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Università degli Studi di Trento

Tesi di Dottorato di Ricerca in Fisica

Fermi Mixtures:
Effects of Engineered Confinements

Ingrid Bausmerth

Supervisors
Prof. Sandro Stringari
Dr. Alessio Recati

Referees
Prof. Frédéric Chevy
Dr. Stefano Giorgini

Dr. Andrea Trombettoni

November 2009
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1 Introduction

The major breakthrough in the research of ultracold atomic quantum gases was
in 1995, when experimentalists for the first time were able to cool a dilute vapor
of alkali-metal atoms to such low temperatures that a Bose-Einstein condensate
(BEC) [1–3] could be observed. In Fig. 1.1 (a) we report the characteristic
absorption image of a cloud of bosonic atoms undergoing the BEC transition.

Figure 1.1: (a) Absorption image of Bose-Einstein condensate of ∼ 7 × 105 sodium atoms.
Shown is absorption vs. two spatial dimensions. The Bose-Einstein condensate is characterized
by its slow expansion observed after 6 msec time-of-flight. The left picture shows an expanding
cloud cooled to just above the transition point; middle: just after the condensate appeared;
right: after further evaporative cooling has left an almost pure condensate. The temperature
Tc at the transition point is 2 µK [4]. (b) Time-of-flight absorption image of a molecular Bose-
Einstein condensate of 6Li atoms. The distribution shows the characteristic peak around zero
momentum, hence the bimodal momentum distribution of a condensate plus a thermal cloud
[5, 6].

This achievement together with the tunability of the interaction between atoms
via Fano-Feshbach resonances [7–9] and the inclusion of optical lattices triggered
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1. Introduction

an impressive amount of experimental and theoretical work in the field of Bose-
Einstein condensates or, more generally, in the field of cold gases [4, 10–13].
The lines of research go from the studies of superfluid features such as quantized
vortices [14–16] and the hydrodynamic nature of collective modes [17, 18], to
Josephson-like effects [19, 20] and the observation of interferences of coherent
matter waves [21], to realizing the superfluid to Mott-insulator transition [22] in
these ultracold atomic quantum systems, just to name a few.

The possibility to Bose-condense a gas, a procedure which previously seemed inac-
cessible, spawned the quest for ultracold Fermi gases, and entailed the realization
of the first degenerate trapped Fermi gas in 1999 [23].

Although the relevant temperature scale to achieve quantum degeneracy for both
bosons and fermions is of the order of Tdeg ∝ n2/3, where n is the gas density,
quantum statistics give rise to a significantly different behaviour at the degen-
eracy temperature. While bosonic gases such as 87Rb or 7Li undergo the phase
transition to a Bose-Einstein condensate, a noninteracting Fermi gas of e.g. 6Li
or 40K atoms exhibits a smooth crossover between a classical and a quantum
behaviour.

In rarefied and ultracold gases only two-body collisions at low energy are relevant.
The main contribution to the interparticle scattering comes from states with an
` = 0 component of the angular momentum, i.e. the s-wave states (see, e.g., [24]).
Interactions in these cold systems are hence characterized by a single parameter,
the s-wave scattering length as, which is independent of the details of the two-
body potential [10, 11, 25, 26].

In systems of identical fermions however s-wave scattering is excluded due to the
asymmetry of the wave function, and since p-wave interaction (` = 1) is very
weak, polarized fermions can interact only if they are in different spin states.

Figure 1.2: Fermi surfaces imaged by time-of-flight of an ultracold Fermi gas of 40K atoms re-
leased from a 3D optical lattice potential for increasing filling factors corresponding to different
Fermi energies, see [27] and references therein.

Polarized and hence non-interacting Fermi gases at zero temperature in three
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dimensional periodic potentials make it possible to study the Fermi surface (Fig.
1.2) and the momentum distribution of ideal Fermi gases at zero temperature
[28], as well as quantum phenomena related to solid state physics such as Bloch
waves [29] and Bloch oscillations [30] in one dimensional optical lattices. The
advantage of polarized Fermi gases in these experiments lies in the fact that due
to the Pauli principle in the absence of s-wave collisions damping and instabilities
are prevented, making the observations of long-living oscillations possible.

To have a finite s-wave interaction between the fermions, they need to be in
different spin states, which experimentally is achieved in mixtures of different
atomic species or transferring the fermions into different hyperfine levels.

Indeed, a great appeal of ultracold gases lies in the fact that the s-wave scattering
length can be changed by means of an external magnetic field, in the presence
of Feshbach resonances, from negative to positive values, and consequently the
interactions between particles can be controllably tuned [31].

For instance, fermions with repulsive interactions in optical lattices are a powerful
tool to investigate solid state models such as the Hubbard hamiltonian [32], which
was initially proposed to study electrons in solids, and to locate different phases
such as the antiferromagnetic and the superfluid ones [33, 34]. Fermionic quantum
gases therefore can be used to simulate condensed matter configurations and give
the possibility to understand the physics of strongly correlated systems. The
tunability of the lattice potential allows to observe the Mott insulator state [35],
a model which was originally introduced to describe the transition from a metal
to an insulator [36].

On the other hand, if the interaction is attractive, the system at low temperature
is a superfluid. Depending on the strength of the interaction, we can have differ-
ent regimes. When the scattering length is small and positive two fermions with
spin-up and spin-down form a molecule, whose size is much smaller than the inter-
particle distance (see Fig. 1.3). This gas of weakly repulsive molecules undergoes
the usual BEC phase transition [5, 37–40] to a “molecular condensate”[5, 6, 38],
exhibiting the typical bimodal distribution as shown in Fig. 1.1 (b).

For small negative values of the scattering length one has a transition to the
so-called Bardeen Copper Schrieffer (BCS) superfluid [41]. The fermions form
long-range Cooper pairs [42], whose size is much bigger than the interparticle
distance (see Fig. 1.3).

The most interesting physics occurs in the so-called unitary regime, where the
scattering length as diverges, and the interparticle distance, of the order of 1/kF,
is the only length scale. The system is strongly correlated and its properties do
not depend neither on the value, nor on the sign of as. The system exhibits an
universal behaviour, being dilute but strongly interacting, since all length scales
disappear from the calculation of thermodynamic functions. The transition from
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1. Introduction

Figure 1.3: The BEC-BCS crossover. Interatomic interaction strength can be widely varied
with a magnetic Feshbach resonance. In highly dilute and ultra cold systems the low energy
collisions between two particles are characterized by the s-wave scattering length as. For as > 0
on the BEC side the fermions form tightly bound molecules. Close to the resonance, also called
the unitary limit, the interaction is very strong and as diverges. For as < 0 on the BCS side of
the resonance the fermions form Cooper pairs.

the BEC to the BCS state is smooth at zero temperature, and the system is
expected to be superfluid along the entire BEC-BCS crossover.

A crucial test of the superfluidity of a system is its response to rotation, i.e. its
moment of inertia [11]. Due to its macroscopic wave function, a superfluid adapts
to the rotation differently than a normal fluid [43, 44]. Under strong rotation,
flow in form of quantized vortices enters the system, and one can observe the
formation of vortex lattices [16].

By smoothly varying the scattering length from negative to positive values of a
rotating gas of 6Li, in 2005 experimenters [45] were able to image vortex lattices
in as shown in Fig. 1.4. This observation provided the first evidence of the
superfluid behaviour of ultracold fermionic gases along the crossover. In these
experiments, vortices are produced by spinning the condensate with a laser beam.
The vortices are observed by releasing the atomic cloud of molecules, stabilizing
and making them visible through a rapid sweep of the scattering length to small
and positive values, i.e. to the BEC regime.
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Figure 1.4: Absorption images of vortex lattices in 6Li [45] for a molecular Bose-Einstein
condensate (left), for a unitary superfluid (center) and a BCS superfluid (right).

The ability to not only control the interaction between the particles but also the
atom numbers in the different spin states opened the path to the realization of
more complex configurations [45–48]. Soon fermionic superfluidity with imbal-
anced spin-populations [49] was realised. It became possible to directly observe
the superfluid phase transition in polarized Fermi gases [50] as well as to mea-
sure the Chandrasekhar-Clogston (CC) limit which corresponds to the maximal
imbalance in the spin states above which superfluidity disappears. This limit
was first introduced 1962 by Clogston [51] and independently by Chandrasekhar
[52] in the context of superconductivity, where it represents the upper limit for a
magnetic field, beyond which superconductivity will break down.

From the theoretical point of view, the balanced system can be described with
reasonably good approximation along the entire BEC-BCS crossover solving the
BCS mean field equations, i.e. the gap and number equations. This approach was
first introduced by Eagels [53] and Leggett [54] to investigate the superconducting
and superfluid properties of matter beyond the weak coupling limit.

In the BEC limit BCS mean-field theory correctly predicts the formation of
dimers, however with a wrong value for the dimer-dimer scattering length. The
problem of two colliding composite bosons was later solved by Petrov et al. [55]
using the zero-range approximation, and the effective scattering length between
two dimers was found to be add ' 0.60as, where as is the atom-atom scattering
length.

A major difficulty is encountered at unitarity, where BCS mean-field theory is
known to give reasonable predictions in the case of unpolarized configurations
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1. Introduction

(see, for example, [26]). However, it fails to give quantitatively correct results in
the imbalanced case and to predict correctly the Chandrasekhar-Clogston limit
of critical polarization (see chapter 3). This failure is mainly due to the fact
that, within BCS theory, the energy of the normal state at unitarity is just the
sum of the kinetic energies of the spin-up and spin-down components and hence
interactions in the normal phase are ignored. Naively, the reason is because BCS
theory treats the interaction as a perturbation, where the interaction is simply
proportional to the scattering length, which diverges at unitarity.

Recent theoretical efforts have been focused on the correct inclusion of inter-
actions [56–62] in order to describe the polarized Fermi gas and the normal to
superfluid transition as observed in experiments [46–50, 63, 64]. Also numerical
techniques, as e.g. fixed-node diffusion Monte Carlo (FN-DMC) [65], have been
used to investigate the ground-state properties for the BEC-BCS crossover and
of the polarized Fermi gas at unitarity and at zero temperature (see, e.g., [26]
and references therein).

The experiments on polarized Fermi gases can be explained by using the the-
ory of Lobo et al. [59] (see chapter 3). The authors suggest that, at unitarity
and at zero temperature, the highly polarized system can be treated as a nor-
mal Fermi liquid, where weakly interacting quasi particles associated with the
minority atoms interact with the majority particles. The theory is in very good
agreement with the experimental findings of the MIT group [50]. The calcula-
tions have proven to be very efficient not only in reproducing the experimental
value of the Chandrasekhar-Clogston limit xc = 0.44, but also the density profiles
of the two separate spin components as shown in Fig. 1.5 [60].

The recent observation of heteronuclear Feshbach resonances in ultracold mix-
tures of two different fermionic species [66] as well as the realization of degener-
ate configurations [67] opened new stimulating perspectives in the field of Fermi
superfluids built with atomic species of different masses. The appeal of mass
and population imbalanced mixtures lies in the fact that on one hand they can
mimic physical models as, e.g., color superconductivity in dense quark matter
(high density QCD, [68, 69]), and on the other hand they pave the route towards
new exotic pairing phases.

The phase diagram of Fermi mixtures with unequal masses and the correspond-
ing polarization effects, including the possible occurrence of the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) phase [70], have already been the object of many
theoretical predictions based on BCS mean-field theory [71–77]. Monte Carlo
calculations were recently employed to investigate fermion pairing in the unitary
regime for a mass ratio corresponding to a 6Li-40K mixture [78] and to predict
the Chandrasekhar-Clogston limit as a function of the mass ratio as well as the
density profiles of the harmonically trapped system.
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Figure 1.5: Density profiles for a polarization P = 0.44. Theory: Solid black line (dashed
red line) is the spin-↑ (spin-↓) density. Experiment: The black (red) line is the spin-↑ (spin-↓)
density as reported in [63]. The density jump in the ↓ component is clearly visible. From [60].

In this thesis we first review in chapter 2 the theory of the normal state of the
unitary Fermi gas at T = 0 as discussed in [59, 60] and the main properties of
the normal-to-superfluid transition.

In chapter 3 we study the trapped gas under adiabatic rotation, i.e., avoiding the
formation of vortices. We show that for polarized systems the rotation enhances
the Chandrasekhar-Clogston limit due to pair breaking at the border between the
superfluid and the normal phase, while it leaves the global critical polarization
Pc of the trapped system unaffected [79]. In the case of an unpolarized unitary
superfluid the rotation causes a phase separation between a superfluid core and
an unpolarized normal shell, in which the densities of the ↑ and ↓ atom numbers
is equal [80]. For both the polarized and the unpolarized systems we calculate
experimental observables such as the density profiles and the angular momenta.

From the study of Bose-Einstein condensates it is well known that an adiabatic
rotation induces a quadrupole deformation of the trapped atomic cloud when
the rotation exceeds a certain angular velocity. In Fermi gases the situation
is different due to the phase separation discussed above, and the quadrupole
instabilities are found to set on at smaller angular velocity than in the BEC
case [80]. This phenomenon together with a more general discussion concerning
not only the energetic but also the dynamic instabilities of the phase separated
system is presented in chapter 4.

The main goal of chapter 5 is to use the present knowledge of the equation of
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1. Introduction

state of Fermi mixtures with unequal masses to give quantitative predictions for
the phase separation between the normal and superfluid components. The anal-
ysis is based on the study of the zero temperature µ-h phase diagram of the
uniform two component gas, where µ = (µ↑ +µ↓)/2 is the chemical potential and
h = (µ↑ − µ↓)/2 is an effective magnetic field. The phase diagram at unitarity is
determined thanks to the knowledge of the equation of state available from dia-
grammatic techniques applied to highly polarized configurations and from Monte
Carlo simulations. The phase diagram is then used, in the local density approx-
imation, to calculate the density profiles of the two Fermi components in the
presence of harmonic trapping.

In chapter 6 we investigate the polarization produced by the relative displacement
of the potentials trapping two spin species of a unitary Fermi gas with population
imbalance. We investigate the dipole polarizability of a polarized system both
in the two-fluid and the three-fluid model at zero temperature and point out the
major differences between the two treatments.

In chapter 7 we eventually draw our conclusions.
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2 The Unitary Fermi Gas

The study of polarization effects in Fermi superfluids has been the object of in-
tense experimental and theoretical work (for recent reviews on the subject see,
e.g., [26, 81]). Recent experiments with harmonically trapped configurations
[45–48, 50, 63] have shown that a polarized Fermi gas at unitarity and zero tem-
perature undergoes a phase separation between a central core of an unpolarized
superfluid and an external shell of a polarized normal gas. In a trap the relevant
parameter for imbalanced systems at T = 0 is the polarization

P =
N↑ −N↓

N↑ + N↓
, (2.1)

where N↑ is the number of particles in the spin-up state, and N↓ is the number
in the spin-down state, respectively.

Experiments, where surface tension effects are not important and the local density
approximation is applicable (see, e.g., [50, 63]), have revealed the occurrence of
a critical value of the total polarization Pc ' 0.77 of the gas above which the
superfluid core disappears.

In [59, 60] the equations of state of uniform matter for the superfluid and for
the polarized normal phases, calculated with ab initio Monte Carlo simulations,
have been employed within a local density approximation to treat the effect of
the harmonic trapping in the unitary regime [61]. These calculations were proven
to be very efficient not only in reproducing the experimental value of the critical
polarization, but also the density profiles of the two separate spin components.
Therefore they provide an accurate and consistent description of the phase sepa-
ration exhibited by the unitary Fermi gas at zero temperature. In particular, the
discontinuity characterizing the spin-down density at the interface between the
superfluid and normal components, as well as the typical knee revealed by the
column density of the same spin-down component, are dramatic features repro-
duced with accuracy by theory. These calculations have pointed out the crucial
role played by the interactions in the normal phase [60].

Here and in the following we will review the physics of dilute mixtures of spin-↑
and spin-↓ fermions at zero temperature and at unitarity, i.e. when the scattering
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2. The Unitary Fermi Gas

length, characterizing the interaction between the particles, is much bigger than
the interparticle distance [59, 60]. In this limit, the system can be regarded as
a strongly interacting fluid, and one of the fascinating phenomena occurring is
the phase separation between an unpolarized superfluid and a partially polarized
normal gas.

2.1 The Equation of State of the Unitary Fermi

Superfluid

At unitarity and zero temperature all thermodynamic quantities are universal
functions of EF = (~2/2m)(6π2n)2/3. Hence the equation of state of a fully po-
larized Fermi gas, at unitarity and zero temperature, is given by the equation
of state of the ideal Fermi gas µ(n) = (6π2)2/3(~2/2m)n2/3. In the case of in-
teractions, the equation of state has the same density dependence as the ideal
gas, apart from a dimensionless normalisation factor (1 + β), which accounts for
interactions in the system.

In the case of an unpolarized superfluid state, N↑ = N↓, the equation of state is
given by

ES

NS

=
3

5
EF (1 + β), (2.2)

where ES is the total energy of the system, and NS is the total number of par-
ticles. The value of the dimensionless factor β = −0.58 has been calculated
employing Monte Carlo simulations [82, 83]. Eventually, the equation of state of
the unpolarized superfluid state is given by

ES

NS

= ξS
3

5

~2

2m
(6π2nS)

2/3 ≡ εS(nS), (2.3)

where ξS ≡ (1 + β) = 0.42.

