
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

STS: A SECURITY REQUIREMENTS ENGINEERING

METHODOLOGY FOR SOCIO-TECHNICAL SYSTEMS

Elda Paja

Advisor:

Prof. Paolo Giorgini

Università degli Studi di Trento

May 2014

Abstract

Today’s software systems are situated within larger socio-technical systems, wherein they inter-
act — by exchanging data and delegating tasks — with other technical components, humans,
and organisations. The components (actors) of a socio-technical system are autonomous and
loosely controllable. Therefore, when interacting, they may endanger security by, for example,
disclosing confidential information, breaking the integrity of others’ data, and relying on un-
trusted third parties, among others. The design of a secure software system cannot disregard its
collocation within a socio-technical context, where security is threatened not only by technical
attacks, but also by social and organisational threats.

This thesis proposes a tool-supported model-driven methodology, namely STS, for conduct-
ing security requirements engineering for socio-technical systems. In STS, security require-
ments are specified — using the STS-ml requirements modelling language — as social contracts
that constrain the social interactions and the responsibilities of the actors in the socio-technical
system. A particular feature of STS-ml is that it clearly distinguishes information from its rep-
resentation — in terms of documents, and separates information flow from the permissions or
prohibitions actors specify to others over their interactions. This separation allows STS-ml to
support a rich set of security requirements. The requirements models of STS-ml have a formal
semantics which enables automated reasoning for detecting possible conflicts among security
requirements as well as conflicts between security requirements and actors’ business policies —
how they intend to achieve their objectives. Importantly, automated reasoning techniques are
proposed to calculate the impact of social threats on actors’ information and their objectives.
Modelling and reasoning capabilities are supported by STS-Tool.

The effectiveness of STS methodology in modelling, and ultimately specifying security re-
quirements for various socio-technical systems, is validated with the help of case studies from
different domains. We assess the scalability for the implementation of the conflict identification
algorithms conducting a scalability study using data from one of the case studies. Finally, we
report on the results from user-oriented empirical evaluations of the STS methodology, the STS-
ml modelling language, and the STS-Tool. These studies have been conducted over the past
three years starting from the initial proposal of the methodology, language, and tool, in order
to improve them after each evaluation.

Keywords
[Security requirements, socio-technical systems, automated reasoning, requirements models]

Acknowledgements

Having arrived to the end of this challenging, but gratifying journey, I want to take the time
to thank the people that have played a significant role in the completion of my PhD.

I am very grateful to Professor Paolo Giorgini, my supervisor, not only for his supervision
and guidance, but for believing in me and pushing me to do more than I thought I could. I
have learned a lot through the course of these years. Professor Giorgini has been my biggest
critic, the discussions and meetings with him have been crucial to providing me the skills and
preparation to present and defend my work. I am thankful also for having had the chance to
travel extensively throughout my doctoral studies to present my work, giving me the opportunity
to interact with some of the best researchers in our field.

I am very thankful to Professor John Mylopoulos for convincing me to embark in this ex-
citing journey. Thank you for all the interactions and discussions, and most importantly for the
opportunity to further continue my research.

Thanks to Professor Haralambos Mouratidis (University of East London), Professor Oscar
Pastor (Valencia University of Technology), and Professor Fabio Massacci (Università degli
Studi di Trento), for accepting the invitation to participate in my thesis committee. I am very
fortunate to have had the opportunity to interact with them and to discuss my work with them
over the years. I owe a special thanks to Professor Fabio Massacci for all the feedback he has
provided me since the very beginning of my research, throughout the various presentations and
discussions, as well as for his advice on choices I had to make.

I am extremely thankful to my main collaborator and co-author, Dr. Fabiano Dalpiaz. It
has been a real pleasure working with you and I hope we continue our collaboration, which
has been very fruitful. I have learned a lot from you during these years, you have been a great
example to me, thank you. Most importantly, I consider you a very good friend.

I am indebted to Mauro Poggianella, who has developed STS-Tool. Thank you for all the
great work and above all for your patience. Apparently, even computer scientists, worse, re-
quirements engineers, sometimes make bad customers. ;-)

I am very thankful to two professors I have closely collaborated and worked with, Professor
Alex Borgida (Rutgers University) and Professor Travis Breaux (Carnegie Mellon University).
Thank you Alex for all the discussions, your feedback, and for scrutinizingly reviewing the for-
malisation of STS-ml. Travis Breaux hosted me during my visit at Carnegie Mellon University.
Thank you for the great opportunity. Above all, thank you for the warm hospitality. Looking
forward to continuing our collaboration.

I am grateful to the industrial partners of the EU Funded FP7 Project Aniketos, who have
used the modelling framework since the beginning and have provided continuous feedback
for its improvement. Above all, thank you for participating in the evaluation workshops. In

5

particular, thanks to Stéphane Paul and Per Håkon Meland for the constructive criticism, and
thanks to Sandra Trösterer and Elke Beck for all the help and support in organising the empirical
evaluation workshops.

Thanks to Dr. Raian Ali and Dr. Amit K. Chopra. Although our collaboration was brief,
you have provided me with useful suggestions and directions. For this I am thankful. A special
thanks goes to Dr. Federica Paci, I have benefited much from the discussions together, and I
hope that, finally, we will have a chance to collaborate. Thanks to Dr. Jennifer Horkoff for the
suggestions and for proofreading parts of this thesis.

I am grateful to my research group in Trento for the stimulating discussions during our
seminars, but also for the coffee breaks, lunches, and dinners together. These gatherings have
served as great opportunities not only to discuss research, but also to socialise. Sorry for not
mentioning any names, I am afraid I would forget to mention someone. I consider myself
fortunate to have worked and studied in such an interactive and supportive group.

Finally, thanks to all my friends. Thanks to my good old friends home for the support and
the words of encouragement, even though we are far. Thanks to the friends I have made in
Pittsburgh: you made my stay very nice, I hope we keep in touch. Thanks to the good friends I
have made here in Trento, these years would have not been the same without you. In particular,
I want to thank Davide, my best friend, you are family to me. Thanks to Dome and Luigi for
their love and support, I feel extremely lucky to have you in my life.

Thanks to my parents Bardha and Bardhi, and to my brother Geni, for being always so
proud, and for the immense support and encouragement through the course of these years.

Last but not least, thank you Gerti, my love, for the great patience and the unconditional
love. Thank you for always believing in me, for standing by me and for bearing with me all
these years, I know it has not been easy. Above all, thank you for not thinking it twice about
joining me in Trento, and for always supporting my choices and putting my career first. This
achievement is dedicated to you.

To all of you, from the bottom of my heart, Thank you, Grazie, Faleminderit,
Elda

The work compiled in this thesis has received funding from the European Union Seventh Frame-
work Programme (FP7/2007-2013) under grant no 257930 (Aniketos) and 256980 (NESSoS).

i

ii

Contents

1 Introduction 1
1.1 The security problem in socio-technical systems 2
1.2 Security requirements engineering to the rescue 5
1.3 Research Roadmap . 8

1.3.1 Research Questions . 8
1.3.2 Evaluation activities . 12

1.4 Motivating scenario: Red Cross Blood Transfusion Centre 14
1.5 Overview and Contributions . 16

1.5.1 The STS methodology . 16
1.5.2 The STS-ml modelling language . 17
1.5.3 Automated analysis techniques . 19
1.5.4 The STS-Tool . 20
1.5.5 Evaluation of the methodology, language, and tool 20

1.6 Organisation of the thesis . 21
1.7 Published papers . 22

1.7.1 Refereed . 22
1.7.2 Non-refereed . 25
1.7.3 Under preparation . 25

2 State of the art 27
2.1 Goal-oriented requirements engineering . 27
2.2 Security requirements engineering . 29

2.2.1 Security requirements engineering methodologies 29
2.2.2 Security requirements modelling languages 34

2.3 Reasoning with requirements . 36
2.3.1 Conflict identification . 36
2.3.2 Reasoning with security requirements 38

2.4 Beyond security requirements engineering . 39

iii

2.4.1 Business processes modelling . 39
2.4.2 Privacy modelling . 40
2.4.3 Policy specification languages . 41

2.5 Security standards . 42
2.6 Chapter summary . 45

3 The STS methodology for security requirements engineering 47
3.1 Security requirements engineering with STS 47
3.2 STS phases . 56

3.2.1 Phase 1. Social modelling . 56
3.2.2 Phase 2. Information modelling . 57
3.2.3 Phase 3. Authorisation modelling . 57
3.2.4 Phase 4. Automated analysis . 58
3.2.5 Phase 5. Specification . 58

3.3 Chapter Summary . 58

4 The Socio-Technical Security Modelling Language 59
4.1 STS-ml: principles . 59
4.2 Representing stakeholders in socio-technical systems 62

4.2.1 Actors’ assets . 64
4.2.2 Actor models . 68
4.2.3 Structuring information and documents 72

4.3 Modelling the interactions among actors . 73
4.4 Events and threats . 77
4.5 Specifying security requirements in STS-ml 79

4.5.1 Confidentiality . 81
4.5.2 Integrity . 85
4.5.3 Availability . 87
4.5.4 Authenticity . 89
4.5.5 Reliability . 90
4.5.6 Accountability . 93

4.6 Chapter Summary . 95

5 Social, Information, and Authorisation Models 99
5.1 Multi-view modelling approach . 99
5.2 Social model . 100
5.3 Information model . 108
5.4 Authorisation model . 110

iv

5.5 Chapter summary . 113

6 Automated analysis support 115
6.1 Formal framework . 115
6.2 STS Automated Reasoning . 124

6.2.1 Security Analysis . 124
6.2.2 Threat Analysis . 132

6.3 Chapter Summary . 133

7 Tool supported security requirements engineering: STS-Tool 135
7.1 STS-Tool Architecture . 135

7.1.1 Modelling with STS-Tool: Graphical Editor for the STS-ml Language . 137
7.1.2 Security Requirements Derivator Module 138
7.1.3 Analysis Module . 139
7.1.4 Document Generation Module . 142

7.2 Installation details . 143
7.3 STS-Tool features . 143
7.4 Chapter Summary . 149

8 Application Scenario and Case Studies 151
8.1 Self-evaluation Case Study: Trentino as a Lab 151

8.1.1 Applying STS methodology to the TasLab application scenario 152
8.2 Scalability study . 165

8.2.1 Design of experiments . 165
8.2.2 Results . 167

8.3 Case Studies . 170
8.3.1 Case Study 1: eGovernment . 170
8.3.2 Applying STS methodology to the eGovernment case study 170
8.3.3 Case Study 2: Air Traffic Management 180
8.3.4 Results of the Application of the STS methodology to the ATM case study180

8.4 Chapter Summary . 187

9 User-Oriented Empirical Evaluation 189
9.1 Evaluating STS methodology: the process . 189
9.2 Formative User-Centred Evaluation . 190

9.2.1 Experiment Design . 191
9.2.2 Results . 192
9.2.3 Conclusions and outlook . 193

v

9.3 Evaluation with novices . 193
9.3.1 Experiment Design . 194
9.3.2 Results . 196
9.3.3 Conclusions and outlook . 197

9.4 Final Evaluation . 198
9.4.1 Experiment Design . 198
9.4.2 Results . 200
9.4.3 Conclusions and outlook . 200

9.5 Discussion and threats to validity . 201
9.6 Chapter Summary . 202

10 Discussion, Conclusions and Future work 203
10.1 Fulfillment of success criteria . 203
10.2 Conclusions . 207
10.3 Ongoing and future work . 210
10.4 Future Lines of Research . 213

Bibliography 215

A Security Requirements in STS-ml 229

B Reasoning about conflicts in STS-ml using Datalog 233
B.1 Informational Knowledge Base . 233
B.2 Verifying Security Requirements over Goal Delegations 234
B.3 Verifying Security Requirements over Authorisations 237
B.4 Verifying Security Requirements over Responsibility Uptake 243

vi

List of Tables

1.1 Research questions and success criteria . 9
1.2 Fulfilment of success criteria via evaluation activities 13

2.1 Comparison with other security requirements methodologies 30
2.2 Comparison with other security requirements modelling languages 34

3.1 Security principles employed by the STS methodology 55

5.1 Social model: concepts and intentional relationships 102
5.2 Social model: social relationships . 104
5.3 Social model: events and threats . 104
5.4 Information model: concepts and relationships 108
5.5 Authorisation Modelling: Social relationships 110

6.1 Accountability security requirements: design-time verification against a variant
VM . 129

6.2 Reliability security requirements: design-time verification against a variant VM 129
6.3 Authenticity security requirements: design-time verification against a variant

VM . 130
6.4 Availability security requirements: design-time verification against a variant

VM . 130
6.5 Integrity security requirements: design-time verification against a variant VM . 131
6.6 Confidentiality security requirements: design-time verification against a variant

VM . 132

9.1 Formative user-centred evaluation: findings for each research question 193

10.1 Fulfilment of success criteria via evaluation activities 203

A.1 Security requirement types over goal delegations 230
A.2 Security requirement types over document transmissions 231

vii

A.3 Security requirement types over responsibility uptake 232
A.4 Security requirement types over authorisation relationships 232

B.1 Informational Knowledge Base Rules . 234
B.2 Interaction Requirements Verification: No-redelegation 234
B.3 Interaction Requirements Verification: Redundancy 236
B.4 Authorisation Rules . 238
B.5 Authorisation Conflicts Verification . 239
B.6 Authorisation Requirements Verification: Need to Know 240
B.7 Authorisation Requirements Verification: Non reading 240
B.8 Authorisation Requirements Verification: Non modification 241
B.9 Authorisation Requirements Verification: Non production 241
B.10 Authorisation Requirements Verification: Non disclosure 241
B.11 Identifying unauthorised transfer of authorisations 242
B.12 Security Requirements over Responsibility Uptake: Goal Rules 243
B.13 Verification of Security Requirements over Responsibility Uptake 244

viii

List of Figures

1.1 Overview of our approach to specifying secure socio-technical systems 16

3.1 The STS methodology: an overview . 48
3.2 The STS methodology: the process . 51

4.1 Graphical representation of roles and agents 63
4.2 Graphical representation of a plays relationship 64
4.3 Graphical representation of informational assets 65
4.4 Graphical representation of document possession and information ownership . 66
4.5 Graphical representation of goals and intentions 67
4.6 Actors’ intentions in the healthcare scenario 68
4.7 Graphical representation of goal and/or decompositions 69
4.8 Graphical representation of goal-document relationships 71
4.9 Actor model for Red Cross BTC . 71
4.10 Graphical representation of part-of and tangible by 72
4.11 Some information and/or document relationships in the healthcare scenario . . 72
4.12 Graphical representation of goal delegation, document transmission, and autho-

risation . 74
4.13 Some interactions in the healthcare scenario: Delegations and transmissions . . 75
4.14 Some interactions in the healthcare scenario: Authorisations 76
4.15 Some interactions in the healthcare scenario: summing authorisations 77
4.16 Graphical representation of events threatening actors’ supporting assets in STS-ml 77
4.17 Some threats affecting actors’ supporting assets is STS-ml 78
4.18 Security requirements types supported by STS-ml 80
4.19 Confidentiality security requirements in STS-ml 82
4.20 Integrity security requirements in STS-ml . 86
4.21 Availability security requirements in STS-ml 88
4.22 Authenticity security requirements in STS-ml 90
4.23 Reliability security requirements in STS-ml: Trustworthiness 91

ix

4.24 Reliability security requirements in STS-ml: Redundancy 92
4.25 Accountability security requirements in STS-ml 93

5.1 Partial STS-ml social model of the healthcare scenario 107
5.2 Partial STS-ml information model of the healthcare scenario 109
5.3 Partial STS-ml authorisation model of the healthcare scenario 112

7.1 STS-Tool Architecture: Modules . 136
7.2 STS-Tool Graphical Editor . 138
7.3 STS-Tool Automated Analysis . 139
7.4 STS-Tool Security Analysis . 140
7.5 STS-Tool Security Analysis: Verification of Security Requirements Violations . 141
7.6 STS-Tool Security Requirements Document Generation 142
7.7 STS-Tool: Security Requirements Derivation 144
7.8 STS-Tool: Security Requirements Derivation 145
7.9 Customising the security requirements document 146
7.10 Executing security analysis: visualisation of results 148
7.11 Executing threat analysis: visualisation of results 149

8.1 Partial STS-ml social model of the tax collection scenario 157
8.2 Partial STS-ml information model of the tax collection scenario 159
8.3 Partial STS-ml authorisation model of the tax collection scenario 160
8.4 Authorisation conflict towards InfoTN on authority to produce 162
8.5 TasLab case study—Threat analysis results for the event data lost 163
8.6 List of security requirements for the TasLab case study 164
8.7 Scalability analysis for no-variability: y-axis in linear scale 166
8.8 Scalability analysis for no-variability: y-axis in logarithmic scale 167
8.9 Scalability analysis for medium-variability . 168
8.10 Scalability analysis for high-variability . 169
8.11 eGov Land Selling scenario—Social Model 172
8.12 Expressing security needs: REA . 173
8.13 Expressing security needs for Interested Party 174
8.14 Modelling threats . 174
8.15 eGov Land Selling scenario—Information Model 175
8.16 eGov Land Selling scenario—Authorisation Model 176
8.17 Executing security analysis: visualisation of results 178
8.18 Executing threat analysis . 178
8.19 Security requirements for the Lot searching scenario 179

x

8.20 ATM Meteo data link scenario—Social model 183
8.21 ATM Meteo data link scenario—Information model 184
8.22 ATM Meteo data link scenario—Authorisation model 185
8.23 ATM Meteo data link scenario—Security requirements 187

9.1 Evaluation process followed throughout the development of the STS methodology190
9.2 Experiment Design for the formative user-centred evaluation 192
9.3 Experiment Design for the evaluation with novices 196
9.4 Experiment design for the final evaluation with students and experienced prac-

titioners . 200

xi

Chapter 1

Introduction

The failure of large complex systems to meet their deadlines, costs, and
stakeholder expectations are not, by and large, failures of technology.

Rather, these projects fail because they do not recognize the social and
organisational complexity of the environment in which the systems are

deployed. The consequences of this are unstable requirements, poor
systems design and user interfaces that are inefficient and ineffective.

