University of Trento

Department of Mathematics

Ph.D. in Mathematics
Ciclo XXVI

Algebraic methods for the distance of cyclic
codes

Matteo Piva

Supervisor: Prof. Massimiliano Sala

Head of PhD School: Prof. Francesco Serra Cassano

April, 2014

University of Trento

Department of Mathematics

Ph.D. in Mathematics
Ciclo XXVI

Algebraic methods for the distance of cyclic
codes

Ph.D.Thesis of:

Matteo Piva

Supervisors:

Prof. Massimiliano Sala

Head of PhD School:

Prof. Francesco Serra Cassano

April, 2014

Contents

I Preliminary results

1 Coding Theory

1.1 Linear codes
1.1.1 Basic definitions
1.1.2 Bounds on distance for linear codes
1.1.3 Equivalence of linear codes
1.2 Cycliccodes
1.2.1 A first description
1.2.2 A second description
1.2.3 Naturally equivalent cyclic codes
1.3 Terminology for general distance bounds
2 Our Tools
2.1 DFT and cycliccodes
22 ThesetU

3 Root bounds

3.1
3.2
3.3
3.4

3.5
3.6

General settings oL
Root boundsand &/
Strict root bounds
Known strict root bounds oL
3.4.1 “Classical statement” of bounds
3.4.2 Our interpretation of the BCH bound
3.4.3 Our interpretation of the HT bound
3.4.4 Our interpretation of Boston’s bound I
3.4.5 Our interpretation of Boston’s bound IT..
3.4.6 Our interpretation of Boston’s bound III
3.4.7 Our interpretation of Boston’s bound IV
3.4.8 Our interpretation of the BSbound
Known root bounds which are not strict

Counterexamples to known bounds

11
13
15
15
20
22
24

25
25
29

3.7

Deducing other bounds

4 Border bounds

4.1
4.2
4.3
4.4

General settings oL
Border bounds and &o
Strict border boundso
Equivalence of border bounds
4.4.1 The Schaub bound
4.4.2 The singleton-procedure bound
4.4.3 Singleton-procedure bound and Schaub bound are equivalent .
4.4.4 On the Van-Lint Wilson shifting bound

5 Bounding distance using Grobner bases

5.1
5.2
5.3

Backgrounds
The Cooper Philosophy
Newton’s Identities oL

IT Main results

6 A New Bound

6.1

Proofs of bound I and bound IT

7 Proving some root bounds via Newton’s identities

7.1

7.2

A polynomial interpretation of known strict root bounds
7.1.1 A polynomial interpretation of the BCH bound
7.1.2 A polynomial interpretation of the HT bound
7.1.3 A polynomial interpretation of the BS bound
7.1.4 A polynomial interpretation of Boston’s bounds
Comments and further research

8 Computing the optimal root bound via Grobner bases

8.1
8.2
8.3

Preliminaries and notation
Linked ideals

The maximal root function

IIT Appendix

9
9.1

Programs for the root bounds

1

73
73
78
80
83
84
86
87
88

93
93
96
100

105

107
109

125
125
126
127
130
136
138

141
141
145
152

159

161

9.2 Programs for the strict bounds
9.3 Computational proofs and numerical confirmations

Bibliography

111

Abstract

Cyclic codes form an interesting part of error correcting codes. The interest in
cyclic codes arise from practical reasons, since they are widely employed in many
real-life applications, and from theoretical considerations, since they possess a rich
algebraic structure (compared to other linear codes) that eases their investigation.
Arguably, the most important parameter for a cyclic code is its minimum Hamming
distance. The computation of this parameter appears to be a very difficult problem.
However, there are efficient methods that allow to lower bound the distance of cyclic
codes, taking advantage of the algebraic structure of cyclic codes. This thesis is
devoted to study these methods and their theoretical background. In our investigation
we do not deal with the aspects concerning the decoding.

In the scientific literature on the subject we can find two main competing ap-
proaches in the determination of bounds for the distance, on which we elaborate
below.

The very first example of these bounds is the BCH bound, which was proved in
1960 using an argument based on polynomial manipulations leading to a contradic-
tion. We call this approach the polynomial approach. This polynomial approach
continued until 1972, where the Hartmann-Tzeng bound was similarly proved, but it
was discontinued in 1979, when Blahut and others started investigating bounds based
on properties of the Discrete Fourier Transform of codewords. Notably, the most suc-
cessful result in this direction was the Schaub’s bound proposed in 1988. However,
the polynomial approach received new strength from the development of the Grébner
basis theory and it started to be used again (in adapted form) since 1996.

It is also possible to divide all known bound in two types, independently from
the argument used to prove them. The first type are bounds based only on the
information coming from the defining set of a code (e.g., BCH, Hartmann-Tzeng,
Roos, Betti-Sala). The second type are bounds which need also the knowledge of the
cyclic subcodes (e.g., Schaub, Van Lint-Wilson).

The thesis is divided in two parts. Part I contains preliminary results, part of
which are our original contributions. Part II contains the core of our research and
presents our main results.

The main results of this thesis can be summarized as follows:

in Chapter 3 we formally characterize the first type of bounds (that we call root
bounds) and we give proofs based on the DET approach for the known bounds,
extending also some of them. We also show that the optimal such bound cannot

reach the true code distance.

in Chapter 4 we formally characterize the second type of bounds (that we call
border bounds) and we give proofs based on the DFT approach for the known
bounds, showing an unexpected strong correlation between the two most fa-
mous, that is, the Van Lint-Wilson bound and the Schaub bound. We also

show that even the optimal such bound cannot reach the true code distance.

in Chapter 6 we explicitly propose a new root bound, which can be computed
in polynomial time, it is provable better than many know-bounds and in out-

performs all known bounds for a wide range of computed codes.

in Chapter 7 we give proofs based on polynomial approach for some known

bounds;

in Chapter 8 we provide an effective algorithm able to compute the optimal root

bound in a finite time.

Introduction

Cyclic codes form an interesting part of error correcting codes. The interest in
cyclic codes arise from practical reasons, since they are widely employed in many
real-life applications, and from theoretical considerations, since they possess a rich
algebraic structure (compared to other linear codes) that eases their investigation.
Arguably, the most important parameter for a cyclic code is its minimum Hamming
distance. The computation of this parameter appears to be a very difficult problem.
However, there are efficient methods that allow to lower bound the distance of cyclic
codes, taking advantage of their algebraic structure (see for example [BS06, Bos01,
HT72, Lev95, Roo83, SWST96, vLW86, ZWZB12, ZB12|). This thesis is devoted to
studying these methods and their theoretical background. In our investigation we do
not deal with the aspects concerning the decoding.

In the scientific literature on the subject we can find two main competing ap-
proaches in the determination of bounds for the distance, on which we elaborate
below. The very first example of these bounds is the BCH bound, which was proved
in 1960 using an argument based on polynomial manipulations leading to a contra-
diction. We call this approach the polynomial approach. This approach continued
until 1972, when the Hartmann-Tzeng bound was similarly proved, but it was dis-
continued in 1979, when Blahut and others started investigating bounds based on
properties of the Discrete Fourier Transform (DFT) of codewords. Notably, the most
successful result in this direction was the Schaub bound proposed in 1988. However,
the polynomial approach received new strength from the development of the Grébner
basis theory and it has been employed again (in adapted form) since 1996.

It is also possible to divide all known bounds in two types, independently from the
argument used to prove them. This division depends on the information precessed
as input. The first type are bounds based only on the information coming from the
defining set of a code (e.g., BCH, Hartmann-Tzeng, Roos, Betti-Sala). The second
type are bounds which need also the knowledge of the cyclic subcodes (e.g., Schaub,
Van Lint-Wilson).

We consider only bounds which can be applied to any specific cyclic code rather

than bounds which can be applied only to a restricted sub-family of cyclic codes such

as the duals of BCH codes (e.g. [CU57, MK93, MM92|) and the quadratic-residue
codes (|CS84]).

This thesis is divided in two parts.

Part I contains our preliminaries which consist in classical known results, unpub-

lished contributions and our original results. In particular:

e Chapter 1 up to Section 1.2 recalls well-known notation and some well-known
results on linear and cyclic codes ([HP03, PHB98, MS81, PW72]). In Section 1.3
we present some notation from the unpublished preprint [BS07].

e Chapter 2 describes the main tools we use in our study: the DFT and the set
U. For Section 2.1 the references are published papers (|[BS06, Sch88, Cha98,
MS81]), while the material presented in Section 2.2 is taken from the unpub-
lished papers [BS07, Sch88]. Our contribution in this chapter restricts to Propo-
sition 2.1.7, which is however instrumental in obtaining our results of Chapter 3
and 4.

e Chapter 3 treats formally those bounds which depend only on the length and
the defining set of a code. We call these root bounds. The chapter has several
sections. Section 3.1 and Section 3.2 describe the theoretical background of the
root bounds. Sections 3.3-3.4 present a sub-family of root bounds, which we
call strict root bounds, showing how a large part of known classical bounds
belong to this family, in particular we prove that strict root bounds include: the
BCH bound, the Hartmann-Tzeng bound (even its more general form due to
Roos), the Betti-Sala bound and the Boston bounds. Section 3.5 provides the
proof that not all root bounds are strict, presenting explicitly bounds which do
not belong to the class of strict root bounds, as for example the Roos bound.
Section 3.6-3.7 show counterexamples to bounds claimed in the literature, as
well as slight generalizations of known bounds. Large part of the material in
this chapter comes from [BS07|. Our main improvements are Theorem 3.2.18
and Theorem 3.5.8, which were open problems of [BS07].

e Chapter 4 treats formally those bounds which, beside the defining set and
length, need also the knowledge of the defining sets of the cyclic subcodes. We
call these border bounds. This chapter contains several sections. Section 4.1
and Section 4.2 describe the theoretical background of the border bounds. Sec-
tions 4.3 present a sub-family of border bounds, which we call strict border

bounds. Section 4.4 proves how the most famous border bounds are actually

4

strict border bounds. These include the Van Lint-Wilson shifting bound and
the Shaub bound. We are able to prove that these two bounds actually are
closely related. Large part of the material in this chapter comes from [BS07].
Our main improvements are Theorem 4.1.19 and Theorem 4.3.10, which were
open problems of [BS07| and show that the problem of computing the distance
cannot be solved using the length of the code, its defining set and even the

defining set of all its cyclic subcodes.

e Chapter 5 recalls well-known results in bounding the minimum distance of cyclic
codes using Grobner bases (|[BPW110, MO09, Cha98, Sal02, Sal07, Aug96|).
A brief overview on Grobner bases is provided in Section 5.1. Two different
methods are then presented. In Section 5.2 a method using power sums is
explained, while in Section 5.3 we present a method exploiting the generalized

Newton identities.
Part II contains our main results.

e In Chapter 6 we explicitly propose a new root bound. Our new bound can be
computed in polynomial time, it is provable better than many known bounds
(e.g. the Hartmann-Tzeng bound and the Betti-Sala bound) and it outperforms
all known polynomial-time bounds for a wide range of computed codes. The
chapter contains a preliminary section where two partial results are proved,
and a final section with the proof of the main statement. Our proof is based on
DFT approach.This result was partially presented in [PS13] and solves an open
problem in [BS07].

e In Chapter 7 we follow a polynomial approach based on the generalized Newton
identities to provide alternative proofs for all the strict root bounds presented
in Section 3.4. Section 7.1 contains our proofs, which use both the classical gen-
eralized Newton identities and a new type of identities, obtained manipulating
the plain error locator polynomial. We believe that this approach is promising
to obtain a mechanical proof of root bounds as discussed in Section 7.2, where
we collect some considerations, suggestions and a conjecture for further research

on this topic.

e In Chapter 8 we provide an effective algorithm able to compute the optimal root
bound in a finite time. Our proof depends heavily on properties of Grobner bases
computed with a field-independent strategy. This chapter is organized in three
sections and the main result is contained in the last one, Section 8.3.

The thesis contains also an Appendix where we collect the programs used to

compute bounds and some numerical confirmations of our claims.

Part 1

Preliminary results

Coding Theory

Given two integers n > 1 and N > 0, we denote by (N),, the remainder of division
of N by n. For an integer N < 0 we define (N), =n—1—(—=N),.

If n>1and N > 1, we denote by (n, N) = (N,n) their greatest common divisor.

Let n > 1 be a natural number. We denote by Z; the set {h € N | 1 < h <
n—1, (h,n) =1},

The symbol L will denote disjoint union.

The symbol N is used for the set of natural numbers and Q is used for the rational
numbers.

We denote by F, the field of ¢ elements, where ¢ is a power of prime p, and
with (F,)" the standard n-dimensional vector space over F,. From now on, when not
differently specified, K is any field (not necessary finite). We indicate as F, and K
the algebraic closure of IF, and K, respectively.

All the results in this chapter up to Section 1.2 included, are well-known in liter-
ature, we use as references [HP03, PHB98, MS81, PW72|. Section 1.3 contains some
notation from the unpublished preprint [BS07].

1.1 Linear codes

1.1.1 Basic definitions

Definition 1.1.1. Let k, n be two integers such that n >k > 1 and let ¢ : (F,)* —
(F,)™ be an injective map. We say that C = Im(¢) is a [n,k]-block code (or simply
code) over F,. If ¢ is linear, then C is called a linear block code (or simply
linear code) of length n and dimension k over F,. An element ¢ € C' is called a

word of C' (or codeword if C is clear from the context).

We do not treat in this thesis the case of non-linear codes, so we only say a
code for a linear block code. The code containing only the zero vector is called the
zero-code. A code over Fy is called a binary code. When we do not specify the
field, we implicitly mean that the code is defined over F,. Note that if C'is an [n, k]
code over F,, then |C] = ¢*. We denote by L, the class of linear codes over F, and
by £ the union £ = U,L,.

Chapter 1. Coding Theory

As subspace of (F,)", a linear code admits a basis. This leads to the definition of

a generator matrix of a code.

Definition 1.1.2. Let C' be an [n, k]-code over F,. Any matric G whose rows form
a basis for C as a k-dimensional subspace of (F,)" is called a generator matriz.
If G has the form G = [I}, | A], where I is the k x k identity matriz, G is called

a generator matrix in standard form.

In general, there are many generator matrices for a codes, nevertheless any code
has a unique generator matrix in standard form. If G is in standard form then the
code is called systematic.

Let “” be the usual scalar product in (F,)": given x = (zo,...,2,-1) and y =
(Yo, -+ s Yn—1) , Ty = Z;:ol x;y;. The orthogonal of a vector subspace of (F,)" is

again a vector subspace, so it defines a code.

Definition 1.1.3. Let C be an [n, k]-code over F,, its dual code Ct is the set of all

n-vectors which are orthogonal to all words of C' :
Ct={d|d-c=0,YceC}.
We note that C* is an [n,n — k]-code over F,,.

Definition 1.1.4. A parity-check matriz H for an [n,k]-code is a generator ma-
triz of C+.

From the previous definitions we have easily that G and H are matrices of size,
respectively, £ x n and (n — k) x n. To check if an n-vector x belongs to C' it is

necessary and sufficient to compute HzT = 0, in fact it holds:
Vaoec (F)", Hi' =0 < z<cC. (1.1)

Definition 1.1.5. Let = be any vector in (F,)" and let C' be an [n — k] code with
parity-check matriz H. The vector s € (F,)" % such that s = HaxT is called the
syndrome corresponding tox. The set { Hzx' |z € (F,)" } is called the subspace

of syndromes (or simply the syndromes).

n

Equation 1.1 states that a vector x € (F,)" is a word of C' if and only if the

syndrome corresponding to x is zero.

n

Given two vectors in (F,)", = (2¢,...,Zn-1), ¥ = (Y0, ---,Yn—1), we define the

(Hamming) distance between x and y as the number of components for which they
differ:

d(z,y) =[{0<i<n—1]x #yi}|
The (Hamming) weight of a vector z € (F,)" is the number, w(x), of its non-zero

components: w(x) = d(z,0).

10

1.1. Linear codes

Definition 1.1.6. The distance of a code C is the smallest distances between
distinct codewords:

d(C) =min{d(z,y) |z,y € C, v #y}

We only write distance and weight from now on, since other distances and
weights will not be considered. By convention, the distance of the zero-code is oco.
If C is a code of length n, dimension k and distance d, we say that C' is an [n, k, d]
code. It is clear that any [n, k,d] code is also an [n, k] code and that if C' is an [n, k]
code, then it is also an [n, k,d(C)] code. Thanks to linearity, it is possible to define
the distance of a linear code in another way, as the following result shows.

Proposition 1.1.7. Let C be an [n, k,d] code over Fy, then
d=min{w(c)) |ceC, ¢c#0}.

Let C be an [n, k, d] linear code over F,. If D is a vector subspace of C', then we
say that D is a (linear) subcode of C'. We have d(C) < d(D).

Definition 1.1.8. Let C' be an [n,k,d]| code, we denote by A; the number of the
codewords of weight i. The set of { A; }ogign 15 called the weight distribution of
C. IfA; = A,_; for 0 <i<mn, then C has symmetric weight distribution.

The linearity of C' implies that Ag =1 and d(C) =min{i > 1| A; #0 }.

1.1.2 Bounds on distance for linear codes

To estimate the distance for a generic linear code is one of the great challenges in
coding theory. We state the decision problem for the minimum distance of a linear

code.

Problem: MINIMUM DISTANCE (F,)

Complexity parameter: n € N, n > 1.

Instance: An m X n matrix H over F,, m < n, and an integer 0 < w < n.
Question: Is there a non-zero vector = € (F,)" of weight < w, such that Hz™ = 07?

In 1978 Berlekamp, McEliece and van Tilborg [BMvT78] conjectured that the decision
problem for the minimum distance of a linear code is NP-complete. The conjecture
was solved affirmatively by Vardy in 1997 ([Var97a] and [Var97b]), who also showed
that finding the minimum distance is an NP-hard problem. The great interest of

mathematicians and coding theory researchers for this question lies in the fact that

11

Chapter 1. Coding Theory

the distance is a parameter of the performance of a code. We say that a code C' has
error correction capability ¢ if C' can correct all errors of weight up to ¢ and
there is an error of weight ¢t 41 that cannot be corrected by C'. Similarly, we say that
a code C' has error detection capability s if C can detect all errors of weight up

to s and there is an error of weight s+ 1 that cannot be detected by C. Given a code

d—1
2

way that all the spheres are dijoint. Suppose that a codeword is sent. If a vector x

with distance d, we can center each codeword in a sphere of radius L J in such a

is received which is not a codeword, then a naive decoding procedure which we may

call minimum distance decoding, consists in computing the distance between x and

any word of the code. The procedure outputs either the word of the code which is

d—1
2

x is contained in a sphere, and then we can correct it to the right codeword, which

nearest to x, if it exists, or a failure message. If no more than L J errors occur, then

is the center of the sphere. An error is detected if and only if the received vector is
not a codeword. If more than d — 1 errors occur, it can happen that a codeword was
corrupted in another codeword, thus making the error detection impossible. A large
distance for the code implies larger error correction capability and error detection

capability, since the spheres are larger. More precisely, the following result holds.
Proposition 1.1.9. Let C be an [n, k,d] code over F,, then:

e C has detection capability d — 1

e C has correction capability t = L%J

The following theorem gives an elementary relationship between the weight of a

codeword and a parity-check matrix for the code.

Theorem 1.1.10. Let C be an [n, k,d] code with parity-check matriz H. Let w > 1.
Then for any codeword of weight w there is a linear dependence relation among w
columns of H. Conversely, for any linear dependence relation involving w columns of

H, there is a non-zero word in C of weight less or equal to w.
It is possible to extend the previous result to the distance.

Corollary 1.1.11. A linear code has minimum weight d if and only if its parity-
check matrix has a set of d linearly dependent columns and any set of d — 1 columns

15 linearly independent.
The following theorem gives an upper bound for the distance of a code.

Theorem 1.1.12 (Singleton bound). Let C' be an [n, k,d]| code. Then

d<n-—k+1.

12

1.1. Linear codes

A code which reaches the equality in the Singleton bound is called a maximum
distance separable code or an MDS code.

Another fundamental problem in coding theory is, given n and ¢*, to determine
a code with maximum d. Alternatively, given n and d, to determine the maximum
number B, (n,d) of codewords in a code over [, with length n and minimum distance
at least d. We report here some well-known bounds for B,(n,d). The first result is a

consequence of Proposition 1.1.9.

Theorem 1.1.13 (Sphere packing bound).

n

q

P GICES

B,(n,d) <

where t = {@J)

Theorem 1.1.14 (Griesmer bound). Let C be and [n, k,d] over F, with k > 1. Then
k-1
d
=514

Theorem 1.1.15 (Plotkin bound). If n < (qqfll), then

Theorem 1.1.16 (Gilbert bound).

B,(n,d) >

Theorem 1.1.17 (Varshamov bound).

q

1+ 35 (g =17

B,(n,d) >

1.1.3 Equiwvalence of linear codes

Despite two codes may be different, they can have many properties in common so
that we can consider them as essentially the same code. Suppose for instance to have
two codes over F,, Cy, which is an [ny, k1, d;] code, and Cy, which is an [ng, ko, da]
code, such that ¢ = (¢1,¢co,...,¢p,) € C1 <= ¢ = (¢ny,C1,-..,¢1) € Cy, 1e. Cy is
obtained shifting all words of C] to the right. In general, 'y is different form C5, but
we have n = ny = no, k = ki = kg, d = dy = dy. Moreover, if { A; },_,,, is the weight
distribution of Cy and { B; },,-,, is the weight distribution of Cy, we have A; = B; for

13

Chapter 1. Coding Theory

any 0 <7 <n. We have just described an example of two permutation equivalent
codes in preparaion for the formal definition. Let Sym(n) be the symmetric group
on a set of n elements. We extend the action of Sym(n) to (F,)" as follows: given

r = (21,29,...,2,) € (F,)", 0 € Sym(n), we define:

(T1,%9, ..., xp)0 = (Tro-1, Tog—1, .y Tpg—1)-

Definition 1.1.18. Two linear codes Ci[n, ky,d1] and Cs[n, ko, d3] are permutation
equivalent if there is o € Sym(n) such that

(x1,29,...,2,) € C; <= (x1,22,...,7,)0 € Cs.
We can express any permutation using a permutation matrix.

Definition 1.1.19. Given a permutation o € Sym(n), its permutation matriz is the

n x n matriz P, = (p; ;) given by
1if j = io,

Dij = ,
0 otherwise.

We recall some useful properties of permutation matrices.

Proposition 1.1.20. Let o, o' be two permutation of Sym(n), © = (z1,...,2,) a
n-tuple of symbols. We have

i. PP,y =P,y
i. P,PT = I,, where I, is the n x n identity matriz

iii. (z1,...,2,)0 = (21,...,2,) Py, where on the right we mean a vector-matriz prod-

uct.

Thus, from (iii), if we define C1P = { 2P | x € C} }, we can say that C; and Cj
are permutation equivalent if there is a permutation matrix, P, such that C1 P = Cs.
More general kinds of equivalence can be considered which preserve the weight of
codewords, as we are going to show. We recall that a monomial matrix is a square
matrix with exactly one non-zero entry in each row and column. A monomial matrix
M can be written either in the form DP or the PD, where P is a permutation matrix

and D is a diagonal matrix.

Definition 1.1.21. Let C; and Cy be codes of the same length over F,, and let Gy
be a generator matrixz for Cy. Then Cy and Cy are monomially equivalent if there

1s & monomial matrix M so that Gy M is a generator matriz for Cs.

14

1.2. Cyclic codes

Two permutation-equivalent codes are also monomially-equivalent codes, but the
converse it is not true, except in the binary case, where monomial equivalence and
permutation equivalence are precisely the same. We have a more general kind of
equivalence when considering also composition with an automorphism of the field IF,.
Let v be an automorphism of [, then we can extend the action of vy to (F,)" in the
usual way: given (z1,...,z,) € (F,)", we write (z1,...,2,)y = (217, ...,2,7). For a
code C over F,, we define Cy={zy |z € C }.

Definition 1.1.22. We say that two codes Cy and Cy of the same length over F, are
equivalent if there is an automorphism v of F, and a monomial matriz M such that
CQ == ClM’}/

Two monomially-equivalent codes are also equivalent, since it is sufficient to con-
sider as automorphism of IF, the identity. The converse is true only if IF, has a prime
size. Thus on Fy all these equivalence are the same. Generally speaking, two equiv-
alent codes has the same weight distribution, but there exist codes with the same
weight distribution which are not equivalent. We will see in Subsection 1.2.2 another

definition, which is of particular interest for the class of cyclic codes.

1.2 Cyeclic codes

In this section we introduce the principal aspects concerning an important subclass
of linear codes: cyclic codes. Due to their algebraic structure, many techniques of
commutative algebra can be used for the study of these codes, in fact from an algebraic
point of view, the investigation of cyclic codes it is equivalent to the investigation of
ideals in a suitable principal ideal (commutative) ring. The knowledge of efficient
methods for encoding and decoding of cyclic codes boosts their application in real
life. However, we do not treat here the vast area of encoding and decoding algorithms,

preferring to focus on the problem of bounding distance for cyclic codes.

1.2.1 A first description
Given an n-vector ¢ = (¢, ..., C,—1) We consider its right shift
sh(c) = (cp-1,¢05 .-, Cn2)

which is again an n-vector with the same field of coefficient of c. We adopt the usual
notation sh’(c) to indicate the i-th right shift of ¢, i.e.:

Sh(¢) = (Cnis - -y Cne1,C0s - - -y Ci1).
We clearly have sh®(¢) = sh™(¢) = ¢ and sh’(c) = sh®"(¢).

15

Chapter 1. Coding Theory

Definition 1.2.1. Let C' be an [n, k,d] code such that
Ve € C,sh(c) € C.
Then we call C' a cyclic code.

Thus cyclic codes are invariant with respect to shifts. To get an algebraic de-
scription, we can view a vector ¢ = (co,...,ch—1) € (F,)" as a polynomial c(x) =
co+axr+--+cp 2"t in Fylz] of degree at most n — 1. For a word ¢ € C' we use
interchangeably the vector notation or the polynomial notation c¢(x). The fact that
a cyclic code is invariant under cyclic shifts implies that if ¢(x) is in the code, then
xzc(z) is so, if we consider the multiplication modulo 2™ — 1. Let R,, = F [z]/(z" — 1)
be the ring consisting of residue classes of F,[z] modulo " — 1. Each polynomial of
degree at most n — 1 belongs to a different residue class and we take this polynomial
as representative. Actually, Iz, is an algebra over F,. The consideration above sug-
gests an obvious isomorphism (F,)" — {f € F,[z] | deg(f) < n — 1} as vector spaces
over F,, given by (co,...,¢n 1) = co+ ... + izt + ...+ ¢,_12"!. Thanks to this
characterization, we can see linear codes of length n as subsets of R,,, in particular,

cyclic codes in (F,)"™ correspond to ideal in R, as the following theorem states.

Theorem 1.2.2. Let C be an [n, k,d] code over Fy, then C is cyclic if and only if C

1s an ideal of R,.

Since R, is a principal ideal ring, any ideal, C, is generated by an element g(z) €
R,, C = (g(z)). If we require that g(x) is monic and of lowest degree, then it is
unique. Such polynomial ¢ is called the generator polynomial of C'. Note that
g | (z"—=1)in F,[z]. The next theorem summarizes this and other properties of cyclic

codes.

Theorem 1.2.3. Let C' be a non-zero ideal in R, i.e., a cyclic code of length n.
(a) There is a unique monic polynomial g(z) of minimal degree in C'.

(b) C = {(g(x)), i.e. g(x) is a generator polynomial of C'.

(c) g(x) is a factor of x™ — 1.

(d) If the dimension of C' is k, then deg(g) =n — k.

(e) Any c(x) can be written uniquely as c(x) = f(x)g(x) in Flz], where f(z) € F,[z]
has degree less than k.

16

1.2. Cyclic codes

(f) If g(x) = go + g1 + - - - + gu_pa™*, then a generator matriz for C is

0 9 91 -+ Gn-tk-1 Gntr O
0 ... 0 go g1 g2 oo Gn-k

We can then replace our first definition of cyclic code, using the result of Theo-
rem 1.2.3.

Definition 1.2.4. Let C be an [n, k, d] linear code in (F,)". We say that C is a cyclic
code if there is a monic polynomial go € Fy[z] s.t. go|(a™ —1) and C = {gcf | f €
F,[z], deg(f) < k — 1}. The polynomial gc is called the generator polynomial of
C, deg(gc) =n — k, and we write C = (g¢).

To simplify the notation, we usually write g to indicate the generator polynomial
instead of go, when C' is clear. Vice versa, any monic g € F,[z] s.t. g¢|(z" — 1)
generates a cyclic code of dimension £ = n — deg(g). We denote by C,,, the class of
all cyclic codes of length n over F,, by C, the class of all cyclic codes of length n, by
C, the union Uy, ¢=1C¢» and by C the whole class C = U,C,.

Let C' be a cyclic code of length n with generator polynomial g. Since g is a
divisor of ™ — 1, we can define the check polynomial of C' as h(z) € R,, such that
h(z) = (2" —1)/g(x). Note that h(z) and g(x) are zero divisors in the ring R,. Using
the check polynomial it is easy to decide if ¢(x) € R,, belongs to the code C. In fact:

c(x) e C <= c(z) = f(x)g(z) <= c(x)h(x) = f(z)g(x)h(x) =0 in R,.
We have:

Proposition 1.2.5. Let h(z), g(z) be, respectively, the check polynomial and the
generator polynomial of the cyclic code C. The dual code C* is cyclic with generator
polynomial

gl(l‘) _ l‘deg(h)h(l‘_l).

A generator matrixz for C* is

0 0 hr ... hi ho
I 0 hg ‘ . h.l hg O
hk hl ho O 0

Chapter 1. Coding Theory

Corollary 1.2.6. Let h(x) be the check polynomial of the cyclic code C. Then the
code Cy = (h) and C* are permutation equivalent. The equivalence permutation is

w=n—1+1.

From now on, during the study of cyclic codes we make the basic assumption that
(n,q) = 1 (the other case is studied in [vL95] and [CMSvS91]). The first reason for
this assumption is that in this way the polynomial 2™ — 1 € F [z] has distinct roots
in its splitting field. The n-th roots of unity are partitioned in g-cyclotomic cosets
modulo n. This leads us to a very useful characterization of a cyclic code from the
roots of its generator polynomial. Another reason will be clear in Section 2.1 when
we introduce the Discrete Fourier Transform.

Since F, is not algebraically closed, it is not guaranteed that the roots of 2™ — 1
belong to F,. The smallest field which contains the roots of ™ — 1 is called the
splitting field of 2" — 1 (over F,), which we denote as F. We summarize some

results on the splitting field.

Theorem 1.2.7. Let F, be a finite field and I be the splitting field of 2™ —1 over IFy.
Let (n,q) =1, then

e there are a prime p and a positive integer r such that ¢ = p";
e there exist are positive integers m and M such that F = Fn = F u

o there is an element o € F such that
n—1
(2" =1) = [J(z = o).
=0
Such element is called a primitive n-th root of unity.
Let [F be the splitting field of 2" — 1 over F, and let a be a primitive n-th root of

unity in F. If g is the generator polynomial of an [n, k, d] cyclic code, then g | (" —1)

and its roots are a subset of { @’ | 0 <7 <n — 1}, which we can collect in a set.

Definition 1.2.8. Let g be the generator polynomial of an [n,k,d] code over F, and
a be a primitive n-th root of unity in F, the splitting field of ™ — 1. We denote by
Sc,a the set

Sca={0<i<n—1]g(a")=0}.

Sc,a 5 called the complete defining set of C' w.r.t. .

We define the cyclotomic coset mod n over F, (or, briefly, the g-cyclotomic

coset) which contains i as C; = { 1,iq,i¢*, ...,i¢™ ' }, where i¢™ =i mod n. We

18

1.2. Cyclic codes

can collect the integers modulo n into disjoint g-cyclotomic classes. Recalling that if
g(a?) = 0 then also g(a) = g(a?)? = 0, we obtain that the complete defining set of

C is a collection of g—cyclotomic cosets, i.e. for some s > 1:
S
Soa = || Ciys Ci, = {050,450, .. iz¢™ 7}
j=1

Thanks to Theorem 1.2.3 there is a one-to-one correspondence between non-zero
cyclic codes and the divisors of 2™ — 1 different from 2™ — 1 itself. Moreover, once « is
fixed, we have a one-to-one correspondence between irreducible factors of 2™ —1 and ¢-

cyclotomic cosets modulo n. These correspondences lead to the following proposition.

Proposition 1.2.9. The number of non-zero cyclic codes of R,, is 2" — 1, where r is
the number of q-cyclotomic cosets modulo n.

Definition 1.2.10. Let C' be a cyclic code. A linear subcode C' of C that is cyclic

will be called a cyclic subcode. In this case we will write C" < C if C' is not zero.

Given a cyclic code C' with generator polynomial g, it is not difficult to count the

number of its proper cyclic subcodes, using the following result.

Proposition 1.2.11. Let C and Cs be cyclic codes over F, with generator polynomial
g1(z) and go(x), respectively. Then Cy < Cy if and only if g2(x) | g1(z).

Thus, if 2™ — 1 has r irreducible factors and g has s (obviously s < r) irreducible

(r—}s) _ors 1
: i
1

1=

factors, then C has exactly

non-null cyclic subcodes (including C itself).

We have that a cyclic code of length n is defined by its complete defining set. In fact:
ccC <= c(a')=0foranyic Scq

Note that this fact it is not true if we drop the assumption (n,q) = 1. It follows that
if Sco = {41,%2,...,0n—k } is the complete defining set of a cyclic code C' of length

n, the matrix

1 a” o qrba
1 a® a2 . a2

S (12)
1 ain-rt 2in-k g Din_k

19

Chapter 1. Coding Theory

is a parity-check matrix for C'. In fact:

c(a™)
cla?
He' = <.) =0 < ceC

c(atn=*)

Remark 1.2.12. We note that the entries of matrix H in (1.2) are in IF rather than .
clearly C'is the null space of H over F,. H can also be used as a parity-check matrix
for a cyclic code C" over F, with the same defining set. We have C' = Clz = C'N(F,)"
and we say that C'is the subfield subcode of C’ with respect to F,. Choosing a basis
for F = F;m (see Theorem 1.2.7) as vector space over F,, we obtain an m(n — k) x n
matrix, H,, with entries in F;. A parity-check matrix for C’|g, can be obtained from
Hp, by deleting the linear dependent rows.

We conclude this section recalling two remarkable families of cyclic codes: BCH
codes (see [BRC60]) and Reed-Solomon codes.

Definition 1.2.13. We say that a cyclic code C' € C,,, is a (narrow-sense) BCH code
with designed distance 0, if there is an n-th root of unity o over F, s.t. {1,2,...,5 —
1} C Sco and C' is the largest code in C,,, possessing this property.

Definition 1.2.14. Given an integer m > 2, a prime p and an integer p™—1 > 6 > 1,
let n=p™ —1 and g = p™. Consider polynomial g € Fy[x],

g=(r—a) - (z-a’"),
where a is a primitive element of F,. The Reed-Solomon code of designed distance d

over [, 1s the cyclic code generated by g.

The Reed-Solomon codes form a sub-class of the BCH codes. Let S be the com-
plete defining set of a cyclic code. Suppose that ¢ and n are known, let 7" C S be
such that any cyclotomic class in S has at least an element in 7', then T is usually
called a defining set, since the knowledge of 1" provides the knowledge of S. In the
following, when we write “defining set”, we actually mean the complete defining set,

unless specify otherwise.

1.2.2 A second description

Previously, we have seen how we can describe a cyclic code as an ideal of R,,
now we introduce a second description of R, which is often helpful. Let o be a

primitive n-th root of unity in F, then G* = { 1,,...a" ! } is a subgroup of F*, the

20

1.2. Cyclic codes

multiplicative group of F. In particular if the length n is equal to p™ — 1 for some
prime p and some integer m > 1, then G* = F* (in this case we say that code is
primitive).
We have already seen how a vector of (F,)" can be identified with an element of R,
by:

(CoyClyvnnyCnt) > Co A CLT + -+ 4 Cpa™ L
Similarly, there is another natural way to represent a vector in (IF,)", adopting a

group algebra point of view:

0 1 1
(Co,ClyenyCpnot) > 0" + 1 + -+ 1@’

We have an isomorphism between R,, and a group algebra, as we are going to explain.
Let us indicate with F,G* the group algebra F,[{ G*,- }| of the multiplicative group
G* over F,, consisting of the formal sums:

n—1

Zciozi, c; € IF,.

1=0

Addition and scalar multiplication are component-wise and multiplication is given by
multiplication in G*:

n—1 n—1 n—1
Z z;o + Zyl-oz = Z(azz +),
i=0 i=0 i=0
n—1 n—1
)\szof = Z(Axi)o/, AeF,
=0 =0
n—1 n—1 n—1
k=0 =0 i=0 \kj=i modn

With this assumptions we have that the maps ¢ : R,, — F,G*

n—1 n—1
i E cr' | = E cal
=0 i=0

is an isomorphism between the algebras R,, and F,G*. Any ideal in F, x G is called a
group algebra code and it is the image by ¢ of an ideal in R,,. Thus any cyclic code
corresponds to a group algebra code and vice versa.The shift of a codeword Z;:ol c;ol
is the codeword S0~ ;1.

21

Chapter 1. Coding Theory

1.2.3 Naturally equivalent cyclic codes

Given a finite field F, and an n > 1 s.t. (n,q) = 1, there can be many primitive
n-th roots of unity. The following definition allows us to treat formally the choice of

a primitive root.

Definition 1.2.15 (|[BS07]). We denote by S the subset of N x N s.t.
(g,n)eS <= q=p", pisaprime,m>1,n>1,(n,p)=1.
We denote by Z the class of all functions
¢:S— U, primelﬁ‘_p
s.t. ((p™,n) € IF_p is a primitive n-th root of unity over IF,.
The following proposition comes from elementary field theory.

Proposition 1.2.16. Let o be a primitive n-th root of unity over F, and m > 1.

Then o is a primitive n-th root of unity over Fpm.

Many notions of code equivalence are known in coding theory, and in Section 1.1 we
mentioned some of them. Here we are going to describe a special case of equivalence,
that we call natural. We have seen that, once fixed a finite field F,, a length n and
primitive n-th root of unity «, the complete defining set with respect to o determines
uniquely the cyclic code. However, since the n-th roots of unity form a cyclic group,
G*, of order n, many different choices for a primitive root can be done. We recall
that, if o is a primitive n-th root of unity, then the set of all primitive roots of unity
is{a’|0<s<n-—1, (s,n) =1}, with cardinality ¢(n), where ¢ denotes the well-
known Euler function. Given a cyclic code C', different choices for a give different
complete defining sets and thus different codes, which are actually “essentially the

same”’ code.

Definition 1.2.17. Let C1,Cy € Cy,. We say that Cy and Cy are naturally
equivalent if there are two n-th roots of unity over F,, ac and 3, s.t.

Scya = Scy.p -

We have that two naturally equivalent cyclic codes are also permutation equiv-
alent. Let us consider the group algebra F,G*. The permutations a‘cs = o'* with
(s,n) = 1 forms a group G of automorphisms of G*. Thus G permutes the coordinates
of F,G*. However note that now we consider Sym(n) as the permutation group acting
on {0,...,n — 1} rather than {1,...,n}.

22

1.2. Cyclic codes

Example 1.2.18. Let us consider F, = F3 and n = 11. We have cyclotomic classes:
0)={0} (1)={1,3,4,5,9}, (3)={2,6,7,8,10 }
Accordingly to the factorization of z'' — 1 in F3[x]:
ot — 1= (z+2)(a° +22° + 2> + 20 +2)(2° + 2* +22° + 2% + 2)

Let o be a primitive 11—th root of unity with minimal polynomial z° + 223 + 2% +
2x + 2, B be a primitive n-th root of unity such that 3 = o®. Note that the minimal
polynomial of 3 is 2° + 2* + 223 + 22 + 2. Consider the cyclic code C; with defining
set Scv.a =91,3,4,5,9 } and the cyclic code Cy with S¢, o = {2,6,7,8,10 }. Then
C is naturally equivalent to Cs, because S¢, o = S¢, 5. The permutation o9 € G
defined by a‘oy = o induces a permutation in Sym(n), which we still call oy, with
abuse of notation, acting as ioy = (2i),. As a product of cycles in Sym(n), we have
09 =(0)(12485109 73 6). The permutation matrix associated to oy is

g
I
[elelelolelelelolole]
[elelele] Jolelelelel]
[elelelelelelalala] o]
[elelelHelelalalalalo]
[elelelolelelelo]ljele]
[ele] Jolelelelelelel]
[elelelolelelel Jolele]
(=l elalelalalalalale]
[elelelelelel dolalale]
HOOOOOOOOOO
[olelelelelHeloloelele]

So, we have Cy = C P,, (see Section 1.1.3).

Remark 1.2.19. Two permutation equivalent codes not necessarily are naturally equiv-
alent, but only those of the form C} = Cyo, with (s,n) = 1.

A classical result on cyclic codes can be rephrased in our context as follows.
Theorem 1.2.20 ([BS07|). Let Cy and Cy be naturally equivalent cyclic codes. Then

Furthermore, let Cy be in Cyp. Let o and B be primitive n-th roots of unity. Then

there is a unique cyclic code Cy in Cyp, s.1.

501,04 = 50275'

From the defining set of a code it is immediate to find the defining sets of its
naturally equivalent codes, as follows. Let C' € C,,, and oo = ((gq,n), for a ¢ € Z. Let
Sc.a = {i1,...,4-}. Then for any [€ Z! we can construct a set S; = {j1,...,Jjr} C
{0,...,n — 1}, where j, = (lip), for any h. So we can rephrased another classical

result as follows.

23

Chapter 1. Coding Theory

Theorem 1.2.21 ([BS07|). For any code D naturally equivalent to C there is an
l e ZZ s.t. SD@ =35.
Conversely, for any | € Z;, there is a code D naturally equivalent to C' s.t. Sp o = S;.

Remark 1.2.22. Observe that defining sets of naturally equivalent codes do not depend
on the underlying field, but only on n and the defining set of one code, since using

different o gives rise to the same set of defining sets.

