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Introduction

The notion of maximal class was first introduced in the context of p-groups by Blackburn
[Bla58]: let G be a group of order p™ and ¢ be its nilpotency class, that is, the length of its
lower central series. Since ¢ < n, when ¢ equals n — 1 the p-group has maximal nilpotency
class and is thus referred to as a group of maximal class. Equivalently, one can define the

coclass of G as

cc(G):=n—c

and say that a p-group of maximal class is a group of minimal coclass, namely cc(G) = 1.

The definition of coclass can be generalized in a natural way to pro-p-groups: if G is a
pro-p group, denote by ;(G) the terms of its lower central series and consider the quotients
G; := G/v;(G), which are finite p-groups. Then the coclass of G is

cc(@) = lim cc(Gy).
1—00

Leedham-Green and Newman [LGN80] formulated five conjectures regarding the structure
of pro-p-groups of given finite coclass, which nowadays have all been proven thanks to the

contribution of many authors.

Analogously, one can define the coclass of a finite-dimensional nilpotent Lie algebra L
as cc(L) :=n — ¢, where n is the dimension of L and ¢ is its nilpotency class. This can be

extended to infinite-dimensional Lie algebras L by defining

ce(L) =Y (dim (L'/L") - 1),

i>1

Li#0
provided L is residually nilpotent, that is, (), L' = {0}. Clearly, L has finite coclass if
and only if all the quotients L?/L*! are finite-dimensional and dim (L?/L*!) < 1 for all
sufficiently large i. When the coclass is minimal, namely cc(L) = 1, we say that L is of
mazximal class. Equivalently (see [Sha94al), a Lie algebra of maximal class is a residually
nilpotent Lie algebra L such that dim (L/L?) = 2 and dim (L!/L*™!) < 1 for all i > 1.

If one considers the family of all Lie algebras of maximal class, it has been shown

already by Vergne ([Ver66, Ver70]) that in characteristic zero there are simply too many:

ii



Introduction

Lie algebras of maximal class form an irreducible component of dimension greater than n?

in the variety of all nilpotent Lie algebras of fixed dimension n. Shalev and Zelmanov [SZ97]
concentrated their attention to Lie algebras of maximal class (and more generally of finite
coclass) in characteristic zero. With the assumption that these algebras are IN-graded and
generated by the first homogeneous component, they were able to develop a coclass theory
similar to the one for p-groups established by Leedham-Green [LG94] and Shalev [Sha94b].
In particular, there is only one just infinite algebra, namely

Mz(a:,y s [yz'y] =0 W>1>,

which is actually of maximal class and metabelian.

Over a field of positive characteristic p, Riley and Semple [RS94] developed a coclass
theory for IN-graded restricted Lie algebras: they are all finite-dimensional, and the di-
mension is bounded in terms of p and the coclass. When dealing with non-restricted Lie
algebras, this is no longer true even for IN-graded algebras of maximal class generated by
the first homogeneous component, which have been called algebras of type 1 in [CVL00]. In
fact, Shalev [Sha94a] proved that there are countably many insoluble algebras of type 1 of
any given characteristic p # 0. They are built as positive parts of twisted loop algebras of
some finite-dimensional simple algebras constructed by Albert and Frank [AF55], extended
by a non-singular derivation. Caranti, Mattarei and Newman [CMN97] showed that start-
ing from those algebras one can get 280 non-isomorphic algebras of type 1, for any given
prime characteristic. If p is odd, these are all the possible algebras of type 1 (see [CN00]).
If p = 2, there is one additional family of algebras of type 1 (see [Jur05]).

Algebras of type 1 do not exhaust the possibilities of graded Lie algebras of maximal
class. For instance, one can consider those graded Lie algebras that are generated by the
first and second homogeneous component, with all homogeneous component of dimension at
most 1. These are of maximal class, and have been called algebras of type 2 in [CVL00]. In
characteristic zero, Shalev and Zelmanov [SZ97] proved that the only infinite-dimensional

algebras of type 2 are

My = <ei : [eiel] =€y ViZ>

9

M = {e1,es :[eseles] =0 Vix>1),
3

=
[eieg] = €42 Vi 2

eiej]] =0 Vi,j>3)
and the positive part of the Witt algebra, namely

W+ = <€Z‘ : [eiej] = (2 —j)€i+j Vi,j = 1> .

iii



Introduction

These algebras are graded by assigning degree i to each element e;.
In odd characteristic, Caranti and Vaughan-Lee [CVLO00]| proved that M and M, are

still algebras of type 2, but there are several more examples:
e The family of subalgebras of algebras of type 1;
e A family of soluble algebras;
e Another family of soluble algebras in characteristic 3 only.

In characteristic 2, the classification is more uniform (see [CVLO03] or Chapter 2 of this
thesis).

In [Ugol0], the author considers the case of IN-graded Lie algebras generated by the

first and n-th homogeneous component
o
L:=Lio@L,
i=n

with dim(Lq) = dim(L;) = 1 for every i > n. He refers to these as algebras of type n. Over
fields of positive characteristic greater than 2n, the author generalizes some of the results
of the case n = 2.

In this thesis we consider the case of infinite-dimensional algebras of type p over a field
of characteristic p, providing a complete description of them. The resulting classification is
a generalization of the classification of algebras of type 2 in characteristic 2.

The structure of the thesis is the following: Chapter 1 introduces the reader to the basic
definitions and notations. In Chapter 2 we discuss the most important properties of algebras
of type p in characteristic p in comparison to those of algebras of type 1, as well as stating
the main result of this thesis, namely the classification theorem. The remaining chapters
are devoted to proving that theorem: Chapter 3 reduces the possibilities on the length of
the first constituent (see Chapter 2), Chapter 4 proves the uniqueness of the algebras of

type p appearing in the classification theorem, and Chapter 5 provides the existence.

iv



Chapter 1

Preliminaries

This preliminary chapter introduces basic definitions and notations, as well as recalling
some well-known identities involving binomial coefficients and their evaluation modulo a

prime.

1.1 Graded Lie algebras of maximal class

Let IF be a field of arbitrary characteristic. An algebra L over F is a Lie algebra if the

product satisfies
(i) x-x =0 for any x € L;
(ii) the Jacobi identity: - (y-2)+y-(z-z)+z-(x-y) for any z,y,z € L.

We use the bracket notation instead of the above one so that, for instance, the Jacobi
identity will be written as
[z[yz]] + [y[za]] + [z[zy]] = 0.
As a direct consequence of (i) the product is anticommutative, that is, [xy] = —[yz]| for any
z,y € L.
In what follows we will be dealing with iterated Lie brackets taken in the left-normed
notation, namely

[zyz] = [[zyl2],  and  [yz"]:= [y

The following generalized Jacobi identity will be useful in computing those iterated brackets:

n
il i, i
elyal) = 3o (7 ) ety
i=0
A Lie algebra L is said to be G-graded, where G is an arbitrary abelian group, if the

additive group of L is a direct sum L = @ . Lq such that [LyLp] C Lgyp, for all g,h € G.

geG



1. Preliminaries

The subspaces L, are usually referred to as homogeneous components of L, regarded of
degree (or weight) g. Moreover, any element z € L belongs to one - and only one -
homogeneous component L, for some g € GG, and we say = is an element of degree g. In

this thesis we consider Lie algebras graded over the positive integers, namely of the form

meaning that L is actually Z-graded with L; = {0} for every ¢ < 0. From now on, when
talking about a graded Lie algebra without further specifications, we implicitly mean that
the grading is taken over the positive integers.

A finite-dimensional Lie algebra M is of maximal class when the codimension of the Lie
powers M is precisely i for 2 < i < dim(M). More generally, an infinite-dimensional Lie
algebra M is of maximal class when the codimension of M is precisely ¢ for all 4 > 2 and
M is residually nilpotent, namely ), M* = {0}.

One can grade an algebra of maximal class M with respect to the filtration of the M?®:
for all 7 > 2, let

L;:= Mz' / Mi-{—l

and consider
[ee]
L:=EL.
i=1

The resulting Lie algebra L is graded and of maximal class, with dim(L;) = 2 and dim(L;) <
1 for all ¢ > 2. Furthermore, L is generated by its first homogeneous component, namely
L;. A graded Lie algebra satisfying these conditions is called algebra of type 1 in [CVLOO,
CVLO03].

Viceversa, a graded Lie algebra does not need to be an algebra of type 1 to be of maximal

class. For instance, consider a graded Lie algebra

o
L=Lio@L
i=n

generated by L; and L, for some n > 1. If dim(L;) = 1 and dim(L;) < 1 for every
i > n, then L is of maximal class. In [CVL00, CVLO03] the authors addressed the above
kind of graded Lie algebras of maximal class in positive characteristic when n = 2, and
they called them algebras of type 2. As a natural generalization, in [Ugol0] the author
calls those algebras with arbitrary n algebras of type n. We remark that, restricting the
attention to infinite-dimensional algebras of type n, then every homogeneous component
has exactly dimension 1 (except the first one, when n = 1). Furthermore, these algebras

are just-infinite, that is, their proper quotients are all finite-dimensional.



1. Preliminaries

In this thesis we focus on infinite-dimensional algebras of type p over fields of positive
characteristic p. Therefore, except when explicitly stated otherwise, IF' is a field of positive
characteristic p, and every Lie algebra is considered over I and has infinite dimension.
From Chapter 3 onward, we will assume p is odd, since a complete discussion of algebras

of type 2 in characteristic 2 can be found in [CVLO03].

1.2 Binomial identities

As already mentioned, most of the computations of this thesis involve binomial coefficients
arising from the generalized Jacobi identity. The main tool to evaluate binomial coefficients

modulo p is due to Lucas ([Luc78]):

Lucas’ Theorem. Let a and b be two non-negative integers with p-adic erpansion a =
ag+arp+ -+ app” andb="by+bip+---+b,p", where 0 < a;,b; < p for every i. Then

(1) =11() e

In particular, for every positive integer h and for every non-negative integers u, v, s,t such

that v,t < p",
uph +ov\ _ fu) (v mod
sph+t) — \s/\¢t b

As an example of application of Lucas’ theorem we have that

(") = (FTEY) odn)

for any non-negative k, m < p, where q > p is a power of p. Indeed,

()= 05

by Lucas’ theorem. By definition of binomial coefficients

(p—’f> = k)=

ml
= (_n]z?m (mod p),
and
= U
_ (_Dm(l{:—kn?;!— 1)m



1. Preliminaries

Here we used K™ and k™ to denote respectively the falling factorial and the rising factorial

of k, namely
E2=k(k—1)---(k—m+1), E":=k(k+1)---(k+m—1).

Let us finish the section collecting a few elementary binomial identities that will be used

in the following:

e For any positive integer n

zn:(—w‘(?z) = 0.

i=0
This is a simple consequence of the evaluation in x = —1 of the polynomial identity
n
n T n
Z<Z>x =1+2z)" (1.1)
i=0

e More generally, for any positive integer n and any non-negative integer k < n
k
(n n—1
~1)’ = (—1)* :
S0 (1) =)
=0

We can prove that this is true by induction on k using the well-known identity ( kil) =

(";1) + (eri) indeed, the identity claimed above trivially holds for £ = 0, and

assuming by induction that it holds for a given k£ < n we have that
ARy n b n n
> (1) () = (h) + o))
—1 n
— (—1)k n _1)k+1
(),
-1
— (—F (T ).
0 (i

e For any integer n > 2

It is enough to take the derivative with respect to x of the polynomial identity (1.1)

to get
n n 4
Z ( ,>i1‘l1 =n(l4z)"!
i—1 N
Substituting x = —1, one gets the binomial identity claimed above.



1. Preliminaries

For any non-negative integers n, m, k

(1)) - (")

This is also known as Vandermonde’s identity, and is a consequence of the polynomial
identity
1+z)"(1+2)™ = (1 +2) .

Indeed, expansion of the left-hand side of the identity yields

1+2)"1+2)™ = (é (:f) x> (é (’Dx)
-2 (3 061)

while the right-hand side expands to
n—+m n+m
(14 z)"" = kE_O ( f >:L‘k

Vandermonde’s identity for all integers k with 0 < k < m + n follows by comparing

coefficients of z*. For larger integers k, both sides of Vandermonde’s identity are zero.



Chapter 2

Constituents of graded Lie
algebras of maximal class

In this chapter we start investigating the basic properties of algebras of type p and introduce
some tools to deal with them. In the third section the reader can find the statement of this

thesis’ main result, namely the classification theorem for algebras of type p.

2.1 Constituents of algebras of type 1

Suppose N = @i>1 N; is an uncovered algebra of type 1, which means that there is an
element e; € Nj such that [Ne;] = Njpq for i > 1. Choose y € Nj \ (e1), and define
recursively ey := [ye1], e;11 = [e;e1] for i > 2. For every i > 2 we then have that [e;y] =
Biei+1 for some f5; € F. The sequence (3;);>2 is called sequence of two-step centralizers of

N. It completely determines the multiplication table of N, as for any j,k > 2

— S (<) <k R 1) [ej+ayer ]

Clearly, the above definition of two-step centralizers depends on the choice of generators
of N. For instance, consider another generator y’ € Ny \ (e1), and write it as ¢y’ = Ay + dey
for some A € F* and 6 € F. We would then have that

ey = [y e1] = Nea, €1 = [ejer] = Aejyq for i =2



2. Constituents of graded Lie algebras of maximal class

and

leiy'] = Aleis Ay + dea]
= (/\ﬁl + 5) e;—f—h

meaning the the two-step centralizers with respect to the new generator y' are 3, := A\3; +0.
Therefore, one can introduce an equivalence relation on sequences of two-step centralizers
by saying that two sequences (f;)i>2 and (f]);>2 are equivalent if and only if there exist
A€ F* and 6 € T such that 5] = A\3; + ¢ for all ¢ > 2, and with this definition we can
say that two uncovered algebras of type 1 are isomorphic if and only if their corresponding
sequences of two-step centralizers are equivalent. Note that this amounts to scaling the

sequence by a non-zero factor A and eventually translating the sequence by a factor 9.

Remark 2.1. This definition of two-step centralizers for uncovered algebras of type 1 is
equivalent to the one given in [CMN97], where clearly the i-th two-step centralizers in the

classical fashion are precisely
Ci == Cn,(Ni) = (y — Biex).

Consider now the sequence of two-step centralizer (5;);>2 with respect to a fixed gen-
erator y € N1 N\ (e1). Suppose By = 3 = --- = f,—1 but 5, # P2 for some n. Then the

sequence

527537~~~7/6n

is referred to as the first constituent of N, and the length is defined to be n. The other
constituents are defined recursively: if §;,...,[5; is a constituent already defined, and if
Bj+1 =+ = Bjtm—1 = Po but B, # Po for some m, then 311,..., Bj+m is a constituent,
of length m. It turns out (see [CMN97]) that the length of the first constituent equals 2¢

for some ¢ = p", h > 1. Furthermore, every constituent can only have length of the form
2q, or 2q—p® for some 0 < k < h.