Baxter and Sommerville [2011]

Most of today’s software systems are part of larger systems, that include not only techni-
cal components, but also humans and organisations. These larger systems are socio-technical
systems [Emery, 1959; Sommerville et al., 2012; Dalpiaz et al., 2013a], and they consist of
autonomous subsystems (participants) that interact—by exchanging messages, socially relying
on one another and exchanging information—to achieve their objectives. Examples include vir-
tual communities, e-commerce, smart cities, and healthcare systems. Socio-technical systems
open up new challenges for software engineers when dealing with security, for the threats ana-
lysts need to consider are not just technical, but also social, and should consider the underlying
business processes of an organisation.

In this chapter, we discuss the problem of developing secure socio-technical systems from
a requirements engineering perspective. Specifically, we tackle the problem of specifying the
security requirements a secure socio-technical system should satisfy. This phase (requirements
engineering) is relevant for the design of secure socio-technical systems. We present the prob-
lem and motivate its importance together with the challenges we face in Section 1.1. We mo-
tivate the focus on model-driven—and in particular goal-oriented—security requirements engi-
neering in Section 1.2. We present the research roadmap for this thesis presenting the research
questions, the corresponding expected outcomes, and evaluation actitivies in Section 1.3. Ad-
ditionally, this chapter presents the motivating scenario we will use throughout the thesis to
illustrate our approach in Section 1.4, the contributions of the work in Section 1.5, the thesis

2 Introduction

outline in Section 1.6, and finally, the list of publications this research work has produced in
Section 1.7.

1.1 The security problem in socio-technical systems

Socio-technical systems stand at the core of how people work and collaborate with others while
using the technical systems to get things done. For instance, in a healthcare socio-technical
system, organisations such as hospitals and laboratories interact with one another and with
humans such as doctors and nurses, to provide healthcare services to patients; all interact with
hardware equipment and software within the system: doctors use medical equipment to visit
patients and prescribe medications; citizens provide their personal data to be hospitalised and
receive healthcare; hospital staff enters patient data in a database, etc. Socio-technical systems
exist because their underlying (component) subsystems cannot do everything on their own (even
though they are operationally independent), quite often they need to rely on others and interact
with them to achieve their desired objectives. For instance, consider the classical interaction
between doctors and patients. Patients need to rely on doctors to receive healthcare services,
while doctors need to have as much information as possible about the patients to provide them
the best healthcare services, that is, doctors need to rely on patients to provide this information.

But, socio-technical systems are decentralised and their component subsystems are au-
tonomous and loosely controllable [Northrop et al., 2006]. This raises a number of security
issues, especially when interaction involves exchange of information. For instance, patients
would want their medical history to remain confidential and be consulted only by the said doc-
tor or specialized physicians that would provide them with healthcare [Sankar et al., 2003].
Any disclosure of this information to unauthorised parties would have unpleasant effects on the
patients, causing them embarrassment or fear of discrimination [Appari and Johnson, 2010].
Therefore, a question security designers need to answer is: “How can patients’ confidential
information, namely their medical history and current conditions, be protected?”.

Let us analyse this problem. Patient confidential information might be protected from a
technical point of view, because of high security protection on the server where the information
is stored, or because of security mechanisms implemented in the devices used to access such
information, which may significantly reduce the possibility of malicious outsiders to access
the information. However, this information would not be protected from authorised users such
as nurses or medical personnel disclosing this information either accidentally or on purpose.
Indeed, internal attacks caused by participants of the system itself, exploiting loopholes in the
system, are often more harmful than external attacks [Massacci and Zannone, 2008; Colwill,
2009; Roy Sarkar, 2010].

Therefore, in addressing the security problem in socio-technical systems, we need to account

The security problem in socio-technical systems 3

for the various stakeholders (participants) 1 in a socio-technical system (e.g., in a healthcare
socio-technical system, patients, doctors, nurses, etc.), as well as the interactions they enter,
be these to achieve some objective (e.g. receive healthcare) or to exchange information (e.g.
provide medical history), in order to identify where and how things could go wrong and result
in security violations (e.g. nurse disclosing information).

In this thesis, we argue that security issues arise mostly because of interaction, which is
the glue that holds together the overall socio-technical system. This is under the assumption
that as long as participants do not interact, that is, the fulfilment of their objectives is solely
dependent on their own capabilities and the protection of information is their liability (e.g.
patient keeps information to himself), then no harm could happen (e.g. information is not
disclosed to unauthorised parties).

Nevertheless, capturing these interactions is only one facet of dealing with security. We
need to be able to capture what are the concerns stakeholders have when entering these inter-
actions. This is because it is when stakeholders interact with others, relying to fulfil a desired
objective or provide relevant information, that they become concerned about these assets, i.e.,
their objectives and information. As such, one might want to specify how this information is to
be manipulated by others. For instance, celebrities might want to protect embarrassing health
information from being transmitted to the media and made public.

Therefore, one of the challenges we need to address is relating security to interaction, pro-
viding a way to represent and capture the interactions among the various participants of a socio-
technical system, as well as providing a way to allow them to express their concerns with
respect to security over the interactions they enter. This is important to understand why security
mechanisms are needed, to protect stakeholders’ assets, and what security concerns they have,
expressing their needs with respect to security over the interactions about their given assets.

The security problem in traditional software systems has been analysed and tackled by con-
sidering technical security mechanisms to overcome possible security breaches and protect the
system from malicious attackers [Liu et al., 2003; Jürjens, 2002]. However, in tackling the secu-
rity problem in socio-technical systems we cannot rely on technical mechanisms alone. Instead,
a thorough analysis of social and organisational aspects is required for the specification of a
secure socio-technical system.

Consider that healthcare is opening the door to the use of tablet devices in examining pa-
tients’ medical records, exchanging information among physicians as well as accessing the
healthcare system of the hospital [Lewis, 2012]. While this evolution maximises efficiency, it
poses challenges about information security. In many cases physician-owned devices are used.

1Note that we use the terms stakeholder and participant interchangeably, because they refer to different facets of the same
entity. Indeed stakeholders are the subjects that express their needs on the system-to-be on behalf of the actual participants of
the socio-technical system.

4 Introduction

These devices may leave the hospitals together with their owners, and cannot be controlled the
same way as corporate computers. What if a doctor shares sensitive information with a friend
instead of a specialised physician? What if the doctor needs to lookup medical records when
called at a restaurant? Even worse, what if he forgets the device at a restaurant table? Even
though accidental, this action results in disclosing confidential patient information to unautho-
rised parties. These new ways of operating (new organisational business processes) open up
new challenges when specifying a secure socio-technical system, for they pose severe social
and organisational threats to the system-to-be.

Social concerns are related to security violations caused by the involved humans or organ-
isations participating in the socio-technical system, while organisational concerns are related
to loopholes in the underlying business processes that could be exploited by the participants
themselves. Thus, another challenge we need to face is adequately capture these social and
organisational aspects underlying socio-technical systems that could be exploited, resulting in
security violations.

Considering the autonomous and heterogeneous nature of stakeholders in a socio-technical
system, they have different objectives for entering the system [van Lamsweerde et al., 1998].
Security concerns and needs are no exception: eliciting stakeholders’ objectives (from multi-
ple stakeholders) together with their security needs will potentially lead to inconsistencies. For
instance, the need of a doctor to have a patient’s detailed medical history (for a better diagno-
sis) does not necessarily comply with the will of the patient to keep some of this information
private (to himself) or at least not to be inserted in the hospital’s information system. As such,
requirements analysts need to account for these divergences, identify possible conflicts, and
try to reconcile the different needs stakeholders have while respecting their autonomy. Socio-
technical systems open up new challenges for requirements analysts and security engineers in
reconciling participants’ needs with respect to security without affecting their autonomy.

Scientific relevance. Summarising, the challenges security requirements engineers 2 face when
dealing with the security problem in socio-technical systems, emerging from the very nature of
socio-technical systems and their participants, are:

C1 representing stakeholders as the main components of a socio-technical system together
with their assets,

C2 capturing security on interactions,

C3 capturing stakeholders’ security needs over their interactions,

C4 capturing and analyzing social and organisational concerns, and representing social threats,
2A role covered by an expert in both requirements engineering and security, otherwise it requires two experts: a require-

ments analyst and a security engineer.

Security requirements engineering to the rescue 5

C5 identifying potential conflicts resulting from stakeholders’ different concerns and recon-
ciling them without affecting stakeholders’ autonomy.

Societal relevance. Dealing with security is an important activity, for security violations may
have severe repercussions. In the healthcare scenario, security breaches do not only affect
patients (should their security needs of maintaining information confidential be violated), but
they might have major consequences on hospital staff and the hospital itself. The hospital risks
a lawsuit at the very least, with potential financial losses. Hence, dealing with security in socio-
technical systems is an important and critical issue not to be overlooked, considering also the
societal value and impact these systems have. In doing so, we need to address the challenges
we laid down.

1.2 Security requirements engineering to the rescue

Before the rise of security requirements engineering [Mouratidis et al., 2003; Massacci and
Zannone, 2008], security was typically left as an afterthought, resulting in substantial monetary
expenditures to cover the damage in the case of security breaches, as well as challenges faced in
integrating security measures and mechanisms into the rigid architecture of an already operating
system as acknowledged by [Anderson, 2008; Johnstone, 2009]. Security mechanisms might
not fit in the pre-existing architecture or they might even be in conflict with the design under
consideration [Giorgini et al., 2006; Mouratidis and Giorgini, 2007b].

These issues have lead to security by design, which pressed on the necessity to deal with
security issues as early as possible [Devanbu and Stubblebine, 2000; Dubois and Mouratidis,
2010], already during the requirements engineering phase, to inform the later phases such as
design, implementation, and so on. Devanbu and Stubblebine [2000] are among the pioneers
in the requirements engineering community to recognise the importance of considering security
as part of the early stages of software development. Security requirements engineering, in
particular, is now well established within requirements engineering, considering the plethora of
proposals of security requirements frameworks (see [Mellado et al., 2010] for a review). What
is interesting is that most of these frameworks advocate the use of models to consider security
issues when developing secure systems. Model-driven security requirements engineering offers
the advantages of precisely documenting and analysing security requirements together with
design requirements [Basin et al., 2011]. This allows the security requirements engineer to
adequately capture security requirements and account for them early in system development,
while integrating and accommodating them along design requirements.

A requirements engineering process [Sommerville and Sawyer, 1997] encompasses require-
ments elicitation (discovering, documenting and understanding users’ needs), analysis (refining
users’ needs), specification (clearly documenting users’ needs), verification (ensuring require-

6 Introduction

ments are consistent and clear), and management (coordinating and documenting the previous
activities). A security requirements engineering process should, similarly, start with the elic-
itation of stakeholders’ security needs and terminate with the specification of the security re-
quirements for a system-to-be. The needs of the stakeholders motivate why the system has to
be secure, and explain what are the security requirements for the system. Subsequently, these
requirements lead to the design and implementation of security mechanisms (which define how
requirements are satisfied by the system). For instance, a requirement for preserving the in-
tegrity of transmission of information is fulfilled by integrity assurance mechanisms such as
data replication, mirroring, and checksumming; a requirement for the authentication of users
to access information is fulfilled by authentication mechanisms, which vary from system to
system: in case of a webmail system a username and password may be used, badges may be
used to access laboratory spaces, while iris and face recognition may be used to enter military
installations or facilities. Which security mechanism is more appropriate, should, however, be-
come clear from and be the logical consequence of the modelling and analysis processes that
are intrinsic to the security requirements engineering process [Giorgini et al., 2003], refining
high-level needs of the why dimension and understanding the how dimension.

Following on [Giorgini et al., 2003], we advocate that a further step needs to be taken:
distinguish among different types of assets stakeholders have and wish to protect, making in-
formation a first-class citizen. This differentiation will allow analysing how these assets are
used or manipulated and exchanged with others, what are the security needs the owners have
with respect to their assets, etc. This differentiation is core to a clear understanding of why
security is needed, what we need to protect and what security needs, to then answer how these
security needs can be satisfied. For instance, this distinction allows us to represent patients as
the owners of their personal data and medical records, and the fact that they want to protect
information about any eventual infective disease. Patients may specify that this information
should be accessible only to their curing physicians, not to other medical staff, and can be used
only for the purpose of providing the best healthcare service. To insure that patient security
concerns are satisfied, we need to introduce authentication mechanisms for the first concern so
that the curing physicians identify themselves to access patient information, and access control
mechanisms to ensure information is not used for any other purposes than the specified one for
the second concern, respectively.

Looking at existing work, traditional approaches to requirements engineering treated secu-
rity as a particular type of non-functional requirements [Yu and Cysneiros, 2002; Liu et al.,
2002; Bresciani et al., 2004], introducing quality constraints under which the system must op-
erate. The limitation of these approaches is that they do not offer support for identifying who is
concerned about which assets, that is, whose assets are at stake, what are the actual concerns in
protecting these assets, who are authorised or unauthorised stakeholders, and so on. Morevoer,

Security requirements engineering to the rescue 7

security requirements are captured at a very high-level of abstraction and then suddenly mapped
to security mechanisms, without a clear understanding of how these were derived. Instead, as
we illustrated, the modelling and analysis of security features should naturally guide the iden-
tification and integration of security solutions into a software system design [Giorgini et al.,
2003]. Therefore, it is hard, not to say impossible, to address all challenges C1–C5 discussed in
Section 1.1 related to the specification of secure socio-technical systems by adopting existing
approaches.

A considerable number of mainstream approaches to security requirements engineering ex-
plicitly captures security requirements [Firesmith, 2003; Mead et al., 2005; McDermott and
Fox, 1999; Sindre and Opdahl, 2005; van Lamsweerde, 2004; Haley et al., 2008]. However,
these approaches consider security in system-oriented terms, that is, they are suitable for the
design of software systems, since the system is treated as a monolithic entity focusing strictly
on technical mechanisms, and the only interactions considered are among end users and the
system. This perspective fails to capture the social and organisational aspects of socio-technical
systems, the interactions among stakeholders, and their needs with regard to security.

Other security requirements engineering frameworks and methodologies have been pro-
posed that allow modelling organisations and stakeholders, recognising the importance of con-
sidering security from a social and organisational perspective [Yu and Liu, 2001; Liu et al.,
2003; Giorgini et al., 2003, 2005a; Mouratidis and Giorgini, 2007a]. These approaches use
goal-orientation, based on Yu’s i* [Yu, 1995], by modelling a socio-technical system as a set
of goal-oriented actors (representing stakeholders) that are intentional—they have objectives—
and social—they interact with others to achieve their desired objectives. In particular, the ap-
proaches proposed by Giorgini et al. [2005a] and Mouratidis and Giorgini [2007a] go a step
further, distinguishing between actors that own a service or a resource (asset) from actors re-
quiring a service/resource, from actors entitled to do any of these. This is in line with our view,
which considers stakeholders interacting with one another to reach their objectives (services)
and exchange information (resources), while distinguishing among their proprietary assets and
the security concerns they have with respect to protecting these assets.

Thus, goal-oriented approaches to security requirements engineering [Giorgini et al., 2005a;
Mouratidis and Giorgini, 2007a; Liu et al., 2003] are a good starting point, for they explicitly
acknowledge the importance of social factors. However, existing approaches express security
requirements at a very high level of abstraction (e.g., [Liu et al., 2003; Giorgini et al., 2005a]),
which makes them difficult to operationalise to technical requirements for the system-to-be.
Also, their underlying ontologies are not expressive enough to effectively represent real-world
security requirements.

We want to be able to express real-world security requirements, that is, as close as possible
to the way stakeholders would express their concerns regarding security (as illustrated above).

8 Introduction

The importance of tackling this issue has emerged from collaborations and interaction with
industrial practitioners, who require a fine-grained specification of security requirements to
develop security into socio-technical systems.

Additionally, the practitioners community has emphasised the need for any proposed ap-
proach to the design of secure socio-technical systems to be in line with the security princi-
ples followed by the information security community [Gollmann, 2011; Pfleeger and Pfleeger,
2012; Kissel, 2011; ISO/IEC, 2005]. Guided by this pressing need, we have studied the exten-
sive work in security and the various security standards proposed such as ISO 27002 [ISO/IEC,
2005] or COBIT 5 [cob, 2012]. These standards provide an extensive list of concepts or high-
level requirements as good security practices to be followed, however, they fail to provide any
guidelines or methodological tool to support decision-making [Zannone, 2007].

1.3 Research Roadmap

We have discussed the challenges we have to face in proposing a methodology to effective secu-
rity requirements engineering for socio-technical systems. What is missing is a systematic pro-
cess (methodology) to specify security requirements for socio-technical systems that not only
acknowledges underlying social and organisational factors, but also allows one to capture secu-
rity requirements over interactions as a result of capturing participants security needs. Ideally,
such a process should narrow the gap in the requirements analysis process and facilitate oper-
ationalisation of security requirements and the introduction of security mechanisms that will
satisfy the given security requirements. We will consider the main security aspects common to
the prominent security standards in eliciting the list of security requirements the methodology
should support, while capturing stakeholders security needs. Our aim is to build on top of the
existing approaches to goal-oriented security requirements engineering, extending, revising and
refining them in order to overcome the highlighted limitations and address their shortcomings
in the design of secure socio-technical systems.

1.3.1 Research Questions

Our overarching objective is that of providing a comprehensive methodology to design secure
socio-technical systems starting from early requirements engineering.

Following the motivations and challenges discussed in Section 1.1 and 1.2, the overall ob-
jective of this thesis will be achieved by addressing the following research questions:

RQ1 How can we help security requirements engineers in specifying a secure socio-technical
system?

RQ2 How to effectively capture security requirements for socio-technical systems?

Research Roadmap 9

RQ3 How to perform analysis on security requirements?

