ε`)
with εi ∈ {1,−1} and εi = επ(i) for all i. It follows from [47, (II.22)] that the map
defined by x±αi 7→ εix±απ(i)

and hi 7→ hπ(i) extends to an involutive automorphism
θ of gc. By definition, if α ∈ Φ, then

θ :

{
hα 7→ hπ(α)

xα 7→ εαxπ(α),

where each εα ∈ {±1} such that for all α, β ∈ Φ we have

εα = ε−α = επ(α) and Nα,βεα+β = Nπ(α),π(β)εαεβ .

We remark that every involutive automorphism of gc is conjugate to an automorphism
of this form. Moreover, the Kac diagram of an involution of gc immediately yields the
data required for the above construction, that is, π and (ε1, . . . , ε`).

4.3.2 Constructing the multiplication table

We now reconsider the form g = g(u, θ) = k⊕ p with θ as above. Using the basis Bu
of u with multiplication table (4.2), we define for α ∈ Φ:

H
0

α = Hα +Hπ(α), H
1

α = ı(Hα −Hπ(α)),

X
0

α = Xα + εαXπ(α), X
1

α = ı(Xα − εαXπ(α)),

Y
0

α = Yα + εαYπ(α), Y
1

α = ı(Yα − εαYπ(α)).

Note that X
0

π(α) = εαX
0

α and X
0

−α = −X0

α; moreover, X
0

α = 0 if and only if

α = π(α) and εα = −1. Similar relations hold for H
i

α, X
i

α, and Y
i

α with i ∈ {0, 1}.
It follows readily that

k = SpanR({H0

α, X
0

α, Y
0

α | α ∈ Φ}) and p = SpanR({H1

α, X
1

α, Y
1

α | α ∈ Φ}).

In the following, we use the convention that the upper indices are considered modulo 2,
that is, H

2

α = H
0

α, and so on. Using (4.2), we get the following relations; let α, β ∈ Φ:

[H
i

α, H
j

β ] = 0,

[H
i

α, X
j

β ] = (−1)ij〈β + (−1)iπ(β), α∨〉Y i+jβ ,

[H
i

α, Y
j

β ] = −(−1)ij〈β + (−1)iπ(β), α∨〉Xi+j

β ,

[X
i

α, X
j

β ]
α 6=β
= (−1)ijNα,βX

i+j

α+β − (−1)ijNα,−βX
i+j

α−β + (−1)(i+1)jεβNα,π(β)X
i+j

α+π(β) −

(−1)(i+1)jεβNα,−π(β)X
i+j

α−π(β),
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[X
0

α, X
1

α] = −εαNα,π(α)X
1

α+π(α),

[X
i

α, Y
j

β ]
α 6=β
= (−1)ijNα,βY

i+j

α+β + (−1)ijNα,−βY
i+j

α−β + (−1)(i+1)jεβNα,π(β)Y
i+j

α+π(β) +

(−1)(i+1)jεβNα,−π(β)Y
i+j

α−π(β),

[X
i

α, Y
j

α] = (−1)ij2H
i+j

α + (−1)j(1− (−1)i+j)εαNα,π(α)Y
i+j

α+π(α),

[Y
i

α, Y
j

β ]
α 6=β
= −(−1)ijNα,βX

i+j

α+β − (−1)ijNα,−βX
i+j

α−β − (−1)(i+1)jεβNα,π(β)X
i+j

α+π(β) −

(−1)(i+1)jεβNα,−π(β)X
i+j

α−π(β),

[Y
0

α, Y
1

α] = εαNα,π(α)X
1

α+π(α).

In order to get a multiplication table of g, we first select a subset Bg of the above
elements that forms a basis of g. This can be done, for instance, by extending the root
order “<” to a total order on Φ, and defining Bg as the union of the sets

{H0

α | α ∈ ∆, α = π(α)},

{Hi

α | α ∈ ∆, α < π(α), i ∈ {0, 1}},

{Xi

α, Y
i

α | α ∈ Φ+, π(α) = α, εα = (−1)i, i ∈ {0, 1}},

{Xi

α, Y
i

α | α ∈ Φ+, α < π(α), i ∈ {0, 1}}.

Subsequently, the multiplication table of g with respect to Bg can be worked out using
the above commutation relations; this is mainly a question of good book-keeping, and
does not present any theoretical difficulties. With respect to this basis, the multiplica-
tion table only has integral entries.

Proposition 13. A subalgebra of g is a Cartan subalgebra if and only if its complexifi-
cation is a Cartan subalgebra of gc.

Thus the set of all H
i

α with α ∈ Φ and i ∈ {0, 1} spans a Cartan subalgebra of g,
whereas the set of all H

0

α with α ∈ Φ spans a Cartan subalgebra of k. Since this Cartan
subalgebra of g splits over Q(ı), it is easy to compute the corresponding root system.
Again, the original Chevalley basis can be written as Q(ı)-linear combinations of ele-
ments in Bg.

If π(α) = α, then hα = − i
2H

0

α

If π(α) = α and εα = −1, then xα = − 1
4 i(X

1

α − iY
1

α) and x−α = 1
4 i(X

1

α + iY
1

α).

If π(α) = α and εα = 1, then xα = − 1
4 (X

0

α − iY
0

α) and x−α = 1
4 (X

0

α + iY
0

α).
If π(α) > α, then:

• xα = 1
2εα

[X
0

α − iX
1

α − i(Y
0

α − iY
1

α)]

• x−α = − 1
2εα

[X
0

α − iX
1

α + i(Y
0

α − iY
1

α)]

• xπ(α) = 1
2εα

[X
0

α + iX
1

α − i(Y
0

α + iY
1

α)]

• xπ(−α) = − 1
2εα

[X
0

α + iX
1

α + i(Y
0

α + iY
1

α)]
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4.4 Constructing the realification
In this section I show how to construct the realification of a complex simple (non-
abelian) Lie algebra gc with a Cartan subalgebra hc ⊆ gc, corresponding root system
Φ, and Chevalley basis {h1 . . . , h`, xα | α ∈ Φ}. Clearly, the realification gc(R) of gc

satisfies dimR gc(R) = 2 dimC gc and has a basis

B = {hε1, . . . , hε` , xεα | α ∈ Φ, ε ∈ {0, 1}}

where hεi = hi and xεα = xα if ε = 0, and hεi = ıhi and xεα = ıxα if ε = 1. Similarly,
we define h0

α = hα and h1
α = ıhα for α ∈ Φ. Again, the upper labels are read modulo

2, for example, h2
i = h0

i . The structure constants of gc(R) with respect to B are as
follows; let a, b ∈ {0, 1}:

[haα, h
b
β ] = 0,

[haα, x
b
β ] = (−1)ab〈β, α∨〉xa+b

β ,

[xaα, x
b
β ]

α+β 6=0
= (−1)abNα,βx

a+b
α+β ,

[xaα, x
b
−α] = (−1)abha+b

α .

Let τ : gc → gc be the compact real structure defined in Section 4.2; recall that
τ(hα) = −hα and τ(xα) = −x−α for all α ∈ Φ. As shown in [47, Ex 2.4], the
map (x, y) 7→ (τ(y), τ(x)) is a real structure of the complex Lie algebra gc⊕ gc, with
associated real form

ĝ = {(x, τ(x)) | x ∈ gc} ⊆ gc⊕ gc

Moreover, it is shown that ϕ : ĝ → gc(R), (x, τ(x)) 7→ x, is an isomorphism. Using
ϕ, one can readily verify that

h = SpanR({hε1, . . . , hε` | ε ∈ {0, 1}}) ⊆ gc(R)

is a Cartan subalgebra of gc(R). We now construct a Chevalley basis of gc(R); for
α ∈ Φ define

u0
α = 1

2 (x0
α + ıx1

α), u1
α = 1

2 (x0
α − ıx1

α),

k0
α = 1

2 (h0
α + ıh1

α), k1
α = 1

2 (h0
α − ıh1

α),

and write kεi = kεαi for i ∈ {1, . . . , `}. We claim that

{k0
1, k

1
1, . . . , k

0
` , k

1
` , u

0
α, u

1
α | α ∈ Φ}

is a Chevalley basis of gc(R). To prove this, let ai = SpanC({ki1, . . . , ki`, uiα | α ∈ Φ})
for i ∈ {0, 1}. A direct computation shows that each ai is an ideal of the complexifica-
tion of gc(R), that is, of gc⊕ gc. Moreover, [a1, a2] = 0, thus gc⊕ gc = a1 ⊕ a2. The
structure constants table of each ai (with respect to the defining basis) is the same as
the structure constants table of gc (with respect to its Chevalley basis); this implies the
assertion. Note that h = SpanR({kjα | j ∈ {0, 1}, α ∈ Φ}), which splits over Q(ı),
and it is straightforward to compute the associated root system.
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4.5 Cartan subalgebras
Let gc be a complex semisimple Lie algebra with a real form g.

Definition 19. A Cartan decomposition of g is a decomposition g = k⊕ p with:

(1) [k, k], [p, p] ⊆ k (2) [p, p] ⊆ k (3) [p, k] ⊆ p

such that its associated Cartan involution θ : g→ g defined by θ(k + p) = k − p for
k ∈ k and p ∈ p induces a positive definite form κθ(x, y) = −κ(x, θ(y)) on g, see [47,
§5]; here κ is the Killing form of gc.

Cartan decompositions are unique up to conjugation by inner automorphisms of g.The
next lemma shows that we already know Cartan decompositions for the real simple Lie
algebras constructed in the last sections.

Lemma 4. a) With the notation of the Sections 4.2 and 4.3, a Cartan decomposition of
g = g(u, θ) is g = k⊕ p; the associated Cartan involution is θ|g.
b) With the notation of Section 4.4, gc(R) = k⊕ p is a Cartan decomposition, where

k = SpanR({h1
1, . . . , h

1
` , x

0
α − x0

−α, x
1
α + x1

−α | α ∈ Φ}),
p = SpanR({h0

1, . . . , h
0
` , x

1
α − x1

−α, x
0
α + x0

−α | α ∈ Φ}).

Proof. Part a) follows from [47, §5]. Part b) follows from [47, Ex 3.4], which shows
that ĝ → ĝ, (x, τ(x)) 7→ (τ(x), x), is a Cartan involution of ĝ (with ĝ as defined in
Section 4.4).

Here gc is a complex semisimple Lie algebra, and g is a real form with Cartan decom-
position g = k ⊕ p. Denote by Gc and G the adjoint group of gc and g, respectively.
It is well-known that all Cartan subalgebras of gc are conjugate under Gc, whereas, in
general, the Cartan subalgebras of g are not conjugate under G. Following a theorem
of Sugiura [73], we now address the construction of all Cartan subalgebras of g up to
G-conjugacy.

To describe this construction, we first have to introduce the notion of Cartan subspaces
and strongly orthogonal sets of roots, see Sections 4.5.1 and 4.5.2; in Section 4.5.3 we
state Sugiura’s classification. The results of this section also apply to the realification
gc(R), which is a real form of gc⊕ gc. We note that Kostant [45] obtain a classification
theorem similar to that of Sugiura.

4.5.1 Constructing Cartan subspaces

Definition 20. A Cartan subspace of g = k ⊕ p is defined to be a maximal abelian
subspace of p.

Cartan subspaces exist and are unique up to conjugacy. The following algorithm com-
putes a basis of a Cartan subspace of p.
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Algorithm 1
Here g is a real semisimple Lie algebra with Cartan decomposition g = k ⊕ p; the
output C is a basis of a Cartan subspace of g

1. Set C = ∅, c = {0}, and Z = p

2. While { not Z = c } do:

3. choose c ∈ Z \ c and define C := C ∪ {c}

4. construct c = SpanR(C) and Z = zp(c) := {x ∈ p | [x, c] = 0 ∀c ∈ c}

5. end.

6. Return C;

4.5.2 Constructing strongly orthogonal sets of roots

Here we consider an abstract root system Ψ in an Euclidean space V with inner product
( , ). A subset β = {β1, . . . , βs} of Ψ is strongly orthogonal if βi 6= ±βj and
βi ± βj 6∈ Ψ for all i 6= j. Clearly, the image of β under an element of the Weyl
group W of Ψ is also strongly orthogonal. We will need a classification of the strongly
orthogonal subsets of Ψ up toW -conjugacy – which is known in the literature, see [73]
– and an efficient algorithm for deciding whether two given strongly orthogonal sets
are W -conjugate; note that running over all elements of W is not efficient in general.
For each type of irreducible root system, we now give a classification of its strongly
orthogonal subsets, together with a method for deciding W -conjugacy.
We use the well-known constructions of the root systems of type Bn, Cn, and Dn, and
their Weyl groups, see for example [32]. For the other types, we express each root as
linear combination of the simple roots; for this we use the ordering of simple roots
as defined in [32]. The correctness of the given classifications can be verified directly
for root systems of classical type; for the exceptional types, we have used a computer
program to double-check the results.
If Ψ has basis of simple roots {α1, . . . , αn}, then we denote the set of associated
fundamental weights by {λ1, . . . , λn}; recall that these are defined by the conditions
2(λi, αj)/(αj , αj) = δij with i, j ∈ {1, . . . , n}, see [46, App C.1]. If X ⊆ V is a
W -stable subset and Γ ⊆ Ψ, then we define

ΓX = X ∩ SpanQ(Γ);

note that the cardinality of ΓX is the same for all W -conjugates of Γ.
Recall that either all roots in Ψ have the same length, or there exist exactly two root
lengths; in the latter case, there is a natural partition into short and long roots, see
[42, §10.4]. We now list, up to W -conjugacy, the strongly orthogonal subsets of an
irreducible root system Ψ. We make a case distinction on the type of Ψ; the notation
in each case is independent from the other cases.
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Type An:
Here Ψ = ±{αi + αi+1 + · · · + αj | 1 ≤ i ≤ j ≤ n}, and, up to W -conjugacy, the
strongly orthogonal sets are Γk = {α1, α3, . . . , αk} where k runs over the odd integers
between 1 and n. Note that the W -class of a strongly orthogonal set is determined by
the cardinality of the set.

Type Bn:
Let V be spanned by {v1, . . . , vn} with inner product defined by (vi, vj) = δij . The
root system of typeBn can be defined as Ψ = {±vi±vj | i < j}∪{±vi | 1 ≤ i ≤ j}.
The corresponding Weyl group is W = U o Sn, where the symmetric group Sn acts
on V by σ · vi = vσ(i), the abelian (multiplicative) group U = {u = (u1, . . . , un) |
ui = ±1} acts on V by u · vi = uivi, and Sn acts on U by permuting the entries of u.
For odd integers k, l with −1 ≤ k ≤ l ≤ n, we define

Γk,l = {v1 − v2, v3 − v4, . . . , vl − vl+1} ∪ {v1 + v2, v3 + v4, . . . , vk + vk+1}.

