
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

OPTIMIZATION MODULO THEORIES

WITH LINEAR RATIONAL COSTS

Silvia Tomasi

Advisor:

Prof. Roberto Sebastiani

Università degli Studi di Trento

April 2014

Abstract

In the contexts of automated reasoning (AR) and formal verification (FV),

important decision problems are effectively encoded into Satisfiability Modulo

Theories (SMT). In the last decade efficient SMT solvers have been developed

for several theories of practical interest (e.g., linear arithmetic, arrays, bit-

vectors). Surprisingly, little work has been done to extend SMT to deal with op-

timization problems; in particular, concerning the development of SMT solvers

able to produce solutions which minimize cost functions over arithmetical vari-

ables (we are aware of only one very-recent work [60]).

In the work described in this thesis we start filling this gap. We present and

discuss two general procedures for leveraging SMT to handle the minimization

of linear rational cost functions, combining SMT with standard minimization

techniques. We have implemented the procedures within the MathSAT SMT

solver. Due to the absence of competitors in AR and FV, we have experimen-

tally evaluated our implementation against state-of-the-art tools for the domain

of linear generalized disjunctive programming (LGDP), which is closest in spirit

to our domain, and a very-recent SMT-based optimizer [60]. Our benchmark

set consists of problems which have been previously proposed for our competi-

tors. The results show that our tool is very competitive, and often outperforms

these tools (especially LGDP ones) on their problems, clearly demonstrating

the potential of the approach.

Stochastic Local-Search (SLS) procedures are sometimes very competitive

in pure SAT on both satisfiable instances and optimization problems. As a side

work, in this thesis we investigate the possibility to exploit SLS inside SMT

tools which are commonly based on the lazy approach (it combines a Conflict-

Driven-Clause-Learning (CDCL) SAT solver with theory-specific decision pro-

cedures, called T -Solvers). We first introduce a general procedure for inte-

grating a SLS solver of the WalkSAT family with a T -Solver. Then we present a

group of techniques aimed at improving the synergy between these two compo-

nents. Finally we implement all these techniques into a novel SLS-based SMT

solver for the theory of linear arithmetic over the rationals, and perform an

empirical evaluation on satisfiable instances. Although the results are encour-

aging, we concluded that the efficiency of proposed SLS-based SMT techniques

is still far from being comparable to that of standard SMT solvers.

Keywords

[Satisfiability Modulo Theory, Optimization, Linear Generalized Disjunctive

Programming, Stochastic Local Search]

4

Contents

1 Introduction 1

1.1 Main Contribution: Optimization Modulo Theories with Linear

Rational Costs . 1

1.2 A Secondary Contribution: Stochastic Local Search for SMT . . 3

1.3 Structure of the Thesis . 5

1.4 Previous Publication . 7

I Background and State of the Art 9

2 Background 11

2.1 Propositional Satisfiability . 12

2.1.1 Conflict-Driven Clause Learning SAT Solvers 13

2.1.2 Sthocastic Local Search for SAT 17

2.2 Satisfiability Modulo Theories 22

2.2.1 The Satisfiability Modulo Theories Problem 22

2.2.2 Theory Solvers . 26

2.2.3 Lazy SMT Solvers . 29

2.2.4 Lazy SMT for Combinations of Theories 34

2.3 Linear Generalized Disjunctive Programming 38

2.3.1 Linear Programming 38

2.3.2 Mixed Integer Linear Programming 39

i

2.3.3 Disjunctive Programming 41

2.3.4 Linear Generalized Disjunctive Programming 42

3 State of the Art and Related Work 47

3.1 State of the Art . 47

3.1.1 Optimization in SAT: MaxSAT and Pseudo-Boolean Op-

timization . 47

3.1.2 SMT with Pseudo-Boolean Costs and MaxSMT 51

3.2 Other Forms of Optimization in SMT 54

3.3 A Very-Recent OMT(LA(Q)) Tool 55

II Novel Contributions 57

4 Optimization in SMT(LA(Q) ∪ T) 59

4.1 Basic Definitions and Notation 59

4.2 Theoretical Results . 61

4.2.1 OMT(LA(Q) ∪ T) wrt. other Optimization Problems . 69

5 Procedures for OMT(LA(Q)) and OMT(LA(Q) ∪ T) 73

5.1 An Offline Schema for OMT(LA(Q)) 74

5.1.1 Handling strict inequalities 77

5.1.2 Discussion. 78

5.2 An Inline Schema for OMT(LA(Q)) 80

5.3 Extensions to OMT(LA(Q) ∪ T) 85

6 Experimental Evaluation for OMT(LA(Q)) 87

6.1 Encodings. 89

6.2 Comparison on LGDP Problems 91

6.2.1 The strip-packing problem. 91

6.2.2 The zero-wait jobshop problem. 93

ii

6.2.3 Discussion . 95

6.3 Comparison on SMT-LIB Problems 112

6.3.1 Discussion . 114

6.4 Comparison on SAL Problems 119

6.4.1 Discussion . 120

6.5 Comparison on Pseudo-Boolean SMT Problems 124

6.5.1 Discussion . 124

6.6 Comparison on SYMBA Problems 129

6.6.1 Discussion . 130

7 Stochastic Local Search in SMT 141

7.1 Intuition . 142

7.2 A basic WalkSMT procedure 144

7.3 Efficient T -solvers for local search. 145

7.4 Enhancements to the basic WalkSMT procedure 146

7.4.1 Preprocessing . 146

7.4.2 Single and Multiple Learning 148

7.4.3 Filterings . 150

8 Experimental evaluation for WalkSMT 153

8.1 Environment and Settings . 153

8.2 WALKSMT on SMT-LIB Instances 155

8.3 WALKSMT on Random Instances 166

8.4 Discussion . 169

9 Conclusions and Future Research Directions 171

Bibliography 173

iii

Chapter 1

Introduction

In the contexts of automated reasoning (AR) and formal verification (FV), im-

portant decision problems are effectively encoded into and solved as Satisfi-

ability Modulo Theories (SMT) problems. In the last decade efficient SMT

solvers have been developed, that combine the power of modern conflict-driven

clause-learning (CDCL) SAT solvers with dedicated decision procedures (T -

Solvers) for several first-order theories of practical interest like, e.g., those of

equality with uninterpreted functions (EUF), of linear arithmetic over the ra-

tionals (LA(Q)) or the integers (LA(Z)), of arrays (AR), of bit-vectors (BV),

and their combinations. (See [79, 18] for an overview.)

1.1 Main Contribution: Optimization Modulo Theories with

Linear Rational Costs

Many SMT-encodable problems of interest, however, may require also the ca-

pability of finding models that are optimal wrt. some cost function over con-

tinuous arithmetical variables.1 E.g., in (SMT-based) planning with resources

[94] a plan for achieving a certain goal must be found which not only ful-

1Although we refer to quantifier-free formulas, as it is frequent practice in SAT and SMT, with a little abuse of

terminology we often call “Boolean variables” the propositional atoms and we call “variables” the free constants

xi in LA(Q)-atoms like, e.g., “3x1 − 2x2 + x3 ≤ 3”.

1

CHAPTER 1. INTRODUCTION

fills some resource constraints (e.g. on time, gasoline consumption, ...) but

that also minimizes the usage of some of such resources; in SMT-based model

checking with timed or hybrid systems (e.g. [11, 10]) you may want to find

executions which minimize some parameter (e.g. elapsed time), or which min-

imize/maximize the value of some constant parameter (e.g., a clock timeout

value) while fulfilling/violating some property (e.g., minimize the closure time

interval of a rail-crossing while preserving safety). This also involves, as par-

ticular subcases, problems which are traditionally addressed as disjunctive pro-

gramming (DP) [13] or linear generalized disjunctive programming (LGDP)

[75, 78], or as SAT/SMT with Pseudo-Boolean (PB) constraints and (weighted

partial) MaxSAT/SMT problems [76, 59, 70, 31, 32]. Notice that the two latter

problems can be easily encoded into each other.

Surprisingly, little work has been done so far to extend SMT to deal with op-

timization problems [70, 31, 80, 40, 32, 63, 60]. In particular, to the best of our

knowledge, most such works aim at minimizing cost functions over Boolean

variables (i.e., SMT with PB cost functions or MaxSMT), whilst very little ef-

fort has been put into extending SMT solvers for producing solutions which

minimize cost functions over arithmetical variables (we are aware of only one

very-recent work [60]). Notice that the former optimization problem can be

easily encoded into the latter, but not vice versa.

In this thesis we try to fill this gap producing the following contributions:

• We define the Optimization Modulo LA(Q)∪T (OMT(LA(Q)∪T)) prob-

lem which extends SMT(LA(Q) ∪ T) for finding models which mini-

mize some LA(Q) cost variable —T being some (possibly empty) stably-

infinite theory s.t. T and LA(Q) are signature-disjoint.

• We present two general procedures for solving OMT(LA(Q)∪T) by com-

bining standard SMT and minimization techniques: the first, called offline,

is much simpler to implement, since it uses an incremental SMT solver as

2

1.2. A SECONDARY CONTRIBUTION: STOCHASTIC LOCAL SEARCH FOR SMT

a black-box; the second, called inline, is more sophisticate and efficient,

but it requires modifying the code of the SMT solver. This distinction

is important, since the source code of most SMT solvers is not publicly

available.

• We have implemented these procedures within the MATHSAT5 SMT solver

[33]. Due to the absence of competitors from AR and FV we have exper-

imentally evaluated our implementation against state-of-the-art tools for

the domain of LGDP, which is closest in spirit to our domain, on sets of

problems which have been previously proposed as benchmarks for the lat-

ter tools. Notice that LGDP is limited to plain LA(Q), so that, e.g., it

cannot handle combination of theories like LA(Q) ∪ T . As a last-minute

addendum to this work, we also compared our implementation with the

very-recent SMT-based tool presented in [60] on the authors own bench-

marks problems. The results show that our tool is very competitive, and

often outperforms these tools (especially LGDP ones) on their problems,

clearly demonstrating the potential of the approach.

1.2 A Secondary Contribution: Stochastic Local Search for

SMT

A dominant approach to SMT, called lazy approach, relies on the integration

of a Conflict-Driven Clause-Learning (CDCL) SAT solver and of a decision

procedure able to handle sets of atomic constraints in the underlying theory T
(T -Solver) (see, e.g., [79, 20]). In pure SAT, however, Stochastic Local-Search

(SLS) procedures (see [53]) sometimes are competitive with or even outperform

CDCL SAT solvers on satisfiable instances (in particular when dealing with

unstructured problems) and on optimization problems where the goal is to find a

solution of sufficiently high quality. Therefore, it is a natural research question

3

CHAPTER 1. INTRODUCTION

to wonder whether SLS can be exploited successfully also inside SMT tools,

both solvers and optimizers. As side work, in this thesis we start investigating

this issue.

Remarkably, CDCL and SLS SAT solvers are very different in the way they

perform Boolean search. CDCL SAT solvers reason on partial truth assign-

ments, which are updated in a stack-based manner. Moreover, they intensively

use techniques like Boolean constraint-propagation (BCP), conflict-directed

backtracking (backjumping) and learning, which are heavily exploited in the

lazy-SMT paradigm and allow for very-efficient SMT optimization techniques

like early pruning, theory-propagation, theory-driven backjumping and learn-

ing (see [79, 20]). SLS SAT solvers, instead, reason on total truth assignments,

which are updated by swapping the phase of single literals according to some

mixed greedy/stochastic strategy. Moreover, they typically do not use BCP,

backjumping and learning. Therefore, the problem of an effective integration of

a T -solver with a SLS SAT solver is not a straightforward variant of the stan-

dard integration with a CDCL solver in lazy SMT. Moreover, the standard SMT

optimization techniques mentioned above cannot be applied in a straightforward

way.

In order to cope with these problems, we present the following contributions:

• We present a novel and general architecture for integrating a T -Solver with

a Boolean SLS solver, which is inspired by the idea of “partially-invisible”

SAT formulas.

• We analyze the differences between the interaction of a T -solver with a

CDCL-based and a SLS-based SAT solver, and we introduce and discuss a

group of optimization techniques aimed at improving the synergy between

an SLS solver and the T -solver.

• We present an implementation of the proposed algorithms, called WALKSMT,

which is based on the integration of the UBCSAT [89] and UBCSAT++ [23]

4

1.3. STRUCTURE OF THE THESIS

SLS solvers with the LA(Q)-solver of MATHSAT [30].

• We provide an extensive experimental evaluation of our implementation.

In particular, we evaluate the effects of the various optimization tech-

niques, also comparing them against MATHSAT, on two groups of sat-

isfiable instances: industrial problems coming from the SMT-LIB and

randomly-generated unstructured problems. The results show that:

1. the enhanced techniques drastically improve the performances of the

basic version,

2. the improved techniques drastically improve the performances of the

basic version but WALKSMT cannot beat MATHSAT4.

Although the results are encouraging, we concluded that the efficiency of pro-

posed SLS-based SMT techniques is still far from being comparable to that of

standard SMT solvers.

1.3 Structure of the Thesis

This thesis is divided in two parts.

Part I provides the necessary background knowledge and terminology, and a

survey of the literature on the topic of optimization in SAT and SMT.

Chapter 2 reviews theoretical results and algorithms at the basis of the lazy

SMT approach and the LGDP paradigm. First, (§2.1) we give an overview

of the state of the art in SAT solving by describing modern Conflict-Driven

Clause Learning (CDCL) procedures and briefly introducing Stochastic

Local Search (SLS) techniques (we focus the WalkSAT family of SLS

algorithms). Then, (§2.2) we present the SMT framework and describe

the algorithm for integrating a SAT solver with theory-specific decision

5

CHAPTER 1. INTRODUCTION

procedures which underlies lazy SMT solvers, its main enhanced tech-

niques, relevant features of decision procedures for SMT, and methods

for theory combination. Finally, (§2.3) we introduce LGDP and its solu-

tion approaches after recalling linear programming, mixed integer linear

programming and disjunctive programming which inspired it and whose

techniques are exploited by it.

Chapter 3 summarizes the state of the art and related work of optimization

problems in the context of SAT and SMT. First, (§4) we describe optimiza-

tion problems and procedures for solving them available in the literature

of SAT (such as MaxSAT and Pseudo-Boolean Optimization) and SMT.

In the context of SMT, we consider SMT with Pseudo-Boolean Costs and

MaxSMT [70, 31, 6, 32]. Second, (§3.2) we report on other forms of

optimization in SMT, such as the problem of finding minimum-cost as-

signments [40] and the “ILP Modulo Theories” framework [63]. Finally,

(§3.3) we introduce a very-recent SMT-based tool for optimization, called

SYMBA [60].

Part II is dedicated to the description of the novel contributions of this thesis.

Chapter 4 introduces the problem addressed in this thesis. First, (§4.1) we

provide the definition of the Optimization Modulo Theory (OMT) prob-

lem and the theoretical foundations of the procedures for solving OMT,

where the background theory is LA(Q)∪ T . Then, (§4.2.1) we show how

the OMT(LA(Q) ∪ T) problem captures many interesting optimization

problems described in the Part I.

Chapter 5 presents novel algorithms for solving OMT, based on the combi-

nation of SMT and minimization techniques. First, (§5.1 and §5.2) we

present and discuss two procedures for OMT(LA(Q)), called “offline”

and “inline” schema respectively. Then, (§5.3) we show how they can be

extended to OMT(LA(Q) ∪ T).

6

1.4. PREVIOUS PUBLICATION

Chapter 6 reports on an extensive experimental evaluation carried out for eval-

uating the implementation of the proposed procedures (we call it OPTI-

MATHSAT) against a LGDP tool, called GAMS. We consider different

encodings (§6.1) and kind of benchmarks: (§6.2) LGDP problems (e.g.

strip-packing and job-shop), (§6.3) SMT-LIB formulas augmented with

cost functions, (§6.4) formulas obtained by using the SAL Model Checker

on bounded verification problems, and (§6.5) Pseudo-Boolean SMT prob-

lems. As last-minute comparison, (§6.6) we evaluate OPTIMATHSAT

against the recently-proposed tool SYMBA [60].

Chapter 7 describes a novel and general architecture for integrating a theory

specific solver for LA(Q) with a SLS-based SAT solver resulting in a SLS-

based SMT solver, called WALKSMT. First, we present the main intuition

(§7.1), a basic architecture (§7.2). Then, (§7.3) we describe the most im-

portant features for efficient theory-specific decision procedures for SLS.

Finally, (§7.4) we propose several enhanced techniques.

Chapter 8 presents the experimental evaluation conduced for evaluating the

performance of WALKSMT and its enhancements. After introducing the

experimental evaluation (§8.1), we report on experiments on SMT-LIB for-

mulas and random generated problems (§8.2 and §8.3 respectively).

Chapter 9 briefly concludes the thesis and highlights directions for future work.

1.4 Previous Publication

Part of the content of this thesis contains material published in the following

papers and technical reports.

7

CHAPTER 1. INTRODUCTION

Part I and Chapters 4, 5 and 7:

• Roberto Sebastiani and Silvia Tomasi. Optimization in SMT with LA(Q)

Cost Functions. In Proceedings of IJCAR 2012, the 6th International Joint

Conference on Automated Reasoning. Manchester, UK, 2012. [80].

• Roberto Sebastiani and Silvia Tomasi. Optimization Modulo Theories with

Linear Rational Costs. Submitted to ACM Transactions on Computational

Logic – TOCL [81].

Chapters 7 and 8:

• Silvia Tomasi. Stochastic Local Search for SMT. Technical Report. DISI-

10-060, DISI, University of Trento. [87]

• Alberto Griggio, Roberto Sebastiani and Silvia Tomasi. Stochastic Local

Search for SMT: a Preliminary Report. In Proceedings of SMT 2009, the

7th International Workshop on Satisfiability Modulo Theories. Montreal,

Canada, 2009. [47]

• Alberto Griggio, Quoc Sang Phan, Roberto Sebastiani and Silvia Tomasi

Stochastic Local Search for SMT: Combining Theory Solvers with Walk-

SAT. In Proceedings of FroCoS 2011, the 8th International Symposium

Frontiers of Combining Systems. Saarbrücken, Germany, 2011. [46].

8

Part I

Background and State of the Art

Chapter 2

Background

In this chapter we provide the background concepts and terminology of Propo-

sitional Satisfiability (SAT) (§2.1), Satisfiability Modulo Theories (SMT) (§2.2)

and Linear Generalized Disjunctive Programming (LGDP) (§2.3).

Notation 2.1. We introduce a uniform notation which shall be used both in this

chapter and in the rest of the thesis. We use boldface lowercase letters a,y for

arrays and boldface uppercase letters A,Y for matrices, standard lowercase let-

ters a, y for single rational variables/constants or indices and standard uppercase

letters A, Y for Boolean atoms and index sets; we use the first five letters in the

various forms a, ...e, ... A, ...E, to denote constant values, the last five v, ...z,

... V, ...Z to denote variables, and the letters i, j, k, I, J,K for indexes and in-

dex sets respectively, pedices .j denote the j-th element of an array or matrix,

whilst apices .ij are just indexes, being part of the name of the element. We use

lowercase Greek letters ϕ,φ,ψ, µ, η for denoting formulas and uppercase ones

Φ,Ψ for denoting sets of formulas.

Disclaimer. The material presented in §2.1 is standard in SAT and it is mostly

taken from [79] (and in part from [65]) for §2.1.1 and from [52, 51, 53, 88] for

§2.1.2. The material presented in §2.2 is standard in SMT and it is mostly taken

from [79] (other minor references are [71, 18]). The material presented in §2.2

is standard in LGDP and it is mostly taken from [61, 14, 75, 93, 77, 78].

11

CHAPTER 2. BACKGROUND

2.1 Propositional Satisfiability

Given A = {A1, A2, . . .} a non-empty set of primitive propositions, the lan-

guage of propositional logic is the least set of formulas containing A and the

primitive constants ⊤ and ⊥ (“true” and “false” respectively) and closed un-

der the set of standard propositional connectives {¬,∧,∨,→,↔}. We call a

propositional atom every primitive proposition in A, and a propositional literal

every propositional atom (positive literal) or its negation (negative literal). We

implicitly remove double negations: e.g., if l is the negative literal ¬Ai, by ¬l
we mean Ai rather than ¬¬Ai.

A propositional formula is in conjunctive normal form (CNF), if it is written

as a conjunction of disjunctions of literals:
∧

i

∨

j lij. Each disjunction of literals
∨

j lij is called a clause. A unit clause is a clause with only one literal.

Given a propositional formula ϕ, we call a truth assignment µ for ϕ a func-

tion mapping truth values {true, false} to propositional atoms of ϕ. With a little

abuse of notation, we represent µ indifferently as a set of literals {l1, . . . , ln},

with the intended meaning that a positive [resp. negative] literal Ai means that

Ai is assigned to true [resp. false], or as a conjunction of literals l1∧. . .∧ln; thus,

e.g., we may say “li ∈ µ” or “µ1 ⊆ µ2” (i.e. µ2 extends µ1 and µ1 subsumes

µ2), but also “¬µ” meaning the clause “¬l1 ∨ . . . ∨ ¬ln”.

A truth assignment µ satisfies ϕ, written µ |= ϕ, if and only if ϕ is true under

that truth assignment. (µ is called model for ϕ). A truth assignment is called

total if it assigns a value to all atoms in ϕ, partial otherwise. We say that ϕ is

satisfiable if and only if there exists at least one model for it. Two formulas ϕ1

and ϕ2 are called equi-satisfiable if and only if there exists µ1 s.t. µ1 |= ϕ1 if

and only if there exists µ2 s.t. µ2 |= ϕ2.

The Propositional Satisfiability (SAT) problem is the problem of deciding the

satisfiability of a propositional formula ϕ. We call SAT solver any procedure

which decides whether ϕ is satisfiable, and returns a satisfying assignment if

12

2.1. PROPOSITIONAL SATISFIABILITY

this is the case. The following sections shall describe modern SAT solvers based

on two different search approaches:

Systematic Search, which traverses the search space of a problem instance in

a systematic manner. This guarantees that eventually a solution is found or

no solution exists.

Local Search, which inspects the search space of a problem instance by iter-

atively moving from one search space position to a neighboring one on

the basis of local knowledge only. This kind of algorithms are typically

incomplete since there is no guarantee that eventually an existing solution

is found.

2.1.1 Conflict-Driven Clause Learning SAT Solvers

Most modern SAT solvers are based on systematic search and are inspired by

the well-known Davis-Putnam-Logemann-Loveland (DPLL) procedure [38].

These solvers take advantage of smart non-recursive implementation and very

efficient data structures to handle Boolean formulas and assignments, and can

be grouped into two families:

conflict-driven SAT solvers: the search process is guided by the analysis of

the conflicts at every branch which fails [65];

look-ahead SAT solvers: the search process is built on top of a look-ahead

procedure which calculates the reduction effect of the selection of each

variable in a set [50].

In this section we focus on the former family of solvers and, in particular, on

Conflict-Driven Clause Learning (CDCL) SAT solvers [65, 79]. A high-level

schema is reported in Algorithm 1. The procedure takes as input a propositional

formula ϕ in CNF and an initially-empty truth assignment µ which is updated

13

CHAPTER 2. BACKGROUND

Algorithm 1 Conflict-Driven Clause Learning SAT Solver

Require: ⟨ϕ, µ⟩
1: if preprocess(ϕ, µ) = CONFLICT then

2: return UNSAT

3: end if

4: loop

5: decide next branch(ϕ, µ)

6: loop

7: res← boolean constraint propagation(ϕ, µ)

8: if res = SAT then

9: return SAT

10: else if res = CONFLICT then

11: blevel← analyze conflict(ϕ, µ)

12: if blevel = 0 then

13: return UNSAT

14: else

15: backtrack(blevel,ϕ, µ)

16: end if

17: else

18: break

19: end if

20: end loop

21: end loop

in a stack-based manner. It performs a Preprocessing step in lines 1-3. The core

part of the algorithm is given in the outer loop in lines 4-21, which alternates

four main phases: Decision, Boolean Constraint Propagation (BCP), Conflict

Analysis and Backjumping and Learning.

Preprocessing preprocess(ϕ, µ) rewrites the input formula ϕ into a simpler and

equi-satisfiable formula updating µ accordingly; if the resulting formula is

unsatisfiable, then it returns UNSAT.

Some examples of simplification techniques are BCP, detecting and inlin-

ing Boolean equivalences among literals, performing resolutions steps to

14

2.1. PROPOSITIONAL SATISFIABILITY

given pairs of clauses, detecting and dropping subsumed clauses.

Decision decide next branch(ϕ, µ) selects an unassigned literal l from the pre-

processedϕ according to some heuristic function, and adds it to the assign-

ment µ. The literal l is called decision literal end the number of decision

literals in µ after this operation is called decision level of l.

Modern CDCL solvers compute a score at the end of each branch privileg-

ing variables that occurs in recently-learned clauses.

Boolean Constraint Propagation boolean constraint propagation(ϕ, µ) itera-

tively deduces literals l deriving from the current assignment, and updates

ϕ and µ accordingly; this step is repeated until one of the following facts

happens:

• µ satisfies ϕ and the procedure ends returning SAT;

• µ falsifies some clause ψ of ϕ (conflicting clause) and the procedures

backtracks;

• no more literals can be deduced, so that the inner loop ends and a new

decision is performed.

BCP is based on the iterative application of unit propagation: if all but one

literals in a clause ψ are false, then the lonely unassigned literal l is added

to µ, all negative occurrences of l in other clauses are declared false and

all clauses with positive occurrences of l are declared satisfied. State-

of-art SAT solver benefits of extremely efficient implementations of BMC

(based on the two-watched-literal scheme [96]) and also other forms of

deductions and formula simplification, e.g. on-line equivalence reasoning

and variable and clause elimination.

Conflict Analysis analyze conflict detects the subset η of µ which caused the

conflict (called conflict set) and the decision level blevel to backtrack. Con-

flict analysis works as follows. Each literal is labelled with its decision

15

CHAPTER 2. BACKGROUND

level, that is, the literal corresponding to the nth decision and the literals

derived by unit-propagation after that decision are labelled with n; each

non-decision literal l in µ is also labelled by a link to the clause ψl causing

its unit-propagation (called the antecedent clause of l). When a clause ψ

is falsified by the current assignment (in this case we say that a conflict

occurs and ψ is the conflicting clause) a conflict clause ψ′ is computed

from ψ such that ψ′ contains only one literal lu which has been assigned

at the last decision level. ψ′ is computed starting from ψ′ = ψ by iter-

atively resolving ψ′ with the antecedent clause ψl of some literal l in ψ′

(typically the last-assigned literal in ψ′), until some stop criterion is met.

Some example follows: in the 1st-UIP Scheme the last-assigned literal in

ψ′ is always picked and the process stops as soon as ψ′ contains only one

literal lu assigned at the last decision level; in the last-UIP Scheme, lu must

be the last decision literal;

Backjumping and Learning If the computed blevel is equal to 0, then the pro-

cedure returns UNSAT since a conflict exists even without branching. Oth-

erwise, backtrack(blevel,ϕ, µ) adds the blocking clause ¬η to ϕ (learning)

and backtracks up to blevel (backjumping), popping out of µ all literals

whose decision level is greater than blevel, and updating ϕ and µ accord-

ingly.

Other techniques often implemented in CDCL-based SAT solvers are:

search restarts causing the procedure to restart itself. Notice that previously-

learned clauses are not deleted;

clause deletion policies to choose learned clauses which can be discharged

“safely” when no more necessary. This guarantees the use of polynomial

space without affecting the termination, correctness and completeness of

the procedure.

16

2.1. PROPOSITIONAL SATISFIABILITY

Modern CDCL SAT solvers often provide two important features:

stack-based incremental interface, by which it is possible to push/pop (the

blocks of clauses corresponding to) sub-formulas φi into a stack of formu-

las Φ
def

= {φ1, ...,φk}, and check incrementally the satisfiability of
∧k

i=1 φi.

The interface maintains the status of the search from one call to the other,

also storing learned clauses. Consequently, when invoked on Φ the solver

can reuse a clause C which was learned during a previous call on some Φ′

if C was derived only from clauses which are still in Φ (provided C was

not discharged in the meantime); in particular, if Φ′ ⊆ Φ, then the solver

can reuse all clauses learned while solving Φ′.

unsatisfiable-core extraction is the capability of CDCL SAT solvers, when Φ

is found unsatisfiable, to return the subset of formulas in Φ which caused

the unsatisfiability of Φ. Notice that such subset is not unique, and it is not

necessarily minimal1.

2.1.2 Sthocastic Local Search for SAT

Local search approach [53, 52] (see definition in §2.3) is widely used for solving

hard combinatorial search problems. The idea is to examine the search space of

a problem instance starting at some position and then iteratively moving from

the present position to a neighboring one, where each location has a relatively

small number of neighbors and moves are determined by decisions based on

local knowledge only. When LS algorithms make use of randomized choices

during both the initialization and the search process or of additional memory

for storing historical information, they are called Stochastic Local search (SLS)

algorithms. SLS algorithms are typically incomplete, however, in case of prob-

lems which are known to be solvable by nature or of optimization problems

1Φ is a minimal unsatisfiable core if Φ \ C is satisfiable for each clause C.

17

CHAPTER 2. BACKGROUND

where the goal is to find a solution of sufficiently high quality, the ability to

prove that no solution exists is not relevant.

SLS algorithms make use of an evaluation function for guiding the search

towards solutions. It maps search positions onto real numbers the solutions of a

given problem instance correspond to global minima of this function. However

they can get stuck in local minima (i.e. positions having no improving neigh-

bors) and plateau regions (i.e. regions not containing high-quality solutions)

of the search space causing the premature stagnation of the search. There are

many mechanisms for avoiding this, for example random restart which reini-

tializes the search if after a fixed number of steps (cutoff time) no solution has

been found, or diversification steps such as random moves.

Generally SLS algorithm are often advantageous if the knowledge of the

problem domain is rather limited and when relatively good solutions are re-

quired in a limited time, SLS algorithms returns the best solution found so far

whereas systematic algorithms usually cannot provide approximated solutions.

SLS algorithms have been successfully applied to the solution of many NP-

complete decision problems, including SAT. Typically SLS algorithms for SAT

work with a CNF input formula (namely ϕ) and share a common high-level

schema:

• initialization of the search by generating an initial truth assignment µ for

ϕ (typically at random);

• iteratively selection of one (or more) Boolean atom Ai of ϕ which is then

flipped within the current truth assignment µ.

The search terminates when µ satisfies the formula ϕ or when a given termina-

tion criterion is fulfilled. The main difference in SLS SAT algorithms is typi-

cally given by the evaluation function (e.g. the number of unsatisfied clauses of

ϕ under µ) and the termination criterion. But almost every SLS SAT algorithm

18

2.1. PROPOSITIONAL SATISFIABILITY

Algorithm 2 Schema of WalkSAT Algorithms

Require: ⟨ϕ, MAX TRIES, MAX FLIPS⟩
1: for i = 1 to MAX TRIES do

2: µ← initial truth assignment(ϕ)

3: for j = 1 to MAX FLIPS do

4: if (µ |= ϕ) then

5: return SAT

6: else

7: c← choose unsatisfied clause(ϕ)

8: µ← next truth assignment(ϕ, c)

9: end if

10: end for

11: end for

12: return UNKNOWN

use random restarts.

In this section we focus on WalkSAT, a popular family of SLS-based SAT

algorithms [53, 52].

WalkSAT Algorithms

The schema of WalkSAT algorithms is shown in Algorithm 2. It takes as

input a CNF formula ϕ and two integer constants MAX TRIES and MAX FLIPS.

Initially, initial truth assignment selects a complete truth assignment µ for the

variables of ϕ (line 2) according to some heuristic criterion (e.g. uniformly at

random). The search proceeds iteratively by selecting and flipping a variable in

µ using a two-stage process:

1. choose unsatisfied clause selects a currently-unsatisfied clause c ∈ ϕ ac-

cording to some heuristic criterion (e.g. uniformly at random) (line 7).

2. next truth assignment chooses one of the variables occurring in the pre-

viously selected clause c according to some mixed greedy/random score

function, and then flips it so that to generate another truth assignment

19

CHAPTER 2. BACKGROUND

(line 8).

The procedure terminates when a solution is found (line 5) or after MAX TRIES

sequences of MAX FLIPS variable flips without finding a model for ϕ (line 12).

Over the last ten years, several variants of the basic WalkSAT algorithm have

been proposed [83, 66, 88], which differ mainly for the different heuristics used

for the functions described above —in particular on the degree of greediness and

randomness and in the criteria used for selecting the variable to flip in c within

next truth assignment. One of the best performing WalkSAT-based algorithm

for SAT seems to be Adaptive Novelty+ [51, 88]. It adopts the Novelty+’s vari-

able selection heuristic, and it adjusts its degree of greediness according to the

search progress. Novelty+ deterministically chooses the variable to be flipped

from c depending on two mechanisms:

score function which computes the difference in the total number of satisfied

clauses a flip would cause,

memory which stores variable’s age, i.e. the number of search steps performed

since a variable was last flipped.

