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Ang-1 

bFGF 

Angiopoietin-1 

Basic fibroblast growth factor 

BM-MSCs Bone marrow mesenchymal stem cells 

BMPs Bone morphogenetic proteins 

BMP-4 Bone morphogenetic protein 4 

BSA Bovine serum albumin 

CNS Central nervous system 

CD31 Cluster of differentiation 31 
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Endothelial cells 
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Endothelial cell growth medium-2 
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ESCs Embryonic stem cells 

FE-SEM 
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Field Emission Scanning Electron Microscope 

Fibroblast growth factors 

FT-IR Fourier Transform Infrared 

GFAP Glial fibrillary acidic protein 
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HNSCs 
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Human neural stem cells 
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Quantitative real-time polymerase chain reaction 

Arginine-Glycine-Aspartic 
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TGF-β Transforming growth factors-β  
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Abstract 

Stroke and traumatic brain injury are among the leading causes of death in the world. Until now, 

there are no effective treatments available. Current pharmaceutical treatments have limited 

benefits to repair the damaged tissue. Brain tissue engineering is a promising strategy to help 

brain regeneration after the damage induced by stroke or traumatic brain injury. In this thesis, 

our work focused on designing and evaluating appropriate silk fibroin-based hydrogels combined 

with stem cells therapy for brain tissue regeneration. 

The work initially started from looking for appropriate silk fibroin-based hydrogel substrates 

which can support the viability and neural differentiation of pluripotent cells. Mouse embryonic 

stem cells (mESC) were used as a model. Different processing procedures of silk fibroin-based 

hydrogel substrates were prepared by chemical genipin crosslinking and physical sonication 

crosslinking. The viability and neural differentiation of pluripotent cells on these hydrogel 

substrates were evaluated, using tissue culture plates (TCP) as control. Different crosslinking 

processes were found to modulate the neural differentiation of pluripotent cells. Chemical 

genipin crosslinked hydrogel substrates could inhibit the neural differentiation of mESC 

compared to control TCP, while the physical sonication crosslinked hydrogel substrates could 

support the neural differentiation as TCP. 

According to the results obtained in the first stage, the physically sonication-crosslinked 3D silk 

fibroin hydrogel was produced to encapsulate human neural stem cells (hNSC). In order to 

improve the hNSC attachment and neuronal differentiation, the isoleucine-lysine-valine-alanine-

valine (IKVAV) peptide derived from laminin was covalently conjugated to the silk fibroin. The 

viability and neural differentiation of hNSC were evaluated in the unmodified and IKVAV 



peptide modified silk fibroin hydrogels. We found that the IKVAV peptide modified silk fibroin 

hydrogel could increase the viability, proliferation and neuronal differentiation of hNSC. 

Furthermore, the angiogenesis potential of sonication-induced 3D silk fibroin unmodified and 

modified with IKVAV and a scramble peptide VVIAK (as control) were evaluated in a human 

outgrowth endothelial cells (OEC) mono-culture system and a co-culture system in which OEC 

were cultured with human bone marrow mesenchymal stem cells (BM-MSC). Both the silk 

fibroin unmodified and modified with IKVAV peptide could not induce angiogenesis in the 

mono-culture system under the VEGF condition. However, in the co-culture system, we found 

that unmodified, IKVAV-modified and VVIAK-modified silk fibroin hydrogels all could support 

angiogenesis. Furthermore, there were no significant differences among unmodified, IKVAV 

modified and VVIAK modified silk fibroin hydrogels influencing on angiogenesis structure and 

gene expression related to angiogenesis. 

The thesis will introduce the detailed work in three different chapters (from chapter 3 to chapter 

5) respectively. 
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Chapter 2: General introduction 

2.1 Tissue engineering and regenerative medicine 

In adult human body, tissues and organs could be damaged and their functions could be lost by a 

wide range of diseases and injuries which include trauma, degenerative diseases, inflammation, 

or other conditions. The self-repair ability of the body is usually limited without medical 

intervention. Many damaged tissues can not be regenerated by themselves, such as central 

nervous system. Moreover, the repair process might involve producing scar tissues instead of 

restoring the normal structure and function of tissues (1, 2).  

 

Fig 2.1 Principle of tissue engineering.  
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Therefore, to induce regeneration of damaged tissue, the concept of tissue engineering occurred.  

In 1993, Langer and Vacanti provided the definition of tissue engineering as “an interdisciplinary 

field that applies the principles of engineering and life sciences toward the development of 

biological substitutes that restore, maintain, or improve tissue function or a whole organ” (3). 

Then in 2006, David F. Williams defined tissue engineering as “Tissue engineering is the 

creation of a new tissue for the therapeutic reconstruction of the human body, by the deliberate 

and controlled stimulation of selected target cells, through a systematic combination of 

molecular and  mechanical signals ” (2) (Fig 2.1). 

2.1.1 Key elements  

To regenerate the damaged tissues, there are two main strategies in tissue engineering (Fig 2.1). 

The first approach is named in situ regeneration, and involves the design of an inductive scaffold 

(with or without growth factor/drug delivery system) which should interact with the implantation 

environment, guiding cells from surrounding tissue to adhere and migrate in the scaffold and 

trigger new tissues formation. This approach relies on the development of a target-specific 

scaffold system that can effectively mobilize host stem/progenitor cells to target tissues. (4) In 

situ tissue regeneration has been applied to various therapeutic applications. For example, the 

scaffold made by calcium phosphate, calcium sulfate and hydroxyapatite were widely used for in 

situ bone regeneration (4). Scaffolds consisting of biodegradable PLGA polymer were 

incorporated with plasma and hyaluronic acid, then were implanted into micro-fractured cartilage 

tissue (5). Besides, this in situ regeneration concept was also translated to regeneration of other 

tissues, such as skeletal muscle, brain, cardiovascular, spine and skin (4). However, when the 

damaged tissues have poor regenerative ability (such as brain and myocardium) and the defect 

size is critical, the first approach is limited because it relies on the body’s own regenerating 
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capacity. Therefore, a complex cells-based tissue engineering strategy has emerged as a 

promising approach to overcome these limitations. In this approach, to specifically guide tissue 

regeneration and stimulate the specific target tissue cell population, the scaffold can be cultured 

in the hybrid-system in vitro to synthesize new tissue or can be implanted in vivo. These 

scaffolds not only induce surrounding cells growth but also serve as templates for the implanted 

cells to attach, grow, migrate or differentiate. The desired tissue regeneration can be developed 

via proliferation and differentiation of the host cells and transplanted cells. This strategy has 

been applied in tissues such as bone (6), cartilage (7), liver (8), blood vessels (9), and nerve 

(10).These two approaches could be utilized separately depending on the application and could 

also be combined as a promising strategy in tissue engineering. The three components: scaffold, 

cells and signals are usually described as a tissue engineering triad (Fig 2.2) (11).  

 

Fig 2.2 Key elements in Tissue engineering and regenerative medicine 

2.1.1.1 Scaffold 

Scaffold is a basic three-dimension (3D) bioactive framework for cell activity and subsequent 

tissue regeneration. Human tissues reside in the extracellular matrix (ECM), which are an 
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instructive physical environment and a structure supporting for cells in the tissues to attach, grow 

and migrate (12). Therefore, the natural ECM represents an appealing model to design bioactive 

scaffolds (13). Regardless of different tissue engineering applications, the scaffold must be 

biocompatible, the cells in the implanted environment or the pre-seeded cells should be able to 

adhere, proliferate and migrate in the scaffold before producing new matrix. After implantation, 

the inflammatory responses should be guided to the transition of tissue repair. Then, the scaffold 

should have porous architecture, which allows cells proliferation and migration, nutrients and 

oxygen diffusion, as well as new capillary formation. Scaffolds should also have the bioactivity 

to interact with host tissue facilitating and regulating the cell activities. They also need to be 

endowed with biological cues to influence cell adhesion, proliferation and/or stem cells 

differentiation. Upon the implantation site, the scaffold must be controlled biodegradable so that 

the cells could produce their own ECM that can eventually replace the implantation scaffolds 

(14). Depending on the different tissue regeneration application, the mechanical properties 

should be varied when designing specific scaffolds to match the host tissue. Different tissue cell 

types like fibroblasts, myocytes, neurons, and other cell types reside in the ECM of different 

stiffness. These cells can just sense the matrix whose stiffness are similar to their resident tissues 

(15). Furthermore, the stiffness of scaffolds can also affect the stem cells differentiation to 

specific lineages, consistent with the resident elasticity of differentiated cell types (16).  

Biomaterials are the starting point to fabricate artificial 3D frameworks referred as scaffolds, 

matrices, or constructs (17). At the conference of European Society for Biomaterials (ESB) in 

1976, the biomaterial was firstly defined as “a nonviable material used in a medical device, 

intended to interact with biological systems”. Then, the definition is evolved to “a material 

intended to interface with biological systems to evaluate, treat, augment or replace any tissue, 
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organ or function of the body” (14). Until now, biomaterials have been widely used as implants 

in the form of sutures, bone plates, joint replacements, ligaments, vascular grafts, heart valves, 

intraocular lenses, dental implants, and medical devices like pacemakers, biosensors, and so forth 

(17, 18).  

Polymers, synthetic and naturally-derived, are widely used as biomaterials to fabricate scaffolds 

for tissue engineering. Natural polymers and synthetic polymers are the main types used in 

designing scaffolds. Both of them have advantages and disadvantages in the application of tissue 

engineering.  

Synthetic polymers are widely used in tissue engineering because they can be tailored in a range 

of properties (such as strength, flexibility and degradation) compared to natural polymers. 

Besides, they are much cheaper than natural polymers and can be widely produced in uniform 

quantities and have a long shelf time. However, their biocompatibility and biodegradability are 

the disadvantages, limiting their potential use in the clinical side. (17). Many synthetic polymers 

such as PLA (19), PCL(20), PLGA (21) PEVA (22) have been widely used in tissue engineering.  

Natural polymers are derived from natural living creature sources. Unlike synthetic polymers, 

natural polymers are biologically active because of the inherent bio-recognition. They are able to 

support excellent cell adhesion and growth. Furthermore, most of them are biodegradable and 

therefore allow host cells, or pre-seeded cells, to produce their own ECM (14). Natural-derived 

polymers are usually classified into three groups (23): 

(i) Protein-origin polymers (such as collagen, gelatin, fibrinogen, silk, elastin, keratin, actin, 

myosin and so on) can mimic aspects of natural protein in ECM and thus have the potential to 

guide the attachment, growth, migration and differentiation of cells in tissue regeneration and 



 

6 
 

wound healing, as well as for stabilization of encapsulated and transplanted cells. Protein-origin 

polymers structures are composed by distinct amino acids linked by amide (or peptide) bonds. 

Amino acids are the building blocks of polypeptides and proteins, which consist of a central 

carbon linked to an amine group, a carboxyl group, a hydrogen atom, and a side chain (23). For 

examples, collagen is a naturally occurring matrix polymer, which is regarded as an ideal 

scaffold or matrix for tissue engineering (24). It is the major protein component of the 

extracellular matrix, providing support to connective tissues such as skin, tendons, bones, 

cartilage, blood vessels, and ligaments (25). Gelatin is a denatured, biodegradable protein 

obtained by acid and alkaline processing of collagen (26), and is commonly used for 

pharmaceutical and medical applications because of its biodegradability and biocompatibility in 

physiological environments (27).  

(ii) Polysaccharides are a class of biopolymers constituted by sugars as monomers (28).  They 

can be obtained from different sources such as microbial, animal and vegetal (29) 

Polysaccharides are non-toxic, which show interaction with living cells and usually have low 

costs in comparison with others biopolymers such as collagen (30) Furthermore, polysaccharides 

show good hemocompatibility properties because of the chemical similarities with heparin. 

Different polysaccharides such as aginate, chitosan, hyaluronan, Chondroitin sulphate cellulose, 

amylose, dextran, chitin, carrageenans, glycosaminoglycans, and so on have been widely utilized 

as scaffold materials in tissue engineering applications as well as carriers for drug delivery 

systems. 

(iii) Bacterially synthesized polyhydroxyalkanoates (PHAs) have attracted much attention 

because they can be produced from a variety of renewable resources, and are truly biodegradable 

and highly biocompatible thermoplastic materials (31) 
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Although natural origin materials also present some drawbacks such as limited processability, 

the difficulties in  controlling the mechanical properties and the variability from batch to batch, 

their advantages clearly surplus the drawbacks and they are still very attractive candidates for 

biomedical applications because of their biocompatibility, degradability, low cost and 

availability, similarity with the ECM and intrinsic cellular interaction for tissue engineering 

applications. Furthermore, in order to overcome the disadvantages of synthetic or natural 

polymers in tissue engineering application, composite materials by blending both materials have 

arisen growing interests to improve the scaffold properties, controlled degradation and 

biocompatibility (17).  

2.1.1.2 Cell sources 
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Fig 2.3 Stem cells resources for tissue engineering and regenerative medicine: Embryonic stem cells(a), Induced 
pluripotent cells(b) and Adult stem cells(c) (32). 

 

In the second strategy of tissue engineering that combines cells and scaffolds, the sources of cells 

are important. Some successes have come from the use of autologous cells, taken from the 

patient, and used in conjunction with scaffolds to produce tissues for re-implantation. However, 

this strategy has limitations, because of the invasive nature of cell collection and the potential for 

cells to be in a diseased state (11). Therefore, in such situations, stem cells are considered as an 

important alternative cell sources because of their ability to self-renew and to produce 

specialized progeny. Embryonic stem cells, adult stem cells and induced pluripotent stem cells 

are obtained from three different sources and have different advantages and limitations (32) (Fig 

2.3). 

Embryonic stem cells (ESCs) are pluripotent cells, which can proliferate in self-renewal stage 

and can be differentiated into many specialized cell types (33). Human embryonic stem cells 

(hESCs), firstly derived by Thomson in 1998 (34), aroused great interest in tissue engineering 

and regenerative medicine because of their multi-ability to differentiate into any adult tissue cell 

type (35). However, hESCs are restricted to their clinical application due to the ethical problems 

and regulations. Furthermore, when implanted in an animal model, hESCs can possibly give rise 

to teratoma, tumor-like formations containing tissues belonging to all three germ layers (36). In 

parallel, stem cells derived from adult tissues (adult stem cells) have also a promising potential in 

tissue engineering with considerable advantages. They are immunocompatible and are not 

associated with ethical concerns. However, challenges remain related to optimization of isolation 

techniques that avoid contamination, permanently maintain the desired cell types following 

differentiation, and produce a large number of cells that are adequate for the construction of a 
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tissue or organ (37). Adult stem cells  have been isolated from different tissues such as bone 

marrow (38), adipose tissue, peripheral blood, amniotic fluid or umbilical cord blood (39). 

Finally, induced pluripotent stem cells have all of the properties of embryonic stem cells, 

overcoming the problem of immune tolerance and the ethical issues faced by the use of human 

embryonic stem cells. However, the currently available methods to reprogram somatic cells and 

to generate induced pluripotent stem cells are extremely slow and inefficient (32). 

2.1.1.3 Signaling molecules delivery 

Growth factors are soluble-secreted signaling polypeptides capable of instructing specific 

cellular responses in a biological environment (40). They could trigger a wide range of cell 

responses, which include cell survival, cell migration, proliferation or differentiation of a specific 

subset of cells (41). Growth factor could bind to specific transmembrane receptors of the target 

cells. Then the growth factor-binding signals are conducted to the cell nucleus, which results in a 

complex array of events involving cytoskeleton protein phosphorylation, ion fluxes, changes in 

metabolism and gene expression, protein synthesis and ultimately an integrated biological 

response (42). The specific growth factor can be chemically conjugated and/or physically 

encapsulated in the scaffold to release in the target tissue or they can be added in the culture 

conditions in vitro. Many growth factors have been applied in tissue engineering. For example, 

vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and angiopoietin-1 

(Ang-1) are required for the angiogenesis of pre-existing blood vessels, as well as for promoting 

the proliferation and migration of new cells to form new immature vessels (43), bone 

morphogenetic proteins-2 (BMP-2) and transforming growth factor-β3 (TGF-β3) in alginate 

hydrogels, VEGF and BMP-2 from gelatin microparticles have been reported to enhance healing 

effects (44, 45).  
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Consequently, tissue engineering is a multidisciplinary field that involves the principles and 

methods of engineering, life science and clinics. Successful strategies in tissue engineering 

require the optimization of the combination of scaffolds, cells and growth factors which is still a 

complex process. Even though there are still many challenges in developing the regenerated 

tissue, results now are still promising. 

 

2.2 Brain tissue engineering 

The nervous system is composed of peripheral nervous system (PNS) and central nervous system 

(CNS). In contrast to the PNS, the CNS and especially the adult brain possess a very limited 

ability to regenerate after damages.  

2.2.1 Brain injuries 

Many physical injuries and neurological disorders can result in brain damage: (i) stroke, which 

can be categorized as hemorrhagic, ischemic, or embolic in origin, is the third leading cause of 

death in the world. (46). Ischemic stroke accounts for 80% of all brain strokes which is the death 

of an area of brain tissue (cerebral infarction) resulting from an inadequate supply of blood and 

oxygen due to the blockage of an artery. (ii) Traumatic brain injury (TBI) is another major cause 

of brain health problems, more than 1.4 million new cases are reported annually in the USA. 

Like stroke, TBI causes severe disability and there is still no effective clinical treatment available 

worldwide to repair the damaged tissues (47). Besides, neurodegenerative diseases are also 

consistently increasing, like Parkinson’s disease. All these damages, often result in the loss of 

neuronal cell bodies and axons (46), which also involving the recruitment and activation of 

astrocytes, macrophages, and microglia and ultimately forming a glial scar, a physical and 

chemical barrier for regeneration (48, 49). Most treatments currently use pharmacological agents 
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aiming to reduce the sequelae of injury in the acute phase and to enhance the remaining brain 

tissue function during the chronic stage of the injury process. This occurs, however, without 

eliciting tissue regeneration (50).  

Therefore, brain tissue engineering is a promising strategy to repair the injured brain tissue. 