To satisfy the identified research questions, we propose a methodology (systematic ap-
proach) acompanied by a modelling language and a formal framework that allow modelling
and reasoning about security requirements in order to specify secure socio-technical systems.
To facilitate the evaluation of the proposed methodology, in Table 1.1 we identify several suc-
cess criteria for each research question, as follows:

Table 1.1: Research questions and success criteria

RQ. Success Criteria

RQ1 SC1 Have a systematic approach that is

SC1.1 Able to conduct modelling and analysis activities in few steps

SC1.2 Applicable to different domains, and different socio-technical systems

SC1.3 Usable by both researchers and practitioners

RQ2 SC2 Have a modelling approach that is

SC2.1 Able to capture stakeholders’ security requirements (starting from security needs)

SC2.2 In line with the terminology in international security standards

SC2.3 Equipped with a formal semantics

RQ3 SC3 Have an analysis approach that supports

SC3.1 The definition of a set of properties to be verified over security requirements mod-
els

SC3.2 Automated analysis for conflict identification (with tool support)

SC3.3 Analysis results are provided in acceptable time

Addressing RQ1. In order to address RQ1, How can we help security requirements en-
gineers in specifying a secure socio-technical system?, we need to have a systematic approach
which supports modelling and analysis activities to specify a secure socio-technical system, and
is:

SC1.1 Able to conduct modelling and analysis activities in few steps. We will provide a compre-
hensive methodology that supports modelling and analysis activities for the specification
of secure socio-technical systems. The methodology will cover the entire security re-
quirements engineering phase, starting from the representation of stakeholders and their

10 Introduction

assets (addressing C1), the elicitation of stakeholders’ needs, their representation in mod-
els, their analysis, until the specification of the security requirements for the system to-be.
The proposed methodology will support the modelling of social threats and analyse their
impact over stakeholders’ assets (addressing C4).

As such, the proposed methodology should take into account these questions to guide the
modelling activities: “Who are the stakeholders participating in the given socio-technical
system?”, “What are their valuable assets?”, “What are the interactions they enter?”,
“What are their security needs over these interactions?”, “What kind of security needs?”,
“Are there any social threats affecting stakeholders assets?”, etc. Most importantly, the
process followed by the methodology will facilitate the work of security requirements en-
gineers by iteratively and incrementally building the requirements models, and performing
the modelling and analysis activities in few steps.

SC1.2 Applicable to different domains, and different socio-technical systems. This success cri-
teria is important to prove the generality of the proposed methodology, which should
support the modelling of various socio-technical systems, capturing different security re-
quirements types, while offering good coverage for different domains.

SC1.3 Usable by both researchers and practitioners. It is important that the methodology finds
applicability not only among researchers, but also among practitioners. This adoption is
important to understand the limitations of the methodology while being applied to realistic
settings, and guide further improvements.

Addressing RQ2. In order to address RQ2, How to effectively capture security requirements
for socio-technical systems?, we need to have a modelling approach which is:

SC2.1 Able to capture stakeholders’security requirements (starting from security needs) along
system and stakeholders’requirements. We will provide a design-time modelling lan-
guage that will support the modelling and derivation of security requirements for the
system-to-be. The language should address the distributed nature of socio-technical sys-
tems, while respecting the autonomy of their participants. Therefore, we need to represent
stakeholders (participants of a socio-technical system) as intentional entities (they have
objectives to achieve and for this they participate in the socio-technical system), as well
as social entities (they often depend on one another to achieve their goals). Participants are
generally heterogeneous and autonomous, therefore, their behaviour is usually unknown
and non-controllable. Thus, the best a designer can do is allow them specify constraints
over their interactions (addressing C2). We refer to these constraints as security needs to
distinguish from the general security requirements for the system-to-be. The modelling
language will reflect such intuition by relating security requirements to interaction, and

Research Roadmap 11

capturing security requirements as relationships between socio-technical system partici-
pants, where a requester actor requires a responsible actor to comply with a security need
(addressing C3). The outcome of the language will be a security requirements specifica-
tion composed of all security requirements derived by participants’ security needs.

SC2.2 In line with the terminology in international security standards. The modelling approach
will follow security principles recognised by the information security community, while
defining the set of supported security requirements types. This is important for the satis-
faction of SC1.3 to help adoption by practitioners, who need to comply with international
security standards.

SC2.3 Equipped with a formal semantics. Requirements analysis is concerned with the identifi-
cation of inconsistencies and possible conflicts among requirements. This is particularly
important when dealing with security, since violation of security requirements may have
severe consequences, such as privacy law infringement and monetary sanctions. Hence,
as part of analysis, we want to know whether the expressed security needs might be in
conflict or potentially violated. Therefore, some of the questions we need to consider in
devising adequate analysis techniques are: “Are there any conflicts among the specified
security needs?”, “Can the stakeholder satisfy the required security needs?”, “If not, why
not?”, “Is the model well-formed?”, “What is the impact of social threats over stakehold-
ers’ assets?”, etc.

Addressing RQ3. In order to address RQ3, How to perform analysis on security require-
ments?, we need to have an analysis approach which supports:

SC3.1 The definition of a set of properties to be verified over security requirements models. We
are primarily concerned with the consistency of security requirements specifications, to
avoid the existance of conflicting security requirements. As Jureta et al. [Jureta et al.,
2010] point out in their core modelling language proposal, Techne, “As the shift from
software and hardware moved towards socio-technical systems, requirements engineering
must account for the variously inconsistent expectations of stakeholders. Our modelling
language and its reasoning approach, too, should account for participants’ different views.
Being specified independently by different participants, the various security needs (and as
a consequence security requirements) one should comply with are likely to conflict. The
same applies to ones objectives and the security needs one should comply with, thus
leading to inconsistent specifications that cannot be satisfied by an implemented socio-
technical system (at least one requirement would be violated).

SC3.2 Automated analysis for conflict identification (with tool support). The detection and han-
dling of conflicts between requirements is a hard task [Finkelstein et al., 1994] as goal-

12 Introduction

models tend to become huge and complex, and it often requires the usage of automated
reasoning techniques. Our proposed modelling language can be no exception, especially
because it aims to support rich security requirements, which are quite expressive, but
complex, and real-world models, which are typically large [Trösterer et al., 2012]. There-
fore, automated analysis will be required to handle these large models, identify possible
well-formedness issues, verify whether there are potential conflicts among requirements
or potential violations of security requirements (addressing C5). In order to perform auto-
mated analysis, the language constructs and relationships, together with the set of security
requirements to be verified, will be represented in a formal language.

SC3.3 Analysis results are provided in acceptable time. The employed techniques will be devised
such that they scale well (give an answer in acceptable time) with increasing model sizes.

1.3.2 Evaluation activities

The proposal of the methodology and its constituent components, as requirements engineering
artefacts, need to be evaluated to verify whether they satisfy the established success criteria.

From the three research questions, we can identify three main artefacts of this research, a
tool-supported methodology for security requirements engineering, a modelling language and a
formal framework to support automated analysis.

The following are the evaluation activities considered for the evaluation of each and every
expected artefact:

E1 Self-evaluation study: via application scenarios (in Software Engineering terminology
widely known as case study): the method designer applies the methodology or other arte-
facts to a real life scenario. The scenario can be constructed on the basis of interviews
and discussions with stakeholders and domain experts, as well as on the basis of sup-
plementary material (documents, deliverables, etc.). Such an activity has the objective of
demonstrating the applicability of the methodology and other artefacts in the given domain
and to the given scenario, while showing that they offer a good coverage by capturing the
most important aspect of the scenario.

E2 Case study: the method designer interacts with end-users of the artefact and consults
supplementary documents to have a good understanding of the scenario. However, the
end-users are the ones using the artefact (methodology, language, or analysis; all tool-
supported) and provide feedback. Method designer collects feedback through interviews,
discussions, and provided reports.

E3 Empirical study: the method designer conducts empirical evaluation study with end users
(or representative end-users) of the artefact (apply methodology, use modelling language

Motivating scenario: Red Cross Blood Transfusion Centre 13

and analysis). Such an evaluation activity is important, for not only it shows the appli-
cability of the artefact to various application domains and scenarios, but it also allows to
measure other qualities of the methodology, language and analysis, such as, usefulness,
usability, ease of use, and intention to adopt [Moody, 2003].

E4 Formal semantics: the method designer proposes a formal framework to allow defining
properties of the artefact (mainly modelling language and its constituent constructs), in
order to verify behaviors and characteristics displayed by the artefact (models in our case).

E5 Scalability study: the purpose of this activity is to evaluate the scalability of the automated
analysis techniques supported by the modelling language, implemented by the tool, with
the help of real scenarios with increasing model size.

Table 1.2: Fulfilment of success criteria via evaluation activities

Methodology Language Analysis

SC1.1 SC1.2 SC1.3 SC2.1 SC2.2 SC2.3 SC3.1 SC3.2 SC3.3

E1 Self-evaluation study X X X X

E2 Case study X X X X

E3 Empirical study X X X X

E4 Formal semantics X X X X

E5 Scalability study X

In Table 1.2 we present the evaluation activities for the validation and evaluation of each
and every artefact produced by this work, namely methodology, language, and analysis. We
show for each evaluation activity, what are the success criteria (for each artefact) that the said
evaluation activity contributes to fulfil.

1.4 Motivating scenario: Red Cross Blood Transfusion Centre

We use a scenario from the Healthcare domain to illustrate the need for our work. In this section
we describe the case study in more detail in order to introduce the main participants, why they
participate in the healthcare socio-technical system, to help us illustrate the methodology, the
modelling language, and tool features in the next chapters.

The blood transfusion service has been considered by various researchers working in the
privacy and security domain such as [Butch, 2002; Zhu et al., 2006; Mohammed et al., 2009],

14 Introduction

to offer solutions in protecting healthcare data, while ensuring availability of necessary infor-
mation. We will consider variants of this scenario throughout the thesis to illustrate the method-
ology and introduce the modelling language.

Alice is a blood donor that periodically donates blood through the Red Cross Blood Trans-
fusion Centre (BTC). Of course, the Red Cross BTC has numerous other donors. The centre
is responsible for collecting and examining the blood collected from the donors, and then to
distribute it to different hospitals. The Red Cross BTC is responsible for ensuring all donors are
eligible to donate blood. Elaborate test results, however, are performed at specialised laborato-
ries. For instance, Alice has to take infectious disease testing at ModernLabs.

The hospitals have many patients that need appropriate healthcare. Hospitals collect and
maintain the health records of their patients, and transfuse the blood to them when needed. All
information used and maintained throughout the transfusion procedure, including the type of
operation, participated medical practitioners, and reason of transfusion, is clearly documented
and stored in the database of each corresponding hospital. The hospital relies on physicians
to provide healthcare services to patients. Physicians of the hospital access this information to
provide adequate medical health advice and treatments to the patients.

Patient information as well as the blood usage listings have been made accessible to the Red
Cross BTC so that this institution can perform certain statistical analysis and auditing tasks. The
objectives of the statistical analysis and auditing procedures are to improve the estimated future
blood consumption in different hospitals and to make recommendations on the blood usage in
future medical cases.

The Hospital Authority sets the regulations to be in place for the privacy of patients’ records.
The Red Cross BTC submits reports to the Hospital Authority. Referring to the privacy regula-
tions, such reports have the purpose of keeping patients’ privacy protected. The data published
along with the Privacy Aware Health Information Sharing Service gets refined in a way to meet
certain privacy criteria.

The analysis of the case study confirms the challenges discussed in Section 1.1, while identi-
fying new, more specific, challenges and requirements that should be considered and addressed
to enable a successful security requirements engineering process:

1. The system is defined by the interaction among social and technical participants (stake-
holders). The Red Cross BTC system is not monolithic: its operation depends by the
succesful interaction among donors, physicians, laboratories, patients, hospitals, hospital
authority and the Red Cross BTC center.

2. Consider and analyse social aspects in order to identify security issues arising from social
threats as opposed to strictly technical ones. Medical personnel of the hospital may dis-
close details of the health status of a patient to his spouse without the permission of the

Motivating scenario: Red Cross Blood Transfusion Centre 15

former, while the patient may have required this information to be discussed and shared
only with him, not with any family members.

3. The participants aim to protect their assets, namely informational and intentional assets 3.
Donors are concerned with the protection of the confidentiality of their medical history
(informational asset). The Red Cross BTC is concerned with ensuring that the express
courier successfully handles the blood transportation process towards the various hospi-
tals, i.e., fulfills blood transported (intentional asset). To address this issue, we need to
support a thorough analysis of participants relevant assets, being these informational or
intentional.

4. Every participant/stakeholder has its own expectations on security, security needs, which
constrain the way they would like others to behave when it comes to the assets they want
to protect. For example, donors allow the Red Cross BTC to use their data for approv-
ing them as donors and for any statistical analysis needed over the collected blood, but
they do not want the involvement of third parties, even of research centres. Celebrities
being hospitalised, in particular, want the information related to their conditions to remain
confidential and not made public.

5. The autonomy of participants makes the specification of secure socio-technical systems
a challenging task. What if a nurse accesses information on celebrities heath status and
transmits it to the media? A secure interaction among participants is key to the proper
functioning of socio-technical systems. Thus, the interaction among participants (sub-
systems) of a socio-technical system requires guarantees from a security point of view
that user needs (in this case not disclosing donors’ confidential health information to third
parties and not transmitting celebrities health status to the media, respectively) will be sat-
isfied. To address this challenge, we need to show how stakeholders security needs lead
to a security requirements specification, and how this specification can be satisfied.

6. The participants may grant or deny permission over their informational assets. Patients
prohibit (deny permission) third party research centres to access their personal data and
health status.

7. Conflicts concerning security are possible, due to the autonomy of the participants and
their different concerns (needs). For instance, the Red Cross BTC wants to externalise the
statistical analysis performed on donors, blood types, and hospital requests—this violates
the donors’ expectation that such data is not disclosed.

3Distinction discussed in Chapter 3 and 4

16 Introduction

1.5 Overview and Contributions

Our approach to specifying secure socio-technical systems is based on a comprehensive tool-
supported methodology, a security requirements modelling language, which offers modelling
and automated analysis capabilities integrated in the supporting toolset.

Figure 1.1: Overview of our approach to specifying secure socio-technical systems

Figure 1.1 presents an overview of our proposed approach to specifying secure socio-technical
systems. Specifically, the contributions of the thesis are as follows:

1.5.1 The STS methodology

The STS methodology for security requirements engineering of socio-technical systems guides
the modelling and analysis of secure socio-technical systems through the STS process. The
methodology addresses the challenges laid down in Section 1.4 and makes the following con-
tributions beyond the state of the art:

• Social threats: security analysis often considers the perspective of possible malicious
users attacking the system by exploiting system vulnerabilities [Liu et al., 2003; Jürjens,
2002]. In the same spirit, STS methodology does not overlook threats, and supports
the identification of social and organisational threats, which do not necessarily exploit
technical vulnerabilities of a software system. However, the methodology assumes that
the represented events threatening actors’ assets and the identification of the assets they
threaten are the result of risk analysis activities (following the identification phase of some

Overview and Contributions 17

risk analysis method [Tixier et al., 2002]), which is out of the scope of this work. STS
methodology focuses in offering a way to represent social threats affecting stakeholders’
assets and analyse how they threaten the rest of their assets, while leaving to the security
requirements engineers the choice among CORAS [Lund et al., 2010], OCTAVE [Albert
and Dorofee, 2001], or any other risk analysis methodology that better suits their needs.

• From needs to specifications: unlike other goal-oriented approaches, the methodology
covers the entire security requirements engineering phase, starting from the elicitation
of stakeholders, their important assets, threats (mainly social) affecting stakeholders’ as-
sets, stakeholders’ security needs, their representation in models, their analysis, until the
specification of the security requirements for the system to-be.

• Security standards: the methodology is aligned with the principles adopted by the com-
munity working on (information) security. Although there is no agreed upon taxonomy
of security principles, this proposal relies on six principles acknowledged by mainstream
taxonomies [Gollmann, 2011; Pfleeger and Pfleeger, 2012; Kissel, 2011]: confidential-
ity, integrity, availability, authenticity, reliability, and accountability. STS methodology
refines its supported security needs from the principles of confidentiality, integrity, avail-
ability, accountability, authenticity, and reliability, supporting in this way a rich set of
security requirements. Differently from security standards, such as ISO 27002 [ISO/IEC,
2005], which provides a general model and guidelines for establishing, implementing, op-
erating, monitoring, reviewing, and improving an information security management sys-
tem, or COBIT 5 [cob, 2012], which provides best practices for Information Technology
security governance and management, the STS methodology provide a detailed account of
the concrete steps a security requirements engineer should undertake for the specification
of a secure system, while making use of the rich concepts of the modelling language and
being facilitated by the CASE tool.

1.5.2 The STS-ml modelling language

The modelling language includes a rich set of security requirements that address the major
aspects of information security. STS-ml builds upon other goal-oriented modelling languages
such as SI* and Secure Tropos [Giorgini et al., 2005a; Mouratidis and Giorgini, 2007a; Liu et al.,
2003], but the proposed language revises the high-level organisational concepts, maintaining
a minimal set of concepts including role, agent, goal, delegation, etc., while distinguishing
information flow from permission and prohibition flow, including authorisation modelling, and
supporting a significantly richer set of security requirement types. More specifically, the STS-
ml modelling language makes the following contributions beyond the state of the art:

18 Introduction

• Social/organisational perspective: inspired by goal-oriented languages such as SI* [Giorgini
et al., 2005a] and Tropos [Bresciani et al., 2004], the methodology models socio-technical
systems as sets of goal-oriented actors that play different organisational roles and that in-
teract in order to fulfil their objectives. However, the STS-ml is a more expressive mod-
elling language, and supports a richer set of security requirements.

• Security on interactions: security requirements in the STS-ml modelling language arise
from the expectations regarding security over the interactions among the actors (e.g., the
citizens expect the hospital not to disclose their medical records to third parties).

• STS-ml distinguishes between information (e.g. ideas) and its representation via docu-
ments (e.g. email), which enables exchange and manipulation of information. This dis-
tinction is in line with the fact that information can be made available in various forms,
and each and every form needs to be protected in order to protect the information it rep-
resents [ISO/IEC, 2005]. This conceptual difference provides STS-ml with greater ex-
pressiveness, compared to SI* and Secure Tropos, when specifying security requirements
over information.

• Separation of concerns: considering the effort in building goal models, the STS-ml mod-
elling language wants to facilitate the work of security requirements engineers offering
them the possibility to create different models that focus on different perspectives of the
system under development, such as stakeholders’ interactions, their assets, etc., which
all together form the model of the system-to-be. This is a distinguishing feature of the
modelling language, as, differently from the approaches it builds upon, it separates social
and organisational concerns (objectives, interactions) from information ownership, struc-
ture and flow, from permission and prohibition flow. Specifically, the STS-ml modelling
language supports multi-view modelling, separating the social interactions among stake-
holders captured in the social view, from their information and representation captured
in the information view, from the permissions and prohibitions flow captured in the au-
thorisation view. This crisp separation of concerns highlights the need to represent and
analyse separately these different aspects in socio-technical system. Moreover, it stands
at the basis of having a richer and more expressive modelling language.