The variable selection heuristic works as follows:

1. if the variable with the highest score does not have minimal age among the

variables in c, then it is selected;

2. otherwise, it is selected with a probability 1 − p, where p is a parameter

(called noise setting). While in the remaining cases p, the variable is picked

uniformly at random (i.e. random walk).

The Adaptive Novelty+’s adaptive mechanism which changes the probabil-

ity of making greedy choices at runtime is based on the following idea. It starts

with a completely greedy search (p = 0) until a solution is found or stagnation

appears, in which case the noise setting p is increased and only once the stagna-

tion situation is overcome, p is gradually decreased. (We call these two phases

20

2.1. PROPOSITIONAL SATISFIABILITY

diversification and intensification respectively). Search stagnation is detected if

no progress in finding a solution has been observed over the last θ ×m search

steps, where m is the number of clauses of ϕ and θ is an input parameter. For

this reason, each time p changes, the current score function value is stored. Dur-

ing the search the noise setting is increased by p = p+(1−p)×φ and decreased

by p = p − p × φ/2, where φ is an input parameter; the asymmetry is due to

the fact that detecting search stagnation is computationally more expensive than

detecting search progress.

Trimming Variable Selection and Literal Commitment Strategy.

A few attempts have been made in order to enhance SLS algorithms with tech-

niques borrowed from CDCL solvers (e.g. [23, 12]). This thesis focuses on

the work of Belov and Stachniak [23], who propose two techniques that exploit

the search history to improve the variable selection process of the classic SLS

procedures for SAT. They modify the WalkSAT schema by adding a database

(DB) that represents a set of constraints that help to guide the search process. It

consists in:

• a partial truth assignment η that records assignments made by the local

search heuristic (namely η ⊆ µ);

• a set of clauses ψ obtained by storing selected unsatisfied-clauses (see line

7 of Algorithm 2).

The proposed techniques are inspired to clause learning and unit propagation,

which are widely used by modern SAT solvers working with partial truth as-

signments (see §2.1.1):

Trimming variable selection tries to prune the search by preventing the selec-

tion of variables whose flip will cause a conflict in the database. In partic-

ular, for every variable v belonging to the selected clause c, the procedure

21

CHAPTER 2. BACKGROUND

checks the satisfiability of ψ ∧ η′ by unit propagation, where η′ is obtained

from η by adding the (flipped) truth assignment of v under µ. If it is un-

satisfiable, the variable v cannot be flipped. When all variables cause a

conflict, the database is reset (i.e. η is set to ∅) so that any variable in c can

be chosen by the local search heuristic. Notice that, once the truth value

of a variable has been flipped, η is updated accordingly and the clause c is

added to the database.

Literal commitment strategy aims at exploiting the power of unit propaga-

tion inside SLS procedures that naturally work with total truth assignments

rather than partial ones. It iteratively deduces literals l in ψ deriving from

η (i.e. ψ ∧ η |= l) and updates the current total truth assignment µ accord-

ingly during a single search step.

2.2 Satisfiability Modulo Theories

In this section we illustrate the background on the Satisfiability Modulo The-

ories (SMT) problem. We first recall theoretical concepts and terminology in

order to provide the definition of the problem; then we present the main ap-

proaches for solving it.

2.2.1 The Satisfiability Modulo Theories Problem

In what follows we recall some basic notions and terminology about first-order

theories. We assume the standard syntax and semantics of first-order logic with

equality as defined, e.g., in [91].

Consider a first-order signature Σ containing function and predicate symbols

with their arities, and a set of variables V . A constant is a 0-ary function symbol

c. A Boolean atom is a 0-ary predicate symbol A. A Σ-term is either a variable

belonging to V or it is defined by applying function symbols in Σ to Σ-terms.

22

2.2. SATISFIABILITY MODULO THEORIES

If t1, . . . , tn are Σ-terms and P is a predicate symbol, then P (t1, . . . , tn) is a Σ-

atom. If t1 and t2 are two Σ-terms, then the Σ-atom t1 = t2 is called a Σ-equality

and ¬(t1 = t2) (also written as l ̸= r) is called a Σ-disequality. A Σ-formula

ϕ is built in the usual way out of the universal and existential quantifiers ∀, ∃,
the Boolean connectives ∧,¬ and Σ-atoms. We apply the standard Boolean

abbreviations, e.g. “φ1 ∨ φ2” for “¬(¬φ1 ∧ ¬φ2)”, “φ1 → φ2” for “¬(φ1 ∧
¬φ2)”, “⊤” [resp. “⊥”] for the true [resp. false] constant. A Σ-literal is

either a Σ-atom or its negation (i.e. a positive literal or a negative literal). By

notation, we use the capital letters Ai and Bi to represent Boolean atoms, and

the Greek letters α, β to represent Σ-atoms. A Σ-formula is quantifier-free if it

does not contain quantifiers, and a sentence if it has no free variables. As for

propositional formulas, a quantifier-free formula is in CNF if it is written as a

conjunction of disjunctions of literals.

We write Γ |= φ to denote that the formula φ is a logical consequence of the

(possibly infinite) set Γ of formulas. A Σ-theory is a set of first-order sentences

with signatureΣ. We consider theories which are first-order theories with equal-

ity. This means the equality symbol = is a predefined predicate and it is always

interpreted as the identity on the underlying domain (so it will not be included

in any signature Σ considered in this thesis). As a result, = is interpreted as a

relation which is reflexive, symmetric, transitive, and it is also a congruence.

We call the Σ-structure I a model of a Σ-theory T if I satisfies every sen-

tence in T . A Σ-formula is satisfiable in T (or T -satisfiable) if it is satisfiable

in a model of T . A Σ-formula is valid in T (or T -valid) if it is satisfiable in

all models of T . We write Γ |=T φ to intend T ∪ Γ |= φ. Two Σ-formulae φ

and ψ are T -equisatisfiable if and only if φ is T -satisfiable if and only if ψ is

T -satisfiable.

Satisfiability Modulo Theory (SMT(T) for short) is the problem of deciding

the T -satisfiability of Σ-formulas, for some background theory T 2.

2It is easy to see that SMT(T) subsumes SAT.

23

CHAPTER 2. BACKGROUND

In this thesis we only consider quantifier-free Σ-formulas on some Σ-theory

T (notice that the variables are implicitly existentially quantified). Therefore,

when we refer to SMT(T) we mean the satisfiability problem in T of quantifier-

free formulas. As it is frequent practice in SAT and SMT, with a little abuse

of terminology we refer to predicates of arity zero (i.e. propositional atoms) as

Boolean variables, uninterpreted constants as Theory variables (or T -variables)

and free constants xi in quantifier-free linear arithmetic atoms (e.g., (3x1−2x2+

x3 ≤ 3)) as variables.

Combination of Theories

We briefly present some background on SMT(T) when T is a combination of

theories.

We call a conjunction of T -literals in a theory T convex if and only if for each

disjunction
∨n

I=1 xi = yi (where xi, yi are variables and i = 1, . . . , n) we have

that Γ |=T
∨n

I=1 xi = yi if and only if Γ |=T xi = yi for some i ∈ {1, . . . , n};

A theory T is convex iff all the conjunctions of literals are convex in T . We call

a theory T stably-infinite if and only if for each T -satisfiable formula ϕ, there

exists a model of T whose domain is infinite and satisfies ϕ.

Consider two disjoint signatures Σ1 and Σ2 (i.e. Σ1 ∩ Σ2 = ∅) and a theory

Ti in Σi for i = 1, 2 s.t. Σ
def

= Σ1∪Σ2 and T def

= T1∪T2. We refer to SMT(T1∪T2)
as the problem of discovering the T1 ∪ T2-satisfiability of Σ1 ∪ Σ2-formulas.

A Σ1 ∪ Σ2-term t is an i-term if and only if either it is a variable or it has

the form f(t1, . . . , tn), where f is in Σi. (Thus a variable is both a 1-term and

a 2-term.) A non-variable subterm s of an i-term t is alien if s is a j-term, and

all superterms of s in t are i-terms, where i, j ∈ {1, 2} and i ̸= j. An i-term is

i-pure if it does not contain alien subterms. An atom (or a literal) is i-pure if it

contains only i-pure terms and its predicate symbol is either equality or in Σi.

A Σ1 ∪ Σ2-formula ϕ is called pure if every atom occurring in the formula is

i-pure for some i, j ∈ {1, 2}. Notice that ϕ is pure if each atom belongs to only

24

2.2. SATISFIABILITY MODULO THEORIES

one theory Ti.
Consider a pure Σ1 ∪ Σ2-formula ϕ, a variable in ϕ is an interface variable

for ϕ if and only if it occurs in both 1-pure and 2-pure atoms of ϕ. An equality

(vi = vj) is an interface equality for ϕ if and only if vi, vj are interface variables

for ϕ. We often refer to the interface equality (vi = vj) as “eij”.

Truth Assignments and Propositional Satisfiability in T

We consider a generic quantifier-free decidable first-order theory T on a signa-

ture Σ. From now on, we will often omit the “Σ-” prefix from term, formula,

theory, models, etc. We will also use the prefix “T -” to intend “in the theory T ’

(e.g. we call a “T -formula” a formula in T , “T -model” a model in T , etc.).

We call a truth assignment µ for a T -formula ϕ a truth value assignment to

the T -atoms of ϕ. As for propositional satisfiability (see §2.1), a truth assign-

ment is total if it assigns a value to all atoms in ϕ, partial otherwise. Notice that

syntactically identical instances of the same T -atom are always assigned iden-

tical truth values; syntactically different T -atoms, e.g., (t1 ≥ t2) and (t2 ≤ t1),

are treated differently and may thus be assigned different truth values.

We use a superscripted formula ϕp for denoting the Boolean abstraction of

a SMT formula ϕ, which maps Boolean variables into themselves and theory

T -atoms into fresh Boolean atoms and distributes with sets and Boolean con-

nectives. The formula ϕ is said to be the refinement of ϕp. Given a T -formula

ϕ, the formula ϕp obtained by rewriting each T -atom in ϕ into a fresh atomic

proposition is the Boolean abstraction of ϕ, and ϕ is the refinement of ϕp. No-

tationally, we indicate by ϕp and µp the Boolean abstraction of ϕ and µ, and by

ϕ and µ the refinements of ϕp and µp respectively.

We say that a total truth assignment µ propositionally satisfies a formula ϕ,

written µ |=p ϕ, if µp |= ϕp. We say that a partial truth assignment µ propo-

sitionally satisfies ϕ if and only if all the total truth assignments for ϕ which

extend µ propositionally satisfy ϕ. (Thus, if not specified, when dealing with

25

CHAPTER 2. BACKGROUND

propositional T -satisfiability we do not distinguish between total and partial

assignments.) If we consider a T -formula ϕ as a propositional formula in its

atoms, then |=p is the standard satisfiability in propositional logic (see §2.2).

With a little abuse of notation, we say that µp is T -(un)satisfiable if and only if

µ is T -(un)satisfiable.

We often represent a truth assignment µ as a conjunction of T -literals l1 ∧
. . .∧ ln or a set of T -literals {l1, . . . , ln}. We adopt the same notation described

in §2.2, and also use the convention s.t. if l is a negative Σ-literal ¬β, then by

“¬l” we conventionally mean β rather than ¬¬β. We sometimes write a clause

in the form of an implication (as in §2.1).

We say that a collection M := {µ1, . . . , µn} of (possibly partial) assign-

ments propositionally satisfying ϕ is complete if and only if, for every total

assignment η s.t. η |=p ϕ, there exists µj ∈ M s.t. µj ⊆ η. Furthermore, we

can see M as a compact representation of the whole set of total assignments

propositionally satisfying ϕ.

Theorem 2.1 ([79]). Let ϕ be a T -formula and let M := {µ1, . . . , µn} be a

complete collection of (possibly partial) truth assignments propositionally sat-

isfying ϕ. Then, ϕ is T -satisfiable if and only if µj is T -satisfiable for some

µj ∈M.

2.2.2 Theory Solvers

Consider some first-order theory T . A theory solver for T , T -Solver, is

any procedure able to decide the T -satisfiability (T -consistency) of a conjunc-

tion/set µ of T -literals. Modern T -Solvers support several features which are

relevant to SMT(T). The most important are described in what follows.

Model Generation When a T -Solver is invoked on a T -satisfiable assignment

µ, it may return a T -model I for µ witnessing its consistency.

26

2.2. SATISFIABILITY MODULO THEORIES

Conflict Set Generation When a T -Solver is invoked on a T -unsatisfiable as-

signment µ, it may return the set/conjunction η of T -literals in µ which

was found T -unsatisfiable; η is called a T -conflict set, and ¬η a T -conflict

clause. We say that η is a minimal theory conflict set if all strict subsets

of η are T -consistent. A key efficiency issue for T -Solver is the ability to

produce small (possibly minimal) conflict sets.

Incrementality and Backtrackability T -Solvers are often invoked sequentially

on incremental assignments, in a stack-based manner. For this reason, a

crucial factor for efficiency of T -Solvers is that of being incremental and

backtrackable.

• Incremental means that a T -Solver remembers its computation status

from one call to the other, so that, whenever it is given in input an

assignment µ1 ∪ µ2 such that µ1 has just been proved T -satisfiable, it

avoids restarting the computation from scratch by restarting the com-

putation from the previous status.

• Backtrackable means that it is possible to undo steps and return to a

previous status on the stack in an efficient manner.

Deduction of Unassigned Literals When a T -Solver is invoked on a T -satisfiable

assignmentµ, it may return some unassigned T -literal l ̸∈ µ s.t. {l1, ..., ln} |=T

l, where {l1, ..., ln} ⊆ µ and l is a literal on a not-yet-assigned atom in the

input formula. We call (
∨n

i=1¬li∨ l) a T -deduction clause. Notice that T -

conflict and T -deduction clauses are valid in T . We call them T -lemmas.

We say that T -Solver is deduction-complete if it can perform all possible

such deductions, or say that no such deduction can be performed.

27

CHAPTER 2. BACKGROUND

Theory of Linear Arithmetic and LA-solvers

The Theory of Linear Arithmetic on the rationals (LA(Q)) and on the integer

(LA(Z)) is one of the theories of main interest in SMT. It is a first-order theory

whose atoms are of the form (a1x1 + . . . + anxn ⋄ b) (i.e. (ax ⋄ b)) s.t ⋄ ∈
{=, ̸=, <,>,≤,≥,}. Difference logic on Q (DL(Q)) is an important sub-theory

of LA(Q), in which all atoms are in the form (x1 − x2 ⋄ b).
Efficient incremental and backtrackable procedures have been conceived in

order to decide LA(Q) [41], LA(Z) [45] and DL [36]. In particular, for

LA(Q) most SMT solvers implement variants of the simplex-based algorithm

by Dutertre and de Moura [41] which is specifically designed for integration in

a lazy SMT solver, since it is fully incremental and backtrackable and allows

for aggressive T -deduction.

Another benefit of such algorithm is that it handles strict inequalities directly.

This is based on the following Lemma.

Lemma 2.1 (Lemma 1 in [41]). A set of LA(Q) atoms Γ containing strict in-

equalities S = {t1 > 0, . . . , tn > 0} is satisfiable iff there exists a rational

number δ > 0 such that Γδ
def

= (Γ ∪ Sδ) \ S is satisfiable, s.t. Sδ
def

= {t1 ≥
δ, . . . , tn ≥ δ}.

The lemma states that it is possible to replace all strict inequalities by non-

strict ones if a small enough δ is known. The idea of [41] is that of treating

the infinitesimal parameter δ symbolically instead of explicitly computing its

value. Strict bounds (x < b) are replaced with weak ones (x ≤ b− δ), and the

operations on bounds are adjusted to take δ into account.

More specifically, they rewrite the original linear problem S into a new one

S ′ where bounds and variable assignments range over pairs of rationals Qδ. The

intended meaning of a pair ⟨v, vδ⟩ ∈ Qδ is v+ δvδ and the following operations

28

2.2. SATISFIABILITY MODULO THEORIES

are defined in Qδ:

⟨v, vδ⟩+ ⟨u, uδ⟩
def

= ⟨v + u, vδ + uδ⟩
a⟨v, vδ⟩

def

= ⟨av, avδ⟩
⟨v, vδ⟩ ≤ ⟨u, uδ⟩

def

= (v < u) or ((v = u) and (vδ ≤ uδ))

Thus, if the set of inequalities ⟨ci, ki⟩ ≤ ⟨di, hi⟩ ∈ S ′ is satisfiable in Qδ, then

there is a positive rational number δ0 s.t. the inequalities ci + kiϵ ≤ di + hiϵ are

satisfied for any ϵ s.t. 0 < ϵ < δ0. The solution β to the original problem S can

be determined starting from the satisfying assignment β ′ for S ′ by:

1. computing the value of δ0 as follows

δ0 = min

{
di − ci
ki − hi

| ci < di and ki > hi

}

if the set on the right-hand side is nonempty or setting δ0 to an arbitrary

positive rational otherwise,

2. using δ0 for calculating the value of every pair ⟨v, vδ⟩ ∈ β ′ as v + δ0vδ.

2.2.3 Lazy SMT Solvers

The most popular approach to SMT(T) is called lazy and is based on combining

a CDCL-based SAT solver (see §2.1) and one (or more) T -Solver (s), respec-

tively handling the Boolean and the theory-specific components of reasoning.

More specifically, the SAT solver enumerates truth assignments which satisfy

the Boolean abstraction of the input formula, and the T -Solver checks the con-

sistency in T of the set of literals corresponding to the assignments enumerated.

We can partition lazy SMT solvers into two main categories:

offline solvers: a CDCL SAT solver is used as black-box and re-invoked from

scratch each time an assignment is found T -unsatisfiable;

inline solvers: the CDCL-schema of a SAT solver is modified to be used di-

rectly as an enumerator.

29

CHAPTER 2. BACKGROUND

Algorithm 3 Offline Conflict-Driven Clause Learning SMT Solver

Require: ϕ

1: while CDCL-solver(ϕp, µp) = SAT do

2: if T -solver(µ) = SAT then

3: return SAT

4: end if

5: ϕp ← ϕp ∧ ¬µp

6: end while

7: return UNSAT

Offline SMT Solvers

The Algorithm 3 shows a basic schema of a typical offline SMT solver. The

procedure takes as input a T -formula ϕ, whose Boolean abstraction ϕp is given

as input to CDCL-solver, which enumerates truth assignments µp
i for ϕp. If a

new µp is found, its corresponding list of T -literals µ is fed to T -Solver (line 2).

If µ contains also Boolean literals, then they are dropped because they do not

take part in the T -satisfiability of µ. If the Boolean refinement of µp is found

T -satisfiable, then ϕ is T -consistent and the procedure returns SAT (line 3) pos-

sibly returning also the model I produced. Otherwise, ¬µp is added as a clause

to ϕp (line 5), preventing CDCL-solver from finding the same assignment more

than once, and CDCL-solver is restarted from scratch on the resulting formula. If

no T -satisfiable truth assignment is found by CDCL-solver, then the procedure

returns UNSAT (line 7).

More efficiently, if the T -Solver is able to return the conflict set η which

caused the T -inconsistency of µ, ¬ηp is added as a clause to ϕ instead of

¬µp (typically the former set is smaller than the latter, drastically reducing the

search).

Inline SMT Solvers

The basic schema of a typical inline SMT solver is presented in Algorithm 4

30

2.2. SATISFIABILITY MODULO THEORIES

Algorithm 4 Inline Conflict-Driven Clause Learning SMT Solver

Require: ⟨ϕ, µ⟩
1: if T -preprocess(ϕ, µ) = CONFLICT then

2: return UNSAT

3: end if

4: loop

5: T -decide next branch(ϕp, µp)

6: loop

7: res← T -deduce(ϕp, µp)

8: if res = SAT then

9: return SAT

10: else if res = CONFLICT then

11: blevel← T -analyze conflict(ϕp, µp)

12: if blevel = 0 then

13: return UNSAT

14: else

15: T -backtrack(blevel,ϕp, µp)

16: end if

17: else

18: break

19: end if

20: end loop

21: end loop

and mainly resembles the schema of a CDCL SAT Solver shown in Algorithm 1.

The procedure takes as input a T -formula ϕ (in CNF) and an (initially empty)

set of T -literals µ. It behaves as follows.

Preprocessing T -preprocess rewrite the input formula ϕ into a simpler one and

updates µ accordingly preserving the T -satisfiability of ϕ ∧ µ. If it finds

some conflict, then the procedure returns UNSAT. T -preprocess combines

Boolean preprocessing (see §2.1.1) with theory-specific rewriting steps on

the T -literals of ϕ, e.g. normalizing T -atoms and static learning (see [79]

for details).

31

CHAPTER 2. BACKGROUND

Decision T -decide next branch resembles decide next branch in the CDCL schema

(see §2.1.1), but it may also consider the semantics in T of the literals to

select.

Deduction T -deduce performs similarly to boolean constraint propagation in

the CDCL schema: it iteratively deduces Boolean literals lp which derive

propositionally from the current assignment (i.e., s.t. ϕp ∧ µp |=p lp) and

updates ϕp and µp accordingly, until one of the following facts happens:

1. µp propositionally violates ϕp (i.e. µp ∧ ϕp |= ⊥): T -deduce be-

haves like boolean constraint propagation in CDCL schema, return-

ing CONFLICT.

2. µp propositionally satisfies ϕp (i.e. µp |=p ϕp): T -deduce invokes

T -Solver on µ. If the latter returns SAT, then T -deduce returns SAT;

otherwise, T -deduce returns CONFLICT.

3. no more literals can be deduced: T -deduce returns UNKNOWN.

Important enhancements in T -deduce can be implemented invoking the

T -Solver when an assignment µ is still under construction:

early pruning if µ is T -unsatisfiable (i.e. T -Solver returns UNSAT) then

T -deduce returns CONFLICT and the procedure backtracks, without

exploring the (possibly many) extensions of µ;

T -propagation if µ is T -satisfiable (i.e. T -Solver returns SAT) and the T -

Solver is able to perform deductions of unassigned literals {l1, ..., ln} |=T

l, then T -deduce can iteratively deduce literals l which can be unit-

propagated, and the T -deduction clause (
∨n

i=1¬li ∨ l) can be used in

backjumping and learning.

Conflict Analysis T -analyze conflict extends analyze conflict in CDCL schema:

32

2.2. SATISFIABILITY MODULO THEORIES

• if the conflict produced by deduce is caused by a Boolean failure

(case (1) above), then T -analyze conflict conflict produces a Boolean

conflict set ηp and the corresponding value of blevel, as described in

§2.1.1;

• if the conflict is caused by a T -inconsistency revealed by T -Solver

(case (2) or (3) above), then T -analyze conflict conflict produces as

a conflict set the Boolean abstraction ηp of the theory conflict set η

produced by T -Solver, or computes a mixed Boolean+theory conflict

set by a backward-traversal of the implication graph starting from the

conflicting clause ¬ηp (see §2.1.1). If T -Solver is not able to return a

theory conflict set, the whole assignment µ may be used, after remov-

ing all Boolean literals from µ.

T -Backjumping and T -Learning Once the conflict set ηp and blevel have been

computed, T -backtrack behaves analogously to backtrack in CDCL schema:

it adds the clause ¬ηp to ϕp and backtracks up to blevel.

Other relevant enhancements for CDCL SMT Solvers are:

Pure-literal filtering if some LA(Q)-atoms occur only positively [resp. neg-

atively] in the original formula (learned clauses are ignored), then we can

safely drop every negative [resp. positive] occurrence of them from the

assignment µ to be fed into T -Solver [79]. The benefits of this action are:

1. reduction of the workload for the T -Solver which receives smaller sets

of T -literals;

2. increase in the probability of finding a T -consistent satisfying as-

signment by removing “useless” T -literals which may cause the T -

inconsistency of µ.

Ghost-literal filtering T -literals occurring only in clauses which have already

been satisfied (we call them ghost T -literals) in µ, increase the work of

33

CHAPTER 2. BACKGROUND

the T -Solver and may affect the T -satisfiability of µ forcing unneces-

sary backtracks and causing unnecessary Boolean search and hence useless

calls to the T -Solver. Thus, every occurrence of ghost T -literals may be

safely removed from µ, e.g. by monitoring the satisfaction of the (original)

clauses in ϕ in which the selected literal occurs.

Static learning it detects a priori short and “obviously T -inconsistent” assign-

ments to T -atoms in ϕ (typically pairs or triplets), e.g. incompatible value

assignments ({x = 0, x = 1}), transitivity constraints ({(x− y ≤ 2), (y−
z ≤ 4),¬(x − z ≤ 7)}), equivalence constraints ({(x = y), (2x − 3z ≤
3),¬(2y − 3z ≤ 3)}).

2.2.4 Lazy SMT for Combinations of Theories

Many practical applications of SMT require a combination of two or more the-

ories T1, . . . , Tn rather than just one. Two main approaches to the development

of lazy SMT(T) solvers for combination of theories3 have been proposed:

Nelson-Oppen (N.O.) Combination: Nelson and Oppen [69, 72] were the pi-

oneers in this field (together with Shostak [85]) and established the theoret-

ical foundations onto which most modern combined procedures are based

on. They also proposed a general-purpose procedure for integrating Ti-
solvers into one combined T -solver which is integrated into a SMT solver

according to the CDCL schema.

Delayed Theory Combination (DTC): it is a combination procedure (proposed

by Bozzano et al. [27]) which builds a combined SMT solver directly by

exploiting the CDCL schema also for theory combination.

Modern SMT(T) solver are built on top of variants or evolutions of these two

approaches [17, 39, 55, 27].
3For simplicity we often refer to combinations of two theories T1 ∪ T2 only; however, all the discourse can be

easily generalized to combination of many theories.

34

2.2. SATISFIABILITY MODULO THEORIES

Nelson-Oppen Theory Combination

Consider two decidable stably-infinite theories with equality T1 and T2 and dis-

joint signatures Σ1 and Σ2 (often called Nelson-Oppen theories) and consider a

pure conjunction of T1 ∪ T2-literals µ
def

= µT1 ∧ µT2 s.t. µTi is i-pure for each i.

Nelson and Oppen’s key observation is that µ is T1 ∪ T2-satisfiable if and only

if it is possible to find two satisfying interpretations I1 and I2 s.t. I1 |=T1 µT1

and I2 |=T2 µT2 which agree on all equalities on the shared variables.

Overall, the T1 ∪ T2-satisfiability problem of a set of pure literals µ is re-

duced to the problem of finding an equivalence relation on the shared variables

which is consistent with both pure parts of µ. The condition of having only

pure conjunctions as input allows to partition the problem into two independent

Ti-satisfiability problems µTi ∧ µe. This condition is easy to address, because

every non-pure T1∪T2-formula ϕ can be converted into a T1∪T2-equisatisfiable

and pure one by recursively replacing each alien subterm t by a new variable

vt and conjoining the equality vt = t with ϕ (this process is called purification

[68]). The condition of having stably-infinite theories is sufficient to guarantee

enough values in the domain to allow the satisfiability of every possible set of

disequalities one may encounter.

The combined decision procedure T1 ∪ T2-solver works by performing a

structured interchange of interface equalities (disjunctions of interface equal-

ities if Ti is non-convex) which are inferred by either Ti-solver and then prop-

agated to the other, until convergence is reached. Each Ti-solver must be eij-

deduction complete, i.e. it must be able to derive the (disjunctions of) interface

equalities eij which are entailed by its current facts ϕ.

If the theories are convex, then the T1 ∪ T2-solver receives from the CDCL

SAT solver a pure set of literals µ, and partitions it into µT1 ∪ µT2, s.t. µTi is

i-pure, and feeds each µTi to the respective Ti-solver. Each Ti-solver, in turn:

1. checks the Ti-satisfiability of µTi ,

35

CHAPTER 2. BACKGROUND

2. deduces all the interface equalities deriving from µTi ,

3. passes them to the other T -solver, which adds it to his own set of literals.

This process is repeated until either one Ti-solver detects inconsistency (µT1 ∪
µT2 is T1 ∪ T2-unsatisfiable), or no more eij-deduction is possible (µT1 ∪ µT2 is

T1 ∪ T2-satisfiable).

If the theories are non-convex, then the two solvers need to exchange ar-

bitrary disjunctions of interface equalities. As each Ti-solver can handle only

conjunctions of literals, the disjunctions must be managed by means of case

splitting and of backtrack search. Thus, the N.O. procedure must explore a

number of branches to check the consistency of a set of literals which depends

on how many disjunctions of equalities are exchanged at each step: if the current

set of literals is µ, and one of the Ti-solver sends the disjunction
∨n

k=1 = (eij)k

to the other, the latter must further investigate up to n branches to check the

consistency of each of the µ ∪ (eij)k sets separately.

Delayed Theory Combination

Delayed Theory Combination (DTC) is based on the Nelson and Oppen’s for-

mal framework and thus considers signature-disjoint stably-infinite theories with

their respective Ti-solvers, and pure input formulas. No assumption is made

about the deduction capabilities of the Ti-solvers.

Each of the two Ti-solvers interacts directly and only with the CDCL SAT

solver, so that there is no direct exchange of information between the Ti-solvers.

The CDCL SAT solver is instructed to assign truth values not only to the atoms

of ϕ, but also to the interface equalities eij’s. Consequently, each assignment

enumerated by the SAT solver µp is partitioned into three components µp
T1, µ

p
T2

and µp
e, s.t. each µTi is the set of i-pure literals and µe is the set of interface

(dis)equalities in µ, so that each µTi ∪ µe is passed to the respective Ti-solver.

An implementation of DTC is based on modern CDCL SMT solvers whose

36

2.2. SATISFIABILITY MODULO THEORIES

schema is shown in Algorithm 4 in §2.2.3. Each of the two Ti-solvers interacts

with the CDCL engine by exchanging literals via the assignment µ in a stack-

based manner. The Algorithm 4 in §2.2.3 is modified to the following extents:

1. The CDCL solver must assigns truth values not only to the atoms in ϕ, but

also to the interface equalities not occurring in ϕ (the Boolean abstraction

and the Boolean refinement are modified accordingly).

2. T -decide next branch is modified to select also interface equalities eij’s

not occurring in the formula yet, after the current assignment proposition-

ally satisfies ϕ.

3. T -deduce is modified to work as follows: for each Ti, µTi ∪ µe, is fed to

the respective Ti-solver. If both return SAT, then T -deduce returns SAT,

otherwise it returns CONFLICT.

4. T -analyze conflict and T -backtrack are modified so that to use the conflict

set returned by one Ti-solver for T -backjumping and T -learning; such

conflict sets may contain interface (dis)equalities.

5. Early-pruning and T -propagation are performed: if one Ti-solver performs

the eij-deduction µ∗ |=Ti
∨k

j=1 ej s.t. µ∗ ⊆ µTi ∪ µe, each ej being an

interface equality, then the Boolean abstraction of the deduction clause

µ∗ →
∨k

j=1 ej is learned.

6. If both Ti-solvers are eij-deduction complete, then an assignment µ which

propositionally satisfies ϕ is found Ti-satisfiable for both Ti’s, and neither

Ti-solver performs any eij-deduction from µ, then the procedure stops re-

turning SAT.

In short, in DTC the embedded CDCL engine not only enumerates truth

assignments for the atoms of the input formula, but it also assigns truth values

for the interface equalities that the T -solver’s are not capable of inferring, and

37

CHAPTER 2. BACKGROUND

handles the case-split induced by the entailment of disjunctions of interface

equalities in non-convex theories. The rationale is to exploit the full power of

a modern CDCL engine by delegating to it part of the heavy reasoning effort

previously due to the Ti-solvers.

2.3 Linear Generalized Disjunctive Programming

In this section we provide the necessary background on Linear Generalized Dis-

junctive Programming. We start from recalling the classic Linear Programming,

which is effectively applied for addressing more complex problems; we proceed

by describing Mixed Integer Linear Programming, and Disjunctive Program-

ming which inspired it and provide approaches for solving it.

2.3.1 Linear Programming

Linear Programming (LP) is the problem of optimizing a linear function over a

system of inequalities, formally written as:

min{cx | Ax ≥ b,x ≥ 0} (2.1)

where A is a matrix, c and b are constant vectors and x a vector of rational

variables. The LP problem is solved by a variety of methods, such as the well-

known simplex method developed by Dantzig [37] and the more recent interior-

point methods; whereas the former searches for solutions on the boundary of

the constraints set trying to improve the value of the objective function until the

optimal solution is found, the latter searches for solutions in the interior of the

constraints set, and only at the end of the search they jump to its boundary. We

refer the reader to [26] for details interior-point methods. Although limited to

linear inequalities with continuous variables and convex4 constraints sets, LP is

practically used as relaxation method [61].
4A shape or set is convex if for any two points that are part of the shape, the whole connecting line segment is

also part of the shape.