Up to W -conjugacy, the strongly orthogonal sets are Γk,l, where k, l are odd integers
with −1 ≤ k ≤ l ≤ n, along with Γk′,l′ ∪ {vn}, where k′, l′ are odd integers with
−1 ≤ k′ ≤ l′ ≤ n−2. Note that v1 = λ1, and defineX = {±vi | 1 ≤ i ≤ n}; observe
that X is the W -orbit of v1. We have |(Γk,l)| = (l + k)/2 + 1, |(Γk,l)X | = 2k + 2,
|Γk′,l′ ∪ {vn}| = (l′ + k′)/2 + 2, |(Γk′,l′ ∪ {vn})X | = 2k′ + 4. So if Γ is a strongly
orthogonal set, then by computing |Γ|, |ΓX |, and the number of long roots in Γ, we can
determine to which of the above sets Γ is conjugate to.

Type Cn:
Here V and W are the same as for Bn, but Ψ = {±vi± vj | i < j}∪{±2vi | 1 ≤ i ≤
j}. Up to W -conjugacy, the strongly orthogonal sets are

Γk,l = {v1 − v2, v3 − v4, . . . , vk − vk+1, 2vk+1, . . . , 2vl},

where k, l are integers with −1 ≤ k < l ≤ n and k odd. Now |Γk,l| = l − (k + 1)/2,
and Γk,l has exactly (k + 1)/2 short roots. The size and the number of short roots
determine the W -class of a strongly orthogonal subset uniquely.

Type Dn:
The space V is as for Bn and Cn, but here we have Ψ = {±vi±vj | i < j}. The Weyl
group is W = Ũ o Sn where Ũ = {u ∈ U |

∏
i ui = 1} with U as in case Bn. Up to

W -conjugacy, the strongly orthogonal sets are

Γk,l = {v1 − v2, v3 − v4, . . . , vl − vl+1} ∪ {v1 + v2, v3 + v4, . . . , vk + vk+1},

where k, l are odd integers with −1 ≤ k ≤ l ≤ n; note that |Γk,l| = (k + l)/2 + 1. If
n is even, then there is another strongly orthogonal set, namely,

Γ0 = {v1 − v2, v3 − v4, . . . , vn−3 − vn−2, vn−1 + vn}.

Define X = {±vi | 1 ≤ i ≤ n} as for type Bn; note that X is W -stable and
|(Γk,l)X | = 2k + 2. This cardinality does not distinguish the sets Γ−1,n−1 and Γ0

if n = 2m is even. In that case we set v = v1 + · · ·+ vn and

Y = W · v =
{∑n

i=1
aivi | ai = ±1 and a1 · · · an = 1

}
.

Clearly, Y is W -invariant. If m is even, then |(Γ0)Y | = 0 and |(Γ−1,n−1)Y | = 2m; if
m is odd then |(Γ0)Y | = 2m and |(Γ−1,n−1)Y | = 0. Note that X is the W -orbit of the
fundamental weight λ1, whereas Y is the W -orbit of 2λn.
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Type E6:
Up to W -conjugacy, the strongly orthogonal sets in this case are {α1}, {α1, α2},
{α1, α2, α5}, and {α1, α2, α5, α1 + α2 + 2α3 + 2α4 + α5}.

Type E7:
Let β = α1 + 2α2 + 2α3 + 4α4 + 3α5 + 2α6 + α7. Up to W -conjugacy, the strongly
orthogonal sets are Γ1 = {α1}, Γ2 = {α1, α2}, Γ3,1 = {α1, α2, α5}, Γ3,2 = Γ2∪{β},
Γ4,1 = Γ3,1 ∪ {α1 + α2 + 2α3 + 2α4 + α5}, Γ4,2 = Γ3,1 ∪ {α7}, Γ5 = Γ4,1 ∪ {α7},
Γ6 = Γ5 ∪ {α1 + α2 + 2α3 + 2α4 + 2α5 + 2α6 + α7}, and Γ7 = Γ6 ∪ {β}. Sets of
the same cardinality can be distinguished as follows: if X = W · λ7 (a set of size 56)
and d ∈ {3, 4}, then |(Γd,1)X | = 0, whereas |(Γd,2)X | = 8.

Type E8:
Let γ = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 2α7 + α8. Up to W -conjugacy,
the strongly orthogonal sets are Γ1 = {α1}, Γ2 = {α1, α2}, Γ3 = Γ2 ∪ {α1 +
α2 + 2α3 + 2α4 + α5}, Γ4,1 = Γ3 ∪ {α8}, Γ4,2 = Γ3 ∪ {γ}, Γ5 = Γ4,1 ∪ {α5},
Γ6 = Γ5 ∪{α1 +α2 + 2α3 + 2α4 + 2α5 + 2α6 + 2α7 +α8}, Γ7 = Γ6 ∪{α1 + 2α2 +
2α3 + 4α4 + 3α5 + 2α6 + 2α7 + α8}, and Γ8 = Γ7 ∪ {γ}. The two sets of the same
cardinality can be distinguished as follows: if X = Ψ, then |(Γ4,1)X | = 8, whereas
|(Γ4,2)X | = 24.

Type F4:
Up to W -conjugacy, the strongly orthogonal sets are Γ1,1 = {α3}, Γ1,2 = {α1},
Γ2,1 = Γ1,1 ∪ {α2 + 2α3 + 2α4}, Γ2,2 = Γ1,2 ∪ {α1 + 2α2 + 2α3}, Γ3,1 = Γ2,1 ∪
{2α1 + 3α2 + 4α3 + 2α4}, Γ3,2 = Γ2,2 ∪ {α1 + 2α2 + 2α3 + 2α4}, and Γ4 =
Γ3,2 ∪ {α1 + 2α2 + 4α3 + 2α4}. Sets of the same cardinality have different numbers
of long roots.

Type G2:
Up toW -conjugacy, the strongly orthogonal sets are {α1}, {α2}, and {α1, 3α2+2α2};
note that α1 and α2 have different lengths.
We summarize the obtained criterion on non-conjugacy in the following proposition.

Proposition 14. Let Ψ be an irreducible root system with Weyl group W . Let Γ,Γ′ ⊆
Ψ be strongly orthogonal sets. Depending on the type of Ψ, the sets Γ and Γ′ are not
W -conjugate if and only if
• Type An, Cn, E6, F4, or G2: |Γ| 6= |Γ′|, or Γ, Γ′ have a different number of long
roots.
• Type Bn: |Γ| 6= |Γ′|, or |ΓX | 6= |Γ′X | with X = W · λ1, or Γ and Γ′ have a different
number of long roots.
• Type Dn: |Γ| 6= |Γ′|, or |ΓX | 6= |Γ′X | with X = W · λ1, or |ΓY | 6= |Γ′Y | with
Y = W · 2λn.
• Type E7: |Γ| 6= |Γ′|, or |ΓX | 6= |Γ′X | with X = W · λ7.
• Type E8: |Γ| 6= |Γ′|, or |ΓX | 6= |Γ′X | with X = Ψ.

The last condition for type Dn is only needed if n = 2m and |Γ| = |Γ′| = m.
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4.5.3 Constructing Cartan subalgebras

Proposition 15. Let c ⊆ p be a fixed Cartan subspace of g = k ⊕ p, and let h+
0 be a

Cartan subalgebra of the centralizer zk(c). Than h0 = h+
0 ⊕c is a Cartan subalgebra of

g, thus its complexification hc0 is a Cartan subalgebra of gc.

Let Φ be the root system of gc with respect to hc0, with Chevalley basis {h1, . . . , h`, xα |
α ∈ Φ}. The Killing form κ is non-degenerate on h0, and therefore also on h+

0 and
c. Now let Φc be the set consisting of roots α ∈ Φ such that hα = [xα, x−α] lies in
c; observe that this is a subroot system of Φ. The following theorem is due to Sugiura
[73]; it implies the correctness of Algorithm 2.

Theorem 8 (Sugiura). Let c ⊆ p be a fixed Cartan subspace of g; let Φ and Φc be
defined as above, and let W be the Weyl group of Φ. Denote by A the set of G-
conjugacy classes of Cartan subalgebras of g. Let B be the set of W -conjugacy classes
of strongly orthogonal subsets of Φc. For a representative Γ = {β1, . . . , βs} of a W -
class in B let lΓ = SpanR({hβ1

, . . . , hβs}), and define hΓ = h+
Γ ⊕ h−Γ where

h−Γ = {x ∈ c | κ(x, y) = 0 for all y ∈ lΓ}, and

h+
Γ a Cartan subalgebra of zk(h−Γ ).

Then hΓ is a Cartan subalgebra of g, and ΓW → (hΓ)G is a bijection A→ B.

Algorithm 2
Here g is a real simple Lie algebra with adjoint group G; the output is a list of Cartan
subalgebras of g up to conjugacy under G

• Compute a Cartan decomposition g = k⊕ p, and a Cartan subspace c ⊆ p

• Set h0 = h+
0 ⊕c where h+

0 be a Cartan subalgebra of zk(c)

• Compute the root system Φ of gc with respect to hc0, and a Chevalley basis
{h1, . . . , h`, xα | α ∈ Φ}

• Let Ψ be the set of α ∈ Φ such that hα = [xα, x−α] ∈ c

• Compute the set B of strongly orthogonal subsets of Ψ

• from B remove W -conjugate copies, where W is the Weyl group of Φ

• LetH be the set consisting of hΓ, defined as in Theorem 8, where Γ runs over B

• ReturnH
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4.6 Implementation and runtimes
The algorithms described in this chapter (and some other methods) are implemented
for the computer algebra system GAP4 [37], as part of the package CoReLG [53]. The
following examples were computed on a computer with Intel(R) Core(TM) i7-3770
CPU 3.40GHz and 16GM RAM. The next table shows the running time in seconds for
the construction of a multiplicative table (Table) of several real semisimple Lie alge-
bras, and their Cartan subalgebras (CSA). We work over the field Q(i), which in GAP
is connoted by the command CF (4). I show also the same results working on the
square root field, which in GAP is connoted by the command SqrtF ield,

Algebra Table CF (4) CSA CF (4) Table SqrtF ield CSA SqrtF ield

su6 0.016 0.016 0.036 0.112
su1,5 0.012 0.096 0.044 0.628
su2,4 0.016 0.112 0.040 0.652
su3,3 0.012 0.124 0-040 0.060
sl3(H) 0.008 0.112 0.048 0.560
sl6(R) 0.012 0.152 0.048 0.556
su11 0.093 0.176 0.288 1.972
su1,10 0.140 1.040 3.188 8.580
su2,9 0.136 3.828 0.356 11.153
su3,8 0.136 3.828 0.364 8.325
su4,7 0.136 1.040 0.360 11.181
su5,6 0.140 1.092 0.360 11.265

sl11(R) 0.136 1.228 0.420 11.224
su21 2.541 3.632 7.008 105.127
su1,20 4.748 52.379 7.188 483.947
su2,19 5.037 69.076 7.781 587.960
su3,18 4.768 40.555 9.629 485.558
su4,17 4.704 36.310 7.213 489.362

Table 4: Runtimes for the type An for n = 5, 10, 20
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Algebra Table CF (4) CSA CF (4) Table SqrtF ield CSA SqrtF ield

so11 0.036 0.044 0.072 0.240
so2,9 0.036 0.312 0.092 1.324
so4,7 0.020 0.324 0.088 1.436
so6,5 0.032 0.348 0.068 1.312
so8,3 0.028 0.264 0.076 1.496
so10,1 0.024 0.204 0.092 1.348
so21 0.368 0.624 0.812 15.013
so2,19 0.584 4.781 1.100 49.075
so4,17 0.576 5.152 1.108 46.495
so6,15 0.588 9.393 1.128 49.975
so8,13 0.576 9.197 1.096 53.979
so10,11 0.584 8.297 1.100 68.244
so12,9 0.580 7.604 1.100 64.564
so14,7 0.573 6.208 1.100 55.607
so16,5 0.689 9.048 1.128 51.263
so18,3 3.677 4.604 1.104 44.255
so20,1 0.604 8.228 1.108 50.683
so41 14.697 27.162 25.618 793.945
so2,39 36.355 339.305 41.654 3241.819

Table 5: Runtimes for the type Bn for n = 5, 10, 20

Algebra Table CF (4) CSA CF (4) Table SqrtF ield CSA SqrtF ield

sp5 0.036 0.052 0.076 0.296
sp1,4 0.028 0.236 0.092 1.328
sp2,3 0.036 0.244 0.100 1.288
sp5(R) 0.032 0.264 0.092 1.400
sp10 0.608 0.792 1.020 15.561
sp1,9 0.812 4.700 1.325 47.879
sp2,8 0.800 7.020 1.320 44.611
sp3,7 0.824 4.944 1.348 50.992
sp4,6 0.816 8.704 1.500 48.195
sp5,5 0.808 5.001 1.348 51.967

sp10(R) 0.912 8.873 1.340 64.232
sp20 25.597 38.407 33.126 735.374
sp1,19 55.559 441.050 54.891 3203.353

Table 6: Runtimes for the type Cn for n = 5, 10, 20
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Algebra Table CF (4) CSA CF (4) Table SqrtF ield CSA SqrtF ield

so10 0.020 0.032 0.052 0.172
so2,8 0.020 0.184 0.064 0.944
so4,6 0.024 0.220 0.056 0.992

so∗(10) 0.016 0.204 0.056 1.044
so9,1 0.020 0.160 0.068 0.864
so3,7 0.012 0.180 0.064 0.916
so5,5 0.016 0.244 0.068 0.984
so20 0.248 0.444 0.652 9.465
so2,18 0.428 7.260 0.892 38.475
so4,16 0.432 3.796 0.904 40.263
so6,14 0.436 8.840 0.884 39.163
so8,12 0.432 5.232 0.900 47.279
so10,10 0.428 5.404 0.905 45.834
so∗(20) 0.420 3.485 0.860 37.114
so19, 1 0.424 2.744 1.048 36.495
so3,17 0.416 6.880 1.032 44.263
so5,15 0.512 5.680 1.008 55.668
so7,13 0.420 4.436 0.920 42.339
so9,11 0.440 9.036 0.928 43.763
so40 17.013 26.830 20.813 678.419
so2,38 27.886 338.409 39.602 2585.338

Table 7: Runtimes for the type Dn for n = 5, 10, 20

Algebra Table CF (4) CSA CF (4) Table SqrtF ield CSA SqrtF ield

Ecmp6 0.052 0.088 0.128 0.648
EI 0.056 0.584 0.200 3.036
EII 0.048 0.500 0.164 2.876
EIII 0.064 0.448 0.144 7.357
EIV 0.060 0.404 0.180 2.528
Ecmp7 0.120 0.228 0.324 2.648
EV 0.168 1.588 0.452 19.602
EV I 0.188 1.556 0.408 13.753
EV II 0.196 1.424 0.408 13.769
Ecmp7 0.484 0.844 1.148 22.429
EV III 1.012 14.009 1.896 80.917
EIX 0.852 7.237 6.028 74.949

Table 8: Runtimes for the type E6, E7 and E8

Algebra Table CF (4) CSA CF (4) Table SqrtF ield CSA SqrtF ield

F cmp4 0.028 0.044 0.104 0.384
F4(4) 0.028 0.392 0.108 2.048
F4(−20) 0.036 0.240 0.084 1.368
Gcmp2 0.008 0.008 0.008 0.024
G2(2) 0.004 0.044 0.008 0.032

Table 9: Runtimes for the type F4 and G2
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5 Semisimple Subalgebras
The subject of this part of my thesis is the problem of finding semisimple subalgebras
of real semisimple Lie algebras. The analogous problem for complex Lie algebras has
been widely studied (see for example [56], [57], [62], [70]). In order to describe the
main results in this area I need to introduce some terminology. Let g̃c be a semisimple
complex Lie algebra, with adjoint group G̃c (this is the group of inner automorphisms).

