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Ph.D. Thesis Abstract: 

 

 A range of different polyphenols can be ingested in a bowl of 

polyphenol-rich fruit, going from one-phenol hydroxybenzoic acid to more complex 

polymeric compounds. Epidemiologically, polyphenol consumption has been 

associated with a reduced risk of cancer and cardiovascular disease and neurological 

protection against brain ageing. However, only a small proportion of native 

polyphenols (5-10%) are absorbed and the remainder reach the colon, where they are 

extensively metabolised by the gut microbiota. The colonic microbiota produces a 

relatively small number of polyphenol microbial metabolites from a large number of 

different dietary polyphenols. During subsequent tissue distribution, the target 

organs and the effective concentration circulating remain largely unreported. 

 This Ph.D. thesis is divided into two parts: chemical analysis of food 

composition and in vivo bioavailability of polyphenol metabolites. Metabolomics 

offers an innovative approach that has recently been shown to be effective in both 

food chemistry and nutritional bioavailability studies. 

 Polyphenol composition in strawberries is studied in the first part of this Ph.D. 

thesis, with the aim of evaluating nutritionally significant amounts of polyphenols 

before ingestion. In this context, a targeted method for quantitative analysis of 

multiple classes of phenols was developed. A high sensitivity MRM-based method 

for 135 phenolics with a wide dynamic range was obtained, providing valuable 

insight and assisting with the analysis of complex matrices such as fruit, and more in 

general food.  

 Application of the method was tested in Fragaria spp., and along with another 

rapid method for the analysis of anthocyanins and ellagitannins, provided a general 

overview of polyphenol composition in strawberries. A total of 56 individual 

compounds were accurately identified and quantified, some of them for the first time, 

their concentration ranging from 1 ug/100 g for low abundant polyphenols to 40 



 

 

mg/100 g of fresh fruit. Moreover the isolation of some ellagitannins and definition of 

their profile in Fragaria spp. was carried out during fruit ripening. Clarification of the 

main ellagitannin, agrimoniin, was obtained by isolation and it was ambiguously 

assigned as the main ellagitannin present in the diet. 

In the second part of this Ph.D. thesis the in vivo bioavailability of a dose of 

polyphenol microbial metabolites reflecting dietary consumption of fruit was studied. 

The focus was on the metabolites of polyphenols which can be found in the 

bloodstream after gut microflora metabolism. Their distribution was explored in rats 

in different organs, in particular in the brain, considering their possible 

neuropreventive properties. Development of a specific quantitative method for the 

quantification of selected polyphenol microbial metabolites made it possible to 

analyse complex biological samples resulting from in vivo trials with rats treated with 

a nutritionally significant dose of polyphenol microbial metabolites, intravenously 

injected. A high-throughput, sensitive and reproducible method for 23 polyphenol 

metabolites in six different biological matrices was developed. A purification protocol 

made it possible to obtain cleaner and more concentrated samples, with low limits of 

quantification. Specific organ-tropism was observed, mainly hepatotropism.  

Remarkably, in this study the brain was reported to be one of the target organs 

for these molecules, already being present at basal level or increasing their 

concentration after treatment. Furthermore, the amount of 10 out of 23 compounds 

significantly increased with a nutritionally significant dose. 



 

 

 

 

 

 

 

 

 

Der Mensch ist, was er ißt 
(Man is what he eats) 

 
Ludwig A. Feuerbach (1804-1872) 

 

 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

Contents 

 

 
 
Introduction and 
literature overview 

Polyphenols, gut microflora metabolism and their 
effects on human health 

1 

Aim and overview of 
Ph.D. project 

The effects of fruit consumption on the mammalian 
system 

23 

Food Chemistry  
Chapter 1.1 

A targeted metabolomics method for the rapid 
quantification of multiple classes of phenolics 

27 

Food Chemistry  
Chapter 1.2 

Ellagitannins in strawberries: Their isolation, structural 
elucidation and profiling during fruit ripening 

41 

Food Chemistry  
Chapter 1.3 

Polyphenols in a bowl of strawberries: Comprehensive 
profiling for better correlation with nutritionally 
significant properties 

67 

Nutrient bioavailability 
Chapter 2.1 

Targeted profiling method for twenty-three metabolites 
related to polyphenol gut microbial metabolism in 
biological samples 

95 

Nutrient bioavailability 
Chapter 2.2 

Fate of microbial metabolites of dietary polyphenols in 
rats: Is the brain their target destination? 

111 

Conclusion  155 

Other publications  161 

Acknowledgment  163 

 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 



 

 

Introduction and 

literature overview 

 

 

 

Polyphenols, gut microflora metabolism and 

their effects on human health 

 

 

 

 

 

 

This introduction has been adapted* and improved, including the relevant parts, 
from:  

Up-regulating the Human Intestinal Microbiome Using Whole Plant Foods, Polyphenols, 
and/or Fiber Kieran M. Tuohy, Lorenza Conterno, Mattia Gasperotti, and Roberto 
Viola Journal of Agricultural and Food Chemistry 2012 60 (36), 8776-8782  
 
Attached as an original paper after this introduction. 
 
*Adapted and reprinted with the permission of the Journal of Agricultural and Food Chemistry. 

Copyright © 2012 American Chemical Society 
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Epidemiologically, fruits and vegetables protect against chronic diseases 

including cardiovascular disease, cancer, obesity, and diabetes. Plant secondary 

polyphenolic compounds are thought to contribute significantly to the underlying 

protective processes (1-3). Interestingly, polyphenols potentially interact with the gut 

microbiota: for many polyphenols microbial transformation modifies bioavailability 

and activity. 

Plant polyphenols are a class of chemically diverse secondary metabolites that 

carry out many different biological activities both in plants and the animals which eat 

them (4). Mainly because of their presence in foods and medicinal plants, they have 

been studied at length, due to interaction with mammalian physiological processes 

that play a role in chronic human disease. As well as being antioxidants and 

possessing inherent free radical scavenging abilities, plant polyphenols have the 

potential to affect certain risk factors for cardiovascular disease, such as plasma lipid 

oxidation state, endothelial function and platelet aggregation; they protect against 

cancer by reducing DNA damage, cell proliferation, and metastasis; they modulate 

immune function; they inhibit bacterial pathogens and protect against neurological 

decline (see Figure 1). Most of the evidence relating to these effects on health stems 

from animal studies using either whole plant foods or plant polyphenol extracts. 

Consequently, both the active chemical moiety, and in many cases the underlying 

mechanism of action in humans, have yet to be determined (4).  

 
 

Figure 1 Diagram illustrating the direct intestinal effects 
of plant food polyphenols. 
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Human Gut Microbiota 

 

 The human gut microbiota is a diverse collection of microorganisms making 

up some 1000 species, with each individual having their own unique collection of 

species. These microorganisms play an important role in human health and disease, 

and inter-individual variation in microbiota makeup influences the profile of 

metabolites released from dietary components that reach the colon and may also 

affect an individual's risk of chronic disease. Recent studies have identified a limited 

number of “enterotypes” within the human gut microbiota, characterised by a 

predominance of Prevotella, Bacteroides and/or Ruminococcus (5,6). 

Moreover, these enterotypes appear to be determined by long-term diet and 

could play an important role in an individual's risk of developing chronic diet-

associated diseases such as obesity, metabolic syndrome and certain cancers (6). 

Different profiles of gut bacteria have also been characterised in populations with 

chronic immune or metabolic-related diseases, including inflammatory bowel disease 

(IBD), celiac disease, diabetes and obesity (7, 8). Typically, these conditions show a 

lower prevalence of beneficial butyrate-producing bacteria, such as Faecalibacterium 

prausnitzii, and the bifidobacteria, which appear to be indicative of a well-functioning, 

healthy saccharolytic type microbiota. These diseases are also often associated with a 

high prevalence of Enterobacteriaceae, a phylum that includes many important 

gastrointestinal pathogens including Escherichia coli, Shigella, Salmonella, Campylobacter 

and Helicobacter. These diseases are also often associated with increased intestinal 

permeability or “leaky gut”, a process that appears to be regulated both by diet and 

by gut microbiota-associated characteristics. 

Works on germ-free animals, animal models of obesity and the metabolic 

syndrome, and a limited number of human studies have shown that the gut 

microbiota of obese individuals differs from that of lean individuals. The obese 

appear to be typified by a gut microbiota with a reduced Bacteroidetes/Firmicutes ratio 
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and perturbations within important fibre-degrading saccharolytic populations (11). 

Indeed, this obese type microbiota has been shown to revert to a lean type profile 

with increased relative abundance of the Bacteroidetes when obese individuals lose 

weight on low-energy diets. Such microbiota compositional differences within the 

obese, and other disease states, are likely to have a dramatic impact on the colonic 

metabolic output and subsequent physiological processes in the host, including 

control of food intake, inflammation, energy storage and energy expenditure (see 

Figure 1) (11). Certain shifts or profiles for gut bacteria are associated with poor diet, 

diets low in whole plant foods such as fruits and vegetables. Similar profiles for gut 

bacteria are also observed in chronic diseases related to affluent Western lifestyles, 

such as obesity, metabolic syndrome, certain cancers and autoimmune diseases such 

as IBD.  

Both the type and quantity of foods that escape digestion in the upper gut 

have an important impact on the composition and therefore, activity of the colonic 

microbiota. As much as 90% of plant polyphenols escape digestion and absorption in 

the upper gut and persist in the colon. Here they come into contact with the gut 

microbiota, acting as substrates for microbial production of small phenolic acids and 

SCFA, or indeed affecting species composition and their metabolic activity. 

 

Polyphenols and the Human Gut Microbiota 

 

As previously mentioned, after the consumption of food rich in polyphenols, 

more than 90 % of plant polyphenols escape digestion and absorption in the upper 

gut and reach the colon. Hydrolysis by the gut microbiota can increase the 

bioavailability and possibly the biological activity of polyphenols reaching the colon. 

The human intestinal microbiota has extensive hydrolytic activities and breaks down 

many complex polyphenols into smaller phenolic acids, which can be absorbed across 

the intestinal mucosa. These polyphenol catabolites are only then available to exert 

their biological activities systemically within the host. However, to date, with the 
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exception of a few compounds such as the phyto-estrogens equol, enterolactone and 

enterodiol, very little is known about the biological activities of phenolic acids 

deriving from microbiota polyphenol metabolism (2, 3). Table 1 presents some 

examples of parent plant polyphenols, microbial catabolites and their potential 

biological effect when known. Given the diversity of plant polyphenols, their possible 

microbial catabolites and the fact that they occur as mixtures in whole plant foods or 

plant extracts, only a small number of well-studied polyphenols are presented. 

Biological activities have not been described for most of the small phenolic acid 

catabolites, but common activities recognised so far include antibacterial activities, 

especially against Gram-negative species such as Enterobacteriaea, anti-inflammatory 

activities, anti-AGE formation, stimulation of xenobiotic degrading enzymes and 

detoxification processes and phyto-estrogenic activities. 

Recently, Miene et al. (13) demonstrated that microbial metabolites of 

quercetin and chlorogenic acid/caffeic acid, 3,4-dihydroxyphenylacetic acid (ES), and 

3-(3,4-dihydroxyphenyl) propionic acid (PS) respectively, could significantly up-

regulate GSTT2 expression and decrease COX-2 expression, a modulation seen as 

protective against colon cancer, and at the same time reduce DNA damage using an 

intestinal cancer cell line. González-Sarrı �as et al. (14) showed that ellagic acid (EA) 

and its colonic metabolites, urolithin-A (3,8-dihydroxy-6H-dibenzo[b,d]pyran-6-one, 

Uro-A) and urolithin-B (3-hydroxy-6H-dibenzo[b,d]pyran-6-one, Uro-B), modulate 

the expression and activity of CYP1A1 and UGT1A10 and inhibit several 

sulfotransferases in colon cancer cell lines (Caco-2). These phase I and phase II 

detoxifying enzymes are important components of how our bodies deal with toxic 

and xenobiotic compounds, and increased expression is associated with a reduced 

risk of colon cancer in laboratory animals. However, these effects appeared to be 

critically affected by the food matrix in the rat colon. Nevertheless, urolithins from 

pomegranate have already been shown to reduce the growth of cancer cells in an 

animal model of prostate cancer (15). 

3,4-dihydroxyphenylpropionic acid (3,4-DHPPA), 3-hydroxyphenylpropionic 

acid, and 3,4-dihydroxyphenylacetic acid (3,4-DHPAA), derived from colonic 
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catabolism of proanthocyanidins, have been shown to reduce the inflammatory 

response of human peripheral blood mononuclear cells stimulated with 

lipopolysaccharide (LPS), an inflammatory cell wall component from Gram-negative 

bacteria such as the Enterobacteriaceae. Secretion of IL-6, IL-1, and TNF-α was 

reduced, suggesting that microbial metabolites may be involved in dampening the 

inflammatory response to bacterial antigens, which may have implications for chronic 

inflammatory or autoimmune diseases such as IBD.(16) On screening 18 microbial 

catabolites of polyphenols for their anti-inflammatory potential in vitro, Larrosa et al. 

(17) found that hydrocaffeic (HCAF), dihydroxyphenylacetic (dOHPA) and 

hydroferulic acid (HFER) reduced prostaglandin E(2) production by at least 50% in 

CCD-18 colon fibroblast cells stimulated with IL-1β. The same compounds were also 

shown to reduce inflammation in rodents, and HCAF was also shown to reduce 

intestinal inflammation in the DSS-mouse model of ulcerative colitis with reduced 

mucosal expression of cytokines IL-1β, IL-8, and TNF-α, reduced malonyldialdehyde 

(MDA) levels, and decreased oxidative DNA damage (measured as 8-oxo-2′-

deoxyguanosine levels). Radnai et al. (18) also showed that ferulaldehyde, a microbial 

catabolite of curcumin, has anti-inflammatory properties in vivo in an animal model 

of LSP-induced septic shock. Intraperitoneal injection of ferulaldehyde (6 mg/kg) 

reduced markers of inflammation and prolonged the lifespan of LPS-treated animals, 

indicating that microbial catabolites might, at least in part, account for the observed 

anti-inflammatory activity of certain herbal medicines and functional foods. 

Microbial catabolites of plant polyphenols may also affect disease risk in 

metabolic syndrome, a cluster of biomarkers associated with obesity and increased 

risk of cardiovascular disease and diabetes. Verzelloni et al. (19) demonstrated that 

urolithins and pyrogallol, microbial ellagitannin-derived catabolites, are highly 

antiglycative compared to parent polyphenolic compounds in an in vitro model of 

protein glycation. Protein glycation plays an important pathological role in diabetes 

and pathologies associated with diabetes, including blindness. They also found that 

chlorogenic acid-microbially derived catabolites, dihydrocaffeic acid, dihydroferulic 

acid and feruloylglycine, were most effective at protecting cultured neural cells in 
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vitro, indicating that colonic catabolites of dietary polyphenols may play an important 

role in the improved cognitive function and protection from neuronal degeneration 

observed in animals fed polyphenol-rich foods such as certain berries. 

Plant polyphenols have also been shown to have a direct effect on 

carbohydrate fermentation by the human gut microbiota in vitro. Using anaerobic 

faecal batch cultures, Bazzocca et al. (20) found that apple proanthocyanidins 

inhibited both metabolic degradation of short proanthocyanidins and SCFA 

production. This observation may apparently suggest that polyphenols might work 

against production of beneficial microbial metabolites within the colon. As mentioned 

above, in individuals on a Western style, low-fibre diet, the proximal colon is the 

main site of saccharolytic fermentation, with potentially damaging proteolytic 

fermentation increasing distally as the carbohydrate substrate becomes limiting. 

Retardation of carbohydrate fermentation in the proximal colon may extend SCFA 

production to the distal colon, thereby reducing the harmful effects of amino acid 

catabolites. However, this remains to be investigated either in vivo or using complex 

multistage continuous culture models of the colonic microbiota. Similarly, 

polyphenols have also been shown to directly affect the relative abundance of 

different bacteria within the gut microbiota, with tea polyphenols and their 

derivatives reducing numbers of potential pathogens including Clostridium perfringens 

and C. difficile and certain Gram-negative Bacteroides spp., with less inhibition toward 

beneficial clostridia, bifidobacteria, and lactobacilli (21). 

