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Abstract 

 

High-melting temperature oxides, carbides and nitrides are superior in 

hardness and strength to metals, especially in severe conditions. However, the 

extensive use of such ceramics in structural engineering applications often 

encountered critical problems due to their lack of damage tolerance and to the 

limited mechanical reliability. Several ceramic composites and, in particular, 

laminated structures have been developed in recent years to enhance strength, 

toughness and to improve flaw tolerance. Significant strength increase and improved 

mechanical reliability, in terms of Weibull modulus or minimum threshold failure 

stress, can be achieved by the engineering of the critical surface region in the 

ceramic component. Such effect can be realized by using a laminated composite 

structure with tailored sub-surface insertion of layers with different composition. 

Such laminate is able to develop, upon co-sintering, a spatial variation of residual 

stress with maximum compression at specific depth from the surface due to the 

differences in thermal expansion coefficient of the constituting layers.  

In the present work silicon carbide has been selected as second phase to 

graduate the thermal expansion coefficient of alumina due to its relatively low 

specific density that could allow the production of lighter components with 

improved mechanical performance, also for high temperature applications. Ceramic 

laminates with strong interfaces composed of Al2O3/SiC composite layers were 

produced by pressureless sintering or Spark Plasma Sintering (SPS) of green layers 

stacks prepared by tape casting water-based suspensions. Monolithic composites 

containing up to 30 vol% silicon carbide were fabricated and thoroughly 

characterized. Five engineered ceramic laminates with peculiar layers combination 

that is able to promote the stable growth of surface defects before final failure were 

also designed and produced. By changing the composition of the stacked laminae 

and the architecture of the laminate, tailored residual stress profile and T-curve were 

generated after co-sintering and successive cooling in each multilayer.  

The results of the mechanical characterization show that the engineered 

laminates are sensibly stronger than parent monolithic composite ceramic and 
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exhibit surface damage insensitivity, according to the design. Such shielding effect 

is especially observed when macroscopic cracks are introduced by high load Vickers 

indentations. Some designed multilayers exhibit reduced strength scatter and higher 

Weibull modulus, which implies superior mechanical reliability. Fractographic 

observations on fracture surfaces of the engineered laminates show a graceful crack 

propagation within the surface layers in residual compressive stress which can be 

attributed to the stable growth of superficial cracks before final failure as it is 

predicted by the apparent fracture toughness curve. Such fracture behaviour is 

considered to be responsible for the peculiar surface damage insensitivity and the 

improved mechanical performance.  
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Chapter I 

Introduction 

 

Materials have always been an integral part of human culture and 

civilization. The role of materials has been so important that historians have 

identified early cultures by the most significant material used then, consider the 

Stone, the Bronze and the Iron Ages of the past. Today, we are not limited to one 

predominant material. Engineers adapt materials to society’s needs and advanced 

technologies rely on sophisticated materials thus we can refer to our modern society 

as the “age of technology” [1]. 

Ceramics industry is the largest raw materials industry and ceramics are 

encountered in virtually every facet of everyday life. Traditional ceramics such as 

cements, glasses, refractories and clays are largely silica or clay based and typically 

involve low-cost fabrication processes. The main use of these ceramics is focused on 

tableware, sanitary wares, fireclays, construction materials and applications 

involving static loading in compressive locations. This use exploits the dominating 

characteristics of ceramics as chemical stability, high melting point, high hardness, 

high elastic modulus and compressive strength, and higher resistance than that of 

either metals or polymers to high temperatures and to severe environments [1–3]. In 

view of such an attractive combination of properties, the development and discovery 

of novel uses of ceramic materials have been improved and ceramics have been 

considered as potential materials for many sectors of industrial society as aerospace, 

electronics, nuclear, biomedical, catalytic, electronic, communication, structural and 

tribological applications [4]. 

Adequate mechanical properties as strength, hardness, toughness and wear 

resistance are of prime importance for structural applications. An optimum 

combination of high toughness with high hardness and strength is usually required. 

Therefore, in the past decades, the study of mechanical behaviour of ceramics and 

the development of ceramic materials with proper combination of mechanical 

properties has been the major focus in the ceramics community [5]. This has led to 
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the discovery of new classes of structural ceramic materials that are typically used in 

components which are load bearing and at the same time exposed to severe 

conditions of wear, corrosion and temperature. Significant success has been 

achieved in many modern designs as cutting-tool technologies, wear resistant 

components, heat exchangers, prosthetics, heat engine components, thermal barrier 

coatings and ballistic armour [4]. 

Unfortunately, ceramics are inherently strong in compression but apparently 

week in tension and bending. General attributes seriously affecting an extensive 

application of ceramics as structural materials are their lack of the requisite 

toughness, brittleness and variability in strength. The strength of  ceramics is indeed 

statistical by nature of the flaw distribution within the body because any geometric 

irregularity leads to a stress concentration. The average size, size distribution and 

type of inhomogeneity determines average strength and strength distribution. 

Moreover a crack once started may grow spontaneously when the critical stress 

intensity is exceeded and, without ample ductility, no energy is consumed by plastic 

deformation. Therefore, the failure is brittle, immediate and occurs in catastrophic 

manner while the wide strength scatter lead to poor mechanical reliability and impair 

safe design [6–8].  

In order to overcome these problems, two principal routes have been 

explored in the last decades and the challenge for scientists has been to make 

ceramics stronger or tougher. The first route consists in decreasing flaw presence 

and severity with more sophisticated preparation process control, proof testing or by 

reducing the component dimensions [9,10]. Glass fibres are a typical example used 

to show that, if no flaws are present, the tensile strength will be as high as the 

compressive strength. If protected from surface abrasion, glass fibres attain strengths 

greater than steel [8]. The ceramics community has been involved with more interest 

in the second route that regards the design and development of new materials and 

structures with increasing toughness and improved flaw tolerance [6,8]. In this case, 

fracture is controlled by a toughness curve and the material possesses a T-curve 

behaviour. Current approaches to toughening are energy dissipative and increase the 

apparent strain before fracture is completed. Since plastic deformation is strongly 

inhibited in ceramics, this process can involve several microstructural toughening 
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mechanisms as matrix microcracking, fibre debonding and phase transformation 

toughening. In the first two mechanisms, fractured surfaces are increased markedly 

so more surface energy has to be provided, micro-displacements appear as apparent 

strains and the energy consumption during fracture is increased. Polycrystalline 

structures with anisotropic grains or composite structures with particles, platelets, 

whiskers or fibers as second phases were produced to exhibit crack pinning, crack 

deflection, crack bridging, fibre pullout, debonding and stress-induced 

microcracking [11,12]. Phase transformation toughening utilizes a rapid stress 

induced structural transformation that involves a molar volume increase and/or 

shape change. The increased toughness is derived from the work required to induce 

the transformation in the vicinity of the propagating crack and from the compressive 

stresses produced by volume expansion that strengthen the material ahead of the 

crack tip. This concept has been applied in monolithic zirconia and systems 

containing dispersed zirconia particles [11,12]. Stress induced plasticity in metallic 

binder and dispersed phases also enhanced fracture resistance [8]. Unfortunately, all 

these solutions require an accurate control of raw materials and processing, are quite 

expensive and only partially overcome the problem of strength scatter. 

The latest developments in ceramic composites show that the use of layered 

structures is the most promising method to increase mechanical performances and 

reliability. Indeed, with multilayer ceramics it is possible to design a structure that 

can be used to control cracks and brittle fracture. Some metal/ceramic laminates and 

several multilayer ceramics, produce in a wide range of materials as alumina, 

zirconia, silicon carbide, silicon nitride and boron nitride, have been investigated in 

the past. In metal/ceramic laminates, the toughness enhancement is controlled by the 

closure exerted by the metallic bridging layers astride the crack [13]. In ceramic 

laminates, toughness has been enhanced by the introduction of weak interfaces or 

internal stresses. The presence of weak interfaces allows for energy dissipation 

before fracture through mechanisms of crack deflection, crack bridging and interface 

delamination. The weakness is given by layers not wholly sintered, generally a 

different material with respect to the main multilayer component, or by the addition 

of pore forming agents in specific layers, bringing to porous structures [14–16]. 

Although the improvements in fracture resistance in these laminates were sufficient 
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to ensure their safe use in many structural applications, delamination and easy crack 

propagation along the weak interface has been the major impediment for a wider 

use. In the case of ceramic laminates with strong interfaces, strength and toughness 

has been enhanced through design of controlled residual stresses. Tempered glasses 

are a well recognize and inexpensive method to enhance mechanical properties by 

the introduction of surface compressive stresses [1]. This goal can be achieved in 

ceramics through the production of laminates where residual stresses arise from 

differences in sintering rates, Young’s modulus or thermal expansion coefficients 

among the laminae of dissimilar materials. The layer composition, as well as the 

system’s geometry, allows the designer to control the magnitude of the residual 

stresses. In particular, if compressive stresses are located at the surface of the 

multilayer, strength is enhanced [17]. Reliability is favoured when compressive 

residual stresses are induced in internal layers as in laminated structures composed 

of alternating thin compressive layers and thicker tensile layers. These laminates are 

characterized by a threshold strength below which rupture does not occur [18,19]. 

The most important limitation of such multilayers is that they can be used only with 

specific orientations to the applied load and they are not suitable for producing 

shells or tubes usually required in industrial applications.  

Recently, Sglavo and co-workers [20–25] have demonstrated that the 

introduction of a residual stress profile with the maximum compression at a certain 

depth from the surface of a glass or a ceramic laminate can force the stable 

propagation of surface flaws up to this specific depth before the final catastrophic 

failure. Therefore, these materials exhibit high strength independent on the 

dimensions of inherent defects and characterized by a limited scatter. High 

mechanical reliability or minimum strength have been experimentally observed in 

oxides laminated structures. In addition, the production of these innovative ceramic 

laminates is economic because based on common ceramic materials and inexpensive 

conventional fabrication methods. These laminated bodies are therefore natural 

candidates for structural applications as in the case of load bearing components in 

automotive and aircraft industry, biomedical prosthesis, chemical plant linings and 

safety systems. The motivation for the use of these laminated composites can be 

traced back to the observation of biological structures in which the most performing 
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parts of the material are located in regions that experience the highest stresses. 

In this work, the approach proposed by Sglavo has been followed to design 

and develop new alumina/silicon carbide composite laminates with high thermo-

mechanical performances. This materials system has been selected to produce lower 

density bodies respect to the oxides systems previously studied. In fact, more often 

density becomes a limitation or a requirement in selecting the ceramics for 

structural, defence and biomedical applications. In addition, alumina and silicon 

carbide possess higher thermal conductivity than most other ceramics. Thus they are 

less subject to thermal cracking from sharp temperature gradients and have potential 

for dynamic high temperature service such as rotors in gas turbines [1]. 

Alumina/silicon carbide composites have been studied extensively for their good 

thermo-mechanical behaviour, especially remarkable high-temperature creep 

resistance, and alumina itself is a potential matrix for structural composites with 

high temperature capability because of its good stability at high temperatures [11]. 

The alumina/silicon carbide system represents also a challenge because of the 

adverse effects during sintering, as weight loss and poor densification, so they are 

generally prepared by hot pressing [11,26].  

In the present paper, alumina/silicon carbide multilayered ceramics with 

residual stress profiles engineered to promote the propagation of surface defects in a 

stable manner up to a maximum depth have been designed and produced by tape 

casting, lamination and sintering. Specifically, pressureless sintering and Spark 

Plasma Sintering have been used for novel laminates manufacturing routes. The 

results of the mechanical characterisation of the engineered laminates, compared to 

the behaviour of simple homogeneous laminates, prove that the manufacturing 

procedure described in this work can be used successfully to produce 

alumina/silicon carbide composite laminates with improved reliability. Evidences of 

stable growth phenomena occurring in the laminates have been demonstrated by the 

analysis of the post indentation strength and by fractographic analysis. 
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Chapter II 

Background 

2. Background 

2.1 Fracture behaviour of ceramic materials 

2.1.1 Brittle behaviour and strength scatter 

Ceramics are compounds that contain metallic and non metallic elements 

held together by very strong covalent or ionic partially covalent bonding. 

Considerable energy is required to break these bonding, therefore ceramic materials 

exhibit refractoriness, chemical inertia, high elastic modulus and hardness, also at 

temperatures above 1000°C. The chemical structure of this class of materials is also 

responsible of another typical feature of ceramics: brittleness. The strong atomic 

bonding do not allow a relevant plastic deformation, in which sliding between 

crystalline planes occurs, and fracture happens essentially by bond rupture that 

propagates in the body at high velocity and low stress levels in elastic field. 

Therefore fracture occurs in brittle and catastrophic manner. Little energy is 

absorbed in brittle fracture, just the energy to separate atoms and create new surface 

is required. Negligible energy for plastic deformation or other dissipative processes 

is involved over most of their useful range of operational temperature. As a 

consequence, the energy requirement to fracture, or fracture toughness, of ceramics 

is poor, with values typically below 5 MPa m0.5 [5,6]. 

Linear Elastic Fracture Mechanics (LEFM) is the basic theory of fracture 

that deals with sharp cracks in elastic bodies. It is generally applied to materials that 

exhibit linear elastic behaviour up to failure, as ceramics [7,8]. The basis of LEFM 

has been originally developed by Griffith (1920) in realizing that bulk strength of 

most materials is lower than the theoretical cohesive strength predicted from 

interatomic potential considerations. He assumed most materials must contain cracks 

that act as stress concentrators and reduce the maximum load bearing capability. 

Griffith considered an infinite plate of unit thickness subjected to an external 
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uniform tensile loading and containing a through-thickness crack. He suggested a 

criteria for the crack extension by developing an energy approach in which the static 

crack is considered as a thermodynamically reversible system and fracture is a 

process controlled by energy exchanges between the body and the loading system. 

In 1948 Irwin observed that the energy balance proposed by Griffith involves terms 

promoting crack extension and a term representing the resistance of the material. So 

he defined two parameters: the “strain energy release rate” G as fracture driving 

force and the “crack resistance force” R that represents all the crack propagation 

resistance processes available inside the material. In addition, Irwin suggested that 

all stress systems in the vicinity of a crack can be derived by only three modes of 

loading of the crack faces (crack opening mode or mode I, shear mode or mode II 

and tearing mode or mode III) and demonstrated, using an elastic analysis of 

stresses, that the local tensions near a crack are higher than the stress applied to the 

body. This amplification of stresses near the crack tip is represented by a parameter 

called “stress intensity factor” K. Irwin proposed a simple relationship between K 

and G and introduced a stress approach alternative to the energy approach. Both 

approaches compare the moving force for crack propagation and the relative 

material resistance pointing out that fracture occurs when a critical condition is 

reached. In particular, failure is considered to occur when G and K, functions of 

stress state and crack geometry, reach respectively R and the “fracture toughness” 

Kc. These critical values are material intrinsic properties. 

In this work, the stress approach and, for synthesis, only the crack loading 

mode I will be considered. Among the three crack loading modes, mode I is indeed 

the more common and dangerous in brittle materials. The stress intensity factor KI 

corresponding to mode I is expressed by the relationship:    

( ) 5.0
I cπσYK =  Eq. (2.1) 

where Y is a dimensionless parameter that depends on the crack and loading 

geometries, σ is the nominal applied stress and c is the crack length as measured 

along the direction normal to the stress axis. The equilibrium condition for the crack 

propagation is reached when KI reaches the critical value KIC: 
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ICI KK =  Eq. (2.2) 

Therefore, only the material toughness KIC and the defect dimension c are necessary 

to completely describe the material strength σb as in the equation: 

( ) 5.0
IC

b
cπY

K
σ =  Eq. (2.3) 

Considering Eq. (2.1) and Eq. (2.3) it is possible to represent the applied stress as 

the angular coefficient of a straight line through the origin in the graphic KI/(Yπ
0.5) 

vs c0.5 (Figure 2.1). So, the strength of a material of toughness KIC, independent of 

crack length, can be easily identified when the defect dimension is known. 

 

Figure 2.1: Strength as a function of  single-value fracture toughness KIC and defect 

dimension c in the graphic KI/(Yπ
0.5) vs c0.5. Strengths σb0 and σb1 relatives to c0 and 

c1 crack lengths are shown. 

Defects considered in Fracture Mechanics are sharp cracks with a well 

defined geometry. In brittle materials these defects are generally assumed to form by 

cleavage of atomic bonds in regions in which there are high local stresses. These 

high stresses arise because of the heterogeneous nature of the material at the 
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microstructural level or because of inelastic deformation that cannot be 

accommodated [6]. Defects, generally present both inside the component and on its 

surface, can form during processing from voids, inclusions or agglomerates or can 

produced during subsequent service from thermal shock or contacts events as 

impacts, erosion and wear. Surface defects are considered more severe for ceramics 

because bending load is usually applied and because internal flaws are more easily 

avoidable through processing optimization. These crack like defects form a variable 

and unknown statistic population, usually of the order of 5 µm to 200 µm in size 

[27], that according to Eq. (2.3) lead to a strength distribution. Brittle fracture 

strength depend on the stressed volume or surface area and typically exhibit 

significant scatter, frequently with a coefficient of variation about the mean in 

excess of 10% [27]. Consequently, ceramics are not characterized by a fracture 

strength with a limited variability, useable safely in design, and manifest a poor 

mechanical reliability that restrict their use in structural applications.  

A probabilistic prediction of material performance is widely adopted for 

materials which strength depends on the presence of an unknown defects population. 

This variability in strength is often express in terms of probability of failure Pf of a 

sample under a stress or probability of survival Ps = 1 - Pf. These probability, related 

to the probability of existence in the material of defects of specific dimensions, are 

generally calculated by using the probabilistic model developed by Weibull and 

based on the weakest link fracture theory. The Weibull distribution of flaws is 

usually adopted as statistical approach due to its capability to analyze material’s 

phenomena represented by a symmetrical and asymmetrical data set. In the weakest 

link approach the probability of occurrence of two events is the product of the 

probability that each event take place independently. The test sample is considered 

as a chain made of N elements and the failure of the entire chain happens when the 

rupture of the weakest link befall. According to this approach, fracture is controlled 

by the most critical defect, that is the defect of largest dimension favourably oriented 

toward the tensile stress direction. The Weibull failure probability at a given stress σ 

is defined in its simplest form by the two empirical parameters relation: 
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where σ0 is the characteristic strength and m is the Weibull modulus. The 

characteristic strength can be interpreted as the strength value in which the 

cumulative probability of failure of a body with unit volume is 63.2% and can be 

calculated setting σ = σ0 in Eq. (2.4). It is related to the mean strength and dislocates 

the distribution of strength in the stress space. The Weibull modulus describes the 

scattering of the mechanical strength data. For ceramics, m is usually of the order of 

5 to 20 [6], in particular of about 10 [8] for conventional as-finished ceramics while, 

for structural ceramics, m varies between 3 and 12 [28], depending on processing 

conditions. The higher the m value, the lower is the strength dispersion and the 

higher the mechanical reliability. The expression of Eq. (2.4) is usually rearranged in 

terms of logarithms to obtain the following relationship which allows an easy 

estimation of  the Weibull parameters: 

 

0
f

σlnmσlnm
P1

1
lnln −=























−
 Eq. (2.5) 

Indeed, in the diagram ln[ln(1/1-Pf))] vs. ln σ (Figure 2.2) the Weibull modulus can 

be  calculated from the slope of the straight line of the distribution function and the 

characteristic strength from the intercept with the tension axis. The fitting of a 

straight line is often done using linear regression. In such a procedure, the total 

number of failure strength data N have to be arrange in ascending order and the 

probability of failure Pf
i of the sample with rank i have to be estimate as: 

 

N

5.0i
Pi

f
−=           (i = 1….N) Eq. (2.6) 

Fracture tests have to be performed on a statistically significant number of samples, 

usually between 30 and 50, to know the Weibull parameters with any accuracy [6]. 

The Weibull analysis is valid for an isotropic material containing a uniform 
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distribution of isolated, not interacting defects and undergoing to fracture for 

unstable propagation of the largest defect.  

 

Figure 2.2: Weibull diagram  for soda-lime glass and a vitreous-bonded 

polycrystalline alumina tested under inert conditions [8]. 

Several alternatives have been proposed to overcome the problem of an 

unacceptably high failure probability for typical design stress. One approach is to 

reduce the strength dispersion and to improve the mechanical reliability of single 

value toughness materials without changing the fracture toughness. This could be 

accomplished by reducing the presence and/or dangerousness of defects by 

shrinking the flaws distribution and limiting the largest defect dimension. For this 

aim, some sophisticated powder processing technologies [10], that abate the density 

and dimension of defects, and methods as crack healing [9], applicable to ceramics 

that have the ability to heal cracks and recover strength, have been developed. Proof 

testing [6,8] is also used, especially in aerospace and aircraft field, as a technique to 

control the strength distribution. In a typical proof test, components are subjected to 

a proof stress higher than that anticipated in service in severe conditions. The weak 

components, with the largest flaws, fail or give an indication of failure and are 

discarded. The survivor components exhibit a threshold stress, a minimum value of 

stress under which the failure probability is zero (Figure 2.3). Thus, proof testing 
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truncates the strength distribution at lower stresses, guarantees that all components 

will be at least as strong as the proof stress and establish a well defined stress level 

for design. This method is very expensive, generates a high amount of waste 

products and cannot be easily performed on big components. In addition, only the 

severity of processing defects can be reduced while the reliability decrease due to 

defects generated during service can not be avoided. Potential problems occur also 

when subcritical crack growth accompanies proof testing.  

 

Figure 2.3: Weibull plots for hot-pressed silicon nitride before (open circles) and 

after (filled circles) proof testing at σ = σP [8]. 

 

2.1.2 T-curve behaviour and microstructural toughening 

In the early use of fracture mechanics, brittle ceramics was considered to 

assume a fracture toughness independent on crack length [6]. In this case, the 

equilibrium condition for crack propagation is defined by Eq. (2.2). Now, consider a 

body with single value toughness KIC containing a crack of length c0 and subjected 

to an applied load gradually increased from zero to a maximum level (Figure 2.1). 

At low stress levels the corresponding stress intensity factor KI is lower than KIC and 

the crack maintains its length, if subcritical phenomena are not active. When the 

applied stress is high enough to reach the critical conditions expressed by Eq. (2.2), 

and thus the σb0 value, the crack initiate to propagate. Moreover, as the crack 
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extends, the applied stress intensity factor increases more rapidly then the material 

toughness, a finite difference between KI and KIC is produced and the excess energy 

stored in the material is dissipated in kinetic energy as crack acceleration. The crack 

begins its acceleration on a relatively smooth surface or “mirror zone” [8]. The 

running crack speed increases up to a maximum value related to the motion ability 

of the local stress field near the crack tip. When the maximum speed is reached, the 

mechanical energy released by crack propagation is dissipated in branching and 

noising. At this critical stage of propagation severe surface roughening or “hackle 

zone” is produced. An intervening transition region of fine scale subsidiary 

fracturing of “mist zone” is also present (Figure 2.4). This kind of fracture 

propagation is unstable.  

 

 

Figure 2.4: Fracture surface of fused silica glass rod broken in bending, showing 

mirror, mist and hackle zones spreading outward from fracture origin (indicated by 

the arrow in the lower edge) [29].     

However stable, slow and quasi-static, crack growth is also possible in two 

particular circumstances. In some cases the combination of sample geometry and 

loading conditions can lead the applied stress intensity factor to decrease with 

increasing crack length. This requirement is satisfied for fixed grip loading 
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conditions on a material exhibiting single value toughness as in the Obreimoff 

(1930) experiment on the cleavage of mica [6,8]. For this case, the crack propagates 

to an equilibrium length but immediately arrest, since the stress intensity factor is 

lower than the toughness for any further crack increment. To restart propagation it is 

necessary to increase the displacement. The second circumstance occurs in materials 

exhibiting a fracture toughness that increases steeper than the applied stress intensity 

factor with crack extension. These materials experience the T-curve behaviour, 

where T means toughness. When the energy approach is followed, the denomination 

R-curve behaviour, where R is the resistance to crack growth, is commonly used. 

Therefore, the conditions of stable propagation of crack are satisfied when the 

equilibrium is satisfied and when the increase of toughness with crack extension is 

larger than the corresponding increase of stress intensity factor:  
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The crack growth behaviour can be more complex depending on the 

variability of the fracture toughness with crack length and hence on the trend that the 

T-curve assumes in the graphic KI/(Yπ
0.5) vs c0.5. Consider a body, that exhibit a 

generic T-curve as in Figure 2.5, subjected to a load progressively increased from 

zero. When the stress level σ1 is reached, stable propagation of cracks of length c1 

starts, since no energy excess is available for crack acceleration. All the defects of 

dimension included in the finite interval [c1, c2] also propagate in a stable manner. 

They are equally critical and lead to failure at the same stress level σ2. If the inherent 

defect population is included in such interval, a single value strength is observed. 

When the body contains flaws of dimensions shorter than the stability interval, 

unstable fracture occurs. Cracks with dimensions included between c0 and c1 

propagate in unstable fashion for stresses between σ1 and σ2. Due to their 

acceleration such cracks can growth up to a length greater than c2 leading to fracture 

for stresses lower than σ2. Conversely, if the largest defect is shorter than c0 the 

strength results higher than σ2 and scattered. 
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Figure 2.5: T-curve with a stable crack growth  interval [c1,c2]. Straight lines 

correspond to the applied stress intensity factor associated to the threshold stress σ1 

and the strength σ2.  

