
University of Trento

Department of Mathematics

Ph.D. in Mathematics

Ciclo XXVI

Algebraic methods for the distance of cyclic
codes

Matteo Piva

Supervisor: Prof. Massimiliano Sala

Head of PhD School: Prof. Francesco Serra Cassano

April, 2014

University of Trento

Department of Mathematics

Ph.D. in Mathematics

Ciclo XXVI

Algebraic methods for the distance of cyclic
codes

Ph.D.Thesis of:
Matteo Piva

Supervisors:
Prof. Massimiliano Sala

Head of PhD School:
Prof. Francesco Serra Cassano

April, 2014

Contents

I Preliminary results 7

1 Coding Theory 9

1.1 Linear codes . 9

1.1.1 Basic definitions . 9

1.1.2 Bounds on distance for linear codes 11

1.1.3 Equivalence of linear codes . 13

1.2 Cyclic codes . 15

1.2.1 A first description . 15

1.2.2 A second description . 20

1.2.3 Naturally equivalent cyclic codes 22

1.3 Terminology for general distance bounds 24

2 Our Tools 25

2.1 DFT and cyclic codes . 25

2.2 The set U . 29

3 Root bounds 33

3.1 General settings . 33

3.2 Root bounds and U . 41

3.3 Strict root bounds . 49

3.4 Known strict root bounds . 55

3.4.1 “Classical statement” of bounds 55

3.4.2 Our interpretation of the BCH bound 57

3.4.3 Our interpretation of the HT bound 58

3.4.4 Our interpretation of Boston’s bound I 62

3.4.5 Our interpretation of Boston’s bound II 62

3.4.6 Our interpretation of Boston’s bound III 63

3.4.7 Our interpretation of Boston’s bound IV 65

3.4.8 Our interpretation of the BS bound 66

3.5 Known root bounds which are not strict 68

3.6 Counterexamples to known bounds 70

i

3.7 Deducing other bounds . 71

4 Border bounds 73

4.1 General settings . 73

4.2 Border bounds and U . 78

4.3 Strict border bounds . 80

4.4 Equivalence of border bounds . 83

4.4.1 The Schaub bound . 84

4.4.2 The singleton-procedure bound 86

4.4.3 Singleton-procedure bound and Schaub bound are equivalent . 87

4.4.4 On the Van-Lint Wilson shifting bound 88

5 Bounding distance using Gröbner bases 93

5.1 Backgrounds . 93

5.2 The Cooper Philosophy . 96

5.3 Newton’s Identities . 100

II Main results 105

6 A New Bound 107

6.1 Proofs of bound I and bound II . 109

7 Proving some root bounds via Newton’s identities 125

7.1 A polynomial interpretation of known strict root bounds 125

7.1.1 A polynomial interpretation of the BCH bound 126

7.1.2 A polynomial interpretation of the HT bound 127

7.1.3 A polynomial interpretation of the BS bound 130

7.1.4 A polynomial interpretation of Boston’s bounds 136

7.2 Comments and further research . 138

8 Computing the optimal root bound via Gröbner bases 141

8.1 Preliminaries and notation . 141

8.2 Linked ideals . 145

8.3 The maximal root function . 152

III Appendix 159

9 161

9.1 Programs for the root bounds . 161

ii

9.2 Programs for the strict bounds . 173

9.3 Computational proofs and numerical confirmations 178

Bibliography 189

iii

Abstract

Cyclic codes form an interesting part of error correcting codes. The interest in

cyclic codes arise from practical reasons, since they are widely employed in many

real-life applications, and from theoretical considerations, since they possess a rich

algebraic structure (compared to other linear codes) that eases their investigation.

Arguably, the most important parameter for a cyclic code is its minimum Hamming

distance. The computation of this parameter appears to be a very difficult problem.

However, there are efficient methods that allow to lower bound the distance of cyclic

codes, taking advantage of the algebraic structure of cyclic codes. This thesis is

devoted to study these methods and their theoretical background. In our investigation

we do not deal with the aspects concerning the decoding.

In the scientific literature on the subject we can find two main competing ap-

proaches in the determination of bounds for the distance, on which we elaborate

below.

The very first example of these bounds is the BCH bound, which was proved in

1960 using an argument based on polynomial manipulations leading to a contradic-

tion. We call this approach the polynomial approach. This polynomial approach

continued until 1972, where the Hartmann-Tzeng bound was similarly proved, but it

was discontinued in 1979, when Blahut and others started investigating bounds based

on properties of the Discrete Fourier Transform of codewords. Notably, the most suc-

cessful result in this direction was the Schaub’s bound proposed in 1988. However,

the polynomial approach received new strength from the development of the Gröbner

basis theory and it started to be used again (in adapted form) since 1996.

It is also possible to divide all known bound in two types, independently from

the argument used to prove them. The first type are bounds based only on the

information coming from the defining set of a code (e.g., BCH, Hartmann-Tzeng,

Roos, Betti-Sala). The second type are bounds which need also the knowledge of the

cyclic subcodes (e.g., Schaub, Van Lint-Wilson).

The thesis is divided in two parts. Part I contains preliminary results, part of

which are our original contributions. Part II contains the core of our research and

presents our main results.

The main results of this thesis can be summarized as follows:

1

• in Chapter 3 we formally characterize the first type of bounds (that we call root

bounds) and we give proofs based on the DFT approach for the known bounds,

extending also some of them. We also show that the optimal such bound cannot

reach the true code distance.

• in Chapter 4 we formally characterize the second type of bounds (that we call

border bounds) and we give proofs based on the DFT approach for the known

bounds, showing an unexpected strong correlation between the two most fa-

mous, that is, the Van Lint-Wilson bound and the Schaub bound. We also

show that even the optimal such bound cannot reach the true code distance.

• in Chapter 6 we explicitly propose a new root bound, which can be computed

in polynomial time, it is provable better than many know-bounds and in out-

performs all known bounds for a wide range of computed codes.

• in Chapter 7 we give proofs based on polynomial approach for some known

bounds;

• in Chapter 8 we provide an effective algorithm able to compute the optimal root

bound in a finite time.

2

Introduction

Cyclic codes form an interesting part of error correcting codes. The interest in

cyclic codes arise from practical reasons, since they are widely employed in many

real-life applications, and from theoretical considerations, since they possess a rich

algebraic structure (compared to other linear codes) that eases their investigation.

Arguably, the most important parameter for a cyclic code is its minimum Hamming

distance. The computation of this parameter appears to be a very difficult problem.

However, there are efficient methods that allow to lower bound the distance of cyclic

codes, taking advantage of their algebraic structure (see for example [BS06, Bos01,

HT72, Lev95, Roo83, SWST96, vLW86, ZWZB12, ZB12]). This thesis is devoted to

studying these methods and their theoretical background. In our investigation we do

not deal with the aspects concerning the decoding.

In the scientific literature on the subject we can find two main competing ap-

proaches in the determination of bounds for the distance, on which we elaborate

below. The very first example of these bounds is the BCH bound, which was proved

in 1960 using an argument based on polynomial manipulations leading to a contra-

diction. We call this approach the polynomial approach. This approach continued

until 1972, when the Hartmann-Tzeng bound was similarly proved, but it was dis-

continued in 1979, when Blahut and others started investigating bounds based on

properties of the Discrete Fourier Transform (DFT) of codewords. Notably, the most

successful result in this direction was the Schaub bound proposed in 1988. However,

the polynomial approach received new strength from the development of the Gröbner

basis theory and it has been employed again (in adapted form) since 1996.

It is also possible to divide all known bounds in two types, independently from the

argument used to prove them. This division depends on the information precessed

as input. The first type are bounds based only on the information coming from the

defining set of a code (e.g., BCH, Hartmann-Tzeng, Roos, Betti-Sala). The second

type are bounds which need also the knowledge of the cyclic subcodes (e.g., Schaub,

Van Lint-Wilson).

We consider only bounds which can be applied to any specific cyclic code rather

than bounds which can be applied only to a restricted sub-family of cyclic codes such

3

as the duals of BCH codes (e.g. [CU57, MK93, MM92]) and the quadratic-residue

codes ([CS84]).

This thesis is divided in two parts.

Part I contains our preliminaries which consist in classical known results, unpub-

lished contributions and our original results. In particular:

• Chapter 1 up to Section 1.2 recalls well-known notation and some well-known

results on linear and cyclic codes ([HP03, PHB98, MS81, PW72]). In Section 1.3

we present some notation from the unpublished preprint [BS07].

• Chapter 2 describes the main tools we use in our study: the DFT and the set

U . For Section 2.1 the references are published papers ([BS06, Sch88, Cha98,

MS81]), while the material presented in Section 2.2 is taken from the unpub-

lished papers [BS07, Sch88]. Our contribution in this chapter restricts to Propo-

sition 2.1.7, which is however instrumental in obtaining our results of Chapter 3

and 4.

• Chapter 3 treats formally those bounds which depend only on the length and

the defining set of a code. We call these root bounds. The chapter has several

sections. Section 3.1 and Section 3.2 describe the theoretical background of the

root bounds. Sections 3.3-3.4 present a sub-family of root bounds, which we

call strict root bounds, showing how a large part of known classical bounds

belong to this family, in particular we prove that strict root bounds include: the

BCH bound, the Hartmann-Tzeng bound (even its more general form due to

Roos), the Betti-Sala bound and the Boston bounds. Section 3.5 provides the

proof that not all root bounds are strict, presenting explicitly bounds which do

not belong to the class of strict root bounds, as for example the Roos bound.

Section 3.6-3.7 show counterexamples to bounds claimed in the literature, as

well as slight generalizations of known bounds. Large part of the material in

this chapter comes from [BS07]. Our main improvements are Theorem 3.2.18

and Theorem 3.5.8, which were open problems of [BS07].

• Chapter 4 treats formally those bounds which, beside the defining set and

length, need also the knowledge of the defining sets of the cyclic subcodes. We

call these border bounds. This chapter contains several sections. Section 4.1

and Section 4.2 describe the theoretical background of the border bounds. Sec-

tions 4.3 present a sub-family of border bounds, which we call strict border

bounds. Section 4.4 proves how the most famous border bounds are actually

4

strict border bounds. These include the Van Lint-Wilson shifting bound and

the Shaub bound. We are able to prove that these two bounds actually are

closely related. Large part of the material in this chapter comes from [BS07].

Our main improvements are Theorem 4.1.19 and Theorem 4.3.10, which were

open problems of [BS07] and show that the problem of computing the distance

cannot be solved using the length of the code, its defining set and even the

defining set of all its cyclic subcodes.

• Chapter 5 recalls well-known results in bounding the minimum distance of cyclic

codes using Gröbner bases ([BPW+10, MO09, Cha98, Sal02, Sal07, Aug96]).

A brief overview on Gröbner bases is provided in Section 5.1. Two different

methods are then presented. In Section 5.2 a method using power sums is

explained, while in Section 5.3 we present a method exploiting the generalized

Newton identities.

Part II contains our main results.

• In Chapter 6 we explicitly propose a new root bound. Our new bound can be

computed in polynomial time, it is provable better than many known bounds

(e.g. the Hartmann-Tzeng bound and the Betti-Sala bound) and it outperforms

all known polynomial-time bounds for a wide range of computed codes. The

chapter contains a preliminary section where two partial results are proved,

and a final section with the proof of the main statement. Our proof is based on

DFT approach.This result was partially presented in [PS13] and solves an open

problem in [BS07].

• In Chapter 7 we follow a polynomial approach based on the generalized Newton

identities to provide alternative proofs for all the strict root bounds presented

in Section 3.4. Section 7.1 contains our proofs, which use both the classical gen-

eralized Newton identities and a new type of identities, obtained manipulating

the plain error locator polynomial. We believe that this approach is promising

to obtain a mechanical proof of root bounds as discussed in Section 7.2, where

we collect some considerations, suggestions and a conjecture for further research

on this topic.

• In Chapter 8 we provide an effective algorithm able to compute the optimal root

bound in a finite time. Our proof depends heavily on properties of Gröbner bases

computed with a field-independent strategy. This chapter is organized in three

sections and the main result is contained in the last one, Section 8.3.

The thesis contains also an Appendix where we collect the programs used to

compute bounds and some numerical confirmations of our claims.

5

Part I

Preliminary results

7

Coding Theory

Given two integers n ≥ 1 and N ≥ 0, we denote by (N)n the remainder of division

of N by n. For an integer N < 0 we define (N)n = n− 1− (−N)n.

If n ≥ 1 and N ≥ 1, we denote by (n,N) = (N, n) their greatest common divisor.

Let n ≥ 1 be a natural number. We denote by Z∗
n the set {h ∈ N | 1 ≤ h ≤

n− 1, (h, n) = 1}.
The symbol ⊔ will denote disjoint union.

The symbol N is used for the set of natural numbers and Q is used for the rational

numbers.

We denote by Fq the field of q elements, where q is a power of prime p, and

with (Fq)
n the standard n-dimensional vector space over Fq. From now on, when not

differently specified, K is any field (not necessary finite). We indicate as Fq and K

the algebraic closure of Fq and K, respectively.

All the results in this chapter up to Section 1.2 included, are well-known in liter-

ature, we use as references [HP03, PHB98, MS81, PW72]. Section 1.3 contains some

notation from the unpublished preprint [BS07].

1.1 Linear codes

1.1.1 Basic definitions

Definition 1.1.1. Let k, n be two integers such that n ≥ k ≥ 1 and let φ : (Fq)
k 7→

(Fq)
n be an injective map. We say that C = Im(φ) is a [n, k]-block code (or simply

code) over Fq. If φ is linear, then C is called a linear block code (or simply

linear code) of length n and dimension k over Fq. An element c ∈ C is called a

word of C (or codeword if C is clear from the context).

We do not treat in this thesis the case of non-linear codes, so we only say a

code for a linear block code. The code containing only the zero vector is called the

zero-code. A code over F2 is called a binary code. When we do not specify the

field, we implicitly mean that the code is defined over Fq. Note that if C is an [n, k]

code over Fq, then |C| = qk. We denote by Lq the class of linear codes over Fq and

by L the union L = ∪qLq.

9

Chapter 1. Coding Theory

As subspace of (Fq)
n, a linear code admits a basis. This leads to the definition of

a generator matrix of a code.

Definition 1.1.2. Let C be an [n, k]-code over Fq. Any matrix G whose rows form

a basis for C as a k-dimensional subspace of (Fq)
n is called a generator matrix.

If G has the form G = [Ik | A], where Ik is the k × k identity matrix, G is called

a generator matrix in standard form.

In general, there are many generator matrices for a codes, nevertheless any code

has a unique generator matrix in standard form. If G is in standard form then the

code is called systematic.

Let “ ·” be the usual scalar product in (Fq)
n: given x = (x0, . . . , xn−1) and y =

(y0, . . . , yn−1) , x · y =
∑n−1

i=0 xiyi. The orthogonal of a vector subspace of (Fq)
n is

again a vector subspace, so it defines a code.

Definition 1.1.3. Let C be an [n, k]-code over Fq, its dual code C⊥ is the set of all

n-vectors which are orthogonal to all words of C :

C⊥ = { c′ | c′ · c = 0, ∀c ∈ C } .

We note that C⊥ is an [n, n− k]-code over Fq.

Definition 1.1.4. A parity-check matrix H for an [n, k]-code is a generator ma-

trix of C⊥.

From the previous definitions we have easily that G and H are matrices of size,

respectively, k × n and (n − k) × n. To check if an n-vector x belongs to C it is

necessary and sufficient to compute HxT = 0, in fact it holds:

∀ x ∈ (Fq)
n, HxT = 0 ⇐⇒ x ∈ C. (1.1)

Definition 1.1.5. Let x be any vector in (Fq)
n and let C be an [n − k] code with

parity-check matrix H. The vector s ∈ (Fq)
n−k such that s = HxT is called the

syndrome corresponding to x. The set
{
HxT | x ∈ (Fq)

n
}

is called the subspace

of syndromes (or simply the syndromes).

Equation 1.1 states that a vector x ∈ (Fq)
n is a word of C if and only if the

syndrome corresponding to x is zero.

Given two vectors in (Fq)
n, x = (x0, . . . , xn−1), y = (y0, . . . , yn−1), we define the

(Hamming) distance between x and y as the number of components for which they

differ:

d(x, y) = | { 0 ≤ i ≤ n− 1 | xi 6= yi } |.
The (Hamming) weight of a vector x ∈ (Fq)

n is the number, w(x), of its non-zero

components: w(x) = d(x, 0).

10

1.1. Linear codes

Definition 1.1.6. The distance of a code C is the smallest distances between

distinct codewords:

d(C) = min { d(x, y) | x, y ∈ C, x 6= y }

We only write distance and weight from now on, since other distances and

weights will not be considered. By convention, the distance of the zero-code is ∞.

If C is a code of length n, dimension k and distance d, we say that C is an [n, k, d]

code. It is clear that any [n, k, d] code is also an [n, k] code and that if C is an [n, k]

code, then it is also an [n, k, d(C)] code. Thanks to linearity, it is possible to define

the distance of a linear code in another way, as the following result shows.

Proposition 1.1.7. Let C be an [n, k, d] code over Fq, then

d = min { w(c)) | c ∈ C, c 6= 0 } .

Let C be an [n, k, d] linear code over Fq. If D is a vector subspace of C, then we

say that D is a (linear) subcode of C. We have d(C) ≤ d(D).

Definition 1.1.8. Let C be an [n, k, d] code, we denote by Ai the number of the

codewords of weight i. The set of {Ai }0≤i≤n is called the weight distribution of

C. If Ai = An−i for 0 ≤ i ≤ n, then C has symmetric weight distribution.

The linearity of C implies that A0 = 1 and d(C) = min { i ≥ 1 | Ai 6= 0 }.

1.1.2 Bounds on distance for linear codes

To estimate the distance for a generic linear code is one of the great challenges in

coding theory. We state the decision problem for the minimum distance of a linear

code.

Problem: MINIMUM DISTANCE (Fq)

Complexity parameter: n ∈ N, n ≥ 1.

Instance: An m× n matrix H over Fq, m ≤ n, and an integer 0 < w ≤ n.

Question: Is there a non-zero vector x ∈ (Fq)
n of weight ≤ w, such that HxT = 0?

In 1978 Berlekamp, McEliece and van Tilborg [BMvT78] conjectured that the decision

problem for the minimum distance of a linear code is NP-complete. The conjecture

was solved affirmatively by Vardy in 1997 ([Var97a] and [Var97b]), who also showed

that finding the minimum distance is an NP-hard problem. The great interest of

mathematicians and coding theory researchers for this question lies in the fact that

11

Chapter 1. Coding Theory

the distance is a parameter of the performance of a code. We say that a code C has

error correction capability t if C can correct all errors of weight up to t and

there is an error of weight t+1 that cannot be corrected by C. Similarly, we say that

a code C has error detection capability s if C can detect all errors of weight up

to s and there is an error of weight s+1 that cannot be detected by C. Given a code

with distance d, we can center each codeword in a sphere of radius
⌊
d−1
2

⌋
in such a

way that all the spheres are dijoint. Suppose that a codeword is sent. If a vector x

is received which is not a codeword, then a naive decoding procedure which we may

call minimum distance decoding, consists in computing the distance between x and

any word of the code. The procedure outputs either the word of the code which is

nearest to x, if it exists, or a failure message. If no more than
⌊
d−1
2

⌋
errors occur, then

x is contained in a sphere, and then we can correct it to the right codeword, which

is the center of the sphere. An error is detected if and only if the received vector is

not a codeword. If more than d− 1 errors occur, it can happen that a codeword was

corrupted in another codeword, thus making the error detection impossible. A large

distance for the code implies larger error correction capability and error detection

capability, since the spheres are larger. More precisely, the following result holds.

Proposition 1.1.9. Let C be an [n, k, d] code over Fq, then:

• C has detection capability d− 1

• C has correction capability t =
⌊
d−1
2

⌋

The following theorem gives an elementary relationship between the weight of a

codeword and a parity-check matrix for the code.

Theorem 1.1.10. Let C be an [n, k, d] code with parity-check matrix H. Let w ≥ 1.

Then for any codeword of weight w there is a linear dependence relation among w

columns of H. Conversely, for any linear dependence relation involving w columns of

H, there is a non-zero word in C of weight less or equal to w.

It is possible to extend the previous result to the distance.

Corollary 1.1.11. A linear code has minimum weight d if and only if its parity-

check matrix has a set of d linearly dependent columns and any set of d− 1 columns

is linearly independent.

The following theorem gives an upper bound for the distance of a code.

Theorem 1.1.12 (Singleton bound). Let C be an [n, k, d] code. Then

d ≤ n− k + 1.

12

1.1. Linear codes

A code which reaches the equality in the Singleton bound is called a maximum

distance separable code or an MDS code.

Another fundamental problem in coding theory is, given n and qk, to determine

a code with maximum d. Alternatively, given n and d, to determine the maximum

number Bq(n, d) of codewords in a code over Fq with length n and minimum distance

at least d. We report here some well-known bounds for Bq(n, d). The first result is a

consequence of Proposition 1.1.9.

Theorem 1.1.13 (Sphere packing bound).

Bq(n, d) ≤
qn∑t

i=0

(
n

i

)
(q − 1)i

,

where t =
⌊
(d−1)

2

⌋
.

Theorem 1.1.14 (Griesmer bound). Let C be and [n, k, d] over Fq with k ≥ 1. Then

n ≥
k−1∑

i=0

⌈
d

qi

⌉
.

Theorem 1.1.15 (Plotkin bound). If n < qd

(q−1)
, then

Bq(n, d) ≤
d

d− (1− 1
q
)n
.

Theorem 1.1.16 (Gilbert bound).

Bq(n, d) ≥
qn

∑d−1
i=0

(
n

i

)
(q − 1)i

.

Theorem 1.1.17 (Varshamov bound).

Bq(n, d) ≥
qn

⌈1 +∑d−2
i=0

(
n

i

)
(q − 1)i⌉

1.1.3 Equivalence of linear codes

Despite two codes may be different, they can have many properties in common so

that we can consider them as essentially the same code. Suppose for instance to have

two codes over Fq, C1, which is an [n1, k1, d1] code, and C2, which is an [n2, k2, d2]

code, such that c = (c1, c2, . . . , cn1) ∈ C1 ⇐⇒ c̄ = (cn1 , c1, . . . , c1) ∈ C2, i.e. C2 is

obtained shifting all words of C1 to the right. In general, C1 is different form C2, but

we have n = n1 = n2, k = k1 = k2, d = d1 = d2. Moreover, if { Ai }0≤i≤n is the weight

distribution of C1 and {Bi }0≤i≤n is the weight distribution of C2, we have Ai = Bi for

13

Chapter 1. Coding Theory

any 0 ≤ i ≤ n. We have just described an example of two permutation equivalent

codes in preparaion for the formal definition. Let Sym(n) be the symmetric group

on a set of n elements. We extend the action of Sym(n) to (Fq)
n as follows: given

x = (x1, x2, . . . , xn) ∈ (Fq)
n, σ ∈ Sym(n), we define:

(x1, x2, . . . , xn)σ = (x1σ−1 , x2σ−1 , . . . , xnσ−1).

Definition 1.1.18. Two linear codes C1[n, k1, d1] and C2[n, k2, d2] are permutation

equivalent if there is σ ∈ Sym(n) such that

(x1, x2, . . . , xn) ∈ C1 ⇐⇒ (x1, x2, . . . , xn)σ ∈ C2.

We can express any permutation using a permutation matrix.

Definition 1.1.19. Given a permutation σ ∈ Sym(n), its permutation matrix is the

n× n matrix Pσ = (pi,j) given by

pi,j =

1 if j = iσ,

0 otherwise.

We recall some useful properties of permutation matrices.

Proposition 1.1.20. Let σ, σ′ be two permutation of Sym(n), x = (x1, . . . , xn) a

n-tuple of symbols. We have

i. PσPσ′ = Pσσ′

ii. PσP
T
σ = In, where In is the n× n identity matrix

iii. (x1, . . . , xn)σ = (x1, . . . , xn)Pσ, where on the right we mean a vector-matrix prod-

uct.

Thus, from (iii), if we define C1P = { xP | x ∈ C1 }, we can say that C1 and C2

are permutation equivalent if there is a permutation matrix, P , such that C1P = C2.

More general kinds of equivalence can be considered which preserve the weight of

codewords, as we are going to show. We recall that a monomial matrix is a square

matrix with exactly one non-zero entry in each row and column. A monomial matrix

M can be written either in the form DP or the PD, where P is a permutation matrix

and D is a diagonal matrix.

Definition 1.1.21. Let C1 and C2 be codes of the same length over Fq, and let G1

be a generator matrix for C1. Then C1 and C2 are monomially equivalent if there

is a monomial matrix M so that G1M is a generator matrix for C2.

14

1.2. Cyclic codes

Two permutation-equivalent codes are also monomially-equivalent codes, but the

converse it is not true, except in the binary case, where monomial equivalence and

permutation equivalence are precisely the same. We have a more general kind of

equivalence when considering also composition with an automorphism of the field Fq.

Let γ be an automorphism of Fq, then we can extend the action of γ to (Fq)
n in the

usual way: given (x1, . . . , xn) ∈ (Fq)
n, we write (x1, . . . , xn)γ = (x1γ, . . . , xnγ). For a

code C over Fq, we define Cγ = { xγ | x ∈ C }.

Definition 1.1.22. We say that two codes C1 and C2 of the same length over Fq are

equivalent if there is an automorphism γ of Fq and a monomial matrix M such that

C2 = C1Mγ.

Two monomially-equivalent codes are also equivalent, since it is sufficient to con-

sider as automorphism of Fq the identity. The converse is true only if Fq has a prime

size. Thus on F2 all these equivalence are the same. Generally speaking, two equiv-

alent codes has the same weight distribution, but there exist codes with the same

weight distribution which are not equivalent. We will see in Subsection 1.2.2 another

definition, which is of particular interest for the class of cyclic codes.

1.2 Cyclic codes

In this section we introduce the principal aspects concerning an important subclass

of linear codes: cyclic codes. Due to their algebraic structure, many techniques of

commutative algebra can be used for the study of these codes, in fact from an algebraic

point of view, the investigation of cyclic codes it is equivalent to the investigation of

ideals in a suitable principal ideal (commutative) ring. The knowledge of efficient

methods for encoding and decoding of cyclic codes boosts their application in real

life. However, we do not treat here the vast area of encoding and decoding algorithms,

preferring to focus on the problem of bounding distance for cyclic codes.

1.2.1 A first description

Given an n-vector c = (c0, . . . , cn−1) we consider its right shift

sh(c) = (cn−1, c0, . . . , cn−2)

which is again an n-vector with the same field of coefficient of c. We adopt the usual

notation shi(c) to indicate the i-th right shift of c, i.e.:

shi(c) = (cn−i, . . . , cn−1, c0, . . . , cn−i−1).

We clearly have sh0(c) = shn(c) = c and shi(c) = sh(i)n(c).

15

Chapter 1. Coding Theory

Definition 1.2.1. Let C be an [n, k, d] code such that

∀c ∈ C, sh(c) ∈ C.

Then we call C a cyclic code.

Thus cyclic codes are invariant with respect to shifts. To get an algebraic de-

scription, we can view a vector c = (c0, . . . , cn−1) ∈ (Fq)
n as a polynomial c(x) =

c0 + c1x + · · ·+ cn−1x
n−1 in Fq[x] of degree at most n− 1. For a word c ∈ C we use

interchangeably the vector notation or the polynomial notation c(x). The fact that

a cyclic code is invariant under cyclic shifts implies that if c(x) is in the code, then

xc(x) is so, if we consider the multiplication modulo xn − 1. Let Rn = Fq[x]/〈xn − 1〉
be the ring consisting of residue classes of Fq[x] modulo xn − 1. Each polynomial of

degree at most n− 1 belongs to a different residue class and we take this polynomial

as representative. Actually, Rn is an algebra over Fq. The consideration above sug-

gests an obvious isomorphism (Fq)
n 7→ {f ∈ Fq[x] | deg(f) ≤ n− 1} as vector spaces

over Fq, given by (c0, . . . , cn−1) 7→ c0 + . . . + cix
i−1 + . . . + cn−1x

n−1. Thanks to this

characterization, we can see linear codes of length n as subsets of Rn, in particular,

cyclic codes in (Fq)
n correspond to ideal in Rn, as the following theorem states.

Theorem 1.2.2. Let C be an [n, k, d] code over Fq, then C is cyclic if and only if C

is an ideal of Rn.

Since Rn is a principal ideal ring, any ideal, C, is generated by an element g(x) ∈
Rn, C = 〈g(x)〉. If we require that g(x) is monic and of lowest degree, then it is

unique. Such polynomial g is called the generator polynomial of C. Note that

g | (xn−1) in Fq[x]. The next theorem summarizes this and other properties of cyclic

codes.

Theorem 1.2.3. Let C be a non-zero ideal in Rn i.e., a cyclic code of length n.

(a) There is a unique monic polynomial g(x) of minimal degree in C.

(b) C = 〈g(x)〉, i.e. g(x) is a generator polynomial of C.

(c) g(x) is a factor of xn − 1.

(d) If the dimension of C is k, then deg(g) = n− k.

(e) Any c(x) can be written uniquely as c(x) = f(x)g(x) in Fq[x], where f(x) ∈ Fq[x]

has degree less than k.

16

1.2. Cyclic codes

(f) If g(x) = g0 + g1x+ · · ·+ gn−kx
n−k, then a generator matrix for C is

g0 g1 g2 . . . gn−k 0 . . . 0

0 g0 g1 . . . gn−k−1 gn−k 0 . . .
...

...
...

...
...

...
...

...

0 . . . 0 g0 g1 g2 . . . gn−k

We can then replace our first definition of cyclic code, using the result of Theo-

rem 1.2.3.

Definition 1.2.4. Let C be an [n, k, d] linear code in (Fq)
n. We say that C is a cyclic

code if there is a monic polynomial gC ∈ Fq[x] s.t. gC |(xn − 1) and C = {gCf | f ∈
Fq[x], deg(f) ≤ k − 1}. The polynomial gC is called the generator polynomial of

C, deg(gC) = n− k, and we write C = 〈gC〉.

To simplify the notation, we usually write g to indicate the generator polynomial

instead of gC , when C is clear. Vice versa, any monic g ∈ Fq[x] s.t. g|(xn − 1)

generates a cyclic code of dimension k = n − deg(g). We denote by Cq,n the class of

all cyclic codes of length n over Fq, by Cn the class of all cyclic codes of length n, by

Cq the union ∪(n,q)=1Cq,n and by C the whole class C = ∪qCq.
Let C be a cyclic code of length n with generator polynomial g. Since g is a

divisor of xn − 1, we can define the check polynomial of C as h(x) ∈ Rn such that

h(x) = (xn−1)/g(x). Note that h(x) and g(x) are zero divisors in the ring Rn. Using

the check polynomial it is easy to decide if c(x) ∈ Rn belongs to the code C. In fact:

c(x) ∈ C ⇐⇒ c(x) = f(x)g(x) ⇐⇒ c(x)h(x) = f(x)g(x)h(x) = 0 in Rn.

We have:

Proposition 1.2.5. Let h(x), g(x) be, respectively, the check polynomial and the

generator polynomial of the cyclic code C. The dual code C⊥ is cyclic with generator

polynomial

g⊥(x) = xdeg(h)h(x−1).

A generator matrix for C⊥ is

H =

0 . . . 0 hk . . . h1 h0

. . . 0 hk . . . h1 h0 0
...

...
...

...
...

...
...

hk . . . h1 h0 0 . . . 0

17

Chapter 1. Coding Theory

Corollary 1.2.6. Let h(x) be the check polynomial of the cyclic code C. Then the

code Ch = 〈h〉 and C⊥ are permutation equivalent. The equivalence permutation is

iσ = n− i+ 1.

From now on, during the study of cyclic codes we make the basic assumption that

(n, q) = 1 (the other case is studied in [vL95] and [CMSvS91]). The first reason for

this assumption is that in this way the polynomial xn − 1 ∈ Fq[x] has distinct roots

in its splitting field. The n-th roots of unity are partitioned in q-cyclotomic cosets

modulo n. This leads us to a very useful characterization of a cyclic code from the

roots of its generator polynomial. Another reason will be clear in Section 2.1 when

we introduce the Discrete Fourier Transform.

Since Fq is not algebraically closed, it is not guaranteed that the roots of xn − 1

belong to Fq. The smallest field which contains the roots of xn − 1 is called the

splitting field of xn − 1 (over Fq), which we denote as F. We summarize some

results on the splitting field.

Theorem 1.2.7. Let Fq be a finite field and F be the splitting field of xn− 1 over Fq.

Let (n, q) = 1, then

• there are a prime p and a positive integer r such that q = pr;

• there exist are positive integers m and M such that F = Fqm = FpM

• there is an element α ∈ F such that

(xn − 1) =

n−1∏

i=0

(x− αi).

Such element is called a primitive n-th root of unity.

Let F be the splitting field of xn − 1 over Fq and let α be a primitive n-th root of

unity in F. If g is the generator polynomial of an [n, k, d] cyclic code, then g | (xn−1)

and its roots are a subset of { αi | 0 ≤ i ≤ n− 1 }, which we can collect in a set.

Definition 1.2.8. Let g be the generator polynomial of an [n, k, d] code over Fq and

α be a primitive n-th root of unity in F, the splitting field of xn − 1. We denote by

SC,α the set

SC,α = {0 ≤ i ≤ n− 1 | g(αi) = 0} .

SC,α is called the complete defining set of C w.r.t. α.

We define the cyclotomic coset mod n over Fq (or, briefly, the q-cyclotomic

coset) which contains i as Ci = { i, iq, iq2, . . . , iqmi−1 }, where iqmi ≡ i mod n. We

18

1.2. Cyclic codes

can collect the integers modulo n into disjoint q-cyclotomic classes. Recalling that if

g(αi) = 0 then also g(αqi) = g(αi)q = 0, we obtain that the complete defining set of

C is a collection of q−cyclotomic cosets, i.e. for some s ≥ 1:

SC,α =
s⊔

j=1

Cij , Cij =
{
ij , ijq, ijq

2, . . . , ijq
mij

−1
}
.

Thanks to Theorem 1.2.3 there is a one-to-one correspondence between non-zero

cyclic codes and the divisors of xn−1 different from xn−1 itself. Moreover, once α is

fixed, we have a one-to-one correspondence between irreducible factors of xn−1 and q-

cyclotomic cosets modulo n. These correspondences lead to the following proposition.

Proposition 1.2.9. The number of non-zero cyclic codes of Rn is 2r − 1, where r is

the number of q-cyclotomic cosets modulo n.

Definition 1.2.10. Let C be a cyclic code. A linear subcode C ′ of C that is cyclic

will be called a cyclic subcode. In this case we will write C ′ < C if C ′ is not zero.

Given a cyclic code C with generator polynomial g, it is not difficult to count the

number of its proper cyclic subcodes, using the following result.

Proposition 1.2.11. Let C1 and C2 be cyclic codes over Fq with generator polynomial

g1(x) and g2(x), respectively. Then C1 < C2 if and only if g2(x) | g1(x).

Thus, if xn − 1 has r irreducible factors and g has s (obviously s ≤ r) irreducible

factors, then C has exactly

r−s∑

i=1

(
r − s

i

)
= 2r−s − 1

non-null cyclic subcodes (including C itself).

We have that a cyclic code of length n is defined by its complete defining set. In fact:

c ∈ C ⇐⇒ c(αi) = 0 for any i ∈ SC,α

Note that this fact it is not true if we drop the assumption (n, q) = 1. It follows that

if SC,α = { i1, i2, . . . , in−k } is the complete defining set of a cyclic code C of length

n, the matrix

H =

1 αi1 α2i1 . . . α(n−1)i1

1 αi2 α2i2 . . . α(n−1)i2

...
...

...
...

...

1 αin−k α2in−k . . . α(n−1)in−k

(1.2)

19

Chapter 1. Coding Theory

is a parity-check matrix for C. In fact:

HcT =

c(αi1)

c(αi2)
...

c(αin−k)

= 0 ⇐⇒ c ∈ C

Remark 1.2.12. We note that the entries of matrix H in (1.2) are in F rather than Fq.

clearly C is the null space of H over Fq. H can also be used as a parity-check matrix

for a cyclic code C ′ over F, with the same defining set. We have C = C ′
|Fq

= C ′∩(Fq)
n

and we say that C is the subfield subcode of C ′ with respect to Fq. Choosing a basis

for F = Fqm (see Theorem 1.2.7) as vector space over Fq, we obtain an m(n− k)× n

matrix, H|Fq
, with entries in Fq. A parity-check matrix for C ′|Fq

can be obtained from

H|Fq
by deleting the linear dependent rows.

We conclude this section recalling two remarkable families of cyclic codes: BCH

codes (see [BRC60]) and Reed-Solomon codes.

Definition 1.2.13. We say that a cyclic code C ∈ Cq,n is a (narrow-sense) BCH code

with designed distance δ, if there is an n-th root of unity α over Fq s.t. {1, 2, . . . , δ−
1} ⊂ SC,α and C is the largest code in Cq,n possessing this property.

Definition 1.2.14. Given an integer m ≥ 2, a prime p and an integer pm−1 ≥ δ ≥ 1,

let n = pm − 1 and q = pm. Consider polynomial g ∈ Fq[x],

g = (x− α) · · · (x− αδ−1) ,

where α is a primitive element of Fq. The Reed-Solomon code of designed distance δ

over Fq is the cyclic code generated by g.

The Reed-Solomon codes form a sub-class of the BCH codes. Let S be the com-

plete defining set of a cyclic code. Suppose that q and n are known, let T ⊂ S be

such that any cyclotomic class in S has at least an element in T , then T is usually

called a defining set, since the knowledge of T provides the knowledge of S. In the

following, when we write “defining set”, we actually mean the complete defining set,

unless specify otherwise.

1.2.2 A second description

Previously, we have seen how we can describe a cyclic code as an ideal of Rn,

now we introduce a second description of Rn which is often helpful. Let α be a

primitive n-th root of unity in F, then G∗ = { 1, α, . . . αn−1 } is a subgroup of F∗, the

20

1.2. Cyclic codes

multiplicative group of F. In particular if the length n is equal to pm − 1 for some

prime p and some integer m ≥ 1, then G∗ = F∗ (in this case we say that code is

primitive).

We have already seen how a vector of (Fq)
n can be identified with an element of Rn

by:

(c0, c1, . . . , cn−1) 7→ c0 + c1x+ · · ·+ cn−1x
n−1.

Similarly, there is another natural way to represent a vector in (Fq)
n, adopting a

group algebra point of view:

(c0, c1, . . . , cn−1) 7→ c0α
0 + c1α

1 + · · ·+ cn−1α
n−1.

We have an isomorphism between Rn and a group algebra, as we are going to explain.

Let us indicate with FqG
∗ the group algebra Fq[{G∗, · }] of the multiplicative group

G∗ over Fq, consisting of the formal sums:

n−1∑

i=0

ciα
i, ci ∈ Fq.

Addition and scalar multiplication are component-wise and multiplication is given by

multiplication in G∗:

n−1∑

i=0

xiα
i +

n−1∑

i=0

yiα
i =

n−1∑

i=0

(xi + yi)α
i,

λ
n−1∑

i=0

xiα
i =

n−1∑

i=0

(λxi)α
i, λ ∈ Fq

n−1∑

k=0

xiα
i ·

n−1∑

j=0

yiα
i =

n−1∑

i=0

(
∑

kj=i mod n

xkyj

)
αi.

With this assumptions we have that the maps ψ : Rn 7→ FqG
∗

ψ

(
n−1∑

i=0

cix
i

)
=

n−1∑

i=0

ciα
i

is an isomorphism between the algebras Rn and FqG
∗. Any ideal in Fq ∗G is called a

group algebra code and it is the image by ψ of an ideal in Rn. Thus any cyclic code

corresponds to a group algebra code and vice versa.The shift of a codeword
∑n−1

i=0 ciα
i

is the codeword
∑n−1

i=0 ciα
i+1.

21

Chapter 1. Coding Theory

1.2.3 Naturally equivalent cyclic codes

Given a finite field Fq and an n ≥ 1 s.t. (n, q) = 1, there can be many primitive

n-th roots of unity. The following definition allows us to treat formally the choice of

a primitive root.

Definition 1.2.15 ([BS07]). We denote by S the subset of N× N s.t.

(q, n) ∈ S ⇐⇒ q = pm, p is a prime, m ≥ 1, n ≥ 1, (n, p) = 1 .

We denote by Z the class of all functions

ζ : S 7→ ⊔p prime Fp

s.t. ζ(pm, n) ∈ Fp is a primitive n-th root of unity over Fp.

The following proposition comes from elementary field theory.

Proposition 1.2.16. Let α be a primitive n-th root of unity over Fp and m ≥ 1.

Then α is a primitive n-th root of unity over Fpm.

Many notions of code equivalence are known in coding theory, and in Section 1.1 we

mentioned some of them. Here we are going to describe a special case of equivalence,

that we call natural. We have seen that, once fixed a finite field Fq, a length n and

primitive n-th root of unity α, the complete defining set with respect to α determines

uniquely the cyclic code. However, since the n-th roots of unity form a cyclic group,

G∗, of order n, many different choices for a primitive root can be done. We recall

that, if α is a primitive n-th root of unity, then the set of all primitive roots of unity

is { αs | 0 ≤ s ≤ n− 1, (s, n) = 1 }, with cardinality ϕ(n), where ϕ denotes the well-

known Euler function. Given a cyclic code C, different choices for α give different

complete defining sets and thus different codes, which are actually “essentially the

same” code.

Definition 1.2.17. Let C1, C2 ∈ Cq,n. We say that C1 and C2 are naturally

equivalent if there are two n-th roots of unity over Fq, α and β, s.t.

SC1,α = SC2,β .

We have that two naturally equivalent cyclic codes are also permutation equiv-

alent. Let us consider the group algebra FqG
∗. The permutations αiσs = αis with

(s, n) = 1 forms a group G of automorphisms of G∗. Thus G permutes the coordinates

of FqG
∗. However note that now we consider Sym(n) as the permutation group acting

on {0, . . . , n− 1} rather than {1, . . . , n}.

22

1.2. Cyclic codes

Example 1.2.18. Let us consider Fq = F3 and n = 11. We have cyclotomic classes:

(0) = { 0 } (1) = { 1, 3, 4, 5, 9 } , (3) = { 2, 6, 7, 8, 10 }

Accordingly to the factorization of x11 − 1 in F3[x]:

x11 − 1 = (x+ 2)(x5 + 2x3 + x2 + 2x+ 2)(x5 + x4 + 2x3 + x2 + 2)

Let α be a primitive 11−th root of unity with minimal polynomial x5 + 2x3 + x2 +

2x+ 2, β be a primitive n-th root of unity such that β = α2. Note that the minimal

polynomial of β is x5 + x4 + 2x3 + x2 + 2. Consider the cyclic code C1 with defining

set SC1,α = { 1, 3, 4, 5, 9 } and the cyclic code C2 with SC2,α = { 2, 6, 7, 8, 10 }. Then

C1 is naturally equivalent to C2, because SC1,α = SC2,β. The permutation σ2 ∈ G
defined by αiσ2 = α2i induces a permutation in Sym(n), which we still call σ2, with

abuse of notation, acting as iσ2 = (2i)n. As a product of cycles in Sym(n), we have

σ2 = (0)(1 2 4 8 5 10 9 7 3 6). The permutation matrix associated to σ2 is

Pσ2 =

1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0

So, we have C2 = C1Pσ2 (see Section 1.1.3).

Remark 1.2.19. Two permutation equivalent codes not necessarily are naturally equiv-

alent, but only those of the form C1 = C2σs with (s, n) = 1.

A classical result on cyclic codes can be rephrased in our context as follows.

Theorem 1.2.20 ([BS07]). Let C1 and C2 be naturally equivalent cyclic codes. Then

d(C1) = d(C2) .

Furthermore, let C1 be in Cq,n. Let α and β be primitive n-th roots of unity. Then

there is a unique cyclic code C2 in Cq,n s.t.

SC1,α = SC2,β .

From the defining set of a code it is immediate to find the defining sets of its

naturally equivalent codes, as follows. Let C ∈ Cq,n and α = ζ(q, n), for a ζ ∈ Z. Let

SC,α = {i1, . . . , ir}. Then for any l ∈ Z∗
n we can construct a set Sl = {j1, . . . , jr} ⊂

{0, . . . , n − 1}, where jh = (lih)n for any h. So we can rephrased another classical

result as follows.

23

Chapter 1. Coding Theory

Theorem 1.2.21 ([BS07]). For any code D naturally equivalent to C there is an

l ∈ Z∗
n s.t. SD,α = Sl.

Conversely, for any l ∈ Z∗
n there is a code D naturally equivalent to C s.t. SD,α = Sl.

Remark 1.2.22. Observe that defining sets of naturally equivalent codes do not depend

on the underlying field, but only on n and the defining set of one code, since using

different α gives rise to the same set of defining sets.

1.3 Terminology for general distance bounds

The distance of a linear code can be viewed as a map (and its restriction):

d : L −→ N ∪ {∞} , d : C −→ N ∪ {∞} ,

if we adopt the convention that the distance of zero codes is ∞.

Definition 1.3.1. A map δ : L → N ∪ {∞} is called

• a lower bound on L, if δ(C) ≤ d(C), ∀ C ∈ L

• an upper bound on L, if δ(C) ≥ d(C), ∀ C ∈ L.

Analogously for a map δ : C → N ∪ {∞}.
Definition 1.3.2. Let C be a code in C and F ⊆ C. Let δ be a bound on C (either

lower or upper). We say that:

• δ is tight on C, if δ(C) = d(C),

• δ is tight on F , if δ(C) = d(C), ∀ C ∈ F .

From now on a “bound” will actually be a lower bound on C.

Definition 1.3.3. Let C be a code in C and F ⊆ C. Let δ1 and δ2 be two bounds.

We say that:

• δ1 is sharper than δ2 on C, if δ1(C) ≥ δ2(C),

• δ1 is sharper than δ2 on F , if δ1(C) ≥ δ2(C), ∀ C ∈ F .

• δ1 is tighter than δ2 on F , if

|{C | C ∈ F , δ1 is tight on C}| ≥ |{C | C ∈ F , δ2 is tight on C}|.

The last definition we need is the following.

Definition 1.3.4. Let δ be a bound. We say that δ is monotone if for any cyclic code

C and any cyclic subcode C ′ of C, we have

δ(C) ≤ δ(C ′) .

24

Our Tools

Here we present the main tools we use in Chapter 3 and Chapter 4. This in-

struments are classical in coding theory. Our principal references are [BS07, Sch88,

Cha98, MS81] for Section 2.1 and [BS07, Sch88] for Section 2.2.

2.1 DFT and cyclic codes

Let K be a field. Let α be a primitive n-th root of unity over K.

Let A be any matrix over K. We denote by rk(A) the rank of A.

Definition 2.1.1. Let ā = (a1, . . . , an) be a vector over K. We denote by M(ā) the

matrix:

M(ā) =

a1 a2 . . . an−1 an

a2 a3 . . . an a1
...

...
...

...
...

an a1 . . . an−2 an−1

and we say that M(ā) is the matrix associated to ā.

By definition, M(ā) is a circulant matrix (i.e. its rows are obtained from the first

one by successive shifts).

Definition 2.1.2. Let ā = (a0, . . . , an−1) be a vector over Fq, α a primitive root in F.

Let i ∈ Z, we define Ai = ā(αi) =
∑n−1

j=0 ajα
ij. The Discrete Fourier Transform

(or DFT for short) of ā is the vector:

DFT(ā) = (A0, . . . , An−1).

The polynomial A(x) =
∑n

i=1Aix
n−i ∈ F[x] is called the Mattson-Solomon polynomial

(MS polynomial for short) of ā.

Note that A0 = An.

We have an useful inversion formula, which allows us to recover ā from A(x).