2.2 The Equation of State of the Unitary Fermi Gas

In contrast to the superfluid, the normal phase is polarized, N↑ 6= N↓, and there-
fore its equation of state must depend on the concentration

x =
N↓

N↑
, (2.4)

where x ≤ 1.
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The Equation of State of the Unitary Fermi Gas

The equation of state of the unitary Fermi gas at zero temperature was derived
in the spirit of a longstanding subject in condensed matter physics, namely the
problem of a single impurity interacting with its environment. Related examples
are the moving electron in a crystal lattice, the lattice polaron 1, or a magnetic
impurity in a sea of electrons known as the Kondo problem [85].

Figure 2.1: Left panel: Nonperturbed sea of ↑-particles. Left panel: spin-↓ impurity immersed
in the Fermi sea of spin-↑ atoms; due to the interactions it becomes a quasiparticle, an impurity
dressed by particle-hole excitations, resulting in a Fermi polaron with an effective mass and
energy.

In our case the impurity is a spin-↓ atom immersed in a spin-↑ sea, which be-
comes “coated”or “dressed”by the interaction with the spin-↑ particles. As a
consequence, the impurity loses its identity as a bare spin-↓ particle and becomes
a quasiparticle with an effective mass and energy, a Fermi polaron [86, 87].

The equation of state at unitarity was first derived by Lobo et al. [59] assuming
that the partially polarized phase is a dilute mixture which is created by adding
a few spin-↓ particles to a noninteracting gas of spin-↑ atoms.

In a small x expansion the energy of the normal state can be written as [59, 60]

EN(x)

N↑
=

3

5
EF↑

(
1− Ax +

m

m∗x
5/3 + Bx2

)
=

3

5
EF↑g(x) ≡ εN(x), (2.5)

where N↑ is the total number of spin-↑ atoms and EF↑ = ~2/2m(6π2n↑)
2/3 the

Fermi energy of the spin-↑ gas. The first term in Eq.(2.5) corresponds to the
energy per particle of the noninteracting ↑-gas, while the term linear in x gives
the binding energy A of the spin-↓ particles to the spin-↑ sea. In Eq.(2.5) it is
assumed that adding spin-↓ particles to the spin-↑ sea, the ↓-atoms form a Fermi
gas of quasiparticles or Fermi polarons with an effective mass m∗, and contribute
to the total energy by the quantum pressure term proportional to x5/3.

1The term polaron was first used by Landau [84] to describe an electron, which by moving
through a crystal lattice polarizes the ions. This brings the ions out of their equilibrium and
distorts the lattice, creating phonons which “dress” the electron.
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2. The Unitary Fermi Gas

Figure 2.2: Equation of state of a normal Fermi gas as a function of the concentration x
(circles). The solid line is a polynomial best fit to the Monte Carlo results. The dashed line
corresponds to expansion (2.5). The dot-dashed line is the coexistence line between the normal
and the unpolarized superfluid states, and the arrow indicates the critical concentration xc

above which the system phase separates. For x = 1, the energy of both the normal (white dot)
and the superfluid (black diamond) states are shown, [59].

The values of the binding energy A and of the effective mass m∗ have been calcu-
lated using different many-body methods, e.g. Quantum Monte Carlo Methods
and the T -matrix approach [59, 65, 88–91]. The most recent Monte Carlo calcu-
lations give A = 0.99(1) and m∗/m = 1.09(2) [65].

Eventually, the last term proportional to x2 includes the effect of interactions
between the quasiparticles. It has has been estimated fitting the expression (2.5)
to the Monte Carlo results for the equation of state as a function of the concen-
tration, and the parameter B = 0.14 accounting for these interactions has been
calculated in [65]. The parametrization in Eq.(2.5) reproduces the Monte Carlo
results for the energy of the normal state not only in the low x regime, but also
for large values of the concentration parameter.

The results for the equation of state of the unitary Fermi gas are shown in Fig. 2.2
as a function of the concentration x. The dashed line corresponds to Eq.(2.5),
while the solid line shows the polynomial best fit to the Fixed-Node Diffusion
Monte Carlo (FN-DMC) results (circles) [59]. For a concentration x = 1, i.e.
for a mixture of equal number of ↑ and ↓ atoms, both the energy of the normal
and the superfluid state are shown, which yield EN/(3/5EF↑N↑) = 1.12(2) (white
dot in Fig. 2.2) and ESF/(3/5EF↑N↑) = 0.84(2) (black diamond in Fig. 2.2),
respectively [59].
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The Equation of State of the Unitary Fermi Gas

From the equation of state of the normal phase one can determine both the tran-
sition between the mixed and the unpolarized superfluid phase and the transition
between the mixed and the fully polarized phase. The conditions for the phase
separation are obtained by requiring that the pressure and the chemical potential
be the same in the two phases. The transition between the fully polarized is a
second order phase transition and takes place at x = 0, which corresponds to
µ↓/µ↑ = −3/5A.

Figure 2.3: Left panel: Polarized Fermi gas with a concentration of n↓/n↑ < 0.44. Right
panel: For a concentration n↓/n↑ > 0.44, the system starts nucleating a superfluid core.

For the normal to superfluid transition instead the critical concentration is xc =
0.44 indicated by the arrow in Fig. 2.2, corresponding to µ↓/µ↑ = 0.017. If the
concentration is smaller than xc, the system remains normal, whereas for x > xc

it starts nucleating the superfluid phase as schematically shown in Fig. 2.3.
This critical value of the concentration xc is the Chandrasekhar-Clogston limit
of polarization, above which superfluidity disappears. The normal to superfluid
transition is a first order phase transition indicated by the nonconvexity of the
Maxwell construction as shown by the coexistence line (dot-dashed) in Fig. 2.2.

The role of interactions and of the underlying quasiparticle concept becomes ob-
vious when compared to the results obtained within BCS theory. Within BCS
theory, the energy of the normal state at unitarity is just the sum of the nonin-
teracting kinetic energies of the spin-↑ and spin-↓ component

EBCS(x)

N↑
=

3

5
EF↑(1 + x5/3), (2.6)

and hence an increasing function of the concentration as shown in Fig. 2.4, where
we also plot the energy of the normal state as introduced by Lobo et al..

The parameter characterizing the interactions in the superfluid phase on the other
hand is ξBCS = 0.59, so that the superfluid energy is EBCS

SF /(3/5EF↑N↑) = 1.18.
This yields for the critical concentration the value xc = 0.04, which is significantly
smaller than the value resulting from [59].
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2. The Unitary Fermi Gas

Figure 2.4: Energy of the normal state as derived by Lobo et al. (black solid) and critical
concentration xc = 0.44 for the normal to superfluid transition (black arrow). As a comparison,
the energy as resulting from the BCS treatment (grey dashed), together with xBCS

c = 0.04 (grey
arrow), is also shown.

2.3 Local Density Approximation for the Trapped

System

In the experimentally relevant cases, where the number of atoms confined by a
harmonic potential is of the order of N ' 105 − 107, the local density approxi-
mation (LDA, also referred to as semiclassical or Thomas-Fermi approximation)
provides a simple description of the system. The LDA profits from the knowledge
of the equation of state of the uniform system to deduce the behaviour of the
system in a harmonic trap.

Here and in the following we will always consider systems at zero temperature,
where the equation of state is provided by the density dependence ε(n) of the
energy density. Then, within the local density approximation, it is assumed that,
locally, the system behaves like a uniform gas, and the energy density can be
expressed as ε(n) = nE(n)/N , where E(n)/N is the energy per atom of uniform
matter. The energy of the trapped system can then be written in the integral
form

E =

∫
dr{ε[n(r)] + Vho(r)n(r)}, (2.7)

which is the sum of the internal energy (first summand) and of the oscilla-
tory energy (second summand) provided by the harmonic trapping potential
Vho(r) = 1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2). The value of the density profile at equi-

librium is determined by the variational relation δ(E − µ0N)/∂n(r) = 0, which
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Phase Separation in the Trapped System

yields the Thomas-Fermi equation

µ0 = µ[n(r)] + Vho(r). (2.8)

In the above equation, µ(n) = ∂ε(n)/∂n is the local chemical potential, which
is determined by the equation of state of the uniform system, while µ0 is the
chemical potential of the trapped gas, which is fixed by

∫
dr n(r) = N .

The LDA can be applied when the relevant energies are much larger than the
single-particle oscillator energy ~ωi, i.e., when µ0 � ~ωi (i = x, y, z). In the case
of fermions due to the quantum pressure term related to the Pauli principle, one
can apply the Thomas-Fermi relationship Eq.(2.8) even to the noninteracting
configuration using the chemical potential µ(n) = (3π2)2/3(~2/2m)n2/3 of the
noninteracting Fermi gas, which yields the equilibrium profile

n(r) =
8

π2

N

R0
xR

0
yR

0
z

[
1−

(
x

R0
x

)2

−
(

y

R0
y

)2

−
(

z

R0
z

)2
]3/2

(2.9)

in the trap. In Eq.(2.9), R0
i = aho(48N)1/6(ωho/ωi) (i = x, y, z) are the Thomas-

Fermi radii and aho =
√

~/mωho is the harmonic oscillator length. The Thomas-
Fermi radius gives the width of the density distribution at T = 0.

2.4 Phase Separation in the Trapped System

For equal particle numbers, N↑ = N↓, the system is completely superfluid while
a polarization P = 1 indicates a fully polarized noninteracting Fermi gas. For
values of the polarization 0 < P < Pc the system exhibits a phase separation
between an unpolarized superfluid core and an external partially polarized normal
shell. Hence, polarizing a Fermi superfluid through an imbalance of the spin
population gives rise to a shell structure in the trap as shown schematically in
Fig. 2.5.

To determine the condition of equilibrium between the superfluid and normal
phase in the trap, we define RS the surface which separates the superfluid from
the partially polarized system, while R↑ is the Thomas-Fermi radius of the fully
polarized normal part (see Fig. 2.5). Then we can write down the free energy in
the trap as

E = 2

∫
r<RS

dr
[
εS(nS(r))− µ0

S + V (r)
]
nS(r)

+

∫
RS<r<R↑

dr
{

εN(x)n↑(r) + V (r)[n↓(r) + n↑(r)]

− µ0
↑n↑(r)− µ0

↓n↓(r)
}

, (2.10)
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2. The Unitary Fermi Gas

Figure 2.5: Sketch: Shell structure of the trapped system, consisting of a superfluid core (red)
surrounded by a partially polarized shell (green), N↑ > N↓, and fully ↑-polarized corona (blue).

where µ0
↑(↓) is the chemical potential of the spin-↑ (spin-↓) component and

µ0
S = (µ0

↑ + µ0
↓)/2 is the superfluid chemical potential, respectively. To find the

equilibrium we minimize the energy with respect to the densities of the superfluid
and the normal part, which yields the the LDA expressions for the superfluid

µ0
S = ξS

~2

2m
(6πnS)

2/3 + V (r), (2.11)

and the normal phase

µ0
↑ =

(
g(x)− 3

5
xg′(x)

)
~2

2m
(6πn↑)

2/3 + V (r), (2.12)

µ0
↓ =

3

5
g′(x)

~2

2m
(6πn↑)

2/3 + V (r). (2.13)

By varying the energy with respect to the superfluid border RS we eventually
find the equilibrium condition for the two phases in the trap, which is equivalent
to implying that the pressure of the two phases be the same(

n2
S

∂εS

∂nS

)
r=RS

=
1

2

(
n2
↑
∂εN(x)

∂n↑
+ n↑n↓

∂εN(x)

∂n↓

)
r=RS

. (2.14)

From Eqs.(2.13) and (2.14) we obtain an implicit equation for the concentration
at the border

g(x(RS)) +
3

5
[1− x(RS)]g

′(x(RS))− (2ξS)
3/5[g(x(RS))]2/5 = 0. (2.15)

In the superfluid phase the ↑ and ↓-densities are equal, such that a solution
x(RS) < 1 of Eq.(2.15) indicates density jumps between the single components at
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Phase Separation in the Trapped System

the interface. At the border we find that x(RS) = 0.44 which is identical with the
Chandrasekhar-Clogston limit of the bulk system. The density jumps between
the superfluid and the spin-up and spin-down component at the border can be
easily calculated and are given by

n↑(RS)

nS(RS)
=

(
2ξS

g(x(RS))

)3/5

∼ 1.01, (2.16)

n↓(RS)

nS(RS)
= x(RS)

(
2ξS

g(x(RS))

)3/5

∼ 0.45. (2.17)

From Eqs.(2.11-2.13) one can calculate the density profile as shown in Fig. 2.6
for a polarization P = 0.44. The system exhibits the typical shell structure
consisting of a superfluid core, where the densities of both the spin components
are equal, and a normal surrounding phase with N↑ > N↓. Visible is also the
significant jump in the minority component, while the spin-↑ density is practically
continuous.

Figure 2.6: Density profiles for a polarization P = 0.44. Theory: solid red (SF), green (↓-
component) and blue (↑-component). Experiment: The black (red) line is the spin-↑ (spin-↓)
density as reported in [63]. Figure from [60].

Importantly, from the densities one can predict the critical polarization Pc in the
trap, i.e. the particle imbalance above which the superfluid disappears and only
the normal phase is present. The critical polarization in the trap corresponds
to the Chandrasekhar-Clogston limit of the bulk system, and with the present
values of A, m∗, and B the critical polarization is given by Pc = 0.77. The proper
inclusion of interactions is crucial to correctly describe the normal to superfluid
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2. The Unitary Fermi Gas

quantum phase transition and the critical polarization. For the trapped system,
BCS mean-field approach would predict the incorrect value Pc ' 1 for the critical
polarization.

In Fig. 2.6 the theoretical density profiles are shown together with the experimen-
tal data from the MIT group [50, 63]. The comparison with the MIT experiments
is favored by the possibility to apply the local density approximation due to the
large values of the total particle number N and hence negligible details of the
interface at a microscopic scale. Note, that for the prediction of the density pro-
files as revealed in the experiment no other input is needed than the polarization
P , apart from, of course, the proper equation of state of the superfluid and the
normal phase.

2.5 The Limit of High Polarizations and the Fermi

Polaron

In the limit of high polarizations, to the leading order in x Eqs. (2.13) yield [60]

µ0
↑ =

~2

2m

(
6π2n↑

)2/3
+ V (r), (2.18)

µ0
↓ +

3

5
Aµ0

↑ =
~

2m∗

(
6π2n↓

)2/3
+ V (r)

(
1 +

3

5
A

)
. (2.19)

with m∗/m = 1.09(2) and A = 0.99(1) [65]. Both the effective mass m∗/m as
well as the binding energy A enter in the expressions, proving the role of the
interactions. The background spin-↑ sea has the density profile of an ideal Fermi
gas, while the radius of the spin-↓ component is reduced by

R↓ = R0
↓

[(
1 +

3

5
A

)
m

m∗

]−1/4

, (2.20)

where R0
↓ = (48N↓)

1/6
√

~/(mω) is the Thomas Fermi radius and

ω∗

ω
=

√
m∗

m

(
1 +

3

5

)
A (2.21)

is the effective trapping frequency felt by the spin down particles due to their
interaction with the ↑-component.

The latter relation has been recently employed in experiments [87] to directly
determine the polaron effective mass from dynamical measurements of low lying
excitation modes. In [87], Nascimbène et al. excite the axial breathing mode of
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The Limit of High Polarizations and the Fermi Polaron

an ultracold Fermi gas in order to study the dynamics of the radii of the majority
and minority component for different polarizations. The analysis of the Fourier
spectrum of the dynamical evolution of the radii reveals that for P < 0.75 the
oscillation rates of the ↑ and ↓ components are equal and hence strongly coupled,
indicated by a single peak in the spectrum.

Figure 2.7: (a) Frequency power spectrum for P = 0.90(2). The peak between ωHD and ωCL

corresponds to the oscillation in phase with the majority, the other one to the polaron oscillation
(grey dashed circle). (b) Frequency of the polaron component as a function of polarization. All
frequencies are normalized to ωz, from [87].

For P ' 1 however, the spectrum reveals two peaks as shown in Fig. 2.7 (a),
indicating that the minority component oscillates out of phase with the majority
cloud. The frequency ω2b of the second peak (grey dashed circle in Fig. 2.7
(a)) is then identified with ω∗/ω in Eq.(2.21) to extract the value of the effective
mass. With an interpolated frequency of ω∗/ω ∼ 1.175 for P → 1 (see Fig. 2.7
(b)), the effective mass is determined to be m∗/m = 1.17(10). This is in good
agreement with theoretical [65, 88] predictions and static observations, where the
value of the effective mass was extracted by determining the energy density of a
resonantly interacting Fermi gas from the in situ density distributions [60, 92].
The dynamic measurement [87] not only confirms the results of the effective mass,
but also the underlying Fermi polaron concept.
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2. The Unitary Fermi Gas

2.6 Conclusions

The highly polarized Fermi gas at unitarity is an example of a strongly interacting
Fermi liquid which remains normal even at temperatures close to zero. The
assumption of a phase separation between a superfluid and polarized normal gas
describes accurately the behavior of the trapped resonant Fermi gas at T = 0.
The theory of the normal state agrees with all the main results obtained by
the MIT group such as the prediction of the Chandrasekhar-Clogston limit for
the concentration xc = 0.44 as well as for the critical polarization Pc ∼ 0.77 in
the trap [46, 50, 63, 64]. The two-shell structure for P < Pc, and the correct
value of the density jump between the superfluid and the normal component
at the interface [60] were found to be in good agreement. In contrast to this,
BCS results are quantitatively not correct as shown by the value of the critical
concentration, which within BCS theory is predicted to be xc = 0.04. This proves
the role of interactions at unitarity in the normal phase, and shows that their
inclusion in the equation of state is necessary for predicting correctly the main
features of the trapped gas.

