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SUMMARY

The following thesis describes the development of a distributed system for
the monitoring of numerical control machine tools. This work discusses all
the design steps from the conceptualization of the hardware architecture to
the development and implementation of monitoring algorithms. In the first
chapter the state of art in machining automation will be presented, with
a particular focus on monitoring and control system for machining opera-
tions. The second chapter describes the architecture of the proposed system
both from the hardware and the software side. The third chapter goes into
detail of the developed monitoring algorithms intended to the application
on milling machines. The implementation and results of experimental
tests will be discussed. Finally the fourth chapter proposes a new approach
applied to the control of linear motion systems. The work presented in
this thesis belongs to the applied research field that aims to enhance the
automation level of machine tools by developing innovative techniques for
the monitoring and control of machining process. The proposed monitoring
system has been developed considering as key requirements the possibility
to properly operate in several working conditions, the complete integration
with the machine tool structure and the ease of use for unskilled personnel.
The developed algorithms include the monitoring and mitigation of cutting
vibrations, the detection and diagnosis of faults in spindle bearing and the
emergency halt of the machine in case of collision. The resulting system
provides a flexible and scalable framework easily adaptable to the specific
machine tool and machining application. The monitoring tasks allow a
fast setup and their execution is mostly automated, requiring a limited
interaction with the machine tool end users. In conclusion the monitoring
system improves the automation level of the machine tool providing a better
control on the process execution. In addition it facilitates the assessment
of the machine behavior allowing the objective evaluation of the operative
conditions providing a useful support tool for the machine operator.



SOMMARIO

La seguente tesi descrive lo sviluppo di un sistema distribuito per il
monitoraggio delle macchine utensili a controllo numerico impiegate nelle
lavorazioni di fresatura. Questo lavoro tratta tutte le fasi di progettazione
del sistema di monitoraggio a partire dalla concettualizzazione dell’
architettura hardware fino allo sviluppo e implementazione degli algoritmi
di monitoraggio. Nel primo capitolo verrà riportato lo stato dell’arte
nel campo dell’automazione delle macchinine utensili focalizzandosi in
particolare sui sitemi di monitoraggio e controllo delle lavorazioni. Nel
secondo capitolo verrà descritta l’architettura del sistema proposto sia
nella parte hardware che in quella software. Il terzo capitolo entra
nel dettaglio degli algoritmi di monitoraggio sviluppati, fornendo la
descrizione dell’implementazione e i risultati delle prove sperimentali. Il
quarto capitolo infine riporta lo studio di una nuova metodologia applicata
al problema del controllo di assi lineari. Il lavoro descritto in questa tesi
si inserisce nel campo della ricerca applicata che mira a incrementare
il livello di automazione delle macchine utensili, sviluppando metodi
innovativi per il monitoraggio e il controllo dell’esecuzione del processo. Il
sistema proposto è stato progettato considerando come requisiti chiave la
possibilità di adattarsi alle diverse condizioni di lavorazione, la completa
integrazione con la macchina utensile e la facilità di utilizzo da parte di
utenti senza specifiche competenze. Gli algoritmi implementati riguardano
il monitoraggio delle vibrazioni in fresatura, l’individuazione e la diagnosi
di guasti nei cuscinetti mandrino e l’arresto della macchina in caso di
collisione. Il sistema ottenuto fornisce una struttura flessibile e scalabile
facilmente adattabile all’applicazione specifica. Le attività di monitoraggio
sono facilmente conigurabili e vengono eseguite per la maggior parte
in modo automatizzato richiedendo un interazione ridotta con l’utente
della macchina. In conclusione il sistema di monitoraggio sviluppato
rappresenta una soluzione facilmente adattabile a diverse tipologie di
macchine utensili e di lavorazioni meccaniche. Le attività di monitoraggio
implementate migliorano il livello di automazione della macchina utensile
permettendo un maggiore controllo sull’esecuzione del processo. Inoltre
forniscono una serie di valutazioni oggettive sullo stato della lavorazione e
della macchina utensile rappresentando un utile strumento di supporto per
l’operatore a bordo macchina.
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Part I

M A C H I N I N G A U T O M AT I O N





1
I N T R O D U C T I O N

Automation in machining process plays a key role in achieving high pro-
duction performances in terms of working time and parts quality. Despite
the big research effort, automation is mostly applied to the execution of the
machining operation, while the assessment of the process status is still com-
mitted to human expertise. In this chapter the state of the art of monitoring
and control of the machining process is presented. The available commer-
cial solutions and the research activities of the last years in this field will
be described, providing a comprehensive viewpoint of the motivations be-
hind the present work. The chapter ends with a discussion on the current
achievements and future trends.

1.1 modern machining

Machining operations are production processes employed to make mechani-
cal parts with high geometrical and dimensional accuracy and surface finish
quality. They are used both for production of goods starting from semi-
manufactured casting workpieces and for finishing of components obtained
by bulk deformation of casting processes. The high accuracy and flexibility
made machining operations such as turning, milling and drilling an essen-
tial step in manufacturing production. Since the introduction of Numerical
Control (NC) machine tools by Parsons Company and MIT in 1952 that sub-
sequently evolved in the Computer Numerical Control (CNC) machine tools
(1970s), the advances in machining practice has always be linked to the ad-
vances in automation. Nowadays CNC operations are widely applied not
only to metal cutting machine tools but also to non-conventional cutting
machines (e. g. Electrical Discharge Machining (EDM) and laser cutting) and
generally speaking to all that applications where is needed a motion control
system such as industrial robots for assembly and welding, sheet metal cut-
ting, automated measurement (Coordinates Measurement Machines (CMM))
and rapid prototyping. The workflow in modern machining practice con-
sists of three phases:

planning It includes all the offline tasks that lead to the generation of the
program needed by the NC to perform the desired working operations.

execution It includes all the online tasks that allow to obtain the finished
product.

evaluation Is the final phase which concerns all the control tasks of the
working process yield.

In the planning phase Computer Aided Design (CAD) and Computer Aided
Manufacturing (CAM) softwares are used to design (or redesign) and ana-
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CAD CAM PART PROGRAM

Figure 1: Process planning operations

lyze the component, to select the machine tool, the cutting tools, the cutting
parameters, the workpiece fixture and finally to generate the tool paths bas-
ing on the collected information. The output of the CAM software is the part
program containing the whole set of instructions that will be used by the NC

to control the machine. The resulting part program is optimized in terms
of minimization of the machining time, obtained by reducing the number
of passes, rapid positioning and tool changes. Process and working plan-
ning is a slow and complex stage whose proper execution relies mainly on
engineers experience. During the execution phase the machining process
take place. The CNC machine interprets the part program and generates the
references for position and velocity control of axes. The instructions for a
programmed operation are sent to the servo motors that move the axes in
order to obtain the desired path. The NC manages the axes interpolation
moving the tool along linear, planar and three-dimensional trajectories and
then allows the machining of parts with complex geometry. The axes posi-
tions are continuously tracked by sensors that send the measurements back
to the NC closing the control loop. While on one hand the CNC machine per-
forms the working operation driving the axes along the commanded paths,
on the other hand the control unit can not neither perceive nor evaluate the
process status. In other words the NC can reconstruct the actual machine
configuration in terms of axes positions, but can not recognize and then
compensate unexpected changes in the working conditions. Monitoring of
the process execution and intervention in case of undesired situations are as-
signed to the machine operator that can command the machine tool through
a control panel (Man Machine Interface (MMI)). During machining, the role
of machine operator is to stand over the working operation in order to keep

NC

vx

t

v y

t

TOOL PATH

X AXIS REFERENCE

Y AXIS REFERENCEPART PROGRAM
EXECUTION

Figure 2: Process execution operations



1.1 modern machining 5

the process under nominal conditions. This task is performed through the
tuning of cutting parameters such as spindle speed and axes velocity (feed)
and the replacement of the cutting tool according to its wear level. Moreover
machine operator has to halt the machine if critical or dangerous conditions
occur such as the collision with the workpiece. Then the quality of the re-
sulting machined part depends also on the skill of the machine operator and
on his ability on detecting and compensate anomalous working conditions.
The evaluation phase involves the measurements of surface roughness and
of both dimensional and geometrical accuracy in order to assess the qual-
ity of the finished parts and the compliance with the design requirements.
This is a post-line task that is performed by skilled personnel both in the
shop floor with portable instrumentation and laboratories where parts can
be inspected also by means of dedicated NC machines designed for measure-
ment purpose (CMM). The CMM can be programmed to automatically collect
a set of data on single features (e. g. circularity of holes) or on the entire
part under examination. The resulting measurements are compared with
the CAD model in order to check the process yield. If there are pronounced
differences with the design requirements the process must be partially (re-
machining) or entirely repeated. This is true especially during the setup of
the machining process for a new part where several iterations among the
three working phases can be needed. From this brief description two main
aspects show up: on one hand the planning phase is not a trivial task since
the choice of cutting parameters and the optimization of tool paths have a
direct effect on costs and working time. On the other hand the contribution
of the machine operator during the working phase plays an important role
on the quality of the finished workpiece and consequently also on the pro-
duction costs. This means that the expertise and the skills of engineers and
workers are still key factors to obtain a proper execution of the process. In
the last thirty years and even more nowadays, the whole manufacturing in-
dustry is forced to seek reasonable trade-offs among the increasing request
on product quality and production flexibility, on one side, and the constant
need of costs saving and productivity improvement, on the other side. Ac-
cording with this trend, the interest of machine tools producers and cus-
tomers moved towards the reduction of non productive time of machines
preventing unexpected production halt, the improvement of parts quality
and globally the optimization of the available resources. This resulted in an
high push, for both machining industry and research, toward the design of
more versatile and flexible machine tools and the improvement of the entire
process chain [1, 2]. Especially for the last point this is achievable with the
expansion of the planning phase, by considering not only the part geometry
and the material characteristics, but also the working process including the
modeling of the cutting mechanics. This will result in more accurate process
simulations with the capability to generate part programs with tool paths
and cutting parameters optimized in each point of the workpiece. Moreover
the use of more sophisticated CAM software that includes also the geometric
models of the machine tool and of the clamping systems allows to avoid
the risk of collision during the working execution. In addition, the enhance-
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ment of the machine tool should be achieved making it capable to assess
the working status by adding a monitoring layer that can collect and pro-
vide information on the actual working conditions, tool wear and breakage,
machine health and critical situations (e. g. collision). Finally the integration
of the evaluation phase also inside the inline task would allow the machine
to quickly compensate working errors, reduce the re-machining time and
avoid rejected parts. Improvements of the planning phase aim to the gen-
eration of part programs that ensure controllable working processes, under-
stood as stable cutting operations (e. g. without regenerative chatter) with
predictable product accuracy and tool wear. The overall purpose is the re-
duction of setup times and the achievement of cost-effective working since
the first batch. Equipping the machine tools with monitoring systems is
intended to improve the reliability of the process by the fulfillment of three
main tasks:

monitoring The system measures quantities related to the process status
or to the machine conditions and elaborate one or more indicators
that are shown in the MMI as aid to the machine operator.

diagnostic The system evaluates the health of machine parts (bearings,
gears etc.) and in case of failure try to find the source. Together with
the monitoring task facilitates the maintenance scheduling and the
fault detection.

adaptive control The system works in closed loop on the machine. It
can automatically tune process parameters according to a given con-
trol law. In the simplest case the control stops the machine whether
dangerous conditions occurs. In more sophisticated cases the adap-
tive control can track a desired working condition (cutting force, power,
Material Removal Rate (MRR) and so on), optimize the process or main-
tain the required surface quality.

A monitoring and control system can improve the productive capabilities of
the machine with a twofold aim. Firstly providing the needed support to
the machine operator with objective assessments of the process and assist-
ing him in the corrective actions regardless his skills. Secondly the increased
automation level of the machine tool allows to perform unattended oper-
ations contributing to the development of unmanned machining systems.
The main areas of development of these systems concern the improvement

MACHINE TOOL SIGNAL PROCESSING SIGNAL FEATURES

CONTROL LAW

INFO
WARNING
ALARM

CONTROL
ACTION

SENSORSCUTTING 
PARAMETERS

Figure 3: Process execution operations
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of cutting conditions, vibration mitigation, chatter suppression, tool con-
dition monitoring, workpiece collision, fault detection and diagnosis. The
benefits achieved with the use of monitoring systems consist of the overall
improvement of machined parts quality, the reduction of machine idle and
unexpected halt, the avoidance of rejects and a safer usage of the machine.
A generic architecture for a monitoring system is shown in figure 3. The
feedforward branch (solid lines) describes the basic elements needed for the
monitoring action that consists of measurement of process variables and
the processing of acquired signals. The resulting data are then used to pro-
vide monitoring and diagnostic information to the machine operator in the
form of numerical values, graphs, warnings or alarms. The feedback loop
(dashed lines) completes the architecture with the control action that tunes
the cutting parameter in order to achieve the desired performance.

1.2 industrial applications

Despite the pressing needs of the machining industry and the big research
effort in this field, the advances in the automation level of machine tools and
on the whole process are limited, especially with regard to the monitoring
and control of cutting operations. In the following sections will be presented
the main commercial products used to improve the machining process.

1.2.1 Planning

Modern CAM softwares (e. g. [3, 4, 5]) have additional features including an
accurate geometric model of the machine. This allows to simulate its kine-
matics and verify the collision risk between the tool part (tool, tool holder
and spindle) and the workpiece part (workpiece, clamp, table). Moreover
there are also solutions only intended for simulation [6] that offer the possi-
bility to check the generated part program, avoid collision and optimize the
feed rate according to the amount of material that has to be removed. Fi-
nally it is worth to mention the softwares developed by the Manufacturing
Automation Laboratories [7] that, unlike the majority of commercial solu-
tions, perform the complete simulation of the machining process providing
the cutting forces, power and torque, the machine vibrations and the chat-
ter occurrence highlighting the areas of the part program where the process
does not fulfill the required working conditions.

1.2.2 Execution

The design and development of a commercial monitoring system for ma-
chining operation is a challenging task. Beside the choice of the algorithms
to detect the typical undesired situation as tool wear, chatter and collisions
it is also needed to achieve the compatibility with the available NC. More-
over the monitoring system should be robust enough to perform its tasks
regardless the machine architecture, the workpiece and the tool geometry.
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Figure 4: OMATIVE VCM vibration signature recording (a) (courtesy of OMA-

TIVE Systems) and Prometec 3SA ring spindle sensor (b)(source and

copyright: PROMETEC GmbH)

Because of this issues, nowadays few commercial applications can be found.
The most common solutions are monitoring systems with adaptive feed reg-
ulation based on measures of spindle load. These systems allow the setup of
reference levels for the cutting power that will be tracked by tuning the axis
velocity during the working operation. Moreover they can be programmed
to detect a worn or broken tool and to halt the machine if overload con-
ditions occurs. Usually the basic architecture consists on the load sensor
located on the spindle and a dedicated firmware implemented on the NC

that performs the data acquisition and the control tasks. However in some
case the NC is not prearranged for monitoring tasks and then additional
control unit and sensors are needed. Heidenhain [9] provides a monitor-
ing system with adaptive feed regulation and chatter mitigation functions
acting on the axis velocity. The chatter control however is limited to the
frequency band of the drive controller. Omative, Caron Engineering, Artis
and Nordmann [10, 8, 11, 12] provide monitoring systems for adaptive feed
control and tool condition monitoring. These systems tune the feed accord-
ing to the desired power and rise warnings or halt the machine in case of
overload. Omantive [13] developed also a vibration monitoring system ca-
pable to halt the machine if anomalous working conditions or collisions are

Figure 5: TMAC [8] adaptive feed control (Courtesy of Caron Engineering, Inc.)
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detected. In addition it can perform condition monitoring tasks based on
synthesized spectrum analysis (Fig. 4a) and logging tasks for post failure
analysis. However, unlike the previous systems an accelerometer and an ad-
ditional signal processing unit are needed. A different solution to perform
monitoring tasks is offered by Prometec [14] that designed a modular sys-
tem that acquire data both from drive sensors, by communicating with the
NC, and from additional sensors as accelerometers, load cells and acoustic
emission transducers. This system has an embedded Digital Signal Process-
ing (DSP) unit for signal processing and allows to perform tool wear, tool
breakage and collision detection, spindle condition monitoring and unbal-
ance recognition. Moreover they developed an intelligent sensor for spindle
diagnostic that embeds inductive sensor to measure shaft displacements,
accelerometers and temperature to assess bearing health and spindle over-
load and finally a tachometer for spindle speed measurement (Fig. 4b). The
most common monitoring strategies rely on the comparison between signal
features and fixed limits (Fig. 5), however different techniques can be used
especially for tool monitoring as dynamic threshold, part signature and pat-
tern recognition related to tool breakage signals [15].

1.2.3 Evaluation

Evaluation of the machining process has been partially moved from post-
line to in-process task thanks to the development of touching probes (e. g. [16])
and CNC measurement cycles that allow to setup the working operation by
measuring the position and orientation of the workpiece (work reference
system definition) and the tool geometry (tool presetting). Touch probes
are used also to perform in-cycle gauging operations for the measurement
and compensation of thermal effect, tool wear and part distortion. More-
over dedicated touch probes or contactless sensors are used to assess the
integrity of the tool edges. In this way it is possible to control and main-
tain the desired tolerances. The use of these devices can be programmed
in the part program in order to integrate the evaluation and compensation
tasks in the current process but can be also executed after the process for
the inspection of the machined part.

1.3 research state of art

Academic research in machining has been very prolific over the last fifty
years in order to improve the machining process (in terms of quality and
productivity) and to increase the automation level of the machine tools. Sev-
eral engineering fields have been interested in the development of strategies
leading to the improvement of machining operation and fully automated
machines. In general two main research branches can be distinguished. The
first one is much more oriented toward the innovation of machine tool de-
sign considering the introduction of new mechatronics devices intended for
the improvement of the actuation and control capabilities of the machine.
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(a) (b)

Figure 6: Touch probe (a) (source and copyright: Renishaw plc) and contactless tool

setter (b) (source and copyright Blum LMT, Inc.)

Additional actuators, such as electromagnetic, piezo and hydraulic actua-
tors, are used to increase bandwidth of the traditional feed drives (super-
imposed axes), to actively modify the stiffness and damping of the machine
structure, to control the tool deflection and to keep the process stability. The
main goals of these techniques are the increase of positioning accuracy and
speed of the feed axes, the compensation of thermal effects on the machine
structure and drives, the vibrations damping and the avoidance of chatter
during the cutting operations. An extensive description of these techniques
can be found in [17]. The second approach aims to make the machine tool
capable of optimize the working operation, according to the desired per-
formance, and evaluate the process status by equipping it with monitoring
and control systems. The development of an "intelligent machine" can be
outlined in the following steps:

process modeling This step is needed both to increase the knowledge
of the process and to develop the decision making strategy for control
purpose.

sensing Onboard machine sensors together with additional sensors are
used to measure the process variables of interest. The most commonly
used sensors are accelerometers, dynamometers, Acoustic Emission
(AE) sensors and inductive current sensors.

signal processing Signal coming from sensors are elaborated by means
of amplification, filtering and other common signal processing tech-
niques.

features extraction Indicators sensitive to the observed phenomena
are derived from signals both in time and in frequency domain.

control Relying on the selected features the control action is executed in
order to keep the process under nominal conditions. Several strategies
can be used ranging from limit setting to more sophisticated Artificial
Intelligence (AI) techniques.
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Because of the complex interaction among the machine, the tool and the
workpiece, modeling is needed to get a better insight of the working process.
According to [2] the main approaches for cutting modeling are:

- Analytical modeling based on the cutting force computation consider-
ing tool geometry, shear angle, chip flow and friction conditions.

- Slip-line modeling based on the use of material models to predict the
mechanical response and temperature distribution in the shear zone
and in the tool-chip contact zone.

- Finite Element Modeling (FEM) that analyzes a mashed model of the
workpiece and tool to determine material strain and stress and the
chip flow.

- Mechanistic modeling based on the assumption that the cutting forces
result from the product among the uncut chip area, the specific cutting
energy of the material and the cutting parameters.

Analytical and mechanistic methodologies are mostly used for simulation
and optimization purposes [18]. Several works have been conducted for
the estimation of cutting forces, surface roughness and the prediction of
cutting stability as well documented in [19]. These models accurately de-
scribe the phenomena related to the cutting process and allow to estimate
the performance of the machining operation in terms of surface quality, re-
quired cutting power and tool life. The results coming from the modeled
process are used to identify the critical parts of the machining operation
and to optimize it in order to properly select the cutting parameters. In
addition, also AI-based modeling techniques are used. The most common
techniques are based on Artificial Neural Networks (ANN), Bayesian Net-
works (BN) and Fuzzy Logic (FL) inference systems in order to predict tool
wear, surface quality and to perform machining state diagnosis (e. g. tool
breakage) [20]. However also relatively new approaches as Support Vector
Machines (SVM) are catching on especially for surface roughness prediction
[21]. Despite the AI-based models lack of physical meaning they are often in-
tegrated with monitoring systems, since they provide a reliable and simple
tool to estimate process variables from several indirect measurements and
signal features. However it is worth to point out that these models need
a proper training to work effectively. Then it is required a dedicated ex-
perimental campaign that must cover a wide range of operative conditions
in order to guarantee both good generalization capability and accuracy of
the AI-based system. The remaining steps, listed above, form the building
blocks of a generic monitoring system. While modeling of cutting process al-
lows to predict its performance, monitoring the machining operation allows
to assess the actual operative conditions and to take the required corrective
actions. The development of reliable and effective monitoring and control
systems represents the key aspect for the increase of the automation level of
machine tools and the achievement of unmanned machining operations.
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1.3.1 Monitoring of Machining Operations

The monitoring task is generally developed through three main phases: the
measurement of process variables, the selection of signals features represen-
tative of the observed phenomenon and the control of the process. A wide
research effort has been spent for the development of each of these fields.
The literature state of art of Liang et al. [22] and of Teti et al. [23] provides a
comprehensive overview of the monitoring of machining process including
the main advances in sensors and sensing techniques, signal processing and
control strategies.

Sensing Techniques

Traditionally the sensing techniques are distinguished in direct and indirect
measurements. With direct methods the desired information is obtained
by the actual value of the measured variable. Indirect methods involve the
measurement of one or more variables related to the analyzed phenomenon.
The information of interest is then estimated by means of empirical relations
or models. For example the tool wear can be assessed directly by measur-
ing the extension of the corollary with a vision system, or indirectly by
using a relationship between spindle power and wear level. Directs meth-
ods are generally very accurate but difficult to implement in an existing
machine and can also impose some limitations in the machining operation
(e. g. cutting without lubricant). This make direct methods more suitable
for laboratory applications than for workshop usage. Indirects methods are
less accurate than the direct ones but on the other hand they are more easy
to implement and then more common in practical applications. The process
variables that are usually monitored are cutting forces, power and torque,
vibrations, temperature and the acoustic emission of the cutting operation.
Since the work of Tlusty et al. of 1983 [24], the most used sensors for mon-
itoring and control applications have been dynamometers, accelerometers,
current sensors and AE sensors. However also different techniques are used
including vision systems, temperature sensors, strain gauges and displace-
ment sensors.

Cutting Forces

The measurement of machining forces provide the best information on the
cutting mechanics that is used to evaluate tool wear, cutting stability and
the quality of the machined part. Cutting forces and torque can be mea-
sured directly by means of multi-component piezoelectric load cells [25, 26].
There exist commercially available tool holders (Fig. 7a, Fig. 7b) and work-
ing tables (Fig. 7c) with embedded force transducers that are widely applied
in laboratory tests. However their dimensions reduce the available working
area and the lack of overload protection impose some limitations in the
machine usage. These restrictions together with their high cost make this
solution rarely used in industrial applications. An other approach is the use
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of strain gauges-based transducers that measure the deformation of a flexi-
ble structure caused by the cutting forces [27]. This solution though suffer
of reduced stiffness and limited bandwidth that make them unsuitable for
most of the standard applications. For this reason Ma et al. [28] proposed
a new method based on a piezoelectric strain rosette mounted on the tool
holder that provided good results both for force measurements and chatter
detection, compared to more traditional sensors systems. Indirect machin-
ing force assessment includes the measure of spindle deflection, by using
contactless displacement sensors [29], and power or current consumption
measurements from spindle [30] and feed drives [31]. The critical issue in
the measure of spindle displacement is given by the calibration of the spin-
dle system, consisting of spindle, tool holder and tool, whose stiffness must
be determined accurately in order to estimate the cutting forces. Moreover
this method is also affected by displacements caused by motor heat that
must be compensated in the measurement. Spindle and feed drive have
embedded current sensors for motion control that are used to compensate
force and torque disturbances. Therefore cutting forces can monitored by
measuring the current variations. Since no extra sensors are needed this
solution is easy to implement and very cheap but there are some important
limitations that must be considered. Feed drives have to compensate the
dynamics of the moving axes then their bandwidth is typically less than
100 Hz. This reduces the quality of sensory information and can make this
solution ineffective for some monitoring and control tasks. Moreover, for
the most common axis architectures, friction and deflection of ball screw
and side guideways have a strong influence on feed drive action. These
effects vary with feed velocities and axis position and then an accurate cal-
ibration is needed in order to compensate their contribution in current and
power variations. The effect of friction is less significative in spindle and
cutting torque can be easily obtained from current measurements but this is
true only if a motorized spindle is used. In some machines spindle and mo-
tor are connected through a gearbox, a linking shaft and sometime a driving
belt that have to be accurately modeled in order to calculate the right value
of torque. In any case, from the cutting torque is only possible to obtain the
forces tangential to the tool making this method less reliable for some ap-
plications (e. g. tool wear monitoring). A complete overview of force-based
monitoring and control techniques can be found in [32].