Definition 21. Two complex subalgebras gc
1, g

c
2 ⊂ g̃c are said to be equivalent if

there is an η ∈ G̃c with η(gc1) = gc
2. They are called linearly equivalent if for

all representations ρ : g̃c → gl(V c) we have that the subalgebras ρ(gc1), ρ(gc2) are
conjugate under GL(V c).

Definition 22. A subalgebra of g̃c is called regular if it is normalized by a Cartan sub-
algebra of g̃c. An S-subalgebra is a subalgebra not contained in a regular subalgebra.

We have the following:

• There is an algorithm to determine the regular semisimple subalgebras of g̃c, up
to equivalence [57].

• The maximal semisimple S-subalgebras of the simple Lie algebras of classical
type [56], and the semisimple S-subalgebras of the simple Lie algebras of ex-
ceptional type [57] have been classified up to equivalence.

• The simple subalgebras of the Lie algebras of exceptional type have been classi-
fied up to equivalence [62].

• The semisimple subalgebras of the simple Lie algebras of ranks not exceeding 8
have been classified up to linear equivalence [70].

Now let g̃ be a real semisimple Lie algebra with adjoint group G̃. A classification of
the semisimple subalgebras of g̃, up to G̃-conjugacy, appears to be completely out of
reach. Therefore my advisor and I consider a weaker problem. Note that if g ⊂ g̃, then
also for the complexifications, gc = C ⊗ g, g̃c = C ⊗ g̃ we have that gc ⊂ g̃c. So
assume that we know an inclusion gc ⊂ g̃c. This leads to the following problem: let g̃c

be a complex semisimple Lie algebra, and gc a complex semisimple subalgebra of it.
Let g ⊂ gc be a real form of gc. List, up to isomorphism, all real forms g̃ ⊂ g̃c of g̃c

such that g ⊂ g̃.
I recall the following fact:

Proposition 16. Let g̃, g̃′ ⊂ g̃c be two real forms of g̃c. Then g̃ and g̃′ are isomorphic
if and only if there is a φ ∈ Aut(g̃

c
) such that φ(g̃) = g̃′.

Because of this we can reformulate the problem as follows: let ε : gc ↪→ g̃c be an
embedding of complex semisimple Lie algebras. Let g ⊂ gc be a real form. List, up to
isomorphism, all real forms g̃ of g̃c such that there is a φ ∈ Aut(g̃

c
) with φ(ε(g)) ⊂ g̃.

That is the main problem of this part of the thesis.
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Let g̃1, . . . , g̃m be the non-compact real forms of g̃c (i.e., each non-compact real form
of g̃c is isomorphic to exactly one g̃i). In our setting the g̃i are given by a basis and a
multiplication table. We describe algorithmic methods that help to solve the following
problem: given an embedding ε : gc ↪→ g̃c, and a real form g of gc, find all i such
that there is an automorphism φ of g̃c such that φ(ε(g)) ⊂ g̃i, along with a basis of
the subalgebra φ(ε(g)) of g̃i in terms of a basis of g̃i. Our algorithms reduce this prob-
lem to finding the solution to a set of polynomial equations. We show some nontrivial
examples where it is possible to deal with these polynomial equations. The approach
proposed here is particularly well suited for S-subalgebras; at the end of the chapter I
give a list of all g̃i, when g̃c is of exceptional type and the image of ε is an S-subalgebra
of g̃c.

Now I give an outline of the chapter. The next section contains concepts and construc-
tions from the literature that we use. I also give an algorithm to compute equivalences
of representations of semisimple Lie algebras, which may not have been described
before, but follows immediately from the representation theory of such algebras. In
Sections 5.2, 5.3 and 5.4 we describe our method. Section 5.5 has some examples
computed using our implementation. Finally, in Section 5.6 we give the list of real
semisimple subalgebras of the real simple Lie algebras of exceptional type, that cor-
respond to S-subalgebras of the corresponding complex simple Lie algebras. From
Section 5.7, the main problem is to classify the semisimple subalgebras up to the ac-
tion by the inner automorphism group. In Section 5.8 I recall some other definition on
Cartan subalgebras such as compact dimension and give the algorithm for finding gen-
erators of W (h) the real Weyl group of a θ-stable h Cartan subalgebra of g. In Section
5.9 I give a brief description a Dynkin algorithm to list the semisimple subalgebras of a
complex semisimple Lie algebra gc , up to conjugacy by the adjoint group Gc . In Sec-
tion 5.10 I give algorithms to checks whether a given h-regular semisimple subalgebra
is strongly h-regular and for giving a list of strongly h-regular semisimple subalgebras
of g, such that each such subalgebra of g is G-conjugate to exactly one element of the
list. Finally in Section 5.11 I give the list list of strongly h-regular semisimple subal-
gebras of some algebras g.

5.1 Computing endomorphism spaces
Here gc is a complex semisimple Lie algebra with canonical generators hi, xi, yi for
1 ≤ i ≤ `. Let hc denote the span of the hi (a Cartan subalgebra of gc). First we review
some of the basic facts of the representation theory of gc (see [59], §20).

Definition 23. Let ρ : gc → gl(V c) be a finite-dimensional representation of gc. For
µ ∈ (hc)∗ we set V cµ = {v ∈ V c | ρ(h)v = µ(h)v}. If V cµ 6= 0 then µ is called
a weight of ρ (or of the gc-module V c), and V cµ is the corresponding weight space.
Elements of V cµ are called weight vectors of weight µ.

Proposition 17. V c is the sum of its weight spaces.

Definition 24. Let v ∈ V cµ and suppose that ρ(xi)v = 0 for 1 ≤ i ≤ `. Then v is
called a highest weight vector, and µ a highest weight of ρ.
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Proposition 18. Suppose that ρ is irreducible. Then there is a unique highest weight
λ. Moreover, dimV cλ = 1. Let vλ 6= 0 be a highest weight vector of weight λ. Then
there is a set Sλ of sequences (i1, . . . , ik), with k ≥ 0 and 1 ≤ ir ≤ ` such that the
elements ρ(yi1) · · · ρ(yik)vλ form a basis of V c.

Remark 5.1. Sλ is not uniquely determined. But for each λ we fix one Sλ.

Now let ϕ : gc → gl(W c) be another irreducible representation of gc with the same
highest weight λ. Let wλ 6= 0 be a highest weight vector of weight λ. Define the
linear map A : V c →W c that maps ρ(yi1) · · · ρ(yik)vλ to ϕ(yi1) · · ·ϕ(yik)wλ, for all
(i1, . . . , ik) ∈ Sλ.

Lemma 5.2. We have Aρ(x) = ϕ(x)A for all x ∈ gc.

Proof. Since ρ, ϕ are irreducible representations of gc with the same highest weight,
there exists an isomorphism, that is, a bijective linear map A′ : V c → W c with
A′ρ(x)v = ϕ(x)A′v for all x ∈ gc and v ∈ V c. This implies that A′vλ = awλ
where a ∈ C, a 6= 0. It also follows that A = 1

aA
′, whence the statement.

Now I drop the assumption that ρ is irreducible. Let λ1, . . . , λr be the distinct highest
weights of ρ. For 1 ≤ j ≤ r let vj,1, . . . , vj,mj be a linearly independent set of
highest weight vectors of highest weight λj . So each vj,l generates an irreducible gc-
submodule, denoted V (λj , l), of V c, and V c is their direct sum. We use the basis
of V c consisting of the elements ρ(yi1) · · · ρ(yik)vj,l, for (i1, . . . , ik) ∈ Sλj . For
1 ≤ j ≤ r and 1 ≤ s, t ≤ mj we let As,tj be the linear map V c → V c that maps
ρ(yi1) · · · ρ(yik)vj,s to ρ(yi1) · · · ρ(yik)vj,t for (i1, . . . , ik) ∈ Sλj , and it maps all other
basis elements to 0. Then As,tj is an isomorphism of V (λj , s) to V (λj , t), and it maps
all other submodules V (λk, u) to 0. So by Lemma 5.2, As,tj ρ(x) = ρ(x)As,tj for all
x ∈ gc, i.e., it is contained in

Endρ(V
c) = {A ∈ End(V c) | Aρ(x) = ρ(x)A for all x ∈

c
g}.

Lemma 5.3. The As,tj for 1 ≤ j ≤ r and 1 ≤ s, t ≤ mj form a basis of Endρ(V
c).

Proof. Let A ∈ Endρ(V
c). Then A is determined by the images Avj,s for 1 ≤ j ≤ r,

1 ≤ s ≤ mj . But A maps (highest) weight vectors to (highest) weight vectors of the
same weight. So there are αs,tj ∈ C such that

Avj,s = αs,1j vj,1 + · · ·+ α
s,mj
j vj,mj .

It follows thatA =
∑
j,s,t α

s,t
j As,tj . It is obvious that theAs,tj are linearly independent.

Now consider a second representation ϕ : gc → gl(V c) that is equivalent to ρ, i.e.,
there is a bijective linear map A0 : V c → V c such that A0ρ(x) = ϕ(x)A0 for all
x ∈ gc. In particular, A0 lies in the space

Endρ,ϕ(V c) = {A ∈ End(V c) | Aρ(x) = ϕ(x)A for all x ∈
c
g}.

We want to find a basis of Endρ,ϕ(V c). A first observation is that Endρ,ϕ(V c) =
{A0A | A ∈ Endρ(V

c)}. So since above we have seen how to construct a basis of
Endρ(V

c), the problem boils down to constructingA0. Since ϕ is equivalent to ρ there
are wj,1, . . . , wj,mj forming a basis of the weight space with weight λj , relative to
the representation ϕ. Applying Lemma 5.2 to each submodule V (λj , l) we see that
mapping vj,l to wj,l (for all j, l) uniquely extends to a bijective linear map A0 : V c →
V c, contained in Endρ,ϕ(V c).
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5.1.1 On solving polynomial equations

In the end, the solution to our problem will be given by a set of polynomial equations,
which we need to solve. For this, to the best of our knowledge, no good algorithm is
available. So in each particular case we have to look at the equations and see whether
we can solve them. However, there are some algorithms that can help with that, most
importantly the algorithm for constructing a Gröbner basis (see [52]). Let F be a field,
and R = F [x1, . . . , xm] the polynomial ring in m indeterminates over F . Let P ⊂ R
be a finite set of polynomials, and consider the polynomial equations p = 0 for p ∈ P .
We want to determine the set V = {v ∈ Fm | p(v) = 0 for all p ∈ P}. Let G be any
other generating set of the ideal I of R generated by P . Then solving p = 0 for all
p ∈ P is equivalent to solving g = 0 for all g ∈ G (the set of solutions is the same).
A convenient choice for G is a Gröbner basis of I with respect to a lexicographical
monomial order. Then G has a triangular form, which, in most cases, makes solving
the equations easier. We refer to [52] for a more detailed discussion.

5.2 Construction of embeddings
Here we turn to our main problem, stated at the beginning of the chapter.
Let gc, g̃c be complex semisimple Lie algebras, and suppose that we have an embed-
ding ε : gc ↪→ g̃c. Let hc be a fixed Cartan subalgebra of gc, and let Φ denote the
corresponding root system. Let h1, . . . , h`, and xα for α ∈ Φ be a Chevalley ba-
sis of gc. Let u be the compact form spanned by the elements (Xα, Yα, Hα), with
corresponding conjugation τ . Let g be a real form of gc with Cartan decomposition
g = k⊕ p, and corresponding involution θ, and conjugation σ. We assume that g and u
are compatible, i.e., τ and σ commute, and θ = τσ and u = k⊕ ıp.

Proposition 5.4. Let g̃ ⊂ g̃c be a real form of g̃c such that ε(g) ⊂ g̃. Then there are
a compact form ũ ⊂ g̃c of g̃c, with conjugation τ̃ : g̃

c → g̃c, and an involution θ̃ of g̃c

such that

1. ε(u) ⊂ ũ,

2. εθ = θ̃ε,

3. θ̃τ̃ = τ̃ θ̃,

4. there is a Cartan decomposition g̃ = k̃ ⊕ p̃, such that the restriction of θ̃ to g̃ is
the corresponding Cartan involution, and ũ = k̃⊕ ıp̃.

Conversely, if ũ ⊂ g̃ is a compact form, with corresponding conjugation τ̃ , and θ̃ is an
involution of g̃c such that (1), (2) and (3) hold, then θ̃ leaves ũ invariant, and setting
k̃ = ũ1, p̃ = ıũ−1 (where ũk is the k-eigenspace of θ̃), we get that g̃ = k̃ ⊕ p̃ is a real
form of g̃c with ε(g) ⊂ g̃.

Proof. There is a Cartan decomposition g̃ = k̃⊕ p̃ such that ε(k) ⊂ k̃, ε(p) ⊂ p̃ (this is
the Karpelevich-Mostow theorem, see [63], §6, Corollary 1). We let θ̃ be the involution
of g̃c such that θ̃(x) = x for all x ∈ k̃c, and θ̃(x) = −x for all x ∈ p̃c. Finally we set
ũ = k̃ ⊕ ıp̃. Then the statements (1), (2), (3), and (4) are all obvious. The converse is
clear as well.
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Throughout this section let h̃c be a fixed Cartan subalgebra of g̃c. We let Ψ denote the
root system of g̃c with respect to h̃c. By g1, . . . , gm together with yβ , for β ∈ Ψ we
denote a fixed Chevalley basis of g̃c. We let ũ be the compact form of g̃c spanned by
ıgi, 1 ≤ i ≤ m, yβ − y−β , ı(yβ + y−β) for β ∈ Ψ+.
From the formulation of the main problem we see that it does not make a difference if
we replace ε by φε, where φ ∈ Aut(g̃

c
). The first step of our procedure is to replace ε

by a φε to ensure that ε(u) ⊂ ũ. This is the subject of Section 5.3.
In Section 5.4 we show how to find the involutions θ̃ with Proposition 5.4(2) and (3).
Then Proposition 5.4 shows how to construct the corresponding real forms of g̃c.
We recall [57], (see also [62], [70]) that:

Definition 25. Two embeddings ε, ε′ : gc ↪→ g̃c are called equivalent if there is an
inner automorphism φ of g̃c such that ε = φε′.
They are called linearly equivalent if for all representations ρ : g̃c → gl(V c) the
induced representations ρ ◦ ε, ρ ◦ ε′ are equivalent.