Remark 2.2. Let N = @i21 N; be an uncovered algebra of type 1 and suppose, up to scaling
and translating, that its first constituent is given by 8o = ... = 8,1 =0, 8, = 1. Recall
that, by definition, this means that

leiy] =0 for 2 <i<n, [eny] = ent1.

The following graph represents the initial structure of N: it should be looked at from the
top to the bottom, in the sense that each line represents the generators of a homogeneous
component of N, namely e; and y for the first, and e; for the i-th. Going from a ho-

mogeneous component to the following one, we draw an edge between the corresponding



2. Constituents of graded Lie algebras of maximal class

generators e; and e;11 which is pointing to the left if e; 1 can be obtained only as a bracket

of e; and e, and pointing to the right if [e;y] = ye;4+1 for some v # 0.

€1 Yy

Now, let J := [NN] = D},>, Np- Looking at the picture above we can see that

7= P N

h>n+1

as one can also check explicitly: clearly e, ¢ J?, while

ent1 = [eny] = —len—1[yer]] € J

Therefore, there is a one-to-one correspondence between the quotient J/J? and the first
constituent as defined above. It is an easy remark to note that, for any ¢ > 1, the Lie powers
J+1 correspond exactly to a change of two-step centralizer, in the sense that if v; = 3,
denotes the last two-step centralizer of the i-th constituent, then J*t! = @@m 41 V. This
leads us to the equivalent definition of i-th constituent as the quotient J!/J*! for any
1 > 1. Moreover, the length of the i-th constituent is equal to the dimension of the quotient
J/JH for every i > 1, while the length of the first constituent equals dim(J/J?) + 1.

Of course, this equivalent definition may be given in more general situations, such as

algebras of type p or even non-graded algebras of maximal class. Nonetheless, we believe it
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is recommendable to slightly refine it when dealing with algebras of type p, as we will soon
see.

2.2 Constituents of algebras of type p

Starting fron an uncovered algebra N = @i>1 N; of type 1, let Ly := (e1), L; := N for
i > p. Putting L :== L1 & D,
with generators e; and e,. Therefore for any uncovered algebra N of type 1 there exist a

L;, the resulting graded subalgebra is an algebra of type p

subalgebra which is of type p. We remark that we may also consider subalgebras of type
n for any positive integer n, but the equality between the characteristic of the ground field
and the type of the algebra will play an important role later in this thesis. We refer to
[Ugol0] for a discussion on the case of algebras of type n in characteristic p, provided n
is small with respect to p (precisely, 2n < p). Let us draw an approximative graph of an
algebra L of type p that is a subalgebra of an uncovered algebra of type 1:

€1 Yy

€2

En+1




2. Constituents of graded Lie algebras of maximal class

We may define the constituents of L < N in the same intrinsic way as the previous
section: put .J := [LL], and consider the Lie powers J’. For any i > 1 we say that the i-th
constituent of L is the quotient J/.J**1, and its length is exactly its dimension as long as
i > 1, while the length of the first constituent is n = dim(J/J?) + p. With this definition,
every constituent of L other than the first coincides with the corresponding constituent
of N, while the first constituent of L is strictly contained in the first constituent of V.
Nonetheless, the first constituent length of L equals that of N.

Let us inspect what this definition means in terms of two-step centralizers. As for
algebras of type 1, we may look at the adjoint action of the generator e,: for each ¢ > p
we have that [ejep] = et for some a; € I, and we refer to the sequence (o)i>p as
the sequence of two-step centralizers of L. Since L < N and es = [ye1], e;11 = [ese1],
an application of the generalized Jacobi identity gives the relation between the two-step

centralizers of L and N:

—1
ai€itp = lejep] = [e; [yelf 1]
p—1 1
- 1
S G [PEVE SR
j=0 J
p—1 p—1
—j-1
= eyt 7 = | D Bivi | eivps
=0 =0

hence o; = E?;é Bits-

From the theory of constituents for algebras of type 1 (see [CMN97, CN00]) we know that
if N is an algebra of type 1 in positive characteristic p, then all elements of a constituent
except the last one coincide with (3, the first two-step centralizer. Furthermore, p is a
lower bound for the length of all constituents, and combining these two facts we have that
if L < N is a subalgebra of type p as above, then the expression «; = E?;é Bi+j actually
contains either p constant terms (coinciding with 33) or p — 1 constant terms and only one
which differs from the others, which is the last term of a constituent of N. Therefore, if we

consider a constituent of NV

B2 = Bi = Bit1 = -+ = Bitn—1 # Bitn,

then oy = -+ = Qjyn—p = 0 and Qjpn—pt1 = -+ = Qiyn = Bitn — P2 # 0. Therefore, let us
look again at the graph above: up to scaling and translating, we are assuming that S, = 0
and B, = 1, which is the last element of the first constituent of N. Hence the sequence of
two-step centralizers of L begins with ap11 = ... =ap_p=0and ap_py1 = ... =, =1,
and this corresponds to the first constituent of N. Moreover, from the above considerations

we have that the sequence of two-step centralizers of L continues with repetitions of patterns

10



2. Constituents of graded Lie algebras of maximal class

of the form

for some 0 # A € F. We remark that here the hypothesis that L is of type p = char IF has
already played a role, since the two-step centralizers «; of an algebra of arbitrary type n
that is subalgebra of an algebra of type 1 would be related to the two-step centralizers 5;
of the latter by
n—1 =1
;= j;o(—l) < ; >/3i+j>

and, without assumptions on n, the lower bound on the length of the constituents of the
algebra of type 1 is too weak to get to the same conclusion as above.

Clearly, we can define two-step centralizers and constituents also for arbitrary algebras

L=Lio@PL

(57

of type p: if

is such an algebra, we can choose two generators e; € L1\ {0} and e, € L,,~ {0}, and define
recursively e; 1 := [e;eq] for i > p. For each i > p we then have that [e;e,] = e,y for some
a; € IF, and we refer to the sequence (a;)i>p as the sequence of two-step centralizers of L.
Similarly to algebras of type 1, by a straightforward application of the generalized Jacobi
identity one can deduce that the sequence of two-step centralizers completely determines
the multiplication table of L.

Again, this definition depends on the choice of generators of L. For instance, consider
another pair of generators €} = Aej of degree 1 and e;J = e, of degree p, for some A, € ™.
We then have that

/

e} = [ej_1€e] = X "Pue; foralli>p

7

and

leiep] = AP e, e)

2 /
= 350

/

meaning the the two-step centralizers with respect to the new generators are a;

= o
Therefore, one can introduce an equivalence relation on sequences of two-step centralizers
by saying that two sequences (¢ )i>p and (a});>, are equivalent if and only if there exist
A € F* such that o := Aa; for all ¢ > p, and with this definition two algebras of type
p are isomorphic if and only if their corresponding sequences of two-step centralizers are
equivalent. Note that this amounts to scaling the sequence by a non-zero factor A, but unlike
algebras of type 1 we cannot translate the sequence without altering the isomorphism type

of the algebra.

11



2. Constituents of graded Lie algebras of maximal class

Nonetheless, we can translate the sequence of two-step centralizers of L by a factor
0 € I getting another algebra of type p. This can be done similarly to [CVLO03]: let us
start from a given algebra L of type p, and regard it as embedded in an associative algebra
A. Let e; and e, be generators of L, [e;e1] = e;41 for i > p as customary, and («;);>p the
sequence of two-step centralizers. For every ¢ € IF we may consider the Lie subalgebra L(J)

of A generated by e; and e; := e, + 0¢,, where é, := e} € A. Then

[eie;] = (e, ep + 0€p)

= [eiep] + dleiéy]
= wj€itp + leiel]
= (qi + 6)€itp.

/

Furthermore, [e],

e1] = epy1, hence it follows that

LO)=Li& () e P L

!

is an algebra of type p, with sequence of two-step centralizers o

that

:= a; +d. We have proven

Lemma 2.3. Let L be an algebra of type p over a field IF of characteristic p, with sequence
of two-step centralizers (o;)i>p. Then for any § € I there is an algebra of type p with

sequence of two-step centralizers (a; + 0)isp.

Remark 2.4. (i) Let M be the (unique) metabelian algebra of type 1, and let L be its
subalgebra of type p. Then the sequence of two-step centralizers of L has constant
value a = 0, and any translated algebra L(J) has sequence of two-step centralizers of
constant value §. Note that L(§) is not isomorphic to L for any § # 0, since this can
happen if and only if there exist A € F* such that Aa = « + §, which would imply
0 = 0. On the other hand, different choices of & # 0 lead to isomorphic algebras since

in this particular case that amounts to different scalings of the algebra.

(ii) If L is an algebra of type p with non-constant sequence of two-step centralizers (o),
then L(J) is not isomorphic to L unless 6 = 0, since this can happen if and only
if there exist A € * such that Aa; = a; + 60 for any i > p, meaning that («;) has
constant value 5

o = ﬁ
Let us now give a definition of constituents for arbitrary algebras of type p that gen-
eralizes the one we just gave for subalgebras of algebras of type 1. One may be tempted

to adopt the same intrinsic definition as that of algebras of type 1, namely saying that the

12



2. Constituents of graded Lie algebras of maximal class

i-th constituent of L is the quotient J/J**! for any i > 1, where J := [LL]. Equivalently,

the two-step centralizers associated to the first constituent would be of the form
0,...,0,an—py1,...,0p

with a,—pi1 # 0, and its length would be n = dim J/J? + p. Recursively, if a;,...,q; is a
constituent we have already defined, and if aj41 = -+ = ajj1m—p = 0 but aj1m—pt1 # 0,
then we would say that a;i1,..., a4, is a constituent of length m. This is actually how
constituents for algebras of type 2 over a field of characteristic 2 were defined, and we will
refer to the above as fake constituents. The reason for the unpleasant 'fake’ label is easily
explained: for instance, let us consider the first fake constituent of an algebra of type p,
namely

0,...,0,n—pt1,-..,0n.

By definition, the only information on the tail of the fake constituent is that o, —p1 # 0,
while the following two-step centralizers might be zero or non-zero. For example, we might

be in a situation where a,, = 0, namely
07 s 707 On—p+1y---50n—1, 07

thus it would be preferable to consider «,, as an element of the second constituent instead,
and so on going backwards until we get the last non-zero element of the first fake constituent,
say a,. # 0. Therefore, we refine the definition of constituent for algebras of type p as follows:
suppose that apy1 = ... = a,—p = 0 but ay,—p41 # 0, and let » < n be maximal with the
property that a,. # 0. Then we refer to the subsequence

0,...,0,n—pt1,--.,0p

as the first constituent, which we regard of length r and 0-length n — p. Recursively,
suppose o, ..., q; is a constituent we have already defined. If aj11 = -+ = ajypm—p =0
but aj4m—pt+1 # 0 and s < m is maximal with the property that a1 # 0, then we say the

subsequence
Ajt1y o Ajtm—ps Xj4m—p+1;- -+ Xjts

is a constituent of length s and 0-length m — p. The following graph represents the initial
structure of an algebra of type p up to the third constituent, provided that

0,...,0,an—pt1,.-.,0r, and 0,...,0,Qpm—pti,---sQrts

are the first and the second constituent, respectively:

13



2. Constituents of graded Lie algebras of maximal class

€1

€rtm+1

/
/
/. Er+mtp

’
’
’
.
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2. Constituents of graded Lie algebras of maximal class

Let us also rephrase the above definition of constituents for algebras of type p implicitly,

refining the one corresponding to fake constituents. Consider and algebra of type p

L=Lio@L

i>p

and put J := [LL] = €, Li- The first fake constituent was defined as J/ J?, while we
now define the first constituent to be

¢y = J/JS/Z(J/J3)-

The length of the first constituent is dim(€;)+p. To have a better insight of the definition,

we advise the reader to relate to the last graph we draw: using that notation, we have that

J= @) P=@Ple) ad F= P (@)

i=2p+1 izn+1 izr+m-+1

hence
r+m

7)1~ @ (e,

i=p+1
where the right-hand side is clearly intended modulo J3. Furthermore,

r4+m

2(J17%) ~ P (e,

i=r+1

hence
T

Q:l ~ @ <€2>

i=p+1

as desired. We define the second constituent as
€y = I/Cr, (J/J%),

where Iy := Z(J/J?) @ J3/J*, provided we regard Z(J/J3) as embedded into J/J*. The
length of the second constituent is precisely dim(€3). To relate to the picture above, let
J4 = D.>ry1(€i) for some k > 7 +m +p. Then

k k
L~ P () and CL(J/JH~ @ (e,
i=r+1 i=r+s+1
thus
r+s
&~ P (e)
i=r+1

15



2. Constituents of graded Lie algebras of maximal class

It is now clear how to define recursively the following constituents: for any k > 2, the k-th

constituent is

€ = I;/Cr (J)TF2),

where Iy, := Cy,_ (J/J*1) @ JF+1/J*+2 Although this definition of constituent may be
suitable when dealing with more general algebras of maximal class, the equivalent explicit
definition for algebras of type p in terms of two-step centralizers is the one that will be used
through the rest of this thesis.

We remark that if L is the subalgebra of type p of an uncovered algebra of type 1, then
all constituents of L coincides with the corresponding fake ones, thus this new definition
really generalizes the previous one. Moreover, as we previously observed, every constituent
of such an algebra is ordinary ending in A, i.e. is of the form

0...0A...A
——

p

for some 0 # A € . The converse also holds (see [Ugo10]), hence:

Proposition 2.5. An algebra of type p is a subalgebra of an algebra of type 1 if and only

if all its constituents are ordinary.

On the other hand, there are (infinitely many) examples in which the constituents of
an algebra of type p do not coincide with its fake constituents: for instance, consider the
algebras of Albert-Frank-Shalev AF'S(1,b,n,p) with fixed p > 0, where the parameters b
and n are such that 1 < b < n, and n may also be infinite (see [Sha94a, CMN97, CN00]). For
any choice of b and n put ¢ := p’ and consider the subalgebra L of type p of AFS(1,b,n,p).
By Proposition 2.5 L has ordinary constituents, and since AFS(1,b,n,p) has only two
distinct two-step centralizers (see [CMN97]), so does L, meaning that every constituent
is ordinary ending in A = —1, up to scaling. As we previously observed, the length of
every constituent of the subalgebra L equals the length of the corresponding constituent of
AFS(1,b,n,p), therefore the sequence of constituent lengths of L is (see [CMN97])

n o0
- _9
a_9 a_9 a_9
<2p,p1’ ,2p—1,(pp ,2p)q ,pP > -

The notation used above is the one used by the authors of [CMN97]: for instance,
a71n’ az, ((Ig, a4)oo7
where a; are arbitrary elements and m,n are non-negative integers, denotes the sequence

al,...,a1,02,0a3,...,03,04,03,...,03,04,....

m n n

16



2. Constituents of graded Lie algebras of maximal class

Consider now the translated algebra L := L(1). Clearly, also L has only two different
two-step centralizers, namely &; = 0 or 1, and the sequence of two-step centralizers of L is

n oo
D

Pt
0...01...1 (o.”01.“1)q 0...01...1
N e e N e N e

g—p p-1 q—p D qg—p p—1

The sequence of constituent lengths of L is thus
"y °°
gtp—11{q* “,q—-1) ,

and every constituent is either ordinary ending in 1 of length ¢ or has length ¢ —1 (¢+p—1

for the first constituent) and is of the form

0...01...1.