38

2.3. LINEAR GENERALIZED DISJUNCTIVE PROGRAMMING

LP can be seen as a special case of convex optimization [26], a class of opti-

mization problems of the form

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, . . . , n
(2.2)

where the functions fi : Qn ← Q are convex5. Convex optimization prob-

lems are effectively solved by interior-point methods and can be applied to non-

convex problems. For instance, they can be used for computing upper and lower

bounds on the optimal solution quality, and as relaxation methods by replacing

non-convex constraints with looser, but convex, constraints.

2.3.2 Mixed Integer Linear Programming

Mixed Integer Linear Programming (MILP) is an extension of Linear Program-

ming (LP) involving both discrete and continuous variables [61]. MILP prob-

lems have the following form:

min{cx : Ax ≥ b,x ≥ 0,xj ∈ Z ∀j ∈ I} (2.3)

that is the form of a LP problem augmented with an integrality requirement on

the x variables in the set I . We call a LP relaxation a MILP problem where the

integrality constraint on the variables xj, for all j ∈ I , is dropped.

Special cases of MILP are:

• Integer Linear Programming (ILP), which refers to a MILP problem in

which all variables are constrained to be integers;

• 0-1 Mixed Linear Programming, which is a special case of MILP where

non-rational variable are restricted to be binary.

5A function f is convex if it satisfies f(αx + βy) ≤ αf(x) + βf(y) for all x, y ∈ Qn and all α,β ∈ Q with

α+ β = 1 and α ≥ 0, β ≥ 0.

39

CHAPTER 2. BACKGROUND

A large variety of techniques and tools for MILP are available, mostly based

on efficient combinations of LP, branch-and-bound search mechanism and cutting-

plane methods, resulting in a branch-and-cut approach proposed by Padberg

and Rinaldi [73].

Branch-and-bound search In its basic version of Land and Doig [57], it it-

eratively partitions the solution space of the original MILP problem into

subproblems and solves their LP relaxation until all variables are integral

in the LP relaxation. The solutions that are infeasible in the original prob-

lem guide the search in the following way:

• if the optimal solution of a LP relaxation is greater than or equal to

the optimal solution found so far, the search backtracks, since there

cannot exist a better solution;

• if a variable xj is required to be integral in the original problem, the

rounding of its value a in the LP relaxation suggests how to branch by

requiring xj ≤ ⌊a⌋ in one branch and xj ≥ ⌊a⌋+ 1 in the other.

Cutting planes MILP problems can be solved by simply finding the convex

hull6 of its (mixed-)integer solutions. The cutting plane algorithm was

proposed by Gomory [44] for solving IP and requires to interactively solve

the separation problem: given a MILP problem and a solution x∗ of the

LP relaxation which is not feasible for it, its goal is to find a linear in-

equality ax ≥ b which is satisfied by all feasible solutions of the MILP

problem, while it is violated by x∗, i.e. ax∗ < b. Any inequality solving

the separation problem is called a cutting plane (or cut for short).

Cutting planes (e.g. Gomory mixed-integer and lift-and-project cuts, see

[61]) can be inferred and added to the original MILP problem and its sub-

problems in order to cut away non-integer solutions of the LP relaxation

6For any subset C of the plane (e.g. set of points, rectangle, simple polygon), its convex hull is the smallest

convex set that contains C.

40

2.3. LINEAR GENERALIZED DISJUNCTIVE PROGRAMMING

and obtain a tighter relaxation (which better approximates the convex hull).

Modern MILP exploits effective evolutions of cutting planes, branching heuris-

tics and preprocessing (see e.g. [61] for details on characteristics of current

MILP solvers).

Notice that SAT techniques have also been incorporated into these proce-

dures for MILP (see [4]).

2.3.3 Disjunctive Programming

Disjunctive Programming (DP) problems are LP problems where linear con-

straints are connected by the logical operations of conjunction and disjunction

(paradigm proposed by Balas [13]). Typically, the constraint set is expressed by

a disjunction of linear systems:

∨

i∈I
(Aix ≥ bi) (2.4)

or, alternatively, as:

(Ax ≥ b) ∧
t
∧

j=1

∨

k∈Ij

(ckx ≥ dk) (2.5)

where Ax ≥ b consists of the inequalities common to Aix ≥ bi for i ∈ I , Ij

for j = 1, . . . , t contains one inequality of each system Aix ≥ bi and t is the

number of sets Ij having this property. DP problems are effectively solved by

the lift-and-project approach, which combines a family of cutting planes, called

lift-and-project cuts, and the branch-and-bound schema (see, e.g., [15]).

It is easy to see that MILP is a specialization of DP. Given a MILP problem

(as in Equation 2.3) having the condition that variable xj ∈ I is constrained

to be integer in the range [0, n], we can re-write the integrality condition of the

MILP problem as a disjunction of constraints
∨n

j=0(xi = j).

41

CHAPTER 2. BACKGROUND

Disjunctive Programming has given very important contributions for Integer

Linear Programming and 0-1 Mixed Linear Programming, that have been so far

its main application (see, e.g., [14, 15, 16]):

2.3.4 Linear Generalized Disjunctive Programming

Closest to our domain is Linear Generalized Disjunctive Programming (LGDP),

a generalization of DP which has been proposed by Raman and Grossmann in

[75] as an alternative model to the MILP problem. Unlike MILP, which is based

entirely on algebraic equations and inequalities, the LGDP model allows for

combining algebraic and logical equations with Boolean propositions through

Boolean operations, providing a much more natural representation of discrete

decisions. Current approaches successfully address LGDP by reformulating

and solving it as a MILP problem [75, 93, 77, 78]; these reformulations focus

on efficiently encoding disjunctions and logic propositions into MILP, so as to

be fed to an efficient MILP solver like CPLEX.

The general formulation of a LGDP problem is the following [75]:

min
∑

∀k∈K zk + dx

s.t. Bx ≤ b

∨j∈Jk

[Y jk

Ajkx ≥ ajk

zk = cjk

]

∀k ∈ K (2.6)

φ

0 ≤ x ≤ e

zk ∈ R1
+, Y

jk ∈ {True, False} ∀j ∈ Jk, ∀k ∈ K

where x is a vector of rational variables, z is a vector representing the cost

assigned to each disjunction and cjk are fixed charges, e is a vector of upper

bounds for x and Y jk are Boolean variables. Each disjunction k ∈ K is com-

posed by two or more disjuncts j ∈ Jk that contain a set of linear constraints

42

2.3. LINEAR GENERALIZED DISJUNCTIVE PROGRAMMING

Ajkx ≥ ajk, where (Ajk, ajk) is a mjk × (n + 1) matrix, for all j ∈ Jk and

k ∈ K , that are connected by the logical OR operator. Boolean variables Y jk

and logic propositions φ in terms of Y jk (expressed in Conjunctive Normal

Form) represents discrete decisions. Only the constraints inside the disjuncts

j ∈ Jk, where Y jk is true, are enforced. Bx ≤ b, where (B,b) is a m×(n+1)

matrix, are constraints that must hold regardless of disjuncts.

LGDP problems can be solved using MILP solvers by reformulating the orig-

inal problem in different ways, big-M (BM) and convex hull (CH) are the two

most common reformulations.

big-M reformulation Boolean variables Y jk and logic constraints φ are re-

spectively replaced by binary variables Yjk and linear inequalities as fol-

lows [75]:

min
∑

∀k∈K
∑

∀j∈Jk c
jkYjk + dx

s.t. Bx ≤ b

Ajkx − ajk ≤Mjk(1−Yjk) ∀j ∈ Jk, ∀k ∈ K
∑

∀j∈Jk Yjk = 1 ∀k ∈ K (2.7)

DY ≤ D′

x ∈ Rn
+,Yjk ∈ {0, 1} ∀j ∈ Jk, ∀k ∈ K

where Mjk are the ”big-M“ parameters that makes redundant the system

of constraint j ∈ Jk in the disjunction k ∈ K when Yjk = 0 and the

constraints DY ≤ D′ are derived from φ.

convex hull reformulation Boolean variables Y jk are replaced by binary vari-

ables Yjk and variables x ∈ Rn are disaggregated into new variables

v ∈ Rn (using convex hull constraints for each disjunction [13, 75]) in

43

CHAPTER 2. BACKGROUND

the following way:

min
∑

∀k∈K
∑

∀j∈Jk c
jkYjk + dx

s.t. Bx ≤ b

Akjvjk ≤ ajkYjk ∀j ∈ Jk, ∀k ∈ K

x =
∑

∀j∈Jk vjk ∀k ∈ K (2.8)

vjk ≤ Yjke
jk ∀j ∈ Jk, ∀k ∈ K

∑

∀j∈Jk Yjk = 1 ∀k ∈ K

DY ≤ D′

x,v ∈ Rn
+,Yjk ∈ {0, 1} ∀j ∈ Jk, ∀k ∈ K

where constant ejk are upper bounds for variables v chosen to match the

upper bounds on the variables x.

In comparing BM and CH reformulations, two facts can be observed:

1. the relaxation of BM is often weak causing a higher number of nodes ex-

amined in the branch-and-bound search;

2. the disaggregated variables and new constraints increase the size of the

reformulation leading to a high computational effort.

In order to overcome these issues, Sawaya and Grossman [77] proposed a cut-

ting plane method (based on the lift-and-project cutting planes developed by

[16]) that consists in computing a sequence of BM relaxations with cutting

planes that are obtained by solving a LP separation problem and finding the

most violated constraint of the convex hull that is projected onto the space of

the original variables of the BM relaxation, until the optimal solution for the

original MILP is found or until there is no improvement within a specified tol-

erance ϵ; in this case it switches to the branch-and-bound method for solving the

resulting BM relaxation with all the cutting planes that have been generated. We

refer the reader to [77] for a more detailed explanation.

44

2.3. LINEAR GENERALIZED DISJUNCTIVE PROGRAMMING

Sawaya and Grossman provided an evaluation of the presented algorithm on

three different problems: strip-packing, retrofit planning and zero-wait job-shop

scheduling problems.

45

CHAPTER 2. BACKGROUND

46

Chapter 3

State of the Art and Related Work

This chapter aims at presenting a brief survey of the literature on the topic of

optimization in SAT and SMT.

Disclaimer. The material presented in §3.1.1 is standard in SAT and it is mostly

taken from [59, 76].

3.1 State of the Art

This section describes optimization problems and procedures for solving them

available in the literature of SAT and SMT.

3.1.1 Optimization in SAT: MaxSAT and Pseudo-Boolean Optimization

Two optimization problems can be seen as generalization of SAT: Maximum

Satisfiability [59] and Pseudo-Boolean Optimization [76].

Maximum Satisfiability (MaxSAT) is the problem of finding a truth assign-

ment µ that maximizes the number of satisfied clauses in a given (propo-

sitional) CNF formula ϕ. Notice that MaxSAT can be also seen as the

problem of finding the minimum number of unsatisfied clauses in ϕ.

MaxSAT has three important extensions:

47

CHAPTER 3. STATE OF THE ART AND RELATED WORK

• Partial MaxSAT: given a CNF formula where some clauses are de-

clared to be “soft” and the rest are declared to be “hard”, it is the

problem of finding an assignment that satisfies all the hard clauses

and minimize the number of unsatisfied soft clauses.

• Weighted MaxSAT: given a weighted CNF formula, i.e. a CNF for-

mula where one weight (i.e. a positive number) wi is assigned to each

clause Ci, it is the problem of minimizing the sum of weights of un-

satisfied clauses.

• Weighted Partial MaxSAT: combines the first two problems whose

goal is to minimize the sum of weights of unsatisfied soft clauses.

Notice that MaxSAT can be seen as Weighted MaxSAT where clauses have

weight 1, and as Partial MaxSAT where all the clauses are declared to be

soft.

Pseudo-Boolean Optimization (PBO) is the optimization version of Pseudo-

Boolean Solving (PBS), a generalization of SAT whose goal is to decide

the satisfiability of conjunctions of pseudo-Boolean constraints, i.e. con-

straints of the form:
n∑

j=1

ajlj ≥ b (3.1)

where aj , b are positive integer constants and lj are Boolean literals. Notice

that pseudo-Boolean constraints are generalization of Boolean clauses, in

fact the pseudo-Boolean constraint
∑

i xi ≥ 1 can be equivalently written

as the clause
∨

i xi.

PBO aims at finding a valuation of variables such that all constraints are

satisfied and the value of a given cost function is minimized:

minimize
∑

j cjxj

subject to
∧

i

∑

j ai,jxj ≥ bi
(3.2)

48

3.1. STATE OF THE ART

where cj, ai,j, bi ∈ Z and xj are pseudo-Boolean variables. PBO problems

can consider many cost functions that define a ranking of solutions based

on some criteria.

Exact algorithms for solving SAT optimization problems benefits from many

effective SAT solving techniques (e.g. the CDCL schema described in §2.1.1)

and are based the following approaches:

Linear search which explores the space of all possible solutions (i.e. truth as-

signments) of the input formula ϕ and, instead of stopping when a solution

is found, it adds a new constraint to ϕ and restarts the search. Since the

current solution (namely the number of unsatisfied clauses of ϕ under µ)

becomes an upper bound ub on the optimal solution quality, the next com-

puted solution (if any) will have a higher quality than the previous one. If

the resulting formula is unsatisfiable, the optimal solution is given by the

last stored ub.

This schema was successfully implemented for PBO by integrating the

search for optimum inside a classic CDCL pseudo-Boolean solver (see

[21]).

Branch and bound which extends the linear-search schema to avoid redundant

search. It explores the solutions space of ϕ pruning the search at every

partial solution η of ϕ whose (estimation of) lower bound lb exceeds the

current upper bound ub on the optimal solution quality. Otherwise, it goes

on with the search to find a better solution µ by extending the current

partial one (i.e. µ ⊇ η).

Modern and competitive MaxSAT solvers integrates the CDCL schema

with branch and bound enhanced by powerful inference techniques, effec-

tive lower bound computation methods, clever variable selection heuristics

and efficient data structures (e.g. [5, 95, 48]). Also state-of-the-art PBO

49

CHAPTER 3. STATE OF THE ART AND RELATED WORK

solvers are based on the branch-and-bound schema [58] and take advan-

tage of the experience in Integer Linear Programming in order to estimate

lower bounds lb and prune the search [76].

Binary search which is based on the idea of restricting the search within the

interval [lb, ub], where ub is an upper bound and lb a lower bound on the

solution quality ofϕ, and bisect it (e.g. M = (lb+ub)/2). At each step, the

optimal solution is searched in the interval [lb,M]. If a solution is found,

the search goes on in the interval [lb, C − 1], where C is the cost of the

solution found. Otherwise, the search proceeds in the interval [M +1, ub].

Clearly, the branch-and-bound schema can be defined as the binary-search

schema where M = ub. Even if binary search usually spends much more

time than the two previous approaches to find the first solution, it converges

faster toward the optimal solution [76]. Nevertheless, this approach may

be difficult to implement since every learned constraint that was inferred

from the search bounds must be forgotten (or better, reused) from one step

to another.

A common approach to PBO is to translate pseudo-Boolean constraints

into propositional clauses and then apply either a linear-search schema or

a binary-search schema [76].

Core-guided which are based on unsatisfiable core extraction (e.g. [49, 67] for

MaxSAT). The basic idea is that an unsatisfiable formula ϕ will contain

one or more unsatisfiable core but no satisfiable subset of ϕ can contain any

complete cores; thus, any solution must leave unsatisfied at least one clause

from every core. This approach reduces the search space by identifying

unsatisfiable cores of ϕ and only considering clauses within those cores as

potential “removals”.

Inference which applies ad-hoc inference rules while performing a standard

branch-and-bound search (e.g. [7] for MaxSAT).

50

3.1. STATE OF THE ART

When it is sufficient to find near-optimal solutions rather then optimal ones,

local search is a fast and quite effective approach [53]. Most of exact algorithms

for MaxSAT exploit them in the branch-and-bound schema in order to compute

the initial upper bound [48].

Approximations algorithms are good alternatives to local search algorithms.

Though slower, they can give approximate solutions in polynomial time and

guarantee the quality of the solutions found. Over the last years, there have

been proposed several approximation algorithms for MaxSAT. At the beginning,

the greedy approach was proposed [56, 42] but recently the most promising

approach is based on semidefinite programming [43]. Greedy approximations

algorithms can also be used in PBO solvers for computing lower bounds on the

optimal solution quality [22].

Even thought there exist efficient approaches for solving the optimization

versions of SAT and PBS, MaxSAT and PBO only involve cost functions that

are expressed in terms of Boolean conditions over Boolean atoms.

3.1.2 SMT with Pseudo-Boolean Costs and MaxSMT

The idea of optimization in SMT was first introduced by Nieuwenhuis and Oliv-

eras [70], who presented a very-general logical framework of “SMT with pro-

gressively stronger theories” where, during the search process, the initial back-

ground first-order theory T0 is progressively strengthened, raising the bar every

time a new optimal solution is found. The theory T0 is extended with other first-

order theories Ti, for i = 1, . . . , n, resulting in the theory T ′ =
⋃n

i=0 Ti, each Ti
forcing the search for a solution which improves the current optimum.

They use the proposed SMT procedure for solving two optimization prob-

lems, Weighted MaxSAT and Weighted MaxSMT (the SMT version of the

former problem), by implementing a branch-and-bound approach within the

CDCL schema (described in §2.2.3). The language of the extended theory Ti al-

lows for expressing cost functions and bounds on the cost function value. In par-

51

CHAPTER 3. STATE OF THE ART AND RELATED WORK

ticular, a cost function is modelled using atoms of the form (k0+ . . .+km ≤ c),

(pi → (ki = wi)) and (¬pi → (ki = 0)). Since the values of the variables ki

depend on the truth values assigned to the Boolean atoms pi, the cost function

can be seen as a set of logical conditions determining a given cost. Whenever

a local optimal solution ui is found, the theory T ′ is strengthened with a rela-

tion c < ui causing a conflict in the current status. Consequently, thanks to the

CDCL approach, the search is pruned and the search restarts.

Cimatti et al. [31] introduced the notion of “Theory of Costs” C to handle PB

cost functions and constraints by an ad-hoc and independent “C-solver” in the

standard lazy SMT schema, and implemented a variant of MathSAT tool able

to handle SMT with PB constraints and to minimize PB cost functions. More

specifically, the language of the theory C allows for expressing (multiple) cost

functions that have the following form:

costi =
Ni∑

j=0

ite(Ai
j, d

i
j, 0) (3.3)

where ite is a function that returns the integer constant dij if the Boolean atoms

Ai
j is assigned to true, 0 otherwise. The language consists in fresh variables

ci that represent the values of the cost functions costi and two predicates: the

binary predicate BC(ci, d) states that ci must be less than or equal to the integer

constant d; the ternary predicate IC(ci, j, dij) states that the solution quality ci

is increased by the integer constant dij (where j is the index in the sum (3.3)).

BC, IC and Boolean predicates are combined together in order to define Boolean

conditions that determine different cost increases and express (upper and lower)

bounds on the solution quality. Notice that the proposed decision procedure for

C can be integrated into every lazy SMT solver, resulting in a solver for C ∪ T .

The cost decision problem addressed by Cimatti et al. is defined by a SMT

formula ϕ, a set of cost function of the form (3.3), and a upper bound and

a lower bound, ubi, lbi respectively, on the value of the ith cost function, for

52

3.1. STATE OF THE ART

every i. They express this problem as an SMT(T ∪ C) problem by means of the

formula

ϕC = ϕ ∧ BC(ci, ubi) ∧ ¬BC(ci, lbi − 1) ∧
Ni∧

j

(Ai
j ↔ IC(ci, j, cij))

and then solve the problem by checking the satisfiability of ϕC . The authors also

deal with the problem of finding a satisfiable assignment for ϕC that minimizes

a given cost function by seeing it as a finite sequence of decision problems.

Two procedures are described in the paper. Both of them exploit the SMT

solver for C ∪ T in order to implement the branch-and-bound schema and

the binary-search schema. Third, the paper show how to encode the Pseudo-

Boolean Optimization problem and Weighted Partial MaxSMT (i.e. the SMT

version of Weighted Partial MaxSAT) into SMT with Boolean cost functions

and an provide experimental evaluation on them.

The SMT solvers YICES [2] and Z3 [3] also provide support for MaxSMT,

although there is no publicly-available document describing the procedures used

there.

Ansótegui et al. [6] described the evaluation of an implementation of a

MaxSMT procedure based on YICES, although this implementation is not pub-

licly available. The proposed evaluation considers several SMT(LA(Q)) en-

codings of the Resource-Constrained Project Scheduling Problem (RCPSP) and

applies three different solving approaches. The first approach calls the SMT

solver iteratively as a black-box performing a binary search strategy; the sec-

ond one uses the SMT solver directly for solving a Weighted MaxSMT rep-

resentation of RCPSP; the last one exploits YICES’s API for implementing an

algorithm based on the detection of unsatisfiable cores.

Cimatti et al. [32] presented a “modular” approach for (weighted partial)

MaxSMT, combining a lazy SMT solver with a purely-propositional MaxSAT

solver, which can be used as black-boxes. The author’s idea is to make the

solvers exchange information iteratively: the SMT solver produces an increas-

53

CHAPTER 3. STATE OF THE ART AND RELATED WORK

ing set of theory lemmas which are fed to the MaxSAT solver, who progres-

sively refines an approximation of the final subset of the (soft) clauses, which is

eventually returned as output. The proposed approach is implemented on top of

the MathSAT5 SMT solver and of a selection of external MaxSAT solvers.

We recall that MaxSMT and SMT with PB functions can be encoded into

each other, and that both are strictly less general than the problem addressed in

this thesis (see §4).

3.2 Other Forms of Optimization in SMT

Two other forms of optimization in SMT, which are quite different from the one

presented in our work, have been proposed in the literature.

Dillig et al. [40] addressed the problem of finding minimum-cost assign-

ments1, i.e. partial models for quantified first-order formulas modulo theories,

which minimize the number of free variables which are assigned a value from

the domain. Quoting an example from [40], given the formula ϕ
def

= (x+y+w >

0) ∨ (x + y + z + w < 5), the partial assignment {z = 0} satisfies ϕ because

every total assignment extending it satisfies ϕ and is minimum because there is

no (partial) assignment satisfying ϕ which assigns less then one variable. The

authors proposed a general branch-and-bound procedure addressing the prob-

lem for every decidable theory T admitting quantifier elimination, and some

enhancements for computing good variable orders and initial cost bounds, and

pruning the search space. They also presented an experimental evaluation of an

implementation for LA(Z) and EUF into the MISTRAL tool.

Manolios and Papavasileiou [63] proposed the “ILP Modulo Theories” frame-

work as an alternative to SAT Modulo Theories, which allows for combining

Integer Linear Programming with decision procedures for signature-disjoint

1In propositional logic, the minimum-cost assignments problem is commonly known as the minimum prime

implicants problem [64].

54

3.3. A VERY-RECENT OMT(LA(Q)) TOOL

stably-infinite theories T . Notice that the approach of [63] cannot combine

ILP with LA(Q), since LA(Z) and LA(Q) are not signature-disjoint (see Def-

inition 2 in [63].) Also, the objective function is defined on the Integer domain.

they presented a general algorithm by integrating the Branch&Cut ILP method

with T -specific decision procedures, and implemented it into the INEZ tool.

We understand that neither of the above-mentioned works can handle the

problem addressed in this thesis, and vice versa.

3.3 A Very-Recent OMT(LA(Q)) Tool

Closest in spirit to our work is a very-recent paper from Li et al. [60], presented

last January at POPL 2014 conference. It extends the OMT(LA(Q)) problem

we introduced in [80] (see §4) to “multiple-objectives”, by considering contem-

porarily a set of independent cost variables for the input formula ϕ, namely

{cost1, ..., costk}, so that the problem consists in enumerating k independent

models for ϕ, each minimizing one specific costi.
2 (Intuitively, enumerating

such models is in general more efficient than solving one optimization problem

at the time, because it allows for sharing the SMT search steps among differ-

ent cost objectives.) Then [60] proposes a multiple-objective generalization

of our linear-search algorithm of [80], and presents an implementation called

SYMBA on top of the Z3 SMT solver [3]. Similarly to our work of [80],

the multiple-objective minimization is performed in two alternative ways: an

“offline” version, in which a sequence of black-box calls to the SMT solver

allows for finding progressively-better solutions along one objective direction,

and a more efficient “inline” version, in which the simplex algorithm inside the

LA(Q)-solver of Z3 is modified to find the optimum, as in our inline version

described in [80] and in §5.2. SYMBA also makes use of an effective ad-hoc

heuristic for checking infinite costs (whilst our tool, OPTIMATHSAT, applies

2More precisely, in [60] the objectives are maximized, but the problem is dual.

55

CHAPTER 3. STATE OF THE ART AND RELATED WORK

the technique used in the standard simplex algorithm). In §6.6 we empirically

compare their approach with ours. Notice that, if SYMBA is restricted to work

on single objectives, we see no substantial algorithmic difference between the

two “inline” procedures, apart from the previously mentioned heuristic and the

fact that they are built on top of Z3 and MATHSAT respectively.

56

Part II

Novel Contributions

Chapter 4

Optimization in SMT(LA(Q) ∪ T)

We extend the standard SMT framework for solving optimization problems,

resulting in a Optimization Modulo Theory (OMT) framework. The chapter is

organized as follows: in §4.1 we formally define the OMT problem; in §4.2 we

introduce the necessary formal foundations for solving OMT; in §4.2.1 we show

how it generalizes many known optimization problems from the literature.

Disclaimer. The work presented in this chapter (and also in §5 and §6) was done

in collaboration with Roberto Sebastiani and was presented in [80, 81].

4.1 Basic Definitions and Notation

In very-general terms, we define Optimization Modulo Theory (OMT) as fol-

lows.

Definition 4.1 (OMT(T≼ ∪
⋃

i Ti)). Let ϕ be a ground formula in some back-

ground theory T≼ ∪
⋃

i Ti, where T≼ has some total order ≼ over its domain

values, and let cost be a T≼-variable occurring in ϕ. (The other theories Ti’s
may possibly be empty.) We call Optimization Modulo T≼ ∪

⋃

i Ti, written

OMT(T≼ ∪
⋃

i Ti), the problem of finding a model I for ϕ whose value of cost

is minimum according to ≼.

59

CHAPTER 4. OPTIMIZATION IN SMT(LA(Q) ∪ T)

In this thesis we consider signature-disjoint stably-infinite theories with equal-

ity (“Nelson-Oppen theories” introduced in §2.2.4) and we restrict our interest

to LA(Q) as T≼. Thus we assume T to be some stably-infinite theory with

equality, s.t. LA(Q) and T are signature-disjoint. (T can be itself a combina-

tion of theories.)

Definition 4.2 (OMT(LA(Q) ∪ T), OMT(LA(Q)), and mincost.). Let ϕ be

a ground SMT(LA(Q) ∪ T) formula and cost be a LA(Q) variable occur-

ring in ϕ. We call an Optimization Modulo LA(Q) ∪ T problem, written

OMT(LA(Q)∪T), the problem of finding a model I for ϕ (if any) whose value

of cost is minimum. We denote such value as mincost(ϕ). If ϕ is LA(Q) ∪ T -

unsatisfiable, then mincost(ϕ) is +∞; if there is no minimum value for cost, then

mincost(ϕ) is −∞.

We call an Optimization Modulo LA(Q) problem, written OMT(LA(Q)),

an OMT(LA(Q) ∪ T) problem where T is the empty theory.

(A dual definition where we look for a maximum value is easy to formulate.)

In order to make the discussion simpler, we assume w.l.o.g. that all LA(Q)∪
T formulas are pure. We recall from §2.2.1 that an atom in a ground T1 ∪ T2
formula is said to be Ti-pure if it contains only variables and symbols from

the signature of Ti, for every i ∈ {1, 2}; a T1 ∪ T2 ground formula is pure

iff all its atoms are either T1-pure or T2-pure. Although the purity assumption

is not necessary (see [19]), it much simplifies the explanation, since it allows

us for speaking of “LA(Q)-atoms” or “T -atoms” without further specifying.

Moreover, every non-pure formula can be easily purified [68]. We also assume

w.l.o.g. that all LA(Q)-atoms containing the variable cost are in the form (t ◃▹

cost), s.t. ◃▹ ∈ {=,≤,≥, <,>} and cost does not occur in t.

Definition 4.3 (Bounds and range for cost). If ϕ is in the form ϕ′ ∧ (cost < c)

[resp. ϕ′ ∧ ¬(cost < c)] for some value c ∈ Q, then we call c an upper bound

[resp. lower bound] for cost. If ub [resp lb] is the minimum upper bound [resp.

60

4.2. THEORETICAL RESULTS

the maximum lower bound] for ϕ, we also call the interval [lb, ub[the range of

cost.

Notice that we adopt the convention of defining upper bounds to be strict and

lower bounds to be non-strict for a practical reason: typically an upper bound

(cost < c) derives from the fact that a model I of cost c has been previously

found, whilst a lower bound ¬(cost < c) derives either from the user’s knowl-

edge (e.g. “the cost cannot be lower than zero”) of from the fact that the formula

ϕ ∧ (cost < c) has been previously found T -unsatisfiable whilst ϕ has not.

4.2 Theoretical Results

We present here the theoretical foundations of the procedures for solving the

OMT problem we shall propose in §5.

The following facts follow straightforwardly from Definition 4.2.

Proposition 4.1. Let ϕ,ϕ1,ϕ2 be LA(Q) ∪ T -formulas and µ1, µ2 be truth

assignments.

(a) If ϕ1 |= ϕ2, then mincost(ϕ1) ≥ mincost(ϕ2).

(b) If µ1 ⊇ µ2, then mincost(µ1) ≥ mincost(µ2).

(c) ϕ is LA(Q) ∪ T -satisfiable if and only if mincost(ϕ) < +∞.

Theorem 2.1 in §2.2 is the theoretical foundation of the lazy SMT approach

(see §2.2.3), where a CDCL SAT solver enumerates a complete collection M
of truth assignments as above, whose T -satisfiability is checked by a T -Solver.

Notice that in Theorem 2.1 the theory T can be any combination of theories

Ti, including LA(Q). Here we extend Theorem 2.1 to OMT(LA(Q) ∪ T) as

follows.

Lemma 4.1. Let ϕ be a LA(Q) ∪ T -satisfiable LA(Q) ∪ T -formula and E def

=

{η1, . . . , ηn} be the set of all total truth assignments propositionally satisfying

ϕ. Then mincost(ϕ) = minηi∈Emincost(ηi).

61

CHAPTER 4. OPTIMIZATION IN SMT(LA(Q) ∪ T)

Proof. Ifϕ is LA(Q)∪T -unsatisfiable, then mincost(ϕ) = minηi∈Emincost(ηi) =

+∞. Otherwise, the thesis follows straightforwardly from the fact that the set

of the models of ϕ is the union of the sets of the models of the assignments in

E .

Lemma 4.2. Let ϕ be a LA(Q) ∪ T -satisfiable LA(Q) ∪ T -formula and µ be

a LA(Q) ∪ T -satisfiable partial assignment s.t. µ |=p ϕ. Then there exists at

least one LA(Q) ∪ T -satisfiable total assignment η s.t. µ ⊆ η, η |=p ϕ, and

mincost(µ) = mincost(η).

Proof. Let I be a model for µ, and hence for ϕ. Then

η
def

=
∧

ψi∈Atoms(ϕ)

I|=ψi

ψi ∧
∧

ψi∈Atoms(ϕ)

I|=¬ψi

¬ψi (4.1)

By construction, η is a total truth assignment for ϕ and it is LA(Q) ∪ T -

satisfiable, µ ⊆ η and mincost(η) = mincost(µ) = I(cost). Since µ ⊆ η, then

η |=p ϕ.

Theorem 4.1. Let ϕ be a LA(Q) ∪ T -formula and let M def

= {µ1, . . . , µn}
be a complete collection of (possibly partial) truth assignments propositionally

satisfying ϕ. Then mincost(ϕ) = minµ∈Mmincost(µ).

Proof. Ifϕ is LA(Q)∪T -unsatisfiable, then mincost(ϕ) = minµ∈Mmincost(µ) =

+∞ by Definition 4.2 and Theorem 2.1. Otherwise, mincost(ϕ) < +∞. Then:

Proof of mincost(ϕ) ≤ minµ∈Mmincost(µ):

By absurd, suppose exists µ ∈ M s.t. mincost(µ) < mincost(ϕ). By

Proposition 4.1, µ is LA(Q) ∪ T satisfiable. By Lemma 4.2, there ex-

ists a LA(Q) ∪ T -satisfiable total assignment η s.t. µ ⊆ η, η |=p ϕ,

and mincost(µ) = mincost(η). By lemma 4.1, mincost(η) ≥ mincost(ϕ), and

hence mincost(µ) ≥ mincost(ϕ), contradicting the hypothesis.

62

4.2. THEORETICAL RESULTS

Proof of mincost(ϕ) ≥ minµ∈Mmincost(µ):

From Lemma 4.1 we have that mincost(ϕ) = minηi∈Emincost(ηi). Let η ∈ E
s.t. mincost(ϕ) = mincost(η) < +∞. Hence η is LA(Q) ∪ T -satisfiable.