Equivalence implies linear equivalence, but the converse is not always true. However,
the cases where the same linear equivalence class splits into more than one equivalence
class are rather rare (cf. [62], Theorem 7).

5.3 Embedding the compact form
Suppose that ε(hc) ⊂ h̃c. Then for α ∈ Φ there is a subset Aα ⊂ Ψ such that

ε(xα) =
∑
β∈Aα

aα,βyβ

ε(x−α) =
∑
β∈Aα

bα,βy−β ,
(5.1)

where aα,β , bα,β ∈ C (in fact, Aα consists of all β which restricted to ε(hc) equal α).

Definition 26. We say that the embedding ε is balanced if ε(hc) ⊂ h̃c and for all
α ∈ Φ, and β ∈ Aα we have bα,β = āα,β (complex conjugation).

Of course, this notion depends on the choices of Cartan subalgebras and Chevalley
bases in gc, g̃c. If we use the term “balanced” without mentioning these, then we use
the choices fixed at the outset. Otherwise we explicitly mention a different choice
made.

Lemma 5.5. If ε is balanced then ε(u) ⊂ ũ. Conversely, if ε(hc) ⊂ h̃c and ε(u) ⊂ ũ,
then ε is balanced.

Proof. By standard arguments one can show that ε(hi) is a Q-linear combination of
the gj . (Set x = ε(xαi), y = ε(x−αi), h = ε(hi). Then [x, y] = h, [h, x] = 2x,
[h, y] = −2y. So by sl2-representation theory the eigenvalues of adg̃c h are integers.
Let {β1, . . . , βm} be a basis of simple roots of Ψ, with corresponding Cartan matrix
C̃. Then βj(h) ∈ Z for all j. Furthermore, if we write h = a1g1 + · · · + amgm, then
we get that the vector (a1, . . . , am) is C̃−1 times the vector (β1(h), . . . , βm(h)). So
aj ∈ Q.) In particular, ε(ıhi) lies in the R-span of ıg1, . . . , ıgm.
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Also, for α ∈ Φ+ we have

ε(xα − x−α) =
∑
β∈Aα

aα,βyβ − bα,βy−β

=
∑
β∈Aα

aα,β + bα,β
2

(yβ − y−β)− ıaα,β − bα,β
2

ı(yβ + y−β).
(5.2)

We see that all coefficients lie in R, whence ε(xα − x−α) ∈ ũ. The argument for
ε(ı(xα + x−α)) is entirely similar.
For the converse, from (5.2) we get that aα,β + bα,β ∈ R and aα,β − bα,β ∈ ıR. That
implies bα,β = āα,β .

The next lemma says that the automorphism that we are after exists.

Lemma 5.6. There exists an inner automorphism φ of g̃c such that φε is balanced.

Proof. There is a compact form ũ′ of g̃c such that ε(u) ⊂ ũ′ ([63], §6, Proposition
3). There is an inner automorphism φ′ of g̃c such that φ′(ũ′) = ũ ([63], §3, Corol-
lary to Proposition 6). Moreover, the span of the elements φ′(ε(ıhi)) lies in a Cartan
subalgebra of ũ, which is conjugate to the span of the ıgj by an inner automorphism
of ũ. This automorphism extends to an inner automorphism of g̃c. So we get an inner
automorphism φ of g̃c such that φ(ε(u)) ⊂ ũ, and φ(ε(hc)) ⊂ h̃c. So by Lemma 5.5
we conclude that φε is balanced.

Now suppose that ε has the property that ε(hc) ⊂ h̃c, but ε is not balanced. Let
∆ = {α1, . . . , α`} be a fixed basis of simple roots of Φ. Then we set up a system of
polynomial equations. The indeterminates are sα,β , tα,β , where α ∈ ∆, β ∈ Aα. For
1 ≤ i ≤ ` we set

Xi =
∑
β∈Aαi

(sαi,β + ıtαi,β)yβ

Yi =
∑
β∈Aαi

(sαi,β − ıtαi,β)y−β

Next we require that the 3` elements ε(hi), Xi, Yi satisfy the relations (3.1) (where
in place of gi we take ε(hi), in place of xi, yi we take Xi, Yi). This leads to a set
of polynomial equations in the indeterminates sα,β , tα,β , which we solve over R. Let
ŝα,β , t̂α,β ∈ R be the values that we obtain. Let X̂i, Ŷi be the same as Xi, Yi, but with
these values substituted. Then mapping hi to ε(hi), xαi to X̂i, x−αi to Ŷi defines an
embedding ε̂ : gc → g̃c (see Section 3.2.2).

Lemma 5.7. ε̂ is balanced.

Proof. Consider the elements xα − x−α, ı(xα + x−α), for α ∈ ∆ and ıhi, for 1 ≤
i ≤ `. The span of these over C is the same as the span of the canonical generating set
consisting of the xα, x−α, hi. So they generate gc over C, and since they lie in u, they
generate u over R. Moreover, their images under ε̂ lie in ũ, so ε̂(u) ⊂ ũ. Since also
ε̂(hc) ⊂ h̃c we conclude by Lemma 5.5.
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Since ε̂ agrees with ε on hc, we have that ε and ε̂ are linearly equivalent (see [57],
Theorem 1.5, see also [70], Theorem 4). If the linear equivalence class of ε does not
split into more than one equivalence class, then we are done: ε and ε′ are equivalent.
If we are in a rare case where there are more equivalence classes, then we have to find
more solutions to the polynomial equations: one for each equivalence class contained
in the linear equivalence class of ε.

Remark 5.8. For the embeddings that have been determined with the methods of [70],
the following trick often works. Let Π = {β1, . . . , βm} be a fixed basis of simple roots
of Ψ. Let δ1, . . . , δm ∈ C\{0}, and let φ be the automorphism of g̃c mapping gj 7→ gj ,
yβj 7→ δjyβj y−βj 7→ δ−1

j y−βj . Then the images of the gj , and yβ under φ also form
a Chevalley basis of g̃c. Moreover, φ(yβ) = δe11 · · · δemm yβ , if β =

∑
j ejβj . Write

y′β = φ(yβ) = δβyβ .
Now consider the equations (5.1), and write bα,β = µα,β āα,β . If we use the basis
consisting of the y′β , then we get that the coefficients are a′α,β = δ−1

β aα,β and b′α,β =

δβbα,β . So b′α,β = ā′α,β is equivalent to δ2
β = µ−1

α,β . This then yields a set of polynomial
equations for the δi. It is by no means guaranteed that this set is consistent (i.e., has any
solution at all). However, from our experience, we get that in many cases the set is not
only consistent, but also a reduced Gröbner basis is of the form {δ2

1−r1, . . . , δ
2
m−rm},

with ri ∈ R, ri > 0, which makes solving the equations extremely easy.
A solution of the equations yields an automorphism φ of g̃c such that φ(ũ) = ũ′, where
ũ′ is the compact form spanned by the elements ıgj , y′β−y′−β , ı(y′β +y′−β). Moreover,
ε is balanced with respect to the Chevalley basis consisting of the y′β , so that ε(u) ⊂ ũ′.
So if we set ε′ = φ−1ε, then ε′ is equivalent to ε and ε′(u) ⊂ ũ.

5.4 Finding θ̃
Here we assume that we have an embedding ε : gc ↪→ g̃c such that ε(hc) ⊂ h̃c and
ε(u) ⊂ ũ. Now we focus on the problem of finding the involutions θ̃ of g̃c such that
εθ = θ̃ε.
Let ad : g̃

c → gl(g̃
c
) be the adjoint representation, i.e., adx(y) = [x, y]. Set

A = {A ∈ End(g̃
c
) | A ad(εθ(y)) = ad(ε(y))A for all y ∈

c
g}.

Proposition 5.9. Let θ̃ ∈ End(g̃
c
). Then θ̃ is an involution of g̃c with εθ = θ̃ε if and

only if θ̃ ∈ A and

1. θ̃2 = I , where I ∈ End(g̃
c
) is the identity,

2. θ̃(adx)θ̃ = ad θ̃(x) for all x ∈ g̃c.

Proof. Suppose that θ̃ is an involution of g̃c. Then (1) is immediate. Also for y ∈ g̃c we
have θ̃(adx)θ̃(y) = θ̃[x, θ̃(y)] = ad θ̃(x)(y), so (2) follows. Together with εθ = θ̃ε
this also implies that θ̃ ∈ A.
For the converse we first show that θ̃ is an involution of g̃c. From (1) it follows that it is
bijective and that it has order 2. Using (2) we get θ̃[x, y] = θ̃ adx(y) = ad θ̃x(θ̃y) =
[θ̃(x), θ̃(y)]. Secondly, θ̃ε = εθ is equivalent to ad θ̃ε(y) = ad εθ(y) for all y ∈ gc.
Using (1) and (2) it is straightforward to see that this is the same as θ̃ ∈ A.
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We let a1, . . . , an be a fixed basis of g̃c (for example, the Chevalley basis fixed at the
start). The idea now is to translate the conditions of Proposition 5.9 into polynomial
equations. For that we proceed as follows:

1. Compute a basis A1, . . . , As of A (see Section 5.1; note that, if we let ρ, ϕ :
gc → gl(g̃

c
) be the representations given by ρ(y) = ad εθ(y), ϕ(y) = ad ε(y),

then A = Endρ,ϕ(g̃
c
)).

2. Let z1, . . . , zs be indeterminates over C, and set A = z1A1 + · · ·+ zsAs. Then
A2 = I is equivalent to a set of polynomial equations in the zi. Let P1 denote
the corresponding set of polynomials.

3. We note that Proposition 5.9(2) is equivalent to A ad ajA = adAaj for 1 ≤
j ≤ n. Also this is equivalent to a set of polynomial equations in the zi. Let P2

denote the corresponding set of polynomials.

Now we consider the compact form ũ, and the corresponding conjugation τ̃ : g̃
c → g̃c.

We want to construct involutions θ̃ of g̃c that commute with τ̃ (or, equivalently, that
leave ũ invariant). First we observe that it is straightforward to compute τ̃(x) for an
x ∈ g̃c. Indeed, let u1, . . . , un be a basis of ũ, and write x =

∑
i αiui, with ui ∈ C.

Then τ̃(x) =
∑
i ᾱiui.

Let R = R[x1, . . . , xs, y1, . . . , ys]. We substitute xi + ıyi for zi in the polynomials in
the sets P1, P2. A polynomial f in one of these sets then transforms into g + ıh, with
g, h ∈ R. The polynomial equation f = 0 is equivalent to two polynomial equations,
this time over R, g = h = 0. This way we obtain a set of polynomials Q1 ⊂ R.
Let A =

∑s
i=1(xi + ıyi)Ai, then τ̃A(aj) = Aτ̃(aj) is the same as

n∑
i=1

(xi − ıyi)τ̃(Aiaj) =

n∑
i=1

(xi + ıyi)Aiτ̃(aj).

Again we split the real and imaginary parts. Doing this for 1 ≤ j ≤ n we obtain
a system of (linear) polynomial equations. The corresponding set of polynomials is
denoted by Q2.
Finally we solve the system of polynomial equations q = 0 for q ∈ Q1 ∪ Q2. Let
g̃1, . . . , g̃m be fixed noncompact real forms of g̃c, such that each noncompact real form
of g̃c is isomorphic to exactly one of the g̃i. Each solution of the polynomial equations
yields an involution θ̃ of g̃c, and we construct the corresponding real form g̃ as in
Proposition 5.4. The using the methods of [54] we find an isomorphism g̃ → g̃i, and
hence we can map g to a subalgebra of an appropriate g̃i.

Remark 5.10. This method works best when the polynomial equations have a finite
set of solutions: we list them all, and obtain all g̃i such that g maps to a subalgebra
by an automorphism of g̃c. However, it can happen that the set of solutions is infinite.
Example 5.11 describes a situation where we can deal with that.
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5.5 Implementation and examples
As stated in the introduction, we have implemented the algorithms described here in
the computer algebra system GAP4, using the package CoReLG. The main bottleneck
of the method is the need to solve a system of polynomial equations. One of the main
parameters influencing the complexity of this system is the dimension of the space A,
since the number of indeterminates is 2 dimA. (Although, of course, there are also
some linear equations, effectively reducing the number of indeterminates.) From Sec-
tion 5.1 we see that dimA =

∑r
i=1m

2
i , where the mi are the multiplicities of the

irreducible gc-submodules of g̃c. It can happen that dimA is so large that the poly-
nomial equations become unwieldy. For example, if ε(gc) is the regular subalgebra of
typeA1 +A1 of F4, then dimA = 159. On the other hand, there are many subalgebras
that lead to equations systems that we can deal with. In this section we give some ex-
amples. An especially favorable situation arises when ε(gc) is an S-subalgebra. That
will be the subject of the next section.
In the last two examples we also report on the Runtimes. They have been obtained on
a 3.16 GHz processor. We remark here that there are two fundamental inefficiencies
affecting these Runtimes: firstly, we work over a field containing the square root of all
integers. This field has been implemented by ourselves in GAP (see [55]); however,
since there is no GAP kernel support for it, computations using this field tend to take
markedly longer that, say, over Q. Secondly, we create a lot of polynomials, and also
the polynomial arithmetic in GAP is not the most efficient possible (essentially for the
same reason as for our field).

Example 5.11. Let g̃c, gc be the Lie algebras of type A3 and A2 respectively. We
consider the simplest possible embedding: Let α1, α2, α3 denote the simple roots of
the root system of g̃c, ordered as usual; then the subalgebra generated by xαi , x−αi for
i = 1, 2 is isomorphic to gc. We consider the real form of gc isomorphic to sl3(R) (i.e.,
the split form).
Since the image of gc in g̃c is regular, i.e., is generated by root vectors of g̃c, it is
automatic that ε(u) ⊂ ũ.
In this case A has dimension 4. We get a set of 46 polynomial equations in the un-
knowns xi, yi, 1 ≤ i ≤ 4. The reduced Gröbner basis of the ideal generated by these
polynomials is

{x1 − 1, x2 − x3, x
2
3 + y2

3 − 1, x4 + 1, y1, y2 + y3, y4}.