We say that such a constituent is almost ordinary ending in 1.

2.3 The classification theorem

The classification of algebras of type 2 in characteristic 2 (see [CVL03]) roughly states that
every algebra of type 2 in characteristic 2 is obtainable translating a subalgebra of type 2 of
an uncovered algebra of type 1. This is not quite true for algebras of type p in characteristic
p > 2, since there actually exist a few algebras of type p which are not isomorphic to L(6)
for any § € IF and any subalgebra L of an uncovered algebra of type 1. For instance, for
any q = p" > p and any positive integer m such that m < p — 1 there exist an algebra L of
type p such that:

(i) the first constituent of L has length ¢ + m and is of the form

07 s 707 Ag—p+m+15-- -5 Xg+m,

where

m

N [+ =y, i m+ 1< h < p;
apth = 1, ifp<h<p+m

(ii) every other constituent of L is ordinary ending in 1, of length q.

We refer to Chapter 5 for an explicit construction of such algebras.

Nonetheless, let £ be the family of all algebras of type p having constituents as described
above, for any ¢ = p" > p and 1 < m < p — 1. Then the main result we will prove in this
thesis is the following:

17



2. Constituents of graded Lie algebras of maximal class

Theorem 2.6. Owver a field ' of positive characteristic p, let F be the family of algebras
of type p that are subalgebras of an uncovered algebra of type 1. Then every algebra of type
p over I is isomorphic to L(6) for some L € FUE and some § € FF.

When p = 2, this is exactly the classification result found in [CVLO03], since £ is empty.
Thus, we assume p is odd for the rest of this thesis, unless otherwise stated. Note that,
given an algebra L of type p, for the sake of proving Theorem 2.6 we may assume that
the length [ of its first fake constituent is not minimal, i.e. | > 2p. Indeed, by definition,
I = 2p would mean that the first two-step centralizer is not zero, namely ap41 = § # 0,
therefore one can simply replace L with L(—0) to obtain an algebra of type p with a null
first two-step centralizer.

The proof of Theorem 2.6 can be sketched as follows:

e Assume L has first fake constituent of length I > 2p. Then the only possible values
for [ are either 2q or ¢+ j, where ¢ > p is a power of p and j is a odd integer such that
1 < j < p. This is Proposition 3.2, and the next chapter is dedicated to its proof.

e If [ = 2q, then L is isomorphic to a subalgebra of an uncovered algebra of type 1.

This is proved in the first section of Chapter 4.

e If [ = g + p then every constituent of L is either ordinary ending in A of length ¢, or
almost ordinary ending in A of length ¢ — 1. Therefore, translating L by —\ one gets
an algebra with ordinary constituents, which by Proposition 2.5 is isomorphic to a

subalgebra of an algebra of type 1.

o Ifl =q+j for some j < p, then L € £. The proof of both this and the previous point

are addressed in the second section of Chapter 4.

One tool that will be useful to prove the classification theorem is deflation. Let L =
L1 & @, Li be an algebra of type p, and let L; = (¢;), [e;e1] = ;41 for i > p. Regarding
L as embedded in an associative algebra A, we may consider the Lie subalgebra N of A
generated by z := €} and ep. 1t is easy to see that IV turns out to be an uncovered algebra
of type 1, with Ny = (x,e,) and N; = (ep;) for i > 1. N is said to be the deflated algebra

of L. Note that, if (c;)i>p is the sequence of two-step centralizers of L, then

lepiep] = Qpi€p(i+1) = Api epi]

shows that the sequence of two-step centralizers of N is given by ; = ay;.
Finally, let us record a simple fact which will be used in almost every computation we

will have to deal with:
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2. Constituents of graded Lie algebras of maximal class

Lemma 2.7. Let L be an algebra of type p over a field of characteristic p with generators
and two-step centralizers as above, and let a,b be two mon-negative integers. Then the

following relations hold:

0= 0 (§Janepis+ é(—l)i (?)awsn (2.1)

1=0

b
(b
0= aatbt2p Z(_1)2<i>aa+P+i +
=0
b+p
(b+Dp
_Oéb-i-pZ(_l)Z( ;
i=0

~oury é(—w (b) Carapsi (2.2

Proof. The proof is straightforward, since Relation (2.1) is just the expansion by means of

) Qatpt+i +

Lucas’ theorem of the anticommutativity relation in L, i.e.

0 = [ev4peatp] + [€atpeiipl-

Similarly, Relation (2.2) is just the expansion of the Jacobi identity

0 = [eatpesipep] — [€atpletrpep]] — [€atpepiip]-
O

We remark that Relations (2.1) and (2.2) are of weight a + b+ 2p and a + b + 3p
respectively. Furthermore, assuming without loss of generality that a < b, the first one
relates two-step centralizers from a1, to aqypip, While the second one relates two-step
centralizers from oy to auqpt2p. The general strategy in every computation in this thesis
is to use these relations with suitable choices of @ and b such that we can obtain non-trivial

relations between two-step centralizers of a given (fake) constituent.
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Chapter 3

Constituent lengths

This chapter is devoted to discussing the possible fake constituent lengths of an algebra of
type p. More precisely, in the first section we give upper and lower bounds on the lengths
of every fake constituent other than the first one, and these bounds depend only on the
length of the first fake constituent. In the second section we prove that the length of the

first fake constituent can assume only certain values.

3.1 Upper and lower bounds for the fake constituent lengths

Let L be an algebra of type p with generators e; and e, and associated sequence of two-
step centralizers (o;);~p. For later convenience, let us introduce a total ordering on two-step

centralizers by saying that o; < «; if and only if 7 < j. Suppose the first constituent is
0,...,0,q1_pg1,...,Qp,

with ag_py1 # 0 and 7 < [ such that o, # 0 and a,11 = ... = a; = 0. Equivalently, r is
the length of the first constituent and [ is the length of the first fake one. We claim that
the O-length of every following constituent can be at most equal to the 0-length of the first
constituent, namely [ — p. Before proving that, we remark that this directly implies that
the length of every fake constituent after the first one is at most I: this is because clearly
the number of zeros at the beginning of a fake constituent is at most equal to the 0-length
of the corresponding (real) constituent, and the length of the fake constituent is exactly
equal to the number of zeros at its beginning plus p.

To prove the claim, let ay # 0 be the last element of a given constituent, and suppose

that the following constituent has O-length greater than [ — p, namely

Qg1 = -« = Upyl—py1 = 0.
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3. Constituent lengths

Consider Relation (2.2) with a = k —p and b = | — 2p + 1: we have that agipi2 =
pyi—p+1 = 0, while agyp = ag, # 0 and a4 = aj_py1 # 0, hence

l—p+1 [—2p+1
—-p+1 —2p+1
= —Ql—p+t1 Z < i )akJrz — Qg Z ( i Qktp+i

= —Q_pt10k 75 0,

a contradiction.
The following lemma yields a lower bound on the lengths of the fake constituents fol-

lowing the first one:

Lemma 3.1. Let L be an algebra of type p with first fake constituent of length | > 2p.
Then every fake constituent other than the first has length at least %

Proof. First of all, [epet,epet™] =0 for 0 < i < L — p, since the first fake constituent has
length .

Let us then proceed by induction on the constituents. Regarding the second fake con-
stituent, we have to prove that agy; = 0 for 1 < ¢ < % — p, and we do that by secondary

induction on 7. For i = 1 we have that

0 = les—p[ep, eperl]
= —[el_p[epel]ep]

= Q—p+104+1€Cl+p+1,
hence ay11 = 0. Assume by induction that ay; =0 for ¢ = 1,...r, where r < é — p. Then

0=[e— —p— r[epelvepeqfrl]]

= _[el—p—r[ep61+1]v epel]
= (=1)" u—p+1ler1, epel]
= Ql—p4+1%¥+r+1Cl+p+r+1,

hence oy4ry1 = 0.

Let us now consider a general fake constituent other than the first, written in the form

0)"'70>ak+1>"'7ak+p7
———

s

hence of length m = s 4+ p. By induction hypothesis we assume that this constituent has

length greater than % (ie. s> % —p), and we aim at proving that the same holds for the
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3. Constituent lengths

following constituent, or equivalently that a4, =0 for 1 <7 < % — p. We do that again

by secondary induction on ¢ and by means of similar computations: for ¢ = 1 we have that

0 = [ex[ep, eper]]
= —[ek[epe]ep]
= Q4104+ p+1€k+-2p+1,

hence aj4p4+1 = 0. Assume by induction that ajypy; =0 for i =1,...r, where r < % —p.
Then

0 = [ex—rlepel, epet ]

= —[ek,r[epeqﬂ], epel)
= (—=1) art1ertpr1, epel]
= O+ 10k +p+r+1€k+2p+r+1

yields a4 pir+1 = 0, which completes the proof. O

3.2 The length of the first fake constituent

As already anticipated, in this section we will prove that the length of the first fake con-
stituent can assume only certain values. More precisely, the main result we will prove is
the following:

Proposition 3.2. Given an algebra of type p over a field of positive characteristic p, the

first fake constituent can only have length of the form:
1. either 2q, where ¢ > p is a power of p,
2. or q+j, where ¢ > p is a power of p and j is an odd integer such that 1 < j < p.

Let L be an algebra of type p over a field of characteristic p with generators eq, e, and
two-step centralizers «; as costumary. Let [ and [l denote the lengths of its first and second
fake constituent, respectively. The first thing we easily notice is that [ has to be even, as a
consequence of Relation (2.1) witha =1—-2p+1 and b =0:

1—2p+1

0= Z (=1 ( i )ap+i+al—p+1

=0
= (1 + (—1)l+1> lpi1-

Consider now the p-adic expansion of [, i.e.
l=app" +ap_1p" '+ +ag, an#0.
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3. Constituent lengths

Since for any algebra of type p the fake length is at least 2p, we have that h > 1.

Let ¢ := p". In the following, we will prove that [ < ¢ + p or | = 2¢, thus proving
Proposition 3.2. Let us start by showing that [ < 2¢. Suppose on the contrary that [ > 2gq.
Then (see previous section) lg > é > ¢, so that in particular

a4l = ... = Oél_|_q_p+1 =0. (31)

In the p-adic expansion of I, let ¢ := ap_1p" ' + - - + ag, so that we can write | = anq + ¢

with 0 < ¢ < q. We now distinguish two cases:
e If p < ¢ < g, consider Relation (2.1) with a = (aj, + 1)¢ —pand b=c—p+ 1:
(an+1)g—p c—p+1
((an +1)g—p fe—p+1

> (—1)Z< ; Qepryi+ Y, (=1) ; ¥(ap+1)q+i = O-
i=0 i=0

The second sum vanishes since all two-step centralizers contained in it are null:

Yap+1)g+i = Qangtg 7~ Qapgte = QU

and
Yap+1)g+i = Qapgtetq—p+l = Qliqgptl-
In the first sum only the terms with ¢ = 0 mod p have non-vanishing binomial coef-

ficient, hence we get

0= (—1)ahq—P(

a contradiction.

(ap +1)g—p

« o1 = (=19 Py 0,
ang —p > apq+c—p+1 ( ) h&—p+1 7é

e If 0 < ¢ < p, consider Relation (2.1) with a = apq and b = ¢ + ¢ — 2p + 1 this time:

anq (ang g+c—2p+1 gt e—2p+1
Z(_1)2< . >O‘q+c—p+1+i + Z (_1)Z< . )aahq+p+i = 0.

: ? ° 7
=0 1=0
The second sum vanishes since all two-step centralizers contained in it are null:
Qapgtpti = Qapg+p = Qapgte = N
and
Qapgtpti = Qapgtetrq—ptl = Qltg—p+l-

In the first sum only the terms with ¢ = 0 mod ¢ have non-vanishing binomial coef-

ficient, hence we get

_ a o
0= (—1)len—1a <ah i 1>aahq+cp+1 = (=1)*apoy_p+1 # 0,

a contradiction.
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3. Constituent lengths

We are left with proving that [ cannot be in the range (q + p, 2¢), so assume by contra-
diction that ¢ + p <l < 2¢q. Note that g > p, since [ is always greater than or equal to 2p
by definition. We claim that

a_;j=0 forj=-1,0,...,0 —q—p.

This is trivially true for j = —1, hence assume by induction that a;_; = Oforall -1 < j <m
for a fixed m <1 —q— p. Consider Relation (2.1) witha=Il—p+1landb=1—q¢—p—m:

7

I—p+1 (l—p+1 l=q—p—m fl—q—p—m
> (—1)Z< ; >al—q—m+i + D (—1)Z< : >a1+1+z' =0. (32

=0 1=0

Let us start by looking at the second sum: it contains two-step centralizers starting from
aj+1, which does not lie in the first constituent, until ;1 (_4_y41)—p- The lower bound on
the second fake constituent length, i.e. Iy > %, implies that

al+1:...:al+%_p:0.
l

29
1 <2g+2m — 2, and this is true since [ < 2¢ (and [ is even). Hence, Relation (3.2) is

Therefore the sum vanishes as long as | — g —m + 1 < or equivalently as long as

l—p+1

(l—p+1
Z (_1)Z< i >alqm+i = 07
i=0

and in this sum the only non-vanishing two-step centralizers are the ones at the end of the

first constituent, i.e. the ones for g—p+m+1<i < g+m. But wheng—p+m+1<i<g,

(l—p—i—l) B <q+l—q—p+1> B <l—q—p+1> _0
i B i B i -

since 1l <l—q—p+1<q—p+1<i. Also, by induction hypothesis, a;_q—m+; = 0 when
1 > ¢, so the only non-zero addend of the sum is the one for i = ¢:

[ — 1
_‘< z_% )CU—WL::_fU—nLZZO

Hence oy_; = 0 for all j <[ — ¢ — p as stated, and this yields a contradiction as long as
I > g+ 2p — 1: indeed, if that is the case, then in particular the previous statement holds
for j=p—1,ie. 0# y_pt1 =0.

On the other hand, if ¢ +p <1 < ¢ + 2p — 1 this is not enough to get a contradiction,
and the use of Lemma 2.7, Relation (2.2) will be needed. So let us assume [ = ¢+ p + k

for some 0 < k < p — 1. Since [ is even, k must be even too, hence 2 < k < p — 3. Recall
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3. Constituent lengths

that by the previous result we know that oy, = agipt1 = -+ = agpptr = 0, hence the
first fake constituent is of the form

O,...0,0é k+1ly:--y & ,170,...0,
q+k+ q+p
k+1
where a1 # 0. We will get a contradiction by proving that agqp—r = 0 for 0 < r <

p—k — 1, and to do this the following lemma will be needed:

Lemma 3.3. Let L be an algebra of type p as above, with first fake constituent of length
l=q+p+k, 0<k<p—1. Then q— 2 is an upper bound for the second fake constituent
length.

