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SUMMARY 

This study concerns seismic vulnerability assessment of masonry arch bridges with 

common typologies in Europe. Bridges are, in most cases, the most vulnerable 

elements in the transportation network during an earthquake; therefore, their seismic 

vulnerability assessment is necessary for a proper planning of the emergency phase 

and to define a priority for retrofit interventions. 

Masonry arch bridges were subdivided into homogeneous classes of single span and 

multi-span structures, according to the result of a statistical analysis made up of a 

large stock of 757 railway bridges located in high seismic areas. 

All the different collapse mechanisms for seismic action were studied for each class 

of masonry arch bridges with application of limit analysis and the calibration with 

FEM. In particular, limit analysis methods for the seismic assessment of single and 

multi spans bridges were developed. A innovative limit analysis approach was 

proposed for the assessment of the global transverse seismic capacity of multi-span 

masonry bridges with slender piers.  

Envelope curves representing the seismic capacity expressed in terms of limit 

horizontal acceleration were derived by parametrical analysis by means of simplified 

limit analysis. These curves can be used for a simplified vulnerability assessment of 

masonry arch bridges and for a simple calibration of the judgment obtained by BMS 

through inspection visits to bridges. 

In the second part of the study, a new simplified approach for the fast calculation of 

seismic fragility curves of numerous masonry arch bridge clusters is proposed. 

The aim of this thesis is to propose a quickly procedure to estimate the seismic 

vulnerability of extended roadway and railway bridge networks in emergency 

conditions and to optimize the retrofit interventions. 
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1 INTRODUCTION 

The European railway network is characterised by the presence of 

thousands of masonry arched structures (about 200000, SB-ICA, 2007), 

and the majority of them are more than one hundred years old (over 

60%, Melbourne, 2007). The condition of Italian railway network is not 

better than the European one. We have more than 11250 masonry 

bridges of medium-long span (L>5m, see Fig. 1.1) and if we consider 

also the secondary structures, i.e. shorter bridges with span length 

L<5m, the amount of masonry bridges reaches a total of 56370 units. 

This means that in Italy there is a total length of over 427 km of railway 

lines on masonry arches (Cocciaglia and  Mosca, 1998). 

 

 

L 

(m) 

No. No.  

(%) 

Ltot 

(km) 

≤5 45.118 80.0 139.12 

5<L≤15 8308 14.7 68.58 

15<L≤30 1164 2.1 22.08 

L>30 1783 3.2 197.57 

 56373 100 427.35 
 

Fig. 1.1 Masonry arch bridges of Italian railway network (Cocciaglia and Mosca, 
1998) 

 

Many of these structures are located on major railway lines in medium-

high seismic areas. It is evident that suitable methods are required for 

preliminary seismic vulnerability assessment of masonry bridges, to 

understand when more detailed analyses are necessary and to know the 

priority of interventions. 

A preliminary evaluation has to be based only on data gathered by bridge 

inventories and safety analyses have to be planned on a large-scale for 

thousands of structures, so the use of quick simplified procedures is 

predominant. 
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Most of currently available Bridge Management Systems (BMS) are 

based on information obtained by visual inspections (BRIME 2001), 

including Pontis (Thompson et al., 1998), BRIDGIT (Hawk and Small, 

1998), the Danish DANBRO (Gharib, 2002) and others, as well as the 

inspection procedures (FS, Istruzioni 44C, 2013) used by the Italian 

Railway Network Authority (RFI).  

It seems reasonable and quite inexpensive for the managing authority 

that simple geometric data can be integrated in the Masonry Bridge 

Database (MBD). 

These information represent a sufficient set of input data to be applied 

in the proposed graphical iterative procedure based on limit analysis 

approach for the preliminary seismic assessment of masonry bridges. 

A large stock of 757 railway bridges located in high seismic areas are 

selected as representative of the typological characteristics of masonry 

bridges.  

Masonry arch bridges were subdivided into homogeneous classes of 

single span and multi-span structures, according to the result of a 

statistical analysis of the stock. 

All the different collapse mechanisms for seismic action of each class of 

masonry arch bridges were studied, with the application of limit analysis 

and the calibration with FEM . In particular we developed limit analysis 

methods for the seismic assessment of single and multi spans bridges. 

In this study the analysis of global (in-plane) collapse mechanisms of 

multi-spans bridges and an iterative procedure for the design of thrust 

line were proposed and developed. 

Moreover an innovative limit analysis approach was proposed for the 

assessment of the global transverse seismic capacity of multi-span 

masonry bridges with slender piers. This approach derived from the 

association of some typical aspects of the limit analysis and some 

concepts of the pushover analysis.  
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Subsequently a parametrical analysis using simplified limit analysis was 

performed for each class, to calculate the seismic capacity of the 

bridges. Appropriate ranges for geometrical and mechanical 

parameters, i.e. span length, arch thickness, span-to-rise ratio, pier 

height, etc. were considered, and the limit horizontal load multiplier was 

calculated for each relevant seismic collapse mechanism. Envelope 

curves representing the seismic capacity expressed in terms of limit 

horizontal acceleration were derived. These curves can be used for a 

simplified vulnerability assessment of railway masonry arch bridges. The 

input data necessary for the use of envelope curves are easily detectable 

from geometric parameters of the bridges.  

A simple calibration of the judgment obtained by BMS through inspection 

visits to bridges was presented in order to considered the intrinsic 

seismic vulnerability of some masonry bridges located in high seismic 

risk area. 

In this way is possible to guarantee a priority of intervention at those 

bridges that have in the same time an evident state of degrade and/or a 

high seismic vulnerability. 

In the second part of the study, a new simplified approach for the fast 

calculation of seismic fragility curves of numerous masonry arch bridge 

clusters is proposed. The aim of this proposal is to provide useful 

information for the fast seismic vulnerability assessment of single-span 

masonry arch bridges in the context of territorial scale analyses. This is 

possible through the grouping of bridges in classes characterised by 

similar structural features.  

These guidelines allow to quickly estimate the seismic vulnerability of 

extended roadway and railway bridge networks in emergency and to 

optimize the retrofit intervention. Considering the high percentage of 

bridges characterised by single span in European transportation 

infrastructural networks, the results of this study should be interesting. 
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This methodology can be applied at regional level for the vulnerability 

assessment of transportation networks with regard to the specific 

scenario earthquakes formulated. 

It would allow us to better manage the phase after the main shock so 

that it should be possible to rationalise resources for the assessment of 

bridges in the post-seismic, to close the most vulnerable railway network 

or road network and to maintain the use of the most secure one.  
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Fig. 1.2 - Thesis flowchart



 

2 MASONRY ARCH BRIDGES 

 Masonry Arch bridges 

 

Old masonry and stone arch bridges currently represent a large proportion of the 

Europe road and railway bridge stock. Most modern masonry arch bridges are part 

of the historical heritage of the 19th century and the most important were built 

between the second half of the nineteenth century and the first half of the twentieth. 

In the same period the actual railway network was also built in the most part of 

Europe. 

 

 
Fig. 2.1 Typical structures of a multi-span railway arch bridge (Orbán & Gutermann, 2009). 
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The main elements of a masonry railway arch bridge are: 

 

Arch barrel: 

The arch barrel is the main element for the load bearing capacity of an arch bridge.  

It transfers death and live loads to the abutments and then to the foundations. 

The vault can be designed with various shapes distinct by the rise to span ratio r/s; 

the most common shapes are: semi-circular, parabolic, segmental, elliptical, gothic 

pointed. 

The semi-circular arch was largely used especially in the case of viaducts. During the 

construction, the vaults are not built all at the same time: semi-circular arch pushes 

less than other configurations, so it induces the minimum bending stress in the pier 

in which the work was stopped.   

The gothic pointed shape is usually realised when there is a concentrated force on 

the key stone. It transfers less pressure to the piers but it needs more space in height. 

Materials depend on the age of construction and the geographic location: they can 

include stone voussoirs, random rubble and individual or bonded brickwork or 

concrete rings. 

 
Fig. 2.2  Masonry vault shapes 

 

Spandrel  wall and wing wall: 

Spandrel wall contain the fill and the backfill material over the arches. In addition it 

provides additional stiffness for the structures, which sometimes may be increased 

with an internal spandrel wall that can also reduce the horizontal soil pressures on 

the external spandrel walls. 
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Wing walls restrain the fill behind the abutments and may also increase their stability. 

They are usually inclined between 60 and 80 degrees from the axis of the bridge. 

Like in spandrel wall also in wing walls there may be an internal wall with the function 

to decrease the pressure of the ground. 

 

Backfill: 

The fill above the vault distributes live loads and gives stability to the arch due to its 

weight; in addition it provides passive reaction against large movements hindering 

the collapse mechanism. 

 

Backing: 

The backing is usually made up of a high quality soil or a poor masonry and it is 

located between arches over the piers and the abutment. Generally, backing 

increases the load-bearing capacity because it resists to the collapse mechanism 

activated by horizontal loads. 

A waterproofing membrane is usually placed between backing and backfill, but often 

it is deteriorated and no longer effective. 

 

Abutments: 

Abutments provide horizontal and vertical resistance for the arch or arches in multi-

span bridges and transfer loads to the foundations. They have the function of 

containing the soil and this is the reason why they usually have a considerable size. 

Due to the large amount of material required, low quality masonry is often used 

except for the area under the springing. There may be a change of the arrangement 

of the masonry under the springing to allow a better load transfer from the arch to the 

abutment.  

 
Fig. 2.3  Arrangement of masonry between arch and abutment 
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Fig. 2.4  Water drainage system in masonry arch bridges 

 

Piers: 

Arches in multi-span bridge are supported by piers. The cross section of piers may 

be homogeneous, hollowed or filled with lighter material. For heights greater than 15 

meters they are often tapered to lighten and to reduce the amount of materials used. 

Long bridges with many spans have often a pier (or piers) with a greater section used 

as an abutment. This pier may resist to the horizontal pressure which arises in case 

of vault collapse; it resists also to the actions arising during the construction of the 

bridge. 

 

Deep foundations: 

Deep foundations on timber piles have been used since Roman times. Usually the 

diameter was between 20 and 30 cm and length till 10 m. Piles were driven into the 

ground with a regular pattern of 80 - 150 cm. In the presence of water cofferdams 

made of wood formworks can be used, to go deeply under the river bed and provide 

a dry working area. Tender stones and mortar were placed between the upper side 

of the piles to connect and lock themselves; a wood boarding was built over the heads 

to spread loads. 

 

Shallow foundations: 

When the load bearing soil is near to the ground level it is common to find spread 

footing foundations. In general, they were made with big block of stones to guarantee 

the required stiffness. If it was possible to dig the bottom of the watercourse until the 

bedrock, concrete was used.  
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 Methods of analysis 

 

2.2.1 Limit analysis 

 

It is well known that the arch structures behaviour is not governed by materials 

strength but by their geometry. This characteristic is the basis of limit analysis 

method. This approach generally does not require materials and mechanical 

properties for the bearing capacity assessment because the evaluation is done only 

considering  arch geometry and acting load (Clemente, et al., 1995).  

Simplicity and speed have made limit analysis suitable for a preliminary estimation of 

the load-carrying capability of masonry arches and multi-span bridges but this 

method is not accurate for a structure with complex geometry, boundary conditions 

and redundancy. 

The theoretical bases derive from plastic theory formulated for steel structures. In the 

mid-20th century many authors (Kooharian, 1952; Heyman, 1966) provided that it 

could be applied to masonry gravity structures such as masonry arch bridge. 

The hypotheses made by Heyman to simplify the problem were: 
 the masonry in the arch has infinite compressive strength ; 
 the masonry in the arch has no tensile strength;  
 sliding between masonry units cannot occur. 

 
Fig. 2.5 Trust line at collapse 

 

The first statement may be considered correct because the actual stresses, generally 

in masonry bridges, are one or two orders of magnitude lower than compressive 

strength of the material itself. Anyway this assumption should be checked at the end 

of the analysis. The second statement in some cases is conservative; actually, the 

‐1

1

3

5

‐1 1 3 5 7 9 11 13 15 17

Line of the Thrust
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joints between voussoirs may be dry or made with a weak mortar. The last 

assumption is related with the high coefficient of friction of masonry (µ = 0,6 - 0,7).  

 

In the context of masonry gravity structures, for ultimate collapse the following 

conditions may be used to test: 

 
 Equilibrium condition: Computed internal actions must represent a state of 

equilibrium between the internal and external loads. 
 Mechanism condition: Sufficient releases must be made to transform the 

structure into a mechanism; this happens when the line of thrust touches 
exterior faces of the masonry blocks. 

 Yield condition: The stresses in the material must be everywhere less than 
or equal to the material strength (e.g. shear, crushing and tensile strength 
limits must all be respected). 

The possibility to find an exact solution is provided from the three fundamental 

theorems of plastic analysis, which can be stated in an easier way inserting the load 

factor λ, multiplier of the agent load on the structure. The theorems are: 

Static or lower bound theorem If at any load factor λ the equilibrium and yield 

conditions are everywhere satisfied, then λ= λl which is less than or equal to the 

failure load factor λp. 

Kinematic or upper bound theorem If at any load factor λ is equal to the work done in 

plastic energy dissipation, then λ = λu which is greater than or equal to the failure load 

factor λp. 

Uniqueness theorem if at any load factor λ, the internal stress state is such that the 

three conditions of equilibrium, mechanism, and yield are satisfied then that load 

factor is the collapse load factor λp. 
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Fig. 2.6 The relationship between upper and lower bound solutions (Gilbert, 2007) 

 

Under these hypotheses, the arch collapses only when a certain number of hinges 

transform the structure into a mechanism (Sinopoli, et al., 1998). For a single arch 

generally the collapse occurs when four hinges are formed and three are aligned. 

Under these hypotheses the yield surface is bounded between two straight lines with 

equations: 

 

M h N           (2.1) 

 

h is the half thickness of an arch brick and M is the product of the normal force N by 

the eccentricity e. The eccentricity must satisfy the condition to not form a hinge 

between blocks: 

 

h e h            (2.2) 
 

In reality, the material has a finite strength, so the yield surface is individuated by two 

curves, but, since the normal agent force is much smaller than the critic normal force, 

the two boundary conditions can be considered equal near the origin (Hayman, 

1982). 
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Fig. 2.7 Contact surface moment vs. normal force failure envelopes (Gilbert, 2007) 

 

Many studies have followed the work of Heyman to include the effective resistance 

of the masonry and to consider the sliding failure mechanism (Livesley, 1978; Gilbert 

& Melbourne, 1994), but, as Drucker pointed out (Drucker, 1954), the inclusion of 

these invalidate the bounding theorems and lead to unsafe load factor. 

The interaction with the soil surrounding the arch barrels has also been taken into 

account, including the effect of live load spreading through the fill and of passive fill 

thrust with different load spreading models (Cavicchi & Gambarotta, 2005; 2007). 

 

 

2.2.2 Finite element analysis 

 

Since the birth of the finite element method, much research has been done in the 

field of masonry arches bridges and nowadays it is the common analysis method for 

this kind of structures. 