 

Table 1 Examples of important plant polyphenols and their microbial catabolitesa 

 

plant polyphenol microbial catabolite possible health effects 

4-hydroxyphenylacetic acid antimicrobial/antimycotic activity in vitro 

3-(3-hydroxyphenyl)propionic acid 
antimicrobial activity against Gram-negative 
enterobacteria via outer membrane destabilization 

5-(3,4-dihydroxyphenyl)-γ-valeric acid   
(−)-epicatechin (29-31) 

(−)-5-(3′,4′-dihydroxyphenyl)-γ-
valerolactone 

  

4-hydroxyphenylacetic acid antimicrobial/antimycotic activity in vitro 

(−)-epigallocatechin (31) (−)-5-(3′,4′-dihydroxyphenyl)-γ-
valerolactone 

  

(−)-epigallocatechin-3-O- pyrocatechol   
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plant polyphenol microbial catabolite possible health effects 

pyrogallol 

antibacterial activity (especially against Gram-
negative enterobacteria), acetylcholinesterase 
inhibition greater than gallic acid parent; inhibition 
of Vibrio spp. quorum sensing 

4-hydroxyphenylacetic acid antimicrobial/antimycotic activity in vitro 

gallate (29-34) 

(−)-5-(3′,4′-dihydroxyphenyl)-γ-
valerolactone 

  

hydrocaffeic acid 

dihydroxyphenyl acetic acid chlorogenic acid (17) 

hydroferulic acid 

reduced intestinal mucosal inflammation and 
oxidative damage in animal models of IBD 

3,4-dihydroxyphenylpropionic acid 

3-hydroxyphenylpropionic acid proanthocyanidins (16) 

3,4-dihydroxyphenylacetic acid 

reduced inflammatory response from LPS-
stimulated blood lymphocytes 

curcumin (18) ferulaldehyde 
reduced inflammatory response from LPS-
stimulated blood lymphocytes 

daidzein (35-37) equol 
phytoestrogen important for heart and bone health 
and possible colon cancer protectants 

daidzein (17, 33) O-demethylangolensin estrogenic and/or antiestrogenic activity 

2-(3,4-dihydroxyphenyl)acetic acid   

2,3-(3-hydroxyphenyl)acetic acid   

3,4-dihydroxybenzoic acid   

phloroglucinol   

3-(3,4-dihydroxyphenyl)propionic acid   

quercetin (33) 

3-(3-hydroxyphenyl)propionic acid   

kaempferol (33) 2-(4-hydroxyphenyl)acetic acid   

3-(4-hydroxyphenyl)propionic acid 
antimicrobial activity against Gram-negative 
enterobacteria via outer membrane destabilization naringenin (33) 

phloroglucinol   

isoxanthohumol (33) 8-prenylnaringenin   

3-(3-hydroxyphenyl)propionic acid   

5-(3′,4′-dihydroxyphenyl)-γ-valerolactone   

5-(3′-hydroxyphenyl)-γ-valerolactone   

3-hydroxyhippuric acid pyrogallol   

5-(3,4-dihydroxyphenyl)valeric acid   

5-(3-hydroxyohenyl)valeric acid   

3-(3,4-dihydroxyphenyl)propionic acid 
antimicrobial activity against Gram-negative 
enterobacteria via outer membrane destabilisation 

5-(3-methoxyohenyl)valeric acid   

3-(3,4-dihydroxyphenyl)propionic acid   

5-(3-methoxyohenyl)valeric acid   

catechin and epicatechin (24, 
33) 

2,3-dihydroxyphenoxyl 3-(3′,4′-
dihydroxyphenyl)propionic acid 

  

urolithin-A 
estrogenic and/or antiestrogenic activity, 
antimalarials, induction of detoxification enzymes 

urolithin-B 
estrogenic and/or antiestrogenic activity, 
antimalarials, induction of detoxification enzymes 

urolithin-C estrogenic and/or antiestrogenic activity 

ellagitannins/ellagic acid (3, 
14, 17, 34) 

urolithin-D estrogenic and/or antiestrogenic activity 
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plant polyphenol microbial catabolite possible health effects 

3-hydroxyphenylacetic acid 
rutin and catabolites inhibit AGE formation in 
vitro; antimicrobial activity against Gram-negative 
enterobacteria via outer membrane destabilisation 

3,4-dihydroxybenzoic acid   

4-hydroxybenzoic acid   

3-(3-hydroxyphenyl)propionic acid   

rutin (24, 35, 36) 

3,4-dihydroxyphenylacetic acid   

enterolactone 
Phytoestrogen important for heart and bone health; 
possible colon cancer protectants 

lignans (28) 

enterodiol 
Phytoestrogen important for heart and bone health; 
possible colon cancer protectants 

a The putative health effects of selected catabolites are also presented. 

 

Human data on the impact of polyphenols on the gut microbiota are scarce. 

One recent work from the University of Reading has shown that a high cocoa-

flavanol (494 mg/day) drink can mediate prebiotic type modulation of the gut 

microbiota in a randomised intervention study compared to a low cocoa-flavanol (23 

mg/day) drink. The high-flavanol drink resulted in significant increases in faecal 

bifidobacteria and lactobacilli and a reduction in clostridial counts and a concomitant 

reduction in plasma triglycerides and C-reactive protein, both important markers of 

metabolic disease (22). These results were mirrored by previous in vitro studies using 

faecal batch cultures by the same group (23). 

 

Polyphenol Microbial Metabolites and the Brain  

 

The biological properties of polyphenol microbial metabolites have been little 

explored and reported in the literature, mostly in relation to their neurological 

relevance and brain ageing prevention. Many experiments have been done on in vitro 

models, while evidences from in vivo systems are rare.  

Dietary intervention and epidemiological studies on humans have concluded 

that polyphenols and their metabolites may have some involvement in neurological 

protection/prevention and may promote brain health (37). The phenolic structure 

could protect against oxidative stress and their activity could be exerted at local or 
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systemic levels (33). However, antioxidant protection does not seem to be enough in 

predicting and assessing the bioactivity of these metabolites against certain disorders 

affected by ageing, and as a consequence other mechanisms of actions could be 

involved in neurological protection. Other mechanisms of action resulting in the 

literature are: direct effects on signalling to promote neuronal communication, the 

ability to buffer against calcium, enhancement of neuroprotective stress shock 

proteins and reduction of any stress signals (38). Recently mitochondrial dysfunction 

has also received attention in the pathogenesis of neurodegenerative diseases and 

brain ageing. Mitochondria are often considered as both initiators and targets of 

oxidative stress, during which polyphenol metabolites could modulate mitochondrial 

functions (39). 

However, it has not yet been clearly established whether these compounds 

reach the brain in a sufficient concentration and there are little information about the 

kind of interaction between polyphenols or their metabolites and the blood brain 

barrier (40). Moreover, reliable data on uptake into the brain are limited and with 

ambiguous protocols or data acquisition (41). 

The blood brain barrier is made up of brain capillary endothelial cells and 

other different cell types, such as perycytes, astrocytes and neuronal cells. A 

mandatory requisite for any kind of activity in the brain is therefore that polyphenol 

metabolites and their conjugates are able to pass the blood brain barrier and enter the 

brain. Many aspects limit brain permeability, brain capillary and endothelial cells 

having tight junctions which prevent paracellurar transport of water-soluble 

compounds. Transcellular transport is also limited. Possibly for these reasons, most 

experiments reporting on biological activities and the targets of polyphenols or their 

metabolites have used in vitro experiments, which are prone to artefact or not in line 

with real complex situations involving the brain and the blood brain barrier (39). 

The bioactivity of selected polyphenol metabolites in vitro has been tested at 

physiologically relevant doses against advanced glycation endproduct formation and 

the ability to counteract mild oxidative stress on human neuronal cells (19). All the 

catabolites investigated, divided into groups correlated with the consumption of 
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raspberries/pomegranates, coffee or berries/red wine have shown antiaglycane 

activity. Urolithin A and B, for example, from the microbial metabolism of 

ellagitannins, significantly reduced protein glycation at 1 µmol/L. In a vitro cell 

system with PC12 cells, protocatechuic acid has been shown to decrease 

mitochondrial dysfunction (42). Protocatechuic acid, the main microbial metabolite of 

anthocyanins, has been detected in human and animal blood, but at the moment there 

is no information available regarding brain uptake. 

The presence of gallic acid in the brain in vivo was shown in one interesting 

paper involving rats after the administration of proanthocyanidins (43). Gallic acid 

and some other methylated metabolites were observed inside the brain, albeit in trace 

amounts.  

Research on the effects of polyphenol metabolites in the future must involve 

in vivo models or artefact-free in vitro experiments and testing at physiological 

concentrations (39). In order to obtain more realistic observations, it is important to 

carry out experiments starting from the plasma concentration of these metabolites, 

which are in the range of sub-uM or nM in normal dietary consumption. 

Furthermore, the bioavailability of polyphenol microbial metabolites has to be 

carefully taken into account in nutrition-based studies and brain ageing experiments, 

along with the already investigated bioavailability of native polyphenols in plants. 
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The effects of fruit consumption on the 

mammalian system 
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 Recently, numerous studies have suggested that a wide range of polyphenols 

and their metabolites may have neuroprotective effects both in vitro and in vivo. 

Berries and strawberries are certainly among the best examples of “superfruit” with 

proven positive healthy effects.  In order to correctly evaluate the nutritional impact 

of fruit consumption it is first important to assess the precise composition of fruit 

polyphenols. In this study strawberries were chosen, as they are the most widely 

consumed type of soft fruit. Furthermore, it was necessary to prove whether these 

compounds can reach the brain in sufficient concentrations and in biologically active 

forms in order to exert beneficial effects.  

 

 The aim of my project was to study the effects of fruit consumption on the 

mammalian system and it was designed to cover two complementary fields of 

research: food chemistry and nutritional bioavailability. With the growing interest in 

the use of metabolomics, a wide range of biological targets and food applications 

related to nutrition and quality are rapidly emerging, offering the opportunity to gain 

deeper insight into several fields of research. A better knowledge of which types of 

polyphenols affect the mammalian metabolism can be achieved with the 

implementation of well-designed metabolomics experiments with different targets.  

 Accurate knowledge about the content of compounds important in the human 

diet in terms of polyphenols and their bioavailability is still not available, therefore 

the final goal of the study was to provide a substantial improvement in 

understanding the relevance of a diet rich in polyphenols to health. 

   

The thesis, gathering together the main results published and manuscripts 

about to be published, is divided into these two fields of research. Each publication or 

manuscript is introduced by a brief overview of the literature and the scope and the 

main results obtained, along with a precise statement of my personal involvement in 

the work.  
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In the food chemistry section, Chapter 1.1 presents a targeted metabolomics 

method for the detection of several classes of polyphenols in a short chromatographic 

run, while in Chapter 1.2 the attention was focused on a precise class of polyphenols 

also present in the strawberry: ellagitannins. The objective was to identify and clarify 

the chemical structures of the main ellagitannins in the strawberry, followed by their 

isolation and precise characterisation. Moreover in a second publication, further 

abundant ellagitannins were isolated and overall ellagitannin profiling with high 

definition mass spectrometry was performed, along with their quantification. Chapter 

1.3 instead combines the results presented in the previous chapters with the precise 

polyphenolic composition of a bowl of strawberries, presented for the first time. 

 

In the nutritional bioavailability section, Chapter 2.1 presents the development 

of a targeted metabolomics method for the detection of 23 polyphenol microbial 

metabolites in different organs of rats, i.e. blood, brain, liver, kidneys, heart and 

urine. Chapter 2.2 instead brings together the results of an in vivo experiment tracing 

the fate of 23 polyphenol microbial metabolites in rats, primarily in the brain but also 

in other organs, resulting from the putative consumption of a bowl of strawberries. 

The main goal was to prove whether these metabolites can reach the brain, 

supporting their ability to promote neuroprevention of brain ageing and neurological 

disease, as reported in epidemiological studies or in vitro experimentation. 
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Food Chemistry 

Chapter 1.1 

 

 

 

A targeted metabolomics method for the rapid 

quantification of multiple classes of phenolics  

 

 

 

 

 

 

 

 

 

 
 
This chapter has been reprinted* from:  
 
A Versatile Targeted Metabolomics Method for the Rapid Quantification of Multiple Classes 
of Phenolics in Fruits and Beverages Urska Vrhovsek, Domenico Masuero, Mattia 

Gasperotti, Pietro Franceschi, Lorenzo Caputi, Roberto Viola, Fulvio Mattivi Journal 
of Agricultural and Food Chemistry 2012 60 (36), 8831-8840 
 
*Reprinted with permission from the Journal of Agricultural and Food Chemistry.  
Copyright © 2012 American Chemical Society 
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Along with the widespread interest in phenolic compounds as food 

constituents, numerous separation and detection methods for their identification and 

quantification in different matrices have been developed in recent years (28*). 

However, the number of compounds that have been quantified in a single run 

with existing methodologies is still relatively modest when compared to the potential 

coverage of metabolites that could be achieved using the powerful technologies 

available on the market for chromatography and mass spectrometry, which are 

widely used in other fields, such as multi-residue pesticide analysis in food (29) and 

hormones (30). Targeted metabolomics represents an attractive strategy for food 

analysis. This methodology aims to quantify a predefined set of metabolites, typically 

dozens or hundreds of known compounds, based on metabolite-specific signals (33, 

34).  

In particular, in targeted metabolomics approaches, using triple-quadrupole 

mass spectrometers, a precursor ion and a fragment of the precursor ion, producing a 

molecular weight and structure-specific measurement for a single metabolite, are 

used for the sensitive and accurate determination of the compound concentration 

over a wide dynamic range. Simultaneous analysis of multiple transitions results in 

multiple reaction monitoring (MRM). 

The aim of this study was to develop a rapid and versatile targeted 

metabolomics method for the quantification of multiple classes of phenolics that 

could be used for high-throughput analysis of fruits and beverages.  

A detailed introduction, description of the methods and discussion of the 

results are attached in the original publication. 

 

An UPLC-MS/MS metabolite profiling method for food analysis, allowing 

rapid exploration of the presence of polyphenols in different food matrices, with 

                                                 
* References are reported in the same order and listed in the attached publication 
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converging opportunities for research applications in plant science and human 

nutrition was developed.  The high sensitivity of MRM-based mass spectrometry 

and the wide dynamic range of triple-quadrupole spectrometers provide valuable 

insight for the analysis of complex matrices such as fruit, and more in general food, in 

which analyte concentrations span several orders of magnitude.  

The method developed for the profiling of phenolic compounds is versatile 

and could be successfully applied to the analysis of a range of different matrices, not 

limited to those chosen for validation. The short duration of the analysis and 

straightforward sample preparation make the methodology suitable for high-

throughput varietal screening studies and for use in assisting plant breeders to select 

specific chemotypes. 

 

 My personal contribution to this work mainly concerned the setting up of 

instrumental conditions, strategies for the execution of future routine analysis and 

validation processes. After automatic detection of the best transition for each 

compound in the method and separation during the chromatographic run, I was 

personally involved in optimising the parameters to construct the method, hence in 

the selection of the quantifier ion, qualifier ion, and their specific ratio (according to 

European pesticide guidelines (40)), all these results being gathered together in Table 

1. This table represents the core of the method, giving a list of all the transitions, 

energies involved in the fragmentation and ratios, along with the retention times of 

all the 135 phenolic compounds in a total run of 11 minutes. Moreover, I was 

involved in the preparation of the standard solution for calibration, the rational 

design of the dilution and mixing of different compounds, processing of the curves 

with subsequent validation of the methods in terms of linearity and limits of 

quantification (Figures 1 and 2, Supplementary Table S2). Finally, I was involved in 

sample preparation and analysis of the preliminary samples for the initial application 

of the method adopting different fruits and beverages using UPLC-MS/MS. The 

quantitative results of this application are graphically presented in Figure 6 with all 

the compounds identified in the matrices.   
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Food Chemistry 

Chapter 1.2 

 

 

 

Ellagitannins in strawberries: Their isolation, 

structural elucidation and profiling during fruit ripening  

 

 

 

 

 
 
 
This chapter has been reprinted* from:  
 
1. Clarifying the Identity of the Main Ellagitannin in the Fruit of the Strawberry, Fragaria 
vesca and Fragaria ananassa Duch. Urska Vrhovsek, Graziano Guella, Mattia 
Gasperotti, Elisa Pojer, Mirella Zancato, Fulvio Mattivi, Journal of Agricultural and 
Food Chemistry, 2012, 60, 10, 2507-2516 
 
2. Evolution of Ellagitannin Content and Profile during Fruit Ripening in Fragaria spp. 
Mattia Gasperotti, Domenico Masuero, Graziano Guella, Luisa Palmieri, Paolo 
Martinatti, Elisa Pojer, Fulvio Mattivi, Urska Vrhovsek Journal of Agricultural and Food 
Chemistry 2013 61 (36), 8597-8607 
 
*Reprinted with permission from the Journal of Agricultural and Food Chemistry.  