Scaffolds act as artificial environments to support the long-term growth of endogenous and 

therapeutic cells pre-seeded in the scaffolds, facilitating cell regeneration but also preventing 

further damage to adjacent tissues. Combination of cell therapy in brain tissue engineering is also 

a main research area to replace the lost neural cells.  

2.2.2 Neural stem cells  

One promising approach is the use of stem cells, especially neural stem cells (NSCs) for 

damaged brain tissue regeneration. NSCs are present both in the developing and adult brain. 

They can self-renew and generate both neurons and glial cells in the developing brain and 

therefore are potential cell sources for regeneration of the adult brain (51). At early embryonic 

stages, NSCs exist as neuroepithelial stem cells in the embryonic neural tube. In this stage, NSCs 

expand their population by symmetric cell divisions, before they start to produce neurons. 

Subsequently, the neuronal lineages are generated by NSCs through asymmetric cell divisions in 

the germinal ventricular zone (VZ). After this major neurogenic period, NSCs acquire gliogenic 

competency and produce glial progenitor cells, which proliferate mostly in a second germinal 

zone, the subventricular zone (SVZ). By the postnatal stage, the radial glial have transformed 

into astrocytes and the VZ has disappeared, but some portions of the SVZ remain into adulthood, 

to become sites of adult neurogenesis. Adult endogenous NSCs can be found in the two principal 

adult neurogenic regions, the hippocampus and the SVZ, indicating that possible regenerative 

capabilities are preserved in the adult mammalian brain (51). However, although endogenous 
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NSCs are presented in the adult brain, the mechanism that regulates their self-renewal and 

differentiation after injury is still poorly understood. Furthermore, the brain regions to which 

their progeny migrate in order to differentiate remain unresolved. 

Thus, besides the activation of endogenous NSCs, NSCs transplantation is a more promising 

strategy to regenerate the damaged brain tissue. NSCs can be derived from many sources, 

including embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem 

cells (46). NSCs have been isolated from many regions of the embryonic nervous system (52) 

and adult brain tissue (53). In the beginning stages of NSCs transplantation, cells were directly 

injected into the lesion sites, which resulted in low cell viability of the transplanted cells and the 

further damage to the host tissue (46). Furthermore, NSCs transplanted into the brain in the 

absence of a supporting niche largely differentiated into glial cells (54).  

Therefore, to support the functions of NSCs, an important niche, the NSCs microenvironment 

must be provided. Adult NSCs microenvironment in mammalian,  usually contains resident stem 

cells, vessels, stromal cells, and a specialized ECM (Fig 2.4) (55). Although some signaling 

molecules can control the functions of NSCs, ECM is a long-term structure niche to maintain the 

functions of NSCs. The structure, mechanical and chemical properties, as well as the signaling 

molecules in ECM could all contribute to controlling the behavior and differentiation fate of 

NSCs. Brain tissue engineering aims at creating such a specialized scaffold to mimic the 

microenvironment ECM for NSCs and help damaged brain tissue regeneration. More specifically, 

this scaffold should enhance the viability of transplanted NSCs and control their differentiation 

fate. 
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Fig 2.4: NSCs niche in the mammalian SVZ: ASC, astrocyte; EPC, ependymal cell; NBs, neuroblasts; NSC, neural 
stem cell; (55) 

 

2.2.3 Hydrogel design  

The natural brain is a very unique tissue, as it has unusual ECM components such as lecticans, 

proteoglycans, hyaluronic acid and tenascin family proteins (56), as well as its soft physical 

properties. Therefore, although many different kinds of scaffolds are used in brain tissue 

engineering such as nanofibers (57), much of the research efforts focused on the development of 

hydrogels (58). Hydrogels are high water content polymers, which can be produced by both 

natural and synthetic materials such as collagen (59), hyaluronic acid (60), alginate (61), chitosan 

(62) and Polyethylene glycol (PEG) (63). Easy diffusion of nutrients, oxygen and cellular 

metabolites are permitted in hydrogels (64). Furthermore, hydrogels are mainly used, as they 

display similar mechanical properties (such as rheology behavior)  to those of the central nervous 

system ECM (46). Many different types of hydrogel have been fabricated and evaluated for brain 

application by mimicking the biochemical and mechanical properties of brain. Synthetic 

hydrogels such as poly[N-2-(hydroxypropyl) methacrylamide] (PHPMA), Polyethylene glycol 

(PEG) and so on. PEG has many excellent qualities for this application, including being highly 

hydrophilic, biocompatible, non-immunogenic, and neuroprotective. However, due to the 
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polyether backbone, it is non-degradable in the body (65).  Biological derived hydrogels such 

collagen, hyaluronic acid (HA) chitosan, agarose, alginate, methyl cellulose, xyloglucan, 

Matrigel, fibrin, PolySia-based hydrogels, peptide hydrogels are widely used in the CNS 

regeneration (46). These natural polymers have biocompatibility, intrinsic biological activity, as 

well as degradability, by the naturally occurring enzymes. To better mimic the brain tissue ECM 

and control the differentiation fate of NSC, many aspects of the hydrogel design should be 

considered.   

(i) Hydrogel stiffness 

In the human body, different kinds of cells reside in tissues of different stiffness ranging from 

soft tissue to stiff tissue, like neurons in the soft brain tissue while osteoblasts in the hard bone 

tissue (Fig 2.5). Meanwhile, stem cells differentiation to specific lineages is also greatly effect by 

the specific microenvironment. Soft matrices that mimic brain are neurogenic, stiffer matrices 

that mimic muscle are myogenic, and comparatively rigid matrices that mimic collagenous bone 

improve osteogenic responses (66). For example, on photopolymerizable methacrylamide 

chitosan hydrogel surfaces of different stiffness, it had been demonstrated that neuronal 

differentiation was favored on the softest surfaces with Young’s elastic modulus less that 1 kPa 

which highlights the importance of mechanical properties to the success of scaffolds designed to 

engineer the NSCs differentiation fate (62). 

 

Fig 2.5 Solid tissues exhibit a range of stiffness, as measured by the elastic modulus, E. (16) 

(ii) Hydrogel structure 
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In stem cells transplantation strategy, hydrogels are usually used to embed cells. Therefore, it is 

critical to create 3D porous hydrogels to facilitate the mass transport of oxygen, nutrients and 

waste. The porous structure is also important for the cells proliferation and migration. Porous 

hydrogels could be produced and different methods could enhance the porosity of hydrogels. For 

example, some components (progen) can be incorporated into the starting solution that can be 

removed after the hydrogel formation, in order to create a construct with tuned pore size and 

distribution. Li et al. reported that D-mannitol crystals were mixed with photocrosslinkable 

methacrylamide chitosan as a porogen to enhance pore size during hydrogel formation (67). 

Mahony and coworkers created a network of interconnected pores within a PEG hydrogel by 

incorporating a fibrin network that was later enzymatically degraded (65). 

(iii) Signal cues in hydrogels 

Hydrogels for brain tissue engineering should not only just be a supporting frame to transfer 

drugs or cells, they should also include biological cue to activate the cells in the host brain tissue 

and the encapsulated transplanted stem cells, guiding their proliferation, migration or 

differentiation. 

In stem cells transplantation, the cells viability is a key factor for the success of regeneration. In 

order to increase the cell viability, the cells attachment is usually the first consideration. Many 

ECM components such as laminin, fibronectin, and collagen, are the common choices to be 

physically blended with hydrogel or can be chemically conjugated to the hydrogel backbones. 

For example, laminins are known as a family of heterotrimeric large basement membrane 

proteins consisting of a α-chain, a β-chain, and a γ- chain.  Laminins mediate a variety of 

biological activities, and have been implicated in cell adhesion, cell migration, cell 

differentiation, and neurite outgrowth during brain development (68, 69).  Laminins could be 
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blended, physically absorbed and covalently conjugated to biomaterials (70). Furthermore, 

peptides, instead of whole ECM protein, have garnered much attention because of their synthesis 

process, easier than the isolation of ECM proteins, and their stable conjugating to other materials 

(71). For example, a variety of potential cell-binding sequences exist in the laminin, and 

seventeen different cell-adhesion sites have been reported in the α1, β1 and γ1 chains. Some cell 

surface proteins binding to laminin-1 have been reported as follows: a non-conserved RGD site 

in the α1 chain interacts with integrin α3β1 and α6β1; the GD-6 in the α1 chain interacts with 

α3β1; two peptides, YIGSR and LGTIPG, in the β1 chain probably interact with a 67kDa 

binding protein; peptide IKVAV in the α1 chain interacts with a 110kDa protein (72) (Fig 2.6). 

These different peptides have been reported for using in biomaterials modification for neural 

tissue engineering (10, 48, 73) 

 

Fig 2.6 Structural model of laminin and cell binding sites (72) 

Although some successes have been obtained in the past years for brain tissue regeneration, there 

are still many challenges in this field. How to integrate the building blocks of these complex 
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systems in brain which including the physical properties of hydrogels, the spatial and temporal 

control of signaling molecules, and the presentation of key ECM motifs, into modular and 

scalable platforms for clinical translation also need to be taken into consideration (46, 74).  

2.2.4 Vascularization in brain tissue engineering 

Stroke is the one of the leading cause of serious, long-term disability in the world, in which 

about 80% belong to the class of ischemic stroke. Besides the neuronal cell death during brain 

injury, also regenerative responses are also triggered in the tissue around the ischemic core area, 

including angiogenesis, vascular remodeling and neurogenesis. Migration of neuroblasts was 

induced after stroke into regions of degenerating striatum that border the SVZ and neuroblasts 

develop closely associated to vascular endothelial cells in an environment termed the 

neurovascular niche. In this neurovascular niche, newly born, immature neurons are closely 

associated with the remodeling vasculature. Neurogenesis and angiogenesis are causally linked 

during brain recovery through specific vascular growth factors and adhesion molecules (75, 76).  

Angiogenesis is defined as the generation of blood vessels from the existing vasculature through 

activation of proliferation and sprouting mechanism in adult endothelial cells, which was for a 

long time considered as the exclusive pathway for blood vessels formation in an adult organism 

(77). After Asahara discovered the so-called endothelial progenitor cells (EPCs), they assumed 

that endothelial progenitor cells are responsible for de novo formation of blood vessels in a 

process termed vasculogenesis which was also referred to as a collateral mechanism in 

neovascularization (78).  EPCs are defined by surface markers such as CD133 and CD34 (79), as 

well as other characteristics such as staining for von Willebrand factor, incorporation of 

acetylated low-density lipoprotein (80) and binding of ulex europaeus agglutinin  (81). EPC can 

be isolated from several sources, such as bone marrow, bone marrow-derived mononuclear cells, 
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human umbilical cord blood cells and human peripheral blood mononuclear cells (82). The key 

function of EPC includes forming vascular structures in pro-angiogenic matrices in vitro, as well 

as the potential to contribute to the vascularization in vivo (77). In human peripheral blood, two 

types of EPC were isolated from the mononuclear cells: early EPC and late EPC (83). Some 

synonyms of late EPC include outgrowth endothelial cells (OEC), late OEC, blood OEC and 

endothelial colony forming endothelial cells (77). 

In response to ischemia, many pathophysiologic changes occur in the brain microvasculature.  

Subsequently immediate events include the breakdown of the blood-brain barrier (BBB), with 

transudation of plasma, cytokines (84) and vascular matrix degradation (85). In the meantime, 

active angiogenesis is induced after focal cerebral ischemia (86) and many angiogenic factors are 

up-regulated (87). Moreover, the circulating EPCs are reduced in the stroke patients (88). 

Therefore, therapeutic enhancement of angiogenesis is a strategy for a series of different 

vascular-related diseases. Recently, therapeutic potential of EPCs has been highlighted in 

experimental cerebral ischemia. Some groups have demonstrated the EPC administration could 

restore the blood flow and enhance the tissue regeneration in experimental cerebral ischemia 

models. Furthermore, the EPC could secret several growth factors that enhance neuronal survival, 

neurogenesis, and vascular regeneration (89, 90).  In addition, vascular endothelial growth 

factors are  also widely used in experimental cerebral ischemia models because they can increase 

cerebral angiogenesis, but  also enhance neuroprotection and neurogenesis (86).  Although still a 

lot of questions remain unclear, these results are promising and provide initial ideas for treatment 

of the ischemic stroke by means of therapeutical relevant cells and suitable tissue engineering 

approaches. 
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2.3 Natural polymer: Silk fibroin 

Silk is generally defined as protein polymers which are spun fibers by some Insects larvae such 

as silkworms and flies, Arthropods such as spiders and scorpions, or Mollusks as mites. Silk 

proteins are usually biosynthesized in epithelial cells of these organisms and produced within 

specialized glands (91). Silks produced by silkworms are well known and used in biomedical 

applications particularly as sutures and in the textile industry because of its luster and peculiar 

mechanical properties. Although some delayed chronic inflammatory reaction to suture were 

observed (92), this biological responses could be overcome by removing the sericin, the glue-like 

proteins and by changing the protein conformation. Bombyx mori silkworm silk, the most 

common source of commercially available silk, have shown tunable mechanical properties, 

biocompatibility, and controlled biodegradability (93-96). Silk fibers are composed of a two 

filament: a structure  protein (silk fibroin) and a gummy substance that glues the two filaments 

together (silk sericin) (Fig 2.7).  The sericin coated outside of silk fibroin is a hydrophilic protein 

(~20-310kDa), which could be removed in the de-gumming process (97). 

 
 

Fig 2.7 Scanning electron micrograph of a silk filament partially degummed (data not published from lab). 
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2.3.1 Structure  

Silk fibroin filament has a diameter from 10um to 15um, which is composed of a heavy chain 

(~390kDa) and a light chain (~26kDa) at 1:1 ratio. These two chains are linked by a single 

disulfide bond (97) (Fig. 2.8) 

 

Fig 2.8 Silk fibroin filament composition  

 

The amino acid composition of Bombyx mori silk fibroin includes more than 16 amino acids 

whose ratio varies between different areas of the supramolecular structure of fibroin. The amino 

acid composition of silk fibroin from Bombyx mori consists primarily of glycine (Gly) (49.9%), 

alanine (Ala) (27.7%) and serine (Ser) (7.9%) (Table 2.1).  

Table 2.1 Amino acid composition of Bombyx mori silk fibroin analyzed by HPLC 

(data not published from lab) 

Amino Acid 
Amino acid 

composition (%) 

Glycine 49.9 

Alanine 27.7 
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Serina 7.9 

Tyrosine 5.3 

Valine 2.7 

Threonine 0.8 

Isoleucine 1.2 

Phenylalanine 0.8 

Lysine 0.3 

Aspartic Acid 1.0 

Leucine 0.6 

Arginine 0.6 

Glutamic Acid 0.9 

Proline 0.4 

Methionine 0 

Cysteine 0 

Histidine 0 
                                                        

The heavy chain of silk fibroin is composed of the 12 small hydrophilic domains (amorphous 

region) and 12 large hydrophobic domains (crystalline region). In the crystalline regions, each 

domain consists of sub-domain hexapeptides including: GAGAGS, GAGAGY, GAGAGA or 

GAGYGA in which G is glycine, A is alanine, S is serine and Y is tyrosine. These subdomains 

end with tetrapeptides such as GAAS or GAGS. In the amorphous region, they are between 42 

and 44 amino acid residues in length. All the linkers have an identical 25 amino acid residue 

(non-repetitive sequence), which is composed of charged amino acids absent in the crystalline 

regions (98).  

Some different secondary structures of silk fibroin are reported: α-helical (silk I) and β-sheet 

(silk II) structures in crystalline areas, and disordered conformation of random globules in 

amorphous areas.  The silk I structure is stabilized by intra-molecular hydrogen bonds, with the 

hydrophobic fragments displaced to the periphery (Fig 2.9a). Silk I is a water-soluble state (can 

be obtained in vitro in aqueous conditions) and easily converts to the silk II structure when 

exposed to physical stresses or heating. The β-sheet structures are asymmetrical with one side 
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occupied with hydrogen side chains from glycine and the other occupied with the methyl side 

chains from the alanines. Antiparallel β-sheets of silk fibroin are packed in the face-to-face, 

back-to-back mode (Fig 2.9b). The silk II structure is water insoluble in several solvents 

including alkaline conditions, mild acid and several chaotropes (97, 99). 

  

Fig 2.9. α-Helical structure of fibroin macromolecules in two projections (a) β-sheet structure of fibroin (b). (99) 

 

 

2.3.2 Tissue engineering application 

Silk fibroin has the great potential to be applied in tissue engineering and regenerative medicine. 

Bio-recognition ability of silk fibroin is the basic contribution to induce regeneration of various 

mammalian tissues. Two different active sequences VITTDSDGNE and NINDFDED, 

recognized by the integrin that promoting fibroblast growth, were localized in the N-terminal 

region of the heavy chain (100). Besides, silk fibroin could be processed into many different 

kinds of materials which enable its extensive application in tissue engineering and regenerative 

medicine (Fig 2.10). All these diverse kinds of materials start from the protocol to obtain 

aqueous silk fibroin solution (Fig 2.11) (101). Then, this silk fibroin solution can be prepared 

into films, sponges, fibers and gels (102-104). Depending on the procedure of processing and the 

source of silk, the silk fibroin could have different secondary conformation and molecule 

assembling, which result in different mechanical and biological functions (102). 
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Fig 2.10 Diverse material forms fabricated from silk fibroin: (a) fiber (b) gel (c) film (d) sponge. (Figures are not 
published data from lab)  

 

These different forms of silk fibroin materials are widely applied in tissue engineering:  

(i) For skin would healing, fibroin films and fibroin-alginate sponges have been reported to 

enhance skin wound healing in vivo compared to clinically used materials (105, 106). Oral 

keratinocytes also proliferate on woven fibroin meshes (107), a form that is likely to be used for 
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wound healing applications. Both studies concluded that fibroin-based materials promoted 

epithelialisation.  

(ii) For vascular tissue regeneration, sulphonated and heparinised silk fibroin films were reported 

for use as artificial blood vessels by adjusting suitable mechanical properties (108). The studies 

showed these films have good anticoagulant activity and platelet response and support 

endothelial cell spreading and proliferation. Besides, nano-fibrous and micro-fibrous silk fibroin 

nets have good compatibility with endothelial cells, maintaining their endothelial characteristics 

and functions (94). Biohybrid multilayer nanofiber composed of silk fibroin and poly(ε-

caprolactone) were prepared using double-electrospinning technique, displaying both an 

endothelial-conductive surface with anisotropic mechanical properties (109).  