Acoustic Emission and Vibrations

AE signals are stress waves generated by the sudden release of energy within
a material that propagates through the material itself. Possible causes of
stress waves can be high deformations and cracks growth. In machining
AE is due to the cutting and chip formation mechanics and the variations
of AE signals can be related to tool wear, chip breakage, cutting vibrations.
For these reasons AE sensing has been widely used in literature especially
for tool condition monitoring (wear and breakage detection) but also for
chatter detection and surface integrity of the machined part [33]. The high
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bandwidth of AE sensors ranging from 10 kHz to 1 MHz can detect most
of the phenomena related with machining operations and make them insen-
sitive to machine vibration and environmental noise but require signal pro-
cessing and an accurate calibration according with the cutting conditions.
In addition AE signals are sensitive to process parameter and sensor loca-
tion and then the choice of the proper sensor position and calibration can
become a non trivial task. Due to these issues AE-based techniques are con-
sidered much more reliable for monitoring when are used in multi-sensors
approach and despite AE sensors are also inexpensive and not invasive for
the working space they are hardly employed in workshop applications.
Vibrations in machining are an important indicator of the working condi-
tions and then a good variable for monitoring applications. Cutting vibra-
tions can be distinguished in forced and self excited vibrations. In the first
case vibrations depend on process conditions such as interrupted cutting
or tool engagement but also on non homogeneous material properties and
tool wear. Forced vibrations are stable and their magnitude can be reduced
acting on feed velocity since they are strictly related with cutting forces.
Self excited vibrations, also known as regenerative chatter, are an unsta-
ble process condition due to waviness of the machined surface that causes
a varying chip thickness. Under certain conditions, related with rotational
speed and depth of cut, the chip thickness may grow very quickly increasing
the cutting forces and the vibrations level. Chatter is a particularly danger-
ous working condition that produces poor surface quality, reduces tool life
and can result in rejected parts. The most used sensors for vibration mea-
surements are piezoelectric accelerometers since they have relatively high
dynamic range, high full scale range (suitable for collision detection appli-
cations), and are insensitive to constant accelerations. The state of research
about the phenomenon of chatter and the techniques to detect and avoid it
has been reviewed by Quintana et al. in 2011 [34].

(a) (b) (c)

Figure 7: Dynamometer applications for turning 7a and milling 7b,7c (source and

copyright of Kistler Holding)
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Machine Vision

The use of vision systems is a relatively new approach in monitoring of ma-
chining operations mainly focused on tool condition monitoring [35]. The
wear level can be assessed both in a direct manner, by analyzing the image
of the tool edge, and indirectly through the examination of the machined
surface. Vision-based techniques represent an inexpensive way to perform
contactless direct measurement of tool wear and surface finish and thanks
to the wide amount of available image processing algorithms it is possible
to develop real time monitoring application. The reliability of this method
though is affected by the adopted illumination system and working condi-
tions (chip, lubricant and dirt). Lighting type and level is one of the most
critical aspect for the acquisition and processing of images since low or non-
uniform illumination does not allow to draw the needed information from
the image. Diffuse lighting systems like LED lights and fiber optic guided
light seems to be the best solution to improve the image quality for inline
applications. Vision systems require in addition a proper image process-
ing strategy that allows to obtain robust and significative indicators of the
observed phenomenon. Numerous studies in literature proved that vision-
based sensing techniques can be useful for monitoring tasks but further
research activity is needed to increase their robustness and reliability for
real time applications in the severe conditions of machining environment.

Signal Processing and Features Extraction

Signal processing includes all those strategies that are performed before ex-
tracting the desired signal features from the acquired data. This task is
needed to obtain a clean signal from most of the disturbance sources exist-
ing in industrial applications. The basic approach consists of signal ampli-
fication, low pass filtering and A/D conversion that can be performed by
dedicated device and nowadays by sensor itself (digital sensors). Further
processing can be the digital filtering of signal in order to extract informa-
tion in the frequency band of interest and the signal segmentation.
Features extraction is performed both in time and frequency domain and
most common signal features are:

time domain Amplitude, mean, Root Mean Square (RMS), variance or
standard deviation, skewness, kurtosis, peak and peak to peak am-
plitude, crest factor and synchronous averaging.

frequency domain Fast Fourier Transform (FFT) and Power Spectral Den-
sity (PSD) transformation, dominant peaks amplitude, energy in fre-
quency bands, skewness and kurtosis.1

Other signal features are derived from those listed above by using for ex-
ample ratio of two extracted features. The analysis in the frequency do-
main by means of Fourier transformation is affected by the averaging of
the signal frequency content in the period of observation. For this reason a

1 see [23, 20] for references
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time-frequency analysis is often performed applying the Short Time Fourier
Transform (STFT) that computes the FFT inside a time sliding window of n
samples. In this way it is possible to capture the variations of frequency
components over time. This approach though suffers of an important limi-
tation: an high time resolution obtained with the choice of a small window
will result in a poor frequency resolution. Wavelet analysis overcomes this
drawback providing a time-frequency signal transformation by using win-
dows of different length for the low frequency and high frequency content.
Discrete Wavelet Transform (DWT) decomposes the signal in approximation
(the low frequency part) and detail (the high frequency part) by convolu-
tion between the signal and the impulse response of a low-pass and an
high-pass filter. This operation is iterated in a multi-level decomposition
where the subsequent signal approximation is further processed in order
to extract lower resolution components. A second approach is given by
Wavelet Packet Transformation where both approximations and details are
decomposed in order to increase the number of frequency bands. In both
cases signal components obtained by wavelet analysis are generally used as
separated signals from which extract the desired features.

Control Action

Control of machining process is traditionally classified as:

adaptive control with constraints (ACC) Systems tune process
parameters in real time to keep the monitored variable (e. g. power
or cutting forces) to a constant value.

adaptive control with optimization (ACO) Systems select process
parameters to fulfill a specific objective as for example maximize tool
life or minimize working time.

geometric adaptive control (GAC) Systems are much more oriented
to maximize the finishing operations yield by controlling tool deflec-
tions and wear.

Adaptive control systems have been reviewed in 2004 by Liang et al. [22]
and since then among the recent works it can be cited the study of Quin
et al. [36] that proposed a discrete sliding mode control algorithm to per-
form robust control of cutting forces in milling. Simulated case studies
proved the effectiveness of the proposed method. Rubio et al. [37] devel-
oped a model following adaptive controller based on fractional order hold
discretization method. In this approach the discretization generates several
reference model running in parallel and the control law is provided by the
best performing model chosen at each sample time by a switching algorithm.
Zhang et al. [38] proposed a control scheme in which a ANN is used to tune
the parameter of a PID controller according to the cutting force. Even in this
two cases the reported results are referred to simulation of the milling pro-
cess. Other preliminary studies on control strategies were [39, 40, 41]. Yao
et al. [42] have recently developed a PID controller with static parameters
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assisted by a AI-based controller (FL or ANN controller). In this case the PID

controller is used to maintain the process stability while the AI-based con-
troller is intended to improve the system response to process nonlinearities.
Experimental tests demonstrated that both controllers successfully tuned
the feed in order to keep the cutting force around the reference value. In
addition also the advantages of online training of the ANN controller were
provided. Zuperl et al. [43, 44] used a ANN-based adaptive controller in con-
junction with an off-line process optimizer. First the recommended process
parameters are obtained by the off-line optimization of the working process
and during the cutting operation the adaptive controller is used to prevent
the cutting forces to overcome a given level while keeping the maintaining
the desired cutting performance. The experimental results performed on
a irregular workpiece geometry provided an improvement of 27 % of ma-
chining efficiency compared to a conventional milling operation. Saikumar
and Shunmugam [45] developed a feed rate adaption controller suitable for
both roughing and finishing operations. In addition they provided also a
test workpiece geometry to be used for testing purposes of different con-
trol strategies. Despite the good results obtained, this method has been
applied only to AISI4340 steel and the controller strategy has been devel-
oped following a specific experimental campaign. Yang et al. [46] proposed
an adaptive surface quality control based on two neuro-fuzzy systems. The
first one predicts the surface roughness relying on cutting parameters and
cutting forces measured with a plate dynamometer. According to the esti-
mated value the second one corrects the feed rate in order to control the
quality of the machined part. Tang et al. [47] proposed a control methodol-
ogy for regulation of forces, position errors, and contour error in machining
base on a hierarchical architecture with two levels: the machining forces and
contour error one and the servomechanism one. The goals of constant cut-
ting forces and zero contour error are propagated to the bottom level where
are joined with the tracking goal of the motion controller. An optimal con-
trol law is then formulated to match the desired goals. Simulated turning
operations provided promising results for the application of this approach.
Rubio et al. [48] proposed an expert rule based system for cutting param-
eters selection in the milling processes. A set of rules is used to build the
Pareto optimal front that provides the optimal cutting conditions. Bosetti
et al. [49] developed an additional controller to increase the automation
level of the machine tools that implements a supervision and optimization
loop. The controller collects process state information from the CNC and
from dedicated sensors performing the control action on feed and spindle
speed overrides. By means of a simplified process model and of a optimal
control algorithm the proper cutting parameters are selected in real time on
the basis of a weighted multi-objective target function. Moreover a vibra-
tion prediction module is included so that the occurrence of chatter can be
estimated in the pre-processing phase and the spindle speed can be varied
according to the cutting stability. Off-line process optimization for a 21 s
simulated tool path has been carried out in 350 ms demonstrating the capa-
bilities of the proposed approach for in-line optimization. Finally Denkena
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et al. [50] developed a cutting force control in a prototype CNC machine
equipped with a contactless magnetic guided spindle slides. This actuator
is completely independent from the machine axes an is actuated to compen-
sate the cutting forces by varying the depth of cut. The proposed approach
is intended for finishing operations in which the surface roughness and the
geometrical accuracy are much more important than the machining time.

1.3.2 Monitoring Objectives

Tool Condition Monitoring

Tool life is one of the most important issues in machining practice. Tool
wear modifies the geometry of the cutters negatively affecting the geometric
accuracy and the surface finishing of the workpiece. Moreover tool wear
and tool breakage are responsible of up to the 20 % of process halt [22]
resulting in unpredictable downtimes that reduce the machine productivity
and consequently rise the overall working costs. The latest comprehensive
review of Tool Condition Monitoring (TCM) techniques [51] highlight the
developments observed in research for turning, drilling, end milling and
face milling. This study shows that usually monitored variables are:

- Cutting forces and torques measured directly with dynamometers or
estimated through spindle current.

- Vibrations measured with accelerometers.

- Acoustic emission.

Tool wear assessment is performed by using both time and frequency do-
main methods, statistic indices and AI-based approaches mainly oriented
towards ANN and FL models. Wavelets are also used to detect wear growth
and tool breakage but, as authors noticed, their potential has not been
fully exploited. Moreover other mixed time and frequency domain meth-
ods (e. g. STFT) have been seldom used, despite their effectiveness for the
analysis of transient signals has been demonstrated. This work also shows
that there not exists monitoring techniques explicitly developed (or effec-
tive) for two or more working operations such as milling and drilling. This
is quite odd since modern CNC machines can execute several machining op-
erations and the monitoring system should be capable to properly detect
wear in each condition. A recent review of flank wear prediction methods
for turning [52] confirms the trends discussed. In particular force, vibra-
tions and AE measurements are recommended for in-line TCM applications
while frequency domain and time-frequency domain signal processing are
considered much more advantageous than other techniques. In addition the
authors emphasize the need of developing "universal systems" since most
of the monitoring application reviewed are application specific and their
effectiveness depends also on the material and on the working parameters.
Vision-based techniques proved to be a promising approach for TCM [35]. Vi-
sion systems can be used for direct measurement of the worn area allowing
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with a single measure the detection of different wear mechanism (e. g. flank
wear and chipping) and the tool breakage. In addition tool wear can be in-
ferred also from surface roughness measurements. The application of these
techniques in industrial environment for real time monitoring require fur-
ther research especially aimed to the development of robust systems and
for a proper integration with the machine tool. However the direct measure-
ment of land wear extension could be easily implemented for in-process
evaluation of the tool wear in actual machining environment (see for exam-
ple [53]). Concerning TCM in milling Soichi and Shimizu [54] developed
an adaptive control for tool life regulation based on force measurement and
on the assumption that cutting forces slowly increase with the growth of the
tool wear. Force measurement are performed at previously defined tool path
checkpoints at intervals of several meters, selected in those region where the
process is in steady state conditions. The force trend is then used to predict
the residual tool life and feed is adjusted in order to track the target tool
life. Cutting force was measured with four displacement sensors mounted
on a spindle collar but it can be also used current measurement of feed
and spindle drives that makes this method easy to implement in common
CNC machines. Experimental results demonstrated the effectiveness of this
approach even if is not suitable to detect abrupt tool damages as chipping
or breakage. Girardin et al. [55] chose to monitor the variation of spindle
rotational frequency to assess tool wear by using the rotational encoder of
the spindle. Authors noticed that differences in rotational frequency slow-
down are good indicators for differential wear of the cutting edges (wear
of each edge with respect to the others). This indicators proved to be also
more sensitive to tool wear and breakage than cutting forces since speed
variation correlates to the mechanical work performed by each tooth. How-
ever this approach was tested only in straight milling and with a single edge
cutting at a time that is a simple working condition then further research
work should be done to verify its reliability for other operative cases. Pejryd
et al. [56] followed a similar approach using spindle and axis encoder sig-
nals to monitor tool wear. Several signal features were extracted (e. g. range,
RMS, variance) and compared with those obtained by a new tool through
the sum of squared distance statistic. The repeatability of the proposed
method was tested and was found to be strong for short-term measurement
while got weaker for long-term measurement probably because of changes
in machine tool condition. The authors highlighted the potentiality of using
encoder signals for monitoring purposes but stated also that further inves-
tigations are needed. Ritou et al. [57] proposed a monitoring method of
tool wear by estimating the radial eccentricity of the teeth related to the
cutting force with a mechanical model of the milling process in the angular
domain. Cutting forces were measured with two eddy current displacement
sensors mounted on the spindle nose and angular domain signal processing
techniques as synchronous averaging were performed. Tool wear is evalu-
ated by means of control charts used to monitor the cutting forces for each
tooth. Wang et al. [58] used an incremental learning network (distributed
Gaussian ARTMAP) to classify tool status. Cutting forces measured with a
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table dynamometer were used to extract several signal features (RMS ratio,
variance, kurtosis, skewness...) in order to train the network. Experimen-
tal results demonstrated that the proposed approach succeeded to detect
the right tool wear level outperforming an other online learning classifier.
Doukas et al. [59] made a preliminary study to find the relationship among
tool wear, vibration level and spindle torque evaluated through spindle cur-
rent measurements. As a result the authors stated that RMS value of spindle
current could be used to asses tool wear. Prickett et al. [60] developed a
microcontroller-based TCM system mainly intended for tool breakage detec-
tion. The system process the spindle power signal in frequency domain
to extract the energy of the cutting harmonics and also in time domain to
measure the energy variation related to tool rotation. Finally a set of rules
based on threshold levels of the monitored indicators allows to rise a warn-
ing both in case of excessive wear or tool failure. Ai et al. [61] related tool
wear to the cepstrum coefficients of the acoustic spectrum of the milling
operation. Cho et al. [62] used a multi-sensor approach to develop a TCM

system. Several signal features were extracted from force, vibration, AE, and
spindle current measurements and subsequently selected using different ap-
proaches. Finally wear level was assessed by using three different AI-based
classifiers. The aim of this work was to investigate the most accurate set of
sensors - features - classifier for TCM purposes. From the experiments it was
found that the highest accuracy can be achieved by using force, vibration,
and AE sensors together with correlation-based feature selection method and
majority voting machine ensemble. Moreover SVM classifier outperform the
ANN-based classifiers. Tobon-Mejia et al [63] proposed a data-driven prog-
nostic approach that uses raw data coming from a monitoring system to
predict the evolution of cutting tool wear. The prediction model was built
by using a Dynamic Bayesian Network that was able to assess the remaining
useful life of the tool in the experimental tests.

Vibrations and Chatter

Metal cutting process usually involves the presence of vibrations. In milling
forced vibrations are caused by the cutting edges entering and exiting from
the workpiece but generally speaking the interactions among the machine,
the tool and the workpiece are a source of vibrations. Moreover, mechanical
imbalances, cutters eccentricity (due for example to tool wear), gearboxes
and so on are responsible of forced vibrations. Although vibrations are al-
ways present during the machining process an high level is an unwanted
condition that can reduce the working performance, decreasing the tool life
and worsening the surface finish. The most detrimental situation is rep-
resented by the onset of regenerative chatter consisting of self excited vi-
brations that continuously grow, leading the process to instability. Chatter
worsens the workpiece surface (Fig. 8b), reducing the geometric accuracy,
the cutting edges, causing tool chipping or even breakage, and also can
damage the machine tool. For these reasons chatter has been considered
with high interest in academic and industrial research. Altintas and Weck
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Figure 8: Texture of a milled surface under normal cutting condition (8a) where

feed lines are visible and with chatter (8b) where the surface is marked by

the tool vibrations.

[64] reviewed the main chatter modeling approaches for turning, milling,
drilling and grinding while Quintana and Ciurana [34] in 2011 reviewed
the state of research distinguishing among off-line and in-line methods to
prevent or suppress chatter. Finally Siddhpura and Paurobally recently re-
viewed the chatter research in turning operation. Chatter onset is due to a
self-excitation mechanism resulting from the waviness of the chip thickness.
Vibrations caused by the cutting process make the cutting edge to oscillate
producing a wavy surface that is encountered at the next revolution in turn-
ing or by the next tooth in milling and drilling operations. This generates
a new wavy surface that can make the chip thickness to exponentially grow
with the consequent increase of cutting forces. Stability of cutting conditions
is related to dynamic properties of the machine, tool and workpiece and to
the cutting parameters. The most common way to evaluate the process sta-
bility is to use the Stability Lobe Diagram (SLD) that allows to draw the
border between stable and unstable cut as a function of spindle speed and
depth of cut (Fig. 9). SLD are generally obtained, starting from the Frequency
Response Function (FRF) of the tool - tool holder - machine set, according to
the following steps [65]:

1. Select a chatter frequency from a natural mode of the FRF.

2. Calculate the phase shift between the current vibration mark and the
previous one (inner and outer modulation).

3. Calculate the critical depth of cut that defines the stability border.

4. Calculate the corresponding spindle speed for each stability lobe.

5. Repeat the operation for each natural frequency.

The FRF of structure is computed from the tapping test of the tool tip usu-
ally performed with an impact hammer and an accelerometer with standstill
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Figure 9: Stability lobe diagram

spindle. Knowing the stability region allow to select the cutting parameters
that maximize the MRR and then the productivity of the machine in stable
conditions. The SLD is specific for the machined material, the working con-
ditions (e. g. the width of cut in milling) and workpiece - tool pair. Then it
should be computed every time one of this elements varies resulting costly
and difficult to perform by machine end-users since it requires time, high
knowledge level on system dynamics and machining process and skilled
personnel to perform the experimental modal analysis. For these reasons
the use of SLD-based techniques is not very widespread in workshops except
for particular applications where the cost of components makes mandatory
the absence of rejects (e. g. machining of aeronautic parts). Nevertheless
researchers are still strongly interested to develop strategies for the identi-
fication of SLD and the suppression of chatter at its onset. The main issue
related to the hammer test is that the FRF of the structure, obtained in static
conditions, does not take into account of the speed-dependent effects of
the spindle dynamics that can modify the stability region shifting the lobes.
This require a more accurate modeling of the system or an experimental val-
idation of the computed SLD. Cao et al. [66] modeled with a finite element
method the dynamics of an high speed spindle and investigated the speed
effects on spindle shaft and bearings. Authors found that the gyroscopic mo-
ment of the spindle shaft does not affect the direct FRF of the tool tip while
amplify the cross FRFs. Moreover the centrifugal forces acting on the shaft
and the bearings lower the stiffness of the spindle as speed increases. The
SLD computed taking into account the speed effects revealed that stability
lobes shift significantly towards low speed. A different approach was pro-
posed by Abele and Fiedler used the Numerical Subspace State Space Sys-
tem Identification technique (N4SID algorithm) to identify the state space
model of the spindle during milling. The identified model provided a more
accurate SLD compared to that one obtained in static conditions. Other au-
thors used Operational Modal Analysis (OMA) techniques to extract modal
parameters of the system during machining. Zaghbani and Songmene [67]
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chose two different OMA techniques to obtain the SLD. Li et al. [68] proposed
a method to generate random excitation during milling to be used with two
OMA identification methods. In both cases the SLD obtained from machining
data resulted much more accurate in stability region prediction. Because of
the uncertainties in stability prediction described above, the in-line chatter
detection and suppression is a key task in monitoring systems. In this case
SLD identification is not needed and chatter occurrence is detected by analyz-
ing signals features obtained from vibration, force, AE, etc. measurements.
Liu et al. [69] used the energy and kurtosis of feed drive current signals
as indicators for chatter in turning. A SVM was trained using current and
acceleration signal as input-output pairs resulting in a 95% of accuracy on
chatter detection. Jia et al. [70] developed a chatter detection strategy based
on standard deviation and one-step autocorrelation function. Lamraoui et
al. [71] defined two chatter indicators based on instantaneous spindle speed
measurement processed in angular domain. The first indicator takes into
account the periodic contribution of spindle speed and it is high when cut
is in stable conditions. The second one is related to the aperiodic (random)
part of the signal and is higher when chatter occurs. These indicators de-
rived from cyclostationarity analysis of the spindle speed signal developed
in [72]. This method was effective on detecting chatter and resulted also
easy to implement in existing milling machines. Abele et al. [73] proposed
a signal processing technique for a chatter monitoring system implemented
on a PLC. The algorithm proved to be capable to detect chatter condition
even with the limited sampling frequency of the PLC, resulting a promising
method for the development of an inexpensive chatter monitoring system.
Tangjitsitcharoen and Pongsathornwiwat [74] developed a chatter monitor-
ing algorithm based on dynamometric measurement. Ratios of average vari-
ance of forces and experimentally selected threshold were used to evaluate
the occurrence of chatter. Tangjitsitcharoen et al. [75] improved the system
by using the same algorithm to scan the wavelet decomposition of the force
signals. In this way they increased the robustness of the algorithm for dif-
ferent cutting conditions. Kim et al. [76] developed an embedded controller
for chatter detection that computes the RMS value of the band pass filtered
vibration signal. If the value overcome a specific threshold the controller
compensate the cutting parameters by using a look up table and communi-
cates them to the NC. The performance of the proposed system was obtained
my measuring the surface roughness with and without compensation. The
average improvement given by the controller was about the 25 %. Albertelli
et al. [77] investigated the effects of spindle speed variation in turning on
chatter mitigation and on process yield. Authors noticed that spindle speed
variations presents high vibration mitigation properties and does not affect
the surface finishing. Van Dijk et al. [78] developed two control strategies
to avoid chatter, the first one set the tooth pass frequency equal to the dom-
inant chatter frequency while the second one mitigates the chatter using
spindle speed adaption. In both cases chatter free milling operation were
achieved in experimental tests. Kakinuma et al. [79] proposed a disturbance
observer to assess the spindle torque disturbances introduced by the cutting
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process. Using a set of digital filters allowed to extract information on chat-
ter occurrence from the observed disturbance. The results of this work were
used by Yoneoka et al. [80] to develop a control system that adapted the
cutting parameters if chatter onset was detected on disturbance torque sig-
nal. Morita et al. [81] monitored the vibrations in machining and measured
the actual chatter frequency at its onset. This is then used to correct the
natural frequency of the system and to find a stable spindle speed closer to
the current one. The new value is finally sent back to the NC to suppress the
chatter vibrations.