In the limit of high polarizations, one can derive simplified expression for the
densities of the majority and minority components. While the majority species
has the density profile of an ideal Fermi gas, the density profile of the minority
species is quenched due to the interactions with the ↑-component and feels a
renormalized potential. This influences remarkably the excitations of collective
modes and their spectrum as calculated in [60] and experimentally shown in [87].
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3 Unitary Fermi Gas under Adiabatic Rotation

It is well known that the response to a transverse probe, like the rotation, is a
crucial tool to test the superfluidity of a system. The most famous example in this
contest is the classic “rotating bucket”experiment on superfluid 4He [93], where
a cylindrical container is rotated as the liquid is cooled. For trapped superfluid
gases, this can be achieved by rotating the confining potential. While a normal
gas rotates in a classical rigid way, a superfluid features a different behavior.

The effect of the rotation on the behavior of a superfluid is a longstanding subject
of investigation in condensed matter as well as in nuclear systems [94, 95]. Due
to the irrotationality constraint imposed by the existence of the order parameter
a superfluid cannot rotate like a normal fluid. The phenomena exhibited by
superfluids are multifaceted and include the quenching of the moment of inertia
at small angular velocities and the appearance of quantized vortices at higher
velocities. Vortices have already been observed in these polarized configurations
and shown to disappear for high polarizations [49].

Previous theoretical work on superfluid rotating Fermi gases has mainly focused
on the dynamics [96] and on the instability [97, 98] of configurations with high
vortex density. Here we investigate the behavior of the gas when quantized vor-
tices are not formed. Experimentally this scenario is achievable through an adi-
abatic ramping of the the angular velocity of the rotating trap starting from a
configuration at rest. In the case of trapped BEC’s this procedure has permitted
to reach values of angular velocity significantly higher than the critical angular
velocity for the formation of quantized vortices whose nucleation is inhibited by
the presence of a barrier.

Under these conditions new physical phenomena occur like, for example, the
spontaneous breaking of rotational symmetry caused by the energetic instability
of the surface modes [99] and, at even higher angular velocities, the occurrence of
dynamic instabilities [100]. These phenomena have been observed experimentally
in BEC’s [101], confirming in a qualitative and quantitative way the correctness
of the irrotational hydrodynamic picture of rotating superfluids.

In the following we show that a trapped rotating Fermi gas at unitarity exhibits
a further interesting phenomenon, associated with the breaking of superfluidity
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3. Unitary Fermi Gas under Adiabatic Rotation

in the external region. Indeed, atoms prefer to be in the normal phase because
of the energy gain due to the rotation. This mechanism of the depletion of the
superfluid due to the rotation has also been recently confirmed within BCS mean-
field theory [102]. The occurrence of this phenomenon requires proper conditions
of adiabaticity in the ramping of the rotation of the trap in order to avoid the
formation of vortices, a condition that has been already successfully realized
in rotating Bose-Einstein condensates [101, 103]. The results presented in this
chapter have been published in [79, 80].

We will first discuss the effect of rotation on a polarized Fermi gas, after which
we will consider the particular case of a nonpolarized superfluid system.

3.1 Rotating Adiabatically a Polarized Fermi Gas

We consider a polarized (N↑ 6= N↓) Fermi gas at unitarity confined by a harmonic
potential V (r) = m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)/2, rotating adiabatically with angular

velocity Ω along the z-axis. We study the problem in the rotating frame of the
trap, where the potential is static and the Hamiltonian contains the additional
term −ΩLZ.

Figure 3.1: The typical shell structure of the trapped system consisting of a superfluid core
(red) surrounded by a partially (green) and fully polarized (blue) normal shell for a polarization
P = 0.44, Ω = 0 (left panel) and Ω = 0.5ω⊥ (right panel), respectively. The superfluid is
squeezed in the radial direction while the normal part exhibits the bulge effect due to the
rotation.

In the LDA the grand canonical energy of the rotating configuration at zero
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Rotating Adiabatically a Polarized Fermi Gas

temperature takes the form

E =

∫
dr

(
ε(n↑(r), n↓(r)) + V (r) +

1

2
mv2 −mΩ(r× v)Z

)
n(r)

−
∫

dr[µ0
↑n↑(r) + µ0

↓n↓(r)], (3.1)

where ε(n↑(r), n↓(r)) is the energy density per particle depending on the n↑,↓(r)
densities of the two spin species, v is the velocity field, µ0

↑ and µ0
↓ are the chemical

potentials of the ↑ and ↓ particles, and n(r) = n↑(r) + n↓(r) is the total density.

We assume that the phase separation in the trap manifests as the formation of an
inner unpolarized superfluid core occupying the region r < RS(θ, φ) surrounded
by an external normal shell, which is confined to RS(θ, φ) < r < RN(θ, φ) as
shown in Fig. 3.1. Here, we term RS(θ, φ) the interface separating the superfluid
from the normal phase and RN(θ, φ) the Thomas-Fermi radius of the gas where
the density vanishes. Thus, the integral (3.1) splits into two parts

E = 2

∫
r<RS

dr

(
εS(nS(r))− µ0

S + V (r) +
1

2
mv2

S −mΩ(r× vS)Z

)
nS(r)

+

∫
RS<r<RN

dr
[

εN(x(r))n↑(r)− µ0
↑n↑(r)− µ0

↓n↓(r)
]

+

(
V (r) +

1

2
mv2

N −mΩ(r× vN)Z

)
n(r),

(3.2)

In this equation, εS(nS(r)) is the energy density of the superfluid as given by
Eq.(2.3), while εN(x(r)) is the energy density of the normal state as given by
Eq.(2.5), µ0

S = (µ0
↑ + µ0

↓)/2 is the superfluid chemical potential and n↑,↓(r) the ↑
and ↓ densities in the normal phase. In the above equation we have distinguished
between the velocity fields vS and vN in the superfluid and normal phases, re-
spectively.

To find the equilibrium conditions, we minimize the energy with respect to the
densities, to the velocity fields as well as with respect to the border surface
RS(θ, φ). In the case of the superfluid the velocity field obeys the irrotationality
constraint and can thus be written as vS = ∇Φ. Variation of the energy with
respect to the velocity potential Φ yields the continuity equation

∇ · nS(∇Φ−Ω× r) = 0, (3.3)

while the variation with respect to the superfluid density nS yields the LDA
relationship
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µ0
S = ξS

~2

2m
(6π2nS)

2/3 + V S(r), (3.4)

where V S(r) = V (r) + 1
2
mv2 −mΩ(r × vS)Z is the effective harmonic potential

felt by the superfluid.

Using the same procedure for the normal part (without the irrotationality con-
straint) we get vN = Ω× r, i.e. it rotates rigidly. The variation with respect to
the densities gives the LDA expressions

µ0
↑ =

(
g(x)− 3

5
xg′(x)

)
~2

2m
(6π2n↑)

2/3 + V N(r), (3.5)

µ0
↓ =

3

5
g′(x)

~2

2m
(6π2n↑)

2/3 + V N(r), (3.6)

where the effective potential V N(r) felt by the particles in the normal phase is now
squeezed due to the rigid rotation according to (ωN

x )2 = ω2
x−Ω2, (ωN

y )2 = ω2
y−Ω2.

By varying the energy (3.2) with respect to RS(θ, φ) we eventually find the equi-
librium condition for the coexistence of the two phases in the trap. This is
equivalent to implying that the pressure of the two phases be the same

(
n2

S

∂εS

∂nS

)
r=RS

=
1

2

(
n2
↑
∂εN(x)

∂n↑
+ n↓n↑

∂εN(x)

∂n↓

)
r=RS

. (3.7)

Using the expressions for the energy densities (2.5) and (2.3) we obtain an equa-
tion for the density discontinuity in the trap given by

n↑(RS)

nS(RS)
=

(
2ξS

g(x(RS))

)3/5

≡ γ(x(RS)), (3.8)

where x(RS) is the local concentration at the interface. The combination of the
above equation with Eqs.(3.4) and (3.5) yields the useful relationship

(
µ0

S − V S(RS)
)

= γ(x(RS))
(
µ0
↑ − V N(RS)

)
, (3.9)

which determines the surface RS(θ, φ) separating the superfluid and the normal
part.

Eventually using also Eq.(3.6) we find an expression which implicitly defines the
concentration as a function of the position at the interface
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g(x(RS)) +
3

5
[1− x(RS)]g

′(x(RS))− (2ξS)
3/5[g(x(RS))]

2/5

=
2(V S(RS)− V N(RS))

EF↑(RS)
. (3.10)

In absence of rotation V S = V N ≡ V the solution of Eq.(3.10) yields the value
x(RS) = 0.44 [59]. This value coincides with the maximum concentration achiev-
able in the normal phase of uniform matter before phase separation. Since the
rotation affects differently the potentials V S and V N, the value of the concen-
tration depends now on the angular position of the interface. It ranges from a
minimum value x[RS(0, φ)] = xc = 0.44 along the z-axis (where the effect of the
rotation is vanishing) to a maximum, Ω dependent value x[RS(π/2, φ)] in the xy
plane (where the effect of the rotation is largest).

The effect of the rotation is thus to enhance the average value of the concentration
in the normal phase and hence to favour the depletion of the superfluid. This
is physically understood by noticing that in the rotating frame the atoms in the
normal part gain the energy 1

2
mv2

N(r) due to the centrifugal force. Thus, the
energy of the normal part, in the rotating frame, can become smaller than the
value in the superfluid [79]. As will be shown below, the main effect is to change
the critical concentration xc at the interface.

Notice, however, that the critical global concentration Pc for the system to start
nucleating the central superfluid core is not affected by the rotation and keeps
the nonrotating value Pc = 0.77. The reason for that is easily explained within
the local density approximation used here.

Just above Pc the system is completely normal and the only effect of the rotation
is the squeezing of the transverse trapping frequencies, while in the z direction
the system remains unaffected (see Eqs.(3.5, 3.6)). Since at Pc the superfluid is
nucleated at the center of the trap where centrifugal effects are absent, the local
condition for equilibrium between the superfluid and the normal component is the
same as without rotation. The calculation of the critical polarization proceeds
then in exactly the same way as without rotation, but for a simple rescaling of
the trapping frequencies which has no effect on the value of Pc.

Results

In the following we will assume ωx = ωy = ω⊥ and we consider the solution
vS = 0, thus a nonrotating axi-symmetric superfluid and consequently V S ≡ V .
In this case the local concentration depends only on the polar angle θ and the
superfluid radius takes the form
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R2
S(θ) =

2

m

(µ0
S − γ(x(RS))µ

0
↑)

(1− γ(x(RS)))

×
(

ω2
z cos2 θ + ω2

⊥ sin2 θ +
γ(x(RS))

1− γ(x(RS))
Ω2 sin2 θ

)−1

, (3.11)

while the Thomas-Fermi radius RN of the normal gas is fixed by the condition
µ↑ = V N(r) yielding

R2
N(θ) =

2µ0
↑

m

(
ω2

z cos2 θ + ω2
⊥ sin2 θ − Ω2 sin2 θ

)−1 ≥ R2
S(θ). (3.12)

The values of the chemical potentials are fixed by the normalization∫
r<RS

dr nS(r) +

∫
RS<r<RN

dr n↑(r) = N↑, (3.13)

and ∫
r<RS

dr nS(r) +

∫
RS<r<RN

dr n↓(r) = N↓. (3.14)
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Figure 3.2: Concentration n↓/n↑ for P = 0.44, Ω = 0 (black small dashed), Ω = 0.3ω⊥
(orange dashed), and Ω = 0.5ω⊥ (turquoise solid) as a function of the polar angle θ.

In Fig. 3.2 we plot the concentration n↓/n↑ at the interface for P = 0.44 as a
function of the polar angle θ for different values of the angular velocity. The
figure clearly points out the increase of the concentration when one moves from
the z-axis to the xy plane.
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Figure 3.3: Concentration n↓/n↑ at the superfluid-normal interface as a function of the polar
angle θ for Ω = 0.5ω⊥ and different values of the polarization: P = 0.77 (black solid), P = 0.44
(turquoise dashed), P = 0.1 (pink dotted-dashed), P = 0.2 (green long dashed) and P = 0
(black thin dashed).

Complementary to this is Fig. 3.3, where we show the concentration n↓/n↑ for
a fixed angular velocity Ω = 0.5ω⊥ and different values of the polarization as a
function of the angular position. This clearly reveals the nature of the normal
state by highlighting the two extreme and singular cases P = 0.77 and P = 0.
As already pointed out, at the threshold value P = 0.77 for the nucleation of the
superfluid, the rotation does not affect the value of xc as evidenced by the solid
black line in Fig. 3.3. On the other hand, in the case that P = 0 the critical
concentration is constant and singular n↓/n↑ = 1 for all angles but θ = 0. For all
other values 0 < P < Pc, the rotation has a considerable effect on the local value
n↓/n↑.

The density profiles exhibit a typical shell structure. In Fig. 3.4 we plot the
radii of the superfluid (red), ↑ (blue), and ↓ (green) component in units of the
Thomas-Fermi radius of an ideal gas R0

↑ versus the angular velocity Ω/ω⊥ for a
polarization P = 0.44. While the superfluid radius decreases until the superfluid
core completely vanishes at Ω = ω⊥, the Thomas-Fermi radii of the ↑ and ↓
component diverge for Ω = ω⊥ as a consequence of the centrifugal effect. It is
curious to see that while the normal part exhibits the typical bulge effect, the
superfluid behaves in the opposite way. In fact, its radial size becomes smaller
than the axial one as a consequence of the depletion caused by the rotation, with
consequently inversion of the behavior of the aspect ratio R⊥/RZ (see Fig. 3.1).

It is worth mentioning that at large enough angular velocities the system exhibits
solutions which break the axial symmetry [99]. Such critical value is predicted
to be Ωcr ∼ 0.5ω⊥ as we have shown in detail in chapter II. The results in Figs.
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Figure 3.5: Column densities of the n↑ (blue), and n↓ (green) component in a spherical
harmonic trap for a polarization P = 0.44 and Ω = 0 (dashed lines) and Ω = 0.5ω⊥ (solid
lines).

3.4, 3.9, and 3.10 for Ω > 0.5ω⊥ (dashed vertical line) correspond to the axial
symmetric solution of the problem.

In an experiment the effect of phase separation as well as the radius of the su-
perfluid are best revealed as a knee in the in situ column density nσ,2D(ρ) ≡∫

dz nσ(r), with σ =↑, ↓. These observables can nowadays be measured with
high precision using phase-contrast image techniques. We expect that the posi-
tion of the knee for a fixed polarization will depend on the angular velocity. This
is clearly shown in the column density of the majority (↑, blue) and the minority
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Figure 3.6: Difference of the column densities of the n↑ and n↓ components in a spherical
harmonic trap for a polarization P = 0.44 and Ω = 0 (dashed line) and Ω = 0.5ω⊥ (solid line).

(↓, green) components, Fig. 3.5, for Ω = 0 (dashed) and Ω = 0.5ω⊥ (solid), as
well as in the density difference, Fig. 3.6.

The knee is a direct consequence of the discontinuity exhibited by the three
dimensional density shown in Figs. 3.7 and 3.8, where we plot nS (red), n↑
(blue), and n↓ (green) in a spherical trap for θ = 0 and θ = π/2, respectively. The
densities and the radial coordinate have been renormalized with respect to the
central value of n0

↑ and the Thomas-Fermi radius R0
↑ of an ideal gas. In accordance

to the results for the superfluid radius shown in Fig. 3.4 the discontinuity in the
density takes place at a smaller value of the radius compared to the nonrotating
configuration.

For θ = 0 the densities n↑ and n↓ jump from the superfluid value nS to the
values n↑ ∼ 1.01nS and n↓ = xcn↑ ' 0.44nS as one enters the normal phase,
precisely as in the nonrotating case [59]. Yet for θ = π/2 the behavior is different
and, in particular, for Ω = 0.5ω⊥ the densities jump from nS to n↑ ' 0.99nS

and n↓ ' 0.55nS. The smaller relative jump with respect to the nonrotating
case reflects the smaller polarization (higher concentration x) exhibited by the
rotating normal phase at the interface.

Further insight on the effect of the rotation is provided by the depletion of the
superfluid. In Fig. 3.9 we plot the ratio between the number of particles in the
superfluid NS and the total number N (superfluid fraction) as a function of the
angular velocity. This effect is especially pronounced for small polarizations (Fig.
3.9 black line, P = 0) since the depletion for higher polarization is large already
in the nonrotating case.

