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Abstract

The goal of this thesis is twofold. First, for a rather broad class of fi-

nancial options a stochastic model predictive control (SMPC) approach is

proposed for dynamically hedging a portfolio of underlying assets. After

formulating the dynamic hedging problem as a stochastic control problem

with a least-squares criterion, for plain vanilla and exotic options we test

its ability to replicate the payoff at expiration date. We show not only that

relatively small hedging errors are obtained in spite of price realizations,

but also that the approach is robust with respect to market modeling errors.

The SMPC approach is then extended to hedging derivative contracts (such

as plain vanilla and exotic options) in the presence of transaction costs.

After proving that the least-squares approach is no longer suitable to han-

dle this kind of market, the hedging performance obtained by three different

measures is tested and compared in simulation on a European call and a

barrier option. The aim in the second part of this thesis is to present a

novel market design for trading energy and regulating reserves and to intro-

duce a strategy for the optimal bidding problem in such a scenario. In the

deregulated market, the presence of several market participants or Balance

Responsible Parties (BRPs) entitled for trading energy, together with the

increasing integration of renewable sources and price-elastic loads, shift the

focus on decentralized control and reliable forecast techniques. The main

feature of the considered market design is its double-sided nature. In addi-

tion to portfolio-based supply bids and based on prediction of their stochas-
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tic production and load, BRPs are allowed to submit risk-limiting requests.

Requesting capacity from the AS market corresponds to giving to the mar-

ket an estimate of the possible deviation from the daily production schedule

resulting from the day-ahead auction and from bilateral contracts, named

E-Program. In this way each BRP is responsible for the balanced and safe

operation of the electric grid. On the other hand, at each Program Time

Unit (PTU) BRPs must also offer their available capacity under the form

of bids. In this paper, a bidding strategy to the double-sided market is de-

scribed, where the risk is minimized and all the constraints are fulfilled. The

algorithms devised are tested in a simulation environment and compared to

the current practice, where the double-sided auction is not contemplated.

Results in terms of expected imbalances and reliability are presented.

Keywords

[Stochastic, Optimization, Hedging, Bidding, Electricity Markets]
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Chapter 1

Introduction

1.1 Motivation

The origin of stock trading dates back as far as the 16th century in Bel-

gium, where brokers and moneylenders used to meet to deal in business,

government and individual debt issues, even though the only products ac-

tually traded were promissory notes and bonds. A more evolved prototype

of stock exchange burst out during colonialism, when investors were eager

to have part of the huge profits coming from the East Indies. They often

lent money to ship owners undertaking long and dangerous sea trips to

obtain dividends in return. The exchange of stocks, issued on paper with-

out any regulation, grew so quickly and disorderly that it inevitably led

to a crash, when the South Sea Company (SSC) was unable to pay off the

dividends to the investors.

Since then, stock exchanges regulated by governments were formed all

over the world, the most important of them being the New York Stock

Exchange (NYSE). The number and variety of the stocks traded on stock

markets has developed tremendously without interruptions, and more and

more sophisticated financial products have been created to redistribute the

risk borne by investors.

Among the uncountable types of contracts arisen in the last decades, the
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1.1. MOTIVATION

group of financial derivatives, products whose value derives from the value

of other stocks traded on the market, is one of the most known and con-

troversial. Financial derivatives have spread all over the world due to the

market globalization and to the introduction of automatic pricing. They

are often associated with the subprime crisis in 2008, that stemming from

the mortgage industry also affected the global credit market. However, if

utilized consciously and with carefulness, derivatives can be a good tool

for investors who want to limit their risk.

A wide class of derivatives, the options, can be seen as a bet on the future

evolution of some quantities observable on financial markets. The option

assigns a value, called payoff to each realization of the observed variables,

which in general are called underlying assets. Financial institutions selling

those contracts try to replicate the evolution of the option by managing a

dynamic portfolio, consisting of simpler stocks or cash, in order to ensure

they will be able to pay off the real value of the option to the investor

at the expiration date. The most widespread and studied options are the

plain vanilla options: a call (put) gives the owner the right to buy (sell)

a given asset (the underlying) on a predetermined expiration date at an

agreed price, called strike price. A financial institution treating options

faces two main problems:

1. determining the initial price at which to sell the contracts;

2. designing a dynamic strategy for the portfolio management, whose

initial value is the price at which the option was sold, indicating how

to change its composition in order to hedge against the risk.

Such strategy has to make the replicating portfolio as close as possible to

the option payoff, independently of the price of the underlying.

The hedging problem can be cast as an optimal control problem that

given an initial condition, namely the value of the portfolio or the option

2



CHAPTER 1. INTRODUCTION

price, aims at minimizing the difference between the final portfolio value

and the option payoff, eliminating the effects of price uncertainty as much

as possible. In the last years a new research line has been developing, which

applies well known results of the linear feedback control theory in a portfo-

lio management context [12, 14, 36, 55–57, 64, 65]. One of the possible tools

that can be borrowed from control theory for the stock trading problem is

Model Predictive Control (MPC). This suboptimal method solves at each

sampling time an open loop optimization problem over a finite prediction

horizon, based on a model of the system to be controlled. Note that if we

allow the prediction horizon to be infinite, we would obtain the real optimal

control scheme for the system. After the optimization problem is solved

and a sequence of control moves is obtained, only the first move is actually

implemented, while the remaining moves are discarded. The optimization

is repeated at the next sample time, when the actual state of the system

is updated based on the latest information available on the system. One

limitation of MPC is that it does not provide a specific strategy to deal

with uncertainty. It assumes that the prediction model is exact and ne-

glects possible disturbances. For this reason the stochastic version of MPC

is often used: in Stochastic MPC (or SMPC), the function describing the

time evolution of the system is not deterministic but stochastic, the state

variables are therefore associated with a probability distribution.

Since the liberalization of energy markets, electricity can be deemed as

another type of tradable asset. Traditionally, it was general belief that

all the phases of the electricity supply chain, from generation to distri-

bution, had to be controlled in a centralized way to ensure reliable and

efficient operations. However, since the late nineties the liberalization of

electricity markets started to be implemented in many European countries,

especially after the Directive 96/92/EC, which came into force in 1997 es-

tablishing common rules for the internal market, in particular concerning

3



1.1. MOTIVATION

the generation, transmission and distribution of electricity and separating

the monopoly elements of the business from the potentially competitive

segments. England and Wales were the first to implement the liberalized

market [33] followed by Norway in 1991, Sweden in 1995, Finland in 1997,

Spain and Germany in 1999. Of course, the introduction of liberalized mar-

kets led to higher risks for energy supply companies. An overview of the

stochastic models dealing with prices risks in liberalized electricity markets

is given in [59].

Although electricity can be traded in a similar way as stocks at power ex-

changes, there are major differences between traditional and financial mar-

kets like lacking liquidity, high volatility, non-normal distributions, market

incompleteness. According to [77], wholesale markets for electricity are

inherently incomplete and imperfectly competitive due to two main char-

acteristics of electrical power; power is a flow of energy that cannot be

monitored perfectly, and storing electrical energy in large quantities in-

volves high costs. Market flaws are mostly related to inadequate design

of operational rules, structural and architectural problems. The way mar-

ket operators behave on the electricity market differ among the various

countries, and are strongly related to the market design and regulatory

framework they operate in. In general, electricity markets are divided into

four categories: forward markets, where long term bilateral contracts are

issued, day-ahead markets, that can be deemed as the wholesale market

for energy, intraday markets where market operators can adjust their po-

sition by correcting/withdrawing offers and requests and finally ancillary

services markets, where additional services like emergency power and regu-

lating capacity are offered and bought to the grid for the real-time balance

of the system. A well-designed market architecture must ensure the correct

and reliable operation of the power system, as well as the fairness in prices

and tariffs. Efficient architectures must discourage market participants to

4



CHAPTER 1. INTRODUCTION

deviate from their scheduled power generation and consumption. To this

aim, market entities with regulating functions are in place. In particular,

the Transmission System Operator is responsible for the system security

and must guarantee that the correct amount of reserve power is allocated

for the safe operation of the system.

The energy market is going through a period of transition. On the one

hand the liberalization gave everyone the opportunity for an equal and fair

access to the grid; small-size producers and end-users of electricity gained

importance, also thanks to new technologies like smart meters and sen-

sors, by which they can regulate consumption and production based on

the state of the network. Renewable sources also play an important role in

the achievement of the ambitious targets set by the European Commission

on greenhouse gases emissions and energy consumption reduction. On the

other hand however, these elements form a complex scenario consisting

of numerous interrelated (and often stochastic) variables and the need for

new control structures and market architectures emerges. Market opera-

tors entitled to trade energy are often called Balance Responsible Parties

(BRPs). While participating to the market BRPs need supporting tools

in their complex decision processes, from the market level to real-time op-

erations, in order to be able to exploit the information coming from the

outside world at their best, and to hedge against risks.

1.2 Goal and purpose

The goal of this thesis is to present optimization-based tools for trading

on financial and energy markets. More precisely, the first part focuses on

Stochastic MPC applied to dynamic hedging of derivatives with and with-

out transaction costs, while the second part is related to bidding strategies

on double-sided energy markets, i.e. markets where transactions are bidi-

5



1.3. STRUCTURE OF THE THESIS

rectional (energy can be bought or sold by everyone).

Analogies and differences between the energy markets and the standard

tradable products like stocks and options are investigated, and appropriate

techniques are proposed and discussed to tackle these two different families

of assets with particular focus on risk management.

1.3 Structure of the thesis

The thesis is divided into two main parts. The topic of the first part is

hedging of financial derivatives on stock markets. Chapters 2 and 3 are

introductive chapters on the main mathematical tools and risk measures

used in this thesis. More specifically, in Chapter 2 the concept of risk is

introduced and the main financial risk measures are defined, while Chapter

3 contains a short overview of Model Predictive Control (MPC) techniques

and its stochastic variant SMPC. Chapter 4 is the central section of this

first part, and focuses on dynamic option hedging. The problem is tackled

with SMPC techniques based on the minimum variance criterion (in case

of frictionless markets) and on three different objective functions when

transaction costs are applied.

The second part of the thesis deals with trading strategies in the liberal-

ized electricity market, focusing on the market behavior of BRPs (balance

responsible parties). In particular, Chapter 5 describes the main tasks

tackled by energy market operators in current market designs, with a par-

ticular focus on the Dutch situation, and presents a new architecture for

double-sided ancillary services markets devised in the European project E-

Price1. In Chapter 6 a strategy to bid on this kind of market is proposed,

based on the minimization of a risk function. Mathematical modeling and

formulations of the bidding problems are given, and a case study related

1E-Price: Price- based Control of Electrical Power Systems.
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CHAPTER 1. INTRODUCTION

to the project simulation environment is analyzed. Finally, in Chapter 7

some conclusions are presented.

1.4 Publications

Chapter 4 is based on the following publications:

• A. Bemporad, T. Gabbriellini, L. Puglia, L. Bellucci, Scenario-based

Stochastic Model Predictive Control for Dynamic Option Hedging, in

Proc. 49-th Conference on Decision and Control, Atlanta, GA, 2010

• A. Bemporad, L. Puglia, A Stochastic Model Predictive Control Ap-

proach to Dynamic Option Hedging with Transaction Costs, in Proc.

American Control Conference, San Francisco, CA, 2011

A journal version of the last conference paper has been submitted for re-

view:

• A. Bemporad, L. Puglia, T. Gabbriellini, Stochastic Model Predictive

Control for Dynamic Option Hedging with Transaction Costs, Applied

Mathematical Sciences, submitted for review on October 25, 2012

Chapter 5 is largely based on the following publication:

• A. Jokic, P.P.J. van den Bosch, A. Virag, W.H.A. Hendrix, L. Puglia,

W. de Boer, R. Vujanic, F. Nobel, Reliability and Efficiency at Global

Level in Power Systems, in Proc. 10th International Conference on

the European Energy Markets, Stockholm, Sweden, 2013

Chapter 6 is based on the conference paper:

• L.Puglia, A. Jokic, A. Virag. A. Bemporad, Double-sided ancillary

services markets: design and optimal bidding strategies, in Proc. 10-

th International Conference on the European Energy Markets, Stock-

holm, Sweden, 2013
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1.5. THE E-PRICE PROJECT

The project proposes a price-based control approach as a coherent 

methodological framework to ensure the feasibility, the reliability and 

the efficiency of the future European power system, anticipate and 

support market-based operation and decentralized decision making. 

It is enabled by state-of-the-art ICT technologies and by utilizing (be-

yond-) state-of-the-art decentralized and distributed control systems 

theory and modern optimization techniques. In our approach, ICT 

interfaces, control laws and behavioural protocols will be holistically 

analyzed and systematically designed as distributed solutions to 

time-varying global optimization problems.

In the E-Price project we propose a systematic scientific approach 

concept

to formulate ICT and control requirements and solutions for price-

based control of future power systems. At the heart of our approach 

are modelling, analysis and synthesis of the interplays between:

the interconnected physical power system (C and D in figure), 1.	

with time varying power requirements as prominent signals; 

and the economical layer (A and B in figure) with time varying 

price signals as the prominent information carriers;

local objectives of producers/consumers (prosumers) (B and C 2.	

in figure) and global balance, transmission network limits and 

reliability constraints (A and D in figure).

GLOBAL LOCAL
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Figure 1.1: The E-Price concept

1.5 The E-Price project

The research presented in the second part of this thesis has been carried

out within the framework of the European project “E-Price - Price-based

Control of Electrical Power systems”, FP7-IST contract no. 249096.

The main motivation of E-Price stems from the technological and so-

cietal developments arisen over recent decades encouraging the use of an

increasing quantity of renewable energy sources (wind, solar) for the pro-

duction of electric energy. People are starting to generate their own en-

ergy, becoming producers themselves. At the same time the predictability

of both production and consumption of electric energy is decreasing, in-

troducing larger imbalances in the electricity network. The current energy

production system inadequately copes with this unpredictability and will

soon reach the limit for secure and reliable operation.

E-Price is a three-year European research project aiming to develop

a reliable, an efficient and a societally-acceptable control concept for the

EU energy market. E-Price sets a new standard by introducing a feasible

price-based control strategy. Four academic and five industrial partners

are involved in the project.

The aim of E-Price is to offer an integral solution as the standard frame-
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work for trade in electrical energy, satisfying European Union policy goals.

This will bring about a market and control concept that gives incentives

to all participants to follow their own interests while still satisfying the

societal requirements on reliability, efficiency and transparency.

The project proposes the price-based control approach as a coherent

methodological framework to ensure the feasibility, the reliability and the

efficiency of the future European power system, anticipate and support

market based operation and decentralized decision making. It is enabled

by state-of-the-art ICT technologies and by utilizing (beyond-) state-of-

the-art decentralized and distributed control systems theory and modern

optimization techniques.

In the E-Price project we propose a systematic scientific approach to

formulate ICT and control requirements and solutions for price-based con-

trol of future power systems. In the heart of our approach are modeling,

analysis and synthesis of the interplays between:

• the interconnected physical power system (C and D in figure 1.1),

with time varying power requirements as prominent signals; and the

economical layer (A and B in figure 1.1) with time varying price signals

as the prominent information carriers.

• Local objectives of producers/consumers (prosumers) (B and C in fig-

ure 1.1) and global balance, transmission network limits and reliability

constraints (A and D in figure 1.1).

The research reported in this thesis deals with the interconnection be-

tween A and B in figure 1.1, that is, with the economical optimization of

market agents behavior.

9
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1.6 Basic notation

Let R, R+, Z and Z+ respectively denote the field of real numbers, non-

negative real numbers, integers and nonnegative integers. For a matrix

A ∈ Rm×n, [Aij] denotes the element in the i-th row and j-th column.

The transpose of a matrix A is denoted by A′. Positive and semi-positive

definiteness of a matrix A are denoted respectively by A � 0 and A � 0.

We use In and 1In to indicate the identity matrix of dimension n×n and a

column vector of n ones. The floor function b·c of a ∈ R is used to define

the largest b ∈ Z such that a ≥ b. The operators [f(x)]+ = max{0, f(x)}
and [f(x)]− = min{0, f(x)} for a function f : Rn → R define respectively

the positive and negative part of a function. Finally, we denote by E[X]

the expected value of a random variable X and by Var(X) its variance.

We use E[X|Y ] and Var(X|Y ) to define the conditional expectation and

variance of X given Y = y.

10



Chapter 2

Risk management in financial and

energy markets

Risk management is the identification, assessment and prioritization of

risk, followed by appropriate control measures aimed to eliminate, or more

often reduce, the probability or impact of unfortunate events. The risks

that a firm can encounter can originate from a multitude of causes, for

example the uncertainty of financial markets, credit risks, project failures,

natural disasters or unknown and unforeseeable events. The strategies used

to counteract risk typically include transferring the risk to another party,

or avoiding the threat, reducing the possible impact of a negative event or

even accepting the risk to some reasonable extent.

The most important types of risk that companies face on standard fi-

nancial markets are:

• Credit risk: the risk that a borrower goes into default and is therefore

not able to pay an obligation;

• Liquidity risk: the risk that a good or stock cannot be traded quickly

enough to prevent a loss;

• Market risk: the risk that some quantity on the market, such as

stock prices, interest rates or commodity prices will change;

11
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• Operational risk: is the risk associated with human errors, system

failures and inadequate procedures and resulting in unexpected losses;

Moreover, there are other types of risk more specific to the trading of

electricity on the market, such as:

• Volume risk: a type of risk frequently faced by firms operating on

electricity markets, related to the fact that they often do not know

the exact amount of energy to be delivered or produced at a given

time instant;

• Basis risk: the risk that the ratio between the prices of two traded

commodities, for example fuel and electricity, will change;

• Physical risk: the risk that electricity is not delivered at the con-

tracted time and location due to various problems affecting the grid

connections, like transmission lines overflows or outages;

• Regulatory and political risk: changes in the regulatory and po-

litical framework can affect seriously the trading activity of a firm.

2.1 Risk measures

When performing risk management, the first step is to quantify the risk.

Therefore, the need for an appropriate and coherent risk measure emerges.

A first empirical approach to simply assess the effect of uncertainty is the

stress test. One or more possible realizations of the uncertain variables (for

example, a 30% shift in the fuel price) are hypothesized and the effect of

such events are measured. The advantage of this approach is its simplicity,

but one cannot exclude a more reliable and strict mathematical assessment

when performing a thorough risk management activity. In the following

sections the most common measures for risk are examined.

12
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2.1.1 Variance

The most traditional risk measure is variance, quantifying the dispersion

of the uncertain variables. Minimizing variance is equivalent to minimize

the portfolio dispersion around the expected value. The standard mean-

variance Markovitz problem [54] is the following:

min
x

xTΣx (2.1)

s.t. Ax = r (2.2)

where Σ ∈ Rn×n is the covariance matrix in a portfolio of n assets, r ∈ Rn

is a vector of expected returns and x ∈ Rn is the position in each asset

composing the portfolio. The aim is to minimize the variance of a portfolio,

with the requirement that a minimum expected return is obtained. By

construction, Σ is a positive definite matrix and the linear constraint (2.2)

defines a convex set. Therefore, a solution to the Markowitz problem exists

and it is unique.

In the mean-variance approach if the investor has a quadratic objective

function regardless of the probability distribution of the underlying assets

only the first two moments are relevant. This strategy is therefore not well

suited for the case of very skewed and asymmetric distributions like the

ones characterizing energy markets.

2.1.2 Value at Risk

In the late eighties, partly triggered by the stock market crisis of 1987, a

new downside-risk measure was introduced, namely Value at Risk (VaR).

This measure was thought as an attempt to quantify the risk of extreme

events from measurements of everyday price movements.

Let f(u, s) : Rn+k → R be a loss function associated with the decision

vector u ∈ Rn and with the random vector s ∈ Rk. Let p(s) be the

13
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probability density function of s. With respect to a given probability β,

0 ≤ β ≤ 1, the β-VaR (Value at Risk) is defined as follows.

Definition 2.1.1 VaR with confidence level β of the loss associated with

a decision variable u is the value

`β = inf{` ∈ R : f(u, `) ≥ β} (2.3)

In other words, VaR is the lowest value `β, such that, with probability

β, the loss will not exceed `β. The number β is a fixed value, typically

β = 90%, 95%, or 99%. The main criticism moved against VaR is that the

amount of loss occurring with probability (1−β) is not taken into account

directly. VaR is not capable to differentiate between large and very large

losses, and moreover it lacks sub-additivity, that is, VaR of the combination

of two portfolios can be higher than the sum of the risks of the individual

portfolios, thus contradicting the diversification principle. To avoid these

inconveniences, another asymmetric risk measure strictly related to VaR,

β-CVaR, was introduced.

2.1.3 Conditional Value at Risk

Conditional Value at Risk β-CVaR is defined as follows.

