
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DIT - University of Trento

Modeling and Querying Data Series and

Data Streams with Uncertainty

Michele Dallachiesa

Advisor:

Prof. Themis Palpanas

Università degli Studi di Trento

March 2014

To my parents for their endless love and support.

Abstract

Many real applications consume data that is intrinsically uncertain and

error-prone. An uncertain data series is a series whose point values are

uncertain. An uncertain data stream is a data stream whose tuples are

existentially uncertain and/or have an uncertain value. Typical sources

of uncertainty in data series and data streams include sensor data, data

synopses, privacy-preserving transformations and forecasting models. In

this thesis, we focus on the following three problems: (1) the formulation

and the evaluation of similarity search queries in uncertain data series; (2)

the evaluation of nearest neighbor search queries in uncertain data series;

(3) the adaptation of sliding windows in uncertain data stream processing

to accommodate existential and value uncertainty. We demonstrate ex-

perimentally that the correlation among neighboring time-stamps in data

series can be leveraged to increase the accuracy of the results. We fur-

ther show that the ”possible world” semantics can be used as underlying

uncertainty model to formulate nearest neighbor queries that can be eval-

uated efficiently. Finally, we discuss the relation between existential and

value uncertainty in data stream applications, and verify experimentally

our proposal of uncertain sliding windows.

Keywords

[Uncertain data, Similarity, Data series, Data streams]

Acknowledgements

First, and foremost, I would like to thank my advisor Themis Palpanas

for his enormous help and encouragement not only in research but also in

life. His patience, dedication, intelligence and positiveness will continue to

inspire me for a long time to come. I would like to thank the many new

friends that I encountered in these years, including the great colleagues at

the dbTrento research group. I am grateful to the members of my Ph.D.

committee, Prof. Johann-Christoph Freytag and Prof. Minos Garofalakis.

I have been very lucky to work with Charu Aggarwal, Gabriela Jacques da

Silva, Buğra Gedik and Kun-Lung Wu at the IBM T.J. Watson Research

Center, and with Prof. Ihab F. Ilyas at the Qatar Computing Research

Institute. I have really enjoyed working with these bright minds. I would

like to thank my parents for their unconditional support and my grandpar-

ents for being my eternal advocates. Lastly, I am grateful to my girlfriend

for her patience and love.

Contents

1 Introduction 1

1.1 Motivating Scenarios . 2

1.2 Modeling and Querying Uncertain Data Series 5

1.2.1 Contributions . 6

1.3 Top-k Nearest Neighbor Search in Uncertain Data Series . 6

1.3.1 Contributions . 7

1.4 Management of Sliding Windows in Uncertain Data Streams 8

1.4.1 Contributions . 9

1.5 Structure of the Thesis . 10

2 Related Work 11

2.1 Nearest Neighbor Queries 12

2.2 Uncertain Data Streams 15

3 Preliminaries 21

4 Uncertain Time-Series Similarity: Return to the Basics 23

4.1 Similarity Matching for Uncertain Time Series 24

4.1.1 MUNICH . 25

4.1.2 PROUD . 27

4.1.3 DUST . 29

4.2 Analytical Comparison . 30

i

4.2.1 Uncertainty Models and Assumptions 31

4.2.2 Type of Distance Measures 32

4.2.3 Type of Similarity Queries 32

4.3 Comparative Study . 33

4.3.1 Experimental Setup 33

4.3.2 Quality Performance 36

4.3.3 Time Performance 41

4.4 Moving Average for Uncertain Time Series 43

4.4.1 Neighborhood-Aware Models 44

4.4.2 Performance . 45

4.5 Discussion . 48

4.6 Summary . 51

5 Top-k Nearest Neighbor Search for Uncertain Data Series 53

5.1 Preliminaries . 54

5.1.1 Problem Statement 57

5.2 Baseline Algorithm . 58

5.2.1 Complexity Analysis 59

5.3 Proposed Approach . 60

5.3.1 Bounding the PNN Probability Estimates 60

5.3.2 The Holistic-PkNN Algorithm 63

5.3.3 Tightening the PNN Bounds 66

5.3.4 Managing the Distance Partitions 73

5.4 Indexing Uncertain Data Series 77

5.4.1 Bulk-loading Algorithm 78

5.4.2 Pruning the Search Space 79

5.5 Extensions . 80

5.6 Experimental results . 81

5.6.1 Datasets . 81

ii

5.6.2 Evaluation Methodology 83

5.6.3 Quality Results . 85

5.6.4 Time performance 85

5.7 Summary . 96

6 Sliding Windows over Uncertain Data Streams 99

6.1 Uncertain data streams . 101

6.1.1 Preliminaries . 101

6.1.2 From value to existential uncertainty 102

6.1.3 From existential to value uncertainty 103

6.2 Uncertain Sliding Windows 104

6.2.1 Modeling uncertain sliding windows 105

6.2.2 Processing uncertain sliding windows 107

6.2.3 The Poisson-binomial distribution 109

6.2.4 Efficient approximations of the Poisson-binomial dis-

tribution . 111

6.3 Adapting stream operators to handle data uncertainty . . 112

6.4 Efficient similarity join processing 115

6.4.1 Upper-bounding the match probability 116

6.4.2 Pruning the similarity search space 117

6.5 Experimental evaluation 120

6.5.1 Datasets . 121

6.5.2 Poisson-binomial distribution approximations . . . 122

6.5.3 Uncertain sliding windows for sum aggregation . . . 127

6.5.4 Uncertain sliding windows for similarity join 128

6.6 Extensions . 137

6.6.1 Other sliding window policies 137

6.6.2 Integration into System S 138

6.7 Summary . 138

iii

7 Conclusions and Future Work 141

7.1 Future Directions . 142

Bibliography 145

iv

List of Tables

5.1 Notation used in this chapter. 57

5.2 Experiment parameter configuration ranges. Default values

are indicated in bold. 85

6.1 Symbols used in the chapter and their explanations. 105

6.2 Experiment parameter configuration ranges. Default values

are indicated in bold. 121

v

List of Figures

4.1 Example of uncertain time series X = {x1, ..., xn} modeled

by means of pdf estimation. 26

4.2 Example of uncertain time series X = {x1, ..., xn} modeled

by means of repeated observations. 26

4.3 The probabilistic distance model. 28

4.4 F1 score for MUNICH, PROUD, DUST and Euclidean on

Gun Point truncated dataset, when varying the error stan-

dard deviation: normal error distribution (left), uniform

(center), exponential (right). 38

4.5 F1 score for PROUD, DUST and Euclidean, averaged over

all datasets, when varying the error standard deviation: nor-

mal error distribution (left), uniform (center), exponential

(right). 38

4.6 Precision and recall for PROUD, averaged over all datasets,

when varying error standard deviation and error distribution. 39

4.7 Precision and recall for DUST, averaged over all datasets,

when varying error standard deviation and error distribution. 40

4.8 F1 score for PROUD, DUST, and Euclidean on all the datasets

with mixed error distribution (normal), 20% with standard

deviation 1.0, and 80% with standard deviation 0.4. 41

vii

4.9 F1 score for PROUD, DUST, and Euclidean on all the datasets

with mixed error distribution (uniform, normal, and expo-

nential), 20% with standard deviation 1.0, and 80% with

standard deviation 0.4. 41

4.10 F1 score for PROUD, DUST, and Euclidean on all the datasets

with mixed error distribution: normal, with standard devi-

ation erroneously reported as constant 0.7. 42

4.11 Average time per query for PROUD, DUST, and Euclidean,

averaged over all datasets, when varying the error standard

deviation with normal error distribution. 43

4.12 Average time per query for PROUD, DUST, and Euclidean,

averaged over all datasets, when varying the time series

length with normal error distribution. 43

4.13 F1 score varying the window size, w, for UMA and UEMA

(with λ = 0.1, 1). 46

4.14 F1 score varying the decaying factor, λ, for UEMA (for w =

5, 10). 47

4.15 F1 score for all datasets and mixed error distribution: uni-

form with 20% standard deviation 1.0, and 80% standard

deviation 0.4. 49

4.16 F1 score for all datasets and mixed error distribution: nor-

mal with 20% standard deviation 1.0, and 80% with stan-

dard deviation 0.4. 49

4.17 F1 score for all datasets and mixed error distribution: ex-

ponential with 20% standard deviation 1.0, and 80% with

standard deviation 0.4. 50

viii

5.1 Graph (a) shows an uncertain series Xi of length 5 and

2 samples at every time-stamp that is represented by the

value-uncertainty model. Graph (b) shows the uncertain

series Xi introduced in graph (a), modeled using the series-

uncertainty model with samples X1
i and X2

i . Graph (c)

shows an uncertain series Xj that is distinguishable from

uncertain series Xi under the series-uncertainty model but

not under the value-uncertainty model. 55

5.2 Example of valid distance partition instantiations Smin
i , Smid

i

and Smax
i representing the distance samples in Dist(Q,Xi). 61

5.3 Graph (a) shows an example of critical region R with over-

lapping PNN probability bounds B3 and B2. Graph (b)

reports an example of empty critical region R. 64

5.4 Graph (a) shows the critical region R, where B2 is a left

crosser. Graph (b) shows the critical region R, where B1 is

a double crosser and B2 is a left crosser. 69

5.5 Graph (a) shows the distance partitions Si and graph (b)

reports their respective PNN bounds Bi. 70

5.6 Example of uncertain series envelope. 74

5.7 Example of metric distance bounds. 75

5.8 Accuracy when varying the perturbation standard deviation

σ using the NN classifiers based on the Top-k-PNN(D,Q, k)

and Euclidean-Avg algorithms. 86

5.9 Ratio of retained candidates when varying the number of

uncertain series samples m for distance partitions initialized

with spatial, metric and exact distance bounds, respectively. 88

5.10 Ratio of retained candidates when varying the perturbation

standard deviation σ for distance partitions initialized with

spatial, metric and exact distance bounds, respectively. . . 88

ix

5.11 Ratio of retained candidates when varying the uncertain se-

ries length n for distance partitions initialized with spatial,

metric and exact distance bounds, respectively. 88

5.12 Ratio of retained candidates when varying the number of

pivots for the metric distance bounds using different pivot

selection strategies random, max-dist and k-means. 89

5.13 Time performance when varying perturbation standard de-

viation for linear-scan and M-tree techniques for distance

partitions initialized using metric distance bounds. 90

5.14 Time performance when varying the number of samples m

for distance partitions initialized with spatial, metric and

exact distance bounds, respectively. 91

5.15 Time performance when varying the perturbation standard

deviation σ for distance partitions initialized with spatial,

metric and exact distance bounds, respectively. 91

5.16 Time performance when varying the number of uncertain se-

ries N for distance partitions initialized with spatial, metric

and exact distance bounds, respectively. 91

5.17 Time performance when varying number of samples m for

Baseline and Holistic-PkNN algorithms. 93

5.18 Time performance when varying the perturbation standard

deviation σ for Baseline and Holistic-PkNN algorithms. . 94

5.19 Time performance when varying the number k of retrieved

uncertain series for the Baseline, Holistic-PkNN and Holistic-

PkNN-Virtual algorithms. 95

5.20 Time performance when varying the uncertain series length

n for the Baseline, Holistic-PkNN and Holistic-PkNN-Virtual

algorithms. 96

x

5.21 Ratio of candidates in the active set X∗ when varying the

uncertain series length n for the Holistic-PkNN algorithm. 97

5.22 Time performance for different levels of perturbation stan-

dard deviation σ when varying the number of uncertain se-

ries N using the Holistic-PkNN algorithm. 98

5.23 Time performance for different configurations of the number

of uncertain series samples m when varying the number of

uncertain series N using the Holistic-PkNN algorithm. . . 98

6.1 Example of an uncertain data stream, where uncertainty

is modeled by repeated weighted measurements and tuples

are 1-dimensional points. Weights are encoded using trans-

parency, i.e., lighter points occur with lower probability. . . 102

6.2 Example of an uncertain sliding window. Bounding inter-

vals drawn using dashed lines represent the sliding window

content, whereas light colored bars represent existentially

uncertain tuples. 104

6.3 Example of a similarity join between certain data streams.

Interval bar displays tuples in W (T,w) that are similar to

sη+1 based on the distance threshold ǫ. Blue (dark) and red

(light) dots represent the values of the two streams to be

joined. 114

6.4 RMSE of different Poisson-binomial approximations for dif-

ferent window sizes and with existential uncertainty distri-

bution standard deviation set to 0.1 (Normal distribution).

The approximation with lowest error is the Refined Normal,

independent of the distribution used for assigning tuple exis-

tential uncertainties. The figure also shows the low precision

of the approximations for small window sizes. 123

xi

6.5 Time consumed by each CDF computation under different

window sizes. Refined Normal and Normal approximations

provide the lowest cost. 125

6.6 F1 score for the similarity join operator when comparing the

use of CDF approximations. Join using Normal & Refined

Normal approximations provide results very similar to an

exact solution. 125

6.7 Precision for the similarity join operator when using CDF

approximations. 126

6.8 Recall for the similarity join operator when using CDF ap-

proximations. 126

6.9 Absolute percentage change of the output tuple values when

substituting a regular sliding window W (V, w) with an un-

certain sliding window W (V, w, α) for different configura-

tions of window size w when varying the α probabilistic

threshold. 128

6.10 Actual size of uncertain sliding windows when varying the

existential uncertainty standard deviations (σ). Memory

footprint increases as the existential uncertainty standard

deviation increases. 130

6.11 Actual size of uncertain sliding windows when varying the

probabilistic threshold α and the existential uncertainty σ.

Window size is more sensitive to σ than α. It also presents

a steep increase as α approaches to 1. 131

6.12 Ratio of uncertain sliding window lengths maintained by

eviction policies uncert-evict-beta and uncert-evict when vary-

ing the α probabilistic threshold. uncert-evict-beta policy

maintains windows that are up to 18% smaller. 131

xii

6.13 Performance of pruning strategies when varying the sliding

window size. Sort-Match outperforms Index-Match for dif-

ferent window sizes. 134

6.14 Performance of pruning strategies when varying the number

of samples. 135

6.15 Average time performance of different pruning strategies

when processing different datasets. 135

xiii

Chapter 1

Introduction

In recent years, the database and data mining community has investi-

gated extensively the problem of modeling and querying uncertain data

[4, 33], and several probabilistic database systems have been proposed

[41, 7, 32, 10, 81]. Uncertainty can occur for different reasons, includ-

ing the inherent imprecision in the sensor observations, approximations

introduced by summarization techniques, privacy-preserving transforma-

tions of sensitive records, applications in data integration and predictive

models whose output is intrinsically uncertain.

Uncertain data poses significant challenges to data management. First,

uncertainty needs to be modeled and represented. Each model is a trade-

off between its ability to represent the complex underlying dependencies

in uncertain data and its tractability and efficiency in a database sys-

tem. Second, the formulation of traditional database queries and mining

tasks must be revisited to accommodate the differences in the data repre-

sentation, typically introducing probabilistic thresholds and other quality

guarantees.

In this thesis, we focus on the following three problems: (1) the formula-

tion and the evaluation of similarity range queries in uncertain data series,

reviewing analytically and experimentally prior studies and introducing

1

1.1. Motivating Scenarios Chapter 1

a novel model based on the moving average; (2) the efficient evaluation

of nearest neighbor search queries in uncertain data series, unifying and

extending prior works in the field; (3) the adaptation of sliding windows

in uncertain data streams to accommodate the existential uncertainty of

the processed tuples by introducing the novel concept of uncertain sliding

windows.

In the next section, we describe some use cases, where modeling ex-

plicitly the uncertainty of the underlying data is beneficial in real-world

applications, and we then introduce the three problems that we study in

this thesis summarizing our contributions.

1.1 Motivating Scenarios

The fast growing availability of sensor measurements is fueled by the raise

of wearable devices and connected devices, as well as more traditional

data sources such as meteorology, astronomy, computer vision and indus-

trial monitoring. Applications in the above domains usually organize these

sequential measurements into time series, i.e., sequences of data points or-

dered along the temporal dimension, making time series a data type of

particular importance. Several studies have recently focused on the prob-

lems of processing and mining time series with incomplete, imprecise and

even misleading measurements [21, 58, 85, 86, 91]. Some examples in real

scenarios are listed below:

• In manufacturing plants and engineering facilities, sensor networks are

being deployed to ensure efficiency, product quality and safety [58]:

unexpected vibration patterns in production machines, or changes in

chemical composition in industrial processes, are used to predict fail-

ures, suggesting repairs or replacements. The same is true in environ-

mental science [45], where sensor networks are used in hydrologic and

2

Chapter 1 1.1. Motivating Scenarios

geologic observing systems, pollution management in urban settings,

and application of water and fertilizers in precision agriculture. In

transportation, sensor networks are employed to monitor weather and

traffic conditions, and increase driving safety [75]. However, sensor

data is inherently imprecise. Measurements are sampled from error-

prone equipment [21], whose accuracy depends heavily on environ-

mental conditions such as humidity and temperature. Furthermore,

errors can be introduced during the processing and the wireless trans-

mission in sensor networks. Repeated measurements can be obtained

from multiple sensors to determine an aggregate value with higher

confidence.

• Personal information contributed by individuals and corporations is

steadily increasing, and there is a parallel growing interest in applica-

tions that can be developed by mining these datasets, such as location-

based services and social network applications. In these applications

privacy is a major concern, addressed by various privacy-preserving

transforms [3, 40, 73], which introduce data uncertainty. The data can

still be mined and queried, but it requires a re-design of the existing

methods in order to address this uncertainty.

• Forecasting models are used to predict future events such as weather

conditions and market trends. Nevertheless, predictive models are also

used by researchers as a convenient language to encode the complex

semantics of the studied phenomena in natural sciences and other

disciplines. Uncertainty is an inherent property of such models, that

can be regarded as a measure of the goodness of the model itself.

While the problem of managing and processing uncertain data has been

studied extensively in the traditional database literature [4, 33], the at-

tention of researchers was only recently focused on the specific case of

3

1.1. Motivating Scenarios Chapter 1

uncertain time series.

In other applications, the sensor measurements arrive continuously and

are organized as data streams. Streams of sensor measurements are widely

used as inputs of real-time analytics monitoring and applications. The

strong demand for applications that continuously monitor the occurrence

of interesting events (e.g., road-tunnel management [75] and health moni-

toring [84]) has driven the research in data stream processing systems [2,

43, 94]. In many of these application domains, the data sources avail-

able for processing can be considered uncertain. Some examples in real

scenarios are listed below:

• In offshore drilling operations [71], data sources can be inaccurate, and

pose significant challenges to the monitoring systems. Oil companies

want to avoid shutting down operations as much as possible. To detect

when operations must indeed be stopped, such companies deploy mon-

itoring systems to collect real-time sensor measurements, such as pres-

sure, temperature, and mass transport along the well path. Streaming

applications process the sensor data through prediction models, which

generate alarms and warnings with an associated confidence.

• Monitoring of car trajectories via GPS tracking devices by insurance

companies. When customers install such tracking devices in their cars,

they share the GPS data with the insurance company in exchange for

premium discounts. The company can use such data to derive car tra-

jectories and driving habits of customers, which are then used to offer

bigger discounts to safe drivers. An important metric regarding safe

driving is the amount of time (or the number of consecutive samples)

by which two cars are apart from each other and whether this time is

below a safety limit. As shown in previous work [17], the exact loca-

tion of a car in a highly urbanized area is uncertain, as GPS provides

4

Chapter 1 1.2. Modeling and Querying Uncertain Data Series

inaccurate data in such scenarios.

In the remainder of this Chapter we introduce the open problems and

summarize our contributions.

1.2 Modeling and Querying Uncertain Data Series

In this thesis we consider the problem of evaluating similarity range queries

in uncertain data series. A range query returns a set of uncertain series

whose distance to the query is lower than a predefined threshold with a

known confidence level. We note that two uncertain series may be very

similar with low probability. At the same time, they can be very differ-

ent with high probability. The semantics of similarity in uncertain data

involves distance and probabilistic thresholds. The uncertainty model and

the similarity semantics affect significantly the result set.

Two main approaches have emerged for modeling uncertain time series.

In the first, a probability density function (pdf) over the uncertain values

is estimated by using some a priori knowledge [99, 95, 79]. In the second,

the uncertain data distribution is summarized by repeated measurements

(i.e., samples) [11]. In this study, we revisit the techniques that have been

proposed under these two approaches, with the aim of determining their

advantages and disadvantages. This is the first study to undertake a rig-

orous comparative evaluation of the techniques proposed in the literature

for similarity matching of uncertain time series. The importance of such

a study is underlined by two facts: first, the widespread existence of un-

certain time series; and second, the observation that similarity matching

serves as the basis for developing various more complex analysis and mining

algorithms. Therefore, acquiring a deep understanding of the techniques

proposed in this area is essential for the further development of the field

of uncertain time series processing, and the applications that are built on

5

1.3. Top-k Nearest Neighbor Search in Uncertain Data Series Chapter 1

top of it [89, 63, 66].

1.2.1 Contributions

Our evaluation reveals the effectiveness of the techniques that have been

proposed in the literature under different scenarios. In the experiments,

we stress-test the different techniques both in situations for which they

were designed, as well as in situations that fall outside their normal oper-

ation (e.g., unknown distributions of the uncertain values). In the latter

case, we wish to establish how strong the assumptions behind the design

principles of each technique are, and to what extent these techniques can

produce reliable and stable results, when these assumptions no longer hold.

We note that such situations do arise in practice, where it is not always

possible to know the exact data characteristics of the uncertain time se-

ries. Furthermore, we describe additional similarity measures for uncertain

time series, inspired by the moving average, namely Uncertain Moving Av-

erage (UMA), and Uncertain Exponential Moving Average (UEMA). Even

though these similarity measures are very simple, previous studies had not

considered them. However, the experimental evaluation shows that they

perform better than the more sophisticated techniques that have been pro-

posed in the literature. We observe that UMA and UEMA incorporate

some of the information inherent in the sequence of points in the time

series, thus, taking a step back from the independence assumption of the

other techniques.

1.3 Top-k Nearest Neighbor Search in Uncertain Data

Series

The problem of finding the top-k nearest neighbors is crucial in many data

mining applications, including classifiers, recommendation and search en-

6

Chapter 1 1.3. Top-k Nearest Neighbor Search in Uncertain Data Series

gines, and location-based services. A nearest neighbor search returns the

uncertain series in the dataset whose distance to the query is the small-

est one. A top-k nearest neighbor search returns the k closest uncertain

series to the query. Similarly to range queries, the semantics depend on

the adopted uncertainty model and the formulation of nearest neighbor in

uncertain data.

The problem of identifying the top-k nearest neighbors has been widely

studied in traditional database systems [48]. Its popularity is largely due

to the simplicity of tuning the k parameter in contrast to other queries

such as similarity search, where a distance threshold has to be provided.

Similarly, the evaluation of top-k nearest queries has received considerable

attention in probabilistic databases [26, 76, 56, 83, 16, 62, 28]. The high di-

mensionality and the highly correlated dimensions of uncertain data series

pose significant new challenges to the efficient evaluation of top-k nearest

neighbor searches in uncertain series.

1.3.1 Contributions

We introduce different formal definitions for uncertain data series dis-

cussing their different properties. We introduce a variety of algorithms

based on the iterative refinement of probability bounds, incorporating and

extending the proposals of prior studies. We further investigate the efficient

retrieval of candidates, considering both spatial and metric pruning strate-

gies. We evaluate our proposal under a variety of settings using 45 real

datasets from diverse domains and synthetic datasets. The results show

that modeling uncertainty with probabilistic models can lead to more ac-

curate results. Our proposal proved to be up to orders of magnitude more

efficient than previously proposed techniques not specifically designed for

uncertain data series.

7

1.4. Management of Sliding Windows in Uncertain Data StreamsChapter 1

1.4 Management of Sliding Windows in Uncertain

Data Streams

An uncertain data stream is a data stream whose tuples are existentially

uncertain. The value assigned to each tuple is uncertain. In many ap-

plications, data streams are processed through sliding windows. A sliding

window of size w identifies the set of the most w recent tuples and advances

when a new tuple comes in. The semantics of sliding windows need to be

revisited to accommodate the existential uncertainty of the stream tuples.

In this study, we investigate the adaptation of sliding windows to uncertain

data streams.

Current research in processing uncertain data streams focuses mostly

on the development of specific stream operators (e.g., joins [57, 61] and

aggregates [49]) and specific queries (e.g., top-k [51, 97] and clustering [5])

that can operate in the presence of value uncertainty. These works are

not designed with the integration into current general-purpose stream pro-

cessing engines in mind. This is because they ignore the challenges arising

from operator composition (different operators are connected to form an

operator graph), which is a common development paradigm when writing

streaming queries [2, 46, 70]. One such challenge is to consider streams

with existential uncertainty. Existential uncertainty arises when applying

certain transformations to streams with value uncertainty. For example,

tuples may be generated when an event is triggered. If the event is uncer-

tain, then the new tuple may not exist in some possible world instantiation.

As a result, the regular sliding windows can over-estimate the window size,

not considering the possibility that some data values do not exist in the

window. Processing streams with existential uncertainty has an impact on

window management, which is one of the basic building blocks of stream

processing algorithms [2, 42, 51, 61]. Windows are often used by streaming

8

Chapter 11.4. Management of Sliding Windows in Uncertain Data Streams

algorithms that require access to the most recent history of a stream, such

as aggregations, joins, and sorts. Windows can have different behaviors

(e.g., tumbling and sliding) and configurations (e.g., size). Window sizes

can be defined based on time (e.g, all tuples collected in the last x sec-

onds) or based on a count (e.g., last x tuples). Count-based windows are

especially useful for coping with the unpredictable incoming rate of data

streams. By limiting the size of the windows, developers can ensure that

the memory consumed by the operator can be bounded. In existentially

certain streams, establishing the boundaries of a window is trivial, since

every tuple processed is guaranteed to be present in the stream. However,

how should one manage such windows considering that in existentially un-

certain streams it is not guaranteed that a tuple is indeed present in a given

window bound? We note that the characteristics of the data streams may

vary over time and a constant, larger window size may lead to overestimates

of the desired window size, eventually causing undesired and unexpected

effects. In this study, we investigate this problem.

1.4.1 Contributions

The main contributions of this study are as follows. We demonstrate how

streams with value uncertainty can lead to existential uncertainty and vice

versa, after stream operator transformations. We provide a formal defini-

tion of uncertain sliding windows, which serves as a basic building block

for generic stream processing operators that need to maintain recent tu-

ples as state. We provide exact and approximate algorithms for managing

existentially uncertain sliding windows and show that previous existing

state-of-the-art similarity join techniques can be easily adapted to operate

on uncertain sliding windows. We present an experimental evaluation on

real-world data sets, and show improvement (on all 17 datasets) over a

state-of-the-art approach [61] adapted to handle existential uncertainty.

9

1.5. Structure of the Thesis Chapter 1

1.5 Structure of the Thesis

The thesis is structured as follows. In Chapter 2, we review the state

of the art and introduce the preliminaries in Chapter 3. In Chapter 4,

we compare prior studies to evaluate similarity range queries in uncertain

data series and propose novel models based on the moving average. In

Chapter 5, we present our algorithms for the efficient evaluation of top-k

nearest neighbor queries in uncertain data series. Our adaptation of sliding

windows to uncertain data streams is presented in Chapter 6. We offer our

conclusions in in Chapter 7.

10

Chapter 2

Related Work

The problem of modeling, querying and mining uncertain data has been

investigated extensively in recent years [4, 33]. A comprehensive review

of the models and algorithms introduced by the database community can

be found in [6]. Several database systems supporting uncertain data have

been proposed, such as Conquer [41], Trio [7], MistiQ [32], MayMBS [10]

and Orion [81].

The ”possible worlds” model formalizes uncertainty by defining the

space of the possible instantiations of the database. Instantiations must

be consistent with the semantics of the data. For example, in a spatio-

temporal database there may be two distinct possible trajectories repre-

senting the uncertain trajectory of a moving object, but an object cannot

be in two different locations at the same time. The main advantage of the

”possible worlds” model is that the formulations of the queries originally

designed for certain data can be directly applied on each possible instan-

tiation. Many different alternatives have then been proposed to aggregate

the results across the different instantiations.

Despite its attractiveness, the number of possible worlds explodes very

quickly and even their enumeration becomes an intractable problem. To

overcome these issues, simplifying assumptions have been introduced to

11

2.1. Nearest Neighbor Queries Chapter 2

leverage its simplicity: The tuple- and the attribute-uncertainty models

[50, 6]. In the attribute-uncertainty model, the uncertain tuple is repre-

sented by means of multiple samples drawn from its Probability Density

Function (PDF). In contrast, in the tuple-uncertainty model the value of

the tuple is fixed but the tuple itself may not exist with some probability.

In the context of time series databases, a series can be formalized as a

point in a high-dimensional space with correlated dimensions. An uncer-

tain series can then be represented by enumerating its possible instantia-

tions under the ”possible world” semantics. Prior works on uncertain time

series [79, 95, 11] introduce the additional assumption of independence

across different timestamps. Nevertheless, temporal correlation is a well

known property of time series data and ignoring it may lead to erroneous

results.

We proceed reviewing prior studies focusing on the evaluation of top-k

nearest neighbor searches in uncertain data.