• STS-ml acknowledges the importance of representing information owners as in SI* [Giorgini
et al., 2005a, 2006]. However, following the distinction between information and docu-
ments, ownership is modelled over information, to represent the rightful participant(s)
owning an information entity. These are the ones concerned with what happens to their
proprietary information and may express their concerns (needs) with respect to security
when information is manipulated or exchanged via documents.

Overview and Contributions 19

• STS-ml explicitly distinguishes information flow from permission and prohibition flow.
Similarly to SI* [Giorgini et al., 2005a, 2006], information owners are the legitimate
stakeholders to grant or deny rights to others over their information. However, in SI*
these permissions and prohibitions are modelled similarly to information flow itself. STS-
ml offers the possibility to model and visualise authorisations stakeholders grant or deny
to others. Authorisations can be seen as a visualisation of access control policies specified
by the stakeholders themselves over their proprietary information. They define operations
one can or cannot perform over what information, for what purpose, and whether one can
further authorise others or not. As such, they offer greater expressiveness and can support
a richer set of security requirements over information.

• Formal semantics: security requirements models tend to be large, and cannot be effec-
tively analysed manually (demonstrated by our experience in [Trösterer et al., 2012]).
The formal framework lays down formal foundations (semantics) that support the execu-
tion of automated analysis techniques to verify well-formedness of the models, to identify
conflicts among security requirements and among stakeholders’ objectives and security
requirements, and to determine the impact of threats over stakeholders’ assets. Tool sup-
port is provided to automate analysis techniques and visualize results.

1.5.3 Automated analysis techniques

The automated analysis techniques are devised for detecting conflicting requirements at design
time. We propose a formal framework to perform automated analyses over the created models,
which allows to:

• Perform well-formedness checks: given that goal models tend to become huge and com-
plex, well-formedness analysis allows the security requirements engineer to build syntac-
tically correct models, following the syntax of the modelling language.

• Identify security requirements conflicts and possible violations of security requirements.
This is known as security analysis and is intended to identify conflicts arising due to (i)
simultaneous security requirements a given participant needs to satisfy, but are conflicting
with one another, and (ii) the participant’s own objectives and the security requirements
imposed to him by others being in conflict. These conflict identification techniques are
implemented in Disjunctive Datalog.

• Calculate of the impact of social threats over stakeholders’ assets. The representation of
social threats alone would not be enough to know the impact they have over stakehold-
ers’ assets. Therefore, we calculate the trace of a given threat, starting from the asset it
threatens to the rest of stakeholders’ assets.

20 Introduction

1.5.4 The STS-Tool

The STS-Tool supports modelling socio-technical systems, while capturing security needs, and
automated analysis over security requirements models. STS-Tool is an Eclipse RCP standalone
application, which has the following main features:

• Multi-view modelling: differently from existing tools to security requirements engineer-
ing, such as SI* 4 or ST-Tool 5, which support modelling stakeholders and their interac-
tions to identify security requirements violations, the STS-Tool supports separating the
social interactions among stakeholders captured in the social view, from their owned in-
formation and representation captured in the information view, from the permissions and
prohibitions flow captured in the authorisation view.

• Automatic derivation of security requirements once the modelling is done and security
needs are expressed.

• Automatic generation of a security requirements document, which provides a description
of the various views, the list of security requirements, and automated analysis results
among other detail. This is an important output that the security requirements engineer
can use to communicate with stakeholders and eventually resolve the identified security
issues whenever possible.

1.5.5 Evaluation of the methodology, language, and tool

The methodology, language and tool are evaluated through a number of activities, as discussed
in Section 1.3.2. We have taken advantage of an application scenario (E1, Section 8.1) and two
industrial case studies spanning different domains, such as Air Traffic Control Management and
e-Government (E2, Section 8.3).

These activities aim at assessing both the effectiveness of the methodology, language, and
tool in modelling security requirements in various domains, while identifying possible secu-
rity issues (supported by E4, see Chapter 6), as well as the usefulness and scalability of the
automated reasoning techniques in providing answers in acceptable time even for models with
growing size (E5, see Section 8.2).

Most importantly, we have conducted empirical studies with domain experts, practitioners,
and Masters and PhD students to further evaluate the effectiveness of the proposed methodology
(E3, Chapter 9).

4http://sistar.disi.unitn.it/index.php/SI*_Tool
5http://sesa.dit.unitn.it/sttool/install.php

http://sistar.disi.unitn.it/index.php/SI*_Tool
http://sesa.dit.unitn.it/sttool/install.php

Organisation of the thesis 21

1.6 Organisation of the thesis

The rest of the thesis is organised as follows.

• Chapter 2 presents the state of the art work for this thesis. We review methodologies
and languages for requirements (Section 2.1) and security requirements engineering (Sec-
tion 2.2), as well as techniques and methods about reasoning with requirements and secu-
rity requirements (Section 2.3). We consider approaches beyond security requirements
engineering in goal-oriented terms (Section 2.4), reviewing approaches from business
process modelling, privacy modelling, policy specification languages, and international
security standards.

• Chapter 3 introduces the STS security requirements engineering methodology for socio-
technical systems. It introduces the process followed by the STS methodology, and pro-
vides a high-level description of the activities supported by the methodology to guide
modelling and automated analysis over the created models till the specification of secu-
rity requirements.

• Chapter 4 presents the primitives of the STS-ml modelling language and the list of sup-
ported security requirements types, which are illustrated with the help of the motivating
scenario.

• Chapter 5 presents the models that can be created when using the proposed modelling
language, STS-ml, what language primitives are used and what security requirements can
be captured in each, while highlighting the importance and focus of each and every model.

• Chapter 6 introduces the formal framework (Section 6.1) that defines the semantics of
the primitives of the modelling language, and details the automated analysis techniques
(Section 6.2) that can be performed over the created models. In particular, it shows how
security analysis is used to identify conflicts among security requirements and among
participants’ objectives and security requirements with which they have to comply.

• Chapter 7 presents the CASE tool, namely STS-Tool, which supports the activities of
the process followed the STS methodology, while implementing the modelling primitives
of the security requirements modelling language, and integrating the formal framework.
STS-Tool not only facilitates modelling and automated analysis activities, but it also sup-
ports the automatic derivation of security requirements starting from participants’ security
needs, and the generation of a security requirements document.

• Chapter 8 introduces an application scenario and two case studies that are used to show
how security requirements engineers can use the proposed methodology, illustrating step

22 Introduction

by step the methodology in action to build and analyse the STS-ml models. We report
on scalability results of the analysis techniques applied on the case studies in Section 8.2.
In particular, Section 8.3.3 reports on the application and adoption of the methodology,
language and tool by practitioners.

• Chapter 9 evaluates the STS methodology through empirical studies. We present the
results of several empirical user studies conducted through the course of this research
work, while reflecting the impact each has had in the evolution of the methodology, the
STS-ml modelling language, and the various releases of STS-Tool.

• Chapter 10 provides an extensive discussion on how the evaluation activities have con-
tributed to the fulfillment of success criteria for each research question, to then conclude.
Follows a discussion of ongoing and future work beyond the contributions presented in
this thesis, and potential new lines of research.

1.7 Published papers

Published work related to this thesis is listed here. They are divided in two categories: (i) ref-
ereed, with subcategories for books, journal, conference, and workshops; and (ii) un-refereed,
presenting book chapters.

1.7.1 Refereed

International Journals

1. Per Håkon Meland, Elda Paja, Erlend Andreas Gjære, Stéphane Paul, Fabiano Dalpiaz,
and Paolo Giorgini (2014), Threat Analysis in Goal-Oriented Security Requirements Mod-
elling, International Journal of Secure Software Engineering, (To appear).

2. Elda Paja, Amit K. Chopra, and Paolo Giorgini (2013), Trust-based Specification of So-
ciotechnical Systems, Data and Knowledge Engineering (DKE) Special Issue ER 2011,
Elsevier Science Publishers, Volume 87, September 2013, pages 339—353.

3. Sandra Trösterer, Elke Beck, Fabiano Dalpiaz, Elda Paja, Paolo Giorgini, and Manfred
Tscheligi (2012), Formative User-Centered Evaluation of Security Modeling: Results
from a Case Study, International Journal of Secure Software Engineering 3 (1) pages
1—19.

Published papers 23

International Conferences

4. Elda Paja, Fabiano Dalpiaz and Paolo Giorgini (2013), Managing Security Requirements
Conflicts in Socio-Technical Systems, In Proceedings of the 32nd International Conference
on Conceptual Modeling, ER 2013, pages 270—283, Hong Kong.

5. Amit K. Chopra, Elda Paja, and Paolo Giorgini, Socio-Technical Trust (2011): An Ar-
chitectural Approach, In Proceedings of the 30th International Conference on Conceptual
Modeling, ER 2011, pages 104—117, Brussels, Belgium.

International Workshops and Demos

6. Elda Paja, Fabiano Dalpiaz, Mauro Poggianella, Pierluigi Roberti, and Paolo Giorgini,
Specifying and Reasoning over Socio-Technical Security Requirements with STS-Tool, In
Proceedings of the 32nd International Conference in Conceptual Modelling - Workshops,
pages 504—507, (ER’13 Workshops), Hong Kong.

7. Elda Paja, Fabiano Dalpiaz, and Paolo Giorgini, Designing Secure Socio-Technical Sys-
tems with STS-ml, 6th International i* Workshop (iStar’13), Valencia, Spain.

8. Elda Paja, Fabiano Dalpiaz, Mauro Poggianella, Pierluigi Roberti, and Paolo Giorgini,
STS-Tool: Specifying and Reasoning over Socio-Technical Security Requirements, 6th
International i* Workshop, pages 79—84, (iStar’13), Valencia, Spain.

9. Elda Paja, Fabiano Dalpiaz, Mauro Poggianella, Pierluigi Roberti, and Paolo Giorgini,
STS-Tool: Socio-Technical Security Requirements through Social Commitments, In Pro-
ceedings of the 20th International IEEE Conference on Requirements Engineering, pages
331—332, (RE’12 Demo and Posters), Chicago, IL, USA.

10. Elda Paja, Fabiano Dalpiaz, Mauro Poggianella, Pierluigi Roberti, and Paolo Giorgini,
STS-Tool: Using Commitments to Specify Socio-Technical Security Requirements, In Pro-
ceedings of the 31st International Conference on Conceptual Modeling Workshops, pages
396—399. (ER’12 Demostrations), Florence, Italy.

11. Elda Paja, Fabiano Dalpiaz, Mauro Poggianella, Pierluigi Roberti, and Paolo Giorgini,
Modelling Security Requirements in Socio-Technical Systems with STS-Tool, In Forum of
the 24th International Conference on Advanced Information Systems Engineering, pages
155—162, (CAiSE’12 Forum), Gdańsk, Poland.

12. Elda Paja, Paolo Giorgini, Stephane Paul, and Per Hakon Meland, Security Requirements
Engineering for Business Processes, In Proceedings of the 1st International Workshop
on Alignment of Business Process and Security Modelling, pages 79—84, (ABPSM’11),
Riga, Latvia.

24 Introduction

13. Fabiano Dalpiaz, Elda Paja, and Paolo Giorgini, Security Requirements Engineering via
Commitments, 1st Workshop on Socio-Technical Aspects in Security and Trust, pages
1—8, (STAST’2011), Milan, Italy, 2011.

14. Fabiano Dalpiaz, Elda Paja, and Paolo Giorgini, Security Requirements Engineering for
Service-Oriented Applications, 5th International i* Workshop (iStar’11), Trento, Italy,
2011.

15. Elda Paja, Fabiano Dalpiaz, Paolo Giorgini, Stéphane Paul, and Per Håkon Meland, Mod-
elling Trust and Security Requirements: the Air Traffic Management Experience, In Pro-
ceedings of iStar Showcase 2011, London, UK.

1.7.2 Non-refereed

16. Elda Paja, Fabiano Dalpiaz, and Paolo Giorgini, The Socio-Technical Security Require-
ments Modelling Language for Secure Composite Services, In Secure and Trustworthy
Service Composition: The Aniketos Approach, Springer, 2014, (To appear).

17. Elda Paja, Mauro Poggianella, Fabiano Dalpiaz, Pierluigi Roberti, and Paolo Giorgini,
Security Requirements Engineering with STS-Tool, In Secure and Trustworthy Service
Composition: The Aniketos Approach, Springer, 2014, (To appear).

18. Elda Paja, Fabiano Dalpiaz, and Paolo Giorgini, STS-Tool: Security Requirements Engi-
neering for Socio-Technical Systems, In Advances in Engineering Secure Future Internet
Services and Systems, volume 8431 of LNCS, Springer, 2014, (To appear).

19. Elda Paja, Fabiano Dalpiaz, and Paolo Giorgini, Identifying Conflicts in Security Require-
ments with STS-ml, Dipartimento di Ingegneria e Scienza dell’Informazione, University
of Trento, (December 2012).

1.7.3 Under preparation

Books

20. Fabiano Dalpiaz, Elda Paja, and Paolo Giorgini (2014), Security Requirements Engineer-
ing. Designing Secure Socio-Technical Systems, Accepted for publication, MIT Press.

International journals

21. Elda Paja, Fabiano Dalpiaz, Paolo Giorgini, Alexander Borgida, STS: A Security Require-
ments Methodology for Socio-Technical Systems, Sumbitted to ACM Transactions on Soft-
ware Engineering and Methodology.

Chapter 2

State of the art

The state of the art in the area of security requirements engineering is quite broad. However, as
discussed in Chapter 1, our focus lies mainly in model-driven solutions for the design of secure
socio-technical systems. Therefore, we present here approaches for requirements engineering
in goal-oriented terms (see Section 2.1), to then discuss approaches for security requirements
engineering in Section 2.2, where we provide a comprehensive survey of security requirements
methodologies (see Section 2.2.1) and of security requirements modelling languages (see Sec-
tion 2.2.2). Apart from modelling aspects, our methodology aims to provide analysis support,
and thus, we consider works about reasoning with requirements in Section 2.3, investigating
in particular approaches for conflict identification (see Section 2.3.1) and for reasoning with
security requirements (see Section 2.3.2).

To provide a comprehensive overview of the state of the art in specifying security re-
quirements, we consider approaches beyond security requirements engineering in goal-oriented
terms in Section 2.4, namely business process modelling (see Section 2.4.1), privacy mod-
elling (see Section 2.4.2), and policy specification languages to support enforcement (see Sec-
tion 2.4.3). Finally, in Section 2.5 we discuss international security standards to determine the
terminology to be adopted for the security requirements types STS supports.

2.1 Goal-oriented requirements engineering

Requirement Engineering (RE) is concerned with the elicitation of what a system should do.
Goal-Oriented Requirements Engineering (GORE) has emerged as a distinguishable approach
in Requirements Engineering that captures the rationale behind requirements for the system-to-
be, answering the why and how questions repeatedly. Goal-oriented approaches, as the name
indicates, build around the notion of goal, which refers to desired objectives the organization
or the stakeholders of the system under development want the system to accomplish. Goals are
used to elicit, elaborate, structure, specify, analyze, negotiate, document and modify require-

26 State of the art

ments [van Lamsweerde, 2001]. The importance of considering goals in early requirements is
acknowledged by numerous works [Mylopoulos et al., 1992; Dardenne et al., 1993; Mylopoulos
et al., 1999; van Lamsweerde, 2001]. Goals gained prominence because of several advantages
they offer, such as providing a precise criteria for completeness of requirements specification
(with respect to a set of goals), provide the rationale for requirements (useful to explain require-
ments to stakeholders), providing support in choosing among alternatives as well as identifying
requirements conflicts and resolving them eventually [van Lamsweerde, 2001].

Many GORE approaches have been proposed, see [Lapouchnian, 2005], and [van Lam-
sweerde, 2001] for an overview. We focus here on approaches that acknowledge the importance
of social factors in designing socio-technical systems in order to establish the ones best suited
for our needs.

The i* [Yu, 1995] modeling framework was developed by Eric Yu to model and reason about
organizational environments and their information systems. It addresses the need to model and
analyze the reasons behind stakeholders requirements and interests during early phase require-
ment engineering. The basic concept in i* is that of an intentional actor, taking into consider-
ation the fact that Actors in an organizational environment have to achieve goals, are equipped
with certain abilities, have beliefs, etc. All of these are intentional properties that characterize
an Actor. In i* actors are further specialized into agents, roles, and positions [Yu, 1997] to
represent the roles they play in the organization or the positions they might occupy. In such
an environment, it is obvious that actors interact with one another to accomplish their goals,
perform tasks, or access system resources. They could also depend on each other for the same
reasons. Dependency relations help actors obtain results that would be difficult, if not impossi-
ble for them to achieve alone, without delegating to other actors. Anyhow, this exposes them to
become vulnerable awaiting for the depended-on actor to deliver. The i* modeling language is
at the base of the framework. The basic constructs offered by this language are: actor—together
with its associations, intentional elements—goals, tasks, and resources, strategic dependencies,
decomposition links, means-end links, contribution links among intentional elements. The use
of i* for requirements engineering considers two different levels of modeling: (i) Strategic
Dependency (SD) Model, and (ii) Strategic Rationale (SR) Model. The SD Model describes
an organizational environment in terms of actors (and their objectives) and their social inter-
dependencies, while not not exhibiting any details of actors’ internal rationales. This model
allows representing intentionality behind processes in the organization, while highlighting what
is important for the actors themselves. The SR Model, on the other hand, goes in depth ana-
lyzing the internal rationale of actors, in terms of intentional elements—goals, tasks, resources,
softgoals. By making explicit the knowledge about on actors’ rationallity, SR models are useful
to reason about actors’ behavior.