So there is an infinite number of solutions. Now we set z1 = 1, z2 = x3 − ıy3, z3 =
x3+ıy3, z4 = −1 (i.e., we work symbolically with x3, y3) andA = z1A1+· · ·+z4A4.
Then the characteristic polynomial of A is

T 15+3T 14+(−3x2
3−3y2

3)T 13+· · ·+(3x6
3+9x4

3y
2
3+9x2

3y
4
3+3y6

3)T+x6
3+3x4

3y
2
3+3x2

3y
4
3+y6

3 .

However, using x2
3 + y2

3 = 1, this reduces to

T 15 + 3T 14 − 3T 13 − 17T 12 − 3T 11 + 39T 10 + 25T 9 − 45T 8 − 45T 7 + 25T 6+

39T 5 − 3T 4 − 17T 3 − 3T 2 + 3T + 1

which is (T − 1)6(T + 1)9. From this we conclude that if we take any solution of the
equations and construct the corresponding real form g̃, then its Cartan decomposition
will be g̃ = k̃⊕ p̃ with dim k̃ = 6 and dim p̃ = 9.
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Now there is, up to isomorphism, only one real form of g̃c with a Cartan decomposi-
tion satisfying this, namely sl4(R). Also, up to equivalence, g̃c contains exactly one
subalgebra isomorphic to gc. So we conclude that sl4(R) is the only real form of g̃c

containing a subalgebra isomorphic to sl3(R).

Example 5.12. Let g̃c, gc be the Lie algebras of typeE8 andA1+G2+G2 respectively.
As real form g we took the direct sum of the noncompact real forms of A1 and G2

(twice) respectively. In this case A was computed in 2058 seconds, and dimA = 6.
The polynomial equations were computed in 36783 seconds. The set Q1∪Q2 contains
37460 polynomials. However, a reduced Gröbner basis of the ideal generated by them
is

{x1 + 1, x2, x3 − 1, x4 + 1, x5 − 1, x6 + 1, y1, y2, y3, y4, y5, y6}.
So there is only one solution. The corresponding real form of E8 turned out to be
EVIII.

Example 5.13. Let g̃c be of type E6. Then, up to equivalence, g̃c contains a unique
subalgebra of type B4. So let gc be of type B4 and let g = so(4, 5). In this example
A was computed in 55 seconds, and dimA = 7. The polynomial equations were
computed in 510 seconds, the reduced Gröbner basis of the ideal generated by them is

{x2
5−x7, x5x6, x

2
6+y2

6+x7−1, x5x7−x5, x6x7, x
2
7−x7, x5y6, x7y6, x1+x5, x2+x6,

x3 + 1, x4 + x7, y1, y2 − y6, y3, y4, y5, y7}.

We see that x7 can have the values 0,1. Adding x7 to the generating set, the Gröbner
basis becomes

{x2
6 + y2

6 − 1, x1, x2 + x6, x3 + 1, x4, x5, x7, y1, y2 − y6, y3, y4, y5, y7}.

Here the value of x6, y6 determines the solution completely. Furthermore, there is
an infinite number of possible values for those indeterminates. However, with the
same method as in Example 5.11, we established that all solutions lead to the inclusion
so(4, 5) ⊂ EI.
Adding x7 − 1 to the generating set, we get the Gröbner basis

{x2
5 − 1, x1 + x5, x2, x3 + 1, x4 + 1, x6, x7 − 1, y1, y2, y3, y4, y5, y6, y7}.

Here we get two solutions, which both yield the inclusion so(4, 5) ⊂ EII.

5.6 S-subalgebras of the exceptional Lie algebras
In this section we consider embeddings ε : gc ↪→ g̃c, such that ε(gc) is a maximal
S-subalgebra of g̃c, and the latter is of exceptional type.
Let g be a real form of gc. By [63], §6, Theorem 2, if ε(gc) is an S-subalgebra of g̃c,
then there are at most two real forms of g̃c that contain ε(g). And if g̃c has no outer
automorphisms there is at most one such real form. This explains why our method
works particularly well in this case: the polynomial equations have at most two solu-
tions. Example 5.12 illustrates this phenomenon (there the subalgebra is a non maximal
S-subalgebra).
Table 10 contains the results that we obtained using our programs (for the situation
described above, i.e., ε(gc) is a maximal S-subalgebra of g̃c). We describe the sub-
algebras of the complex simple Lie algebras by giving the type of their root systems,
with an upper index denoting the Dynkin index (see [57]).
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Komrakov [61] has also published a list of the S-subalgebras of the real simple Lie al-
gebras of exceptional type. In typeE6 we find a few differences: the inclusions marked
by a (∗) are not contained in Komrakov’s list. About all other inclusions Komrakov’s
list and ours agree.

Table 10: Maximal S-subalgebras of the real Lie algebras of exceptional
type.

complex inclusion real inclusion

A9
2 ⊂ E6

{
su(1, 2) ⊂ EII

sl(3,R) ⊂ EII

G3
2 ⊂ E6 G ⊂ EII (*)

A2
2 ⊕G1

2 ⊂ E6



su(3)⊕Gcmp ⊂ EI

su(1, 2)⊕G ⊂ EIII

su(1, 2)⊕Gcmp ⊂ EII(∗)
sl(3,R)⊕G ⊂ EIV

sl(3,R)⊕Gcmp ⊂ EI(∗)

C1
4 ⊂ E6



sp(2, 2) ⊂ EII(∗)
sp(2, 2) ⊂ EIV(∗)
sp(1, 3) ⊂ EIII(∗)
sp(1, 3) ⊂ EI(∗)

sp(4,R) ⊂ EII(∗)
sp(4,R) ⊂ EI(∗)

F 1
4 ⊂ E6

{
F I ⊂ EI(∗)

F II ⊂ EIII(∗)
A231

1 ⊂ E7 sl(2,R) ⊂ EV
A399

1 ⊂ E7 sl(2,R) ⊂ EV

A21
2 ⊂ E7

{
su(1, 2) ⊂ EVI

sl(3,R) ⊂ EV

A15
1 ⊕A24

1 ⊂ E7


su(2)⊕ sl(2,R) ⊂ EV

sl(2,R)⊕ su(2) ⊂ EVI

sl(2,R)⊕ sl(2,R) ⊂ EVI

A7
1 ⊕G2

2 ⊂ E7


su(2)⊕G ⊂ EVI

sl(2,R)⊕Gcmp ⊂ EV

sl(2,R)⊕G ⊂ EV

C1
3 ⊕G1

2 ⊂ E7



sp(3)⊕G ⊂ EVI

sp(1, 2)⊕Gcmp ⊂ EVI

sp(1, 2)⊕G ⊂ EVI

sp(3,R)⊕Gcmp ⊂ EVII

sp(3,R)⊕G ⊂ EV
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S-subalgebras

A3
1 ⊕ F 1

4 ⊂ E7



su(2)⊕ F I ⊂ EVI

su(2)⊕ F II ⊂ EVI

sl(2,R)⊕ F cmp4 ⊂ EVII

sl(2,R)⊕ F I ⊂ EV

sl(2,R)⊕ F II ⊂ EVII
A520

1 ⊂ E8 sl(2,R) ⊂ EVIII
A760

1 ⊂ E8 sl(2,R) ⊂ EVIII
A1240

1 ⊂ E8 sl(2,R) ⊂ EVIII

B120
2 ⊂ E8

{
so(2, 3) ⊂ EVIII

so(4, 1) ⊂ EVIII

A16
1 ⊕A6

2 ⊂ E8



su(2)⊕ su(1, 2) ⊂ EVIII

su(2)⊕ sl(3,R) ⊂ EIX

sl(2,R)⊕ su(3) ⊂ EVIII

sl(2,R)⊕ su(1, 2) ⊂ EVIII

sl(2,R)⊕ sl(3,R) ⊂ EVIII

F 1
4 ⊕G1

2 ⊂ E8



F cmp4 ⊕G ⊂ EIX

F I⊕Gcmp ⊂ EIX

F I⊕G ⊂ EVIII

F II⊕Gcmp ⊂ EVIII

F II⊕G ⊂ EIX
A156

1 ⊂ F4 sl(2,R) ⊂ F I

A8
1 ⊕G1

2 ⊂ F4


su(2)⊕G ⊂ F I

sl(2,R)⊕Gcmp ⊂ F II

sl(2,R)⊕G ⊂ F I
A28

1 ⊂ G2 sl(2,R) ⊂ G
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5.7 Regular semisimple subalgebras
As I said before the semisimple subalgebras of a semisimple Lie algebra have been
the subject of many investigations. The main problem is to classify the semisimple
subalgebras up to the action by the inner automorphism group.
For semisimple Lie algebras over the complex numbers this problem has only been
fully solved for certain classes of subalgebras, such as regular subalgebras [57], max-
imal S-subalgebras ([57], [56]), simple subalgebras of the Lie algebras of exceptional
type [62] and subalgebras isomorphic to sl(2,C), using the theory of nilpotent orbits.
For semisimple Lie algebras over the real numbers the problem has been less investi-
gated. Also for these algebras it is possible to obtain a list of subalgebras isomorphic
to sl(2,R), up to conjugacy by the inner automorphism group, by listing the nilpotent
orbits (for this usually the Kostant-Sekiguchi correspondence is used, see [66], [55]).
Furthermore, there are some publications ([50], [51], [67], [68]) where the following
problem is considered: let ac be a semisimple subalgebra of the complex semisimple
Lie algebra gc, and let g be a real form of gc; and the question is which real forms of
ac are contained in g. However, these articles contain no classifications up to the action
of the inner automorphism group.

Definition 27. We recall that a subalgebra of a semisimple Lie algebra g is said to be
regular if it is normalized by a Cartan subalgebra of g.

In the next sections I give an algorithm to list the regular semisimple subalgebras of
a semisimple real Lie algebra, up to conjugacy by the inner automorphism group.
We have implemented this algorithm in the language of the computer algebra system
GAP4. Using this implementation we have obtained the regular semisimple subalge-
bras of several real simple Lie algebras.

5.8 Cartan subalgebras
Let g be a real semisimple Lie algebra, with adjoint group G. Let g = k⊕ p be a fixed
Cartan decomposition of g.

Proposition 19. Every Cartan subalgebra of g is G-conjugate to a θ-stable Cartan sub-
algebra. Moreover, up to G-conjugacy, there are a finite number of Cartan subalgebras
in g.

In this section it is described how the methods of Sugiura yield an algorithm for finding
a finite number of θ-stable Cartan subalgebras of g, such that every Cartan subalgebra
of g is G-conjugate to exactly one of them. This algorithm has been implemented in
the CoReLG package.

Definition 28. Let h be a θ-stable Cartan subalgebra of g. Then h = h∩ k⊕ h∩ p, and
h ∩ p is called the noncompact dimension of h. Moreover,

h ∩ k = {h ∈ h | adg h has only purely imaginary eigenvalues}
h ∩ p = {h ∈ h | adg h has only real eigenvalues}

So we see that the noncompact dimension of h can be defined without reference to the
given Cartan decomposition. Hence it is a well-defined concept for non θ-stable Cartan
subalgebras too.
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Let g ∈ G and h ∈ h, then adg h and adg g(h) have the same eigenvalues. We
conclude that the noncompact dimension of g(h) equals that of h. Furthermore, all
Cartan subalgebras of maximal noncompact dimension are G-conjugate.
Let h be a θ-stable Cartan subalgebra of g. Let Φ denote the root system of gc with
respect to hc. We view Φ as a subset of the dual space (hc)∗. Let W be the Weyl group
of Φ. Set

NGc(h
c) = {g ∈ Gc | g(h) ∈ hc for all h ∈ hc},

ZGc(h
c) = {g ∈ Gc | g(h) = h for all h ∈ hc}.

Let α ∈ Φ, e g ∈ NGc(hc). Set αg
−1

= α ◦ g−1. A straightforward argument shows
that g(gcα) = gc

αg−1 . In particular, αg
−1 ∈ Φ.

So we get a map ψg : Φ→ Φ, ψg(α) = αg
−1

.

Theorem 5.14. We haveψg ∈W . The mapNGc(hc)→W , g 7→ ψg is a surjective ho-
momorphism of groups, with kernel ZGc(hc). In particular, W ∼= NGc(h

c)/ZGc(h
c).

5.8.1 Computing the real Weyl group

Here g is as in the previous subsection and h is a θ-stable Cartan subalgebra of g.
We define NG(h), ZG(h) in a similar way to NGc(hc) and ZGc(hc).

Definition 29. Set W (h) = NG(h)/ZG(h); this is called the real Weyl group of g
relative to h. We have that W (h) is a subgroup of W

An algorithm for finding generators of W (h) can be based on [65], Proposition 12.14.
This algorithm has been implemented in the ATLAS software [64]. However, due to
the various choices involved in describing a subgroup of W (the choice of a set of
simple reflections, for example), it is not straightforward to translate the ATLAS output
to our setting. Therefore, we describe a simple “brute-force” method for computing
generators of W (h), that we used for the cases we considered.
Firstly, we have that W (h) ⊂ W θ, where the latter is the subgroup of elements com-
muting with θ. So the problem boils down to deciding whether, for a given w ∈ W θ,
there exists a g ∈ NG(h) projecting tow. For this we first define an element inNGc(hc)
projecting to w.

Let Φ be the root system of gc with respect to hc. Let {α1, . . . , α`} be a fixed set of
simple roots. And let xi, yi, hi, 1 ≤ i ≤ ` form a corresponding canonical generating
set. For α ∈ Φ let xα ∈ gc

α be the element of a Chevalley basis of gc such that
xαi = xi, x−αi = yi. Then xw(αi), x−w(αi), hw(αi), 1 ≤ i ≤ `, also form a canonical
generating set. So mapping xi 7→ xw(αi), yi 7→ x−w(αi), hi 7→ hw(αi), defines an
inner automorphism ηw ∈ Gc, whose restriction to h equals w.
Now let g ∈ ZGc(h). Then g(xα) is a multiple of xα. So g is completely determined
by ` nonzero parameters λ1, . . . , λ` such that g(xi) = λixi, g(yi) = λ−1

i yi. We denote
this element by ζ0(λ1, . . . , λ`).
The set of all g ∈ NGc(h) whose restriction to h equals w, is equal to the set of all
ηwζ0(λ1, . . . , λl), where the λi ∈ C∗. Furthermore, w ∈ W (h) if and only if there
are nonzero λi such that ηwζ0(λ1, . . . , λl) lies in G, i.e., the entries of its matrix with
respect to a basis of g are real. Writing µi instead of λ−1

i , the entries of this matrix are
polynomials in the λi and µi (with coefficients in C). Let p ∈ C[λ1, . . . , λ`, µ1, . . . , µ`]
be such an entry. For λj we substitute aj + ıbj , and for µj we substitute cj + ıdj . Then
we write p = p1 + ıp2, where the pk are polynomials in aj , bj , cj , dj , 1 ≤ j ≤ ` with
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coefficients in R. We let P be the set of all p2 that we obtain in this way, along with
the polynomials ajcj − bjdj − 1, ajdj + bjcj for 1 ≤ j ≤ `. The conclusion is that
w ∈ W (h) if and only if the set of polynomial equations {f = 0 | f ∈ P} has a
solution over R.
Our method consists of writing down the set P , and explicitly finding a solution of the
polynomial equations, or proving that none exist.