Proof. Let Iy denote the length of the second fake constituent. Put v := ag,444r4+1 and

Yy = Qytqtk+2, SO that the second fake constituent begins with
Qgtptk+1 = 0,...0,72, Pyév
la—p

where 2 # 0. From the computation in the previous section we already know that lo <
q+p—1, but we can easily refine that upper bound to Il < ¢ by using Relation (2.2) with
0<a<ly—p—1land b=qg—p+ k+ 1: for such choices of a and b we have that

Qgip+k+1 = Qatbtop = Qytgrk = V2,

hence ag4pt2p = 0. Relation (2.2) then yields

k+1 —p+k+1
q+k+ g4kt g—p+h+ la—p+hl
Xg+k+1 Z (1) i Qa+p+i + Qatp Z (=1) i Qay2pti = 0,
1=0 =0

but either cg4p = 0 or agq2p4; = 0 for all i < ¢ —p+k+1, hence the second term vanishes.
Since ag4p41 # 0, we have that

a+h+1
(a+k+1
> (-1 (q . >Oéa+p+z' =0

; (3
=0

for all @ < ls — p — 1. Now, if we assume that Iy > ¢, then the previous relation holds in

particular for a = ¢ — p, that is,

q+k+1
0= Z (1) ( . )anri = —agtk+1 7 0,

X 1
=0

a contradiction.
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3. Constituent lengths

To complete the proof we have to show that ls # q,q¢ — 1. Suppose first that Iy = g and
consider Relation (2.2) with a = ¢—p+k and b = ¢ — p+ 1: for these choices we have that

Qatbi2p = Q2q+k+1 = Y2 7 0,

Qatp = Qpgp = 0.

Hence we get

q—p+1
p +1
0= Z < )aq+k+z‘

= —72Qq4k+1 7 0.

If on the other hand we assume Iy = ¢ — 1, the same relation we just used yields

q—p+1
p +1
0= Z < )aq+k+z‘

- _’YQO‘q-I—k-I—ly

hence 74 = 0. We can then use Relation (2.2) witha =¢g—p+k+2andb=qg—p—1to
get

qg—p—1

p—
0= agir+2 Z

¢=p- 1
Qgtptk+2+i
=0

= —720g+k+2-

This is a contradiction since agyry2 # 0: just use Relation (2.1) with a = ¢ —p+k+2 and
b=0 to get

qg—p+k+2
i

0= > (-1)

1=0

>04p+z‘ + Qgt+k+2
= 20g4k+2 — (K + 2) g1,

_ k+2
hence g2 = 2 ag k41 # 0. O

We can now prove that agyp—r = 0 for every r such that 0 < r < p—k — 1. This is
trivially true when r = 0, so fix r such that 0 < » < p—k — 1 and assume by induction that
Qgip—s = 0 whenever 0 < s < 7. Let 72 := ayy4g+k+1 and 75 = o, q1k+2 like in the proof
of the previous lemma, so that o is the first non-zero two-step centralizer of the second

constituent. Recall also that I < ¢ — 1 as proven there.
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3. Constituent lengths

If r is even, consider both Relation (2.1) and Relation (2.2) witha =1y —2p+k+r+1
and b = q¢ — r. The first relation yields

a

0= Y0 (§ )i+ ‘g(—l)i (" awsns

1=0

q—r

ifd—T

SCTTERD DY G T (33
=0

where we made use of the induction hypothesis and the fact that in the first summation

Ogtpp—rti = Qloyg—p+k+1 < Y2 On the other hand, the second relation is

q—r q+p—r
(q—r ifq9+Dp—rT
0= E (—1)Z< ; )aa+p+i — Qgtp—r E (-1 < i )aa+p+i7 (3.4)
i=0 =0

since Qgtp = Qpy—pihtr+1 < Qg—pthtr = gt and hence agq, = 0. Substituting (3.3) in

(3.4) yields
gt+p—r

(qg+p—T
0=gspr +agspr 3 0 ("0 Yawipun (35)
=0

and the summation is easy to evaluate: by Lucas’ theorem it is equal to

S (77w~ D0 (77 awsarnes

=0 1=0

and the first summation is null since og4p4; < g4 for every ¢ < p —r, while in the second
summation only the last term survives, namely (—1)P~"v,. Putting everything together,
Equation (3.5) yields

0 = y20q4p—r + (_1)p_T+1’Y204q+p—r
= 272Qq+p—rs
hence agqp—r = 0.

If r is odd, consider both Relation (2.1) and Relation (2.2) witha =1lo —2p+k+7+2

and b = ¢ — r this time. Similarly to the previous case, the first relation yields

a

0= Y0 (§ )i+ ‘g(—l)i o [

1=0

q—r
ifd—T
= Qg+p—r t Z(_l) < i )aa+p+i-
=0
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3. Constituent lengths

On the other hand, the second relation is

q—r (q—r q+p—r A q—|—p—r
0= (-1 ("7 Jawsps = agir 3 V(T i
=0 1=0
and combining both we get
q+p-r atp—r
0= Yh0gipr + Qgipr 3 (_1)Z< i >aa+p+i. (3.6)

=0

Let us evaluate the summation by means of Lucas’ theorem like before: it is equal to

pif(_l)z‘ (p ; r) Qgtpti — g(—l)i <p ; T> Gotatpti

=0 1=0

and the first summation is null since agqpti < Qgyr4+1 for every ¢ < p — r, while in the
second summation only the last two term survive, namely (—1)P~""(p — r)vya + (=1)P~"~5.
Putting everything together, Equation (3.6) yields

0= 'Yéanrpfr + (_1)pir(p - T)’YZO‘qupfr + (_1)pir+17§aq4rpfr

=(p— 7”)720411—1—1)—7"7
hence agyp—r = 0 also for every odd r < p — k — 1. Therefore agyp,—, = 0 for every

r < p—k —1, so that in particular agyr4+1 = 0, a contradiction. This completes the proof
of the main result of this section, namely Proposition 3.2.
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Chapter 4

Algebras with given first fake
constituent length

In this chapter we discuss the uniqueness of algebras of type p with first fake constituent
of given length [, or equivalently with first constituent of given O-length | — p. In the first
section we consider the case | = 2¢, and it will turn out that the first fake constituent
actually coincides with the first constituent, and such algebras are actually subalgebras of
algebras of type 1.

In the second section we address those algebras with first fake constituent length [ =
q + j, where j is an odd integer such that 1 < 5 < p. It will turn out that, although the
cases j # p and j = p share some common features regarding the initial structure of the
algebra, they are substantially different when it comes to the structure of the constituents

after the first ones: we will prove that:

e If j # p, then there are at most two algebras of type p with first fake constituent of
length g 4 j. One of them has first fake constituent actually coinciding with the first
constituent, while the other has first constituent of length ¢ 4+ 7 — 1. In fact, if j =1
only the first case can happen. A posteriori, this can be rephrased as follows: there is
at most one algebra of type p with first constituent of length ¢ + m for every m such
that 1 <m <p—1.

e If j = p, then the first constituent is almost ordinary of length ¢ + p — 1 ending in
A, and every other constituent is either ordinary of length ¢ ending in A, or almost
ordinary of length ¢ — 1 ending in A. It is then a straightforward consequence to see
that L(—\) has ordinary constituent and is thus isomorphic to a subalgebra of an

algebra of type 1.
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4. Algebras with given first fake constituent length

4.1 First fake constituent length 2g

Let L be an algebra of type p with first fake constituent of length 2q, where ¢ > p is a
power of p. Equivalently, the first constituent has 0-length ¢ — p, and up to scaling it starts
with
Qpr1 = =agqq p=0, ay pr1=1
First of all, let us show that apy = 1, meaning in particular that the the first constituent
coincides with its fake counterpart. This is a simple consequence of Relation (2.1) with
a=2¢—p+1and b=0:

2q—p+1
(24— p+1
0= 3 o (TP e

1=0

2q—p
(2q—p+1
- ¥ <—1>2( T

i—2q72p+1

q-— p +1
== Z Q2g—p+i

= Q2q—p+1 — Q2q
=1- Ozgq.
As a consequence of the lower bound on the length of the second fake constituent, the
first constituent is ordinary ending in 1. Indeed apq—p41 = 1 by assumption, hence suppose

that agg—ptn = 1 for h < p—1 and let us prove the claim by induction. Relation (2.1) with
a=2q—p+1and b= h yields

2q—p+1 (2 —p+
0= Z (_1)Z< ; >O‘p+h+z+z < >O‘2q+z+1

=0

2q—p—h
i(2¢—p+1
- > (T e

1=2q—2p—h+1 L
p
( qa—p+1
= (=)") (1) et
D T A [
= Q2¢—p+h — X2g—p+h+1
=1 —a—ptnt1;

since by Lucas’ theorem

g—p+1 | =1, ifi=hh+1;
g—2p—h+i) |0, otherwise.
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4. Algebras with given first fake constituent length

Hence the first constituent is ordinary ending in 1 as claimed, i.e.
Ozgq_p_H == Ozgq =1.

We now want to show that also every other constituent is ordinary, thus obtaining that
L is a subalgebra of an algebra of type 1 by means of Proposition 2.5.

Proceeding by induction, assume we have already proved this up to a certain constituent,
ending as

Qmep =+ = Qp—1 = X € F".

Let [ be the length of the next fake constituent, and recall that ¢ < 1 < 2¢q. Suppose first
that [ = ¢q, i.e.

AUm = ... = Omtq—p—1 = 0, Am4-qg—p # 0

and let

AUmtq—p = Ao, Omtq—p+1 = A, oy Om+q—1 = )\pfl-

We remind that the following fake constituent has length at least ¢, meaning that

Oém+q = ... = Oém+2q_p_1 = 0.

For every h =1,...,p— 1, consider Relation (2.2) witha =m —2p—1and b = 2q—2p+ h:
we have that

Qatb+2p = Om429—2p+h—1 = Cm42¢—p—1,

thus agqp40p = 0. Also, agyp = 0 and oy = agg—pyn = 1, hence the relation yields

2q—p+h
i(2a—p+h
0= Z (-1 < . )am—p—l—i—i

; (3
=0

ST (T

=1

_ )\Zh:(—l)i (f;) Ny g(—ni <};> At 4 At
=— zh:(—l)i <};> Nic1 4 Ap_1.

Since this relation holds for every h = 1,...,p — 1, we obtain that \g = Ay = ... = A\p_1
and hence the constituent is ordinary, as claimed.

Suppose now [ > ¢, so that in particular

Oy =+ = Qpyg—p = 0.
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4. Algebras with given first fake constituent length

We first extend this to show that ay,4¢—pin = 0 for b =0,...,p, so that [ > ¢+ p. We
do that by induction on A: the claim is trivially true for h = 0, so let us fix 1 < h < p
and assume the result holds for every j < h. If h < p, Relation (2.2) with a = m — 2p and
b=gq—p+ h yields

—p+h
q—p+ <q—p+h

0= amgpn 3 O (T Y () Ay
1=0

h

= Om+q—p+h Z(_l) <Z>)\ + (_1)h+1)\am+qu+h
=0

= (_1)h+1/\am+q—p+ha

while if h = p the same relation yields 2Aa;,+4 = 0. In any case, p4q—p+n = 0 as claimed.

Let us now look at the end of the constituent, and suppose

Om+l—p = Ao 7& 0, Amtl—p+1 = A, ey 1 e )\p—l-

Also, recall that the following fake constituent has length at least ¢, that is,

AUyl = ... = Oém+l+q_p_1 = 0.

For every h =1,...,p — 1, consider Relation (2.2) witha=m+Il—qg—p—h—1and b=
2q—2p+h: we have that a2, = Wntirg—p—1 =0, apyp =1, and agqp = Qpyi—g-h—1 =10
since

m<m+Il—qg—h—-1<m+q-—2.

Therefore, the relation yields

2q—p+h
0= Z (-1) < I p >am+l—q—h—1+i

7

i=0
h
- Z (-1) i Omtl—q—h—1+i
1=q¢—p+h+1
P
, 2q — h
- Z(_l)lJrh( aop > Ai-1-
— g—p+h+i

By Lucas’ theorem we have
<2q—p—|—h>_ 0, fori=1,...,p—h—1;
q—p-l-h-i-l - (p]iz‘)u fori:p_h7"'7p7
hence the following relation holds for every h =1,...,p — 1:

h

> (-1 <f;> Ap—i—1 = 0.

1=0
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4. Algebras with given first fake constituent length

This yields Ag = Ay = ... = A\p_1, thus proving that also in this case the constituent is

ordinary.

4.2 First fake constituent length ¢ + )

Now let L be an algebra of type p over a field of characteristic p with first fake constituent
of length [ = ¢+ j, where ¢ > p is a power of p and j is an odd integer such that 1 < 7 < p.
Equivalently, this means that L has first constituent of 0-length ¢ — p + 7, i.e.

Qpti = 0 foriq < q—p-+ j, Qg—p+j+1 75 0.

First of all, we want to refine the upper and lower bound on the length of the second
fake constituent. Thus, consider Relation (2.1) witha =¢—p+j+ 1 and b = 0 for j # p:

q—p+j+1 .
i(a—p+j+1
o= > (T  a

7
=0

Lo i+
= Qg—p+j+1 T Z(_1)2< - >O‘q+z‘,

i=1 !
that is,
j .

Z(_l)i <j —: 1> Qgti = —Qq—ptj+1 7 0. (4.1)

i=1
In particular, this equation ensure the existence of a positive integer k£ < j such that
gtk # 0, and without loss of generality we may assume k is maximal with this property,
so that the length of the first constituent of L is exactly ¢ + k. Note that, although
Equation (4.1) is false for j = p, the consequencestill holds, since by definition ag41 # 0
in that casee. Furthermore, k < p since gy, = 0: the deflated algebra of L has two-step
centralizers awp, = a3, = ... = oy = 0, hence by the theory of algebras of type 1 a two-step
centralizer of the form «; different from zero cannot occur before ay,.

This simple observation allows us to refine the lower bound on the length of the second

fake constituent:

Lemma 4.1. Let L be an algebra of type p with first fake constituent of length | = q + 7,
where j is an odd integer such that 1 < j < p. Then the second fake constituent of L has
length at least ¢ — 1.

Proof. Let lo denote the length of the second fake constituent and let v2 := ay,4—p1 # 0,

V9 = Qy+i—p+2, 0 that the second fake constituent starts with

!/
Qgrk+1 = 0" .. ’0772772‘
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4. Algebras with given first fake constituent length

Assume Iy < ¢ — 1, and let k& be the integer introduced before. To get a contradiction, we
just need to use both Relation (2.1) and (2.2) with b =¢ — p+ k and

_Jlb+l—-q—2p—Fk+1, ifkisodd;
b+l —q—2p—k+2, otherwise.