1.3 Terminology for general distance bounds

The distance of a linear code can be viewed as a map (and its restriction):
d: L — NU{oo}, d:C— NU{oo},
if we adopt the convention that the distance of zero codes is oc.
Definition 1.3.1. A map 6 : L — NU {oo} is called
e a lower bound on L, if §(C) <d(C), VC € L
e an upper bound on L, if §(C) > d(C), VC € L.
Analogously for a map 6 : C — N U {oc}.

Definition 1.3.2. Let C be a code in C and F C C. Let § be a bound on C (either
lower or upper). We say that:

e 0 is tight on C, if 6(C) =d(C),
e 0 is tight on F, if 6(C) =d(C), VCeF.
From now on a “bound” will actually be a lower bound on C.

Definition 1.3.3. Let C be a code in C and F C C. Let 6; and d9 be two bounds.
We say that:

e 01 is sharper than 6 on C, if 61(C) > d9(C),
e 01 is sharper than ds on F, if 51(C) > 6(C), VYV C € F.
e 0y is tighter than ds on F, if
{C | C e F, 6 is tight on C}| > |{C| C € F, 0y is tight on C}|.
The last definition we need is the following.

Definition 1.3.4. Let ¢ be a bound. We say that 6 is monotone if for any cyclic code
C and any cyclic subcode C" of C, we have

3(C) < 8(C").

24

Our Tools

Here we present the main tools we use in Chapter 3 and Chapter 4. This in-
struments are classical in coding theory. Our principal references are [BS07, Sch88,
Cha98, MS81] for Section 2.1 and [BS07, Sch88| for Section 2.2.

2.1 DFT and cyclic codes

Let K be a field. Let a be a primitive n-th root of unity over K.
Let A be any matrix over K. We denote by rk(A) the rank of A.

Definition 2.1.1. Let a = (a4, ...,a,) be a vector over K. We denote by M(a) the

matrix:
ay a ... Qp—1 Qp
B s agz ... Qp aq
M(a) =
Ap a1 ... Qp—2 QAp—1

and we say that M(a) is the matriz associated to a.

By definition, M(a) is a circulant matrix (i.e. its rows are obtained from the first

one by successive shifts).

Definition 2.1.2. Let a = (aq, . .., an—1) be a vector over F,, a a primitive root in F.
Let i € Z, we define A; = a(a') = E;:Ol aja’. The Discrete Fourier Transform

(or DFT for short) of a is the vector:
DFT(a) = (Ao, ..., An_1).

The polynomial A(z) = > | Aja"~" € Fz| is called the Mattson-Solomon polynomial
(MS polynomial for short) of a.

Note that Ay = A,,.

We have an useful inversion formula, which allows us to recover a from A(z).

25

Chapter 2. Our Tools

Theorem 2.1.3. [Inversion formula] Let a, o, A(x) as above. The vector a is recov-

ered from A(z) by

Proof. See [MS81]. O

From Theorem 2.1.3 it is possible to deduce that the weight of a is n minus the

number of zeros of A(x).

Remark 2.1.4. We note that it is possible to define the MS polynomial when (¢, n) # 1
but in general it is not invertible. This is another reason for which we always assume

n and ¢ coprime.

Remark 2.1.5. Let C € C,,,. If we represent a word ¢ € C' as a polynomial in F,[z],
then the zero components of its DF'T correspond to the zeros of ¢, since A; = c(a?)

for any 7. Moreover, since c(a'®) = ¢(a")?, we also have Ay, = (A;)? for any .

The precise correspondence between codewords and their DFT’s is described in

the following theorem, which is a rephrasing of classical results.

Theorem 2.1.6. Let S be a subset of {0,...,n— 1} which is invariant under mul-
tiplication by q modulo n. Let L be the subspace of F" whose elements are n-tuples
(Ao, ... A,_1) satisfying

Ags), = (A5)? and Ay =0 foranyse S

Let C be the cyclic code of length n over F, with defining set S. Then there is a
one-to-one correspondence between the codewords of C' and the vectors of L, given by
¢ — DFT(c).

Given any vector ¢ = (cg,...,cn—1) of (F,)", we consider the diagonal matrix D,

and the Vandermonde matrix F', defined as:

Co 0 0 1 1

0 C1 0 1 al O[n_l
DC: F: .

0 ... 0 ¢y 1 an! | gD

It is clear that we have rk(D.) = w(c) and rk(F) = n, since the o are distinct for
0<j<n-—1. Let DFT(c) = (Cy, C1,...,Cpn_1), we have the following identity due

26

2.1. DFT and cyclic codes

to Blahut (|Bla83]):

CO Cl . Cn,1 Co 0 e 0
Ch1 Cy ... Oy 0 o 0 ...
N L F (2.1)
Cl CQ e CO 0 ... 0 Cn—1

If C} and Cy are naturally equivalent cyclic codes of length n, we know a permu-
tation o € Sym(n) such that for any ¢; € C there exists ¢y € Cy with ¢3 = ¢;0 and
this permutation acts as ioc = (is),, for some s € {0,...,n — 1}, (s,n) = 1. We have
that D., = PI'D,. P,. From this fact, we are able to prove that M(DFT(c;)) and
M(DFT(cy)) are closely related. We claim the following proposition.

Proposition 2.1.7. Let C) and Cy be two naturally equivalent cyclic codes. Then
there is a permutation matriz, Py, such that for any co € Cy there is an unique ¢; € C4
s.t.

M(DFT(cy)) = PAM(DFT(c;)) P

Proof. Let n be the length of €'y and C5. Since ' and (5 are naturally equivalent,
there is a permutation o of the form ioc = (is),, with (s,n) = 1, such that Cy = C1 F,.

Let ¢ = 10, ¢1 € 1, ¢g € (5. Then we have
M(DFT(cy)) = F'D.,F = F*P'D,, P,F.

We claim that the matrix F~'PTF is a permutation matrix. If our claim is true, we
set P\ = F71PTF, obtaining:

P\M(DFT(c,))Pf = P\ F'D,F P}
=P, F'D,F P!
= (F'P'r) F'D,F (F'P'r)™!
= (F'P])D.,(F,F)
= F'D.,F
= M(DFT(cy))

Since F' is a Vandermonde matrix, we have that (see [AL69]) its inverse is

1 1 o 1
o 111 at a1
n : :
1 Oé_(n_l) Oé—(n—l)(n—l)

Chapter 2. Our Tools

while the permutation matrix corresponds to the permutation o~! which is of the

form ioc™! = (it),, with (¢,n) = 1, because it must hold st = 1 mod n. Thus we have

F1PT = F~1P, i and:

(a0)0 (a0)1 o (QO)(n—l)
1 a1 a—H! a1 (-1
F'Py == (_) (_) () Py
n : : :
(a—(n—l))o (a—(n—l))l o (a—(n—l))(n—l)
(OéO)Oo*l (OZO)la*1 o (OéO)(n—l)(fl
1 (a—l)OU—l (a—l)lo—l o (a—l)(n—l)o—l
o : : . :
(a—(n—l))Oafl (Oé—(n—l))la’l o (a—(n—l))(n—1)071
1 1 . 1
1 (Oz_l)t o (a—1>(n—1)-t
IR E : . :
1 (af(nfl))t o (af(nfl))(nfl)-t
1
=T,
n

We compute the product L = T'F'. We note that the i-th row of T is
(1 (7)) ... (@7)@=D0=D) while the j-th column of Fis (1 /="' ... a(jfl)(”*l))T.
Thus we have:

n—1 . . . o
I = Zak(j’l’t(ifl)) _Jn if(j—1)—t(i—1)=0 modn, (2.2)
=0 0 otherwise,

where we have used the classical result gn—y B = 0, which holds for any field F,
and for any n > 2, provided (n,q) = 1. From (2.2) we have that [;; = n if and only
if j =t(i —1)+ 1 mod n, which means j = (t(i — 1)), + 1, since 1 < j < n. Let
us consider any row of Py = %L, say the i-th. We have proved that its j-th entry is
1if j = (t(: = 1)), + 1, which happens only one per rows, and it is zero otherwise.
Then it is sufficient to note that, by definition, P, is an invertible square matrix, to

conclude that it is a permutation matrix. O

We collect in one statement some results from [Bla83|, [Sch88| and [MS88| (mainly
the “Zero-Location Theorem” in [MS88]), which follows immediately from (2.1)

Theorem 2.1.8. Let C' be a cyclic code and let DFT(C) be the code formed by
the Discrete Fourier Transforms of the words of C. Then the distance of C' is the

28

2.2. The set U

minimum of the ranks of the matrices associated to all nonzero words in DFT(C),
1.€.

d(C) = min{rk(M (DFT(c))) |c € C,c # 0}.

Thus, the problem of finding the distance of a code is equivalent to finding the
minimum rank of the corresponding set of matrices. In particular, any bound for one

is also a bound for the other one.

2.2 The set U

We present some notation from [BS06].

Definition 2.2.1. Let U be a set formed by three elements, which we call {A, X, 0}.
We endow U with two operations, sum and product, according to the following logical
tables:

SIS
S
°kbhk
oo oo
S Iy |+
> | b
=
o ko

Table 2.1: Multiplication and sum in U

The set U plays the role of a field where we have partial information on the element

values. More precisely, let K be any field, we say that:
o A represents an element of K for which we know it is different from zero,
e 0 represents an element of K for which we know it is zero,

e A represents an element of K for which we do not know if it is zero or we do

not care.

One should regard an element of U as the information we have on a field element,

rather that a way to indicate its value.

Example 2.2.2. Sum and product are defined over U following the interpretation of
the symbols 0, A, A'. In fact, & - A = A is equivalent to saying that the product
of two non-zero elements is different from zero, while A + A" = A is equivalent to

saying that the sum of two non-zero elements could be zero or non-zero.

29

Chapter 2. Our Tools

Although U is not a field and U™ is not a vector space, it is convenient to use
some terminology traditionally associated to vector spaces, paying attention to define

rigorously our notation.

Definition 2.2.3. Let u = (uq, ..., u,_1) be any element of U™. We say that u is a

vector. We also write ufi] = u;_1 for any 1 <i < n.

Remark 2.2.4. Let k € Z be any integer and u € U™. For convenience, sometimes we
write u[k], meaning:
u[(k)n] if (k)n # 0

u[n] otherwise.

Definition 2.2.5. Letn > 1 and S C{0,...,n — 1}.

We denote by R(n,S) the vector (ug,...,u,—1) in U™ such that u; = 0, if 1 is in S,
u; = A\ otherwise.

We denote by R(n, S) the vector (ug, ..., Un—1) in U™ such that u; = 0, if i is in S,
u; = N otherwise.

Note that, if C € C,,, and a is a primitive n-th root of unity over F,, then
R(n,S¢q) and R(n, Scq) are well-defined vectors in U".

Definition 2.2.6. Let v € U™. We denote by M(v) € U™™ the circulant matriz
obtained from vector v, i.e. the matrix whose first row is v and whose other rows are
obtained by cyclic shifting.

We want to introduce the notion of linear dependence in U"™. We want that a set
of vectors is linear independent in U™ if they correspond to a set of linear independent
vectors in every vector space K". To define this notion in a rigorous way, we need a

couple of definitions, presented here for the first time.

Definition 2.2.7. Let n > 1 be a natural number, u = (uq, ..., up_1) € U". Let K
be any field. An instance of u over K is any vector v = (vg,...,v,—1) € K" such
that for 0 <i<n—1:

1ovi=0ifu =0,
2. v; #0 if u; = X.

The set of all instances of u over K is called the tnstantiation of u over K and we

write In(u,K) = { v € K" | v is an instance of u over K }.

Remark 2.2.8. Note that in Definition 2.2.7 we did not specify the value of v; when
u; = A, so v; can be freely chosen for this value of 7.

30

2.2. The set U

Example 2.2.9. Let us consider K = [F,.
- ifu=(0,A,X) € U3, then In(u,Fy) = {(0,0,1),(0,1,1) }
- ifu=(0,4,A) € Y3, then In(u,Fy) = {(0,1,0),(0,1,1) }.

Definition 2.2.10. Let s > 1. We say thatu', ... ,u® € U™ are linear independent
if for any field K, for any v* € In(u’,K) with 1 < i < s, we have that { v* Ficics aTE

linear independent (over K).

In other words, for any instance set { v!,...,v* }, for any { \; Heics C K

i)\lv’:() <)\1::>\5:O

=1

In a similar way we can also define the instance of a matrix.

I e R

SO >

1. bij =0 ifaij = 0,

The set of all instances of A is called instantiation of A over K and we write
In(A,K) ={ B € K™ | B is an instance of A }.

Definition 2.2.12. Given a matriz A over U, we denote by rk(A) the rank of A, i.e.

the largest r s.t. there exists a set of r linear independent rows.
From Definition 2.2.12, the following fact is straightforward.

Fact 2.2.13. Let A € U™ be any matriz over U. Then
rk(A) = nﬁén{ tk(B) | B € In(A,K)) }.

It is easy to see that this notion of rank for rows is equivalent to a notion of ranks
for columns, since this equivalence holds over any field.
Our interest in ranks over U lies in the following theorem.

Proposition 2.2.14. Let M = (m;;) be an r x s matriz over o field K. Let M =
(i ;) be the r x s matriz over U s.t. m;; =0 if m;; =0 and 7, ; = X otherwise.
Then

~

rk(M) <rk(M) .

31

Chapter 2. Our Tools

Proof. By construction of M, we have M e In(M, K). Then thanks to Fact 2.2.13

our claim follows. O

Definition 2.2.15. Given a vector v € U™ we denote by A(v) the set of vectors
ucU" 0 s.t.

e ufi] =0, if v[i] =
e uli] = X, ifv[i| = &,
ufi] = &, orufi] =0 if v[i] =

Observe that if there is at least one component of v equal to A then |A(v)| =
where s represents the number of components of v equal to A. Otherwise |A(v)|
2% —1.

Theorem 2.2.16. Let C' be a cyclic code of length n, defining set Sc and distance
d. Then:
min{rk(M(u)) |u € A(R(n,Sc))} < d.

Proof. From Proposition 2.2.14 and Theorem 2.1.8. O

32

Root bounds

This chapter belongs to a work joint with E. Betti, relates the results contained
in the unpublished paper [BS07| but also advances significantly on [BS07|, especially
in Theorem 3.2.18, Proposition 3.3.3 (this was claimed in [BS07| but without a con-
vincing proof) and Theorem 3.5.8.

3.1 General settings

In this chapter we propose a family of bounds and study their properties.
We need a definition to fix our setting.

Definition 3.1.1. We denote by D the following subset of N x 2N:
(n,S)eD < n>1,5C{0,...,n—1}.

Let (n,S) € D. Let S = {iy,...,im}. We denote by (n,S)* the following set of
subsets of {0,...,n — 1}
(n,S)* = {S1,..., 5},

where r = |Z}| and for any | € Z}, there is one and only one j such that S; = {(lip), |
1 <h<m}.

Note that S € (n,S)# and |Sy,| = |S| for any h.

Note that in Definition 3.1.1 we do not require that S # Sj for [# I. The two extreme
cases are given by S = {1}, where S; # S; for any [# [, and by S = {0}, where
S; = S; for any .

Definition 3.1.2. We denote by x the map x : C — N s.t. x(C) =p, if C is over F,

and p is the characteristic of IF,.

Using a function ¢ € Z (Definition 1.2.15), we define a map from C to D:
¢c:C—=D, ¢(C) = (n,Sca), (3.1)
where a = ((x(C),n).

Proposition 3.1.3. For any ¢ € Z, map ¢¢ s surjective.

33

Chapter 3. Root bounds

Proof. Given a pair (n, {iy,...,i,}) in D, take any prime p. Let a = ((p,n) and let
F, C F, be a finite field containing a. Let C' be the cyclic code over F, generated by
g=(r—a")(z—a®?) - (r—a'™) and with length n.

Clearly, ¢¢(C) = (n,{i1, ..., im}). O
Definition 3.1.4. A root function is a map f: D — NU {oco} such that:

VCEZ VO EC, fop(C)<d(C). (3.2)

We denote by R the class of all root functions.

Given [€ R, we say that f is invariant if f(n,S) = f(n,T), for any T €
(n,S)#. We also denote by f# the map f#(n,S) = maxreq, g% f(n,T).

For any ¢ € Z and any f € R, the composite map fpc = fo ¢ : C— NU{oo}
is called the root bound associated to f and . If f is invariant, we say that fp . is

invariant. We denote by Rp the class of all root bounds.

Due to (3.2), root bounds are actually lower bounds for the distance on C.

If f € R is invariant, we have that fp. = fp for any ¢ and ¢’, and so we just
write fp.

Given any f € R, f represents the “invariant version” of f, as explained in the

next proposition.
Proposition 3.1.5. For any f € R, we have:
1. f¥ € R,
2. f* is invariant,
3. f < f*,
4.t =maxcez foy.
Proof.

1) Let C € C. Then C € C,,, for some ¢ and n, and p = x(C). Let (€ Z and
a = ((p,n). We have to prove that (f#o¢:)(C) < d(C). Let (n, Sc.a) = ¢c(C).
From the definition of f# we have that f#(n,Sc.) = f(n,T), for some T €
(n, Sc.a)®. From Theorem 1.2.21, there is a code D naturally equivalent to C
such that Sp, = T. Theorem 1.2.20 guarantees that d(C) = d(D), so we have:

(f# 0 0)(C) = f(n,Sp.a) = (f 0 ¢)(D) < d(D) = d(C).
2) Let (n,S) € D then for any T € (n, S)* we have (n,S)* = (n,T)#. So:

f#(n,8) = max f(n,H)= max#f(n,H):f#(n,T).

He(n,S)# He(n,T)

34

3.1. General settings

3) Recalling that for any (n,S) € D, S € (n, S)#, we conclude that:

f#(n> S)= max f(n,T)> f(n,»5).

Te(n,S)#

4) Let C € C. Then C € C,, for some ¢ and n, and p = x(C). Let ¢ € Z and
a = ((p,n). We have to prove that fZ(C) = (f# o ¢.)(C) = maxeez(f o
¢c)(C). Since (n,Sca.) = ¢c(C) it holds (f# o ¢c)(C) = f#(n,Sca.) =

1S) f(n,T). Thanks to Theorem 1.2.21, for any T € (n,S¢a.)*

there is a code D naturally equivalent to C' (we write D ~ (') such that

maxpe(

T = SDv%' So we have:

_ _
fp(C) = rei f(n,T) = max f(n, Sp.ac).
From Definition 1.2.17 and Theorem 1.2.20 we have maxp~c f(n,Spa.) =
maX¢rez f(']’l,, SC’aC’), thus:

FE(C) = max f(n. Sc.a) = max(f 0 6c)(C) = max fo.o(C).

¢'ez
U

The following remark is essential to understand our approach in this chapter and

actually in most of this thesis.

Remark 3.1.6. A lower bound (see Definition 1.3.1) is a map that gives an estimate
on the minimum distance of a cyclic code. With a root bound this estimate is given
while ignoring all information about the code, except the length and a defining set.

In particular, no information on the underlying field is used.

c Jooc N
\@\ /
D

We can rewrite a known theorem on sub-field subcodes of cyclic codes, using our

notation.

Theorem 3.1.7 ([MSS88|). Let Cy € Cyyn, Co € Cpyn. Let (€ Z. We have
Fo © Fopy ¢c(Ch) = ¢¢(Ca) = d(Ch) = d(Ch).
From this theorem we can easily get a slightly more general statement.

35

Chapter 3. Root bounds

Proposition 3.1.8. Let C) € Cy, 1, C2 € Cy, . Let ¢ € Z. We have
X(C1) = x(Ca), ¢c(Ch) = ¢¢(Cr) = d(Cy) =d(Ch).

Proof. Let p = x(Cy) = x(C3). Then ¢; = p™ and ¢ = p™, for some 71,79 > 1.
Let @ = p"™. We have F,,,F,, C Fg. Consider C5 € Cg, s.t. ¢c(Cs) = ¢c(Ch).
By Theorem 3.1.7 we have d(C5) = d(C}) (because F,, C Fg) and d(C3) = d(Cy)
(because F,, C Fp). O

In other words, a defining set, a length and a field characteristic uniquely determine

a distance.

Definition 3.1.9. Let f be a root function. We say that f is monotone if for any
(n,S) and (n',S") in D we have

n=n',SCS = f(nS) <f(nyS)
Any root bound associated to f is called a monotone root bound.

Thanks to the next result (Theorem 3.1.10) the two terms “a monotone root
bound” and “a monotone bound which is a root bound” correspond to the same

notion.

Theorem 3.1.10. Let 6 € Rp be a monotone root bound. Let C' be a cyclic code and
C' be a cyclic subcode of C'. Then

0(C) < 6(C)

Proof. We have that § = f o ¢, for a root function f and a map ¢ € Z. Since C’
is a cyclic subcode of C, we have that ¢.(C) = (n,S) and ¢.(C") = (n,S’), with
S" O S. By definition of monotone root bound we have that f(n,S) < f(n,5’) and
then 6(C) < 6(C"). O

For any f € R, we denote by f* the map
f(n,S) =max {f(n,5) | S CS}. (3.3)

The f* construction is useful, since it produces the least monotone root function from

f, as detailed in next proposition.
Proposition 3.1.11. Let f € R. We have:
1. f* is a root function,

2. f* is monotone,

36

3.1. General settings

s f<f,
4. if g is any monotone root functions s.t. f < g, then f* <g.
Proof.

1) Let C' € C,,, and ¢ € Z. We have to prove that (f* o ¢.)(C) < d(C).
Let F = Fg be the splitting field of 2™ — 1 over F,. Let us consider Ce Con
such that ¢¢(C) = ¢¢(C). We have d(C) = d(C') by Theorem 3.1.7 and so it is
enough to prove (f*o¢)(C) < d(C). Let (n, S) = ¢¢(C). By definition of f* we
have f*(n,S) = f(n,5"), for some S" C S. Let C' € Cgp s.t. ¢c(C') = (n,).
We have that C' < ¢’ and hence d(C') > d(C"). Putting all together, we get

(f7 0 ¢)(C) = f*(n,5) = f(n,5) <d(C") <d(C) = d(C).

2) If SC T then {S"| S C S} C{T"|T'C T} and hence

max f(n,T") > max f(n,S").

T'CT 5'Cs
3) It is straightforward, since S C S.
4) Let (n,S) € D. For any S’ C S, g(n,S) > g(n,S") > f(n,S"), so

g(”? S) = g}g?f(nv SI) = f*<n7 S)

O

Clearly, the previous construction can be extended to the corresponding root
bounds, but we find it unnecessary to give an explicit statement.
We define a map f from D to NU {oo}, as follows

f(n,S) =max{f(n,S) | f € R}. (3.4)

Theorem 3.1.12. Map f is a root function, which is maximal in R, monotone and
mvariant.

Proof. Map f is in R, if for any C' € C and any ¢ € Z, fo ¢, < d(C). Let (n,5) =
¢¢(C). There must be an f € R s.t. f(n,S) = f(n,S) (by definition of f) and hence
fodc = f(n,$) = f(n,S) = f 0 6:(C) < d(C).

It is obvious that f is maximal in R, since for any (n,S) € D and any f € R we
have f(n,S) > f(n,9).

To show that f is monotone, we consider f*. Then f* is a monotone root function
s.t. f* > f (Proposition 3.1.11). By maximality of f we have f* < f and hence f* = f.

To show that f is invariant, we consider f# and with the same argument as before
we obtain that f = f# (Proposition 3.1.5). O

37

Chapter 3. Root bounds

We can use f to obtain the maximal root bound.

Theorem 3.1.13. Map fp is a monotone invariant root bound, which is mazximal in
Rp.

Proof. 1t follows immediately from Theorem 3.1.12. U

We want to get an alternative characterization for the maximal root bound. We

will need a few definitions and lemmas.

Definition 3.1.14. For any ¢ € Z and any (n,S) € D, we define two sets, V(i,s) -
and T(Cn s) C N, as follows,

Vs = {C1C€Co(C)=(n9)}
Ths = 1d(Q) [C €C.0c(0) = (n:8)} = {d(O} e

Observe that V(i,S) # () for any ¢ € Z and any (n,S) € D (Proposition 3.1.3).
Lemma 3.1.15. For any (,{’ € Z and any (n,S) € D,
¢ _ ¢ ¢ _ 7¢
Vsl =Vasl Tos = Ths) -

Proof. Tt is enough to construct two maps t¢c ¢ and ¢ ¢, teer - V(fl 5 V(il g) and
VS ¢
bere s V(n,S) — V(n,S)’ s.t.

, e =1id / r=1id e 3.5
oot =idye o oo =idye (3.5)

and
d(C) = d(1e¢(C)), VO €V, g, d(C) = d(ice(C)), VC € Vg (3.6)

Let C' € V(f%s). Then C € C,,,, where F, is a finite field. By Theorem 1.2.20, there
is a unique code C’ € Cy,, s.t. ¢ (C') = (n,S). By the same theorem, C' and C’ are
naturally equivalent and hence d(C) = d(C’). But then if we define

o (C) =0 e (C) = C,
conditions (3.5) and (3.6) are trivially satisfied. O

Definition 3.1.16. We define a map g : D — NU{oc} by choosing an arbitrary
¢ € Z and setting
g(n,S) = min T(Q;L,s)-

38

3.1. General settings

By Lemma 3.1.15 g does not depend on the particular ¢ and hence g is well-defined.

Lemma 3.1.17.
geR.

Proof. Let C € C and ¢ € Z. We have to show that go ¢:(C) < d(C).
Let (n,S) = ¢¢(C). We have g(n,S) = minT(Cn,S). But C € V(f%s) and so d(C) €

T(Q;L,S), which means g o ¢(C) = g(n, 5) <d(C). O

We are finally ready for an alternative description of the maximal root bound. We

recall that f is the maximal root function.

Theorem 3.1.18.
g="1.
Proof. Since f is maximal in R and g € R (Lemma 3.1.17), we have g < f.
To show g > f we argument by contradiction, by assuming that there is an (n, S) €
D such that g(n,S) < f(n,S). Let (€ Z. We consider C' € V(i) such that

d(C) = min T

(.9) (Proposition 3.1.3). Thus we get a contradiction:

d(C)=go¢(C) <fop(C) and feR.

Corollary 3.1.19. For any ¢ € Z, we have

fp.0(C) = min{d(C") [C" € C,4c(C") = 6¢(O)}
felC) = 1o(C) = pas o (C) =
fgfg{mm{d((]/) ‘ o= C, SC/,ﬁ = SC,a“ o; = C(X(C), n)7 6 — C(X(C/),n)}} 7

where C € Cy, and v, . .., o, are all primitive n-th roots of unity over IFy.

Unfortunately, the optimal root bound fp is not tight, as we claimed in the next

theorem.

Theorem 3.1.20.
fp#£d.

Proof. To prove our claim we need to find a code C' where fp(C') # d(C). Since it
is not clear how to compute fp, we divide the proof into two parts: one, where we
suppose that we have two codes with some properties and we use them to prove our
claim, and another, where we provide explicitly the above-mentioned codes.

Part I
We will provide in the second part of the proof two fields, F,, and F,,, and a number
n>1,s.t.

39

Chapter 3. Root bounds

e the two fields have different characteristics, which we may call p; for ¢; and p,

for g,

® ay,...,q, are all the primitive n-th roots of unity over F,, and f,..., 3, are

all the primitive n-th roots of unity over [F,.

We take any (1,...,(€ Z s.t. (i(p1,n) = o; and ((pe,n) = B, for 1 < i < r (this
is always possible). We will also provide two cyclic codes of length n, C; and Cy, the

former over F,, and the latter over F,, s.t.

d(Cy) < d(Cy) (3.7)
Sc'l,ai = 502751., 1 S 1 S . (38)

Observe that (3.8) implies ¢, (C1) = ¢¢,(C2) for any i. We denote by .S; the set S¢ a,,
for any i. We have by Corollary 3.1.19 that fp(Cs) equals

max {min{d(C") | ¢" € C,Scr 3 = Scpa; i = G(-..), 8= G(..)}}, (3.9)

1<i<r

which may be written as

fp(Cy) = max {min T%Si)}. (3.10)

1<i<r (
By (3.8), for any i, we have C € V(% S and hence d(C) € T(Q;j Si) which means

min 7 ¢, < d(Ch). (3.11)

Putting together (3.11), (3.10) and (3.7), we get

fp(Cy) = max{min T(%’Si)} < max d(C}) = d(Cy) < d(Cy),

1<i<r 1<i<r

which shows fp(Cy) < d(Cy) and proves our claim.
Part II

It is enough to take F,, = s, F,, = Fi; and n = 16. There are r = 8 primitive
n-th roots of unity. As cyclic codes C; and Cy, we take two codes with the same
defining set S = S¢y .00 = S0,.8:,

S =1{1,2,3,4,6,9,11,12},

but note that S = S¢, 4, is the union of three cyclotomic sets over Fy, while S' = S¢, g,
is the union of eight cyclotomic set over ;.
A quick computation (see Section 9.3) shows that d(C;) =5 and d(Cs) = 6.

40

3.2. Root bounds and U

What we call root bounds are sometimes called “BCH-like” bounds, since they
include the BCH bound and its generalizations (the Hartmann-Tzeng bound, the
Roos bound, etc.). In Subsection 3.4 and 3.5 we will see exactly what known bounds
fall within our class.

We believe that the implications of Theorem 3.1.20 are noteworthy. Theorem

3.1.20 states that if you get a bound which depends only the information given by the
defining sets, it does not matter how smart you are and how computationally costly
is your bound, you will never get the distance for all cyclic codes. In other words,
if you want actual improvements on known BCH-like bounds, you should try to use
other information apart from defining sets.
There are two interesting questions naturally raised by Theorem 3.1.20. The first
concerns the practical computation of f (and fp). Apparently, computing f using
either Definition 3.1.16 or (3.4) requires an unspecified number of computations. In
principle, one should go through all f € R (in the former case), which are infinite, or
through all fields coprime with the length, which again are infinite. On the other hand,
for any given code the value to be computed is finite and bounded by the distance, so it
is obvious that the right value would be found after checking a finite number of f € R
(or of fields). However, we would not able to realize when we reach our value, unless
infinite computations are performed. An effective algorithm is usually defined as
an algorithm that runs in a finite and a priori bounded time (e.g., polynomial-time
algorithms, exponential-time algorithms). Computing f from Definition 3.1.16 or (3.4)
is non-effective (and useless in practice). The problem to compute f (or fp) in a finite
time will be faced in Chapter 8.

The second question comes from the proof of Theorem 3.1.20. The proof requires
two codes with the same defining set and length, but over fields of different character-
istic (otherwise they would have the same distance, due to Proposition 3.1.8). Thus

the following question remains open.
Problem 3.1.21. Is there a finite field I, s.t. fp is tight on

= U Cwm ?

n>1,(n,q)=1

3.2 Root bounds and U/

To determine the rank of a matrix in U, as defined in Definition 2.2.10, is a very
difficult problem, since in principle you have to run through an infinite number of
matrices in an infinite number of fields. On the other hand, Theorem 2.2.16 depends
on this rank notion and is of a paramount importance within our theory. Fortunately,

we do not need to determine precisely the rank, in order to apply said theorem, but

41

Chapter 3. Root bounds

we only need to lower-bound the rank.

In this subsection we propose a simple but powerful method to verify the linear
independence of a set of r rows in U™. This method is called “single procedure* in
[Sal01], but we prefer to call it the “singleton procedure” as in [BS06].

Finally, we prove that using the singleton procedure we are able not only to lower-
bound the rank but also to reach it exactly.

We start with a few definitions and lemmas.

Definition 3.2.1. Let A be a matrix, either over a field K or over U. We denote the
j-th column of A by Alj] and the (i, j)-th entry of A by Ali, j].

Let M be a matriz over U. We say that M|j]| is a singleton if it has only one
non-zero component Mli,j|, i.e. M[i,j] = X and M[l,j] = 0 for | # i. When this
happens, we say that the i—th row is the row corresponding to the singleton.

Singletons play a special role, thanks to the following two lemmas.

Lemma 3.2.2. Let M be a matriz over U and M|j] be one of its columns. If M]j]
s a singleton, then the corresponding row is linearly independent from the others.

Proof. Let us suppose that M € U™ . Let vl ... r™ be the rows of M and

let rll be the row corresponding to the singleton. If 7! is a linear combination of

pl o) el there are a field K, instantiations 7F = (fgk], . ,fL]) €
In(r*l K), 1 < k < m, and scalars not all zero A1, ..., A\i—1, Aix1,..., Am € K such
that:

)\177[1} 4t)\Flf[ifl} 4)\Hlf[HH N)\mf[m} — Flil
In particular, we have: Alfjm + -+)\i_lfj[»i_u +)\Hlfj[»iﬂ} + -+)\nf][n} = fjm. But
by hypothesis f][»k] = 0 for k # ¢ while f][»k] # 0, so we have a contradiction. O

Lemma 3.2.3. Let M be a matriz over U and M[j] be one of its columns. Suppose
M{j] is a singleton and let row i be its corresponding row. Let M’ be the matriz
obtained from M by erasing column j and row i. Then M has full rank if and only if
M’ has full rank.

Proof. We can suppose M € U™*", so M has the form

arl - apg-ny 0 apgyy - A
M = @il e Q1) N a5 (j41) - Gin
am’l amy(j,l) 0 amy(]’+1) o QGmyn

42

3.2. Root bounds and U

By s- deleting the singleton we obtain the matrix

a1 e 0L3-1) 9L+l - OLn
M/ _ Ai—1,1 -+ Q5—1,(j—-1) Ai—1,(j+1) - Ti—1,n
- Qit1,1 - Qip1,(j—1) Dit1,(j+1) - Fitln t
Gm,1 e Gm(=1) Om,(G+1) - Gmen

If M’ does not have full rank then there exist m — 1 scalars A1, ..., \,,—1 in a field K
and vectors v, ... o™ e K", for any 1 < k < m — 1, where v/* = (vgk], . ,v,[lk])

is an instance of the k-th row of M’ over K, such that:

e (A, .., A1) #(0,...,0)

o > A =o0.
We denote with M the matrix obtained removing the i—th row from M and we define
ol ol e K™ as:

k] . ‘
) if ¢
ﬁik]: ! 7 yforany 1 <k<m-—1,1<t<n.

0 otherwise

With this definition o!* is obviously an instance of the k-th row of M, and ZZ;I \polF! =
0, so that M has not full rank. But this means that also M has not full rank, which

is a contradiction. O

Note that both for Lemma 3.2.2 and Lemma 3.2.3 also a trivial proof is achievable,
by noting that their statement is true if “translated” over any field.

We are ready to describe our singleton procedure.

We start from a set of r rows of length n, with » < n, and we want to test whether
they are linearly independent. We take our r rows to form a matrix A, € U™".
We search for a singleton in A,. If column A,[j] is a singleton, we know that the
corresponding row is linearly independent from the others (Lemma 3.2.2). Then we
erase from A, the j — th column and the corresponding row (we call this operation
s-deletion). We denote by A,_; the (r — 1) X (n — 1) matrix so obtained. Matrix
A,_1 has full rank if and only if A, has (Lemma 3.2.3).

We search for a new singleton in A,_; and proceed as before. If this procedure can
continue until we have obtained a 1 x (n — r + 1) matrix A; containing at least one
A, then the initial matrix A, has full rank, since A; has. In this case we say that
the singleton procedure is successful for the original set of r rows. However, if we
cannot find a singleton either in A, or in any successive A;, then we say that the
singleton procedure is not successful.

We provide an example.

43

Chapter 3. Root bounds

Example 3.2.4.

0N A0 .

A0 0 A '

(0o AN _ ji=1
AQ_(NO A)éAl_(ﬂ—,ﬂ_),iZQ’

hence the singleton procedure is successful for As.

Remark 3.2.5. Let M € U™ ", without loss of generality m < n. When we apply
the singleton procedure, for each s-deletion we erase one column and one row. So to
say that the singleton procedure is successful for M is equivalent to finding a square

m X m submatrix of M for which the singleton procedure is successful.

We can summarize our arguments in the next proposition.

Theorem 3.2.6. If the singleton procedure is successful for a set of rows, then they

are linearly independent over U.

Proof. This follows from Lemma 3.2.2, Lemma 3.2.3 and the obvious fact that the
last matrix Ay, is linearly independent. U

Theorem 3.2.6 will be our preferred tool to give formal proofs for bounds since it

allows us to give estimates on the rank of a matrix over .

Definition 3.2.7. Given a matrizc M be a matriz over U, we denote by prk(M) the
pseudo-rank of M, i.e. the largest t such that there exists a set of t rows in M for

which the singleton procedure is successful.

Remark 3.2.8. For the moment, we can only say that prk(M) < rk(M), because if
the singleton procedure is not successful for a set of rows, then we cannot conclude
they are linearly dependent over Y. However we will show in Theorem 3.2.18 that

rank and pseudo-rank coincide.

In some simple cases we can establish equalities between ranks and pseudo-ranks
of different matrices. This is done in the following lemmas. Observe that Lemma
3.2.9, Lemma 3.2.10 and 3.2.12 are obvious, since their “translation” over any field
holds.

Lemma 3.2.9. Let u,v € U". Let m € N. If u is obtained from a shift of v by m

places, then

k(M (u)) = tk(M(v) pr(M(w)) = prk(M(v)).

44

3.2. Root bounds and U

Lemma 3.2.10. Let 0 € Sym(n) a permutation. Let M € U™"™ and M' be the
matriz obtained by applying o to the rows (resp. columns) of M. Then

tk(M) = k(M) prk(M) = prk(M").

Definition 3.2.11. Letu € U™. We denote by G the reflection of u, i.e. the vector
inU s.t. ufil=10n—i+1] forany 1 <i<n.
Stmilarly, we denote by M the reflection of M € U™ ™, i.e. the matriz such that

~

Mlj,i] = M[jn—i+1], 1<i<n, 1<j<n.

Lemma 3.2.12. For any M € U™*", we have

~ ~

rk(M) = rk(M) prk(M) = prk(M).
Lemma 3.2.13. For any u € U™, we have
k(M (u)) = tk(M(1)) prk(M(w) = prk(M (i)

Proof. For any 1 <i,j <mn,i# j,let (i j) be a transposition in the symmetric group
Sym(n). Consider the permutation:

13]
o= n—i+2) € Sym(n).
i=2

[NIE]

The matrix M () is obtained by applying ¢ to the rows of M(u) and so we may
apply Lemma 3.2.10 and Lemma 3.2.12.]

The following proposition establishes an important rank bound, which will be

often used in proofs.
Proposition 3.2.14. Let A= M(v) € U™ be a circulant matriz, and let v > 0 be an
integer. If v has the form
v=(0,...,0, % ...,%),
where * denotes any element of U, then tk(A) > prk(A) >r+1 .

Proof. Let A, € U)X be the matrix obtained by the first r + 1 rows of M(v).
By induction on r we show that the singleton procedure is successful for A,,;. If

r = 0, it is clear that the singleton procedure is successful since A, ; coincide with v
and vir+1] = A

45

Chapter 3. Root bounds

Let r > 0. Matrix A, has the form:

0O ... 0 0 A& ..

A0 0 0 A
ArJrl:

AL A 0 0

where, with abuse of notation, we have put a A in all entries for which we have
no information on the value. Column A, i(v)[r + 1] is clearly a singleton, since
AW)[L,r+1] =vlr+1] = A, and, for any 2 <i <r + 1, we have:

AT-+1[Z.,T+]_] = Ar‘-i-l['i —]_,T] = ...

"'ZAr+1[1>7“—’5+2]:V[T—iJFZ]:O-

Then we can erase the first row and the (r 4+ 1)—th column to obtain a matrix A,,
that corresponds exactly to the first » rows of a matrix M (v'), with v’ of the form:
r—1

—
0,...,0, &, %,...,%).

By induction hypothesis the singleton procedure is successful for A,, which implies

that it is successful for A, 1, too. O

The following proposition is a key step in proving that the pseudo-rank and the

rank coincide for any matrix over U.

Proposition 3.2.15. Let A, = { a;; },; ;o,, € U™" be an xn square matriz on U.
Ifrk(A,) = n then A, has a singleton.

Proof. Note that A, has to contain at least a A" for each column and each row,
otherwise there is an instance of one of its columns that is zero, so that the rank will
not be n. In particular this proves the proposition when n = 1. Let us suppose n > 2.
By contradiction we suppose that A,, has no singletons.

Let C; = {1<j <n|a;#0} be the set of entries in the first row of A,, which are
A or X. We define for any j € Cy the set R} = {1 <k <n|ag; # 0} of entries in
the j—th column which are A or X'. By hypothesis, for any j € Cy, we have |R}| > 2
and in particular there exists k € le- such that aj ; = N, We define inductively for
any 2 <1 <n the sets

Ci={1<j<nl|ay;#0}\U_Cy

46

3.2. Root bounds and U

and for any j € C;,
Ri={1<k<n|a;#0}.

Note that L?_,C; = {1,...,n } since any column contains at least a &' by hypothesis,
and C; N C; = (7) if i # 7, because they are disjoint by construction. Observe that if
C; = () then for any j we have R} = () while. If C; # 0 then i € R’ for any j € C;, by
definition and |Rj| > 2, since we assume that A, has no singletons.

Let p be a prime, p > n. We provide n vectors, v!¥, ... o™ in (F,)"™, which
are instantiations of the rows of A,, such that they are linear dependent, so that A,
cannot have rank n. For any j € {1,...,n} let C, be such that j € C,. We define
for 1 <k <n:

0, if kb ¢ Rg,
if ke Rg and k #r, (3.12)
— (\R§| —1), ifk=r.

We have to prove that:

(a) v!¥ is an instantiation of the k — th row of A,

(b) there exist Aj,..., A\, € F, such that (Ay,...,A,) # (0,...,0) and > p_, Aot =
0.

We start with (a). Let k£ be any element of { 1,...,n }, we have to prove that for
I<j<m

o if a5 ; = 0 then v[k] =0,
o ifa,, = ﬁrthenv # 0.