Fracture toughness, considered as a function of crack length, is more 

properly a function of the crack length increase in materials where toughening 

processes at the crack tip are active on growing cracks. The T-curve behaviour of 

such materials is a key factor to obtain a reduced defect sensitivity, or flaw 

tolerance, a lower strength scatter, a better mechanical reliability and a more wide 

industrial application. For this reason, fracture mechanics concepts have been used 

by scientists to study toughening mechanisms and to produce new ceramics with 

manipulated microstructure and improved mechanical behaviour. Plastic 

deformation mechanisms are inhibited in ceramic materials, thus researchers have 

developed specific polycrystalline or composites microstructures in which energy 

dissipative toughening mechanisms are promoted. One theory on how the material 

microstructure influences crack propagation and toughness is crucial for the study 

and development of tough ceramics. Unfortunately, the general behaviour of real 

cracks in ceramic microstructures is too much complex to be treated and several 

theories, that simplify the model considering a single toughening mechanism at a 

time, have been proposed. As a matter of fact, different mechanisms can act together 
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and the total effect is not necessarily a simple linear combination of the single 

effects. The toughening mechanisms observed in ceramic materials [6–8] can be 

classified into two principal groups: mechanisms acting with crack tip interaction 

and mechanisms acting with crack tip shielding. (Table 2.1).   

 

Table 2.1: Toughening mechanisms in ceramic materials 

Crack tip interaction  
Crack front bowing  

Crack deflection 

Process zone activities 

Dislocation clouds 

Microcracking 

Phase transformation 

Ductile second phase Crack tip shielding 

Crack bridging 

Grain bridging  

Fibrous second phase 

Ductile second phase 

 

 

Crack tip interaction occurs when tough obstacle are placed in the material 

to directly interact with the crack tip and to disturb the crack motion. The obstacle 

could be second phase particles, fibres, whiskers or regions that are simply difficult 

to cleave. The toughening effect, related to the characteristics of heterogeneities and 

to the nature of the interaction between the defect and the reinforcement, is the result 

of the reduced stress intensification at the crack tip, due to the crack path deviation. 

The crack has allowed two different mechanisms to avoid the obstacle: crack front 

bowing or crack deflection.  

Crack bowing could be observed when a dispersed tough particle is 

considered to be crossed by the crack front. The first consequence is a pinning action 

occurring on the front in the crack plane localised in correspondence of the particle. 

The crack front locally bends and develops a curvature in order to end normally 

against the particle (Figure 2.6 (a)). When such a curvature reaches a critical value, 

the crack overcome the particle. In addition, if the obstacles remain intact, bridging 
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produces an increase in fracture toughness. This mechanism has a limited 

importance for ceramics because in the most cases the dispersed particles are brittle 

and break before the bowing effect completes.   

 

Figure 2.6: Crack tip interaction: (a) crack bowing; (b) crack deflection. Direction 

of crack motion is shown by arrows. (Adapted from [6]). 

Crack deflection occurs when the crack is deflected out of the plane that is 

normal to the applied uniaxial tensile stress (Figure 2.6 (b)). The crack is no longer 

loaded in a simple mode I and the applied stress intensity factor acting on the crack 

tip is reduced. Two kind of deflection of crack plane could be observed during 

propagation: tilting of the crack about an axis parallel to the crack front and twisting 

about an axis normal to the crack front. A tortuous crack path, manifested as 

roughness of the final fracture surface, is produced accordingly. This mechanism is 

present in homogeneous polycrystalline microstructures with week grain boundaries 

or with residual stresses due to anisotropic grains. In composites, the toughening 

effect is more important and depends mainly on the volume fraction and distribution 

of the second phase and on the geometry and aspect ratio of the particle. Indeed, 

toughening by crack deflection is estimated to increase as the obstacle shapes 

change from spheres, disks and rods. Bridging of grains or second phases could also 

happen after cracking leading to an improve of the efficacy in toughening. Crack 

deflection is a dominant toughening mechanisms in alumina reinforced with silicon 

carbide platelets [6]. 

Toughening mechanisms acting as crack tip shielding help to protect the 

material from failures as a shield, reducing the stress intensity near to the 
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propagating crack tip. They are always characterized by a process zone around the 

crack tip or by a bridging zone behind the crack tip that contains unbroken 

reinforcing items behaving as ligament between the opposite cracked surfaces. In 

some cases, process zone and bridging zone could be present together with a 

synergic effect on fracture toughness. The resistance to crack propagation in the 

process zone toughening mechanisms is due to phenomena, localised in a circular 

region in the front of the crack, involving a non linear deformation that reduce the 

stresses acting on the crack tip. The shielding effect in this region rises from the 

interaction between the highly intensified stress field and the material 

heterogeneities. The main process zone toughening mechanisms are dislocation 

clouds, microcracking, phase transformation and ductile second phase. 

 

 

Figure 2.7: Process  zone toughening mechanisms. (a)  dislocation clouds, (b) 

microcracking, (c) phase transformation and (d) ductile second phase. (Adapted 

from [8]).  

Though the formation of new dislocations in covalent or ionic crystal is 

thermodynamically hindered , the rearrangement of pre-existent line defects by shear 

in the highly stressed zone around the crack tip is a possible event (Figure 2.7 (a)). 

This sort of dislocation recovery requires energy to be performed and produces a 
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slight increase in fracture toughness. Therefore, this mechanism is of limited 

importance in ceramic materials.  

Microcracking phenomenon regards the nucleation and the development of 

microcracks within the process zone because of the high stress level present in the 

location (Figure 2.7 (b)). Nucleation starts in intrinsic week sites as intergranular 

defects or zones containing localized residual tensile stresses. These residual stresses 

could be the result of phase transformations, thermal expansion anisotropy in single 

phase polycrystalline ceramics and thermal expansion or elastic mismatch in 

composite materials. So, microcracking can form spontaneously during fabrication 

processes, as in a cooling step, due to differences in the thermal expansion 

coefficient of phases or anisotropic grains. The toughening effect derives from the 

stress relaxation within the process zone and from the energy dissipated as 

mechanical work to increase the length and the crack open displacement of 

microcracks.  

Phase transformation toughening is the most important process zone 

toughening mechanism. This phenomenon could be exploited in materials 

containing grains able to withstand a phase transformation with volume expansion 

under the action of the stress field around the propagating crack (Figure 2.7 (c)). 

Transformation toughening almost always involves the use of partially stabilized 

zirconia particles in a ceramic matrix, as alumina. Zirconia has several polymorphic 

transformations as it cools, cubic to tetragonal at 2370°C and tetragonal to 

monoclinic at 1000−1200°C [6]. The latter step is a martensitic type reaction that 

involves a ~4% volume expansion and a ~7% shear strain [6]. This step is easily 

avoided during the cooling process after sintering by stabilizing the tetragonal phase 

at ambient temperature with several agents as yttria, ceria and magnesia. However 

the phase transition could also occurs by a shear displacement. Therefore, the 

application of large mechanical stresses to the composite, as during the fracture 

process near the crack tip, nucleates the tetragonal to monoclinic phase change. The 

accompanying volume expansion induces compressive stresses that strengthen the 

material ahead of the crack tip and increase fracture toughness.  

The dispersion of ductile particles, typically metals, in a ceramic matrix is 

another practical way to increase fracture toughness (Figure 2.7 (d)). The high 
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tensile stresses present in the region around the crack tip allow to reach the yielding 

condition for the ductile phase and hence the energy consumption in plastic 

deformation. The fracture toughness increase is also related to the subsequent 

bridging phenomena by ductile particles acting on the crack surfaces.  

Crack bridging mechanisms are due to processes occurring before the crack 

tip, also at high distances. Pulling forces between the cracked surfaces are developed 

by the interlock of agents acting as bridges that hinder additional crack opening. The 

mechanical work required to overcome these pulling forces promotes an increase of 

fracture toughness. The reinforcing agents can be simple grains, fibres, whiskers or 

ductile particles. Many monophase polycrystalline ceramics with elongated and 

large grains exhibit grain bridging after intergranular fracture (Figure 2.8).  

 

Figure 2.8: Grain bridging. (Adapted from [8]). 

The shape and dimensions of grains and the presence of residual stresses, 

that support the grains contact after fracture, are the microstructural variables of this 

mechanism. In particular, two toughening effects happen when the crack propagates 

on the intergranular path and runs into a grain boundary. Crack deflection 

phenomenon occurs because the crack plane is tilted on the grain boundary and it is 

not yet perpendicular to the applied load. Grain bridging follows the fracture with 

mechanic interlock and friction between grains. The toughness improvement is 

higher for longer cracks involving more grains and for bigger grain dimensions. 

Nevertheless, the grain size has to be small enough to obtain good strength values 

according to the Hall-Petch relationship [12]. The T-curve behaviour induced by this 

toughening mechanism in polycrystalline alumina is substantial, especially for 

grains with size of about 10−20 µm [30]. The prevalent fracture mode in alumina is 

indeed the intergranular mode, with transgranular fracture partially present in grains 
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bigger than 15 µm [8].  

The arising of a bridging zone during fracture is an efficient toughening 

mechanism acting in composite microstructures where a second reinforcing phase is 

added to a matrix. These ceramic composites can be classified, according to the 

main active phenomenon, as composites reinforced with brittle embodiments and 

composites reinforced with ductile second phases.  

 

 

Figure 2.9: Crack bridging in composites. (a) fibrous second phase, (b) ductile 

second phase. (Adapted from [8]). 

The brittle reinforcements, usually whiskers and fibres, are characterized by 

toughness values comparable with the matrix one and high strength. Therefore, the 

bridging zone effect (Figure 2.9 (a)) is usually increased by the presence of week 

interfaces between the matrix and the second phase. Intact bridges and frictionally 

sliding bridges, or pull-out, are the basic events observable as the crack propagates. 

When the bridging item is not broken and still bonded to both crack surfaces, part of 

the tensile stresses are supported as localised pulling forces by elastic deformation of 

the item intersected by the crack front. Only the reinforcement in the region near the 

crack are involved in this pulling action since the crack opening displacement is too 

large at higher distances. Pull-out occur when the reinforcing agent strength is 

higher than the adhesion between agent and matrix. This phenomenon of frictionally 

sliding bridges is always preceded by debonding, a phase when the crack deflects 

and follows a path along the interfaces reinforcement/matrix. Excluding phase 

transformation, pull-out is the most effective toughening mechanism in ceramics 

since the amount of involved energy is considerably large. Quite high toughness 

values can be also reached when ductile particles are added to a ceramic matrix. The 
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bridging effect is exerted during the elastic elongation of intact particles up to the 

yielding condition and during the further plastic deformation of bridges arranged in 

the region near the crack (Figure 2.9 (b)). 

As a consequence of these toughening mechanisms, T-curve behaviour, 

leading to increase of fracture toughness typically from 1−5 MPa m0.5 up to even 35 

MPa m0.5 [6],  and improved mechanical reliability can be observed in proper well-

designed monophase or composite microstructures.  

 

2.2 Alumina/silicon carbide composites 

Alumina is one of the most popular ceramic materials used in structural 

applications because of its excellent properties such as chemical stability, high 

melting temperature, strength, hardness and corrosion resistance. Due to its 

refractory nature, alumina is widely used in thermal liners, thermal barrier 

installations, high temperature insulating systems, crucibles and heaters. However, 

similarly to most ceramics, the intrinsic brittleness of monolithic alumina limits its 

reliability and prevents its wider usage. Therefore, addition of inert second phase, 

like hard ceramic particulate, platelets and whiskers, to monolithic alumina is an 

effective way for strengthening and toughening. The second phases control the 

microstructure, by suppression of grain growth or control of grain morphology, and 

improve toughness according to the mechanisms presented previously. Some 

popular examples of ceramic matrix composites include Al2O3/ZrO2(p) and 

Al 2O3/SiC(w) which are used as wear parts, bioceramics and cutting-tool inserts. 

SiC is an ideal candidate for the reinforcement for alumina composites, 

especially for structural applications at high temperature, due to its wide availability, 

low cost, low density and excellent thermal properties, such as low thermal 

expansion coefficient, high thermal conductivity and high melting point. 

Conversely, SiC has poor sinterability, owing to its strong covalent bonding and low 

surface-to-grain boundary energy ratio. Alumina, which has high ionic character and 

low oxygen diffusion coefficient, compensates the poor sinterability of SiC and 

protect the carbide from oxidation in severe operative conditions [11,12]. Al2O3/SiC 

composites have been studied extensively for their good mechanical behaviour, 
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especially good high temperature performances. Large differences in the mechanical 

properties of Al2O3/SiC composites could be obtained because of the variations in 

microstructure and fracture behaviour related to the effect of different SiC 

reinforcements shapes as whiskers, platelets and particulates.  

2.2.1 SiC whiskers-reinforced alumina composites 

SiC whiskers have been successfully incorporated into alumina by many 

researchers to obtain superior mechanical and tribological properties as compared 

with conventional monolithic alumina, also at temperatures above 1200°C  

[11,12,31,32]. Al2O3/SiC(w) is one of the most widely studied ceramic composite 

materials and it is presently being commercially fabricated for wear and mechanical 

machining applications. Generally, the SiC whisker diameters and aspect ratios are 

in the range of 0.1 µm to 1 µm and about 10−20, respectively. Mechanical properties 

such as fracture toughness and fracture strength of alumina remarkably increase with 

increasing whisker content, that could reach 40 vol%, as shown in Table 2.2 [11,31]. 

The increase in fracture toughness of these composites has been attributed to crack 

deflection due to whiskers presence, with some contribution from crack bridging and 

whisker pull-out occurring in the process zone around the crack front (Figure 2.10). 

Rising T-curve behaviour with increasing crack extension has also been observed in 

these composites, as associated to the toughening mechanisms [32]. However, 

whiskers reinforced composites are relatively expensive materials to produce and 

there are health concerns related to the asbestos-like geometry of whiskers. Since 

microstructural homogeneity of whisker reinforced alumina is of primary 

importance to achieve successful toughening and its lack may be responsible for 

strength decrease, whisker agglomeration may represent strength limiting flaw. 

Unfortunately, it is difficult to obtain good dispersion of whiskers within a matrix 

and whiskers-containing powder compacts are not easy to compact and densify 

because of formation of constraining networks of whiskers. These networks usually 

exert tensional stresses on the matrix and severely inhibit particle rearrangement and 

shrinkage during sintering. Therefore hot pressing, which leads to composites with 

anisotropic properties, is a common practice for the densification of whisker 

containing composites.  



  35 

Table 2.2: Fracture strength and toughness at ambient temperature of Al2O3/SiC(w) 

composites with different whiskers content (Adapted from [11]).  

Whiskers content [vol%] Strength [MPa] Toughness [MPa m0.5] 

0 150 4.3 

5 475 4.0 

10 540 4.8 

15 652 4.6 

20 675 6.1 

30 641 8.7 

40 850 6.2 

 

 

 

Figure 2.10: SEM micrograph showing the crack propagation in a Al2O3/SiC(w) 

composite. (Adapted from [11]).  
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2.2.2 SiC platelets-reinforced alumina composites 

The great advantage in using platelets as reinforcements in composite 

fabrication (Figure 2.11) is related to their less critical geometry respect to whiskers. 

Platelets are  not dangerous to health as are whiskers, are cheaper to manufacture 

and process, since no special processing technique are required, and could be 

introduced in a  ceramic matrix in higher contents respect to whiskers without 

agglomeration problems that could hinder densification [11,12,33,34]. Platelets are 

available in wide range of dimensions and chemical composition. Strength and 

toughness of alumina can be increased upon the addition of SiC platelets, with 

careful control of the reinforcements sizes and orientation, but the toughening effect 

is limited as compared to whiskers reinforced alumina. For example, a toughness 

value of 7.1 MPa m0.5, with 70% of increase respect to pure alumina, was reported 

for an alumina composite containing 30 vol% SiC platelets [33]. Crack deflection 

and grain bridging, acting only when the platelet faces are oriented parallel to the 

tensile stress direction, are toughening mechanisms leading to the T-curve 

behaviour. 

 

 

Figure 2.11: Cross sectional view of hot-pressed Al2O3/SiC(pl) composite [33]. The 

hot pressing direction was vertical. 



  37 

2.2.3 SiC particles-reinforced alumina composites 

The improvement of the mechanical properties of alumina ceramics by SiC 

particles as inert second phases is another promising alternative for the more 

common whisker reinforcement. Effectively, Al2O3/SiC particle composites were 

developed more recently and, in particular, Al2O3/SiC nanocomposites have been 

researched intensively because they have been reported to have drastically improved 

mechanical properties over the basic alumina [26,35–42].  

Nanocomposite materials can be defined as composites of more than one 

Gibbsian solid phase where at least one of the phases shows dimensions in the 

nanometre range [26]. The solid phases can be exist either in amorphous, 

semicrystalline or crystalline states. Niihara and co-workers [35] reported that the 

flexure strength of hot pressed alumina changed from 350 MPa to more than 1 GPa 

when it was reinforced with only 5 vol% of SiC particles with an average size below 

0.3 µm. The fracture toughness also increased from 3.5 MPa m0.5 to 4.8 MPa m0.5. In 

addition, these nanocomposites has excellent high-temperature properties. For 

instance, its creep rate at 1200°C is about three orders of magnitude lower than that 

of alumina. Chae et al. [36] produced by spark plasma sintering alumina reinforced 

with 20 vol% nano-SiC exhibiting flexural strength of 812 MPa and average fracture 

toughness of 3.6 MPa m0.5 compared with 663 MPa and 2.95 MPa m0.5 for the pure 

alumina compact, respectively. Flaw healing, machining induced surface 

compressive stresses, refinement of matrix grains because of the SiC nanoparticles 

and tightening of the grain boundaries by the compressive stress field created by the 

intragranular nanoparticles embedded in the alumina grains are believed to be the 

main strengthening mechanisms. The grain refinement in alumina has been 

attributed to a decreased grain boundary mobility and retarded grain growth of 

alumina caused by SiC particles. Indeed, the diffusion at the Al2O3/SiC interface is 

slow due to the strong directional bonding of both Al 2O3 and SiC [42]. In addition, 

fracture mode changes from mixed inter/transgranular in pure alumina to pure 

transgranular within the nanocomposites, because of the dispersion of the 

nanoparticles within the matrix. This was explained by Levin et al. [38] as a 

consequence of the tensile residual stresses field which develops in the matrix 
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around intragranular particles because of the thermal expansion mismatch. In 

polycrystalline alumina, tensile residual microstresses are expected at some grain 

boundaries because of thermoelastic anisotropy. These tensile microstresses can 

promote intergranular fracture in monolithic alumina. SiC particles included in 

alumina matrix grains should create local compressive stresses on grain boundaries 

thus strengthening the boundaries. The formation of stress fields around the silicon 

carbide particles is based on the differences in thermal expansion of the materials, 

which causes radial compressive stresses around silicon carbide particles upon 

cooling. The stronger Al2O3/SiC interface bonding with respect to Al2O3/Al 2O3 

boundaries (the magnitude of interfacial fracture energy between SiC and Al2O3 is 

over twice the Al2O3/Al 2O3 grain boundary fracture energy) can also be taken into 

account as inhibiting the crack to propagate along the interface. The residual stresses 

deflect the crack towards the intragranular particles, promoting transgranular 

fracture in the matrix. The change in fracture mode can also account adequately for 

the increase in fracture toughness in these nanocomposites. Only in the case of 

elongated and irregular alumina grain morphology, obtained by adjusting SiC 

content and presence of impurity, a T-curve behaviour could also be considered as 

toughening effect [37]. In fact the T-curve in nanocomposites is less apparent 

respect to alumina because of the matrix grain size decrease that impair grain 

bridging.  

Strength and fracture toughness of alumina can be increased also by the 

inclusion of micrometric SiC particles. Zhang et al [42] observed that hot pressed 

alumina with 20 vol% SiC particles, with average size equal to 2.7 µm, shows 

strength and toughness higher than that of monolithic alumina by about 20% at 

ambient temperature while at 1200°C the increase is of about of 30% and 70% 

respectively. The strengthening and toughening effect is higher for higher SiC 

contents. These particulate reinforced alumina matrix composites display improved 

fracture toughness due to crack tip shielding, crack branching and crack deflection. 

Micrometric SiC particles are usually allocated at the grain boundaries, which 

results strengthened by the strong SiC/Al2O3 interfaces, leading to a typical fine and 

equiaxed morphology of alumina grains and a transgranular fracture mode of the 

composite. 
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2.2.4 Alumina/silicon carbide hybrid composites 

The addition of nanometre-size SiC particles within alumina matrix grains 

has been found to achieve a remarkable improvement in fracture strength, reliability 

and high temperature deformation resistance respect to pure alumina. However the 

significant increase in fracture toughness was difficult to achieve in Al2O3/SiC 

nanocomposites. One possible solution of overcoming this disadvantage is to add a 

third phase into nanocomposites, since the addition of reinforcement with high 

aspect ratio leads to a large increase in fracture toughness. According to this idea, 

fully dense SiC platelets reinforced Al2O3/SiC nanocomposites exhibiting improved 

strength, as high as 700 MPa, fracture toughness, with up to 8.5 MPa m0.5, T-curve 

behaviour and creep resistance were fabricated by conventional powder mixing 

process and hot pressing [43]. 

2.2.5 Sintering of alumina/silicon carbide composites 

Alumina produced by conventional powder routes can be completely 

densified in air at 1550°C while higher temperatures are necessary to sinter 

Al 2O3/SiC composites. Indeed, diffusion at the Al2O3/SiC interface is slower than at 

the Al2O3/Al 2O3 interface due to the strong directional bonding of both Al2O3 and 

SiC. Since densification in alumina is controlled by grain boundary diffusion the 

presence of intergranular SiC limits densification [42]. Consequently, work has been 

carried out into the use of sintering aids which lower the sintering temperatures, 

enhance diffusion rates or allow for faster sintering by creating a liquid phase [44–

47]. Y2O3 and MgO have been investigated as sintering aids for Al2O3/SiC 

composites both individually and together. In alumina ceramics, it is well known 

that MgO is able to inhibit discontinuous grain growth and to promote sintering 

which leads to full density [48]. On the other hand, a small addition of Y2O3 can 

enhance the densification rate but accelerates the grain growth and is not so good for 

densification of alumina [46]. However, yttria enhanced the sinterability of the 

Al 2O3/SiC composites without any substantial microstructural degradation. Pillai et 

al. [46] found the most dramatic effect was with 1 wt% Y2O3, with increasing 

density of a Al2O3/5 vol% SiC nanocomposite from 92% to 99% at only 1550°C. 
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Cock et al. [44] produced fully dense fine grained Al 2O3/5 vol% SiC nanocomposite 

with an yttria content of 1.5 wt% and a sintering temperature of 1600°C. The 

enhancement of sintering by yttria in the Al2O3/SiC composites is because of the 

reaction of silica on the surface of the SiC particles (the surface of SiC particles is 

usually covered by a 0.3−0.7 nm coating of native amorphous silica [49]) with 

alumina and yttria and possibly other impurities to increase Si and Y concentrations 

in Al2O3/Al 2O3 grain boundaries producing a grain boundary composition with 

relatively high diffusion rates at the used sintering temperatures. Discrete regions of 

(3Y2O3·5Al2O3) yttrium aluminum garnet (YAG) could form within the alumina 

grains at the highest yttria content, probably precipitating upon cooling from a 

multicomponent eutectic liquid, with melting temperature below 1700°C. 

Unfortunately, the formation of low melting liquid phases due to sintering aids are 

detrimental to high temperature properties of these composites. 

Therefore, high sintering temperatures above 1700°C, in Ar or N2 as inert 

atmospheres used to avoid SiC oxidation, are usually required in fabricating 

Al 2O3/SiC composites. On the other hand, it has been reported that in conditions of 

high temperature and low oxygen partial pressure, significant weight losses of the 

composite samples and several deleterious reactions like alumina decomposition, 

formation of carbides, oxycarbides, liquid phases and volatile species can occur [50–

56]. Barclay et al. [50] observed that, when sintering was conducted in a graphite 

resistance furnace with a flowing argon atmosphere, the problem of SiC oxidation 

was eliminated, however the compacts exhibited weight losses on the order of 1% 

and 10% at 1550°C and 1800°C respectively due to significant reduction of  

alumina. Assmann et al. [56] found weight losses above 30 wt% for the 25 vol% SiC 

content composite pressureless sintered at 1766°C under flowing Ar in a graphite 

furnace. Weight loss increases with sintering temperature and time, and SiC content. 

When sintering was conducted in N2, weight loss was reduced but phases as AlN, ε-

SiAl7O2N7 and Al11O5N were formed. Moreover, a permanent melt with the 

composition of the eutectic in the Al2O3/Al 4C3 system or a silicate glass due to the 

reaction between Al2O3,Al4C3 and SiC can be produced [55]. Misra [54] pointed out 

the effect of C and SiO2 content in SiC liquid phase sintering and showed that the 

involved major gaseous species are CO, Al2O, SiO and Al vapour. Jackson et al. 
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[53] reported that sintering SiC with mixtures of Al2O3/Al 4C3 to form Al2OC or a 

liquid phase is accompanied by a loss in weight which contributed to a reaction 

between Al2O3 and SiC to produce gaseous SiO, Al2O and CO. Also Gadalla et al. 