2.1 Nearest Neighbor Queries

The evaluation of Top-k nearest neighbor queries on uncertain data is a

well recognized problem, that can be tracked back to the seminal work of

Cheng et al. [26]. Subsequently many different formulations of ”nearest

neighbor” in uncertain data have been proposed. A detailed review of the

state of the art can be found in [50].

In [26], the authors dissect the processing of NN (Nearest Neighbor)

queries in four steps: projection, pruning, bounding and evaluation. The

projection phase returns the regions bounding the object uncertainties,

the pruning phase removes from the list of candidate objects with zero

probability of being the NN, and finally the bounding and evaluation phases

refine the probability bounds until the NN object is identified. The traits

12

Chapter 2 2.1. Nearest Neighbor Queries

of this four-step approach can be found in nearly all the subsequent studies

tackling the same problems.

In [76] Re et al. proposed the Multi-Simulation (MS) algorithm to

discern the Top-K most probable NN objects by running in parallel several

Monte-Carlo simulations. The objects that cannot be safely added to the

result set or that cannot be discarded are identified by using the notion

of critical region. The critical region is a region in the probability space.

Each object is represented by its probability interval of being the NN.

The objects having their probability intervals overlapping with the critical

region are selected for another simulation step until convergence (i.e., the

critical region is empty). In contrary to what considered in our study, the

NN probability bounds for different objects are not correlated.

In [56] Kriegel et al. studied the efficient evaluation of probabilistic NN

queries as formulated in [26] where each uncertain object is represented

by a set of possible instantiations.The samples of each object are clustered

using the k-means algorithm, thus obtaining a set of bounding regions that

represent the identified clusters. The clusters are then indexed using an

R-tree. Similarly to [76], Monte-Carlo simulations are efficiently evaluated

on the constructed R-tree to determine the NN probability estimates.

In [83] Soliman et al. introduced the U-Top-k and U-kRanks queries

and algorithms for their efficient evaluation on traditional DBMS. Objects

are retrieved in minimum-distance order relying on the underlying DBMS

capabilities and candidate result sets are then determined. The search

terminates when any non-retrieved object can be safely pruned.

In [16] Beskales et al. proposed a method inspired by [83] to evaluate

Top-K-NN queries as formulated in [26]. The non-retrieved objects are

modeled by means of a special ”virtual” object that represents them all.

When the ”virtual” object is considered for insertion in the result set, a new

real object is retrieved in minimum-distance order to be processed. The

13

2.1. Nearest Neighbor Queries Chapter 2

retrieved objects are represented by spatial regions that bound their uncer-

tain location. When the bounding regions overlap, they are partitioned to

obtain a more fine-grained representation of the object uncertainties. The

algorithm terminates when the ”virtual” object (and thus all non-retrieved

objects) can be safely pruned and the bounding regions of the objects have

been sufficiently refined to discriminate their NN probabilities.

In [62] Lian et al. studied the efficient evaluation of pRank queries

(equivalent to U-kRanks queries [83]). The uncertain objects are bounded

to spatial regions and indexed using an R-tree. The index is then used to

prune the candidate objects that have zero probability of being part of the

result set. Pre-computed values of the inverse of the Cumulative Density

Function (CDF) of the objects are then used to determine their Top-K-

NN probability bounds. Eventually the object probabilities are estimated

using exact numerical methods if the Top-K-NN probability bounds are

not enough tight to discriminate the objects in the result set with enough

accuracy.

In [28] Cheng et al. introduced the concept of probabilistic verifiers

to evaluate efficiently the approximate answer to Top-K-NN queries as

formulated in [26]. Similarly to prior works, spatial regions bounding the

uncertain objects are indexed using an R-tree to perform spatial pruning.

Histograms representing the object Probability Density Functions (PDFs)

are then used to determine the NN probability bounds. If further tightening

of the probability bounds is required, histogram bins are approximated to

point values until convergence.

The problem of indexing spatial uncertain data has been addressed

by different studies, leading to the development of the following meth-

ods: x-bounds [27], U-trees [88], U-grids [52], APLA-trees [65] and Gauss-

trees [18]. We observe that the pruning power of spatial indexes is bounded

by the indexability of the regions that represent the uncertain points. Ide-

14

Chapter 2 2.2. Uncertain Data Streams

ally a NN search on a spatial index will return only the NN point. In

practice a larger number of points is returned because their index repre-

sentations are not enough accurate. The ratio of pruned candidates is a

measure of the dataset indexability and serve as a measure of the good-

ness of the index structure. Minimum Bounding Rectangles (MBRs) are a

popular representation of bounding regions in spatial indexes. Envelopes

are their natural extension to data series. An envelope is a pair of series

s.t. their value at each time-stamp t represents respectively the minimum

and maximum values of the represented series at time-stamp t. Index

structures and multi-resolution representations of data series that rely on

envelope synopses include iSAX [20] and Haar wavelet transforms [22].

Recently, a new line of research focused on indexing uncertain objects in

metric spaces [9]. In [9] Angiulli et al. introduced the UP-Index to sup-

port the efficient evaluation of range queries by maintaining statistics on

the distance distribution between the indexed objects and a set of pivot

objects. These statistics are then used at query time to prune the search

space using probability bounds based on the reverse triangular inequal-

ity. The algorithm cannot be easily adapted to evaluate Top-K-NN queries

since it doesn’t model the relationships between the indexed objects. At

best of our knowledge, no prior works considered the problem of evaluating

Top-K-NN queries for uncertain data in metric spaces.

2.2 Uncertain Data Streams

In the last decade, several database and stream processing systems with

support for uncertainty have been proposed [12, 36, 53, 82, 31, 51, 90, 91],

eventually leading to two emerging tuple models.

The x-tuple model [12] represents uncertain tuples by multiple alter-

natives and their respective occurring probabilities. If the sample prob-

15

2.2. Uncertain Data Streams Chapter 2

abilities do not sum up to one, there exists possible instantiations of the

uncertain stream where the tuple does not exist. Uncertain tuples are

processed according to the possible worlds semantics [44].

In the attribute model [36, 82], uncertainty is more fine-grained and

it refers to single tuple attributes. An uncertain attribute is represented

by a random variable s.t. its distribution is assumed to be known. The

distribution may be continuous or discrete, and it is fully described by

its Probability Density Function (PDF). The baseline formalization of this

model fails to capture correlations among attributes. Extensions have been

proposed to address this limitation [82].

In this study we adopt the x-tuple model. This choice is motivated

by the following observations. First, it can capture correlations among

attributes without considering more complex extensions (i.e., making ex-

plicit the tuple distribution by means of a set of drawn samples). Second,

it supports both value uncertainty and existential uncertainty of tuples.

Third, real-world uncertain data is often provided by means of discrete

samples drawn from unknown distributions. Fourth, possible worlds se-

mantics provide an intuitive bridge between semantics of stream operators

in certain data streams and their respective adaptations for uncertain data

streams. Last but not the least, we observe that applying stream operators

to uncertain streams can lead to complex distributions that do not have a

closed form. This requires capturing data stream dynamics by reasoning

on complex distributions, relying on methods like Monte Carlo estimation,

which usually cannot be performed efficiently.

In what follows, we give an overview of relevant work in the literature on

processing data streams with uncertainty, adopting the uncertainty models

described above.

Lian and Chen [61] propose novel techniques for answering similarity

matching queries between uncertain data streams. Methods for spatial and

16

Chapter 2 2.2. Uncertain Data Streams

probabilistic pruning are used to filter the search space efficiently. The two

data streams are processed through a pair of sliding windows, and candi-

date matches are identified by the sliding window contents. This study is

orthogonal to our proposal, and it is used to evaluate the effectiveness of

our techniques.

Diao et al. [36] propose a data stream processing system that supports

uncertainty modeled by continuous random variables. It also contributes

two real-world use cases, namely object tracking on RFID networks and

monitoring of hazardous weather conditions.

Ré et al. [77] propose an event processing system for probabilistic event

streams by using Markovian models to infer hidden (possibly correlated)

variables, e.g., a person’s location from RFID readings. It is worth noting

that this system can produce output events that are existentially uncertain.

Dallachiesa et al. [31] perform an extensive experimental and analyt-

ical comparison of methods for answering similarity matching queries on

uncertain time series.

In [30], an augmented R-tree indexes a dataset of spatial points with

existential uncertainty. The authors represent existential uncertainty by

independent probability values associated to the indexed points. Inter-

mediate nodes maintain aggregate statistics, summarizing the existential

probabilities of the indexed points in their subtrees. Augmented R-trees

support probabilistic range queries, reporting only matching points with

existential probabilities higher than a user-defined threshold.

In [51], the authors propose a general framework to answer top-k queries

on uncertain data streams. Each item in the data stream exists with some

independent probability. Given a user-defined sliding window size, possible

worlds are enumerated and the top-k items are identified accordingly to

different possible semantics supported by the model. The window size is

fixed, and it is used to enumerate all possible worlds.

17

2.2. Uncertain Data Streams Chapter 2

In [60], the authors consider the problem of identifying frequent itemsets

in uncertain data streams. Uncertain data streams are processed through

a sliding window containing a fixed number of batches (each batch con-

tains a fixed number of transactions). The existential probability of each

transaction is represented by an independent probability value. Also in

this study, the window size is fixed and it does not change over time.

Zhang et al. [98] propose an efficient method to maintain skylines over

uncertain data streams. A skyline is a set of items s.t. they are not

dominated by any other item. An item i dominates item j if it is “better”

than j in at least one tuple attribute and not “worse” than j in all the

other tuple attributes. The definitions of “better” and “worse” are domain-

specific. The skyline is maintained over a sliding window. The window

size is fixed. The probability for each item to belong to the skyline is then

estimated by enumerating all the possible worlds. Only skyline items with

probability higher than a user-defined thresholds are reported.

In the aforementioned papers, the occurrence probabilities of items in a

data stream do not affect the sliding window size. The window size is fixed

and does not depend on data uncertainty. In our study, we extend the

semantics of sliding window query processing by referring to the window

size as the number of truly existing tuples in the uncertain data stream.

Our contribution is a basic building block for processing sliding windows on

uncertain data streams, and it is orthogonal to past studies. As shown in

Section 6.4, previous works on streaming operations with sliding windows

can be easily adapted to accommodate our extensions.

In this work, we take advantage of previously developed methods for

efficiently evaluating the CDF of Poisson-binomial distributions, e.g. the

sum of n independent Bernoulli trials. Some methods include Bernecker

et al. [15], which proposes an algorithm with time cost O(n2) based on

dynamic programming, and Sun et al. [87], which proposes an algorithm

18

Chapter 2 2.2. Uncertain Data Streams

based on divide-and-conquer with time cost O(nlog2n). Other approxima-

tion algorithms also exist [92, 19, 35]. We use one exact method (RF1)

and three approximations (Poisson, Normal, and Refined Normal Approx-

imations), as reviewed in [47]. Independence is a simplifying assumption

widely used in prior studies on uncertain data management [4].

19

2.2. Uncertain Data Streams Chapter 2

20

Chapter 3

Preliminaries

In this section, we overview the definitions of uncertain data series and

uncertain data stream.

A data series1 S is an ordered sequence of n real valued numbers S =

S[t], 1 ≤ t ≤ n. For ease of exposition, we refer to the ith point of

series S also as si. Where not specified otherwise, we assume normalized

time series with zero mean and unit variance. Notice that normalization

is a preprocessing step that requires particular care to address specific

situations [64]. An uncertain data series X is a data series whose values at

each time-stamp are uncertain. We adopt the attribute-uncertainty model

under the ”possible world” semantics to represent uncertain series. Under

the attribute-uncertainty model, the series always exists but its value is

uncertain. The value uncertainty along the series is represented by means

of repeated instantiations, i.e., samples.

An instantiation can be represented by a real-valued sample drawn in-

dependently from the value distribution at every time-stamp or by a series

sample drawn from the full-joint distribution of the uncertain series. The

properties and the implications of these two alternative models are dis-

cussed in Chapter 5.

A data stream S is a sequence of tuples si, where 0 ≤ i ≤ η and η ∈ N,
1In the rest of this thesis we use the terms time series, data series, series and sequence, interchangeably.

21

Chapter 3

where η is the index of the most recent tuple received from stream S. We

refer to i as the index of a tuple in a stream. Without loss of generality, a

tuple si is a d−dimensional real-valued point 2. We define a subsequence

of stream S as S[i,j] = 〈si, . . . , sj〉. We define a count-based sliding window

W (S,w) as the subsequence S[η−w+1,η], where w ∈ N indicates the size of

the window. When not implicit from the context, we refer to data streams

without uncertainty as certain data streams.

An uncertain data stream U is a sequence of uncertain tuples ui, where

0 ≤ i ≤ η and η ∈ N. Tuple ui is represented by a set of l possible mate-

rializations, i.e., ui = {ui,1, . . . , ui,l}. If |ui| > 1, then the tuple has value

uncertainty. A sample materialization ui,j ∈ ui occurs with a given prob-

ability Pr(ui,j). The existential probability Pr(ui) of tuple ui is defined

as

Pr(ui) =
∑

ui,j∈ui

Pr(ui,j). (3.1)

Tuple ui is said to exist in stream U if Pr(ui) = 1. If Pr(ui,) < 1, tuple

ui is considered existentially uncertain. As demonstrated in Chapter 6,

applying commonly used stream transformations to uncertain data streams

can (i) introduce existential uncertainty from value uncertainty, and (ii)

introduce value uncertainty from existential uncertainty.

In the next Chapter we will review and compare experimentally the dif-

ferent models that have been proposed to evaluate similarity range queries

in uncertain data series.

2Each dimension can be considered as an attribute.

22

Chapter 4

Uncertain Time-Series Similarity:

Return to the Basics

In the last years there has been a considerable increase in the availability

of continuous sensor measurements in a wide range of application domains,

such as Location-Based Services (LBS), medical monitoring systems, man-

ufacturing plants and engineering facilities to ensure efficiency, product

quality and safety, hydrologic and geologic observing systems, pollution

management, and others.

Due to the inherent imprecision of sensor observations, many investi-

gations have recently turned into querying, mining and storing uncertain

data. Uncertainty can also be due to data aggregation, privacy-preserving

transforms, and error-prone mining algorithms.

In this study, we survey the techniques that have been proposed specif-

ically for modeling and processing uncertain time series, an important

model for temporal data. We provide an analytical evaluation of the alter-

natives that have been proposed in the literature, highlighting the advan-

tages and disadvantages of each approach, and further compare these alter-

natives with two additional techniques that were carefully studied before.

We conduct an extensive experimental evaluation with 17 real datasets,

and discuss some surprising results, which suggest that a fruitful research

23

4.1. Similarity Matching for Uncertain Time Series Chapter 4

direction is to take into account the temporal correlations in the time se-

ries. Based on our evaluations, we also provide guidelines useful for the

practitioners in the field.

The rest of this chapter is structured as follows. In Section 4.1 we

survey the principal representations and distance measures proposed for

similarity matching of uncertain time series. In Section 4.2, we analyti-

cally compare the methods proposed for uncertain time series modeling,

and in Section 4.3, we present the experimental comparison. We describe

new measures of similarity matching inspired by the moving average in

Section 4.4, and evaluate their performance in relation to the other mea-

sures. Finally, in Section 4.5 we summarize the results, and Section 4.6

concludes the study.

4.1 Similarity Matching for Uncertain Time Series

Recall that time series are sequences of points, typically real valued num-

bers, ordered along the temporal dimension. We assume constant sampling

rates and discrete timestamps.

In this study, we focus on uncertain time series where uncertainty is

localized and limited to the points. Formally, an uncertain time series T is

defined as a sequence of random variables < t1, t2, ..., tn > where ti is the

random variable modeling the real valued number at time-stamp i. All the

three models we review and compare fit under this general definition.

The problem of similarity matching has been extensively studied in the

past [8, 38, 78, 54, 23, 69, 68, 64] : given a user-supplied query sequence,

a similarity search returns the most similar time series according to some

distance function. More formally, given a collection of time series C =

{S1, ..., SN}, where N is the number of time series, we are interested in

evaluation the range query function RQ(Q,C, ǫ):

24

Chapter 4 4.1. Similarity Matching for Uncertain Time Series

RQ(Q,C, ǫ) = {S : S ∈ C ∧ distance(Q,S) ≤ ǫ} (4.1)

In the above equation, ǫ is a user-supplied distance threshold. A survey

of representation and distance measures for time series can be found in

[37].

A similar problem arises also in the case of uncertain time series, and

the problem of probabilistic similarity matching has been introduced in

the last years. Formally, given a collection of uncertain time series C =

{T1, ..., TN}, we are interested in evaluation the probabilistic range query

function PRQ(Q,C, ǫ, τ):

PRQ(Q,C, ǫ, τ) = {T : T ∈ C ∧ Pr(distance(Q, T) ≤ ǫ) ≥ τ} (4.2)

In the above equation, ǫ and τ are the user-supplied distance threshold

and the probabilistic threshold, respectively.

In the recent years three techniques have been proposed to evaluate

PRQ queries, namely MUNICH1 [11], PROUD [95], and DUST [79]. As

we discuss below, these methods assume that neighboring points of the time

series are independent, i.e., the point at timestamp i is independent from

the point at timestamp i+ 1. Evidently, this is a simplifying assumption,

since in real-world datasets neighboring points are correlated. We revisit

this issue in the following sections.

We now discuss each one of the above three techniques in more detail.

4.1.1 MUNICH

In [11], uncertainty is modeled by means of repeated observations at each

timestamp, as depicted in Figure 4.2.

1We will refer to this method as MUNICH (it was not explicitly named in the original paper), since

all the authors were affiliated with the University of Munich.

25

4.1. Similarity Matching for Uncertain Time Series Chapter 4

Assuming two uncertain time series, X and Y , MUNICH proceeds as

follows. First, the two uncertain sequences X, Y are materialized to all

possible certain sequences: TSX = {< v11, ..., vn1 >, ..., < v1s, ..., vns >}
(where vij is the j-th observation in timestamp i), and similarly for Y

with TSY . Thus, we have now defined TSX , TSY . The set of all possible

distances between X and Y is then defined as follows:

dists(X, Y) = {Lp(x, y)|x ∈ TSX , y ∈ TSY } (4.3)

The uncertain Lp distance is formulated by means of counting the fea-

sible distances:

Pr(distance(X, Y) ≤ ǫ) =
|{d ∈ dists(X, Y)|d ≤ ǫ}|

|dists(X, Y)| (4.4)

!
"
!
!
#
!
$!

"
#!

"
$!

%
!

"
&

'()!

Figure 4.1: Example of uncertain time series X = {x1, ..., xn} modeled by means of pdf

estimation.

!
"
!
!
#
!
$!

"
#!

"
$!

%
!

"
&!

'()!

Figure 4.2: Example of uncertain time series X = {x1, ..., xn} modeled by means of

repeated observations.

26

Chapter 4 4.1. Similarity Matching for Uncertain Time Series

Once we compute this probability, we can determine the result set of

PRQs similarity queries by filtering all uncertain sequences using Equa-

tion 4.4.

Note that the naive computation of the result set is unfeasible, because

of the very large space that leads to an exponential computational cost:

|dists(X, Y)| = snXs
n
X , where sX , sY are the number of samples at each

timestamp of X, Y , respectively, and n is the length of the sequences.

Efficiency can be ensured by upper and lower bounding the distances, and

summarizing the repeated samples using minimal bounding intervals [11].

This framework has been applied to Euclidean and Dynamic Time Warping

(DTW) [13] distances and guarantees no false dismissals in the original

space [11].

4.1.2 PROUD

In [95], an approach for processing queries over PRObabilistic Uncertain

Data streams (PROUD) is presented. Inspired by the Euclidean distance,

the PROUD distance is modeled as the sum of the differences of the stream-

ing time series random variables, where each random variable represents

the uncertainty of the value in the corresponding timestamp. This model

is illustrated in Figure 4.1.

Given two uncertain time series X, Y , their distance is defined as:

distance(X, Y) =
∑

i

Di
2 (4.5)

where Di = (xi − yi) are random variables, as shown in Figure 4.3.

According to the central limit theorem, we have that the cumulative

distribution of the distances approaches a normal distribution:

distance(X, Y)norm =
distance(X, Y)−∑

iE[d2i]
√

∑

i V ar[D2
i]

(4.6)

27

4.1. Similarity Matching for Uncertain Time Series Chapter 4

!
"
!
!
#
!

"#!
"$!

%!

"&

'#!
'$!

%!
'&

()!

*+,!

Figure 4.3: The probabilistic distance model.

The normalized distance follows a standard normal distribution, thus

we can obtain the normal distribution of the original distance as follows:

distance(X, Y) ∝ N(
∑

i

E[D2
i],

∑

i

V ar[D2
i]) (4.7)

The interesting result here is that, regardless of the data distribution of

the random variables composing the uncertain time series, the cumulative

distribution of their distances (1) is defined similarly to their Euclidean

distance and (2) approaches a normal distribution. Recall that we want to

answer PRQs similarity queries. First, given a probability threshold τ and

the cumulative distribution function (cdf) of the normal distribution, we

compute ǫlimit such that:

Pr(distance(X, Y)norm ≤ ǫlimit) ≥ τ (4.8)

The cdf of the normal distribution can be formulated in terms of the

well-known error-function, and ǫlimit can be determined by looking up the

statistics tables. Once we determined ǫlimit, we proceed by computing also

the normalized ǫ:

ǫnorm(X, Y) =
ǫ2 − E[distance(X, Y)]
√

V ar[distance(X, Y)]
(4.9)

If a candidate uncertain series Y satisfies the inequality:

28

Chapter 4 4.1. Similarity Matching for Uncertain Time Series

ǫnorm(X, Y) ≥ ǫlimit (4.10)

then the following equation holds:

Pr(distance(X, Y)norm ≤ ǫnorm(X, Y)) ≥ τ (4.11)

Therefore, Y can be added to the result set. Otherwise, it is pruned

away. This distance formulation is statistically sound and only requires

knowledge of the general characteristics of the data distribution, namely,

its mean and variance.

4.1.3 DUST

In [79], the authors propose a new distance measure, DUST. In contrast

to MUNICH, it does not depend on the existence of multiple observations

and is computationally more efficient. Similarly to [95], DUST is inspired

by the Euclidean distance, but works under the assumption that all the

time series values follow some specific distribution.

Given two uncertain time series X, Y , the distance between two uncer-

tain values xi, yi is defined as the distance (L1 norm) between their true

(unknown) values r(xi), r(yi): dist(xi, yi) = L1(r(xi), r(yi)). This distance

can then be used to define a function φ that measures the similarity of two

uncertain values:

φ(|xi − yi|) = Pr(dist(|r(xi)− r(yi)|) = 0) (4.12)

This basic similarity function is then used inside the dust dissimilarity

function:

29

4.2. Analytical Comparison Chapter 4

dust(x, y) =
√

− log(φ(|x− y|))− k

with

k = − log(φ(0))

The constant k has been introduced to support reflexivity. Once we

define the dust distance between uncertain values, we are ready to extend

it to the entire sequences:

DUST (X, Y) =

√

∑

i

dust(xi, yi)2 (4.13)

The handling of uncertainty is isolated inside the φ function, and its

evaluation requires to know exactly the data distribution. In contrast to

the techniques we reviewed earlier, the DUST distance is a real number

that measures the dissimilarity between uncertain time series. Thus, it

can be used in all mining techniques for certain time series, by simply

substituting the existing distance function.

Finally, we note that DUST is equivalent to the Euclidean distance,

in the case where the error of the time series values follows the normal

distribution.

4.2 Analytical Comparison

In this section, we compare the three models of similarity matching for

uncertain time series, namely, MUNICH, PROUD and DUST, along the

following dimensions: uncertainty models used and assumptions made by

the algorithms; type of distance measures; and type of similarity queries.

30

Chapter 4 4.2. Analytical Comparison

4.2.1 Uncertainty Models and Assumptions

All three reviewed techniques are based on the assumption that the values

of the time series are independent from one another. That is, the value

at each timestamp is assumed to be independently drawn from a given

distribution. Evidently, this is a simplifying assumption, since neighboring

values in time series usually have a strong temporal correlation.

The main difference between MUNICH and the other two techniques

is that MUNICH represents the uncertainty of the time series values by

recording multiple observations for each timestamp. This can be thought of

as sampling from the distribution of the value errors. In contrast, PROUD

and DUST consider each value of time series to be a continuous random

variable following a certain probability distribution.

The amount of preliminary information, i.e. a priori knowledge of the

characteristics of the time series values and their errors, varies greatly

among the techniques. MUNICH does not need to know the distribution

of the time series values, or the distribution of the value errors. It simply

operates on the observations available at each timestamp.

On the other hand, PROUD and DUST need to know the distribution

of the error at each value of the data stream. In particular, PROUD re-

quires to know the standard deviation of the uncertainty error, and a single

observed value for each timestamp. PROUD assumes that the standard

deviation of the uncertainty error remains constant across all timestamps.

DUST uses the largest amount of information among the three tech-

niques. It takes as input a single observed value of the time series for

each timestamp, just like PROUD. In addition, DUST needs to know the

distribution of the uncertainty error at each time stamp, as well as the

distribution of the values of the time series. This means that, in contrast

to PROUD, DUST can take into account mixed distributions for the un-

31

4.2. Analytical Comparison Chapter 4

certainty errors (albeit, they have to be explicitly provided in the input).

Overall, we observe that the three techniques make different initial as-

sumptions about the amount of information available for the uncertain time

series, and have different input requirements. Consequently, when decid-

ing which technique to use, users should take into account the information

available on the uncertainty of the time series to be processed.

4.2.2 Type of Distance Measures

All the considered techniques use some variation of the Euclidean distance.

MUNICH and PROUD use this distance in a pretty straightforward man-

ner. Moreover, MUNICH and DUST can be employed to compute the

Dynamic Time Warping distance [80], which is a more flexible distance

measure.

DUST is a new type of distance measure that is specifically designed for

uncertain time series. In other words, DUST is not a similarity matching

technique per se, but rather a new distance measure. It has been shown

that DUST is proportional to the Euclidean distance in the cases where the

value errors are normally distributed [79]. Moreover, the authors of [79]

note that it is better to use the Euclidean distance if all the value errors

follow the same distribution. DUST becomes useful when the value errors

are modeled by multiple error distributions.

4.2.3 Type of Similarity Queries

MUNICH and PROUD are designed for answering probabilistic range queries

(defined in Section 4.1). DUST being a distance measure can be used to

answer top-k nearest neighbor queries.

MUNICH and PROUD solve the similarity matching problem that is

described by Equation 4.8, resulting in a set of time series that belong

32

Chapter 4 4.3. Comparative Study

to the answer with probability τ . On the other hand, DUST produces a

single value that is an exact (i.e., not probabilistic) distance between two

uncertain time series.

In Section 4.3, we describe the methodology we used in order to compare

all three techniques using the same task, that of similarity matching.

4.3 Comparative Study

In this section, we present the experimental evaluation of the three tech-

niques. We first describe the methodology and datasets used, and then

discuss the results of the experiments.

All techniques were implemented in C++, and the experiments were

run on a PC with a 2.13GHz CPU and 4GB of RAM.

The source code for all the algorithms used in our experiments, as well

as the datasets upon which we tested them are publicly available1.

4.3.1 Experimental Setup

Datasets

Similarly to [11, 95, 79], we used existing time series datasets with ex-

act values as the ground truth, and subsequently introduced uncertainty

through perturbation. Perturbation models errors in measurements, and

in our experiments we consider uniform, normal and exponential error dis-

tributions with zero mean and varying standard deviation within interval

[0.2, 2.0].

We considered 17 real datasets from the UCR classification datasets

collection [1], representing a wide range of application domains: 50words,

Adiac, Beef, CBF, Coffee, ECG200, FISH, FaceAll, FaceFour, Gun Point,

Lighting2, Lighting7, OSULeaf, OliveOil, SwedishLeaf, Trace, and syn-

thetic control. The training and testing sets were joined together, and we

33

4.3. Comparative Study Chapter 4

obtained on average 502 time series of length 290 per dataset. We stress

the fact that each dataset contains several time series instances.

Since DUST requires to know the distribution of values of the time

series, and additionally makes the assumption that this distribution is uni-

form [79], we tested the datasets to check if this assumption holds. Ac-

cording to the Chi-square test, the hypothesis that the datasets follow the

uniform distribution was rejected (for all datasets) with confidence level

α = 0.01. Evidently, the above assumption does not hold on all datasets,

however DUST still needs it in order to operate.

Comparison Methodology

In our evaluation, we consider all three techniques, namely, MUNICH,

PROUD, and DUST, and we additionally compare to Euclidean distance.

When using Euclidean distance, we do not take into account the distribu-

tions of the values and their errors: we just use a single value for every

timestamp, and compute the traditional Euclidean distance based on these

values.

The goal of our evaluation is to compare the performance of the different

techniques on the same task. Observe that we cannot use the top-k search

task for this comparison. The reason is that the MUNICH and PROUD

techniques have a notion of probability (Equation 4.2). This means that

these techniques can produce different rankings when the threshold ε changes.

For example, assume that we increase ε (maintaining τ fixed). Then the

ordering of the time series in a top-k ranking may change, since the proba-

bility that the time series are similar within distance ε1 ≥ ε may increase.

Thus, in the case of uncertain time series, MUNICH and PROUD might

produce very different top-k answers even if ε varies a little. This, in

turn, means that the top-k task is not suitable for comparing the three

techniques.