For any j, let r; be such that j € C,,. If ay; = 0 then k ¢ R’ and thanks to (3.12)
(]

we have v;" = 0. Similarly, if ax; = N, then k € RZJ and we have to consider two

cases: k =r;or k #r;. If k # r; then v}k} =1, else if k = r; then UZW =p— (\Rg\ —1)
and since 1<p—-n+1 §p—(|R§| - 1) §p—1,thusp—(|R]1|—1) # 0 and so we
have v }' £ 0. Hence (a) is proved.

To prove (b) we claim that for any 1 < j <mn: > 7 |]k] = 0. Let us fix any j,
and let r be such that j € C,. Then

k k] r T T
dout=d w3 W =p— (B -+ (R - =0
k=1 keRy keRY k#r

O

The proof of Proposition 3.2.15 is rather technical and not easy to follow. So we
provide here an example to clarify its details.

47

Chapter 3. Root bounds

Example 3.2.16. Let us consider a 4 x 4 matrix over U, A4, which has no singleton
and we provide instances of the rows which are linearly dependent over Zs.

(i)

The sets that we consider are: C; = {2,3}, Co = {1}, C3 = {4}, Cy = 0 and
Ry ={1,2}, R? ={2,4}, R} ={3,4}, R} = {1,3,4}. We show how to choose
ol (k = 1). We have:

Bolko

N
A
0
0

Do
oo

elc(C,=Cyand1¢ R? = vw:0

2€C,=C,1€Randr=k = ol! =5 (|RY —1) =14
e3c(C,=C,1eRandr =k = v:[))”:5—(|R§|—1):3
e4c(C,=Csand1¢ R} = o}l = 0.

Hence v = (0,4, 3,0). Similarly, for v/ (k = 2):
e 1eC.=Cy,2€ RBandr =k = U£1}25—(|R%|—1):4
e2c(C,=C,2€Rlandr £k = vé”:l
©3cC, =C,2¢ R, = ol =0
e4e(C,=Csand2¢ R® = o}l =0.

which gives v1? = (4,1,0,0). Doing the same also for v/* and v we obtain:

ot =1(0,4,3,0) o =(4,1,0,0) B =(0,0,1,4) oM =(1,0,1,1).

Finally, note that they are instances of the rows of A4 over Zs and

(-0 (-

Proposition 3.2.17. Let A, ={ a;; },, <, be in U"*". The following are equiva-
lent:

1. 7k(A,) =n
2. the singleton procedure is successful for A,

Proof.

48

3.3. Strict root bounds

(2) = (1): see Theorem 3.2.6.

(1) = (2): by induction. If n = 1 then thanks to Proposition 3.2.15 A; has a single-
ton, which means A; = (ﬂ) and the singleton procedure is trivially successful.
Let us suppose n > 1. Thanks to Proposition 3.2.15 A, has a singleton. The
submatrix A, _; obtained by s-deletion of the singleton of A, has full rank,
thanks to Lemma 3.2.3. By the iterative definition of singleton procedure, if
the singleton procedure is successful for A, _; then the singleton procedure is
successful for A,,. By induction hypothesis, the singleton procedure is successful

for A,,_; and so our claim follows.
0
Theorem 3.2.18. Let M be any matriz over U, then tk(M) = prk(M).

Proof. We suppose M € U™*"™ and t = rk(M). We have that prk(M) < ¢t and M
contains a square submatrix M; € U"* such that rk(M;) = ¢t. Thanks to Propo-
sition 3.2.17 the singleton procedure is successful for M; and by Remark 3.2.5 the
singleton procedure is successful on the ¢ rows of M corresponding to M;. Thus,
prk(M) > prk(M,) = t.

O

3.3 Strict root bounds

Using bounds on ranks over U, we are able to prove bounds on the distance, as we
will see in this section. However, we will show that any bound of this type is actually
a root bound, but not any root bound is of this type. To provide precise statements,
we need a few definitions and results. Here we depart form the notation in [BS07]

since we prefer to write “strict root” rather than “strong root”.
Definition 3.3.1. A strict root function is a map f: D — N such that:
VY(n,S)eD, f(n,S) <min{rk(M(u)) | ue€ A(R(n,S))} (3.13)
We denote by R® the class of all strict root functions.
We can remove any ambiguity from the term “strict root function”.
Proposition 3.3.2. Any strict root function is a oot function, that is R° C R.

Proof. Let f be a strict root function. We have to verify (3.2). Let (€ Z and C € C.
Let p = x(C) and o = ((p,n). We have

f o (bC(C) = f(n7 SC,a)

49

Chapter 3. Root bounds

Since f is a strict root function, we have (3.13), i.e.
f(n,50.) < min{rk(M(u)) | u € A(R(n, Sc.a))}

but the right-hand side is not bigger than d(C), by Theorem 2.2.16. Putting all
together, we get

foo(C) <d(C).
0

We propose some previous constructions introduced for root functions, which can

be specialized in the case of strict root functions.
Proposition 3.3.3. Let f be any strict root function. Then:
1. f* e R,
2. f* is invariant,
3. f < f*,

4. f3 = maxcez fo.

Proof. We only provide the proof of 1). The proofs of 2), 3) and 4), are an easy
adaption of the proof of Proposition 3.1.5.

Let (n, S) € D, what we have to prove is that f#(n,S) < min { tk(M(u)) | u € A(R(n,9)) }.
We claim that for any T € (n, S)# it holds:

min { rk(M(u)) | u€ A(R(n,S)) } =min{rk(M(v)) | ve€ A(R(n,T))}.

Let ¢ € Z. Let C, D € C,,, be two naturally equivalent codes such that ¢.(C) = (n, S)
and ¢c(D) = (n,T'). Let ¢ € N such that C,D € C,,,. Let gc, gp € Fylz] be the
generator polynomials of C' and D, respectively. Then, from Proposition 2.1.7, there is
a permutation matrix Py such that M(DFT(g¢c)) = PAM(DFT(gp))P{. We observe
that, from Definition 2.2.5, R(n,S) is the vector (ug,...,u,_1) such that u; = 0 if
go(a?) = 0, where a = ((n, x(C)), and u; = A otherwise. Similarly, R(n,T) is the
vector (vg,...,v,1) such that v; = 0 if gp(a’) = 0 and v; = A otherwise. Thus
M(R(n,S)) = PAM(R(n,T))P{ and for any u € A(R(n, S)) there is v € A(R(n,T))
such that M (u) = P\M(v)P{. Since Py and P are permutations of rows or columns,
thanks to Lemma 3.2.10, we conclude that rk(M(u)) = rk(P\M (v)PL) = rk(M(v)).
So

min { k(M (u)) | u€ A(R(n,S)) } = min{rk(P\M (v)P}) | v € A(R(n,T))}
= min{rk(M(v)) | ve A(R(n,T))}.

20

3.3. Strict root bounds

We are now able to prove 1). By definition of f# we have f#(n,S) = f(n,T) for at
least one T' € (n, S)#, hence:

f#(n,S) = f(n,T) < min{ rk(M(v))
= min { rk(M(u))

| ved
| ue
Proposition 3.3.4. Let f be any strict root function. Then:

1. f* is a strict root function,

2. f* is monotone,

S <

4. if g is any monotone strict root function s.t. f < g, then f* <g.

Proof. We only provide the proof of 1). The proofs of 2), 3) and 4) are similar
to those of Proposition 3.1.11. Let (n,S) € D. What we have to prove is that
f*(n,S) <min{rk(M(u)) | ue A(R(n,S))}.

By definition of f*, we have that f*(n,S) = f(n,S’) for some §" C S. If ' C S,
we have A(R(n,S")) 2 A(R(n,S)), so:

f*(n,S) = f(n,S) <min{rk(M(u)) | ue A(R(n,5"))}
<min{rk(M(u)) | ue A(R(n,S)) }.

O
In the context of strict root bounds we can introduce another notion of maximality.

Definition 3.3.5. If§ is a root bound associated to a strict root function, we say that
0 is a strict root bound.
We denote by R, the class of all strict root bounds.

Clearly R% C Rp.
We define a map f° from D to N as follows

f9(n,) = max{f(n,S) | f € R°}. (3.14)

Theorem 3.3.6. Map ° is a strict root function, which is mazimal in R®, monotone

and tnvariant.

o1

Chapter 3. Root bounds

Proof. We only prove that f is a strict root function. For the other claims it is enough
to adapt the argument from the proof of Theorem 3.1.12, using Proposition 3.3.3 and
Proposition 3.3.4.
Let (n,S) be any element of D. By definition of ¥ we have f°(n, S) = f(n,S) for
some f € R%. Thus f¥(n,S) = f(n,S) < min{rk(M(u)) | ue A(R(n,S))}.
O

From the definition of strict root functions, we get a characterization for the

maximal strict root function.

Theorem 3.3.7.
f9(n,S) = min{rk(M(u)) | u € A(R(n,S))}.

Moreover, for any f € R we have f € R if and only if f < f°.
Note that Theorem 3.3.7 and Theorem 3.2.18 obviously imply that bounded finite-
time computations are enough to compute f5.
Since f is maximal in R, f¥ < f. Actually we will see in Theorem 3.5.8 that f < f.
Let i > 1. We define three patterns of symbols which correspond to vectors in U,

sometimes called “blocks™:

Using these three first blocks we can define multiple blocks using concatenation,
for example (0)3(A)? = (0,0,0,A,A) or (0)2(&)* = (0,0, 4, A, A, X). We also
define blocks of blocks, with an obvious meaning, as for example:

((0)2(X)°)*(A)? = (0,0, &, X, &, 0,0, X, &, X, A A).
Let us consider two vectors of different length, for example:
u=(A&,0,A) el v=(&,0,A X, X, 0) cuS.

Let K be any field, then the vector u represents a vector in K* with the first coordinate
different from zero, the second coordinate equal to zero and the third component that
is any element of K. In the same way, v represents a vector of K® such that the first,
the fourth and the fifth component are different from zero, the second component is
zero and the third component is any element of K.

We note that the constraints for the components of u coincide with the constraints
for the first three components of v and in this case we write u < v. The previous
example shows a particular case of a special kind of relation among vectors over U,

that we are going to define in the following definition.

o2

3.3. Strict root bounds

Definition 3.3.8. Let n,m € N such that n > m. Let w be the projection of U™ on
U™ as follows:

U = U™, (V1. ., 00)) = (V1,0 o, Um).
Letu e U™ and v € U™, we write u X v if there is 0 <1 < n — 1 such that
A(m(sh'(v)) C A(u).
When u < v we say that u is included in v.

Our Definition 3.3.8 of inclusion of vectors has some particular properties that we
are going to show.

Proposition 3.3.9. Let u € U™, v € U™, w € U" with m,n,t > 1. We indi-
cate with uv the vector in U™™ obtained by concatenating u and v, i.e. uv =

(Uly .oy Uy V1, .., U). The following statements hold:
o) (A) < (&), (2) < (A), (A) < (0), (&) & (0).

b) vxv

c) uxv < u<xsh(v).

d) v<uv, v=vu.

e) V< uvw.

f) (A)™ v for any v eU™ s.t. m < n.

Proof.

NX),(0) € Z/Il the shift is trivial and then we can ignore it. We have:

)Smce(), (
A)) = { (&)}, A(A)) = { (&) }, A(0) =0,

b) Since n = m the projection becomes trivially the identity and it is sufficient to

take i = 0 in order to have A(m(sh’(v))) = A((v)) C A(v).

c) “ =" Let v=sh(v) and let 0 < i < n—1 be s.t. g 7(sh'(v))) C A(u).

Denoting ¢ = (i — 1),, we have shi(_) = sh’(v) and so A(7(sh’(¥))) C A(u) which
implies u < V. The proof of ¢ ” is analogous.

23

Chapter 3. Root bounds

A(m(vu)) = A(v) C
A(v).

d) Since sh™(uv) = vu, we have w(vu) = v, A(7(sh"(uv)))

A(v). In the same way 7(vu) = v and A(w(vu)) = A(v)

Nl

e) From (d) we have that v < vwu for all wu € U™ and since uvw = sh™(vwu)

we use (c¢) to conclude that v < uvw.

f) We have A((A)™) = { 0, & }™\0 and by Definition 2.2.15 A(r(v)) € { 0,4 }"™\0
for any v e U™, m < n.

Example 3.3.10.

o (AJAA) x (0,0,A, X, A, X) by Proposition 3.3.9 - (e), since (A, AA) <
(0,0)(A, X, A)(A);

e (0)2(A) < (0,A, X, A,0) by Proposition 3.3.9 - (c)-(d), since (0)?(A) < (0,0)(A, &, A),
and we can obtain (0, A, &, A, 0) if we shift by n — 1 positions;

o (0,4, A) £ (A,A,0,A,A), because we have A ((0, &, X)) = { (0,4,)},
and for 0 <7 < 4:

i=0 A(r(X,X,0,AA))={ (&, X0}

i=1 A(r(A N, KX,0,A)) = { (&, A, N),(0,4,4)}
i=2 A(r(A AN AX,0) = { (A, A, X),(0,0,4), (0,4, X),(X,0,4) }
i=3 A((0,A,A X, X)) ={(0,4,A),(0,0,4),(0,4,0) }
i=4 A(r(&,0,A A X)) ={(X,0,0),(&,0,4)}
and then for any 0 < i <4, A (r(sh’((&, X,0,A,A)))) € { (0,4, 4) };

o (0,4,X) % (A, AX,0,0,X), it is sufficient to note that it is impossible to find
in (A, X,0,0,X) three consecutive components such that first is zero and the

others are different from zero.

Remark 3.3.11. Proposition 3.3.9 - (b) proves that < is a reflexive relation. Un-
fortunately, it is not transitive in fact (&,0,4) < (&,A,0) and (&, A,0) <
(A, X,0,0,X) but (&,0,8) £ (X, X,0,0,X).

o4

3.4. Known strict root bounds

3.4 Known strict root bounds

The goal of this section is to show that many known lower bounds are actually
strict root bounds. We proceed as follows. We first provide a list of well-known
bounds. We then give a “classical” statement for each. Finally, for each we provide
a strict root function such that the bound is nothing else that the associated root
bound (or a special case), we prove its properties and show the link between the two
definitions. Observe that in the case of the four Boston’s bounds here analyzed, we
do not limit ourselves to reprove them but we generalize them.

We begin with listing the bounds considered in this subsection, citing both their

classical statement and their new interpretation in our setting,
e the BCH bound: Theorem 3.4.1 and Corollary 3.4.10,
e the Hartmann-Tzeng (HT) bound: Theorem 3.4.2 and Corollary 3.4.15,
e Boston’s bound I, Theorem 3.4.3 and Corollary 3.4.23,
e Boston’s bound II, Theorem 3.4.4 and Corollary 3.4.27,
e Boston’s bound III, Theorem 3.4.5 and Corollary 3.4.30,
e Boston’s bound IV, Theorem 3.4.6 and Corollary 3.4.33,

e the Betti-Sala (BS) bound, Theorem 3.4.7 and Corollary 3.4.36,

3.4.1 “Classical statement” of bounds

We now give “classical statements” for the listed bounds.
The following theorem was first presented in [BRC60] (also [Chi72]|, [Hoch9)).

Theorem 3.4.1 (BCH bound). Let a be an n-th primitive root of unity over F,, and
let C be an [n,k,d] cyclic code over F, with generator polynomial g. Suppose that
there exist i,0 € {0,...n — 1} such that:

g(@™)y =0, 0<j<(—1.

Then:
d>0+1.

The following theorem was first presented in [HT72|, but the following version is an

improvement due to Roos [Ro082].

95

Chapter 3. Root bounds

Theorem 3.4.2 (Hartmann-Tzeng bound). Let o be an n-th primitive root of unity
over F,, and let C' be an [n,k,d] cyclic code over F, with generator polynomial g.
Suppose that there exist ig, ¢, s, € N s.t. (r,n) < { and

g™ty =0, 0<i<l{—1,0<j<s—1.

Then
d>1l+s.

The following four theorems were first presented in [Bos01].

Theorem 3.4.3 (Boston bound I). Let a be an n-th primitive root of unity over IF,,
and let C' be an [n,k,d] cyclic code over F,. Let S be the complete defining set of C
w.rt. a. If 31n and {0,1,3,4} C S, then

d>4.
Theorem 3.4.4 (Boston bound II). Let a be an n-th primitive root of unity over IF,,
and let C' be an [n,k,d] cyclic code over F,. Let S be the complete defining set of C

w.r.t. «. If{0,1,3,5} C S, then
d>4.

Theorem 3.4.5 (Boston bound III). Let a be an n-th primitive root of unity over
F,, and let C be an [n, k,d] cyclic code over F,. Let S be the complete defining set of
C wrt o If31n and {0,1,3,4,6} C S, then

d>5.
Theorem 3.4.6 (Boston bound IV). Let a be an n-th primitive root of unity over

F,, and let C be an [n, k,d] cyclic code over F,. Let S be the complete defining set of
C wrt o If44n and {0,1,2,4,5,6,8} C S, then

d>6.
The following theorem was first presented in [BS05] and [Bet05].

Theorem 3.4.7 (Betti-Sala bound). Let a be an n-th primitive root of unity over
F,, and let C be an [n, k,d] cyclic code over F,. Let S be the complete defining set of
C w.r.t. a. Suppose that there are m,¢ € N, m £ > 1 and iy € {0,...,n — 1} such
that:

a) (ip+j)n €S, j=0,....ml—1,

o6

3.4. Known strict root bounds

b) (io+j)n€S,j=m+h)l+1,....(m+h)l+¢—-1,0<h<m,
or also such that

c) (ip+j)meS, j=hl,...,hl+0—-2,0<h<m,

d) (ip+7)n €S, j=m+1)l,...,2m+ 1) — 1.

Then:
d>ml+ 1.

3.4.2 Our interpretation of the BCH bound

Definition 3.4.8. Let fgcu be the following map fpcn : D — N,
fecu(n,S) =max{i € N|(0)' < R(n,S)}.
Theorem 3.4.9. Map fgcu is a strict root function.

Proof. Suppose that fgcu(n,S) = £+ 1, so that (0)* < R(n,S). It is enough to show
that for any v € A(n, S), we have that rk(M(v)) > ¢ + 1.

Since (0) < R(n,S), any v € A(n, S) contains a block of the form (0)7, with j > ¢,
and by Lemma 3.2.9, we can suppose it lies at the beginning of v. Then

v=1(0,0,...,0,A% %, ... %), j> 0.
By Lemma 3.2.14 we have that rtk(M(v)) > j+1> ¢+ 1. O

The following corollary is then obvious.

Corollary 3.4.10. The BCH bound is a strict root bound and it is the bound associ-
ated to fpch-

In particular we have reproved Theorem 3.4.1.

Remark 3.4.11. Many known bounds do not provide explicitly a bound from S, but
they give patterns to be searched for in .S and then the actual bound to be taken is the
largest bound guaranteed by these patterns. For example the classical formulation of
the BCH bound does not say explicitly that d > ¢+ 1, with ¢ the largest for which one
can apply Theorem 3.4.1. However, this is done by everyone that actually computes
the BCH bound for a code. From now on, we will ignore this small formal problem

in order not to overburden our notation.

57

Chapter 3. Root bounds

Remark 3.4.12. Both the BCH bound and the HT bound are well-known, so that
writing another proof for them may appear superfluous. The reader should note
that we do more than reproving them: we prove that they are strict root functions.
This has a number of implications. For example, the optimal root bound f? will be
automatically sharper and tighter than both. As a consequence, they cannot be tight
on codes where the rank over U of M (u) is strictly lower than the rank over the actual

field, and hence their tightness will strongly depend on the field.

3.4.8 Owur interpretation of the HT bound

Definition 3.4.13. For any r,s,n € N we denote by p = p(r, s,n) the quotient of s
divided by n and increased by 1.
Let fur be the following map fur : D — N,

far(n,S) = max{i € N|i=/{+ s},

where (,s € N, £, s > 1, are such that there exists r € N, (r,n) < {, for which

((0)(A™))* < R(n, S)". (3.15)
Note that ((0°)(A™4))* < R(n, S)”, with p’ > p, then ((0°)(A™%))* < R(n, S)”.

We state a theorem postponing its proof.
Theorem 3.4.14. Map fur is a strict root function.

Corollary 3.4.15. The HT bound is a strict root bound and it is the bound associated
to far.

Proof. The first assumption of Theorem 3.4.2 states that R(n,S)” contains a block
of length m = rs of the form

((0)(A™))".

We have thus reproved Theorem 3.4.2.

The proof of Theorem 3.4.14 requires a few definitions and lemmas.

Definition 3.4.16. Let v e (U~ {A})", v#0, and let p e N. Let 1 <i <n. We
say that i is the primary pivot of v if v[i] is the first X that occurs in v, i.e.

i =min{h | v[h] = A} .

o8

3.4. Known strict root bounds

Lemma 3.4.17. Letn,r,s,{ € N such that (r,n) < {. Then for anyi in {0,...,n—1}
there are k € N and 0 <t < /¢ —1 such that

i=(s+k)r+t mod (n).

Proof. Given i € {0,...,n— 1}, let A = (r,n). By hypothesis A < ¢. Let ¢ be such
that:
i=t mod (A), 0<t</(—-1.

We have that A | i —¢. In correspondence of this ¢:
i=(s+k)r+t mod (n) <

i—t=(s+k)r mod (n) < i;tE(erk)g mod (ﬁ>

By defining y = s + k we obtain

1—1 r d (n)
=y— mod (—]).
X A
The equation above has a solution g, since (§, %) = 1. If we define k = yy — s, we
have found k and ¢ satisfying our required congruence. O

Note that in the previous lemma 0 < i <n —1and 0 <t < ¢ — 1, while in the
next lemma 1 < j<nand 1<t </

Lemma 3.4.18. Let n,{,r,s € N and let v e (U~ {A})", v # 0 such that (n,r) < ¥
and B = ((0)*(A)"=9)* x v. Then there arei € {1,...n}, k e Nandt € {1,...,(},
with the following properties:

2. i=(s+k)r+t mod (n),
3. v[i'] =0, for any i s.t.
i'=(s+k)r+j mod (n),
where k' € {0,...,k—1} and j € {1,...,(}.
Proof. 1t follows directly from Lemma 3.4.17, once we increase by 1 both 7 and ¢. O

Definition 3.4.19. Let us adopt the same notation as in Lemma 3.4.18. We say that

1 1S the secondary pivot of v with respect to block B.

We are ready for the proof of Theorem 3.4.14.

29

Chapter 3. Root bounds

Proof. (Theorem 3.4.14)

Given (n, S) € D, by definition of fyr, there are ¢, s,r,ig such that fyr(n,S) =£0+s
and /¢, s, iq satisfy the assumptions of Theorem 3.4.2. Given v € A(n,S), it is
enough to show that the singleton procedure is successful for £+ s rows of the matrix
M (v). By Lemma 3.2.9 we can suppose that ig = 0.

Let j be the primary pivot of v. If 7 > rs then (0)"® < v and Theorem 3.4.9 ensures
that rk(M(v)) > rs+1 > {+s and we have finished. So we may suppose that j < rs.
Let i be the secondary pivot of v w. r. t. block ((0)*(A)"~)*. Observe that i is such

that v[i — zr] =0, for any z = 1,...,s. In other words, v is as follows:
1 7 m = sr 7
\J \J 1 1
v=0...0A...0...0A... A VA
Note that ¢ and j can coincide. By hypothesis
g r—~¢ B r—~{ A

f—J\—\/——A——\ f_—A__\f__A__\
v =0, 0A8 ... A0 . 0N . AA...,

where A denotes either A or 0 (with abuse of notation). We have to choose ¢ + s
rows of matrix M (v) and to apply the singleton procedure. We start with the first ¢

TOWS:
J
4
0 ... 048 ... 0 ...0 A ... A ...
A O ...0aA ... 0 ... 0 A ...A
A...A O ... 0 ... 0 A ...oA ...

We now add the (j — m — 1+ 2r), + 1-th row of M(v), for all z = 1,2,...,s, thus
obtaining an (¢ 4 s) x n matrix T, as follows

0 ... 0 A ... 0 L0 A AL

A 0 ... 0 A S 0 ... 0. A ... A ..

A ... A O ... oy 0 0 A A

T — A... A 0O ... 0 AL
- A... A 0 ... 0 A A 0 ... 0 A

A... A O ... 0 A ...A 0 ... 0 A ...
T T
J jt+e-1

Observe that the rows from row ¢ + 1 to row n have a zero-block of length ¢ exactly
from the j-th position and the j 4+ ¢ — 1-th position (see Remark 3.4.20). We have so
obtained a sub-matrix 7" of M(v), for which the first ¢ rows can be obviously erased

by the singleton procedure. After this first application of the procedure, we are left

60

3.4. Known strict root bounds

with a matrix 7" composed of the last s rows of T', as follows:

AAODLLOA.LALA AL
o [Aa0 08 a0 0A
A...AO...OA...A 0 ...0 A ...

By construction, we note that 7" has the property 7"[a + 1, h| = T'[a, h — r], because
each row is obtained by an r-th shift of the previous one.

For1<z<sleti =(i+j—m—2+4 zr), + 1, that is, i, is the secondary pivot in
the 2-th row of T". We know that 7"[1,#}] = A and this is sufficient to establish that
the 7-th column is a singleton, since:

Tz =T, +1—=2)r]=0, z2=2,...,s.

Then we erase the first row, and repeat the same for the second one, using as singleton

the i5-th column:

T'[2,i5) = T'[2,i) +r] = T'[1,i}] = &
Tz, =T 1,4+ (2—-2)r] =0, 2=3,...,s.

In this way, for any z-th row of 7" from 1 to s we have a singleton at position ¢, and
that means that the singleton procedure is successful for matrix 7”7, implying that the

procedure is successful also for T', as claimed. O

Remark 3.4.20. We want to comment the previous proof, highlighting the relation
between the rows to be checked by the singleton procedure to prove a bound and the
pattern of blocks that defines the bound. The HT bound is a generalization of the
BCH bound in the sense that if in R(n, Sc) there are s blocks of type (0)¢, then the
BCH bound can be increased by s — 1. However, this is true only if there is an r > 1
such that any two consecutive blocks are at distance r and if ged(r,n) < £.

To prove the bound we need to choose ¢+ s rows in M (v), for v € A(n, S), on which
the singleton procedure is successful. It would be obvious to use the first £ 4 1 rows,
since they guarantee the BCH bound, but we take only the first £ rows. The problem
is that we need other rows and they have to be chosen in order not to hamper the
check for the remaining ones. The primary pivot is the A needed to delete the first
rows. So, if we choose only the first ¢ rows, then we can find s rows in such a way
that they have a 0 under the primary pivot and hence the deletion of the first ¢ rows
will not be hampered by the new rows. To find our missing s rows, we need the
existence of 7. At this stage we have s rows, but we need at least a A to delete them

and this is exactly the role of our secondary pivot. Its existence is guaranteed by the

61

Chapter 3. Root bounds

second condition, i.e. ged(r,n) < £. To grasp this, we propose to apply the singleton
procedure to R(n,S) = (0,0,A,0,0,A). It satisfies the hypothesis of Theorem 3.4.14,
except for ged(r,n) < ¢, and it would give d > 5 with n = 6,7 = 3,¢ = 2, which is
easily seen to be impossible. The point is that no secondary pivot can be found, as

it is clear in the following matrix, where we have removed the first two rows (¢ = 2):

0 0o 4 0 0o o
A o0 0 o 0 0
o A& o0 oA o0

o a4 o0 0 A o

3.4.4 Our interpretation of Boston’s bound [

Definition 3.4.21. Let fg; be the following map fg, : D — N,

4, if (0,0,A,0,0) < R(n,s)and 3 tn,

n,S) =
T) { 1, otherwise.

Theorem 3.4.22. Map fg1 s a strict root function.

Proof. 1t is a special case of map fyr, with / =2 and s = 2. O

The following corollary is then obvious.

Corollary 3.4.23. Boston’s bound I is a strict root bound and it is implied by the

bound associated to fg.

In particular we have reproved Theorem 3.4.3.

Remark 3.4.24. In our statement Corollary 3.4.23 we say “it is implied by”, where we
mean that we have replaced condition {0,1,3,4} < S by the more general condition
{i,i+1,i4+3,i+4} C S, where i is any integer such that 0 < i < n — 4. Actually,
we obtain this kind of generalization for all these Boston’s bounds and this is an

interesting consequence of Lemma 3.2.9.

3.4.5 Our interpretation of Boston’s bound I

Definition 3.4.25. Let fgo be the following map fgo : D — N,

4, 1f (0,0,A,0,A,0) < R(n,s),
1, otherwise.

fB2<n7 S) = {

Theorem 3.4.26. Map fgs is a strict root function.

62

3.4. Known strict root bounds

Proof. 1t is enough to show that for any v # 0 such that (0,0, A,0,A,0) is contained
in v, we have rk(M(v)) > 4. We can suppose by Lemma 3.2.9 that our block lies at
the beginning of v.

We consider two cases, which altogether cover all possibilities, as follows:

a. (0,0,0,0,A,0) < v,

b. (0,0,4,0,A,0) < v.

Case a
Since (0,0,0,0,A,0) < v, we have (0)* < v and hence this is a special case of fgcm,
which ensures rk(M(v)) > 5.

Case b
Let A, be the sub-matrix of M(v) formed by rows {1,2,3,n}.

0 0 & 0 A 0 A A
A0 0 X 0 A0 A
Ay =
AA 0 0 X 0 A A
0 X 0 A 0 A AA
The singleton procedure is successful for Ay, since erasing in order the following rows

{1,3,4} yields A; = (A, X, A0,A, ... O]
The following corollary is then obvious.

Corollary 3.4.27. Boston’s bound I1 is a strict root bound and it is a special case of

the bound associated to fgs.

In particular we have reproved Theorem 3.4.4 (see Remark 3.4.24).

3.4.6 Our interpretation of Boston’s bound II1
Definition 3.4.28. Let fg3 be the following map fgs : D — N,
5, if(0,0,A,0,0,A,0) < R(n,s) and 3t n,

1, otherwise.

f3(n, S) :{

Theorem 3.4.29. Map fgs3 is a strict root function.

Proof. 1t is enough to show that for any v # 0 s.t. (0,0,A,0,0,A,0) < v and 31 n,
we have rk(M(v)) > 5. We can suppose by Lemma 3.2.9 that our block is at the
beginning of v.

We consider four cases, which altogether cover all possibilities, as follows:

63

Chapter 3. Root bounds

a. (0,0,0,0,0,A,0) < v,
b. (0,0,4,0,0,0,0) < v,
c. (0,0,X,0,0,4,0,0) < v,

d. (0,0,4,0,0,4,0,X) < v.

Case a
Since (0,0,0,0,0,A,0) < v, we have (0)® < v and hence this is a special case of fgcm,
which ensures rk(M(v)) > 6.

Case b
Since (0,0, 4,0,0,0,0) < v, we have (0)* < v and hence this is a special case of
fBen, which ensures rk(M(v)) > 5.

Case c

Since (0,0, 4,0,0,4,0,0) < v, we have ((0)2(A)!)? < v and hence this is a special
case of fyr with [= 2 and s = 3, which ensures rk(M(v)) > 2+ 3 = 5 (since
s=31tn).

Case d

Let As be the sub-matrix of M (v) formed by rows {1,2,3,n,n — 1}.

0 0 0 0 A 0 X A
A0 0 XN 0 0 A 0 A
As=] A A 0 0 XA 0 0 A A
0o X 0 0 A 0 & A A
N 0 0 A 0 XN A A A

The singleton procedure is successful for As, since erasing in order the following rows

{1,5,2,4} yields A; = (A, A, X,0,A A, ..). O
The following corollary is then obvious.

Corollary 3.4.30. Boston’s bound III is a strict root bound and it is a special case
of the bound associated to fgs.

In particular we have reproved Theorem 3.4.5 (see Remark 3.4.24).

64

3.4. Known strict root bounds

3.4.7 Our interpretation of Boston’s bound IV

Definition 3.4.31. Let fgy be the following map fgs : D — N,

67 Zf <070707A7070707A,O) < R(n, S) and4)(n,

1, otherwise.

fBa(n, S) = {

Theorem 3.4.32. Map fg4 s a strict root function.

Proof. 1t is enough to show that for any v # 0 s.t. (0,0,0,A,0,0,0,A,0) < v and
4 1 n, we have rk(M(v)) > 6. We can suppose by Lemma 3.2.9 that our block is at
the beginning of v.

We consider four cases, which altogether cover all possibilities, as follows:

a. (0,0,0,0,0,0,0,A,0,A,A) < v,
b. (0,0,0,4,0,0,0,A,0,0,0) < v,
c. (0,0,0,4,0,0,0,A,0,X,A) < v,

d. (0,0,0,4,0,0,0,A,0,0,X) < v.

Case a

Since (0,0,0,0,0,0,0,A,0,A,A) < v, we have (0)" < v and hence this is a special
case of fgcm, which ensures rk(M(v)) > 8.

Case b

Since (0,0,0,4,0,0,0,4,0,0,0) < v, we have ((0)*>(A)})3 < v and hence this is a
special case of fyr, with [= 3 and s = 3, which will give exactly rk(M(v)) > 3+3 =6
(since s =41t n).

Case ¢

Let Ag be the sub-matrix of M(v) formed by rows {1,2,3,4,n,n — 1}.

00 00X 0 0 0 A 0 & A

A0 0 0 X 0 0 0 A 0 A

A A 0O 0 0 A& 0 0 0 A A
Ag =

AA A 0O 0 0 X 0 0 0 A

0 0 & 0 0 0 A 0 A& A A

0o 0 0 0 A 0 A& A A A

The singleton procedure is successful for Ag, since erasing in order the following rows

{1,2,6,3,5} yvields 4; = (A, A, A, X, 0,A,..).

65

Chapter 3. Root bounds

Case d
Let Ag be the sub-matrix of M(v) formed by rows {1,2,3,4,n,n — 1}.

0O 0 0 0 0 0 A 0 0 & A

A0 0 0 A& 0 0 0 A 0 0 A

A A 0 0 0 A& 0 0 0 A 0 A
Ag =

A A A 0 0 0 A& 0 0 0 A A

0O 0 & 0 0 0 A 0 0 & A A

o AX 0 0 0 A 0 0 A& A A A

The singleton procedure is successful for Ag, since erasing in order the following rows

{1,2,6,3,5} yields A} = (A, A, A, X,0,A,..)). O
The following corollary is then obvious.

Corollary 3.4.33. Boston’s bound 1V is a strict root bound and it is a special case
of the bound associated to fgy.

In particular we have reproved Theorem 3.4.6 (see Remark 3.4.24).

3.4.8 Our interpretation of the BS bound
Definition 3.4.34. Let fgs be the following map fgs : D — N,
fes(n,S) =max{i e N|i=ml+(},
where m and ¢ are s.t. either
(O™ (A (O)H™ < R(n, 5), (3.16)

((0)HA)H™H(0))™ < R(n, S) - (3.17)

Theorem 3.4.35. Map fgs is a strict root function.

Proof. We briefly summarize and adapt arguments from [BS06].

Note that (3.17) is the reflection of (3.16), so that by Lemma 3.2.13 it is sufficient
to consider (3.16).

As usual, it is enough to show that for any v # 0 s.t.

((0))™((A) () =)™+

66

I\

v,

3.4. Known strict root bounds

we have rk(M(v)) > ml + €. Let T be the sub-matrix of M(v) formed by the first
ml + ¢ rows. We want to show that the singleton procedure is successful for 7.
We can suppose that the block is at the beginning of v. We have two cases: either
u[ml+1] = 0 or ufmé+1] = X In the first case we have (0)” < v, for some jo > ml+I
and so we may apply Lemma 3.2.14, ensuring that rk(M(u)) > jo + 1 > ml + £.

In the second case u starts with block (0)™(A)*(0)*"*((A)L(0)1)™. We apply
the singleton procedure to T using as singleton T'[(m+1i)¢+ j], with j decreasing from
¢ to 1 and, for any fixed j, ¢ increasing from 0 to m. It is clearly sufficient to verify
that at each step column T'[(m +4)¢+ j] is a singleton. Let us consider a generic step

of the procedure, with some ¢ and j. By circularity we have
Tlil+j,(m+ i)+ 5] =Tl +j—1,(m+i)+j—1]=...

ce=T,ml+ 1] =uml+1] = X .

Suppose that there exists another s € {2,...,ml + ¢} s.t. T|[s, (m + i)l + j] = X,
which means u[(m +14){ + j — s + 1] = X. By the assumptions on the structure of u,
we get {(m+1i) +j—s= (m+ h)l, h >0, which implies s = (i — h)¢ + j, for h > 0.
If h =0, we have s = il + j as required. If h > 1, we have s = ¢ 4 j, with i’ < i.
But the s—th row has already been erased in some previous step of the procedure.
We then conclude that T'[¢(m + i) + j] is a singleton. O

Corollary 3.4.36. Bound BS is a strict root bound and it is the bound associated to
the strict root function fgs.

Proof. In case igc+mf—1 < n—1, condition a) of Theorem 3.4.7 states that S contains
ml consecutive integers. In case ig +mf — 1 > n — 1, condition a) means that there
are two blocks of consecutive integers in S: one from ¢y to n — 1 and one from 0 to
10+mf—1—n, so that we can still view this case as describing a block of “consecutive”
integers in S (the “large block”). On the other hand, condition b) of Theorem 3.4.7
implies that for any h there is a block of £ — 1 “consecutive” integers in S (a “small
block”), that between two small blocks there is an integer ¢ = ig+ ((m+h){), s. t. we
do not know if 7 is in S, and that between the large block and the first small block,
there is an integer i’ = ig + (m/f), s. t. we do not know if i is in S. In other words,
the assumptions a) and b) in Theorem 3.4.7 are equivalent to saying that R(n,S)
“contains” a block:

ml (m+1)¢
)4)4 L l
—— —— % -
0....0....,0... .07 0,....0....7A,0,....0

Similarly for c¢) and d) (but using Lemma 3.2.13). O

67

Chapter 3. Root bounds

3.5 Known root bounds which are not strict

All bounds presented in Subsection 3.4 are strict root bounds. This subsection
deals with two other root bounds, i.e. the Roos bound and Boston’s bound V. We are
able to show that they are root bounds, but not strict root bounds. To obtain this
result we show that it is not possible to prove that they are strict root bounds using
the singleton procedure. Since the failure of the singleton procedure implies the linear
dependence of the rows (see Theorem 3.2.18), we conclude that indeed they are not
strict root bounds.

The following result was first presented in [Roo83| and we do not give an alterna-

tive proof.

Theorem 3.5.1 (Roos bound). Let a be an n-th primitive root of unity over IF,, and
let C' be an [n,k,d] cyclic code over F, with generator polynomial g. Let r € N s.t.!
2<r<n—1and(r,n)=1. Let L e N, 2 </ <n—1.
Let S be a set of 5 consecutive natural numbers: S := {k,k+1,...,k+5—1}. Let
S'CS, |8 =s, st?

5—s</{.

Suppose that, for an 0 < ig < n — 1, we have
gla™t ey for0<i<{—landoc S .

Then
d>0+s

We formalize the Roos bound within our context.

Definition 3.5.2. Let froos be the following map froos : D — N,
fRoos(n7 S) = maX{i e N | 1=0+ S},

where £, s are such that there exists r € N, (r,n) = 1, and there exist s integers
0<ki<ky<. <ky,</l+s, so that:

(A)™(0) (A)(AY =B () (A~ (A) F D) (A < R(n, S).
(3.18)

where p is the remainder of (ks + 1)r in the division by n, increased by 1.

Theorem 3.5.3. Map froos S @ 100t function and the Roos bound is the root bound

associated to it.

1
2

r is s.t. " is another primitive n-th root of unity
i.e., S’ is obtained from S by removing strictly less than { elements.

68

3.5. Known root bounds which are not strict

Proof. 1t follows from Theorem 3.5.1, since (3.18) is nothing else but a rewriting of

the assumptions of said theorem. O

The following theorem was first presented in [Bos01].

Theorem 3.5.4 (Boston bound V). Let a be an n-th primitive root of unity over IF,,
and let C' be an [n, k,d] cyclic code over F,. Let S be the complete defining set of C
w.r.t. o. If 34n and {0,1,3,4,6,7} C S, then

d>6.
We formalize Boston’s bound V within our context.
Definition 3.5.5. Let fgs be the following map fgs : D — N,

6, if R(n,s)=1(0,0,A,0,0,A,0,0,A,...) and 31n,

. (3.19)
1, otherunse.

fB5<n7 S) = {

Theorem 3.5.6. Map fgs is a root function and Boston’s bound V is the associated

root bound.

Proof. 1t follows from Theorem 3.5.4, since (3.19) is a simple rewriting of the assump-

tions of said theorem. O
Theorem 3.5.7. The Boston bound V and the Roos bound are not strict root bounds
Proof. Let

v = (0,0,4,0,0,X,0,0, &, X, X, &, X)),
vi= (0,0, A, X, A,0,0,X,0,0, &, X, NN XN NN X)),

where v € A(R(13,5)), v/ € A(R(20,5")),and
S=1{0,1,3,4,6,7}, S ={0,1,6,7,9,10}.

If the Boston bound V were a strict root bound, then we would be able to find
a 6-row submatrix N in M(v) with rk(N) = 6 on which the singleton procedure
is successful (see Theorem 3.2.18). By a computer search, running the singleton
procedure on all possible six rows submatrices of M(v) we checked (see Section 9.3)
that no such submatrix exists and that actually the rank is 5.

Similarly, if the Roos bound were a strict root bound, then we would be able to
find a 5-row submatrix N in M(v’) on which the singleton procedure is successful.
By a computer search we checked that no such N exists and that actually the rank
of M(v') is 4 (see Section 9.3). O

69

Chapter 3. Root bounds

Theorem 3.5.8.
5 <f

Proof. Tt is clear that f > f we have only to exhibit an (n, S) such that f¥(n, S) <
f(n,S). From Theorem 3.5.3 we have froos € R and then freos < f. Let n = 20,
S =1{0,1,6,7,9,10}, from Theorem 3.3.7 and Theorem 3.5.7 we have f%(n,S) < 4
while f(n,S) > froos(n,S) =5, so

f9(n,9) <4 < 5= froos(n,S) < f(n,9).