Definition 2.1.2 CVaR with confidence level β of the loss associated with

a decision variable u is the value

φβ(u) = (1− β)−1

∫

f(u,s)≥`β
f(u, s)p(s)ds (2.4)

Conditional Value at Risk is the conditional expectation of the loss

function above `β, quantifying what the average loss is when one loses

more than `β, with probability 1 − β [71]. In [71] the authors show that

the β-CVaR of the loss associated with any u can be determined by the
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formula

φβ(u) = min
`∈R

Fβ(u, `) (2.5)

where

Fβ(u, `) = `+ (1− β)−1

∫

s∈Rm
[f(u, s)− `]+p(s)ds (2.6)

where [·]+ denotes the positive part of its argument, [f ]+ = max{f, 0}. The

integral in (2.6) can be approximated by sampling the probability distri-

bution of s according to its probability density function p(s). If [s1, . . . , sq]

is a sample vector of the random variable s, then the corresponding ap-

proximation of Fβ(`) is

F̃β(`) = `+
1

q(1− β)

q∑

k=1

[f(u, sk)− `]+ (2.7)

The expression F̃β(`) is convex and piecewise linear with respect to ` and

it can readily be minimized.
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Chapter 3

Model Predictive Control

Predictive control techniques were born around 1970 and they have the

scope of determining the control signal to feed into a system, minimizing

a given objective function. The acronym MPC encloses the three main

elements of predictive control:

• Model: a mathematical model of the system is needed to predict fu-

ture evolutions of the system state and output. The output measured

at the current instant depends on past values of the output and state,

besides the control action (causality).

• Predictive: optimization is based on the prediction of the future

evolution of the system.

• Control: the goal is to find a control law of a complex system.

The common strategy used to build a predictive controller is the follow-

ing:

1. a time horizon N is fixed, then future values of the system output over

that horizon are predicted using the model at disposal: y(t+k|t), k =

1, . . . , N . The value of y depends on past values of input and output

and on future input values: u(t+ k|t), k = 0, . . . , N − 1.

17



Figure 3.1: The receding horizon philosophy

2. The set of future control signals is evaluated optimizing a performance

index in order to keep the process as close as possible to a given

reference signal r(t+ k).

3. The control signal u(t|t) is fed into the process, the remaining control

signals u(t+k|t), k = 1, . . . , N−1 are discarded. This concept is called

receding horizon philosophy : the signal u(t+ 1|t) is discarded because

at the next sampling instant the output value y(t + 1) is known, the

new information coming from updated measurements can be used to

start again from step 1 and repeat the optimization.

The described control strategy can be schematized by Figure 3.1

If the model is linear, the optimization problem is quadratic (QP) if

the objective function is in l2 form, it is otherwise linear if the objective

function is in l1 or l∞. For example, if we chose a quadratic objective
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function, the MPC controller should solve at each time instant a problem

like this over an N time horizon:

min
ut...ut+N−1

N−1∑

k=0

|yt+k − r(t)|2 + ρ |ut+k − ur(t)|2 (3.1a)

s.t. xt+k+1 = f(xt+k, ut+k) (3.1b)

yt+k = g(xt+k, ut+k) (3.1c)

umin ≤ ut+k ≤ umax (3.1d)

ymin ≤ yt+k ≤ ymax (3.1e)

xt = x(t), k = 0, . . . , N − 1 (3.1f)

where (3.1a) describes the objective function to be minimized, (3.1b) rep-

resents the dynamic evolution of the system, (3.1c) indicate the system

output and (3.1d)-(3.1e) are input and output constraints.

3.1 Stochastic MPC

The classical MPC approach does not provide a real strategy to deal with

uncertainties; it assumes that the model is exact and perfectly representing

the reality. Robustness with respect to modeling errors or external distur-

bances can be handled with a min-max approach, where the performance

index is calculated over the worst case scenario. However, controllers op-

erating at nominal conditions often obtain poor performance, while robust

approaches result in too conservative control laws [70].

The stochastic version of MPC, Stochastic MPC (SMPC), developed

recently, exploiting the statistical information about system disturbances,

aimed to minimize the expected value of the performance index. SMPC

formulation is based on a maximum likelihood approach, where a scenario

tree is built at each time step, using all the available information on the
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state of the system. Each node of the tree represents a scenario, appro-

priately weighted in the optimization problem. Starting from the root

node, a series of candidate nodes are generated, each node corresponding

to a possible realization of the prediction model. A given stochastic opti-

mization index is minimized, for example based on the expected value or

variance, then a series of optimal moves are obtained, starting from the

current instant up to the prediction horizon. Exploiting the receding hori-

zon philosophy, only the first move is applied, the state is updated at the

following step and the optimization is repeated.
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Chapter 4

Hedging of financial derivatives

This chapter is structured as follows. In section 4.1 the main derivatives

traded on financial markets are presented and described, with particular fo-

cus on options. Section 4.2 contains an overview of the literature on option

hedging and trading. In section 4.3 the mathematical models describing

the evolution of the assets over time and the option payoffs are formulated.

In section 4.4 the hedging problem will be formulated as a stochastic op-

timization problem and solved by means of MPC techniques. Simulation

results are given with respect to simple plain vanillas and Napoleon/barrier

options. In section 4.5 the hedging problem is extended to the case of trans-

action costs. Three alternative stochastic formulations of the problem are

given and simulation results are reported as well. Finally, some conclusions

are drawn in section 4.6.

4.1 Derivatives

Derivatives are financial instruments that are linked to other financial in-

struments or indicators or commodities, and through which financial risks

can be traded ([41]). The value of a financial derivative derives from the

price of an underlying item, such as an asset or index. Unlike debt instru-

ments, little or none capital investment is required, and they are regulated
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at a future date. Generally speaking, derivatives can be used for three

main reasons:

• speculation: consists of buying or selling a product with the aim to

obtain short-term profits, exploiting one’s vision of the market trend;

• arbitrage: consists of settling a risk-free profit by simultaneously en-

tering opposite positions in two different markets exploiting their im-

perfect nature;

• hedging : a strategy by which firms try to decrease the risk linked to

other financial activities, like price fluctuations of other assets.

Various types of derivatives exist and new arise every day and with any

kind of underlying, such as weather conditions or raw materials prices. In

relation to the type of contract, derivatives might be:

• forwards and futures : fixed term contracts by which firms exchange

an asset (goods, financial instruments, indices or foreign currencies)

on a future date at a fixed price;

• swap: contracts by which firms commit themselves to exchange cash

flows according to a specified scheme;

• options : contracts giving the owner (holder) the right to buy (call

option) or sell (put option) the underlying asset at a determined price

(strike price) on a given date (European option) or within a certain

date (American option). The fixed date is called expiration date or

expiry.

Derivatives can be traded either on regulated markets, with standard rules

concerning prices and conditions, or by specifying ad hoc terms between

the two parties, in that case we talk about Over The Counter transactions

(OTC).
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Figure 4.1: Payoff as a function of the underlying price at expiration for plain vanilla
options

The derivatives treated in this thesis are the options. The main dif-

ference distinguishing options from the other derivatives is that they do

not state any obligation for the owner (or holder) of the contract, who can

decide whether to exercise her right or not based on the market conditions.

The person selling the option (writer) has instead the obligation to deliver

the contracted asset on time, if required by the holder.

4.1.1 Plain Vanilla options

The simplest and most widespread options in circulation are called plain

vanilla. A call option gives the right to buy a given asset at an agreed

price. Generally one buys a call option if she expects the price of the

underlying to go higher than the strike price, while who writes the option

usually expects the price to decrease below the strike price. A call option

is exercised if the underlying price exceeds the strike price. Indicating by

s the stock price and by K the strike price, the value of the option at the

expiration date T is max{s(T )−K, 0}. This value is called payoff.
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A put option gives the holder the right to sell a given asset at a pre-

determined date. She is hoping that the price of the underlying will

decrease below the strike price. The payoff of a put option is given by

max{K − s(T ), 0}. Payoff function in relation to the final stock price for

plain vanilla options are shown in Figure 4.1. The value of the option at a

generic instant of its life t is called intrinsic value. The right to exercise the

option has a cost, called premium. The holder of the option is said to be in

a long positions, while the writer is said to be in a short position. Options

whose strike price is close to the underlying price are called At-the-money,

the ones whose intrinsic value is positive are called In-the-money, the ones

with negative intrinsic value are defined Out-of-the-money.

A variant of the plain vanilla options are the american options. The

holder of such an option can exercise her right at any time during the

option life. Finally, bermudan options provide the holder with a restricted

set of possible dates when the option can be exercised. Determining the

price of this kind of options is more difficult than for the plain vanilla ones.

4.1.2 Exotic options

The contracts described in the previous section are the simplest that can

be found on the market. Besides these, other types of options with much

more complicated payoffs are present, often showing a dependency on past

values of the underlying and not only at the exercise date; these options are

called exotic. If the option value depends on past values of the underlying

it is said to be path-dependent. Path dependency can be strong or weak.

Contracts with a strong path dependency have a payoff based on some

feature of the option underlying in the past, thus implying the impossibility

to derive the option payoff only based on the present value of the underlying

and time instant. For example, asian options depend on the mean value

of the underlying prior to expiry. This requires the introduction of an
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additional variable to describe the state of the system. On the contrary,

weak path dependency does not require an additional variable to describe

the option payoff. The simplest options showing this kind of dependency

are the barrier options, that are activated by the underlying achieving a

predefined boundary. The actual time instant and the underlying value

are still sufficient to describe the state of the system. Let us now briefly

examine the most common exotic options.

Barrier options

The payoff of these option is the same as plain vanilla options, conditioned

to the fact that the underlying has reached or not a given limit, called

barrier. More specifically, barrier options are defined as follows:

• knock-in: a payoff is obtained only if the barrier is reached by the

underlying. They are divided into:

– Down-and-In: the barrier is below the current value of the asset,

payoff is triggered at the achievement of this lower limit;

– Up-and-In: the barrier is above the current value of the asset,

payoff is triggered at the achievement of this upper limit.

• knock-out : pay a given payoff only if the barrier is not reached. They

can be split into:

– Down-and-Out : the barrier is below the underlying value, the

option looses its value if this lower limit is reached;

– Up-and-Out : the barrier is above the underlying value, the option

looses its value if this upper limit is reached.

For example, an Up-and-Out call with strike 100 e and barrier 120 e gives

the holder the same payoff of a call option, only if during the option life

the underlying does not reach the barrier.
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Asian options

Asian options have a payoff depending on the mean value of an underlying

asset over a given time period. As already mentioned, they are strongly

path dependent, since their value depends on the whole time path and not

only on the current state. Arithmetic or geometric mean can be used to

determine the current option payoff, and the mean can be calculated either

continuously, so considering all the values taken by the underlying, or more

simply by sampling the underlying realization at discrete time instants.

Lookback options

The payoff of this kind of options depends on the maximum and minimum

observed value of the underlying over a fixed period. For example a look-

back option can pay the holder with the difference between the maximum

and minimum value of the underlying. Also in this case maximum and

minimum value can be referred to the whole path or to a sample path.

Napoleon cliquet

The payoff of the Napoleon clique option is given by:

N + max

{
0, C + min

i∈{1,...,Nfix}

x(ti)− x(ti − 1)

x(ti − 1)

}
(4.1)

where N stands for nominal, C is a given percentage value called base

coupon and ti, i = 1, . . . , Nfix are fixing dates, that is, the set of dates when

the underlying is checked. In other words, the napoleon clique option pays

a percentage of the nominal value of the option (like an obligation), plus

a quantity given by the sum of the base coupon and the minimum return

o the title, if this quantity is positive.
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4.2 State of the art

For a financial institution, hedging a derivative contract implies maintain-

ing a self-financing portfolio of underlying assets, whose quantities need to

be readjusted periodically so that at the expiration date of the contract

the value of the portfolio is as close as possible to the payoff value to be

paid to the customer.

The most common approach used in practice to dynamically rebalancing

the portfolio replicating the option is delta hedging, which directly derives

from the fundamental theory of Black and Scholes [9], according to which

the portfolio includes a quantity of stocks equal to the derivative of the op-

tion price with respect to the price of the underlying stock. Delta hedging

makes the portfolio insensitive to the indeterministic evolution of the stock

price, under a series of (often unrealistic) hypotheses including continuous

hedging, static volatility, and the absence of transaction costs. When ap-

plied in a real market context, such assumptions may lead to intolerable

hedging errors.

The seminal works [9, 58] and their extensions to models with stochastic

volatility [38] aim at perfect hedging by eliminating the risk at each time

instant through a proper rebalancing of assets in the portfolio, usually con-

tinuously in time. Simulation is another method often used by investment

firms to price options [11, 39]. A (large) set of scenarios for the future

prices of the underlying assets is generated by Monte Carlo simulation; the

final value of the asset price of each scenario is used to compute the payoff

value; the average of such payoff values, discounted by the interest rate,

provides the option price. In view of such a current practice for option

pricing, in this thesis we focus our attention only on the hedging problem.

Approaches that instead look at the entire life of the option aim at min-

imizing risk at expiration date. The problem can be cast as a stochastic
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optimal control problem and rely on the Hamilton-Jacobi-Bellman partial

differential equation. This category includes multi-stage stochastic pro-

gramming approaches, in which the pricing and hedging problem is solved

as a stochastic linear programming problem [31, 47, 79]. The approach is

often limited by numerical reasons. In fact, the number of nodes in the tree

is exponential in the number of trading periods, which typically limits the

number of branches at each node to two or three. Stochastic dynamic pro-

gramming approaches [8, 24] also discretize the probability space and solve

the pricing and hedging problem backwards in time. While the method

is appealing, its main limitation is due to numerical explosion when the

number of trading periods is large and several assets are traded.

This thesis attacks the hedging problem from a feedback control view-

point and proposes stochastic model predictive control (SMPC) ideas [18,

60, 66] to design a dynamic hedging strategy. SMPC can be seen as a

suboptimal way of solving a stochastic multi-stage dynamic programming

problem: rather than solving the problem for the whole option-life horizon,

a smaller problem is solved repeatedly from the current time-step t up to

a certain number N of time steps in the future by suitably remapping the

condition at the expiration date into a value at time t + N . SMPC has

been proposed recently in financial applications, such as in [37] for port-

folio optimization, and in [3, 57] for option pricing and hedging. Other

approaches that look at automatic trading as a feedback control problem

were proposed in [2, 13].

In [64] dynamic hedging under transaction costs is performed from a

SMPC point of-view for a plain vanilla option. A finite horizon constrained

stochastic control problem is formulated and iteratively solved at each trad-

ing date by employing a semi-definite programming algorithm.

The contributions [25] and [31] proposed analytic methods based on

stochastic optimization to handle transaction costs. In [25] the option
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price and the optimal trading strategy are jointly determined that reduce

the total risk of writing the option. In [31] a trinomial process is used for

generating the scenarios required to setup a stochastic control problem, in

which the objective function is the expected value of a given performance

index.

In [65] the hedging problem is formulated as a linear quadratic reg-

ulation (LQR) problem with constraints and two methods are proposed

to cope with transaction costs. One involves penalizing transaction costs

in the objective function, so that the problem can be solved as an un-

constrained linear quadratic problem; the second method uses a model

predictive control approach to solve a quadratic program over a specified

horizon, exploiting the LQR solution from the first approach in the cost

function.

In this thesis we propose a novel SMPC approach to dynamic option

hedging based on a minimum variance criterion that requires a simple least-

squares optimization to evaluate the optimal trading moves, by extending

results proposed in [5]. To be able to handle very general stock price mod-

els and exotic payoffs, for which no analytic hedging policy exist, a pricing

engine is used on-line to generate a finite number of future scenarios of op-

tion prices, rather than analytically deriving expected values from pricing

models as in [37, 64]. To evaluate each option price, the pricing engine

employs either Monte Carlo simulation (on-line computations), or off-line

function approximation to approximate the option value as a function of

the state of the market (such as the price of the underlying stock), so that

on-line evaluation is very fast. We will then extend the SMPC approach

to option hedging to handle proportional transaction costs. After showing

that the minimum variance criterion is inadequate to handle transaction

costs, we propose three new different approaches to solve the dynamic

hedging problem via SMPC. The first is based on the scalarization of the
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multi-objective problem of minimizing both the variance and the expected

value of the hedging error; the second minimizes the Conditional Value at

Risk (CVaR) introduced in Chapter 2; the third is based on the minimiza-

tion of the maximum hedging error over the set of scenarios considered in

the stochastic optimization problem solved by the SMPC algorithm. The

three approaches lead to, respectively, a quadratic programming (QP), a

linear programming (LP), and a (smaller) LP problem to be solved at each

trading date. The three SMPC formulations are tested and compared,

among them and to delta hedging, on both plain vanilla and barrier exotic

options.

4.3 Model formulation

Consider the problem of hedging an option O defined over n underlying

assets, whose spot prices at time τ are si(τ), i = 1, . . . , n, satisfying the

stochastic differential equations in the real-world probability measure

dsi(τ) = µsi (si(τ), yi(τ))dτ + σsi (s(τ), y(τ))dzsi (4.2a)

dyi(τ) = µyi (yi(τ))dτ + σyi (y(τ))dzyi (4.2b)

where zsi (τ), zyi (τ) are Wiener processes, namely dzsi , dz
y
i are correlated

Gaussian variables with zero mean and variance dτ . In (4.2) we assume

si ≥ 0, ∀i = 1, . . . , n, ∀τ ≥ 0. Model (4.2) is a rather general form that

covers several popular models, including the log-normal stock price model

dsi(τ) = (µdτ + σdzi)si(τ) (4.3)

where zi(τ) is a Wiener process, with zero mean and variance dτ . More

general models can be used to describe price dynamics, such as Heston’s
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model [38]:

dsi(τ) = (µsidτ +
√
yi(τ)dzsi )si(τ) (4.4a)

dyi(τ) = θi(ki − yi(τ))dτ + ωi
√
yi(τ)dzyi (4.4b)

where (4.4b) is the Cox-Ingersoll-Ross process [19] for the variance yi(τ),

and dzsi has correlation ρi with dzyi .

In this thesis, we focus on the log-normal model (4.3), whose discrete-

time equivalent form is

si(t+ 1) = e(µ− 1
2σ

2)∆T+σ
√

∆T zi(t)si(t) (4.5)

where t denotes the trading instant, t = 0, 1, . . ., and ∆T is the time

interval between two consecutive trading dates. We denote by s(t) =

[s1(t) . . . sn(t)]
′ ∈ Rn the overall vector of asset prices.

4.3.1 Option price and payoff function

We assume that the portfolio associated with option O is updated every

∆T units of time, and denote by T the maturity of O expressed in terms of

number of sampling steps. The payoff p(T ) of O is described by a function

P :

p(T ) = P(m(T )) (4.6)

of the state m(T ) of the considered asset market at expiration date, for

example m(T ) = x(T ). We denote by p(t) the price of the hedged option

at a generic intermediate time t∆T ,

p(t) = (1 + r)t−N Ẽ [P(m(T ))|m(t)] (4.7)

where m(T ) is the state of the market at time t and P(m(T )) is the ex-

pected value of the payoff in the risk-neutral measure, given the market at
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time t. In (4.7) r = era∆T − 1 is the return of the risk free investment over

∆T , and ra is the annualized continuously compounded interest rate, which

we assume to be constant (Equation (4.7) can be also restated recursively

as p(t) = (1 + r)−1Ẽ[p(t + 1)|m(t)]). For instance, for a European call

option on a single stock s with strike price K, we have

p(T ) = max{s(T )−K, 0} (4.8)

m(t) = {s(t), y(t)}, and p(t) = e−r(N−t)Ẽ [max{s(T )−K, 0}|s(t), y(t)]. In

particular, for log-normal price models, m(t) = s(t). For “Napoleon cli-

quet” path-dependent exotic options

p(T ) = max

{
0, C + min

i∈{1,...,Nfix}

s(ti)− s(ti−1)

s(ti−1)

}
(4.9)

where ti, i = 1, . . . , Nfix are the fixing dates, and C is a fixed value. In this

case m(t) = {s(t0), . . . , s(tk), s(t), y(t)}, where k is the fixing index such

that tk ≤ t < tk+1. For weak path-dependent “Barrier” exotic options

p(T ) =

{
max(s(T )−K, 0) if s(t) < su, ∀t ≤ T

0 otherwise

=

{
max(s(T )−K, 0) if s`(t) = 0

0 if s`(t) = 1

(4.10)

where su define the upper barrier level, and s`(t) ∈ {0, 1} is a logic state

with dynamics s`(t + 1) = s`(t) OR [s(t) ≥ su], s`(0) = 0. In this case

m(t) = {s(t), s`(t), y(t)}.

4.3.2 Portfolio dynamics

Assume that there are no transaction costs, and that the standard self-

financing condition holds, i.e., that the wealth w(t) of the portfolio repli-
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cating option O is always totally reinvested. Then, the dynamics of the

wealth w(t) of the portfolio is

w(t+ 1) = (1 + r)w(t) +
n∑

i=1

bi(t)ui(t) (4.11)

where ui(t) is the quantity of asset i held at time t and bi(t) , si(t +

1) − (1 + r)si(t) is the excess return, i.e., how much the asset gains (or

loses) with respect to the risk-free rate. The initial condition w(0) is set

equal to the price paid by the customer to purchase option O, w(0) =

(1 + r)−N Ẽ[p(T )|m(0)].

4.4 Stochastic MPC formulation

Dynamic hedging aims at making the final wealth w(T ) as close as possi-

ble to p(T ) for all possible market realizations. The hedging problem can

be restated as a stochastic control problem, where the wealth w(t) ∈ R
represents the state and output of the regulated process, the traded as-

set quantities u(t) ∈ Rn are the inputs, the option price p(t) the target

reference for w(t). By defining the tracking error e(t) , w(t) − p(t), the

objective can be restated as the one of minimizing e(t) for all possible asset

price realizations. This can be achieved by minimizing the variance of the

hedging error.