[51] proved that alumina reacts with SiC to form, above 1700°C, Al2OC and Al4O4C 

as condensed phases and SiO and CO as gaseous species. Baud et al. [57] made a 

complete thermodynamic analysis of the vaporization behaviour of SiC/Al2O3 and 

SiC/Al2O3/Y2O3 samples in a open system at 1200−2300K concluding that 

vaporization occurs following the fundamental following reactions: 

Al 2O3(s) + SiC(s) ↔ Al2O(g) + SiO(g) + CO(g) React. (2.1) 

Al 2O3(s) + 2SiC(s) + Al2O ↔ 2SiO(g) + 2CO(g) + 4 Al(g) React. (2.2) 

Therefore, the main gas species are Al(g), Al2O(g),  SiO(g) and CO(g). The relative 

amount of the constituent solid compounds changes with time. For alumina rich 

samples the mixture tends toward pure alumina. When taking into account additional 

graphite, the CO(g) partial pressure increases and additional phases like Al4O4C, 

Al 2OC or Al4SiC4 can occur. These results leads to the affirmation that a control of 

the sintering conditions of the  Al2O3/SiC system is essential. 

In view of the difficulties encountered with pressureless sintering, hot 

pressing has been used to densify these composites [11,26]. Conventional powder 

processing, polymer precursor or sol-gel processing routes followed by hot pressing 

at 1550−1800°C and 20−40 MPa under Ar or N2 atmospheres are used to obtain 

fully densified Al2O3/SiC composites. More innovative routes such as spark plasma 

sintering have also been investigated. Spark plasma sintering allows to reach 

theoretical densities at lower temperatures respect to hot pressing with higher rate of 

densification [36]. This enhancement was explained thanks to an acceleration of the 

diffusion process due to additional mass-transport mechanisms induced by the spark 

plasma. In addition, lowest temperatures as a function of SiC content have been 

observed and attributed to the difference of thermal conductivity between Al2O3 and 

SiC. Generally the thermal conductivity of SiC is higher than that of Al2O3 

especially at elevated temperatures. Therefore, the addition of SiC might be 

expected to promote heat transfer from the graphite die to the compacts. 
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2.3 Ceramic laminates 

2.3.1 Laminates with improved mechanical behaviour 

Reinforced microstructures exhibiting toughening mechanisms have been 

presented in the previous paragraphs. Unfortunately, numerous restrictions which 

limit the use of ceramic composites for structural applications can be considered . 

The main problem regard the high costs of composite processing and starting 

materials, since a careful control of the microstructure and of its homogeneity is 

required. Degradation phenomena, involving the change of microstructure with time, 

can happen in service that decrease the toughening efficiency. A partial strength 

scatter, due to a residual dependence on starting crack size, still remains. For these 

reasons, today the arrangement of ceramic layers in laminated structures is the most 

promising route to improve the mechanical and tribological performances of 

ceramics.  

Laminates are products that possess material composition, structure and 

microstructure which change with position in a regular manner. Typical applications 

of laminated ceramics include solid oxide fuel cells, electronic substrates, 

multilayered ceramic packages, gas sensor devices, filters, thermal barrier coatings 

and laminates with improved mechanical properties. The last item is the application 

of relevance in the present work. One of the main advantages of ceramic laminates 

with respect to traditional composites regards the reduced tendency to debonding 

and degradation phenomena occurring at the phase boundary since any residual 

stress is distributed within a larger volume. Interphase adhesion is higher when the 

structure changes in a gradual manner. In addition, the material can be improved by 

a second phase not in its whole volume but rather only where the tensile stresses are 

higher. In recent years, there has been considerable interest in the mechanical 

behaviour of a variety of multilayered ceramic composites. In the following 

paragraphs a brief summary of the state of the art of ceramic laminates with 

improved mechanical behaviour is presented, setting apart laminates with 

mechanical behaviour improved by toughening mechanisms, as crack bridging or 

crack deflection, and laminates characterized by the presence of residual stresses. 
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2.3.2 Laminates with mechanical behaviour improved by toughening 
mechanisms 

2.3.2.1 Metal/ceramic laminates 

Toughness enhancement could be obtained in metal/ceramic laminates 

where ceramic layers are alternated with metallic layers. As in the case of 

composites with ductile second phase crack tip shielding mechanisms are promoted. 

The toughness increase is controlled by the closure exerted by the metallic bridging 

layers astride the crack in the ceramic layers. Mekky et al. [13] produced a Ni/Al2O3 

multilayer exhibiting a T-curve behaviour. In spite of the metallic nature of some 

layers the study of these laminates can be performed within the domain of Linear 

Elastic Fracture Mechanics if a well bonded interface exists.  

2.3.2.2 Porous and weak interlayers 

As discussed previously, the incorporation of fibrous reinforcements in a 

ceramic matrix is an easy way to create fiber/matrix interfaces with low fracture 

resistance that represent preferential paths for the propagating cracks. The presence 

of such weak interfaces increases the fracture resistance of the ceramic. 

Nevertheless, the fabrication of fiber reinforced ceramic is time consuming, complex 

and expensive. Increased toughness, T-curve behaviour as well as non catastrophic 

fracture behaviour have been also observed in laminates by introducing porous or 

weak interlayers to promote low-energy paths for growing cracks. Indeed, when 

weak interlayers are alternated with stronger ceramics layers the rupture occurs by 

crack propagation normally to the strong layer plane and then by crack deflection at 

an angle of 90° inside the weak interlayers (Figure 2.12 (a)). The typical load-

displacement curve of these laminates (Figure 2.12 (b)) presents an initial linear 

trend, similar to the one observed for homogeneous ceramics, up to a peak load. The 

first load drop arises from a crack initiating from some surface defects and growing 

in the through thickness direction. Then the crack is arrested and deflected by the 

adjacent weak interlayer. Interfacial delamination and increasing of measured load 

until some new cracks form in the second strong layer are allowed. Such a sequence 

is repeated in the other strong and weak layers.  
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Figure 2.12: Al2O3-based multilayer with SiC weak interfaces. (a) propagation of a 

major crack with deflection along the weak interfaces. (b) measured and predicted 

load displacement curve of a specimen under flexure. (Adapted from [14,15]).   

 

    

Figure 2.13: Al2O3-based laminate with Al2O3  porous interlayers. The crack 

penetrating into porous interlayer undergoes deflection and branching. (Adapted 

from [16]). 
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She et al. [14,15] have fabricated multilayered Al2O3 ceramics with weak SiC 

interphases by extrusion molding and hot pressing. Due to the crack deflection 

mechanism the bending strength, toughness and fracture energy were respectively 

563 MPa, 15.1 MPam0.5 and 3335 J/m2. Finding a proper interface material for any 

given ceramic is the main shortcoming of these laminates with weak interfaces. A 

similar fracture behaviour could be obtain in a laminate where dense and porous 

layers are alternated, the latter playing the role as weak layers [16]. Controlled 

porosity is introduce in the weak layers by adding starch particles to slurry in slip 

based processes and consequent burn-out. This solution satisfy the requirements for 

chemical compatibility of interfacial materials and avoid the building up of internal 

stresses due to differences in thermal expansion coefficients which can be source of 

delamination during fabrication. Crack deflection, microcracking and branching, 

responsible of the toughening effect, have been observed within such systems 

(Figure 2.13). 

2.3.2.3 Laminates with two strong outer layers and a tough inner layer 

As described before, the development of reliable ceramics for structural 

applications has been approached from two different directions. The first approach is 

to develop ever stronger materials through processing and microstructural 

refinements. These techniques typically improve strength but still leave the material 

with a low toughness. The other approach is to activate the T-curve behaviour 

inducing toughening mechanisms as in composite materials. This will typically 

improve the toughness and the strength for large initial flaws. However these 

improvements are often achieved at the expense of strength for small flaws. This 

unfortunate trade-off between strength and toughness has lead to the development of 

a trilayer laminated composite which exhibit the high strength of the surface 

material for small flaws and the high strength of the tough body material for larger 

flaws [58]. According to this approach, Cho et al. [59] produced a laminate 

containing surface layers consisting of relatively fine, equiaxed α-SiC grains, 

designed for high strength, while the inner layer is made of elongated α-SiC grains, 

designed for high toughness. Chemical compatibility and strong bonding between 

layers has been also achieved. Improved strength, toughness and damage resistance 



  46 

has been achieved with this three-layer ceramic laminate. 

2.3.3 Laminates with mechanical behaviour improved by residual stresses  

2.3.3.1 Residual stresses in laminates 

Residual stresses can be defined as those stresses that remain in a body after 

manufacturing in the absence of any applied external load or thermal gradients. The 

main distinctive characteristic of residual stresses is that self-equilibrium must be 

maintained in any free standing body, which means that the presence of a tensile 

stress in the component is balanced by a compressive stress elsewhere in the same 

body. These stresses can generate in the body through (i) thermal expansion or 

sintering rate mismatch, (ii) local dilatations or deviatoric strains occurring during 

chemical reactions or phase transformations with molar volume changes, and (iii) 

differential plastic deformation like that occurring during grinding operations [60]. 

The introduction of stresses within the material is an alternative procedure to 

improve mechanical performances in ceramics. For example, surface compression is 

usually induced in tempered glass, used for glass windows, lateral or rear car 

windows , ophthalmological lenses and other high strength applications. To produce 

tempered glass, the glass plate is heated to a temperature high enough to allow 

adjustments to stresses among the atoms, then is quickly cooled down. The surface 

contracts because of the drop in temperature and becomes rigid, while the center is 

still hot and can adjust its dimensions to the surface contractions. When the center 

cools and contracts slightly later compressive stresses are produced at the surface 

and tensile stresses are produced in the center. A considerable deflection must be 

applied to the glass before tensile stresses can be developed in the surface of the 

glass where cracks start. In effect, since the compressive stresses must be overcome 

first, the overall strength of the glass is enhanced as much as 300% [1].  

The impediment to free deformation at the base of residual stresses creation 

is known as constrain effect. The same effect is present in an orthotropic laminate 

made of cosintered layers of different composition and perfectly adherent one to 

each other. Orthotropy happens when each layer in the laminate is homogeneous, 

isotropic, linear elastic and the stacking order of the laminae satisfy the symmetry 
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conditions. Orthotropic laminates exhibit response to loading similar to that of 

homogeneous plate and no warping during in-plane loading is produced [61]. If 

perfect adhesion between laminae is assumed, each lamina must deform similarly 

and at the same rate of the others. The mismatch between the free deformations or 

deformation rates of the single lamina with respect to the average value of the whole 

laminate gives origin to residual stresses. More precisely, during cooling, the 

difference in deformation due to the different thermal expansion coefficient of the 

components, is accommodated by creep as long as the temperature is high enough. 

Below a certain temperature, which is called the “stress free” or “joining” 

temperature, the different components become bonded together and internal stresses 

appear. Indeed, the stress free temperature represents the temperature below which 

the material can be considered to behave as a perfectly elastic body and visco-elastic 

relaxation phenomena do not occur [62].  In each layer, the total strain after sintering 

is the sum of an elastic component and of a thermal component [63]. In addition, if 

the laminate thickness is smaller respect to the other dimensions, each lamina can be 

considered, far away from the edges, in a biaxial stress state with no stress acting 

perpendicular to the lamina plane.  

 

Figure 2.14: Edge crack of length c in a semi-infinite body in presence of a generic 

residual stress distribution σres (x). 
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The magnitude of these residual stresses can be tailored through an accurate choice 

of system geometry and layers composition.  

We consider here an infinite plate with a generic non uniform stress 

distribution σres(x) acting along the direction x perpendicular to the plate surface on 

a through-thickness sharp crack of length c (Figure 2.14). The stress intensity factor 

KI,res related to the stress distribution can be estimated by using the weight function 

approach: 

( )∫ 






=
c

0
resres,I dx

c

x
,

w

c
hxσK  Eq. (2.8) 

where h is a weight function, w is the plate width and the other symbols have the 

standard meaning [6]. The weight function is a geometric function that satisfy the 

singularity conditions at the crack tip. It is tabulated in literature for many 

geometries and loading conditions. If the residual stresses are separated from 

external loading, the term due to their presence can be included in the material 

fracture resistance to obtain the so called apparent fracture toughness KI,app or T: 

res,IICapp,I KKK −=  Eq. (2.9) 

The crack propagates under the external load when the value of such characteristic is 

reached. In the case of negative compressive residual stresses the second term in Eq. 

(2.9) is positive and the apparent fracture toughness increases with respect to KIC. 

This beneficial effect can lead to a T-curve behaviour [23,64]. As described in the 

following paragraphs, several laminated ceramic structures with improved 

mechanical behaviour, due to the introduction of residual stresses, have been 

developed.  

2.3.3.2 Laminates with two compressive outer layers and a tensile inner layer 

Surface macroscopic compressive stresses can be introduced in a laminate to 

reduce the intense tensile stresses acting on the crack tip and to hinder the surface 

cracks propagation with an effect similar to what discussed in tempered glasses 
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[65,66]. Therefore, increased strength, hardness and flaw tolerance can be achieved. 

For this three-layer design there is only one compressive layer to act as barrier and 

to arrest cracks. However, multilayered structure is of further importance to stop 

cracks more effectively . 

2.3.3.3 Threshold strength laminates 

Laminates presenting threshold strength, namely a stress below which the 

probability of failure is zero for any starting defect dimension, have been 

successfully produced by alternating thin compressive layers and thicker tensile 

layers. Indeed, Rao et al. [18] showed that alternating thin compressive layers 

between tensile layers can truncate the statistical strength distribution of brittle 

materials. Indeed, the crack starting in one of the tensile layer and propagating 

normally to the layer plane increases its length up to equate the thickness of the 

tensile layer itself and then slow down since the compressive stresses hinder the 

further propagation. Within the compressive layer the crack propagation becomes 

stable and all defects reach the same final length before failure. Hence, the strength 

shows threshold value. Other research groups have demonstrated that this kind of 

laminates [19,66,67] presents a T-curve behaviour, damage tolerance and reduce 

strength scatter. Notwithstanding the high scientific interest in such laminates, they 

have strong limitations: fundamentally, the threshold strength only occurs when 

cracks extend perpendicular to the compressive layers, so they can be used only with 

specific orientations to the applied load. In addition, if a pre-existent defect larger 

than the unit cell exists, the actual strength is lower then the threshold value. Finally, 

a limit to the maximum strength, which can be designed does exist, since an increase 

of its value involves an increase of the amplitude of compressive stresses. As a 

consequence, cracks can spontaneously develop in the tensile layers. 

2.3.3.4 High reliability ceramic laminates by design 

To obtain a T-curve behaviour able to enhance mechanical reliability it is 

not sufficient to introduce residual stresses in the material. Sign and intensity of the 

residual stresses have to vary in a controlled and designed way as a function of the 

position. Sglavo and Green [64] have demonstrated that the creation of a residual 
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stress profile with the maximum compression at a certain depth from the surface of a 

material can allow the stable growth of surface flaw and their arrest, up to this 

specific depth, before the final fracture. The strength scatter is reduced as the 

strength turn out to be independent on the initial cracks length and higher. The 

underlying idea can be traced back to the observation of biological structures in 

which the most performing parts of the material are located in regions that 

experience the highest stresses. Surface flaws, usually generated both in fabrication 

and in service, are the typical critical defects in ceramic materials subjected to 

bending conditions. Therefore, precisely the ceramic surface has to be engineered to 

tolerate at the same time external loads and the flaw population. These concepts 

have found practical applications in Engineered Stress Profile (ESP) glasses 

[6,20,25], and in oxides based ceramic laminates [22–24]. The production of these 

innovative ceramic laminates is economic because based on common ceramic 

materials (alumina, mullite, zirconia) and inexpensive conventional fabrication 

methods as tape casting, lamination and cosintering. As an example, the architecture 

of one alumina (A)/mullite (M) engineered laminate with increased reliability  

respect to monolithic alumina is shown in Figure 2.15. For this AM engineered 

laminate, a Weibull modulus equal to 17 was obtained, higher than the value equal 

to 12.1 calculated for alumina monolithic laminate [22]. A residual stress variation is 

introduced into the engineered laminate during cooling after cosinterng of the 

constituent layers characterized by different thermal expansion coefficient. This 

multi-step residual stress profile is composed of a tensile layer on the outside, that 

permits to extend toward the surface the stable crack growth interval, and a number 

of compressive laminae in the inner zone with the maximum compression layer at a 

specific depth from the laminate surface (Figure 2.16). The laminate architecture 

could be built, varying the nature and the thickness of the single lamina and the 

stacking order in the multilayer, to exhibit a determined residual stress profile and, 

therefore, a T-curve behaviour (Figure 2.17). A stable crack growth interval, the 

presence of a threshold stress and an improved strength are the effects of the 

introduction of this toughness variation inside the material.  
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Figure 2.15: Architecture of an alumina (A)/mullite (M) engineered laminate. 

Layers composition (mullite content as vol%) and thickness are reported. 

Dimensions are not in scale. (Adapted from [24]).  

 

Figure 2.16: Residual stress profile of the engineered laminate represented in 

Figure 2.15 [24].  
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Figure 2.17: Apparent fracture toughness for the engineered laminate represented 

in Figure 2.15 [24]. 

The approach used for the laminate design is summarized in the following 

mathematical analysis. Considering a thin orthotropic multilayer with strong 

interfaces between the n layers, the biaxial stress state in each layer, generated by 

thermal contraction during cooling, can be calculated on the basis of equilibrium of 

forces, compatibility of the deformations related to constrain and the constitutive 

model: 

Self-equilibrium         0tσ
n

1i
ii =∑

=
 Eq. (2.10) 

Compatibility              εT∆αeε iii =+=  Eq. (2.11) 

Costitutive model        i
*
ii eEσ =  Eq. (2.12) 

where the subscript i represents the rank of the generic layer and σ is the acting 

stress, t is the thickness, ε is the deformation, e is the elastic strain, α is the thermal 

expansion coefficient, E* is the Young modulus in the case of biaxial stress state, 

expressed by Eq. (2.13), and ∆T is the temperature difference, expressed by Eq. 
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(2.14):  
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RTSF TTT∆ −=  Eq. (2.14) 

E is the Young modulus in uniaxial stress state, ν is the Poisson’s modulus, TSF is 

the stress free temperature and TRT is room temperature. The linear system of Eq. 

(2.10), Eq. (2.11) and Eq. (2.12) represent a set of 3n+1 equations and 3n+1 

unknowns that can be easily solved. The resulting residual stress in the generic layer 

i is equal to: 
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where α represents the average coefficient of thermal expansion of the whole 

laminate expressed as: 
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Since the stress level in Eq. (2.15) does not depend on stacking order, the calculation 

is valid for each sequence of laminae, providing the symmetry condition is 

maintained. In order to understand the effect of residual stress intensity and location 

on the apparent fracture toughness of an edge crack in a semi-infinite body, Sglavo 

et al. [22,23] have analyzed some special cases of profile: step profile, square wave 

profile and two square waves based profile. An inductive approach and the 

superposition principle have been used to calculate the T-curve for a general multi-

step profile. In the case of a laminate composed of n layers with constant residual 

stresses σres,i (Figure 2.18), the apparent fracture toughness KI,app,i within layer i in 
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the interval [xi-1, xi] has been calculated as equal to: 
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Eq. (2.17) 

1i,resi,resi,res σσσ∆ −−=  Eq. (2.18) 

where i indicates the layer rank and xj is the starting depth of layer j, being Y 

=1.12147. 

 

Figure 2.18: Crack model considered by Sglavo and co-workers [23] 

 

The latter assumption is not rigorously true for non-uniform loading since Y 

maintains a slight dependence on x/c but such approximation allows to simplify the 

calculations without lose of generality. Eq. (2.17) represents a short notation of n 

different equations since the sum is calculated for a different number of terms for 

each i. The sequence of the apparent fracture toughness of the layers with the 

specified residual stress profile lead to a T-curve behaviour. The degrees of freedom 
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to produce the desired T-curve are 2n-2 since n equation with 2n parameters (xi, ∆σi) 

are now available and two conditions have to be satisfied (force equilibrium and 

equivalence between the sum of single layer thickness and the total laminate 

thickness). In addition, the calculations can be referred to the semi-thickness as  the 

laminate is symmetric. Referring to the most internal between the tensile layers 

placed at the surface as k and to the most compressed layer as l it is possible to 

determine the stable crack growth interval [xk, xl], the threshold stress σth and the 

strength σb of the laminate:  
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+=                         Eq. (2.20) 

Therefore the input parameters of laminate design are the coefficients of thermal 

expansion, Young’s moduli, Poisson’s ratios, fracture toughness and the layers 

thickness. Another important but experimentally unknown input parameter is the 

stress free temperature TSF assumed as equal as 1200°C, while room temperature is 

25°C [62]. The presented model is very simple and approximated but the error in the 

calculation of the apparent fracture toughness in each layer has been estimated as 

being as less than 10% [22]. These innovative laminates possess high mechanical 

reliability and equivalent mechanical characteristics along any loading orientation. 

These properties make these laminated bodies as natural candidates for structural 

applications as in the case of load bearing components in automotive and aircraft 

industry, biomedical prosthesis, chemical plant linings and safety systems. 

2.3.4 Defects in laminates 

The constrain effect developed in cosintering layers within a laminate with 

strong interfaces is responsible of the arising of residual stresses within the 

multilayer. If this effect is sufficiently higher, porosity and deleterious defects can 

also outcome. Some specific defects with scale comparable with the layer thickness 
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are delamination or debonding, channel cracking or tunnelling, edge cracking and 

warping [68].   

 

Figure 2.19: Typical defects observed in laminates: (a) delamination; (b) channel 

cracking; (c) edge cracking. (Adapted from [68,69] ).  

 

Delamination (Figure 2.19(a)) involves an evident separation between 

adjacent layers and occurs when the adhesion forces  between the layers in the 

laminate are low. This problem can be solved by reducing the thermal/sintering 

mismatch or by improving the interlayer adhesion.  

Channel cracking (Figure 2.19(b)) is a typical defect associated to the 

presence of tensile stresses in a layer. The cracks propagate normally to the layer 

plane with a quasi random orientation in the plane itself. Similar consideration as for 

delamination can be advanced to avoid such defect.  

Another well-known phenomenon observed in high compressed layers is 

edge cracking (Figure 2.19(c)). Although these layers contain biaxial compressive 

stresses deep within the thin layers, tensile stresses arise wherever the compressive 

layer is truncated by a free surface. These tensile stresses are perpendicular to the 

compressive layer and have an absolute magnitude equal to that of the compressive 

stress at the centre-line. The tensile stresses decrease to zero at a distance from the 

surface equal to the thickness of the layer, namely the tensile stresses are highly 

localized near the surface of the compressive layer. When the thickness of the 

compressive layer is greater than a critical value, the tensile stress gives rise to a 

crack that extends along, or near, the centre-line to a depth corresponding to 
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approximately the thickness of the compressive layer. Consistent with the theory 

developed by Ho et al. [69], the centre-line crack, called an edge crack, is only 

observed when either the compressive stress or the thickness of the compressive 

layer exceeds a critical value. For the fixed value of compressive stress, the critical 

compressive layer thickness (tc) required for edge cracking is given by: 

( ) 2

2
IC
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συ134.0

K
t

+
=  Eq. (2.21) 

where KIC, ν, and σ are the fracture toughness, Poisson’s ratio and the stress of the 

thin compressive layer material respectively. 

Distortions, curvature and uneven modifications of the planar geometry of 

symmetric laminates are also possible upon cooling. These warping effects are 

usually related to local differences in the layer thickness occurring somewhere in the 

laminate. The resulting lack of moment balance produce a curvature in the material 

to satisfy equilibrium.  

2.3.5 Processes suitable to produce ceramic laminates  

Melting is not a suitable fabrication technology for ceramics since, 

generally, their melting temperature is too high and degradation phenomena occur 

earlier. Sintering after powder forming of green products is the most common 

technique involved in the production of ceramics. The typical classification for 

ceramics processing regards the physical state of the forming material: dry powder 

or fluid suspension, or slip, in which the powders are dispersed. Some organic or 

inorganic additives can be present in both cases, the distinction remaining the actual 

presence of a fluid solvent. The forming process is usually chosen according to 

economic factors and shape, dimensions and final characteristics that the product has 

to satisfy. Ceramic sheets are used in many widely different end products such as 

substrates for electronic circuits, discrete electrical devices, multilayered cofired 

packages for integrated circuits, multilayered assemblies such as fuel cells and plate 

electrodes. Green tapes are also used as intermediate steps in the production of more 

intricate shapes. Several processes are used to form large area and thin, flat ceramic 
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sheets and then laminates: pressing, electrophoretic deposition, tape casting, slip 

casting, rolling and other, followed by sintering or hot pressing. Simply adaptations 

of the methods used to produce traditional ceramics and also new solutions proposed 

and developed rightly for the purpose are employed. All these processes have in 

common the capability to originate a predetermined gradient in the green structure 

of the laminate, which give rise to a spatial variation in the structure of fired 

ceramic. In the following paragraphs, a brief overview about the most techniques 

involved in the production of multilayers is presented. Competing processes to make 

similar flat ceramic parts include extrusion, vibrational induced particle segregation, 

multiphase jet solidification, reactive hot pressing, infiltration, interdiffusion of 

cosintering materials will not be explored here since they are not widely used for 

this purpose and they have many serious limitations [70–72]. A separate subject 

regards the techniques used to produce thin coatings, like CVD (Chemical Vapour 

Deposition), PVD (Phase Vapour Deposition) and sputtering. All the deposition 

methods can be also considered for laminates fabrication, the main restrictions 

remaining the maximum thickness, which can be obtained in a single step, the 

deposition rate and the costs.  