3.6 Counterexamples to known bounds

The following two theorems were claimed in [Bos01].

Theorem 3.6.1 (Boston A). Let o be an n-th primitive root of unity over F,, and
let C be an [n, k,d] cyclic code over F,. Let S be the complete defining set of C' w.r.t.
a. If44n and {0,1,4,5,8} C S, then

d>5.

Theorem 3.6.2 (Boston B). Let a be an n-th primitive root of unity over F,, and
let C be an [n, k,d] cyclic code over F,. Let S be the complete defining set of C' w.r.t.
a. If 34n and {0,1,3,4,6,7,9} C S, then

d>T7.

Let C be the cyclic code of length 15 over Fy with complete defining set (w.r.t. to
any of the primitive 15-th roots of unity)

Sca = {0,1,2,4,5,8,10} .

Let d be the distance of C'. According to Theorem 3.6.1, d should be d > 5. However,
a direct computation (see Section 9.3) shows that d = 4, which means:

Theorem 3.6.3. Theorem 3.6.1 is false.

Let C' be the cyclic code of length 20 over Fy; with complete defining set (w.r.t.
to any of the primitive 20-th roots of unity) is

Sce = {0,1,3,4,5,6,7,9,11,13,15,17, 19} .

Let d be the distance of C'. According to Theorem 3.6.2, d should be d > 7. However,
a direct computation (see Section 9.3) shows that d = 6, which means:

70

3.7. Deducing other bounds

Theorem 3.6.4. Theorem 3.6.2 is false.

Remark 3.6.5. These two statements, along with the other statements discussed in
Subsection 3.4, are presented as “corollaries” in [Bos01|. For one of the two statements
the author explains that he is still not sure of the result, since it apparently depends

on some unfinished computer computations.

3.7 Deducing other bounds

Thanks to our approach, it is easy to deduce new bounds from the bounds pre-

sented until now.
By applying Definition 3.2.11 and Lemma 3.2.13 to our generalizations of Boston’s

bounds II, IIT and IV, we obtain:
Theorem 3.7.1. The following functions are strict root functions

4, if (0,A,0,A,0,0) C R(n,S),

1, otherwise.

)

f2+ : D =N, [fgi(n,5) = {

5, if (0,A,0,0,A,0,0) C R(n,S) and 3 tn,

1, otherwise.

f]33+ D — N, f133+(n, S) = {

6, if(0,A,0,0,0,A,0,0,0)C R(n,S), 41n,
1, otherwise.

fBar : D =N, fps(n,5) = {

We cannot use similar argument with Boston’s bound I, the HT bound, the BCH

bound and bound A, since their formulation is already symmetric.

Remark 3.7.2. All root bounds analyzed in this section are monotone.

71

Border bounds

This chapter belongs to a work joint with E. Betti, relates the results contained
in the unpublished paper [BS07| but also advances significantly on [BS07|, especially
in Theorem 4.1.19 and Theorem 4.3.10. For a shorter treatment see also [Curl0].

4.1 General settings

Root bounds depend only on the length and the defining set. If we want bounds
that improve on root bounds, we need to use other information on the code. In this
section we introduce a new class of bounds, that we call border bounds, which use

some knowledge on cyclic subcodes.

Definition 4.1.1. A codeword ¢ of a cyclic code C' is called a border codeword for

C if it is not contained in any proper cyclic sub-code of C'.
We denote by C the set of all border codewords of C.
We denote by d(C) the border distance of C, i.e. d(C) = min,a .o w(c).

The following lemma can be easily proved.

Lemma 4.1.2. Let C € C,,,. Let c € C. Then c is a border codeword for exactly
one cyclic sub-code D of C'. The generator polynomial of D is the greatest common
divisor of ¢ and " — 1 € F,[z].

The following fact is then obvious.

Fact 4.1.3. For any C € C, we have

¢ =Up<cD, d(C) = mind(D).

Thanks to the previous fact, we can reformulate Theorem 2.1.8.

Proposition 4.1.4. Let C € C. Let DFT(C) be the code formed by the Discrete
Fourier Transforms of the words of C'. Then the distance of C' is

d(C) = min { minrtk(M(DFT(c))) }.

D<C.D#{0} " ceD

73

Chapter 4. Border bounds

Figure 4.1: Border codewords

A(C,UC,UC,) CM\O}

Definition 4.1.5. We denote by € the subset of N x 28 x 22" s.t. (n,S,8) € & if
(n,S) €D and S = {T1,...,Ts}, with S C T, C{0,...,n—1}, T, #{0,...,n— 1}
forany 1 < h<sand T, #Ty for1 <h+#k <s.

Let (n,S,S) € &, S={Ty,...,T,}. We denote by (n,S,S)* the set

(na S? S)# = {{Sla Sl}> BRRE {Sra Sr}})

where r = |Z}|, Si = {Ti1, ..., Tis} and for any | € Z7 there is one and only one i
such that S; = {(lt), |t € S} and T;; = {(It), | t € T}} for any j.

Note that {S,S} € (n,S,S)#, |Sy| = |S| for any h and |T}, ;| = |T}| for any j and any
h. Using a function ¢ € Z, we define a map ¢ from C to &:

'QZ)C :C— €, ¢C(C) = (n, SC,om S) S = {SD,a | D<C, D 7& {0}}7 (41)

where oo = ((x(C),n). In other words, ¢¢(C') contains the length of the code C, the
defining set of C' with respect to o and the defining sets of all the non-zero cyclic
subcodes of C' with respect to . Note that we exclude the zero sub-code, which
would give rise to the set {0,...,n — 1}, and that map 1, plays a role analogous to

that of map ¢, in (3.1). We provide now a proposition, whose easy proof is omitted.

Proposition 4.1.6.
V(¢ (€)= e (C).

Thanks to the previous proposition, we define £ = Im(v;) for any ¢ € Z. Note
that &' C &.
Unlike ¢¢, we have that for any (, v¢ is not surjective, as show below.

Theorem 4.1.7.
&ce

74

4.1. General settings

Proof. Let ¢ € Z. We have to exhibit an (n,S,S) such that (n,S5,S) € &£ but
(n,S,8) ¢ :(C). Let n =3, 5 = {1}, S = {{1},{1,2}}. If (n,S,S) € &, then {1}
is a cyclotomic coset and {1,2} is the union of cyclotomic cosets {1,2} = {1} U {2},
but then also {3} is a cosets and {1,3} ¢ S. O

We are ready to define our new class of bounds.

Definition 4.1.8. A border function is a map f:E& — NU{oo} such that:
V(e Z,VCel, fouye(C)<d). (4.2)

We denote by B the class of all border functions.
Gien f € B, we say that f is invariant if f(n,S,S) = f(n,5,S), for any
{S",S'} € (n,S,S)*. We also denote by f# the map

= max n, S S .
/ {S",8 ¢(n,S8,8)# f(n. 5,8

For any (€ Z and any f € B, the composite map feo = fotpc : C— NU{oo} is
called the border bound associated to f and (. If f is invariant, we say that fe . is

mwvariant and we write fe. We denote by Be the class of all border bounds.

Due to (4.2), border bounds are actually lower bounds for the distance on C.
If f € B is invariant, we have that fg. = fe¢ for any ¢ and ¢’ and so will just

write fe. The following fact is then obvious.
Proposition 4.1.9. For any f € B, f is invariant, f < f# and ff = maXcez fec-
Proof. 1t is sufficient to adapt the arguments of Proposition 3.1.5. O

Remark 4.1.10. A root bound uses as information on the code only the length and
the defining set. A border bound uses in addition the knowledge of defining sets of
cyclic subcodes of C', which is the real meaning of parameter S. It may not seem a

significant gain but in practice border bounds outperforms root bounds.

If we take an arbitrary root function we can view it trivially as a border function,

by ignoring parameter S, as follows.

Definition 4.1.11. Let f € R. We denote by f the map
f:& — NU{}, f:(n,8,8)— f(n,9).
The following fact follows easily from (3.2) and (4.2).
Fact 4.1.12. If f € R then f € B.

75

Chapter 4. Border bounds

We can thus view any root bound as a border bound, in principle, even if there is no

point in computing one as such.

Remark 4.1.13. An invariant bound J takes the same values on a code and any of

its naturally equivalent codes, both when 4 is a root bound and when ¢ is a border

bound.

We can adapt many definitions and results for root functions to the “border case”.

Definition 4.1.14. Let f be a border function. We say that f is monotone if for any
(n,S,S) and (n',S",S") in & we have

n=n,SCS S2S = f(nSS)<f(nys,9S)

Any border bound associated to f is called a monotone border bound.
Proposition 4.1.15. Let f be any border function. We denote by f* the map defined
by f*(n,S,S) = max{f(n,5,S") | S CS, S"DS}. Wehave: f* is a border function,
f* is monotone, f < f*. Moreover, if g is any monotone border functions s.t. f < g,
then f* <g.
Proof. 1t is sufficient to adapt the argument of Proposition 3.1.11. O

It is now natural to introduce the optimal border bound and its characterization:

b(n, S,S) = max{f(n,S,S) | f € B}. (4.3)

Theorem 4.1.16. Map b s a border function, which is mazximal in B, monotone and

mvariant.

Proof. See Theorem 3.1.12, using Proposition 4.1.15 and Proposition 4.1.9. O

Theorem 4.1.17. Map bg s a monotone invariant root bound, which s mazimal in
Be.

Proof. 1t follows from Theorem 4.1.16. O
We have that, for any (€ Z and any (n,S,S) € £"
b(n,S,S) = min{d(C) | C € C,¢:(C) = (n, S,S)}.
The following theorem can be proved similarly to Theorem 3.1.18

76

4.1. General settings

Theorem 4.1.18. For any (€ Z, we have

be((C) = min{d(C") | €' € C.c(C') = (O)}
be ¢(C) = be(C) = maxbe.(C) =

maxi <;<,{min{d(C") | C" € C, Scvp = Scia;, Scr g = Sc,a;, % = ((X(C),n), B =C(x(C"),n)}},

where C € Cy, and v, . .., a, are all primitive n-th roots of unity over IFy.
We are also able to prove the analogous of Theorem 3.1.20

Theorem 4.1.19.
be #d.

Proof. For the proof, we follow the strategy used in the proof of Theorem 3.1.20:
first, we suppose the existence of two codes with some properties which are enough
to prove our claim, second we provide explicitly such codes.

Part I
We look for two codes C', C of length n > 1, over F,, and over Fy, respectively, s.t.

e the two fields have different characteristics, let us say x(C7) = p; and x(Cy) =
p2, with p1 # po,

® ay,...,q, are all the primitive n—th roots of unity over F,, and 3i,..., 3, are

all the primitive n—th roots of unity over F,,.

We take (3,...,¢ € Z s.t. G(x(Ch),n) = a; and (x(Cs),n) = F;, for 1 <7 <r. We

also want:

d(Cy) < d(Cy) (4.4)
S(jhai = 502751., 1 S 7 S T (45)
SCLOéi = Sczﬂiv 1 S 1 S T. (46)

With the above assumptions on C} and C5, we now prove the first part. Note that
(4.5) and (4.6), implies 9, (Cy) = 9, (Cy), for any 1 < i < r. From Theorem 4.1.18

we have
be(Cy) = lrrgl?gxr{min{ d(C) | C e, ¢Y,(C) = (n,Sc1,0i»SCa05 | - (4.7)
However C) € C and 9, (C1) = (n, Scy.0;5 904 .0;) for any 1 <i <7, so
be(Cy) < max d(Cy) =d(Ch) < d(Cy). (4.8)

Part II
We take [F,, = F3s and F,, = Fo10, n = 11. There are r = 10 primitive n—th roots of

7

Chapter 4. Border bounds

unity. As cyclic codes C} and Cy we take two codes with defining set S = S¢, o, =
502,517

S=4{0,1,2,3,5}.
Since Fy10 and Fys are the splitting field of x!* —1 over Fy[x] and Fs[x], respectively,we

have that the subcodes are
Scio; ={SCTCH{0,...,10} | T #{0,...,10} } = Sc, .5

for any 1 < ¢ < r. An explicit computation (see Section 9.3) shows that d(Cy) =5
and d(Cy) = 6. O

Theorem 4.1.19 is a generalization of Theorem 3.1.20 , since we can see any root
function as a border function. We think that this result is relevant. In fact, since
border bounds use also information on the subcodes to estimate the distance, someone
may think that, differently from the root bounds, they are able to reach the true
distance for a code. Unfortunately, Theorem 4.1.19 states that if you get a bound
which uses only the information given by the defining set of the codes and all the
defining sets of the (non-trivial) subcodes, there is at least a code for which you
cannot reach the true distance. In other word, you cannot get the distance of a code
without knowing the characteristic of the field. The questions proposed in Section 3.1
about the optimal root bound can be studied in the more general framework of the

optimal border bound.

4.2 Border bounds and U

The advantage of using border functions instead of root functions is that all border
codewords of a code share in their DFT not only the same zeros, but also the same
non-zeros. So the rank evaluation in U can be more precise, since the involved matrices
have entries only in {&,0}. In this section we provide several methods for bounding
the rank of this type of matrices.

We formalize how it is possible to perform the rank evaluation in U/ introducing

the concept of localization map.

Definition 4.2.1. Let f : D —s NU {o0} be any function s.t.
f(n,T) < rk(M(R(n,T))) .

Then f 1s called localization.

So a localization map is a way to bound the rank of matrices over U, exploiting
the fact that they have entries only in {4, 0}.
Localizations present in literature are constructed by employing an independence-

check procedure, as follows.

78

4.2. Border bounds and U

Definition 4.2.2. Let € be an algorithm that admits as input any matrix A € U™*™
overU and that returns either true or false. We say that € is an independence-check
procedure if any time it returns true then its input A has mazximal rank, i.e. tk(A) =

min(n, m).

Remark 4.2.3. When an independence-check procedure returns false, the matrix rows
might be independent. In designing an independence-check procedure a trade-off has
to be sought between time-consuming checks, that return true on a large number of
independent sets, and fast checks, that may not recognize many independent sets but

allow efficient implementations.

Given an independence-check procedure e, we can construct algorithms to get a
lower-estimate on the rank of an arbitrary matrix over U, which we call rank-bounding
algorithms, by checking the rank of specific row subsets.

In literature two rank-bounding algorithms can be found (implicitly or explicitly),

which we call the first and second rank-bounding algorithm®.

Remark 4.2.4. Different rank-bounding algorithms from independence-check proce-
dure scan different row subsets. Although one would expect to get different values
in most cases, this is not so obvious when a matrix is of the type A = M(v). For
example, for most binary cyclic codes with n < 63 the bounds obtained from the first
and second algorithm output the same value (and we do not know their output on
the others). However, we have found an explicit example (see Section 9.3) in which
the first and second algorithm output different values, on a matrix of kind M(v), as
follows.

Let v = (0,0,0,X,0,X,0,0,&X,X,X) € U*. The first rank-bounding algorithm
applied to M (v) returns 5, the second returns 6 (with the set of rows {1,2,3,4,7,8}).

First rank-bounding algorithm from e
Input
A matrix A over U.
First Step
We initialize a list S of rows of A with the first row.
Cycle
We call € on the submatrix formed by S.

e If it returns true, then the rows of S are linearly independent,

e clse we discard the last row of S.

recently, also a third rank bounding algorithm has been presented in [ZK10, ZK11]

79

Chapter 4. Border bounds

If there are other rows in A, we add to S the first row of A that has not been consid-
ered yet and we cycle again. Else we return the number of rows of S.

Second rank-bounding algorithm from e

Input

A matrix A over U.
First Step

We initialize £ =1 .
Cycle

We call € on all subsets of ¢ rows (with some order).

o If € returns true on any subset, then we set £ = ¢ 4+ 1 and restart the cycle,

unless ¢ = n, in which case we return n.

e else we return ¢ — 1.

4.3 Strict border bounds

Once it is clear how to work with localizations, many definitions and results for
strict root functions and strict root bounds can be adapted to the “border case”. Since
many of the results we cite are already proved in Section 3.3, we just mention them,
providing a proof only for a few.

Using the localization maps we are now able to define the analogous of strict root

functions and strict root bounds, in the border framework.

Definition 4.3.1. A border function is called a strict border function if there is
a localization f : D — NU {oo} s.t.

f(n, 5,8) = min f(n,T), f(n.T) < tk(M(R(n,T))).

In this case, we say thatf 1s called the localization of f.

Any border bound associated to a strict border function is called a strict border
bound.

We denote by B the class of all strict border functions and with BE the class of all

strict border bounds.

Remark 4.3.2. A strict border bound computes a rank bound for all cyclic subcodes
and then it takes the minimum. Moreover, the same function (the localization) is
used for all cyclic subcodes. This further requirement could be relaxed, but with

care, because of the exponential growth of the number of subcodes.

80

4.3. Strict border bounds

With an adaption of the argument in Proposition 3.3.2, it is easy to prove:

Proposition 4.3.3. Any strict border function is a border function. That is
B® C B.

It is easy to see that a strict root function is actually a strict border function (with
the f construction).

What differentiates a strict border bound from another is the localization map,
i.e. the way they bound the rank of matrices over U (with entries only in {0, X'}).
In the following definition we formalize the connection between strict root functions,

localizations, rank-bounding algorithms and independence-check procedures.

Definition 4.3.4. Let f be a strict root function andf be its localization. Let € be
an independence-check procedure, € be its first rank-bounding algorithm, and € be its
second rank-bounding algorithm.

We say that f (or f) is the first realization of €, if the value f(n, T) is computed
by applying é to M(R(n,T)) for any (n,T) € D.

The second realization is defined analogously from €.

In both cases, we say that f is based on €.

Given an independence-check procedure €, Definition 4.3.4 explains how to com-
pute a strict border bound: we obtain the defining sets of all cyclic subcodes, we con-

~ N

struct for any of these a matrix M (R(n,S)), we calculate a bound on rk(M(R(n, S))

via successive applications of € to subsets of rows of M(R(n,S)), and finally we take

the minimum of these values.

Remark 4.3.5. All root bounds explicitly presented in Chapter 3 are polynomial-time
bounds (in the length), except (possibly) for the optimal bound.

On the contrary, any border bound based on an independence-check procedure is at
least time-exponential, since it has to examine all cyclic subcodes.

So, generally speaking, bounds like the Schaub bound and the VW shifting bound
(see Section 4.4) outeperform classical bounds (i.e. root bounds), but at the price of

larger input information and of drastically longer computations.

We can define the invariant strict border functions (bounds).

Proposition 4.3.6. For any strict border function, f, we denote by f7# the map de-
fined by f#(n,S,S) = maxrrie(n,s,s)# f (1, T, T). Then: f# € B%, f* is invariant,
f< = maxez fe.

Proof. Adapt the arguments of Proposition 3.3.3. O

81

Chapter 4. Border bounds

We can define monotone strict border functions (bounds).

Proposition 4.3.7. Let f be any strict border function. We denote by f* the map
defined by f*(n,S,S) = max{f(n,S",S") | 8" C S, S O S}. We have that f* is a
strict border function, f* is monotone, f < f*. Moreover, if g is any monotone strict
border function s.t. f < g, then f* < g.

Proof. Adapt the arguments of Proposition 3.3.4. O

We can define the maximal strict border function (bound).
b%(n,S,S) = max{f(n,S,S) | f € B}. (4.9)

Theorem 4.3.8. Map b® is a strict border function, which is mazimal in BY, mono-
tone and invariant.

Proof. Adapt the arguments of Theorem 3.3.6. U
We can characterize the maximal strict border function (bound).

Theorem 4.3.9.

b%(n, S, S) = I%leigl{rk(M(R(n,)}
Proof. Let ¢(n, S,S) = minges{rk(M(R(n,T)))
and its localization is é(n, T) = rk(M(R(n,T))). Our claim follows immediately by
noting that rk(M(R(n,T))) = é(n, T) < b%(n, T) since b® is maximal, and b%(n, T) <
rk(M(R(n,T))), because b® € BS. O

}. Clearly, cis a strict border function
).

Finally, we are able to prove the analogous of Theorem 3.5.8, still using the result
of Theorem 3.5.7.

Theorem 4.3.10.
b% < b

Proof. Tt is clear that b > b%. We have only to exhibit an (n,S,S) € & such that
b%(n,S,S) < b(n,S,S). Let us consider the map froos of Definition 3.5.2. We have
fRoos € R and then froos € B 50, froos < b. Let C be the code in Cgm 20, Where
F = F,m is the splitting field of 2?° — 1 over F,[z], with S = {0,1,6,7,9,10}. Let
¢ € Z be such that ¢(C) = (20,5,S), where S = {T|T C{0,...,19}, SCT }.
From Theorem 4.3.9 and Theorem 3.5.7 we have

b%(n, S) = min{rk(M(R(n,T)))} < 4

TeS

82

4.4. Equivalence of border bounds

while b(n, S, S) > froos(n,.5,S) = 5, hence
b%(n,5,8) <4 < 5= froos(n, 5, S) < b(n,S,S).

A similar proof holds also if we consider the map fgs of Definition 3.5.5 with
defining set S" = {0,1,3,4,6,7} and the code C' € Cym 13, where F;m = F is the
splitting field of z'* — 1 over F,[z]. O

Remark 4.3.11. Note that an obvious consequence of Theorem 4.3.10 is that BS C B.
In particular, considering froos and fgs, we have froos; fBs € B, but froos, fB5 ¢ B5.

We conclude this section observing that there are some bounds which are based
on the unknown syndromes (see e.g. [FT91al, [FT91b], [FT89], [MAI97]|). Clearly,
any syndrome matrix can be transformed into a matrix over U, where a A is inserted
to replace an unknown syndrome and a A is inserted to replace a known syndrome.
These bounds can then be translated as operating on this matrix and therefore we
think that they may be either strict root bounds or strict border bounds. However,

we do not provide here a detailed description.

4.4 Equivalence of border bounds

Here we show that all known localizations are based on the same €, which turns
out to be equivalent tothe singleton procedure introduced in Section 3.2. In the
remainder of the section we describe the singleton-procedure bound and the Schaub
bound, proving that they are equivalent. Finally, we describe the famous Van Lint-
Wilson shifting bound (“VW bound”), proposed in [vLW86|, and we show that it is
closely related to the singleton procedure bound (and hence to the Schaub bound due
to Theorem 4.4.4).

We would also like to mention an alternative but unpublished independence-check
procedure, due to F. Ponchio and M. Sala ([PS03|) which uses more deeply the un-
derlying field structure.

We consider the singleton procedure described in Section 3.2. By Theorem 3.2.6,
this is obviously an independence-check procedure, as formalized in Definition 4.2.2.
From now on, we indicate the singleton procedure as e¢,. We have that ¢, plays a
special role, with respect to all other possible independence-check procedures, in fact
we can easily show that any result of independence for vectors in U can be obtained

using the singleton procedure.

Proposition 4.4.1. Let €, € be any independence check procedure and the singleton
independence-check procedure respectively. If € returns true then also €4 returns true.

83

Chapter 4. Border bounds

Proof. Let A € U™™ be an input matrix for e. If € returns true then its input A
has maximal rank. Let ¢ = min(n, m) be the rank of A, then for Theorem 3.2.18
rk(A) = prk(A), which means that €, is successful for A. O

4.4.1 The Schaub bound

This bound was first presented in [Sch88|.

First, we describe the independence-check procedure proposed by Schaub.

The Schaub independence-check procedure

Input

A matrix A over U, whose rows are n-dimensional vectors in 4™ and form a set R =
{r1,...,mn}. We can assume that all vectors except 7, form a linearly independent
set.

Initialization

We consider h — 1 unknowns values in U: {cy,...cn-1}.

Cycle

For any column 7 of A, we must have

for some ¢; (not depending on 7). We deduce from this relation the values in U
that the ¢; can have, using also the relevant information obtained from the previous
columns {1,...,i— 1}.

If we find some contradiction for at least one of the ¢;, then we are sure that the rows
are linearly independent and so we return true.

Otherwise we pass to the next column.

Last step
We return false, because no contradiction arose.

To understand how it works, we propose the following example, where the associ-
ated first rank-bounding algorithm is applied. This same example is redone with
the “singleton” independence-check procedure (Example 4.4.3), so that the efficiency

improvement given by the latter is apparent.

84

4.4. Equivalence of border bounds

Example 4.4.2. Let T be the matrix (over U)

X X 0 0 & 0 & X
0 0 0 0 0 & 0 0
0 0 & XA 0 0 A 0
T = AN X 0 0 0 & 0 0
0 0 0 A& X 0 0 A
0 0 & X 0 0 0 0
0 0 0 0&X 0 0 0

We need to apply several times the Schaub independence-check procedure to es-
timate rk(7"). We shorten “the Schaub independence-check procedure” to “the proce-

dure” in this example. We name the rows consecutively {r,...,77}.
e It is obvious that rk(T") > 1, since the first row contains some A’s.

e We apply the procedure to the first two rows: we try to see the second row as a
linear combination of the first one. Let ¢; € U s.t. ro = ¢;-r1. The first column
gives r5(1) = ¢y -r1(1), i.e. 0 =¢;- X and hence ¢; = 0. The sixth column gives
r9(7) = ¢1 - 71(7), that is, & =0-0 = 0.

This is clearly impossible, so the rows are independent and so rk(7") > 2.

e We try to see r3 as a linear combination of {ry,ro}. We impose 3 = ¢1-r1+co-13.
The first column gives 73(1) = ¢y -71(1) +ca-19(1),ie. 0 =c¢;- N +cy-0=¢;- A,
which restricts ¢; = 0.

The second column is equal to the first, so it can give no more information and
we skip it. From now we will skip equal columns without any further comment.
The third column gives 73(3) = ¢1 - 11(3) + ¢ - 12(3), i.e.
N =0-0+cy-0=0. This is impossible, so rk(T") > 3.

o We write 4 = ¢ -7 + ¢o - 79 + ¢3 - 3. The first column gives A = ¢; - A, i.e.
¢; = A. Third column: 0 = c3- A, ie. ¢3 = 0.
Fifth column: & - A =0, i.e. A =0, impossible and so tk(T) > 4.

e With similar computations we can prove the linear independence of the first
five rows and hence rk(7") > 5.

e We write rg = 25:1 ¢; - ;. The first column gives
O=c - N+ - X (4.10)

We take note of this constraint and proceed.
Third column: A =c3- A, ie. c3=A.

85

Chapter 4. Border bounds

Fourth column: A =AX - N +c; - N, ieN=N+4c-N,iecs=A
(no information on cs).

The fifth and sixth columns, respectively, give:

O=c - N +c- &N (4.11)
O=co- N4y & (4.12)

Seventh column: 0 =¢; - A + A - A, ie. ¢ = A.
Then we have by (4.10) ¢, = X and by (4.11) ¢ = X. But then by (4.12), we
have ¢, = A'. Eighth column: 0 = A - A + A - A, no contradiction.

No contradiction arises: we discard the sixth row.

¢; - r;. First column:

o We write r; = 3.0

j=1
0201'£+C4'ﬁr (413)

Third column: 0 = c3- A, ie. ¢3 = 0.

Fourth column: 0 =0- A +¢; - A, ie. ¢; =0.

Fifth column: & =¢; - &, ie. ¢; = X and we get ¢y = & by (4.13).
Sixth column: 0 = ¢y - & + A, ie. ¢ = A.

Seventh column: 0 = X - A"+ 0- A = A, impossible, so rk(T) > 6.

The seventh row was the last, the final result is rk(7") > 6.

From the Schaub independence-check procedure one can directly obtain its first
realization (Definition 4.3.4) and view the latter as the localization of a strict border
function, which we call the “Schaub function” for short. It is obvious how to do that
and so we do not detail it. We conclude that the so-called “Schaub bound” ([Sch88])
is nothing else but the border bound associated to the Schaub function.

4.4.2 The singleton-procedure bound

This bound has been presented in [Sal01], but the notation there is quite different
and not easy to follow.

Let us consider the first rank-bounding algorithm of the singleton procedure, €,.
We define a strict border function h as the first realization of ¢;. We say that h is
the singleton-procedure function. The strict border bound associated to h is the
singleton-procedure bound.

To visualize how it works, it is instructive to examine the following example, which

is Example 4.4.2 redone using h.

Example 4.4.3. We consider the matrix 7" present in Example 4.4.2.

86

4.4. Equivalence of border bounds

e It is obvious that rk(7") > 1.

e Rows {ry,re}. The first column is a singleton. Removing it produces a non-zero
row, i.e. tk(T) > 2

e Rows {ry,rs,73}. In order, singletons found (and removed): col. 1 and 3, so
rk(T") > 3.

e Rows {ry,79,73,74}. In order, singletons found: col. 3, col. 5 and col. 1, hence
tk(7T) > 4.

e Rows {ry,79,73,74,75}. Singletons: {3,4,5,7}, so rk(T") > 5.

e Rows {ry,r9,73,74,75,76}. There are no singletons: we discard the row, so that
we still have rk(7") > 5.

e Rows {ry, 79, 73,74, 75,77}. Singletons: {3,7,8,5,1}, thus rk(7") > 6.

4.4.3 Singleton-procedure bound and Schaub bound are equivalent

This subsection is devoted to showing that the Schaub bound is equivalent to the

singleton-procedure bound.

Theorem 4.4.4. The localization maps of the Schaub function and of the singleton-
procedure function are based on the same independence-check procedure, of which they
are the first realization. As a consequence, for any choice of (€ Z their associated

border bounds are equivalent.

Proof. In the following we shorten “the singleton independence-check procedure” to
“the singleton procedure” and “the Schaub independence-check procedure” to “the
Schaub procedure”.

Let S be an h x n matrix over U, 1 < h < n. We denote by:

e Mg, the following logical statement {we can prove that the rows of S are a

linearly independent set by applying Schaub’s procedure},

e Qg, the following logical statement {we can prove that the rows of S are a

linearly independent set by applying the singleton procedure}.

We will also denote by {si,...,s,} the h rows of S, where s; = (s;(1),...,s;(n)).
Note that the statement of Theorem 4.4.4 can be rephrased as Qg <— Mg.

87

Chapter 4. Border bounds

Q¢ = My . By induction on the number of rows, h. For h = 1 it is obvious. By

inductive hypothesis, we suppose that the implication is true for A — 1 rows.
We prove it holds for h rows. Let 1 < j < n be a column index such that the

j—th column is a singleton, with corresponding row s;, with s; € { s1,...,sp },
i depending on j. We have s;(j) = & and s(j) = 0 for k # i. Then for any
C1,...,Ch1 € U we have:

N =si(j) = asu(j) =0,

ki

which is impossible. Thus s; is linearly independent from the other rows and

by inductive hypothesis we conclude.

Ms = Qg . It follows immediately from Proposition 4.4.1, taking as ¢ the Schaub

procedure.

4.4.4 On the Van-Lint Wilson shifting bound

To describe the VW bound we need the following definition.

Definition 4.4.5 ([vLW86]). Let n > 1 be an integer number. Let S be a subset of

(0,..

1.

2.

3.

.,n—1}. We say that A is independent from S if:
A is the empty set,

A is a shift of an independent set B, i.e. if B is independent with respect to S
and c € {0,...n—1}, then A=c+ B ={(c+b), | b € B} is independent.

A is BU{a}, with B independent and included in S, and a ¢ S.

Example 4.4.6. Let S ={1,2,4} C{0,...,6}.

By 1, we have that A = () is an independent set.

By 3, we have that A1) = {3} is also an independent set, since A" = {3}UA©)
with 3 ¢ S, A independent.

By 2, A? = {1} is independent, because A® =4 + AD,
A®) = {1,2} is independent, in fact A® =1+ (A® U {6}).

AW = 11,2 3} is independent, because AW = A®) 1 {3}.

By an exhaustive search we find no independent sets with size greater than 3.

88

4.4. Equivalence of border bounds

The VW bound can be described algorithmically as follows.

Van Lint-Wilson shifting bound
Input

A cyclic code C € C,,, and «, where « is a primitive n-th root of unity over F,.

Cycle

For any cyclic subcode D of C.

Compute S = Sp 4.

Compute the length A\(D) of the largest set independent from S.

Last step
Output minp.c A(D).

Remark 4.4.7. This bound is not formalized in [vLW86]|, where one can find a theorem
linking distance and length of independent sets, with a few examples that are supposed
to illuminate the use of the theorem. In particular, the fact that all cyclic subcodes
of the code have to be considered is not immediately apparent, since the examples
present lucky cases where only a few subcodes are needed.

From our description it is clear that the VW bound is a border bound, requiring
a computation for any cyclic subcode. We claim much more, i.e. that it is a strict
border bound and that it is strongly linked to the other two known border bounds.
To be more precise, we claim the following.

Theorem 4.4.8. The VW bound is a strict border bound. The localization of its

strict border function coincides with the second realization of the singleton procedure.

We recall that eg indicates the singleton-procedure. Since obviously the localiza-
tion of the VW function is the size of the largest set independent from the defining
set, to prove Theorem 4.4.8 it is sufficient to show the following proposition.

Proposition 4.4.9. Let C € C and (€ Z. Let S¢,, with o = ((x(C),n). Let X be
the size of the largest set independent from Sc. Let 1 be the output és (the second

~

realization of €5) applied to M = M(R(n, Sc,o)). Then
r=A.
Before proving Proposition 4.4.9, we give a couple of lemmas.

Lemma 4.4.10. Let A, S be non-empty sets. If A is independent of S, then there
is another set B and an element a ¢ S such that A is a shift of BU{a} and B is
independent from S but B C S.

89

Chapter 4. Border bounds

Proof. 1t is a direct consequence of Definition 4.4.5 (since A is non-empty). O

Lemma 4.4.11. Let S C{0,...,n—1}, S #0. Let w = R(n,S)) and M = M(w).
Let v.= MI1] be the first column of M. Then for any 1 < i < n we have v[i] =
w((n—1i+1), +1].

Proof. Tt follows immediately from the circularity of M. O

To ease our notation in the remainder of this sub-section, when we deal with
any integer b we implicitly mean (b),, so that previous lemma may be stated as
v[i] =wn —i+2].

Lemma 4.4.12. Let T, S C{0,...,n — 1} be non-empty sets, with T' = {t1,...,t,},
S ={sy,....sn}. Leta & S. Let M = M(R(n,S)) be formed by rows M, ..., M,.
Let M = {M_av2, My_4,49, ..., My_y 42} be a sub-matriz of M. Then

M]I1] is a singleton — TCS.

Proof. Let M = (in,;) and M = (my;). Let v = M[1], v = M[1] and w = R(n, S).
By construction, we have m; ; = my_q42; for any 1 < j <n, and M1 ; = mMp_t,42;
forany 1 < j <nand1 <i <7, butalsov[l] =v[n—a+2] and v[i+1] = vin—1t;+2]
forl1 <i<r.

Since a & S, Zi’(n, S) must possess a & in its a-th component, so that v[1] =
v[n—a+2] = wla] = & (Lemma4.4.11). As a consequence, Vv is a singleton if and only

if m271 = Th371 = ... = m7—+171 = O, i.e. if and only if Mp—t142,1 = Mp—ty421 = ... =
Mp—t,+21 = 0, which is true by Lemma 4.4.11 if and only if w[t;] = ... = w[t;] = 0.
By definition of R(n, S), this holds if and only if ¢;,...,t, € S, i.e. if and only if
TCS.]

Lemma 4.4.13. Let T C S C{0,...,n— 1}, T,S # 0, a € S. Let M be the sub-
matriz of M as in Lemma 4.4.12. Then the singleton independence-check procedure
is successful on M if and only if T is independent from S.

Proof. By induction on |7T|.

|T| = 1.
Any T = {t;} included in S is obviously independent from S. So we must show
that the procedure is always successful in this situation. By Lemma 4.4.12 matrix
M contains two rows and its first column is a singleton. By removing it and its
corresponding row, we remain with a row containing some A'’s, so the procedure is

successiul.

90

4.4. Equivalence of border bounds

T =1 = |T|=1+1.
Suppose now T = [+ 1. By Lemma 4.4.12 we have a singleton M[1]. By removing
the singleton and its corresponding row, we get a submatrix M’. By Lemma 4.4.10
we have that T is the shift of I = JU{b}, where J is independent from S, J C S and
b ¢ S. We consider a matrix M’ as in Lemma 4.4.12. By induction, the procedure
is successful on M’. However, since T is obtained from I by shifting, it means that
the rows of M’ are nothing else that the (same) shift of the rows of M (except the
row of the first singleton), hence the columns of M are a cyclic permutation of the

columns of M’, so that the procedure is successful on M’ if and only if it is successful
on M. 0

Putting all lemmas together and considering S = Sc¢,, we immediately have
proved Proposition 4.4.9 and hence Theorem 4.4.8.

Thanks to Theorem 4.4.8, we are able to give an alternative definition of the
VW-bound.

Definition 4.4.14. Let fyw: € — N be the strict border function, defined by:
fuw(n, 8,8) = min{rk(R(n, 7))}

fvw is called the Van Lint-Wilson (strict border) function. The (strict bor-

der) bound associated to fyw is the Van Lint-Wilson bound and it is denoted by

ovw -

The following corollary explains the link between fyw and the optimal strict
border function, b®, showing that they are the same. This implies that dywy is sharper
than all possible strict border bound (and, of course, also than all strict root bounds).

Corollary 4.4.15. Let fyw € B°® be the VW function, and £ € B be the optimal

strict border function. Then
fyw =b°

and dvw s the optimal strict border bound.

Proof. Given any (n,S,S) € £, it is sufficient to use Theorem 4.3.9, Theorem 3.2.18
and Definition 4.4.14, to obtain:

b%(n, S,S) = min{rk(M(R(n,T)))} = fyw(n,S,S)

TeS

91

Bounding distance using Grobner bases

This chapter is devoted to bounding the minimum distance of cyclic codes using
Grobner bases. The idea, introduced by Cooper in 1990 [C0090, Co091, Co093| and
developed by Chen et al. [CRHT94a, CRHT94b, CRHT94c¢] is to describe the words
of a code as varieties of suitable ideals, and then study them using Groébner bases.
Although this approach was originally proposed to decode cyclic codes up to half of
their minimum distance, some authors [ACS90, ACS92, Sal07, MS03, Aug96, Sal02]
adapted it also for finding the distance of cyclic codes. We do not deal with the vast
area of research regarding the decoding, preferring to focus our attention only on

bounding minimum distance. These methods can be roughly divided in two families:
e Newton’s identities methods [ACS90, ACS92, MS03, Sal02]
e Power sums methods or Cooper’s philosophy [MO09, Sal07, MS03, Sal02].

In Section 5.1 we introduce the notation and necessary backgrounds on Grobner
bases. Section 5.2 explains the methods using power sums , while Section 5.3 contains

an overview of the methods using Newton’s identities. Our main references for this
chapter are [BPW*10, MO09, Cha98, Sal02, Sal07, Aug96].

5.1 Backgrounds

The theory of Grobner bases was developed by Buchberger [Buc65| in 1965. A
useful property is that their computation allows sometimes to solve systems of poly-
nomial equations. In particular, in this subsection we remind the use of Grobner
bases to determine if a system of polynomial equations has solution. Some mate-
rial is taken from the lecture notes of the course Coding Theory lectured by M. Sala
and written by D. Frapporti and O. Geil. For a more detailed treatment we refer to
[CLOO07, Mor05].

Let K be a field (not necessary finite) , K its algebraic closure. In case K is finite

we write I, to indicate the field with ¢ elements, where ¢ is a power of some prime.

Let 7 > 1 and R = K[zy,...,2,] = K[X] be a polynomial ring over K in r variables.

93

Chapter 5. Bounding distance using Grobner bases

Let X = {x1,...,x,} be a set of variables. For any oo € N” we define a monomial X“:
X =z o) with a = (aq,...,).

We denote by M = M(X) ={z{" ... 2% | (a1 ...) € N"} the set of all monomials
in the variables X = (z1,...,2,).

Definition 5.1.1. A monomial ordering on K[X] is a binary relation < on M(X)
such that:

(1) V X, XP e M, X+ XP, either X < XP or XP < X%,

(2)V X XP, X7 e M, if X* < XP, and XP < X7, then X* < X7.
(3)V X*, XB, X7 € M, if X* < XP then X7X* < X1X?

(}) 1< X% VX% €M, X*£1.

From Definition 5.1.1, we have that a monomial ordering is a well-ordering, i.e.
every non-empty subset of M has a least element. Let X* = z7'...2%" € M and
X? =2t aPr € M, we denote by deg(X®) = Y7, oy and deg(X?) = Y1, B;

their total degrees. We provide some examples of monomial orderings.

Lex. Lexicographic order induced by z, < --- < z;: X® <3, X7 if there exists j
such that aq; = f4,... y Q1 = 6];1, a; < ﬁj'

X =(z,9,2), z<y<z = ay°2" <, 2°yz.

Deglex (or Totlex). Degree lexicographical order (or total lexicographic order),
induced by z, < .-+ < a1 X <p, XP if either deg(X®) < deg(X”) or
deg(X?) = deg(X”) and X* <, X¥.

DegRevLex. Degree reverse lexicographic order induced by z, < --- < x3: X <gp
XP if deg(X®) < deg(X") or deg(X®) = deg(X?) and there exists j such that
Qp = /87’7 ey QG = /Bj-i-l) % > B]

X =(z,y,2), ©>y>z = xy'2® >4, 2%y

Block order Let X and Y be two ordered sets of variables, <; a monomial order
on K[X] and <5 a monomial order on K[Y]. The block order on K[X, Y] is the
following: XY 5 < X2y P if X <, X or if X* = X and Y7 <, Y72,

X = ($1,9€2)a Y = (ylayQay?))a To <121, Yz <gY2 <2 Y1 — ﬁyz?/:% < ﬁy%?/s-

94

5.1. Backgrounds

Once fixed a monomial order, the following definition is well-posed.

Definition 5.1.2. Let < be a monomial order on K[X].Let f =) c,X* be a non-
zero polynomial of K[X], where co, # 0. We say that X” is the leading monomial
of fif X < XP for all « # 3. We write LM(f) = XP. LC(f) = ¢s is called the
leading coefficient of f, LT(f) = csX” is called the leading term of f.