J(e(T )) = E
[
(e(T )− E[e(T )])2

]
(4.12)

by solving the one-step ahead minimum-variance problem

min
{u(t)}

Varmt+1
[w(t+ 1,mt+1)− p(t+ 1,mt+1)] (4.13a)

s.t. w(t+ 1,mt+1) = (1 + r)w(t)

+
n∑

i=0

bi(t,mt+1)ui(t) (4.13b)
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with respect to the portfolio composition u(t) at each trading date t∆T .

Note that expectations and variances are conditioned to the particular

market realization mt at time t; we omit here the conditional notation for

simplicity. Since now on we will use the notation w(t+ 1) as a shortcut for

the future wealth w(t+1,mt+1). The formulation in (4.13) is equivalent to a

stochastic model predictive control approach with prediction horizon N =

1, under the terminal condition of perfect hedging between prediction time

t+N and expiration date T . Problem (4.13) can be solved by enumerating

a number M of scenarios, each one corresponding to a different realization

of a certain sequence of prices, and optimize the resulting sample variance.

Each scenario j has probability πj of occurring, j = 1, . . . ,M , πj > 0, πj ≤
1,
∑M

k=1 πj = 1. Scenarios can be generated via Monte Carlo simulation [5],

where πj = 1
M , or by discretizing a given probability density function that

describes the disturbance process zi(t) [6]. Assuming that zi(t) follows

a Gaussian normal distribution π(z) = 1√
2π
e−

1
2z

2

, for a fixed set of limit

values zj, j = 0, . . . ,M , z0 = −∞, zM = +∞, we obtain:

πj =

∫ z̄j+1

z̄j

π(z)dz =
1

2

(
erf

(
z̄j+1√

2

)
− erf

(
z̄j√

2

))
(4.14)

sj(t+ 1) =
1

πj

∫ z̄j+1

z̄j

s(z)π(z)dz

= s(t)
k1

πj
e
k2
2

∫ z̄j+1−k2

z̄j−k2

1√
2π
e−

1
2v

2

dv

= s(t)
k1

2πj
e
k2
2

(
erf

(
z̄j+1 − k2√

2

)
− erf

(
z̄j − k2√

2

))
(4.15)

pj(t+ 1) =
1

πj

∫ z̄j+1

z̄j

p(t+ 1,m(z))π(z)dz

≈ p(t+ 1,m(z̄j+1)) + p(t+ 1,m(z̄j))

2πj(z̄j+1 − z̄j)
(4.16)
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Where k1 = eµ−
1
2σ

2∆t, k2 = σ
√

∆t, s(z) = s(t)k1e
k2z, and m(z) is the

market state of the asset.

Note that, contrarily to multi-stage stochastic programming approaches

that typically limit the number M of considered scenarios to only 2 or 3 to

avoid the combinatorial explosion over the optimization horizon N , here M

can be quite large without incurring into prohibitive computation efforts,

as the prediction horizon is simply N = 1.

By optimizing the sample variance of w(t+ 1)− p(t+ 1), in the absence

of transaction costs problem (4.13) can be rewritten as the following least

squares problem

min
u(t)

M∑

j=1

πj

(
wj(t+ 1)− pj(t+ 1)−

(
1

M

M∑

i=1

wi(t+ 1)− pi(t+ 1)

))2

(4.17)

where wj(t + 1) = (1 + r)w(t) +
∑n

i=0 b
j
i (t)ui(t) are the future values of

portfolio wealth for each scenario j = 1, . . . ,M , and πj is the correspond-

ing probability, πj ≥ 0,
∑M

i=1 π
j = 1. The resulting SMPC algorithm is

described by Algorithm 1.

Algorithm 1 SMPC algorithm for dynamic option hedging

1. Let t=current hedging date, w(t)= current wealth of portfolio, m(t)=current market state;

2. Generate M scenarios of future market states m1(t+ 1), . . ., mM (t+ 1), with corresponding probabilities

π1, . . . , πM ;

3. Use a pricing engine to generate the corresponding future option prices p1(t+ 1), . . ., pM (t+ 1);

4. Solve the least square problem (4.17) to minimize the sample variance of w(t+ 1)− p(t+ 1);

5. Rebalance the portfolio according of the optimal solution u∗(t) of problem (4.17);

6. End.
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4.4.1 Pricing future option values

An option pricing engine is needed at step 2. of Algorithm 1 to compute the

future option prices p1(t + 1), . . ., pM(t + 1) over the generated scenarios,

which may be a bottleneck of the proposed SMPC approach for exotic

options. Several approaches exist to option pricing, such as those based on

Monte Carlo simulation. If each option evaluation requires the simulation

of L scenarios, then one has to simulate ML paths on-line at each trading

period t to build the optimization problem (4.17), which may be a time

consuming task.

Although advanced techniques exist for parallel computation of Monte

Carlo simulations, alternative off-line function approximation techniques

can be used to obtain option prices for each future scenario. The idea

is to construct a function that returns the option price as a function of

m(t) (that is, of the current asset parameters and of other option-related

quantities). In this thesis we use a function approximation inspired by the

Monte Carlo method of Longstaff and Schwartz [51] for pricing American

derivates, in which the continuation value (the option value at a future

date) is estimated by a regression of the discounted payoff on a base of

functions of some state variables. This methodology proved to have supe-

rior performance with respect to other classical general purpose function

approximation methods.

4.4.2 Simulation results

In this section we test the SMPC algorithm 1 on different options and asset

price models.

All simulation were performed on a Asus with 1.70 GHz Intel Pentium

R processor and 2 Gb RAM running MATLABTM R2007b under Windows

XP, using the following parameters: M = 100 scenarios (unless specified
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differently), prediction horizon N = 1, ∆T = 1 week is the time interval

between consecutive reallocations of the portfolio, T = 24 weeks is the ma-

turity of the option, ra = 4% is the annualized continuously compounded

interest rate so that r = e0.04 1
54 − 1 = 0.00074102 is the return of the risk

free investment over ∆T . In every example shown below the hedging strat-

egy is tested over Ns = 1000 simulations of randomly generated market

evolutions.

We will consider a single stock s1(t) with initial spot price s1(0) =

100 e. For European call options (4.8), we will consider the strike price

K = 100 e. The number of traded assets is n = 1 when only the underlying

stock is traded, or n = 2 when also the European call option with expiration

at time t∆T and strike price s1(t)(1 + r)T−t is also traded in the portfolio.

For “Napoleon cliquet” options (4.9), we consider Nfix = 3 fixing dates,

with t0 = 0, t1 = 8, t2 = 16, t3 = 24 weeks, and coupon C = 0.1. For

barrier options, we have considered an up-and-out option with barrier

xu = 120 e, where the barrier level is checked only at trading instants.

When Monte Carlo simulation is used to price “Napoleon cliquet” and

Barrier options, L = 1000 scenarios are evaluated to compute the expected

payoff.

We will consider the log-normal stock price model (4.3) with1 µ = ra,

dzx1 ∼ N (0, 1) and volatility σ = 0.5, which will be also referred to as Black-

Scholes (BS) model, and Heston (H) model (4.4), with initial variance

y1(0) = 0.25, and parameters θ1 = 0.25, κ1 = 1, ω1 = 0.3, ρ1 = −0.5. In

all simulations we assume that the value of market volatility is estimated

exactly.

1In this particular case, the probability measure used for asset price and portfolio dynamics coincides
with the risk-neutral one. However, the reader should notice that this approach relies on the real-world
probability measure for asset price and portfolio dynamics.
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European call option

We first test the SMPC strategy (4.17) to replicate a European call option,

only trading the risk-free asset and the underlying stock (n = 1). Heston’s

model [38] is used both in the MPC formulation and to generate actual

market prices in simulation.

The analytical pricing formula [38] is used to compute future asset val-

ues pj(t + 1), j = 1, . . . ,M . The results are depicted in Figure 4.2, where

only the first 50 simulations are reported in Figure 4.2a and 4 simulations

in Figure 4.2b. The empirical distribution of the hedging error2 computed

on all Ns simulations is depicted in Figure 4.3 (purple line). The average

CPU time to execute Algorithm 1 is 81.2 ms. The average hedging error

(a) payoff function p(T ) and final wealth w(T ) (e)
as a function of the stock price s1(T ) at expiration
(e)

(b) Sample trajectories of wealth w(t) and option
price p(t)

Figure 4.2: Hedging a European call using SMPC based on Heston’s model (values in e)

E[e(T )] = −0.0511 e, E[|e(T )] = 1.9907, max |e(T )| = 14.5699. For com-

parison, Figure 4.3 also shows the error distribution when delta hedging3

is applied (green line), which takes an average CPU time of 2.5 ms per
2Hedging errors are sampled with the Freedman-Diaconis rule [28].
3 By letting ∆ = ∂p

∂x , in Delta hedging at each time step the portfolio contains a quantity −∆ of asset
x. In our simulations ∆ is computed by differentiating the pricing formula [38] numerically.
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time step. In each simulation, the difference between the hedging error

e(T ) achieved by SMPC and the one obtained by delta hedging is within

±3.75 e.

Exotic options

The advantage of using the SMPC strategy becomes more evident when

replicating exotic options.

We use again Heston’s model [38] both as a market model and a predic-

tion model for stock prices. For the “Napoleon Cliquet” option, we only

consider the case n = 2 and we use Longstaff-Schwartz’s off-line approx-

imation (calibrated in 251.5310 s) to estimate the option price p(t) as a

function of the spot price s1(t), its variance y1(t), and of the spot prices at

past fixing dates s1(t0), . . . , s1(tk), with tk ≤ t < tk+1. On-line CPU time

is 0.4391 s (for comparison, when using on-line Monte Carlo simulation to

compute future options CPU time is 2.49 s).

Hedging results are reported in the third and fourth rows of Table 4.1,

where for comparison in the fifth row we also show the results obtained

through delta hedging.

For the barrier option, off-line pricing approximation takes 114.016 s to

estimate p(t) as a function of s1(t) and its variance y1(t). On-line CPU

time is 428.8 ms (n = 2). Hedging results are reported in the last two rows

of Table 4.2.

SMPC model E[e(T )] E[|e(T )|] max |e(T )| CPU (ms)
Fixed Black 0.0031 0.0080 0.0561 1256.28
Implied Black 0.0031 0.0079 0.0560 1293.7
Heston (MC) 0.0032 0.0075 0.0516 6717.48
Heston (LS) 0.0025 0.0110 0.4159 439.1
∆ hedging -0.0032 0.0176 0.1344 33.7

Table 4.1: Napoleon Cliquet option (final hedging error e(T ) in e, MC=Monte Carlo
online pricing, LS=Longstaff&Schwartz offline option price approximation)
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SMPC model E[e(T )] E[|e(T )|] max |e(T )| CPU (ms)
Fixed Black -0.0324 0.6965 14.5866 113.12
Implied Black -0.0320 0.6956 14.5829 155.64
Heston 0.1936 0.7961 16.0870 363.76
∆ hedging -1.3060 2.4335 18.9145 103.0

Table 4.2: Barrier option (final hedging error e(T ) in e)

4.4.3 Robustness with respect to market modeling errors

Generating future scenarios of asset prices requires a model of their stochas-

tic and dynamic evolution. Getting such a model is often a complex task

and unavoidably affected by inaccuracy. This is due to the fact that we

are trying to enclose a huge net of complicated relationships, in addition

to a large source of randomness, in a small box. As complicated as the

model can be, one will never be able to catch the exact dynamics of the

assets, and in any case a very complicated model would lose the advan-

tages of modelization. Therefore, in general, the asset price model will

always be different from the way the real world behaves, and one must find

a compromise, by using a simple enough model which allows one to keep

computational complexity as low as possible.

In the previous sections we have assumed that the actual prices behave

according to the same model we use to predict their evolution (nominal

conditions). The hedging error was exclusively due to randomness. In

this section we test numerically the robustness of the SMPC algorithm not

only with respect to price stochasticity, but also when real and prediction

model mismatch. In particular, we assume that real assets evolve following

Heston’s model [38], while the simpler Black and Scholes model (4.3) is used

to generate future scenarios in SMPC.

The tool that will be used to concile the two models is the calibration

of the lognormal model (4.3) using the so-called implied volatility, that is

the market’s view of future actual volatility and is updated at each trading
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period from observed market prices of plain vanilla options (generated by

the Heston’s model [38] in our setting) by inverting (numerically) the Black-

Scholes pricing formula. Such a value of implied volatility will be used in

our simple prediction model (4.5). This approach could be seen as a way of

“projecting” the real market (which, in our case, follows Heston’s model)

onto the log-normal model.

4.4.4 Simulation results with respect to robustness

In the following tests we have considered that the real market evolves

according to Heston’s model with initial volatility σ = 0.5 (y1(0) = 0.25),

and that, to avoid bias in hedging errors due to wrong initial pricing, the

initial wealth of the portfolio is computed correctly using Heston’s model

and exact y1(0). For SMPC we consider instead three different models:

1. Fixed Black-Scholes : The log-normal model (4.3) is used to generate

future scenarios in SMPC, setting the volatility to a fixed arbitrary

value, different from the actual;

2. Implied Black-Scholes : at each prediction step the estimated implied

volatility is used in (4.3);

3. Heston: nominal case, both the SMPC model and the real market

model coincide, and the actual volatility is observed exactly.

European Call

We first test the robustness of the SMPC algorithm on a European call

option, only trading the risk-free asset and the underlying stock (n = 1).

The analytical pricing formula [38] is used to compute future asset values

pj(t+ 1), j = 1, . . . ,M .

Figure 4.3 shows the empirical discrete density function of the hedging

error e(T ) = w(T ) − p(T ) in the presence of modeling errors. Note that
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Figure 4.3: Comparing the empirical distribution of hedging errors among the four meth-
ods: Heston, Implied Black, Fixed Black and Delta Hedging.

all four distributions are bell-shaped. We can easily see that the density

of Fixed Black (red line) has fatter tails than the others and that Implied

Black (blue line) better follows the distribution of Heston (=the exact

model, purple line). While Fixed Black and Implied Black take approxi-

mately the same CPU time (9.6 ms and 10.2 ms per time step, respectively),

Heston (nominal conditions) takes 81.2 ms per time step. Delta Hedging

is faster: only takes 2.5 ms per time step, because it simply uses finite

differences.

The benefits of resorting to the discretization of the normal distribution

as in (4.14) with respect to Monte Carlo simulation πj = 1
M are highlighted

in Table 4.3, where the Implied Black method is used to hedge in the SMPC

algorithm.

Note that the average final hedging error and the average absolute hedg-

ing error obtained when only 3 scenarios, weighted with the corresponding
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M πj E[e(T )] E[|e(T )|] max |e(T )| CPU (ms)
100 1

M
-0.0587 2.0296 15.0929 10.2

8 1
M

-0.1177 3.7149 18.2113 3.4
8 Eq. (4.14) -0.0914 2.1517 13.7776 4.4
5 1

M
-0.1763 5.3472 20.4058 3.2

5 Eq. (4.14) -0.0962 2.1697 13.5410 3.8
3 1

M
-0.1717 5.2603 20.5207 3.1

3 Eq. (4.14) -0.0501 2.0153 15.2368 3.4

Table 4.3: Montecarlo vs. discretization of probability density function in generating
scenarios (European call, errors expressed in e)

probabilities as in (4.14), are used in SMPC are very similar to the case

with M = 100 scenarios generated by Monte Carlo, but with evident sav-

ings of CPU time.

Exotic options

The robustness with respect to modeling errors in the case of path-dependent

“Napoleon cliquet” options with payoff (4.9) is highlighted in (the first and

second rows of) Table 4.1, where we use M = 100 equally probably sce-

narios generated by using Longstaff-Schwartz’s off-line approximation. For

exotic options we only consider the case n = 2, that is, trading both the

asset and its associated call option. While all methods perform similarly,

it is apparent the computational benefits of hedging using the log-normal

model, in spite of the modeling error. Note that, although delta hedging is

the fastest algorithm, its performance in terms of E[|e(T )|] deteriorates by

almost 50% with respect to Implied Black and almost 60% with respect to

SMPC based on Heston’s model; partly this is because delta hedging does

not include options in the portfolio (n = 1). Similar results are obtained

on the up-and-out Barrier option, as shown in Table 4.2.
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4.5 Transaction costs

When trading assets on the market, one often suffers the friction of trans-

action costs [22]. In mathematical terms, the investor pays a quantity hi(t)

of wealth to change the number of assets in the portfolio from ui(t− 1) at

time t − 1 to u(t) at time t, for each asset i. Such wealth hi(t) is taken

away from the overall wealth w(t) of the portfolio, so that (4.11) becomes

(cf. [67])

w(t+ 1) = (1 + r)

(
w(t)−

n∑

i=1

hi(t)

)
+

n∑

i=1

bi(t)ui(t) (4.18)

Proposition 1 The variance of the hedging error e(t) = w(t)−p(t) is not

affected by transaction costs.

Proof: Let ω(t) =
∑n

i=1 hi(t) be the total transaction cost paid at

time t. As ω(t) is a deterministic function that only depends on u(t) (it

does not depend on s(t)), we get that the expected value of the hedging

error e(t+ 1) = w(t+ 1)− p(t+ 1) is

E[w(t+ 1)− p(t+ 1)] = E[(1 + r)w(t) +
n∑

i=1

bi(t)ui(t)

−p(t+ 1)− (1 + r)ω(t)]

= E[w0(t+ 1)− p(t+ 1)]− (1 + r)ω(t)

where w0(t + 1) is the wealth at time t + 1 in the absence of transaction

costs. Therefore, while the expectation E[e(t + 1)] of the hedging error
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e(t+ 1) is affected by ω(t), its variance Var[e(t+ 1)] is clearly not, as

Var[e(t+ 1)] = E[(e(t+ 1)− E[e(t+ 1)])2]

= E[(w0(t+ 1)− p(t+ 1)− (1 + r)ω(t)

−E[w0(t+ 1)− p(t+ 1)] + (1 + r)ω(t))2]

= Var[w0(t+ 1)− p(t+ 1)]

2

Proposition 1 has clearly shown that the minimum variance criterion (4.12)

is inadequate to handle transaction costs.

In the simplest case, transaction costs hi(t) are proportional to the

traded quantity of stock |ui(t)− ui(t− 1)|

hi(ui) = εi|ui(t)− ui(t− 1)|si(t) (4.19)

where the fixed quantity εi depends on commissions on trading asset i,

i = 1, . . . , n (we assume that no costs are applied on transacting the risk-

free asset).

4.5.1 Minimization of variance and expectation (QP-Var)

Let x(t), y(t) ∈ Rn be two vectors whose i-th components are nonnegative

and defined as

xi(t)− yi(t) = ui(t)− ui(t− 1) (4.20)

xi(t) ≥ 0, yi(t) ≥ 0, ∀t = 0, . . . , T

Accordingly, the cost hi(t) for trading a quantity ui(t)−ui(t−1) of the i-th

asset is hi(t) = εi|ui(t)− ui(t− 1)|si(t) = γi(t)(xi(t) + yi(t)), where γi(t) ,

εisi(t), i = 1, . . . , n. The quantities xi(t) and yi(t) can be interpreted,

respectively, as the amount of asset i bought at time t and the amount of
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asset i sold at time t. We can therefore introduce the new decision vector

v(t) =
[
x(t)
y(t)

]
∈ R2n of decision variables and replace u(t) ∈ Rn with

u(t) = u(t− 1) + x(t)− y(t) (4.21)

By letting

1I ,




1
...

1


 ∈ RM , γ(t) ,



γ1(t)

...

γn(t)




from (4.18) we can express the vector of future hedging errors e(t + 1) =

w(t+ 1)− p(t+ 1) on the M different scenarios as



e1(t+ 1)

...

eM(t+ 1)


 = B(t)u(t) + (1 + r) (w(t)− γ′(t)(x(t) + y(t))) 1I−



p1(t+ 1)

...

pM(t+ 1)




= B(t)(u(t− 1) + x(t)− y(t))

−(1 + r) 1I γ′(t)(x(t) + y(t)) +D(t)

= Av(t)v(t) +Bv(t)− 1IGv(t)v(t)

where

B(t) ,



b1

1(t) . . . b1
n(t)

...
...

bM1 (t) . . . bMn (t)


 , D(t) , (1 + r) 1Iw(t)−



p1(t+ 1)

...

pM(t+ 1)




Bv(t) , B(t)u(t− 1) +D(t), Av(t) , [B(t)| −B(t)],

Gv(t) , (1 + r)[γ′(t)|+ γ′(t)]
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The hedging error e(t+ 1) = w(t+ 1)− p(t+ 1) has therefore the following

empirical expectation

E[e(t+ 1)] = π′(Av(t)v(t) +Bv(t)− 1IGv(t)v(t))

= −Gv(t)v(t) + π′(Av(t)v(t) +Bv(t)) (4.22)

where π′ = [π1 . . . πM ]′ ∈ RM , π′ 1I = 1. Note that by (4.22) we can rewrite

E[e(t+ 1)] = K(t)−H(t), where K(t) = π′[B(t)(x(t)− y(t)) +Bv(t)] and

H(t) = (1 + r)γ′(x(t) + y(t)). Therefore, K(t) depends on the quantity

x(t) − y(t) (i.e., on the net increment u(t) − u(t − 1) of the underlying

assets hold in portfolio from time t − 1 to time t) and is independent of

Λ(t) = min{x(t), y(t)} and of the transaction costs, while H(t) depends on

the actual number of transactions executed (simultaneously) to rebalance

the portfolio at time t, depends on Λ(t) and, via γ(t), on the transaction

costs (indeed, E[e(t+ 1)] can be decreased by increasing Λ(t)).