Finally in Fig. 3.10 we plot the angular momentum LZ = Ω
∫

dr(x2 + y2)nN(r)
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Figure 3.7: Density profiles for θ = 0 of the superfluid (red), n↑ (blue), and n↓ (green) in
a spherical harmonic trap for a polarization P = 0.44 and Ω = 0.5ω⊥ in units of the central
density of the noninteracting gas (dashed line).
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Figure 3.8: Density profiles for θ = π/2 of the superfluid (red), n↑ (blue), and n↓ (green) in
a spherical harmonic trap for a polarization P = 0.44 and Ω = 0.5ω⊥ in units of the central
density of the noninteracting gas (dashed line).

of the system for different polarizations. For an axi-symmetric configuration the
superfluid does not carry angular momentum which is thus provided only by the
normal component. Hence, the more particles are in the normal part, the stronger
the response of the system to the rotation.
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Figure 3.9: Evolution of the superfluid particle number for different polarizations P = 0
(black solid ), P = 0.1 (pink dot-dashed) , P = 0.25 (orange large dashed) and P = 0.44
(turquoise small dashed) as a function of Ω/ω⊥.
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Figure 3.10: Angular momentum LZ in units of the rigid value for different polarizations
(black solid P = 0, pink dot-dashed P = 0.1, orange large dashed P = 0.25 and turquoise small
dashed P = 0.44) as a function of Ω/ω⊥.

Conclusions

In conclusion we have analyzed the effect of adiabatic rotation on a polarized
Fermi gas at unitarity, assuming phase separation between a superfluid and a
normal phase. We find that the normal phase is energetically favoured by the
rotation and thus the superfluid is further depleted with respect to the nonro-
tating configuration. The normal region exhibits the typical bulge effect due to
the centrifugal force while the superfluid is squeezed. This has clear observable
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3. Unitary Fermi Gas under Adiabatic Rotation

effects on the density profiles which can be addressed experimentally. A striking
feature is that although the g lobal polarization is not affected by the rotation,
the concentration n↓/n↑ at the border increases from the non-rotating value on
the z-axis to a maximum value in the xy plane.

In our work we assume that the polarized system separates in only two phases.
This assumption works well for the experiment carried out so far [60]. In the
rotating case other phases could show up and it would be very interesting to see
how they affect the results. For example, within BCS theory a third superfluid
phase is found to occupy a small region at the interface (see [102] and discussion
at the end of this chapter), but a more microscopic investigation of the phase
separation at unitarity is necessary to settle the problem.

3.2 Rotating Adiabatically a Unitary Fermi Superfluid

A particular case of the general situation described in the previous section is is the
rotation of a unitary Fermi superfluid, where N↑ = N↓. In this case, the rotation
of the initially fully superfluid system produces a phase separation between a
superfluid core and a rotating normal gas.

The System

We are interested in an unpolarized superfluid confined in a harmonic potential
V (r) = m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)/2, rotating with angular velocity Ω along z as

shown in Fig. 3.11.

We study the problem in the frame rotating with the trap where the potential is
static and the Hamiltonian is H − ΩLZ. In the local density approximation the
energy of the rotating configuration at zero temperature can be written as

E =

∫
dr

[
ε(n) + V (r) +

1

2
mv2 −mΩ(r× v)Z − µ

]
n , (3.15)

where ε(n) is the energy density per particle, v the velocity field, µ the chemical
potential and n the density.

By terming RS(θ, φ) the interface separating the superfluid from the normal com-
ponent, the integral in Eq.(3.15) splits in two parts. The internal superfluid core
occupies the region r < RS(θ, φ) and the surrounding normal phase is confined to
RS(θ, φ) < r < RN(θ, φ), where RN(θ, φ) is the Thomas-Fermi radius of the gas
where the density vanishes. The energy densities in the two phases are given by

εS = ξS
3

5

~2

2m
(6π2nS)

2/3, (3.16)
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Figure 3.11: Sketch of an unpolarized Fermi superfluid in a trap rotating with angular velocity
Ω around its z-axis.

εN = ξN
3

5

~2

2m
(6π2nN)2/3, (3.17)

where nS (nN) is the superfluid (normal) density and the dimensionless param-
eters ξS = 0.42 and ξN = 0.56 account for the role of interactions in the two
phases. Their value has been calculated in [82, 83] employing Quantum Monte
Carlo simulations.

The equilibrium is found by minimizing the energy with respect to the densities
and the velocity fields of the superfluid and normal part, as well as with respect to
the position of the border surface. Notice that this picture ignores surface tension
effects, a plausible assumption in the limit of large samples. The superfluid
velocity obeys the irrotationality constraint and can be written as vS = ∇Φ.
Varying the energy with respect to the velocity potential Φ yields the continuity
equation

∇ · ((∇Φ−Ω× r)nS) = 0, (3.18)

while variation with respect to the superfluid density nS leads to

µ = ξS
~2

2m
(6π2nS)

2/3 + V S(r), (3.19)
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3. Unitary Fermi Gas under Adiabatic Rotation

where V S(r) = V (r) + 1
2
mv2

S −mΩ(r × vS)Z is the effective harmonic potential
felt by the superfluid.

Using the same procedure for the normal part without the irrotationality con-
straint we have vN = Ω × r, i.e. the normal component rotates rigidly. The
variation with respect to the normal density yields an equation similar to (3.19)

µ = ξN
~2

2m
(6π2nN)2/3 + V N(r), (3.20)

where the effective harmonic potential V N(r) is now quenched by the rigid rota-
tion according to (ωN

x )2 = ω2
x − Ω2, (ωN

y )2 = ω2
y − Ω2.

By varying the energy (3.15) with respect to RS(θ, φ) we eventually find the
equilibrium condition for the coexistence of the two phases in the trap. The
resulting equation implies that the pressure of the two phases be the same:
n2

S(∂εS/∂nS) = n2
N(∂εN/∂nN). Using Eqs.(3.16) and (3.17), one then predicts

a density discontinuity at the interface given by

nN

nS

= γ with γ =

(
ξS

ξN

)3/5

= 0.85 (3.21)

independent of the angular velocity. The equal pressure condition (3.21) com-
bined with Eqs.(3.19) and (3.20), results in the useful relationship

(µ− V S(r)) = γ(µ− V N(r)), (3.22)

which determines the surface RS(θ, φ) separating the superfluid and the normal
part.

Results

In the following we assume ωx = ωy ≡ ω⊥ and we consider the solution vS = 0,
corresponding to a non rotating axi-symmetric superfluid and hence to V S = V .
In this case we find

R2
S(θ) =

2µ

m

(
ω2

z cos2 θ + ω2
⊥ sin2 θ +

γ

1− γ
Ω2 sin2 θ

)−1

, (3.23)

where θ is the polar angle. On the other side the Thomas-Fermi radius RN of the
normal gas is fixed by the condition µ = V N yielding

R2
N(θ) =

2µ

m

(
ω2

z cos2 θ + ω2
⊥ sin2 θ − Ω2 sin2 θ

)−1 ≥ R2
S(θ) . (3.24)

The value of µ is fixed by the normalization condition∫
r<RS(θ)

nS dr +

∫
RS(θ)<r<RN(θ)

nN dr = N , (3.25)
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Figure 3.12: Density profile for θ = π/2 of the rotating Fermi gas at Ω = 0.45ω⊥ (full line).
The profile in the absence of rotation is also shown (dashed line). Inset: Superfluid radius
versus Ω/ω⊥.

where N is the total number of particles.

While for Ω = 0 the system is completely superfluid, for Ω > 0 it phase separates
into a superfluid and a normal component characterized by the density jump
Eq.(3.21) at the interface. This behavior shares interesting analogies with the
the phase separation between a superfluid and a normal component exhibited by
polarized Fermi gases [46, 47, 50, 63], where a jump in the density at the interface
is also predicted to occur [59, 91]. By tomographic techniques [63] it is nowadays
possible to measure the density in situ, thus the predicted discontinuity, and
hence the value of ξS/ξN, should be observable experimentally.

The radii RS and RN coincide at θ = 0 which means the absence of the normal
part along the z-axis. In the plane of rotation (θ = π/2) the difference between
the two radii is instead maximum and becomes larger and larger as Ω increases.
In particular the radius of the superfluid is always smaller than the radius of the
cloud in the absence of rotation, while the radius of the normal gas is always
larger due to the bulge effect produced by the rotation.

In Fig. 3.12 we plot the densities nS and nN as a function of the radial coordinate
at θ = π/2 in a spherical trap for Ω = 0.45ω⊥. The densities and the radial
coordinate have been renormalized with respect to the central density n0

S and the
Thomas-Fermi radius R0 of the superfluid at rest. The inset shows the superfluid
radius RS renormalized by R0 as a function of the angular velocity Ω/ω⊥. The
jump in the densities between the superfluid and the normal part is exhibited as a
knee in the total density of the gas (Fig. 3.13), reflecting the density discontinuity
produced by the rotation [79]. Fig. 3.12 shows again that near the rotational
axis the system prefers to remain superfluid, while beyond a certain distance due
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Figure 3.13: Total column density of the unpolarized system in a spherical harmonic trap for
Ω = 0 (dashed red line, superfluid at rest). For Ω = 0.45ω⊥ the system consists of a superfluid
core surrounded by a normal shell where n↑ = n↓.
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Figure 3.14: Depletion of the superfluid as a function of the trap angular velocity for an
axi-symmetric configuration.

to the centrifugal energy gain by breaking pairs the system becomes normal.

From the knowledge of the density profiles and from the radii Eqs.(3.23) and
(3.24) we can calculate the number of particles in each phase. In Fig. 3.14 we
show the ratio between the number of particles NS in the superfluid phase and the
total number N as function of the angular velocity. The higher the angular veloc-
ity, the more particles prefer to stay in the normal phase and thus the superfluid
is depleted. At small angular velocities the depletion of the superfluid follows the

law NS/N = 1 −
(

γ
1−γ

)5/2

Ω5, where
(

γ
1−γ

)5/2

Ω5 = NN/N corresponds to the
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Figure 3.15: Angular momentum in units of the rigid value as a function of the trap angular
velocity for an axi-symmetric configuration.

particle number in the normal part.
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Figure 3.16: Total energy of the phase separated system in the rotating frame (red points),
normalized by the energy of a superfluid at rest. As a comparison, we show the energy if the
system was only normal (blue points).

Another important observable is the angular momentum LZ. For an axi-
symmetric configuration the superfluid does not carry angular momentum which
is then provided only by the normal component: LZ = Ω

∫
dr (x2 + y2)nN. The

total angular momentum then increases with Ω and eventually reaches the rigid
body value at Ω = ω⊥ (see Fig. 3.15). At small angular velocities the angular

momentum follows the law LZ = π
(

4096
525

) (
γ

1−γ

)5/2

Ω5 and it goes to zero for
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Ω → 0. This corresponds to the case of BEC’s, where the moment of intertia is
zero for a symmetric configuration as Ω → 0.
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Figure 3.17: Release energy of the phase separated system, normalized by the release energy
of a solely superfluid system. This is the energy which can be experimentally measured after
switching off the trap.

The angular momentum of a rotating configuration has been measured in BEC’s
by studying the precession phenomena exhibited by the surface excitations [104].
While for small values of the angular velocity (Ω < 0.2ω⊥) the superfluid is
robust, it is remarkable that even at angular velocities far from the centrifugal
limit the depletion of the superfluid and hence the angular momentum of the
system are sizable.

In Fig. 3.16 we plot the total energy of the system (red points) in the rotating
frame as well as the total energy of the system as it would consists of the normal
part only (blue points). The higher energy of the solely normal system for Ω = 0
proofs that the superfluid is the more favourable state at unitarity. Eventually
as Ω → ω⊥, the two energies begin to converge since the superfluid is depleted,
until at Ω = ω⊥ they fully overlap.

In most experiments with ultracold atomic gases, absorption images taken after
the cloud has been released from the trap provide valuable information about
the equation of state of the system. An experimentally measurable quantity is
hence the release energy, i.e. the energy of the system after the external trap is
switched off, and is simply given by

Erel =

∫
dr ε[n(r)] (3.26)

where ε[n(r)] is the energy density. It is the sum of the kinetic and the interaction
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energy Erel = Ekin +Eint, and in our case, the kinetic energy comes only from the
rigidly rotating normal part.

If the system would not phase separate, the release energy would be the internal
energy of a fully superfluid system for any value of Ω. But since the superfluid
depletes and the normal part can carry angular momentum, the kinetic energy
term becomes finite, hence the release energy increases with Ω and eventually
diverges for Ω → ω⊥. This can be nicely seen in Fig. 3.17, where we plot the
relase energy of the system for 0 ≤ Ω ≤ ω⊥ (green points) in units of the relase
energy of an entirely superfluid system.

It is worth mentioning that at large enough angular velocities the system exhibits
solutions which break the axial symmetry [99]. Such a critical value is predicted
to be Ωcr ∼ 0.5ω⊥ as we will show in detail in chapter 4. The results in Figs. 3.14
- 3.17 for Ω > 0.5ω⊥ (dashed vertical line) correspond to the axial symmetric
solution of the problem.

Conclusions

Trapped superfluid Fermi gases can behave quite differently from BEC’s because
pairs are easily broken by the rotation. While at small angular velocities the su-
perfluid is unaffected by the rotation of the trap [105], at higher angular velocities
the rotation results in a phase separation between a non rotating superfluid core
and a rigidly rotating normal component. The mechanism of pair breaking is
very intuitive. In fact near the border of the cloud, where the density n is small,
the energy cost for destroying superfluidity is also small, being proportional to
n2/3. Vice versa the centrifugal energy gained by the normal phase can be large,
being proportional to Ω2R2 where R is the radius of the cloud. Notice that this
mechanism cannot occur in the BEC regime due to the high energy cost needed
to break the dimers.

Furthermore, differently from the nucleation of vortices, the formation of the
normal part is not inhibited by the presence of a barrier as all the relevant energy
scales are vanishingly small near the border and the energy gain is ensured as soon
as one starts rotating the trap. The appearance of a normal part due to rotation
is not peculiar of ultra-cold atomic Fermi gases. For example, superfluidity is
known to be unstable in nuclei rotating with high angular velocity [95]. Such an
effect is also related to the so-called intermediate state in type-I superconductors,
where the role of the rotation is played by the external magnetic field (see, e.g.,
[106]).

The formation of the rotating normal component requires that the trap transfers
angular momentum to the gas within experimentally accessible times. Its real-
ization would open the unique possibility of exploring the Fermi liquid behaviour
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of a strongly interacting gas at zero temperature. Important effects to investi-
gate are, for example, the zero sound nature of the collective oscillations and the
behaviour of viscosity.

Finally, let us briefly argue on the possibility of having a rotating system without
vortices in the superfluid, which is the main assumption of the present work. If
the vortices could enter the superfluid, the lowest energy configuration would not
be the one discussed here, but rather a superfluid core with vortices surrounded
by a rotating normal shell, as also experimentally seen in [45]. We expect that
there exists a barrier for a vortex to enter the superfluid, as happens for a BE
condensate. The interface caused by the fermions in the normal state could
however change the scenario. On the one hand, the phase separation in the
trap should disfavor the vortex formation as the superfluid density is finite at
the interface. On the other hand, since there is a relative velocity between the
superfluid and the normal shell, vortex nucleation could be favoured by a Kelvin-
Helmoltz-like mechanism. Moreover, we have shown that the interface reduces the
critical angular velocity for a quadrupole instability. In the BEC case the latter is
considered as a route toward vortex formation [101]. In the end, more theoretical
and experimental work is needed to enlighten the issue of vortex nucleation in
these systems.

3.3 Comparison with a BCS-like Theory at Unitarity

In our work we have assumed that the system phase separates in only two phases.
This assumption works well for the experiments carried out so far [60]. However,
in the rotating case other phases could appear as shown in a microscopic descrip-
tion within the framework of BCS theory by Urban and Schuck [102] and by Iskin
and Tiesinga [107]. Here we will give a brief summary of the work by Urban and
Schuck.

In [102] the authors study the pair breaking effect in a unitary Fermi superfluid
in the BCS-BEC crossover at zero temperature by solving selfconsistently the
gap- and number equations with the cranking term ΩLZ. This leads to solutions
which describe three distinct regions which the authors term (A), (B), and (C).
Region (A) describes the region near the rotational axis where the superfluid is
at rest, as in our case. In region (B) pairs are gradually broken, starting from
the superfluid edge of region (A) towards the edge of region (B), which verges on
region (C). Hence the further away from the rotational axis, the more pairs are
broken until in region (C) the pairs are completely broken and the system can
rotate rigidly. The emergent phase (B) is absent in our macroscopic description
and implicates that the density for a finite angular velocity Ω/ω⊥ is void of any
discontinuities.
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Figure 3.18: (a) Density per spin state ρ, (b) gap ∆, and (c) current |j| in a rotating unitary
Fermi gas within the BCS description as functions of the distance r⊥ from the z-axis. The solid
line shows the nonrotating case, while the dashed line corresponds to Ω = 0.45ω⊥. Courtesy
Michael Urban and [102].

The authors calculate the density ρ, the gap ∆, and the current |j| of the adi-
abatically rotating unitary Fermi gas for Ω = 0 and Ω = 0.45ω⊥ as shown in
Fig. 3.18 [102]. They also find that for a finite angular velocity Ω the system
exhibits the bulge effect of the rotation (Fig. 3.18 (a)): in the z-direction size
of the system decreases, while the radial size increases. The visible kink in the
density profile is attributed to the reduced chemical potential and hence to the
decrease of the gap ∆ in the centre of the trap (see Fig. 3.18 (b)). The particle
current |j| (see (Fig. 3.18 (c)) remains a continuous function in the intermediate
region (B) caused by the rotation, and has its maximum at the position of the
kink in the density.