Copyright © 2013 American Chemical Society 
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Ellagitannins are a complex family of hydrolysable tannins which have been 

found only in dicotyledoneous angiosperms (1†). Ellagitannins are present in the 

human diet, being contained in berries and strawberries in large amounts (2).  

This class of natural polyphenols has recently received considerable attention 

in the light of experimental evidence regarding purported anticancer properties (3, 4), 

antiproliferative properties (5, 6), antibacterial activity in relation to intestinal 

pathogens (7), and very recently anti-inflammatory activity at gastric level (8).  

There is little knowledge about the native forms of ellagitannins in 

strawberries and their biosynthetic behaviour during ripening (14-19). Their 

structural complexity is a major limiting step that prevents their study at molecular 

level. Due to the considerable diversity of ellagitannins, they still represent a 

challenge to food science and are a source of discussion in relation to their correct 

identification. Correct identification of the structure is clearly a prerequisite for 

understanding their bioavailability, bioactivity and metabolism.  

The structural elucidation of ellagitannins is a difficult task, because they are 

made up of the same building blocks (including but not limited to glucose, ellagic 

and gallic acid, and hexahydroxydiphenoyl (HHDP) units. As a consequence, many 

structurally related ellagitannins display characteristic, but very similar or sometimes 

almost identical, mass spectra. This issue, together with the lack of commercially 

available standards, makes their accurate identification and quantification very 

demanding. In the case of strawberries, there is fundamental disagreement about the 

identification of the main ellagitannin in the fruit. 

Due to the sheer complexity, the qualitative and quantitative composition of 

this class in strawberries has not yet been thoroughly resolved to date (14). This 

represents one of the major limitations in the study of health benefits and the human 

metabolism at molecular level. In order to assign the correct health properties to these 

compounds it is important to have specific knowledge about the chemical structure of 

                                                 
† References are reported in the same order and listed in the second publication attached 
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the native form of ellagitannins, their concentration, and the ellagitannin profiles 

present in fruits at different ripening stages and not only in ripe fruit.  

 
In this context, the aim of these two publications was primarily elucidation 

and profiling of the main ellagitannins. In the first publication, identification of the 

most abundant ellagitannin, after isolation, MS and NMR analysis, was clearly 

defined. The scope was to solve a major open question, namely whether the main 

ellagitannin in the strawberry is agrimoniin or sanguiin H-6, two isomeric forms of 

dimeric ellagitannins 

In the second publication, the scope was instead to isolate other ellagitannins 

and ellagic acid conjugates and their characterisation for a precise quantification. 

Moreover, with the use of high definition MS an exhaustive profile of all major 

ellagitannins was one of  the aims of the study, also in order to explain the behaviour 

of this class of compounds during fruit ripening in different Fragaria spp. It is 

important to answer this question due to several areas of scientific interest. From the 

point of view of plant biochemistry it is important to understand the fate of these 

compounds throughout ripening of the fruit, while on the other hand producers and 

consumers are concerned about the healthy properties of food. They are interested in 

learning how these compounds change while the fruit is edible, and the variability of 

the different genotypes.  

A detailed introduction, descriptions of the methods and discussion of the 

results are attached for both publications. 

 

The first important result was the unequivocal identification of agrimoniin as 

the most abundant ellagitannin in strawberries. After many years of uncertainty this 

was the first time that agrimoniin has been isolated and its structure characterised in 

the fruit of F. vesca and its presence reported as the main ellagitannin in both F. vesca 

and F. ananassa D. fruit.  

In the second publication the isolation and structural elucidation of other 

ellagitannins were reported, i.e. casuarictin and one ellagic acid conjugate, namely 
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methyl ellagic rhamnoside. Furthermore, MS profiling of 26 ellagitannins was 

performed in different Fragaria genotypes. Major qualitative and quantitative 

differences in the amount and profile of ellagitannins and ellagic acid conjugates 

were observed, both due to the variety and ripening stage.  

The results of this study show that genotype is a major factor in defining 

ellagitannin concentration and pattern in strawberries. The concentration of 

ellagitannins drops during ripening in all varieties. 

Both studies show that of fruit containing ellagitannins, strawberries represent 

the most important source of this class of compounds in the human diet, with 

agrimoniin probably being the most important ellagitannin consumed.  

 

My involvement in the first publication concerned the isolation of agrimoniin 

from Fragaria Vesca with the use of preparatory HPLC (see Figure 2) and UV and high 

definition analysis, the results being reported in Figure 6 and Figure 8. I also 

performed accurate quantification of agrimoniin with HPLC-DAD in different 

Fragaria spp. In the second publication I was again involved in isolation (Figure 1), UV 

analysis (Table S6) and MS characterisation. However the most challenging part of the 

research in which I was involved was high definition MS profiling of the 26 

ellagitannins identified, based on their spectra in each Fragaria spp. considered (the 

results are reported not only in the text but also in Figure 2, Table 1 and Table S5). 

After profiling and assignment of putative identification, I also performed 

quantification of the compound detected with a HPLC-DAD system, using the 

appropriate isolated ellagitannins (Table 2). A summary of the quantitative results for 

each cultivar and the woodland strawberry types are shown graphically in Figure 4, 

highlighting the drop in ellagitannins during fruit maturation. Moreover, as the first 

author I was responsible for writing the manuscript and managing the comments and 

improvements to the text of other co-authors.  
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Food chemistry 

Chapter 1.3 

 

 

 

 Polyphenols in a bowl of strawberries: 

Comprehensive profiling for better correlation with 

nutritionally significant properties 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
This chapter will shortly be submitted for publication as a manuscript:  
 
Overall dietary polyphenol intake in a bowl of strawberries: the influence of Fragaria spp. in 
nutritional studies Mattia Gasperotti, Domenico Masuero, Fulvio Mattivi, Urska 
Vrhovsek 
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In Europe, average strawberry consumption is 2.16 kg/year per person, 

including raw and processed fruit (2‡). On this basis, strawberries would clearly 

appear to be one of the most widely consumed berries. Furthermore strawberries are 

one of the most important sources of polyphenols in the human diet, being a rich 

source of these healthy phytochemical compounds (3,4). 

The regular consumption of strawberries in the diet contributes significantly to 

the intake of different phenolic compounds. Several classes of polyphenols are 

present in a bowl of strawberries (5,6). Studies of different cultivars including 

profiling of polyphenols have already been performed in some cases, but without 

quantitative determination or detailed characterisation (7-11). The most abundant 

classes of polyphenols in the strawberry are proanthocyanidins and anthocyanins, 

followed by ellagitannins and flavonol glycosides (3,4,14). 

Comprehensive quantification of polyphenols in food matrices is an essential 

step in assessing their biological mechanisms, nutritional properties and healthy 

effects. However due to the huge variety of polyphenol compounds, their precise 

characterisation in fruit or vegetables, even the most widely consumed, is still 

unclear. To study the nutritional quality of any fruit it is essential to start from 

phytochemical profiling of the native compounds in fruits and then move on to more 

complex bioavailability studies with in vivo trials. 

Thus the aim of this study was to present a comprehensive picture of 

strawberry polyphenols, reflecting their intake in the human diet. To date a detailed 

overview has been lacking in the literature or the databases available.  

A detailed introduction, description of the methods and discussion of the 

results have been included in the manuscript ready for the submission. 

 

                                                 
‡ References are reported in the same order and listed in the attached manuscript 
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A total of 56 individual compounds were accurately identified and quantified 

with a triple-quadrupole mass spectrometer, their concentration ranging from 1 

ug/100 g for low abundant polyphenols to 40 mg/100 g of fresh fruit. Furthermore, a 

spectrophotometric assay was carried out for precise estimation of high-molecular 

mass proanthocyanidins (HMWP).  

Quantitative data at molecular level are provided for all 56 compounds and 

indirect quantification was applied to the complex family of HMWPs. Several 

compounds were identified and quantified for the first time. In Fragaria Vesca, 

taxifolin, which is one of the most concentrated polyphenols after anthocyanins and 

ellagitannins, was quantified in the strawberry for the the first time. This study 

represents the most comprehensive targeted profiling of strawberry polyphenols, in 

terms of the number of individual compounds identified and quantified.  

 

My personal involvement in this manuscript regarded evaluation of the gap in 

knowledge relating to the precise composition of strawberry polyphenols in the 

literature. I performed quantitative analysis by applying the targeted method 

developed in Chapter 1.1 and I developed a new rapid UPLC-MS/MS method for 

anthocyanins and ellagitannins (see Table 1, Figure 1), with the isolated ellagitannins 

presented in Chapter 1.2. I produced a list of compounds with their precise 

quantifications in different Fragaria spp. (Table 2 and Figure 2). Moreover, I performed 

the spectrophotometric assay and explorative analysis for the analysis of 

proanthocyanidins, using high definition MS (Figure 3). Furthermore, as the first 

author I was responsible for writing the manuscript and managing the comments and 

improvements to the text by other co-authors. 
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Abstract 

 

Strawberry (Fragaria x Ananassa Duch) represents one of the most important 

crops worldwide. Moreover strawberries are one of the most important sources of 

polyphenols in the human diet, being a rich source of these healthy phytochemical 

compounds.  

Strawberries are now considered to be a functional food, as demonstrated by 

evidence regarding their antioxidant, anti-inflammatory, antihypertensive and 

antiproliferative properties. However which kinds of compounds are involved is not 

fully understood at the moment.  

The aim of this study was to present a comprehensive picture of the amount of 

polyphenols present in the human diet. Attention was focused on the consumption of 

a standard bowl of different Fragaria spp. An already published method for the 

quantification of multiple classes of phenols and the development of a method for the 

simultaneous quantification of anthocyanins and ellagitannins was used for this 

purpose. Furthermore, spectrophotometric assay for precise estimation of high-

molecular mass proanthocyanidins was applied.  

A total of 56 individual compounds were accurately identified and quantified 

with a triple-quadrupole mass spectrometer their concentration was ranging from 1 

ug/100 g, for low abundant polyphenols, to 40 mg/100 g of fresh fruit. Several 

compounds were identified or quantified for the first time in strawberry fruits. 

 

 

 

 

 

Keywords strawberry, polyphenols, ellagitannins, anthocyanins, flavonoids  
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Introduction 

 

According to the statistical database of the Food and Agriculture Organization 

of the United Nations (FAO) (1), the strawberry (Fragaria x Ananassa Duch) represents 

one of the most important crops worldwide, with worldwide production and overall 

global trading of 4.1 million tons. In terms of production, there was a global increase 

of 20% from 2005 to 2011, with an increase of 50% in Europe and the United States 

alone.  

In the European market, average strawberry consumption is 2.16 kg/year per person, 

including raw fruit and processed food (2). On the basis of this figure, strawberries 

would clearly appear to be one of the most widely consumed berries. Furthermore 

strawberries are one of the most important sources of polyphenols in the human diet, 

being a rich source of these healthy phytochemical compounds (3, 4).  

Regular consumption of strawberries in the diet contributes significantly to the 

intake of different phenolic compounds. Several classes of polyphenols are present in 

a bowl of strawberries (5, 6). Studies of different cultivars including profiling of 

polyphenols have already been performed in some cases, but without quantitative 

determination or without detailed characterisation (7–11). Furthermore the chemical 

composition varies with the genotype, as already reported, but also depending on 

agricultural practices, the degree of maturity and environmental factors (12,13). The 

most abundant polyphenols are proanthocyanidins and anthocyanins, followed by 

ellagitannins and flavonol glycosides (3,4, 14). Analysis of proanthocyanidins and 

ellagitannins, polymeric and oligomeric compounds, has so far been little studied, 

due to analytical problems and the complexity of their chemical characterisation. 

Only recently has been published a complete profile for ellagitannins, with 

identification and precise quantification of several molecules (15), while similarly 

detailed information is still not present in the literature in relation to 
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proanthocyanidins, although this class of compounds represents the main group of 

polyphenols in the strawberry (16). 

Strawberries are now considered to be a functional food, with multiple health 

benefits over and beyond nutritional needs, as demonstrated by extensive evidence 

regarding their antioxidant, anti-inflammatory, antihypertensive and antiproliferative 

properties (17). Epidemiological studies have been shown an inverse correlation 

between the consumption of fruits rich in polyphenols and degenerative or 

proliferative disease, cardiovascular disease and chronic diseases (3, 17–19). The 

potential effects of the consumption of strawberries on health have been well 

described in the literature for decades, but the precise mechanism of polyphenols’ 

healthy effect on the mammalian system are still generally unclear. Even which kinds 

of compounds are involved is not fully understood at the moment.  

Comprehensive quantification of polyphenols in food matrices is an essential 

step in assessing their biological mechanism, nutritional properties and healthy 

effects. However due to the huge variety of polyphenol compounds, their precise 

characterisation in fruit and vegetables, even the most widely consumed, is still 

unclear. To study the nutritional quality of any fruit it is essential to start with 

phytochemical profiling of the native compounds and then move on to more 

sophisticated bioavailability studies. Moreover, in bioavailability studies today the 

role of gut microflora also has to be taken into account and can improve the 

variability of the phytochemical compounds present in the consumed fruits (20, 21). 

The aim of this study was to present a comprehensive picture of the quantity 

of polyphenols present in the human diet. Attention was focused on the consumption 

of a standard bowl of different Fragaria spp. (100 g). Indeed, to assist long and 

expensive future nutritional studies on the effective healthy effects of the strawberry, 

it is necessary to carry out detailed profiling of its polyphenolic composition. Thus an 

already published method for the quantification of multiple classes of phenols and 

the development of a method for the simultaneous quantification of anthocyanins 

and ellagitannins was used for this purpose. Furthermore, spectrophotometric assay 

for precise estimation of high-molecular mass proanthocyanidins (HMWP) was used. 
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A total of 56 individual compounds were accurately identified and quantified with a 

triple-quadrupole mass spectrometer, ranging from 1 ug/100 g, for low abundant 

polyphenols, to 40 mg/100 g of fresh fruit. 

To our knowledge this is the first time that such a comprehensive targeted 

profile has been performed on strawberry polyphenols, in terms of the number of 

individual compounds identified and quantified at the same time with proper 

standard references.  

 

 

Materials and Methods 

 

 Chemicals and Reagents. All the chromatographic solvents were HPLC grade 

or LC-MS grade for the MS experiments. Acetonitrile, acetone, methanol and formic 

acid were purchased from Sigma Aldrich (Milan, Italy). Detailed information 

regarding the standard references used and vendors are reported in Vrhovsek et al. 

(22) Sanguiin H6 was isolated as described in Gasperotti et al. (23), agrimoniin as 

described in Vrhovsek et al. (24), casuarictin and methyl ellagic acid rhamnoside as 

described in Gasperotti et al. (15). 

 

 Plant Material. Different Fragaria spp. 6 Fragaria x ananassa cultivars (Alba, 

Clery, Eva, Elsanta, Darselect, and Portola) and 2 accessions (one red and one white) 

of Fragaria vesca were used. The plants were grown in the same experimental field in 

Vigalzano (Trentino, Italy; 520 AMSL) during the 2011 season. All the cultivars were 

grown in standardised conditions in order to minimise the effect of environmental 

and agronomic factors. For each Fragaria spp. analysed, 3 repeats of 6 plants (18 

plants in total) were considered, in order to obtain 3 biological replicates. The plants 

were cultivated with the soilless technique. Plants of the same cultivar were obtained 

vegetatively. For each cultivar, 250 g of strawberries were harvested at commercial 

ripeness. Detailed information regarding the agronomical conditions is reported in 
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Gasperotti et al. (15). The strawberries were harvested at commercial ripeness. Once 

collected the samples were stored in a freezer at -20 ° C until extraction. 

 

 Extraction of Phenolic Compounds. Extraction was performed as reported in 

Mattivi et al. (25) with an acetone/water mixture (70/30 v/v), avoiding the addition 

of acids in order to prevent any possible chemical hydrolysis. Briefly, 60 g of fresh 

fruit was homogenised in a 847-86 model Osterizer blender at speed one, in 2 x 100 

mL of mixture acetone/water (70/30 v/v) for 1 min and made up to 250 ml with the 

same solvent.  The centrifuged extracts were stored at –20 °C until analysis. 