5.9 Dynkin’s algorithm
Here we summarize Dynkin’s algorithm [57] to list the semisimple subalgebras of a
complex semisimple Lie algebra gc, up to conjugacy by the adjoint group Gc.
Let hc be a fixed Cartan subalgebra of gc. Since all Cartan subalgebras of gc are Gc-
conjugate, it suffices to classify the hc-regular subalgebras of gc.
Let Φ be the root system of gc with respect to hc. A set Γ ⊂ Φ is said to be a π-system
if it is linearly independent, and α − β 6∈ Φ for all α, β ∈ Φ. A subset of Φ is a
π-system if and only if it is a basis of a root subsystem of Φ.

Definition 30. Let Γ ⊂ Φ be a π-system. Let Π ⊂ Γ be a subset corresponding to
a connected component of the Dynkin diagram of Γ. Let Ψ be the root subsystem of
Φ spanned by Π, and let α0 be its highest root. Let Π′ be the set obtained from Π by
erasing one element, and adding −α0. If the Dynkin diagram of Π′ is different than
the one of Π then we replace Π by Π′ in Γ, obtaining a new π-system Γ′, which is said
to have been obtained from Γ by an elementary transformation.

Now we have the following procedure for classifying the hc-regular semisimple subal-
gebras of gc, up to Gc-conjugacy:

1. Let ∆ be a basis of simple roots of Φ, and let P ′′ be the set of all π-systems
obtainable from ∆ by elementary transformations.

2. Let P ′ be the set of π-systems obtained from P ′′ by adding all subsets of each
element of P ′′.

3. Let W denote the Weyl group of Φ. Remove all W -conjugate copies from P ′ to
obtain the set P .

4. For each element Π in P construct the hc-regular subalgebra of gc whose root
system is spanned by Π.
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5.10 Listing regular semisimple subalgebras
Throughout this section g is a real semisimple Lie algebra with Cartan decomposition
g = k ⊕ p, and Cartan involution θ. Also, by σ : gc → gc we denote the complex
conjugation of gc with respect to g. By G we denote the adjoint group of g. Also, h
will be a θ-stable Cartan subalgebra of g.

Lemma 5.15. Let a ⊂ g be a semisimple subalgebra. Then

1. Cg(a) = s⊕ c (direct sum of ideals), where s is semisimple and c is central and
adg x is a semisimple linear transformation for all x ∈ c.

2. Ng(a) = Cg(a)⊕ a (direct sum of ideals).

Proof. The first statement is well-known, see for example [74], Proposition 20.5.13.
For the second statement, let x ∈ Ng(a). Then the restriction of adg x to a is a

derivation of a. Since a is semisimple, all of its derivations are inner, so there is a
y ∈ a such that adg x|a = ada y. So x − y ∈ Cg(a). Furthermore, it is obvious that
a ∩ Cg(a) = 0 and [a, Cg(a)] = 0. So the second statement follows as well.

Proposition 5.16. Let a ⊂ g be a semisimple h-regular subalgebra. Then a is θ-stable.

Proof. Let Φ be the root system of gc with respect to hc. Let α ∈ Φ. As in Section
5.8 we write αθ for α ◦ θ (note that θ = θ−1). Then θ(gcα) = gc

αθ . Moreover, it
is straightforward to show that σ(gcα) = gc−αθ . (Indeed, let xα ∈ gc

α, and h ∈ h ∩
k, then adg h has purely imaginary eigenvalues, so that [h, σ(xα)] = σ([h, xα]) =
α(h)σ(xα) = −α(h)σ(xα). Similarly, if h ∈ h∩p then [h, σ(xα)] = α(h)σ(xα); this
implies that xα ∈ g−αθ .) Now ac is σ-stable, so that gc−αθ ⊂ ac. Furthermore, since
ac is hc-regular, its root system is a root subsystem of Φ, whence also gc

αθ ⊂ ac. So ac

is θ-stable. But a = {x ∈ ac | σ(x) = x}. This implies that a is θ-stable.

Let a ⊂ g be a h-regular semisimple subalgebra. By the previous proposition a is
θ-stable. Then also Ng(a) is θ-stable. By Lemma 5.15, Ng(a) = b ⊕ c, where b is
semisimple and c consists of semisimple elements. Moreover, b is the derived subalge-
bra, and c is the centre of Ng(a). So both are θ-stable. In particular, b ∩ k⊕ b ∩ p is a
Cartan decomposition of b. Let h̃ be a maximally noncompact Cartan subalgebra of b.
Then h̃⊕ c is a maximally noncompact Cartan subalgebra of Ng(a), and all maximally
noncompact Cartan subalgebras of Ng(h) arise in this manner. Note that also h is a
Cartan subalgebra of Ng(a).

Definition 31. We say that a is strongly h-regular if h is a maximally noncompact
Cartan subalgebra of Ng(a).

Next algorithm checks whether a given h-regular semisimple subalgebra is strongly
h-regular.

Algorithm 3
a is a h-regular semisimple subalgebra of g, where h is a θ-stable Cartan subalgebra of
g; we return True if a is strongly h-regular, False otherwise.

• Compute v = h ∩ p

• If Cg(v) ∩Ng(h) ∩ p = v return then True

• else return False

64



Lemma 5.17. Algorithm 3 is correct.

Proof. By [60], Proposition 6.47, see also the remarks on [60], page 386, we have that
h is a maximally noncompact Cartan subalgebra of Ng(a) if and only if v = h ∩ p
is a maximal abelian subspace of Ng(a) ∩ p. The latter is the case if and only if the
intersection of the centralizer of v and Ng(a) ∩ p is exactly v.

Lemma 5.18. Let a, a′ be strongly h-regular semisimple subalgebras of g. Then a and
a′ are conjugate under G if and only if they are conjugate under NG(h).

Proof. Only one implication requires proof. Let g ∈ G be such that g(a) = a′. Then
g(h) is a maximally noncompact Cartan subalgebra of Ng(a′). So it is conjugate to
h under the adjoint group of Ng(a′), which is NG(a′). In other words, there is a
g′ ∈ NG(a′) such that g′g(h) = h. But then g′g ∈ NG(h) and g′g(a) = a′.

Let Φ be the root system of gc relative to hc. Let a ⊂ g be a h-regular semisimple
subalgebra. Then the set

Ψ(a) = {α ∈ Φ |
c
g
α
⊂ ac}

is a root subsystem of Φ.

Theorem 5.19. Let W denote the Weyl group of Φ. Let W (h) ⊂ W be the real Weyl
group of h. Let a, a′ be strongly h-regular semisimple subalgebras of g. Then a, a′ are
G-conjugate if and only if Ψ(a) and Ψ(a′) are W (h)-conjugate.

Proof. Suppose that the subalgebras are G-conjugate. By Lemma 5.18, there is a g ∈
NG(h) such that g(a) = a′. Let α ∈ Ψ(a). Then g(gcα) = gc

αg−1 . So αg
−1 ∈ Ψ(a′).

But as shown in Section 5.8, the map α 7→ αg
−1

lies in W (h).
Conversely, suppose that there is a w ∈ W (h) such that w(Ψ(a)) = Ψ(a′). Let
g ∈ NG(h) be such that g projects to w under NG(h) → NG(h)/ZG(h) ∼= W (h).
Then w(α) = αg

−1

. It follows that g(a) = a′.

This theorem yields a straightforward algorithm for checking whether two given strongly
h-regular semisimple subalgebras, a, a′, are G-conjugate: run over all w ∈ W (h) and
check whether w(Ψ(a)) = Ψ(a′).
Now we are ready to state the main algorithm of this paper. We just need one more
piece of notation. Again, let W be the Weyl group of Φ. Let w ∈ W . Let ac be a
hc-regular semisimple subalgebra of gc. Then w ·ac denotes the hc-regular semisimple
subalgebra of gc whose root system is w(Ψ(ac)).
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Algorithm 4
h is a θ-stable Cartan subalgebra of g; we return a list of strongly h-regular semisimple
subalgebras of g, such that each such subalgebra of g is G-conjugate to exactly one
element of the list.

1. Compute the root system Φ of gc with respecto to hc, and generators of its Weyl
group W

2. Use Dynkin’s algorithm to obtain a list R of hc-regular semisimple subalgebras
of gc, up to Gc-conjugacy

3. Compute the real Weyl group W (h) ⊂W

4. Compute a set w1, . . . , ws of representatives of the right cosets of W (h) in W

5. Set L = ∅;

6. For ac ∈ R do:

7. L0 := ∅

8. For 1 ≤ i ≤ s do

9. Set ãc := wi · ac

10. If ãc is σ-stable then

11. Set ã := {x ∈ ãc | σ(x) = x}

12. if ã is strongly h-regular then

13. Add ã to L0

14. Get rid of G-conjugate copies in L0

15. Set L := L ∪ L0

16. Return L

Proposition 5.20. Algorithm 4 is correct.

Proof. Let L denote the output. Then L contains no G-conjugate subalgebras. Indeed,
if b, b′ ∈ L are G-conjugate, then bc, (b′)c are Gc-conjugate to the same ac in R. So
they have both been added when considering ac in the loop starting on line 6. But then
they cannot both be in L since on line 14 one of them is erased.
Let a′ be a strongly h-regular semisimple subalgebra of g. Then (a′)c is Gc-conjugate
to an ac ∈ R. So there is a w ∈ W such that w · ac = (a′)c. There is a wi and
u ∈ W (h) such that w = uwi. So wi · ac is W (h)-conjugate to (a′)c. At some point,
in the iteration ac (loop on line 6) and i (loop on line 8) are considered. So ãc = wi ·ac
is constructed. It is σ-stable as ãc is W (h)-conjugate to (a′)c, which is σ-stable. So
the real subalgebra ã is constructed on line 11. Now ã is W (h)-conjugate to a′, so ã
is strongly h-regular. Therefore, on line 13, ã is added to the list. Finally, by Theorem
5.19, ã isG-conjugate to a′. The conclusion is that every strongly h-regular semisimple
subalgebra of g is G-conjugate to an element of L.
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Proposition 5.21. Let h1, . . . , ht be the list of θ-stable Cartan subalgebras of g, up to
G-conjugacy. Let Li be the output of Algorithm 4 with input hi. Then the union L of
the Li is the list of regular semisimple subalgebras of g, up to G-conjugacy.

Proof. Let a be a regular semisimple subalgebra of g, and let h̃ be a maximally non-
compact Cartan subalgebra of Ng(a). Then there is a g ∈ G and an index i, such that
g(h̃) = hi. So g(a) is hi-regular. Since h̃ is maximally noncompact in Ng(a) we get
that g(a) is strongly hi-regular. It cannot be strongly hj-regular as well (if i 6= j), as
that would imply that hi and hj are G-conjugate.
From this we conclude that L contains a G-conjugate of every regular semisimple sub-
algebra a of g, and moreover, it does not contain two subalgebras that are G-conjugate,
by Proposition 5.20.

5.11 Tables of regular subalgebras
Let h be a θ-stable Cartan subalgebra of the semisimple real Lie algebra g. Let Φ be
the root system of gc with respect to hc. Then for α ∈ Φ there is a β ∈ Φ such that
θ(gcα) = gc

β . We write β = αθ. We can now state the following definitions.

Definition 32. A root α is said to be:

• real if αθ = −α. (This means that α(h∩k) = 0.)

• imaginary if αθ = α. (This means that α(h∩p) = 0.)

• compact imaginary if it is imaginary and θ acts as the identity on gc
α. (So that

gc
α ⊂ k.)

The sets of real, imaginary and compact imaginary roots each form a root subsystem
of Φ. In the following we list these root systems for each Cartan subalgebra of a given
real simple Lie algebra. We also list the dimensions of h∩k and h∩p.

5.11.1 G

The real simple Lie algebra of type G has four Cartan subalgebras.

CSA real imaginary compact decomposition
h1 G2 0, 2
h2 A1 A1 1, 1
h3 A1 A1 1, 1
h4 G2 A1 ⊕A1 2, 0

The corresponding regular subalgebras are given in Tables 11, 12 and 13.

5.11.2 so∗8

The simple real Lie algebra so∗8 has three Cartan subalgebras.

CSA real imaginary compact decomposition
h1 A1 ⊕A1 A1 ⊕A1 ⊕A1 A1 ⊕A1 2, 2
h2 A1 A1 ⊕A1 ⊕A1 A1 ⊕A1 3, 1
h3 D4 A3 4, 0

The corresponding regular subalgebras are given in Tables 14, 15 and 16
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5.11.3 so4,4

The simple real Lie algebra so4,4 has seven Cartan subalgebras.

CSA real imaginary compact decomposition
h1 D4 0, 4
h2 A1 ⊕A1 ⊕A1 A1 1, 3
h3 A1 ⊕A1 A1 ⊕A1 2, 2
h4 A1 ⊕A1 A1 ⊕A1 2, 2
h5 A1 ⊕A1 A1 ⊕A1 2, 2
h6 A1 A1 ⊕A1 ⊕A1 3, 1
h7 D4 A1 ⊕A1 ⊕A1 ⊕A1 4, 0

The corresponding regular subalgebras are given in Tables 17, 18, 19, 20, 21, 22 and 23.

5.11.4 so3,5

The simple real Lie algebra so3,5 has three Cartan subalgebras.

CSA real imaginary compact decomposition
h1 A3 1, 3
h2 A1 A1 2, 2
h3 A3 A1 ⊕A1 3, 1

The corresponding regular subalgebras are given in Tables 24, 25 and 26

5.11.5 so1,7

The simple real Lie algebra so1,7 has one Cartan subalgebra.

CSA real imaginary compact decomposition
h1 A3 A3 3, 1

The corresponding regular subalgebras are given in Table 27.

5.11.6 FII

The simple real Lie algebra of type FII has two Cartan subalgebras.

CSA real imaginary compact decomposition
h1 A1 B3 B3 3, 1
h2 F4 B4 4, 0

The corresponding regular subalgebras are given in Tables 28 and 29.
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5.11.7 EI

The simple real Lie algebra of type EI has five Cartan subalgebras.

CSA real imaginary compact decomposition
h1 E6 0, 6
h2 A5 A1 1, 5
h3 A3 A1 ⊕A1 2, 4
h4 A1 A1 ⊕A1 ⊕A1 3, 3
h5 D4 A1 ⊕A1 ⊕A1 ⊕A1 4, 2

The corresponding regular subalgebras are given in Tables 30, 31, 32, 33 and 34.

5.11.8 EII

The simple real Lie algebra of type EII has five Cartan subalgebras.