25

Chapter 2. Our Tools

Theorem 2.1.3. [Inversion formula] Let ā, α, A(x) as above. The vector ā is recov-

ered from A(x) by

ai =
1

n
A(αi), i = 0, . . . , n− 1

ā =
1

n
(A(1), A(α), . . . , A(αn−1)), ā(x) =

1

n

n−1∑

i=0

A(αi)xi.

Proof. See [MS81].

From Theorem 2.1.3 it is possible to deduce that the weight of ā is n minus the

number of zeros of A(x).

Remark 2.1.4. We note that it is possible to define the MS polynomial when (q, n) 6= 1

but in general it is not invertible. This is another reason for which we always assume

n and q coprime.

Remark 2.1.5. Let C ∈ Cq,n. If we represent a word c ∈ C as a polynomial in Fq[x],

then the zero components of its DFT correspond to the zeros of c, since Ai = c(αi)

for any i. Moreover, since c(αiq) = c(αi)q, we also have A(iq)n = (Ai)
q for any i.

The precise correspondence between codewords and their DFT’s is described in

the following theorem, which is a rephrasing of classical results.

Theorem 2.1.6. Let S be a subset of { 0, . . . , n− 1 } which is invariant under mul-

tiplication by q modulo n. Let L be the subspace of Fn whose elements are n-tuples

(A0, . . . An−1) satisfying

A(qs)n = (As)
q and As = 0 for any s ∈ S

Let C be the cyclic code of length n over Fq with defining set S. Then there is a

one-to-one correspondence between the codewords of C and the vectors of L, given by

c 7→ DFT(c).

Given any vector c = (c0, . . . , cn−1) of (Fq)
n, we consider the diagonal matrix Dc

and the Vandermonde matrix F , defined as:

Dc =

c0 0 . . . 0

0 c1 0 . . .
...

. . .

0 . . . 0 cn−1

F =

1 1 . . . 1

1 α1 . . . αn−1

...
...

. . .
...

1 αn−1 . . . α(n−1)(n−1)

.

It is clear that we have rk(Dc) = w(c) and rk(F) = n, since the αj are distinct for

0 ≤ j ≤ n− 1. Let DFT(c) = (C0, C1, . . . , Cn−1), we have the following identity due

26

2.1. DFT and cyclic codes

to Blahut ([Bla83]):

C0 C1 . . . Cn−1

Cn−1 C0 . . . Cn−2

...
...

. . .
...

C1 C2 . . . C0

= F−1

c0 0 . . . 0

0 c1 0 . . .
...

. . .

0 . . . 0 cn−1

F (2.1)

If C1 and C2 are naturally equivalent cyclic codes of length n, we know a permu-

tation σ ∈ Sym(n) such that for any c1 ∈ C1 there exists c2 ∈ C2 with c2 = c1σ and

this permutation acts as iσ = (is)n for some s ∈ {0, . . . , n− 1}, (s, n) = 1. We have

that Dc2 = P T
σ Dc1Pσ. From this fact, we are able to prove that M(DFT(c1)) and

M(DFT(c2)) are closely related. We claim the following proposition.

Proposition 2.1.7. Let C1 and C2 be two naturally equivalent cyclic codes. Then

there is a permutation matrix, Pλ, such that for any c2 ∈ C2 there is an unique c1 ∈ C1

s.t.

M(DFT(c2)) = PλM(DFT(c1))P
T
λ

Proof. Let n be the length of C1 and C2. Since C1 and C2 are naturally equivalent,

there is a permutation σ of the form iσ = (is)n with (s, n) = 1, such that C2 = C1Pσ.

Let c2 = c1σ, c1 ∈ C1, c2 ∈ C2. Then we have

M(DFT(c2)) = F−1Dc2F = F−1P T
σ Dc1PσF.

We claim that the matrix F−1P T
σ F is a permutation matrix. If our claim is true, we

set Pλ = F−1P T
σ F , obtaining:

PλM(DFT(c1))P
T
λ = Pλ F

−1Dc1F P T
λ

= Pλ F
−1Dc1F P−1

λ

= (F−1P T
σ F) F

−1Dc1F (F−1P T
σ F)

−1

= (F−1P T
σ)Dc1(PσF)

= F−1Dc2F

=M(DFT(c2))

Since F is a Vandermonde matrix, we have that (see [AL69]) its inverse is

F−1 =
1

n

1 1 . . . 1

1 α−1 . . . α−(n−1)

...
...

. . .
...

1 α−(n−1) . . . α−(n−1)(n−1)

.

27

Chapter 2. Our Tools

while the permutation matrix corresponds to the permutation σ−1 which is of the

form iσ−1 = (it)n with (t, n) = 1, because it must hold st = 1 mod n. Thus we have

F−1P T
σ = F−1Pσ−1 and:

F−1Pσ−1 =
1

n

(α0)0 (α0)1 . . . (α0)(n−1)

(α−1)0 (α−1)1 . . . (α−1)(n−1)

...
...

. . .
...

(α−(n−1))0 (α−(n−1))1 . . . (α−(n−1))(n−1)

Pσ−1

=
1

n

(α0)0σ
−1

(α0)1σ
−1

. . . (α0)(n−1)σ−1

(α−1)0σ
−1

(α−1)1σ
−1

. . . (α−1)(n−1)σ−1

...
...

. . .
...

(α−(n−1))0σ
−1

(α−(n−1))1σ
−1

. . . (α−(n−1))(n−1)σ−1

=
1

n

1 1 . . . 1

1 (α−1)t . . . (α−1)(n−1)·t

...
...

. . .
...

1 (α−(n−1))t . . . (α−(n−1))(n−1)·t

=
1

n
T.

We compute the product L = TF . We note that the i-th row of T is(
1 (α−t)i−1 . . . (α−t)(i−1)(n−1)

)
, while the j-th column of F is

(
1 αj−1 . . . α(j−1)(n−1)

)T
.

Thus we have:

lij =

n−1∑

k=0

αk(j−1−t(i−1)) =

n if (j − 1)− t(i− 1) = 0 mod n,

0 otherwise,
(2.2)

where we have used the classical result
∑

βn=1 β = 0, which holds for any field Fq

and for any n ≥ 2, provided (n, q) = 1. From (2.2) we have that lij = n if and only

if j = t(i − 1) + 1 mod n, which means j = (t(i − 1))n + 1, since 1 ≤ j ≤ n. Let

us consider any row of Pλ = 1
n
L, say the i-th. We have proved that its j-th entry is

1 if j = (t(i − 1))n + 1, which happens only one per rows, and it is zero otherwise.

Then it is sufficient to note that, by definition, Pλ is an invertible square matrix, to

conclude that it is a permutation matrix.

We collect in one statement some results from [Bla83], [Sch88] and [MS88] (mainly

the “Zero-Location Theorem” in [MS88]), which follows immediately from (2.1)

Theorem 2.1.8. Let C be a cyclic code and let DFT(C) be the code formed by

the Discrete Fourier Transforms of the words of C. Then the distance of C is the

28

2.2. The set U

minimum of the ranks of the matrices associated to all nonzero words in DFT(C),

i.e.

d(C) = min{rk(M(DFT(c))) | c ∈ C, c 6= 0}.

Thus, the problem of finding the distance of a code is equivalent to finding the

minimum rank of the corresponding set of matrices. In particular, any bound for one

is also a bound for the other one.

2.2 The set U

We present some notation from [BS06].

Definition 2.2.1. Let U be a set formed by three elements, which we call {∆,∆+, 0}.
We endow U with two operations, sum and product, according to the following logical

tables:

· ∆ ∆+ 0

∆ ∆ ∆ 0

∆+ ∆ ∆+ 0

0 0 0 0

+ ∆ ∆+ 0

∆ ∆ ∆ ∆

∆+ ∆ ∆ ∆+

0 ∆ ∆+ 0

Table 2.1: Multiplication and sum in U

The set U plays the role of a field where we have partial information on the element

values. More precisely, let K be any field, we say that:

• ∆+ represents an element of K for which we know it is different from zero,

• 0 represents an element of K for which we know it is zero,

• ∆ represents an element of K for which we do not know if it is zero or we do

not care.

One should regard an element of U as the information we have on a field element,

rather that a way to indicate its value.

Example 2.2.2. Sum and product are defined over U following the interpretation of

the symbols 0, ∆, ∆+. In fact, ∆+ · ∆+ = ∆+ is equivalent to saying that the product

of two non-zero elements is different from zero, while ∆+ + ∆+ = ∆ is equivalent to

saying that the sum of two non-zero elements could be zero or non-zero.

29

Chapter 2. Our Tools

Although U is not a field and Un is not a vector space, it is convenient to use

some terminology traditionally associated to vector spaces, paying attention to define

rigorously our notation.

Definition 2.2.3. Let u = (u0, . . . , un−1) be any element of Un. We say that u is a

vector. We also write u[i] = ui−1 for any 1 ≤ i ≤ n.

Remark 2.2.4. Let k ∈ Z be any integer and u ∈ Un. For convenience, sometimes we

write u[k], meaning:

u[k] =

u[(k)n] if (k)n 6= 0

u[n] otherwise.

Definition 2.2.5. Let n ≥ 1 and S ⊆ {0, . . . , n− 1}.
We denote by R(n, S) the vector (u0, . . . , un−1) in Un such that ui = 0, if i is in S,

ui = ∆ otherwise.

We denote by R̂(n, S) the vector (u0, . . . , un−1) in Un such that ui = 0, if i is in S,

ui = ∆+ otherwise.

Note that, if C ∈ Cq,n and α is a primitive n-th root of unity over Fq, then

R(n, SC,α) and R̂(n, SC,α) are well-defined vectors in Un.

Definition 2.2.6. Let v ∈ Un. We denote by M(v) ∈ Un×n the circulant matrix

obtained from vector v, i.e. the matrix whose first row is v and whose other rows are

obtained by cyclic shifting.

We want to introduce the notion of linear dependence in Un. We want that a set

of vectors is linear independent in Un if they correspond to a set of linear independent

vectors in every vector space Kn. To define this notion in a rigorous way, we need a

couple of definitions, presented here for the first time.

Definition 2.2.7. Let n ≥ 1 be a natural number, u = (u0, . . . , un−1) ∈ Un. Let K

be any field. An instance of u over K is any vector v = (v0, . . . , vn−1) ∈ Kn such

that for 0 ≤ i ≤ n− 1:

1. vi = 0 if ui = 0,

2. vi 6= 0 if ui = ∆+.

The set of all instances of u over K is called the instantiation of u over K and we

write In(u,K) = { v ∈ Kn | v is an instance of u over K }.

Remark 2.2.8. Note that in Definition 2.2.7 we did not specify the value of vi when

ui = ∆, so vi can be freely chosen for this value of i.

30

2.2. The set U

Example 2.2.9. Let us consider K = F2.

- if u = (0,∆,∆+) ∈ U3, then In(u,F2) = { (0, 0, 1), (0, 1, 1) }

- if u = (0,∆+,∆) ∈ U3, then In(u,F2) = { (0, 1, 0), (0, 1, 1) }.

Definition 2.2.10. Let s ≥ 1. We say that u1, . . . ,us ∈ Un are linear independent

if for any field K, for any vi ∈ In(ui,K) with 1 ≤ i ≤ s, we have that { vi }1≤i≤s are

linear independent (over K).

In other words, for any instance set { v1, . . . , vs }, for any { λi }1≤i≤s ⊆ K:

s∑

i=1

λiv
i = 0 ⇐⇒ λ1 = · · · = λs = 0.

In a similar way we can also define the instance of a matrix.

Definition 2.2.11. Let A ∈ Um×n, A = (aij)1≤i≤m,1≤j≤n. Let K be any field. An

instance of A over K is any matrix B ∈ Km×n, B = (bij)1≤i≤m,1≤j≤n, such that:

1. bij = 0 if aij = 0,

2. bij 6= 0 if aij = ∆+.

The set of all instances of A is called instantiation of A over K and we write

In(A,K) = {B ∈ Km×n | B is an instance of A }.

Definition 2.2.12. Given a matrix A over U , we denote by rk(A) the rank of A, i.e.

the largest r s.t. there exists a set of r linear independent rows.

From Definition 2.2.12, the following fact is straightforward.

Fact 2.2.13. Let A ∈ Um×n be any matrix over U . Then

rk(A) = min
K

{ rk(B) | B ∈ In(A,K)) } .

It is easy to see that this notion of rank for rows is equivalent to a notion of ranks

for columns, since this equivalence holds over any field.

Our interest in ranks over U lies in the following theorem.

Proposition 2.2.14. Let M = (mi,j) be an r × s matrix over a field K. Let M̂ =

(m̂i,j) be the r × s matrix over U s.t. m̂i,j = 0 if mi,j = 0 and m̂i,j = ∆+ otherwise.

Then

rk(M̂) ≤ rk(M) .

31

Chapter 2. Our Tools

Proof. By construction of M̂ , we have M ∈ In(M̂,K). Then thanks to Fact 2.2.13

our claim follows.

Definition 2.2.15. Given a vector v ∈ Un we denote by A(v) the set of vectors

u ∈ Un r 0 s.t.

• u[i] = 0, if v[i] = 0,

• u[i] = ∆+, if v[i] = ∆+,

• u[i] = ∆+, or u[i] = 0 if v[i] = ∆.

Observe that if there is at least one component of v equal to ∆+ then |A(v)| = 2s,

where s represents the number of components of v equal to ∆. Otherwise |A(v)| =
2s − 1.

Theorem 2.2.16. Let C be a cyclic code of length n, defining set SC,α and distance

d. Then:

min{rk(M(u)) | u ∈ A(R(n, SC,α))} ≤ d .

Proof. From Proposition 2.2.14 and Theorem 2.1.8.

32

Root bounds

This chapter belongs to a work joint with E. Betti, relates the results contained

in the unpublished paper [BS07] but also advances significantly on [BS07], especially

in Theorem 3.2.18, Proposition 3.3.3 (this was claimed in [BS07] but without a con-

vincing proof) and Theorem 3.5.8.

3.1 General settings

In this chapter we propose a family of bounds and study their properties.

We need a definition to fix our setting.

Definition 3.1.1. We denote by D the following subset of N× 2N:

(n, S) ∈ D ⇐⇒ n ≥ 1 , S ⊆ {0, . . . , n− 1} .

Let (n, S) ∈ D. Let S = {i1, . . . , im}. We denote by (n, S)# the following set of

subsets of {0, . . . , n− 1}
(n, S)# = {S1, . . . , Sr} ,

where r = |Z∗
n| and for any l ∈ Z∗

n there is one and only one j such that Sj = {(lih)n |
1 ≤ h ≤ m}.

Note that S ∈ (n, S)# and |Sh| = |S| for any h.

Note that in Definition 3.1.1 we do not require that S 6= Sl̄ for l 6= l̄. The two extreme

cases are given by S = {1}, where Sl 6= Sl̄ for any l 6= l̄, and by S = {0}, where

Sl = Sl̄ for any l̄.

Definition 3.1.2. We denote by χ the map χ : C 7→ N s.t. χ(C) = p, if C is over Fq

and p is the characteristic of Fq.

Using a function ζ ∈ Z (Definition 1.2.15), we define a map from C to D:

φζ : C → D, φζ(C) = (n, SC,α) , (3.1)

where α = ζ(χ(C), n).

Proposition 3.1.3. For any ζ ∈ Z, map φζ is surjective.

33

Chapter 3. Root bounds

Proof. Given a pair (n, {i1, . . . , im}) in D, take any prime p. Let α = ζ(p, n) and let

Fq ⊆ Fp be a finite field containing α. Let C be the cyclic code over Fq generated by

g = (x− αi1)(x− αi2) · · · (x− αim) and with length n.

Clearly, φζ(C) = (n, {i1, . . . , im}).

Definition 3.1.4. A root function is a map f : D → N ∪ {∞} such that:

∀ζ ∈ Z, ∀ C ∈ C, f ◦ φζ(C) ≤ d(C) . (3.2)

We denote by R the class of all root functions.

Given f ∈ R, we say that f is invariant if f(n, S) = f(n, T), for any T ∈
(n, S)#. We also denote by f# the map f#(n, S) = maxT∈(n,S)# f(n, T).

For any ζ ∈ Z and any f ∈ R, the composite map fD,ζ = f ◦ φζ : C 7→ N ∪ {∞}
is called the root bound associated to f and ζ. If f is invariant, we say that fD,ζ is

invariant. We denote by RD the class of all root bounds.

Due to (3.2), root bounds are actually lower bounds for the distance on C.

If f ∈ R is invariant, we have that fD,ζ = fD,ζ′ for any ζ and ζ ′, and so we just

write fD.

Given any f ∈ R, f# represents the “invariant version” of f , as explained in the

next proposition.

Proposition 3.1.5. For any f ∈ R, we have:

1. f# ∈ R,

2. f# is invariant,

3. f ≤ f#,

4. f#
D = maxζ∈Z fD,ζ.

Proof.

1) Let C ∈ C. Then C ∈ Cq,n for some q and n, and p = χ(C). Let ζ ∈ Z and

α = ζ(p, n). We have to prove that (f# ◦φζ)(C) ≤ d(C). Let (n, SC,α) = φζ(C).

From the definition of f# we have that f#(n, SC,α) = f(n, T), for some T ∈
(n, SC,α)

#. From Theorem 1.2.21, there is a code D naturally equivalent to C

such that SD,α = T . Theorem 1.2.20 guarantees that d(C) = d(D), so we have:

(f# ◦ φζ)(C) = f(n, SD,α) = (f ◦ φζ)(D) ≤ d(D) = d(C).

2) Let (n, S) ∈ D then for any T ∈ (n, S)# we have (n, S)# = (n, T)#. So:

f#(n, S) = max
H∈(n,S)#

f(n,H) = max
H∈(n,T)#

f(n,H) = f#(n, T).

34

3.1. General settings

3) Recalling that for any (n, S) ∈ D, S ∈ (n, S)#, we conclude that:

f#(n, S) = max
T∈(n,S)#

f(n, T) ≥ f(n, S).

4) Let C ∈ C. Then C ∈ Cq,n for some q and n, and p = χ(C). Let ζ ∈ Z and

α = ζ(p, n). We have to prove that f#
D (C) = (f# ◦ φζ)(C) = maxζ∈Z(f ◦

φζ)(C). Since (n, SC,αζ
) = φζ(C) it holds (f# ◦ φζ)(C) = f#(n, SC,αζ

) =

maxT∈(n,SC,αζ
)# f(n, T). Thanks to Theorem 1.2.21, for any T ∈ (n, SC,αζ

)#

there is a code D naturally equivalent to C (we write D ∼ C) such that

T = SD,αζ
. So we have:

f#
D (C) = max

T∈(n,SC,αζ
)#
f(n, T) = max

D∼C
f(n, SD,αζ

).

From Definition 1.2.17 and Theorem 1.2.20 we have maxD∼C f(n, SD,αζ
) =

maxζ′∈Z f(n, SC,αζ′
), thus:

f#
D (C) = max

ζ′∈Z
f(n, SC,αζ′

) = max
ζ′∈Z

(f ◦ φζ′)(C) = max
ζ′∈Z

fD,ζ′(C).

The following remark is essential to understand our approach in this chapter and

actually in most of this thesis.

Remark 3.1.6. A lower bound (see Definition 1.3.1) is a map that gives an estimate

on the minimum distance of a cyclic code. With a root bound this estimate is given

while ignoring all information about the code, except the length and a defining set.

In particular, no information on the underlying field is used.

C N

D

f ◦ φζ

φζ f

We can rewrite a known theorem on sub-field subcodes of cyclic codes, using our

notation.

Theorem 3.1.7 ([MS88]). Let C1 ∈ Cq1,n, C2 ∈ Cq2,n. Let ζ ∈ Z. We have

Fq1 ⊆ Fq2, φζ(C1) = φζ(C2) =⇒ d(C1) = d(C2) .

From this theorem we can easily get a slightly more general statement.

35

Chapter 3. Root bounds

Proposition 3.1.8. Let C1 ∈ Cq1,n, C2 ∈ Cq2,n. Let ζ ∈ Z. We have

χ(C1) = χ(C2), φζ(C1) = φζ(C2) =⇒ d(C1) = d(C2) .

Proof. Let p = χ(C1) = χ(C2). Then q1 = pr1 and q2 = pr2 , for some r1, r2 ≥ 1.

Let Q = pr1r2. We have Fq1,Fq2 ⊆ FQ. Consider C3 ∈ CQ,n s.t. φζ(C3) = φζ(C1).

By Theorem 3.1.7 we have d(C3) = d(C1) (because Fq1 ⊆ FQ) and d(C3) = d(C2)

(because Fq2 ⊆ FQ).

In other words, a defining set, a length and a field characteristic uniquely determine

a distance.

Definition 3.1.9. Let f be a root function. We say that f is monotone if for any

(n, S) and (n′, S ′) in D we have

n = n′, S ⊆ S ′ =⇒ f(n, S) ≤ f(n, S ′)

Any root bound associated to f is called a monotone root bound.

Thanks to the next result (Theorem 3.1.10) the two terms “a monotone root

bound” and “a monotone bound which is a root bound” correspond to the same

notion.

Theorem 3.1.10. Let δ ∈ RD be a monotone root bound. Let C be a cyclic code and

C ′ be a cyclic subcode of C. Then

δ(C) ≤ δ(C ′)

Proof. We have that δ = f ◦ φζ , for a root function f and a map ζ ∈ Z. Since C ′

is a cyclic subcode of C, we have that φζ(C) = (n, S) and φζ(C
′) = (n, S ′), with

S ′ ⊃ S. By definition of monotone root bound we have that f(n, S) ≤ f(n, S ′) and

then δ(C) ≤ δ(C ′).

For any f ∈ R, we denote by f ∗ the map

f ∗(n, S) = max
{
f(n, S ′) | S ′ ⊆ S

}
. (3.3)

The f ∗ construction is useful, since it produces the least monotone root function from

f , as detailed in next proposition.

Proposition 3.1.11. Let f ∈ R. We have:

1. f ∗ is a root function,

2. f ∗ is monotone,

36

3.1. General settings

3. f ≤ f ∗,

4. if g is any monotone root functions s.t. f ≤ g, then f ∗ ≤ g.

Proof.

1) Let C ∈ Cq,n and ζ ∈ Z. We have to prove that (f ∗ ◦ φζ)(C) ≤ d(C).

Let F = FQ be the splitting field of xn − 1 over Fq. Let us consider C̃ ∈ CQ,n

such that φζ(C̃) = φζ(C). We have d(C) = d(C̃) by Theorem 3.1.7 and so it is

enough to prove (f ∗◦φζ)(C̃) ≤ d(C̃). Let (n, S) = φζ(C̃). By definition of f ∗ we

have f ∗(n, S) = f(n, S ′), for some S ′ ⊆ S. Let C ′ ∈ CQ,n s.t. φζ(C
′) = (n, S ′).

We have that C̃ < C ′ and hence d(C̃) ≥ d(C ′). Putting all together, we get

(f ∗ ◦ φζ)(C) = f ∗(n, S) = f(n, S ′) ≤ d(C ′) ≤ d(C̃) = d(C).

2) If S ⊆ T then {S ′ | S ′ ⊆ S} ⊆ {T ′ | T ′ ⊆ T} and hence

max
T ′⊆T

f(n, T ′) ≥ max
S′⊆S

f(n, S ′).

3) It is straightforward, since S ⊆ S.

4) Let (n, S) ∈ D. For any S ′ ⊆ S, g(n, S) ≥ g(n, S ′) ≥ f(n, S ′), so

g(n, S) ≥ max
S′⊆S

f(n, S ′) = f ∗(n, S).

Clearly, the previous construction can be extended to the corresponding root

bounds, but we find it unnecessary to give an explicit statement.

We define a map f from D to N ∪ {∞}, as follows

f(n, S) = max{f(n, S) | f ∈ R} . (3.4)

Theorem 3.1.12. Map f is a root function, which is maximal in R, monotone and

invariant.

Proof. Map f is in R, if for any C ∈ C and any ζ ∈ Z, f ◦ φζ ≤ d(C). Let (n, S) =

φζ(C). There must be an f ∈ R s.t. f(n, S) = f(n, S) (by definition of f) and hence

f ◦ φζ = f(n, S) = f(n, S) = f ◦ φζ(C) ≤ d(C).

It is obvious that f is maximal in R, since for any (n, S) ∈ D and any f ∈ R we

have f(n, S) ≥ f(n, S).

To show that f is monotone, we consider f∗. Then f∗ is a monotone root function

s.t. f∗ ≥ f (Proposition 3.1.11). By maximality of f we have f∗ ≤ f and hence f∗ = f.

To show that f is invariant, we consider f# and with the same argument as before

we obtain that f = f# (Proposition 3.1.5).

37

Chapter 3. Root bounds

We can use f to obtain the maximal root bound.

Theorem 3.1.13. Map fD is a monotone invariant root bound, which is maximal in

RD.

Proof. It follows immediately from Theorem 3.1.12.

We want to get an alternative characterization for the maximal root bound. We

will need a few definitions and lemmas.

Definition 3.1.14. For any ζ ∈ Z and any (n, S) ∈ D, we define two sets, V ζ

(n,S) ⊆ C
and T ζ

(n,S) ⊆ N, as follows,

V ζ

(n,S) = {C | C ∈ C, φζ(C) = (n, S)}

T ζ

(n,S) = {d(C) | C ∈ C, φζ(C) = (n, S)} = {d(C)}
C∈V ζ

(n,S)

Observe that V ζ

(n,S) 6= ∅ for any ζ ∈ Z and any (n, S) ∈ D (Proposition 3.1.3).

Lemma 3.1.15. For any ζ, ζ ′ ∈ Z and any (n, S) ∈ D,

|V ζ

(n,S)| = |V ζ′

(n,S)|, T ζ

(n,S) = T ζ′

(n,S) .

Proof. It is enough to construct two maps ιζ,ζ′ and ιζ′,ζ, ιζ,ζ′ : V
ζ

(n,S) 7→ V ζ′

(n,S) and

ιζ′,ζ : V
ζ′

(n,S) 7→ V ζ

(n,S), s.t.

ιζ,ζ′ ◦ ιζ′,ζ = id
V

ζ

(n,S)
, ιζ′,ζ ◦ ιζ,ζ′ = id

V
ζ′

(n,S)

, (3.5)

and

d(C) = d(ιζ′,ζ(C)), ∀C ∈ V ζ

(n,S), d(C) = d(ιζ,ζ′(C)), ∀C ∈ V ζ′

(n,S) . (3.6)

Let C ∈ V ζ

(n,S). Then C ∈ Cq,n, where Fq is a finite field. By Theorem 1.2.20, there

is a unique code C ′ ∈ Cq,n s.t. φζ′(C
′) = (n, S). By the same theorem, C and C ′ are

naturally equivalent and hence d(C) = d(C ′). But then if we define

ιζ,ζ′(C) = C ′, ιζ′,ζ(C
′) = C ,

conditions (3.5) and (3.6) are trivially satisfied.

Definition 3.1.16. We define a map g : D 7→ N ∪ {∞} by choosing an arbitrary

ζ ∈ Z and setting

g(n, S) = minT ζ

(n,S).

38

3.1. General settings

By Lemma 3.1.15 g does not depend on the particular ζ and hence g is well-defined.

Lemma 3.1.17.

g ∈ R .

Proof. Let C̄ ∈ C and ζ ∈ Z. We have to show that g ◦ φζ(C̄) ≤ d(C̄).

Let (n, S) = φζ(C̄). We have g(n, S) = minT ζ

(n,S). But C̄ ∈ V ζ

(n,S) and so d(C̄) ∈
T ζ

(n,S), which means g ◦ φζ(C̄) = g(n, S) ≤ d(C̄).

We are finally ready for an alternative description of the maximal root bound. We

recall that f is the maximal root function.

Theorem 3.1.18.

g = f .

Proof. Since f is maximal in R and g ∈ R (Lemma 3.1.17), we have g ≤ f.

To show g ≥ f we argument by contradiction, by assuming that there is an (n, S) ∈
D such that g(n, S) < f(n, S). Let ζ ∈ Z. We consider C̄ ∈ V ζ

(n,S) such that

d(C̄) = minT ζ

(n,S) (Proposition 3.1.3). Thus we get a contradiction:

d(C̄) = g ◦ φζ(C̄) < f ◦ φζ(C̄) and f ∈ R .

Corollary 3.1.19. For any ζ ∈ Z, we have

fD,ζ(C) = min{d(C ′) | C ′ ∈ C, φζ(C
′) = φζ(C)} ,

fD,ζ(C) = fD(C) = max
ζ′∈Z

fD,ζ′(C) =

max
1≤i≤r

{min{d(C ′) | C ′ ∈ C, SC′,β = SC,αi
, αi = ζ(χ(C), n), β = ζ(χ(C ′), n)}} ,

where C ∈ Cq,n and α1, . . . , αr are all primitive n-th roots of unity over Fq.

Unfortunately, the optimal root bound fD is not tight, as we claimed in the next

theorem.

Theorem 3.1.20.

fD 6= d .

Proof. To prove our claim we need to find a code C where fD(C) 6= d(C). Since it

is not clear how to compute fD, we divide the proof into two parts: one, where we

suppose that we have two codes with some properties and we use them to prove our

claim, and another, where we provide explicitly the above-mentioned codes.

Part I

We will provide in the second part of the proof two fields, Fq1 and Fq2, and a number

n ≥ 1, s.t.

39

Chapter 3. Root bounds

• the two fields have different characteristics, which we may call p1 for q1 and p2

for q2,

• α1, . . . , αr are all the primitive n-th roots of unity over Fq1 and β1, . . . , βr are

all the primitive n-th roots of unity over Fq2.

We take any ζ1, . . . , ζr ∈ Z s.t. ζi(p1, n) = αi and ζi(p2, n) = βi, for 1 ≤ i ≤ r (this

is always possible). We will also provide two cyclic codes of length n, C1 and C2, the

former over Fq1 and the latter over Fq2 , s.t.

d(C1) < d(C2) (3.7)

SC1,αi
= SC2,βi

, 1 ≤ i ≤ r . (3.8)

Observe that (3.8) implies φζi(C1) = φζi(C2) for any i. We denote by Si the set SC1,αi
,

for any i. We have by Corollary 3.1.19 that fD(C2) equals

max
1≤i≤r

{min{d(C ′) | C ′ ∈ C, SC′,β = SC2,αi
, αi = ζi(. . .), β = ζi(. . .)}} , (3.9)

which may be written as

fD(C2) = max
1≤i≤r

{minT ζi
(n,Si)

} . (3.10)

By (3.8), for any i, we have C1 ∈ V ζi
(n,Si)

and hence d(C1) ∈ T ζi
(n,Si)

, which means

minT ζi
(n,Si)

≤ d(C1) . (3.11)

Putting together (3.11), (3.10) and (3.7), we get

fD(C2) = max
1≤i≤r

{minT ζi
(n,Si)

} ≤ max
1≤i≤r

d(C1) = d(C1) < d(C2) ,

which shows fD(C2) < d(C2) and proves our claim.

Part II

It is enough to take Fq1 = F3, Fq2 = F17 and n = 16. There are r = 8 primitive

n-th roots of unity. As cyclic codes C1 and C2, we take two codes with the same

defining set S = SC1,α1 = SC2,β1,

S = {1, 2, 3, 4, 6, 9, 11, 12} ,

but note that S = SC1,α1 is the union of three cyclotomic sets over F2, while S = SC2,β1

is the union of eight cyclotomic set over F17.

A quick computation (see Section 9.3) shows that d(C1) = 5 and d(C2) = 6.

40

3.2. Root bounds and U

What we call root bounds are sometimes called “BCH-like” bounds, since they

include the BCH bound and its generalizations (the Hartmann-Tzeng bound, the

Roos bound, etc.). In Subsection 3.4 and 3.5 we will see exactly what known bounds

fall within our class.

We believe that the implications of Theorem 3.1.20 are noteworthy. Theorem

3.1.20 states that if you get a bound which depends only the information given by the

defining sets, it does not matter how smart you are and how computationally costly

is your bound, you will never get the distance for all cyclic codes. In other words,

if you want actual improvements on known BCH-like bounds, you should try to use

other information apart from defining sets.

There are two interesting questions naturally raised by Theorem 3.1.20. The first

concerns the practical computation of f (and fD). Apparently, computing f using

either Definition 3.1.16 or (3.4) requires an unspecified number of computations. In

principle, one should go through all f ∈ R (in the former case), which are infinite, or

through all fields coprime with the length, which again are infinite. On the other hand,

for any given code the value to be computed is finite and bounded by the distance, so it

is obvious that the right value would be found after checking a finite number of f ∈ R
(or of fields). However, we would not able to realize when we reach our value, unless

infinite computations are performed. An effective algorithm is usually defined as

an algorithm that runs in a finite and a priori bounded time (e.g., polynomial-time

algorithms, exponential-time algorithms). Computing f from Definition 3.1.16 or (3.4)

is non-effective (and useless in practice). The problem to compute f (or fD) in a finite

time will be faced in Chapter 8.

The second question comes from the proof of Theorem 3.1.20. The proof requires

two codes with the same defining set and length, but over fields of different character-

istic (otherwise they would have the same distance, due to Proposition 3.1.8). Thus

the following question remains open.

Problem 3.1.21. Is there a finite field Fq s.t. fD is tight on

Cq =
⋃

n≥1,(n,q)=1

Cq,n ?

3.2 Root bounds and U

To determine the rank of a matrix in U , as defined in Definition 2.2.10, is a very

difficult problem, since in principle you have to run through an infinite number of

matrices in an infinite number of fields. On the other hand, Theorem 2.2.16 depends

on this rank notion and is of a paramount importance within our theory. Fortunately,

we do not need to determine precisely the rank, in order to apply said theorem, but

41

Chapter 3. Root bounds

we only need to lower-bound the rank.

In this subsection we propose a simple but powerful method to verify the linear

independence of a set of r rows in Un. This method is called “single procedure“ in

[Sal01], but we prefer to call it the “singleton procedure“ as in [BS06].

Finally, we prove that using the singleton procedure we are able not only to lower-

bound the rank but also to reach it exactly.

We start with a few definitions and lemmas.

Definition 3.2.1. Let A be a matrix, either over a field K or over U . We denote the

j-th column of A by A[j] and the (i, j)-th entry of A by A[i, j].

Let M be a matrix over U . We say that M [j] is a singleton if it has only one

non-zero component M [i, j], i.e. M [i, j] = ∆+ and M [l, j] = 0 for l 6= i. When this

happens, we say that the i−th row is the row corresponding to the singleton.

Singletons play a special role, thanks to the following two lemmas.

Lemma 3.2.2. Let M be a matrix over U and M [j] be one of its columns. If M [j]

is a singleton, then the corresponding row is linearly independent from the others.

Proof. Let us suppose that M ∈ Um×n. Let r[1], . . . , r[m] be the rows of M and

let r[i] be the row corresponding to the singleton. If r[i] is a linear combination of

r[1], . . . , r[i−1], r[i+1], . . . , r[m], there are a field K, instantiations r̄[k] = (r̄
[k]
1 , . . . , r̄

[k]
n) ∈

In(r[k],K), 1 ≤ k ≤ m, and scalars not all zero λ1, . . . , λi−1, λi+1, . . . , λm ∈ K such

that:

λ1r̄
[1] + · · ·+ λi−1r̄

[i−1] + λi+1r̄
[i+1] + · · ·+ λmr̄

[m] = r̄[i].

In particular, we have: λ1r̄
[1]
j + · · · + λi−1r̄

[i−1]
j + λi+1r̄

[i+1]
j + · · ·+ λnr̄

[n]
j = r̄

[i]
j . But

by hypothesis r̄
[k]
j = 0 for k 6= i while r̄

[k]
j 6= 0, so we have a contradiction.

Lemma 3.2.3. Let M be a matrix over U and M [j] be one of its columns. Suppose

M [j] is a singleton and let row i be its corresponding row. Let M ′ be the matrix

obtained from M by erasing column j and row i. Then M has full rank if and only if

M ′ has full rank.

Proof. We can suppose M ∈ Um×n, so M has the form

M =

a1,1 ... a1,(j−1) 0 a1,(j+1) ... a1,n

... ...
...

...
... ...

...
ai,1 ... ai,(j−1) ∆+ ai,(j+1) ... ai,n

... ...
...

...
... ...

...
am,1 ... am,(j−1) 0 am,(j+1) ... am,n

 .

42

3.2. Root bounds and U

By s- deleting the singleton we obtain the matrix

M ′ =

a1,1 ... a1,(j−1) a1,(j+1) ... a1,n

... ...
...

... ...
...

ai−1,1 ... ai−1,(j−1) ai−1,(j+1) ... ai−1,n
ai+1,1 ... ai+1,(j−1) ai+1,(j+1) ... ai+1,n

... ...
...

... ...
...

am,1 ... am,(j−1) am,(j+1) ... am,n

.

If M ′ does not have full rank then there exist m− 1 scalars λ1, . . . , λm−1 in a field K

and vectors v[1], . . . , v[m−1] ∈ Kn, for any 1 ≤ k ≤ m − 1, where v[k] = (v
[k]
1 , . . . , v

[k]
n)

is an instance of the k-th row of M ′ over K, such that:

• (λ1, . . . , λm−1) 6= (0, . . . , 0)

•
∑m−1

k=1, λkv
[k] = 0.

We denote with M̄ the matrix obtained removing the i−th row from M and we define

v̄[1], . . . , v̄[m−1] ∈ Kn as:

v̄
[k]
t =

v
[k]
t if t 6= j

0 otherwise
, for any 1 ≤ k ≤ m− 1, 1 ≤ t ≤ n.

With this definition v̄[k] is obviously an instance of the k-th row of M̄ , and
∑m−1

k=1 λkv̄
[k] =

0, so that M̄ has not full rank. But this means that also M has not full rank, which

is a contradiction.

Note that both for Lemma 3.2.2 and Lemma 3.2.3 also a trivial proof is achievable,

by noting that their statement is true if “translated” over any field.

We are ready to describe our singleton procedure.

We start from a set of r rows of length n, with r ≤ n, and we want to test whether

they are linearly independent. We take our r rows to form a matrix Ar ∈ U r×n.

We search for a singleton in Ar. If column Ar[j] is a singleton, we know that the

corresponding row is linearly independent from the others (Lemma 3.2.2). Then we

erase from Ar the j − th column and the corresponding row (we call this operation

s-deletion). We denote by Ar−1 the (r − 1)× (n− 1) matrix so obtained. Matrix

Ar−1 has full rank if and only if Ar has (Lemma 3.2.3).

We search for a new singleton in Ar−1 and proceed as before. If this procedure can

continue until we have obtained a 1 × (n− r + 1) matrix A1 containing at least one

∆+, then the initial matrix Ar has full rank, since A1 has. In this case we say that

the singleton procedure is successful for the original set of r rows. However, if we

cannot find a singleton either in Ar or in any successive Ai, then we say that the

singleton procedure is not successful.

We provide an example.

43

Chapter 3. Root bounds

Example 3.2.4.

A3 =

0 ∆+ ∆ 0

0 0 ∆+ ∆+

∆+ 0 0 ∆

→ A2 =

(
0 ∆+ ∆+

∆+ 0 ∆

)
,
j = 2

i = 1

A2 =

(
0 ∆+ ∆+

∆+ 0 ∆

)
→ A1 = (∆+,∆+),

j = 1

i = 2
,

hence the singleton procedure is successful for A3.

Remark 3.2.5. Let M ∈ Um×n, without loss of generality m ≤ n. When we apply

the singleton procedure, for each s-deletion we erase one column and one row. So to

say that the singleton procedure is successful for M is equivalent to finding a square

m×m submatrix of M for which the singleton procedure is successful.

We can summarize our arguments in the next proposition.

Theorem 3.2.6. If the singleton procedure is successful for a set of rows, then they

are linearly independent over U .

Proof. This follows from Lemma 3.2.2, Lemma 3.2.3 and the obvious fact that the

last matrix A1, is linearly independent.

Theorem 3.2.6 will be our preferred tool to give formal proofs for bounds since it

allows us to give estimates on the rank of a matrix over U .

Definition 3.2.7. Given a matrix M be a matrix over U , we denote by prk(M) the

pseudo-rank of M , i.e. the largest t such that there exists a set of t rows in M for

which the singleton procedure is successful.

Remark 3.2.8. For the moment, we can only say that prk(M) ≤ rk(M), because if

the singleton procedure is not successful for a set of rows, then we cannot conclude

they are linearly dependent over U . However we will show in Theorem 3.2.18 that

rank and pseudo-rank coincide.

In some simple cases we can establish equalities between ranks and pseudo-ranks

of different matrices. This is done in the following lemmas. Observe that Lemma

3.2.9, Lemma 3.2.10 and 3.2.12 are obvious, since their “translation” over any field

holds.

Lemma 3.2.9. Let u,v ∈ Un. Let m ∈ N. If u is obtained from a shift of v by m

places, then

rk(M(u)) = rk(M(v)) prk(M(u)) = prk(M(v)).

44

3.2. Root bounds and U

Lemma 3.2.10. Let σ ∈ Sym(n) a permutation. Let M ∈ Un×n and M ′ be the

matrix obtained by applying σ to the rows (resp. columns) of M . Then

rk(M) = rk(M ′) prk(M) = prk(M ′).

Definition 3.2.11. Let u ∈ Un. We denote by û the reflection of u, i.e. the vector

in U s.t. u[i] = û[n− i+ 1] for any 1 ≤ i ≤ n.

Similarly, we denote by M̂ the reflection of M ∈ Un×n, i.e. the matrix such that

M [j, i] = M̂ [j, n− i+ 1], 1 ≤ i ≤ n, 1 ≤ j ≤ n .

Lemma 3.2.12. For any M ∈ Un×n, we have

rk(M) = rk(M̂) prk(M) = prk(M̂).

Lemma 3.2.13. For any u ∈ Un, we have

rk(M(u)) = rk(M(û)) prk(M(u)) = prk(M(û)).

Proof. For any 1 ≤ i, j ≤ n, i 6= j, let (i j) be a transposition in the symmetric group

Sym(n). Consider the permutation:

σ =

⌊n
2
⌋∏

i=2

(i n− i+ 2) ∈ Sym(n).

The matrix M(û) is obtained by applying σ to the rows of M̂(u) and so we may

apply Lemma 3.2.10 and Lemma 3.2.12.

The following proposition establishes an important rank bound, which will be

often used in proofs.

Proposition 3.2.14. Let A =M(v) ∈ Un be a circulant matrix, and let r ≥ 0 be an

integer. If v has the form

v = (

r︷ ︸︸ ︷
0, . . . , 0,∆+, ∗, . . . , ∗) ,

where ∗ denotes any element of U , then rk(A) ≥ prk(A) ≥ r + 1 .

Proof. Let Ar+1 ∈ U (r+1)×n be the matrix obtained by the first r + 1 rows of M(v).

By induction on r we show that the singleton procedure is successful for Ar+1. If

r = 0, it is clear that the singleton procedure is successful since Ar+1 coincide with v

and v[r + 1] = ∆+.

45

Chapter 3. Root bounds

Let r > 0. Matrix Ar+1 has the form:

Ar+1 =

0 . . . 0 0 ∆+ . . .

∆ 0 . . . 0 0 ∆+ . . .
...

. . .
...

...
. . .

∆ . . . ∆ 0 0 . . .

where, with abuse of notation, we have put a ∆ in all entries for which we have

no information on the value. Column Ar+1(v)[r + 1] is clearly a singleton, since

A(v)[1, r + 1] = v[r + 1] = ∆+, and, for any 2 ≤ i ≤ r + 1, we have:

Ar+1[i, r + 1] = Ar+1[i− 1, r] = . . .

· · · = Ar+1[1, r − i+ 2] = v[r − i+ 2] = 0.

Then we can erase the first row and the (r + 1)−th column to obtain a matrix Ar,

that corresponds exactly to the first r rows of a matrix M(v′), with v′ of the form:

(

r−1︷ ︸︸ ︷
0, . . . , 0,∆+, ∗, . . . , ∗).

By induction hypothesis the singleton procedure is successful for Ar, which implies

that it is successful for Ar+1, too.

The following proposition is a key step in proving that the pseudo-rank and the

rank coincide for any matrix over U .

Proposition 3.2.15. Let An = { aij }1≤i,j≤n
∈ Un×n be a n× n square matrix on U .

If rk(An) = n then An has a singleton.

Proof. Note that An has to contain at least a ∆+ for each column and each row,

otherwise there is an instance of one of its columns that is zero, so that the rank will

not be n. In particular this proves the proposition when n = 1. Let us suppose n ≥ 2.

By contradiction we suppose that An has no singletons.

Let C1 = { 1 ≤ j ≤ n | a1,j 6= 0 } be the set of entries in the first row of An which are

∆ or ∆+. We define for any j ∈ C1 the set R1
j = { 1 ≤ k ≤ n | ak,j 6= 0 } of entries in

the j−th column which are ∆ or ∆+. By hypothesis, for any j ∈ C1, we have |R1
j | ≥ 2

and in particular there exists k̄ ∈ R1
j such that ak̄,j = ∆+. We define inductively for

any 2 ≤ i ≤ n the sets

Ci = { 1 ≤ j ≤ n | ai,j 6= 0 } \ ∪i−1
k=1Ck

46

3.2. Root bounds and U

and for any j ∈ Ci,

Ri
j = { 1 ≤ k ≤ n | ak,j 6= 0 } .

Note that ⊔n
i=1Ci = { 1, . . . , n } since any column contains at least a ∆+ by hypothesis,

and Ci ∩ Cj = ∅ if i 6= j, because they are disjoint by construction. Observe that if

Ci = ∅ then for any j we have Ri
j = ∅ while. If Ci 6= ∅ then i ∈ Ri

j for any j ∈ Ci, by

definition and |Ri
j | ≥ 2, since we assume that An has no singletons.

Let p be a prime, p > n. We provide n vectors, v[1], . . . , v[n] in (Fp)
n, which

are instantiations of the rows of An such that they are linear dependent, so that An

cannot have rank n. For any j ∈ { 1, . . . , n } let Cr be such that j ∈ Cr. We define

for 1 ≤ k ≤ n:

v
[k]

j
=

0, if k /∈ Rr
j
,

1, if k ∈ Rr
j

and k 6= r,

p− (|Rr
j
| − 1), if k = r.

(3.12)

We have to prove that:

(a) v[k] is an instantiation of the k − th row of An

(b) there exist λ1, . . . , λn ∈ Fp such that (λ1, . . . , λn) 6= (0, . . . , 0) and
∑n

k=1 λkv
[k] =

0.

We start with (a). Let k be any element of { 1, . . . , n }, we have to prove that for

1 ≤ j ≤ n:

• if ak,j = 0 then v
[k]
j = 0,

• if ak,j = ∆+ then v
[k]
j 6= 0.

For any j, let rj be such that j ∈ Crj . If ak,j = 0 then k /∈ R
rj
k and thanks to (3.12)

we have v
[k]
j = 0. Similarly, if ak,j = ∆+, then k ∈ R

rj
k and we have to consider two

cases: k = rj or k 6= rj . If k 6= rj then v
[k]
j = 1, else if k = rj then v

[k]
i = p− (|Rr

j
|−1)

and since 1 ≤ p− n + 1 ≤ p− (|Rr
j
| − 1) ≤ p− 1, thus p− (|Rr

j
| − 1) 6= 0 and so we

have v
[k]
j 6= 0. Hence (a) is proved.

To prove (b) we claim that for any 1 ≤ j ≤ n:
∑n

k=1 v
[k]
j = 0. Let us fix any j,

and let r be such that j ∈ Cr. Then

n∑

k=1

v
[k]
j =

∑

k∈Rr
j

v
[k]
j = v

[r]
j +

∑

k∈Rr
j ,k 6=r

v
[k]
j = p− (|Rr

j | − 1) + (|Rr
j | − 1) = 0.

The proof of Proposition 3.2.15 is rather technical and not easy to follow. So we

provide here an example to clarify its details.