Thus, there exists µ ∈M s.t. µ ⊆ η. µ is LA(Q) ∪ T -satisfiable since η

is LA(Q) ∪ T -satisfiable. From Proposition 4.1, mincost(µ) ≤ mincost(η),

hence mincost(µ) ≤ mincost(ϕ). Thus the thesis holds.

(Notice that we implicitly define minµ∈Mmincost(µ)
def

= +∞ if M is empty.)

Since mincost(µ) is +∞ if µ is LA(Q) ∪ T -unsatisfiable, we can safely restrict

the search for minima to the LA(Q) ∪ T -satisfiable assignments in M.

If T is the empty theory, then the notion of mincost(µ) is straightforward,

since each µ is a conjunction of Boolean literals and of LA(Q) constraints, so

that Theorem 4.1 provides the theoretical foundation for OMT(LA(Q)).

If instead T is not the empty theory, then each µ is a set of Boolean literals

and of pure T -literals and LA(Q) constraints sharing variables, so that the no-

tion of mincost(µ) is not straightforward. To cope with this fact, we first recall

from the literature some definitions and an important result.

Consider the definitions of interface variables and interface equalities intro-

duced in §2.2.1. (We recall that an interface variable is a variable occurring in

both µT1 and µT2, and an interface equality is an equality (xi = xj) on interface

variables.) As common practice (see e.g. [86]) hereafter we consider only inter-

face equalities modulo reflexivity and symmetry, that is, we implicitly assume

some total order≼ on the interface variables xi of ϕ, and restrict w.l.o.g. the set

of interface equalities on ϕ to IE(ϕ) def

= {(xi = xj) | xi ≺ xj}, dropping thus

uninformative equalities like (xi = xi) and considering only the first equality in

each pair {(xi = xj), (xj = xi)}.

Notation-wise, in what follows we use the pedexes e, d, i in “µ...”, like in

“µed”, to denote conjunctions of equalities, disequalities and inequalities be-

63

CHAPTER 4. OPTIMIZATION IN SMT(LA(Q) ∪ T)

tween interface variables respectively.

Theorem 4.2 ([86]). Let T1 and T2 be two stably-infinite theories with equality

and disjoint signatures; let µ
def

= µT1 ∧ µT2 be a conjunction of T1 ∪ T2-literals

s.t. each µTi is pure for Ti. Then µ is T1 ∪ T2-satisfiable if and only if there

exists an equivalence class e() ⊆ IE(µ) over the interface variables of µ and

the corresponding total truth assignment µed to the interface equalities over µ: 1

µed
def

= µe ∧ µd, s.t. µe
def

=
∧

(xi,xj) ∈ e()

(xi = xj), µd
def

=
∧

(xi,xj) ̸∈ e()

¬(xi = xj)

(4.2)

s.t. µTk ∧ µed is Tk-satisfiable for every k ∈ {1, 2}.

Theorem 4.2 is the theoretical foundation of, among others, the Delayed

Theory Combination SMT technique for combined theories (see 2.2.4), where

a CDCL SAT solver enumerates a complete collection of extended assignments

µ ∧ µed, which propositionally satisfy the input formula, and dedicated Tk-

solvers check independently the Tk-satisfiability of µTk ∧ µed, for each k ∈
{1, 2}.

We consider now a LA(Q) ∪ T formula ϕ and a (possibly partial) truth

assignment µ which propositionally satisfies it. µ can be written as µ
def

= µB ∧
µLA(Q) ∧ µT , s.t. µB is a consistent conjunction of Boolean literals, µLA(Q) and

µT are LA(Q)-pure and T -pure conjunctions of literals respectively. (Notice

that the µB component does not affect the LA(Q)∪ T -satisfiability of µ.) Then

the following definitions and theorems show how mincost(µ) can be defined and

computed.

Definition 4.4. Let µ
def

= µB∧µLA(Q)∧µT be a truth assignment satisfying some

LA(Q) ∪ T ground formula, s.t. µB is a consistent conjunction of Boolean

literals, µLA(Q) and µT are LA(Q)-pure and T -pure conjunctions of literals

respectively. We call the complete set of ed-extensions of µ the set EXed(µ)
def

=
1µed is called an arrangement in [86].

64

4.2. THEORETICAL RESULTS

{η1, ..., ηn} of all possible assignments in the form µ ∧ µed, where µed is in the

form (4.2), for every equivalence class e() in IE(µ).

Theorem 4.3. Let µ be as in Definition 4.4. Then

(a) mincost(µ) = minη∈EXed(µ)mincost(η)

(b) forall η ∈ EXed(µ),

mincost(η) =

⎧

⎪
⎪
⎪
⎪
⎪⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

+∞ if µT ∧ µed is T -unsatisfiable

or if µLA(Q) ∧ µed is

LA(Q)-unsatisfiable

mincost(µLA(Q) ∧ µed) otherwise.

Proof.

(a) Let

µ′
def

= µ ∧
∧

(xi=xj)∈IE(µ)

((xi = xj) ∨ ¬(xi = xj)).

where µ and µ′ are obviously LA(Q) ∪ T -equivalent, so that mincost(µ) =

mincost(µ′). By construction, EXed(µ) is the set of all total truth assignments

propositionally satisfying µ′, so that mincost(µ′) = minη∈EXed(µ)mincost(η).

(b) By Theorem 4.2, η is LA(Q) ∪ T -satisfiable if and only if µLA(Q) ∧ µed is

LA(Q)-satisfiable and µT ∧ µed is T -satisfiable. Thus,

• if µT ∧ µed is T -unsatisfiable, then η is LA(Q) ∪ T -unsatisfiable, so

that mincost(η) = +∞.

• If µT ∧µed is T -satisfiable and µLA(Q)∧µed is LA(Q)-unsatisfiable, then

η is LA(Q) ∪ T -unsatisfiable, so that mincost(η) = mincost(µLA(Q) ∧
µed) = +∞.

• If µT ∧µed is T -satisfiable and µLA(Q)∧µed is LA(Q)-satisfiable, then

η is LA(Q) ∪ T -satisfiable. We split the proof into two parts.

65

CHAPTER 4. OPTIMIZATION IN SMT(LA(Q) ∪ T)

≤ case: Let c ∈ Q be the value of mincost(µLA(Q) ∧ µed). Let µ′
def

=

µ ∧ (cost = c). Since (cost = c) is a LA(Q)-pure atom, then µ′ =

µ′T ∧µ′LA(Q) s.t. µ′T = µT and µ′LA(Q) = µLA(Q)∧(cost = c), which

are respectively T - and LA(Q)-pure and T - and LA(Q)-satisfiable

by construction. Let η′
def

= η ∧ (cost = c). Since IE(µ) =IE(µ′),
then µ′, µ′LA(Q), µ

′
T and η′ match the hypothesis of Theorem 4.2,

from which we have that η′ is LA(Q) ∪ T -satisfiable, so that η

has a model I s.t. I(cost) = c. Thus, we have that mincost(η) ≤
mincost(µLA(Q) ∧ µed).

≥ case: Let c ∈ Q be the value of mincost(η). Then η ∧ (cost = c)

is LA(Q) ∪ T -satisfiable. We define µ′, µ′LA(Q), µ′T and η′ as

in the “≤” case. As before, they match the hypothesis of The-

orem 4.2, from which we have that µ′LA(Q) is LA(Q)-satisfiable.

Hence, µLA(Q) has a model I s.t. I(cost) = c. Thus, we have that

mincost(η) ≥ mincost(µLA(Q) ∧ µed).

We notice that, at least in principle, computing mincost(µLA(Q) ∧ µed) is an

operation which can be performed by standard linear-programming techniques

(see §5). Thus, by combining Theorems 4.1 and 4.3 we have a general method

for computing mincost(ϕ) also in the general case of non-empty theory T .

In practice, however, it is often the case that LA(Q)-solvers/optimizers can-

not handle efficiently negated equalities like, e.g., ¬(xi = xj) (see [41]). Thus,

a technique which is adopted by most SMT solver is to expand them into the

corresponding disjunction of strict inequalities (xi < xj)∨(xi > xj). This “case

split” is typically efficiently handled directly by the embedded SAT solver.

We notice, however, that such case-split may be applied also to interface

equalities (xi = xj), and that the resulting “interface inequalities” (xi < xj) and

(xi > xj) cannot be handled by the other theory T , because “<” and “>” are

66

4.2. THEORETICAL RESULTS

LA(Q)-specific symbols. In order to cope with this fact, some more theoretical

discussion is needed.

Definition 4.5. Let µ be as in Definition 4.4. We call the complete set of edi-

extensions of µ the set EXedi(µ)
def

= {ρ1, ..., ρn} of all possible truth assignments

in the form µ ∧ µed ∧ µi, where µed is as in Definition 4.4 and µi is a total truth

assignment to the atoms (xi < xj), (xi > xj) s.t. (xi = xj) ∈ IE(µ) and

µed ∧ µi are LA(Q)-consistent.

µi assigns both (xi < xj) and (xi > xj) to false if (xi = xj) is true in µed,

one of them to true and the other to false if (xi = xj) is false in µed. Intuitively,

the presence of each negated interface equalities ¬(xi = xj) in µed forces the

choice of one of the two parts ⟨(xi < xj), (xi > xj)⟩ of the solution space.

Theorem 4.4. Let µ be as in Definition 4.4. Then

(a) µ is LA(Q)∪T -satisfiable iff some ρ ∈ EXedi(µ) is LA(Q)∪T -satisfiable.

(b) mincost(µ) = minρ∈EXedi(µ)mincost(ρ).

(c) forall ρ ∈ EXedi(µ), ρ is LA(Q)∪T -satisfiable iff µT ∧µed is T -satisfiable

and µLA(Q) ∧ µe ∧ µi is LA(Q)-satisfiable.

(d) forall ρ ∈ EXedi(µ),

mincost(ρ) =

⎧

⎪
⎪
⎪
⎪⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

+∞ if µT ∧ µed is T -unsatisfiable

or if µLA(Q) ∧ µe ∧ µi is

LA(Q)-unsatisfiable

mincost(µLA(Q) ∧ µe ∧ µi) otherwise.

Proof. Let

µ∗
def

= µ ∧
∧

(xi=xj)∈IE(µ)

⎛

⎜
⎜
⎜
⎜
⎝

((xi = xj) ∨ (xi < xj) ∨ (xi > xj))∧
(¬(xi = xj) ∨ ¬(xi < xj))∧
(¬(xi = xj) ∨ ¬(xi > xj))∧
(¬(xi < xj) ∨ ¬(xi > xj))

⎞

⎟
⎟
⎟
⎟
⎠

(4.3)

67

CHAPTER 4. OPTIMIZATION IN SMT(LA(Q) ∪ T)

All clauses in the right conjuncts in (4.3) are LA(Q)-valid, hence µ and µ∗

are LA(Q) ∪ T -equivalent, so that mincost(µ) = mincost(µ∗). By construction,

EXedi(µ) is the set of all total truth assignments propositionally satisfying µ∗.

(a) By Theorem 2.1, µ∗ is LA(Q) ∪ T -satisfiable iff some ρ ∈ EXedi(µ) is

LA(Q) ∪ T -satisfiable, from which the thesis.

(b) mincost(µ) = mincost(µ∗) = minρ∈EXedi(µ)mincost(ρ).

(c) We consider one ρ ∈ EXedi(µ). ρ = µT ∧ µLA(Q) ∧ µe ∧ µd ∧ µi. We

notice that all literals in µi are LA(Q)-pure, s.t. it is the LA(Q)-pure part

of ρ (namely, ρLA(Q)). Thus, by Theorem 4.2, ρ is LA(Q)∪T -satisfiable iff
ρLA(Q)

︷ ︸︸ ︷

µLA(Q) ∧ µi ∧
µed

︷ ︸︸ ︷

µe ∧ µd is LA(Q)-satisfiable and µT ∧
µed

︷ ︸︸ ︷

µe ∧ µd is T -satisfiable.

By construction, µi |=LA(Q) µd. Thus, µLA(Q) ∧ µi ∧ µe ∧ µd is LA(Q)-

satisfiable iff µLA(Q) ∧ µi ∧ µe is LA(Q)-satisfiable. Thus the thesis holds.

(d) We consider one ρ ∈ EXedi(µ) and partition it as in point (c). From point

(c), if µT ∧µed is T -unsatisfiable or µLA(Q)∧µi∧µe is LA(Q)-unsatisfiable,

then ρ is LA(Q) ∪ T -unsatisfiable, so that mincost(ρ) = +∞. Otherwise, ρ

is LA(Q) ∪ T -satisfiable.

≤ case: Let c ∈ Q be the value of mincost(µLA(Q) ∧ µe ∧ µi). Let µ′
def

=

µ ∧ (cost = c). Since (cost = c) is a LA(Q)-pure atom, then µ′ =

µ′T ∧µ′LA(Q) s.t. µ′T = µT and µ′LA(Q) = µLA(Q)∧ (cost = c), which are

respectively T - and LA(Q)-pure. Also, µ′T ∧ µed is T -satisfiable and

µ′LA(Q) ∧ µe ∧ µi is LA(Q)-satisfiable by construction. Let ρ′
def

= ρ ∧
(cost = c). Since IE(µ) =IE(µ′), then also µ′, µ′LA(Q), µ

′
T and ρ′ match

the hypothesis of this theorem. Thus, by point (c), ρ′ is LA(Q) ∪ T -

satisfiable, so that ρ has a model I s.t. I(cost) = c. Therefore we have

that mincost(ρ) ≤ mincost(µLA(Q) ∧ µe ∧ µi).

≥ case: Let c ∈ Q be the value of mincost(ρ). Then ρ ∧ (cost = c) is

LA(Q) ∪ T -satisfiable. We define µ′, µ′LA(Q), µ
′
T and ρ′ as in the “≤”

68

4.2. THEORETICAL RESULTS

case. As before, they also match the hypothesis of this theorem, so that

by point (c) µ′LA(Q)∧µe∧µi is LA(Q)-satisfiable. Thus, µ′LA(Q)∧µe∧µi

has a model I s.t. I(cost) = c. Therefore we have that mincost(ρ) ≥
mincost(µLA(Q) ∧ µe ∧ µi).

Thus, by combining Theorems 4.1 and 4.4 we have a general method for

computing mincost(ϕ) in the case of non-empty theory T , which is compliant

with an efficient usage of standard LA(Q)-solvers/optimizers.

4.2.1 OMT(LA(Q) ∪ T) wrt. other Optimization Problems

In this section we show that OMT(LA(Q) ∪ T) captures many interesting op-

timizations problems.

Linear Programming (LP) is a particular subcase of OMT(LA(Q)) with

no Boolean component, since we can see (2.1) as ϕ
def

= ϕ′ ∧ (cost =
∑

i aixi)

where ϕ′ =
∧

j(
∑

iAijxi ≤ bj).

Disjunctive programming (DP) is also easily encoded into OMT(LA(Q)),

since (2.4) can be written as

∨

i

∧

j(A
i
jx ≥ bi

j) or
∧

j(Ajx ≥ bj) ∧
∧t

j=1

∨

k∈Ij(c
kx ≥ dk) (4.4)

respectively, where Ai
j and Aj are respectively the jth row of the matrices Ai

and A, bi
j and bj are respectively the jth row of the vectors bi and b. Since

the left equation (4.4) is not in CNF, the CNF-ization process of [74] is then

applied.

Linear Generalized Disjunctive programming (LGDP) (2.6) is straight-

forwardly encoded into a OMT(LA(Q)) problem ⟨ϕ, cost⟩:

ϕ
def

= (cost =
∑

∀k∈K zk + dx) ∧ [[Bx ≤ b]] ∧ φ ∧ [[0 ≤ x]] ∧ [[x ≤ e]]

∧
∧

k∈K
∨

j∈Jk(Y
jk ∧ [[Ajkx ≥ ajk]] ∧ (zk = cjk))

(4.5)

69

CHAPTER 4. OPTIMIZATION IN SMT(LA(Q) ∪ T)

s.t. [[x ◃▹ a]] and [[Ax ◃▹ a]] are abbreviations respectively for
∧

i(xi ◃▹ ai)

and
∧

i(Ai·x ◃▹ ai), ◃▹ ∈ {=, ̸=≤,≥, <,>}. Since (4.5) is not in CNF, the

CNF-ization process of [74] is then applied.

Pseudo-Boolean (PB) constraints (see [76]) in the form (
∑

i aiX
i ≤ b), s.t.

X i are Boolean atoms and ai constant values in Q, and cost functions cost =
∑

i aiX
i, are encoded into OMT(LA(Q)) by rewriting each PB-term

∑

i aiX
i

into the LA(Q)-term
∑

i xi, x being an array of fresh LA(Q) variables, and by

conjoining to ϕ the formula: 2

∧

i((¬X i ∨ (xi = ai)) ∧ (X i ∨ (xi = 0)) ∧ (xi ≥ 0) ∧ (xi ≤ ai)). (4.6)

A partial weighted MaxSMT problem (see [70, 31, 32]) is a pair ⟨ϕh,ϕs⟩
where ϕh is a set of “hard” T -clauses and ϕs is a set of weighted “soft” T -

clauses, s.t. a positive weight ai is associated to each soft T -clause Ci ∈ ϕs;

the problem consists into finding a maximum-weight set of soft T -clauses ψs

s.t. ψs ⊆ ϕs and ϕh ∪ ψs is T -satisfiable. (One can see ai as a penalty to pay

if the corresponding soft clause is not satisfied.) A MaxSMT problem ⟨ϕh,ϕs⟩
can be encoded straightforwardly into an SMT problem with PB cost function

⟨ϕ′, cost⟩ by augmenting each soft T -clause Cj with a fresh Boolean variables

Xj as follows:

ϕ′
def

= ϕh ∪
⋃

Cj∈ϕs
{(Xj ∨ Cj)}; cost

def

=
∑

Cj∈ϕs
ajX

j. (4.7)

Vice versa, ⟨ϕ′, cost def

=
∑

j ajX
j⟩ can be encoded into MaxSMT:

ϕh
def

= ϕ′; ϕs
def

=
⋃

j{(¬X
j)

︸ ︷︷ ︸

aj

}. (4.8)

Thus, combining (4.6) and (4.7), optimization problems for SAT with PB con-

straints and MaxSAT can be encoded into OMT(LA(Q)), whilst those for SMT(T)

with PB constraints and MaxSMT can be encoded into OMT(LA(Q)∪ T) (as-

suming T matches the definition above).
2The term “(xi ≥ 0) ∧ (xi ≤ ai)” in (4.6) is not necessary, but it improves the performances of the

SMT(LA(Q)) solver because it allows for exploiting the early-pruning technique.

70

4.2. THEORETICAL RESULTS

Remark 4.1. We notice the deep difference between OMT(LA(Q)) (or its ex-

tension to combination of theories OMT(LA(Q) ∪ T)) and the problem of

SAT/SMT with PB constraints and cost functions (or MaxSAT/ MaxSMT) ad-

dressed in [70, 31]. With the latter problems, the cost is a deterministic conse-

quence of a truth assignment to the atoms of the formula, so that the search has

only a Boolean component, consisting in finding the cheapest truth assignment.

With OMT(LA(Q))/ OMT(LA(Q) ∪ T), instead, for every satisfying assign-

ment µ it is also necessary to find the minimum-cost LA(Q)-model for µ, so

that the search has both a Boolean and a LA(Q)-component.

71

CHAPTER 4. OPTIMIZATION IN SMT(LA(Q) ∪ T)

72

Chapter 5

Procedures for OMT(LA(Q)) and

OMT(LA(Q) ∪ T)

It might be noticed that very naive OMT(LA(Q)) or OMT(LA(Q) ∪ T) pro-

cedures could be straightforwardly implemented by performing a sequence of

calls to an SMT solver on formulas like ϕ∧ (cost ≥ li)∧ (cost < ui), each time

restricting the range [li, ui[according to a linear-search or binary-search schema.

With the linear-search schema, every time the SMT solver returns a model of

cost ci, a new constraint (cost < ci) would be added to ϕ, and the solver would

be invoked again; however, the SMT solver would repeatedly generate the same

LA(Q)-satisfiable truth assignment, each time finding a cheaper model for it.

With the binary-search schema the efficiency should improve; however, an ini-

tial lower-bound should be necessarily required as input (which is not the case,

e.g., of the problems in §6.3.)

In this chapter we present more sophisticate procedures, based on the com-

bination of SMT and minimization techniques. We first present and discuss an

offline schema (§5.1) and an inline (§5.2) schema for an OMT(LA(Q)) proce-

dure; the former is much simpler since it uses an incremental SMT solver as

a black-box, whilst the latter is more sophisticate and efficient, but it requires

modifying the code of the SMT solver. (This distinction is important, since the

source code of most SMT solvers is not publicly available.) Then we show how

73

CHAPTER 5. PROCEDURES FOR OMT(LA(Q)) AND OMT(LA(Q) ∪ T)

to extend them to the OMT(LA(Q) ∪ T) case (§5.3).

5.1 An Offline Schema for OMT(LA(Q))

The general schema for the offline OMT(LA(Q)) procedure is displayed in Al-

gorithm 5. It takes as input an instance of the OMT(LA(Q)) problem, plus

optionally values for lb and ub (which are implicitly considered to be −∞ and

+∞ if not present), and returns the model M of minimum cost and its cost

u (the value ub if ϕ is LA(Q)-inconsistent). Notice that by providing a lower

bound lb [resp. an upper bound ub] the user implicitly assumes the responsibil-

ity of asserting there is no model whose cost is lower than lb [there is a model

whose cost is ub]. We represent ϕ as a set of clauses, which may be pushed or

popped from the input formula-stack of an incremental SMT solver.

First, the variables l, u (defining the current range) are initialized to lb and

ub respectively, the atom PIV to ⊤, and M is initialized to be an empty model.

Then the procedure adds to ϕ the bound constraints, if present, which restrict the

search within the range [l, u[(row 2). 1 The solution space is then explored itera-

tively (rows 3-26), reducing at each loop the current range [l, u[to explore, until

the range is empty. Then ⟨M, u⟩ is returned —⟨∅, ub⟩ if there is no solution in

[lb, ub[— M being the model of minimum cost u. Each loop may work in either

linear-search or binary-search mode, driven by the heuristic BinSearchMode().

Notice that if u = +∞ or l = −∞, then BinSearchMode() returns false.

In linear-search mode, steps 4-9 and 21-23 are not executed. First, an in-

cremental SMT(LA(Q)) solver is invoked on ϕ (row 11). (Notice that, given

the incrementality of the solver, every operation in the form “ϕ ← ϕ ∪ {φi}”

[resp. ϕ ← ϕ \ {φi}] is implemented as a “push” [resp. “pop”] operation on

the stack representation of ϕ, see §2.1; it is also very important to recall that

during the SMT call ϕ is updated with the clauses which are learned during the

1Of course literals like ¬(cost < −∞) and (cost < +∞) are not added.

74

5.1. AN OFFLINE SCHEMA FOR OMT(LA(Q))

Algorithm 5 Offline OMT(LA(Q)) Procedure based on Mixed Linear/Binary Search.

Require: ⟨ϕ, cost, lb, ub⟩ {ub can be +∞, lb can be −∞}
1: l← lb; u← ub;PIV← ⊤;M← ∅
2: ϕ← ϕ ∪ {¬(cost < l), (cost < u)}
3: while (l < u) do

4: if (BinSearchMode()) then {Binary-search Mode}
5: pivot← ComputePivot(l, u)

6: PIV← (cost < pivot)

7: ϕ← ϕ ∪ {PIV}
8: ⟨res, µ⟩ ← SMT.IncrementalSolve(ϕ)

9: η ← SMT.ExtractUnsatCore(ϕ)

10: else {Linear-search Mode}
11: ⟨res, µ⟩ ← SMT.IncrementalSolve(ϕ)

12: η ← ∅
13: end if

14: if (res = SAT) then

15: ⟨M, u⟩ ← Minimize(cost, µ)

16: ϕ← ϕ ∪ {(cost < u)}
17: else {res = UNSAT }
18: if (PIV ̸∈ η) then

19: l← u

20: else

21: l← pivot

22: ϕ← ϕ \ {PIV}
23: ϕ← ϕ ∪ {¬PIV}
24: end if

25: end if

26: end while

27: return ⟨M, u⟩

SMT search.) η is set to be empty, which forces condition 18 to hold. If ϕ

is LA(Q)-satisfiable, then it is returned res =SAT and a LA(Q)-satisfiable truth

assignment µ for ϕ. Thus Minimize is invoked on (the subset of LA(Q)-literals

of) µ, 2 returning the model M for µ of minimum cost u (−∞ iff the problem

2Possibly after applying pure-literal filtering to µ (see §2.2).

75

CHAPTER 5. PROCEDURES FOR OMT(LA(Q)) AND OMT(LA(Q) ∪ T)

is unbounded). The current solution u becomes the new upper bound, thus the

LA(Q)-atom (cost < u) is added to ϕ (row 16). Notice that if the problem is

unbounded, then for some µMinimize will return−∞, forcing condition 3 to be

false and the whole process to stop. If ϕ is LA(Q)-unsatisfiable, then no model

in the current cost range [l, u[can be found; hence the flag l is set to u, forcing

the end of the loop.

In binary-search mode at the beginning of the loop (steps 4-9), the value

pivot ∈]l, u[is computed by the heuristic function ComputePivot (in the sim-

plest form, pivot is (l + u)/2), the (possibly new) atom PIV
def

= (cost < pivot)

is pushed into the formula stack, so that to temporarily restrict the cost range to

[l, pivot[; then the incremental SMT solver is invoked on ϕ, this time activating

the feature SMT.ExtractUnsatCore, which returns also the subset η of formulas

in (the formula stack of) ϕ which caused the unsatisfiability of ϕ (see §2.1).

This exploits techniques similar to unsat-core extraction [62]. (In practice, it

suffices to say if PIV ∈ η.) If ϕ is LA(Q)-satisfiable, then the procedure be-

haves as in linear-search mode. If instead ϕ is LA(Q)-unsatisfiable, we look

at η and distinguish two subcases. If PIV does not occur in η, this means that

ϕ \ {PIV} is LA(Q)-inconsistent, i.e. there is no model in the whole cost range

[l, u[. Then the procedure behaves as in linear-search mode, forcing the end of

the loop. Otherwise, we can only conclude that there is no model in the cost

range [l, pivot[, so that we still need exploring the cost range [pivot, u[. Thus l is

set to pivot, PIV is popped from ϕ and its negation is pushed into ϕ. Then the

search proceeds, investigating the cost range [pivot, u[.

We notice an important fact: if BinSearchMode() always returned true, then

Algorithm 5 would not necessarily terminate. In fact, an SMT solver invoked

on ϕ may return a set η containing PIV even if ϕ\PIV is LA(Q)-inconsistent. 3

3A CDCL-based SMT solver implicitly builds a resolution refutation whose leaves are either clauses in ϕ or

LA(Q)-lemmas, and the set η represents the subset of clauses in ϕ which occur as leaves of such proof (see e.g.

[35] for details). If the SMT solver is invoked on ϕ even ϕ \PIV is LA(Q)-inconsistent, then it can “use” PIV and

return a proof involving it even though another PIV-less proof exists.

76

5.1. AN OFFLINE SCHEMA FOR OMT(LA(Q))

Thus, e.g., the procedure might got stuck into a “Zeno” 4 infinite loop, each

time halving the cost range right-bound (e.g., [−1, 0[, [−1/2, 0[, [−1/4, 0[,...).
To cope with this fact, however, it suffices to guarantee that BinSearchMode()

returns false after a finite number of such steps, guaranteeing thus that eventu-

ally a linear-search loop will be forced, which detects the inconsistency. (In our

implementations, we have empirically chosen to force one linear-search loop

after every binary-search loop returning UNSAT, because satisfiable calls are

typically much cheaper than unsatisfiable ones.)

Under such hypothesis, as a consequence of Theorem 4.1 of §4.2, we have

that:

(i) Algorithm 5 terminates. In linear-search mode it terminates because there

are only a finite number of candidate truth assignments µ to be enumerated,

and steps 15-16 guarantee that the same assignment µ will never be returned

twice by the SMT solver. In mixed linear/binary-search mode, as above,

it terminates since there can be at most finitely-many binary-search loops

between two consequent linear-search loops;

(ii) Algorithm 5 returns a model of minimum cost, because it explores the whole

search space of candidate truth assignments, and for every suitable assign-

ment µMinimize finds the minimum-cost model for µ;

(iii) Algorithm 5 requires polynomial space, under the assumption that the un-

derlying CDCL SAT solver adopts a polynomial-size clause discharging

strategy (which is typically the case of SMT solvers, including MATHSAT).

5.1.1 Handling strict inequalities

Minimize is a simple extension of the simplex-based LA(Q)-Solver of [41],

which is invoked after one solution is found, minimizing it by standard simplex

techniques. We recall that the algorithm in [41] can handle strict inequalities.

4In the famous Zeno’s paradox, Achilles never reaches the tortoise for a similar reason.

77

CHAPTER 5. PROCEDURES FOR OMT(LA(Q)) AND OMT(LA(Q) ∪ T)

Thus, if µ contains strict inequalities, then Minimize temporarily relaxes them

into non-strict ones and finds the minimum-cost solution of the relaxed problem.

Then:

1. if such minimum-cost solution x of cost min lays only on non-strict in-

equalities, then x is a solution of the original problem, hence min can be

returned;

2. otherwise, we may have two alternative subcases:

(i) there is some other solution of cost min. 5 If so, the value min can be

returned;

(ii) there is no solution of cost min. If so, then for some δ > 0 and for

every cost c ∈]min,min + δ] there exists a solution of cost c. (If

needed explicitly, such solution can be computed using the techniques

for handling strict inequalities briefly described in §2.2.2.) Thus the

value min can be tagged as a non-strict minimum and returned, so that

the constraint (cost ≤ min), rather than (cost < min), is added to ϕ.

Condition 2.(i) can be checked easily, e.g., by temporarily adding the constraint

(cost ≤ min) to µ and then by invoking again the LA(Q)-solving procedure

of [41] on µ (without minimization), since such algorithm can handle strict

inequalities. (In our implementation, we have directly modified the algorithm

of [41] so that to perform this check internally.)

5.1.2 Discussion.

We remark a few facts about this procedure.

5This subcase is rare in practice but it is possible in principle. For instance, suppose we have that µ = {(cost ≥
1), (cost > y), (cost > −y)}. If we temporarily relax strict inequalities into non-strict ones, then {cost = 1, y =

1} is a minimum-cost solution which lays on the strict inequality (cost > y). Nevertheless, there is a solution of

cost 1, e.g., {cost = 1, y = 0.9999}.

78

5.1. AN OFFLINE SCHEMA FOR OMT(LA(Q))

1. If Algorithm 5 is interrupted (e.g., by a timeout device), then u can be

returned, representing the best approximation of the minimum cost found

so far.

2. The incrementality of the SMT solver (see §2.1 and §2.2) plays an essential

role here, since at every call SMT.IncrementalSolve resumes the status of

the search at the end of the previous call, only with tighter cost range con-

straints. (Notice that at each call here the solver can reuse all previously-

learned clauses.) To this extent, one can see the whole process as only one

SMT process, which is interrupted and resumed each time a new model is

found, in which cost range constraints are progressively tightened.

3. In Algorithm 5 all the literals constraining the cost range (i.e., ¬(cost < l),

(cost < u)) are added to ϕ as unit clauses; thus inside SMT.IncrementalSolve

they are immediately unit-propagated, becoming part of each truth assign-

ment µ from the very beginning of its construction. As soon as novel

LA(Q)-literals are added to µ which prevent it from having a LA(Q)-

model of cost in [l, u[, the LA(Q)-solver invoked on µ by early-pruning

calls (see §2.2) returns UNSAT and the LA(Q)-lemma ¬η describing the

conflict η ⊆ µ, triggering theory-backjumping and -learning. To this ex-

tent, SMT.IncrementalSolve implicitly plays a form of branch & bound:

(i) decide a new literal l and unit- or theory-propagate the literals which

derive from l (“branch”) and (ii) backtrack as soon as the current branch

can no more be expanded into models in the current cost range (“bound”).

4. The unit clause ¬(cost < l) plays a role even in linear-search mode, since

it helps pruning the search inside SMT.IncrementalSolve.

5. In binary-search mode, the range-partition strategy may be even more ag-

gressive than that of standard binary search, because the minimum cost u

returned in row 15 can be smaller than pivot, so that the cost range is more

79

CHAPTER 5. PROCEDURES FOR OMT(LA(Q)) AND OMT(LA(Q) ∪ T)

than halved.

6. Unlike with other domains (e.g., sorted arrays) here binary-search is not

“obviously faster” than linear-search, because the unsatisfiable calls to

SMT.IncrementalSolve are typically much more expensive than the satisfi-

able ones, since they must explore the whole Boolean search space rather

than only a portion of it (although with a higher pruning power, due to

the stronger constraint induced by the presence of pivot). Thus, we have a

trade-off between a typically much-smaller number of calls plus a stronger

pruning power in binary search versus an average much smaller cost of the

calls in linear search. To this extent, it is possible to use dynamic/adaptive

strategies for ComputePivot (see [82]).