CSA real imaginary compact decomposition
h1 D4 2, 4
h2 A1 ⊕A1 ⊕A1 A1 3, 3
h3 A1 ⊕A1 A3 A1 ⊕A1 4, 2
h4 A1 A5 A2 ⊕A2 5, 1
h5 E6 A1 ⊕A5 6, 0

The corresponding regular subalgebras are given in Tables 38, 39 and 40.

5.11.9 EIII

The simple real Lie algebra of type EIII has three Cartan subalgebras.

CSA real imaginary compact decomposition
h1 A1 ⊕A1 A3 A3 4, 2
h2 A1 A5 A4 5, 1
h3 E6 D5 6, 0

The corresponding regular subalgebras are given in Table 35, 36 and 37.

5.11.10 EIV

The simple real Lie algebra of type EIV has one Cartan subalgebra.

CSA real imaginary compact decomposition
h1 D4 D4 4, 2

The corresponding regular subalgebras are given in Tables 41.
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Type Real Subalgebra Centralizer
A3

1 sl2(R) sl2(R)
A1

1 sl2(R) sl2(R)
A1

2 sl3(R) T0

A1
1 ⊕A3

1 sl2(R)⊕ sl2(R) T0,0

Table 11: Strongly h1-regular subalgebras of G

Type Real Subalgebra Centralizer
A1

2 su1,2 T0,0

Table 12: Strongly h2-regular subalgebras of G

Type Real Subalgebra Centralizer
A3

1 su2 su2

A1
1 su2 su2

A1
2 su2 ⊕ su2 T0,0

Table 13: Strongly h4-regular subalgebras of G
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Type Real Subalgebra Centralizer
A1

1 sl2(R) sl2(R)⊕ su2 ⊕ su2

su2 sl2(R)⊕ sl2(R)⊕ su2

A1
1 ⊕A1

1 sl2(R)⊕ su2 sl2(R)⊕ su2

A1
1 ⊕A1

1 ⊕A1
1 sl2(R)⊕ su2 ⊕ su2 sl2(R)

sl2(R)⊕ sl2(R)⊕ su2 su2

A1
1 ⊕A1

1 sl2(R)⊕ su2 sl2(R)⊕ su2

A1
3 su2,2 T1,0

sl2(H) T0,1

A1
1 ⊕A1

1 sl2(R)⊕ sl2(R) su2 ⊕ su2

su2 ⊕ su2 sl2(R)⊕ sl2(R)
sl2(C) sl2(C)

A1
1 ⊕A1

1 ⊕A1
1 ⊕A1

1 sl2(R)⊕ sl2(R)⊕ su2 ⊕ su2 T0,0

sl2(C)⊕ sl2(C) T0,0

Table 14: Strongly h1-regular subalgebras of so∗8

Type Real Subalgebra Centralizer
A1

2 su1,2 T2,0

A1
3 su1,3 T1,0

A1
3 su1,3 T1,0

Table 15: Strongly h2-regular subalgebras of so∗8

Type Real Subalgebra Centralizer
A1

2 su3 T2,0

A1
3 su4 T1,0

Table 16: Strongly h3-regular subalgebras of so∗8
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Type Real Subalgebra Centralizer
A1

1 sl2(R) sl2(R)⊕ sl2(R)⊕ sl2(R)
A1

2 sl3(R) T0,2

A1
3 sl4(R) T0,1

A1
3 sl4(R) T0,1

A1
1 ⊕A1

1 sl2(R)⊕ sl2(R) sl2(R)⊕ sl2(R)
A1

1 ⊕A1
1 ⊕A1

1 sl2(R)⊕ sl2(R)⊕ sl2(R) sl2(R)
A1

1 ⊕A1
1 sl2(R)⊕ sl2(R) sl2(R)⊕ sl2(R)

A1
3 sl4(R) T0,1

A1
1 ⊕A1

1 sl2(R)⊕ sl2(R) sl2(R)⊕ sl2(R)
A1

1 ⊕A1
1 ⊕A1

1 ⊕A1
1 sl2(R)⊕ sl2(R)⊕ sl2(R)⊕ sl2(R) T0,0

Table 17: Strongly h1-regular subalgebras of so4,4

Type Real Subalgebra Centralizer
A1

1 sl2(R) sl2(R)⊕ sl2(R)⊕ sl2(R)2
A1

1 ⊕A1
1 sl2(R)⊕ sl2(R) sl2(R)⊕ sl2(R)

A1
1 ⊕A1

1 ⊕A1
1 sl2(R)⊕ sl2(R)⊕ sl2(R) sl2(R)

A1
1 ⊕A1

1 sl2(R)⊕ sl2(R) sl2(R)⊕ sl2(R)

Table 18: Strongly h2-regular subalgebras of so4,4

Type Real Subalgebra Centralizer
A1

3 su2,2 T1,0

A1
1 ⊕A1

1 sl2(C) sl2(C)
A1

1 ⊕A1
1 ⊕A1

1 ⊕A1
1 sl2(C)⊕ sl2(C) T0,0

Table 19: Strongly h3-regular subalgebras of so4,4

Type Real Subalgebra Centralizer
A1

3 su2,2 T1,0

A1
1 ⊕A1

1 sl2(C) sl2(C)
A1

1 ⊕A1
1 ⊕A1

1 ⊕A1
1 sl2(C)⊕ sl2(C) T0,0

Table 20: Strongly h4-regular subalgebras of so4,4
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Type Real Subalgebra Centralizer
A1

3 sl2,2 T1,0

A1
1 ⊕A1

1 sl2(C) sl2(C)
A1

1 ⊕A1
1 ⊕A1

1 ⊕A1
1 sl2(C)⊕ sl2(C) T0,0

Table 21: Strongly h5-regular subalgebras of so4,4

Type Real Subalgebra Centralizer
A1

2 sl1,2 T2,0

Table 22: Strongly h6-regular subalgebras of so4,4

Type Real Subalgebra Centralizer
A1

1 su2 su2 ⊕ su2 ⊕ su2

A1
1 ⊕A1

1 su2 ⊕ su2 su2 ⊕ su2

A1
1 ⊕A1

1 ⊕A1
1 su2 ⊕ su2 ⊕ su2 su2

A1
1 ⊕A1

1 su2 ⊕ su2 su2 ⊕ su2

A1
1 ⊕A1

1 su2 ⊕ su2 su2 ⊕ su2

A1
1 ⊕A1

1 ⊕A1
1 ⊕A1

1 su2 ⊕ su2 ⊕ su2 ⊕ su2 T0,0

Table 23: Strongly h7-regular subalgebras of so4,4

Type Real Subalgebra Centralizer
A1

1 sl2(R) sl2(R)⊕ sl2(C)
A1

2 sl3(R) T1,1

A1
1 ⊕A1

1 ⊕A1
1 sl2(R)⊕ sl2(C) sl2(R)

A1
3 sl4(R) T1,0

su2,2 T0,1

A1
1 ⊕A1

1 sl2(R)⊕ sl2(R) sl2(C)
sl2(C) sl2(R)⊕ sl2(R)

A1
1 ⊕A1

1 ⊕A1
1 ⊕A1

1 sl2(R)⊕ sl2(R)⊕ sl2(C) T0,0

Table 24: Strongly h1-regular subalgebras of so3,5

Type Real Subalgebra Centralizer
A1

2 su1,2 T1,1

Table 25: Strongly h2-regular subalgebras of so3,5
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Type Real Subalgebra Centralizer
A1

1 su2 sl2(C)⊕ su2

A1
1 ⊕A1

1 ⊕A1
1 sl2(C)⊕ su2 su2

A1
3 sl2(H) T1,0

A1
1 ⊕A1

1 su2 ⊕ su2 sl2(C)
sl2(C) su2 ⊕ su2

A1
1 ⊕A1

1 ⊕A1
1 ⊕A1

1 sl2(C)⊕ su2 ⊕ su2 T0,0

Table 26: Strongly h3-regular subalgebras of so3,5

Type Real Subalgebra Centralizer
A1

1 su2 sl2(C)⊕ su2

A1
2 su3 T1,1

A1
3 su4 T0,1

sl2(H) T1,0

A1
1 ⊕A1

1 ⊕A1
1 sl2(C)⊕ su2 su2

A1
1 ⊕A1

1 sl2(C) su2 ⊕ su2

su2 ⊕ su2 sl2(C)
A1

1 ⊕A1
1 ⊕A1

1 ⊕A1
1 sl2(C)⊕ su2 ⊕ su2 T0,0

Table 27: Strongly h1-regular subalgebras of so1,7
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Type Real Subalgebra Centralizer
A1

1 su2 sp1,2

A1
2 su3 su1,2

B1
3 so7 T0,1

so6,1 T1,0

A2
1 ⊕A1

2 sl2(R)⊕ su3 T1,0

A2
1 ⊕A1

1 su2 ⊕ su2 su2 ⊕ T0,1

sl2R⊕ su2 su2 ⊕ T1,0

A2
1 ⊕A1

2 sl1,2 ⊕ su2 T1,0

B1
2 so5 sl2(C)

so1,4 su2 ⊕ su2

C1
3 sp1,2 su2

A2
1 su2 sl2(H)

sl2R su4

A2
2 su1,2 su3

A1
1 ⊕ C1

3 su2 ⊕ sp1,2 T0,0

A1
1 ⊕A1

1 ⊕A2
1 sl2(C)⊕ su2 T1,0

A1
1 ⊕A2

1 ⊕A1
1 su2 ⊕ su2 ⊕ su2 T0,1

A2
1 ⊕A1

1 ⊕A1
1 sl2(R)⊕ su2 ⊕ su2 T1,0

A1
1 ⊕B1

2 su2 ⊕ so1,4 su2

A1
1 ⊕A1

1 su2 ⊕ su2 so1,4

sl2C so5

A2
2 ⊕A1

2 su1,2 ⊕ su3 T0,0

A1
1 ⊕A2

3 su2 ⊕ sl2(H) T0,0

sl2(R)⊕ su4 T0,0

A1
3 sl2(H) su2

su4 sl2R
B1

4 so1,8 T0,0

A1
1 ⊕A1

1 ⊕B1
2 su2 ⊕ su2 ⊕ so1,4 T0,0

sl2(C)⊕ so5 T0,0

A1
1 ⊕A1

1 ⊕A1
1 su2 ⊕ sl2(C) su2

D1
4 so1,7 T0,0

A1
1 ⊕A1

1 ⊕A1
1 ⊕A1

1 su2 ⊕ su2 ⊕ sl2(C) T0,0

Table 28: Strongly h1-regular subalgebras of FII
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Type Real Subalgebra Centralizer
B1

3 so7 T1,0

A1
1 ⊕A2

2 su2 ⊕ su3 T1,0

A2
1 ⊕A1

1 su2 ⊕ su2 su2 ⊕ T1,0

B1
2 so5 su2 ⊕ su2

A2
1 su2 su4

A1
1 ⊕A2

1 ⊕A1
1 su2 ⊕ su2 ⊕ su2 T1,0

A1
1 ⊕B1

2 su2 ⊕ so5 su2

A1
1 ⊕A1

1 su2 ⊕ su2 so1,4

su2 ⊕ su2 so5

A1
1 ⊕A2

3 su2 ⊕ su4 T0,0

A1
3 su4 su2

su4 sl2R
B1

4 so9 T0,0

A1
1 ⊕A1

1 ⊕B1
2 su2 ⊕ su2 ⊕ so5 T0,0

A1
1 ⊕A1

1 ⊕A1
1 su2 ⊕ su2 ⊕ su2 su2

D1
4 so8 T0,0

A1
1 ⊕A1

1 ⊕A1
1 ⊕A1

1 su2 ⊕ su2 ⊕ su2 ⊕ su2 T0,0

Table 29: Strongly h2-regular subalgebras of FII
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Type Real Subalgebra Centralizer
A1

1 sl2(R) sl6(R)
A1

1 ⊕A1
1 sl2(R)⊕ sl2(R) sl4(R)⊕ T0,1

A1
1 ⊕A1

2 sl2(R)⊕ sl3(R) sl3(R)⊕ T0,1

A1
4 sl5(R) sl2(R)⊕ T0,1

D1
5 so5,5 T0,1

A1
1 ⊕A1

4 sl2(R)⊕ sl5(R) T0,1

A1
1 ⊕A1

1 ⊕A1
2 sl2(R)⊕ sl2(R)⊕ sl3(R) T0,2

A1
1 ⊕A1

2 ⊕A1
2 sl2(R)⊕ sl3(R)⊕ sl3(R) T0,1

A1
1 ⊕A1

3 sl2(R)⊕ sl4(R) sl2(R)⊕ T0,1

A1
1 ⊕A1

1 ⊕A1
1 sl2(R)⊕ sl2(R)⊕ sl2(R) sl2(R)⊕ T0,2

A1
2 sl3(R) sl3(R)⊕ sl3(R)

A1
3 sl4(R) sl2(R)⊕ sl2(R)⊕ T0,1

A1
5 sl6(R) sl2(R)

A1
2 ⊕A1

2 sl3(R)⊕ sl3(R) sl3(R)
D1

4 so4,4 T0,2

A1
1 ⊕A1

5 sl2(R)⊕ sl6(R) T0,0

A1
1 ⊕A1

1 ⊕A1
3 sl2(R)⊕ sl2(R)⊕ sl4(R) T0,1

A1
1 ⊕A1

1 ⊕A1
1 ⊕A1

1 sl2(R)⊕ sl2(R)⊕ sl2(R)⊕ sl2(R) T0,2

A1
2 ⊕A1

2 ⊕A1
2 sl3(R)⊕ sl3(R)⊕ sl3(R) T0,0

Table 30: Strongly h1-regular subalgebras of EI

Type Real Subalgebra Centralizer
A1

1 ⊕A1
1 sl2(C) su2,2 ⊕ T0,1

A1
1 ⊕A1

1 ⊕A1
1 sl2(R)⊕ sl2(C) sl2(R)⊕ T1,1

A1
3 su2,2 sl2(C)⊕ T0,1

D1
4 so1,7 T1,1

A1
1 ⊕A1

1 ⊕A1
3 sl2(C)⊕ su2,2 T0,1

A1
1 ⊕A1

1 ⊕A1
1 ⊕A1

1 sl2(C)⊕ sl2(C) T0,2

sl2(R)⊕ sl2(R)⊕ sl2(C) T1,1

Table 31: Strongly h3-regular subalgebras of EI
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Type Real Subalgebra Centralizer
A1

1 ⊕A1
1 ⊕A1

2 su1,2 ⊕ sl2(C) T1,1

A1
1 ⊕A1

2 ⊕A1
2 sl2(R)⊕ sl3(C) T1,0

A1
2 su1,2 sl3(C)