34

Chapter 4 4.3. Comparative Study

We instead perform the comparison using the task of time series similar-

ity matching. Even though DUST is not a similarity matching technique

(like PROUD and MUNICH), it can still be used to find similar time se-

ries, when we specify a maximum threshold on the distance between time

series. In [79], the evaluation of DUST was based on top-k similar time

series. However, we note that this problem includes the problem of sim-

ilarity matching [37], where the most similar time series form the answer

to the top-k query.

Following the above discussion, in order to perform a fair comparison

we need to specify distance thresholds for all three techniques. This trans-

lates to finding equivalent thresholds ε for each one of the techniques. We

proceed as follows.

Since the distances in MUNICH and PROUD are based on the Euclidean

distance, we will use the same threshold for both methods, εeucl. Then, we

calculate an equivalent threshold for DUST, εdust. Given a query q and a

dataset C, we identify the 10th nearest neighbor of q in C. Let that be

time series c. We define εeucl as the Euclidean distance on the observations

between q and c and εdust as the DUST distance between q and c. This

procedure is repeated for every query q.

The quality of results of the different techniques is evaluated by com-

paring the query results to the ground truth. We performed experiments

for each dataset separately, using each one of the time series as a query

and performing a similarity search. In the graphs, we report the averages

of all these results, as well as the 95% confidence intervals2.

2Please note that the results we report are not directly comparable to those in the original papers. In

our study, we use a different experimental setup, in order to make possible the comparison of the three

techniques.

35

4.3. Comparative Study Chapter 4

4.3.2 Quality Performance

In order to evaluate the quality of the results, we used the two standard

measures of recall and precision. Recall is defined as the percentage of

the truly similar uncertain time series that are found by the algorithm.

Precision is the percentage of similar uncertain time series identified by

the algorithm, which are truly similar. Accuracy is measured in terms of

F1 score to facilitate the comparison. The F1 score is defined by combining

precision and recall:

F1 = 2 ∗ precision ∗ recall
precision+ recall

(4.14)

We verify the results with the exact answer using the ground truth,

and compare the results with the algorithm output (as described in Sec-

tion 4.3.1).

Accuracy

The first experiment represents a special case with restricted settings. This

was necessary to do, because the computational cost of MUNICH was

prohibitive for a full scale experiment. We compare MUNICH, PROUD,

DUST and Euclidean on the Gun Point dataset, truncating it to 60 time

series of length 6. For each timestamp, we have 5 samples as input for MU-

NICH. Results are averaged on 5 random queries. For both MUNICH and

PROUD we are using the optimal probabilistic threshold, τ , determined

after repeated experiments. Distance thresholds are chosen (according to

Section 4.3.1) such that in the ground truth set they return exactly 10 time

series.

The results with Gaussian error (refer to Figure 4.4(a)) show that all

techniques perform well (F1 >80%) when the standard deviation of the er-

rors is low (σ = 0.2), with MUNICH being the best performer (F1=88%).

36

Chapter 4 4.3. Comparative Study

However, as the standard deviation increases to 2, the accuracy of all tech-

niques decreases. This is expected, since a larger standard deviation means

that the time series have more uncertainty. The behavior of MUNICH

though, is interesting: its accuracy falls sharply for σ > 0.6.

This trend was verified also with uniform and exponential error distri-

butions, as reported in Figures 4.4(b) and 4.4(c). With exponential error,

the performance of MUNICH is slightly better than with normal, or uni-

form error distributions. However, MUNICH still performs much worse

than PROUD and DUST for σ > 0.6.

Figure 4.5(a) shows the results of the same experiment, but just for

PROUD, DUST, and Euclidean. In this case (and for all the following

experiments), we report the average results over the full time series for

all datasets. Once again, the error distribution is normal, and PROUD is

using the optimal threshold, τ , for every value of the standard deviation.

The results show that there is virtually no difference among the different

techniques. This observation holds across the entire range of standard

deviations that we tried (0.2 ≤ σ ≤ 2).

The results for the uniform and exponential distributions are very sim-

ilar, and reported in Figures 4.5(b) and 4.5(c). With both uniform and

exponential errors, PROUD performs slightly better for σ = 0.2, and its

performance drops slightly below DUST and Euclidean for larger error

standard deviations.

With uniform error, the accuracy of DUST drops by nearly 10% for

σ = 0.2 (refer to Figures 4.5(b)). This apparently insignificant observa-

tion turned out to be due to how the DUST lookup tables are determined:

When the error is uniformly distributed, φ(|xi−yi|) may be equal to zero in

some cases. Consequently, dust(x, y) cannot be evaluated for these cases,

as it degenerates to the logarithm of zero. We tried to solve this tech-

nical problem by adding two tails to the uniform error, so that the error

37

4.3. Comparative Study Chapter 4

probability density function is never exactly zero. This workaround proved

useful, but did not completely solve the problem.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

F
1

Standard deviation

MUNICH
DUST

PROUD
Euclidean

(a) normal error

distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

F
1

Standard deviation

MUNICH
DUST

PROUD
Euclidean

(b) uniform error

distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

F
1

Standard deviation

MUNICH
DUST

PROUD
Euclidean

(c) exponential error

distribution

Figure 4.4: F1 score for MUNICH, PROUD, DUST and Euclidean on Gun Point trun-

cated dataset, when varying the error standard deviation: normal error distribution (left),

uniform (center), exponential (right).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

F
1

Standard deviation

DUST
PROUD

Euclidean

(a) normal error

distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

F
1

Standard deviation

DUST
PROUD

Euclidean

(b) uniform error

distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

F
1

Standard deviation

DUST
PROUD

Euclidean

(c) exponential error

distribution

Figure 4.5: F1 score for PROUD, DUST and Euclidean, averaged over all datasets, when

varying the error standard deviation: normal error distribution (left), uniform (center),

exponential (right).

Precision and Recall

In order to better understand the behavior of the different techniques, we

take a closer look at precision and recall. Figures 4.6(a) and 4.6(b) show

the precision and recall for PROUD, as a function of the error standard

deviation, when the distribution of the error follows a uniform, a normal,

38

Chapter 4 4.3. Comparative Study

and an exponential distribution. PROUD is using the optimal threshold,

τ , for every value of the standard deviation.

The graphs show that recall always remains relatively high (between

63% − 83%). On the contrary, precision is heavily affected, decreasing

from 70% to a mere 16% as standard deviation increases from 0.2 to 2.

Therefore, processing uncertain time series with an increasing standard

deviation in their error does not have a significant impact on the false

positives. However, this leads to many false negatives, which may be an

undesirable effect.

The corresponding results for DUST are shown in Figures 4.7(a) and 4.7(b).

We observe the same trends as before, the only difference being that DUST

achieves slightly better precision, but lower recall.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

P
re

ci
si

on

Standard deviation

Uniform
Normal

Exponential

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

R
ec

al
l

Standard deviation

Uniform
Normal

Exponential

(a) (b)

Figure 4.6: Precision and recall for PROUD, averaged over all datasets, when varying

error standard deviation and error distribution.

Mixed Error Distributions

While in all previous experiments the error distribution is constant across

all the values of a time series, in this experiment we evaluate the accuracy of

PROUD, DUST, and Euclidean when we have different error distributions

present in the same time series (Figure 4.8). Each time series has been

39

4.3. Comparative Study Chapter 4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

P
re

ci
si

on

Standard deviation

uniform
normal

exponential

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

R
ec

al
l

Standard deviation

uniform
normal

exponential

(a) (b)

Figure 4.7: Precision and recall for DUST, averaged over all datasets, when varying error

standard deviation and error distribution.

perturbed with normal error, but of varying standard deviation. Namely,

the error for 20% of the values has standard deviation 1, and the rest 80%

has standard deviation 0.4.

We note that this is a case that PROUD cannot handle, since it does not

have the ability to model different error distributions within the same time

series (in this experiment, PROUD was using a standard deviation setting

of 0.7). Therefore, PROUD does not produce better results than Euclidean.

On the other hand, DUST is taking into account these variations of the

error, and achieves a slightly improved accuracy (3% more than PROUD

and Euclidean).

We also conducted the same experiment by changing the following set-

tings: (i) inform DUST (wrongly) that the standard deviation is 0.7, and

(ii) perturb a time series with a mixture of uniform, normal, and exponen-

tial distributions (this situation cannot be handled by PROUD).

As shown in Figures 4.9 and 4.10, in both these experiments the accu-

racy of all techniques (PROUD, DUST, and Euclidean) is almost the same,

and consistently lower for the second experiment. These results indicate

that in situations where we do not have enough, or accurate information on

the distribution of the error, PROUD and DUST do not offer an advantage

40

Chapter 4 4.3. Comparative Study

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

50words

Adiac
Beef

CBF
Coffee

ECG200

FISH
FaceAll

FaceFour

GunPoint

Lighting2

Lighting7

OSULeaf

OliveOil

syntheticControl

SwedishLeaf

Trace

F
1

Datasets

Euclidean
DUST

PROUD

Figure 4.8: F1 score for PROUD, DUST, and Euclidean on all the datasets with mixed

error distribution (normal), 20% with standard deviation 1.0, and 80% with standard

deviation 0.4.

when compared to Euclidean.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

50words

Adiac
Beef

CBF
Coffee

ECG200

FISH
FaceAll

FaceFour

GunPoint

Lighting2

Lighting7

OSULeaf

OliveOil

syntheticControl

SwedishLeaf

Trace

F
1

Datasets

Euclidean
DUST

PROUD

Figure 4.9: F1 score for PROUD, DUST, and Euclidean on all the datasets with mixed

error distribution (uniform, normal, and exponential), 20% with standard deviation 1.0,

and 80% with standard deviation 0.4.

4.3.3 Time Performance

In Figure 4.11, we report the CPU time per query for the normal error dis-

tribution when varying the error standard deviation in the range [0.2, 2.0].

The results for uniform and exponential distributions are very similar, and

omitted for brevity.

41

4.3. Comparative Study Chapter 4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

50words

Adiac
Beef

CBF
Coffee

ECG200

FISH
FaceAll

FaceFour

GunPoint

Lighting2

Lighting7

OSULeaf

OliveOil

syntheticControl

SwedishLeaf

Trace

F
1

Datasets

Euclidean
DUST

PROUD

Figure 4.10: F1 score for PROUD, DUST, and Euclidean on all the datasets with mixed

error distribution: normal, with standard deviation erroneously reported as constant 0.7.

The graph shows that the standard deviation of the normal distribution

only slightly affects performance for DUST. As expected, the execution

time for Euclidean is not affected at all when the standard deviation for

the error of the uncertain time series varies, and exhibits the best time

performance of all techniques.

We note that for PROUD we did not use the wavelet synopsis, since we

did not use any summarization technique for the other techniques either.

However, it is possible to apply PROUD on top of a Haar wavelet synopsis.

This results in CPU time for PROUD that is equal or less to the CPU time

of Euclidean, while maintaining high accuracy [95].

We did not include the time performance for MUNICH in this graph,

because it is orders of magnitude more expensive than the other techniques

(i.e., in the order of minutes).

In Figure 4.12, we report the CPU time per query for the normal error

distribution when varying the time series length between 50 and 1000 time

points. Time series of different lengths have been obtained resampling the

raw sequences. The graph shows that the time grows linearly to the time

series length. The results for uniform and exponential distributions are

very similar, and omitted for brevity.

42

Chapter 4 4.4. Moving Average for Uncertain Time Series

 0.1

 1

 10

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
(m

s)

Standard deviation

PROUD DUST Euclidean

Figure 4.11: Average time per query for PROUD, DUST, and Euclidean, averaged over

all datasets, when varying the error standard deviation with normal error distribution.

 0.01

 0.1

 1

 10

 100

 0 200 400 600 800 1000

T
im

e
(m

s)

Sequence length

PROUD DUST Euclidean

Figure 4.12: Average time per query for PROUD, DUST, and Euclidean, averaged over

all datasets, when varying the time series length with normal error distribution.

4.4 Moving Average for Uncertain Time Series

The moving average is among the simplest filters for noise reduction in

signal processing. In this section, we compare some basic adaptations of the

moving average to the DUST and Euclidean distances, and evaluate their

effectiveness. We note that similar to the Euclidean and DUST distances,

it does not provide any quality guarantees in the context of uncertain time

series similarity matching. (In contrast, MUNICH and PROUD provide an

additional probabilistic measure of certainty for the computed similarity

43

4.4. Moving Average for Uncertain Time Series Chapter 4

value.) Nevertheless, the measures we describe below take a first step away

from the assumption, which the techniques we examined so far make, that

neighboring points in a time series are independent.

4.4.1 Neighborhood-Aware Models

Given a series of noisy measurements S =< v1, v2, ..., vn >, the moving

average of these measurements Sm is obtained by substituting each value

vi with mi, defined as the average of values vi−w, ..., vi, vi+w:

mi =

∑i+w
j=i−w vj

2w + 1
(4.15)

where w is a user-defined parameter that defines the window width

2w+1 to be considered in the average. In the moving average, all samples

are weighted equally.

A variant of the moving average, namely the exponential moving av-

erage, has been introduced to weigh more the nearest neighbors of the

current value, through an exponentially decaying factor. The exponential

moving average of sequence S, Se, is obtained by substituting each value

vi with ei, defined as follows:

ei =

∑i+w
j=i−w vje

−λ|j−i|
∑i+w

j=i−w e−λ|j−i|
(4.16)

where λ controls the exponential decaying factor.

The above two moving average filters require no a priori knowledge of

the data distribution, and their parameters are intuitive and easy to tune,

thus making these techniques widely adopted in the real world. In the

next paragraphs, we introduce two variants of the moving and exponential

moving averages that exploit the a priori knowledge of the error standard

deviation.

44

Chapter 4 4.4. Moving Average for Uncertain Time Series

Intuitively, we can weigh less the observations drawn from random vari-

ables that exhibit larger error standard deviation, as we have less confidence

on the correctness of their value. The Uncertain Moving Average (UMA)

is based on the moving average, where sequence S is substituted by Sp,

and the point pmi is defined as follows:

pmi =

∑i+w
j=i−w

vj
sj

2w + 1
(4.17)

where sj is the standard deviation of random variable tj.

The Uncertain Exponential Moving Average (UEMA) is based on the

exponential moving average, where sequence S is substituted by Se, and

point pei is defined as follows:

pei =

∑i+w
j=i−w vj

e−λ|j−i|

sj
∑i+w

j=i−w e−λ|j−i|
(4.18)

At this point, we have introduced the UMA and UEMA filters. These

filters allow us to reduce the signal noise, but do not define any distance

function. In the subsequent experiments, we consider the Euclidean dis-

tance computed on the sequences filtered by UMA and UEMA techniques.

Thus, Euclidean, UMA, and UEMA share the same distance function, but

the input sequence is different.

4.4.2 Performance

We first examine the behavior of UMA and UEMA when we vary the

parameters window size, w, and decaying factor, λ. Figure 4.13 depicts the

effect of varying w between 0−20 on the F1 score. The results are averaged

over all datasets. Note that when w = 0, UMA and UEMA degenerate

to the simple Euclidean distance. We observe that the accuracy for UMA

increases by 13% as we increase w from 0 to 2, and then starts falling again

45

4.4. Moving Average for Uncertain Time Series Chapter 4

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10 12 14 16 18 20

F
1

Window size

UMA
UEMA-0.1

UEMA-1

Figure 4.13: F1 score varying the window size, w, for UMA and UEMA (with λ = 0.1, 1).

as we further increase w. Evidently, aggregating many points (i.e., large

w) is equally ineffective as not aggregating at all (i.e., w = 0), since distant

neighbors do not carry much (if at all) information about the current point.

The graphs also shows the performance of UEMA for two different λ

settings. For a small decaying factor, λ = 0.1, UEMA performs very close

to UMA, since all the points in the window are assigned similar weights.

This effect diminishes as w increases and λ introduces a higher variation

among the weights of the near and distant neighbors of the current point.

When we use a high value for the decaying factor, λ = 1, the effect of the

distant neighbors diminishes much faster, thus, rendering the size of the

window irrelevant for the performance of UEMA.

In Figure 4.14 we illustrate how the accuracy of UEMA varies when

we change λ (the case λ = 0 is equivalent to UMA). The experiments

show that λ has only a small effect on the performance of the algorithm,

especially when the size of the window is small.

Overall, we note that UMA and UEMA exhibit a relatively stable behav-

ior with respect to their parameters. For the rest of this study, we assume

a decaying factor of λ = 1 for UEMA, and a moving average window length

W = 5 (i.e., w = 2) for both UMA and UEMA.

46

Chapter 4 4.4. Moving Average for Uncertain Time Series

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
1

Decaying factor

UEMA-5
UEMA-10

Figure 4.14: F1 score varying the decaying factor, λ, for UEMA (for w = 5, 10).

In the next set of experiments, we compare the accuracy of Euclidean,

DUST3, UMA, and UEMA techniques on all datasets perturbed with nor-

mal mixed error distribution, where 20% points with error standard devi-

ation 1.0, and the remaining 80% with error standard deviation 0.4. This

setting was chosen to stress-test the techniques. Every time series in each

dataset was used as a query, and the results are averaged over all these

time series.

Figure 4.15 depicts the results for the above experiment. The accuracy

of DUST and Euclidean is almost the same, while UMA and UEMA per-

form consistently better, with the latter achieving the best performance

among all techniques. Similar results were obtained for the uniform and

exponential mixed error distributions, as shown in Figures 4.15 and 4.17,

respectively.

The graphs show that (on average, across all datasets) Euclidean is al-

ways the worst performer, with a drop of 9% in its performance for the

mixed exponential error distribution, which represents the hardest case.

DUST performs close to Euclidean for the mixed normal and uniform dis-

3Based on the previous experiments, DUST performs at least as good, or better than MUNICH and

PROUD for a variety of settings. Therefore, we only report the performance of DUST in these experiments

for ease of exposition.

47

4.5. Discussion Chapter 4

tribution, but manages to maintain the same level of performance for the

mixed exponential distribution as well.

UMA and UEMA exhibit the highest accuracy levels, averaging 4% to

15%, respectively, higher than DUST, and maintaining the same level of

performance across all error distributions. Overall the F1 score of UEMA

is 4% higher than that of UMA.

The above results are very interesting: the intuitive and simple UMA

and UEMA techniques outperform DUST, a complex method that requires

much more a priori knowledge on the data distributions. Instead, these

experiments indicate that much of the knowledge is conveyed in the error

standard deviation, and in the distribution of the neighboring points. UMA

and UEMA are the best performers, because they do not assume that data

points are independent, a simplifying, yet unrealistic assumption made by

the techniques previously proposed in the literature.

Note that UMA and UEMA are also computationally efficient, requiring

almost the same time as Euclidean, and significantly less time than DUST,

PROUD, and MUNICH. All the above observations indicate that UEMA

is the method of choice for similarity matching in uncertain time series,

when a probabilistic measure of certainty for the similarity is not required.

Even when such a measure is required, UEMA can serve as a baseline for

the target performance.

4.5 Discussion

In this work, we reviewed the existing techniques for similarity matching

in uncertain time series, and performed analytical and experimental com-

parisons of the techniques. Based on our evaluation, we can provide some

guidelines for the use of these techniques.

MUNICH and PROUD are based on the Euclidean distance, while

48

Chapter 4 4.5. Discussion

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

50words

Adiac
Beef

CBF
Coffee

ECG200

FISH
FaceAll

FaceFour

GunPoint

Lighting2

Lighting7

OSULeaf

OliveOil

syntheticControl

SwedishLeaf

Trace

F
1

Datasets

Euclidean
DUST
UMA

UEMA

Figure 4.15: F1 score for all datasets and mixed error distribution: uniform with 20%

standard deviation 1.0, and 80% standard deviation 0.4.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

50words

Adiac
Beef

CBF
Coffee

ECG200

FISH
FaceAll

FaceFour

GunPoint

Lighting2

Lighting7

OSULeaf

OliveOil

syntheticControl

SwedishLeaf

Trace

F
1

Datasets

Euclidean
DUST
UMA

UEMA

Figure 4.16: F1 score for all datasets and mixed error distribution: normal with 20%

standard deviation 1.0, and 80% with standard deviation 0.4.

DUST proposes a new distance measure. Nevertheless, DUST outperforms

Euclidean only if the distribution of the observation errors is mixed, and

the parameters of this distribution are known.

An important factor for choosing among the available techniques is the

information that is available about the distribution of the time series and

its errors. When we do not have enough, or accurate information on the

distribution of the error, PROUD and DUST do not offer an advantage in

terms of accuracy when compared to Euclidean. Nevertheless, Euclidean

does not provide quality guarantees while MUNICH and PROUD do.

49

4.5. Discussion Chapter 4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

50words

Adiac
Beef

CBF
Coffee

ECG200

FISH
FaceAll

FaceFour

GunPoint

Lighting2

Lighting7

OSULeaf

OliveOil

syntheticControl

SwedishLeaf

Trace

F
1

Datasets

Euclidean
DUST
UMA

UEMA

Figure 4.17: F1 score for all datasets and mixed error distribution: exponential with 20%

standard deviation 1.0, and 80% with standard deviation 0.4.

The probabilistic threshold τ has a considerable impact on the accuracy

of the MUNICH and PROUD techniques. However, it not obvious how to

set τ , and no theoretical analysis has been provided on that. The only

way to pick the correct value is by experimental evaluation, which can

sometimes become cumbersome.

Our experiments showed that MUNICH is applicable only in the cases

where the standard deviation of the error is relatively small, and the length

of the time series is also small (otherwise the computational cost is pro-

hibitive). However, we note that this may not be a restriction for some

real applications. Indeed, MUNICH’s high accuracy may be a strong point

when deciding the technique to use.

The UMA and UEMA moving average filters proved to be very effec-

tive, outperforming the previous techniques in a variety of settings. This

surprising result is due to the ability of the moving average to exploit the

correlation of neighboring points in a very intuitive and simple manner:

it reduces the effect of errors, which the filter levels out. Ignoring the

strong correlation exhibited by neighboring points in the time series is not

beneficial. Indeed, as our study shows, it is a severe limitation of all the

techniques previously proposed in the literature.

50

Chapter 4 4.6. Summary

However, we should note that the goal of MUNICH and PROUD is to

provide an additional probabilistic measure of certainty for the computed

similarity value. This is something that we cannot readily get from UMA,

UEMA, or DUST, and may be important for certain applications.

Finally, we observe that there exist some datasets for which all tech-

niques perform well (e.g., FaceFour and OSU-Leaf), and others for which

accuracy is low (e.g., Adiac and Swedish Leaf). A close look at the char-

acteristics of these datasets revealed that datasets for which the average

distance between time series was low led to low accuracy. This is because

uncertainty has a significant impact for these datasets, making it hard

to distinguish the time series and select a clear winner for the similarity

matching problem. On the other hand, the same level of uncertainty does

not affect much datasets that have a high average distance among their

time series.

4.6 Summary

The emerging area of uncertain time series processing and analysis is in-

creasingly attracting the attention of both the research community and the

practitioners in the field, mainly because of the applications and interesting

problems it entails.

In this study, we evaluated the state of the art techniques for similar-

ity matching in uncertain time series, as this operation is the basis for

more complex algorithms. Apart from the techniques that were previously

proposed in the literature, we also evaluated two additional, obvious alter-

natives that were not studied before.

Our experiments were based on 17 real, diverse datasets, and the re-

sults demonstrate that simple measures, based on moving average, outper-

form the more sophisticated alternatives. These results also suggest that

51

4.6. Summary Chapter 4

a promising direction is to develop measures that take into account the

sequential correlations inherent in time series.

In the next Chapter we will consider the problem of evaluating top-k

nearest neighbor searches revisiting the underlying uncertainty model to

use the correlation of the values at neighboring time-stamps.

52

Chapter 5

Top-k Nearest Neighbor Search for

Uncertain Data Series

In the previous chapter, we compared analytically and experimentally

different uncertainty models for data series to support similarity search

queries. We proceed studying the efficient evaluation of top-k nearest

neighbor searches adopting the ”possible worlds” model. We use series

as possible instantiations to leverage the dependencies between the values

at neighboring time-stamps.

Many real applications consume data that is intrinsically uncertain and

error-prone. In this study we investigate the problem of finding the top-k

nearest neighbors in uncertain data series. An uncertain data series is a

series whose point values are uncertain. Typical sources of uncertainty in

data series include sensor data, data synopses, privacy-preserving transfor-

mations and forecasting models. We introduce different formal definitions

of uncertain data series and discuss their properties. We unify and im-

prove prior studies in the field in the Holistic-PkNN family of algorithms.

Moreover, we consider different strategies to prune the search space in spa-

tial and metric spaces. We experimentally verify of our proposal under

a variety of settings using 45 real datasets and synthetic datasets, which

illustrate the effectiveness of our approach.

53

5.1. Preliminaries Chapter 5

The rest of this chapter is organized as follows. In Section 5.1, we

discuss different alternative models of uncertain data series and formally

define the problem of top-k nearest neighbor queries in uncertain data

series. In Section 5.2, we detail our baseline approach. In Section 5.3,

we present our proposal. In Section 5.4, we discuss our adaptation of

the M-tree index for uncertain data series. Extensions of our proposal

are reported in Section 5.5. In Section 5.6, we present the experimental

results. In Section 2.1, we survey prior studies and offer our conclusions in

Section 5.7.

5.1 Preliminaries

In this section, we formalize the problem after introducing some definitions.

Recall that a data series S is an ordered sequence of n real valued numbers

S = S[t], 1 ≤ t ≤ n.

An uncertain data series X is a data series whose values at each time-

stamp are uncertain. We denote the value at time-stamp t of sample j

of uncertain series Xi as Xj
i [t]. The index i may be omitted for ease of

exposition. We formalize the value-uncertainty and the series-uncertainty

models as follows:

Definition 5.1.1 (Value-uncertainty model) An uncertain series X of

length n is represented by m real valued samples at each time-stamp t,

1 ≤ t ≤ n. The value distributions at different time-stamps are assumed

to be independent. Formally, X =< {Xj[t] : 1 ≤ j ≤ m}, ... >, 1 ≤ t ≤ n.

Definition 5.1.2 (Series-uncertainty model) An uncertain series X

of length n is represented by m series samples. A series sample Xj is

a sample drawn from the full joint distribution of X. Formally, X = {Xj :

1 ≤ j ≤ m}.

54

Chapter 5 5.1. Preliminaries

An example of uncertain series using the value-uncertainty model is

reported in Figure 5.1(a). The same uncertain series represented under

the series-uncertainty model is shown in Figure 5.1(b). We observe that in

contrary to the series-uncertainty model, the uncertain series reported in

Figure 5.1(b) and Figure 5.1(c) cannot be distinguished under the value-

uncertainty model.

Time

V
a
lu
e

X
i

X
1

i

Time

V
a
lu
e

"

X
i

X
2

i

Q

Time

V
a
lu
e

X
j

X
1

j

X
2

j

(a) (b) (c)

Figure 5.1: Graph (a) shows an uncertain series Xi of length 5 and 2 samples at every

time-stamp that is represented by the value-uncertainty model. Graph (b) shows the

uncertain series Xi introduced in graph (a), modeled using the series-uncertainty model

with samples X1
i and X2

i . Graph (c) shows an uncertain series Xj that is distinguishable

from uncertain series Xi under the series-uncertainty model but not under the value-

uncertainty model.

We observe that the number of possible instantiations is exponential

to the series length (mn) under the value-uncertainty model and linear to

the number of series samples (m) under the series-uncertainty model. The

series-uncertainty model is clearly to be preferred in terms of space and

time complexities. We further observe that the value-uncertainty model

is less accurate then the series-uncertainty model in capturing the cor-

relation among the series values at neighboring time-stamps: under the

value-uncertainty model the sample value at time-stamp t doesn’t depend

on a single sample value at time-stamp t′ < t. In contrary, under the

series-uncertainty model the value at time-stamp t depends on a single se-

ries of sample values at time-stamp t′ < t. Nevertheless, if the raw data is

provided by means of multiple measurements at each time-stamp (i.e., as

55

5.1. Preliminaries Chapter 5

in the value-uncertainty model), there is no statistical difference between

the two modes. However, the series-uncertainty model is more accurate

than the value-uncertainty if the raw data is provided by means of mul-

tiple series samples. Following the Occamś Razor principle, we conclude

that there are no benefits in adopting the value-uncertainty model and the

series-uncertainty model should always be preferred instead.

Definition 5.1.3 (Dataset) A dataset of uncertain data series D is a

set of uncertain data series D = {X1, X2, ..., XN} of size N = |D|. The

uncertain series in dataset D are represented by m samples each, and each

series sample has length n. Similarly to prior works [26, 16], we further

assume that the uncertain series in D are independent, i.e., samples drawn

from uncertain series Xi are independent of samples drawn from uncertain

series Xj, ∀i 6= j.

The distance between uncertain series X and query Q is uncertain,

and under the series-uncertainty model is represented by a set of distance

samples obtained evaluating the distance function between Q and each

instantiation Xj:

Definition 5.1.4 (Sample distance distribution) The sample distance

distribution between uncertain series X and query series Q is denoted by

Dist(X,Q) and is defined as Dist(X,Q) = {dist(Xj, Q) : j ∈ 1, ...,m},
where dist(Xj, Q) is the distance measure between Q and the jth instance

of X.