 

 Sample Preparation for UPLC-MS/MS Analysis. An aliquot of the extract, 1.5 

ml, was completely dried under a stream of nitrogen. Then, 150 µL of 

methanol/water (50:50), with 1mg/L of rosmarinic acid as internal standard, was 

added to the dry sample and filtered (0.45 µm) into an HPLC vial. The samples, 10 

times concentrated, were now ready for further UPLC-MS/MS analysis. The internal 

standard was added to monitor the analytical performance of the instrument. 

 

 UPLC-MS/MS Method for Anthocyanins and the Main Ellagitannins. An 

UPLC-MS/MS method was developed by combining anthocyanins, reported in the 

literature (26), and the main ellagitannins detected (15) in the strawberry. The 

analysis was performed with an ultra performance LC (UPLC) system coupled with a 

triple quadrupole (TQ) mass spectrometer. The UPLC system used was a Waters 

Acquity UPLC system (Milford, Massachusetts, USA). Separation was performed 

with a Waters Acquity UPLC column (Milford, Massachusetts, USA), BEH C18 (150 

mm x 2.1 mm, 1.7 µm) equipped with the proper guard column, maintained at 60°C. 

The injection volume was 2 µL and solvent flow was 0.45 mL/min. Mobile phases of 

2.5% formic acid in Milli-Q water (A) and acid in acetonitrile (B) were used. 

Chromatographic separation was performed using a gradient as follows: 0 min, 5% B; 

0-10 min, 5%-25% B; 10-10.5 min; 25-90% B; 10.5-12.50 min, 90% B, 12.60-16.60 min, 

5% as equilibration time. The TQ mass spectrometer used was a Waters Xevo TQ 
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(Milford, Massachusetts, USA) coupled with an electrospray interface. Direct 

injections of each individual compound were used to optimise the MRM conditions. 

This was done automatically by the Waters IntelliStart software, and then manually 

checked for selection of the quantifier and qualifier ions. The MRMs for each 

compound are listed in Table 1 with cone voltages and collision energies. Calibration 

curves were performed for each individual compound for precise quantification, 

using commercially available anthocyanins and the previously isolated 

ellagitannins.(15, 23, 24) Calibration curves were prepared ranging from 0.0005 mg/L 

to 20 mg/L. 

 

 UPLC-MS/MS Method for Multiple Classes of Phenolics. Quantitative 

analysis for the rest of the polyphenols, excluding anthocyanins and ellagitannins, 

was carried out with a previously validated method for the rapid quantification of 

multiple classes of phenolics (22). Briefly, the analysis was performed with the same 

ultra performance LC (UPLC) system, coupled with the triple quadrupole (TQ) mass 

spectrometer used in the previous method. Separation was performed with a Waters 

Acquity UPLC column (Milford, Massachusetts, USA), HSS T3 (100 mm x 2.1 mm, 1.8 

µm) equipped with the proper guard column, maintained at 40°C. The injection 

volume was 2 µL, with a flow of 0.4 mL/min. Mobile phases of 0.1% formic acid in 

Milli-Q water (A) and 0.1% formic acid in acetonitrile (B) were used. 

Chromatographic separation was performed using a gradient as follows: 0 min, 5% B; 

0-3 min, 5%-20% B; 3-4.30 min; 20% B; 4.30-9 min, 20%-45% B, 9-11 min, 45%-100% B, 

11-14 min, 100%; and 14.01-17 min, 5% as equilibration time (22). Further information 

regarding the UPLC-MS/MS method and MRM quantification are described in 

Vrhovsek et al. (22). A total of 44 polyphenols were identified among the samples and 

proper calibration curves were obtained for each individual compound for precise 

quantification. Calibration curves were prepared, with appropriate standard 

references, ranging from 0.0005 mg/L to 20 mg/L. 
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 Analysis of Proanthocyanidins. The assay to determine the quantity of 

proanthocyanidins was based on their transformation into anthocyanidins, in a 

warm, acid environment (27). An aliquot of the initial extract, 5 mL, was evaporated 

using a rotavapor in order to eliminate the acetone fraction and dissolved in a 5 mL 

flask with 0.05 M H2SO4. One mL of this solution was loaded onto a conditioned Sep-

Pak C18 (Waters, Milford, MA, USA), which was previously washed with 2 mL of 5 

mM H2SO4. Proanthocyanidins were eluted with 3 mL of MeOH and collected in a 50 

mL flask, shielded from light with aluminium foil, containing 9.5 mL absolute EtOH. 

12.5 mL of FeSO4 was added to the mixture in concentrated HCl (300 mg/L) and then 

immediately placed in a boiling water bath and refluxed for 50 min. After 10 min, the 

spectrum from 380 to 700 nm was recorded in a 10 mm cell, against a blank (water). 

The tangent from the minimum (450 nm) was drawn, and the absorbance between the 

maximum (550 nm) and the tangent was measured. To subtract natural anthocyanins 

present in the sample, which can interfere with the assay, one mL of the latter 

solution dissolved in 0.05 M H2SO4 was prepared in the same conditions. However, 

in this case the reaction was carried out in an ice bath and the absorbance obtained 

was then subtracted to obtain the net absorbance value. The proanthocyanidins 

concentration (mg/L) can be conventionally expressed as the cyanidin formed. 

Further information is present in the literature (27–29). 

  

 Explorative Profiling of Proanthocyanidins. An aliquot of the acetone extract 

was concentrated 4 times and dissolved in methanol/water (50:50) for explorative 

analysis using high definition mass spectrometry (HDMS), a Synapt Waters, coupled 

with UPLC and injected with a previously 60 min. chromatographic method(23). The 

molecular ions of the main oligomeric form were selected and extracted from the 

HDMS spectrum. 

 

 Data Analysis and Statistical Analysis. Data processing was carried out using 

Waters MassLynx 4.1 and TargetLynx software. All samples were in biological 
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triplicates. The data collected were presented as average values and standard 

deviations. 

 

 

Results and Discussion  

 

 Variety. The varieties chosen for the dietary intake of polyphenols included 2 

wild accessions of Fragaria Vesca, the red and white types, whereas the 6 main 

representative cultivars of Fragaria x Ananassa were chosen: Portola, Eva, Elsanta, 

Clery, Darselect and Alba. The chosen cultivars were selected from those most widely 

consumed in both Italy and Europe. All the samples were grown and picked in 

Trentino, Italy in the same agronomical conditions and harvested at commercial 

maturity to avoid any environmental and agronomical effects on the polyphenolic 

composition (30). Due to the difference in the varieties, cultivars and accessions 

investigated, it was expected that the amount of polyphenols would make it possible 

to obtain a clear estimate of the intake of strawberry polyphenols in both Italy and 

Europe associated with the consumption of a bowl of strawberries, 100 g, of the most 

widely used cultivars or wild species. 

 

 Targeted Profiling of Strawberry Polyphenols. The polyphenols in the fruit of 

the different Fragaria spp. considered were identified and quantified precisely with 

the use of a TQ mass spectrometer. With the use of the triple quadrupole mass 

spectrometer several compounds were found in traces, leading to quantification of 

some polyphenols never previously reported in the strawberry. Each compound was 

identified and confirmed in the samples by checking whether both transitions 

(MRMs), qualifier and quantifier ions prepared for the method of quantification with 

the appropriate standard references, were present in the chromatograms. With the 

use of the two complementary UPLC-MS/MS methods (Figure 1), a total of 56 

compounds were separated, identified and quantified with standard references in the 
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samples. The list of all the compounds identified is presented in Table 1, together 

with the amount recovered for each sample. The values are reported in ug/100 g, as 

the average value of the 3 replicates (and their standard deviation). The amounts 

found ranged from a few ug/100 g to many mg/100 g of fresh fruit. 

As the main outcome, a list of polyphenols was produced for the creation of 

databases reporting on polyphenol composition in fruit and vegetables (5, 6) 

providing more information also as compared to similar studies involving targeted 

profiling of strawberry polyphenols (7, 8, 10, 14, 31, 32). Moreover, in comparison to 

untargeted profiling studies on the strawberry (8, 11, 33) a similar number of 

polyphenolic compounds was reported but with a major improvement in 

identification/quantification and not only with tentative identification on the basis of 

fragmentation patterns. The total amounts and the relative percentages of the main 

classes or groups of classes are shown graphically in Figure 2. In order to simplify the 

pie charts, 5 groups were highlighted: proanthocyanidins (HMWP), ellagitannins, 

anthocyanins, flavonoids (adding together flavones, flavanones, flavan-3-ols and 

flavonols) and other polyphenols (adding together benzoic acid derivatives, 

phenylpropanoids, stilbenes, phenol glycosides and dihydrochalcones). From the pie 

charts it is clear that proanthocyanidins are the most abundant polyphenols in the 

strawberry (16). The other two main groups are anthocyanins and ellagitannins, 

followed by flavonoids and traces of other polyphenols. Considering the total 

amounts in the strawberry, the highest values were found for the two accessions of 

Fragaria Vesca, 324 and 448 mg/100 g respectively for the red and white types. The 

amounts in the cultivars were lower, falling between 204 and 288 mg/100 g 

respectively for the Clery cv and the Darselect cv. The data on total polyphenol 

content are in accordance with the average values calculated in a different manner, 

i.e. Follin assay for total polyphenol content, and present in databases, but of course 

with more detailed characterisation of the individual amounts (5, 6). 

 

 Classes of Polyphenols. Using 3 rapid methods, 2 instrumental and one 

spectrophotometric assay, it was possible to identify the main classes of polyphenols 
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present in the strawberry, but it was also possible to detect many minor polyphenols 

present in traces. A total of 56 polyphenols are listed in Table 1, all identified and 

quantified with the proper standard references, with the exclusion of 

proanthocyanidins. In this way it was possible to build up a comprehensive picture of 

the presence and type of different classes of polyphenols in a bowl of strawberries, 

along with the quantity of proanthocyanidins, not described in detail at molecular 

level, that may be consumed in the human diet.  

 Proanthocyanidins. Precise quantification and characterisation of these is still an 

open problem in terms of polyphenol analysis, due to their complexity, given that 

they are compounds with a high molecular weight. A number of strategies have been 

reported for the study of high molecular weight proanthocyanidins (HMWPs), 

including the use spectrophotometric assay (28), normal phase separation coupled 

with fluorescent detector (34), phloroglucinol adducts or the thiolysis method (35). 

Interestingly, in terms of estimation, good correlation with the accepted Bate-Smith 

assay was shown as compared to more laborious instrumental methods (i.e 

phloroglucinol adducts or thiolysis) (29). For this reason Bate-Smith assay was used 

for the analysis of HMWPs, given that other more precise methods are not reliable for 

their characterisation and quantification. However, as an exploratory example, the 

HDMS spectrum of a sample of the red type Fragaria Vesca showed extracted ions of 

the main tentative proanthocyanidins reported in the strawberry (16) (Figure 3). 

HDMS analysis confirmed the presence of some peaks at m/z 577 (dimers), 865 

(trimers), 1153 (tetramers) and 720 (bicharged pentamers) corresponding to 

(epi)catechin-based proanthocyanidins. 

 Representing the most abundant polyphenols in the strawberry (Figure 2), the 

amount consumed in a bowl of strawberries is between 135 mg/100 g and 205 

mg/100 g respectively for the Clery cv and the Darselect cv, while the amount is 

higher in the red type of wild strawberry, namely 270 mg/100 g. As a major class of 

strawberry polyphenols, they represent between 54.8% and the 77.4% of polyphenolic 

compounds. The cultivar with the highest relative value is the Portola cv. 
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 Anthocyanins. The red colour of strawberries comes from the presence of 

anthocyanins. In strawberries, anthocyanins are made up of a mixture of cyanidin, 

pelargonidin and peonidin glycisides, mainly glucosides, galactosides and 

rutinosides (26). On the contrary, anthocyanins are not present in the white type of 

Fragaria Vesca, with the exception of some traces of cyanidin glucoside and 

galactoside, and as a consequence the fruit is white/green. The main anthocyanin in 

the red strawberry is pelargonidin-3-glucoside (26, 36) (up to 43 mg/100 g in the 

Darselect cv), followed by cyanidin-3-glucoside (up to 12 mg/100 g in the red type of 

Fragaria Vesca and up to 0.4 mg/100 g in the cultivars) and cyanidin-3-galctoside. 

Cyanidin-3-rutinoside, pelargonidin-3-rutinoside and peonidin-3-galactoside were 

also found in the cultivars, while they were not present at all in Fragaria Vesca. 

A certain variability in terms of the compounds identified and the amounts can 

be observed in the cultivars. The Elsanta cv had the lowest number of different 

anthocyanins, although the total amount recovered was nearly 35 mg/100 g, while 

the Portola cv, with the largest number of different anthocyanins, was the cultivar 

with the lowest total amount, 24 mg/100 g. 

 Ellagitannins. In the strawberry ellagitannins are the third most concentrated 

class of polyphenols, the main ellagitannins having recently been isolated for their 

clear identification and precise quantification (15, 24). From previous publications, 

only the 3 main ellagitannins – agrimoniin, casuarictin and sanguiin H-6 – and ellagic 

acid with the methyl ellagic acid rhamnoside, isolated and characterised using NMR 

(15, 23, 24), were considered for the purpose of having a picture of the overall intake 

of polyphenols present in a bowl of strawberries. More in-depth profiling with many 

other ellagitannins has already been proposed for the same cultivars (15). 

 As already shown, agrimoniin was the main ellagitannin in the strawberry 

(from 84 to 9 mg/100 g), followed by casuarictin (from 19 to 5 mg/100 g) and then 

sanguiin H-6 (from 2.2 to 0.2 mg/100 g. The concentration of ellagic acid was from 7 

to 0.3 mg/100 g. 

 Methyl ellagic acid rhamnoside was present in large amounts in Fragaria Vesca, 

with a concentration of 28 and 35 mg/100 g respectively for the white and red types. 
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Interestingly, traces of these ellagic conjugates were also found in the cultivars (11-2.8 

ug/100 g) while in previous publications they were not reported (15). 

 Flavonoids. The fourth most characteristic group of polyphenols (see Figure 2) 

in the strawberry is the flavonoid family (without considering the anthocyanins 

described above as an independent class of polyphenols). The flavonoids found in 

strawberry were flavones, flavanones (naringenin alone), flavan-3-ols and flavonols 

and dihydroflavonols. 

In the literature considered for this publication, no information regarding the 

survey of flavanones, naringenin or flavones, namely luteolin or hesperidin, was 

found. However, some traces of luteolin, luteolin-7-glucoside, hesperidin and 

naringenin were detected in the samples chosen. 

The main flavan-3-ol detected in the strawberry was catechin (5.9-1.8 mg/100 

g), while epicatechin was about 10 times lower in all the Fragaria spp. The dimers of 

the flavan-3-ols identified were instead procyanidin B1 and B3, in accordance with 

the literature.(8) In this case procyanidin B3 was about one grade of magnitude 

higher then procyanidin B1 (2.8-1 as compared to 0.58-0.17 mg/100 g). These flavan-

3-ols are not listed in the HMWP group, since they do not respond so well to the Bate-

Smith assay, being more selective for high molecules (29) and due to the fact that 

there are standard references available for quantification of these molecules. 

The content of overall flavonols, i.e. quercetin, unbound kaempferol and 

glycosides and isorhamnetin glycosides, varied in the samples from 0.9 mg/100 g 

(Portola) to 11 mg/100 g (F. Vesca, red type). Of the glycosides, quercetin-3-

glucuronide was the most abundant in all the cultivars and wild types, in accordance 

with the literature for the cultivars (10, 16) but not reported in relation to the wild 

types (37). Quercetin-3-glucuronide was followed by kaempferol-3-glucuronide, 

which was the second most abundant (from 0.28 to 0.66 mg/100 g) and kaempferol-3-

glucoside (from 0.09 to 0.26 mg/100 g) in the cultivars selected. In the wild type 

quercetin-3-glucuronide was followed by quercetin-3-glucoside and kaempferol-3-

glucoside, in accordance with the literature (37).  
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Interestingly, five different adducts made with rutinose are present in almost 

all the cultivars considered, but have never been reported in the literature (10, 16, 31, 

37, 38), with the exception of isorhamnetin rutinoside (11) and quercetin rutinoside 

(rutin) (7, 33), but with no information regarding their concentration. Another 

rutinoside adduct clearly found for the first time is kaempferol-3-rutinoside, not 

present in any of the articles considered. 

Likewise, the free forms of flavonols, i.e. quercetin and kaempferol, have never 

been reported in the literature, or in untargeted profiling studies of the strawberry 

(33), and some traces in the samples were detected. 