For any ideal I let LT(/) be the set of leading terms of element of I, that is
LT(I) = {LT(f) | f € I}. We define the ideal of leading terms as the ideal
generated by the elements of LT(I). We denote this ideal by (LT(7)).

We can now introduce the definition of Grébner basis.

Definition 5.1.3. Let I be an ideal in K[X]. A finite subset G = {g1,...,9m} of I

15 called a Grébner basis for I with respect to the monomial order < if
(LT(I)) = (LT(g1), - - -, LT (gm))-

Equivalently, GG is a Grobner basis for I if G C [and if for all f € I there exists
g; € G such that LM(g;) divides LM(f). It is easy to see that a Grobner basis for [
is actually a basis of I as an ideal.

Theorem 5.1.4. For every ideal I in K[X] and for every monomial ordering < on
M, there exists a Grobner basis G of I.

Proof. See [Buc06]. O

Moreover, Buchberger provides an effective algorithm (|[Buc06, Buc98|) that trans-
forms any finite set of generators of I into a Grobner basis with respect to <.
Many Grobner bases exist for the same ideal I € K[X], but we are interested in a
special basis, which is called reduced.

Definition 5.1.5. Let I be an ideal in K[X]|. Let G be a Grobner basis for I with
respect to a monomial order <. We say that G is reduced if for all g € G we have
that LC(g) = 1 and for any ¢ € G\ {9} LT(¢’) does not divide any monomial of g.

For an ideal I C K[X], I # {0}, the reduced Grébner basis is unique, so two ideals
I; and I5 in are equals if and only if they have the same reduced Grébner basis. We
denote by G = GB(I) the reduced Grébner basis of I. Given a Grébner basis G of an
ideal I, we find the reduced Grébner basis of I by performing successive reductions
between the polynomials which compose GG. Let E O K be an extension field of K.
We denote by Vg(I) the variety of I over E:

Ve(I)={PeE" | f(P)=0 Vfel}.

95

Chapter 5. Bounding distance using Grobner bases

The elements of Vg(I) are sometimes called the E-rational points of I. If E = K,
we write V(I) = Vg(I) and we say that V() is the variety of I. We say that I is
0-dimensional if V(I) is finite.

Having a reduced Grobner basis for an ideal I in K[X], it is easy to establish if
V(I) =0, as shown below.

Proposition 5.1.6. Let I be an ideal in K[X], G = GB(I) the reduced Grébner basis
of I with respect any monomial order <. Then V(I) =0 < G = {1}.

Let us suppose to have a system of polynomial equations, fi,..., f; € K[X]
fi(X)=0
J =

and we consider the ideal Z(J) generated by the equations: Z(J) = (fi,..., f;). The
solution set of J over any extension E of K corresponds to the variety of Z(.J) over
E, ie.:

{PeE | i(P)=fo(P)="=fiP) =0t ={PeE | f(P)=0 Vfel(])}
= Ve(I(J]))
We say that J, has a solution if there exists P € K such that f;(P) = --- = f,(P) = 0.

Clearly, J has a solution if and only if V(Z(.J)) # 0. Thus, thanks to Proposition 5.1.6,
given G = GB(I(/J)), the reduced Grobner basis of Z(.J)), we have that if G = {1},
then J has no solution, otherwise it has. From now on, we will speak of ideals and

systems interchangeably and, wiyh abuse of notation we will write J for Z(.J).

5.2 The Cooper Philosophy

Let C € C,,, be a cyclic code, with complete defining set S = {i1,i,—x}, with
respect to a primitive n—th root of unity a € F, which, from now on, is fixed. We
suppose that ¢ € C' is any non-zero word of C' and w(c¢) = w > 1. We indicate by
Cjis - - -, Cj, the non-zero components of ¢, where 0 < j; < jo < --- < j, <n—1, ie.
¢ = (¢,,0,...,0,¢j,...,¢j,,0,...,0) which corresponds to the polynomial ¢(z) =
Cjalt + 1?2 + -+ ¢ a0 € Fyz]. We define S; = ¢(a?) for all i = {0,...,n — 1}
and we say that S; is a known syndrome (of ¢) if ¢ € T, otherwise S; is called an
unknown syndrome (of ¢). Note that if we consider the DFT of ¢, we have DFT(c) =
(S0, 51, -+, Sn_1). We have already seen in Section 1.2 that a parity-check matrix for

96

5.2. The Cooper Philosophy

Cis
1 ot o .. qrba
H 1 aig a?ig a(n—l)ig
1 ain-t 2n-k o Dink

Hence, multiplying Hc”', we obtain for all i € T:
i = ela) = a0 -+ g, () = 0
i.e., ¢ is a word of C' if and only if all its known syndromes are zero. The o/, ..., o/

are called the values (of ¢). We

have some natural constraints which link known syndromes, locations and values:

are called the locations (of ¢), and the ¢;,...,¢;

w

1. the known syndromes have to be zero:
ci (@) + - 4 (@) =0 forallieT

2. the locations are n-th root of unity:

(@)*"—1=0 forl<i<w

3. the values belongs to I, and are not zero:

03;1—120 forl1 <i<w

From these constraints we can consider a system, whose variety describes the words
of C of weight w. We introduce the variables zq, ..., z,, for the locations and the
variables y1,...,y, for the values. Thus, the previous restrictions can be rewritten

using these variables:
1. quzlytzz" =0for1<j<n-—k
2.2 —1=0,for1 <i:<w

3. 97 —1=0,for1<i<w.

Collecting all these equations in F [z, ..., zw, Y1, - .., Yu] in a system, we get:
(ylzil —|—"'+wa$ =
ylzinfk + e+ ywzi[?fk =0
21 —1=0
Je(w) = (5.1)
zy —1=20
v —1=0
~1 _
vt —1=0

97

Chapter 5. Bounding distance using Grobner bases

We have that any codeword in C' of weight w corresponds to a solution of Jg(w).
Unfortunately, the converse is not true. The solutions of Jo(w) which do not corre-
spond to any codeword of C' are called spurious solutions ([Sal02]). In [Sal07] it is
proved that a solution = = (Z1,...,Zu, ¥y, - - -, Yy, is a spurious solutions of Jo(w) if
there are 1 <4 # j < w such that Z; = Z; and a refined version of the system Jo(w)
is proposed in order to remove all spurious solutions. The new system proposed in
[Sal07], J(w), is obtained adding to Jo(w), for any 1 < i # j < n, the polynomials

in F, [z, z]:

pij = p(zi, 25) = Z
obtaining the following result.

Theorem 5.2.1 ([Sal07, BPWT10]). Let C be an [n,k,d] cyclic code over F, with
(n,q) = 1 and complete defining set T = {iy, ... in_p}. Let 1 < w < n and let Jo(w)
denote the system:

P2t byt =0, 1<t<n—k

zj”—1:0, 1< <w

yIt—1=0, 1<j<uw

p(zi,2) =0, 1<i#j<w

Then, denoting by A,(C) the number of codewords of weight w in C, and by ns[w]
the number of solutions of Jo(w), we have: A,(C) = = Moreover, for 1 < w < d:

w! 7

o cither jc(w) has no solutions, which is equivalent to w < d,
o or jc(w) has some solutions, which is equivalent to w = d.

Thanks to Theorem 5.2.1, an algorithm is proposed to compute the minimum
distance of a cyclic code, which is an obvious adaption of Proposition 4.2 explained
in [Sal02].

Algorithm A
Input
A cyclic code C' € C, .

A value w = 1.

Output
The distance d(C).

98

5.2. The Cooper Philosophy

Cycle

Construct the associated system jc(w).

Compute the Grobner basis G = GB(Jo(w)) of the associated ideal.
If G = {1} then increase w to w + 1

Last step
Output w.

We provide two examples, applying the Algorithm A to the codes examined in
Theorem 4.1.19, showing that their distances are distinct.

Example 5.2.2. We consider the cyclic code C) over F, = F3s of length 11, and
defining set 7" = {0,1,2,3,5}. Let us denote with d; its distance. By the BCH
bound, we have that d; > 5, thus we construct jcl(5) in the polynomial ring
Fss[21,. .., 25, Y1, - - -, 5], to check if dy = 5:

(Y1 + Yo+ ys +ya+ys =0
Y121 + Yoz2 + Y323 + Yaza + Y525 = 0
Y127 4 Y225 + Y323 + yazi +ys25 =0
Y127 + Yoy + Y323 +yazi +ysz8 =0
Y127 + Y225 + Y323 + Yazg +ys22 =0
Al —1=0, y*2-1=0
Jen(5) = zi—l:O, Y32 —1=0

2l —-1=0, 32 -1=0
2t —1=0, y*2-1=0
21—1=0, y#*2-1=0

p(z1,22) =0, p(z1,23) =0, p(z1,24) =0,
p(z1,25) = 0, p(z2,23) =0, p(22,24) =0,
P(22,25) = 0, p(z3,24) =0, p(23,25) =0,
p(24,25) =0

We compute its reduced Groébner basis, @cl (5), with respect to any order, for example
DegRevLex, with the following variable ordering z; > --- > 25 > y; > -+ > ys, to
decide if de, = 5. G, (5) contains 646 polynomials and we just indicate some elements
of LT(G’CI(E))) = {y1, 21, 22Y2, 233, 2523Y4, 22Y2Y3, Y, 223, 29, 23y, . . . }. We have that
Ge, (5) is different from {1}, thus a solution exists and therefore dy = 5.

Example 5.2.3. We consider the cyclic code C5 over F, = Fqwo of length 11, and
defining set 7" = {0,1,2,3,5}. Let us denote with d, its distance. By the BCH
bound, we have that dy > 5, thus we construct Jg,(5) in the polynomial ring

99

Chapter 5. Bounding distance using Grobner bases

Faw(z1,. .., 25, Y1, - - -, Ys], to check if dy = 5:

'y1+y2+y3+y4+y5 =0
Y121 + Y222 + Y323 + Yaza + yYsz5 =0
Y127 + ya2s + Y323 + yazi +ys25 =0
Y127 4 Y225 + Y323 + yazi +ys28 =0
Y127 + Yoy + Y323 +yazy +ys22 =0

A_1=0, yl"B 1=

j02(5) _ 2l —1=0, yi -1=0

Al—1=0, yl?B —1=0

2t —1=0, yi" -1=0

251—1:0, y§023—120
) =0, p(21,23) =0, p(21,21) =0,
() =0, p(22,23) =0, p(22,24) =
p(22,25) = 0, p(z3,21) =0, p(23,25) =0,
(24,25) =0

|
o

Computing its Grobner basis, GC2(5), with respect DegRevLex, with z; > -+ > 25 >
y1 > --- > y5 we obtain, G, (5) = {1}, so there are no words of weight 5 in Cy, then
dy > 6.

We note that the system J¢, (5) and Jg, (5) of Example 5.2.2 and Example 5.2.3, re-
spectively, are apparently the same, but the first is defined over Fss 21, ..., 25,91, - . -, Ys]
and the second over Foio[zy, ..., 25,y1,...,ys]. We investigate more in depth this re-
lation between ideals, in Chapter 8, where we call this kind of ideals F-linked.

5.3 Newton’s Identities

We consider the same settings as the previous section: a cyclic code C' € C,,,
having complete defining set S¢ = {i1,....i,_x} with respect to a fixed primitive
n—th root of unity a € F; ¢ € C any word of C' of weight w(c) = w. If o/1,... av
are the locations of ¢, we define X; = o/, for any 1 < i < w. Similarly, if ¢;,, ..., ¢j,
are the values of ¢, we define Y; = ¢;, for any 1 <1 < w. Following this notation we
can rewrite the known and the unknown syndromes of C' as S; = > .7 | X| JY; for any
j € {0,...,n —1}. The plain error-locator polynomial of ¢ is a polynomial in

[F[z] defined by:

o(z) = H(z - X,), (5.2)

5.3. Newton’s Identities

while the classical error-locator polynomial is defined (see [ABO09]) by

w

5(2) = [J(1 - 2X3).

i=1

Clearly we have that o is the reciprocal polynomial of 7, i.e. o(z) = z*G (%)

Expanding the product in (5.2) we obtain:
o0(2) = 2" + 012" o Op12 + O,

where the coefficients oy,...,0, are the elementary symmetric functions of c,
i.e. the elementary symmetric functions of the locations of ¢ with a suitable choice of
the sign
o; = (—1)’ > X, X, .. X;, 1<i<uw.
1<51 <ja <-++<ji<w

The link between o and & is also explained in terms of o;’s, in fact 6(z) = 1 +
> 0iz'. The elementary symmetric functions of a word ¢ and its syndromes S;’s
(or equivalently, its DF'T) are linked by the generalized Newton identities.

Theorem 5.3.1. Let ¢ € (F,)" be a word of weight w, DFT(c) = (Sp, ..., Sh—1) and
01, ...,04 the elementary symmetric function of c. Then the following identities hold:

Vi Z 0, Sier + Ulsier,l + -t O'wSi == O, (53)
where S; = Siin.
Proof. See [PWT2]. O

Using the generalized Newton identities and the constraints for DF'T(c), in [Aug96|
the author presents the following system of equations, where both the S;’s and the
o;’s are the indeterminates, which defines an ideal in F [Sy, ..., Sh-1,01,...,04]:

(

Sw+1 + Swo1 + -+ -+ S10, =0,
Swi2 + Sypy101 + -+ + Se0, = 0,

SC(’UJ) = Sn-l—w + Sn+w—101 + -+ Snaw = 0, (54)
Sqi modn:Siq, 0§Z§n—1

Si—l—n:Sia OS’LSTL—l
S;=0, VieSo

\

We give a definition and then summarize the main results which are claimed in [Aug96]

concerning Sc(w).

101

Chapter 5. Bounding distance using Grobner bases

Definition 5.3.2. We say that (Sy,...,S,—1) € (F)" (resp. (61,...,54)) is a
truncated solution of So(w) if there exist (51, ...,5,) € (F,)" (resp. (So, ..., Sn_1))
such that (So,...,Su_1,01,...,04) is a solution of Sc(w). In this case (G1,...,0.,)

is called an extended solution corresponding to (So,...,Sn_1).

We remark that what we defined as truncated solution is simply called solution
in [Aug96|. In the next theorem we use the notation in term of ¢ rather than in terms

of .

Theorem 5.3.3. Let C be an [n, k,d] cyclic code over F, with defining set Sc. Then

we have the following properties.

(i) The n-tuples (S, ..., S,_1) € (F,)™ which are truncated solutions of Sc(w) are
the DFT of the codewords of weight less than or equal to w.

(i) Let (So,...,Sn 1) € (F,)" be a truncated solution of Sc(w) and ¢ be the code-
word of weight wy < w with DFT(c) = (So,...,S,_1). Let 0.(2) be the plain
locator polynomial of c. Then the set of extended solutions corresponding to

(So, ey Sn—l) 18

F'= { (617 s 7611}) € (F_q)w | O'C(Z) divides (zw + ZgiZW—i) })

i=1

(iii) The number of solution of Sc(d) is finite. Each truncated solution (S, ..., Sp_1)
is the DFT of a minimum weight codeword. Each truncated solution (71, ..., 0y)
is the set of coefficients of the plain error locator polynomial of a minimum
weight codeword.

Proof. See [Aug96, Cha9s|. O

We believe that the result of Theorem 5.3.3 is true, assuming that some conditions
are added to S¢(w), in order to avoid that (Sp,...S,_1) = (0,...,0) is a truncated
solution. We call S¢(w) the system obtained adding these conditions to S¢(w).

The important consequence is that given a cyclic code C' such that there is not
any word of weight less than w, if S¢(w) has solutions, then the distance of C' is
w. Thus, we can proposed an algorithm analogous to Algorithm A of the previous

section, which formalizes the approach of [Aug96] in its example of Section 4.1 .

Algorithm B
Input
A cyclic code C' € C, .

102

5.3. Newton’s Identities

A value w = 1.

Output
The distance d(C).

Cycle

Construct the associated system Sc(w).

Compute the Grébner basis G = GB(S¢(w)) of the associated ideal.
If G = {1} then increase w to w + 1

Last step
Output w.

If we want to keep use S¢:(w) rather than S¢(w), we provide an alternative algo-

rithm.

Algorithm C
Input
A cyclic code C' € C, .

A value w = 1.

Output
The distance, d(C).

Cycle

Construct the associated system S (w).

Compute the Grobner basis G = GB(S¢(w)) of the associated ideal.
If {So,...,Sn-1} C G then increase w to w + 1

Last step
Output w.

103

Part 11

Main results

105

A New Bound

In this chapter we use Theorem 2.2.16 and the singleton procedure in order
to prove a bound, called bound C, which is a simultaneous generalization of the
Hartmann-Tzeng bound and of the BS bound. Bound C has a computational com-
plexity slightly larger than that of the Roos bound. It turns out from extensive
computations that bound C is often tighter than any other known root bound (in-
cluding the Roos bound). This result was preliminary presented in [PS13] and solves
an open problem proposed in [BS07|. From now on, during this chapter we adopt the
notation used in Chapter 3.2. In particular, we fix o a primitive n-th root of unity
over [F, and we write S¢ = Sc 4.

The main result in this chapter is Theorem 6.1.13. We postpone its statement
because first we need two prove two special cases (Bound I and Bound II) presented

below and whose proofs are given in Section 6.1.

Proposition 6.0.4 (Bound I). Let C' be an Fy[n,k,d] cyclic code with defining set
Sc and (q,n) = 1. Suppose that there are ¢, m, r, s € N, 1 < m < { and iy €
{0,...,n—1} such that:

a) (ip+7), €S, Vj=0,....0—1,
b) ('io +j)n c Sc,

Vi=ig+l+r+h(m+r)+1,..., ig+L+7r+m+h(m+r)
VO<h<s-1

Then

o if (m+r,n) <m:

d2£+1+s—r{ J—max{(ﬁ)m+r—m,0}; (6.1)

m-+r

o otherwise
d>0+1. (6.2)

107

Chapter 6. A New Bound

The above statement is expressed in classical notation and seems extremely com-
plicated. However it is a natural generalization of known bounds, as it is immediate

once it is expressed in U notation.

Proposition 6.0.5 (Bound I). Let C be an [n, k,d] cyclic code with defining set Sc.
Suppose that there are £,s,m,r,p e N, {>m>1,s>1, p>1,r > 1 such that

((0)(A")((0™)(A")* = R(n, Sc)". (6.3)
Then

o if (m+mr,n) <m:

dzéﬂm—ﬂ J—max{(ﬁ)mr—m,()}; (6.4)

m-+r

o otherwise
d>0+1. (6.5)

Corollary 6.0.6. In Proposition 6.0.5 we can substitute condition (6.3) with
((AT)(0™)*((A")(0)) < R(n, Sc)”.
Proof. See Lemma 3.2.11. O

Remark 6.0.7. We can see Proposition 6.0.4 as a generalization of the HT bound. In
fact with ¢ = m the statement of Proposition 6.0.5-(6.4) reduces to Definition 3.4.13
and Corollary 3.4.15.

We claim another bound, similar to bound I:

Proposition 6.0.8 (Bound II). Let C be an [n, k,d] cyclic code over F, with defining
set Sc. Suppose that there are \,ju,s E N, A > 1, u>2, s> +1, (n,u) <p—1,
ip € {0,...,n— 1} such that:

a) (io+ 7)n € Sery 5 =0, A — 1,
Then:

o if (n,p) < p—1:
d>App+p+s—A—=1;

e otherwise if p | n:
d > A+ p.

108

6.1. Proofs of bound I and bound II

Again, the I notation is more clear, as follows.

Proposition 6.0.9. Let C' be an [n,k,d] cyclic code over F, with defining set Sc.
Suppose that there are \,pu, s € N, A > 1, u > 2, s > A+ 1 such that:

(0"*A)(0"*A)* < R(n, Sc). (6.6)
Then:
o if (n,p) < p—1:
d>Mu+p+s—A—1; (6.7)
e otherwise if pu | n:
d > A+ p. (6.8)

Corollary 6.0.10. In Proposition 6.0.9 we can substitute condition (6.6) with
(A" (A0™) < R(n, Se)”.
Proof. See Lemma 3.2.11. O

Remark 6.0.11. Proposition 6.0.9 is clearly a generalization of BS bound (see Defi-
nition 3.4.34 and Corollary 3.4.36), and for the rare cases in which pu|n, it is exactly
the BS bound.

Remark 6.0.12. We note that bound II, when applicable, is sharper than bound I. In
fact, if (0M*A)(0*1A)* < R(n,Sc)? for > 2, s > A+ 1, in notation of Proposi-
tion 6.0.5 it means (0°A™)(0™A™)* < R(n,S¢)? with £ = pX\, r =1, m = u— 1 and

then Proposition 6.0.5 gives a value d;
LA
dy > pur+1+s— ” —max{ (pA), —(p—1),0} =pA+1+s—A
while Proposition 6.0.9 gives a value d;;

d[[ZM)\+M+S—)\—1

and since p > 2 then dj; > d;.

6.1 Proofs of bound I and bound II

In this section we provide the proofs of Proposition 6.0.5, and Proposition 6.0.9.

Remark 6.1.1. The main tool we use to prove Proposition 6.0.5 is Theorem 2.2.16
which, in principle, allows us to work only with matrices that have as entries just 0
or /X. Nevertheless during the proof we use matrices that have also A as entry. A A

can be either 0 or A, the correctness of the proof is not affected by either choice.

109

Chapter 6. A New Bound

Proof. (Proposition 6.0.5) The general plan of the proof is as follows. Thanks to
Theorem 2.2.16 we aim at proving that

min { rk(M(v)) | v € A(R(n,S¢)) } > (+1+s—r {mLHJ —max { ({)mmr —m,0}.

In order to do that, for any v € A(n, S¢), we need to choose ¢ + s + 1 rows in M(v)
and we must prove that, discarding at most r Lm%rrj +max { ({)y4r —m,0 } rows, we
actually obtain a set of rows for which the singleton procedure is successful.

We can suppose w.l.o.g. that ig = n — ¢ (see Lemma 3.2.9), so that:

v=A.. . A(0...QA...A)*...0...0...0.
SN = T
From now on, the meaning of v is fixed. Let i’ be the primary pivot of v (see

Definition 3.4.16). We can suppose that 1 < ¢/ < r, otherwise v = 0"(0™A")*...0°

and so (0“T7FmA")(0mAT)*~1 < v (Definition 3.3.8) and the bound would be trivially

satisfied, since it would give:

C+r+m

dZ€+T+m+1+s—1—{
m-+r

14

m-+r

Jr—max{(€+m+r)m+r—m,0}

:€+r+m+s—{ Jr—max{(f)err—m,O}

/¢
>l+r+1+s— \‘mJT_maX{w)mH’_m’O}'

Let ¢ be the secondary pivot of v with respect to the block (0™A”)* (see Defini-
tion 3.4.17). We can suppose s(m+r)+r+1 <’ < s(m+r)+r+m, otherwise we
have (0°A™)(0mA™)**! 5 v and the bound is trivially satisfied:

l
d>0+1+s+1— {er—max{(E—i—mer)mH—m,O}

l
>l+1+s— {er—max{(f)mH—m,O}.

We note that v[i” —z- (m+r)] =0 for any z =1,...,s. Moreover, i and " may
coincide, but this is not a problem.

Now, we are going to choose (¢+ 1+ s) rows of M(v). We start from the ((n—1¢' +
k)n + 1)—th rows with £ = 1,...,m, that is, we take the row with the primary pivot
in the first position and its shifts up to the (m — 1)—th shift included. We collect
these rows in submatrix 7} and we note that they are clearly linearly independent,

applying the singleton procedure.

110

6.1. Proofs of bound I and bound II

N ... 0 ... 0A A..0..0A N 0 0
00X .. 0 .. OA..A..O 0 A N 0 0
00A...0..0A..A...O..0A.. & 0
T1: . : . : : . . .
0.?.0%...0 0 A A 0 0 A Pa ST 0
m
We now consider the (k + 1)-th rows for k = m, ..., ¢, collected in submatrix T5.
0. 0 A..A..O 0 A AN 0
0 0A..A..O 0A..A..NX0
0.. 0 0A...A.. O 0A...A .. A&
T, = . Do .. SR
0.. .. 0..0 0 A ... A 0 0 A ... AN ...
0. 0..0 0..0A A 0 0 A ... A ... KX
+ 4
m V4

Note that T} and 75 have no common rows. Note also that in T, for any row h =

l,...,0+1—m and any column 1 < j < (s —1)(m +)+ m we have:
Tylh,j) = A = Tylh,j+ (m+7)] = A (6.9)
Moreover, T has full rank as the following lemma shows.

Lemma 6.1.2. The singleton procedure is successful for Ty and thus rk(Ty) = ¢ —
m+1.

Proof. We are going to prove that the singleton procedure is successful for all the
rows of Tp. We have that v[i’] = A and v[i] =0, Vi € {i—1,...,i' —(}. In
particular v[i| =0, Vie {i/ —1,...,7 =L+ m }.

We note that since every row of 75 is obtained from a right-shift of the previous
one and the first row of 75 is obtained shifting v of m positions to the right, so for
1<h</{—m—2it holds

Tg[h+1,]] :Tz[h,j—l] and TZ[]-)]] :V[]_m]

At the first step we s-delete the first row and the (7 +m)—th column, since Ty[i’ +m)]
is a singleton, in fact for 2 < h </ —m + 1:

Tylh, i +m] = To[1,i +m — (h—1)] = v[i' = (h—1)] = 0

while T[1,i' +m] = v[i'] = &
Suppose now we have s-deleted the first j rows, we want to show that the matrix
T. 2(3‘) obtained from these j s-deletions has a singleton in TQ(j)[z" +m + j]. In fact, for
2<h<l—m+1-—y:
Ty (b (7 + m+)] = Tolj + By (7 + m o+)]
=T[l,9 +m— (h—1)]
=v[i'—(h—1)]=0

111

Chapter 6. A New Bound

while TY[1, (i'+m+4)] = To[j+1, (+m+j)] = To[1,i'+m] = v[i'] = X. After ((—m)
steps we have that T4 ™ is the last row of the matrix Ty, (i.e. 74" ™ = Ty[(—m+1]),
which is different from zero, since To[{—m+1, 7' +0+1] = Ty[1,4'+m] = v[i'| = X. O

Since all the rows of T» have a block of zeros in the first m-positions, they are
linearly independent from all the rows in 7;. We can conclude that any matrix
containing 7} and T, has rank at least £+ 1, obtaining (6.5). If (m+r,n) < m we can
also consider a third and last submatrix, T3, formed by the ((n—r—k&-(m+r)),+1)—th

rows, for k=0,...,(s—1):

0.. 0 A.. A .. 0 W 0OALAD0 ... 0A.LA. A L
0. 0A.. A .. 0 e 0A LA LN
Ts=1::::: @ = :
0. 0A.. A .. N
{ I {
m m+r i —r—(s—1)(m+r) i —r

Lemma 6.1.3. The singleton procedure is successful for Ty and thus tk(T3) = s.
Moreover the [k]-th row of Ty is the row corresponding to the singleton T3[i" —r —
(k—1)(m+7)] fork=s,s—1,...,1.

Proof. We note that the rows of T3, by construction, have the property that
Ti[la+1,h| = Ts]a, h+ (m+1)] because each row is a (m+r) left shift of the previous
one. This is sufficient to prove that T5(i" —r — (s — 1)(m + r)) is a singleton. We
claim that the s—th row of T3 corresponds to a singleton. Indeed

Tsls,i" —r—(s—1)(m+7r)] = T3[1,i" —r— (s = 1) (m+7r)+(s—1)(m+7)] = T3[1,i" —r] = &
and for k=1,..., s —1:

Tslk,i"—r—(s—1)(m~+r)] = T3[1,i"—r—(s—1)(m+r)+(k—1)(m+r)] = T3[i"—r—(s—k)(m+r)] = 0

so we can s-delete it. Once this is done, we might also s-delete the (s — 1)—th row,
since

T3[s—1,3"—r—(s—2)(m+7r)] = T3[1,i" —r—(5—2)(m+r)+(s—2)(m+7r)] = T3[1,i" —r] = &
and for k=1,..., s —2:
Tslk,i"—r—(s=2)(m+r)] = T3[i" —r—(s=2)(m+7r)+(k—1)(m+r)] = T3[1,i" —r—(s—1—k)(m~+r)] = 0.

In this way for any row of T3 we obtain a singleton in T3 [i” —r — k(m + r)] for

kE=0,...,s—1, by recursively s-deleting from the last row to the first. O

112

6.1. Proofs of bound I and bound II

Collecting all these submatrices T4, Ty, T3, we obtain an (£ + 1+ s) X n matrix 7T,

as follows:
XA ..0..0 A ..A..0..0A.. &N 0 0 —- 1
oA ...0.. 0 A..A..O 0 A ... X ... 0 ..0
Do : R T,
0 0 & 0 0 A A 0 0 A ... A . 0
0 0A... A 0 0 A AN 0 — m+1
0 0A ... A..0..0A..A.. &0
0..0.. 00 A ..A..O0..0A..A .. X
T = : : Do Do oo T2
0..0 0 0A..A.. O 0 A ... AN ..o
0 .. 0 0 0 0 A .. A 0... 0 A..A..N.. — (+1
0..0A.. A .. 0..0A..AO 0 A A XL
0..0A.. A ...0..0A..A..~X..
Ts
0 ... 0 A ... A N o > U1+
4 4
m m—+r

Observe that the rows from (m + 1) to (¢ + s + 1) have a block of zero in the first
m positions, so we can obviously s-delete the first m rows (i.e the rows of 7). After
these first m s-deletions we obtain a matrix 7" composed of the last ({ + 1+ s —m)

rows of T, as the following:

0. 0A ... A .0 ..0A..A.. X 0 — m+l
0 0A ... A...0..0A..A N 0 ..
0..0..0 A ..A..O0..0A..A..&X.. .
0..0..0 0A..A..O0..0A. A. KN
, 0..0 0 0 0 A A..0..0 A . A X .= 41
T = 0..0A .. A 0..0A..AO 0A.. A N
0. 0A.. A 0...0A..A..AX
0cr 0 A . A A L S s
+ + + +
m mr s(m+r) i —r

where 1 + s(m + 1) < " —r < m + s(m + r) by hypothesis. We note that 7" is
composed by the rows of Ty and T;.

We use the singletons of T35 to proceed with the singleton procedure, but in order

to do that we have to discard some rows in T5. More precisely, let us define:
B,={h|Th i —r—km+r)]=A} for k=0,...,s—1

then the rows to discard in 75 in order that T[¢" —r — k(m +)] becomes a singleton
for k=0,...,5s—1 are:
B = U{_{ By. (6.10)

Lemma 6.1.4. Let 0 < k <k <s—1, then By, C Bj.

113

Chapter 6. A New Bound

Proof. 1t follows directly from (6.9). O
Corollary 6.1.5. B= By ={ h | Tz[h,i" — 1] = A }.

Thanks to Corollary 6.1.5, since s(m+r)+1 <" —r < s(m+7)+m, if we define
n; = | { h|Ta[h,s(m +7r)+ j] = A }|, we have:

Bl < max{n; [1<j<m}.

and we can further improve this result with the following lemma, which is not difficult

to prove.

Lemma 6.1.6. For1 <j < m:

m =N 2 2 Ny

Thanks to lemma 6.1.6 we are able to estimate the maximal number of rows of T5

that we have to discard.

Lemma 6.1.7.

14
Bl < |t max (O - m,0)

Proof. For Corollary 6.1.5 and Lemma 6.1.6 we have |B| < ;. Now:
m=|{h]|Te[h,s(m+r)+1]=A}], but recall 1 < h <L+ 1—m.

We rewrite v in the worst case where i = s(m + 1) +r + 1:

v=A..A0.. 0 (AT0™)*"2A ... A0 0 A.LA N L
L4 { { 4
1 r m4r s(m+r)—m+1 s(m+r) s(m+r)+r+1

Since Ty[1,s(m +71) + 1] = v[s(m +r) + 1 — m]| = 0, we have

m=|{h]|Tofh,s(m+7)+1]=A0,1<h<l+1—-m}]
= |{h|Dfh,s(m+r)+1]=A2<h<l{+1-m}|

Now Th[h+ 1, j] = Th[h, 5 — 1] (for h > 1) and T»[1, j] = v[j — m], by construction of
T5. So:

m={h|Thsm+r)+1]=A2<h<{l+1-—m}|
=|{h|TA,s(m+r)+1—(h—1)]=A2<h<{l+1—m}]
=[{h]|vls(m+r)—m+2—hl=A2<h</l+1-—m}|
=|{h|v[s(m+r)+2—hl=A2<h<{+1}|

114

6.1. Proofs of bound I and bound II

Thus, to compute 7; we have to count the number of A’s we encounter, from v[s(m+
r)] to v[s(m 4+ r) — £+ 1] (i.e. from v[s(m + r)] and going back ¢ positions). Let
us consider the worst case, which is when ¢ < s(m + r). Passing through the block
(0™A")* from right to left through ¢ positions, every m + r steps we meet a block
formed by r A’s and m 0’s, thus the contribution to 7; per block is r. Since we
move by ¢ positions only, we cross no more than Lmiwj such blocks and so we have
m < Lmiﬂj r 4+ ny, where 7] are the A’s coming from the last (¢),,,, steps left. The
first m-positions we meet doing the last (¢),,., steps are zero, since they correspond
to the last block (A"0™), thus 7} can be at most (£),,., — m and it is non-negative
only if (€)1, > m. In conclusion: n; < | =t | r + max { (€)p,, —m,0 }. O

m—r

Thanks to Lemma 6.1.7, discarding at most Lmiwj r+max{ ({)m4r —m,0 } rows
of Ty, we can remove by s-deletions T3 from 7”.The matrix that remains is a submatrix
T of T, not having row indeces in B. Note that 7" has full rank, because T3 has full

rank by Lemma 6.1.2. So we have proved Proposition 6.0.5. O

Example 6.1.8. Let C be a cyclic code of length n, with defining set S¢ satisfying
the assumptions of Proposition 6.0.5 with parameters { =7, m =2, r =1, s = 5.
We want to prove that by Proposition 6.0.5 the distance of the code C' is at least
d>T+1+45—|55|1—max{(7);,—20} = 11. Let v € A(R(n,Sc)) with
v[1] = X'. The matrix T is:

A0OOAOOAOOAOOAOOANAAAAANANAA.. .
0 00AO0O0ADOADODADOANAAAAAAA. .
00X 00AO0OOAODOAOOADOANAAAAAA.. .
000A0O0AODOAODOAODODAOOANAAAAA. ..
0000AXNO0OOAODODAODODADOAOOANAAAA. .
00000XO0OOAODOAOOADOADODOANAAA. .
00000O0XNOOAOOAOOADOOAOOANAA. ..
000000O0XNOOAODOAODOADOOAOGOANA. ..
00AD0DOAOOAODOAOOANAAAAAAAAA.. .
00AD0DO0AO0OOAOOANAAAAAAAAAAAA.. .
00A0DO0AO0OANAAAAAAAAAAAAANAA.. .
00A0O0ANAAAAAAAAAAAAAAAAAA.. ..
00 ANAAAAAAAAAAAANAAAANANANANANAA.. .
For the secondary pivot we have two possibilities: i = 11 or i = 12. We show

that in both cases it is possible to obtain 11 s-deletions, removing at most LFHJ 1+

max { (7)., — 2,0 } =2 rows from the matrix 7.

115

Chapter 6. A New Bound

Case 1: 7" =11.

A 0O O0OAO0OO0OAODOAODOAODODAANAAAAAAAA. — Il-stsdeletion
0O 0 0AO0O0OAO0OO0OAODOAODODAANANAAAAAAA.. - 2nds-deletion
00X 0 O0AODOAODOAOOAODOAANAAAAAA. — 8ths-deletion
uuUEUUAUUL\UUL\UUL\UUAEAAAAL\...—)REMOVED
0000OANXNOOAODODAODOAODODADOO0OAANAAAA.. — 9ths-deletion
0000 O0OANAODOAODODAODOADOAOOAAXAAA.. — 10-th s-deletion
00— 77— —» REMOVED
0000O0DO0OODAXNOOAODOAODOADOOAOOAAA.. — 11-th s-deletion
00 A0 O0OAOOAODOAODODAANAAAAAAAAA.. > T-ths-deletion
00 A0 O0OAOO0AO0DOANAAAAAAAAAAAA.. = 6-ths-deletion
00 A0 O0OAOO0OANAAAAAAAAAAAAAAA.. = 5ths-deletion
00 A0 O0OANAAAAAAAAANAAAAAAAAAA.. — 4ths-deletion
00 AXAAAAAAAAAAAANAAAAANAAAAAA.. — 3rds-deletion
Case 2: " =12
A0 O0OAO0ODO0OAODOAODOAODODAANAAAAAAA.. — 1-stsdeletion
0N 0 0AO0O0AODOAOOAOOAANAAAAAA.. — 2nds-deletion
00X 0 O0AODOAODODADOAOOAANAAAAA.. — 8ths-deletion
0000 O0AO0OO0OAODOAOOAODOAANAAAA.. — 9ths-deletion
——— 60— —AAAAAA— . REMOVED
0000 0OAXNO0OO0OAODOAOO0OAOOAOOAAANAA .. — 10-ths-deletion
0000O0O0OAXNXOOAODOAOOAODOAOOAAANA.. — 11-th s-deletion
UUUUUUUSUUAUUAUUAUUAUUA\A\:\E...HREMOVED
00 AO0OOAOOAODOAODOAANAAAAAAAA.. — Tths-deletion
00 A0 O0OAOO0OAODOAANAAAAAAAAAAA.. = 6-ths-deletion
00 A0 O0OAODOAANAAAAAANAAAAAAAAA.. — 5ths-deletion
00 A0 O0OAANAAAAAAAAANAAAAAAAAA.. — 4ths-deletion
0 0 AANAAAAAAAAAAAANAAAAAAAAA.. = 3ths-deletion
In a similar way we prove Proposition 6.0.9.

Proof. (of Proposition 6.0.9) We can suppose w.l.o.g. that ig = n—Au (see Lemma 3.2.9),

s—times
o\

so that v.=AD...0A...... 0...0A...0...0. Let ¢ and ¢’ be respectively the pri-
—_—— —_—— N~

H H HA
mary pivot and the secondary pivot of v. We can consider a simpler situation, that

is, 7' = 1 and sy + 2 < " < sp+ p. In fact, if / # 1, then (0XVEA)(0MA) I g v

and we have two cases:

i) if s > A+ 3 then s — 1 > A+ 2 and the bound would be satisfied since it holds:
d>A+Dp+p+s—1=-A=2>A+Dpu+s—A=1>Ap+pu+s—A—1;
ii) if s=A+1,A+2then 1> s— (A+1) and so from the BCH bound we have:
d>M+p+1>A+Dpu+s—A—-1=A+Du+s—(A+1).

As regards sy + 2 < i < su + p, if it does not hold we have (0AA)(0* 1A x v
and

d>pr+p+s+1—-Xx—1
> A+ pts—A—1.

116

6.1. Proofs of bound I and bound II

In a similar way to the proof of Proposition 6.0.5 we are going to choose A+ p+s
rows of M(v). We collect the first (A + p) rows of M (v) in a matrix 77, noting that
they are the row with the primary pivot in first position and its shifts up to the
(A + p — 1)—th shift (included), so:

XA 0 .. 0AO 0 ... 0A..AN 0 . v . 00— 1
oAX 0..0A O A0 ... 0 A .. X 0 ... o ..
00X 0..0 A 0AO0..0A ... X 0
0 oA O ... O W 0AO0 ... 0A ... X
Ti=|AAo0. o0& o A0 0AO..0A. AX. ..
ALAO. 0 KX 0AO..0AO..0A.. N. —\itn
4 4
H Aptp

In 7} we note that for any row h and any column p < j < (s — 1)u we have:
Ti[h,j] = A = Tilh,j+pl=A (6.11)

We recall that T; has full rank as proved in Theorem 3.4.35.

Lemma 6.1.9. The singleton procedure is successful for Ty and thus rk(T}) = A+ p.

Proof. See Theorem 3.4.35. O

Then any matrix containing 7; has rank at least Ay + p, and we obtain (6.8). If
(,m) < p— 1 (which it holds if and only if p 1 n, since u < n), then we consider
another matrix, 75, in which we collect s rows of M(v): the ((n — " + ku), + 1) —th

rows with £k =1,...,s, which are the rows with the secondary pivot in position k.
COA A e e 0
COA D 0 A LA L e e e 0 2
CO0A D . 0AD . 0A LA L 0— 3
To=1| ::::: R Do : Do
~0A0 .. 0AO0..0AD0..0A..O0..0A.. A 0->s-1
~0A0..0AO0 .. 0AO0..0A..0..0AD 0 A 0= s
+ 1 { {
B 2p 3 (s=1p 1%

Note that there may be some rows in common between 77 and T5.

Lemma 6.1.10. The singleton procedure is successful for Ty and thus rk(Ty) = s.
Moreover, the h-th row of Ty is the row corresponding to the singleton Ty[hu] for
1< h<s.

Proof. The rows in T5 correspond to the rows of matrix 75 in the proof of Proposi-
tion 6.0.5, but a shift and a permutation, so it is enough to apply Lemma 6.1.3 and
Lemma 3.2.9-3.2.10. O

117

Chapter 6. A New Bound

Our aim is to put together the rows of 7T} and 75, obtaining a matrix 7', and

identifying a submatrix T of T, where we apply the singleton procedure.

A O ..OAO.. 0A..0..0A... - 1
OAX 0 .. 0AO .. O0A...........00 0A.

00X 0..0AO.. 0A....... ... 000A..... ..
00 0AXN0...OAO..0OA.........000A....

0 oAx O 0AO0..0A.. 00 0 A .
A0 0A..AXNO.. 0OADO 0 A

A A O .0A..A0...0ADO 0 A

T = A ... A0 e 0A . A0 ...0ADO 0 A — Aptp
0 A ... X ... - 1
0AO0 .. 0A.. A o N
...... 0 0AO0..0A N
0 A O 0 A ... 0..0A Jag — s

+ + + +
B Ap St

In order to do that, we use the singletons of the matrix 75, removing, if necessary,
some rows of T7. Let k = 1,...,s and By, be the set of the rows of T} to discard
so that T'(ku) become a singleton. In other words, By, = { h | Ti[h,ku] = A }. To
determine the maximal number of the discarded rows of 77, we have to estimate the
size of B = Uj_, By,. Thanks to (6.11), if &’ < k then By, C By,, so B = B, and

it is enough to estimate

77:|{h|T1[h75:u]:Aaléhg)‘ﬂ+ﬂ}|
=|{h|Th[l,sp—h]=A,0<h<Au+pu—1}]
=|{h|vsu—h]=A,0<h<Au+p—1}].