(iii) In neural tissue engineering, especially in the peripheral nervous system, the dorsal root 

ganglia and schwann cells cultured on silk fibroin maintain their viability and keep their normal 

phenotype or functionality without any cytotoxic effects (110). Silk-Carbon nanotubes composite 

scaffolds were able to improve the neuron differentiation of human embryonic stem cells, which 

is applicable for efficient supporting matrices for stem cell-derived neuronal transplants (111).  

(iiii) Most of the research of silk fibroin has carried out for bone tissue engineering. Films, 

electrospun scaffolds and salt-leaching 3D-porous scaffolds are processed in bone tissue 

engineering (112-114). Some previously work showed that silk fibroin hydrogels and 

membranes/nets without pre-seeded cells have been used for guided bone regeneration (115, 

116). However, recently 3D porous silk fibroin scaffolds combined with MSCs resulted advance 

bone formation for the repair of critical-sized bone defects (117). Furthermore, the silk fibroin 

scaffold also modified with RGD to increase the cell attachment and slowdown the degradation 

in bone tissue engineering. RGD-silk scaffolds were demonstrated to be suitable for autologous 
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bone tissue engineering, probably because of their stable macroporous structure, tailorable 

mechanical properties matching those of native bone, and slow degradation (118). 

Furthermore, Silk fibroin are also applied in cartilage, cardiac, skin, spinal cord tissue 

engineering and so on (119). In the future, with the development of understanding of silk fibroin 

and optimization of processing, the silk fibroin could be more widely and successfully used in 

tissue regeneration. 

 

 

Fig 2.11 Silk fibroin aqueous solution preparation (101). 
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2.3.3 Hydrogel 

Silk fibroin solution can be assembled into hydrogels by using different processing methods. The 

sol-gel transition can be induced by physical or chemical factors. In the presence of low pH, high 

temperatures, or high ionic strength which induce self-assembly into β-sheet-rich networks and 

concomitant hydrogelation of silk fibroin (120, 121). Usually, with an increase in silk fibroin 

concentration, temperature, concentration of additives like Ca
2+

, glycerol and poly (ethylene 

oxide), or a decrease in pH, gelation time decreases. In the gelation process, silk fibroin structure 

changed from random coil to β-sheet due to enhanced hydrophobic interactions and hydrogen 

bond formation (103, 122-124). In addition, silk fibroin hydrogel can also be prepared by genipin 

chemically crosslinking (Fig 2.12) (125). Genipin preferentially reacts with the amino acids 

lysine and arginine of certain proteins. However, the silk fibroin chain contains a very low 

percentage of these amino acids (0.6% for both), mainly in the hydrophilic blocks. Therefore, the 

kinetic of gelation is a slow process because the existed cross-linking sites are few in the silk 

fibroin (126). In this process, genipin can also induce the β-sheet formation of silk fibroin (127, 

128).  However, the silk fibroin gelation was very slow under these physiologically stimuli and 

genipin crosslinking, which were more suitable for 2D in vitro study of cells behavior instead of 

3D encapsulation system. Recently, relatively new protocols have been explored to induce the 

gelation of silk fibroin, such as using sonication (129) or votex (130) in which the hydrogelation 

kinetics could be easily manipulated by changing the sonication and vortex time, assembly 

temperature and protein concentration, suggesting proper techniques of 3D silk fibroin for cells 

encapsulation. This method makes it possible for new tissue engineering applications in 3D 

hydrogel constructs without harsh solution conditions that may be detrimental to cell behavior 

(129). 
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Fig 2.12 The mechanism of genipin crosslinking silk fibroin by reacting with the primary amino acid group (125). 

 

2.4 Aim of this thesis 

In order to solve the problem of brain injury caused by stroke and traumatic, brain tissue 

engineering is a promising strategy to provide appropriate biocompatible and bioactive scaffolds 

to help the damaged brain tissue regeneration. When the damaged part is large, the combination 

of stem cells is necessary to replace the lost neural cells because of the limited regeneration 

ability of the brain tissue.   

To this aim, our work is to design and evaluate an instructive injectable scaffold combined 

with stem cells for brain tissue regeneration. The stem cells (embryonic stem cells or neural 

stem cells) will be provided as cell sources to replace the lost cells in the brain damage, and 

the scaffold should induce the proliferation and neural differentiation of the implanted 

stem cells.  

To define which form of materials should be applied in brain tissue engineering, hydrogels were 

taken into prior consideration in the brain tissue engineering application as they have comparable 

physical characteristics to soft tissues. Moreover, the injectable hydrogel can avoid invasive 
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surgical procedures. Many natural polymers could be processed into hydrogels. Among these, 

silk fibroin is a natural bioactive polymer, which has been used in many different tissue 

engineering applications because of its tunable mechanical properties, biocompatibility and 

controllable degradation rates. Silk fibroin could be processed using a number of techniques to 

obtain diverse forms of materials including the hydrogel. Chemical and physical crosslinking are 

the main ways to obtain silk fibroin hydrogel. However, few studies have focused on the 

application of silk fibroin hydrogel for neural tissue engineering application, especially for brain 

tissue engineering. Therefore, we chose silk fibroin as our main material to produce hydrogels. 

Furthermore, to improve the bioactivity of hydrogel, gelatin which is the denatured collagen was 

considered to combine with silk fibroin. Different combination and crosslinking ways were 

performed to obtain hydrogels which aimed to find the optimized hydrogel for supporting stem 

cells viability and neural differentiation. Even though our final aim is to build a 3D scaffold, we 

decided to use hydrogel substrates as our starting step to choose the appropriate crosslinking and 

combination of hydrogels. Different processing of silk fibroin/gelatin hydrogel substrates were 

prepared by chemical genipin crosslinking and physical sonication crosslinking. Furthermore, 

different composition of silk fibroin and gelatin were prepared to vary structures, protein 

conformations and mechanical properties of hydrogels. Mouse embryonic stem cells (mESC) 

were used as a model to investigate the effects of these hydrogel substrates to the viability and 

neural differentiation of pluripotent cells. 

In the brain tissue engineering, a 3D hydrogel encapsulated with therapeutic stem cells, which is 

injectable, is an ideal model. Another important issue is to increase the neuron differentiation of 

stem cells in the brain tissue regeneration because neurons growth is always inhibited in the 

damaged environment with the scar formation. To achieve this aim, the physical sonication 
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crosslinked silk fibroin hydrogel was chosen from our first step and then silk fibroin hydrogel 

was produced as a 3D injectable hydrogel which allows cells encapsulation by manipulating the 

sonication parameters. To improve the neuron differentiation, silk fibroin was chemically 

modified with IKAVA peptide which derived from laminin. To evaluate the unmodified and 

IKVAV-modified hydrogels, human neural stem cell were encapsulated in both hydrogels, the 

viability and neural differentiation were then evaluated.  

The angiogenesis is also a critical aspect in the regeneration of brain tissue, especially when the 

damaged part is large. To understand whether the silk fibroin hydrogel can support the 

angiogenesis and if the conjugation of IKVAV peptide can increase angiogenesis, we prepared 

the silk fibroin unmodified and modified with IKVAV peptide, and scramble VVIAV peptide 

(control peptide). To evaluate the angiogenesis potential of different modified silk fibroin 

hydrogel, two systems were used. One is the mono-culture system in which the OEC are 

encapsulated inside hydrogels. VEGF could be added in the medium to induce the angiogenesis 

of OEC. Another system is to co-culture OEC with BM-MSCs. In this co-culture system, BM-

MSCs could induce the angiogenesis without additional growth factors.  By using these two 

systems, the angiogenesis structures formed inside hydrogels and the gene expression of 

different angiogenesis genes were evaluated. 
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Chapter 3: Different processing of silk fibroin-based 

hydrogel modulate the behavior of embryonic stem 

cells 

3.1 Part I: Gelatin/silk fibroin hydrogel substrates by chemical genipin 

crosslinking * 

*This part of work is based on the publication: Sun W, Incitti T, Migliaresi C, Quattrone A, Casarosa S, 

Motta A. 2014, Genipin-crosslinked gelatin–Silk fibroin hydrogels for modulating the behavior of 

pluripotent cells, Journal of Tissue Engineering and Regenerative Medicine. DOI: 10.1002/term.1868 

3.1.1 Introduction 

In stem cell-based tissue engineering, scaffolds are designed and fabricated as bioactive synthetic 

frameworks to promote interaction with host stem cells or with pre-seeded stem cells. The 

natural extracellular matrix (ECM) represents an appealing model to design bioactive scaffolds 

(13) and many reports have shown that ECM plays a critical role in modulating the behavior of 

stem cells (131). ECM mechanical properties and chemical cues can affect stem cells behavior 

by pulling cells against matrix or by interacting with cell surface integrins. Subsequently 

mechano-sensitive or integrin-mediated interactions convey these signals to intracellular 

downstream pathways that commit to specific cell differentiation fates or functions (16, 132, 

133). By mimicking the ECM, biomaterials can be utilized to fabricate bioactive scaffolds to 

stimulate stem cells proliferation and differentiation by delivering intrinsic physical properties or 

incorporated chemical cues (134). Moreover, instead of common growth factor-induced 

differentiation system on tissue culture plate (TCP) in vitro, various biomaterials are constructed 

as 2D or 3D matrices to help guiding stem cells differentiation into specific cell types (135, 136). 

The mechanical properties (16), chemical composition (137), and structure architecture (138) of 

scaffolds can all contribute to modulating the differentiation of stem cells. However so far, few 

reports have revealed the underlying mechanisms by which the scaffolds modulate the 
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differentiation of stem cells (139, 140). Therefore, looking for appropriate scaffolds to guide 

differentiation can benefit the successful application of stem cells in tissue engineering. 

Meanwhile, understanding the underlying mechanisms is becoming necessary in order to design 

more precise and adequate scaffolds. 

To specifically study how artificial scaffolds can affect the proliferation and neural 

differentiation of pluripotent cells, hydrogels are mainly used, as they display similar mechanical 

properties to those of the central nervous system ECM (46). As one of the emerging and most 

physiologically relevant scaffolds, hydrogels are widely applied for 2D adhesion and 3D 

encapsulation systems to study stem cells differentiation behaviors (141, 142). Both types of 

culture are useful to elucidate the precise signaling cues for stem cells differentiation into 

specific cell types (143). Collagen is a major protein component in connective tissue and is most 

abundant in ECM of mammals. Gelatin is the denatured form of collagen, showing very low 

antigenicity (144). Gelatin-based scaffolds have been reported for cartilage (145) and bone 

(146)tissue engineering and for peripheral nerve guide conduits (147). Silk fibroin is a promising 

natural polymer that has been used for many years in tissue engineering and regenerative 

medicine due to its impressive biocompatibility and tunable mechanical properties (97). Various 

reprocessing formats of silk fibroin (films, fibers, sponges) have been explored for stem cell-

based tissue engineering (124). Furthermore, silk fibroin-based materials have been shown to 

support cell adhesion, proliferation and osteogenic (148), chondrogenic (149) and neural 

differentiation (111). Blended scaffolds of gelatin and silk fibroin have been reported to enhance 

the degree of interconnection and to increase the surface area for cell attachment (150). Genipin, 

which is a natural crosslinker extracted from gardenia fruits (151), with very low cytotoxicity 

(152), has been used to crosslink chitosan, gelatin and other proteins containing residues with 
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primary amine groups (153, 154). Genipin-crosslinked gelatin has been successfully used for 

many biomedical applications in the past years (147, 155). However, few papers have reported 

data on the possible applications of genipin-crosslinked silk fibroin hydrogels and sonication-

induced silk fibroin hydrogel (156).  

In our research, the initial objective was to explore nature-derived hydrogels as active substrates 

to guide pluripotent cells proliferation and differentiation into the neural lineage by using mouse 

embryonic stem cells (mESCs). For this purpose, we prepared gelatin/silk fibroin hydrogels of 

different compositions and crosslinked by genipin. By changing the ratio between gelatin and 

silk fibroin, different morphologies, structures and mechanical properties of the hydrogel 

scaffolds were obtained and characterized. Neural differentiation was induced by culturing 

mESCs in Knockout Serum Replacement (KSR) supplemented medium for 15 days. This 

protocol shows that 50% of neurons are formed at day 15 on tissue culture plate (TCP) which 

was used as the control culture in our experiments (157). After seeding cells on TCP and 

hydrogel substrates, their viability and proliferation during differentiation were assessed through 

Live/Dead and DNA quantification assays. Moreover, the effects of substrates on mESCs 

differentiation were compared between hydrogel surfaces and TCP. Gene expression analyses 

were performed to analyze the differentiation fate by qRT-PCR at day 15.  

3.1.2 Materials and Methods 

3.1.2.1 Preparation of regenerated silk fibroin solution 

     Silk fibroin solutions were prepared according to the literature (101). Bombyx mori cocoons 

(Produced and kindly provided by Cooperativa Socio Lario, Como, Italy) (Fig 3.1.1) were peeled 

layer by layer. Then they were boiled for 30mins in 0.02M Na2CO3 (Merck, Germany) aqueous 
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solution to remove the sericin. After the de-gumming process, silk fibroin was cooling down by 

adding distilled water gradually. Then the obtained silk fibroin was thoroughly rinsed in distilled 

water. The dried obtained silk fibroin was dissolved in 9.3M LiBr (Sigma-Aldrich, U.S.A) 

(concentration at 20%) at 65
◦
C for 4 hours followed by dialysis against distilled water for 3 days 

using Slide-A-Lyzer dialysis cassettes (MWCO3500, Pierce, U.S.A). Then the silk fibroin 

solution after dialysis was centrifuged to remove the impurities and silk aggregates formed 

during dialysis. The final concentration of the silk fibroin solution was calculated by Nanodrop 

spectrophotometer (ND-1000). Usually, the silk fibroin concentration was about 5.4%. 

 

Fig 3.1.1 Cocoons kindly provided by Cooperativa Socio Lario, Como, Italy 

3.1.2.2 Preparation of genipin-crosslinked gelatin/silk fibroin hydrogels 

Gelatin (Type A, from porcine skin, Sigma-Aldrich, U.S.A) was prepared to 4wt % solution and 

genipin was dissolved to 2wt % solution in distilled water. The gelatin solution was blended with 

5.4wt % silk fibroin solution and 2wt % genipin solution in 37
◦
C under mild stirring. All 

solutions were sterilized by passing through 0.22um filters. The total solute concentration was 3% 

and genipin was 12% related to the total solute concentration (154). By changing the volume 

ratio between gelatin and silk fibroin solution, the final solutions were obtained in a mass ratio of 

gelatin: silk fibroin=100:0, 95:5, 80:20, 0:100 which were named G100, GS95, GS80, S100 

respectively. S100 solutions were then incubated at 37◦C for 48 hours and G100, GS95, GS80 
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solutions were incubated for 18 hours to crosslink and to obtain hydrogels. The hydrogel 

composition and crosslinking time are shown in Table 3.1.1. The appearances of the hydrogels 

were shown in Fig 3.1.2. 

Table3.1.1 The composition and crosslinking time of gelatin/silk fibroin hydrogels  

Sample 
code 

Gelatin 
Silk 

fibroin 

Total 
solute   

concen-
tration 

Genipin concentration 
(related to the total solute 

concentration) 
Crosslinking time 

G100 100 0 3% 12% 18h 
GS95 95 5 3% 12% 18h 
GS80 80 20 3% 12% 18h 
S100 0 100 3% 12% 48h 

 

 

Fig3.1.2 The appearance of the genipin-crosslinked gelatin/silk fibroin hydrogels 

3.1.2.3 Field Emission Scanning Electron Microscope (FE-SEM) characterization 

To characterize the internal microstructures of genipin-crosslinked gelatin/silk fibroin scaffolds, 

hydrogel samples were frozen in liquid nitrogen to avoid the formation of large crystals and then 

were lyophilized at -50
◦
C for 48 hours. The freeze-dried scaffolds were cut to expose the cross-

sections and were coated with gold. The samples were observed using the FE-SEM (SUPRA 

40/40VP ZEISS, Germany). 
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3.1.2.4 Fourier Transform Infrared - Attenuate Total Reflectance (FTIR-ATR) spectroscopy 

analysis 

The lyophilized uncrosslinked and crosslinked samples were analyzed in FTIR-ATR (Fourier 

Transform Infrared - Attenuate Total Reflectance, Spectrum One Perkin-Elmer, U.S.A). Spectra 

region were collected from 600 cm
-1

 to 4000cm
-1

. Spectra covering the amide I, II, III regions 

(1000–1800cm
-1

) were performed by Graphpad Prism 5.0 software.    

3.1.2.5 Rheological characterization of hydrogels 

The rheological characterization of hydrogel samples was performed in Anton Paar Physica 

MCR Rheometer 301 fitted with a circulating environmental system for temperature control. The 

plate was equipped with a Peltier chamber to control temperature and to reduce evaporation 

during measurement. After the hydrogels were crosslinked in a mold (diameter 30mm), they 

were transferred to the plate to perform characterization. Oscillatory shear measurements were 

performed to evaluate the storage and loss modulus of hydrogels. Frequency sweeps were 

performed to determine values of the storage and loss modulus from 0.1 Hz to 10 Hz in a 25mm 

cone plate configuration at 37
◦
C. A constant gap 0.7mm and strain 0.2% were used in the 

measurement. Triplicates of each hydrogel were tested.  

