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SUMMARY 

 

 

Structural optimization has become an important tool for structural designers, since 

it allows a better exploitation of material, thus decreasing structure self-weight and 

saving material costs. Moreover, it helps the designer to find innovative design 

solutions and structural forms that not only better exploit material but also give the 

structure higher aesthetic value from an architectural point of view. When applied to 

real scale structures like bridges, this approach leads to the definition of voids 

patterns delimiting regions where fluxes of force migrate from force application point 

to boundary regions and suggests innovative layouts without renouncing to formal 

and structural aspects. Nevertheless, the criticality of this powerful tool is related to 

the ease of defining entire families of possible candidate solutions, by modifying 

input volume reduction ratio to reduce structural weight as much as possible or 

defining several starting trial solutions based on the judgment of designer. In this 

case, structural optimization still leads to the best material distribution, but finding 

the best compromise between material saving and structural performance is a 

designer choice.  

 

To face this aspect, a global optimization index (GOI) has been defined and applied 

to the structural optimization of a steel-concrete arch bridge built is San Donà in the 

province of Venice, Italy. On the basis of this work, a generalized version of the 

optimization index is proposed and its analytical formulation is discussed in detail in 

this thesis. The application of proposed optimization index is extended from topology 

optimization to other optimization techniques. Moreover it allows not only to identify 

best candidate solution originated by a unique reference model, but even comparing 

structural performances between candidates solution derived by several starting trial 

solutions. Through structural optimization procedure performed on three different 

type bridges, namely footbridges supported by concrete shell, Calatrava Bridge 

(steel arch bridge) and two cable-stayed bridges, the effectiveness of proposed 

optimization index is validated. The results show that the proposed optimization 

index provides to the designer a mathematical procedure able to highlight the best 

choice among several candidate solutions obtained by the optimization procedure. 

With the proposed optimization index, a suitable score for each design solution of 

specific starting layout is assigned, therefore the best overall layout solution which is 

the best compromise between material saving and structural performance can be 

highlighted among single-family multi-solutions or multi-families or multi-solutions. 
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SOMMARIO 

 

 

L’ottimizzazione strutturale e’ oramai ritenuta essere un importante strumento di 

supporto ai progettisti in quanto consente di riuscire a sfruttare al meglio il materiale, 

e in questo modo ottenere una riduzione dei pesi propri e un risparmio nelle quantita’ 

utilizzate. Inoltre, come dimostrato da varie recenti realizzazioni, puo’ essere di aiuto 

al progettista nella ricerca di innovative soluzioni progettuali e forme strutturali che 

coniugano ad un ottimo utilizzo del materiale anche un alto valore estetico. Se 

applicate nel campo delle grandi strutture e dei ponti, le tecniche di ottimizzazione e 

in particolare l’otttimizzazione topologica, possono portare alla identificazione di 

zone con materiale poco sfruttato in funzione del flusso delle forze dal loro punto di 

applicazione ai vincoli e quindi alla sua succesiva rimozione e alla modifica della 

forma iniziale e/o alla definizione di cavita’ al suo interno. Tuttavia la criticita’ di 

questo strumento e’ rappresentata dalla scelta della soluzione progettualmente piu’ 

idonea all’interno della famiglia delle possibili soluzioni definite dal processo di 

ottimizzazione, che risulta fortemente influenzata dalla scelta degli input iniziali e dei 

parametri da ottimizzare.  

 

Al fine di aiutare il progettista a trovare la soluzione ottima, in questa tesi si propone 

e si studia un Indice di Ottimizzazione Globale (GOI). Tale indice, prima introdotto 

nel processo di ottimizzazione di un ponte ad arco in struttura mista realizzato a San 

Dona’ (Venezia), e’ stato in questa ricerca generalizzato e reso applicabile non solo 

a ottimizzazioni di tipo topologico ma anche ad altre tecniche. Inoltre l’indice 

proposto permette non solo di identificare la soluzione ottimale ma anche di 

confrontarne varie provenienti da diversi modelli iniziali. Per validare quantro 

proposto vengono analizzate diverse tipologie di ponti e in particolare: a) soluzioni di 

ponti ad arco con un guscio realizzato in calcestruzzo; b) ponti ad arco metallici, e in 

particolare il ponte della Costituzione a Venezia progettatato da Santiago Calatrava; 

c) vari ponti strallati. I risultati ottenuti dimostrano l’efficacia del metodo presentato 

come indice della validita’ di una soluzione fra varie candidate ottenute dal processo 

di ottimizzazione. Con l’indice di ottimizzazione studiato e’ possibile infatti arrivare 

ad assegnare a ciascuna proposta progettuale un valore e in questo modo definire 

la soluzione che rappresenta all’interno di una famiglia o di piu’ famiglie il miglior 

compromesso fra il risparmio di materiale e la miglior performance strutturale. 
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CHAPTER 1 

 

1. INTRODUCTION 

 

1.1. The Origin of Optimization Index 

 

Structural optimization is the subject of achieving the best performance for a 

structure with various constraints such as a given amount of material, limitation of 

peak stress and deflection. Based on strong demand of lightweight, low-cost and 

high-performance structures due to the limited material resources and technological 

competition, optimal structure design is becoming increasingly important (Huang 

and Xie, 2010) and attracting considerable attention (Banichuk and Neittaanmäki, 

2010). Benefit from the availability of high-speed computers and the rapid 

improvements in algorithms, the structural optimization is rapidly becoming an 

integral part of the structure design process and as an important tool for designers in 

the last decades (Huang and Xie, 2009). 

 

Structural optimization can be classified into three categories, namely sizing, shape, 

and topology optimization, each of them address different aspect of the structural 

design problem (Christensen and Klarbring, 2009). Sizing optimization is to find the 

optimal design by changing the size variables such as cross-sectional dimensions of 

trussed and frames, or the thicknesses of plates (Huang and Xie, 2010). Shape 

optimization is to find the optimum shape of a domain which defined as design 

variable. Topology optimization of discrete structures is to search for the optimal 

spatial order and connectivity of the bars in a typical problem, while topology 

optimization of continuum structures is to find the optimal designs by determining the 

best number and locations and shape of cavities in the design domain (Bendsoe and 

Sigmund, 2003, Huang and Xie, 2010). 

 

Among the different optimization techniques, topology optimization has revealed to 

be particularly interesting for structural engineering and is by far the most 

challenging technically (Diehl, 2010). It plays an important role in structural design, 

the very purpose of which is to find the best solutions from which a designer can 

achieve a maximum benefit from the available resources. With topology optimization 

technique, engineers determine where to place material within a design domain and 

find out the most suitable global shape of a structure depending on the specific 

target function to be maximized or minimized, such as the structural stiffness or 



AN OPTIMIZATION INDEX TO IDENTIFY THE OPTIMAL DESIGN SOLUTION OF BRIDGES 

 

2 

 

natural frequencies (Achtziger and Kocvara, 2007, Allaire, et al., 2001, Pedersen, 

2000).  

 

When applied to a solid or a shell shaped structure, topology optimization leads to 

the definition of voids patterns delimiting regions where fluxes of force migrate from 

force application point to boundary regions. If implemented into FE codes and 

applied to real scale structures like tall buildings, this approach may suggests 

innovative layouts and provides higher aesthetic value to the investigated structure, 

without renouncing to formal and structural aspects. Topology optimization results 

then to be a valid aid for the designer to find the most suitable structural shape not 

only from an engineering point of view but even an architectural one, leading to a 

practical connection between the two complementary disciplines. 

 

In addition when topology optimization applied to bridge structures, it allows not only 

finding a conceptual layout of a design with the lightest and stiffest structure while 

satisfying certain specified design constraints, but also simplifying the design 

process and significantly improving efficiency of design. As we known, in the 

traditional design of bridge structures, bridges are designed based on engineering 

theories and previous experience, which would involve the preliminary design, 

structural analysis and check against requirements of mechanical behavior (Guan, 

et al., 2003). Such a design is followed by design modification, re-analysis and 

re-checking process and is very expensive and time-consuming. With the topology 

optimization technique implemented into FE code, the design process can be 

defined by a set of design variables and constraints as well as objective function and 

thereby simplified.  

 

Nevertheless, the criticality of this powerful tool is related to the ease of defining 

entire families of possible candidate solutions, by simply modifying input volume 

reduction (VR) ratio. Designer could be tempted to reduce structural weight as much 

as possible. In this case, topology procedure still leads to the best material 

distribution for the specific target volume, but finding the best compromise between 

material saving and structural performance is a designer choice.  

 

To face this aspect, an global optimization index (GOI) has been defined by Bruno 

Briseghella et al. (Briseghella, et al., 2012), with the goal to provide a formal 

mathematical procedure able to highlight the best choice among several candidate 

solutions obtained by optimization procedure, that represents the best compromise 

between material saving and structural response.  
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A former formulation for considered GOI was applied to the structural optimization of 

a steel-concrete arch bridge built is San Donà in the province of Venice, Italy. The 

bridge was already partially built while the Italian Seismic Code was updated 

together with a new seismic classification of Italian territory. It prescribed higher 

acceleration values, requiring a much higher increase of resistance (35%) of the 

already existing foundations. Hence, seismic retrofitting of this bridge required for a 

considerable lightening of the superstructure and topological optimization was used 

to this purpose. Starting from a reference identified solution for the steel deck, 

consisting in two longitudinal box girder connected by a continuous bottom flange, 

several candidate solutions were generated from optimization analysis, depending 

on imposed volume reduction. What is more, although the design objective was the 

reduction of superstructure weight, the increase in VR causes an increase of both 

the stress and deflections of bridge, whose control was a competing requirement 

with respect to VR. Therefore, an issue to identify the best choice among entire 

candidate solutions is faced and a global optimization index (GOI) defined for this 

purpose.  

 

Such an index should provide an uncomplicated mathematical procedure for ease 

application to identify the best design solution, but at the same time has to take into 

account weight reduction and structural response of candidate solutions. Therefore, 

two response indexes (RIs) are defined firstly to summarize the overall behavior of 

the whole structure, namely response index of stress RI(σ)

 

and response index of 

deformation RI(d). The former is Von Mises stress averaged throughout the whole 

steel superstructure and was considered as representative of the stress level, 

whereas the latter is deflection at mid span and was considered as representative of 

the deformation level. 

 

To take into account the weight reduction, after the introduction of a penalty 

exponent to the scaling coefficient 1/VR which able to favor design solutions with 

higher VR, optimization indexes (OIs) of stress and deformation were defined 

through the comparison of the variation of stress and deformation with respect to the 

variation of VR, respectively. Eventually, global optimization index (GOI) considering 

both stress and deformation of structural response was defined by averaging the two 

OIs. 

 

Through proposed GOI, an innovative layout for this kind of bridges consisting in a 

couple of wide elliptic holes in the bottom flange was identified as the best 
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compromise between material saving and bridge performances, these letters 

defined in term of stress field and deformations. 

 

 

1.2. Extension of Optimization Index 

 

However, during earlier designing phases of a project, in particular in the case of 

spatial shell structures, several starting trial solutions as well as reference solutions 

might being defined based on the judgment of designer, each solution characterized 

by a particular layout, material property or distribution of boundary conditions. In this 

case, topology optimization is still a viable tool to optimize structures, but it would 

lead to the definition of entire families of possible candidate solutions, depending on 

input VR target. Therefore, the problem is changed from single-family multi-solutions 

to multi-families multi-solutions. 

 

To face this particular issue, a further GOI* formulation which based on a further OI* 

is presented in this thesis. Proposed global optimization index allows not only to 

identify best candidate solution originated by a unique reference model, but even 

comparing structural performances between candidates solution derived by several 

starting trial solutions. 

 

Same as the index proposed originally, two response indexes (RIs) are defined 

firstly to summarize the overall behavior of structure, namely response index of 

stress RI(σ)

 

and response index of deformation RI(d). The former is considered as 

representative of the stress level, while the latter is considered as representative of 

the deformation level. However, to extend the applications of OI* to other 

optimization techniques and bridge structures, according to the structure type and 

optimization techniques, the stress level can be averaged stress or maximum stress 

throughout the whole structure, and the deformation level can be deflection at mid 

span or deflection at tower top. 

 

Following the definition of RIs, to provide OI* a general application thus can be used 

to multi-families multi-solutions problems, a scaling factor vector is introduced to 

the two optimization indexes (OIs). This is calculated by structural response 

comparison of all starting models. Eventually, through the introduction of weight 

vector w, global optimization index (GOI*) considering both stress and deformation 

of structural response is defined by assigning weights to the two OIs*. 
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In this thesis, to present to the reader potentially and effectiveness of defined GOI*, 

three different cases with different structure type or different optimization techniques 

were studied, namely Optimization of Footbridges Supported By Concrete Shell, 

Optimization of Calatrava Bridge In Venice and Optimization of Two Cable-stayed 

Bridges.  

 

In the real case of footbridges supported by concrete shell, the problem related to 

the tensile stresses rising in concrete shell bridges is faced. When designing bridges 

supported by a shell in reinforced concrete (RC), it is worth choosing shells with 

minimal area that, being anticlastic and therefore subject to biaxial compression, 

well exploited compressive strength of concrete and well prevented cracks 

propagation. Notwithstanding the use of form-finding algorithms in order to obtain a 

shell of minimal area subject to biaxial compression, unwished bending moments 

and related tensile stresses unavoidably arise in some regions of the shell. A 

previous publication written by the authors (Briseghella, et al., 2013) demonstrated 

as such unavoidable tensile stresses can be further eliminated by removing material 

from the shell regions where unwished bending moments arise, thus obtaining a 

shell structure with voids, by means of topology optimization.  

 

Hence, starting from three footbridges supported by concrete shells with different 

shape and thicknesses, finite element topological optimization procedures were 

carried out in order to minimize the volume of the shells of a certain percentage. 

After identifying the shells regions where the pseudo densities obtained from 

previous topological optimization results are lower, the geometries of the shells are 

updated by eliminating the material of these regions. With an iterative procedure of 

form finding and topological optimization, shells with a pattern of holes are obtained 

and the areas of shells regions with low tensile stresses are minimized. At the end, 

the optimum design solutions of three bridges were identified among all the solutions 

with proposed GOI*.  

 

Calatrava Bridge, the fourth bridge spanning the Grand Canal of Venice, later has its 

official name ―Ponte della Costituzione‖, opened to the public on September 11, 

2008. Immediately following the completion of the newest bridge, due to the lack of 

wheelchair access, lack of necessity, bridge modern appearance and an 

approximately cost of 10 million euros, made heated criticism rain down on this 

project. Furthermore the bridge presents some structural defectiveness, which 

makes the project less rational from the structural point of view. Firstly, the 1/16 

rise-to-span ratio cause large horizontal thrusts against the abutment, which is a 
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critical aspect considering the soft soil of Venice. Secondly, the open cross-section 

with π-shaped steel plates and the open truss arch ribs with straight-like web 

members with no diagonals need not only to withstand shear forces of the main arch, 

but even local bending moments, leading the stress of some members close to 

critical state. Besides, being the stiffness of main arch rib relatively small, large 

bending deformation occurs under asymmetric loading. Finally, the third vibration 

mode of the main arch is close to the pedestrian step frequency, which is extremely 

liable to cause the pedestrian and bridge resonance. 

 

Some structural defectiveness mentioned above particularly the occurrence of huge 

horizontal thrust could be reduced if the bridge with better design such as more 

reasonable thickness distribution or considering bridge’s abutment deformability. To 

this aim, three tentative starting models were identified by considering bridge’s 

abutment deformability through spring-damper elements and introducing tensioning 

cables along two bottom arches of the bridge, the sizing optimization by means of 

finite elements of these three models were carried out. Several candidate solutions 

were obtained due to the different value of elastic stiffness K of spring-damper 

elements and initial strain ε of tensioning cables and their results are used to 

validate the effectiveness of the proposed GOI*. 

 

Cable-stayed bridges are statically indeterminate structures due to its composition. 

Their structural behavior is the result of a complex interaction between several 

parameters. The cable arrangement and stiffness distribution in the cables, deck 

and pylons affected the structural behavior of cable-stayed bridge greatly (Walther, 

1999). In the design of cable-stayed bridges, the total number of cables is an 

important design consideration. It plays an important role not only in the mechanical 

behavior of bridges but also in aesthetic point of view. Moreover, to get more 

attractive appearance, sometimes the designer would like to change the angle of the 

tower. 

 

In this real case, to discuss the interaction between mechanical behavior of 

cable-stayed bridge and its parameters like total number of cables and tower angle, 

two cable-stayed bridges including one Single Tower Single Cable Plane 

cable-stayed bridge and one Twin Towers Double Cable Planes cable-stayed bridge 

are served as prototypes, several tentative starting models were characterized by 

the utilization of different total cables and different angles of tower in vertical 

direction, the cables cross sectional area and corresponding initial cable force were 

optimized. Following this, the optimum cable areas and initial cable force are 
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assigned to starting models to carry out thickness optimization of steel plates of 

bridge deck. Eventually, the results are used to validate the effectiveness of the 

proposed GOI*. 

 

 

1.3. Layout of Thesis 

 

Besides this chapter, in the main body of the thesis, it consists of 5 chapters, from 

Ch.2 to Ch.6 that introduced as following:  

 

Chapter 2, it states a brief development history of optimization techniques and their 

applications in structural field, including a general statement of structural 

optimization problems and the numerical methods of design optimization and 

topology optimization of continuum structures.  

 

Chapter 3, it presents the optimization index to identify the optimal design solution. 

Based on the original index proposed by Bruno Briseghella et al., a generalized 

formulation was proposed to solve not only the single-family multi-solutions problem 

but also multi-families multi-solutions problem. 

 

Chapter 4, it presents a case study on footbridges supported by concrete shell. 

Starting from three footbridges supported by concrete shell, finite element 

topological optimization procedures were carried out. The geometries of the shells 

are updated by eliminating the material of shell regions with lower pseudo densities. 

With an iterative procedure of form finding and topological optimization, shells with a 

pattern of holes are obtained and the areas of shell regions with low tensile stresses 

are minimized. At the end, the optimum design solution was identified among all the 

solutions with proposed index.  

 

Chapter 5, it presents a case study on Calatrava Bridge. Starting from three tentative 

models based on the original design, the sizing optimization by means of finite 

elements of this three models were carried out, the results are used to validate the 

effectiveness of the proposed optimization index. 

  

Chapter 6, it presents a case study on two cable-stayed bridges. Starting from 

several tentative models characterized by the utilization of different total cables and 

different angles of tower in vertical direction, the cables cross sectional area and 

corresponding initial cable force were optimized, the results are assigned to starting 
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models to carry out thickness optimization of steel plates of bridge deck and used to 

validate the effectiveness of the proposed optimization index. 

 

At the end, the conclusions drawn from the research and recommendations for 

future investigation will be presented.
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CHAPTER 2 

 

2. STATE-OF-ART: STRUCTURAL OPTIMIZATION 

 

 

Optimization is a mathematical discipline that concerns with finding minimum and 

maximum value of some objective functions while subject to so-called constraints 

(Ding, 1986, Hsu, 1994, Nocedal and Wright, 2006). The beginnings of optimization 

problems can be traced to the early period of World War II (Elishakoff and Ohsaki, 

2010). During that war, the British military faced the problem of allocating very 

scarce and limited resources to several activities (Rao and Rao, 2009). The methods 

developed to solve the allocation of limited resources during that period became 

known as operations research. 

 

The existence of optimization methods can be traced to the days of Newton, 

Lagrange and Cauchy (Brandt and Wasiutynski, 1963, Ravindran, et al., 2006, 

Schoofs, 1993). In 1840s, Cauchy made the first application of the steepest descent 

method to solve unconstrained minimization problems. A long time later in 1947, the 

development of the simplex method by Dantzig for linear programming methods 

accelerated the development of methods of constrained optimization (Belegundu 

and Chandrupatla, 2011, Dantzig, 1998). Following this, the techniques have later 

grown to be applied to various of scientific and engineering domain (Liang, 2004). 

Structural optimization is just a traditional and popular subject when the optimization 

theory applied on structural engineering.  

 

The first analytical work in structural optimization perhaps was by Maxwell in 1869, 

followed by the better known work of Michell in 1904 (Akin and Arjona-Baez, 2001, 

Cohn and Dinovitzer, 1994, Vanderplaats, 1982). The latter constructed several 

optimal trusses given some simple cases of load and offer considerable insight into 

the structural optimization problem and the design process. Despite these early 

contributions, very little progress was made until the availability of high-speed digital 

computers and development of linear programming methods mentioned above 

(Burns, 2002, Vanderplaats, 1982, Venkayya, 1978). The availability of the digital 

computer led to application of linear programming techniques to plastic design of 

frames during 1940s and early 1950s, and made significant early numerical work to 

solve structural design problems. 
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In 1960, Schmit (Schmit, 1960) proposed a new approach which has served as an 

conceptual foundation for the development of many modern structural optimization 

methods. He introduced an idea of using mathematical programming techniques to 

solve the nonlinear inequality constrained problem of designing clastic structures 

under a multiplicity of loading conditions. Prior to that time there were no texts on 

nonlinear programming. 

 

A few year later, an alternative approach was presented in analytical form by Prager, 

et al. (Prager and Taylor, 1967), which became popularly known as the ―Optimality 

Criteria‖ approach. The optimality criteria approach is first to establish the criterion to 

be satisfy while subject to the constraints. It solves the optimality conditions directly 

rather than minimize the objective function directly. Although the optimality criteria 

approach was largely intuitive, its advantage of easily programmed for the computer 

and relatively independent of problem size make it quite attractive and effective as a 

design tool.  

 

Since then, the field of structural optimization has experienced many new 

developments in both computational techniques and applications. In the last 

decades, based on strong demand of lightweight, low-cost and high-performance 

structures due to the limited material resources and technological competition, 

structural optimization with the aim of achieving the best performance for a structure 

with various constraints is becoming increasingly important, and it has become an 

important tool for engineering designers benefit from the availability of high-speed 

computers and the rapid improvements in algorithms (Huang and Xie, 2010). 

 

 

Fig. 1 Three categories of structural optimization. a) sizing optimization of a truss structure, b) 

shape optimization and c) topology optimization (Bendsoe and Sigmund, 2003).  

 

Structural optimization can be classified into three categories, as shown in Fig. 1, 

namely sizing, shape, and topology optimization, each of them address different 
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aspect of the structural design problem (Christensen and Klarbring, 2009). Sizing 

optimization is to find the optimal design by changing the size variables such as 

cross-sectional dimensions of trussed and frames, or the thicknesses of plates 

(Huang and Xie, 2010). Shape optimization is to find the optimum shape of a domain 

which defined as design variable. It is mainly performed on continuum structures by 

modifying the predetermined boundaries to achieve the optimal designs. Depending 

on the type of a structure, there are two types of topology optimization, i.e. discrete 

or continuous. Topology optimization of discrete structures is to search for the 

optimal spatial order and connectivity of the bars in a typical problem, while topology 

optimization of continuum structures is to find the optimal designs by determining the 

number and location and shape of cavities in the design domain (Bendsoe and 

Sigmund, 2003, Huang and Xie, 2010).  

 
 

2.1. Problem Formulation 

 

Mathematically speaking, optimization is the minimization or maximization of a 

function subject to constraints on its variables. It can be simply formulate and written 

as: 

 

Minimize ( )xf   (1) 

 

Subject to: 

 

( ) 0 1, 2,3, ,

( ) 0 1, 2,3, ,

x

x

i

j

l i n

j mg

 

 





 (2) 

 

The problem stated above is a constrained optimization problem. The problems are 

unconstrained optimization problems when there are no any constraints. Here X is 

the Design Variable (DV) vector, ( )xf  is termed the Objective Function (OBJ), 

( )xil  and ( )xjg  are known as equality and inequality constraints, respectively. 

They are also known as State Variables (SVs) in the optimization procedure. The 

number of design variables and the number of equality and inequality constraints 

need not be related in any way.  

 

Design Variables (DVs) 
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Design Variables are independent quantities, which varied to achieve the optimum 

design (Roy, et al., 2008). Any structural optimization problem is defined by a set of 

quantities some of which are viewed as variables during the design process. In 

general, certain quantities are usually fixed at the outset and these are called 

pre-assigned parameters. All the other quantities are treated as variables in the 

design process and are called design variables (Rao and Rao, 2009). The design 

variables describe the design and can be changed during optimization. It may 

represent geometry or choice of material. When it describes geometry, it may relate 

to a sophisticated interpolation of shape or it may simply be the area of a bar, or the 

thickness of a sheet (Spillers and MacBain, 2009). 

 

State Variables (SVs) 

 

State Variables are quantities that constrain the design. They are also known as 

"dependent variables" due to they are typically response quantities that are functions 

of the design variables. In many practical problems, the design variables cannot be 

chosen arbitrarily but have to satisfy certain specified functional and other 

requirements. The restrictions that must be satisfied to produce an acceptable 

design are collectively called design constraints (Rao and Rao, 2009). There are two 

types of constraints, namely functional constraints and geometric constraints. The 

latter represent physical limitations on the design variables, while the former 

represent limitations on the behavior or performance of the system and are state 

variables. For a given mechanical structure, the state variables usually are the 

response of the structure in terms of displacement, stress, strain or force.  

 

Objective Function (OBJ) 

 

Objective Function is the dependent variable that attempting to minimize. It should 

be a function of the design variables, means that its value should change when 

changing the values of the design variables. Objective function returns a number 

which indicates the goodness of the design (Choi and Kim, 2005). During 

optimization procedure, usually there will be more than one acceptable design that 

satisfies the functional and other requirements of the problem, and the purpose of 

optimization is to choose the best one of the many acceptable designs available. 

Thus a criterion for selecting the best one by comparing the different alternative 

acceptable designs has to be defined. When this criterion expressed as a function of 

the design variables, is known as the objective function (Rao and Rao, 2009). The 

choice of objective function is governed by the nature of problem. In structural 

optimization, the objective is usually taken as minimization of weight, displacement 

in a given direction, effective stress or total cost. In some situations, there may be 
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more than one criterion to be satisfied simultaneously. An optimization problem 

involving multiple objective functions is known as a multi-objective optimization.  

 

 

2.2. Design Optimization Methods 

 

The purpose of many structural design problems is to find the optimum design 

among many possible candidates (Choi and Kim, 2005). An optimum design is the 

one that as effective as possible, and is the one that meets all specified 

requirements yet demands a minimum in terms of expenses such as weight, surface 

area, volume, stress, cost, and other factors in structural engineering. In practical 

engineering, any aspect of design would be optimized, just like dimensions (such as 

thickness), shape (such as fillet radii), placement of supports, cost of fabrication, 

natural frequency, material property, and so on (Ansys, 2007).  

 

The definition of an optimization problem always contains several steps which 

beginning from identification of design variables and their bounds, then to the 

identification of constraints and objective function. Immediately following the defining 

of optimization problem, the algorithms to find the optimum design is the goal of the 

design optimization problem. There is no single method available for solving all 

optimization problems efficiently. Hence a number of optimization methods have 

been developed for solving different types of optimization problems. In the area of 

structural, there are three main categories optimization methods, namely 

Mathematical Programming Techniques, Optimality Criteria Approaches and 

Heuristic Algorithms.  

 

Mathematical programming techniques are developed on the basis of operations 

research. They are useful in finding the minimum of a function of several variables 

under a prescribed set of constraints through linear or nonlinear programming 

methods. The structural optimization problems are characterized by finding extreme 

value of objective function under constraints of stress, displacement and frequency 

or other constraints in multi-dimensional design space. Compare to optimality criteria 

approaches and heuristic algorithms, mathematical programming has rigorous 

theoretical foundation, high reliability, wide application and guaranteed convergence. 

However, its disadvantage is the need to frequently calculate the value of the 

objective function and constraint function and its gradient thus lead to large amount 

of computation and slow convergence. It is more obvious especially for 

multi-variables optimization problem. 
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Optimality criteria approaches pre-establish criteria to evaluate the structural 

performance such as stress, strain energy, frequency and etc. based on experience 

and mechanical engineering concepts, set the Kuhn-Tucker conditions (referred to 

as KT conditions) as the requirement that optimal solution should satisfy, then the 

criteria used to optimize the design variables and update the Lagrange multipliers, 

find the best solution from all the feasible design solutions through an iterative 

approach at the end. Optimality criteria approaches have an intuitive physical 

meaning, need not derivative information of function or constraints, less iterations, 

high speed convergence and high computational efficiency. Furthermore, it is 

particularly suitable for large scale projects which need a large amount of calculation 

due to the insensitivity to the increase of the design variables. However, compare to 

mathematical programming techniques and heuristic algorithms, the optimization 

always converge to local optima due to the lack of rigorous theoretical foundation. In 

addition, it is not a general method which can be applied on different optimization 

problems. 

 

Heuristic algorithms are optimization methods that conceptually different from the 

traditional mathematical programming techniques. These methods are labeled as 

modern or nontraditional methods of optimization. Most of these methods are based 

on certain characteristics and behavior of biological, molecular, swarm of insects, 

and neurobiological systems. The most rational structures in the world are often 

created by nature. Bones of animals, plant stems are the formation of a natural 

evolution and continuous improvement in the long history. Heuristic algorithms are 

just methods finding the optimal solution in the feasible region when applied to 

structural optimization according to the laws of nature. In general, although cannot 

guarantee the final result is global optimal solution, but generally can approach the 

global optimal solution. Furthermore, the mathematical calculations are not complex, 

However, a large amount of calculation always needed due to the difficult 

convergence.  

 

2.2.1 Mathematical Programming Techniques 

 

The problems with linear objective function and linear constraints are Linear 

Programming (LP) problems. Linear programming is the term used for defining a 

wide range of optimization problems, in which the objective function to be minimized 

or maximized is linear in the unknown variables and the constraints are a 

combination of linear equalities and inequalities (Belegundu and Chandrupatla, 2011, 
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Dantzig, 1998). In the area of structural, most problems are not linear. However, one 

way of solving nonlinear programming (NLP) problems is to transform them into a 

sequence of linear programs (Arora, 2004, Kim, et al., 2002). In addition, some NLP 

methods solve an LP problem during their iterative solution processes. Thus, linear 

programming methods are useful in many applications. The standard form of an LP 

problem with m constraints and n variables can be represented as follows: 

 

minimize

subject to

     
Tf 



 

c u

   Au b

                  u 0,  b 0 

 (3) 

 

Where c is the coefficient of the cost function, u is the vector of design variables to 

be determined, A is m×n matrix, and b is m×1 vector. Inequality constraints can be 

transformed to equality constraints by introducing slack variables. Linear 

programming problems are convex problems. Hence, a local minimum is indeed a 

global minimum. 

 

The simplex method is a very efficient method for solving linear programming 

problems. The method was developed by George Dantzig (Dantzig, 1998) in 1947 

and has been widely used since then. A positive feature of a linear programming 

problem is that the solution always lies on the boundary of the feasible region. Thus, 

the simplex method finds a solution by moving each corner point of the convex 

boundary. Therefore, the basic idea of the simplex method is to proceed from one 

basic feasible solution to another in a way that continually decreases the cost 

function until the minimum is reached (Nocedal and Wright, 2006). 

 

The problems with nonlinear objective function or nonlinear constraints are 

Nonlinear Programming (NLP) problems. There are two categories of nonlinear 

programming techniques, namely direct and indirect methods as list in Table 1. The 

direct methods are also known as non-gradient methods and zeroth-order methods 

since they require only the objective function values but not the partial derivatives of 

the function in finding the minimum (Bradie, 2006, Hildebrand, 1987, Nocedal and 

Wright, 2006). On the contrary, the indirect methods are known as gradient methods 

since they require not only the function values but also the first and in some cases 

the second derivatives of the objective function. In general, due to more information 

about the objective function is used through the use of derivatives, the indirect 

methods are generally more efficient than direct techniques (Rao and Rao, 2009).  
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Based on the nature of design variables encountered, optimization problems can be 

classified into unconstrained optimization problems or constrained optimization 

problems. When there are no constraints on the design problem, it is referred to as 

an unconstrained optimization problem. On the contrary, constrained optimization 

problem are with constraints. A very common instance of a constrained optimization 

problem arises in finding the minimum weight design of a structure subject to 

constraints on stress and deflection. Even if most engineering problems have 

constraints, these problems can be transformed into unconstrained ones by using 

the penalty method, or the Lagrange multiplier method.  