In the case of the microscopic treatment of Urban and Schuck the density ρ
remains continuous. This is different from our prediction, where the phase sepa-
ration between a fully paired superfluid and a fully unpaired normal phase leads
to a density discontinuity characterized by Eq.(3.21) in the radial profile as shown
in Fig. 3.12. The region (B) found in [102], which consists of both paired and
unpaired particles, is a direct consequence of the nonvanishing current |j|. Would
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this current be absent, the jump in the density would be characterized by the
BCS value ρN/ρS = ξBCS

S /ξBCS
N = 0.73.
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4 Quadrupole Instability induced by Rotation

In chapter 3 we have shown that the effect of the rotation applied to polarized
Fermi gas at unitarity is to enhance the Chandrasekhar-Clogston limit, while in
the unpolarized case it causes a phase separation between a superfluid core and
an unpolarized outer shell.

A major issue concerns the conditions of stability of the rotating configuration
discussed in this work. Let us first consider the question of energetic stability.
We have shown that in the frame rotating with the trap, the phase separated
configuration is energetically favoured with respect to the configuration where
the whole gas is at rest and superfluid. This is true for any value of the angular
velocity.

Figure 4.1: Sketch of the shape deformation due to excitation of the quadrupole mode in a
Bose-Einstein condensate.

When Ω exceeds a critical value of order (~/mR2) ln(R/d), where d is the healing
length fixed, at unitarity by the interparticle distance, quantized vortices become
an even more favourable configuration. This energetic instability is not however
expected to be a severe difficulty if one increases the angular velocity in an adi-
abatic way because the presence of a barrier inhibits the access to the vortical
configuration as proven experimentally in the case of BEC’s [108].
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A further important effect is the spontaneous breaking of axi-symmetry. In fact,
one expects that above a certain critical value Ωcr the system exhibits a surface
energetic instability, undergoing a continuous shape deformation, similarly to
what happens in Bose-Einstein condensates [99, 101, 103] as shown in Figs.4.1
and 4.2. This effect is accounted for by the solution vS 6= 0 of Eq.(3.18) which
becomes energetically favorable above Ωcr.

Figure 4.2: Absorption image of the quadrupole oscillation of a Bose-Einstein condensate,
[101].

In the case of Bose-Einstein condensates the quadrupole instability occurs at
Ωcr = ω⊥/

√
2 when the ω =

√
2ω⊥ hydrodynamic quadrupole mode becomes

energetically unstable in the rotating frame. The value Ω =
√

2ω⊥ applies in
the Thomas-Fermi regime. In a more general case, one has to solve the Gross-
Pitaevskii equation [109].

For larger values of Ω the solution vS = 0 corresponds to the so called overcritical
branch [99]. If one ignores the effect of phase separation taken into account the
spontaneous breaking of axial symmetry in rotating Fermi gases would take place
at the same value as in the BEC case as shown by G. Tonini et al. [110].

A different value is predicted to occur for the rotating Fermi gas however due to
the new boundary conditions imposed by the presence of the normal component.
In fact, the current of the superfluid, in the rotating frame, should be tangential
to the interface where the density, differently from the Bose-Einstein condensate
case, does not vanish. In the following we will determine the value of the critical
velocity in the simplest case of a rotating unpolarized gas and we will consider
the onset of a quadrupole deformation.

4.1 Conditions for the Quadrupole Instability

We consider an axially symmetric potential ωx = ωy = ω⊥ 6= ωz and a solution
where axi-symmetry is spontaneously broken. This is associated with the appear-
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Conditions for the Quadrupole Instability

ance of a non vanishing velocity field in the superfluid component whose velocity
potential will be chosen of the form

Φ = xyf(r2, z2), (4.1)

where f is an arbitrary function of r2 = x2 + y2 and of z2. Note that in the case
of the quadrupole instability of a Bose-Einstein condensate an exact stationary
solution is found with f =const.

The value of Ωcr corresponds to the onset of solutions with a deformed configu-
ration. It is determined by solving the continuity equation in the rotating frame

∇ · [(∇Φ−Ω× r)nS(r)] = 0, (4.2)

where nS(r) is now no longer axi-symmetric, and by imposing that the superfluid
current be tangential to the boundary B(r) of the superfluid

(∇Φ−Ω× r) · ∇B(r)
∣∣∣
r=RS

= 0. (4.3)

The density, in the local density approximation, is given by

nS(r) =
1

ξS

1

6π2

(
2m

~2

)3/2

(µ− V S(r))3/2, (4.4)

where V S(r) = V (r) + 1
2
mv2

S −mΩ(r × vS)Z is the effective harmonic potential
felt by the superfluid. By expanding the external potential to first order in f as

V S(r) = V (r) + δV S(r) (4.5)

with
δV S(r) = −m∇Φ(Ω× r), (4.6)

one finds

nS(r) = (µ− V (r))3/2 − 3

2
(µ− V (r))1/2 · δV S(r). (4.7)

At the same time the border can be written as B(r) = B0(r) + δB(r), where
B0(r) is the radius of the superfluid given by

R2
S(θ) =

2µ

m

(
ω2

z cos2 θ + ω2
⊥ sin2 θ +

γ

1− γ
Ω2 sin2 θ

)−1

, (4.8)

and
δB(r) = −m∇Φ · (Ω× r) (4.9)

is the linear perturbation due to the quadrupole symmetry breaking.
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4. Quadrupole Instability induced by Rotation

Then, Eqs.(4.2) and (4.3) reduce to

(µ− V (r))∆Φ +
3

2
(∇δV S(r)) · (Ω× r)− 3

2
∇V (r) · ∇Φ = 0, (4.10)

and
∇Φ · ∇B0(r)− (Ω× r) · ∇δB(r)

∣∣∣
r=RS(θ)

= 0. (4.11)

By inserting the explicit expressions of the respective functions in Eqs.(4.10) and
(4.11), after some straightforward algebra we obtain

(2Ω2−1)f +
2

3
(1−r2−z2)(r2frr+z2fzz)+(2−3r2−2z2)fr+

1

3
(1−r2−4z2)fz = 0,

(4.12)

and

(
[1− γ(1− Ω2)− 2Ω2]f + [1− γ(1− Ω2)]r2fr + (1− γ)z2fz

)
×

(1− r2 − z2)3/2
∣∣∣
r=RS(θ)

= 0, (4.13)

where the latter equation is evaluated at the interface Eq.(4.8). In Eqs.(4.12,
4.13) fr(z) is the first derivative of f with respect to r (z), frr(zz) the second, and
the expressions have been renormalized with respect to the radius of a superfluid
at rest (R0

S)
2 = 2µ/mω2

⊥ and we have made the substitution Ω/ω⊥ → Ω and the
assumption ωz = ω⊥.

4.2 Critical Angular Velocity in Two Dimensions

In the case of a two-dimensional system (RS(θ) ≡ RS) the previous equations can
be easily solved. In this case indeed Eqs.(4.12) and (4.13) reduce to

(2Ω2 − 1)f(r2) + (2− 3r2)fr(r
2) +

2

3
(1− r2)r2frr(r

2) = 0, (4.14)

and

[1− γ(1− Ω2)− 2Ω2]f(r2) + [1− γ(1− Ω2)]r2fr(r
2)

∣∣∣
r=RS

= 0, (4.15)

the latter being evaluated at

R2
S ≡

(1− γ)

[1− γ(1− Ω2)]
. (4.16)
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Critical Angular Velocity in Three Dimensions

The solutions of the continuity equation Eq.(4.14) are hypergeometric functions

2F1(a2D, b2D, c2D; r2) [111], with the coefficients a2D, b2D and c2D given by

a2D =
7

4
− 1

4

√
25 + 48Ω2,

b2D =
7

4
+

1

4

√
25 + 48Ω2,

c2D = 3. (4.17)

Inserting these solutions in the boundary condition (4.15), we find the value
Ωcr = 0.45ω⊥ for the emergence of a spontaneous quadrupole deformation in two
dimensions.

4.3 Critical Angular Velocity in Three Dimensions

For the three-dimensional case it is convenient to introduce spherical coordinates

r2 = ρ2 sin2 θ,

z2 = ρ2 cos2 θ. (4.18)

Then, the continuity equation (4.12) is given by

(1−ρ2)ρ2(∂ρ2)2+
1

2
(7−10ρ2)∂ρ2f+

3

2
(2Ω2−1)f+

1− ρ2

4ρ2

[
∂2

θ + 5

(
cos θ

sin θ

)
∂θ

]
f = 0,

(4.19)
while the condition that the current be tangential to the superfluid border (4.13)
is rewritten as(

[1− γ(1− Ω2)− 2Ω2]f + (1− γ)∂ρ2f +
γ Ω2

2
sin θ cos θ ∂θf

)
×(

1− 1− γ

1− γ(1− Ω2 sin2 θ)

)3/2 ∣∣∣
r=RS(θ)

= 0, (4.20)

the latter being evaluated at

R2
S(θ) ≡

(1− γ)

[1− γ(1− Ω2 sin2 θ)]
. (4.21)

As in the 2D case, we first have to solve the continuity equation in order to
obtain the solutions, which are then used to calculate the critical angular velocity
from Eq.(4.20). Since we can not solve the problem exactly, we will use some
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4. Quadrupole Instability induced by Rotation

approximations. First we make use of the separation ansatz f = R(ρ2)Θ(θ) to
find the solution for the the continuity equation (4.19). This yields

1

R

(
4ρ2

1− ρ2

) [
(1− ρ2)ρ2R

′′
+

1

2
(7− 10ρ2)R

′
+

3

2
(2Ω2 − 1)R

]
=

− 1

Θ

[
Θ

′′
+ 5

(
cos θ

sin θ

)
Θ

′
]

, (4.22)

where for the sake of readability we have used R(ρ2) ≡ R and Θ(θ) ≡ Θ, and
have divided by R and Θ.

This is an eigenvalue problem which can be solved by setting the left hand side
of Eq.(4.22) to correspond to an eigenvalue A, and eventually we get

(1− ρ2)ρ2R
′′

+
1

2
(7− 10ρ2)R

′
+

[
3

2
(2Ω2 − 1) +

(
1− ρ2

4ρ2

)
A

]
R = 0. (4.23)

The solution of this equation is given by

R(ρ2, A, Ω) = (ρ2)q
2F1(a3D, b3D, c3D; ρ2), (4.24)

where q = (−5 +
√

25− 4A) and 2F1(a3D, b3D, c3D; ρ2) are the hypergeometric
functions [111] with

a3D =
3

4
+

1

4

√
25− 4A− 1

2

√
10− A + 12Ω2,

b3D =
3

4
+

1

4

√
25− 4A +

1

2

√
10− A + 12Ω2,

c3D = 1 +
1

2

√
25− 4A. (4.25)

The same way we solve the equation for Θ, where now we set the right hand side
of Eq.(4.22) to correspond to the eigenvalue A leading to

sin θ Θ
′′

+ 5 cos θ Θ
′
+ A θ sin θ = 0. (4.26)

The solutions of the equation for Θ

Θ(A, θ) =
Pm

n (x)

(cos2 θ − 1)
, (4.27)

where Pm
n (x) are the associated Legendre polynomials with

n = −1

2
+

1

2

√
25 + 4A,

m = 2,

x = cos θ. (4.28)
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Conclusions

We can now write down the complete solution of the continuity equation as

f(ρ2, A, Ω, θ) = R(ρ2, A, Ω) Θ(A, θ)

≡ (ρ2)d
2F1(a3D, b3D, c3D; ρ2)

(
Pm

n (x)

cos2 θ − 1

)
, (4.29)

which can be used in Eq.(4.20) at ρ2 ≡ R2
S(θ) to find the critical angular velocity

Ωcr for the onset of the quadrupole instability in three dimensions.

For the solution we lack the exact value of A, however, by requiring that the
coefficients in Eq.(4.25) be real, we can narrow down the possible values for A to
the range −4 < A < 0. On the other hand, the condition, that the velocity of the
superfluid be tangential to the border RS(θ) corresponds to the physical condition,
that the current of the superfluid be zero, and so |v · nB| nS(RS(θ)) ≡ j = 0,
where nB is the normal vector and nS(RS(θ)) the superfluid density at the border.

Then, eventually, within a variational approach we can formulate the condition
that for a certain value of Ω the normalized expectation value of the current Ĵ
be zero,

Ĵ =
2π

∫
dθ

(√
(
∫

dA CA TA)2
)d

nS(RS(θ))∫
dθ

(√
(
∫

dA CA ∇Φ)2
)d

nS(RS(θ))

= 0, (4.30)

where d=1,2 and CA are optimization coefficients, Φ is the velocity field Eq.(4.1),
and TA is the abbreviation for Eq.(4.20).

The results of the numerical calculation yield the estimate Ωcr ∼ 0.5ω⊥ for the
critical angular velocity in three dimensions. Notice that both in two and three
dimensions the critical velocity is predicted to be smaller than the value Ωcr =
ω⊥/

√
2 holding in the BEC case.

4.4 Conclusions

In conclusion we have addressed the question of quadrupole instability of the
superfluid core, which produces a spontaneous breaking of axial symmetry of
the cloud. The critical frequency for the onset of the instability turns out to be
smaller than in the BEC case. Its measurement would provide a further crucial
test of the mechanism of phase separation and of the equation of state of the
normal phase [59, 60, 92].

An even more challenging question concerns the emergence of dynamic instabil-
ities. In the case of a rotating BEC a dynamic instability takes place at values
of Ω slightly larger than ω⊥/

√
2 and corresponds to the appearance of imaginary

components in the frequency of some hydrodynamic modes [100]. In the case of
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4. Quadrupole Instability induced by Rotation

the rotating Fermi gas discussed in this work a dynamic instability might be as-
sociated with the Kelvin-Helmholtz instability of the interface between two fluids
in relative motion (see.e.g [112]).

However, if the densities of the two fluids are different, at the interface, an ex-
ternal force stabilizes the two-fluid system against the appearance of complex
frequencies in the low energy excitations of the interface [112]. This is actually
our case where the density of the two phases exhibits the gap as in Eq. (3.21) and
the system feels the external force produced by the harmonic confinement. We
consequently expect that the system be dynamically stable at least for moderately
small values of the angular velocity.
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5 Phase Separation in Fermi Mixtures with

Different Masses and Different Trapping

The recent observation of heteronuclear Feshbach resonances in ultracold mix-
tures of two fermionic species [66] as well as the realization of a degenerate
two-species Fermi-Fermi mixture [67] opened new stimulating perspectives in the
field of Fermi superfluids built with atomic species of different masses. Partic-
ular interest in these systems has arised due to the fact of the posibility to use
component-selective trapping and the versatility of experiments.

The phase diagram of Fermi mixtures with unequal masses and the corresponding
polarization effects, including possible occurrence of exotic phases such as the
FFLO phase [70], have already been the object of theoretical predictions based
on BCS mean-field theory [71–77]. This theory is known to give reasonable
predictions at unitarity in the case of unpolarized configurations (see, e.g., [26]).
However, it fails to give quantitatively correct results in the imbalanced case and
to predict the Chandrasekhar-Clogston limit correctly. This failure is mainly due
to the fact that it ignores the role of interactions in the normal phase which play
a crucial role at unitarity [59, 60].

We use the equation of state for the normal phase as introduced in chapter 2
together with many-body results form diagrammatic and ab initio Monte Carlo
calculations to analyze the effect of mass asymmetry on the phase separation from
the normal to the superfluid state. We first discuss the Chandrasekhar-Clogston
limit xc and its properties in dependence on the mass ratio m↓/m↑ = κ, after
which we investigate the µ− h phase diagram. The local density approximation
is then employed to predict the density profiles of the trapped gas, and we show
that component-selective trapping can lead to many different configurations in
the trapped case. The results presented in this chapter have been published in
[113].

It is worth mentioning that the mass ratio κ cannot be neither too large nor too
small in order to avoid instabilities due to the appearance of three-body bound
states, see [114] and references therein.
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5. Phase Separation in Fermi Mixtures with Different Masses
and Different Trapping

5.1 Equation of State of the Unitary Fermi Gas with

Unequal Masses

In the case of two atomic species (hereafter called spin-up and spin-down) with
unequal masses, m↑ 6= m↓, the equation of state as discussed in chapter 2 can be
extended to hold also in the case of mass asymmetry. The form of the equation of
state remains the same, with the only difference that the values of the parameters
A and m∗ can now depend on the mass ratio.

The generalization of Eq.(2.5) to the unequal mass case yields

E(x, κ)

N↑
=

3

5
EF↑

(
1− A(κ)x +

F (κ)−1

κ
x5/3 + B(κ)x2

)
=

3

5
EF↑g(x, κ) ≡ εN(x, κ). (5.1)

The values of A and m∗ have been calculated in [88] and [89] as functions of
m↓/m↑ = κ using diagrammatic many-body techniques. The parameter A is an
increasing function of κ, going to infinity for κ → 0 and reaching the asymptotic
value A ∼ 0.45 for κ →∞ as shown in Fig. 5.1.

Figure 5.1: The binding energy A(κ) as a function of κ as presented in [88].

On the other hand, at unitarity, the effective mass, which we will denote in the
rest of the paper as m∗ = m↓F (κ), shows a weak dependence on the mass ratio
(see Fig. 5.2).