In both cases, the first relation yields
q—p+k
(4—p+k

> 0 (" v = —agen (42)

i=0
Regarding the second relation, first note that

Qatp 2 Ay tl—q—p—k+2
< Q—p—k+1
and thus aq4p, = 0. Substituting Equation (4.2) in the second relation yields:
e if £k is odd,

(A (q+k
0= =204k — Qgtk Z(—l)l< i >04a+p+z‘
i=0

= —oagik + (—1)Fy20444
= —2’)/206q+k # 0,

a contradiction.

e if k is even,
q+k
0 = =Ygk — agrr Y _(—1) ( ; >Oéa+p+i
i=0
:‘_7§aq+k'F(_J)k7§aq+k‘F(_J)k71k72aq+k
= _k‘v)/?anrk 7£ 0,
a contradiction.

O

Remark 4.2. From the previous lemma, we have that agij11 = ... = agg_ptj—1 = 0.
Consider now Relation (2.1) with a =2¢—2p+j+ 1 and b= 0:

2q—2p+j .
(2q—2p+j+1
0= Z; (—1)Z< . )a,m + 2099 pi it
1=

= —0g—ptjr1 — (J + 1)aog—ptj + 200¢—ptjt1-
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4. Algebras with given first fake constituent length

Therefore
—(J + Dagi—p + 20q1-py1 = a1py1 # 0,

so that in particular at least one between ogy;—, and ogy;—p41 differs from zero. This in
turn means that

lo=q—1 or lo =q.

Remark 4.3. Note also that
lo=q <= k isodd,

or, equivalently, lo = ¢ if and only if L has even length. In particular,
lo=q—1 = «a;=0.

Indeed, if k is odd, Relation (2.2) with a =g —p+ k and b =1 — 2p — k yields

— k+1
0= agrriyg—p + (=1 Qgrrig—p

= 2001 kU 4q—p;

hence ajy4—p = 0 and Iy = ¢. Viceversa, if o = ¢ then Relation (2.2) with a = ¢ —p+k
and b=1—2p—k+ 1 yields

0= agrrairg—pi1+ (=1 agir(@igpr1 — ( =k + Dairgp)

=1+ (_1)k)0‘q+kal+q*p+1a

therefore k£ has to be odd.

Unfortunately, the informations we have so far are not yet enough to compute exactly
the two-step centralizers contained in the first constituent, which would be the first step
to compute all the following constituents by induction. Instead, we need some information
regarding the length of the third fake constituent, and we proceed similarly to how we just
did for the fake length of the second one.

Lemma 4.4. Let L be an algebra of type p with first fake constituent length | = q+j, where
J 1s an odd integer such that 1 < j < p. Let Iy and l3 denote the lengths of the second and

third fake constituent, respectively. Then:

(i) The last two-step centralizer of the second constituent is aagym for some m such that

0 < m<j. When j = p, the integer m equals at most p — 1.
(i) The third fake constituent length is at least ¢ — 1.

(iii) Iflo =q—1, thenls=q—1 orls =q.
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4. Algebras with given first fake constituent length

(i) If ly = q, then I3 = q.

Proof. (i) If j = p the statement is trivial, and note that m < p since agqyp = 0 by

(i)

deflation. Hence, suppose j < p and consider Relation (2.1) witha =lo +1—p+1
and b = 0:

l2+1—p

(la+l—p+1

0= Z (_1)Z< 2 Z, P >ap+i. (4.3)
=0

When Iy = ¢ — 1, the previous relation yields

2g—p+j-1 :
i(24—p+J
o= > (T e

7

=0
q—p+j (qg—p+ ‘ j—1 (]
=3 O (T gt 19 = 0 (Y
=0 1=0

where o as usual denotes the first non-zero element of the second constituent, i.e.
V2 = Qyti—pt+1 = Q2g—p+j- The first sum vanishes, as one can check using Relation
(2.1) with a = ¢ —p+ j and b = 0, hence

J

z;(—l)i (‘Z) Qi =72 # 0

1=

[y

and this proves that at least one among awy, ..., g4+ j—1 is different from zero.

On the other hand, when lo = ¢ Relation (4.3) yields

2q—p+j .
if2q—p+j+1
o= 3 o (TP ey,

7
=0

—pti+1 &, (i1
=P .j >Oép+z‘+(—1)]’72 —Z(—l)l <j ; >052q+i-

q—p+j+1
1=0

=3

=0

Again, Relation (2.1) with a = ¢ —p+ 7+ 1 and b = 0 ensures that the first sum

vanishes, hence
J

> (-1) <j —l_ 1>a2q+i =770

1=0

and this proves that at least one among s, ..., agq4; is different from zero.

Let v3 := g tiy4q—ptjt1 # 0, V4 = QUytiy+q—p+j+2, SO that the third fake constituent
starts with

/
Ay +q+j+1 = 07 o 707 73,73-
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4. Algebras with given first fake constituent length

Assume I3 < g—1, and let m be the integer introduced before. To get a contradiction,
we just need to use both Relation (2.1) and (2.2) with b = 2¢ — p + m and

a3+ l—qg—2p+j—m+1, if mis even;
s+l —q—2p+j—m+2, otherwise.

In both cases, the first relation yields

20—
q—p+m (2 —p+m
Z (=1) i Agt+p+i = —Q2¢+m-
i=0

Regarding the second relation, first note that

Qatp = Uy—ptj—m+2

= Qg—p+j—m+1
and thus aq4, = 0. Substituting the equation above in the second relation yields:

— if m is even,

A 2g+m
0= —Y302¢+m — QA2¢+m Z (—1)Z< i >Oza+p+z‘, (44)
1=0

and the only non-zero binomial coefficients above are those for ¢ = rq+ s, where

0 <r <2and 0 < s < m. Nonetheless, if r = 0 then aqqpyi < og—p+j, hence
they all equal zero. If r =1,

Qatpti = Q2g—ptj =72

and

Qatpti ™ Vgtq—p = Qgtjs

where the last inequality holds since I3 > % = %j and thus

. q—2p—7 q—3p
ls—p—7=> >
3—pb—) 9 )

= 0.

Therefore agypy; = 0 if r = 1, as it belongs to the null part of the second
constituent. For similar reasons, if 7 = 2 only the very last two-step centralizer
survives, namely 73, and therefore Equation (4.4) yields

0 = —y302g+m + (=)™ 3000 4m

= _273052q+m # 0,

a contradiction.
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4. Algebras with given first fake constituent length

— if m is odd, the computation is almost the same:

A 2¢g+m
0 = —Y302¢1m — Q2g+m Z (—1)Z< ; )aa+p+i
i=0
= _7:/30‘2q+m + (_1)m+10‘2q+m(7§ —my3)

= —M7Y302¢+m-

Since m is odd, it cannot be zero, hence we have a contradiction.

(iii) Now suppose [ = ¢ — 1, meaning that 2 = apq—p+j. As we proved in (%), I3 > q—1,
meaning that agg; = ... = agq—ptj—2 = 0. Consider now Relation (2.1) with
a=3q—2p+jand b=0:

3q—2p+j—1 .
(20 —2p+]
0= Z (—1)Z< i Qptg + 2a3q,p+j
=0
= —202g—ptj — JO¥3q—p+j-1 + 203q-p+j-
Therefore
—JQ3q—p+j—1 + 203¢—p+j = 272 # 0, (4.5)

so that in particular at least one between agy—p4j—1 and azg—p; differs from zero.

This in turn means that

I3=q—-1 or I3=gq.

(iv) Finally, suppose lp = ¢, meaning that y2 = agg—p+j+1. Since 3 > ¢ — 1, we have that

Q2g4j+1 = ... = @3g—pt+j—1 = 0. The same relation used in (%) this time yields

A3q—p+j = 0,

which means that I3 > ¢. Assume that I3 > ¢, and consider Relation (2.2) with

a=1lo+1—2p—k+1and b=q—p+ k: since

Qa+b+2p = Ag+i+q—p+1
= Qgtlp+l—p+1 = V3
and

Catp = Agtl—p+1—k

< Oytl—p+1 = V2,
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4. Algebras with given first fake constituent length

we have that aqip42p = 0atp = 0, therefore Relation (2.2) yields

q+k
SRR S
=0

= Qg kQly+1-p+1
= —agk2 # 0,

>al2+lpk+1+i

a contradiction.

O

In particular, by Lemma 4.4 (4ii) and (iv) we have that there are only three possible

cases, which we are going to deal with separately:
(a) la=13=q—1;
(b) la=q—1,13=g;
(c) la=13=q.

Remark 4.5. If j = 1, L is an algebra with first fake constituent length ¢ + 1 and one can
easily check using Relation (2.1) with a = ¢ — p+ 2 and b = 0 that

Qq—p+2 — 20q11 = 0,

hence g1 # 0 and the first constituent coincides with its fake counterpart. By Remark
4.3, this means that L has fake second constituent of length ¢, thus belongs to case (c)
above. Nonetheless, for technical reasons we deal with this case separately at the end of

the section, thus assume j # 1 for the time being.

Case (a). Suppose ly =13 =g — 1. We claim that this case is actually impossible unless
7 = p, but we will need some work to prove so.

Let us first fix the notation as customary: 7o := ag4j—p and ¥3 1= aggy;—p—1 are the
first non-zero two-step centralizers of the second and the third constituent, respectively, and
Vo = Qgtl—pt1, Y i= Q2g+1—p. By Remark 4.3, we know that the first fake constituent has
at least one null two-step centralizer at the end, namely oy = ay4; = 0. As a consequence,
also the second fake constituent ends with a null two-step centralizer: Relation (2.2) with

a=1l—p—1and b= 2q— 2p yields
2q—2p 2q—2p
(24— 2p (20— 2p
0=n3 Z (—1)Z< ; )al—1+i — a1 Z (—1)Z< ; Qg p—1+4i
=0 =0
= y3(Q—1 — Qgi—1) — V31

= _7305q+lfl’
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4. Algebras with given first fake constituent length

hence agqy—1 = 0. We claim that
Q_p = Qgt]—h—1 for 0<h< 7. (4.6)

This is straightforward for h = 0 as we just proved that oy = 0 = ay4—1, thus assume by
induction that the claim holds for all non-negative integers smaller than a fixed h < j. If h
is even, consider Relation (2.2) witha=¢+!l—p—h—1landb=q—2p+ h:

Wpth —2pth
- q—2p+ i g— 2+ h q—2p+ e G—2p+h
0=13 Z (—1) ; Qgtl—h—1+i — Qgtl—h—1 ; (—1) ; Qg t2pti-

The only non-zero two-step centralizer involved in the second sum is the very last one,

namely -y3, hence

q—2p+h (g —2p+ h
0=73 Y (—1)Z< : )aq—i—l—h—l-l—i + (=) ys0q41-n-1

h
(h
= 2v30q41-h-1+ 73 Y _(—1)’ <Z > Qgl—h—1+i- (4.7)
i=1

By induction hypothesis
h h

> (=) (fz) Qgpi-h-14i = y_(=1)! (?) Oty

i=1 i=1

and we can compute this sum using Relation (2.2) witha =1—p—h and b=¢q—2p+ h:

q—2p+h q—2p+h
—2p+h qg—2p+h
0= Y (-1) ( ; >az hii—an Yy (= ( : a4 2p+i

X 1
=0 =0

h

(h

=i p + 72 »_(—1) (Z> @i+ (=1) 2001,
=1

therefore .

Z(—l)i <i;> Qp—pti = =200 p.

i=1
Substitution in (4.7) yields
0 = 2v3(Qqti—n—1 — Qu—n),
proving the claim for h even. On the other hand, if h is odd consider Relation (2.2) with
a=l—p—h—1landb=2¢—2p+h:

2q—2p+h 2q—2p+h
TR 2¢g —2p+h TRF i(2¢—2p+h
0=13 Z ; Qhi —oone1 Y, (= . Qat2p-+i

1
=0
2q72p+h
(29 —2p+h
=7 (—1)Z< ; )alhlJri + (1) 300 p1.
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4. Algebras with given first fake constituent length

Expanding the above sum by means of Lucas’ theorem and using the induction hypothesis

we get
h h h—1 o
0=20_p_1—hoy_p+ » (—1) <i>al—h—1+i — Ogpih1 — Y _(—1) (Z.>Oéq+1—h—1+i
=2 i=1
h h h—1 h
=20-p—1 — Qgt1—h—1 — hoy—p + z:(—l)Z (2.>Oélh1+i - z:(—l)Z (,L.)Oélhlﬂ'
=2 i=1
h (h+1
=Qup-1— Qgii—h-1+_p+ Z(—1)2< ; )alhlJri- (4.8)
=0

Relation (2.2) witha=1—p—h—1and b=¢q—2p+ h+ 1 yields
h
(h+1
0="2 Z(;(—l) < ; >a1—h—1+z‘ + Yeu—p-1,
which substituted in Equation (4.8) gets the job done also for h odd:

0=ap—agri—h-1-

Before addressing the proof of Equation (4.6) we proved that agg4j—1 = 0. Assume that

azqyj—2 7 0.

Hence, without loss of generality, we can suppose that ag,4;—2 = 1. Relation (2.2) with
a=29—p+j—2and b=q— 2p+ 2 then yields

q—2p+2 q—2p+2
i(4—2p+2 (q—2p+2
0=n14 Z (=1 < i )O‘2q+j2+i - Z (-1 < ; Q2g+p+j—2-+i
i=0 i=0

=75+ 75 — 23,
therefore 74 = 3. We have the following
Lemma 4.6. Under the previous assumptions, the following hold:
(1) agg=...=q1j—2=1;
(i) Qg1 = ... = agyj—1=1;
(i) ag—pin =1— (?:%) forj <h <p;

(ZU) Q2g—p+h = 1- (jﬁl) Jor j < h <p.
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4. Algebras with given first fake constituent length

Proof. (i) agq4+j—2 = 1 by hypothesis, hence assume by induction that aggyj_2 = ... =
aoqtj—p = 1 for a fixed h < j and let us prove that agyi;_p—1 = 1. If h is even,
Relation (2.2) witha =2¢ —p+j—h—1and b =q — 2p + h yields

q—2p+h g — 2p + h
0="7 ) (—1)Z< ; >a2q+j—h—1+z‘ + (—1)"y3009q4j -1
1=0

= 7 <2a2q+3'h1 + }S(_l)i <}ZL>>

i=1
=3 (2042q+j7h71 + (=) - 1)
= 273 (Qagtj—n-1—1).