The Finite Element Method is based on stress analysis. An adequate research on 

materials properties and especially on existing damage, environmental factors and 

lack of maintenance must be done to determinate the input parameters and to 

develop a realistic simulation. This estimation is often difficult because of the 

unavailability of certain data due to the lack of knowledge of such ancient structures.  

The characterisation of historic materials is important to know the initial stress state. 

It may be evaluated through tests in situ such as load test and the measurement of 

the relative displacement (e.g. flat-jack test (Binda & Tiraboschi, 1999; Oliveira, et al., 

2007)) or in laboratory such as mechanical tests on specimens picked up from the 

bridges (Hughes & Pritchard, 1998; Orbán & Gutermann, 2009). 
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Moderns techniques allow to investigate the internal geometry of the bridge with non-

destructive methods. The external appearance may be different from the real bearing 

structure e.g. internal spandrel walls, different thickness of the barrel from the 

keystone to the springing, different materials in piers and backfill. In addition to this, 

it is important to know if there is the presence of defects such as ring separation, 

empty space in the backfill or cracking in the arch extrados. The main non-destructive 

tests are Ground Penetrating Radar (GPR), infrared thermography and sonic 

methods (Orbán & Gutermann, 2009). 

When it is not possible to characterise materials properties, a sensitivity analysis with 

stochastic method (Schlegel & Will, 2007; Brencich, et al., 2007) is usually required. 

This one is used after an investigation of particular common properties of bridges in 

a specific geographical area (Oliveira, et al., 2010). 

Recently new modelling strategies have been developed for a deeper understanding 

of the structures as a whole. Therefore the interaction between soil and arch 

(Cavicchi & Gambarotta, 2005; Gilbert, et al., 2007; Wang & Melbourne, 2007), and 

the influence of spandrel walls (Cavicchi & Gambarotta, 2007; Harvey, et al., 2007) 

were studied with 2-D or 3-D finite elements. 

In addiction 1-D models have been developed, which allowed to have a limited 

computational effort, making the proposed strategy suitable for practical applications. 

Analysis done using fibre beam elements (de Felice, 2009) offers also a good 

compromise between simplicity and accuracy. The method takes into account the 

backfill and it considers the interaction between normal force and bending moment 

in the non-linear behaviour. 

 

2.2.3 Discrete element analysis 

 

Masonry peculiarity is that the joints between bricks form natural predefined planes 

of weakness and, in some cases, the assumption of homogenous and continuous 

material properties may not be valid.  

The first application of the method was proposed by Cundall (Cundal, 1971). He 

considered the material as a group of distinct rigid blocks linked together by joints. 

DEM analysis may assume rigid or deformable blocks. In addition, for the evaluation 

of masonry structures, there are two main features that must be undertaken (Al-Heib, 

2012). The first is that large displacement and rotations between blocks must be 

allowed, and the second is that the detection of new contacts must be automatic 

during the calculation. For these reason DEM method can simulate progressive 

failure because of crack propagation. 
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The calculation procedure used by DEM, in its basic application, uses both 

force/displacement law at all contacts and Newton's second law at all blocks. 

 

2.2.4 Discontinuous Deformation Analysis 

 

It is based on an assumed deformation field within distinct domains and a rigorous 

imposition of contact constraints (Shi, 1988), and it has been applied to stone arches 

in (Ma et al., 1995) to represent the possibility of sliding between blocks.  

 

 Main structural assessment method of masonry bridges 

 

2.3.1 MEXE method 

 

The MEXE method (Military Engineering eXperimental Establishment) is a simple 

method for the load carrying capacity assessment of historical arch bridges. It was 

originated from Pippard in the 1930s and it is based on the assumption of linear-

elastic behaviour of the material. It was widely used during the World War II for the 

load-bearing assessment under military loads. The method was modified several 

times during the years (Hughes & Blackler, 1997) till the current version given by the 

Department of Transport of UK. It can be quickly applied because it is based on 

empirical rules that depend from the arch span, arch thickness and the fill depth. In 

recent years, the method was criticised in particular with respect to load carrying 

capacity evaluation of short span bridges: the current version of MEXE overestimates 

the load carrying capacity of short span bridges, but for spans over 12m it becomes 

increasingly conservative (Melbourne, et al., 2009). 

 

2.3.2 “SMART” method 

 

The Sustainable Masonry Arch Resistance Technique or "SMART" method 

(Melbourne, et al., 2007) is a relatively new approach for the assessment of masonry 

arch bridge. Its purpose is to estimate the long-term service life, permissible loading 

limits and residual life. 

It is based on the analysis of the geometry, of material properties, of loads and of the 

modes of failure. In addition to the Ultimate Limit State (ULS) that define the collapse 

load it introduces the Permissible Limit State (PLS). 

 

 

 Typical deficiencies in masonry arch bridges 
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The main deficiencies in masonry arch bridges are broadly classified as damage to 

foundations and to superstructure. 

The most common defects in foundations include local undermining, differential 

settlements, and masonry dislocations due to loss of mortar joints. The main problem 

in identifying foundation damage is the difficulty of inspecting underground structures. 

Therefore, the first step in detecting problems in faulty foundation systems implies 

the observation and the analysis of how the superstructure behaves, i.e., the 

consequence of rotational or differential movements at foundation level. Due to their 

high stiffness and brittle structural behaviour, masonry bridges cannot generally 

absorb foundation settlements without structural damage. 

 

  

 

 
Fig. 2.8 Typical defects of masonry arch bridges. Loss of bricks, longitudinal cracking in barrel 
vault; opening of arch joints, salt efflorescence in bricks; penetration by vegetation. 

 

Superstructure defects (Fig. 2.8) are easier to detect by visual inspection. The main 

deficiencies are:  
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- deterioration of materials, such as degradation and loss of bricks, loss of mortar 

joints, and salt efflorescence in bricks, all often due to inadequate rainwater drainage, 

freeze-thaw cycles and penetrating vegetation;  

- arch barrel deformations, with longitudinal or transverse cracking; opening of arch 

joints, and separation between brick rings in multi-barrel vaults;  

- spandrel wall movements: sliding, bulging, or detachment from the barrel. Spandrel 

walls have little inertia and are generally weak elements with respect to out-of-plane 

behaviour (pressures orthogonal to spandrel walls are due not only to the weight of 

infill and traffic but also to horizontal transverse seismic action); 

- fractures in piers and wing walls; cracking. 

 Rehabilitation and retrofit strategies for masonry arch bridges: innovative vs. 

traditional 

Two main general approaches can be identified for masonry arches retrofitting: 

- strengthening, to recover and increase the load-bearing capacity of the original 

structure (by improving material properties and connections, thickening the old 

structure with the same materials, etc.);  

- resistant systems creation, that act in parallel with the old structure or directly 

increase the strength of original members (e.g., by adding tensile reinforcements in 

the original masonry section).  

The various techniques can often be used in combination; design choices also can 

be influenced by construction phases and requirements regarding possible closure 

to road traffic. For example, methods requiring work on the extrados may be 

considered for road bridges but cannot be countenanced for railway bridges, to avoid 

traffic interruptions. 

The most common techniques used for strengthening old masonry barrel vaults are:  

- old masonry arch thickening with new layers of bricks;  

- FRP strips application at the extrados of the barrel vault;  

- methods of masonry restoration, such as grout injections, repointing of stone joints 

with good-quality hydraulic lime mortar, crack stitching and patch repairs by manual 

methods;  

- internal brick spandrel walls construction, connected to the extrados of the vault. 

The new walls are stiff elements which tend to oppose antimetric deformation of 

vaults, contribute to bearing some of the loads, and enhance seismic resistance.  

Lateral spandrel walls have the same effects, since they work as rigid load-bearing 
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walls after rehabilitation and retrofitting of connections with arches (Tecchio et al., 

2012). 

Some common applications which introduce resistant systems are: 

- saddling (laying of a new rc slab) at the extrados of the vault; rc jacketing at the 

vault intrados; anchorage with (usually high-strength) steel bars;  

- prefabricated steel liners at the intrados, to support the vaults. 

Spandrel walls are generally critical in masonry bridges, because of their high 

vulnerability to out-of-plane actions. A significant increase in resistance can be 

obtained by the simple insertion of transversal stainless steel ties, which prevent them 

from overturning (Oliveira and Lourenço, 2004).  

For the rehabilitation of piers and abutments, in addition to traditional methods for 

masonry restoration, masonry post-tensioning techniques and jacketing works can 

be applied. Improved safety levels of foundations, underpinning and new foundations 

on micro-piles are often used. 
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3 ITALIAN RAILWAY MASONRY BRIDGE STOCK 

 Introduction 

 

Masonry bridges of the Italian railway system were mostly built over a century, in the 

period 1840-1930, according to typologies and design rules given by the Railway 

Manual of Practice in use (Italian State Railways, 1907). This led to the use of 

recurrent dimensions and to a repetitive design (excluding singular cases due to the 

particular local topography), with geometrical properties varying within specific 

ranges (Italian State Railways, 1924). A typological approach is particularly suitable 

for a seismic vulnerability study on a large scale: the entire stock of masonry arch 

bridges can thus be subdivided into homogeneous classes. In this work, the 

classification is based on the typological features of the bridges and on the collapse 

mechanisms expected under seismic action. 

 

3.1.1 Survey of the Italian railway masonry bridge stock 

 

The effective ranges of the main geometric parameters affecting the seismic capacity 

of bridges were obtained from a preliminary survey of a large stock of existing 

structures still in use. In particular, the considered parameters are: number of spans, 

span length (L), arch rise (f), arch thickness (s), pier height (H), pier longitudinal width 

(B), bridge transverse width (P), abutment height (h). Some values, such as (f/L), 

(s/L), (H/B), are also given as non-dimensional ratio of two parameters, as those 

ratios are characteristic of the bridge type. 

The structural evaluation campaign and archival research regarded 757 masonry 

bridges belonging to the Italian railway network. This set is significantly 

representative of the Italian masonry bridge stock, and the structures are located 

along various railway lines throughout the country (see Fig. 3.1). These lines were 

chosen because they pass through areas classified as Zone 2 and 1 in the Italian 

seismic zoning map: the maximum PGA value of the reference stiff soil for Zones 2 

and 1 is 0.25-0.35g (expected peak ground acceleration with a 10% probability of 

being exceeded in 50 years). 

The main results of the preliminary statistical analysis are shown in Fig. 3.2-Fig. 3.5, 

in which histograms summarise the main geometric parameters and their percentage 
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distribution (reported data do not include very short bridges, with span length L<3m). 

The set of histograms of Fig. 3.2 is related to the whole stock of structures, while Fig. 

3.3 refers to single-span bridges and Fig. 3.4 to multi-span bridges only. 

 

                      Railway Lines 

 

        Seismic Zones 

 

Fig. 3.1 Italian railway lines where are located the masonry bridges of the stock 

 

Fig. 3.2 Statistical analysis of railway masonry bridge stock, general data. 
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Fig. 3.3 Statistical analysis of railway masonry bridge stock, single-span structures. 
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Fig. 3.4 Statistical analysis of railway masonry bridge stock, multi-span structures. 
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spans (10≤L<20, Fig. 3.4). Only a small percentage of structures, around 1-2%, has 

span length greater than 20m. 

A great number of arches is semi-circular (38 and 28% for single- ad multi-span 

structures) or depressed (42 and 48% for single- ad multi-span structures) with 

medium span to rise ratio (0.1<f/L<0.3) (Fig. 3.3-Fig. 3.4); flattened arch shapes were 

predominantly used in medium or long span bridges. 

The non-dimensional arch ratio s/L is generally higher (0.12-0.15) in case of short to 

medium-span than for longer spans (0.06-0.09). 

Among single-span bridges, arches with high abutments (h/L>0.75) represent a not 

negligible portion (13%, Fig. 3.3), particularly within the range of short spans (L<6m).  

In most cases, the bridge platform hosts one or two railway lines: in case of single-

track bridge, the width (P) is generally in the range 4.80-6.50m, while for a double-

track bridge, the width is about 10.0-12.0m or more. 
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a) 

b) 

Fig. 3.5 Design curves of s/L parameter versus on-site measured values: a) short-medium 
span bridges (L≤15m); b) medium-long span bridges (L>15m). 
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the rise-to-span ratio, (f/L), and three possible values of the compressive strength fc 

of bricks (10MPa, 20MPa and 30MPa). Design curves are plotted in Fig. 3.5 against 

parameters of actual masonry bridges of the analysed stock. Fig. 3.5a shows that the 

design curves represent quite well the medium trend of the measured (s/L) 

parameter, for both circular and depressed arches, although a major dispersion 

characterises short-span bridges.  

For medium and long span masonry bridges (L≥15m), which are not reported in the 

above-mentioned Manual, the arch thickness can be calculated according to 

Sejournè (1916):  

 

0.15 0.15s L      semi-circular arches (3.1) 

 
2

4
0.15 1 1

3

f f
s L

L L

             depressed arches (3.2) 

 

As already demonstrated by Cocciaglia and Mosca (1998), these equations are well 

representative of dimensions measured on actual structures (Fig. 3.5b), particularly 

in the case of flattened arches, which are the most typical solution for longer 

structures. 

Considering the good match between simple measures obtained on site and design 

values in use at the beginning of the 20th Century, other curves extrapolated from the 

Italian railway Manual of Practice (Italian State Railways, 1907) were used to define 

parameter s'/L (where s’ is the abutment thickness) and t (thickness of spandrel wall). 

Their values are shown in Fig. 3.6 and Fig. 3.7. s' and t are necessary for evaluating 

the behaviour of spandrel walls and abutments, but they cannot be measured by 

visual surveys. 

Fig. 3.6 Short-medium span masonry bridges (L≤15m): design curves for s'/L. 

s'/L = 0.65 L-0.46

s'/L = 0.85 L-0.48

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

3 5 7 9 11 13 1

s'
/L

L[m]

f/L=1/2

h=1.0
h=2.0
h=3.0
h=4.0
h=5.0

h=5.0 m

h=1.0 m

s'/L = 0.75 L-0.43

s'/L = 1.00 L-0.47

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

3 5 7 9 11 13 1

s'
/L

L[m]

f/L=1/6
h=1.0
h=2.0
h=3.0
h=4.0
h=5.0

h=5.0 m

h=1.0 m



 

35 
 

 

 
Fig. 3.7 Design curves for t (Italian State Railways, 1907) 
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4 TRANSVERSE SEISMIC CAPACITY OF MULTISPAN 

MASONRY BRIDGES 

 Introduction 

 

The kinematic method, based on an adaptation of limit design for masonry structures, 

has proved to be a conceptually simple and robust procedure to verify the safety of 

masonry arch bridges under vertical loads. The method can also be applied for 

seismic assessment, providing a limit of bridge capacity under horizontal loads. 