We consider the Euclidean distance as reference implementation of the

dist(·) function, however other distance measures [14, 34, 25] can be con-

sidered as well.

Table 5.1 summarizes the most important symbols used in the rest of

the chapter.

56

Chapter 5 5.1. Preliminaries

Notation Description

Q Query series

k Result set size

n Series length

m Number of uncertain series samples

D Dataset of uncertain series

N Number of uncertain series in dataset D

Xi ith uncertain series

X l
i lth sample of ith uncertain series

X l
i [t] lth sample of Xi at time-stamp t

Bi = [Blb
i , B

ub
i] PNN bounds for uncertain series Xi

Si = {Sl
i} distance partition for Xi

Sl
i lth distance interval in Si

W l
i Weight of lth distance interval in Si

I(X) 1 if X is true, 0 otherwise

Table 5.1: Notation used in this chapter.

Now we are ready to formulate the problem of top-k nearest neighbor

search in uncertain series.

5.1.1 Problem Statement

We consider an adaptation of the formulation of the top-k probable nearest

neighbors originally proposed in [26] and then used in more recent studies

[56, 16, 28].

Let D be a dataset of N uncertain series modeled under the series-

uncertainty model with series length n and number of samples m. Given

a query series Q, the probability of an uncertain data series Xi to be the

NN (Nearest Neighbor), denoted by PNN(Q,Xi), is:

PNN(Q,Xi) =

∫

Pr



Dist(Q,Xi) = s ∧
∧

∀j 6=i

Dist(Xj, Q) > s



 ds

(5.1)

57

5.2. Baseline Algorithm Chapter 5

Let r(i) be a rank function s.t. r(i) ≤ r(j) iff PNN(Q,Xi) ≥ PNN(Xj, Q).

We can now introduce the definition of the top-k probable nearest neigh-

bors:

Problem 5.1.1 (Top-k Probable Nearest Neighbors) Given a dataset

D and query Q, the top-k probable nearest neighbor search Top-k-PNN(D,Q, k)

returns the k uncertain series Xi with the largest PNN(Q,Xi) probabilities.

Formally, the result set is defined as {Xr(1), ..., Xr(k)}.

5.2 Baseline Algorithm

In this section, we present the baseline algorithm to evaluate top-k probable

nearest neighbor queries under the series-uncertaintymodel. Thanks to the

independence assumption between the uncertain series Xi ∈ D, Eq. 5.1 can

be simplified to:

PNN(Q,Xi) =

∫

Pr(Dist(Q,Xi) = s)
∏

∀j 6=i

Pr(Dist(Xj, Q) > s)ds (5.2)

where the Probability Density Function (PDF)

Pr(Dist(Q,Xi) = s)

is essentially used to weight the second term and the inverse of the Cumu-

lative Density Function (CDF)

Pr(Dist(Xj, Q) > s)

is estimated as the ratio of samples matching the inequality condition:

Pr(Dist(Xj, Q) > s) =
1

|{r ∈ Dist(Xj, Q) : r > s}| (5.3)

58

Chapter 5 5.2. Baseline Algorithm

For ease of exposition, we introduce the I(X) indicator function: I(X)

evaluates to 1 if the condition X holds, 0 otherwise. The evaluation of

Eq. 5.2 can then be reduced as follows:

PNN(Q,Xi) =
1

mN

∑

s∈Dist(Q,Xi)





∏

∀j 6=i





∑

r∈Dist(Xj ,Q)

I(r > s)







 (5.4)

where 1/(mN) results from further simplifications of theDist(Q,Xi) = s

terms in Eq.5.2, and Dist(·) is a set of distance samples previously defined

in Definition 5.1.4.

We are now ready to introduce the PkNN-Selection algorithm that eval-

uates Top-k-PNN(D,Q, k) queries in Algorithm 1.

Algorithm 1 PkNN-Selection(D: dataset, Q: query sequence, k: result set size).

1: Bi ← PNN(Q,Xi) for all Xi ∈ D using Eq. 5.4

2: T ← select({B1, ..., BN}, k)

PNN(Q,Xi) probabilities are evaluated in line 1 and the k uncertain

series with the top-k highest NN probabilities are identified in line 2 using

an adaptation of the selection algorithm [55]. The selection algorithm is a

sort-based algorithm that can be used to identify efficiently the k largest

values in an array.

5.2.1 Complexity Analysis

The evaluation of Eq. 5.4 has a CPU cost of O(Nm2). Considering all

candidate uncertain series, line 1 has a CPU cost of O(m2N 2), where m

is the number of samples of each uncertain series and N is the number of

uncertain series in the dataset D. The time complexity of the selection

algorithm is linear to the size of the array (on average) and is bounded

by O(N). We note that the evaluation of PNN(Q,Xi) dominates the CPU

cost.

59

5.3. Proposed Approach Chapter 5

5.3 Proposed Approach

In this section, we present our algorithms for the efficient evaluation of

Top-k-PNN(D,Q, k) queries. We start off by presenting an approach that

uses coarse representations of the distance samples to obtain an estimate

of the PNN probability bounds. A technique based on incremental re-

finements of the PNN probability bounds is then presented. We conclude

discussing different algorithms to prune the search space and to select the

best PNN bound refinements in the iterative search.

5.3.1 Bounding the PNN Probability Estimates

Recall that uncertain series Xi are uncertain points in high-dimensional

spaces whose dimensions are correlated. The evaluation of the PNN prob-

abilities is based on the distance measurements between the query series

Q and the uncertain series Xi. Once the distance samples have been de-

termined, the raw series Xi are not accessed anymore.

Under the series-uncertainty model, the distribution between query Q

and the uncertain series Xi is represented by a set of distance samples

Dist(Q,Xi), previously defined in Eq. 5.1.4. In the following we show

how summarizations of the distance samples in Dist(Q,Xi) can be used to

bound the PNN probability estimates for candidate Xi.

Definition 5.3.1 (Distance interval) A distance interval Sl
i is a region

in the distance space that represents a subset of the distance samples in

Dist(Q,Xi). The lower and upper bounds of Sl
i are denoted by lb(Sl

i) and

ub(Sl
i), respectively. The associated weight is denoted by W l

i and is defined

as the ratio of samples in Dist(Q,Xi) falling within the interval bounds.

Any distance interval Sl
i represents at least a distance sample, i.e., W l

i > 0.

A distance partition Si is a set of disjoint distance intervals Sl
i that partition

the samples in Dist(Q,Xi).

60

Chapter 5 5.3. Proposed Approach

Given a distance partition Si, these two properties hold: first, distance

intervals Sl
i and Sk

i do not overlap, ∀l 6= k. Second, the sum of the weights

of the distance intervals in the Si partition equals to one, i.e.
∑

l W
l
i = 1.

Distance partitions at different levels of detail can be instantiated to

represent the samples in Dist(Q,Xi). The number of distance intervals

(denoted by d) in the partitions ranges between 1 and m. We denote with

Smin
i the partition instantiation composed by a single distance interval

(coarsest level, d = 1). Smax
i denotes the partition instantiation composed

by m distinct distance intervals (finest level, d = m). An example of Smin
i ,

Smax
i and an intermediate valid distance partition instantiation denoted by

Smid
i is reported in Figure 5.2.

Distance
0

S
max

i

S
mid

i

S
min

i

Figure 5.2: Example of valid distance partition instantiations Smin
i , Smid

i and Smax
i rep-

resenting the distance samples in Dist(Q,Xi).

Distance partitions can be used to estimate lower- and upper-bounds of

the PNN probabilities, denoted by P lb
NN(Q,Xi) and P ub

NN(Q,Xi), respec-

tively.

The lower-bound P lb
NN(Q,Xi) is determined by using the upper-bounds

ub(Sl
i) as representatives of the distance intervals in partition Si and the

lower-bounds lb(Sl
j) as representatives of the distance intervals in the other

partitions Sj. The resulting adaptation of Eq.5.4 is:

61

5.3. Proposed Approach Chapter 5

P lb
NN(Q,Xi) =

∑

Sa
i ∈Si



W a
i

∏

∀j 6=i





∑

Sb
j∈Sj

W b
j · I(ub(Sa

i) < lb(Sb
j))









(5.5)

Similarly, the upper-bound P ub
NN(Q,Xi) is determined by using the lower-

bounds lb(Sl
i) as representatives of the distance intervals in partition Si and

the upper-bounds ub(Sl
j) as representatives of the distance intervals in the

other partitions Sj. The resulting adaptation of Eq.5.4 is:

P ub
NN(Q,Xi) =

∑

Sa
i ∈Si



W a
i

∏

∀j 6=i





∑

Sb
j∈Sj

W b
j · I(lb(Sa

i) < ub(Sb
j))









(5.6)

We denote the probability interval identified by the lower- and upper-

bounds of the PNN probability estimates by Bi:

Bi = [P lb
NN(Q,Xi), P

ub
NN(Q,Xi)] (5.7)

We observe that if we use the finest representation of the distance sam-

ples Smax
i for all uncertain series Xi ∈ D, then P lb

NN(Q,Xi) and P ub
NN(Q,Xi)

can be reduced to Eq.5.4 and degenerate to the same value, PNN(Q,Xi).

The CPU cost of determining the PNN probability bounds using Eq.5.5

and Eq.5.6 is bounded by the number of distance intervals in each parti-

tion. A low number of distance intervals in each partition is to be preferred.

However, PNN bounds might not be tight enough to discriminate the an-

swer set and a more fine-grained representation of the distance partitions

may be required to improve sufficiently the PNN bounds. In the next sec-

tion, we introduce the Holistic-PkNN algorithm that solves efficiently this

problem.

62

Chapter 5 5.3. Proposed Approach

5.3.2 The Holistic-PkNN Algorithm

In this section we present Holistic-PkNN, an iterative algorithm to evaluate

Top-k-PNN(D,Q, k) queries as defined in Section 5.1.1. The Holistic-PkNN

algorithm uses the PNN probability bounds Bi as defined in Section 5.3.1

and refines incrementally the distance partitions Si until convergence at a

reduced CPU cost.

Let topk(V) be the kth largest value in a set V of values, not necessarily

distinct. Let Blb and Bub be the set of PNN probability lower-bounds and

the set of PNN probability upper-bounds, respectively. The critical region

[c, d] is defined as follows:

Definition 5.3.2 (Critical region) Let c = topk(B
lb) and d = topk+1(B

ub).

The critical region R is defined as the probability interval R = [c, d]. The

critical region is empty if c > d.

Uncertain series Xi whose PNN probability upper bound P ub
NN(Q,Xi) is

lower than the lower bound c of the critical region R have zero probability

of being the NN, and can be safely pruned. In contrary, uncertain series Xi

whose PNN probability lower bound P lb
NN(Q,Xi) is higher than the upper

bound d of the critical region R can be safely appended to the result set.

We can now formally introduce the set of the active candidates:

Definition 5.3.3 (Active candidates) Uncertain series Xi is an active

candidate iff its PNN probability interval Bi overlaps with the critical region

R. We denote with X∗ the set of the uncertain series that qualify as active

candidates.

The set of the active candidatesX∗ identifies the uncertain seriesXi that

can be eligible to enter the result set but require tighter PNN probability

bounds to make a final decision. Note that, if c > d, then the critical region

R is empty, and the set of active candidates X∗ is empty. This condition

63

5.3. Proposed Approach Chapter 5

is encountered when the PNN probability bounds are sufficiently tight to

discriminate the result set without further refinements.

Figure 5.3(a) shows an example of a critical region (R) for k = 2. The

uncertain series corresponding to PNN interval B4 is clearly part of the

result set since it dominates all the other PNN bounds. However, PNN

bounds B3 and B2 overlap and we cannot discriminate between them. Fig-

ure 5.3(b) shows an example of a critical region for k = 2, s.t. PNN

probability bounds B4 and B3 dominate all the other PNN bounds and

there is no uncertainty on the memberships of the result set.

Probability

B
1

0

B
2

B
3

B
4

1

R

Probability

B
1

0

B
2

B
3

B
4

1

R

(a) (b)

Figure 5.3: Graph (a) shows an example of critical region R with overlapping PNN

probability bounds B3 and B2. Graph (b) reports an example of empty critical region R.

PNN probability bounds of uncertain series Xi ∈ X∗ are tightened by

refining some of the distance partitions. A partition is refined by increas-

ing the number of its distance intervals. We observe that the underlying

relationships between different candidates can lead to tighter PNN bounds

for candidate Xi after refining a distance interval in partition Sj, where

i 6= j.

Let S∗ be the set of the distance partitions S1, ..., SN . Let B∗ be the

set of the PNN probability bounds B1, ..., BN . The overall Holistic-PkNN

procedure that refines selectively the distance partitions until convergence

of the result set is illustrated in Algorithm 2.

64

Chapter 5 5.3. Proposed Approach

Algorithm 2 Holistic-PkNN(D: dataset, Q: query sequence, k: result set size).

1: Si ← init-distance-partitions(Q,Xi) for all candidates Xi ∈ D

2: Bi ← PNN(Q,Xi) bounds using Eq. 5.5 and Eq. 5.6 for all candidates Xi ∈ D

3: Update critical region [c, d] using Def. 5.3.2

4: while c ≤ d do

5: C ← find-critical(B∗, [c, d])

6: R← ⋃

Xi∈C
find-splits(Si)

7: for Sl
i ∈ R do

8: Si ←dist-refine(Sl
i)

9: end for

10: Bi ← PNN(Q,Xi) bounds using Eq. 5.5 and Eq. 5.6 for all active candidates Xi ∈
X∗

11: Update critical region [c, d] using Def. 5.3.2

12: end while

13: T ← {Xi : P
lb
NN(Q,Xi) > d}

Line 1 initializes the distance partitions Si for all Xi ∈ D to their respec-

tive Smin
i instances. Efficient algorithms to determine the Smin

i instances

are presented in Section 5.3.4. In Line 2, lower- and upper-bounds Bi for

all Xi ∈ D are initialized using Eq. 5.5 and Eq. 5.6. The bounds c, d

of the critical region R are updated in Line 3 using Definition 5.3.2. This

concludes the initialization of the data structures before the iterative refine-

ment of the PNN probability bounds. The PNN bounds are then tightened

iteratively in Lines 4-12 until convergence of the result set, i.e., the termi-

nation condition c > d is met. In each iteration a set of PNN bounds to be

tightened is selected (set C) and the distance intervals expected to improve

the selected PNN bounds are refined (set R). The PNN probability bounds

of the candidates Xi ∈ X∗ and the critical region [c, d] are updated at the

end of each iteration. Line 5 identifies the uncertain series Xi ∈ C whose

PNN bounds are selected for improvement. Efficient implementations of

the find-critical procedure are presented in Section 5.3.3. In Line 6 the

distance intervals Sl
i to be refined are identified, and then refined in Lines

65

5.3. Proposed Approach Chapter 5

7-9. The efficient evaluation of the refinements is discussed in Section 5.3.4.

Line 10 updates the PNN probability bounds Bi of the active candidates

Xi ∈ X∗. The bounds c, d of critical region R are then updated in Line 11.

Finally, the result set is constructed in Line 13.

We note that the find-splits procedure may return the same distance

interval Sl
i to tighten the PNN probability bounds of different candidates.

However, the distance interval Sl
i gets refined only once by the dist-refine

function. Multiple PNN bounds can benefit holistically from the same

refinement, keeping the global number of refinements as low as possible

(thus making the evaluation of the PNN bounds in Line 10 more efficient).

Lemma 1 (Termination) Algorithm 2 always terminates after a finite

number of partition refinements.

Proof. Let S∗ be the set of distance partitions Si initialized in Line 1

with their respective Smin
i instances. Lines 4-9 ensure that at least one

partition Si is refined at every iteration. In the worst case, all distance

partitions Si ∈ S∗ are refined completely, obtaining their respective Smax
i

instances. Consequently, the PNN probability bounds Bi converge to the

exact probability estimate, i.e. P lb
NN(Q,Xi) = P ub

NN(Q,Xi). It is then

easy to show that topk+1(B
ub) < topk(B

lb), i.e., d < c. We assume that the

PNN(Q,Xi) estimates are distinct values, i.e., if PNN(Q,Xi) = PNN(Q,Xj)

then it must be that i = j.

5.3.3 Tightening the PNN Bounds

The optimal search path to identify the top-k probable nearest neighbors

in the Holistic-PkNN method (Algorithm 2) minimizes the number of par-

tition refinements (Lines 7-9) and minimizes the number of evaluations of

the PNN probability bounds (Line 2,10). Unfortunately, its determination

66

Chapter 5 5.3. Proposed Approach

is computationally prohibitive: Its identification would require an exten-

sive search in the solution space of the possible refinements, altogether with

repeated evaluations of the PNN probability bounds. The incurred CPU

cost would deny any expected benefit provided by the iterative refinements,

and this motivates the introduction of efficient sub-optimal algorithms.

In this section, we discuss efficient implementations of the functions

find-critical and find-splits used in Algorithm 2. While the procedure find-

critical identifies the PNN bounds Bi to be tightened, procedure find-splits

finds the refinements in the distance partitions Si to be applied.

find-critical

We present an adaptation of the multi-simulation algorithm firstly in-

troduced in [76]. The multi-simulation selection heuristic returns up to

two PNN probability bounds Bi to be improved with provable optimally

bounds.

The algorithm starts off trying to return an uncertain series Xi ∈ X∗

whose PNN bounds Bi contain the critical region R, i.e. R ⊆ Bi (named

double-crosser). The distance partition Si overlaps with other distance

partitions Sj, j 6= i (that identify the c, d boundaries of the R region),

and its refinement is expected to provide a significant overall progress. If

there is no matching candidate, the algorithm tries to identify a pair of

uncertain series Xi, Xj ∈ X∗ whose PNN bounds Bi and Bj overlap with

the left boundary (named left-crosser) and the right boundary (named

right-crosser) of the critical region R. If there is no pair of matching

candidates, the candidate Xi ∈ X∗ whose PNN bounds Bi have the largest

overlap with the critical region R and contains all the other Bj s.t. Xj ∈ X∗

is returned. The approach is reported in Algorithm 3.

The procedure returns immediately if no refinement is required (Lines

1-3). First, we return the active candidate X i ∈ X∗ s.t. the critical region

67

5.3. Proposed Approach Chapter 5

Algorithm 3 Multi-Simulation(D: dataset, B∗: probability bounds, [c, d]: critical re-

gion).

1: if c > d then

2: return ∅
3: end if

4: if ∃Xi ∈ X∗ s.t. Blb
i < c ∧ d < Bub

i then

5: return Xi // double-crosser

6: end if

7: if ∃Xi, Xj ∈ X∗ s.t. Blb
i < c ∧ d < Bub

i then

8: return Xi and Xj // left- and right-crosser pair

9: end if

10: return Xi ∈ X∗ s.t. the overlap between Bi and critical region [c, d] is maximal and

contains all the other Bj s.t. Xj ∈ X∗ // maximal crosser

is within its PNN bounds (Lines 4-6). Otherwise, we return a pair of active

candidates Xi, Xj ∈ X∗ s.t. the lower- and upper-bounds of the critical

region overlap respectively with the PNN bounds of Xi and Xj (Lines 7-

9). Finally, we return the active candidate X i ∈ X∗ s.t. it maximizes the

overlap of its PNN bounds with the critical region and contains all the

other Bj s.t. Xj ∈ X∗ (Line 10).

We report an example in Figure 5.3 and Figure 5.4, that show two

possible configurations for the critical region R. In Figure 5.3(a), PNN

bounds B2 and B3 form a pair of left- and right-crossers. In Figure 5.3(b),

R is empty and the algorithm returns immediately. In Figure 5.4(a), PNN

bound B2 is a left crosser and there are no right crossers. In Figure 5.4(b),

PNN bound B1 is a double crosser and B2 is a left crosser.

Despite the provable optimality bound guarantees of themulti-simulation

algorithm, the experiments show that is in general more convenient to con-

sider all active candidatesX∗ in the tightening process rather than selecting

up to two among the most promising ones. The same conclusion applies

to other heuristics, such as the one considered in [16] where only the the

68

Chapter 5 5.3. Proposed Approach

Probability

B
1

0

B
2

B
3

B
4

1

R

Probability

B
1

0

B
2

B
3

B
4

1

R

(a) (b)

Figure 5.4: Graph (a) shows the critical region R, where B2 is a left crosser. Graph (b)

shows the critical region R, where B1 is a double crosser and B2 is a left crosser.

uncertain series Xi with the largest PNN upper bound is selected for re-

finement.

find-splits

Given a set or uncertain series R, the find-splits procedure identifies the

best distance intervals Sl
i of the distance partitions Si to be splitted, i.e., re-

fined. First, we discuss the importance of the dependencies across different

distance partitions in the selection of the refinements to apply.

Lemma 2 (Dependencies in Distance Partitions) Tightening the PNN

probability bounds Bi of candidate Xi ∈ X∗ may require some refinements

in the distance partition Sj, where j 6= i. Uncertain series Xj is not nec-

essarily in the active set, i.e., Xj 6∈ X∗.

Demonstration by example. Let D be a dataset with N = 4 and m = 3.

Let S1, S2, S3 and S4 be the instantiated distance partitions: S1 = {[2, 2] :
0.33, [4, 4] : 0.33, [6, 6] : 0.33}, S2 = {[4, 8] : 1}, S3 = {[1, 1] : 0.33, [5, 5] :
0.33, [9, 9] : 0.33} and S4 = {[1, 1] : 0.33, [3, 3] : 0.33, [7, 7] : 0.33}.

The PNN probability estimates determined using the Eq.5.5 and Eq.5.6

result in the following Bi bounds: B1 = [0.14, 0.25], B2 = [0.22, 0.25],

B3 = [0.22, 0.25] and B4 = [0.37, 0.37].

69

5.3. Proposed Approach Chapter 5

We want to identify the top-2 most probable nearest neighbors, i.e.,

k = 2. Figure 5.5(a) and Figure 5.5(b) show the corresponding distance

partitions Si and the PNN probability bounds Bi, respectively.

0

Distance

S
4

S
3

S
2

S
1

!
1

!
2

! $

! %

&

' 0.5

Probability

(a) (b)

Figure 5.5: Graph (a) shows the distance partitions Si and graph (b) reports their re-

spective PNN bounds Bi.

We observe that the candidate uncertain series X4 and X1 can be safely

appended to the result set and discarded, respectively. We are unable to

discriminate the PNN probabilities of X2 and X3. However, distance parti-

tions S1, S2 and S3 have been fully refined to their Smax
i instantiations and

cannot be refined further. There is no other choice than refining samples

in the distance partition S2, whose respective uncertain series X2 is not in

the set of the active candidates X∗ and has zero probability of being part

of the result set.

We introduce the Pair-split method in Algorithm 4 as baseline imple-

mentation of the find-split procedure. Let width(Sa
i) be the distance width

of the distance interval Sa
i .

The algorithm iterates over all combinations of the (Sa
i , S

b
j) pairs (Lines

3-9). Line 4 defines a score based on the two interval weights and the

respective distance widths. Lines 5-8 select the pair (Sa
i , S

b
j) s.t. they

overlap with the largest score value.

70

Chapter 5 5.3. Proposed Approach

Algorithm 4 Pair-split(Si)

1: R← ∅
2: scorebest ← 0

3: for ∀ (Sa
i , S

b
j) s.t. S

a
i ∈ Si ∧ Sb

j ∈ Sj ∧ i 6= j do

4: score← W a
i · width(Sa

i) +W b
j · width(Sb

j)

5: if score > scorebest ∧ Sa
i overlaps with Sb

j then

6: R← {Sa
i , S

b
j}

7: scorebest ← score

8: end if

9: end for

Intuitively, splitting the pair of overlapping distance intervals (Sa
i , S

b
j)

whose weighted width is the largest is expected to improve the PNN prob-

ability bounds of the respective PNN probability estimates Bi and Bj,

respectively.

We note that the pair-split algorithm considers only pair-wise dependen-

cies between distance intervals. However, there may be a distance interval

Sa
i that overlaps with a large number of distance intervals Sb

j , whose score

is individually too low to get selected. In the next section, we propose

heuristics that overcome this limitation.

Uncertainty-aware distance refinements

In this section we discuss how to identify a pair of refinements to tighten

the PNN bounds Bi by looking explicitly at the candidate refinements in

distance partition Si and in distance partitions Sj, 6= i. The proposed

heuristics consider the pair-wise dependencies between different distance

partitions Si and Sj, i 6= j.

First, we identify the best distance interval Sa
i to tighten the PNN

bounds Bi. We observe that refining Sa
i may be beneficial to tighten Bi

only if it overlaps with one or more distance intervals Sb
j , j 6= i. Among the

Sa
i candidate refinements, we select the Sa

i candidate that maximizes the

71

5.3. Proposed Approach Chapter 5

weighted sum of the overlapping distance intervals with all other partitions

Sj s.t. j 6= i. Function select-inner implements this strategy:

select-inner(Q,Xi) = argmax
Sa
i ∈Si

W a
i

∏

∀j 6=i





∑

Sb
j∈Sj

W b
j · I(lb(Sa

i) < ub(Sb
j) ∧ ub(Sa

i) > lb(Sb
j))





(5.8)

Second, we identify the best distance interval Sb
j to tighten the PNN

bounds Bi s.t. j 6= i. Similarly, we observe that refining Sb
j may be bene-

ficial to tighten Bi only if it overlaps with one or more distance intervals

in Si. Among the Sb
j candidate refinements, we select the Sb

i candidate

refinement that maximizes the weighted sum of overlapping distance in-

tervals with the distance intervals in partition Si. Function select-outer

implements this strategy:

select-outer(Q,Xi) = argmax
Sb
j∈Sj ,∀j 6=i

W b
j

∑

Sa
i ∈Si

W a
i · I(ub(Sa

i) > lb(Sb
j) ∧ lb(Sa

i) < ub(Sb
j))

(5.9)

The find-split procedure can be implemented by returning the distance

intervals identified by the select-inner and the select-outer heuristics. We

observe that the computation of Eq.5.8 can be combined efficiently with the

evaluation of the PNN upper-bound in Eq.5.6 because of the similarities in

the formulation and in the verified inequalities. Eq. 5.9 cannot be combined

in a similar way with the evaluation of the PNN intervals because of the

different ordering in the enumeration of the distance interval pairs.

72

Chapter 5 5.3. Proposed Approach

5.3.4 Managing the Distance Partitions

In this section we discuss the efficient implementation of the init-distance-

partitions procedure to initialize the distance partitions Si and their incre-

mental refinement required in the dist-refine function in Algorithm 2.

Initialization

The init-distance-partitions procedure initializes the distance partitions Si

for all candidates Xi ∈ D. We consider two different implementations that

can be used to construct the distance partitions using their Smin
i instanti-

ations.

First, we present distance bounds inspired by the spatial properties of

the uncertain series and prior works on spatial indexes for time series.

The value of an uncertain series Xi can be bounded by the minimum and

maximum values at each time-stamp across all its instantiations X l
i , where

1 ≤ l ≤ m. The lower-bound series of uncertain series Xi at time-stamp t

(denoted by X lb
i [t]) is defined as:

X lb
i [t] = X l

i [t] : X
l
i [t] ≤ Xk

i [t] ∀ k ∈ {1, ...,m} (5.10)

Similarly, the upper-bound series of uncertain series Xi at time-stamp

t (denoted by (denoted by Xub
i [t]) is defined as:

Xub
i [t] = X l

i [t] : X
l
i [t] ≥ Xk

i [t] ∀ k ∈ {1, ...,m} (5.11)

Definition 5.3.4 (Uncertain series envelope) Let X lb
i and Xub

i be the

lower-bound and upper-bound series of uncertain series Xi, respectively.

The uncertain series envelope of uncertain series Xi is defined as the pair

of series Ei = (X lb
i , X

ub
i).

73

5.3. Proposed Approach Chapter 5

Figure 5.6 shows an example of an uncertain series envelope. We observe

that the uncertain series envelope Ei identifies the smallest n-dimensional

hyper-rectangle enclosing all instantiations of uncertain series Xi.

����

V
a
lu
e

X
lb

i

X
��
i

X
3

i

X
�
i

X
1

i

Figure 5.6: Example of uncertain series envelope.

Note that Uncertain series envelopes are equivalent to the concept of

Minimum Bounding Rectangles (MBRs), a popular representation of bound-

ing regions in spatial indexes. Envelopes can be pre-computed, since they

don’t depend on the query series. Given a query Q, an uncertain se-

ries envelope Ei can be used to determine the lower-bound (denoted by

spatiallb(Q,Xi)) of the distance samples in Dist(Q,Xi) as follows:

spatiallb(Q,Xi) =
√

√

√

√

√

√

∑

1≤t≤n











0 if X lb
i [t] ≤ Q[t] ≤ Xub

i [t]

min((Q[t]−X lb
i [t])

2,

(Q[t]−Xub
i [t])2) otherwise

(5.12)

Similarly, the upper-bound (denoted by spatialub(Q,Xi)) of the distance

samples in Dist(Q,Xi) is defined as:

spatialub(Q,Xi) =
√

∑

1≤t≤n
max((Q[t]−X lb

i [t])
2, (Q[t]−Xub

i [t])2)
(5.13)

74

Chapter 5 5.3. Proposed Approach

The distance bounds between uncertain series Xi and query Q are de-

termined by measuring the minimum and maximum distances between the

uncertain series envelope Ei and query Q. An equivalent formulation of

the distance lower-bound can be found in [93]. On the contrary, the upper-

bound spatialub(Q,Xi) is novel.