2.3.5.1 Dry powder-based processes 

Cold pressing of ceramic powders followed by sintering [73] can be used to 

produce laminates. Powder feed is composed of granules of different size and 

deformability mixed together to obtain the maximum compact density and the 

minimum porosity volume. Little amount of water or binder and other organic 

additives are generally added to promote the relative motion between the powders, 

arising during pressing. Cold pressing could be uniaxial, when the pressure is 

applied in only one direction, or isostatic, when pressure is applied in each direction 

with equal intensity. The desired structure gradation in the space, useful to obtain 

laminated structures, is actually obtained by stacking batches of different 

compositions. However, layers thickness and dimensional tolerances are much more 

difficult to control when thin layers have to be produced. As for the homogeneous 

ceramics, the compressed green material has then to be sintered to obtain a fired and 

dense material showing the same graded structure present in the pre-form. Pressing 
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is today the most widely practiced forming process for reasons of productivity and 

the ability to produce parts ranging widely in size and shape. 

Roll compactions [74] is another dry pressing process in which a prepared 

powder is continuously pressed between two rollers to form flexible green tapes. 

The tape made with this process is then immediately available for cutting or 

handling. Sintering process is needed to obtain the final product. The advantage of 

rolling, as a method of green layers production, are that it allows easy thickness 

control, achieves high green density of the tapes, and requires a rather low amount 

of solvent and organic additives as compared to other methods. Rolling lends to 

higher volumes of materials but require more rigid powder preparation. Therefore it 

is not often used for new material development or small quantity production. 

Hot Pressing (HP) and Hot Isostatic Pressing (HIP) [73] can be used to 

densify ceramics in a more effective way respect to simple cold pressing followed 

by sintering. A sintered product is directly obtained by performing uniaxial powder 

pressing (HP) in a refractory die and sintering at the same time. Conversely, with hot 

isostatic pressing (HIP) a product previously sintered to the final stage of sintering is 

subjected to a hot pressurized gas. These techniques are pressure assisted sintering 

processes generally used to produce high temperature melting materials, when a 

sintering aid or grain growth inhibitor is unacceptable. The mechanical pressure 

used in this techniques, usually in the range of 10−200 MPa, can increase the driving 

pressure for densification by acting against the internal pore pressure without 

increasing the driving force for grain growth. Indeed, the main effects for the 

enhancement of sintering in these processes are thermal diffusion and plastic flow 

due to the high pressure. Therefore, respect to conventional sintering technology, 

they allow to obtain high density products with fine microstructure at lower 

temperatures. The industrial use of hot pressing is limited because the productivity is 

relatively low, restricted in size and geometry of the samples, and the die 

maintenance is expensive. However, today, hot pressing is the main sintering 

technique to produce alumina/silicon carbide composites. 

Recently, the Spark Plasma Sintering (SPS) process [36,75,76], also known 

as Pulsed Electric Current Sintering (PECS) has attracted a great deal of interest as a 

new cost-effective processing method for sintering and sinter-bonding, at 
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considerably rapid heating rates, various kind of powder materials and laminated 

structures as, for example, TiN/Al2O3, SiC/TiC, Si3N4-SiC/BN-Al2O3 and HA/Y-

TZP [77–79]. SPS is an innovative technology similar to the conventional HP 

process because mechanical pressure is applied during the heating stage. 

Nevertheless, in contrast to the conventional HP, in which the heat is provided by 

external heating elements, in SPS the heat is generated internally. In fact, a pulsed 

direct electric current passes through the graphite die and, depending on the 

electrical conductivity of the material to be sintered, also through the powder 

compact within the die itself. Such electrical current propagation significantly 

improves heat transfer by different mechanisms involving Joule heating, diffuse 

electrical field, spark plasma, and spark impact pressure, resulting in a current-

activated sintering. Spark plasma has a surface activating and cleaning effect on the 

particles being sintered and allows a rapid heating of the compact particles. The 

occurrence of a plasma discharge is still debated but it seems to be widely accepted 

that an electric discharge process takes place on a microscopic level. Therefore, SPS 

has several advantages over conventional sintering methods including high heating 

rates, lower processing temperatures, and short holding times, thus allowing the 

production of highly dense materials with improved quality and good control of 

grain coarsening.  

Plasma-spray [70] is a well-known process used to produce thick coatings, 

like the thermal barriers on the blades in gas turbines. High tension is applied 

between two electrodes placed in a torch in such a way that the resulting electric arc 

promotes the transformation of the flowing gas in the plasma state. In front of the 

nozzle temperature can locally reach values as high as 30000 K. The ceramic 

powder is fed near the torch tip, where is heated, dragged by the gas flame and 

sprayed onto the substrate. The torch, moved by a robotic system, is used to focus 

the flame onto the substrate and to change the target position on the surface. Many 

parameters can be varied in order to modify the thickness, the structure and the 

microstructure of the sprayed material, including gas flow, powder feeding position 

and rates, distance between torch and substrate, substrate pre-heating and powder 

morphology. Plasma spray can work either in vacuum or in air, depending on the 

nature of the powders to be sprayed. Typically a porous structure and a rough 
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surface finishing is obtained by plasma spray, the coating thickness typically ranging 

from a few tens to several hundred of microns. Compared to other coating processes, 

plasma spray allows a high mass transport and thus a high speed deposition. 

Furthermore, layer thickness can be varied easily by adjusting experimental 

parameters and, contrary to pressing-based processes, no thermal treatment is 

required after spraying. Unfortunately, some restrictions are also present since a 

substrate to be coated is always required and no self-supported body can be 

produced. In addition, a residual porosity and a rough surface finishing of the 

sprayed layer can not be avoided. 

2.3.5.2 Slip-based processes 

Colloidal processing offers the possibility to produce strong and reliable 

ceramics of good quality through careful control of the initial suspension and its 

evolution during fabrication. This can be accomplished by reducing the size of the 

strength degrading heterogeneities, as inorganic and organic inclusions or 

agglomerates.  

Among colloidal processing, tape casting [80,81] and lamination of different 

thin and flat ceramic layers to form thick specimens is a relatively simple and 

inexpensive process considered a valid route to produce green ceramic laminates. 

Tape casting has been widely used to develop ceramic substrate, multilayer structure 

capacitor, solid electrolytes, solid oxide fuel cell, and has been performed on several 

materials including alumina, zirconia, barium titanate, nickel, nickel oxide and 

piezoelectric materials. It is a wet forming method which consists in layering a slip 

containing the ceramic powders, onto a temporary rigid plane support by gravity 

flow occurring while the reservoir carrying the slip, called doctor blade, is moved 

with respect to the substrate. The relative motion between the reservoir and the 

substrate can be obtained either by moving the carrier film (stationary blade) or the 

reservoir itself (moving blade), while the slip flows through a controlled slit present 

in the bottom rear part of the doctor blade (Figure 2.20). The casted green tape is a 

single continuous sheet presenting a thickness much smaller than the other two 

dimensions.  
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Figure 2.20: Outline illustrating the tape casting process in the stationary blade 

configuration. 

The slip, or slurry, is a complex fluid system formed by dispersing the 

inorganic materials with dissolvent organic binders, dispersants, plasticizers and 

surfactant in a solvent system. Each of the organic materials is added to the 

formulation to contribute certain properties to the slip and the dried tape. The 

production of a slurry for tape casting is a complex task involving the definition of a 

number of experimental parameters strictly correlated. This includes the choice of 

the nature and amount of all the ingredients in the slip recipe, the preparation 

method to obtain a well dispersed suspension and then a homogeneous slip to be 

cast, together with all the parameters associated to casting itself. The objective is to 

achieve the maximum solids loading in the slip in order to produce dense and good 

quality green tapes with good reproducibility. Ceramic powders used for tape 

casting commonly have an average particle size in the range of 0.3−3.3 µm and a 

specific surface area of about 2−11 m2/g [81]. The size distribution is dictated by the 

opportunity to improve the green homogeneity and density. The solvent or solvent 

blend has the function to originate a fluid system and to homogenise all the 

ingredients in the slip. Non-aqueous suspensions avoid hydratation of the ceramic 

powder and are faster drying thanks to high vapour pressure and low boiling point 

and heat of vaporization of the organic solvents. However, they require special 

precautions concerning toxicity and inflammability. Typically, organic solvent 
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recovery systems are needed to control emissions of compounds into the 

atmosphere. On the other hand, water based solvent systems are attractive since they 

have advantages of incombustibility, non-toxicity and low cost, associated with the 

large amount of experience with the use of water in similar ceramic powder process.  

Unfortunately, thicker tapes are more difficult to make by using aqueous 

suspensions mostly due to problems in the drying process. In effect, water has the 

disadvantage of high evaporation latent heat and longer drying time, thus higher 

drying temperature are required when using aqueous systems.  Also wettability can 

be a problem due to the high surface energy of water. Another difficulty is related to 

the production of good dispersion for slips which include two or more kinds of 

powders, especially when the particle size and density are quite different. A good 

powder dispersion is essential to obtain tape homogeneity and uniform shrinkage 

without grain coarsening during sintering. In the case of water based systems, an 

important role is played by the powder isoelectric point (IEP), also known as Point 

of Zero Charge (PZC), since pH intervals of mutual attraction between powders with 

different IEP can promote strong flocculation phenomena. When dispersed in water, 

particles exhibit proton exchange reactions and a non-zero surface electric charge is 

typically achieved at equilibrium, assuring an electrostatic repulsion between the 

particles. IEP represents the pH value corresponding to an average zero charge on 

the particle surface. This is the worst condition for dispersion, since no repulsion 

force exists to face the attractive Van der Waals interactions. When pH is higher 

than IEP, the charge on the surface is negative, while it is positive when pH is lower 

(Figure 2.21). In the case of powders with different IEP, it easy to see that in some 

pH range opposite charges can occur and promote a strong inter-particle attraction. 

Two general methods are used to produce the short-range, interparticle repulsive 

potential useful to obtain well dispersed slip. For each, a chemical route is used to 

shroud the particles with a barrier layer. In the first method, the barrier layer is 

produced with a cloud of ions: the density and thickness of the cloud is controlled by 

adjusting the pH and salt concentration. In the second method, the barrier layer is 

produced by attaching polyelectrolyte molecules to the surface. In this case, the 

thickness of the barrier layer is governed by the size of the chem-adsorbed molecule. 

The adsorption of such polyelectrolyte on the particle surface can shift the IEP 
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position (Figure 2.21) and favour the inter-particle repulsion.  

 

 

Figure 2.21: Relative Acoustophoretic Mobility (RAM) for 16.7 wt% dispersion of 

A-16SG  alumina in pure water with and without the polyelectrolyte Darvan C. 

(Adapted from [82])  

Therefore, a dispersant is needed to promote and maintain stable the powder 

dispersion in the solvent. This effect is achieved by electrostatic repulsion, steric 

hindrance of adsorbed dispersant molecules or a combination of the two 

mechanisms. The optimum amount of dispersant is thus proportional to the powder 

surface area. The binder is a long-chain polymer or a colloid that provides strength 

and flexibility to green tapes after evaporation of the solvent through organic bridges 

between the ceramic particles. Binder selection depends on its viscosity, strength, 

glass temperature and burn-out atmosphere. A high molecular weight is desired in 

the binder for high toughness and strength and a low glass transition temperature. If 

present in sufficient amount, the binder represents a continuous polymeric matrix 

entrapping the ceramic powder thus allowing handling, storage and green machining 
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as cutting and punching. The binder should be compatible with the dispersant, 

should provide lubrication between particles and should not interact during solvent 

evaporation. In most cases, low molecular weight polymers are also added as 

plasticizers to increase the green deformability at room temperature. The 

combination of binder and plasticizer must be balanced to provide the required 

mechanical properties and to permit a high concentration of inorganic particles in 

the slurry. Two groups of substances mainly have been used as binders for aqueous 

tape casting of ceramics: cellulose ethers and vinyl or acrylic-type polymers [80]. 

The colloidal properties of acrylic polymer emulsions lead to slip formulations 

containing high solid contents in well-dispersed systems. Moreover, these emulsions 

have useful and unique characteristics such as low viscosity, internal plasticization 

and controllable crosslinking,  which provide a good cohesion to the green sheet but 

with a low strain to failure. On the other hand, they include some surfactants in 

order to stabilize the emulsion which can promote foam formation. Other additives, 

including wetting agents to promote spreading of the slurry on the carrier substrate, 

homogenizers which contribute to a better surface quality and antifoaming agent to 

prevent foaming during mixing, can be used.  

Milling, in particular wet ball milling or vibratory milling, is used to break 

aggregates and to disperse powder agglomerates as well as to mix and homogenize 

the organic additives. It is well known that mixing of the organic ingredients, in 

aqueous tape casting, is commonly accomplished by using a two-stage milling 

process [80,81]. The liquid, the powders and other additives of low molecular 

weight are mixed by using ball milling procedure for 12−24 h at a relatively higher 

viscosity at which shear forces are able to disperse agglomerates. Then, dissolved 

gas in the slurry is commonly removed in a close container under vacuum. Next, the 

binder and plasticizer are added and milling continues for another 2−24 h to 

complete the mixing. The two stage milling process is used to reduce the scale of 

inhomogeneity in the slurry without foaming or degrading the high molecular 

weight binder molecules. Before casting the slip is filtered to remove any residual 

coarse agglomerate or polymer cluster. Indeed, agglomerates and undissolved 

organic material must be finer than the thickness of the tape for proper forming and 

for ultimate thermal and mechanical properties. Due to the high solid content and to 
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the presence of organic polymers, the slip to cast presents usually a high viscosity 

and a pseudoplastic rheological behaviour (its viscosity decreases when shear rate 

increases). In some cases, time dependent phenomena as thixotropy can also be 

observed. The slurry is usually cast on a smooth polymeric tape carrier, as Mylar®, 

Teflon® or silicone, by the relative movement between the doctor blade and the 

carrier. The cast tape thickness can be easily controlled by adjusting the blade gap, 

the casting speed and the slip viscosity. Casting is followed by drying which has the 

main function to remove the solvent. Drying is usually performed in closed system 

or at open air, from room temperature to 85°C, with relative humidity from 50% to 

70%. During this stage, the solvent escapes by diffusion and evaporation, while the 

solid phases (powders, binder and plasticizers) settle at the bottom. Flexible and 

deformable dried green sheets, with a typical thickness in the range of 25−1250 µm, 

are generally produced. To obtain a multilayered structure, the tape casting is 

followed by a lamination process where the layers stack is thermo-compressed to 

give the green laminate. The obtained bond strength between layers is important for 

maintaining product integrity during the sintering process. Lamination is usually 

performed at a temperature range of 50−150°C and pressures of 3−30 MPa. Then, 

the organic matter present in the green laminates is generally removed by a slow 

heating burn-out treatment before sintering. One of the main advantages of tape 

casting regards the good density and homogeneity of the green, which allows the 

production of a dense fired ceramic with a uniform microstructure. Some problems 

do exist associated to the anisotropy of the shrinkage during drying: solvent removal 

occurs in fact only from the top surface. The residual stresses due to substrate 

constrain can not be sustained when the thickness increases over some critical extent 

or when the binder is not properly plasticized, the main outcomes being cracks and 

defects produced in the green.  

Sequential slip casting [83] is a simple modification of the slip casting 

method, which is performed in this case by batch. Gravity is always the force 

controlling the particle settling and the deposition rate can be adjusted by means of 

several parameters, the most important being particle size and slip viscosity. As for 

traditional slip casting, organic suspending agent can be used to the purpose. A 

tailored profile in the structure is constructed by a proper change of the batch 
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composition with time, by emptying and filling the mould with a new slip every 

time a new layer is desired. Also in this case layer thickness can be controlled easily 

by adjusting the settling time.  

Conversely, in the case of sedimentation slip casting the graded structure is 

obtained by means of different settling rates of the slip components [84] and there is 

no need to a continuous change of the slip. A further evolution of the process is 

called graded casting: an automated procedure for mould feeding permits the 

formation of a continuous gradient in the composite [84]. With respect to tape 

casting, the binder content is limited and this is a substantial advantage since costs 

are reduced accordingly and the controlled burn-out phase is less critical. A drying 

phase follows to complete the solvent removal, which partially diffuses across the 

porous mould during casting. Large and complex shapes can be obtained quite 

easily, the main limitation regarding the overall duration required by the process. 

Centrifugal consolidation is quite similar to the previous one. The main 

difference regards the driving force for the material deposition, which is here 

supplied by the centrifugal acceleration in place of gravity. In addition, a 

simultaneous move of the suspension medium also occurs in the opposite direction 

and no flow through the sedimented body is required for the solvent removal during 

drying. The deposition rate can be controlled by adjusting the rotational speed, while 

a limitation exists regarding the orientation and the shapes which can be processed. 

The technique seems very promising and is particularly suitable for bodies 

presenting an axial symmetry, like discs, tubes and shells. Small flat multilayered 

laminates have been also produced by placing the container in a radial direction, 

though a slight curvature in the green sample can not be avoided [72]. Self-

supported bodies can be also produced. 

Electrophoresis [72] works by applying an external dc electric field to a 

slurry promoting the migration of charged particles to the opposite charged 

electrode. The particles must be well dispersed within the medium to show high 

electrophoretic mobility. Water is also used as solvent because it is polar, economic, 

ecological and safe. The electric field generated by the applied potential difference is 

the force controlling the deposition rate of material. At the electrode, the double 

layer which guarantees the repulsion of moving particles is distorted and short range 
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attractive forces are developed. Then, particle transfers its charge to the electrode 

and remain attached to the growing layer, usually with a high packing density. A 

drying step is then required to remove solvent. The layer thickness vary typically 

from a few to a few hundred microns. A graded structure can be obtained by 

changing the slip or by using particles with different mobility, while the single layer 

thickness can be easily controlled by voltage application time. 
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Chapter III 

Experimental Procedure 

3. Experimental Procedure 

3.1 Material and process selection 

3.1.1 Material selection 

The aim of this work was to produce alumina/silicon carbide multilayered 

laminates presenting a T-curve behaviour arising from properly designed residual 

stress profile. According to the practical rules presented before, in order to generate 

residual stresses in the multilayer, it is necessary to use materials with different 

thermal expansion coefficients and sintering shrinkage. Since the sole thermal 

expansion mismatch between the materials is considered as the driving force for the 

production of residual stresses, the production of a multi step residual stress profile 

in a cofired laminate requires a range of different laminae, each one presenting a 

different thermal expansion coefficient. This can be easily achieved by producing 

several composites and by tailoring the thermal behaviour through the composite 

composition control. 

Among laminated composites, one of the most studied system is the 

alumina/zirconia one [19]; alumina, zirconia and mullite have been already used as 

starting materials in the production of laminates exhibiting residual stress profiles 

and T-curve behaviour [22–24]. The material systems selected for the proposed 

study are alumina and silicon carbide because, in the range of temperature 

25−1500°C, alumina has a coefficient of thermal expansion of ~8·10-6°C-1, while 

silicon carbide has ~5·10-6°C-1 (Table 3.1). The reason for choosing alumina and 

silicon carbide as the constituent materials of ceramic laminates can be traced back 

to the fact that both materials are mutually insoluble, there are no intermediate 

phases, no solid state or eutectic reactions that could lead to material changes during 

the high temperature cofiring treatment, in inert and proper conditions; in addition, it 

is possible to obtain excellent bonding between the layers in the absence of 
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excessive diffusion between components. In addition, they present good 

refractoriness, high stiffness and good thermo-mechanical properties. These 

characteristics make the two materials interesting candidates for the composites 

production. Also the challenge in sintering these materials up to full densities with 

conventional or innovative technologies has been taken into account. According to 

previous works, previously presented, yttria has been selected as additive powder to 

enhance sinterability of the alumina/silicon carbide composites. 

Table 3.1: Ceramic materials considered in this work. Density (ρ), Young’s modulus 

(E), bulk modulus (B), shear modulus (µ) and thermal expansion coefficient (α) are 

reported. 

Material 
ρ  

[g/cm3] 

E  

[GPa] 

B  

[GPa] 

µ  

[GPa] 

α 

 [10-6°C-1] 

Alumina (α-Al 2O3) 3.984 416 257 169 8.1 

Silicon carbide (α-SiC) 3.16 415 203 179 5 

Yttria (Y2O3) 5.01 158 - - 7.9 

(data from [85] for alumina, from [86] for silicon carbide and from [87,88] for yttria) 

 

The ceramic powders from commercial sources used in the present work are 

presented in Table 3.2. Fine and pure α-alumina (A-16SG, ALCOA Inc., Pittsburgh, 

PA, USA) has been considered as the fundamental starting material. High purity and 

fine α-silicon carbide (Sika ABR I F1500S, Saint Gobain, Courbevoie, France) 

powder was chosen as the second phase to vary the thermal expansion coefficient of 

pure alumina. Alpha-polytype SiC was preferred to beta-polytype to avoid excessive 

grain growth during beta-alpha transformation [89]. Composites in the 

alumina/silicon carbide (AS) system with nominal composition ranging from 0 vol% 

to 30 vol% have been produced. In the whole text, the composites are labelled as 

ASxy where the first two characters represent the system AS and the last correspond 

to the percentage volume content of the second phase. Pure alumina (AS0) ceramic 

has also been produced. High purity Y2O3 (Yttrium oxide, Sigma Aldrich, St Louis, 
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MO, USA) has been chosen as liquid phase sintering additive to use in the 

development of pressureless sintering of alumina/silicon carbide composites. To this 

purpose, doped alumina composites with all the considered SiC content were also 

prepared by adding 2 wt% yttria and labelled as ASYxy, the first three characters 

representing the yttria doped AS composites.  

Table 3.2: Ceramic powders considered in this work. 

Material 
Code &  

producer 

D50  

[µm] 

BET area 

 [m2/g] 

Purity  

[%] 

Alumina  

(α-Al 2O3) 

A-16SG 

Alcoa 
0.4 8.6 >99.8 

Silicon carbide  

(α-SiC) 

Sika ABR I F1500S 

 Saint-Gobain 
1.8 4.9 >99.8 

Yttria  

(Y2O3) 

Yttrium oxide 

Sigma Aldrich 
5 5.5 99.99 

(data from products technical notes except BET area measured by BET nitrogen adsorption) 

 

Specific surface area of the raw powders, shown in Table 3.2, was measured 

by BET nitrogen gas adsorption (Micromeritics ASAP 2010, Micromeritics Corp., 

Norcross, GA, USA). Nitrogen physisorption experiments were performed at the 

liquid nitrogen temperature. Samples were degassed below 1.3 Pa at 25°C prior to 

the analysis. Specific surface area of the samples was evaluated with the BET 

equation within the relative pressure range 0.05≤p/p0≤0.33, where p0 is the 

atmospheric pressure. 

Crystalline phases of the powders were confirmed by X-ray diffraction 

investigation. The Bragg-Brentano geometry (Geiger Flex Dmax III, Rigaku Inc., 

Tokyo, Japan) with Cu-Kα radiation was used. 

In addition to ceramic powders, other materials were necessary for laminates 

production, especially organic additives required by the forming process. As 

associated only to the material processing and not present in the fired ceramic, they 



  72 

were not included here and are discussed in the paragraph on tape casting.  

3.1.2 Process selection  

3.1.2.1 Green forming method 

In the second chapter, several production processes to obtain ceramic 

laminates have been presented. Suspension processing techniques can be used to 

prepare green bodies with high relative density, small pore sizes and homogeneous 

microstructure. In the present work, tape casting has been selected as green forming 

technique as it is a simple and relatively low cost method which does not require any 

special equipment. In the past, it was successfully used to produce laminates in a 

variety of materials with high density and a wide range of thickness, ranging from 

25 µm up to over 1250 µm, and is therefore suitable for the production of laminas 

whose thickness must be easily adjusted.  

Water-based slurries were considered because of the many advantages which 

the universal solvent offers. Contrary to organic solvents, its use is in fact safe, 

healthy, low-cost and does not involve any environmental problem associated to 

disposal. These considerations are valid not only for the lab-scale experiments of 

relevance here, but mainly for any out-coming industrial application, since the 

volumes and the subsequent risks are extremely higher in the latter case. In addition, 

there are no problems related to degradation of the ceramic powders considered in 

this work.  

The polyelectrolyte approach to produce the short-range, interparticle 

repulsive potential useful to obtain well dispersed slip has been chosen since it has 

greater applicability to many different powders and mixtures of different powders 

common to ceramic processing. A commercial polyelectrolyte dispersant (Table 3.3) 

was considered and the optimum amount obtained by literature [82,90–92]. Acrylic 

emulsions (Table 3.3) have been chosen as binders since they are very promising for 

tape casting slurry formulations owing to their features expected to reduce some 

drawbacks linked to aqueous preparation. The suitable amount of binder to be added 

has been determined experimentally, considering previous works results [22–24]. 
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3.1.2.2 Sintering 

As described in the second chapter, densification of the Al2O3/SiC 

composites is severely limited by the presence of the second phase, thus requiring 

hot pressing technique to achieve full densification. For many potential applications 

of these materials, hot pressing would be prohibitively expensive and pressureless 

sintering routes would be preferable if near full density could be achieved.  