5.2 An Inline Schema for OMT(LA(Q))

With the inline schema, the whole optimization procedure is pushed inside

the SMT solver by embedding the range-minimization loop inside the CDCL

Boolean-search loop of the standard lazy SMT schema of §2.2. The SMT solver,

which is thus called only once, is modified as follows.

Initialization. The variables lb, ub, l, u,PIV, pivot,M are brought inside the

SMT solver, and are initialized as in Algorithm 5, steps 1-2.

Range Updating & Pivoting. Every time the search of the CDCL SAT solver

gets back to decision level 0, the range [l, u[is updated s.t. u [resp. l] is assigned

the lowest [resp. highest] value ui [resp. li] such that the atom (cost < ui)

[resp. ¬(cost < ui)] is currently assigned at level 0. (If u ≤ l, or two literals

l,¬l are both assigned at level 0, then the procedure terminates, returning the

current value of u.) Then BinSearchMode() is invoked: if it returns true, then

ComputePivot computes pivot ∈]l, u[, and the (possibly new) atom PIV
def

=

(cost < pivot) is decided to be true (level 1) by the SAT solver. This mimics

steps 4-7 in Algorithm 5, temporarily restricting the cost range to [l, pivot[.

80

5.2. AN INLINE SCHEMA FOR OMT(LA(Q))

conflict pivot0

(cost < pivot0)
ϕ

µ |= ϕ

ub0lb0

Figure 5.1: One piece of possible execution of an inline procedure: pivoting on (cost < pivot0).

Decreasing the Upper Bound. When an assignment µ propositionally satis-

fying ϕ is generated which is found LA(Q)-consistent by LA(Q)-Solver, µ is

also fed to Minimize, returning the minimum cost min of µ; then the unit clause

(cost < min) is learned and fed to the backjumping mechanism, which forces

the SAT solver to backjump to level 0, then unit-propagating (cost < min).

This case mirrors steps 14-16 in Algorithm 5, permanently restricting the cost

range to [l,min[. Minimize is embedded within LA(Q)-Solver, so that it is called

incrementally after it, without restarting its search from scratch.

As a result of these modifications, we also have the following typical sce-

nario (see Figures 5.1-5.3).

Increasing the Lower Bound. In binary-search mode, when a conflict occurs

s.t. the conflict analysis of the SAT solver produces a conflict clause in the

form ¬PIV ∨ ¬η′ s.t. all literals in η′ are assigned true at level 0 (i.e., ϕ ∧

81

CHAPTER 5. PROCEDURES FOR OMT(LA(Q)) AND OMT(LA(Q) ∪ T)

conflict pivot0

ϕ ∧ ¬(cost < pivot0)

(cost < pivot0)
ϕ

µ |= ϕ

ub0lb0

Figure 5.2: One piece of possible execution of an inline procedure: increasing the lower bound

to pivot0.

PIV is LA(Q)-inconsistent), then the SAT solver backtracks to level 0, unit-

propagating ¬PIV. This case mirrors steps 21-23 in Algorithm 5, permanently

restricting the cost range to [pivot, u[.

Although the modified SMT solver mimics to some extent the behaviour

of Algorithm 5, the “control” of the range-restriction process is handled by the

standard SMT search. To this extent, notice that also other situations may allow

for restricting the cost range: e.g., if ϕ∧¬(cost < l)∧(cost < u) |= (cost ◃▹ m)

for some atom (cost ◃▹ m) occurring in ϕ s.t. m ∈ [l, u[and ◃▹ ∈ {≤, <,≥, >},

then the SMT solver may backjump to decision level 0 and propagate (cost ◃▹

m), further restricting the cost range.

The same facts 1.-6. about the offline procedure in §5.1 hold for the inline

version. The efficiency of the inline procedure can be further improved as fol-

82

5.2. AN INLINE SCHEMA FOR OMT(LA(Q))

conflict

mi

pivot1pivot0

mi = mincost(µi)
ηi ⊆ µi

ϕ ∧ ¬(cost < pivot0) ∧ ¬ηi ∧ (cost < mi) ∧ (cost < pivot1)

(cost < pivot1)
ϕ ∧ ¬(cost < pivot0)

(cost < pivot0)
ϕ

µ |= ϕ

ub0lb0

Figure 5.3: One piece of possible execution of an inline procedure: decreasing the upper bound

to mincost(µi).

lows.

Activating previously-learned clauses. In binary-search mode, when a truth

assignment µ with a novel minimum min is found, not only (cost < min) but

also PIV
def

= (cost < pivot) is learned as unit clause. Although redundant from

the logical perspective because min < pivot, the unit clause PIV allows the SAT

solver for reusing all the clauses in the form ¬PIV∨C which have been learned

when investigating the cost range [l, pivot[. (In Algorithm 5 this is done implic-

itly, since PIV is not popped from ϕ before step 16.) Moreover, the LA(Q)-

inconsistent assignment µ ∧ (cost < min) may be fed to LA(Q)-Solver and the

negation of the returned conflict ¬η∨¬(cost < min) s.t. η ⊆ µ, can be learned,

which prevents the SAT solver from generating any assignment containing η.

Tightening. In binary-search mode, if LA(Q)-Solver returns a conflict set η ∪

83

CHAPTER 5. PROCEDURES FOR OMT(LA(Q)) AND OMT(LA(Q) ∪ T)

{PIV}, then it is further asked to find the maximum value max s.t. η ∪ {(cost <
max)} is also LA(Q)-inconsistent. (This is done with a simple modification of

the algorithm in [41].) If max ≥ u, then the clause C∗
def

= ¬η ∨ ¬(cost < u)

is used do drive backjumping and learning instead of C
def

= ¬η ∨ ¬PIV. Since

(cost < u) is permanently assigned at level 0, the dependency of the conflict

from PIV is removed. Eventually, instead of using C to drive backjumping

to level 0 and propagating ¬PIV, the SMT solver may use C∗, then forcing the

procedure to stop. If u > max > pivot, then the two clauses C1
def

= ¬η∨¬(cost <
max) and C2

def

= ¬PIV ∨ (cost < max) are used to drive backjumping and

learning instead of C
def

= ¬η ∨ ¬PIV. In particular, C2 forces backjumping

to level 1 ad propagating the (possibly fresh) atom (cost < max); eventually,

instead of using C do drive backjumping to level 0 and propagating ¬PIV, the

SMT solver may use C1 for backjumping to level 0 and propagating ¬(cost <
max), restricting the range to [max, u[rather than to [pivot, u[.

Example 5.1. Consider the formula ϕ
def

= ψ ∧ (cost ≥ a + 15) ∧ (a ≥ 0) for

some ψ in the cost range [0, 16[. With binary-search deciding PIV
def

= (cost < 8),

the LA(Q)-Solver produces the lemma C
def

= ¬(cost ≥ a + 15) ∨ ¬(a ≥ 0) ∨
¬PIV, causing a backjumping step to level 0 on C and the unit-propagation

of ¬PIV, restricting the range to [8, 16[; it takes a sequence of similar steps

to progressively restrict the range to [12, 16[, [14, 16[, and [15, 16[. If instead

the LA(Q)-Solver produces the lemmas C1
def

= ¬(cost ≥ a + 15) ∨ ¬(a ≥
0) ∨ ¬(cost < 15) and C2

def

= ¬PIV ∨ (cost < 15), then this first causes a

backjumping step on C2 to level 1 with the unit-propagation of (cost < 15),

and then a backjumping step on C1 to level zero with the unit-propagation of

¬(cost < 15), which directly restricts the range to [15, 16[.

Adaptive Mixed Linear/Binary Search Strategy. An adaptive version of the

heuristic BinSearchMode() decides the next search mode according to the ratio

between the progress obtained in the latest binary- and linear-search steps and

their respective costs. If either ub or lb is not present, then the heuristic selects

84

5.3. EXTENSIONS TO OMT(LA(Q) ∪ T)

linear search mode. Otherwise, it selects binary-search mode if and only if

∆ublin
∆#conflin

<
∆ubbin

∆#confbin
,

where ∆ublin and ∆ubbin are respectively the variations of the upper bound

ub in the latest linear-search and binary-search steps performed, estimating the

progress achieved by such steps, whilst ∆#conflin and ∆#confbin are respec-

tively the number of conflicts produced in such steps, estimating their expense.

(Notice that if a binary-search step returns UNSAT, then ∆ubbin = 0 and linear-

search is chosen, in compliance with the strategy to avoid infinite “Zeno” se-

quences described in §5.1.)

5.3 Extensions to OMT(LA(Q) ∪ T)

We recall the terminology, assumptions, definitions and results of §4.2. Theo-

rems 4.1, 4.3 and 4.4 allow for extending to the OMT(LA(Q) ∪ T) case the

procedures of §5.1 and §5.2 as follows.

As suggested by Theorem 4.3, straightforward OMT(LA(Q)∪T) extensions

of the procedures for OMT(LA(Q)) of §5.1, §5.2 would be such that the SMT

solver enumerates ed-extended satisfying truth assignments η
def

= µ ∧ µed as

in Definition 4.4, checking the T - and LA(Q)-consistency of its components

µT ∧ µed and µLA(Q) ∧ µed respectively, and then minimizing the µLA(Q) ∧ µed

component. (Termination is guaranteed by the fact that each EXed(µ) is a finite

set, whilst correctness and completeness is guaranteed by Theorems 4.1 and

4.3.)

Nevertheless, as suggested in §4.2, minimizing µLA(Q)∧µed efficiently could

be problematic due to the presence of negated interface equalities ¬(xi = xj).

Thus, alternative “asymmetric” procedures, in compliance with the efficient us-

age of LA(Q)-solvers in SMT, should instead enumerate edi-extended satisfy-

ing truth assignments ρ
def

= µ ∧ µeid as in Definition 4.5, checking the T - and

85

CHAPTER 5. PROCEDURES FOR OMT(LA(Q)) AND OMT(LA(Q) ∪ T)

LA(Q)-consistency of its components µT ∧ µed and µLA(Q) ∧ µei respectively,

and then minimizing the µLA(Q) ∧ µei component. (As before, termination is

guaranteed by the fact that each EXedi(µ) is a finite set, whilst correctness and

completeness is guaranteed by Theorems 4.1 and 4.4.) This prevents from

passing negated interface equalities to Minimize.

This motivates and explains the following OMT(LA(Q)∪T) variants of the

offline and inline procedures of §5.1 and §5.2 respectively.

Algorithm 5 is modified as follows. First, SMT.IncrementalSolve in steps 8

and 11 is asked to return also a LA(Q)∪ T -model I. Then in step 15 Minimize

is invoked instead on ⟨cost, µLA(Q) ∪ µei⟩, s.t.

µei
def

= {(xi = xj),¬(xi < xj),¬(xi > xj) | (xi = xj) ∈ IE(µ), I |= (xi = xj)}
∪ {(xi < xj),¬(xi > xj) | (xi = xj) ∈ IE(µ), I |= (xi < xj)}
∪ {(xi > xj),¬(xi < xj) | (xi = xj) ∈ IE(µ), I |= (xi > xj)}.

In practice, the negated strict inequalities ¬(xi < xj),¬(xi > xj) are omitted

from µei, because they are entailed by the corresponding non-negated equali-

ties/inequalities.

The implementation of an inline OMT(LA(Q)∪T) procedures comes nearly

for free once the SMT solver handles LA(Q) ∪ T -solving by Delayed Theory

Combination [28], with the strategy of case-splitting automatically disequali-

ties ¬(xi = xj) into the two inequalities (xi < xj) and (xi > xj), which

is implemented in MATHSAT: the solver enumerates truth assignments in the

form ρ
def

= µLA(Q) ∧ µeid ∧ µT as in Definition 4.5, and passes µLA(Q) ∧ µei

and µT ∧ µed to the LA(Q)-Solver and T -Solver respectively. (Notice that this

strategy, although not explicitly described in [28], implicitly implements points

(a) and (c) of Theorem 4.4.) If so, then, in accordance with points (b) and

(d) of Theorem 4.4, it suffices to apply Minimize to µLA(Q) ∧ µei, then learn

(cost < min) and use it for backjumping, as in §5.2. As with the inline version,

in practice the negated strict inequalities are omitted from µei, because they are

entailed by the corresponding non-negated equalities/inequalities.

86

Chapter 6

Experimental Evaluation for

OMT(LA(Q))

We have implemented both the offline and inline OMT(LA(Q)) procedures and

the inline OMT(LA(Q)∪T) procedures of §5 on top of MATHSAT5 1 [33] (we

refer to them as OPTIMATHSAT). We consider different configurations of OP-

TIMATHSAT, depending on the approach (offline vs. inline, denoted by “-OF”

and “-IN”) and on the search schema (linear vs. binary vs. adaptive, denoted

respectively by “-LIN”, “-BIN” and “-ADA”). 2 For example, the configuration

OPTIMATHSAT-LIN-IN denotes the inline linear-search procedure. We used

only five configurations since the “-ADA-OF” were not implemented.

Due to the absence of competitors on OMT(LA(Q) ∪ T), we evaluate the

performance of our five configurations of OPTIMATHSAT by comparing them

against the commercial LGDP tool GAMS 3 v23.7.1 [29] on OMT(LA(Q))

problems. GAMS is a tool for modeling and solving optimization problems,

consisting of different language compilers, which translate mathematical prob-

lems into representations required by specific solvers, like CPLEX [54]. GAMS

1http://mathsat.fbk.eu/.
2Here “-LIN” means that BinSearchMode() always returns false, “-BIN” denotes the mixed linear-binary strat-

egy described in §5.1 to ensure termination, whilst “-ADA” refers to the adaptive strategy illustrated in §5.2.
3http://www.gams.com.

87

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

provides two reformulation tools, LOGMIP 4 v2.0 and JAMS 5 (a new ver-

sion of the EMP 6 solver), s.t. both of them allow for reformulating LGDP

models by using either big-M (BM) or convex-hull (CH) methods [75, 78].

We use CPLEX v12.2 [54] (through an OSI/CPLEX link) to solve the refor-

mulated MILP models. All the tools were executed using default options, as

suggested by the authors [92]. We also compared OPTIMATHSAT against

MATHSAT augmented by Pseudo-Boolean (PB) optimization [31] (we call it

PB-MATHSAT) on MaxSMT problems.

Remark 6.1. Importantly, MATHSAT and OPTIMATHSAT use infinite-precision

arithmetic whilst the GAMS tools and CPLEX implement standard floating-

point arithmetic. Moreover the former handle strict inequalities natively (see

§2.2), whilst the GAMS tools use an approximation with a very-small constant

value “eps” ϵ (default ϵ
def

= 10−6), so that, e.g., “(x > 0) is internally rewritten

into (x ≥ 10−6)” 7.

The comparison is run on four distinct collections of benchmark problems:

• (§6.2) LGDP problems, proposed by LOGMIP and JAMS authors [93, 77,

78];

• (§6.3) OMT(LA(Q)) problems from SMT-LIB 8;

• (§6.4) OMT(LA(Q)) problems, coming from encoding parametric verifi-

cation problems from the SAL 9 model checker;

• (§6.5) the MaxSMT problems from [31].

The encodings from LGDP to OMT(LA(Q)) and back are described in §6.1.

4http://www.logmip.ceride.gov.ar/index.html.
5http://www.gams.com/.
6http://www.gams.com/dd/docs/solvers/emp.pdf.
7GAMS support team, email personal communication, 2012.
8http://www.smtlib.org/.
9http://sal.csl.sri.com.

88

6.1. ENCODINGS.

All tests were executed on 2.66 GHz Xeon machines with 4GB RAM run-

ning Linux, using a timeout of 600 seconds. The correctness of the mini-

mum costs min found by OPTIMATHSAT have been cross-checked by another

SMT solver, YICES 10 by checking the inconsistency within the bounds of

ϕ ∧ (cost < min) and the consistency of ϕ ∧ (cost = min) (if min is non-

strict), or of ϕ∧ (cost ≤ min) and ϕ∧ (cost = min+ ϵ) (if min is strict), ϵ being

some very small value.

All versions of OPTIMATHSAT passed the above checks. On the LGDP

problems (§6.2) all tools agreed on the final results, apart from tiny rounding

errors by GAMS tools; 11 on all the other problem collections (§6.3, §6.4, §6.5)

instead, the results of the GAMS tools were affected by errors, which we will

discuss there.

In order to make the experiments reproducible, more detailed tables, the full-

size plots, a Linux binary of OPTIMATHSAT, the problems, and the results are

made available. 12 (We cannot distribute the GAMS tools since they are subject

to licencing restrictions, see [29]; however, they can be obtained at GAMS

url.)

6.1 Encodings.

In order to translate LGDP models into OMT(LA(Q)) problems we use the

encoding in (4.5) of §4.2.1, namely LGDP2SMT. 13

In order to translate OMT(LA(Q)) problems into LGDP models we consider

10http://yices.csl.sri.com/.
11GAMS +CPLEX often gives some errors ≤ 10−5, which we believe are due to the printing floating-point

format: e.g., whilst OPTIMATHSAT reports the value 7728125177/2500000000with infinite-precision arith-

metic, GAMS +CPLEX reports it as its floating-point approximation 3.091250e+00.
12http://disi.unitn.it/˜rseba/optimathsat2014.tgz
13Notice that LGDP models are written in GAMS language which provides a large number of constructs. Since

our encoder supports only base constructs (like equations and disjunctions), before generating the LGDP2SMT

encoding, we used the GAMS Converted tool for converting complex GAMS specifications (e.g. containing sets

and indexed equations) into simpler specifications.

89

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

two different encodings, namely SMT2LGDP1 and SMT2LGDP2.

Since GAMS tools do not handle negated equalities and strict inequalities,

with both encodings negated equalities ¬(t1 = t2) or (t1 ̸= t2) in the in-

put LA(Q)-formula ϕ are first replaced by the disjunction of two inequalities

¬(t1 ≤ t2)∨¬(t1 ≥ t2)) and strict inequalities (t1 < t2) are rewritten as negated

non-strict inequalities ¬(t1 ≥ t2). 14 Let ϕ′ be the LA(Q)-formula obtained by

ϕ after these substitutions.

In SMT2LGDP1, which is inspired to the polarity-driven CNF conversion of

[74], we compute the Boolean abstraction ϕ′p of ϕ′ (which plays the role of

formula φ in (2.6)) and then, for each LA-atom ψi occurring positively [resp.

negatively] in ϕ′, we add the disjunction ¬Ai ∨ ψi [resp. Ai ∨ ¬ψi], where Ai

is the Boolean atom of ϕ′p corresponding to the LA-atom ψi.

In SMT2LGDP2, first we compute the CNF-ization of ϕ′ using the MATH-

SAT5 CNF-izer, and then we encode each non-unit clause (li1 ∨ . . .∨ lin) ∈ ϕ′

as a LGDP disjunction [Y 1
i ∧ li1] ∨ . . .∨ [Y n

i ∧ lin], where Y 1
i , . . . , Y

n
i are fresh

Boolean variables.

Remark 6.2. We decided to provide two different encodings for a bunch of rea-

sons. SMT2LGDP1 is a straightforward and very-natural encoding. However,

we have verified empirically, and some discussion with GAMS support team

confirmed it 15, that some GAMS tools/options have often problems in han-

dling efficiently and even correctly the Boolean structure of the formulas φ in

(2.6) (see e.g. the number of problems terminated with error messages in §6.3-

§6.5). Thus, following also the suggestions of the GAMS support team, we

have introduced SMT2LGDP2, which eliminates any Boolean structure, reduc-

ing the encoding substantially to a set of LGDP disjunctions. Notice, however,

that SMT2LGDP2 benefits from the CNF encoder of MATHSAT5.

14Here we implicitly assume that the literals ¬(t1 = t2), (t1 ̸= t2) and (t1 < t2) occur positively in ϕ; for

negative occurrences the encoding is dual.
15GAMS support team, email personal communication, 2012.

90

6.2. COMPARISON ON LGDP PROBLEMS

6.2 Comparison on LGDP Problems

We have performed the first comparison over two distinct benchmarks, strip-

packing and zero-wait job-shop scheduling problems, which have been previ-

ously proposed as benchmarks for LOGMIP and JAMS by their authors [93,

77, 78]. We adopted the encoding of the problems into LGDP given by the au-

thors 16 and gave a corresponding OMT(LA(Q)) encoding. We refer to them

as “directly generated” benchmarks.

In order to make the results independent from the encoding used, to inves-

tigate the correctness and effectiveness of the encodings described in §6.1, and

to check the robustness of the tools wrt. different encodings, we also gener-

ated formulas from “directly generated” benchmarks by applying the encodings

SMT2LGDP1, SMT2LGDP2, and LGDP2SMT; we also applied the SMT2LGDP1/

SMT2LGDP2 and LGDP2SMT encodings consecutively to SMT formulas. We

refer to them as “encoded” benchmarks.

6.2.1 The strip-packing problem.

Given a set of N rectangles of different length Li and height Hi, i ∈ 1, .., N , and

a strip of fixed width W but unlimited length, the strip-packing problem aims at

minimizing the length L of the filled part of the strip while filling the strip with

all rectangles, without any overlap and any rotation. (See Figure 6.1.)

16Examples are available at http://www.logmip.ceride.gov.ar/newer.html and at http://

www.gams.com/modlib/modlib.htm.

91

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

Figure 6.1: Graphical representation of a strip-packing problem.

The LGDP model provided by [77] is the following:

min L

s.t. L ≥ xi + Li ∀i ∈ N
[Y 1

ij

xi + Li ≤ xj

]

∨
[Y 2

ij

xj + Lj ≤ xi

]

(6.1)

∨
[Y 3

ij

yi −Hi ≥ yj

]

∨
[Y 4

ij

yj −Hj ≥ yi

]

∀i, j ∈ N, i < j

xi ≤ ub− Li ∀i ∈ N

Hi ≤ yi ≤W ∀i ∈ N

L, xi, yi ∈ R1
+, Y

1
ij, Y

2
ij, Y

3
ij, Y

4
ij ∈ {True, False}

where L corresponds to the objective function to minimize and every rectangle

j ∈ J is represented by the constants Lj and Hj (length and height respec-

tively) and the variables xj, yj (the coordinates of the upper left corner in the

2-dimensional space). Every pair of rectangles i, j ∈ N, i < j is constrained

by a disjunction that avoids their overlapping (each disjunct represents the po-

sition of rectangle i in relation to rectangle j). The size of the strip limits the

position of each rectangle j: the width of the strip W and the upper bound

ub on the optimal solution bound the yj-coordinate and the height Hj bounds

92

6.2. COMPARISON ON LGDP PROBLEMS

the xj-coordinate. We express straightforwardly the LGDP model (6.1) into

OMT(LA(Q)) as follows:

ϕ
def

= (cost = L) ∧
∧

∀i∈N(L ≥ xi + Li)

∧
∧

∀i,j∈N,i<j

(

(xi + Li ≤ xj) ∨ (xj + Lj ≤ xi)

∨(yi −Hi ≥ yj) ∨ (yj −Hj ≥ yi)
)

∧
∧

∀i∈N(xi ≤ ub− Li) ∧
∧

∀i∈N(xi ≥ 0)

∧
∧

∀i∈N(Hi ≤ yi) ∧
∧

∀i∈N(W ≥ yi) ∧
∧

∀i∈N(yi ≥ 0)

(6.2)

We randomly generated instances of the strip-packing problem according to

a fixed width W of the strip and a fixed number of rectangles N . For each rect-

angle j ∈ N , length Lj and height Hj are selected in the interval]0, 1] uniformly

at random. The upper bound ub is computed with the same heuristic used by

[77], which sorts the rectangles in non-increasing order of width and fills the

strip by placing each rectangles in the bottom-left corner, and the lower bound

lb is set to zero. We generated 100 samples each for 9, 10 and 11 rectangles

and for two values of the width
√
N/2 and 1 (Notice that with W =

√
N/2

the filled strip looks approximatively like a square, whilst W = 1 is half the

average size of one rectangle.)

6.2.2 The zero-wait jobshop problem.

Consider the scenario where there is a set I of jobs which must be scheduled

sequentially on a set J of consecutive stages with zero-wait transfer between

them. Each job i ∈ I has a start time si and a processing time tij in the stage

j ∈ Ji, Ji being the set of stages of job i. The goal of the zero-wait job-shop

scheduling problem is to minimize the makespan, that is the total length of the

schedule. (See Figure 6.2.)

93

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

Figure 6.2: Graphical representation of a zero-wait jobshop problem.

The LGDP model provided by [77] is:

min M

s.t. M ≥
∑

∀j∈Ji tij ∀i ∈ I

[Y 1
ik

ti +
∑

∀m∈Ji,m≤j tim ≤ tk +
∑

∀m∈Jk,m<j tkm

]

∨ (6.3)

[Y 2
ik

tk +
∑

∀m∈Jk,m≤j tkm ≤ ti +
∑

∀m∈Ji,m<j tim

] ∀j ∈ Cik,

∀i, k ∈ I, i < k

M, ti ∈ R1
+, Y

1
ik, Y

2
ik ∈ {True, False} ∀i, k ∈ I, i < k

where M corresponds to the objective function to minimize and every jobs i ∈ I

is represented by the variable si (its start time) and the constant tij (its process-

ing time in stage j ∈ Ji). For each pair of jobs i, k ∈ I and for each stage

j with potential clashes (i.e j ∈ Cik = {Ji ∩ Jk}), a disjunction ensures that

no clash between jobs occur at any stage at the same time. We encoded the

corresponding LGDP model (6.3) into OMT(LA(Q)) as follows:

ϕ
def

= (cost = M)

∧
∧

i∈I(M ≥ si +
∑

∀j∈Ji tij) ∧
∧

i∈I(si ≥ 0)

∧
∧

∀j∈Cik,∀i,k∈I,i<k

(

(si +
∑

∀m∈Ji,m≤j tim ≤ sk +
∑

∀m∈Jk,m<j tkm)

∨ (sk +
∑

∀m∈Jk,m≤j tkm ≤ si +
∑

∀m∈Ji,m<j tim)
)

(6.4)

We generated randomly instances of the zero-wait jobshop problem accord-

ing to a fixed number of jobs I and a fixed number of stages J . For each job

94

6.2. COMPARISON ON LGDP PROBLEMS

i ∈ I , start time si and processing time tij of every job are selected in the inter-

val]0, 1] uniformly at random. We consider a set of 100 samples each for 9, 10,

11, 12 jobs and 8 stages and for 11 jobs and 9, 10 stages. We set no value for

ub and lb = 0.

6.2.3 Discussion

The table of Figure 6.3 shows the number of solved instances and their cumula-

tive execution time for different configurations of OPTIMATHSAT and GAMS

on “directly generated” and “encoded” benchmarks. The scatter-plots of Fig-

ures 6.4-6.6 compare the best-performing version of OPTIMATHSAT, OPTI-

MATHSAT-LIN-IN, against LOGMIP+CPLEX with BM and CH reformula-

tion (left and center respectively) and the two inline versions OPTIMATHSAT-

LIN-IN and OPTIMATHSAT-BIN-IN on “directly generated” benchmarks.

The table of Figure 6.7 shows the number of solved instances and their cu-

mulative execution time for different configurations of OPTIMATHSAT and

GAMS on “directly generated” and “encoded” benchmarks. The scatter-plots

of Figures 6.8-6.10 compare the best-performing version of OPTIMATHSAT,

OPTIMATHSAT-LIN-IN, against LOGMIP with BM and CH reformulation

(left and center respectively) on “directly encoded” benchmarks; the figure also

compares the two inline versions OPTIMATHSAT-LIN-IN and OPTIMATH-

SAT-BIN-IN.

The results on the LGDP problems suggest some considerations. Compar-

ing the different versions of OPTIMATHSAT, we notice that:

• the inline versions (-IN) behave pairwise uniformly better than the corre-

sponding offline versions (-OF), which is not surprising;

• overall the -LIN options seems to perform a little better than the corre-

sponding -BIN and -ADA options (although gaps are not dramatic).

95

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

Procedure

Strip-packing

W =
√
N/2 W = 1

Total
N = 9 N = 12 N = 15 N = 9 N = 12 N = 15

#s. time #s. time #s. time #s. time #s. time #s. time #s. time

Directly Generated Benchmarks

OPTIMATHSAT-LIN-OF 100 53 100 605 94 8160 100 749 89 3869 54 5547 537 18983

OPTIMATHSAT-LIN-IN 100 12 100 144 100 3518 100 173 94 2127 74 6808 568 12782

OPTIMATHSAT-BIN-OF 100 50 100 625 89 8346 100 588 89 5253 45 5611 523 20473

OPTIMATHSAT-BIN-IN 100 14 100 211 98 4880 100 202 94 2985 65 8101 557 16393

OPTIMATHSAT-ADA-IN 100 13 100 192 99 5574 100 214 94 2675 63 7949 556 16617

JAMS(BM)+CPLEX 100 230 78 10177 12 1180 100 158 91 3878 51 6695 432 22318

JAMS(CH)+CPLEX 100 2854 27 2393 1 417 100 1906 70 7471 17 4032 315 19073

LOGMIP(BM)+CPLEX 100 229 78 10159 12 1192 100 157 91 3866 51 6720 432 22323

LOGMIP(CH)+CPLEX 100 2851 27 2414 1 424 100 1907 70 7440 17 4037 315 19073

LGDP2SMT Encoded Benchmarks

OPTIMATHSAT-LIN-IN 100 12 100 144 100 3563 100 183 94 2169 73 6466 567 12537

SMT2LGDP1-LGDP2SMT Encoded Benchmarks

OPTIMATHSAT-LIN-IN 100 13 100 166 100 5919 100 195 94 2156 74 7080 568 15529

SMT2LGDP2-LGDP2SMT Encoded Benchmarks

OPTIMATHSAT-LIN-IN 100 13 100 141 100 5574 100 172 94 2148 74 6650 568 12618

SMT2LGDP1 Encoded Benchmarks

JAMS(BM)+CPLEX 100 389 68 8733 12 1934 100 162 89 5565 47 7313 416 24096

JAMS(CH)+CPLEX 99 980 46 6099 2 769 100 726 72 7454 17 3505 336 19533

LOGMIP(BM)+CPLEX 100 390 68 8723 12 1946 100 163 89 5547 47 7299 416 24068

LOGMIP(CH)+CPLEX 99 981 54 5480 12 735 100 725 74 7433 17 3542 346 18896

SMT2LGDP2 Encoded Benchmarks

JAMS(BM)+CPLEX 100 190 81 8460 11 2066 100 159 89 2960 56 8142 437 21977

JAMS(CH)+CPLEX 98 3799 24 2137 1 292 100 2402 68 7926 16 3429 307 19985

LOGMIP(BM)+CPLEX 100 191 81 8462 11 2071 100 159 90 2964 56 8206 438 22053

LOGMIP(CH)+CPLEX 98 3807 24 2133 1 312 100 2388 68 7915 17 4027 308 20582

Figure 6.3: Results (# of solved instances, cumulative time in seconds for solved instances) for

OPTIMATHSAT and GAMS (using LOGMIP and JAMS) on 100 random instances (including

“directly generated” and “encoded” benchmarks) each of the strip-packing problem for N rect-

angles, where N = 9, 12, 15, and width W =
√
N/2, 1. Values highlighted in bold represent

best performances.

96

6.2. COMPARISON ON LGDP PROBLEMS

10-1

100

101

102

103

10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f L

og
M

IP
(B

M
)+

C
PL

EX

Execution time (in sec) of OptiMathSAT5-BIN-IN

W=sqrt(r)/2, N=9
W=1, N=9

W=sqrt(r)/2, N=12
W=1, N=12

W=sqrt(r)/2, N=15
W=1, N=15

Figure 6.4: Comparison of the binary-search configuration of OPTIMATHSAT

(OPTIMATHSAT-LIN-IN) against LOGMIP(BM)+CPLEX on “directly generated” in-

stances of the strip-packing problem.

97

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

10-1

100

101

102

103

10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f L

og
M

IP
(C

H
)+

C
PL

EX

Execution time (in sec) of OptiMathSAT5-BIN-IN

W=sqrt(r)/2, N=9
W=1, N=9

W=sqrt(r)/2, N=12
W=1, N=12

W=sqrt(r)/2, N=15
W=1, N=15

Figure 6.5: Comparison of the binary-search configuration of OPTIMATHSAT

(OPTIMATHSAT-LIN-IN) and LOGMIP(CH)+CPLEX on “directly generated” instances of

the strip-packing problem.