Tropos [Bresciani et al., 2004] is an agent-oriented software development methodology cov-

Security requirements engineering 27

ering the full range of software development phases. The Tropos methodology was designed
to support analysis and design activities throughout the development process. Special focus is
dedicated to early requirements analysis, taking advantage of i*. The concepts of intentional
actor, goal, dependency, decomposition, contribution, etc., are defined and modeled here too,
although applying some constraints to the underlying conceptual model. Modeling agents, their
beliefs and desires, tasks and methods, captures important elements of an organization and the
way its members interact and collaborate with one another. Tropos addresses primarily the need
to develop robust and reliable software that operates in evolving and dynamic organizational en-
vironments, as such it describes both the system and the organization. The main advantage of
this is that, by doing an earlier analysis, one can capture not only the what or the how, but also
the why a piece of software is developed. Ignoring the why perspective is indeed one of the
major limitations of languages adopted by practitioners such as UML. This, in turn, supports a
more refined analysis of the system dependencies and, in particular, for a much better and uni-
form treatment, not only of the system’s functional requirements, but also of the non-functional
requirements. Yet, this methodology lacks the ability to capture at the same time functional and
security issues [Giorgini et al., 2003], which are very important at this level. The only way to
model security issues in terms of non-functional requirements through the use of softgoals. Al-
though softgoals can support security related analysis during requirements analysis, they lack
detail to support analysis in the later development stages, for it is hard to distinguish among
security and other requirements of the system [Mouratidis and Giorgini, 2007a]. Thus, Tropos
cannot capture security requirements properly. Consequently, Tropos has to be enriched with
additional constructs to consider them.

2.2 Security requirements engineering

2.2.1 Security requirements engineering methodologies

The requirements engineering community has acknowledged the importance and necessity of
considering security since the early stages of the software systems development [Devanbu and
Stubblebine, 2000; Dubois and Mouratidis, 2010].

We contrast our approach with other methodologies for security requirements engineering,
highlighting the ones that detect violations of security requirements.

We summarise the main methodologies in Table 2.1, a thorough review can be found in
[Mellado et al., 2010], while a comparison of security requirements engineering methods can
be found in [Fabian et al., 2010]. The columns of the table—most of which derived from
the challenges listed in Section 1.4—indicate the methodology name, the taken perspective
(organisational or system-centred), the support of refining security needs into specifications,
the formality of the approach, the support to informational and intentional assets, the inclusion

28 State of the art

Table 2.1: Comparison with other security requirements methodologies

Methodology Perspect.
Needs-
to-specs

Formal
Informat.
assets

Intent.
assets

Threats
Conflict
identif.

Anti goals Sys • • • •

Haley et al. Sys • • • • •

Liu et al. Org • • • • •

Mellado et al. Sys • • •

SecReq Sys • • • •

Secure Tropos Org • • • •

Security trade-offs Org • • • • •

SQUARE Sys • • • •

STRIDE Sys • • •

UMLSec Sys • • • • •

of threats, and the identification of conflicts. Our proposed methodology takes an organisational
perspective and supports all the listed features, as shown in Section 1.5.

Anti-goals [van Lamsweerde, 2004] abstract abuse/misuse cases to the intentional level. The
proposed method promotes security engineering at the application layer. Security requirements
are specified by incrementally building two models: a model of the system-to-be and an anti-
model. The former model specifies a set of security goals, making use of specification patterns
to elicit candidate security requirements. The anti-model captures how the security goals in the
first model could be endangered, deriving the vulnerabilities and capabilities needed to achieve
the anti-goals of the security goals. Anti-goals are refined in threat trees, whose leaf nodes
represent either vulnerabilities observable by the attacker or anti-requirements implementable
by the attacker. The model of the system-to-be is then enriched with new security requirements
which represent the countermeasures to apply to the anti-model. In contrast to this approach,
our focus is at the organisational level and on protecting the social interactions among actors.
In our view, the security specification patterns could be expressed as security needs one actor
could impose while interacting with others.

Breaux and Antón [2008] present a methodology to systematically extract security (legal)
requirements from regulation texts. They introduce a method to acquire and present data re-
quirements, accompanied with a method for assigning and managing priorities between them,

Security requirements engineering 29

to ensure law compliance and avoid inappropriate information disclosure. The acquisition con-
sists of extracting a hierarchy of stakeholders based on the specialisation relationships used to
define them in the regulations, and then for each stakeholder group, the rules that apply in a
given situation are identified. Stakeholders’ rights—actions they are permitted to perform, and
obligations—actions they are required to perform, are extracted from regulations, together with
a set of applicable constraints. Finally a series of patterns are applied to determine data access
rules. Prioritization takes advantage of exception rules, and a set of patterns for identifying
priorities between data requirements while preserving low compliance (thereby preventing im-
proper information disclosure). Though relying on contractual rules to ensure compliance, they
focus only on data usage restrictions.

Problem frames [Jackson, 2001] were extended to support security requirements [Haley
et al., 2008]. After constructing the system context with problem frames, security require-
ments are defined as constraints over functional requirements, and a structure of satisfaction
arguments is built to verify the correctness of security requirements. The argument fails if the
security requirements are not satisfiable in the context, or the context is insufficient to develop
the argument. This approach focuses mainly on system requirements, without considering the
social perspective, while ours is centred on user-specific security requirements emerging from
the interaction among actors.

An extension [Liu et al., 2003] of i* [Yu, 1995] enables dealing with security and privacy
requirements. The methodology defines security and privacy-specific analysis mechanisms to
identify potential attackers, derive threats and vulnerabilities, thereby suggesting countermea-
sures, and specifying access control. The latter aims at bridging the gap between security re-
quirement models and security implementation models. The security specific analysis steps are
integrated into the requirements engineering process, in order to anticipate potential attackers
and seek countermeasures for system protection when needed. This approach is intended to
provide mechanisms that explicitly relate social concerns with technologies and policies ad-
dressing these concerns, while putting together the organisational perspective with the attacker
perspective. Our approach represents social threats exploiting actors’ assets and uses social
relationships to propagate the threat impact over the entire model; moreover, we support a
significantly larger set of security requirements, while differentiating information flow from
permissions/prohibitions represented through sophisticated authorisations.

Mellado et al. [2007] propose a standard-based security requirements engineering process
named SREP to deal with security requirements at an early stage. SREP follows the same steps
(activities) proposed by SQUARE, but the process is standardised by integrating knowledge
from the Common Criteria (ISO/IEC 15408) and the Systems Security Engineering Capabil-
ity Maturity Model (ISO/IEC 21827) into the software lifecycle model, particularly in eliciting
security requirements. SREP reuses security requirements based on a security resources repos-

30 State of the art

itory containing threats, assets, countermeasures, and requirements specifications. Unlike ours,
this approach is not based on requirements models. A future direction could include integrating
our work in a standard-based methodology like Mellado et al.’s; to do so, their methodology
needs to be extended to consider social aspects, in addition to system-related ones.

The SecReq methodology [Houmb et al., 2010] guides the security requirements engineer-
ing process to support security-non-experts. SeqRep supports iteratively: (i) detecting security
issues at an early stage using heuristic requirements (through HeRA), (ii) refining them based
on the Common Criteria (ISO 14508), and (iii) tracing security requirements back to design (us-
ing UMLsec analysis). The first two techniques are combined to support non-experts in writ-
ing better requirements, starting from functional requirements and using heuristics to search
for keywords or patterns that indicate security-related issues. The search is performed over
the Common Criteria security requirements knowledge. The methodology supports security
requirements analysis and tracing capabilities through HeRA and UMLsec. Their approach,
similarly to ours, supports refining security needs into specifications, however our methodol-
ogy is targeted to security engineers. As for security-non-experts, as the evaluation activities
showed, there is a need for extensive training to use the STS methodology properly. SecReq
provides guidelines for secure systems development based on security expertise derived from
security standards, our methodology considers core security properties in information security
to protect actors informational and intentional assets, and importantly it considers security is-
sues emerging from interaction (social, organisational perspective).

Secure Tropos, based on SI*, is an agent-oriented security requirements engineering method-
ology, was developed to model functional and security requirements of socio-technical sys-
tems [Giorgini et al., 2005a]. The methodology allows for the design of secure information
systems starting since the initial development stages (early requirements). The SI* [Giorgini
et al., 2005a, 2006] modeling language is adopted for the acquisition of security requiremens,
relying on organisational concepts and explicitly acknowledging that the system involves the
interaction among a number of actors socially depending on one another. It builds on i* and
adds security-related concepts to capture security at the early requirements stage, among which
delegation and trust of execution and permission. Our approach supports a larger set of secu-
rity requirements, binds all requirements to interactions, and clearly separates between security
requirements and business policies.

Secure Tropos by Mouratidis and Giorgini [2007a] builds on the Tropos methodology [Bres-
ciani et al., 2004] and models security concerns from early requirements to design. The frame-
work expresses security requirements as security constraints, considers potential threats and
attacks, and provides methodological steps to validate these requirements and overcome vul-
nerabilities. Their analysis identifies secure goals and entities to guarantee the satisfaction of
security constraints, and gives secure capabilities to agents to guarantee the satisfaction of secu-

Security requirements engineering 31

rity entities. Secure Tropos, however, suffers from these limitations: (i) security constraints are
expressed over goal dependencies, similarly to our approach, however they express constraints
related to information that goals might need or create; and (ii) in Secure Tropos no relations
between goals and resources are shown, only goal-task means-ends relationships, while secure
resources are only considered after the requirements engineering phase, during architectural de-
sign, as needed to satisfy security constraints. In STS, we clearly separate between security con-
straints (needs) over goal delegations, which impose constraints on the delegation itself of the
goal being delegated, and the security constraints over information, which are expressed over in-
formation exchange and through authorisations, representing permission/prohibition flow. This
allows us to be more expressive and support more types of security requirements. We represent
how actors manipulate information when fulfilling their goals. This is important to identify
whether information is being manipulated in compliance with the security constraints imposed
by the information owner. By defining a formal semantics, we can identify violations of security
requirements, and as a result of security needs, apart from identifying conflicts among security
requirements.

Elahi’s work [Elahi and Yu, 2007] extends the i* framework by supporting security trade-
off analysis. The authors propose a conceptual modelling technique to reach a good enough
security level in a multi-actor setting. This technique offers the possibility to assess the impact
of assessing security mechanisms on actors’ goals and threats. Vulnerabilities refer to the defi-
ciencies in the structure of goals and activities of intentional agents. However, differently from
STS-ml, they do not take into account vulnerabilities related to actors interaction.

SQUARE [Mead et al., 2005] is a 9-steps methodology/process to elicit, categorise and
prioritise security requirements for information technology systems and applications. The steps
include identifying safety and security goal to elicit safety and security requirements, being
so goal-based at the early stage. SQUARE distinguishes requirements from other types of
constraints, it includes risk assessment, prioritisation, and requirements inspection. The final
output provided by SQUARE is a security requirements document that is designed to satisfy
the security goals of the organisation. SQUARE is a generic methodology that defines the key
steps to follow. Our approach, conversely, is less broad but provides concrete models, tooling,
and reasoning techniques.

The STRIDE [Hernan et al., 2006] model uses threat modelling for the design of secure
systems by methodologically breaking down the system into components, analysing each com-
ponent for susceptibility to threats, and mitigating threats, so to discover design problems po-
tentially leading/allowing security breaches and correct these design-level security problems.
The considered security properties are a subset of those supported by our methodology, while
the threats are purely technical (we consider social threats too). However, the idea of potential
security issues and threats arising when components are put together is in-line with our idea of

32 State of the art

security issues arising over interactions.
UMLsec [Jürjens, 2002] extends UML to develop security-critical systems. The methodol-

ogy helps specify security requirements focusing mostly on authenticity, secrecy, and integrity.
Security issues are analysed by representing the behaviour of potential attackers (adversaries),
and modelling specific types of attackers (stereotypes). Basic security requirements such as in-
tegrity are provided/supported via stereotypes and tags, standard extension mechanism in UML.
The UMLsec profile has been extended to UMLseCh profile [Jürjens et al., 2011] for specify-
ing one or more evolutions on a model and verifying that the system remains secure (compliant
to the security requirements expressed in UMLsec) despite evolution. Stereotypes are used to
define what specific elements change in a model (are added, deleted, or substituted), while con-
straints in first-order logic coordinate and define the different evolution paths. Unlike UMLsec,
our approach takes an organisational stance on security requirements engineering, and supports
threats too. The support to evolution of UMLseCh could be adapted for STS-ml in future work.

2.2.2 Security requirements modelling languages

We summarise the principal security requirements modelling languages in Table 2.2. We use
the same dimensions for the comparison as we did for the methodology, for the modelling
language will support activities of the methodology and because the considered modelling lan-
guages support the specification of security requirements, even though not explicitly providing
a systematic approach (method) to conduct this process.

Abuse cases [McDermott and Fox, 1999] extend use cases to capture and analyse security
requirements. An abuse case specifies a type of interaction between a system and one or more
actors, where the results of the interactions are negative/harmful. It includes a range of security
concerns that might be abused, as well as a description of the harm that might be caused.

In a similar spirit, misuse cases [Sindre and Opdahl, 2005] exploit use cases to represent
sequences of actions that a system or other entities can perform, interacting with misusers of
the entity and causing harm if the sequence is allowed to complete. These approaches exploit
negative scenarios to elicit and analyse security requirements. We focus on how actors should
interact, and define a set of security requirements for protecting their interaction. As such, the
approaches are complementary.

SecureUML [Lodderstedt et al., 2002] is a modelling language extending UML designed for
integrating the specification of role-based access control into application models, while provid-
ing additional support for specifying authorisation constraints (expressed in OCL). The formal
semantics in terms of a model transformation to UML/OCL is provided in [Brucker et al., 2006].
The idea of the transformation is that of substituting the security model build in SecureUML
with a model for an explicit enforcement mechanism specified in UML/OCL. This approach,
unlike ours, takes a system-centric stance, and supports only authorisation requirements.

Security requirements engineering 33

Table 2.2: Comparison with other security requirements modelling languages

Language Perspect.
Needs-
to-specs

Formal
Informat.
assets

Intent.
assets

Threats
Conflict
identif.

Abuse/misuse
cases

Sys • •

SecureUML Sys • •

Secure use cases Sys • • •

Security patterns Sys • •

SI* Org • • • •

Security use cases [Firesmith, 2003] are used to analyse and specify requirements that the
application shall successfully protect itself from relevant security threats. They are driven by
misuse cases [Sindre and Opdahl, 2005], and are based on an analysis of the assets and services
to be protected, while considering the security threats from which the said assets and services
should be protected. Firesmith provides guidelines to better use security use cases during re-
quirements engineering. However, it is not clear how the analysis of assets and services to be
protected is performed. It is hard to distinguish the assets, which appear to be included in the
security threat itself.

Security patterns help in solving recurring security problems during the design and imple-
mentation of systems [Schumacher et al., 2005]. Security patterns they are helpful in establish-
ing the problem of the pattern, and delegate the identification of a solution to other activities.
A variant of their approach has been added to goal-oriented languages [Asnar et al., 2011];
a future direction for our approach is to integrate security patterns to solve recurrent security
problems.

The SI* modelling language makes explicit who is the requester of a service (objectives),
who is the legitimate owner (entitlements) and who is able to provide a service (provisioning,
aka capabilities). It builds on i* and adds security-related concepts to capture security at the
early requirements stage, among which delegation and trust of execution and permission, while
considering also distrust of permission and execution. The latter allow capturing negative autho-
risations, such as delegation denial and prohibitions. However, SI* mixes together ownership,
information flow and permission/prohibition flow in the same model, which limits the ability to
express explicit security requirements, especially when it comes to information security. Those
can be derived from the prohibitions specified at the social level over the services actors are

34 State of the art

not entitled to execute. Our approach clearly separates between security requirements and busi-
ness policies (aka, how actors achieve their desired objectives either on their own or by relying
on others via delegations), binds all requirements to interactions, and supports a larger set of
security requirements.

2.3 Reasoning with requirements

2.3.1 Conflict identification

The literature in reasoning with requirements is quite broad, a thorough review and classifica-
tion can be found in [Horkoff and Yu, 2011]. We limit ourselves to providing an overview of
the literature on the identification of conflicting requirements to compare our reasoning tech-
niques. The importance of identifying conflicting requirements is well-known by practitioners
and has been widely acknowledged by the research community [van Lamsweerde et al., 1998;
Fuxman et al., 2001]. Several formal frameworks exist, especially in goal-oriented requirements
engineering.

SAT solving was applied to analyse the satisfaction or denial of goals in goal models [Giorgini
et al., 2002]. Giorgini et al. define a range of satisfaction and denial evidence, from full to par-
tial, resulting in four distinct predicates: full evidence of satisfaction (FS), partial evidence of
satisfaction (PS), full evidence of denial (FD), and partial evidence of denial (PD). By introduc-
ing the positive and negative contribution relationships among goals, they can identify situations
of contradictory contributions among goals. The new relationships are given both a qualitative
semantics and a quantitave semantics, which based on a probabilistic model. As such, the ap-
proach includes both qualitative and quantitative analysis techniques that determine evidence
of goal satisfaction/denial by using label propagation algorithms, which are proven to be sound
and complete. Conflicts are identified when both positive and negative evidence exists.

In [Giorgini et al., 2005b] Giorgini et al, incorporate goal model analysis procedures in-
troduced in [Giorgini et al., 2002] into the Tropos Framework, with the objective of making
the goal analysis process concrete while coping with qualitative relationships and incosisten-
cies among goals, in order to suggest, explore and evaluate alternative solutions. Goal analysis
inlcudes forward reasoning, which is used to evaluate the impact of the adoption of different
alternatives (leaf goals being fulfilled) with respect to the softgoals of the system to be. Addi-
tionally, backward reasoning is used to find the acceptable alternative (set of leaf goals) at the
lowest costs, such that if achieved can guarantee the achievement of the desired root goals and
softgoals. As far as the identification of conflicts is concerned, goal analysis identifies conflicts
not only based on contradictory contributions to the same goal as in [Giorgini et al., 2002], but
also possible due to the existence of diamonds or loops.