 

Direct Methods Indirect Methods 

Unconstrained Optimization Problems 

Random search method Steepest descent method 

Gird search method Fletcher–Reeves method 

Univariate method Newton’s method 

Pattern search methods Marquardt method 

Powell’s method Quasi-Newton methods 

Simplex method Conjugate gradient method 

Constrained Optimization Problems 

Random search methods Transformation of variables technique 

Heuristic search methods Sequential unconstrained minimization techniques 

    Complex method     Interior penalty function method 

Objective and constraint approximation methods     Exterior penalty function method 

    Sequential linear programming method     Augmented Lagrange multiplier method 

    Sequential quadratic programming method  

Feasible direction Method  

    Zoutendijk’s method  

    Gradient projection method  

Generalized reduced gradient method  

Table 1 

Methods of nonlinear mathematical optimization problems (Rao and Rao, 2009) 

 

2.2.2 Optimality Criteria Approaches 

 

The use of the optimality criteria (OC) method has become widespread and has 

been applied, with a variety of modifications, to various fields of structural 

optimization, including building and bridge structures. The main reasons for the 

popularity of this method are its ease of implementation and fast convergence.  
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In general, optimality criteria methods are algorithms that seek the optimum through 

finding a solution that satisfies some pre-specified criteria which are postulated to 

correspond to the optimal result for the problem. Among the OC methods, the fully 

stressed design (FSD) method has a long history. Due to its ease of implementation 

and fast convergence, it was considered a viable alternative to formal optimization 

algorithms and widely used. However, it has a main weak point that without a 

rigorous mathematical basis.  

 

Compared with classical optimization, in which problems are described in terms of 

objective functions and constraints and then solved using some mathematical 

programming algorithm, optimality criteria methods analyzed a structure and 

redesigned it on the basis of some resizing rule. Therefore, while the methods of 

mathematical programming are formal in the sense of mathematics, optimality 

criteria methods are considered to be heuristic. In these methods the optimum is 

sought without explicit concern for an objective function (Groenwold and Etman, 

2009, Spillers and MacBain, 2009). 

 

The most important topic in the optimality criteria approach is the concept of scaling. 

The next two important topics are the iterative algorithm together with the 

specialization of the Lagrangian multipliers. All of these concepts will be derived as 

function of the sensitivity derivatives of the constraints and the objective functions. 

Then this optimization will no longer be addressed in the context of a single 

discipline, but instead it will be derived in terms of sensitivity derivatives which can 

be obtained for all disciplines (Venkayya, 1989).   

 

2.2.3 Heuristic Algorithms 

 

There are 5 main heuristic algorithms developed in recent years, namely Genetic 

Algorithms, Simulated Annealing, Particle Swarm Optimization, Ant Colony 

Optimization and Neural-network-based Methods (Kaveh, et al., 2008, Li and Au, 

2010, Madeira, et al., 2009, Martí and González-Vidosa, 2010, Perea, et al., 2008). 

The genetic algorithms are based on the principles of natural genetics and natural 

selection. Simulated annealing is based on the simulation of thermal annealing of 

critically heated solids. The particle swarm optimization is based on the behavior of a 

colony of living things, such as a swarm of insects, a flock of birds, or a school of fish. 

Ant colony optimization is based on the cooperative behavior of real ant colonies, 

which are able to find the shortest path from their nest to a food source. In 
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neural-network-based methods, the problem is modeled as a network consisting of 

several neurons, and the network is trained suitably to solve the optimization 

problem efficiently (Rao and Rao, 2009). 

 

Among all the heuristic algorithms, genetic algorithms (GA) have the most in-depth 

research and widest application. It generates solutions to optimization problems 

using techniques inspired by natural evolution, such as inheritance, mutation, 

selection and crossover. In a genetic algorithm, a population of candidate solutions 

(called individuals, creatures, or phenotypes) to an optimization problem is evolved 

toward better solutions. The evolution usually starts from a population of randomly 

generated individuals which is called a generation, and is an iterative process. In 

each generation, the fitness (usually the value of the objective function in the 

optimization problem being solved) of every individual in the population is evaluated. 

The more fit individuals are stochastically selected from the current population, and 

genome of each individual is modified to form a new generation. The new generation 

of candidate solutions is then used in the next iteration of the algorithm. Commonly, 

the algorithm terminates when either a maximum number of generations has been 

produced, or a satisfactory fitness level has been reached for the population 

(Madeira, et al., 2009). 

 

Compared with the traditional optimization methods, heuristic algorithms need not 

the derivative information of the objective function and provide several potential 

optimal solutions to designers. Moreover, the conversion process of design solutions 

is random and the operand is a code group contains the design variable information 

rather than the design variable itself.  

 

2.2.4 Optimization Problems Using MATLAB 

 

Several commercial software systems are available to solve optimization problems 

that arise in different engineering areas. MATLAB can be considered a high-level 

programming language for numerical computation, data analysis, and graphics for 

applications in many fields. It is a popular software that is used for the solution of a 

variety of scientific and engineering problems. Optimization toolbox implemented 

MATLAB is a specific toolbox developed for solving optimization problems 

(Andreassen, et al., 2010). It contains a library of programs or m-files, which can be 

used for the solution of minimization, equations, least squares curve fitting, and 

related problems. The programs or m-files, also called functions, available in the 

minimization section of the optimization toolbox are given in Table 2. The basic 
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information for using the various programs can be found in the user’s guide for the 

optimization toolbox. 

 

Type  Formulation MATLAB function 

Scalar 

minimization 

    ( ) 

              
x = fminbnd(fun,x1,x2) 

Unconstrained 

minimization 
    ( ) 

x = fminunc(fun,x0) 
x = fminsearch(fun,x0) 

Linear 

programming 

       

                            
x = linprog(f,A,b) 

Quadratic 

programming 

    ( )  
 

 
         

                           
x = quadprog(H,f) 

Constrained 

minimization 

    ( ) 
       ( )                  

                    
x = fmincon(fun,x0,A,b) 

Semi-infinite 

minimization 

    ( ) 
       (   )       ( )            

                          

x = fseminf(fun,x0,ntheta,seminfcon) 

Binary integer 

programming 

       

                                
x = bintprog(f,A,b,Aeq,beq,x0) 

Goal 

attainment  

     

       ( )          

    ( )                 

                   

x = fgoalattain(fun,x0,goal,weight) 

Minimax  

       *  ( )+ 

       ( )                 

                   

x = fminimax(fun,x0) 

Table 2 

MATLAB programs or functions for solving optimization problems (Guide, 1998) 

 

 

2.3. Numerical Methods for Topological Optimization  

 

Compared with other types of structural optimization, topology optimization of 

continuum structures is by far the most challenging technically and at the same time 

the most rewarding economically. Topology optimization is the first structural 
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optimization stage, it is used for conceptual design, and thus the stage where 

lightweight can be achieved. In the past three decades, topology optimization has 

become a powerful and increasingly popular tool for designers and engineers in the 

early stages of the design process (Bendsoe and Sigmund, 2003, Rahmatalla and 

Swan, 2003). 

 

Topology optimization is a rapidly expanding research field in structural optimization, 

its application to bridge structures is being considered as one of the most 

challenging and committing tasks in structural design. It is a form of "shape" 

optimization, sometimes referred to as "layout" optimization. The purpose of 

topology optimization is to find the best use of material for a body such that an 

objective criterion (such as global stiffness or natural frequency) takes on a 

maximum/minimum value subject to given constraints (such as volume reduction). 

The standard formulation of topology optimization defines the problem as minimizing 

the structural compliance while satisfying a constraint on the volume of the structure 

(Release, 2007). 

 

Topology optimization is actually the optimization of spatial materials distribution. Its 

method solves the basic engineering problem of distributing a limited amount of 

material in a design space. The first paper on topology optimization was published 

over a century ago by the versatile Australian inventor Michell, who derived optimality 

criteria for the least weight layout of trusses. In 1976, Prager and Rozvany formulated 

the first general theory of topology optimization, termed ―optimal layout theory‖. After 

that, structural topology optimization has been extensively explored, especially for 

continuum structures (Rozvany, 2008). Many optimization methods such as the 

Homogenization Technique, Solid Isotropic Material with Penalization (SIMP), 

Evolutionary Structural Optimization (ESO) and Bi-directional Evolutionary Structural 

Optimization (BESO) have been developed. 

 

There are analytical methods and numerical methods for structural topology 

optimization. The Michell theory is an analytical method, developed early and has a 

great influence on structural topology optimization study, but still has many difficulties 

in practice. Numerical methods can be classified into two categories according to the 

structure is discrete or continuum. Ground structure approach (GSA) is earliest 

numerical method for discrete structures, while there are three main numerical 

methods for continuum structures, namely Material Interpolation method (include the 

most famous SIMP method), Evolutionary Structural Optimization (ESO) method and 

Level Set method.  
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Following the topology optimization of structures characterized by mathematical 

problems through the numerical methods, suitable mathematical optimization 

method needs to be selected and applied on the structures. As mentioned above, 

three main categories mathematical optimization methods are available, namely 

mathematical programming techniques, optimality criteria approaches and heuristic 

algorithms. During the optimization procedure, there will be some numerical 

instability problems with the use of finite element analysis software, such as porous, 

checkerboard, mesh dependency and local minimum that will directly affect the 

convergence and the results. 

 

2.3.1 Material Interpolation Method 

 

The presently most popular numerical FE-based topology optimization method is the 

material interpolation method, in which the Solid Isotropic Material with Penalization 

(SIMP) are most famous and widely applied in the topology optimization (Bruns, 

2005, Rozvany, 2001). The basic idea of this approach which so-called 

Homogenization approach was proposed by Bendsøe in the landmark paper 

(Bendsøe and Kikuchi, 1988, Sigmund, 2001). Following this idea, numerical 

methods for topology optimization have been investigated extensively since the late 

1980s. 

 

Homogenization approach (Bendsøe and Sigmund, 1999, Suzuki and Kikuchi, 1991) 

introduced a material model that allow the density of material to cover the complete 

range of values from 0 (void) over intermediate values (composite) to 1 (solid), 

namely the hole-in-cell microstructure as shown in Fig. 2 that consists of an isotropic 

material with rectangular holes (Eschenauer and Olhoff, 2001). For the topology 

optimization, the orientation  ( )  of the microscopic cells and their geometry 

defined by the length of a and b, are applied as design variables. Microstructures are 

classified as the void that contains no material as a and b equal to 0, the solid 

medium which contains isotropic material as a and b equal to 1, and the generalized 

porous medium which contains orthotropic material for intermediate values of a and 

b.  

 

The components of the stiffness matrix for the microstructure can be obtained 

numerically on the basis of homogenization for different sets of values of a and b. 

For expedience, the components of the effective stiffness matrix are normally 

represented as functions of a and b via approximation formulas. Therefore, through 
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the introduction of material model, the structural topology optimization problem is 

envisioned as finding the optimal material distribution within a prescribed admissible 

design domain Ω while the criteria and constraints are satisfied. As a consequence, 

the homogenization is utilized to analyze the composite structure.  

 

 

Fig. 2 Microstructure for 2D continuum topology optimization problems (Min, et al., 2000) 

 

Shortly after the homogenization approach to topology optimization was introduced, 

Bendsøe (Bendsøe, 1989) suggested the so-called SIMP or power-law approach, 

which first was meant as an easy but artificial way of reducing the complexity of the 

homogenization approach and improving the convergence to 0-1 solutions. Later a 

physical justification of SIMP was provided by Bendsøe and Sigmund (Bendsøe and 

Sigmund, 1999). In the SIMP approach the relation between the density design 

variable and the material property is given by the power-law, e.g. 

 

( ) ( ) q

ef i i iE g E E   =  (4) 

 

Where q is the penalization parameter and E is the Young’s modulus of solid 

material. For q equal to 1 the optimization problem corresponds to the so-called 

―variable-thickness-sheet‖ problem, while q larger than 1 penalizes intermediate 

thickness or densities and hence favors 0-1 solutions for the same objective. 

Choosing q too low or too high either causes too much grey scale or too fast 

convergence to local minima (Sigmund and Maute, 2013), its effectiveness can be 

seen from Fig. 3.  

 



CHAPTER 2. STATE-OF-ART: STRUCTURAL OPTIMIZATION 

 

23 

 

 

Fig. 3 Actual elastic modulus vs. penalty exponent of SIMP method 

 

When SIMP method implemented into FE code, it is based on the assumption that 

the stiffness matrix of each element is proportional to its density. If E is the actual 

elastic modulus of the material, Eef = E is defined as the ―effective‖ elastic modulus 

of each element, lower than E in design regions with relative pseudo-density  lower 

than 1. The pseudo-density is defined as =
q
, where  is the relative density 

referred to the actual density of the material and continuously varying between 0 and 

1, q is a penalty exponent that, for values sufficiently higher than 1 (normally q>3), 

makes elements with intermediate values of Eef unfavorable for an economical use of 

material, thus highly reducing their number in the optimal solution. 

 

Based on these assumptions, the contribution of elements with nearly 0 to the 

global stiffness matrix (and therefore to the model compliance), as well as the effect 

of their removal, is negligible. By referring to the assumed relationship between 

material properties and density, the design variables were the internal 

pseudo-densities assigned to each finite element (i), whose stiffness matrix was 

proportional to E = ρ
q
E. 

 

Discretization with finite elements (numbered as i=1….N) allows to define u and f as 

the displacement and load vectors, respectively, so that compliance C=f
T
u could be 

minimized. The SIMP method was hence performed as a minimum compliance 

design, where a material distribution problem was to be solved. Since Ku = f, then f 

is related to u through the global stiffness matrix K, the latter being proportional to 

the effective elastic modulus efiE =i E of each element i. Hence, if V is the total 

volume of the structure after topology optimization, assigned as a percentage of the 

actual volume V0 of the structure before the topology optimization process, 

minimization of compliance C leads to: 
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,
min
ef i iE u

 fTu
 

(5) 

 

and allows to obtain the pseudo-density value i in each element for:  

 

0i1  and  0
1

N

i i
i

V V V



 
 

(6) 

 

After having evaluated the volume V0 before inserting holes, topology optimization 

was hence performed by minimizing compliance C (that is maximizing stiffness) for 

different given VR=(V0V)/V0, thus obtaining a range of solutions.  

 

The SIMP method is a very efficient structural optimization approach that has 

demonstrated its effectiveness in a large number of examples. It is also the method 

implemented in many commercial tools (OptiStruct, Genesis, MSC/Nastran, ANSYS, 

etc.) performing topology optimization. Take the ANSYS for example, the general 

optimization problem statement of SIMP method implemented in ANSYS is briefly 

introduced.  

 

The theory of topological optimization seeks to minimize or maximize the objective 

function (f) subject to the constraints (gj) defined. The design variables (ηi) are 

internal pseudo-densities that assigned to each finite element (i) in the topological 

problem. The pseudo-density for each element varies from 0 to 1, where ηi ≈ 0 

represents material to be removed, and ηi ≈ 1 represents material that should be kept. 

Stated in simple mathematical terms, the optimization problem is as follows:  

 

f = ηi       (min, max) (7) 

 

Subject to: 

 

0 1 1, 2,3, ,

1, 2,3, ,

i

j j j

i n

g g g j m

  

  





 (8) 

 

Where: n = number of elements; m = number of constraints; jg = computed j-th 

constraint value; jg = lower bound for j-th constraint; jg = upper bound for j-th 

constraint. 
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Common for all the material interpolation approaches is that they represent smooth, 

differentiable problems that can efficiently be solved by well-proven, gradient-based 

optimization approaches such as optimality criteria methods, the method of moving 

asymptotes (MMA) or by other mathematical programming-based optimization 

algorithms. Apart from OC methods, these optimizers also immediately allow for 

systematic and straightforward inclusion of additional global constraints. However, 

while formally it is easy to include local constraints as well, parameterization issues 

as seen in stress constrained problems may render such problems quite hard to 

solve in practise (Sigmund and Maute, 2013). 

2.3.2 Evolutionary Structural Optimization (ESO) Method 

 

The evolutionary structural optimization (ESO) technique (Huang and Xie, 2008, Xie 

and Steven, 1993) was originally proposed in 1992 by Professors Mike Xie and Grant 

Steven. They aimed to develop a very simple but versatile technique for finding 

optimal structural designs (Xie and Steven, 1993). ESO is based on the concept of 

slowly removing inefficient materials from a structure so that the residual structure 

evolves towards the optimum. Practically all aspects of structural behavior can be 

accommodated within the ESO concept and the optimality constraints can be stress 

based, stiffness/displacement based, frequency based, buckling load based, with 

single or multiple environments.  

 

ESO method uses the concept of gradually removing (―hard-kill‖) redundant material 

from a structure based on von Mises stress or strain energy of each element so that 

the resultant structure evolves toward an optimum (Abolbashari and 

Keshavarzmanesh, 2006). Compared with other existing methods, the ESO method 

is much more straightforward and involves no mathematical programming 

techniques in the optimization process. In fact it can be easily implemented into any 

general purpose finite element analysis (FEA) program (Chu, et al., 1996, 

Tanskanen, 2002).  

 

Bidirectional evolutionary structural optimization (BESO) method (Young, et al., 

1999) is an extension of ESO, which allows for inefficient materials to be removed 

from a structure at the same time as the efficient ones to be added. In so doing, the 

BESO method greatly improves the robustness of the solution process compared to 

traditional ESO method (Huang and Xie, 2008). 
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However, the ESO and BESO may result in a non-optimal when these methods are 

implemented and used. G. I. N. Rozvany (Rozvany, 2008) gave a critical review of 

ESO method and pointed out some critics. Such as ESO is fully heuristic and exists 

no rigorous proof that element eliminations or admissions on the above basis do 

give an optimal solution, ESO procedure cannot be easily extended to other 

constraints or to multi-load or multi-constraint problems, it is not particularly efficient 

if designers have to select the best solution by comparison out of a very large 

number of intuitively generated solutions. Moreover, he pointed out although ESO 

usually requires a much greater number of iterations than gradient-type methods, it 

may yield an entirely non-optimal solution even with respect to ESO’s objective 

function, and he verified that through a simple example of cantilever beam in a very 

brief note (Edwards, et al., 2007, Zhou and Rozvany, 2001).  

 

2.3.3 Level Set Method 

 

The level set method (LSM) is a numerical technique proposed by American 

mathematicians Stanley Osher and James Sethian in the 1980s (Osher and Sethian, 

1988) for tracking interfaces and shapes. It has widely application in many 

disciplines, such as image processing, computer graphics and etc.. In 2000, Sethian 

and Wiegmann introduced the concept of level set method to structural optimization 

firstly (Sethian and Wiegmann, 2000, Xia, et al., 2012).  

 

In the level set method, the boundary of the design is defined by the zero level 

contour of the level set function φ(x) and the structure is defined by the domain 

where the level set function takes positive values, i.e. 

 

0 : : 0

1: : 0

  

   






  
 

  

x

x
 (9) 

 

In the past decade numerous level set methods have emerged which can be 

classified, for example, by the approach for discretizing the level set function, the 

approach for mapping the level set field onto the mechanical model, and the 

approach for updating the level set field in the optimization process (Sigmund and 

Maute, 2013, Wang, et al., 2003). 

 

In contrast to density methods, level set method define the geometry of the structure 

via the definition of a solid void interface. The principal idea of level set method is to 
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remove material in regions of low stress and to add material in regions of high stress. 

A removal rate is established representing a percentage of the maximal initial stress 

below which material may be eliminated, and above which material should be added. 

The biggest benefit of this approach is that it is easier to add material at holes’ 

boundaries with high stress than on a triangulated finite element mesh. This 

approach seeks to improve design by making more efficient use of the material 

(Allaire, et al., 2002, Osher and Fedkiw, 2001, Wang, et al., 2003). 

 

2.3.4 Numerical Instabilities 

 

Although the topology optimization method of continuum structures developed 

speedily from the landmark paper of Bendsøe and Kikuchi and has reached a level 

of maturity when applied in structural problems, there still exist a number of 

problems concerning checkerboard, mesh dependency and local minima.  

 

Checkerboard refers to the problem of formation of regions of alternating solid and 

void elements ordered in a checkerboard like fashion. The appearance of these 

regions is due to bad numerical modeling of the stiffness of checkerboards and has 

nothing to do with the approach no matter of homogenization or SIMP method. Diaz 

and Sigmund (Diaz and Sigmund, 1995) compared the stiffness of checkerboard 

configurations in a discretized setting to the stiffness of uniformly distributed 

materials and concluded that the checkerboard structure has artificially high stiffness, 

which works provide useful guidelines regarding choice of stable elements (Sigmund 

and Petersson, 1998). 

 

Mesh dependency refers to the problem of not obtaining qualitatively the same 

solution for different mesh-sizes or discretization. There are two categories of 

mesh-dependence problems, namely the problem of (necessarily) obtaining finer 

and finer structure with mesh refinement, which is due to nonexistence of solutions, 

and problems with many optima, i.e. non-unique solutions. The latter cannot be 

removed, but by introducing manufacturing constraints such as a minimum area 

constraint a less oscillating solution can be determined. While the former can be 

prevented with the utilization of filtering methods such as Restriction Methods, Local 

Gradient Constraint and Mesh Independent Filtering (Sigmund and Petersson, 1998, 

Sigmund, 2007). 
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Local minima refers to the problem of obtaining different solutions to the same 

discretized problem when choosing different algorithmic parameters or different 

initial starting point. Therefore, small variations in initial parameters such as move 

limits, geometry of design domains, number of elements, perimeter constraint value 

or filter parameter, etc., can result in drastically changes in the "optimal design". 

Until now, there is no effective method to overcome the problem of local minima, 

especially for multi-objectives, multi-constraints and complex topology optimization 

problems. Generally two measures can be used to reduce the impact of local 

extreme problems, one is considering a suitable optimization algorithm to looking for 

global optimum, and another is trying to starting from different initial value and select 

better optimization results. 
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CHAPTER 3 

 

3. PROPOSED OPTIMIZATION INDEX 

 

 

Structural optimization has become in the last decades an important mathematical 

tool for designers. Among the different optimization techniques, sizing and shape 

optimization allow for identification of structural solutions and layouts characterized 

by a better exploitation of material, thus decreasing self-weight of structure and 

saving material costs, topology optimization aids the designers to find the most 

suitable shape of a structure from a structural and an architectural point of view, 

which leads to the definition of voids patterns delimiting regions where fluxes of force 

migrate from force application point to boundary regions.  

 

With the powerful tool of topology optimization, designers can obtain families of 

candidate solutions by modifying input volume reduction (VR) ratio thus reducing 

structural weight as much as possible. However, find the best compromise between 

material saving and structural performance among these candidate solutions is a 

critical issue for designers. To face this issue, an optimization index (OI) was 

originally defined concomitantly with the structural optimization of a steel concrete 

arch bridge built is San Donà in the province of Venice, Italy (Briseghella, et al., 

2012). It provides to the designer a mathematical procedure able to highlight the 

best choice among several candidate solutions obtained by the optimization 

procedure.  

 

Moreover, during earlier designing phases of a project, in particular in the case of 

spatial shell structures, several starting trial solutions as well as tentative solutions 

might being defined based on the judgment of designer, each solution characterized 

by a particular layout, material property or distribution of boundary conditions. In this 

case, structural optimization is still a viable tool to optimize structures, but it would 

led to the definition of entire families of possible candidate solutions, depending on 

input VR target and tentative starting models through particular layout, different 

material property or boundary condition. Therefore, the problem is changed from 

single-family multi-solutions to multi-families multi-solutions. 

 

In this thesis, a specific scaling factor vector  is introduced in the OI and a 

generalized version of the original optimization index (OI*) is defined. Based on the 
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OI*, through the introduction of weight vector w, a further GOI* formulation is 

presented. The proposed generalized optimization index allows not only to identify 

best candidate solution originated by a unique reference model, but even comparing 

structural performances between candidates solution derived by several starting trial 

solutions. 

 

 

3.1. Optimum Index Formulation for Single-Family Multi-Solutions 

 

The optimization index (OI) was originally defined by Briseghella et al. 2012, and has 

been published in the Journal of Bridge Engineering. However, to present to the 

reader clearly and consecutively, the identified process of OI was introduced in this 

section again. 

 

During structural optimization, immediately following the topological optimization 

procedure on structures, several candidate design solutions with voids for each 

starting layout are generally defined, as many as input volume reductions. Although 

the design objective of topology optimization is reduction of structure self-weight, the 

increase of volume reduction generally causes a variation of both stress distribution 

and deflection level, whose control is therefore a competing requirement with 

respect to volume reduction itself. Hence, a way of identifying the most suitable 

design solution that presents the best compromise between material saving and 

structural performance among all these different optimized layouts with holes has to 

be defined.  

 

Since a set of optimum layouts with holes were obtained from topology optimization 

for different values of volume reduction, a specific optimization index was introduced 

to give the designer a specific mathematical tool to identify the most suitable design 

solution. Such an index had to take into account volume reduction (and therefore 

weight reduction) together with the structural response in terms of both stress and 

deformation level.  

 

To summarize the overall behaviour of the whole structure, stress index and 

deformation index were identified as representative of structural response. The 

former could be the average stress or maximum stress throughout the whole 

structure that considered as representative of stress level, while the latter could be 

the maximum deflection at mid-span or at tower top for cable-stayed bridge that was 

considered as representative of deformation level.  
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Two Response Indexes (RIs) were then identified in terms of percentage variation of 

deformation and stress level with respect to their corresponding values obtained in 

the starting model (without holes) under same loading condition, that is: 

 

   0 0

0 0

, ;     ,i id d
RI i RI d i

d

 




 
   (10) 

 

In this index i refers to considered i-th solution, 
0

  and 0d  are the stress and 

deformation of starting model (without structural optimization), 
i

  and 
i

d  are the 

stress and deformation of i-th solution. Response Index (RI) is defined in terms of 

percentage variation of a parameter representative of the behavior of i-th candidate 

solution compared to reference one, that is the starting model (without optimization) 

under the same loading condition.  

 

Although the design is focus on the reduction of objective like as superstructure 

weight, cable volume, reaction force and etc., the increase of volume reduction 

causes an increase of both stress level and deflections, whose control is therefore a 

competing requirement with respect to volume reduction. 

 

Hence, a way of identifying the most suitable design solution among all these 

different optimised layouts with holes had to be defined. For this purpose, the 

variation of structural response with respect to the variation of volume reduction can 

be compared by defining the ratio RI/VR as optimization index or, conversely, its 

complement to 1, that is: 

 

 
 

 
   

 

1
1

RI i
OI i VR i RI i

VR i VR i
        (11) 

 

VR and RI are the volume reduction and response index of i-th solution, respectively. 

Graphical interpretation of optimization index is shown in Fig. 4, in which both VR 

and RI are expressed in percent, thus varying between 0 and 100. 

 

Considering the cartesian plane where VR is the x-axis and RI the y-axis, the 

difference VR-RI represents the distance between the plane bisetrix and the RI 

curve. By scaling the difference VR-RI through the coefficient 1/VR for each value of 

volume reduction VR, the distances between the RI curve and the plane bisetrix 

results decreased to (VR-RI)/ VR, so that a curve whose distance from the abscissa 
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axis is VR-(VR-RI)/VR is so obtained (Fig. 4 a). Conversely, a curve whose distance 

from the bisetrix is VR-(VR-RI)/VR and from the abscissa axis is (VR-RI)/VR can 

also be obtained (Fig. 4 b). The latter curve is therefore the OI curve defined as 

above, and therefore expressed in percent as VR and RI. 

 

 

Fig. 4 Graphical interpretation of optimization index 

 

Since the optimization objective was lightening the bridge in most specific 

engineering case, it was then worth modifying the scaling coefficient 1/VR through a 

penalty exponent able to favour design solutions with higher volume reduction. For 

this purpose, after introduction of the penalty exponent, the scaling coefficient 

became (1/VR), where values of the penalty exponent between 0 and 1 favour 

design solutions with higher volume reduction, while values higher than 1 favour 

design solutions with higher performances but higher self-weight, and therefore not 

convenient to lighten the bridge (Fig. 4 c). Hence, the updated expression of the 

optimization index OI through introduction of the penalty exponent is: 

 

     
  

1
OI i VR i RI i

VR i


    

 

 (12) 



 is a penalty exponent, usually between 0 and 3, able to favor design solutions with 

lower or higher volume reduction according to  is higher of lower than 1. The 

application of the penalty exponent to the scaling factor 1/VR results therefore in 

lower values of OI for <1 and in higher values for >1.  

 

From the left chart of Fig. 5, it can be seen that for >1 the scaling factor (1/VR) as 

a function of VR tends to become a bilinear curve (the more bilinear the curve the 

higher is ). In addition, with a vertical branch for VRcloser to 0, and a horizontal 

branch whose values are almost 0 in the range of volume reduction values that are 

significant in the design of the bridge under consideration. On the contrary, for <1, 
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the scaling factor (1/VR) plotted as a function of VR approaches a hyperbole for 

closer to tending to become an horizontal line for closer to 

 

Hence, while for >1 design layouts with holes are not favoured and those with low 

values of volume reduction are conversely favoured already for  slightly higher than 

1, for <1 design solutions with high volume reduction are instead favoured, the 

higher the volume reduction the lower is . 

 

 

Fig. 5 Scaling factor 1/VR with penalty exponent  vs. VR 

 

In the right chart of Fig. 5, the ratio R((1/VR)/(1/VR) is plotted for different values 

of . It can be seen that for 2the ratio R(2) is roughly 0 for almost every value of 

VR. On the contrary, for 0.5 the ratio R(0.5) is a steep function of VR, meaning 

that the scaling factor with penalty exponent 0.5 becomes much higher than the one 

without the penalty exponent even for low values of VR, becoming 10 times 1/VR for 

VR=100%. An intermediate trend is observed for 8, with R initially slightly steep, 

and then even less steep until the value of only 2.5 times 1/VR is reached for 

VR=100%. 

 

Hence, although in general values of  less than 1 favour design solutions with 

significant volume reduction, values of  less than but suitably close to 1 are able to 

favour design solutions with intermediate values of volume reduction. 

 

Eventually, since the expression of the above optimization index is referred to a 

specific structural response in terms of stress or deformation, a global optimization 

index (GOI) considering both these features of structural response can be also 

defined. By giving the same weight to both deformation and stress level, a global 

optimization index averaging the two optimization indexes referred to stresses and 

deformations is then defined as: 
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  ( ( , ) ( , )) / 2GOI i OI A i OI d i     (13) 

 

With the GOI, a suitable score for each design solution is assigned. The one with 

highest score is the optimum solution that better balances material saving and 

overall performance of the structure.  

 

 

3.2. Generalized Version for Multi-Families Multi-Solutions 

 

Original formulation for the OI reveals itself effective when a unique reference 

starting layout is clearly identified. However, during earlier designing phases of a 

project designers could be interested in comparing the behavior of different tentative 

solutions for the same structure, on the basis of their own engineering judgment. 