In this work, pressureless sintering has been chosen as one densification 

route to investigate the practicability of applying conventional processing to 

alumina/silicon carbide laminates presenting a T-curve behaviour. This would 

provide a basis for cost-effective scale up technique to fabricate larger amounts of 

near net shape products. However, as discussed in the second chapter, a significant 

barrier to the application of conventional sintering to alumina/silicon carbide 

composites is their reduced sinterability compared to alumina and their composition 

variations due to vaporization processes occurring at the sintering temperatures. To 

overcome the weight loss problem, the limitation of vapours flow in the sintering 

atmosphere can be used, which is achievable by enhancing the green density of the 

samples and reducing the size of the open porosity, or by a reduction of the sintering 

gas flow or by the use of a powder bed. Each one of these strategies has been 

selected by using a proper green forming method, realizing sintering cycles under a 

minimum gas flow and by surrounding the samples by a buffer bed. Even though 

high temperature sintering processes are generally performed in graphite furnaces, in 

this work an alumina tube furnace has been chosen as sintering equipment since the 

presence of carbon, in contact or not, in furnace environments is detrimental to 

alumina. In fact, formation of aluminium carbide, Al4C3, or oxycarbides as Al2OC, 

by carbothermal reduction of alumina, starting from 1400°C, under vacuum or 

atmospheric pressure of argon in presence of carbon, has been reported [93,94].  

The laminated Al2O3/SiC composites were fabricated also by means of the 

Spark Plasma Sintering (SPS) technique due to its beneficial characteristics. In 

addition, SPS had not been used before for the said kind of multilayers. 
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3.2 Laminates production 

3.2.1 Slurry preparation 

Water-based slurries to be used for tape casting have been prepared by using 

ammonium polymethacrylate (NH4-PMA, Darvan C®, R. T. Vanderbilt Inc., 

Norwalk, CT, USA) as dispersant and an acrylic emulsion (B-1014, DURAMAX®, 

Rohm & Haas, Philadelphia, PA, USA) as binder. Similarly to previous work [23], a 

lower-Tg acrylic emulsion (B-1000, DURAMAX®, Rohm & Haas, Philadelphia, 

PA, USA) was also added in 1:2 ratio with respect to the binder content as 

plasticizer in order to increase the green flexibility and reduce crack occurrence in 

the dried tape. Characteristics of all the organic ingredients are listed in Table 3.3.  

 Table 3.3: Organic ingredients used in the slurries. 

Substance 
Code & 

producer 
Function pH 

Tg  

[°C] 

Active 
matter 

[wt%] 

NH4-PMA 
Darvan C® 

R.T. Vanderbilt, Inc. 
Dispersant 7.5−9.0 - 25 

High Tg acrylic 
emulsion 

B-1014 Duramax® 

Rohm & Haas 
Binder 3 19 45 

Low Tg acrylic 
emulsion 

B-1000 Duramax® 

Rohm & Haas 
Plastifier 9.4 -26 55 

 

Tape casting slurries have been realized by using a two-stage process [80]. 

An optimum dispersant content equal to 1.5 wt% with respect to the powder (about 

0.4 mg/m2 of active matter of Darvan C) was found in previous works [82,90–92]. 

The slurry was placed on ball mill in order to reach a complete dispersion. The ball 

milling stage, using alumina spheres of 6 mm nominal diameter, was performed in 

Nalgene® bottles for 24 h to break down all powder aggregates. Ball-milling was 

performed using a load factor (mass of alumina balls/mass of powder) equal to 1/3. 
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Then, suspensions were filtered by a 41 µm polyethylene net and de-aired using a 

low-vacuum Venturi pump to remove air entrapped during the milling stage. In a 

second stage, emulsion of acrylic binder and plasticizer were added to the obtained 

dispersion and slowly mixed for 30 min to reach a good homogeneity, using great 

care to avoid the formation of new bubbles [80]. The final organic content was 21 

vol%, only the half of this values being actually organic matter (Table 3.3).  

To optimize the slurry for tape casting in the case of the alumina/silicon 

carbide composites, a preliminary measure of the zeta potential as a function of pH, 

of the Sika ABR I F1500S powder was carried out in water at 25°C by using the 

electrophoretic light scattering technique (Delsa Nano, Zeta Potential and 

Submicron Particle Size Analyzer, Beckman Coulter Inc, Fullerton, CA, USA). The 

SiC powder exhibits negative surface electric charge in all the studied pH range 

(Figure 3.1) similarly to the A-16SG alumina powder dispersed with Darvan C in 

basic conditions (Figure 2.21). Therefore, SiC powder can be electrostatically 

dispersed in the alumina dispersion with no further amount of any dispersant. 
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Figure 3.1:Effect of pH on the zeta potential of the Sika ABR I F1500S SiC powder 

in water.  

Hence, in the case of AS composites, silicon carbide powder was added after 

dispersing alumina for 24 h in the same conditions described for pure alumina and 
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then ball milled for additional 24 h before filtering and de-airing.  

All suspensions were produced with a powder content of 39 vol%. It is 

useful to point out that the volume of powder in the first dispersion stage was 

obviously higher, equal to 50.6 vol%, since the addition of the acrylic emulsions 

supplies also solvent to the slurry and dilutes the slip. The recipe used to produce the 

composite AS30 is presented in Table 3.4 as an example. The second stage of the 

process for all the compositions in the AS system consisted in the addition of the 

emulsion binder and plasticizer and was exactly the same as for alumina. Just before 

casting, slurries were filtered again at 100 µm to ensure the elimination of any 

bubble or cluster of flocculated polymer.  

Table 3.4: AS30 composite recipe.  

Ingredients Function 
Density 

 [g/cm3] 

Content 

[wt%] 

Content 

[vol%] 

Alumina Ceramic 3.984 51.5 27.3 

Silicon carbide Ceramic 3.16 18.3 11.7 

Water Solvent 1.00 17.8 36.7 

NH4-PMA Dispersant 1.11 0.7 1.3 

High Tg acrylic emulsion Binder 1.05 7.8 15.3 

Low Tg acrylic emulsion Plasticizer 1.03 3.9 7.7 

 

A similar procedure was used for the preparation of composite slurries 

where yttria was used as sintering aid. ASY suspensions were prepared by mixing 

the calculated dispersant quantity and bidistilled water until the dispersant was 

uniformly distributed. Then the oxide used for doping, yttria, was added since basic 

pH is suitable for dispersing the sintering aid (Y2O3 dissolves extensively at low pH 

values [95]). After that, the alumina powder was gradually added and dispersed. The 

following procedure was the same as in the case of the preparation of AS composite 
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slurries. A flow chart of the overall production process is shown in Figure 3.2. 

 

 

Figure 3.2: Flow chart of the two-stages slurry preparation process considered in 

this work. 

3.2.2 Tape casting 

Tape casting was carried out using a double doctor-blade assembly (DDB-1-

6, 6” wide, Richard E. Mistler Inc., USA) at a speed of 1 m/min for a length of about 

1000 mm. Such rather high translational speed was considered to obtain a minor 

dependence of layer green thickness on slip viscosity and speed fluctuations [80]. 

Also the selection of a double doctor-blade assembly was aimed to the improvement 
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of the rheological behaviour obtained during casting, since a reduced influence of 

the slip level in the reservoir on the wet-tape height does exist in this case. A small 

lab-scale apparatus (Figure 3.3) was used to move the doctor blade with respect to 

the substrate (moving blade configuration).  

 

 

Figure 3.3: Lab-scale apparatus used to cast slurries in the present work. 

A composite three-layer film (PET12/Al7/LDPE60, BP Europack, Vicenza, Italy) 

was used as substrate in order to make the removal of the dried green tape easier. 

For this reason the polyethylene hydrophobic side of the film was placed side-up. 

The substrate was placed onto a rigid float glass sheet in order to ensure a flat 

surface and properly fixed with an adhesive tape to the borders. The relative 

humidity of the over-standing chamber was controlled and maintained in the range 

70−80% during casting and drying to avoid a too fast evaporation of the solvent and 

the possible cracking of green tapes due to shrinkage stresses. For all compositions, 

casting of suspensions was performed using two different blade heights, 250 µm and 

100 µm, to obtain different layer thickness to combine with in the laminate. In both 

case, either the front and the rear blade were set at the same gap height. For the sake 

of brevity, these two kinds of tape are labelled in the following as type I and type II 
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tapes, with reference to green tapes cast at 250 µm and 100 µm, respectively. After 

tape casting and drying, the green sheets showed smooth surface, homogeneous 

microstructure and uniform thickness of approximately 120 µm and 50 µm 

respectively. 

3.2.3 Stacking and lamination 

Green disks of 30 mm nominal diameter as well as sheets of nominal 

dimension 60 mm x 45 mm were cut from the green tapes using a hollow punch or 

an hand-cutter, stacked together according to the desired laminate architecture and 

uniaxially thermo-compressed at 80°C under a pressure of 30 MPa. The pressure 

was applied for 15 min in load control using a universal mechanical testing machine 

(mod. 810, MTS Systems GmbH, Berlin, Germany). A heating rate of about 

3°C/min was considered. A 100 µm silicon-coated PET layer was placed between 

the laminate and the stainless steel dies to prevent sticking to steel of the surface 

layers and make the removal easier after thermo-compression. Care was taken to 

maintain the same side-up for each green lamina during pile-up to obtain a better 

adhesion between the different layers. In fact, it was demonstrated elsewhere that the 

binder distribution is not homogeneous in the green tape after drying [80,96], the 

bottom surface (substrate side) being richer of organic phase. Therefore, the same 

side was used for each lamina in a given laminate to avoid delamination. Two 

different kind of disks composed of 20 or 34 layers were produced: monolithic disks 

of identical layers and symmetrical multilayered materials constituted by a prefixed 

stacking of layers. For sake of brevity, these two kinds of multilayer are labelled in 

the following as thin (20 layers) and thick (34 layers) laminates. Only stacks of 20 

laminae were used for green samples fabrication. Disks were ground with 180-grit 

SiC paper on the lateral surfaces to eliminate any layer misalignment or border 

imperfection. Bars of nominal dimensions 30 mm x 9 mm x 2 mm useful for 

mechanical testing were cut after thermo-compression of rectangular laminates and 

then re-laminated [96] before the thermal treatment to avoid any delamination 

caused by localized shear stresses due to cutting operations. Pre-cutting of bars is a 

valid solution to avoid cutting of fired laminates, since the presence of high residual 

stresses as well as the hardness of sintered materials make that operation a long, 
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tedious and low-efficient task.  

3.2.4 Burn-out and pre-sintering treatment  

Burn-out conditions were selected on the basis of the results of the 

thermogravimetric analysis on the silicon carbide powder and on the organic 

ingredients listed in Table 3.3. Binder, plasticizer and dispersant must be removed in 

fact by pyrolysis before sintering and the thermal treatment must provide for such a 

purpose. In addition, in order to maintain the composition in the composite materials 

the oxidation of the silicon carbide powder has to be avoided. Indeed, the amount of 

silica induced on SiC particles during processing must be carefully controlled as it 

results in formation of mullite and liquid phases during sintering and glassy 

intergranular phases in the dense materials. Thermo-gravimetric analysis of the 

silicon carbide powder was performed in air flow (200 cc/min) up to 1450°C at 

5°C/min using a TG/DTA apparatus (STA 409, NETZSCH GmbH, Selb, Germany) 

to individuate the temperature range in which oxidation occurs. Thermo-gravimetric 

analysis of the organic ingredients was performed up to 1100°C at 5°C/min to locate 

the temperature range of pyrolysis phenomena and define the correct thermal 

treatment accordingly. An inert gas atmosphere (argon flow of 200 cm3/min) has 

been used to study the effect of the inert character of the atmosphere on the thermal 

degradation.  

As time is required for polymer degradation, which occurs usually by 

cracking, a slow heating rate is usually required in the temperature range where 

pyrolysis takes place to obtain a homogeneous ceramic green. For the same reason, 

laminates were supported in the furnace using alumina sponges, which allow an easy 

removal of the produced gaseous species and lease a more uniform porosity in the 

ceramic body after burn-out. According to the observed pyrolysis intervals, all 

laminates were subjected to a debinding treatment, carried out by slow heating 

(1°C/min) up to 600°C in argon flow (100 cm3/min) to allow the complete burn-out 

of the organic phase. The temperature was then raised to 4°C/min up to 1000°C for a 

successive pre-sintering treatment (dwell time = 12 min) useful to produce samples 

that can be easily handled. 

Each sample was weighed before and after the pre-sintering treatment to 
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determine the average weight change for the material and this was compared with 

the weight change detected by TG analysis to evaluate the amount of carbonaceous 

residue of the organic substances burn-out.  

For all the AS compositions, green compact open porosity and pore size 

distribution were analyzed by mercury intrusion porosimetry (Pascal 140 and 

Porosimeter 2000, CE Instruments, Milano, Italy). The pore channel radii 

distribution was obtained using standard values for the mercury surface energy (484 

erg/cm2 or 4.84·10-5 J/cm2) and the contact angle (140°).  

3.2.5 Pressureless sintering  

The effect of temperature, atmosphere and powder bed on pressureless 

sintering behaviour of alumina/silicon carbide composites, with and without yttria as 

sintering aid, was investigated to provide the experimental conditions found to be 

favourable for the laminates fabrication. Pressureless sintering of the specimens was 

conducted in an alumina tube furnace (HTRH 100-300/18, GERO 

Hochtemperaturöfen GmbH, Germany) under flowing N2 or Ar atmosphere 

(50cc/min) during 2h at a temperature of 1700°C or 1750°C. The heating rate was 

4°C/min until high temperature. In some experiments the laminates were placed onto 

an alumina sponge while in other cases the samples were put in an alumina vessel 

and surrounded by a powder bed. Pure A16-SG alumina powder (A bed), pure Sika 

ABR I F1500S silicon carbide powder (S bed) and 50 mol% A16-SG/ Sika ABR I 

F1500S powder (AS bed) were used as beds to promote a protective atmosphere 

during firing. As discussed in previous chapter, sintering of Al2O3/SiC compositions 

is accompanied by the formation of volatile species as Al(g), Al2O(g), SiO(g) and 

CO(g), their concentration, and consequently the weight loss in the composite, being 

determined by the material composition and by the sintering atmosphere and 

temperature. The gaseous species formation is mainly due to the interaction between 

an equal number of moles of Al2O3 and SiC (React. (2.1)). Therefore, to hinder the 

decomposition of SiC due to interaction with Al2O3, a mixture of 50 mol% of SiC 

and Al2O3 has been considered, as beneficial buffer bed, and tested. Such AS bed 

was produced by manually mixing the powders before the use. 

After sintering, weight loss and relative density of samples were determined. 
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X-ray diffraction was also used to investigate the crystalline phases of selected 

sintered samples and the nature of the sintering residual ashes present on the 

alumina tube after firing. X-ray diffraction examination and density measurements 

were performed as described in the paragraph of the physical characterization of the 

homogeneous laminates. 

According to the results of these investigations, the 50 mol% A16-SG/ Sika 

ABR I F1500S powder  bed (AS bed) has been selected to promote a protective 

atmosphere. Argon flow (50 cm3/min) and 1750°C with an holding time of 2h have 

been chosen as other sintering conditions. The heating rate was 4°C/min until high 

temperature. A free cooling phase in the furnace followed. 

3.2.6 Spark Plasma Sintering 

Thin and thick pre-sintered disk-shaped laminates were subjected to spark 

plasma sintering. In particular, thick laminates of all AS composition from pure 

alumina, AS0, to AS30, were produced. Two types of thick laminate and one type of 

thin engineered laminates, as described in the relative paragraph, were also 

fabricated. Thin homogeneous alumina laminates, labelled as AS0III , were also 

produced to compare the behaviour of the thin engineered laminate. Spark plasma 

sintered multilayers are labelled as AS (SPS) laminates. 

Two pre-sintered samples of the same type were carefully placed into the 30 

mm inner diameter graphite mould separated by a graphite spacer. The mould was 

then closed and placed in the SPS apparatus (Dr. Sinter 1050, Sumimoto Coal 

Mining Co., Tokyo, Japan). Sticking of the compacts to the punches was prevented 

by placing a graphite foil 200 µm thick between the compact and the surface of 

punches and mould. Two laminates were sintered in each firing treatment to 

improve the technique productivity and to lower the fabrication costs (Figure 3.4 

and Figure 3.5). The initial uniaxial pressure was equal to 6.4 MPa. A vacuum level 

of 10-2 mbar was reached and a pulsed current (12 impulses of 3 ms on and two 

impulses of 3 ms off) was applied. The temperature was raised to 600°C in 5 min 

and then monitored and regulated by means of an optical pyrometer.  
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Figure 3.4: Schematic representation of the SPS configuration adopted in the 

present work.   

 

Figure 3.5: Photograph showing the elements constituting the core of the SPS 

ensemble. From the left, a graphite punch, a graphite die, a laminate sample, a 

graphite spacer, a laminate sample and a graphite punch are recognizable.  
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Then, the uniaxial pressure was raised to 28.7 MPa and the temperature was 

increased, at first up to 1650°C (heating rate = 100°C/min) and then to 1700°C 

(heating rate = 50°C/min). After a holding time of 2 min, the pressure was released, 

the current turned off, and the sample cooled down. A sintering temperature equal to 

1700°C was chosen for the spark plasma sintering process to obtain dense 

microstructures for all the compositions and to make a comparison with the 

analogous pressureless sintered materials. 

3.3 Homogeneous Laminates 

3.3.1 Physical characterization 

Crystalline phases in selected sintered samples were examined through X-

ray diffraction in the Bragg-Brentano geometry (Geiger Flex Dmax III, Rigaku Inc., 

Tokyo, Japan) with Cu-Kα radiation, operated at 40 kV and 30 mA, and a graphite 

monochromator in the diffracted beam. The step size and step time are 0.05°/step 

and 5 s respectively. The quantity of phase composition of selected samples was 

analyzed with Rietveld refinement of the XRD data. The Rietveld analysis program 

Materials Analysis using Diffraction (MAUD, Version 2.26) [97] was employed to 

evaluate the collected diffraction patterns. 

Bulk densities of sintered samples were measured by the Archimedes’ 

immersion method in de-ionized water at room temperature. Six samples for each 

material were considered. Relative densities and porosity were also calculated with 

reference to the theoretical densities of fully densified composites. Assuming a 

density of 3.984 g/cm3 for alumina and 3.16 g/cm3 for silicon carbide (Table 3.1), 

the theoretical densities of composites were calculated by the rule of mixtures: 

( )1v21v112 f1ρfρρ −+=  Eq. (3.1) 

where ρ12, ρ1 and ρ2 are the densities of the composite, phase 1 and phase 2 

respectively and fv1 the volume fraction of phase 1.  

The thermal expansion coefficient required for the residual stress calculation 

by Eq. (2.15) and Eq. (2.16) was measured in the range 25−1000°C by a dilatometry 
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apparatus (DIL 402, NETZSCH GmbH, Selb, Germany) using an alumina sample 

holder and a heating rate of 5°C/min. The experimental values were compared to the 

Turner’s equation [3] proposed to estimate the thermal expansion coefficient of a 

generic composite with a fine and equiaxed microstructure, reported in the following 

in the case of a two phase composite: 

( )
( )1v21v1

1v221v11

f1BfB

f1BαfBα
α

−+
−+=  Eq. (3.2) 

where B1 and B2 are the bulk moduli of phase 1 and 2, respectively, α1 and α2 the 

corresponding thermal expansion coefficients and fv1 the volume fraction of phase 1. 

The microstructure of the sintered materials was observed using Scanning 

Electron Microscopy, SEM, (JSM-5500, JEOL Inc., Tokyo, Japan) and energy 

dispersive microanalysis (Analyzer 500, IXRF Systems Inc., Houston, TX, USA). 

Specimen surfaces were polished to 1 µm and thermally etched at 1500°C for 20 

minutes in argon atmosphere. The average grain size, G, of monolithic alumina 

samples was evaluated on SEM micrograph using the lineal intercept technique: 

MN

C
56.1G =  Eq. (3.3) 

where C is the total length of test line used, N the number of intercepts and M the 

magnification of the photomicrograph [98]. A modified lineal intercept equation was 

used to obtain the average grain size of the primary phase in two phase systems: 

 

eff

eff

MN

C
56.1G =  Eq. (3.4) 

where Ceff is the corrected test line length and Neff the effective number of intercept 

[99]. Randomly drawn lines intersecting at least 150 grains was considered for each 

measure. Silicon carbide grains were identified by energy dispersive microanalysis 

and generally appeared smooth and light coloured relative to alumina. The 
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observation of fracture surface of homogeneous and engineered laminates after 

mechanical testing was also done by SEM. 

3.3.2 Mechanical characterization 

The spark plasma sintered compact disks were ground with 250 µm diamond 

wheel on the lateral surface to facilitate the graphite foil removal and cut with a 

diamond blade into rectangular bars (thin and thick laminates to approximately 1.3 x 

7 x 25 mm and 2 x 7 x 25 mm, respectively). Pressureless sintered bars with 

approximately 1.7 x 7 x 25 mm nominal dimensions were produced. Each laminate 

was ground using 125 µm grain size diamond disk to obtain lateral surfaces 

perpendicular to the laminas plane. The edges, to be in tension, of specimens were 

bevelled with 800-grit SiC paper to remove macroscopic defects and geometric 

irregularities. In the case of spark plasma sintered samples, the provisional tensile 

load surface of all bend specimens was the one in contact with the graphite punch 

and perpendicular to the pressing axis. No further polishing or finishing operations 

were performed on the sample surfaces or edges to avoid any artificial reduction of 

flaws severity.  

Fracture strength test was carried out in four-point bending mode with inner 

and outer span of 10 and 20 mm, respectively, with crosshead speed of 0.2 mm/min. 

The tests were performed according to the ASTM Standard C 1161-02c, though the 

samples did not conform to the exact size recommendations. The strength values 

were calculated from the average of 10−12 tests at each load.  

Young’s modulus, E, was calculated from the load-displacement curve 

obtained by four-point bending test. All displacement data were corrected for the 

machine stiffness. Assuming a Young’ modulus of 416 GPa for alumina and 415 

GPa for silicon carbide (Table 3.1), the theoretical Young’s modulus of fully 

densified composites was considered to remains quite unvaried according to the 

Hashin-Shtrikman model and the equation: 

µB3

Bµ9
E

+
=  Eq. (3.5) 
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where B and µ are the bulk modulus and the shear modulus determined as an 

average of the upper and lower bounds calculated according to the model. In the 

case of porous pressureless sintered materials the equation proposed by Roberts and 

Garboczi [100] was used to estimate the elastic modulus: 

n

00 P

P
1

E

E










−=  Eq. (3.6) 

where E is the Young’s modulus of the porous material, P is the porosity,  E0 is the 

Young’s modulus of the dense material, P0 and n are empirical correlation 

parameters depending on the pores model.  

The Poisson’s ratio of the spark plasma sintered homogeneous laminates 

were also calculated by Hashin-Sthtrikman model and the equation: 

( )µB32

µ2B3
ν

+
−=  Eq. (3.7) 

where B and µ are the bulk modulus and the shear modulus determined as an 

average of the upper and lower bounds calculated according to the model. In the 

case of porous pressureless sintered materials the equation proposed by Roberts and 

Garboczi [100] was used to estimate Poisson’s ratio: 

( )0n
0

0 νν
P

P
νν −+=  Eq. (3.8) 

where ν is the Poisson’s ratio of the porous material, P is the porosity,  ν0 is the 

Poisson’s ratio of the dense material, P0 and νn are fitting parameters depending on 

the pores model.  

The hardness, H, values were measured by means of Vickers indentation 

method from the following formula [6]: 

2d

P
8544.1H =  Eq. (3.9) 
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where P is the indentation load and d the projected diagonal of the indentation. A 

load of 300 N was applied for 15 s on the 1 µm polished surface perpendicular to the 

pressing axis, in the case SPS laminates.  

Fracture toughness, KIC, was calculated using the Indentation Method 

(IM)[101] after measuring the radial crack length, c, by optical microscopy using a 

200X magnification: 
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=  Eq. (3.10) 

Spark plasma sintered and pressureless sintered alumina (AS0) 

homogeneous laminates were also subjected to additional mechanical 

characterisation, including a Weibull analysis, tests of post-indentation strength and 

a fractographic analysis of broken samples, as described in detail in the following 

paragraph. Only this composition was considered in these analyses since alumina is 

the proper reference material to make a mechanical behaviour comparison respect to 

the engineered laminates. Indeed, alumina represents the ceramic constituting the 

internal region and the surface layer of the engineered multilayers. 

3.4 Engineered Laminates 

3.4.1 Structure of engineered laminates 

In the second chapter an approach to design laminates with high mechanical 

reliability has been presented. Considering the selected composite materials, the two 

layers thickness (types I and II) cast in the present work and the two sintering 

methods (PS and SPS), five different multilayered symmetric laminates were 

designed and produced. The structure of the laminates was selected to obtain a 

residual stress profile optimised to support bending loads and promote a stable 

propagation of surface defects up to a maximum depth in the interval 50−85 µm. 

Such laminates, labelled as AS-I (PS), ASY-I (PS) and AS-I (SPS), AS-II (SPS), 

AS-III (SPS) present the structures shown in Figure 3.6. AS-I (PS) was produced by 

pressureless sintering using composites in the sole AS system, ASY-I using also 

yttria as sintering aid, whereas AS-I (SPS), AS-II (SPS), AS-III (SPS) were obtained 
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by spark plasma sintering of AS composites multilayers in order to obtain fully 

densified materials. If a notation similar to that used for composite plies is 

considered [11], the multilayer structure in terms of composition and sequence of 

the laminae can be expressed as: 

 

AS-I (PS)  AS0II/AS10II/AS20II/AS10II/(AS0I)
16// 

ASY-I (PS) AS0II/ASY10II/ASY20II/ASY10II/(AS0I)
16// 

AS-I (SPS) AS0II/AS10II/AS20II/AS10II/(AS0I)
30// 

AS-II (SPS) AS0II/AS20II/AS30II/AS20II/(AS0I)
30// 

AS-III (SPS) AS0II/AS10II/AS20II/AS10II/(AS0I)
16// 

 

where the numerical subscripts represent the layer type previously discussed (I = 

type I, II = type II) and the superscript represents the times a single layer is repeated. 