3.1.2.6 Genipin crosslinking degree and reactive genipin content test 

Ninhydrin assay was used to determine the crosslinking degree and reactive genipin content in 

crosslinked hydrogels (104). Ninhydrin can react with NH2 groups (both primary and secondary) 

of proteins, producing a purple color which is detectable by spectrophotometer at 570 nm. By 

calculating the amount of NH2 groups in the samples before and after crosslinking, the amount of 

NH2 groups participating in the crosslinking process and the reactive genipin content in 
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crosslinked samples can be calculated. The genipin-crosslinked hydrogels and the corresponded 

solutions without crosslinking were frozen at -80
◦
C overnight and then were lyophilized for 3 

days. Samples before crosslinking and after crosslinking were equally weighed. Subsequently, 

the lyophilized samples were heated in 3ml ninhydrin (Sigma-Aldrich, U.S.A) solution (0.35% 

w/v) in ethanol (<96%, Sigma-Aldrich, U.S.A) at 90
◦
C for 30mins under mild shaking. Each 

sample was made in triplicate. 3ml ninhydrin solution was treated under the same conditions as 

blank. After cooling down in cold water bath, the optical absorbance of the solution was 

measured with a microplate reader (Multiskan EX, Thermo Scientific, U.S.A) at a wavelength of 

570 nm. Glycine solutions of various known concentrations were used as standards. Therefore, 

the number of free NH2 group was calculated by the optical absorbance of the solution. 

Crosslinking degree and reactive genipin content can be calculated following the equation in 

which NH2
before

and NH2
after

 are the mole fractions of free NH2 remaining in the sample group 

before and after crosslinking, respectively. Here we assume that one genipin molecular reacts 

with two NH2 groups (158).      

Crosslinking degree (%) = 
NH2

before- NH2
after 

×100 
NH2

before 

 

Reactive genipin 
content (%) 

= 
(NH2

before-   NH2
after)×MolecularWeightgenipin 

×100 
Weightsample×2 

 

3.1.2.7 Embryonic stem cell culture and in vitro neuronal differentiation 

The mouse embryonic stem cell line E14tg.2a (obtained from MMRRC, University of California, 

Davis) was maintained in self-renewal state by culturing on a 0.1% gelatin coated TCP in self-

renewal medium (MMRRC guidelines). Cells used for differentiation were between Passage 25 
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to 30 and cultured as previously described (157). Before seeding cells, different hydrogel 

solutions were prepared as described above, and 500ul of each was used to cover the surface of 

one well in a 12 well-plate. After hydrogels gelated at 37
◦
C, they were incubated in  self-renewal 

medium at 37
◦
C overnight to remove the excessive genipin. At day-1, cells were dissociated to a 

single-cell suspension and 1000 cells/cm
2 

were plated on the hydrogel surfaces and on 0.1% 

gelatin coated TCP, and cultured in self-renewal medium for one day. Then at day 0 the medium 

was changed to differentiation medium (Knockout Dulbecco Minimal Essential Medium 

supplemented with 15% KSR, 2mM L-glutamine, 100U/ml penicillin/streptomycin, and 0.1mM 

β-mercaptoethanol) and cultured until day 15. The medium was replaced every two days during 

the differentiation process.  

3.1.2.8 Cell viability and proliferation 

The viability of the cells seeded on hydrogels was investigated by Live/Dead assay. Live and 

dead cells were stained by calcein AM and propidium iodide (PI) respectively. Briefly, 

cells/hydrogels were washed with PBS and then were incubated in GMEM medium/calcein AM 

(1µmol/ml) at 37
◦
C for 15mins. Then cells were washed with PBS three times and were stained 

by GMEM medium/PI (20ng/ml) for 2mins at room temperature. After two more washes in PBS, 

they were observed by confocal microscopy (Nikon Eclipse Ti-E). To study cell proliferation, 

PicoGreen DNA assay was performed. Briefly, after washing with PBS, cells/hydrogels were 

collected and stored at -80
◦
C. Following lyophilization, samples were cut into small pieces and 

lysed in PBE buffer (10mM EDTA in PBS) supplemented with 1mg/ml Proteinase K for 48 

hours at 55
◦
C. After centrifugation at 2000rpm for 10 min, the supernatants were collected for 

the assay. The DNA content was determined fluorometrically at excitation wavelength of 485nm 

and emission wavelength of 538nm using a fluorescent plate reader (Tecan Infinite M200). 
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Triplicates of each sample were tested. The amount of DNA was calculated by interpolation 

from a standard curve prepared using lambda DNA in TE buffer over a range of concentrations. 

3.1.2.9 RNA isolation and QRT-PCR 

Total RNA was isolated by Trizol (Sigma-Aldrich, U.S.A) and Qiagen RNeasy Mini Kit (159). 

Briefly, after phase separation using Trizol and chloroform, the upper aqueous phase was 

collected and mixed with 0.5 volume of ethanol (<96%, Sigma-Aldrich, U.S.A). The solution 

was transferred to the RNeasy spin columns and RNA purified according to the manufacturer’s 

protocol. Reverse Transcription (RT)-PCR was performed using High-Capacity cDNA Reverse 

Transcription Kits (Applied Biosystems). Quantitative Real-Time (QRT)-PCR was performed in 

CFX96 Touch™ Real-Time PCR Detection System (Biorad). Three biological replicates of each 

sample and triplicate wells were performed. Sequences of specific primers and product length are 

listed in Table 3.1.2. 

Table 3.1.2 Oligonucleotides sequences and product length in QRT-PCR 

  
Oligonuc
-leotides 

Sequences(5’-3’) 
 Product   
length 

(bp) 

Oct4 Forward: 5’-TCAGCTTGGGCTAGAGAAGG-3’ 
Reverse: 5’-GGCAGAGGAAAGGATACAGC-3’ 

191 

Nanog Forward: 5’-TGCTTACAAGGGTCTGCTACTGA-3’ 
Reverse: 5’- TTGTTTGGGACTGGTAGAAGAATC-3’ 

113 

Nestin Forward: 5’-GATCGCTCAGATCCTGGAAG-3’ 
Reverse: 5’- AGAGAAGGATGTTGGGCTGA-3’ 

241 

βIIItubulin Forward: 5’- TTCTGGTGGACTTGGAACCT-3’ 
Reverse: 5’- ACTCTTTCCGCACGACATCT-3’ 

180 

NCAM Forward: 5’- AGGAGAAATCAGCGTTGGAG-3’ 
Reverse: 5’- CGATGTTGGCGTTGTAGATG-3’ 

182 

GFAP Forward: 5’-GGAGAGGGACAACTTTGCAC-3’ 
Reverse: 5’- CCAGCGATTCAACCTTTCTC-3’ 

164 

Keratin 18 Forward: 5’-TTGTCACCACCAAGTCTGCC-3’ 
Reverse: 5’- TTTGTGCCAGCTCTGACTCC-3’ 

213 
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GATA4 Forward: 5’-CACTATGGGCACAGCAGCTCC-3’ 
Reverse: 5’- TTGGAGCTGGCCTGCGATGTC-3’ 

146 

Brachyury Forward: 5’-GAACCTCGGATTCACATCGTGAGA-3’ 
Reverse: 5’- ATCAAGGAAGGCTTTAGCAAATGGG-3’ 

158 

Sox 17 Forward: 5’- GCCAAAGACGAACGCAAGCGGT-3’ 
Reverse: 5’- TCATGCGCTTCACCTGCTTG-3’ 

211 

 

3.1.2.10 statistics 

All statistics were performed using Graphpad Prism 5. In the reactive genipin content test, data 

were analyzed by one-way analysis of variance (ANOVA) with Tukey’s post-hoc analysis. In 

DNA quantification test, one-way ANOVA with Tukey’s post hoc analysis and two-way 

ANOVA with Bonferroni post hoc test were performed. In QRT-PCR, ddCt method was used to 

analyze the data. Gene expression of cells on TCP (control) was set as 1 (no error bars). Other 

target gene expressions were calculated by the fold change related to the control. One-way 

ANOVA with Tukey’s post hoc analysis was performed for gene expression analysis.   

3.1.3 Results  

3.1.3.1 Hydrogel morphology characterization by SEM  

SEM was used to examine the morphologies of freeze-dried hydrogels which are shown in Fig 

3.1.3. The G100 hydrogel formed porous structure and polygonal pores, with size ranging from 

10um to 20um (Fig 3.1.3a,b). The S100 hydrogel showed lamellar structures with small pores 

(Fig 3.1.3c,d). By adding silk fibroin to the gelatin, no significantly different structure was 

observed in blended samples GS95 (Fig 3.1.3e,f)  and GS80 (Fig 3.1.3g,h) compared to G100. 

Both GS95 and GS80 kept the porous morphology like G100. Besides, the GS80 hydrogel 

showed a slight decrease of pore size.  
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Fig3.1.3. Morphologies of genipin-crosslinked gelatin/silk fibroin hydrogels observed by SEM. (a,b) G100 (c,d) S100 
(e,f) GS95 (g,h) GS80. Each sample was shown in 10µm and 2µm scales respectively. 

 

3.1.3.2 Hydrogel protein conformation analysis by FTIR-ATR  

Protein secondary structures of uncrosslinked and crosslinked samples were determined by 

FTIR-ATR (Fig 3.1.4). The spectrum of uncrosslinked S100 (Fig 3.1.4Aa) showed bands at 

1644cm−1, 1514cm−1 and 1230cm−1 which corresponded to amide-I (1600-1690cm-1), amide-

II (1480-1575cm-1) and amide-III (1229-1301 cm-1) conformation region (160). Compared to 
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the pure silk fibroin film (amide II at 1540cm−1) (103), the amide II at 1514cm−1 of 

uncrosslinked S100 indicated some of the molecular chains changed from random coil to β-sheet 

structure, which was probably due to the lyophilization process. After genipin crosslinking, S100 

absorptions bands of amide I showed a shift from 1644cm−1 to 1621cm−1 (Fig 3.1.4Ba), 

indicating the further structure changes from random coil to β-sheet structure (161). It has been 

proven before that genipin could induce β-sheet structure formation of silk fibroin (154).  

Compared to the uncrosslinked G100 (Fig 3.1.4Ab), genipin-crosslinked G100 (Fig 3.1.4Bb) just 

showed a slightly shift in amide I and amide II region which indicated that the helical second 

structure of gelatin was not affected by genipin crosslinking, which was also reported by 

Chiono’s and Xiao’s papers (155, 156). In the crosslinked samples GS95 (Fig 3.1.4Bc), the 

amide I, II, III showed only slight variations with respect to the genipin-crosslinked G100 which 

were attributed to the low content of silk fibroin. The GS80 (Fig 3.1.4Bd) showed β-sheet 

structure formation after genipin crosslinking (amide II at 1516cm-1). 

 

Fig 3.1.4 FTIR spectra of uncrosslinked (A) and crosslinked (B) gelatin/silk fibroin scaffolds: (a) S100 (b) G100 (c) 
GS95 (d) GS80. 

 

3.1.3.3 Rheological test of hydrogels 



 

42 
 

Oscillatory shear measurements were performed to evaluate the storage and loss modulus of 

hydrogels. The typical moduli of microenvironment are Ebrain=0.1-1KPa, Emuscle=8-17KPa and 

Eosteoid=25-40KPa (16) (Fig 3.1.5). Fig 3.1.6 showed the storage and loss modulus of the 

hydrogel samples in dynamic frequency sweep test. The storage modulus was significantly larger 

than loss modulus and was weakly dependent on frequency over the entire range which revealed 

these materials were typically gelled. G100 showed the lowest storage modulus (819.0±144.0Pa). 

In contrast, the S100 showed the highest storage modulus (46.1±1.4KPa). The storage modulus 

of blended hydrogels GS95 and GS80 had been improved by increasing silk fibroin content, 

reflecting possible increase of the intermolecular bonds and also the presence of higher amounts 

of crystalline β-sheet structures in the higher silk fibroin content hydrogels. The G100, GS95, 

GS80 hydrogel dynamic storage moduli were close to the elastic modulus of brain tissue. 

 

Fig 3.1.5 Characterization of storage and loss modulus of genipin-crosslinked gelatin/silk fibroin hydrogels by 
oscillatory shear measurements during frequency sweep analysis from 0.1Hz to 10Hz. Error bars represent Mean ± 

SEM (N=3). 

 

3.1.3.4 Genipin crosslinking degree and reactive genipin content assay 
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To evaluate the crosslinking degree and reactive genipin content, ninhydrin assay was performed. 

Crosslinking degree is the relative crosslinking efficiency in each kind of sample. The G100, 

GS95, GS80, S100 showed the crosslink degree 70.1±2.1%, 61.3±2.7%, 62.6±2.5% and 

93.7±0.8% respectively (Table 3.1.3). In the hydrogel formation process by genipin crosslinking, 

genipin preferentially reacts with the amino acids lysine and arginine of certain proteins. Gelatin 

contains high percentage of theses amino acids while silk fibroin chains contain a very low 

percentage of these amino acids (154). So the S100 hydrogel formation was a slow process and 

high crosslinking degree was needed to obtain the hydrogel. On the other hand, the G100, GS95, 

GS80 samples which had high gelatin content were able to form hydrogels in shorter time and at 

lower crosslinking degree.  

In the meantime, the reactive genipin content of each crosslinked samples were shown in (Fig 

3.1.6). The G100 (***p<0.001), GS95 (**p<0.01), GS80 (***p<0.001) showed significantly 

higher reactive genipin content than pure S100 which was due to the high percentage of reactive 

sites with genipin in gelatin. Besides, GS95 showed lower reactive genipin content than G100 

(
#
p<0.05) because of the addition of silk fibroin, while GS80 showed similar reactive genipin 

content with G100 (p>0.05). 

Table3.1.3 The crosslinking degree of genipin-crosslinked gelatin/silk fibroin hydrogels 

Sample code G100 GS95 GS80 S100 

Crosslinking degree 
(% ) 

70.1±2.1% 61.3±2.7% 62.6±2.5% 93.7±0.8% 
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Fig 3.1.6 Reactive genipin content assay of Group A gelatin/silk fibroin hydrogels according to the amount of NH2 
groups which have participated the crosslinking reaction with genipin. (**p<0.01, ***p<0.001 correspond to S100, 

#
p<0.05 corresponds to G100). Error bars represent Mean ± SEM (N=3). 

3.1.3.5 Genipin-crosslinked gelatin/silk fibroin hydrogel maintain the viability and proliferation 

of ESCs   

Cell viability was assessed by confocal microscopy using calcein AM/PI staining (Fig 3.1.7A). 

At day 0, cells showed good initial adhesion on all hydrogel substrates as cells on TCP. 

Subsequently cells survived and constantly proliferated on all the hydrogel substrates throughout 

the entire differentiation protocol, with very few dead cells observed in all conditions. In order to 

precisely evaluate the proliferation rate at different time points, cells proliferation was quantified 

by analyzing the DNA content at day 0, 3, 5, 7, 15 (Fig 3.1.7B). At day 0, the cells on all 

hydrogel substrates showed lower DNA content than TCP (
###

p<0.001). This was probably due 

to the fact that the cells started to proliferate at day 0 on TCP but not on the hydrogels, according 

to the observations made by confocal microscopy.  However, cells on S100 showed better 

adhesion (
$$$

p<0.001) than on other hydrogels. At the initial stage from day 0 to day 5, the cells 

on all the hydrogel substrates showed lower proliferation speed and lower DNA content than 

TCP (
###

p<0.001). However, from day 5 to day 7, trends changed as cells on all hydrogels 
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exhibited a significant increase in proliferation (*p<0.05, ***p<0.001). At day 7, there were no 

significant differences (p>0.05) of DNA content between the cells on TCP and on hydrogel 

substrates. Moreover, the GS95 and GS80 showed higher DNA content than S100 (
$
p<0.05). 

From day 7 to day 15, cells on S100 were observed rapidly growing (***p<0.001). At day 15, 

the DNA content of cells cultured on the hydrogel substrates G100, GS95, GS80 showed no 

significant differences with TCP (p>0.05) while that on S100 showed higher DNA content 

(
##

p<0.01).  These results were confirmed by confocal microscopy observations. Therefore, both 

gelatin and silk fibroin were compatible to promote ESCs growth and proliferation. At early 

stages (from day 0 to day 7), the high gelatin content in hydrogel promoted cells proliferation 

compared to silk fibroin. However, the silk fibroin played an important role in long term cell 

proliferation (from day 7 to day 15).  
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Fig3.1.7. (A) The viability of ESCs on gelatin/silk fibroin hydrogel substrates was observed by Live (green)/Dead (red) 
assay with confocal microscopy. Bar length: 100um (B) ESCs proliferation assessed by DNA quantification. Error 
bars represent Mean ± SEM (N=3).(*p<0.05, **p<0.01, ***p<0.001. 

##
p<0.01 

###
p<0.001 correspond to TCP at the 

same time point, 
$
p<0.05, 

$$$
p<0.001 correspond to S100 at the same time point). 
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3.1.3.6 Genipin-crosslinked gelatin/silk fibroin hydrogels inhibit neural ectodermal 

differentiation of ESCs. 

Our research goal was to evaluate whether these genipin-crosslinked gelatin/silk fibroin hydrogel 

substrates could support and guide ESCs neural differentiation by comparison with TCP. To 

evaluate this, ESCs were induced to neural differentiation in KSR supplemented medium on TCP 

and on different hydrogel substrates for 15 days. The morphologies of differentiating cells were 

shown by optical microscopy pictures (Fig 3.1.8A). In this differentiation protocol, mESCs were 

seeded at a very low density, allowing isolated single cell. The single cell started to proliferate to 

form a colony and then the progeny spread around it. At day 7, cells on G100, G95 and G80 

formed colonies and also spread around them as cells on TCP, while the cells proliferated slower 

and just few cells spread around colonies on S100. At day 15, most cells on TCP showed typical 

morphology of differentiated neural cells (Fico et al., 2008). On the contrary, the cells grown on 

the hydrogel surfaces showed no obvious neural morphologies. To characterize the extent of 

neural differentiation, cells were collected at day 15 and RNA was extracted. Quantitative RT-

PCR was performed to analyze different pluripotent and neural lineage gene markers. Oct4 and 

Nanog are crucial transcription factors necessary for efficient maintenance of ESCs pluripotency 

(162, 163). At day 15, though Nanog expression levels in cells on the four hydrogel surfaces 

were similar (p>0.05) to undifferentiated ESCs, Oct4 expression levels greatly decreased 

(
##

p<0.01,
###

p<0.001). These expression profiles indicated that cells on hydrogel substrates and 

TCP were not capable to maintain pluripotency (Fig 3.1.8B). In order to characterize neural 

differentiation, the expression levels of mRNA for the neural precusor marker Nestin, the early 

neuronal marker βIII-tubulin, the late neuronal marker NCAM, and the glial marker GFAP were 

analyzed (Figure 3.1.8C). Cells on TCP showed highest expression levels of these four neural 
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differentiation markers which were consistent with the neural morphologies in the microscopy 

pictures. However, compared to TCP, cells on G100 and S100 showed greatly decreased 

expression levels of these neural markers (*p<0.05, ***p<0.001). Besides, GS95 and GS80 

showed very low expression of neural markers (**p<0.01, ***p<0.001). These results indicated 

that GS95 and GS80 could totally block neural differentiation while G100 and S100 could inhibit 

neural differentiation to a certain extent.  