The dihydroflavonol family (added to flavonols in Table 2), i.e 

dihydroquercetin (taxifolin) and dihydrokaempferol in the Fragaria spp. considered, 

was present. Quantitative amounts are proposed for the first time in this publication, 

since their presence was only tentatively reported in an untargeted study (39). 

Remarkably, taxifolin appears to be the most abundant flavonoid, after anthocyanins, 

with a concentration of 9.5 and 8.5 mg/100 g respectively in the red and white types 

of wild strawberry. 

 Other Polyphenols. In this work it was possible to significantly increase the 

number of compounds detected with the use of a TQ mass spectrometer and also to 

characterise in detail many other polyphenols which are not as abundant as the 

previous polyphenols discussed above. These minor polyphenols were included in 

the category of other polyphenols (incorporating benzoic acid derivatives, 

phenylpropanoids, stilbenes, phenol glycosides and dihydrochalcones) in Figure 2 

and they represent less than 0.1 % of the total amount of polyphenols that may be 

consumed in a bowl of strawberries. The individual concentration was no more than 

100 ug/100 g in any of the samples. 

Compounds deriving from the benzoic acid, i.e. p-hydroxybenzoic acid, 

cinnamic acid, vanillin, vanillic acid, 2-6-dihydroxybenzoic acid methyl gallate or 

cathecol, were present together, with a concentration spanning from 30 ug/100 g to 

112 ug/100 g. They have already been identified as putative metabolites but with no 

information about their concentration (39). 
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Caffeic acid, ferulic acid, p-coumaric acid and chlorogenic acid – classified as 

phenylpropanoids – have already been reported in the literature but only confirmed 

with the photo diode array system (38), while chlorogenic acid was detected in 

untargeted data (11) as a putative metabolite with no information about 

concentration, although chlorogenic acid was the most abundant among the latter 

compounds (75 ug/100 g in cv. Elsanta). Traces of trans-coutaric acid were also found 

and have never been reported in previous studies. 

Some stilbenes were also detected, in particular trans-piceid and cis-piceid, 

which have never been detected in the strawberry, due to their extremely low 

concentrations. The total concentration of stilbenes was from 3.4 to 7 ug/100 g in the 

Portola cv and white type of F. Vesca respectively.  

Phloretin and phlorizin, belonging to the dihydrochalcones family, were 

reported for the first time by Hilt et al. (40), but no evidence was found in other 

publications. The presence of another dihydrochalcone, namely trilobatin, detected in 

traces in the samples considered, has also never been reported in the literature.  

 

 

Conclusion 

 

 This work offers some important new aspects and improvements in the study 

of strawberry polyphenols, which may also apply to the study of other polyphenols-

based food. The 56 polyphenols listed in this publication certainly do not represent a 

complete list of polyphenols present in the strawberry, but to our knowledge, at the 

moment they offer the most up-to-date list of clearly identified compounds, without 

any tentative identification, since they were compared with their reference 

compounds. Furthermore, quantitative data are provided for all the compounds and 

estimation only for the complex HMWP family. Several compounds were identified 

or quantified for the first time, not only because present in traces. Indeed, taxifolin 
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was quantified for the first time in Fragaria Vesca, representing one of the most 

concentrated polyphenols after anthocyanins and ellagitannins. 
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Figure 1 UPLC profile of the polyphenols detected in strawberry 
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Figure 2 Total amount of polyphenols and their percentage in Fragaria spp., 
grouped accordingly to Figure 1, with the addition of proanthocyanidins. 
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Figure 3 Preliminary High Definition MS analysis of proanthocyanidins. 
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Table 1 MRM Parameters of anthocyanins and ellagitannins 
 

     quantifier ion qualifier ion 

compound 
Rt 

min
. 

ES 
Cone 

Voltage 
(V) 

Q1 
m/z 

Collision 
Energy (V) 

Q2 
m/z 

Collision 
Energy (V) 

Q2 
m/z 

anthocyanins 

Cyanidin-3-galactoside 2.54 + 26 449.3 22 287.2 66 137.2 

Cyanidin-3-sambioside 2.81 + 30 581.3 26 287.2 72 137.2 

Cyanidin-3-glucoside 2.83 + 26 449.3 28 287.2 58 137.2 

Cyanidin-3-arabinoside 3.09 + 24 419.3 24 287.2 56 137.2 

Cyanidin-3-rutinoside 3.15 + 34 595.4 38 287.2 66 137.2 

Pelargonidin-3-glucoside 3.45 + 24 433.3 24 271.2 56 121.1 

Peonidin-3-galactoside 3.63 + 24 463.3 24 301.1 42 286.1 

Pelargonidin-3-rutinoside 3.94 + 30 579.2 20 433.1 30 271 

Peonidin-3-rutinoside 4.37 + 30 609.2 30 301.7 56 286.1 

ellagitannins 

Casuarictin 3.27 - 66 934.7 26 632.7 46 300.8 

Sanguiin H6 3.63 - 34 934.1 22 632.8 38 300.8 

Agrimoniin 5.06 - 32 934.1 22 632.8 46 300.8 
Methyl ellagic acid 
rhamnoside 6.97 - 30 460.8 18 314.8 20 299.8 
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Table 2 Quantitative results of all the polyphenols detected in Fragaria spp. Data are 
the average of the three replicates and their standard deviation in italics. 
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metabolites related to polyphenol gut microbial 

metabolism in biological samples 

 

 

 

 

 

 

 

 

 

This chapter has been reprinted* from: 
 
Development of a targeted method for twenty-three metabolites related to polyphenol gut 
microbial metabolism in biological samples, using SPE and UHPLC-ESI-MS/MS Mattia 
Gasperotti, Domenico Masuero, Graziano Guella, Fulvio Mattivi, Urska Vrhovsek, 
Talanta, 2014 120, 221-230 
 
*Reprinted with permission from Talanta. 
Copyright © 2014 Elsevier 
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By identifying biologically active molecules and their mechanisms, interaction 

or dietary response in individuals, modern nutrition tries to understand how the 

biological system can be affected or influenced by dietary intervention.  

Polyphenol bioactivity has been correlated to bioavailability and catabolism, 

but their biological effects cannot be attributed only to the native forms, as found in 

food sources, but also and above all to their metabolites (4-7§). The factor most 

influencing their fate after consumption is the microbial polyphenol metabolism, 

made up of the gut microbiota, which represents all the microorganisms present in 

the gastrointestinal tract (8). The majority of those ingested polyphenol reach the 

colon without any degradation, after passing thorough the oral cavity or the stomach. 

The colonic microflora has been confirmed as the major responsible for the 

polyphenol metabolism, from the release of the aglycone flavonoids to the small 

phenolic acids. The microbial polyphenol metabolism follows a general pattern, in 

which this extremely diverse group of plant polyphenols is converted to a relatively 

small number of common metabolites. For this reason, the compounds that can reach 

cells, tissues or target organs are chemically and biologically different from the 

original dietary polyphenols (11). 

In nutritional metabolomics, targeted based metabolomics or targeted profiling 

is aimed at quantitative analysis of a predefined metabolite group associated with a 

predefined class of compounds or pathway (19). Several pathways related to the 

microbial catabolism of polyphenols have been reported in the literature (23-26). 

However, there is a need for rapid and sensitive analytical methods that can quantify 

such metabolites for a large number of samples, as in the case of clinical studies or 

long term dietary intervention, in different matrices, with rapid and sensitive 

targeted metabolomics analysis (19). 

For these reasons the aim of the this part of the project was the development of 

a sensitive targeted metabolomics method for analysis of 23 polyphenol microbial 

                                                 
§ References are reported in the same order and listed in the attached accepted manuscript 
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metabolites, suitable for application to rat organs and biofluids, carefully considering 

all aspects of sample preparation for such complex matrices and the expected low 

amount to be detected, in relation to the consumption of fruit rich in polyphenols. 

This part of the work was developed in order to analytically support in vivo 

experiments using a physiologically relevant dose of polyphenol microbial 

metabolites (reflecting the consumption of a putative dose of strawberries) or to 

eventually be translated to human studies.  

A detailed introduction, description of methods and discussion of the results 

are attached in the manuscript ready for the submission. 

 

A high-throughput, sensitive and reproducible method for targeted 

metabolomics for quantitative analysis of 23 polyphenol metabolites in six different 

biological matrices was developed. The development of a purification procedure 

made it possible to obtain cleaner samples and more concentrated samples, with low 

LOQs. By analysing different biological samples, such as blood, urine, liver, kidney, 

heart and brain spiked with target metabolites, it was possible to test metabolite 

detection in the matrix and validate the overall recovery of the method, from 

purification to quantification. 

 Considering the variety of matrices which can be treated in the same 

conditions with a single general quantitative analytical protocol for targeted based 

metabolomics, this method can be considered a general method for the simultaneous 

analysis of several chemically different compounds in a complex matrix. 

Consequently, this method can be used for nutritional studies and in particular 

with the expected amounts of polyphenol metabolites reported by Manach et al. (4), 

in which the expected total plasma concentration of polyphenol metabolites ranges 

from 0-4 µmol/L, with an intake of 50 mg of polyphenol aglycone equivalent.  

 

My personal involvement in this research started with the experimental design 

for the method development and selection of the metabolites included in the study. 

Moreover, I carried out the synthesis of two of the metabolites, urolithin A and 
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urolithin B, which are not commercially available. Along with the synthesis, I also 

carried out purification of the raw products of the synthesis, their precipitation and 

initial characterisation using MS. Precise identification and purity were then assigned 

using NMR, kindly performed by Prof. Graziano Guella. As regards method 

development, I personally performed all the experiments, protocols and validation 

presented in the manuscript. As first author I was responsible for writing the 

manuscript and managing the comments and improvements to the text by the other 

co-authors. 
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 Supplementary Fig. 1. 

Matrix-match calibration and solvent calibration curves and graphic displays 
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 Fate of microbial metabolites of dietary 

polyphenols in rats: Is the brain their target destination? 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter will be submitted shortly for publication as a manuscript:  
 
Fate of microbial metabolites of dietary polyphenols in rats: is the brain their target 
destination? Mattia Gasperotti, Sabina Passamonti, Federica Tramer, Domenico 
Masuero, Graziano Guella, Fulvio Mattivi, Urska Vrhovsek. 
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 As already explained, the colonic microbiota produces a relatively small 

number of polyphenol microbial metabolites (PMMs) from a large number of 

different dietary polyphenols. These metabolites, being more absorbable than their 

polyphenolic precursors, are regarded as responsible for the healthy effects associated 

with the consumption of polyphenols (3, 19** ). 

The biological activity of polyphenols has been explored in vivo on animal 

models and also in some clinical trials (8). Epidemiological studies have associated 

polyphenol consumption with a reduced risk of cancer and cardiovascular disease 

(20, 21). Research on the neuroprotective effects and prevention of brain ageing 

resulting from the use of dietary polyphenols has also been significantly developed in 

the last few years (21–27). 

However, PMMs may also have some important bioactivities, resulting in an 

impact on general health (19). Current information concerning their absorption and 

tissue distribution is still scarce (8, 28) and not reliable enough in order to give sound 

dietary recommendations. Additional studies are therefore needed to support the 

hypothesis that PMMs are also bioactive in the mammal organism. 

To respond to the need for knowledge about the absorption and tissue 

distribution of PPMs, focusing the attention especially on the brain, a nutrikinetics 

experiment with rats was set up. The main question was whether these metabolites 

are able to reach the brain in nutritional conditions. Thus, the in vivo trials were 

performed by injecting a nutritionally relevant dose to mimic the plasma circulating 

level of PPMs after the consumption of a bowl of strawberries. 

A detailed introduction, description of methods and discussion of the results 

are included in the manuscript ready for submission. 

 

                                                 
**  References are reported in the same order and listed in the attached manuscript 
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 Interestingly, the final results obtained show for the first time the simultaneous 

quantitative profile of some polyphenol microbial metabolites in rats, proving their 

distribution in the brain and the main excretory organs, i.e. the liver and kidneys, and 

in biofluids (urine and blood). 

 The question of whether the brain was a targeted organ for this class of 

molecules was resolved by first proving that some of the metabolites injected were 

already present in the brain, supporting the idea that these molecules are able to pass 

through the blood brain barrier. Moreover, in experimental conditions, with a 

nutritional amount of injected compounds (typically a sub-acute dosage), 10 out of 23 

compounds were present in significantly increased amounts.  

 

My personal involvement in this last part of the project was in the initial set up of the 

entire in vivo experiment, from evaluation of already published protocols for in vivo 

experiments and their evolution to the protocols presented, improving the reliability 

of the surgical and analytical aspects. Moreover, I was present in the surgery room at 

the Animal Facilities at the University of Trieste during the experiment for the 

management of all the procedures and the collection of the samples, in collaboration 

with Prof. Sabina Passamonti, called on to perform the surgical protocols. After 

sample collection I performed all the steps for the sample preparation, acquisition, 

processing and critical evaluation of quantitative data. As the first author I was 

responsible for writing the manuscript and managing the comments and 

improvements to the text by the other co-authors. 
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Abstract  

 

On consuming a serving of fruits rich in polyphenols a range of different 

polyphenols can be ingested, spanning from one-phenol hydroxybenzoic acid to 

more complex polymeric compounds. Only a minor part of the polyphenols (5-10%) 

is absorbed and the remainder of the reaches the colon, where they are extensively 

metabolized by gut microbiota to small molecular weight metabolites. Then the 

subsequent tissue distribution, the target organs remain largely undefined along to 

the effective circulating concentration. 

Here we report for the first time a nutrikinetics experiment testing 

simultaneously 23 polyphenol microbial metabolites following a fast time line (within 

15 min.) in rat’s organs and biofluids, with a total intravenous injected dose of 2.7 

µmol. Some of the metabolites were already find as basal level in low amount, also in 

the brain, coming from endogenous metabolism or from nutritional intake. In blood a 

pseudo-first order decay was observed with the simultaneous tissue distribution and 

excretion in the urine. Specific organ-tropisms were observed, mainly hepatotropism. 

Remarkably brain was reported in this study as one of the target organs of 

such molecules, being already present at basal level or increasing their concentration 

after the treatment. Ten out of 23 polyphenol metabolites were increased their 

concentration during the observation time in significant amount, while their 

concentration in blood was vanishing. 

Together, these results suggest a significant interplay within the gut-brain axis 

in which the polyphenol metabolites might be responsible in the alteration 

endogenous equilibrium in relationship with the nutritional intake of polyphenols. 

 

Keywords polyphenols, gut microbiota, target metabolomics, mass spectrometry, 

brain, fruit consumption  
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Introduction  

 

A diet rich in fruits and vegetables is regarded an important factor for 

protecting the human population from chronic diseases (1). Dietary recommendations 

require sound knowledge about food composition, identification of bioactive food 

components, and characterisation of their bioavailability, tissue distribution and 

elimination patterns, as well as their specific effects on the cellular homeostasis.  

Polyphenols, which are a wide and heterogeneous group of bioactive 

compounds found in plant-based foods (2), are regarded as responsible for protecting 

the human organisms from oxidative stress-related chronic diseases. However, 

polyphenols bioactivity may be much wider. Among vegetables and fruits, berries are 

the major sources of dietary polyphenols (3). 

After ingestion, only a minor part of the polyphenols (5-10%) is absorbed in 

the small intestine. The remainder reaches the colon, where they are extensively 

metabolized by gut microbiota to small molecular weight compounds (4). Gut 

microbiota consists of all the microorganisms in the intestinal tract, which is mainly 

populated by bacteria with many trillions of microbial cells (5). The metabolic 

activities of this heterogeneous bacterial population are gaining strong interest, 

because they modulate human metabolic phenotypes (6-8) and so playing an essential 

role in human health. 

The microbiota break down plant polyphenols through the actions of 

glucosidases, esterases, demethylases, dehydroxylases and decarboxylases (5,9-18), 

obtaining smaller common metabolites, such as phenolic acids and short chain-fatty 

acids (9), collectively known as polyphenol microbial metabolites (PMMs). They are 

absorbed by the colonic epithelium and found in the blood, with patterns that 

correlate with one’s diet and microbial composition of one’s microbiota (19).  
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PMMs are regarded as responsible for the healthy effects correlated with 

regular consumption of berry fruits (4,20). Epidemiological studies have associated 

polyphenol consumption with a reduced cancer and cardiovascular disease risk 

(21,22). Research on the neuroprotective effects and prevention of brain aging from 

the use of dietary polyphenols has moreover been greatly developed in the last years 

(22-28). The literature reports that diets rich in polyphenols attenuate neuropathology 

indicators and cognitive decline (25). Some studies report on a direct effect of 

polyphenols on intracellular targets, e.g. three members of the secretase family, 

known to be involved amyloidal aggregation connected with the onset and 

progression of Alzheimer’s disease (29). However, the question whether these 

compounds are able to pass the blood-brain barrier and attain there a 

pharmacologically relevant concentration is still unanswered.  