Each trial solution could be characterized like as by different boundary condition, 

different starting layout or both. If structural optimization procedure applied to each 

starting solutions, entire families of candidate solutions with voids will be defined 

depending on input VR and trial models. Therefore, the identification of the best 

overall layout solution becomes a multi-families multi-solutions comparison. To face 

this issue, and compare performances of different starting models, a specific scaling 

factor vector  is introduced in the OI. Hence, a generalized version of optimization 

index OI* is proposed: 

 

     
  

1
,       ( 1,2,3, , ;   1,2,3, , ) 

j
OI i j VR i RI i i m j n

VR i





         (14) 

 

Where i refers to considered i-th solution as before, j refers to j-th family that is the 

different starting model has been defined. m, n are the number of solutions for each 

starting model and number of starting models, respectively. Corresponding to 

response indexes (RIs), scaling factors jare formulated both in term of stress and 

deformation level. They are calculated by comparison of j-th starting model response 

with that of the reference 0-model. The latter can be chosen among all the starting 

models, without altering the final scoring results given by OI*. The value of scaling 

factors j can be calculated as follows: 
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 (15) 

For a specific j index, 0, jA  and 0, jd  are stress and deformation level of the j-th 

starting model without volume reduction, respectively. 0,0A  and 0,0d  are the 

corresponding value of the reference starting 0-model. 

 

The formulation for  mainly consists of a percentage variation with reference to 

starting model of parameter chosen for RI (i.e. stress or deformation level). Vector  

is then representative of static behavior of each starting model compared to the 

0-model. Additional terms have a scaling effect on the index . As model with good 

static behavior leads to low stress and deformation ratios, the negative of it is 

considered. Therefore, starting model with better behavior has higher j value. To 

set the j of starting model with best static performance to 1, the last part which is 

minimum value of central part is added. Thus j is always less then unity and bigger 

than 0. 

 

 

Fig. 6 Scaling component with penalty exponent  and scaling factor  

 

The contribute of expression *(1/VR) from optimization index OI* formula is plotted 

in Fig. 6 as a function of VR, considering different scaling factorand penalty 

exponent. The parameter should be set based on the judgment of engineer. On 

the one hand, it can be seen that the scaling component increases exponentially as 

rising, so that penalty exponent favor design solutions with higher volume 

reduction. On the other hand, the scaling component increases linearly as 

risingmeaning that scaling factor highlight starting models with better static 

behavior. Hence, the proposed optimization index (OI*) takes into account 
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performances from different starting models with different volume reduction together 

and assigns score properly to each design solution of the entire candidate domain. 

 

Finally, since the expression of the above optimization index is referred to a specific 

structural response in terms of stress or deformation, global optimization index 

(GOI*) considering both these features of structural response is defined as the 

original defined optimization index (OI*).  

 

In the originally optimization index, GOI is defined by averaging the two optimization 

indexes referred to stresses and deformations. However, in real cases with high 

stiffness such as the shell structures, the deformation is slightly affected by the 

insertion of holes while the stress is highly sensitive to the VR. Sometimes it can be 

huge difference of the influence due to the rigidity of the structure. Therefore, to 

consider the effect size of two OIs*, through the introduction of weight vector 

 ,1 2w ww  rather than giving the same weight to deformation and stress level, a 

GOI* is then defined as:   

 

 *, ( , , )* ( , , )*1 2j jGOI i j w OI A i j w OI d i j   

 

 (16) 

 

The weight vector is calculated according to the RIs: 

 

1 1 1

( , ) ( ( , ) ( , ) );    1   1 12 j

m m m

j j
i i i

w RI i RI i RI d i w w 

  

     

 

 (17)

 

 

Through the introduction of scaling factor which calculate from the performances 

comparison of tentative starting models, the starting model with better mechanical 

behavior in terms of stress and deformation level has higher value and is 

highlighted from all the starting models. In the same way, higher GOI value is 

assigned to the starting model with better static performance. Through the 

introduction of weight vector w, the effect size of two OIs* is considered. Hence, the 

application domain of optimization index to identify the best overall layout solution is 

extended from 1-D linear to 2-D surface, as well as proposed GOI* not only can be 

used for a single-family multi-solutions comparison but also for a multi-families 

multi-solutions comparison.
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CHAPTER 4 

 

4. FOOTBRIDGES SUPPORTED BY CONCRETE SHELL 

 

 

Shell supported bridges, which deck is supported by a shell structure, are special 

spatial shape obtained by means of a form-finding algorithm in order to achieve 

mainly membrane stresses and avoid bending effects. When designing bridges 

supported by a shell in reinforced concrete (RC), it is worth choosing shells with 

minimal area that, being anticlastic and therefore subject to biaxial compression 

(Fluegge, 1973), well exploit the compressive strength of concrete and prevent crack 

propagation. Shells of minimal area can fluently and efficiently transfer loads from 

their points of application to the bridge foundations. The problem was studied in 

depth by outstanding structural designers, with special reference to Frei Otto (Otto, 

et al., 1973) and Sergio Musmeci (Musmeci, 1977). 

 

Musmeci was the first to apply this principle to bridges, thereby following in the 

footsteps of Robert Maillart in removing unexploited material from arch bridges. 

Robert Maillart, an eminent Swiss designer of RC bridges who developed a 

well-known typology of RC arch bridges named thereafter as Maillart Bridges, 

constructed many RC bridges of this type in Swiss Alps. Some of his well-known 

masterpieces include the Töss Bridge (Fig. 7), Schwandbach Bridge etc. which are 

recognized as outstanding works by some of the most eminent historians of Modern 

Architecture. In Maillart bridges, the infill between arch and deck (typical of masonry 

arch bridges) is removed, while a specific structural duty is assigned to each 

member. In fact, deck loads are clearly transferred to the shell arch by means of 

vertical walls, reaching the arch foundations through the abutments. 

 

 

Fig. 7 Töss Bridge - R. Maillart, 1933, Zurich (Switzerland) 
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Since the vertical walls of Maillart bridges caused stress concentration at their 

insertion with the shell arch, Musmeci corrected this by replacing both the shell arch 

and the vertical walls with a shell with double curvature, which supported the deck 

and fluently transferred deck loads to the bridge foundations. For this purpose, he 

shaped an anticlastic shell with minimal area, which when subjected to biaxial 

compression, avoided the occurrence of unwished bending moments (as it 

happened at the insertion between vertical walls and shell arch of Maillart bridges), 

thereby allowing better exploitation of concrete compressive strength.  

 

As, for the given boundary conditions, tension structures are shaped as membranes 

of minimal area that well exploit materials with high tensile strength, Musmeci 

shaped the concrete shells supporting the deck of his bridges as membranes in 

tension between deck and foundations. By then inverting the sign of restraint forces 

and internal stresses, he obtained his fully compressed concrete shells. Through the 

above procedure, together with integration with finite differences of the membrane 

equations subjected to the required boundary conditions, he designed his 

masterpiece, the Basento Bridge in Potenza (Italy), made of RC, whose deck is 

supported by an amazing anticlastic shell (Fig. 8). 

 

 

Fig. 8 Basento Bridge - S. Musmeci, 1969, Potenza (Italy) 

 

Nowadays, with the widespread use of powerful computers, the design procedure 

developed by Musmeci through a joint use of physical and analytical models can be 

pursued by using numerical form-finding algorithms.  

 

In this Chapter, three footbridges supported by concrete shell with different 

boundary conditions and thicknesses were obtained through a form-finding process. 

They are named as T_0.15, T_0.20 and T_0.32 according to the shell thickness. It is 

pointed out that notwithstanding the use of form-finding algorithms in order to obtain 

a shell of minimal area subjected to biaxial compression, unwished tensile stresses 

caused by unwished bending moments unavoidably occur in some regions of the 

shell. Such unavoidable tensile stresses can be further eliminated by removing 
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material from the shell regions where unwished bending moments arise, thus 

obtaining a shell structure with cavities. 

 

The method of suitably removing these shell regions by using topology optimization 

is shown below. Immediately following the form-finding process, a finite element 

topological optimization by means of Solid Isotropic Material with Penalization (SIMP) 

is carried out. After identifying the shell regions where the pseudo densities obtained 

from previous topological optimization results are lower, the geometries of the shells 

are updated by eliminating the material of these regions. With an iterative procedure 

of form finding and topological optimization, shells with pattern of holes are obtained 

and the areas of shell regions with low tensile stresses are minimized. 

 

For each reference shell supported footbridge, three different starting models are 

defined, each characterized by the same boundary conditions but different edge 

stiffening. Depending on different input VR ratio, for each starting model, 4 candidate 

solutions with voids are defined. Hence, there are 36 candidate solutions in total that 

is 3×3×4 (reference model×starting model×input VR). According to the results of 

all the candidate solutions, the proposed generalized optimization index, whose 

analytical formulation defined before is discussed in detail and its effectiveness is 

validated. 

 

 

4.1. Shell-Supported Bridges Design 

4.1.1 Shell Form-Finding  

 

To obtain a shell with cavities by means of topology optimization, it was first 

necessary to design a shell footbridge with deck supported by a concrete shell of 

minimal area. Three shell footbridges with different boundary conditions were 

designed to cross a deep canyon (depth 80 m, width 40 m) located in the city of 

Cagliari (Italy) and named according to the thickness of the shell surface. Although 

Cagliari is located on the sea, the canyon topography is similar to that of the deep 

valleys of the Alps where Maillart built his daring and outstanding bridges. 

 

The shell footbridges are shown in Fig. 9, and were shaped using a form-finding 

method described in (Fenu, 2005, Luigi Fenu, 2006). Each shell of the bridge was 

shaped as a compressed membrane with the same geometry as a tension structure 

with same loads, restraint reactions and internal normal forces, but with the opposite 
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sign. The form-finding algorithm modelled the tension structure as a cable net 

structure whose form was obtained by minimizing the distance between its nodes 

and their initial projections on a horizontal plane. Minimization was performed by 

means of a ―simulated annealing‖ algorithm. 

 

   
T_0.15 T_0.20 T_0.32 

Fig. 9 Shell supported bridges crossing the deep canyon, Cagliari (Italy) 

 

Although shells were shaped in order to avoid tensile stresses, and rise and restraint 

positions were chosen in order to reduce the occurrence of unwished bending 

moments, tensile stresses in any case occurred in some localized regions of shells. 

Because of second-order displacement will occur as shells in compression, contrary 

to tension structures, the bending stiffness of RC shells is not zero, the occurrence 

of undesired bending effects is unavoidable. This can be easily checked through 

modeling the footbridge by finite elements, as shown in the next section. 

 

4.1.2 Finite Element Model 

 

The bridges were modelled with the finite element analysis software ANSYS. The 

finite element (FE) models of the shell footbridges are shown in Fig. 10. For each 

model, the deck was simply supported by pinned joints between deck and shell, and 

the rotations at shell abutments were free. 

 

   
T_0.15 T_0.20 T_0.32 

Fig. 10 FE model in ANSYS 

 

The type of elements was chosen taking into account that, after the FE analysis, 
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topology optimization was to be performed. The shell element SHELL93 was chosen 

for the concrete shell, being supported by topology optimization implemented in 

ANSYS (Ansys, 2007). Also, BEAM188 was chosen for the deck girders, while 

BEAM4 was chosen for the transverse beams and the stiffening beams of the shell 

free edges. The total number of nodes and elements was shown in Table 3. 

 

Model Nodes Shell93 Beam188 Beam4 

T_0.15 26987 8800 30 4 

T_0.20 25663 8360 30 4 

T_0.32 24927 8080 30 4 

Table 3 

Total number of nodes and elements
 

 

For each model, concrete with strength class C30/37 was chosen according to the 

Eurocode 2. Therefore, its characteristic cylinder strength was 30 MPa. Based on 

the Eurocode 2 formulation, the average tensile strength of concrete before cracking 

was 2.9MPa (fctm = 0.30 fck 
2/3 

). The value of the modulus of elasticity was assumed 

to be 33 GPa. Poisson's ratio and material density were set, respectively, to 0.3 and 

2500 kg/m
3
. 

 

When defining the structural compliance as the objective or constraint of topological 

optimization, a linear structural static analysis have to be performed during 

optimization looping. It can be performed for a single load case or collectively for 

several load cases. In this shell supported bridges case, a uniformly distributed load 

of pedestrians of 4kN/m
2
 was supposed, with 9 different load cases, as presented in 

Table 4. These load cases are not only defined as multiple compliance function 

thereafter as topological objective during topological optimization, but also used to 

calculate the static behavior of updated models with holes. 

 

Load 
case 

Loading condition(s) Loading area(s) 

1 Full length full width 
 

2 

Full length half width 
 

3 
 

4 Half length full width 
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5 
 

6 
Two diagonal areas of half 

width 
 

7 
 

8 
Three alternative areas of 

half width 
 

9 
 

Table 4 

The uniformly distributed load of pedestrians is 4 kN/m
2 

 

4.1.3 Choice of Shell Thickness 

 

Tensile stresses in the RC shell were caused by unwished bending moments, the 

thinner the shell, the higher the unwished tensile. Therefore, it was necessary to 

choose the most suitable shell thickness. 

 

The shell thicknesses of three models were then optimized by using the design 

optimization tool implemented in ANSYS. It provides a zero-order method, where the 

dependent variables are first approximated by means of least squares fitting, and the 

constrained minimization problem is then converted to an unconstrained one by 

means of penalty functions, in order to be solved using Powell’s modified method.  

 

Shell thickness was assumed as a design variable with values ranging between 

0.1m and 0.4m. The optimum thickness was found by minimizing the shell total 

weight on condition that stress level and deflection were lower than an allowable 

value. Since the optimum solution was found to depend on the initial values of shell 

thickness, different initial values were tried in order to avoid local minimum solutions. 

Where DV is the design variable, SV is the state variable (stress level and 

deformation level). 

 

Shell bridge T_0.15 

 

The optimization procedure led to an optimum shell thickness of 0.156m. The actual 

thickness was then chosen to be 0.15m. Table 5 lists the optimization iterative 

process for an initial value of the shell thickness of 0.2m. The consistent decrease in 
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the objective function (and therefore the corresponding material saving) is well 

appreciable. 

 

No. 
Shell Thickness 

(m) (DV) 

Max Stress 

(Pa) (SV) 

Max Deformation 

(m) (SV) 

Shell Volume 

(m
3
) (OBJ) 

SET 1 0.200 2.66E+06 -0.008 33.580 

SET 2 0.184 2.79E+06 -0.009 31.014 

SET 3 0.151 3.21E+06 -0.011 25.281 

SET 4 0.145 3.39E+06 -0.011 24.466 

SET 5 0.149 3.24E+06 -0.011 25.142 

*SET 6* 0.156 3.06E+06 -0.011 26.334 

Table 5 

Shell thickness optimization of shell bridge T_0.15 

 

Shell bridge T_0.20 

 

The optimization procedure led to an optimum shell thickness of 0.193m. The actual 

thickness was then chosen to be 0.20m. Table 6 lists the optimization iterative 

process for an initial value of the shell thickness of 0.3m. 

 

No. 
Shell Thickness 

(m) (DV) 

Max Stress 

(Pa) (SV) 

Max Deformation 

(m) (SV) 

Shell Volume 

(m
3
) (OBJ) 

SET 1 0.300 2.09E+06 -0.012 51.517 

SET 2 0.277 2.08E+06 -0.012 47.581 

SET 3 0.218 2.35E+06 -0.015 37.536 

SET 4 0.166 3.92E+06 -0.019 28.611 

SET 5 0.213 2.43E+06 -0.015 36.61 

SET 6 0.197 2.92E+06 -0.016 33.839 

*SET 7* 0.193 3.02E+06 -0.017 33.224 

Table 6 

Shell thickness optimization of shell bridge T_0.20 

 

Shell bridge T_0.32 

 

The optimization procedure led to an optimum shell thickness of 0.328m. The actual 

thickness was then chosen to be 0.32m. Table 7 lists the optimization iterative 

process for an initial value of the shell thickness of 0.3m. 
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No. 
Shell Thickness 

(m) (DV) 

Max Stress 

(Pa) (SV) 

Max Deformation 

(m) (SV) 

Shell Volume 

(m
3
) (OBJ) 

SET 1 0.300  3.19E+06 -0.011  52.488  

SET 2 0.369  2.76E+06 -0.009  64.633  

SET 3 0.291  3.26E+06 -0.011  50.990  

SET 4 0.341  2.92E+06 -0.010  59.592  

SET 5 0.331  2.97E+06 -0.010  57.909  

*SET 6* 0.328  3.00E+06 -0.010  57.321  

Table 7 

Shell thickness optimization of shell bridge T_0.32 

 

 

4.2. Topological Optimization 

 

Although minimized by an appropriate choice of rise, shell thickness and boundary 

conditions, the occurrence of tensile stresses in some shell regions was unavoidable, 

thus suggesting the need of modifying the shell form by suitably removing material 

from these shell regions. Cavities were therefore inserted in the shell, whose form 

was shaped through topology optimization with Solid Isotropic Material with 

Penalization (SIMP) method, particularly suited when the optimal design solution 

has internal boundaries due to holes. 

 

The removal through the SIMP method of material not working in compression for 

the arising of unwished bending effects was carried out by means of the topology 

optimization routine implemented in ANSYS. The SIMP method was therefore 

performed after having implemented a finite element model of the shell supported 

bridge by using ANSYS, and led to the insertion of cavities in the RC shell. 

 

For an assigned value of volume reduction VR, the insertion of cavities through 

topology optimization included three main steps: 

 

(1) Finite element analysis for each load case (Table 4). 

(2) Topological optimization through the SIMP method: the pseudo-densities along 

the shell were mapped, taking into account all load cases (ANSYS). 

(3) Model updating: the model was updated by removing material (that means 

elements in FE model) with lower pseudo-densities, and the updated model was 

then analyzed through FE. 
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The above procedure was illustrated in Fig. 11. The procedure was then repeated 

for different values of volume reduction. 

 

FE Model
Define Load 

Cases

Define 

Volume 

Reduction

Perform 

Topological 

Optimization 

Plot Pseudo-

Density 

Contour

Remove 

Elements with 

Low Pseudo-

Densities

Calculate 

Stresses and 

Deformation

End

Topological 

Optimization 

Procedure

Results 

Tolerant?

Yes

No, use the same model

redefine volume reduction

No, use different model

Model 

Updating

Finite Element Analysis

 

Fig. 11 Flowchart of the optimization procedure 

 

4.2.1 Different Models Considered  

 

Although undesired bending moments can occur in fully compressed shells with 

minimal area, stiffening their free edges (analogously to tension structures usually 

stiffened by cables along their free edges) minimizes undesired bending effects not 

only along the free edges and close to them but also in the inner regions of the shell.  

 

As the paper deals with topology optimization of the shell, in order to minimize the 

occurrence of unwished tensile stresses in the shell through the insertion of cavities 

that modify its form, the deck is not involved in the optimization process. Three 

different starting models were hence considered (Table 8): 

 

(1)  Model I, where topology optimization was performed throughout the whole shell 

surface. 

(2)  Model II, same as Model I, except than for the fact that the shell regions close to 

the edge (for a distance of 0.20m from the edge) were excluded from topology 

optimization. 
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(3)  Model III, same as Model II, but stiffening beam elements (width 0.20m, same 

depth as the shell) were added along the free edges of the shell. 

 

Stiffening the free edges of the shell with beam elements was equivalent to placing 

stiffening reinforcing bars along the free edges. Similar to stiffening cables, which 

are absolutely necessary along the free edges of a tension structure, stiffening bars 

were necessary along the free edges of the concrete shell, especially because the 

shell was shaped to be fully compressed. For instance, by using a homogenization 

factor of 15, stiffening the free edges through beam elements 0.20m by 0.15m were 

equivalent to adding three bars of 20 mm diameter (cover 30 mm) at both extrados 

and intrados of the shell. 

 

Model Shell without edge area optimization Shell with edge stiffening beam  

I No No 

II Yes No 

III Yes Yes 

Table 8 

Different models considered 

 

 

4.2.2 Results of Shell Bridge T_0.15 

 

Adopting the shell thickness of 15 cm, as suggested in the Choice of Shell Thickness 

Section by thickness optimization, topological optimization of the shell was 

performed for different values of volume reduction VR. Also, topological optimization 

was applied to all the load cases so that for each value of VR, three pseudo-density 

contours (one per Model, each one obtained as an envelope of all load cases) were 

plotted (Table 9). All the pseudo-density contours turned out to be symmetric with 

respect to the symmetry axes of the bridge because even if each non-symmetric 

load case would have led to a non-symmetric pseudo-density contour. However, 

their corresponding mirrored load cases led to symmetric pseudo-density contours.  

 

Volume reduction values of 5, 10, 20 and 30% were consequently applied. The 

plotting of the pseudo-density contours obtained through topology optimization is 

shown in Table 9. For all models, increasing the values of VR resulted in an increase 

in the area of shell surface with low pseudo-density (blue). This low-density region 
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(identified through the SIMP method) gradually extended by each part along the 

bridge from sections near the deck-supports to the abutments, so that from VR = 30% 

onwards, close low-density regions tended to merge one with another, dividing the 

surface into two parts with higher density. 
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Table 9 

Pseudo-density contours from topological optimization with the SIMP method of model T_0.15 

 

Stresses and deformations of the updated models with holes 
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On the basis of the results of topological optimization, the three models were 

updated by removing the elements with pseudo-density lower than a specified value. 

As a consequence, the real volume reduction resulting after removing material was 

practically the same as that imposed to perform the topology optimization procedure 

(Table 10).  

 

Volume 

Reduction 

Model I Model II Model III 

Pseudo-

densities 

Real 

Vol. Red. 

Pseudo-

densities 

Real 

Vol. Red. 

Pseudo-

densities 

Real 

Vol. Red. 

5% 0.50 5.04% 0.58 5.04% 0.62 4.98% 

10% 0.43 10.10% 0.54 10.04% 0.53 10.04% 

20% 0.38 20.15% 0.71 19.96% 0.63 19.92% 

30% 0.28 30.05% 0.74 29.95% 0.99 29.11% 

Table 10 

Critical values of pseudo-density and real volume reductions of model T_0.15 

 

In Table 11, the stress contours obtained after removing these elements for each 

given value of volume reduction are displayed. The need for increasing stiffness of 

the shell free edges can be drawn from the contours of Model I. In fact, the absence 

of edge stiffening caused high tensile stresses especially along the free edges, so 

that topology optimization was required to remove material along them. This was 

well evident on the free edges close to the bridge ends for a volume reduction of only 

5%, as well as on the free edges between the deck supports for higher values of 

volume reduction.  

 

Moreover, the stress contours show that the stress distribution in Model III was more 

uniform than in Model I, with lower peaks of tensile stresses. This clearly showed the 

need to increase the stiffness of the free edges of the shell in order to limit 

undesirable peaks of tensile stresses arising not only along the free edges but even 

in the inner shell regions.  

 

  Model I Model II Model III 
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Table 11 

Maximum stress contours of updated models with holes of model T_0.15 

 

In Table 12, the diagrams obtained from a further analysis of the results emerging 

from Table 11 are plotted. Considering an allowable tensile stress of concrete of 

1.5MPa, the ratio between the area of the elements with tensile stress higher than 

1.5MPa and the initial shell area (namely for VR = 0) of all models for varying VR is 

shown. 

 

From Table 12, the effectiveness of the design method under consideration in 

reducing tensile stresses throughout the shell is evident, because in all models the 

shell surface where tensile stresses occurred was minimized by increasing values of 

volume reduction. 
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Moreover, the diagrams of Table 12 also show the favourable effect of stiffening the 

free edges because, notwithstanding the removal of elements along the free edges 

of Model I (and the consequent reduction of the area of the elements where tensile 

stresses occurred), the total area of shell elements with tensile stresses higher than 

1.5 MPa was always higher in Model I than in Model III. 
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Table 12  

Area of finite elements of the updated models with holes with tensile stress higher than 

1.5Mpa of model T_0.15 

 

Finally, Table 13 shows, for all models, the maximum deflections of both deck and 

shell centerline for different values of the volume reduction VR. Dashed lines in shell 

deflection diagrams indicate that since the related elements along the centreline 

were already removed, the plotted deflection was chosen to be that of the two closer 

symmetric elements with same abscissa (thus belonging to the same section). The 

diagrams of all models show that deflections of the shell footbridge were slightly 

sensitive to the variation of volume reduction. 

 

Table 13  

Maximum deflections of updated models with holes of model T_0.15 
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Identification of the best design solution 

 

The technique of eliminating the elements with tensile stresses higher than an 

allowable value was shown to be effective to decrease the level of tensile stresses 

throughout the whole shell. As stiffness was also decreased by the insertion of holes, 

a method to identify the best design solution became necessary, and is therefore 

described in the following. 

 

The trends of both RIs for varying VR of all the three models were illustrated in Fig. 

12. It can be noted that all the curves RI(A,i) decrease for increasing values of 

volume reduction, meaning that inserting holes through topology optimization was 

effective in reducing the area of the shell regions where tensile stresses occurred.  

 

Also, Fig. 12a shows that the curve RI(A,i) of Model III was always significantly lower 

than the two curves RI(A,i) of Model I and Model II, thus confirming the effectiveness 

of stiffening the shell edges. Fig. 12b shows that all the three curves RI(d,i) were 

slightly affected by VR, confirming that shell footbridges were very stiff structures 

and that the influence of the insertion of holes on their rigidity was not very 

significant. 
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Fig. 12 Response index vs.VR diagrams of model T_0.15: (a) RI(A,i) and (b) RI(d,i) 

 

On the basis of above reported results, multi-families scaling factors reports in 

Table 14. Model I and II have same value, both concerning stress and deformation 

level. The corresponding value of parameter  is 0.627 for stress level and 0.916 for 

deformation level. Conversely Model III has the highest scaling factor values and 

attains the maximum value equal to 1 both for stress and deformation levels. The  

factors related to stress confirm the positive effect of holing the shell and stiffening 

the edge in term of tensile stresses reduction. The  factors related to deformation 
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states the limited impact of inserting voids the shell with reference to the deformation 

level of the shell bridge.  

 

Model Stress Level Deformation Level 

I 0.627 0.916 

II 0.627 0.916 

III 1.000 1.000 

Table 14 

Scaling factor of model T_0.15  

 

The global optimization index (GOI*) allows to identify the optimum solution that 

better balances material saving and overall performance of the structure, both in 

term of stress distribution and deformation. Its weight w is calculated first according 

to the effect size of stress and deformation level and lists in Table 15. Due to the low 

influence of the insertion of holes on their rigidity but significant influence on the shell 

stress, the weight of stress level is always higher.  

 

Model Stress Level Deformation Level 

I 0.848 0.152 

II 0.796 0.204 

III 0.882 0.118 

Table 15 

Weight of stress and deformation levels of model T_0.15 

 

The GOI* as a function of VR assuming =1 is illustrated in Fig. 13.The left chart 

refers to the original formulation of the optimization index, namely the scaling factor 

 is not considered. In the right chart results refer to the current formulation for OI, 

with the effect of the  scaling factor properly considered.

 

GOI* values represent the score assigned to each design solution. In the case =1 

solution with 30% volume reduction got the highest score for all three starting 

models. However, comparing solutions coming from different starting models without 

introducing the scaling factor , make identification of the best overall solution not so 

clear and easy. On the contrary, using the updated version of the optimization index 

that considers the  parameter, Model III is highlighted as the best for almost all the 

VR considered in the analysis. 
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The results show that the structural response of Model III was always better than 

that of the other two models, for the positive effect that the edge stiffening had on the 

overall rigidity of the shell footbridge. 

 

 

Fig. 13 Global optimization index vs.VR of model T_0.15: a) without b) with   

 

Evaluating the effect played by  parameter further helps to identify the best overall 

solution and chose among available ones. In Fig. 14, results are reported for several 

values of  ranging between 3 and 0. The first limit favors solution with lower VR, 

while the second limit favors solution with higher VR. Parameter  tends to measure 

the propensity of the designer about material saving over other aspects and aims to 

find a solution not only effective from the structures point of view but even 

appreciable from the architectural one.  

 

Take the equal to 1 as an example, for varying volume reduction, the global 

optimization index of Model III is always much higher than that of the other two 

models. It can be also noted that the variation of GOI* with respect to VR was lower 

for 20% ≤ VR ≤ 30% than for 10% ≤ VR ≤ 20%, meaning that the structural response 

of the shell footbridge in terms of both unwished tensile stress arising and 

deformation was highly affected by the insertion of holes for 10% ≤ VR ≤ 20%, and 

less affected for 20% ≤ VR ≤ 30%. Hence, although the best global response of the 

shell footbridge with stiffened edges occurred for VR= 30%, a good global response 

was already attained for VR= 20%. 

 

For values of higher than 2 Model III with 20% VR is identified as the best. Further 

reducing the  parameter until 0, Model III with 30% VR gets highlighted. In this case, 

the shell layout results separated into two symmetric parts by voids for more than 

one half of the total shell length. A further increase of VR would have led to a not 

remarkable improvements of structural response, but the structural scheme would 

have evolved from a shell to an arched layout, losing its architectural value. 
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For VR= 30%, the shell of all models was separated into two symmetric parts for 

more than one half of the total shell length. A further increase in volume reduction 

would not have led to an unremarkable improvement in structural response, but the 

structural scheme would have evolved from a shell to an arched layout. In this latter 

case, topology optimization would have tended to separate the shell into two 

symmetric parts so that the shell footbridge, even while maintaining a good structural 

response, would have lost its architectural value. 

 

Taking into account the above results, the design solution with a volume reduction 

20% of Model III appeared then to be the most suitable compromise between 

structural and architectural issue and even material savings.  

 

 

Fig. 14 Global optimization index of model T_0.15 vs.VR (vs ) 

 

4.2.3 Results of Shell Bridge T_0.20 

 

Adopting the shell thickness of 20 cm, as suggested in the Choice of Shell Thickness 

Section by thickness optimization, topological optimization of the shell was 

performed for different values of volume reduction VR. Also, topological optimization 

was applied to all the load cases and VR values of 5, 10, 20 and 30% were 
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consequently applied so that for each value of VR, three pseudo-density contours 

were plotted in Table 16.  

 

All the pseudo-density contours turned out to be symmetric with respect to the 

symmetry axes of the bridge. For all Models, increasing the values of VR resulted in 

an increase in the area of shell surface with low pseudo-density (blue). This 

low-density region gradually extended by each part along the bridge from sections 

near the deck-supports to the abutments. 
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Table 16 

Pseudo-density contours from topological optimization with the SIMP method of model T_0.20  
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Stresses and deformations of the updated models with holes 

 

On the basis of the results of topological optimization, the three models were 

updated by removing the elements with pseudo-density lower than a specified value, 

as listed in Table 17. 

 

Volume 

Reduction 

Model I Model II Model III 

Pseudo- 

densities 

Real 

Vol. Red. 

Pseudo- 

densities 

Real 

Vol. Red. 

Pseudo- 

densities 

Real 

Vol. Red. 

5% 0.38 5.06% 0.52 5.12% 0.63 5.00% 

10% 0.43 10.07% 0.54 10.00% 0.99 9.56% 

20% 0.37 20.20% 0.95 19.47% 0.98 19.15% 

30% 0.36 30.07% 0.61 30.09% 0.54 30.02% 

Table 17 

Critical values of pseudo-density and real volume reductions of model T_0.20 

 

In Table 18, the stress contours obtained after removing these elements for each 

given value of volume reduction are displayed. The stress contours show that the 

stress distribution in Model III was more uniform than in Model I, with lower peaks of 

tensile stresses. This clearly showed the need to increase the stiffness of the free 

edges of the shell in order to limit undesirable peaks of tensile stresses arising not 

only along the free edges but even in the inner shell regions.  
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Table 18 

Maximum stress contours of updated models with holes of model T_0.20 

 

Considering an allowable tensile stress of concrete of 1.5MPa, the ratio between the 

area of the elements with tensile stress higher than 1.5MPa and the initial shell area 

(namely for VR = 0) of all models for varying VR is shown in Table 19. The 

effectiveness of the design method under consideration in reducing tensile stresses 

throughout the shell is evident, because in all models the shell surface where tensile 

stresses occurred was minimized by increasing values of volume reduction. 