47

Chapter 3. Root bounds

Example 3.2.16. Let us consider a 4× 4 matrix over U , A4, which has no singleton

and we provide instances of the rows which are linearly dependent over Z5.

A4 =

(
0 ∆+ ∆ 0
∆+ ∆ 0 0
0 0 ∆ ∆+

∆+ 0 ∆+ ∆+

)

The sets that we consider are: C1 = { 2, 3 }, C2 = { 1 }, C3 = { 4 }, C4 = ∅ and

R1
2 = { 1, 2 }, R2

1 = { 2, 4 }, R3
4 = { 3, 4 }, R1

3 = { 1, 3, 4 } . We show how to choose

v[1] (k = 1). We have:

• 1 ∈ Cr = C2 and 1 /∈ R2
1 =⇒ v

[1]
1 = 0

• 2 ∈ Cr = C1, 1 ∈ R1
2 and r = k =⇒ v

[1]
2 = 5− (|R1

2| − 1) = 4

• 3 ∈ Cr = C1, 1 ∈ R1
3 and r = k =⇒ v

[1]
3 = 5− (|R1

3| − 1) = 3

• 4 ∈ Cr = C3 and 1 /∈ R3
4 =⇒ v

[1]
4 = 0.

Hence v[1] = (0, 4, 3, 0). Similarly, for v[2] (k = 2):

• 1 ∈ Cr = C2, 2 ∈ R2
1 and r = k =⇒ v

[1]
1 = 5− (|R2

1| − 1) = 4

• 2 ∈ Cr = C1, 2 ∈ R1
2 and r 6= k =⇒ v

[1]
2 = 1

• 3 ∈ Cr = C1, 2 /∈ R1
3 =⇒ v

[1]
3 = 0

• 4 ∈ Cr = C3 and 2 /∈ R3
4 =⇒ v

[1]
4 = 0.

which gives v[2] = (4, 1, 0, 0). Doing the same also for v[3] and v[4] we obtain:

v[1] = (0, 4, 3, 0) v[2] = (4, 1, 0, 0) v[3] = (0, 0, 1, 4) v[4] = (1, 0, 1, 1).

Finally, note that they are instances of the rows of A4 over Z5 and

(
0
4
3
0

)
+

(
4
1
0
0

)
+

(
0
0
1
4

)
+

(
1
0
1
1

)
=

(
0
0
0
0

)
.

Proposition 3.2.17. Let An = { ai,j }1≤i,j≤n
be in Un×n. The following are equiva-

lent:

1. rk(An) = n

2. the singleton procedure is successful for An

Proof.

48

3.3. Strict root bounds

(2) =⇒ (1): see Theorem 3.2.6.

(1) =⇒ (2): by induction. If n = 1 then thanks to Proposition 3.2.15 A1 has a single-

ton, which means A1 =
(
∆+
)

and the singleton procedure is trivially successful.

Let us suppose n > 1. Thanks to Proposition 3.2.15 An has a singleton. The

submatrix An−1 obtained by s-deletion of the singleton of An has full rank,

thanks to Lemma 3.2.3. By the iterative definition of singleton procedure, if

the singleton procedure is successful for An−1 then the singleton procedure is

successful for An. By induction hypothesis, the singleton procedure is successful

for An−1 and so our claim follows.

Theorem 3.2.18. Let M be any matrix over U , then rk(M) = prk(M).

Proof. We suppose M ∈ Um×n and t = rk(M). We have that prk(M) ≤ t and M

contains a square submatrix Mt ∈ U t×t such that rk(Mt) = t. Thanks to Propo-

sition 3.2.17 the singleton procedure is successful for Mt and by Remark 3.2.5 the

singleton procedure is successful on the t rows of M corresponding to Mt. Thus,

prk(M) ≥ prk(Mt) = t.

3.3 Strict root bounds

Using bounds on ranks over U , we are able to prove bounds on the distance, as we

will see in this section. However, we will show that any bound of this type is actually

a root bound, but not any root bound is of this type. To provide precise statements,

we need a few definitions and results. Here we depart form the notation in [BS07]

since we prefer to write “strict root” rather than “strong root”.

Definition 3.3.1. A strict root function is a map f : D → N such that:

∀(n, S) ∈ D, f(n, S) ≤ min{rk(M(u)) | u ∈ A(R(n, S))} (3.13)

We denote by RS the class of all strict root functions.

We can remove any ambiguity from the term “strict root function”.

Proposition 3.3.2. Any strict root function is a root function, that is RS ⊆ R.

Proof. Let f be a strict root function. We have to verify (3.2). Let ζ ∈ Z and C ∈ C.

Let p = χ(C) and α = ζ(p, n). We have

f ◦ φζ(C) = f(n, SC,α)

49

Chapter 3. Root bounds

Since f is a strict root function, we have (3.13), i.e.

f(n, SC,α) ≤ min{rk(M(u)) | u ∈ A(R(n, SC,α))} ,

but the right-hand side is not bigger than d(C), by Theorem 2.2.16. Putting all

together, we get

f ◦ φζ(C) ≤ d(C) .

We propose some previous constructions introduced for root functions, which can

be specialized in the case of strict root functions.

Proposition 3.3.3. Let f be any strict root function. Then:

1. f# ∈ RS ,

2. f# is invariant,

3. f ≤ f#,

4. f#
D = maxζ∈Z fD,ζ.

Proof. We only provide the proof of 1). The proofs of 2), 3) and 4), are an easy

adaption of the proof of Proposition 3.1.5.

Let (n, S) ∈ D, what we have to prove is that f#(n, S) ≤ min { rk(M(u)) | u ∈ A(R(n, S)) } .
We claim that for any T ∈ (n, S)# it holds:

min { rk(M(u)) | u ∈ A(R(n, S)) } = min { rk(M(v)) | v ∈ A(R(n, T)) } .

Let ζ ∈ Z. Let C,D ∈ Cq,n be two naturally equivalent codes such that φζ(C) = (n, S)

and φζ(D) = (n, T). Let q ∈ N such that C,D ∈ Cq,n. Let gC , gD ∈ Fq[x] be the

generator polynomials of C andD, respectively. Then, from Proposition 2.1.7, there is

a permutation matrix Pλ such that M(DFT(gC)) = PλM(DFT(gD))P
T
λ . We observe

that, from Definition 2.2.5, R(n, S) is the vector (u0, . . . , un−1) such that ui = 0 if

gC(α
i) = 0, where α = ζ(n, χ(C)), and ui = ∆ otherwise. Similarly, R(n, T) is the

vector (v0, . . . , vn−1) such that vi = 0 if gD(α
i) = 0 and vi = ∆ otherwise. Thus

M(R(n, S)) = PλM(R(n, T))P T
λ and for any u ∈ A(R(n, S)) there is v ∈ A(R(n, T))

such that M(u) = PλM(v)P T
λ . Since Pλ and P T

λ are permutations of rows or columns,

thanks to Lemma 3.2.10, we conclude that rk(M(u)) = rk(PλM(v)P T
λ) = rk(M(v)).

So

min { rk(M(u)) | u ∈ A(R(n, S)) } = min{rk(PλM(v)P T
λ) | v ∈ A(R(n, T))}

= min{rk(M(v)) | v ∈ A(R(n, T))}.

50

3.3. Strict root bounds

We are now able to prove 1). By definition of f# we have f#(n, S) = f(n, T) for at

least one T ∈ (n, S)#, hence:

f#(n, S) = f(n, T) ≤ min { rk(M(v)) | v ∈ A(R(n, T)) }
= min { rk(M(u)) | u ∈ A(R(n, S)) } .

Proposition 3.3.4. Let f be any strict root function. Then:

1. f ∗ is a strict root function,

2. f ∗ is monotone,

3. f ≤ f ∗,

4. if g is any monotone strict root function s.t. f ≤ g, then f ∗ ≤ g.

Proof. We only provide the proof of 1). The proofs of 2), 3) and 4) are similar

to those of Proposition 3.1.11. Let (n, S) ∈ D. What we have to prove is that

f ∗(n, S) ≤ min { rk(M(u)) | u ∈ A(R(n, S)) }.
By definition of f ∗, we have that f ∗(n, S) = f(n, S ′) for some S ′ ⊆ S. If S ′ ⊆ S,

we have A(R(n, S ′)) ⊇ A(R(n, S)), so:

f ∗(n, S) = f(n, S ′) ≤ min { rk(M(u)) | u ∈ A(R(n, S ′)) }
≤ min { rk(M(u)) | u ∈ A(R(n, S)) } .

In the context of strict root bounds we can introduce another notion of maximality.

Definition 3.3.5. If δ is a root bound associated to a strict root function, we say that

δ is a strict root bound.

We denote by RS
D the class of all strict root bounds.

Clearly RS
D ⊆ RD.

We define a map fS from D to N as follows

fS(n, S) = max{f(n, S) | f ∈ RS} . (3.14)

Theorem 3.3.6. Map fS is a strict root function, which is maximal in RS, monotone

and invariant.

51

Chapter 3. Root bounds

Proof. We only prove that fS is a strict root function. For the other claims it is enough

to adapt the argument from the proof of Theorem 3.1.12, using Proposition 3.3.3 and

Proposition 3.3.4.

Let (n, S) be any element of D. By definition of fS we have fS(n, S) = f(n, S) for

some f ∈ RS. Thus fS(n, S) = f(n, S) ≤ min { rk(M(u)) | u ∈ A(R(n, S)) } .

From the definition of strict root functions, we get a characterization for the

maximal strict root function.

Theorem 3.3.7.

fS(n, S) = min{rk(M(u)) | u ∈ A(R(n, S))} .

Moreover, for any f ∈ R we have f ∈ RS if and only if f ≤ fS.

Note that Theorem 3.3.7 and Theorem 3.2.18 obviously imply that bounded finite-

time computations are enough to compute fS.

Since f is maximal in R, fS ≤ f. Actually we will see in Theorem 3.5.8 that fS < f.

Let i ≥ 1. We define three patterns of symbols which correspond to vectors in U i,

sometimes called “blocks”:

(0)i = (

i︷ ︸︸ ︷
0, . . . , 0), (∆)i = (

i︷ ︸︸ ︷
∆, . . . ,∆), (∆+)i = (

i︷ ︸︸ ︷
∆+, . . . ,∆+),

(0)0 = (∆)0 = (∆+)0 = ∅.

Using these three first blocks we can define multiple blocks using concatenation,

for example (0)3(∆)2 = (0, 0, 0,∆,∆) or (0)2(∆+)4 = (0, 0,∆+,∆+,∆+,∆+). We also

define blocks of blocks, with an obvious meaning, as for example:

((0)2(∆+)3)2(∆)2 = (0, 0,∆+,∆+,∆+, 0, 0,∆+,∆+,∆+,∆,∆).

Let us consider two vectors of different length, for example:

u = (∆+, 0,∆) ∈ U3, v = (∆+, 0,∆,∆+,∆+, 0) ∈ U6.

Let K be any field, then the vector u represents a vector in K3 with the first coordinate

different from zero, the second coordinate equal to zero and the third component that

is any element of K. In the same way, v represents a vector of K6 such that the first,

the fourth and the fifth component are different from zero, the second component is

zero and the third component is any element of K.

We note that the constraints for the components of u coincide with the constraints

for the first three components of v and in this case we write u 4 v. The previous

example shows a particular case of a special kind of relation among vectors over U ,

that we are going to define in the following definition.

52

3.3. Strict root bounds

Definition 3.3.8. Let n,m ∈ N such that n ≥ m. Let π be the projection of Un on

Um as follows:

π : Un → Um, π((v1, . . . , vn)) = (v1, . . . , vm).

Let u ∈ Um and v ∈ Un, we write u 4 v if there is 0 ≤ i ≤ n− 1 such that

A(π(shi(v)) ⊆ A(u).

When u 4 v we say that u is included in v.

Our Definition 3.3.8 of inclusion of vectors has some particular properties that we

are going to show.

Proposition 3.3.9. Let u ∈ Um, v ∈ Un, w ∈ U t with m,n, t ≥ 1. We indi-

cate with uv the vector in Um+n obtained by concatenating u and v, i.e. uv =

(u1, . . . , um, v1, . . . , vn). The following statements hold:

a) (∆) 4 (∆+), (∆+) 4 (∆), (∆) 4 (0), (∆) 64 (0).

b) v 4 v.

c) u 4 v ⇐⇒ u 4 sh(v).

d) v 4 uv, v 4 vu.

e) v 4 uvw.

f) (∆)m 4 v for any v ∈ Un s.t. m ≤ n.

Proof.

a) Since (∆), (∆+), (0) ∈ U1 the shift is trivial and then we can ignore it. We have:

A((∆)) =
{
(∆+)

}
, A((∆+)) =

{
(∆+)

}
, A((0)) = ∅,

A((∆+)) ⊆ A((∆)), A((∆)) ⊆ A((∆+)),

A((0)) ⊆ A((∆)), A((∆)) 6⊆ A((0)).

b) Since n = m the projection becomes trivially the identity and it is sufficient to

take i = 0 in order to have A(π(sh0(v))) = A((v)) ⊆ A(v).

c) “ =⇒ ”. Let v = sh(v) and let 0 ≤ i ≤ n − 1 be s.t. A(π(shi(v))) ⊆ A(u).

Denoting i = (i− 1)n we have shi(v) = shi(v) and so A(π(shi(v))) ⊆ A(u) which

implies u 4 v. The proof of “ ⇐= ” is analogous.

53

Chapter 3. Root bounds

d) Since shn(uv) = vu, we have π(vu) = v, A(π(shn(uv))) = A(π(vu)) = A(v) ⊆
A(v). In the same way π(vu) = v and A(π(vu)) = A(v) ⊆ A(v).

e) From (d) we have that v 4 vwu for all wu ∈ U t+m and since uvw = shm(vwu)

we use (c) to conclude that v 4 uvw.

f) We have A((∆)m) =
{
0,∆+

}m\0 and by Definition 2.2.15 A(π(v)) ⊆
{
0,∆+

}m\0
for any v ∈ Un, m ≤ n.

Example 3.3.10.

• (∆,∆+∆) 4 (0, 0,∆,∆+,∆,∆+) by Proposition 3.3.9 - (e), since (∆,∆+∆) 4

(0, 0)(∆,∆+,∆)(∆+);

• (0)2(∆) 4 (0,∆,∆+,∆, 0) by Proposition 3.3.9 - (c)-(d), since (0)2(∆) 4 (0, 0)(∆,∆+,∆),

and we can obtain (0,∆,∆+,∆, 0) if we shift by n− 1 positions;

• (0,∆+,∆+) 64 (∆+,∆+, 0,∆,∆), because we have A
(
(0,∆+,∆+)

)
=
{
(0,∆+,∆+)

}
,

and for 0 ≤ i ≤ 4:

i = 0 A(π(∆+,∆+, 0,∆,∆)) =
{
(∆+,∆+, 0)

}

i = 1 A(π(∆,∆+,∆+, 0,∆)) =
{
(∆+,∆+,∆+), (0,∆+,∆+)

}

i = 2 A(π(∆,∆,∆+,∆+, 0)) =
{
(∆+,∆+,∆+), (0, 0,∆+), (0,∆+,∆+), (∆+, 0,∆+)

}

i = 3 A(π(0,∆,∆,∆+,∆+)) =
{
(0,∆+,∆+), (0, 0,∆+), (0,∆+, 0)

}

i = 4 A(π(∆+, 0,∆,∆,∆+)) =
{
(∆+, 0, 0), (∆+, 0,∆+)

}

and then for any 0 ≤ i ≤ 4, A
(
π(shi((∆+,∆+, 0,∆,∆)))

)
6⊆
{
(0,∆+,∆+)

}
;

• (0,∆+,∆+) 64 (∆,∆+, 0, 0,∆+), it is sufficient to note that it is impossible to find

in (∆,∆+, 0, 0,∆+) three consecutive components such that first is zero and the

others are different from zero.

Remark 3.3.11. Proposition 3.3.9 - (b) proves that 4 is a reflexive relation. Un-

fortunately, it is not transitive in fact (∆+, 0,∆+) 4 (∆+,∆+, 0) and (∆+,∆+, 0) 4

(∆+,∆+, 0, 0,∆+) but (∆+, 0,∆+) 64 (∆+,∆+, 0, 0,∆+).

54

3.4. Known strict root bounds

3.4 Known strict root bounds

The goal of this section is to show that many known lower bounds are actually

strict root bounds. We proceed as follows. We first provide a list of well-known

bounds. We then give a “classical” statement for each. Finally, for each we provide

a strict root function such that the bound is nothing else that the associated root

bound (or a special case), we prove its properties and show the link between the two

definitions. Observe that in the case of the four Boston’s bounds here analyzed, we

do not limit ourselves to reprove them but we generalize them.

We begin with listing the bounds considered in this subsection, citing both their

classical statement and their new interpretation in our setting,

• the BCH bound: Theorem 3.4.1 and Corollary 3.4.10,

• the Hartmann-Tzeng (HT) bound: Theorem 3.4.2 and Corollary 3.4.15,

• Boston’s bound I, Theorem 3.4.3 and Corollary 3.4.23,

• Boston’s bound II, Theorem 3.4.4 and Corollary 3.4.27,

• Boston’s bound III, Theorem 3.4.5 and Corollary 3.4.30,

• Boston’s bound IV, Theorem 3.4.6 and Corollary 3.4.33,

• the Betti-Sala (BS) bound, Theorem 3.4.7 and Corollary 3.4.36,

3.4.1 “Classical statement” of bounds

We now give “classical statements” for the listed bounds.

The following theorem was first presented in [BRC60] (also [Chi72], [Hoc59]).

Theorem 3.4.1 (BCH bound). Let α be an n-th primitive root of unity over Fq, and

let C be an [n, k, d] cyclic code over Fq with generator polynomial g. Suppose that

there exist i, ℓ ∈ {0, . . . n− 1} such that:

g(αi+j) = 0, 0 ≤ j ≤ ℓ− 1 .

Then:

d ≥ ℓ+ 1.

The following theorem was first presented in [HT72], but the following version is an

improvement due to Roos [Roo82].

55

Chapter 3. Root bounds

Theorem 3.4.2 (Hartmann-Tzeng bound). Let α be an n-th primitive root of unity

over Fq, and let C be an [n, k, d] cyclic code over Fq with generator polynomial g.

Suppose that there exist i0, ℓ, s, r ∈ N s.t. (r, n) ≤ ℓ and

g(αi0+i+jr) = 0, 0 ≤ i ≤ ℓ− 1, 0 ≤ j ≤ s− 1 .

Then

d ≥ ℓ+ s.

The following four theorems were first presented in [Bos01].

Theorem 3.4.3 (Boston bound I). Let α be an n-th primitive root of unity over Fq,

and let C be an [n, k, d] cyclic code over Fq. Let S be the complete defining set of C

w.r.t. α. If 3 ∤ n and {0, 1, 3, 4} ⊆ S, then

d ≥ 4.

Theorem 3.4.4 (Boston bound II). Let α be an n-th primitive root of unity over Fq,

and let C be an [n, k, d] cyclic code over Fq. Let S be the complete defining set of C

w.r.t. α. If {0, 1, 3, 5} ⊆ S, then

d ≥ 4.

Theorem 3.4.5 (Boston bound III). Let α be an n-th primitive root of unity over

Fq, and let C be an [n, k, d] cyclic code over Fq. Let S be the complete defining set of

C w.r.t. α. If 3 ∤ n and {0, 1, 3, 4, 6} ⊆ S, then

d ≥ 5 .

Theorem 3.4.6 (Boston bound IV). Let α be an n-th primitive root of unity over

Fq, and let C be an [n, k, d] cyclic code over Fq. Let S be the complete defining set of

C w.r.t. α. If 4 ∤ n and {0, 1, 2, 4, 5, 6, 8} ⊆ S, then

d ≥ 6 .

The following theorem was first presented in [BS05] and [Bet05].

Theorem 3.4.7 (Betti-Sala bound). Let α be an n-th primitive root of unity over

Fq, and let C be an [n, k, d] cyclic code over Fq. Let S be the complete defining set of

C w.r.t. α. Suppose that there are m, ℓ ∈ N, m, ℓ ≥ 1 and i0 ∈ {0, . . . , n − 1} such

that:

a) (i0 + j)n ∈ S, j = 0, . . . , mℓ− 1,

56

3.4. Known strict root bounds

b) (i0 + j)n ∈ S, j = (m+ h)ℓ + 1, . . . , (m+ h)ℓ+ ℓ− 1, 0 ≤ h ≤ m,

or also such that

c) (i0 + j)n ∈ S, j = hℓ, . . . , hℓ+ ℓ− 2, 0 ≤ h ≤ m,

d) (i0 + j)n ∈ S, j = (m+ 1)ℓ, . . . , (2m+ 1)ℓ− 1.

Then:

d ≥ mℓ + ℓ .

3.4.2 Our interpretation of the BCH bound

Definition 3.4.8. Let fBCH be the following map fBCH : D → N,

fBCH(n, S) = max{i ∈ N | (0)i 4 R(n, S)} .

Theorem 3.4.9. Map fBCH is a strict root function.

Proof. Suppose that fBCH(n, S) = ℓ+1, so that (0)ℓ 4 R(n, S). It is enough to show

that for any v ∈ A(n, S), we have that rk(M(v)) ≥ ℓ+ 1.

Since (0)ℓ 4 R(n, S), any v ∈ A(n, S) contains a block of the form (0)j, with j ≥ ℓ,

and by Lemma 3.2.9, we can suppose it lies at the beginning of v. Then

v = (

j︷ ︸︸ ︷
0, 0, . . . , 0,∆+, ∗, . . . , ∗), j ≥ ℓ .

By Lemma 3.2.14 we have that rk(M(v)) ≥ j + 1 ≥ ℓ+ 1.

The following corollary is then obvious.

Corollary 3.4.10. The BCH bound is a strict root bound and it is the bound associ-

ated to fBCH.

In particular we have reproved Theorem 3.4.1.

Remark 3.4.11. Many known bounds do not provide explicitly a bound from S, but

they give patterns to be searched for in S and then the actual bound to be taken is the

largest bound guaranteed by these patterns. For example the classical formulation of

the BCH bound does not say explicitly that d ≥ ℓ+1, with ℓ the largest for which one

can apply Theorem 3.4.1. However, this is done by everyone that actually computes

the BCH bound for a code. From now on, we will ignore this small formal problem

in order not to overburden our notation.

57

Chapter 3. Root bounds

Remark 3.4.12. Both the BCH bound and the HT bound are well-known, so that

writing another proof for them may appear superfluous. The reader should note

that we do more than reproving them: we prove that they are strict root functions.

This has a number of implications. For example, the optimal root bound fD will be

automatically sharper and tighter than both. As a consequence, they cannot be tight

on codes where the rank over U of M(u) is strictly lower than the rank over the actual

field, and hence their tightness will strongly depend on the field.

3.4.3 Our interpretation of the HT bound

Definition 3.4.13. For any r, s, n ∈ N we denote by ρ = ρ(r, s, n) the quotient of rs

divided by n and increased by 1.

Let fHT be the following map fHT : D → N,

fHT(n, S) = max{i ∈ N | i = ℓ+ s} ,

where ℓ, s ∈ N, ℓ, s ≥ 1, are such that there exists r ∈ N, (r, n) ≤ ℓ, for which

((0ℓ)(∆r−ℓ))s 4 R(n, S)ρ. (3.15)

Note that ((0ℓ)(∆r−ℓ))s 4 R(n, S)ρ
′

, with ρ′ ≥ ρ, then ((0ℓ)(∆r−ℓ))s 4 R(n, S)ρ.

We state a theorem postponing its proof.

Theorem 3.4.14. Map fHT is a strict root function.

Corollary 3.4.15. The HT bound is a strict root bound and it is the bound associated

to fHT.

Proof. The first assumption of Theorem 3.4.2 states that R(n, S)ρ contains a block

of length m = rs of the form

((0ℓ)(∆r−ℓ))s .

We have thus reproved Theorem 3.4.2.

The proof of Theorem 3.4.14 requires a few definitions and lemmas.

Definition 3.4.16. Let v ∈ (U r {∆})n, v 6= 0, and let ρ ∈ N. Let 1 ≤ i ≤ n. We

say that i is the primary pivot of v if v[i] is the first ∆+ that occurs in v, i.e.

i = min{h | v[h] = ∆+} .

58

3.4. Known strict root bounds

Lemma 3.4.17. Let n, r, s, ℓ ∈ N such that (r, n) ≤ ℓ. Then for any i in {0, . . . , n−1}
there are k ∈ N and 0 ≤ t ≤ ℓ− 1 such that

i ≡ (s+ k)r + t mod (n) .

Proof. Given i ∈ {0, . . . , n − 1}, let λ = (r, n). By hypothesis λ ≤ ℓ. Let t be such

that:

i ≡ t mod (λ), 0 ≤ t ≤ ℓ− 1 .

We have that λ | i− t. In correspondence of this t:

i ≡ (s+ k)r + t mod (n) ⇐⇒
i− t ≡ (s+ k)r mod (n) ⇐⇒ i− t

λ
≡ (s+ k)

r

λ
mod

(n
λ

)
.

By defining y = s+ k we obtain

i− t

λ
≡ y

r

λ
mod

(n
λ

)
.

The equation above has a solution y0, since
(
r
λ
, n
λ

)
= 1. If we define k = y0 − s, we

have found k and t satisfying our required congruence.

Note that in the previous lemma 0 ≤ i ≤ n − 1 and 0 ≤ t ≤ ℓ − 1, while in the

next lemma 1 ≤ j ≤ n and 1 ≤ t ≤ ℓ.

Lemma 3.4.18. Let n, ℓ, r, s ∈ N and let v ∈ (U r {∆})n, v 6= 0 such that (n, r) ≤ ℓ

and B = ((0)ℓ(∆)r−ℓ)s 4 vρ. Then there are i ∈ {1, . . . n}, k ∈ N and t ∈ {1, . . . , ℓ},
with the following properties:

1. v[i] = ∆+,

2. i ≡ (s+ k)r + t mod (n),

3. v[i′] = 0, for any i′ s.t.

i′ ≡ (s+ k′)r + j mod (n) ,

where k′ ∈ {0, . . . , k − 1} and j ∈ {1, . . . , ℓ}.

Proof. It follows directly from Lemma 3.4.17, once we increase by 1 both i and ℓ.

Definition 3.4.19. Let us adopt the same notation as in Lemma 3.4.18. We say that

i is the secondary pivot of v with respect to block B.

We are ready for the proof of Theorem 3.4.14.

59

Chapter 3. Root bounds

Proof. (Theorem 3.4.14)

Given (n, S) ∈ D, by definition of fHT, there are ℓ, s, r, i0 such that fHT(n, S) = ℓ+ s

and ℓ, s, r, i0 satisfy the assumptions of Theorem 3.4.2. Given v ∈ A(n, S), it is

enough to show that the singleton procedure is successful for ℓ+ s rows of the matrix

M(v). By Lemma 3.2.9 we can suppose that i0 = 0.

Let j be the primary pivot of v. If j > rs then (0)rs 4 v and Theorem 3.4.9 ensures

that rk(M(v)) ≥ rs+1 ≥ ℓ+s and we have finished. So we may suppose that j ≤ rs.

Let i be the secondary pivot of v w. r. t. block ((0)ℓ(∆)r−ℓ)s. Observe that i is such

that v[i− zr] = 0, for any z = 1, . . . , s. In other words, v is as follows:

1 j m = sr i

↓ ↓ ↓ ↓
v = 0 . . . 0 ∆+ . . . 0 . . . 0 ∆ . . . ∆ . . . ∆+ . . .

Note that i and j can coincide. By hypothesis:

vρ =

m=sr︷ ︸︸ ︷
ℓ︷ ︸︸ ︷

0, . . . , 0

r−ℓ︷ ︸︸ ︷
∆, . . . ,∆, . . . ,

ℓ︷ ︸︸ ︷
, 0, . . . , 0,

r−ℓ︷ ︸︸ ︷
∆, . . . ,∆,∆, . . . ,

where ∆ denotes either ∆+ or 0 (with abuse of notation). We have to choose ℓ + s

rows of matrix M(v) and to apply the singleton procedure. We start with the first ℓ

rows:
j

↓

0 . . . 0 ∆+ . . . 0 . . . 0 ∆ . . . ∆ . . .

∆ 0 . . . 0 ∆+ . . . 0 . . . 0 ∆ . . . ∆ . . .

.

.

.

.

.

.

.

.

.

.

.

.

∆ . . . ∆ 0 . . . ∆+ . . . 0 . . . 0 ∆ . . . ∆ . . .

We now add the (j −m − 1 + zr)n + 1-th row of M(v), for all z = 1, 2, . . . , s, thus

obtaining an (ℓ+ s)× n matrix T , as follows

T =

0 . . . 0 ∆+ . . . 0 . . . 0 ∆ . . . ∆ . . .

∆ 0 . . . 0 ∆+ . . . 0 . . . 0 ∆ . . . ∆ . . .

.

.

.

.

.

.

.

.

.

.

.

.

∆ . . . ∆ 0 . . . ∆+ . . . 0 . . . 0 ∆ . . . ∆ . . .

∆ . . . ∆ 0 . . . 0 ∆ . . .

∆ . . . ∆ 0 . . . 0 ∆ . . . ∆ 0 . . . 0 ∆ . . .

.

.

.

.

.

.

∆ . . . ∆ 0 . . . 0 ∆ . . . ∆ 0 . . . 0 ∆ . . .

↑ ↑

j j + ℓ − 1

Observe that the rows from row ℓ + 1 to row n have a zero-block of length ℓ exactly

from the j-th position and the j + ℓ− 1-th position (see Remark 3.4.20). We have so

obtained a sub-matrix T of M(v), for which the first ℓ rows can be obviously erased

by the singleton procedure. After this first application of the procedure, we are left

60

3.4. Known strict root bounds

with a matrix T ′ composed of the last s rows of T , as follows:

T ′ =

∆ . . . ∆ 0 . . . 0 ∆ . . . ∆ . . . ∆+ ∆ . . .

∆ . . . ∆ 0 . . . 0 ∆ . . . ∆ 0 . . . 0 ∆ . . .
...

...

∆ . . . ∆ 0 . . . 0 ∆ . . . ∆ 0 . . . 0 ∆ . . .

By construction, we note that T ′ has the property T ′[a+1, h] = T ′[a, h− r], because

each row is obtained by an r-th shift of the previous one.

For 1 ≤ z ≤ s let i′z = (i+ j −m− 2 + zr)n + 1, that is, iz is the secondary pivot in

the z-th row of T ′. We know that T ′[1, i′1] = ∆+ and this is sufficient to establish that

the i′1-th column is a singleton, since:

T ′[z, i′1] = T ′[1, i′1 + (1− z)r] = 0, z = 2, . . . , s .

Then we erase the first row, and repeat the same for the second one, using as singleton

the i′2-th column:

T ′[2, i′2] = T ′[2, i′1 + r] = T ′[1, i′1] = ∆+

T ′[z, i′2] = T ′[1, i′1 + (2− z)r] = 0, z = 3, . . . , s .

In this way, for any z-th row of T ′ from 1 to s we have a singleton at position i′z and

that means that the singleton procedure is successful for matrix T ′, implying that the

procedure is successful also for T , as claimed.

Remark 3.4.20. We want to comment the previous proof, highlighting the relation

between the rows to be checked by the singleton procedure to prove a bound and the

pattern of blocks that defines the bound. The HT bound is a generalization of the

BCH bound in the sense that if in R(n, SC) there are s blocks of type (0)ℓ, then the

BCH bound can be increased by s− 1. However, this is true only if there is an r ≥ 1

such that any two consecutive blocks are at distance r and if gcd(r, n) ≤ ℓ.

To prove the bound we need to choose ℓ+ s rows in M(v), for v ∈ A(n, S), on which

the singleton procedure is successful. It would be obvious to use the first ℓ+ 1 rows,

since they guarantee the BCH bound, but we take only the first ℓ rows. The problem

is that we need other rows and they have to be chosen in order not to hamper the

check for the remaining ones. The primary pivot is the ∆+ needed to delete the first

rows. So, if we choose only the first ℓ rows, then we can find s rows in such a way

that they have a 0 under the primary pivot and hence the deletion of the first ℓ rows

will not be hampered by the new rows. To find our missing s rows, we need the

existence of r. At this stage we have s rows, but we need at least a ∆+ to delete them

and this is exactly the role of our secondary pivot. Its existence is guaranteed by the

61

Chapter 3. Root bounds

second condition, i.e. gcd(r, n) ≤ ℓ. To grasp this, we propose to apply the singleton

procedure to R(n, S) = (0, 0,∆, 0, 0,∆). It satisfies the hypothesis of Theorem 3.4.14,

except for gcd(r, n) ≤ ℓ, and it would give d ≥ 5 with n = 6, r = 3, ℓ = 2, which is

easily seen to be impossible. The point is that no secondary pivot can be found, as

it is clear in the following matrix, where we have removed the first two rows (ℓ = 2):

(
0 0 ∆+ 0 0 ∆+

∆+ 0 0 ∆+ 0 0

0 ∆+ 0 0∆+ 0

0 ∆+ 0 0 ∆+ 0

)

3.4.4 Our interpretation of Boston’s bound I

Definition 3.4.21. Let fB1 be the following map fB1 : D → N,

fB1(n, S) =

{
4, if (0, 0,∆, 0, 0) 4 R(n, s)and 3 ∤ n,

1, otherwise.

Theorem 3.4.22. Map fB1 is a strict root function.

Proof. It is a special case of map fHT, with ℓ = 2 and s = 2.

The following corollary is then obvious.

Corollary 3.4.23. Boston’s bound I is a strict root bound and it is implied by the

bound associated to fB1.

In particular we have reproved Theorem 3.4.3.

Remark 3.4.24. In our statement Corollary 3.4.23 we say “it is implied by”, where we

mean that we have replaced condition {0, 1, 3, 4} 4 S by the more general condition

{i, i + 1, i + 3, i + 4} ⊆ S, where i is any integer such that 0 ≤ i ≤ n − 4. Actually,

we obtain this kind of generalization for all these Boston’s bounds and this is an

interesting consequence of Lemma 3.2.9.

3.4.5 Our interpretation of Boston’s bound II

Definition 3.4.25. Let fB2 be the following map fB2 : D → N,

fB2(n, S) =

{
4, if (0, 0,∆, 0,∆, 0) 4 R(n, s),

1, otherwise.

Theorem 3.4.26. Map fB2 is a strict root function.

62

3.4. Known strict root bounds

Proof. It is enough to show that for any v 6= 0 such that (0, 0,∆, 0,∆, 0) is contained

in v, we have rk(M(v)) ≥ 4. We can suppose by Lemma 3.2.9 that our block lies at

the beginning of v.

We consider two cases, which altogether cover all possibilities, as follows:

a. (0, 0, 0, 0,∆, 0) 4 v,

b. (0, 0,∆+, 0,∆, 0) 4 v.

Case a

Since (0, 0, 0, 0,∆, 0) 4 v, we have (0)4 4 v and hence this is a special case of fBCH,

which ensures rk(M(v)) ≥ 5.

Case b

Let A4 be the sub-matrix of M(v) formed by rows {1, 2, 3, n}.

A4 =

0 0 ∆+ 0 ∆ 0 ∆ ∆ . . .

∆ 0 0 ∆+ 0 ∆ 0 ∆ . . .

∆ ∆ 0 0 ∆+ 0 ∆ ∆ . . .

0 ∆+ 0 ∆ 0 ∆ ∆ ∆ . . .

The singleton procedure is successful for A4, since erasing in order the following rows

{1, 3, 4} yields A1 = (∆,∆+,∆, 0,∆, . . .).

The following corollary is then obvious.

Corollary 3.4.27. Boston’s bound II is a strict root bound and it is a special case of

the bound associated to fB2.

In particular we have reproved Theorem 3.4.4 (see Remark 3.4.24).

3.4.6 Our interpretation of Boston’s bound III

Definition 3.4.28. Let fB3 be the following map fB3 : D → N,

fB3(n, S) =

{
5, if (0, 0,∆, 0, 0,∆, 0) 4 R(n, s) and 3 ∤ n,

1, otherwise.

Theorem 3.4.29. Map fB3 is a strict root function.

Proof. It is enough to show that for any v 6= 0 s.t. (0, 0,∆, 0, 0,∆, 0) 4 v and 3 ∤ n,

we have rk(M(v)) ≥ 5. We can suppose by Lemma 3.2.9 that our block is at the

beginning of v.

We consider four cases, which altogether cover all possibilities, as follows:

63

Chapter 3. Root bounds

a. (0, 0, 0, 0, 0,∆, 0) 4 v,

b. (0, 0,∆+, 0, 0, 0, 0) 4 v,

c. (0, 0,∆+, 0, 0,∆+, 0, 0) 4 v,

d. (0, 0,∆+, 0, 0,∆+, 0,∆+) 4 v.

Case a

Since (0, 0, 0, 0, 0,∆, 0) 4 v, we have (0)5 4 v and hence this is a special case of fBCH,

which ensures rk(M(v)) ≥ 6.

Case b

Since (0, 0,∆+, 0, 0, 0, 0) 4 v, we have (0)4 4 v and hence this is a special case of

fBCH, which ensures rk(M(v)) ≥ 5.

Case c

Since (0, 0,∆+, 0, 0,∆+, 0, 0) 4 v, we have ((0)2(∆)1)3 4 v and hence this is a special

case of fHT with l = 2 and s = 3, which ensures rk(M(v)) ≥ 2 + 3 = 5 (since

s = 3 ∤ n).

Case d

Let A5 be the sub-matrix of M(v) formed by rows {1, 2, 3, n, n− 1}.

A5 =

0 0 ∆+ 0 0 ∆ 0 ∆+ ∆ . . .

∆ 0 0 ∆+ 0 0 ∆ 0 ∆ . . .

∆ ∆ 0 0 ∆+ 0 0 ∆ ∆ . . .

0 ∆+ 0 0 ∆ 0 ∆+ ∆ ∆ . . .

∆+ 0 0 ∆ 0 ∆+ ∆ ∆ ∆ . . .

The singleton procedure is successful for A5, since erasing in order the following rows

{1, 5, 2, 4} yields A1 = (∆,∆,∆+, 0,∆,∆, . . .).

The following corollary is then obvious.

Corollary 3.4.30. Boston’s bound III is a strict root bound and it is a special case

of the bound associated to fB3.

In particular we have reproved Theorem 3.4.5 (see Remark 3.4.24).

64

3.4. Known strict root bounds

3.4.7 Our interpretation of Boston’s bound IV

Definition 3.4.31. Let fB4 be the following map fB4 : D → N,

fB4(n, S) =

{
6, if (0, 0, 0,∆, 0, 0, 0,∆, 0) 4 R(n, s) and 4 ∤ n,

1, otherwise.

Theorem 3.4.32. Map fB4 is a strict root function.

Proof. It is enough to show that for any v 6= 0 s.t. (0, 0, 0,∆, 0, 0, 0,∆, 0) 4 v and

4 ∤ n, we have rk(M(v)) ≥ 6. We can suppose by Lemma 3.2.9 that our block is at

the beginning of v.

We consider four cases, which altogether cover all possibilities, as follows:

a. (0, 0, 0, 0, 0, 0, 0,∆, 0,∆,∆) 4 v,

b. (0, 0, 0,∆+, 0, 0, 0,∆, 0, 0, 0) 4 v,

c. (0, 0, 0,∆+, 0, 0, 0,∆, 0,∆+,∆) 4 v,

d. (0, 0, 0,∆+, 0, 0, 0,∆, 0, 0,∆+) 4 v.

Case a

Since (0, 0, 0, 0, 0, 0, 0,∆, 0,∆,∆) 4 v, we have (0)7 4 v and hence this is a special

case of fBCH, which ensures rk(M(v)) ≥ 8.

Case b

Since (0, 0, 0,∆+, 0, 0, 0,∆, 0, 0, 0) 4 v, we have ((0)3(∆)1)3 4 v and hence this is a

special case of fHT, with l = 3 and s = 3, which will give exactly rk(M(v)) ≥ 3+3 = 6

(since s = 4 ∤ n).

Case c

Let A6 be the sub-matrix of M(v) formed by rows {1, 2, 3, 4, n, n− 1}.

A6 =

0 0 0 ∆+ 0 0 0 ∆ 0 ∆+ ∆ . . .

∆ 0 0 0 ∆+ 0 0 0 ∆ 0 ∆ . . .

∆ ∆ 0 0 0 ∆+ 0 0 0 ∆ ∆ . . .

∆ ∆ ∆ 0 0 0 ∆+ 0 0 0 ∆ . . .

0 0 ∆+ 0 0 0 ∆ 0 ∆+ ∆ ∆ . . .

0 ∆+ 0 0 0 ∆ 0 ∆+ ∆ ∆ ∆ . . .

The singleton procedure is successful for A6, since erasing in order the following rows

{1, 2, 6, 3, 5} yields A1 = (∆,∆,∆,∆+, 0,∆, . . .).

65

Chapter 3. Root bounds

Case d

Let A6 be the sub-matrix of M(v) formed by rows {1, 2, 3, 4, n, n− 1}.

A6 =

0 0 0 ∆+ 0 0 0 ∆ 0 0 ∆+ ∆ . . .

∆ 0 0 0 ∆+ 0 0 0 ∆ 0 0 ∆ . . .

∆ ∆ 0 0 0 ∆+ 0 0 0 ∆ 0 ∆ . . .

∆ ∆ ∆ 0 0 0 ∆+ 0 0 0 ∆ ∆ . . .

0 0 ∆+ 0 0 0 ∆ 0 0 ∆+ ∆ ∆ . . .

0 ∆+ 0 0 0 ∆ 0 0 ∆+ ∆ ∆ ∆ . . .

The singleton procedure is successful for A6, since erasing in order the following rows

{1, 2, 6, 3, 5} yields A1 = (∆,∆,∆,∆+, 0,∆, . . .).

The following corollary is then obvious.

Corollary 3.4.33. Boston’s bound IV is a strict root bound and it is a special case

of the bound associated to fB4.

In particular we have reproved Theorem 3.4.6 (see Remark 3.4.24).

3.4.8 Our interpretation of the BS bound

Definition 3.4.34. Let fBS be the following map fBS : D → N,

fBS(n, S) = max{i ∈ N | i = mℓ+ ℓ} ,

where m and ℓ are s.t. either

((0)ℓ)m((∆)1(0)ℓ−1)m+1
4 R(n, S) , (3.16)

or

((0)ℓ−1(∆)1)m+1((0)ℓ)m 4 R(n, S) . (3.17)

Theorem 3.4.35. Map fBS is a strict root function.

Proof. We briefly summarize and adapt arguments from [BS06].

Note that (3.17) is the reflection of (3.16), so that by Lemma 3.2.13 it is sufficient

to consider (3.16).

As usual, it is enough to show that for any v 6= 0 s.t.

((0)ℓ)m((∆)1(0)ℓ−1)m+1
4 v ,

66

3.4. Known strict root bounds

we have rk(M(v)) ≥ mℓ + ℓ. Let T be the sub-matrix of M(v) formed by the first

mℓ + ℓ rows. We want to show that the singleton procedure is successful for T .

We can suppose that the block is at the beginning of v. We have two cases: either

u[mℓ+1] = 0 or u[mℓ+1] = ∆+. In the first case we have (0)j0 4 v, for some j0 ≥ ml+l

and so we may apply Lemma 3.2.14, ensuring that rk(M(u)) ≥ j0 + 1 > mℓ + ℓ.

In the second case u starts with block (0)mℓ(∆+)1(0)ℓ−1((∆)1(0)ℓ−1)m. We apply

the singleton procedure to T using as singleton T [(m+ i)ℓ+j], with j decreasing from

ℓ to 1 and, for any fixed j, i increasing from 0 to m. It is clearly sufficient to verify

that at each step column T [(m+ i)ℓ+ j] is a singleton. Let us consider a generic step

of the procedure, with some i and j. By circularity we have

T [iℓ+ j, (m+ i)ℓ+ j] = T [iℓ+ j − 1, (m+ i)ℓ+ j − 1] = . . .

· · · = T [1, mℓ+ 1] = u[mℓ + 1] = ∆+ .

Suppose that there exists another s ∈ {2, . . . , mℓ + ℓ} s.t. T [s, (m + i)ℓ + j] = ∆+,

which means u[(m+ i)ℓ+ j − s+1] = ∆+. By the assumptions on the structure of u,

we get ℓ(m+ i) + j − s = (m+ h)ℓ, h ≥ 0, which implies s = (i− h)ℓ+ j, for h ≥ 0.

If h = 0, we have s = iℓ + j as required. If h ≥ 1, we have s = i′ℓ + j, with i′ < i.

But the s−th row has already been erased in some previous step of the procedure.

We then conclude that T [ℓ(m+ i) + j] is a singleton.

Corollary 3.4.36. Bound BS is a strict root bound and it is the bound associated to

the strict root function fBS.

Proof. In case i0+mℓ−1 ≤ n−1, condition a) of Theorem 3.4.7 states that S contains

mℓ consecutive integers. In case i0 +mℓ− 1 > n− 1, condition a) means that there

are two blocks of consecutive integers in S: one from i0 to n − 1 and one from 0 to

i0+mℓ−1−n, so that we can still view this case as describing a block of “consecutive”

integers in S (the “large block”). On the other hand, condition b) of Theorem 3.4.7

implies that for any h there is a block of ℓ − 1 “consecutive” integers in S (a “small

block”), that between two small blocks there is an integer i′ = i0+((m+h)ℓ)n s. t. we

do not know if i′ is in S, and that between the large block and the first small block,

there is an integer i′′ = i0 + (mℓ)n s. t. we do not know if i′′ is in S. In other words,

the assumptions a) and b) in Theorem 3.4.7 are equivalent to saying that R(n, S)

“contains” a block:

mℓ︷ ︸︸ ︷
ℓ︷ ︸︸ ︷

0, . . . , 0, . . . ,

ℓ︷ ︸︸ ︷
0, . . . , 0,

(m+1)ℓ︷ ︸︸ ︷
ℓ︷ ︸︸ ︷

∆, 0, . . . , 0, . . .

ℓ︷ ︸︸ ︷
,∆, 0, . . . , 0

Similarly for c) and d) (but using Lemma 3.2.13).

67

Chapter 3. Root bounds

3.5 Known root bounds which are not strict

All bounds presented in Subsection 3.4 are strict root bounds. This subsection

deals with two other root bounds, i.e. the Roos bound and Boston’s bound V. We are

able to show that they are root bounds, but not strict root bounds. To obtain this

result we show that it is not possible to prove that they are strict root bounds using

the singleton procedure. Since the failure of the singleton procedure implies the linear

dependence of the rows (see Theorem 3.2.18), we conclude that indeed they are not

strict root bounds.

The following result was first presented in [Roo83] and we do not give an alterna-

tive proof.

Theorem 3.5.1 (Roos bound). Let α be an n-th primitive root of unity over Fq, and

let C be an [n, k, d] cyclic code over Fq with generator polynomial g. Let r ∈ N s.t.1

2 ≤ r ≤ n− 1 and (r, n) = 1. Let ℓ ∈ N, 2 ≤ ℓ ≤ n− 1.

Let S̄ be a set of s̄ consecutive natural numbers: S̄ := {k, k + 1, . . . , k + s̄ − 1}. Let

S ′ ⊆ S̄, |S ′| = s, s.t.2

s̄− s < ℓ .

Suppose that, for an 0 ≤ i0 ≤ n− 1, we have

g(αi0+i+σr), for 0 ≤ i ≤ ℓ− 1 and σ ∈ S ′ .

Then

d ≥ ℓ+ s

We formalize the Roos bound within our context.

Definition 3.5.2. Let fRoos be the following map fRoos : D → N,

fRoos(n, S) = max{i ∈ N | i = ℓ+ s} ,

where ℓ, s are such that there exists r ∈ N, (r, n) = 1, and there exist s integers

0 ≤ k1 < k2 < .. < ks < ℓ+ s, so that:

(∆)rk1(0)ℓ(∆)r−ℓ(∆)r(k2−k1−1)(0)ℓ(∆)r−ℓ · · · (∆)r(ks−ks−1−1)(0)ℓ(∆)r−ℓ
4 R(n, S)ρ.