Since Heyman (1966, 1972) noted that the plastic theory, initially formulated for steel 

structures, could also be applied to masonry structures, many studies have focused 

on limit analysis to assess the vertical load-bearing capacity of single- and multi-span 

masonry arches (Gilbert, 2007). 

Heyman (1982) adopted some simplifying assumptions to perform the above 

analyses:  

i) absence of sliding between voussoirs,  

ii) infinite compressive strength,  

iii) no tensile resistance of masonry.  

With these hypotheses, arch failure occurs when a thrust line can be found, lying 

wholly within the masonry and representing an equilibrium state for the structure 

under acting loads, which allows the formation of a sufficient number of plastic hinges 

to transform the structure into a mechanism. Following Heyman’s assumptions, 

iterative methods to find the geometric safety factor, related to minimum arch 

thickness under dead and live loads, were proposed by Clemente et al. (1995). 

Several authors have incorporated crushing of masonry, which cannot sustain infinite 

compressive stresses. A rectangular stress block carrying the compressive force at 

the edge of the hinge section was assumed, among others, by Gilbert (1998). 

Alternatively, to go beyond the assumption of infinite compressive strength, Bufarini 

et al. (2010) used a procedure based on reducing the design thickness of masonry. 

Sliding between adjacent blocks was introduced and evaluated by Gilbert and 

Melbourne (1994), who successfully modelled multi-span brickwork arch bridges. 

Interactions with the soil surrounding the arch barrels were also taken into account, 

including the effect of live load spreading through the fill and passive fill thrust with 

various load spreading models. Gilbert (2001) incorporated uniaxial line elements in 
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RING software to ensure that soil pressures were mobilised in the correct direction. 

Cavicchi and Gambarotta (2005, 2007) implemented a finite element limit analysis 

model, in which infill material was modelled with a special triangular finite element to 

evaluate the arch-fill effect on the ultimate load-bearing capacity under vertical loads. 

Relatively little research has been carried out on the application of limit analysis for 

assessing masonry arches under horizontal (seismic) loads. In particular, research 

has focused on the longitudinal behaviour of arched structures. Some researchers 

have studied the dynamic response of a single masonry arch under base motion. 

Clemente (1998) provided the horizontal acceleration factor inducing the onset of 

motion, and analysed the subsequent first half-cycle of vibration in free and forced 

conditions according to Heyman’s hypotheses. De Lorenzis et al. (2007) used 

discrete element modelling to predict the combinations of impulse magnitudes and 

durations which lead unreinforced masonry arches to collapse, and analysed the 

impact of rigid blocks over several cycles of motion. Other studies (De Luca et al., 

2004, da Porto et al., 2007) have examined the activation of semi-global and global 

mechanisms involving not only local arch failure but also the simultaneous formation 

of hinges in the arch and at the base of piers (or abutments).  

To date, little attention has been paid to the seismic capacity of masonry arch bridges 

in the transverse direction and their susceptibility to out-of-plane collapse.  

It has been shown that local out-of plane overturning of spandrel walls may make the 

entire bridge inoperational (Resemini and Lagomarsino, 2004), since collapse does 

not involve the failure of the main structural elements but compromises ballast 

supports and rail tracks or road paving (Tecchio et al., 2012). Rota et al. (2005) 

applied limit analysis to a set of arch bridge types to evaluate the multiplier of the 

horizontal loads activating the out-of-plane mechanism of the spandrel walls, 

including the effect of infill material. 

Despite these researches, appraisal of the overall transverse seismic capacity of 

multi-span bridges has not been comprehensively addressed. The overall deformed 

shape at collapse, involving transverse deflection of piers was obtained by Pelà et al. 

(2009, 2013) with numerical simulations according to Non-linear Static Analysis 

(NSA) and Non-linear Dynamic Analysis (NDA).  

Within the framework of limit analysis approaches, the present work applies the 

mechanism method to assess the overall transverse seismic capacity of multi-span 

masonry bridges with slender piers. On the basis of the procedure developed, a 

parametric study was carried out on a set of multi-span railway masonry bridges. 

Typical geometric and mechanical parameters were examined in order to create a 

series of charts providing the lateral capacity of masonry bridges in terms of resistant 
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horizontal acceleration. The input data for the simplified assessment are geometric 

parameters only, which are easily revealed by visual inspection. 

 

 Limit analysis for seismic assessment of transverse capacity 

 

The seismic vulnerability of masonry arch bridges is due to collapse mechanisms,  

depending on geometric and mechanical factors, which affect the structure both 

longitudinally and transversely. Local mechanisms are generally more easily 

activated in squat structures and overall mechanisms are more likely to occur in 

slender ones.  

Longitudinal collapse under horizontal loads is activated by the formation of four 

skew-symmetric hinges. The local mechanism is characterised by failure of the arch 

only, whereas in the semi-global or global mechanisms, one or two hinges are located 

at the base of the piers (De Luca et al., 2004). 

When an arch bridge is subjected to transverse seismic excitation, local collapse is 

due to failure of the spandrel walls, as noted above. In the case of regular multi-span 

bridges with slender piers, the overall transverse collapse mechanism involves 

flexural failure at the base of the piers and failure of the arches in the areas of 

maximum tensile stress, leading to complete loss of resistance and stiffness. The 

collapse configuration can be represented by a 3D kinematic model in which the 

structure is transformed into a mechanism when spherical hinges form at the base of 

the piers and in the arch crown sections, where the maximum compressive stresses 

are located (Fig. 4.1). 

 

 

 

Fig. 4.1 Overall transverse collapse mechanism 
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In this work, limit analysis was used to estimate the horizontal seismic load multiplier 

which triggers overall transverse failure of the structure. The procedure was 

developed for multi-span bridges with spans of equal length; effects due to possible 

arch skewness were not taken into account. 

The analysis applies the kinematic theorem to rigid macro-blocks subjected to dead 

loads - and live loads when required - and to distribution of horizontal seismic loads 

proportional to structural masses. The bridge is discretised into rigid voussoirs, the 

centroid virtual displacement of which is determined. The filling material is exclusively 

viewed as applied mass. Heyman’s simplifying hypotheses are taken into account 

but, due to the compressive strength of materials, plastic strains are also taken into 

account by moving the location of the plastic hinges forming along the height of critical 

cross-sections (Clemente et al., 2010).  

The procedure consists of an iterative application of the Principle of Virtual Work 

(PVW). Collapse multiplier α0 is calculated according to the following steps:  

(a) definition of a Cartesian coordinate system and subdivision of the structure into 

blocks;  

(b) identification of the collapse mechanism;  

(c) definition of the force system applied to the structure; 

(d) application of the PVW. 

 

A Cartesian coordinate system is defined and the procedure starts by subdividing the 

structure into n+1 macro-blocks (Fig. 4.2), in which n is the number of spans. Two 

macro-blocks represent the bridge portions, including the abutments and half the 

external spans; the remaining n-1 macro blocks are those centred on the piers. The 

point of separation between adjacent blocks is the arch crown and is perpendicular 

to the vault plane. This simplified collapse configuration is functional to the direct 

application of the kinematic approach, and is identified according to the crack patterns 

obtained by numerical simulation (see 4.3). 

The PVW is then written, after definition of the transverse virtual displacement profile 

of the bridge, Δz(x), which varies according to the properties (geometry and degree 

of lateral restraint provided at abutments) of the lateral resisting system. Part of the 

seismic inertia force is directly transmitted to the pier footings, as higher piers 

determine greater displacements in the central portion of the bridge. The remaining 

inertial force is transferred by lateral bending of the deck to the abutments, when the 

deck is effectively restrained at the abutments.  

It is assumed that displacement is zero at the abutments and pier base, and increases 

linearly along the height of the bridge (vertical axis y), the peak value being at deck 



40 
 

level. The total transverse displacement is obtained as the sum of two contributions 

(Fig. 4.2) 

 

 

Fig. 4.2 Coordinate system and macro-blocks of a three-span bridge 

 

   U Nz x z z x    
 (4.1) 

 

where: 

ΔzU is the uniform component of transverse displacement (when abutments are 

completely unrestrained; see Fig. 4.3, left); 
 

 

k=0            k=1 

Fig. 4.3 Deck transverse displacement profiles and limit values of abutment restraint: k=0 (free 
abutments), k=1 (fixed abutments) 
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ΔzN(x) is the non-uniform component of transverse displacement, expressed as a 

function of coordinate x.  

Under the assumption that the shape of the non-uniform transverse displacement is 

circular, the generic point of the deck at coordinate x in the undeformed configuration 

moves to position x' (see Fig. 4.4), with total transverse displacement expressed by: 

 

x x  r  x 2
 r z

Nmax
 2

 (4.2) 
 
where: 

 

xx’ is the distance from x to x’; 

r is the radius of the shape of the circular displacement, expressed as: 

 

 
C/ 2

sin 2
r




                     
tan( )  

/ 2
maxNz

C





  (4.3) 
 

C being the total length of the bridge; 

ΔzNmax is maximum transverse non-uniform displacement.  

Consequently, the transverse non-uniform displacement of generic point x is given 

by: 

 

   1  cosNz x xx x x    
  (4.4) 

 

where xx1 is the non-uniform displacement along axis z and δ is the angle with axis 

z defined in Fig. 4.4, with: 

 

   
tan

maxN

x

r z
 

 
  (4.5) 
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Fig. 4.4 Geometric relations of overall transverse displacement of bridge. 

 

Parameter k is then introduced to represent the restraint effect of the abutments. It is 

defined as the ratio between maximum transverse non-uniform displacement ΔzNmax 

and total maximum transverse displacement at midspan Δzmax. 

max

maxNz
k

z



      (0<k<1) (4.6) 

 

The values representing the two limit conditions, k=1 for fully restrained abutments 

and k=0 for completely unrestrained ones, are shown in Fig. 4.3, together with the 

relative deck displacement profiles. Uniform transverse displacement is expressed 

as: 

1
1

maxU Nz z
k

     
   (4.7) 

 

Parameter k enables the equation of the PVW, which otherwise could not be made 

explicit directly, to be written in closed form. If a displacement field is normalised to 

ΔzNmax= 1 and parameter k is fixed, the corresponding virtual displacements Δz(x) 

can be expressed as: 

 

   1 Nz x k z x    
 (4.8) 

 

Introducing Eq. (4.1) into Eq. (4.6), in the case of small displacements, (
 cos 1 

), Eq. (4.6) may be rewritten as: 
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   221  z x k r x r k           (4.9) 

 

and, inserting Eq. (4.2a) into Eq. (4.7), expression of total transverse displacement 

becomes: 

 

 
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                                     
 
  (4.10) 

 

Once the total length of bridge C and abutment restraint parameter k are known, total 

transverse displacement can be calculated with Eq. (4.8).  

 

 
Fig. 4.5 Out-of-plane rotation and displacement of macro-block i 
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If (xgi, ygi, zgi) are the coordinates of barycentre Gi (Fig. 4.5) of macro-block i, angle 

φ of rotation may be written as: 

 

 

ma

2
2

x

sin

2

gi

ci

z

P
z

x

y





   
   (4.11) 

 

where: 

Δz(xgi) is the transverse displacement of the block at barycentre Gi; 

P is the transverse width of the pier; 

zci is the distance between the vertical barycentre axis and the position of the plastic 

hinge; 

ymax is the maximum height of macro-block i. 

The condition of equilibrium expressed by the PVW equation requires virtual 

transverse and vertical displacements of barycentre Gi of macro-block i, defined as 

follows: 

 0singi gi giy R y    

  (4.12) 

 0cosgi gi giz z R     
  (4.13) 

 

where: 

φ0 is the angle between segment Rgi and axis z; 
2 2
ci ig giR z y

is the distance between the position of the plastic hinge and the 

barycentre of macro-block i. 

The location of plastic hinge zci is determined from the value of compressive strength 

fM of masonry, the hinge being located at the pier base section where compression 

forces occur. 

If vertical load Pi acting on the macro-block is known, depth a of the compression 

zone at the pier base section can be calculated. In the failure condition, an equivalent 

uniform stress diagram (stress-block diagram) can be assumed for masonry: 

2
M i

M

P
a

f B


  (4.14) 

where B is the pier width in the longitudinal direction of the bridge and γM is the partial 

safety coefficient of masonry. Location zc of the hinge is easily shown by:  
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2cz a
p

 
  (4.15) 

where p is the transverse width of the pier. 

Once external forces (vertical load Pi and horizontal seismic force α0Pi, proportional 

to the bridge masses) are applied and the transverse virtual displacement 

components are calculated in barycentre Gi of each (n+1) macro-blocks, seismic load 

multiplier α0 can be calculated with the PVW equation: 

 
1 1

0
1 1

0
n n

e i i gi i giL L P z P y
 

    
 (4.16)

  
Collapse trigger acceleration a0

* can then be obtained with the following equation 

(NTC, 2008), multiplying α0 by gravity acceleration g and dividing it by e*, the fraction 

of the mass participating in the kinematic mechanism: 
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where e* is:  
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and M* represents the participating mass, calculated as: 
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 Numerical calibration of simplified kinematic approach 

 

4.3.1 Numerical analyses 

 

The simplified kinematic approach for appraisal of global transverse capacity was 

calibrated according to the results of a numerical study, with benchmark responses 

obtained from a comprehensive set of Non-linear Static Analyses carried out by 

computer code Midas FEA v2.9.6, 2009. Finite Element (FE) models were developed 
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in order to verify the collapse mechanism in terms of the location of the plastic hinges 

in the kinematic chain and correct subdivision of the bridge into macro-blocks, and to 

calibrate the value of parameter k taking into account the abutment restraint. 

3-D models implementing a macro-modelling approach were adopted for FE 

discretisation, in which masonry was modelled as a homogeneous continuum with 

eight- and six-node elements. The numerical model was characterised by material 

and geometric non-linearity: the Total Strain Crack Model implemented in Midas FEA 

was used as a constitutive law for masonry. In detail, the Smeared Crack Fixed Model 

developed from the modified compression field theory of Vecchio and Collins (1986) 

and later developed by Selby and Vecchio (1993) was used as a damage model for 

cracking. The masonry material exhibits isotropic properties prior to cracking and 

anisotropic properties after cracking, the cracks being orthogonal to the directions of 

the main strains. 

Seismic performance, i.e., limit acceleration a0
*[g] triggering the collapse mechanism, 

was evaluated by pushover analyses. Transversal forces proportional to the mass 

distribution (according to the assumptions adopted for the kinematic approach) were 

applied in a two-step sequence: first, only vertical loads were applied; lateral forces 

were then monotonically increased, following a displacement-controlled procedure. 

The transverse capacity of the bridge (limit horizontal acceleration prior to failure) 

corresponds to the condition in which a further increase in lateral displacement 

causes a significant decrease in stiffness, with an unchanged total global reaction, 

when limit equilibrium is reached (Fig. 4.6). 

 

 
a) b) 

Fig. 4.6 FE model of a three-span arch bridge: a) crack pattern with plastic hinges; b) capacity 
curve 
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     a)                                               b) 

Fig. 4.7 Principal stress vectors, with location of plastic hinges: a) plane view of deck (central 
span), b) lateral view of pier 

 

The models required definition of the parameters listed in Tab.4.1. 