Since s > A+ 1, starting from v[su| and moving to the left of (A + p) positions, we
meet exactly A+ 1 blocks (0~1A); each contributing to n by at most 1, son < X+ 1.
Remark 6.1.11. Note that for the computation of we did not need to use Lemma 6.1.6,
since this time we know exactly where the secondary pivot is, thus the determination

of n is easier.

In conclusion, we have just proved that discarding at most A + 1 rows of T, we
obtain a submatrix T of T' for which the singleton procedure is successful and we

conclude:

tk(T) >1k(T) =Ap+p+s—A—-1. O
O
Example 6.1.12. Let C' be a cyclic code of length n = 27, with defining set S¢
satisfying the assumptions of Proposition 6.0.9 with parameters u =4, A =2, s = 5.

We want to prove that by Proposition 6.0.9 the distance of the code C' is at least
d>4-2+4+4—-2—-1=13. Let v e A(R(n, Sc)), then we can suppose v[1] = &

118

6.1. Proofs of bound I and bound II

and " = 18 or i" = 19, otherwise the bound is trivially satisfied.
Case 1: i" =18, v = X 000A000A000A000A A A00000000.

cocRoccEARE8EA
SSSMSSEmE2Sd
835035505552
L O QO L QO

VT TVLTTTLT T T <
oo L m n o n wn
SSSCSShChth
SEEnEERRRRT?
N I R e N IR o
worAORIATSRA
2 O O O A A
cocoopoocopga44P
cocopoooqlydoP

U

coopooqfidoo
coopodyflocod
coopdydpoode
coo{lyidopodoe
codqfidoocpqood
odHlocoqloocodl
qdpoodpoocde
HNdopodqopodoe
Qoopdqoopgqoo
cooqloocoqloo oA

coqpoodqpooq

b
g
b
odqopodqopodoP
qoobqoopgqood
cooqloco{loocoif
codqpoocdooyP
odqopodoporyop
qoopqoopyood
cooflocofjocod
codpooypoocod
odqopoyopoocod
qQoopoopocod
cooflocopooo

coyypocopoood

b
g
okopoocodpoodqiy
[

Hoodboocodbogy]

nd s-deletion
-rd s-deletion

-st s-deletion
4-th s-deletion

1
2-
3

Case 2: i" =19, v = A 000A000A000A000AAAX 00000000.

-th s-deletion
-th s-deletion
-th s-deletion
ISCARDED
8-th s-deletion
9-th s-deletion
10-th s-deletion
DISCARDED
11-th s-deletion
2-th s-deletion
3-th s-deletion
ISCARDED

5

6

7
D
1
1

A O Y

0
0
0
0
0
0
U
N
A
A
U

coopoocof o
coopoof{ldooe
coopoyg{loocod
coopyddPoodP
coofydqopogoP
fldoopgqoco
ocHd{locoqlooc o
HNAdPpoodpood
qqopogqopoqgo

Qoopdqoopgqoo

U U = U

cocooqloocoqlooc o
codqPooqpooq
odqopoddopodgo

U U U =X U

qoopoopqgqoco
cooflocoqloocod
codPocodPooyP
odqopodopoyod
qooddoopooe
cooqloocofjoocod
codpoofypoocod
odqopoopoocod
qoodHocopoooe
coofjlocopoocoP

co¥yypoocopoood

g
ocHlopoocopooyHy{
[1

Hoodbooodboyq]

1-st s-deletion

2-nd s-deletion
-rd s-deletion
-th s-deletion

3
4

N
-
_)
—

0
0
0
0

0
0
0
0

444

cocoo
cocoo
cocoo
44y o
cocoo
cocoo
cocoo
q¥ oo
cooy
cocod
coodq
Hooco
co¥o
coqgo
cod4dq
cocoo
o¥oo
oqgqoo
o444
cocoo
Hooco
qooco
4444

[N e Nean]

We summarize the results of Proposition 6.0.5 and Proposition 6.0.9 in one state-

ment, called bound C.

Theorem 6.1.13 (Bound C). Let C be a [n,k,d]| cyclic code with defining set Sc.

,s>1, p>1 such that

1<m</

Suppose that there are £, m, r, s, p € N,

((A)"(0)™)*((A)"(0)) < R(n, Sc)"-

or

((0)(A))((0)™(A)")* < R(n, Sc)”

Then:

o if (m+r,n) <m:

J_nmx{wnﬁr—kﬁ};

14
m—+r

|

d>0+1+s—7r

e otherwise:

d>/0+1.

119

Chapter 6. A New Bound

In the particular case that, { = Ay, m =pu—1,s > A+ 1 andr =1 for some u
and X\, we also have:

e d>puA+p+s—A—1,ifpuin
o d > pu\+ p, otherwise.

As explained in Remark 6.0.7 and in Remark 6.0.11 bound C is both a general-
ization of the HT bound and the BS bound (except when p|n) and so it is sharper
and tighter. Our bound and the Roos bound are independent, in fact one is a strict
root bound, while the other it is not. As a consequence, for some codes our bound is
sharper and tighter than Roos’s but for other codes it is the opposite. From the com-
puted codes, it appears that bound C is tighter than the Roos bound in the majority
of cases. and so, Bound C is the first polynomial-time bound outperforming the Roos

bound on a significant sample of codes.

Remark 6.1.14. Also the BS bound and the Roos bound are independent, and indeed
the BS bound for some codes beats the Roos bound. However, in the majority of
computed cases the Roos bound is better, as reported in [BS06| and checked by us.

As regards computational costs, bound C requires at most:
e n operations for 7

e n operations for £,

e n operations for m,

e n operations for r,

e n operations for s

and so it costs O(n®) which is slightly more than the Roos bound which needs O(n*),
in fact the latter requires at most:

e n operations for iy,
e n operations for m,
e n operations for 7,

e n operations for s

while the other bounds cost less: BCH — O(n?), HT — O(n?), bound BS — O(n*?).
We tested all cyclic codes in the following range: on Fy with 15 < n < 125, on F3 with
8§ <n < 79and 82 < n <89, on F5 with 8 <n <61, onF; with 8 < n <47. We have

120

6.1. Proofs of bound I and bound II

chosen the largest ranges that we could compute in a reasonable time. In Table 6.2-
6.3- 6.4- 6.5- 6.6- 6.7 we give in detail the results obtained for each characteristic. We
write BCH for the BCH bound, HT for the HT bound, BS for the BS bound,RS for
the Roos bound and BC for the bound C.

Since all the bounds that we consider are sharper than the BCH bound, clearly
they are tight for all cyclic codes in which the BCH bound is already tight. Thus,
it is interesting to consider the only cases when the HT, BS, Roos and C bounds are
tight and the BCH bound is not.

The following table summarizes our findings and is composed of two different
parts. In the first part we report: in the first row the number of checked codes, in
the second row the number of these for which the BCH bound is tight. In the second
part of the table, each row corresponds to a specific bound. For each row we report
the number of codes for which the bound is tight and the BCH bound is not.

Table 6.1: Bound tightness

F, I I I total
number of codes 70488 93960 1163176 106804 | 1434428
BCH 59296 77584 1011957 93108 | 1241945

HT 661 1042 12058 2603 16364

BS 233 831 11436 2413 14913
ROOS 1178 1793 17673 2987 23631
bound C 886 1811 20147 4155 | 26999

121

Chapter 6. A New Bound

n | Noodges | BCH | HT | BS RS BC n | Nooges | BCH | HT BS RS BC
15 32 30 32 30 32 32 71 8 4 4 4 4 4
17 8 5 8 5 8 8 73 512 37 104 39 117 106
19 4 4 4 4 4 4 75 256 220 252 220 254 252
21 64 52 54 52 58 54 77 64 42 44 42 44 44
23 8 4 4 4 4 4 79 8 4 4 4 4 4
25 8 8 8 8 8 8 81 32 32 32 32 32 32
27 16 16 16 16 16 16 83 4 4 4 4 4 4
29 4 4 4 4 4 4 85 4096 547 1124 571 1141 1132
31 128 46 96 46 96 96 87 32 18 20 18 20 20
33 32 21 26 21 26 26 89 512 20 56 20 56 56
35 64 40 42 40 48 44 91 1024 277 435 277 436 435
37 4 4 4 4 4 4 93 16384 1388 3268 1424 3360 3286
39 32 18 20 18 20 20 95 32 18 20 18 20 20
41 8 4 4 4 4 4 97 8 4 4 4 4 4
43 16 6 10 6 11 10 99 256 105 166 106 171 166
45 256 187 222 189 228 224 101 4 4 4 4 4 4
47 8 4 4 4 4 4 103 8 4 4 4 4 4
49 32 32 32 32 32 32 105 32768 7939 11446 8420 12325 11796
51 256 90 146 98 146 150 107 4 4 4 4 4 4
53 4 4 4 4 4 4 109 16 4 4 4 4 4
55 32 16 20 16 20 20 111 32 18 20 22 20 24
57 32 20 24 20 24 24 113 32 4 4 4 4 4
59 4 4 4 4 4 4 115 64 24 26 24 26 26
61 4 4 4 4 4 4 117 4096 637 1075 714 1110 1099
63 8192 2238 4210 2401 4346 4280 119 512 170 212 170 213 212
65 128 36 74 36 78 74 121 8 8 8 8 8 8
67 4 4 4 4 4 4 123 256 52 62 60 62 66
69 64 22 24 22 24 24 125 16 16 16 16 16 16
Table 6.2: Tightness Fy, 15 < n < 69 Table 6.3: Tightness Fy, 71 < n < 125
N, BCH HT BS RS BC
Noodes | BCH | HT BS RS BC n codes
53 4 4 4 4 4 4
8 32 30 32 30 32 32
55 64 20 22 20 24 22
10 16 16 16 16 16 16 56 8192 3168 4368 3414 4440 4466
1 8 4 4 4 4 4 58 16 16 16 16 16 16
13 32 19 26 19 27 26
59 8 4 4 4 4 4
14 16 16 16 16 16 16 o1 128 5 0 5 11 I
16 128 112 118 112 120 118 2 6 16 16 16 16 16
17 4 4 4 4 4 4
64 2048 1640 1866 1652 1916 1870
19 4 4 4 4 4 4 65 1024 211 324 211 351 324
20 128 90 102 100 104 110
67 16 4 4 4 4 4
22 64 24 24 32 24 32
68 128 76 88 76 88 88
23 8 4 4 4 4 4 70 1024 422 454 450 464 490
25 8 8 8 8 8 8
71 8 4 4 4 4 4
26 1024 321 514 377 545 546
73 128 5 10 5 10 10
28 128 94 116 96 120 120 71 61 28 32 28 32 32
29 4 4 4 4 4 4 76 128 92 112 92 112 112
31 4 4 4 4 4 4
7T 64 20 22 20 22 22
32 512 410 464 414 472 464
79 4 4 4 4 4 4
34 16 16 16 16 16 16 82 4096 303 799 303 798 799
35 32 16 18 16 20 18
83 8 4 4 4 4 4
37 8 4 4 4 4 4 85 128 30 36 30 40 36
38 16 16 16 16 16 16
86 16 16 16 16 16 16
40 8192 3170 4344 3570 4478 4614
88 32768 8952 11484 9928 11866 12042
41 64 9 29 9 30 29
89 4 4 4 4 4 4
43 4 4 4 4 4 4
92 512 196 204 196 204 204
44 512 208 216 236 218 244 91 o4 21 o o 21 21
46 64 24 24 24 24 24 95 32 18 >0 18 20 20
47 8 4 4 4 4 4
97 8 4 4 4 4 4
49 8 8 8 8 8 8 98 64 64 64 64 64 64
50 64 64 64 64 64 64
52 32768 7157 11452 8281 12339 12150

Table 6.5: Tightness F3, 53 < n < 98,
Table 6.4: Tightness F3, 8 <n < 52 n # 80, n # 91

122

6.1. Proofs of bound I and bound II

7 | Newdges | BCH HT BS RS BC
8 32 26 32 26 32 32
9 32 32 32 32 32 32
10 16 16 16 16 16 16
11 4 4 4 4 4 4
12 512 458 488 482 488 500
13 4 4 4 4 4 4
15 64 58 64 58 64 64
16 512 218 326 250 336 342
17 4 4 4 4 4 4
18 1024 952 988 988 988 1012
19 128 14 28 18 28 28
20 128 82 94 88 96 98
22 16 16 16 16 16 16
23 4 4 4 4 4 4
24 | 32768 | 15416 | 21794 | 17762 | 21836 | 22976
25 128 28 72 29 74 72
26 16 16 16 16 16 16
27 128 128 128 128 128 128
29 32 4 4 4 4 4
30 | 4096 2614 | 2890 | 3046 | 2914 | 3323
31 8 4 4 4 4 4
32 8192 2258 | 3518 | 2480 | 3652 | 3638
33 64 58 64 58 64 64
34 16 16 16 16 16 16
36 | 32768 | 25346 | 27860 | 27890 | 28124 | 29204
37 32 4 4 4 4 4
38 | 16384 762 1610 946 1746 | 1730
39 64 58 64 58 64 64
40 | 8192 2664 | 3598 | 2952 | 3696 | 3746
41 4 4 4 4 4 4
43 256 4 6 4 6 6
a4 128 84 96 84 98 96
45 1024 763 850 763 856 850
46 16 16 16 16 16 16
47 8 4 4 4 4 4

Table 6.6: Tightness Fr;, 8 <n <47

123

7 | Neodes | BCH HT BS RS BC
8 64 60 64 60 64 64
9 8 8 8 8 8 8
11 8 4 4 4 4 4
12 256 204 220 228 224 236
13 16 7 14 8 14 14
14 16 16 16 16 16 16
16 256 240 252 240 256 252
17 4 4 4 4 4 4
18 64 64 64 64 64 64
19 8 4 4 4 4 4
21 32 20 24 20 24 24
22 64 24 24 32 24 32
23 4 4 4 4 4 4
24 | 16384 7264 10280 | 8276 10560 | 10720
26 256 81 156 92 156 160
27 16 16 16 16 16 16
28 256 208 224 208 240 224
29 8 4 4 4 4 4
31 2048 69 225 73 242 229
32 1024 972 1008 972 1024 1008
33 64 22 24 22 24 24
34 16 16 16 16 16 16
36 | 4096 2308 2936 3084 3196 3280
37 4 4 4 4 4 4
38 64 24 24 24 24 24
39 2048 244 423 267 429 427
a1 8 4 4 4 4 4
12 1024 504 702 530 706 702
43 4 4 4 4 4 4
44 | 4096 1484 1696 1692 1716 1840
16 16 16 16 16 16 16
47 4 4 4 4 4 4
48 | 1048576 | 400240 | 561252 | 445932 | 572536 | 579044
19 8 8 8 8 8 8
51 32 18 20 18 20 20
52 | 65536 13265 | 18552 | 15032 | 18676 | 19160
53 4 4 4 4 4 4
54 256 256 256 256 256 256
56 | 16384 6780 8396 7428 8824 8788
57 64 22 24 22 24 24
58 64 28 32 28 32 32
59 8 4 4 4 4 4
61 8 4 4 4 4 4

Table 6.7: Tightness F5, 8 <n <61

Proving some root bounds via Newton’s identities

In Chapter 5 we presented two different methods exploiting Grébner bases in order
to find the minimum distance of a cyclic code C'. These methods are based on solving
two different kinds of polynomial systems, indexed by w, Je(w) and Se(w), which
establish the existence of words of weight w in C. In both systems, information on
F,, the ground field of C, is used to bound the distance of the code. To be more
precise, the field F, appears in the equations yffl —1=0,1<1i<w, for jc(w)
and in the equations Sy modn = Si, 0 < i < n — 1, for S¢(w). However, the root
bounds introduced in Section 3.2 allow to estimate the distance of C' without any
knowledge on the ground field, provided the length and the defining set are known.
In fact, we will see in this chapter’s proofs that the equations depending on F, are
unnecessary. We will focus on the approach with Newton’s identities, showing how
the strict root bounds proposed in Section 3.4 can be proved removing the constraints
Sgi modn =51,0<i<n-—1.

The main results that we claim in this chapter are:

e a polynomial proof of the HT bound in the more general version by Roos; this
is the first proof of that bound by polynomials, although a polynomial proof for
the special case (m +r,n) = 1 was given in [HT72]

e a polynomial proof of BS bound

e a polynomial proof for the Boston bound LII, III, TV.

7.1 A polynomial interpretation of known strict root bounds

In Section 3.4 we proposed an alternative formulation of many well-known bounds
that we actually proved to be strict root bounds. In this section we give another
statement for each of these bounds, based on the definition of DFT. For this reason,
sometimes we call them the spectral definition of the bounds. We adopt the
same notation of Section 5.3: for any word c of a cyclic code C' € C,,,, of weight w,
we indicate with X;, 1 <i < w the locations of ¢ and with Y;, 1 < i < w, the values
of c. We also write S; = Z;’;l YiXij and note S;4,, = S;. Note also that S; = 0 for n
consecutive S;’s if and only if ¢ = 0.

125

Chapter 7. Proving some root bounds via Newton’s identities

7.1.1 A polynomial interpretation of the BCH bound

We now provide the spectral definition of the BCH bound, and prove it using
Newton’s identities. This solves the Problem (55) in [MS77] as was already proved
by Chien in [Chi72].

Theorem 7.1.1. Let C' be an [n,k,d] code over F,. If for all ¢ € C there are i,
te€{0,...,n—1} such that

Then
d>0+1.

Proof. Let ¢ be any non-zero word of C' of weight 1 < w < ¢. By hypothesis there
exists ¢ such that S; =--- = S,y 1 = 0. We prove by induction that S;,,.x = 0 for
k > 0.

Let us consider k = 0; from the generalized Newton identities (5.3) we have:

i j Z 0, Sj+w + Ulsj—I—w—l + 4 O'ij = 0. (71)
In particular, for j =i + ¢ — w, we obtain
0= Sire+01Si—1+ -+ OwSitr—w-

The right hand side of previous equation reduces to S;,, since S; = --- = S;,, =0
by hypothesis and so S;,, = 0. We suppose by inductive hypothesis that S; s x =0
for 0 < k <k —1 and we prove S;,,,; = 0. Substituting j =i + ¢+ k —w in (7.1),

we obtain:

0=Sie4% T 01510451+ + OwSiterhow = Siterk-
From S; = Siy,, we have that for & > 0, Sipoyx = Sgivetr),, thus So=---= 5,1 =0
and the claim is proved. O

Remark 7.1.2. In the proof of Theorem 7.1.1, we have shown that for any 1 < w < ¢

the unique word of C' which satisfies
Swik + Owik—101 + -+ Sp0y, =0, 0<k<n-1
S]H_n = Sk, 0 S k S n—1 (72)
Sg=0, Vke{i,i+1,...,i+¢—1}

is the zero codeword. In particular, the equations in (7.2) are the same of S¢(w),

execpt for the equations regarding the field F,, which are the unnecessary in the proof

of the BCH bound

126

7.1. A polynomial interpretation of known strict root bounds

7.1.2 A polynomial interpretation of the HT bound

Here we propose the spectral formulation of the Hartmann-Tzeng bound ([HT72]),
as generalized by C. Roos in [Roo82.

Theorem 7.1.3 (Hartmann-Tzeng bound, [Roo82|). Let C' be an [n,k,d] code over
F,. Suppose that for all ¢ € C there exist {,m,s,r € N s.t. m>1,s>1, (m+r,n) <
m for which

Sevirjmen =0, 0<i<m—10<j<s—1. (7.3)

Then
d>m+s.

Proof. We can suppose by the BCH bound that d > m + 1. Let us consider a word ¢

of weight w(c) =w, m+1 <w <m+ s — 1. We consider two polynomials:

= z—X;) = i where pg =1
b p
i=1 ‘
a2 = [[™ =X = 3 Guomy™, where gy = 1.
i=m+1 =

Let o(z) be the product of p(z) and ¢(z):
O'(Z) = Z pmfiwamsziJrj(err)-

Although o(z) is not the plain locator polynomial of ¢, it is a multiple of it. Since
o(X;) =0 for any 1 <t < w, we have:

O_ZXYt (X)) :i(

t=1 t=1

1=0 j5=0 =
= Z pmfiwamijiJrj(err)Jrk- (74)
1=0 j5=0
We claim that for any k& > ¢:
Z q(w—m) m+](m+r)+k = 0. (75)

127

Chapter 7. Proving some root bounds via Newton’s identities

We assume for the moment that (7.5) holds and we postpone the proof. By Lemma 3.4.17,
we can suppose without loss of generality that there exists m’ € {0,...,m — 1} such
that Syinir)+e+m: 7 0, otherwise we could increase the distance of one and the proof
proceeds similarly. Let us substitute k = m' —m+ {4+ (s — (w —m))(m+r) in (7.5),
noting that k > —m+ 0+ (s — (s —1))m > ¢:
0= Z Qw—m—jSm—l—(m’—m+€+(s—(w—m))(m—l—r))-‘,—j(m—i—r)
j=0
= Z Qw—m—jSm’—l—ﬁ—l—(s—(w—m)—i—j)(m—f—r))~ (76)

j=0

Let j' = (s+j — (w—m)) in (7.6), then:

0= Z qg—j’SZ—f—j’(m—i—r)—i—m’

jr=s—(w—m)
s—1
= Z QS—j’S£+j’(m+7")+m’ + S€+s(m+r)+m’ = Sﬁ-{—s(m—l—r)—l—m’-
jr=s—(w—m)

Since for 1 < s—(w—m) < j ' <s—1and 0 <m’ <m—1, we have Seyj/(mir)+m =0
by hypothesis. But Siyg@mir)4m 7 0 and we get the contradiction.

Proof of (7.5). We show (7.5) by induction. If k& = ¢, substituting in (7.4) we

obtain:

0= Z Z pmfiwamiji-l—j(m—l—r)—l—K
i=0 j=0
m—1w—m w—m
= pm—iQw—m—jSiJrj(err)Jré + Z pOQw—m—jSerj(err)Jré (77)
i=0 =0 =0

Noting that, by assumption, 0 < j < w —m < s — 1, from (7.3) and (7.7) we have:

0= Z pOwamijm-i-j(m—I—r)—I—Z = Z wamfjsmﬁ-j(m—kr)—f—é-
=0 5=0

Let us suppose that (7.5) holds for any ¢, ¢ < t < k' and we prove it for k' + 1.
Substituting £ = k' + 1 in (7.4), we have:

m w—m

0= E pm—iQw—m—jSi-i-j(m—f—r)—i—k’—i—l
i=0 j=0
m—1w—m w—m

pm—iqw—m—jsi+j(m+r)+k’+1 + Z Qw—m—jSerj(er?“)Jrk’Jrl'
=0

i=0 j=0

128

7.1. A polynomial interpretation of known strict root bounds

To conclude we have to prove: Y Ej 0 Pm—iQw—m—jSitjm+r)+k+1 = 0. Let
b=k —/and ¢/ =i+ 1, then:

m—1w—m

m
E E Pm—iQw—m—j l+](m+r)+E+1 — E Pm—i'+1Gw—m—]SZ+2 '+j(m+r)+b =

w—m

i=0 j=0 =1 j=0
(m—1)—bw—m w—m
E Pm—i'+1qw—m—]SZ+2 '+j(m4r)+b + E E Pm—i'+1qw—m—]SZ+2 '+j(m+r)+b-
=1 7=0 i/=m—b j=0

(7.8)

But for 1 < < (m —1)—bwehave0<i’+b<m—1andby (7.3) the first term

is zero, so (7.8) becomes: > .. bZ] 0 Prm—i'+1Gw—rm—j S il 4 (m+r)+b-
Let (¢ 44 +b) —m — 1 = h, then:

m w—m l+b—1
Z Pm—i'+1 Z Gu—m—]SK—H '+j(m+r)+b — Z Pot+i—h Z Gu—m—j m+h+](m+r)+1
i!=m—b h=¢—1
k'—1 w—m
= Z Pr'—h Z wamijquthj(err)Jrl
h=(—1 =0
Setting t = h + 1 we get
k'—1
Z Pr'—h Z Gu—m—j m+h+](m+r)+1 — Zpk’ t+1 Z Gu—m—j m+] (m+r)+t — 0
h=(—1
by inductive hypothesis. So (7.5) holds. O

Remark 7.1.4. We note that, differently from Theorem 7.1.1, in the proof of Theo-
rem 7.1.3 we do not use the generalized Newton identities, presented in (5.3), but we
propose a new kind of identities: 0 = ZZ . ZJ —0 DPm—iGu—m—jSitj(m+r)+k, for suit-

able coefficients p;, ¢;. Observe also that we still not use any condition involving the

field F,.

We provide an example to explain the technical details of the proof of Theo-
rem 7.1.3.

Example 7.1.5. Let C be an [n, k,d] code over (any) F, of length n > 18 and 5 { n,
which contains in its defining set J = {1,2,3,6,7,8,11,12,13}. From the HT bound,
settingm =3, r =2, k=1, we get d > 6. We can suppose that one between Si4, Si7
and Sig is different from zero. Let ¢ € C' be a word of weight w(c) = 5, with locations
Xy, Xo, X3, X4, X5, values Y1, Y, V3, Yy, Vs and DFT(¢) = (So, ..., Sn—1). We have

129

Chapter 7. Proving some root bounds via Newton’s identities

that S; = 0 for any j € J. Let us consider two polynomials:

p(z) = (2 — X1)(z — Xo)(z — X3) q(z) = (2° — X)) (2" — X?)
=22+ 122 + paz + ps =294 2% +
= P023 + p122 + pa2z + p3 = qozlo + qlz5 + qs.

(where py = go = 1) and their product p(z)q(2):
2P pre ozt 4 ps2 !+ @12 i+ @upa + @1ps2’ + gz’ + @apr2” + qep2z + gops.

For any k£ > 0 we have:

P3—iQ2—jSit5jt+k (7.9)

I
N

~
Il
o
<.
Il
o

Substituting in (7.9) k = 1,...,5, we obtain:

kE=1: 0= 51+ @Sy + q254
k=2: 0 =515+ ¢S+ ¢S5
k=3: 0= 516+ @S + ¢S5 — S16 =0
k=4: 0 =517+ @512 + @257 — S17=0
k=5: 0= S8+ @513 + @255 = S15 =0,

which is a contradiction, since at least one between Sig, Si7 or Sig is different from

Zero.

7.1.8 A polynomial interpretation of the BS bound

We provide the spectral definition of the BS bound, dividing the statement in two
parts. The first part, which we call the straight version of the BS bound, collects
the conditions a) and b) of Definition 3.4.7. The second part, which we call the
reverse version of BS bound, collects the conditions c) and d) of Definition 3.4.7.

Theorem 7.1.6 (BS bound, straight version). Let C' be an [n,k,d| code over F,.
Suppose that there are m,{ € N, m, ¢ > 1 and k € {0,...,n— 1} such that Sy = Skin
and for all c € C':

@) Spy;=0,j=0,....,ml—1,

b) Sk+(m+z)5+j:07.j:17"'7€_17OSZSm'

130

7.1. A polynomial interpretation of known strict root bounds

Then:
d>mb+ 1.

Proof. By the BCH bound we have d > m/+1. Let us suppose that there is a non-zero
word ¢ € C of weight mfl +1 < w < mf + ¢ — 1 and locations Xy, ..., X,. Without
loss of generality, we can suppose that Sy, # 0, otherwise Sy = Sy = -+ =
Skame = +++ = Skymere—1 = 0 and by BCH bound we get d > ml + ¢+ 1 > ml + ¢.
For the generalized Newton identities we have that for all 7 > 0,

Z Sl'+j0-w7i = O, (710)
1=0

where the 0;’s, 1 < i < w, are the symmetric functions of the locations. In particular,
we have og = 1, by definition, and o, = H:‘Uﬂ X; #0.

We claim that o (m—z)c = 0 for z = 0,...,m. Note that if our claim is true, we prove
the theorem, since we get a contradiction for z = m, in fact 0 = oy_(m-my = 0w # 0.
We proceed by induction. We start proving our claim for z = 0. Let us substitute
Jj =k in (7.10), we get:

meé—1 w

0= Z Sitk Ow—i = Z Sitk Ow—i + Z Sitk Tw—i
i=0 i=0

i=mt
w
= E Si+k Ow—i

i=m/l

w
= E SiJrk:O-wfi + SkerZO-wfmZu
i=ml+1
o,
setting ¢ = 1 — m/l, we get

w—ml

0= E SmZJri/Jrk Ow—mi—i + SkerZ Ow—mt
=1

= SkerZ Ow—mt,

because 1 < w — ml < ¢ — q and by hypothesis b), S = 0. Thus, oy_me = 0,
since Siyme # 0. Supposing that o,_(m—z) = 0 for z < Z < m, we prove oy_(m—zy =
0. Let us substitute j = k + z¢ in (7.10):

(m—z)¢—1 w

0= Z Sithtzt Ow—i = Z Sithtzt Ow—i + Z Sithtzt Ow—i
i=0 i=0 i=(m—2)¢
= Y Sitkrst Oumie (7.11)
=(m—2z)¢

131

Chapter 7. Proving some root bounds via Newton’s identities

Setting j =i — (m — 2)¢ in (7.11), we have:

w—mil+ZzL

0= Z Sithmt Ow—j—(m—z)t

zl w—ml+zf
= E Sjthrmt Tw—j—(m—z)¢ + E Sjthtmt Tw—j—(m—z)¢
=0 jmztt1
zl w—ml+zl
= Sktmt Ow—(m—z) + E Sitktmt Tw—j—(m—z)0 + E Sjtktmt Tw—j—(m—z)t
j=1 j=zl+1

(7.12)

Let us denote by A the summation Zjil Sjtktmt Ow—j—(m—z)¢ and by B the summa-

tion E;" ngﬁrd itktme Ow—j—(m—z)- We prove that A = 0 and B = 0. We start to

consider A:
l
A= Sj+k+m50'w7jf(m75)z + -+ E Sj+k+m£0'wfjf(m72)é
j:l _] Z 1 £+1
z—1 (t+1)¢
- E Sj—l—k-‘,—mﬁ Ow—j—(m—2)
t=0 j=t{+1
(t+1)6—1

N |

= Simtt+1)e+k Tw—(m—z+t+1)¢ T E Sjktml Ow—j—(m—z)
j=tl+1

= Sm—l—t—l—l t+k Ow—(m—z+t+1)¢ 1 E E Sjrktmt Ow—j—(m—z)-
t=0 t=0 j=tl+1

O

N |

Setting h = z —t — 1 in the first summation we get:

-1

|

z—1

Stmtt+1)e+k Ow—(m—z+t+1)¢ = Y Stmtz—n)e+k Tw—(m—hy = 0,

t h=0

Il
o

by inductive hypothesis (0y_me = -+ = Tw—(m—(7—1)) = 0). Similarly, also the second
summation is zero, because Sj et = 0fortl+1 < j < (t+1)/—1and 0 <t < zZ—1,
by hypothesis b). So, A = 0. Let us now consider B. Substituting h = j — z¢ we
have:

w—mb

B = E Sh+k+mé+2€ Ow—h—mt = 07

h=1

since Spikrmersze = 0 for 1 < h < (w — m/), by hypothesis. Thus (7.12) becomes
Sk+mt Ow—(m—z)¢ = 0 which implies o,_(n—z)¢ = 0 and concludes our proof.]

132

7.1. A polynomial interpretation of known strict root bounds

The proof of Theorem 7.1.6 is rather technical and requires elaborated computa-

tions, so we provide an example to clarify its details.

Example 7.1.7. Let C be an [n, k,d] cyclic codes of length n > 16 over (any) F,
which contains in its defining set J = {1,2,3,4,5,6,8,9,11,12,14,15}. With k =1,
m = 2 and ¢ = 3, the BS bound guarantees that d > mf¢ 4+ ¢ = 9. We suppose that
S7 # 0 and there is a word ¢ € C' of weight w(c) = 8 with DFT(¢) = (S, ..., Sn-1)-
We have that S; = 0 for any j € J. Let us consider the generalized Newton identities
for w = 8, which hold for any 57 > 0, Zf:o Si+;os—i = 0. Let us consider what the
identities give for j =k + 20 with 0 < 2z <m — 1.

8

jzl OZZSZ'+1O'8_Z‘ZO'QS7:O ——> 09
i=0
8

j24 OZZSZ‘+4O‘87@':U5S7+0’2510 =0 — 05
=0
8

j =T7: 0= ZSZ‘JJO'g,Z' = 0'2513 + 0'5510 + 0'857 =0 — Oy,
=0

which is a contradiction because og is the product of the locations of ¢, hence og # 0.

Theorem 7.1.8 (BS bound, reverse version). Let C' be an [n,k,d] code over F,.
Suppose that there are m,{ € N, m, ¢ > 1 and k € {0,...,n— 1} such that Sy = Skin
and for all c € C':

¢) Sitjre=0,7=1...,0—-1,0<z2<m,

d) Sk+(m+1)g+j = 0, j = 1, ce ,mﬁ.

Then:
d>mb+ 1.

Proof. By the BCH bound we have d > mf + 1. Let us suppose that there is a non-
zero word ¢ € C' of weight ml + 1 < w < mf + ¢ — 1 and locations Xi,..., X,. We
can suppose without loss of generality that Sy (1) 7 0, otherwise Syy1ypme = -+ =
Skt+mt1ye = -+ = Skyemt1¢ = 0 and by the BCH bound we get d > m{ +/(+1 >
ml + ¢. We consider an alternative formulation of the generalized Newton identities,

which is more useful for our proof:
Z Sw—it;joi = 0, for any j > 0, (7.13)
i=0

where op = 1 by definition, and o, # 0. We claim that o,, = 0 for 0 < z < m. If
our claim is true we get a contradiction for z = 0, since 0 = o9y = 09 # 0, and thus

133

Chapter 7. Proving some root bounds via Newton’s identities

we prove the theorem. By induction on z, we start to prove that for z = m we have
Ome = 0. Substituting j =k + (m + 1) +ml — w in (7.13):

w w
0= E Sw—itj Oi = E Skt (m+1)t4mi—i O
i—0

i=0
ml—1 w

= E Skt (mt1)e4me—i O + E Skt (m+1)t+mi—i O
=0 i=mit

. The right hand side of the previous equation reduces to E;":mz Sk (m41)t+mi—i i
by hypothesis d). Thus :

0= Z Sk (m41)e+mi—i Ti

i=ml

= Sketmi)e Ome T 3 Ski(met)esme—i O

i=ml+1
Setting t = (m + 1)¢ — i we have
-1
0 = Skt(mt1)e Ome + Z Sktmett O(mt1)0—t
t=(m+1){—w

= Skt(m+1)¢ Ome,

where in the last equation we have used hypothesis a). Thus we conclude o, = 0,
since Si4(m+1)¢ 7 0, by assumption. We suppose that 0., =0 for m > 2z >z > 0 and
we prove oz = 0. Substituting j =k + (m + 1) + z2¢ — w in (7.13), we get:

w
0= E Sk (m41)e+26—i O
=0
zl w
- E Skt (mt1)0420—i Ti + E Skt (mt1)0420—i Ti
=0 =241

z0—1 w

= Skt(m+1)¢ Oz + Z Skt (m+1)e+30—i T + Z Skt (mt1)0+20—i Ti- (7.14)
=0 i=2041

We denote by A the summation Efﬁgl Sk+(mt1)t+26—i 0; and by B the summation
Z;?U:%H Sk+(m+1)t+20—i 0; and we prove they are zero. Setting j = z{ —i in A, we get:

-1 =
A= E Skt (ma1)eyzt—i Ti = E Skr(mr1)ers Oz—j = 0,
=0 j=1

134

7.1. A polynomial interpretation of known strict root bounds

since Skt (m+1)e+; = 0 for 1 < j < z¢, by hypothesis.

Considering B we have:

w
E Sk (m41)+26—i O

i=z0+1
ml w
= E Skt (ma1)e4z0—i Ti + E Sk (m41)+26—i O
i=z0+1 i=ml+1
(t+1)e
- E E Sk:Jr m+1)0+z0—i o; + E SkJr(erl (+z0—i O (715)
t=z i=tl+1 i=ml+1

Forml+1<i<wwehavethat k+z0+1<k+(m+1)l+z0—i < k+z0+(—1,
SO Sk4(m+1)e+z0—i = 0, by hypothesis, and (7.15) becomes:

m—1 (t+1)¢
B = Z > Skrmrversei 0
=z i=tl+1
m—1 [tl4+0—1
=) < D Strmanszei 0 + Sty motierst UtfH) :
t=z \i=tl+1
By inductive hypothesis o4,y = 0 for 2 <t < m — 1, hence:
m—1tl+4—1
B = Z Sk+(m+1)é+2£—z‘ 0.
t=2 te+1
m—1 £—
= Z Skt (m+1)e+(z—t)e—j 0; setting j =1 — 1t/
t=z j=1
m—1 ¢—1

k+ m+z—t)l+i Oi = 0 Settlng i=(—]7

z

HM

t

because Zz+1<m+z—t<mforz<t<m-—1and1<i</{—1,so, by hypothesis,
Skt(mtz—tye+i = 0. Thus (7.14) becomes Syt (mt1y¢ 0z¢ = 0, which implies oz, = 0,

since Skt (m+1)e 7 0, by hypothesis. O

Example 7.1.9. Let C be an [n, k,d] cyclic codes of length n > 32 over (any) F,

which contains in its defining set
J=1{6,7,8,10,11,12,,14, 15,16, 18,19, 20, 22, 23, .. ., 33}.

With £ = 5, m = 3 and ¢ = 4, the BS bound guarantees that d > m{¢ + ¢ = 16.
We suppose that Sy; # 0 and that there is a word ¢ € C' of weight w(c) = 15 with
DFT(c) = (So,...,Sn-1). We have that S; = 0 for any j € J. Let us consider the

135

Chapter 7. Proving some root bounds via Newton’s identities

generalized Newton identities for w = 15, which hold for any 57 > 0, Zilio S15—itj0i =
0. Let us consider what the identities give for j = k+mfl+1+2z¢ with 0 < z < m—1.

15
Jj=18: 0= 2515—#180154 = S91012 =0 = 012
i=0
15
j=14: 0= 25157#140154 = S9108 + S17012 =0 — 03
i=0
15
Jj=10: 0= Z S15-i410015—i = 92104 + S1708 + S13012 = 0 = 04
i=0
15

J =06: 0= Z S15-i16015—i = 52100 + S1704 + S1308 + Sg012 =0 = 0y,
i=0

which is a contradiction because oy = 1, by definition.

7.1.4 A polynomial interpretation of Boston’s bounds

Here, we consider a slight generalization of the bounds presented by Boston, as
done in Remark 3.4.24. As usual, we first provide the spectral version of Boston’s

bound and then we give a proof, using the generalized Newton identities.

Theorem 7.1.10 (Boston bound I, gen.). Let C' be an [n, k, d] code over F,. Suppose
that 31 n and that there is k € {0,...,n — 1} such that for all c € C':

Sk = Sk41 = Sp43 =S4 =0

Then:
d > 4.

Proof. 1t is a special case of Theorem 7.1.3, with =k, m =2, r=1and s =2. O

Theorem 7.1.11 (Boston bound II, gen.). Let C' be an [n, k,d] code over F,. Suppose
that 31 n and that there is k € {0,...,n — 1} such that for all c € C':

Sk = Sk41 = Sk43 = S5 = 0

Then:
d > 4.

Proof. 1t is a special case of Theorem 7.1.6, with £ =2 and m = 1. O

136

7.1. A polynomial interpretation of known strict root bounds

Theorem 7.1.12 (Boston bound III, gen.). Let C' be an [n, k,d] code over F,. Sup-
pose that 31 n and that there is k € {0,...,n — 1} such that for all c € C:

Sk = k41 = Sk43 = Sipa = Sip6 = 0

Then:
d > 5.

Proof. By the BCH bound we have that d > 3, so we only have to see that there
are no words of weight 3 or 4 to prove the theorem. We can suppose that Sy, and
Skys are different from zero, otherwise by the BCH bound the claim is satisfied. In
the same way, we can also suppose that Sy 7 # 0, otherwise by the HT bound with
m = 2 and r = 1, we have d > 5. Let us suppose that there exists a word of weight
3. Writing the (7.1) for w =3, j =k + 1 and j = k + 4, we get:

3

J=k+1: 0= 253—i+k+10i = 095k42 — 09=0
i=0
3

J=k+4: 0= Z S3_itkt40; = Spt7 + 025k45 = Sk47 =0,
=0

which is a contradiction, since we supposed Sii7 # 0. Similarly, if there is a word
c € C of weight w = 4, we can write (7.1) for w = 4, j = k and j = k + 3, obtaining:

4
j:/{J 02254—’i+k Ui:025k+2 == 09,=0
i=0
4
J=k+3: 0= Z Si—ith43 0i = Spy7 + 02515 = Sip7 = 0.
i=0
Thus the claim is proved U

Theorem 7.1.13 (Boston bound IV, gen.). Let C be an [n,k,d] code over IF,. Let
¢ be any word of C' and DFT(c) = (So,...,S._1) its DFT with respect to «, a fized
n—th root of unity over F,. Suppose that 4 1 n and that there is k € {0,...,n — 1}
such that for all c € C':

Sk = Sk41 = Skt2 = Skya = Skts = Spp6 = Sk4s =0

Then:
d > 6.