(3.18)

where ρ is the remainder of (ks + 1)r in the division by n, increased by 1.

Theorem 3.5.3. Map fRoos is a root function and the Roos bound is the root bound

associated to it.

1r is s.t. αr is another primitive n-th root of unity
2i.e., S′ is obtained from S by removing strictly less than ℓ elements.

68

3.5. Known root bounds which are not strict

Proof. It follows from Theorem 3.5.1, since (3.18) is nothing else but a rewriting of

the assumptions of said theorem.

The following theorem was first presented in [Bos01].

Theorem 3.5.4 (Boston bound V). Let α be an n-th primitive root of unity over Fq,

and let C be an [n, k, d] cyclic code over Fq. Let S be the complete defining set of C

w.r.t. α. If 3 ∤ n and {0, 1, 3, 4, 6, 7} ⊆ S, then

d ≥ 6 .

We formalize Boston’s bound V within our context.

Definition 3.5.5. Let fB5 be the following map fB5 : D → N,

fB5(n, S) =

{
6, if R(n, s) = (0, 0,∆, 0, 0,∆, 0, 0,∆, . . .) and 3 ∤ n,

1, otherwise.
(3.19)

Theorem 3.5.6. Map fB5 is a root function and Boston’s bound V is the associated

root bound.

Proof. It follows from Theorem 3.5.4, since (3.19) is a simple rewriting of the assump-

tions of said theorem.

Theorem 3.5.7. The Boston bound V and the Roos bound are not strict root bounds

Proof. Let

v = (0, 0,∆+, 0, 0,∆+, 0, 0,∆+,∆+,∆+,∆+,∆+),

v′ = (0, 0,∆+,∆+,∆+,∆+, 0, 0,∆+, 0, 0,∆+,∆+,∆+,∆+,∆+,∆+,∆+,∆+,∆+) ,

where v ∈ A(R(13, S)), v′ ∈ A(R(20, S ′)),and

S = {0, 1, 3, 4, 6, 7}, S ′ = {0, 1, 6, 7, 9, 10} .

If the Boston bound V were a strict root bound, then we would be able to find

a 6-row submatrix N in M(v) with rk(N) = 6 on which the singleton procedure

is successful (see Theorem 3.2.18). By a computer search, running the singleton

procedure on all possible six rows submatrices of M(v) we checked (see Section 9.3)

that no such submatrix exists and that actually the rank is 5.

Similarly, if the Roos bound were a strict root bound, then we would be able to

find a 5-row submatrix N in M(v′) on which the singleton procedure is successful.

By a computer search we checked that no such N exists and that actually the rank

of M(v′) is 4 (see Section 9.3).

69

Chapter 3. Root bounds

Theorem 3.5.8.

fS < f

Proof. It is clear that f ≥ fS, we have only to exhibit an (n, S) such that fS(n, S) <

f(n, S). From Theorem 3.5.3 we have fRoos ∈ R and then fRoos ≤ f. Let n = 20,

S = {0, 1, 6, 7, 9, 10}, from Theorem 3.3.7 and Theorem 3.5.7 we have fS(n, S) ≤ 4

while f(n, S) ≥ fRoos(n, S) = 5, so

fS(n, S) ≤ 4 < 5 = fRoos(n, S) ≤ f(n, S).

3.6 Counterexamples to known bounds

The following two theorems were claimed in [Bos01].

Theorem 3.6.1 (Boston A). Let α be an n-th primitive root of unity over Fq, and

let C be an [n, k, d] cyclic code over Fq. Let S be the complete defining set of C w.r.t.

α. If 4 ∤ n and {0, 1, 4, 5, 8} ⊆ S, then

d ≥ 5 .

Theorem 3.6.2 (Boston B). Let α be an n-th primitive root of unity over Fq, and

let C be an [n, k, d] cyclic code over Fq. Let S be the complete defining set of C w.r.t.

α. If 3 ∤ n and {0, 1, 3, 4, 6, 7, 9} ⊆ S, then

d ≥ 7 .

Let C be the cyclic code of length 15 over F2 with complete defining set (w.r.t. to

any of the primitive 15-th roots of unity)

SC,α = {0, 1, 2, 4, 5, 8, 10} .

Let d be the distance of C. According to Theorem 3.6.1, d should be d ≥ 5. However,

a direct computation (see Section 9.3) shows that d = 4, which means:

Theorem 3.6.3. Theorem 3.6.1 is false.

Let C be the cyclic code of length 20 over F11 with complete defining set (w.r.t.

to any of the primitive 20-th roots of unity) is

SC,α = {0, 1, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19} .

Let d be the distance of C. According to Theorem 3.6.2, d should be d ≥ 7. However,

a direct computation (see Section 9.3) shows that d = 6, which means:

70

3.7. Deducing other bounds

Theorem 3.6.4. Theorem 3.6.2 is false.

Remark 3.6.5. These two statements, along with the other statements discussed in

Subsection 3.4, are presented as “corollaries” in [Bos01]. For one of the two statements

the author explains that he is still not sure of the result, since it apparently depends

on some unfinished computer computations.

3.7 Deducing other bounds

Thanks to our approach, it is easy to deduce new bounds from the bounds pre-

sented until now.

By applying Definition 3.2.11 and Lemma 3.2.13 to our generalizations of Boston’s

bounds II, III and IV, we obtain:

Theorem 3.7.1. The following functions are strict root functions

fB2+ : D → N, fB2+(n, S) =

{
4, if (0,∆, 0,∆, 0, 0) ⊆ R(n, S),

1, otherwise.

fB3+ : D → N, fB3+(n, S) =

{
5, if (0,∆, 0, 0,∆, 0, 0) ⊆ R(n, S) and 3 ∤ n,

1, otherwise.

fB4+ : D → N, fB4+(n, S) =

{
6, if (0,∆, 0, 0, 0,∆, 0, 0, 0) ⊆ R(n, S) , 4 ∤ n,

1, otherwise.

We cannot use similar argument with Boston’s bound I, the HT bound, the BCH

bound and bound A, since their formulation is already symmetric.

Remark 3.7.2. All root bounds analyzed in this section are monotone.

71

Border bounds

This chapter belongs to a work joint with E. Betti, relates the results contained

in the unpublished paper [BS07] but also advances significantly on [BS07], especially

in Theorem 4.1.19 and Theorem 4.3.10. For a shorter treatment see also [Cur10].

4.1 General settings

Root bounds depend only on the length and the defining set. If we want bounds

that improve on root bounds, we need to use other information on the code. In this

section we introduce a new class of bounds, that we call border bounds, which use

some knowledge on cyclic subcodes.

Definition 4.1.1. A codeword c of a cyclic code C is called a border codeword for

C if it is not contained in any proper cyclic sub-code of C.

We denote by Ĉ the set of all border codewords of C.

We denote by d̂(C) the border distance of C, i.e. d̂(C) = minc∈Ĉ,c 6=0w(c).

The following lemma can be easily proved.

Lemma 4.1.2. Let C ∈ Cq,n. Let c ∈ C. Then c is a border codeword for exactly

one cyclic sub-code D of C. The generator polynomial of D is the greatest common

divisor of c and xn − 1 ∈ Fq[x].

The following fact is then obvious.

Fact 4.1.3. For any C ∈ C, we have

C = ∪D<CD̂, d(C) = min
D<C

d̂(D) .

Thanks to the previous fact, we can reformulate Theorem 2.1.8.

Proposition 4.1.4. Let C ∈ C. Let DFT(C) be the code formed by the Discrete

Fourier Transforms of the words of C. Then the distance of C is

d(C) = min
D<C,D 6={0}

{ min
c∈D̂

rk(M(DFT(c))) } .

73

Chapter 4. Border bounds

Figure 4.1: Border codewords

Definition 4.1.5. We denote by E the subset of N × 2N × 22
N

s.t. (n, S,S) ∈ E if

(n, S) ∈ D and S = {T1, . . . , Ts}, with S ⊆ Th ⊆ {0, . . . , n− 1}, Th 6= {0, . . . , n− 1}
for any 1 ≤ h ≤ s and Th 6= Tk for 1 ≤ h 6= k ≤ s.

Let (n, S,S) ∈ E , S = {T1, . . . , Ts}. We denote by (n, S,S)# the set

(n, S,S)# = {{S1,S1}, . . . , {Sr,Sr}} ,

where r = |Z∗
n|, Si = {Ti,1, . . . , Ti,s} and for any l ∈ Z∗

n there is one and only one i

such that Si = {(lt)n | t ∈ S} and Ti,j = {(lt)n | t ∈ Tj} for any j.

Note that {S,S} ∈ (n, S,S)#, |Sh| = |S| for any h and |Th,j| = |Tj | for any j and any

h. Using a function ζ ∈ Z, we define a map ψζ from C to E :

ψζ : C → E , ψζ(C) = (n, SC,α,S) ,S = {SD,α | D < C, D 6= {0}} , (4.1)

where α = ζ(χ(C), n). In other words, ψζ(C) contains the length of the code C, the

defining set of C with respect to α and the defining sets of all the non-zero cyclic

subcodes of C with respect to α. Note that we exclude the zero sub-code, which

would give rise to the set {0, . . . , n− 1}, and that map ψζ plays a role analogous to

that of map φζ in (3.1). We provide now a proposition, whose easy proof is omitted.

Proposition 4.1.6.

∀ ζ, ζ ′ ψζ(C) = ψζ′(C).

Thanks to the previous proposition, we define E ′ = Im(ψζ) for any ζ ∈ Z. Note

that E ′ ⊆ E .

Unlike φζ , we have that for any ζ , ψζ is not surjective, as show below.

Theorem 4.1.7.

E ′ (E

74

4.1. General settings

Proof. Let ζ ∈ Z. We have to exhibit an (n, S,S) such that (n, S,S) ∈ E but

(n, S,S) /∈ ψζ(C). Let n = 3, S = {1}, S = {{1}, {1, 2}}. If (n, S,S) ∈ E ′, then {1}
is a cyclotomic coset and {1, 2} is the union of cyclotomic cosets {1, 2} = {1} ∪ {2},
but then also {3} is a cosets and {1, 3} /∈ S.

We are ready to define our new class of bounds.

Definition 4.1.8. A border function is a map f : E ′ → N ∪ {∞} such that:

∀ζ ∈ Z, ∀ C ∈ C, f ◦ ψζ(C) ≤ d(C) . (4.2)

We denote by B the class of all border functions.

Given f ∈ B, we say that f is invariant if f(n, S,S) = f(n, S ′,S′), for any

{S ′,S′} ∈ (n, S,S)#. We also denote by f# the map

f# = max
{S′,S′}∈(n,S,S)#

f(n, S ′,S′) .

For any ζ ∈ Z and any f ∈ B, the composite map fE,ζ = f ◦ ψζ : C 7→ N ∪ {∞} is

called the border bound associated to f and ζ. If f is invariant, we say that fE,ζ is

invariant and we write fE . We denote by BE the class of all border bounds.

Due to (4.2), border bounds are actually lower bounds for the distance on C.

If f ∈ B is invariant, we have that fE,ζ = fE,ζ′ for any ζ and ζ ′ and so will just

write fE . The following fact is then obvious.

Proposition 4.1.9. For any f ∈ B, f# is invariant, f ≤ f# and f#
E = maxζ∈Z fE,ζ.

Proof. It is sufficient to adapt the arguments of Proposition 3.1.5.

Remark 4.1.10. A root bound uses as information on the code only the length and

the defining set. A border bound uses in addition the knowledge of defining sets of

cyclic subcodes of C, which is the real meaning of parameter S. It may not seem a

significant gain but in practice border bounds outperforms root bounds.

If we take an arbitrary root function we can view it trivially as a border function,

by ignoring parameter S, as follows.

Definition 4.1.11. Let f ∈ R. We denote by f̄ the map

f̄ : E ′ −→ N ∪ {∞}, f̄ : (n, S,S) 7→ f(n, S) .

The following fact follows easily from (3.2) and (4.2).

Fact 4.1.12. If f ∈ R then f̄ ∈ B.

75

Chapter 4. Border bounds

We can thus view any root bound as a border bound, in principle, even if there is no

point in computing one as such.

Remark 4.1.13. An invariant bound δ takes the same values on a code and any of

its naturally equivalent codes, both when δ is a root bound and when δ is a border

bound.

We can adapt many definitions and results for root functions to the “border case”.

Definition 4.1.14. Let f be a border function. We say that f is monotone if for any

(n, S,S) and (n′, S ′,S′) in E ′ we have

n = n′, S ⊆ S ′, S ⊇ S′ =⇒ f(n, S,S) ≤ f(n, S ′,S′)

Any border bound associated to f is called a monotone border bound.

Proposition 4.1.15. Let f be any border function. We denote by f ∗ the map defined

by f ∗(n, S,S) = max{f(n, S ′,S′) | S ′ ⊆ S, S′ ⊇ S}. We have: f ∗ is a border function,

f ∗ is monotone, f ≤ f ∗. Moreover, if g is any monotone border functions s.t. f ≤ g,

then f ∗ ≤ g.

Proof. It is sufficient to adapt the argument of Proposition 3.1.11.

It is now natural to introduce the optimal border bound and its characterization:

b(n, S,S) = max{f(n, S,S) | f ∈ B} . (4.3)

Theorem 4.1.16. Map b is a border function, which is maximal in B, monotone and

invariant.

Proof. See Theorem 3.1.12, using Proposition 4.1.15 and Proposition 4.1.9.

Theorem 4.1.17. Map bE is a monotone invariant root bound, which is maximal in

BE .

Proof. It follows from Theorem 4.1.16.

We have that, for any ζ ∈ Z and any (n, S,S) ∈ E ′:

b(n, S,S) = min{d(C) | C ∈ C, ψζ(C) = (n, S,S)}.

The following theorem can be proved similarly to Theorem 3.1.18

76

4.1. General settings

Theorem 4.1.18. For any ζ ∈ Z, we have

bE,ζ(C) = min{d(C ′) | C ′ ∈ C, ψζ(C
′) = ψζ(C)} ,

bE,ζ(C) = bE(C) = max
ζ′∈Z

bE,ζ′(C) =

max1≤i≤r{min{d(C ′) | C ′ ∈ C, SC′,β = SC,αi
,SC′,β = SC,αi

, αi = ζ(χ(C), n), β = ζ(χ(C ′), n)}} ,
where C ∈ Cq,n and α1, . . . , αr are all primitive n-th roots of unity over Fq.

We are also able to prove the analogous of Theorem 3.1.20

Theorem 4.1.19.

bE 6= d .

Proof. For the proof, we follow the strategy used in the proof of Theorem 3.1.20:

first, we suppose the existence of two codes with some properties which are enough

to prove our claim, second we provide explicitly such codes.

Part I

We look for two codes C1, C2 of length n ≥ 1, over Fq1 and over Fq2 respectively, s.t.

• the two fields have different characteristics, let us say χ(C1) = p1 and χ(C2) =

p2, with p1 6= p2,

• α1, . . . , αr are all the primitive n−th roots of unity over Fq1 and β1, . . . , βr are

all the primitive n−th roots of unity over Fq2.

We take ζ1, . . . , ζr ∈ Z s.t. ζi(χ(C1), n) = αi and ζi(χ(C2), n) = βi, for 1 ≤ i ≤ r. We

also want:

d(C1) < d(C2) (4.4)

SC1,αi
= SC2,βi

, 1 ≤ i ≤ r (4.5)

SC1,αi
= SC2,βi

, 1 ≤ i ≤ r. (4.6)

With the above assumptions on C1 and C2, we now prove the first part. Note that

(4.5) and (4.6), implies ψζi(C1) = ψζi(C2), for any 1 ≤ i ≤ r. From Theorem 4.1.18

we have

bE(C2) = max
1≤i≤r

{min { d(C) | C ∈ C, ψζi(C) = (n, SC1,αi
,SC1,αi

} } . (4.7)

However C1 ∈ C and ψζi(C1) = (n, SC1,αi
,SC1,αi

) for any 1 ≤ i ≤ r, so

bE(C2) ≤ max
1≤i≤r

d(C1) = d(C1) < d(C2). (4.8)

Part II

We take Fq1 = F35 and Fq2 = F210 , n = 11. There are r = 10 primitive n−th roots of

77

Chapter 4. Border bounds

unity. As cyclic codes C1 and C2 we take two codes with defining set S = SC1,α1 =

SC2,β1,

S = { 0, 1, 2, 3, 5 } .
Since F210 and F35 are the splitting field of x11−1 over F2[x] and F3[x], respectively,we

have that the subcodes are

SC1,αi
= { S ⊆ T ⊆ {0, . . . , 10} | T 6= {0, . . . , 10} } = SC2,βi

for any 1 ≤ i ≤ r. An explicit computation (see Section 9.3) shows that d(C1) = 5

and d(C2) = 6.

Theorem 4.1.19 is a generalization of Theorem 3.1.20 , since we can see any root

function as a border function. We think that this result is relevant. In fact, since

border bounds use also information on the subcodes to estimate the distance, someone

may think that, differently from the root bounds, they are able to reach the true

distance for a code. Unfortunately, Theorem 4.1.19 states that if you get a bound

which uses only the information given by the defining set of the codes and all the

defining sets of the (non-trivial) subcodes, there is at least a code for which you

cannot reach the true distance. In other word, you cannot get the distance of a code

without knowing the characteristic of the field. The questions proposed in Section 3.1

about the optimal root bound can be studied in the more general framework of the

optimal border bound.

4.2 Border bounds and U

The advantage of using border functions instead of root functions is that all border

codewords of a code share in their DFT not only the same zeros, but also the same

non-zeros. So the rank evaluation in U can be more precise, since the involved matrices

have entries only in {∆+, 0}. In this section we provide several methods for bounding

the rank of this type of matrices.

We formalize how it is possible to perform the rank evaluation in U introducing

the concept of localization map.

Definition 4.2.1. Let f̂ : D −→ N ∪ {∞} be any function s.t.

f̂(n, T) ≤ rk(M(R̂(n, T))) .

Then f̂ is called localization.

So a localization map is a way to bound the rank of matrices over U , exploiting

the fact that they have entries only in {∆+, 0}.
Localizations present in literature are constructed by employing an independence-

check procedure, as follows.

78

4.2. Border bounds and U

Definition 4.2.2. Let ǫ be an algorithm that admits as input any matrix A ∈ Un×m

over U and that returns either true or false. We say that ǫ is an independence-check

procedure if any time it returns true then its input A has maximal rank, i.e. rk(A) =

min(n,m).

Remark 4.2.3. When an independence-check procedure returns false, the matrix rows

might be independent. In designing an independence-check procedure a trade-off has

to be sought between time-consuming checks, that return true on a large number of

independent sets, and fast checks, that may not recognize many independent sets but

allow efficient implementations.

Given an independence-check procedure ǫ, we can construct algorithms to get a

lower-estimate on the rank of an arbitrary matrix over U , which we call rank-bounding

algorithms, by checking the rank of specific row subsets.

In literature two rank-bounding algorithms can be found (implicitly or explicitly),

which we call the first and second rank-bounding algorithm1.

Remark 4.2.4. Different rank-bounding algorithms from independence-check proce-

dure scan different row subsets. Although one would expect to get different values

in most cases, this is not so obvious when a matrix is of the type A = M(v). For

example, for most binary cyclic codes with n ≤ 63 the bounds obtained from the first

and second algorithm output the same value (and we do not know their output on

the others). However, we have found an explicit example (see Section 9.3) in which

the first and second algorithm output different values, on a matrix of kind M(v), as

follows.

Let v = (0, 0, 0,∆+, 0,∆+, 0, 0,∆+,∆+,∆+) ∈ U11. The first rank-bounding algorithm

applied to M(v) returns 5, the second returns 6 (with the set of rows {1, 2, 3, 4, 7, 8}).

First rank-bounding algorithm from ǫ

Input

A matrix A over U .

First Step

We initialize a list S of rows of A with the first row.

Cycle

We call ǫ on the submatrix formed by S.

• If it returns true, then the rows of S are linearly independent,

• else we discard the last row of S.

1recently, also a third rank bounding algorithm has been presented in [ZK10, ZK11]

79

Chapter 4. Border bounds

If there are other rows in A, we add to S the first row of A that has not been consid-

ered yet and we cycle again. Else we return the number of rows of S.

Second rank-bounding algorithm from ǫ

Input

A matrix A over U .

First Step

We initialize ℓ = 1 .

Cycle

We call ǫ on all subsets of ℓ rows (with some order).

• If ǫ returns true on any subset, then we set ℓ = ℓ + 1 and restart the cycle,

unless ℓ = n, in which case we return n.

• else we return ℓ− 1.

4.3 Strict border bounds

Once it is clear how to work with localizations, many definitions and results for

strict root functions and strict root bounds can be adapted to the “border case”. Since

many of the results we cite are already proved in Section 3.3, we just mention them,

providing a proof only for a few.

Using the localization maps we are now able to define the analogous of strict root

functions and strict root bounds, in the border framework.

Definition 4.3.1. A border function is called a strict border function if there is

a localization f̂ : D −→ N ∪ {∞} s.t.

f(n, S,S) = min
T∈S

f̂(n, T), f̂(n, T) ≤ rk(M(R̂(n, T))) .

In this case, we say that f̂ is called the localization of f .

Any border bound associated to a strict border function is called a strict border

bound.

We denote by BS the class of all strict border functions and with BS
E the class of all

strict border bounds.

Remark 4.3.2. A strict border bound computes a rank bound for all cyclic subcodes

and then it takes the minimum. Moreover, the same function (the localization) is

used for all cyclic subcodes. This further requirement could be relaxed, but with

care, because of the exponential growth of the number of subcodes.

80

4.3. Strict border bounds

With an adaption of the argument in Proposition 3.3.2, it is easy to prove:

Proposition 4.3.3. Any strict border function is a border function. That is

BS ⊆ B.

It is easy to see that a strict root function is actually a strict border function (with

the f̄ construction).

What differentiates a strict border bound from another is the localization map,

i.e. the way they bound the rank of matrices over U (with entries only in {0,∆+}).
In the following definition we formalize the connection between strict root functions,

localizations, rank-bounding algorithms and independence-check procedures.

Definition 4.3.4. Let f be a strict root function and f̂ be its localization. Let ǫ be

an independence-check procedure, ǫ̇ be its first rank-bounding algorithm, and ǫ̃ be its

second rank-bounding algorithm.

We say that f (or f̂) is the first realization of ǫ, if the value f̂(n, T) is computed

by applying ǫ̇ to M(R̂(n, T)) for any (n, T) ∈ D.

The second realization is defined analogously from ǫ̃.

In both cases, we say that f is based on ǫ.

Given an independence-check procedure ǫ, Definition 4.3.4 explains how to com-

pute a strict border bound: we obtain the defining sets of all cyclic subcodes, we con-

struct for any of these a matrix M(R̂(n, S)), we calculate a bound on rk(M(R̂(n, S))

via successive applications of ǫ to subsets of rows of M(R̂(n, S)), and finally we take

the minimum of these values.

Remark 4.3.5. All root bounds explicitly presented in Chapter 3 are polynomial-time

bounds (in the length), except (possibly) for the optimal bound.

On the contrary, any border bound based on an independence-check procedure is at

least time-exponential, since it has to examine all cyclic subcodes.

So, generally speaking, bounds like the Schaub bound and the VW shifting bound

(see Section 4.4) outeperform classical bounds (i.e. root bounds), but at the price of

larger input information and of drastically longer computations.

We can define the invariant strict border functions (bounds).

Proposition 4.3.6. For any strict border function, f , we denote by f# the map de-

fined by f#(n, S,S) = max{T,T}∈(n,S,S)# f(n, T,T). Then: f# ∈ BS, f# is invariant,

f ≤ f#, f#
E = maxζ∈Z fE,ζ.

Proof. Adapt the arguments of Proposition 3.3.3.

81

Chapter 4. Border bounds

We can define monotone strict border functions (bounds).

Proposition 4.3.7. Let f be any strict border function. We denote by f ∗ the map

defined by f ∗(n, S,S) = max{f(n, S ′,S′) | S ′ ⊆ S, S′ ⊇ S}. We have that f ∗ is a

strict border function, f ∗ is monotone, f ≤ f ∗. Moreover, if g is any monotone strict

border function s.t. f ≤ g, then f ∗ ≤ g.

Proof. Adapt the arguments of Proposition 3.3.4.

We can define the maximal strict border function (bound).

bS(n, S,S) = max{f(n, S,S) | f ∈ BS} . (4.9)

Theorem 4.3.8. Map bS is a strict border function, which is maximal in BS, mono-

tone and invariant.

Proof. Adapt the arguments of Theorem 3.3.6.

We can characterize the maximal strict border function (bound).

Theorem 4.3.9.

bS(n, S,S) = min
T∈S

{rk(M(R̂(n, T)))}.

Proof. Let c(n, S,S) = minT∈S{rk(M(R̂(n, T)))}. Clearly, c is a strict border function

and its localization is ĉ(n, T) = rk(M(R̂(n, T))). Our claim follows immediately by

noting that rk(M(R̂(n, T))) = ĉ(n, T) ≤ b̂S(n, T) since bS is maximal, and b̂S(n, T) ≤
rk(M(R̂(n, T))), because bS ∈ BS.

Finally, we are able to prove the analogous of Theorem 3.5.8, still using the result

of Theorem 3.5.7.

Theorem 4.3.10.

bS < b

Proof. It is clear that b ≥ bS. We have only to exhibit an (n, S,S) ∈ E ′ such that

bS(n, S,S) < b(n, S,S). Let us consider the map fRoos of Definition 3.5.2. We have

fRoos ∈ R and then f̄Roos ∈ B so, f̄Roos ≤ b. Let C be the code in Cqm,20, where

F = Fqm is the splitting field of x20 − 1 over Fq[x], with S = {0, 1, 6, 7, 9, 10}. Let

ζ ∈ Z be such that ψζ(C) = (20, S,S), where S = { T | T ({0, . . . , 19}, S ⊆ T }.
From Theorem 4.3.9 and Theorem 3.5.7 we have

bS(n, S) = min
T∈S

{rk(M(R̂(n, T)))} ≤ 4

82

4.4. Equivalence of border bounds

while b(n, S,S) ≥ f̄Roos(n, S,S) = 5, hence

bS(n, S,S) ≤ 4 < 5 = f̄Roos(n, S,S) ≤ b(n, S,S).

A similar proof holds also if we consider the map fB5 of Definition 3.5.5 with

defining set S ′ = {0, 1, 3, 4, 6, 7} and the code C ′ ∈ Cqm,13, where Fqm = F is the

splitting field of x13 − 1 over Fq[x].

Remark 4.3.11. Note that an obvious consequence of Theorem 4.3.10 is that BS (B.

In particular, considering fRoos and fB5, we have f̄Roos, f̄B5 ∈ B, but f̄Roos, f̄B5 /∈ BS.

We conclude this section observing that there are some bounds which are based

on the unknown syndromes (see e.g. [FT91a], [FT91b], [FT89], [MAI97]). Clearly,

any syndrome matrix can be transformed into a matrix over U , where a ∆ is inserted

to replace an unknown syndrome and a ∆+ is inserted to replace a known syndrome.

These bounds can then be translated as operating on this matrix and therefore we

think that they may be either strict root bounds or strict border bounds. However,

we do not provide here a detailed description.

4.4 Equivalence of border bounds

Here we show that all known localizations are based on the same ǫ, which turns

out to be equivalent tothe singleton procedure introduced in Section 3.2. In the

remainder of the section we describe the singleton-procedure bound and the Schaub

bound, proving that they are equivalent. Finally, we describe the famous Van Lint-

Wilson shifting bound (“VW bound”), proposed in [vLW86], and we show that it is

closely related to the singleton procedure bound (and hence to the Schaub bound due

to Theorem 4.4.4).

We would also like to mention an alternative but unpublished independence-check

procedure, due to F. Ponchio and M. Sala ([PS03]) which uses more deeply the un-

derlying field structure.

We consider the singleton procedure described in Section 3.2. By Theorem 3.2.6,

this is obviously an independence-check procedure, as formalized in Definition 4.2.2.

From now on, we indicate the singleton procedure as ǫs. We have that ǫs plays a

special role, with respect to all other possible independence-check procedures, in fact

we can easily show that any result of independence for vectors in U can be obtained

using the singleton procedure.

Proposition 4.4.1. Let ǫ, ǫs be any independence check procedure and the singleton

independence-check procedure respectively. If ǫ returns true then also ǫs returns true.

83

Chapter 4. Border bounds

Proof. Let A ∈ Un×m be an input matrix for ǫ. If ǫ returns true then its input A

has maximal rank. Let t = min(n,m) be the rank of A, then for Theorem 3.2.18

rk(A) = prk(A), which means that ǫs is successful for A.

4.4.1 The Schaub bound

This bound was first presented in [Sch88].

First, we describe the independence-check procedure proposed by Schaub.

The Schaub independence-check procedure

Input

A matrix A over U , whose rows are n-dimensional vectors in Un and form a set R =

{r1, . . . , rh}. We can assume that all vectors except rh form a linearly independent

set.

Initialization

We consider h− 1 unknowns values in U : {c1, . . . ch−1}.
Cycle

For any column i of A, we must have

rh(i) =

h−1∑

j=1

cj · rj(i) ,

for some cj (not depending on i). We deduce from this relation the values in U
that the cj can have, using also the relevant information obtained from the previous

columns {1, . . . , i− 1}.
If we find some contradiction for at least one of the cj, then we are sure that the rows

are linearly independent and so we return true.

Otherwise we pass to the next column.

Last step

We return false, because no contradiction arose.

To understand how it works, we propose the following example, where the associ-

ated first rank-bounding algorithm is applied. This same example is redone with

the “singleton” independence-check procedure (Example 4.4.3), so that the efficiency

improvement given by the latter is apparent.

84

4.4. Equivalence of border bounds

Example 4.4.2. Let T be the matrix (over U)

T =

∆+ ∆+ 0 0 ∆+ 0 ∆+ ∆+

0 0 0 0 0 ∆+ 0 0

0 0 ∆+ ∆+ 0 0 ∆+ 0

∆+ ∆+ 0 0 0 ∆+ 0 0

0 0 0 ∆+ ∆+ 0 0 ∆+

0 0 ∆+ ∆+ 0 0 0 0

0 0 0 0 ∆+ 0 0 0

We need to apply several times the Schaub independence-check procedure to es-

timate rk(T). We shorten “the Schaub independence-check procedure” to “the proce-

dure” in this example. We name the rows consecutively {r1, . . . , r7}.

• It is obvious that rk(T) ≥ 1, since the first row contains some ∆+’s.

• We apply the procedure to the first two rows: we try to see the second row as a

linear combination of the first one. Let c1 ∈ U s.t. r2 = c1 · r1. The first column

gives r2(1) = c1 · r1(1), i.e. 0 = c1 ·∆+ and hence c1 = 0. The sixth column gives

r2(7) = c1 · r1(7), that is, ∆+ = 0 · 0 = 0.

This is clearly impossible, so the rows are independent and so rk(T) ≥ 2.

• We try to see r3 as a linear combination of {r1, r2}. We impose r3 = c1 ·r1+c2 ·r2.
The first column gives r3(1) = c1 ·r1(1)+c2 ·r2(1), i.e. 0 = c1 ·∆++c2 ·0 = c1 ·∆+,

which restricts c1 = 0.

The second column is equal to the first, so it can give no more information and

we skip it. From now we will skip equal columns without any further comment.

The third column gives r3(3) = c1 · r1(3) + c2 · r2(3), i.e.

∆+ = 0 · 0 + c2 · 0 = 0. This is impossible, so rk(T) ≥ 3.

• We write r4 = c1 · r1 + c2 · r2 + c3 · r3. The first column gives ∆+ = c1 ·∆+, i.e.

c1 = ∆+. Third column: 0 = c3 ·∆+, i.e. c3 = 0.

Fifth column: ∆+ ·∆+ = 0, i.e. ∆+ = 0, impossible and so rk(T) ≥ 4.

• With similar computations we can prove the linear independence of the first

five rows and hence rk(T) ≥ 5.

• We write r6 =
∑5

j=1 ci · ri. The first column gives

0 = c1 ·∆+ + c4 ·∆+ (4.10)

We take note of this constraint and proceed.

Third column: ∆+ = c3 ·∆+, i.e. c3 = ∆+.

85

Chapter 4. Border bounds

Fourth column: ∆+ = ∆+ ·∆+ + c5 ·∆+, i.e ∆+ = ∆+ + c5 ·∆+, i.e c5 = ∆

(no information on c5).

The fifth and sixth columns, respectively, give:

0 = c1 ·∆+ + c5 ·∆+ (4.11)

0 = c2 ·∆+ + c4 ·∆+ (4.12)

Seventh column: 0 = c1 ·∆+ +∆+ ·∆+, i.e. c1 = ∆+.

Then we have by (4.10) c4 = ∆+ and by (4.11) c5 = ∆+. But then by (4.12), we

have c2 = ∆+. Eighth column: 0 = ∆+ ·∆+ +∆+ ·∆+, no contradiction.

No contradiction arises: we discard the sixth row.

• We write r7 =
∑5

j=1 ci · ri. First column:

0 = c1 ·∆+ + c4 ·∆+ (4.13)

Third column: 0 = c3 ·∆+, i.e. c3 = 0.

Fourth column: 0 = 0 ·∆+ + c5 ·∆+, i.e. c5 = 0.

Fifth column: ∆+ = c1 ·∆+, i.e. c1 = ∆+ and we get c4 = ∆+ by (4.13).

Sixth column: 0 = c2 ·∆+ +∆+, i.e. c2 = ∆+.

Seventh column: 0 = ∆+ ·∆+ + 0 ·∆+ = ∆+, impossible, so rk(T) ≥ 6.

The seventh row was the last, the final result is rk(T) ≥ 6.

From the Schaub independence-check procedure one can directly obtain its first

realization (Definition 4.3.4) and view the latter as the localization of a strict border

function, which we call the “Schaub function” for short. It is obvious how to do that

and so we do not detail it. We conclude that the so-called “Schaub bound” ([Sch88])

is nothing else but the border bound associated to the Schaub function.

4.4.2 The singleton-procedure bound

This bound has been presented in [Sal01], but the notation there is quite different

and not easy to follow.

Let us consider the first rank-bounding algorithm of the singleton procedure, ǫ̇s.

We define a strict border function h as the first realization of ǫs. We say that h is

the singleton-procedure function. The strict border bound associated to h is the

singleton-procedure bound.

To visualize how it works, it is instructive to examine the following example, which

is Example 4.4.2 redone using h.

Example 4.4.3. We consider the matrix T present in Example 4.4.2.

86

4.4. Equivalence of border bounds

• It is obvious that rk(T) ≥ 1.

• Rows {r1, r2}. The first column is a singleton. Removing it produces a non-zero

row, i.e. rk(T) ≥ 2

• Rows {r1, r2, r3}. In order, singletons found (and removed): col. 1 and 3, so

rk(T) ≥ 3.

• Rows {r1, r2, r3, r4}. In order, singletons found: col. 3, col. 5 and col. 1, hence

rk(T) ≥ 4.

• Rows {r1, r2, r3, r4, r5}. Singletons: {3, 4, 5, 7}, so rk(T) ≥ 5.

• Rows {r1, r2, r3, r4, r5, r6}. There are no singletons: we discard the row, so that

we still have rk(T) ≥ 5.

• Rows {r1, r2, r3, r4, r5, r7}. Singletons: {3, 7, 8, 5, 1}, thus rk(T) ≥ 6.

4.4.3 Singleton-procedure bound and Schaub bound are equivalent

This subsection is devoted to showing that the Schaub bound is equivalent to the

singleton-procedure bound.

Theorem 4.4.4. The localization maps of the Schaub function and of the singleton-

procedure function are based on the same independence-check procedure, of which they

are the first realization. As a consequence, for any choice of ζ ∈ Z their associated

border bounds are equivalent.

Proof. In the following we shorten “the singleton independence-check procedure” to

“the singleton procedure” and “the Schaub independence-check procedure” to “the

Schaub procedure”.

Let S be an h× n matrix over U , 1 ≤ h ≤ n. We denote by:

• MS, the following logical statement {we can prove that the rows of S are a

linearly independent set by applying Schaub’s procedure},

• QS, the following logical statement {we can prove that the rows of S are a

linearly independent set by applying the singleton procedure}.

We will also denote by {s1, . . . , sh} the h rows of S, where sj = (sj(1), . . . , sj(n)).

Note that the statement of Theorem 4.4.4 can be rephrased as QS ⇐⇒ MS.

87

Chapter 4. Border bounds

QS =⇒ MS . By induction on the number of rows, h. For h = 1 it is obvious. By

inductive hypothesis, we suppose that the implication is true for h − 1 rows.

We prove it holds for h rows. Let 1 ≤ j ≤ n be a column index such that the

j−th column is a singleton, with corresponding row si, with si ∈ { s1, . . . , sh },
i depending on j. We have si(j) = ∆+ and sk(j) = 0 for k 6= i. Then for any

c1, . . . , ch−1 ∈ U we have:

∆+ = si(j) =
∑

k 6=j

cksk(j) = 0,

which is impossible. Thus si is linearly independent from the other rows and

by inductive hypothesis we conclude.

MS =⇒ QS . It follows immediately from Proposition 4.4.1, taking as ǫ the Schaub

procedure.

4.4.4 On the Van-Lint Wilson shifting bound

To describe the VW bound we need the following definition.

Definition 4.4.5 ([vLW86]). Let n ≥ 1 be an integer number. Let S be a subset of

{0, . . . , n− 1}. We say that A is independent from S if:

1. A is the empty set,

2. A is a shift of an independent set B, i.e. if B is independent with respect to S

and c ∈ {0, . . . n− 1}, then A = c+B = {(c+ b)n | b ∈ B} is independent.

3. A is B ⊔ {a}, with B independent and included in S, and a 6∈ S.

Example 4.4.6. Let S = {1, 2, 4} ⊆ {0, . . . , 6}.

• By 1, we have that A(0) = ∅ is an independent set.

• By 3, we have that A(1) = {3} is also an independent set, since A(1) = {3}∪A(0),

with 3 /∈ S, A(0) independent.

• By 2, A2 = {1} is independent, because A(2) = 4 + A(1).

• A(3) = {1, 2} is independent, in fact A(3) = 1 + (A(2) ⊔ {6}).

• A(4) = {1, 2, 3} is independent, because A(4) = A(3) ⊔ {3}.

By an exhaustive search we find no independent sets with size greater than 3.

88

4.4. Equivalence of border bounds

The VW bound can be described algorithmically as follows.

Van Lint-Wilson shifting bound

Input

A cyclic code C ∈ Cq,n and α, where α is a primitive n-th root of unity over Fq.

Cycle

For any cyclic subcode D of C.

Compute S = SD,α.

Compute the length λ(D) of the largest set independent from S.

Last step

Output minD<C λ(D).

Remark 4.4.7. This bound is not formalized in [vLW86], where one can find a theorem

linking distance and length of independent sets, with a few examples that are supposed

to illuminate the use of the theorem. In particular, the fact that all cyclic subcodes

of the code have to be considered is not immediately apparent, since the examples

present lucky cases where only a few subcodes are needed.

From our description it is clear that the VW bound is a border bound, requiring

a computation for any cyclic subcode. We claim much more, i.e. that it is a strict

border bound and that it is strongly linked to the other two known border bounds.

To be more precise, we claim the following.

Theorem 4.4.8. The VW bound is a strict border bound. The localization of its

strict border function coincides with the second realization of the singleton procedure.

We recall that ǫS indicates the singleton-procedure. Since obviously the localiza-

tion of the VW function is the size of the largest set independent from the defining

set, to prove Theorem 4.4.8 it is sufficient to show the following proposition.

Proposition 4.4.9. Let C ∈ C and ζ ∈ Z. Let SC,α, with α = ζ(χ(C), n). Let λ be

the size of the largest set independent from SC,α. Let r be the output ǫ̃s (the second

realization of ǫs) applied to M =M(R̂(n, SC,α)). Then

r = λ .

Before proving Proposition 4.4.9, we give a couple of lemmas.

Lemma 4.4.10. Let A, S be non-empty sets. If A is independent of S, then there

is another set B and an element a 6∈ S such that A is a shift of B ⊔ {a} and B is

independent from S but B ⊆ S.

89

Chapter 4. Border bounds

Proof. It is a direct consequence of Definition 4.4.5 (since A is non-empty).

Lemma 4.4.11. Let S ⊆ {0, . . . , n− 1}, S 6= ∅. Let w = R̂(n, S)) and M =M(w).

Let v = M [1] be the first column of M . Then for any 1 ≤ i ≤ n we have v[i] =

w[(n− i+ 1)n + 1].

Proof. It follows immediately from the circularity of M .

To ease our notation in the remainder of this sub-section, when we deal with

any integer b we implicitly mean (b)n, so that previous lemma may be stated as

v[i] = w[n− i+ 2].

Lemma 4.4.12. Let T, S ⊆ {0, . . . , n− 1} be non-empty sets, with T = {t1, . . . , tτ},
S = {s1, . . . , sh}. Let a 6∈ S. Let M = M(R̂(n, S)) be formed by rows M1, . . . ,Mn.

Let M̄ = {Mn−a+2,Mn−t1+2, . . . ,Mn−tτ+2} be a sub-matrix of M . Then

M̄ [1] is a singleton ⇐⇒ T ⊆ S .

Proof. Let M̄ = (m̄i,j) and M = (mi,j). Let v = M [1], v̄ = M̄ [1] and w = R̂(n, S).

By construction, we have m̄1,j = mn−a+2,j for any 1 ≤ j ≤ n, and m̄i+1,j = mn−ti+2,j

for any 1 ≤ j ≤ n and 1 ≤ i ≤ τ , but also v̄[1] = v[n−a+2] and v̄[i+1] = v[n−ti+2]

for 1 ≤ i ≤ τ .

Since a 6∈ S, R̂(n, S) must possess a ∆+ in its a-th component, so that v̄[1] =

v[n−a+2] = w[a] = ∆+ (Lemma 4.4.11). As a consequence, v̄ is a singleton if and only

if m̄2,1 = m̄3,1 = . . . = m̄τ+1,1 = 0, i.e. if and only if mn−t1+2,1 = mn−t2+2,1 = . . . =

mn−tτ+2,1 = 0, which is true by Lemma 4.4.11 if and only if w[t1] = . . . = w[tτ] = 0.

By definition of R̂(n, S), this holds if and only if t1, . . . , tτ ∈ S, i.e. if and only if

T ⊆ S.

Lemma 4.4.13. Let T ⊆ S ⊆ {0, . . . , n − 1}, T, S 6= ∅, a 6∈ S. Let M̄ be the sub-

matrix of M as in Lemma 4.4.12. Then the singleton independence-check procedure

is successful on M̄ if and only if T is independent from S.

Proof. By induction on |T |.
|T | = 1.

Any T = {t1} included in S is obviously independent from S. So we must show

that the procedure is always successful in this situation. By Lemma 4.4.12 matrix

M̄ contains two rows and its first column is a singleton. By removing it and its

corresponding row, we remain with a row containing some ∆+’s, so the procedure is

successful.

90

4.4. Equivalence of border bounds

|T | = l =⇒ |T | = l + 1.

Suppose now T = l + 1. By Lemma 4.4.12 we have a singleton M̄ [1]. By removing

the singleton and its corresponding row, we get a submatrix M̄ ′. By Lemma 4.4.10

we have that T is the shift of I = J ⊔{b}, where J is independent from S, J ⊆ S and

b 6∈ S. We consider a matrix M̄ ′ as in Lemma 4.4.12. By induction, the procedure

is successful on M̄ ′. However, since T is obtained from I by shifting, it means that

the rows of M̄ ′ are nothing else that the (same) shift of the rows of M̄ (except the

row of the first singleton), hence the columns of M̄ are a cyclic permutation of the

columns of M̄ ′, so that the procedure is successful on M̄ ′ if and only if it is successful

on M̄ .

Putting all lemmas together and considering S = SC,α, we immediately have

proved Proposition 4.4.9 and hence Theorem 4.4.8.

Thanks to Theorem 4.4.8, we are able to give an alternative definition of the

VW-bound.

Definition 4.4.14. Let fVW : E → N be the strict border function, defined by:

fVW(n, S,S) = min
T∈S

{rk(R̂(n, T))}.

fVW is called the Van Lint-Wilson (strict border) function. The (strict bor-

der) bound associated to fVW is the Van Lint-Wilson bound and it is denoted by

δVW.

The following corollary explains the link between fVW and the optimal strict

border function, bS, showing that they are the same. This implies that δVW is sharper

than all possible strict border bound (and, of course, also than all strict root bounds).

Corollary 4.4.15. Let fVW ∈ BS be the VW function, and fS ∈ BS be the optimal

strict border function. Then

fVW = bS

and δVW is the optimal strict border bound.

Proof. Given any (n, S,S) ∈ E ′, it is sufficient to use Theorem 4.3.9, Theorem 3.2.18

and Definition 4.4.14, to obtain:

bS(n, S,S) = min
T∈S

{rk(M(R̂(n, T)))} = fVW(n, S,S)

91

Bounding distance using Gröbner bases

This chapter is devoted to bounding the minimum distance of cyclic codes using

Gröbner bases. The idea, introduced by Cooper in 1990 [Coo90, Coo91, Coo93] and

developed by Chen et al. [CRHT94a, CRHT94b, CRHT94c] is to describe the words

of a code as varieties of suitable ideals, and then study them using Gröbner bases.

Although this approach was originally proposed to decode cyclic codes up to half of

their minimum distance, some authors [ACS90, ACS92, Sal07, MS03, Aug96, Sal02]

adapted it also for finding the distance of cyclic codes. We do not deal with the vast

area of research regarding the decoding, preferring to focus our attention only on

bounding minimum distance. These methods can be roughly divided in two families:

• Newton’s identities methods [ACS90, ACS92, MS03, Sal02]

• Power sums methods or Cooper’s philosophy [MO09, Sal07, MS03, Sal02].

In Section 5.1 we introduce the notation and necessary backgrounds on Gröbner

bases. Section 5.2 explains the methods using power sums , while Section 5.3 contains

an overview of the methods using Newton’s identities. Our main references for this

chapter are [BPW+10, MO09, Cha98, Sal02, Sal07, Aug96].

5.1 Backgrounds

The theory of Gröbner bases was developed by Buchberger [Buc65] in 1965. A

useful property is that their computation allows sometimes to solve systems of poly-

nomial equations. In particular, in this subsection we remind the use of Gröbner

bases to determine if a system of polynomial equations has solution. Some mate-

rial is taken from the lecture notes of the course Coding Theory lectured by M. Sala

and written by D. Frapporti and O. Geil. For a more detailed treatment we refer to

[CLO07, Mor05].

Let K be a field (not necessary finite) , K its algebraic closure. In case K is finite

we write Fq to indicate the field with q elements, where q is a power of some prime.

Let r ≥ 1 and R = K[x1, . . . , xr] = K[X] be a polynomial ring over K in r variables.

93

Chapter 5. Bounding distance using Gröbner bases

Let X = {x1, . . . , xr} be a set of variables. For any α ∈ Nr we define a monomial Xα:

Xα = xα1
1 . . . xαr

r with α = (α1, . . . , αr).

We denote by M = M(X) = {xα1
1 . . . xαr

r | (α1 . . . αr) ∈ Nr} the set of all monomials

in the variables X = (x1, . . . , xr).

Definition 5.1.1. A monomial ordering on K[X] is a binary relation < on M(X)

such that:

(1) ∀ Xα, Xβ ∈ M, Xα 6= Xβ, either Xα < Xβ or Xβ < Xα.

(2) ∀ Xα, Xβ, Xγ ∈ M, if Xα < Xβ, and Xβ < Xγ, then Xα < Xγ.