Average material properties were assessed according to the usual values defined in 

the literature on the basis of laboratory tests (compression on cores) and in situ tests 

(flat-jack, sonic, Schmidt Hammer and dynamic tests) conducted on masonry bridges 

(Pelà et al., 2009, Brencich et al., 2008). The compressive strength of masonry 

adopted for bridges is generally considered to be 5-7 MPa and the corresponding 

tensile strength as 0.1-0.2 MPa, with an elastic modulus of E=5000-6000 MPa, valid 

for masonry composed of bricks and lime mortar.  

 

Young’s Modulus E[MPa] 5000 

Compression behaviour Costant 

Tensile behaviour Linear-Brittle 

Tensile Fracture Energy Gft[N/m] 0.01 

Compressive Strength fc [MPa] 5.0 

Tensile Strength ft [MPa] 0.1 

Tab. 4.1 Mechanical properties of masonry in FE models 
 

In our analyses, backfill was also taken into account as a material of poor quality, 

characterised by density =1800 kg/m3 and linear behaviour, with a very low value 

for Young’s modulus (E=60 MPa). 

Especially in railway masonry bridges, the repetitive design according to manuals of 

practice in use in the early 20th century (Italian State Railways, 1907) generally 
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produced good-quality masonry, in terms of both mechanical properties and type of 

block-laying, with well-organised joints of adequate thickness. For this reason, the 

variable range of mechanical properties of masonry is quite narrow and does not 

significantly affect ultimate behaviour. Conversely, ultimate resistance under 

horizontal forces is greatly affected by geometric parameters (number of spans, 

maximum span length L; arch rise f; arch thickness s; pier height H, longitudinal width 

B). 

Three- and five-span bridges with round arches (f/L=0.5) were therefore examined, 

with transverse dimension of decks (and piers) of 5.0 m, corresponding to the 

average width of a single-track masonry railway bridge. Various slenderness ratios 

of piers (height/width ratio, H/B) and span lengths (L) were adopted. Tab.4. 2 lists the 

geometric characteristics in parametric analyses. 

 

Span 3                      5 

L [m] 6 12 18 

f/L=0.5 →  f [m] 3 6 9 

s/L=0.08 → s [m] 0.48 0.96 1.44 

H/B =4  7.2 9.6 12 

H/B =2 → B [m] 3.6 4.8 6 

H/B =1  1.8 2.4 3 

Tab. 4.2 Geometric properties of FE models 

 

The crack pattern of Fig. 6 clearly shows that the transverse global collapse of multi-

span bridges with slender piers is generally due to the development of non-dissipative 

hinges at the base of the piers and the crown of the vaults.  

 

4.3.2 Calibration of k-parameter 

 

Parameter k was calibrated by comparing the value of a0
* obtained from kinematic 

analysis, corresponding to five values of k (0, 0.25, 0.5, 0.75, 1), with the maximum 

acceleration obtained from pushover analyses.  
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a) b) 

Fig. 4.8 Calibration of parameter k for 3-span bridges 

 

Fig. 4.8 describes the calibration process for a sample set of three-span bridges. The 

dotted curves represent the trend of a0* as a function of k obtained from limit analysis, 

and continuous lines represent maximum resisting acceleration from FE analyses. 

Their intersection represents the optimum value of k, which reduces to zero the error 

between the simplified kinematic approach and numerical FE results. As a final result, 

parameter k is expressed as a linear function of pier slenderness (H/B), almost 

independently of span length L (Fig. 4.8b).  
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a) b) 

 
 

  
c) d) 

Fig. 4.9 Transverse overall deformed shape at collapse: a) three-span bridge with H/B=1 b) 
three-span bridge with H/B=4 c) five-span bridge with H/B=1 d) five-span bridge with H/B=4 

 

Qualitatively, when the number of spans increases, lateral restraint at abutments is 

less effective (Fig. 4.9). When the calibration process was repeated for the set of five-

span bridges, the value of k does decrease, showing that it depends on the number 

of spans, Nspan (see Fig. 4.10).  

Thus, the following expression can be adopted as a general law: 

 

0 .0 9
H

k
B

  
 (4.20) 

where: 

λ=0.95  when  Nspan=3 

λ=0.75 when  Nspan=5. 

Different values can be obtained by interpolation or extrapolation, to an upper limit of 

NspanIn long multi-span masonry viaducts, the typical sequence of arch and 

piers is repeated up to five or seven times, and is then interrupted by stiffer structures 

(‘pier-abutments’) which exert a lateral restraint similar to that of the abutments. 
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Fig. 4.10 Definition of parameter k for five-span bridges 

 

4.3.3 Safety check for shear failure of piers 

 

The proposed collapse mechanism and the application of the PVW equation to 

evaluate limit acceleration a0* lead to overestimation of structure capacity if pier 

collapse is governed by shear failure. This may occur for squat or medium-slender 

piers, and also depends on ratio f/L. 

In order to exclude this condition, a simplified safety check is recommended for shear 

verification. The procedure is based on the calculation of shear capacity VRd of the 

section at the pier base: 

 

Rd vdV aBf
  (4.21) 

 
where:  

Ac=aB is the compressed area of the pier base section, as previously described, and  

fvd is the shear strength, calculated as follows: 

 

/vd v Mkf f 
 (4.22) 

0 0.4vk vk nf f  
 (4.23) 

 

where fvk represents the characteristic shear resistance, which must be divided by 

the partial safety coefficient of masonry γM. 

Term σn is the uniform compressive stress in the compressed area:  
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n

P

aB
 

 (4.24) 

 

Once Δz(xgi) is derived by Eq. 4.8, the maximum shear acting at the pier base can 

be estimated directly: 

 
*
0 (x )sd i giV za P

 (4.25) 

 

The ratio between shear resistance VRd and acting shear VSd can then be obtained:  

Rd
s

Sd

V
SF

V


 (4.26) 

and, if SFs>1, the pier collapse mechanism occurs due to rocking or compressive-

bending failure, so that limit acceleration can be calculated by the proposed kinematic 

method. 

Conversely, if SFs<1, value a0
*, calculated with the limit analysis approach, 

overestimates effective transverse capacity, and maximum resistant acceleration can 

be evaluated as: 

 

R
sf

i

dV
a

P


 (4.27) 

 

 Parametric analyses of multi-span railway bridges 

 

4.4.1 Parametric analyses 

 

For the purposes of this work, only bridges with slender piers were examined. In 

bridges with squat piers (H/B≤1), the overall transverse mechanism is not relevant to 

seismic vulnerability, and only local effects (due to overturning of spandrel walls) must 

be verified, longitudinal behaviour generally being more vulnerable. 

 

L [m]=4-6-8-10-12-14-16-18 

f/L=0.5-0.4-0.3-0.2-0.1 

s/L=0.06-0.08-0.1 

H/B=1-2-4-6 

p[m]=5 

Tab. 4.3 Range of geometric properties values in parametric analyses 
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Parametric analysis was implemented by varying geometric parameters L, f/L, S/L, 

H/B and P. All parametric values are listed in Tab. 4.3, and are representative of the 

ranges identified in the statistical survey. As regards material properties, masonry 

compressive strength fM adopted in the kinematic model was assumed to be 5.0 MPa 

in all cases. 

 

 

Fig. 4.11 Transverse capacity of multi-span bridges: influence of f/L 

 

The main results of the parametric study are reported below and shown in Fig. 4.11-

Fig. 4.13 shows that transverse capacity is sensitive to pier slenderness (ratio H/B), 

as well as to arch span-to-rise ratio f/L. In particular, the most vulnerable structures 

are bridges with very slender piers, as expected (H/B=4-6). Bridges with semi-circular 

arches are more vulnerable than those with depressed arches, limit acceleration 

value a0* being minimum for f/L=0.5. 
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Fig. 4.12 Transverse capacity of multi-span bridges: influence of S/L 

 

Arch thickness, characterised by the adimensional parameter s/L, significantly affects 

the longitudinal response (Clemente et al., 1995, Tecchio et al., 2012), but has less 

influence on transverse capacity, as Fig. 4.12 shows. Conversely, a parameter which 

greatly influences the transverse seismic response is absolute span length L (Fig. 

4.13), collapse acceleration a0* decreasing greatly as span length increases. 
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f/L=0.5 f/L=0.3 

f/L=0.1

 

Fig. 4.13 Transverse capacity of multi-span bridges: influence of span length L 

Fig. 4.13 also shows that, for fixed values of the parameters f/L and H/B, the limit 

acceleration a0* of the overall transverse response can be approximated by power 

functions. Once these functions have been analytically defined, iso-acceleration 

curves, representing limit horizontal acceleration a0
* of the bridge as a function of two 

geometric parameters, H/B and L, can be plotted. These curves are shown in Fig. 

4.14-Fig. 4.16 for values of ratio f/L, corresponding to bridges with semi-circular 

arches (f/L=0.5), medium depressed arches (f/L=0.3) and depressed arches 

(f/L=0.1). 
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Fig. 4.14 Iso-acceleration curves for three-span bridges with semi-circular arches (f/L=0.5) 

 

 
Fig. 4.15 Iso-acceleration curves for three-span bridges with medium depressed arches 
(f/L=0.3). 
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Fig. 4.16 Iso-acceleration curves for three-span bridges with very depressed arches (f/L=0.1) 

 

These graphs can be used for preliminary evaluation of the overall transverse seismic 

capacity of a multi-span bridge, once the main geometric parameters characterising 

it are known (e.g., by simple visual inspection of the bridge and a geometric survey). 
 

 Example 

According to current codes for the safety assessment of existing constructions (e.g., 

NTC, 2008), local mechanisms in masonry structures can be simply checked by linear 

kinematic analysis. At the Serviceability Limit State, seismic verification is 

accomplished by comparing acceleration a*0 triggering the collapse mechanism with 

the expected value of elastic spectral acceleration (corresponding to period T=0 s): 
*
0 ga a S

 (4.28) 

where ag is peak ground acceleration expected in reference period PVR on a type A 

soil (rock soil), and S is the amplification coefficient for other soil categories and 

specific topographic conditions (S=1 for soil A). 

At the Ultimate Limit State, a preliminary safety check can also be carried out with 

the linear kinematic approach, adopting an appropriate behaviour factor q (value q=2 

is suggested for masonry structures; NTC, 2008). In this case, the expected spectral 

acceleration must be reduced in proportion to the q-factor: 
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*
0

ga S
a

q


 (4.29) 

 

The above verification procedure is applied to an existing three-span railway masonry 

bridge (RB1), adopted as reference. The main geometric parameters are shown in 

Fig. 4.17: compressive strength fM= 5MPa is adopted for masonry, with =1800 

kg/m3. The structure is located on a type D soil. 

The limit values of horizontal acceleration were derived from the iso-acceleration 

curves previously obtained, as shown in Fig. 4.18, according to the geometric 

parameters of Fig. 4.17.  

Overall safety factors SF were obtained from the corresponding peak ground 

acceleration value, ag[g], computed for a rock soil with a probability of being exceeded 

by 10% in 50 years at the Ultimate Limit State (ULS) and 63% in 50 years at the 

Serviceability Limit State (SLS). The ag values listed in Tab. 4 are compatible with 

those expected for Zone 1 of the Italian seismic zoning map. 

The shear failure safety check is carried out at the end at the ULS. Macro-block 2 

(Fig. 4.2) is used as an example, with xg2=3.9 m, yg2=5.643 m, zi2=0 m. Shear capacity 

VRd of the section at the pier base is directly evaluated by Eq. (4.17), VRd= 691 kN. 

Maximum shear Vsd acting at the moment of collapse at the pier base can be 

estimated once transverse displacement Δz(xgi) and limit resistant acceleration 

a0*are known: 

P2=1607 kN 

a*
0=0.285g 

Δz(xgi)= 0.947 is given by Eq. (4.8), where C=26 m, and parameter k=0.59 is obtained 

from Eq.(4.16), with λ=0.95. 
 

  ULS SLS 

ag [g] 0.345 0.118 

S 1.683 1.800 

agS [g] 0.581 0.212 

q 2.000 1.000 

agS/q 0.290 0.212 

a*
0 [g] 0.285 0.285 

SF 0.98 1.34

Tab. 4.4 Spectral acceleration values; a*
0[g]: limit horizontal acceleration for overall 

mechanism; SF: corresponding safety factor 
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Vsd at the pier base can be thus estimated from Eq. (20), Vsd= 433 kN, so that the 

ratio between shear resistance VRd and acting shear VSd is SFs= 1.59. The pier 

collapse mechanism occurs due to rocking or compressive-bending failure, and the 

overall safety factor is that given in Tab.4.4. 
 

Fig. 4.17 RB1 bridge: L=6.0m; f=3.0m; S=0.36m; H=5.6m; B=1.4m; f/L=0.5; H/B=4; S/L=0.08; 
p=5m 

 
 

Fig. 4.18 Resistant horizontal acceleration a*
0 of RB1 

 

 Conclusion 

 

Of the simplified approaches which may be used for vulnerability assessment of 

masonry bridges, limit analysis is highly effective in verifying the safety of this class 

of structures, providing a limit of horizontal seismic capacity. This thesis presents a 

limit analysis procedure to evaluate the overall transverse seismic capacity of multi-

span masonry bridges. 
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In the first part, seismic load multiplier α0 is calculated for the global transverse 

mechanism by definition of virtual displacements and applying the Principle of Virtual 

Work to the kinematic chain.  

Non-linear Static Analyses were also carried out to validate the envisaged collapse 

mechanism and to calibrate the restraint effect of the abutment. 

In the second part of the work, the simplified kinematic method is extensively used in 

a parametric study on multi-span railway masonry bridges, evaluating the influence 

of geometric parameters on the transverse response under horizontal loads. The final 

result is a series of graphs, providing the value of overall transverse collapse 

acceleration a0* for multi-span bridges, on the basis of easily calculated geometric 

parameters only.  

The proposed model could be misleading in the case of squat piers, when pier 

collapse does not occur due to rocking or compressive-bending failure. A simplified 

safety check is proposed to evaluate whether shear failure at the pier base is induced 

by lower collapse acceleration than the previously determined a0*. 
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5  VULNERABILITY ASSESSMENT OF MASONRY BRIDGES 

CLASSES BY LIMIT ANALYSIS 

 Introduction 

The bridge seismic safety can be thus verified with limit analysis, provided that local 

and overall collapse mechanisms, in longitudinal and transversal direction, are 

analysed. 

In this work, as innovative contribution, a comprehensive parametric study based on 

limit analysis procedure is developed, aimed at supplying a direct tabular procedure 

for the preliminary seismic assessment of single-and multi-span masonry bridges. 

The kinematic method is applied for evaluating the structural capacity under 

horizontal seismic forces, which could affect the structure in longitudinal or transverse 

direction and activate local or global collapse mechanisms. 