By letting ij be the j-th vector of the canonical basis of RM , that is

I = [i1| . . . |iM ], and omitting the dependence of t for ease of notation we

get

E[e2(t+ 1)] =
M∑

j=1

πj
(
i′j(Avv +Bv − 1IGvv)

)2

= v′G′vGvv + (Avv +Bv)
′ diag(π)(Avv +Bv)

−2π′(Avv +Bv)Gvv (4.23)

E2[e(t+ 1)] =

(
M∑

j=1

πji
′
j(Avv +Bv − 1IGvv)

)2

= (π′(Avv +Bv)−Gvv)
2

= v′G′vGvv + (Avv +Bv)
′ππ′(Avv +Bv)

−2π′(Avv +Bv)Gvv (4.24)

47



4.5. TRANSACTION COSTS

Hence, the variance of e(t+ 1) is

Var[e(t+ 1)] = E[(e(t+ 1)− E[e(t+ 1)])2]

= E[e2(t+ 1)]− E2[e(t+ 1)] (4.25a)

= (Av(t)v(t) + Bv(t))
′(diag(π)− ππ′)(Av(t)v(t) +Bv(t)) (4.25b)

Note that (4.25b) does not depend on γ(t), in accordance with Proposi-

tion 1, and that diag(π)−ππ′ is a positive semidefinite matrix by definition:

v′(diag(π)− ππ′)v =
M∑

i=1

πiv
2
i −

(
M∑

i=1

πivi

)(
M∑

j=1

πjvj

)

=
M∑

i=1

πi

(
v2
i − 2vi

M∑

j=1

πjvj + vi

M∑

j=1

πjvj

)

=

(
M∑

i=1

πi(v
2
i − 2vi

M∑

j=1

πjvj)

)

+

(
M∑

i=1

πivi

)(
M∑

j=1

πjvj

)(
M∑

i=1

πi

)

=
M∑

i=1

πi

(
vi −

M∑

j=1

πjvj

)2

≥ 0, ∀v ∈ RM

Note also that Var[e(t+ 1)] does not depend on x(t)− y(t), and therefore

on Λ(t), that confirms what observed earlier about Λ(t) only affecting

transaction costs, that are deterministic.

In order to minimize both the variance and the expected value of the

one-step ahead hedging error e(t + 1) we solve the following optimization

problem

min
v(t)

Var[e(t+ 1)] + αE2[e(t+ 1)] (4.26)

s.t. v(t) ≥ 0
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where α is a fixed scalar, α ∈ [0, 0.5]. Problem (4.26) is a QP problem with

2n variables subject to nonnegativity constraints.

Note that the hedging strategy defined by (4.26) might lead to choosing

optimal quantities xi(t) and yi(t) that are both positive, that is Λi(t) ,

min{xi(t), yi(t)} > 0. This amounts to allow the trader to simultane-

ously buy and sell the same quantity Λi(t) of asset i at the same trad-

ing instant t (cf. [17, p. 290]) or, in alternative, to violate the self-

financing condition (4.11), by subtracting the wealth Λi(t)γi(t) from the

total portfolio wealth and rebalancing ui(t) = ui(t−1)+ x̄i(t)− ȳi(t), where

x̄i(t) = xi(t)−Λi(t), ȳi(t) = yi(t)−Λi(t). Clearly, x̄i(t)−ȳi(t) = xi(t)−yi(t)
and either x̄i(t) = 0 or ȳi(t) = 0. Constraining Λi(t) = 0 would make (4.26)

a nonconvex problem, therefore more complicated to solve numerically;

however, leaving Λi(t) unconstrained does not lead to undesired effects

from a hedging viewpoint. In fact, having xi(t) and yi(t) both positive

(Λi(t) > 0) might be a good choice to avoid super-replication without

altering variance. On the other hand, if at optimality E[e(t + 1)] ≤ 0,

that is one is under-replicating the option price at time t, then necessarily

Λi(t) = 0, otherwise x̄i(t), ȳi(t) would be a solution with the same vari-

ance and a lower E2[e(t+ 1)], thus providing a lower value of the objective

function in (4.26) than x(t), y(t).

Note also that one could minimize Var[e(t + 1)] + αE[e(t + 1)] instead

of (4.26), therefore not penalizing super-replication. In this setting, either

xi(t) = 0 or yi(t) = 0 spontaneously at optimality (that is, Λi(t) = 0), as,

as observed earlier, a positive quantity Λi(t) would only increase the term

H(t) due to transaction costs without altering K(t) and Var[e(t+ 1)].

An alternative formulation based on mixed-integer quadratic program-

ming, related to the approach of [30] but based on the theory of hybrid

dynamical systems [7], that can handle more general transaction costs is

reported in Appendix A.
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4.5.2 Minimization of conditional value at risk (LP-CVaR)

A drawback of the QP formulation (4.26) is that it requires the calibration

of the scalar α that achieves the best tradeoff between variance (=risk) and

expectation (=lack of hedging accuracy due to transaction costs). Con-

ditional Value at Risk (CVaR) can be used as an alternative performance

measure to penalize the hedging error e(t+1), and is defined as follows. Re-

calling the concept of CVaR in Section 2.1.3 let f(u, s) : Rn+k → R be a loss

function associated with the decision vector u ∈ Rn and with the random

vector s ∈ Rk. In our case u = u(t), s = m(t+1), f(u, s) = |e(t+1)| (in case

super-replication of the option price is not penalized, f(u, s) = −e(t+ 1)).

Let p(s) be the probability density function of s. We use CVaR to formu-

late the SMPC problem for dynamic hedging:

min
v(t),`(t),{zj(t)}Mj=1

`(t) +
1

1− β
M∑

j=1

πjzj(t) (4.27a)

s.t. zj(t) ≥ wj(t+ 1)− pj(t+ 1)− ` (4.27b)

zj(t) ≥ −wj(t+ 1) + pj(t+ 1)− ` (4.27c)

zj(t) ≥ 0, j = 1, . . . ,M (4.27d)

v(t) ≥ 0, j = 1, . . . ,M (4.27e)

for the given fixed value of β, where wj(t + 1) − pj(t + 1) is given by

(4.22).Problem (4.27) is an LP problem with M + n + 1 variables and

3M constraints. Note that by removing constraint (4.27b) one does not

penalize super-replication of the option price, as the loss function becomes

max{−e(t+ 1), 0}.

4.5.3 Minimization of worst-case error (LP-MinMax)

A simpler approach than CVaR is to penalize the worst-case loss over the

set of M generated scenarios, that is the largest absolute value |e(t + 1)|
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of the hedging error. The resulting formulation is the linear program

min
v(t),`(t)

`(t) (4.28a)

s.t. `(t) ≥ wj(t+ 1)− pj(t+ 1) (4.28b)

`(t) ≥ −wj(t+ 1) + pj(t+ 1) (4.28c)

`(t) ≥ 0 (4.28d)

v(t) ≥ 0, j = 1, . . . ,M (4.28e)

where wj(t + 1)− pj(t + 1) is given by (4.22). Note that the LP (4.28) is

simpler than (4.27) as it only involves n+1 variables and 2M+1 constraints.

In contrast, it is clear that the LP-MinMax formulation (4.28) does not

exploit the available information about the probability distribution of the

stochastic variables that affect the portfolio evolution.

4.5.4 Simulation results with transaction costs

We test the SMPC formulations for dynamic hedging of Section 4.5 on a

European plain vanilla call option and on a barrier option. All simulations

were run on a MacBook Pro 2.66 GHz Intel Core 2 Duo processor and

4 Gb RAM running MATLAB R2009b. The QP solver QUADPROG of the

Optimization Toolbox was used to solve QP problems, while the solver

GLPK [53] was used to solve LP problems.

We test the proposed three SMPC algorithms defined, respectively,

by (4.26), (4.27), and (4.28) under different scenario generation settings:

M = 100 and M = 1000 scenarios generated by Monte Carlo simulation

(πi = 1
M , ∀i = 1, . . . ,M), and M = 5 with πi obtained by discretizing a

Gaussian distribution of s(t + 1) as described (4.14) - (4.16). Let ∆T = 1

week be the time interval between two consecutive trading dates. The

option expires after T = 24 intervals, and ra = 4% is the annualized con-
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tinuously compounded interest rate so that r = e0.04 1
54 − 1 = 0.00074102 is

the return of the risk free investment over ∆T .

We consider a single stock s1(t) with initial spot price s1(0) = 100 e.

For European call options (4.8), we consider the strike price K = 100 e,

while for barrier options, we consider an up-and-out option with barrier

xu = 115 e, where the barrier level is checked only at trading instants. In

the following tests we will consider two different cases:

• (n = 1) The replicating portfolio is composed by the underlying stock

and a cash position in the money market account (a set-up similar to

common “delta” hedging);

• (n = 2) The replicating portfolio is composed, besides the previous two

assets, by a position in an at-the-money (ATM) European call option

whose expiry coincides with the expiration date T of the product to

be hedged (a set-up similar to common “delta” and “vega” hedging).

Note that, in the second case, at each trading date t the call option to

be traded is ATM (i.e., strike price = s1(t)(1 + r)T−t), meaning that all

options previously held at time t−1 have been cleared in order to buy/sell

the newer ATM options.

We consider the log-normal stock price model (4.3) with µ = ra, dz1 ∼
N (0, 1) and volatility σ = 0.5 when hedging the call option, while σ = 0.3

when hedging the barrier option and we assume the idealized case of the

real market generating prices according to the same model.

We first test the SMPC algorithm on a European call option, only trad-

ing the underlying stock and the risk free asset (n = 1). The transaction

cost to trade the underlying stock is ε1 = 2.5%. The strategy is tested over

Ns = 100 simulations.
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QP-Var formulation

Consider the method based on QP described in Section 4.5.1, where prob-

lem (4.26) is solved instead of (4.17). We first need to calibrate the relative

weight α in (4.26). To this end, for a set of different values of α we compute

the variance and expectation of the final hedging error e(T ) from a set of

Ns = 100 simulations by running the SMPC algorithm based on (4.26)

with M = 100 scenarios. The test has been made for 0 ≤ α ≤ 0.5. Higher

values of α would lead to an excessive risk exposure, since the expected

error would be predominant.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

α

Va
ria

nc
e 

of
 th

e 
fin

al
 h

ed
gi

ng
 e

rro
r V

ar
[e

(T
)]

(a) Variance of the final hedging error for 0 ≤ α ≤ 0.5
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(b) Expected final hedging error for 0 ≤ α ≤ 0.5

Figure 4.4: Final variance Var[e(T )] and expectation E[e(T )] of the final hedging error
e(T ), used for the calibration of parameter α

In Figure 4.4 the results of the calibration phase are highlighted. As

expected, the variance increases with high values of α, while the expected

hedging error E[e(T )] decreases. However, the decrement in the expected

error is much less dramatic than the increment of variance. For a given risk

attitude of the trader, the plot of Figure 4.4 helps choosing the tradeoff

parameter α. Here the value α = 0.25 is selected to run the SMPC algo-

rithm based on (4.26) for three different values of M (predicted scenarios):

M = 100 (πj = 1
100), M = 1000 (πj = 1

1000), and M = 5 (πi is obtained by
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Model Monte Carlo M = 100 Monte Carlo M = 1000 discretized Gaussian M = 5

E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s) E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s) E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s)
QP-Var -1.23 2.16 -7.48 6.27 0.026 -1.17 2.22 -8.63 6.99 0.26 -1.28 2.31 -6.78 6.96 0.01
LP-CVaR -1.27 2.27 -6.74 6.42 0.017 -1.10 2.20 -7.42 6.80 1.11 -1.28 2.39 -6.88 7.46 0.001
LP-MinMax -1.23 2.28 -6.85 7.15 0.006 -1.28 2.35 -6.69 7.21 0.18 -1.29 2.41 -6.88 7.60 0.001
Delta Hedging -0.1312 1.77 -5.4 4.84 0.00012 -0.1312 1.77 -5.4 4.84 0.00012 -0.1312 1.77 -5.4 4.84 0.00012

Table 4.4: SMPC results for the European call option

Model LS M = 100 LS M = 5 LS M = 1000

E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s) E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s) E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s)
QP-Var -0.55 0.97 -7.29 3.27 0.09 -0.44 1.12 -9.40 4.85 0.01 -0.55 0.98 -7.04 3.24 0.37
LP-CVaR -0.39 1.09 -8.03 3.89 0.08 -0.34 1.25 -9.83 5.33 0.001 -0.44 1.04 -7.68 3.66 1.04
LP-MinMax -0.56 1.22 -8.82 4.81 0.07 -0.28 1.58 -10.73 6.84 0.001 -0.52 1.32 -8.84 5.23 0.33
Delta Hedging -0.70 1.79 -16.14 13.61 0.0041 -0.70 1.79 -16.14 13.61 0.0041 -0.70 1.79 -16.14 13.61 0.0041

Table 4.5: SMPC results for the barrier option

sampling the Gaussian function). The obtained results are shown in the

first row of Table 4.4.

It is apparent that the global performance obtained with the three dif-

ferent values of M are comparable, with a slightly higher maximum error

in the case M = 1000. This suggests that increasing M over a certain num-

ber of predicted scenarios does not necessarily lead to improvements. The

discretization leads to some minor savings of CPU time, but the hedging

performance gets worse.

LP-CVaR and LP-MinMax formulations

The last two rows of Table 4.4 highlight the performance of the two pro-

posed LP formulations, where either the LP (4.27) with β = 0.95 or the

LP (4.28) is solved instead of (4.17). The results obtained with the two ap-

proaches are similar (especially in the case M = 5), the LP (4.28) providing

a slightly higher variance with respect to the other two formulations.

In the last row of Table 4.4 the results obtained with delta hedging on

the same option are shown. We can see that for plain vanilla options this

last method outperforms the SMPC approach. A plot of the wealth of the

portfolio against the option value at expiration date is shown in Figure 4.5

for the case of LP-MinMax hedging.

Note that, differently from the case of absence of transaction costs, the
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Figure 4.5: Payoff function p(T ) and final wealth w(T ) (e) for the LP-MinMax approach
with discretization of the density function

final wealth of the portfolio, represented by the green asterisks, does not

track exactly the payoff function, but is shifted below of an almost fixed

distance (the fixed transaction cost).

Barrier option

Since the value of a barrier option is much lower than the corresponding call

option, we have decreased the transaction costs at 1.5% of the underlying

price to better test the SMPC algorithms. Pricing of future option values is

made by using the approximation method of [51] (LS). A number M = 100

of future scenarios is considered, and compared to the cases of M = 1000

and M = 5 scenarios obtained by sampling the Gaussian distribution.

We have run Ns = 50 simulations for each setting. It can be seen that

the best global performance is given by the QP-Var method. LP-CVaR
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Figure 4.6: Payoff function p(T ) and final wealth w(T ) (e) for the MinMax approach with
discretization of the density function

provides similar results, while LP-MinMax goes slightly worse. Longstaff-

Schwartz’s option pricing method with M = 1000 scenarios does not yield

considerable improvements with respect to M = 100, it only worsen the

required CPU time. The discretization of the Gaussian curve provides

worse performance in terms of minimum error. Nevertheless, this method

represents a good tradeoff between hedging performance and CPU time.

In conclusion, Longstaff-Schwartz’s option pricing method with M =

100 scenarios is the best approach in terms of expected absolute hedging

error and variance, and in particular the LP-CVaR approach, showing a

comparable performances but a lower computational effort. The largest

hedging errors appear when the stock price gets close to the barrier without

overpassing it, as hedging becomes particularly difficult because of the

discontinuity of the payoff function.
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4.6 Conclusions

After recasting the dynamic hedging problem of financial options as a

stochastic control problem, we have proposed a stochastic model predic-

tive control approach based on a minimum variance criterion to rebalance

periodically the portfolio underlying the option. In a first instance we as-

sumed that transaction costs are negligible. We showed that the tool is

very versatile for dynamic option hedging, as it can handle multiple assets,

very general exotic options and payoff functions, and rather general stock

price models, and is also robust with respect to market modeling assump-

tions. The computational demand of the SMPC approach is mostly due to

pricing future option values, a task that can be alleviated in three ways:

(i) by approximating the pricing function off-line, (ii) by using a simpli-

fied log-normal model (with implied volatility), and (iii) by sampling the

uniform distribution instead of generating random and equally probably

samples using Monte Carlo simulation.

At a later stage the proposed SMPC techniques have been extended in

the case of transaction costs, although the minimum variance criterion is

proven to be no longer suitable to handle this type of market. Three alter-

native SMPC approaches (QP-Var, LP-CVaR, and LP-MinMax) have been

proposed, showing good hedging performance, but only outperforming the

traditional delta hedging technique and static hedging when applied on ex-

otic options. When CPU time is a concern, LP-CVaR is probably the best

candidate formulation for SMPC, as it provides acceptable performance

while involving only a small number of variables, and without requiring

the calibration of the tradeoff parameter α as in the QP-Var method.

The potential use of SMPC by financial institutions is twofold. It can

be used on-line to suggest trading moves to traders, or off-line to run

extensive simulations and quantify the average hedging error for a given
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market model and option type.
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Chapter 5

Optimal bidding on energy markets

This chapter is organized as follows. Section 5.1 contains a short overview

on the deregulated energy markets and the new challenges addressed by

market operators. In Section 5.2 the main aspects of the current market

design are described with reference to the Dutch electricity market. In

Section 5.3 a novel market architecture devised in E-Price for double-sided

ancillary services is presented.

5.1 Introduction

The recent changes in the deregulated energy market are leading the Eu-

ropean Community to seek a unified and common network code for the

production, transmission and control of power systems [63] in European

countries. The network codes developed by ENTSO-E1 will help reach the

three objectives of the Third Package, a set of directives and regulations

that came into force in March 2011 for establishing binding Europe-wide

network codes. These objectives are:

• the secure operation of European power systems;

• the integration of large volumes of low carbon generation;

1European Network of Transmission System Operators for Electricity
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• and the creation of a Single Europe-wide Electricity Market.

The motivation behind is the need for a common network protocol allow-

ing for cross-border exchanges of electricity, facilitating the competition

between companies, guaranteeing the security of energy supply, and help-

ing reach the ambitious climate change objectives imposed by the European

Union [15].

The E-Price scope goes towards this concept and envisions Europe-

oriented market architectures, ICT interfaces and decentralized control

systems. In particular, this thesis focuses on optimal control of BRPs,

legal entities allowed to trade energy on the market and bearing respon-

sibility for the correct and safe operation of the grid. Typically, a BRP

is a large-scale production plant, a set of small-size consumers or a com-

bination of the two. Independent of their size, BRPs communicate with

the market and the TSO using the same protocol, and they are therefore

required to use the same standard interfaces. The behavior of each BRP is

influenced by internal and structural characteristics like risk attitude, gen-

eration assets, cost structure, and by exogenous inputs like price signals,

renewable sources stochasticity, uncontrollable and price-elastic loads. The

real-time optimal control of BRP power injections is highly connected to

capacity allocation and provision of ancillary services. In fact, the capa-

bility of the BRP to respond to real-time signals is strictly correlated to

the available reserve capacity at disposal, that is the result of a thorough

operation planning.

BRPs can choose several ways to deliver their output. Over-The-Counter

(OTC) [68] contracts are nowadays highly exploited in the European mar-

kets. The main motivation is that they bind sure incomes for BRPs and

prevent power consumers with a high and steady request of power from

being negatively exposed to the volatility of energy prices. However, the

constantly growing focus for real-time optimization in power production
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brought the attention of researchers on the day ahead and on the ancillary

services markets. The more sophisticated forecast and control techniques

should be able to compensate for the volatility of renewable sources and

prices, bringing a consistent advantage of the real time markets over the

static long term contracts. The day ahead market for electricity is also

called Power Exchange (PX), where BRPs express the desired power pro-

file and expected incomes for each hour or PTU (program time unit) of the

following day. Those bids are then cleared by an independent system oper-

ator obtaining an E-Program for the next day. After the disclosure of the

E-Program the ancillary services (AS) market auction takes place, where

BRPs can buy/sell residual capacity for secondary control in real time. It

is evident that DA and AS markets are strongly coupled: the energy sold

on the spot market cannot be re-assigned to AS capacity reserves. In order

to get the maximal benefit from the BRP operation one must take into

account possible price fluctuations, stochasticity deriving from renewable

sources and intermittent load. In this context, forecasting techniques and

decentralized control are the key elements to provide a reliable activity.

In real-time operations, the existence of an imbalance market (or real-

time market) is required to deal with unavoidable deviations from the

E-Program, due to uncertainties in power demand and generation. Unlike

day-ahead prices, imbalance prices are extremely more volatile, and are

affected by counterintuitive phenomena, like negative values. In real time,

the BRP must fulfill its E-Program, trying, insofar as possible, to avoid

imbalance costs and to fulfill its own internal balance.