3.1.3.7 Genipin-crosslinked gelatin/silk fibroin hydrogels GS95 and GS80 enhance epithelial 

ectodermal differentiation of ESCs. 

Since neural ectodermal differentiation was inhibited on these hydrogel substrates, we checked 

the expression of all three germ layer genes in order to evaluate how ESCs differentiated (Fig 

3.1.8D). Surprisingly, compared to both TCP and undifferentiated ESCs, differentiated cells on 

GS95 and GS80 showed significantly higher expression (*p<0.05, 
##

p<0.01) of Keratin18, a 

marker of epithelial ectodermal differentiation. Furthermore, cells on G100, GS95, GS80 

hydrogel substrates showed similar expression levels of Brachyury (mesodermal marker), 

GATA4 (meso-endodermal marker) and Sox17 (endodermal marker) compared to 

undifferentiated ESCs (p>0.05). However, cells on S100 exhibited higher expression of GATA4 

and Sox17 compared to both TCP and undifferentiated ESCs (*p<0.05, **p<0.01, 
##

p<0.01, 

###
p<0.001). These results indicated that cells on S100 underwent uncertain differentiation events, 

giving rise to fates from all three germ layers. However, GS95 and GS80 could guide ESCs to 

epithelial ectodermal differentiation instead of neural ectodermal differentiation.  
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Fig 3.1.8. Optical Microscopy pictures and QRT-PCR of cells on TCP, G100, GS95, GS80, S100 and of 

undifferentiated ESCs (ES) at day 15: (A) Optical Microscopy pictures of cell morphologies at day7 and day15 (B) 

Expression levels of pluripotent gene markers of ESCs: Oct4, Nanog. (C) Expression levels of neural lineage markers: 

Nestin, βIII-tubulin, NCAM, GFAP. (D) Expression levels of three germ layer genes markers: Keratin 18, Brachyury, 

GATA4, Sox17. (*p<0.05, **p<0.01, ***p<0.001 correspond to TCP, 
#
p<0.05, 

##
p<0.01, 

###
p<0.001 corresponds to ES, 

$
P<0.05, 

$$
p<0.01 correspond to S100). Error bars represent Mean ± SEM (N=3). 
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3.1.4 Discussion 

Stem cells give promising hope in the tissue engineering and regenerative medicine field because 

of their unlimited self-renewal capabilities and multilineage differentiation potential. However, 

one of the major concerns of stem cells is how to control their differentiation fates (35). In vivo, 

differentiating cells are embedded in ECM which not only provides structure support but also 

gives a dynamic environment  to modulate their proliferation and differentiation (164). Therefore, 

to overcome this limitation when differentiating stem cells in vitro, biomaterials are designed to 

construct an artificial matrix in order to guide stem cells differentiation (143). However so far, 

no efficient general principles are known to predict how stem cells behave on a given biomaterial 

(165). Therefore, some stem cell researches focused on reconstructing 2D and 3D differentiation 

matrices prepared from natural and synthetic materials to study stem cells differentiation in 

vitro(143). In this study, mESCs were used as a model to study particularly how hydrogels 

influence their behaviors. We prepared different hydrogel substrates composed of gelatin and 

silk fibroin crosslinked by genipin to evaluate their influences on the proliferation and neural 

differentiation of mESCs. Gelatin, the denatured collagen, was chosen as main component of 

hydrogel because collagen is the abundant component of all ECM in animals. Moreover, gelatin 

is a commonly referenced addition for tissue engineering of brain and spinal cord to improve the 

biocompatibility and cell attachment (166).  To increase the scaffold bioactive interaction with 

cells, silk fibroin was conjugated into the hydrogel (150, 167). To investigate the influence of 

chemical compositions and mechanical properties towards neural differentiation, we prepared 

different hydrogels with different ratios of gelatin and silk fibroin crosslinked by genipin. Since 

genipin preferentially reacts with gelatin, the gelation time of gelatin is much faster than silk 

fibroin. When the silk fibroin concentration was higher than 40% in the hydrogel, we observed 
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the phase separation under the microscopy. In order to reduce phase separation, we kept silk 

fibroin at a low content in the blended samples GS95 and GS80. By adding the silk fibroin to 

gelatin, the hydrogel morphologies slightly changed and the storage modulus was improved. In 

the crosslinking degree and reactive genipin content test, the GS95 showed lower reactive 

genipin content than G100, which was likely due to the molecular interaction between gelatin 

and silk fibroin. Through this interaction, the silk fibroin could hide some sites of gelatin to react 

with genipin. While in the GS80, some silk fibroin probably formed aggregates inside gelatin 

macromers during sol-gel transition, resulting from the phase separation. However, this phase 

separation was not visible in the microscopy. Therefore, there were comparable reactive sites 

with genipin compared to G100 which resulted in the similar reactive genipin content. When 

used to culture mESCs, the pure and blended gelatin/silk fibroin hydrogels were shown to 

maintain their viability and proliferation. In the early stage (from day 0 to day 7) of the 

differentiation process, the cells on G100, GS95 and GS80 showed higher proliferation speed 

and better cell spreading than S100. This was probably due to the larger pore size of G100, GS85 

and GS95 that could increase the cell proliferation and spread. Moreover, silk fibroin has been 

reported to play important roles in long term cells proliferation (168). In addition, ESCs seeded 

on GS95 and GS80 hydrogel substrates displayed unexpected epithelial ectodermal 

differentiation fate instead of the neural ectodermal fate that cells showed on TCP using the same 

differentiation conditions (157). Although the storage moduli of G100, GS95 and GS80 were 

close to elastic modulus of brain tissue, neural differentiation was blocked on the hydrogels. 

However, an interesting and unexpected connection was that the relatively high reactive genipin 

content in GS95 and GS80 resulted in a more efficient epithelial differentiation than cells grown 
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on S100, which had lower reactive genipin content. These results suggest that the crosslinker 

genipin could be involved in the observed epithelial ectodermal differentiation. 

In vertebrates, inhibition of the BMPs signaling pathway in the ectoderm is the hallmark of 

neural-fate acquisition, and forms the basis of the default model of neural induction. The default 

model proposes that neural induction happens as a result of the inhibition of BMPs signaling in 

the embryonic ectoderm (169). Kawasaki demonstrated that BMPs signaling was sufficient to 

block neurogenesis and to promote epithelial differentiation of mESCs (170). Interestingly, some 

papers reported that genipin was able to induce c-Jun NH2-Terminal Kinase (JNK) expression 

(171). JNK is responsible for the phosphorylation of a variety of proteins including downstream 

kinases and transcription factors such as c-Jun. Other studies showed that in Xenopus embryos c-

Jun could strongly activate BMP-4 transcription (172). 

Consequently, due to the higher reactive genipin content, GS95 and GS80 may activate the 

BMP-4 signaling pathway in mESCs, resulting in increased epithelial ectodermal differentiation 

as compared to S100. Moreover, although the GS95 and GS80 had lower reactive genipin 

content than G100, cells on GS95 and GS80 showed higher k18 (epithelial differentiation marker) 

expression and further inhibited expression of neural differentiation markers. This could result 

from the addition of silk fibroin in GS95 and GS80 increases cell interaction with the hydrogel. 

However, on the sonication-induced hydrogel surfaces without genipin, the cells went to the 

neural differentiation. Based on these data, we hypothesize that our genipin-crosslinked 

hydrogels could increase the epithelial differentiation of mESCs to an extent depending on the 

reactive genipin content and hydrogel composition. Even though the mechanical properties are 

usually important in influencing stem cells differentiation, here we suggest that the crosslinker 

genipin and the combination of gelatin and silk fibroin in hydrogels could affect stem cells 
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differentiation, shifting their fate from neural ectodermal to epithelial ectodermal without the 

participation of additional growth factors. This hypothesis needs to be further investigated. 

However, it has some implications for designing scaffold to control the ectodermal 

differentiation fate of stem cells. 

3.1.5 Conclusion 

In this study, hydrogel substrates were prepared by gelatin and silk fibroin crosslinked with 

genipin. By adding the silk fibroin to the gelatin solution, the hydrogel pore size slightly 

decreased and the storage modulus increased. In addition, the crosslinking degree and reactive 

genipin content were altered. Although S100 showed higher crosslinking degree, the G100, 

GS95 and GS80 had higher reactive genipin content than S100. Furthermore, these gelatin/silk 

fibroin hydrogels could maintain ESCs viability and proliferation. Gelatin and silk fibroin played 

important roles in short term and long term proliferation during differentiation process 

respectively. By culturing ESCs on these hydrogel substrates in KSR supplemented medium for 

15 days to induce neural differentiation, we found that the blended gelatin/silk fibroins GS95 and 

GS80 were able to change ESCs differentiation fate from neural ectodermal to epithelial 

ectodermal fate compared to TCP. 
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3.2 Part II: Silk fibroin/gelatin hydrogel substrates by physical 

sonication crosslinking 

3.2.1 Introduction 

The proliferation and differentiation of ESCs could be modulated by the culture substrates as we 

demonstrated in Part I. The structures and the chemical compositions of the hydrogel substrates 

both contribute to the proliferation and differentiation of ESCs. Interestingly, the genipin is 

suggested as a possible reason to inhibit the neural differentiation of ESC. Since our initial goal 

is to explore the hydrogel substrates for supporting the neural differentiation of ESCs. Therefore, 

the genipin crosslinking will be out of consideration in the next step.  

Besides chemical crosslinking by genipin, silk fibroin hydrogels can also be produced by 

physical crosslinking like decreasing the PH (103). However, this gelation is a relatively long 

process for the future 3D encapsulating system with therapeutic cells for brain tissue 

regeneration. Recently, the novel technique has been developed to induce silk fibroin gelation by 

sonication. The sonication is a time controllable process from minutes to hours by changing the 

sonication parameters, including power output and time, as well as the silk fibroin concentration. 

These advantages could allow the cells addition before the gelation of silk fibroin (129). 

Moreover, other different natural polymers could be added to blend with silk fibroin and 

entrapped in the hydrogel (168). 

In this study, silk fibroin hydrogel substrates were produced by sonication and physically 

blending with gelatin at different ratios. These hydrogels were characterized by FE-SEM, FTIR-

ATR and rheological test. Then mESCs were seeded on these sonication-induced hydrogel 

substrates and kept in KSR supplemented medium for 15 days as described in Part I. The 
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immunocytochemistry and QRT-PCR were performed to characterize the neural differentiation 

of  mESCs at Day 15. 

3.2.2 Materials and methods 

3.2.2.1 Preparation of regenerated silk fibroin solution 

As described in Part I. 

3.2.2.2 Preparation of sonication induced silk fibroin/gelatin hydrogels  

For sonication-induced hydrogel group, it was prepared as a total solute concentration at 2%. The 

final solution was mixed in a mass ratio of silk fibroin: gelatin= 100:0, 95:5, 80:20 which named 

S100, SG95 and SG80 (Table 3.2.1). Then these solutions were sonicated at 20% amplitude for 

20s by using sonicator Hiel scher UP400S (400W, 24kHz). The appearances of the hydrogels 

were shown in Fig 3.2.1. 

Table3.2.1 The composition and crosslinking parameter of silk fibroin/gelatin hydrogels  

Sample 
code 

Silk 
fibroin 

Gelatin 

Total 
solute   

concen-
tration 

Amplitude Sonication time 

S100 100 0 2% 20% 20s 
SG95 95 5 2% 20% 20s 
SG80 80 20 2% 20% 20s 
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Fig 3.2.1 The appearance of the sonication induced silk fibroin/gelatin hydrogels 

3.2.2.3 Field Emission Scanning Electron Microscope (FE-SEM) characterization 

As described in Part I. 

3.2.2.4 Fourier Transform Infrared - Attenuate Total Reflectance (FTIR-ATR) spectroscopy 

analysis 

The lyophilized crosslinked S100, SG95 and SG80 were analyzed in FTIR-ATR as described in 

Part I. 

3.2.2.5 Rheological characterization of hydrogels 

As described in Part I. 

3.2.2.6 Embryonic stem cell culture and in vitro neuronal differentiation 

As described in Part I. 

3.2.2.7 Immunocytochemistry  

Immunocytochemistry was performed to analyze the neural differentiation of mESCs at day 15. 

The cells/hydrogel were rinsed in PBS and fixed in 10% formalin for one hour at room 

temperature. After washing in PBS at agitation for 20 minutes, the cells/hydrogel was incubated 

in blocking solution (5%BSA + 0.1%TritonX-100 in PBS) for 2 hours. Then they were reacted 

with primary antibody for 2 hours at room temperature and overnight at 4
◦
C. After washing in 
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PBS for 45 minutes, they were reacted with secondary antibody for one hour and DAPI stainning 

for 20 mins. Primary antibodies are rabbit anti-βIII-tublin (Covance) as a neuron marker (1:1000) 

and mouse anti-MAP2 (Abcam) as a mature neuron marker (1:500). Secondary antibodies are 

Alexa Fluor 488 goat anti-mouse (Invitrogen) and Alexa Fluor 594 goat anti-rabbit (1:1000) 

(Invitrogen). 

3.2.2.8   RNA isolation and QRT-PCR 

As described in Part I. 

3.1.2.9   Statistics 

All statistics were performed using Graphpad Prism 5. In QRT-PCR, ddCt method was used to 

analyze the data. Gene expression of cells on TCP (control) was set as 1 (no error bars). Other 

target gene expressions were calculated by the fold change related to the control. One-way 

ANOVA with Tukey’s post hoc analysis was performed for gene expression analysis.   

 

3.2.3 Results 

3.2.3.1 Hydrogel morphology characterization by FE-SEM 

The sonication-induced S100 (Fig 3.2.2a,b) formed typically lamellar structures with some 

interconnected fibers in FE-SEM. The distance between the lamellar structures were around 10-

20µm. By adding the gelatin in the silk fibroin, even with the low gelatin content at SG95 (Fig 

3.2.2c,d), the typical lamellar structure decreased and more fibrous structures occurred. With the 

increasing gelatin content in SG80 (Fig 3.2.2e,f), it formed more open porous structures instead 

of lamellar structures. 
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Fig 3.2.2 Morphologies of freeze-dried sonication-induced hydrogel scaffolds by FE-SEM. (a,b) S100 (c,d) SG95 (e,f) 
SG80 

 

3.2.3.2 Hydrogel protein conformation analysis by FTIR-ATR 

After sonication, the pure silk fibroin S100 showed typical β-sheet formation (bands at 1621cm
−1

 

and 1514 cm
−1

) (Fig 3.2.3a). Also SG95 (Fig 3.2.3b) and SG80 (Fig 3.2.3c) showed β-sheet 

formation (bands at 1621cm
−1

 and 1622cm
-1

). In addition, the SG95 and SG80 changed slightly 

at the amide II band compare with S100, because of α-helix structure of the low content of 

gelatin. 
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Fig 3.2.3 FTIR-ATR spectra of sonication-induced silk fibroin/gelatin hydrogels: (a) S100 (b) SG95 (c) SG80. 

 

3.2.3.3 Rheological characterization of hydrogels  

Fig 3.2.4 showed the storage and loss modulus of these three hydrogels in dynamic frequency 

sweep test. The storage modulus was significantly larger than loss modulus and was weakly 

dependent on frequency over the entire range which revealed these materials were typically 

gelled. The storage modulus of S100, SG95 and SG80 were 4245.0±178.7Pa, 3909.0±109.8Pa 

and 3182.0±63.1Pa respectively. The S100 had the highest storage modulus because of the 

crystalline β-sheet structures. However, the addition of gelatin reduced the storage modulus of 

blending hydrogels. 

 
Figure 3.2.4. Characterization of storage and loss modulus of sonication-induced silk fibroin/gelatin hydrogels by 

oscillatory shear measurements during frequency sweep analysis from 0.1Hz to 10Hz. Error bars represent Mean ± 
SEM (N=3). 
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3.2.3.4 Immunocytochemistry of cells on sonication-induced hydrogels  

On the sonication-induced silk fibroin/gelatin hydrogel surfaces, the cells also started to form 

colonies from single cells. Under optical microscopy, we observed the progeny from the colonies 

at day 9. Then at day15, in contrast to genipin-crosslinked gelatin/silk fibroin hydrogel substrates, 

we found typical morphologies of differentiated neural cells on the three hydrogel surfaces (Fig 

3.2.5). In order to demonstrate the neural differentiation on these hydrogel substrates, we stained 

the cells on hydrogel surfaces and on TCP by neural markers βIII-tubulin and MAP2 at Day 15. 

Fig 3.2.6 showed that cells expressed both βIII-tubulin and MAP2 on these hydrogel surfaces 

and TCP. The cells differentiated not only in the colonies center, but also formed long 

projections around the colonies. This further indicated the neural differentiation of cells on 

sonication-induced hydrogel substrates. 