On the basis of an initial statistical survey on a large stock of about 750 units (see 

3.1.1), railway masonry bridges are classified into homogeneous classes accounting 

for both the typological characteristics and the expected collapse mechanism. Once 

the simplified kinematic procedure is set for all possible collapse mechanisms of 

single- and multi-span structures, a parametrical study using limit analysis is 

performed for each class, for appropriate ranges of relevant geometrical parameters. 

Finally, a complete set of iso-acceleration curves representing the seismic capacity 

in terms of limit horizontal acceleration a0
* is derived Input data are simple geometric 

parameters directly detectable by visual inspections and geometric survey.  

5.1.1 Influence of bridge type and geometry on the behaviour 

 

Single-span masonry arch bridges are generally characterised by massive 

abutments, which in most cases can be schematised as infinitely rigid constraints. 

The most vulnerable element, under seismic excitation in the longitudinal direction, 

is the masonry arch, which exhibits an antimetric collapse mechanism by means the 

formation of three rigid voussoirs and four hinges (Fig. 5.1a), located where the thrust 

line crosses the arch ring (Clemente, 1998). This collapse mechanism is referred 

herein as A-L (Arch mechanism in Longitudinal direction, see Table 5.1). 
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Single-span masonry viaducts have often high abutments: in this case, the 

longitudinal mechanism may involve arch and abutments, which becomes an overall 

mechanism, activated by the presence of two hinges at the base of the abutments 

and two hinges in the arch (da Porto et al., 2007 and De Luca et al., 2004; Fig. 9b). 

This mechanism is called herein as Arch-Abutment mechanism in Longitudinal 

direction (AA-L). In some cases, it is also possible that one abutment remains fixed 

and only the other one participates to the mechanism (semi-global mechanism).  
 

a) b) 

Fig. 5.1 Single-span bridges: a) collapse mechanism of arch with squat abutments (A-L); b) 
collapse mechanism of arch with high abutments (AA-L). 

 

Fig. 5.2 Out-of-plane overturning of spandrel walls (SW-T mechanism). 

 
In single span bridges, due to the high inertia of the abutment wall, the spandrel wall, 
which can easily rotate out-of-plane, is the most vulnerable element in transverse 
direction (Spandrel Wall Transverse mechanism, SW-T, Fig. 5.2). This collapse does 
not generally involve the structural safety of the arched structure, but it compromises 
ballast support and rail tracks (Tecchio et al., 2012), making the entire bridge useless 
(Resemini and Lagomarsino, 2004). 
In squat multi-span bridge structures, spandrel walls at the arch springing constitute 
fixed restraints for the arch, thus each span can be considered as independent. The 
expected collapse mechanisms are thus the same as those listed for single-span 
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bridges with squat abutments (A-L for any of the arches in longitudinal direction, Fig. 
5.1a, or SW-T for spandrel walls in transverse direction, Fig. 5.2).  

 
Fig. 5.3 Multi-span bridges: overall collapse mechanism in longitudinal direction (AP-L). 

 

 
Fig. 5.4 Multi-span bridges: overall mechanism under transverse seismic action (AP-T). 

 
In the case of multi-span structures with slender piers, the kinematic chain in 
longitudinal direction may involve arches only (local mechanism A-L), or the whole 
series of arches and piers (overall Arch-Pier Longitudinal mechanism, AP-L, Fig. 5.3), 
with formation of plastic hinges at the pier bases. For these structures, local (A-L) 
and overall (AP-L) collapse mechanisms are both possible in case of piers of medium 
slenderness (1<H/B<4). Unfortunately, a single geometric parameter characterising 
pier or abutment behaviour for a slender structure cannot be provided to define the 
specific local or overall longitudinal mechanism. Some authors (Clemente et al., 
2010), tried to supply diagrams relating several ratios (B/L, f/L, H/L, P/L etc.). 
When this type of bridge is subjected to transverse seismic excitation, local collapse 
of the spandrel walls (SW-T) may happen, but also an overall collapse mechanism, 
involving both arches and piers (AP-T mechanism) can occur. The overall transverse 
mechanism causes flexural failure at the base of the piers and tensile failure of the 
arches at the arch crowns. This mechanism is influenced by pier slenderness and 
lateral restraint degree provided at the abutments, which is generally higher in case 
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of shorter bridges. The collapse configuration is represented by the 3-D kinematic 
model of Fig. 5.4. 
 

5.1.2 Classification of masonry bridge structures 

 

The proposed classification of masonry arch bridges relies only on typological 

characteristics and geometrical parameters, easily detectable by visual inspections 

and geometrical survey. The ranges of parameters were defined on the basis of the 

statistical survey and its comparison with the design rules described in 3.1.1. 

 
CLASS SUB-CLASS  

N. of spans Collapse 
mechanisms 

    Abutment/ Pier  
parameter

Arch parameter 

  h/L, H/B[-] L[m] f/L[-] s/L[-] 

1)   
SINGLE-
SPAN 
BRIDGES 
(SS) 

1.1) 
SQUAT ABUTMENT 
(sa) 
 
Long.: A-L 
Transv: SW-T 

 
h/L≤0.75 

3≤ L<6  
 
 

0.1≤f/L<0.3 
0.3≤f/L<0.45 

f/L≥0.45 
 

f/L≤0.1 
0.1≤f/L<0.3 

0.3≤f/L<0.45 
f/L≥0.45 

0.06≤s/L<0.09 
0.09≤s/L<0.15 

s/L≥0.15 
 
 

6≤ L<10  
10≤ L<20 

 
s/L<0.06 

0.06≤s/L<0.09 
0.09≤s/L<0.15 

 s/L≥0.15 

 
L≥20  

 

 
f/L≤0.1 

0.1≤f/L<0.3 
0.3≤f/L<0.45 

s/L<0.06 
0.06≤s/L<0.09 

 

1.2) 
HIGH ABUTMENT (ha) 
 
Long.: A-L, AA-L 
Transv: SW-T 

 
h/L>0.75 

3≤L<6 
6≤L<10 

 

0.3≤f/L<0.45 
f/L≥0.45 

 

0.06≤s/L<0.09 
0.09≤s/L<0.15 

s/L≥0.15 
 

2)  
2-3 SPAN 
BRIDGES  
(TS) 
 
 
 
 
 
3) 
MULTI-
SPAN 
BRIDGES 
(MS) 

2.1), 3.1)  
SQUAT PIERS  
(sp) 
 

 Long.: A-L 
 Transv: SW-T              

 
H/B≤1 

3≤ L<6 
 

 
 

f/L≤0.1 
0.1≤f/L<0.3 

0.3≤f/L<0.45 
f/L≥0.45 

 

0.06≤s/L<0.09 
0.09≤s/L<0.15 

s/L≥0.15 
 

 
 

6≤ L<10 
10≤ L<20 

 

 
s/L<0.06 

0.06≤s/L<0.09 
0.09≤s/L<0.15 

s/L≥0.15 
 

2.2), 3.2) 
SLENDER PIERS 
(sl) 
 
Long.: A-L, AP-L 
Transv: SW-T, AP-T 

 
H/B >1 

 
 

  
 

         
L≥20 
 

 
f/L≤0.1 

0.1≤f/L<0.3 
0.3≤f/L<0.45 

 

s/L<0.06 
0.06≤s/L<0.09 
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Tab. 5.1 Proposed classification of arch masonry bridges. 

 

The parameters chosen for the classification were: number of spans, span length (L), 

arch rise (f), arch thickness (s), pier (H, B) and abutment (h) dimensions. These data 

are functional to the individuation of the collapse mechanisms characterising each 

subclass. According to this scheme, for the proposed simplified tabular procedure, 

those data will be sufficient to assess the correspondent horizontal limit acceleration 

a0
*. 

The bridge classification is reported in Table 5.1, and examples of structures 

representative of each sub-class are reported in Fig. 5.5. Classes are based on the 

number of spans; sub-classes are identified on the basis of pier/abutment 

characteristics and related to collapse mechanisms. For each subclass, different 

combination of arch parameters (L, f/L, s/L) can be considered. 

In this work, only bridges with very squat abutment and piers belonging to classes 

1.1, 2.1, and 3.1 (SS_sa, TS_sp, and MS_sp) are supposed to be subjected only to 

local collapse mechanisms (A-L and SW-T). Structures belonging to other classes 

are assessed for both local and overall mechanisms, according to a conservative 

approach. 

 

a) single-span, squat abutments (SS_sa) b) single-span, high abutments (SS_ha) 



66 
 

c) three-span, squat piers (TS_sp) d) two-span, slender piers (TS_sl) 

e) multi-span, squat piers (MS_sp) f) multi-span, slender piers (MS_sl) 

Fig. 5.5 Example of masonry arch bridges of the analysed stock. 

 Limit analysis for seismic assessment of masonry arch bridges  

The limit behaviour of masonry structures is usually a matter of equilibrium of rigid 

blocks, rather than a problem of material strength (Clemente et al 1995). Hence, the 

type of collapse mechanism depends on geometric parameters and external loads. 

In limit analysis it is possible, however, to take into account also material strength, 

e.g. by the reduction of the design effective thickness of the section, as proposed by 

Harvey (1988). This reduction is applied in this study. 

In this work, limit analysis is used to estimate the load multiplier α0 triggering the 

collapse mechanism of the arch bridge under horizontal seismic loads. The 

procedure consists of an iterative application of the Principle of Virtual Work (PVW). 

Collapse multiplier α0 is calculated according to the following steps:  

(i) definition of a Cartesian coordinate system and subdivision of the structure into 

blocks;  

(ii) identification of the collapse mechanism; 
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(iii) definition of the force system applied to the structure;  

(iv) application of the PVW.  

Once external forces (vertical load Pi and horizontal seismic force α0Pi, proportional 

to the bridge masses) are applied and virtual displacements are calculated in the 

centre of the mass Gi of each macro-blocks, seismic load multiplier α0 can be 

calculated with the PVW equation, according to the collapse mechanism and to the 

related force system. 

Collapse trigger acceleration a0
* can then be obtained with the following equation 

(NTC, 2008), multiplying α0 by gravity acceleration g and dividing it by e*, the fraction 

of the mass participating to the kinematic mechanism: 
n 1

0* 01
0 * *

α α g
a

M e
iP



 
  (5.1) 

       
where  e* is: 

*
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0 1
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and M* represents the participating mass, calculated as: 
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




  

 (5.3) 

 

5.2.1  Single-span bridges in longitudinal direction 

 

The procedure is first presented in relation to the longitudinal mechanism of a single-

span bridge with squat abutment (A-L, Fig. 5.1a). Fig. 5.6 shows the force system 

acting at the centre of mass Gi(xi, yi) of the i-block: weight of the block Pi, weight of 

infill material above the i-block Pj (that is exclusively taken into account as applied 

mass), seismic action α(Pi+Pj) proportional to the masses. The infill material is 

assumed to be homogenous, and the arch thickness is considered to be constant.  

Coordinates of the generic i-block are defined on the basis of the arch shape (circular, 

in our case) and dimensions, loads Pi and Pj are calculated on the basis of the arch 

geometry, infill height, and specific weight of masonry and infill material. 
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The inertia forces in Fig. 5.6, are defined according to the work of Clemente, (1995; 

1998). Centre of the funicular polygon, position of plastic hinges and thrust line shape 

are calculated with an iterative procedure (Block et al., 2006). Cross sectional forces 

Ni and Ni+1 applied at the i-block are defined once the resultant Ri of the applied forces 

is known, and each hinge j is located at a distance from the arch intrados/extrados, 

corresponding to half-depth of the cross section necessary to transfer axial force Ni 

without exceeding the yield stress fc (masonry stress-block). 

In the hypothesis of small displacements, virtual displacements of the antimetric 

mechanism can be calculated for the three rigid segments (AB, BC, CD), which the 

arch is divided into, according to the following relations (see Fig. 5.6): 

 

AB OB OB DC

AB BO OC CD
=  ; =

θ θ θ θ
 (5.4) 

 
 

AB 
 
 

i i A AB

i i A AB

x y y θ
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  
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 

i O i OB

i O i OB

x y y θ

y x x θ

 
 
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  

;  

CD 
 
 

i i D DC

i i D DC

x y y θ

y x x θ

 
 

 
  

 (5.5) 

 

 

 

 a) b)                  
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c) 

Fig. 5.6 A-L mechanism: a) force system and thrust line, b) equilibrium of each block, c) vertical 
and horizontal virtual displacements. 

 
Hence, from the PVW, seismic load multiplier α0 can be calculated: 

 0 , , , 0i x i j y j i yi
j

i
i i

P Q Q P          (5.6) 

For A-L mechanism, the main geometric parameters influencing the value of α0
 are: 

span length L, span rise f, arch thickness s. 
When collapse in longitudinal direction involves the abutments too, an overall 
mechanism of AA-L type is activated (see Fig. 5.1b). Virtual displacements are still 
obtained by Eqs. 5.6-5.77; the structure is also divided by the formation of plastic 
hinges into 3 rigid blocks rotating around the centre O (see Fig. 5.7). Two central 
hinges, B and C, are always located in the arch, while the other two (one or both), 
locate at the base of the abutments. In the implemented procedure, hinges A and D 
can be placed at different heights from the ground.  
The earth wedges behind the abutments may develop significant lateral forces, thus 
also soil (Ss) left and right pressure acting on AB and CD blocks were taken into 
account in the PVW equation (da Porto et al 2007): 

 0 , , , 0
Li x i j yi s s s sj i y i

i j i
RQ P SQ SP               (5.7) 

 
In AA-L mechanism, the load multiplier α0 is affected not only by span length L, span 
rise f, and arch thickness s, but also by height h and thickness s' of abutments. 
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Fig. 5.7 Kinematic model of AA-L mechanism of single-span bridge. 

 

2.1.1 Single-span bridges in transverse direction 

 

In transverse direction, the spandrel wall mechanism (SW-T) develops with the 

formation of a cylindrical hinge at the base of the wall. Simplified verification can be 

performed per unit length, considering a rectangular wall with average height Z. The 

load multiplier α0 is derived by the momentum equilibrium, once virtual displacements 

are calculated: 
( )

,  ,  ,  
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t a z
b z        
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       (5.9) 

 

where P is the wall weight, S is the infill material thrust, N is the vertical force acting 

at the top of the wall (e.g. the weight of the parapet), t is the wall thickness, Z is the 

wall height and a is half-depth of the masonry stress-block (Rota et al., 2005).  
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Fig. 5.8 Kinematic model of SW-T mechanism 

 

5.2.2  Multi-span bridges in longitudinal direction 

 

In multi-span bridges with slender piers, subjected to seismic excitation in longitudinal 

direction, the overall collapse of the arch-pier system (AP-L) has to be analysed. The 

simplified anti-metric mechanism assumes that a plastic hinge is placed at the base 

of each pier (D and G in Fig. 5.8), and the ultimate hinge is located at the arch 

springing of the last span (L). The location of other hinges is derived iteratively with 

the thrust line method. Fig. 5.8 shows the case of a three-span bridge: 10 hinges and 

7 blocks are defined. The centers of rotation are equal to the number of arches, and 

the lagrangian coordinate system is shown in Fig. 5.8. In the hypothesis of small 

displacements the following relations are valid: 

 

31 2

1 2 3AB O B DC O E FG HO IL

O HBO O EAB CD FG IL

      
     

 (5.10) 

 

For each macro-block the virtual displacements can be computed as:  
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CDE 
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 (5.11) 

 

and, at this point, the PVW can be written in the form of Eq. 5.6.  
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Fig. 5.9 Kinematic model of AP-L mechanism of three-span bridge. 