The quasiparticle interaction B has up to now only been estimated for equal
masses m↓ = m↑. We can find an estimation for B(κ) in the case κ 6= 1 in the
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Equation of State of the Unitary Fermi Gas with Unequal Masses

Figure 5.2: Relative effective mass m∗/m↓ = F (κ) as a function of the mass ratio κ at
unitarity. From [88].

following way. In the unpolarized case (x = 1) the energy of the normal state as
a function of κ has been calculated using Monte Carlo methods [82, 83], resulting
in the expression

EN(κ)

N↑
= ξN(κ)

3

5

~2

4mκ

(6π2n↑)
2/3 ≡ ε(n↑, κ), (5.2)

where the dimensionless parameter ξN(κ) accounts for the interactions, and
mκ = (m↑m↓)/(m↑ + m↓) is the reduced mass. First results based on quantum
Monte Carlo (QMC) calculations suggest that the dependence of the interaction
parameter ξN(κ) on κ is very weak [115] so that we can set ξN(κ) ≡ ξN = 0.56
[82, 83] also for κ 6= 1. Therefore the effect of unequal masses on the energy of
the unpolarized normal state enters only through the reduced mass mκ.

We can define B as a function of the mass ratio by requiring that the energy of
the normal state be reproduced by Eq.(2.5) for a concentration x = 1 with the
κ-dependent interaction parameters A and m∗/m↓ given in [88] 1. The function
B(κ) for 0 ≤ κ ≤ 10 is shown in Fig. 5.3.

In Fig. 5.4 we show the energy of the normal state for the values of the mass
ratio κ = 0.1 (blue long dashed), representing the limit of a very light impurity,
κ = 1 (black solid), and κ = 10 (red short dashed), i.e. a very heavy impurity.
For heavy impurities (κ = 10) the main contribution to the energy in Eq.(5.1)
comes from the binding energy A and the quasiparticle interaction B, since due
to their big mass the kinetic energy of the ↓-particles tends to zero, so that the

1Note, that this procedure is different from the fitting procedure used in [60], where in that
case the value B = 0.14 is almost half of what we find here. This leaves the value of the critical
concentration almost unchanged.
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Figure 5.3: Parameter B(κ) accounting for the quasiparticle interaction as a function of the
mass ratio κ.

term proportional to x5/3 can be neglected. For light impurities on the other
hand (κ = 0.1), the main contribution comes from the binding A and the kinetic
energy term, hence B is not very relevant.
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Figure 5.4: Equation of state of the normal phase as a function of the concentration x for the
values κ = 0.1 (blue long dashed), κ = 1 (black solid) and κ = 10 (red short dashed) of the
mass ratio.

The superfluid state in the unequal mass case yields

ES(κ)

NS

= ξS(κ)
3

5

~2

4mκ

(6π2nS)
2/3 ≡ εS(nS, κ), (5.3)
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Chandrasekhar-Clogston limit xc

where NS is the number of atoms in the superfluid phase, nS the superfluid density,
mκ the reduced mass, and ξS(κ) accounts for the interactions in the superfluid.
Also in the superfluid phase the coefficient ξS(κ) has only a very weak dependence
on the mass ratio [115] so that we can set ξS(κ) ≡ ξS = 0.42 [82, 83] as in the
equal mass case.

5.2 Chandrasekhar-Clogston limit xc

In order to establish the phase diagram for the system we address the equilibrium
conditions for the phase separation of the superfluid and normal state in the bulk.
We start by writing down the energy of the system at zero temperature

E = 2

∫
dr

[
εS(nS, κ)nS − µ0

SnS

]
+

∫
dr

[
εN(x, κ)n↑ − µ0

↑n↑ − µ0
↓n↓

]
, (5.4)

where εS(nS, κ) and εN(x, κ) are the energy densities per particle, nS, n↑ and n↓ the
densities, µ0

↑ and µ0
↓ the chemical potentials of the spin-↑ and spin-↓ component,

respectively, and µ0
S = (µ0

↑ + µ0
↓)/2 is the superfluid chemical potential.

To find the equilibrium conditions we minimize the energy with respect to the
densities of the superfluid and normal phase, and we find the chemical potentials

µ0
S = ξS

~2

4mκ

(6π2nS)
2/3, (5.5)

µ0
↑ =

(
g(x, κ)− 3

5
xg′(x, κ)

)
~2

2m↑
(6π2n↑)

2/3, (5.6)

µ0
↓ =

3

5
g′(x, κ)

~2

2m↑
(6π2n↑)

2/3, (5.7)

where prime means the derivative with respect to x. Eventually requiring that
the pressure of the two phases be equal yields(

n2
S

∂εS

∂nS

)
=

1

2

(
n2
↑
∂εN(x, κ)

∂n↑
+ n↓n↑

∂εN(x, κ)

∂n↓

)
. (5.8)

Making use of Eqs.(5.1) and (5.3) we can write the equal pressure condition as
the density jump

n↑(x, κ)

nS(κ)
=

(
(1 + 1

κ
)ξS

g(x, κ)

)3/5

. (5.9)
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From Eqs.(5.5)-(5.8) we obtain the implicit equation

g(x(κ)) +
3

5
[1− x(κ)]g′(x(κ))−

−
[(

1 +
1

κ

)
ξS

]3/5

[g(x(κ))]2/5 = 0, (5.10)

which gives the Chandrasekhar-Clogston limit xc in dependence on the mass ratio
κ. For values smaller than xc(κ) the system remains normal, while for x > xc(κ)
the system starts nucleating the superfluid and phase separates into those two
states.

In Fig. 5.5 we plot xc(κ) for mass ratios 0.1 < κ < 10 (blue solid line). Comparing
with xc(κ = 1) = 0.42 we find that for mass ratios κ > 1 the concentration needed
to create a superfluid phase decreases, while for mass ratios κ < 1 it first increases
and reaches a maximum value at κ ∼ 0.3.

Figure 5.5: Critical concentration xc(κ) for the bulk system to phase separate as a function
of the mass ratio κ (solid blue). In comparison, also the concentration derived from the BCS
mean-field solutions at unitarity is shown (dashed red).

In the same figure we plot xc(κ) as resulting from the BCS mean-field approach
at unitarity (red dashed line, see also e.g. [72, 73]). In the latter treatment inter-
actions in the normal phase are not taken into account, and hence its energy is
just the sum of the ↑ and ↓ components, EBCS

N = EF↑N↑ + EF↓N↓, and the inter-
action parameter for the superfluid is ξBCS

S = 0.59. The significant quantitative
difference between the two curves proves the importance of interactions [60].

56



Phase Diagram

It is worth noticing that xc is sensitive to the actual value of the parameters used
in Eq.(5.1). Since an exact calculation of the parameter B(κ) in the case of un-
equal masses is still lacking, the interpolated value of B(κ) might be a significant
source of error. As for κ >> 1 the kinetic energy of the quasiparticles becomes
irrelevant (see Eq.(5.1)), the Chandrasekhar-Clogston limit is only determined
by the values of A(κ) and B(κ). Thus an uncertainty in B affects more our
predictions.

We varied the value of B(κ) by ±10% to see its final impact on the value of xc(κ),
and we find that the variation in xc(κ) is about ∓5% for mass ratios κ ≤ 1, while
for κ > 1 it is about ∓10%.

In terms of the chemical potentials of the ↑ and ↓ components the phase transition
is characterized by the critical value ηc(κ) = (µ↓/µ↑)xc . From the knowledge of
ηc(κ) we are able to determine the coexistence lines between the superfluid and
the normal phase.

5.3 Phase Diagram

We represent the different homogeneous phases employing the µ − h phase dia-
gram, where 2µ = µ↑ + µ↓ and 2h = µ↑ − µ↓. The transition line between the
superfluid (S) and partially polarized (PP) phase is given by

µh>0
S =

1 + ηc(κ)

1− ηc(κ)
h,

µh<0
S = −

1 + ηc(
1
κ
)

1− ηc(
1
κ
)
h, (5.11)

and stands for the first-order phase transition between the unpolarized superfluid
and the partially polarized normal phase.

The second-order phase transition between the partially polarized (PP) and the
fully polarized (FP) phase occurs at x = 0, which corresponds to µ↓/µ↑ =
−3/5A(κ), and thus the coexistence line is given by

µh>0
PP =

1− 3
5
A(κ)

1 + 3
5
A(κ)

h,

µh<0
PP = −

1− 3
5
A( 1

κ
)

1 + 3
5
A( 1

κ
)
h. (5.12)

Finally, the transition line between the fully polarized gas and the vacuum is
given by the simple κ-independent relation
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µFP = − | h | . (5.13)

The phase diagram for unequal masses is not symmetric with respect to zero
effective magnetic field h. In Fig. 5.6 (a) we show the symmetric phase diagram
for κ = 1, while for κ = 2.2, corresponding to the case of a 87Sr -40K mixture [116],
it is asymmetric with respect to zero magnetic field h as shown in Fig. 5.6 (b).
While the superfluid region S moves clockwise (anticlockwise) for κ > 1 (κ < 1),
the partially polarized PP moves in the opposite direction, see e.g. Figs. 5.6 and
5.6. In all the figures we use a solid line for the first-order phase transition, a
dashed line for the second order phase transition, and a short-dashed-long-dashed
line for the transition to the vacuum.

Such an asymmetry in phase diagrams is general for this system and has been
already noticed by Parish et al. [75] in the T/µ vs h/µ phase diagram, and by
Iskin and Sá de Melo [76, 77] in the P = (N↑ − N↓)/(N↑ + N↓) vs (1/kF,+, aF )
diagram.

In particular, from Eq.(5.11) we can identify a critical mass ratio κ∗ = 2.73 above
which the superfluid region has moved entirely to the h > 0 plane (see e.g. Fig.
5.8(a)). This shift of the superfluid region above a certain mass ratio κ has also
been identified by Parish et al. [75] applying BCS mean-field theory yielding
κ∗ ∼ 3.95.

At the same time, for κ > κ∗ the sum of the spin-↑ and spin-↓ densities in the
partially polarized phase is bigger than the superfluid density, (n↑ + n↓) > 2nS.
This anticipates the fact that in a trap the heavy partially polarized phase can
sink towards the center, while the superfluid will form a spherical shell around it
even if the two species feel the same trapping potential. This peculiar formation
of a “sandwiched”superfluid has been previously identified also in [72–75].

5.4 Trapped Gas

Having constituents with different masses and hence different magnetic and opti-
cal properties permits to engineer different configurations in the trap by properly
choosing the mass ratio, the polarization, and the trap parameters.

In order to study the trapped case we assume that the external potential is
harmonic of the form Vσ(r) = 1

2
ασr

2 where ασ = mσω
2
σ with σ =↑, ↓, and that

the local density approximation is applicable. Thus the configuration in the trap
is found by using the expression µσ = µ0

σ − 1
2
ασr

2 leading to
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Trapped Gas

Figure 5.6: (a) In the case of equal masses the µ-h phase diagram is symmetric with respect
to zero effective magnetic field h. Shown are the superfluid (S, red), the partially polarized (PP,
green) and fully polarized (FP, blue) phases. (b) For κ = 2.2 the phase diagram is asymmetric.

µ = µ0
↑

[
1 + η0

2
− 1

2

(
1 +

α↓

α↑

)
r2

(R0
↑)

2

]
,

h = µ0
↑

[
1− η0

2
− 1

2

(
1− α↓

α↑

)
r2

(R0
↑)

2

]
, (5.14)

where we define η0 = µ0
↓/µ

0
↑ as the central imbalance of the system, and (R0

↑)
2 =

2µ0
↑/α↑. Note that if α↑ = α↓ the effective magnetic field h does not depend on the

position in the trap but is only a function of the central imbalance η0. Concerning
the central imbalance of the chemical potentials we have that if η0 < ηc(κ), there
is no superfluid and the system consists only of the partially and fully polarized
component. In the case that η0 > ηc(κ), we have a superfluid component whose
fraction is determined by the value of η0.
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Figure 5.7: Examples of the succession of the LDA line for equal trapping α↑ = α↓ and
different values of the central imbalance η0 (black dot) and mass ratios (a) κ = 2.2 (e.g.87Sr-
40K) and (b) κ = 6.7 (e.g.40K-6Li).

In the following we will describe three different cases with different values of the
polarization

P =
N↑ −N↓

N↑ + N↓
, (5.15)

where the interplay between the asymmetry in the masses and in the trapping
potential gives rise to different configurations.

Unequal Masses with Equal Trapping

We first analyze the situation when the spin-↑ and spin-↓ components have dif-
ferent masses κ 6= 1 but feel the same restoring forces α↑ = α↓. This would be
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Trapped Gas

Figure 5.8: (a) Phase diagram for κ = 6.7, corresponding to a 40K-6Li mixture, and the LDA
line (black vertical) for a central imbalance η0 = 0.3 (black dot) and α↑ = α↓. (b) Density
profiles for P = −0.13; the inset shows a zoom into the outer superfluid-“light”normal border.

the case, for example, if the fermions are trapped magnetically and have identical
magnetic moments.

For equal populations ηc = 1 and for mass ratios in the range 0.36 < κ < 2.73
the system is completely superfluid (see Fig. 5.7 (a), LDA line marked with a
diamond) and is always unpolarized, P = 0. In the opposite case, i.e. for κ > 2.73
(κ < 0.37), the system can never be completely superfluid even if the populations
are equal. Therefore, we can also have the particular configuration of a system
consisting only of a partially polarized phase without any fully polarized part as
shown in Fig. 5.7 (b) by the LDA line marked with a star. In this particular
case with ηc = 1, α↑ = α↓ and κ = 6.7, the polarization of the trapped system is
P = −0.57.

If η0 > 1/ηc(1/κ) the trapped system will consist of a three-shell configuration,
where the superfluid is sandwiched between a “heavy”normal phase (heavy spin-
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↓ are the majority) at the center of the trap, and a “light”normal phase (light
spin-↑ are the majority) in the outer trap region.

As an example we choose the mass ratio κ = 6.7 corresponding to a 40K -6Li
mixture [67, 116]. The phase diagram of the system is shown in Fig. 5.8 (a)
together with the LDA line for a central imbalance η0 = 0.3 (black dot). The
intersection of the LDA line with the coexistence lines determines the radii of the
configuration, from which we are able to calculate the density profiles. These are
shown in Fig. 5.8 (b) for a polarization P = −0.13.

The density jump (or drop) between the superfluid and both normal phases is a
function of κ according to Eq.(5.9). For κ = 6.7 at the “heavy”normal - super-
fluid border, n↓ ∼ 1.92nS and n↑ = xc(

1
κ
)n↓ ∼ 0.86nS, while at the superfluid-

“light”normal border n↑ ∼ 0.71nS and n↓ = xc(κ)n↑ ∼ 0.17nS (see inset Fig. 5.8
(b)). Note that this is quite different compared to the equal mass case, where
the jump between the superfluid and the majority component is n↑ ∼ 1.01nS and
hence the spin-↑ density is practically continuous.

Unequal Masses with Trapping Anisotropy

Using unequal restoring forces for the trapped atoms the mass ratio for having a
sandwiched superfluid needs not to be necessarily bigger than the critical value
κ∗. In order to have a three-shell configuration the condition is

µ < µh<0
S ⇒ α↓

α↑
= κ

ω2
↓

ω2
↑

>
1

ηc(
1
κ
)
. (5.16)

For example, for equal trapping frequencies, Eq.(5.16) simplifies to κ >
[1/ηc(1/κ)] resulting in the critical mass ratio κc ∼ 1.95, while for equal oscillator
lengths one gets κc ∼ 6.7. In Fig. 5.9 (a) we show the µ − h phase diagram of
such a particular configuration, where we choose κ = 2.2 corresponding to a 87Sr
-40K mixture [116]. The LDA line is drawn for the values η0 = 2.1 (black dot)
and α↓/α↑ = 8.

In the density profiles as shown in Fig. 5.9 (b) we have chosen the parameters
such that the resulting global polarization is P = 0.

5.5 No Trapping for ↑ Component

An interesting limiting case is when one of the elastic constants ασ is zero (or very
small), implying that one of the components would not be confined in absence of
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No Trapping for ↑ Component

Figure 5.9: (a) Phase diagram for κ = 2.2 and LDA line for η0 = 2.1 (black dot) and
α↓/α↑ = 8. With this choice, it crosses the “heavy normal”, superfluid, “light normal”and fully
polarized phases. (b) Density profiles for a global polarization P = 0; the inset shows a zoom
into the superfluid-“light”normal border.

interspecies atomic forces.

If we assume that α↑ → 0, the LDA line in the µ-h phase diagram is parallel to
the polarized-vacuum transition line as shown in Fig. 5.10 (a).

Let us start considering the equal mass, m↑ = m↓ = m, highly unbalanced
N↓ � N↑ case. The densities are easily found to be [60]

µ0
↓ =

~2

2m

[
6π2n↓(r)

]2/3
+ V↓(r),

µ0′

↑ =
~2

2m∗

[
6π2n↑(r)

]2/3
+ V ′

↑(r), (5.17)

where µ0′

↑ = µ0
↑ + 3

5
Aµ0

↓, V ′
↑(r) = V↑(r) + 3

5
AV↓(r) and A ≡ A(κ = 1). From these
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Figure 5.10: (a) Phase diagram for κ = 1. The LDA line represents the case α↑ = 0. (b)
Density profile in the limiting case α↑ = 0 and P = −0.42.

equations it is clear that if V↑ → 0, the ↑-atoms feel nevertheless the renormalized
potential 3

5
AV↓(r) and are confined due to the interaction with the ↓-component.

In this regime µ0
↑ is negative and in the limit of a single ↑-atom, i.e. µ0′

↑ → 0,
it takes the value µ0

↑ = −3/5Aµ0
↓, corresponding to a polarization P = −1.

This induced trapping mechanism would not be predicted by a BCS mean-field
description, where interactions are absent in the normal phase, and the ↑-atoms
cannot be confined by the ↓-atoms.