We introduce now a different formulation of distance bounds, inspired

by the metric properties of the distance function. Let P be a series serving

as pivot in the metric space. A pivot is a series that has been selected

as representative series during the distance computations, and its distance

to an uncertain series Xi can be used to bound the distance between Xi

and the query Q thanks to the triangle inequality property. We note that

the triangular inequality holds only in metric spaces, i.e. distance spaces

induced by metric distance measures.

Let dPX be the maximum distance between series P and all X l instanti-

ations, i.e. dPQ = max(Dist(Xi, P)) . Let dPQ be the distance between P

and Q, i.e., dPQ = dist(P,Q). dPX can be pre-computed, since it doesn’t

depend on the query Q. Figure 5.7 shows an example (projected in two

dimensions for ease of exposition).

P

�

#
PQ

X
l

i

d
PX

...

Figure 5.7: Example of metric distance bounds.

Given a query Q, a pivot P and uncertain seriesX, the distance between

X and Q is bounded by the following lower-bound:

75

5.3. Proposed Approach Chapter 5

max(0, dPQ − dPX) (5.14)

Similarly, one can define an upper-bound for the distance between X

and Q:

DPQ +DPX (5.15)

These bounds have been widely used in index structures for metric

spaces [72, 24]. Multiple pivot series can be combined to increase to im-

prove the distance bounds as follows. Let P ∗ be a set of pivot series.

The best lower-bound (denoted by metriclb(Q,Xi)) is determined using

the pivot P s.t. it maximizes max(0, dPQ − dPX) and the best upper-

bound (denoted by metricub(Q,Xi)) is determined using P ′ s.t. it mini-

mizes dP ′Q + dP ′X :

metriclb(Q,Xi) = max
P∈P ∗

max(0, dPQ − dPX) (5.16)

metricub(Q,Xi) = min
P∈P ∗

(dPQ + dPX) (5.17)

The tightness of the metric bounds depends on the quality of the selected

pivot series. In the experimental evaluation we consider different strategies

that have been proposed in prior works.

The distance partitions Si for all uncertain series Xi are initialized using

their spatial or metric bounds in the Holistic-PkNN algorithm using a linear

scan on the dataset D. In the following, we discuss how distance partitions

are refined incrementally.

Refinement

Let Si be a distance partition to be refined and let Sl
i be the distance

interval that has been previously selected for refinement by the find-splits

76

Chapter 5 5.3. Proposed Approach

procedure as presented in Section 5.3.3.

If the bounds of the distance interval Sl
i have been determined us-

ing metric or spatial distance bounds (Section 5.3.4), then its bounds

lb(Sl
i) and ub(Sl

i) are lower- and upper-estimates of min(Dist(Q,Xi)) and

max(Dist(Q,Xi)), respectively. We substitute Sl
i with a new distance in-

terval Sk
i s.t. lb(Sk

i) = min(Dist(Q,Xi)) and ub(Sk
i) = max(Dist(Q,Xi)).

Please note that, after the substitution, the distance partition Si is a new

instantiation of the distance partition Smin
i . Distance samples Dist(Q,Xi)

are maintained in a sorted array. The optimal distance boundsmin(Dist(Q,Xi))

and max(Dist(Q,Xi)) of the new instantiation of Smin
i serve as first re-

finement for Si.

In case of subsequent refinements, the refinement of the distance interval

Sl
i is performed by partitioning the region covered by Sl

i into two new

distance intervals. Let plb, pub be a pair of pointers to the sub-array in the

Dist(Q,Xi) sorted array that identifies the lowest and highest distance

sample in Sl
i, and let distmid be the value that partitions the region defined

by Sl
i into two equi-width regions. Then, the closest sample to distmid in

the sub-array identified by pointers plb, pub is used as largest sample in the

new left partition, and its immediate next sample in the sorted array is

used as lowest sample in the new right partition.

While the first refinement is very expensive because it requires the eval-

uation of the distance samples in Dist(Q,Xi), the CPU cost of subsequent

refinements is negligible, since its cost is bounded by the cost of evaluating

a binary search on a subset of the distance samples, i.e., O(log(m)). Recall

that m is the number of Xi instantiations.

77

5.4. Indexing Uncertain Data Series Chapter 5

5.4 Indexing Uncertain Data Series

An M-tree is a tree whose nodes represent regions in a metric space and can

be used to index objects in metric spaces [72]. In this section we present

our adaptation of the M-tree to index uncertain series.

We denote with treei the sub-tree rooted at node nodei. Let

(ptri, counti, pivoti, radiusi, distij)

be a tuple associated to node nodei defined as follows: ptri is a pointer

to the list of children of nodei, counti is the count of leaves in the sub-tree

treei, pivoti is a pivot series that represents the sub-tree treei, radiusi is

the maximum distance between pivoti and leaves in treei, and distij is the

distance between pivoti and pivotj where nodej is the parent node of nodei.

IF nodei is the tree root then distj = 0.

In contrast to the original M-tree where a leaf node is used to represent

a set of indexed objects stored on disk, each leaf node indexes an uncertain

series. Let Pi be a pivot series for uncertain series Xi. The leaf node that

represents uncertain series Xi is defined by the following associated tuple:

leaf(Xi) = (empty, 1, Pi,max(Dist(Xi, Pi)), distij) (5.18)

We note that ptri is empty since the sub-tree contains only the leaf it-

self. The number of uncertain series referenced by leaf(Xi) is one and

Pi is a pivot series selected to represent uncertain series Xi. Finally,

max(Dist(Xi, Pi)) is used as covering radius and distij is initialized during

the construction of the tree. We can now detail the construction of the

M-tree.

78

Chapter 5 5.4. Indexing Uncertain Data Series

5.4.1 Bulk-loading Algorithm

We adapted the base version of the bulk loading algorithm presented in

[29]. The method is illustrated in Algorithm 5.

Algorithm 5 M-Tree-BulkLoad(D: dataset)

1: A← {leaf(Xi) : Xi ∈ D}
2: while |A| > 1 do

3: S ← s random samples from A

4: for nodei ∈ A− S do

5: append nodei as child of nodej ∈ S s.t. pivotj closest to pivot nodei among pivots

of nodes in S

6: end for

7: A← S

8: end while

Line 1 initializes the leaves corresponding to the uncertain seriesXi ∈ D.

A set S of s random nodes is selected at Line 3 and the remaining nodes

are associated to their closest nodes in S (in respect to their representative

pivot series), forming a set of s clusters (Lines 4-6). The algorithm iterates

until set A contains only one node, i.e. the root node of the M-tree.

Random projections and early abandoning of the Euclidean distance

have been considered in our implementation to reduce the CPU cost of

the pairwise distance computations between pivot series in Line 5. These

optimizations are novel to M-tree implementations and reduce significantly

the processing time.

5.4.2 Pruning the Search Space

In this section, we discuss how our adaptation of M-trees can be used to

avoid the complete linear scan on the dataset D to initialize the distance

partitions Si. We note that if the lower-bound of the distance partition

Si is higher than the upper-bound of the distance partitions whose lower-

79

5.5. Extensions Chapter 5

bound is among the lowest k lower-bounds, then candidate Xi can be safely

pruned and its distance partition doesn’t need to be refined further.

Intuitively, we want to identify the candidates Xi that are part of the

result set or that can be eligible to enter the result set (i.e., Xi ∈ X∗).

The algorithm to identify these candidates is based on an adaptation of

the top-k nearest neighbor search algorithm for M-trees [29].

We note that the algorithm may return more than k candidates. This

is due to the tightness of the metric bounds during the search: if they are

not enough tight, then we may not be able to impose a total order on the

candidates. This problem is encountered at the leaf level. In such cases,

the leaves that cannot be safely pruned are either added to the result set

or added to the set of the active candidates X∗ and their distance bounds

are used to initialize the respective distance partitions, Si. The remaining

candidates can be safely discarded.

Similarly to top-k nearest neighbor searches in certain data, the search

procedure maintains a dynamic search radius dk s.t. at least k indexed

uncertain series are at a distance lower than dk.

The sub-trees that index the leaves whose distance to Q is larger than

dk can be safely pruned. A sub-tree treei can be pruned if this condition

holds:

dk < dist(pivoti, Q)− radiusi (5.19)

The pruning strategy can be further extended by using the pre-computed

distances distij between pivot series in children and their parents.

5.5 Extensions

In this section we discuss how the algorithms presented in this study can

be adapted to evaluate different formulations of top-k probable nearest

80

Chapter 5 5.6. Experimental results

neighbor searches and to evaluate probabilistic similarity search queries.

Top-k probable nearest neighbor formulations differ in how the results

are aggregated across different possible worlds or in how uncertainty is

modeled. We note that the incremental refinement of the distance parti-

tions is a general approach that can be easily adapted to other top-k prob-

able nearest neighbor queries whose formulation uses a ”possible worlds”

model.

Definition 5.5.1 (Probabilistic similarity search) Given query Q, dataset

D, distance threshold ǫ and probabilistic threshold α, a probabilistic simi-

larity search returns the uncertain series Xi ∈ D s.t. their probability to

be at a distance lower than ǫ is at least α, i.e., Pr(dist(Q,Xi) ≤ ǫ) ≥ α.

Probabilistic similarity search queries are intrinsically easier to evalu-

ate than top-k probable nearest neighbor queries because the eligibility

of uncertain series Xi ∈ D to be part of the result set does not depend

from the other candidates. We note that, if at least αm distance sam-

ples in Dist(Q,Xi) have a value lower than the distance threshold ǫ, then

candidate Xi can be appended to the result set. Despite this, the M-

tree adaptation for uncertain data can be extended to evaluate similarity

queries on uncertain series.

5.6 Experimental results

In this section we empirically evaluate our proposal under a variety of

settings, assessing time performance and accuracy. We implemented all

techniques in C++ using the Standard Template Library (STL) and Boost

libraries, and ran the experiments on a Linux machine equipped with eight

Intel Xeon 1.80GHz processor cores and 64GB of RAM. For all results,

we report the averages of the measurements obtained from 10 independent

81

5.6. Experimental results Chapter 5

runs, as well as the 95% confidence intervals. Confidence intervals are

reported when the y-axis is not in log scale for clearness.

5.6.1 Datasets

In this study, we consider real and synthetic datasets.

A synthetic dataset is a set of independent uncertain series Xi, 1 ≤
i ≤ N . Uncertain series Xi is constructed as follows. Let walki be a

random walk of length n where the value difference between neighboring

time-stamps is a normally distributed random variable with zero mean and

unit standard deviation. The series walki is then normalized [74], obtain-

ing a new series denoted by seedi. Normalization is a pre-processing step

that removes value shifts and amplitude changes from the series, properties

usually regarded to as noise rather than signal. The lth sample of uncertain

series Xi, X
l
i , is obtained by adding samples drawn from a normally dis-

tributed random variable N(0, σ) to the seedi values. Finally, the samples

are normalized again. The procedure is repeated independently for each

uncertain series Xi. Please note that the seed series seedi used to generate

the samples of uncertain series Xi is different from the other seed series

seedj, j 6= i. Random queries are generated similarly (and independently)

to the Xi series samples.

We additionally consider 45 real datasets published in the UCR time se-

ries collection [1]. Each dataset is divided into two sets of series, train and

test, and each series is associated with a class label. We assume that these

raw series are samples drawn from unknown distributions that may be noisy

and error-prone. Similarly to prior works on uncertain data processing, we

further assume that uncertain series can be modeled as a multivariate nor-

mal distribution centered on the real samples [16, 28, 26, 62, 95, 11, 79, 31].

Uncertain series are constructed from series in the train sets similarly to

uncertain series in the synthetic datasets: first, normalized real series are

82

Chapter 5 5.6. Experimental results

used as seed series seedi instead of random walks. Second, the pertur-

bation standard deviation σ is used to generate positive samples of the

normal distribution, then used independently as standard deviation σ′ for

each sample. The resulting uncertain series is composed by a set of samples

whose perturbation standard deviation varies and is controlled by σ. We

adopted this perturbation model with real datasets after verifying experi-

mentally that other perturbation models such as the one used for synthetic

datasets lead to nearly the same results in terms of accuracy for all con-

sidered methods. The series in the test sets are used as queries.

5.6.2 Evaluation Methodology

In this section, we describe how accuracy and time performance have been

assessed.

Accuracy

We verify the accuracy of our proposal on the classification task using the

real UCR datasets. Given a random query series Q drawn from the test

set, the class label associated with the uncertain series identified as the NN

in the train set is assigned as label.

For each method we compute the confusion matrix M where Mij is the

count of query series assigned to class i whose ground truth class is j.

Accuracy is defined as the ratio of true positives for all class labels:

Accuracy =
1

|test|
∑

Mii, (5.20)

where |test| is the size of the test set. If all queries are labeled correctly,

M is a diagonal matrix. The experiment is repeated several times on each

dataset (train and test pair sets) to get statistically significant results.

83

5.6. Experimental results Chapter 5

We note that the very same results can be obtained using different

algorithms that implement the top-k probable nearest neighbor queries as

formulated in Section 5.1.1.

We compare the Top-k-PNN(D,Q, k) formulation of Top-1 probable

nearest neighbors (defined in Section 5.1.1) to the NN classifier based on

the Euclidean-AVG method. The Euclidean-AVG algorithm averages all

samples to obtain their average series, that is then used as representa-

tive to determine a distance measure between the uncertain series and the

query. The NN classifier based on these distance measures is used to label

the query.

Time performance

We compare the performance of our proposal to two algorithms which are

the Baseline algorithm (Algorithm 1) and an adaptation of the Find-TopK-

PNN method [16]. The algorithm Find-TopK-PNN has been designed to

minimize the number of I/O operations: uncertain series are retrieved in

min-distance order to the query. The PNN probability upper-bound of a

virtual object is used to bound the PNN upper-bound probabilities of all

non-retrieved objects, and it is used to control the retrieval of new uncertain

series until convergence is reached. Our adaptation, named Holistic-PkNN-

Virtual, considers our best-performing combination of the procedures for

the initialization and the refinement of the distance partitions and for the

evaluation of the PNN probability bounds.

Our proposal Holistic-PkNN is further decomposed in four distinct ver-

sions, which identify the different combinations of the find-critical and

find-splits implementations: The find-critical function can be implemented

using the multi-simulation procedure [76] (Algorithm 3, denoted by the

suffix M) or enumerating all candidates whose PNN probability bounds

overlap with the critical region (denoted by the suffix H). The find-splits

84

Chapter 5 5.6. Experimental results

function can be implemented using the pair-split method (Algorithm 4,

denoted by the suffix P) or using the select-inner and select-outer proce-

dures (Eq. 5.8 and Eq. 5.9, denoted by the suffix S). From our experiments,

the optimal configuration is Holistic-PkNN-HS, also denoted in short by

Holistic-PkNN.

We stress that the algorithms Baseline, Holistic-PkNN-Virtual and Holistic-

PkNN are different algorithms that return the very same result set as de-

fined by the formulation of top-k probable nearest neighbor queries defined

in Section 5.1.1.

The parameters considered in the experiments are summarized in Ta-

ble 5.2. When not explicitly stated, we use the default configuration value

(highlighted in bold).

Parameter Range

No. of samples (m) [100, ...,500, ..., 1000]

No. of uncertain series (N) [100, ...,1000, ..., 100000]

Standard deviation (σ) [0.1, ...,0.5, ..., 1]

Series length (n) [100, ...,256, ..., 1000]

Result set size (k) [1, ..., 16]

Table 5.2: Experiment parameter configuration ranges. Default values are indicated in

bold.

5.6.3 Quality Results

In this section, we report our results on the classification accuracy defined

in Eq. 5.20 using 45 real datasets. The number of samples representing

each uncertain series is m = 100. The experiment shows the accuracy

by varying the perturbation standard deviation σ for the NN classifier

defined using the Euclidean-Avg procedure and the Top-k-PNN(D,Q, k)

formulation of top-1 probable nearest neighbors. The results are reported

in Figure 5.8. We observe that, as the perturbation standard deviation

85

5.6. Experimental results Chapter 5

increases, the top-1 probable nearest neighbor formulation is up to 6.3%

more accurate than Euclidean-Avg.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Perturbation standard deviation (σ)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
u
ra
cy

Holistic-PkNN
Euclidean-Avg

Figure 5.8: Accuracy when varying the perturbation standard deviation σ using the NN

classifiers based on the Top-k-PNN(D,Q, k) and Euclidean-Avg algorithms.

5.6.4 Time performance

In this section, we evaluate the running time efficiency on a variety of

settings using synthetic datasets.

Effectiveness of Pruning Strategies

The tightness of the distance bounds during the initialization of the dis-

tance partitions as detailed in Section 5.3.4 can greatly reduce the process-

ing time, thanks to the early pruning of a large fraction of the candidate

uncertain series. In the first set of experiments, we measure the ratio of

candidates that cannot be pruned immediately after the initialization of

their distance partitions for the spatial, metric and exact distance bounds.

Recall that the spatial and metric distance bounds can be estimated effi-

ciently (Section 5.3.4), while exact distance bounds require the evaluation

86

Chapter 5 5.6. Experimental results

of the exact distance samples inDist(Q,Xi). We stress that the spatial and

metric distance bounds lower- and upper-bound the exact distance bounds

and the final produced result is exactly the same.

In Figure 5.9 we report the ratio of the retained uncertain series after

pruning the candidates based on the distance partitions initialized using

the exact, metric and spatial distance bounds with perturbation standard

deviation sigma = 0.2 when varying the number of samples, m. The exact

distance bounds are the most accurate, followed by the metric and then

the spatial distance bounds. The average ratio of the retained candidates

is 0.7%, 19% and 57% when the distance partitions are initialized using the

exact, metric and spatial distance bounds, respectively. We observe a slight

increase in the ratio of retained candidates as the number of samples m

increases. Recall that the m samples are drawn from a normal distribution.

As the number of samples m increases, the probability that at least a few

samples deviate significantly from the mean value increases. Although

the distance bounds are affected by outlier samples, the overall sample

distribution is stable and does not depend on the number of samples.

In the next experiment, we vary the perturbation standard deviation σ

and report the ratio of retained uncertain series after pruning the candi-

dates based on their initialization of the distance partitions for the spatial,

metric and exact distance bounds. The results are reported in Figure 5.10.

The exact distance bounds are the most accurate, followed by the metric

and then the spatial distance bounds. As the perturbation standard devi-

ation σ increases, the pruning power of the different initializations for the

distance partition is reduced. With exact bounds, 20% of the candidates

is retained when σ approaches 1.0. On the contrary, 100% of the candi-

dates are retained when σ approaches 0.4 and 0.8 for the spatial and metric

bounds, respectively.

In Figure 5.11 we report the ratio of retained uncertain series after prun-

87

5.6. Experimental results Chapter 5

ing the candidates based on their initialization of the distance partitions

for the spatial, metric and exact distance bounds with perturbation stan-

dard deviation σ = 0.2 when varying the length of the uncertain series,

n. Similarly to the prior experiments, exact distance bounds are the most

accurate, followed by the metric and then the spatial distance bounds.

The series length n doesn’t affect significantly the performance. We note

that normally distributed samples along the candidate series result in a

normally distributed distance between the candidate and the query. The

same applies for other distributions, independently from the series length

n that does not affect the effectiveness of the pruning strategies.

100 200 300 400 500 600 700 800 900 1000
Number of samples (m)

0

20

40

60

80

100

R
e
ta
in
e
d
 c
a
n
d
id
a
te
s
(%

)

Spatial
Metric
Exact

Figure 5.9: Ratio of re-

tained candidates when

varying the number of un-

certain series samples m

for distance partitions ini-

tialized with spatial, met-

ric and exact distance

bounds, respectively.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Perturbation standard deviation (σ)

0

20

40

60

80

100

R
e
ta

in
e
d
 c

a
n
d
id

a
te

s
(%

)

Spatial
Metric
Exact

Figure 5.10: Ratio of

retained candidates when

varying the perturbation

standard deviation σ for

distance partitions initial-

ized with spatial, metric

and exact distance bounds,

respectively.

100 200 300 400 500 600 700 800 900 1000
Uncertain series length (n)

0

20

40

60

80

100

R
e
ta
in
e
d
 c
a
n
d
id
a
te
s
(%

)
Spatial
Metric
Exact

Figure 5.11: Ratio of

retained candidates when

varying the uncertain se-

ries length n for distance

partitions initialized with

spatial, metric and exact

distance bounds, respec-

tively.

Figure 5.12 reports the ratio of retained uncertain series using themetric

distance bounds when pruning the candidates varying the number of pivots

for different pivot selection strategies: random, max-dist and k-means. The

random strategy selects k random samples X l
i from the Xi instantiations

as pivot series. The max-dist approach selects the k samples from the

Xi instantiations that maximize their distance to k random samples from

88

Chapter 5 5.6. Experimental results

the Xi instantiations. The k-means method uses the average series of the

k clusters of Xi instantiations, identified using the k-means algorithm.

The k-means strategy is the most effective, followed by the random and

max-dist methods. Increasing the number of pivots reduces slightly the

ratio of retained candidates for the max-dist and random methods. On the

contrary, the number of pivots does not affect significantly the performance

of the k-means method.

We report the results on time performance when pruning the candidates

with the metric distance bounds using a linear scan over all candidates (de-

noted by Metric-LSCAN) and our adaptation of the M-tree index (denoted

by Metric-M-tree) in Figure 5.13. The graph shows the time performance

using the two techniques when varying the perturbation standard devia-

tion σ. We observe that the M-tree index is the best performing when the

perturbation standard deviation σ is lower than 0.18. For larger values of

σ, the linear scan is more efficient. Recall that each leaf in the M-tree rep-

resents a distinct uncertain series. As σ increases, the regions represented

by the internal nodes overlap with higher probability and the number of

pruned sub-trees is reduced. The incurred cost of visiting the tree and the

evaluation of the pruning conditions nullifies the benefits of using an index.

In the rest of the experiments, we use the Metric-LSCAN approach.

In the next set of experiments, we compare the time performance using

the different methods to initialize the distance partitions Si to evaluate

Top-k-PNN(D,Q, k) queries. Figure 5.14 reports the time performance

when varying the number of samples m for the spatial, metric and exact

distance bounds. The metric distance bounds are the best performing,

followed by the spatial and then the exact distance bounds. We observe that

the evaluation of Top-k-PNN(D,Q, k) queries using the metric distance

bounds can be up to 18% faster than using spatial distance bounds. This

is due to the tighter distance bounds when using the spatial bounds. It is

89

5.6. Experimental results Chapter 5

1 2 3 4 5 6 7 8 9 10
Number of pivots (p)

0

20

40

60

80

100

R
e
ta

in
e
d
 c

a
n
d
id

a
te

s
(%

)

Max-dist
Random
K-means

Figure 5.12: Ratio of retained candidates when varying the number of pivots for the

metric distance bounds using different pivot selection strategies random, max-dist and

k-means.

worth noting that the exact distance bounds are even tighter, but the high

incurred CPU cost for the evaluation of the exact distance samples leads

to inferior overall performance.

We report the time performance when varying the perturbation stan-

dard deviation σ with distance partitions initialized using spatial, metric

and exact distance bounds in Figure 5.15. The metric distance bounds are

the best performing, followed by the spatial and then the exact distance

bounds. As the perturbation standard deviation σ increases, all methods

approach the same time performance and perform nearly the same. This

is due to the increasing probability of overlaps between the distance distri-

butions. As this probability increases, the CPU cost is mainly driven by

the repeated evaluation of the PNN bounds and the iterative refinements

of the distance partitions.

The time performance with varying number of uncertain series N is

illustrated in Figure 5.16. The distance partitions are initialized using

the spatial, metric and exact distance bounds. Similarly to the previous

90

Chapter 5 5.6. Experimental results

0.05 0.10 0.15 0.20 0.25
Perturbation standard deviation (σ)

0

20

40

60

80

100

120

140

Ti
m
e
 (
m
s)

Metric-LSCAN
Metric-M-tree

Figure 5.13: Time performance when varying perturbation standard deviation for linear-

scan andM-tree techniques for distance partitions initialized usingmetric distance bounds.

experiments, the metric distance bounds are the best performing, followed

by the spatial and then the exact distance bounds. As expected, the CPU

cost increases linearly to the dataset size, N .

In conclusion, the distance partitions initialized using the metric dis-

tance bounds using one pivot series are the best performing. The M-tree

index proved to be competitive to a linear scan when the perturbation

standard deviation σ is low. However, a linear scan is to be preferred in

general. In the rest of this study we initialize the distance partitions Si

using the metric distance bounds, initialized through a linear scan over the

dataset.

Comparison to Prior Approaches

In the next series of experiments, we compare the time performance of

the algorithms Baseline and the different versions of the Holistic-PkNN

algorithm. We may omit the prefix Holistic for ease of presentation in

some of the figures. Recall that the Holistic-PkNN-Virtual technique is

our adaptation of the Find-TopK-PNN algorithm [16] (see Section 5.6.2

91

5.6. Experimental results Chapter 5

100 200 300 400 500 600 700 800 900 1000
Number of samples (m)

0

5000

10000

15000

20000

25000

30000

35000

Ti
m
e
 (
m
s)

Exact
Spatial
Metric

Figure 5.14: Time perfor-

mance when varying the

number of samples m for

distance partitions initial-

ized with spatial, metric

and exact distance bounds,

respectively.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Perturbation standard deviation (σ)

0

100

101

102

103

104

105

106

Ti
m

e
 (
m

s)

Exact
Spatial
Metric

Figure 5.15: Time perfor-

mance when varying the

perturbation standard de-

viation σ for distance par-

titions initialized with spa-

tial, metric and exact dis-

tance bounds, respectively.

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Number of uncertain series (N)

0

100

101

102

103

104

105

106

107

Ti
m

e
 (

m
s)

Exact
Spatial
Metric

Figure 5.16: Time perfor-

mance when varying the

number of uncertain se-

ries N for distance parti-

tions initialized with spa-

tial, metric and exact dis-

tance bounds, respectively.

for a detailed presentation).

We report the time performance when varying the number of samples m

for the Baseline and Holistic-PkNN algorithms in Figure 5.17. The graph

shows that Holistic-PkNN-HS is the best performing, followed by Holistic-

PkNN-MS, Holistic-PkNN-HP and Holistic-PkNN-Virtual variants of the

Holistic-PkNN algorithm. The Baseline approach is the worst performing.

We note that Holistic-PkNN-HS is up to two orders of magnitude faster

then the Holistic-PkNN-Virtual algorithm. This is due to the larger num-

ber of iterations of the Holistic-PkNN-Virtual algorithm, that continuously

increases the number of candidates until convergence. The larger number of

iterations is associated with a larger, very CPU intensive, number of evalu-

ations of the PNN probability bounds. The Baseline approach doesn’t rely

on pruning strategies to reduce the number of candidates. The distinct

distance samples in Dist(Q,Xi) are used in the pairwise comparisons in

Algorithm 1. The incurred CPU cost is up to three orders of magnitude

higher than the CPU cost of the algorithms in the Holistic-PkNN family.

In the next experiment, we assess the time performance when vary-

92

Chapter 5 5.6. Experimental results

100 200 300 400 500 600 700 800 900 1000
Number of samples (m)

0

100

101

102

103

104

105

106

107

108

Ti
m
e
 (
m
s)

Baseline
PkNN-Virtual

PkNN-MP
PkNN-MS

PkNN-HP
PkNN-HS

Figure 5.17: Time performance when varying number of samples m for Baseline and

Holistic-PkNN algorithms.

ing the perturbation standard deviation σ for the Baseline and Holistic-

PkNN algorithms. The results are reported in Figure 5.18 and show that

Holistic-PkNN-HS is in general the best performing, followed by Holistic-

PkNN-MS, Holistic-PkNN-HP and Holistic-PkNN-Virtual variants of the

Holistic-PkNN algorithm. The Baseline approach exhibits again the worst

performance. The CPU cost of the Baseline algorithm is not affected by

the properties of the perturbation, and is constant. We observe that the

Holistic-PkNN-Virtual algorithm is the best performing when the pertur-

bation standard deviation σ is lower than 0.2. An in-depth analysis of

the execution revealed that a lower number of candidates is retrieved by

the Holistic-PkNN-Virtual when the perturbation is sufficiently low. The

reduced number of candidates is limiting the number of evaluations of the

PNN probability bounds across all iterations in contrast to the Holistic-

PkNN-HS algorithm.

We report our results on performance when varying the number k of

retrieved uncertain series for the Baseline, Holistic-PkNN and Holistic-

PkNN-Virtual algorithms in Figure 5.19. Holistic-PkNN is the best per-

93

5.6. Experimental results Chapter 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Perturbation standard deviation (σ)

0

100

101

102

103

104

105

106

107

108

Ti
m
e
 (
m
s)

Baseline
PkNN-Virtual

PkNN-MP
PkNN-MS

PkNN-HP
PkNN-HS

Figure 5.18: Time performance when varying the perturbation standard deviation σ for

Baseline and Holistic-PkNN algorithms.

forming, followed by the Holistic-PkNN-Virtual algorithm and the Base-

line method. We observe that the Baseline approach determines the exact

PNN probability estimates for all candidates and the CPU cost incurred

in the identification of the top-k result set is negligible if compared to the

computational cost of evaluating the PNN estimates. The Holistic-PkNN

algorithm is more than one order of magnitude faster than the Holistic-

PkNN-Virtual method when k is low.