 

Fig3.2.5 Cell morphologies on sonication-induced hydrogel substrates under optical microscopy at Day 15. 
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Fig3.2.6 Immunocytochemistry analysis on sonication-induced hydrogel substrates at Day 15 

 

3.2.3.5 Sonication-induced silk fibroin/gelatin hydrogel support the neural differentiation of 

mESCs  

Quantitative RT-PCR was performed to analyze different pluripotent and neural lineage gene 

markers (Fig 3.2.7). The cells on hydrogel surfaces showed similar Oct 4 and Nanog expression 

level as cells on TCP (P>0.05). However, compared to the undifferentiated ESC, they had 

significantly decreased Oct 4 and Nanog expression which indicated that these cells lost their 

pluripotency (
#
p<0.05, 

##
p<0.01). In the meantime, they also showed the comparable expression 

levels of the neural lineage marker Nestin, βIII-tubulin, NCAM (p>0.05) and decreased levels of 

GFAP (*p<0.05) compared to TCP which indicated these sonication-induced hydrogel substrates 

supported the neuronal differentiation of ESCs as TCP but decreased astrocytes differentiation. 
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Fig3.2.7 QRT-PCR of mESCs on TCP and sonication induced hydrogel substrates S100, SG95, SG80 and on 

undifferentiated ESCs (ES) at day 15: (A) Expression levels of pluripotent gene markers of ESCs: Oct4, Nanog. (B) 

Expression levels of neural lineage markers: Nestin, βIII-tubulin, NCAM, GFAP. (*p<0.05, **p<0.01, ***p<0.001 

correspond to TCP, 
#
p<0.05, 

##
p<0.01, 

###
p<0.001 correspond to ES) Error bars represent Mean ± SEM (N=3). 

 

3.2.4 Discussion 

In the work before (part I), we found that genipin crosslinked gelatin/silk fibroin hydrogel 

substrates guide the ESCs differentiation into epithelial lineage instead of neural lineage. As we 

discussed, the genipin is possible to be one of the main issue involved in this phenomenon. 

Therefore, in part II work, the sonication physical crosslinking was used to produce the silk 

fibroin hydrogels. We chose 2% silk fibroin as a starting concentration because it had been 

demonstrated that it was a appropriate concentration for the cell adhesion and proliferation (103). 

In additon, the elastic moduli of 2% silk fibroin were close to the brain tissue although not 
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precisely in the range of brain tissue elastic moduli. Furthermore, the 2% was the lowest 

concentration which is still possible to blend with other materials and entrap them in the gelation 

process after sonication. The pure gelatin hydrogel was not used in the part of work because the 

gelatin can not be crosslinked and gelated by sonication. When blending gelatin with silk fibroin, 

gelatin should be kept at a low content (less than 20%) to be entrapped in 2% Silk fibroin. The 

gelatin chains were possibly trapped by the β-sheet crystal domains of silk fibroin, forming non-

crystalline regions together with the crystallized regions of the silk fibroin chains which forming 

the homogeneous hydrogel (168). However, when the gelatin was more than 20%, we observed 

the precipitation in the silk fibroin which probably due to that the β-sheet crystal domains were 

not enough to entrap the gelatin chains and to form the stable hydrogel.  

After seeding mESCs on the sonication-induced hydrogel surfaces, we observed the opposite 

behavior of cells on genipin-crosslinked hydrogel substrates. The cells showed typical neuron 

morphologies with long projections under the optical microscopy. In the meantime, the presence 

of neurons was demonstrated by the staining of βIII-tublin and MAP-2 on the sonication-induced 

hydrogel substrate. QRT-PCR was performed to evaluate the gene expression related to neural 

differentiation compared to TCP. The cells on the three hydrogels showed comparable 

pluripotent gene expression (Oct 4 and Nanog) with TCP. In addition, they also showed the 

comparable expression levels of Nestin, βIII-tublin and NCAM compared to TCP which 

indicated that these hydrogel substrates supported the neuron differentiation as TCP. 

Furthermore, the cells on these hydrogels all showed significantly decreased GFAP expression 

which indicated the decreased astrocytes differentiation. This was possibly because the harder 

substrates promote the glia cells differentiation (173).  However, there were no significant 

differences between the pure silk fibroin S100 with SG95 and SG80 which were physically 
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blended with gelatin. One possible reason is that the gelatin could not interact with mESCs to 

increase the neural differentiation, while another reason could be due to the gelatin releasing 

from the silk fibroin in the medium during culturing process. 

Consequently, these findings also supported our hypothesis that genipin could be possibly 

involved in guiding ESCs to epithelial differentiation. Sonication induced silk fibroin hydrogels 

could provide an interesting model to induce neural differentiation of ESCs. However, how to 

increase the neuron differentiation is still need to be further investigated. 

3.2.5 Conclusion 

Sonication-induced silk fibroin hydrogel were produced and physically blended with gelatin 

keeping at a low content. Then addition of gelatin could increase the porous structure and 

decrease the elastic moduli of silk fibroin hydrogel. By seeding ESCs on these hydrogel 

substrates, we found that ESCs went to neural differentiation as cells cultured on TCP. However, 

these hydrogel substrates have no significant difference compared to TCP in promoting neuron 

differentiation, but decreasing the astrocytes differentiation of mESC. 
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Chapter 4: Chemical modification of sonication 

induced silk fibroin hydrogels by IKVAV peptide * 

*This part of work is based on the manuscript in preparation: Sun W, Migliaresi C, Quattrone A, 

Casarosa S, Motta A. Sonication induced silk fibroin hydrogel for brain tissue engineering. 

4.1 Introduction 

Damages to adult brain tissue can be caused by physical injuries like internal stroke or traumatic 

brain injury (TBI), resulting in death of neurons, axon disruptions and glial scar formation (174-

176). However, the adult brain has the limited regenerative ability to replace the lost neurons and 

restore the tissue function in the damaged part. Neurons have a limited ability to proliferate and 

supplement the lost ones in the damaged environment that lacks neurotrophins and contains 

neuron growth inhibitors. In parallel, glial scars could further inhibit axons regeneration as a 

mechanical barrier or by producing inhibitory molecules in the injury part (175). Traditional 

treatments for these injuries rely on neuroprotective drugs to reduce further degeneration, though 

without tissue regeneration (177). Therefore, replacing the lost neurons and restoring functional 

tissues are vital to regenerate the damaged brain tissue. In this regard, neural stem cells (NSCs) 

are promising cell resources to replace the lost neurons and glial cells because they have the self-

renewal capacity and ability to differentiate into different neural cells in the adult central nervous 

system (52). Endogenous NSCs can be found the hippocampus and the subventricular zone (SVZ) 

in the adult brain (51). However, self-repair from the endogenous NSCs is very limited (178). In 

the early reports of cell transplantation alone, cells viability was quite low after a few days after 

transplantation and the cells preferentially differentiated into glial cells. Therefore, how to 

increase cell survival and neuronal differentiation in the damaged inhibitory environment is still 

an obstacle. In brain tissue engineering, creating bioactive scaffolds combined with NSCs for 

transplantation therapy is an promising approach to regenerate tissue lost after brain injuries (58). 
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Hydrogels are attractive matrices to replace the damaged environment in stem cells 

transplantation for brain tissue engineering because of their mechanical properties comparable 

with brain tissue (46, 166). Especially injectable hydrogels, which can avoid further damage 

during the surgery procedures (179). Many hydrogel based scaffolds for brain tissue engineering 

have been reported as cell carriers or growth factor delivery vehicles (58).  For this purpose, cell 

encapsulation in a hydrogel scaffold is believed to be a promising therapeutic approach (23). 

Encapsulation involves isolating a cell mass physically from an outside environment, aiming at 

maintaining normal cellular physiology within a desired permeability barrier (180). Then the 

encapsulated cells in the hydrogel scaffold can be cultured in vitro or transplanted in vivo.  

In this study we explored the characteristics of a silk fibroin-based injectable hydrogel 

encapsulated with human neural stem cells (hNSC) as a potential strategy for brain tissue 

engineering. Silk fibroin is a natural fibrous polymer with low antigenicity and low inflammatory 

response (97). It has been used in many stem cells-based tissue engineering approaches, such as 

in bone and cartilage tissue regeneration (129, 181). Sonication is an efficient and time 

controllable way to gelate silk fibroin, which is a promising way to produce injectable hydrogels. 

Sonication initiates the formation of β-sheets structure in silk fibroin by alterations in 

hydrophobic hydration, thus accelerating the formation of physical crosslinks responsible for gel 

stabilization (129). By changing silk fibroin concentration and sonication parameters, such as 

power output and time, the gelation time could be controlled from minutes to hours. This fast 

sol-gel process allowed the addition of cells post-sonication as well as the injection into the 

target tissue before gelation. 

In order to improve the bioactivity of silk fibroin with NSCs, silk fibroin was chemically 

immobilized with the laminin-derived peptide isoleucine-lysine-valine-alanine-valine (IKVAV). 
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Laminin is one of the important components of ECM and a basement membrane glycoprotein 

(182) which promotes neural stem cells growth by coating or in the medium (183), as well as 

promotes neuron survival and neurite outgrowth (184). IKVAV, the peptide derived from 

laminin, has been proven to be the active site of cell adhesion (185) and neurite outgrowth (186). 

Self-assembling hydrogels modified with IKVAV peptide have shown to improve the survival of 

encapsulated neural stem cells/embryonic stem cells survival and neuron differentiation (58) 

(187). Modification of silk fibroin with a cell-binding peptide has been reported (118, 188). RGD 

sequences covalently bound to silk fibroin were shown suitable in bone tissue engineering (118). 

However, to our knowledge, there are no reports about silk fibroin hydrogels potential 

application for brain tissue engineering, or for the IKVAV peptide covalently conjugated to silk 

fibroin hydrogels. 

The purpose of this study is to evaluate silk-fibroin based hydrogels as potential 3D hydrogel 

scaffolds for brain tissue engineering and to understand the effects of chemical immobilization of 

IKVAV peptide for hNSCs viability and neuronal differentiation. First, we chose the 

concentration of silk fibroin according to the elastic moduli of brain tissue. The sonication 

induced silk fibroin hydrogels, unmodified and chemically modified with IKVAV peptide were 

prepared to encapsulate the hNSCs and to evaluate the cells viability and neural differentiation. 

4.2 Materials and Method 

4.2.1 Silk fibroin preparation and chemical modification 

The unmodified silk fibroin solution was obtained as described in chapter 3 part I. For chemical 

modification, the silk fibroin was dissolved in 9.3M LiBr (dissolving concentration at 20%) at 

65
◦
C for 4 hours and was dialyzed in distilled water for one day. Then they were transfer into 
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MES buffer (0.1M MES, 0.5M NaCl, PH=6) and dialyzed for another day. Then silk fibroin-

MES concentration was taken out and the concentration was measured around 5-6%. To reactive 

the carboxyl groups in silk fibroin, silk fibroin-MES solution was diluted to 3%. 0.4g EDC and 

0.25g NHS per g silk fibroin were added into the 3% silk fibroin-MES solution. After 20mins 

reaction in mild stirring, 3.5ul β-mercaptoethanol per 1mg EDC were used to quench the EDC. 

Then 2mg IKVAV peptide per g of dry silk fibroin were added and mixed for two and half hour. 

10mM hydroxylamine was used to stop the peptide conjugation reaction. Then the solution were 

dialysis for another one day against distilled water (188) (Fig 4.1). The final solution was around 

1.5%. Unmodified silk fibroin was prepared in the same manner but without the addition of 

peptide. 

 

Fig 4.1 Silk fibroin modification with IKVAV peptide 

4.2.2 Rheological characterization of hydrogels 

As described in chapter 1. 

4.2.3 Filed Emission Scanning Electron Microscope (FE-SEM) characterization 

As described in chapter 1. 
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4.2.4 Fourier Transform Infrared - Attenuate Total Reflectance (FTIR-ATR) spectroscopy 

analysis 

As described in chapter 1. 

4.2.5Human neural stem cells culture and neural differentiation 

Human neural stem cells were obtained from Gibco/Life Technologies as a commercially 

available product (N7800-200). The cells were derived from NIH approved H9 (WA09) human 

embryonic stem cells. The cells were expanded with cell-start coating plates in complete growth 

medium, which contained DMEM/F12 medium supplemented with 2% StemPro Neural 

Supplement and 2mM GlutaMAX, bFGF (20 ng/ml), EGF (20 ng/ml). After two days culture in 

complete growth medium, neural differentiation medium (Neurobasal medium supplement with 

2% B27 serum-free supplement) was placed for 7 days and changed every two days. 

4.2.6 Sonication induced silk fibroin gelation and cells encapsulation 

The 1% unmodified, IKVAV-modified silk fibroin solutions were supplemented with 

DMEM/F12 powder and sodium bicarbonate at a concentration of 0.0135 g/mL and 0.0037 g/mL, 

respectively. Then all the solutions were filtered by 0.22um filter. 0.5ml of each solution was 

loaded in 1.5ml eppendorf tube and was sonicated with the Hielscher UP400S (400W, 24kHz) 

(Fig 4.2). Each solution was sonicated at 50% amplitude for 15 seconds. After five minutes of 

sonication, the solutions were mixed with hNSC pellet (4x10
6
cells/ml hydrogel). Then 50ul of 

each sample were aliquoted to one well of 96 well plates and gelated in 37°C for 1 hour. After 

gelation, 200ul complete growth medium were added in each well. After two days, the medium 

was changed to neural differentiation medium at day 0 and cells were kept differentiating for 7 

days by changing medium every two days. 
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Fig 4.2 Sonicator Hielscher UP400S (400W, 24kHz). 

4.2.7 Cell viability assay 

The viability of the hNSCs encapsulated in hydrogels was investigated by Live/Dead assay. Live 

and dead cells were stained by calcein AM and propidium iodide (PI) respectively. 

Cells/hydrogel were washed with PBS and then were incubated in calcein AM/PBS (2µmol/ml) 

at 37
◦
C for 30mins. Then cells were washed with PBS three times and were stained by PI/PBS 

(20ng/ml) for 5mins at 37
◦
C. After two more washes in PBS, they were observed by confocal 

microscopy (Nikon Eclipse Ti-E).  

4.2.8 Cell proliferation 

The proliferation of hNSCs in hydrogels was assessed by Alamar Blue assay on day 0, 3 and 7 

after encapsulation according to the manufacturer’s instructions. The assay was performed in 96-

well plates. 50ul of cells/hydrogel were added in each well with triplicates of each sample. Each 

well was incubated with 200ul 10% Alamar Blue reagent in culture medium for 4 hours in 

humidified, 95% air/5% CO2 atmosphere at 37°C. At the end of incubation, 100ul of the 

supernatant were then transferred to a 96-well plate and fluorescence intensity was determined 
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with a microplate reader (Tecan Infinite M200) (excitation/emission: 565 nm/595 nm). The same 

media incubated with hydrogel without cells were used as controls and their fluorescence value 

was subtracted from corresponding hydrogels encapsulated with cells. 

4.2.9 Immunocytochemistry analysis 

Immunocytochemistry was performed to analyze the neural differentiation of hNSCs at day 0 

and day 7. Primary antibodies used are mouse anti-Nestin (Abcam) as a neural precusor marker 

(1:200), rabbit anti-βIII-tublin (Covance) as a neuronal marker(1:1000), mouse anti-MAP2 

(Abcam) as a mature neuronal marker (1:500) and rabbit anti-GFAP (Abcam) as an astrocyte 

marker (1:500). Secondary antibodies used are Alexa Fluor 488 goat anti-mouse and Alexa Fluor 

594 goat anti-rabbit (Invitrogen) (1:1000). 

4.2.10 Quantification of neuron percentage and neurite outgrowth length 

Nikon Eclipse Ti-E confocal microscopy was used to capture fluorescence images. The neuron 

percentage and neurite length of these images were quantified by Columbus system 

(PerkinElmer). At least three independent pictures were taken from three different samples. 

Quantification of neurons was calculated by counting βIII-tublin positive cells and MAP-2 

positive cells and divided by DAPI-stained nuclei number. Neurite length was also normalized 

by neurons number.  

4.2.11 Statistics 

Statistics were performed using Graphpad Prism 5. In Alamar Blue assay, one-way ANOVA 

with Tukey’s post hoc analysis and two-way ANOVA with Bonferroni post hoc test were 
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performed. In the quantification of neuron percentage and neurite outgrowth, t-test was 

performed. 

4.3 Results 

4.3.1 Rheology of silk fibroin hydrogel unmodified and IKVAV-modified 

The stiffness of the silk fibroin hydrogels was characterized by the oscillatory shear 

measurements. Fig 4.3 shows the storage and loss modulus of dynamic frequency sweep tests of 

silk fibroin hydrogels unmodified and modified with IKVAV peptide. The storage modulus was 

weekly dependent on the frequency and higher than loss modulus significantly which indicated 

the formation of silk fibroin gel after sonication crosslinking. The storage modulus of IKVAV-

modified silk fibroin hydrogel (2902±96Pa) was higher than the unmodified silk fibroin hydrogel 

(1366±37Pa). In the two hydrogels, the elastic moduli of unmodified silk fibroin hydrogel were 

closer to the range of brain tissue elastic moduli (100–1000 Pa) (189). 

Fig4.3 Characterization of storage and loss modulus of ummodified and IKVAV-modifed silk fibroin hydrogel by 
oscillatory shear measurements during frequency sweep analysis from 0.1Hz to 10Hz. Error bars represent Mean ± 

SEM (N=3). 

 

4.3.2 Hydrogel morphology characterization by FE-SEM 
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The hydrogel internal structure morphologies were characterized by FE-SEM (Fig 4.4). 

Unmodified silk fibroin hydrogel formed flake-like structures with some holes inside. However, 

after peptide conjugation, the modified silk fibroin hydrogels formed an interconnected porous 

structure with the pore size ranging from 10um to 20um. 

 

Fig4.4 Morphologies of freeze-dried hydrogels observed by FE-SEM. (a,b) unmodified (c,d) IKVAV-modified silk 
fibroin hydrogel. Each sample was shown in 10µm and 2µm scales respectively. 

 

4.3.3 Hydrogel protein conformation analysis by FTIR-ATR 

FTIR-ATR was performed to monitor the protein conformation changes of the unmodified and 

IKVAV-modified hydrogels before and after sonication crosslinking.  Fig4.5 shows the FTIR 
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spectra in the special range of 1800-1000 cm
-1

. According to the previous study, the absorption 

bands observed for silk fibroin at 1655±5 cm
-1

 (amide I), 1540±5 cm
-1

 (amide II) and 1235± 5 

cm
-1

 (amide III) are assigned to the random coil structure and the absorption bands at 1625±5 

cm
−1

 (amide I), 1525±5 cm
−1

 (amide II) and 1265±5 cm
−1

 (amide III) are assigned to 

characteristic of β-sheet structure (103, 190). Before crosslinking, the unmodified and IKVAV-

modified silk fibroin showed bands at 1640-1650 cm
-1

 and 1230-1240 cm
-1

 region, which 

indicated the presence of a random coil or intermediate structure (103).  However, the amide II 

bands at 1510-1520 cm
-1

 might be due to the lyophilization process (127). After sonication 

crosslinking, the bands at amide I and amide II were shifted to the 1625±5 cm
-1

, 1525±5 cm
-1

 

range which indicated the characteristic of β-sheet structure. Furthermore, the amide III bands of  

both crosslinked samples at 1233 cm
-1

  and 1272 cm
-1

 also indicated the β-sheet structure (103). 