 

Moreover, the diagrams also show the favourable effect of stiffening the free edges 

because, notwithstanding the removal of elements along the free edges of Model I, 

the total area of shell elements with tensile stresses higher than 1.5 MPa was always 

higher in Model I than in Model III. 
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Table 19 

Area of finite elements of the updated models with holes with tensile stress higher than 

1.5Mpa of model T_0.20 
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Finally, Table 20 shows, for all models, the maximum deflections of both deck and 

shell centerline for different values of the volume reduction VR. The diagrams of all 

models show that deflections of the shell footbridge were slightly sensitive to the 

variation of volume reduction. 

 

Table 20 

Maximum deflections of updated models with holes of model T_0.20 

 

Identification of the best design solution 

 

According to the results obtained from topological optimization, for varying VR, the 

trend of RI(A,i) and RI(d,i) for all the three models is shown in Fig. 15. It can be noted 

that the trend for curves RI(A,i) decrease from 5% to 20%, meaning that inserting 

holes through topology optimization was an effective approach in reducing the area 

of shell regions where tensile stresses occurred. Besides, Fig. 15a shows that the 

curve RI(A,i) obtained from Model III was always significantly lower than the two 

curves RI(A,i) from Model I and Model II. This confirms the effectiveness of stiffening 

the shell edges. Fig. 15b reports the RI(d,i) trends for different models considered, 

which were just slightly affected by VR, confirming that the insertion of holes does 

not play a relevant role with reference to concrete shell deformability. 
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Fig. 15 Response index vs.VR diagrams of model T_0.20: a) RI(A,i); b) RI(d,i) 

 

Table 21 reports the multi-families scaling factors  on the basis of above reported 

results. Model I and II have same value, both concerning stress and deformation 

level. The corresponding value of parameter  is 0.687 for stress level and 0.916 for 

deformation level. Conversely Model III has the highest scaling factor values and 

attains the maximum value equal to 1 both for stress and deformation levels. 

 

Model Stress Level Deformation Level 

I 0.687 0.916 

II 0.687 0.916 

III 1.000 1.000 

Table 21 

Scaling factor of model T_0.20 

 

The weight w of global optimization index (GOI*) is calculated first according to the 

effect size of stress and deformation level and lists in Table 23. Due to the low 

influence of the insertion of holes on their rigidity but significant influence on the shell 

stress, the weight of stress level is always higher.  

 

Model Stress Level Deformation Level 

I 0.777 0.223 

II 0.720 0.280 

III 0.944 0.056 

Table 22 

Weight of stress and deformation levels of model T_0.20 

 

The global optimization index (GOI*) as a function of VR assuming =1 is illustrated 

in Fig. 16. The left chart refers to the original formulation of the optimization index, 

namely the scaling factor  is not considered. In the right chart results refer to the 

current formulation for GOI*, with the effect of the  scaling factor properly 

considered.GOI* values represent the score assigned to each design solution. 

Using the updated version of the optimization index that considers the  parameter, 

Model III is highlighted as the best for almost all the VR considered in the analysis.
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Fig. 16 Global optimization index vs.VR of model T_0.20: a) without b) with  

 

In Fig. 17, results are reported for several values of  ranging between 3 and 0. The 

former favors solution with lower VR, while the latter favors solution with higher VR. 

As equal to 1, the global optimization index of Model III is always much higher than 

that of the other two models for varying volume reduction. For values of higher 

than 1 Model III with 10% VR is identified as the best. Further reducing the  

parameter until 0, Model III with 20% VR gets highlighted. For VR= 30%, the shell of 

all models was separated into two symmetric parts for more than one half of the total 

shell length. A further increase in volume reduction would not have led to remarkable 

improvements in structural response, but the structural scheme would have evolved 

from a shell to an arched layout.  

 

 

Fig. 17 Global Optimization Index vs.VR (vs ) 
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Taking into account the above results, the design solution with a volume reduction 

20% of Model III appeared then to be the most suitable compromise between 

structural and architectural issue and even material savings. 

 

4.2.4 Results of Shell Bridge T_0.32 

 

Adopting the shell thickness of 32 cm, as suggested in the Choice of Shell Thickness 

Section by thickness optimization, topological optimization of the shell was 

performed for different values of volume reduction VR. Also, topological optimization 

was applied to all the load cases and VR values of 5, 10, 20 and 30% were 

consequently applied so that for each value of VR, three pseudo-density contours 

were plotted in Table 23.  

 

All the pseudo-density contours turned out to be symmetric with respect to the 

symmetry axes of the bridge. For all Models, increasing the values of VR resulted in 

an increase in the area of shell surface with low pseudo-density (blue). This 

low-density region gradually extended by each part along the bridge from sections 

near the deck-supports to the abutments. 
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Table 23 

Pseudo-density contours from topological optimization with the SIMP method of model T_0.32 

 

Stresses and deformations of the updated models with holes 

 

On the basis of the results of topological optimization, the three models were 

updated by removing the elements with pseudo-density lower than a specified value, 

as listed in Table 24. 

 

Volume 

Reduction 

Model I Model II Model III 

Pseudo- 

densities 

Real 

Vol. Red. 

Pseudo- 

densities 

Real 

Vol. Red. 

Pseudo- 

densities 

Real 

Vol. Red. 

5% 0.32 5.03% 0.69 4.86% 0.54 4.94% 

10% 0.28 10.04% 0.91 9.84% 0.73 10.00% 

20% 0.39 20.01% 0.98 18.70% 0.97 18.88% 

30% 0.27 29.94% 0.56 29.88% 0.63 30.04% 

Table 24 

Critical values of pseudo-density and real volume reductions of model T_0.32 

 

In Table 25, the stress contours obtained after removing these elements for each 

given value of volume reduction are displayed. The stress contours show that the 

stress distribution in Model III was more uniform than in Model I, with lower peaks of 

tensile stresses. This clearly showed the need to increase the stiffness of the free 

edges of the shell in order to limit undesirable peaks of tensile stresses arising not 

only along the free edges but even in the inner shell regions.  
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Table 25 

Maximum stress contours of updated models with holes of model T_0.32 

 

Considering an allowable tensile stress of concrete of 1.5MPa, the ratio between the 

area of the elements with tensile stress higher than 1.5MPa and the initial shell area 

(namely for VR = 0) of all models for varying VR is shown in Table 26.  
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The effectiveness of the design method under consideration in reducing tensile 

stresses throughout the shell is evident, because in all models the shell surface 

where tensile stresses occurred was minimized by increasing values of volume 

reduction. Moreover, the diagrams also show the favourable effect of stiffening the 

free edges because, notwithstanding the removal of elements along the free edges 

of Model I, the total area of shell elements with tensile stresses higher than 1.5 MPa 

was always higher in Model I than in Model III. 
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Table 26 

Area of finite elements of the updated models with holes with tensile stress higher than 

1.5Mpa of model T_0.32 

 

Finally, Table 27 shows for all models, the maximum deflections of both deck and 

shell centerline for different values of the volume reduction VR. The diagrams of all 

models show that deflections of the shell footbridge were slightly sensitive to the 

variation of volume reduction. 

 

Table 27 

Maximum deflections of updated models with holes of model T_0.32 
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Fig. 18 illustrates the trend of identified response indexes for all the three models 

according to the results obtained from topological optimization for varying VR. Fig. 

18a shows that the RI(A,i) decrease for increasing values of VR, meaning that 

inserting holes through topology optimization was an effective approach in reducing 

the area of shell regions where tensile stresses occurred. Fig. 18b reports the RI(d,i) 

trends for different models considered which were just slightly affected by VR, 

confirming that shell footbridges are very stiff structures.  
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Fig. 18 Response index vs.VR diagrams of model T_0.32: a) RI(A,i); b) RI(d,i) 

 

Table 28 reports the multi-families scaling factors  on the basis of above reported 

results. Model I and II have same value, both concerning stress and deformation 

level. The corresponding value of parameter  is 0.778 for stress level and 0.782 for 

deformation level. Conversely Model III has the highest scaling factor values and 

attains the maximum value equal to 1 both for stress and deformation levels.  

 

Model Stress Level Deformation Level 

I 0.778 0.782 

II 0.778 0.782 

III 1.000 1.000 

Table 28 

Scaling factor of model T_0.32 

 

The weight w of global optimization index (GOI*) is calculated first according to the 

effect size of stress and deformation level and lists in Table 29. Due to the low 

influence of the insertion of holes on their rigidity but significant influence on the shell 

stress, the weight of stress level is always higher.  
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Model Stress Level Deformation Level 

I 0.953 0.047 

II 0.943 0.057 

III 0.974 0.026 

Table 29 

Weight of stress and deformation levels of model T_0.32 

 

The GOI* as a function of VR assuming =1 is illustrated in Fig. 19.The left chart 

refers to the original formulation of the optimization index OI while the right chart 

results refer to the current formulation for OI*, with the effect of the  scaling factor 

properly considered.GOI* values represent the score assigned to each design 

solution. However, comparing solutions coming from different starting models 

without introducing the scaling factor , make identification of the best overall 

solution not so clear and easy. On the contrary, using the updated version of the 

optimization index that considers the  parameter, Model III is highlighted as the 

best for almost all the VR considered in the analysis. 

 

 

Fig. 19 Global optimization index vs.VR of model T_0.32: a) without b) with

 

Evaluating the effect played by  parameter further helps to identify the best overall 

solution and chose among available ones. In Fig. 20, results are reported for several 

values of  ranging between 3 and 0. The first limit favors solution with lower VR, 

while the second limit favors solution with higher VR.  

 

As equal to 1, the global optimization index of Model III was always much higher 

than that of the other two models for varying volume reduction. For values of 

higher than 2 Model III with 10% VR is identified as the best. Further reducing the 

 parameter until 0, Model III with 20% VR gets highlighted. A further increase in 

volume reduction would not have led to remarkable improvements in structural 

response, but the structural scheme would have evolved from a shell to an arched 
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layout. Taking into account the above results, the design solution with a volume 

reduction 20% of Model III appeared then to be the most suitable compromise 

between structural and architectural issue and even material savings. 

 

 

Fig. 20 Global optimization index vs.VR of model T_0.32 (vs ) 

 

4.3. Comparison between Tentative Models 

 

For each reference shell bridge, three different starting models are defined, each 

characterized by the same boundary conditions but different edge stiffening. 

Depending on different input VR ratio, for each starting model, 4 candidate solutions 

with voids are defined. Hence, there are 36 candidate solutions in total that is 3×3

×4 (reference model×starting model×input VR). According to the results of entire 

candidate solutions, the multi-families scaling factors is calculated again and lists 

in Table 30. To take into account the influence of shell thickness of each reference 

model, T_0.20 and T_0.32 were calculated with shell thickness of 0.15m. The ratio 

of area which stress higher than 1.5 Mpa were then used to determine scaling 

factors. 

 

Model 

Ratio of area which stress 
higher than 1.5Mpa (%) 

Stress Level 

I II III I II III 

T_0.15 14.82 14.82 9.28 0.802 0.802 1.000 

T_0.20 19.53 19.53 15.97 0.633 0.633 0.760 
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T_0.32 27.87 27.87 26.35 0.333 0.333 0.388 

Table 30 

Scaling factorof all the solutions 

 

According to the results of entire candidate solutions, the comparison of GOI* values 

of all the solutions are shown in Fig. 21. The left chart refers to the original 

formulation of the optimization index, namely the scaling factor  is not considered. 

In the right chart results refer to the current formulation for OI*, with the effect of the 

scaling factor properly considered.  

 

By using the updated version of the optimization index that consider the  parameter, 

starting models of T_0.15 are highlighted as the best for almost all the VR 

considered in the analysis. The results show that the structural response of starting 

model T_0.15 was better than that of the other two starting models, for the positive 

effect that the boundary shape had on the overall rigidity of the shell footbridge. With 

this shape, the optimum thickness of the shell can be minimum under same load 

cases compared with two other shell shapes, therefore a high scaling factor was 

obtained.  

 

 

Fig. 21 Global optimization index of all solutions vs.VR: a) without b)with 
 

According to the results of entire candidate solutions and considering several values 

of  ranging between 3 and 0, the comparison of GOI* values of all the solutions are 

listed in Fig. 22. The former favors solution with lower VR, while the latter favors 

solution with higher VR. In general, because of the better boundary shape, the 

global optimization index of of starting model T_0.15 are higher than that of the other 

two starting models, while the starting model T_0.32 have the lowest value.  

 

Take the equal to 1 as an example, for varying VR, the global optimization index of 
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Model III of starting model T_0.20. Due to the deepest decreasing of unwished 

tensile stress, the latter has higher value when the VR is less than 20%. However, 

as the VR increasing, the positive effect of the boundary shape on the rigidity of shell 

footbridge revealed and led the Model III of starting model T_0.15 with VR = 30% to 

a highest GOI* among total solutions.  

 

The same results as each starting model, the variation of GOI* with respect to VR 

was lower for 20% ≤ VR ≤ 30% than for 10% ≤ VR ≤ 20%, meaning that the 

structural response of the shell footbridge in terms of both unwished tensile stress 

arising and deformation was highly affected by the insertion of holes for 10% ≤ VR ≤ 

20%, and less affected for 20% ≤ VR ≤ 30%. Hence, although the best global 

response of the shell footbridge with stiffened edges occurred for VR= 30% , a good 

global response was already attained for VR= 20%. 

 

For values of  higher than 2 Model III of starting model T_0.20 with 10% VR is 

identified as the best. Further reducing the  parameter until 0, Model III of starting 

model T_0.15 with 30% VR gets highlighted. A further increase of VR would have 

led to an unremarkable improvement of structural response, but the structural 

scheme would have evolved from a shell to an arched layout, losing its architectural 

value. 

 

 

Fig. 22 Global optimization index of all solutions vs.VR (vs ) 

 

Besides the comparison of all candidate solutions of each starting model, the 

comparison between solutions with same VR of different starting models is also 
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interesting. Considering several values of  ranging between 3 and 0, the 

comparison of GOI* values of Model I between 3 reference models are listed in Fig. 

23. All the solutions were obtained by topology optimization performed throughout 

the whole shell surface.  

 

The results show that the overall structural performance of starting model T_0.15 is 

better than that of the other two models because of the positive effect that 

reasonable boundary shape was used. Consider equal to 1, the global optimization 

index of starting model T_0.15 is always much higher than that of other two starting 

models for varying VR. For values of higher than 2 starting model T_0.15 with 20% 

VR is identified as the best. Further reducing the  parameter until 0, starting model 

T_0.15 with 30% VR gets highlighted. A further increase of VR would have led to an 

unremarkable improvement of structural response, but the structural scheme would 

have evolved from a shell to an arched layout, losing its architectural value. 

 

 

Fig. 23 Global optimization index of Model I vs.VR (vs ) 

 

Considering several values of  ranging between 3 and 0, the comparison of GOI* 

values of Model II between 3 reference models are listed in Fig. 24. All the solutions 

were obtained by topology optimization performed throughout the whole shell 

surface, but the shell regions close to the edge (for a distance of 0.20m from the 

edge) were excluded from topology optimization. The results are similar as Model I.  
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Fig. 24 Global optimization index of Model II vs VR (vs ) 

 

Considering several values of  ranging between 3 and 0, the comparison of GOI* 

values of Model III between 3 reference models are listed in Fig. 25. All the solutions 

were obtained by topology optimization performed throughout the whole shell 

surface on the basis of stiffening beam elements (width 0.20m, same depth as the 

shell) were added along the free edges of the shell. 

 

The results show that the overall structural performance of starting model T_0.32 is 

always worse than that of the other two models, while each of the other two has its 

own merits for varying VR. Starting model T_0.15 is higher than that of model 

T_0.20 for 20% ≤ VR ≤ 30% but lower than the latter for 5% ≤ VR ≤ 20%, that’s 

because of the deepest decreasing of unwished tensile stress of starting model 

T_0.20.  

 

Take equal to 1 as an example, the global optimization index of starting model 

T_0.32 is always lowest for varying VR. Starting model T_0.15 is higher than that of 

T_0.20 for VR = 30% but lower than the latter for 5% ≤ VR ≤ 20%. Hence, for values 

of higher than 1 starting model T_0.20 with 10% VR is identified as the best. 

Further reducing the  parameter until 0, starting model T_0.15 with 30% VR gets 

highlighted. A further increase of VR would have led to an unremarkable 

improvement of structural response, but the structural scheme would have evolved 

from a shell to an arched layout, losing its architectural value. 
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Fig. 25 Global optimization index of Model III vs.VR (vs ) 

 

Until now, with the proposed optimization index, the identification of the best overall 

layout among multi-families multi-solutions is carried out. Besides the comparison of 

all the solutions together, solutions with same VR of different starting models are 

also compared. The results show the overall structural performance of starting 

model T_0.15 is better than that of the other two models due to the positive effect of 

reasonable boundary shape, and the overall structural performance of Model III is 

better than that of the other two models due to the positive effect that edge stiffening 

had on the overall rigidity of the shell footbridge.  

 

For all the starting models, the layout with holes obtained for a volume reduction of 

20% was shown to have good structural response, while the solution with 30% VR 

gets highlighted after the introduction of penalty exponent Contrary to the latter, 

although the structural response of the former is slightly reduced, the former 

maintained the shell integrity avoiding the merging of close holes dividing a great 

part of the shell into two parts.  

 

It states that even if for high values of volume reduction, the structural response 

could be slightly improved, the aesthetic value of these design solutions would 

become inappropriate. In fact, the shell tended to split into two symmetric parts with 

respect to its centreline. Therefore, this design solution of Model III of starting model 
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T_0.15 for VR = 20% appeared to be the most appropriate, with good structural 

response coupled with good aesthetic value. 

 

Fig. 26 and Fig. 27 show that the layout of Model III of starting model T_0.15 for VR 

= 20% appeared to be the most suitable compromise between structural and 

aesthetical issues. This model still emphasizes the natural flow of forces from their 

point of application to the foundations respecting the integrity of the shell form but 

minimizing the occurrence of unwished tensile stresses. 

 

   
Fig. 26 View of the FE model of the proposed 

design solution with VR = 20 % of starting model 

T_0.15 (a) Model I ( b) Model III 

Fig. 27 Virtual image of the bridge after 

the insertion of cavities required by the 

topology optimization procedure 
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CHAPTER 5 

 

5. CALATRAVA BRIDGE OF VENICE 

 

 

The Grand Canal of Venice is a large reverse-S shape canal through the central 

districts of Venice and divides the city into two parts. It forms one of the major 

water-traffic corridor which with 3,800 m long, 30–90 m wide, average depth of 5 

meters. At one end, the canal leads into the lagoon near the Santa Lucia railway 

station and the other end leads into the sea. The Grand Canal connects at various 

points with a maze of smaller canals. There are over 400 bridges over these canals 

but only three bridges cross the Grand Canal until 2008, namely Rialto Bridge, 

Accademia Bridge and Scalzi Bridge in accordance with the built time from early to 

late, as shown in Fig. 28.  

 

 

 

 

 
Fig. 28 Bridge over Grand Canal of Venice (From top to bottom: Rialto – Accademia – Scalzi) 
 

The Rialto Bridge is the oldest and most famous bridge spanning the Grand Canal in 

the heart of Venice. It was built in 1591 and as the only way to cross the Grand 

Canal by foot for nearly 300 years until the construction of Accademia Bridge. 

Beginning in 1524, architects began submitting proposals for the new bridge but no 

plan was chosen until 1588, when municipal architect Antonio da Ponte was 

awarded the commission. The present stone bridge, a single span 28.8m and rise 
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6.4m, with two inclined ramps lead up to a central portico. On either side of the 

portico, the covered ramps carry rows of shops. The bridge has become one of the 

architectural icons of Venice. 

 

The Accademia Bridge is so named because it crosses the Grand Canal at the 

Galleria dell'Accademia, one of the top museums in Venice. The wooden arch bridge 

was designed by Italian famous architect Eugenio Miozzi and built in 1933 as a 

temporary replacement for an iron bridge, which was demolished due to in a 

dangerous condition. The present wooden bridge has high arch curved with a single 

span 48m, remains a beloved landmark. 

 

The Scalzi Bridge is the third bridge spanning the Grand Canal and is well-known as 

another masterpiece of Eugenio Miozzi. It located in front of the Santa Lucia railway 

station, designed and built in 1934. It is named as a church on the left side of the 

bridge, literally "church of the barefoot". It is a stone arch span of 40m, rising 6.75m. 

The bridge is only 0.8m thick at its crown, which is remarkable slender for the type 

and age of the bridge. Stone was chosen instead of reinforced concrete to avoid 

future corrosion problems (Zordan, et al., 2010). 

 

Since there are only three bridges connecting two sides of Grand Canal, it is not 

good for the development of Venice's international tourism, so the construction of a 

fourth bridge which will connect the railway station and bus station has been 

proposed early. There are different opinions on the design of new bridge, 

conservatives feel that the new bridge should be compatible with Venice's 

decorative medieval architecture and the historical city like its former bridges, so the 

style of the new bridge would not change. Whereas others think new elements need 

to be added in the city, a modern architecture should embrace change and be 

brought into the present times. 

 

In June 1999, the Municipality of Venice drafted a preliminary plan for a fourth bridge 

over the Grand Canal. After a public selection process, Spanish architect Santiago 

Calatrava was asked to design the new bridge in November 1999 (Scibilia and 

Vento, 2004). Calatrava selected to add new elements and designed a steel arch 

bridge with a radius of 180 m, as shown in Fig. 29. 

 

http://en.wikipedia.org/wiki/Portico
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Fig. 29 Calatrava Bridge - Santiago Calatrava, 2008, Venice (Italy) 
 

Calatrava Bridge, the fourth bridge spanning the Grand Canal of Venice, later has its 

official name ―Ponte della Costituzione‖, opened to the public on September 11, 

2008. The construction of the fourth bridge has assumed great importance not only 

in the Venice city but at national and international level too, and it has also taken on 

a historical significance (Scibilia and Vento, 2004). Immediately following the 

completion of the newest bridge, there are a lot of comments including criticism and 

praise. However, lack of wheelchair access, lack of necessity, bridge modern 

appearance and an approximately cost of 10 million euros, made heated criticism 

rain down on this project. 

 

From the structural point of view, the utilization of the open star-shape cross section 

and the open truss arch ribs with straight-like web members and with no diagonals 

and 1/16 rise-to-span ratio makes the structure less rational. Huge horizontal thrust 

occurred due to the 1/16 rise-to-span ratio, π-shaped steel plates not only withstand 

shear force of the main arch, but also bear local bending moment, the stress of 

some parts reached to the critical state, the stiffness of main arch rib is small, large 

bending deformation occurred under asymmetric loads. Moreover, the third order 

vibration mode of the main arch of the bridge is close to the pedestrian step 

frequency, which is extremely liable to cause the pedestrian and bridge resonance 

(Chen, et al., 2011).  

 

Some structural defectiveness mentioned above particularly the occurrence of huge 

horizontal thrust could be reduced if the bridge with better design such as more 

reasonable thickness distribution or considering bridge’s abutment deformability. To 

this aim, on basis of original design of the Calatrava Bridge, three different starting 

models were identified, then optimization of these three models were carried out and 

the results are used to validate the effectiveness of the proposed optimization index 

analytical formulation.   
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5.1. Calatrava Bridge 

5.1.1 General Situation 

 

The fourth Bridge over the Grand canal is a steel arch footbridge with a main span of 

80.8m. It is 94m in total while count from two end steps. 4.67m rise gives the bridge 

a 1/16 rise-to-span ratio. The width varies from a minimum of 5.58m at the foot to a 

maximum of 9.38m in the middle of the bridge. The height is 3.2m at the foot at the 

steps, reaching 9.28m at the highest point in the centre (Scibilia and Vento, 2004). 

The general arrangement is shown in Fig. 30. 

 

It was designed an arched truss bridge with a radius of 180m, with a central arch, 

two side arches and two lower arches. The axes of central arch and two lower 

arches are two dimension curves in vertical plane, two lower arches are 

symmetrically placed and 1.85m away from the central arch in transverse direction. 

The axes of side arches are 3 dimension curves, placed symmetrically and a 2.56m 

minimum at the foot to a 4.46m maximum in the middle away from the central arch. 

 

 

Fig. 30 General arrangement of Calatrava Bridge 
 

Five arches are connected by girders, the latter placed perpendicular to the arches 

join them together. Horizontal girders connect side arches and central arch together, 

while vertical girders connect lower arches and central arch together. The girders 

consist of steel tubes and plates, which form closed section boxes. The typical cross 

section as shown in Fig. 31 is truss shaped without diagonal, namely open star-like 

or π-shaped cross section (Briseghella, et al., 2007). The maximum width is 9 m at 
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the center and with approximately 2.1 m height. There are 38 cross section for each 

half span and 75 cross sections in total. 

 

 

 

Sec. D-D 

 

Sec. E-E 

Fig. 31 Typical cross section (right half) 

 

5.1.2 Finite Element Model 

 

To perform structural optimization, the bridge is modelled with the finite element 

analysis software ANSYS (Fig. 32). Shell element SHELL93 is chosen for all the 

steel structure except two lower arches and steel tubes of girders, which are 

simulated with BEAM188 element. There are 110869 nodes and 44783 elements in 

total. All the DOFs (degree of freedom) of central arch and two lower arches at both 

side are fixed.  

 

Steel grade is Fe510DD according to the Italian code, its strength is equivalent to 

S355 in Eurocode 3. Therefore, its yield stress is 355 MPa and tensile strength is 

510 MPa. The value of the modulus of elasticity was assumed to be 210 GPa. 

Poisson's ratio and material density were set, respectively, to 0.3 and 7850 kg/m
3
.  
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Fig. 32 FE model in ANSYS 

 

A uniformly distributed load of pedestrians of 6kN/m
2
 was supposed, with 7 different 

load cases, as presented in Table 31. These load cases are not only used to 

calculate the static behavior of the bridge with original parameter, but also used over 

and over again during optimization looping. 

 

Load 

case 
Loading condition(s) Loading area(s) 

1 Full length full width  

2 

Full length half width 
 

3  

4 

Half length full width 
 

5  

6 
Two diagonal areas of half 

width 

 

7  

Table 31 

The uniformly distributed load of pedestrians is 6 kN/m
2 

 

5.1.3 Mechanical Behaviour 
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Table 32 gives the results of reaction force and deflection of the bridge under all load 

cases including self-weight and secondary dead load. Fx is horizontal reaction force 

with x- and x+ direction while Fy is vertical reaction force. The direction can be seen 

from Fig. 32.  

 

Huge horizontal thrust occurred due to the utilization of 1/16 rise-to-span ratio. 

Maximum 7624.5 kN when loads add on full bridge full width. Horizontal force is 

7010.3 kN under self-weight and is 3.5 times of vertical reaction.  

 

Load Cases 
x- Direction x+ Direction Dmax 

Fx(kN) Fy(kN) Fx(kN) Fy(kN) (m) 

Self-weight 7010.3 2005.9 -7010.3 2005.9 0.042 

Secondary dead load 5367.8 1494.7 -5367.8 1494.7 0.034 

Full length full width 7624.5 2082.4 -7624.5 2082.4 0.049 

Full length half width 3812.3 1661.6 -3812.3 420.8 0.046 

Half length full width 3799.5 1039.0 -3799.5 1039.0 0.030 

Two diagonal areas 

of half width 
3789.7 1037.5 -3789.7 1037.5 0.028 

Table 32 

Results of reaction force and deflection under load cases 
 

 

The open truss arch ribs with straight-like web members and with no diagonals 

makes the stiffness of main arch rib small, large bending deformation occurred 

under symmetric and asymmetric loads. Maximum 0.049m when loads add on full 

bridge full width, and the deformation shape is illustrated in Fig. 33. 

 

 

Fig. 33 Deformation shape under full bridge full width load case 

 

Due to the utilization of open star-shape cross section, π-shaped steel plates not 

only withstand shear force of the main arch, but also bear local bending moment, the 

stress of some parts reached to the critical state. Maximum von Mises stress always 

occurred on the steel tubes of vertical girds for each load case. Under full bridge full 

width load case, the highest value 349 MPa reached to the critical state (Fig. 34).  
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Fig. 34 Von Mises stress of π-shaped cross section 

 

Moreover, the result of modal analysis shows that the third order vibration mode of 

the main arch of the bridge is close to the pedestrian step frequency, which is 

extremely liable to cause the pedestrian and bridge resonance. First four mode 

shapes and frequencies are shown in Fig. 35.  

 

  
Mode 1 Frequency 1.188 Mode 2 Frequency 1.360 

  

Mode 3 Frequency 2.040 Mode 4 Frequency 2.851 

Fig. 35 First four mode shapes and frequencies  

 

 

5.2. Structural Optimization  

5.2.1 Different Models Considered  
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As the paper deals with optimization of the bridge structure, in order to identify the 

best form of the bridge on the basis of original design, three different starting models 

were hence considered: 

 

(1) Model I, namely original design of Calatrava bridge, with fixed ends’ restraints. 

(2) Model II, same as Model I, but the horizontal constraint (DX) at one end of the 

bridge is modified from fixed to 1-D spring-damper element COMBIN14 with spring 

constant K. 

(3) Model III, same as Model I, but introducing stiffening elements through 

prestressing cables along two bottom arches of the bridge. Cable cross sectional 

areas are 6.4e-3 m
2
 (correspond to cables with diameter 90mm), and an initial strain 

εis added to the cables. 

 

The steel plates and tubes thicknesses of identified models were then optimized by 

using the design optimization tool natively implemented in ANSYS. It provides a 

zero-order method, where the dependent variables are first approximated by means 

of least squares fitting, and the constrained minimization problem is then converted 

to an unconstrained one by means of penalty functions, in order to be solved using 

Powell’s modified method.  

 

Thickness of all steel plates and tubes were assumed as design variables with 

values ranging between 0.01m and 0.05m. There are 24 design variables (DVs) in 

total as shown in Fig. 36, named as T1 to T12 at central part and T21 to T32 at two 

end parts. The optimum design is found by minimizing the total weight of the bridge 

by imposing that stress level and deflection remaining lower than an allowable value. 

The state variables (SVs) considered are then stress level and deformation level of 

the bridge, while the objective function (OBJ) to be minimized is the total volume of 

steel members. Since the optimum solution is found to be depending on the initial 

values, different initial values are tried in order to avoid local minimum solutions. 

 

 
 

 

Fig. 36 Design variables of thickness optimization 
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5.2.2 Optimization Results of Minimizing Total Volume 

 

Results of Model I 

 

Fig. 37 illustrates the optimization iterative process of Model I, where the consistent 

reduction of the objective function is well appreciable. Table 43 (listed at the end of 

chapter) shows the values of DV, SV and OBJ at different design steps. First one is 

the initial values to carry out the optimization, bold one is the best design solution. It 

can be seen that the stress value of best design solution is close to steel yield stress, 

while the volume reduced by 34%.  
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Fig. 37 Convergence iteration of optimization process of Model I  

 

Compared with the original design, the static behavior of the optimum design under 

same load cases was calculated. The results of reaction force and deflection under 

all load cases including self-weight and secondary dead load was listed in Table 33.  

 

Because of the thicknesses of some steel plates and tubes are decreased after 

optimization procedure, horizontal force due to self-weight is 4123.0 kN, 

corresponding to 58% of the original model. As stiffness was also decreased by the 

reduction of thickness of steel plates and tubes, the maximum deformation under all 

load cases are increased. Maximum 0.094m occurred when loads add on full length 

full width, and is 1.9 times of original model. 

 

Load Cases 
x- Direction x+ Direction Dmax 

Fx(kN) Fy(kN) Fx(kN) Fy(kN) (m) 

Self-weight 4123.0 1327.0 -4123.0 1327.0 0.045 

Secondary dead load 5159.1 1494.7 -5159.1 1494.7 0.067 
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Full length full width 7332.2 2082.4 -7332.2 2082.4 0.094 

Full length half width 3666.1 1675.9 -3666.1 406.5 0.086 

Half length full width 3653.2 1039.0 -3653.2 1039.0 0.056 

Two diagonal areas 

of half width 
3653.1 1039.0 -3653.1 1039.0 0.053 

Table 33 

Results of reaction force and deflection under load cases 
 

 

Results of Model II 

 

Fig. 38 illustrates the optimization iterative processes of Model II with spring 

constant K varying from 5th to 15th power of ten with unit N/m. The consistent 

reduction of the objective function is well appreciable for each optimization process. 