Machined Part Quality

Surface roughness and geometric accuracy are the variables used to eval-
uate the process yield. Wrong process parameters selection or anomalous
working conditions due to high vibrations, chatter or excessive tool wear, af-
fect the surface finishing and the geometry of the machined part increasing
the risk of rejects or requiring re-machining operations. In-line monitoring
of part quality is an important task that allows to adapt process parame-
ters in order to avoid machining defects. Denkena et al. [82] developed
a model-based monitoring system that assesses surface topography accord-
ing to force measurements. The dynamic behavior of the tool - tool holder -
machine set was modeled in order to calculate the tool tip displacements.
The proposed method proved to be accurate under moderate cutting con-
ditions while did not provide reliable information in case of more severe
working operation. However even if information on surface roughness were
not precise it was still possible to assess the occurrence of chatter. Costes
and Moreau [83] measured the tool movement during cutting by using two
laser displacement sensors. Height variations due to tool deflection were
taken into account in order to improve the estimation of the surface topog-
raphy. AI-based monitoring system are quite common for surface rough-
ness assessment. Quintana et al. [84] used signals available int the NC

kernel (drives current, axes positions...) and Ra measurements to train a
neural network. This approach provided an high accuracy of average sur-
face roughness prediction, comparable with the output of a ANN trained
with accelerometer signals. This work was further developed by Brecher et
al. [85] that implemented the monitoring system on a machine tool. The
machine without the need of external sensors was capable to evaluate the
Ra value during the machining operation providing optimized cutting pa-
rameters to the operator. García et al. [86] investigated the use of force,
vibration and AE measurements to assess Ra value in turning. From experi-
mental results, cutting forces proved to be more sensitive for Ra estimation
while the remaining signals did not seem to influence that parameter. Fi-
nally a polynomial regression model and a ANN were used to Ra prediction
providing comparable outcome. A similar approach was used by Asiltü et
al. [87] that trained an ANN using force and roughness measurement for
surface finishing prediction. Vrabel et al. [88] used an ANN-approach to
evaluate surface roughness in drilling. One neural network was used to es-
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timate tool wear by using the cutting force, the feed and cutting velocity as
input. The predicted flank wear is then used as an an additional input for
a second neural network to assess the surface finishing. Abdul-Ameer et
al. [89] developed a vision-based sensing device mounted in a CNC machine
intended for surface roughness measurements.

Machine Condition Monitoring

Condition-based and predictive maintenance are strategies that allow to
plan maintenance actions in advance relying on the actual condition of
the machinery. This reduces the risk of machine fault and then of unex-
pected downtimes and, on the other side avoids premature maintenance
actions. In both cases, operating costs are reduced and machine productiv-
ity is increased. Prognostic Health Management (PHM) involves the use of
monitoring system to detect machinery parts failure in advance in order to
plan prompt maintenance activity, only focused those parts that are actually
damaged. Lee et al. ([90],[91]) provided an overview on PHM and discussed
the development of maintenance approaches and the future trends in mod-
ern manufacturing systems. Jiao and Meiling [92] applied a fault diagnosis
strategy to a NC machine tool. The authors divided the machine tool in
functional blocks (e. g. spindle, feed drives, CNC and so on) and developed
an object-oriented approach to define a set of rules to assess machine part
fault. The system uses both rule based reasoning and case based reasoning
mechanism to find the actual situation of the machine. Finally a ANN uses
the processed information to provide diagnosis on detected fault. Bediaga
et al. [93] used two accelerometers mounted in a spindle head and AI-based
techniques to develop an automatic fault detection and diagnostic system
of spindle bearings. The extracted signal features were related to a method
used in bearing condition monitoring (Basis Pursuit Decomposition) and
were used to build a FL and a ANN classifiers. The FL-based system resulted
more suitable for the application and was implemented in the machine. Bisu
et al. [94] proposed a method for vibration analysis based on synchronous
envelope analysis in order to characterize both the machine tool state and
the milling tool wear. Authors adapted envelope analysis, that is generally
used for condition monitoring of bearings and gearboxes, to the machining
field and implemented a monitoring system with two accelerometers and a
speed sensor. Neugebauer et al. [95] described a design strategy for a con-
dition monitoring system of machine tool focused on spindle unit. Spindle
bearings were monitored acquiring accelerometric, AE and temperature sig-
nals. Temperature trend, envelope analysis of vibration and an AE indicator
were used to assess the spindle health. Experiments performed on a test
bench allowed to prove the effectiveness of the proposed method. The AE

based indicator resulted the more sensitive to bearing damage allowing to
detect a fault at the 50% of the bearing life, followed by the envelope anal-
ysis (20% of the estimated life). Temperature measurement was effective
only at the end life of the bearing showing a temperature growth in the last
800 hours before the predicted substitution. Moreover authors described the
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monitoring action needed to assess the status of the tool clamping unit and
the rotary union. Liao et al. [96] proposed a reconfigurable prognostic plat-
form designed to be easily integrated in several machine tools. Time domain,
frequency domain and mixed time-frequency domain (e. g. wavelet) analysis
algorithms were used to extract signal features while several AI-based clas-
sifier were implemented as health assessment and diagnostic tools. In order
to validate this system an automatic tool change application and the spin-
dle bearing condition monitoring were used as case studies with successful
results.

1.4 discussion on future trends

The developments and the achievements in research field to improve the
machining operation aim to the increase of the machine tools automation
level that involves the monitoring, control and optimization of the working
process. Despite the many successful experimental results, there is a lim-
ited transfer towards industrial applications or commercial products. The
reasons that often arise as the main causes of the lack of development to
practical implementation can be grouped in:

cost Many of the adopted approaches are based on expensive sensors sys-
tems (e. g. piezoelectric dynamometers) that offer the best sensing ca-
pabilities but their use result convenient only in few industrial fields.

complexity The advanced techniques proposed to develop an effective
monitoring and control system are perceived as tricky to use and in
addition, because of the wide diversity of machining operations, it
is often needed a fine tuning of the system to work correctly. This
require at least a basic knowledge of the implemented methods and
then a properly trained personnel.

However, advances in machining operations will rely mainly on the devel-
opment of smart machine tools or machining systems. The design and im-
plementation of reliable and flexible monitoring and control systems is then
a key point to achieve this goal. These systems should be completely au-
tonomous in the evaluation of the working conditions with self-tuning capa-
bilities and the possibility of learn from unexpected or new machining situ-
ations. Moreover they should provide simple and clear process information
that can assist the machine operator regardless his experience. Nowadays,
thanks to the needs on other fields such as automotive robotics and Informa-
tion and Communication Technology (ICT), the offer of small-sized, cheap
sensors is continuously increasing together with the availability of power-
ful microcontroller units. This facilitates the development of programmable
sensors system that can be fully integrated in the machine tool architecture.
Moreover trends in latest research works show that there is a constant effort
in developing monitoring systems based on signals already available on the
machine tool as the drive and spindle current or coming from the actual
sensory equipment of the machine. This, combined with innovative signal
processing approaches (e. g. angular domain signal processing), AI-based



1.4 discussion on future trends 27

decision making models and advanced control techniques, seems to be a
promising way towards the requirements of modern machining technology.
It addition to research activities, the development and deployment of pro-
cess monitoring and control systems requires also an effort by NC producers
that should design a standardized interface in order to provide an easy ac-
cess to axis and spindle control loop signals and allow the communication
between the monitoring system and the CNC resulting in a better integration
with the machine tool.
The present thesis fits in this context and summarizes the work done in the
development of a distributed system, based on microcontrollers, designed
for monitoring tasks of milling process. In the following chapters will be
discussed the motivations and the aim of this work, then the hardware -
software architecture and the implemented algorithms will be described. Fi-
nally will be proposed an advanced control strategy and its application on
linear motion system calibration and chatter suppression will be discussed.
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M O N I T O R I N G S Y S T E M A R C H I T E C T U R E

This chapter describes the architecture of the distributed monitoring sys-
tem. Firstly the motivations and the aim of the developed system will be
discussed. Then the hardware architecture will be described focusing on
the adopted microcontrollers and sensors. Finally the software architecture
both of the main system and of the single tasks will be presented in order to
give an insight of the implemented monitoring and control strategies.

2.1 motivation

The orientation towards increased productivity, cost reduction and high flex-
ibility of manufacturing plants requires an enhanced automation level of
modern machine tools. An improved process control is required in order
to increase the effective productive time of the machine, by reducing un-
expected downtimes, and to guarantee an high quality of the machined
parts, limiting re-machining operations and avoiding rejects. Consistently
with this view, the prevention of faults and the proper planning of machine
maintenance is a needed condition for an efficient production line. In this
context, the automated supervision of machining process is a strong need
in manufacturing. Equipping the machine tools with monitoring systems al-
lows to support the machine operator in the process control, and guarantees
the machine productivity and the part quality even under critical working
conditions. In addition an effective monitoring and control system is a key
element for minimally attended or unmanned machining. This work arises
from these needs with the aim to develop a monitoring system for machine
tools, capable to assess the working status, identify the source of anomalous
situations (e. g. excessive vibrations) and take corrective actions to restore
nominal working conditions, avoiding damages to both the machine tool
and the workpiece. The proposed system is mainly intended to supervise
the machining process and assist the machining operator through the tun-
ing of process parameters and by providing warning and alarm messages
on the MMI. The design of the system involved the choice of sensors and
the definition of the architecture, needed to collect information on the pro-
cess, the development of monitoring algorithms and the interface with the
NC of the machine. This work has been partially developed within a project
funded by PAMA s.p.a., a machine tool manufacturer that aims to equip its
machines with a monitoring system in order to improve the machining per-
formances and the safety during their usage. According to these needs the
monitoring purpose has been mainly focused on the reduction of cutting
vibration, on Condition Monitoring (CM) of spindle bearings for predictive
maintenance applications and on emergency halt of the machine in case of
collision.

31
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Figure 10: Moving column milling machine with extended boring bar (courtesy of

PAMA S.p.A.)

2.2 requirements

The monitoring system is intended to equip large CNC machine tools with
moving column or gantry architecture, retractable ram and boring bar. This
machines are used for conventional machining including face and side milling,
drilling and boring both in roughing and finishing operations. In the first
case large depth of cut and tool engagement are used in order to achieve
high MRR. The cutting forces, and consequently the vibrations involved, are
high affecting the tool life and the machined part quality. In the second case
the MRR is less relevant but there exist strict limitations on surface finish re-
quiring a careful choice of cutting parameters. Moreover on these machine
can be mounted several accessory heads that are mainly used to modify the
spindle axis orientation (Fig. 11) in order to continue the working operation
without rotating the workpiece. Therefore during the process the machine
can considerably change its configuration and vary the working conditions.
For this reason the monitoring system must be capable to adapt to differ-
ent situations avoiding loss of performance and should be fully integrated
with the machine tool architecture. The system is required to perform three
tasks: the monitoring and mitigation of cutting vibrations, the detection of
machine collision, and the identification and diagnosis of damaged spindle

Figure 11: Accessory indexable head with milling axis rotated of 90 ◦ (courtesy of

PAMA S.p.A.)



2.3 architecture 33

bearings. Vibration level is affected by several factors dependent on cut-
ting parameters, process stability, tool wear and on the workpiece geometry
(interrupt cutting conditions) that makes it an important indicator of pro-
cess status. Containing vibrations helps to avoid severe working conditions
that result detrimental for tool life, surface finishing and in some cases also
for the machine tool. Collision detection is needed to promptly halt the ma-
chine in order to avoid or contain serious damages. CM tasks such as spindle
bearing health assessment allows a more accurate planning of the machine
maintenance (condition-based or predictive maintenance) avoiding down-
times due to faults or vice versa unnecessary costly intervention. Finally the
monitoring system must be easy to use for the machine operator that can
access to high level information on the process while more detailed data can
be made available to engineers for more detailed analysis. According to this
description the system requirements can be summed up as follows:

tasks Cutting Vibration Monitoring (VM) and mitigation of critical vibra-
tory effects. Collision detection and immediate halt of the machine.
CM of spindle bearing with detection of the damaged elements.

robustness Process monitoring must work properly in different working
operations and with different configuration of the machine.

flexibility The system must be embedded on the machine tool regard-
less its architecture and the adopted NC. Moreover it can be possible
to extend its functions if new monitoring tasks are needed.

ease of use General process information must be provided to the ma-
chine operator in order to help him in the evaluation of the ongoing
working operation. More detailed information for example on events
occurred during process and bearing status can be accessed for fur-
ther offline analysis.

cost and maintainability The system should be inexpensive and easy
to maintain, update or extend.

2.3 architecture

The design requirements described in the previous section led to the def-
inition of a microcontroller-based architecture used to create a set of mea-
surement nodes, distributed on the machine, that make up the actual mon-
itoring system. Information on both the machine and the working status
are collected and sent to the NC through an other microcontroller that act as
a bridge between the machine and the monitoring device (Fig. 12). Nodes
are classified as monitor and collector. Monitor nodes interface with sensors,
acquire data and process them in order to extract the desired signal features
and develop the necessary corrective actions. Monitors are located on the
machine or accessory heads close to the measurement point. Collector is
a single node located on the machine that manages the information flow
between monitors and NC. The collector-NC communication is performed
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Figure 12: Monitoring system basic architecture

through an ethernet interface with an UDP protocol. Monitors-Collector com-
municate through a TWI bus that allows the connection of several devices in
master-slave mode by using two bidirectional serial lines, one for the clock
reference (SCL) and one for the data signals (SDA) as shown in Fig. 13. The
communication bus has been organized with a multimaster configuration
in which monitor and collector nodes are both masters and slaves. In normal
monitoring operations monitors are defined as master and the collector as
slave. In this way each monitor node can communicate the information re-
lated to its specific task when ready and the collector waits for the incoming
data. In cases where collector has to communicate with a monitor (e. g. send-
ing a setup parameter), it becomes a master and the monitor behaves as a
slave. The bus natively support multimaster configuration handling com-
munication priorities with an arbitration process. Each slave is identified
by an univocal address and for monitor nodes this is communicated to the
collector when they are connected to the bus. This allows the plug of a new
node even with the system running (hot plug) and it is particularly suitable
for the connection of accessory heads during the working operation. The
choice of sensors was driven by the embeddability and economic require-
ments and for these reasons accelerometric data are collected both for the
vibration mitigation and the CM tasks. Sensors used for this application are
triaxial mems digital accelerometers with a configurable full scale range up
to 16 g and a sampling frequency up to 5 kHz. mems sensors are small
sized ( < 10 mm2), inexpensive ( ∼ 1e) and do not need signal conditioning
so that no additional units are required and are much more suitable for the
integration on the machine structure.
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Figure 13: Multimaster configuration of the TWI bus
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2.3.1 Hardware

Monitor nodes have been developed on 8 bit Atmel avr microcontrollers
(Tab. 1) since they support a large number of peripheral interfaces and have
a good resolution of the ADC, making them suitable for signals acquisition
and data communication. Collector node has been implemented on a more
powerful ARM microcontroller (Tab. 2) with ethernet interface and a em-
bedded Linux operating system installed. Despite it has been used mainly
for bridging tasks between the monitoring system and the machine NC, that
could seem simplistic for this kind of hardware, the choice was related to
future development of the system. This might include additional function-
alities as an user interface and a remote access through a web server. The
adopted accelerometers are lis3dh mems transducers from STMicroelec-
tronics (Tab. 3) since their bandwidth and Full Scale Range (FSR) was the
most suitable for this application.

Hardware specification

MONITOR NODE

CPU

family ATxmega128A1

architecture 8 bit AVR

frequency 32 MHz

MEMORY

flash 128 KB

SRAM 8 KB

EEPROM 2 KB

EBI max 16 MB

DEVICES

i/o pins 78

UART ports 8

SPI ports 12

TWI ports 4

ADC channels 16 @ 12 bit

DAC channels 4 @ 12 bit

Table 1: Monitor specifications
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COLLECTOR NODE

CPU

family AT91SAM9G20

architecture 32 bit ARM9

frequency 400 MHz

MEMORY

ROM 64 KB

SRAM 32 KB

EBI

DEVICES

i/o pins 96

UART ports 7

SPI ports 2

TWI ports 1

usb ports 3

ethernet 1

ADC channels 4 @ 10 bit

Table 2: Collector specifications

SENSORS
st-lis3dh

accelerometer

SPECIFICATIONS

range ±2− 4− 8− 16 g

bandwith 2.5 kHz

resolution 8− 16 bit

INTERFACE

TWI 100− 400 kHz

SPI max 10 MHz

Table 3: Accelerometer specifications

Hardware Configuration

The monitoring system hardware architecture is shown in figure 14. On the
machine side there is the collector node communicating through the ether-
net connection with the NC (Siemens pcu50) and listening on the TWI buffer
for incoming data. Close to the spindle is located the first monitor node
(master #0) acquiring signals from one or more accelerometers located on
the spindle bearings. Finally the accessory head is equipped with the second
monitor node (master #1) that acquire the accelerometric data from sensors
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Figure 14: Hardware architecture

on the head bearings. During VM task each monitor is designed to acquire
up to 4 accelerometers signals sampled at 5 kHz. Sensors are connected
with monitors through an high speed Serial Peripheral Interface (SPI) with
a 10 Mbps data rate. The bus is intended for master-slave communications
and consists of the clock line (SCLK) and two data transfer lines (MISO and
MOSI). In addition SPI bus need also a SS line for each device connected in
order to communicate with only a slave at a time. The monitor node is de-
fined as master, it provides the clock reference and commands the SS lines.
Accelerometers are the slave devices that respond to master requests. How-
ever the acquisition is regulated by the first accelerometer (acc0) exploiting
a function of the lis3dh transducer that triggers an interrupt each time that
a new data is available. Then a fifth digital line is needed by one sensor only
for the interrupt driven acquisition. Finally every monitor node is connected
with the CNC through a single wire digital line used to halt the machine,
avoiding the slower communication on the TWI bus and allowing a prompt
response of the system in case of emergency. Monitors equipping accessory
heads have further monitoring requirements and then they require addi-
tional hardware (Fig. 15). A logging system has been implemented in order
to provide information to technical support on events occurred to the acces-
sory head. This function is requested to be active even when the accessory
head is detached from the machine. Therefore a backup battery is needed
for the power supply monitor that is kept in a low power consumption mode.
The event logger records on an external storage memory the head connec-
tion and disconnection from the machine and the exceeding of vibrations
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limits. In addition if events such as a collision occurs when the accessory is
not operative the monitor wakes from its power down state and acquire data
from the accelerometers storing them in the internal memory.

OPTIONAL
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Figure 15: Extended hardware architecture for accessory heads

2.3.2 Software

Main Architecture

The management and the execution of the monitoring tasks depends on
several factors as the working conditions, the machine status and the op-
erator inputs. It is necessary that some tasks are configured, enabled or
disabled by the machine tool user according to the specific case, while it is
mandatory that other tasks (such as the collision monitoring) are automati-
cally activated and can not be accessed from the outside. For these reasons
the main software framework has been organized as a state machine that
consists of the following states (Fig. 16):

idle Idle state closes all the monitoring activities and the communication
with monitors. On the other hand The communication services be-
tween the collector node and the machine are kept enabled in order to
receive external commands for state transition.

init Init is a transitory state where sensors and the monitoring tasks are
configured. It is executed when the monitoring system is started or
after a reset. When the parameters are set up the system automatically
moves to the inactive state.
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Figure 16: State machine architecture

inactive Inactive state means that the system is ready and waiting for the
activation of a monitoring task by the machine operator. However all
the tasks considered relevant for the machine tool safety are enabled
in this state (e. g. Collision Detection (CD)).

vibration monitoring VM activity can be activated during the machin-
ing operation to reduce the drawbacks of high vibratory effects.

condition monitoring CM is periodically run by the machine operator
to assess the health of spindle bearing.

error When a collision or an other potentially dangerous condition occurs
the system halts the machine, triggers an alarm and moves in the error
state waiting for an external command.

When the machine tool is started the system manager activates the state ma-
chine that initializes the monitor nodes for the execution of the programmed
functions. Sensors parameters are stored in structures dedicated to each task
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1 /*VIBRATION MONITORING INITIALIZATION*/

void VM_init()

{

/*FILL THE LIS3DH PARAMETERS FOR EACH CONNECTED SENSOR*/

for (uint8_t i = 0;i<N_ACC;i++)

6 {

/*ENABLE X Y Z AXES*/

vm_device_params[i].axes = xyz_enable_bm;

/*ENABLE 5 kHz ACQUISITION*/

vm_device_params[i].frequency = low_5000Hz_bm;

11 /*SET FS TO 16g*/

vm_device_params[i].fsr = _16g_bm;

/*HIGH RESOLUTION OUTPUT*/

vm_device_params[i].high_res = 1;

/*SET DATA READY INTERRUPT PIN*/

16 vm_device_params[i].intpin = int1_drdy_bm;

/*ENABLE BLOCK DATA UPDATE*/

vm_device_params[i].bdu = 1;

}

21 /*SET THE THRESHOLDS*/

vm_lowLim = VM_LIMIT_LOW;

vm_highLim = VM_LIMIT_HIGH;

/*RESET THE VM FLAG*/

vm_flag = 0;

26 }

Listing 1: Initialization procedure example code

and the configuration parameters of the monitoring algorithms are loaded
from the monitor EEPROM or from the NC. As an example, listing 1 describes
the initialization procedure of the VM mode. At line 5 the connected ac-
celerometers are configured to work at 5 kHz and with a FSR of 16 g then
starting from line 22 the default vibration limits are loaded and the VM flag
is reset (vm_flag = 0). After the initialization procedure the system enables
the CD function and waits for an input from the machine operator that has
to select the monitoring task. If a collision occurs in this phase the system
changes the logic level of the emergency communication line and the NC

halts the machine generating an alarm signal. The system, being in the er-
ror state, waits for its recovery. At this point no other actions are allowed
except than the system reset. The remaining tasks are commanded by the
machine operator basing on the required monitoring actions. VM provides
some interaction with the machine tool user that can re-program its inter-
vention, by using an implemented learning function, and can disabled it
when is no more needed. The VM state can be also automatically exited
for safety reasons, if a collision occur or too high vibration level is encoun-
tered, moving in the error state. CM activation is performed on demand and
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can not be stopped until the analysis is finished. During CM the CD task
is disabled since the accelerometer configuration is different. However this
is not a safety issue for the machine because it can not be moved during
the analysis. The CM task does not require any interaction by the user and
it is autonomously executed till the end. Normally the CM task return to
the inactive state when finishes both with a negative or a positive damage
detection. In the last case only a warning is sent to the user but, if a se-
vere damage or a too much extended wear is assessed, the system block the
machine and switches to the error state. Obviously the system can be reset
and the machine can be operated again but a maintenance intervention is
immediately required. The monitoring functions have been organized with
a common structure that is executed when the desired state is entered. This
structure is organized as follows:

init Initialization procedure run one time at the startup of the monitor node
or after a reset as previously described.

setup Sensor and acquisition are configured according to the parameters
stored during the init phase. It is run every time the monitoring func-
tion is called.

process sample This phase contains all the activities needed for the ac-
quisition of the signals. Generally it involves the sampling of data
and their storage in the microcontroller memory for further analysis.

get result The desired signal features are obtained in this phase. It can
be performed both offline at the end of acquisition period (e. g. CM) or
inline during the acquisition (e. g. VM).

shutdown The monitoring task is closed and the exiting action is per-
formed according to the obtained results.
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Figure 17: VM task flowchart

When the VM task is enabled (Fig. 17) the setup procedure configures the
accelerometers with the parameters previously defined in the initialization
phase, checking if all the sensors are properly connected to the monitor. Then
a short acquisition to measure the data offset is started and the offset value
is stored for each axis. Finally the flags and counters used by the monitoring
algorithm are set. At this point the signals acquisition and the data process-
ing are performed until the machine operator stops the monitoring task. The
computed signal feature 1 is compared with two vibration thresholds. If the
vibration level exceeds the upper limit the monitor commands a reduction of
the feed axis, while, if the level is below the lower limit, the monitor requires
to increase the feed. When the vibration level falls within the two thresh-
old, the working operation is considered safe and no corrective actions are
needed. In addition a learning functionality has been implemented in order
to set the vibration limits according to the actual working condition. If the
machine operator notices that the controller action is not adequate, he can
modify the intervention thresholds of the system, adapting them to the ma-
chining conditions that considers as optimal. In this case the operator has
to tune the process parameters in order to reach the desired working con-
ditions (as usually does), then he enables the VM system in learning mode
and the monitor starts to record the vibration index. After a certain time
interval (e. g. 1 s) the averaged value of the recorded data is used to set the
vibration limits. The monitoring task then starts without further actions of
the machine operator.

1 See section 3.1.5 for a description of the VM algorithm
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Spindle Bearings Condition Monitoring
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Figure 18: CM task flowchart

The function of CM of the spindle bearings is divided in three phases: signal
acquisition, damage detection and damage diagnosis. As for the VM task,
at the beginning the setup procedure is performed in order to configure the
accelerometers. The FSR is set to 2 g in order to have a better resolution
since for this task the signal to noise ratio is low. After the configuration
the actual sampling frequency is computed by running the accelerometers
and by timing the acquisition of a fixed number of data. This is needed be-
cause the CM signal features are extracted in the frequency domain and an
accurate value of the sampling frequency is needed. When the setup is com-
pleted the system acquires the vibrations from each sensor for 3 s, storing
the data in the external RAM. The acquired signals are then analyzed with
a mixed time-frequency domain signal processing method 2 that detects the
existence of fault on the examined bearing. If the analysis provides a posi-
tive response, the diagnosis of the bearing is executed in order to define the
location and severity of damage. The results of the analysis are sent to the

2 See section 3.2.3 for explanation



2.3 architecture 45

NC that publishes them in the log file of the machine and on the front panel
to warn the machine operator.