(3) ∀ Xα, Xβ, Xγ ∈ M, if Xα < Xβ then XγXα < XγXβ

(4) 1 < Xα, ∀Xα ∈ M, Xα 6= 1.

From Definition 5.1.1, we have that a monomial ordering is a well-ordering, i.e.

every non-empty subset of M has a least element. Let Xα = xα1
1 . . . xαr

r ∈ M and

Xβ = xβ1

1 . . . xβr
r ∈ M, we denote by deg(Xα) =

∑r
i=1 αi and deg(Xβ) =

∑r
i=1 βi

their total degrees. We provide some examples of monomial orderings.

Lex. Lexicographic order induced by xr < · · · < x1: X
α <lp X

β if there exists j

such that α1 = β1, . . . , αj−1 = βj−1, αj < βj .

X = (x, y, z), z < y < x =⇒ xy5z3 <lp x
2yz.

DegLex (or Totlex). Degree lexicographical order (or total lexicographic order),

induced by xr < · · · < x1: Xα <Dp Xβ if either deg(Xα) < deg(Xβ) or

deg(Xα) = deg(Xβ) and Xα <lp X
β.

DegRevLex. Degree reverse lexicographic order induced by xr < · · · < x1: X
α <dp

Xβ if deg(Xα) < deg(Xβ) or deg(Xα) = deg(Xβ) and there exists j such that

αr = βr, . . . , αj+1 = βj+1, αj > βj.

X = (x, y, z), x > y > z =⇒ xy4z3 >dp x
2y2z4.

Block order Let X and Y be two ordered sets of variables, <1 a monomial order

on K[X] and <2 a monomial order on K[Y]. The block order on K[X, Y] is the

following: Xα1Y β1 < Xα2Y β2 if Xα1 <1 X
α2 or if Xα1 = Xα2 and Y β1 <2 Y

β2.

X = (x1, x2), Y = (y1, y2, y3), x2 <1 x1, y3 <2 y2 <2 y1 =⇒ x21y2y3 < x21y
2
1y3.

94

5.1. Backgrounds

Once fixed a monomial order, the following definition is well-posed.

Definition 5.1.2. Let < be a monomial order on K[X].Let f =
∑

α cαX
α be a non-

zero polynomial of K[X], where cα 6= 0. We say that Xβ is the leading monomial

of f if Xα < Xβ for all α 6= β. We write LM(f) = Xβ. LC(f) = cβ is called the

leading coefficient of f , LT(f) = cβX
β is called the leading term of f .

For any ideal I let LT(I) be the set of leading terms of element of I, that is

LT(I) = {LT(f) | f ∈ I}. We define the ideal of leading terms as the ideal

generated by the elements of LT(I). We denote this ideal by 〈LT(I)〉.
We can now introduce the definition of Gröbner basis.

Definition 5.1.3. Let I be an ideal in K[X]. A finite subset G = {g1, . . . , gm} of I

is called a Gröbner basis for I with respect to the monomial order < if

〈LT(I)〉 = 〈LT(g1), . . . ,LT(gm)〉.

Equivalently, G is a Gröbner basis for I if G ⊆ I and if for all f ∈ I there exists

gi ∈ G such that LM(gi) divides LM(f). It is easy to see that a Gröbner basis for I

is actually a basis of I as an ideal.

Theorem 5.1.4. For every ideal I in K[X] and for every monomial ordering < on

M, there exists a Gröbner basis G of I.

Proof. See [Buc06].

Moreover, Buchberger provides an effective algorithm ([Buc06, Buc98]) that trans-

forms any finite set of generators of I into a Gröbner basis with respect to <.

Many Gröbner bases exist for the same ideal I ∈ K[X], but we are interested in a

special basis, which is called reduced.

Definition 5.1.5. Let I be an ideal in K[X]. Let G be a Gröbner basis for I with

respect to a monomial order <. We say that G is reduced if for all g ∈ G we have

that LC(g) = 1 and for any g′ ∈ G \ {g} LT(g′) does not divide any monomial of g.

For an ideal I ⊆ K[X], I 6= {0}, the reduced Gröbner basis is unique, so two ideals

I1 and I2 in are equals if and only if they have the same reduced Gröbner basis. We

denote by G = GB(I) the reduced Gröbner basis of I. Given a Gröbner basis G of an

ideal I, we find the reduced Gröbner basis of I by performing successive reductions

between the polynomials which compose G. Let E ⊇ K be an extension field of K.

We denote by VE(I) the variety of I over E:

VE(I) = {P ∈ Er | f(P) = 0 ∀f ∈ I}.

95

Chapter 5. Bounding distance using Gröbner bases

The elements of VE(I) are sometimes called the E-rational points of I. If E = K,

we write V(I) = VE(I) and we say that V(I) is the variety of I. We say that I is

0-dimensional if V(I) is finite.

Having a reduced Gröbner basis for an ideal I in K[X], it is easy to establish if

V(I) = ∅, as shown below.

Proposition 5.1.6. Let I be an ideal in K[X], G = GB(I) the reduced Gröbner basis

of I with respect any monomial order <. Then V(I) = ∅ ⇐⇒ G = {1}.

Let us suppose to have a system of polynomial equations, f1, . . . , ft ∈ K[X]

J =

f1(X) = 0
...

ft(X) = 0

and we consider the ideal I(J) generated by the equations: I(J) = 〈f1, . . . , ft〉. The

solution set of J over any extension E of K corresponds to the variety of I(J) over

E, i.e.:

{P ∈ Er | f1(P) = f2(P) = · · · = ft(P) = 0} = {P ∈ Er | f(P) = 0 ∀f ∈ I(J)}
= VE(I(J))

We say that Jt has a solution if there exists P ∈ K
r
such that f1(P) = · · · = ft(P) = 0.

Clearly, J has a solution if and only if V(I(J)) 6= ∅. Thus, thanks to Proposition 5.1.6,

given G = GB(I(J)), the reduced Gröbner basis of I(J)), we have that if G = {1},
then J has no solution, otherwise it has. From now on, we will speak of ideals and

systems interchangeably and, wiyh abuse of notation we will write J for I(J).

5.2 The Cooper Philosophy

Let C ∈ Cq,n be a cyclic code, with complete defining set SC = {i1,in−k}, with

respect to a primitive n−th root of unity α ∈ F, which, from now on, is fixed. We

suppose that c ∈ C is any non-zero word of C and w(c) = w ≥ 1. We indicate by

cj1, . . . , cjw the non-zero components of c, where 0 ≤ j1 < j2 < · · · < jw ≤ n− 1, i.e.

c = (cj1 , 0, . . . , 0, cj2, . . . , cjw , 0, . . . , 0) which corresponds to the polynomial c(x) =

cj1x
j1 + cj2x

j2 + · · ·+ cjwx
jw ∈ Fq[x]. We define Si = c(αi) for all i = {0, . . . , n − 1}

and we say that Si is a known syndrome (of c) if i ∈ T , otherwise Si is called an

unknown syndrome (of c). Note that if we consider the DFT of c, we have DFT(c) =

(S0, S1, . . . , Sn−1). We have already seen in Section 1.2 that a parity-check matrix for

96

5.2. The Cooper Philosophy

C is

H =

1 αi1 α2i1 . . . α(n−1)i1

1 αi2 α2i2 . . . α(n−1)i2

...
...

...
...

...

1 αin−k α2in−k . . . α(n−1)in−k

Hence, multiplying HcT , we obtain for all i ∈ T :

Si = c(αi) = cj1(α
j1)i + · · ·+ cjw(α

jw)i = 0

i.e., c is a word of C if and only if all its known syndromes are zero. The αj1, . . . , αjw

are called the locations (of c), and the cj1 , . . . , cjw are called the values (of c). We

have some natural constraints which link known syndromes, locations and values:

1. the known syndromes have to be zero:

cj1(α
j1)i + · · ·+ cjw(α

jw)i = 0 for all i ∈ T

2. the locations are n-th root of unity:

(αji)n − 1 = 0 for 1 ≤ i ≤ w

3. the values belongs to Fq and are not zero:

cq−1
ji

− 1 = 0 for 1 ≤ i ≤ w

From these constraints we can consider a system, whose variety describes the words

of C of weight w. We introduce the variables z1, . . . , zw, for the locations and the

variables y1, . . . , yw for the values. Thus, the previous restrictions can be rewritten

using these variables:

1.
∑w

t=1 ytz
ij
t = 0 for 1 ≤ j ≤ n− k

2. zni − 1 = 0, for 1 ≤ i ≤ w

3. yq−1
i − 1 = 0, for 1 ≤ i ≤ w.

Collecting all these equations in Fq[z1, . . . , zw, y1, . . . , yw] in a system, we get:

JC(w) =

y1z
i1
1 + · · ·+ ywz

i1
w = 0

. . .

y1z
in−k

1 + · · ·+ ywz
in−k
w = 0

zn1 − 1 = 0

. . .

znw − 1 = 0

yq−1
1 − 1 = 0

. . .

yq−1
w − 1 = 0

(5.1)

97

Chapter 5. Bounding distance using Gröbner bases

We have that any codeword in C of weight w corresponds to a solution of JC(w).

Unfortunately, the converse is not true. The solutions of JC(w) which do not corre-

spond to any codeword of C are called spurious solutions ([Sal02]). In [Sal07] it is

proved that a solution x̄ = (z1, . . . , zw, y1, . . . , yw) is a spurious solutions of JC(w) if

there are 1 ≤ i 6= j ≤ w such that zi = zj and a refined version of the system JC(w)

is proposed in order to remove all spurious solutions. The new system proposed in

[Sal07], ĴC(w), is obtained adding to JC(w), for any 1 ≤ i 6= j ≤ n, the polynomials

in Fq[zi, zj]:

pi,j = p(zi, zj) =
n−1∑

h=0

zhi z
n−1−h
j =

zni − znj
zi − zj

,

obtaining the following result.

Theorem 5.2.1 ([Sal07, BPW+10]). Let C be an [n, k, d] cyclic code over Fq with

(n, q) = 1 and complete defining set T = {i1, . . . , in−k}. Let 1 ≤ w ≤ n and let ĴC(w)

denote the system:

y1z
it
1 + · · ·+ ywz

it
w = 0, 1 ≤ t ≤ n− k

znj − 1 = 0, 1 ≤ j ≤ w

yq−1
j − 1 = 0, 1 ≤ j ≤ w

p(zi, zj) = 0, 1 ≤ i 6= j ≤ w

.

Then, denoting by Aw(C) the number of codewords of weight w in C, and by n̂s[w]

the number of solutions of ĴC(w), we have: Aw(C) =
n̂s[w]
w!

. Moreover, for 1 ≤ w ≤ d:

• either ĴC(w) has no solutions, which is equivalent to w < d,

• or ĴC(w) has some solutions, which is equivalent to w = d.

Thanks to Theorem 5.2.1, an algorithm is proposed to compute the minimum

distance of a cyclic code, which is an obvious adaption of Proposition 4.2 explained

in [Sal02].

Algorithm A

Input

A cyclic code C ∈ Cq,n.
A value w = 1.

Output

The distance d(C).

98

5.2. The Cooper Philosophy

Cycle

Construct the associated system ĴC(w).

Compute the Gröbner basis Ĝ = GB(JC(w)) of the associated ideal.

If Ĝ = {1} then increase w to w + 1

Last step

Output w.

We provide two examples, applying the Algorithm A to the codes examined in

Theorem 4.1.19, showing that their distances are distinct.

Example 5.2.2. We consider the cyclic code C1 over Fq = F35 of length 11, and

defining set T = {0, 1, 2, 3, 5}. Let us denote with d1 its distance. By the BCH

bound, we have that d1 ≥ 5, thus we construct ĴC1(5) in the polynomial ring

F35 [z1, . . . , z5, y1, . . . , y5], to check if d1 = 5:

ĴC1(5) =

y1 + y2 + y3 + y4 + y5 = 0

y1z1 + y2z2 + y3z3 + y4z4 + y5z5 = 0

y1z
2
1 + y2z

2
2 + y3z

2
3 + y4z

2
4 + y5z

2
5 = 0

y1z
3
1 + y2z

3
2 + y3z

3
3 + y4z

3
4 + y5z

3
5 = 0

y1z
5
1 + y2z

5
2 + y3z

5
3 + y4z

5
4 + y5z

5
5 = 0

z111 − 1 = 0, y2421 − 1 = 0

z112 − 1 = 0, y2422 − 1 = 0

z113 − 1 = 0, y2423 − 1 = 0

z114 − 1 = 0, y2424 − 1 = 0

z115 − 1 = 0, y2425 − 1 = 0

p(z1, z2) = 0, p(z1, z3) = 0, p(z1, z4) = 0,

p(z1, z5) = 0, p(z2, z3) = 0, p(z2, z4) = 0,

p(z2, z5) = 0, p(z3, z4) = 0, p(z3, z5) = 0,

p(z4, z5) = 0.

We compute its reduced Gröbner basis, ĜC1(5), with respect to any order, for example

DegRevLex, with the following variable ordering z1 > · · · > z5 > y1 > · · · > y5, to

decide if dC1 = 5. ĜC1(5) contains 646 polynomials and we just indicate some elements

of LT(ĜC1(5)) = {y1, z1, z2y2, z22y3, z22z3y4, z24y2y3, y42, z23y22, z42 , z22y34, . . . }. We have that

ĜC1(5) is different from {1}, thus a solution exists and therefore d1 = 5.

Example 5.2.3. We consider the cyclic code C2 over Fq = F210 of length 11, and

defining set T = {0, 1, 2, 3, 5}. Let us denote with d2 its distance. By the BCH

bound, we have that d2 ≥ 5, thus we construct ĴC2(5) in the polynomial ring

99

Chapter 5. Bounding distance using Gröbner bases

F210 [z1, . . . , z5, y1, . . . , y5], to check if d2 = 5:

ĴC2(5) =

y1 + y2 + y3 + y4 + y5 = 0

y1z1 + y2z2 + y3z3 + y4z4 + y5z5 = 0

y1z
2
1 + y2z

2
2 + y3z

2
3 + y4z

2
4 + y5z

2
5 = 0

y1z
3
1 + y2z

3
2 + y3z

3
3 + y4z

3
4 + y5z

3
5 = 0

y1z
5
1 + y2z

5
2 + y3z

5
3 + y4z

5
4 + y5z

5
5 = 0

z111 − 1 = 0, y10231 − 1 = 0

z112 − 1 = 0, y10232 − 1 = 0

z113 − 1 = 0, y10233 − 1 = 0

z114 − 1 = 0, y10234 − 1 = 0

z115 − 1 = 0, y10235 − 1 = 0

p(z1, z2) = 0, p(z1, z3) = 0, p(z1, z4) = 0,

p(z1, z5) = 0, p(z2, z3) = 0, p(z2, z4) = 0,

p(z2, z5) = 0, p(z3, z4) = 0, p(z3, z5) = 0,

p(z4, z5) = 0.

Computing its Gröbner basis, ĜC2(5), with respect DegRevLex, with z1 > · · · > z5 >

y1 > · · · > y5 we obtain, ĜC2(5) = {1}, so there are no words of weight 5 in C2, then

d2 ≥ 6.

We note that the system ĴC1(5) and ĴC2(5) of Example 5.2.2 and Example 5.2.3, re-

spectively, are apparently the same, but the first is defined over F35 [z1, . . . , z5, y1, . . . , y5]

and the second over F210 [z1, . . . , z5, y1, . . . , y5]. We investigate more in depth this re-

lation between ideals, in Chapter 8, where we call this kind of ideals F -linked.

5.3 Newton’s Identities

We consider the same settings as the previous section: a cyclic code C ∈ Cq,n,
having complete defining set SC = {i1,in−k} with respect to a fixed primitive

n−th root of unity α ∈ F; c ∈ C any word of C of weight w(c) = w. If αj1, . . . , αjw

are the locations of c, we define Xi = αji, for any 1 ≤ i ≤ w. Similarly, if cj1, . . . , cjw
are the values of c, we define Yi = cji for any 1 ≤ i ≤ w. Following this notation we

can rewrite the known and the unknown syndromes of C as Sj =
∑w

i=1X
j
i Yi for any

j ∈ {0, . . . , n − 1}. The plain error-locator polynomial of c is a polynomial in

F[z] defined by:

σ(z) =
w∏

i=1

(z −Xi), (5.2)

100

5.3. Newton’s Identities

while the classical error-locator polynomial is defined (see [ABO09]) by

σ̃(z) =
w∏

i=1

(1− zXi).

Clearly we have that σ is the reciprocal polynomial of σ̃, i.e. σ(z) = zwσ̃
(
1
z

)
.

Expanding the product in (5.2) we obtain:

σ(z) = zw + σ1z
w−1 + · · ·+ σw−1z + σw,

where the coefficients σ1, . . . , σw are the elementary symmetric functions of c,

i.e. the elementary symmetric functions of the locations of c with a suitable choice of

the sign

σi = (−1)i
∑

1≤j1<j2<···<ji≤w

Xj1Xj2 . . .Xji, 1 ≤ i ≤ w.

The link between σ and σ̃ is also explained in terms of σi’s, in fact σ̃(z) = 1 +∑w

i=1 σiz
i. The elementary symmetric functions of a word c and its syndromes Si’s

(or equivalently, its DFT) are linked by the generalized Newton identities.

Theorem 5.3.1. Let c ∈ (Fq)
n be a word of weight w, DFT(c) = (S0, . . . , Sn−1) and

σ1, . . . , σw the elementary symmetric function of c. Then the following identities hold:

∀ i ≥ 0, Si+w + σ1Si+w−1 + · · ·+ σwSi = 0, (5.3)

where Si = Si+n.

Proof. See [PW72].

Using the generalized Newton identities and the constraints for DFT(c), in [Aug96]

the author presents the following system of equations, where both the Si’s and the

σi’s are the indeterminates, which defines an ideal in Fq[S0, . . . , Sn−1, σ1, . . . , σw]:

SC(w) =

Sw+1 + Swσ1 + · · ·+ S1σw = 0,

Sw+2 + Sw+1σ1 + · · ·+ S2σw = 0,
...

Sn+w + Sn+w−1σ1 + · · ·+ Snσw = 0,

Sqi mod n = Sq
i , 0 ≤ i ≤ n− 1

Si+n = Si, 0 ≤ i ≤ n− 1

Si = 0, ∀ i ∈ SC

(5.4)

We give a definition and then summarize the main results which are claimed in [Aug96]

concerning SC(w).

101

Chapter 5. Bounding distance using Gröbner bases

Definition 5.3.2. We say that (S̄0, . . . , S̄n−1) ∈ (Fq)
n (resp. (σ̄1, . . . , σ̄w)) is a

truncated solution of SC(w) if there exist (σ̄1, . . . , σ̄w) ∈ (Fq)
w (resp. (S̄0, . . . , S̄n−1))

such that (S̄0, . . . , S̄n−1, σ̄1, . . . , σ̄w) is a solution of SC(w). In this case (σ̄1, . . . , σ̄w)

is called an extended solution corresponding to (S̄0, . . . , S̄n−1).

We remark that what we defined as truncated solution is simply called solution

in [Aug96]. In the next theorem we use the notation in term of σ rather than in terms

of σ̃.

Theorem 5.3.3. Let C be an [n, k, d] cyclic code over Fq with defining set SC. Then

we have the following properties.

(i) The n-tuples (S̄0, . . . , S̄n−1) ∈ (Fq)
n which are truncated solutions of SC(w) are

the DFT of the codewords of weight less than or equal to w.

(ii) Let (S̄0, . . . , S̄n−1) ∈ (Fq)
n be a truncated solution of SC(w) and c be the code-

word of weight w0 ≤ w with DFT(c) = (S̄0, . . . , S̄n−1). Let σc(z) be the plain

locator polynomial of c. Then the set of extended solutions corresponding to

(S̄0, . . . , S̄n−1) is

F ′ =

{
(σ̄1, . . . , σ̄w) ∈ (Fq)

w | σc(z) divides (zw +
w∑

i=1

σiz
w−i)

}
.

(iii) The number of solution of SC(d) is finite. Each truncated solution (S̄0, . . . , S̄n−1)

is the DFT of a minimum weight codeword. Each truncated solution (σ̄1, . . . , σ̄w)

is the set of coefficients of the plain error locator polynomial of a minimum

weight codeword.

Proof. See [Aug96, Cha98].

We believe that the result of Theorem 5.3.3 is true, assuming that some conditions

are added to SC(w), in order to avoid that (S̄0, . . . S̄n−1) = (0, . . . , 0) is a truncated

solution. We call ŜC(w) the system obtained adding these conditions to SC(w).

The important consequence is that given a cyclic code C such that there is not

any word of weight less than w, if ŜC(w) has solutions, then the distance of C is

w. Thus, we can proposed an algorithm analogous to Algorithm A of the previous

section, which formalizes the approach of [Aug96] in its example of Section 4.1 .

Algorithm B

Input

A cyclic code C ∈ Cq,n.

102

5.3. Newton’s Identities

A value w = 1.

Output

The distance d(C).

Cycle

Construct the associated system ŜC(w).

Compute the Gröbner basis Ĝ = GB(ŜC(w)) of the associated ideal.

If Ĝ = {1} then increase w to w + 1

Last step

Output w.

If we want to keep use SC(w) rather than ŜC(w), we provide an alternative algo-

rithm.

Algorithm C

Input

A cyclic code C ∈ Cq,n.
A value w = 1.

Output

The distance, d(C).

Cycle

Construct the associated system SC(w).

Compute the Gröbner basis G = GB(SC(w)) of the associated ideal.

If {S0, . . . , Sn−1} ⊆ G then increase w to w + 1

Last step

Output w.

103

Part II

Main results

105

A New Bound

In this chapter we use Theorem 2.2.16 and the singleton procedure in order

to prove a bound, called bound C, which is a simultaneous generalization of the

Hartmann-Tzeng bound and of the BS bound. Bound C has a computational com-

plexity slightly larger than that of the Roos bound. It turns out from extensive

computations that bound C is often tighter than any other known root bound (in-

cluding the Roos bound). This result was preliminary presented in [PS13] and solves

an open problem proposed in [BS07]. From now on, during this chapter we adopt the

notation used in Chapter 3.2. In particular, we fix α a primitive n-th root of unity

over Fq and we write SC = SC,α.

The main result in this chapter is Theorem 6.1.13. We postpone its statement

because first we need two prove two special cases (Bound I and Bound II) presented

below and whose proofs are given in Section 6.1.

Proposition 6.0.4 (Bound I). Let C be an Fq[n, k, d] cyclic code with defining set

SC and (q, n) = 1. Suppose that there are ℓ, m, r, s ∈ N, 1 ≤ m ≤ ℓ and i0 ∈
{ 0, . . . , n− 1 } such that:

a) (i0 + j)n ∈ SC, ∀j = 0, . . . , ℓ− 1,

b) (i0 + j)n ∈ SC ,

∀j = i0 + ℓ+ r + h(m+ r) + 1, . . . , i0 + ℓ + r +m+ h(m+ r)

∀0 ≤ h ≤ s− 1

Then

• if (m+ r, n) ≤ m:

d ≥ ℓ + 1 + s− r

⌊
ℓ

m+ r

⌋
−max { (ℓ)m+r −m, 0 } ; (6.1)

• otherwise

d ≥ ℓ+ 1. (6.2)

107

Chapter 6. A New Bound

The above statement is expressed in classical notation and seems extremely com-

plicated. However it is a natural generalization of known bounds, as it is immediate

once it is expressed in U notation.

Proposition 6.0.5 (Bound I). Let C be an [n, k, d] cyclic code with defining set SC.

Suppose that there are ℓ, s,m, r, ρ ∈ N, ℓ ≥ m ≥ 1, s ≥ 1, ρ ≥ 1, r ≥ 1 such that

((0ℓ)(∆r))((0m)(∆r))s 4 R(n, SC)
ρ. (6.3)

Then

• if (m+ r, n) ≤ m:

d ≥ ℓ + 1 + s− r

⌊
ℓ

m+ r

⌋
−max { (ℓ)m+r −m, 0 } ; (6.4)

• otherwise

d ≥ ℓ+ 1. (6.5)

Corollary 6.0.6. In Proposition 6.0.5 we can substitute condition (6.3) with

((∆r)(0m))s((∆r)(0ℓ)) 4 R(n, SC)
ρ.

Proof. See Lemma 3.2.11.

Remark 6.0.7. We can see Proposition 6.0.4 as a generalization of the HT bound. In

fact with ℓ = m the statement of Proposition 6.0.5-(6.4) reduces to Definition 3.4.13

and Corollary 3.4.15.

We claim another bound, similar to bound I:

Proposition 6.0.8 (Bound II). Let C be an [n, k, d] cyclic code over Fq with defining

set SC. Suppose that there are λ, µ, s ∈ N, λ ≥ 1, µ ≥ 2, s ≥ λ + 1, (n, µ) ≤ µ − 1,

i0 ∈ {0, . . . , n− 1} such that:

a) (i0 + j)n ∈ SC, j = 0, . . . , λµ− 1,

b) (i0 + j)n ∈ SC, j = (λ+ h)µ+ 1, . . . , (λ+ h)µ+ µ− 1, 0 ≤ h ≤ s− 1,

Then:

• if (n, µ) ≤ µ− 1:

d ≥ λµ+ µ+ s− λ− 1;

• otherwise if µ | n:
d ≥ λµ+ µ.

108

6.1. Proofs of bound I and bound II

Again, the U notation is more clear, as follows.

Proposition 6.0.9. Let C be an [n, k, d] cyclic code over Fq with defining set SC.

Suppose that there are λ, µ, s ∈ N, λ ≥ 1, µ ≥ 2, s ≥ λ+ 1 such that:

(0µλ∆)(0µ−1∆)s 4 R(n, SC)
ρ. (6.6)

Then:

• if (n, µ) ≤ µ− 1:

d ≥ λµ+ µ+ s− λ− 1; (6.7)

• otherwise if µ | n:
d ≥ λµ+ µ. (6.8)

Corollary 6.0.10. In Proposition 6.0.9 we can substitute condition (6.6) with

(∆0µ−1)s(∆0µλ) 4 R(n, SC)
ρ.

Proof. See Lemma 3.2.11.

Remark 6.0.11. Proposition 6.0.9 is clearly a generalization of BS bound (see Defi-

nition 3.4.34 and Corollary 3.4.36), and for the rare cases in which µ|n, it is exactly

the BS bound.

Remark 6.0.12. We note that bound II, when applicable, is sharper than bound I. In

fact, if (0µλ∆)(0µ−1∆)s 4 R(n, SC)
ρ for µ ≥ 2, s ≥ λ + 1, in notation of Proposi-

tion 6.0.5 it means (0ℓ∆r)(0m∆r)s 4 R(n, SC)
ρ with ℓ = µλ, r = 1, m = µ − 1 and

then Proposition 6.0.5 gives a value dI

dI ≥ µλ+ 1 + s−
⌊
µλ

µ

⌋
−max { (µλ)µ − (µ− 1), 0 } = µλ+ 1 + s− λ

while Proposition 6.0.9 gives a value dII

dII ≥ µλ+ µ+ s− λ− 1

and since µ ≥ 2 then dII ≥ dI .

6.1 Proofs of bound I and bound II

In this section we provide the proofs of Proposition 6.0.5, and Proposition 6.0.9.

Remark 6.1.1. The main tool we use to prove Proposition 6.0.5 is Theorem 2.2.16

which, in principle, allows us to work only with matrices that have as entries just 0

or ∆+. Nevertheless during the proof we use matrices that have also ∆ as entry. A ∆

can be either 0 or ∆+, the correctness of the proof is not affected by either choice.

109

Chapter 6. A New Bound

Proof. (Proposition 6.0.5) The general plan of the proof is as follows. Thanks to

Theorem 2.2.16 we aim at proving that

min { rk(M(v)) | v ∈ A(R(n, SC)) } ≥ ℓ+1+s−r
⌊

ℓ

m+ r

⌋
−max { (ℓ)m+r −m, 0 } .

In order to do that, for any v ∈ A(n, SC), we need to choose ℓ+ s+ 1 rows in M(v)

and we must prove that, discarding at most r
⌊

ℓ
m+r

⌋
+max { (ℓ)m+r −m, 0 } rows, we

actually obtain a set of rows for which the singleton procedure is successful.

We can suppose w.l.o.g. that i0 = n− ℓ (see Lemma 3.2.9), so that:

v = ∆ . . .∆︸ ︷︷ ︸
r

(0 . . . 0︸ ︷︷ ︸
m

∆ . . .∆︸ ︷︷ ︸
r

)s . . . 0 . . . 0 . . . 0︸ ︷︷ ︸
ℓ

.

From now on, the meaning of v is fixed. Let i′ be the primary pivot of v (see

Definition 3.4.16). We can suppose that 1 ≤ i′ ≤ r, otherwise v = 0r(0m∆r)s . . . 0ℓ

and so (0ℓ+r+m∆r)(0m∆r)s−1 4 v (Definition 3.3.8) and the bound would be trivially

satisfied, since it would give:

d ≥ ℓ+ r +m+ 1 + s− 1−
⌊
ℓ+ r +m

m+ r

⌋
r −max { (ℓ+m+ r)m+r −m, 0 }

= ℓ+ r +m+ s−
⌊

ℓ

m+ r

⌋
r −max { (ℓ)m+r −m, 0 }

≥ ℓ+ r + 1 + s−
⌊

ℓ

m+ r

⌋
r −max { (ℓ)m+r −m, 0 } .

Let i′′ be the secondary pivot of v with respect to the block (0m∆r)s (see Defini-

tion 3.4.17). We can suppose s(m+ r) + r+1 ≤ i′′ ≤ s(m+ r) + r+m, otherwise we

have (0ℓ∆r)(0m∆r)s+1 4 v and the bound is trivially satisfied:

d ≥ ℓ+ 1 + s+ 1−
⌊

ℓ

m+ r

⌋
r −max { (ℓ+m+ r)m+r −m, 0 }

≥ ℓ+ 1 + s−
⌊

ℓ

m+ r

⌋
r −max { (ℓ)m+r −m, 0 } .

We note that v[i′′ − z · (m+ r)] = 0 for any z = 1, . . . , s. Moreover, i′ and i′′ may

coincide, but this is not a problem.

Now, we are going to choose (ℓ+1+s) rows of M(v). We start from the ((n− i′+
k)n + 1)−th rows with k = 1, . . . , m, that is, we take the row with the primary pivot

in the first position and its shifts up to the (m − 1)−th shift included. We collect

these rows in submatrix T1 and we note that they are clearly linearly independent,

applying the singleton procedure.

110

6.1. Proofs of bound I and bound II

T1 =

∆+ ... 0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆+ 0 0
0 ∆+ ... 0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆+ 0 ... 0
0 0 ∆+ ... 0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆+ 0 ...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 ... 0 ∆+ ... 0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆+ 0 ...

↓
m

We now consider the (k + 1)-th rows for k = m, . . . , ℓ, collected in submatrix T2.

T2 =

0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ ... ∆+ 0
0 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ ... ∆+ 0 ...
0 ... 0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ ... ∆+
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 ... 0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ ... ∆+
0 ... 0 ... 0 ... 0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ ... ∆+ ...

↓ ↓
m ℓ

Note that T1 and T2 have no common rows. Note also that in T2 for any row h =

1, . . . , ℓ+ 1−m and any column 1 ≤ j ≤ (s− 1)(m+ r) +m we have:

T2[h, j] = ∆ =⇒ T2[h, j + (m+ r)] = ∆ (6.9)

Moreover, T2 has full rank as the following lemma shows.

Lemma 6.1.2. The singleton procedure is successful for T2 and thus rk(T2) = ℓ −
m+ 1.

Proof. We are going to prove that the singleton procedure is successful for all the

rows of T2. We have that v[i′] = ∆+ and v[i] = 0, ∀ i ∈ { i′ − 1, . . . , i′ − ℓ }. In

particular v[i] = 0, ∀ i ∈ { i′ − 1, . . . , i′ − ℓ+m }.
We note that since every row of T2 is obtained from a right-shift of the previous

one and the first row of T2 is obtained shifting v of m positions to the right, so for

1 ≤ h ≤ ℓ−m− 2 it holds

T2[h + 1, j] = T2[h, j − 1] and T2[1, j] = v[j −m].

At the first step we s-delete the first row and the (i′+m)−th column, since T2[i
′+m]

is a singleton, in fact for 2 ≤ h ≤ ℓ−m+ 1:

T2[h, i
′ +m] = T2[1, i

′ +m− (h− 1)] = v[i′ − (h− 1)] = 0

while T2[1, i
′ +m] = v[i′] = ∆+.

Suppose now we have s-deleted the first j rows, we want to show that the matrix

T
(j)
2 obtained from these j s-deletions has a singleton in T

(j)
2 [i′ +m+ j]. In fact, for

2 ≤ h ≤ ℓ−m+ 1− j:

T
(j)
2 [h, (i′ +m+ j)] = T2[j + h, (i′ +m+ j)]

= T2[1, i
′ +m− (h− 1)]

= v[i′ − (h− 1)] = 0

111

Chapter 6. A New Bound

while T
(j)
2 [1, (i′+m+j)] = T2[j+1, (i′+m+j)] = T2[1, i

′+m] = v[i′] = ∆+. After (ℓ−m)

steps we have that T
(ℓ−m)
2 is the last row of the matrix T2, (i.e. T

(ℓ−m)
2 = T2[ℓ−m+1]),

which is different from zero, since T2[ℓ−m+1, i′+ℓ+1] = T2[1, i
′+m] = v[i′] = ∆+.

Since all the rows of T2 have a block of zeros in the first m-positions, they are

linearly independent from all the rows in T1. We can conclude that any matrix

containing T1 and T2 has rank at least ℓ+1, obtaining (6.5). If (m+r, n) ≤ m we can

also consider a third and last submatrix, T3, formed by the ((n−r−k·(m+r))n+1)−th

rows, for k = 0, . . . , (s− 1):

T3 =

0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ 0 ... 0 ∆ ... ∆ ... ∆+ ...
0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ ... ∆+
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 ... 0 ∆ ... ∆ ... ∆+

↓ ↓ ↓ ↓
m m+r i′′−r−(s−1)(m+r) i′′−r

Lemma 6.1.3. The singleton procedure is successful for T3 and thus rk(T3) = s.

Moreover the [k]-th row of T3 is the row corresponding to the singleton T3[i
′′ − r −

(k − 1)(m+ r)] for k = s, s− 1, . . . , 1.

Proof. We note that the rows of T3, by construction, have the property that

T3[a+1, h] = T3[a, h+(m+ r)] because each row is a (m+ r) left shift of the previous

one. This is sufficient to prove that T3(i
′′ − r − (s − 1)(m + r)) is a singleton. We

claim that the s−th row of T3 corresponds to a singleton. Indeed

T3[s, i
′′−r−(s−1)(m+r)] = T3[1, i

′′−r−(s−1)(m+r)+(s−1)(m+r)] = T3[1, i
′′−r] = ∆+

and for k = 1, . . . , s− 1:

T3[k, i
′′−r−(s−1)(m+r)] = T3[1, i

′′−r−(s−1)(m+r)+(k−1)(m+r)] = T3[i
′′−r−(s−k)(m+r)] = 0

so we can s-delete it. Once this is done, we might also s-delete the (s− 1)−th row,

since

T3[s−1, i′′−r−(s−2)(m+r)] = T3[1, i
′′−r−(s−2)(m+r)+(s−2)(m+r)] = T3[1, i

′′−r] = ∆+

and for k = 1, . . . , s− 2:

T3[k, i
′′−r−(s−2)(m+r)] = T3[i

′′−r−(s−2)(m+r)+(k−1)(m+r)] = T3[1, i
′′−r−(s−1−k)(m+r)] = 0.

In this way for any row of T3 we obtain a singleton in T3 [i
′′ − r − k(m+ r)] for

k = 0, . . . , s− 1, by recursively s-deleting from the last row to the first.

112

6.1. Proofs of bound I and bound II

Collecting all these submatrices T1, T2, T3, we obtain an (ℓ+1+ s)× n matrix T ,

as follows:

T =

∆+ ... 0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆+ 0 0 → 1
0 ∆+ ... 0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆+ 0 ... 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

... T1

0 0 ∆+ ... 0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆+ 0 ...

0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ ... ∆+ 0 → m+1
0 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ ... ∆+ 0 ...
0 ... 0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ ... ∆+
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... ... T2

0 ... 0 ... 0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ ... ∆+
0 ... 0 ... 0 ... 0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ ... ∆+ ... → ℓ+1

0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ 0 ... 0 ∆ ... ∆ ... ∆+ ...
0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ ... ∆+
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... ... T3

0 ... 0 ∆ ... ∆ ... ∆+ → ℓ+1+s

↓ ↓
m m+r

Observe that the rows from (m + 1) to (ℓ + s + 1) have a block of zero in the first

m positions, so we can obviously s-delete the first m rows (i.e the rows of T1). After

these first m s-deletions we obtain a matrix T ′ composed of the last (ℓ + 1 + s−m)

rows of T , as the following:

T ′ =

0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ ... ∆+ 0 → m+1
0 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ ... ∆+ 0 ...
0 ... 0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ ... ∆+
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... ...

0 ... 0 ... 0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ ... ∆+
0 ... 0 ... 0 ... 0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ ... ∆+ ... → ℓ+1

0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ 0 ... 0 ∆ ... ∆ ... ∆+ ...
0 ... 0 ∆ ... ∆ ... 0 ... 0 ∆ ... ∆ ... ∆+
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... ...

0 ... 0 ∆ ... ∆ ... ∆+ → ℓ+1+s

↓ ↓ ↓ ↓
m m+r s(m+r) i′′−r

where 1 + s(m + r) ≤ i′′ − r ≤ m + s(m + r) by hypothesis. We note that T ′ is

composed by the rows of T2 and T3.

We use the singletons of T3 to proceed with the singleton procedure, but in order

to do that we have to discard some rows in T2. More precisely, let us define:

Bk = { h | T2[h, i′′ − r − k(m+ r)] = ∆ } for k = 0, . . . , s− 1

then the rows to discard in T2 in order that T [i′′ − r− k(m+ r)] becomes a singleton

for k = 0, . . . , s− 1 are:

B = ∪s−1
k=0Bk. (6.10)

Lemma 6.1.4. Let 0 ≤ k < k′ ≤ s− 1, then Bk′ ⊆ Bk.

113

Chapter 6. A New Bound

Proof. It follows directly from (6.9).

Corollary 6.1.5. B = B0 = { h | T2[h, i′′ − r] = ∆ }.
Thanks to Corollary 6.1.5, since s(m+ r)+1 ≤ i′′−r ≤ s(m+ r)+m, if we define

ηj = | { h | T2[h, s(m+ r) + j] = ∆ } |, we have:

|B| ≤ max { ηj | 1 ≤ j ≤ m } .

and we can further improve this result with the following lemma, which is not difficult

to prove.

Lemma 6.1.6. For 1 ≤ j ≤ m:

η1 ≥ η2 ≥ · · · ≥ ηm.

Thanks to lemma 6.1.6 we are able to estimate the maximal number of rows of T2

that we have to discard.

Lemma 6.1.7.

|B| ≤ η1 ≤
⌊

ℓ

m+ r

⌋
r +max { (ℓ)m+r −m, 0 }

Proof. For Corollary 6.1.5 and Lemma 6.1.6 we have |B| ≤ η1. Now:

η1 = | { h | T2[h, s(m+ r) + 1] = ∆ } |, but recall 1 ≤ h ≤ ℓ+ 1−m.

We rewrite v in the worst case where i′′ = s(m+ r) + r + 1:

v= ∆ ... ∆ 0 ... 0 (∆r0m)s−2 ∆ ... ∆ 0 ... 0 ∆ ... ∆ ∆+
↓ ↓ ↓ ↓ ↓ ↓
1 r m+r s(m+r)−m+1 s(m+r) s(m+r)+r+1

Since T2[1, s(m+ r) + 1] = v[s(m+ r) + 1−m] = 0, we have

η1 = | { h | T2[h, s(m+ r) + 1] = ∆, 1 ≤ h ≤ ℓ+ 1−m } |
= | { h | T2[h, s(m+ r) + 1] = ∆, 2 ≤ h ≤ ℓ+ 1−m } |.

Now T2[h+ 1, j] = T2[h, j − 1] (for h ≥ 1) and T2[1, j] = v[j −m], by construction of

T2. So:

η1 = | { h | T2[h, s(m+ r) + 1] = ∆, 2 ≤ h ≤ ℓ+ 1−m } |
= | { h | T2[1, s(m+ r) + 1− (h− 1)] = ∆, 2 ≤ h ≤ ℓ+ 1−m } |
= | { h | v[s(m+ r)−m+ 2− h] = ∆, 2 ≤ h ≤ ℓ + 1−m } |
= | { h | v[s(m+ r) + 2− h] = ∆, 2 ≤ h ≤ ℓ+ 1 } |

114

6.1. Proofs of bound I and bound II

Thus, to compute η1 we have to count the number of ∆’s we encounter, from v[s(m+

r)] to v[s(m + r) − ℓ + 1] (i.e. from v[s(m + r)] and going back ℓ positions). Let

us consider the worst case, which is when ℓ ≤ s(m + r). Passing through the block

(0m∆r)s from right to left through ℓ positions, every m + r steps we meet a block

formed by r ∆’s and m 0’s, thus the contribution to η1 per block is r. Since we

move by ℓ positions only, we cross no more than
⌊

ℓ
m+r

⌋
such blocks and so we have

η1 ≤
⌊

ℓ
m+r

⌋
r + η′1, where η′1 are the ∆’s coming from the last (ℓ)m+r steps left. The

first m-positions we meet doing the last (ℓ)m+r steps are zero, since they correspond

to the last block (∆r0m), thus η′1 can be at most (ℓ)m+r −m and it is non-negative

only if (ℓ)m+r ≥ m. In conclusion: η1 ≤
⌊

ℓ
m+r

⌋
r +max { (ℓ)m+r −m, 0 }.

Thanks to Lemma 6.1.7, discarding at most
⌊

ℓ
m+r

⌋
r+max { (ℓ)m+r −m, 0 } rows

of T2, we can remove by s-deletions T3 from T ′.The matrix that remains is a submatrix

T̃ of T2 not having row indeces in B. Note that T̃ has full rank, because T2 has full

rank by Lemma 6.1.2. So we have proved Proposition 6.0.5.

Example 6.1.8. Let C be a cyclic code of length n, with defining set SC satisfying

the assumptions of Proposition 6.0.5 with parameters ℓ = 7, m = 2, r = 1, s = 5.

We want to prove that by Proposition 6.0.5 the distance of the code C is at least

d ≥ 7 + 1 + 5 −
⌊

7
2+1

⌋
1 − max

{
(7)3+2 − 2, 0

}
= 11. Let v ∈ A(R(n, SC)) with

v[1] = ∆+. The matrix T is:

∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆ ∆

0 0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆
0 0 0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆ ∆ ∆
0 0 0 0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆ ∆
0 0 0 0 0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆
0 0 0 0 0 0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆
0 0 0 0 0 0 0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆

0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
0 0 ∆ ∆+ ∆

For the secondary pivot we have two possibilities: i′′ = 11 or i′′ = 12. We show

that in both cases it is possible to obtain 11 s-deletions, removing at most
⌊

7
2+1

⌋
1 +

max
{
(7)3+2 − 2, 0

}
= 2 rows from the matrix T .

115

Chapter 6. A New Bound

Case 1: i′′ = 11.

∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ... → 1-st s-deletion

0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ... → 2-nd s-deletion

0 0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆ ... → 8-th s-deletion

0 0 0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ... → REMOVED
0 0 0 0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆ ∆ ... → 9-th s-deletion

0 0 0 0 0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆ ... → 10-th s-deletion

0 0 0 0 0 0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ... → REMOVED
0 0 0 0 0 0 0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ... → 11-th s-deletion

0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ... → 7-th s-deletion

0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ... → 6-th s-deletion

0 0 ∆ 0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ... → 5-th s-deletion

0 0 ∆ 0 0 ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ... → 4-th s-deletion

0 0 ∆ ∆+ ∆ ... → 3-rd s-deletion

Case 2: i′′ = 12.

∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ... → 1-st s-deletion

0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆ ... → 2-nd s-deletion

0 0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ... → 8-th s-deletion

0 0 0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆ ∆+ ∆ ∆ ∆ ∆ ... → 9-th s-deletion

0 0 0 0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆ ∆+ ∆ ∆ ∆ ... → REMOVED
0 0 0 0 0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆ ∆+ ∆ ∆ ... → 10-th s-deletion

0 0 0 0 0 0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆ ∆+ ∆ ... → 11-th s-deletion

0 0 0 0 0 0 0 ∆+ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆ ∆+ ... → REMOVED
0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ... → 7-th s-deletion

0 0 ∆ 0 0 ∆ 0 0 ∆ 0 0 ∆ ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ... → 6-th s-deletion

0 0 ∆ 0 0 ∆ 0 0 ∆ ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ... → 5-th s-deletion

0 0 ∆ 0 0 ∆ ∆ ∆+ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ... → 4-th s-deletion

0 0 ∆ ∆ ∆+ ∆ ... → 3-th s-deletion

In a similar way we prove Proposition 6.0.9.

Proof. (of Proposition 6.0.9) We can suppose w.l.o.g. that i0 = n−λµ (see Lemma 3.2.9),

so that v = ∆

s−times︷ ︸︸ ︷
0 . . . 0∆︸ ︷︷ ︸

µ

. 0 . . . 0∆︸ ︷︷ ︸
µ

. . . 0 . . . 0︸ ︷︷ ︸
µλ

. Let i′ and i′′ be respectively the pri-

mary pivot and the secondary pivot of v. We can consider a simpler situation, that

is, i′ = 1 and sµ + 2 ≤ i′′ ≤ sµ + µ. In fact, if i′ 6= 1, then (0(λ+1)µ∆)(0λ∆)s−1 4 v

and we have two cases:

i) if s ≥ λ+ 3 then s− 1 ≥ λ+ 2 and the bound would be satisfied since it holds:

d ≥ (λ+ 1)µ+ µ+ s− 1− λ− 2 ≥ (λ+ 1)µ+ s− λ− 1 ≥ λµ+ µ+ s− λ− 1;

ii) if s = λ+ 1, λ+ 2 then 1 ≥ s− (λ+ 1) and so from the BCH bound we have:

d ≥ λµ+ µ+ 1 ≥ (λ+ 1)µ+ s− λ− 1 = (λ+ 1)µ+ s− (λ+ 1).

As regards sµ + 2 ≤ i′′ ≤ sµ+ µ, if it does not hold we have (0µλ∆)(0µ−1∆)s+1
4 v

and

d ≥ µλ+ µ+ s+ 1− λ− 1

≥ µλ+ µ+ s− λ− 1.

116

6.1. Proofs of bound I and bound II

In a similar way to the proof of Proposition 6.0.5 we are going to choose λµ+µ+s

rows of M(v). We collect the first (λµ+µ) rows of M(v) in a matrix T1, noting that

they are the row with the primary pivot in first position and its shifts up to the

(λµ+ µ− 1)−th shift (included), so:

T1 =

∆+ 0 ... 0 ∆ 0 ... 0 ∆ 0 ... 0 ∆ ... ∆+ 0 0 → 1
0 ∆+ 0 ... 0 ∆ 0 ... 0 ∆ 0 ... 0 ∆ ... ∆+ 0
0 0 ∆+ 0 ... 0 ∆ 0 ... 0 ∆ 0 ... 0 ∆ ... ∆+ 0
0 ... 0 ∆+ 0 ... 0 ∆ 0 ... 0 ∆ 0 ... 0 ∆ ... ∆+
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
∆ ∆ 0 ... 0 ∆+ 0 ... 0 ∆ 0 ... 0 ∆ 0 ... 0 ∆ ... ∆+
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
∆ ... ∆ 0 ... 0 ∆+ 0 ... 0 ∆ 0 ... 0 ∆ 0 ... 0 ∆ ... ∆+ ... → λµ+µ

↓ ↓
µ λµ+µ

.

In T1 we note that for any row h and any column µ ≤ j ≤ (s− 1)µ we have:

T1[h, j] = ∆ =⇒ T1[h, j + µ] = ∆ (6.11)

We recall that T1 has full rank as proved in Theorem 3.4.35.