There is no feasible design solution when spring constant K lower than or equal to 

7th power of ten on the condition of stress and deflection level, either the limit of 

stress level exceeded, or the deflection is higher than the specified limit. As the 

spring constant K increasing, the boundary condition is getting closer to Model I, and 

more feasible design solutions are obtained. When the K is 15th power of ten, the 

iterative curve and best design solution is same as Model I.  
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Fig. 38 Convergence iteration of optimization process of Model II 

 

The best design solutions of all optimization iterative processes of Model II with 

different spring constant value are list in Table 45 (at the end of chapter), some 

special nodes due to the not so fine mesh of finite element are excluded from the list. 

Except the best one is obtained from infeasible design solutions when k is 5th or 6th 

power of ten, others are satisfy the constraints of stress and deflection level. The 

highest volume reduction is 43% when K is 10
8
 N/m, while the lowest is 22% as K is 

10
5
 N/m. 

 

Immediately following the optimization procedure of Model II, several candidate 

solutions was characterized by a specific spring constant K. Hence, the problem of 

choosing the most suitable solution among candidate solutions is faced. To this 

purpose, on the basis of the results obtained from optimization procedure, the 

proposed optimization index analytical formulation is discussed in detail and its 

effectiveness is validated. 

 

In this real case, two response indexes (RIs) which summarize the overall behavior 

of the whole structure were defined as: Von Mises stress, the maximum throughout 

the whole steel structure, was considered as representative of stress level, while 

maximum deflection was considered as representative of deformation level. The 

trends of both RIs are shown in Fig. 39. Both of the RIs are decreased for increasing 

values of spring constant K, and deformation level is always significantly higher than 

stress level.  

 

Fig. 40 shows global optimization index (GOI) varying the spring constant K for 

some values of ranging between 0 and 2. The highest GOI obtained when spring 

constant K is 10
10 

N/m, which design solution with a 36% volume reduction.  

 



CHAPTER 5. CALATRAVA BRIDGE OF VENICE 

89 

 

4 6 8 10 12 14 16
0

1

2

3

4

5

 

R
es

p
o

n
se

 I
n

d
ex

es
 

Spring Constant K (Nth power of ten)

 Deformation level

 Stress level

 

4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0

 

 

G
lo

b
al

 O
p

t.
 I

n
d

ex

Spring Constant K (Nth power of ten)

 =2.0

 =1.0

 =0.5

 

Fig. 39 Response index vs. spring 

constant K 

Fig. 40 Global optimization index vs. spring 

constant K (vs ) 
 

Table 34 gives the results of reaction force and deflection of the bridge under all load 

cases including self-weight and secondary dead load when spring constant K is 10
10 

N/m. Horizontal force is 4516.4 kN under self-weight and is 3.5 times of vertical 

reaction. The maximum deformations under all load cases are increased due to the 

decrease of structure stiffness. The deformation under load case of full length half 

width with value 0.093m exceeded load case of full length full width and become the 

maximum deflection under all load cases. 

 

Load Cases 
x- Direction x+ Direction Dmax 

Fx(kN) Fy(kN) Fx(kN) Fy(kN) (m) 

Self-weight 4516.4 1278.6 -4516.4 1278.6 0.048 

Secondary dead load 5505.8 1494.7 -5505.8 1494.7 0.065 

Full length full width 7820.3 2082.4 -7820.3 2082.4 0.091 

Full length half width 3910.2 1630.8 -3910.2 451.7 0.093 

Half length full width 3897.3 1039.0 -3897.3 1039.0 0.055 

Two diagonal areas 

of half width 
3897.3 1039.0 -3897.3 1039.0 0.052 

Table 34 

Results of reaction force and deflection under load cases 
 

 

Results of Model III 

 

Fig. 41 illustrates the optimization iterative processes of Model III with initial strain of 

stiffening cables varying from 5 to 15 times 10
-4

. The consistent reduction of the 

objective function is well appreciable for each optimization process, but is lower than 

Model II due to the increased deformation with the utilization of stiffening cables. The 

lower is the initial strain, the more feasible are design solutions.  
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The best design solutions of all optimization iterative processes of Model III with 

different initial strain value are list in Table 47 (at the end of chapter). All the best 

design solutions are satisfy the stress and deflection level constraints. The highest 

volume reduction is 36% when initial strain is 8×10
-4

, while the lowest is 2% as 

initial strain is 15×10
-4

. 

 

0 4 8 12 16 20 24 28 32
20

30

40

50

60

70

=510
-4

 

 

O
b

j.
 f

u
n

c
t.

 V
o

l.
[m

^3
]

Iter.

Feasible

Unfeasible

Best

 
0 4 8 12 16 20 24 28 32

20

30

40

50

60

70

=610
-4

 

 

O
b

j.
 f

u
n

c
t.

 V
o

l.
[m

^3
]

Iter.

Feasible

Unfeasible

Best

 

0 4 8 12 16 20 24 28 32
20

30

40

50

60

70
 

 

O
b

j.
 f

u
n

c
t.

 V
o

l.
[m

^3
]

Iter.

Feasible

Unfeasible

Best

=710
-4

 
0 4 8 12 16 20 24 28 32

20

30

40

50

60

70

 

 

O
b

j.
 f

u
n

c
t.

 V
o

l.
[m

^3
]

Iter.

Feasible

Unfeasible

Best

=810
-4

 

0 4 8 12 16 20 24 28 32
20

30

40

50

60

70

 

 

O
b

j.
 f

u
n

c
t.

 V
o

l.
[m

^3
]

Iter.

Feasible

Unfeasible

Best

=910
-4

 
0 4 8 12 16 20 24 28 32

20

30

40

50

60

70

 

 

O
b

j.
 f

u
n

c
t.

 V
o

l.
[m

^3
]

Iter.

Feasible

Unfeasible

Best

=1010
-4

 

0 4 8 12 16 20 24 28 32
20

30

40

50

60

70

 

 

O
b

j.
 f

u
n

c
t.

 V
o

l.
[m

^3
]

Iter.

Feasible

Unfeasible

Best =1510
-4

 

Fig. 41 Convergence iteration of optimization process of Model III 

 

As the same case of Model II, several candidate solutions were characterized by a 

specific initial strain following the optimization procedure of Model III. Hence, the 

problem of choosing the most suitable solution is faced. In this case, two response 

indexes (RIs) also defined as the maximum Von Mises stress and the maximum 

deflection throughout the whole steel structure, respectively.  
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The trends of both RIs are shown in Fig. 42. The RI curve of deformation level is 

decreased for increasing values of initial strain lower than 8×10
-4

, while curve 

increased for initial strain higher than 8×10
-4

. Generally, deformation level is 

increased except a wave trough around point of initial strain is 8×10
-4

.  

 

Fig. 43 shows global optimization index (GOI) varying the initial strain for some 

values of ranging between 0 and 2. The GOI decreased as the increased of Initial 

Strain without s mentioned before, the application of penalty exponent will 

favour design solution with higher or lower volume reduction. In the case of is 2, 

the highest GOI obtained when initial strain is 8×10
-4

, which design solution with the 

highest volume reduction 36%.  
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Fig. 42 Response indexes vs. initial strain Fig. 43 Global optimization index vs. initial 

strain ε (vs ) 
 

Table 35 gives the results of reaction force and deflection of the bridge under all load 

cases including self-weight and secondary dead load when initial strain is 8×10
-4

. 

Horizontal force is decreased due to the utilization of stiffening cables under all load 

cases. Horizontal force is 4459.9 kN under self-weight and is 3.5 times of vertical 

reaction. The maximum deformations under all load cases are increased due to the 

decrease of structure stiffness. The deformation under load case of full length half 

width with value 0.097m exceeded load case of full length full width and become the 

maximum deflection under all load cases.  

 

Load Cases 
x- Direction x+ Direction Dmax 

Fx(kN) Fy(kN) Fx(kN) Fy(kN) (m) 

Self-weight 4459.9 1292.3 -4459.9 1292.3 0.060 

Secondary dead load 5188.6 1494.7 -5188.6 1494.7 0.068 

Full length full width 7662.8 2082.4 -7662.8 2082.4 0.091 

Full length half width 3480.2 1583.6 -3480.2 498.8 0.097 
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Half length full width 3467.2 1039.0 -3467.2 1039.0 0.061 

Two diagonal areas 

of half width 
3467.1 1037.5 -3467.1 1037.5 0.058 

Table 35 

Results of reaction force and deflection under load cases 
 

 

5.2.3 Optimization Results of Minimizing Horizontal Force 

 

The same as optimization of minimize total volume, thickness of all steel plates and 

tubes were assumed as design variables with values ranging between 0.01m and 

0.05m. The optimum design was found by minimizing the horizontal force of the 

bridge on condition that stress level and deflection were lower than an allowable 

value. The sum of horizontal force under load case of dead load and full length full 

width is assigned as OBJ. 

 

Results of Model I 

 

Fig. 44 illustrates the optimization iterative process of Model I, where the consistent 

reduction of the objective function is well appreciable. Table 44 (listed at the end of 

chapter) shows the values of DV, SV and OBJ at different design steps. First one is 

the initial values to carry out the optimization, bold one is the best design solution. It 

can be seen that the stress value of best design solution is close to steel yield stress, 

while the sum horizontal force under dead load and full length full width reduced by 

22.7%, which decreased from 14635 kN to 11309 kN. The total volume of steel is 

decreased from 47.9 m
3
 to 39.1 m

3
. 
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Fig. 44 Convergence iteration of optimization process of Model I 
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Compared with the original design, the static behavior of the optimum design under 

same load cases was calculated. The results of reaction force and deflection under 

all load cases including self-weight and secondary dead load was listed in Table 36.  

 

Because of the thicknesses of some steel plates and tubes are decreased after 

optimization procedure, horizontal force is 4727.2 kN under self-weight and is 0.68 

times compared with original model. As stiffness was also decreased by the 

reduction of thickness of steel plates and tubes, the maximum deformation occurred 

under all load cases are increased. Maximum 0.095m when loads add on full bridge 

full width, and is 1.9 times of original model. 

 

Load Cases 
x- Direction x+ Direction Dmax 

Fx(kN) Fy(kN) Fx(kN) Fy(kN) (m) 

Self-weight 4727.2 1626.2 -4727.2 1626.2 0.063 

Secondary dead load 4643.3 1494.7 -4643.3 1494.7 0.069 

Full length full width 6581.7 2082.4 -6581.7 2082.4 0.095 

Full length half width 3290.9 1726.3 -3290.9 356.2 0.078 

Half length full width 3278.2 1039.0 -3278.2 1039.0 0.058 

Two diagonal areas 

of half width 
3278.0 1039.0 -3278.0 1039.0 0.053 

Table 36 

Results of reaction force and deflection under load cases 
 

 

Results of Model II 

 

Fig. 45 illustrates the optimization iterative processes of Model II with spring 

constant K varying from 15th to 7th power of ten with unit N/m. The consistent 

reduction of the objective function is well appreciable for each optimization process.  

 

When the K is 15th power of ten, the iterative curve and best design solution is same 

as Model I. However, as the spring constant K decreasing, the horizontal constraint 

is releasing as well as the horizontal force is reducing, but less feasible design 

solutions are obtained. There is no feasible design solution when spring constant K 

lower than 7th power of ten on the condition of stress and deflection level, either the 

limit of stress level exceeded, or the deflection is higher than the specified limit. 
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Fig. 45 Convergence iteration of optimization process of Model II 

 

The best design solutions of all optimization iterative processes of Model II with 

different spring constant value are listed in Table 46 (listed at the end of chapter). 

Summarized information without DVs is listed in Table 37. Except the best one is 

obtained from infeasible design solutions when K is 7th power of ten, others are 

satisfy the stress and deflection level constraints. Among all the design solutions for 

K from 8th power of ten to 15th power of ten, the lowest horizontal force is 8101 kN 

when K is 8th power of ten, while the total volume is increased from 47.8 to m
3
 to 

49.2 m
3
. The highest volume reduction is 25.4% when K is 10th power of ten, and 

has 9585 kN horizontal force in the meantime, namely 34% force reduction.  

 

K 
SMAX 

(SV)(Pa) 
DMAX 

(SV)(m) 
FXALL 

(OBJ)(MN) 
Force  

Reduction(%) 
Volume 
(m^3) 

VR 
(%) 

Design 1.9E+08 -4.5E-02 14.6 - 47.8 - 

7 3.4E+08 -2.1E-01 1.3 91 48.2 -0.8 

8 2.2E+08 -9.7E-02 8.1 44 49.2 -2.9 

9 3.2E+08 -7.1E-02 10.0 32 41.0 14.4 

10 3.5E+08 -1.0E-01 9.6 34 35.7 25.4 
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15 3.5E+08 -8.5E-02 11.3 23 39.1 18.2 

Table 37 

Optimization results of Model II 
 

 

Same as optimization of minimize total volume, several candidate solutions was 

characterized by a specific spring constant K. Hence, the problem of choosing the 

most suitable solution is faced. Two response indexes (RIs) were defined as the 

maximum Von Mises stress and maximum deflection throughout the whole steel 

structure, respectively. The trends of both RIs are shown in Fig. 46. The RIs curves 

decrease for increasing values of spring constant K from 7th to 9th power of ten until 

the lowest value occurred when K is 8th power of ten, while deformation level is 

always significantly higher than stress level.  

 

Fig. 47 shows global optimization index (GOI) varying the spring constant K for 

some values of ranging between 0 and 2. Without favor the solution with high VR, 

the highest GOI obtained when spring constant K is 10
8 
N/m, which design solution 

with the highest horizontal force reduction. 
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Fig. 46 Response indexes vs. spring 

constant K 

Fig. 47 Global optimization index vs. spring 

constant K (vs ) 
 

Table 38 gives the results of reaction force and deflection of the bridge under all load 

cases including self-weight and secondary dead load when spring constant K is 10
8 

N/m. Horizontal force is 3974.2 kN under self-weight and is 0.68 times compared 

with original model. However, due to the consideration of abutment deformability, 

the deformation under self-weight is increased to 0.091m. The maximum 

deformations under all load cases are also increased due to the decrease of 

structure stiffness. The deformation under load case of full length full width has the 

highest value 0.097m. 
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Load Cases 
x- Direction x+ Direction Dmax 

Fx(kN) Fy(kN) Fx(kN) Fy(kN) (m) 

Self-weight 3974.2 2069.2 -3974.2 2069.2 0.091 

Secondary dead load 2909.1 1494.7 -2909.1 1494.7 0.070 

Full length full width 4127.0 2082.4 -4127.0 2082.4 0.097 

Full length half width 2062.6 1687.7 -2062.6 394.7 0.064 

Half length full width 2056.3 1039.0 -2056.3 1039.0 0.053 

Two diagonal areas 

of half width 
2056.3 1039.0 -2056.3 1039.0 0.050 

Table 38 

Results of reaction force and deflection under load cases 
 

 

Results of Model III 

 

Fig. 41 illustrates the optimization iterative processes of Model III with initial strain of 

stiffening cables varying from 7 to 15 times 10
-4

. The consistent reduction of the 

objective function is well appreciable for each optimization process. Due to the 

utilization of stiffening cables, all the starting models have found the best design 

solutions which satisfy the stress and deflection level constraints. The highest 

horizontal force reduction is 36.3% when initial strain is 7×10
-4

, while the lowest is 

21.9% when initial strain is 15×10
-4

.  
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Fig. 48 Convergence iteration of optimization process of Model III 

 

The best design solutions of all optimization iterative processes of Model III with 

different initial strain value are listed in Table 48 (at the end of chapter). Summarized 

information without DVs is listed in Table 39. Among all the design solutions for initial 

strain from 7 to 15 times 10
-4

, the lowest horizontal force is 9381 kN when initial 

strain is 7×10
-4

, and the total volume is decreased from 47.8 to m
3
 to 41.7 m

3
. The 

highest volume reduction is 16.6% when initial strain is 8×10
-4

, and has 10872 kN 

horizontal force in the meantime, namely 25.3% force reduction. 

 

ε 
SMAX 

(SV)(Pa) 
DMAX 

(SV)(m) 
FXALL 

(OBJ)(MN) 
Force  

Reduction(%) 
Volume 
(m^3) 

VR 
(%) 

Design 1.9E+08 -4.5E-02 14.6 - 47.8 - 

7 3.6E+08 -6.7E-02 9.3 36.3 41.7 12.8 

8 2.9E+08 -6.0E-02 10.9 25.3 39.9 16.6 

9 3.2E+08 -7.6E-02 10.2 30.1 40.8 14.6 

10 3.2E+08 -6.4E-02 9.5 34.9 44.0 7.9 

15 3.4E+08 -5.1E-02 11.4 21.9 60.0 -25.5 

Table 39 

Optimization results of Model III 
 

 

As the same case of Model II, several candidate solutions were characterized by a 

specific initial strain following the optimization procedure of Model III. Hence, the 

problem of choosing the most suitable solution is faced. In this case, two response 

indexes (RIs) also defined as the maximum Von Mises stress and maximum 

deflection throughout the whole steel structure.  

 

The trends of both RIs are shown in Fig. 49. The RI curve of deformation level 

decreased for increasing values of initial strain higher than 8×10
-4

. On the contrary, 

the RI curve of stress level increased for initial strain higher than 8×10
-4

. Generally, 

stress level is always higher than deformation level.  
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Fig. 50 shows global optimization index (GOI) varying the initial strain for some 

values of ranging between 0 and 2. As mentioned before, the application of penalty 

exponent will favour design solution with higher or lower volume reduction. The 

GOI decreased for increasing values of initial strain higher than 9×10
-4
The highest 

GOI obtained when initial strain is 9×10
-4

, which design solution with a high 

horizontal force reduction 30.1% and high volume reduction 14.6%. 
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Fig. 49 Response index vs. initial strain Fig. 50 Global optimization index vs. initial 

strain (vs ) 
 

Table 40 gives the results of reaction force and deflection of the bridge under all load 

cases including self-weight and secondary dead load initial strain is 9×10
-4

. 

Horizontal force is decreased due to the utilization of prestressing cables under all 

load cases. Horizontal force is 4381.0 kN under self-weight and is 2.55 times of 

vertical reaction. The maximum deformations under all load cases are increased due 

to the decrease of structure stiffness. The deformation under load case of full bridge 

full width has the highest value 0.076m.  

 

Load Cases 
x- Direction x+ Direction Dmax 

Fx(kN) Fy(kN) Fx(kN) Fy(kN) (m) 

Self-weight 4381.0 1716.5 -4381.0 1716.5 0.059 

Secondary dead load 3805.9 1494.7 -3805.9 1494.7 0.056 

Full length full width 5863.6 2082.4 -5863.6 2082.4 0.076 

Full length half width 2385.8 1686.2 -2385.8 396.3 0.064 

Half length full width 2373.6 1039.0 -2373.6 1039.0 0.050 

Two diagonal areas 

of half width 
2373.6 1039.0 -2373.6 1039.0 0.047 

Table 40 

Results of reaction force and deflection under load cases 
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5.3. Identification of the Best Design Solution 

 

The optimization results of minimizing total volume are listed in Table 41. The best 

design solution of model I has a 34% volume reduction compared to the original 

design. For Model II, the best solution corresponds to a spring constant K equal to 

10
10 

N/m, with a 36% volume reduction. The best design solution of Model III 

corresponds to an initial strain equal to 8×10
-4

, and lead also in this case to a 36% 

volume reduction. 

 

Model 
Max Stress 

(Pa) 

Max Deflection 

(m) 

Volume 

(m^3) 

VR 

(%) 

Model I 3.3E+08 -9.4E-02 31.60 34 

Model II 2.7E+08 -9.3E-02 30.43 36 

Model III 3.2E+08 -9.7E-02 30.83 36 

Table 41 

Optimization results of three models minimizing total volume
 

 

The optimization results of minimizing horizontal force are listed in Table 42. The 

best design solution of model I has a 18.2% volume reduction and a 22.7% 

horizontal force reduction compared to the original design. For Model II, the best 

solution corresponds to a spring constant K equal to 10
8 

N/m, with a 44.5% 

horizontal force reduction but a 2.9% volume rise. The best design solution of Model 

III corresponds to an initial strain equal to 9×10
-4

, lead in this case to a 14.6% 

volume reduction and 30.1% horizontal force reduction. 

 

Model 
Max  

Stress(Pa) 
Max  

Deflection(m) 
Horizontal  

Force (1e6 N) 
Force  

Reduction(%) 
Volume 
(m^3) 

VR 
(%) 

Model I 3.5E+08 -9.5E-02 11.3 22.7 39.1 18.2 

Model II 2.2E+08 -9.7E-02 8.1 44.5 49.2 -2.9 

Model III 3.2E+08 -7.6E-02 10.2 30.1 40.8 14.6 

Table 42 

Optimization results of three models minimizing horizontal force
 

 

At the end, the best design solutions between all candidate solutions of three models 

with the goal of minimizing total volume and horizontal force were trying to obtain 

with the proposed optimization index. Model I is original design of Calatrava bridge 

with fixed ends’ restraints, Model II modified the horizontal constraint (DX) at one end 
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of the bridge from fixed to 1-D spring-damper element COMBIN14 with spring 

constant K on the basis of Model I, Model III is introducing prestressing cables with 

initial strain ε along two bottom arches of the bridge. Hence, as the spring constant K 

is higher enough or initial strain ε is lower enough, Model II or Model III is the same 

as Model I therefore with same structural behaviour. It can be verified by the 

optimization results of Model I and Model II with spring constant K equal to 10
15 

N/m. 

Therefore, only the results of Model II and Model III are evaluated. 

 

The trends of GOI varying the spring constant or initial strain for some values of 

ranging between 0 and 3 were plotted in Fig. 51 and Fig. 52. As expected, the 

application of can favour design solutions of higher or lower volume reduction.  

 

In the case of minimizing total volume, Model II with the spring constant K is 10
15 

N/m has similar value as Model III with initial strain ε is 5×10
-4

. Due to the less 

influence of bridge stiffness by introducing stiffening cables along two bottom arches 

than considering bridge’s abutment deformability, all the design solutions of Model III 

have a GOI value around 0.6 and move from 0.4 to 0.9, while the GOI value of 

design solutions of Model II have significant variations and is varying from 0 to 1. 

However, the optimization process of Model III considered the effect that the 

deformation and stress of bridge increased as the initial strain increasing, the 

optimization process of Model II considered the effect that the deformation and 

stress of bridge decreased as the spring constant K increasing. Eventually, the 

highest GOI value is obtained in Model II when spring constant K is 10
10 

N/m.  

 

In the case of minimizing horizontal force, Model II with the spring constant K is 10
15 

N/m has similar value as Model III with initial strain ε is 7×10
-4

. The same effect in 

reducing horizontal force were obtained by modifying the horizontal constraint (DX) 

at one end of the bridge from fixed to 1-D spring-damper element and by introducing 

stiffening cables along two bottom arches. The former has lower effect size as the 

spring constant increasing, while the latter has larger effect size as the initial strain 

increasing. Considering the effect size and structural response limit in terms of 

stress and deformation level, both of Model II and Model III have highest GOI value 

when the spring constant or initial strain is intermediate value. In that case of each 

spring constant or initial strain, almost all the design solutions of two Models have 

same GOI value, while the design solution of Model III with initial strain 9×10
-4 

is 

slightly higher. 
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Fig. 51 Global optimization index vs. spring constant or initial strain of minimizing total volume 

(vs ) 

 

 

Fig. 52 Global optimization index vs. spring constant or initial strain of minimizing horizontal 

force (vs ) 
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No. 
SMAX 

(SV)(Pa) 
DMAX 

(SV)(m) 
T1 

(DV) 
T2 

(DV) 
T3 

(DV) 
T4 

(DV) 
T5 

(DV) 
T6 

(DV) 
T7 

(DV) 
T8 

(DV) 
T9 

(DV) 
T10 
(DV) 

T11 
(DV) 

T12 
(DV) 

1 1.9E+08 -4.5E-02 2.5E-02 2.0E-02 4.0E-02 1.6E-02 3.0E-02 3.0E-02 3.0E-02 1.2E-02 2.0E-02 2.5E-02 1.6E-02 2.0E-02 

31 3.3E+08 -8.5E-02 1.0E-02 1.0E-02 1.2E-02 1.2E-02 2.2E-02 1.0E-02 2.9E-02 1.0E-02 2.0E-02 1.0E-02 3.5E-02 1.2E-02 

Table 43 

Results of thickness optimization of Model I with goal of minimizing total volume 
 

No. 
T21 
(DV) 

T22 
(DV) 

T23 
(DV) 

T24 
(DV) 

T25 
(DV) 

T26 
(DV) 

T27 
(DV) 

T28 
(DV) 

T29 
(DV) 

T30 
(DV) 

T31 
(DV) 

T32 
(DV) 

VALL(m^3) 
(OBJ)  

1 3.0E-02 2.0E-02 7.0E-02 2.0E-02 4.0E-02 4.0E-02 4.0E-02 2.0E-02 3.0E-02 4.0E-02 2.0E-02 3.0E-02 47.8 

31 4.1E-02 2.9E-02 2.1E-02 3.1E-02 2.0E-02 1.0E-02 4.2E-02 1.6E-02 1.0E-02 1.1E-02 2.1E-02 2.5E-02 31.6 

Table 43 (continued) 

 

 

No. 
SMAX 

(SV)(Pa) 
DMAX 

(SV)(m) 
T1 

(DV) 
T2 

(DV) 
T3 

(DV) 
T4 

(DV) 
T5 

(DV) 
T6 

(DV) 
T7 

(DV) 
T8 

(DV) 
T9 

(DV) 
T10 
(DV) 

T11 
(DV) 

T12 
(DV) 

1 1.9E+08 -4.5E-02 2.5E-02 2.0E-02 4.0E-02 1.6E-02 3.0E-02 3.0E-02 3.0E-02 1.2E-02 2.0E-02 2.5E-02 1.6E-02 2.0E-02 

30 3.5E+08 -8.5E-02 1.0E-02 2.1E-02 1.0E-02 1.2E-02 2.1E-02 1.0E-02 2.1E-02 4.4E-02 4.0E-02 1.1E-02 1.9E-02 1.2E-02 

Table 44 

Results of thickness optimization of Model I with goal of minimizing horizontal force 
 

No. 
T21 
(DV) 

T22 
(DV) 

T23 
(DV) 

T24 
(DV) 

T25 
(DV) 

T26 
(DV) 

T27 
(DV) 

T28 
(DV) 

T29 
(DV) 

T30 
(DV) 

T31 
(DV) 

T32 
(DV) 

FXALL 
(MN)(OBJ)  

1 3.0E-02 2.0E-02 7.0E-02 2.0E-02 4.0E-02 4.0E-02 4.0E-02 2.0E-02 3.0E-02 4.0E-02 2.0E-02 3.0E-02 14.6 

30 1.3E-02 1.0E-02 4.1E-02 4.5E-02 4.9E-02 4.9E-02 4.8E-02 2.8E-02 1.4E-02 4.7E-02 4.2E-02 4.2E-02 11.3 

Table 44 (continued) 
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K 
SMAX 

(SV)(Pa) 
DMAX 

(SV)(m) 
T1 

(DV) 
T2 

(DV) 
T3 

(DV) 
T4 

(DV) 
T5 

(DV) 
T6 

(DV) 
T7 

(DV) 
T8 

(DV) 
T9 

(DV) 
T10 
(DV) 

T11 
(DV) 

T12 
(DV) 

5 4.4E+08 -2.5E-01 1.2E-02 1.6E-02 2.5E-02 2.9E-02 1.1E-02 3.7E-02 3.0E-02 1.2E-02 2.3E-02 1.0E-02 4.7E-02 1.3E-02 

6 3.9E+08 -2.1E-01 1.1E-02 1.1E-02 1.5E-02 1.9E-02 1.7E-02 1.1E-02 4.2E-02 1.0E-02 1.1E-02 1.0E-02 1.1E-02 1.0E-02 

7 3.6E+08 -2.0E-01 1.4E-02 1.0E-02 1.4E-02 2.8E-02 1.0E-02 1.1E-02 3.4E-02 1.1E-02 1.6E-02 1.0E-02 2.5E-02 2.0E-02 

8 3.5E+08 -1.6E-01 1.1E-02 1.1E-02 1.0E-02 1.0E-02 1.1E-02 1.1E-02 1.1E-02 1.0E-02 1.3E-02 1.0E-02 1.9E-02 1.1E-02 

9 3.6E+08 -1.0E-01 1.1E-02 1.2E-02 1.0E-02 1.0E-02 1.1E-02 1.1E-02 1.6E-02 1.0E-02 2.6E-02 1.0E-02 3.2E-02 2.3E-02 

10 2.7E+08 -8.4E-02 1.1E-02 1.2E-02 1.6E-02 1.6E-02 2.4E-02 1.2E-02 2.9E-02 1.1E-02 2.0E-02 1.0E-02 3.5E-02 1.1E-02 

15 3.3E+08 -8.5E-02 1.0E-02 1.0E-02 1.2E-02 1.2E-02 2.2E-02 1.0E-02 2.9E-02 1.0E-02 2.0E-02 1.0E-02 3.5E-02 1.2E-02 

Table 45 

Results of thickness optimization of Model II with goal of minimizing total volume 

 

K 
T21 
(DV) 

T22 
(DV) 

T23 
(DV) 

T24 
(DV) 

T25 
(DV) 

T26 
(DV) 

T27 
(DV) 

T28 
(DV) 

T29 
(DV) 

T30 
(DV) 

T31 
(DV) 

T32 
(DV) 

VALL(m^3) 
(OBJ) 

VR 
(%) 

5 4.7E-02 2.5E-02 2.1E-02 2.8E-02 1.1E-02 1.1E-02 4.3E-02 1.1E-02 1.1E-02 1.1E-02 1.3E-02 2.4E-02 37.235 22 

6 4.3E-02 1.7E-02 1.8E-02 1.3E-02 2.8E-02 1.1E-02 4.8E-02 1.0E-02 1.3E-02 1.0E-02 2.1E-02 1.4E-02 30.450 36 

7 3.4E-02 1.1E-02 2.3E-02 3.0E-02 4.3E-02 1.0E-02 4.3E-02 1.2E-02 1.0E-02 1.0E-02 2.2E-02 1.2E-02 30.806 36 

8 3.8E-02 2.3E-02 1.3E-02 1.1E-02 1.6E-02 1.2E-02 1.2E-02 4.5E-02 1.0E-02 1.1E-02 1.8E-02 1.1E-02 27.304 43 

9 3.7E-02 2.2E-02 1.4E-02 1.1E-02 1.1E-02 1.2E-02 1.2E-02 2.3E-02 1.0E-02 2.6E-02 3.3E-02 1.4E-02 29.277 39 

10 3.0E-02 3.0E-02 2.1E-02 2.8E-02 1.3E-02 1.0E-02 3.0E-02 1.6E-02 1.0E-02 1.1E-02 2.1E-02 2.5E-02 30.433 36 

15 4.1E-02 2.9E-02 2.1E-02 3.1E-02 2.0E-02 1.0E-02 4.2E-02 1.6E-02 1.0E-02 1.1E-02 2.1E-02 2.5E-02 31.591 34 

Table 45 (continued) 
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K 
SMAX 

(SV)(Pa) 
DMAX 

(SV)(m) 
T1 

(DV) 
T2 

(DV) 
T3 

(DV) 
T4 

(DV) 
T5 

(DV) 
T6 

(DV) 
T7 

(DV) 
T8 

(DV) 
T9 

(DV) 
T10 
(DV) 

T11 
(DV) 

T12 
(DV) 