Collision Detection
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i+=1 GO TO ERROR 
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Figure 19: CD task flowchart

Collision detection task is enabled when the monitoring system is activated.
The CD function does not communicate with the collector node but uses a
digital line to halt the machine as soon as a impact is detected. This ensures
the fastest reaction of the monitoring system in particularly dangerous con-
ditions. When the monitoring system enters in the inactive state, the CD

function is enabled. The setup phase configures the accelerometers and
then initiate the acquisition. The acceleration signals are processed and the
returned value is compared with a threshold at the maximum sample rate.
When this limit is exceeded the monitor immediately change the level of the
digital line halting the machine. The CD routine continues by sending a mes-
sage to the MMI through the collector. Then the system switches to the error
state waiting for the reset procedure commanded by the machine operator.





3
M O N I T O R I N G A L G O R I T H M S

This section describes the algorithms implemented in the distributed moni-
toring system. For each task will be provided the motivation and the pur-
poses of the monitoring activity. The algorithms will be analyzed in their
main elements. Finally the result of the experimental test will be provided
in order to demonstrate the validity of the proposed approach.

3.1 vibration monitoring

Cutting vibrations are the most common disturbance that affect the process
yield. Vibrations are normally present in machining operations caused by
discontinuous working conditions (especially in milling) and by the sensitiv-
ity to the cutting forces of the set composed by the machine tool, tool holder,
cutting tool and workpiece. Machining vibrations are generally classified as:

free Free vibrations happens whenever the system, displaced from its
equilibrium position, is made to freely vibrate.

forced Forced vibrations are caused by periodic or variable external forces
generated by the engagement of the cutting edges with the workpiece.
Wrong cutting parameters, workpiece geometry and tool wear affect
the magnitude of forced vibrations. Moreover also faults on the ma-
chine can introduce oscillating or impulsive forces whose effects have
an impact on the cutting operation.

self excited Because of vibrations the cutting tool leaves a wavy surface
on the workpiece at each pass causing a varying chip thickness be-
tween two consecutive passes. In certain condition the process can
become unstable with an exponentially growing chip thickness and
an increasing level of vibrations.

Free vibrations can occur for example when the deflected tool is exiting the
workpiece. The cutting forces causing the deflection go quickly to zero and
then the tool retrieves its original shape. This kind of vibrations usually
have low magnitude and run out after a short transient. Forced and chatter
vibrations, on the other hand, can be particularly detrimental for the ma-
chining process. A severe vibratory effect produces a poor surface finish,
increases the tool wear rate and it is harmful for the machine tool elements.
Moreover in the worst case the workpiece can be irreparably damaged. Cut-
ting vibrations are the result of a lack of stiffness in the machining system
(e. g. the use of a slender tool) and can be limited with a proper selection of
cutting parameters and working setup as tool choice and workpiece clamp-
ing. However variable working conditions during the process can lead to
vibration increase and also to the occurrence of chatter. The mitigation of

47
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Figure 20: Workpiece used in the acquisition of vibration signals (courtesy of

PAMA S.p.A.)

undesired vibratory effects is assigned to the machine operator that using
the overrides controls on the front panel can tune the axes feed and the
spindle speed in order to restore the expected process conditions. The ef-
fectiveness of the operator intervention is related to its own experience and
skill and therefore his action may be not adequate. The monitoring of cut-
ting vibrations and the detection of growing or excessive vibration level
is then an important task to be performed in order to control the process
execution and support the machine operator. The development of the vi-
bration monitoring activity has been organized in four phases starting from
accelerometric measurements collected during machining operation. From
the acceleration signals it can be derived two important parameters: the
magnitude of the vibratory effect, and the resulting resonant and harmonic
frequencies. Both of these features have been taken into account in order to
detect a reliable indicator of the vibrational state of the machine with the
aim of performing an inline identification of critical machining conditions.
The proposed features have been compared by using the measurements of
several roughing operations and, at the end, the most suitable has been cho-
sen for the VM task. The experimental validation of the proposed system
was performed on a moving column boring-milling center. Vibrations mag-
nitude was sensed with a triaxial piezoelectric accelerometer placed under
the spindle headstock. This position was chosen as close as possible to the
milling tool in order to collect data strictly related to the working vibrations.
The accelerometer was a dytran 3213M6 characterized by a full scale range
of ±50 g and a bandwidth of 1.5− 5000 Hz. With the sake of a better
insight of the cutting process, both speed and power consumption of the
spindle were also collected. Tests were performed during face milling oper-
ations on workpieces with holes, pockets and variable width of cut (Fig. 20),
in order to verify the proposed monitoring system in the most demanding
scenario in terms of cutter stress. Then a supervisory system based on the
selected vibration index has been designed and experimentally tested in or-
der to verify the proposed approach in a field test. Finally the designed
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monitoring algorithm has been implemented on the microcontroller archi-
tecture of the monitor nodes.

3.1.1 Time Domain Signal Feature
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Figure 21: Vibration signal and its RMS-based index

Time domain analysis of signals for monitoring purposes is generally in-
tended to measure the amplitude, variability and trend of the measured
data. The most common signal features include, magnitude, mean, variance,
RMS and power of signal. In some cases as the assessment of impulsive be-
havior of the signal also specific statistic features as skewness and kurtosis
can be computed. In this work the RMS (1) value has been selected as vibra-
tion index since it provides more information than the amplitude or mean
value, being related to the power content of the signal.

srms =

√
1

t2 − t1

∫ t2

t1

s(τ)2 dτ (1)

The implementation in discrete time is straightforward and for the triaxial
accelerometer data the vibration index has been computed as the resultant
of RMS values of each axis according to equation 2:

arms =
√

a2
rms,x + a2

rms,y + a2
rms,z (2)

where arms,j is the RMS value of the vibrations on j axis computed inside a
moving window of N samples.

arms,j =

√√√√ 1
N

N

∑
i=1

a2
i,j (3)
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Figure 21 shows the measured acceleration and the RMS based vibration
index for a face milling operation where the tool engagement has a small
variation, causing a slight increase of the cutting vibrations that is noticed
by the RMS index.

3.1.2 Frequency Domain Signal Features
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Figure 22: Spectra differences with low and high vibration respectively. Cutting

harmonics are amplified because of the increased vibration level.

Vibrations measured during the cutting process are directly related to the
machining conditions. In fact the variation of cutting parameters, due to
the workpiece geometry (depth or width of cut), or to the machine opera-
tor action (feed and spindle speed), causes the variation of cutting forces
and then of the resulting vibration level. In the spectral signature of milling
operations, the vibration signal consists usually of the cutting harmonics,
defined by the tooth passing frequency, and the structural resonances of the
machine, tool and tool holder. If the process is stable the cutting forces af-
fect mainly the cutting harmonics. However if the cutting conditions lead
to process instability also the structural frequencies are involved in the vi-
bration increase. In particular chatter occurrence is usually detected when
one of the structural resonances is excited by the regenerative effect. Fig-
ure 22 shows how the cutting harmonics are modified by an high vibration
level due to an interrupt cutting condition. The analysis of vibration signals
in the frequency domain is then particularly useful since the contribution
of each component of the forcing input can be easily isolated and studied.
The proposed signal features, extracted from frequency domain analysis of
measured signals, are intended to quantify the vibration level in terms of
the signal power. In other words, the proposed vibration indexes aim to
measure how much signal power is used to excite the harmonics related
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to the cutting dynamics. For this reason both signal features have been ex-
tracted from the PSD of the vibration signals estimated with the periodogram
method (4).

P̂( f ) =
2

N fs

∣∣∣∣∣
N−1

∑
n=0

s[n] e−i 2π f n
fs

∣∣∣∣∣

2

(4)

The term
N−1

∑
n=0

s[n] e−i 2π f n
fs is the Discrete Fourier Transform (DFT) of the sam-

pled signal s(t) and fs is the sampling frequency. Considering the single
side spectrum the above equation can be written as:

P̂(k d f ) =
2

f s N
|S[k]|2 with k = 0, 1, ....

N
2
− 1 (5)

Equations 4 and 5 have been normalized by 2
fs N so that the area under the

PSD is equal to the total power of the signal.
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Figure 23: Vibration signal and its APC-based index

Given the PSD, the power content of the signal in each frequency bin is
given by P̂( f ). The Average Power Content (APC) within a frequency band
is obtained by:

P̄ =
∫ f2

f1

P̂( f )d f (6)

Equation (6) can be written in discrete time as:

P̄ = d f
k2

∑
k=k1

P̂(k d f ) (7)
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The APC has been obtained according to equation (8) starting from the resul-
tant of the PSDs computed for the accelerations of each axis. In this way the
effect of vibrations is globally considered regardless the cutting direction.

APC =
∫ f2

f1

√
P̂x( f )2 + P̂y( f )2 + P̂z( f )2)d f (8)

It is worth to notice that the resultant PSD can not be obtained from the resul-
tant of the vibration measurements, since the signal squaring introduces dis-
tortions due to the signal rectification. Limiting the APC in the low frequency
region, for example choosing the frequency range below ten times the tooth
passing frequency, allows to extract the power related to the cutting har-
monics. In this context the APC value refers to the power dissipation due
to the tool vibrations. Therefore anomalous cutting condition causing an
excessive vibration level can be detected. Figure 23 shows the measured ac-
celeration and the corresponding APC value in the same working conditions
described in section 3.1.1. The APC is computed within a moving window
whose size and overlap (or update rate) can be freely selected. For signal
of figure 23 the APC has been computed in a 0.5 s window considering the
power content of the 0− 500 Hz frequency range.
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Figure 24: Vibration signal and the corresponding number of peaks

The vibrations level during the process can be indirectly assessed by count-
ing the number of peaks that raise at a certain time instant. Cutting forces
are not purely periodic because of the tool oscillations that introduce ran-
dom varying components. Therefore the spectrum of measured vibrations
is characterized by several peaks in the sidebands of the cutting harmon-
ics. If vibrations are low these components are generally masked by the
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background noise but, in case of anomalous or too severe cutting condi-
tions, their height increases and they appear in the spectrum. Counting the
number of peaks in the PSD provides an evaluation of the magnitude of the
vibratory effect independently from the tooth passing frequency. Similarly
to the previous vibration index it is also possible to focus the analysis on a
desired band by counting the peaks in a limited frequency range. An im-
portant issue of this method is the need to consider in the count only the
peaks affected by the increasing vibrations. For this reason it is required
to set a threshold in order to avoid the addition of the noise peaks in the
index computation that would make hardly noticeable the variations in the
vibration level. For this reason a preliminary analysis is needed in order
select the proper threshold. By measuring the number and height of peaks
in case of good working conditions it is possible to tune the vibration index
so that it returns zero in case of acceptable vibrations. The plot of figure 24

shows an example application of this method. The peaks count proves to be
very sensitive also to slight changes in the vibration level. However because
of the threshold there are numerous spikes that make it noisy (blue solid
line). It is possible to reduce this effect by modifying the width of the mov-
ing window in which the computation is performed (red dashed line). This
improve the frequency resolution of the PSD increasing the number of peaks
in the band of interest. However a wider window implies also a delayed de-
tection of the vibration level and then a tradeoff between the responsiveness
of the algorithm and a stable behavior must be found.

3.1.3 Remarks

The choice of the most suitable signal feature among the three proposed has
been performed analyzing the vibration measurement acquired during the
roughing operation of a prismatic cast iron workpiece. Data have been col-
lected during the entire part machining in order to consider several working
conditions including the first passes on the raw surface of the cast workpiece
and the effect of tool wear. This in addition with the geometric features of
the part, as pockets and section variation, provided a wide variety of vibra-
tory conditions that have been used for the selection of the most suitable
vibration index. As an example, it can be considered the results shown in
figure 25. The first plot shows the accelerometric measure of the Y axis of
a face milling operation where at 0 s the tool begins the engagement with
the workpiece. The vibration level raises and settles after a short time. Ac-
tually it can be noticed a longer transient where the vibrations decreases
taking around 20 s to reach a stationary condition. This is due to the in-
crease of process damping related to the tool wear that in this pass was at
an advanced stage. Finally the most significative contribution in the vibra-
tion level is given between 50 s and 62 s where a variation of the cutting
width occurs due to the tool passing over a pocket. The change of cutting
conditions causes a consistent increase of vibrations. The behavior of the
proposed signal features is shown in the remaining plots. Each method is
capable to detect the variations on the vibration level with the RMS and the
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Figure 25: Comparison among the three proposed signal features

APC indexes that can follow more accurately the trend of vibrations. In-
stead the APC value and the peaks count appear more sensitive to changes
of the vibrations magnitude. However, it can be noticed that the peak count
returns almost the same value both for the vibrations related to the tool
engagement and to the passage over the pocket. This can lead to a wrong
estimate of the vibratory effect and then to a malfunction of the monitoring
system. As previously discussed, this issue can be overcome by adjusting
the window size. The accuracy and the sensitivity of the vibration index can
be improved with a larger window but this reduces the responsiveness of
the monitoring task as in the case showed in figure 26 where the extraction
of the signal feature by a window of 2 s implies a latency of ≈ 1 s in the de-
tection. The peaks count method is then the most disadvantageous for the
implementation in the monitoring algorithm since it needs an accurate tun-
ing both for the choice of the minimum peaks height threshold and for the
proper size of the computation window. Moreover a large window involves
an high number of samples and then increases the computational burden of
the FFT-based signal processing. For this reason the use of this method has
been considered improper for the implementation on the microcontroller of
the monitor nodes. According with the results, the vibration index more
suitable for the VM task is the APC both for the sensitivity to the vibration
level and for the detection accuracy. However the computational drawbacks
related to the use of the FFT algorithm on a large amount of data is still
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Figure 26: Window size effect on the peaks count index. The use of a larger window

improves the accuracy of the evaluation of vibration level.

present. In fact each monitor has to manage, in the worst case, the acquisi-
tion of three axes from 4 accelerometers at 5 kHz (cf. §2.3.1). Considering
the use of a 0.5 s time window, as in the exampled described above, the
total amount of samples is equal to 30000 and the FFT computation must be
repeated for each axis and sensor. This means an high processing time and
the need of almost 200 kB of memory only for data storage. Monitor units
have only 8 kB of internal RAM available and then the data has to be moved
in an external memory. As a consequence the computation is further slowed
by the time needed to access the external memory. However this limitation
has been overcome considering the meaning of the APC value. The power of
a signal s(t) can be expressed according to the Parseval theorem as:

P =
1
T

∫ ∞

−∞
s(t)2 dt =

∫ ∞

−∞
|S( f )|2 d f (9)

where |S( f )|2 is the PSD s(t). Moving to discrete time notation and consid-
ering the 0 ≤ f ≤ fs

2 range (single sided spectrum), the equation (9) can be
rewritten using the periodogram equation (5):

1
N

N−1

∑
j=0
|sj|2 =

N
2 −1

∑
k=0

P̂(k d f )d f (10)

The lhs term of above equation is equal to the squared value of the RMS (3),
while the rhs term is the definition of the APC value computed on the en-
tire frequency band (7). Therefore according to the Parseval theorem, using
the squared RMS is equivalent to the computation of the APC. Moreover the
possibility to obtain the APC of a limited frequency band can be obtained as
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Figure 27: State machine scheme used in the validation tests.

well in time domain by filtering the signal before the RMS computation. This
equivalence provides a big advantage since it allows a more efficient imple-
mentation of the VM algorithm in compliance with the design requirements
as will be described in section 3.1.5.

3.1.4 Experimental Validation

The selected vibration index has been implemented on a machining supervi-
sory system used to experimentally verify the effectiveness of the proposed
method. The system was intended to modify the feed velocity according
to the measured vibrations in a similar way to the machine operator ac-
tion. Two thresholds are set to define a range in which the vibration level
is considered acceptable and no feed regulation is required. If the vibration
level exceeds these limits the feed is adjusted in order to restore the desired
machining conditions. The VM algorithm has been implemented on the na-
tional instruments ni daq 9188 device with an analog input module for
data acquisition and an analog output module for feed tuning. The sensor
was the dytran 3213M6 triaxial piezoelectric accelerometer already used to
collect the vibration data in the first part of the activity. A state machine
with the architecture shown on figure 27 has been used for the implemen-
tation of the monitoring task. After the initialization, the system is kept
in the idle state where the data acquisition is performed. At regular time
intervals, defined by the update frequency of the analysis window, the eval-
uation state is enabled. In this operative condition the squared RMS value is
computed and compared with the two vibration thresholds. If the vibration
index exceeds the upper limit, the system reduces the commanded feed of
a fixed amount. Vice versa if the vibration level is too low, the axis speed
is increased in order to fall inside the desired range. The rate of feed vari-
ation can be different for the decreasing and the increasing phases. In the
experiments the feed reduction rate was higher in order to produce a fast
variation on the machine dynamics, while the increasing rate was selected
in order to smoothly approach to the desired range. The response of the su-
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Figure 28: Workpiece scheme and the effect of the supervisory system in the control

of vibrations.

pervisory system to the vibratory effect can be seen in figure 28 (red dashed
line) where it is shown the result of one of the machining tests. The exper-
imental activity consisted of a face milling operations on a steel workpiece.
The working area was a flat surface with a vertical cut on the left side and
two horizontal cuts at the bottom. The proposed results concern a working
operation executed moving the tool from right to left over the two cavities
as shown in the left scheme of figure 28. This test is meaningful since there
are four different cutting conditions where the system action can be recog-
nized in comparison with a traditional machining operation (blue solid line).
According to the results the occurred cutting conditions can be described as
follows:

1. The mill engages the workpiece with a programmed feed of 1000 mm/min

and the vibration index raises overcoming the upper threshold. The
supervisory system reduces the axis velocity settling at 730 mm/min (
73 %).

2. After the mill has fully entered the workpiece, vibrations decrease
under the safety range. As a consequence the feed is increased up to
the nominal feed. In this case the feed increase was constrained to the
commanded value but the system can be programmed to exceed it in
order to increase the working speed.

3. The mill reaches the vertical cut and starts exiting from the workpiece.
Vibrations slightly increase and the controller pushes the feed down
to 730 mm/min.

4. The mill passes straddling the two horizontal slots and begins to work
in interrupted cutting conditions. This is a particularly severe opera-
tion for the tool whose cutting edges repeatedly enter and exit the ma-
terial with impacts and tears. This leads to high tool vibrations and



58 monitoring algorithms

consequently the system commands a marked feed reduction. The
feed value is brought to 320 mm/min ( 32 %) leading the vibration level
within the desired range.

The results show that the supervisory system can successfully mitigate the
excessive vibratory effects that may occur during the working operations. In
the next section will be described the implementation of the VM monitoring
task in the monitor unit used in the distributed monitoring system.

3.1.5 Vibration Monitoring Algorithm

Thanks to the result obtained by the supervisory system described in the
previous section, the algorithm based on the RMS vibration index has been
implemented for the VM task of the monitor nodes. The implementation has
been organized in two activities. The first one concerns the control of vibra-
tion level while the second one is the learning phase used to configure the
vibration thresholds according to the working operation and the machining
conditions. Then the VM task has been organized in the following steps:

data acquisition Vibration measurements are collected for each accelerom-
eter and immediately processed to obtain the vibration index.

feature extraction The resultant RMS value is computed for a set of
data and continuously updated.

intervention the obtained feature is periodically compared with the vi-
bration limits and the feed variation is commanded to the machine.

learning The computed vibration index is used as a reference to set the
upper and lower thresholds.

Data Acquisition and Feature Extraction

When the machine operator enables the VM task, the monitor node performs
the setup of sensors, loading the required configuration and then, it checks
if sensors are correctly connected. If a malfunction is detected, a warning
is sent to the MMI and the number of available sensor is updated. In any
case the VM procedure is initiated measuring the offsets of data for each
sensor and storing them in the vm_offset matrix. At this point the system
is ready and the acquisition is enabled (vm_isr = 1). The acquisition and
the feature extraction phase is inserted inside an interrupt routine triggered
by the sensors when a new set of data is ready for the transmission. Signal
feature is computed as soon as the acquisition is performed. Also in this
case the vibration index is extracted from a signal interval updated with
new data at a fixed rate. Since the resultant RMS2 is obtained from a sum of
values, this observation window has been implemented as a circular buffer
where each element contains the squared sum of acceleration data acquired
within the update time interval (line 3 of listing 2). Moreover for each set of
data the offset compensation is also performed before the window update.
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The buffer element is filled until the number of acquired sample is equal to
the VM_BUFFER_UPDATE constant. At this point the actual feature extraction
begins (line 13 of listing). The last updated element buffer is added to the
current RMS2 value given by the rms2 variable. At the same time the oldest
buffer element is subtracted from rms2[i] and subsequently it is reset in
order to be used for the next acquisitions. Once the new RMS2 value has been
computed the data ready flag is enabled (vm_drd = 1 at line 26) making the
vibration index available in the main routine for the intervention phase.

/*VIBRATION MONITORING DATA PROCESSING*/

void VM_processSample()

{ /*ACQUISITION*/

4 for (uint8_t i=0; i<N_ACC; i++){

int_sq_vals[vm_index & (VM_BUFFER_SIZE - 1)][i] +=

(uint32_t)(rawData.aX - vm_offset[i][0]) * (uint32_t)(rawData.aX -

vm_offset[i][0]) + (uint32_t)(rawData.aY - vm_offset[i][1]) *

(uint32_t)(rawData.aY - vm_offset[i][1]) + (uint32_t)(rawData.aZ -

9 vm_offset[i][2]) * (uint32_t)(rawData.aZ - vm_offset[i][2]);

}

/*UPDATE COUNTER*/

counter++;

if(counter == VM_BUFFER_UPDATE)

14 { /*RESET COUNTER*/

counter = 0;

/*UPDATE RMS BUFFER*/

for(uint8_t i = 0; i<N_ACC; i++){

rms2[i] = rms2[i] - int_sq_vals[(vm_index+1) &

19 (VM_BUFFER_SIZE - 1)][i] + int_sq_vals[vm_index &

(VM_BUFFER_SIZE - 1)][i];

int_sq_vals[(vm_index+1) & (VM_BUFFER_SIZE - 1)][i] = 0;

}

/*UPDATE BUFFER INDEX*/

24 vm_index++;

/*SWITCH DATA READY FLAG ON*/

vm_drd = 1;

/*CHECK LEARNING REQUEST*/

if (gpio_pin_is_low(GPIO_PUSH_BUTTON_6)){

29 /*SWITCH LEARN FLAG ON*/

vm_learn = 1;

}

}

/*RESET THE INDEX VALUE*/

34 if(vm_index == 10*VM_BUFFER_SIZE){vm_index = 0;}

}

Listing 2: Source code for data acquisition and vibration index computation
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Vibration Monitoring Action

When the vibration index is updated, the evaluation of the vibration level
is performed. First the actual RMS2 is computed, dividing it by the num-
ber of samples in the observation window. Then the function VM_get_feed

is called and the code showed in listing 3 is executed. The RMS2 value is
compared with the predefined vibration limits. If the index fall inside the
two thresholds no action is required, but if the limits are exceeded the de-
crease or increase command is sent to the NC that will change the feed value
according to the programmed rates.

/*FEED CONTROL OUTPUT*/

int8_t VM_getFeed(float*rms)

{

/*CHECK VIBRATION INDEX VALUE*/

5 for(uint8_t i = 0; i<N_ACC; i++)

{

/*VIBRATIONS EXCEEDING UPPER LIMIT*/

if (rms[i]>vm_highLim)

{

10 ioport_set_pin_low(LED3);

printf("Warning Upper Limit Exceeded\n");

return -1;

}

/*VIBRATIONS BELOW THE LOWER LIMIT*/

15 else if (rms[i]<vm_lowLim)

{

ioport_set_pin_low(LED1);

return 1;

}

20 /*VIBRATIONS WITHIN THE LIMITS*/

else

{

ioport_set_pin_low(LED2);

return 0;

25 }

}

}

Listing 3: Source code for the intervention of the vibration monitoring system
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Vibration Limits Learning

A generic cutting operation can be executed under very different machining
condition that can affect the allowed vibration limits. For example vibrations
generated during a roughing operation can not be accepted in finishing, and
the vibration level that can be tolerated by a stubby mill will be higher than
that one tolerated by a slender mill. In addition the machine operator could
prefer to increase the productivity of the machine (acting on the cutting
parameters) at the expense of more severe cutting conditions. For these
reasons the vibration threshold can be considered inadequate to the current
process and then it can be required to change the default limits. The VM task
has been provided with a learning functionality that can be used whenever
the vibration limits are not suitable. When the machine operator wants to
change the allowed vibration range, he has to perform a working operation
at the machining conditions that considers appropriate. As soon as the
proper conditions are reached, he commands the learning function. The
request enables the learning flag (e. g. line 3 of listing 2) and in the main
routine the function VM_startLearning is called (listing 4). The controller
action is then disabled and the computed vibration index is collected for a
predefined amount of time. At the end the averaged value of the RMS2 is
used as the upper threshold while the lower limit is set as a fraction of the
previous one. The learning procedure can be commanded at the start up
of the VM task or during its execution and can be repeated every time is
needed.