In this notation the symbol slash (“/”) separates two contiguous layer and, if 

repeated twice, represents the symmetry plane at the centre of the laminate. As 

usually, the sequence presented above starts from the external layer. For instance, 

the laminate AS-III (PS) is obtained by spark plasma sintering stacks of, in the 

order, one thin AS0 layer, one thin AS10 layer, one thin AS20 layer, one thin AS10 

layer and finally sixteen thick AS0 layers. Such sequence is repeated in the reverse 

order in order to obtain a symmetric multilayer (Figure 3.6). Typical layers 

thickness, as estimated on the produced engineered laminates by optical microscopy 

and  SEM, are also reported in Figure 3.6.  

The residual stress distributions were calculated for each laminate by Eq. 

(2.15) and the corresponding T-curve estimated according to the model represented 

by Eq. (2.17) using a numerical procedure implemented in a commercial software 

(MATHEMATICA ®, Wolfram Research, Inc., Champaing, IL, USA), the code 

being listed in the Appendix.  
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Figure 3.6: Schematic representation of the symmetric laminates structures 

considered in this work. Layers thicknesses and compositions are reported. 

Dimensions are not in scale.  
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To this purpose, the required material properties, as Young modulus, thermal 

expansion coefficient and fracture toughness, as well as the layer thickness 

estimated by previous characterisation were used. The free deformation was 

supposed to be related only to thermal expansion and room temperature of 25°C and 

stress free temperature equal to 1200°C were considered in Eq. (2.15) according to 

previous works [62]. Once the correct trend of the T-curve was numerically 

estimated, the design bending strength and threshold stress were estimated by Eq. 

(2.19) and Eq. (2.20), as well as the depth of the largest edge cracks propagating in a 

stable fashion. 

3.4.2 Weibull analysis and post-indentation strength 

Sintered bars of the engineered laminates AS-I (PS), ASY-I (PS), AS-I 

(SPS), AS-II (SPS), AS-III (SPS) together with the corresponding homogeneous 

alumina laminates AS0 (PS), AS0 (SPS),  AS0III  (SPS)  with 7 mm x 25 mm 

nominal dimension were ground using a 125 µm grain size diamond disk to obtain 

lateral surfaces perpendicular to the laminas plane. Edges were slightly chamfered 

with 800 SiC papers to remove macroscopic defects and geometrical irregularities as 

previously described.  

Four-points bending tests were carried out using the same apparatus 

described before with an actuator speed of 0.2 mm/min and inner and outer span of 

10 mm and 20 mm, respectively. For each laminate, 26−30 samples were 

considered, while 12−20 samples were tested in the case of thick spark plasma 

sintered laminates. A Weibull analysis was performed on bending strength data. 

Monolithic alumina specimens produced using the same sintering conditions were 

tested for comparative purposes. 

Using the same experimental apparatus and the same test conditions, 

bending strengths on indented samples were also measured in order to investigate 

the damage tolerance of the engineered laminates. Vickers indentations with loads of 

10 N, 30 N and 100 N were placed on the sample surface to introduce defects of 

different sizes. Three indentations were produced in the centre of the perspective 

tensile surface. Homogeneous AS0 (PS), AS0 (SPS) and AS0III  (SPS) were also 

tested in the same conditions for comparison. For each condition 3−4 indented 
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samples were considered, while only two samples of the AS-II (SPS) laminate, 

indented at 30 N and 100 N, were tested. In the case of pressureless sintered 

engineered laminates, some indentations at higher loads (150 N) were also 

performed to investigate the interaction of deeper cracks with the sub-surface 

residual stress profile. 

The mechanical behaviour observed in the case of the five optimised 

multilayers considered in the present work is presented in the next chapter. As 

previously discussed, the mechanical behaviour of each profile is compared to that 

one of the corresponding homogeneous laminate. 

3.4.3 Investigation on stable growth 

The reduced strength scatter expected for the optimised laminates is related 

to the T-curve behaviour promoted by the residual stress profile. In addition to an 

increase of damage resistance, stable growth phenomena for surface cracks are 

expected to occur. An experimental verification of such a stable propagation of 

surface cracks is therefore aimed to prove that what designed actually happens. 

Fractographic analysis is an important tool to understand the fracture mechanisms, 

allowing to identify whether the fracture was a result of material deficiency or 

residual stress induced condition by design. 

A fractographic analysis of the fracture surfaces of indented and non-

indented broken samples was performed either for the engineered and the 

corresponding homogeneous laminates. The fracture origin and location, on surface 

or near surface, was identified.  The presence of any mark or unexpected feature was 

recorded, paying special attention to the presence of the fracture mirror, when 

present. Both optical and scanning electron microscopy were used to this purpose. 

As already discussed in the second chapter, when the critical condition for 

brittle failure is reached (Eq. (2.2)), crack starts to propagate increasing its speed up 

to a maximum value. Beyond this point, any further mechanical energy released is 

dissipated by crack tilting, twisting and branching and the fracture surface presents a 

higher roughness. Therefore, a smooth region is usually present just near the starting 

defect while roughness increases at larger distance (Figure 2.4). In most cases, two 

kinds of region can be typically recognised: a mist zone with a medium roughness 
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and a hackle zone where roughness is coarser. This special feature is always 

produced on the fracture surface around the crack origin, its shape being associated 

to the loading condition and its size to the strength value [29]. Nevertheless, it is 

important to point out that if no mirror is observed on the surface, there is also the 

possibility that this is associated to a low fracture strength, since the radius of 

fracture mirror can be larger than the sample section.  

Regardless the actual size of the fracture mirror, its shape is expected to give 

useful information about the position of the starting defect and to the loading 

condition, the negative curvature pointing the direction of crack propagation and the 

opposite showing therefore the side where crack origin is. The position and shape of 

the fracture mirrors observed for the engineered laminates and for the corresponding 

homogeneous samples were discussed to investigate the kind of the critical defects.  
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Chapter IV 

Results and discussion 

 

4. Results and discussion 

4.1 Green tapes 

Flexible and homogeneous green tapes were successfully obtained (Figure 

4.1). The quality of the produced green tapes and the validity of the overall process 

was verified either by the ease of cutting as well as by the perfect adhesion observed 

between layers after thermo-compression. After sintering, in fact, no marks at the 

interface were observed in the homogeneous laminates and defect-free dense 

monolithic materials were produced.  

 

 

Figure 4.1: AS30 green tape (type I) produced in this work. Coiled and twisted 

green ribbons are shown to emphasize green resistance and flexibility. The ease of 

peeling of the tape from the substrate is also shown. 
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Also the peeling action of the dried green tape from the substrate was an easy task 

(Figure 4.1), even in the case of thinner tapes. This is a further evidence of the 

quality of the green material since a certain mechanical resistance is required for 

safe peeling. No defects were observed in the green tapes during the preliminary 

analysis.  

The thickness of type I and type II tapes was measured using a high 

precision digital micrometer. Type I green tapes showed a dried thickness of about 

120 µm, not depending on slip composition and close to half of the considered blade 

gap (250 µm). Type II green tapes showed a dried thickness in the range 50 µm, 

again close to the half of the considered blade gap (100 µm). A clear reduction of 

green thickness is due to the lamination process, its average effect estimated in about 

6% for a single thermo-compression and 11.5% for a twice-repeated operation.  

4.2 Pre-sintered laminates 

Since the selected silicon carbide powder undergoes to oxidation in air also 

at low temperatures (Figure 4.2), argon as inert atmosphere has been chosen for the 

pyrolysis treatment. 
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Figure 4.2: Thermogravimetric analysis of the silicon carbide powder in air. Weight 

gain, due to the carbide oxidation, is shown also at low temperatures. 
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From the TG curves in argon flow of the three organic ingredients (Figure 

4.3) it can be observed that weight loss takes place mainly in the range between 

200°C and 500°C for the dispersant and close to 400°C for the other substances. 

Quite a complete decomposition is achieved in only one stage for binder and 

plasticizer. From  it can be appreciated that the residue after pyrolysis is not zero for 

all materials. An amount of carbonaceous residue equal to 7.5−13.5 wt% is present 

after the thermal treatment.  
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Figure 4.3: Thermogravimetric analysis of the organic ingredients in argon. Weight 

loss due to polymer degradation takes place mainly in the range 200−500°C. 

Black, resistant and easy-to-handle samples were obtained after the pre-

sintering treatment. Incomplete binder born-out was supposed, based on the colour 

of the samples, on the results of calculated (as complete burn-out) and measured 

weight loss (Figure 4.4) after the thermal cycle and on the thermogravimetric 

analyses performed on the organic binders. In fact, when organic binders are 

pyrolyzed in oxygen free atmosphere it can inherently memorize their dangling 

structure. This lead to a long range interconnection of pyrolyzed carbon which is 

continuously and uniformly distributed throughout the ceramic microstructure. 

Normally, the concentration of pyrolyzed carbon derived from polymer is minimal 
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but enough to change the entire colour of the sample to black. The residual 

carbonaceous matter in the pre-sintered laminates, estimated as equal to 5.5 ± 0.7 

wt%, was considered acceptable since no adverse effect was supposed to occur in 

the following sintering step. Indeed, graphite contamination from the mould is 

expected anyway to happen in spark plasma sintering, while no densification limits 

are supposed to be encountered in the presence of such a small amount of carbon, in 

pressureless sintering.  
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Figure 4.4: Weight loss of the alumina/silicon carbide composites, calculated and 

measured after burn-out in Ar atmosphere, as a function of SiC content. 

 

Table 4.1: Average pore radius and relative density of the pre-sintered  

alumina/silicon carbide composites. 

 SiC content [vol%] 

 0 5 10 15 20 25 30 

Average pore radius 
[nm] 

63 77 67 77 93 90 91 

Relative density [%] 57.2 52.8 53.5 54.8 53.0 53.6 55.4 
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The pre-sintered monolithic laminates exhibited a total porosity of 

approximately 45% (Table 4.1) with narrow pore size distribution from 63 nm to 93 

nm. The packing density and quality of green samples is high enough to help the 

sintering of the compacts. The addition of yttria had no significant effect on the 

green properties and on the pore size distribution of the alumina compacts. 

Frequent delamination was encountered during the pre-sintering process of 

the AS-II (SPS) laminate samples where layers containing large compressive 

stresses (AS30) are present. The high residual stresses produced by thermal 

mismatch upon cooling can not be sustained, in fact, by the porous green materials 

and shear delamination occurs. Nevertheless, this result can be considered as a proof 

of the existence of high residual stresses directly related to the sole contribution of 

thermal expansion mismatch.  

4.3 Pressureless sintering 

The pressureless sintered Al2O3/SiC compacts exhibited weight loss in the 

order of 1−6 wt% (Figure 4.6) at 1700°C, the higher values corresponding to higher 

SiC content and for the samples sintered on the alumina sponge. The use of an Ar 

atmosphere and of the AS bed led to the lower weight loss, equal to about 1 wt% for 

all compositions (Table 4.2). Relative densities decreased with SiC content, ranging 

from about 90% for pure alumina to about 65% for the AS30 composite (Figure 4.7 

and Table 4.2). When N2 was used as sintering atmosphere a better densification of 

alumina was achieved respect to Ar, as observed by Coble [102]. Indeed, N2 provide 

less resistance to final pore closure in alumina due to a higher diffusivity. However, 

the effect of N2 in the sintering of the composites was detrimental, especially for 

high SiC contents (Figure 4.6 and Figure 4.7).  

Weight losses were increased at 1750°C, reaching values of about 16% 

when N2 was used as sintering gas (Figure 4.8). Mass changes were higher for 

samples placed on alumina sponge or into alumina bed, and were minimized 

(~1−2.5 wt%) in the case of the AS bed, as expected by considering the vaporization 

reaction occurring in the firing treatment. Relative densities were slightly increased 

respect to the 1700°C firing cycle (Figure 4.9 and Table 4.2). 

Analogous considerations could be proposed when yttria was used as 
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sintering aid. Increasing temperature led to higher weight losses, particularly for 

higher SiC content and when a certain amount of SiC was not surrounding the 

samples. The use of the AS bed reduced the mass change that remained as equal to 

~1 wt% at 1700°C and ~1−2.5 wt% at 1750°C (Figure 4.10−Figure 4.13 and Table 

4.2). Densification of the composites was increased respect to the non doped 

materials, especially at 1750°C, and limited to ~70% for the AS30 laminate (Table 

4.2). From Table 4.2, it can be also seen that densification of yttria doped 

composites was improved at 1750°C, which is similar to the melting point of yttrium 

aluminum garnet (YAG), suggesting that it is the formation of a YAG liquid phase 

which allows sintering to occur [103]. 

X-ray patterns of residual ashes (Figure 4.5) present on the alumina tube 

after firing tests conducted at 1750°C in Ar support the identification of silicon 

(ICDD File Card Number 27-1402) as main constituent. This result suggest the 

formation of Si by the reaction of gaseous SiO with small amount of C, present in 

the samples, as carbonaceous residue, and in the firing atmosphere, validating React. 

(2.1).  

 

 

Figure 4.5: Residual ashes formed into the furnace alumina tube during 

alumina/silicon carbide composites sintering. 
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Figure 4.6: Weight loss as a function of SiC content after sintering of Al2O3/SiC  

composites at 1700°C.  
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Figure 4.7: Relative density  as a function of SiC content after sintering of Al2O3/SiC  

composites at 1700°C. 
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Figure 4.8: Weight loss as a function of SiC content after sintering of Al2O3/SiC  

composites at 1750°C. 
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Figure 4.9: Relative density  as a function of SiC content after sintering of Al2O3/SiC  

composites at 1750°C. 
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Figure 4.10: Weight loss  as a function of SiC content after sintering of Y2O3-doped 

Al2O3/SiC composites at 1700°C. 
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Figure 4.11: Relative density  as a function of SiC content after sintering of Y2O3-

doped Al2O3/SiC  composites at 1700°C. 
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Figure 4.12: Weight loss  as a function of SiC content after sintering of Y2O3-doped 

Al2O3/SiC composites at 1750°C. 
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Figure 4.13: Relative density  as a function of SiC content after sintering of Y2O3-

doped Al2O3/SiC  composites at 1750°C. 
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Table 4.2: Weight loss (wt loss) and relative density (ρrel) of alumina/silicon carbide 

composites, with or without yttria as sintering aid, after sintering surrounded by the 

AS bed. 

 1700°C 1750°C 

laminate wt loss [%] ρrel [%] wt loss [%] ρrel [%] 

AS (PS) composites 

0 0.99 91.8 1.02 93.8 

5 1.14 89.3 1.40 90.6 

10 1.32 81.4 1.78 82.3 

15 1.44 73.4 1.68 72.9 

20 1.15 67.9 2.07 68.2 

25 1.16 65.7 2.58 65.9 

30 1.07 65.0 1.78 64.0 

ASY (PS) composites 

0 1.26 93.7 1.12 95.4 

5 1.51 89.9 1.08 94.6 

10 1.49 82.6 1.75 91.9 

15 1.12 73.5 2.15 87.5 

20 1.04 67.2 2.71 74.8 

25 0.95 65.5 2.30 73.4 

30 1.07 63.7 2.45 70.1 

 

 

The AS composites sintered at 1750°C in Ar exhibited the presence of only α-Al 2O3 

(ICDD File Card Number 10-173) and α-SiC (ICDD File Card Number 29-1131). 

No presence of oxycarbides, carbide, or mullite was observed. When yttria was used 

as sintering aid, YAG (ICDD File Card Number 88-2048) was found in the samples. 

The composition of the AS20 composite surrounded by AS bed and sintered at 

1750°C in Ar atmosphere was confirmed by Rietveld refinement. 

All these results confirm the validity of the processing and are consistent 
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with the view that the effect of the powder bed is to limit the escape from the sample 

of any volatile components, which might have formed during heating, by 

surrounding it with an equivalent partial pressure of the volatile species in the 

powder bed and minimizing the driving force for diffusion out of the sample. 

4.4 Spark plasma sintering 

Fully dense and thin compacts can be obtained by spark plasma sintering at 

temperatures ranging from 1335°C for pure alumina to 1475°C for the AS30 (SPS) 

composite (Figure 4.14) as observed by the recorded displacement rate versus 

temperature diagram of the powder compacts. 

The use of graphite foil between the compact and the surface of punches and 

mould in the SPS apparatus is mandatory to prevent sample bonding to the punches 

and its subsequent rupture due to different contraction during cooling down (Figure 

4.15). A graphite spray is not sufficient for this purpose, although it allows a better 

surface finishing.  
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Figure 4.14: Spark Plasma Sintering temperature of the AS composites, observed in 

this work, as a function of SiC content. 
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Figure 4.15: Photograph showing  laminate rupture due to sample bonding to 

graphite punches, when graphite spray was used as releasing agent. Intact sample 

(right) was produced by wrapping in graphite foils. 

4.5 Homogeneous laminates 

4.5.1 Microstructure and composition 

Figure 4.16 shows a SEM image showing the typical microstructure of the 

AS0 (SPS) homogeneous laminate. Polishing and thermal etching at 1500°C for 20 

min was used to highlight the grain boundaries. Microstructure is dense and quite 

homogeneous. No preferred orientation can be observed in the grains. As shown in 

Table 4.3, an average grain size of 2.4 ± 0.2 µm was calculated by Eq. (3.3). This 

demonstrates that no important grain coarsening occurred, also when high firing 

temperature (1700°C) are used, it being a direct consequence of the spark plasma 

sintering technique. The appearance of the pressureless sintered alumina AS0 (PS)  

(Figure 4.17) was similar to the spark plasma sintered material with a larger grain 

size, equal to 5.6 ± 0.5 µm. Grain coarsening is due to the high temperature, 1750°C, 

used in pressureless sintering. X-ray patterns of the pure alumina samples, produced 

by both spark plasma sintering and pressureless sintering, support the identification 

of only α-Al 2O3 (ICDD File Card Number 10-173) and confirm the material 

composition. 
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The typical microstructure observed in the case of AS (SPS) composites is 

shown in Figure 4.18 for the AS30 composite. The smooth sharp gray grains 

represent the silicon carbide phase while the regular grains correspond to alumina. 

The colour contrast between the two phases is not intense due to the low mismatch 

between the element mass present in alumina and silicon carbide. Phases are 

homogeneously and randomly distributed, this being a proof of the optimum slurries 

preparation. No pores or cracks are present and a fully-dense microstructure is 

obtained. Alumina grain size is smaller than in pure alumina (Table 4.3), and no 

large grains are present at all. This fact corresponds to the expected retaining effect 

of silicon carbide grains on the alumina grain growth. From the values presented in 

Table 4.3 for some selected composites, it can be appreciated that the effect 

increases with the silicon carbide content, a value as small as 1.4 ± 0.1 µm being 

recorded for the AS30 composite. Silicon carbide grains remain quite large, 

presenting a micrometric average grain size equal to about 4.2 µm for all the 

compositions.  

Figure 4.19 presents a SEM image of the AS20 (PS) composite. Differently 

from the AS (SPS) composites, a significant residual porosity can be noticed. The 

residual porosity and the incomplete sintering observable in the pressureless sintered 

homogeneous composites are due to the detrimental effect of SiC on alumina 

sintering, as already discussed in the second chapter. The spark plasma sintered and 

pressureless sintered AS composites exhibited the presence of only α-Al 2O3 (ICDD 

File Card Number 10-173) and α-SiC (ICDD File Card Number 29-1131), the 

composition of the AS20 (PS) composite being confirmed by Rietveld refinement. 

No presence of oxycarbides, carbide, or mullite was observed.  

Figure 4.20 shows the typical microstructure of yttria doped alumina ASY0 

(PS). Microstructure is dense and quite homogeneous with equiaxed gray alumina 

grains with an average size of 4.5 ± 1.0 µm (Table 4.3). Therefore, no increase of 

alumina grain size related to the presence of yttria was observed. Small regions of a 

white phase assumed to be yttrium aluminum garnet (YAG) situated within the 

alumina grains are clearly visible in Figure 4.20. 
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Figure 4.16: SEM image of the typical microstructure observed in AS0 (SPS). 

 

 

 

 

Figure 4.17: SEM image of the typical microstructure observed in AS0 (PS). 
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Figure 4.18: SEM image of the microstructure observed in AS30 (SPS). 

 

 

 

Figure 4.19: SEM image of the typical microstructure observed in AS20 (PS) 

composite. 
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Figure 4.20: SEM image of the microstructure observed in the ASY0 (PS) material. 

 

Table 4.3: Grain sizes of alumina (GA) and silicon carbide (GS) measured in 

selected homogeneous composites. 

laminate GA [µm] GS [µm] 

AS (PS) composites   

AS0 (PS) 5.6 ± 0.5 - 

ASY (PS) composites   

ASY0 (PS) 4.5 ± 1.0 - 

AS (SPS) composites   

AS0 (SPS) 2.4 ± 0.2 - 

AS20 (SPS) 2.0 ± 0.2  4.2 ± 2.1 

AS30 (SPS) 1.4 ± 0.1 4.1 ± 2.3 

 

 

Similarly to the AS (PS) composites, a significant residual porosity was also 

observed in the ASY (PS) composites. The formation of intergranular YAG (ICDD 
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File Card Number 88-2048) was confirmed by EDX analysis showing the presence 

of yttria in the white regions and by XRD investigation on the ASY (PS) samples, as 

discussed in the previous chapter.  

4.5.2 Density and porosity 

Density (Figure 4.21) and porosity results as obtained by Archimedes’ 

principle are presented in Table 4.4 for all the compositions. For each composite 

relative density with respect to the theoretical value for the given composite 

estimated by Eq. (3.1), which represents simply the rule of mixtures of a two-phase 

composite is also shown. 
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Figure 4.21: Density as a function of SiC content in the monolithic laminates 

considered in this work. Calculated theoretical density (Th) is also shown for 

comparison. 

In excellent agreement with the qualitative considerations presented on the 

basis of the SEM microstructures, AS (SPS) composites show a dense structure, the 

relative density being in every case larger than 96.1%. Pure alumina AS0 (SPS) is 

fully densified and presents a fired density of 3.92 g/cm3, corresponding to 98.4%. 

Conversely, pressureless sintered laminates, with or without yttria, present a residual 

porosity, whose value increases strongly with the SiC content, up to a value as high 
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as 24.8% for the ASY20 (PS) composition and even 34.9% for the AS20 (PS) 

composite. Due to the high porosity values of the composites exceeding the 20 vol% 

SiC content, only AS (PS) and ASY (PS) composites with up to this composition 

have been considered as usable for engineered laminates fabrication, and hence 

investigated.  The pressureless sintered alumina, with or without yttria added, reach 

a relative density as equal to 93% and 95.3% respectively.  

Table 4.4: Density (ρ), relative density (ρrel) and porosity (P) as measured by 

Archimedes’ principles on the AS  composites. 

laminate ρ [g/cm3] ρrel [%] P [%] 

AS (PS) composites 

0 3.70 ± 0.03 93.0 ± 0.8 0.8 ± 0.7 

5 3.48 ± 0.03 88.3 ± 0.8 6.0 ± 0.9 

10 3.05 ± 0.02 78.2 ± 0.6 21.0 ± 0.7 

15 2.77 ± 0.07 71.6 ± 1.7 27.5 ± 1.2 

20 2.47 ± 0.11 64.8 ± 2.9 34.9 ± 2.9 

ASY (PS) composites 

0 3.81 ± 0.01 95.3 ± 0.4 0.1 ± 0.1   

5 3.80 ± 0.01 96.0 ± 0.4 0.7 ± 0.2 

10 3.57 ± 0.06 91.0 ± 1.5 5.7 ± 1.9 

15 3.41 ± 0.06 87.9 ± 1.5 12.8 ± 1.0 

20 2.94 ± 0.05 76.7 ± 1.3 24.8 ± 0.9 

AS (SPS) composites 

0 3.92 ± 0.02 98.4 ± 0.5 0.5 ± 0.3 

5 3.89 ± 0.01 98.7 ± 0.2 0.7 ± 0.3 

10 3.85 ± 0.01 98.8 ± 0.3 0.2 ± 0.2 

15 3.80 ± 0.02 98.5 ± 0.5 0.5 ± 0.2 

20 3.75 ± 0.02 98.2 ± 0.4 0.3 ± 0.2 

25 3.65 ± 0.01 95.8 ± 1.1 1.7 ± 0.6 

30 3.59 ± 0.02 96.1 ± 0.6 1.8 ± 0.3 
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The reasons of the differences between the spark plasma sintered and the 

pressureless sintered composites were already partially discussed in previous 

chapters. Indeed, diffusion at the Al2O3/SiC interface is slower than at the 

Al 2O3/Al 2O3 interface due to the strong directional bonding of both Al2O3 and SiC. 

Since densification in alumina is controlled by grain boundary diffusion the 

presence of intergranular SiC limits densification [42]. Particularly, alumina/silicon 

carbide composites are usually produced by using pressure aided processes to obtain 

dense bodies [11,26]. The presence of yttria as sintering aid in the ASY (PS) 

laminates is beneficial as the relative density of the composites is increased for all 

the compositions. 