We conclude reporting the time performance when varying the uncer-

tain series length n for the Baseline, Holistic-PkNN and Holistic-PkNN-

Virtual algorithms in Figure 5.20. The Holistic-PkNN algorithm is the best

performing, followed by the Holistic-PkNN-Virtual and Baseline methods.

We observe that the incurred CPU time cost does not increase steadily as

the series length n increases. An in-depth analysis of the execution traces

revealed that, as n increases, the difference between the closest and the far-

thest distance samples increases. In other words, as the dimensionality (n)

increases the distance samples are spreaded in a wider region. This results

in a lower probability of overlaps between the distance partitions, eventu-

94

Chapter 5 5.6. Experimental results

2 4 6 8 10 12 14 16
Resut set size (K)

0

100

101

102

103

104

105

106

107

108

Ti
m

e
 (

m
s)

Baseline
PkNN-Virtual
PkNN

Figure 5.19: Time performance when varying the number k of retrieved uncertain series

for the Baseline, Holistic-PkNN and Holistic-PkNN-Virtual algorithms.

ally resulting in less active candidates in X∗ as reported in Figure 5.21.

Fewer active candidates in X∗ translate to fewer PNN probability bound

estimates and fewer refinements of the distance partitions. We further

note that the time required to determine the distance samples increases

linearly to n. The resulting time performance is a combination of these

two characteristics of the distance distributions.

In summary, the Holistic-PkNN-Virtual proved to be the best perform-

ing when the perturbation standard deviation is below σ = 0.2. Following

the results presented in Section 5.6.4, we conclude that the Holistic-PkNN-

Virtual algorithm combined with M-trees is expected to be the best per-

forming when the perturbation standard deviation is sufficiently low, i.e.,

σ = 0.2. However, in general the Holistic-PkNN-HS algorithm using a lin-

ear scan to initialize the distance partitions Si with metric distance bounds

is to be preferred.

95

5.6. Experimental results Chapter 5

100 200 300 400 500 600 700 800 900 1000
Uncertain series length (n)

0

100

101

102

103

104

105

106

107

108

Ti
m

e
 (
m

s)

Baseline
PkNN-Virtual
Holistic-PkNN

Figure 5.20: Time performance when varying the uncertain series length n for the Base-

line, Holistic-PkNN and Holistic-PkNN-Virtual algorithms.

Scalability

Finally, we report our results on scalability. Figure 5.22 shows the time

performance for different levels of perturbation standard deviation σ when

varying the number of uncertain series N using the Holistic-PkNN algo-

rithm. We observe that the incurred CPU cost for N = 10000 and per-

turbation standard deviation σ = 0.3 is similar to the time performance

for N = 100000 and perturbation standard deviation σ = 0.1. The size of

the dataset N and the perturbation standard deviation σ are two param-

eters that affect significantly the time performance of the algorithm, and

even relatively small datasets are challenging when a large fraction of the

distance distributions overlap (i.e., when σ is large).

Figure 5.23 shows the time performance for different configurations of

the number of uncertain series samples m when varying the number of un-

certain series N using the Holistic-PkNN algorithm. The experiments on

scalability show that the Holistic-PkNN-HS algorithm can scale to large

datasets. The number of samples m and the perturbation standard devia-

96

Chapter 5 5.7. Summary

100 200 300 400 500 600 700 800 900 1000
Uncertain series length (n)

0

1

2

3

4

5

6

7

8

9

R
a
ti
o
 o

f
a
ct

iv
e
 c

a
n
d
id

a
te

s
(%

)

Holistic-PkNN

Figure 5.21: Ratio of candidates in the active set X∗ when varying the uncertain series

length n for the Holistic-PkNN algorithm.

tion σ affect significantly the CPU time performance.

5.7 Summary

Uncertain data series can be used to represent data series whose values

are imprecise or inherently uncertain. In this study we formalize different

models of uncertain data series, presenting and discussing their properties.

We define the top-k nearest neighbor problem in uncertain data series and

propose a variety of methods that unify and extend prior studies in the

field in the Holistic-PkNN algorithm. We further investigate the adoption

of pruning techniques based on spatial and metric bounds. We evaluate

our proposal under a variety of settings using 45 real datasets from di-

verse domains and synthetic datasets. The results show that modeling

uncertainty with probabilistic models can lead to more accurate results.

Our proposal proved to be up to orders of magnitude more efficient than

previously proposed techniques.

97

5.7. Summary Chapter 5

1000 10000 100000
N

0

100

101

102

103

104

105
Ti

m
e
 (

m
s)

stddev=0.1
stddev=0.2
stddev=0.3

Figure 5.22: Time performance for different levels of perturbation standard deviation σ

when varying the number of uncertain series N using the Holistic-PkNN algorithm.

1000 10000 100000
Number of uncertain series (N)

0

100

101

102

103

104

105

Ti
m

e
 (

m
s)

m=100
m=200
m=300

Figure 5.23: Time performance for different configurations of the number of uncertain

series samples m when varying the number of uncertain series N using the Holistic-PkNN

algorithm.

98

Chapter 6

Sliding Windows over Uncertain

Data Streams

Uncertain data streams can have tuples with both value and existential

uncertainty. A tuple has value uncertainty when it can assume multiple

possible values. A tuple is existentially uncertain when the sum of the

probabilities of its possible values is less than 1. A situation where existen-

tial uncertainty can arise is when applying relational operators to streams

with value uncertainty. Several prior works have focused on querying and

mining data streams with both value and existential uncertainty. How-

ever, none of them have studied, in depth, the implications of existential

uncertainty on sliding window processing, even though it naturally arises

when processing uncertain data. In this work, we study the challenges

arising from existential uncertainty, more specifically the management of

count-based sliding windows, which are a basic building block of stream

processing applications. We extend the semantics of sliding window to

define the novel concept of uncertain sliding windows, and provide both

exact and approximate algorithms for managing windows under existential

uncertainty. We also show how current state-of-the-art techniques for an-

swering similarity join queries can be adapted to be used with uncertain

sliding windows. We evaluate our proposed techniques under a variety of

99

Chapter 6

configurations using real data. The results show that the algorithms used

to maintain uncertain sliding windows can operate efficiently while pro-

viding a high quality approximation in query answering. In addition, we

show that sort-based similarity join algorithms can perform better than

index-based techniques (on 17 real datasets) when the number of possible

values per tuple is low, as in many real-world applications.

In this study, we tackle three main challenges emerging from developing

applications that process uncertain data streams. The first is to model

existential uncertainty in order to support operator composition in the

presence of value uncertainty. We address this challenge by considering

existential uncertainty in our stream processing model and by extending

the definition of sliding windows to take into account its uncertain bound-

aries. We consider this to be a first step towards developing applications

via operator composition.

The second challenge is to provide an efficient implementation of an un-

certain sliding window both in terms of memory space and computational

time required, so that it can be used in streaming applications with strin-

gent performance requirements. To this effect, we provide an algorithm for

managing count-based sliding windows by modeling its size as a discrete

random variable that has a Poisson binomial distribution, which we then

use to obtain an estimate of the window size based on the current contents

of the window.

The third challenge is to have streaming operators that are efficient in

the presence of both value and existential uncertainty. As an example,

we adapt a state-of-the-art similarity join technique to uncertain sliding

windows. In addition, we introduce a simple sort-based join algorithm

that is competitive in scenarios where the number of samples is small.

The rest of this chapter is organized as follows. Uncertain data streams

are introduced in Section 6.1. In Section 6.2, we describe a model that

100

Chapter 6 6.1. Uncertain data streams

allows for efficient processing of sliding windows with uncertain data. In

Section 6.3, we describe how uncertain sliding windows can be used by

aggregate and join operators. In Section 6.4, we describe efficient join

algorithms for uncertain data streams, including a sort-based algorithm

specifically designed for similarity matching of uncertain data. Our exper-

imental evaluation is presented in Section 6.5 and in Section 6.6 we discuss

some possible extensions. Section 6.7 concludes the chapter.

6.1 Uncertain data streams

6.1.1 Preliminaries

A data stream S is a sequence of tuples si, where 0 ≤ i ≤ η and η ∈ N is

the index of the last appended tuple. We refer to i as the index of a tuple

in a stream. Without loss of generality, a tuple si is a d−dimensional

real-valued point 1. We define a subsequence of stream S as S[i,j] =

〈si, . . . , sj〉. We define a count-based sliding window W (S,w) as the subse-

quence S[η−w+1,η], where η is index of the most recent tuple received from

stream S and w ∈ N indicates the size of the window. When not implicit

from the context, we refer to data streams without uncertainty as certain

data streams.

An uncertain data stream U is a sequence of uncertain tuples ui, where

0 ≤ i ≤ η and η ∈ N. Tuple ui is represented by a set of l possible mate-

rializations, i.e., ui = {ui,1, . . . , ui,l}. If |ui| > 1, then the tuple has value

uncertainty. A sample materialization ui,j ∈ ui occurs with a given prob-

ability Pr(ui,j). The existential probability Pr(ui) of tuple ui is defined

as

Pr(ui) =
∑

ui,j∈ui

Pr(ui,j). (6.1)

1Each dimension can be considered as an attribute.

101

6.1. Uncertain data streams Chapter 6

time

v
a
lu
e

u0

u1

u2 un

un+1

Figure 6.1: Example of an uncertain data stream, where uncertainty is modeled by re-

peated weighted measurements and tuples are 1-dimensional points. Weights are encoded

using transparency, i.e., lighter points occur with lower probability.

Tuple ui is said to exist in stream U if Pr(ui) = 1. If Pr(ui,) < 1, tuple

ui is considered existentially uncertain. Figure 6.1 shows an example of an

uncertain data stream, where each tuple is represented by three weighted

samples.

In the rest of this section we show that applying commonly used stream

transformations to uncertain data streams can (i) introduce existential un-

certainty from value uncertainty, and (ii) introduce value uncertainty from

existential uncertainty.

6.1.2 From value to existential uncertainty

We use a stream operator filter to illustrate how value uncertainty may

cause existential uncertainty. Filter operators are widely deployed to dis-

card non-interesting data, noisy tuples, and outliers.

Given a certain data stream S, a filter operator fc(S) accepts an input

stream S and produces an output stream T s.t. si ∈ T iff si meets the

user-defined condition c. In particular, we have T ⊆ S.

With uncertain data streams, a filter operator must consider that a tuple

may assume multiple values. When an input tuple ui from an uncertain

data stream U gets processed, the filter operator fc(U) produces an output

stream V . An output tuple vk ⊆ ui s.t. the samples ui,j meeting the user-

102

Chapter 6 6.1. Uncertain data streams

defined condition c are retained, while all other samples are dropped (i.e.,

filtered out). For ease of exposition, we assume that tuples ui exhibit value

uncertainty only and thus Pr(ui) = 1. If a subset of possible assignments

for tuple ui is filtered out, the produced output tuple vk exhibits existential

uncertainty, since Pr(vk) < 1.

6.1.3 From existential to value uncertainty

As described in Chapter 1, operators that use sliding windows in their

logic are influenced by existential uncertainty. This is because the sliding

window boundary becomes uncertain, thus leading to uncertain output

values. To illustrate this problem, we consider a sliding-window aggregate

operator performing a summation.

Given a certain data stream S and a sliding window W (S,w), an ag-

gregate produces a new stream data item tη by summing up the attribute

values of the last w incoming tuples from stream S. Given that the incom-

ing tuple is sη, the resulting tuple tη is defined as tη = sη + ...+ sη−w+1.

In the presence of uncertain input data, the aggregate must consider

the uncertainty of sliding windows. Given an uncertain input stream U ,

an aggregate operator processes incoming uncertain tuples through sliding

window W (U,w). Assuming that there is at least one tuple ui that is

existentially uncertain (Pr(ui) < 1), there is a set of possible worlds for

the content of the sliding window W (U,w). For example, if one tuple

within the last w tuples does not exist, then we must account for it by

including one more tuple from U to the window content. If there is a

second tuple within the last w tuples that is existentially uncertain, then

there is a window that considers the possible world with two more tuples

from U ’s history. Note that there are multiple possible summations for

the same sliding window. This means that the stream generated by the

aggregate operator has value uncertainty.

103

6.2. Uncertain Sliding Windows Chapter 6

Uncertain sliding window

time

v
a
lu
e

u0
u1

un

un-13
... un-3

un-6

Figure 6.2: Example of an uncertain sliding window. Bounding intervals drawn using

dashed lines represent the sliding window content, whereas light colored bars represent

existentially uncertain tuples.

Figure 6.2 shows an example of the content of an uncertain sliding win-

dow of size 13 in an aggregate operator. We represent each tuple in the

uncertain data stream as a bar, which indicates the minimum and maxi-

mum values of the tuple attribute. The window contains two tuples that

are existentially uncertain (uη−3 and uη−6). In this example, the sliding

window has four different materializations. The bounding intervals in the

figure represent three different window boundaries corresponding to these

materializations. This results in four different combinations of tuples whose

values lead to multiple materializations.

6.2 Uncertain Sliding Windows

In this section, we formalize the semantics for count-based uncertain slid-

ing windows. We stress that in past studies uncertain data streams are

processed through regular sliding windows. In our study, we investigate

the implications of the marriage between sliding window processing and

existential uncertainty. The user-defined window size refers to the number

of truly existing points according to the possible worlds semantics. Intu-

itively, the number of tuples actually maintained in the sliding window can

104

Chapter 6 6.2. Uncertain Sliding Windows

Symbol Description

U data stream

ui ith tuple in U

η index of most recent tuple in U

W (U,w) sliding window over data stream U of size w

Ŵ (U,w) distribution of sliding window W (U,w)

|Ŵ (U,w)| count of existing tuples in Ŵ (U,w)

α probabilistic threshold

β similarity threshold

Table 6.1: Symbols used in the chapter and their explanations.

overflow the user-defined window size due to the existential uncertainty of

some tuples.

Uncertain sliding windows can be used as building blocks for common

streaming operators, such as joins, as we will show later in Section 6.3.

In Table 6.1, we summarize the most important symbols used in the

rest of the chapter.

6.2.1 Modeling uncertain sliding windows

Given an uncertain data stream U , a windowed stream operator processes

incoming tuples through sliding window W (U,w) where w is the window

size. When all tuples in U are existentially certain, the sliding window

boundaries are managed in a straightforward manner, i.e., when the oper-

ator inserts a new tuple into a full window, it also evicts the oldest tuple

from the window.

When some tuples in U are existentially uncertain, the boundaries of the

sliding window become uncertain, as shown in the example in Figure 6.2.

To model this boundary, we first define Ŵ (U,w) as the subsequence of

tuples existing within W (U,w). This subsequence can be considered as

a random variable whose sample space is the set of all possible window

105

6.2. Uncertain Sliding Windows Chapter 6

materializations corresponding to W (U,w). We denote this subsequence’s

size as |Ŵ (U,w)|, which is a discrete random variable.

When a stream operator processes uncertain tuples through a sliding

window of length w, the number of tuples in some materializations of the

window may not reach the window length w, i.e., Pr(|Ŵ (U,w)| = w) < 1.

Considering the sliding window semantics and the uncertainty model with

possible world semantics, more tuples from the history of U must be in-

cluded into the sliding window to account for existential uncertainty. More

formally, exactly w existentially certain tuples (i.e., ui ∈ U s.t. Pr(ui) = 1)

must be kept inside the sliding window. As an example, in Figure 6.2, two

tuples in W (U,w) are existentially uncertain. As a result, two more exis-

tentially certain tuples are included in the sliding window (uη−14 and uη−15).

Now the window contains at least w tuples, regardless of the existence of

the uncertain ones (uη−6 and uη−3).

Intuitively, we want to substitute the sliding window Ŵ (U,w) with

Ŵ (U,w′), where w′ ≥ w represents the number of tuples kept in the win-

dow W (U,w) and the following holds:

Pr(|Ŵ (U,w′)| = w) = 1. (6.2)

This equation has two problems. First, each possible materialization of

Ŵ (U,w′) may have a different number of tuples in it. Thus, the probabil-

ity that the number of tuples existing in the window is exactly w is not

guaranteed to reach one. Instead, we need to make sure that each possible

materialization has at least w tuples. We observe that with increasing val-

ues of w′ the probability Pr(|Ŵ (U,w′)| ≥ w) approaches one. This leads

to a refinement of the probabilistic condition in Equation (6.2), as follows:

Pr(|Ŵ (U,w′)| ≥ w) = 1 ∧ w′minimal. (6.3)

We observe that if all tuples in U are existentially uncertain, the value

of w′ in Ŵ (U,w′) approaches the total size of U (or infinity) when Equa-

106

Chapter 6 6.2. Uncertain Sliding Windows

tion (6.3) must hold. Thus, our definition of an uncertain sliding window,

denoted asW (U,w, α), bounds the number of tuples to be kept in a window

(that is w′) by introducing a probabilistic threshold α, as follows:

Pr(|Ŵ (U,w′)| ≥ w) ≥ α ∧ w′minimal. (6.4)

As the number of tuples kept in the window increases, the probability

that less than w tuples exist within Ŵ (U,w′) approaches to zero. When

this probability reaches 1 − α, we do not need to keep any additional

tuples in the window, according to Equation (6.4). Thus, α serves as a

probabilistic bound that limits w′.

We note that Eq. 6.4 can be used to define a sliding window whose

number of tuples is w with a known level of confidence, α. Similar formu-

lations of probabilistic thresholds to bound uncertainty have been proposed

in prior studied, such as for range queries and nearest neighbor searches in

[26]. In the following, we will consider this definition to define the proba-

bilistic bounds of uncertain sliding windows.

6.2.2 Processing uncertain sliding windows

Given a certain data stream S and sliding window W (S,w), new tuples are

processed as follows. Whenever a new tuple si comes in, (i) the operator

adds si to the content of sliding window W and (ii) if |W | > w, then the

operator evicts tuple sj from window W , where ∀sk∈W j ≤ k, i.e., sj is the

oldest tuple in W . The eviction policy is deterministic. Once W reaches

the desired user-defined length w, the operator evicts exactly one tuple

every time a new tuple comes in.

With uncertain data streams, we substitute regular sliding windows

with uncertain sliding windows. Given an uncertain data stream U , an

operator processes an uncertain sliding window W (U,w, α), as defined in

107

6.2. Uncertain Sliding Windows Chapter 6

Algorithm 6. The key point here is the eviction procedure, which may

evict more than one tuple at a time.

Algorithm 6 uncert-evict

Input: U,w, α

Output: W (U,w, α)

1: W (U,w, α)← ∅
2: loop

3: if new tuple u from U then

4: W (U,w, α)←W (U,w, α) ∪ {u}
5: while Pr(|Ŵ (U,w′ − 1)| ≥ w) ≥ α do

6: W (U,w, α)←W (U,w, α) \ {u′} s.t. u′ is the oldest tuple in W (U,w, α)

7: end while

8: end if

9: end loop

The algorithm evaluates the probabilistic condition defined in Equation

(6.4) on the window content without the oldest tuple, that is using w′ − 1

rather than w′ in |Ŵ (U,w′)|, where w′ is the number of tuples currently

kept in the window W (U,w, α). If the condition is met, the algorithm

evicts the oldest tuple, since the window has sufficient content without it.

The test is iterated, evicting as many tuples as possible. This ensures that

the resulting window is minimal.

To evaluate Pr(|Ŵ (U,w′−1)| ≥ w) in Algorithm 6, we need a model for

the random variable |Ŵ (U,w′ − 1)| in terms of its cumulative distribution

function (CDF):

Pr(|Ŵ (U,w′ − 1)| ≥ w) = 1− Pr(|Ŵ (U,w′ − 1)| ≤ w − 1). (6.5)

The random variable |Ŵ (U,w′ − 1)| can be seen as the sum of inde-

pendent Bernoulli trials, where the success probabilities of the trials are

mapped to the existential probabilities of the tuples. Formally, let Ii be a

random indicator associated with tuple ui of stream U , where 0 ≤ i ≤ η

108

Chapter 6 6.2. Uncertain Sliding Windows

and η is the most recent tuple index. We have

Ii ∼ Bernoulli(Pr(ui)), (6.6)

where Pr(ui) is the existential probability of tuple ui as defined in Equa-

tion (6.1). As a simplifying assumption, we assume that random indicators

Ii are independent. The distribution of |Ŵ (U,w′−1)| is known as Poisson-

binomial and is defined as follows:

|Ŵ (U,w′ − 1)| =
η

∑

i=η−w′+2

Ii. (6.7)

In some real-world scenarios existential probabilities Pr(ui) may not be

independent, and could be seen as observations from an unknown Marko-

vian process. For example, bursts of missing tuples can be described using

this model. However, many times, stream operators don’t have direct ac-

cess to tuple correlation information [77] and process new tuples indepen-

dently as they come in. In this work, we assume that windowed operators

consider each tuple independently, and, as such, window sizes can be mod-

eled as a Poisson-binomial distribution. The Poisson-binomial distribution

has been used for modeling purposes with similar assumptions in reliabil-

ity theory and fault tolerance [59] as well as in many other application

areas [39].

In the subsequent sections, we describe algorithms and efficient online

approximation schemes to compute the CDF of |Ŵ (U,w′)|.

6.2.3 The Poisson-binomial distribution

We first look at computing the exact CDF. Let I1, · · · , In be n independent

Bernoulli random variables with success probabilities p1, · · · , pn. Then

the random variable N =
∑n

i=1 Ii is Poisson-binomial distributed. The

109

6.2. Uncertain Sliding Windows Chapter 6

probability mass function (PMF) Pr(N = k) is defined as:

Pr(N = k) =
∑

A∈Fk

∏

i∈A
pi

∏

i∈Ac

(1− pi), (6.8)

where Fk is the set of all subsets of k integers that can be selected from

{1, · · · , n} and Ac = {1, · · · , n}\A. The CDF Pr(N ≤ k) is defined as

follows:

Pr(N ≤ k) =
k

∑

i=0

Pr(N = i). (6.9)

Since Fk in Equation (6.8) contains
(

n
k

)

= n!/((n− k)! · k!) elements, its

enumeration becomes unfeasible as n increases. Hence, we need efficient

techniques for computing the CDF of a Poisson-binomial random variable.

We consider the RF1 recursive formulation, as reviewed in [47], to com-

pute the exact PMF Pr(N = k). Given Xj =
∑j

i=1 Ii, Pr(N = k) =

Pr(Xn = k) can be reformulated using the following decomposition:

Pr(Xj = l) = (1− pj) · Pr(Xj−1 = l) + pj · Pr(Xj−1 = l − 1), (6.10)

with boundary conditions ∀k≥l>0, P r(X0 = l) = 0, and ∀n≥j≥0, P r(Xj =

0) =
∏j

i=1(1 − pi). If the jth Bernoulli trial is a success, we need l −
1 successes from the remaining l − 1 trials to reach l successes in total.

Otherwise, we need l successes from the remaining trials.

The RF1 algorithm can be implemented efficiently by determining the

values Mj,l = Pr(Xj = l) of matrix M in a bottom-up manner. Similarly,

one can compute the CDF Pr(N ≤ k) by summing up the relevant cells of

the matrix M , that is Pr(N ≤ k) =
∑k

l=0Mn,l.

More efficient exact algorithms (as reported in Section 2.2) have com-

putational time cost of O(n), where n is the number of tuples currently

maintained in the sliding window (where n >> k). However they remain

computationally expensive, given that the CDF must be evaluated several

times within Algorithm 6. Experiments in Section 6.5.2 show that the loss

110

Chapter 6 6.2. Uncertain Sliding Windows

in accuracy due to the approximated estimations of the Poisson-binomial

distribution CDF is negligible. We use RF1 as a baseline to assess the

performance of approximated schemes, which are briefly reviewed in the

rest of this section.

6.2.4 Efficient approximations of the Poisson-binomial distribu-

tion

Hong [47] reviews some approximations for the Poisson-binomial distri-

bution N , namely Poisson, normal, and refined normal. These approxi-

mations are obtained by combining the Poisson and Normal distributions

with statistics such as mean (µ), standard deviation (σ), and skewness (γ).

These statistics are defined as follows:

µ = E(N) = sumµ, (6.11)

σ =
√

V ar(N) =
√
sumσ, (6.12)

γ = Skewness(N) =
1

σ3
sumγ, (6.13)

where sumµ =
∑n

i=1 pi, sumσ =
∑n

i=1 pi · (1 − pi) and sumγ =
∑n

i=1 pi ·
(1− pi) · (1− 2pi).

As described in Sections 6.2.2 and 6.2.3, we use the Poisson-binomial

distribution to model |Ŵ (U,w′)|. Whenever an operator appends new tu-

ples or evicts old tuples from sliding window W (U,w, α), this distribution

changes. We observe that statistics µ, σ, and γ can be efficiently main-

tained over time by adding and removing components from the sums sumµ,

sumσ, and sumγ at the cost of simple additions and subtractions. In par-

ticular, when a new tuple is appended to the stream the computational

time cost of updating these statistics is O(k) where k is the number of

evicted tuples. This is a key characteristic of these approximations, which

allows their efficient use in streaming algorithms.

For completeness, we briefly cover these approximations [47]:

111

6.3. Adapting stream operators to handle data uncertainty Chapter 6

Poisson Approximation . The Poisson-binomial distribution is approxi-

mated with the Poisson distribution as N ≈ Poisson(µ). Consequently,

Pr(N ≤ k) ≈
k

∑

i=1

µk exp(−µ)
k!

. (6.14)

Normal Approximation . The Poisson-binomial distribution is approxi-

mated with the Normal distribution, thanks to the central limit theorem,

as follows:

Pr(N ≤ k) ≈ Φ

(

k + 0.5− µ

σ

)

, (6.15)

where Φ(x) is the CDF of the standard normal distribution.

Refined Normal Approximation . The Poisson-binomial distribution is ap-

proximated again via the Normal distribution, but this time the skewness

is taken into account to improve the approximation accuracy. The CDF

for the refined normal approximation is given as follows:

Pr(N ≤ k) ≈ G

(

k + 0.5− µ

σ

)

, (6.16)

where

G(x) = Φ(x) +
γ(1− x2)φ(x)

6
, (6.17)

where Φ(x) and φ(x) are, respectively, the PDF and the CDF of the stan-

dard normal distribution.

6.3 Adapting stream operators to handle data uncer-

tainty

Windowed stream operators reviewed in Section 2.2 do support uncertain

data streams. However, they operate using sliding windows as defined over

regular data streams. In this section, we discuss how they can be adapted

112

Chapter 6 6.3. Adapting stream operators to handle data uncertainty

to use uncertain sliding windows, investigating the implications on operator

semantics. As a driving example, we consider the problem of answering

similarity join queries over uncertain data streams [61].

The similarity join operator correlates similar tuples from two input

data streams. When the operator receives a new tuple, it evaluates if the

tuple is similar to any of the other tuples residing in the sliding window

of the opposing stream. Similarity joins are used in many applications, in-

cluding detection of duplicates in web pages, data integration, and pattern

recognition.

More formally, the similarity join between two certain data streams S

and T is denoted by S ⊲⊳ǫ,w T . Two tuples si ∈ S and tj ∈ T are similar if

their distance is less than or equal to the user-defined distance threshold

ǫ. Tuples from S and T are maintained by sliding windows W (S,w) and

W (T,w). Whenever the similarity join operator receives a new tuple si

from stream S, it appends the following sequence of tuples T ′ to the output

stream:

T ′ = {(si, tj) |Dist(si, tj) ≤ ǫ ∧ tj ∈ W (T,w)}, (6.18)

where tj is any tuple in W (T,w) that meets the similarity condition. New

tuples received from stream T are processed similarly. Figure 6.3 shows an

example of a similarity join operator.

The similarity join operator between uncertain data streams U and V

is denoted by U ⊲⊳ǫ,w,α,β V , where ǫ and w are the match distance thresh-

old and the sliding window size, respectively. Parameters α and β are the

probabilistic sliding window bound and the match probability threshold, re-

spectively. Given an uncertain sliding window W (V, w, α), whenever a new

point ui ∈ U comes in, the join operator appends to the output stream the

sequence of uncertain points V ′ defined as follows:

V ′ = {(ui, vj)⊲⊳ s.t. vj ∈ W (V, w, α) ∧ Pr(match(ui, vj)) ≥ β}, (6.19)

113

6.3. Adapting stream operators to handle data uncertainty Chapter 6

v
a

lu
e

time

T sliding window

sn+1
tn

s0

s1 ...

...

t0

t1

sn+1-ε

sn+1+ε

tn-w+1

sn-w+1

Figure 6.3: Example of a similarity join between certain data streams. Interval bar

displays tuples in W (T,w) that are similar to sη+1 based on the distance threshold ǫ.

Blue (dark) and red (light) dots represent the values of the two streams to be joined.

where vj is any tuple in W (V, w, α) that meets the similarity condition

match(ui, vj) with sufficient probability.