The geometric parameter involved in the AP-L mechanism are: span length L, arch 
rise f, piers height H, pier longitudinal width B, arch thickness s, and infill height ytot. 
Extension of the overall AP-L kinematic mechanism to a different number of span is 
immediate. In the case of very long multi-span bridges, the study of the overall AP-L 
mechanism can be limited to a reduced number of spans. In fact, a typical feature of 
these railway bridges is the presence of larger piers, called pier-abutments, every 
five (or maximum seven) spans, which have the function to stabilise the sequence of 
arches during construction phase, and to avoid the extension of the kinematic chain 
at collapse to neighboring spans (Tecchio et al., 2012). 
 

5.2.3 Multi-span bridges in transverse direction 

 
Multi-span bridges with slender piers may present an overall transverse mechanism 
(AP-T). The kinematic approach to evaluate AP-T is summarised hereafter with 
reference to the study by Zampieri et al., 2013. The transverse displacement profile 
at collapse depends on the bridge geometry (higher piers determine larger 
displacements in the central part of the bridge), and on the degree of lateral restraint 
provided by the abutments. The total transverse displacement Δz(x), expressed as a 
function of coordinate x (longitudinal axis of the bridge), can be obtained as the sum 
of a uniform component (ΔzU, when abutments are completely unrestrained), and the 
non-uniform transverse displacement ΔzN(x), which is assumed to be of circular 
shape. 

When parameter max/
maxNk z z  , with 0<k<1, is introduced to represent the 

restraint effect of the abutments, the total transverse displacement can be easily 
derived as in 4.2. 

 Parametric analyses  

 
Parametric study was carried out on a comprehensive set of bridges, according to 
the classification of Section 2. Geometric parameters L, s, f/L, s/L, H/B, P, number of 
spans, thickness t and height Z of spandrel walls (see Tab. 5.2-5.6) were varied 
according to the range of values of actual bridge subclasses in Tab. 1. 
Limit acceleration a0

* was calculated for each collapse mechanism with the analysis 
procedures described in 5.2. A complete set of curves representing the seismic 
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capacity of bridges in terms of horizontal acceleration a0
* triggering a specific collapse 

mechanism, as a function of simple geometric parameters, was derived. 
All the analyses were performed considering an average value of masonry 

compressive strength, fc=5.0 MPa, and a value =1800 kg/m3 for brick masonry and 
backfill specific weight, according to the usual values defined in literature (laboratory 
and in situ tests conducted on masonry bridges from Pelà et al., 2009, and Brencich 
et al., 2008). Especially for railway masonry bridges, the repetitive design generally 
produced good-quality masonry, in terms of both mechanical properties and type of 
block-laying. For this reason, the variable range of mechanical properties of masonry 
is quite narrow, and it does not significantly affect the ultimate behaviour. 
Iso-acceleration curves, which represent limit horizontal acceleration a0

* of the bridge 
as a function of two geometric parameters, were derived for each of the 
aforementioned collapse mechanism and bridge subclass. The procedure for the 
construction of iso-acceleration curves can be summarised in the following basic 
steps: 
(i)  bridge samples are defined for various subclasses (SS_sa, SS_ha, TS_sl, 

MS_sl), combining the parameters presented in each of the Tables from 5.2 to 
5.6; 

(ii)  kinematic analysis of the collapse mechanisms relative to each bridge sample is 
carried out, according to PVW equations, and limit a0

* values are calculated; 
(iii) regression laws of the calculated a0

* values are obtained with least squares 
approximation, assuming one representative parameter as a constant, e.g. the 
f/L parameter for the subclass of (SS_sa) bridges;  

(iv) for a pre-fixed value of limit acceleration a0
*, the corresponding iso-acceleration 

curve is plotted by interpolating with cubic splines the values derived by the 
regression law. 

Automatic routines purposely developed in Visual Basic for Applications (VBA) 
environment, were used to solve iteratively the PVW equations of the various collapse 
mechanisms (A-L, AA-L, SW-T, AP-L, AP-T). 
It can be observed that at step (iii), the a0

* values obtained for longitudinal 
mechanisms (AL, AA-L, AP-L), related to fixed values of s/L, are almost independent 
by the absolute value of L, thus they can be approximated by the same linear 
regression law, and the procedure is further simplified (see. Fig. 5.16, Fig. 5.17, Fig. 
5.20 and Fig. 5.21). 
Linear regression is usually adopted at step (iii); only for the AP-T mechanism power 
functions were adopted, as they better approximate the numerical results obtained 
by kinematic analysis. 
In the following sub-sections, the parametric study of each masonry bridge class and 
subclass is summarised as follows: 
- a table gives ranges and values of geometric factors used for defining the bridge 
sample and carrying out the analyses;  
- regression laws approximating a0* values calculated by limit analysis are presented; 
- for each collapse mechanism, iso-acceleration curves are plotted. 
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The obtained graphs can be directly used for a preliminary seismic verification of 
masonry bridges, once simple geometric measures of the structure under exam are 
known. Interpolation of results can be done, when iso-acceleration graphs are given 
for fixed values of reference parameters (e.g. for (AP-L) mechanism in relation to H/B 
parameter). 
Iso-acceleration curves obtained for SW-T mechanism are presented in relation to 
bridges of SS_sa, 1.1 class. However, this local failure mechanism should be 
evaluated both for single- and multi-span masonry bridges, regardless of pier 
slenderness, thus the graph of Fig. 5.13 can be used for all classes. 
It has to be highlighted that only curves obtained for multi-span bridges (MS_sl class) 
and two-three span bridges (TS_sl, 2.2) are herein reported for the (AP-T) 
mechanism (Fig. 5.22 and Fig. 5.23). In order to describe seismic vulnerability of all 
classes, in this chapter some results of 4.2 are reported again.  
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5.3.1 Single span bridges with squat abutments (SS_sa, 1.1) 

 
BRIDGE CLASS Single Span_ squat abutment

(SS_sq, 1.1) 
COLLAPSE  
MECHANISM 

A-L
(Arch-Longitudinal mechanism) 

PARMETERS L [m] [3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22,24, 
26]f/L [0.1, 0.2, 0.3, 0.4, 0.5]

s/L [0.04, 0.05, 0.07, 0.10, .13, 0.15]

Tab. 5.2 Geometric ranges for parametric study of A-L mechanism 

Fig. 5.10 SS_sa bridges: limit acceleration a0* and regression laws for fixed values of f/L. 
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Fig. 5.11 SS_sa bridges: iso-acceleration curves for A-L mechanism. 

 
BRIDGE CLASS Single Span_ squat abutment 

(SS_sq, 1.1)** 
COLLAPSE  
MECHANISM 

SW-T 
(local spandrel wall out-of plane 

PARMETERS t[m] [0.5, 0.75, 1.00, 1.25, 1.50,1.75, 
2 00]Z[m] [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0] 

Tab. 5.3 Geometric ranges for parametric study of SW-T mechanism 
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Fig. 5.12 SW-T mechanism: limit acceleration a0

*, and regression laws for fixed values of Z. 

 

  
Fig. 5.13 Iso-acceleration curves for SW-T mechanism. 
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5.3.2 Single span bridges with high abutments (SS_ha, 1.2) 

 
BRIDGE CLASS Single Span_ high abutment  

(SS_ha, 1.1) 
COLLAPSE  
MECHANISM 

AA-L
(global arch-abutment longitudinal 

PARMETERS L [m] [3, 4, 5, 6]
f/L [0.5]

s/L [0.08, 0.10, 0.12, 0.14] 

 H/B [2.5, 3.0, 4.0, 6.0]

Tab. 5.4 Geometric ranges for parametric study of AA-L mechanism 

 

 
Fig. 5.14 SS_ha bridges: limit acceleration a0

* and regression laws for fixed values of h/s’. 
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Fig. 5.15 SS_ha bridges: iso-acceleration curves for AP-L mechanism.  
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5.3.3 Two-Three span (TS_sl, 2.2) and multi-span (MS_sl, 3.2) bridges with 

slender piers 

 
BRIDGE CLASS Two , Three span_ slender piers, Multi-Span 

_slender piers 
COLLAPSE  
MECHANISM 

AP-L 
(global arch-piers longitudinal mechanism) 

PARMETERS No. of spans [3, 5] 

L [m] [6, 12, 18] 
f/L [0.15, 0.3, 0.4, 0.5] 

s/L [0.04, 0.08, 0.10, 0.12, 0.14] 

 H/B [1.5, 2.0, 4.0] 

Tab. 5.5 Geometric ranges for parametric study of AP-L mechanism for TS_sl and MS_sl 
bridges. 

 

Fig. 5.16 TS_sl bridges: limit acceleration a0
* and regression laws for fixed values of pier 

slenderness a) H/B=1.5, b) H/B=4.0, and various f/L ratio. 
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a) b)

Fig. 5.17 MS_sl bridges: limit acceleration a0
* and regression laws for fixed values of pier 

slenderness a) H/B=1.5, b) H/B=4.0, and various f/L ratio. 
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b) 

Fig. 5.18  TS_sl bridges: iso-acceleration curves for AP-L mechanism for fixed value of 
slenderness a) H/B=1.5, b) H/B=4.0. 
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a) 

b) 
Fig. 5.19 MS_sl bridges: iso-acceleration curves for AP-L mechanism, for pre-fixed values of 
pier slenderness a) H/B=1.5, b) H/B=4.0 
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BRIDGE CLASS Multi Span_ slender piers  

(MS_sl, 3.2) 
COLLAPSE  
MECHANISM 

AP-T
(global arch-piers transverse mechanism) 

PARMETERS No. of spans 5

L [m] [4,6,8,10,12,14,16,18] 
f/L [0.1, 0.5] 

s/L [0.08]

 H/B [1.0, 2.0, 4.0, 6.0] 

 p[m] [5.0]

Tab. 5.6 Geometric ranges for parametric study of AP-T mechanism for MS_sl class. 

 

Fig. 5.20  MS_sl bridges: limit acceleration a0
* and non-linear regression laws for fixed values 

of f/L ratio a) f/L=0.1, b) f/L=0.5. 
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Fig. 5.21 TS_sl bridges: limit acceleration a0
* and non-linear regression laws for fixed values 

of f/L ratio a) f/L=0.1, b) f/L=0.5. 
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b) 

Fig. 5.22  MS_sl bridges: iso-acceleration curves for AP-T mechanism, for fixed values of f/L 
ratio,: a) f/L=0.1, b) f/L=0.5.  

 

a) 

f/L=0.5
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b) 

Fig. 5.23 TS_sl bridges: iso-acceleration curves for AP-T mechanism, for fixed values of f/L 
ratio,: a) f/L=0.1, b) f/L=0.5. 

 Simplified seismic verification procedure 

The seismic verification of a masonry arch bridge can be performed by comparing 

the expected Peak Ground Acceleration (PGA) at the site, with the limit acceleration 

that is necessary to turn the structure into a mechanism (Clemente, 1998). This 

approach can be adopted for all significant mechanisms in longitudinal and 

transverse direction, with a discrete ‘rigid block’ analysis procedure. 

Simplified seismic safety check of local mechanisms in masonry structures can be 

done with linear kinematic analysis, according to current codes (NTC, 2008).  

The procedure should be repeated for all possible mechanisms. The bridge global 

safety factor (GSF) is taken as the minimum safety coefficient deriving form the 

verified kinematic mechanisms. 

Hence, the above presented iso-acceleration graphs can be directly used for a 

preliminary seismic safety check of existing masonry bridges, and for prioritizing 

seismic retrofitting interventions. An example of tabular verification procedure is 

applied below, considering two railway masonry bridges, the first with a single span 

(named RB1) structure and the latter being a five-span bridge (RB2). 
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5.4.1  Example of Single-Span, high abutments bridge 

The RB1 bridge belongs to the subclass SS_ha, 1.2. The collapse mechanisms taken 

into account are Arch-Abutment in longitudinal direction and Spandrel-Wall rotation 

in transverse direction. The spectral acceleration values are computed for a rock soil 

with a probability of being exceeded equal to 10% in 50 years at Ultimate Limit State 

(ULS), and 63% in 50 years at Serviceability Limit State (SLS). a01
*, a02

* are limit 

horizontal accelerations for AA-L and SW-T mechanisms, and SF1, SF2 are the 

related safety factors. The limit values of horizontal acceleration were derived from 

the iso-acceleration curves of Fig. 5.13 and Fig. 5.15, 24, using the geometric 

parameters reported in Tab. 5.7. 

 
RB1 Bridge ULS SLS  

ag [g] 0.239 0.102  
S 1.616 1.800 

agS [g] 0.386 0.184 
q 2 1 

agS/q 0.193 0.184 
AA-L mechanism   

a01
* [g] 0.203 0.203 

SF1 1.05 1.10 
SW-T mechanism   

a02
* [g] 0.074 0.074 

SF2 0.38 0.40 
GSF=min(SF1,SF2) 0.38 0.40  

Tab. 5.7 RB1 Bridge. No. of spans=1; L=5m; f=2.5m; s=0.5m; h=3.9m; s’=1.5m. S/L=0.1; 
h/s’=3.33, t=0.83m Z=2.25m. 
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5.4.2 Example of Multi-Span, slender piers bridge 

 
The RB2 bridge belongs to the subclass MS_sl, 2.2. The geometric data used for 
seismic verifications are reported in Tab. 5.8. The safety factor is evaluated in 
longitudinal direction for Arch-Pier mechanism, and in transverse direction for overall 
Arch-Pier mechanism and local Spandrel-Wall rotation. 
 

RB2 Bridge ULS SLS 

ag [g] 0.265 0.105

 

S 1.310 1.500
agS [g] 0.347 0.158

q 2 1 

agS/q 0.173 0.158

AP-L mechanism  
a01

* [g] 0.185 0.185
SF1 1.07 1.17 

AP-T mechanism  

a02
* [g] 0.252 0.252

SF2 1.46 1.59 
SW-T mechanism 

a03
* [g] 0.118 0.118

SF3 0.68 0.75
GSF=min(SF1,SF2, 

SF3) 
0.68 0.75 

Tab. 5.8 RB2 Bridge. No. of spans=5; L=8.7m; f=3.40m; S=0.75m; H=14.0m; B=3.65m; 
f/L=0.39, H/B=3.97, s/L=0.086, p=5.5m, t=0.94m,  Z=1.70m  
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 Consideration about seismic vulnerability in the formulation of judgement of 

structures state of maintenance. 