Similarly, if A is odd, Relation (2.2) witha =2¢g—p+j—h—1landb=qg—2p+h+1
yields

q—2p+h+1
i(q—2p+h+1
0="3 Z (-1) < ; g1 j—h—1+i — @2qtj—h—1 (b +1)73 —73)

=0
h—1
=3 <(1 — h)asgrj-n-1+ 3 (=1 (h :r 1>)
=1

=3 ((1 — h)asgrj—n-1+ (=1)""'h - 1)
=3 (Q2g1j-h-1—1)
(ii) This is a straightforward consequence of (i) thanks to Equation (4.6).

iii) When h = p, the equation claimed is o, = 0, which is true by deflation. When
(ii) p q q y
Jj < h < p, consider Relation (2.1) witha=¢g—p+h and b=0:

q—p+h
i(fa—p+h
0= > 0 (" o

7

=0
q—2p+h q—p+j—1
i(a—p+h (a—p+h
=5 (T e o (T o
i=q—2p i=q—p+1

<}Z> Qg—p+i + g(—l)l <i;>

h Ly
i Qg—p+i j_l .

h .
> (-1
=0

h .
> (1)
=0
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4. Algebras with given first fake constituent length

Relation (2.1) with a = h and b = g — 2p lets us compute the above sum:

- (B &, ifa—2p
S (armpes == S 0 (1 e
i=0 1=0
= Qg—p+h;

therefore ag_pyp =1 — (?j)

(iv) Similarly to (iii), for every h such that j < h < p consider Relation (2.1) with
a=2¢—p+hand b=0:

2q—p+h
0= Y o (M o

7

=0
q—p+h q—p+h

(a—p+h i(a—p+h
q—p+h

q— p+h
== Z Qgtp+i

since the first sum is null by Relation (2.1) with a = ¢ — p + h and b = 0. Thus, we
have

qg—pth
i(a—p+h
0= Z (=1 < . >aq+p+i

7

1=0
- h
q—2p+ g—p+h q—p+j—2 fa—p+h
= Z (— 1) i Qg+p+i + Z i Qgtp+i
i=q—2p i=q—p
h =2
(h (h
=50 (Fasgps+ 07 (])
i=0 i=0
h
(h h—1
= -1) —pti — .
2t (Jeur=(G0)
Relation (2.1) with a = h and b = 2q — 2p lets us compute the above sum:
h 2q—2p
(h (2q — 2p
S0 (omma == 3 0 (P apin
i=0 i=0

= Qg—p+h — Q2g—p+h,
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4. Algebras with given first fake constituent length

therefore

h—1
A9g— = g— —
2q—p+h q—p+h j—2

=1-(521) - (5-2)
:1_<jﬁ1>'

In particular, as a consequence of the previous lemma we have that

. j+1 Jj+1
Qgrj—1 =1, Qagprj=1—J, azqprjy1=1- ( 9 ) =1- %
but this is actually possible only if j = p, as Relation (2.2) with a = ¢ —p+j — 1 and
b=q—2p+ 2 shows:

0= Q2g—ptj+10g+j-1 = Qgrj—1 (—2g—ptjt1 + 2020-p+j)
= 202g—ptj+1 — 202g—p+j
=2j(1—-7).

Hence, as a consequence of the assumption agg4;—2 # 0, we got a contradiction as long
as j # p. Note that, if j = p and agqq;—2 = 1, Lemma 4.6 shows that the first and second
constituent of the algebra are uniquely determined, and are both almost ordinary ending
in 1. Furthermore, the second constituent has length ¢ — 1.

Assume now that

aq4j-2 =0,

and recall that by Equation (4.6) this is equivalent to ag4;—1 = 0. Hence, by Remark
4.3 also ag4j—2 = 0, while there must be an even integer k smaller than j — 2 such that
agtr # 0, and k is maximal. Without loss of generality we may assume that agyp = 1.
Relation (2.2) witha=q¢—p+kand b=q—2p+ j — k + 1 then yields

0=1— (=% +(—k+1)n)

therefore 74 = 2 7§+172. We now claim that
p— j—k+1
Qgih—h = (—1)h< b 2 > for 0 < h <k. (4.9)
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4. Algebras with given first fake constituent length

j—k—1

ht W2 ), since for any 0 < r,s < p

Note that the left-hand side can also be written as (

(") = () noan

Of course the claim is true for h = 0, hence fix a positive integer h < k and assume by
induction that Equation (4.9) holds for indexes h < h. If h is odd, Relation (2.2) with
a=q—p+k—handb=q—2p+j— k+ h yields

—k+h g
0="12 Z <j )aq—i—k—h—i—i + (=17 " hrypag g

i—k+h
= 2%200+k—h + V2 Z(—l) < ; >aq+k—(h—i)
=1

j—k+h\ (p— 12t
= 272Qq4k—h + (= 722( ; >< h—z ,

=1

We can use the Vandermonde’s identity to compute the last sum above, obtaining

k4l | j—k41
p— LB Lk (p— ik
0= 2v2041k—h — 72 (< 2 L >—< h2 ))
h _|_ j_g_l p — #
= 272Qq+k—h — V2 << b ) - < L )

h 4 i=k=L
= 292004 k—h — 272( L 2,

hence Equation (4.9) holds for odd h. Similarly, if & is even we can use Relation (2.2) with
a=q—-p+k—handb=q—2p+j—k+h+1toget

1

h .
i—k+h+1 .
0= Z(—l) <‘7 . >Oéq+k—h+i — agrh—n (= + (G —k+h+1)y)

h .
. i(i—k+h+1
= (27— (G —k+h—1)72) gir-h + 7 E (-1) (‘7 ; )aq—f—k—(h—i)
i=1

. o, j—k+1
B j—k+1 j—k+h+1\[(p-1=5=
= —hyeagik—n + 5 72%( ; h_i .
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4. Algebras with given first fake constituent length

Again, by the Vandermonde’s identity we get

j—k+1 p—IH 4 —k+h+1 p— ikl
0= _h'YQO‘q—I—k—h‘i‘T'YZ (( 2 L - L 2

- 1 i=k=1 4 j—k—1
= —h’YZOéq-I—k—h‘i‘%'YQ <<h+ Z " > - <h+ L 2 )

i —k+1 (i
= —hy20g4k—n + 3772< 2 )

2 h—1

h o+ i=k=1
= —hyeagik—n + h’m( b 2 )

hence Equation (4.9) holds also when & is even.
Finally, we can show that this yields a contradiction thanks to Relation (2.1) with
a=q—p+2and b=0:

q—p+2

i(a4—Dp+2
0= Z (1) < ; >ap+i+aq+2

=0

= 2(04q+2 - O‘q+1)

(k2 (ki

B k—2 k—1
k— 24 1=k

:_2< ho1 )7&0’

i k—1
k—1<k—2+1—5——

Summing all up, we have proved the following result:

since

<p.

Lemma 4.7. Let L be an algebra of type p with first fake constituent length q + j.

(i) If 1 < j < p, then the second and third fake constituent of L cannot be both of length
q—1.

(ii) If j = p and both the second and the third fake constituent have length equal to q — 1,
then the first and the second constituent are almost ordinary ending in 1, of lengths
g+ p—1 and g — 1 respectively. Moreover, the third fake constituent has length ¢ — 1,
and its first non-zero two-step centralizer is equal to 1.

Case (b). Suppose now ly = ¢— 1 and I3 = q. We claim that if this is the case, then the
first two constituents are uniquely determined up to scaling.
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4. Algebras with given first fake constituent length

First of all, 79 = 73: this is a direct consequence of Equation (4.5) which was used to

prove Lemma 4.4 (iii), recalling that in the case we are now considering

Y2 = Qgyi—p and Y3 = Qogii—p-

We claim that
Qp_p = Qgyl—p for 0<h <. (4.10)

This is straightforward for h = 0 as oy = 0 = a4, thus assume by induction that the
claim holds for all non-negative integers smaller than a fixed h < j. Relation (2.2) with
a=2q—2p+hand b=1—p— h yields

l—p—h (l—p—h q+j—h la+i—h
0=1s Z (_1)Z< ; >a2qp+h+i —app Z (—1)Z< . )agthﬂ-
=0 =0
l—p—h I p— L
— (_1)Z< - >a2q—p+h+z‘ —Qpp ((—1)’_h72 + (—1)q+ﬂ—hry3>

7

i~

I-p—h l—p—h
V3 (—1) i Q2g—p+h+i-

=

=

o

Taking into account also Relation (2.1) with a = 2g —2p + h and b = [ — p — h, we have
that

2q—2p—h
(2q—2p+h
0=y > (—1)Z< a=r )athri

7

1=0
h qth
i(h ifa+h
=3 Z(—l) <i>al—(h—i) —Z(—l) < ; )al—(h—i)
=0 i=q
h o h o
= -3 <a1—h +) (-1) <i>al(hi) —ogrin— »_(-1) (Z-)anrl(hi))
i=1 =0

= =3 (u-h — Qgy1-n) s
proving the claim. We then have the following

Lemma 4.8. Let L be an algebra of type p with first fake constituent length q + j, where
J s an odd integer such that 1 < j < p. Assume the second fake constituent has length
q — 1 and the third fake constituent has length q. Then the first two constituents of L are

uniquely determined, up to scaling, by the following:
(Z) Qg = ... = Q2q+j—-1 = 1,‘
(ii) Ag41 = ... = Qgpj—-1 = 1,'
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4. Algebras with given first fake constituent length

(i) g—ppn =1— ( ) forj <h<

(iv) agg—pin =1 forj < h<p.

In particular, the first constituent of L has length ¢ + j — 1 and the second constituent is
ordinary ending in 1 of length q. Moreover, the third fake constituent has length q, and its

first non-zero two-step centralizer is equal to 1.

Proof. We know that 9 := agq—p1; # 0, hence without loss of generality one can scale L

so that v = 1.

(i) For 0 < h < j, Relations (2.1) and (2.2) with a =2¢ —p+h and b =1—2p — h yield

—2p—h
-2 h
0=13 Z < b= >a2q+h+i + (=101

2q7p+h (2¢—p+h
=73 Z (—1)Z< { )al—p—h—i—i + (—1)h+173a2q+h7

and we can compute easily the sum above thanks to Equation (4.10):

29—p+h he1
i(2a—p+h (h
=0 =0
+Z ( )atﬁ-l h+i
= (—1)h+172
= (-1

Therefore, 0 = (—=1)"y5(1 — aggin)-
(ii) This is a straightforward consequence of (i) thanks to Equation (4.10).

(iii) The proof is exactly the same as that of Lemma 4.6 (iii).

(iv) Similarly to the proof of Lemma 4.6 (iv), consider Relation (2.1) witha =2¢—p+h

and b = 0 for every h such that j < h < p:

2q—p+h
0= Y o (M o

7

=0
q—p+h q—p+h

(a—p+h i(a—p+h
q—p+h

q— p+h
== Z Qgtp+i
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4. Algebras with given first fake constituent length

since the first sum is null by Relation (2.1) with a = ¢ — p + h and b = 0. Thus, we
have

q—p+h
i(a—p+h
0= Z (=1 < . )aq—l—p—f—i

1

=0
q—2p+h q—p+j—1
(4—p+h (4—p+h
= Z (_1)Z< i >aq+p+i + Z (_1)Z< i )aq+p+i
i=q—2p 1=q—p

Il
WEN

(ot jzé(_l)i ()
=31y <?> apii ¥ <?: D

Relation (2.1) with a = h and b = 2q — 2p lets us compute the above sum:

Zh:(_l)i G) Hg—p+s = 2§p(_1)i (2q ; 2p> Qpthti

=0
= Qq—p+h — Q2g—p+h,

therefore

h—1
Q2q—p+h = Qq—p+h + j—1

=1.

O

Remark 4.9. In particular, when j = p the previous lemma states that the first constituent

of L is almost ordinary of length ¢ + p — 1 and the second constituent is ordinary of length
q, both ending in 1.

Case (c). Suppose now Iy = I3 = ¢ and j # 1. We claim that this can happen only if
j # p, and under that assumption the first two constituents are uniquely determined up to
scaling, similarly to case (b).

We start by reminding that there are two integers k and m such that 1 < k& < 7,
0 < m < j, and they are maximal with the properties

gk # 0, aggem # 0.

In fact, k > 1: this is a simple consequence of Relation (2.1) with a =¢—p+2 and b =0,
which implies that o2 = agy1. Recall also that by Remark 4.3 the integer k is odd, since
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4. Algebras with given first fake constituent length

lo = q. Furthermore, if j = p then actually 1 < k < p and 1 < m < p: the fact that both
k and m cannot equal p has been discussed in the proof of the existence of such integers,
while m > 1 is a direct consequence of the hypothesis lo = ¢: indeed, when j = p, the first
non-zero element of the second constituent is v2 = agg41.

We claim that m = k necessarily. Assume first that m > k, and note that this implies

Qg+m = 0. Relations (2.2) with a = ¢—p+m and b = ¢+1—2p—m+1 yield a contradiction:

. q+l2im+1( 1)i gHl—2p—m+1 |
=73 2 i Qgt+m+i
1=

2amaw L m if29—2p+j—m+1
=3y, (-1 ,

i ) Qg+m+i

i=0
= —3Q2¢+m # 0.

Suppose then m < k, and let us show that this is also impossible. To do that, we first

claim that under this assumption m has to be zero, namely
Q2q41 = .. = O2q4j = 0. (411)

Of course agq1; = 0, since m < k < j, hence let us prove by induction that aggq;—p = 0
for h =0,...,7 — 1. Suppose this is true for indexes smaller than a fixed positive integer
h < j—1. If his odd, Relation (2.2) with a =2¢—p+j—hand b=q—2p+ h+ 1 yields

q—2p+h+1

i(q—2p+h+1

0=n3 E (-1 < i Q2g+j—(h—i) (=) 30040
i=0

0 = 2y302¢45—h,

hence the claim holds. If h is even, Relation (2.2) with a = ¢—p+j—h and b = 2¢—2p+h+1
yields

2q—2p+h+1
(2q—2p+h+1
0=1s3 Z (—1)Z< ; )aq+j—h+z' +

i=0
2q—2p+h+1
(2q—2p+h+1
T N G < ; )aq+p+jh+i- (4.12)
i=0

The second sum above is easy to evaluate, and equals v9 — 3. Regarding the first sum,

first note that it equals

—9pthtl —2p+h+1
q—2pth+ la—pihil q—2p+h+ la—thil
> (-1 ; Qqrjonsi— >, (=1) ; Q2q+j—h-+is
=0 ]
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4. Algebras with given first fake constituent length

then use Relation (2.2) witha=qg—p+j—h and b =q —2p+ h+ 1 to evaluate the first

sum above and induction hypothesis to evaluate the second one, obtaining

Qqtj—h = X2q+j—h-

Putting everything together, Equation (4.12) yields

0 = v3(Qgyj—h — Qagtj—1n) — Qgrj—n(r12 —73)

= (273 — 72)Qg+j—h — V3Q2g+j—h-

As a consequence of Relation (2.2) witha=q¢—p+kand b=qg+1—2p —k+ 1 we have
that 2v3 — v = 0:

2q—2p+j—k+1 .
(2q—2p+j5—k+1
0=n3 E (—1)Z< L

i >aq+k+i +

=0

2q—2p+j—k+1 .
ST SRS |

i ) Qq+pth+i

1=0
= V3Qq+k — Otk ((—1)k+1’Y2 + (—1)k73>
= (273 — 72) g 4k-

Therefore the claim is true also when h is even and (4.11) holds. Note that this is a
contradiction if j = p, since in that case agq41 = 72 # 0.