Increasing the number of ↑ particles, the LDA line moves upward until it crosses
the origin of the phase diagram, corresponding to µ0

↑ = 0, and the system remains
normal since for equal masses the slope of the superfluid-partially polarized co-
existence line is bigger than the slope of the LDA line, i.e. ηc(1/κ = 1) > 0 (see
Eq.(5.11)). Moreover, in this case the ↓-fully polarized phase is absent as the
radii of the ↓ and ↑ species coincide, and in this limit the polarization approaches
the value P = −0.42.
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If we further increase N↑ we enter in a three-shell configuration including an
intermediate superfluid component. But since in this case the atoms of species ↑
are no longer confined, they escape from the trap, and the system goes back to the
normal state previously described. Hence we can never find a stable configuration
containing a superfluid region, and the polarization of the system will always be
in the range −1 < P ≤ −0.42.

Note that the same scenario is valid for m↓ > 0.9m↑, where ηc(1/κ) is positive
and the range of the polarization is between P = −1 and an upper value which
is dependent on κ.

Interestingly, in the case m↓ < 0.9m↑, for which ηc(1/κ) < 0, we find that adding
↑-atoms we end up in a superfluid state [117] characterized by a density profile
given by

µ0
S = ξS

~
2m

[
6π2nS(r)

]2/3
+ Ṽ (r), (5.18)

where Ṽ (r) = 1
4
mω2

↓r
2 is the effective potential felt by the superfluid. This con-

figuration would correspond to a LDA line which stays entirely in the superfluid
region, crossing the origin of the phase diagram. The value of the polarization
for m↓ < 0.9m↑ covers the entire range −1 < P ≤ 0.

From the experimental point of view the above configurations could be in principle
reached starting with both the trapping frequencies different from zero and a
certain initial polarization, and then opening adiabatically the trap for the ↑-
atoms. For instance, starting with only a superfluid in the trap the final state
of the system will be simply a superfluid with a bigger radius for m↓ < 0.9m↑,
while it will be a normal state in which both components have the same radius
(see Fig. 5.10 (b)) if m↓ > 0.9m↑.

5.6 Conclusions

We have studied the zero temperature µ-h phase diagram of the unitary Fermi gas
in the case of unequal masses, assuming phase separation between an unpolarized
superfluid and a polarized normal phase. The latter is described by an equation
of state which, unlike in the BCS mean-field treatment, takes into account the
effect of the strong interaction. As we have shown, this has a dramatic impact on
the results such as the Chandrasekhar-Clogston limit needed to start nucleating
a superfluid.

Using LDA we have determined how the trapped configuration depends on the
trapping potential, the mass ratio, and the polarization. Many different config-
urations are possible. Among them it is worth mentioning the three-shell con-
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figuration [72–75], where the superfluid is sandwiched between a “heavy”normal
phase at the center and a “light”normal phase towards the edges of the trap.
Note that the shells can occupy quite small regions, and we cannot exclude that
surface tension plays an important role in this case. For the sandwiched config-
uration, it would be interesting to investigate its behaviour when the system is
rotated. As to fast rotation the question is how vortex structures can enter the
superfluid, since it is surrounded by normal parts. An adiabatic rotation might
cause a depletion of the sandwiched condensate in the plane of rotation, increas-
ing the normal phase towards the edges of the trap, and restricting the superfluid
to the poles of the rotating system.

We can also have non-trivial configurations even if one of the two components is
not trapped, but still remains confined due to the interaction induced trapping,
which is not present in the BCS treatment. Such configurations can be experi-
mentally obtained by adiabatically opening the trap for one of the two species.

An important issue is the existence of other phases at unitarity. In the present
work we assume that only two phases are possible, and hence we have not con-
sidered any polarized superfluid state. For the equal mass case the assumption
seems to be correct and is theoretically understood by comparing the phase sep-
arated state energy with the polarized superfluid energy calculated via Monte
Carlo, as in e.g. [118]. The same information is not yet available for the un-
equal mass case. However, taking the quasi-particle point of view in [118] and
the recent calculation for equal population by Baranov et al. [119], it seems that
when the mass of the minority component is much bigger than the one of the
majority component, the polarized superfluid phase should be included in the
description, as predicted by mean-field theory. Theoretical work in this direction
is in progress.

5.7 Monte Carlo Calculation of Gezerlis et al.

Recently, Gezerlis et al. [78] employed quantum Monte Carlo simulations to in-
vestigate fermion pairing in the unitary regime for a mass ratio κ ∼ 6.5, corre-
sponding to a 6Li-40K mixture. The authors calculate the quasiparticle excitation
energies, the equation of state, the Chandrasekhar-Clogston limit and the den-
sity profiles of heavy-in-light (light-in-heavy) Fermion mixtures in presence of
harmonic trapping.

At this point we focus on a comparison between the values of the Chandrasekhar-
Clogston limit and the density profiles of the trapped gas. For a mass ratio κ = 6.5
(majority light) the critical concentration is found to be xQMC

c = 0.02(2), which is
smaller than our result xc = 0.24 based on diagrammatic results for A(κ), m∗(κ)
[88], and the interpolated B(κ).
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For a mass ratio κ = 0.15 (majority heavy) on the other hand, the authors find
the value xQMC

c = 0.49(5), which is in good agreement with the value xc = 0.45
we find (see also Fig. 5.5).

This differences can be explained by the fact, that the value of xc is sensitive to
the form of the equation of state and to the values of the parameters A, m∗, and
B employed.

We find that the density profiles of the harmonically trapped configurations are
in a good agreement with our results. In Fig. 5.11 (a) we show the polarization
of a trapped system with κ = 6.5 and α↓/α↑ = 2 as presented by Gezerlis et al. in
[78] for different values of the polarization PGEZ = (Nh −Nl)/(Nh + Nl), where
Nh is the number of the heavy particles and Nl the number of the light particles,
respectively. Note, that since we define the polarization as P = (N↑−N↓)/(N↑ +
N↓), this leads to PGEZ = −P .

In Fig. 5.11 (b)-(d), we show the density profiles as resulting from our treatment.
We find good agreement in the prediction for the shell structure in the trap (two-
and three shell, respectively) as well as for the radii of the single components
for different values of the polarization P . While for P = 0 and P = −0.4 the
trapped system exhibits the three-shell structure with a sandwiched superfluid,
for P = 0.4 we recover as [78] the two-shell structure of a centered superfluid core
and a surrounding normal shell.
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Figure 5.11: (a) Polarization PGEZ = (Nh−Nl)/(Nh +Nl) of a trapped system as a function
of the radius (scaled such that at rsc the density goes to zero) for P − 0.4 (pink dotted), P = 0
(black solid), and P = 0.4 (blue dashed), from [78]. (b)-(d) Density profiles of the trapped
configuration for different values of the polarization P = (N↑ −N↓)/(N↑ + N↓). (b) P = −0.4,
(c) P = 0, and (d) P = 0.4.
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6 Dipole Polarizability of the Unitary Fermi

Gas

The standard way to polarize a Fermi superfluid is to create an imbalance of
the spin populations. This can be achieved experimentally by either transferring
atoms of the same species in different hyperfine levels or in systems with different
atomic species as discussed in the previous chapter. In that case the atomic cloud
in the trap forms a shell structure consisting of a superfluid core and a surrounding
normal phase as it has been observed in different experiments [47, 63, 87].

Figure 6.1: Sketch: Initially, the system is completely superfluid (P=0), d = 0 and hence
V↑ = V↓. As soon as the potentials are displaced in opposite directions, d 6= 0, the pairs in the
superfluid are broken and two bordering, fully polarized ↑- and ↓ clouds are created.

A different way to polarize the system is given by geometric means. Since in
principle the trapping potentials can be engineered at will, one can tune them such
that the spin-↑ and spin-↓ components are displaced as shown in Fig. 6.1. This
creates an imbalance not in the number of particles, but in its conjugate variable,
the chemical potential. It is then possible to study the static response of the
system to the displacement of the traps which gives rise to a dipole polarization
per particle
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D(d) =
1

N

∫
dr x(n↑ − n↓), (6.1)

where N is the total number of particles in the system, 2d is the relative dis-
placement of the two trapping potentials, n↑,↓ the spin-↑ and spin-↓ densities,
respectively.

The dipole polarizability of a superfluid Fermi gas has already been presented
by Recati et al. in [120]. In this paper the authors adapt the two-fluid picture,
i.e., the phase separation between a superfluid and a fully polarized phase. As
sketched in Fig. 6.1, starting from an initially superfluid system, the traps for
the ↑- and ↓ components are displaced in opposite directions. This displace-
ment causes the pairs in the superfluid to break, thus creating two fully polarized
clouds, in which the particle number steadily increases with d, while at the same
time the superfluid diminishes. Note, that in this case the superfluid is always
symmetric around x = 0. The authors find that differently from the noninteract-
ing case, where the dipole polarization is constant D = d, the dipole polarization
changes significantly as shown in Fig. 6.2 due to the interactions in the superfluid
state.

three-fluid model

two-fluid model
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Figure 6.2: Normalized induced dipole polarizability D(d)/d in the two-fluid (red line) and
three-fluid (black dashed) model (see text below) vs displacement d of the trapping potentials
together with the dipole polarizability for a noninteracting system (black line). The displace-
ment d is given in units of the Thomas-Fermi radius R0

↑.

We want to extend the problem to a system with a finite polarization P =
(N↑−N↓)/(N↑ + N↓). Moreover, we want to consider both the two-fluid picture,
i.e. the phase separation between a superfluid and a fully polarized phase, as well
as the three-fluid picture, where the system phase separates into a superfluid and
a partially polarized gas. We furthermore assume as in [120] that the traps are
displaced adiabatically and the system stays at equilibrium in the new potential.
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6.1 Dipole Polarizability in the Two-Fluid Model

Phase Diagram

The two-fluid model is the simplest assumption for the phase separation at res-
onance and has been first discussed by Chevy [56] to explain the experimental
density profiles of the resonant Fermi gas as observed by the Rice group [47, 49].

For a finite polarization, N↑ 6= N↓, and no displacement d = 0, the initial config-
uration consists of a superfluid core and a fully polarized ↑ shell. The equation
of state of the superfluid is given by

µS =
~2

2m
ξS(6π

2nS)
2/3, (6.2)

where the parameter ξS=0.42 [65] accounts for the interactions, m is the atomic
mass, and nS is the superfluid density. The equation of state for the fully polarized
gas on the other hand is simply given by

µσ =
~2

2m
(6π2nσ)2/3, (6.3)

where σ =↑, ↓ and nσ is the density of the respective species. From the chemical
potentials and the relation µS = 1

2
(µ↑ + µ↓) we can calculate the pressure of the

superfluid phase via the Gibbs-Duhem identity dPS = n↑dµ↑ + n↓dµ↓

PS =
1

15π2

(
m

ξS~2

)
(µS)

5/2, (6.4)

while the pressure of the, say, ↑ component is given by

P↑ =
1

15π2

(m

~2

)
(µ↑)

5/2. (6.5)

The thermodynamic condition for the coexistence of two phases is that their
pressure and the chemical potential be be the same, which for the superfluid and
the ↑-gas yields

PS = P↑ ⇒
µ↓

µ↑
= (2ξS)

3/5 − 1 ≡ ηc ∼ −0.099. (6.6)

The different homogeneous phases can be represented employing the µ−h phase
diagram, where 2µ = µ↑ + µ↓ and 2h = µ↑ − µ↓. In this phase diagram, the
transition line between the superfluid (S) and the fully polarized (FP) phase is
given by

µh>0
S =

1 + ηc

1− ηc

h ≡ (2ξS)
3/5

2− (2ξS)3/5
h, (6.7)
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Figure 6.3: µ−h phase diagram of the system in the two-fluid model. Shown are the superfluid
region (S, red), and the fully polarized (FP, blue) phase.

µh<0
S = −1 + ηc

1− ηc

h ≡ − (2ξS)
3/5

2− (2ξS)3/5
h, (6.8)

while the transition line between the fully polarized and the vacuum is given by
the simple relation

µFP = −|h| (6.9)

as shown in Fig. 6.3.

The trapping induces position-dependent chemical potentials for the two atomic
species. Using the local density expression for the chemical potentials

µ↑↓(r) = µ0
↑↓ − V↑↓(r), (6.10)

where

V↑↓(r) =
1

2
m

[
ω2
⊥r2

⊥ + ω2
x(x∓ d)2

]
, (6.11)

with r⊥ =
√

y2 + z2, one can explore the phase diagram for different values of
the central imbalance η0 and displacement d. Combining Eqs.(6.10) and (6.11)
together with the relations for µ and h, we find

µ = µ0
↑

[
1 + η0

2
− (x2 + d2 + r2

⊥)

(R0
↑)

2

]
,

h = µ0
↑

[
1− η0

2
+

2xd

(R0
↑)

2

]
, (6.12)
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where η0 = µ0
↑/µ

0
↓ is the central imbalance of the system, (R0

↑)
2 = (2µ0

↑/mω2) and
we have set ωx = ω⊥ ≡ ω. If the central imbalance µ0

↓/µ
0
↑ ≡ η0 < ηc, the system is

fully polarized, while for η0 > ηc the system phase separates into a superfluid and
a polarized phase, where the fraction of the superfluid is determined by the value
of η0. Eventually, for µ0

↑ = µ0
↓ and hence η0 = 1, the system is fully superfluid as

in [120].
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Figure 6.4: µ-h phase diagram of the system in the two-fluid model,where the LDA line
(black) is shown for different values of the displacement (a) d = 0, (b) d = dcrit, (c) d > dcrit,
and (d) d = dsep and an arbitrary value of the central imbalance η0 < ηc.

To explore the µ− h phase diagram, we set r⊥ = 0 in Eq.(6.12), fix the value of
the imbalance η0 and vary x and d as shown in Fig. 6.4. For d = 0 and η0 > ηc,
the system consists of a superfluid core and a fully polarized external shell (Fig.
6.4 (a)). Changing the values of d and x, we then explore the phase diagram
along a parabolic trajectory as shown in Fig. 6.4 (b)-(d). Importantly, for d = 0
the two external potentials are the same and the effective magnetic field h is
constant and depends only on the central imbalance η0.

Complementary to this is Fig. 6.5, which shows a sketch of the 2D cut of the
system in the x−y plane. For d = 0, we have the initial symmetric configuration
of a superfluid centered inside a fully polarized gas (Figs. 6.4 (a) and 6.5 (a)).
By changing the value of d, the superfluid moves to the left side according to the
effective potential V S(r) = 1

2
[V↑(r)+V↓(r)] it feels, while the fully polarized ↑-gas

moves to the right according to V↑(r). For a critical value d = dcrit (Figs. 6.4
(b) and 6.5 (b)), the superfluid and the fully polarized border coincide. Only for
d > dcrit (Figs. 6.4 (c) and 6.5 (c)), we eventually start to break the pairs in the
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Figure 6.5: Sketch of the four different states of the dipole polarization process in the two-fluid
model in a 2D cut: For d = 0, the initial configuration is a centered superfluid (red) surrounded
by a fully polarized spin-↑ (blue) shell. For d 6= 0 < dcrit, the superfluid moves in opposite
direction with respect to the ↑-cloud. For d > dcrit, a polarized ↓-cloud (green) is created by
breaking the pairs in the superfluid which consequently diminishes, until for d = dsep we have
two separate fully polarized spin-↑ and spin-↓ clouds.

74



Results

superfluid and create a fully ↓-polarized fraction on the left side of the superfluid.

This process continues until we eventually reach the value d = dsep, where the
superfluid has completely vanished, and we are left with two entirely separated,
fully ↑- and ↓ polarized clouds (Figs. 6.4 (d) and 6.5 (d)). The value dcrit and
dsep are not universal, but depend on the central imbalance η0 of the system as

dcrit

R0
↑

=

(
1−√η0

)
2

,

dsep

R0
↑

=

(
1 +

√
η0

)
2

. (6.13)

To derive the expression for the critical distance dcrit, the condition is µ = 0
and h = 0 (see Fig. 6.4 (b)). This means that in the µ − h phase diagram the
LDA line is just about to enter into the fully polarized phase for h < 0. The
condition for dsep on the other hand is given by the distance needed to create two
separate fully polarized clouds, whose midpoints are d = 1

2
(R0

↑ + R0
↓) away from

each other. It is important to note, that in the case of a finite particle imbalance
P , the superfluid is not symmetric around x = 0, and the fully polarized clouds,
albeit their minima at x ± d, have different sizes according to the initial central
imbalance.

6.2 Results

In order to calculate the dipole polarization D(d) and the dipole polarizability
D(d)/d, we need the expressions for densities of the superfluid, the spin-↑ and
spin-↓ components, as well as the borders separating the superfluid from the
fully polarized components. The superfluid feels the effective potential V S(r) =
1
2
[V↑(r) + V↓(r)], which gives rise to a density profile according to

nS =
1

6π2

(
2m

ξS~2

)3/2 (
µ0

S −
1

2
mω2(x2 + d2 + r2

⊥)

)3/2

, (6.14)

while the densities of the spin-↑ and ↓ components are given by

n↑↓ =
1

6π2

(
2m

~2

)3/2 (
µ0
↑↓ −

1

2
mω2r2

⊥ −
1

2
mω2(x∓ d)2

)3/2

. (6.15)

For x > 0 the border between the superfluid and the spin-up component is derived
from the condition µ↓(r)/µ↑(r) = ηc and yields
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(x + αd)2 + r2
⊥ = (R0

↑)
2(RS,↑)

2 + γd2 (6.16)

with

α =
1 + ηc

1− ηc

,

γ = α2 − 1,

(R0
↑)

2 =
2µ0

↑

mω2
,

(RS,↑)
2 =

2

mω2

(
µ0
↓ − ηcµ

0
↑

1− ηc

)
. (6.17)

and ηc ∼ −0.099.