/*VIBRATION THRESHOLD LEARNING*/

void VM_startLearning()

3 {

uint16_t j = 0;

float learnt_rms = 0.0;

/*START LEARNING*/

8 while (j<N_DATA)

{

while(vm_drd == 0){}

learnt_rms += ((float)rms2[0]/(float)VM_N) * resolution;

j++;

13 vm_drd = 0;

}

/*SET LIMITS*/

vm_highLim = learnt_rms/((float) N_DATA);

vm_lowLim = vm_highLim*(1-0.2);

18 }

Listing 4: Source code for the learning phase
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Figure 29: Frequency response of the machine tool obtained by a tapping test along

x and y directions

Further Improvements

The proposed approach provides an effective method to assess the vibra-
tion level of the machining operation. The implemented algorithm allows
to manage a large number of data while keeping a low computational bur-
den that makes it suitable for a wide range of microcontrollers with limited
memory and performance. For example the algorithm testing has been per-
formed on a observation window of 3200 samples ( ≈ 0.64 s) that required
only 128 Bytes of memory for each sensor. In addition the same vibration
index can be also used to monitor the occurrence of chatter. Chatter is a
self-excitation mechanism originated by the chip formation that leads the
system to instability causing a sudden and continuous growth of the cut-
ting vibrations. When chatter occurs the system is excited at the chatter
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frequency that usually is close to one of the dominant structural modes of
the machine. Therefore by knowing the frequency response of the machine
tool it is possible to assess the frequency that is more likely to be affected
by regenerative chatter. Figure 29 shows the FRF of the machine tool in x

and y directions obtained through an impact test at the tool tip. Both the
FRFs shows a resonance at ≈ 200 Hz. Experimental tests run in different ma-
chining conditions showed that the chatter occurrence excites that structural
mode that becomes more relevant than the remaining harmonics how can
be seen analyzing the spectrum of vibrations in stable and unstable cutting
conditions shown in figure 30. In this case the dominant frequency of the
vibratory effect is unrelated to the cutting harmonics and is very close to
the structural resonance experimentally found around 200 Hz. Given the
FRF of the machine tool is then possible to extract information on chatter
occurrence from the acceleration signal by using the RMS-based vibration in-
dex. The contribution of forced vibrations and self excited vibrations can be
separated by using a low pass filter to extract the cutting harmonics and a
bandpass filter to isolate the chatter frequency as shown in figure 31. The ap-
plication of this method to measured data shows (Fig. 32) that the source of
vibratory effect can be easily distinguished between forced and self excited
vibrations.
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This allows to treat separately the two contributions by designing a specific
intervention strategy for each of them. For example in case of chatter the
VM monitoring action can be more effective by tuning the spindle speed
rather than the axes feed. As for the forced vibrations the use of the RMS-
based index reveals a more efficient method to promptly detect undesired
working conditions compared to techniques based on spectral analysis.

3.2 condition monitoring

CM of machine elements refers to a set of techniques that, starting from the
measurement of parameters related to the operative condition of the ma-
chine , allows to assess the health status of its parts. The parameters are
usually vibrations, operating temperature, pressure of fluids and so on. The
CM task consists of the evaluation of machine health and the detection of
faulty elements. If the a damage is found the CM can determine the causes
and its severity. The obtained information is used to develop the mainte-
nance plan considering the actual condition of the machinery and replacing
the traditional run-to-breakdown and preventive maintenance approaches.
The assessment of the actual machine status, performed by the CM activity,
leads the so called condition-based maintenance approach that allows an
optimal planning of the maintenance extending the operational life of the
plant. At the same time it allows also to avoid catastrophic failures that
could cause severe damages to the machine and even dangerous situation
for the machine users. As reported on [97] a well designed condition-based
maintenance program leads to a reduction of downtime by 35− 45 %, an
elimination of breakdowns by 70− 75 %, a reduction of maintenance costs
of 25− 30 % and a production increase of 20− 25 %. Usually simple tasks
performed by machine operator as visual inspections and annotations about
anomalous sounds, vibrations or odors can be useful to notice a possible fail-
ure of the machine, but however can not be considered an effective way to
evaluate the machine health. CM tasks are intended to provide accurate and
useful information on the existing faults in a timely manner. The activities
involved in CM can be grouped as follows:

detection It is the result of the measurement, collection and analysis of
machine parameters that are used to estimate the machine condition.
The current condition is compared with that one of the new machine
or with predefined limits and is used to build trends and the history
of machine status.

diagnosis Consists of the recognition of damage development and of its
severity.

prognosis Provides the expected time to failure and allow the mainte-
nance planning.

Other complementary activities include failure root-cause investigation, dam-
age analysis and modeling, that altogether allow to improve the process
condition, the monitoring strategy and even the machine design. Despite
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the advantages related to the use of CM tasks there are also drawbacks due
to the need of skilled personnel and costly equipment. Moreover it is also
required an accurate planning to limit the costs of monitoring activities that
can make CM disadvantageous. In order to overcome these limitations the
use of the distributed monitoring system has been considered for the as-
sessment of the machine status. In this work the aim was to implement
a CM algorithm capable of detect damage on the spindle bearings by pro-
cessing the vibrations signals gathered from the accelerometers and provide
diagnostic information on the fault. The CM task has been designed as an
activity that can be periodically run by the machine operator during the non-
working time of the machine (e. g. before starting a working operation). The
resulting information can be easily interpreted by the operator that does not
require a specific knowledge on the topic. According to the monitoring sys-
tem response the machine operator consults maintenance technicians that
can access to more detailed data stored on the system for further analysis.
Therefore CM activities can be split in two phases, one more frequent that
is performed by the operator and involves a fast check of the machine sta-
tus and the other one that is executed only when a significant damage is
detected and a more accurate analysis is needed.

3.2.1 Vibration Based Condition Monitoring

ISO 10816-1:1995(E) 

Annex B 
(informative) 

Interim broad-band Vibration criteria for specific machine groups 

This part of ISO 10816 is a basic document which 
sets out general guidelines for the measurement and 
evaluation of mechanical Vibration of machines, as 
measured on non-rotating Parts. It is intended that 
evaluation criteria for specific machine types will be 
provided in additional Parts of ISO 10816 for different 
machine types. However, as a short-term expedient 
only, limited evaluation criteria are provided in 
tableB.l until the relevant Parts become available. 
The values given are for the upper limits of zones A 
to C, respectively (sec 5.3.1). for the machine classes 
defined below. lt is important, therefore, Prior to using 
these values, to check that they have not been 
superseded by an additional part of ISO 10816. This 
annex will be deleted when all of the relevant Parts 
have been published. 

The machine classifications are as follows. 

Class 1: Individual Parts of engines and machines, in- 
tegrally connected to the complete machine in its 

normal operating condition. (Production electrical mo- 
tors of up to 15 kW are typical examples of machines 
in this category.) 

Class II: Medium-sized machines (typically electrical 
motors with 15 kW to 75 kW output) without special 
foundations, rigidly mounted engines or machines (up 
to 300 kW) on special foundations. 

Class Ill: Large Prime-movers and other large ma- 
chines with rotating masses mounted on rigid and 
heavy foundations which are relatively stiff in the di- 
rection of Vibration measurements. 

Class IV: Large Prime-movers and other large ma- 
chines with rotating masses mounted on foundations 
which are relatively soft in the direction of Vibration 
measurements (for example, turbogenerator sets and 
gas turbines with Outputs greater than 10 MW). 

Table B.l - Typical zone boundary limits 
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Figure 33: Vibration limits according to ISO 10816-1 norm

The assessment of machine condition from vibration measurement has
been widespread used ant there exist numerous techniques for machinery
diagnostic both in time and frequency domain ([98, 99]). The frequency
spectrum of a rotating machine provides information on damaged elements
allover the frequency band that can be classified as follows:

low frequency range Frequency components due to misalignment, bent
shafts and unbalances usually amplify the firsts harmonics of the shaft
speed. Mechanical looseness appears in the low frequency band with
interharmonic components.
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medium frequency range In this range the tooth mesh components of
gearboxes modify the spectrum as the wear or damage grows. More-
over the increased deflection due to a broken tooth will increase the
low level sidebands around the toothmesh peaks.

high frequency range Resonance frequencies of the machine structure
are usually located on the high frequency range of the spectrum.
Structural resonances amplify the components coming from a dam-
aged bearing that usually have low energy. In this frequency range is
then possible to detect a faulty bearing more easily than in the lower
side of the spectrum.

Standardized methods for the detection of machine faults involves mainly
the comparison of RMS values of vibration velocity with previous measure-
ment or with predefined limits in the 10− 1000 Hz frequency range. Fig-
ure 33 shows the vibration limits for different class of rotating machines
according to the ISO 10816 norm [100]. The standard guidelines provide a
good indication on the current status of the machinery but are not able to
recognize condition change and the fault evolution. Moreover the broad-
band analysis of vibrations can early detect severe misalignment or bent
shafts while lower energy signals as gearbox or bearings faults will not
be detected until the generated vibrations will overcome the dominating
low frequency signals. For these reason acceptance limits are often defined
to discover changes of nominal conditions. These limits are used to early
detect variation on machine behavior not related to normal operative con-
ditions and can be set for a specific machine resulting in a more accurate
monitoring. Figure 34 shows an example of acceptance limits applied to
the frequency spectrum of the machine. These limits create a synthesized
spectrum that is used as a boundary for the measured one. The prompt
discover of anomalies and the avoidance of false alarms are the two aspects
considered in the choice of acceptance limits that are usually defined by
experience and through statistical methods. Every time a limit is exceeded,
a further analysis of the acquired signals must be performed in order to
find the cause of vibration rise. The diagnosis of the possible damage starts
from the analysis of the band where the anomalous component is located.
According to the classification provided above the frequency range give a
first indication on the fault nature and then specific techniques can be used
to identify and assess the damage. In the next section will be described
the developed monitoring algorithm for the CM task whose purpose is the
detection and diagnosis of faults in spindle bearings. For this reason the
Envelope Analysis (EA) of vibration has been implemented. EA is a well
known diagnostic tool that allows to isolate the component of interest from
the whole vibration signal and to analyze its frequency content to find the
damage source. This technique is particularly suitable for the extraction of
low energy pulses, due to a damaged bearing or a cracked gear tooth, from
the background vibrations.
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Figure 34: Acceptance limits based on synthesized machine spectrum

3.2.2 Condition Monitoring of Bearing

Bearing Failure Modes

Faults on rolling element bearings originate from localized damage on the
raceways or on one rolling element due to metal fatigue that produces cracks
and corrosion pits (Fig. 35a). The damage grows over time resulting in
widespread spalling and material detachment till to the catastrophic failure
of the bearing. An other issue is given by excessive static loads that cause
the indentation of raceways (brinelling) and the deformation and looseness
of the cage (Fig. 35b). Finally, in bearing equipping electric motors, stray
currents can produce electrical erosion of the race surface (Fig. 35c). The
passage of the rolling elements over the damage produces small pulses re-
peating at the ball pass frequency. Pulses are transmitted through the bear-
ing housing, producing a vibration signature characterized by impulsive
events with defined frequencies. As the damage grows the amplitude of
vibration related to roller element harmonics increases and, when the fault

(a) (b) (c)

Figure 35: Bearing failure modes: spalling 35a, brinelling 35b and electric erosion

35c
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becomes very large, it decays while the broadband noise increases result-
ing in the end of bearing life. The effects of bearing faults are increasing
vibration, noise and temperature and finally catastrophic breakage. Moni-
toring bearings health is then an important task since their failure can cause
more severe damages to the machine. However, especially in its early stage,
the pulses caused by the damage have low energy and are buried by the
higher vibrations of other machine parts. The signal is then hardly notice-
able without a proper processing as the EA. Neugebauer [95] analyzed dif-
ferent monitoring techniques to assess bearings condition on machine tool
spindle. He found that CM activities based on AE measurements or EA of
vibration data were capable to detect faults well in advance. In particular
AE-based method registered a condition deterioration after only 4000 hours
of operation ( ≈ 50 % of the bearing life) due to lack of lubrication. The EA

identified the damage after 6000 hours ( ≈ 15 % of the bearing life) just at
the beginning of race wear. Other methods based on RMS measurement of
vibration and temperature measurement were able to detect the fault only
when the bearings were severely damaged. EA then is still recognized as the
most effective method for bearing diagnostic. In the recent work of Bediaga
[93] the EA (computed with the Hilbert Transform) resulted much more accu-
rate in diagnosis than Amplitude Demodulation while other techniques as
Cepstrum Analysis, FFT proved to be inadequate to that specific task.

Envelope Analysis of Bearings

EA of bearing is a signal processing technique that provides the spectrum
of the bearing vibrations through the demodulation of the high frequency
components of the machine vibrations. The peaks on the spectrum allows
the diagnosis of the fault by comparison with the characteristic frequencies
of the bearing given by equations 11-14:

ball pass frequency of the outer race

BPFO =
n fr

2
(1−

d
D

cos φ) (11)

ball pass frequency of the inner race

BPFI =
n fr

2
(1 +

d
D

cos φ) (12)

fundamental train frequency

FTF =
fr

2
(1−

d
D

cos φ) (13)

ball spin frequency

BSF =
D

2 d
fr(1−

d
D

cos φ)2 (14)

D

d

φ

where n is the number of roller elements of diameter d , fr is the rotational
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Figure 36: Simulated damage signal with BPFO repetition frequency

frequency, D is the pitch diameter and φ is the load angle. Bearing frequen-
cies are generally low (within the first harmonics of shaft speed) and their
harmonics are masked by other vibrations. However thanks to their impul-
sive nature it is possible to find the bearing harmonics in bands at high
frequency where the contribution of other sources is neglectable. The effect
of a single impact of the rolling element with the damaged can be modeled
as the impulse response of a single Degree of Freedom (DOF) system and the
vibration signal can be obtained as the system response to a train of pulses.
In figure 36 is shown the simulated signal of a bearing with a damage in
the outer race exciting the resonance of the modeled system set at 1.5 kHz.
The rotational speed of the shaft is 200 rpm and the Ball Pass Frequency
of the Outer race (BPFO) is equal to 13.68 Hz. In addition the repetition
frequency of the pulse train randomly varies of ±1 % around the BPFO in
order to include in the simulation the effect of slip of roller elements that is
always present in real cases. These fluctuations cause a smear of the char-
acteristic bearing frequencies making them even more difficult to detect in
the raw spectrum. The whole vibration signal is then simulated by adding
to the bearing signal the contributions of a small shaft unbalance ( 3.33 Hz),
of a gearbox with a tooth mesh frequency of ( 180 Hz) and of random noise,
that represent the signal of the healthy machine (blue solid line of figure
37). EA begins with the selection of the high frequency band that contains
the pulses of the damaged bearing by means of band pass filtering of the
original signal. The choice of the filter center frequency and bandwidth is a
non trivial aspect of the analysis since a wrong filtering can compromise the
final result. In common practice the filter is tuned according to the result
of an impact test on the bearing housing or by monitoring the FRF of the
machine. Alternatively the filter parameters are chosen in the band where a
substantial rise of the high frequency spectrum is detected. In figure 37 the
lower plot shows the spectra of the healthy machine (blue solid line) and
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Figure 37: Original and selected signal according to spectrum variation

of damaged one (red dashed line). The signal of the faulty bearing causes
an increase of spectrum amplitude at high frequency and the appearance
of the resonance peak at 1.5 kHz. Then the bandpass filter is centered on
this peak in order to extract the impulsive signal. The resulting filtered sig-
nal is shown in the upper plot of figure 37 together with the original one.
The selected signal can be seen as an amplitude modulated signal consti-
tuted by the high frequency vibration (carrier component) and the low fre-
quency impact repetition (modulating component). The next phase is then
the amplitude demodulation that returns the modulating component as the
envelope of the impact signal. The diagnosis is then performed comparing
the peaks frequencies of the envelope spectrum with the characteristic fre-
quencies of the bearing. If there exist a damage there will be a matching
between one peak and the frequency related to the fault location. Figure 38

show the result of EA of the simulated damage. The upper plot show the
bandpass filtered signal and the resulting envelope while in the lower graph
the diagnosis of the damage on the outer race is performed in the envelope
spectrum. In the next section will be discussed the implementation of the
EA method in the CM algorithm together with an automated technique for
the signal filtering.
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Figure 38: Signal envelope and bearing diagnosis

3.2.3 Condition Monitoring Algorithm

The CM algorithm developed for the monitoring system is based on the EA of
vibration signal. The implementation has been organized in the following
steps:

vibration measurement Vibrations are measured by the accelerome-
ters placed on the bearings while the spindle is rotating at constant
speed. Data are stored in the external RAM for further processing.

damage detection Measurements are analyzed and the diagnosis is per-
formed if a damage is detected.

diagnosis If the previous step gives a positive response, the signal is fil-
tered and the EA is executed.

Data Acquisition

At the beginning of CM task, machine tool spindle is operated at constant
speed while the machine is kept in standstill position. This is required
in order to avoid wrong diagnosis due to the presence of cutting harmon-
ics. The setup operation define the memory location for the acquired data
(cm_dataAddr), provide the actual sampling frequency of each sensor and
enables the acquisition (cm_isr = 1). The acquisition routine described in
listing 5 is controlled through interrupts generated by sensors (cf. §2.3.1)
that call the CM_processSample function. When the interrupt is triggered,
the system reads the data from one accelerometer at a time and stores the
vibration value on the external RAM (lines 5-13). The operation is repeated
until the counter reach the acquisition limit and then the interrupt flag is
disabled (cm_isr = 0) and the counter reset. For this application the limit
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is set to 16384 data that corresponds approximately to a 3 s acquisition,
depending on the actual sampling frequency of each sensor.

/*CONDITION MONITORING DATA ACQUISITION*/

2 void CM_processSample(accData_raw_t*accData)

{

/*ACQUIRE ACCELERATION DATA FOR EACH ACCELEROMETER*/

for (uint8_t i=0; i<N_ACC; i++)

{

7 /*GET THE ACCELERATION DATA*/

getAcc_raw(i,(unsigned char*) &accData);

/*STORE VALUES IN THE EXTERNAL RAM*/

hugemem_write16((hugemem_ptr_t) cm_dataAddr,accData->aZ);

/*UPDATE THE MEMORY ADDRESS*/

12 cm_dataAddr+=2;

}

/*UPDATE THE COUNTER*/

counter++;

17 if (counter == CM_N)

{

/*EXIT FROM ISR ROUTINE*/

cm_isr = 0;

/*RESET COUNTER*/

22 counter = 0;

}

}

Listing 5: Acquisition of vibration data source code

Damage Detection

Once the acquisition is completed, the collected data for each sensor are
processed in order to detect the damage. According to the description of EA

provided in section 3.2.2 the assessment of a possible fault is performed by
the maintenance engineer that tunes the envelope detector or the CM soft-
ware relying both on machine natural frequencies and significant changes
on the vibration spectrum. Then the traditional approach is not suitable for
an automated application since it would require adjustments by an experi-
enced user and a database with the response of the healthy machine. Due
to the impulse-like nature of bearing defects, in the past were proposed de-
tection techniques based on indicators sensitive to the sharpness of peaks
as the crest factor or kurtosis of signal [101]. However in some case these
methods failed to assess the actual bearing condition, especially when noise
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level was high and the damage at its early stage. Recently a novel approach
based on Spectral Kurtosis (SK) technique is becoming very popular for dam-
age detection and diagnostic applications. Starting from the work of Antoni
[102], that demonstrated the effectiveness of SK to describe the frequency
content of transient signals, and the further research of Antoni and Randall
[103, 104] that proposed the use of SK as a tool for monitoring and diagno-
sis of faults on rotating machines, several authors exploited this method for
the development of CM techniques (e. g. [105, 106]). SK is a statistical tool
that overcomes the limits of PSD in the evaluation of the frequency content
of non-stationary components in a signal. Kurtosis is a statistic index used
to measure the shape of the probability distribution of a random variable
or, in other words, its deviation from the normal distribution. Kurtosis is
computed as the ratio between the fourth moment of the mean normalized
with respect to the fourth power of the standard deviation (Pearson’s index
15) minus three:

β2 =
µ4

σ4
=

E
[
(X− µ)4]

(E [(X− µ)2])
2 (15)

γ2 = β2 − 3 (16)

The Pearson’s index of a normal distribution is β2 = 3 and then the its
Kurtosis is equal to zero. According to the definition the Kurtosis can be
useful to detect non-Gaussian components of a signal as a repeated impulse.
However a low signal to noise ratio will mask the impulsive signal making
its detection impossible. The SK of a signal is the computation of Kurtosis for
each frequency band of the signal spectrum and then it allows to distinguish
which frequencies contain impulse-like transitory components and which a
stationary signal. SK is obtained starting from the computation of the STFT

that provides the Fourier Transform of the signal x(t) in a moving window
along the time axis X(t, f ). If we denote the Power Spectrum (PS) at time t
with |X(t, f )|2 then the PSD can be computed as the average of the PS over
time:

PS = |X(t, f )|2

PSD = 1
T
∫ T

0 |X(t, f )|2 dt = 〈|X(t, f )|2〉
(17)

The SK is then computed as follows:

K( f ) =
〈|X(t, f )|4〉
〈|X(t, f )|2〉2 − 2 (18)

where the minus two is needed to have K( f ) = 0 when X(t, f ) is the Fourier
Transform of a stationary (Gaussian) signal. This means that SK is capa-
ble to detect the existence of a impulsive component in a signal (high K( f )
value) and to provide the frequency where this is more significant. SK has
been successfully used, in the aforementioned works, for diagnostic of rotat-
ing machine and especially for those elements whose damage causes sharp
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Figure 39: Spectral Kurtosis of the simulated signal. The detected fault frequency

is greater than the actual one due to the low frequency resolution.

repetitive pulses as bearings and gearboxes. In figure 39 is shown the SK of
the simulated bearing fault signal. The Kurtosis value indicates an impul-
sive component at 1562 Hz that is greater than the actual frequency because
of the low frequency resolution resulting from the parameter selection of SK

algorithm. Due to the advantages brought by SK, this method has been cho-
sen for the execution of the automated fault detection in the proposed CM

algorithm. In this way, the analysis of historical data of the machine is no
more needed, as well as knowing the structural frequencies of the system.
The last point is particularly important since the use of a traditional method
would have required the dynamic characterization of the bearing houses for
each machine configuration and accessory head. Instead with the SK, as cen-
ter frequency of the bandpass filter is chosen that one with the maximum
Kurtosis value. Listing 6 shows the damage detection and diagnosis phase
of the CM algorithm. After the configuration of the parameters, at line 11

the SpecKurt function is called. The function receives as parameters the sen-
sor id, the memory location of the raw data and the destination address of
the SK values, the number of data, and the STFT parameters (window size
and update frequency), the measured sampling frequency of the sensor and
finally the vector containing the resulting center frequency. The SK compu-
tation is performed in the following steps:

1. FFT (X(ti, f )) computation of the windowed signal.

2. PS (|X(ti, f j)|2) and PS2 (|X(ti, f j)|4) computation for each frequency
bin.

3. Add the computed PS values to numerator and denominator of SK.

4. Update the window and repeat steps 1− 4 until the end of signal is
reached.
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5. When the entire signal has been processed the Kurtosis is computed
for each frequency bin as:

K( f ) =

dt
T

N

∑
i=0
|X(ti, f )|4

(
dt
T

N

∑
i=0
|X(ti, f )|2

)2 (19)

6. The maximum Kurtosis is searched.

The SpecKurt returns 0 if K( f ) ≤ 2 or the frequency corresponding at the
maximum Kurtosis value if K( f ) > 2. If SpecKurt output is zero, the
damage status is set to −1 and a negative message is sent for the opera-
tor(line 13). Otherwise the operator is informed that a damage has been
detected and the EA procedure is started. At the beginning the bandpass
filter and a lowpass filter are designed according to the frequency value
returned by the SpecKurt function (line 23), then the envelope function is
called (line 26). The envelope is computed in three steps:

1. The impulsive fault signal is extracted from vibration data by means
of the IIR filter obtained by the bpIIR function.

2. The filtered signal is squared in order to perform its demodulation
(Square-Law demodulation). Squaring the signal shifts half of its energy
towards dc (the modulating component) and half of the energy to
higher frequencies (carrier signal). The squared signal is then multi-
plied by two to compensate the energy loss.

3. The resulting signal is low pass filtered to remove high frequencies
components obtaining the envelope of the original signal.