Lemma 6.1.9. The singleton procedure is successful for T1 and thus rk(T1) = λµ+µ.

Proof. See Theorem 3.4.35.

Then any matrix containing T1 has rank at least λµ+ µ, and we obtain (6.8). If

(µ, n) ≤ µ − 1 (which it holds if and only if µ ∤ n, since µ ≤ n), then we consider

another matrix, T2, in which we collect s rows of M(v): the ((n− i′′ + kµ)n + 1)−th

rows with k = 1, . . . , s, which are the rows with the secondary pivot in position kµ.

T2 =

... 0 ∆ ... ∆+ ... 0 → 1

... 0 ∆ 0 ... 0 ∆ ... ∆+ 0 → 2

... 0 ∆ 0 ... 0 ∆ 0 ... 0 ∆ ... ∆+ 0 → 3
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... 0 ∆ 0 ... 0 ∆ 0 ... 0 ∆ 0 ... 0 ∆ ... 0 ... 0 ∆ ... ∆+ 0 → s−1
... 0 ∆ 0 ... 0 ∆ 0 ... 0 ∆ 0 ... 0 ∆ ... 0 ... 0 ∆ 0 ... 0 ∆ ... ∆+ ... 0 → s

↓ ↓ ↓ ↓ ↓
µ 2µ 3µ (s−1)µ µ

Note that there may be some rows in common between T1 and T2.

Lemma 6.1.10. The singleton procedure is successful for T2 and thus rk(T2) = s.

Moreover, the h-th row of T2 is the row corresponding to the singleton T2[hµ] for

1 ≤ h ≤ s.

Proof. The rows in T2 correspond to the rows of matrix T3 in the proof of Proposi-

tion 6.0.5, but a shift and a permutation, so it is enough to apply Lemma 6.1.3 and

Lemma 3.2.9-3.2.10.

117

Chapter 6. A New Bound

Our aim is to put together the rows of T1 and T2, obtaining a matrix T , and

identifying a submatrix T̃ of T , where we apply the singleton procedure.

T =

∆+ 0 ... 0 ∆ 0 ... 0 ∆ 0 ... 0 ∆ → 1
0 ∆+ 0 ... 0 ∆ 0 ... 0 ∆ 0 0 0 ∆
0 0 ∆+ 0 ... 0 ∆ 0 ... 0 ∆ 0 0 0 ∆
0 0 0 ∆+ 0 ... 0 ∆ 0 ... 0 ∆ 0 0 0 ∆
0 0 ∆+ 0 ... 0 ∆ 0 ... 0 ∆ 0 0 0 ∆ ...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
∆ 0 0 ∆ ... ∆+ 0 ... 0 ∆ 0 ... 0 ∆
∆ ∆ 0 0 ∆ ... ∆+ 0 ... 0 ∆ 0 ... 0 ∆
∆ ... ∆ 0 0 ∆ ... ∆+ 0 ... 0 ∆ 0 ... 0 ∆ → λµ+µ

0 ∆ ... ∆+ → 1
0 ∆ 0 ... 0 ∆ ... ∆+
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... ... 0 ... 0 ∆ 0 ... 0 ∆ ... ∆+
0 ∆ 0 ... 0 ∆ 0 ... 0 ∆ ... ∆+ → s

↓ ↓ ↓ ↓
µ λµ ... sµ

In order to do that, we use the singletons of the matrix T2, removing, if necessary,

some rows of T1. Let k = 1, . . . , s and Bkµ be the set of the rows of T1 to discard

so that T (kµ) become a singleton. In other words, Bkµ = { h | T1[h, kµ] = ∆ }. To

determine the maximal number of the discarded rows of T1, we have to estimate the

size of B = ∪s
k=1Bkµ. Thanks to (6.11), if k′ ≤ k then Bk′µ ⊆ Bkµ, so B = Bsµ and

it is enough to estimate

η = | { h | T1[h, sµ] = ∆, 1 ≤ h ≤ λµ+ µ } |
= | { h | T1[1, sµ− h] = ∆, 0 ≤ h ≤ λµ+ µ− 1 } |.
= | { h | v[sµ− h] = ∆, 0 ≤ h ≤ λµ+ µ− 1 } |.

Since s ≥ λ+ 1, starting from v[sµ] and moving to the left of (λµ+ µ) positions, we

meet exactly λ+1 blocks (0µ−1∆), each contributing to η by at most 1, so η ≤ λ+1.

Remark 6.1.11. Note that for the computation of η we did not need to use Lemma 6.1.6,

since this time we know exactly where the secondary pivot is, thus the determination

of η is easier.

In conclusion, we have just proved that discarding at most λ + 1 rows of T , we

obtain a submatrix T̃ of T for which the singleton procedure is successful and we

conclude:

rk(T) ≥ rk(T̃) = λµ+ µ+ s− λ− 1.

Example 6.1.12. Let C be a cyclic code of length n = 27, with defining set SC

satisfying the assumptions of Proposition 6.0.9 with parameters µ = 4, λ = 2, s = 5.

We want to prove that by Proposition 6.0.9 the distance of the code C is at least

d ≥ 4 · 2 + 4 + 4 − 2 − 1 = 13. Let v ∈ A(R(n, SC)), then we can suppose v[1] = ∆+

118

6.1. Proofs of bound I and bound II

and i′′ = 18 or i′′ = 19, otherwise the bound is trivially satisfied.

Case 1: i′′ = 18, v = ∆+000∆000∆000∆000∆∆+∆00000000.

∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆+ ∆ 0 0 0 0 0 0 0 0 → 5-th s-deletion

0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆+ ∆ 0 0 0 0 0 0 0 → 6-th s-deletion

0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆+ ∆ 0 0 0 0 0 0 → 7-th s-deletion

0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆+ ∆ 0 0 0 0 0 → DISCARDED
0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆+ ∆ 0 0 0 0 → 8-th s-deletion

0 0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆+ ∆ 0 0 0 → 9-th s-deletion

0 0 0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆+ ∆ 0 0 → 10-th s-deletion

0 0 0 0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆+ ∆ 0 → DISCARDED
0 0 0 0 0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆+ ∆ → 11-th s-deletion

∆ 0 0 0 0 0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆ → 12-th s-deletion

∆+ ∆ 0 0 0 0 0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ → 13-th s-deletion

∆ ∆+ ∆ 0 0 0 0 0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 → DISCARDED

0 0 ∆ ∆+ ∆ 0 0 0 0 0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 → 1-st s-deletion

0 0 ∆ 0 0 0 ∆ ∆+ ∆ 0 0 0 0 0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 → 2-nd s-deletion

0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆+ ∆ 0 0 0 0 0 0 0 0 ∆+ 0 0 0 ∆ 0 → 3-rd s-deletion

0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆+ ∆ 0 0 0 0 0 0 0 0 ∆+ 0 → 4-th s-deletion

Case 2: i′′ = 19, v = ∆+000∆000∆000∆000∆∆∆+00000000.

∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆ ∆+ 0 0 0 0 0 0 0 0 → 5-th s-deletion

0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆ ∆+ 0 0 0 0 0 0 0 → 6-th s-deletion

0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆ ∆+ 0 0 0 0 0 0 → 7-th s-deletion

0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆ ∆+ 0 0 0 0 0 → DISCARDED
0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆ ∆+ 0 0 0 0 → 8-th s-deletion

0 0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆ ∆+ 0 0 0 → 9-th s-deletion

0 0 0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆ ∆+ 0 0 → 10-th s-deletion

0 0 0 0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆ ∆+ 0 → DISCARDED
0 0 0 0 0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆ ∆+ → 11-th s-deletion

∆+ 0 0 0 0 0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆ → 12-th s-deletion

∆ ∆+ 0 0 0 0 0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ → 13-th s-deletion

∆ ∆ ∆+ 0 0 0 0 0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 → DISCARDED

0 ∆ ∆ ∆+ 0 0 0 0 0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 → 1-st s-deletion

0 ∆ 0 0 0 ∆ ∆ ∆+ 0 0 0 0 0 0 0 0 ∆+ 0 0 0 ∆ 0 0 0 ∆ 0 0 → 2-nd s-deletion

0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆ ∆+ 0 0 0 0 0 0 0 0 ∆+ 0 0 0 ∆ 0 0 → 3-rd s-deletion

0 ∆ 0 0 0 ∆ 0 0 0 ∆ 0 0 0 ∆ ∆ ∆+ 0 0 0 0 0 0 0 0 ∆+ 0 0 → 4-th s-deletion

We summarize the results of Proposition 6.0.5 and Proposition 6.0.9 in one state-

ment, called bound C.

Theorem 6.1.13 (Bound C). Let C be a [n, k, d] cyclic code with defining set SC.

Suppose that there are ℓ, m, r, s, ρ ∈ N, 1 ≤ m ≤ ℓ, s ≥ 1, ρ ≥ 1 such that

((0)ℓ(∆)r)((0)m(∆)r)s 4 R(n, SC)
ρ or ((∆)r(0)m)s((∆)r(0)ℓ) 4 R(n, SC)

ρ.

Then:

• if (m+ r, n) ≤ m:

d ≥ ℓ+ 1 + s− r

⌊
ℓ

m+ r

⌋
−max { (ℓ)m+r − λ, 0 } ;

• otherwise:

d ≥ ℓ+ 1.

119

Chapter 6. A New Bound

In the particular case that, ℓ = λµ, m = µ − 1, s ≥ λ + 1 and r = 1 for some µ

and λ, we also have:

• d ≥ µλ+ µ+ s− λ− 1, if µ ∤ n

• d ≥ µλ+ µ, otherwise.

As explained in Remark 6.0.7 and in Remark 6.0.11 bound C is both a general-

ization of the HT bound and the BS bound (except when µ|n) and so it is sharper

and tighter. Our bound and the Roos bound are independent, in fact one is a strict

root bound, while the other it is not. As a consequence, for some codes our bound is

sharper and tighter than Roos’s but for other codes it is the opposite. From the com-

puted codes, it appears that bound C is tighter than the Roos bound in the majority

of cases. and so, Bound C is the first polynomial-time bound outperforming the Roos

bound on a significant sample of codes.

Remark 6.1.14. Also the BS bound and the Roos bound are independent, and indeed

the BS bound for some codes beats the Roos bound. However, in the majority of

computed cases the Roos bound is better, as reported in [BS06] and checked by us.

As regards computational costs, bound C requires at most:

• n operations for i0

• n operations for ℓ,

• n operations for m,

• n operations for r,

• n operations for s

and so it costs O(n5) which is slightly more than the Roos bound which needs O(n4),

in fact the latter requires at most:

• n operations for i0,

• n operations for m,

• n operations for r,

• n operations for s

while the other bounds cost less: BCH → O(n2), HT → O(n3), bound BS → O(n2.5).

We tested all cyclic codes in the following range: on F2 with 15 ≤ n ≤ 125, on F3 with

8 ≤ n ≤ 79 and 82 ≤ n ≤ 89, on F5 with 8 ≤ n ≤ 61, on F7 with 8 ≤ n ≤ 47. We have

120

6.1. Proofs of bound I and bound II

chosen the largest ranges that we could compute in a reasonable time. In Table 6.2-

6.3- 6.4- 6.5- 6.6- 6.7 we give in detail the results obtained for each characteristic. We

write BCH for the BCH bound, HT for the HT bound, BS for the BS bound,RS for

the Roos bound and BC for the bound C.

Since all the bounds that we consider are sharper than the BCH bound, clearly

they are tight for all cyclic codes in which the BCH bound is already tight. Thus,

it is interesting to consider the only cases when the HT, BS, Roos and C bounds are

tight and the BCH bound is not.

The following table summarizes our findings and is composed of two different

parts. In the first part we report: in the first row the number of checked codes, in

the second row the number of these for which the BCH bound is tight. In the second

part of the table, each row corresponds to a specific bound. For each row we report

the number of codes for which the bound is tight and the BCH bound is not.

Table 6.1: Bound tightness

F2 F3 F5 F7 total

number of codes 70488 93960 1163176 106804 1434428

BCH 59296 77584 1011957 93108 1241945

HT 661 1042 12058 2603 16364

BS 233 831 11436 2413 14913

ROOS 1178 1793 17673 2987 23631

bound C 886 1811 20147 4155 26999

121

Chapter 6. A New Bound

n Ncodes BCH HT BS RS BC

15 32 30 32 30 32 32

17 8 5 8 5 8 8

19 4 4 4 4 4 4

21 64 52 54 52 58 54

23 8 4 4 4 4 4

25 8 8 8 8 8 8

27 16 16 16 16 16 16

29 4 4 4 4 4 4

31 128 46 96 46 96 96

33 32 21 26 21 26 26

35 64 40 42 40 48 44

37 4 4 4 4 4 4

39 32 18 20 18 20 20

41 8 4 4 4 4 4

43 16 6 10 6 11 10

45 256 187 222 189 228 224

47 8 4 4 4 4 4

49 32 32 32 32 32 32

51 256 90 146 98 146 150

53 4 4 4 4 4 4

55 32 16 20 16 20 20

57 32 20 24 20 24 24

59 4 4 4 4 4 4

61 4 4 4 4 4 4

63 8192 2238 4210 2401 4346 4280

65 128 36 74 36 78 74

67 4 4 4 4 4 4

69 64 22 24 22 24 24

Table 6.2: Tightness F2, 15 ≤ n ≤ 69

n Ncodes BCH HT BS RS BC

71 8 4 4 4 4 4

73 512 37 104 39 117 106

75 256 220 252 220 254 252

77 64 42 44 42 44 44

79 8 4 4 4 4 4

81 32 32 32 32 32 32

83 4 4 4 4 4 4

85 4096 547 1124 571 1141 1132

87 32 18 20 18 20 20

89 512 20 56 20 56 56

91 1024 277 435 277 436 435

93 16384 1388 3268 1424 3360 3286

95 32 18 20 18 20 20

97 8 4 4 4 4 4

99 256 105 166 106 171 166

101 4 4 4 4 4 4

103 8 4 4 4 4 4

105 32768 7939 11446 8420 12325 11796

107 4 4 4 4 4 4

109 16 4 4 4 4 4

111 32 18 20 22 20 24

113 32 4 4 4 4 4

115 64 24 26 24 26 26

117 4096 637 1075 714 1110 1099

119 512 170 212 170 213 212

121 8 8 8 8 8 8

123 256 52 62 60 62 66

125 16 16 16 16 16 16

Table 6.3: Tightness F2, 71 ≤ n ≤ 125

n Ncodes BCH HT BS RS BC

8 32 30 32 30 32 32

10 16 16 16 16 16 16

11 8 4 4 4 4 4

13 32 19 26 19 27 26

14 16 16 16 16 16 16

16 128 112 118 112 120 118

17 4 4 4 4 4 4

19 4 4 4 4 4 4

20 128 90 102 100 104 110

22 64 24 24 32 24 32

23 8 4 4 4 4 4

25 8 8 8 8 8 8

26 1024 321 514 377 545 546

28 128 94 116 96 120 120

29 4 4 4 4 4 4

31 4 4 4 4 4 4

32 512 410 464 414 472 464

34 16 16 16 16 16 16

35 32 16 18 16 20 18

37 8 4 4 4 4 4

38 16 16 16 16 16 16

40 8192 3170 4344 3570 4478 4614

41 64 9 29 9 30 29

43 4 4 4 4 4 4

44 512 208 216 236 218 244

46 64 24 24 24 24 24

47 8 4 4 4 4 4

49 8 8 8 8 8 8

50 64 64 64 64 64 64

52 32768 7157 11452 8281 12339 12150

Table 6.4: Tightness F3, 8 ≤ n ≤ 52

n Ncodes BCH HT BS RS BC

53 4 4 4 4 4 4

55 64 20 22 20 24 22

56 8192 3168 4368 3414 4440 4466

58 16 16 16 16 16 16

59 8 4 4 4 4 4

61 128 5 10 5 11 10

62 16 16 16 16 16 16

64 2048 1640 1866 1652 1916 1870

65 1024 211 324 211 351 324

67 16 4 4 4 4 4

68 128 76 88 76 88 88

70 1024 422 454 450 464 490

71 8 4 4 4 4 4

73 128 5 10 5 10 10

74 64 28 32 28 32 32

76 128 92 112 92 112 112

77 64 20 22 20 22 22

79 4 4 4 4 4 4

82 4096 303 799 303 798 799

83 8 4 4 4 4 4

85 128 30 36 30 40 36

86 16 16 16 16 16 16

88 32768 8952 11484 9928 11866 12042

89 4 4 4 4 4 4

92 512 196 204 196 204 204

94 64 24 24 24 24 24

95 32 18 20 18 20 20

97 8 4 4 4 4 4

98 64 64 64 64 64 64

Table 6.5: Tightness F3, 53 ≤ n ≤ 98,

n 6= 80, n 6= 91

122

6.1. Proofs of bound I and bound II

n Ncodes BCH HT BS RS BC

8 32 26 32 26 32 32

9 32 32 32 32 32 32

10 16 16 16 16 16 16

11 4 4 4 4 4 4

12 512 458 488 482 488 500

13 4 4 4 4 4 4

15 64 58 64 58 64 64

16 512 218 326 250 336 342

17 4 4 4 4 4 4

18 1024 952 988 988 988 1012

19 128 14 28 18 28 28

20 128 82 94 88 96 98

22 16 16 16 16 16 16

23 4 4 4 4 4 4

24 32768 15416 21794 17762 21836 22976

25 128 28 72 29 74 72

26 16 16 16 16 16 16

27 128 128 128 128 128 128

29 32 4 4 4 4 4

30 4096 2614 2890 3046 2914 3323

31 8 4 4 4 4 4

32 8192 2258 3518 2480 3652 3638

33 64 58 64 58 64 64

34 16 16 16 16 16 16

36 32768 25346 27860 27890 28124 29204

37 32 4 4 4 4 4

38 16384 762 1610 946 1746 1730

39 64 58 64 58 64 64

40 8192 2664 3598 2952 3696 3746

41 4 4 4 4 4 4

43 256 4 6 4 6 6

44 128 84 96 84 98 96

45 1024 763 850 763 856 850

46 16 16 16 16 16 16

47 8 4 4 4 4 4

Table 6.6: Tightness F7, 8 ≤ n ≤ 47

n Ncodes BCH HT BS RS BC

8 64 60 64 60 64 64

9 8 8 8 8 8 8

11 8 4 4 4 4 4

12 256 204 220 228 224 236

13 16 7 14 8 14 14

14 16 16 16 16 16 16

16 256 240 252 240 256 252

17 4 4 4 4 4 4

18 64 64 64 64 64 64

19 8 4 4 4 4 4

21 32 20 24 20 24 24

22 64 24 24 32 24 32

23 4 4 4 4 4 4

24 16384 7264 10280 8276 10560 10720

26 256 81 156 92 156 160

27 16 16 16 16 16 16

28 256 208 224 208 240 224

29 8 4 4 4 4 4

31 2048 69 225 73 242 229

32 1024 972 1008 972 1024 1008

33 64 22 24 22 24 24

34 16 16 16 16 16 16

36 4096 2308 2936 3084 3196 3280

37 4 4 4 4 4 4

38 64 24 24 24 24 24

39 2048 244 423 267 429 427

41 8 4 4 4 4 4

42 1024 504 702 530 706 702

43 4 4 4 4 4 4

44 4096 1484 1696 1692 1716 1840

46 16 16 16 16 16 16

47 4 4 4 4 4 4

48 1048576 400240 561252 445932 572536 579044

49 8 8 8 8 8 8

51 32 18 20 18 20 20

52 65536 13265 18552 15032 18676 19160

53 4 4 4 4 4 4

54 256 256 256 256 256 256

56 16384 6780 8396 7428 8824 8788

57 64 22 24 22 24 24

58 64 28 32 28 32 32

59 8 4 4 4 4 4

61 8 4 4 4 4 4

Table 6.7: Tightness F5, 8 ≤ n ≤ 61

123

Proving some root bounds via Newton’s identities

In Chapter 5 we presented two different methods exploiting Gröbner bases in order

to find the minimum distance of a cyclic code C. These methods are based on solving

two different kinds of polynomial systems, indexed by w, ĴC(w) and SC(w), which

establish the existence of words of weight w in C. In both systems, information on

Fq, the ground field of C, is used to bound the distance of the code. To be more

precise, the field Fq appears in the equations yq−1
i − 1 = 0, 1 ≤ i ≤ w, for ĴC(w)

and in the equations Sqi mod n = Sq
i , 0 ≤ i ≤ n − 1, for SC(w). However, the root

bounds introduced in Section 3.2 allow to estimate the distance of C without any

knowledge on the ground field, provided the length and the defining set are known.

In fact, we will see in this chapter’s proofs that the equations depending on Fq are

unnecessary. We will focus on the approach with Newton’s identities, showing how

the strict root bounds proposed in Section 3.4 can be proved removing the constraints

Sqi mod n = Sq
i , 0 ≤ i ≤ n− 1.

The main results that we claim in this chapter are:

• a polynomial proof of the HT bound in the more general version by Roos; this

is the first proof of that bound by polynomials, although a polynomial proof for

the special case (m+ r, n) = 1 was given in [HT72]

• a polynomial proof of BS bound

• a polynomial proof for the Boston bound I,II, III, IV.

7.1 A polynomial interpretation of known strict root bounds

In Section 3.4 we proposed an alternative formulation of many well-known bounds

that we actually proved to be strict root bounds. In this section we give another

statement for each of these bounds, based on the definition of DFT. For this reason,

sometimes we call them the spectral definition of the bounds. We adopt the

same notation of Section 5.3: for any word c of a cyclic code C ∈ Cq,n, of weight w,

we indicate with Xi, 1 ≤ i ≤ w the locations of c and with Yi, 1 ≤ i ≤ w, the values

of c. We also write Sj =
∑w

i=1 YiX
j
i and note Sj+n = Sj . Note also that Sj = 0 for n

consecutive Sj ’s if and only if c = 0.

125

Chapter 7. Proving some root bounds via Newton’s identities

7.1.1 A polynomial interpretation of the BCH bound

We now provide the spectral definition of the BCH bound, and prove it using

Newton’s identities. This solves the Problem (55) in [MS77] as was already proved

by Chien in [Chi72].

Theorem 7.1.1. Let C be an [n, k, d] code over Fq. If for all c ∈ C there are i,

ℓ ∈ {0, . . . , n− 1} such that

Si+k = 0, 0 ≤ k ≤ ℓ− 1

Then

d ≥ ℓ+ 1.

Proof. Let c be any non-zero word of C of weight 1 ≤ w ≤ ℓ. By hypothesis there

exists i such that Si = · · · = Si+ℓ−1 = 0. We prove by induction that Si+ℓ+k = 0 for

k ≥ 0.

Let us consider k = 0; from the generalized Newton identities (5.3) we have:

∀ j ≥ 0, Sj+w + σ1Sj+w−1 + · · ·+ σwSj = 0. (7.1)

In particular, for j = i+ ℓ− w, we obtain

0 = Si+ℓ + σ1Si+ℓ−1 + · · ·+ σwSi+ℓ−w .

The right hand side of previous equation reduces to Si+ℓ, since Si = · · · = Si+ℓ = 0

by hypothesis and so Si+ℓ = 0. We suppose by inductive hypothesis that Si+ℓ+k = 0

for 0 ≤ k ≤ k̄ − 1 and we prove Si+ℓ+k̄ = 0. Substituting j = i+ ℓ + k̄ − w in (7.1),

we obtain:

0 = Si+ℓ+k̄ + σ1Si+ℓ+k̄−1 + · · ·+ σwSi+ℓ+k̄−w = Si+ℓ+k̄.

From Si = Si+n we have that for k ≥ 0, Si+ℓ+k = S(i+ℓ+k)n , thus S0 = · · · = Sn−1 = 0

and the claim is proved.

Remark 7.1.2. In the proof of Theorem 7.1.1, we have shown that for any 1 ≤ w ≤ ℓ

the unique word of C which satisfies

Sw+k + Sw+k−1σ1 + · · ·+ Skσw = 0, 0 ≤ k ≤ n− 1

Sk+n = Sk, 0 ≤ k ≤ n− 1

Sk = 0, ∀ k ∈ {i, i+ 1, . . . , i+ ℓ− 1}
(7.2)

is the zero codeword. In particular, the equations in (7.2) are the same of SC(w),

execpt for the equations regarding the field Fq, which are the unnecessary in the proof

of the BCH bound

126

7.1. A polynomial interpretation of known strict root bounds

7.1.2 A polynomial interpretation of the HT bound

Here we propose the spectral formulation of the Hartmann-Tzeng bound ([HT72]),

as generalized by C. Roos in [Roo82].

Theorem 7.1.3 (Hartmann-Tzeng bound, [Roo82]). Let C be an [n, k, d] code over

Fq. Suppose that for all c ∈ C there exist ℓ,m, s, r ∈ N s.t. m ≥ 1, s ≥ 1, (m+r, n) ≤
m for which

Sℓ+i+j(m+r) = 0, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ s− 1 . (7.3)

Then

d ≥ m+ s.

Proof. We can suppose by the BCH bound that d ≥ m+1. Let us consider a word c

of weight w(c) = w, m+ 1 ≤ w ≤ m+ s− 1. We consider two polynomials:

p(z) =

m∏

i=1

(z −Xi) =

m∑

i=0

pm−iz
i, where p0 = 1

q(z) =
w∏

i=m+1

(zm+r −Xm+r
i) =

w−m∑

j=0

qw−m−jz
j(m+r), where q0 = 1.

Let σ(z) be the product of p(z) and q(z):

σ(z) =
m∑

i=0

w−m∑

j=0

pm−iqw−m−jz
i+j(m+r).

Although σ(z) is not the plain locator polynomial of c, it is a multiple of it. Since

σ(Xt) = 0 for any 1 ≤ t ≤ w, we have:

0 =

w∑

t=1

Xk
t Ytσ(Xt) =

w∑

t=1

(
m∑

i=0

w−m∑

j=0

pm−iqw−m−jX
i+j(m+r)+k
t Yt

)

=

m∑

i=0

w−m∑

j=0

pm−iqw−m−j

(
w∑

t=1

X
i+j(m+r)+k
t Yt

)

=

m∑

i=0

w−m∑

j=0

pm−iqw−m−jSi+j(m+r)+k. (7.4)

We claim that for any k ≥ ℓ:

w−m∑

j=0

q(w−m)−jSm+j(m+r)+k = 0. (7.5)

127

Chapter 7. Proving some root bounds via Newton’s identities

We assume for the moment that (7.5) holds and we postpone the proof. By Lemma 3.4.17,

we can suppose without loss of generality that there exists m′ ∈ { 0, . . . , m− 1 } such

that Ss(m+r)+ℓ+m′ 6= 0, otherwise we could increase the distance of one and the proof

proceeds similarly. Let us substitute k = m′ −m+ ℓ+ (s− (w−m))(m+ r) in (7.5),

noting that k ≥ −m+ ℓ+ (s− (s− 1))m ≥ ℓ:

0 =

w−m∑

j=0

qw−m−jSm+(m′−m+ℓ+(s−(w−m))(m+r))+j(m+r)

=

w−m∑

j=0

qw−m−jSm′+ℓ+(s−(w−m)+j)(m+r)). (7.6)

Let j′ = (s+ j − (w −m)) in (7.6), then:

0 =

s∑

j′=s−(w−m)

qs−j′Sℓ+j′(m+r)+m′

=

s−1∑

j′=s−(w−m)

qs−j′Sℓ+j′(m+r)+m′ + Sℓ+s(m+r)+m′ = Sℓ+s(m+r)+m′ .

Since for 1 ≤ s− (w−m) ≤ j′ ≤ s−1 and 0 ≤ m′ ≤ m−1, we have Sℓ+j′(m+r)+m′ = 0

by hypothesis. But Sℓ+s(m+r)+m′ 6= 0 and we get the contradiction.

Proof of (7.5). We show (7.5) by induction. If k = ℓ, substituting in (7.4) we

obtain:

0 =
m∑

i=0

w−m∑

j=0

pm−iqw−m−jSi+j(m+r)+ℓ

=
m−1∑

i=0

w−m∑

j=0

pm−iqw−m−jSi+j(m+r)+ℓ +
w−m∑

j=0

p0qw−m−jSm+j(m+r)+ℓ (7.7)

Noting that, by assumption, 0 ≤ j ≤ w −m ≤ s− 1, from (7.3) and (7.7) we have:

0 =
w−m∑

j=0

p0qw−m−jSm+j(m+r)+ℓ =
w−m∑

j=0

qw−m−jSm+j(m+r)+ℓ.

Let us suppose that (7.5) holds for any t, ℓ ≤ t ≤ k′ and we prove it for k′ + 1.

Substituting k = k′ + 1 in (7.4), we have:

0 =

m∑

i=0

w−m∑

j=0

pm−iqw−m−jSi+j(m+r)+k′+1

=
m−1∑

i=0

w−m∑

j=0

pm−iqw−m−jSi+j(m+r)+k′+1 +
w−m∑

j=0

qw−m−jSm+j(m+r)+k′+1.

128

7.1. A polynomial interpretation of known strict root bounds

To conclude we have to prove:
∑m−1

i=0

∑w−m
j=0 pm−iqw−m−jSi+j(m+r)+k′+1 = 0. Let

b = k′ − ℓ and i′ = i+ 1, then:

m−1∑

i=0

w−m∑

j=0

pm−iqw−m−jSi+j(m+r)+k′+1 =

m∑

i′=1

w−m∑

j=0

pm−i′+1qw−m−jSℓ+i′+j(m+r)+b =

=

(m−1)−b∑

i′=1

w−m∑

j=0

pm−i′+1qw−m−jSℓ+i′+j(m+r)+b +

m∑

i′=m−b

w−m∑

j=0

pm−i′+1qw−m−jSℓ+i′+j(m+r)+b.

(7.8)

But for 1 ≤ i′ ≤ (m− 1)− b we have 0 ≤ i′ + b ≤ m− 1 and by (7.3) the first term

is zero, so (7.8) becomes:
∑m

i′=m−b

∑w−m

j=0 pm−i′+1qw−m−jSℓ+i′+j(m+r)+b.

Let (ℓ+ i′ + b)−m− 1 = h, then:

m∑

i′=m−b

pm−i′+1

w−m∑

j=0

qw−m−jSℓ+i′+j(m+r)+b =

ℓ+b−1∑

h=ℓ−1

pb+ℓ−h

w−m∑

j=0

qw−m−jSm+h+j(m+r)+1 =

=

k′−1∑

h=ℓ−1

pk′−h

w−m∑

j=0

qw−m−jSm+h+j(m+r)+1.

Setting t = h + 1 we get

k′−1∑

h=ℓ−1

pk′−h

w−m∑

j=0

qw−m−jSm+h+j(m+r)+1 =

k′∑

t=ℓ

pk′−t+1

w−m∑

j=0

qw−m−jSm+j(m+r)+t = 0,

by inductive hypothesis. So (7.5) holds.

Remark 7.1.4. We note that, differently from Theorem 7.1.1, in the proof of Theo-

rem 7.1.3 we do not use the generalized Newton identities, presented in (5.3), but we

propose a new kind of identities: 0 =
∑m

i=0

∑w−m

j=0 pm−iqw−m−jSi+j(m+r)+k, for suit-

able coefficients pi, qj . Observe also that we still not use any condition involving the

field Fq.

We provide an example to explain the technical details of the proof of Theo-

rem 7.1.3.

Example 7.1.5. Let C be an [n, k, d] code over (any) Fq of length n ≥ 18 and 5 ∤ n,

which contains in its defining set J = {1, 2, 3, 6, 7, 8, 11, 12, 13}. From the HT bound,

setting m = 3, r = 2, k = 1, we get d ≥ 6. We can suppose that one between S16, S17

and S18 is different from zero. Let c ∈ C be a word of weight w(c) = 5, with locations

X1, X2, X3, X4, X5, values Y1, Y2, Y3, Y4, Y5 and DFT(c) = (S0, . . . , Sn−1). We have

129

Chapter 7. Proving some root bounds via Newton’s identities

that Sj = 0 for any j ∈ J . Let us consider two polynomials:

p(z) = (z −X1)(z −X2)(z −X3) q(z) = (z5 −X5
4)(z

5 −X5
5)

= z3 + p1z
2 + p2z + p3 = z10 + q1z

5 + q2

= p0z
3 + p1z

2 + p2z + p3 = q0z
10 + q1z

5 + q2.

(where p0 = q0 = 1) and their product p(z)q(z):

z13+p1z
12+p2z

11+p3z
10+q1z

8+q1p1z
7+q1p2z

6+q1p3z
5+q2z

3+q2p1z
2+q2p2z+q2p3.

For any k ≥ 0 we have:

0 =

5∑

i=1

YiX
k
i p(Xi)q(Xi)

=

3∑

i=0

2∑

j=0

p3−iq2−jSi+5j+k (7.9)

Substituting in (7.9) k = 1, . . . , 5, we obtain:

k = 1: 0 = S14 + q1S9 + q2S4

k = 2: 0 = S15 + q1S10 + q2S5

k = 3: 0 = S16 + q1S11 + q2S6 =⇒ S16 = 0

k = 4: 0 = S17 + q1S12 + q2S7 =⇒ S17 = 0

k = 5: 0 = S18 + q1S13 + q2S8 =⇒ S18 = 0,

which is a contradiction, since at least one between S16, S17 or S18 is different from

zero.

7.1.3 A polynomial interpretation of the BS bound

We provide the spectral definition of the BS bound, dividing the statement in two

parts. The first part, which we call the straight version of the BS bound, collects

the conditions a) and b) of Definition 3.4.7. The second part, which we call the

reverse version of BS bound, collects the conditions c) and d) of Definition 3.4.7.

Theorem 7.1.6 (BS bound, straight version). Let C be an [n, k, d] code over Fq.

Suppose that there are m, ℓ ∈ N, m, ℓ ≥ 1 and k ∈ {0, . . . , n−1} such that Sk = Sk+n

and for all c ∈ C:

a) Sk+j = 0, j = 0, . . . , mℓ− 1,

b) Sk+(m+z)ℓ+j = 0, j = 1, . . . , ℓ− 1, 0 ≤ z ≤ m.

130

7.1. A polynomial interpretation of known strict root bounds

Then:

d ≥ mℓ + ℓ .

Proof. By the BCH bound we have d ≥ mℓ+1. Let us suppose that there is a non-zero

word c ∈ C of weight mℓ + 1 ≤ w ≤ mℓ + ℓ− 1 and locations X1, . . . , Xw. Without

loss of generality, we can suppose that Sk+mℓ 6= 0, otherwise Sk = Sk+1 = · · · =
Sk+mℓ = · · · = Sk+mℓ+ℓ−1 = 0 and by BCH bound we get d ≥ mℓ + ℓ + 1 ≥ mℓ + ℓ.

For the generalized Newton identities we have that for all j ≥ 0,

w∑

i=0

Si+jσw−i = 0, (7.10)

where the σi’s, 1 ≤ i ≤ w, are the symmetric functions of the locations. In particular,

we have σ0 = 1, by definition, and σw =
∏w

i=1Xi 6= 0.

We claim that σw−(m−z)ℓ = 0 for z = 0, . . . , m. Note that if our claim is true, we prove

the theorem, since we get a contradiction for z = m, in fact 0 = σw−(m−m)ℓ = σw 6= 0.

We proceed by induction. We start proving our claim for z = 0. Let us substitute

j = k in (7.10), we get:

0 =
w∑

i=0

Si+k σw−i =
mℓ−1∑

i=0

Si+k σw−i +
w∑

i=mℓ

Si+k σw−i

=
w∑

i=mℓ

Si+k σw−i

=

w∑

i=mℓ+1

Si+kσw−i + Sk+mℓσw−mℓ,

setting i′ = i−mℓ, we get

0 =
w−mℓ∑

i′=1

Smℓ+i′+k σw−mℓ−i + Sk+mℓ σw−mℓ

= Sk+mℓ σw−mℓ,

because 1 ≤ w −mℓ ≤ ℓ − q and by hypothesis b), Smℓ+i′+k = 0. Thus, σw−mℓ = 0,

since Sk+mℓ 6= 0. Supposing that σw−(m−z)ℓ = 0 for z < z̄ < m, we prove σw−(m−z̄)ℓ =

0. Let us substitute j = k + z̄ℓ in (7.10):

0 =

w∑

i=0

Si+k+z̄ℓ σw−i =

(m−z̄)ℓ−1∑

i=0

Si+k+z̄ℓ σw−i +

w∑

i=(m−z̄)ℓ

Si+k+z̄ℓ σw−i

=

w∑

i=(m−z̄)ℓ

Si+k+z̄ℓ σw−i. (7.11)

131

Chapter 7. Proving some root bounds via Newton’s identities

Setting j = i− (m− z̄)ℓ in (7.11), we have:

0 =

w−mℓ+z̄ℓ∑

j=0

Sj+k+mℓ σw−j−(m−z̄)ℓ

=

z̄ℓ∑

j=0

Sj+k+mℓ σw−j−(m−z̄)ℓ +

w−mℓ+z̄ℓ∑

j=z̄ℓ+1

Sj+k+mℓ σw−j−(m−z̄)ℓ

= Sk+mℓ σw−(m−z̄)ℓ +

z̄ℓ∑

j=1

Sj+k+mℓ σw−j−(m−z̄)ℓ +

w−mℓ+z̄ℓ∑

j=z̄ℓ+1

Sj+k+mℓ σw−j−(m−z̄)ℓ

(7.12)

Let us denote by A the summation
∑z̄ℓ

j=1 Sj+k+mℓ σw−j−(m−z̄)ℓ and by B the summa-

tion
∑w−mℓ+z̄ℓ

j=z̄ℓ+1 Sj+k+mℓ σw−j−(m−z̄)ℓ. We prove that A = 0 and B = 0. We start to

consider A:

A =

ℓ∑

j=1

Sj+k+mℓσw−j−(m−z̄)ℓ + · · ·+
z̄ℓ∑

j=(z̄−1)ℓ+1

Sj+k+mℓσw−j−(m−z̄)ℓ

=

z̄−1∑

t=0

(t+1)ℓ∑

j=tℓ+1

Sj+k+mℓ σw−j−(m−z̄)ℓ

=
z̄−1∑

t=0

S(m+t+1)ℓ+k σw−(m−z̄+t+1)ℓ +

(t+1)ℓ−1∑

j=tℓ+1

Sj+k+mℓ σw−j−(m−z̄)ℓ

=
z̄−1∑

t=0

S(m+t+1)ℓ+k σw−(m−z̄+t+1)ℓ +
z̄−1∑

t=0

(t+1)ℓ−1∑

j=tℓ+1

Sj+k+mℓ σw−j−(m−z̄)ℓ.

Setting h = z̄ − t− 1 in the first summation we get:

z̄−1∑

t=0

S(m+t+1)ℓ+k σw−(m−z̄+t+1)ℓ =
z̄−1∑

h=0

S(m+z̄−h)ℓ+k σw−(m−h)ℓ = 0,

by inductive hypothesis (σw−mℓ = · · · = σw−(m−(z̄−1))ℓ = 0). Similarly, also the second

summation is zero, because Sj+mℓ+k = 0 for tℓ+1 ≤ j ≤ (t+1)ℓ−1 and 0 ≤ t ≤ z̄−1,

by hypothesis b). So, A = 0. Let us now consider B. Substituting h = j − z̄ℓ we

have:

B =

w−mℓ∑

h=1

Sh+k+mℓ+z̄ℓ σw−h−mℓ = 0,

since Sh+k+mℓ+z̄ℓ = 0 for 1 ≤ h ≤ (w − mℓ), by hypothesis. Thus (7.12) becomes

Sk+mℓ σw−(m−z̄)ℓ = 0 which implies σw−(m−z̄)ℓ = 0 and concludes our proof.

132

7.1. A polynomial interpretation of known strict root bounds

The proof of Theorem 7.1.6 is rather technical and requires elaborated computa-

tions, so we provide an example to clarify its details.

Example 7.1.7. Let C be an [n, k, d] cyclic codes of length n ≥ 16 over (any) Fq

which contains in its defining set J = {1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15}. With k = 1,

m = 2 and ℓ = 3, the BS bound guarantees that d ≥ mℓ + ℓ = 9. We suppose that

S7 6= 0 and there is a word c ∈ C of weight w(c) = 8 with DFT(c) = (S0, . . . , Sn−1).

We have that Sj = 0 for any j ∈ J . Let us consider the generalized Newton identities

for w = 8, which hold for any j ≥ 0,
∑8

i=0 Si+jσ8−i = 0. Let us consider what the

identities give for j = k + zℓ with 0 ≤ z ≤ m− 1.

j = 1: 0 =

8∑

i=0

Si+1σ8−i = σ2S7 = 0 =⇒ σ2

j = 4: 0 =
8∑

i=0

Si+4σ8−i = σ5S7 + σ2S10 = 0 =⇒ σ5

j = 7: 0 =
8∑

i=0

Si+7σ8−i = σ2S13 + σ5S10 + σ8S7 = 0 =⇒ σ8,

which is a contradiction because σ8 is the product of the locations of c, hence σ8 6= 0.

Theorem 7.1.8 (BS bound, reverse version). Let C be an [n, k, d] code over Fq.

Suppose that there are m, ℓ ∈ N, m, ℓ ≥ 1 and k ∈ {0, . . . , n−1} such that Sk = Sk+n

and for all c ∈ C:

c) Sk+j+zℓ = 0, j = 1 . . . , ℓ− 1, 0 ≤ z ≤ m,

d) Sk+(m+1)ℓ+j = 0, j = 1, . . . , mℓ.

Then:

d ≥ mℓ + ℓ .

Proof. By the BCH bound we have d ≥ mℓ + 1. Let us suppose that there is a non-

zero word c ∈ C of weight mℓ + 1 ≤ w ≤ mℓ + ℓ− 1 and locations X1, . . . , Xw. We

can suppose without loss of generality that Sk+(m+1)ℓ 6= 0, otherwise Sk+1+mℓ = · · · =
Sk+(m+1)ℓ = · · · = Sk+(2m+1)ℓ = 0 and by the BCH bound we get d ≥ mℓ + ℓ + 1 ≥
mℓ+ ℓ. We consider an alternative formulation of the generalized Newton identities,

which is more useful for our proof:

w∑

i=0

Sw−i+jσi = 0, for any j ≥ 0, (7.13)

where σ0 = 1 by definition, and σw 6= 0. We claim that σzℓ = 0 for 0 ≤ z ≤ m. If

our claim is true we get a contradiction for z = 0, since 0 = σ0ℓ = σ0 6= 0, and thus

133

Chapter 7. Proving some root bounds via Newton’s identities

we prove the theorem. By induction on z, we start to prove that for z = m we have

σmℓ = 0. Substituting j = k + (m+ 1)ℓ+mℓ− w in (7.13):

0 =
w∑

i=0

Sw−i+j σi =
w∑

i=0

Sk+(m+1)ℓ+mℓ−i σi

=
mℓ−1∑

i=0

Sk+(m+1)ℓ+mℓ−i σi +
w∑

i=mℓ

Sk+(m+1)ℓ+mℓ−i σi

. The right hand side of the previous equation reduces to
∑w

i=mℓ Sk+(m+1)ℓ+mℓ−i σi,

by hypothesis d). Thus :

0 =

w∑

i=mℓ

Sk+(m+1)ℓ+mℓ−i σi

= Sk+(m+1)ℓ σmℓ +

w∑

i=mℓ+1

Sk+(m+1)ℓ+mℓ−i σi.

Setting t = (m+ 1)ℓ− i we have

0 = Sk+(m+1)ℓ σmℓ +
ℓ−1∑

t=(m+1)ℓ−w

Sk+mℓ+t σ(m+1)ℓ−t

= Sk+(m+1)ℓ σmℓ,

where in the last equation we have used hypothesis a). Thus we conclude σmℓ = 0,

since Sk+(m+1)ℓ 6= 0, by assumption. We suppose that σzℓ = 0 for m ≥ z > z̄ ≥ 0 and

we prove σz̄ℓ = 0. Substituting j = k + (m+ 1)ℓ+ z̄ℓ− w in (7.13), we get:

0 =
w∑

i=0

Sk+(m+1)ℓ+z̄ℓ−i σi

=
z̄ℓ∑

i=0

Sk+(m+1)ℓ+z̄ℓ−i σi +
w∑

i=z̄ℓ+1

Sk+(m+1)ℓ+z̄ℓ−i σi

= Sk+(m+1)ℓ σz̄ℓ +

z̄ℓ−1∑

i=0

Sk+(m+1)ℓ+z̄ℓ−i σi +

w∑

i=z̄ℓ+1

Sk+(m+1)ℓ+z̄ℓ−i σi. (7.14)

We denote by A the summation
∑z̄ℓ−1

i=0 Sk+(m+1)ℓ+z̄ℓ−i σi and by B the summation∑w

i=z̄ℓ+1 Sk+(m+1)ℓ+z̄ℓ−i σi and we prove they are zero. Setting j = z̄ℓ− i in A, we get:

A =
z̄ℓ−1∑

i=0

Sk+(m+1)ℓ+z̄ℓ−i σi =
z̄ℓ∑

j=1

Sk+(m+1)ℓ+j σz̄ℓ−j = 0,

134

7.1. A polynomial interpretation of known strict root bounds

since Sk+(m+1)ℓ+j = 0 for 1 ≤ j ≤ z̄ℓ, by hypothesis.

Considering B we have:

B =
w∑

i=z̄ℓ+1

Sk+(m+1)ℓ+z̄ℓ−i σi

=

mℓ∑

i=z̄ℓ+1

Sk+(m+1)ℓ+z̄ℓ−i σi +

w∑

i=mℓ+1

Sk+(m+1)ℓ+z̄ℓ−i σi

=
m−1∑

t=z̄

(t+1)ℓ∑

i=tℓ+1

Sk+(m+1)ℓ+z̄ℓ−i σi +
w∑

i=mℓ+1

Sk+(m+1)ℓ+z̄ℓ−i σi (7.15)

For mℓ+1 ≤ i ≤ w we have that k+ z̄ℓ+ 1 ≤ k+ (m+1)ℓ+ z̄ℓ− i ≤ k+ z̄ℓ+ ℓ− 1,

so Sk+(m+1)ℓ+z̄ℓ−i = 0, by hypothesis, and (7.15) becomes:

B =

m−1∑

t=z̄

(t+1)ℓ∑

i=tℓ+1

Sk+(m+1)ℓ+z̄ℓ−i σi

=
m−1∑

t=z̄

(
tℓ+ℓ−1∑

i=tℓ+1

Sk+(m+1)ℓ+z̄ℓ−i σi + Sk+(m−t)ℓ+z̄ℓ σtℓ+ℓ

)
.

By inductive hypothesis σtℓ+ℓ = 0 for z̄ ≤ t ≤ m− 1, hence:

B =
m−1∑

t=z̄

tℓ+ℓ−1∑

i=tℓ+1

Sk+(m+1)ℓ+z̄ℓ−i σi.

=

m−1∑

t=z̄

ℓ−1∑

j=1

Sk+(m+1)ℓ+(z̄−t)ℓ−j σi setting j = i− tℓ

=

m−1∑

t=z̄

ℓ−1∑

i=1

Sk+(m+z̄−t)ℓ+i σi = 0 setting i = ℓ− j,

because z̄+1 ≤ m+ z̄− t ≤ m for z̄ ≤ t ≤ m−1 and 1 ≤ i ≤ ℓ−1, so, by hypothesis,

Sk+(m+z̄−t)ℓ+i = 0. Thus (7.14) becomes Sk+(m+1)ℓ σz̄ℓ = 0, which implies σz̄ℓ = 0,

since Sk+(m+1)ℓ 6= 0, by hypothesis.

Example 7.1.9. Let C be an [n, k, d] cyclic codes of length n ≥ 32 over (any) Fq

which contains in its defining set

J = {6, 7, 8, 10, 11, 12, , 14, 15, 16, 18, 19, 20, 22, 23, . . . , 33}.