7 3.4E+08 -2.1E-01 1.3E-02 1.2E-02 4.4E-02 3.6E-02 5.0E-02 2.1E-02 4.4E-02 1.2E-02 1.1E-02 2.4E-02 4.5E-02 1.7E-02 

8 2.2E+08 -9.7E-02 1.1E-02 1.9E-02 4.3E-02 3.8E-02 4.1E-02 4.6E-02 4.3E-02 1.5E-02 2.0E-02 2.5E-02 4.8E-02 2.6E-02 

9 3.2E+08 -7.1E-02 1.0E-02 3.8E-02 1.0E-02 1.0E-02 4.1E-02 1.0E-02 4.7E-02 4.9E-02 1.8E-02 1.5E-02 1.3E-02 1.0E-02 

10 3.5E+08 -1.0E-01 1.0E-02 1.1E-02 1.0E-02 1.0E-02 1.4E-02 1.0E-02 1.5E-02 4.9E-02 3.3E-02 1.1E-02 1.2E-02 1.0E-02 

15 3.5E+08 -8.5E-02 1.0E-02 2.1E-02 1.0E-02 1.2E-02 2.1E-02 1.0E-02 2.1E-02 4.4E-02 4.0E-02 1.1E-02 1.9E-02 1.2E-02 

Table 46 

Results of thickness optimization of Model II with goal of minimizing horizontal force 

 

K 
T21 
(DV) 

T22 
(DV) 

T23 
(DV) 

T24 
(DV) 

T25 
(DV) 

T26 
(DV) 

T27 
(DV) 

T28 
(DV) 

T29 
(DV) 

T30 
(DV) 

T31 
(DV) 

T32 
(DV) 

FXALL 
(MN)(OBJ) 

VR 
(%) 

7 5.0E-02 1.2E-02 4.0E-02 1.4E-02 5.0E-02 2.4E-02 4.5E-02 2.1E-02 4.4E-02 4.8E-02 1.6E-02 4.9E-02 1.3 -8.3 

8 4.8E-02 1.0E-02 4.2E-02 2.2E-02 5.0E-02 2.1E-02 4.9E-02 1.7E-02 1.1E-02 4.9E-02 1.2E-02 5.0E-02 8.1 -2.9 

9 2.0E-02 1.0E-02 3.2E-02 1.8E-02 5.0E-02 2.0E-02 4.3E-02 1.7E-02 3.4E-02 4.7E-02 3.8E-02 4.1E-02 10.0 14.4 

10 1.3E-02 1.0E-02 4.1E-02 3.9E-02 4.9E-02 4.9E-02 5.0E-02 1.4E-02 2.0E-02 3.8E-02 4.9E-02 4.0E-02 9.6 25.4 

15 1.3E-02 1.0E-02 4.1E-02 4.5E-02 4.9E-02 4.9E-02 4.8E-02 2.8E-02 1.4E-02 4.7E-02 4.2E-02 4.2E-02 11.3 18.2 

Table 46 (continued) 
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ε 
SMAX 

(SV)(Pa) 
DMAX 

(SV)(m) 
T1 

(DV) 
T2 

(DV) 
T3 

(DV) 
T4 

(DV) 
T5 

(DV) 
T6 

(DV) 
T7 

(DV) 
T8 

(DV) 
T9 

(DV) 
T10 
(DV) 

T11 
(DV) 

T12 
(DV) 

5 3.1E+08 -5.6E-02 2.6E-02 4.8E-02 2.0E-02 2.0E-02 2.6E-02 4.4E-02 2.1E-02 2.7E-02 2.1E-02 2.0E-02 2.1E-02 3.2E-02 

6 3.4E+08 -6.2E-02 2.0E-02 2.1E-02 3.3E-02 2.0E-02 2.1E-02 2.4E-02 4.4E-02 2.4E-02 3.0E-02 2.2E-02 2.0E-02 2.1E-02 

7 3.2E+08 -7.0E-02 1.7E-02 1.7E-02 2.9E-02 1.6E-02 1.7E-02 2.1E-02 3.7E-02 2.3E-02 2.8E-02 2.0E-02 1.7E-02 1.8E-02 

8 3.2E+08 -8.2E-02 1.2E-02 1.2E-02 2.3E-02 1.4E-02 1.3E-02 1.4E-02 4.5E-02 1.4E-02 2.8E-02 1.3E-02 1.2E-02 1.4E-02 

9 3.5E+08 -7.1E-02 1.6E-02 1.6E-02 3.6E-02 1.5E-02 1.6E-02 2.3E-02 4.8E-02 2.4E-02 3.1E-02 1.9E-02 1.6E-02 1.7E-02 

10 3.6E+08 -7.2E-02 1.6E-02 1.6E-02 3.7E-02 1.5E-02 1.6E-02 2.3E-02 4.8E-02 2.4E-02 3.1E-02 1.9E-02 1.6E-02 1.7E-02 

15 3.4E+08 -6.0E-02 2.9E-02 3.3E-02 3.6E-02 2.7E-02 2.3E-02 2.9E-02 2.4E-02 2.1E-02 3.7E-02 2.3E-02 2.1E-02 2.1E-02 

Table 47 

Results of thickness optimization of Model III with goal of minimizing total volume 

 

ε 
T21 
(DV) 

T22 
(DV) 

T23 
(DV) 

T24 
(DV) 

T25 
(DV) 

T26 
(DV) 

T27 
(DV) 

T28 
(DV) 

T29 
(DV) 

T30 
(DV) 

T31 
(DV) 

T32 
(DV) 

VALL(m^3) 
(OBJ) 

VR 
(%) 

5 2.1E-02 2.8E-02 2.0E-02 2.0E-02 4.9E-02 2.2E-02 2.7E-02 2.1E-02 2.5E-02 2.1E-02 4.4E-02 2.5E-02 44.416 7 

6 2.4E-02 2.1E-02 2.2E-02 2.6E-02 2.3E-02 2.1E-02 2.1E-02 2.1E-02 2.2E-02 2.1E-02 2.0E-02 2.3E-02 40.378 16 

7 2.3E-02 1.7E-02 2.3E-02 2.3E-02 2.0E-02 1.8E-02 3.9E-02 1.8E-02 2.0E-02 1.7E-02 1.7E-02 2.5E-02 36.456 24 

8 2.9E-02 1.8E-02 2.2E-02 2.2E-02 1.7E-02 1.3E-02 1.3E-02 1.3E-02 1.3E-02 1.2E-02 1.2E-02 1.3E-02 30.829 36 

9 2.3E-02 1.6E-02 2.4E-02 2.5E-02 2.2E-02 1.7E-02 1.7E-02 1.7E-02 2.2E-02 1.7E-02 1.6E-02 2.5E-02 37.309 22 

10 2.3E-02 1.6E-02 2.4E-02 2.5E-02 2.2E-02 1.7E-02 1.7E-02 1.7E-02 2.2E-02 1.7E-02 1.6E-02 2.5E-02 37.335 22 

15 2.4E-02 2.5E-02 3.0E-02 2.1E-02 3.5E-02 2.8E-02 2.5E-02 3.1E-02 2.7E-02 2.5E-02 2.5E-02 4.9E-02 47.055 2 

Table 47 (continued) 
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ε 
SMAX 

(SV)(Pa) 
DMAX 

(SV)(m) 
T1 

(DV) 
T2 

(DV) 
T3 

(DV) 
T4 

(DV) 
T5 

(DV) 
T6 

(DV) 
T7 

(DV) 
T8 

(DV) 
T9 

(DV) 
T10 
(DV) 

T11 
(DV) 

T12 
(DV) 

7 3.6E+08 -6.7E-02 1.6E-02 1.7E-02 1.6E-02 2.3E-02 2.8E-02 1.6E-02 4.3E-02 2.5E-02 1.7E-02 1.8E-02 1.7E-02 3.9E-02 

8 2.9E+08 -6.0E-02 1.1E-02 3.9E-02 1.3E-02 1.1E-02 3.6E-02 1.7E-02 4.9E-02 1.2E-02 1.7E-02 4.1E-02 1.4E-02 1.4E-02 

9 3.2E+08 -7.6E-02 1.7E-02 1.8E-02 1.7E-02 4.1E-02 1.9E-02 1.5E-02 4.5E-02 1.6E-02 2.1E-02 1.7E-02 1.8E-02 2.1E-02 

10 3.2E+08 -6.4E-02 1.9E-02 2.5E-02 2.0E-02 2.8E-02 1.9E-02 1.6E-02 2.8E-02 1.8E-02 2.9E-02 2.2E-02 2.6E-02 2.3E-02 

15 3.4E+08 -5.1E-02 3.7E-02 2.2E-02 2.6E-02 4.5E-02 2.3E-02 2.4E-02 2.2E-02 2.9E-02 3.6E-02 4.7E-02 4.2E-02 2.5E-02 

Table 48 

Results of thickness optimization of Model III with goal of minimizing horizontal force 

 

ε 
T21 
(DV) 

T22 
(DV) 

T23 
(DV) 

T24 
(DV) 

T25 
(DV) 

T26 
(DV) 

T27 
(DV) 

T28 
(DV) 

T29 
(DV) 

T30 
(DV) 

T31 
(DV) 

T32 
(DV) 

FXALL 
(MN)(OBJ) 

VR 
(%) 

7 2.2E-02 4.6E-02 1.9E-02 2.2E-02 4.7E-02 2.8E-02 4.8E-02 2.5E-02 3.2E-02 4.8E-02 3.5E-02 1.9E-02 9.3 12.8 

8 3.5E-02 1.0E-02 1.0E-02 2.3E-02 5.0E-02 1.3E-02 3.9E-02 3.1E-02 1.2E-02 3.8E-02 3.5E-02 1.7E-02 10.9 16.6 

9 2.4E-02 1.9E-02 2.5E-02 3.9E-02 4.9E-02 1.9E-02 4.8E-02 3.0E-02 1.7E-02 5.0E-02 3.2E-02 3.5E-02 10.2 14.6 

10 2.1E-02 4.0E-02 3.8E-02 2.9E-02 4.9E-02 1.9E-02 4.5E-02 3.1E-02 2.3E-02 5.0E-02 2.2E-02 3.5E-02 9.5 7.9 

15 4.5E-02 4.3E-02 4.4E-02 3.2E-02 4.8E-02 2.3E-02 3.3E-02 3.5E-02 2.1E-02 5.0E-02 3.6E-02 3.7E-02 11.4 -25.5 

Table 48 (continued) 
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CHAPTER 6 

 

6. CABLE-STAYED BRIDGES 

 

The Stromsund Bridge in Sweden, completed in 1955 with a main span of 182 m is 

usually recognized as the world’s first major cable-stayed bridge, followed in 1957 by 

the 260 m main span North Bridge in Dusseldorf, Germany. Since the completion of 

the Stromsund Bridge, the cable-stayed bridge has evolved into the most popular 

bridge type for long-span bridges and have been later constructed all over the world 

(Zadeh, 2012). The number is increasing rapidly, the span length has also increased 

significantly. 

 

A cable stayed bridge is composed of three main components, namely Deck, Pylon 

or Tower and Cables. A typical cable-stayed bridge is a deck with one or two pylons 

erected above the piers in the middle of the span. The cables are attached 

diagonally to the girder to provide additional supports. The deck is the roadway 

surface of a cable-stayed bridge. Its weight has significant impact on the required 

stay cables, pylons, and foundations. Towers are the main component of cable 

stayed bridges to support the bridge self-weight and live load acting on the structure. 

Cables transfer the load of the structure to the towers. They are usually 

post-tensioned to minimize the vertical deflection of the deck and lateral deflection of 

the towers. The stiffness of the structure is highly dependent on the stiffness of the 

cables. 

 

Cable-stayed bridges are statically indeterminate structures due to its composition. 

Their structural behavior is the result of a complex interaction between several 

parameters. The cable arrangement and stiffness distribution in the cables, deck 

and towers affected the structural behavior of cable-stayed bridge greatly (Walther, 

1999). Some researchers made parametric studies including structural elements 

stiffness, anchorage positions, side-to-central span ratio, etc. between 1980 and 

1990. However, few attempts have been made to use optimization techniques 

(Negrão and Simões, 1997).  

 

In the design of cable-stayed bridges, to get more attractive appearance, sometimes 

the designer would like to change the total number of cables and angle of the tower. 

Both of them also play an important role in the mechanical behavior of bridges. In 

this Chapter, to discuss the interaction between mechanical behavior of 
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cable-stayed bridge and its parameters like total number of cables and tower angle, 

immediately following the introduction of cable force optimization methods, two 

cable-stayed bridges including one Single Tower Single Cable Plane cable-stayed 

bridge and one Twin Towers Double Cable Planes cable-stayed bridge are served 

as prototypes, cable cross sectional areas and corresponding initial force 

optimization and thickness optimization of steel plates of deck are carried out. 

 

 

6.1. Design of Cables 

6.1.1 Cable Force Optimization Methods 

 

In the design of cable-stayed bridge, an important step is determining the tensioning 

forces of stay cables to achieve a desired geometry of the bridge after construction, 

especially under the reaction of dead load. Cable tensioning has also been 

recognized as a tool to adjust the stress distribution and the geometry of 

cable-stayed bridges. Due to the high redundancy of the structural systems, 

tensioning one single cable also affects the forces in all other cables, the tower, and 

the bridge deck (Janjic, et al., 2003). 

 

There are a lot of researches about approaches of determine the applied cable 

tensioning force, such as Zero Displacement Method, Force Equilibrium Method, 

Minimum Bending Energy, Minimum Bending Moment, Influence Matrix Method and 

etc. To determine the optimal cable tensioning force, different methods must be 

adopted for different type of bridges. 

 

Among this approaches, Zero Displacement Method is based on the idea that the 

stay cables transform the structural system of the girder into a rigidly supported 

continuous beam. It determines the tensioning forces of stay cables to achieve a 

desired geometry of the bridge after construction (Janjic, et al., 2003). The method 

starts by assuming zero tension forces in the stay cables. Based on an assumption 

of zero deflections in the deck, the equilibrium position of the cable-stayed bridge 

under dead load action is obtained (Hassan, et al., 2012). The influence matrix 

describing nodal displacements was then established due to a unit force applied 

successively along each cable. Then a system of equations can be written for the 

solution of the post-tensioning force of each cable. By solving this system of 

equations, the unknown post-tensioning cable forces can be determined (Sung, et 

al., 2006). 
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Fig. 53 Scheme of Zero Displacement Method  

Take Fig. 53 as example, the first step is calculating the deformation of cable at deck 

end 1, 2, 3, 4, 5, 6 under self-weight but without tensioning force in cables, namely 

Δ1g, Δ2g, Δ3g, Δ4g, Δ5g, Δ6g. Then the influence value δki (k is node number, i is 

cable number) are calculated when a unit force applied successively along each 

cable. Hence, a system of equations can be written on the condition that the 

deformations of all nodes are zero under self-weight and tensioning force at the 

same time: 

 

1 11 2 12 6 16

1 21 2 22 6 26

1 61 2 62 6 66

 X +X +   +X + 1g = 0

 X +X +  +X + 2g = 0

                      

 X +X +  +X + 6g = 0

  

  

  







 

 (18) 

 

By solving this system of equations, the unknown post-tensioning cable forces can 

be determined. 

 

Influence Matrix Method (Rucheng and Haifan, 1998) is a practical optimization 

method on the basis of general influence matrix. It can not only be applied to 

determine the optimum cable tensioning force of the bridges, but can also be used to 

construction control. As we known, for the discrete structure with m elements, the 

structural bending energy can be expressed as: 

 

 2 21

1 1 14

m

Li Ri

i

l
U M M

E I

   (19) 

 

Where il , iE  and iI  are length, elastic modulus and inertia moment of element i 

respectively, LiM  and RiM  are left and right bending moments of element i. The 

formula also can be expressed as: 
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       
T T

L L R RU M B M M B M         (20) 

 

Where  LM

 

and  RM

 

are the matrix of left and right bending moments, 

respectively.  

 

11

22

0 0

0 0
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4
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b
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b i m

E I

b

B

 
 
     
 
 

  (21) 

 

Set the matrix of left and right bending moments without tensioning force are 

 L0M

 

and  R0M  respectively, the l order vector of initial cable force is T , 

which is the same order as the number of cable. Hence, the matrix of left and right 

bending moments with tensioning force are: 

 

     

     

L

R

L L0

R R0

M M C T

M M C T

  

  

 

 
 (22) 

 
To obtain minimum bending moment of structure, then: 

 

0  ( 1,  2 ,  ,  )
i

U
i = l

T





 (23) 

 
It can be expressed as: 

 

      
T T T T

L L R R R LR0 L0C B C C B C T C B M C B M                                           (24) 

 

By solving this system of equations, the unknown post-tensioning cable forces can 

be determined. 

 

6.1.2 Optimization Problem Description 
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The cables to be optimized consist of two different parts, namely cable cross 

sectional area optimization and cable initial force optimization. For a given set of 

cable cross sectional area, the optimum initial cable force can be obtained through 

the methods mentioned above. With the purpose of minimizing the cable cross 

sectional area, the problem can be defined by Design Variables (DV), Constraints 

Function (CON) and Objective Function (OBJ). 

 

Design Variables (DV): cable cross sectional areas,       (         ), n is the 

total number of cables. 

Constraints Function (CON) 

1) The maximum tensile stress of the cables under all load cases are no more 

than the allowable stress,         (         ) 

2) The deformation of cables at deck end under all load cases are no more than 

the allowable deformation,         (         ) 

3) The deformation of tower top in longitudinal direction is no more than the 

allowable deformation,        . 

Objective Function (OBJ): total volume of cables,   ∑    
 
      (         ). 

 

6.1.3 Programs Implemented for Optimization 

 

There are two methods in the "Optimization toolbox" of MATLAB (MathWorks Inc., 

2011), namely fmincon and lsqnonlin. The former is a trust region method in which 

derivative information is used to compute a good approximation of the objective 

function in a small trust region. The latter uses specific least squares techniques. 

However, both of them are all local, so there is uncertainty about the nature of the 

optimum and strong dependence on the initial starting values. If the starting point is 

too near a local minimum, it may find that point instead of the global minimum.  

 

Therefore, the method of the Coupled Local Minimizers (CLM) is implemented as 

shown in Fig. 54. CLM is a recently developed global optimization technique 

(MathWorks Inc., 2011, Suykens, et al., 2001, Teughels, et al., 2003). In this method, 

the information of several local optimizers is combined to avoid local optima. The 

local optimizations are started from random points over the domain, and constraints 

are imposed to force the search points to end up in the same point. In a successful 

run, this point has the lowest function value, and is the global minimum. The 

reliability of this method is due to the evaluation of a lot of points, spread over the 

domain. The advantage compared to other global methods is the use of first order 
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information, which enforces faster convergence. To reduce calculation time, this 

method is used to identify the global minimum with a limited precision. When the 

search points have located the valley of the global minimum, the CLM-method is 

stopped and a local method is used until the necessary precision is reached (Cheng, 

2012).  

 

 

Fig. 54 Illustration of Coupled Local Minimizers 

 

6.1.4 Optimization Procedure 

 

The optimization procedure is illustrated in Fig. 55. In the presented procedure, it is 

collaborated with main coding program of MATLAB and finite element modeler and 

solver of ANSYS. Based on the optimization description, the design variables were 

assigned firstly. Then their values were wrote to file and passed into ANSYS to 

calculate the bridge bending energy or displacement matrix and into subroutines in 

MATLAB to computes the constraint function and objective function. Before the 

verification of state variables meet the constraint function, initial tension force is 

calculated in MATLAB and passed into ANSYS to get the actual state variables. 

 

Based on these loops of creating design variables (DVs) then calculating constraints 

(SV/CON) and objectives (OBJ), the sampling of the optimization problem was 

passed to the "Global Optimization" setup. Then, by setting some control 

parameters of global search, such as variables tolerances, maximum iteration 

number and search step size, coupled local minimizers would be launched, until the 

converged optimal solution was found, or infeasible results if tolerances or maximum 

iteration numbers were reached.  
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Fig. 55 Flowchart of optimization procedure 

 
 

6.2. Single Cable Plane Cable-stayed Bridge 

6.2.1 General Situation 

 

The bridge is a Single Tower Single Cable Plane cable-stayed bridge as shown in 

Fig. 56, located in Pescara, Italy. It has a total length 118.8m from the bottom center 

of tower to the other end and a 86m long deck. Single inclined tower with special 

shape is adopted which composed of two separated part (39.5m and 52.4m high, 

respectively) but connected at the centre of tower. 
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Fig. 56 Geometry of Pescara Bridge, Italy (unit: mm) 

 

The deck section is shown in Fig. 57. The total width of deck is 28m. It has 7.9m 

width for lanes and 3.15m for walkway at each side. Steel plates and tubes consist 

of two steel boxes at each side and connect together by steel tubes, which form the 

typical bridge deck section. The dimensions and thicknesses of them are shown in 

Fig. 57. 

 

 

Fig. 57 Cross section of deck(unit: mm) 
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6.2.2 Finite Element Model 

 

Using software ANSYS to build the finite element model. There are 9719 nodes and 

7476 elements in total. Steel tubes and tower using Beam188 element, deck using 

Shell63, while cables using Link10 element. Finite element model is shown in Fig. 58. 

To simulate the actual boundary conditions of the bridge, the bottom of tower and 

two ends of the deck are fixed. 

  

 

Fig. 58 Finite Element Model 

 

Steel grade is S355 in Eurocode 3. Therefore, its yield stress is 355 MPa and tensile 

strength is 510 MPa. The value of the modulus of elasticity was assumed to be 210 

GPa. Poisson's ratio and material density were set to 0.3 and 7850 kg/m
3
, 

respectively. According to the Eurocode 2, concrete with strength class C35/45 was 

chosen. Its characteristic cylinder strength was 35 MPa, the average tensile strength 

of concrete before cracking was 3.2 MPa (fctm = 0.30fck
2/3

). The value of the modulus 

of elasticity was assumed to be 34 GPa. Poisson's ratio and material density were 

set, respectively, to 0.2 and 2500 kg/m
3
. 

 

5 different live loads due to pedestrian (5kN/m
2
) and truck loading were taken, 

besides permanent loads (self-weight plus dead loads due to guard-rail, asphalt and 

etc.). The truck loading is 9kN/m
2
 uniformly distributed load plus 300kN× 2 

concentrate loads for first lane, 2.5kN/m
2
 uniformly distributed load for other lanes 

and additional plus 200kN×2 concentrate loads for 2rd lane. In order to maximize 
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both bending and shear forces, 5 different positions for tandem load were 

considered (0, ¼, ½, ¾ and 1 of the span length). 

 

6.2.3 Cable Area and Initial Force Optimization Results 

 

To obtain the best design solution of cable-stayed bridge, different starting models 

were defined through the utilization of different cable number. The starting models 

with total number of cables 10, 9 and 11 were defined and their cable cross sectional 

area and corresponding initial force were optimized.  

 

In the case of starting model with 10 cables, starting from the initial cable cross 

sectional areas 2.29e-3 m
2
 (correspond to cables with diameter 54mm), which with a 

lower bound 0.5e-3 m
2 
and upper limit 10 e-3 m

2
 (correspond to cables with D25mm 

and D108mm, respectively), the total volume of steel cables was minimized. The 

optimization process converged after more than 600 iterations. Fig. 59 illustrates the 

optimization iterative process of total cable volume and longitudinal deformation of 

tower top and vertical deformation of the 6
th
 cable at deck end.  

 

Not all the design solutions are feasible due to the constraint function. 1000 MPa 

was set as the allowable maximum tensile stress of the cables under all load cases, 

the allowable deformations of cables at deck end and tower top were also set 

according to the bridge span and tower height, respectively. In the convergence 

iteration of total cable volume, pink square symbols show the infeasible design 

solutions, which not meet the requirement of stress or deformation constraints, 

meanwhile conversely, green star symbols show the feasible design solutions and 

the one among them with minimum total cable volume is the best design solution. 

The latter was marked with red pentagram symbol. 

 

Concerning the objective function, the total volume of cables moves from 1 m
3
 to 10 

m
3
, and reached to minimum value 1.428 m

3
 which meets the constraint function. 

The tower top displacement in longitudinal direction moves from 0.04m to 0.1m and 

with a 0.06m value when the total volume of cables is minimum. Because of two end 

of the deck are fixed, the initial force has little influence on the displacement of deck. 

The vertical displacement of the 6
th
 cable at deck end moves from -0.22m to -0.2m 

and with a -0.213m value when the total volume of cables reached to minimum.  
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a) Convergence iteration of total cable volume 

 

 

b) Convergence iteration of deformation 

Fig. 59 Convergence iteration of starting model with 10 cables 

 

The distribution of cable area and initial cable force is illustrated in Fig. 60. The 

optimization results lead to larger area for cables attached to both ends of the deck 

and cables close to the middle span. The former occurred due to they are the ones 

brace the tower, the latter occurred due to the deformation limit of cable deck end. 

The maximum cable area is 2.72e-3 m
2
, correspond to cable with diameter 60mm, 

while the minimum is reached to the lower bound 0.5e-3 m
2
. The maximum initial 

cable force is 1012 kN occurred in the 10
th
 cable, and the minimum is 50 kN which is 

assigned due to minus value was calculated according to the cable force 

optimization method. 
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Fig. 60 Distribution of cable area and initial cable force 

 

In the case of starting model with 9 cables, starting from the same initial cable cross 

sectional areas 2.29e-3 m
2
, same lower bound 0.5e-3 m

2 
and upper limit 10e-3 m

2
, 

the total volume of steel cables was minimized. The optimization process converged 

after more than 700 iterations. Fig. 61 illustrates the optimization iterative process of 

total cable volume and longitudinal deformation of tower top and vertical deformation 

of the 6
th
 cable at deck end.  

 

Concerning the objective function, the total volume of cables moves from 1 m
3
 to 8 

m
3
 and reached to minimum value 1.160m

3
. The tower top displacement in 

longitudinal direction moves from 0.03m to 0.11m and with a 0.05m value when the 

total volume of cables is minimum. The vertical displacement of the 6
th
 cable at deck 

end moves from -0.22m to -0.2m and with a -0.215m value when the total volume of 

cables is minimum. 

 

 

a) Convergence iteration of total cable volume 
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b) Convergence iteration of deformation 

Fig. 61 Convergence iteration of cable volume with 9 cables 
 

The distribution of cable area and initial cable force is illustrated in Fig. 62. The 

optimization results lead to larger area for cables attached to one end of the deck 

and cables close to the middle span. The maximum cable area is 2.77e-3 m
2
, 

correspond to cable with diameter 60mm, which has the maximum initial cable force 

855 kN at the same time, while the minimum is almost reached to the lower bound 

with a value 0.55e-3 m
2
. The minimum initial cable force is 33 kN which is occurred 

in 7
th
 cable. 

 

  

Fig. 62 Distribution of cable area and initial cable force 
 

In the case of starting model with 11 cables, starting from the same initial cable 

cross sectional areas 2.29e-3 m
2
 and same lower bound 0.5e-3 m
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10e-3 m
2
, the total volume of steel cables was minimized. The optimization process 

converged after more than 600 iterations. Fig. 63 illustrates the optimization iterative 

process of total cable volume and longitudinal deformation of tower top and vertical 

deformation of the 6
th
 cable at deck end.  

 

With regards to the objective function, the total volume of cables moves from 1 m
3
 to 

10 m
3
, and reached to minimum value 2.103m

3
 which meets the constraint function. 

The tower top displacement in longitudinal direction moves from 0.04m to 0.1m and 

with a 0.066m value when the total volume of cables is minimum. The vertical 

displacement of the 6
th
 cable at deck end moves from -0.22m to -0.2m and with a 

-0.212m value when the total volume of cables is minimum. 

 

 

a) Convergence iteration of total cable volume 

 

 

b) Convergence iteration of deformation 

Fig. 63 Convergence iteration of cable volume with 11 cables 
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The distribution of cable area and initial cable force is illustrated in Fig. 64. The 

optimization results lead to larger area for cables close to the middle span. It 

occurred due to the deformation limit of cable deck end. The maximum cable area is 

2.96e-3 m
2
, correspond to cable with diameter 62mm, while the minimum is reached 

to the lower bound 0.5e-3 m
2
. The maximum initial cable force 471 kN occurred in 

the 10
th
 cable, and the minimum is 50 kN which is assigned due to the minus value 

was calculated according to the cable force optimization method. 

 

 

Fig. 64 Distribution of cable area and initial cable force 

 

All the results of different starting models are listed in Table 49, including the 

optimized cable area and its corresponding initial cable force. The original design is 

obtained from design institute, which has the same area for all the cables and a 

roughly equal initial cable force due to the judgment of designer.  

 

In this research, the cable area and its initial force are obtained through the 

optimization procedure for all the starting models. Although their values are 

unrealistic to apply to the actual project due to the significant variations and 

commercial dimensions of cables, the original values are kept to give an idea to 

designer about how much cross sectional area is necessary for each cable under 

certain stress and displacement constraints.  

 

The structural arrangement of starting model with 10 cables is the same as original 

design, while the latter has a significant reduction of total cable volume which from 

2.059 m
3
 to 1.428 m

3
. The starting model with 9 cables reduced more cable volume 

due to one cable less after optimization process, on the contrary, the cable volume 

of starting model with 11 cables is slightly higher than original design due to one 

cable more. Optimization results of all starting models lead to larger cross sectional 
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area and initial tensioning force for cables attached to far end of the deck, which 

occurred due to it is the one brace the tower.  

 

Cable 

No. 

Original design 10 cables 9 cables 11 cables 

Area  
(e-3 m

2
) 

Force 
(kN) 

Area  
(e-3 m

2
) 

Force 
(kN) 

Area  
(e-3 m

2
) 

Force 
(kN) 

Area  
(e-3 m

2
) 

Force 
(kN) 

1 2.29 133.7 2.66  95.9 1.40 81.1 2.37 114.4 

2 2.29 130.2 1.01  83.8 0.74 81.1 2.90 94.9 

3 2.29 153.0 0.82  88.2 0.70 85.5 2.35 89.2 

4 2.29 170.1 1.92  107.0 2.61 99.2 4.18 85.6 

5 2.29 179.6 1.39  111.3 1.73 101.0 4.03 103.6 

6 2.29 182.3 2.48  123.8 0.55 56.8 0.50 81.1 

7 2.29 189.4 2.72  144.1 2.28 33.4 1.84 111.4 

8 2.29 192.0 0.70  50.0 0.70 50.0 2.96 137.1 

9 2.29 195.8 0.50  50.0 2.77 855.1 0.50 50.0 

10 2.29 198.0 2.33  1011.5 - - 0.98 471.0 

11 - - - - - - 1.06 377.5 

Obj.(m
3
) 2.059  1.428  1.160  2.103  

Table 49 

Initial tension force in cables 

 

6.2.4 Thickness Optimization 

 

Immediately following the cable cross sectional area and initial force optimization, for 

each starting model, thickness of steel plates were optimized by using the design 

optimization tool implemented in ANSYS. It provides a zero-order method, where the 

dependent variables are first approximated by means of least squares fitting, and the 

constrained minimization problem is then converted to an unconstrained one by 

means of penalty functions, in order to be solved using Powell’s modified method.  

 

Three different regions of the steel deck were identified, where thickness of web, 

bottom and top flanges had to be identified (Fig. 65). Thickness of steel plates were 

assumed as design variables with values ranging between 0.1m and 0.5m in part 2 

and 3, but ranging between 0.3m to 0.8m in part 1. An optimization problem with 12 

discrete variables was hence identified. The optimum thickness was found by 

minimizing the deck total weight on condition that stress level and deflection were 

lower than an allowable value.  
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Fig. 65 Identification of different optimization “groups” for the considered deck 

 

Since the optimum solution was found to depend on the initial values of steel plates’ 

thickness, different initial values were tried in order to avoid local minimum solutions. 

Where SV is the state variable (stress level and deformation level), OBJ is the 

objective function. The optimization iterative process of three different starting 

models and original design are shown in Fig. 66. In the convergence iteration of total 

volume of steel plates, black inverted triangle symbols show the infeasible design 

solutions, which not meet the requirement of stress or deformation constraints, 

meanwhile conversely, blue circle symbols show the feasible design solutions and 

the one among them with minimum objective is the best design solution. The latter 

was marked with red pentagram symbol. 