4. The envelope is downsampled and rescaled by performing the square
root.

Finally the diagnosis is performed (line 28) according to the following steps:

1. FFT computation of the envelope.

2. Research of the peak closest to one of the bearing characteristic fre-
quencies.

At the end of the computation a warning is set to the MMI indicating the
detection of a fault on the examined bearing and a code that identify its
location: 0 = FTF, 1 = BSF, 2 = BPFO, 3 = BPFI.
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1 /*DAMAGE DETECTION AND DIAGNOSIS*/

void CM_computeData(uint8_t device_id)

{

/*DOWNSAMPLED DATA SIZE*/

uint32_t dataSize = CM_N/ENV_DOWNSAMPLE;

6 /*FREQUENCY RESOLUTION*/

float fRes = cm_device_params[device_id].sampling_frequency/CM_N;

/*RESET SK MEMORY ADDRESS*/

cm_dataAddr = ADDR0;

cm_skAddr = ADDR1;

11 /*SK AND DAMAGE DETECTION*/

valSK[device_id] = SpecKurt(device_id,cm_dataAddr,cm_skAddr,CM_N,SK_WINDOW

,SK_WUPDATE,cm_device_params[device_id].sampling_frequency,&centerFreq[

device_id]);

/*SK OUTPUT*/

if (centerFreq[device_id] == 0) {

damageKey[device_id] = -1;

16 printf("SK VAL%f => no damage detected on bearing = %d\n",valSK[

device_id],device_id);

}

else {

printf("SK VAL%f => possible damage detected on bearing = %d\n

Performing Envelope Analysis",valSK[device_id],device_id);

/*RESET ENVELOPE ADDRESS*/

21 cm_dataAddr = ADDR0;

cm_envAddr = ADDR2;

/*FILTERS DEFINITION*/

lpF = single_lpIIR(4,(uint16_t) centerFreq[device_id]/2 ,

cm_device_params[device_id].sampling_frequency/ENV_DOWNSAMPLE);

bpF = bpIIR((uint16_t) centerFreq,cm_device_params[device_id].

sampling_frequency,ENV_BW);

26 /*ENVELOPE ANALYSIS*/

envelope(device_id,cm_dataAddr,cm_envAddr,CM_N,&bpF,&lpF,

ENV_DOWNSAMPLE);

/*DIAGNOSIS*/

damageKey[device_id] = diagnosis(cm_envAddr,dataSize,fRes);

printf("damage on bearing = %d\n",*fault_code);

31 }

}

Listing 6: Diagnostic algorithm source code
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3.2.4 Experimental Results

DAMAGED BEARING

ACCELEROMETER

MONITORING
SYSTEM

Figure 40: Bearing test bench for CM algorithm testing

The experimental validation of the CM algorithm has been performed on
the test bench showed on figure 40 consisting of a shaft supported by two
bearings and operated by an electric motor. One of the bearings has been
disassembled and the inner race has been damaged with a grinder. The
accelerometer has been mounted on top of its housing and the diagnostic al-
gorithm has been used to assess the bearing status testing both the detection
and the diagnostic tasks. The parameters and the characteristic frequencies
computed with equations provided in section 3.2.2 are reported on Tab. 4.

BEARING

PARAMETERS

pitch diameter D 46 mm

ball diameter d 9.525 mm

load angle φ 0 ◦

rotational

frequency fr
3.33 Hz

CHARACTERISTIC FREQUENCIES

FTF 1.3216 Hz

BSF 7.7039 Hz

BPFO 11.8940 Hz

BPFI 18.1060 Hz

Table 4: Bearing parameters and characteristic frequencies
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Healthy Bearing

Figure 41: CM task output with no damage detection

The CM task has been initially tested with a new and healthy bearing. The
performed analysis did not detect any damage returning a negative re-
sponse as shown in the console output on figure 41. In order to understand
this result the STFT of the measured signal is shown in figure 42a. The higher
peaks are located in the low frequency region and are related to the shaft ro-
tational frequency. As a consequence the SK computed in the fault detection
phase is almost zero in the whole frequency range (Fig. 42b). This means
that the signal content is mostly related to stationary signals and noise.
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Figure 42: STFT (a) and SK (b) of the new bearing

Damaged Bearing

After the first analysis without the fault, the healthy bearing has been disas-
sembled and the inner race has been slightly damaged with a grinding tool
(Fig. 43b). Compared to the previous case the STFT of figure 44a shows the
onset of peak at medium and high frequencies. These peaks are mainly re-
lated to the contribution of damage as proved by the result of the SK analysis
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on figure 44b. Looking at the SK plot it seems that the effect of the damage
is relevant at several frequencies, however the EA is performed selecting the
signal at the frequency with the higher Kurtosis at 1063 Hz. The resulting
envelope spectrum and the bearing diagnosis is showed in figure 45. The re-
sult of the EA allows to explain also the numerous peaks of the SK providing
a better insight of the system status. Regarding the bearing diagnostic the
most relevant peaks are those one at 1.38 Hz and 17.99 Hz. The 17.99 Hz
frequency matches the BPFI frequency and then is compatible with the dam-
age on the inner race. The other peak is very close to the FTF frequency,
meaning that also the bearing cage is faulty. This is likely since it can have
been damaged during the bearing disassembly and reassembly. The highest
peak in the envelope spectrum is related to the rotational frequency that can
be caused by a misalignment between the motor and the bearing shaft and
the irregularities in the motion transmission due to the universal joint. In
conclusion, the analysis of the envelope spectrum allowed to identify several
damage sources in the test bench, even if the automated diagnostic routine
recognized only the most likely.

(a) (b)

Figure 43: Inner race of the healthy (a) and damaged bearing (b)
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Figure 44: STFT (a) and SK (b) of the damaged bearing
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Figure 45: Envelope spectrum of the damaged bearing showing the BPFI related peak

3.3 collision detection

During machining operation, collisions can be due to the impact between
the workpiece and the tool or even the spindle. The first case entails the
tool breakage and the damage of the workpiece while in the second case
the machine can be severely damaged. The causes of collision usually lie in
programming errors or in maneuvering errors committed by the operator
during manual movement of axis. The only available action is the machine
halt by means of the emergency push-button on the operator panel. This
kind of intervention is however too slow and the collision is most of the
time unavoidable. The consequences range form the tool change to the
reject of the damaged part and in the worst case in a long production down-
time for the inspection and repair of the machine tool. In this context the
monitoring system can provide a faster reaction in case of emergency by
using the onboard sensors to assess the occurrence of a collision and halt
the machine by switching the level of a digital line. It is worth to notice that
in this application the monitor behaves as a passive safety system since its
action is performed after the collision. However with the use of additional
sensors, such as proximity sensors, the device can be easily converted to an
active safety system. The CD algorithm is enabled both when no monitoring
tasks are executed, and then the monitoring system is in the inactive state,
both when the VM function is running. Instead if the CM task is executed
the CD function is disabled since the accelerometer configuration is different.
However this situation is reasonable since the CM activity is performed with
the machine in standstill position.
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3.3.1 Collision Detection Algorithm

The assessment of a collision occurrence is performed in the following steps:

vibration measurement Vibrations are collected for each accelerome-
ter and at a sampling rate of 5 kHz.

signal processing Acquired data are compared with a predefined limit.

intervention The detection of a collision causes the activation of the
emergency digital line.

Figure 46: Message sent after collision detection

The CD algorithm measures the resultant energy of vibrations on the three
axes components computed inside a narrow window of around 13 ms. The
computed value is expressed in integer math to avoid the increase of cpu

overhead related to the use of single precision values (line 11 of code 7).
The signal energy is compared with the safety limit and if the value exceeds
it the digital line intended for the machine halt is activated by switching
its logical level (line 15). The evaluation of the vibration energy content is
performed at each sample time and then the system provides the fastest
available reaction. At this point the machine is stopped, a warning is sent to
the MMI and the monitoring system is set in the error state waiting for the
operator intervention (Fig. 46).



82 monitoring algorithms

/*COLLISION DETECTION*/

2 void CD_run()

{

uint32_t tmp;

for (uint8_t i=0; i<N_ACC; i++){

getAcc_raw(i, (unsigned char *) &rawData);

7 tmp = ((uint32_t) rawData.aX * (uint32_t) rawData.aX)

+ ((uint32_t) rawData.aY * (uint32_t) rawData.aY)

+ ((uint32_t) rawData.aZ * (uint32_t) rawData.aZ);

/*SIGNAL ENERGY*/

cd_val[i]+= tmp - int_cd_vals[cd_index &(CD_BUFFER_SIZE - 1)][i];

12 /*COLLISION ASSESSMENT*/

if (cd_val[i] > CD_LIMIT){

/*SET EMERGENCY PIN HIGH*/

COLLISION(ALARM_PIN);

/*RESET FLAGS*/

17 cd_isr = 0;

cd_detected = 1;

}

/*UPDATE BUFFER*/

int_cd_vals[cd_index & (CD_BUFFER_SIZE - 1)][i] = tmp;

22 }

/*UPDATE BUFFER INDEX*/

cd_index++;

/*RESET THE INDEX VALUE*/

if(cd_index >= 10*CD_BUFFER_SIZE){cd_index = 0;}

27 }

Listing 7: Source code of the collision detection algorithm
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3.4 off-line event logger
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Figure 47: Detection of impulsive event in sleep mode

The monitor node equipping the accessory heads has to perform a further
task in addition to those described in the previous sections. Accessory heads
can be damaged not only during machining but also during the phase of
coupling or release from the machine tool. In this regard, it is needed that
the monitor node on the accessory head can detect and record the occur-
rence of potentially detrimental events, even if the head is not being used.
In this case monitors have to operate detached from the machine and then
the required power supply is provided by a backup battery. As a conse-
quence the monitoring task can not be continuously run in order to avoid
an excessive power consumption. Given this requirement, the monitor node
in non-operative conditions is activated only when a significative event oc-
curs. When the accessory head is placed on the tool storage and released
from the machine tool, the NC commands the monitor to disconnect. The
power supply is switched from the machine power to the backup battery
and the microcontroller is set in sleep mode. Program execution is halted
and all the clock sources are stopped, minimizing the power consumption.
In this configuration the microcontroller can be reactivated only by inter-
rupts on the TWI line and on specific i/o pins (asynchronous ports). The
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connected accelerometers are then used to wake up the monitor exploiting
their functionality to generate event-driven interrupt signals. Since the mi-
crocontroller is disabled, sensors are configured to acquire data and store
them in an embedded ring buffer. In addition an internal threshold is set
to trigger an interrupt if the acceleration values exceed it. Therefore if a
severe event, such as a collision, is detected the accelerometer immediately
wakes the microcontroller. At the wake moment the monitor starts reading
the stored data gradually emptying the buffer. In this way also the accel-
eration measured before the interrupt are acquired allowing the reconstruc-
tion of the entire triggering event. Unlike the previous monitoring tasks, in
this case the acquisition is timed by one of the microcontroller timer rather
than by the accelerometer, since it has a different interrupt configuration.
When the microcontroller wakes the interrupt routine is initiated and the
SPI buffer is initialized in order to communicate with the sensors. Then the
timer is configured to set the sampling fequency at 5 kHz (line 6 of listing 8).
After the configuration phase the monitor starts transferring the data from
the accelerometer buffer (line 15). The acquisition is executed for a limited
amount of time (few milliseconds) and at the end the recorded signal is
stored in an external memory together with additional information on the
occurred event. At the end of acquisition the program re-enables the sleep
mode and waits for a new event. The result of an example test is shown in
figure 47 where the accelerometer has been hit along the z direction. Plots
show the recorded signals after the microcontroller wake proving that the
monitor node was capable to detect the impulsive event.
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/*MCU WAKE INTERRUPT CALLBACK FUNCTION*/

void wake_callback()

3 {

/*ENABLE TIMER FOR ACQUISITION AFTER WAKEUP*/

PR.PRPC &= ~SYSCLK_TC1;

/*SET OVERFLOW EVERY 5 kHz*/

TCC1.PER = 6400;

8 TCC1.CTRLA = TC_CLKSEL_DIV1_gc;

/*CONFIGURATION*/

wake_data = &data_array[0][0];

uint16_t k = 0;

/*DISABLE LIS3DH INTERRUPT*/

13 clear_int(LIS3DH_DEVICE_0);

/*START ACQUISITION*/

while (k<WAKE_BUFFER){

/*WAIT TIMER OVERFLOW*/

while ((TCC1.INTFLAGS & TC1_OVFIF_bm) == 0){}

18 /*CLEAR INTERRUPT FLAG*/

TCC1.INTFLAGS = TC1_OVFIF_bm;

ioport_toggle_pin(DEBUG_PIN0);

/*GET AND STORE DATA*/

getAcc_raw(LIS3DH_DEVICE_0,&rawData);

23 *wake_data++ = rawData.aX;

*wake_data++ = rawData.aY;

*wake_data++ = rawData.aZ;

k+=3;

}

28 /*RESET DATA POINTER*/

wake_data = &data_array[0][0];

/*ACQUISITION TERMINATED RETURN TO THE MAIN ROUTINE*/

...

}

Listing 8: Microcontroller wake event source code
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3.5 evaluation benefits and drawbacks

Global Monitoring System

The purpose of the proposed monitoring system is to equip CNC milling
machines in order to supervise the working operations and assess the status
of the machine tool. The requirements that must be fulfilled aim to ensure
the proper operation of the system in several industrial applications. The
monitoring system should be able to adapt to different working conditions
without the need of detailed handmade tuning during the process execution.
This is a key aspect that has been considered since a time-consuming system
configuration can void the benefits of adopting the system itself. Moreover
a complex setup will require additional skills to the machine user that on
the other hand is not supposed to know the underlying working principles.
In addition the whole system, including sensors and the data acquisition
and processing units has to be fully integrated in the machine tool architec-
ture sending the monitoring information through the MMI. The developed
system provides a framework where the monitoring nodes are deployed on
the machine according to the specific task. This allows to build a scalable
system that easily fits different machine tools and applications and allows to
expand it if new task are required or if the machine modifies its architecture
as in the case of the accessory heads mounting. The choice of microcon-
trollers as monitoring devices and the use of digital mems sensors provide
an inexpensive and small-sized solution compared to common monitoring
systems that usually consists of signal conditioning units, data acquisition
boards and a computer to execute the process control. The microcontroller-
based design allows to assign a specific task to each monitoring node pro-
viding high flexibility on the setup of the supervisory system. On the other
hand the use of microcontrollers represents also the main limitation of the
proposed approach because of the reduced performances in term of mem-
ory and computational power. However thanks to the advances in electron-
ics this issue can be easily overcome by using more powerful devices with
slight cost increase. Since each node is connected to a standard TWI bus
the whole monitoring system can be constituted by microcontrollers with
different performances according to the performed task. The core software
architecture based on a state machine paradigm requires very few inputs
by the machine user that has mainly to select the monitoring activity to be
executed. However the reduced interaction possibilities does not prevent
from further extension of the system functionalities. In this sense also the
software architecture is characterized by high flexibility and modularity that
can be exploited during the design phase.

Vibration Monitoring Algorithm

The VM algorithm based on the RMS indicator, revealed to be the most effi-
cient method to monitor the vibration level on the machine acquiring data
from up to four accelerometers at high sampling rate. This implementation
provides information on the actual machining conditions and can be used
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as a support for the machine operator, by sending warning messages when
an excessive vibration level is sensed suggesting the corrective action. In
addition the developed algorithm allows also minimal attended working
operation by automatically adapting the feed rate in order to keep the mea-
sured vibration index within a safety range. In this case the supervisory
system does not require any interaction with the machine operator and en-
sures that the process is performed in the desired manner regardless the ex-
ternal factors that can affect the working operation. According to the need
of adapting the system to different working conditions a learning function
has been implemented in order to configure the intervention threshold of
the monitoring algorithm. In this case the machine operator has to bring
the machine to the desired working point and then execute the learning
function. In this way the system automatically adjusts the configuration
parameters and then starts the monitoring task. The existing tradeoff with
the proposed monitoring algorithm is its reactive behavior, meaning that
the corrective action is not optimized with respect to the actual working
conditions. Therefore, since the controlled parameter is the feed rate, a too
conservative response can be penalizing for the productivity of the machine.
However the use of this system provides an enhancement of the machining
operation by keeping the process execution under nominal conditions that,
at the same time, affects the quality of the machined part and the tool life.

Condition Monitoring Algorithm

The proposed CM approach for the detection and diagnosis of faulty spindle
bearings is based on the well known Envelope Analysis of bearing vibration
signature. It is then a reliable tool that returns a detailed and clear informa-
tion on the system health. In addition the fault detection algorithm based
on the Spectral Kurtosis computation provides a fast and accurate method
to evaluate the existence of a damage without requiring complex analysis of
the vibrations spectra. However detailed information on the acquired data
are available for maintenance engineers. The results obtained from the CM al-
gorithm require in any case a history of faults in order to properly estimate
the entity of damage and consequently to prepare the maintenance plan.
The main drawback of the proposed algorithm is the need of a significative
computational effort to perform the analysis and this cause a slow response
of the system. However since the CM task can be run periodically, the re-
quired time does not affect the productivity of the machine. In addition this
issue can be easily overcome by adopting a more powerful microcontroller.

Collision Detection Algorithm

The CD task does not require any interaction with the machine operator ex-
cept when, after a collision, it brings the system to the error state waiting for
the reset. The implementation is based on the comparison between the sig-
nal energy and a threshold. This represents the main limitation of the algo-
rithm since setup of the threshold can be far from trivial since false alarms
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can cause unexpected halt of the machine with subsequent slowdowns of
the production. On the other hand the proposed algorithm can be tuned
also to detect particularly severe working conditions and halt the machine if
the action of the VM monitoring is not enough to restore an acceptable vibra-
tory level. This provides a more robust response of the monitoring system
guaranteeing the safety of the machining process.



4
A D VA N C E D M O N I T O R I N G A N D C O N T R O L

This chapter describes the use of the Extremum Seeking control strategy
for the adaptive optimal tuning of machine parameters. First it will be
presented the inline performance optimization of a linear motion system
in terms of accuracy and disturbance rejection. The control of the linear
motion system will be enhanced by a variable gain architecture in order to
overcome the intrinsic limitations of linear controllers. Then the Extremum
Seeking will be included on the system in order to optimize the variable
gain controller according to the characteristics of the measured error. The
proposed method has been successfully tested on an experimental linear
motion system based on a magnetically levitated axis and the results will
be presented in the following chapter.

4.1 introduction

Linear controllers such as the Proportional Integrative Derivative (PID) con-
trollers, are nowadays the most frequent solution for the control of linear
motion system. The ease of design, tuning and implementation and, above
all, the capability of manage model uncertainty make linear controllers very
suitable for a large variety of applications. However linear controllers de-
signer has to deal with inherent performance limitations that impose a trade-
off among conflicting features of the desired controller response. This is the
case of the waterbed effect that causes the increase of system sensitivity at
high frequencies, as a consequence of the attenuation of low frequency dis-
turbances. This is a common issue on linear controller design that can not be
overcome by using more advanced design techniques. Therefore in the con-
troller design the choice of parameters has to balance the fulfillment of the
required performance on one hand, and the reduction of the disturbances
effect on the other hand. The design limitations related to the waterbed ef-
fect are a key issue in linear motion systems, where the improvement of the
positioning accuracy is affected by the contribution of measurement noise
and disturbances at high frequencies. In order to reduce these limitations
a Variable Gain Controller (VGC) approach has been proposed. The VGC

strategy allows to selectively increase the controller gain according to the
magnitude of the feedback error, improving the system response both in
terms of reduction of tracking error and sensitivity to disturbances. The
tuning of the VGC parameters depends on the characteristic of the error sig-
nal and of the noise affecting the system. Usually this task is performed in
an heuristic way or by using a disturbance model to optimize the controller
performance for a specific application. However the identification and mod-
eling of the disturbances is often difficult and can not entirely capture the
actual effects acting on the system. A different approach has been proposed

89
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in order to tune automatically the variable gain controller parameters by us-
ing an extremum seeking control strategy. Extremum seeking is an adaptive
control technique that optimizes a certain performance measure according
to the steady state output of the system in real-time, by automated and
continuous adaptation of the system input-output pair. This method only
uses the measured output of the plant to compute the steady-state perfor-
mance regardless of the knowledge on the disturbances and on the system
dynamics. The variable gain controller and the extremum seeking strategy
has been applied to an experimental setup that consists on a magnetically
levitated linear axis controlled on 6 degree of freedom. The activities that
have been carried out, involved the design of both the linear and variable
gain controller, the assessment of the tradeoff due to the waterbed effect
and finally the performance optimization of the variable gain controller by
means of the extremum seeking technique. This work has been conducted in
collaboration with the University of Eindhoven and the Philips Innovation
Services.

4.2 problem formulation

C P
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Figure 48: Linear feedback controller scheme

Considering the control of a linear motion system, the closed loop structure
shown in figure 48 consists of the plant P(s) (modeled as a mass) and the
linear controller C(s). The reference position r is sent through the controller
to the plant that receives as inputs a force signal and the force disturbance
d. The plant output is a position signal that is fed back providing the posi-
tioning error e. The control performance can be improved by increasing the
controller gain and consequently the bandwidth of the system. The effect
of gain increase can be seen in figures 49 where it is shown how the system
response varies with an high gain configuration (red dashed line) compared
to a low gain configuration (blue solid line). The high gain controller has
a larger bandwidth that reduces the error sensitivity and improves the dis-
turbance rejection within the bandwidth (Fig. 49c and 49d). However the
high frequency noise in the range 100− 200 Hz is amplified because of the
waterbed effect (cf. §A.1) as can be seen in figure 50. The plot shows the
positioning error obtained for a 10 mm back and forth motion of the mass
(low frequency reference) that is followed by the error during the stand-
still position where a 160 Hz sinusoid is used as disturbance input (high
frequency input). The controller with the higher gain provides a better at-
tenuation of the error during the motion phase than the low gain controller
but also the disturbance results amplified by the increased gain. A more
effective way to overcome this limitation is given by the variable gain con-
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Figure 49: Comparison between the transfer functions of low and high gain con-

troller configuration

trol (or N-PID control) strategy [107]. The basic idea is to add a non linear
function φ to the existing linear controller in order to selectively increase the
gain according to the controller error. The close loop architecture of figure
48 is then modified with an other loop that consists of a nonlinear element
φ(e) function of the error and a shaping filter F(s) (Fig. 51). The selected
shape of nonlinearity φ(e) is the dead-zone function

φ(e, δ) =





0 if − δ ≤ e ≤ δ

α(e− δ) if e ≤ −δ

α(e + δ) if e ≥ δ

(20)

that applies the extra gain α if the error exceeds the dead-zone length δ. For
linear motion systems low frequency inputs (e. g. the reference singal) cause
larger errors than those ones due to high frequency inputs (e. g. measure-
ment noise). Therefore the dead-zone function of equation 20 compensates
the waterbed effect and increases the overall controller performance by im-
proving the tracking property at low frequencies and significantly reducing
the sensitivity to high frequency disturbances. Given the architecture of fig-
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ure 51, the VGC can be modeled as a Lur’e type system (Fig. 52) of the form:





ẋ(t) = A x(t) + B u + Br r(t) + Bd d(t)

e = C x(t) + Dr(t) r + Dd d(t)

u = −φ(e, δ)

(21)

where the non linear part is the dead-zone function φ and the linear part is
the transfer function between the dead-zone output u and the error e:

Geu = C(s I − A)−1 B =
P(s)C(s)F(s)
1 + P(s)C(s)

(22)

The stability of the nonlinear controller is assessed by satisfying the circle cri-
terion conditions and the incremental sector condition for the convergence
of solution (cf. Appendix A.2 and [108]). According to those definitions, the
nonlinear system is globally asymptotically uniformly stable if:

- Geu(s) is Hurwitz: verified since both
PC

1 + PC
and F are Hurwitz by

design.



4.2 problem formulation 93

-
Geuu + Gerr + Gedd

φu

e
r,d

Figure 52: Lur’e scheme of the controller
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- Re(Geu(jω)) > −
1
α
∀ω ∈ R: can be achieved by tuning F.

- 1 + αGeu(∞) > 0 : verified since lims→∞
PC

1+PC = 0 =⇒ 1 > 0.

- φ ∈ [0, α]: is true for the dead-zone function.

- 0 ≤
φ(e2)− φ(e1)

e2 − e1
≤ α, ∀e2 6= e1: is true for the dead-zone function.

From the stability conditions two important conclusions can be drawn:

1. The stability of the VGC, given the linear controller C(s) is obtained by
a proper design of the shaping filter F(s).

2. The stability is not affected by the dead-zone length δ

It follows that, the design of F(s) aims to satisfy the circle criterion condition
Re(Geu) > − 1

α as shown in figure 53 and it is needed to guarantee the
stability of the system. On the other hand, the dead-zone amplitude is the
key parameter for the achievement of high controller performance since it
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allows to change the system sensitivity according to the error magnitude.
The nonlinear controller is given by equation 23, where κ = 0 if the error
amplitude is smaller than the dead-zone length, while κ = α if the error is
greater than δ.