Reasoning with requirements 35

This approach inspired further research, such as the iterative interactive identification of con-
flicts [Horkoff and Yu, 2009], [Horkoff and Yu, 2010] by Horkoff and Yu for early requirements
engineering. In [Horkoff and Yu, 2009] the authors propose a qualitative interactive procedure
that allows users to systematically evaluate and compare the alternative actions and solutions
expressed in models asking “What if?” questions. The modeler can supplement the evaluation
with domain knowledge, to guide model creation and domain exploration, which includes the
evaluation of alternatives. In this way the procedure can benefit from human intervention to
compensate for the incomplete nature of the models, while reasoning in early stages of analy-
sis, before concrete quantitative information is known. The procedure propagates forwards by
first deciding on an alternative, second propagating satisfaction/denial labels and placing results
over softgoals (often receive multiple incoming labels), and finally resolving conflicting labels
over softgoals either through automatic cases or human judgment when cases do not apply. In
this way, the procedure does not itself decide on an alternative, but picks a case or human judg-
ment which leads to selecting an alternative, while evaluating the effects of alternative choices
in the model.

The work described in [Horkoff and Yu, 2010] on the other hand, proposes an interactive
backward procedure from ends to means to answer questions “Is this possible?”, “If so, how?”
and “If not, why not?”. They encode i* models (used as an example modelling language) and
target values into conjunctive normal form (CNF), and use a SAT solver to reason on this repre-
sentation. The SAT solver is called iteratively on the CNF representation. After each iteration,
their approach takes user input to take a decision in case of conflicts or multiple sources of par-
tial evidence, by using domain knowledge, to then re-encode CNF formula removing the axioms
for backward or forward propagation, and adding new axioms representing human judgment.
When the SAT solver finds the answer, it returns success, and human judgment is not needed.
When the SAT solver cannot provide an answer, they display UNSAT and backtrack over the
last round of human judgment to find an answer. Should no more human judgment be available
to backtrack over, then the procedure returns failure, for no answer was ultimately found. We
also intend to adopt human judgment to resolve conflicts, but differently from Horkoff and Yu’s
work, this cannot be based on selecting an alternative, but requires negotiation and an analysis
of trade-offs.

Fuxman et al. [Fuxman et al., 2001] translate i* models to Formal Tropos, which supple-
ments i* concepts with first-order linear-time temporal logic. The use of formal methods, in
particular model checking techniques, intends to allow a formal and mechanized analysis of
early requirements specifications to help the requirements analyst identify errors and limitations
of the specification, which would be otherwise impossible in an information setting. Formal as-
sertions are used to represent a set of required and desired constraints over the system. The
framework uses an intermediate language to link Formal Tropos and model checking. Early

36 State of the art

requirements are translated into this intermediate language and given in input to a symbolic
model checker to verify contradictions in the requirements specification (consistency checking),
as well as to validate formal properties (for actors, goals or dependencies). When identifying
property violations, their analysis returns s concrete conflicts’ scenario (counterexample) that
describes the scenario violating the property, to help the user understand the problem. Simi-
larly, our techniques visualize and describe the identified conflicts and violations to offer users
a better understanding.

KAOS [van Lamsweerde et al., 1998] includes analysis techniques to identify and resolve
inconsistencies that arise from the elicitation of requirements from multiple stakeholders with
different viewpoints. Emphasis is put on formal analysis that identifies goal conflicts. The
authors review various types of inconsistency classifying them based on the description of the
requirements, identifying: process-level deviations, which refer to a state transition in the re-
quirements engineering process resulting in a inconsistency between a process-level rule and a
process state, instance-level deviations, which results in an inconsistency between a product-
level requirement and a specific state of the running system, terminology clashes, in which the
requirements specification contains different syntactic names for the same concept, designation
clashes, when a single syntactic name in the requirements specification designates different
real-world concepts, and structure clashes, when a single real-world concept is given different
structures in the requirements specification. Conflict is defined among several specifications of
goals/requirements enhanced with domain knowledge, which seems to play an important role in
the identification and anticipation of conflicts (logical inconsistent assertions). Importantly, res-
olution techniques are discussed, such as finding alternative goal refinements, weakening goals,
and using of divergence (a boundary conditions that makes assertions logically inconsistent)
resolution heuristics. The proposed classification and resolution techniques are shown to be
useful in managing inconsistencies in a real-world project, however most of the classifications
and resolution strategies are specific to KAOS concepts, such as boundary conditions.

Jureta et al. [Jureta et al., 2010] propose Techne, an abstract formal requirements language,
which provides ontological foundations (core concepts and relationships) and basic analysis, to
serve as a basis for creating new early requirements engineering modelling languages. The lan-
guage provides a minimal set (core) of components such as goasl, softgoals, quality constraints,
domain assumptions, and tasks, which are necessary to define the requirements problem, define
candidate solutions, model preferences and optional requirements, and use them as criteria to
compare candidate solutions. Candidate solutions are consistent sets of requirements satisfying
some properties. The language supports classification and relation of the information elicited
from stakeholders to then model and formulate requirements for the system to be. Among rela-
tions we can spot conflict, which is used to model a conflict between requirements that cannot
be part of the same candidate solution. Techne uses r-net visual syntax to represent require-

Beyond security requirements engineering 37

ments and the relations among them. Analysis in Techne aims to find candidate solutions to the
requirements problem, which must be conflict-free.

Our framework takes an interaction-oriented stance to conflict identification, by checking
business policies against security requirements on social relationships, as opposed to reasoning
on a single goal model. An interesting research line is to integrate the discussed frameworks to
detect inconsistencies among individual business policies.

2.3.2 Reasoning with security requirements

De Landtsheer and Van Lamsweerde [2005] model confidentiality claims in terms of specifica-
tion patterns, representing properties that unauthorised agents should not know. Their reasoning
identifies violations of confidentiality claims in terms of counterexample scenarios present in
requirements models. Diagnosis algorithms are used to generate the unauthorised agents rea-
soning to infer knowledge that is claimed to be confidential. While their approach represents
confidentiality claims in terms of high-level goals, ours represents authorisation requirements as
social relationships, and we identify violations by looking at the business policies of the actors.

SI* [Giorgini et al., 2005a, 2006] proposes automated reasoning to check security properties
of a model, and studies the interplay between execution and permission of trust and delegation
relationships. Inconsistencies are identified as a result of considering two different levels, so-
cial and individual, based on the role-based access control model. They specify entitlements,
objectives and responsibilities to roles, and then assign agents to roles. The social level repre-
sents for instance the policies that rule the organisation, while the individual level represents
the concrete instance of the organisation. Therefore, inconsistencies are identified in case the
concrete instance violates the specified security requirements. While we use the same reasoning
engine, our formalisation of security requirements and business policies makes our reasoning
task different. We take a deeper perspective on information security, representing the legitimate
owners and capturing the information and permission/prohibition flow with respect to the said
information. Apart from supporting a wider set of security requirements, this allows us to iden-
tify unauthorised access and usage of information and unauthorised delegation of rights among
others.

2.4 Beyond security requirements engineering

2.4.1 Business processes modelling

Business process modelling is often used to capture security policies. There exists a number of
approches that verify the compliance between security policies and business processes executed
in a system.

38 State of the art

Security aspects might be directly captured through business process modelling, or exist-
ing business process models might be enriched with security annotations after getting in input
security requirements specifications derived from security requirements modelling languages,
among others.

For instance, Wolter et al. [Wolter et al., 2008], describe an approach to integrate security
goals and constraints in business process modelling together with a model-driven transformation
that focuses on authorisation requirements. In a similar way, Rodriguez et al. [Rodrı́guez et al.,
2007] introduce an extension to the Business Process Modelling Notation (BPMN) to allow
business analysts express security needs from their perspective. In our view, security policies
modelled at the business process level should be a consequence of the modelling performed
at a higher level of abstraction, which provides a rationale on how the business analyst should
decide upon security requirements in the business process and what security requirements are
specified over the business processes of the system-to-be.

In [Menzel et al., 2009], Menzel et al. employ a model-driven approach to generate security
policies based on security patterns. They provide an enhancement to BPMN to enable the
assessment of risks based on the evaluation of assets and the trustworthiness of participants,
and to enable the annotation of security requirements such as confidentiality or integrity.

Pavlovski and Zou [Pavlovski and Zou, 2008] extend BPMN to capture non-functional re-
quirements related to business process models, among which security policies that apply. Their
extension involves two notations: operating condition, which refer to constraints over activities,
and control case, which describes the risks associated to the operating condition together with
mechanisms to mitigate or reduce business risks.

Cardoso et al. [Cardoso et al., 2011] start from goal modelling to elicit business process
models. Goals are considered as objectives to be achieved by the execution of a business pro-
cess. The authors show how the elicitation process takes place starting from a preliminary phase
to a supplementary one, which refines the goal models by using NFR (Non-Functional Require-
ments) catalogues. However, how goal models are related to business process models is left as
future work.

For high-level business process modelling in UML, the approaches by Sindre and Op-
dahl [Sindre and Opdahl, 2005] related to misuse cases and UMLSec by Jürjens [Jürjens, 2002],
are well-known. In Sindre [2007], Sindre proposes another technique, which complements mis-
use cases, to capture security issues throughout business process diagrams. The author extends
UML activity diagrams by adding malicious activities and malicious actors to identify possible
threats, and then adds defensive processes to mitigate the identified risks, suggesting where in
the process the mitigation activities would be placed.

Beyond security requirements engineering 39

2.4.2 Privacy modelling

P3P [Cranor et al.] is a W3C specification for matching users’ privacy concerns with providers’
privacy policies. The specification offers a way for providers’ an easy way (multiple choice se-
lection) to communicate their privacy policies in machine-readable format so that they can be in-
terpreted by web browsers. Several software agents, such as the privacy minder, AT&T/Microsoft
browser helper object, AT&T usability testing prototype and AT&T privacy bird, have been de-
veloped to compare policies with user preferences, inform users and take actions based on users’
preferences.

Beckers [Beckers, 2012] proposes a conceptual framework to compare various privacy re-
quirements engineering approaches. The framework extends an existing security requirements
engineering approach from [Fabian et al., 2010] and is applied to compare three privacy re-
quirements engineering approaches, namely PriS [Kalloniatis et al., 2008], LINDDUN [Deng
et al., 2011], and the Framework for Privacy-Friendly System Design [Spiekermann and Cra-
nor, 2009]. The conceptual framework is extended with personal information of stakeholders,
as well as relationships among stakeholders and their personal information and privacy goals.
The framework supports these privacy goals: anonymity, unlinkability, unobservability, and
pseudonymity. Importantly, they distinguish personal information from assets to be protected
from a security point of view. In STS, information, and in particular personal information is
considered an informational asset for the stakeholders , an asset that needs to be protected (if
specified). Privacy requirements are implicitly captured in STS via authorisations that specify
permissions and/or prohibitions over how information can be used or manipulated, the scope
of usage (for particular goals) and the authority transferred to interacting stakeholders. This is
inline with approaches that deal with privacy as part of confidentiality, wherein stakeholders’
information is protected from unauthorised access [Danezis and Gürses, 2010]. The framework
proposed by Beckers considers the transferral of personal information in aggregated form. In
STS, we support the representation of information structure to exactly keep track of aggregated
or composite information. This allows us to specify security requirements either directly over
specific parts of information or on the composite information.

Costante et al. [Constante et al., 2013] propose an approach to assist both service users and
service providers in composing and selecting the optimal services with respect to their privacy
policies. The proposed approach supports the modelling of privacy preferences along several
privacy dimensions, namely sensitivity (of data subjects), purpose, retention period, and visibil-
ity. Moreover, they propose algorithms for service composition that selects services that satisfy
both users’ functional requirements and their privacy requirements, to finally rank the result-
ing composite services with respect to the offered privacy level. STS can be seen in service
oriented terms, for the interactions among stakeholders are similar to those among a service
consumer (user) and a service provider. The selection algorithm supports our ideas about re-

40 State of the art

solving potential conflicts among stakeholders’ business policies (representing their functional
requirements) and their security requirements (which in STS include privacy requirements too,
captured through permission and prohibition modelling).

2.4.3 Policy specification languages

Policy specification languages play an important role in supporting enforcement of security
policies as well as auditing of decisions.

SecPAL [Becker et al., 2010] is a declarative authorisation language to support legal com-
pliance with evolving legislation based on formal logic. The authorisation decision is based on
query evaluations using Datalog with constraints. SecPal supports fine-grained delegation con-
trol for decentralized systems, highly expressive constraints and negative conditions, offering
in this way high expressiveness to specify formal authorisation policies.

IBM’s Enterprise Privacy Authorisation Language (EPAL) [Ashley et al., 2003] is a W3C
standard privacy specification language that supports enterprises to specify directly enforce-
able policies for data-handling. A policy in EPAL is typically a list of privacy rules. A rule
is a statement that includes a ruling (allow, deny), a user category (e.g., sales department), an
action (e.g., store), a data category (e.g., customer record), and a purpose (e.g., order process-
ing). Conditions and obligations may be applicable too. Decision taking is based on evaluating
rules and policies to verify their applicability, authorisation requests are assessed by a Policy
Enforcement Point (PEP) and taken by a Policy Decision Point (PDP).

A similar standard specification language is the eXtensible Access Control Markup Lan-
guage (XACML) [OASIS, 2013]. XACML is an OASIS standard that defines a declarative
access control policy language implemented in XML and a processing model describing how
to evaluate authorisation requests based on the rules defined in policies. Decision making is
similar to EPAL: all requests for access to a resource go through a PEP; the request it trans-
lated to a request for an authorisation decision which is sent to a PDP; this latter component
considers the various policies (a policy is a set of rules), evaluates the information and provides
in return an authorisation decision to the PEP. The request contains the information necessary
to take authorisation decisions. A XACML Engine is typically used to filter requests and apply
the rules. XACML supports several rule combining algorithms to combine several rules and
policy combining algorithms to deal with multiple policies. These are very useful in taking
a decision whenever the different policies get conflicting evaluations. STS supports only the
identification of security issues and conflicts among security requirements. Mapping the se-
curity requirements specification to a policy specification language will provide the possibility
to have enforcement of the required security needs. In particular the use of policy combining
algorithms will aid the process of conflict resolution at the STS level.

Security standards 41

2.5 Security standards

In dealing with security, we want to be in line with the principles adopted by the community
working on security; in particular, the one concerned with information security. We rely on this
body of work to identify the core security aspects we need to consider in the design of secure
socio-technical systems.

ISO-27002 [ISO/IEC, 2005] defines information security as the “preservation of confiden-
tiality, integrity and availability of information; in addition, other properties, such as authen-
ticity, accountability, non-repudiation, and reliability can also be involved”. This standard
provides a model for establishing, implementing, operating, monitoring, reviewing, maintain-
ing, and improving an information security management system. Information security is a main
pillar in ISO 27002, acknowledging the importance of information as an asset that needs to
be suitably protected, like other important business assets. ISO 27002 states that an appropri-
ate protection of information requires its protection in any form (information can be printed or
written on paper, transmitted via email, shown on films, or spoken in conversation) or means by
which it is shared or kept (paper, email, film, or voice). The standard provides a set of (11) secu-
rity control objectives—considered a good starting point, as they apply to most organizations or
environments—to develop specific guidance to implement information security systems. These
include risk assessment and treatment, security policy, organizing information security, asset
management, communications and operations management, access control, and information
security incident management among others. The standard describes each considered control
objective, and provides high-level guidelines for their implementation. However, it does not
include more fine-grained details on how to implement these control objectives.

Common Criteria (CC) [cc-, 2012] is a computer security standard (ISO/IEC 15408), which
provides a guide for the development, evaluation and/or procurement of IT products with secu-
rity functionality. The CC addresses protection of assets from unauthorised disclosure, modi-
fication, or loss of use. The security categories relating to these three types of failure are com-
monly the CIA triad security protections, i.e., confidentiality, integrity, and availability, respec-
tively. Common Criteria allows: (i) consumers to specify their security requirement (provides a
set of common requirements for security functionality and assurance measures), (ii) developers
to implement and make claims about the security attributes of their products, and (iii) evaluators
to establish if the said products meet the claims, checking against evaluation assurance levels.
CC is usually supplemented by other standards, such as ISO 27002, for it does not guarantee
the security of products, instead it is meant to be used as the basis for evaluation of security
properties of IT products. CC ensures that the process of specification, implementation, and
evaluation of a product has been conducted in a rigorous and standard way.

NIST-IR 7298 [Kissel, 2013] provides a glossary of information security terms. It defines

42 State of the art

Adequate Security as: “Security commensurate with the risk and the magnitude of harm re-
sulting from the loss, misuse, or unauthorized access to or modification of information. This
includes assuring that information systems operate effectively and provide appropriate confi-
dentiality, integrity, and availability, through the use of cost-effective management, personnel,
operational, and technical controls.” Although not explicitly part of its information security
definition, NIST-IR considers authentication and accountability two important security goals
for information security. Given its nature as a glossary, NIST-IR is not meant to provide guid-
ance to implementing the defined security requirements.

COBIT [cob, 2012] from ISACA, defines information security as: “Ensures that within the
enterprise, information is protected against disclosure to unauthorised users (confidentiality),
improper modification (integrity) and non-access when required (availability).” However, CO-
BIT is not meant to serve as a standard tackling information security alone, rather it aims to
provide best practices for enterprises for information technology governance and management.
It provides a comparison with other available standards, such as ISO27002 [ISO/IEC, 2005]
and NIST-IR [Kissel, 2013], while providing directions to executive agencies on how to apply
and adapt its good practices to specific contexts.

The CIA triad is a well-known information security model, acknowledging the importance
of three security properties a system should satisfy, mainly Confidentiality, Integrity and Avail-
ability. However, for a complete picture other aspects or properties should be considered
[Stallings and Brown, 2008]. This has given rise to alternative information security models,
such as the Parkerian hexad (Confidentiality, Possession or Control, Integrity, Authenticity,
Availability and Utility).

Although there is no agreed upon taxonomy of security requirements (principles), the com-
munity working in information security agrees on six core security principles a system should
fulfil Gollmann [2011]; Pfleeger and Pfleeger [2012]; Kissel [2013], that we consider in our
proposal. All of these proposals provide their own definitions of the identified security princi-
ples. In the following, we list the security properties we consider important in a socio-technical
system, providing a definition we consider more apt for our purposes.

• Confidentiality covers information confidentiality and privacy [Stallings and Brown, 2008].
It assures that private or confidential information is not made available or is not disclosed
to unauthorized users. Moreover, it assures that users control (or influence) what infor-
mation related to them may be collected (used), and to whom that information may be
disclosed [Stallings and Brown, 2008]. For example, a citizen’s taxable income is typi-
cally confidential.