Assume j < p. As we have just proved, m = 0, that is,
agg #0 and g1 = ... Oaggq; = 0.

Without loss of generality, assume apy = —1. For every h = 1,...,j, Relation (2.1) with
a=2q—p+hand b=0 yields

(h
Z(_1)2<Z->aq+i =-1
i=1
hence
Qg1 = ... =Qgq; =1

as one may easily prove by induction on h. Thus k& = j, and Equation (4.1) readily yields
Qg—ptj+1 = 2.
Furthermore, Relation (2.1) with a = ¢ —2p + j + 2 and b = 0 allows us to compute
Qg—p+j+2 = J + 2.
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4. Algebras with given first fake constituent length

Consider now Relation (2.1) with a =2¢ —p+ 7+ 1 and b = 0:

2q—p+j+1 .
(2q—p+7+1
0= E ( 1)Z< iar . / >ap+i

; (3
i=q
= =72 — Q2q

= _72—’_17

hence 79 = 1. Similarly, Relation (2.1) with a =2¢—p+ j + 2 and b = 0 yields

2q— j+2 .
. QPH+(_Di2q—p+j+2 o
2 i e

1=q
=—(J+2)72 +75 — oy
:’Yé _j_ 17

hence v4 = j + 1.
We get a contradiction by considering Relation (2.2) with a = ¢—2p+j and b = g—p+2:

q—p+2 q+2
(q—Dp+2 (q+2
0= > ("7 Mgy S0 (T o

=0 ! 1=0
/ !/
=12 (=20g—ptjt1 + Qgprjt2 + Qgrj) + 20g-p+jt1 = Qgprjr2 = 292 + 73
=@+D0E-D+1
=j°#0,

since j < p. Therefore m = k, as claimed.

The next thing we are going to prove is that
Q= Qgql—h for 0 < h <. (4.13)
Clearly, this is equivalent to proving that
Qgih—s = O2gtk—s for —1<s<k—1, (4.14)

since o441 = ... = a1 = 0 and aggyp41 = ... = ag4i41 = 0. Before doing that, note
that v9 = 73: as a consequence of Relation (2.2) witha=qg—p+kandb=1—2p—k+2,

29— (j —k+2)72 =0,
and similarly from Relation (2.2) with a =2¢—p+ k and b =1—2p — k + 2 we deduce
273~ (j —k+2)y3 = 0.
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Relation (2.1) with a =2¢ —2p + j + 2 and b = ¢ yields
295 — (J +2)92 + (J +2)73 — 295 =0,

which together with the previous equations yields 79 = 73 as claimed. We are now ready
to prove (4.14). This is clearly true for s = —1, since agq 41 = 0 = agqyk+1, hence assume
by induction it is true for indexes smaller than a fixed s < k — 1 and use Relation (2.2)
witha=¢—p+k—sandb=2¢g—2p+j—k+s+1 to get

S S
0=1s3 <aq+ks +> (-1 <Z-)O‘q+k(si) — aggik-s — Y (=1) <Z.>Oé2q+k(si)> +

i=1 i=1
— agir-s((=1)*32 + (1))

=73 (aq+k—s - a2q+k—s) .
We can now state and prove the following

Lemma 4.10. Let L be an algebra of type p with first fake constituent length q + j, where
j is an odd integer such that 1 < j < p. Assume the second fake constituent has length q.
Then the third fake constituent has length q as well, and the first two constituents of L are

uniquely determined, up to scaling, by the following:
(1) agg = ... = ¢4 = 1;
(11) agp1=...=g4j = 1;
(iii) aqpin =1+ ";") forj <h<p
() aoqgpin =1 for j < h <p.

In particular, the first and second constituents coincides with their fake counterparts, and
the second constituent is ordinary ending in 1. Moreover, the third fake constituent has
length q, and its first non-zero two-step centralizer is equal to 1.

On the other hand, if j = p, then L cannot have second fake constituent length q.
Proof. Without loss of generality one can scale L so that 7o = 1.

(i) For 0 < h < j and j # p, Relations (2.1) and (2.2) with @ = 2¢ —p+ h + 1 and
b=1-2p—h yield

—2p—h
— 2p h
0="3 Z < >O‘2q+h+1+i + (=1 yzazgpnta

2q p+h+1

(2g—p+h+1

= —73 E (—1)Z< i >alph+i + (=1)" 300 ht1,
=0
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and we can compute easily the sum above thanks to Equation (4.13):
2q—p+h+1
i(2¢g—p+h+1
> O (TP s = () o (P +
i=0
(h+1
(—1)Z< i )athri +

(h+1
(_1)< i )O‘quthri

M- 11+

+

I
> O

+1

—_

Q_pt+1+ (_1)h72

(
(

=(-1)

— _1)h+1
Y

where we have used the fact that a;_, 1 = 272 = 2, which is a consequence of Relation

(2.1) witha=¢q¢+1—2p+1 and b = 0. Therefore,

0= (—1)"y3(1 — aggini1),

proving the statement for all two-step centralizers but apy. To prove that also agq = 1,
just note that agy1 = agg41 = 1 and use Relation (2.1) witha =2¢—p+1and b=0

to conclude:

0= —ag1 — agq + 202941

=1 — Qigq.

Note that, as long as h < p — 1, the above computations work for the case j = p as

well, meaning that aggr1 = ... = agg4p—1 = 1 in that case.

(ii) For j # p, this is a straightforward consequence of (i) thanks to Equation (4.13). On
the other hand, if j = p we deduce that ag41 = ... = ag4p—1 = 1 but ayq, = 0,
meaning that k = p — 1 is even, a contradiction. For this reason, an algebra of type p

with first fake constituent length ¢ + p cannot have second fake constituent length ¢.

(iii) When h = p, the equation claimed is a; = 0, which is true by deflation. When
j < h < p, consider Relation (2.1) witha=¢g—p+h and b=0:

q—p+h
i(a—p+h
0= > 0 (T o

1=0
q—2p+h q—p+j
i(a—p+h (a—p+h
=5 (T e X 0 (T o
i=q—2p i=q—p+1
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4. Algebras with given first fake constituent length

Use Lucas’ theorem on both the above sums, and point (ii) on the second sum’s
two-step centralizers, to get

( )aq p+z+z ( >
()

Relation (2.1) with a = h and b = g — 2p lets us compute the above sum

h . (h =% (q—2p
PRI LR DIE T () Loe
=0 =0

- aq—p+h7

therefore ag_p1p =1+ (h 1).

(iv) Similarly to (iii), consider Relation (2.1) with a = 2¢ — p+ h and b = 0 for every h
such that j < h < p:

2q—p+h

i(2a—p+h
0= > o (T a
i=0

q—p+h

ZZ:; (~1) (q ~p h> - q_fh(_ﬂ" <q ~p+ h) o

i=0
q—p+h

q— p+h
== Z Qgtp+i

since the first sum is null by Relation (2.1) with a = ¢ — p + h and b = 0. Thus, we
have

q—p+h
(q—p+h
0= Z (_1)l< i )aq+p+i
i=0
q—2p+h q—p+J
q—p+h q—p+h

= > (- 1)( ; >04q+p+z+ > (- < ; )aq+p+z‘

1=q—2p 1=q—p

S (o S0 ()

S (e ()

J
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4. Algebras with given first fake constituent length

Relation (2.1) with a = h and b = 2q — 2p lets us compute the above sum:

h h 2q—2p (92— 2p
Z(_1)2<Z~>O‘2q—p+i - Z (_1)Z< i )aerthi
=0 1=0

= Qg—pt+h — Q2g—p+h,

h—1
Q2¢—p+h = Qg—p+h — j

therefore

=1.

O

Case (j = 1). Finally, Let L be an algebra of type p with first constituent of length
l =q+ 1. As we anticipated in Remark 4.5, L belongs to case (c) above, meaning that
ly = I3 = q, since agzq1 # 0. We remind that this was a consequence of the following easy
relation in L:
20g11 = ag—pi2 # 0.

Without loss of generality, suppose o441 = 1, hence ag_pi2 = 2. We claim that Lemma
4.10 holds verbatim also in this case, although the proof is slightly different. Indeed, we
can now unravel the structure of the first constituent right away, without even considering

the second constituent: we claim that, accordingly to Lemma 4.10,
Qgpth =h for 1<h<p+1. (4.15)

This is clearly true for h = 2, and in fact it is true also for h = p and h = p+1: ay = 0 by
deflation, and ay41 = 1 by assumption. Therefore, we just need to prove Equation (4.15)
for h < p, and we do that by induction on h: fix h > 2 and suppose the equation is true
for indexes smaller than h. Relation (2.1) with a = ¢ —p+ h and b = 0 yields

q—p+h
i(a—p+h
0= Y o (T o

i=q—2p+2
p+1
- Z(_l)iﬂ apth Qg—p+i-
—~ p+h—i) TP
By Lucas’ theorem we have that

(p—l)(};), fori=2,...,h;

g—p+h\ )0, fori=h+1,...,p—1;
p+h—i) 1, for i = p;
h, fori=p+1.
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4. Algebras with given first fake constituent length

Substitution and induction hypothesis yields

h
Z' h
0=ay—hag + Z(_l) <Z->O‘qp+i
=2
h—1 /R
=t S0 ()i 1 g

_ _11(_1)2‘ <h>z + (=1 agpin.

hence ay_pip = h as claimed.

At this point, one may use the same methods used so far to deduce that v3 = v =1
and the tail of the second constituent equals the tail of the first one, namely ag,_j, = a4—p
for h = —1,...,p+ 2. This concludes the analysis of the case j = 1, meaning that Lemma
4.10 holds even in this case.

As a consequence of Proposition 3.2 and the results of both this and the previous section,

we have the following

Proposition 4.11. Let L be an algebra of type p over a field of positive characteristic p,
with generators ey and e, of degree 1 and p, respectively. Suppose that [epeiep] = 0 (that
is, the first two-step centralizer is null). Then the first constituent can only have length of
the form:

1. either 2q, where ¢ > p is a power of p;

2. or g+ m, where q > p is a power of p and m is an integer such that 0 < j < p.
Moreover,

(i) If | = 2q, then L is a subalgebra of an algebra of type 1.

(ii) Ifl = q+m with m # p — 1, then, up to scaling, the algebra is unique. In particular,

every constituent other than the first one is ordinary of length q.

(iii) If | = q + p — 1, then the first constituent is almost ordinary ending in X for some
A # 0, while every other constituent can be either ordinary ending in A of length q,
or almost ordinary ending in A of length q — 1.
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4. Algebras with given first fake constituent length

Proof. The statement regarding the possible lengths of the first constituent is just an easy
remark. Furthermore, if [ = 2¢ then everything has already been proved in the first section.

On the other hand, statement (ii) (and similarly for statement (iii)) can be proven by
induction on the constituents: as we proved in this section, the second constituent has
length ¢ and is ordinary ending in 1, up to scaling. Moreover, we proved that the following
one has 0-length ¢ — p, and its first non-zero two-step centralizer equals 1. One may now
assume that this holds for the (n — 1)-th constituent (n > 2) and prove it for the following
one, using the same strategy we used on the second constituent. We sketch the strategy

once again:

e Prove that ¢ — 1 is a lower bound for the length of the (n 4 1)-th fake constituent,
and that in fact it equals q.

e Prove that v,41 = vy, where 7, and 7,1 are the first non-zero two-step centralizers of

the n-th and the (n+1)-th constituent, respectively. Recall that v, = 1 by induction.

e Prove that the tail of the n-th constituent equals the tail of the previous one, con-

cluding the proof.
O

Remark 4.12. As a consequence of the previous proposition, algebras of type p with first
constituent length g +m with m # p — 1 are soluble: this is a consequence of their periodic

structure, as for any r, s > ¢ we have that, writing s = aq+ b for some ¢ > 0 and 0 < b < ¢,

lerestp] = ler[epei]]

b /b
Z(_l)J (]) Qr+hg+jCr+s+p

(b
(—1) <]> Qr4jCrts+p

Il
>

e |l
O/-\

|

=

>
/\ >
>
N———
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Chapter 5

Construction of some Lie algebras

We now give an explicit construction of the class £ consisting of algebras of type p with

first constituent length g + m, where ¢ > p is a power of p and m is an integer such that

1 < m < p—1, thus providing existence of the algebras we dealt with in the previous

chapter. As a consequence, the proof of Theorem 2.6 will be complete.

Let I be a field of characteristic p > 2, ¢ > p a power of p, and m an integer as above.

Let t be an indeterminate over IF, and consider the vector space IF(¢)? with standard basis

v1,...,vq, written as row vectors. Let us define the following ¢ x ¢ matrices over IF(t):

t

1

where Dy and Dy are respectively the (¢ — p) x (¢ — p) and p x p diagonal matrices

Id 0
Og—pm t1d,

For technical convenience, we may also write the latter matrices as

D1 = diag ()\1, ..

with

Aj = L mpulg—ptmt1,q () = { 0

+Ag—p)

2 = diag ()\q,erlt, e )\qt) s

I, f1<j<m or ¢g—p+m<j<gq;
fm<ji<g—p+m.

The coefficients \; may as well be defined for j € Z/qZ as follows:

1, if1<j<m or
Aj = 0

otherwise,

g—p+m<j<q;
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5. Construction of some Lie algebras

where by j we indicate the representative of j such that 1 < j < g. This notation will be

used in all of the following without further mention.

Lemma 5.1. For every integer k such that 0 < k < g — p we have that

Ak]

DB = g,

where Ay, and By are respectively the (g —p—k) x (q—p—k) and (p+k) X (p+k) diagonal

matrices

. k k . k
Ay = diag (;A ), e ué,)p,k) ) By, = diag (H((Jf)pfk+lt’ e ”c(lk)t>

whose entries can be computed by means of

k (K
=31 (v 65.1)
for every j ranging from 1 to q. Indexes in Equation (5.1) are to be considered modulo q.

Proof. The claim is trivially true when k£ = 0, as

[DEO]:D:[ Dl]

Dy
and Ag = D1, By = Dy. Hence, let us suppose by induction that the claim is true for a
fixed k < ¢ — p and prove it for k£ + 1. Since

[DE*Y] = [DE¥|E — E[DE"],

we need to compute both the products [DE*]E and E[DE*]. This can be checked explicitly,
but looking at the definition of F we see that it is almost a permutation matrix: multiplying
by E on the right shifts every column onto the following one, except from the last one which
is both multiplied by ¢ and shifted onto the first column. Similarly, multiplying by E on
the left shifts every row onto the previous one, except from the first one which is both

multiplied by ¢ and shifted onto the last row. Hence

A
[DEF] = [ B k+1 } 7
where
A1 = diag (“gk) — g 7M§k_)p_(k+1) - “t(z]i)p—k)
and

~ : k k k
Byi1 = diag ((Mg_)p_k - /i((]_)p—k'-l—l)ta o (u = s ))t) :
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5. Construction of some Lie algebras

To conclude, we just need to check that Ak+1 = Aj41 and Bk+1 = Bj41. This is true since
by induction hypothesis for every j ranging from 1 to ¢
k k

ik ik
u = =3 <i>/\j+i -2 (1) (Z-)AJ'““

=0 i=0

= g:l(—w (k j 1> Ajti
=0

(k+1)

J

O

Remark 5.2. Note that, by definition of the coefficients A;, we have that ug-k) = 0 whenever
m<j<q—p—k+m.