 

0 4 8 12 16 20 24 28
20

30

40

50

60

70

80

 

 

O
b

j.
 f

u
n

c
t.

 V
o

l.
[m

^
3
]

Iter.

Feasible

Unfeasible

Best

Original Design

0 4 8 12 16 20 24 28
20

30

40

50

60

70

80

 

 

O
b

j.
 f

u
n

c
t.

 V
o

l.
[m

^
3
]

Iter.

Feasible

Unfeasible

Best

10 Cables

0 4 8 12 16 20 24 28
20

30

40

50

60

70

80

 

 

O
b

j.
 f

u
n

c
t.

 V
o

l.
[m

^
3
]

Iter.

Feasible

Unfeasible

Best

9 Cables

0 4 8 12 16 20 24 28
20

30

40

50

60

70

80

 

 

O
b

j.
 f

u
n

c
t.

 V
o

l.
[m

^
3
]

Iter.

Feasible

Unfeasible

Best

11 Cables

 

Fig. 66 Convergence iteration of optimization process 
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All the optimization process converged after nearly 20 iterations. The consistent 

decrease in the objective function (and therefore the corresponding material saving) 

is well appreciable. For the original design of bridge, the total volume of steel plates 

is decreased from 48.6 m
3
 to 26.2 m

3
, namely 46.1% volume reduction. When the 

total cable number is 11, the volume reduction is lowest, but still has an appreciable 

value 26.3%. 

 

The optimization procedure led to the optimum results are listed in Table 50. It 

includes state variables (maximum steel stress SV1 and maximum deformation SV2) 

and design variables (the thickness of steel plates). The values of state variables 

and design variables are listed both before and after thickness optimization process.  

 

c_opt are the results of cable cross sectional area optimization, t_opt are the results 

of steel plates thickness optimization on the basis of cable cross sectional area and 

corresponding initial force optimization. For the original design model, only thickness 

optimization of steel plates carried out, while cable cross sectional area and 

corresponding initial force optimization and thickness optimization were carried out 

for other three starting models. 

 

 
Original design 10 cables 9 cables 11 cables 

No opt. t_opt c_opt t_opt c_opt t_opt c_opt t_opt 

SV1 (MPa) 215.7 352.8 217.2 356.5 217.3 356.9 216.3 354.0 

SV2 (mm) -39.5 -39.3 -41.0 -40.9 -40.2 -40.1 -40.4 -40.0 

T1 (m) 0.075 0.030 0.075 0.040 0.075 0.035 0.075 0.030 

S1 (m) 0.025 0.016 0.025 0.014 0.025 0.020 0.025 0.013 

BC1 (m) 0.040 0.010 0.040 0.012 0.040 0.020 0.040 0.010 

BS1 (m) 0.080 0.053 0.080 0.053 0.080 0.036 0.080 0.057 

T2 (m) 0.020 0.022 0.020 0.012 0.020 0.020 0.020 0.010 

S2 (m) 0.020 0.010 0.020 0.012 0.020 0.015 0.020 0.020 

BC2 (m) 0.018 0.010 0.018 0.012 0.018 0.015 0.018 0.020 

BS2 (m) 0.025 0.010 0.025 0.012 0.025 0.015 0.025 0.020 

T3 (m) 0.012 0.010 0.012 0.012 0.012 0.015 0.012 0.020 

S3 (m) 0.015 0.010 0.015 0.012 0.015 0.015 0.015 0.020 

BC3 (m) 0.020 0.010 0.020 0.012 0.020 0.015 0.020 0.020 

BS3 (m) 0.025 0.010 0.025 0.012 0.025 0.015 0.025 0.022 

OBJ (m
3
) 48.6 26.2 48.6 28.5 48.6 32.5 48.6 35.8 

Table 50 

Thickness optimization of single cable plane cable-stayed bridge 
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6.2.5 Comparison between Different Models 

 

Starting from different models which defined by different number of total cables, the 

cable cross sectional areas and corresponding initial tensioning force are optimized, 

on the basis of the optimization results, the optimum cable areas and initial 

tensioning force are assigned to starting models to carry out thickness optimization 

of steel plates of bridge deck. The results show the consistent decrease in steel 

cable volume and steel plates volume are well appreciable.  

 

However, as the material saving, the deformation and stress under all load cases 

are increased. Table 51 shows the maximum average stress of steel plates and 

maximum deformation of tower top under all load cases before and after thickness 

optimization. The volume reduction (VR) of steel cables and steel plates of deck are 

shown together.  

 

 
Original design 10 cables 9 cables 11 cables 

No opt. t_opt c_opt t_opt c_opt t_opt c_opt t_opt 

Stress (MPa) 81.58 136.70 82.57 128.16 82.77 116.56 82.28 105.65 

Deform. (m) 0.070 0.105 0.060 0.084 0.051 0.071 0.066 0.088 

Cable VR (%) 0 0 30.6 30.6 43.7 43.7 -2.1 -2.1 

Deck VR (%)  0 46.1 0 41.3 0 33.1 0 26.3 

Total VR (%) 0 46.1 30.6 71.9 43.7 76.8 -2.1 24.2 

Table 51 

Optimization results of single cable plane cable-stayed bridge 

 

Several candidate solutions were characterized by the total steel cables following 

the cable cross sectional area and corresponding initial tensioning force and 

thickness optimization procedure. Hence, the issue of finding the most suitable 

solution is faced. To identify the most suitable design solution that best balances 

material saving and overall performance of the structure, on the basis of the results 

obtained from optimization procedure, the proposed optimization index analytical 

formulation is discussed in detail and its effectiveness is validated. 

 

In this case, two response indexes (RIs) which summarize the overall behavior of 

the whole structure were defined as: Von Mises stress, the average throughout the 

whole optimized steel structure, was considered as representative of stress level, 

while maximum deflection of tower top was considered as representative of 

deformation level. The trends of both RIs are shown in Fig. 67. RI curves include the 
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results of cable cross sectional area optimization (Cable Opt.), steel plates thickness 

optimization (Thickness Opt.) and both together (Cable and Thickness Opt.).  
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Fig. 67 Response index vs. total steel cables: a) RI(A,i); b) RI(d,i) 

 

Consider Cable Opt., Thickness Opt. or both of them together, thanks to the 

increased deformation after optimization, the RI curves of deformation level 

decreased for increasing values of total steel cables. However, due to the highest 

average stress 136.70MPa after Thickness Opt. for original design, the trend of 

stress level is inconsistent. Consider Thickness Opt. or Cable and Thickness Opt., 

the highest RI of stress level were obtained when the total cable is 10, while RI are 

almost the same value taking into account Cable Opt.. 

 

Fig. 51 shows the trend of GOI varying the total steel cables for some values of 

ranging between 0 to 3. As expected, the application of can favour design 

solutions of higher or lower volume reduction.  

 

Consider the results of cable cross sectional area optimization, for values of higher 

than or equal to 1, the highest GOI value was obtained when the total cable is 10. 

Further reducing the  parameter until 0, the total cable is 9 get highlighted. This is 

due to the latter has a volume reduction 43.7%, while the former has a volume 

reduction 30.6%. Thanks to the volume reduction is -2.1%, the lowest GOI value 

always occurred when the total cable is 11. 

 

Consider the results of thickness optimization, due to the highest volume reduction 

26.3%, the highest GOI value was obtained when the total cable is 10 for values of 

 slightly lower than 1. Further increasing the  parameter until 3, the total cable is 

11 get highlighted. This is due to the latter has the lowest volume reduction 26.3%.  
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Take into account cable cross sectional area and thickness optimization together, 

the same as thickness optimization, for values of higher than or equal to 1, the 

highest GOI value was obtained when the total cable is 11. Further reducing the  

parameter until 0, the total cable is 9 or 10 get highlighted. This is due to the former 

has the lowest volume reduction 24.2%, while the latters have higher volume 

reduction 71.9% and 76.8%, respectively.  

 

 

Fig. 68: Global optimization index vs. total cables (vs ) 

 
 

6.3. Double Cable Planes Cable-stayed Bridge 

6.3.1 General Situation 

 

The bridge is a Twin Towers Double Cable Planes cable-stayed bridge as shown in 

Fig. 69, located in Ferrara, Italy. It has a total length 167m with a 94m main span and 

two 36.5m side spans. Bridge is symmetry about the traverse centreline and has a 

2.00% traverse slope. There are double inclined concrete towers, each with 10 

degree angle in vertical direction.  
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Fig. 69 Cable numbers and geometry of the bridge (unit: m) 

 

The lateral plane and elevation plane of tower is shown in Fig. 70. Tower is 

consisted by three parts, namely the upper tower, middle tower and lower tower, the 

cross section changed from different parts. In the elevation plane, tower is 24.96m 

high from the ground and 19.12m high from the deck. 

 

 

Fig. 70 Lateral plane and elevation plane of tower (unit: m) 

 

The typical cross section of deck is shown in Fig. 71. It has a total width 14m which 

10.5m width for lanes and 1.75m for walkway at each side. Main girders, secondary 

beams and transverse beams consist of bridge deck section. The main girder is 

I-shaped with 1.1m overall depth, 1m width bottom flange and 0.8m top flange. 

Secondary beam and cross girder also are I-shaped, the former has 0.73m overall 

depth, 0.6m width bottom flange and top flange, the latter has 0.45m overall depth, 

0.36m width bottom flange and top flange.  
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Fig. 71 Cross section of deck (unit: mm) 

 

There are 48 cables in total, 24 cables supported by each tower. The cables are 

symmetry about the tower. Each side of tower has 12 cables among which 7 at the 

main span and 5 at side span. Horizontal distance between cables is 5m. The 

longest cable is 43.23m with 1232.43kg weight. Cables parameters are listed in 

Table 52 and the cable No. is shown as above.  

 

Cable No. 
Area 

(e-3 m^2) 

Diameter 

(mm) 

Long 

(m) 

Weight 

(kg) 

Tensioning 

force (kN) 

M1 3.632 68 43.23 1232.43 1600 

M2 3.632 68 38.55 1099.01 1575 

M3 2.827 60 34.01 754.86 1105 

M4 2.827 60 29.68 658.76 1030 

M5 1.521 44 25.68 306.52 635 

M6 1.521 44 22.18 264.74 660 

M7 0.804 32 19.44 122.73 230 

S1 0.804 32 17.65 111.43 265 

S2 0.804 32 18.94 119.57 345 

S3 2.124 52 21.45 357.60 425 

S4 2.827 60 24.81 550.67 520 

S5 5.542 84 28.71 1248.97 3330 

Table 52 

Cable parameters 

 

6.3.2 Finite Element Model 

 

Using software ANSYS to build the finite element model. There are 5911 nodes, 4 

element types and 4824 elements in total. Main girder, secondary beam, transverse 
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beam and tower using Beam188 element, deck using Shell63, and cables using 

Link10 element. Finite element model is shown in Fig. 72. The cross section is 

shown in Table 53. 

 

Steel grade is S355 in Eurocode 3. Therefore, its yield stress is 355 MPa and tensile 

strength is 510 MPa. The value of the modulus of elasticity was assumed to be 210 

GPa. Poisson's ratio and material density were set to 0.3 and 7850 kg/m
3
, 

respectively. According to the Eurocode 2, concrete with strength class C20/25 was 

chosen. Its characteristic cylinder strength was 25 MPa, the average tensile strength 

of concrete before cracking was 2.6 MPa (fctm = 0.30fck
2/3

). The value of the modulus 

of elasticity was assumed to be 30 GPa. Poisson's ratio and material density were 

set, respectively, to 0.2 and 2500 kg/m
3
. 

 

 

 

 

Fig. 72 Finite Element Model 

 

Cross section Area(m^2) Iyy(m^4) Iyz(m^4) Izz(m^4) 

Main girder 0.0924 0.0218 9.65E-18 5.04E-03 

Secondary beam 0.0115 0.0004 -1.10E-20 7.78E-05 

Cross girder 0.0378 0.0036 -6.78E-21 7.20E-04 

Upper tower 4.0000 1.3333 9.17E-17 1.3333 

Middle tower 5.9220 3.1339 -9.08E-17 2.7254 

Lower tower 16.1750 56.4250 2.67E-16 8.4245 

Table 53 

Cross section 

 

For the boundary condition, all the degrees of freedom are fixed at the bottom of 

tower and two side piers. The constraints of bearings between deck and tower or 
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piers are shown in Fig. 73. There are three categories constraints, namely Fixed, 

Unidirectional and Bidirectional. Position 1 and 8 with Bidirectional constraint are the 

bearings between deck and piers, means that the degrees of freedom in longitudinal 

and transverse directions are released. Positions 3 and 4 with fixed constraint type 

are the bearings between deck and piers, other positions are unidirectional 

constraint. Deck is fixed on one tower, but release longitudinal direction constraint 

on the other tower.  

 

 

Fig. 73 Constraints of bearings 

 

To calculate the bridge behaviour, besides permanent load, five different lanes loads 

are adopted and shown in Table 54. The truck loading is 9kN/m
2
 uniformly 

distributed load plus 300kN× 2 concentrate loads for central lane, 2.5kN/m
2
 

uniformly distributed load for other lanes and additional plus 200kN×2 or 200kN 

concentrate loads, respectively. These load cases are not only used to calculate the 

static behavior of the bridge with original parameter, but also used over and over 

again during optimization looping. 

 

Load case Loading condition(s) Loading area(s) 

1 Full bridge 

 

2 Main span 

 

3 Two side span 

 

4 Half bridge 
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5 

 

Table 54 

Different lanes load cases 

 

6.3.3 Cable Area and Cable Force Optimization Results 

 

As we known, in the design of cable-stayed bridges, the total number of cables is an 

important design consideration. It plays an important role not only in the mechanical 

behavior of bridges, but also in aesthetic point of view. However, to get more 

attractive appearance, sometimes the designer would like to change the angle of the 

tower. In this section, different starting models were determined through changing 

the angle of towers in vertical direction from 0 to 20 degree and the total number of 

cables from 48 to 40, the optimization procedure of cable cross sectional areas and 

corresponding initial force were carried out.  

 

Same as single cable plane cable-stayed bridge, starting from the initial cable cross 

sectional areas 2.29e-3 m
2
 (correspond to cables with diameter 54mm), which with a 

lower bound 0.5e-3 m
2 
and upper limit 10e-3 m

2
 (correspond to cables with D25mm 

and D108mm, respectively), the total volume of steel cables was minimized. The 

optimum results were then assigned to the cable-stayed bridge to carry out the 

thickness optimization of steel plates of deck. Eventually, according to the proposed 

optimization index, results are discussed in detail and the optimum solution was 

determined.  

 

Results of bridge with 0 angle tower 

 

In the case of starting model with 0 degree angle tower in vertical direction, to obtain 

the best design solution, different starting models were defined through the 

utilization of different total number of cables. The starting models with total cable 

number 48, 44 and 40 were defined and their cable cross sectional areas and initial 

force were optimized.  

 

When there is 48 cables in total, namely 12 cables in the 1/4 part, the optimization 

process converged after more than 1000 iterations. Fig. 74 illustrates the 

optimization iterative process of total cable volume and longitudinal deformation of 

tower top and vertical deformation of M1 cable at deck end.  
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Not all the design solutions are feasible due to the constraint function. 1000 MPa is 

set as the allowable maximum tensile stress of the cables under all load cases, the 

allowable deformations of cables at deck end and tower top are also set according to 

the bridge span and tower height, respectively. In the convergence iteration of total 

cable volume, pink square symbols show the infeasible design solutions, which not 

meet the requirement of stress or deformation, meanwhile conversely, green star 

symbols show the feasible design solutions and the one with minimum total cable 

volume is the best design solution. The latter was marked with red pentagram 

symbol. 

 

 

a) Convergence iteration of total cable volume 

 

 

b) Convergence iteration of deformation 

Fig. 74 Convergence iteration of cable volume with 48 cables and 0 angle tower 
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Concerning the objective function, the total volume of cables moves from 0.5 m
3
 to 

3.5 m
3
, and reached to minimum value 1.134 m

3
 which meets the constraint function. 

The tower top displacement in longitudinal direction moves from 0.07m to 0.1m and 

with a 0.0872m value when the total volume of cables reached to minimum. The 

vertical displacement of M1 cable at deck end moves from -0.2m to 0.2m. 

 

The distribution of cable area and initial cable force is illustrated in Fig. 75. The 

optimization results led to larger area for cables attached to both ends of the deck 

and cables close to the middle span. The former occurred due to they are the ones 

brace the tower, the latter occurred due to the deformation limit of cable deck end. 

The maximum cable area is 5.45e-3 m
2
, corresponds to cable with diameter 84mm, 

while the minimum is 1.65e-3 m
2
, corresponds to cable with diameter 46mm. The 

maximum initial cable force 4493 kN occurred in the M1 cable, while the minimum is 

50 kN which is assigned due to the minus value calculated according to the cable 

force optimization method. 

 

 

Fig. 75 Distribution of cable area and initial cable force  

 

When there is 44 cables in total, namely 11 cables in the 1/4 part, starting from the 

same initial cable cross sectional areas and with same lower bound and upper limit, 

the total volume of steel cables was minimized. However, due to the constraint of 

vertical deformation of M2 cable at deck end, the initial cable force of M2 cable 

always has a high value that exceeds the limit of allowable maximum tensile stress 

under all load cases. Therefore, few feasible design solutions were obtained. To get 

more feasible design solutions, based on same deformation constraints, the stress 

limit of cables was extended to the ultimate stress 1600 MPa.  
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The optimization process converged after more than 1000 iterations. Fig. 76 

illustrates the optimization iterative process of total cable volume and longitudinal 

deformation of tower top and vertical deformation of M2 cable at deck end. 

Concerning the objective function, the total volume of cables moves from 0.5 m
3
 to 3 

m
3
, and reached to minimum value 0.455 m

3
 which meets the constraint function. 

The tower top displacement in longitudinal direction moves from 0.08m to 0.11m and 

with a 0.0955m value when the total volume of cables reached to minimum. The 

vertical displacement of M2 cable at deck end moves from -0.2m to 0.8m. 

 

 
a) Convergence iteration of total cable volume 

 

 
b) Convergence iteration of deformation 

Fig. 76 Convergence iteration of cable volume with 44 cables and 0 angle tower 
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The distribution of cable area and initial cable force is illustrated in Fig. 77. The 

optimization results lead to larger area for cables attached to one end. The 

maximum cable area is 6.55e-3 m
2
, corresponds to cable with diameter 90mm, while 

the minimum is 0.5e-3 m
2
, corresponds to cable with diameter 25mm. The maximum 

initial cable force 7725 kN occurred in the M2 cable, and the minimum is 50 kN 

which is assigned due to the minus value calculated according to the cable force 

optimization method. 

 

 

Fig. 77 Distribution of cable area and initial cable force  

 

When there is 40 cables in total, namely 10 cables in the 1/4 part, same as starting 

model with 44 cables, due to the constraint of vertical deformation of M2 cable at 

deck end, the initial cable force of M2 cable always has a high value and exceed the 

limit of allowable maximum tensile stress under all load cases, therefore, few 

feasible design solutions were obtained. Moreover, the horizontal displacement of 

tower top always exceed the limit of allowable maximum displacement due to the not 

utilization of cable S5. Therefore, as no feasible solution found, the best design 

solution was chosen from the infeasible design solutions. 

 

The optimization process terminated after more than 800 iterations but no feasible 

design solution found. Fig. 78 illustrates the optimization iterative process of total 

cable volume and longitudinal deformation of tower top and vertical deformation of 

M2 cable at deck end. Concerning the objective function, the total volume of cables 

moves from 0.5 m
3
 to 3 m

3
, and reached to minimum value 0.752 m

3
 which meets 

the constraint function. The tower top displacement in longitudinal direction moves 

from 0.10m to 0.12m and with a 0.106m value when the total volume of cables 

reached to minimum. The vertical displacement of M2 cable at deck end moves from 

-0.2m to 0.8m. 
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a) Convergence iteration of total cable volume 

 

 
b) Convergence iteration of deformation 

Fig. 78 Convergence iteration of cable volume with 40 cables and 0 angle tower 

 

The distribution of cable area and initial cable force is illustrated in Fig. 78. The 

optimization results lead to larger area for cables attached to the end located in main 

span. The maximum cable area is 9.81e-3 m
2
, corresponds to cable with diameter 

112mm, while the minimum is 0.5e-3 m
2
, corresponds to cable with diameter 25mm. 

The maximum initial cable force 8126 kN occurred in the M2 cable, and the minimum 

is 50 kN which is assigned due to the value is minus which calculated according to 

the cable force optimization method. 
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Fig. 79 Distribution of cable area and initial cable force  

 

All the results of different starting models are listed in Table 55, including the 

optimized cable cross sectional area and corresponding initial cable force. Although 

the optimization results are unrealistic to apply to the actual project, the original 

values are kept to give an idea to designer about how much cross sectional area is 

necessary for each cable under certain stress and displacement constraints. The 

starting model with 48 cables has the highest total cable volume 1.134 m
3
. The 

starting model with 44 cables and 40 cables reduced objective significantly due to 

less cables, with total cable volume 0.455 m
3 

and 0.752 m
3
, respectively. 

Optimization results of all starting models led to larger cross sectional area and initial 

tensioning force for cables attached to the end located in the main span.  

 

Cable 
No. 

Length 
(m) 

48 cables 44 cables 40 cables 

Area 
(e-3 m

2
) 

Force 
(kN) 

Area 
(e-3 m

2
) 

Force 
(kN) 

Area 
(e-3 m

2
) 

Force 
(kN) 

M1 44.38 4.71 4493.2 - - - - 

M2 39.00 4.55 50.0 6.55  7724.6  9.81  8125.6  

M3 33.82 1.67 1539.0 0.50  50.0  0.50  50.0  

M4 28.91 2.73 319.1 1.26  1029.2  1.59  1189.0  

M5 24.46 2.29 633.6 0.88  688.9  0.50  915.3  

M6 20.76 2.66 802.6 0.65  691.6  1.75  595.6  

M7 18.28 2.56 733.7 0.50  356.7  2.23  497.2  

S1 18.76 3.75 50.0 0.54  301.4  2.46  50.0  

S2 21.58 5.45 50.0 0.51  556.9  0.77  715.6  

S3 25.50 2.53 701.0 0.68  656.4  3.65  50.0  

S4 30.08 1.65 979.2 0.85  831.9  2.05  1963.6  

S5 35.07 4.32 710.7 1.07  1054.4  - - 
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Obj.(m
3
) 1.134 0.455  0.752  

Table 55 

Initial tension force in cables with 0 angle tower 

 

Results of bridge with 10 angle tower 

 

In the case of starting model with tower angle in vertical direction is 10 degree, the 

same as starting model with 0 degree tower angle, different starting models were 

defined through the utilization of different total number of cables, namely starting 

models with total cable number 48, 44 and 40. Starting from the same initial cable 

cross sectional areas 2.29e-3 m
2
 (correspond to cables with diameter 54mm), which 

with a lower bound 0.5e-3 m
2 
and upper limit 10e-3 m

2
 (correspond to cables with 

D25mm and D108mm, respectively), the cable cross sectional area and 

corresponding initial tensioning force were optimized with the objective of minimizing 

the total volume of steel cables. 

 

When there is 48 cables in total, namely 12 cables in the 1/4 part, the optimization 

process converged after more than 1000 iterations. Fig. 80 illustrates the 

optimization iterative process of total cable volume and longitudinal deformation of 

tower top and vertical deformation of M1 cable at deck end.  

 

Concerning the objective function, the total volume of cables moves from 0.5 m
3
 to 

3.5 m
3
, and reached to minimum value 0.883 m

3
 which meets the constraint function. 

The tower top displacement in longitudinal direction moves from 0.07m to 0.1m and 

with a 0.0851m value when the total volume of cables reached to minimum. The 

vertical displacement of M1 cable at deck end moves from -0.2m to 0.2m. 
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a) Convergence iteration of total cable volume 

 

 

b) Convergence iteration of deformation 

Fig. 80 Convergence iteration of cable volume with 48 cables and 10 angle tower 
 

The distribution of cable area and initial cable force is illustrated in Fig. 81. The 

optimization results led to larger area for cables attached to both ends of the deck 

and cables close to the middle span. The maximum cable area is 4.91e-3 m
2
, 

corresponds to cable with diameter 80mm, while the minimum is 1.10e-3 m
2
, 

corresponds to cable with diameter 38mm. The maximum initial cable force 3705 kN 

occurred in the M1 cable, and the minimum is 50 kN which is assigned due to the 

minus value calculated according to the cable force optimization method. 

 

 

Fig. 81 Distribution of cable area and initial cable force  

 

When there is 44 cables in total, namely 11 cables in the 1/4 part, the total volume of 

steel cables was minimized starting from the same initial cable cross sectional areas 

2.29e-3 m
2
 and with same lower bound 0.5e-3 m

2 
and upper limit 10e-3 m

2
. However, 
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due to the constraint of vertical deformation of M2 cable at deck end, the initial cable 

force of M2 cable always has a high value and exceed the limit of allowable 

maximum tensile stress under all load cases, therefore, few feasible design 

solutions were obtained. To get more feasible design solutions, based on same 

deformation constraints, the stress limit of cables was extended to the ultimate 

stress 1600 MPa.  

 

 
a) Convergence iteration of total cable volume 

 

 

b) Convergence iteration of deformation 

Fig. 82 Convergence iteration of cable volume with 44 cables and 10 angle tower 
 

The optimization process converged after more than 700 iterations. Fig. 82 

illustrates the optimization iterative process of total cable volume and longitudinal 

deformation of tower top and vertical deformation of M2 cable at deck end. 

Concerning the objective function, the total volume of cables moves from 0.5 m
3
 to 3 
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m
3
, and reached to minimum value 0.588 m

3
 which meets the constraint function. 

The tower top displacement in longitudinal direction moves from 0.07m to 0.10m and 

with a 0.0884m value when the total volume of cables reached to minimum. The 

vertical displacement of M2 cable at deck end moves from 0.2m to 0.8m. 

 

The distribution of cable area and initial cable force is illustrated in Fig. 83. The 

optimization results lead to larger area for cables attached to both ends. The 

maximum cable area is 9.27e-3 m
2
, correspond to cable with diameter 108mm, while 

the minimum is 0.5e-3 m
2
, correspond to cable with diameter 25mm. The maximum 

initial cable force 7235 kN occurred in the M2 cable, and the minimum is 50 kN 

which is assigned due to the value is minus which calculated according to the cable 

force optimization method. 

 

 

Fig. 83 Distribution of cable area and initial cable force 
 

When there is 40 cables in total, namely 10 cables in the 1/4 part, due to the 

constraint of vertical deformation of M2 cable at deck end, the initial cable force of 

M2 cable always has a high value and exceed the limit of allowable maximum tensile 

stress under all load cases, therefore, few feasible design solutions were obtained. 

Moreover, the horizontal displacement of tower top always exceed the limit of 

allowable maximum displacement due to the not utilization of cable S5. Therefore, 

as no feasible solution found, the best design solution was chosen from the 

infeasible design solutions. 

 

The optimization process terminated after more than 600 iterations but no feasible 

design solution found. Fig. 84 illustrates the optimization iterative process of total 

cable volume and longitudinal deformation of tower top and vertical deformation of 

M2 cable at deck end. Concerning the objective function, the total volume of cables 

moves from 0.5 m
3
 to 2.5 m

3
, and reached to minimum value 0.494 m

3
 which meets 
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the constraint function. The tower top displacement in longitudinal direction moves 

from 0.10m to 0.12m and with a 0.1062m value when the total volume of cables 

reached to minimum. The vertical displacement of M2 cable at deck end moves from 

-0.2m to 0.6m. 

 

 
a) Convergence iteration of total cable volume 

 

 

b) Convergence iteration of deformation 

Fig. 84 Convergence iteration of cable volume with 40 cables and 10 angle tower 

 

The distribution of cable area and initial cable force is illustrated in Fig. 85. The 

optimization results lead to larger area for cables attached to the end located in main 

span. The maximum cable area is 7.84e-3 m
2
, correspond to cable with diameter 

100mm, while the minimum is 0.5e-3 m
2
, correspond to cable with diameter 25mm. 

The maximum initial cable force 7679 kN occurred in the M2 cable, and the minimum 

is 50 kN which is assigned due to the value is minus which calculated according to 

the cable force optimization method. 
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Fig. 85 Distribution of cable area and initial cable force 
 

All the results of different starting models are listed in Table 56, including the 

optimized cable cross sectional area and corresponding initial tensioning force. 

Through the optimization procedure, for the entire starting model, the total cable 

volumes are optimized. The starting model with 48 cables has the highest total cable 

volume 0.883 m
3
. The starting model with 44 cables and 40 cables reduced 

objective significantly due to less cables, with total cable volume 0.588 m
3 
and 0.494 

m
3
, respectively. Optimization results of all starting models led to larger cross 

sectional area and initial tensioning force for cables attached to the end located in 

the main span.  

 

Cable 
No. 

Length 
(m) 

48 cables 44 cables 40 cables 

Area 
(e-3 m

2
) 

Force 
(kN) 

Area 
(e-3 m

2
) 

Force 
(kN) 

Area 
(e-3 m

2
) 

Force 
(kN) 

M1 43.23 4.91 3705.1 - - - - 

M2 38.55 2.02 1069.5 9.27  7234.6  7.84  7678.8  

M3 34.01 2.91 557.8 0.50  50.0  0.50  50.0  

M4 29.68 1.41 1165.9 1.32  1329.1  1.29  1245.2  

M5 25.68 2.53 176.1 0.87  901.7  0.94  819.6  

M6 22.18 1.10 937.5 0.85  805.4  0.70  801.3  

M7 19.44 3.18 565.9 2.75  50.0  0.76  392.7  

S1 17.65 3.82 50.0 0.50  264.1  0.50  184.3  

S2 18.94 1.45 638.4 0.50  523.6  0.50  552.9  

S3 21.45 1.60 720.5 0.67  576.5  0.50  392.0  

S4 24.81 4.37 50.0 0.73  777.0  2.12  1280.7  

S5 28.71 2.22 967.3 1.01  976.9  - - 

Obj.(m
3
) 0.883 0.588  0.494  
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Table 56 

Initial tension force in cables with 10 angle tower 

 

Results of bridge with 20 angle tower 

 

In the case of starting model with tower angle in vertical direction is 20 degree, the 

same as starting model with 0 degree tower angle, different starting models were 

defined through the utilization of different total number of cables. The starting 

models with total cable number 48, 44 and 40 were defined and the total steel cable 

volume were minimized starting from the initial cable cross sectional areas 2.29e-3 

m
2
 (correspond to cables with diameter 54mm), which with a lower bound 0.5e-3 m

2 

and upper limit 10e-3 m
2
 (correspond to cables with D25mm and D108mm, 

respectively).  

 

When there is 48 cables in total, namely 12 cables in the 1/4 part, the optimization 

process converged after more than 1000 iterations. Fig. 86 illustrates the 

optimization iterative process of total cable volume and longitudinal deformation of 

tower top and vertical deformation of M1 cable at deck end.  

 

Concerning the objective function, the total volume of cables moves from 0.5 m
3
 to 

3.5 m
3
, and reached to minimum value 2.103 m

3
 which meets the constraint function. 

The tower top displacement in longitudinal direction moves from 0.06m to 0.9m and 

with a 0.0761m value when the total volume of cables reached to minimum. The 

vertical displacement of M1 cable at deck end moves from -0.2m to 0.2m. 