98

6.2. COMPARISON ON LGDP PROBLEMS

10-1

100

101

102

103

10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f O

pt
iM

at
hS

AT
5-

BI
N

-IN

Execution time (in sec) of OptiMathSAT5-LIN-IN

W=sqrt(r)/2, N=9
W=1, N=9

W=sqrt(r)/2, N=12
W=1, N=12

W=sqrt(r)/2, N=15
W=1, N=15

Figure 6.6: Comparison of the inline versions of OPTIMATHSAT on “directly generated”

benchmarks of the strip-packing problem: OPTIMATHSAT-LIN-IN against OPTIMATHSAT-

BIN-IN.

99

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

Procedure

Job-shop

I = 9, I = 10, I = 11, I = 12, I = 11, I = 11,
Total

J = 8 J = 8 J = 8 J = 8 J = 9 J = 10

#s. time #s. time #s. time #s. time #s. time #s. time #s. time

Directly Generated Benchmarks

OPTIMATHSAT5-LIN-OF 100 386 100 1854 97 9396 57 14051 100 9637 99 10670 553 45995

OPTIMATHSAT5-LIN-IN 100 317 100 1584 100 8100 77 18046 100 7738 100 7433 577 43228

OPTIMATHSAT5-BIN-OF 100 726 100 3817 88 13222 38 12529 92 14183 90 13287 508 57764

OPTIMATHSAT5-BIN-IN 100 602 100 3270 97 12878 54 16234 96 13159 96 12350 543 58493

OPTIMATHSAT5-ADA-IN 100 596 100 3230 97 12262 53 14810 96 12805 96 12125 542 55828

JAMS(BM)+CPLEX 100 268 100 1113 100 4734 87 17067 100 4941 100 6122 587 34245

JAMS(CH)+CPLEX 84 23830 4 1596 0 0 0 0 0 0 1 363 89 25789

LOGMIP(BM)+CPLEX 100 267 100 1114 100 4718 87 17108 100 4962 100 6174 587 34343

LOGMIP(CH)+CPLEX 84 23871 4 1622 0 0 0 0 0 0 1 338 89 25831

LGDP2SMT Encoded Benchmarks

OPTIMATHSAT5-LIN-IN 100 324 100 1571 100 7739 74 16494 100 7175 100 7504 574 40807

SMT2LGDP1-LGDP2SMT Encoded Benchmarks

OPTIMATHSAT5-LIN-IN 100 336 100 1578 100 7762 71 16589 100 7726 100 7706 571 41697

SMT2LGDP2-LGDP2SMT Encoded Benchmarks

OPTIMATHSAT5-LIN-IN 100 320 100 1533 100 7623 68 15120 100 7216 100 7598 568 39410

SMT2LGDP1 Encoded Benchmarks

JAMS(BM)+CPLEX 100 239 100 1128 100 5516 84 19949 100 6667 100 4176 584 37675

JAMS(CH)+CPLEX 100 14527 46 17887 0 0 0 0 1 497 0 0 147 32911

LOGMIP(BM)+CPLEX 100 240 100 1122 100 5510 83 19489 100 6684 100 4180 583 37225

LOGMIP(CH)+CPLEX 100 14465 47 18206 0 0 0 0 1 495 0 0 148 33166

SMT2LGDP2 Encoded Benchmarks

JAMS(BM)+CPLEX 100 319 100 1865 100 12470 45 15704 97 13189 96 15773 538 59320

JAMS(CH)+CPLEX 95 22435 18 8030 2 671 0 0 1 526 3 1043 119 32723

LOGMIP(BM)+CPLEX 100 319 100 1871 100 12440 45 15747 98 13661 95 15102 538 59140

LOGMIP(CH)+CPLEX 95 22401 18 7991 1 163 0 0 1 437 3 1020 118 32012

Figure 6.7: Results (# of solved instances, cumulative time in seconds for solved instances)

for OPTIMATHSAT and GAMS on 100 random samples (including “directly generated” and

“encoded” benchmarks) each of the job-shop problem for I = 9, 10, 11, 12 jobs and J = 8

stages and for I = 11 jobs and J = 9, 10 stage.

100

6.2. COMPARISON ON LGDP PROBLEMS

10-1

100

101

102

103

10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f L

og
M

IP
(B

M
)+

C
PL

EX

Execution time (in sec) of OptiMathSAT5-LIN-IN

9 job and 8 stages
10 job and 8 stages
11 job and 8 stages
11 job and 9 stages

11 job and 10 stages
12 job and 8 stages

Figure 6.8: Comparison of the best version of OPTIMATHSAT (OPTIMATHSAT-LIN-IN)

against LOGMIP(BM)+CPLEX on “directly generated” benchmarks of job shop problem.

101

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

10-1

100

101

102

103

10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f L

og
M

IP
(C

H
)+

C
PL

EX

Execution time (in sec) of OptiMathSAT5-LIN-IN

9 job and 8 stages
10 job and 8 stages
11 job and 8 stages
11 job and 9 stages

11 job and 10 stages
12 job and 8 stages

Figure 6.9: Comparison of the best version of OPTIMATHSAT (OPTIMATHSAT-LIN-IN)

against LOGMIP(CH)+CPLEX on “directly generated” benchmarks of job shop problem.

102

6.2. COMPARISON ON LGDP PROBLEMS

10-1

100

101

102

103

10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f O

pt
iM

at
hS

AT
5-

BI
N

-IN

Execution time (in sec) of OptiMathSAT5-LIN-IN

9 job and 8 stages
10 job and 8 stages
11 job and 8 stages
11 job and 9 stages

11 job and 10 stages
12 job and 8 stages

Figure 6.10: Comparison of the two inline versions of OPTIMATHSAT on “directly generated”

benchmarks of job shop problem: OPTIMATHSAT-LIN-IN against OPTIMATHSAT-BIN-IN.

Remark 6.3. We notice that with LGDP problems binary search is not “obvi-

ously faster” than linear search, in compliance with what stated in point 6. in

§5.1. This is further enforced by the fact that in strip-packing (6.2) [resp. job-

shop (6.4)] encodings, the cost variables cost
def

= L [resp. cost
def

= M] occurs

only in positive unit clauses in the form (L ≥ ⟨term⟩) [resp. (M ≥ ⟨term⟩)];

103

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

thus, learning ¬(cost < pivot) as a result of the binary-search steps with UNSAT

results produces no constraining effect on the variables in ⟨term⟩, and hence no

substantial extra search-pruning effect due to the early-pruning technique of the

SMT solver.

Comparing the different versions of the GAMS tools, we see that LOGMIP

and JAMS reformulations lead to substantially identical performance on both

strip-packing and job-shop instances. For both reformulation tools, the BM

versions uniformly outperform the CH ones, often dramatically. This latter fact

is relevant, since the authors of [93, 77, 78] overall do not champion one method

over the other.

Comparing the performances of the versions of OPTIMATHSAT against

these of the GAMS tools, we notice that

• on strip-packing problems all versions of OPTIMATHSAT outperform all

GAMS versions, regardless the encoding used. E.g., the best OPTIMATH-

SAT version solved ≈ 30% more formulas than the best GAMS version;

• on job-shop problems results are mixed. OPTIMATHSAT drastically out-

performs the CH versions on all encodings and it slightly beats the BM

ones on “SMT2LGDP2 encoded” benchmarks, whilst it is slightly beaten

by the BM versions on “directly generated” and “SMT2LGDP1 encoded”

benchmarks. E.g., the best OPTIMATHSAT version solved ≈ 2% less

formulas than the best GAMS version.

Overall, we can conclude that OPTIMATHSAT performances on these problems

are comparable with, and most often significantly better than, those of GAMS

tools.

We may wonder how these results are affected by the different encodings

used. (We recall from the beginning of §6 that all solvers agreed on the results,

regardless the encoding.) In terms of performances, comparing the effects of

the different encodings, we notice the following facts.

104

6.2. COMPARISON ON LGDP PROBLEMS

• On OPTIMATHSAT (-LIN-IN) the effects of the different encodings is

substantially negligible, on both strip-packing and job-shop problems, since

we have only very small variations in the number of solved instances be-

tween “directly generated” and “encoded” instances, in the various encod-

ing combinations. From this reason, we conclude that OPTIMATHSAT is

robust wrt. the encodings of these problems.

• On GAMS tools the effects of the different encodings are more relevant,

although very heterogeneous: e.g., wrt. to “directly generated” instances,

“SMT2LGDP1 encoded” solved formulas are slightly less with BM options,

and up to much more with CH options; “SMT2LGDP2 encoded” solved

formulas are slightly more on strip-packing and a little less on job-shop

with BM options, slightly less on strip-packing and a much more on job-

shop with CH options. For this reason, in next sections we always report

the results with both encodings.

Analysis of OPTIMATHSAT performances.

We want to perform a more fine-grained analysis of the performances of the

best version of OPTIMATHSAT, OPTIMATHSAT-LIN-IN. To this extent, we

partition the total execution time taken on each problem into three consecutive

components:

• solving time, i.e. the time spent on finding the first sub-optimal solution,

• minimization time, i.e. the time required to search for the optimal solution,

• and certification time, i.e. the time needed for checking there is no better

solution.

Figures 6.11-6.16 reports, for all strip-packing and job-shop instances, the

ratios of the three components above over total execution time. (Notice the log

scale of the x axis and the linear scale on the y axis.) We notice a few facts:

105

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

 0

 0.2

 0.4

 0.6

 0.8

 1

10-1 100 101 102 103

So
lv

in
g

Ti
m

e
/ E

xe
cu

tio
n

Ti
m

e

Execution time (in sec) of OptiMathSAT5-LIN-IN

W=sqrt(r)/2, N=9
W=1, N=9

W=sqrt(r)/2, N=12
W=1, N=12

W=sqrt(r)/2, N=15
W=1, N=15

Figure 6.11: Comparing solving time with the execution time of OPTIMATHSAT-LIN-IN on

“directly generated” instances of strip-packing.

106

6.2. COMPARISON ON LGDP PROBLEMS

 0

 0.2

 0.4

 0.6

 0.8

 1

10-1 100 101 102 103

So
lv

in
g

Ti
m

e
/ E

xe
cu

tio
n

Ti
m

e

Execution time (in sec) of OptiMathSAT5-LIN-IN

9 jobs and 8 stages
10 jobs and 8 stages
11 jobs and 8 stages
11 jobs and 9 stages

11 jobs and 10 stages
12 jobs and 8 stages

Figure 6.12: Comparing solving time with the execution time of OPTIMATHSAT-LIN-IN on

“directly generated” instances of job-shop.

107

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

 0

 0.2

 0.4

 0.6

 0.8

 1

10-1 100 101 102 103

M
in

im
iz

at
io

n
Ti

m
e

/ E
xe

cu
tio

n
Ti

m
e

Execution time (in sec) of OptiMathSAT5-LIN-IN

Figure 6.13: Comparing minimization time with the execution time of OPTIMATHSAT-LIN-

IN on “directly generated” instances of strip-packing..

108

6.2. COMPARISON ON LGDP PROBLEMS

 0

 0.2

 0.4

 0.6

 0.8

 1

10-1 100 101 102 103

M
in

im
iz

at
io

n
Ti

m
e

/ E
xe

cu
tio

n
Ti

m
e

Execution time (in sec) of OptiMathSAT5-LIN-IN

Figure 6.14: Comparing minimization time with the execution time of OPTIMATHSAT-LIN-

IN on “directly generated” instances of job-shop.

109

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

 0

 0.2

 0.4

 0.6

 0.8

 1

10-1 100 101 102 103

C
er

tif
ic

at
io

n
Ti

m
e

/ E
xe

cu
tio

n
Ti

m
e

Execution time (in sec) of OptiMathSAT5-LIN-IN

Figure 6.15: Comparing certification time with the execution time of OPTIMATHSAT-LIN-IN

on “directly generated” instances of strip-packing.

110

6.2. COMPARISON ON LGDP PROBLEMS

 0

 0.2

 0.4

 0.6

 0.8

 1

10-1 100 101 102 103

C
er

tif
ic

at
io

n
Ti

m
e

/ E
xe

cu
tio

n
Ti

m
e

Execution time (in sec) of OptiMathSAT5-LIN-IN

Figure 6.16: Comparing certification time with the execution time of OPTIMATHSAT-LIN-IN

on “directly generated” instances of job-shop.

111

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

• the solving time is nearly negligible, in particular on hardest problems.

This tells us, among other facts, that OMT(LA(Q)) on these formulas is a

much harder problem that plain SMT(LA(Q)) on the same formulas;

• the remaining time, on average, is either evenly shared between the mini-

mization and the certification efforts (job-shop, bottom) or even it is mostly

dominated by the latter, in particular on the hardest problem (strip-packing,

top).

Overall, this suggests that OPTIMATHSAT-LIN-IN takes on average less than

half of the total execution time to find the actual optimal solution, and more

than half to prove that there is no better one.

6.3 Comparison on SMT-LIB Problems

As a second comparison, in Figures 6.17-6.21 we compare OPTIMATHSAT

against the GAMS tools on the satisfiable LA(Q)-formulas (QF LRA) in the

SMT-LIB, augmented with randomly-selected costs. (Hereafter we do not con-

sider the -OF versions of OPTIMATHSAT.) These instances are all classified as

“industrial”, because they come from the encoding of different real-world prob-

lems in formal verification, planning and optimization. They are divided into

six categories, namely: sc, uart, sal, TM, tta startup, and miplib. 17

Since we have no control on the origin of each problem and on the name and

meaning of the variables, we selected iteratively one variable at random as cost

variable, dropping it if the resulting minimum was−∞. This forced us to elim-

inate a few instances, in particular all miplib ones. We used both SMT2LGDP1

and SMT2LGDP2 to encode these problems into LGDP.

As before, to check for both correctness and effectiveness of the encodings,

we also encoded the problems into LGDP by each encoding and encoded then

17Notice that other SMT-LIB categories like spider benchmarks and clock synchro do not contain

satisfiable instances and are thus not reported here.

112

6.3. COMPARISON ON SMT-LIB PROBLEMS

back, to be fed to OPTIMATHSAT-LIN-IN (4th and 5th row). We notice that

this caused substantial difference in neither correctness nor efficiency.

We notice first that the results for GAMS tools are affected by correctness

problems, with both encodings. Consider the encoding SMT2LGDP1. Out of

194 samples, both GAMS tools with the CH option returned “unfeasible” (i.e.

inconsistent) on 70 samples and an error message (regarding some unsatisfied

disjunctions) on 108 samples. The two versions with BM returned 3 unfeasible

solutions and 52 solutions with error messages. Only 15 samples were solved

correctly by GAMS tools with the CH option and 117 (with LOGMIP) or 116

(with JAMS) samples with BM ones, whilst OPTIMATHSAT solved correctly

all 194 samples. (We recall that all OPTIMATHSAT results were cross-checked,

and that the four GAMS tools were fed with the same files.) With SMT2LGDP2

encoding the number of correctly-solved formulas increases, 104 with CH op-

tion and 165 (with LOGMIP) or 166 (with JAMS) with BM; there are no error

messages and the number of unfeasible solutions of both GAMS tools with the

BM and CH options decreases to 2 and 1 respectively, but the number of solu-

tions with wrong minimum increases to 4 with the BM versions.

Importantly, with both encodings, the results for GAMS tools varied by

modifying a couple of parameters from their default value, namely “eps” and

“bigM Mvalue”. For example, on the above-mentioned sal instance with

SMT2LGDP1, with the default values the BM versions returned a wrong mini-

mum value “0”, the CH versions returned “unfeasible”, whilst OPTIMATHSAT

returned the correct minimum value “2”; modifying eps and bigM Mvalue,

the results become unfeasible also with BM options. This highlights the fact

that there are indeed some correctness and robustness problems with the GAMS

tools, regardless the encodings used. 18

18We also isolated a subproblem, small enough to be solved by hands, in which the GAMS tools returned

evidently-wrong results, and notified it to the GAMS support team, who reckoned the problem and promised to

investigate it eventually.

113

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

Procedure
SMT-LIB/QF LRA formulas

#inst. #term. #correct. #err.msg. #wrong #unfeas. time

OPTIMATHSAT5-LIN-IN 194 194 194 0 0 0 1604

OPTIMATHSAT5-BIN-IN 194 194 194 0 0 0 1449

OPTIMATHSAT5-ADA-IN 194 194 194 0 0 0 1618

LDGP-SMT-Encoded Benchmarks (SMT2LGDP1-LGDP2SMT)

OPTIMATHSAT5-LIN-IN 194 194 194 0 0 0 1820

LDGP-SMT-Encoded Benchmarks (SMT2LGDP2-LGDP2SMT)

OPTIMATHSAT5-LIN-IN 194 194 194 0 0 0 1597

LGDP-Encoded Benchmarks (SMT2LGDP1)

JAMS(BM)+CPLEX 194 171 116 52 0 3 1561

JAMS(CH)+CPLEX 194 193 15 108 0 70 559

LOGMIP(BM)+CPLEX 194 172 117 52 0 3 2152

LOGMIP(CH)+CPLEX 194 193 15 108 0 70 576

LGDP-Encoded Benchmarks (SMT2LGDP2)

JAMS(BM)+CPLEX 194 172 166 0 4 2 6839

JAMS(CH)+CPLEX 194 105 104 0 0 1 9912

LOGMIP(BM)+CPLEX 194 171 165 0 4 2 4103

LOGMIP(CH)+CPLEX 194 105 104 0 0 1 9649

Figure 6.17: Results for all the inline versions of OPTIMATHSAT and all the GAMS tools,

on a subset of SMT-LIB LA(Q) satisfiable instances. The columns report respectively: # of

instances considered, # of instances terminating within the timeout, # of instances terminating

with correct solution, # of instances terminating with error messages, # of instances terminating

returning a wrong minimum, # of instances terminating wrongly returning “unfeasible”.

6.3.1 Discussion

We conjecture that the problems with the GAMS tools may be caused, at least

in part, by the fact that GAMS tools use floating-point rather than infinite-

precision arithmetic, and they introduce internally an approximated represen-

tation of strict inequalities (see Remark 6.1). Notice that, unlike with the LGDP

problems in §6.2, SMT-LIB problems do contain occurrences of strict [resp.

non-strict] inequalities with positive [resp. negative] polarity.

114

6.3. COMPARISON ON SMT-LIB PROBLEMS

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f L

og
M

IP
(B

M
)+

C
PL

EX
 (s

m
t2

lg
dp

1)

Execution time (in sec) of OptiMathSAT5-LIN-IN

timeout

wrong and unfeas
err-msg

QFLRA/sc
QFLRA/TM

QFLRA/uart
QFLRA/sal

QFLRA/tta_startup
QFLRA/check

Figure 6.18: Pairwise comparisons on the smt-lib LA(Q) satisfiable between OPTIMATH-

SAT-LIN-IN and LOGMIP(BM)+CPLEX instances between OPTIMATHSAT-LIN-IN on

SMT2LGDP1 encodings.

115

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f L

og
M

IP
(C

H
)+

C
PL

EX
 (s

m
t2

lg
dp

1)

Execution time (in sec) of OptiMathSAT5-LIN-IN

timeout

wrong and unfeas
err-msg

QFLRA/sc
QFLRA/TM

QFLRA/uart
QFLRA/sal

QFLRA/tta_startup
QFLRA/check

Figure 6.19: Pairwise comparisons on the smt-lib LA(Q) satisfiable between OPTIMATH-

SAT-LIN-IN and LOGMIP(CH)+CPLEX instances between OPTIMATHSAT-LIN-IN on

SMT2LGDP1 encodings.

116

6.3. COMPARISON ON SMT-LIB PROBLEMS

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f L

og
M

IP
(B

M
)+

C
PL

EX
 (s

m
t2

lg
dp

2)

Execution time (in sec) of OptiMathSAT5-LIN-IN

timeout

wrong and unfeas
err-msg

QFLRA/sc
QFLRA/TM

QFLRA/uart
QFLRA/sal

QFLRA/tta_startup
QFLRA/check

Figure 6.20: Pairwise comparisons on the smt-lib LA(Q) satisfiable between OPTIMATH-

SAT-LIN-IN and LOGMIP(BM)+CPLEX instances between OPTIMATHSAT-LIN-IN on

SMT2LGDP2 encodings.

117

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f L

og
M

IP
(C

H
)+

C
PL

EX
 (s

m
t2

lg
dp

2)

Execution time (in sec) of OptiMathSAT5-LIN-IN

timeout

wrong and unfeas
err-msg

QFLRA/sc
QFLRA/TM

QFLRA/uart
QFLRA/sal

QFLRA/tta_startup
QFLRA/check

Figure 6.21: Pairwise comparisons on the smt-lib LA(Q) satisfiable between OPTIMATH-

SAT-LIN-IN and LOGMIP(CH)+CPLEX instances between OPTIMATHSAT-LIN-IN on

SMT2LGDP2 encodings.

118

6.4. COMPARISON ON SAL PROBLEMS

From the perspective of the efficiency, all versions of OPTIMATHSAT solved

correctly all problems within the timeout, the -BIN-IN version performing

slightly better than the others; GAMS did not solve many samples (because

of timeout, wrong solutions and solutions with error messages). Looking at

the scatter-plots, we notice that, with the exception of a few samples, OPTI-

MATHSAT always outperforms the GAMS tools, often by more than one order

magnitude. We notice that on these problems SMT2LGDP2 is generally more

effective than SMT2LGDP1 and less prone to errors.

6.4 Comparison on SAL Problems

As a third comparison, in Figures 6.22-6.24 we compare OPTIMATHSAT against

the GAMS tools onLA(Q)-formulas obtained by using the SAL Model Checker

on a set of bounded verification problems — Bounded Model Checking (BMC)

of invariants [24] and K-Induction (K-IND) [84] — of a well-known parametric

timed system, Fisher’s Protocol 19.

BMC [resp. K-IND] takes a Finite-State Machine M , an invariant property

Ψ and an integer bound k, and produces a propositional formula ϕ which is

satisfiable [resp. unsatisfiable] if and only if there exists a k-step execution

violating Ψ [resp. a k-step induction proof that Ψ is always verified]. The

approach leverages to real-time systems by producing SMT(LA(Q)) formulas

rather than purely-propositional ones (see, e.g., [11]).

Fisher’s Protocol ensures mutual exclusion among N processes using real-

time clocks and a shared variable. The problem is parametric into two positive

real values, δ1 and δ2, describing the delays of some actions. It is known that

mutual exclusion, and other properties included in the SAL model, are verified

if and only if δ1 < δ2.

We have produced our OMT(LA(Q)) problems as follows. We fixed the

19Problems available at http://sal.csl.sri.com/examples.shtml

119

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

value of δ2 (we chose δ2 = 4), and then we generated six groups of formulas

according to the problem solved (BMC or K-IND) and the property addressed

(called mutex, mutual-exclusion, time-aux3 and logical-aux1).

For each group, for increasing values of N ≥ 2 and for a set of sufficiently-big

values of k ≥ k∗, 20 we used SAL to produce the corresponding parametric

SMT(LA(Q)) formulas, and asked the tool under test to find the minimum

value of δ1 which made the resulting formula LA(Q)-satisfiable (we knew in

advance from the problem that, for k big enough, this value is δ1 = δ2 =

4.0). As before, we used both SMT2LGDP1 and SMT2LGDP2 to encode the

OMT(LA(Q)) benchmarks into LGDP.

6.4.1 Discussion

The results are presented in Figures 6.22-6.24. The three versions of OPTI-

MATHSAT solved correctly 385, 382 and 381 out of the 392 samples respec-

tively, OPTIMATHSAT-LIN-IN being the best performer.

Considering the GAMS tools with the encoding SMT2LGDP1, the two tools

using BM solved on time and correctly only 4 samples over 392 and returned

19 solutions with error messages and 1 solution with wrong minimum, whilst

the CH ones always returned “unfeasible”. (We recall that all GAMS tools and

options are fed the same inputs.) Considering the encoding SMT2LGDP2, the

GAMS tools solved more problems correctly (14 with BM tools and 2 with

CH), but they returned wrong and unfeasible solutions (14 wrong solutions for

BM versions and 29 unfeasible for CH ones). No solution with error messages

was found.

The scatter-plots compare OPTIMATHSAT-LIN-IN with the best versions

of GAMS, LOGMIP(BM)+CPLEX, on both the encodings, showing that the

20For BMC, k∗ is set to the smallest value of k which makes the formula satisfiable, imposing no upper bound

on δ1; for K-IND, k∗ is set to the smallest value of k which makes the formula encoding the inductive step

unsatisfiable, imposing δ2 > δ1). In these experiments, k∗ ranges from 5 to 10, depending on the problem; also,

for each problem, k∗ does not depend on N .

120

6.4. COMPARISON ON SAL PROBLEMS

Procedure
SAL formulas

#inst. #term. #correct #err. msg. #wrong #unfeas. time

OPTIMATHSAT5-LIN-IN 392 385 385 0 0 0 44129

OPTIMATHSAT5-BIN-IN 392 382 382 0 0 0 45869

OPTIMATHSAT5-ADA-IN 392 381 381 0 0 0 44932

LGDP-Encoded Benchmarks (SMT2LGDP1)

JAMS(BM)+CPLEX 392 24 4 19 1 0 1096

JAMS(CH)+CPLEX 392 46 0 0 0 46 0

LOGMIP(BM)+CPLEX 392 24 4 19 1 0 1092

LOGMIP(CH)+CPLEX 392 46 0 0 0 46 0

LGDP-Encoded Benchmarks (SMT2LGDP2)

JAMS(BM)+CPLEX 392 28 14 0 14 0 1456

JAMS(CH)+CPLEX 392 31 2 0 0 29 122

LOGMIP(BM)+CPLEX 392 28 14 0 14 0 1428

LOGMIP(CH)+CPLEX 392 31 2 0 0 29 120

Figure 6.22: Results for all the inline versions of OPTIMATHSAT and all the GAMS tools, on

formulas generated from SAL models of Fisher’s protocol. The columns report respectively: #

of instances considered, # of instances terminating within the timeout, # of instances terminating

with correct solution, # of instances terminating with error messages (GAMS tools only), # of

instances terminating returning a wrong minimum, # of instances terminating wrongly returning

“unfeasible”.

121

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f L

og
M

IP
(B

M
)+

C
PL

EX
 (s

m
t2

lg
dp

1)

Execution time (in sec) of OptiMathSAT5-LIN-IN

timeout

wrong and unfeas
err-msg

BMC-time-aux3
BMC-mutex

BMC-mutual-exclusion
BMC-logical-aux1

K-ind.-time-aux3 from time-aux2
K-ind.-logical-aux1 from time-aux2

Figure 6.23: Comparison of the best configuration of OPTIMATHSAT (OPTIMATHSAT-LIN-

IN) against LOGMIP(BM)+CPLEX on SMT2LGDP1 encoding.

122

6.4. COMPARISON ON SAL PROBLEMS

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f L

og
M

IP
(B

M
)+

C
PL

EX
 (s

m
t2

lg
dp

2)

Execution time (in sec) of OptiMathSAT5-LIN-IN

timeout

wrong and unfeas
err-msg

BMC-time-aux3
BMC-mutex

BMC-mutual-exclusion
BMC-logical-aux1

K-ind.-time-aux3 from time-aux2
K-ind.-logical-aux1 from time-aux2

Figure 6.24: Comparison of the best configuration of OPTIMATHSAT (OPTIMATHSAT-LIN-

IN) against LOGMIP(BM)+CPLEX on SMT2LGDP2 encoding.

123

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

former dramatically outperforms the latter, no matter the encoding used.

6.5 Comparison on Pseudo-Boolean SMT Problems

As a fourth comparison, in Figures 6.25-6.28 we evaluate OPTIMATHSAT on

the problem sets used in [31] against the usual GAMS tools and against a recent

reimplementation on MATHSAT5 of the tool in [31], namely PB-MATHSAT,

for SMT with Pseudo-Boolean constraints (see §4). 21 PB-MATHSAT is tested

with both linear search and binary search strategies (denoted with “-LIN” and

“-BIN” respectively).

As described in [31], the problems consists of partial weighted MaxSMT

problems which are generated randomly starting from satisfiable LA(Q)-formulas

(QF LRA) in the SMT-LIB, then converted into SMT problems with PB con-

straints, see (4.7) in §4. These problems are further encoded into OMT(LA(Q))

problems by means of the encoding (4.6) in §4, and hence into LGDP problems

by means of the usual two encodings.

6.5.1 Discussion

The results are presented in Figures 6.25-6.28. The three versions of OPTI-

MATHSAT solved respectively 630, 634 and 637 problems out of 675 prob-

lems overall, whilst the two versions PB-MATHSAT solved respectively 636

and 632. Thus, despite they are both implemented on top of the same SMT

solver and PB-MATHSAT is specialized for PB constraints, OPTIMATHSAT

performances are analogous to these of the more-specialized tool. The various

version of the GAMS tool perform drastically worse: with SMT2LGDP1 they

solve correctly only a very small number of samples (19 with BM tools and

even 0 with CH), returning error messages on, unfeasible results or wrong min-

21A comparison against the tool in [31] would not be fair, since the latter was based on the older and slower

MATHSAT4. To witness this fact, a comparison of these two implementations is in [32].

124

6.5. COMPARISON ON PSEUDO-BOOLEAN SMT PROBLEMS

Procedure
MaxSMT % SMT+PB generated from SMT-LIB/QF LRA

#inst. #term. #correct. #err.msg. #wrong #unfeas. time

PB-MATHSAT-LIN 675 636 636 0 0 0 19675

PB-MATHSAT-BIN 675 632 632 0 0 0 13024

OMT(LA(Q))-Encoded Benchmarks

OPTIMATHSAT-LIN-IN 675 630 630 0 0 0 20744

OPTIMATHSAT-BIN-IN 675 634 634 0 0 0 16502

OPTIMATHSAT-ADA-IN 675 637 637 0 0 0 18588

LGDP-Encoded Benchmarks (SMT2LGDP1)

JAMS(BM)+CPLEX 675 509 19 423 68 8 420

JAMS(CH)+CPLEX 675 642 0 233 41 377 0

LOGMIP(BM)+CPLEX 675 510 19 424 68 8 403

LOGMIP(CH)+CPLEX 675 642 0 233 41 377 0

LGDP-Encoded Benchmarks (SMT2LGDP2)

JAMS(BM)+CPLEX 675 449 92 9 351 6 1575

JAMS(CH)+CPLEX 675 386 48 9 336 2 644

LOGMIP(BM)+CPLEX 675 449 92 9 351 6 1650

LOGMIP(CH)+CPLEX 675 383 48 9 333 2 674

Figure 6.25: Results for OPTIMATHSAT, PB-MATHSAT and the GAMS tools, on the

MaxSMT benchmarks from [31]. The columns report respectively: # of instances considered,

of instances terminating within the timeout, # of instances terminating with correct solution,

of instances terminating with error messages (GAMS tools only), # of instances terminating

returning a wrong minimum, # of instances terminating wrongly returning “unfeasible”.

125

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f P

B-
O

pt
iM

at
hS

AT
5-

LI
N

Execution time (in sec) of OptiMathSAT5-ADA-IN

PB=20
PB=50

PB=100

Figure 6.26: Comparison of the best configuration of OPTIMATHSAT, OPTIMATHSAT-ADA-

IN, against the best configuration of PB-MATHSAT, PB-MATHSAT-LIN .

126

6.5. COMPARISON ON PSEUDO-BOOLEAN SMT PROBLEMS

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f L

og
M

IP
(B

M
)+

C
PL

EX
 (s

m
t2

lg
dp

1)

Execution time (in sec) of OptiMathSAT5-ADA-IN

timeout

wrong and unfeas
err-msg

PB=20
PB=50

PB=100

Figure 6.27: Comparison of the best configuration of OPTIMATHSAT, OPTIMATHSAT-ADA-

IN, against the best configuration of GAMS tools, LOGMIP(BM)+CPLEX, on SMT2LGDP1

encoding.

127

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f L

og
M

IP
(B

M
)+

C
PL

EX
 (s

m
t2

lg
dp

2)

Execution time (in sec) of OptiMathSAT5-ADA-IN

timeout

wrong and unfeas
err-msg

PB=20
PB=50

PB=100

Figure 6.28: Comparison of the best configuration of OPTIMATHSAT, OPTIMATHSAT-ADA-

IN, against the best configuration of GAMS tools, LOGMIP(BM)+CPLEX, on SMT2LGDP2

encoding.

128

6.6. COMPARISON ON SYMBA PROBLEMS

imum solutions on the remaining set of benchmarks; with SMT2LGDP2 more

samples are solved correctly and no error message is produced, but most prob-

lems produce a wrong minimum solution.

Remark 6.4. Notice that, unlike with LGDP problems (see Remark 6.3) and in

part also with SMT-LIB and SAL problems, with Pseudo-Boolean problems the

cost variables occurs in positive unit clauses in the form (cost = ⟨term⟩); thus,

learning ¬(cost < pivot) as a result of the binary-search steps with UNSAT

results produces a constraining effect on the variables in ⟨term⟩, and hence

a pruning effect in the search due to the early-pruning technique of the SMT

solver. This might explain in part the fact that, unlike with previous problems,

here binary search performs a little better than linear search.