 

Fig 4.5 FT-IR spectra of unmodified and IKVAV-modified silk fibroin hydrogel before (A) and after (B) sonication 
crosslinking. 

 

4.3.4 Cell viability assay  

The viability of cells encapsulated in the hydrogels was assessed by confocal microscopy with 

Calcium AM/PI staining at day 0 and day 7 (Fig 4.6). After encapsulation, most of hNSCs 

cultured in complete medium for two days were viable in both hydrogels at day 0. At day 7, 
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some single cells grew to aggregates and projections from cells were observed. Cells 

encapsulated in both hydrogels showed increased cell death at day 7 compared to day 0. In the 

unmodified silk fibroin hydrogels, a large amount of the cells were dead. However, the IKVAV-

modified hydrogel showed higher cell viability and better distribution in comparison to 

unmodified silk fibroin. 

 

Fig4.6 The viability of hNSCs encapsulated in unmodified and IKVAV-modified silk fibroin hydrogels analyzed by Live 
(green)/Dead (red) assay with confocal microscopy at day 0 and day 7. Bar length: 100um 

 

4.3.5 Cell proliferation assay 

Alamar Blue assay was performed to test cells proliferation during the neural differentiation 

process. In Fig 4.7, the resulting fluorescence is proportional to the number of viable cells in the 

sample, thus proliferation of hNSCs could be assessed. At day 0, the IKVAV-modified group 
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showed higher fluorescence intensity (**p<0.01) which indicates that from day -2 to day 0, the 

cells in IKVAV-modified hydrogels proliferated faster than in the unmodified hydrogels. From 

day 0 to day 3 and from day 3 to day 7, the cells in both hydrogel groups showed significant cell 

death (***p<0.001,
###

p<0.001, 
$$$

p<0.001). However, the cells in IKVAV-modified silk fibroin 

hydrogels showed higher fluorescence intensity at each time point (**p<0.01, ***p<0.001) 

which indicates that IKVAV-modified silk fibroin hydrogels could increase the proliferation of 

cells in the differentiation process compared to the unmodified silk fibroin hydrogels. 

 

Fig 4.7 Cell proliferation of hNSCs in unmodified and IKVAV-modified silk fibroin hydrogels at different time points 
analyzed by Alamar Blue assay (*p<0.05, **p<0.01, ***p<0.001. ###p<0.001 correspond to unmodified silk fibroin at 

day 0, $$$p<0.001 correspond to IKVAV-modified silk fibroin at day 0). 

. 

4.3.6 Immunocytochemistry for neuron percentage and neurite length quantification. 

Immunocytochemistry was performed to characterize the differentiated cells in the 

differentiation process at day 0 and day 7 (Fig 4.8). At day 0, cells showed positive staining of 
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nestin, which indicated their undifferentiated state after two days in culture in the self-renewal 

medium. After one week of differentiation culture, the cells were tested with Nestin, βIII-tublin, 

MAP-2 and GFAP antibodies. In both hydrogels, the cells were induced to neural differentiation 

and showed Nestin, βIII-tublin and MAP-2 positive signals, without GFAP expression. At day 7, 

the cells encapsulated in IKVAV-modified silk fibroin hydrogel showed more βIII-tublin 

positive cells compared to unmodified silk fibroin hydrogels (Fig 4.9) which indicated that more 

early neurons were differentiated. In the meantime, more MAP-2 positive cells occurred in the 

IKVAV-modified hydrogels than in the unmodified hydrogels. Furthermore, the image 

quantification showed that βIII-tublin positive cells and MAP-2 positive cells percentage in 

IKVAV-modified silk fibroin hydrogels were significantly higher than in unmodified silk fibroin 

hydrogels, revealing that the IKVAV peptide modification could increase neuron differentiation 

and neuron maturation. However, there was no significant difference of the neurite outgrowth 

length of neurons between each other. 
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Fig4.8 Immunohistochemistry analysis of hNSCs encapsulated in unmodified and IKVAV-modified hydrogesl at Day 0 
and Day 7. Cells were stained with Nestin (green), βIII-tublin (red), MAP-2 (green), GFAP (red). Scan bar=100um. 
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Fig 4.9 Quantification of the βIII-tublin and MAP-2 positive cells percentage and neurite length. 

4.4 Discussion 

Silk fibroin, the natural polymer, has been investigated for many years because of their low 

inflammatory and low immunogenic properties (191, 192). By processing aqueous silk fibroin 

solution into various kinds of materials such as films, sponges and electrospun nets can meet the 

needs of different applications such as cartilage and bone tissue engineering. Compared to these 

applications, silk fibroin hydrogel application in soft tissue engineering has been rarely reported 

(193). Recently, sonication has been developed to assemble the silk fibroin into hydrogel in a 

controlled way. The gelation time can be controlled from minutes to hours, this fast gelation 
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process can benefit the brain tissue engineering as hydrogels can then be used as injectable 

materials. In the meantime, there are no reports about sonication-induced silk fibroin applications 

for brain regeneration yet. To our knowledge, this is the first time to modify the silk fibroin by 

IKVAV peptide and to produce the IKVAV-modified silk fibroin hydrogel by sonication. 

It is notable that the stiffness of the hydrogel is very important to neural stem cells behavior 

according to many data which show it can affect neural differentiation and neurite outgrowth. In 

this experiment, we chose the most comparable elastic moduli of the silk fibroin hydrogel at 1% 

(258±16 Pa). However, the unmodified silk fibroin hydrogel storage modulus increased in the 

modification process even without the addition of peptide. This could probably due to the 

EDC/NHS addition in the modification, which could increase the β-sheet structure in the silk 

fibroin (194), which in turn results in the stiffness increase. To increase the bioactivity of 

hydrogels to neural cells, laminin-derived IKVAV peptide was preferentially selected because its 

applications for neural tissue engineering were reported (70, 195). Therefore, we hypothesize 

that the bioactivity and interaction of silk fibroin to NSCs could be increased by chemically 

modifying with laminin-derived peptide IKVAV. 

After encapsulation, cells in IKVAV-modified hydrogels showed better cell viability and higher 

proliferation than those encapsulated in the unmodified hydrogels, as shown by the Live/Dead 

and Alamar Blue analysis. One possible explanation is that the structure of IKVAV-modified silk 

fibroin hydrogel changes after the addition of peptide, compared to unmodified SF, resulting in 

more open porous structure which could benefit the cells proliferation and migration. Another 

explanation could be the IKVAV provide adhesion sequence which resulted the increase of the 

cell adhesion and thus increased the viability. In some previous work, it has been shown that bio-

adhesive sequences such as RGD and IKVAV can increase cell attachment and growth through 
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integrin-mediated pathway (196, 197).  However, the viable cells kept decreasing in both 

hydrogels in this differentiation process. One reason could be that in the differentiation process, 

many cells would turn to the apoptosis fate, which was also observed in stem cells differentiation 

on 2D differentiation process (157). Another reason could be that the IKVAV peptide 

conjugation was not enough to support the hNSC attachment and neuronal differentiation. 

Therefore, other ECM components may be needed to add in this hydrogel system. 

In this differentiation process, the IKVAV peptide could increase neuron differentiation and the 

maturation of the neurons which was probably due to the fact that it mimics laminin structure 

supports of the neural ECM. This IKVAV peptide positively improved the neuron differentiation 

fate, thus it could potentially accelerate brain tissue regeneration. In this study, there were no 

GFAP positive cells found in the differentiation process, which could due to the fact that glial 

differentiation of hNSCs takes longer time. Sun Y et al reported that the differentiation of GFAP 

positive cells took more than one month (198). Interestingly, higher ratios of neurons occurred in 

the IKVAV-modified compared to unmodified silk fibroin hydrogel after one week 

differentiation, while the IKVAV didn’t improve the length of neurite outgrowth. This could 

probably due to the hydrogel structure limitation, the pore size may be not large enough for the 

cells migration and neurite outgrowth. It was also possibly due to the relatively low 

concentration of IKVAV. 

However, this work suggested the new potential application of IKVAV-modified silk fibroin 

hydrogel in brain tissue engineering. To further improve the hydrogels, the silk fibroin hydrogel 

pore size could be optimized and increased IKVAV peptide concentration could be used to 

increase the neuron differentiation and neurite outgrowth. Another approach could involve 
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immobilizing different kinds of peptide to the silk fibroin to further increase the cell adhesion 

and neurite outgrowth.    

4.5 Conclusion 

In this study, the silk fibroin hydrogels by sonication crosslinking were prepared for brain tissue 

regeneration. By chemically immobilizing with IKVAV peptide, the morphologies of hydrogel 

scaffolds were more porous and the stiffness increased. HNSCs could be successfully 

encapsulated in hydrogels. By inducing neural differentiation of hNSCs for one week, cells in 

IKVAV-modified silk fibroin hydrogel showed better viability, proliferation, increased neuron 

differentiation and maturation compared to cells in unmodified silk fibroin hydrogel. Therefore, 

the IKVAV-modified silk fibroin hydrogel could be possibly used as potential 3D scaffolds for 

brain tissue engineering. 
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Chapter 5: Angiogenesis evaluation in sonication 

induced silk fibroin hydrogels* 

*This part of work was performed at: Experimental Trauma Surgery, University Medical Center 

Schleswig-Holstein, Kiel 24105, Germany, under the supervision of prof. Sabine Fuchs 

5.1 Introduction 

Although significant success has been achieved by combing polymers and cells in tissue 

engineering, a particular challenge still need to be solved is the loss of tissue viability after the 

implantation of larger tissue constructs. The limit of effective diffusive transport of oxygen has 

been suggested to be only 150-200 µm (199). Thus larger implanted constructs require the 

formation of the blood vessels which mediates gas and nutrient exchange, metabolic processes, 

and waste expulsion  (200). Angiogenesis is the process of new blood vessels formation from the 

pre-existing vasculature (201) which plays an important role in wound healing and tissue repair 

(202). Vasculogenesis is the neovessel formation through the assembly of endothelial cells into a 

tube, followed by stabilization and maturation into blood vessels (203). During the 

vasculogenesis, the differentiation and functional integration of endothelial progenitor cells into 

the vasculature are induced (204). Hematopoietic stem cell populations and endothelial 

progenitor cells can increase neovascularization of tissue after ischemia and contributes to 

angiogenesis, thereby, providing a ideal therapeutic option (205). OEC (Outgrowth endothelial 

cells), also called late EPC, are defined as a specific class of endothelial cells, one type of cells 

that were isolated from the mononuclear cells fraction of human peripheral blood (83).  The key 

function of EPC includes the formation of vascular structures in pro-angiogenic matrices in vitro, 

as well as the potential to contribute to the vascularization in vivo (77). Successful 

neovascularization is a critical factor for the therapeutic outcomes in organs and tissues deprived 

of an adequate, stable vasculature. Furthermore, vascularization is critical to create complex and 
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3D bioengineered tissues. To achieve neovascularization, several strategies have been reported. 

Angiogenic growth factors such as VEGF and FGF-2 were used in the delivery systems to 

induce potent angiogenic responses. Furthermore, pre-vascularized constructs based on 

endothelial cells (ECs) or EPC integrated into scaffolds and were developed for tissue 

engineering (206, 207). This strategy would allow accelerating the vascularization process after 

the implantation. 

The process of angiogenesis is controlled by the interaction of EC with angiogenic growth 

factors such as vascular endothelial growth factor (VEGF) (208), but also the ECM is very 

important factor in the development of functional blood vessels. At the initial stage of 

angiogenesis, ECs at their normal quiescent states can be activated by VEGF inducing ECs 

proliferation and sprouting of blood vessels. As angiogenesis proceeds, ECM has essential 

functions in regulating ECs migration, invasion, proliferation, and survival by providing key 

signaling events. In addition, the activated ECs proliferate and secrete various proteases, such as 

membrane-type matrix metalloproteinases (MT-MMPs) to degrade the basement membrane and 

ECM (209). The stabilization of nascent vessels is mediated by recruitment of mural cells. 

Human mesenchymal stem cells (MSCs) have been shown to efficiently stabilize nascent blood 

vessels in vivo by differentiating into perivascular precursor cells and depositing new ECM 

proteins to promote vessel formation and maturation (210). Therefore, co-cultures of EC and 

MSC have been used as a model of studying vasculogenesis (203, 211). In addition, MSC 

provide a series of growth factors such as VEGF triggering the process of neovascularization 

(212). 

As described in the chapter 3, sonication induced silk fibroin hydrogels conjugated with IKVAV 

peptide could be a candidate 3D hydrogel for brain tissue engineering. In addition, induction of 
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angiogenesis is supposed to stimulate endogenous recovery mechanisms, including neurogenesis, 

synaptogenesis, neuronal and synaptic plasticity (213). Until now, no reports have evaluated the 

pro-angiogenic potential of the sonication-induced silk fibroin hydrogel. In addition to the role of 

the IKVAV as factor to induce neurite outgrowth, this peptide has also been reported to induce 

angiogenesis (214). 

In this study, unmodified silk fibroin hydrogels, IKVAV-modified and control peptide VVIAK-

modified hydrogels were evaluated in terms of their angiogenic potential using human OECs in a 

mono-culture system or in co-culture with human bone marrow MSC. In these different 

approaches the cells were encapsulated in 3D silk fibroin based hydrogels at the concentration of 

1million cells/ml hydrogel. The structures and morphological appearances of the three hydrogels 

as well as encapsulated cells were evaluated by FE-SEM. In addition, the endothelial and 

angiogenic response was evaluated by confocal microscopy after staining for endothelial marker 

CD31. The proliferation of cells in hydrogels was evaluated by DNA quantification. QRT-PCR 

was performed to assess the expression of angiogenesis and endothelial marker related genes. 

 

5.2 Materials and Method 

5.2.1 Silk fibroin solution preparation and chemical modification 

The silk fibroin preparation and modification were the same as described by chapter 3 part I and 

chapter 4, the H2O, IKVAV and VVIAK peptide were added in modification process as 

described in chapter 4, the samples were named unmodified, IKVAV-modified and VVIAK-

modified respectively. The final concentration of the three solutions was 1%. 
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5.2.2 Isolation and expansion of OEC 

The OEC were isolated and cultured according to protocols as described previously (215). 

Mononuclear cells were isolated from peripheral blood buffy coats. 25ml peripheral blood was 

diluted with 25ml PBS in 50ml tube. Then 35ml of this mixture that was carefully added to 15 

ml of Biocoll followed by centrifugating for 35 minutes at 400g without break, according to 

Biocoll gradient centrifugation (Fig 5.1). The mononuclear cells were cultured in endothelial cell 

growth medium-2 (EGM-2) with full supplements from the kit (10 ml FBS, 0.2 ml 

Hydrocortisone, 2 ml hFGF, 0.5 ml VEGF, 0.5 ml IFG-1, 0.5 ml ascorbic acid, 0.5 ml hEGF, 0.5 

ml Heparin), 5% FBS, and 1% penicillin/streptomycin, on collagen coated well plates. 5x10
6
 

mononuclear cells/well were seeded on 24 culture-well plates and then fed with fresh medium 

every two days. After 1 week of culture, adherent cells were collected and reseeded in a density 

of 0.5x10
6
cells/well to collect OEC. Then colonies of OEC with cobble-stone-like morphology 

appearing after 2-3 weeks in culture were trypsinized and expanded. The appearance of OEC 

was shown in Fig 5.2. 

 
 

Figure 5.1 Isolation of mononuclear cells from peripheral blood buffy coat. According http://pluriselect.com/buffy-
coat.html 

http://pluriselect.com/buffy-coat.html
http://pluriselect.com/buffy-coat.html
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Figure 5.2 The morphology of OEC 

5.2.3 Isolation and expansion of human bone-marrow mesenchymal stem cells (BM-MSCs) 

Human BM-MSCs were isolated from bone marrow of human cancellous bone fragments of 

adult donors. Bone fragments were washed several times with phosphate buffered saline to 

collect the loosely associated cell fractions. The washing solution containing bone marrow 

residues was filtered by cell strainer and centrifuged for 10 minutes at 400g, and the cell pellet 

was re-suspended in DMEM/Ham F-12 supplemented with 20% FBS and 1% 

Penicillin/Streptomycin. Cells were seeded at a density of 2×10
6
 cells/cm

2
 on collagen-coated 

flasks (T75). MSC-like colonies appearing after 7-10 days were expanded using a splitting ratio 

of 1:3 and were cultivated in DMEM-Ham F12 supplemented with 20% FBS and 1% 

Penicillin/Streptomycin.  

5.2.4 Cells encapsulation 
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500ul of each 1% unmodified, IKVAV-modified and VVIAK-modified solutions were sonicated 

at 10% amplitude for 25s by sonicator (SONOPULS HD 2070, 70W, 20kHz). After 5 minutes, 

the cell pellets were mixed with the silk fibroin solution. Then the cells/solution were added in 8-

well chamber slides (200ul in each well for confocal microscopy), in 96-well plates (50ul in each 

well for DNA quantification), in 48-well plates (200ul in each well for RNA extraction) and in 

24 well-plate (400ul in each well on coverslip for SEM). For mono-culture, 1million OEC were 

mixed with 1ml hydrogel solution. For co-culture, half million of OEC and half million of BM-

MSC were mixed with 1ml hydrogel solution. After incubation in 37
◦
C for one hour, then EGM-

2 medium plus VEGF (50ng/ml) were added in the mono-culture system, and EGM-2 medium 

were added in co-culture system. 