For x < 0 we have µ↑(r)/µ↓(r) = ηc, so that the border between the superfluid
and the spin-down component is fixed by

(x− αd)2 + r2
⊥ = (R0

↑)
2(RS,↓)

2 + γd2, (6.18)

where the only difference to Eq.(6.16) is

(RS,↓)
2 =

2

mω2

(
µ0
↑ − ηcµ

0
↓

1− ηc

)
. (6.19)

Note, that this boundary emerges only for d > dcrit.

In Fig. 6.6 we plot the dipole polarization D(d) as a function the displacement
of the traps for different values of the particle imbalance P . The black dashed
line corresponds to a noninteracting system (P = 1), while the solid black line
corresponds to the superfluid Fermi gas (P = 0) [120]. The black dots correspond
to the critical value of the displacement dcrit, and as already mentioned they
depend on the imbalance of the system.

The dipole polarizability D(d)/d on the other hand is shown in Fig. 6.7, where
again the black dashed line corresponds to the noninteracting system (P = 1),
while the solid black line stands for the unpolarized superfluid (P = 0) as in
[120]. Also here we indicate dcrit by black dots in the figure.

The behaviour of D(d)/d for 0 < P < 1 is somehow counterintuitive, since one
would expect that for P 6= 0 the slope of the dipole polarizability is smaller with
respect to the P = 0 case, and has a nonzero initial value due to the initial finite
particle imbalance.

76



Results

Figure 6.6: Dipole polarization D(d) vs the displacement d/R0
↑ of a polarized Fermi gas in

the two-fluid model [56]. The displacement is given in units of the Thomas-Fermi radius R0
↑.

D(d) is shown for different values of the polarization: P = 1 (black dashed), P = 0.8 (blue),
P = 0.6 (red), P = 0.4 (green), P = 0.2 (turquoise), and P = 0 (black solid). The black dots
indicate the critical displacement dcrit (see Eq.(6.13)).

We find that the dipole polarizability first decreases until it reaches a minimum
(see Fig. 6.7), and then increases until it saturates to the noninteracting value.
This can be explained by energetic arguments. The natural and hence ener-
getically favourable configuration of the system for d = 0 is a superfluid core
centered in the trap, surrounded by a polarized shell. Since the superfluid feels
the effective external potential V S(r) = 1

2
[V↑(r) + V↓(r)], the displacement of the

traps causes the superfluid to move as a whole, and hence to adopt a higher
“unfavourable”energetic level, to which the superfluid is naturally reluctant. The
dipole polarizability does not increase until pairs are being broken at the bor-
der of the superfluid, which coincides with the onset of a nonvanishing ↓-particle
number.

In Fig. 6.8 we plot the dipole polarizability (black solid), the ↓- and ↑ (green long
dashed and blue short dashed, respectively), and the superfluid particle number
(red short dashed), respectively, for a polarization P = 0.2. The minimum of
the dipole polarization coincides with the onset of a nonvanishing fraction of ↓-
particles. After this minimum, D(d)/d increases and eventually saturates to the
noninteracting value, while the ↓-particle number saturates. Complementary to
this is the evolution of the particle number in the superfluid NS, whose decrease
is inversely proportional to the increase of the ↓-particle number.
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Figure 6.7: Dipole polarizability D(d)/d as a function of the displacement d of a polarized
Fermi gas in the two-fluid model [56]. D(d)/d is shown for different values of the polarization:
P = 1 (black dashed), P = 0.8 (blue), P = 0.6 (red), P = 0.4 (green), P = 0.2 (turquoise),
and P = 0 (black solid).

Figure 6.8: The dipole polarizability D(d)/d (black solid), ↓-particle number (green long
dashed), ↑-particle number (blue short dashed), and the particle number in the superfluid NS

(red short dashed), respectively, vs d for P = 0.2.

6.3 Dipole Polarizability in the Three-Fluid Model

Since we know that the equation of state

EN(x)

N↑
=

3

5
EF↑

(
1− Ax +

m

m∗x
5/3 + Bx2

)
=

3

5
EF↑g(x) ≡ εN(x) (6.20)

introduced in [59] agrees very well with the experiments at unitarity carried out
so far [46, 63], it is convenient to compare the dipole polarizability obtained for
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a system in the two-fluid model with dipole polarizability of a system described
with the equation of state Eq.(6.20), the three-fluid model.

The phase diagram for the normal state has been already introduced in chapter 5,
and we can use all expressions for the chemical potentials and the transition lines
as for a mass ratio κ = 1. We repeat that to have a superfluid phase the critical
concentration needs to be xc = 0.44, corresponding to (µ↓/µ↑) |xc

∼ 0.0171, while
the transition from the mixed phase to the fully polarized occurs at x = 0 where
(µ↓/µ↑) |x=0 = −3/5A.

To study the trapped system, we make again use of Eqs.(6.10), (6.11), and (6.12),
with the only difference being that now the LDA line crosses three instead of two
phases, namely the superfluid (S), the partially polarized (PP), and the fully
polarized (FP) phase as shown in Fig. 6.9.

h

Μ

h

Μ

h

Μ

h

Μ

HaL HbL

HcL HdL

Figure 6.9: µ-h phase diagram of the system in the three-fluid model,where the LDA line
(black) is shown for different values of the displacement (a) d = 0, (b) d = dcrit, (c) d > dcrit,
and (d) d = dsep and an arbitrary value of the central imbalance η0 > ηc.

To explore the µ− h phase diagram, we set r⊥ = 0 in Eq.(6.12), fix the value of
η0 and vary x and d as shown in Fig. 6.9 (a)-(d).

In Fig. 6.10 we show a sketch of the 2D cut of the system in the x − y plane.
For d = 0 and η0 > ηc, the system consists of a superfluid core embedded in a
mixed shell surrounded by a fully polarized gas (Figs. 6.9 (a) and 6.10 (a)). By
changing the value of d, the superfluid and the mixed phase move effectively to
the left side, while the fully polarized phase moves effectively to the right. For a
critical value d = dcrit (Figs. 6.9 (b) and 6.10 (b)), the border of the superfluid
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Figure 6.10: Sketch of the four different states of the dipole polarization process in the three-
fluid model in a 2D cut: For d = 0, the initial configuration is a centered superfluid (red)
embedded in a mixed cloud (dark green) with N↑ > N↓, which is surrounded by a polarized
spin-↑ (blue) corona. For d 6= 0 < dcrit, the superfluid and the mixed phase move in the opposite
direction with respect to the fully polarized ↑-cloud. For d > dcrit, we start creating a normal
phase on the left hand side of the superfluid, where N↓ > N↑ (pink), which eventually touches
the fully polarized ↓-cloud (green). For d = dsep we have two separate, fully polarized spin-↑
and spin-↓ clouds.
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and of the mixed phase touch, and for d > dcrit (Figs. 6.9 (c) and 6.10 (c)) we
eventually start to break the pairs in the superfluid as well as in the mixed phase.

Unlike in the two-fluid model, where immediately the ↓-polarized phase is created,
here the breaking of pairs leads to an intermediate normal phase with N↓ > N↑,
to which the fully ↓-polarized cloud adjoints. This process continues until we
have reached the value d = dsep, where the superfluid and the mixed phases have
completely vanished, and we are left with two entirely separated, fully ↑- and ↓
polarized clouds (Figs. 6.9 and 6.10 (d)). As before, the values dcrit and dsep are
not universal but show the same dependency on the central balance as given in
Eq.(6.13).

6.4 Results

In order to calculate the dipole polarization D(d) and the dipole polarizability
D(d)/d, we need the expressions for densities of the superfluid, the spin-↑ and
spin-↓ components, as well as the borders separating the superfluid from the
partially polarized components. The superfluid has a density profile according to

nS =
1

6π2

(
2m

ξS~2

)3/2 (
µ0

S −
1

2
mω2(x2 + d2 + r2

⊥)

)3/2

, (6.21)

while the densities of the spin-↑ and ↓ components are given by

n↑ =
1

6π2

(
2m

~2

)3/2 (
µ0
↑ − V↑(r)

g(xc)− 3
5
xcg′(xc)

)3/2

, (6.22)

n↓ = xc n↑, (6.23)

where xc is the local critical concentration.

The border between the superfluid and the spin-up component is formally the
same as Eqs. (6.16) and (6.18), only that in the three-fluid model the value for
ηc is different, ηc = 0.0171.

In Fig. 6.11 we show the dipole polarization D(d) vs the displacement d for
different values of the particle imbalance P . The black dashed line corresponds
to a noninteracting system (P = 1), while the solid black line corresponds to the
superfluid Fermi gas (P = 0). The black dots correspond to the critical value of
the displacement dcrit (see Eq.(6.13)). The behaviour of the dipole polarization
is quite similar to the one calculated in the two-fluid model (see also Fig. 6.2),
but as expected the three-fluid model has a larger dipole polarizability.
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Figure 6.11: Dipole polarization D(d) as a function of the displacement d in the three-fluid
model. D(d) is shown for different values of the polarization: P = 0.8 (blue dashed), P = 0.6
(red dashed), P = 0.4 (green dashed), P = 0.2 (turquoise dashed), and P = 0 (black).

Figure 6.12: Dipole polarizability D(d)/d as a function of the displacement d in the three-fluid
model. D(d)/d is shown for different values of the polarization: P = 0.8 (blue dashed), P = Pc

(pink dashed), P = 0.6 (red dashed), P = 0.4 (green dashed), P = 0.2 (turquoise dashed), and
P = 0 (black solid).

The same is valid for the dipole polarizability for values of the imbalance P = 0,
P = 0.2, P = 0.4, and P = 0.6 as can be seen in Fig. 6.12.

The dipole polarizability first decreases until it reaches a minimum, after which
it increases again, eventually saturating to the noninteracting value. Also the
comparison of the spin-↑, spin-↓, the superfluid particle number and the dipole
polarizability for a fixed imbalance (we choose P = 0.2) shows practically the
same behaviour as in the two-fluid case, only that the ↓ particle number is finite
at the beginning due to the presence of the mixed phase (see Fig. 6.13).
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Figure 6.13: The dipole polarizability D(d)/d (black solid), ↓-particle number (green long
dashed), ↑-particle number (blue short dashed), and particle number in the superfluid (red
short dashed), respectively, vs d for P = 0.2.

A major difference arises when we consider particle imbalances P above the
critical polarization Pc = 0.77, represented by the pink (P = Pc) and blue line
(P = 0.8) respectively, in Fig. 6.11. One would expect that since there is no
superfluid, the slope of D(d)/d is just linear as for P = 1. This however is not
the case, as due to the mixed phase a superfluid can be nucleated as a secondary
effect of the displacement of the potentials.

Consider the situation of d = 0 and the imbalance Pc = 0.77, hence only the
normal state is present (Fig. 6.14 (a)). As soon as we start changing the value of
the displacement d 6= 0, the ↓-particles move to the left side, while the ↑-particles
are displaced effectively to the right side as sketched in Fig. 6.14 (b).

At the border, this causes an increase of the local critical concentration xc,loc, so
that for xc,loc ≡ xc = 0.44 the conditions to nucleate a superfluid is given (Fig.
6.14 (c)).

In Fig. 6.15 we plot D(d)/d, the up- and down particle number and the particle
number in the superfluid as a function of the displacement d for the critical
imbalance Pc. One can nicely see, that although there is no superfluid at the
beginning, NS = 0, the displacement gives rise to the nucleation of a superfluid
due to a increase of the local concentration. In this case we expect the density
profiles to exhibit some special features. While NS increases, N↓ and N↑ decrease
simultaneously and so does the dipole polarizability. At a certain value of d
however, the pairs in the superfluid start being broken, N↓ and N↑ increase,
eventually saturating to their initial values.
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Figure 6.14: Sketch of the effect of displacement for P ≥ Pc. (a) Initially, the system is fully
normal. As soon as the traps are displaced in opposite directions, the ↓ particles are effectively
dragged to the left, while the ↑ particles are shifted to the right (b). This causes an increase in
the local concentration xc = n↓/n↑, so that eventually a superfluid is nucleated near the border
(c).

Figure 6.15: The dipole polarizability D(d)/d (black solid), ↓-particle number (green long
dashed), ↑-particle number (blue short dashed), and particle number in the superfluid (red
short dashed), respectively, vs d for P = Pc = 0.77.

6.5 Conclusions

We have analyzed a dipole configuration in the two-fluid and in the three-fluid
model for various particle imbalances P . We find that the inclusion of the par-
tially polarized phase does not alter significantly the results obtained in the two-
fluid model for imbalances P < Pc. For 0 < P < Pc, the dipole polarizability
exhibits a minimum due to the presence of the superfluid core. The superfluid
prefers to be at the center of the trap and is reluctant to me moved out of it.
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Hence more energy is needed to dipole polarize the configuration.

The major difference occurs in the three-fluid model for polarizations larger than
Pc. There, a superfluid can be created also for values P ≥ 0.77 by the displace-
ment of the traps, which gives rise to an increase in the local value of the local
concentration.

We have assumed that the external potential can be tuned separately, so that
spin-dependent trapping potentials can be engineered. In mixtures of same
atomic species in different hyperfine levels this could be done by profiting of
the different polarization of the electronic spin [121]. Experimentally, the sep-
arate tuning of the trapping potentials should be easier if the system mixtures
consists of different atomic species, e.g. 6Li and 40K. As we have shown in chap-
ter 5 such mixtures with a mass ratio of, e.g., κ = 6.7 can moreover give rise
to a sandwiched superfluid configuration in the trap, and it would be interesting
to study the static response of these exotic configurations to a spin-dependent
external field.
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In this thesis we have analyzed the behaviour of unitary Fermi gases at zero tem-
perature in engineered external confinements and consisting of different atomic
species. Since we have provided a detailed discussion of our results at the end of
each chapter, we will conclude the thesis with a concise summary of our major
findings.

We have first analyzed the effect of adiabatic rotation on a polarized Fermi gas.
We find that the normal phase is energetically favoured by the rotation in the
rotating frame, and thus the superfluid is further depleted with respect to the
nonrotating configuration. The normal region exhibits the typical bulge effect
due to the centrifugal force, while the superfluid is squeezed due to the depletion
of the superfluid density in the plane of rotation. This has clear observable
effects on the density profiles which can be addressed experimentally. A striking
feature is that although the g lobal polarization is not affected by the rotation,
the concentration n↓/n↑ at the border increases from the non-rotating value on
the z-axis to a maximum value in the xy-plane.

A special case of the system discussed above is the unpolarized Fermi superfluid.
While at small angular velocities the superfluid is unaffected by the rotation of
the trap, at higher angular velocities the rotation results in a phase separation
between a non rotating superfluid core and a rigidly rotating normal component
due to pair breaking near the border of the cloud. The realization of the phase
separation would open the unique possibility of exploring the Fermi liquid be-
haviour of a strongly interacting gas at zero temperature. Important effects to
investigate are, for example, the zero sound nature of the collective oscillations
and the behaviour of viscosity.

Concerning the rotating configuration we have also addressed the question of
quadrupole instability of the superfluid core, which produces a spontaneous
breaking of axial symmetry of the cloud. The critical frequency for the onset
of the instability turns out to be smaller than in the BEC case. Its measurement
would provide a further crucial test of the mechanism of phase separation and of
the equation of state of the normal phase.

We have studied the unitary Fermi gas consisting of two different atomic species,
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assuming phase separation between an unpolarized superfluid and a polarized
normal phase. The latter is described by an equation of state which, unlike in
the BCS mean-field treatment, takes into account the effect of the strong in-
teraction at unitarity. As we have shown, in a homogeneous system this has a
dramatic impact on the results such as the Chandrasekhar-Clogston limit needed
to start nucleating a superfluid. Using the local density approximation we have
determined how the trapped configuration depends on the trapping potential,
the mass ratio, and the polarization. Many different configurations are possi-
ble. Among them it is worth mentioning the three-shell configuration, where the
superfluid is sandwiched between a “heavy”normal phase at the center and a
“light”normal phase towards the edges of the trap. We can also have non-trivial
configurations even if one of the two components is not trapped, but still remains
confined due to the interaction induced trapping. This interaction-induced trap-
ping is not possible within the BCS theory since interactions are absent in the
normal phase.

At last we have addressed the problem of dipole polarizability by relative trapping
displacement in the two- and three-fluid model for various particle imbalances
P . We find that the inclusion of the partially polarized phase does not alter
significantly the results obtained in the two-fluid model for imbalances P < Pc.
The major difference occurs in the three-fluid model for polarizations larger than
Pc, where a superfluid is created by the displacement of the traps, which locally
increases the concentration.
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[20] M. Albiez, M. R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K.
Oberthaler, Direct Observation of Tunneling and Nonlinear Self-Trapping
in a Single Bosonic Josephson Junction, Physical Review Letters 95,
010402 (2005).

[21] M. H. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M.
Stamper-Kurn, and W. Ketterle, Observation of Interference Between Two
Bose Condensates, Science 275, 637 (1997).

94



[22] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Quantum
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