In this thesis we describe a novel market architecture designed for the

AS bidding auction and we introduce a bidding strategy that can be used

by BRPs to submit offers. The main characteristic of this market design

is its double-sided nature, that gives to BRPs the possibility of placing,

in addition to bids, also requests for capacity reserves, providing a confi-
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dence interval on the possible deviation from the contracted program. The

main responsibility for the smooth operation of power systems is therefore

shifted from the centralized TSO (or Transmission System Operator) to

decentralized BRPs. This market structure has been first introduced in

[74].

5.2 Current market design

In the deregulated energy market, BRPs must submit profit-maximizing

energy bids and offers for the spot market (PX) and for the regulating

capacity or ancillary services market (AS). The market design highly in-

fluences the bidding strategies. The current Dutch market, that has been

taken as the standard benchmark for our work, besides a set of bilateral

contracts, consists of a Power Exchange, an Intraday market and an ancil-

lary services market, as shown in Figure 5.1.
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Figure 5.1: The energy markets (source: [48])

One day before the delivery generators compose and submit bids to the

Power Exchange (PX). Thereafter the market clearing price (MCP) and

the power volumes are assigned to each plant, determining the E-Program.

Intraday markets are then available in multiple sessions to trade un-cleared
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bids or foreseen deviations closer to delivery. Up to one hour prior to de-

livery, BRPs submit offers for regulating capacity on the ancillary services

market. Ancillary services include control reserves (which are divided into

primary, secondary and tertiary resources) and emergency reserves. The

supply of primary resources is compulsory for eligible generators, and is

aimed to stabilize the system frequency after a disturbance. The activa-

tion time must be lower than 30 seconds. Secondary reserves are released

subsequently to restore the nominal system frequency within 15 minutes

(1 program time unit, PTU). Finally, tertiary reserves are those reserves

whose activation time is greater than 4 PTUs, and are used to economically

optimize the deployment of reserve capacity. The ancillary services dealt

with in this thesis are secondary reserves. Generators with installed power

higher than 60 MW are obliged to offer all the power they can increase

or decrease by activating controllable generators. Those bids are sorted in

ascending order as shown in Figure 5.2 and activated, the most convenient

first, by the TSO to satisfy the real-time need for regulating capacity. BRPs

supplying regulating capacity are rewarded at the marginal price, meaning

that the imbalance price is the price of the last activated bid. BRPs incur-

ring an imbalance pay their deviation from the E-Program at this price.

An essential description of the background framework is contained in [72].

Generally speaking, power plants that are deemed price-takers tend

to bid at their marginal cost. Indeed, since the behavior of these plants

is not supposed to influence the final market outcome, they accept the

cleared price as a result, under the condition that this price is higher than

the marginal production cost, and therefore some profit is guaranteed.

The imbalance settlement can be seen as a modified version of Bertrand

competition [46]: the TSO is willing to buy as much as possible from the

firm with the lower price (even though it will pay at the biggest cleared

price). Therefore no BRP has incentive to deviate from its marginal cost.
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Fig. 3. Bidding Ladder

When there is a need for regulating capacity, the bidding
ladder is used to determine the order in which the capacities
are dispatched. The ‘cheapest’ bids will be dispatched first
until the desired amount of capacity is made available.

If the TSO calls for a specific bid on the imbalance market,
the BRP responsible for this bid is asked to deliver the
requested power Psc. In order to give the BRP an incentive to
deliver Psc, its E-program is offset with the requested power
resulting in the final E-program Efinal[n]

Efinal[n] = Eprog[n] +
�

PTU

Psc[k] (7)

= Eprog[n] + Esc[n]. (8)

Note that (7) even holds when the TSO does not request for
secondary power, i.e. Psc[k] = 0 resulting in Efinal[n] =
Eprog[n].

D. Imbalance Price

The imbalance price λimb [e/MWh] is the price related to
imbalance in the system due to a deviation from the E-program
∆Eprog[n] defined as

∆Eprog[n] = Efinal[n] − Egen[n], (9)

where Egen[n] represents the total amount of generated elec-
trical energy on top of the internal load PL of the BRP. Hence
Egen[n] is defined as

Egen[n] =
�

PTU

(PG[k] − PL[k]), (10)

with PG the total generated power within the BRP as the sum
of all generator outputs.

When the BRP has an energy surplus (∆Eprog > 0), the
TSO buys this surplus energy at λimb. Vice versa, when the
BRP has an energy shortage (∆Eprog < 0), the BRP buys
the lacking energy from the TSO at λimb. Whether or not
this transaction costs money for the BRP depends solely on
the difference between λimb and the actual cost λprod for
producing ∆Eprog. E.g. when ∆Eprog > 0 the BRP receives
λimb from the TSO and pays λprod to generate the excess
energy. Hence the BRP has a net profit of λimb − λprod. In
case of ∆Eprog < 0 the BRP pays λimb for the lacking energy
and saves λprod for not producing the same amount of energy.

Hence the BRP has a net profit of λprod−λimb. So depending
on the direction of the E-program deviation and the actual λimb

the BRP either earns or loses money. λimb is determined by
the dispatch price, control state and price incentive[5], [7], [8].

1) Dispatch Price: When the TSO requests reserve capacity
it will call for the cheapest bids on the bidding ladder. At the
end of the PTU, the dispatch price (DP) is determined by the
most expensive bid requested. In Fig. 3 this is illustrated for
both positive and negative reserve capacity requests. Here the
shaded bids are requested and the most expensive bid in each
direction determines the positive DP, λpos, and negative DP,
λneg, in [e/MWh]. If during a PTU, the TSO does not request
any reserve capacity at all, DP is chosen to be equal to the
average of the cheapest positive and cheapest negative bid.
This is defined as the middle price, λmid.

2) Control State: The control state (CS) is an indication
of the direction of the imbalance of the overall system[9].
The CS is based on all calls on the imbalance market during
one PTU, and can take four different values: 0, -1, +1 and
2. If the system was well balanced during the whole PTU,
the TSO neither calls for positive or negative reserve power.
As a result CS equals 0. If only positive reserve capacity is
requested during a PTU CS = +1, i.e. the system has a power
shortage. If only negative capacity is requested CS = −1, i.e.
the system has a power surplus. In the situation that the TSO
had to call for both positive and negative capacity during a
single PTU, CS is a little more complicated[9]. For simplicity
assume CS = 2 in such situation.

3) Price Incentive: To give the BRPs an extra incentive to
keep to their respective E-programs a price incentive λin is
included in the total λimb. Based on the performance of the
system, the TSO alters λimb according to specific rules. Since
the introduction of λin in 2001, its value has decreased to zero
with only a few exceptions. λin is therefore neglected in the
remainder of this paper. It is only represented in this section
for a complete understanding of the construction of λimb.

With the above parameters defined, λimb is calculated as
shown in Table I. Remember that ∆Eprog < 0 implies that
the BRP pays the TSO for extra energy and vice versa. e.g.

TABLE I
PRICE COMPOSITION OF THE IMBALANCE PRICE λimb

Control State ∆Eprog > 0 ∆Eprog < 0

0 λmid − λin λmid + λin

-1 λneg − λin λneg + λin

+1 λpos − λin λpos + λin

2 λneg − λin λpos + λin

assume CS = +1 and that a certain BRP has fallen short to
its E-program (∆Eprog < 0). The BRP has to buy the missing
energy from the TSO at the price the TSO itself paid at the
imbalance market in order to restore the system balance. Hence
the BRP has to pay λpos +λin. Because the imbalance market
is a free market, the bids are assumed to be made at marginal
cost. Therefor the following relation holds:

λpos > λprod > λneg, (11)

Figure 5.2: The bid ladder for ancillary services

It is an established result that when competing on prices and in transparent

markets, firms tend to settle at their marginal cost (Bertrand competition,

[20, 78]), while when competing on quantities (Cournot competition), the

equilibrium is found above marginal costs. On the other hand, big power

producers with market power have their private bidding strategies that

cannot be revealed.

The bidding activity is crucial for the BRP’s economic equilibrium, and

involves the analysis of several sources of uncertainty. First, energy prices

are highly volatile and can range from a few euros per MWh up to 1000 e.

Price forecasts occupy a central role, since a bad bidding strategy can lead

to severe losses. Stochastic models of electricity prices, that are affected

by high volatility and jumps, are presented in [59] and [73]. The latter

considers the dynamical evolution of volatility and introduces parameter-

varying models such as GARCH models. Second, the generator has its own

load to satisfy, which is usually stochastic (cf. [23] for a possible approach

to short-term load forecasts) as well as the available amount of renewable
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sources, over which only (more or less reliable) predictions can be given.

Third, as the Day-ahead and the ancillary services markets mutually affect

each other and the production is finite, a BRP has to decide where to

allocate its capacity in order to optimize an economic objective that can

be the pure expected profit or a risk-based signal.

An important distinction has to be made between integrated markets

and sequential markets. In integrated markets the day ahead and ancillary

services auctions are cleared at the same time, while the couplings and

market linkages between them are explicitly accounted for. This means

that BRPs must submit two independent bids without knowing either of

the two market outcomes. Although integrated markets are more mathe-

matically insightful and can be proven to reach the optimum social welfare

under some conditions (cf. [42]), they are more complex and difficult to

implement, especially when renewable sources are in place. In this case

BRPs must account for the stochasticity affecting prices and also renew-

able production and load, that can be very high if the markets are cleared

far ahead in time (usually at 12.00 of the day before delivery). For this

reason the market structure more often implemented in practice is sequen-

tial: the AS market is executed only after the day ahead outcome has been

revealed.

To overcome the limitations related to integrated markets, we consider

a market arrangement where day ahead and ancillary services markets are

executed in two subsequent sessions. A contribution to the market design

considered in this work in which coupling between prices is avoided is con-

tained in [75], where potential benefits and downsides of such a market

structure are illustrated. The design strategies proposed in the cited work

include the execution of iterated spot and ancillary services auctions, thus

implying multiple sequential bidding sessions to ensure convergence. A

kind of decoupled bidding strategy is implemented on real systems in the
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Australian Energy Market [1]. Here, generators offers to the AS market are

incremental price functions of the available reserve capacity, depending on

the energy dispatched at the PX level. In the remainder, we can hence ne-

glect the coupling between prices, since the outcome of the clearing process

is known when the ancillary services bids are sent to the TSO.

5.2.1 OTC contracts and day ahead market

Over the Counter (OTC) contracts are a widespread form of long-term

arrangement, preventing market agents from being exposed to the highly

volatile prices of energy. In this type of arrangement, the BRP can agree

upon a supply contract with a retail company, for example yearly and split

into base and peak load, based on a four season load profile of the retail

company. The BRP is then obliged to deliver the contracted blocks of

power for one year, as in Figure 5.3(a).
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(b) Realized power

Figure 5.3: Base and peak load OTC (source: APX-ENDEX)

In practice the load profile deviates from the planned load profile as

given in Figure 5.3(b) from day to day.

These deviations are based on day-ahead predictions of the retail com-

pany which are sent to the BRP. Different possibilities can be chosen to

handle them, namely:
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1. OTC deals or contracts for the day-ahead;

2. Negotiating hourly bids and offers with an external Generator Com-

pany or BRP which may also result in OTC contracts;

3. Hourly bids and offers to the day-ahead market.

Figure 5.3(b) shows the day-ahead contracted buy volumes approaching

the day-ahead load profile with the objective to reduce imbalance during

the following day. As can be deduced from this figure, deviations will

always arise on the day of contract execution.

One day before the delivery, the Transmission System Operator operates

the clearing of the market crossing the aggregated day-ahead bid curve

with the aggregated load profile (which is usually price-unelastic). The

clearing price and volume for the spot market is the value detected by the

intersection of the two curves, the clearing price is the price applied to

every transaction on the market.

5.2.2 Ancillary Services Market

Regulating and reserve capacity can be up-regulating (involving situations

of power shortages) or down-regulating (concerning situations of power

overproduction). In conventional systems, every generator whose nominal

capacity is greater than 60 MW is obliged to bid on the ancillary services

market all the power they can increase (upward) or decrease (downward).

Moreover, the market is only able to process supply bids from BRPs.

Supply Si indicates the residual capacity a BRP i wants to sell, so that

it wants to be paid for. It implies a positive cash flow, meaning that the

BRP is receiving an amount of money from the TSO. In particular:

• S+
i stands for positive supply (BRP is willing to be paid for additional

production),
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• S−i stands for negative supply (BRP is willing to be paid for additional

absorption).

In the current system BRPs can only take back their bids in the intraday

market, for example in case some breakdown occurs and it becomes evident

that the plant can not fulfill the submitted program. Being the intraday

market closer in time to delivery, it is possible to better approximate the

deviation from the scheduled E-Program.

5.3 A novel market design for ancillary services

The main element of innovation in E-Price is the double-sided nature of

the AS markets. The concept, whose details are deepened later in this

section, is to provide the TSO with a quite accurate estimate of the possible

deviation from the E-Program, in such a way that the market can be

prepared in advance, allowing to save imbalance costs. In the framework

envisioned by E-Price, besides offers S+ and S−, ancillary services also

include the request Ri, indicating all the energy BRP i wants to buy and

can be bidirectional. It implies a negative cash flow, meaning that the

BRP is willing to pay an amount of money. In particular:

• R+
i implies positive request (BRP expects to be “long” and hence is

willing to pay for additional absorption),

• R−i implies negative request (BRP expects to be “short” and hence is

willing to pay for additional injection).

Bids for the AS market refer to program time units (PTUs) of 15 minutes

and can be sent up to one hour prior to the delivery. Let us define the

following prices (in e/MWh):

• λPX is the day ahead price,
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• λAS− is the price for down regulating capacity,

• λAS+ is the price for up regulating capacity,

• λ−imb is the price for downward imbalance (power surplus),

• λ+
imb is the price for upward imbalance (power shortage),

Sign convention is as follows: λAS+ ≥ 0, λAS− ≤ 0, λ+
imb ≥ 0 and

λ−imb ≤ 0. A BRP can participate in both the AS- and AS+ markets.

When the AS markets are cleared, the prices λAS+(k) and λAS−(k) are

determined, as well as the the net position of each BRP EAS+
i (k) and

EAS−
i (k). Therefore, from this process a BRP can either result as a supplier

or a requestor. Payments for the only allocation of AS are proportional to

the AS price λAS±. Trading on the AS markets can therefore lead to a

positive profit (S) or to a cost (R):

ICA,i =

NPTU∑

k=1

aEAS+
i (k)λAS+(k) +

NPTU∑

k=1

aEAS−
i (k)λAS−(k) (5.1)

Where a is a design parameter of the market. In other words, the term

a might be seen as the cost for participating to the double-sided market.

For example, if a BRP results as a requestor of up-regulating power for

PTU k, its cleared capacity EAS+
i (k) is negative (R+) and it has to pay

aEAS+
i (k)λAS+(k) to reserve the quantity EAS+

i (k) for regulating purposes.

We use the sign convention for the cleared volumes and prices as shown in

Figure 5.4.

In real time operations, the TSO sends in each TP seconds (in the sim-

ulation framework, TP = 4) a request signal called ∆Pi to BRPs, which

is the request for varying the power output of controllable generators. If

the need for upward regulating energy occurs, the TSO sends in positive
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Figure 5.4: Volumes and prices cleared at the AS market: upper part up-regulating, lower
part down-regulating

∆Pi, on the contrary, if too much energy is present on the grid, the TSO

transmits negative ∆Pi. The signal ∆Pi is distributed among BRPs based

on their cleared capacity. The profit obtained by the supply of regulating

power on the AS in PTU k is defined as follows:

IAS,i(k) =

NTp∑

t=1

(w∆Pi(t)λ
AS+(t) + (1− w)∆Pi(t)λ

AS−(t))
TP

3600
(5.2)

where

w =

{
1 if ∆Pi(t) ≥ 0,

0 if ∆Pi(t) < 0
(5.3)

where NTp is the number of TP periods in a PTU. Note that IAS,i always

denotes a profit, as the signs of ∆Pi and λAS are always concordant.

One could argue that the intraday market is already in place with the

aim to trade the expected deviations from E-Program arising from better

forecasts of renewable sources and prices. However, intraday markets and

double-sided AS differ in that the energy on the intraday market is traded,
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meaning that the transactions have to take place if one does not want to

incur imbalance costs, while on the double-sided AS market reserves are

only allocated, and called if the need for the reserved regulating capacity

arises in real time. So, only the energy actually needed is delivered. More-

over, it has been observed that Dutch intraday markets lack liquidity, thus

meaning that BRPs are not appropriately incentivized to participate. The

aim of E-Price is to design a market for ancillary services where market

participants receive economic incentives to bid.

5.3.1 Double-sided markets: the concept

We now recover the underlying concept of the double sided AS auction.

The innovative market arrangement we refer to has been presented for the

first time in [74].

All the calculations are expressed in terms of power, that is linked to

energy by the relation E = PTs, where Ts is the sampling time (here,

Ts = 15 min = 1 PTU). Each BRP has at disposal controllable (gas, coal,

nuclear) and uncontrollable generators (wind, solar). Each plant is charac-

terized by specific switch on/off costs, marginal costs and efficiency. The

production of the controllable generators pci range in the interval [pc
i
; pci ],

while for the uncontrollable generation pui the BRP only has some forecast,

for which a probability density function can be defined with mean p̃ui .

The mean value is used to bid on the day-ahead market. Only this

value is meaningful over such a long time horizon. The expected value

of uncontrollable production is then offered at the day-ahead market, or,

equivalently, is withdrawn from the Unit Commitment evaluation, that is

executed after the communication of the E-Program to decide which plants

have to be switched on during the next day and at what power level they

must be operating in order to produce the assigned energy. Combining

the controllable and uncontrollable generation we obtain a total power
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production of pi = pui +pci , as shown in Figure 5.5, ranging from p
i

= pc
i
+ p̃ui

to pi = pci + p̃ui .

pdf (p(k))

0

pp
i

pi

Figure 5.5: Superposition of controllable and uncontrollable power

The BRP bids the whole power from p
i

to pi. After clearing, the BRP

knows that the power pi(k) must be produced at PTU k of the next day.

This will be the expected value of its total production, as shown in Fig-

ure 5.6. However, due to stochasticity, the production can be in any point

on the curve in Figure 5.6.

Figure 2. Caption....

max a−
i (k)

max a+
i (k)

pi pi

pi(k)0
R+

i (k) R−
i (k)

pdf (p(k))

Figure 5.6: Upward and downward regulating capacity

The quantities max a+
i (k) and max a−i (k), respectively the difference

between pi(k) and the lower controllable boundary p
i

and the difference
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between the upper saturation limit pi and pi(k), represent the power that

can be increased or decreased by controllable generation. In fact, if the ac-

tual production is higher than pi(k) (for example, if more wind is blowing),

BRP i can use the controllable generators to fulfill the E-Program, up to

the quantity r− = max a+
i (k). The same holds in case of under-production,

where the BRP can increase its own generators up to r+ = max a−i (k). As

a result, if the BRP wants to use own controllable generation to keep up

with the schedule, it faces a risk of imbalance highlighted by the red areas

A1 (over-production) and A2 (under-production). Since using own control-

lable generation has costs that are sometimes higher than participating to

the AS market, it might be not economically beneficial to fully employ it to

fulfill the E-Program. If the BRP decides to hedge only against a certain

percentage of its variability, let us say for the interval [−R+
i (K), R−i (k)],

the risk of imbalance is reduced to the sum of the two blue areas in Fig-

ure 5.6. The BRP might be not able to cover for all the desired regulating

reserve or, on the contrary, it could be sometimes able to cover for more

than required. In conclusion, to cover for the interval [−R+
i (K), R−i (k)],

the BRP can buy or sell a certain amount of reserve on the market.

The quantities r+ and r− are offered to the market in the form of (up-

ward regulating and downward regulating) bids. This market design, that

might seem counterintuitive because the BRP offers and requires power in

the same direction is proved to be consistent and efficient for the ancillary

services market (cf. [43]).

In conclusion, the bidding problem can be considered as a two-stage

problem. At the first stage the BRP bids on the day-ahead market, where

both day-ahead and AS prices are unknown. At the second stage AS bids

have to be sent, but information on day-ahead prices have been revealed.

The resultant process is schematized in Figure 5.7.

First, based on historical market data and internal portfolio, BRPs bid
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at the Power Exchange. Bids and offers are collected and the PX performs

the clearing process. Public results are disclosed, and sent back to the

BRPs. At this point, an Unit Commitment algorithm estimates a rough

approximation of the power profile needed to comply with the committed

volume, also deciding which plants are to be switched on/off during each

PTU. The Unit Commitment output influences the AS Bidding Algorithm

together with load and wind forecasts. AS bidding curves and requests

are obtained, which again are cleared by the TSO, deciding the amount of

allocated capacity based on demand and offer.

5.3.2 The imbalance system

Any deviation from the scheduled E-Program is considered as imbalance

(see [72]). Imbalances are settled by the TSO, which has previously bought

capacity on the ancillary services market. In the remainder of this section,

all prices and quantities are intended per PTU, and therefore we omit
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the time index k. Should the need of regulating power occur, the TSO

sends a control signal to each BRP, based on the received bids. For each

PTU the imbalance prices λ±imb are calculated, which are the prices for

deviations from E-Program. The price λ±imb depends on the AS price and

on the Control State (CS). This value indicates the direction of the system

imbalance and can take the values +1,−1, 0 or 2. If only positive capacity

is required (the system has a power shortage) CS has value +1, while if

the system has a power surplus and only negative capacity is triggered the

CS has value −1. If neither positive nor negative regulating capacity is

required CS has value 0, while if both positive and negative capacity are

required in the same PTU CS is equal to 2. Therefore the imbalance price

is calculated as λ+
imb = (1 + a + φ)λAS+ in up-regulating mode (CS = 1),

and λ−imb = (1 + a + φ)λAS− in down-regulating mode (CS = −1), and

both λ+
imb = (1 + a + φ)λAS+ and λ−imb = (1 + a + φ)λAS− are calculated

in two-sided regulating mode (CS = 2), where φ is a proportional factor.