A2
1 ⊕A2

1 sl3(C) su1,2

A2
2 ⊕A2

2 ⊕A1
2 su1,2 ⊕ sl3(C) T0,0

Table 32: Strongly h4-regular subalgebras of EI
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Type Real Subalgebra Centralizer
A1

1 su2 su2,4

sl2(R) su1,5

A1
1 ⊕A1

1 sl2(C) sl2(H)⊕ T1,0

sl2(R)⊕ su2 su1,3 ⊕ T1,0

su2 ⊕ su2 su2,2 ⊕ T1,0

sl2(R)⊕ sl2(R) su4 ⊕ T1,0

A1
1 ⊕A1

2 sl2(R)⊕ su1,2 su3 ⊕ T1,0

su2 ⊕ su1,2 su1,2 ⊕ T1,0

sl2(R)⊕ su3 su1,2 ⊕ T1,0

A1
4 su2,3 su2 ⊕ T1,0

su1,4 sl2(R)⊕ T1,0

D1
5 so∗10 T1,0

so2,8 T1,0

A1
1 ⊕A1

4 su2 ⊕ su2,3 T1,0

sl2(R)⊕ su1,4 T1,0

A1
1 ⊕A1

1 ⊕A1
2 sl2(R)⊕ su2 ⊕ su1,2 T2,0

sl2(R)⊕ sl2(R)⊕ su3 T2,0

A1
1 ⊕A1

2 ⊕A1
2 sl2(R)⊕ su3 ⊕ su1,2 T1,0

su2 ⊕ su1,2 ⊕ su1,2 T1,0

A1
1 ⊕A1

3 su2 ⊕ su2,2 su2 ⊕ T1,0

su2 ⊕ su1,3 sl2(R)⊕ T1,0

sl2(R)⊕ su4 sl2(R)⊕ T1,0

sl2(R)⊕ su1,3 su2 ⊕ T1,0

A1
1 ⊕A1

1 ⊕A1
1 sl2(C)⊕ su2 su2 ⊕ T1,1

sl2(R)⊕ su2 ⊕ su2 sl2(R)⊕ T2,0

sl2(R)⊕ sl2(R)⊕ su2 su2 ⊕ T2,0

A1
2 su1,2 su1,2 ⊕ su3

su3 su1,2 ⊕ su1.2

A1
3 su1,3 sl2(R)⊕ su2 ⊕ T1,0

sl2(H) sl2(C)⊕ T1,0

su2,2 su2 ⊕ su2 ⊕ T1,0

su4 sl2(R)⊕ sl2(R)⊕ T1,0

A1
5 su1,5 sl2(R)

su2,4 su2

A1
2 ⊕A1

2 su3 ⊕ su1,2 su1,2

su1,2 ⊕ su1,2 su3

D1
4 so1,7 T1,1

so∗8 T2,0

A1
1 ⊕A1

5 sl2(R)⊕ su1,5 T0,0

su2 ⊕ su2,4 T0,0

A1
1 ⊕A1

1 ⊕A1
3 sl2(R)⊕ su2 ⊕ su1,3 T1,0

sl2(C)⊕ sl2(H) T1,0

su2 ⊕ su2 ⊕ su2,2 T1,0

sl2(R)⊕ sl2(R)⊕ su4 T1,0

A1
1 ⊕A1

1 ⊕A1
1 ⊕A1

1 sl2(C)⊕ su2 ⊕ su2 T1,1

sl2(R)⊕ sl2(R)⊕ su2 ⊕ su2 T2,0

sl2(C)⊕ sl2(C) T2,0

A1
2 ⊕A1

2 ⊕A1
2 su3 ⊕ su1,2 ⊕ su1,2 T0,0

Table 33: Strongly h1-regular subalgebras of EIII79



Type Real Subalgebra Centralizer
A1

1 ⊕A1
2 su2 ⊕ su3 su1,2 ⊕ T1,0

su2 ⊕ su1,2 su3 ⊕ T1,0

A1
4 su5 sl2(R)⊕ T1,0

su1,4 su2 ⊕ T1,0

A1
1 ⊕A1

4 su2 ⊕ su1,4 T1,0

sl2(R)⊕ su5 T1,0

A1
1 ⊕A1

1 ⊕A1
2 su2 ⊕ su2 ⊕ su1,2 T2,0

su2 ⊕ sl2(R)⊕ su3 T2,0

A1
1 ⊕A1

2 ⊕A1
2 su2 ⊕ su3 ⊕ su1,2 T1,0

Table 34: Strongly h2-regular subalgebras of EIII

Type Real Subalgebra Centralizer
A1

1 ⊕A1
1 su2 ⊕ su2 su4 ⊕ T1,0

D1
5 so10 T1,0

A1
1 ⊕A1

1 ⊕A1
2 su2 ⊕ su2 ⊕ su3 T2,0

A1
1 ⊕A1

3 su2 ⊕ su4 su2 ⊕ T1,0

A1
1 ⊕A1

1 ⊕A1
1 su2 ⊕ su2 ⊕ su2 su2 ⊕ T2,0

A1
3 su4 su2 ⊕ su2 ⊕ T1,0

D1
4 so8 T2,0

A1
1 ⊕A1

1 ⊕A1
3 su2 ⊕ su2 ⊕ su4 T1,0

A1
1 ⊕A1

1 ⊕A1
1 ⊕A1

1 su2 ⊕ su2 ⊕ su2 ⊕ su2 T2,0

Table 35: Strongly h3-regular subalgebras of EIII
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Type Real Subalgebra Centralizer
A1

1 sl2(R) su3,3

A1
1 ⊕A1

1 sl2(R)⊕ sl2(R) su2,2 ⊕ T1,0

sl2(C) sl4(R)⊕ T1,0

D1
5 so4,6 T1,0

A1
1 ⊕A1

1 ⊕A1
2 sl2(C)⊕ sl3(R) T1,1

A1
1 ⊕A1

2 ⊕A1
2 sl2(R)⊕ sl3(C) T0,1

A1
1 ⊕A1

3 sl2(R)⊕ su2,2 sl2(R)⊕ T1,0

A1
1 ⊕A1

1 ⊕A1
1 sl2(C)⊕ sl2(R) sl2(R)⊕ T1,1

sl2(R)⊕ sl2(R)⊕ sl2(R) sl2(R)⊕ T2,0

A1
2 sl3(R) sl3(C)

A1
3 su2,2 sl2(R)⊕ sl2(R)⊕ T1,0

sl4(R) sl2(C)⊕ T1,0

A1
5 su3,3 sl2(R)

A1
2 ⊕A1

2 sl3(C) sl3(R)
D1

4 so3,5 T1,1

so4,4 T2,0

A1
1 ⊕A1

5 sl2(R)⊕ su3,3 T0,0

A1
1 ⊕A1

1 ⊕A1
3 sl2(R)⊕ sl2(R)⊕ su2,2 T1,0

sl2(C)⊕ sl4(R) T1,0

A1
1 ⊕A1

1 ⊕A1
1 ⊕A1

1 sl2(C)⊕ sl2(R)⊕ sl2(R) T1,1

sl2(R)⊕ sl2(R)⊕ sl2(R)⊕ sl2(R) T2,0

A1
2 ⊕A1

2 ⊕A1
2 sl3(R)⊕ sl3(C) T0,0

Table 36: Strongly h1-regular subalgebras of EII
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Type Real Subalgebra Centralizer
A1

1 ⊕A1
2 sl2(R)⊕ su1,2 su1,2 ⊕ T1,0

A1
4 su2,3 sl2(R)⊕ T1,0

A1
1 ⊕A1

4 sl2(R)⊕ su2,3 T1,0

A1
1 ⊕A1

1 ⊕A1
2 sl2(R)⊕ sl2(R)⊕ su1,2 T2,0

A1
1 ⊕A1

2 ⊕A1
2 sl2(R)⊕ su1,2 ⊕ su1,2 T1,0

A1
2 su1,2 su1,2 ⊕ su1,2

A1
2 ⊕A1

2 su1,2 ⊕ su1,2 su1,2

A1
2 ⊕A1

2 ⊕A1
2 su1,2 ⊕ su1,2 ⊕ su1,2 T0,0

Table 37: Strongly h2-regular subalgebras of EII

Type Real Subalgebra Centralizer
A1

1 su2 su2,4

A1
1 ⊕A1

1 sl2(C) sl2(H)⊕ T1,0

su2 ⊕ su2 su2,2 ⊕ T1,0

sl2(R)⊕ su2 su1,3 ⊕ T1,0

A1
1 ⊕A1

2 su1,2 ⊕ su2 su1,2 ⊕ T1,0

A1
4 su2,3 su2 ⊕ T1,0

D1
5 so∗10 T1,0

A1
1 ⊕A1

4 su2 ⊕ su2,3 T1,0

A1
1 ⊕A1

1 ⊕A1
2 sl2(R)⊕ su1,2 ⊕ su2 T2,0

A1
1 ⊕A1

2 ⊕A1
2 su2 ⊕ su1,2 ⊕ su1,2 T1,0

A1
1 ⊕A1

3 su2 ⊕ su2,2 su2 ⊕ T1,0

su2 ⊕ su1,3 sl2(R)⊕ T1,0

sl2(R)⊕ su1,3 su2 ⊕ T1,0

A1
1 ⊕A1

1 ⊕A1
1 sl2(R)⊕ sl2(C) su2 ⊕ T1,1

sl2(R)⊕ su2 ⊕ su2 sl2(R)⊕ T2,0

sl2(R)⊕ sl2(R)⊕ su2 su2 ⊕ T2,0

A1
3 su2,2 su2 ⊕ su2 ⊕ T1,0

su1,3 sl2(R)⊕ su2 ⊕ T1,0

sl2(H) sl2(C)⊕ T1,0

A1
5 su2,4 su2

D1
4 so∗8 T2,0

A1
1 ⊕A1

5 su2 ⊕ su2,4 T0,0

A1
1 ⊕A1

1 ⊕A1
3 sl2(R)⊕ sl2(R)⊕ sl2(H) T1,0

su2 ⊕ su2 ⊕ su2,2 T1,0

sl2(R)⊕ su2 ⊕ su1,3 T1,0

A1
1 ⊕A1

1 ⊕A1
1 ⊕A1

1 sl2(C)⊕ su2 ⊕ su2 ⊕ su2 T1,1

sl2(C)⊕ sl2(C) T2,0

sl2(R)⊕ sl2(R)⊕ su2 ⊕ su2 T2,0

sl2(C)⊕ sl2(C) T2,0

Table 38: Strongly h3-regular subalgebras of EII

82



Type Real Subalgebra Centralizer
A1

1 ⊕A1
2 su2 ⊕ su1,2 su3 ⊕ T1,0

su2 ⊕ su3 su1,2 ⊕ T1,0

sl2(R)⊕ su3 su3 ⊕ T1,0

A1
4 su1,4 su2 ⊕ T1,0

A1
1 ⊕A1

4 su2 ⊕ su1,4 T1,0

A1
1 ⊕A1

1 ⊕A1
2 su2 ⊕ su2 ⊕ su1,2 T2,0

sl2(R)⊕ su2 ⊕ su3 T2,0

su2 ⊕ su2 ⊕ su1,2 T2,0

A1
1 ⊕A1

2 ⊕A1
2 su2 ⊕ su1,2 ⊕ su3 T1,0

sl2(R)⊕ su3 ⊕ su3 T1,0

A1
2 su1,2 su3 ⊕ su3

su3 su1,2 ⊕ su3

A1
2 ⊕A1

2 su1,2 ⊕ su3 su3

su3 ⊕ su3 su1,2

A1
2 ⊕A1

2 ⊕A1
2 su1,2 ⊕ su3 ⊕ su3 T0,0

Table 39: Strongly h4-regular subalgebras of EII

Type Real Subalgebra Centralizer
A1

1 su2 su6

A1
1 ⊕A1

1 su2 ⊕ su2 su4 ⊕ T1,0

A1
1 ⊕A1

2 su2 ⊕ su3 su3 ⊕ T1,0

A1
4 su5 su2 ⊕ T1,0

A1
1 ⊕A1

4 su2 ⊕ su5 T1,0

A1
1 ⊕A1

1 ⊕A1
2 su2 ⊕ su2 ⊕ su3 T2,0

A1
1 ⊕A1

2 ⊕A1
2 su2 ⊕ su3 ⊕ su3 T1,0

A1
1 ⊕A1

3 su2 ⊕ su4 su2 ⊕ T1,0

su2 ⊕ su4 su2 ⊕ T1,0

A1
1 ⊕A1

1 ⊕A1
1 su2 ⊕ su2 ⊕ su2 su2 ⊕ T1,0

su2 ⊕ su2 ⊕ su2 su2 ⊕ T1,0

A1
3 su4 su2 ⊕ su2 ⊕ T1,0

A1
5 su6 su2

A1
1 ⊕A1

5 su2 ⊕ su6 T0,0

A1
1 ⊕A1

1 ⊕A1
3 su2 ⊕ su2 ⊕ su4 T1,0

A1
1 ⊕A1

1 ⊕A1
1 ⊕A1

1 su2 ⊕ su2 ⊕ su2 ⊕ su2 T2,0

Table 40: Strongly h5-regular subalgebras of EII
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Type Real Subalgebra Centralizer
A1

1 su2 sl3(H)
A1

1 ⊕A1
1 sl2(C) su4 ⊕ T0,1

su2 ⊕ su2 sl2(H)⊕ T0,1

D1
5 so1,9 T0,1

A1
1 ⊕A1

1 ⊕A1
2 sl2(C)⊕ su3 T1,1

A1
1 ⊕A1

2 ⊕A1
2 su2 ⊕ sl3(C) T1,0

A1
1 ⊕A1

3 su2 ⊕ sl2(H) su2 ⊕ T0,1

A1
1 ⊕A1

1 ⊕A1
1 sl2(C)⊕ su2 su2 ⊕ T1,1

su2 ⊕ su2 ⊕ su2 su2 ⊕ T0,2

A1
2 su3 sl3(C)

A1
3 sl2(H) su2 ⊕ su2 ⊕ T0,1

su4 sl2(C)⊕ T0,1

A1
5 sl3(H) su2

A1
2 ⊕A1

2 sl3(C) su3

D1
4 so1,7 T1,1

so8 T0,2

A1
1 ⊕A1

5 su2 ⊕ sl3(H) T0,0

A1
1 ⊕A1

1 ⊕A1
3 su2 ⊕ su2 ⊕ sl2(H) T0,1

sl2(C)⊕ su4 T0,1

A1
1 ⊕A1

1 ⊕A1
1 ⊕A1

1 sl2(C)⊕ su2 ⊕ su2 T1,1

su2 ⊕ su2 ⊕ su2 ⊕ su2 T0,2

A1
2 ⊕A1

2 ⊕A1
2 su3 ⊕ sl3(C) T0,0

Table 41: Strongly h1-regular subalgebras of EIV
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