The importance of the microbiota for the brain development function has been 

pointed out by numerous studies in experimental animals (30-32), and these 

observations can be translated to human brain disorders. For instance, autism, a 

defect of brain development leading to impaired social interactions, is now being 

understood as linked to abnormal microbiota population and poor intake of fruits 

and vegetables (33). It might be speculated that PMMs are involved in normal neural 

development and function. Indeed, they are chemically identical or similar to amino 

acid and neurotransmitter catabolites.  

However, it seems that PMMs may also have some yet uncharacterised 

bioactivity, resulting in an impact on the general health status (20). Current 

information concerning the absorption and distribution of PMMS in mammalian 

tissues is still poor (9,34) and not enough to support the hypothesis that PMMs are 

the bioactive agents of our diet. Consequently, it’s not possible to work out dietary 

recommendations in favour of prevention of brain dysfunctions. 

Given this background, this study set out to characterize the time-dependent 

tissue distribution of a mixture of PMMs, following a single intravenous injection in 

anaesthetized rats. The focus of this study was on characterizing their ability to arrive 

into the brain, relative to the main excretory organs, i.e. the liver and the kidneys.  
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The data obtained show for the first time the simultaneous quantitative profile 

of several PMMs in a mammalian system, proving their distribution into the brain, 

into the main excretory organs, i.e. the liver and the kidneys, and in biofluids. For 

some PMMs, specific tropisms were also observed, highlighting for instance the 

target organs for future experimentations. Remarkably for the support of the 

neurological relevance of fruits rich in polyphenols, the data obtained show that at 

least 10 different PMMs incrementally appear in the brain within 15 min, while they 

simultaneously disappear from the blood and/or reach other organs. 

 

 

Materials and Methods  

 

 Chemicals. Phloroglucinol, pyrogallol, gallic acid, protocatechuic acid, 3,4-

dihydroxyphenylacetic acid, 4-hydroxyhippuric acid, 4-hydroxybenzoic acid, 

pyrocatechol, caffeic acid, vanillic acid, 3-hydroxyphenylacetic acid, homovanillic 

acid, 3-(4-hydroxyphenyl)propionic acid, 3-(3-hydroxyphenyl)propanoic acid, 

hydroferulic acid, trans-ferulic acid, trans-isoferulic acid, sinapic acid, m-coumaric 

acid, o-coumaric acid and p-coumaric were purchased from Sigma-Aldrich (Saint 

Luis, Missouri, USA). Isotopically labelled compounds, butyric acid-d7 and cinnamic 

acid-d5, were used as internal standard and purchased from C/D/N Isotopes Inc. 

(Quebec, Canada). Urolithin A and urolithin B were synthesized following an already 

published protocol (35) and characterized by NMR for the structure confirmation and 

purity. LC/MS formic acid, Chromasolv LC/MS methanol and acetonitrile, were 

purchased from Sigma-Aldrich (Saint Luis, Missouri, USA). 

 

 Study Design. The experiment was designed as a multi-component 

pharmacokinetic study with quantitative analysis of organs (liver, kidney, heart and 

brain) and biofluids (blood and urine). The purpose was for the exploration of the 

fate of polyphenol microbial metabolites mixture in a mammalian system. The 
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experiment was divided into four different time point: 15 seconds, 2 minutes, 5 

minutes and 15 minutes (Figure 1). Each time point was represented by 4 replicates, 4 

rats received the dose with the polyphenol microbial metabolites, and one blank rat, 

as control, without polyphenol metabolites mixture but with identical experimental 

procedure. 

Twenty male rats (Rattus norvegicus, Wistar, Harlan Italy S.r.l.) were bred at the 

animal facility of the University of Trieste. The experiment was approved by the 

bioethical committee of the University of Trieste (doc. 865PAS12). The experiments on 

the animals were carried out in compliance with the provisions of the European 

Community Council Directive. Rats (n=20) at the same age (12 weeks) and weight 

(288 ± 20 g) were maintained in temperature-controlled rooms at 22-24 °C, 50-60% 

humidity and 12 hours light/dark cycles. They were fed until the night before the 

experiment with standard laboratory chow. 

During the in vivo experiment the rats were kept under quiet conditions. The 

cages were covered with cloth and so they were either sleeping before the anaesthetic 

injections or were awake but without little apparent nervous behaviour. After the 

anaesthetic the animals were left alone to fall asleep in another cage, also covered. In 

all cases the animals’ conditions were monitored.  

 

 Polyphenol Microbial Metabolites Mixture for Intravenous (I.V.) 

Administration. The polyphenol metabolites mixture was made up of 23 different 

metabolites selected from among the product of polyphenol metabolism by gut 

microflora after the consumption of berry fruits. The metabolites were selected by the 

literature and the dosage for each metabolite was chosen while seeking to maintain 

the same levels and ratios as reported in the literature. Each metabolite was dissolved 

in methanol and then mixed together accordingly to the diverse selected amounts. 

Detailed information regarding the polyphenol metabolites mixture dosages is given 

in Figure 2. 
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 Treatment of Rats. The rats were divided into two groups for a two-day 

experiment, with 2 pharmacokinetic time point per day. The first day, time points 15 

min. and 2 min. were performed. Time points 5 min. and 15 sec. were performed in 

the second day. The night before the experiment, the rats (10 animals) were starved 

overnight, but provided with water ad libitum. They were divided into 5 different 

cages for the experiment. 

The rats were anaesthetised with intra-peritoneal administration of 

Tiletamine/Zolazepam (1:1, 25 mg/kg body weight) and Xylazine (10mg/kg body 

weight). The Rat received an i.v. administration of 0.3 mL PBS (phosphate buffer 

solution), with 2.7 µmol of polyphenol metabolite mixture, dissolved in 30 ul of 

methanol. The blank animals, used as controls for each time point, received an i.v. 

injection of 0.3 ml of PBS with 30 ul of methanol to maintain the same volume and 

same condition as the treated animals.  

During anaesthesia (10 min in all cases), the heart and ventilation rate were 

controlled. The rats were placed on their backs; the penis was extruded by sliding the 

prepuce downwards. With the use of a nipper the glans penis was held at the tip. The 

dorsal penis vein was then seen and exactly 10 min. after anaesthesia 0.3 ml PBS with 

(treated) or without (blank) 2.7 µmol of polyphenol metabolite mixture was injected 

using an insulin syringe. Then the injection site was pressed for a few seconds, and 

the glans was retracted to prevent bleeding (36). After the PBS injection one min. 

before the sacrifice of the rat - at the end of each time point - sodium heparin (0.1 ml, 

500 IU) was injected again into the dorsal penis vein, which was exposed in the same 

way. For the time point 15 sec. the procedure was slightly different, after 10 min of 

anaesthesia 0.2 ml PBS and 0.1 ml sodium heparin with (treated) or without (blank) 

2.7 µmol of polyphenol metabolite mixture was injected at the same moment using an 

insulin syringe. 

Exactly 10 min after anaesthesia and the corresponding time point after i.v. 

administration (15 sec., 2 min., 5 min., and 15 min.), the rats were sacrificed by 

decapitation. Blood was drained from the body. Urine was collected through the 

urinary bladder with a syringe. Liver, kidney, heart and brain were excised from the 
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body, washed with MilliQ water and immediately frozen in liquid nitrogen and 

stored at -80 °C. 

 

 Organs Collection and Extracts Preparation. Biofluids. After sampling, an 

aliquot of blood (5 ml) was transferred into aqueous methanol (95:5, v/v) in a ratio of 

1:9 (v/v). Cinnamic acid-d5, as internal standard, was dissolved in aqueous methanol 

at a concentration of 0.1 mg/L for the monitoring of the extraction protocol. The 

sample was shacked and extracted for 10 min. The extract was then centrifuged for 5 

min at 3600 rpm at 4 °C, blood extract with the buoyant (non-cellular) portion was 

transferred to 50 ml dark glass vessels and stored at -80 °C (37). 

In the same way an aliquot of urine collected with a syringe was extracted 

with aqueous methanol (95:5, v/v). The urine was weight and the amount of solvent 

for extraction was adjusted to the ratio 1:9 (w/v). The urine was centrifuged and then 

transferred to 10 ml dark glass vessels and stored at -80 °C. Biofluid samples after 

solvent extraction were ready for the subsequent clean-up purification protocol for 

the injection in the UPLC-MS/MS system. 

 Tissues. Organs, frozen in liquid nitrogen immediately after excision, were 

stored at -80°C. Frozen liver, kidney, heart and brain were grounded under cryogenic 

conditions, using liquid nitrogen, with a CryoMill (Retsch, Germany) using a single 

25 mm i.d. steel ball (30 sec. with a frequency of 25/sec.). Tissue powder (1 g) was 

transferred (without thawing) into aqueous methanol (5:95 v/v) at a ratio of 1:9 

(w/v). Cinnamic acid-d5, as internal standard, was dissolved in the aqueous 

methanol at a concentration of 0.1 mg/l for the monitoring of the extraction protocol. 

The samples were extracted with an orbital shaker for 10 min., centrifuged and 

decanted, as described for blood (37). The final volume was then adjusted to 10 ml to 

balance any possible variation in the amount of water among the organs and stored at 

-80 °C. Tissue samples after solvent extraction were ready for the clean-up 

purification protocol before injection in the UPLC-MS/MS system. 
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 Solid Phase Extraction (SPE) Purification and Sample Preparation. SPE 

protocol was applied following a procedure developed by Passamonti et al. (38), but 

with some modifications and as validated by Gasperotti et al. (Chapter 2.1). The 

cartridges used for the SPE purification were Biotage Isolute ENV+, 1 g (Uppsala 

Sweden).  

An aliquot of extracted sample (5 mL), was evaporated and reconstituted with 

10 ml of H2SO4 0.01 N in water. The conditioning of cartridges was carried out using 

20 ml of methanol and 20 ml of H2SO4 0.01 N in water. After loading the sample, the 

cartridges were washed with 10 ml of Milli-Q water, dried under a nitrogen stream 

and eluted with 20 ml of methanol. The eluates were evaporated to dryness and the 

samples were dissolved in 500 µL of methanol/water (50:50 v/v). Butyric acid-d7, as 

internal standard, was dissolved in the methanol/water (50:50 v/v) at a 

concentration of 1 mg/l and added to the sample for the monitoring of quantitative 

recovery during sample reconstitution. Samples were filtrated with a 0.22 µm filter 

and injected in the UPLC-MS/MS system. 

 

 Targeted Metabolomics Analysis. Targeted metabolomics analysis was 

performed with an ultra performance LC (UPLC) system coupled to a triple 

quadrupole (TQ) mass spectrometer. The UPLC system used was a Waters Acquity 

UPLC system (Milford, Massachusetts, USA). Separation of the 23 target metabolites, 

and 2 deuterated internal standards was performed with a Waters Acquity UPLC 

column (Milford, Massachusetts, USA), HSS T3 (100mm x 2.1mm, 1.8 µm) equipped 

with the proper guard column. The injection volume was 10 µL. Mobile phases of 

0.1% formic acid in Milli-Q water (A) and 0.1% formic acid in acetonitrile (B) were 

used. Chromatographic separation was performed using a gradient as follows: 0 min, 

5% B; 0-3 min, 5%-20% B; 3-4.30 min; 20% B; 4.30-9 min, 20%-45% B, 9-11 min, 45%-

100% B, 11-14 min, 100%; and 14.01-17 min, 5% as equilibration time. The TQ mass 

spectrometer used was a Waters Xevo TQ (Milford, Massachusetts, USA) coupled 

with an electrospray interface. The two most abundant fragments were selected for 

each metabolite to establish a MRM (multiple reaction monitoring) quantitative 
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method. The first transition, corresponding to the most abundant fragment, was used 

as quantifier ion, and the second as qualifier ion. Detailed information regarding the 

UPLC-MS/MS method and quantification are described in Gasperotti et al. (Chapter 

2.1). 

 For calibration, a standard mixture of polyphenol metabolites was serially 

diluted in aqueous methanol (50:50), in a concentration range 0.01 µg/L - 100 mg/L. 

The range of calibration curves was obtained on the basis of the linearity of the 

responses. Acceptable linearity was achieved when the coefficient of calibration 

curves (R2) was at least 0.99. Quantitative data were processed with Targetlynx 

software (Masslynx, Waters). Quality control acquisition, recovery and data 

variability information are reported in the supplementary material. 

 

 Blood Residual Subtraction for the Brain Samples. The concentrations in the 

rat brain may be significantly influenced by the quantities of metabolites in the 

residual blood. The correction was made by estimating the amount of metabolite in 

the intravascular blood present in the brain, assuming that the volume of blood brain 

is 47.7 µL/g (39) and then subtracting this from the total amount found in the brain. 

The results of this subtraction are presented in Figure 4 compared also with the data 

of the brain before the blood residual subtraction. 

 

 Calculation of Pharmacokinetics Parameters. Pharmacokinetics parameters 

were calculated using the GraphPad Prism 5 (GraphPad Software, La Jolla, CA, USA) 

with the function one phase decay suitable for I.V. injection experiments. For each 

metabolites detected and quantified in blood, the extrapolated dose at time 0 (t0), the 

dose at the steady state (t∞) were obtained from the plotted curves. The area under 

the curve (AUC 0
�

15 min.) and the elimination rate (Ke) were also obtained from the 

plotted curves. 

 

 Statistical Analysis. The quantitative data for the PMM levels are presented as 

mean values ± standard error (n = 4) for all the graphs. Difference between time 
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points in the brain, compared with the control were evaluated by the Student’s test, 

with p < 0.1 considered statistically significant. 

 

 

Results and discussion 

 

 The Tested Mixture of Polyphenol Microbial Metabolites: a Rational Choice. 

The strategy was to simultaneously inject 23 metabolites, composing a well-defined 

mixture (figure 1), in a single animal. The metabolites were chosen for being products 

of the gut-microflora metabolism of polyphenols occurring in berries (11–13, 17, 40). 

Their individual concentrations in the mixture were chosen to mimic their average 

plasma concentration, after a putative intake of a regular berry fruit serving (41). All 

individual molecules are commercially available, except for urolithin A and B. The 

latter are regarded as specific biomarkers of gut microbial metabolism of dietary 

ellagitannins. They were synthesized in house (35). 

An analytical method, based on UPLC-MS/MS, enabled to simultaneously 

measure this set of compounds in biological fluids and tissue extracts from a single 

rat, achieving a remarkable reduction of experimental animals, as recommended by 

regulatory bodies (42).  

The in vivo injection of a multi-component mixture could give rise to certain 

problems. Some metabolic pathways could transform some metabolites into other 

compounds already present in the mixture, so altering the chemical composition of 

the injected mixture. Moreover, the simultaneous injection of different metabolites 

could affect the rate of membrane transporters, enzyme pathways or cellular 

regulatory mechanisms, resulting in competitive interactions, rapid states of 

saturation or cooperative responses, just to mention a few cases. Nevertheless, the 

injection of a multi-component mixture offered the possibility to simultaneously 

assess the fate of each compound, so closely simulating a nutritionally relevant 
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scenario in blood, even if in the presence of other congeners or further metabolites not 

observed. This was the main goal of the study. 

It should be therefore appreciated that this mixture was designed to represent 

what results from two principal biochemical processes of the mammalian digestive 

tract after the dietary intake of fruits rich in polyphenols (Figure 2, panel A.). The first 

one is the transformation of a raw mixture of dietary plant polyphenols by the gut 

microflora, yielding a digested extract. In this scenario the gut microflora represents 

the connection or the mediator between plant and mammalian systems. The second 

one consists in the selective transport of the digested extract across the intestinal 

epithelial barrier, which can be regarded as a filter, into the blood, and the 

subsequent tissue distribution. 

 

 Dosage, Route of Administration and Time-line: a Strategy for an Accurate 

Tissue Distribution Analysis. The most accurate approach to study the tissue 

distribution of PMMs is to administer the PMMs by intravenous injection, so to avoid 

the main factors of inter-individual variability of gut metabolism and absorption (6). 

Any other downstream process, such as distribution into tissues and eventual 

metabolism is comparatively more homogenous among individuals (43) allowing to 

attain a satisfying variation coefficient in all measured parameters using reduced 

numbers of animals (n=4). 