4.5.3 Thermal expansion behaviour 

The thermal expansion coefficients measured by using an alumina sample 

holder and averaged in the temperature range 25−1000°C are presented in Table 4.5 

for all the compositions considered in the present work. The AS laminates show a 

lower thermal expansion than pure alumina (AS0), the decrease being a direct 

function of silicon carbide content (Figure 4.22).  
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Figure 4.22: Thermal expansion coefficients of  the AS composites sintered by SPS 

as a function of SiC content. Theoretical trend estimated by Turner’s equation is 

also shown (dashed line).  
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Table 4.5: Young modulus (E), Poisson’s ratio (ν), hardness (H), fracture toughness 

(KIC) and average thermal expansion coefficient (α) of the homogeneous laminates 

considered in this work. 

laminate E 

 [GPa] 

ν H 

 [GPa] 

KIC 

 [MPa m0.5] 

α 

 [10-6 °C-1] 

AS (PS) composites      

0 389 ± 46 0.230 15.8 ± 0.4 2.9 ± 0.2 8.80 

5 388 ± 7 0.227 12.2 ± 0.7 3.1 ± 0.2 8.59 

10 306 ± 26 0.223 6.1 ± 0.1 3.5 ± 0.3 8.57 

15 230 ± 14 0.220 3.8 ± 0.1 3.2 ± 0.2 8.39 

20 139 ± 22 0.219 1.8 ± 0.1 2.9 ± 0.1 8.27 

ASY (PS) composites     

0 396 ± 22 0.230 15.3 ± 1.0 2.9 ± 0.2 8.82 

5 386 ± 21 0.227 12.0 ± 0.1 3.2 ± 0.2 8.63 

10 353 ± 22 0.224 5.7 ± 0.1 3.5 ± 0.4 8.47 

15 284 ± 37 0.220 3.6 ± 0.4 3.2 ± 0.4 8.30 

20 193 ± 13 0.218 2.1 ± 0.1 3.0 ± 0.3 8.18 

AS (SPS) composites     

0 398 ± 31 0.230 17.0 ± 1.4 3.0 ± 0.3 8.80 

5 398 ± 14 0.227 17.1 ± 0.7 3.1 ± 0.4 8.52 

10 394 ± 38 0.224 17.5 ± 0.8 3.3 ± 0.1 8.45 

15 397 ± 28 0.220 16.7 ± 0.8 3.4 ± 0.1 8.35 

20 366 ± 9 0.217 17.2 ± 1.1 3.3 ± 0.2 8.03 

25 400 ± 22 0.214 16.1 ± 0.4 3.5 ± 0.1 7.99 

30 382 ± 53 0.210 16.2 ± 0.5 3.3 ± 0.1 7.87 

 

 

This is exactly what one could expect on the basis of the expansion behaviour of 

alumina and silicon carbide assumed as equal to 8.8·10-6 °C-1 and 5·10-6 °C-1 

respectively. AS0 presents an average coefficient of 8.8·10-6 °C-1 and AS composites 
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lower values down to 7.9·10-6 °C-1 (AS30). The data of the AS (SPS) laminates are 

plotted in Figure 4.22 and compared to the theoretical coefficients estimated by 

Turner’s equation (Eq. (3.2)). Very close agreement exists between the trend shown 

by expected and experimental data. In addition, since the presence of porosity in the 

material is not expected to influence the thermal expansion behaviour [6] no 

significant differences in the thermal expansion coefficients between the spark 

plasma sintered laminates and the corresponding porous pressureless sintered 

materials were observed. Therefore, the actual thermal expansion coefficients are in 

good agreement with respect to common literature data and this confirms the 

goodness and the reliability of the processing procedure used in the present work. 

Finally, it is possible to point out that the thermal behaviour in the AS composite 

system was tailored successfully by adjusting the composition and a good range of 

thermal expansion coefficients was available for laminates design.  

4.5.4 Young’s modulus and Poisson’s ratio 

Table 4.5 presents also the values of Young’s modulus measured on the 

homogeneous laminates considered in this work. AS0 (PS), ASY0 (PS) and AS0 

(SPS) show a value of 389 GPa, 396 GPa and 398 GPa respectively in good 

agreement with literature data on dense polycrystalline alumina (Table 3.1). In the 

case of the AS (SPS) composites, the Young’s modulus remains quite constant with 

the SiC content in perfect agreement with data calculated using Eq. (3.5) considering 

a similar modulus (~400 GPa) for silicon carbide. Figure 4.23 presents the measured 

Young modulus as a function of volume content of silicon carbide of all the 

homogeneous laminates considered in this work. The trend of AS (PS) and ASY 

(PS) laminates are decreasing with SiC content, being the Young’s moduli lower 

than the values estimated for fully dense composites. This can be due to the effect of 

residual porosity which always leads to a decrease in elastic modulus [6]. 

Considering the Young’s moduli obtained for the AS (SPS) laminates as values for 

fully dense materials and the measured porosity of the pressureless sintered 

laminates (Table 4.4) quite a good agreement was observed with the trends 

estimated by the equation Eq. (3.6) proposed by Roberts and Garboczi [100] for 

overlapping spherical pores (n = 1.65 and P0 = 0.818). Only in the case of the AS10 
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(PS) laminate a deviation was observed probably due to an overestimation of the 

residual porosity. 
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Figure 4.23: Young modulus of  the homogeneous composites considered in this 

work  as a function of SiC content. Theoretical trends estimated for porous 

composites by the equation proposed by Roberts and Garboczi  are also shown 

(dashed lines).   

The Poisson’s ratio calculated for all the homogeneous laminates considered 

in this work are reported in Table 4.5. The Poisson’s ratio of the dense AS (SPS) 

laminates were calculated by Eq. (3.7). Considering the model of overlapping 

spherical pores used for the estimation of the elastic modulus of porous materials, 

the Poisson’s ratio of the pressureless sintered laminates where calculated according 

to Eq. (3.8) with P0 = 0.840 and νn = 0.221.  

4.5.5 Hardness and fracture toughness 

Vickers hardness and fracture toughness for each homogeneous laminate 

produced in the present work were measured by indentation technique (Table 4.5). 

K IC is in fact an important parameter for the estimation of the T-curve and also H is 

required to compute the ratio E/H in the expression of KIC defined by Eq. (3.10). 
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Hardness values for the spark plasma sintered composites remain quite equal to the 

alumina value for any SiC content. On the other hand, pressureless sintered AS 

laminates exhibit a decreasing trend of hardness with the SiC content (Figure 4.24) 

which is in a good agreement with the exponential equation: 

( )P5.5expHH 0 −=  Eq. (4.1) 

where H is the material hardness, Ho is the value of the dense spark plasma sintered 

material hardness (Table 4.5) and P is the porosity of the material (Table 4.4). Since 

an exponential relationship between hardness and porosity has been reported for 

ceramics [104], the observed hardness are similar to those which can attributed by 

considering the residual porosity. 
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Figure 4.24: Hardness of  the homogeneous composites considered in this work  as 

a function of SiC content. Theoretical trend estimated for porous composites by an 

exponential relationship is also shown (dashed line).   

Toughness values for the AS0 laminates are equal to about 3 MPa m0.5, 

slightly low compared with previous data on this material [23]. Only limited 

toughening effect can be observed in the AS (SPS) composites with toughness 

values as high as 3.5 MPa m0.5 for AS25 (SPS). Nevertheless, it is well known that 
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K IC values obtained by indentation are usually underestimated [101]. Fracture 

toughness presents a parabolic trend with silicon carbide content in the pressureless 

sintered laminates (from ~3 MPa m0.5 up to ~3.5 MPa m0.5 and down to ~3 MPa 

m0.5) probably related to the deleterious effect of porosity. 

4.5.6 Strength 

Table 4.6 presents the values of bending strength measured on the 

homogeneous laminates considered in this work. AS0 (PS), ASY0 (PS) and AS0 

(SPS) show a value of 276 MPa, 278 MPa and 311 MPa respectively. The addition 

of silicon carbide to the spark plasma sintered laminates does not affect the strength 

of the composites, which exhibit the resistance of pure alumina, around 300 MPa. 

Figure 4.25 presents the measured flexural strengths as a function of volume content 

of silicon carbide of all the homogeneous laminates considered in this work. The 

trend of AS (PS) and ASY (PS) laminates decreases with SiC content since the 

strength decreases exponentially with an increase in porosity [105]. The strength of 

porous laminates as a function of porosity is quite in a good agreement with the 

equation:  
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Figure 4.25: Bending strength of the homogeneous laminates considered in this 

work as a function of SiC content. Theoretical trends estimated for porous 

composites by an exponential equation  are also shown (dashed lines).    
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Table 4.6: Bending strength (σb)  of the homogeneous laminates considered in this 

work. 

laminate  σb [MPa] 

AS (PS) composites   

0  276 ± 30 

5  252 ± 38 

10  192 ± 19 

15  127 ± 26 

20  81 ± 29 

ASY (PS) composites   

0  278 ± 25 

5  271 ± 47 

10  234 ± 32 

15  216 ± 59 

20  170 ± 31 

AS (SPS) composites   

0  311 ± 50 

5  267 ± 51 

10  269 ± 35 

15  296 ± 32 

20  300 ± 21 

25  280 ± 40 

30  312 ± 5 

 

  

( )P3expσσ 0 −=  Eq. (4.2) 

where σ0 is the strength at a zero porosity (AS (SPS)) and P is the material porosity 

(Table 4.4). Only in the case of the AS10 (PS) laminate a deviation was observed 

probably due to an overestimation of the residual porosity. 
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Figure 4.26: Optical micrographs of the polished sections of the laminates 

considered in the present work. Laminae composition is shown.. 
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4.6 Engineered laminates 

4.6.1 Structure 

 Figure 4.26 shows the optical micrographs near the surface region of the 

cross section of representative specimens of all the engineered laminates considered 

in this work. Perfect layered structures with parallel layers, uniform thickness and 

good interface union between the constituent tapes have been obtained also when 

laminae of different composition have been assembled. No defects and no 

delamination have been shown. Homogeneous composition within the single 

composite laminae have been observe since SiC grains are clearly visible as white 

spots and homogeneously distributed in gray alumina layers. These results confirm 

the goodness and the reliability of the processing procedure used in the present 

work. Residual porosity and incomplete sintering has been observed in the 

composite layers of the pressureless sintered laminates (Figure 4.26 and Figure 4.27) 

due to the detrimental effect of SiC on the alumina sintering, as already discussed in 

the second chapter.  

 

 

Figure 4.27: SEM micrograph of the fracture surface of the AS-I (PS) laminate 

showing the different microstructure of the AS layers with respect to the AS0 layers.  
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4.6.2 Residual stress profiles 

According to the theory presented in the second chapter, Eq. (2.15) and Eq. 

(2.16) were used to calculate the residual stresses in the five engineered laminates 

AS-I (PS), ASY-I (PS), AS-I (SPS), AS-II (SPS) and AS-III (SPS). To this purpose, 

the layer thickness shown in Figure 3.6 and the materials properties of the 

homogeneous samples presented in Table 4.5 were considered. The results of such 

calculations are presented in Table 4.7. In this table the same layer sequence shown 

in Figure 3.6 was considered, in order to use a representation more similar to the 

actual laminate structure. For this reason some results seem to be duplicated, the 

same stress values being obviously obtained for the same layer material. 

The engineered laminate AS-I (PS) presents a thin surface layer and the core 

material (AS0) in slight tension (16 MPa) while the most compressed layer is AS20 

which shows a compression of 105 MPa. A thin intermediate compressive layer 

(AS10) is placed before and beyond AS20. Similar stresses were obtained in the 

ASY-I (PS) laminate, the highest compressive amplitude (-167 MPa) being reached 

in the ASY20 layer.  

Higher residual stress level is produced in the spark plasma sintered 

laminates where the composing layers are dense AS composites. The most 

compressed layer in the AS-I (SPS) and AS-III (SPS) laminates is AS20 which 

presents a residual compression of -402 MPa and -390 MPa respectively, while a 

limited tensile layer (AS0 exhibiting 23 MPa and 37 MPa respectively) is placed on 

the external surface. In a similar way, the most compressed layer in the AS-II (SPS) 

laminate is AS30 which presents a residual compression of -502 MPa while the 

external tensile layer AS0 exhibit a residual stress of 28 MPa. 

A phenomenon sometimes observed in high-compressed layers is the well-

known edge-cracking (Figure 2.19(c)). As explained in the second chapter, a highly 

localized tensile stress perpendicular to the layer plane must be present in the 

residual biaxial-compressed layers to satisfy the stress-free boundary condition of 

the external surfaces at the laminate edge. Such stress is localised near the free 

surface and is able to propagate defects only for a limited depth within the laminate 

in absence of further applied stresses.  
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Table 4.7: Residual stresses calculated for the engineered laminates considered in 

this work. The calculated critical thickness(tc) for edge cracking of the most 

compressed layer is also shown. 

AS-I (PS)  ASY-I (PS) 

i layer h  

[µm] 

σ 

[MPa] 

 i layer h 

 [µm] 

σ 

[MPa] 

1 AS0 40 16  1 AS0 40 26 

2 AS10 40 -94  2 ASY10 40 -153 

3 AS20 40 -105  3 ASY20 40 -167 

4 AS10 40 -94  4 ASY10 40 -153 

5 AS0 680 16  5 AS0 680 26 

tc = 1837 µm    tc = 780  µm 

AS-I (SPS)  AS-II (SPS) 

i layer h 

 [µm] 

σ 

[MPa] 

 i layer h 

 [µm] 

σ 

[MPa] 

1 AS0 30 23  1 AS0 30 28 

2 AS10 25 -186  2 AS20 20 -398 

3 AS20 30 -402  3 AS30 20 -502 

4 AS10 25 -186  4 AS20 20 -398 

5 AS0 890 23  5 AS0 895 28 

tc = 163 µm    tc = 105 µm 

AS-III (SPS)   

i layer h  

[µm] 

σ 

[MPa] 

     

1 AS0 30 37      

2 AS10 25 -173      

3 AS20 30 -390      

4 AS10 25 -173      

5 AS0 525 37      

tc = 173 µm    
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Figure 4.28: Residual stress profile calculated for the AS-I (PS) laminate. 
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Figure 4.29: Residual stress profile calculated for the ASY-I (PS) laminate. 
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Figure 4.30: Residual stress profile calculated for the AS-I (SPS) laminate. 

 

 

-600

-500

-400

-300

-200

-100

0

100

0 2 4 6 8 10 12 14 16

Depth0.5 [µm0.5]

R
es

id
u

al
 S

tr
es

s 
[M

P
a]

                              Depth [µm]
0                                 50          100      150    200   250

 

Figure 4.31: Residual stress profile calculated for the AS-II (SPS) laminate. 
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Figure 4.32: Residual stress profile calculated for the AS-III (SPS) laminate. 

According to the multilayered structure of each engineered laminates and to 

the residual stress intensities, the critical layer thickness tc below which edge 

cracking does not occur, was calculated by Eq. (2.21) for the most compressed 

layers to investigate the occurrence of such phenomenon. Edge cracking was not 

expected for each engineered laminate studied in this work. 

By considering the actual stacking order of the layers, the residual stresses 

can be also plotted in a graph to point out the actual dependence of the stress on 

depth and to show the trend of the step-wise residual stress profile more clearly. The 

five stress profiles corresponding to the engineered laminates are shown in Figure 

4.28, Figure 4.29, Figure 4.30, Figure 4.31 and Figure 4.32. A square root abscissa 

was considered to make the comparison with the diagrams showing the apparent 

fracture toughness easier. 

4.6.3 Apparent fracture toughness and expected mechanical behaviour 

The knowledge of the residual stress profile for each laminate allowed to 

estimate the T-curve, the trend of the apparent fracture toughness as a function of 

crack length. It is useful to remind here that for surface cracks depth x and crack 

length c represent the same spatial dimension. As described in second chapter, the 
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calculation of the apparent fracture toughness was performed solving Eq. (2.17) and 

Eq. (2.18). For each laminate, the design strength and threshold stress were 

calculated by Eq. (2.19) and Eq. (2.20), respectively. 

Figure 4.33 shows the T-curve estimated for the AS-I (PS) laminate as a 

function of crack length. After a decreasing portion of the curve corresponding to 

the surface layer extent, the T-curve raises in the first compressive intermediate 

AS10 layer. Then, a discontinuity in the T-curve consisting in a decrease of the 

apparent fracture toughness from 4.5 MPa m0.5 to 3.9 MPa m0.5 in the external 

surface of the most compressed layer AS20 is present due to the significant 

reduction in intensity of the fracture toughness from the AS10 (3.5 MPa m0.5) to the 

AS20 (2.9 MPa m0.5) layer. Then, the T-curve increases up to the internal surface of 

the inner AS10 layer with another sharp discontinuity at the interface between the 

AS20 lamina and the internal AS10 layer and decreases again for deeper position. 

Since the conditions of stable propagation of crack are satisfied when the increase of 

toughness with crack extension is larger than the corresponding increase of stress 

intensity factor (Eq. (2.7)), the maximum depth at which surface flaws grow in a 

stable manner at the maximum stress which can be applied to the laminate AS-I (PS) 

before failure corresponds to a point within the first compressed layer AS10. The 

following lower monotonic increase of the apparent fracture toughness could allow 

stable growth of deeper cracks, but at stresses between the threshold stress and the 

maximum stress. The applied stress intensity factor corresponding to the maximum 

stress and to the threshold stress in bending are shown as lines in Figure 4.34. As 

calculated, the apparent fracture toughness of the multilayer reaches 5.5 MPa m0.5, 

but only the T-curve portion with up to 4 MPa m0.5 acts for the stable propagation of 

surface cracks in the range between 40 µm and 53 µm at the maximum stress of 276 

MPa (Table 4.8). Table 4.8 shows also the threshold stress expected by this laminate, 

equal to 214 MPa.  

From Figure 4.34 similar considerations can be made regarding the T-curve 

behaviour of the ASY-I (PS) laminate. The curve decreases in correspondence to the 

surface tensile layer, then raises in the compressive layers with a discontinuity in the 

most compressed layer ASY20 due to the mismatch in the fracture toughness of the 

ASY10 (3.5 MPa m0.5) and ASY20 (3.0 MPa m0.5) layers. Then, the curve decreases 
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again for deeper position. In this case, only the T-curve portion with up to 5.1 MPa 

m0.5 acts for the stable propagation of surface cracks in the range between 40 µm and 

80 µm at the maximum stress of 290 MPa (Table 4.8). The threshold stress expected 

by this laminate is equal to 204 MPa (Table 4.8).  

Figure 4.35 shows the T-curve estimated for the AS-I (SPS) laminate. In this 

case, after a decreasing portion of the curve corresponding to the surface tensile 

layer, the T-curve raises in a quite a monotonic way up to 8 MPa m0.5 at the internal 

surface of the most compressed layer (AS20) and decreases again for deeper 

position. Such point corresponds therefore to the maximum depth which defects 

growing in a stable manner can reach and also to the condition of the maximum 

stress which can be applied to the laminate before failure. The calculated values for 

the design strength and the threshold stress in bending as well as the stable crack 

growth interval for AS-I (SPS) are 437 MPa, 252 MPa and 30−85 µm, respectively, 

as shown in Table 4.8. 

From Figure 4.36 similar considerations can be made regarding the T-curve 

behaviour of the AS-II (SPS) laminate. The qualitative trend is similar to the 

previous example except for an additional slight toughness increase in the internal 

intermediate layer AS20. However, the applied stress intensity factor corresponding 

to the internal surface of the most compressed layer (AS30) raises in a steeper way 

than the T-curve in such intermediate lamina. Hence, also in this case the maximum 

depth at which defects grow in a stable manner corresponds to the internal depth of 

the most compressed layer. The apparent fracture toughness of the multilayer 

reaches a value as high as 8.8 MPa m0.5 at 70 µm (Table 4.8). Table 4.8 shows also 

the maximum and threshold stresses expected by this laminate, equal to 528 MPa 

and 248 MPa, respectively. A stable propagation of surface cracks in the range 

between 30 µm and 70 µm are therefore expected for this laminate. 

Figure 4.37 presents the T-curve estimated for the AS-III (SPS) laminate. 

After an initial decrease due to the AS0 tensile surface layer the apparent fracture 

toughness starts to increases with depth up to a maximum value of 7.8 MPa m0.5 

achieved at 85 µm (Table 4.8). The maximum and threshold stresses expected for 

this laminate, are 425 MPa and 239 MPa, respectively (Table 4.8). 
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Table 4.8: Threshold stress (σth), design strength (σd), shortest defect size which 

could undergo to stable  propagation at stresses lower than the design strength (c0), 

stable crack growth interval ([cth – cd]) and estimated crack sizes interval ([cmin – 

cmax]).   

 σth  

[MPa] 

σd  

[MPa] 

c0 

[µm] 

[cth  - cd] 

[µm] 

[cmin - cmax] 

[µm] 

AS-I (PS) 214 276 25 40−53 20−52 

ASY-I (PS) 204 290 21 40−80 20−52 

AS-I (SPS) 252 437 11 30−85 15−54 

AS-II (SPS) 248 528 7.4 30−70 15−54 

AS-III (SPS) 239 425 11 30−85 16−66 
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Figure 4.33: T-curve estimated for the AS-I (PS) laminate. Lines corresponding to 

the threshold and failure conditions are also shown. The bar indicates the actual 

range of starting crack sizes. 



  131 

0

2

4

6

8

10

0 2 4 6 8 10 12 14 16

Depth0.5 [µm0.5]

A
p

pa
re

nt
 F

ra
ct

ur
e 

T
ou

gh
ne

ss
 

[M
P

a 
m

0.
5 ]

                             Depth [µm]
0                                 50         100      150    200   250

 

Figure 4.34: T-curve estimated for the ASY-I (PS) laminate. Lines corresponding to 

the threshold and failure conditions are also shown. The bar indicates the actual 

range of starting crack sizes. 
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Figure 4.35: T-curve estimated for the AS-I (SPS) laminate. Lines corresponding to 

the threshold and failure conditions are also shown. The bar indicates the actual 

range of starting crack sizes. 
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Figure 4.36: T-curve estimated for the AS-II (SPS) laminate. Lines corresponding to 

the threshold and failure conditions are also shown. The bar indicates the actual 

range of starting crack sizes. 
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Figure 4.37: T-curve estimated for the AS-III (PS) laminate. Lines corresponding to 

the threshold and failure conditions are also shown. The bar indicates the actual 

range of starting crack sizes. 
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4.6.4 Weibull analysis 

The mechanical behaviour of the five engineered laminates is presented 

here. Each laminate is compared by using the Weibull analysis to the corresponding 

homogeneous monolithic alumina laminate to highlight any improvement in the 

mechanical performances due to its special architecture. 

The average bending strength measured on the AS-I (PS) samples is equal to 

324 ± 30 MPa (Table 4.9), the coefficient of variation (COV) being 9%. For 

comparison, the corresponding homogeneous AS0 (PS) laminate presents a COV 

equal to 11%. The decrease of strength scatter is also evident if one compares the 

Weibull plots for the laminates AS-I (PS) and AS0 (PS) shown in Figure 4.38. The 

Weibull modulus, m, is the fundamental statistical parameter used in the field of 

structural design for brittle materials, the lower the modulus the wider the scatter of 

strength data and the lower the mechanical reliability. The engineered AS-I (PS) 

laminate presents a Weibull modulus equal to 13 while a value of 11 was measured 

for the AS0 (PS) (Table 4.9). The minimum and the maximum strength value in the 

distribution are also shown in Table 4.9. The spreading of strength data decreases 

from 126 MPa for the AS0 (PS) to 103 MPa for the AS-I (PS) and this corresponds 

to a relative strength variability (∆σ/σ) decreasing from 0.38 down to 0.27. The most 

interesting point regards the low strength tail of the distribution in the case of the 

AS-I (PS) laminate, which is much steeper than the remaining part of the data, 

giving rise to a knee in the curve. The actual trend of the AS-I (PS) data resembles 

indeed the typical Weibull plot obtained after proof testing [6,8] (Figure 2.3). To 

account for the presence of such knee and to explain the residual strength scatter, it 

is possible to observe that the shortest crack length, which can grow in a stable 

fashion, as discussed in the second chapter, is not zero, the actual value being a 

function of the apparent fracture toughness curve. If the kinetics phenomena are 

neglected, such crack size can be obtained from the intersection of the applied stress 

intensity factor curve corresponding to the maximum stress at instability with the T-

curve. In this manner a minimum value of 25 µm can be estimated for the AS-I (PS) 

laminate (Figure 4.33 and Table 4.8). The actual range of crack lengths in the 

surface layer was estimated using Eq. (2.1) and considering the minimum and 
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maximum strength measured on the homogeneous AS0 (PS) laminates (Table 4.9). 

An interval of crack sizes between 20 µm and 52 µm was calculated using a fracture 

toughness value of 2.9 MPa m0.5 for alumina (Table 4.5). Some of the defects are 

therefore shorter than 25 µm and propagate at higher stresses than the maximum 

applied stress estimated by design, producing a scatter similar to homogeneous 

ceramic material. The designed stress, 276 MPa (Table 4.8), corresponds therefore 

to the minimum value for the strength data, being indeed in a very good agreement 

with the minimum strength measured by the experiments (Table 4.9). 
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Figure 4.38: Weibull plot for bending strength data measured on the pressureless 

sintered engineered laminates AS-I (PS), ASY-I (PS) and on the corresponding 

alumina laminate. The calculated Weibull modulus is also shown. 