The scatter-plots in Figures 6.26-6.28 compare the best version of OPTI-

MATHSAT with these of PB-MATHSAT and of the GAMS tools. We see

that OPTIMATHSAT-ADA-IN performances are analogous to these of PB-

MATHSAT-LIN , and drastically superior to these of GAMS tools with both

encodings.

As a side note, in [32] another empirical evaluation is performed on MaxSMT

problems —although generated with a slightly different random method from

SMT-LIB benchmarks— where OPTIMATHSAT performs equivalently better

than PB-MATHSAT and of the novel specialized MaxSMT tool presented there.

We refer the reader to [32] for details.

6.6 Comparison on SYMBA Problems

As last comparison, in Figures 6.29-6.32, we evaluate the performance of OP-

TIMATHSAT against SYMBA, which has been presented very recently by Li

et al. in [60] (as introduced in §3.3). In our experimentation we consider two

versions of SYMBA:

129

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

Procedure
Formulas from SYMBA tool [60]

#inst. #term. #inst. time #inst. time time

= −∞ = −∞ ̸= −∞ ̸= −∞
OPTIMATHSAT5-LIN-IN 28613 25880 7784 4934 18096 3827 8792

OPTIMATHSAT5-BIN-IN 28613 25880 7784 4932 18096 3826 8759

OPTIMATHSAT5-ADA-IN 28613 25880 7784 4932 18096 3828 8760

SYMBA(100) 28613 28583 10485 31102 18098 9454 40547

SYMBA(40)+OPT-Z3 28613 28613 10515 8163 18098 9128 17291

Figure 6.29: Results for OPTIMATHSAT and SYMBA tools, on the benchmarks from [60].

The columns report respectively: # of instances considered, # of instances terminating within

the timeout, # of instances terminating within the timeout with infinite cost, execution time of

terminated instances with infinite cost, # of instances terminating within the timeout with finite

cost, execution time of terminated instances with finite cost, the execution time.

1. SYMBA(100), which uses the Z3 SMT solver [3] as black-box for satis-

fiability checking (default configuration of SYMBA);

2. SYMBA(40)+OPT-Z3, which uses Z3 with a modified linear arithmetic

solver for performing optimization (OPT-Z3), like our “inline” version

(best configuration on the benchmark set in [60]).

The benchmark set consists of formulas used in [60], which were generated

from a set of C programs used in the 2013 Software Verification Competition.

While Li et al. presented an evaluation on formulas with “multiple-objectives”

(by calling OPTIMATHSAT multiple times per benchmark, each time with a

different objective), we consider formulas with a single cost variable which

are obtained by splitting each formula ϕ involving costs {cost1, ..., costk}, into

k formulas ϕi, each considering one cost variable costi (obtaining 28613 in-

stances).

6.6.1 Discussion

The results are presented in Figures 6.29-6.35.

130

6.6. COMPARISON ON SYMBA PROBLEMS

The three versions of OPTIMATHSAT solved 25880 problems out of 28613

problems overall, whilst the two versions of SYMBA solved respectively 28583

and 28613. The table of Figure §6.29 and the scatter plots of Figures 6.30 and

6.31 show that, apparently, the SYMBA tools outperform all versions of OPTI-

MATHSAT. This difference in performance can be motivated by two reasons.

First, an analysis of the benchmark set reveals a high number (≈ 37%) of

formulas whose cost is −∞. Figures 6.34 and 6.35, and Figures 6.32 and 6.33

compare the tools on two set of formulas, respectively, one with finite cost

and the other with infinite cost. (We refer to the former kind of formulas as

“bounded” and to the latter as “unbounded”.) We see that on “bounded” for-

mulas OPTIMATHSAT (Figures 6.34 and 6.35) performs better than SYMBA

tools on most benchmarks (only two instances were not solved within the time-

out by OPTIMATHSAT). On “unbounded” formulas (Figures 6.32 and 6.33),

instead, SYMBA outperforms OPTIMATHSAT (which does not solve ≈ 74%

of instances) because the former exploits an ad-hoc heuristics which recognizes

infinite costs very effectively (OPTIMATHSAT uses the technique of the stan-

dard Simplex algorithm instead).

Second, OPTIMATHSAT is built on top of MATHSAT5, whereas SYMBA

uses Z3, which is known to perform better on SMT(LA(Q)) formulas22. In

order to normalize the results wrt. the performance of the underlying SMT

solver, we consider the commonly-terminated formulas and plot the ratio of

the running time over the time required to the underling solver to check the

unsatisfiability of ϕi ∧ (costi < mi), where mi is the minimum cost. The

results are reported in Figures 6.36 and 6.37. We can see that the normalized

performance of OPTIMATHSAT is much better than that of SYMBA.

22Z3 won the SMT-COMP in 2012 on QF LRA benchmarks [1]

131

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f S

ym
ba

(4
0)

 +
 O

pt
-Z

3

Execution time (in sec) of OptiMathSAT5-LIN-IN

email
token

transmitter
elevator

others

Figure 6.30: Comparison of the linear search configuration of OPTIMATHSAT, OPTIMATH-

SAT-LIN-IN, against the best configuration of SYMBA, SYMBA(40)+OPT-Z3.

132

6.6. COMPARISON ON SYMBA PROBLEMS

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f S

ym
ba

(1
00

)

Execution time (in sec) of OptiMathSAT5-LIN-IN

email
token

transmitter
elevator

others

Figure 6.31: Comparison of the linear search configuration of OPTIMATHSAT, OPTIMATH-

SAT-LIN-IN, against SYMBA(100).

133

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f S

ym
ba

(4
0)

 +
 O

pt
-Z

3

Execution time (in sec) of OptiMathSAT5-LIN-IN

email
token

transmitter
elevator

others

Figure 6.32: Comparison of the linear search configuration of OPTIMATHSAT, OPTIMATH-

SAT-LIN-IN, against the best configuration of SYMBA, SYMBA(40)+OPT-Z3, on formulas

whose cost is infinite.

134

6.6. COMPARISON ON SYMBA PROBLEMS

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f S

ym
ba

(1
00

)

Execution time (in sec) of OptiMathSAT5-LIN-IN

email
token

transmitter
elevator

others

Figure 6.33: Comparison of the linear search configuration of OPTIMATHSAT, OPTIMATH-

SAT-LIN-IN, against SYMBA(100), on formulas whose cost is infinite.

135

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f S

ym
ba

(4
0)

 +
 O

pt
-Z

3

Execution time (in sec) of OptiMathSAT5-LIN-IN

email
token

transmitter
elevator

others

Figure 6.34: Comparison of the linear search configuration of OPTIMATHSAT, OPTIMATH-

SAT-LIN-IN, against the best configuration of SYMBA, SYMBA(40)+OPT-Z3, on formulas

whose cost is finite.

136

6.6. COMPARISON ON SYMBA PROBLEMS

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f S

ym
ba

(1
00

)

Execution time (in sec) of OptiMathSAT5-LIN-IN

email
token

transmitter
elevator

others

Figure 6.35: Comparison of the linear search configuration of OPTIMATHSAT, OPTIMATH-

SAT-LIN-IN, against SYMBA(100), on formulas whose cost is finite.

137

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e/
C

er
tif

ic
at

io
n

tim
e

of
 S

ym
ba

(4
0)

 +
 O

pt
-Z

3

Execution time/Certification time of OptiMathSAT5-LIN-IN

email
token

transmitter
elevator

others

Figure 6.36: Comparison of the linear search configuration of OPTIMATHSAT, OPTIMATH-

SAT-LIN-IN, against the best configuration of SYMBA, SYMBA(40)+OPT-Z3, on com-

monly terminated formulas.

138

6.6. COMPARISON ON SYMBA PROBLEMS

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e/
C

er
tif

ic
at

io
n

tim
e

of
 S

ym
ba

(1
00

)

Execution time/Certification time of OptiMathSAT5-LIN-IN

email
token

transmitter
elevator

others

Figure 6.37: Comparison of the linear search configuration of OPTIMATHSAT, OPTIMATH-

SAT-LIN-IN, against SYMBA(100), on commonly terminated formulas.

139

CHAPTER 6. EXPERIMENTAL EVALUATION FOR OMT(LA(Q))

140

Chapter 7

Stochastic Local Search in SMT

Inspired by the idea of “partially-invisible” SAT formulas (§7.1), we conceived

a novel and general architecture for integrating a T -Solver with a SLS SAT

solver, based on the widely-used WalkSAT algorithm, resulting into a SLS-

based SMT solver, which we call WALKSMT. We also analyze the differences

between the interaction of a T -solver with a CDCL-based and a SLS-based SAT

solver, and we introduce and discuss a group of enhanced techniques aimed at

improving the synergy between an SLS solver and the T -solver.

This chapter is structured as follows. Section §7.1 introduces the idea which

led to our work, section (§7.2) presents a basic schema of WALKSMT, and the

last two sections §7.3 and §7.4 focus on, respectively, discussing and optimizing

the integration of the SLS solver and the T -solver.

Disclaimer. The work presented in this chapter (and also in §8) was done in

collaboration with Alberto Griggio, Quoc Sang Phan and Roberto Sebastiani

and was published in [46, 47].

141

CHAPTER 7. STOCHASTIC LOCAL SEARCH IN SMT

7.1 Intuition

Our work is based on the following simple observation. In principle, from the

perspective of a SAT solver, an SMT problem instance ϕ can be seen as the

problem of solving a partially-invisible CNF SAT formula ϕp∧ τ p, s.t. the “vis-

ible” part ϕp is the Boolean abstraction of ϕ and the “invisible” part τ p is (the

Boolean abstraction of) the set τ of all the T -lemmas providing the obligations

induced by the theory T on the T -atoms of ϕ 1 (see Example 7.1). Thus, every

assignment µp s.t. µp |= ϕp is T -unsatisfiable iff µp falsifies some non-empty

set of clauses {cp1, ..., cpn} ⊆ τ p.

Consequently, we can see a traditional lazy SMT solver as a CDCL SAT

solver which knows ϕp but not τ p: whenever a model µp for ϕp is found, it is

passed to a T -Solver which (behaves as if it) knows τ p, and hence checks if

µp falsifies some clause cpi ∈ τ p: if this is the case, it returns one (or more)

such clause(s) cpi , which is then used to drive the future search and which is

optionally added to ϕp.

Example 7.1. Consider the following SMT(LA(Q)) formula φ and its Boolean

abstraction φp. We can see φp as a “partially-invisible” formula φp ∧ τ p, where

τ p is the Boolean abstraction of τ which consists of all possible T -lemmas on

the T -atoms of ϕ.

1Although not stated explicitly, this idea was exploited in part also in [34].

142

7.1. INTUITION

φ :

c1 : {A1}
c2 : {¬A1 ∨ (x− z > 4)}
c3 : {¬A3 ∨A1 ∨ (y ≥ 1)}
c4 : {¬A2 ∨ ¬(x− z > 4) ∨ ¬A1}
c5 : {(x− y ≤ 3) ∨ ¬A4 ∨A5}
c6 : {¬(y − z ≤ 1) ∨ (x+ y = 1) ∨ ¬A5}
c7 : {A3 ∨ ¬(x+ y = 0) ∨A2}
c8 : {¬A3 ∨ (z + y = 2)}

τ : (all possible T -lemmas on the T -atoms of φ)

c9 : {¬(x+ y = 0) ∨ ¬(x+ y = 1)}
c10 : {¬(x− z > 4) ∨ ¬(x− y ≤ 3) ∨ ¬(y − z ≤ 1)}
c11 : {(x− z > 4) ∨ (x− y ≤ 3) ∨ (y − z ≤ 1)}
c12 : {¬(x− z > 4) ∨ ¬(x+ y = 1) ∨ ¬(z + y = 2)}
c13 : {¬(x− z > 4) ∨ ¬(x+ y = 0) ∨ ¬(z + y = 2)}
... ...

φp :

c1 : {A1}
c2 : {¬A1 ∨B1}
c3 : {¬A3 ∨A1 ∨B2}
c4 : {¬A2 ∨ ¬B1 ∨ ¬A1}
c5 : {B3 ∨ ¬A4 ∨A5}
c6 : {¬B4 ∨B5 ∨ ¬A5}
c7 : {A3 ∨ ¬B6 ∨A2}
c8 : {¬A3 ∨B7}

τp :

c9 : {¬B6 ∨ ¬B5}
c10 : {¬B1 ∨ ¬B3 ∨ ¬B4}
c11 : {B1 ∨B3 ∨B4}
c12 : {¬B1 ∨ ¬B5 ∨ ¬B7}
c13 : {¬B1 ∨ ¬B6 ∨ ¬B7}
... ...

B1

def
= (x− z > 4), B2

def
= (y ≥ 1), B3

def
= (x− y ≤ 3), B4

def
= (y − z ≤ 1),

B5

def
= (x+ y = 1), B6

def
= (x+ y = 0), B7

def
= (z + y = 2).

Consider the formula ϕ [resp ϕp] which is obtained from φ [resp φp] after pre-

processing (see §7.4), we can see that the truth assignment µ1 is T -unsatisfiable

and that its Boolean refinement µp
1 satisfies the formula ϕp but violates the

clauses c10 and c12 in τ p (i.e. µp
1 ̸|= ϕp ∧ τ p).

ϕ :

c2 : {(x− z > 4)}
c5 : {(x− y ≤ 3) ∨ ¬A4 ∨A5}
c6 : {¬(y − z ≤ 1) ∨ (x+ y = 1) ∨ ¬A5}
c7 : {A3 ∨ ¬(x+ y = 0)}
c8 : {¬A3 ∨ (z + y = 2)}
c9 : {¬(x+ y = 0) ∨ ¬(x+ y = 1)}

ϕp :

c2 : {B1}
c5 : {B3 ∨ ¬A4 ∨A5}
c6 : {¬B4 ∨B5 ∨ ¬A5}
c7 : {A3 ∨ ¬B6}
c8 : {¬A3 ∨B7}
c9 : {¬B6 ∨ ¬B5}

µp
1

= {B1, A3,¬A4,¬A5,¬B6, B5, B3, B4, B7}
µ1 = {(x− z > 4),¬(x+ y = 0), (x+ y = 1), (x− y ≤ 3), (y − z ≤ 1), (z + y = 2)}

143

CHAPTER 7. STOCHASTIC LOCAL SEARCH IN SMT

Algorithm 6 WALKSMT (ϕ)

Require: ⟨ϕ, MAX TRIES, MAX FLIPS⟩
1: for i = 1 to MAX TRIES do

2: µp ← initial truth assignment (ϕp)

3: for j = 1 to MAX FLIPS do

4: if (µp |= ϕp) then

5: ⟨status, cp⟩ ← T − Solver(ϕp, µp)

6: if (status == SAT) then

7: return SAT

8: end if

9: µp ← next truth assignment (ϕp, cp)

10: else

11: cp ← choose unsatisfied clause (ϕp)

12: µp ← next truth assignment (ϕp, cp)

13: end if

14: end for

15: end for

16: return UNKNOWN

7.2 A basic WalkSMT procedure

The observation in §7.1 suggested us a procedure integrating a T -Solver into a

SLS algorithm of the WalkSAT family (WALKSMT hereafter). A high-level de-

scription of the pseudo-code of WALKSMT is shown in Algorithm 6. It receives

in input a T -formula in CNF and applies a WalkSAT scheme (see §2.1.2) to its

Boolean abstraction ϕp. (Notice that their underlying heuristics vary with the

different variants of WalkSAT adopted.) The only significant difference w.r.t.

the schema of WalkSAT is in lines 4-9. Whenever a total truth assignment µp is

found s.t. µp |= ϕp, it is passed to T -Solver.

• If the set of T -literals corresponding to µp is T -satisfiable (i.e., µp |=
ϕp ∧ τ p), the procedures ends returning SAT (line 9).

• Otherwise, T -Solver returns CONFLICT and a T -lemma cp which is used

144

7.3. EFFICIENT T -SOLVERS FOR LOCAL SEARCH.

by next truth assignment as “selected” unsatisfied clause for driving the

flipping of the variable (line 7).

Notice that the last case corresponds to say that µp ̸|= ϕp ∧ τ p, and that cp is

one of the (possibly-many) clauses in ϕp ∧ τ p which are falsified by µp. Conse-

quently, T -Solver plays the role of choose unsatisfied clause on ϕp ∧ τ p when

no unsatisfied clause is found in ϕp (see also “Multiple Learning” in §7.4).

Example 7.2. Suppose WALKSMT is invoked on the formula ϕp in Exam-

ple 7.1, generating the total truth assignment µp
1 that satisfies ϕp. Then T -

Solver is invoked on µ1, which is T -inconsistent due to the the literals {(x −
z > 4), (x + y = 1), (z + y = 2)}, returning UNSAT and the conflict clause

cp1 = {¬B1 ∨¬B5 ∨¬B7} (i.e. c12 in τ p). Then next truth assignment will flip

one of the literals B1, B5 or B7.

7.3 Efficient T -solvers for local search.

In CDCL-based SMT solvers, the interaction with T -Solvers is stack-based:

the truth assignment µ is incrementally extended when performing unit prop-

agation, T -propagation, and when picking an unassigned literal for branching,

and it is partly undone upon backtracking, when the most-recently-assigned lit-

erals are removed from it. Consequently, T -Solvers designed for interaction

with a CDCL SAT solver are typically optimized for such stack-based invoca-

tion; in particular, they are typically incremental and backtrackable (see §2.2.2

for details).

In local search, instead, a new assignment µ′ is obtained from the previous

one µ by flipping an arbitrary literal (according to some heuristics). In this

setting, the conventional backtrackability feature of T -Solvers is of little use,

since there is no notion of most-recently-assigned literals to remove. Instead, it

is very desirable to be able to remove arbitrary literals from a T -Solver without

145

CHAPTER 7. STOCHASTIC LOCAL SEARCH IN SMT

the need of resetting its internal state. Such requirement might seem unrealistic,

or at least difficult to fulfill. However, at least two state-of-the-art T -Solvers

have this capability: the T -Solver for DL of [36] and the T -Solver for LA(Q)

of [41], which are therefore natural candidates for integration with a SLS-based

SAT solver. The MATHSAT solver implements both.

7.4 Enhancements to the basic WalkSMT procedure

The basic WALKSMT procedure in Algorithm §6 is very naive (and very in-

efficient, see experimental evaluation in §8). In what follows we analyze the

interaction of a T -solver with a SLS SAT solver, and we present a group of

enhanced techniques aimed at improving the synergy of their interaction. Al-

gorithm 7 shows the basic WALKSMT procedure augmented with proposed

enhancements.

7.4.1 Preprocessing

Before starting the search process, we apply a preprocessing step to the input

formula ϕ in order to make it simpler to solve (lines 1-3 in Algorithm 7). This

preprocessing consists mainly of two techniques: Initial BCP and Static Learn-

ing.

Initial BCP Often SMT formulas contain lots of “structural” atomic proposi-

tions whose truth value is assigned deterministically (e.g., when the for-

mula derives from a CNF-ization step). Unlike a CDCL solver, an SLS

one cannot handle them efficiently. Thus, during preprocessing we first

perform a run of BCP (see §2.1.1 for details) to the input formula, simpli-

fying the formula accordingly. In order to preserve correctness, we keep

as unit clauses the T -literals l1, .., ln which have been assigned to true by

BCP. If during this process one of the clauses of φp is falsified, or if the set

146

7.4. ENHANCEMENTS TO THE BASIC WALKSMT PROCEDURE

Algorithm 7 WALKSMT (ϕ)

Require: ⟨ϕ, MAX TRIES, MAX FLIPS⟩
1: if (T -PREPROCESS (ϕ) == CONFLICT) then

2: return UNSAT

3: end if

4: for i = 1 to MAX TRIES do

5: µp ← initial truth assignment (ϕp)

6: for j = 1 to MAX FLIPS do

7: if (µp |= ϕp) then

8: ⟨status, cp⟩ ← T − Solver(ϕp, µp)

9: if (status == SAT) then

10: return SAT

11: end if

12: cp ← UNIT-SIMPLIFICATION(ϕp , cp)

13: ϕp ← ϕp ∧ cp

14: µp ← next truth assignment (ϕp, cp)

15: else

16: cp ← choose unsatisfied clause (ϕp)

17: µp ← next truth assignment (ϕp, cp)

18: end if

19: end for

20: end for

21: return UNKNOWN

of T -literals l1, .., ln above is T -inconsistent, the algorithm can exit return-

ing UNSAT. Otherwise, l1, .., ln are tagged “unflippable”, so that the SLS

engine initially assigns them to true and never flips their value.

Static Learning During preprocessing we also conjoin to the formula ϕ/ϕp

short and “obvious” T -lemmas on the atoms occurring in ϕ, which can

be generated without explicitly invoking the T -solver. Some examples

of such T -lemmas are shown in Example 7.1: mutual-exclusion lemmas

like c9 and lemmas encoding the transitivity of≤, <,≥, >, like c10 and c11

(see also [79]). (Notice that if previously unit-propagated T -atoms occur

147

CHAPTER 7. STOCHASTIC LOCAL SEARCH IN SMT

in such T -lemmas, then the T -lemmas are simplified accordingly.) The

T -Solver is invoked on an assignment µ only if µp verifies also these T -

lemmas (line 7 in Algorithm 6). This prevents WALKSMT from invoking

T -Solver on obviously-T -inconsistent assignments.

Example 7.3. Consider the formulas φ and ϕ of Example 7.1, the preprocessing

step generates ϕ from φ. In fact, BCP unit-propagates the literals A1, B1,¬A2,

simplifying clause c7 and eliminating clauses c1, c3 and c4. Clause c2 survives

as an unit clause because B1 is (the label of) a T -literal. Notice that the T -atom

B2
def

= (y ≥ 0) disappears from the formula because c3 is satisfied by the unit-

propagation of A1. The T -lemma c9 is then added to the simplified formula

by static learning. Notice that c10 and c11 are not added to ϕp because they are

subsumed in ϕp by the unit clause c2.

7.4.2 Single and Multiple Learning

Inspired by CDCL-based SMT solvers, we integrate the learning technique

within WALKSMT and present the following techniques: Learning, Unit Reso-

lution and Multiple Learning.

Learning SLS SAT solvers typically do not implement learning. This is poten-

tially a major problem with SLS-based SMT, because the SLS solver may

generate many total assignments µp
1, ..., µ

p
k each containing the same T -

inconsistent subset ηp, causing thus k − 1 useless calls to T -Solver. Thus,

like in standard CDCL-based SMT solvers, we conjoin to ϕp the T -lemma

cp returned by the T -solver (line 13 in Algorithm 7). Henceforth T -Solver

is no more invoked on assignments violating cp.

Unit Resolution Before learning a T -lemma c, we remove from it all the T -

literals whose negation occurs as unit clauses in the input problem (line

12 in Algorithm 7). (Notice that after this step c may be no longer a T -

lemma.) We do this in both static and dynamic learning.

148

7.4. ENHANCEMENTS TO THE BASIC WALKSMT PROCEDURE

Example 7.4. Consider the scenario of Example 7.2, assuming learning is im-

plemented. Because of the unit clause c2 of ϕp, we remove from the conflict

clause cp1 the literal ¬B1, obtaining cp1
′ def

= {¬B5 ∨ ¬B7} (i.e., a unit-resolved

version of c12 in τ p.), which we add to ϕp. Then next truth assignment will flip

one of the literals B5 or B7. T -Solver will never be invoked again on assign-

ments containing both B5 and B7.

Multiple Learning Unlike with CDCL-based SMT solvers, which typically

use some form of early pruning to check partial truth assignments for

T -consistency, in an SLS-based approach T -solvers operate always on

complete truth assignments µ. In this setting, it is likely that µ contains

many different T -inconsistent subsets, often independent from each an-

other. This is the idea at the basis of our multiple learning technique, which

allows for learning more than one T -lemma for every T -inconsistent as-

signment. When a conflict set η is found (and simplified via unit-resolution),

a given percentage p of its literals are randomly removed from µ, and T -

Solver is invoked again on the resulting set. This process is repeated until

no more conflict is found. We then learn all the T -lemmas cp1, ..., c
p
k gener-

ated during the process. Also, if k > 1, then one clause cp among cp1, ..., c
p
k

is chosen by choose unsatisfied clause to be fed to next truth assignment.

Example 7.5. Consider the scenario of Example 7.2 and 7.4, assuming mul-

tiple learning is implemented, with p = 100%. After learning the clause cp1
′
,

we drop B5, B7 from µp
1 and re-invoke T -Solver on the set of T -literals µ2

def

=

µ1 \ {(x + y = 1), (z + y = 2)}, returning UNSAT and the conflict clause

cp2
def

= {¬B1 ∨ ¬B3 ∨ ¬B4}, from which ¬B1 is removed by unit-resolution,

so that also the clause cp2
′ def

= {¬B3 ∨ ¬B4} is learned (a unit-resolved ver-

sion of clause c10). After further removing B3 and B4 from µ2 the set of T -

literals is found T -consistent by T -Solver, so that no further clause is learned.

Then cp1
′, cp2

′
are fed to choose unsatisfied clause which selects one and feed it

149

CHAPTER 7. STOCHASTIC LOCAL SEARCH IN SMT

to next truth assignment, which flips one literal among B5, B7, B3 and B4.

7.4.3 Filterings

Pure-literal Filtering If some T -atoms occur only positively [resp. negatively]

in the original formula (learned clauses and statically-learned clauses are

not considered), then we can safely drop every negative [resp. positive]

occurrence of them from the assignment µ to be checked by the T -solver

(see §2.2.3 for details). (Intuitively, since such occurrences play no role

in satisfying the formula, the resulting partial assignment µp′ still satisfies

ϕp.) The benefits of this action is twofold:

(i) reduces the workload for the T -Solver by feeding it smaller sets;

(ii) increases the chance of finding a T -consistent satisfying assignment by

removing “useless” T -literals which may cause the T -inconsistency of

µ.

Example 7.6. Consider the formula ϕp in Example 7.1 and the total truth as-

signment

µp
4 = {B1,¬A3,¬A4,¬A5,¬B6,¬B5, B3, B4,¬B7}

that satisfies ϕp, but is T -inconsistent because of its subset {B1, B3, B4} (clause

c10 in τ p). Without pure-literal filtering, T -Solver detects the inconsistency,

WALKSMT learns the clause and looks for another assignment. If pure-literal

filtering is implemented, instead, since the T -literals ¬B5, B4 and ¬B7 occur

only negatively in the original formula φ, they are filtered out from µp
4, resulting

in the partial assignment

ηp4 = {B1,¬A3,¬A4,¬A5,¬B6, B3},

which still satisfies ϕp. T -Solver is invoked on the corresponding set of T -

literals:

η4 = {(x− z > 4),¬(x+ y = 0), (x− y ≤ 3)}.

150

7.4. ENHANCEMENTS TO THE BASIC WALKSMT PROCEDURE

which is T -consistent, from which we can conclude that ϕ (and φ) is T -consistent.

Ghost-literal Filtering We further enforce the benefits of pure-literal filtering

as follows. When a truth assignment µ is found s.t. µp |= ϕp, before

invoking T -Solver on µ, we check whether any T -atom occurring only

positively [resp. negatively] in the original formula and being assigned

true [resp. false] in µ can be flipped without falsifying any clause. (This

test can be performed very efficiently inside an SLS solver.) If this is the

case, then the atom is flipped. This step is repeated until no more such

atoms are found, after which the resulting set µ is passed to T -Solver.

This allows for further removing useless T -literals from µ by pure-literal

filtering. (Since such literals are a particular case of “ghost literals” [79],

we call this enhancement ghost-literal filtering.)

Example 7.7. Consider the formula ϕp in Example 7.1 and the total truth as-

signment

µp
5 = {B1, A3,¬A4,¬A5,¬B6,¬B5, B3,¬B4, B7}

that satisfies ϕp. If we apply pure-literal filtering on µp
5, then we can filter out

only the literal ¬B5 before invoking T -Solver. By ghost-literal filtering, the

literals B3, ¬B4 and ¬B6 are flipped without falsifying ϕp, resulting in the total

truth assignment:

µp
5
′ = {B1, A3,¬A4,¬A5, B6,¬B5,¬B3, B4, B7}.

Now, by pure-literal filtering, we remove from µp
5
′

the literals B3, ¬B4, ¬B5

and ¬B6.

151

CHAPTER 7. STOCHASTIC LOCAL SEARCH IN SMT

152

Chapter 8

Experimental evaluation for WalkSMT

In this chapter we propose an implementation of WALKSMT with the tech-

niques described in §7.4, which is based on the integration of the UBCSAT [89]

and UBCSAT++ [23] SLS solvers with the LA(Q)-solver of MATHSAT4 [30].

We present an extensive experimental evaluation of our implementation by con-

sidering satisfiable industrial problems coming from the SMT-LIB, and we eval-

uate the effects of the various optimization techniques, also comparing them

against MATHSAT4. We also compare WALKSMT and MATHSAT on randomly-

generated unstructured problems, obtaining small differences in performances.

This chapter is divided in three sections: §8.1 describes tools, configurations

and environment used in our experimental evaluation and §8.2 and §8.3 present

the results for SMT-LIB benchmarks and random generated formulas, respec-

tively.

8.1 Environment and Settings

We have implemented two versions of the WALKSMT procedure described

in §7 to work for the LA(Q) theory. The implementation is done on top of

MATHSAT4 [30], using part of its preprocessor its LA(Q)-solver [41] and lots

of its features. We have implemented two versions, each using one between

153

CHAPTER 8. EXPERIMENTAL EVALUATION FOR WALKSMT

two SLS-based SAT solvers: UBCSAT 1 [89] and UBCSAT++ 2 [23]. UBC-

SAT is a SLS platform providing a very-wide range of SLS algorithms for SAT

(including the WalkSAT family), with a very flexible architecture which made

the integration of the LA(Q)-solver of MATHSAT4 relatively easy. Among

the various SLS procedures provided by UBCSAT, we have chosen to use the

Adaptive Novelty+ variant of the WalkSAT family because it was the best-

performing in a previous extensive empirical evaluation [87]. UBCSAT++ is

built on top of UBCSAT and extends its implementation of Adaptive Novelty+

with the Trimming Variable Selection and Literal Commitment Strategy tech-

niques described in §2.1.2. We partition the enhancements of WALKSMT of

§7.4 into three groups:

• Preprocessing and Learning (PL), including preprocessing (Initial BCP

and Static Learning), Learning and Unit Resolution;

• Multiple Learning (ML);

• Filtering (FI), including both Pure-Literal and Ghost-Literal filterings.

Notationally, we use a “+” [resp. “–”] symbol to denote that an option is enabled

[resp. disabled]: e.g., “UBCSAT++ BASIC+PL-ML+FI” denotes WALKSMT

based on UBCSAT++ with PL and FI enabled and ML disabled. (Notice that

ML requires PL, so that we cannot have “...-PL+ML...” configurations.)

In this section, we evaluate the performance of WALKSMT by compar-

ing its two versions (those based on UBCSAT and UBCSAT++ respectively)

against the CDCL-based SMT solver MATHSAT4. We ran MATHSAT4 with

all the optimizations enabled (the most important ones are early pruning and

T -propagation). 3 We performed our comparison over two distinct sets of in-

1UBCSAT was developed by Tompkins and Hoos and is publicly available at http://www.satlib.org/

ubcsat/.
2UBCSAT++ was kindly provided to us by the developers, Belov and Stachniak.
3Although more efficient SMT (LA(Q)) solvers exist, including the recent MATHSAT5, here the choice

of MATHSAT4 is aimed at minimizing the differences in performance due to the implementation, because

154

8.2. WALKSMT ON SMT-LIB INSTANCES

Solver
SMT-LIB Instances

Total
sc uart sal TM tta miplib

Total # of Instances 108 36 11 24 24 22 225

WalkSMT UBCSAT Basic–PL–ML–FI 0 0 0 0 0 0 0

WalkSMT UBCSAT++ Basic–PL–ML–FI 0 0 0 0 0 1 1

WalkSMT UBCSAT Basic+PL–ML–FI 59 10 6 13 5 3 96

WalkSMT UBCSAT++ Basic+PL–ML–FI 46 6 7 17 10 1 87

WalkSMT UBCSAT Basic+PL+ML–FI 103 15 6 12 6 3 145

WalkSMT UBCSAT++ Basic+PL+ML–FI 61 6 7 15 9 1 99

WalkSMT UBCSAT Basic+PL–ML+FI 59 32 10 14 9 3 127

WalkSMT UBCSAT++ Basic+PL–ML+FI 62 12 8 18 10 1 111

WalkSMT UBCSAT Basic+PL+ML+FI 78 35 10 14 9 3 149

WalkSMT UBCSAT++ Basic+PL+ML+FI 63 14 8 19 10 2 116

MATHSAT4 108 36 11 21 24 8 208

Figure 8.1: Comparison of the number of instances solved within the 600s timeout by the

various configurations of WALKSMT and MATHSAT4.

stances, which are described in the next two sections: the first consists of the set

of all satisfiable LA(Q) formulas in the SMT-LIB 1.2 (www.smtlib.org),

whereas the second is composed of randomly-generated problems. All tests

were executed on 2.66 GHz Xeon machines running Linux, using a timeout of

600 seconds. The correctness of the models found by WALKSMT have been

cross-checked by MATHSAT4. In order to make the experiments reproducible,

the full-size plots, the tools, the problems, and the results are available 4.