The operator constructs the candidate output tuple (ui, vj)⊲⊳ by pairing

all matching samples (ui,k, vj,l) as:

(ui, vj)⊲⊳ = {(ui,k, vj,l) s.t. dist(ui,k, vj,l) ≤ ǫ}. (6.20)

To evaluate the match probability, we first evaluate if vj is existentially

certain. If so, then the match probability Pr(match(ui, vj)) is equal to the

probability of the matching samples, namely Pr(matchs(ui, vj)), which is

calculated as follows:

Pr(matchs(ui, vj)) =
∑

(ui,k,vj,l)∈(ui,tj)⊲⊳

Pr(ui,k) · Pr(vj,l). (6.21)

When tuple vj is existentially uncertain, then the match probability is

computed as follows:

Pr(match(ui, vj)) = Pr(vj ∈ Ŵ[w](V, w
′) ∧matchs(ui, vj)), (6.22)

where Ŵ[w](V, w
′) is the subsequence ofmost recent w tuples within Ŵ (V, w′).

This leads to the following:

Pr(match(ui, vj)) =Pr(vj ∈ Ŵ[w](V, w
′)) ·

Pr(matchs(ui, vj) | vj ∈ Ŵ[w](V, w
′)).

(6.23)

114

Chapter 6 6.4. Efficient similarity join processing

With the simplifying assumption that existential uncertainty and tuple

values are independent, we have:

Pr(match(ui, vj)) =Pr(vj ∈ Ŵ[w](V, w
′)) ·

Pr(matchs(ui, vj))/Pr(vj).
(6.24)

In Equation (6.24), tuple vj exists within Ŵ[w](V, w
′) iff it exists in V

and less than w tuples exist within the sequence of tuples vj+1, ..., vη that

are more recent than vj. Formally, we have:

Pr(vj ∈ Ŵ[w](V, w
′)) = Pr(vj) · Pr(|Ŵ (V, η − j)| ≤ w − 1), (6.25)

where η − j is the number of tuples in the window that are more recent

than vj. Finally, we have:

Pr(match(ui, vj)) =Pr(|Ŵ (V, η − j)| ≤ w − 1)·
Pr(matchs(ui, vj))

(6.26)

Note that Pr(|Ŵ (V, η − j)| ≤ w − 1) is the CDF of the Poisson-binomial

distribution. Efficient methods for its evaluation have been discussed in

Section 6.2.3.

6.4 Efficient similarity join processing

The performance of similarity joins using uncertain sliding windows can

be improved by combining the probabilistic thresholds on the window size

and on the match probability. We present a novel upper-bound of the

match probability based on this idea. Besides, we discuss an adaptation of

state-of-the-art similarity join methods [61] to uncertain sliding windows.

Finally, we conclude presenting a simple yet effective sort-based similarity

join algorithm that can be competitive in real-world scenarios.

115

6.4. Efficient similarity join processing Chapter 6

6.4.1 Upper-bounding the match probability

As described in Section 6.3, we denote a similarity join operator for uncer-

tain data streams U and V as U ⊲⊳ǫ,w,α,β V , where ǫ is the match distance

threshold, w is the sliding window size, α is the probabilistic threshold

on the sliding window bound, and β is the match probability threshold.

Whenever the operator receives a new tuple v ∈ V , it matches v against

the uncertain sliding window W (U,w, α). If a matching pair exists with

probability higher than or equal to β, the operator appends the tuple to

its output stream.

We observe that if α approaches 1 and all tuples in U exhibit existential

uncertainty, then the probability that the oldest tuple in sliding window

W (U,w, α) exists in a materialization of the window approaches to zero:

lim
α→1

Pr(uη−w′+1 ∈ Ŵ (U,w′)) = 0. (6.27)

From Equation (6.19), we conclude that W (U,w, α) tends to be over-

sized if β is large, since the older tuples in the window are not likely to

produce any matches with high probability. This motivates a revision of

the eviction policy as presented in Algorithm 6 for maintaining uncertain

sliding windows such that it also takes β into account.

From Equation (6.26), we have Pr(|Ŵ (U,w′ − 1)| < w) as an upper-

bound for the match probability Pr(match(v, u′)), where u′ is the oldest

tuple in W (U,w, α, β) and v ∈ V is the tuple we are currently processing

against the window defined on U . As a result, Pr(|Ŵ (U,w′−1)| < w) < β

can be used as a secondary eviction condition for discarding tuples from

the window, in place of Pr(match(v, u′)) < β. Algorithm 7 shows the

updated window eviction policy. This policy results in smaller uncertain

sliding windows and an overall performance improvement.

In Algorithm 7, we use the following derivation to bring the eviction

116

Chapter 6 6.4. Efficient similarity join processing

Algorithm 7 uncert-evict-beta

Input: U,w, α, β

Output: W (U,w, α, β)

1: W (U,w, α, β)← ∅
2: loop

3: if new tuple u from U then

4: W (U,w, α, β)←W (U,w, α, β) ∪ {u}
5: while Pr(|Ŵ (U,w′ − 1)| ≥ w) ≥ min(α, 1− β) do

6: W (U,w, α, β)←W (U,w, α, β) \ {u′} s.t. u′ is the oldest tuple in W (U,w, α, β)

7: end while

8: end if

9: end loop

conditions into the same form and avoid repeated computation:

Pr(|Ŵ (U,w′ − 1)| < w) = 1− Pr(|Ŵ (U,w′ − 1)| ≥ w)

Pr(|Ŵ (U,w′ − 1)| < w) < β ≡ Pr(|Ŵ (U,w′ − 1)| ≥ w) ≥ 1− β.
(6.28)

If the oldest tuple in the uncertain window exist in materializations of

the window among the first w tuples with insufficient probability, then it

cannot result in a match with tuples from the opposing stream. And thus,

it can be discarded from the window. β serves as a lower bound for the

aforementioned sufficient probability. Note that in contrast to Algorithm 6,

here we consider the α and β probabilistic constraints together, using a

single formula (see Algorithm 7, line 5).

6.4.2 Pruning the similarity search space

In the following, we present different strategies to prune the search space.

Index-based pruning

Lian et al. [61] propose pruning methods for similarity join operators that

process value-uncertain data streams by creating bounding regions based

on the samples available in each tuple. In their method, uncertain tuples

117

6.4. Efficient similarity join processing Chapter 6

ui are summarized by hyper-spherical bounding regions oi. Hypersphere oi

for tuple ui is an approximated minimum enclosing ball of a subset of its

samples. Bounding regions oi are then indexed in a grid index that reflects

the sliding window content.

A grid index is a spatial index data structure that partitions the space

into a regular grid. An object to be indexed is associated to the partition in

the grid whose region overlaps with the spatial coordinates of the object. A

search in the grid index identifies the partitions that overlap with the search

region and returns the objects associated with the matching partitions.

In the context of a spatial index, a grid (a.k.a. ”mesh”, also ”global

grid” if it covers the entire surface of the globe) is a regular tessellation of

a manifold or 2-D surface that divides it into a series of contiguous cells,

which can then be assigned unique identifiers and used for spatial indexing

purposes. A wide variety of such grids have been proposed or are currently

in use, including grids based on ”square” or ”rectangular” cells, triangular

grids or meshes, hexagonal grids and grids based on diamond-shaped cells.

Given uncertain input streams U and V , two grid indexes GU and

GV are maintained over time. Whenever a new tuple ui comes in, the

operator matches it against the tuples indexed in GV . The algorithm

safely prunes tuples vj s.t. Dist(oi, oj) > ǫ since they cannot produce

any match. The operator then processes the retained tuples as in Equa-

tions (6.20) and (6.21) to produce output matches.

A grid index is used to quickly discard a large fraction of candidate

tuples. The effectiveness of grid indexing depends on the sparseness of the

data. If all pairs of tuple samples are, on average, far away from each other,

the bounding regions tend to be distant and the pruning strategy works

well. Conversely, when at least one pair of samples are close by, then the

pruning is ineffective.

Multidimensional data is supported in a straightforward manner for low

118

Chapter 6 6.4. Efficient similarity join processing

number of dimensions [61].

Although the methods proposed by Lian et al. have not been designed

to be used with uncertain sliding windows, they can be adapted into the

similarity join operator as presented in Section 6.3. In particular, uncertain

sliding windows are used instead of regular sliding windows and candidate

matches are also filtered according to the upper-bound match probability

presented above (Section 6.4.1). In the rest of the chapter, we refer to our

adaptation of methods in [61] as Index-Match.

Sort-based pruning

As an alternative to spatial pruning based on a grid index, we propose a

simple yet effective pruning strategy based on sorting, called Sort-Match.

The key advantage of sort-join algorithms with uncertain data is that they

are less sensitive to the presence of one or only a few matching tuple samples

for a given tuple pair.

The Sort-Match algorithm relies on red-black trees. A red-black tree is a

binary search tree with one extra attribute for each node: the color, which is

either red or black. The assigned colors satisfy certain properties that force

the tree to be balanced. When new nodes are inserted or removed in the

tree, the tree nodes are rearranged to satisfy the conditions. Redblack trees

offer worst-case guarantees for insertion time, deletion time, and search

time.

Whenever the join operator receives a new tuple ui ∈ U , it inserts the

tuple into W (U,w, α, β) and inserts the tuple samples ui,k ∈ ui into a red-

black tree RBU . When the operator evicts tuple ui from W (U,w, α, β), it

removes the tuple samples ui,k ∈ ui from RBU .

By maintaining one red-black tree per sliding window, the join operator

can efficiently identify which tuples in the sliding window are a match to the

incoming tuple. Whenever the operator receives tuple ui ∈ U , it searches

119

6.5. Experimental evaluation Chapter 6

the red-black tree RBV of the opposing stream for all tuples with values in

the interval [ui,j − ǫ, ui,j + ǫ], for each sample ui,j ∈ ui. Note that the sam-

ples in RBV represent the content of sliding window W (V, w, α, β). Thus,

all matching samples lie between search interval bounds. Once all sam-

ples are identified, the operator groups the samples by their tuple indices.

After that, the operator computes the matching probability of each tuple

and evaluates if it satisfies the β condition, as discussed in Section 6.3.

The operator outputs all tuples satisfying the distance and probabilistic

constraints.

The Sort-Match algorithm cannot be easily adapted to multi-dimensional

data. One can overcome this limitation by using linear mapping transfor-

mations such as the z-curve or the Hilbert space filling curve [67].

6.5 Experimental evaluation

In this section, we compare how well the various approximations work for

modeling uncertain sliding windows under different settings, in terms of

both accuracy and performance. Furthermore, we experimentally compare

the efficiency of different pruning approaches for implementing a similar-

ity join operator that processes data streams with value and existential

uncertainties.

We implemented all techniques in C++, and ran the experiments on a

Linux machine equipped with an Intel Xeon 2.13GHz processor and 4GB of

RAM. For all results, we report the averages of the measurements obtained

from 15 independent runs, as well as the 95% confidence intervals.

For all experiments, we use the parameter configurations described in

Table 6.2. When not explicitly stated, we use the default configuration

value (shown in bold).

120

Chapter 6 6.5. Experimental evaluation

Parameter Range

No. of samples per tuple [5, ...,10, ..., 50]

Sliding window size (w) [100, ...,500, ..., 1000]

Existential uncert. σ [0.025, ...,0.1, ..., 0.25]

Value uncert. σ [0.1, ...,0.5, ..., 1]

Stream length 2000

α probabilistic threshold [0.5, ...,0.95, ..., 1]

β probabilistic threshold [0.1, ...,0.5, ..., 0.9]

ǫ distance threshold selectivity close to 0.05%

Table 6.2: Experiment parameter configuration ranges. Default values are indicated in

bold.

6.5.1 Datasets

In our experiments, we generate uncertain data streams by using time

series datasets that contain certain tuples (i.e., one exact value per tu-

ple). We introduce uncertainty through perturbation, similar to prior

work [61, 95, 11, 79, 31]. We introduce value uncertainty by consider-

ing uniform, normal, and exponential error distributions with zero mean

and varying standard deviation within [0.1, 1.0]. We introduce existential

uncertainty by sampling from uniform, normal, and exponential distribu-

tions with varying standard deviation within [0, 0.25]. Since existential

uncertainty may range within interval (0, 1), we restrict these distributions

to this range2. Intuitively, the higher the standard deviation, the higher

the probability of having tuples with low probability of existence. Samples

outside the required range are discarded (rejection sampling).

We use 17 real time series datasets from the UCR classification [1],

which represent a wide range of application domains. These are 50words,

Adiac, Beef, CBF, Coffee, ECG200, FISH, FaceAll, FaceFour, Gun Point,

Lighting2, Lighting7, OSULeaf, OliveOil, SwedishLeaf, Trace, and syn-

2The uniform distribution over [0, x] has a fixed standard deviation that is only dependent on x. To

vary the standard deviation, we adapt the value of x (for σ = 0.25, x ≈ 0.87).

121

6.5. Experimental evaluation Chapter 6

thetic control. We generate streams by sampling random subsequences

from all datasets. By sampling subsequences we capture the temporal

correlation that may appear across neighboring points.

6.5.2 Poisson-binomial distribution approximations

In this section, we compare how the different approximations of the Poisson-

binomial distribution (Section 6.2.4) can affect the content of the uncertain

sliding window. These experiments only consider the existential uncer-

tainty of the tuples, since their results do not depend on the actual tuple

values.

Accuracy

This experiment evaluates the accuracy of the three approximations of

the Poisson-binomial distribution, namely Poisson, Normal, and Refined

Normal. This helps us to evaluate the error that each approximation can

yield when calculating the CDF in Equation 6.26.

We measure the accuracy in terms of the Root Mean Square Error

(RMSE), as follows:

RMSE(n) =

√

∑n−1
k=0(cdfN(k)− cdf ′N(k))

2

n
, (6.29)

where n is the number of Bernoulli random variables in the Poisson-binomial

distribution N =
∑n

i=1Xi, and cdfN(k), cdf
′
N(k) are, respectively, the ex-

act and approximated CDFs of N . Note that the value of n represents the

number of tuples kept in the window (w′), and cdfN(k) is proportional to

the probability that the k+1th most recent tuple (say ui, where i = η− k)

exists in a window of size w, i.e., Pr(ui ∈ Ŵ[w](U,w
′)).

Figure 6.4 shows the RMSE results (y-axis) when applying the different

approximations for different window sizes (x-axis). Each graph displays the

122

Chapter 6 6.5. Experimental evaluation

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 100 200 300 400 500 600 700 800 900 1000

R
M

S
E

Window size (n)

Poisson
Normal

Refined normal

Figure 6.4: RMSE of different Poisson-binomial approximations for different window sizes

and with existential uncertainty distribution standard deviation set to 0.1 (Normal dis-

tribution). The approximation with lowest error is the Refined Normal, independent of

the distribution used for assigning tuple existential uncertainties. The figure also shows

the low precision of the approximations for small window sizes.

RMSE results when sampling the existential uncertainty values for each

tuple from the normal distribution. Results for uniform and exponential

distributions are very similar, and omitted for brevity. The graph also

shows the confidence interval for each measurement.

From Figure 6.4, we can see that the Refined Normal approximation

provides the lowest RMSE independent of the distribution used to assign

existential uncertainty values. We also notice that all approximations ex-

hibit lower quality when the window size is small (w < 100). This is

expected behavior according to the central limit theorem. In conclusion,

the exact computation of the CDF (RF1) should be preferred if the win-

dow size (w) is below 100, otherwise the Refined Normal approximation

provides the best accuracy compromise (RMSE < 0.002).

Performance

This experiment compares the performance of the different methods for

obtaining the Poisson-binomial CDF. We evaluate the computational cost

123

6.5. Experimental evaluation Chapter 6

of the exact algorithm (RF1) and the three approximations (Poisson, Nor-

mal, and Refined Normal). Computing the CDF efficiently is critical for a

performant implementation of uncertain sliding windows. This is because

there are multiple CDF computations on the critical path of the operator

logic.

Figure 6.5 shows the time consumed per CDF computation (y-axis) un-

der different window sizes (x-axis). The figure shows the results when we

sample the tuple existential uncertainty values from a uniform distribution

with standard deviation of 0.1. We observe that while the time required

by the RF1 algorithm increases quadratically as window sizes increase, the

time consumed by approximated schemes increase linearly. The Poisson

approximation is the most computationally intensive among the approxi-

mations. The time consumed by the Normal and the Refined Normal are

almost indistinguishable from each other. Note that the time consumed for

RF1 is small for small window sizes, which indicates that an exact CDF

solution can be used for small windows (w < 100) to achieve accurate prob-

ability computations with low performance cost. This is especially impor-

tant when considering that for small windows, approximation techniques

provide poor accuracy (Figure 6.4). Similar trends have been obtained

when using different statistical distributions (normal and exponential) and

different standard deviations for the existential uncertainty. We omit these

results for brevity.

We observe that all methods require an absolute time below 3 millisec-

onds to evaluate the CDF function for window sizes up to 1000. However,

the data throughput supported by each technique varies considerably. For

example, the Refined Normal method, when compared to RF1, provides

nearly 100 times better performance.

124

Chapter 6 6.5. Experimental evaluation

 0.001

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(m

s)

Window size (n)

RF1
Poisson
Normal

Refined normal

Figure 6.5: Time consumed by each CDF computation under different window sizes.

Refined Normal and Normal approximations provide the lowest cost.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180 200

F
1

sc
or

e

Window size

Refined normal
Normal

Poisson

Figure 6.6: F1 score for the similarity join operator when comparing the use of CDF

approximations. Join using Normal & Refined Normal approximations provide results

very similar to an exact solution.

125

6.5. Experimental evaluation Chapter 6

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180 200

P
re

ci
si

on

Window size

Refined normal
Normal

Poisson

Figure 6.7: Precision for the similarity join operator when using CDF approximations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180 200

R
ec

al
l

Window size

Refined normal
Normal

Poisson

Figure 6.8: Recall for the similarity join operator when using CDF approximations.

126

Chapter 6 6.5. Experimental evaluation

6.5.3 Uncertain sliding windows for sum aggregation

In this section, we present our results on the evaluation of the sum ag-

gregation on uncertain data streams. Given an uncertain sliding window

W (V, w, α), the sum operator is defined as follows. Whenever a new point

ui ∈ U comes in, a new tuple vj is appended to the output stream. Tuple

vj is represented by a single instantiation, whose value is defined as the

sum of the average values of the tuples within the window boundaries.

In Figure 6.9, we compare the output stream of the sum aggregation

operator when using an uncertain sliding window W (V, w, α) and a reg-

ular sliding window W (V, w) on the Coffee dataset. Similar results have

been obtained with the other datasets, and are omitted for brevity. The

experiment uses a standard deviation for existential uncertainty of 0.1, and

a standard deviation for value uncertainty of 0.5. We fix the number of

samples per tuple to 10, and vary the α probabilistic threshold between

0.5 and 1. We report the average absolute percentage change of the out-

put tuple values ranging the the window size (w) between 200 and 1000.

Given that sumi is the value of the sum obtained using the regular sliding

window and sumj is the value of the sum obtained using the uncertain

sliding window, the absolute percentage change between sumi and sumj

is defined as |sumi − sumj|/|sumi|, then multiplied by 100. The reported

value is obtained by averaging the absolute percentage change across all

the window shifts. The results show that the regular sliding windows are

constantly over-estimating the window size, not considering the possibility

that some data values do not exist in the window, which is exactly what

the uncertain sliding windows model accounts for. The value of the tuples

in the stream may be negative, this is why sums don’t always get larger as

we consider more tuples. We observe that with window size w = 200, there

are very large differences, with differences of up to 1800% in the values of

127

6.5. Experimental evaluation Chapter 6

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0.5 0.6 0.7 0.8 0.9 1

P
er

ce
nt

ag
e

ch
an

ge

Alpha threshold

w=200
w=400
w=600
w=800

w=1000

Figure 6.9: Absolute percentage change of the output tuple values when substituting a

regular sliding window W (V,w) with an uncertain sliding window W (V,w, α) for different

configurations of window size w when varying the α probabilistic threshold.

the output stream. For sufficiently small windows, such as w = 200, the

sums are affected more by changes in the stream tuple values. In con-

strast, on larger windows the sums tend to be more stable as positive and

negative tuple values balance each other. We further note that tuning the

probabilistic threshold alpha is a critical choice and depends on the par-

ticular application scenario. For example, in case of sum aggregations, the

produced values may deviate significantly, and a large value of alpha is

recommended.

6.5.4 Uncertain sliding windows for similarity join

In this section, we report our results on maintaining uncertain sliding win-

dows within a similarity join operator. We evaluate our approach in terms

of accuracy, performance, and memory footprint. We also report the effi-

ciency of the pruning techniques for the join operator.

128

Chapter 6 6.5. Experimental evaluation

Accuracy

As shown in Figure 6.5, the performance for computing approximated re-

sults of the Poisson-binomial CDF is significantly superior to the perfor-

mance of calculating an exact solution, suggesting that approximations

should almost always be favored in comparison to the exact solution. As a

result, we must understand how much the approximations may affect the

output of a given operator when compared to the exact solution. In case

of window management, approximations may result in a tuple being im-

properly included or excluded from the sliding window. The effect of these

two situations on the join operator is that it may lead to the generation

of an output tuple that should not be in the result (false positive), or to

the failure of generating an output tuple that should be in the result (false

negative). The approximations can also introduce errors in the existential

uncertainty values of the output tuples.

To evaluate the effect of the CDF approximation in the results, we use

the F1 score, which is an accuracy measure based on the precision and

recall measures. Precision is defined as the percentage of uncertain tuples

generated by the join which are truly matching. Recall is defined as the

percentage of the truly matching uncertain tuples found by the join using

approximate CDF computation.

We compute precision and recall whenever the join operator processes

a new input tuple. The computation weighs the contribution to precision

and recall of each output tuple (ui, vj)⊲⊳ by its probabilistic distance to the

exact answer as follows:

1− |Pr((ui, vj)⊲⊳)− Pr′((ui, vj)⊲⊳)|, (6.30)

where Pr((ui, vj)⊲⊳) and Pr′((ui, vj)⊲⊳) are the existential probabilities of

the output tuple on the exact and on the approximate answers, respectively.

Intuitively, the loss in accuracy of the probabilities of existence in output

129

6.5. Experimental evaluation Chapter 6

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

A
ct

ua
l w

in
do

w
 s

iz
e

(w
’)

Existential uncertainty standard deviation

w=1000
w=800
w=600
w=400
w=200

Figure 6.10: Actual size of uncertain sliding windows when varying the existential uncer-

tainty standard deviations (σ). Memory footprint increases as the existential uncertainty

standard deviation increases.

tuples impacts the precision and recall metrics. We report the average and

0.95 confidence intervals on the F1 score, precision, and recall.

Figure 6.6 shows the F1 score when the join operator uses the three

different CDF approximations with varying window sizes (w). This ex-

periment shows the results for data streams exhibiting uniform existential

uncertainty with standard deviation σ = 0.1. The graph shows that the

results of the join operator when using the Refined Normal and the Normal

approximation methods are nearly the same as the ones provided by the

exact solution when the window size is bigger than 80. The average F1

scores for the Refined Normal, Normal, and Poisson approximations are

respectively 0.99, 0.98, and 0.47. As expected from the previous experi-

ments (Figure 6.4), the Poisson approximation has very inaccurate output

and should not be used for a join computation. We obtained similar trends

when measuring the F1 score using normal and exponential distributions

for existential uncertainty. In addition, we observed that the amount of

existential uncertainty (varied by increasing the standard deviation for all

distributions) does not affect the F1 score when the window size is larger

than 80 (similar to Figure 6.6). This means that the proposed uncertain

130

Chapter 6 6.5. Experimental evaluation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.5 0.6 0.7 0.8 0.9 1

A
ct

ua
l w

in
do

w
 s

iz
e

(w
’)

Alpha threshold

stddev=0.2
stddev=0.15

stddev=0.1
stddev=0.05

Figure 6.11: Actual size of uncertain sliding windows when varying the probabilistic

threshold α and the existential uncertainty σ. Window size is more sensitive to σ than

α. It also presents a steep increase as α approaches to 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 (

r)

Alpha threshold

beta=0.5
beta=0.8
beta=0.9

beta=0.98
beta=0.99

Figure 6.12: Ratio of uncertain sliding window lengths maintained by eviction policies

uncert-evict-beta and uncert-evict when varying the α probabilistic threshold. uncert-

evict-beta policy maintains windows that are up to 18% smaller.

131

6.5. Experimental evaluation Chapter 6

sliding window is robust to changes in the distribution of the existential

uncertainty. The graphs for the last two observations are not shown for

brevity.

Figure 6.7 and 6.8 report precision and recall for the same experiment,

respectively. The figures show that both the Normal and Refined Normal

approximations have a small false positive and false negative rates when

windows are bigger than 80. The results also show that while recall and

precision measurements are very close for the Normal and Refined Normal

approximations, the precision for the Poisson approximation is up to 20%

higher than recall.

In conclusion, the Refined Normal method provides the highest accu-

racy among the approximate schemes. We use it in all of the following

experiments.

We note that, in case of similarity joins or filter operators, an user may

prefer to have a large value for alpha to reduce the probability of false

negatives. e.g., with alpha = 0.95, the probability to miss a matching

tuple is reduced to less than 0.05%.

Memory footprint

Memory usage for uncertain sliding windows can be measured in terms of

the actual number of tuples maintained over time (w′). In Figure 6.10,

we report the actual sliding window sizes (y-axis) when processing uncer-

tain data streams that have existential uncertainty values sampled from a

uniform distribution with standard deviation varying within [0.025, 0.25].

The figure includes results for different uncertain sliding window logical

sizes (i.e., w). The results show that the actual size of the sliding window

increases as the standard deviation increases. This is because there is more

variability in the existential uncertainty values, leading the algorithm to

maintain bigger window sizes to maintain the desired α threshold. The

132

Chapter 6 6.5. Experimental evaluation

results also show that the memory overhead is, on average, 82.97% when

the standard deviation is 0.25 and 6.12% when it is 0.025.

Figure 6.11 reports the actual sliding window size values (w′) when

varying the α probabilistic threshold and the logical window size (w) is 500.

The figure shows the results when the tuple existential uncertainty is drawn

from a uniform distribution with standard deviations of 0.05, 0.1, 0.15, and

0.2. Similar to Figure 6.10, we observe that the actual size of the sliding

window increases as the standard deviation increases. We also observe that

the window size is not that sensitive to the α value when α ∈ [0.5, 0.98],

since the window size increases, on average, only 4.83% when comparing

the window size at α = 0.5 and α = 0.98. The actual window size has a

steep increase when α = 1.0. At this point, the uncertain sliding window

must have at least w tuples in it that are existentially certain. Assuming

a window size of 500 (default value), the window must have at least 500

tuples that are existentially certain. Since in our experiments the standard

deviation of the existential uncertainty is always above zero, we expect that

the sliding window will grow, in the worst case approaching the full stream

history. In practice, the probability that 500 tuples exist is reached before

including the complete stream history because of the numerical imprecision

in the computation of the CDF of the normal distribution in the Refined

Normal approximation method.

Figure 6.12 shows the results when comparing the eviction policies

uncert-evict and uncert-evict-beta reported in Algorithms 6 and 7. The

sliding window size w is fixed to 500 and the parameter α varies in the

range [0.5, 1] (x-axis). The graph y-axis shows the sliding window ratio

r = w′ueβ/w
′
ue, where w

′
ueβ

and w′ue are the the number of tuples maintained

in the uncertain sliding windows by the uncert-evict-beta and uncert-evict

eviction policies, respectively. The same experiment has been repeated for

β ∈ [0.5, 0.99].

133

6.5. Experimental evaluation Chapter 6

 10

 20

 30

 40

 50

 60

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(m

s)

Window size (w)

baseline
Index-Match

Sort-Match

Figure 6.13: Performance of pruning strategies when varying the sliding window size.

Sort-Match outperforms Index-Match for different window sizes.

We observe that uncertain sliding windows maintained by the uncert-

evict-beta eviction policy are up to 18% smaller than those maintained

by the uncert-evict eviction policy. The uncert-evict-beta algorithm shows

more benefit when α has larger values. When α is close to one, a larger

number of tuples are maintained in the uncertain sliding window. However,

their probability of being within the sliding window boundary is very low,

and below β. These results hold when varying the β probabilistic threshold.

These results show that the two key factors that impact memory foot-

print are (i) the amount of existential uncertainty in the input tuples, and

(ii) the α threshold. As expected, larger actual sliding window sizes result

in operators that are computationally more expensive.

Performance of pruning strategies

This section reports the performance of the spatial pruning technique

Index-Match and the proposed sort-based pruning Sort-Match. We com-

pare the running time of both techniques to the naive solution (labeled

baseline), which searches for matching tuples exhaustively (i.e., does not

prune the search space).

134

Chapter 6 6.5. Experimental evaluation

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30

T
im

e
(m

s)

Number of samples (s)

baseline
Index-Match

Sort-Match

Figure 6.14: Performance of pruning strategies when varying the number of samples.

 0

 10

 20

 30

 40

 50

50words

Adiac
Beef

CBF
Coffee

ECG200

FISH
FaceAll

FaceFour

GunPoint

Lighting2

Lighting7

OSULeaf

OliveOil

SwedishLeaf

Trace
TwoPatterns

syntheticControl

wafer

yoga

T
im

e
(m

s)

Datasets

Sort-Match
Index-Match

baseline

Figure 6.15: Average time performance of different pruning strategies when processing

different datasets.