When the control state is 0, no upward nor downward regulating power is

asked, and λ±imb = 0.

If the system is lacking power, up-regulating reserves are activated

(CS = 1). BRPs causing imbalance (sourcing too much power from the

system), pay their deviation at price λAS+ as far as this deviation is within

the cleared capacity R+
i , the power exceeding this quantity is paid at λ+

imb.

Contrarily, if the system has a power surplus (CS = −1) and the BRP

is injecting too much energy, it will pay the cleared capacity R−i at λAS−

and the excess deviation at λ−imb. There are basically three ways the TSO

can handle passive balancing, i.e. causing imbalance that helps the system,

namely:

1. Payment for passive balancing : the BRP pays imbalance costs for

deviating even though the imbalance is actually helping the system;
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2. No payment for passive balancing : the BRP causing imbalance with

opposite sign with expect to the system imbalance is not rewarded

nor penalized;

3. Reward for passive balancing : the BRP receives a reward for helping

the system restore the balance, even though it is deviating from its

schedule.

R-R+ ✏

fc(✏)

(a) Imbalance costs in case of payment for pas-
sive balancing

R-R+ ✏

fc(✏)

imbalance cost 
CS = -1

imbalance cost  
CS = 1

(b) Imbalance costs in case of no payment for
passive balancing

R-R+ ✏

fc(✏)

imbalance cost  
CS = 1

imbalance cost 
CS = -1

(c) Imbalance costs in case of reward for passive
balancing

Figure 5.8: Imbalance costs in the three situations

The three situations are depicted in Figure 5.8. Denoting by εi the

imbalance committed by BRP i, the corresponding imbalance payment

76



CHAPTER 5. OPTIMAL BIDDING ON ENERGY MARKETS

fc(εi) in case a is defined by the following set of equations:

fc(εi) = min zi (5.4)

zi ≥ −λAS+εi (5.5)

zi ≥ −λAS+R+
i + λ+

imb(R
+
i − ε) (5.6)

zi ≥ −λAS−εi (5.7)

zi ≥ −λAS−R−i + λ−imb(R
−
i − ε) (5.8)

with the auxiliary variable zi. In this case, irrespective of the regulation

state, any imbalance is paid at λAS± for the portion not exceeding the

allocated capacity R±i , at λ±imb for the remaining part. In situation b the

imbalance cost function fc(εi) depends on the regulating state. If CS = 1

then

fc(εi) = min zi (5.9)

zi ≥ −λAS+εi (5.10)

zi ≥ −λAS+R+
i + λ+

imb(R
+
i − εi) (5.11)

zi ≥ 0 (5.12)

(5.13)

while if CS = −1

fc(εi) = min zi (5.14)

zi ≥ −λAS−εi (5.15)

zi ≥ −λAS−R−i + λ−imb(R
−
i − εi) (5.16)

zi ≥ 0 (5.17)

(5.18)
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Finally, in case c the imbalance cost function reads as:

fc(εi) = max{−λAS+R+
i + λ+

imb(R
+
i − εi),min{−λAS+εi,−λ+

imbεi}} (5.19)

with CS = 1 and

fc(εi) = max{−λAS−R− + λ−imb(R
−
i − ε),min{−λAS−εi,−λ−imbεi}}. (5.20)

Of course, in any case prices have to be adjusted in order to guarantee

financial neutrality for the TSO: no profit or loss should come from the

system balancing. This means for example that in case of no payment for

passive balancing, active imbalance must be lower than the total supplied

regulating power because there were BRPs actually helping the system

without being paid for that. Imbalance prices should therefore be lower

because not all the needed regulating capacity has been supplied via AS

reserves. This is achieved by solving a posteriori the equation (at each

PTU k)
NBRP∑

i=1

IAS,i +

NBRP∑

i=1

Iimb,i(γ) = 0 (5.21)

where NBRP is the number of BRPs, IAS,i =
∑NPTUIAS,i(k)

k=1 is the total

income for selling regulating power in real-time, Iimb,i is the total imbalance

cost and γ is a correcting factor. Note that Iimb,i =
∑NPTU

k=1 fc(εi, k). In our

framework we choose a combination of situation a and b: neither penalty

nor reward is given for passive balancing in up-regulating mode CS = 1,

while payment for both active and passive balancing is applied in down-

regulating mode CS = −1. This is justified by the considered affine cost

structure: if negative imbalance is not penalized in down-regulating mode,

every BRP will be automatically incentivized to set each generator to the

minimum to save production costs.
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5.3.3 Day-ahead operations

In conclusion, on the day before the execution the BRP has to make deci-

sions on:

1. The bidding curve for the day-ahead auction, intended as a piece-wise

constant curve expressing the minimum required price (e/MWh) for

producing a given power at each hour of the following day, taking into

account uncertainty about AS prices,

2. The AS bidding curves, offering up-regulating and down-regulating

capacity based on the residual capacity allowed by the Unit Com-

mitment and accounting for wind and load stochasticity. This curves

are also formulated as piece-wise constant curves expressing the min-

imum expected reward for increasing/decreasing the power set point

by a MWh.

3. The quantities R+
i and R−i to request to the market in order to hedge

against imbalances. In our framework the costs for participating to

the double-sided market are set as λR+ = aλAS+ and λR− = aλAS−,

where a ∈ [0.05, 0.15] is a constant deemed as the opinion that the

system has about the possibility of doing imbalance. In other words,

the BRP resulting as requestor pays a fee for allocating AS services.
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Chapter 6

Proposed solutions for bidding on

DA and AS markets

In Section 5.3 we have formalized the main problems to be solved by BRPs

for trading on the energy and AS markets. In this chapter we present the

proposed solutions to cope with those problems. Specifically, in Section

6.1 we present some previous work on optimal bidding, in Section 6.2 we

describe the day ahead strategy, in Section 6.4 the AS bidding approach

is presented. In Section 6.5 experimental results obtained from testing the

proposed market strategies in a simulation environment are reported and

in Section 6.6 some conclusions are drawn with respect to the proposed

approach.

6.1 State of the art

Developing a day-ahead bidding strategy is a complex task, since it re-

quires a careful evaluation of a wide set of variables, both external (prices,

weather forecast), and internal (portfolio,cost structure, risk attitude). It

is not easy to compare the proposed solutions to the current standard prac-

tice. Generally speaking, BRPs with little installed capacity tend to bid

at marginal costs to be competitive, while non price-taker companies have
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own internal bidding strategies that cannot be disclosed. The problem of

composing optimal bidding strategies at the power exchange and capacity

reserves market has been extensively addressed in the literature especially

since the electricity market deregulation. The first works after the market

liberalization typically accounted for two or three predetermined bidding

levels among which to choose (e.g. bid low or bid high) [62, 69]. In [69]

the authors, by means of illustrative examples, apply dynamic program-

ming to formulate optimal bidding problems. The example refer to simple

generating units (hydro, thermal) and show how restrictions on the form

of the curves (for example, non-decreasing conditions) affect the bidding

strategy. Dynamic programming is used to tackle problems where the state

and the dispatch at period k are correlated to the ones at period k + 1,

for example in the case of hydro plants where the level of the reservoir

depends on the dispatch strategy adopted in the previous period and fi-

nal conditions are imposed (example, the reservoir must be empty at the

final period). Numerous works relate to optimization of hydro-power pro-

duction [26, 27, 44]; this is an insightful and interesting problem, where

decisions at each stage heavily affect subsequent steps. The paper [16]

addresses the bidding problem from the perspective of a price-taker ther-

mal producer bidding in the day-ahead market under price uncertainty.

Of course, game theoretical approaches and the determination of the Nash

equilibrium among competing players has always played a role [45, 46]. An

integrated bidding and scheduling algorithm with risk management under

a deregulated market using a combination of Lagrangian relaxation and

stochastic dynamic programming is proposed in [49]. The requested form

of the bidding curves also influences the market strategy. An approach

based on Monte Carlo simulation and Genetic Algorithms where player

bid linear supply curves taking into account rival behavior is shown in [32].

In [35] the authors propose an optimal bidding strategy for thermal and
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generic programming units in the day-ahead market in presence of Virtual

Power Plants (VPP) and bilateral contracts. An heuristic bidding strategy

for buyers and sellers in a continuos double auctions is proposed in [52].

The beneficial effect of having delay tolerant consumers in the portfolio to

cope with renewables uncertainty is described in [61].

An approach similar to the one described in this thesis is used in [29].

The authors propose two different bidding strategies for the PX and the

AS market for suppliers with marginal generating units. At the PX level

the goal is to maximize benefit from trading on both energy markets. If

a unit is dispatched then the supplier can proceed with the selected strat-

egy, otherwise either the generating unit must be shut down leading to

shut-down/switch-on costs, or another bidding strategy for the AS reserve

market should be operated, in order to guarantee the minimum stable out-

put for the unit. An unit commitment problem is then solved in order to

minimize the number of shut-down/switch-on cycles. The framework of

the cited paper is the California market, where the AS auction is cleared

after the PX and suppliers submit linear bid curves. Hence, BRPs must

determine the coefficients of two linear functions (PX and AS) for each

hour of the day.

The BRP day-ahead and AS bidding problems present different con-

ditions. In fact, energy cannot be stored and there is not any particular

restriction imposed to the generators. That is the reason why we chose to

formulate independent stochastic optimization problems for each hour (or

PTU) of the day.

As in [16] the proposed BRP day-ahead bidding strategy selects the op-

timal dispatch corresponding to a price level, and composes the bid curves

interpolating the obtained optimal pairs. The idea behind is the follow-

ing: a BRP with a portfolio of generating units of various types (coal,

thermal, nuclear) aims at maximizing their efficiency, operating them at a
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non-minimum power level. Hence at the day ahead level, when the opti-

mization is still coarse, one plans to keep the generators status steady, in

order to operate them efficiently and to save cycle costs. This is the rea-

son why the day-ahead algorithm considers the operating status ON/OFF

of the plants as fixed. After the definition of the E-Program, the unit

commitment is executed. If the energy assigned during several subsequent

PTUs is near the minimum power level of the plants, then the UC can

decide to shut down one or more costly plants, distributing their sched-

uled production among the other generators. Contrarily, if the assigned

E-Program is close to the upper bound, the UC algorithm could decide to

switch on some plants in order to have them operating for offers to the AS

market. Finally, one hour ahead, when the generator status is fixed (it is

late to change it, since switch on/shut down times can take up to 6 hours)

and uncontrollable production and load is highly predictable, AS bids are

submitted.

6.2 Day-ahead bidding strategy

The first high-level task of a BRP consists of composing offers for the

day ahead market (DAM). Each day BRPs compose and submit offers to

the PX. This activity is crucial for the BRP’s economic equilibrium, and

involves the analysis of several sources of uncertainty. The question a BRP

has to answer to, in order to take the optimal decision, is what amount

of the total production capacity of the generators should be offered to the

PX market, and how much energy, if any, should instead be reserved for

the control reserves market, in order to optimize an economic objective

that can be the pure expected profit or a risk-based index. The bid/offers

submitted by BRPs for the DAM and for the control reserves are in the

form of piecewise constant curves, one for each hour of the following day.
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A BRP owning one or several generators is in general a producer and

hence submits sell orders or shortly called offers (ask). However, it can

also submit buy orders or shortly called bids when market clearing prices

are expected to be so low that it is convenient to buy energy, because

buying is cheaper than producing. Regulating and reserve capacity can

be directed both upwards (feeding energy into the grid) and downwards

(source energy from the grid). Aggregated offers for the PX from all BRPs

constitute the basis for the auction process, whose result is the E-Program,

the bulk schedule for the following day.

The DAM bidding problem can be seen as a two-stage optimization

problem: At the first stage the BRP has to make offers on the day ahead

Market without knowing the ancillary services prices; at the second stage,

once the quantity of energy allocated to the DAM is known, BRP has to

make bids/offers on the ancillary services Market.

The problem of deciding both the energy volume to offer on the mar-

ket and the corresponding price is clearly bilinear1. In order to keep the

problem linear, prices are fixed to some user-defined values and energy

volumes are computed such that they are optimal for the chosen prices (a

similar approach has been taken, e.g., in [26]). Let λPX1 , λPX2 , . . . , λPXN be

the sequence of fixed PX prices. For each λPXp , we generate 2L scenarios

of possible prices for the ancillary services Market λASs , s = 1, 2, . . . , 2L,

constituting the second stage of the optimization problem. Then, the prob-

lem is solved for each of the generated prices λPXp , obtaining the energy

volumes EPX
p to offer on the market, with p ∈ 1, 2, . . . , N . Finally, the

1A function is bilinear when it is linear in each of its variables. The simplest example is f(x, y) = xy.
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piecewise constant bid curve is constructed by interpolation as

λ(E) =





λ1 if E1 ≤ E < E2,

λ2 if E2 ≤ E < E3,
...

...

λN−1 if EN−1 ≤ E < EN ,

λN if E = EN .

(6.1)

In order to solve the problem for the PX we assume a price taker point

of view, that is, the considered BRP’s offers do not influence the market

and the BRP accepts any couple (energy, price) decided by the market

on the proposed bidding curve. In the following section the procedure to

generate DAM and ASM price scenarios is described.

6.2.1 Scenario Generation for DAM and ASM prices

A set of N values of expected DAM prices λPX1 , λPX2 , . . . , λPXN are deter-

mined by uniform sampling of the interval of possible prices [0, λPXmax], with

user-defined step size λstep, where λPXmax is the maximum price considered in

the DAM supply curve. Note that λPXmax is taken so that the corresponding

energy amount offered on the market is equal to the maximum production

capacity of the BRP.

ancillary services prices are generated based on historical data relat-

ing control energy prices (as differential to the day ahead Market price)

with the system imbalance, provided by TenneT2. This relation, shown

in Figure 6.1, is market driven and appears quite stable and robust over

the years, hence being suitable to be used for modeling purposes. Any

other empirical distribution can be used in the optimization to generate

AS prices. The left side of the graph refers to the case where the mar-

2TenneT is the Dutch TSO since1998
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Figure 6.1: Relation between PX and Control prices (source: TenneT)

ket is short, BRPs sell Energy to the TSO, and the ASM price is higher

than the DAM price. The right side is related to the case where there is

surplus of energy, BRPs buy energy from the TSO, and the ASM price is

below the DAM price. Given an expected DAM price λPXi , a discrete set of

possible ASM prices is inferred from the graph and used in the optimiza-

tion problem. ASM scenario generation yields a set of L downward ASM

prices λAS−1 , λAS−2 , . . . , λAS−L related to the case where there is surplus of

energy so ASM price is lower than DAM price, and a set of L upward prices

λAS+
1 , λAS+

2 , . . . , λAS+
L concerning the case where we expect the market to

be short, so the ASM price is greater than the DAM price. Probabilities of

each considered ASM price, denoted by πAS−1 , . . . , πAS−L , πAS+
1 , . . . , πAS+

L ,

are also empirically inferred from the graph.

6.2.2 Generators model

In order to construct the bid curve the BRP has to take into account

production costs and efficiency of generators. Since unit commitment is

decided only after that the E-Program has been defined, here we use an

approximate model of generators where the current plants ON/OFF status
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is assumed to be constant for the following day and no start-up and shut-

down costs are considered.

The BRP model includes n controllable generators G1,G2, . . . ,Gn. Max-

imum and minimum power of each generator are defined by Pmax,j and

Pmin,j, respectively, j = 1, 2, . . . , n. Efficiency of each generator Ej is de-

fined as

Ej = Mj

(
a2

(
Pj

Pmax,j

)2

+ a1
Pj

Pmax,j
+ a0

)
(6.2)

where a0, a1, a2 are given coefficients, that are dependent on the type

of generator, Mj is the maximum efficiency achievable by the generator,

and Pj is the power set-point. Minimum and maximum energy that can

be produced by each generator Gj in an hour are denoted, respectively, by

Emin,j and Emax,j, j = 1, 2, . . . , n, and are computed as a function of the

power level at the previous PTU and of the ramp rate specifications of

each generator. The cost of producing 1 MW by generator Gj is defined

using (6.2) as

Cj =
TCjPj

Mj

(
a2

(
Pj

Pmax,j

)2

+ a1
Pj

Pmax,j
+ a0

) , (6.3)

where Cj is the fuel price in e/MWh and Pj is assumed constant over the

time interval T = 1 [h], j = 1, 2, . . . , n.
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6.2.3 Optimization problem formulation

The optimization problem to be solved for each hour h = 0, 1, . . . , 23, and

for each of the N fixed DAM prices λPXp , p = 1, 2, . . . , N , is formulated as

follows

min `+
1

1− β

(
L∑

s=1

πAS+
s [fs − `]+ +

2L∑

s=L+1

πAS−s−L [fi − `]+
)

(6.4a)

s.t. fs =
n∑

j=1

Cjusj

Mj

(
a2,j

(
usj

TPmax,j

)2

+ a1,j
usj

TPmax,j
+ a0,j

) + [λimb,sximb,s]
−

− λPXp xPXp − λAS+
s xASup,s, s = 1, . . . , L, (6.4b)

fs =
n∑

j=1

Cjusj

Mj

(
a2,j

(
usj

TPmax,j

)2

+ a1,j
usj

TPmax,j
+ a0,j

) + |λimb,sximb,s|

− λPXp xPXp + λAS−s−L x
AS
do,s−L, s = L+ 1, . . . , 2L, (6.4c)

uj ≤ usj ≤ uj, j = 1, . . . , n, s = 1, . . . , 2L, (6.4d)
n∑

j=1

usj − xPXp − xASup,s = ximb,s, s = 1, . . . , L, (6.4e)

n∑

j=1

usj − xPXp + xASdo,s−L = ximb,s, s = L+ 1, . . . , 2L, (6.4f)

xASdo,s ≤ xPXp , s = 1, . . . , L, (6.4g)

xPXp ≥ 0, (6.4h)

xASup,s ≥ 0, s = 1, . . . , L, (6.4i)

xASdo,s ≥ 0, s = 1, . . . , L. (6.4j)

where T = 1 [h]. The decision variables of the optimization problem are:

• ` ∈ R: variable for CVaR approximation (see Section 2.1.3),

• xPXp ∈ R: energy offered on the day ahead market at price λPXp ,
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• xASup,s ∈ R: energy reserved for the ancillary services Market for upward

direction at price λASup,s, s = 1, 2, . . . , L,

• xASdo,s ∈ R: energy reserved on the ancillary services Market for down-

ward direction at price λASdo,s, s = 1, 2, . . . , L,

• ximb,s ∈ R: estimated energy imbalance for sth scenario, s = 1, 2, . . . , 2L,

• usj ∈ R: energy produced by the jth generator, j = 1, 2, . . . , n, related

to the case where the energy bid on the ASM is xASup,s, if s = 1, 2, . . . L,

or xASdo,s−L, if s = L+ 1, L+ 2, . . . , 2L.

The control parameters that can be used to tune the bidding algorithm

and differentiate the behavior of the BRPs are:

• β ∈ R+: a coefficient modeling BRP’s attitude towards risk. Common

values for β are in the range [0.9, 0.99], where higher values imply a

more conservative approach.

• φ ∈ R+: a penalty term used to derive λimb as λimb = φλAS±. Common

values for φ are in the range [0.05, 0.1], where higher values make the

BRP less likely to generate imbalance.

• λstep ∈ R+: the step size used to generate N DAM energy prices and

construct the piecewise constant bid curve. Common values for λstep

are in the range [1, 20], where smaller values allow for a finer bid curve,

but require more computational load.

Constraints (6.4b)-(6.4c) define the loss function as the difference be-

tween expected production and imbalance costs, and expected profits. Im-

balance costs are modeled as [λimb,sximb,s]
−, for s ∈ {1, 2, . . . , L} and as

|λimb,sximb,s|, for s ∈ {L+ 1, L+ 2, . . . , 2L}, hence passive balancing is not

rewarded nor penalized in up regulating mode CS = 1, while both pas-

sive and active imbalance are penalized when CS = −1. The estimated
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imbalance price is taken here as a function of the ASM expected price,

namely

λimb,s =

{
(1 + a+ φ)λASup,s if s ∈ {1, . . . , L},

(1 + a+ φ)λASdo,s−L if s ∈ {L+ 1, . . . , 2L},
(6.5)

Constraints (6.4d) impose boundaries on the minimum and maximum en-

ergy production of generators. Constraints (6.4e) and (6.4f) define the

expected energy imbalance, considering that no energy can be stored. Con-

straint (6.4g) prevents the BRP from offering a negative downward capac-

ity.

Problem (6.4) is a nonconvex optimization problem, due to constraints

(6.4b) and (6.4c). In order to solve it, production costs can be approx-

imated by affine or quadratic curves, yielding a convex problem (respec-

tively, a QP or a QCQP). Production costs for generators of BRP #1 and

their affine approximations are shown in Figure 6.2. The overall BRP day

ahead bidding procedure is listed in Algorithm 2. An example of bidding

curve is shown in Figure 6.3.