8.2 WALKSMT on SMT-LIB Instances

In the first part of our experiments, we compare WALKSMT against MATH-

SAT on all the satisfiable LA(Q)-formulas (QF LRA) in the SMT-LIB 1.2.

WALKSMT is implemented on top of MATHSAT4 (in particular it uses its preprocessor and T -solver for LA(Q)),

so that to better highlight the differences between SLS- and CDCL-based approaches.
4http://disi.unitn.it/˜rseba/frocos11/tests.tar.gz

155

CHAPTER 8. EXPERIMENTAL EVALUATION FOR WALKSMT

10-2

10-1

100

101

102

103

104

 50 100 150 200

Ex
ec

ut
io

n
tim

e
(in

 s
ec

)

Number of instances

MathSAT 4
UBCSAT Basic+PL+ML+FI

UBCSAT++ Basic+PL+ML+FI
UBCSAT Basic+PL-ML+FI

UBCSAT++ Basic+PL-ML+FI
UBCSAT Basic+PL+ML-FI

UBCSAT++ Basic+PL+ML-FI
UBCSAT Basic+PL-ML-FI

UBCSAT++ Basic+PL-ML-FI

Figure 8.2: Cumulative plots of WALKSMT and MATHSAT4 on all SMT-LIB instances.

156

8.2. WALKSMT ON SMT-LIB INSTANCES

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f U

BC
SA

T
Ba

si
c+

PL
+M

L+
FI

Execution time (in sec) of MathSAT

sc
uart
TM
sal

miplib
tta

Figure 8.3: Comparison of the best configurations of WALKSMT with UBCSAT

(BASIC+PL+ML+FI) against MATHSAT4 on SMT-LIB instances.

157

CHAPTER 8. EXPERIMENTAL EVALUATION FOR WALKSMT

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f U

BC
SA

T+
+

Ba
si

c+
PL

+M
L+

FI

Execution time (in sec) of MathSAT

sc
uart
TM
sal

miplib
tta

Figure 8.4: Comparison of the best configurations of WALKSMT with UBCSAT++ (i.e. BA-

SIC+PL+ML+FI) against MATHSAT4 on SMT-LIB instances.

158

8.2. WALKSMT ON SMT-LIB INSTANCES

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f U

BC
SA

T
Ba

si
c

Execution time (in sec) of UBCSAT Basic+PL-ML-FI

sc
uart
TM
sal

miplib
tta

Figure 8.5: Comparison of configurations of WALKSMT with UBCSAT: BASIC-PL-ML-FI

vs. BASIC+PL-ML-FI (benefits of adding PL to Basic).

159

CHAPTER 8. EXPERIMENTAL EVALUATION FOR WALKSMT

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f U

BC
SA

T
Ba

si
c+

PL
-M

L-
FI

Execution time (in sec) of UBCSAT Basic+PL+ML-FI

sc
uart
TM
sal

miplib
tta

Figure 8.6: Comparison of configurations of WALKSMT with UBCSAT: BASIC+PL-ML-FI

vs. BASIC+PL+ML-FI (benefits of further adding ML).

160

8.2. WALKSMT ON SMT-LIB INSTANCES

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f U

BC
SA

T
Ba

si
c+

PL
+M

L-
FI

Execution time (in sec) of UBCSAT Basic+PL+ML+FI

sc
uart
TM
sal

miplib
tta

Figure 8.7: Comparison of configurations of WALKSMT with UBCSAT: BASIC+PL+ML-FI

vs. BASIC+PL+ML+FI (benefits of further adding FI).

161

CHAPTER 8. EXPERIMENTAL EVALUATION FOR WALKSMT

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

Ex
ec

ut
io

n
tim

e
(in

 s
ec

) o
f U

BC
SA

T+
+

Ba
si

c+
PL

+M
L+

FI

Execution time (in sec) of UBCSAT Basic+PL+ML+FI

sc
uart
TM
sal

miplib
tta

Figure 8.8: Comparison between the CPU time of WALKSMT UBCSAT and WALKSMT

UBCSAT++ on BASIC+PL+ML+FI versions.

162

8.2. WALKSMT ON SMT-LIB INSTANCES

101

102

103

104

105

106

107

108

109

101 102 103 104 105 106 107 108 109

N
um

be
r o

f s
te

ps
 o

f U
BC

SA
T+

+
Ba

si
c+

PL
+M

L+
FI

Number of steps of UBCSAT Basic+PL+ML+FI

sc
uart
TM
sal

miplib
tta

Figure 8.9: Comparison between the number of flips (flips#) of WALKSMT UBCSAT and

WALKSMT UBCSAT++ on BASIC+PL+ML+FI versions (on commonly solved instances).

163

CHAPTER 8. EXPERIMENTAL EVALUATION FOR WALKSMT

103

104

105

106

107

108

109

103 104 105 106 107 108 109

St
ep

/s
ec

 o
f U

BC
SA

T+
+

Ba
si

c+
PL

+M
L+

FI

Step/sec of UBCSAT Basic+PL+ML+FI

sc
uart
TM
sal

miplib
tta

Figure 8.10: Comparison between the average ratio flips#/sec of WALKSMT UBCSAT and

WALKSMT UBCSAT++ on BASIC+PL+ML+FI versions (on commonly solved instances).

164

8.2. WALKSMT ON SMT-LIB INSTANCES

These instances are all classified as “industrial”, because they come from the

encoding of different real-world problems in formal verification, planning and

optimization, and they are divided into six categories: sc, uart, sal, TM,

tta startup (“tta” hereafter), and miplib. 5 Since SLS has a “ran-

dom” component, we have run WALKSMT 5 times on each benchmark with

different seeds and then we have taken the median value. The results of the

experiments are reported in Figures 8.1-8.10. Figure 8.1 shows the number of

instances solved by all tools. Figure 8.2 shows the cumulative plots of the exe-

cution time for the different configurations of WALKSMT and MATHSAT4 on

SMT-LIB instances. (The plots for BASIC-PL-ML-FI are not reported since

no formula was solved within the timeout.) Figures 8.3-8.4 compare the best

configurations of WALKSMT (BASIC+PL+ML+FI) with UBCSAT and with

UBCSAT++, respectively, against MATHSAT4 on all instances. Figures 8.5-

8.7 show the relative effects of the different optimizations for WALKSMT with

UBCSAT. Figures 8.8-8.10 compare WALKSMT UBCSAT against WALKSMT

UBCSAT++ on BASIC+PL+ML+FI versions. The results suggest a list of

considerations.

First, the optimizations described in §7.4 lead to dramatic improvements in

performance, sometimes by orders of magnitude. Without them, WALKSMT

times out on all instances (see Figures 8.1-8.2 and 8.5-8.7.):

• PL is crucial for performance, since with PL disabled almost no problem

is solved within the timeout. In particular, from our data we see that a key

role is played by learning. (Which perhaps is not surprising from an SMT

perspective, but we believe may be of interest from an SLS perspective.)

• ML produces significant improvements overall, except for a few cases

where it may worsen performances (e.g., with miplib).

5Notice that other SMT-LIB categories like spider benchmarks and clock synchro do not contain

satisfiable instances and are thus not reported here.

165

CHAPTER 8. EXPERIMENTAL EVALUATION FOR WALKSMT

• FI produces strong improvements in performance in all problem categories,

(apparently with the exception of the sc benchmarks).

Second, globally WALKSMT seems to perform better with UBCSAT than

with UBCSAT++, with some exceptions (TM, tta). From Figures 8.8-8.10,

considering the problems solved by both configurations, we see that the total

number of flips performed by UBCSAT++ is dramatically smaller than that per-

formed by UBCSAT, but the average cost of each flip is dramatically higher.

Third, globally MATHSAT4 performs much better than WALKSMT, often

by orders of magnitude. This mirrors the typical performance gap between

CDCL and SLS SAT solvers on industrial benchmarks.

8.3 WALKSMT on Random Instances

Unlike with SAT, in SMT there is very-limited tradition in testing on random

problems (e.g., [8, 9]). However, for a matter of scientific curiosity and/or to

leverage to SMT a popular test for SLS SAT procedures, here we present also

a brief comparison of WALKSMT vs. MATHSAT4 on randomly-generated,

unstructured 3-CNF LA(Q)-formulas. Each 3-CNF formula is randomly

generated according to three integer parameters ⟨m, n, a⟩ as follows. First,

a distinct T -atoms ψ1, ...,ψa are created, s.t. each atom ψj is in the form

(
∑4

i=1 cjixji ≤ cj), it is generated by randomly picking four distinct variables

xji out of n variables {x1, ..., xn}, and five integer values cj1, ..., cj4, cj in the

interval [−100, 100]. Then, m 3-CNF clauses are randomly generated, each by

randomly picking 3 distinct T -atoms in {ψ1, ...,ψa}, negating each with proba-

bility 0.5.

Figures 8.11-8.12 shows the run times of several versions of WALKSMT and

MATHSAT4 on the generated formulas, for n = 20. Each graph shows curves

for WALKSMT (in particular, UBCSAT and UBCSAT++ with the best config-

uration BASIC+PL+ML+FI) and MATHSAT4 on a group of instances with a

166

8.3. WALKSMT ON RANDOM INSTANCES

10-2

10-1

 2 3 4 5 6

Ex
ec

ut
io

n
Ti

m
e

(in
 s

ec
)

Ratio of clauses to atoms, r=m/a where a=30

satisfiability percentage
UBCSAT Basic+PL+ML+FI

UBCSAT++ Basic+PL+ML+FI
MathSAT

10-1

100

 2 3 4

Ex
ec

ut
io

n
Ti

m
e

(in
 s

ec
)

Ratio of clauses to atoms, r=m/a where a=40

satisfiability percentage
UBCSAT Basic+PL+ML+FI

UBCSAT++ Basic+PL+ML+FI
MathSAT

Figure 8.11: Comparison of different configurations of WALKSMT and MATHSAT4 on

randomly-generated instances with 20 theory variables and atoms a = 30, 40.

167

CHAPTER 8. EXPERIMENTAL EVALUATION FOR WALKSMT

100

101

 2 3 4

Ex
ec

ut
io

n
Ti

m
e

(in
 s

ec
)

Ratio of clauses to atoms, r=m/a where a=50

satisfiability percentage
UBCSAT Basic+PL+ML+FI

UBCSAT++ Basic+PL+ML+FI
MathSAT

100

101

102

 2 3

Ex
ec

ut
io

n
Ti

m
e

(in
 s

ec
)

Ratio of clauses to atoms, r=m/a where a=60

satisfiability percentage
UBCSAT Basic+PL+ML+FI

UBCSAT++ Basic+PL+ML+FI
MathSAT

Figure 8.12: Comparison of different configurations of WALKSMT and MATHSAT4 on

randomly-generated instances with 20 theory variables and atoms a = 50, 60.

168

8.4. DISCUSSION

fixed number a of T -atoms, for a = 30, 40, 50, 60. The plots represent the ex-

ecution time versus the ratio r = m/a of clauses/T -atoms. Each point in the

graphs corresponds to the median run-time of each algorithm on 100 different

instances of the same size. (For WALKSMT, each value is itself a median value

of 3 runs with different seeds.) The plots show also the satisfiability percentage

of each group of instances, defined as the ratio between the satisfiable instances

generated and the total number of instances generated, for each value of r. E.g.,

in the plot in the first column of the first row of Figures 8.11-8.12 the percentage

0.01% for r = 6 means that we had to generate and test 10514 formulas (using

MATHSAT4 with a timeout of 600 seconds) in order to obtain 100 satisfiable

instances.

The results show that, unlike with SMT-LIB formulas, on randomly-generated

instances there is a very small difference between the performance of UBCSAT

BASIC+PL+ML+FI, UBCSAT++ BASIC+PL+ML+FI and MATHSAT4.

8.4 Discussion

Overall, we observe the following facts:

1. the basic “naive” version of WALKSMT was not able to solve any problem

within the timeout;

2. the improved techniques drastically improve the performances of the basic

version but WALKSMT cannot beat MATHSAT4.

3. WALKSMT performance are still very far from those of MATHSAT.

169

CHAPTER 8. EXPERIMENTAL EVALUATION FOR WALKSMT

170

Chapter 9

Conclusions and Future Research

Directions

In this thesis we have presented two main contributions.

First, we have introduced the problem of OMT(LA(Q)∪T), an extension of

SMT(LA(Q)∪T) with minimization of LA(Q) terms, and proposed two novel

procedures addressing it. We have described, implemented and experimentally

evaluated this approach, clearly demonstrating all its potentials.

We believe that OMT(LA(Q) ∪ T) and its solving procedures proposed

are very-promising tools for a variety of optimization problems. This research

opens the possibility for several interesting future directions:

1. The efficiency and the applicability of OPTIMATHSAT could be further

improved by, e.g., extending the experimentation to novel sets of problems

possibly investigating ad-hoc customization.

2. The OMT procedures can be extended to LA(Z) and mixed LA(Q) ∪
LA(Z), by exploiting the solvers which are already present in MATHSAT

[45] (Roberto Sebastiani e Patrick Trentin are currently working on this

topic [90]).

3. It could be interesting to investigate the feasibility of extending the tech-

nique to deal with non-linear constraints, possibly using MINLP tools as

171

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

T -Solver/Minimize.

Second, we have investigated the possibility of using an SLS SAT solver in-

stead of a conventional CDCL-based one as propositional engine for a lazy SMT

solver. We have presented and discussed several optimizations to the basic ar-

chitecture proposed, which allowed WALKSMT to solve a significant amount

of industrial SMT problems, although it is still much less efficient that the cor-

responding CDCL-based SMT solver. We believe that the latter fact is not sur-

prising, since optimization techniques for CDCL-based SMT solvers have been

investigated and optimized for the last ten years, whilst to the best of our knowl-

edge this is the first attempt of building a SLS-based one. Initially, we have

planned to investigate the use of SLS techniques for solving/approximating op-

timization problems (e.g. Max-SMT) but, considering the results, we decided

to focusing on the lazy SMT paradigm. However, this work represents the foun-

dations for SLS-based SMT solver and it constitutes a starting points for future

researches. For example:

1. Exploration of the possibility of tightening the synergy between the SLS

SAT solver and T -solvers, for instance by better exploiting information

that can be provided by T -solvers when deciding which variables to flip,

or by considering architectures in which the search is more driven by the

theory part of the formula rather than by the SAT engine.

2. Improving the integration/combination between SLS-based and CDCL-

based SMT both using a portfolio-like approach and investigating more

tightly-coupled solutions.

3. Extending the presented work to cover other theories typically used in

SMT (e.g., “hard” theories such as LA(Z)).

172

Bibliography

[1] SMT-COMP 2012. http://smtcomp.sourceforge.net/

2012/.

[2] Yices. http://yices.csl.sri.com/.

[3] Z3. http://research.microsoft.com/en-us/um/

redmond/projects/z3/ml/z3.html.

[4] T. Achterberg, T. Berthold, T. Koch, and K. Wolter. Constraint integer

programming: a new approach to integrate CP and MIP. In Proceed-

ings of the 5th international conference on Integration of AI and OR tech-

niques in constraint programming for combinatorial optimization prob-

lems, CPAIOR 2008, LNCS, pages 6–20. Springer, 2008.

[5] T. Alsinet, F. Manya, and J. Planes. Improved branch and bound algo-

rithms for max-sat and weighted max-sat. In Sixth Catalan Conference on

Artificial Intelligence, 2003.

[6] C. Ansótegui, M. Bofill, M. Palahı́, J. Suy, and M. Villaret. Satisfiability

Modulo Theories: An Efficient Approach for the Resource-Constrained

Project Scheduling Problem. In Symposium on Abstraction, Reformula-

tion, and Approximation, SARA, 2011.

[7] C. Ansótegui, M. L. Bonet, and J. Levy. Sat-based maxsat algorithms.

Artificial Intelligence, 196:77–105, 2013.

173

BIBLIOGRAPHY

[8] A. Armando, C. Castellini, and E. Giunchiglia. SAT-based procedures for

temporal reasoning. In Proc. European Conference on Planning, CP-99,

1999.

[9] G. Audemard, P. Bertoli, A. Cimatti, A. Korniłowicz, and R. Sebastiani.

A SAT Based Approach for Solving Formulas over Boolean and Linear

Mathematical Propositions. In Proceedings of The International Confer-

ence on Automated Deduction, CADE-18, volume 2392 of LNAI. Springer,

July 2002.

[10] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying In-

dustrial Hybrid Systems with MathSAT. In Proc. of International Work-

shop on Bounded Model Checking, BMC 2004, volume 119 of Electronic

Notes in Theoretical Computer Science. Elsevier, 2005.

[11] G. Audemard, A. Cimatti, A. Korniłowicz, and R. Sebastiani. SAT-Based

Bounded Model Checking for Timed Systems. In Proc. of International

Conference on Formal Techniques for Distributed Objects, Components

and Systems, FORTE 2002, volume 2529 of LNCS. Springer, November

2002.

[12] G. Audemard, J.-M. Lagniez, B. Mazure, and L. Sais. Boosting local

search thanks to cdcl. In Proc. of International Conference on Logic for

Programming Artificial Intelligence and Reasoning, LPAR (Yogyakarta),

pages 474–488, 2010.

[13] E. Balas. Disjunctive programming: Properties of the convex hull of fea-

sible points. Discrete Applied Mathematics, 89(1-3):3 – 44, 1998.

[14] E. Balas. Integer programming. In C. A. Floudas and P. M. Pardalos,

editors, Encyclopedia of Optimization, pages 1617–1624. Springer US,

2009.

174

BIBLIOGRAPHY

[15] E. Balas and P. Bonami. New variants of lift-and-project cut generation

from the lp tableau: Open source implementation and testing. In Proc.

of Integer Programming and Combinatorial Optimization, IPCO, pages

89–103, 2007.

[16] E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane

algorithm for mixed 0-1 programs. Mathematical Programming, 58:295–

324, 1993.

[17] C. Barrett and S. Berezin. Cvc lite: A new implementation of the cooper-

ating validity checker. In R. Alur and D. Peled, editors, Computer Aided

Verification, volume 3114 of Lecture Notes in Computer Science, pages

515–518. Springer Berlin Heidelberg, 2004.

[18] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability Modulo

Theories, chapter 26, pages 825–885. In Biere et al. [25], February 2009.

[19] C. W. Barrett, D. L. Dill, and A. Stump. A generalization of Shostak’s

method for combining decision procedures. In Frontiers of Combining

Systems (FROCOS), LNAI. Springer-Verlag, April 2002. Santa Margherita

Ligure, Italy.

[20] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability

Modulo Theories. In Handbook of Satisfiability, chapter 26, pages 825–

885. IOS Press, 2009.

[21] P. Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-

Boolean optimization. Research Report MPI-I-95-2-003, Max-Planck-

Institut fur Informatik, Im Stadtwald, D-66123 Saarbrucken, Germany,

January 1995.

[22] P. Barth. Logic-based 0-1 constraint programming. Kluwer Academic

Publishers, Norwell, MA, USA, 1996.

175

BIBLIOGRAPHY

[23] A. Belov and Z. Stachniak. Improving variable selection process in

stochastic local search for propositional satisfiability. In Proc. of Inter-

national Conference on Theory and Applications of Satisfiability Testing,

SAT 2009, LNCS. Springer, 2009.

[24] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model Checking

without BDDs. In Proc. of International Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems, TACAS 1999, pages

193–207, 1999.

[25] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors. Handbook

of Satisfiability. Frontiers in Artificial Intelligence and Applications. IOS

Press, February 2009.

[26] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univer-

sity Press, New York, NY, USA, 2004.

[27] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, S. Ranise, P. van

Rossum, and R. Sebastiani. Efficient Theory Combination via Boolean

Search. Information and Computation, 204(10):1493–1525, 2006.

[28] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, S. Ranise, P. van

Rossum, and R. Sebastiani. Efficient Theory Combination via Boolean

Search. Information and Computation, 204(10):1493–1525, 2006.

[29] A. Brooke, D. Kendrick, A. Meeraus, and R. Raman. GAMS - A User’s

Guide. GAMS Development Corporation, Washington, DC, USA, 2011.

[30] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani.

The MathSAT 4 SMT Solver. In Proc. of International Conference on

Computer Aided Verification, CAV, volume 5123 of LNCS. Springer, 2008.

176

BIBLIOGRAPHY

[31] A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani, and C. Stenico. Sat-

isfiability modulo the theory of costs: Foundations and applications. In

TACAS, volume 6015 of LNCS, pages 99–113. Springer, 2010.

[32] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. A Modular

Approach to MaxSAT Modulo Theories. In International Conference on

Theory and Applications of Satisfiability Testing, SAT, volume 7962 of

LNCS, July 2013.

[33] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The MathSAT

5 SMT Solver. In Tools and Algorithms for the Construction and Analysis

of Systems, TACAS’13., volume 7795 of LNCS, pages 95–109. Springer,

2013.

[34] A. Cimatti, A. Griggio, and R. Sebastiani. A Simple and Flexible Way of

Computing Small Unsatisfiable Cores in SAT Modulo Theories. In Proc.

of International Conference on Theory and Applications of Satisfiability

Testing, SAT, volume 4501 of LNCS, pages 334–339. Springer, 2007.

[35] A. Cimatti, A. Griggio, and R. Sebastiani. Computing Small Unsatisfi-

able Cores in SAT Modulo Theories. Journal of Artificial Intelligence

Research, JAIR, 40:701–728, April 2011.

[36] S. Cotton and O. Maler. Fast and Flexible Difference Constraint Propaga-

tion for DPLL(T). In Proc. of International Conference on Theory and Ap-

plications of Satisfiability Testing, SAT, volume 4121 of LNCS. Springer,

2006.

[37] G. B. Dantzig. Maximization of a linear function of variables subject

to linear inequalities. In Activity Analysis of Production and Allocation,

Cowles Commission Monograph No. 13, pages 339–347. John Wiley &

Sons Inc., New York, N. Y., 1951.

177

BIBLIOGRAPHY

[38] M. Davis, G. Longemann, and D. Loveland. A machine program for the-

orem proving. Journal of the ACM, 5(7), 1962.

[39] L. de Moura and N. Bjørner. Model-based theory combination. Electronic

Notes in Theoretical Computer Science, 198(2):37–49, May 2008.

[40] I. Dillig, T. Dillig, K. L. McMillan, and A. Aiken. Minimum Satisfying

Assignments for SMT. In Proc. of Proc. of International Conference on

Computer Aided Verification, CAV, pages 394–409, 2012.

[41] B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for

DPLL(T). In Proc of International Conference on Computer Aided Verifi-

cation, CAV, volume 4144 of LNCS, 2006.

[42] M. X. Goemans and D. P. Williamson. New 3

4
-approximation algorithms

for the maximum satisfiability problem. SIAM Journal on Discrete Math-

ematics, 7(4):656–666, 1994.

[43] C. Gomes, W.-J. van Hoeve, and L. Leahu. The power of semidefinite

programming relaxations for max-sat. In J. Beck and B. Smith, editors,

Integration of AI and OR Techniques in Constraint Programming for Com-

binatorial Optimization Problems, volume 3990 of Lecture Notes in Com-

puter Science, pages 104–118. Springer Berlin / Heidelberg, 2006.

[44] R. E. Gomory. Outline of an algorithm for integer solutions to linear pro-

grams. Bulletin of the American Society, 64:275–278, 1958.

[45] A. Griggio. A Practical Approach to Satisfiability Modulo Linear Integer

Arithmetic. Journal on Satisfiability, Boolean Modeling and Computation

- JSAT, 8:1–27, 2012.

[46] A. Griggio, Q. S. Phan, R. Sebastiani, and S. Tomasi. Stochastic Local

Search for SMT: Combining Theory Solvers with WalkSAT. In Frontiers

of Combining Systems, FroCoS’11, LNAI. Springer, 2011.

178

BIBLIOGRAPHY

[47] A. Griggio, R. Sebastiani, and S. Tomasi. Stochastic Local Search for

SMT: a Preliminary Report. Proceedings SMT’09.

[48] F. Heras, J. Larrosa, and A. Oliveras. Minimaxsat: An efficient weighted

max-sat solver. Journal of Artificial Intelligence Research (JAIR), 31:1–

32, 2008.

[49] F. Heras, A. Morgado, and J. Marques-Silva. Core-guided binary search

algorithms for maximum satisfiability. In W. Burgard and D. Roth, editors,

AAAI. AAAI Press, 2011.

[50] M. J. H. Heule and H. van Maaren. Look-Ahead Based SAT Solvers, chap-

ter 5, pages 155–184. In Biere et al. [25], February 2009.

[51] H. H. Hoos. An adaptive noise mechanism for walksat, 2002.

[52] H. H. Hoos and T. Stutzle. Local Search Algorithms for SAT: An Empiri-

cal Evaluation. Journal of Automated Reasoning, 24(4), 2000.

[53] H. H. Hoos and T. Stutzle. Stochastic Local Search Foundation And Ap-

plication. Morgan Kaufmann, 2005.

[54] IBM. IBM ILOG CPLEX Optimizer, 2010. Available at

http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer/.

[55] H. Jaygarl, S. Kim, T. Xie, and C. K. Chang. Ocat: Object capture-based

automated testing. In Proceedings of the 19th International Symposium

on Software Testing and Analysis, ISSTA ’10, pages 159–170, New York,

NY, USA, 2010. ACM.

[56] D. S. Johnson. Approximation algorithms for combinatorial problems. In

Proceedings of the fifth annual ACM symposium on Theory of computing,

STOC ’73, pages 38–49, New York, NY, USA, 1973. ACM.

179

BIBLIOGRAPHY

[57] A. H. Land and A. G. Doig. An automatic method of solving discrete

programming problems. Econometrica, 28(3):pp. 497–520, 1960.

[58] E. L. Lawler and D. W. Wood. Branch and bound methods: A survey.

Operations Research, pages 699–719, 1966.

[59] C. M. Li and F. Manyà. MaxSAT, Hard and Soft Constraints, chapter 19,

pages 613–631. In Biere et al. [25], February 2009.

[60] Y. Li, A. Albarghouthi, Z. Kincad, A. Gurfinkel, and M. Chechik. Sym-

bolic Optimization with SMT Solvers. In Symposium on Principles of

Programming Languages, POPL, 2014. To appear.

[61] A. Lodi. Mixed Integer Programming Computation. In 50 Years of Integer

Programming 1958-2008, pages 619–645. Springer-Verlag, 2009.

[62] I. Lynce and J. Marques-Silva. On Computing Minimum Unsatisfiable

Cores. In 7th International Conference on Theory and Applications of

Satisfiability Testing, 2004.

[63] P. Manolios and V. Papavasileiou. Ilp modulo theories. In Proc. of Interna-

tional Conference on Computer Aided Verification, CAV, pages 662–677,

2013.

[64] J. P. Marques-Silva. On computing minimum size prime implicants. In in

International Workshop on Logic Synthesis, 1997.

[65] J. P. Marques-Silva, I. Lynce, and S. Malik. Conflict-Driven Clause Learn-

ing SAT Solvers, chapter 4, pages 131–153. In Biere et al. [25], February

2009.

[66] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing Con-

flicts: A Heuristic Repair Method for Constraint-Satisfaction and Schedul-

ing Problems. Artificial Intelligence, 58(1), 1992.

180

BIBLIOGRAPHY

[67] A. Morgado, F. Heras, and J. Marques-Silva. Improvements to core-guided

binary search for maxsat. In Proc. of International Conference on Theory

and Applications of Satisfiability Testing, SAT, pages 284–297, 2012.

[68] C. G. Nelson and D. C. Oppen. Simplification by cooperating decision

procedures. ACM Transactions on Programming Languages and Systems,

TOPLAS, 1(2):245–257, 1979.

[69] G. Nelson and D. Oppen. Simplification by Cooperating Decision Proce-

dures. ACM Trans. on Programming Languages and Systems, 1(2):245–

257, 1979.

[70] R. Nieuwenhuis and A. Oliveras. On SAT Modulo Theories and Optimiza-

tion Problems. In Proc. Theory and Applications of Satisfiability Testing -

SAT 2006, volume 4121 of LNCS. Springer, 2006.

[71] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Mod-

ulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Pro-

cedure to DPLL(T). Journal of the ACM, 53(6):937–977, November 2006.

[72] D. C. Oppen. Complexity, convexity and combinations of theories. Theo-

retical Computer Science, 12:291–302, 1980.

[73] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolu-

tion of large-scale symmetric traveling salesman problems. SIAM Rev.,

33(1):60–100, Feb. 1991.

[74] D. Plaisted and S. Greenbaum. A Structure-preserving Clause Form Trans-

lation. Journal of Symbolic Computation, 2:293–304, 1986.

[75] R. Raman and I. Grossmann. Modelling and computational techniques for

logic based integer programming. Computers and Chemical Engineering,

18(7):563 – 578, 1994.

181

BIBLIOGRAPHY

[76] O. Roussel and V. Manquinho. Pseudo-Boolean and Cardinality Con-

straints, chapter 22, pages 695–733. In Biere et al. [25], February 2009.

[77] N. W. Sawaya and I. E. Grossmann. A cutting plane method for solv-

ing linear generalized disjunctive programming problems. Computers and

Chemical Engineering, 29(9):1891–1913, 2005.

[78] N. W. Sawaya and I. E. Grossmann. A hierarchy of relaxations for linear

generalized disjunctive programming. European Journal of Operational

Research, 216(1):70–82, 2012.

[79] R. Sebastiani. Lazy Satisfiability Modulo Theories. Journal on Satisfia-

bility, Boolean Modeling and Computation, JSAT, 3(3-4):141–224, 2007.

[80] R. Sebastiani and S. Tomasi. Optimization in SMT with LA(Q) Cost Func-

tions. In IJCAR, volume 7364 of LNAI, pages 484–498. Springer, July

2012. Available at http://disi.unitn.it/˜rseba/publist.

html.

[81] R. Sebastiani and S. Tomasi. Optimization Modulo Theories with Lin-

ear Rational Costs. ACM Transaction on Computational Logics, January

2014. Submitted.

[82] M. Sellmann and S. Kadioglu. Dichotomic Search Protocols for Con-

strained Optimization. In International Conference on Principles and

Practice of Constraint Programming, volume 5202 of LNCS. Springer,

2008.

[83] B. Selman, H. A. Kautz, and B. Cohen. Noise strategies for improving

local search. In Proc. AAAI. MIT Press, 1994.

[84] M. Sheeran, S. Singh, and G. Stålmarck. Checking Safety Properties Using

Induction and a SAT-Solver. In Proc. Formal Methods in Computer-Aided

Design, FMCAD07, LNCS, pages 108–125. Springer, 2000.

182

BIBLIOGRAPHY

[85] R. Shostak. Deciding Combinations of Theories. Journal of the ACM,

31:1–12, 1984.

[86] C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson–

Oppen combination procedure. In Proc. Frontiers of Combining Systems,

FroCoS’06, Applied Logic. Kluwer, 1996.

[87] S. Tomasi. Stochastic Local Search for SMT. Technical report, DISI-10-

060, DISI, University of Trento, 2010. Available at http://eprints.

biblio.unitn.it/.

[88] D. Tompkins and H. Hoos. Novelty+ and Adaptive Novelty+. SAT 2004

Competition Booklet, 2004.

[89] D. Tompkins and H. Hoos. UBCSAT: An Implementation and Experimen-

tation Environment for SLS Algorithms for SAT and MAX-SAT. In Proc.

of International Conference on Theory and Applications of Satisfiability

Testing, SAT, volume 3542 of LNCS. Springer, 2004.

[90] P. Trentin. Linear Integer Optimization with SMT. Master’s thesis, Com-

puter Science School, DISI, University of Trento, Italy, March 2014.

[91] D. van Dalen. Logic and structure (2. ed.). Universitext. Springer, 1989.

[92] A. Vecchietti, 2011. Personal communication.

[93] A. Vecchietti and I. Grossmann. Computational experience with logmip

solving linear and nonlinear disjunctive programming problems. In Proc.

of The Foundations of Computer-Aided Process Design, FOCAPD, pages

587–590, 2004.

[94] S. Wolfman and D. Weld. The LPSAT Engine & its Application to Re-

source Planning. In Proc. of International Joint Conferences on Artificial

Intelligence, IJCAI, 1999.

183

BIBLIOGRAPHY

[95] Z. Xing and W. Zhang. Maxsolver: An efficient exact algorithm for

(weighted) maximum satisfiability. Artificial Intelligence, 164(1-2):47 –

80, 2005.

[96] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient con-

flict driven learning in a boolean satisfiability solver. In ICCAD ’01: Pro-

ceedings of the 2001 IEEE/ACM international conference on Computer-

aided design, pages 279–285, Piscataway, NJ, USA, 2001. IEEE Press.

184