135

6.5. Experimental evaluation Chapter 6

Figure 6.13 shows the results for our first experiment, in which we com-

pare the processing time per tuple of the three algorithm on the Coffee

dataset. The experiment uses a standard deviation for existential uncer-

tainty of 0.1, and a standard deviation for value uncertainty of 0.5. We fix

the number of samples per tuple to 10, and vary the sliding window size

(w) between 100 and 1000. The results show that the baseline algorithm

has the worst performance, followed by the Index-Match and Sort-Match

methods.

We observe that Index-Match behaves as the baseline when tuples can-

not be pruned. On the other hand, Sort-Match never behaves as the base-

line, since it focuses on matching samples without enumerating all possible

sample pair combinations. We observed similar trends with other datasets

and omit these results for brevity.

Figure 6.14 shows the processing time per tuple of the three algorithms

on the Coffee dataset when varying the number of samples between 2 and

30. The experiment uses a standard deviation for existential uncertainty

of 0.1, and a standard deviation for value uncertainty of 0.5. The window

size (w) is fixed to 500.

We observe that Sort-Match performs better than Index-Match when

the number of samples is low — up to 20% when the number of samples

is 16. In many real-world applications the number of available samples is

rather limited, ranging between 4 − 12 (e.g., in WiFi-based localization

services [96], multiple reader RFID systems [100], and wireless sensor de-

ployments [75]). For applications like the ones mentioned above, the low

number of samples is dictated by the installations and the hardware used

in these installations. In these applications, Sort-Match is a promising and

suitable solution. When the number of samples is very large, sort-based

similarity joins cannot compete with similarity joins based on indexing

data structures, such as Index-Match. For such cases, we recommend the

136

Chapter 6 6.6. Extensions

use of Index-Match.

Figure 6.15 reports the processing time per tuple when using a sliding

window of size w = 500 for all datasets. On average, the time per processed

tuple in ms is 32.72 for baseline, 32.13 for Index-Match, and 27.51 for Sort-

Match. The results show that Sort-Match consistently performs better

than Index-Match for all datasets. In this setup, Sort-Match provides an

average performance improvement of 16% over Index-Match.

6.6 Extensions

In this section, we briefly discuss the implications of existential and value

uncertainty on time-based and attribute-delta-based sliding windows, as

well implementation considerations for integrating the techniques intro-

duced in this paper into a stream processing engine.

6.6.1 Other sliding window policies

A time-based sliding window, denoted by Wtime(S, t), keeps the last t sec-

onds worth of tuples. Since tuple timestamps are certain, existential un-

certainty does not affect time-based sliding windows.

An attribute-based sliding window, denoted by W a
delta(S, d), keeps the

most recent tuples such that the difference between the attribute a value

of the oldest and the newest tuple is not more than d (the delta invariant).

In the case of attribute-delta sliding windows, to decide whether the oldest

tuple needs to be evicted or not, we need to compute the probability that

it breaks the delta invariant. This probability is 1 − ∏

y∈Y (1 − Pr(y)),

where Y is the set of tuples that cause violating the invariant with respect

to the oldest tuple. It is straightforward to add value uncertainty into the

picture.

137

6.7. Summary Chapter 6

6.6.2 Integration into System S

We are working on integrating uncertain data streams, as defined in Sec-

tion 6.1, into System S [43] — an industrial-strength data stream processing

engine. This involves three key changes. First, the tuple model is being up-

dated to introduce the notion of value and existential uncertainty. Second,

the windowing library is being updated to manage uncertain boundaries.

And finally, the relational operators toolkit is being enhanced with opera-

tors that can work in the presence of value and existential uncertainty.

6.7 Summary

The problem of processing uncertain data streams has attracted lots of

attention in the past years and has found many interesting applications

across diverse domains. In many of these applications the uncertainty

arises from the value uncertainty present in the data sources. However, as

we have shown in this paper, there is a tight relationship between value

uncertainty and existential uncertainty when composing stream operators,

one inducing the other based on the topology at hand.

In this study, we investigated the implications of existential uncertainty

on managing sliding windows. In past studies the window size was taken

fixed and it did not depend on data uncertainty. We extended the semantics

of sliding window processing by modeling the window size as the number

of truly existing tuples with probabilistic guarantees. To the best of our

knowledge, this problem has not been addressed before.

Interestingly, previous works on stream operators that can handle value

uncertainty are mostly orthogonal to our contributions, and can easily

be adapted to use our extensions. To illustrate this, we discussed the

adaptation of a state-of-the-art similarity join algorithm to use uncertain

sliding windows. We also presented a novel pruning strategy that can be

138

Chapter 6 6.7. Summary

used to efficiently maintain uncertain sliding windows.

We evaluated the performance of the proposed techniques on many real

data streams. The results show that the algorithms used to maintain un-

certain sliding windows can efficiently operate while providing a high qual-

ity approximation in query answering. Based on our results, Sort-Match

provides better time performance than Index-Match, when the number of

tuple samples is low, as is the case for many real-world applications.

139

6.7. Summary Chapter 6

140

Chapter 7

Conclusions and Future Work

The management of uncertainty in data series and data streams is of great

interest to many applications that process noisy, inherently uncertain and

error-prone measurements. In uncertain data series, the high dimension-

ality and the highly correlated dimensions pose significant new challenges

to the formulation and the efficient evaluation of similarity queries. In un-

certain data streams, processing paradigms such as sliding windows must

be adapted to accommodate uncertainty.

Similarity search queries are the basis for more complex algorithms. In

this work, we compared analytically and experimentally prior studies in

the field, and proposed two additional alternatives based on the moving

average that were not considered before. Our experiments were based on

17 real, diverse datasets, and the results demonstrate that simple measures,

based on moving average, outperform the more sophisticated alternatives.

These results also suggest that a promising direction is to develop measures

that take into account the sequential correlations inherent in time series.

The efficient evaluation of top-k queries is a well recognized problem.

In this study, we investigated the challenges in evaluating top-k queries in

uncertain data series. We formalized different models of uncertain data

series, presenting and discussing their properties. We defined the top-k

141

7.1. Future Directions Chapter 7

nearest neighbor problem in uncertain data series and propose a variety

of methods that assess and extend prior studies in the field. We further

investigated the adoption of pruning techniques based on spatial and metric

bounds. We evaluated our proposal under a variety of settings using 45

real datasets from diverse domains and synthetic datasets. The results

show that modeling uncertainty with probabilistic models can lead to more

accurate results. Our proposal proved to be up to orders of magnitude more

efficient than previously proposed techniques.

We investigated the implications of existential uncertainty in manag-

ing sliding windows. In past studies the window size was fixed and it did

not depend on data uncertainty. We extended the semantics of sliding

window processing by modeling the window size as the number of truly

existing tuples with probabilistic guarantees. Previous works on stream

operators that can handle value uncertainty are mostly orthogonal to our

contributions, and can easily be adapted to use our extensions. To illus-

trate this, we discussed the adaptation of a state-of-the-art similarity join

algorithm to use uncertain sliding windows. We also presented a novel

pruning strategy that can be used to efficiently maintain uncertain sliding

windows. We evaluated the performance of the proposed techniques on

real data streams. The results show that the algorithms used to maintain

uncertain sliding windows can efficiently operate while providing a high

quality approximation in query answering.

7.1 Future Directions

The ”possible world” semantics are a convenient model for uncertain data

series. The experiments show that representing the possible instantiations

using a set of series to represent the full-joint distribution of uncertain

data series can lead to more accurate results and computationally effi-

142

Chapter 7 7.1. Future Directions

cient algorithms. As verified in the experiments, the moving average can

leverage the correlation of the values at neighboring time-stamps to reduce

the uncertainty along the series. In this thesis we haven’t experimented

with the combination of these two interesting results. In particular, the

series-uncertainty model presented in Chapter 5 can be combined with

traditional machine learning models for time series such as Markov models

and Bayesian networks. For example, an instantiation of the uncertain

series can be modeled by a hidden Markov model. Consequently, an un-

certain series can be modeled by a set of hidden Markov models. The

resulting hidden Markov models can be further unified in a more general

model, that describes the complex underlying dynamics of the series and

its uncertainty.

The top-k nearest neighbor formulation considered in Chapter 5 may

produce inaccurate results if used as a NN classifier. Accordingly to Def-

inition 5.1.1), the nearest neighbor is the uncertain series whose samples

are among the closest to the query. However, if one sample from candi-

date i is the closest to the query and the next k closest samples belong

to candidate j 6= i, which is the correct uncertain series to be returned as

nearest neighbor? The query may be a legitimate sample of candidate i but

uncertain series j would be incorrectly returned as nearest neighbor. The

algorithm Holistic-kNN proposed in Chapter 5 can be revised to consider

quantiles of the distance distributions to mitigate the problem. We note

that the distance samples are maintained in sorted lists in our proposal, a

convenient representation to determine the quantiles efficiently.

In data stream applications, uncertainty can propagate through the dif-

ferent stream operators. Adapting sliding windows to support uncertain

data is a significant step toward an uncertainty-aware data stream process-

ing system. However, little work has been done to study the implications

of uncertainty on the composition of multiple stream operators. An ex-

143

7.1. Future Directions Chapter 7

haustive enumeration of all the possible combinations under the ”possible

world” model may not be a practical solution in many scenarios. A statis-

tical approach based on sampling and Monte Carlo simulations can be an

interesting direction to investigate further.

144

Bibliography

[1] Keogh, E., Xi, X., Wei, L. & Ratanamahatana, C. A.

(2006). The UCR Time Series Classification/Clustering Homepage:

www.cs.ucr.edu/˜eamonn/ time series data/. Accessed on 17 May

2011.

[2] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur

Çetintemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lind-

ner, Anurag Maskey, Alex Rasin, Esther Ryvkina, Nesime Tatbul,

Ying Xing, and Stanley B. Zdonik. The design of the borealis stream

processing engine. In Conference on Innovative Data Systems Re-

search (CIDR), pages 277–289, January 2005.

[3] Charu C. Aggarwal. On unifying privacy and uncertain data models.

In ICDE, pages 386–395, 2008.

[4] Charu C. Aggarwal. Managing and Mining Uncertain Data, vol-

ume 35 of Advances in Database Systems. Kluwer, 2009.

[5] Charu C. Aggarwal and Philip S. Yu. A framework for clustering

uncertain data streams. In IEEE ICDE, 2008.

[6] Charu C. Aggarwal and Philip S. Yu. A survey of uncertain data algo-

rithms and applications. IEEE Trans. Knowl. Data Eng., 21(5):609–

623, 2009.

145

Bibliography Chapter 7

[7] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth,

Shubha U. Nabar, Tomoe Sugihara, and Jennifer Widom. Trio: A

system for data, uncertainty, and lineage. In VLDB, pages 1151–1154,

2006.

[8] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search

in sequence databases. Foundations of Data Organization and Algo-

rithms, 1993.

[9] Fabrizio Angiulli and Fabio Fassetti. Indexing uncertain data in gen-

eral metric spaces. IEEE Trans. Knowl. Data Eng., 24(9):1640–1657,

2012.

[10] Lyublena Antova, Christoph Koch, and Dan Olteanu. Query lan-

guage support for incomplete information in the maybms system. In

VLDB, pages 1422–1425, 2007.

[11] Johannes Aßfalg, Hans-Peter Kriegel, Peer Kröger, and Matthias

Renz. Probabilistic similarity search for uncertain time series. In

SSDBM, pages 435–443, 2009.

[12] O. Benjelloun, A.D. Sarma, A. Halevy, and J. Widom. Uldbs:

Databases with uncertainty and lineage. In VLDB, 2006.

[13] Donald J. Berndt and James Clifford. Using dynamic time warping

to find patterns in time series. In KDD Workshop, pages 359–370,

1994.

[14] Donald J Berndt and James Clifford. Using dynamic time warping

to find patterns in time series. In KDD workshop, 1994.

[15] Thomas Bernecker, Hans-Peter Kriegel, Matthias Renz, Florian Ver-

hein, and Andreas Züfle. Probabilistic frequent itemset mining in

uncertain databases. In KDD, pages 119–128, 2009.

146

Chapter 7 Bibliography

[16] George Beskales, Mohamed A. Soliman, and Ihab F. Ilyas. Effi-

cient search for the top-k probable nearest neighbors in uncertain

databases. PVLDB, 1(1):326–339, 2008.

[17] Alain Biem, Eric Bouillet, Hanhua Feng, Anand Ranganathan, Anton

Riabov, Olivier Verscheure, Haris Koutsopoulos, and Carlos Moran.

IBM Infosphere Streams for scalable, real-time, intelligent trans-

portation services. In ACM SIGMOD, 2010.

[18] C. Bohm, A. Pryakhin, and M. Schubert. The gauss-tree: Efficient

object identification in databases of probabilistic feature vectors. In

IEEE ICDE, 2006.

[19] Toon Calders, Calin Garboni, and Bart Goethals. Approximation

of frequentness probability of itemsets in uncertain data. In Data

Mining (ICDM), 2010 IEEE 10th International Conference on, pages

749–754. IEEE, 2010.

[20] A. Camerra, T. Palpanas, J. Shieh, and E. Keogh. isax 2.0: Indexing

and mining one billion time series. In Data Mining (ICDM), 2010

IEEE 10th International Conference on, 2010.

[21] Matteo Ceriotti, Michele Corra, Leandro D’Orazio, Roberto

Doriguzzi, Daniele Facchin, Stefan Guna, Gian Paolo Jesi, Renato Lo

Cigno, Luca Mottola, Amy L. Murphy, Massimo Pescalli, Gian Pietro

Picco, Denis Pregnolato, and Carloalberto Torghele. Is There Light

at the Ends of the Tunnel? Wireless Sensor Networks for Adaptive

Lighting in Road Tunnels. In International Conference on Informa-

tion Processing in Sensor Networks (IPSN), pages 187–198, 2011.

[22] Kin-Pong Chan and Ada Wai-Chee Fu. Efficient time series matching

by wavelets. In Data Engineering, 1999. Proceedings., 15th Interna-

tional Conference on, pages 126–133. IEEE, 1999.

147

Bibliography Chapter 7

[23] K.P. Chan and A.W.C. Fu. Efficient time series matching by wavelets.

In ICDE, pages 126–133. IEEE, 2002.

[24] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis

Marroqúın. Searching in metric spaces. ACM Computing Surveys

(CSUR), 33(3):273–321, 2001.

[25] Lei Chen, M Tamer Özsu, and Vincent Oria. Robust and fast sim-

ilarity search for moving object trajectories. In Proceedings of the

2005 ACM SIGMOD international conference on Management of

data, pages 491–502. ACM, 2005.

[26] R. Cheng, D.V. Kalashnikov, and S. Prabhakar. Querying imprecise

data in moving object environments. IEEE Transactions on Knowl-

edge and Data Engineering, 16(9):1112–1127, September 2004.

[27] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J.S. Vitter. Efficient

indexing methods for probabilistic threshold queries over uncertain

data. In Proceedings of the Thirtieth international conference on Very

large data bases-Volume 30, pages 876–887. VLDB Endowment, 2004.

[28] Reynold Cheng, Jinchuan Chen, Mohamed F. Mokbel, and Chi-

Yin Chow. Probabilistic verifiers: Evaluating constrained nearest-

neighbor queries over uncertain data. In ICDE, pages 973–982, 2008.

[29] Paolo Ciaccia and Marco Patella. Bulk loading the m-tree. In

Proceedings of the 9th Australasian Database Conference (ADC98),

pages 15–26, 1998.

[30] X. Dai, M. Yiu, N. Mamoulis, Y. Tao, and M. Vaitis. Probabilistic

spatial queries on existentially uncertain data. In SSTD, 2005.

148

Chapter 7 Bibliography

[31] Michele Dallachiesa, Besmira Nushi, Katsiaryna Mirylenka, and

Themis Palpanas. Uncertain time-series similarity: Return to the

basics. PVLDB, 5(11):1662–1673, 2012.

[32] Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on proba-

bilistic databases. In VLDB, pages 864–875, 2004.

[33] Nilesh N. Dalvi and Dan Suciu. Management of probabilistic data:

foundations and challenges. In PODS, pages 1–12, 2007.

[34] Gautam Das, Dimitrios Gunopulos, and Heikki Mannila. Finding

similar time series. Principles of Data Mining and Knowledge Dis-

covery, pages 88–100, 1997.

[35] Constantinos Daskalakis, Ilias Diakonikolas, and Rocco A Servedio.

Learning poisson binomial distributions. In Proceedings of the 44th

symposium on Theory of Computing, pages 709–728. ACM, 2012.

[36] Yanlei Diao, Boduo Li, Anna Liu, Liping Peng, Charles Sutton,

Thanh T. L. Tran, and Michael Zink. Capturing data uncertainty

in high-volume stream processing. In CIDR, 2009.

[37] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh.

Querying and mining of time series data: experimental comparison

of representations and distance measures. PVLDB, 2008.

[38] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast sub-

sequence matching in time-series databases. SIGMOD Conference,

23(2):419–429, 1994.

[39] M. Fernandez and S. Williams. Closed-form expression for the

poisson-binomial probability density function. IEEE Transactions

on Aerospace and Electronic Systems, 46(2), 2010.

149

Bibliography Chapter 7

[40] Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu.

Privacy-preserving data publishing: A survey of recent developments.

ACM Comput. Surv., 42(4), 2010.

[41] Ariel Fuxman, Elham Fazli, and Renée J Miller. Conquer: Efficient

management of inconsistent databases. In Proceedings of the 2005

ACM SIGMOD international conference on Management of data,

pages 155–166. ACM, 2005.

[42] B. Gedik. A windowing library for extensible stream processing sys-

tems. Software: Practice & Experience, 2013.

[43] Bugra Gedik and Henrique Andrade. A model-based framework for

building extensible, high performance stream processing middleware

and programming language for IBM InfoSphere Streams. Software -

Practice and Experience Journal, Wiley, 42(11), 2012.

[44] J.Y. Halpern. Reasoning about uncertainty. MIT Press, 2003.

[45] M.P. Hamilton, E.A. Graham, P.W. Rundel, M.F. Allen, W. Kaiser,

M.H. Hansen, and D.L. Estrin. New Approaches in Embedded Net-

worked Sensing for Terrestrial Ecological Observatories. Environmen-

tal Engineering Science, 24(2), 2007.

[46] Martin Hirzel, Henrique Andrade, Bugra Gedik, Vibhore Kumar,

Giuliano Losa, Mark Mendell, Howard Nasgaard, Robert Soulé, and

Kun-Lung Wu. SPL stream processing language specification. Tech-

nical Report RC24897, IBM Research, 2009.

[47] Y. Hong. On computing the distribution function for the sum of

independent and non-identical random indicators. Technical report,

Department of Statistics, Virginia Tech, 2011.

150

Chapter 7 Bibliography

[48] Ihab F Ilyas, George Beskales, and Mohamed A Soliman. A survey

of top-k query processing techniques in relational database systems.

ACM Computing Surveys (CSUR), 40(4):11, 2008.

[49] T. S. Jayram, Andrew McGregor, S. Muthukrishnan, and Erik Vee.

Estimating statistical aggregates on probabilistic data streams. In

Proceedings of the 26th ACM Symposium on Principles of Database

Systems (PODS’07), pages 243–252, New York, NY, USA, 2007.

ACM.

[50] Jeffrey Jestes, Graham Cormode, Feifei Li, and Ke Yi. Semantics

of ranking queries for probabilistic data. IEEE Trans. Knowl. Data

Eng., 23(12):1903–1917, 2011.

[51] Cheqing Jin, Ke Yi, Lei Chen, Jeffrey Xu Yu, and Xuemin Lin.

Sliding-window top-k queries on uncertain streams. Proceedings of

the VLDB Endowment, 1(1):301–312, 2008.

[52] D.V. Kalashnikov, Y. Ma, S. Mehrotra, and R. Hariharan. Index

for fast retrieval of uncertain spatial point data. In Proceedings of

the 14th annual ACM international symposium on Advances in geo-

graphic information systems, pages 195–202. ACM, 2006.

[53] B. Kanagal and A. Deshpande. Online filtering, smoothing and prob-

abilistic modeling of streaming data. In IEEE ICDE, 2008.

[54] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimension-

ality reduction for fast similarity search in large time series databases.

Knowledge and Information Systems, 3(3):263–286, 2001.

[55] Donald E. Knuth. The Art of Computer Programming, Volume III:

Sorting and Searching. Addison-Wesley, 1973.

151

Bibliography Chapter 7

[56] Hans-Peter Kriegel, Peter Kunath, and Matthias Renz. Probabilistic

nearest-neighbor query on uncertain objects. In DASFAA, pages 337–

348, 2007.

[57] H.P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. Probabilistic sim-

ilarity join on uncertain data. In Database Systems for Advanced

Applications, pages 295–309. Springer, 2006.

[58] L. Krishnamurthy, R. Adler, P. Buonadonna, J. Chhabra, M. Flani-

gan, N. Kushalnagar, L. Nachman, and M. Yarvis. Design and de-

ployment of industrial sensor networks: experiences from a semi-

conductor plant and the north sea. In Embedded networked sensor

systems, pages 64–75. ACM, 2005.

[59] W. Kuo and M.J. Zuo. Optimal reliability modeling: principles and

applications. John Wiley & Sons, 2003.

[60] Carson Kai-Sang Leung and Boyu Hao. Mining of frequent itemsets

from streams of uncertain data. In IEEE ICDE, 2009.

[61] X. Lian and L. Chen. Similarity join processing on uncertain data

streams. IEEE Transactions on Knowledge and Data Engineering,

2010.

[62] Xiang Lian and Lei Chen. Probabilistic ranked queries in uncertain

databases. In EDBT, pages 511–522, 2008.

[63] Xiang Lian and Lei Chen. Efficient join processing on uncertain data

streams. In CIKM, pages 857–866, 2009.

[64] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing SAX: a novel

symbolic representation of time series. Data Mining and Knowledge

Discovery, 15(2):107–144, 2007.

152

Chapter 7 Bibliography

[65] V. Ljosa and A.K. Singh. APLA: Indexing arbitrary probability dis-

tributions. In Data Engineering, 2007. ICDE 2007. IEEE 23rd In-

ternational Conference on, pages 946–955. IEEE, 2007.

[66] Chunyang Ma, Hua Lu, Lidan Shou, Gang Chen, and Shujie Chen.

Top-k similarity search on uncertain trajectories. In SSDBM, pages

589–591, 2011.

[67] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis

of the clustering properties of the hilbert space-filling curve. IEEE

TKDE, 13(1), 2001.

[68] Y.S. Moon, K.Y. Whang, and W.S. Han. General match: a subse-

quence matching method in time-series databases based on general-

ized windows. In SIGMOD Conference, pages 382–393. ACM, 2002.

[69] Y.S. Moon, K.Y. Whang, and W.K. Loh. Duality-based subsequence

matching in time-series databases. In ICDE, pages 263–272. IEEE,

2002.

[70] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed

stream computing platform. In International Workshop on Knowl-

edge Discovery Using Cloud and Distributed Computing Platforms

(KDCloud 2010), pages 170–177, December 2010.

[71] Roar Nybø. Time series opportunities in the petroleum industry. In

ESTSP 08, European Symposium on Time Series Prediction, Porvoo,

Finland., 2008.

[72] Marco Patella Paolo Ciaccia and Pavel Zezula. M-tree: An efficient

access method for similarity search in metric spaces. In VLDB, pages

426–435, 1997.

153

Bibliography Chapter 7

[73] Spiros Papadimitriou, Feifei Li, George Kollios, and Philip S. Yu.

Time series compressibility and privacy. In VLDB, 2007.

[74] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gus-

tavo Batista, Brandon Westover, Qiang Zhu, Jesin Zakaria, and Ea-

monn Keogh. Searching and mining trillions of time series subse-

quences under dynamic time warping. In Proceedings of the 18th

ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 262–270. ACM, 2012.

[75] Usman Raza, Alessandro Camerra, Amy L. Murphy, Themis Pal-

panas, and Gian Pietro Picco. What does model-driven data ac-

quisition really achieve in wireless sensor networks? In PERCOM,

2012.

[76] Christopher Re, Nilesh Dalvi, and Dan Suciu. Efficient top-k query

evaluation on probabilistic data. In Data Engineering, 2007. ICDE

2007. IEEE 23rd International Conference on, pages 886–895. IEEE,

2007.

[77] Christopher Ré, Julie Letchner, Magdalena Balazinska, and Dan Su-

ciu. Event queries on correlated probabilistic streams. In ACM SIG-

MOD, 2008.

[78] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries.

In SIGMOD Conference, pages 71–79. ACM, 1995.

[79] S.R. Sarangi and K. Murthy. DUST: a generalized notion of similarity

between uncertain time series. In SIGKDD, pages 383–392. ACM,

2010.

[80] Jin Shieh and Eamonn J. Keogh. iSAX: indexing and mining terabyte

sized time series. In KDD, pages 623–631, 2008.

154

Chapter 7 Bibliography

[81] Sarvjeet Singh, Chris Mayfield, Sagar Mittal, Sunil Prabhakar, Su-

sanne E. Hambrusch, and Rahul Shah. Orion 2.0: native support for

uncertain data. In SIGMOD Conference, pages 1239–1242, 2008.

[82] Sarvjeet Singh, Chris Mayfield, Rahul Shah, Sunil Prabhakar, Su-

sanne E. Hambrusch, Jennifer Neville, and Reynold Cheng. Database

support for probabilistic attributes and tuples. In IEEE ICDE, 2008.

[83] Mohamed A. Soliman, Ihab F. Ilyas, and Kevin Chen-Chuan Chang.

Top-k query processing in uncertain databases. In ICDE, pages 896–

905, 2007.

[84] Daby Sow, Alain Biem, Marion Blount, Maria Ebling, and Olivier

Verscheure. Body sensor data processing using stream computing. In

Proceedings of the International Conference on Multimedia Informa-

tion Retrieval (MIR’10), pages 449–458, New York, NY, USA, 2010.

ACM.

[85] Michael Stonebraker, Jacek Becla, David J. DeWitt, Kian-Tat Lim,

David Maier, Oliver Ratzesberger, and Stanley B. Zdonik. Require-

ments for science data bases and scidb. In CIDR, 2009.

[86] Dan Suciu, Andrew Connolly, and Bill Howe. Embracing uncertainty

in large-scale computational astrophysics. In MUD, pages 63–77,

2009.

[87] Liwen Sun, Reynold Cheng, David W Cheung, and Jiefeng Cheng.

Mining uncertain data with probabilistic guarantees. In Proceedings

of the 16th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 273–282. ACM, 2010.

155

Bibliography Chapter 7

[88] Y. Tao, R. Cheng, X. Xiao, W.K. Ngai, B. Kao, and S. Prabhakar.

Indexing multi-dimensional uncertain data with arbitrary probability

density functions. In VLDB, 2005.

[89] Goce Trajcevski, Alok N. Choudhary, Ouri Wolfson, Li Ye, and Gang

Li. Uncertain range queries for necklaces. In Mobile Data Manage-

ment, pages 199–208, 2010.

[90] Thanh T Tran, Liping Peng, Yanlei Diao, Andrew McGregor, and

Anna Liu. Claro: modeling and processing uncertain data streams.

The VLDB JournalThe International Journal on Very Large Data

Bases, 21(5):651–676, 2012.

[91] Thanh TL Tran, Liping Peng, Boduo Li, Yanlei Diao, and Anna Liu.

Pods: a new model and processing algorithms for uncertain data

streams. In Proceedings of the 2010 ACM SIGMOD International

Conference on Management of data, pages 159–170. ACM, 2010.

[92] Liang Wang, D Cheung, Reynold Cheng, S Lee, and Xuan Yang.

Efficient mining of frequent itemsets on large uncertain databases.

2012.

[93] L. Wei, E. Keogh, H. Van Herle, and A. Mafra-Neto. Atomic wedgie:

efficient query filtering for streaming time series. In Data Mining,

Fifth IEEE International Conference on, 2005.

[94] Kun-Lung Wu, Philip S. Yu, Bugra Gedik, Kirsten Hildrum,

Charu C. Aggarwal, Eric Bouillet, Wei Fan, David George, Xiaohui

Gu, Gang Luo, and Haixun Wang. Challenges and experience in pro-

totyping a multi-modal stream analytic and monitoring application

on System S. In VLDB, 2007.

156

Chapter 7 Bibliography

[95] M.Y. Yeh, K.L. Wu, P.S. Yu, and M.S. Chen. PROUD: a probabilistic

approach to processing similarity queries over uncertain data streams.

In EDBT, pages 684–695. ACM, 2009.

[96] M. Youssef, M. Mah, and A. Agrawala. Challenges: device-free pas-

sive localization for wireless environments. In ACM MOBICOM,

2007.

[97] Qin Zhang, Feifei Li, and Ke Yi. Finding frequent items in probabilis-

tic data. In Proceedings of the 2008 ACM International Conference

on Management of data (SIGMOD08), pages 819–832, New York,

NY, USA, 2008. ACM.

[98] Wenjie Zhang, Xuemin Lin, Ying Zhang, Wei Wang, and Jeffrey Xu

Yu. Probabilistic skyline operator over sliding windows. In IEEE

ICDE, 2009.

[99] Yuchen Zhao, Charu C. Aggarwal, and Philip S. Yu. On wavelet

decomposition of uncertain time series data sets. In CIKM, pages

129–138, 2010.

[100] Zongheng Zhou, Himanshu Gupta, Samir R. Das, and Xianjin Zhu.

Slotted scheduled tag access in multi-reader rfid systems. In IEEE

ICNP, 2007.

157