Algorithm 2 BRP day ahead bidding algorithm

For each hour h ∈ {0, 1, . . . , 23}:

1. Update the estimation of initial power set-points P0 for hour h;

2. Compute minimum and maximum energy uj , uj , j = 1, 2, . . . , n, given the estimated power

set-point P0, the maximum ramp rate and the efficiency curves of each generator;

3. Generate a set of N possible DAM prices λPX1 , λPX2 , . . . , λPXN ;

4. For each fixed DAM price, generate L ASM downward prices λAS−1 , λAS−2 , . . . , λAS−L and

L ASM upward prices λAS+
1 , λAS+

2 , . . . , λAS+
L together with their corresponding probabilities

πAS−1 , . . . , πAS−L , πAS+1 , . . . , π
AS+
L , and solve the optimization problem (6.4);

5. Build the bidding curve for day d and hour h, according to (6.1).
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Figure 6.2: Production costs (blue, solid line) and affine approximations (red, dashed
line) for BRP #1

6.2.4 Formulation of buy curves on the day ahead market

The algorithm described in the previous section deals with the formulation

of offers to sell the energy produced by the BRP on the DAM. However,

a BRP could also have internal loads that need to be satisfied in order

to fulfill OTC contracts. In this framework, the energy needed to satisfy

such loads, minus possibly available energy from intermittent generation, is

assumed to be bought on the market. Namely, let lh and r̂h be the internal

load and the expected energy production from uncontrollable generation

plants, respectively, at hour h of the considered day. Then, for each hour
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Figure 6.3: day ahead bidding curve obtained from Algorithm 2

of the day h = 0, 1, . . . , 23, a bid is submitted to the DAM in the form of

a price-inelastic curve, where the energy requested is equal to lh − r̂h, at

any price set by the market clearing process. In other words, generation

from renewables is treated as a negative load. Possible imbalances due

to the difference between the expected intermittent generation r̂h and the

real value rh observed at hour h are compensated by trading energy on the

ancillary services Market.

6.3 Unit Commitment

After the market is cleared and E-Program is communicated to every BRP,

a unit commitment algorithm calculates the power schedule for the follow-

ing day. Unit commitment aims to find a cost-minimal schedule and a

production level for each generating unit over time, minimizing operating

and cycle costs while satisfying production constraints and it is usually

formulated as a mixed-integer problem. In this framework unit commit-

ment is solved with well known standard techniques as in [76]. Given n

93



6.3. UNIT COMMITMENT

thermal (oil, gas, coal) units, let zjh be unit states, i.e. binary decision

variables such that zjh = 1 if the generator j is running at time h, zjh = 0

if the generator is down, and let ujh be the production of unit j at h.

Operating costs consist in fuel costs as described in 6.2.2, we call them

FCj(zjh, ujh), and start-up costs SCjh(ujh). Let T be the time horizon

(UC is often calculated hourly, so T = 24). Denoting by uj = [uj1 . . . ujT ]T

and uj = [zj1 . . . zjT ]T respectively the power output and unit status of

each generator over time and defining U = [u1 . . . un] and Z = [z1, . . . , zn],

the objective function reads:

min
U,Z

T∑

h=1

n∑

j=1

FCj(zjh, ujh) + SCjh(ujh) (6.6)

The demand p0h has to be satisfied:

n∑

j=1

ujh ≥ p0h,∀j, h (6.7)

The output of a unit must be zero if the unit is shut down:

zjhuj ≤ ujh ≤ zjhuj,∀j, h (6.8)

Minimum up and down time constraints are imposed to prevent thermal

stress and high maintenance costs. Denoting by τ j the minimum down

time of unit j (in hours),

zjh+τ−1 + zjh−1 − zjh ≤ 1 (6.9)

for all τ = 1, . . . ,min{T−t, τ j−1}. Finally, a reserve margin rh ≥ 0 can be

imposed, to ensure that there is spare production capacity for regulating
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purposes:
N∑

j=1

(zjhuj − ujh) ≥ rh,∀j (6.10)

6.4 Ancillary services bidding strategy

The approach to the AS bidding problem is similar to the day-ahead strat-

egy. A set of AS prices is fixed and the corresponding optimal dispatch

is calculated by solving a scenario based stochastic optimization problem.

The curve is finally interpolated from the resulting points as done in [50].

The main differences with respect to the day-ahead problem stand in the

shorter time horizon: on the AS trade exchange bids can be submitted up

to one hour prior to delivery. This originates some consequences:

• uncertainty on load and wind is reduced,

• the unit commitment is set and cannot be modified: shut down -

switch on times prevent the BRP from taking decision on a short time

horizon,

• the BRP also sends requests for AS.

The stochastic scenarios here model the uncertainty on the intermittent

production profile. Specifically, wind and load are aggregated into a single

curve, where load is considered as a negative uncertain production. At

PTU k the most likely wind scenario is the wind blowing at PTU k − 1,

as suggested by the persistence method, that will be illustrated in section

6.4.2. Based on historical data we generate a set of prosumption scenarios

ξ1, . . . , ξS with corresponding probabilities π1, . . . , πS.

The AS problem formulation also accounts for price-elastic load, con-

sisting of independent prosumers free to adjust their consumption based

on energy prices. The behavior of this kind of prosumers is described in
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[10]. The load scenarios are modified according to generated prices λASp . If

prosumers are active, they are going to switch off their loads as the price

for ancillary services increases over a certain threshold λload, namely the

contract price. The relation between λdiff = [λAS−λload]+ and the load de-

crease is approximately linear. For prices λASp > λload, the load decrement

is subtracted from the stochastic scenarios.

In the following sections the scenario generating methodology is de-

scribed more in detail.

6.4.1 Scenario generation

While computing the AS bidding curve, a series of prosumption scenarios

is generated at each step, built from historical data and determined as

the difference between forecast wind and expected consumption. These

two quantities are non-controllable variables, over which we only have

predictions and wind is considered as “negative load”. Assuming that

the two variables are independent, combining the two kinds of load in a

single grid allows us to build a wide range of possible scenarios. So, if

Lc = {ξc1, . . . , ξcL}, is the set of L possible consumption scenarios, with cor-

responding probability vector Πc = {πc1, . . . , πcL}, and Lw = {ξw1 , . . . , ξwW} is

a set of W likely wind production scenarios, with corresponding probability

vector Πw = {πw1 , . . . , πwW}, the set of the possible prosumption scenarios

is given by the cartesian product LC ×LW = {ξ11, . . . , ξLW}, consisting of

L × W elements, and with probability vector Π = {π11, . . . , πLW}. The

generic element ξij, i = 1, . . . , L, j = 1, . . . ,W is calculated as:

ξij = ξwi − ξcj (6.11)

while the element πij is:

πij = πciπ
w
j (6.12)
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assuming that the wind and consumption processes are independent. In

the remainder we define S = LW and we use the row-wise linear indexing

so that ξij simply reduces to ξi, i = 1, . . . , S.

6.4.2 Wind

In our problem setting, the method for generating wind scenarios tracks a

technique currently used in practice, called persistence method. The idea

behind is simple: since the prediction horizon is relatively small, we assume

that the wind that is blowing in the current instant will be the same in

one hour. To do so, average wind power data relative to a period of one

year has been collected. The sample time is one PTU. The forecast error

is computed as e(t) = w(t + 4) − w(t), for every PTU of the year, where

w(k) is the average wind power in PTU k. A histogram of the forecast

error collected over one year is shown in Figure 6.4.
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Figure 6.4: Empirical distribution of one-hour-ahead wind forecast
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Figure 6.5: The price-elastic load

It can be observed that the predominance of the one-hour-ahead forecast

error (more than 95% cases) is contained between −28 and +24 MW in

the whole network.

6.4.3 Price elastic load

The other element forming stochastic scenarios of the AS bidding problem

is the price-elastic load of prosumers. Price-elastic loads are a device that

can be used by BRPs to balance their production internally. When for

example the price for power shortage is very high, a BRP can activate its

prosumers by forwarding them a price signal λload communicating them

to decrease their consumption. Prosumers are characterized by a price

elasticity [e/MWh], that is the parameter by which they regulate their

load, assumed to be known to the BRP. Price elasticity generate short-

term demand response (elastic) function for each PTU, thus implying an

active and indirect participation of prosumers in the AS markets.

The following inputs and parameters are needed to define the prosumers:

1. Pnom,i: the nominal load assigned to each BRP i, this is the maximum

load that BRP i will supply.
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2. λload: a price signal communicated by the BRP to its price-elastic

load to regulate consumption, in our case we assume that this signal

is simply the upward AS market outcome λAS+.

3. λset: the price above which prosumers start to be price sensitive.

4. α: this parameter is expressed in [MW/e] and indicates the sensitivity

of the load with respect to the price.

5. βp: the participation rate of price-elastic prosumers. This parameter

can be set at βp = 1, and incorporated into the price sensitivity.

The load of BRP i in PTU t is calculated by:

Pload,i = max {min{Pnom,i, Pnom,i − α(λload − λset)}, (1− βp)Pnom,i}
(6.13)

The function Pload,i is illustrated in Figure 6.5. In order to introduce

stochasticity in the load we model an additive noise as a gaussian noise

with known mean and variance µload, σload.
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6.4.4 Optimization problem formulation

The resulting optimization problem is as shown in (6.14).

min `+
1

1− β

(
S∑

s=1

πs[fsp − `]+
)

(6.14a)

s.t. fsp = f 1
sp + f 2

sp + f 3
sp + f 4

sp s = 1, . . . , S, (6.14b)

f 1
sp =

n∑

j=1

Cjusjp

Mj

(
a2,j

(
usjp

TPmax,j

)2

+ a1,j
usjp

TPmax,j
+ a0,j

)

s = 1, . . . , S, (6.14c)

f 2
sp = −λASp xASp , s = 1, . . . , S, (6.14d)

f 3
sp = −aλASp xRp , s = 1, . . . , S, (6.14e)

f 4
sp ≥ −λASp ximbsp , s = 1, . . . , S, (6.14f)

f 4
sp ≥ −λimb,pximbsp + (λimb,p − λASp )xRp , s = 1, . . . , S, (6.14g)

f 4
sp ≥ 0, s = 1, . . . , S, (6.14h)
n∑

j=1

usjp − xASp − pPX + ξs − ximbsp = 0, s = 1, . . . , S, (6.14i)

usjp ≥ Pmin,jzjk, j = 1, . . . , n, s = 1, . . . , S, (6.14j)

usjp ≤ Pmax,jzjk, j = 1, . . . , n, s = 1, . . . , S, (6.14k)

λASp xASp ≥ 0 (6.14l)

λASp xRp ≤ 0 (6.14m)

xASp ≥ xASp−1. (6.14n)

With xASp0 = −∞. The optimization problem is solved at every PTU

k, k = 1, . . . , 96, once defined the DAM price and E-Program for PTU k

and for a range of P prices λASp (k), p = 1, . . . , P . The value zjk is the unit

commitment status of unit j, zjk = 1 if the unit is on, zjk = 0 if unit j is
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off at PTU k. If λASp (k) ≥ 0 then it is explicitly λAS+, i.e. the system is

lacking energy, it is therefore in up-regulating mode and upward regulating

capacity is required. If λASp (k) < 0 then we are in down regulating mode

(λAS−), downward regulating capacity is required.

The decision variables of the optimization problem at stage k are:

• xASp ∈ R: power bid on the ancillary services market for upward or

downward regulating capacity at price λASp , p = 1, 2, . . . , P . This

variable can be either positive or negative,

• usjp ∈ R: energy produced by the jth generator, j = 1, 2, . . . , n in

scenario i, s = 1, . . . , S at price p, p = 1, . . . , P .

• xRp is the amount of activated external AS capacity with price p,

• ximbsp is the imbalance done in scenario s with price p.

Therefore, each problem has S(n+1)+2 decision variables. At the end, the

P xASp decision variables are aggregated into one single bid curve for PTU k

and the P xRp into two values: upward and downward capacity requests R+
i

and R−i . Those values are obtained taking the average value over positive

(for down-regulating request R−i ) and negative (for up-regulating request

R+
i ) values. Constraints (6.14b) define the loss function as the sum of four

components: f 1 are production costs ((6.14c)), f 2 is the revenue from AS

market ((6.14d)), f 3 represent costs for allocating capacity ((6.14e)), f 4

are imbalance costs, defined by constraints (6.14f), (6.14g) and (6.14h).

Constraints (6.14k) and (6.14j) impose boundaries on the minimum and

maximum power production of generators. Constraints (6.14i) enforce in-

ternal balance and avoid energy storage. Constraints (6.14l)-(6.14m) bind

the algorithm to bid a positive amount of energy and ask a negative one

if the price is positive, and vice versa. Constraint (6.14n) ensures non

decreasing condition.
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A bid curve for upward regulating capacity obtained with this method

is depicted in Figure 6.6. The blue line represents the offer curve, the green

dotted line is the request of approximately 40 MWh.
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Figure 6.6: Upward regulating capacity bid of BRP 1 in PTU 1
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6.5 Case study

In E-Price a simulation environment has been developed to test the de-

vised algorithms. The simulation framework is used to verify theoretical

options for the future operation of the power system. These theoretical op-

tions have been implemented as algorithms describing market operation,

BRP operation and TSO operation. The model framework is such that

it can incorporate the algorithms and test them based on different input

data sets. As the multiple algorithms have parameters for tuning their

behavior, combinations of algorithms and parameters have been chosen

to reduce the number of required experiments while covering a variety of

realistic options. The BRP DA and AS bidding algorithms have been im-

plemented and tested in MATLAB R2009b on a MacBook Pro 2.4 GHz

and 4 GB RAM using Yalmip and CPLEX 12.4. In order to assess the

validity and usefulness of the results the simulation framework has to rep-

resent the current system as accurately as possible. However, there are

many limitations:

• Model validity: as much accurate a model can be, it will never be able

to include all the complex set of variables, parameters and human de-

cisions forming a power grid. In particular, the BRP behavior is not

always well known. Real bidding is often a mix of human actions

and several combined algorithms, therefore a comparison between the

devised BRP algorithms and real-life practice is not realistically pos-

sible.

• Model complexity: some simplifying assumptions have to be made

in order to limit the software complexity. In particular, storage is

not contemplated and congestion management (i.e. behavior in pres-

ence of a tie-line overflow) is treated in another dedicated simulation

framework.
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Unit Cost (e/GJ) Unit Cost (e/MWh)

Gas 5, 36 19, 29
Coal 2, 65 9, 4
Nuclear 0, 83 2, 98
Furnace Gas 1, 00 3, 6
Biomass 3, 32 11, 95

Table 6.1: Fuel costs

a2 a1 a0

Gas turbine −0, 5128 1, 359 0, 1538
Combine cycle gas turbine −0, 4817 0, 991 0, 4907
Other (Coal, Nuclear, PCP) −0, 3952 0, 7622 0, 6325
Integrated gasification combined cycle −0, 7901 1, 3902 0, 3885

Table 6.2: Efficiency curves coefficients

• Time frame: still for complexity issues the simulation period is set at

24 hours. This time horizon allows us to assess the main performance

indexes of the implemented models and algorithms and to test the

correct functioning of the virtual power grid, but a more detailed

analysis about the economic long-run performance of BRPs is not

possible.

The parameters composing the physical model of the power network have

been provided by KEMA. With reference to the Dutch electricity market,

we consider a system consisting of 7 BRPs, with different generating assets

and loads. Thermal plants are fueled with gas, coal, nuclear energy, fur-

nace gas and biomass. Unit production costs in e/GJ and e/MWh and

efficiency curve parameters as described in 6.2.2 are reported in Tables 6.1

and 6.2.

In this thesis, we will focus on the main simulation results related to

BRPs management. A complete analysis of the results obtained from the

simulations are the scope of the project report [21]. Although as stated
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above, an objective comparison of the E-Price BRP behavior and real-

life management is not possible, some observations and remarks are done

with respect to the double-sided market arrangement and the proposed

algorithms.

6.5.1 Input data

The E-Price project has a strong focus on ancillary services and particularly

on primary and secondary reserves. One of the main goals of the project

is to be able to efficiently deal with imbalances in real time. Different data

sets were designed to study:

• the impact of a plant trip;

• the effect of wind and load uncertainty;

• the impact of a bigger penetration of renewable sources.

To this aim, 5 input data sets have been proposed, each differing from

the other for more or less dramatic wind fluctuations, presence of elastic

prosumers, plant trips. In this thesis we neglect the data set with plant

trips, as it mostly concerns the ability of a BRP to recover from a sudden

power shortage, and is therefore beyond the scope of this thesis.

For each of the 23 wind farm locations, wind power measurements were

selected and addressed to the individual locations. The wind power val-

ues originate from wind speed measurements available within KEMA. The

wind speed data consist of hourly values for one year (from June 1st 2004

until May 31st 2005) and correspond to 24h ahead prediction errors for

multiple locations in the Netherlands. For each of the locations, the wind

speed time series have been transformed into power time series using a

power curve and consequently this has been interpolated to obtain sec-

ond based values. Two different power curves are generated, with different
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nominal capacities of 2230MW and 10000MW respectively, to test different

amount of wind penetration. For the selected day the wind profiles for the

multiple locations look as in Figure 6.7.

Figure 6.7: Generated wind power for the 23 wind locations in the Netherlands

Other input data relevant for the simulation are:

• Load signal: a 15 minute load signal is obtained from measurements

of a selected day in 2010;

• Load prediction: a simple load prediction is performed to create an

expected load signal to use for the day ahead market clearing. Devia-

tions between prediction and actual signal therefore results in system

imbalance.

• Market data: data consisting of clearing volumes and prices of energy

exchanged on the DAM for each hour of the day and each day of the

year 2010 were provided by APX3. APX also provided historical delta

prices for 2010 Dutch market, i.e., time series of the difference between

energy market clearing price on the Exchange market and energy price

on the corresponding ancillary services market operated by the TSO.
3APX is an independent fully electronic exchange for anonymous trading on the spot market www.

apxgroup.com
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• Wind realized and forecast power: the realized wind power over the

year, sampled at a frequency of one minute, serves as a basis for the

scenario generation in the day-ahead and ancillary services algorithms.

The input data sets relevant for the simulations differ for:

• perfect/imperfect wind forecast: to test the impact of wind un-

certainty, see Figure 6.8. The red line represents the forecast, the

blue line is the realized wind power. In the simulated case studies,

when forecast is realistic (i.e. imperfect) the wind power realization

is higher than expected during the whole time horizon;

• large/medium wind power production: to verify the influence of

higher renewables penetration.

Parameters and market design at the system level differ for:

• single sided/double sided ancillary services market (current vs

E-Price situation);

• low/high system risk attitude a.

Tunable parameters at individual (BRP) level are:

• internal risk attitude β;

• step size λstep.

For simplicity, a fixed value for the parameter λstep is set for each BRP,

so this is not considered as a tunable parameter. The only requirement

is that λstep is small enough to guarantee sufficient granularity to the bid-

ding curve, so λstep = 5 e or λstep = 10 e. Performance metrics used to

evaluate the algorithms in the various case studies are production costs,

net profit and price volatility. In the next sections we report the main
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(a) Forecast and realized wind power with
perfect forecast

(b) Forecast and realized wind power with
realistic forecast

Figure 6.8: Wind power realization and forecast

simulation results in relation to the different data sets and tunable param-

eters. Since the applied day-ahead strategy is the same in both the E-Price

and benchmark solution, only the results related to ancillary services are

reported.

6.5.2 Risk attitude β

We start our analysis by observing how the bidding behavior of a single

BRP changes in relation to the internal risk attitude β in the double-sided

situation. The value beta is a CVaR related parameter defined in section

2.1.3, which is used in the bidding problem formulations (6.4) and (6.14).

This parameter is generally set at standard values 90%, 95% or 99%. In

general, any value from 50% to 99% can be used. If β = 90% then VaR

is the lowest value lβ such that P [f(u, s) ≤ l] ≥ 90%, and CVaR is the

expectation over that interval. An increase in β to, for example, 99% should

lead to a more conservative behavior since now it is asked P [f(u, s) ≤ l] ≥
99%. Table 6.3 confirms this expectation. The table reports the couples

price-volume composing the upward regulating AS bidding curves of BRP1

in the first PTU. BRP 1 consists of 8 CCGT plants fueled with gas, 1 coal
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plants and 1 biomass generator. The first column contains the fixed grid

of prices, the other two columns the optimal dispatched volume at that

price respectively with β = 0.92 and β = 0.99. Bid curves are expressed in

energy (MWh) and we have chosen λstep = 5 e.

Price [e] Offered volume β = 0.92 [MWh] Offered volume β = 0.99 [MWh]

5 0 0
10 0 0
15 0 0
20 0 0
25 0 0
30 0 0
35 0 0
40 74.7802 72.2767
45 78.3879 75.8844
50 79.6396 75.8844
55 79.6396 77.1362
60 79.6396 77.1362
65 79.6396 77.1362
70 79.6396 77.1362
75 79.6396 77.1362
80 80.8913 77.1362
85 80.8913 77.1362
90 80.8913 77.1362
95 80.8913 77.1362
100 80.8913 77.1362
Request −38.3751 −40.3636

Table 6.3: AS up-regulating bidding curve with different risk attitude β

We can observe that with a higher value of β, a lower volume is offered at

the same price. The requested volume is higher, confirming the expectation

of more conservative behavior with high risk parameter β: the BRP offers

less energy and requires for the allocation of more regulating capacity to

avoid real time imbalances.