The injected dose was 2.7 µmol, resulting from the sum of 23 individual 

amounts of PMMs (Figure 1), spanning from 0.9 µmol (gallic acid) to 0.0005 µmol 

(sinapic acid). Considering that the rats (body mass=288±20 g) had an estimated 

blood volume of 16 ml (44) and assuming that all the mixture components has free 

access to the internal volume of blood cells, the initial blood concentration was 168 

µM, spanning from 56.25 µM (gallic acid) to 0.31 µM (sinapic acid). These values are 

within the concentration range observed in humans following consumption of a 

standard serving of berry fruits (45). 

An overview of the time-line and the analytical procedure, from sample 

preparation to instrumental analysis, for the data acquisition of the experiment is 
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graphically presented in Figure 1, panel B. The experiment was designed on the basis 

of previous data showing the exceptionally fast uptake and metabolism of a dietary 

flavonoid, i.e. cyanidin 3-glucoside, an ubiquitous pigment in red fruits (43). It was 

assumed that the plasma disappearance kinetics of low-molecular weight metabolites 

of flavonoids and other dietary polyphenols should follow a quite similar pattern. 

The site for the intravenous injection of the PMMs mix was the dorsal penis 

vein, easily accessible through a thin epidermal layer and afferent to the general 

circulation (36). The minimal manipulation of an anaesthetized animal is seen as a 

crucial factor, since any inflammation mediator locally released following a surgical 

trauma might affect the permeability of the blood-brain barrier and/or the basal 

functions determining distribution (i.e. membrane transporters), metabolism (i.e. 

enzymes) and excretion (again, membrane transporters). 

The choice of the time points seems appropriate for a reasonable description of 

the time course of both disappearances of the injected molecules from the blood and 

their presence into the organs and the urine. Under the chosen conditions, the 

animals experienced minimal duration of anaesthesia and of physical stress. Overall, 

this experiment is a refinement of previous protocols adopted by us (37, 43). 

 

 The Presence of Basal Levels of the Mixture Components in Control 

Animals. Many of the mixture components arise not only from the microbial 

metabolism of dietary polyphenols, but also from mammalian catabolism of 

endogenous substrates (41). Thus, some are expected to occur in the rat organs and 

fluids at basal levels in control animals. Compounds that are exclusive products of 

microbial metabolism, for instance, are the urolithins, the ferulic acids, gallic acid, 

coumaric acids and protocatechuic acid (41). However, also these might be expected 

to occur in control animals, being markers of a normal nutritional status, like, for 

instance, ferulic acid. The basal levels of the 23 mixture components were in general 

very low. Exceptions are mentioned case by case below. 
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 Tracing Polyphenol Metabolites in Blood. The blood of control rats contained 

11 out of the 23 injected molecules. Of these endogenous compounds, see Table 1, six 

were less than 1% of the amount occurring in the injected mixture, other 3 were less 

than 2%. The 2 outliers were p-coumaric acid (3.3%) and phloroglucinol (17.8%). 

Thus, the selected mixture represented a valid challenge for a pharmacokinetics test, 

because of these very low basal levels. This test seemed to reliably simulate what 

happens in the organism after consumption of a typical berry fruit serving, after a 

short period of “wash out”.  

Most injected compounds disappeared following apparent pseudo-first order 

kinetics, as shown in Figure 3. The calculated parameters, i.e. the extrapolated 

amounts at time zero (t0) and at steady state (t∞), and the disappearance rate constant 

(ke) are listed in Table 1 according to the value of ke, which spanned from 2.73 to 0.38 

min-1 (t/2=0.25 to 1.84 min), pointing to a quite rapid process. There were a few 

exceptions. 

One compound, i.e. pyrogallol, could never be detected, though its recovery 

and analysis posed no specific issues; the mechanisms whereby it underwent 

disappearance cannot be guessed. Two compounds, i.e. pyrocathecol and 3,4-

dihydroxyphenyl acetic acid, were detected only at 15 sec. Urolithin B, detected at 

very low levels at both 15 sec and 2 min, rose thereafter by an order of magnitude. 

Phloroglucinol occurred at a similar level during the entire experiment. 

With the above-mentioned few exceptions, steady state values were attained 

even earlier than 5 min, so assuring that the duration of the experiment was 

appropriate. In most cases, the compounds were essentially disappeared at 15 min. 

The calculated amounts at t0, and the amounts at any time points, were always 

lower that the sum of the injected dose and the endogenously present compound in 

control samples, if any. Expressed as percent of the injected amounts in Table 1, the 

calculated t0 ranged from 43.5 % (m-coumaric acid) to 1% (gallic acid). This is no 

longer surprising; having already seen how fast is the uptake and excretion of one of 

the precursors of these metabolites, i.e. the fruit pigment cyanidin 3-glucoside (43).  
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An explanation of the loss of part of the injected dose and of the extremely 

rapid blood disappearance may be a quick uptake and distribution in organs. Only 

some major organs were collected, thus an accurate recovery assessment cannot be 

provided. The compounds might have also distributed in large tissues, such as the 

adipose tissue, the vascular endothelium, or the connective tissue. Moreover, the 

administered compounds could be metabolically transformed, but these were not 

analysed in this experiment, which is the first attempt of a simultaneous kinetic 

characterization of 23 polyphenol metabolites. 

  

 Polyphenol Microbial Metabolites in the Brain. The main findings concerned 

the detection of PMMs in the brain, at times when their blood concentrations were 

vanishingly low (Figure 4). Each plot shows 2 curves, representing the total amounts 

measured in whole brains (dot line) and those corrected for blood residual (solid 

line), as recommended (39, 46–48). Indeed, brains were not perfused to wash out the 

blood, since this procedure would have altered the chemical equilibrium between the 

vascular compartment and the whole brain.  

The more so since 13 out of 23 compounds of the mixture were found in the 

control brains, as endogenous metabolites (Table 2). Disregarding the time of 

observation, 10 compounds out of 23 where found in the brain at a significantly 

increased amount with respect to the control (Table 2). In most cases, their 

appearance in the brain was biphasic, with an early wave at 2 min, with 4 

compounds, and a second one starting at 5 min; at 15 min, 9 compounds were 

detected. Gallic acid, which was the most abundant compound in the mixture (Fig. 2) 

best showed this bi-phasic accumulation trend. Noteworthy, it accumulated in the 

brain by about 11 times above the basal concentration measured in the control as 

early as 15 sec.  Similarly, caffeic acid had two peaks, and accumulated by ca. 20 and 

34 times at 2 min and 15 min, respectively (Table 2).  

Importantly, two compounds were neither detected in the brain as 

endogenous metabolites nor ever appeared in the brain, i.e. trans-isoferulic acid and 

o-coumaric acid, in spite of their relatively low plasma elimination rate constant, so 
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proving that the blood-brain barrier was intact during the experiment. Other 

endogenous compounds never increased their concentration in the brain, i.e. 

protocatechuic acid and phloroglucinol. 

Those compounds that accumulated in the brain should be active, because in 

all cases, except for urolithin B, they were also endogenous metabolites already 

present in the control brains. Their most predictable effect is unbalancing a pre-

existent metabolic equilibrium. Ferulic acid, accumulated at 15 sec in the experiment, 

is reported to be able to reduce oxidative damage and amyloid pathology in 

Alzheimer’s disease (49). Some PMMs are identical to metabolites of 

neurotransmitters. For instance, vanillic acid and homovanillic acid are catecholamine 

catabolites, found in the in brain and in cerebrospinal fluid (50). Moreover, 3,4 

dihydroxyphenyl acetic acid is neuronal metabolite of dopamine and involved with 

the dopamine catabolism in the pathogenesis of Parkinson's disease (51). Another 

mechanism of action is by affecting enzyme kinetics. For instance, caffeic acid may 

bind to tyrosine ammonia lyase, thus altering serotonin homeostasis (52), or by 

inhibiting acetylcholinesterase and butyrylcholinesterase activities and as 

consequence preventing oxidative stress-induced neurodegeneration (53). Gallic acid 

has also demonstrated activities on key enzyme activities in the brain (26, 54) and 

able to accumulate in the brain after repeated dose (55). 

 

 Polyphenol microbial metabolites in other organs. The analyses of PMMs in 

the heart, the liver, the kidneys, and the urine are shown in Fig. 5 (and in 

Supplementary Figures 1-4). Eighteen out of 22 compounds attained quite high 

concentrations in the urine (Figure 5, Supplementary Figure 1), with the exception of 

pyrocatechol and urolithin B, which were not found in the urine, urolithin A, which 

concentration slightly increased, and phloroglucinol, which did not change with 

respect to the value found in control animals. Thus, most PMMs can be defined as 

nephrotropic. Indeed, 20 out of 22 compounds dramatically increased their 

parenchymal concentrations from basal values of zero or close to zero up to values 

higher by at least 2 orders of magnitude (Figure 5, Supplementary Figure 2). For this 
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extraordinary velocity, the apparent rate of accumulation in the kidneys could not be 

calculated. Accumulation lasted no more than 2 min and often less, after which time 

their concentration started decaying. By contrast, the appearance in the urine was 

slower, with a lag phase lasting 15 sec before the onset of urinary excretion, seen in 

most cases (20 out of 22).  

Only a few compounds were found to be rather hepato- than nephrotropic, 

such as phloroglucinol, urolithin A and 4-hydroxybenzoic acid (Figure 5, 

Supplementary Figure 3). One compound (sinapic acid) could not be detected in the 

liver for 3 consecutive times, at which it was however present in the blood. Thus, the 

amount of blood retained in the organ was absolutely negligible. Similarly, the basal 

levels of 3-(3-hydroxyphenyl)propanoic acid did not change in the liver, in spite of its 

presence in the blood at concentrations higher by 2 orders of  magnitude.   

Only 3 compounds were found to be cardiotropic, i.e. vanillic acid and both 

urolithins (Figure 5, Supplementary Figure 4). They accumulated to a maximum 

concentration at 15 sec, but then vanillic acid and urolithin A disappeared, whereas 

urolithin B started to increase again at 5 min. Three compounds (phloroglucinol, 3,4-

dihydroxyphenyl acetic acid and pyrocatechol), though present in the blood, could 

not be detected in the heart, showing the negligible blood contamination. 

The low apparent hepatotropism of most PMMs leads to conclude that PMMs 

absorbed from the colon under normal conditions undergo limited first-pass 

metabolism into the liver, so that they can distribute to the other organs readily after 

absorption. Then, they are eliminated in the urine after prior accumulation in the 

kidneys. Only one compound, i.e. 4-hydroxybenzoic acid, appeared in the urine at 15 

sec, likely by glomerular filtration. 

 

 The Case of Urolithins. Urolithins are the largest molecules among the PMMs 

(Figure 1), arising from microbial metabolism of ellagitannins and ellagic acid 

conjugates (56). Urolithin A differs from urolithin B for the one additional hydroxyl 

group. No other mammalian enzyme pathway is known to produce such end-

products from more complex precursors. In facts, none of them was detected in the 
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organs of control animals. Urolithin A and B were administered at different doses, i.e. 

55 and 25 nmol, respectively.  Nevertheless, their concentrations in the blood differed 

by an order of magnitude at 15 sec (332.6 and 20.3 pmol/ml, respectively). Thus, 

urolithin B was sequestered (and/or metabolized) more rapidly then the other in the 

tissues.  

Both of them displayed a unique pattern of blood concentration, tissue 

distribution and urinary excretion. Indeed, though urolithin A had a normal mono-

exponential disappearance from the blood, urolithin B, increased in the blood after 2 

min from a very low level (see above). It seems, therefore, that urolithin A underwent 

a so unusual as mechanistically unexplained de-hydroxylation reaction. Only 

bacterial de-hydroxylases are known. 

Both of them were negligibly excreted in the urine, unique cases among the 

PMMs. They were presumably excreted as glucuronyl derivatives (11), which were 

not analysed. Rapid uptake of urolithin A into the kidneys was observed, whereas 

urolithin B appeared in the kidneys only later than 2 min, i.e. when it was also 

present in the blood. The liver slowly took up urolithin A up to 5 min, but no 

urolithin B could be detected there for 15 min. This shows that the liver could neither 

convert urolithin A to urolithin B, nor take the latter up from the blood. 

The organ that displayed the highest capacity in this sense was the heart, 

where both urolithin A and B were found at 15 sec, at about 300 and 2000 pmol/g, 

respectively. It seems therefore that the following happened: i) urolithin A was 

rapidly (by 15 sec) taken up into the heart and de-hydroxylated to urolithin B by 

unknown enzyme(s); in the heart, both urolithins could be converted to other 

compounds, that were not followed; ii) urolithin B was released from the heart into 

the blood, where indeed it raised from 2 min to 5 min; iii) from 5 min on, the tissue 

concentrations of urolithin B increased at higher levels than in the blood. 

 Urolithins have a demonstrated activity in reducing glycation of proteins (57) 

in neuronal cell, and possibly even in the heart. In facts, the advanced glycation 

endproducts, deriving from the glycation reaction in heart and vascular tissue are 
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responsible of the reduction of artery and heart elasticity and have a role in the 

progression of cardiovascular complication associated with diabetes (58). 

 

 Is the Brain a Target of Polyphenol Metabolites? The findings would tell so. 

First, not less than 13 PMMs were found at basal levels in control brains and this is 

the first report, to our knowledge. As a consequence, the possibility of their passage 

through the blood-brain barrier must be assumed a priori, as a process to ensure their 

exchange with the blood compartment.  

Ten out of 23 were found significantly increased after the injection of the 

PMMs mixture in the treated animals. Some of them might have an exquisite dietary 

origin, such as gallic acid or t-ferulic acid. Others could instead be catabolites of 

endogenous compounds, such as catecholamine, dopamine, aminoacids and others. 

Fig. 6 highlights the concentrations of gallic acid attained in all the organs considered 

at various times. The brain shows a clear capacity to extract gallic acid from the 

blood, even higher than the liver. On the contrary, the tightness of the blood-brain 

barrier is demonstrated by its absolute impermeability to o-coumaric acid, in spite of 

its higher hydrophobic index (logP: 2.45, while gallic acid logP is 0.91). Yet, both 

gallic acid and o-coumaric acid occurred in the blood at similar concentrations.  

These data provide further health implications of the brain-gut microbiota axis (53), 

highlighting how PMMs could be one of the putative connections/messengers 

between microflora and brain. These bidirectional interactions, for instance was 

already explored highlighting the importance of the gut microbiota for brain 

development and behaviour (54), or for the influence on anxiety and depression (55). 

Being the PMMs the product of the dietary intake of polyphenols and the metabolism 

of the gut microflora, it is reasonable to assume that those compounds might be able 

to regulate the human health and disease state (56). Moreover the role of the gut 

microbiota in the alteration of mammalian blood metabolite levels was already 

demonstrated combining data from germ free and conventional animals (57). Their 

action might be in the reduction of oxidative stress, but more likely in the modulation 

of biochemical and physiological processes, changing the level of endogenous 



  Nutritional Bioavailability: Chapter 2.2
   

   
133 

compounds also in the brain, along with other organs as observed in the present 

study. 
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Figure 1 Mixture of polyphenol microbial metabolites used for the intravenous 
injection, their chemical formula, molecular weight (MW), dose and relative 
percentage on the total amount injected, 2690 nmol (dosage:168.13 µM) 
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Figure 2 Panel A. represents the main biochemical processes of the mammalian 
digestive tract, from the transformation of a raw mixture of dietary plant polyphenols 
by the gut microflora, yielding a raw mixture of polyphenol metabolites and their 
distribution, after the passage through the intestinal epithelial barrier. Panel B. 
represents the time points observed for the kinetics and the main surgical and 
analytical steps for the acquisition of the quantitative information. 
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Figure 3 Polyphenol microbial metabolites in blood and their pharmacokinetic 

profiles 
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Figure 4 Polyphenol microbial metabolites in brain and their profiles. Dotted lines are 
referred to the amount found in the whole brain, while continuous lines are the data 
after the subtraction of the blood residual in the brain. Data with the asterisk are 
significantly increased from the control samples (p < 0.1). 
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Figure 5 Polyphenol microbial metabolites in liver, kidney, urine and heart and their 

profiles. 
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Figure 6 Profile of gallic acid and o-coumaric acid in brain, liver, kidneys and blood. 

 

 

 

 

Figure 7 Profile of urolithin A and B in all the organs considered for the experiment. 
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Table 1 Percentage of recovery in blood compared to initial injected dose and 
pharmacokinetic analysis of polyphenol microbial metabolites. For the recovery the 
values given are the percentages of dose found in rats after the i.v. injection at four 
different time points (t0.25, t2 ,t5, t15 min.) and control, sd is the standard deviation of 4 
replicates. For t0 the percentage reported is an extrapolation based upon the 
pharmacokinetics curves associate to a first order exponential decay for an i.v. 
injection.  
 