5.2.5 Preparation of samples for FE-SEM 

The hydrogel samples without cells for characterization were dried by freeze-drying and critical 

point drying. Freeze-drying samples were frozen the liquid nitrogen and then were transfer to the 

freeze-drier immediately. After one day lyophilization, samples were taken out and coated with 

gold, then they were observed under FE-SEM (SUPRA 40/40VP ZEISS). The critical point 

drying samples were dehydrated with increasing concentrations of ethanol from 50% (v/v) to 100% 

(v/v) at 10% per step and 15 minutes for each step. The ethanol was then removed by a critical 

point dryer. Then they were coated with Au/Pt (80/20) and were observed under FE-SEM 

(TM300, HITACHI).  

The hydrogel samples with cells were fixed in 4% formalin and 1% glutaraldehyde mixture for 

30 minutes, followed by dehydrated with increasing concentrations of ethanol from 50% (v/v) to 
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100% (v/v) at 10% per step and 15 minutes for each step, as well as critical point drying. Then 

they were coated with Au/Pt (80/20) and were observed under FE-SEM (S4800, HITACHI). 

5.2.6 Immunofluorescence staining 

At day4 and day10 after encapsulation, the hydrogel/cell samples were fixed with 4% 

paraformaldehyde, samples were washed three times with PBS and permeabilized using 0.5% 

Triton X-100 for 20 minutes. After washing in PBS for 3 times (15 minutes each time), cells 

were incubated with the following primary antibodies CD31 (Dako, 1:50) diluted in 1% bovine 

serum albumin (BSA) in PBS for 2 hour at room temperature. After washing 3 times with PBS 

(15 minutes each time), cells were incubated with the secondary Alexa Fluor 488 goat anti-

mouse antibody (Invitrogen) diluted 1:1000 in 1% BSA in PBS for 1 hour at room temperature. 

For nuclear counterstaining, cells were treated with 4',6-diamidino-2-phenylindole (DAPI). 

Samples were then observed using Zeiss LSM 510 Meta confocal laser scanning microscope. 

5.2.7 DNA quantification 

To quantify the cells proliferation, 50ul of hydrogel/cells solution were put in one well of 96-

well plate after encapsulation, triplicate samples were prepared in three different hydrogels of 

each donor at each time point. Briefly, after washing with PBS, cells/hydrogels were collected 

and stored at -80
◦
C. Following lyophilization, the sample in each well were lysed in 250ul PBE 

buffer (10mM EDTA in PBS) supplemented with 1mg/ml Proteinase K for 24 hours at 55
◦
C. 

Then DNA quantification procedure was same as described in chapter 3 part I.  

5.2.8 RNA isolation and reverse transcription 

The RNA isolation and reverse transcription was the same as described in chapter 3 part I. 
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5.2.9 QRT-PCR 

To assess the expression of endothelial markers, as well as the expression of angiogenic factors, 

QRT-PCR was performed using Glycerin-Aldehyde-3-phosphate (GAPDH) as a internal control. 

All the primers were from QuantiTect Primer Assay-Qiagen. QRT-PCR was performed using 

Rotor Gene (Quiagen) System. Primers are listed in Table 5.1. 

Table 5.1 Primers for QRT-PCR 

Gene name Sequence Company 

CD31 
F 5’-CCGGATCTATGACTCAGGGACCAT-3’ 

Eurofins 
R 5’-GGATGGCCTCTTTCTTGTCCAG-3’ 

Gene name Primer assay name Catalogue number 
SM-Actin Hs_ACTA _1_SG QuantiTect Primer Assay QT00088102 
VE-Cadherin Hs_CDH5_1_SG QuantiTect Primer Assay QT00013244 
Integrin α5 Hs_ITGA5_1_SG QuantiTect Primer Assay QT00080871 
Integrin β1 Hs_ITGB1_1_SG QuantiTect Primer Assay QT00068124 
Collagen type IV Hs_COL4A1_1_SG QuantiTect Primer Assay       QT00005250 
MMP9 Hs_MMP9_1_SG QuantiTect Primer Assay QT00040040 
GAPDH Hs_GAPDH_1_SG QuantiTect Primer Assay QT00079247 

 

 

5.2.10 Statistics 

All statistics were performed using Graphpad Prism 5. In QRT-PCR, ddCt method was used to 

analyze the data. Gene expression of cells on TCP (control) was set as 1 (no error bars). Other 

target gene expressions were calculated by the fold change related to the control. In DNA 

quantification test, one-way ANOVA with Tukey’s post hoc analysis and two-way ANOVA with 

Bonferroni post hoc test were performed. One-way ANOVA with Tukey’s post hoc analysis was 

performed for gene expression analysis.   
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5.3 Results 

5.3.1 Hydrogel morphologies by FE-SEM  

The inner structures of these three hydrogels were examined in FE-SEM by freeze-drying and 

critical point drying (Fig 5.3). In the freeze-dried samples, unmodified silk fibroin hydrogel 

formed flake-like structure with many holes on that. The IKVAV-modified and VVIAK-

modified hydrogel formed porous and fibrous structures. In contrast, these three hydrogels 

formed condense and compact structures after critical point drying and no obvious differences 

were observed between each other.   

 

Fig 5.3 FE-SEM morphologies of silk fibroin hydrogels unmodified, IKVAV-modified and VVIAK-modified by freeze-
drying and critical point drying. 
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5.3.2 Immunofluorescence staining of mono-culture from donor 1 in silk fibroin hydrogels 

unmodified and IKVAV-modified. 

The mono-culture system were incubated in EGM-2 medium plus VEGF (50ng/ml) to induce 

angiogenesis. At different time points the cells were staining with endothelial cells marker CD31 

and detected by immunofluorescence. At day 4 after encapsulation (Fig 5.4), the OEC in both 

unmodified and IKVAV-modified showed a round shape without angiogenic elongation in the 

hydrogel. At day 10, the cells still kept the round shape which indicated that angiogenic 

structures were not formed.  

 

Fig 5.4 Immunofluorescence staining of mono-culture in unmodified and IKVAV-modified hydrogels at day 4 and day 
10. The cells were stained by the endothelial cells marker CD31 (green), bar=100um. 
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5.3.3 FE-SEM of OEC mono-culture from donor 1 in silk fibroin hydrogels unmodified and 

IKVAV-modified. 

At day 10, OEC mono-culture in silk fibroin hydrogels unmodified and IKVAV-modified was 

observed by FE-SEM (Fig 5.5). From the picture, some small round shape OECs can be found in 

the both hydrogels (Fig5.5 arrows). This morphology was consistent to the morphology we 

observed by confocal microscopy, indicating that these OEC showed a small round shape, 

however, without angiogenic elongation of cells. 

 

Fig 5.5 FE-SEM of OEC mono-culture in unmodified and IKVAV-modified hydrogels at day 10.  

 

5.3.4 Immunofluorescence staining of co-cultures from three donors of OEC in silk fibroin 

hydrogels unmodified, IKVAV-modified and VVIAK-modified. 

In the co-culture systems which were incubated in EGM-2 without VEGF stimulation, the OEC 

start to form elongated structures at day4 which indicated the angiogenesis in all three hydrogels 
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(Fig 5.6). In donor 1 and donor 2, there seemed to be more elongated CD31 positive cells 

compared to donor 3. In donor 3, more round CD31 positive cells were shown at day 4, which 

could be due to the different growth status of OEC from different donors. At day10, we observed 

the typically connected and tubular angiogenic structure for samples of donor 1 in all three 

hydrogels. However, compared to donor 1, the cells from donor 2 and donor 3 just formed some 

single located angiogenic structures in hydrogels which resulted from the different angiogenic 

activity of OEC from different donors. 
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Fig5.6 Immunofluorescence staining of co-culture from three donors of OEC staining CD31 in unmodified, IKVAV-
modified and VVIAK-modified silk fibroin hydrogels at Day 4 and Day 10. The cells were stained by the endothelial 

cells marker CD31 (green) and DAPI (blue) Bar=50um. 

5.3.5 Cell proliferation. 

DNA quantification was performed to detect the proliferation of OEC/MSC during 10 days (Fig 

5.7). DNA contents were evaluated at day 0, day 4 and day 10. At day 0, there were no 

significant differences between the different hydrogels, which indicated the equal cell number 
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encapsulated in different hydrogels. Although there was a slight decrease of the DNA content at 

day 4 and slight increase of DNA content at day 10, there were no significant differences at 

different time points in the different group. This was probably due to a comparable cell growth , 

resulting in similar DNA content at different time points. Moreover, cells in three hydrogel also 

showed comparable DNA content at each time point which revealed that the cell proliferation 

speed was similar in each kind of hydrogel. 

 

Fig 5.7 The OEC/MSC proliferation assessed by DNA quantification. Error bars represent Mean ± SEM (N=3 donors). 

5.3.6 QRT-PCR of co-culture from three donors of OEC in unmodified, IKVAV-modified and 

VVIAK-modified silk fibroin hydrogel. 

In order to compare the angiogenesis related gene expression in unmodified, IKVAV-modified 

and VVIAK-modified hydrogels, QRT-PCR was performed from three donors at day 10 (Fig 

5.8).  We analyzed the endothelial markers CD31 and vascular endothelial-cadherin (VE-

cadherin), as well as the vascular stabilization involved marker smooth muscle actin (SM-actin). 

In addition we assessed Integrin α5 and MMP9 expressions which are associated with angiogenic 

activation of endothelial cells, as well as integrin β1 expression which is related to the EC 

homing, invasion and differentiation, and the collagen type IV expression which is related to the 
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basal membrane in functional blood vessels. There are no significant differences inCD31 and 

VE-cadherin expression which indicated comparable angiogenic structures in the different 

hydrogel angiogenesis from three donors. Moreover, the similar expression at integrin α5, 

MMP9 and Integrin β1 gene revealed that the angiogenic progress including EC adhesion, 

invasion and differentiation is comparable in different hydrogels (Fig 5.6). In addition, the 

collagen type IV expression resulted from the comparable production of this matrix protein in 

these different hydrogels.  
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Fig5.8 QRT-PCR analysis of OEC/MSC co-culture from three donors of OEC. Error bars represent Mean ± SEM (N=3 

donors) 
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5.3.7FE-SEM morphologies of co-culture in silk fibroin hydrogels unmodified, IKVAV-modified 

and VVIAK modified at day 10. 

 

In order to assess the morphology of the OEC/MSC co-cultures inside the hydrogel scaffold, FE-

SEM was performed (Fig 5.9). In the different hydrogel, obvious angiogenic structures were 

observed characterized by the smooth, tubular and elongating structures. The EC appear as very 

smooth cells adhered inside the hydrogel scaffold (Fig 5.9.g arrow 1) forming tubular and 

interconnected structures (Fig 5.9.g arrow 2). From the picture, very clear angiogenesis 

structures were observed (Fig 5.9.c). Smooth and flat endothelial cells with protruding cell nuclei 

were wrapped outside the tubular structure (Fig 5.9.c arrow). At the end of the tubular 

angiogenic structures, a series of branches were found which revealed the ongoing angiogenic 

progress (Fig 5.9.e arrow). Moreover, typically vascular lumen-like structure was shown in 

picture (Fig 5.9.i arrow), which indicated the maturation of the angiogenic structure. Although 

the MSCs are difficult to distinguish, some rough cells around the angiogenesis structure or 

beneath the EC are probably the MSC or differentiated MSC acting as mural cells.  
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Fig5.9 FE-SEM morphologies of OEC/MSC co-culture in the three different hydrogels at day 10. 

5.4 Discussion 

According to the chapter 4, the sonication-induced silk fibroin conjugated with IKVAV peptide 

could be a candidate hydrogel for brain tissue engineering. In this part of the thesis, we evaluated 

the potential of unmodified, IKVAV-modified and VVIAK-modified silk fibroin hydrogels to 

support the formation of angiogenic structures. Compared to chapter 4, we set up the VVIAK-

modified silk fibroin hydrogel as another control of scramble peptide, in order to confirm the 

function of IKVAV sequences.   
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The first experiment was performed in order to investigate if unmodified or IKVAV-modified 

hydrogels can induce the angiogenesis of encapsulated OEC. However, even   after the addition 

of VEGF (50ng/ml) into the EGM-2 medium, the OEC still kept the round shape inside the 

hydrogel without elongated structures. In the FE-SEM pictures of hydrogel scaffolds, hydrogels 

showed a small pore size in freeze-drying samples and very condense structures after critical 

point drying. Therefore the OEC behavior could result from the condense structure of the 

hydrogel that inhibits the cells’ moving and elongation when encapsulated inside the hydrogel. If 

the cells can not move and elongate, this could cause the cell apoptosis and death. However, 

another possibility could be that the silk fibroin unmodified and IKVAV-modified could not 

support the OEC adhesion and migration which may require other factor derived from natural 

ECM.  

Interestingly, in the co-culture system, the OEC could move and elongate to form angiogenic 

structures after 4 days.  Then after 10 days they form capillary connected tubular vascular 

structures in all three different hydrogels. In the angiogenic process, the VEGF plays an 

important role in endothelial cells survival, proliferation and migration. However, the ECM is 

another important regulator of angiogenesis. In the silk fibroin hydrogels, the condense structure 

or the surface topography possibly impedes the elongation and movement of the OEC, which 

blocks the angiogenesis. However, the addition of BM-MSC seems to reverse this effect, 

resulting in angiogenesis and the formation of capillary network formation. In the co-culture 

system, BM-MSCs secret many angiogenic factors such as (VEGF and Ang-1) (216, 217). Upon 

contact with endothelial cells, BM-MSC could also differentiate into pericytes and smooth 

muscle cells that help to stabilize the nascent vessels. Furthermore, MSC produce various ECM 

components, such as collagen type I, collagen type IV, fibronectin and laminin (218). All of 
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these factors contribute to the angiogenic activation of endothelial cells and to the maturation of 

vascular structures. In the co-culture system, no significant differences in the angiogenesis 

potential among unmodified, IKVAV-modified and VVIAK-modified hydrogels were observed. 

Nevertheless potential proangiogenic effects of the IKVAV peptide might be covered by the 

strong impact of the MSC in the co-culture system. Many diverse matrix (such as collagen type I, 

collagen type IV, fibronectin and laminin) and growth factors (such as VEGF, Ang-1) produced 

by MSC may deposit in the hydrogels that obviously increasing the angiogenesis of OEC, while 

the peptide function and contribution may be much weaker than the factors produced by MSC. In 

order to demonstrate the function of IKVAV peptide in the future, another kind of model should 

be set up based on a mono-culture system where angiogenesis in OEC could be induced by 

growth factors such as VEGF. 

Consequently, the unmodified and modified silk fibroin hydrogels both support the angiogenesis 

but also need the assistance in the angiogenic process by MSC. Silk fibroin hydrogels thus 

provide a promising model of an injectable soft hydrogel system for vascularization applications 

in the field of brain ischemia, wound healing, soft tissue regeneration, cardiovascular 

regeneration and so on. 

5.5 Conclusion 

In this study, we prepared sonication-induced unmodified, IKVAV-modified and VVIAK-

modified silk fibroin hydrogels. The OEC mono-culture in unmodified and IKVAV-modified 

failed to form angiogenic structures even after the supplementation with VEGF, which might be 

due to the dense structure of the hydrogels. However, in the co-culture system, all three different 

hydrogels could support angiogenesis even although the angiogenic ability of individual donors 



 

105 
 

was slightly different. However, the quantity of angiogenic structures and morphologies were 

similar in the individual donors in three different hydrogels. This was further supported by the 

semiQRT-PCR. All these hydrogels could support the formation of angiogenesis structure which 

resulted in pre-vascularization in the hydrogel but need the assistance of co-implanted MSCs or 

other cells which might penetrate into the wound healing area after the implantation. 
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6 Directions for future work 

Brain tissue engineering is still facing a series of scientific challenges although researchers have 

already achieved great success in this field. In this thesis, we performed studies focusing on the 

design and evaluation of silk fibroin based hydrogels for the encapsulation of hNSC for brain 

tissue regeneration. In addition, we assessed the encapsulation of OEC/MSC in different variants 

of silk fibroin hydrogels to induce neovascularization after ischemic brain injury. 

By using 3D silk fibroin hydrogels formed after sonication, we found that the conjugation of the 

IKVAV peptide could increase the cell viability and neuronal differentiation. These data 

indicated that the silk fibroin conjugated with IKVAV peptide could be applied as a candidate 

material for brain tissue engineering. However, although the viability and neuronal 

differentiation of human neural stem cells were improved by the silk fibroin hydrogel modified 

with IKVAV peptide, they are still far away from the needs for a successful implantation because 

of the relatively low viability and ratio of neuronal differentiation. In order to improve the hNSC 

viability and neuronal differentiation, other ECM components should be considered to be added 

to the system mimicking the ECM composition in the brain.  Besides, some growth factors (such 

as neurotrophins) are necessary to be loaded in the hydrogel, which could improve the survival, 

growth and function of neurons. 

Although OEC in mono-culture did not form angiogenic structures in silk fibroin hydrogels, they 

can form angiogenic structures with the assistance of MSC. However, potential effects by  

IKVAV peptide conjugation were probably covered by the strong angiogenic effects of MSC. In 

order to further demonstrate the IKVAV peptide function in angiogenesis, another hydrogel 
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model should be set up in which the OEC are able to form angiogenesis structure in mono-

culture under growth factor stimulation, such as VEGF. 

In brain tissue engineering, the sonication induced silk fibroin hydrogel encapsulated with OEC 

and MSC could be potentially applied in treating brain injury caused by ischemia. Moreover, 

these soft silk fibroin hydrogel encapsulated with OEC/MSC are also promising in other 

applications for tissues regeneration where neovascularization is an essential element. This could 

include dermal wound healing, myocardial ischemia or soft tissue regeneration. Although MSCs 

are able to differentiate into chondroblasts, adipocytes, neurons, glia, cardiomyocytes, or 

osteoblasts, the potential of MSC usage in cell therapy of bone defects is widely discussed at 

present. It has been demonstrated that application of MSC increased angiogenesis and 

osteogenesis in the damaged bone (219). However, for brain tissue engineering, BM-MSCs are 

not well characterized as a cell source to differentiate into neural cells or to support neural 

regeneration. To solve the problem of neural cell loss and ischemia in the brain injury, some 

interesting strategies could be investigated in the future, such as the co-culture of NSCs with 

OECs or even triple culture by adding MSC in hydrogel, aiming at restoring the functional brain 

tissue. 
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