• Integrity assures that information is not changed (modified) or destroyed in an unautho-
rized way [Stallings and Brown, 2008]. For instance, one would want to preserve the

Chapter summary 43

integrity of information related to its bank account details, that this are not falsified (mod-
ified) by any employee of the bank.

• Availability assures that the system works promptly, service is not denied to authorised
users, and timely and reliable access to and use of information Stallings and Brown [2008].
For instance, in air traffic management control, the controllers need at all times full avail-
ability of information on incoming and outgoing traffic to manage landing and take-off of
aircrafts.

• Authenticity is the property of being genuine and being able to be verified and trusted
[Kissel, 2013]. Authenticity is ensured through authentication processes that verify whether
users are who they say they are (entity authenticity [Stallings and Brown, 2008]). We use
authentication mechanisms everyday when we access web information such as our email
or internet banking.

• Reliability is concerned with the consequences of accidental errors [Gollmann, 2011].
In the era of the Internet, however, the notion of accident encompasses non-designed
usages, including attackers trying to misuse the system. Mechanisms of redundancy are
often employed to ensure reliability of a system. For instance, service providers often
maintain communication with third party service providers to ensure service consumers
have always access to their service, should their site be down (e.g., due to a DDoS attack).

• Accountability refers to the requirements for actions of an entity to be traced uniquely to
that entity [Kissel, 2013]. The most well-known property related to accountability is that
of non-repudiation, which prevents two communicating (interacting) parties from denying
the communication (interaction) has taken place.

Starting from these categories of high-level security requirements, we will refine them to
specific security requirements applicable to interactions among participants of a socio-technical
systems. As security requirements in the STS methodology capture stakeholders’ needs with
respect to security, the security requirements are also such that their naming and representation
is close to what stakeholders might express and require over interactions, with respect to the
achievement of their goals and information.

2.6 Chapter summary

Our approach to designing secure socio-technical systems is model-driven: models are used
to represent stakeholders, their objectives, security needs, and used at design time to detect
conflicts among stakeholders’ objectives (their business policies) and the security requirements
they have to comply with. Specifically, we employ a goal-oriented approach, taking advantage

44 State of the art

of social models in order to capture social and organisational aspects of the system to be, in
line with the challenges presented in Chapter 1. Therefore, STS methodology builds on top
of Tropos [Bresciani et al., 2004] and its security-oriented extension [Giorgini et al., 2005a].
This choice is related to the effectiveness of these goal-oriented approaches in the design of
secure socio-technical systems [Dalpiaz et al., 2008]. They offer the adequate level of abstrac-
tion in capturing security requirements for the system-to-be, and modelling the structure of
socio-technical systems. Their main limitation—that we cope with in our approach—is that
their underlying ontology is not expressive enough to effectively represent real-world security
requirements.

Most importantly, STS intends to be in line with the terminology used by experts in security,
and for this we considered various international security standards to come up with a taxonomy
of security properties our methodology should consider. This will be further explored in Chap-
ters 3 and 4.

Chapter 3

The STS methodology for security
requirements engineering

This chapter presents the STS methodology for security requirements engineering. The need
for a new methodology has been extensively motivated in Chapter 1, and thus, we focus here on
introducing the STS methodology. We describe its type of process, the main stages it considers,
as well as the roles conducting those stages in Section 3.1. Section 3.2 describes the main
phases of the process supported by the STS methodology 1, describing in detail each of them
throughout the Sections 3.2.1–3.2.5.

3.1 Security requirements engineering with STS

The STS methodology encompasses the whole security requirements engineering phase which
is crucial for later phases, such as design, in developing secure socio-technical systems. Unlike
existing methodologies, which result in the security specification for a software system, the STS
methodology produces the security specification for the overall socio-technical system, which
apart from software systems includes also human and organisational stakeholders. A high-level
overview of the process followed by the STS methodology is presented in Figure 3.1.

The process. In line with prominent methods in requirements engineering [van Lamsweerde,
2001; Yu, 1995; Dardenne et al., 1993], our method starts with understanding stakeholders’
objectives and their needs about security (Elicitation, see Figure 3.1). Elicitation is typically
performed with the help of stakeholders, through discussions and interviews to identify their
needs about participating in the socio-technical system, and in STS, the focus is particularly

1We use method and methodology interchangeably, in line with the common use in Software Engineering, but acknowledge
the distinction.

46 The STS methodology for security requirements engineering

Figure 3.1: The STS methodology: an overview

on their needs about security. Security needs might also be acquired and elicited through the
investigation of organisational regulatory rules, laws or any other documents providing related
information. However, the details on how the elicitation stage itself is conducted are out of the
scope of the STS methodology. We consider the requirements gathering and elicitation activities
to have taken place, and we analyse the outcomes, which serve as input for the modelling stage.

The methodology guides requirements analysts and security engineers in modelling (Mod-
elling, see Figure 3.1) and analysing (Analysis, see Figure 3.1) a socio-technical system (fo-
cusing on security relevant components and aspects, such as participating stakeholders, their
interactions and important assets), and terminates with the definition of a security requirements
specification (Specification, see Figure 3.1). These are the principal stages of the process sup-
ported by the STS methodology to be followed by the security requirements engineer to build
the specification for secure socio-technical systems.

As it can be understood from Figure 3.1, STS is model-driven, and therefore, modelling is
one of the core phases considered by the STS process to capture and specify security require-
ments. As already explained and argued in Chapter 1, STS methodology follows a goal-oriented
approach. Hence, it helps address the “why” and “what” questions, that is, why security is im-
portant to stakeholders and for the socio-technical system, what security needs stakeholders’
have, and ultimately helps understand the “how” question, that is, how the security needs can
be satisfied. However, adequately answering the “how” question requires mapping the specifi-
cation derived from STS to lower level languages such as business process modelling and policy
specification languages (XACML [OASIS, 2013], SecPAL [Becker et al., 2010]).

Business process modelling helps specify security policies to be met by the business process
running in the socio-technical system. Most importantly, it allows to capture temporal aspects of
the activities conducted by stakeholders and their interactions with others. On the other hand,
policy specification languages, together with their implementations, provide policy decision

Security requirements engineering with STS 47

points to dwell upon the satisfaction of the specification derived from STS. These, however, are
steps to be conducted after the security requirements engineering phase, and as such are outside
the scope of STS. Nevertheless, we will consider later on these developments, for they help in
establishing and enforcing compliance with the security specification obtained from STS.

The STS methodology is iterative and incremental, for (security) requirements are in con-
stant evolution [Ernst et al., 2009] and they need continuous reevaluation throughout the devel-
opment process. Therefore, modelling can be refined for as long as the security requirements
engineer considers that there are still stakeholders to consider, interactions to model, security
needs to capture, and so on. The iterative nature of this phase is graphically shown with the
circle arrows above Modelling in Figure 3.1.

Modelling is succeeded by the analysis phase. Analysis is automated through tool support,
to facilitate and make feasible analysing the goal-model resulting from the modelling phase.
The execution of automated analysis requires some modelling to have taken place, notice the
arrow from Modelling to Analysis in Figure 3.1. However, automated analysis does not require
a complete model to be executed. The requirements analyst and the security engineer can use
the results of the automated reasoning to improve the STS-ml model step by step, see the arrow
directed from Analysis to Modelling in Figure 3.1. Analysis may discover security issues or
inconsistencies among requirements deriving from stakeholders’ different views and needs. As
a result, analysis may influence elicitation, requiring further investigation and discussion with
stakeholders (see the arrow from Analysis toward Elicitation, Figure 3.1).

The process continues till the security requirements engineer considers to have covered all 2

important security issues when modelling the socio-technical system at-hand. Termination cri-
teria is established by answering these questions:

• Did I capture all important stakeholders?

• Did I capture all important interactions?

• Did I model all assets?

• Did I express all security needs?

The process ends with the derivation of security requirements specification for the socio-
technical system under consideration.

STS methodology can be included in the context of broader methodologies, such as those for
system engineering and for software engineering. Due to the evolving nature of requirements,
STS methodology is optimally used within agile methodologies that support quick response
to changes. Its iterative and incremental nature makes it a good fit for agile development. In

2Note that “all” refers here to the overall information gathered from stakeholders.

48 The STS methodology for security requirements engineering

particular, the separation of concerns principle followed for the modelling activities (see de-
tails below), allows the participation of several requirements analysts and security engineers to
model various components or parts of a socio-technical system. However, given the complexity
of socio-technical systems and their considerable size, resulting models tend to be of a consid-
erable size too. This opens up issues and challenges for the integration of the models, which the
supporting toolset accompanying the methodology should satisfy.

Roles. The requirements analyst is concerned with the identification of stakeholders, their
assets and interactions, their information (asset), etc. In a nutshell, they are in charge of under-
standing stakeholders’ needs to participate in the socio-technical systems (i.e., what are their
objectives) and how they intend to accomplish their objectives. Thus, the requirements analyst
is in charge of gathering stakeholders’ security needs together with all the necessary informa-
tion to identify their assets, why they participate in the socio-technical system, who they interact
with, and so on. In STS, we assume the elicitation phase of the process has already taken place,
and therefore, we take the output of this phase, which is the acquired information the require-
ments analyst needs for the creation of models.

The requirements analyst conducts modelling activities analysing the information acquired
during elicitation. During the modelling phase, the requirements analyst is responsible for
the representation of stakeholders, their assets and interaction with the help of a modelling
notation (language). But, the perspective of the requirements analyst is not enough for an
adequate security requirement engineering process. Therefore, STS considers the perspective
of a security engineer too.

The security engineer is responsible for capturing stakeholders’ security needs in the socio-
technical system. Specifically in STS, security engineers investigate on possible security issues
arising over stakeholders’ social interactions, as well as on eventual threats putting at risk stake-
holders’ assets (and as a consequence stakeholders themselves). The first type of security needs
can be discovered through interviews and discussions with stakeholders, through related docu-
mentation, as well as through the revision of the various models constructed by the requirements
analyst over different iterations. The identification of threats affecting stockholders’ assets, on
the other hand, requires the involvement of yet another role for a clear separation of concerns,
that of a risk analyst. However, in STS, we assume that the risk analysis activity (this activity
is out of the scope of STS) has already been conducted, and support only the modelling (rep-
resentation) of events threatening stakeholders’ assets. That is why, this role is covered by the
security engineer too.

The security engineer is concerned with the modelling of security needs, as well as with the
Analysis activities, which are necessary to verify the satisfaction of the specified needs. Given
that modelling and analysis activities are closely linked together, they require the collaboration

Security requirements engineering with STS 49

of requirements analysts and security engineers involved in the process.

Figure 3.2: The STS methodology: the process

Note that the competences related to the roles requirements analyst and security engineer
might be encapsulated in one single role, that of a security requirements engineer (as in Fig-

50 The STS methodology for security requirements engineering

ure 3.1), who has expertise both in requirements elicitation and analysis, as well as in security.
However, for the sake of clarity, in the following we keep these roles separate when describing
in detail the steps of the process followed by the STS methodology, see Figure 3.2.

Multi-view modelling approach. One of the particularities of the STS methodology is that it
neatly distinguishes between the social and organisational aspects, stakeholders’ assets (with
a special focus on information), and their expectations with regard to security on sharing and
protecting their assets. This feature helps the requirements analysts and security engineers
separate concerns, while allowing for higher expressivity in capturing security issues. The
multi-view approach considers the creation of the models for the socio-technical system under
consideration can be done by focusing on one perspective (view) at a time. This means that
the underlying system model is one only, but STS offers different complementary views of
the same model. This is done not only to support separation of concerns, but also to promote
modularity and help in addressing scalability issues in constructing ever growing models for
complex systems.

Due to this differentiation, the modelling activities (Modelling, Figure 3.1) in STS are spe-
cialised and tailored to support the creation of three different (sub)models when building the
model for the system-to-be, which correspond to three different modelling phases, namely so-
cial modelling, information modelling, and authorisation modelling. Social modelling is con-
ducted by both a requirements analyst and a security engineer, information modelling requires
only the expertise of a requirements analyst, while authorisation modelling requires the exper-
tise of a security engineer.

These modelling phases result in the creation of three complementary models: the social
model, the information model, and the authorisation model. The overall model for the system-
to-be is, in fact, composed of all these three (sub)models, which are the direct output of the
modelling in three different views as supported by the process of the STS methodology. Be-
ing views over the same model, these output models should be consistent among them. This,
however, needs to be addressed by the supporting toolset.

The overall detailed process followed by the methodology is illustrated in Figure 3.2 using
a BPMN-like notation [Object Management Group, 2011]. The figure shows only the main
backwards iterations to previous activities and phases. The BPMN diagram outlines the five
phases supported by STS methodology: social modelling, information modelling, authorisa-
tion modelling, automated analysis, and specification, the activities within these phases, the
roles that execute the activities: security engineer and requirements analyst, and the artefacts:
social model, information model, authorisation model, analysis results, and security require-
ments document.

Modelling activities are supported by STS-Tool, which ensures inter-view (model) consis-

Security requirements engineering with STS 51

tency as we will show in Chapter 7. The changes in one model have effects on other models.
For instance, the different represented stakeholders may be first captured in one model, such
as the social model, but they are maintained throughout the three models, unless the require-
ments engineer decides to hide it in another model, such as the information model, should that
stakeholder not have any informational assets.

The modelling process is iterative, and as a result Phases 1–3 in Figure 3.2 are iterative too,
see the circle arrows in the corresponding swimlanes. Each modelling phase produces an output
model. The output models—social model, information model, and authorisation model—can
be further refined, depending on the level of detail that is needed. This is, however, performed
by iterating over the corresponding modelling phases.

The process supported by the STS methodology (Figure 3.2) aims at providing guidelines
(think of a checklist) for the requirements analysts and security engineers to follow when speci-
fying secure socio-technical systems. Therefore, the presented steps are not prescriptive. More-
over, the order of the modelling phases, as well as that of the activities within each modelling
phase is not prescriptive too. The requirements analyst may decide to represent stakeholders’
informational assets before modelling social interactions among them for instance. The security
engineer may work in parallel with the requirements analyst, however, in the first iteration the
representation of security needs by the security engineer requires the modelling of stakeholders’
interactions and of stakeholders’ assets to be performed by the requirements analyst. Neverthe-
less, this should not be seen as a limitation, rather it is related to the incremental nature of the
process.

Automated analysis. Analysis activities are supported by the automated analysis phase (Phase
4, Figure 3.2). As argued in Chapter 1, model-driven approaches result in large (growing)
models, the analysis of which requires automated tool support. Automated analysis is based on
the formalisation of the modelling notation (language) employed during the Modelling phase.
Such analyses are essential to verify whether the system meets its specification, as well as to
verify desired properties of the derived security requirements, such as their consistency, and
other extensive reasoning.

Automated analysis in STS considers verifying the well-formedness of the constructed mod-
els (Well-formedness analysis), verifying the satisfaction of stakeholders’ security needs over
the model of the system-to-be (Security analysis), as well as verifying the impact of threats
affecting stakeholders’ assets (Threat analysis).

As explained above, analysis results may be used to improve the created models, and there-
fore, analysis activities can be iteratively executed after every modelling iteration. The process
represented in Figure 3.2 suggests a sequence of execution of analysis activities, but this is not
prescriptive too. As a matter of fact, only well-formedness analysis is required to be executed

52 The STS methodology for security requirements engineering

first, for the other two analyses require a well-formed model. As far as security analysis and
threat analysis are concerned, they could be performed in any order, as the security engineer
chooses to execute them.

Specification. The security requirements specification is supported by the Specification phase
(Phase 5, Figure 3.2). The derivation of security requirements specification is also a tool sup-
ported activity, otherwise it would be a tedious and error-prone activity, not to say unfeasible
to be conducted manually over growing (in size) goal models at every iteration. The security
requirements specification contains the list of security requirements the system-to-be and its
participating stakeholders should satisfy for the given system to be secure.

The specification phase is also iterative and incremental. Following the overall process
of the STS methodology depicted in Figure 3.1, it is good practice to generate the security
requirements document at the end of the modelling and automated analysis activities. The
document enumerates the security requirements while providing textual descriptions that detail
what the system or stakeholders should (not) do to comply with the given security requirements.

However, the security requirements engineer may use the details provided by this docu-
ment to further improve the models and iteratively run analysis till a point is reached, in which
stakeholders agree on the specified security requirements.

Indeed, the security requirements document facilitates performing these iterations, for it is
tailored to provide details on the various models, elements in each model, as well as on the anal-
ysis results. As such, it provides extensive details on the detected errors and conflicts identified
during the automated analysis phase. Therefore, the document can help the requirements ana-
lyst when communicating with stakeholders, to better capture their needs regarding security, as
well as to resolve conflicts between security requirements, before an error-free model (and as a
result a consistent security requirements specification) is obtained. We want, however, to high-
light the fact that it is in practice quite impossible to solve all conflicts [Ernst et al., 2012], and
in many cases the security requirements engineer may decide to stick with a specification that
does not meet (satisfy) all security requirements, where the design alternatives to complying
with all security requirements may result too costly.

In specifying security requirements, the STS methodology aims to comply with the termi-
nology that security experts are familiar with. Unfortunately, there is no agreement upon a
reference taxonomy of security requirements and mechanisms that we could adopt. As dis-
cussed in Chapter 2, [Stallings and Brown, 2008] state that: “although the CIA triad to define
security objectives is well established, some in the security field feel that additional concepts
are needed to present a complete picture, and two of the most commonly mentioned are au-
thenticity and accountability”. Based on this, we propose a classification of the main aspects
of security that combines ideas from multiple sources [Kissel, 2011; Gollmann, 2011; Pfleeger

Security requirements engineering with STS 53

and Pfleeger, 2012], starting from the basic CIA triad and considering other security concepts
deemed most important, namely authenticity, reliability and accountability. See Table 3.1 for
an overview.

Table 3.1: Security principles employed by the STS methodology

Principle Definition

Confidentiality

Assures that private or confidential information is not made available or dis-
closed to unauthorised users, and that users control (or influence) what infor-
mation related to them may be collected, used, and to whom it is disclosed
[Stallings and Brown, 2008, Chapter 1].