With k = 5, m = 3 and ℓ = 4, the BS bound guarantees that d ≥ mℓ + ℓ = 16.

We suppose that S21 6= 0 and that there is a word c ∈ C of weight w(c) = 15 with

DFT(c) = (S0, . . . , Sn−1). We have that Sj = 0 for any j ∈ J . Let us consider the

135

Chapter 7. Proving some root bounds via Newton’s identities

generalized Newton identities for w = 15, which hold for any j ≥ 0,
∑15

i=0 S15−i+jσi =

0. Let us consider what the identities give for j = k+mℓ+1+zℓ with 0 ≤ z ≤ m−1.

j = 18: 0 =

15∑

i=0

S15−i+18σ15−i = S21σ12 = 0 =⇒ σ12

j = 14: 0 =

15∑

i=0

S15−i+14σ15−i = S21σ8 + S17σ12 = 0 =⇒ σ8

j = 10: 0 =
15∑

i=0

S15−i+10σ15−i = S21σ4 + S17σ8 + S13σ12 = 0 =⇒ σ4

j = 6: 0 =
15∑

i=0

S15−i+6σ15−i = S21σ0 + S17σ4 + S13σ8 + S9σ12 = 0 =⇒ σ0,

which is a contradiction because σ0 = 1, by definition.

7.1.4 A polynomial interpretation of Boston’s bounds

Here, we consider a slight generalization of the bounds presented by Boston, as

done in Remark 3.4.24. As usual, we first provide the spectral version of Boston’s

bound and then we give a proof, using the generalized Newton identities.

Theorem 7.1.10 (Boston bound I, gen.). Let C be an [n, k, d] code over Fq. Suppose

that 3 ∤ n and that there is k ∈ {0, . . . , n− 1} such that for all c ∈ C:

Sk = Sk+1 = Sk+3 = Sk+4 = 0

Then:

d ≥ 4.

Proof. It is a special case of Theorem 7.1.3, with ℓ = k, m = 2, r = 1 and s = 2.

Theorem 7.1.11 (Boston bound II, gen.). Let C be an [n, k, d] code over Fq. Suppose

that 3 ∤ n and that there is k ∈ {0, . . . , n− 1} such that for all c ∈ C:

Sk = Sk+1 = Sk+3 = Sk+5 = 0

Then:

d ≥ 4.

Proof. It is a special case of Theorem 7.1.6, with ℓ = 2 and m = 1.

136

7.1. A polynomial interpretation of known strict root bounds

Theorem 7.1.12 (Boston bound III, gen.). Let C be an [n, k, d] code over Fq. Sup-

pose that 3 ∤ n and that there is k ∈ {0, . . . , n− 1} such that for all c ∈ C:

Sk = Sk+1 = Sk+3 = Sk+4 = Sk+6 = 0

Then:

d ≥ 5.

Proof. By the BCH bound we have that d ≥ 3, so we only have to see that there

are no words of weight 3 or 4 to prove the theorem. We can suppose that Sk+2 and

Sk+5 are different from zero, otherwise by the BCH bound the claim is satisfied. In

the same way, we can also suppose that Sk+7 6= 0, otherwise by the HT bound with

m = 2 and r = 1, we have d ≥ 5. Let us suppose that there exists a word of weight

3. Writing the (7.1) for w = 3, j = k + 1 and j = k + 4, we get:

j = k + 1: 0 =

3∑

i=0

S3−i+k+1σi = σ2Sk+2 =⇒ σ2 = 0

j = k + 4: 0 =
3∑

i=0

S3−i+k+4σi = Sk+7 + σ2Sk+5 =⇒ Sk+7 = 0,

which is a contradiction, since we supposed Sk+7 6= 0. Similarly, if there is a word

c ∈ C of weight w = 4, we can write (7.1) for w = 4, j = k and j = k + 3, obtaining:

j = k : 0 =

4∑

i=0

S4−i+k σi = σ2Sk+2 =⇒ σ2 = 0

j = k + 3: 0 =
4∑

i=0

S4−i+k+3 σi = Sk+7 + σ2Sk+5 =⇒ Sk+7 = 0.

Thus the claim is proved

Theorem 7.1.13 (Boston bound IV, gen.). Let C be an [n, k, d] code over Fq. Let

c be any word of C and DFT(c) = (S0, . . . , Sn−1) its DFT with respect to α, a fixed

n−th root of unity over Fq. Suppose that 4 ∤ n and that there is k ∈ {0, . . . , n − 1}
such that for all c ∈ C:

Sk = Sk+1 = Sk+2 = Sk+4 = Sk+5 = Sk+6 = Sk+8 = 0

Then:

d ≥ 6.

Proof. By the BCH bound we have that d ≥ 4, so we have only to see that there

are no words of weight 4 or 5. We suppose Sk+3 and Sk+7 are different from zero,

137

Chapter 7. Proving some root bounds via Newton’s identities

otherwise by the BCH bound the claim is satisfied. In the same way, we can also

suppose that at least one between Sk+9 and Sk+10 is different from zero, otherwise

by the HT bound with m = 3 and r = 1, we have d ≥ 6. Let us suppose that there

exists a word of weight 4. Writing the (7.1) for w = 4, j = k+1, k+2, k+5, k+6,

we get:

j = k + 1: 0 =

4∑

i=0

S4−i+k+1 σi = σ2Sk+3 =⇒ σ2 = 0

j = k + 2: 0 =

4∑

i=0

S4−i+k+2 σi = σ3Sk+3 =⇒ σ3 = 0

j = k + 5: 0 =
4∑

i=0

S4−i+k+5 σi = Sk+9 + σ2Sk+7 =⇒ Sk+9 = 0

j = k + 6: 0 =
4∑

i=0

S4−i+k+6 σi = Sk+10 + σ3Sk+7 =⇒ Sk+10 = 0

Similarly, if there is a word c ∈ C of weight w = 5, we can write (7.1) for w = 5 and

j = k, k + 1, k + 4, k + 5, obtaining:

j = k : 0 =

5∑

i=0

S5−i+k σi = σ2Sk+3 =⇒ σ2 = 0

j = k + 1: 0 =

5∑

i=0

S5−i+k+1 σi = σ3Sk+3 =⇒ σ3 = 0

j = k + 4: 0 =

5∑

i=0

S5−i+k+4 σi = Sk+9 + σ2Sk+7 =⇒ Sk+9 = 0

j = k + 5: 0 =
5∑

i=0

S5−i+k+5 σi = Sk+10 + σ3Sk+7 =⇒ Sk+10 = 0.

Thus we proved that Sk+9 = Sk+10 = 0, which is a contradiction, since we supposed

that at least one between Sk+9 or Sk+10 is different from zero.

7.2 Comments and further research

In the proof Theorem 8.1.6, Theorem 8.1.8 (and the easy results Theorem{0,. . . ,10}

7.1.10, 7.1.11, 7.1.12, 7.1.13) we applied the (generalized) Newton identities directly

to obtain the contradiction proving our claim. These identities come from an easy

manipulation of the plain locator polynomial. Note that if the word has weight at

most w, the locator has degree w, its roots contains the locations and actually its

roots are exactly the locations if the weight is exactly w. The contradiction we are

138

7.2. Comments and further research

aiming at in these proofs is to show that such word is actually the zero word (or

equivalently, that all its syndromes are zero). This argument is not new, since it has

been applied in [HT72] to prove the BCH bound, although our application to the

presented cases is.

The Hartmann-Tzeng bound in its restricted version ([HT72]) cannot be proved

in this way, because these identities do not provide a contradiction. So in the original

paper [HT72] the authors have an intuition, that is, to construct a polynomial which is

a multiple of the locator. From this polynomial it is easy to derive relations similar to

the Newton identities and such that they provide the desired contradiction. Although

this polynomial has degree higher than w and it is bound to have parasite roots, its

use is easy and the proof follows nearly mechanically. We call this polynomial the

adaptive locator (see also [SWST96]). Unfortunately, they do not expand on this

idea any further and no subsequent author has tried to develop this approach. Indeed,

to prove the more general form of the HT bound, Roos in [Roo82] abandons the

polynomial approach and provide proofs based on suitable matrices. What we do in

Theorem 7.1.3 to prove the more general form of the HT bound is to use the adaptive

locator (a multiple of the locator) of [HT72] and then derive again some special

relations (similar to the Newton identities) that lead to the desired contradiction.

The above discussion allows us to conjecture the following:

• given a defining set and a length (without knowing the field), it is possible to

derive an adaptive locator;

• from the adaptive locator, relations similar to the Newton identities come di-

rectly and lead to a contradiction;

• the computation of the contradiction from the adaptive locator is polynomial-

time (in the length);

• the computation of the adaptive locator from (n, S) may be polynomial-time

(in the length).

We find it a very interesting research problem to investigate this approach further.

Should these conjectures be proved (including the fourth of which we are not com-

pletely confident), we would have that the computation of the optimal root bound f

is polynomial-time.

Note that at this stage of the thesis, we have not claimed anything on the com-

plexity of computing f and indeed its computation might even need infinite steps.

However, in the next chapter we will prove that f can be computed in a finite time.

139

Computing the optimal root bound via Gröbner

bases

In Section 3.1 we discussed the problem to compute the optimal root function,

f (resp. the optimal root bound, fD), in a finite time. This is a natural question,

since the characterization we gave of the optimal root function both using Defini-

tion 3.1.16 and using (3.4) apparently requires an infinite number of computations.

In this chapter, we show that f may be computed in a finite time, using the systems

of polynomials JC , introduced in Section 5.2.

8.1 Preliminaries and notation

We denote by P the subset of N formed by all prime numbers, P = {2, 3, 5, . . .}.
Given an integer n ≥ 2, we denote by Pn the subset of P formed by all p such that

(p, n) = 1. Let K be a field, not necessary finite. In the case K is finite, we use Fq to

indicate the finite field with q elements. We denote by 1K the multiplicative neutral

element of K, by 0K the additive neutral element of K, by char(K), the characteristic

of K and by K the algebraic closure of K. We recall that the prime field of K is the

smallest subfield of K containing 1K; we denote such field with P(K). It is well-known

that the prime field of K depends only on char(K), as in the following proposition.

Proposition 8.1.1. Let K be a field. Then

• P(K) is Q if and only if char(K) = 0,

• P(K) is Fp if and only if char(K) = p for a p ∈ P.

We denote by D(K) the prime domain of K, i.e. the smallest subring of K con-

taining 1K. We observe that D(K) = Fp if char(K) = p for some p ∈ P, and that

D(K) = Z if char(K) = 0. If K is understood we write D = D(K) and P = P(K).

Let r ≥ 1, we consider a set of variables X = {x1, . . . , xr}, M = M(X) is the

set of all monomials in X, K[x1, . . . , xr] is a polynomial ring over K with a mono-

mial order <, which from now on is understood. As usual, we denote by LT(g) the

141

Chapter 8. Computing the optimal root bound via Gröbner bases

leading term of any g ∈ K[x1, . . . , xr] and by Xν the monomial Xν = xν11 . . . xνrr ,

with ν = (ν1, . . . , νr) ∈ Nr. Note that the definition of Xν does not depend on the

field. With an abuse of notation, for any field K we will view Xν as an element

of K[x1, . . . , xr], when it is appropriate and convenient to us. We define a kind of

Gröbner basis which we call domain-reduced.

Definition 8.1.2. Let K be a field, I be an ideal in K[x1, . . . , xr], G be a Gröbner

basis of I . We say that G is domain-reduced (d-red) if:

1. for any g ∈ G, any monomial Xν of g and any g′ ∈ G\{g}, we have LT(g′) ∤ Xν,

2. any coefficient of any g ∈ G lies in D(K),

3. if char(K) = p for some p ∈ P, then any g is monic,

4. if char(K) = 0, then LC(g) > 0 and for any g ∈ G there is no integer n ≥ 2

such that n divides all the coefficients of g.

We note the two following obvious facts.

Fact 8.1.3. Let I be an ideal in K[X]. Let G′ be the reduced Gröbner basis of I. Sup-

pose that G is a d-red Gröbner basis for I. Then {LM(G′)} = {LM(G)}. Moreover,

for any g ∈ G there is a g′ ∈ G′ such that g′ = λg, with λ ∈ K.

Fact 8.1.4. If char(K) = p for some p ∈ P, then

G is d-red ⇐⇒ G is a reduced Gröbner basis and ∀ g ∈ G, g ∈ D[X] = P[X].

We observe that not all ideals in K[x1, . . . , xr] have a d-red Gröbner basis, as the

next example shows.

Example 8.1.5. Let K[x1, . . . , xr] = F4[x], with F4 = {0, 1, α, α2} and α2 = α + 1.

We consider the ideal I = 〈x−α〉 and we claim that it does not have a d-red Gröbner

basis. In fact, if a d-red basis exists for I, it means that I = 〈g(x)〉, with g(x) ∈ F2[x]

and such that LT(g) | LT(x− α) = x, thus LT(g) = x. The only two polynomials in

F2[x] with leading term x are g1(x) = x and g2(x) = x+1, but none of them belongs

to I, as it is easy to check. Thus a d-red basis for I does not exist.

Example 8.1.6. Let K[x1, . . . , xr] = R[x]. We consider the ideal I = 〈x−
√
2〉 and

we claim that it does not have a d-red Gröbner basis. In fact, if a d-red basis exists for

I, it means that I = 〈g(x)〉, with g(x) ∈ Z[x] and such that LT(g) | LT(x−
√
2) = x,

thus LT(g) = x. But such g cannot exist, since the minimal polynomial of
√
2 in Z[x]

is x2 − 2. Thus a d-red basis for I does not exist.

142

8.1. Preliminaries and notation

Nevertheless, if for an ideal I ⊆ K[x1, . . . , xr] a d-red Gröbner basis exists, then

it is unique.

Lemma 8.1.7. Let I be an ideal in K[x1, . . . , xr] such that G = {g1, . . . , gt} is a d-red

Gröbner basis of I. Then G is unique.

Proof. If char(K) = p for some p ∈ P, by Fact 8.1.4 we have that G = GB(I) is the

reduced bases of I, thus it is unique.

If char(K) = 0, then gi ∈ Z[x1, . . . , xr] for 1 ≤ i ≤ t. Let G′ be another d-red

basis for I. From Fact 8.1.3 we have that G′ shares the leading monomials with G, so

G′ = {λ1g1, . . . , λtgt} for some non-zero λ1, . . . , λt in Z. Let 1 ≤ i ≤ t. Since G and

G′ are d-red bases, we have LC(gi) > 0 and LC(λigi) = λiLC(gi) > 0, which imply

λi > 0. On the other hand, λi is a positive integer which divides all coefficients of

λigi, so, for 4. of Definition 8.1.2, λi = 1. But then G = G′.

Since the d-red Gröbner basis for an ideal I is unique, if it exists, we may denote

by G(I) the d-red Gröbner basis of I, with the convention that G(I) = ∅ if it does

not exist for I.

There are some cases where we can prove that a d-red basis exists, as for example

when K is a prime field. Moreover, such basis can be computed from the reduced

Gröbner basis, as we are going to show.

Given a1, . . . , ar integers we denote by gcd(a1, . . . , ar) the greatest common divisor

of a1, . . . , ar (but we can also use the notation gcd({ai}1≤i≤r)). Note that 4. of

Definition 8.1.2 can be reformulated as: if char(K) = 0, then, for any g ∈ G, LT(g) > 0

and gcd({aν}ν∈Ng
) = 1, where the aν ’s are the coefficients of g.

Proposition 8.1.8. Let K be a prime field and let I be any ideal in K[x1, . . . , xr].

Then I has a d-red Gröbner basis.

Proof. Let G = GB(I) = {g1, . . . , gt} be the reduced Gröbner basis of I.

If char(K) = p for some p ∈ P, then D(K) = K, so G ⊆ D[x1, . . . , xr] and by

Fact 8.1.4 we have that G is also the d-red Gröbner basis of I.

Let us consider the case char(K) = 0, i.e. K = Q. By definition of reduced

Gröbner basis (Definition 5.1.5), for 1 ≤ i ≤ t we have gi = Xµi +
∑

ν∈Ni
ανX

ν for

some finite subset Ni ⊆ Nr, where LT(gi) = Xµi and αν = aν/bν with aν , bν ∈ Z,

(aν , bν) = 1 and bν ≥ 1. We also write aµi
= bµi

= 1. For 1 ≤ i ≤ t let us take ℓi ∈ Q

defined by

ℓi =

∏
ν∈Ni

bν

gcd({bν}ν∈Ni
)
.

Since ℓi is the least common multiple of the bν ’s, if ℓ̃i is any integer such that bν | ℓ̃i
for any ν ∈ Ni, then ℓi | ℓ̃i. By construction, we have that ℓigi is in Z[x1, . . . , xr] and

143

Chapter 8. Computing the optimal root bound via Gröbner bases

actually ℓigi and gi have the same monomials. Moreover, for all i it is easy to see that

gcd({ℓiaν/bν}ν∈Ni∪{µi}) = 1. So the basis G′ = {ℓ1g1, . . . , ℓtgt} is a d-red Gröbner

basis of I.

Note that in the proof of Proposition 8.1.8 we do not need that K is a prime

field, since the only thing we need is that the reduced Gröbner basis of I belongs to

P(K)[X]. This allows us to state the following result.

Proposition 8.1.9. Let I be any ideal in K[x1, . . . , xr] such that its reduced Gröbner

basis, G = GB(I) ⊆ P[X]. Then I has a d-red Gröbner basis.

In the previous proof we state that, given a1, . . . an and b1, . . . , bn such that

(ai, bi) = 1 for 1 ≤ i ≤ n, if we define d = gcd({b1, . . . , bn}) and ℓ =
∏n

i=1 bi/d,

then gcd(ℓ, ℓa1/b1, . . . , ℓan/bn) = 1. We provide here a proof of this fact for n = 2,

the other cases follow in a similar way, by induction.

Example 8.1.10. Let us consider a1, a2, b1, b2 ∈ Z with (a1, b1) = 1 and (a2, b2) = 1.

We denote by d = (b1, b2) the greatest common divisor of b1 and b2 and with ℓ = [b1, b2]

their least common multiple. We have:

b1 = dt1, b2 = dt2, ℓ = dt1t2,

for some t1, t2 ∈ Z with (t1, t2) = 1. We want to prove that gcd(ℓ, ℓa1/b1, ℓa2/b2) = 1.

Noting that ℓa1/b1 = a1t2 and ℓa2/b2 = a2t1, we have:

gcd(ℓ, ℓa1/b1, ℓa2/b2) = gcd(dt1t2, a1t2, a2t1)

= ((dt1t2, a1t2), a2t1)

= ((b1t2, a1t2), a2t1)

= (t2(a1, b1), a2t1)

= (t2, a2t1)

= (t2, a2) = 1

where the last equality is due to 1 = (a2, b2) = (a2, dt2).

An example of ideals for which a d-red Gröbner basis obviously exists are those

ideals with empty variety, since in this case GB(I) = G(I) = {1}:

Corollary 8.1.11. Let K be any field and I be an ideal in K[x1, . . . , xr]. Then:

V(I) = ∅ ⇐⇒ GB(I) = {1} ⇐⇒ G(I) = {1}.

144

8.2. Linked ideals

8.2 Linked ideals

Let N be a finite subset of Nr and let F = {f1, . . . , ft} be any finite set of functions

fi : N → Z.

We will call F a set of defining functions (see function ring in [Rei06]). We

view N as set of indices for a finite subset of monomials in M(X), where the field is

unspecified. From F , for any field K, we want to construct an ideal in K[X].

Definition 8.2.1. Let K be a field. Let N be a finite subset of Nr and F = {f1, . . . , ft}
a set of defining functions. For any ν ∈ N we consider a monomial Xν in M as an

element of K[X]. We define a map ψ : Z 7→ K by:

ψ(n) =

0K if n = 0

1K + · · ·+ 1K︸ ︷︷ ︸
n−times

if n > 0

−(1K + · · ·+ 1K︸ ︷︷ ︸
(−n)−times

) if n < 0.

We denote by I(K, F) the ideal in K[X] generated by qK(F) = {qK(f1), . . . , qK(ft)},
where for any 1 ≤ i ≤ t, qK(fi) is a polynomial in D[X]

qK(fi) =
∑

ν∈N

ψ(fi(ν))X
ν , .

Observe that, for any field K, the image of ψ is contained in D.

Definition 8.2.2. Let K be a field. Let I be an ideal in K[X]. We say that I is

simply-generated by B if there is a finite basis B = {b1, . . . , bs} for I s.t. B ⊆
D[X]. We say that I is simply-generated if it is simply-generated by B for some B.

Lemma 8.2.3. Let I be an ideal in K[X] generated by t polynomials, g1, . . . , gt ∈
D[X]. Then it is possible to compute a Gröbner basis for I performing only operations

in D[X].

Proof. To obtain a Gröbner basis from {g1, . . . , gt} the Möller algorithm ([BM09],
[Morar], [Möl88]) prescribes two operations, which are applied iteratively on an in-
termediate basis B, being the first B equal to {g1, . . . , gt}. The first is the com-
putation of the S-polynomials of all pairs from B. The second is the reduction of
the S-polynomials with respect to B. There are several definitions for S-polynomials
present in the literature. The one we use here is in accordance with [BM09] and
Corollary 46.6.1 in [Morar]

S(a, b) =
lcm(LC(a),LC(b))

LC(a)

lcm(LM(a),LM(b))

LM(a)
a− lcm(LC(a),LC(b))

LC(b)

lcm(LM(a),LM(b))

LM(b)
b

145

Chapter 8. Computing the optimal root bound via Gröbner bases

It is immediate that all coefficients involved in this computation remain in D. As re-

gards reductions, we consider the Zacharias canonical normal form reduction ([Morar],

[Zac78]) which again keeps the coefficients in D. As a consequence, all the operations

performed in this algorithm will keep the coefficients in D and so all intermediate

bases will be in D[X] as well. When the algorithm terminates, the last intermediate

basis will be a Gröbner basis for I.

Thanks to the previous lemma, it is easy to see that a simply-generated ideal has

a d-red Gröbner basis.

Corollary 8.2.4. Let I be a simply-generated ideal. Then:

1. I has a Gröbner basis G′ ⊂ D[X].

2. its reduced Gröbner basis G = GB(I) is in P[X]

3. it has a d-red Gröbner basis G′′ = G(I)

Proof.

1. Thanks to Lemma 8.2.3, we have computed a Gröbner basis G′ for I performing

only operations in D[X] and so G′ ⊂ D[X].

2. From G′ we can easily obtain the reduced Gröbner basis G by performing in-

terreductions in G. Since the interreductions involve only polynomial divisions

and we start from polynomials over the field P, the resulting polynomial set will

be again in P[X].

3. It is a direct consequence of 2) and Proposition 8.1.9.

Note that, generally speaking, G′ 6= G 6= G′′.

Definition 8.2.5. Let K = {Kh}h∈H be a set of fields, indexed by a set H. For any

h ∈ H, let Ih be an ideal in Kh[x1, . . . , xr].

We say that the ideal set {Ih}h∈H is F-linked if there is a set of defining function

F = {f1, . . . , ft} with fi : N 7→ Z, N finite subset of Nr, 1 ≤ i ≤ t, such that:

for any h ∈ H, Ih = I(Kh, F).

Example 8.2.6. We takeX = {x, y}, K1 = F2, K2 = F3. Let I2 = 〈x, x+y+xy, x+y〉
be an ideal in F2[x, y] and I3 = 〈2x+y+2xy, 2x+y〉 be an ideal in F3[x, y]. To see that

I2 and I3 are F−linked we consider the ideal I0 in Q[x, y], defined by I0 = 〈g1, g2, g3〉

146

8.2. Linked ideals

with g1 = 5x+4y+2xy, g2 = 3x+3y+3xy, g3 = −x+y. By reducing the coefficients

of g1, g2, g3 in F2 we obtain g′1 = x, g′2 = x+y+xy, g′3 = x+y, which is a basis for I2.

Similarly, by reducing the coefficients of g1, g2, g3 in F3 we obtain g′′1 = 2x+ y+2xy,

g′′2 = 0, g′′3 = 2x + y, which is a basis for I3. Thus I2 and I3 are F -linked, choosing

N = {(1, 0), (0, 1), (1, 1)}, F = {f1, f2, f3} with

f1(1, 0) = 5, f2(1, 0) = 3, f3(1, 0) = −1,

f1(0, 1) = 4, f2(0, 1) = 3, f3(0, 1) = 1,

f1(1, 1) = 2, f2(1, 1) = 3, f3(1, 1) = 0.

Lemma 8.2.7. Let K = {Kh}h∈H be a set of fields, indexed by a set H. For any h ∈
H, let Ih be an ideal in Kh[X]. If {Ih}h∈H is an F -linked set, then any I ∈ {Ih}h∈H
is simply-generated.

Proof. Let us suppose F = {f1, . . . , ft}. Let h ∈ H . Let F = Kh. We have that I =

Ih. By definition I = I(F, F) = 〈qF(f1), . . . qF(ft)〉, where qF(fi) =
∑

ν∈N ψ(fi(ν))X
ν ,

1 ≤ i ≤ t and ψ(fi(ν)) ∈ D(F) for any ν ∈ N . Thus I is simply-generated.

Lemma 8.2.8. Let I ⊆ K[x1, . . . , xr] be a simply-generated ideal. Then there is a set

of defining functions F such that the set {I} is F−linked.

Proof. Let B = {b1, . . . , bs} be a finite basis for I ⊆ K[x1, . . . , xr] s.t.

bj =
∑

ν∈Nj

aν,jX
ν , 1 ≤ j ≤ s

with any coefficient aν,j in D. This basis must exist because I is simply-generated.

Let N be ∪1≤j≤sNj . For any 1 ≤ j ≤ s, we construct a function fj : N 7→ Z, as

follows:

fj(ν) =

aν,j, if ν ∈ Nj

0, otherwise.

Let F be the set {f1, . . . , fs}. Then by construction it is obvious that

I = I(K, F).

In the previous lemma, we have seen how to define a function set from a basis

B for simply-generated ideal. From now on, we denote by F(B) the function set

so obtained. So, the lemma could be made more precise by stating that I is F(B)-

linked. The definition of F(B)-linked set depends clearly on the choice of the basis

B.

147

Chapter 8. Computing the optimal root bound via Gröbner bases

Example 8.2.9. Let us consider the basis B = {2y + 1, x} in Z[x, y] and the ideals

I0 = I(Q,F(B)) and I2 = I(F2,F(B)). Clearly, G0 = {2y + 1, x} is the d-red

Gröbner basis of I0 with respect any monomial order, while the d-red basis of I2 is

G2 = {1}. So, I0 and I2 are F(G0)-linked but not F(G2)-linked.

Example 8.2.10. Let I0 = 〈y+2x, y−x+z〉 ∈ Q[x, y, z] and I3 = 〈y−x, y−x+z〉 ∈
F3[x, y, z] be two F -linked ideals. Their d-red bases with respect to the lexicographic

order z < y < x are, respectively, G(I0) = {3y + 2z, 3x− z} and G(I3) = {z, x− y}.
Clearly, I0 and I3 are F(B)-linked, with B = {y+2x, y− x+ z}. We show that they

are neither F(G0)-linked, nor F(G3)-linked. In fact:

• if I0 and I3 are F(G0)-linked, we have that {z, 2z} is a basis of I3, which is

false;

• if I0 and I3 are F(G3)-linked, we have that {z, x − y} is a basis for I0. Note

that {z, x − y} would then be the d-red basis of I0, which is impossible, since

I0 has the d-red basis {3y + 2z, 3x− z}.

In Definition 8.2.5, we called F -linked the ideals over different fields which have

formally a same basis in Z[x1, . . . , xr], let us say, B. In the following theorem we

give a sufficient condition for which two F -linked ideals share also a same Gröbner

basis in Z[x1, . . . , xr] and we expose some consequence of this fact. To obtain this,

starting from a basis in Z[x1, . . . , xr], we need an algorithm which provides a Gröbner

basis in Z[x1, . . . , xr] performing computations only in Z[x1, . . . , xr]. This is possible

thanks to the development of a Gröbner theory for polynomial rings over euclidean

domains started by Kandri-Rody and Kapur in [KRK88], improved by L. Pan for

polynomial rings over principal ideal domains ([Pan89]) and finally concluded by

Möller for polynomial over principal ideal rings ([Möl88]). Once we can use the

Möller algorithm to obtain a Gröbner basis from B, we adapt the idea of Gröbner

trace in [Tra88] to find a set of F -linked ideals which have a Gröbner basis formally

equivalent to one produced by Möller algorithm.

Theorem 8.2.11. Let K = {Kh}h∈H be a set of fields, indexed by a set H, such that

for any p ∈ P there exist hp ∈ H with char(Khp
) = p. If 0 ∈ H, then K0 = Q. For

any h in H let Ih be an ideal in Kh[x1, . . . , xr] . Let < be any ordering. Suppose that

{Ih}h∈H is F -linked. Denote by Gh = G(Ih) the d-red basis of Ih w.r.t. <. If 0 /∈ H

let I0 = I(Q, F). Denote by G0 = G(I0) the d-red basis of I0.

Then there is a prime p̄ ∈ P and B̄ ⊆ Z[x1, . . . , xr] Gröbner basis of I0, such that

the ideals {Ih | h ∈ H, char(Kh) ≥ p̄} are F(B̄)-linked. Let F̄ = F(B̄). Then

a) qKh(F̄) is a Gröbner basis for Ih if char(Kh) ≥ p̄;

148

8.2. Linked ideals

b) for any p ≥ p̄, Ghp
= {1} ⇐⇒ G0 = {1};

c) p̄ can be computed in a finite time.

Proof. Since {Ih}h∈H is an F -linked set, there is a basis B = {b1, . . . , bs} with bi ∈
Z[x1, . . . , xr] for 1 ≤ i ≤ s such that, for any h ∈ H , qKh(F(B)) = qKh(F) is a

basis for Ih. Thanks to Möller algorithm ([BM09, Morar, Möl88]), we can compute

in Z[x1, . . . , xr] a Gröbner basis of I0, involving only coefficients in Z as described in

Lemma 8.2.3. Let us denote such basis as B̄. Let C be the subset of Z containing

all coefficients that occur in the computation of B̄. By termination of the Möller

algorithm, C is finite and hence there are two integers m1, m2 ∈ Z such that m1 =

min{c | c ∈ C} and m2 = max{c | c ∈ C}. Let p̄ be the smallest prime number s.t.

p̄ > |m1|, |m2|. Suppose now that p ∈ P is such that p > p̄, Ihp
= I(Khp

, F) with

char(Khp
) = p, and we compute a Gröbner basis for Ihp

using the Möller algorithm

as in the I0 case ([Tra88]). Since Ihp
is F -generated, it has a basis Bp = qKhp (F) =

qKhp (F(B)) which is formally the same as B0 = qQ(F) = B, but now when we make

calculations we have to reduce modulo p every time we compute a new coefficient.

But we never need to do so, because p is larger than any coefficient which appears

in our computation. Hence every calculation in the Ihp
case is formally the same as

the corresponding calculation in I0 case. In particular, the resulting basis will be the

same, from a formal point of view, so that the two ideals are F(B̄)-linked.

a) It is clear that qKhp (F̄) is a Gröbner basis of Ihp
, since the reduction of the S-

polynomials of qKhp (F̄) is zero, as it is possible to check following the corresponding

computations for the S-polynomials of B̄.

b) We have that G0 = {1} if and only if B̄ contains a constant polynomial different

from zero. In the same way, thanks to a), Ghp
= {1} if and only if qKhp (F̄)

contains a constant polynomial different from zero. By construction, B̄ contains a

constant polynomial different from zero if and only if qKhp (F̄) contains a constant

polynomial different from zero. So, G0 = {1} ⇐⇒ Ghp
= {1} for any p ≥ p̄.

c) p̄ is clearly computed in a finite time, since the coefficient set C is finite and the

Möller algorithm terminates in a finite time.

We can use the previous lemmas, in order to prove the main result of this section.

Theorem 8.2.12. Let K = {Kh}h∈H be a set of fields, indexed by a set H. For any

h in H let Ih be an ideal in Kh[X]. Suppose that the ideal set {Ih}h∈H is F -linked.

Suppose that we want to test whether there is an h s.t. V(Ih) 6= ∅. Then we can

perform our test in a finite time.

149

Chapter 8. Computing the optimal root bound via Gröbner bases

Proof. We assume without loss of generality F = {f1, . . . , ft}. Let < be any ordering

and for any h ∈ H , let Gh = G(Ih) be the d-red basis of Ih w.r.t. <.

We have already seen that V(Ih) = ∅ if and only if Gh = {1}. Therefore, in order

to perform our test we would have to compute all Gh for h ∈ H . If H is finite, we

have our claim. We suppose that H is infinite. We start to enlarge {Kh}h∈H (and

{Ih}h∈H), by adding all prime fields and Q, as follows. We denote by H ′ the index

set

H ′ = H ∪ {0} ∪ P.

Permuting the indices of H ′, if necessary, we can assume without loss of generality

that K0 is the field of rationals K0 = Q and for any p ∈ P, Kp is the prime field

Kp = Zp. We have that

{Kh}h∈H′ = {Kh}h∈H ∪Q ∪ {Zp}p∈P .

Let I0 be the ideal I(Q, F) which is a simply-generated ideal in Q[x1, . . . , xr]. Sim-

ilarly, for any p ∈ P, Ip is the ideal I(Zp, F) which is a simply-generated ideal in

Zp[x1, . . . , xr]. By construction, we have that

{Ih}h∈H′ is an F -linked set.

We decompose our field set and ideal set according to the characteristic. For any

p ∈ P, let Hp, H0 s.t.

H ′ = (⊔p∈PH
p) ⊔H0,

∀ p ∈ P, ∀ h ∈ Hp, char(Kh) = p,

∀ h ∈ H0, char(Kh) = 0.

Since {Ih}h∈H′ is F -linked, then any Ih for h ∈ H ′ is simply-generated and we denote

by Bh the basis qKh(F) of Ih, where q(fj) ∈ D(Kh), for any h ∈ H ′ and for all

1 ≤ j ≤ t. Then we immediately get that for any p ∈ P,

∀h1, h2 ∈ Hp, Bh1 = Bh2, Gh1 = Gh2, (8.1)

∀h1, h2 ∈ H0, Bh1 = Bh2, Gh1 = Gh2. (8.2)

By Theorem 8.2.11 we have that there exists p̄ ∈ P and a basis B̄ ⊆ Z[x1, . . . , xr]

such that {Ih}h∈Hp,p>p̄ are F(B̄)-linked and Gp = {1} ⇐⇒ G0 = {1}. Thus it is

sufficient to compute the finite set G = {G0} ∪ {Gi}2≤i<p̄, p∈P to perform our test, in

fact:

• for h ∈ P, h ≥ p̄: Gh = {1} if and only if G0 = {1}

150

8.2. Linked ideals

• for h ∈ P, 0 ≤ h < p̄: Gh ∈ G

• for h /∈ P: Gh = Gp for some p ∈ P or Gk = G0, for (8.1) and (8.2).

Let us take G ′ = {Gh | Gh ∈ G, Gh 6= {1}}. We have three cases.

i. Gh = {1} for all Gh ∈ G (i.e. G ′ = ∅) then Gh = {1}, ∀ h ∈ H ;

ii. G ′ 6= ∅ and there is no p ∈ P s.t.

Gp ∈ G ′ and ∃ h ∈ H s.t. char(Kh) = p;

in this case the enlarged set {Ih}h∈H′ has some elements with a non-empty variety,

but {Ih}h∈H has not.

iii. G ′ 6= ∅ and there is at least a p ∈ P s.t.

Gp ∈ G ′ and ∃ h ∈ H s.t. char(Kh) = p;

in this case there is an ideal Ih in {Ih}h∈H such that V(Ih) 6= ∅.

We provide an example, which uses the result of Lemma 8.2.12

Example 8.2.13. We take X = (x, y, z), {Kh}h∈H a set of fields. For each h ∈ H

we consider the polynomial ring Kh[x, y, z] with the lexicograpich order z < y < x.

Let B = {2x + y + z, y2 + yz + 1} be a basis in Q[x, y, z] and let {Ih}h∈H a set of

F(B)-linked ideals with Ih ∈ Kh[x, y, z], for each h ∈ H . Observe that B is a reduced

Gröbner basis for I0 = I(F(B),Q). If we want to check if there is an h ∈ H such

that V(Ih) 6= ∅ we proceed as follows.

• First, we compute G0 = G(I0), the reduced Gröbner basis of I0, recording the
maximal coefficients, c̄, which appears in the computations. We have:

S(2x+ y + z, y2 + yz + 1) = 2xy2 + y3 + y2z − 2xy2 − 2xyz − 2x = −2xyz − 2x+ y3 + y2z

S(−2xyz − 2x+ y3 + y2z, 2x+ y + z) = −2xyz − 2x+ y3 + y2z + 2xyz + y2z + yz2 = −2x+ y3 + 2y2z + yz3

S(−2x+ y3 + 2y2z + yz3, 2x+ y + z) = −2x+ y3 + 2y2z + yz3 + 2x+ y + z = y3 + 2y2z + yz3 + y + z

S(y3 + 2y2z + yz3 + y + z, y2 + yz + 1) = y3 + 2y2z + yz3 + y + z − y3 − y2z − y = y2z + yz3 + z

S(y2z + yz3 + z, y2 + yz + 1) = y2z + yz3 + z − y2z − yz3 − z = 0.

Then G0 = {2x+ y + z, y2 + yz + 1} and the maximum absolute value of the

coefficients which appears in the computation is c̄ = 2.

• We set p̄ as the smallest integer larger than c̄, i.e. p̄ = 3.

151

Chapter 8. Computing the optimal root bound via Gröbner bases

• For any prime p less than p̄ we compute Gp, the reduced Gröbner basis of

Ip = I(F(B),Fp), i.e. G2 = {1}.

• We collect G0, G2 in G = {G0, G2}.

• For any h ∈ H we have that:

a) if char(K) ≥ 3 than Gh = G(Ih) is G0,

b) if char(K) = 2 than Gh = G(Ih) is G2.

• Since G0 6= {1} and G2 = {1}, we conclude that for h ∈ H with Ih ⊆ Kh, if

char(Kh) = 2 then V(Ih) = ∅, otherwise V(Ih) 6= ∅.

8.3 The maximal root function

In Section 3.1 we have seen how the maximal root function f can be characterized

with respect to the distance of cyclic codes. We reformulate the result of Theo-

rem 3.1.18. Let C ∈ Cn be a cyclic code of length n over any Fq, with defining set

SC and distance d(C). For any (n, S) ∈ D (see Definition 3.1.1), the maximal root

function can be described as follows:

f(n, S) = min{d(C) | C ∈ Cn, SC = S}.

In principle, from this characterization and the result of Theorem 5.2.1, to compute

f(n, S) for a given pair (n, S) ∈ D we have to execute Algorithm A of Section 5.2 for

all q = pm, p ∈ P, m ≥ 1. This is obviously a non-effective algorithm, since, even if

the Algorithm A requires a finite time, we have to perform it for an infinite number

of times. We can do slightly better, considering a different system rather than ĴC(w),

which is used in Algorithm A.

Let C be an [n, k, d] cyclic code over Fq and let w be an integer, 1 ≤ w ≤ n. We

are now ready to introduce two systems depending on w and C, J̃C(w) and J̄C(w),

which are strictly related to the system ĴC(w) defined in Theorem 5.2.1. First we

recall the definition of the polynomials pi,j, then we define J̃C(w).

Definition 8.3.1. Let K be a field. Let n ≥ 2, r ≥ 1. Let i, j be two integers s.t.

1 ≤ i 6= j ≤ r. We denote by pi,j the following polynomials in K[x1, . . . , xr]

pi,j(xi, xj) =
n−1∑

h=0

xhi x
n−1−h
j =

xni − xnj
xi − xj

152

8.3. The maximal root function

Definition 8.3.2. Let C be an [n, k, d] cyclic code over Fq with complete defining

set SC = {h1, . . . hn−k}. Let w be an integer such that 1 ≤ w ≤ n. Let pi,j ∈
Fq[z1, . . . , zw] as in Definition 8.3.1. We denote by J̃C(w) the following polynomial

system in Fq[z1, . . . , zw, y1, . . . , yw, t]:

J̃C(w) =

y1z
h1
1 + · · ·+ ywz

h1
w = 0

. . .

y1z
hn−k

1 + · · ·+ ywz
hn−k
w = 0

zn1 − 1 = 0

. . .

znw − 1 = 0

yq1 − y1 = 0

. . .

yqw − yw = 0

p1,2(z1, z2) = 0

. . .

pi,j(zi, zj) = 0

. . .

pw−1,w(zw−1, zw) = 0

ty1 . . . yw − 1 = 0

(8.3)

For any C ∈ C, system J̃C(w) is nothing else that the system obtained by applying

the Rabinovich trick to the system ĴC(w). In particular, the two solution sets are

in bijection and hence we may formulate two theorems, which are the analogous of

Theorem 5.2.1.

Theorem 8.3.3. Let C and [n, k, d] cyclic code over Fq. Then, for 1 ≤ w ≤ n, V:

Aw(C) 6= 0 ⇐⇒ V(J̃C(w)) 6= ∅ ⇐⇒ G(J̃C(w)) 6= {1}

Theorem 8.3.4. Let C be a cyclic code over Fq. Then C has distance δ if and only

if

V(J̃C(w)) = ∅, 1 ≤ w ≤ δ − 1 and V(J̃C(δ)) 6= ∅

The other system we introduce, J̄C(w), is obtained from J̃C(w), by removing the

153

Chapter 8. Computing the optimal root bound via Gröbner bases

equations yqi − yi, for 1 ≤ i ≤ w.

J̄C(w) =

y1z
h1
1 + · · ·+ ywz

h1
w = 0

. . .

y1z
hn−k

1 + · · ·+ ywz
hn−k
w = 0

zn1 − 1 = 0

. . .

znw − 1 = 0

p1,2(z1, z2) = 0

. . .

pi,j(zi, zj) = 0

. . .

pw−1,w(zw−1, zw) = 0

ty1 . . . yw − 1 = 0

(8.4)

We need some preliminaries results to understand the gain in using J̄C(w).

Lemma 8.3.5. Let K = Fpm be a finite field with p ∈ P, m ≥ 1. Let I be an ideal in

K[x1, . . . , xr]. Then

V(I) 6= ∅ ⇐⇒ ∃ s ≥ 1 s.t. VE(I) 6= ∅, with E = Fpms

Proof. If V(I) = ∅ then obviously there are not any rationals points in any extension

field.

Otherwise, if V(I) = ∅, let (x̄1, . . . , x̄r) ∈ V(I). Any x̄i must lie in a finite-

dimensional extension of K, because K = ∪∞
j=1Fpmj . For any 1 ≤ i ≤ r, let si be an

integer s.t. x̄i ∈ Fpmsi . We define s and E as

s =
∏

i=1,...,r

si, E = Fpms.

Then x̄i ∈ Fpmsi ⊆ E for any 1 ≤ i ≤ r and hence (x̄1, . . . , x̄r) ∈ V(I), which implies

that VE(I) 6= ∅, as required.

Lemma 8.3.6. Let w be a fixed integer, w ≥ 1. Let p ∈ P be any prime. Let J̄p the

ideal in Fp[z1, . . . , zw, y1, . . . , yw, t] generated by the polynomials of J̄C(w). Let J̃ps the

ideal in Fps[z1, . . . , zw, y1, . . . , yw, t] generated by the polynomials of J̃C(w). Then

V(J̄p) = ∅ ⇐⇒ V(J̃ps) = ∅, ∀ s ≥ 1, .

Proof.

154

8.3. The maximal root function

=⇒ . Since Fps ⊆ Fp for any s ≥ 1, we have V(J̄ps) ⊆ V(J̄p). On the other

hand J̄ps ⊆ J̃ps, which implies V(J̄ps) ⊇ V(J̃ps). Collecting all these inclusions

together, we obtain:

V(J̃ps) ⊆ V(J̄ps) ⊆ V(J̄p) = ∅
which implies V(J̃ps) = ∅.

⇐= . Let us suppose V(J̄p) 6= ∅ then for Lemma 8.3.5 there exist s ≥ 1 such that

VFps
(J̄p) 6= ∅. On the other hand VFps

(J̄p) = V(¯̄Jp), where

¯̄Jp = J̄p + 〈zps1 − z1, . . . , z
ps

w − zw, y
ps

1 − y1, . . . , y
ps

w − yw, t
ps − t〉.

Since J̃ps ⊆ ¯̄Jp we obtain V(J̃ps) ⊇ V(¯̄Jp) 6= ∅.

Lemma 8.3.7. Let (n, S) ∈ D. For any p ∈ Pn, there is an integer mp ≥ 1 and

a cyclic code Cp over Fpmp with length n, distance d(Cp) and complete defining set

SCp
= S s.t.

f(n, S) = min
p∈Pn

{d(Cp)}.

Proof. Let p ∈ P. Let mp the smallest integer s.t. mp ≥ 1 and n | pmp − 1, so that

Fpmp is the splitting field of xn−1 over Fp. Let α be a primitive element of Fpmp . Let

g be the polynomial

g(x) ∈ Fpmp , g(x) =
∏

i∈S

(x− αi).

Let Cp the cyclic code of length n over Fpmp generated by g. Then it is obvious that

SCp
= S (the cyclotomic cosets are singletons in Fpmp). We have only to show

min{d(C) | C ∈ Cn, SC = S} = min
p∈Pn

{d(Cp)}.

It is enough to show

d(Cp) = min{d(C) | C ∈ Cn, SC = S, χ(C) = p}, (8.5)

where χ(C) is as in Definition 3.1.2. In this case:

min
p∈Pn

{d(Cp)} = min
p∈Pn

{min{d(C) | C ∈ Cn, SC = S, char(C) = p}}

which is obviously equal to

min{d(C) | C ∈ Cn, SC = S}.

But (8.5) follows immediately from Proposition 3.1.8, since all cyclic codes with the

same length, same complete defining set, and same field characteristic have the same

distance.

155

Chapter 8. Computing the optimal root bound via Gröbner bases

We denote by J̄ps(w) the ideal in Fps[z1, . . . , zw, y1, . . . , yw, t] associated to the

system J̄Cp
(w), for any s ≥ 1. Similarly, with J̃ps(w) we denote the ideal in

Fps[z1, . . . , zw, y1, . . . , yw, t] associated to the system J̃Cp
(w).

Lemma 8.3.8. Let (n, S) ∈ D and let p be any prime coprime with n, i.e. p ∈ Pn.

Let mp be the smallest integer such that n | pmp − 1 and let Cp be the cyclic code over

Fpmp of length n and complete defining set S. Then d(Cp) = d if and only if

V(J̄p(w)) = ∅, 1 ≤ w ≤ d− 1 and V(J̄p(d)) 6= ∅.

Proof.

⇐= . For 1 ≤ w ≤ d − 1 if V(J̄p(w)) = ∅ then, from Lemma 8.3.6, V(J̃ps(w)) = ∅
for any s ≥ 1. In particular, for any s we have that V(J̃psmp (w)) = ∅, where

1 ≤ w ≤ d− 1.

On the other hand, if V(J̄p(d)) 6= ∅ then there is an s ≥ 1 s.t. V(J̃ps(d)) 6= ∅. In

particular, we have ∅ 6= V(J̃ps(d)) ⊆ V(J̄psmp (d)), which implies V(J̃pmps(d)) 6= ∅.
We have proved that there is an s ≥ 1 s.t

V(J̃psmp (w)) = ∅, 1 ≤ w ≤ d− 1 and V(J̄psmp (d)) 6= ∅.

Then from Theorem 8.3.4 there is a code C over Fpsmp , with distance d. But

this code has same length, same defining set and same characteristic of Cp, then

for Proposition 3.1.8, they have also the same distance.