The ASY-I (PS) laminate possesses an average bending strength, a 

coefficient of variation (COV) and a Weibull modulus equal to 309 ± 25 MPa, 8 and 

15, respectively (Table 4.9). The corresponding homogeneous AS0 (PS) laminate 

presents a COV equal to 11% and a Weibull modulus equal to 11 (Table 4.9). Also 

in this case, the decrease of strength scatter is highlighted by the Weibull plots for 

the laminates ASY-I (PS) and AS0 (PS) shown in Figure 4.38. The T-curve trend of 

the ASY-I laminate is similar to the one exhibited by the AS-I (PS) laminate with a 

low strength tail much steeper than the remaining part of the data. This behaviour is 
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related again to the shortest crack length, which can grow in a stable fashion, 

estimated as equal to 21 µm (Figure 4.34 and Table 4.8). The actual range of crack 

lengths in the surface layer was estimated as equal to 20−52 µm. Hence, some of the 

defects could be shorter than 21 µm and propagate at slight higher stresses than the 

maximum applied stress estimated by design as equal to 290 MPa (Table 4.8). 

Therefore, a certain scatter of strength data of this laminate is expected while the 

minimum strength (271 MPa) measured by the experiments (Table 4.9) is quite in 

good agreement with the designed stress.  

The laminate AS-I (SPS) shows an average bending strength equal to 328 ± 

49 MPa (Table 4.9), a minimum and maximum stress equal to 251 MPa and 432 

MPa, respectively, and a Weibull modulus equal to 8. The laminate AS-II (SPS) 

exhibits an average bending strength equal to 373 ± 82 MPa (Table 4.9), a minimum 

and maximum stress equal to 286 MPa and 506 MPa, respectively, and a Weibull 

modulus equal to 5. For comparison, the corresponding homogeneous alumina 

laminate AS0 (SPS) has an average bending strength equal to 311 ± 50 MPa (Table 

4.9), a minimum and maximum stress equal to 205 MPa and 386 MPa, respectively, 

and a Weibull modulus equal to 7. Despite the lack of reliability increase of the 

engineered laminates with respect to alumina, an appreciable shift of the strength 

data toward higher values is observed for AS-I (SPS) and AS-II (SPS) multilayers 

(Table 4.9 and Figure 4.39). If one compares the average strength of the AS-I (SPS) 

and AS-II (SPS) laminates, 328 MPa and 373 respectively, with the bending strength 

(437 MPa and 528 MPa) predicted for these profiles (Table 4.8), it is possible to 

observe that there is not a good agreement. The measured minimum and maximum 

stresses of the laminate AS-I (SPS) are equal to 251 MPa and 432 MPa respectively, 

and are included in the range 252−437 MPa arranged by the threshold stress and the 

design stress (Table 4.8 and Table 4.9). Analogously, the measured minimum and 

maximum stresses of the laminate AS-II (SPS) are equal to 286 MPa and 506 MPa 

respectively, and are included in the range 248−528 MPa arranged by the threshold 

stress and the design stress of this laminate (Table 4.8 and Table 4.9). No strength 

data exceeding the maximum design stress was measured for both laminates. In 

addition, the Weibull plot of the AS-I (SPS) laminate exhibited a low strength tail 

much steeper than the remaining part of the data at about 251 MPa, pointing out the 
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presence of a threshold stress which is in agreement with the calculated value of 252 

MPa. In a similar way, the AS-II (SPS) laminate showed a low strength tail at about 

286 MPa which is in agreement with the calculated value of 248 MPa. All these 

results can be explained by the presence of inherent defects of dimensions shorter 

than the stability interval, included between c0 (11 µm and 7.4 µm, for AS-I (PS) and 

AS-II (PS) respectively) and cth (30 µm) that propagate in unstable fashion for 

stresses between σth (252 MPa and 248 MPa, respectively) and σd (437 MPa and 

528, respectively) due to their acceleration. Indeed, if the kinetics phenomena are 

not neglected such cracks can growth up to a length greater than cd (85 µm and 70 

µm, respectively) leading to fracture for stresses lower than the design stress. The T-

curve can not be effective, in fact, to stop the growing cracks if they possess a finite 

crack speed and they can overcome such barrier at lower stress levels than what 

theoretically estimated. Since the minimum defect equal to 15 µm is longer than c0 

(11 µm and 7.4 µm, respectively) no strength data higher than the design stress are 

observed. Hence, the mechanical behaviour of these two laminates is in good 

agreement with the calculated T-curves and estimated inherent crack sizes, if  

kinetics phenomena are considered.  
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Figure 4.39 Weibull plot for bending strength data measured on the thick spark 

plasma sintered engineered laminates AS-I (SPS), AS-II (SPS) and on the 

corresponding alumina laminate. The calculated Weibull modulus is also shown.  
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Analogous behaviour is expected for the thin spark plasma sintered laminate 

AS-III (SPS) since the estimated flaws dimensions are partially situated in the stable 

growth range and partially in the range for unstable propagation at stresses between 

the threshold stress and the design stress, if kinetics phenomena are considered 

(Figure 4.37). In fact, the minimum defect, which can propagate in a stable fashion 

and the natural crack sizes were calculated in this case as 11 µm and 16−66 µm, 

respectively (Table 4.8). The average bending strength measured on the AS-III 

(SPS) samples is equal to 327 ± 30 MPa (Table 4.9). This corresponds to a 

coefficient of variation of 9%. For comparison, the bending strength of the 

homogeneous AS0III  (SPS) laminates is equal to 290 ± 46 MPa (COV = 16%) . The 

range of strength data is shown in Table 4.9. If one compares AS0III  (SPS) with AS-

III (SPS) the scatter of strength data decreases from less than 200 MPa to about 100 

MPa and the relative strength variability from 0.50 down to 0.28. Weibull plots for 

the AS-III (SPS) and AS0III  (SPS) laminates are shown in Figure 4.40 and the 

Weibull modulus is presented in Table 4.9 being equal to 8 for the AS0III  (SPS) 

laminate and 13 for the AS-III (SPS) laminate.  
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Figure 4.40: Weibull plot for bending strength data measured on the thin spark 

plasma sintered engineered laminates AS-III (SPS) and on the corresponding 

alumina laminate. The calculated Weibull modulus is also shown.  
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Such difference represents an improvement in the mechanical reliability of 

the material. Therefore, despite the presence of defects smaller than the stability 

range, most defects are supposed to undergo to stable growth before the laminate 

failure and increased reliability can be observed. Indeed, the mechanical strength 

trend of this laminate is again well explained by the design. 

The differences between the actual and calculated strength values can be 

related to errors in the evaluation of layer thickness or lamina properties, particularly 

for the thermal expansion coefficient. This parameter is the actual driving force for 

the development of a residual stress profile and it exerts a direct influence on the 

amplitude of the layer residual stresses. The layer thickness also influences the 

bending strength, its effect being twofold: both single residual stress amplitude and 

depth of internal layers are function of the actual thickness of the sintered laminas, 

the apparent fracture toughness changing accordingly. 

Table 4.9: Number of strength data (N), average strength (σb), coefficient of 

variation (COV), minimum (σmin) and maximum (σmax) stress, relative strength 

variability (∆σ/σ) and Weibull modulus (m) observed for the engineered laminates 

and the corresponding alumina laminates considered in this work. 

 N σb [MPa] COV 
[%] 

σmin 
[MPa] 

σmax 
[MPa] 

∆σ/σ m 

Pressureless sintered laminates 

AS0 (PS) 30 276  ± 30 11 203 329 0.38 11 

AS-I (PS) 27 324  ± 30 9 272 375 0.27 13 

ASY-I (PS) 27 309  ± 25 8 271 364 0.25 15 

Thick spark plasma sintered laminates 

AS0 (SPS) 20 311  ± 50 16 205 386 0.47 7 

AS-I (SPS) 17 328  ± 49 15 251 432 0.42 8 

AS-II (SPS) 12 373  ± 82 22 286 506 0.43 5 

Thin spark plasma sintered laminates 

AS0III  (SPS) 26 290  ± 46 16 186 373 0.50 8 

AS-III (SPS) 26 327  ± 30 9 271 375 0.28 13 
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4.6.5 Post-indentation strength 

To investigate the effect of longer cracks and damage resistance on the 

mechanical behaviour of laminates, Vickers indentations were produced at different 

loads as described in the third chapter. Special attention was paid on the influence of 

indentation load on strength and a discussion about the damage tolerance shown by 

the engineered multilayers with respect to the homogeneous laminates was 

presented.  
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Figure 4.41: Post-indentation strength data as a function of indentation load for the 

pressureless sintered engineered laminates considered in this work and the 

corresponding alumina laminates. 

Figure 4.41 shows the average bending strength measured on indented 

samples for the AS-I (PS), ASY-I (PS) and AS0 (PS) laminates. As summarised in 

Table 4.10, the strength of indented AS-I and ASY-I samples remains constant for 

different indentation loads, being equal to about 276 MPa and 322 MPa, 

respectively, whereas decreases in the case of the homogeneous AS0 (PS) down to 

134 MPa for indentations at 100 N. The unvaried strength trend observed for the 

engineered laminates represents the ideal damage tolerant material, since the 

mechanical behaviour is not influenced at all by indentation, at least in the range of 

defects produced by indentation up to 100 N. The average bending strength on 
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indented samples is in optimum agreement with both the design value, 276 MPa and 

290 MPa respectively (Table 4.8). In addition, these results can be considered as an 

evidence of the presence of stable growth phenomena occurring in the same crack 

interval due to the presence of a T-curve behaviour. To investigate further this topic, 

1 sample of AS-I (PS) and ASY-I (PS) were broken after being indented at 150 N. 

Lower bending strength, as equal to 174 MPa and 192 MPa, respectively, were 

observed (Table 4.10). In this case, the cracks produced by indentation have 

probably overcome the maximum depth of the stable growth range, vanishing the 

reinforcing effect of the compressive residual stress profile.   
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Figure 4.42: Post-indentation strength data as a function of indentation load for the 

thick spark plasma sintered engineered laminates and the corresponding alumina 

laminates. 

The bending strength obtained from indented samples of the AS-I (SPS), 

AS-II (SPS) and AS0 (SPS) laminates is shown in Figure 4.42 and the numerical 

results are presented in Table 4.10. Also in these last cases the mechanical resistance 

of the engineered laminates, ~310 MPa and ~510 MPa, respectively, does not 

depend on indentation load in the considered load range and this corresponds to an 

ideal damage-tolerant material. The average bending strength on indented samples 

of the AS-I (SPS) laminate is slightly lower than the design values, 437 MPa, (Table 
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4.8) but in really good agreement with the strengths measured on non-indented 

samples, 328 MPa (Table 4.9). On the other hand, the average bending strength on 

indented samples of the AS-II (SPS) laminate is really in good agreement with the 

design values, 528 MPa (Table 4.8), being dramatically higher than the strengths 

measured on non-indented samples, 373 MPa (Table 4.9), pointing out that deeper 

cracks, introduced in the materials by indentations, can undergo to stable 

propagation as predicted by design. 

The strength of indented samples of the AS-III (SPS) and AS0III  (SPS) 

laminates as a function of the indentation load is presented in Figure 4.43. Also in 

this case, the bending strength of the engineered multilayered laminate, ~350 MPa, 

is not depending on indentation load, whereas the strength of the homogeneous AS0 

(SPS) laminate decreases with load down to 178 MPa for indentation at 100 N 

(Table 4.10). In addition, the average bending strength on indented samples is 

slightly lower than the design value, 425 MPa, (Table 4.8) and in good agreement 

with the strength measured on non-indented samples, 327 MPa, (Table 4.9).  
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Figure 4.43: Post-indentation strength data as a function of indentation load for the 

thin spark plasma sintered engineered laminates considered in this work and the 

corresponding alumina laminates.  
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The zero-slope behaviour is therefore shown by all the laminates, being 

more evident for the AS-II (SPS) multilayer, and the damage tolerance is confirmed 

in the considered load range. Differences between the calculated strengths and the 

strengths measured on indented samples can be related again to errors in the 

evaluation of layer thickness or lamina properties that change the apparent fracture 

toughness curve respect to the one calculated. In addition, some cracks grew from 

inherent flaws and not from indentation sites, hindering the measure of the 

maximum design stress. Despite these observable differences between the post 

indentation strengths and the design stresses, the mechanical behaviour of the 

engineered laminates is well explained by the design used in this work and the 

related considerations.  

 

Table 4.10: Post-indentation strength of the engineered multilayers and of the 

corresponding alumina homogeneous laminates considered in this work. 

Indentation loads 0 N 10 N 30 N 100 N 150 N 

Pressureless sintered laminates 

AS0 (PS) 276  ± 30 186 ± 32 148 ± 16 134 ± 18 - 

AS-I (PS) 324  ± 30 276  ± 52 288 ± 47 264 ± 26 174 

ASY-I (PS) 309  ± 25 305  ± 38 336  ± 39 325  ± 44 192 

Thick spark plasma sintered laminates 

AS0 (SPS) 311  ± 50 278  ± 20 228  ± 31 177  ± 23 - 

AS-I (SPS) 328  ± 49 302  ± 20 317  ± 66 316  ±36 - 

AS-II (SPS) 373  ± 82 - 523 501 - 

Thin  spark plasma sintered laminates 

AS0III  (SPS) 290  ± 46 284  ± 35 248  ± 49 178  ± 14 - 

AS-III (SPS) 327  ± 30 352  ± 32 355  ± 5 340  ± 20 - 
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4.6.6 Stable growth: expectations and experimental evidences 

In addition to the improvement of the damage resistance, the presence of 

stable growth phenomena is also expected for materials presenting a T-curve 

behaviour. In order to look for confirmations of the existence of a range of stable 

crack growth in the optimised laminates, a fractographic analysis was performed on 

some broken samples of all the laminates considered in this work.  

In the homogeneous samples the typical fracture mirror was always present, 

its size increasing when strength decreases as expected by the larger size of the 

critical flaw (Figure 4.44). Conversely, the engineered multilayered laminates 

showed different and specific features on the fracture surface either in the case of 

indented and non-indented samples. Figure 4.45 and Figure 4.46 present the fracture 

surfaces observed in the case of the engineered laminates. A special feature can be 

observed in all the pictures: a smooth flat narrow region extending from edge-to-

edge (through-thickness geometry) is present just beneath the tensile surface (top), 

while the reinitiating crack fracture mirror starts below this rectangular area. In 

particular, the AS-I (SPS) and AS-II (SPS) laminates exhibit this feature, evidence 

of surface cracks stable growth, only at higher loads, starting from about 300 MPa 

and 490 MPa, respectively. In the case of the AS-III laminate, stable growth has 

been observed to occur at all the observed strength. 

Figure 4.47 shows a SEM image of a section of the fracture surface of a AS-

III (SPS) sample where the smooth region under the tensile surface is clearly 

evident. The maximum depth of stable growth of defects pointed out by the dashed 

line is in good agreement with the design value (85 µm). The lack of a fracture 

mirror starting from the external surface, combined with the presence of a through-

thickness arrest mark in correspondence of a sharp change of surface roughness 

suggest that stable growth phenomena actually occur in the engineered laminates.  

In addition, the inner depth of the flat region described above is quite similar 

to the point which defines the maximum depth of stable growth expected by design. 

What actually seems to happen is that the critical crack follows a two stage 

propagation: a first stage with a moderately low speed occurs up to a certain depth.  
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Figure 4.44: Fracture surfaces of homogeneous alumina samples. Typical fracture 

surface of ceramic materials with fracture mirror (indicated by arrow) in 

correspondence of the tensile surface (T) is observable. 
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Figure 4.45: Fracture surfaces of engineered laminates samples. A smooth narrow 

region with a through thickness geometry is present just beneath the tensile surface 

(indicated by T). Reinitiating crack fracture mirror is indicated by arrow. 
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Figure 4.46: Particular of fracture surfaces of engineered laminates samples. A 

smooth narrow region with a through thickness geometry is present just beneath the 

tensile surface (indicated by T). 
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On a second time, when critical condition for unstable propagation is reached, crack 

restarts leaving a fracture surface similar to what observed in the case of 

homogeneous samples broken at high loads which is shifted toward the inner part of 

the laminate.  

In conclusion, in addition to a high damage resistance and a reduced strength 

scatters stable growth phenomena for surface cracks seem to occur in the depth 

range corresponding to what expected by the trend of the apparent fracture 

toughness estimated by design. This was verified either for natural flaws and 

indentation cracks and a T-curve behaviour for the optimised multilayered laminates 

can be advanced accordingly. 

 

 

Figure 4.47: SEM micrograph showing a particular of the fracture surface of a AS-

III (SPS) sample. The maximum depth of stable crack propagation is highlighted by 

the dashed line. The surface in tension is marked with T.   
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Conclusion and future perspectives 

 

In the present work two routes to prepare layered structures with strong 

interfaces in the system Al2O3/SiC have been shown. A processing method, which 

utilizes conventional techniques like tape casting, lamination and pressureless 

sintering has been developed for fabricating Al2O3/SiC laminates with SiC content 

up to 20 vol%, also by using yttria as sintering aid. The weight loss generally 

observed in pressureless sintering these composites was minimized by optimizing 

the sintering conditions and by using a 50 mol% Al2O3/SiC powder bed. In addition, 

Spark Plasma Sintering of tape casted composite laminae has been used as 

innovative sintering technology to produce fully dense and thin Al2O3/SiC laminates 

with SiC load up to 30 vol%.  

By modifying the composition and the architecture of Al 2O3/SiC composite 

laminae, five engineered multilayers characterized by tailored residual stress profiles 

have been produced by pressureless sintering or Spark Plasma Sintering. The 

engineered laminates have been designed and fabricated to support bending loads 

and to promote the propagation of surface defects in a stable manner thanks to a T-

curve behaviour. The results of the mechanical characterization of the engineered 

laminates compared to the behaviour of simple homogeneous materials, proved that 

the arising of residual stresses influences the multilayers fracture resistance. Indeed, 

the engineered laminates are stronger than parent monolithic alumina and are 

characterized by a minimum mechanical resistance and surface damage insensitivity, 

also when macroscopic cracks are introduced by Vickers indentations at loads as 

high as 100 N. Some laminates exhibit reduced scatter and higher Weibull modulus, 

which implies superior reliability. 

Examination of fractographic features in the engineered laminates showed a 

constant depth smooth area just beneath the tensile surface which can be attributed 

to the stable growth of surface cracks within the surface layers in residual 

compressive stress. Such peculiar crack propagation, correlated to the laminate 

architecture, could be associated to the mechanical performances of the engineered 

laminates and is responsible for the observed damage tolerance.  
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The results of this study are likely to find practical applications in the field 

of mechanical behaviour of advanced ceramic composites. Among the future 

perspectives originated by this work, one point concerns with the tailoring of proper 

laminates architectures able to force most of inherent surface flaws to stable growth. 

A future challenge could be the study of rupture behaviour of these materials at high 

temperatures. The production of components of complex shape as shells or tubes, 

with such microstructural architecture could be also investigated.  
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Appendix: Code of the numerical algorithm 

 

The code of the numerical algorithm implemented in Mathematica® and 

used in this work is listed in the present Appendix. The code regards the estimation 

of the T-curve produced by a given step-wise residual stress profile for a sharp edge 

crack under bending loading and the calculation of the maximum and threshold 

stress for stable crack propagation. To make the identification of variables and flags 

meaning easier, the instructions list is reported here with the input numerical values 

used in this work for the AS-III (SPS) T-curve. Fracture toughness, stress and length 

dimensions are reported in MPa m0.5, MPa and µm, respectively. 

 

 

T-CURVE BY STEP-WISE RESIDUAL STRESS PROFILE 

 

LAMINATE IMPUT DATA 

layer=5 

KIC={3.0,3.3,3.3,3.3,3.0} 

EMod={398,394,366,394,398} 

NuMod={0.23,0.224,0.217,0.224,0.23} 

alpha={8.8,8.45,8.03,8.45,8.8} 

laythick={30,25,30,25,525} 

DeltaT=-1175 

YFac=1.12147 

depth={0,0,0,0,0} 

lasttens=1 

mostcomp=3 

delta={0,0,0,0,0} 

 

STRESS PROFILE CALCULATION 

EModStar=EMod/(1-NuMod) 

i=1;While[i<layer+1, 
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  depth=ReplacePart[depth,Sum[Extract[laythick,k],{k,1,i}],i];i++] 

depth 

EModStar*laythick*alpha 

EModStar*laythick 

i=1;While[i<layer+1, 

  alphaAvNom=Sum[Extract[EModStar*laythick*alpha,k],{k,1,i}];i++] 

i=1;While[i<layer+1,alphaAvDen=Sum[Extract[EModStar*laythick,k],{k,1,i}];i++] 

alphaAv=alphaAvNom/alphaAvDen 

stress=EModStar*1000*(alphaAv-alpha)*10^-6*DeltaT 

depth=Prepend[depth,0] 

stress=Prepend[stress,0] 

d2=depth^0.5 

 

T-CURVE CALCULATION 

i=1;While[ 

  i<layer+1,{delta= 

      ReplacePart[delta,Extract[stress,i+1]-Extract[stress,i],i]};i++] 

delta 

M=IdentityMatrix[layer] 

i=1;While[ 

  i<layer+1,{M= 

      ReplacePart[M, 

        2*YFac*(x/Pi)^0.5/1000* 

          Extract[delta,i]*(Pi/2-ArcSin[Extract[depth,i]/x]),i]; 

    Print[Extract[M,i]]};i++] 

M2=M 

i=1;While[i<layer+1,M2=ReplacePart[M2,Sum[Extract[M,k],{k,1,i}],i];i++] 

x=g^2 

M2 

apparentK=Table[{0,0}, {j,0,Extract[d2,layer+1]*10}] 

i=1 

k=1 
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w=0.1;While[ 

  w<Extract[d2,layer+1],{If[w>Extract[d2,i+1],i=i+1];g=w; 

    apparentK=ReplacePart[apparentK,{w,Extract[KIC,i]-N[Extract[M2,i]]},k]; 

    Print[Extract[apparentK,k]];k=k+1};w=w+0.1] 

Clear[g] 

 

MAXIMUM STRESS CALCULATION 

g=Extract[d2,mostcomp+1] 

Kmax=Max[{Extract[KIC,mostcomp]-Extract[M2,mostcomp], 

      Extract[KIC,mostcomp+1]-Extract[M2,mostcomp+1]}] 

stressmaxapprox=Kmax/(YFac*Pi^0.5*g)*1000 

stressmaxtrue=FindRoot[YFac*Pi^0.5*s/1000*g-

Kmax\[Equal]0,{s,stressmaxapprox}] 

 

THRESHOLD STRESS CALCULATION 

g=Extract[d2,lasttens+1] 

Kmin=Min[{Extract[KIC,lasttens]-Extract[M2,lasttens], 

      Extract[KIC,lasttens+1]-Extract[M2,lasttens+1]}] 

stressminapprox=Kmin/(YFac*Pi^0.5*g)*1000 

stressmintrue=FindRoot[YFac*Pi^0.5*s/1000*g-

Kmin\[Equal]0,{s,stressminapprox}] 

Clear[g] 

 

PRINT CORRESPONDING APPLIED STRESS INTENSITY FACTORS 

appliedKmax=N[YFac*Pi^0.5*s/1000*g/.stressmaxtrue] 

Clear[s] 

appliedKmin=N[YFac*Pi^0.5*s/1000*g/.stressmintrue] 

 

PRINT MAXIMUM AND THRESHOLD STRESS VALUES 

stressmaxtrue 

stressmintrue 
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GRAPHICS 

<<"Graphics`FilledPlot`" 

p=IdentityMatrix[layer] 

i=1;While[i<layer+1, 

  p=ReplacePart[p, 

      FilledPlot[ 

        Evaluate[Extract[KIC,i]-Extract[M2,i]],{g,Extract[d2,i], 

          Extract[d2,i+1]},PlotRange->{0,25},Fills\[Rule]{GrayLevel[.8]}, 

        Curves\[Rule]Front,DisplayFunction->Identity,  

        PlotStyle \[Rule]Hue[0.6]],i];i++] 

p=Append[p, 

    Plot[appliedKmax,{g,0,Max[d2]},DisplayFunction\[Rule]Identity, 

      PlotStyle\[Rule]Hue[1.0]]] 

p=Append[p, 

    Plot[appliedKmin,{g,0,Max[d2]},DisplayFunction\[Rule]Identity, 

      PlotStyle\[Rule]Hue[1.0]]] 

Show[p,DisplayFunction\[Rule]$DisplayFunction,GridLines\[Rule]Automatic, 

  Background\[Rule]GrayLevel[0.85]] 

p2=IdentityMatrix[layer] 

i=1;While[i<layer+1, 

  p2=ReplacePart[p2, 

      FilledPlot[ 

        Evaluate[Extract[stress,i+1]],{g,Extract[d2,i],Extract[d2,i+1]}, 

        PlotRange\[Rule]{Min[stress]*1.5,-Min[stress]*1.5}, 

        DisplayFunction\[Rule]Identity, 

        PlotStyle\[Rule]{Hue[0.6],Dashing[{0.01,0.01}]}],i];i++] 

Show[p2,DisplayFunction\[Rule]$DisplayFunction,GridLines\[Rule]Automatic, 

  Background\[Rule]GrayLevel[0.85],AxesOrigin\[Rule]{0,Min[stress]*1.5}] 

Clear[g,x,i] 
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