Proof. By the BCH bound we have that d > 4, so we have only to see that there
are no words of weight 4 or 5. We suppose Sii3 and Si,7 are different from zero,

137

Chapter 7. Proving some root bounds via Newton’s identities

otherwise by the BCH bound the claim is satisfied. In the same way, we can also
suppose that at least one between Sp,9 and Sy.19 is different from zero, otherwise
by the HT bound with m = 3 and » = 1, we have d > 6. Let us suppose that there
exists a word of weight 4. Writing the (7.1) forw =4, j =k+1, k+2, k+5, k+6,

we get:

4

Jj=k+1: 022544%4& 0y = 02543 = 02=10
=0
4

J=k+2: 022544%% 0; = 035K43 = o03=10
=0
4

Jj=k+5: 0= Z Si—iph+s Ti = Spyg + 02517 = Spo=0
=0
4

j=k+6: 0= Z Si—itk+6 Ti = Spy10 + 03Sk47 = Sk+10=10
=0

Similarly, if there is a word ¢ € C' of weight w = 5, we can write (7.1) for w = 5 and
1=k, k+1, k+4, k+ 5, obtaining:

5
J=k: 022554% 0; = 02513 = 09=0

=0
5

J=k+1: 022554%“ 0y = 035K43 = o3=0
=0
5

J=k+4: 0= Z S5_ithtd Ti = Skyg + 02547 = Sit9 =0
=0
5

J=k+5: 0= Z S5—_itk+5 Ti = Sk410 + 03Sk47 = Sky10 = 0.
=0

Thus we proved that Sy.9 = Sii10 = 0, which is a contradiction, since we supposed
that at least one between Sj g or Sii19 is different from zero. [

7.2 Comments and further research

In the proof Theorem 8.1.6, Theorem 8.1.8 (and the easy results Theorem{0,. ..,10}
7.1.10, 7.1.11, 7.1.12, 7.1.13) we applied the (generalized) Newton identities directly
to obtain the contradiction proving our claim. These identities come from an easy
manipulation of the plain locator polynomial. Note that if the word has weight at
most w, the locator has degree w, its roots contains the locations and actually its

roots are exactly the locations if the weight is exactly w. The contradiction we are

138

7.2. Comments and further research

aiming at in these proofs is to show that such word is actually the zero word (or
equivalently, that all its syndromes are zero). This argument is not new, since it has
been applied in [HT72] to prove the BCH bound, although our application to the
presented cases is.

The Hartmann-Tzeng bound in its restricted version (J[HT72|) cannot be proved
in this way, because these identities do not provide a contradiction. So in the original
paper [HT72| the authors have an intuition, that is, to construct a polynomial which is
a multiple of the locator. From this polynomial it is easy to derive relations similar to
the Newton identities and such that they provide the desired contradiction. Although
this polynomial has degree higher than w and it is bound to have parasite roots, its
use is easy and the proof follows nearly mechanically. We call this polynomial the
adaptive locator (see also [SWST96|). Unfortunately, they do not expand on this
idea any further and no subsequent author has tried to develop this approach. Indeed,
to prove the more general form of the HT bound, Roos in [Roo82] abandons the
polynomial approach and provide proofs based on suitable matrices. What we do in
Theorem 7.1.3 to prove the more general form of the HT bound is to use the adaptive
locator (a multiple of the locator) of [HT72| and then derive again some special
relations (similar to the Newton identities) that lead to the desired contradiction.

The above discussion allows us to conjecture the following:

e given a defining set and a length (without knowing the field), it is possible to

derive an adaptive locator;

e from the adaptive locator, relations similar to the Newton identities come di-

rectly and lead to a contradiction;

e the computation of the contradiction from the adaptive locator is polynomial-
time (in the length);

e the computation of the adaptive locator from (n,S) may be polynomial-time
(in the length).

We find it a very interesting research problem to investigate this approach further.
Should these conjectures be proved (including the fourth of which we are not com-
pletely confident), we would have that the computation of the optimal root bound f
is polynomial-time.

Note that at this stage of the thesis, we have not claimed anything on the com-
plexity of computing f and indeed its computation might even need infinite steps.

However, in the next chapter we will prove that f can be computed in a finite time.

139

Computing the optimal root bound via Grobner

bases

In Section 3.1 we discussed the problem to compute the optimal root function,
f (resp. the optimal root bound, fp), in a finite time. This is a natural question,
since the characterization we gave of the optimal root function both using Defini-
tion 3.1.16 and using (3.4) apparently requires an infinite number of computations.
In this chapter, we show that f may be computed in a finite time, using the systems

of polynomials J¢, introduced in Section 5.2.

8.1 Preliminaries and notation

We denote by P the subset of N formed by all prime numbers, P = {2,3,5,...}.
Given an integer n > 2, we denote by P, the subset of P formed by all p such that
(p,n) = 1. Let K be a field, not necessary finite. In the case K is finite, we use F, to
indicate the finite field with ¢ elements. We denote by 1x the multiplicative neutral
element of K, by Ok the additive neutral element of K, by char(K), the characteristic
of K and by K the algebraic closure of K. We recall that the prime field of K is the
smallest subfield of K containing 1x; we denote such field with P(K). It is well-known
that the prime field of K depends only on char(K), as in the following proposition.

Proposition 8.1.1. Let K be a field. Then
e P(K) is Q if and only if char(K) =0,
o P(K) is I, if and only if char(K) =p for ap € P.

We denote by D(K) the prime domain of K, i.e. the smallest subring of K con-
taining 1x. We observe that D(K) = F, if char(K) = p for some p € P, and that
D(K) = Z if char(K) = 0. If K is understood we write D = D(K) and P = P(K).
Let 7 > 1, we consider a set of variables X = {z1,..., 2.}, M = M(X) is the
set of all monomials in X, K[xy,...,z,] is a polynomial ring over K with a mono-

mial order <, which from now on is understood. As usual, we denote by LT(g) the

141

Chapter 8. Computing the optimal root bound via Grébner bases

leading term of any ¢ € K[zy,...,z,] and by X” the monomial X = z/* ... a%

with v = (v4,...,1,) € N'. Note that the definition of X" does not depend on the
field. With an abuse of notation, for any field K we will view X" as an element
of K[xy,...,z,], when it is appropriate and convenient to us. We define a kind of

Grobner basis which we call domain-reduced.

Definition 8.1.2. Let K be a field, I be an ideal in Klz1,...,x,.], G be a Grobner
basis of I . We say that G is domain-reduced (d-red) if:

1. forany g € G, any monomial XV of g and any ¢' € G\{g}, we have LT (¢’) 1 X?,
2. any coefficient of any g € G lies in D(K),
3. if char(K) = p for some p € P, then any g is monic,

4. if char(K) = 0, then LC(g) > 0 and for any g € G there is no integer n > 2
such that n divides all the coefficients of g.

We note the two following obvious facts.

Fact 8.1.3. Let I be an ideal in K[X]. Let G' be the reduced Grébner basis of I. Sup-
pose that G is a d-red Grobner basis for I. Then {LM(G")} = {LM(G)}. Moreover,
for any g € G there is a ¢ € G' such that g = \g, with \ € K.

Fact 8.1.4. If char(K) = p for some p € P, then
G is d-red <= G is a reduced Grobner basis and¥ g € G, g € D[X] = P[X].

We observe that not all ideals in K[z1, ..., x,] have a d-red Grobner basis, as the

next example shows.

Example 8.1.5. Let K[zy,...,x,] = Fyfz], with Fy = {0,1,a,a?} and o? = a + 1.
We consider the ideal I = (x —) and we claim that it does not have a d-red Grébner
basis. In fact, if a d-red basis exists for I, it means that I = (g(x)), with g(z) € Fy[z]
and such that LT(g) | LT(z —) = «, thus LT(g) = z. The only two polynomials in
[Fy[x] with leading term x are g;(z) = = and go(x) = x + 1, but none of them belongs
to I, as it is easy to check. Thus a d-red basis for I does not exist.

Example 8.1.6. Let K[z, ...,z,] = R[z]. We consider the ideal I = (v — /2) and
we claim that it does not have a d-red Groébner basis. In fact, if a d-red basis exists for
I, it means that I = (g(z)), with g(z) € Z[z] and such that LT(g) | LT(z — v/2) = z,
thus LT(g) = 2. But such g cannot exist, since the minimal polynomial of v/2 in Z[z]
is 22 — 2. Thus a d-red basis for I does not exist.

142

8.1. Preliminaries and notation

Nevertheless, if for an ideal I C K[zy,...,x,] a d-red Grobner basis exists, then

it is unique.

Lemma 8.1.7. Let I be an ideal in K[z1, ..., x| such that G = {g1,..., g} is a d-red

Grobner basis of I. Then G is unique.

Proof. 1f char(K) = p for some p € P, by Fact 8.1.4 we have that G = GB(I) is the
reduced bases of I, thus it is unique.

If char(K) = 0, then ¢; € Z[zy,...,z,] for 1 < i < t. Let G’ be another d-red
basis for I. From Fact 8.1.3 we have that G’ shares the leading monomials with G, so
G' = {M\g1,..., \g:} for some non-zero Ay, ..., A\ in Z. Let 1 < i <. Since G and
G’ are d-red bases, we have LC(g;) > 0 and LC(\;¢;) = \;LC(g;) > 0, which imply
A; > 0. On the other hand, \; is a positive integer which divides all coefficients of
Aigi, so, for 4. of Definition 8.1.2, \; = 1. But then G = G'. O

Since the d-red Grobner basis for an ideal [is unique, if it exists, we may denote
by G(I) the d-red Grobuner basis of I, with the convention that G(I) = 0 if it does
not exist for .

There are some cases where we can prove that a d-red basis exists, as for example
when K is a prime field. Moreover, such basis can be computed from the reduced
Grobner basis, as we are going to show.

Given aq, . .., a, integers we denote by ged(ay, . . ., a,) the greatest common divisor
of ay,...,a, (but we can also use the notation ged({a;}1<i<,)). Note that 4. of
Definition 8.1.2 can be reformulated as: if char(K) = 0, then, for any g € G, LT(g) > 0

and ged({a, }ren,) = 1, where the a,’s are the coefficients of g.

Proposition 8.1.8. Let K be a prime field and let I be any ideal in Klxy, ..., z,].
Then I has a d-red Grobner basis.

Proof. Let G = GB(I) = {g1,...,9:} be the reduced Grébner basis of I.

If char(K) = p for some p € P, then D(K) = K, so G C D[xy,...,x,] and by
Fact 8.1.4 we have that G is also the d-red Grobner basis of I.

Let us consider the case char(K) = 0, i.e. K = Q. By definition of reduced
Grébner basis (Definition 5.1.5), for 1 <14 <t we have g; = X# + 3 _\ «, X" for
some finite subset N; C N", where LT(g;) = X* and «, = a,/b, with a,, b, € Z,
(ay,b,) =1 and b, > 1. We also write a,, =b,, =1. For 1 <i <t let us take {; € Q
defined by

o Thewh
" ged({by}ren,)

Since ¢; is the least common multiple of the b,’s, if l; is any integer such that b, | l;

for any v € NV, then ¢; | l;. By construction, we have that ¢;g; is in Z[xq, ..., z,] and

143

Chapter 8. Computing the optimal root bound via Grébner bases

actually /;¢; and g; have the same monomials. Moreover, for all 7 it is easy to see that
ged({liay /by }ven,uuy) = 1. So the basis G' = {{191,...,0g¢} is a d-red Grébner
basis of I. O

Note that in the proof of Proposition 8.1.8 we do not need that K is a prime
field, since the only thing we need is that the reduced Grébner basis of I belongs to
P(K)[X]. This allows us to state the following result.

Proposition 8.1.9. Let I be any ideal in K[y, ..., x| such that its reduced Grobner
basis, G = GB(I) C P[X]. Then I has a d-red Gribner basis.

In the previous proof we state that, given aq,...a, and by,...,b, such that
(a;,b;)) = 1 for 1 < i < n, if we define d = ged({by,...,b,}) and ¢ = [[_, b;/d,
then ged (¢, ay /by, ..., la,/b,) = 1. We provide here a proof of this fact for n = 2,
the other cases follow in a similar way, by induction.

Example 8.1.10. Let us consider ay, as, by, by € Z with (ay,b;) = 1 and (as, be) = 1.
We denote by d = (by, by) the greatest common divisor of b; and by and with ¢ = [by, b

their least common multiple. We have:
by = dty, by = dts, = dtqts,

for some t1,ty € Z with (t1,t3) = 1. We want to prove that ged (¢, fay /by, las/bs) = 1
Noting that fa;/b; = aits and las /by = asty, we have:

ng(f, Eal/bl, €a2/b2) = ng(dtth, altg, a,gtl)
= ((dt1ta, arts), asty)
(b1ta, arts), asty)

(
(ta(ay,by), asty)
(
(L2,

t aztl)

ty, az) =

where the last equality is due to 1 = (a9, bs) = (az, dis).

An example of ideals for which a d-red Grobner basis obviously exists are those

ideals with empty variety, since in this case GB(I) = G(I) = {1}:
Corollary 8.1.11. Let K be any field and I be an ideal in K[z, ..., x,]. Then:
V(I)=0 < GB(I)={1} < GI)={1}.

144

8.2. Linked ideals

8.2 Linked ideals

Let N be a finite subset of N" and let F' = {fi, ..., f;} be any finite set of functions

We will call F' a set of defining functions (see function ring in [Rei06]). We
view N as set of indices for a finite subset of monomials in M (X), where the field is

unspecified. From F', for any field K, we want to construct an ideal in K[X].

Definition 8.2.1. Let K be a field. Let N be a finite subset of N" and F'= {f1,..., f;}
a set of defining functions. For any v € N we consider a monomial X" in M as an
element of K[X]. We define a map 1: Z — K by:

p

Ok ifn=0
Ik + -+ 1k ifn>0

) =9 T o
—(lg+---+1x) ifn<0.

L (—n)—times

We denote by Z(K, F) the ideal in K[X] generated by q*(F) = {q®(f1),...,d*(f)},
where for any 1 <1i <t, q%(f;) is a polynomial in D[X]

() = S v XY, |

veEN

Observe that, for any field K, the image of v is contained in D.

Definition 8.2.2. Let K be a field. Let I be an ideal in K[X]. We say that I is
simply-generated by B if there is a finite basis B = {by,...,bs} for I s.t. B C
D[X]. We say that I is simply-generated if it is simply-generated by B for some B.

Lemma 8.2.3. Let I be an ideal in K[X] generated by t polynomials, ¢1,...,g; €
D[X]. Then it is possible to compute a Grébner basis for I performing only operations
in D[X].

Proof. To obtain a Groébner basis from {gi,...,¢;} the Moller algorithm ([BMO09],
[Morar|, [Mol88|) prescribes two operations, which are applied iteratively on an in-
termediate basis B, being the first B equal to {¢1,...,9:}. The first is the com-
putation of the S-polynomials of all pairs from B. The second is the reduction of
the S-polynomials with respect to B. There are several definitions for S-polynomials
present in the literature. The one we use here is in accordance with [BM09] and
Corollary 46.6.1 in [Morar]
lem(LC(a), LC()) lem(LM(a), LM (b)) lem(LC(a), LC(b)) lem(LM(a), LM(b))

S(a,b) = LC(a) LM(a) “ LC(b) LM(b) b

145

Chapter 8. Computing the optimal root bound via Grébner bases

It is immediate that all coefficients involved in this computation remain in D. As re-
gards reductions, we consider the Zacharias canonical normal form reduction ([Morar],
[Zac78|) which again keeps the coefficients in ID. As a consequence, all the operations
performed in this algorithm will keep the coefficients in D and so all intermediate
bases will be in D[X] as well. When the algorithm terminates, the last intermediate
basis will be a Grébner basis for 1. O

Thanks to the previous lemma, it is easy to see that a simply-generated ideal has

a d-red Grobner basis.

Corollary 8.2.4. Let I be a simply-generated ideal. Then:
1. I has a Grobner basis G' C D[X].
2. its reduced Grobner basis G = GB(I) is in P[X]
3. it has a d-red Grébner basis G" = G(I)

Proof.

1. Thanks to Lemma 8.2.3, we have computed a Grobner basis G’ for I performing
only operations in D[X] and so G’ C D[X].

2. From G’ we can easily obtain the reduced Grobner basis G by performing in-
terreductions in G. Since the interreductions involve only polynomial divisions
and we start from polynomials over the field P, the resulting polynomial set will
be again in P[X].

3. It is a direct consequence of 2) and Proposition 8.1.9.

Note that, generally speaking, G’ # G # G”.

Definition 8.2.5. Let K = {Kj }hen be a set of fields, indexed by a set H. For any
h € H, let I, be an ideal in Kp[xq, ..., x,].

We say that the ideal set {Iy}hen is F -linked if there is a set of defining function
F={f,..., fi} with fi: Nw— Z, N finite subset of N", 1 <1i <'t, such that:

forany h e H, I, =TI(K,,F).

Example 8.2.6. We take X = {z,y}, Ky = Fy, Ky = F3. Let I, = (z, x+y+zy, x+y)
be an ideal in Fy[z, y| and I3 = (2x+y+ 22y, 2c+y) be an ideal in F3[x, y]. To see that
I and I3 are F'—linked we consider the ideal Iy in Q[z, y|, defined by Iy = (g1, g2, g3)

146

8.2. Linked ideals

with ¢ = bx+4y+2xy, go = 3r+3y+3xy, g3 = —r+y. By reducing the coefficients
of g1, g2, g3 in Fy we obtain ¢] = z, g5, = v +y+ 2y, g = x+y, which is a basis for I.
Similarly, by reducing the coefficients of g1, g2, g3 in F3 we obtain g = 2z + y + 2zy,
g5 =0, g5 = 2x 4+ y, which is a basis for I3. Thus I, and I3 are F-linked, choosing

N = {(170)7 (07 1)7 (17 1)}7 F= {f17f27f3} with

fl(lvo) =9, f2(170) =3, f3(170) -1,
fl(ovl :47 f2(071 :37 f3(07):
[(1L1) =2, fo(1,1) =3, f3(1,1) =

Lemma 8.2.7. Let K = {Ky, }hen be a set of fields, indexed by a set H. For any h €
H, let I, be an ideal in Ky[X]. If {Ip}hen is an F-linked set, then any I € {Ip}nen

18 simply-generated.

Proof. Let us suppose F' = {fi,..., f;}. Let h € H. Let F = K,,. We have that I =

I),. By definition I = Z(F, F) = (q"(f1),...9"(f¢)), where d" (i) = >, cny ¥ (fi(v) X
1 <i<tand ¢(f;(rv)) € D(F) for any v € N. Thus [is simply-generated. O

Lemma 8.2.8. Let [C Klxy,...,z,] be a simply-generated ideal. Then there is a set
of defining functions F' such that the set {I} is F'—linked.

Proof. Let B = {b,...,bs} be a finite basis for I C K[zy,...,z,] s.t.

bj:Z(IV,jXV, 1§j§8

VEN]'

with any coefficient @, ; in D. This basis must exist because I is simply-generated.
Let N be Uj<j<sN;. For any 1 < j < s, we construct a function f;: N — Z, as
follows:

a,;, iftveN;
fiwy=¢"" ’

0, otherwise.

Let F be the set {f1,..., fs}. Then by construction it is obvious that
[=1Z(K, F).
]

In the previous lemma, we have seen how to define a function set from a basis
B for simply-generated ideal. From now on, we denote by F(B) the function set
so obtained. So, the lemma could be made more precise by stating that I is F(B)-
linked. The definition of F(B)-linked set depends clearly on the choice of the basis
B.

147

Chapter 8. Computing the optimal root bound via Grébner bases

Example 8.2.9. Let us consider the basis B = {2y + 1,z} in Z[z, y] and the ideals
Iy = Z(Q,F(B)) and I, = Z(Fy, F(B)). Clearly, Go = {2y + 1,2} is the d-red
Grobner basis of Iy with respect any monomial order, while the d-red basis of I5 is

Go = {1}. So, Iy and Iy are F(Gy)-linked but not F(G5)-linked.

Example 8.2.10. Let [y = (y+2z,y—x+2) € Qlz,y, 2] and [5 = (y—x,y—x+2) €
F3[x,y, z] be two F-linked ideals. Their d-red bases with respect to the lexicographic
order z < y < x are, respectively, G(Iy) = {3y + 22,3z — z} and G(I3) = {z, 2 — y}.
Clearly, Iy and I3 are F(B)-linked, with B = {y + 2z,y — z + z}. We show that they
are neither F(Gy)-linked, nor F(Gj3)-linked. In fact:

e if Iy and I3 are F(Gy)-linked, we have that {z,2z} is a basis of I3, which is
false;

e if [y and I3 are F(G3)-linked, we have that {z,2 — y} is a basis for ;. Note
that {z,z — y} would then be the d-red basis of Iy, which is impossible, since
Iy has the d-red basis {3y + 2z, 3z — z}.

In Definition 8.2.5, we called F-linked the ideals over different fields which have
formally a same basis in Z[zy,...,x,], let us say, B. In the following theorem we

give a sufficient condition for which two F-linked ideals share also a same Grébner

basis in Z[zy,...,z,] and we expose some consequence of this fact. To obtain this,
starting from a basis in Z[xy, . . ., z,], we need an algorithm which provides a Grobner
basis in Z[x1, . . ., z,| performing computations only in Z[zy, ..., z,]. This is possible

thanks to the development of a Grobner theory for polynomial rings over euclidean
domains started by Kandri-Rody and Kapur in [KRKS88|, improved by L. Pan for
polynomial rings over principal ideal domains ([Pan89]) and finally concluded by
Moller for polynomial over principal ideal rings ([M6188]). Once we can use the
Moller algorithm to obtain a Grobner basis from B, we adapt the idea of Grobner
trace in [Tra88]| to find a set of F-linked ideals which have a Grébner basis formally
equivalent to one produced by Moller algorithm.

Theorem 8.2.11. Let K = {Kj, }hen be a set of fields, indexed by a set H, such that
for any p € P there exist h, € H with char(K,) = p. If 0 € H, then K, = Q. For
any h in H let I, be an ideal in K[z, ..., x.] . Let < be any ordering. Suppose that
{Ip}hen is F-linked. Denote by G, = G(I,) the d-red basis of I, w.r.t. <. If0 ¢ H
let Iy =Z(Q, F). Denote by Gy = G(1y) the d-red basis of I.

Then there is a prime p € P and B C Z[x1, ..., x,] Grébner basis of Iy, such that
the ideals {I, | h € H,char(K,) > p} are F(B)-linked. Let F = F(B). Then

a) g% (F) is a Grébner basis for I, if char(Kp) > p;

148

8.2. Linked ideals

b) for anyp = p, Gy, = {1} <= Go={1};
c) p can be computed in a finite time.

Proof. Since {I,}nen is an F-linked set, there is a basis B = {b,...,bs} with b; €
Zlxy, ...,z for 1 < i < s such that, for any h € H, q®*(F(B)) = q**(F) is a
basis for I,. Thanks to Moller algorithm ([BMO09, Morar, M6l88|), we can compute
in Zlxy, ...,z a Grobner basis of Iy, involving only coefficients in Z as described in
Lemma 8.2.3. Let us denote such basis as B. Let C' be the subset of Z containing
all coefficients that occur in the computation of B. By termination of the Méller
algorithm, C' is finite and hence there are two integers my, ms € Z such that m; =
min{c | ¢ € C'} and my = max{c | ¢ € C'}. Let p be the smallest prime number s.t.
P > |my|, |mg|. Suppose now that p € P is such that p > p, I, = Z(K,,, F') with
char(K;,) = p, and we compute a Grobner basis for Ij,, using the Moller algorithm
as in the Iy case ([Tra88]). Since I, is F-generated, it has a basis B, = ¢ (F) =
q“m» (F(B)) which is formally the same as By = q¥(F) = B, but now when we make

calculations we have to reduce modulo p every time we compute a new coefficient.

But we never need to do so, because p is larger than any coefficient which appears
in our computation. Hence every calculation in the I}, case is formally the same as
the corresponding calculation in [y case. In particular, the resulting basis will be the

same, from a formal point of view, so that the two ideals are F(B)-linked.

a) It is clear that q**»(F) is a Grobner basis of I, , since the reduction of the S-
polynomials of g (F) is zero, as it is possible to check following the corresponding

computations for the S-polynomials of B.

b) We have that Gy = {1} if and only if B contains a constant polynomial different
from zero. In the same way, thanks to a), Gj, = {1} if and only if q*(F)
contains a constant polynomial different from zero. By construction, B contains a
constant polynomial different from zero if and only if g» (F) contains a constant

polynomial different from zero. So, Gy = {1} <= G}, = {1} for any p > p.

c) p is clearly computed in a finite time, since the coefficient set C' is finite and the

Moller algorithm terminates in a finite time.
O
We can use the previous lemmas, in order to prove the main result of this section.

Theorem 8.2.12. Let K = {K,}nen be a set of fields, indexed by a set H. For any
h in H let I, be an ideal in K,[X]. Suppose that the ideal set {I}pen is F-linked.

Suppose that we want to test whether there is an h s.t. V(I,) # 0. Then we can
perform our test in a finite time.

149

Chapter 8. Computing the optimal root bound via Grébner bases

Proof. We assume without loss of generality F' = {fi,..., fi}. Let < be any ordering
and for any h € H, let G}, = G(I},) be the d-red basis of I, w.r.t. <.

We have already seen that V(I),) = () if and only if G, = {1}. Therefore, in order
to perform our test we would have to compute all Gy, for h € H. If H is finite, we
have our claim. We suppose that H is infinite. We start to enlarge {Kj}ren (and
{In}nen), by adding all prime fields and @Q, as follows. We denote by H’ the index
set

H =HU{0}UP.

Permuting the indices of H’, if necessary, we can assume without loss of generality
that K, is the field of rationals K, = Q and for any p € P, K, is the prime field
K, = Z,. We have that

{Kh}heH' = {Kh}heH U @ U {Zp}pep-

Let Iy be the ideal Z(Q, F') which is a simply-generated ideal in Q[z1,...,z,]. Sim-
ilarly, for any p € P, I, is the ideal Z(Z,, F') which is a simply-generated ideal in

Zy|x1, ..., z,]. By construction, we have that
{In}nenr is an F-linked set.

We decompose our field set and ideal set according to the characteristic. For any
p € P, let HP, H° s.t.

H' = (UpepH?) U H°,
VpeP, Vhe HP, char(K,) = p,
vV he H° char(K;) = 0.

Since {I}, }pep is F-linked, then any I, for h € H' is simply-generated and we denote
by By the basis q“t(F) of I, where q(f;) € D(K}), for any h € H' and for all
1 < j <t. Then we immediately get that for any p € P,

Vhy, hy € HP, By, =
Vhy, hy € H°, By, =

By Theorem 8.2.11 we have that there exists p € P and a basis B C Z[xy,...,z,]
such that {I,}remr pp are F(B)-linked and G, = {1} <= Gy = {1}. Thus it is
sufficient to compute the finite set G = {Go} U {G;}a<icp, pep to perform our test, in

fact:
o for h€ P, h > p: Gy = {1} if and only if G, = {1}

150

8.2. Linked ideals

e forheP,0<h<p G,beG
e for h ¢ P: G, = G, for some p € P or Gy = Gy, for (8.1) and (8.2).
Let us take G’ = {G}, | G, € G, G}, # {1}}. We have three cases.
i. Gy, ={1} for all G, € G (i.e. G =0) then G, = {1}, Vh € H;
ii. G’ # () and there is no p € P s.t.

G,€G and 3 he H st char(K,) = p;

in this case the enlarged set {1}, } ,c g has some elements with a non-empty variety,
but {I;}ren has not.

iii. G’ # () and there is at least a p € P s.t.
G,€G and I heH st. char(K) = p;

in this case there is an ideal I, in {I},}nex such that V(1) # 0.

We provide an example, which uses the result of Lemma 8.2.12

Example 8.2.13. We take X = (z,y, 2), {Ks}ren a set of fields. For each h € H
we consider the polynomial ring K[z, y, z] with the lexicograpich order z < y < =.
Let B = {20 +y + z,4%> + yz + 1} be a basis in Q[z,y, 2] and let {I},}ncy a set of
F(B)-linked ideals with I, € K[z, y, 2], for each h € H. Observe that B is a reduced
Grobner basis for Iy = Z(F(B),Q). If we want to check if there is an h € H such
that V(1)) # 0 we proceed as follows.

e First, we compute Gy = G(Iy), the reduced Grébner basis of Iy, recording the
maximal coefficients, ¢, which appears in the computations. We have:

S2x+y+z,y2+yz+1):2:1:y2+y3+y2z72my2f2xyzf2x:f2xyz72x+y3+y2z

S —2myz—2m+y3+y2z,2m+y+z):—2zyz—2x+y3+y22+2myz+y22+yz2 = —2x+y3+2y2z+y23
721+y3+2y2z+y23,2x+y+z):721+y3+2y2z+yz3+21+y+z:y3+2y2z+y23+y+z
SWP+2iz4y +yta i tuz+) =P + 22+ yl ty+ -y —yPr—y=9Pr St +2
Sy2z+y23+z,y2+yz+1):y2z+y23+z—y2z—yzs—z:0.

n

(
(
(
(
(
Then Gy = {2z +y + 2,y* + yz + 1} and the maximum absolute value of the
coefficients which appears in the computation is ¢ = 2.

e We set p as the smallest integer larger than ¢, i.e. p = 3.

151

Chapter 8. Computing the optimal root bound via Grébner bases

For any prime p less than p we compute G, the reduced Grobner basis of

I, = I(F(B),F,), ie. Gs = {1}.

We collect Go, Gy in G = {Go, G2}

For any h € H we have that:

a) if char(K) > 3 than G} = G(1},) is G,
b) if char(K) = 2 than G}, = G(1,) is Gbs.

Since Gy # {1} and G5 = {1}, we conclude that for h € H with I;, C K, if
char(Kj) = 2 then V(1) = 0, otherwise V(I},) # 0.

8.3 The maximal root function

In Section 3.1 we have seen how the maximal root function f can be characterized
with respect to the distance of cyclic codes. We reformulate the result of Theo-
rem 3.1.18. Let C € C, be a cyclic code of length n over any F,, with defining set
Sc and distance d(C'). For any (n,S) € D (see Definition 3.1.1), the maximal root
function can be described as follows:

f(n,S)=min{d(C) | C € C,, Sc = S}.

In principle, from this characterization and the result of Theorem 5.2.1, to compute
f(n,S) for a given pair (n,S) € D we have to execute Algorithm A of Section 5.2 for
all ¢ = p™, p € P, m > 1. This is obviously a non-effective algorithm, since, even if
the Algorithm A requires a finite time, we have to perform it for an infinite number
of times. We can do slightly better, considering a different system rather than Je (w),
which is used in Algorithm A.

Let C be an [n, k, d] cyclic code over F, and let w be an integer, 1 < w <n. We
are now ready to introduce two systems depending on w and C, Jo(w) and Jo(w),
which are strictly related to the system Jo(w) defined in Theorem 5.2.1. First we
recall the definition of the polynomials p; ;, then we define jc(w).

Definition 8.3.1. Let K be a field. Let n > 2, r > 1. Let 1, j be two integers s.t.
1 <i#j<r. We denote by p;; the following polynomials in Klxy, ..., ;]

—_

pi,j(%@j) = x
0

3

n n
_hi T

h_n—1—h
i Ly

SL’Z'—.TJ‘

i

152

8.3. The maximal root function

Definition 8.3.2. Let C be an [n,k,d]| cyclic code over F, with complete defining
set S = {h1,...hp_i}. Let w be an integer such that 1 < w < n. Let p;; €
Fy[z1,..., 24| as in Definition 8.3.1. We denote by jc(w) the following polynomial

system in Fy[z1, ..., 2w, Y1y« s Y,)

(121" + o Yzt =

ylz?n—k+_‘_+ywzgn—k :O
21 —1=0
zy—1=0
_ yi]—yl—o
Jc(W): (83)
yfv—yw:()

p1,2(2172’2) =0
pi,j<zz’7zj> =0

pwfl,w<zwfluzw) =0
(ty1. - Y —1=0

For any C € C, system Jo(w) is nothing else that the system obtained by applying
the Rabinovich trick to the system jc(w). In particular, the two solution sets are
in bijection and hence we may formulate two theorems, which are the analogous of
Theorem 5.2.1.

Theorem 8.3.3. Let C' and [n, k., d] cyclic code over F,. Then, for 1 <w <n, V:
Au(C) #0 = V(Jo(w)) # 0 <= G(Jo(w)) # {1}
Theorem 8.3.4. Let C' be a cyclic code over F,. Then C' has distance § if and only
of
V(ie(w) =0, 1<w<6—1 and V(Jo(0)) #0

The other system we introduce, Je(w), is obtained from Je(w), by removing the

153

Chapter 8. Computing the optimal root bound via Grébner bases

equations yf — y;, for 1 <i < w.

(121" + o Yzt =

Y12 Yz =0
2—=1=0
- 2 —1=0
Jc(W): v (8 4)

p1,2(2’1722) =0
pi,j<ziazj) =0

pwfl,w<zwfluzw) =0
(Y1 Y —1=0

We need some preliminaries results to understand the gain in using Jo(w).

Lemma 8.3.5. Let K = F,m be a finite field withp € P, m > 1. Let I be an ideal in
Klzy,...,2.]. Then

V)£ <= Fs>1st V() #0, with E=TFyms

Proof. If V(I) = 0 then obviously there are not any rationals points in any extension
field.

Otherwise, if V(I) = 0, let (Z1,...,2,) € V(I). Any Z; must lie in a finite-
dimensional extension of K, because K= U;?‘;IIFpmj. For any 1 <1 <, let s; be an
integer s.t. T; € Fyms;. We define s and E as

s = H si, B =TFms.

Then z; € Fyms; CE for any 1 <4 < r and hence (zy,...,7,) € V(I), which implies
that Vg(I) # 0, as required. O

Lemma 8.3.6. Let w be a fized integer, w > 1. Let p € P be any prime. Let J, the
ideal in Fpl21, ..., 2w, Y1, - - -, Yu, 1] generated by the polynomials of Jo(w). Let jps the
ideal in Fpslz1, ...\ 2w, Y1, - - - Yu, t] generated by the polynomials of jc(w). Then

V() =0 < V() =0, Vs>1,.
Proof.

154

8.3. The maximal root function

= . Since F,s C F, for any s > 1, we have V(J,s) € V(J,). On the other
hand J,s C jps, which implies V(J,s) 2 V(jps). Collecting all these inclusions
together, we obtain:
V(Jps) S V(Jps) CV(J,) =0
which implies V(.J,s) = 0.

< . Let us suppose V(J,) # 0 then for Lemma 8.3.5 there exist s > 1 such that

Vr,.(Jp) # 0. On the other hand Vg, (.J,) = V(J,), where

JP = jp+<zlljs _Zlu--wzgs _Zuhy{)s _ylw"uygs _ywatps _t>
Since J,» C J, we obtain V(J,») D V(.J,) # 0.
0

Lemma 8.3.7. Let (n,S) € D. For any p € P, there is an integer m, > 1 and
a cyclic code C, over Fymy with length n, distance d(C,) and complete defining set

Scp =9 s.t.
f(n,S) = min{d(C,)}.

PEPn

Proof. Let p € P. Let m, the smallest integer s.t. m, > 1 and n | p™ — 1, so that
F,mp is the splitting field of 2™ — 1 over F,,. Let o be a primitive element of F,m,. Let

g be the polynomial

g(@) € Fyro, g(a) = [[(z—a").
i€s
Let C, the cyclic code of length n over F,m» generated by g. Then it is obvious that
Sc, = S (the cyclotomic cosets are singletons in Fpmp). We have only to show

min{d(C) | C € C,,, Sc =S} = nel%n{d(Cp)}.
p&hn
It is enough to show
d(Cp) = min{d(C) | C € Cy, Sc =5, x(C) =p}, (8.5)
where x(C) is as in Definition 3.1.2. In this case:
min{d(C,)} = min{min{d(C) | C € C,,, Sc =S, char(C) = p}}
PEPn PEPR
which is obviously equal to
min{d(C) | C € C,, Sc = S}.

But (8.5) follows immediately from Proposition 3.1.8, since all cyclic codes with the
same length, same complete defining set, and same field characteristic have the same

distance. 0

155

Chapter 8. Computing the optimal root bound via Grébner bases

We denote by J,s(w) the ideal in Fps[21,. .., 2w, Y1, - - -, Yu, t] associated to the
system J¢, (w), for any s > 1. Similarly, with Jys(w) we denote the ideal in
Fpel21,- -+, Zws Y1, - - -, Yu,] associated to the system jcp(w).

Lemma 8.3.8. Let (n,S) € D and let p be any prime coprime with n, i.e. p € P,.
Let m,, be the smallest integer such that n | p™ — 1 and let C, be the cyclic code over
F,me of length n and complete defining set S. Then d(C,) = d if and only if

V((w)=0, 1<w<d—1 and V(J,(d))#0.
Proof.

. For1 <w<d—1if V(J,(w)) = 0 then, from Lemma 8.3.6, V(J,(w)) = 0
for any s > 1. In particular, for any s we have that V(J,m»(w)) = 0, where
1<w<d-1.

On the other hand, if V(.J,(d)) # §) then there is an s > 1 s.t. V(J,+(d)) # 0. In
particular, we have §) # V(Jps(d)) € V(Jpemp (d)), which implies V(Jymps(d)) # 0.
We have proved that there is an s > 1 s.t

V(Jpmp(w) =0, 1<w<d—1 and V(Jymp(d))# 0.

Then from Theorem 8.3.4 there is a code C over F,smp, with distance d. But
this code has same length, same defining set and same characteristic of C), then

for Proposition 3.1.8, they have also the same distance.

— . Ifd(C,) = d, by Theorem 8.3.4, V(J,m (d)) # () and it implies, by Lemma 8.3.6,
V(J,(d)) # 0.
Let us suppose that for some w, 1 < w < d — 1, we have V(J,(w)) # 0, then
V(Jps(w)) # 0 for some s > 1. In particular, for such s it holds V(Jymmp (w)) # 0.
But then we have a code Cpsmp, of length n, defining set S, defined of distance

less than d. But this is not possible because for Proposition 3.1.8 d(Cpsmp) =
d(C,) = d. Hence V(J,(w)) #0 for any 1 <w < d — 1.

Finally, we are ready for the main result of this section.

Theorem 8.3.9. Let (n,S) be any element of D. Then the value of the optimal root
function, f(n,S), can be computed in a finite time.

Proof. Let p be any prime coprime with n, i.e. p € P,. For any such p, let m, be
the smallest integer such that n | p™ — 1 and let C, the cyclic code generated by

156

8.3. The maximal root function

g(x) = [Licg(z — a'), where o is any primitive n-th root of unity over F,. From
Lemma 8.3.7, we have:
f(n, $) = min{d(C,)}, (5.6)

PEPR
where d(C,) indicates the distance of C),. From Lemma 8.3.8, we have that (8.6)

becomes
f(n, 5) = min{w | V(Jp(w)) # 0, V(Jp(w —1)) = --- = V(J,(1)) = 0}
= min{w | V(J,(w)) # 0}

PEPn

Thus, to compute f(n,S) we have to check the minimum w, 1 < w < n, such that
there is a prime p € P, with V(J,(w)) # 0. But {J,(w)}pep, is a set of F-linked
ideals and thanks to Theorem 8.2.12 we can do this check in a finite time for each
w. Since the number of w to check is finite, the time needed to compute f(n,S) is
finite. O

Following the proof of Theorem 8.3.9, we propose an algorithm which, given any
(n,S) € D, returns f(n,S) in a finite time.

Algorithm D
Input
A pair (n,S) € D.
A value w = 1.
Output
f(n,S).
Cycle
Construct the system Jo(w) in Q[X].
Compute p as in Lemma 8.2.11.
Compute G = {G(J,(w)} U {J,(w)} for p € P,, p < p.
If for all G € G, G = {1}, then increase w to w + 1.
Last step
Output w.

We conclude this section with an example of computation for f(n,.S).

Example 8.3.10. Let (n,S) be a pair in D with n = 6, S = {0,1,3}. For the
BCH bound we have that f(n,S) > 3 and we ask if f(n,S) = 3. We consider X =
(21, 22, 23, Y1, Y2, Y3, t) with DegRevLex ordering induced by z; > -++ > 23 > y; -+ >
ys > t. Let Jy(3) = I(Jo(3)) the ideal in Q[X] associated to the system Jo(3). If we
compute the Gy = G(Jy(3)) the reduced Grébner basis of Jy(3), we obtain:

157

Chapter 8. Computing the optimal root bound via Grébner bases

Go={y1+ Y2+ ys, 21 + 22+ 23, U3 + yoys + U3, 23Y2 — 22Us3, 22Y2 + 20Y3 + 23Y3, 25 +
Zoz3 + 25yst — 125 — 12925 — yoy3t}.

In particular, Gy # {1}, so there is p € P, such that V((J,+(3)) # 0. Hence,
f(n,S) = 3.

158

Part 111

Appendix

159

9.1 Programs for the root bounds

In this chapter we provide our implementations of the BCH bound, the HT bound
the BS bound, bound I, bound II and bound C. We used these programs to compute
Tabular 6.2-6.3-6.4-6.5-6.6-6.7 in Section 6.1.

/*

USAGE: dfset(F,n,g); F a field, n aninteger, g a polynomial

RETURN: a list of O and 1, representin the complete defining
set of the code over F with length n and generator polynomial g.
L[i]==0 if in the definig set, L[i]==0, otherwise.

*/

function dfset(F,n,g)

local R, E,a,Sc,L;
R<x>:=PolynomialRing(F);
E:=SplittingField(x"n-1);
a:=Root0fUnity(n,F);

Sc:= {i: i in [0..n-1] | Evaluate(g,a~i) eq 0};
L:=[1: i in [1..n]];

for i in Sc do

L[i+1]:=0;

end for;

return L;

end function;

/*

USAGE: Invariant(F,n,g); F a field, n aninteger, g a polynomial
RETURN: a list containig the complete defining sets of all
codes over F with length n and naturally equivalent

to the code generated by g.
*/

function Invariant(F,n,g,option)

local R, E,a,Sc,SSc,L, LL;
R<x>:=PolynomialRing(F) ;
E:=SplittingField(x"n-1);
a:=Root0fUnity(n,F);

Sc:= {i: i in [0..n-1] | Evaluate(g,a~i) eq 0};
LL:=[];

161

Chapter 9.

k:=1;
while (k 1t n) do
if (GCD(k,n) eq 1) then
SSc:={(k*j) mod n: j in Sc};
L:=[1: i in [1..n]];
if (option eq 1) then
for i in SSc do
L[i+1]:=0;
end for;
LL cat:=[L];
else
LL cat:=[SSc];
end if;
end if;
k+:=1;
end while;
// LL;
if (#LL eq EulerPhi(n)) then
//controllo che la cardinalitd sia giusta e poi tolgo le ripetizioni
SSc:={J: J in LL};
LL:=[J: J in SSc];
return LL;
else return "error";
end if;

end function;

/*

USAGE: AllCyclicCodes(n,F); n an integer, F a field
RETURN: a list containing all the generator polynomials
of cyclic codes of length n and over F, except

for the whole space and the null-code.