As a consequence of the previous lemma, [DEY7P] = t1d, is a scalar matrix, hence the
Lie algebra spanned by E and D has dimension ¢ — p + 2. The following lemma will be

useful for the construction of the Lie algebra L we are going to give:
Lemma 5.3. The matriv D commutes with [DE¥] for every k > 1.

Proof. The statement is trivially true for every k > ¢ — p, since [DE?7P] is a scalar matrix,
hence assume that k < ¢ — p.

Let us evaluate first the product [DE*]D. Since k is fixed, in the following we will write
(k)
J

to consider [DE¥] as a matrix of row vectors:

p; instead of p; 7. We will also consider indexes of A;, j1;, and v; modulo ¢. It is convenient

H1Up4k+1

DEF = Hq—p—kYq — (1450 A 92
[ ] fhg—p—kr1tv1 (,Uzt Up+k+z)2> (5 )

HqtVp-+k

where
1, fg—p—k+1<i<q;

g = Ljg—ptr1.q(i) = { 0, otherwise.

Now consider D as a matrix of column vectors:
_ T T T T
D = [)\q_p+1tvq_p+1, cees Aglug s AU ,)\q_pvq_p]

= st ) 53
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5. Construction of some Lie algebras

where
. 1, 1<) <p;
o5 =1y (J) = { 0, otherwise.

We can now compute the (i, j)-entry of [DE¥]D, for every i,j =1,...,q:
([DE"|D);; = ([DE*])i(D);

—_ . 4Eit0; A
= Hz)\quJr]t va+k+2vq—p+j

gttt i p+k+i=q—p+j (mod q);
1 0, otherwise.

_ pidpgtTT, i =2p+k+d 0 (mod g);
10, otherwise.

Let us now evaluate the product D[DE*]. It is now convenient to write D and [DE¥]

as matrices of respectively row and column vectors:

D= ()‘itéi”pﬂ)w [DEY] = (”q—p—kﬂt&j”g—p—kﬂ)j’ (5.4)
where ' .
i = Njgpi1,9(i) = { (1): z)ftl(ie;vzvjis—i;: tsise
and

o L1, 1< j<p+E
0j = L pyig () = { 0, otherwise.

The (i, j)-entry of D[DE¥] for i,j =1,...,q is:

(DIDE")i; = (D)i([DE");
= Nittg—p—ra it I Op gk

_ Nitgpr it ifpti=q—p—k+j (mod g);
10, otherwise.

~ Xipprit® T, i j=2p+k+i  (mod g);
10, otherwise.

Hence the matrix [DE* D] trivially has zero entries in every position (i, j) with j # 2p+k-+i
(mod ¢), while when j =2p+ k + ¢ (mod q) its (i, j)-entry is

([DEFDI), ;= pidphrit ™ = Nipugpt ™+, (5.5)

Suppose first that k < ¢ — 2p, and let us prove that ([DE’“D])
2p+ k +1i (mod q), for any i such that 1 <1i < gq.

.= 0 also when j =
Z?J
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5. Construction of some Lie algebras

o If 1 < i< m, we have that
m<p+k+i<qg—p+m
and
m<p+i<qg—p—Fk+m,
thus both A,4xy; and g, equal zero, the former by definition of A,;4y; and the
latter from Remark 5.2. This implies that ([DE*D]), . = 0.
e If m < i < q—p—k+ m, we have that both \; and u; equal zero, therefore
([DE*D]), , =0.
o Ifg—p—k+m <i<q, we have that
g+m<p+k+i<qg+q—p,
thus
m<p+k+i<qg—p
and A\p;r4; = 0. Furthermore, if ¢ —p —k+m < i < ¢ —p + m we have that \; =0,
while if g — p+m < ¢ < ¢ then

m<p+i<p
and fip4; = 0 by Remark 5.2. In any case, the product \;up4; equals zero, therefore
([DE*D]), . =0.
This proves the claim for k < g — 2p, since
[DE*D] = 0.

Suppose now ¢ — 2p < k < q — p, thus let us write £ = ¢ — 2p + h for some h such that
1 < h < p. For any ¢ such that 1 < ¢ < ¢, let j be an integer such that 1 < j < ¢, and

j=2p+k+i (mod q),ie j=h+i (mod q). We have to prove that ([DEkD])ij = 0 for
such a choice of j, and we recall that by Equation (5.5)

(IDE"DI), ; = tidg—penit™ T — Agpup it = o057,
o If 1 <i<m— h, we have that A\;_p,4; = 0 since
g—pt+h+i<qg—p+m
and p,4; = 0 by Remark 5.2, since
m<p+i<p+m—-—h=q—p—k+m.
Therefore ([DE*D]), . = 0.
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5. Construction of some Lie algebras

o If m —h <i < m,then \; =1 trivially, but also A\j_,144; = 1: indeed
g—pt+tm<q—p+h+i<qg+m,
thusg—p+m<qg—p+h+i<qgorl<qg—p+h+i<m. Therefore
([DEkD])i,j = pt= I — gy, SR

and we claim that p; = pp,q; and &; + op4y = & + Opyi. The first equality is a
consequence of the definition of y; and fip4;:

q—2p+h
r(4— 2p + h
=S P

r

where we have used the fact that A\;;, = 1 only for r = 0,...,m — 4, while it equals

zero for all other values of r. Similarly,

q—2p+h

—2p+h

pori= Y, (=1 <q f >)\p+z‘+r
r=0

. qipfrh 1y <q — 2;9 + h)

r=q—2p+m—i+1

= 20
=S (M) =

where we have used the fact that A\, ;1, = 1 only for r = ¢—2p+m—i+1,...,q¢—2p+h,
while it equals zero for all other values of r.

Let us now check the second equality we stated: since m — h < 7 < m, we have that

i = Ljg—pt1,4(1) =0
and
Ohti = L g—pn)(h+1i) =1,
while
1, ifi>p—h;
0, otherwise

i = Lpninali) = {
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5. Construction of some Lie algebras

and
, 1, ifi<p—h;
Oh+i = ]l[l,p](h +i) = { 0, otherwise.
Therefore
€i+0h+i =1 :éi+5h+i7
and

([DE*D)), . = pit — ppit = 0.

Ifm<i<qgq—p—k+m=m+p— h, we have that both \; and u; equal zero,
therefore ([DE*D]). . = 0.

iJ
Ifm+p—h<i<qg—p+m,westill have \; = 0, and also A\j_,45+; = 0 since
m<qg—p+h+i<qg—2p+m+h<qg—p+m.
Hence ([DE*D]), . = 0.
Ifg—p+m<i<qg+m—h,then \j_p 4 = 0 since
m<qg-—p+h+i<qg—p+m.
We also have that p,; = 0, since
m<p+i<m+p—h=q—p—k+m,
therefore ([DE"“'D])Z.J = 0.
Finally, if ¢ +m — h < i < ¢, then \; = 1 trivially, but also A\j_,45+4; = 1 since

g—p+m<qg—-p+h+i<qg—p+h<gq

Therefore

and we claim that pu; = ppq; and €; + o5 = & + 05,5 The first equality is a

consequence of the definition of y; and fpy;:

q—2p+h
r{d— 2p + h
pi= Y, (-1) < )Ai-l—r

r
r=0
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5. Construction of some Lie algebras

where we have used the fact that A\;;, =1 only for r =0,...,g+m —i, while it equals

zero for all other values of r. Similarly,

q—2p+h
ppri =y (1) ( )AP-H'-H’

r=0 r
q—2p+h

_ 3 (_1)T<q—2f+h>

r=2q—2p+m—i+1

S ()

r=q+m—i+1
qg+m—1
h
= > (U <T> = pi,
r=0

where we have used the fact that A1, =1 only forr =2¢—-2p+m—i+1,...,q—

2p + h, while it equals zero for all other values of r.

Let us now check the second equality we stated: since ¢ +m — h < i < ¢, we have

that
i =Ly pi1,q() =1,
O = ]l[Lp](h +i—q) =1,
&i = ljgpy19(1) =1
and
O = Lpgpin(h +i—q¢) = 1.
Therefore
si—l—ah—_H:Q:éi—l—&h—_H,
and

([DE*D]), ; = pit® — ppsit® = 0.
This proves the claim also for ¢ — 2p < k < g — p, hence
[DE*D] =0
for every k > 1. O

Now consider the (¢ + 1) x (¢ + 1) block matrices

[E 0 _[D 0
ATl o o PT v 0]
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5. Construction of some Lie algebras

with v = %vp, and let L be the Lie algebra spanned by e; and e,. For every i > p let

i DEP] 0
e; = [epe] F] = [ [in_p] 0 }
and notice that, by definition of F,
, 1
vVE"P = —u;
t

fori=p+1,...,q, while for i > ¢
i—p __ 4k—1
vE"P =¢ Uy

where 1 < j < qgandi=kq+j.
We have that

Proposition 5.4. The Lie algebra L defined above is an algebra of type p, with generators
e1 and ey, of degree respectively 1 and p. The following relations hold in L:

(1) lepyrep) =0 fork=1,...,q—2p+m;
(i1) [eq—prnep] = (1 +(—1)m (’;1)) Corn forh=m+1,... p;
(iii) [exgrnep) =0 for everyk >1 and m <h < q—p+m;
() [ekg+hep] = €kgipt; foreveryk>1and 1<h<m or ¢g—p+m<h<gq.

In particular, L has first constituent of length q + m, while every other constituent has

length q and is ordinary ending in 1.

Proof. We only need to prove relations (i)-(iv), since these will imply that L is an algebra
of type p with constituent lengths as stated above.

(i) Let 1 < k < q— 2p+ m. From the definition and Lemma 5.3 we have

[ 1= [DE*D] 0] 0 0
Pkl = | yEFD —o[DE* 0 | ~ | vEFD —v[DE¥] 0

Recalling Equation (5.3) and the notation used in Lemma 5.3, we have

1
vEFD = - )

1
_ 40, T
1 p+k()‘q—p+Jt JUQ—P'l'j)j:l q

1
(o}
= Akt U

0,
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5. Construction of some Lie algebras

since A\pyk = L1 m)ufg—ptm—+1,q (P + k) = 0. Similarly, by Equation (5.4),

v[DE*] = %vp[DEk]

1 B
_ 465, T
=7 ('“qufkﬂt JUQ*p*kJrj)j:l,...,q

1 O2ptk
= THpl o

=0,
since p, = 0. Therefore [e,;re,] = 0.

Now let k = q—2p+ h for m < h < p. We have that

0 0
[€Q*p+hep] = [eerkeP] = |: vEFD — U[DEk] 0 :| )

o o]
€q+h =

and since
Vh 0

we want to prove that vE¥D — v[DEF] = (1 + (=1)m+L (hil)) vp: let us start by

m

computing vE*D in the same way we just did for relations (i):

1
vEFD = va%D

1. o
= JAprkt T Uop

= U2p+k = VUh,

since Apyr = 1 and o373 = 0 = 1. Regarding v[DE¥], we have
1
v[DE*] = va[DEk]
L +k
= JHpL o g

= UpV2p+k = HpUh,

and Equation (5.1) yields

q—2p+h
i(q4—2p+h
Hp = Z (=1) < . >>‘p+i

1

i=0
q—2pt+h o
- i:q;erl(—l)z (q Qf n h)
h | ) )
- 2 ()=o)
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5. Construction of some Lie algebras

(iii)

(i)

Therefore vE*D — v[DE¥] = (1 + (=1)m*t (hn_ll)> vp, as claimed.

Let k >1and m <h < q—p+m. Then
0 0 D 0
[ekq-I—hep] = tk_lvh 0 v 0
- 0 0
- tk_lth 0|
But

—_ 493 T
UhD = Up ()\q—p-l-Jt qu—P'i'j)j:l,---ﬂ

= Mt7P oy = 0,
since A, = 0. Therefore [exq4nep] = 0.

Let k > 1, and let us consider separately the case 1 < h<m and ¢—p+m < h < q.

If the first case occurs,

0 0
erasneal = | gty p o |

and

— 405, T
vpD = vy, ()‘quﬂt JUQ*erj)j:l,...,q

ag.
= )\ht P+hvp+h

= Up-{—ha

since A\, = 1 and 0,4, = 0. Hence

0 0
erarneal = | i) )
= Ckq+p+h-

Finally, if the second case occurs,
0 0
(Ckans] = | i1y, p oo |
but this time

— 493 T
’Uh.D = Up, ()\qu‘i’]t qu—P+j)j=1,~~~7q

= )\htap+h*qvp+h

= tUpth—q;
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5. Construction of some Lie algebras

since A\, =1, 0ppp—q=1,and p+h =p+h —q. Hence

0 0
erained = | gy 0

= Ckq+p+h-

O

Remark 5.5. (i) The above construction works also for m = p — 1: the resulting algebra

(i)

of type p has first constituent of length ¢ +p — 1 and associated two-step centralizers
apr1=-=0g=0, agp1="-=0gqp1 =1L

The n-th constituent of L, for any n > 1, has length ¢ and associated two-step

centralizers

An-1)g4p = " = Qng-1 =0, g =+ = Qngyp-1 = 1.

Hence L has only two distinct two-step centralizers, namely 0 and 1. The first con-
stituent is almost ordinary of length ¢+ p — 1, while all the following constituents are

ordinary of length ¢q. The sequence of constituent lengths of L is
q+p—1,q%.

Therefore, L is a translated algebra of the subalgebra N of type p of AF'S(1,h, 0, p),
where h is such that ¢ = p": indeed AFS(1,h,00,p) (and hence N) has only two

distinct two-step centralizers and its sequence of constituent lengths is
a_9 a_9 o
2p,pr ", 2p— 1, (pp ,2p) :

Up to scaling, the disctinct two-step centralizers of N may be taken as 0 and —1,
therefore N(1) = L.

On the other hand, if 1 < m < p — 1 then the algebras constructed above cannot be
translated algebras of any subalgebra of an algebra of type 1. Indeed, suppose L is
an algebra with first constituent of length ¢+ m and sequence of two-step centralizers
() given explicitly by the previous proposition, and consider its translation L(J) for

an arbitrary 0 € IF*. The sequence of two-step centralizers of L(¢) starts as

(57 s 757dq7p+m+17 o 7dqu
——

q—2p+m
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5. Construction of some Lie algebras

where

Qgpth =0+ Qqpih

S (1o (V1)

for h = m+1,...,p. Therefore the first constituent of L(J) is ordinary ending in §
of length 2p, followed by % — 3 ordinary constituents of length p, but the constituent

coming after these is of the form

5,....0,a &
qg—p+m+1y---,0q,
——

m

which is clearly not ordinary.
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