Civil infrastructures belonging to railway or road transport networks are generally 

subjected to periodic control visual inspections. 

The procedures and methodology for the execution of visual inspections for civil 

infrastructures are regulated in Europe by FICHE UIC Code 778-2 and by FICHE UIC 

Code 778-3. 

During these inspections, the operator expresses a judgment about the state of 

maintenance of the structure through specific informatics systems of damage 

detection. In Italy the system used is called DOMUS (Diagnostica Opere d'arte 

Manutenzione Unificata Standard).  

 

Judgment Type Structure condition J 

A The structure is safe for traffic 

allowing. 

10-50 

B The structure is safe for traffic 

allowing after interventions 

60-90 

C The structure is not safe for 

traffic allowing.  

90-110 

Tab. 5.9 Hypothetical scale of judgment of state of structure’s maintenance. 

 

If the hypothetical scale (A, B, C) reported in Tab. 5.9 is representative of the 

maintenance states of a structure, then a calibration of judgment values about the 

state of maintenance (J) can be calculated with the following formula: 

 
* ( ) 110J J S          (5.12) 

 

The coefficient ΔS (Seismic judgment increment) takes into account seismic 

vulnerability of the structure and the seismicity of the structure location. This value is 

related to Seismic Coefficient SC (of the masonry bridge), expressed as: 

 
*
0

g

a
SC

a
         (5.13) 

In this formula a0*
 derives from iso-acceleration curves and ag is the pick ground 

acceleration, which refers to ground type A (rock). 

A Seismic weight coefficient ΔS value is associated to SCs, as reported in Tab. 5.10. 
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Seismic coefficient SC Seismic weight coefficient ΔS 

SC>0.9 ΔS: 0 

0.9≥SC≥0.5 ΔS: 30 

SC< 0.5 ΔS: 50 

Tab. 5.10 Seismic weight coefficient. 
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 Conclusions  

Assessment of the condition of old masonry arch bridges has become an ongoing 

problem for public network authorities, partly due to the seismic vulnerability of 

strategic railway lines. Growing interest in simplified procedures for seismic 

assessment has thus emerged, and limit analysis has proved to be a conceptually 

simple and robust method. 
 Based on a statistical survey of about 750 Italian railway masonry bridges, a 
typological classification, taking into account geometry and expected seismic 
collapse mechanisms in these structures is proposed here. Limit ground acceleration 
a0*, i.e., the seismic capacity of the bridge in the case of various collapse 
mechanisms, is calculated with the limit analysis method, and a comprehensive 
parametric analysis for each bridge class is carried out, evaluating the influence of 
geometric parameters on seismic capacity. The final result is a series of iso-
acceleration curves, providing the values of horizontal limit acceleration a0* of bridge 
structures according to easily detectable geometric parameters only.  

In addition, the parametric analysis carried out allows drawing some 
conclusion on the seismic behaviour of these structures. This study showed that, in 
general, masonry bridges have good resistance to seismic action, as a result of 
precautionary design. They are able to withstand earthquake of medium intensity 
without significant damages to the main structural elements. 

The most vulnerable element, particularly in case of out-of-plane actions, is 
the spandrel wall. Damage or overturning of this secondary element does not 
generally involve the structural safety of the structure, but it does compromise ballast 
support and rail tracks. Therefore, simple interventions to prevent overturning can be 
very useful not only for reducing vulnerability and damage, but also to keep the 
network in use after a seismic event. 

Taking into account overall collapse mechanisms related to the structural 
safety of the bridge, the class of multi-span arch bridges with slender piers is the most 
vulnerable. The most probable collapse mechanism is the overall longitudinal 
mechanism, although in case of high pier slenderness, the overall transverse 
mechanism becomes dangerous, as well. In any case, for the most common bridge 
geometries, the values of limit acceleration are high. 

Single-span bridges with high abutments are vulnerable to medium-high 
seismic action in longitudinal direction, and the overall arch-abutment longitudinal 
mechanism is generally more vulnerable than the local arch mechanism typical of 
squat single-span bridges. In the latter class, the local arch longitudinal mechanism 
is vulnerable in case of semicircular arches only, particularly when they have small 
thickness, whereas depressed arches are very resistant to seismic action. 

The cataloguing and study of the various collapse mechanisms of masonry 
arch bridges has thus allowed improving knowledge to guide the assessment and 
design of intervention for this type of bridges. On the other hand, this study allowed 
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constituting a tool to carry out quick simplified vulnerability assessment of complex 
networks, where thousands of masonry bridges are found, in order to prioritise more 
detailed analyses and execution of interventions. 
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6 SEMPLIFIED SEISMIC FRAGILITY CURVES FOR SINGLE-

SPAN MASONRY BRIDGES CLASS 

 Introduction 

 

Italy is globally recognised to be one of the most earthquake-prone countries in the 

Mediterranean area, because of the frequency of ground shakings that have 

historically characterised its territory and the intensity that some of them have 

achieved, causing significant social and economic impacts. 

In this context, for a whole range of civil and strategic structures, the need of a 

preliminary seismic vulnerability assessment is becoming increasingly important, 

such as to identify those considered more exposed to seismic risk. These evaluations 

are fundamental to determine which structures need further investigations and 

afterwards retrofit interventions, with the aim of making them able to reach defined 

performance levels (Brime 2001; Hawk and Small 1998). In the field of infrastructures 

management, due to the ancientness of Italian infrastructure heritage, characterised 

by a remarkable expansion after the IInd World War, the need to rationally allocate 

the resources for structural improvement is now emerging, in order to minimise the 

damage risk of the most vulnerable bridges that, once damaged, would involve 

significant economical and social losses. These requirements are evident in both 

road and railway transport networks (SB-ICA 2007).  

In Italy, one of the most common road and railway bridge is represented by the single-

span masonry arch bridge typology. This type can reach in some Italian areas 

approximately the 80% of whole bridge structures in railway network.  

In literature, many studies focused on local and global assessment methods of 

existing masonry bridges (Hughes and Blacker 1995; Boothby 1995; Brencich and 

De Francesco, 2004; Rota et al, 2005; Pelà et al., 2009) without using a probabilistic 

approach aimed to the evaluation of their seismic fragility. Several studies analysed 

spandrel wall collapse, as this is the most vulnerable out-of plane local collapse 

mechanism (Fanning and Boothby 2001; Boothby and Roberts 2001; Rota et al. 

2005; Junzhe W. et al. 2013): this collapse may affect structure functionality, but 

rarely involves bridge global failure. For single-span masonry bridges the other 

possible collapse mechanism is the in-plane arch failure mechanism, whereas for 
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multi-span bridges also transversal behaviour has to be analysed in relation to the 

longitudinal and transversal slenderness of the piers.  

A new simplified approach for the fast seismic vulnerability assessment of numerous 

masonry arch bridge clusters is proposed. The aim of this proposal is to provide 

useful information for the fast seismic vulnerability of single-span masonry arch 

bridges in the context of territorial scale analyses, through the grouping in bridge 

classes characterised by similar structural features. Such indications allow to quickly 

estimate the seismic vulnerability of extended roadway and railway bridge networks 

in emergency, given the high percentage of bridges characterised by this structural 

typology in European transportation infrastructural networks, and to optimize the 

retrofit intervention priorities. 

 

 Non-linear Kinematic analysis of masonry arch bridges 

 

The non-linear kinematic seismic analysis of Masonry Bridge allows to design the 

capacity curve of the structure, with the centroid of the keystone of the arch assumed 

as a control point. 

In the non-linear kinematic analysis, the principle of virtual work is applied to a 

deformed shape of the structure: 

 

 0 , , ,( ) ( ) ( ) ( ) 0i i x i i y j i y i
i j i

P Q Q P            (6.1) 

 

All the parameters used in equation 4.1 have just been explain in 3, and θ=θAB is the 

rotation of the arch segment AB and it represents the finite rotation of the structure 

and it identifies the unknown deformed configuration.  

The deformed shape of the structure is obtained by incremental steps of rotation: 

1k k    
        (6.2) 

 

In other words, the procedure is repeated until the arch configuration does not have 

any residual capacity to the seismic action.  
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Fig. 6.1 In-plane arch mechanism. 

 

The equations that characterised the problem can be described as a unique 

Lagrangian variable: the rotation of the first rigid arch segment θ. 

With the application of PVW, we can obtain the collapse multiplier α(θ) and the 

associated displacement d(θ). The procedure ends with the derivation of a 

displacement zeroing the collapse multiplier. In this case, the equation of PVW 

become: 

 

 , ,( ) ( 0)j y j i y i
j i
P P           (6.3) 

 

 
 

Fig. 6.2 Deformation shape of the in-plane arch mechanism. 
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The zeroing of the collapse multiplier coincides with an unstable equilibrium of the 

mechanism. This condition corresponds to the local maximum of the potential energy. 

It corresponds also at the zeroing of virtual work of the vertical force. 

 

 

 
Fig. 6.3 a) Local maximum of the potential energy that corresponds also at the 

zeroing of virtual work of the vertical force. 

 

In the non-linear seismic analysis, the capacity curve of the structure must be 

transformed in to equivalent SDOF system. The spectral acceleration a* and the 

spectral displacement d* of equivalent SDOF system are computed as follows.  
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     (6.5) 

Pi is the resultant of weight forces directly applied in the i-th block (e.g. weight of the 

block); 

Qi is the resultant of weight forces not directly applied in the block but transmitted by 

the structure and which generate a horizontal seismic force; 

θis the generalized displacement (e.g. a rotation) assumed as reference; 

δx,i is the horizontal virtual displacement of the centroid of the i-th block calculated 

with reference to the initial configuration of the system; 

dx,k is the finite horizontal displacement of the generic point P of the system (that 

assumed as representative to plot the pushover curve) and δx,k is its virtual horizontal 

displacement; 

M* is the mass of the structure participating to the mechanism computed as: 

 

 

2

,

*

2 ( ),

( )xi i i
i

P Qi x i
i

M
P Qg

i 

 


 

  
 


      (6.6) 
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 Seismic Performance levels of masonry bridges 

 

In the case of nonlinear kinematic analyses performed by rigid block model of 

masonry bridges, the i-damage level is basically related to the displacement where 

the horizontal load multiplier of the capacity curve becomes 0 (d*
0). 

The yielding condition (dy) in the kinematic capacity curve corresponds to the point 

in which the secant period intersects the capacity curve. In the Italian code (NTC08) 

the secant period Ts is conventionally assumed fixed the value of the secant 

displacement as ds=0.16 d*
0.  

 
Fig. 6.4 Kinematic capacity curve and Damage levels. 

 

The proposed limit values of damage levels 1,2 and 3 are show in Tab.. 

 

Damage Level (DLi) Corresponding Displacement  

1 0.16 d*
0 

2 0.25 d*
0 

3 0.40 d*
0 

Tab. 6.1 Damage Levels. 
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 Fragility curves construction 

 

The use of probabilistic approaches is nowadays commonly diffused in the seismic 

risk estimation of structural systems, to take into account the uncertainties related to 

the characterisation of the main mechanical and geometrical parameters of the 

structure to be assessed. In this field, fragility curves are the most useful tools to 

describe the conditional probabilities of a structure to meet or exceed certain damage 

levels for a given ground motion intensity. In the case of existing masonry structures 

a probabilistic approach is necessary for the evaluation of the seismic demand 

intensity and for a realistic evaluation of the overall capacity. For these variables it is 

generally recognised the impossibility to attribute exact values, therefore they must 

be associated to probability density functions.  

With regard to seismic demand, ground motion actions can be characterised by 

different intensities, frequency contents and durations. Materials and structures 

characteristics, which define the overall bridge capacity, and factors site conditions, 

which affect seismic demand, are so uncertain that a probabilistic approach is 

required for seismic vulnerability estimation. Consequently, seismic demand is 

defined by an interval of values, instead of a single value as provided by deterministic 

analysis. In this work, 7 artificial accelerograms were considered; related elastic 

spectra were calculated, and subsequently the elastic mean spectrum (Shinozuka et 

al. 2000) and the relative standard deviation were derived. 

First of all, it is necessary to identify an appropriate set of performance levels (PL), 

associated with service and collapse limit states. Subsequently, correlations are 

formulated between a seismic intensity measure (usually defined by PGA or PGV) 

represented in the X-axis coordinate, and the exceedance probability for the PL to 

which the curve is referred, in the Y-axis coordinate. 

Hence, a probabilistic approach has to be followed to consider the intrinsic variability 

of seismic demand and structural capacity parameters. The use of an analytical 

approach is required when data of post-earthquake damage on existing structures 

are not available. Generation of “analytical” fragility curves is usually carried out in 

three steps: in principle, seismic action is simulated on the basis of recorded or 

generated earthquakes. Bridge is then represented with a numerical model taking 

into account the uncertainty of structural properties; finally, fragility curves are 

generated from response data obtained from the numerical model. 

Results of the analytical approach may be obtained through analyses of differing 

complexity such as probabilistic response spectra in conjunction with bridge inventory 

data (Dutta & Mander, 1998), elastic spectral analysis (Hwang et al., 2000), non-

linear static analysis (Shinozuka et al., 2000), simplified methods based on 
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regression analysis (Karim & Yamakazi, 2003); non-linear time history analysis (i.e. 

Karim & Yamakazi, 2001; Choi, 2004). With regard to masonry/stone structures, 

other different methodologies can be also used for the structural analysis: since 

Heyman (Heyman 1966; Heyman 1972) pointed out that the plastic theory could be 

applied to masonry gravity structures (Gilbert 2007), many studies have been 

developed over the years on limit analyses for the assessment of masonry arches. 

According to Heyman’s assumptions, iterative methods to find the geometric factor 

of safety (related to the minimum thickness of the arch) under vertical dead and live 

loads were proposed by Clemente et al. 1995. Extensions to the basic rigid block 

method for the limit safety analysis of the arch were subsequently introduced (Gilbert 

and Melbourne 1994; Gilbert 1998; Cavicchi and Gambarotta 2007; Clemente et al. 

2010). 

Although the most reliable method is based on NLDA, this type of analysis on 

complex models is so time-consuming that it is not useful for large-scale application  

In this work, fragility curves were constructed following the method proposed in 

Shinozuka et al., 2000, by means of non-linear static analyses based on CSM. 

Generation of fragility curves requires the definition of a damage function. In 

earthquake engineering, damage measures proposed in scientific literature are 

numerous and various, and can be defined for each structural element or sub-

elements (local indexes), or related to the entire global structure (global indexes). An 

excellent review has been made in Cosenza and Manfredi, 2000a, 2000b. The most 

commonly used parameters for the evaluation of structural damage are ductility 

(which can be defined in terms of rotation, curvature or displacements) and plastic 

energy dissipation. 

The choice of using kinematic or cyclic ductility as a damage measure is equivalent 

to assume that the collapse is expected under maximum plastic displacement, 

independently from the number of plastic cycles and the amount of dissipated energy. 