 

 
a) Convergence iteration of total cable volume 
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b) Convergence iteration of deformation 

Fig. 86 Convergence iteration of cable volume with 48 cables and 20 angle tower 

 

The distribution of cable area and initial cable force is illustrated in Fig. 87. The 

optimization results led to larger area for cables attached to both ends of the deck 

and cables close to the middle span. The maximum cable area is 5.49e-3 m
2
, 

corresponds to cable with diameter 84mm, while the minimum is 1.25e-3 m
2
, 

corresponds to cable with diameter 40mm. The maximum initial cable force 3407 kN 

occurred in the M1 cable, and the minimum is 50 kN which is assigned due to the 

value is minus which calculated according to the cable force optimization method. 

 

 

Fig. 87 Distribution of cable area and initial cable force 

 

When there is 44 cables in total, namely 11 cables in the 1/4 part, starting from the 

same initial cable cross sectional areas 2.29e-3 m
2
 and with same lower bound 

0.5e-3 m
2 
and upper limit 10e-3 m

2
, the total volume of steel cables was minimized. 

However, due to the constraint of vertical deformation of M2 cable at deck end, the 
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initial cable force of M2 cable always has a high value and exceed the limit of 

allowable maximum tensile stress under all load cases, therefore, few feasible 

design solutions were obtained. To get more feasible design solutions, based on 

same deformation constraints, the stress limit of cables was extended to the ultimate 

stress 1600 MPa.  

 

 
a) Convergence iteration of total cable volume 

 

 
b) Convergence iteration of deformation 

Fig. 88 Convergence iteration of cable volume with 44 cables and 20 angle tower 

 

The optimization process converged after more than 800 iterations. Fig. 88 

illustrates the optimization iterative process of total cable volume and longitudinal 

deformation of tower top and vertical deformation of M2 cable at deck end. With 

regards to the objective function, the total volume of cables moves from 0.5 m
3
 to 3 

m
3
, and reached to minimum value 0.580 m

3
 which meets the constraint function. 
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The tower top displacement in longitudinal direction moves from 0.06m to 0.11m and 

with a 0.0847m value when the total volume of cables reached to minimum. The 

vertical displacement of M2 cable at deck end moves from -0.2m to 0.8m. 

 

The distribution of cable area and initial cable force is illustrated in Fig. 89. The 

optimization results lead to larger area for cables attached to both ends. The 

maximum cable area is 8.52e-3 m
2
, corresponds to cable with diameter 104mm, 

while the minimum is 0.5e-3 m
2
, corresponds to cable with diameter 25mm. The 

maximum initial cable force 7203 kN occurred in the M2 cable, and the minimum is 

50 kN which is assigned due to the value is minus which calculated according to the 

cable force optimization method. 

 

 

Fig. 89 Distribution of cable area and initial cable force 

 

When there is 40 cables in total, namely 10 cables in the 1/4 part, due to the 

constraint of vertical deformation of M2 cable at deck end, the initial cable force of 

M2 cable always has a high value and exceed the limit of allowable maximum tensile 

stress under all load cases, therefore, few feasible design solutions were obtained. 

Moreover, the horizontal displacement of tower top always exceed the limit of 

allowable maximum displacement due to the not utilization of cable S5. Hence, as 

no feasible solution found, the best design solution was chosen from the infeasible 

design solutions. 

 

The optimization process terminated after more than 800 iterations but no feasible 

design solution found. Fig. 90 illustrates the optimization iterative process of total 

cable volume and longitudinal deformation of tower top and vertical deformation of 

M2 cable at deck end. Concerning the objective function, the total volume of cables 
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moves from 0.5 m
3
 to 3 m

3
, and reached to minimum value 0.805 m

3
 which meets 

the constraint function. The tower top displacement in longitudinal direction moves 

from 0.09m to 0.12m and with a 0.0963m value when the total volume of cables 

reached to minimum. The vertical displacement of M2 cable at deck end moves from 

-0.2m to 0.8m. 

 

 
a) Convergence iteration of total cable volume 

 

 
b) Convergence iteration of deformation 

Fig. 90 Convergence iteration of cable volume with 40 cables and 20 angle tower 

 

The distribution of cable area and initial cable force is illustrated in Fig. 91. The 

optimization results lead to larger area for cables attached to the end located in main 

span. The maximum cable area is 10.00e-3 m
2
, correspond to cable with diameter 
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96mm, while the minimum is 0.5e-3 m
2
, correspond to cable with diameter 108mm. 

The maximum initial cable force 8240.5 kN occurred in the M2 cable, and the 

minimum is 50 kN which is assigned due to the value is minus which calculated 

according to the cable force optimization method. 

 

 

Fig. 91 Distribution of cable area and initial cable force 

 

All the results of different starting models are listed in Table 57, including the 

optimized cable area and its corresponding initial cable force. Through the 

optimization procedure, for all starting models, the cable area and its initial force are 

optimized. The starting model with 48 cables has the highest total cable volume 

1.191 m
3
. The starting model with 44 cables and 40 cables reduced objective 

significantly due to less cables, with total cable volume 0.580 m
3 

and 0.805 m
3
, 

respectively. Optimization results of all starting models led to larger cross sectional 

area and initial tensioning force for cables attached to the end located in the main 

span. 

 

Cable 
No. 

Length 
(m) 

48 cables 44 cables 40 cables 

Area 
(e-3 m

2
) 

Force 
(kN) 

Area 
(e-3 m

2
) 

Force 
(kN) 

Area 
(e-3 m

2
) 

Force 
(kN) 

M1 50.50 4.57 3406.6 - - - - 

M2 44.98 1.25 1244.8 8.52  7203.3  10.00  8240.5  

M3 39.59 1.79 1414.3 0.50  50.0  0.60  50.0  

M4 34.38 1.90 1112.4 1.53  1231.8  1.59  1457.9  

M5 29.43 4.25 50.0 0.73  949.8  1.10  1028.3  

M6 24.92 5.49 212.6 0.61  850.3  1.99  861.2  

M7 21.12 4.09 816.4 0.51  436.4  0.50  472.8  

S1 17.53 3.65 50.0 0.50  168.6  2.28  50.0  
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S2 18.53 4.01 488.2 0.61  374.6  1.38  621.9  

S3 21.20 5.33 50.0 0.50  535.4  3.45  50.0  

S4 25.03 3.02 524.8 0.76  644.6  1.79  1717.8  

S5 29.55 3.12 628.8 0.92  878.6  - - 

Obj.(m
3
) 1.191 0.580  0.805  

Table 57 

Initial tension force in cables with 20 angle tower  

 

6.3.4 Thickness Optimization 

 

Immediately following the cable cross sectional area and cable force optimization, 

for each starting model, thickness of steel plates was optimized by using the design 

optimization tool implemented in ANSYS. It provides a zero-order method, where the 

dependent variables are first approximated by means of least squares fitting, and the 

constrained minimization problem is then converted to an unconstrained one by 

means of penalty functions, in order to be solved using Powell’s modified method.  

 

Three different regions of the steel deck, namely main girder, secondary beam and 

transverse beam were identified, where width of the top and bottom flanges, overall 

depth, flange thicknesses and web thicknesses had to be identified (Fig. 92). Width 

of the top and bottom flanges of main girder (W1M and W2M) were assumed as 

design variables with values ranging between 0.5m and 1m, overall depth (W3M) 

ranging between 0.9m to 1.2m, flange thickness and web thickness (T1M and T3M) 

ranging between 0.01m to 0.05m. 

 

Width of the top and bottom flanges of secondary beam (W1) was assumed as 

design variable with values ranging between 0.5m and 1m, overall depth (W3) is 

calculated from overall depth of main girder (W3M) and overall depth of transverse 

beam (W3B), flange thickness and web thickness (T1 and T3) ranging between 

0.01m to 0.05m. Width of the top and bottom flanges of transverse beam (W1B) was 

assumed as design variables with values ranging between 0.5m and 1m, overall 

depth (W3B) ranging between 0.4m to 0.7m, flange thickness and web thickness 

(T1B and T3B) ranging between 0.01m to 0.05m. 

 

An optimization problem with 12 discrete variables was hence identified. The 

optimum thickness was found by minimizing the deck total weight on condition that 

stress level and deflection were lower than an allowable value. Bending stress 200 
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MPa on the element -Z side of the beam was set as the stress level limit, while 

maximum 0.2m and minimum -0.2m deflection under all load cases were set as the 

deflection level limit.  

 

 

Fig. 92 Identification of different optimization “groups” for the considered deck 
 

Since the optimum solution was found to depend on the initial values of design 

variables, different initial values were tried in order to avoid local minimum solutions. 

The optimization iterative processes of three different starting models and original 

design with 0 angle of tower in vertical direction are shown in Fig. 93. In the 

convergence iteration of total volume of steel plates, black inverted triangle symbols 

show the infeasible design solutions, which not meet the requirement of stress or 

deformation constraints, meanwhile conversely, blue circle symbols show the 

feasible design solutions and the one among them with minimum objective is the 

best design solution. 

 

All of them started from same design variables and converged after nearly 20 times 

iteration. The consistent decrease in the objective function (and therefore the 

corresponding material saving) is well appreciable. For the original design of bridge, 

the total volume of steel plates is decreased from 49.6 m
3
 to 27.1 m

3
, namely 45.4% 

volume reduction. When the total cable number is 44, the volume reduction has 

lowest value -6.5%. 
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Fig. 93 Convergence iteration of optimization process with 0 angle tower 

 

The optimization procedure led to the optimum results are listed in Table 58. It 

includes state variables (maximum steel stress, maximum and minimum 

deformation) and design variables. The values of state variables and design 

variables are listed both before and after thickness optimization process. For the 

original design model, only thickness optimization of steel beams carried out, while 

cable cross sectional area and thickness optimization were carried out for other 

three starting models. 

 

 
Design 0_48 0_44 0_40 

No opt. t_opt c_opt t_opt c_opt t_opt c_opt t_opt 

Smax (MPa) 126.2 183.1 101.5 160.8 119.0 109.1 111.3 193.8 

Dmin (m) -0.158 -0.201 -0.135 -0.135 -0.061 -0.071 -0.077 -0.103 

Dmax (m) 0.059 0.089 0.120 0.194 0.201 0.201 0.136 0.168 

W1M (m) 1.000 0.608 1.000 0.940 1.000 0.867 1.000 0.682 

W2M (m) 0.800 0.994 0.800 0.533 0.800 0.717 0.800 0.620 

W3M (m) 1.100 1.093 1.100 1.023 1.100 1.132 1.100 1.119 

T1M (m) 0.040 0.020 0.040 0.021 0.040 0.045 0.040 0.019 

T3M (m) 0.020 0.013 0.020 0.010 0.020 0.013 0.020 0.017 

W1 (m) 0.360 0.238 0.360 0.202 0.360 0.399 0.360 0.231 

T1 (m) 0.010 0.014 0.010 0.017 0.010 0.032 0.010 0.036 

T3 (m) 0.010 0.013 0.010 0.049 0.010 0.018 0.010 0.014 

W1B (m) 0.600 0.553 0.600 0.501 0.600 0.655 0.600 0.534 

W3B (m) 0.730 0.682 0.730 0.679 0.730 0.675 0.730 0.651 

T1B (m) 0.020 0.015 0.020 0.010 0.020 0.025 0.020 0.013 
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T3B (m) 0.020 0.011 0.020 0.011 0.020 0.031 0.020 0.013 

OBJ (m
3
) 49.6 27.1 49.6 26.8 49.6 52.8 49.6 29.2 

Table 58 

Thickness optimization of cable-stayed bridge with 0 angle tower 

 

When the angle of tower in vertical direction is 10, the optimization iterative 

processes of three different starting models are shown in Fig. 94. All of them started 

from same design variables and converged after nearly 20 times iteration. The 

consistent decrease in the objective function is well appreciable. For the starting 

model with 48 cables, the total volume of steel plates is decreased from 49.6 m
3
 to 

17.1 m
3
, namely 65.5% volume reduction. When the total cable number is 40, the 

volume reduction is lowest, but still has an appreciable value 11.3%. 
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Fig. 94 Convergence iteration of optimization process with 10 angle tower 

 

The optimization procedure led to the optimum results are listed in Table 59. It 

includes state variables (maximum steel stress, maximum and maximum 

deformation) and design variables. The values of state variables and design 

variables are listed after cable cross sectional area optimization and after thickness 

optimization process for all the three starting models. 
 

 
10_48 10_44 10_40 

c_opt t_opt c_opt t_opt c_opt t_opt 

Smax (MPa) 98.8 159.4 104.4 191.0 106.9 138.3 

Dmin (m) -0.170 -0.185 -0.066 -0.083 -0.069 -0.102 

Dmax (m) 0.076 0.177 0.154 0.185 0.175 0.202 
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W1M (m) 1.000 0.606 1.000 0.968 1.000 0.856 

W2M(m) 0.800 0.516 0.800 0.624 0.800 0.827 

W3M (m) 1.100 0.932 1.100 1.145 1.100 0.951 

T1M (m) 0.040 0.011 0.040 0.020 0.040 0.032 

T3M (m) 0.020 0.011 0.020 0.018 0.020 0.025 

W1 (m) 0.360 0.211 0.360 0.359 0.360 0.243 

T1 (m) 0.010 0.016 0.010 0.014 0.010 0.014 

T3 (m) 0.010 0.011 0.010 0.018 0.010 0.028 

W1B (m) 0.600 0.516 0.600 0.619 0.600 0.760 

W3B (m) 0.730 0.669 0.730 0.634 0.730 0.438 

T1B (m) 0.020 0.011 0.020 0.014 0.020 0.015 

T3B (m) 0.020 0.011 0.020 0.020 0.020 0.033 

OBJ (m
3
) 49.6 17.1 49.6 33.7 49.6 44.0 

Table 59 

Thickness optimization of cable-stayed bridge with 10 angle tower 

 

When the angle of tower in vertical direction is 20, the optimization iterative 

processes of three different starting models are shown in Fig. 95. All of them started 

from same design variables and converged after nearly 20 times iteration. The 

consistent decrease in the objective function is well appreciable. For the starting 

model with 48 cables, the total volume of steel plates is decreased from 49.6 m
3
 to 

30.8 m
3
, namely 37.9% volume reduction. When the total cable number is 40, the 

volume reduction has lowest value 1.6%. 
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Fig. 95 Convergence iteration of optimization process with 20 angle tower 
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The optimization procedure led to the optimum results are listed in Table 60. It 

includes state variables (maximum steel stress, maximum and maximum 

deformation) and design variables. The values of state variables and design 

variables are listed after cable cross sectional area optimization and after thickness 

optimization process for all the three starting models. 

 

 
20_48 20_44 20_40 

c_opt t_opt c_opt t_opt c_opt t_opt 

Smax (MPa) 99.0 145.5 104.5 120.3 116.8 128.3 

Dmin (m) -0.151 -0.137 -0.059 -0.069 -0.055 -0.076 

Dmax (m) 0.121 0.197 0.187 0.201 0.200 0.202 

W1M(m) 1.000 0.983 1.000 0.966 1.000 0.819 

W2M(m) 0.800 0.683 0.800 0.858 0.800 0.734 

W3M(m) 1.100 1.024 1.100 1.147 1.100 1.075 

T1M (m) 0.040 0.016 0.040 0.032 0.040 0.042 

T3M (m) 0.020 0.013 0.020 0.025 0.020 0.011 

W1 (m) 0.360 0.433 0.360 0.344 0.360 0.377 

T1 (m) 0.010 0.016 0.010 0.015 0.010 0.034 

T3 (m) 0.010 0.023 0.010 0.019 0.010 0.029 

W1B (m) 0.600 0.653 0.600 0.683 0.600 0.871 

W3B (m) 0.730 0.498 0.730 0.607 0.730 0.402 

T1B (m) 0.020 0.013 0.020 0.015 0.020 0.022 

T3B (m) 0.020 0.024 0.020 0.020 0.020 0.015 

OBJ (m
3
) 49.6 30.8 49.6 46.2 49.6 54.2 

Table 60 

Thickness optimization of cable-stayed bridge with 20 angle tower 

 

6.3.5 Comparison between Different Models 

 

Starting from different models which defined by different number of total cables, the 

cable cross sectional areas and corresponding initial cable force are optimized, on 

the basis of the optimization results, the optimum cable areas and initial cable force 

are assigned to starting models to carry out thickness optimization of steel plates of 

bridge deck. The consistent decrease in steel cable volume and steel plates volume 

are well appreciable.  

 

However, as the material saving, the deformation and stress of several bridges 

under all load cases are increased. The maximum average stress of steel beams 
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and maximum deformation of tower top of all the starting models under all load 

cases before and after thickness optimization are shown in Table 61 to Table 63. 

The volume reduction (VR) of steel cables and steel beams are shown together. 

 

Therefore, several candidate solutions were characterized by the total steel cables 

following the cable cross sectional area and thickness optimization procedure. 

Hence, the problem of choosing the most suitable solution is faced. To identify the 

most suitable design solution, on the basis of the results obtained from optimization 

procedure, the proposed optimization index analytical formulation is discussed in 

detail and its effectiveness is validated. 

 

 
Original design 0_48 0_44 0_40 

No opt. t_opt c_opt t_opt c_opt t_opt c_opt t_opt 

Stress (MPa) 42.41  49.88 45.35 59.92 46.92 43.86 47.17 56.27 

Deform. (m) -0.042 -0.051 -0.084 -0.092 -0.094 -0.096 -0.103 -0.109 

Deck VR (%)  - 45.4 - 46.0 - -6.5 - 41.1 

Cable VR (%) - - -30.3 -30.3 47.7 47.7 13.6 13.6 

Total VR (%) 0 45.4 -30.3 15.7 47.7 33.4 13.6 54.7 

Table 61 

Optimization results of cable-stayed bridge with 0 angle tower 

 

 
10_48 10_44 10_40 

No opt opt. No opt opt. No opt opt. 

Stress (MPa) 43.66 63.81 45.20 49.92 46.41 41.58 

Deformation (m) -0.082 -0.094 -0.087 -0.089 -0.104 -0.110 

Deck VR (%)  - 65.5 - 32.1 - 11.3 

Cable VR (%) -1.5 -1.5 32.4 32.4 43.2 43.2 

Total VR (%) -1.5 64.0 32.4 64.5 43.2 54.5 

Table 62 

Optimization results of cable-stayed bridge with 10 angle tower 

 

 
20_48 20_44 20_40 

No opt opt. No opt opt. No opt opt. 

Stress (MPa) 45.20 47.78 45.13 50.23 48.83 35.46 

Deformation (m) -0.073 -0.082 -0.083 -0.087 -0.093 -0.099 

Deck VR (%)  0 37.9 0 6.9 0 -9.3 

Cable VR (%) -141.7 -141.7 33.3 33.3 7.4 7.4 

Total VR (%) -141.7 -103.8 33.3 40.2 7.4 -1.9 

Table 63 

Optimization results of cable-stayed bridge with 20 angle tower 
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In this case, two response indexes (RIs) which summarize the overall behavior of 

the whole structure were defined as: Von Mises stress, the average bending stress 

on the element -Z side of the beam throughout the whole optimized steel structure, 

was considered as representative of stress level, while maximum deflection of tower 

top was considered as representative of deformation level. The trends of both RIs 

are shown in Fig. 96 to Fig. 98. RI curves include the results of cable cross sectional 

area optimization (Cable Opt.), steel plates thickness optimization (Thickness Opt.) 

and both together (Cable and Thickness Opt.).  
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Fig. 96 Response indexes with 0 angle tower vs. total steel cables: a) RI(A,i); b) RI(d,i) 
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Fig. 97 Response indexes with 10 angle tower vs. total steel cables: a) RI(A,i); b) RI(d,i) 

 



CHAPTER 6. CABLE-STAYED BRDIGES 

 

159 

 

10 11 12

-0.5

0.0

0.5

1.0

1.5

2.0

b) Total Cables
R

es
p
o
n
se

 I
n
d
ex

 R
I 

(d
)

R
es

p
o
n
se

 I
n
d
ex

 R
I 

(A
)

Total Cablesa)

10 11 12

-0.5

0.0

0.5

1.0

1.5

2.0

 Cable Opt.

 Thickness Opt.

 Cable and Thickness Opt.

 Cable Opt.

 Thickness Opt.

 Cable and Thickness Opt.

 

Fig. 98 Response indexes with 20 angle tower vs. total steel cables: a) RI(A,i); b) RI(d,i) 

 

Fig. 99 shows the trend of GOI varying the total steel cables for some values of 

ranging between 0 and 3 when the cable-stayed bridge with 0 angle tower. As 

expected, the application of can favour design solutions of higher or lower volume 

reduction.  

 

In the case of cable cross sectional area optimization, for values of  between 0 and 

3, due to the highest volume reduction 47.7%, the highest GOI value was obtained 

when the total cable is 11. Take into account cable cross sectional area and 

thickness optimization together, thanks to the appreciable volume reduction 33.4%, 

the highest GOI value was obtained when the total cable is 11. Consider thickness 

optimization only, due to the lowest volume reduction -6.5%, the lowest GOI value 

was obtained when the total cable is 11 for values of between 0 and 3.  
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Fig. 99 Global optimization index with 0 angle tower vs. total cables (vs ) 

 

Fig. 100 shows the trend of GOI varying the total steel cables for some values of 

ranging between 0 and 3 when the cable-stayed bridge with 10 angle tower. 

Consider cable cross sectional area optimization or thickness optimization or both of 

them together, the same trend of GOI was obtained. For values of higher than 1, 

the highest GOI value was obtained when the total cable is 10. Further reducing the 

 parameter until 0, the total cable is 11 get highlighted. This is due to the latter has 

a cable volume reduction 32.4% and total volume reduction 64.5%, while the former 

has a cable volume reduction 43.2% and total volume reduction 54.5%.  
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Fig. 100 Global optimization index with 10 angle tower vs. total cables (vs ) 

 

Fig. 101 shows the trend of GOI varying the total steel cables for some values of 

ranging between 0 to 3 when the cable-stayed bridge with 20 angle tower. For 

values of  between 0 to 3, consider cable cross sectional area optimization, the 

highest GOI value was obtained when the total cable is 11 due to the highest cable 

volume reduction 33.3%. Consider cable cross sectional area optimization and 

thickness optimization together, the highest GOI value was obtained when the total 

cable is 11 due to the highest cable volume reduction 40.2%. In the case of 

thickness optimization, due to the highest deck volume reduction 37.9%, the highest 

GOI value was obtained when the total cable is 12 for values of  ranging between 0 

to 3.  
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Fig. 101: Global optimization index with 20 angle tower vs. total cables (vs ) 
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CONCLUSIONS 

 

 

This research proposed an optimization index on basis of the work have done by 

Bruno Briseghella et al. to provide a formal mathematical procedure able to highlight 

the best choice among several candidate solutions obtained by optimization 

procedure. It provides the designer an assistant tool to identify the best design 

solution that representing the best compromise between material saving and 

structural response. The original optimization index was applied to the structural 

optimization of a steel-concrete arch bridge built in the province of Venice 

successfully. In the generalized version, through the introduction of a scaling factor 

vector  to the two optimization indexes (OIs), proposed optimization index allows 

not only to identify best candidate solution originated by a unique reference model, 

but even comparing structural performances between candidates solution derived by 

several starting trial solutions. Moreover, through the introduction of weight vector w 

rather than giving the same weight to deformation and stress level, the optimization 

index considered the effect size of two OIs*. Following the proposed optimization 

index, three case studies were carried out. Structural optimization procedures were 

performed on several different types of bridge and the results showed the 

effectiveness of proposed optimization index. 

 

 

Conclusions 

 

When the topology optimization procedures were carried out and the optimization 

index was applied in the shell supported footbridges: 

 

 Topology optimization is very efficient and robust in greatly reducing the area of 

the shell regions subjected to unwished bending moments (therefore tensile 

stresses) in any case arise because of second-order displacements and the 

bending stiffness of the RC shell. 

 

 For a given value of volume reduction, the SIMP method identified shell regions 

with low pseudo-density whose finite elements were to be removed. As the 

values of given volume reduction increasing, inefficient material was 

progressively removed and shell layouts with holes with the same volume 

reduction were obtained.  
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 For low values of volume reduction, the structural responses of shell bridges 

were significantly improved and the shells integrity were maintained. On the 

contrary, for high values of volume reduction, the structural response of shell 

bridges were slightly improved but the aesthetic value of these design solutions 

become inappropriate that the shells tended to split into two symmetric parts 

with respect to its centreline.  

 

 36 candidate solutions in total were obtained on the basis of 3 reference models 

with different boundary shape, 3 different starting models characterized by 

different edge stiffening for each reference models and 4 different input VRs 

ratio. GOI scores for these candidate solutions were assigned through the 

proposed optimization index.   

 

 Between reference models with different boundary shape, namely model 

T_0.15, T_0.20 and T_0.32, the score of global optimization index of model 

T_0.15 is always much higher than that of other two starting models for varying 

VR due to the positive effect of reasonable shell boundary shape. 

 

 Between starting models characterized by different edge stiffening, namely 

Mode I, Model II and Model III, the score of global optimization index of Model 

III is always much higher than that of other two models for varying VR due to the 

positive effect that the edge stiffening beam had on the overall rigidity of the 

shell footbridge. 

 

 Between different input VR ratio, the structural response of the shell footbridges 

in terms of both unwished tensile stress arising and deformation was highly 

affected by the insertion of holes for 10% ≤ VR ≤ 20%, and less affected for 20% 

≤ VR ≤ 30%. The layout with holes obtained for a VR of 20% was shown to have 

good structural response, only slightly lower than that obtained for VR of 30%, 

but contrary to the latter, the former maintained the shell integrity avoiding the 

merging of close holes dividing a great part of the shell into two parts. 

 

 Through the introduction of scaling factor vector , the design solutions of 

starting model T_0.15 and Model III were highlighted. Through the introduction 

of weight vector w, the higher effect size of stress level was considered. 
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 The layout of Model III of T_0.15 shell model for VR = 20% appeared to be the 

most suitable compromise between structural and aesthetical issues. 

 

When the thickness optimization procedure was carried out and the optimization 

index was applied in the Calatrave Bridge: 

 

 Three tentative starting models were defined by considering bridge’s abutment 

deformability through spring-damper elements (Model II) and introducing 

stiffening cables along two bottom arches of the bridge (Model III) on the basis 

of original design model (Model I). Thickness optimization procedures of 

minimizing total volume and horizontal force were carried out. 

 

 The optimization results of Model I and Model II with spring constant K equal to 

10
15 

N/m verified that as the spring constant K is high enough or initial strain ε is 

low enough, Model II or Model III is the same as Model I therefore with same 

structural behavior and optimization results.  

 

 For starting model I, an optimum design that meets requirements of stress and 

deformation levels yet demands a minimum total volume was determined. For 

Model II and Model III, different optimum designs were determined for different 

spring constant K of spring-damper element and different initial strain of 

stiffening cables, respectively.  

 

 In the case of minimizing total volume, the optimization results show, best 

design solution of model I has a volume reduced 34%. For Model II, the highest 

GOI value obtained when spring constant K is 10
10 

N/m, which with a 36% 

volume reduction, while the best design solution of Model III obtained when 

initial strain is 8×10
-4

, which design solution with 36% volume reduction.  

 

 In the case of minimizing total volume, Model II with the spring constant K is 

10
15 

N/m has similar value as Model III with initial strain ε is 5×10
-4

. All the 

design solutions of Model III have a GOI value around 0.6 and move from 0.4 to 

0.9, while the GOI value of design solutions of Model II have significant 

variations and was varying from 0 to 1. The design solution when spring 

constant K is 10
10 

N/m of Model II with a 36% volume reduction got the highest 

GOI value.  
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 In the case of minimizing sum horizontal force under load cases of dead load 

and full length full width, the optimization results show, best design solution of 

model I with horizontal force reduced 22.7%. For Model II, the highest GOI 

value obtained when spring constant K is 10
8 
N/m, which with a 44% horizontal 

force reduction, while the best design solution of Model III obtained when initial 

strain is 9×10
-4

, which design solution with 30.1% horizontal force reduction.  

 

 In the case of minimizing horizontal force, Model II with the spring constant K is 

10
15 

N/m has similar value as Model III with initial strain ε is 7×10
-4

. Both of 

Model II and Model III have highest GOI value when the spring constant or 

initial strain is intermediate value, with which almost all the design solutions of 

two models have same GOI value. The design solution of Model III when initial 

strain 9×10
-4 

with 30.1% horizontal force reduction is slightly higher. 

 

When the structural optimization procedures were carried out and the optimization 

index was applied in two cable-stayed bridges: 

 

 The cable cross sectional areas and corresponding initial tensioning force were 

optimized. The optimization results lead to larger area for cables attached to 

both ends of the deck and cables close to the middle span. The former occurred 

due to they are the ones brace the tower, the latter occurred due to the 

deformation limit of cable deck end. 

 

 The cable optimization results shown that a small modification in the cable 

areas can affect the requirement of constraints far away from the location where 

the changes are produced. In addition to the consistent decrease in steel cable 

volume, the optimization procedure gave an idea to designer about how much 

cross sectional area is necessary for each cable under certain stress and 

displacement constraints. 

 

 The optimum cable areas and initial tensioning force obtained from optimization 

procedures are assigned to starting models to carry out thickness optimization 

of steel plates of bridge deck. The results shown the consistent decrease in 

steel plates volume are well appreciable. 

 

 No matter consider the results of cable cross sectional area optimization, or 

consider the results of thickness optimization, or take into account them 
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together, suitable score for each design solution of specific starting layout was 

assigned. A straightforward selection of optimum design solution was provided.   

 

 For the Single Tower Single Cable Plane cable-stayed bridge, the starting 

model with 10 cables has a significant reduction of total cable volume which 

from 2.059 m
3
 to 1.428 m

3
 compared with original design. The starting model 

with 9 cables reduced more cable volume due to one cable less after 

optimization process, on the contrary, the cable volume of starting model with 

11 cables is slightly higher than original design due to one cable more. The total 

volume of steel plates of the original bridge design is decreased from 48.6 m
3
 to 

26.2 m
3
, namely 46.1% volume reduction. When the total cable number is 11, 

the volume reduction of steel plates is lowest, but still has an appreciable value 

26.3%. 

 

 For the Twin Towers Double Cable Planes cable-stayed bridge with 0 angel 

tower, the starting model with 48 cables has the highest total cable volume 

1.134 m
3
. The starting model with 44 cables and 40 cables reduced objective 

significantly due to less cables, with total cable volume 0.455 m
3 
and 0.752 m

3
, 

respectively. For the original design of bridge, the total volume of steel plates 

was decreased from 49.6 m
3
 to 27.1 m

3
, namely 45.4% reduction. When the 

total cable number is 44, the volume reduction of steel plates has lowest value 

-6.5%. 

 

 For the Twin Towers Double Cable Planes cable-stayed bridge with 10 angel 

tower, the starting model with 48 cables has the highest total cable volume 

0.883 m
3
, while the total volume of steel plates is decreased from 49.6 m

3
 to 

17.1 m
3
, namely 65.5% reduction. The starting model with 44 cables and 40 

cables reduced objective significantly due to less cables, with total cable volme 

0.588 m
3 

and 0.494 m
3
, respectively. When the total cable number is 40, the 

volume reduction is lowest, but still has an appreciable value 11.3%. 

 

 For the Twin Towers Double Cable Planes cable-stayed bridge with 20 angel 

tower, the starting model with 48 cables has the highest total cable volume 

1.191 m
3
, while the total volume of steel plates is decreased from 49.6 m

3
 to 

30.8 m
3
, namely 37.9% reduction. The starting model with 44 cables and 40 

cables reduced objective significantly due to less cables, with total cable 

volume 0.580 m
3 
and 0.805 m

3
, respectively. When the total cable number is 40, 

the volume reduction has lowest value 1.6%. 
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Recommendation for Future Investigations 

 

Although the research provided a formal mathematical procedure able to highlight 

the best choice among several candidate solutions obtained by optimization 

procedure, some parameters need to be take out from finite element software and 

optimization index need to be calculate by hand. A FE code implemented in the finite 

element software which will calculate the global optimization index automatically is 

recommendation for future investigations. 
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