=⇒ . If d(Cp) = d, by Theorem 8.3.4, V(J̃pmp (d)) 6= ∅ and it implies, by Lemma 8.3.6,

V(J̄p(d)) 6= ∅.
Let us suppose that for some w, 1 ≤ w ≤ d − 1, we have V(J̄p(w)) 6= ∅, then

V(J̃ps(w)) 6= ∅ for some s ≥ 1. In particular, for such s it holds V(J̃psmp (w)) 6= ∅.
But then we have a code Cpsmp , of length n, defining set S, defined of distance

less than d. But this is not possible because for Proposition 3.1.8 d(Cpsmp) =

d(Cp) = d. Hence V(J̄p(w)) 6= ∅ for any 1 ≤ w ≤ d− 1.

Finally, we are ready for the main result of this section.

Theorem 8.3.9. Let (n, S) be any element of D. Then the value of the optimal root

function, f(n, S), can be computed in a finite time.

Proof. Let p be any prime coprime with n, i.e. p ∈ Pn. For any such p, let mp be

the smallest integer such that n | pmp − 1 and let Cp the cyclic code generated by

156

8.3. The maximal root function

g(x) =
∏

i∈S(x − αi), where α is any primitive n-th root of unity over Fp. From

Lemma 8.3.7, we have:

f(n, S) = min
p∈Pn

{d(Cp)}, (8.6)

where d(Cp) indicates the distance of Cp. From Lemma 8.3.8, we have that (8.6)

becomes

f(n, S) = min
p∈Pn

{w | V(J̄p(w)) 6= ∅, V(J̄p(w − 1)) = · · · = V(J̄p(1)) = ∅}

= min
p∈Pn

{w | V(J̄p(w)) 6= ∅}

Thus, to compute f(n, S) we have to check the minimum w, 1 ≤ w ≤ n, such that

there is a prime p ∈ Pn with V(J̄p(w)) 6= ∅. But {J̄p(w)}p∈Pn
is a set of F -linked

ideals and thanks to Theorem 8.2.12 we can do this check in a finite time for each

w. Since the number of w to check is finite, the time needed to compute f(n, S) is

finite.

Following the proof of Theorem 8.3.9, we propose an algorithm which, given any

(n, S) ∈ D, returns f(n, S) in a finite time.

Algorithm D

Input

A pair (n, S) ∈ D.

A value w = 1.

Output

f(n, S).

Cycle

Construct the system J̄0(w) in Q[X].

Compute p̄ as in Lemma 8.2.11.

Compute G = {G(J̄p(w)} ∪ {J̄p(w)} for p ∈ Pn, p < p̄.

If for all G ∈ G, G = {1}, then increase w to w + 1.

Last step

Output w.

We conclude this section with an example of computation for f(n, S).

Example 8.3.10. Let (n, S) be a pair in D with n = 6, S = {0, 1, 3}. For the

BCH bound we have that f(n, S) ≥ 3 and we ask if f(n, S) = 3. We consider X =

(z1, z2, z3, y1, y2, y3, t) with DegRevLex ordering induced by z1 > · · · > z3 > y1 · · · >
y3 > t. Let J̄0(3) = I(J̄C(3)) the ideal in Q[X] associated to the system J̄C(3). If we

compute the G0 = G(J0(3)) the reduced Gröbner basis of J0(3), we obtain:

157

Chapter 8. Computing the optimal root bound via Gröbner bases

G0 = {y1 + y2 + y3, z1 + z2 + z3, y
2
2 + y2y3 + y23, z3y2 − z2y3, z2y2 + z2y3 + z3y3, z

2
2 +

z2z3 + z23y
3
3t− 1z63 − 1z2z

5
3 − y2y

2
3t}.

In particular, G0 6= {1}, so there is p ∈ Pn such that V((J̃ps(3)) 6= ∅. Hence,

f(n, S) = 3.

158

Part III

Appendix

159

9.1 Programs for the root bounds

In this chapter we provide our implementations of the BCH bound, the HT bound,
the BS bound, bound I, bound II and bound C. We used these programs to compute
Tabular 6.2-6.3-6.4-6.5-6.6-6.7 in Section 6.1.

/*

USAGE: dfset(F,n,g); F a field, n aninteger, g a polynomial

RETURN: a list of 0 and 1, representin the complete defining

set of the code over F with length n and generator polynomial g.

L[i]==0 if in the definig set, L[i]==0, otherwise.

*/

function dfset(F,n,g)

local R, E,a,Sc,L;

R<x>:=PolynomialRing(F);

E:=SplittingField(x^n-1);

a:=RootOfUnity(n,F);

Sc:= {i: i in [0..n-1] | Evaluate(g,a^i) eq 0};

L:=[1: i in [1..n]];

for i in Sc do

L[i+1]:=0;

end for;

return L;

end function;

/*

USAGE: Invariant(F,n,g); F a field, n aninteger, g a polynomial

RETURN: a list containig the complete defining sets of all

codes over F with length n and naturally equivalent

to the code generated by g.

*/

function Invariant(F,n,g,option)

local R, E,a,Sc,SSc,L, LL;

R<x>:=PolynomialRing(F);

E:=SplittingField(x^n-1);

a:=RootOfUnity(n,F);

Sc:= {i: i in [0..n-1] | Evaluate(g,a^i) eq 0};

LL:=[];

161

Chapter 9.

k:=1;

while (k lt n) do

if (GCD(k,n) eq 1) then

SSc:={(k*j) mod n: j in Sc};

L:=[1: i in [1..n]];

if (option eq 1) then

for i in SSc do

L[i+1]:=0;

end for;

LL cat:=[L];

else

LL cat:=[SSc];

end if;

end if;

k+:=1;

end while;

// LL;

if (#LL eq EulerPhi(n)) then

//controllo che la cardinalità sia giusta e poi tolgo le ripetizioni

SSc:={J: J in LL};

LL:=[J: J in SSc];

return LL;

else return "error";

end if;

end function;

/*

USAGE: AllCyclicCodes(n,F); n an integer, F a field

RETURN: a list containing all the generator polynomials

of cyclic codes of length n and over F, except

for the whole space and the null-code.

*/

function AllCyclicCodes(n,F)

R<x>:=PolynomialRing(F);

Fp:=Factorization(x^n-1);

nf:=#Fp;

LL:=[];

for i in [1..2^nf-2] do

L:=IntegerToSequence(i,2);

g := 1;

for j in [1..#L] do

if L[j] eq 1 then

g := g*Fp[j][1];

end if;

162

9.1. Programs for the root bounds

end for;

// Uncomment here to have the list of the codes

// LL cat:=[CyclicCode(n,g)];

// Uncomment here to have the list of the generator polynomials

LL cat:=[g];

// Uncomment here to have the list of the def. sets

// LL cat:=[dfset(F,n,g)]

end for;

return LL;

end function;

/*

USAGE: block(a,b,M); M a list, a, b intengers less than or equal to

the size of M

RETURN: if b>a the list [M[a], M[a+1], ... , M[b]]

else [M[b], M[b+1], ..., M[1],...,M[a]]

*/

function block(a,b,M)

if (a le b) then

return M[a..b];

else

return M[a..#M] cat M[1..b];

end if;

end function;

/*

USAGE: bch(M); M a list of 0 and 1

RETURN: the bch bound for the codes having M as complete def. set

*/

function bch(M)

count:= 0;

bound:= 0;

z:=#M;

for i in [1..z] do

if (M[i] eq 0) and (bound lt z) then

count+:=1;

bound:=Max(bound, count+1);

else count:=0;

end if;

end for;

if (count ne 0) then

i:=1;

while (M[i] eq 0) and (bound lt z) do

count+:=1;

163

Chapter 9.

bound:=Max(bound, count+1);

i+:=1;

end while;

end if;

return bound;

end function;

/*

USAGE: ht(M); M a list of 0 and 1

RETURN: the ht bound for the codes having M as complete def. set

*/

function ht(M)

n:=#M; // length of the cyclic code

dist:=bch(M);

lmax:=dist-1; // max length for the zero block (0^l D^(r-l))

ix:=0; // starting point for the block

sx:=0; // counter for the blocks

lx:=0; // length of the zero-block

rx:=0; // length of the block (0^l D^(r-l))

for l in [1..lmax] do

for r in [l..n] do

gg:= GCD(r,n);

if (gg le l) then

for i in [1..n] do

bzeri:=i;

s:=0;

while (block(((bzeri-1) mod n +1),((bzeri +l-2) mod n +1),M)

eq [0:j in [1..l]]) do

// M[((bzeri-1) mod n +1)..((bzeri +l-2) mod n +1)];

s+:=1;

bzeri:=i+r*s;

end while;

if ((l+s) ge dist) then

dist:=l+s;

lx:=l;

rx:=r;

sx:=s;

ix:=i;

end if;

end for;

end if;

end for;

end for;

164

9.1. Programs for the root bounds

// Uncomment here to see the block which returns ht(M)

/*

printf"inizio: %o ", ix;

printf"l: %o ", lx;

printf"s: %o ", sx;

printf"r: %o ", rx;

printf"dist: %o ", dist;

printf"\n";

*/

return dist;

end function;

/*

USAGE: roos(M); M a list of 0 and 1

RETURN: the roos bound for the codes having M as complete def. set

*/

function roos(M)

n:=#M; // length of the cyclic code

dist:=bch(M);

lmax:=dist-1; // max length for the zero block (0^l D^(r-l))

ix:=0; // starting point for the block

sx:=0; // counter for the blocks

lx:=0; // length of the zero-block

rx:=0; // length of the block (0^l D^(r-l))

hx:=0;

holes:=0; // counter for the holes

for l in [1..lmax] do

for r in [l..n] do

gg:= GCD(r,n);

if (gg eq 1) then

for i in [1..n] do

bzeri:=i;

s:=0;

holes:=0;

while (holes lt l) do

if (block(((bzeri-1) mod n +1),((bzeri +l-2) mod n +1),M)

eq [0:j in [1..l]]) then

s+:=1; // found a block

else

holes+:=1; // found a hole

end if;

bzeri:=i+r*(s+holes);

165

Chapter 9.

end while;

if ((l+s) ge dist) then

dist:=l+s;

lx:=l;

rx:=r;

sx:=s;

ix:=i;

hx:=holes;

end if;

end for;

end if;

end for;

end for;

// Uncomment here to see the block which returns roos(M)

/*

printf"inizio: %o ", ix;

printf"l: %o ", lx;

printf"s: %o ", sx;

printf"r: %o ", rx;

printf"holes: %o", hx;

printf"dist: %o ", dist;

printf"\n";

*/

return dist;

end function;

/*

USAGE: bs(M); M a list of 0 and 1

RETURN: the "straight-version" of Betti-Sala bound

for the codes having M as complete def. set

*/

function bs(M);

n:=#M;

d:=bch(M);

lmax:=d-1;

ix:=0;

lx:=0;

mx:=0;

for l in [1..lmax] do // l is the length of the blocks

mMax:=Floor(lmax/l);

for m in [1..mMax] do // m is the number of blocks

for i in [1..n] do

166

9.1. Programs for the root bounds

if (block(i,((i+l*m-2) mod n +1),M) // found a long block

eq [0: j in [1..(m*l)]]) then

s:=0;

while ((block(((i+l*m+s*l) mod n+1),((i+ l*m+(s+1)*l-2) mod n +1),M)

eq [0: j in [1..(l-1)]]) and (s le m))do

s+:=1;

end while;

if s le m then // the small blocks are not enough

continue i;

else // small blocks found

if (m*l+l gt d) then

d:=m*l+l;

ix:=i;

lx:=l;

mx:=m;

break i;

end if;

end if;

end if;

end for;

end for;

end for;

// Uncomment here to see the pattern which returns bs(M)

/*

printf"inizio: %o ", ix;

printf"l: %o ", lx;

printf"m: %o ", sx;

printf"\n";

*/

return d;

end function;

/*

USAGE: BS(M); M a list of 0 and 1

RETURN: the Betti-Sala bound for the codes having M as complete def. set

*/

function BS(M)

return Max(bs(M), bs(Reverse(M)));

end function;

/*

USAGE: b2(M); M a list of 0 and 1

167

Chapter 9.

RETURN: the straight-version of bound II (Prop. 7.0.8)

for the codes having M as complete def. set

*/

function b2(M);

n:=#M;

d:=bch(M);

lmax:=d-1;

ix:=0;

lx:=0;

mx:=0;

sx:=0;

for l in [1..lmax] do // l is the length of the zero-blocks

mMax:=Floor(lmax/l);

if (n mod l) ne 0 then

for m in [1..mMax] do // m is the number of blocks

for i in [1..n] do

if (block(i,((i+l*m-2) mod n +1),M) eq [0: j in [1..(m*l)]]) then

s:=0;

while (block(((i+l*m+s*l) mod n+1),((i+ l*m+(s+1)*l-2) mod n +1),M)

eq [0: j in [1..(l-1)]])do

s+:=1;

end while;

if s le m then // the small blocks are not enough

continue i;

else // small blocks found

if (m*l+l +s-m-1 ge d) then

d:=m*l+l+s-m-1;

ix:=i;

lx:=l;

mx:=m;

sx:=s;

end if;

end if;

end if;

end for;

end for;

end if;

end for;

//Uncomment here to see the pattern which returns b2(M)

168

9.1. Programs for the root bounds

/*

printf"inizio: %o ", ix;

printf"l: %o ", lx;

printf"m: %o ", mx;

printf"s: %o ", sx;

printf" dist: %o ",d;

printf"\n";

*/

return d;

end function;

/*

USAGE: b1(M); M a list of 0 and 1

RETURN: the straight-version of bound I (Prop. 7.0.5)

for the codes having M as complete def. set

*/

function b1(M)

n:=#M; // length of the code

dist:=bch(M);

lmax:=dist-1; // max length of the zero-block (0^l D^r)(0^m D^r)^s

ix:=0; // staring point of the block

sx:=0; // counter for the small blocks

lx:=0; // length of the long block

mx:=0; // length of the small zero-block

rx:=0; // length of the small delta-block

dx:=0;

for l in [1..lmax] do

for m in [1..l] do

for r in [1..n-m-1] do

gg:= GCD(m+r,n);

if (gg le m) then

for i in [1..n] do

if (block(i,((i+l-2) mod n +1),M) eq [0: j in [1..l]]) then

// long block found

bzeri:=i+l+r;

s:=0;

while (block(((bzeri-1) mod n +1),((bzeri +m-2) mod n +1),M)

eq [0:j in [1..m]]) do

s+:=1;

bzeri+:=(m+r);

end while;

169

Chapter 9.

dx:= l+s+1-Floor(l/(m+r))*r-Max(0,((l mod (m+r)) -m));

if (dx ge dist) then

dist:=dx;

lx:=l;

mx:=m;

rx:=r;

sx:=s;

ix:=i;

end if;

end if;

end for;

end if;

end for;

end for;

end for;

//Uncomment here to see the pattern which returns b1(M)

/*

printf"inizio: %o ", ix;

printf"l: %o ", lx;

printf"m: %o ", mx;

printf"s: %o ", sx;

printf"r: %o ", rx;

printf"dist: %o ", dist;

printf"\n";

*/

return dist;

end function;

/*

USAGE: B1(M); M a list of 0 and 1

RETURN: the bound I (Proposition 7.05-7.06)

for the codes having M as complete def. set

*/

function B1(M)

return Max(b1(M), b1(Reverse(M)));

end function;

/*

USAGE: B2(M); M a list of 0 and 1

RETURN: the bound II (Proposition 7.08-7.09)

for the codes having M as complete def. set

*/

function B2(M)

170

9.1. Programs for the root bounds

return Max(b2(M), b2(Reverse(M)));

end function;

/*

USAGE: bC(M); M a list of 0 and 1

RETURN: the bound C (Theorem 7.1.13)

for the codes having M as complete def. set

*/

function bC(M)

return Max(B2(M),B1(M));

end function;

/*

USAGE: bC2(M); M a list of 0 and 1

RETURN: the maximum between bC and BS

for the codes having M as complete def. set

*/

function bC2(M)

return Max(bC(M),BS(M));

end function;

/*

USAGE: testTight(Field, n, filename); Field a field,

n an integer, filename a string

RETURN: - a file "filename".out with the number of codes of length

n for which the implemented bounds are tight

- a file "filename"_time.out with the times needed for

the computation

*/

procedure testTight(Field, n, filename)

local F,q;

f2:=filename cat"_time";

q:=#Field;

if GCD(n,q) eq 1 then

L:=AllCyclicCodes(n, Field);

// t:=Cputime();

distL:=[MinimumDistance(CyclicCode(n,j)):j in L];

// Cputime(t);

dfsetL:=[dfset(Field,n,j):j in L];

t:=Cputime();

BCH:=[bch(M): M in dfsetL];

time1:=Cputime(t); t:=Cputime();

HT:=[ht(M): M in dfsetL];

171

Chapter 9.

time2:=Cputime(t); t:=Cputime();

BetSal:=[BS(M): M in dfsetL];

time3:=Cputime(t); t:=Cputime();

ROOS:=[roos(M): M in dfsetL];

time4:=Cputime(t); t:=Cputime();

boundC:=[bC(M): M in dfsetL];

time5:=Cputime(t); t:=Cputime();

boundC2:=[bC2(M): M in dfsetL];

time6:=Cputime(t);

nbch:=0; nbs:=0; nht:=0; nroos:=0; nC:=0; nC2:=0;

for i in [1..#dfsetL] do

if (Max({distL[i],BCH[i],BetSal[i],HT[i],ROOS[i],boundC[i],boundC2[i]})

eq distL[i]) then

if (distL[i] eq BCH[i]) then

nbch+:=1;

end if;

if (distL[i] eq HT[i]) then

nht+:=1;

end if;

if (distL[i] eq BetSal[i]) then

nbs+:=1;

end if;

if (distL[i] eq ROOS[i]) then

nroos+:=1;

end if;

if (distL[i] eq boundC[i]) then

nC+:=1;

end if;

if (distL[i] eq boundC2[i]) then

nC2+:=1;

end if;

else

fprintf F, "\n ERROR ERROR ERROR \n";

printf "\n ERROR ERROR ERROR \n";

end if;

end for;

fprintf filename, "%5o & %5o & %8o & %8o & %8o & %8o & %8o & %8o \\\\ \n",

n, #dfsetL, nbch, nht, nbs, nroos, nC,nC2;

fprintf f2, "%5o & %5o & %8o & %8o & %8o & %8o & %8o & %8o \\\\ \n",

n, #dfsetL, time1, time2, time3, time4, time5, time6;

end if;

end procedure;

/*

USAGE: tightness(n1,n2,Field,filename); Field a field,

n1, n2, integers, filename a string

172

9.2. Programs for the strict bounds

RETURN: - a file "filename".out with a tabular containing

the number of codes of length n, n1<= n <= n2

for which the implemented bounds are tight

- a file "filename"_time.out with the times needed for

the computation

*/

procedure tightness(n1,n2,Field,filename)

f2:=filename cat"_time";

fprintf filename,"\\begin{tabular}{c|c|c|c|c|c|c|} \n";

fprintf filename,"\\hline \n";

fprintf filename, " n & N. codes & BCH & HT & BS & ROOS & BC & BC2 \\\\ \n ";

fprintf f2, " n & N. codes & BCH & HT & BS & ROOS & BC & BC2 \\\\ \n ";

for i in [n1..n2] do

if (i-n1) mod 20 eq 0 then

printf "n= %4o ---> %4o \n", i , n2;

elif (i-n1) mod 10 eq 0 then

printf " ---> \n";

end if;

testTight(Field, i, filename);

end for;

fprintf filename,"\\hline \n";

fprintf filename,"\\end{tabular} \n";

end procedure;

9.2 Programs for the strict bounds

In this section we provide our implementations of first and second realization of
singleton procedure, which correspond, as described in Section 4.2.

/*

USAGE: CirculantMatrix(v); v a list

RETURN: the circulant matrix obtained from v

*/

function CirculantMatrix(v)

local F,n,L;

F:=Parent(v[1]);

L:=[];

n:=#v;

for i in [0..n-1] do

L cat:= Rotate(v,i);

end for;

return(Matrix(F,n,n,L));

end function;

173

Chapter 9.

/*

USAGE: Aset(v); v a list of 0 and 1

RETURN: the A-set of v, (see Def. 2.2.15)

*/

function Aset(v)

local R,r,i,j,L,tmp,vv;

R:=[i: i in [1..#v] | v[i] eq 1];

r:=#R;

vv:=[];L:=[];

for i in [1..2^r-1] do

tmp:=IntegerToSequence(i,2);

if (#tmp lt r) then

tmp := tmp cat [0:i in [1..(r-#tmp)]];

end if;

for j in [1..#v] do

if j notin R then

vv[j]:=v[j];

else

for k in [1..r] do

vv[R[k]]:=tmp[k];

end for;

end if;

end for;

L cat:= [vv];

end for;

return L;

end function;

/*

USAGE: Equiv(M); M a list of 0 and 1, option an integer

RETURN: if option==1 then it returns the list of def. sets

naturally equivalent to M

otherwise it returns a list of list with 0 and 1

representing the def. sets naturally equivalent to M

*/

function Equiv(M,option)

n:=#M;

L1:=[];

L2:=[];

DS:=[i-1: i in [1..n] | M[i] eq 0];

for i in [1..n] do

if GCD(i,n) eq 1 then

LD:=[(i*j) mod n : j in [0..n] | j in DS];

LLD:=[1: i in [1..n]];

174

9.2. Programs for the strict bounds

for i in LD do

LLD[i+1]:=0;

end for;

L2 cat:=[LLD];

L1 cat:=[LD];

end if;

end for;

if option eq 1 then

return L1;

else

return L2;

end if;

end function;

/*

USAGE: CheckSingleton(M); M a matrix with entries 0 and 1

RETURN: a list with entries which correspond to a singleton

in M

*/

function CheckSingleton(M)

n:=Ncols(M);

m:=Nrows(M);

Sing:=[];

for j in [1..n] do

w:=[i: i in [1..m] |M[i,j] eq 1];

if (#w eq 1) then

Sing cat:=[[i,j]: i in w];

end if;

end for;

return Sing;

end function;

/*

USAGE: RandomSingletonProcedure(M); M a matrix with entries 0 and 1

RETURN: the number of steps for which the singleton procedure has

success on M

NOTE: it is a different implementation of the singleton procedure

w.r.t. SingletonProcedure, which follows.

*/

function RandomSingletonProcedure(M)

r:=1;

MM:=M;

S:=CheckSingleton(MM);

r, ") ", M ;

175

Chapter 9.

while (S ne []) and (Nrows(MM) gt 1) do

n:=Ncols(MM);

m:=Nrows(MM);

r+:=1;

z:=Random(S);

I:=[i: i in [1..m] | i ne z[1]];

J:=[j: j in [1..n] | j ne z[2]];

MM:=Submatrix(MM,I,J);

r, ") ", MM , " singoletto: ", z;

S:= CheckSingleton(MM);

end while;

return r;

end function;

/*

USAGE: RandomSingletonProcedure(M); M a matrix with entries 0 and 1

RETURN: the number of steps for which the singleton procedure has

success on M

NOTE: it is a different implementation of the singleton procedure

w.r.t. RandomSingletonProcedure.

*/

function SingletonProcedure(M)

n:=Ncols(M);

m:=Nrows(M);

S:=CheckSingleton(M);

if (m eq 1) or (S eq []) then

return 1;

elif (S ne []) then

z:=Random(S);

I:=[i: i in [1..m] | i ne z[1]];

J:=[j: j in [1..n] | j ne z[2]];

M:=Submatrix(M,I,J);

return 1+SingletonProcedure(M);

end if;

end function;

/*

USAGE: Schaub(v); v a list of 0 and 1

RETURN: r1, the output of the first realization of

the singleton procedure on M(v), the

circulat matrix of v

*/

function Schaub(v);

r:=0; i:=0; L:=[];

176

9.2. Programs for the strict bounds

S:=[Rotate(v,i): i in [1..#v]];

for j in [1..#v] do

L cat:=[S[j]];

M:=Matrix(GF(2),#L, #v,L);

j, ")", M;

"";

r:=SingletonProcedure(M);

r;

"";

if (r ne #L) then

Prune(~L);

else

r1:=r;

end if;

end for;

return r1;

end function;

/*

USAGE: VLint(v); v a list of 0 and 1

RETURN: r1, the output of the second realization of

the singleton procedure on M(v), the

circulat matrix of v.

NOTE: in this version we use SingletonProcedure

function to perform the singleton procedure

*/

function VLint(v);

r:=0;i:=0;

S:={Rotate(v,i): i in [1..#v]};

subS:=Subsets(S);

n:=#subS;

for j in subS do

i+:=1;

if (Floor(i/n*100) mod 10) eq 0 then

"Progress: -------> ", Floor(i/n*100), " % ";

end if;

M:=Matrix(GF(2),#j, #v,[k: k in j]);

r1:=SingletonProcedure(M);

if r1 gt r then

r:=r1;

end if;

end for;

return(r);

end function;

177

Chapter 9.

/*

USAGE: VLint(v); v a list of 0 and 1

RETURN: r1, the output of the second realization of

the singleton procedure on M(v), the

circulat matrix of v

NOTE: in this version we use RandomSingletonProcedure

function to perform the singleton procedure

*/

function VLint2(v);

r:=0;i:=0;

S:={Rotate(v,i): i in [1..#v]};

subS:=Subsets(S);

n:=#subS;

for j in subS do

i+:=1;

if (Floor(i/n*100) mod 10) eq 0 then

"Progress: -------> ", Floor(i/n*100), " % ";

end if;

M:=Matrix(GF(2),#j, #v,[k: k in j]);

r1:=RandomSingletonProcedure(M);

if r1 gt r then

r:=r1;

end if;

end for;

return(r);

end function;

9.3 Computational proofs and numerical confirmations

Some of the examples provided in the thesis have been found computationally. In

this section we report the MAGMA ([MAG]) commands we used.

• in Theorem 3.1.20 we provide two codes C1 over F3 and C2 over F17, of length
16 which have complete defining set S = {1, 2, 3, 4, 6, 9, 11, 12}, claiming that
d(C1) = 5 and d(C2) = 6. The following MAGMA instructions have been used
to prove our claim.

> n:=16;

> S1:={(1*3^i) mod n: i in [1..40]};

> S1;

{ 1, 3, 9, 11 }

> S2:={(2*3^i) mod n: i in [1..40]};

> S2;

{ 2, 6 }

> S4:={(4*3^i) mod n: i in [1..40]};

178

9.3. Computational proofs and numerical confirmations

> S4;

{ 4, 12 }

> S5:={(5*3^i) mod n: i in [1..40]};

> S5;

{ 5, 7, 13, 15 }

> S8:={(8*3^i) mod n: i in [1..40]};

> S8;

{ 8 }

> S10:={(10*3^i) mod n: i in [1..40]};

> S10;

{ 10, 14 }

> S:=S1 join S2 join S4;

> S;

{ 1, 2, 3, 4, 6, 9, 11, 12 }

>

> R1<x>:=PolynomialRing(GF(3));

> KK<a>:=SplittingField(x^n-1);

> b1:=RootOfUnity(n,GF(3));

> RR1<y>:=PolynomialRing(KK);

> g1y:=1;

> for i in S do

for> g1y:=g1y*(y-b1^i);

for> end for;

> g1x:=R1!g1y;

> C1:=CyclicCode(n,g1x);

> C1;

[16, 8, 5] Cyclic Linear Code over GF(3)

Generator matrix:

[1 0 0 0 0 0 0 0 1 1 1 2 1 0 2 2]

[0 1 0 0 0 0 0 0 1 2 2 0 0 1 2 1]

[0 0 1 0 0 0 0 0 2 0 1 0 2 0 2 0]

[0 0 0 1 0 0 0 0 0 2 0 1 0 2 0 2]

[0 0 0 0 1 0 0 0 1 1 0 2 2 0 1 2]

[0 0 0 0 0 1 0 0 1 2 2 2 0 2 2 0]

[0 0 0 0 0 0 1 0 0 1 2 2 2 0 2 2]

[0 0 0 0 0 0 0 1 1 1 2 1 0 2 2 1]

>

> R2<x>:=PolynomialRing(GF(17));

> KK<a>:=SplittingField(x^n-1);

> b2:=RootOfUnity(n,GF(17));

> RR2<y>:=PolynomialRing(KK);

> g2y:=1;

> for i in S do

for> g2y:=g2y*(y-b2^i);

for> end for;

> g2y;

179

Chapter 9.

y^8 + 10*y^7 + 10*y^6 + 8*y^5 + 15*y^4 + 5*y^3 + 7*y^2 + 7*y + 1

> g2x:=R2!g2y;

> C2:=CyclicCode(n,g2x);

> C2;

[16, 8] Cyclic Linear Code over GF(17)

Generator matrix:

[1 0 0 0 0 0 0 0 1 7 7 5 15 8 10 10]

[0 1 0 0 0 0 0 0 7 16 5 8 8 3 10 12]

[0 0 1 0 0 0 0 0 5 8 0 13 15 14 2 9]

[0 0 0 1 0 0 0 0 8 10 13 6 14 11 9 14]

[0 0 0 0 1 0 0 0 3 12 14 11 0 4 7 5]

[0 0 0 0 0 1 0 0 12 2 11 6 4 11 5 8]

[0 0 0 0 0 0 1 0 9 7 14 5 5 8 16 10]

[0 0 0 0 0 0 0 1 7 7 5 15 8 10 10 1]

> MinimumDistance(C2);

6

• In Theorem 3.5.7 we proved that the Roos bound and the Boston bound V
are not strict root bound, claiming that they cannot be proved using singleton
procedure. The following instructions provide a computational evidence of our
claim.

> vBoston:=[0,0,1,0,0,1,0,0,1,1,1,1,1];

> VLint(vBoston);

5

>

>vRoos:=[0,0,1,1,1,1,0,0,1,0,0,1,1,1,1,1,1,1,1,1]

>roos(vRoos);

5

>VLint(vRoos);

4

• In Theorem 3.6.3, we provide a code with defining set S := {0, 1, 2, 4, 5, 8, 10}
which has distance 4 to contradict Theorem 3.6.1. This code has been generated
by the following instructions.

> R<x>:=PolynomialRing(GF(2));

> b:=RootOfUnity(15,GF(2));

> S:={0,1,2,4,5,8,10};

> g:=1;

> KK:=SplittingField(x^15-1);

> RR<y>:=PolynomialRing(KK);

> for i in S do

for> g:=g*(y-b^i);

for> end for;

> g;

180

9.3. Computational proofs and numerical confirmations

y^7 + y^3 + y + 1

> gr:=R!g;

> gr;

x^7 + x^3 + x + 1

> C:=CyclicCode(15,gr);

> C;

[15, 8, 4] Cyclic Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1 1 0 1 0 0 0]

[0 1 0 0 0 0 0 0 0 1 1 0 1 0 0]

[0 0 1 0 0 0 0 0 0 0 1 1 0 1 0]

[0 0 0 1 0 0 0 0 0 0 0 1 1 0 1]

[0 0 0 0 1 0 0 0 1 1 0 1 1 1 0]

[0 0 0 0 0 1 0 0 0 1 1 0 1 1 1]

[0 0 0 0 0 0 1 0 1 1 1 0 0 1 1]

[0 0 0 0 0 0 0 1 1 0 1 0 0 0 1]

• In Theorem 3.6.4, we provide a code with defining set

S := {0, 1, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19}

which has distance 6 to contradict Theorem 3.6.2. This code has been generated
by the following instructions.

> R<x>:=PolynomialRing(GF(11));

> b:=RootOfUnity(20,GF(11));

> S:={0, 1, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19};

> g:=1;

> KK:=SplittingField(x^20-1);

> RR<y>:=PolynomialRing(KK);

> for i in S do

for> g:=g*(y-b^i);

for> end for;

> g;

y^13 + 9*y^12 + y^10 + y^3 + 9*y^2 + 1

> gr:=R!g;

> gr;

x^13 + 9*x^12 + x^10 + x^3 + 9*x^2 + 1

> C:=CyclicCode(20,gr);

> C;

[20, 7, 6] Cyclic Linear Code over GF(11)

Generator matrix:

[1 0 0 0 0 0 0 1 0 9 1 0 0 0 0 0 0 1 0 9]

[0 1 0 0 0 0 0 2 1 7 0 1 0 0 0 0 0 2 1 7]

[0 0 1 0 0 0 0 4 2 4 0 0 1 0 0 0 0 4 2 4]

[0 0 0 1 0 0 0 7 4 10 0 0 0 1 0 0 0 7 4 10]

181

Chapter 9.

[0 0 0 0 1 0 0 1 7 2 0 0 0 0 1 0 0 1 7 2]

[0 0 0 0 0 1 0 9 1 0 0 0 0 0 0 1 0 9 1 0]

[0 0 0 0 0 0

• in Theorem 4.1.19 we provide two codes C1 over F35 and C2 over F210 of length

11 which have complete defining set

S = {0, 1, 2, 3, 5}

claiming that d(C1) = 5 and d(C2) = 6. The following instructions have been
used to prove our claim.

> M:=[0,0,0,0,1,0,1,1,1,1,1];

> p:=2;

> F<x>:=PolynomialRing(GF(p));

> K:=SplittingField(x^11-1);

> a:=RootOfUnity(11,GF(p));

> R<y>:=PolynomialRing(K);

> g:=(y-a^0)*(y-a^1)*(y-a^2)*(y-a^3)*(y-a^5);

> C:=CyclicCode(11,g);

> d:=MinimumDistance(C);

> d;

6

>

> p:=3;

> F<x>:=PolynomialRing(GF(p));

> K:=SplittingField(x^11-1);

> a:=RootOfUnity(11,GF(p));

> R<y>:=PolynomialRing(K);

> g:=(y-a^0)*(y-a^1)*(y-a^2)*(y-a^3)*(y-a^5);

> C:=CyclicCode(11,g);

> d:=MinimumDistance(C);

> d;

5

• in Remark 4.2.4 we claim that for v = (0, 0, 0,∆+, 0,∆+, 0, 0,∆+,∆+,∆+) the first
rank-bounding algorithm applied to M(v) returns 5 and the second returns 6.
We checked this claim with the following instructions.

> v:=[0,0,0,1,0,1,0,0,1,1,1];

> VLint(v);

6

> Schaub(v);

5

182

Bibliography

[ABO09] D. Augot, E. Betti, and E. Orsini, An introduction to linear and

cyclic codes, Gröbner Bases, Coding, and Cryptography, Springer, 2009,

pp. 47–68.

[ACS90] D. Augot, P. Charpin, and N. Sendrier, The minimum distance of some

binary codes via the newton’s identites, Eurocode ’90, LNCS, vol. 514,

Springer, 1990, pp. 65–73.

[ACS92] , Studying the locator polynomials of minimum weight codewords

of bch codes, Information Theory, IEEE Transactions on 38 (1992), no. 3,

960–973.

[AL69] H. L. Althaus and R. J. Leake, Inverse of a finite-field vandermonde

matrix, IEEE Trans. on Inf. Th 15 (1969), 172.

[Aug96] D. Augot, Description of the minimum weight codewords of cyclic codes

by algebraic system, Finite Fields Appl. (1996), no. 2, 138–152.

[Bet05] Emanuele Betti, Un’interpretazione algebrica della distanza dei codici ci-

clici, Master’s thesis (laurea), University of Pisa, Department of Math-

ematics, 2005.

[Bla83] R. E. Blahut, Theory and practice of error control codes, Addison-Wesley

Publishing Company Advanced Book Program, Reading, MA, 1983.

[BM09] M. Byrne and T. Mora, Gröbner bases over commutative rings and ap-

plications to coding theory, Gröbner Bases, Coding, and Cryptography

(M. Sala, T. Mora, L. Perret, S. Sakata, and C. Traverso, eds.), RISC

Book Series, Springer, Heidelberg, 2009, pp. 239–261.

[BMvT78] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, On the

inherent intractability of certain coding problems, IEEE Trans. on Inf.

Th. 24 (1978), no. 3, 384–386.

183

Bibliography

[Bos01] N. Boston, Bounding minimum distances of cyclic codes using algebraic

geometry, International Workshop on Coding and Cryptography (Paris,

2001), Electron. Notes Discrete Math., vol. 6, Elsevier, Amsterdam, 2001,

p. 10.

[BPW+10] S. Bulygin, R. Pellikaan, I. Woungang, S. Misra, SC. Misra, et al., De-

coding and finding the minimum distance with groebner bases: history

and new insights, Information and Coding Theory (2010).

[BRC60] R. C. Bose and D. K. Ray-Chaudhuri, On a class of error correcting

binary group codes, Information and Control 3 (1960), 68–79.

[BS05] E. Betti and M. Sala, A bound for the distance of cyclic codes

which is sometimes stronger than the roos bound, BCRI preprint,

www.bcri.ucc.ie, 7, University College Cork, Boole Centre BCRI, UCC

Cork, Ireland, 2005.

[BS06] , A new bound for the minimum distance of a cyclic code from its

defining set, IEEE Trans. on Inf. Th. 52 (2006), no. 8, 3700–3706.

[BS07] , A theory for distance bounding cyclic codes, BCRI preprint,

www.bcri.ucc.ie 63, University College Cork, Boole Centre BCRI, UCC

Cork, Ireland, 2007.

[Buc65] Bruno Buchberger, Ein Algorithmus zum Auffinden der Basisele-

mente des Restklassenringes nach einem nulldimensionalen Polyno-

mideal, Ph.D. thesis, Innsbruck, 1965.

[Buc98] B. Buchberger, An algorithmical criterion for the solvability of algebraic

systems of equations, London Math. Soc. LNS 251 (1998), 535–545.

[Buc06] , Bruno Buchberger’s PhD thesis 1965: An algorithm for find-

ing the basis elements of the residue class ring of a zero dimensional

polynomial ideal, J. Symb. Comput. 41 (2006), no. 3-4, 475–511.

[Cha98] P. Charpin, Open problems on cyclic codes, Handbook of coding theory,

Vol. I, II, North-Holland, Amsterdam, 1998, pp. 963–1063.

[Chi72] R. T. Chien, A new proof of the BCH bound, IEEE Trans. on Inf. Th.

IT-18 (1972), 541.

[CLO07] D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms, third

ed., Springer, 2007, An introduction to computational algebraic geome-

try and commutative algebra.

184

Bibliography

[CMSvS91] G. Castagnoli, J. L. Massey, P. A. Schoeller, and N. von Seeman, On

repeated-root cyclic codes, IEEE Trans. on Inf.. Th. 37 (1991), 337–342.

[Coo90] A. B. III Cooper, Direct solution of BCH decoding equations, Comm.,

Cont. and Sign. Proc. (1990), 281–286.

[Coo91] , Finding BCH error locator polynomials in one step, Electronic

Letters 27 (1991), no. 22, 2090–2091.

[Coo93] , Toward a new method of decoding algebraic codes using Gröbner

bases, Transactions of the Tenth Army Conference on Applied Mathe-

matics and Computing (1992), vol. 93, U.S. Army, 1993, pp. 1–11.

[CRHT94a] X. Chen, I. S. Reed, T. Helleseth, and K. Truong, General principles for

the algebraic decoding of cyclic codes, IEEE Trans. on Inf. Th. 40 (1994),

1661–1663.

[CRHT94b] X. Chen, I. S. Reed, T. Helleseth, and T. K. Truong, Algebraic decoding

of cyclic codes: a polynomial ideal point of view, Finite fields, Contemp.

Math., vol. 168, Amer. Math. Soc., 1994, pp. 15–22.

[CRHT94c] X. Chen, I. S. Reed, T. Helleseth, and T. K. Truong, Use of Gröbner

bases to decode binary cyclic codes up to the true minimum distance,

IEEE Trans. on Inf. Th. 40 (1994), no. 5, 1654–1661.

[CS84] D. Coppersmith and G. Seroussi, On the minimum distance of some

quadratic residue codes, IEEE Trans. on Inf. Th. 30 (1984), no. 2, part

2, 407–411.

[CU57] L. Carlitz and S. Uchiyama, Bounds for exponential sums, Duke Math.

J. 24 (1957), 37–41.

[Cur10] M. Curto, Border bound: un metodo per stimare distanze dei codici ci-

clici, Bachelor’s thesis (laurea triennale), University of Trento, Depart-

ment of Mathematics, 2010.

[FT89] G. L. Feng and K. K. Tzeng, A generalized Euclidean algorithm for mul-

tisequence shift-register synthesis, IEEE Trans. on Inf. Th. 35 (1989),

no. 3, 584–594.

[FT91a] , Decoding cyclic and BCH codes up to actual minimum distance

using nonrecurrent syndrome dependence relations, IEEE Trans. on Inf.

Th. 37 (1991), no. 6, 1716–1723.

185

Bibliography

[FT91b] , A generalization of the Berlekamp-Massey algorithm for multise-

quence shift-register synthesis with applications to decoding cyclic codes,

IEEE Trans. on Inf. Th. 37 (1991), no. 5, 1274–1287.

[Hoc59] A. Hocquenghem, Codes correcteurs d’erreurs, Chiffres 2 (1959), 147–

156.

[HP03] W. C. Huffman and V. Pless, Fundamentals of error-correcting codes,

Cambridge University Press, 2003.

[HT72] C. R. P. Hartmann and K. K. Tzeng, Generalizations of the BCH bound,

Information and Control 20 (1972), 489–498.

[KRK88] A. Kandri-Rody and D. Kapur, Computing a Gröbner basis of a poly-

nomial ideal over a Euclidean domain, J. Symbolic Comput. 6 (1988),

no. 1, 37–57.

[Lev95] F. Levy-dit-Vehel, Bounds on the minimum distance of the duals of ex-

tended BCH codes over Fp, Appl. Algebra Engrg. Comm. Comput. 6

(1995), no. 3, 175–190.

[MAG] MAGMA: Computational Algebra System for Algebra, Number The-

ory and Geometry, The University of Sydney Computational Algebra

Group., http://magma.maths.usyd.edu.au/magma.

[MAI97] T. Matsuo, Y. Araki, and K. Imamura, Relations between several mini-

mum distance bounds of binary cyclic, Trans. fundamentals IEICE E80-

A (1997), 2253–2255.

[MK93] C. J. Moreno and P. V. Kumar, Minimum distance bounds for cyclic

codes and deligne’s theorem, IEEE Trans. on Inf. Th. 39 (1993), 1524–

1534.

[MM92] C. J. Moreno and O. Moreno, An improved Bombieri-Weil bound and

applications to coding theory, J. Number Theory 42 (1992), 32–46.

[MO09] T. Mora and E. Orsini, Decoding cyclic codes: the Cooper philosophy,

Gröbner Bases, Coding, and Cryptography (M. Sala, T. Mora, L. Perret,

S. Sakata, and C. Traverso, eds.), RISC Book Series, Springer, Heidel-

berg, 2009, pp. 69–91.

[Möl88] H. M. Möller, On the construction of Gröbner bases using syzygies, J.

Symbolic Comput. 6 (1988), no. 2-3, 345–359.

186

Bibliography

[Mor05] T. Mora, Solving polynomial equation systems ii: Macaulay’s paradigm

and gröbner technology, vol. 2, Cambridge University Press, 2005.

[Morar] , Solving polynomial equation systems. III, algebraic solving and

beyond, Encyclopedia of Mathematics and its Applications, Cambridge

University Press, to appear.

[MS77] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting

codes. I, North-Holland Publishing Co., Amsterdam, 1977, North-

Holland Mathematical Library, Vol. 16.

[MS81] F.J. MacWilliams and N.J.A. Sloane, The theory of error correcting

codes, NHML016, NH, 1981.

[MS88] J. L. Massey and T. Schaub, Linear complexity in coding theory, Cod-

ing theory and applications (Cachan, 1986), LNCS, vol. 311, Springer,

Berlin, 1988, pp. 19–32.

[MS03] T. Mora and M. Sala, On the Gröbner bases of some symmetric systems

and their application to coding theory, J. Symbolic Comput. 35 (2003),

no. 2, 177–194.

[Pan89] L. Pan, On the D-bases of polynomial ideals over principal ideal domains,

J. Symbolic Comput. 7 (1989), no. 1, 55–69.

[PHB98] V. S. Pless, W. C. Huffman, and R. A. Brualdi (eds.), Handbook of

Coding Theory. Vol. I, II, North-Holland, Amsterdam, 1998.

[PS03] F. Ponchio and M. Sala, A lower bound on the distance of cyclic codes,

BCRI preprint, www.bcri.ucc.ie 7, University College Cork, Boole Centre

BCRI, UCC Cork, Ireland, 2003.

[PS13] M. Piva and M. Sala, A new bound for cyclic codes beating the roos bound,

Algebraic Informatics, Springer, 2013, pp. 101–112.

[PW72] W. W. Peterson and Jr. E. J. Weldon, Error-correcting codes, second

ed., The M.I.T. Press, Cambridge, Mass.-London, 1972.

[Rei06] B. Reinert, Gröbner bases in function rings—a guide for introducing

reduction relations to algebraic structures, Journal of Symbolic Compu-

tation 41 (2006), no. 11, 1264 – 1294.

187

Bibliography

[Roo82] C. Roos, A generalization of the BCH bound for cyclic codes, including

the Hartmann-Tzeng bound, J. Combin. Theory Ser. A 33 (1982), no. 2,

229–232.

[Roo83] , A new lower bound for the minimum distance of a cyclic code,

IEEE Trans. on Inf. Th. 29 (1983), no. 3, 330–332.

[Sal01] Massimiliano Sala, On some algebraic methods for coding theory, Ph.D.

thesis, University of Milan, Milan, Italy, 2001.

[Sal02] M. Sala, Gröbner bases and distance of cyclic codes, Appl. Algebra En-

grg. Comm. Comput. 13 (2002), no. 2, 137–162.

[Sal07] , Gröbner basis techniques to compute weight distributions of

shortened cyclic codes, Journal of Algebra and Its Applications 6 (2007),

no. 3, 403–404.

[Sch88] T. Schaub, A linear complexity approach to cyclic codes, Ph.D. thesis,

Swiss Federal Inst. of Tech., Zurich, 1988.

[SWST96] K. K. Shen, C. Wang, B.-Z. Shen, and K. K. Tzeng, Generation of ma-

trices for determining minimum distance and decoding of cyclic codes,

IEEE Trans. on Inf. Th. 42 (1996), no. 2, 653–657.

[Tra88] C. Traverso, Gröbner trace algorithms, ISSAC, 1988, pp. 125–138.

[Var97a] A. Vardy, Algorithmic complexity in coding theory and the minimum dis-

tance problem, Proceedings of the twenty-ninth annual ACM symposium

on Theory of computing, 1997, pp. 92–109.

[Var97b] , The intractability of computing the minimum distance of a code,

IEEE Trans. on Inf. Th. 43 (1997), no. 6, 1757–1766.

[vL95] J. H. van Lint, Repeated-root cyclec codes, IEEE Trans. on Inf. Th. 37

(1995), no. 2, 343–345.

[vLW86] J. H. van Lint and R. M. Wilson, On the minimum distance of cyclic

codes, IEEE Trans. on Inf. Th. 32 (1986), no. 1, 23–40.

[Zac78] G. Zacharias, Generalized Gröbner bases in commutative polynomial

rings, Ph.D. thesis, MIT, 1978.

[ZB12] A. Zeh and S. Bezzateev, A new bound on the minimum distance of

cyclic codes using small-minimum-distance cyclic codes, Designs, Codes

and Cryptography (2012), 1–18.

188

Bibliography

[ZK10] J. Zheng and T. Kaida, An algorithm for new lower bound of minimum

distance by dft for cyclic codes, Information Theory and its Applications

(ISITA), 2010 International Symposium on, IEEE, 2010, pp. 846–849.

[ZK11] , On relationship between proposed lower bound and shift bound

for cyclic codes, Signal Design and its Applications in Communications

(IWSDA), 2011 Fifth International Workshop on, IEEE, 2011, pp. 13–16.

[ZWZB12] Alexander Z., A. Wachter-Zeh, and S. V. Bezzateev, Decoding cyclic

codes up to a new bound on the minimum distance, IEEE Trans. Inform.

Theory 58 (2012), no. 6, 3951–3960.

189