(1 + κF(s))C(s) (23)
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Figure 54: VGC transfer functions for the low gain configuration κ = 0 and the

high gain configuration κ = α

When the error is within the dead-zone length the additional gain in zero
and the system has the same response of the linear case with the low gain
configuration (blue solid line in figure 54). In the opposite case, thanks to
the extra gain, the system has a reduced sensitivity to error and disturbances
(red dashed line in figure 54). The VGC response combines the advantages
of the two configurations according to the dead-zone value. The optimal δ

value strictly depends on the disturbances acting on the system and then
the proper dead-zone length has to be selected after the assessment of the
noise level and the identification of disturbances in the analyzed application.
Considering the previously described error signal (Fig. 50), it is evident that
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Figure 55: Comparison among the errors of the linear and VGC controllers

a more desirable response of the controller would be a mix between the im-
proved error tracking of the high gain controller, during the motion phase,
and the noise attenuation of the low gain controller in the standstill posi-
tion. This result can be achieved by setting the dead-zone length equal to
the maximum value of the disturbance error for the high gain controller. The
response of the VGC with this configuration is showed in figure 55 where the
black dashed line is the dead-zone amplitude and the green solid line is the
error of the VGC. The system response is a tradeoff between the low and
high gain configurations that leads to an overall improvement of the per-
formance. The tuning of δ parameter is usually performed in an heuristic
manner or through the offline optimization of the VGC, relying on models of
the plant and of the external disturbances. However this approach requires
an accurate modeling of the disturbances that is usually a challenging task.
To avoid this issues in the next section will be proposed an online optimiza-
tion method based on the Extremum Seeking (ES) control strategy to find the
optimal dead-zone length according to a pre-established performance crite-
rion. The ES is an adaptive control approach that does not require a precise
knowledge on the system and on the disturbances and allows to continu-
ously operate with the optimal configuration of the system. The proposed
method is particularly suitable for the calibration of linear motion systems,
such as the axes of machine tools, in order to achieve the best positioning ac-
curacy. In addition the ES allows to maintain the desired performance even
if the operative conditions slowly vary in time, compensating for example
the effects of temperature variations or wear.
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4.3 extremum seeking

ES is an adaptive control strategy used to optimize the steady state input-
output characteristic or the performance of a dynamic system. This tech-
nique requires the existence of an input-output relationship with at least
one extremum but does not need any explicit knowledge about the system
to optimize. The algorithm provides a gradient estimate of the steady state
input-output map and then the direction towards the optimum point. ES

is generally used for optimization of plants with constant steady state out-
puts. However recently it has been adopted also to optimize systems with
time varying outputs and in particular with periodic steady state outputs
[109]. Linear motions systems are often applied in repetitive tasks, so this
last method is particularly suitable for optimize the system performance un-
derstood as minimizing the tracking error and the contribution of external
disturbances to it. The general architecture for the ES algorithm is showed
in figure 56. The output of the system is used for the computation of a
performance index J that multiplied by a dither signal (usually a sinusoidal
signal) provides gradient estimation of the static map in a neighborhood of
the given input-output pair. This estimate is used in the optimization block
to move the input value to the direction that minimize (or maximize) the
performance. According to the explanation provided by Tan et al. work

SYSTEM
 DYNAMICS

STATIC I/O MAP
J

GRADIENT
ESTIMATOROPTIMIZATION

DITHER SIGNAL

y(t)

x+

u(t)

Figure 56: Extremum seeking main blocks

[110] let us consider a system whose dynamics can be modeled as:




ẋ = f (x, u)

y = h(x)
(24)

Let define the static performance map J as:

J = g(u) = g(h(x)) (25)

with an extremum located at u∗ (Fig. 57). We further assume that there exists
a steady state characteristic defined by a differentiable function l : R → Rn

such that

f (x, u) = 0, i f f x = l(u) (26)
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u

J

J*

u*

Figure 57: Static performance map

and the equilibrium point x = l(u) is globally uniformly asymptotically
stable in u. These assumptions ensure that in steady state conditions the
system performance is given by:

J = g(h(x)) = g(h(l(u))) = J(u) (27)

4.3.1 Time Scale Separation

The simplest ES algorithm used to optimized the performance to the ex-
tremum value J∗ is shown in figure 58. In this configuration the parameters
that rule the behavior of the algorithm are:

- The amplitude of the dither signal a.

- The frequency of the dither signal ω.

- The gain of the integrator c.

y(t)

x+

J

2

a

PERFORMANCE

GRADIENT ESTIMATOROPTIMIZATION

SYSTEM DYNAMIC

a sin(ωt)

u(t)

c
1

s

sin(ωt)

g(y)
ẋ(t) = f(x, u)
y(t) = h(x)

û
∂J

∂u

Figure 58: Minimal extremum seeking block diagram

According to this scheme the dynamics of the system can be described by:




ẋ = f (x, û + a sin(ωt))

˙̂u = c
2
a

J sin(ωt) = c
2
a

g(h(x)) sin(ωt)
(28)
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These equations represent respectively the x dynamics and the learning dy-
namics of the ES algorithm. Assuming that the transients in the x dynamics
are faster than the variations in time of both û and the dither signal, than
the solution x can be expressed as:

x = l(û + a sin(ωt)) + ξ(t) + η(t) (29)

where ξ(t) is the transient response of the dynamical system and η(t) is
a function of a, ω, c that can be made neglectable by choosing them suffi-
ciently small. Then, considering also the equation 27, the learning dynamics
can be expressed as:

˙̂u = c
2
a

J(û + a sin(ωt) + ξ(t) + η(t)) sin(ωt) (30)

These equations highlight the time scale separation determined by the three
dynamics existing in the ES algorithm:

fast dynamics It is given by the transients of the system states x de-
scribed by the term ξ(t)

medium dynamics It is the gradient estimate dynamics due to the dither
signal and then is related to its frequency ω.

slow dynamics The slowest evolution of the system is ruled by the con-
vergence dynamics that is related to the learning rate c.

The rationale behind the time scale separation can be understood consid-
ering that the ES algorithm aims to find the extremum point of the input-
output characteristic in their steady state condition. This means that the
whole ES dynamics must be slower that the system dynamics so that, when
a new input u = û + a sin(ωt) enters in the system, the transient runs out
without affecting the ES action. In addition, reaching the extremum point
requires that the gradient estimation and the optimization are performed in
sequence. Therefore first the dither signal has to explore the neighborhood
of the current input estimate û, in order to assess the gradient direction and,
subsequently, the learning dynamic slowly moves towards the extremum u∗.
The time scale separation is an essential property that ensures the conver-
gence of the algorithm. If the set of parameters a, ω, c is chosen sufficiently
small, the time scale separation among the plant, the gradient estimator and
the convergence dynamics is preserved and then the steady-state measured
performance will remain close to the static performance map.

4.3.2 Gradient Estimator

The main idea behind the gradient estimator is that the product between
the variation of J and the variation of u is similar to the slope of the J −
u curve in the neighborhood of u. In other words if J increases when u
increases than the slope will be positive. Otherwise if J decreases when u
increases the gradient will be negative. In both cases the slope will be close
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u

J

J*

u*

fastslow

medium

Figure 59: Time scale separation and convergence

to J(û + a sin(ωt)) sin(ωt). In order to demonstrate this general concept let
us consider the approximate gradient equation:

∂̃J
∂u
≈

2
a

J(û + a sin(ωt) + ξ(t) + η(t)) sin(ωt) (31)

Since ξ(t) quickly goes to zero and η(t) is small if a, ω and c are small, then
those terms can be neglected. The Taylor expansion up to the first derivative
of J(û + a sin(ωt)) gives:

∂̃J
∂u

≈
2
a
(J(û) + a

∂J
∂u

sin(ωt)) sin(ωt) + O(a)

≈
2
a

J(û) sin(ωt) + 2
∂J
∂u

sin2(ωt) + O(a)

≈
2
a

J(û) sin(ωt) +
∂J
∂u

(1− cos(2ωt)) + O(a)

(32)

This result not seems to provide a good estimate of the gradient, but aver-
aging its response over the time gives:

1
T

t+T∫

t

∂̃J
∂u

dτ =
∂J
∂u

+ O(a) (33)

According to equation 33, the accuracy of the gradient is related only to a
and then the smaller is the dither amplitude the better will be the gradient
estimate.

4.3.3 Optimizer

The average behavior described in the previous section allows to define the
average learining dynamic as:

˜̂̇u = c
∂̃J
∂u

= c

(
∂J
∂u

+ O(a)

)
(34)
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The value of the dither amplitude a and the learning rate c are responsible
for the accuracy of the Extremum Seeking algorithm since they define the
convergence domain size for the performance J and the dead-zone ampli-
tude delta. By selecting a sufficiently small, the J value will converge to a
O(a)-neighborhood of J∗. Furthermore, û remains in a o(c)-neighborhood
of ˜̂u. Then the convergence of û and y(t) will be defined in a O(a) + o(c)
limited domain surrounding respectively u∗ and y∗.

4.3.4 Extremum Seeking with Periodic Outputs

x+

J

ω

2π

� t

t− ω
2π

Jsin(ωt − φ)u̇ = −c
�∂J

∂u

2

a

OPTIMIZATION

sin(ωt − φ)a sin(ωt)

J(y)
ẋ(t) = f(x, r(t), d(t), u(t))
y(t) = h(x, r(t), d(t), u(t))

y(t, u)

�∂J

∂uû

u

r(t),d(t)

Figure 60: Extremum seeking algorithm with periodic outputs

Many engineering systems execute repetitive tasks and this implies work-
ing conditions with periodically varying steady state outputs. Linear mo-
tion systems such as pick and place machines, wafer scanners and machine
tools are applications where appears this kind of behavior and where the
extremum seeking algorithm can reveal very useful to improve their perfor-
mance. However so far, the extremum seeking optimization has been used
mostly in plants with constant outputs but in the past few years the atten-
tion moved also to systems with periodic steady state outputs. In [109] it
has been proposed a novel extremum seeking method applied to generic
non linear systems with periodic steady states outputs that is suitable for a
motion control context. Given the plant:

ẋ(t) = f (x, r(t), d(t), u)

y(t) = h(x(t), d(t), u) (35)

where the system dynamics depends on the disturbance d(t) and the param-
eter u. Moreover the output y(t) is periodic with period T. Let us consider
that the performance of the plant (35) is optimized by the extremum seek-
ing scheme of figure 60 acting on the parameter u. In [109] it has been
demonstrated that, if the following assumptions are valid:

1. The input pair r(t), d(t) is bounded and periodic with a constant T
period.
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2. For every fixed parameter u the system (35) is globally asymptotically
stable and its steady state solution x(t, u) is unique and T−periodic.

3. The steady state performance map J has an unique global minimum
(or maximum) for u = u∗.

Then the extremum seeking scheme is semi-globally practically asymptoti-
cally stable (SGPAS). This stability condition ensures that the optimization
loop converges to an an arbitrarily small neighborhood of u∗ by properly se-
lecting a sufficiently small set of the dither amplitude a, the dither frequency
ω and the learning rate c. Then, whatever the initial conditions, the param-
eter u will converge to the optimal point u∗ with the desired accuracy (and
speed), determined by the choice of a, ω and c. Moreover in the same work
it has been also proposed the use of the moving average filter of equation
(36) that provide a more accurate estimation of the gradient dJ

du .

ω

2π

∫ t

t−Td

J sin(ωτ + φ)dτ (36)

The filter deletes the oscillations due to the dither signal and provide an
estimate of the average slope of the performance in a neighborhood of u as
explained in section 4.3.2. In this gradient estimator is also introduced the
fourth parameter φ that can be used to avoid the phase shifts due to the sys-
tem dynamics and the performance computation. In the following sections
we will always refer to this method for the estimation of the gradient.

4.3.5 Variable Gain Controller Optimization

x+

J

ω

2π

� t

t− ω
2π

Jsin(ωt − φ)δ̇ = −c
�dJ

dδ

2

a

OPTIMIZATION

sin(ωt − φ)a sin(ωt)

J =
1

T

� t

t−T

s(τ)e2(τ)dτ
ẋ(t) = f(x, r(t), d(t), δ(t))
y(t) = h(x, r(t), d(t), δ(t))

y(t, !)

�∂J

∂δδ̂

!

r(t),d(t)

Figure 61: Extremum seeking algorithm block diagram for linear motion control

The use of a VGC showed in section 4.2 gives a considerable improvement
of the system accuracy. The controller and the nonlinearity can be tuned
to reach the required performance for a desired task. Usaually the param-
eter choice is done in a heuristic way, but this approach can not be always
valid since a nominal operative condition is affected by a set of disturbances
(such as noise, thermal variations, wear and so on) that changes the system
response. The extremum seeking algorithm can be added to the controller
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Figure 62: Mask application in the wafer scanner example

loop in order to keep the system performance as close as possible to the
optimal level, independently from the external factors that affect the sys-
tem behavior. This is possible since the extremum seeking functioning is
related only to the measured system output and then to its actual work-
ing conditions. As long as the input-output relationship does not change
and there exist an extremum point in the system performance the algorithm
will converge on it despite the disturbances acting on the system. In [111]
this approach has been proposed for the performance optimization of the
motion control of wafer stages. The presented method uses an extremum
seeking algorithm to find the dead-zone amplitude that minimizes the cu-
mulative error of the linear motion system. The extremum seeking architec-
ture (Fig. 61) derives from that one described in the previous section and it
has been applied to the variable gain controller scheme (4.2). The dead-zone
amplitude is considered as a further input of the system and is the param-
eter to optimize while the positioning error is the measured output that is
used for computing the performance of the system. The structure of this
scheme has already been explained in the previous sections, however it is
worth to focus on the computation of the performance J:

J =
1
T

∫ t

t−T
e(τ)2s(τ)dτ (37)

The performance can be computed in different ways (signal amplitude, root
mean square, infinity norm...) according to the application. In this case
it has been chosen the integral of the squared error multiplied by a piece-
wise function s(t). The utility of s(t) is to select and weight some relevant
portions of the error signal in order to increase their contribution to the
performance. For example, considering the wafer scanner case, a silicon
wafer covered with a photosensitive layer is moved under a laser beam that
exposes a specific area. This operation is repeated for each section of the
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wafer that needs to be exposed. Then a normal operative condition consists
of the positioning phase, during which the wafer is moved under the beam,
and the scanning phase where the stage moves at constant speed and the
wafer area is exposed. Then the stage stops and moves to a new position
where the process is repeated. It is clear that the most relevant part, from the
controller performance point of view, is the scanning phase. The mask func-
tion s(t) then should weight the constant velocity part during the scanning
and the acceleration part before it (Fig. 62), in order to take into account also
the positioning errors at the beginning of the operation. The remaining part
of the movement can be neglected in the performance computation.

4.4 experimental activity

The variable gain controller and the extremum seeking techniques have been
tested on the experimental setup shown in figure 63). The motion system is
a magnetically levitated linear axis controlled in all of its six DOF. It is actu-
ated by 6 linear motors with 2 DOF each, while the position measurements
are performed by a 6 DOF interferometer with a resolution of 0.625 nm.
Such a motion platform could be used for example in applications such as
pick-and-place machines or wafer scanners. The main DOF is along the x

axis, allowing a stroke of 80 mm, that will be used for in the experimen-
tal activity. The entire system is placed on a vibration isolation table that
make it very insensitive to external disturbances. The controller design re-
quired to stabilize a MIMO system with 6 outputs and 6 inputs that become
7 when the variable gain controller has been implemented. The controller
design has been performed on the following steps:

plant identification The plant frequency response ha been computed
by the measured FRFs of each axis.

controller design The linear controller has been designed by using
the experimental FRF of the plant and the loop shaping technique [112,
113] aided by a ShapeIt-like tool [114].

extremum seeking optimization The dead-zone length has been op-
timized with the ES control strategy.

 6 DOF CONTROLLED
 CHUCK

LINEAR MOTOR

INTERFEROMETER

xz
y

Figure 63: Nforcer experimental setup
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4.4.1 Frequency Response Analysis

The first phase needed for the design of the Nforcer controller was the plant
identification using the frequency response of the axes. Since an unknown
controller had already been implemented a three point indirect method has
been used (cf. §B.1). A white noise force disturbance has been injected in
the plant and both plant input and output has been measured for each axes.
The experiments have been repeated for different carriage positions along
the entire stroke of the x axis with steps of 10 mm. Figures from 64 to 69

show the frequency response of the identified plant. The Bode plots show a
single mass behavior with a slope of −40 dB/decade in the low frequency part
and the first mass decoupling over 100 Hz that is typical for linear motion
systems. Moreover several resonance peaks appear at higher frequencies.
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Figure 64: Nforcer frequency response of x axis
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Figure 65: Nforcer frequency response of y axis
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Figure 66: Nforcer frequency response of z axis
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Figure 67: Nforcer frequency response of Rx axis
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Figure 68: Nforcer frequency response of Ry axis
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Figure 69: Nforcer frequency response of Rz axis

4.4.2 Controller Design

Linear Controller
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Figure 70: mimo controller structure

The controller of the mimo system has been designed following the sequen-
tial loop closing approach [115]. The method consists of develop the MIMO
controller by designing a single siso controller at time for each input-output
pair. This is possible since there are no interactions among the control loops,
that is, the controller transfer function is diagonal as can be seen in figure 70

where the controller structure implemented on the experimental motion sys-
tem is shown. Then the multivariable nature of the plant can be neglected
and each control loop can be closed sequentially without affecting the sta-
bility of the whole system. However, since the plant inputs and outputs
are cross-coupled (Fig. 71), it is needed to take into account the effect of
the closed loops in the controller design. The plant transfer function has
to consider the contribution of the single SISO controllers and of the cross-
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coupling effect between plant inputs and outputs, providing for each DOF

an equivalent plant transfer function.

Cxx Pxx +
- ex

yx

Pyx

Pxy

PyyCyy

yy++

+

ey

dx

dy

-

rx

ry

Figure 71: mimo system with interconnection

Referring to the 2× 2 mimo system of figure 71, the equivalent plant is
given by:

Peq
xx = Pxx − PxyCxx(I + PyyCyy)

−1Pyx (38)

Once that each loop has been closed, the 6 SISO controllers are tuned using
the equivalent plant, as it was the real plant, in order to reach the stability
and the desired robustness of the mimo system. It is worth to notice that the
design of the controller did not require any model of the plant but it based
only on the measured frequency response of the system. This allows to
overcome modeling inaccuracies and deal with the actual system behavior.
In the following sections will be provided the controller features for each
axis of the experimental motion system showing the differences between
the real and the equivalent plant.
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(a) x axis open loop transfer function
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Figure 72: x axis siso controller

CONTROLLER BLOCKS

gain 5.6× 10−5

lead filter

1
2π15 s + 1

1
2π250 s + 1

lowpass filter

1
1

(2π500)2 s2 + 2·0.4
2π500 s + 1

integrator

s + 2π15
s

notch filter

1
(2π514.6)2 s2 + 2·0.005

2π514.6 s + 1
1

(2π600)2 s2 + 2·0.5
2π600 s + 1

Table 5: x controller elements
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(a) y axis open loop transfer function
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(b) y axis Nyquist plot

Figure 73: y axis siso controller

CONTROLLER BLOCKS

gain 1.92× 10−5

lead filter

1
2π5 s + 1

1
2π480 s + 1

lowpass

filter

1
1

(2π350)2 s2 + 2·0.5
2π350 s + 1

integrator

s + 2π10
s

notch filter

1
(2π804)2 s2 + 2·0.05

2π804 s + 1
1

(2π804)2 s2 + 2·0.5
2π804 s + 1

Table 6: y controller elements
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(a) z axis open loop transfer function
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(b) z axis Nyquist plot

Figure 74: z axis siso controller

CONTROLLER BLOCKS

gain 4.70× 10−5

lead

filter

1
2π10 s + 1

1
2π180 s + 1

lowpass

filter

1
1

(2π500)2 s2 + 2·0.5
2π500 s + 1

integrator

s + 2π10
s

Table 7: z controller elements
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(a) Rx axis open loop transfer function
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(b) Rx axis Nyquist plot

Figure 75: Rx axis siso controller

CONTROLLER BLOCKS

gain 3.03× 10−7

lead

filter

1
2π10 s + 1

1
2π300 s + 1

lowpass

filter

1
1

(2π500)2 s2 + 2·0.5
2π500 s + 1

integrator

s + 2π

s

notch filter

1
(2π828.4)2 s2 + 2·0.1

2π828.4 s + 1
1

(2π828.4)2 s2 + 2·0.5
2π828.4 s + 1

Table 8: Rx controller elements
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(a) Ry axis open loop transfer function
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(b) Ry axis Nyquist plot

Figure 76: Ry axis siso controller

CONTROLLER BLOCKS

gain 1.58× 10−7

lead

filter

1
2π8 s + 1

1
2π400 s + 1

lowpass

filter

1
1

(2π453)2 s2 + 2·0.5
2π453 s + 1

integrator

s + 2π10
s

notch filter

1
(2π1040)2 s2 + 2·0.1

2π1040 s + 1
1

(2π1040)2 s2 + 2·0.5
2π1040 s + 1

Table 9: Ry controller elements
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(a) Rz axis open loop transfer function
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(b) Rz axis Nyquist plot

Figure 77: Rz axis siso controller

CONTROLLER BLOCKS

gain 3.20× 10−7

lead

filter

1
2π8 s + 1

1
2π300 s + 1

lowpass

filter

1
1

(2π500)2 s2 + 2·0.5
2π500 s + 1

integrator

s + 2π10
s

notch filter

1
(2π800)2 s2 + 2·0.1

2π800 s + 1
1

(2π1100)2 s2 + 2·0.1
2π1100 s + 1

Table 10: Rz controller elements
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Variable Gain Controller
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Figure 78: VGC implementation in the mimo controller structure

The variable gain controller implementation is obtained starting from the
linear controller architecture, by adding a new input (Cin6 in figure 78) that
takes the tracking error in the x direction and processes it through the non-
linear function φ. The result is then filtered by the loop shaping filter F(s)
and added to the x controller output (Fig. 78). The variable gain controller
design requires that the extra gain and the filter F(s) has to be selected. Fig-
ure 79b shows the Geu transfer function both for the case without shaping
filter F(s) = 1 and for the case with the designed filter. If no F(s) is used
the maximum extra gain allowed according to the circle criterion (cf. §4.2)
is α = 1

0.63 = 1.59. The designed shaping filter involved the use of a notch
filter to increase the allowable gain and a low pass filter to reduce the high
frequency noise (see table 11 for the filter features). In this way the available
additional gain is increased to α = 1

0.26 = 3.8 and for the considered appli-
cation the extra gain α = 3 was selected in order to have more robustness
(red dashed line in figure 79b). As for the linear case, the stability has been
assessed using the measured frequency response data. Compared to the
linear case the VGC bandwidth is increased form 50 Hz to 80 Hz as it can
be seen in figure 79a the sensitivity of the two limit configurations is shown.
The response of the low gain controller (blue solid line) is obtained by choos-
ing δ = ∞ while the response of the high gain controller (red dashed line)
is obtained with δ = 0. The selection of intermediate values of the dead-
zone length provides a tradeoff between this two characteristic and it will
be optimized by the ES action.
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Figure 79: Controller performance and stability

10
0

10
1

10
2

10
3

−150

−100

−50

0

50

100
Open Loop

Hz

dB

 

 

LGC
HGC

(a) Variable Gain Controller open loop

transfer function

−5 −4 −3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3
Nyquist 

Re

Im

 

 

LGC
HGC
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Figure 80

VGC BLOCKS

gain α 3

lowpass

filter

1
1

(2π300)2 s2 + 2·0.7
2π300 s + 1

notch filter

1
(2π60)2 s2 + 2·0.5

2π60 s + 1
1

(2π40)2 s2 + 2·1
2π40 s + 1

Table 11: Shaping filter elements
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Tradeoff Assessment

The VGC approach is effective only if the tradeoff between low and high
gain controller shows up. For this reason a set of preliminary tests has been
conducted in order to evaluate the effect of gain variations on the measured
error. Figure 81 shows the result of the first test where a third-order motion
profile has been used as reference signal. The resulting error proves that the
high gain controller is the best solution since the noise level is so low that no
significative amplification is introduced. This behavior has not been unex-
pected since the experimental setup design and the use of the isolation table
are intended to avoid as much as possible the effect of external disturbances.
Then a second test has been necessary in order to emulate a real application
and make evident the tradeoff between the controller setup. Machines op-
erating in an industrial environment are affected by high-frequency force
disturbances (e. g. the cross-talk from other machine components, the mea-
surement noise, the contribution of adjacent machines...). To obtain such
effect an high frequency colored disturbance, obtained by filtering white
noise in the 100− 200 Hz band, has been injected in the system. A third-
order displacement profile similar to the previous one has been used for
the reference input (Fig. 82a). Figure 82b shows that the injected noise pro-
duces the desired effect. The better performance during the motion phase
of the high gain controller is counterbalanced by the noise amplification in
the standstill position. In this situation the controller yield can be effectively
improved by the VGC with the proper tuning of the dead-zone length. In
this regard will be presented the experimental results regarding the use of
the extremum seeking strategy to optimize the variable gain controller as
proposed in section 4.3.5.
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Figure 81: Preliminary tradeoff test
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Figure 82: Tradeoff test with injected noise

4.4.3 Extremum Seeking Tests

The purpose of experimental activity on the extremum seeking control im-
plemented in the experimental motion system is twofold: on one hand the
optimization of the dead-zone length of the VGC and, on the other hand,
to provide a better knowledge on the effects of the ES parameters choice
(a, ω, c). As stated in section 4.3.1 the dither frequency ω, the learning
rate c and indirectly also the dither amplitude a contribute to the time scale
separation among the system dynamics and the ES dynamics which is the
key aspect of the optimization procedure. However there are no specific
rules about the choice of these parameters that usually is done with a trial-
and-error approach. The tests, executed with different configuration of the
ES algorithm, provided a better insight of the role of each parameter lead-
ing to more specific guidelines on their selection. The experimental activity
that will be presented has been divided in three parts. First the static per-
formance map as been built from the measured data in order to verify the
extremum seeking convergence. Then some tests have been performed to
prove the optimization of the dead-zone amplitude and finally the last ex-
periments have been conducted to understand the effect of each parameter
on the ES yield.