Ultimate ductility corresponding to structure collapse can be determined with a 

monotonic test. 

When energy is considered as the parameter associated to the damage function, the 

structure is considered to have a set amount of energy that can be plastically 

dissipated (Uang & Bertero, 1990). Consequently, collapse occurs when that value 

of dissipated energy is achieved by means of cyclic loads. In the evaluation of energy 

dissipation in a structure, energy-based indexes are appealing for their simplicity, but 

experimental assessment of the supplied energy dissipation capacity is very difficult. 

Other indexes are based on a combination of ductility and dissipated energy demand. 

The most widely used is the Park&Ang index (Park & Ang, 1985), which is defined as 

a linear combination of maximum displacement and dissipated energy. This index is 
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closely correlated with observed damage. However, the parameter that defines the 

weight to be associated with dissipated energy is difficult to be experimentally 

defined. 

In scientific literature, ductility is therefore the most widely used parameter to define 

the damage index.  

The procedure used to calculate a fragility curve for a set performance level dPL is 

summarised below: 

1) a parameter  identifying seismic intensity is set; 

2) the elastic spectra referring to the accelerograms used for the set parameter 

 are calculated; 

3) the average spectrum m and the average spectrum ± standard deviation � are 

calculated and then represented in AD format; 

4) a pushover analysis is carried out to calculate the capacity curve for each j-th 

bridge (i.e., of a set bridge with j-th characteristics of random parameters); 

5) the demand curves of the three elastic spectra calculated in the previous step 

are determined with one of the simplified analysis methods based on CSM. 

Intersection with j-th bridge capacity curve determines three displacement 

values (Figure 1).  is defined through the intersection of the capacity 

diagram with the mean demand curve m.  and  

derive from the intersection of demand curves m+σ and m-σ respectively. 

Values  and  usually do not coincide, so that geometric mean 

is carried out to have only one value of standard deviation to be used for the 

definition of probabilistic distribution of seismic demand, as reported in (1). 

 

 (6.7) 

6) the log-normal distribution of the damage function for the j-th bridge is 

generated by the mean  and standard deviation  parameters. 

These parameters are obtained by the inversion of the system and their 

association with  and . The system is shown below 

 

 (6.8) 

 (6.9) 

7) once  and  are determined for the j-th bridge, the probability of 

exceeding the damage level set as: 

 

a

a

, ( )d jS a

, ,( ) ( )d j d jS a a  , ,( ) ( )d j d jS a a 


d , j
 (a ) , ( )d j a 

, , ,( ) ( ) ( )d j d j d ja a a    

( )jc a ( )j a

, ( )d jS a , ( )d j a

 2

, ( ) ( ) exp ( ) / 2d j j jS a c a a     

      22 2

, ,( ) ( ) exp ( ) 1d j d j ja S a a     
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 (6.10) 

 

is calculated, where  is a standard normal distribution function; 

8) the previous steps are then iterated for each of the other statistically different 

k bridges so as to obtain the final fragility value by the following arithmetic 

mean: 

 

 (6.11) 

 

where k is the total number of random parameter combinations (and therefore 

the total number of statistically different bridges in terms of capacity). If each 

of the k bridges is characterised by a different weight,  is obtained 

through a weighted mean.  

 

The procedure is repeated for all the values of seismic intensity considered. 

 

 
Fig. 6.5 Assessment of seismic capacity relative to the three demand curves analysed. 
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6.4.1 Reduction of Demand Spectrum 

 

In this work, the function adopted for reducing the elastic response spectra is mainly 

based on the definition of a linear equivalent system with a proper damping and the 

procedure refers to the overdamped approach. 

The equivalent damping is calculated by the formulation proposed by Calvi (1999) 

that relates the dissipated energy to the ductility reached by the structure: 

 

1
1equ el  


 

   
 

       (6.12) 

 

Where the coefficients α and β are function of the hysteretic model assumed, μ is the 

ductility value and ξel is usually assumed equal to 0.05.  

Ductility, that can be defined as μi=dPLi/dPL1, increases quite rapidly in the nonlinear 

range, just after DL1, exactly as damping.  

The coefficient β modifies the rate of increase of hysteretic damping with ductility, 

and it is adopted equal to 1. The values of α, as Perpetuate D35 suggests, is equal 

to 0.2 for the out-plane mechanism and 0.15 for in-plane arch mechanism. 

The relationships based on the damping coefficient are aimed to reduce the elastic 

spectrum and the expression proposed in Eurocode 8 is assumed as reference: 

 

10

5PLi
PLi







       (6.13) 

 

The spectral reduced acceleration for T<TB is computed as follows: 

 

,max
,

a g
a red g

B

S a
S a

T

 
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      (6.14) 

 
 

Moreover, for T>TB is computed as: 
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, ,a red a eS S         (6.15) 

 
 

  Simplified fragility curves for single-span masonry arch bridges 

 

The non-linear static or dynamic procedures allow to estimate the seismic 

vulnerability of a specific case study with accuracy. It is characterised by a defined 

geometry, and all the uncertainties related to the definition of the main physical and 

mechanical characteristics are taken into account. This approach represents the 

exhaustive resolution for a specific masonry arch bridge, which has been subjected 

of a detailed analysis of its seismic fragility.  

This meticulous procedure has a limited application especially when it is necessary 

to quickly assess the effects of an earthquake, for example for the characterisation 

of the seismic fragility of large stocks of masonry arch bridges in transport networks. 

The proposed procedure is useful to calculate the mean fragility curve for each 

subclass of single span masonry bridges with squat abutment. 

As illustrated in 3.1.1, the macro-class of single span masonry bridges represents the 

81% of the entire masonry bridges stock and the single span masonry bridges with 

squat abutment are the 88% of all the single-span masonry bridges. As a 

consequence, the design of the fragility curve was done for this class.  

The SS_sa was divided into 17 subclasses based on the geometrical parameters: L, 

S/L, f/L. (as reported in Tab. 6.2). 

For each subclass 8 bridges with different geometric elements were generated. This 

was possible by means of the use of the values of L, S/L and f/l reported in Tab. 6.2. 

 

Subclass L [m] f/L s/L 

1 3-6 0.2-0.3 0.075-0.1

2 3-6 0.2-0.3 0.1-0.15 

3 3-6 0.3-0.4 0.075-0.1

4 3-6 0.3-0.4 0.1-0.15 

5 3-6 0.4-0.5 0.075-0.1

6 3-6 0.4-0.5 0.1-0.15 

7 6-10 0.2-0.3 0.075-0.1

8 6-10 0.2-0.3 0.1-0.15 

9 6-10 0.3-0.4 0.075-0.1

10 6-10 0.3-0.4 0.1-0.15 

11 6-10 0.4-0.5 0.075-0.1
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12 6-10 0.4-0.5 0.1-0.15 

13 10-20 0.2-0.3 0.05-0.1 

14 10-20 0.3-0.4 0.05-0.1 

15 10-20 0.4-0.5 0.05-0.1 

16 20-30 0.3-0.4 0.05-0.1 

17 20-30 0.4-0.5 0.05-0.1 

Tab. 6.2 Geometrical parameters of single-span masonry bridges subclasses. 

 

 
Fig. 6.6 Representation of the single span masonry bridge subclasses considered (the 16 
bridges illustrated refers to the mean values of the L, S/L and f/L present in Tab. 6.2) 

For each of these 8 bridges three fragility curves (PL1, PL2 and PL3) were calculated 

with non-linear kinematic simulations and CMS method. They were defined by means 

of the use of two different aleatory mechanical variables: the masonry compressive 

strength and the specific weight of the infill material. 

As suggested by de Felice (de Felice et al 2006) a normal distribution is assigned to 

the masonry compressive strength (mean: 7.5 and standard deviation: 2.25). In this 

study, the infill material specific weight was also accounted (mean: 20 and standard 

deviation: 2.5). 

 

  
Fig. 6.7 Normal distribution of compressive strength and infill material’s specific weight. 
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The masonry compressive strength distribution was subdivided in three 

homogeneous intervals of 4 MPa, characterised by their central values equal to: 

3.5MPa, 7.5MPa and 11.5MPa. Also the weight of infill material was subdivided in 

three intervals of 4 kN/m3 which have the following central values: 16 kN/m3, 20 kN/m3 

and 24 kN/m3. Nine bridge samples are obtained combining these values: their 

mechanical characteristics and probabilities of occurrence are presented in Tab. 6.2.   

  

Bridge 

Sample 

γ 

[kN/m3] 

Prob. 

(γ) 

fc 

[MPa] 

Prob. 

(fc) 

Prob. 

(γ; fc) 

1 16 0.17747 3.5 0.13482 0.0239

2 20 0.63831 3.5 0.13482 0.0861

3 24 0.17747 3.5 0.13482 0.0239

4 16 0.17747 7.5 0.70923 0.1259

5 20 0.63831 7.5 0.70923 0.4527

6 24 0.17747 7.5 0.70923 0.1259

7 16 0.17747 11.5 0.14605 0.0259

8 20 0.63831 11.5 0.14605 0.0932

9 24 0.17747 11.5 0.14605 0.0259

Tab. 6.3 Characteristics of the 9 considered bridge samples for each of the 8 bridges of each 
17 subclass. 

For the calculation of the fragility curve with CSM it was necessary to define the mean 

spectrum that was carried out from the generation of spectrum compatible 

accelerograms. The spectra type adopted in this work refer to the elastic spectra type 

2 (Ground type A) as referred in Eurocode 8 for the ultimate limit state (10% 

exceedance probability during 50 years). 

In summary, three fragility curves were calculated per each of the 8 bridges, each 

one for three different performance levels (PL1, PL2 and PL3). Each fragility curve 

was obtained through the combination of the results from 9 bridge samples with their 

probabilities of occurrence. The three fragility curves (PL1, PL2 and PL3) of each 

subclass were calculated as the mean value of 8 different curves (Fig. 6.13).  
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Fig. 6.8 The three fragility curves (PL1, PL2 and PL3) of subclasses 1-2. 
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Fig. 6.9 The three fragility curves (PL1, PL2 and PL3) of subclasses 3-4-5. 
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Fig. 6.10 The three fragility curves (PL1, PL2 and PL3) of subclasses 6-7-8. 
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Fig. 6.11 The three fragility curves (PL1, PL2 and PL3) of subclasses 9-10-11. 
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Fig. 6.12 The three fragility curves (PL1, PL2 and PL3) of subclasses 12-13-14. 
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Fig. 6.13 The three fragility curves (PL1, PL2 and PL3) of subclasses 15-16-17. 
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constant value of f/L and S/L have the same seismic vulnerability. As a consequence, 

of these results the subclasses began 9 and not 17 as in Tab. 6.3. has been reported. 

 

Subclass   L [m] f/L s/L 

SC1 (ex 1-7) 3-10 0.2-0.3 0.075-0.1 

SC2 (ex 2-8) 3-10 0.2-0.3 0.1-0.15 

SC3 (ex 3-9) 3-10 0.3-0.4 0.075-0.1 

SC4 (ex 4-10) 3-10 0.3-0.4 0.1-0.15 

SC5 (ex 5-11) 3-10 0.4-0.5 0.075-0.1 

SC6 (ex 6-12) 3-10 0.4-0.5 0.1-0.15 

SC7 (ex 13) 10-30 0.2-0.3 0.05-0.1 

SC8 (ex 14-16) 10-30 0.3-0.4 0.05-0.1 

SC9 (ex 15-17) 10-30 0.4-0.5 0.05-0.1 

Tab. 6.4 Characteristics of the 9 considered bridge samples for each of the 8 bridges of each 
17 subclass. 

 

 
Fig. 6.14 The fragility curves (PL1) of each 17 subclasses 
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Fig. 6.15 The fragility curves (PL2) of each 17 subclasses 

 

 
Fig. 6.16 The fragility curves (PL3) of each 17 subclasses 
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In this study the procedure for the evaluation of seismic vulnerability of a single span 

masonry arch bridge class is described.  

This work was been carried out with a new simplified approach for a quickly seismic 
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classes with similar seismic vulnerability which, as guessed, have also similar 

geometrical configuration. 
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The procedure allows to calculate the fragility mean curve for each subclass; it takes 

into account the uncertainties referred to masonry compressive strength, infill 

material specific weight and seismic input.  

The proposed approach allows to quickly estimate the fragility of extend road and 

railway bridge networks and to identify the structural retrofit intervention priorities. 

Future developments of this methodology should be its application at regional level 

for the seismic vulnerability assessment of transportation networks with regard to the 

specific scenario earthquakes. 

Moreover, the study of the time-evolution of masonry bridges seismic vulnerability 

considering also materials deterioration can be a possible future outline.  
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7 CONCLUSION 

The appraisal of condition of old masonry arch bridges has become a standing 

problem for public network authorities, also in relation to seismic vulnerability of 

strategic railway lines. A growing interest in using simplified procedures for seismic 

assessment has emerged and limit analysis has proved to be a conceptually simple 

and robust method. 

In this work a typological classification of about 750 Italian railway masonry bridges 

is proposed, taking into account geometry and expected seismic collapse 

mechanisms. Limit ground acceleration a0*, i.e. bridge seismic capacity for various 

collapse mechanisms, is calculated by limit analysis method and a comprehensive 

parametric analysis for each bridge class is carried out, evaluating the influence of 

geometric parameters on the seismic capacity.  

The final result is a series of iso-acceleration curves, which provide the value of 

horizontal limit acceleration a0* of bridge structures on the basis of easily detectable 

geometric parameters only. It is important to underline that these curves can be used 

easily at the same time of BMS during the periodical bridge visual inspections, for a 

quickly judgment on seismic vulnerability. Otherwise they can be used to modify the 

judgment obtained by BMS. The new judgment considers the intrinsic seismic 

vulnerability of some masonry bridges located in high seismic risk area in addition to 

the conservation state of the construction. 

The procedure for the evaluation of seismic vulnerability of a single span masonry 

arch bridge class is here described. It was carried out using a new simplified 

approach for a quickly seismic vulnerability assessment of masonry arch bridge 

clusters. Bridges were divided into classes with similar seismic vulnerability which, 

as guessed, have also similar geometrical configuration. 

The procedure allows the evaluation of the fragility mean curve for each subclass, 

and the uncertainties referred to masonry compressive strength, infill material specific 

weight and seismic input are considered.  

Hence the proposed approach allows to quickly evaluate the fragility of extend road 

and railway bridge networks and to identify the structural retrofit intervention priorities.  
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 Future development 

Future studies should aim to account degradation phenomena of masonry bridges. 

The representation of temporal evolution of deterioration and the analysis of its 

causes can be a starting point. Then it will be possible to correlate the deterioration 

evolution with the decrease of structures mechanical properties. 

In this way new structural models should be studied in order to considered also the 

deterioration in the seismic vulnerability. 

The models produced will be useful to increase the knowledge regarding the increase 

of vulnerability according to deterioration progress. 

Moreover, the application of the subclasses fragility curves here presented can be 

applied in a large scale for seismic vulnerability assessment. 
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