*/

function Al11CyclicCodes(n,F)
R<x>:=PolynomialRing(F);
Fp:=Factorization(x~n-1);
nf:=#Fp;

LL:=[];

for i in [1..2"nf-2] do

L:=IntegerToSequence(i,2);
g :=1;
for j in [1..#L] do
if L[j] eq 1 then
g := gxFpl[jl[1];

end if;

162

9.1. Programs for the root bounds

end for;

// Uncomment here to have the list of the codes

// LL cat:=[CyclicCode(n,g)];

// Uncomment here to have the list of the generator polynomials
LL cat:=[gl;

// Uncomment here to have the list of the def. sets

// LL cat:=[dfset(F,n,g)]

end for;

return LL;

end function;

/*
USAGE: block(a,b,M); M a list, a, b intengers less than or equal to
the size of M
RETURN: if b>a the list [M[a]l, M[a+1], ... , M[b]]
else [M[b], M[b+1], ..., M[1]1,...,M[al]
*/

function block(a,b,M)
if (a le b) then

return M[a..b];
else

return M[a..#M] cat M[1..b];
end if;

end function;

/*

USAGE: bch(M); M a list of O and 1

RETURN: the bch bound for the codes having M as complete def. set
*/

function bch(M)

count:= 0;
bound:= 0;
z:=#M;

for i in [1..z] do
if (M[i] eq 0) and (bound 1t z) then
count+:=1;
bound:=Max (bound, count+1);
else count:=0;
end if;
end for;
if (count ne 0) then
i:=1;
while (M[i] eq O) and (bound 1t z) do

count+:=1;

163

Chapter 9.

bound:=Max (bound, count+1);
i+:=1;
end while;
end if;
return bound;

end function;

/*

USAGE: ht(M); M a 1list of O and 1

RETURN: the ht bound for the codes having M as complete def. set
*/

function ht (M)

n:=#M; // length of the cyclic code

dist:=bch(M);

lmax:=dist-1; // max length for the zero block (0~1 D~(r-1))
ix:=0; // starting point for the block

sx:=0; // counter for the blocks

1x:=0; // length of the zero-block

rx:=0; // length of the block (01 D~ (r-1))

for 1 in [1..1lmax] do
for r in [1..n] do
gg:= GCD(r,n);
if (gg le 1) then
for i in [1..n] do
bzeri:=i;
s:=0;

while (block(((bzeri-1) mod n +1),((bzeri +1-2) mod n +1),M)
eq [0:j in [1..1]]) do
// M[((bzeri-1) mod n +1)..((bzeri +1-2) mod n +1)];
s+:=1;
bzeri:=itr*s;
end while;
if ((1+s) ge dist) then
dist:=1+s;
1x:=1;
rx:=r;
SX:=8;
ix:=1i;
end if;
end for;
end if;
end for;

end for;

164

9.1. Programs for the root bounds

// Uncomment here to see the block which returns ht (M)
/*

printf"inizio: %o ", ix;
printf"l: Yo ", 1x;
printf"s: %o ", sx;
printf"r: J%o ", rx;

printf"dist: %o ", dist;
printf"\n";

*/

return dist;

end function;

/*

USAGE: roos(M); M a list of O and 1

RETURN: the roos bound for the codes having M as complete def. set
*/

function roos(M)

n:=#M; // length of the cyclic code

dist:=bch(M);

Ilmax:=dist-1; // max length for the zero block (0~1 D~ (r-1))
ix:=0; // starting point for the block

sx:=0; // counter for the blocks

1x:=0; // length of the zero-block

rx:=0; // length of the block (0~1 D~(r-1))

hx:=0;

holes:=0; // counter for the holes

for 1 in [1..1lmax] do
for r in [1..n] do
gg:= GCD(r,n);
if (gg eq 1) then
for i in [1..n] do
bzeri:=i;
s:=0;
holes:=0;

while (holes 1t 1) do
if (block(((bzeri-1) mod n +1),((bzeri +1-2) mod n +1),M)
eq [0:j in [1..1]]) then
s+:=1; // found a block
else
holes+:=1; // found a hole
end if;

bzeri:=i+r*(s+holes);

165

Chapter 9.

end while;
if ((1+s) ge dist) then
dist:=1+s;
1x:=1;
rxX:=r;
SX:=S;
ix:=i;

hx:=holes;
end if;

end for;
end if;
end for;

end for;

// Uncomment here to see the block which returns roos(M)

/*

printf"inizio: %o ", ix;
printf"l: %o ", 1lx;
printf"s: %o ", sx;
printf"r: Yo ", rx;

printf"holes: %o", hx;
printf"dist: %o ", dist;
printf"\n";

*/

return dist;

end function;

/*

USAGE: bs(M); M a list of O and 1

RETURN: the "straight-version" of Betti-Sala bound
for the codes having M as complete def. set

*/

function bs(M);
n:=#M;
d:=bch(M);
Imax:=d-1;
ix:=0;

1x:=0;

mx:=0;

for 1 in [1..1lmax] do // 1 is the length of the blocks
mMax :=Floor (1max/1) ;
for m in [1..mMax] do // m is the number of blocks

for i in [1..n] do

166

9.1. Programs for the root bounds

if (block(i, ((i+l#m-2) mod n +1),M) // found a long block
eq [0: j in [1..(m*1)]]) then
s:=0;
while ((block(((i+l*m+s*1) mod n+1), ((i+ 1*m+(s+1)*1-2) mod n +1),M)
eq [0: j in [1..(1-1)]1) and (s le m))do
st:=1;
end while;
if s le m then // the small blocks are not enough
continue i;
else // small blocks found
if (m*1+1 gt d) then
d:=m*x1+1;
ix:=1i;
1x:=1;
mx:=m;
break i;
end if;
end if;

end if;

end for;
end for;

end for;

// Uncomment here to see the pattern which returns bs(M)
/*

printf"inizio: %o ", ix;

printf"l: %o ", lx;

printf"m: %o ", sx;

printf"\n";

*/

return d;

end function;

/*

USAGE: BS(M); M a list of O and 1

RETURN: the Betti-Sala bound for the codes having M as complete def. set
*/

function BS(M)

return Max(bs(M), bs(Reverse(M)));

end function;

/*
USAGE: Db2(M); M a list of 0 and 1

167

Chapter 9.

RETURN: the straight-version of bound II (Prop. 7.0.8)
for the codes having M as complete def. set

*/

function b2(M) ;

n:=#M;
d:=bch(M);
lmax:=d-1;
ix:=0;
1x:=0;
mx:=0;
sx:=0;

for 1 in [1..1lmax] do // 1 is the length of the zero-blocks
mMax :=Floor (1max/1) ;

if (n mod 1) ne O then
for m in [1..mMax] do // m is the number of blocks

for i in [1..n] do

if (block(i, ((i+l*m-2) mod n +1),M) eq [0: j in [1..(m*1)]]) then

s:=0;

while (block(((i+l*m+s*1) mod n+1), ((i+ l*m+(s+1)*1-2) mod n +1),M)
eq [0: j in [1..(1-1)]1)do
st+:=1;

end while;

if s le m then // the small blocks are not enough
continue 1ij;
else // small blocks found
if (m*1+1 +s-m-1 ge d) then
d:=m*1+l+s-m-1;
ix:=i;
1x:=1;
mx:=m;
SX:=s8;
end if;
end if;
end if;
end for;
end for;
end if;

end for;

//Uncomment here to see the pattern which returns b2(M)

168

9.1. Programs for the root bounds

/%

printf"inizio: %o ", ix;
printf"l: Yo ", 1x;
printf"m: %o ", mx;

printf"s: %o
printf" dist: %o ",d;
printf"\n";

*/

s SX;

return d;

end function;

/*

USAGE: Dbi(M); M a list of 0 and 1

RETURN: the straight-version of bound I (Prop. 7.0.5)
for the codes having M as complete def. set

*/

function b1 (M)

n:=#M; // length of the code

dist:=bch(M);

lmax:=dist-1; // max length of the zero-block (0~1 D"r)(0"m D"r)~s
ix:=0; // staring point of the block

sx:=0; // counter for the small blocks

1x:=0; // length of the long block

mx:=0; // length of the small zero-block

rx:=0; // length of the small delta-block

dx:=0;

for 1 in [1..1lmax] do
for m in [1..1] do

for r in [1..n-m-1] do

gg:= GCD(m+r,n);

if (gg le m) then
for i in [1..n] do

if (block(i, ((i+1-2) mod n +1),M) eq [0: j in [1..1]]) then

// long block found
bzeri:=i+l+r;

s:=0;

while (block(((bzeri-1) mod n +1),((bzeri +m-2) mod n +1),M)
eq [0:j in [1..m]]) do

bzeri+:=(m+r);

end while;

169

Chapter 9.

dx:= l+s+1-Floor(1/(m+r))*r-Max(0, ((1 mod (m+r)) -m));

if (dx ge dist) then
dist:=dx;
1x:=1;
mx:=m;
rX:=r;
SX:=s;
ix:=i;
end if;
end if;
end for;
end if;
end for;
end for;

end for;

//Uncomment here to see the pattern which returns bl (M)

/%

printf"inizio: %o ", ix;
printf"l: Yo ", 1x;
printf"m: %o ", mx;
printf"s: %o ", sx;
printf"r: Yo ", rx;

printf"dist: %o ", dist;
printf"\n";

*/

return dist;

end function;

/*
USAGE: Bi(M); M a 1list of O and 1
RETURN: the bound I (Proposition 7.05-7.06)

for the codes having M as complete def. set

*/

function B1(M)
return Max(b1(M), bl(Reverse(M)));
end function;

/*

USAGE: B2(M); M a list of 0 and 1

RETURN: the bound II (Proposition 7.08-7.09)
for the codes having M as complete def. set

*/

function B2(M)

170

9.1. Programs for the root bounds

return Max(b2(M), b2(Reverse(M)));

end function;

/*
USAGE: bC(M); M a list of O and 1
RETURN: the bound C (Theorem 7.1.13)

for the codes having M as complete def. set

*/

function bC(M)
return Max(B2(M),B1(M));

end function;

/*
USAGE: DbC2(M); M a list of 0 and 1
RETURN: the maximum between bC and BS
for the codes having M as complete def. set

*/

function bC2(M)
return Max(bC(M),BS(M));

end function;

/*

USAGE: testTight (Field, n, filename); Field a field,

n an integer, filename a string

RETURN: - a file "filename".out with the number of codes of length
n for which the implemented bounds are tight
- a file "filename"_time.out with the times needed for

the computation

*/

procedure testTight(Field, n, filename)

local F,q;

f2:=filename cat"_time";

q:=#Field;

if GCD(n,q) eq 1 then
L:=A11CyclicCodes(n, Field);

// t:=Cputime();
distL:=[MinimumDistance(CyclicCode(n,j)):j in L];

// Cputime(t);
dfsetL:=[dfset(Field,n,j):j in L];
t:=Cputime();
BCH:=[bch(M): M in dfsetLl];
timel:=Cputime(t); t:=Cputime();
HT:=[ht(M): M in dfsetl];

171

Chapter 9.

time2:=Cputime(t); t:=Cputime();
BetSal:=[BS(M): M in dfsetl];
time3:=Cputime(t); t:=Cputime();
RO0S:=[roos(M): M in dfsetLl];
time4:=Cputime(t); t:=Cputime();
boundC:=[bC(M): M in dfsetl];
time5:=Cputime(t); t:=Cputime();
boundC2:=[bC2(M): M in dfsetL];
time6:=Cputime(t) ;
nbch:=0; nbs:=0; nht:=0; nroos:=0; nC:=0; nC2:=0;
for i in [1..#dfsetL] do
if (Max({distL[i],BCH[i],BetSal[i],HT[i],R00S[i],boundC[i],boundC2[i]l})
eq distL[i]) then
if (distL[i] eq BCH[i]) then
nbch+:=1;
end if;
if (distL[i] eq HT[i]) then
nht+:=1;
end if;
if (distL[i] eq BetSall[i]) then
nbs+:=1;
end if;
if (distL[i] eq RO0S[i]) then
1;

nroos+:
end if;
if (distL[i] eq boundC[i]) then
nC+:=1;
end if;
if (distL[i] eq boundC2[i]) then
nC2+:=1;
end if;
else
fprintf F, "\n ERROR ERROR ERROR \n";
printf "\n ERROR ERROR ERROR \n";
end if;
end for;
fprintf filename, "%50 & %50 & %80 & %80 & %80 & %80 & %80 & %80 \\\\ \n",
n, #dfsetlL, nbch, nht, nbs, nroos, nC,nC2;
fprintf £2, "%50 & %50 & %80 & %8o & %8o & %8o & %8o & %8o \\\\ \n",
n, #dfsetlL, timel, time2, time3, time4, time5, time6;
end if;
end procedure;

/*

USAGE: tightness(nl,n2,Field,filename); Field a field,

nl, n2, integers, filename a string

172

9.2. Programs for the strict bounds

RETURN: - a file "filename".out with a tabular containing
the number of codes of length n, nl<= n <= n2
for which the implemented bounds are tight
- a file "filename"_time.out with the times needed for
the computation

*/

procedure tightness(nl,n2,Field,filename)
f2:=filename cat"_time";
fprintf filename,"\\begin{tabular}{clclclclclclc|} \n";
fprintf filename,"\\hline \n";
fprintf filename, " n & N. codes & BCH & HT & BS & R0OOS & BC & BC2 \\\\ \n ";
fprintf f2, "n & N. codes & BCH & HT & BS & RO0OS & BC & BC2 \\\\ \n ";
for i in [nl1..n2] do
if (i-nl) mod 20 eq O then
printf "n= %40 ---> %40 \n", i , n2;
elif (i-n1) mod 10 eq O then

printf " ---> \n";

end if;

testTight (Field, i, filename);
end for;

fprintf filename,"\\hline \n";
fprintf filename,"\\end{tabular} \n";
end procedure;

9.2 Programs for the strict bounds

In this section we provide our implementations of first and second realization of
singleton procedure, which correspond, as described in Section 4.2.

/*
USAGE: CirculantMatrix(v); v a list
RETURN: the circulant matrix obtained from v

*/

function CirculantMatrix(v)

local F,n,L;
F:=Parent(v[1]);
L:=[1;

n:=#v;

for i in [0..n-1] do

L cat:= Rotate(v,i);
end for;
return(Matrix(F,n,n,L));

end function;

173

Chapter 9.

/*

USAGE: Aset(v); v a list of O and 1

RETURN: the A-set of v, (see Def. 2.2.15)

*/

function Aset(v)
local R,r,i,j,L,tmp,vv;
R:=[i: 1 in [1..#v] | v[i] eq 1];
r:=#R;
vv:=[];L:=[];
for i in [1..2"r-1] do
tmp:=IntegerToSequence(i,2);
if (#tmp 1t r) then

tmp := tmp cat [0:1 in [1..(r-#tmp)]l];

end if;
for j in [1..#v] do
if j notin R then
vv[jl:=v[jl;
else
for k in [1..r] do
vv [R[k]] :=tmp[k];
end for;
end if;
end for;
L cat:= [vv];
end for;
return L;

end function;

/*

USAGE: Equiv(M); M a list of O and 1, option an integer
RETURN: if option==1 then it returns the list of def. sets

naturally equivalent to M

otherwise it returns a list of list with O and 1
representing the def. sets naturally equivalent to M

*/

function Equiv(M,option)

n:=#M;
L1:=[];
L2:=[1;

DS:=[i-1: i in [1..n] | M[i] eq 0];
for i in [1..n] do
if GCD(i,n) eq 1 then

LD:=[(i*j) mod n : j in [0..n] | j in DS];

LLD:=[1: i in [1..n]];

174

9.2. Programs for the strict bounds

for i in LD do
LLD[i+1]:=0;
end for;

L2 cat:=[LLD];

L1 cat:=[LD];

end if;

end for;

if option eq 1 then

return L1;

else

return L2;

end if;

end function;

/*
USAGE:
RETURN:

*/

CheckSingleton(M); M a matrix with entries O and 1
a list with entries which correspond to a singleton

in M

function CheckSingleton (M)
n:=Ncols(M);
m:=Nrows (M) ;

Sing:=[];

for j in [1..n] do

w:=[i: i in [1..m] [M[i,j] eq 11;
if (#w eq 1) then
Sing cat:=[[i,j]: i in w];

end if;

end for;

return Sing;

end function;

/*
USAGE:
RETURN:

NOTE:

*/

RandomSingletonProcedure(M); M a matrix with entries O and 1
the number of steps for which the singleton procedure has
success on M

it is a different implementation of the singleton procedure

w.r.t. SingletonProcedure, which follows.

function RandomSingletonProcedure (M)

r:=1;
MM:=M;

S:=CheckSingleton (MM) ;

r, ||)

"M

175

Chapter 9.

while (S ne []) and (Nrows(MM) gt 1) do
n:=Ncols(MM) ;
m:=Nrows (MM) ;
r+:=1;
z:=Random(8S) ;
I:=[i: i in [1..m] | i ne z[1]];
J:=[j: j in [1..n] | j ne z[2]];
MM:=Submatrix(MM,I,J);
r, ") ", MM , " singoletto: ", z;
S:= CheckSingleton(MM);
end while;
return r;

end function;

/*
USAGE:
RETURN:
success on M
NOTE:
w.r.t. RandomSingletonProcedure.
*/

function SingletonProcedure (M)
n:=Ncols(M);
m:=Nrows (M) ;
S:=CheckSingleton(M) ;
if (m eq 1) or (S eq [1) then
return 1;
elif (S ne []) then
z:=Random(S) ;
I:=[i: i in [1..m] | i ne z[1]];
J:=[j: j in [1..n] | j ne z[2]];
M:=Submatrix(M,I,J);
return 1+SingletonProcedure(M);
end if;

end function;

/*
USAGE: Schaub(v); v a list of 0 and 1
RETURN:

the singleton procedure on M(v), the

circulat matrix of v

*/

function Schaub(v);
r:=0; i:=0; L:=[];

176

RandomSingletonProcedure(M); M a matrix with entries O and 1
the number of steps for which the singleton procedure has

it is a different implementation of the singleton procedure

rl, the output of the first realization of

9.2. Programs for the strict bounds

S:=[Rotate(v,i): i in [1..#v]];
for j in [1..#v] do
L cat:=[S[j1];
M:=Matrix(GF(2),#L, #v,L);
i, """, M;
r:=SingletonProcedure (M) ;
r;
if (r ne #L) then
Prune("L);
else
rl:=r;
end if;
end for;
return ril;

end function;

/*

USAGE: V0Lint(v); v a list of 0 and 1

RETURN: 1r1, the output of the second realization of
the singleton procedure on M(v), the
circulat matrix of v.

NOTE: in this version we use SingletonProcedure

function to perform the singleton procedure

*/

function VLint (v);

r:=0;i:=0;

S:={Rotate(v,i): i in [1..#v]};
subS:=Subsets(S);

n:=#subS;
for j in subS do
i+:=1;
if (Floor(i/n*100) mod 10) eq O then
"Progress: ------- > ", Floor(i/n*100), " % ";
end if;

M:=Matrix(GF(2),#j, #v,[k: k in j1);
r1:=SingletonProcedure(M);
if rl1 gt r then
r:=ri;
end if;
end for;
return(r) ;

end function;

177

Chapter 9.

/*
USAGE: V0Lint(v); v a list of 0 and 1
RETURN: rl1, the output of the second realization of
the singleton procedure on M(v), the
circulat matrix of v
NOTE: in this version we use RandomSingletonProcedure

function to perform the singleton procedure

*/

function VLint2(v);

r:=0;i:=0;

S:={Rotate(v,i): i in [1..#v]};
subS:=Subsets(S);

n:=#subS;
for j in subS do
i+:=1;
if (Floor(i/n*100) mod 10) eq O then
"Progress: ------- > ", Floor(i/n*100), " % ";
end if;

M:=Matrix(GF(2),#j, #v,[k: k in j1);
r1:=RandomSingletonProcedure (M) ;
if rl1 gt r then
r:=ri;
end if;
end for;
return(r) ;

end function;

9.3 Computational proofs and numerical confirmations

Some of the examples provided in the thesis have been found computationally. In
this section we report the MAGMA (|[MAG]) commands we used.

e in Theorem 3.1.20 we provide two codes C over F3 and C5 over Fy7, of length
16 which have complete defining set S = {1,2,3,4,6,9,11,12}, claiming that
d(Cy) =5 and d(Cy) = 6. The following MAGMA instructions have been used

to prove our claim.

> n:=16;

> 81:={(1%3"i) mod n: i in [1..40]};
> S1;

{1, 3, 9, 11 }

> 82:={(2%3"i) mod n: i in [1..40]};
> S2;

{2, 61%}

> 84:={(4%3"i) mod n: i in [1..40]};

178

Computational proofs and numerical confirmations

S4;

4, 12 }

S85:={(5%3~i) mod n: i in [1..40]};
S5;

5, 7, 13, 15 }

S88:={(8%3~i) mod n: i in [1..40]};
S8;

8 }

S$10:={(10%3"i) mod n: i in [1..40]};
S10;

10, 14 }
S:=S1 join S2 join S4;
S;

1, 2, 3, 4, 6, 9, 11, 12 }

R1<x>:=PolynomialRing(GF(3));
KK<a>:=SplittingField(x"n-1);
bl:=Root0fUnity (n,GF(3));
RR1<y>:=PolynomialRing (KK) ;
gly:=1;

for i in S do

V V V V V V VAV VAV VAV VA YV VA YV

for> gly:=gly*(y-b1-i);

for> end for;

> glx:=Rllgly;

> Cl:=CyclicCode(n,glx);

> C1;

[16, 8, 5] Cyclic Linear Code over GF(3)

Generator matrix:

[1000000011121022]
[01000000122001 2 1]
[00100000201020 20]
[0D00100000201020 2]
[0D00010001102201 2]
[0000010012220220]
[0D000001001222022]
[0D000000111210221]

>
> R2<x>:=PolynomialRing(GF(17));
> KK<a>:=SplittingField(x"n-1);
> b2:=Root0fUnity(n,GF(17));
> RR2<y>:=PolynomialRing(KK) ;
> g2y:=1;

> for i in S do

for> g2y:=g2y*(y-b2-1i);

for> end for;

> 82y

179

Chapter 9.

y~8 + 10*%y~7 + 10*y~6 + 8xy~5 + 15xy~4 + bxy~3 + 7Txy~2 + T*xy + 1
> g2x:=R2!g2y;

> C2:=CyclicCode(n,g2x);

> C2;

[16, 8] Cyclic Linear Code over GF(17)

Generator matrix:

[1 00 00O 0 0 0 1 7 7 515 810 10]
[O1 0 0 O O O O 716 5 8 8 310 12]
[0OO1 0 0 O O O 5 8 0131514 2 9]
[0O OO 1 0 0 0 0 81013 6 14 11 9 14]
[O O O O 1 0 0 0 3121411 0 4 7 5]
[O O O O O 1 0 012 211 6 411 5 8]
[O OO O OO 1 0 9 714 5 5 8 16 10]
[OO O OO OO 11 7 7 515 810 10 1]
> MinimumDistance(C2);

6

In Theorem 3.5.7 we proved that the Roos bound and the Boston bound V
are not strict root bound, claiming that they cannot be proved using singleton
procedure. The following instructions provide a computational evidence of our
claim.

> vBoston:=[0,0,1,0,0,1,0,0,1,1,1,1,1];

> VLint (vBoston) ;

5

>
>vRoos:=[0,0,1,1,1,1,0,0,1,0,0,1,1,1,1,1,1,1,1,1]
>roos (vRoos) ;

5

>VLint (vRoos) ;

4

In Theorem 3.6.3, we provide a code with defining set S := {0,1,2,4,5,8,10}
which has distance 4 to contradict Theorem 3.6.1. This code has been generated
by the following instructions.

R<x>:=PolynomialRing (GF(2));
b:=Root0fUnity(15,GF(2));
s:={0,1,2,4,5,8,10};

g:=1;
KK:=SplittingField(x~15-1);
RR<y>:=PolynomialRing(KK) ;
for i in S do

V V V V V V V

for> g:=gx(y-b~1i);
for> end for;

>g;

180

Computational proofs and numerical confirmations

yrT+y3+y+1

> gr:=Rlg;

> gr;

X7 +x"3 +x+1

> C:=CyclicCode(15,gr);

> C;

[15, 8, 4] Cyclic Linear Code over GF(2)

Generator matrix:

[100000001101000]
[01000000011010 0]
[001000000011010]
[00010000000110 1]
[000010001101110]
[000001000110111]
[00000010111001 1]
[00000001101000 1]

In Theorem 3.6.4, we provide a code with defining set
S:={0,1,3,4,5,6,7,9,11,13,15,17,19}

which has distance 6 to contradict Theorem 3.6.2. This code has been generated
by the following instructions.

R<x>:=PolynomialRing(GF(11));
b:=Root0fUnity(20,GF(11));

s:={0, 1, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19};
g:=1;

KK:=SplittingField(x~20-1);
RR<y>:=PolynomialRing(KK) ;

for i in S do

V V V V V V V

for> g:=g*x(y-b~1i);
for> end for;

> 8

y~13 + 9%y~12 + y~10 + y°3 + 9*xy"2 + 1
> gr:=Rlg;

> gr,

x~13 + 9%x~12 + x710 + x°3 + 9*%x"2 + 1

> C:=CyclicCode(20,gr) ;

> C;

[20, 7, 6] Cyclic Linear Code over GF(11)

Generator matrix:

[1t 000 O0OO0OT1O0 91 00O0O0O0O0T1 0 9]
[o 1t OOOOO217010O0O0O0O02 1 7]
[0 O1L OO OO 4 2 4 0 01 0 0 0 0 4 2 4]
[0 0OO1 O OO T7 410 0 0 01 0 0 0 7 410]

181

Chapter 9.

[0 OO O 1 0O 1772 0O0UO0O0OT1O0O0 1 7 2]
[0 OO OOT1 0 91 00 O00O0O0T1O0 9 1 0]
[0 OO O 0 O

in Theorem 4.1.19 we provide two codes C; over F3s and Cy over Faio of length
11 which have complete defining set

S =1{0,1,2,3,5}

claiming that d(C}) = 5 and d(Cy) = 6. The following instructions have been
used to prove our claim.

M:=[0,0,0,0,1,0,1,1,1,1,1];

p:=2;

F<x>:=PolynomialRing(GF(p));
K:=SplittingField(x~11-1);
a:=Root0fUnity(11,GF(p));
R<y>:=PolynomialRing(K) ;
g:=(y-a~0)*(y-a~1)*x(y-a~2)*(y-a~3) *(y-a~b) ;
C:=CyclicCode(11,g);

d:=MinimumDistance(C);

d;

p:=3;

F<x>:=PolynomialRing(GF(p));
K:=SplittingField(x~11-1);
a:=Root0fUnity(11,GF(p));
R<y>:=PolynomialRing(K) ;
g:=(y-a~0)*(y-a~1)*x(y-a~2)*(y-a~3) *(y-a~b) ;
C:=CyclicCode(11,g);

d:=MinimumDistance(C);

d;

g0V V. V. V V V V V V VvV O V V V V V V V V V V

in Remark 4.2.4 we claim that for v = (0,0,0, X,0,X,0,0, X, X', X) the first
rank-bounding algorithm applied to M(v) returns 5 and the second returns 6.
We checked this claim with the following instructions.

> v:=[0,0,0,1,0,1,0,0,1,1,1];
> VLint (v);

6

> Schaub(v) ;

5

182

Bibliography

[ABO0Y

[ACS90]

[ACS92]

[AL69]

[Aug96]

[Bet05]

[Blag3]

[BM09]

[BMvT78)

D. Augot, E. Betti, and E. Orsini, An introduction to linear and
cyclic codes, Grobner Bases, Coding, and Cryptography, Springer, 2009,
pp. 47-68.

D. Augot, P. Charpin, and N. Sendrier, The minimum distance of some
binary codes via the newton’s identites, Eurocode 90, LNCS, vol. 514,
Springer, 1990, pp. 65-73.

, Studying the locator polynomials of minimum weight codewords
of beh codes, Information Theory, IEEE Transactions on 38 (1992), no. 3,
960-973.

H. L. Althaus and R. J. Leake, Inverse of a finite-field vandermonde
matriz, IEEE Trans. on Inf. Th 15 (1969), 172.

D. Augot, Description of the minimum weight codewords of cyclic codes
by algebraic system, Finite Fields Appl. (1996), no. 2, 138-152.

Emanuele Betti, Un"interpretazione algebrica della distanza dev codici ci-
clici, Master’s thesis (laurea), University of Pisa, Department of Math-
ematics, 2005.

R. E. Blahut, Theory and practice of error control codes, Addison-Wesley
Publishing Company Advanced Book Program, Reading, MA, 1983.

M. Byrne and T. Mora, Grébner bases over commutative rings and ap-
plications to coding theory, Grobner Bases, Coding, and Cryptography
(M. Sala, T. Mora, L. Perret, S. Sakata, and C. Traverso, eds.), RISC
Book Series, Springer, Heidelberg, 2009, pp. 239-261.

E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, On the
inherent intractability of certain coding problems, IEEE Trans. on Inf.
Th. 24 (1978), no. 3, 384-386.

183

Bibliography

[Bos01]

[BPW+10]

[BRC60]

[BSO05]

[BSO6]

[BSO7]

[Buc65|

[Buc9g|

[Buc06|

[Cha98]

[Chi72]

[CLO07]

N. Boston, Bounding minimum distances of cyclic codes using algebraic
geometry, International Workshop on Coding and Cryptography (Paris,
2001), Electron. Notes Discrete Math., vol. 6, Elsevier, Amsterdam, 2001,
p- 10.

S. Bulygin, R. Pellikaan, I. Woungang, S. Misra, SC. Misra, et al., De-
coding and finding the minimum distance with groebner bases: history
and new insights, Information and Coding Theory (2010).

R. C. Bose and D. K. Ray-Chaudhuri, On a class of error correcting
binary group codes, Information and Control 3 (1960), 68-79.

E. Betti and M. Sala, A bound for the distance of cyclic codes
which s sometimes stronger than the roos bound, BCRI preprint,
www.bcri.ucc.ie, 7, University College Cork, Boole Centre BCRI, UCC
Cork, Ireland, 2005.

, A new bound for the minimum distance of a cyclic code from its
defining set, IEEE Trans. on Inf. Th. 52 (2006), no. 8, 3700-3706.

, A theory for distance bounding cyclic codes, BCRI preprint,
www.bcri.ucc.ie 63, University College Cork, Boole Centre BCRI, UCC
Cork, Ireland, 2007.

Bruno Buchberger, FEin Algorithmus zum Auffinden der Basisele-
mente des Restklassenringes nach einem nulldimensionalen Polyno-
mideal, Ph.D. thesis, Innsbruck, 1965.

B. Buchberger, An algorithmical criterion for the solvability of algebraic
systems of equations, London Math. Soc. LNS 251 (1998), 535-545.

, Bruno Buchberger’s PhD thesis 1965: An algorithm for find-
ing the basis elements of the residue class ring of a zero dimensional
polynomial ideal, J. Symb. Comput. 41 (2006), no. 3-4, 475-511.

P. Charpin, Open problems on cyclic codes, Handbook of coding theory,
Vol. I, I, North-Holland, Amsterdam, 1998, pp. 963—-1063.

R. T. Chien, A new proof of the BCH bound, IEEE Trans. on Inf. Th.
IT-18 (1972), 541.

D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms, third
ed., Springer, 2007, An introduction to computational algebraic geome-

try and commutative algebra.

184

Bibliography

[CMSvS91|

[Co090]

[Co091]

[Co093]

[CRHT94a)

[CRHT94b)

[CRHT94c¢|

[CS84]

[CU57]

[Curl0]

[FT89)

[FT91al

G. Castagnoli, J. L. Massey, P. A. Schoeller, and N. von Seeman, On
repeated-root cyclic codes, IEEE Trans. on Inf.. Th. 37 (1991), 337-342.

A. B. IIT Cooper, Direct solution of BCH decoding equations, Comm.,
Cont. and Sign. Proc. (1990), 281-286.

, Finding BCH error locator polynomials in one step, Electronic
Letters 27 (1991), no. 22, 2090-2091.

, Toward a new method of decoding algebraic codes using Grébner

bases, Transactions of the Tenth Army Conference on Applied Mathe-
matics and Computing (1992), vol. 93, U.S. Army, 1993, pp. 1-11.

X. Chen, I. S. Reed, T. Helleseth, and K. Truong, General principles for
the algebraic decoding of cyclic codes, IEEE Trans. on Inf. Th. 40 (1994),
1661-1663.

X. Chen, I. S. Reed, T. Helleseth, and T. K. Truong, Algebraic decoding
of cyclic codes: a polynomial ideal point of view, Finite fields, Contemp.
Math., vol. 168, Amer. Math. Soc., 1994, pp. 15-22.

X. Chen, I. S. Reed, T. Helleseth, and T. K. Truong, Use of Gribner
bases to decode binary cyclic codes up to the true minimum distance,
IEEE Trans. on Inf. Th. 40 (1994), no. 5, 1654-1661.

D. Coppersmith and G. Seroussi, On the minimum distance of some
quadratic residue codes, IEEE Trans. on Inf. Th. 30 (1984), no. 2, part
2, 407-411.

L. Carlitz and S. Uchiyama, Bounds for exponential sums, Duke Math.
J. 24 (1957), 37-41.

M. Curto, Border bound: un metodo per stimare distanze dei codici ci-
clici, Bachelor’s thesis (laurea triennale), University of Trento, Depart-
ment of Mathematics, 2010.

G. L. Feng and K. K. Tzeng, A generalized Euclidean algorithm for mul-
tisequence shift-register synthesis, IEEE Trans. on Inf. Th. 35 (1989),
no. 3, h84-594.

, Decoding cyclic and BCH codes up to actual minimum distance

using nonrecurrent syndrome dependence relations, IEEE Trans. on Inf.
Th. 37 (1991), no. 6, 1716-1723.

185

Bibliography

[FT91b)

[HochH9|

[HP03]

[HT72)

[KRKSS|

[Lev95)

IMAG]

[MAI97]

[MK93]

[MM92)

[MO09]

[M5188]

, A generalization of the Berlekamp-Massey algorithm for multise-
quence shift-register synthesis with applications to decoding cyclic codes,
IEEE Trans. on Inf. Th. 37 (1991), no. 5, 1274-1287.

A. Hocquenghem, Codes correcteurs d’erreurs, Chiffres 2 (1959), 147—
156.

W. C. Huffman and V. Pless, Fundamentals of error-correcting codes,

Cambridge University Press, 2003.

C. R. P. Hartmann and K. K. Tzeng, Generalizations of the BCH bound,
Information and Control 20 (1972), 489-498.

A. Kandri-Rody and D. Kapur, Computing a Grébner basis of a poly-
nomial ideal over a Euclidean domain, J. Symbolic Comput. 6 (1988),
no. 1, 37-57.

F. Levy-dit-Vehel, Bounds on the minimum distance of the duals of ex-
tended BCH codes over F,, Appl. Algebra Engrg. Comm. Comput. 6
(1995), no. 3, 175-190.

MAGMA: Computational Algebra System for Algebra, Number The-
ory and Geometry, The University of Sydney Computational Algebra
Group., http://magma.maths.usyd.edu.au/magma.

T. Matsuo, Y. Araki, and K. Imamura, Relations between several mini-
mum distance bounds of binary cyclic, Trans. fundamentals IEICE E80-
A (1997), 2253-2255.

C. J. Moreno and P. V. Kumar, Minimum distance bounds for cyclic
codes and deligne’s theorem, IEEE Trans. on Inf. Th. 39 (1993), 1524
1534.

C. J. Moreno and O. Moreno, An improved Bombieri-Weil bound and
applications to coding theory, J. Number Theory 42 (1992), 32-46.

T. Mora and E. Orsini, Decoding cyclic codes: the Cooper philosophy,
Grobner Bases, Coding, and Cryptography (M. Sala, T. Mora, L. Perret,
S. Sakata, and C. Traverso, eds.), RISC Book Series, Springer, Heidel-
berg, 2009, pp. 69-91.

H. M. Moller, On the construction of Gréibner bases using syzygies, J.
Symbolic Comput. 6 (1988), no. 2-3, 345-359.

186

Bibliography

[Mor05]

[Morar|

[MS77]

[MS81]

[MSS3]

[MS03)

[Pans9]

[PHBOS]|

[PS03]

[PS13)

[PW72]

[Rei06]

T. Mora, Solving polynomial equation systems 1i: Macaulay’s paradigm

and grébner technology, vol. 2, Cambridge University Press, 2005.

, Solving polynomial equation systems. I, algebraic solving and

beyond, Encyclopedia of Mathematics and its Applications, Cambridge

University Press, to appear.

F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting
codes. I, North-Holland Publishing Co., Amsterdam, 1977, North-
Holland Mathematical Library, Vol. 16.

F.J. MacWilliams and N.J.A. Sloane, The theory of error correcting
codes, NHML016, NH, 1981.

J. L. Massey and T. Schaub, Linear complezity in coding theory, Cod-
ing theory and applications (Cachan, 1986), LNCS, vol. 311, Springer,
Berlin, 1988, pp. 19-32.

T. Mora and M. Sala, On the Grobner bases of some symmetric systems
and their application to coding theory, J. Symbolic Comput. 35 (2003),
no. 2, 177-194.

L. Pan, On the D-bases of polynomial ideals over principal ideal domains,
J. Symbolic Comput. 7 (1989), no. 1, 55-69.

V. S. Pless, W. C. Huffman, and R. A. Brualdi (eds.), Handbook of
Coding Theory. Vol. I, II, North-Holland, Amsterdam, 1998.

F. Ponchio and M. Sala, A lower bound on the distance of cyclic codes,
BCRI preprint, www.bcri.ucc.ie 7, University College Cork, Boole Centre
BCRI, UCC Cork, Ireland, 2003.

M. Piva and M. Sala, A new bound for cyclic codes beating the roos bound,

Algebraic Informatics, Springer, 2013, pp. 101-112.

W. W. Peterson and Jr. E. J. Weldon, Error-correcting codes, second
ed., The M.I.T. Press, Cambridge, Mass.-London, 1972.

B. Reinert, Grobner bases in function rings—a guide for introducing
reduction relations to algebraic structures, Journal of Symbolic Compu-
tation 41 (2006), no. 11, 1264 — 1294.

187

Bibliography

[Roo82]

[Roo83]

[Sal01]

[Sal02]

[Sal07]

[Sch88]

[SWST96]

[Tra88]

[Var97a

[Var97b]

[vL95|

[VLWS6]

[ZacT8|

[ZB12]

C. Roos, A generalization of the BCH bound for cyclic codes, including
the Hartmann-Tzeng bound, J. Combin. Theory Ser. A 33 (1982), no. 2,
229-232.

, A new lower bound for the minimum distance of a cyclic code,
[EEE Trans. on Inf. Th. 29 (1983), no. 3, 330-332.

Massimiliano Sala, On some algebraic methods for coding theory, Ph.D.
thesis, University of Milan, Milan, Italy, 2001.

M. Sala, Grébner bases and distance of cyclic codes, Appl. Algebra En-
grg. Comm. Comput. 13 (2002), no. 2, 137-162.

, Grobner basis techniques to compute weight distributions of
shortened cyclic codes, Journal of Algebra and Its Applications 6 (2007),
no. 3, 403-404.

T. Schaub, A linear complexity approach to cyclic codes, Ph.D. thesis,
Swiss Federal Inst. of Tech., Zurich, 1988.

K. K. Shen, C. Wang, B.-Z. Shen, and K. K. Tzeng, Generation of ma-
trices for determining minimum distance and decoding of cyclic codes,
IEEE Trans. on Inf. Th. 42 (1996), no. 2, 6563-657.

C. Traverso, Grobner trace algorithms, ISSAC, 1988, pp. 125-138.

A. Vardy, Algorithmic complexity in coding theory and the minimum dis-
tance problem, Proceedings of the twenty-ninth annual ACM symposium
on Theory of computing, 1997, pp. 92-109.

, The intractability of computing the minimum distance of a code,
IEEE Trans. on Inf. Th. 43 (1997), no. 6, 1757-1766.

J. H. van Lint, Repeated-root cyclec codes, IEEE Trans. on Inf. Th. 37
(1995), no. 2, 343-345.

J. H. van Lint and R. M. Wilson, On the minimum distance of cyclic
codes, IEEE Trans. on Inf. Th. 32 (1986), no. 1, 23-40.

G. Zacharias, Generalized Grobner bases in commutative polynomial
rings, Ph.D. thesis, MIT, 1978.

A. Zeh and S. Bezzateev, A new bound on the minimum distance of
cyclic codes using small-minimum-distance cyclic codes, Designs, Codes
and Cryptography (2012), 1-18.

188

Bibliography

[ZK10]

[ZK11]|

[ZWZB12)

J. Zheng and T. Kaida, An algorithm for new lower bound of minimum
distance by dft for cyclic codes, Information Theory and its Applications
(ISITA), 2010 International Symposium on, IEEE, 2010, pp. 846-849.

, On relationship between proposed lower bound and shift bound

for cyclic codes, Signal Design and its Applications in Communications
(IWSDA), 2011 Fifth International Workshop on, IEEE, 2011, pp. 13-16.

Alexander Z., A. Wachter-Zeh, and S. V. Bezzateev, Decoding cyclic
codes up to a new bound on the minimum distance, IEEE Trans. Inform.
Theory 58 (2012), no. 6, 3951-3960.

189