When the parameter a, modeling the system risk attitude is varying,

the effect can be seen mostly on the request value, while the supply curve

is basically unvaried: it is natural that a low price for capacity allocation
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leads a BRP to request higher amounts of reserves. Optimal couples of the

supply curve and request values are shown in Table 6.4.

Price [e] Offered volume a = 0.1 [MWh] Offered volume a = 0.2 [MWh]

5 0 0
10 0 0
15 0 0
20 0 0
25 0 0
30 0 0
35 0 0
40 73.6817 73.6817
45 77.6215 77.1617
50 78.5411 78.3112
55 79.0010 78.5411
60 79.0010 78.7711
65 79.2309 79.0010
70 79.2309 79.0010
75 79.4608 79.0010
80 79.4608 79.0010
85 79.4608 79.2309
90 79.4608 79.2309
95 79.4608 79.2309
100 79.4608 79.2309
Request −47.7236 −38.6379

Table 6.4: AS up-regulating bidding curve with different system risk attitude a and
β = 0.95

In order to limit the number of tested case studies, in the simulation

environment the BRP internal risk attitude has been determined at the

beginning, and remains constant for the whole set of case studies. The

BRP risk parameters β are reported in Table 6.5.

6.5.3 The single-sided and double-sided markets

In this section we compare the devised algorithms with the identified bench-

mark, that is, when only supply curves can be offered to the AS market.

The economic social benefit obtained with the introduction of double sided
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BRP 1 BRP 2 BRP 3 BRP 4 BRP 5 BRP 6 BRP 7

β 0.95 0.95 0.925 0.95 0.9 0.9 0.9

Table 6.5: Risk attitude β for the 7 BRPs

(a) AGC set-points and boundaries for the
single-sided market

(b) AGC set-points and boundaries for the
double-sided market

Figure 6.9: AGC set-points for the benchmark and E-Price situations, with perfect wind
forecast

ancillary services is investigated.

Let us look at Figure 6.9, referring to perfect wind forecast conditions

(i.e. there is perfect match between the 24 hours ahead wind forecast and

the realized wind production) and a = 0.1. The x-axis indicates time (in

seconds), the y-axis power (in MW). The red line represents the AGC signal

(i.e. the request for secondary control) transmitted in real time by the TSO

to BRPs. It matches the PACE (Processed Area Control Error), that is

proportional to the difference between the scheduled E-Program and the

energy actually present on the grid. The orange lines (in both subfigures)

are the total accumulated energy bids. In Figure 6.9(b) the green lines

are the cleared AS quantities. Note that in the interval [1 × 104, 2 × 104]

cumulative downward bids are barely higher than 500 MW, this indicates

that all BRP are approaching their minimum power level and that they

cannot offer downward regulating capacity to the market.
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We can observe that, being the compared data sets the same, the AGC

requests are very similar, as the imbalances derive from the same wind and

load realizations and they have the same magnitude.

It should be observed that in perfect forecast conditions, the Processed

Area Control Error (PACE) is mainly due to the fact that the Netherlands

are not an isolated power system, but they exchange power with neighbor-

ing countries. In this particular setting, the large amount of wind realized

allows to export several MWs of active power. The sharp steps in the

X-border schedule (energy exchanged with neighboring countries), can be

observed in Figure 6.10. In particular, before 2×104 s the schedule presents

(a) X-border trade in the single-sided sit-
uation

(b) X-border trade in the E-Price situa-
tion

Figure 6.10: X-border exchange schedule and realized production with neighboring coun-
tries

a sharp droop that might cause imbalances and frequency deviations.

The most important aspect to note here is that, except for unexpected

big fluctuations (highlighted by the steep jumps in the AGC curve) almost

all deviations are covered by the negotiated AS power. This energy has

already been reserved and there is no need to call for the imbalance set-

tlement. BRPs deviating from their contracted E-Program (even though

slightly since we are in perfect forecast conditions) are able to cover for

most imbalances by means of their own internal regulating capacity or of
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(a) AGC set-points and boundaries for the
single-sided market

(b) AGC set-points and boundaries for the
double-sided market

Figure 6.11: AGC set-points for the benchmark and E-Price situations, with imperfect
wind forecast

their purchased reserve, that has a lower value than the imbalance price.

Note that cleared downward reserves (R−) in Figure 6.9(b) are generally

lower than upward cleared reserves (R+). This phenomenon is explained

by the affine cost structure used in this framework. In fact a BRP will

always prefer recurring (if available) to its own downward controllable pro-

duction, implying saving costs, than buying that capacity on the market.

This makes the cumulative downward capacity request R− lower than the

upward request R+.

Analogous remarks can be made in case of imperfect forecast, as shown

in Figure 6.11. In this case, the AGC request highlighted by the red line

tends towards negative values, this is explained by the sign of the mis-

match between forecast and realized wind, which is always negative over

the simulation period (more wind than expected blows in the system). As

a consequence, also negative requests R− are more relevant, BRPs are all

experiencing a power surplus and require downward regulating capacity on

the AS market to avoid imbalances.
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Production costs

Production costs reflect overall efficiency: day ahead energy market strate-

gies, AS market architecture and BRP AS market bidding, and real time

BRP control. An efficient market architecture should select the cheapest

assets to produce energy and regulating power, that is, production costs

should be minimized. Therefore, production costs reflect the social welfare

of the system. Table 6.6 reports production costs for the examined data

sets in single-sided and double sided situation. System risk attitude is set

a = 0.1. The first column describes the input data set, more specifically

Data Set / market Single-sided (e) Double-sided (e) ∆DS−SS

perfect + medium 1.829.144 1.829.245 101
perfect + large 1.651.814 1.642.345 −9.469
imperfect + medium 1.758.381 1.757.093 −1.288
imperfect + large 1.601.725 1.601.053 −672

Table 6.6: Production costs in SS and DS with system risk attitude a = 0.1

the first term indicates the type of forecast (perfect vs imperfect) the sec-

ond refers to the wind amount (medium vs large). We can observe that

costs have basically not changed. The same can be said when the system

risk attitude a is increased from 0.1 to 0.2 (see Table 6.7).

Data Set / market Single-sided (e) Double-sided (e) ∆DS−SS

perfect + medium 1.829.144 1.828.477 −667
perfect + large 1.651.814 1.640.669 −11.145
imperfect + medium 1.758.381 1.756.676 −1.705
imperfect + large 1.601.725 1.600.652 −1.073

Table 6.7: Production costs in SS and DS with system risk attitude a = 0.2

The simulation results suggest that the introduction of the double sided

AS markets only affects approximately 0.6% of the total costs (around

10.000 Euros per day for the whole NL). The fact that the total social
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welfare of the system has almost not changed indicates that all the con-

sidered solutions are comparably efficient with respect to this performance

metrics. The bidding strategies used in the simulations were cost reflective

(no market power consideration has been taken into account), and the ob-

tained solutions have converged to (or close to) the optimal working point

in terms of the social welfare. It is interesting and important to observe

that the benefit of hedging against the risk were not paid by an increase

in the total system costs. One would expect that the forward risk hedg-

ing would imply some additional costs that however did not show up in

the simulations. Increasing the system risk attitude leads in each data set

to a slight (almost negligible) increment in production costs, suggesting

that with higher imbalance costs BRPs lean more on their controllable

production than on the more expensive external capacity allocation.

Net profit

The net profit of a BRP i is given by:

Πi = IPX,i + IAS,i − Iimb,i + Iload,i − Ifuel,i (6.15)

The term IPX,i is the income from PX trade, i.e. earnings on the day ahead

market, IAS,i is the income/cost deriving from AS trade (it can comprise

allocating capacity and activation costs in double-sided markets), Iimb,i

are imbalance costs and Ifuel,i are fuel costs. Finally, Iload,i is the rev-

enue coming from load contracts with external consumers. In the devised

framework, BRPs only own production assets and no consumption units.

So, they get earnings from trading energy on the spot and AS markets,

while the demand is simply forwarded from external loads to the markets

via BRP, who have no direct cost or earning from this transaction.

The asymmetry between production and load, together with the signif-
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Data Set Market BRP 1 BRP 2 BRP 3 BRP 4 BRP 5 BRP 6 BRP 7 SUM

perf/med
SS 2.080.836 1.897.928 1.033.399 1.948.894 744.275 210.003 658.544 8.573.879
DS a = 0.1 2.051.799 1.871.987 1.034.514 1.963.184 746.662 217.103 690.180 8.575.428
DS a = 0.2 2.028.659 1.853.546 1.040.602 1.972.723 743.700 218.626 714.977 8.572.834

perf/lar
SS 1.934.527 2.157.764 1.217.031 2.138.469 757.369 313.767 663.531 9.182.460
DS a = 0.1 1.947.628 2.115.706 1.227.036 2.148.042 772.623 309.569 696.071 9.216.676
DS a = 0.2 1.943.257 2.081.741 1.228.518 2.146.340 790.270 320.975 716.395 9.227.496

imp/med
SS 2.143.775 1.912.602 962.444 1.927.196 751.416 177.970 665.872 8.541.276
DS a = 0.1 2.134.444 1.888.556 968.782 1.936.227 751.621 175.433 691.706 8.546.768
DS a = 0.2 2.123.283 1.871.619 974.708 1.940.503 749.915 174.054 710.326 8.544.408

imp/lar
SS 2.309.520 1.890.993 942.587 2.148.908 812.897 127.938 712.383 8.945.226
DS a = 0.1 2.253.194 1.870.887 964.994 2.174.450 821.889 149.201 751.821 8.986.438
DS a = 0.2 2.291.429 1.833.081 936.824 2.156.387 835.350 138.214 789.845 8.981.129

Table 6.8: Net profit of BRPs, all values expressed in e

icant X-border trade depicted in Figure 6.10 explains why the net profit of

BRPs does not sum up to zero. In fact, one could expect that the overall

net profit of BRPs is approximately zero, i.e. there are some BRPs sell-

ing energy and others buying. However, since BRPs do not actually own

consumption units, they only gain a profit from the sales on the power

exchange. We can imagine of a big additional BRP comprising all the na-

tional load who collects the day-ahead bulk demand and forwards it to the

market. From Table 6.8, we observe in all case studies a slight increase of

the overall net profit when passing to the double-sided market, even though

some BRPs earn less, like BRPs 1 and 2. An increase in the system risk

attitude a leads to a slight reduction in the profit, as BRPs act in a more

conservative way.

Price volatility

Price volatility is an important indicator of the market design quality. In

this section, the final AS prices are qualitatively compared in the single-

sided and in the double-sided market design. We compare AS prices in

perfect forecast conditions and medium wind power size, respectively in

single-sided and double-sided market. AS prices per PTU are shown in
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Figure 6.12(a)-(b). The conclusions are the following:

• Prices in the double-sided markets are in general less volatile , with

less sudden sharp peaks;

• Prices for the upward AS provision seem to be higher in the double-

sided AS;

• Prices for the downward AS provision are much smaller in the double-

sided AS.

The first statement is easily explained by the clearing process of double-

sided markets, operated one hour prior to delivery. While in the single-

sided market the price is determined by the last activated bid in real time,

in the double-sided situation the price is a function of the total allocated

capacity, which is more or less constant over one hour. The same fact also

explains the higher prices in the double-sided market: not all the allocated

capacity will be used in real time, so it is natural that the clearing point

is higher than in the corresponding single-sided situation, where only the

needed energy is called in real-time. Moreover, the correcting factor a

and the imbalance penalty φ makes this difference even stronger. The

latter point can be explained by the BRP strategies, i.e., by the fact that

BRPs assume that it is always cheaper to reduce own power set-points

in case of overproduction than to have other BRPs reducing production

in their place. Therefore, the requests (volumes) for downward regulation

on the double-sided markets are small, and consequently, the clearing AS

downward price is also small.

6.6 Conclusions

In this chapter, the day ahead and ancillary services bidding problems on

double-sided markets have been addressed. These are delicate and risky
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(a) Price development in the single-sided
market

(b) Price development in the double-sided
market

Figure 6.12: Price development

tasks, because energy prices are extremely volatile and no energy storage

device is present in the Dutch grid to absorb price shocks. Moreover,

the coupling between markets requires an even more attentive operation

planning, since the energy sold on the day ahead market cannot be used

for other purposes.

The E-Price solution is thoroughly designed to tackle the risk borne by

BRPs and to support them in the decision making process. A scenario-

based algorithm is devised in both cases where a linear stochastic problem

is solved at every time unit (hour or PTU), to build the piecewise constant

bid curve. A risk measure CVaR is minimized, in a way that reduces

the risk of the BRP incurring great losses. Operating constraints such as

minimum and maximum power set-points, ramp rate limits and internal

balancing are satisfied.

The most important feature of E-Price bidding curves is the introduction

of AS request quantities. These confidence intervals allow the system to be

prepared to possible imbalances and react promptly.

The main concluding remarks can be synthesized as follows:

• The proposed scenario based optimization approach is suitable for the
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optimal bidding problems, it helps the BRP hedge against the risk and

it reflects the BRP risk attitude, modulated through the parameter

β;

• Applying double-sided AS has comparable fuel usage compared with

single-sided AS, while it still allows BRPs to hedge their risks for being

in imbalance;

• Applying double-sided AS slightly increases BRP income compared

with SSAS (in most cases);

• Applying a larger value for the system risk a slightly decreases the

BRP profit (in most cases);

• Applying double-sided AS leads to less volatile prices and to the allo-

cation of the necessary regulating capacity beforehand.
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Chapter 7

Conclusions and future developments

After the deregulation of electricity supply, financial and electricity con-

tracts can be traded in a similar way. Nevertheless, there are still major

differences between the traditional stock market and the electricity market

like lacking liquidity, high volatility and jumps, non-normal distributions;

deriving from special characteristics of electricity like the non-storability

and the transmission constraints.

In this thesis we have provided novel stochastic optimization approaches

to trade assets on financial and energy markets. In the first part we have

formulated the dynamic option hedging problem under a stochastic model

predictive control viewpoint. A minimum variance criterion is used to

minimize expected hedging error at each trading instant, where a pricing

engine (generally based on Monte Carlo simulations) is available to predict

future option prices. Numerical tests are carried out on a European call, a

Napoleon cliquet and a barrier call option. The proposed tool can handle

a wide variety of payoff functions and multiple assets and showed good

performance compared to the traditional delta hedging especially when

applied to exotic options. The SMPC approach has been then extended

to the case of transaction costs. The minimum variance criterion has been

proven to be not suitable to handle this type of market, therefore three
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alternative risk measures have been introduced respectively based on a

combination of quadratic error and variance, a CVaR related index and a

min-max approach. The SMPC algorithm has been proven to be effective

when applied to exotic options (barrier). It can be used online by financial

institutions to define an hedging strategy as a support system for traders,

or for the offline quantification of the expected hedging error given some

market hypothesis. The work can be extended to other types of exotic

options and payoffs, and to those options which are not at-the-money, that

is, when the market does not deem the two future opposite situations of

the price going up and the price going down as equally likely and as a

consequence, the strike price is fixed below or above the current market

price.

In the second part of this thesis, the day ahead and ancillary services bid-

ding on electricity markets have been addressed. We have first described

the current market design and the proposed alternative architecture de-

vised in the E-Price project, based on the concept of double-sided auction

for ancillary services. Unlike stock markets, uncertain variables in the elec-

tricity markets can not be approximated by Gaussian curves, and one has

often to resort to empirical distribution functions.

A two-stage stochastic optimization approach based on CVaR minimiza-

tion has then been presented for the optimal bidding on sequential energy

markets. The first stage decision variables are given by the bidding curves

to be submitted on the day ahead auction, at 12.00 of the day before de-

livery in the form of non-decreasing piecewise constant curves. Stochastic

variables at this stage are the prices for secondary control which will be

public only a few minutes before delivery (or weeks later in some cur-

rent market arrangements). The second stage decision variables, to be

taken after the disclosure of spot prices, are the bidding curves for the

double-sided ancillary services market. Here the uncertain variable is the
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amount of energy produced by renewable sources with low marginal costs

but high volatility and thus liable to cause imbalance costs. The right

balance between request and supply has to be chosen, taking into account

unit commitment constraints and price-elastic loads. The E-Price solution

is thoroughly designed to tackle the risk borne by BRPs and to support

them in the decision making process. A scenario-based algorithm is devised

in both cases where a linear stochastic problem is solved at every time unit

(hour or PTU), to build the piecewise constant bid curve. A risk measure

CVaR is minimized, in a way that reduces the risk of the BRP incurring

great losses. Operating constraints such as minimum and maximum power

set-points, ramp rate limits and internal balancing are satisfied.

The algorithms developed in E-Price have been tested in a simulation

environment. The double-sided market architecture for ancillary services

has proven to be a valid alternative to the single-sided current benchmark,

as it decreases control effort by the TSO and allows the system to react

promptly to power imbalances without increasing production costs due to

the hedging option. The BRP algorithms presented in this thesis help the

BRP hedge against the risk and reflect the BRP risk attitude.

Of course, there are many directions for the extension and future devel-

opment of this work. First, many simplifying hypothesis have been made

in order to improve tractability, like sequential markets and the hypoth-

esis of independence between the load and wind production. If extended

to integrated markets, the bidding problems on day-ahead and ancillary

services auctions should be treated jointly also with unit commitment as

a three-stage stochastic optimization problem. The size of such problem

would rise consistently and decomposition techniques would be needed.

Also, the spatial distribution of the demand and the related congestion

problems have been disregarded. In reality, the market behavior of a BRP

can change consistently when it can anticipate congestion of some lines of
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the grid. Generating companies operating in highly congested systems can

exercise a strong market power. A game theoretical approach could be

used to find the equilibrium conditions in such market, where BRPs make

assumptions on their rivals reaction to price or power set-points changes.
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Appendix A

Dynamic hedging based on

mixed-integer programming

Piecewise affine transaction costs as in (4.19) can be also handled by intro-

ducing binary variables. Let xu(t) , u(t − 1) ∈ Rn be the composition of

the portfolio immediately before trading at time t and introduce auxiliary

variables δi(t) ∈ {0, 1}

[δi(t) = 1]↔ [ui(t)− xui (t) ≥ 0] (A.1)

and qi(t) ∈ R

qi(t) =

{
ui(t)− xui (t) if δi(t) = 1

0 otherwise
(A.2)

By using the so-called “big-M” technique, (A.1) can be translated into

the mixed-integer linear inequalities

ui(t)− xui (t) ≥ −Mi(1− δi(t)) (A.3a)

ui(t)− xui (t) ≤ Miδi(t)− ε (A.3b)
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and (A.2) into

qi(t) ≤ ui(t)− xui (t) +Mi(1− δi(t)) (A.4a)

qi(t) ≥ ui(t)− xui (t)−Mi(1− δi(t)) (A.4b)

qi(t) ≤ Miδi(t) (A.4c)

qi(t) ≥ −Miδi(t) (A.4d)

where Mi is an upperbound on |ui(t)−xui (t)|, that is the maximum allowed

asset reallocation, and ε > 0 is a small scalar (e.g., the machine precision).

Eq. (4.18) can be therefore interpreted as the evolution of a hybrid dy-

namical system, that is expressed in the following mixed logical dynamical

(MLD) form [7]

w(t+ 1) = (1 + r)

(
u0(t)−

n∑

i=1

qi(t)− 2(ui(t)− xui (t))
)

+

n∑

i=1

si(t+ 1)ui(t) (A.5a)

xu(t+ 1) = u(t) (A.5b)

s.t. (A.3), (A.4) (A.5c)

with states w(t), xu(t), input u(t), auxiliary vector δ(t) = [δ1(t) . . . δn(t)]
′ ∈

{0, 1}n of binary variables, and vector q(t) = [q1(t) . . . qn(t)]
′ ∈ Rn of aux-

iliary continuous variables. Note that, from a system theoretical viewpoint,

transaction costs introduce a unit delay (A.5b) in the dynamics, due to the

additional state variable xu(t).

By using the stochastic hybrid dynamical model (A.5c), problem (4.26)

can be recast as a mixed-integer quadratic programming (MIQP) problem

(see [7] for details) to be minimized with respect to vector u(t) ∈ Rn, for

which very efficient solvers are available [34, 40]. See also [30] for a related

approach. For options involving a single stock, the number n of assets is
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usually very small (n = 1 or n = 2), so that the minimum variance problem

with transaction costs can be solved also by enumerating the possible 2n

instances of vector δ(t) (that is, in system theoretical terms, by transform-

ing the MLD dynamics (A.5c) into an equivalent piecewise affine (PWA)

form [4] and enumerating the “modes” of the resulting PWA dynamics)

and by solving the corresponding quadratic programs (QP) (4.17) subject

to ui(t) ≥ xui (t) if the corresponding δi(t) = 1, or ui(t) ≤ xui (t) if δi(t) = 0,

for all i = 1, . . . , n.

While the method of Section 4.5.1 is in general more efficient from a nu-

merical viewpoint, in that it completely avoids introducing integer variables

to handle proportional transaction costs, the MIQP method of this section

is more general, for example it can be easily extended to handle transaction

costs of the form hi(ui(t) − ui(t − 1)) = min{c0, ε
isi(t)|ui(t) − ui(t − 1)|},

where c0 is a given minimum fixed cost to be paid in each transaction.
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