         Time Points (min.)  Pharmacokinetics 

 
dose t0 * t0.25 t2 t5 t15 Control 

 

Steady 

state t=∞ 

AUC        

(0 →15) 
k e 

  

nmo

l 
% average recovery % ± st. dev. 

  
pmol/ml 

pmol*mi

n/ml 
min-1 

4-hydroxyhippuric acid 250 13.3 11.7 5.5 13.4 6.2 6.4 6.1 2.4 0.6 0.0 0.0  0.00 15017 0.09 

3-hydroxyphenylacetic acid 150 19.9 18.6 6.2 10.5 2.7 6.5 1.5 3.0 1.6 0.6 0.2  304.50 9238 0.38 

homovanillic acid 50 18.7 17.5 5.2 8.8 0.8 7.0 1.7 3.0 1.2 0.4 0.3  118.40 3022 0.45 

o-coumaric acid 15 34.6 32.0 11.1 15.7 2.3 12.1 2.8 5.2 2.3 0.1 0.1  62.70 1597 0.47 

trans-isoferulic acid 35 25.9 23.2 7.1 9.3 1.8 7.0 2.3 1.9 1.0 0.0 0.0  73.40 2125 0.58 

4-hydroxybenzoic acid 100 18.5 16.3 5.3 6.5 0.6 3.8 1.5 1.5 0.4 1.7 0.9  131.50 3864 0.62 

vanillic acid 50 18.7 16.3 7.6 6.4 1.8 3.9 1.5 1.8 0.4 1.3 0.5  75.70 1992 0.67 

3-(4-hydroxyphenyl)propionic acid 100 24.8 21.9 6.4 10.1 1.0 8.4 2.2 4.6 1.1 0.4 0.5  371.50 7538 0.69 

urolithin A 55 11.5 9.7 3.3 2.9 0.9 0.8 0.1 0.1 0.1 0.0 0.0  9.80 733 0.71 

3-(3-hydroxyphenyl)propanoic acid 450 15.5 13.5 3.6 5.7 0.8 5.1 0.8 2.2 0.6 0.8 0.6  929.30 19569 0.72 

p-coumaric acid 15 22.2 19.3 5.0 7.9 1.3 6.6 1.3 3.0 1.1 3.3 5.4  40.50 872 0.74 

trans-ferulic acid 60 18.0 14.7 5.9 3.8 0.5 1.9 0.7 0.5 0.5 0.0 0.1  39.30 1387 0.88 

caffeic acid 60 1.8 1.4 0.5 0.3 0.0 0.1 0.1 0.0 0.1 0.0 0.0  2.53 108 0.95 

sinapic acid 5 14.5 11.6 4.8 2.8 0.3 1.2 0.1 0.6 0.7 0.0 0.0  2.40 84 0.95 

hydroferulic acid 75 19.3 15.7 5.7 4.6 0.4 3.6 1.2 1.2 0.7 0.1 0.1  105.30 2535 0.96 

m-coumaric acid 15 43.5 35.1 12.6 9.8 1.5 6.8 2.9 2.7 1.8 0.0 0.0  41.60 1044 0.97 

protocatechuic acid 65 8.5 6.6 1.2 3.3 0.5 4.0 3.9 2.4 0.7 1.4 0.1  129.70 2101 1.72 

gallic acid 900 1.0 0.6 0.5 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0  72.40 1296 2.73 

phloroglucinol  100 26.3 23.0 5.8 26.2 4.1 22.8 10.8 17.7 9.8 17.0 6.7  § 19951 § 

3,4-dihydroxyphenyl acetic acid 75 § 0.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  § 13 § 

pyrocatechol 15 § 1.0 0.9 1.2 2.4 0.0 0.0 0.0 0.0 0.0 0.0   § 35 § 

urolithin B 25 § 1.3 1.0 0.4 0.2 9.4 4.2 9.3 12.4 0.0 0.0  § 1721 § 

* extrapolated value from the pharmacokinetic curves for the dose at time zero. 
§ no available extrapolated data due to the non fitting with the proper 
pharmacokinetic curves associated to an i.v. injection.  
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Table 2 Endogenous amounts of polyphenol metabolites in control brain and 
polyphenol metabolites significantly increased compared to control brain at any time 
points (p<0.1). 
 

 dose control t0.25 t2 t5 t15 

fold of 

change 

t2/control 

fold of 

change 

t15/control 

  nmol pmol/g   

4-hydroxyhippuric acid 250 5.52    20.06  2.63 

3-hydroxyphenylacetic acid 150 n.d.       

homovanillic acid 50 314.81    433.16  0.38 

o-coumaric acid 15 n.d.       

isoferulic acid 35 n.d.       

4-hydroxybenzoic acid 100 126.63  206.97  407.92 0.63 2.22 

vanillic acid 50 99.71    384.71  2.86 

3-(4-hydroxyphenyl)propionic acid 100 3.88       

urolithin A 55 9.72       

3-(3-hydroxyphenyl)propanoic acid 450 119.01    192.81  0.62 

p-coumaric acid 15 18.34       

trans-ferulic acid 60 6.34  27.01   3.26  

caffeic acid 60 0.11  2.36  3.81 20.45 33.64 

sinapic acid 5 n.d.       

hydroferulic acid 75 n.d.       

m-coumaric acid 15 n.d.       

protocatechuic acid 65 183.40       

gallic acid 900 52.17 573.00 612.72 265.97 610.82 10.74 10.71 

phloroglucinol  100 1373.36       

3,4-dihydroxyphenyl acetic acid 75 291.82    501.19  0.72 

pyrocatechol 15 n.d.       

urolithin B 25 n.d.     2.09 2.50  > 2.50 

         

compounds increased at any time  

(p<0.1)   1 4 2 9   
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Supplementary Material 

 

 

 Quality Control Acquisition, Recovery and Data Variability. For each 

individual sample, the quality of sample preparation (extraction and purification) 

and analytical performance (acquisition) were constantly monitored through the 

quantitative results of two internal standards and polyphenol metabolite mix injected 

every 10 biological samples during instrumental analysis. The relative standard 

deviation (RSD %) for the entire batch sequence in all samples (n=126) as regards the 

two internal standards was 15 % and 14 %, respectively for butyric acid-d5 and 

cinnamic acid-d7. In the case of the standard mix injections (n=14), with every 10 

samples, there was a relative standard deviation below 16 % for all polyphenol 

metabolites. Detailed information about quality control acquisition are reported in 

Supplementary Table 1. 

The instrumental method used for the detection and quantification of the 

polyphenol metabolites was already validated and published by Gasperotti et al. and 

the recovery in all matrixes was validated (Chapter 2.1). Quantitative data for each 

metabolite was thus normalized with the corresponding recovery value in the 

different validated biological matrixes. 

The control animals not injected with the polyphenol metabolites mix can be 

considered 4 control replicates. The short kinetics trials time did not affect the results 

of the control animals in terms of already present endogenous metabolites. 
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Supplementary Figure 1 Polyphenol microbial metabolites in urine and their profiles. 
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Supplementary Figure 2 Polyphenol microbial metabolites in kidneys and their 

profiles.
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Supplementary Figure 3 Polyphenol microbial metabolites in liver and their profiles. 
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Supplementary Figure 4 Polyphenol microbial metabolites in heart and their profiles. 
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 Supplementary Table 1 Quality control acquisition  

         

 standards mix  (n=14)   internal standards (n=126) 

  

mean 

(mg/L) 
s.d. CV%   

mean 

(mg/L) 
s.d. CV% 

t-cinnamic acid d5 - IS     0.78 0.12 15 

butyric acid d7 - IS     1.06 0.15 14 

phloroglucinol 1.03 0.04 4     

gallic acid 1.01 0.06 6     

pyrogallol 0.96 0.04 4     

protocatechuic acid 0.94 0.06 6     

3.4-dihydroxyphenyl acetic acid 0.99 0.03 3     

4-hydroxyhippuric acid 0.95 0.07 8     

4-hydroxybenzoic acid 0.96 0.03 4     

pyrocatechol 0.97 0.07 7     

caffeic acid 0.92 0.06 7     

vanillic acid 0.94 0.05 5     

3-hydroxyphenylacetic acid 0.86 0.10 11     

homovanillic acid 0.98 0.04 4     

3-(4-hydroxyphenyl)propionic acid 0.99 0.06 6     

p-coumaric 0.98 0.04 4     

hydroferulic acid 0.86 0.07 8     

3-(3-hydroxyphenyl)propanoic acid 0.96 0.06 6     

trans-ferulic acid 0.98 0.04 4     

sinapic acid 0.78 0.12 16     

m-coumaric acid 0.98 0.03 3     

trans-isoferulic acid 0.98 0.06 6     

o-coumaric acid 0.94 0.05 5     

urolithin A 0.97 0.02 3     

urolithin B 0.80 0.06 8         
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 The main aim of this Ph.D. project was on the one hand to study a plant 

system, with molecular characterisation of polyphenol composition, and on the other 

hand bioavailability in the mammalian system. The link between these two systems, 

or between the two plant and mammalian metabolomes, is represented by the 

microbiota. Indeed the gut microbiota could be considered as an intermediary, being 

responsible for the alteration/improvement of the mammalian metabolome via the 

plant metabolome after nutritional intake and involved in shaping the variety of 

exogenous metabolites that interact with the mammalian metabolome. 

 The central biological question in the Ph.D. project was to understand whether 

and to what extent polyphenol microbial metabolites are able to pass through the 

blood brain barrier after the consumption of strawberries, since according to the 

literature and in vitro experiments they should exert some neurological protection. 

Moreover, in addition to their accessibility in the brain, it was planned to explore 

tissue distribution in other organs in order to get a clearer picture of general tissue 

distribution. Before in vivo trials of the nutritional bioavailability of polyphenol 

microbial metabolites, it was necessary to better characterise the native composition 

of strawberry polyphenols in order to obtain more precise data for dietary 

recommendations and nutritional studies. 

  

 In the first part of the thesis dealing with food chemistry an essential step in 

the study of the biological relevance of polyphenols was to develop a targeted 

metabolomics method for analysis of several classes of phenolic compounds, 

allowing better characterisation of the composition of fruits rich in polyphenols at 

molecular level, with a significant improvement in terms of compounds and time-

consuming analysis.  

 The targeted method developed makes it possible to simultaneously identify 

and quantify more than 150 phenolic compounds in a short chromatographic run, 

with the aim of profiling several foods and beverages using simple sample 
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preparation. The high sensitivity of MRM-based mass spectrometry and the wide 

dynamic range of triple-quadrupole spectrometers provide valuable insight into the 

analysis of complex matrices, in which concentrations span several orders of 

magnitude. Furthermore, it helps to determine the type and amount of dietary 

compounds consumed and the eventual correlation of these with modifications in the 

host system. 

 The application of the targeted method for polyphenols was tested on 

different Fragaria spp., implementing the method with another short run for 

anthocyanins and ellagitannins. Quantitative data at molecular level were provided 

for 56 compounds for the first time. Some of the compounds were identified and 

quantified for the first time in the strawberry. This study represents the most 

comprehensive targeted profiling of strawberry polyphenols, in terms of the number 

of individual compounds identified and quantified.  

 In addition to a general method for analysis of several classes of polyphenols, 

it is also important to focus attention on a specific class of compounds and to provide 

detailed structural identification and quantification. This was done for the class of 

ellagitannins in the strawberry, obtaining the chemical structure of the native form of 

ellagitannins, their concentration, and the ellagitannin profiles during fruit ripening. 

In this part of the project, clarification of the main ellagitannin was achieved for the 

first time after several erroneous identifications, with its isolation and subsequent 

structural characterisation. The most notable results were obtained in the field of 

ellagitannin profiling, with 26 compounds being identified in different Fragaria spp., 

providing structural and quantitative information in the most accurate manner. The 

individual concentrations decreased during ripening in all varieties. 

   

 In the nutritional bioavailability section on the other hand, several limitations 

in terms of knowledge were encountered during the planning of the in vivo part, since 

polyphenol microbial metabolites have only recently gained attention in polyphenol-

based food and nutritional studies, together with the huge growing of interest 
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regarding microbiota. Indeed, limited data were available regarding specific plasma 

or blood concentrations associated with nutritionally relevant consumption.  

 First of all a method for the detection of polyphenol microbial metabolites was 

required. For this purpose a sensitive targeted metabolomics method for the analysis 

of 23 polyphenol microbial metabolites, suitable for application to rat organs (brain, 

heart, liver and kidneys) and biofluids (blood and urine) was developed. The 

development of a purification procedure made it possible to obtain cleaner and more 

concentrated samples, with low limits of detection corresponding to the consumption 

of fruit rich in polyphenols. Considering the variety of matrices which can be treated 

with the same purification and quantitative analysis sample protocol, this method can 

be considered a general method for the simultaneous analysis of several chemically 

different compounds in a complex matrix. 

 Finally, a clear scenario for tissue distribution was obtained in the in vivo trials, 

with the use of a nutritionally relevant dose of metabolites in order to reproduce the 

blood circulating level of these metabolites in vivo. The treatment was carried out by 

intravenous injection, with the aim of bypassing the digestion and gut microflora 

metabolism with its inter-individual variability. Interestingly, the results obtained in 

animals show the simultaneous quantitative profile of some polyphenol microbial 

metabolites for the first time, proving their distribution in the brain and the main 

excretory organs, i.e. the liver and kidneys, and in biofluids (urine and blood).  

 The remarkable results obtained in vivo showed that the brain is one of the 

targets of certain polyphenol microbial metabolites, along with some more specific 

organ-tropism. With effective surgical and analytical protocols and with a 

nutritionally relevant dose injected, notably 10 out of 23 compounds were present in 

significantly increased amounts. 

 This shows an extraordinary improvement in the biological relevance of a diet 

rich in polyphenols and their possible role in neurological protection and the 

prevention of brain ageing. However, on the basis of this data more biological 

experiments now need to prove the real effect of these polyphenol microbial 

metabolites on the brain system in the conditions tested. The results obtained in the 
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brain were surprising, not only because some metabolites were able to pass through 

the blood-brain barrier and arrive in the brain or were already present as basal level, 

but more importantly because such low amounts of dietary metabolites can affect 

homeostasis in such a complex organ and alter its basal level. 

To conclude, these data provide further health implications for the brain-gut 

microbiota axis, showing how polyphenol microbial metabolites could be one of the 

putative connections/messengers between microflora and the brain. Furthermore, 

polyphenol microbial metabolites being the result of the action of the microbiota on 

the dietary intake of polyphenols, it is feasible to consider that these compounds may 

be relevant in the regulation of human health and disease. Their action may lead to a 

reduction in oxidative stress, but more probably to alteration of biochemical and 

physiological processes, also changing the level of endogenous compounds in the 

brain, along with other organs. 

 

 The main follow-up for this Ph.D. project will regard the study of how 

microbial metabolites impact on the primary metabolism of the mammalian system. 

This means studying possible alterations in the homeostasis of different organs. The 

data concerned regard specific biomarkers affected by the intervention (by shifting 

their basal level in a significant manner) and will be directly correlated with the 

presence of polyphenol microbial metabolites, mainly using untargeted metabolomics 

analysis and with major involvement of bioinformatics tools.  

 The future prospects for development of this thesis, adopting a 

multidisciplinary approach, would involve using the detailed information acquired 

from the strawberry polyphenol profile to perform in vitro digestion with faecal 

water, scaling the system and using an amount comparable to the nutritional intake 

and following the production of microbial metabolites. The biological samples of 

fermented faecal water should then be analysed to determine the polyphenol content, 

using the same method developed for analysis of the biological matrix, as already 

tested in preliminary trials. Alternatively, a complete profile of the variety of 

microbial metabolites could be achieved with untargeted metabolomics analysis.  
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 Another interesting future perspective could be to study in detail the plasma 

circulating level of this metabolite after the consumption of strawberries in humans 

and then to directly correlate this with the native composition of polyphenols. From 

the point of view of cell biology and the results obtained from the in vivo study, it 

would be interesting to test whether the concentration used and found in the brain 

would be enough to exert any neuroprotective effect with neuronal cells, glia cells or 

astrocytes against oxidative stress first of all, but also against the more complex 

mechanisms reported in the literature. Of course all these different aspects will 

require the involvement of different skills and make it necessary to set up a 

multidisciplinary team to better address these issues.  
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