Input Signals

The input signals used in the experiments are the reference signal, the high
frequency force disturbance and a mask function s(t). The choice of these
signal has been related to the case of a pick and place operation: the system
is moved in the commanded position in 0.5 s where is kept standstill for
placing the component. After 1 s the carriage is moved back to the starting
point in 0.5 s to pick a new component and then the operation is repeated
resulting in a T = 2 s periodic path. The reference signal is the third-order
motion profile used in the tradeoff assessment experiments with a 10 mm
stroke. The system is moved with a velocity of 0.032 m/s, an acceleration
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Figure 83: Input signals

of 0.256 m/s2 and the resulting jerk is 4.096 m/s3 (Fig. 83). The force dis-
turbance is white noise filtered in the 100− 200 Hz band. The frequency
content of the disturbance is well separated from the 0.5 Hz frequency of
the reference signal and then it can be approximatively considered as a peri-
odic signal with period T = 2 s. As a consequence the T−periodic bounded
reference (r(t)) and disturbance (d(t)) inputs satisfy the first stability as-
sumption of the ES strategy (cf. §4.3.4). The mask function (s(t)) is needed
to tailor the controller performance to the specific application. In the case
of the pick and place task the machine should guarantee high positioning
accuracy while the component is being placed. For this reason the mask
applied to the signal has mainly to highlight the contribution of the error
during the approaching phase and mostly when the system is kept in the
standstill position, during the placing phase. All the other contributions can
be neglected in the performance computation. The selected mask function
is shown in the last plot of figure 83 together with the normalized error
(red dashed line). It is worth to notice that the use and the choice of the
mask function is completely arbitrary being related to the specific case. A
different mask as that one of section 4.3.5 would lead to a different perfor-
mance map and then to a different optimization result. However this does
not affect the convergence of the algorithm until an extremum point can be
found.

Static Performance Map

The static performance map (Fig. 84) has been built by measuring the steady-
state performance for 100 different values of δ in the range between 0 µm
(high gain controller) and 2.5 µm (low gain controller). Since the operat-
ing conditions of the experimental motion system slightly changed during
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Figure 84: Static performance map from experimental test

the tests, the static map has been measured ten times and then the aver-
aged curve (blue solid line) and the confidence interval ±3σ (red dashed
line) have been used for the extremum seeking validation. The changes in
the system response does not constitute an issue for the optimization since
they are slower than the convergence dynamics and indeed they provide a
good proof of the extremum seeking capability of continuously adapt to the
optimal solution.

Dead-zone Optimization

The extremum seeking convergence has been tested setting the the dither
amplitude a = 0.05 µm, the dither period Tω = 10 s and the adaptation rate
c = 0.3. The optimal dead-zone δ∗ has been found starting from the initial
dead-zone amplitude δ = 1.4 µm. At the beginning the adaptation has been
disabled (c = 0) for 30 s in order to let the stabilized plant to converge
to its steady-state performance. The convergence of the plant dynamics
is constrained by the input period since at least T seconds of data history
are needed to build up the information on the steady-state performance.
Moreover also the dither period contribution has to be taken into account
since Tω seconds of history are needed to perform the gradient estimate.
Then the minimum time required before starting the adaptation is equal
to T + Tω seconds. Figure 85 shows that extremum seeking converges in
a neighborhood of the optimal dead-zone δ∗ = 0.25 µm in around 200 s.
The time scale separation can be seen in the convergence detail of figure 86.
The fast dynamic is included in the 2 s T-period, the medium dynamics is
highlighted by the Tω-periodic oscillations of the performance and the slow
dynamics is the whole convergence time. In the right plot of figure 86 it is
also possible to notice the effect of the mask function with the varying part
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related to the weights applied to the tracking error and the constant values
related to the neglected part of the signal.
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Figure 85: Extremum seeking optimization

PARAMETERS

dither

amplitude

[a]

0.05 µm

dither period

[Tω]
10 s

learning rate

[c]
0.3

Table 12: Extremum seeking parameters of the optimization experiment
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Figure 86: Time scale separation

The tracking error resulting from the optimized dead-zone is shown in
figure 87 where it can be seen that the optimized VGC clearly outperforms
the linear controller. The extra gain applied only during the motion phase re-
duces the tracking error of the low gain controller while the high frequency
noise is not amplified thanks to the proper selection of the dead-zone am-
plitude.
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Figure 87: Optimization result on the tracking error
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Figure 88: Dither amplitude and adaptation gain effect

PARAMETERS

a c Tω

test 1 0.01 µm 0.1 10 s

test 2 0.05 µm 0.3 10 s

test 3 0.1 µm 0.5 10 s

Extremum Seeking Parameters Choice

The extremum seeking parameters affect both the convergence time and the
accuracy of the algorithm. However they are also responsible for keeping
the time scale separation which ensures the convergence of the optimized
variable. This implies that the parameters are related to each other and can
not be freely selected. The dither amplitude a is directly related with the
neighborhood size of optimal δ∗ value to which the ES converges and then
it defines the convergence accuracy of the algorithm. However it can not
be chosen too small without reducing the adaptation parameter c as well.
The learning rate in fact determines the slowest dynamics of the algorithm
and should be kept small enough compared to the faster dither dynamics.
If c is too high the adaptation will move quickly out of the δ neighborhood
explored by the dither signal causing a wrong gradient estimate and, in
the worst case, the break down of the time scale separation. In figure 88

are shown three tests conducted with the same dither period and different
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values of the a − c pair. Compared to the other experiments the first test,
conducted with a dither amplitude of 0.01 µm, will converge in a smaller
neighborhood of the solution resulting to be more accurate. However it
requires also a smaller adaptation gain and then the convergence time is in-
creased as well (units 17 minutes). Similarly also the dither period must be
properly selected according to the plant dynamics. The period Tω rules the
gradient estimate dynamics that must be slower than the system response,
so that the measured performance is kept close to the steady-state static
map. In this specific case, that involves periodic inputs, the system dynam-
ics is determined not only by the plant transients but also by the period T
of the input signal. The dither period should be higher than the input pe-
riod to guarantee the time scale separation or in other words, it should be
high enough to perceive δ as constant in one signal period. The effect of the
dither period choice is shown in figure 89. Four tests has been conducted
choosing Tω as a multiple of the input period (2T, 3T, 4T, 5T) and keep-
ing the same dither amplitude and learning rate. In the first experiment
Tω was too close to the input period resulting in a completely wrong gradi-
ent estimate. The ES then moved in the opposite direction diverging from
the optimal solution. Choosing Tω = 3T made the algorithm to converge,
however the time scale separation is not yet fully observed and the gradient
is underestimated making the convergence slower than the remaining two
tests. These two last cases show quite the same response due to a proper
choice of the dither period. On the other hand, it is worth to notice that
a too high Tω will move the dither dynamics too close to the convergence
dynamics, requiring as a consequence a smaller adaptation rate and then a
slower optimization.
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PARAMETERS

a Tω c

test 1 0.05 µm 2T 0.3

test 2 0.05 µm 3T 0.3

test 3 0.05 µm 4T 0.3

test 4 0.05 µm 5T 0.3

4.4.4 Discussion

The proposed ES approach proved to be useful for the inline performance op-
timization of the VGC. The application of this method to the control of linear
motion system allowed to achieve low tracking error and good disturbance
rejection. The optimized VGC outperformed the linear motion controller
avoiding the occurrence of the waterbed effect and providing an optimal
tradeoff among the conflicting controller features. On the other hand the
experimental results highlighted that the use of the ES requires an accurate
selection of the parameters in order to guarantee the convergence to the ex-
tremum point. For this reason the knowledge of the system dynamics and a
minimal assessment of the performance function are suggested so that the
ES loop can be properly designed.





5
C O N C L U S I O N

According to the current trends in machining manufacturing, that requires
high production rate with high quality of the machined parts, the enhance-
ment of the automation level in modern CNC machine tools is a compelling
need. The key requirements are intended to prevent working defects, re-
jects and unexpected downtimes. In this context a monitoring system has
been developed with the aim to supervise the working operation of CNC

machine tools. The system has been designed as a distributed architecture
with one or more nodes that perform the monitoring tasks and one node
that manage the communication between the monitoring system and the NC

of the machine. Each monitoring node is based on a microcontroller that
acquires data from sensors, executes the programmed tasks communicating
the results to the machine and, if required, commands a corrective action
as the regulation of the cutting parameters. The proposed architecture is
scalable, allowing the connection of new nodes to the existent system, and
thanks to the reduced size, it is easily integrable in the machine structure.
This guarantees an high flexibility for the choice and location of monitoring
nodes allowing the upgrade of the system if new sensors and new moni-
toring task are required. The implementation of the monitoring algorithms
has been performed with the twofold aim of robustness and ease of use. In
the first case the system should properly operate in several working condi-
tions including different cutting process, different tools and even different
machine architecture. In the second case the developed monitoring algo-
rithms do not require specific knowledge to the machine user providing
easy to understand outputs and a limited set of configuration parameters.
The developed monitoring tasks includes:

- Vibration Monitoring and vibration mitigation executed during the
milling process with the purpose of containing the vibration level that
can affect the surface finishing and the tool life.

- Condition Monitoring needed to assess the health of the spindle bear-
ings. It detects a possible fault and provides the diagnosis of the faulty
element.

- Collision Detection used to halt the machine in case of a dangerous sit-
uation as a collision. It provides a fast response that is not achievable
by the machine operator preventing severe damages to the machine.
It is also useful for minimally supervised machining operation. In
addition a similar task has been developed for the accessory heads
of the machine in order to allow the onboard node to record events
when the device is not operative.

Finally these algorithms have been successfully tested with dedicated ex-
periments and subsequently they have been embedded in a state machine
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architecture that constitutes the main software framework. Each monitoring
activity can be executed by the machine operator except for the Collision
Detection task that is always active for safety reasons. The developed super-
visory system is an innovative device in the machine tool field capable to
adapt to different working conditions and perform several monitoring tasks,
making it suitable for equipping machine tools operating in a industrial en-
vironment. The present work is concluded with the application of a novel
control strategy to linear motion systems with the aim of optimizing the con-
troller performance. A Variable Gain Controller scheme has been applied to
plant in order to improve the response of the system in terms of tracking er-
ror and disturbance rejection. Then an Extremum Seeking-based algorithm
has been used to optimize the variable gain of the controller. The proposed
approach has been experimentally validated with success providing also a
better insight on the tuning of Extremum Seeking loop. This study provided
a promising strategy for the inline calibration of the machine axes in order
to adapt the motion controller response to the actual operative conditions
of the machine by compensating the contribution of slowly varying effects
(e. g. temperature variation).

Future Developments

The developed supervisory system offers a flexible architecture for the mon-
itoring of machining operations. The system can be easily adapted to differ-
ent machine tools and machining processes and further monitoring task can
be added. Future activities will aim to improve the whole system by enhanc-
ing the performance of monitor nodes with powerful microcontrollers and
implementing more sophisticated algorithms. In addition the monitoring
system will be integrated with a controller for the offline optimization of
the working process with the purpose of achieving an intelligent manufac-
turing system capable of optimizing and controlling the process execution.
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C O N T R O L T H E O RY

a.1 the waterbed effect
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Figure 90: Controller scheme

The waterbed effect describes the main limitation of the performances in
linear control design. A proper control design should satisfy requirements
in terms of robustness, reference tracking and disturbance rejection. The
sensitivity function S then plays an important role in the design since it is
related both to the tracking error and to the disturbance attenuation. In
fact considering the controller scheme of figure 90 the tracking error can be
written as:

e =
1

1 + PC
· (r− n)−

P
1 + PC

· d = S · (r− n)− Ps · d (39)

where S and Ps are respectively the sensitivity and the process sensitivity.
According to equation 39 the desired sensitivity has to be small inside the
bandwidth where we want high performance but it should be kept low also
in other frequency ranges where disturbances and noise affect the controller
response. This is an issue for most of the linear controllers since there exists
an important constraint for the sensitivity function due to the Bode sensitiv-
ity integral.

Theorem 1 (Bode Sensitivity Integral) Let L and S be respectively the open
loop transfer function and the sensitivity function. If L(s) has pk poles on the right
half-plane than the sensitivity function satisfies the following relation:

∫ ∞

0
log(S(iω))dω =

∫ ∞

0
log

(
1

1 + L(iω)

)
dω

= π ∑
k

Re(pk)−
π

2
lim
s→∞

sL(s)

(40)

The theorem shows that the integral of |S(s)| remains constant allover the
frequency band and this implies that the amount of error suppressed in a
certain frequency range will be redistributed elsewhere. In other words, im-
proving the error rejection of the controller (e.g. increasing the bandwidth)

131



132 control theory

will cause an amplification of the error in the high frequency region. If the
system is stable (no poles in the right half-plane) and L(s) has two more
poles than zeros, how usually happens in motion systems, the equation 1

turns in:
∫ ∞

0
log(S(iω))dω = 0 (41)

This equation can be easily explained thinking to the Bode plot of the sen-
sitivity function (Fig. 91). In fact, due to (41), the area beneath the curve
within the controller bandwidth must be the same of the area beneath the
curve beyond the bandwidth. In figure 91 it can be seen how this phe-
nomenon affects the performance of the controller. An higher gain implies
a wider band and a better attenuation of error, but beyond the crossover
frequency the error will be much more amplified by the controller with the
higher gain.
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Figure 91: Waterbed effect

a.2 stability of non linear systems

The stability of a linear control system is a condition uniquely determined
and independent of the presence of inputs (bounded). The study of the sta-
bility leads to a steady state solution that has the following characteristics:

- Is unique and is valid both for the unperturbed and perturbed system.

- Is periodic if the system inputs are periodic.

These assumptions are no more valid in the study of non linear control
systems. In general a non linear system has complex steady state solution
depending on its inputs and on initial conditions. Studying the stability of
a non linear system means to define two main properties:

input to state stability determines if the system is stable with no in-
puts and if the system has a bounded or convergent response with
bounded or convergent inputs.
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convergence of solutions determine if the steady state solutions of
the system with different inputs converge to a common equilibrium
point.

Input to State Stability

Considering a linear system give by the equation:

ẋ = Ax + Bw(t) (42)

If the system is stable i.e. A is Hurwitz (poles are in the left half plane) and
is perturbed by a bounded input (w(t)), then the general solution of the
system is:

x(t) = eA(t−t0)x(t0) +
∫ t

t0
eA(t−τ)Bw(τ)dτ (43)

and the output (state) x(t) is bounded according to:

‖x(t)‖ ≤ k‖x(t0)‖e−λ(t−t0) +
k
λ
‖B‖ sup

t0≤s≤t
‖w(s)‖ with k, λ > 0 (44)

Equation 44 shows that the system response is given by the contribution of
two elements; the first term represents the system response with no inputs
(zero-input stability) while the second term describes the system evolution
due to bounded or converging inputs (asymptotic gain property). For linear
systems this two properties are equivalent and the existence of one of them
implies also the existence of the other one. Similarly the stability of non
linear system involves these two properties that however are not related to
each other. The definition of the input to state stability property includes
these two notion and allows to describe the stability of a non linear system
both under unperturbed and perturbed conditions.

Theorem 2 The non linear system:

ẋ = f (x, w(t)), f (0, 0) = 0 (45)

is input to state stable if there exist a K-function γ(w) (strictly increasing func-
tion) and a KL-function β(x, t) (strictly increasing in x, decreasing in t) such
that:

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0) + γ

(
sup

t0≤s≤t
‖w(s)‖

)
(46)

The input to state stability implies that the equilibrium point x = 0 of the un-
perturbed system is globally uniformly asymptotic stable and that a bounded
input leads to a bounded output. In general it is required to find a ISS-
Lyapunov function in order to state whether a system is input to state stable
and to compute the functions β and γ.
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Theorem 3 () The non linear system 45 is ISS-stable if and only if there exists a
smooth ISS-Lyapunov function. A function V(x, t) is an ISS-Lyapunov function,
if there exist class K∞-functions α1(‖x‖), α2(‖x‖) (a K-function which goes to
infinity with x→ ∞) and class K-functions α3(‖x‖), ρ such that:

α1(‖x‖) ≤ V(x) ≤ α2(‖x‖)

V̇ = ∂V
∂x f (x, w) ≤ −α3(‖x‖), f or‖x‖ ≥ ρ(‖w‖)

(47)

Finding a ISS-Lyapunov function, generally is difficult, however for some
classes of systems as Lur’e type systems there exist constructive conditions
that simplify the definition of input to state stability.

Stability of Lur’e Type Systems

A non linear control system is treated as a Lur’e problem if it can be reduced
to a system with a linear time invariant part in the feedforward path and a
nonlinearity in the feedback loop (figure 92).

r(t)

-

u(t) y(t)




ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

φ

Figure 92: Lur’e type system scheme

Considering an unforced system (r = 0) described by:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

u = −φ(t, y)
(48)

where φ(t, y) is Lipschitz in y and G(s) = C(sI − A)−1B + D is a rational
proper transfer function of the system, then for all the non linearities φ(t, y)
satisfying a sector condition, the origin x = 0 is a equilibrium point. The
system 48 is absolutely stable if the origin is globally uniformly asymptotic
stable for any non linearity in the given sector. For Lur’e type systems this
conditions are verified by the Circle Criterion.

Theorem 4 (Circle Criterion) The non linear system 45 is absolutely stable if
one of this conditions holds:

- φ ∈ [0, ∞] and G(s) is strictly positive and real (Fig. 93a).

- φ ∈ [K1, ∞] and G(s)(1+K1G(s))−1 is strictly positive and real (Fig. 93b).
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- φ ∈ [K1, K2] with K2 > K1 and (1 + K2G(s))(1 + K1G(s))−1 is strictly
positive and real (Fig. 93c).

- φ ∈ [0, K1] and (1 + K1G(s)) is strictly positive and real (Fig. 93d).
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y
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(0, K1)

Figure 93: Sector conditions for non linear functions

Definition 1 A proper rational transfer function H(s) is strictly positive and real
if and only if:

1. H(s) has all poles in the left-half plane, (Hurwitz).

2. Re(H(jω)) > 0 ∀ω ∈ R.

3. H(∞) > 0

Convergence of Solutions

Unlike linear systems, the steady state response of a non linear system is not
unique. In general different initial conditions lead to different equilibrium
points and it is not possible to determine them a priori, making the analysis
of the non linear system difficult. Then it would be advantageous to have a
non linear system whose response deriving from any initial condition will
converge to a unique steady state solution determined only by the input.
The convergence property is defined by:

Definition 2 (Convergence) A non linear system

ẋ = f (x, w(t)) (49)



136 control theory

is:

- Convergent if:

* ∃ a unique (defined and bounded) steady state solution
x̄w : supt∈R ‖x̄w(t)‖ < +∞.

* x̄w(t) is globally asymptotically stable.

- Uniformly convergent if x̄w(t) is convergent and globally uniformly asymp-
totically stable.

- Exponentially convergent if x̄w(t) is convergent and globally exponen-
tially stable.

t t

x x

Figure 94: Convergent and not convergent solutions

The importance of the convergence property lies on the fact that we know
what will be the steady state response of the system regardless of the initial
conditions. A convergent non linear system will have a unique bounded
globally asymptotically stable solution for any t ∈ [−∞, ∞] that depends on
the input. In case of a constant input the response will be constant and with
a periodic input the steady state behavior will be periodic with the same
period. To check if the convergence property belongs to a given system it
can be used a sufficient condition proposed by Demidovich in [116]:

Theorem 5 Consider the nonlinear system (49) and let the function f (x, w(t)) be
C1 with respect to x and continuous with respect to w. If there exist two positive
definite symmetric matrix P, Q such that

P
∂ f
∂x

+
∂ f
∂x

T

P ≤ −Q ∀x ∈ Rn, w ∈ Rm (50)

then the system is exponentially convergent for all bounded w(t)

This theorem applies also to the conditions proposed by Yakubovich in [117]
for global asymptotic stability of all solutions for Lur’e type systems. This
method ensures the convergence property for systems of the form:

ẋ(t) = Ax(t) + Bu(t) + Bww(t)

y(t) = Cx(t) + Du(t)

u = −φ(t, y)
(51)
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if the conditions of the following theorem are met:

Theorem 6 The Lur’e type system (51) is convergent if:

- 0 ≤
φ(y2)− φ(y1)

y2 − y1
≤ α, ∀y2 6= y1.

- Re(Gyu(s)) < −
1
α

.

- Gyu(s) is Hurwitz.

The first condition is called incremental sector condition and implies that
the derivative of the nonlinearity φ must be always positive and at least
equal to the constant value α. If the non linear system (49) can be described
as a Lur’e type system and both the circle criterion and the incremental
sector condition are valid, then there exists a unique globally asymptotically
stable solution, bounded for t ∈ [−∞, ∞]. Moreover if the system is subject
to periodic inputs with period T, also the steady state response will be
periodic with the same period.



B
F R E Q U E N C Y R E S P O N S E E S T I M AT E

b.1 indirect frequency response measurements

Frequency response measurement are generally used in control design for
the identification of the plant model. The simplest case is to identify the
plant when it is in a open loop configuration.

H

n(t)

y(t)u(t) +

Figure 95: Open loop scheme

Then given a plant H approximately linear subject to an unknown distur-
bance n(t) and to a known input u(t), the measured output is obtained by:

y(t) = H ⊗ u(t) + n(t) (52)

that in frequency domain becomes:

Y( f ) = H( f )U( f ) + N( f ) (53)

Multiplying every therm of the equation with the complex conjugate of the
Fourier transform of the input U∗( f ) we obtain:

Y( f )U∗( f ) = H( f )U( f )U∗( f ) + D( f )U∗( f ) (54)

that can be written as

Syu( f ) = H( f )Suu( f ) + Snu( f ) (55)

where Sii is the power spectral density of i and Sji is the cross power spectral
density between i and j. If the input u(t) and the disturbance n(t) are
uncorrelated then:

Snu( f ) ≈ 0 (56)

and then the transfer function of the plant can be obtained by:

Syu( f )
Suu( f )

≈ H( f ) (57)

138



B.1 indirect frequency response measurements 139

Indirect Methods

H

n(t)

y(t)u(t) +
C

d(t)

+

-

r(t) e(t)

Figure 96: Close loop scheme

The direct method is not always applicable since there could be situation
where the plant is already controlled or needs to be controlled before per-
forming the measurements (e.g the system is unstable). Then indirect meth-
ods are used to identify the plant, computing a closed loop transfer function
of the stabilized plant and deriving H( f ) from it. The first technique, called
two points indirect method, is used when the controller transfer function
C( f ) is known or measurable. It consist of applying a disturbance d(t) to
the system and measure the plant input u(t). The closed loop transfer func-
tion between u and d is:

U( f ) = D( f ) + C( f )R( f )− C( f )H( f )(U( f ) + N( f ))

=
1

1 + C( f )H( f )
D( f ) +

C( f )
1 + C( f )H( f )

R( f ) +
1

1 + C( f )H( f )
N( f )

U( f ) = S( f )R( f ) + S( f )(D( f ) + N( f ))
(58)

where S( f ) is the sensitivity transfer function. Multiplying each term with
the complex conjugate of the disturbance we will obtain:

Sud( f ) = S( f )Srd( f ) + S( f )(Sdd( f ) + Snd( f )) (59)

All the other inputs are uncorrelated to the disturbance, then the sensitivity
of the system can be obtained by:

S( f ) ≈
Sud( f )
Sdd( f )

(60)

Since the controller C( f ) is known, the plant can be identified as:

H( f ) ≈
1− S( f )
C( f )S( f )

(61)

In order to obtain a good estimate of H( f ) the disturbance d(t) should be
white noise and no reference should be given. In this way the disturbance
and the other inputs will be strongly uncorrelated. If the controller acting
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on the system is unknown the presented method is no more reliable and
it is better to use so called three point indirect method. The procedure is
the same of the two point method but in addition also the tracking error
e(t) or the system output y(t) is measured. Knowing the disturbance, the
controller input and the tracking error allows to derive both the sensitivity
and the process sensitivity transfer function from which it is possible to
identify the plant H( f ). Given the input d(t) and the measured signals u(t)
and e(t), the close loop transfer functions are given by:

U( f ) =
1

1 + C( f )H( f )
D( f ) +

C( f )
1 + C( f )H( f )

R( f ) +
1

1 + C( f )H( f )
N( f )

E( f ) =
1

1 + C( f )H( f )
R( f )−

1( f )
1 + C( f )H( f )

N( f )−
H( f )

1 + C( f )H( f )
D( f )

(62)

That, if the reference and the noise are unrelated to the injected disturbance,
becomes:

Sud( f ) ≈ S( f )Sdd( f )

Sed( f ) ≈ −Ps( f )Sdd( f )

(63)

Then the plant transfer function can be derived as:

H( f ) ≈
Ps( f )
S( f )

= −
Sed( f )
Sud( f )

(64)
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