Integrity
Assures that information is not changed (modified) or destroyed in an unautho-
rised way [Stallings and Brown, 2008, Chapter 1]

Availability
Assures that a system works promptly, service is not denied to authorised users,
and timely and reliable access to and use of information [Stallings and Brown,
2008, Chapter 1].

Authenticity

The property of being genuine and being able to be verified and trusted [Kissel,
2011]. Authenticity is ensured through authentication processes that verify
whether users are who they say they are (entity authenticity [Stallings and
Brown, 2008, Chapter 1]).

Reliability
It is concerned with the consequences of accidental errors [Gollmann, 2011],
but it also includes non-designed usages performed by attackers.

Accountability
It refers to the requirements for actions of an entity to be traced uniquely to that
entity [Kissel, 2011] (e.g., non-repudiation of a communication that took place).

Starting from these high-level security properties we define a taxonomy of security require-
ments types to be supported by the STS methodology 3. This taxonomy refines the core (se-
lected) security principles in information and computer security 4, and serves as a checklist
for security engineers to keep track of the security requirements types to be considered, and
whether they are applicable or not to the system at-hand. This is important to understand the
security needs expressed by stakeholders, and map them to one of the types defined as part of
this classification proposed in the taxonomy. While some security requirements types apply in
all domains (e.g., confidentiality), others are domain-specific (e.g., reliability requirements are
applicable to systems offering real-time services for instance).

3The taxonomy is introduced in Chapter 4.
4Details on the refinement of security properties to security requirements will be provided in Chapter 4.

54 The STS methodology for security requirements engineering

In the rest of the sections, 3.2.1–3.2.5, the five phases of the process supported by STS
methodology are described.

3.2 STS phases

The requirements analyst(s) and the security engineer(s) should conduct the phases detailed
below, when following the process supported by STS methodology.

3.2.1 Phase 1. Social modelling

Security is mainly concerned with the protection of stakeholders’ assets. Unsurprisingly, our
methodology starts with a study of the context—led by the requirements analyst—which en-
compasses the identification of the stakeholders in the socio-technical system (Activity 1.1),
and the identification of their assets and the interactions among actors (Activity 1.2).

We support two types of assets: informational, referring to stakeholders’ information that
they want to protect and intentional, referring to the stakeholders’ objectives that they want to
achieve. Information is represented in various forms. In STS, we consider information to be
represented within documents that contain information. Hence, in this phase, we identify the
various documents (representing the said information) the stakeholders have and exchange with
others. The protection of documents as assets becomes evident when considering the contained
confidential information. In our motivating scenario, an informational asset is the patients’
medical status, while an intentional asset for the Red Cross BTC is to collect and examine
blood.

After the context has been defined, the security engineer leads the conduction of Activity 1.3:
the stakeholders’ security needs on their interactions are elicited and expressed. For instance,
Alice may want to take tests only at a specialised laboratory, such as ModernLabs, before filing
an application as a donor and it may require that all tests are examined in that laboratory, not
any other.

Considering the possible attackers that intend to exploit vulnerabilities of a system is an im-
portant activity of security analysis, and socio-technical systems are no exception. Hence, STS
does not overlook threats, and supports the identification of social and organisational threats,
which do not exploit technical vulnerabilities. Activity 1.4 supports exactly this, the threats that
can potentially affect stakeholders’ assets are modelled. Potential threats, such as for instance,
test results lost might threaten the possibility of delivering (as a result, receiving) test results
on time. This threat affects ModernLabs in providing a timely service to its patients, and the
patients themselves, in this example Alice.

Unlike traditional methodologies, these activities are conducted by considering the interac-
tions among the stakeholders and systems in the socio-technical system, as opposed to consid-

STS phases 55

ering the technical system alone. Note that threats are of social and organisational nature, they
do not necessarily exploit technical vulnerabilities of a software system. Let us reconsider the
threat test results lost. This threat might occur as a result of a staff member forgetting test results
at a printer; it is not necessarily the result of someone intruding in the system and stealing the
results.

The social modelling phase is conducted iteratively in order to refine initial models. The
outcome of this phase is the social model, which is presented in Section 5.2.

3.2.2 Phase 2. Information modelling

An important distinction that we make in STS is that between primary and supporting assets.
In Phase 1, the analysts look at the informational assets in terms of concrete exchanges of doc-
uments. These documents are supporting assets, and their relevance from a security standpoint
is due to the information (primary asset) that they represent.

The purpose of information modelling is twofold. Firstly, the requirements analyst identifies
the information in the considered domain and determines which stakeholders own this informa-
tion (Activity 2.1). For instance, medical history is an information that is owned by the patients,
whose medical history this information reflects.

Secondly, the analyst structures the information by determining part-of relations and by re-
lating information to the documents that materialise it (Activity 2.2). For instance, information
medical history is a composite information: patients’ personal data and health status are part
of medical history. The latter is materialised by a report (document), which is in turn part of
the document health record.

The outcome of this phase—conducted by the requirements analyst—is the information
model, which acts as a bridge between the social model and the authorisation model. This
model is described and illustrated in Section 5.3.

3.2.3 Phase 3. Authorisation modelling

Permissions and prohibitions are key concepts in security, for actors may permit (allow) or
prohibit other actors to use (manipulate) their valuable assets. By leveraging on the information
model the security engineer defines the permissions and prohibitions that the stakeholders grant
(specify) one to another.

The outcome of this phase is the authorisation model. As we will show in Section 5.4, this
model enables expressing fine-grained relationships concerning who can use, for what purpose,
and how, documents that represent specific information. To give an example of the fine-grained
relationships supported by the authorisation model, consider that Alice should provide to the
Red Cross BTC her health record when filing an application as a donor. As such, the Red Cross

56 The STS methodology for security requirements engineering

BTC should be authorised to access such document. However, Alice may authorise the Red
Cross BTC to read her health status information to approve her as a donor, but she may prohibit
any modification over the said information. Also, her authorisation granting Red Cross BTC
to read her health status may be limited to an objective (scope): Red Cross BTC can read the
information to approve Alice as a donor, but not for any other purposes.

3.2.4 Phase 4. Automated analysis

The three models created in Phases 1–3 are tightly related, indeed they are submodels of the
overall model of the system-to-be. Therefore, they may include inconsistencies, conflicts be-
tween security requirements (captured in different models, but having effects across models),
and threats that endanger stakeholders’ assets. The purpose of the automated analysis phase
is to discover these issues, which are represented in the analysis results artefact. If errors are
detected, then the process steps back to social, information, and authorisation modelling, till all
errors are fixed. The errors are fixed by the security engineer, but may require also the involve-
ment of the requirements analyst and stakeholders to negotiate on distinct conflicts that are not
resolvable by analysing the models.

We will comprehensively describe this phase—which is led by the security engineer—, and
the three activities that it consists of, in Chapter 6.

3.2.5 Phase 5. Specification

The process followed by our methodology terminates with the specification phase, led by the
requirements analyst, which takes an error-free socio-technical system model and returns a
security requirements specification. This document contains a specification of the security re-
quirements for the socio-technical system under design, while describing the overall system, its
stakeholders, providing details on the created models (social, information, and authorisation)
and the relevant security issues. The activities of this phase are automated by the CASE Tool.
In Sections 7.3 and 7.1.4, we will show how our tool enables the automated generation of the
security requirements document.

3.3 Chapter Summary

The STS methodology is a security requirements engineering methodology for the design of
secure socio-technical systems. Key features of STS are to analyse the problem domain in
terms of both social and technical aspects, and to ascribe security requirements to the interaction
among the actors in the socio-technical system.

Chapter Summary 57

We described the main modelling and analysis activities that guide the requirements analysts
and security engineers in the design of secure socio-technical systems. This chapter serves as
foundation for the rest of the thesis, as we will see how the STS methodology is used in practice
to model and analyse three industrial case studies from three different domains in Chapter 8.

58 The STS methodology for security requirements engineering

Chapter 4

The Socio-Technical Security Modelling
Language

This chapter presents the Socio-Technical Security modelling language (STS-ml) for represent-
ing security requirements in socio-technical systems. In addition to presenting the language, we
highlight similarities with and differences from security requirements methods and languages
for software systems.

We present the principles that underlie STS-ml in Section 4.1. We describe the modelling
primitives to represent the stakeholders in a socio-technical system (Section 4.2), the interac-
tions among those stakeholders (Section 4.3), the events that threaten the stakeholders (Section
4.4), and the security requirements that the stakeholders want the socio-technical system to fulfil
(Section 4.5).

Acknowledgement. This chapter builds on top of [Dalpiaz et al., 2014] and revises and
extends [Dalpiaz et al., 2011; Paja et al., 2013b,c].

4.1 STS-ml: principles

As any other design artifact (civil buildings, bridges, cars, electronic devices, software systems,
advertisements, lectures, books, etc.), modelling languages are conceived on the basis of a set
of principles that constitute the requirements for the language.

STS-ml is designed with the challenges laid in Chapter 1, Section 1.5 in mind (social /
organisational perspective, security on interactions, social threats, from needs to specifications,
stakeholders’ assets, separation of concerns, and formal semantics), which guide the conception
of the modelling language. Addressing these challenges is important to ensure that the language
is a good fit for its application domain (security requirements in socio-technical systems) and
a good support for the STS methodology. In addition to addressing these challenges, we are

60 The Socio-Technical Security Modelling Language

guided by other principles to guarantee that our language accommodates desired properties for
(requirements) modelling languages [Loucopoulos and Karakostas, 1995]. These properties,
such as abstraction, minimality, formality, traceability, and ease of analysis among others, are
desiderata for modelling languages [Easterbrook, 2002]. STS-ml, too, is intended to satisfy
these properties in order to avoid ambiguities, and errors in the resulting models. As a result,
the set of principles used to guide the creation of STS-ml are as follows:

Principle 1 (Social and organisational perspective) The modelling primitives have to enable
creating security requirements models for a socio-technical system that encompasses humans,
organisations, and software systems, in which social and organisational aspects are critical for
a comprehensive security requirements engineering process. These participants interact to fulfil
their own strategic objectives (humans and organisations) and requirements (software systems).

Security requirements for software systems such as, for instance, R1: “The system shall
ensure the confidentiality of the collected donor’s personal data”, have to be represented by
primitives that acknowledge the socio-technical nature of the setting. This means representing
the existence of multiple actors (e.g., a donor, a nurse, and the hospital’s information system),
their interaction for the purpose of donating blood, the need of recording the donor’s personal
data, and the donor’s desire to keep such data confidential.

Principle 2 (Multiple stakeholders) Socio-technical systems consist of multiple participants.
Each participant is an autonomous stakeholder and, as such, specifies her own (security) re-
quirements, which may conflict with others’. The language shall therefore express the stake-
holders’ viewpoints, and enable the identification of conflicts.

Security requirement R1, expressed by donors, may conflict with the requirement of haematol-
ogists to access some details, such as age, profession, drinking/eating/smoking habits, etc. The
language shall be able to represent these viewpoints, also to identify that a conflict exists.

Principle 3 (Stakeholders’ assets) The language shall support modelling at a high-level of the
assets that the stakeholders care about, such as their strategic objectives and their information.

(Security) requirements engineering is the initial stage in system design. As such, the activities
in this phase are conducted at a level of abstraction that is higher than in following phases.
A key principle in computer and information security is the protection of the assets that the
stakeholders value. The language should support representing these assets at a high level of
abstraction so to express security requirements for their protection. In the case of R1, a donor’s
asset is her personal data, while a haematologist’s asset is the goal of assessing the adequacy of
prospective donors.

STS-ml: principles 61

Principle 4 (Security over interactions) The participants in a socio-technical system are au-
tonomous and, thus, loosely controllable. It is while interacting with others—to get things done
or to exchange information—that a participant is concerned with the possible consequences of
relying on others and transferring information, and states/expresses security requirements over
the interactions.

Referring to requirement R1 again, and its socio-technical interpretation that we sketched ear-
lier, the desire of keeping the transferred data confidential is an example of a security require-
ment that is imposed by the donor over the interaction with the nurse. This requirement affects,
in turn, the interaction between the nurse and the information system. Indeed, if the nurse does
not mark the data as “confidential”, or if the information system does not allow this option, the
donor’s need could be violated.

Principle 5 (Capturing security needs) The language shall focus on the needs of the stake-
holders, while designing socio-technical systems with security in mind, rather than on the solu-
tions or mechanisms to address these needs.

The language is thought for an early stage of system development. As such, its models shall
express why security is needed [Yu and Mylopoulos, 1994], and what are the security needs
of the stakeholders participating in the system. The language shall focus on the needs of the
stakeholders, while designing socio-technical systems with security in mind, rather than on the
solutions or mechanisms to address these needs. Security solutions or mechanisms are to be
considered in later stages of system design. In this way the modelling language supports the
STS methodology to specify security requirements starting from stakeholders’ security needs.
Indded, security needs are expressed by the stakeholders while interacting, and for each security
need expressed by one stakeholder on an interaction with another, a security requirement in the
opposite direction is derived for the satisfaction of the required security need. In this way, STS-
ml supports the derivation of security requirements from the modelling of stakeholders’ security
needs. More details will be provided in Section 4.5.

Principle 6 (Social and Organisational Threats) The language shall not overlook threats, and
shall support the identification of social and organisational threats, which do not necessarily
exploit technical vulnerabilities.

In the example of R1, possible threats are that the nurse forgets to mark the donor’s personal data
as “confidential”, or that she leaves a printout of the donor’s record in the waiting room. Notice
that these threats are social or organisational, for they do not exploit a technical vulnerability of
a software system, while putting at risk the said information.

62 The Socio-Technical Security Modelling Language

Principle 7 (Compliance with international security standards) Whenever possible, the prim-
itives in the language should adhere to standards and to common terminology, so to improve
comprehensibility and to avoid a steep learning curve.

This principle applies to many fields and disciplines. In the context of this thesis, however, the
challenge is to reuse the terminology used in traditional security for software systems in the
context of socio-technical systems.

Principle 8 (Diagrammatic and formal language) The modelling language shall support mod-
elling through diagrams, and its primitives shall be equipped with a formal semantics.

While (security) requirements engineering is often conducted through informal analysis and re-
lies on textual requirements descriptions, we advocate a model-driven approach where models
are represented through diagrams—which serve as a communication means among modellers
and with stakeholders—and have an underlying semantics, which supports (i) minimising am-
biguities in the interpretation of the diagrams, and (ii) performing automated reasoning, e.g.,
for detecting conflicts among requirements.

Principle 9 (Minimality of concepts) The language will be composed of a minimal set of prim-
itives, namely concepts and relationships, which are needed to capture security requirements in
socio-technical systems.

This principle requires that the chosen primitives are not redundant, also that they enable
representing the important security requirements that the stakeholders want to express. Lack of
minimality leads to redundancy of concepts, which leaves the security requirements engineer
with more choices on representing the same thing [Easterbrook, 2002].

Principle 10 (Traceability) The language shall ensure traceability of security requirements to
their requester and to the motivations (intention to achieve goals; protection of documents or
information) that originated the requirement.

Traceability, too, is a desired property for a modelling language [Easterbrook, 2002]. For
example, considering R1, the language shall enable determining who requested the requirement
(the donor), and why (the donor wants to have her blood examined, and needs to provide its
personal data to such extent).

4.2 Representing stakeholders in socio-technical systems

Socio-technical systems consist of multiple autonomous interacting participants or stakehold-
ers: humans, organisations, and technical components. Software systems and infrastructures

Representing stakeholders in socio-technical systems 63

are examples of technical components. Organisational units and employees, on the other hand,
are examples of social components. As per Principle 1, the modeling language shall enable rep-
resenting these participants. Their representation is crucial not only because they are the main
components in a socio-technical systems, but also because from a security viewpoint, they are
the subjects that express their needs on the system-to-be.

STS-ml supports the modelling of stakeholders (socio-technical system’s participants) in
terms of roles and agents [Yu, 1995].

A role to model a class of participants, defining a set of responsibilities for the said partici-
pants. One can think of role as a container that carries a set of responsibilities within the system.
Roles are used to model participants when the actual individual(s) are unknown. Examples of
roles include patient, physician, donor, etc. One knows that patients, physicians, donors will be
part of the system, can define their responsibilities, but does not necessarily know the identity
of the agents that will play those roles. Roles are an important concept in the modelling of a
socio-technical system, because given the setting, designers are often unaware of who are going
to be the actual participants at runtime. Specifying applications at the role level is a flexible
approach that defines the requirements for an agent to adopt a role, as opposed to mandating the
existence of a specific agent. At runtime, the actual participants will adopt the specified roles.

An agent, on the other hand, refers to a specific individual that will participate in the system.
Additionally, it allows to represent concrete participants known to be in the system already at
design time. For example, St. John’s Hospital and Hong Kong Red Cross are agents that will
participate in the blood transfusion and donation socio-technical system. The graphical syntax
for roles and agents is represented in Figure 4.1.

Role

(a) Role

Agent

(b) Agent

Figure 4.1: Graphical representation of roles and agents

Whenever we do not need to distinguish between role and agent (for properties or relation-
ships applying to both), we will use the general term actor to refer to either a role or an agent.
Note that actor is an abstract concept that, unlike role and agent, has no graphical syntax in
STS-ml. The notion of actor is a very generic one, for many different entities can be classified
equally as actors. For instance, “Physician”, “Physician Mark”, and “Mark” can all be consid-
ered actors. While a complete treatment of this subject is outside the scope of this thesis (for a

64 The Socio-Technical Security Modelling Language

comprehensive and well-founded account on the topic see [Masolo et al., 2004] and [Guizzardi,
2006]), STS-ml makes use of the concepts role and agent in the name of Principle 9: minimality
of concepts.

We use the terms stakeholder, participant, and actor interchangeably, as they refer to differ-
ent facets of the same entity. Specifically, the modeling language represents the socio-technical
system in terms of actors, which correspond to the stakeholders that express their needs about
the system-to-be on behalf of the actual participants in the system.

For example, a sample set of donors would be selected and constitute the stakeholder “donor”,
that expressed requirements on behalf of the prospective participating donors. A donor would
be represented as an actor (more specifically as a role) in STS-ml.

Agents and roles can be related one to another: an agent can play (adopt) a role. For ex-
ample, Mark can play role physician, while Alice can play role donor. STS-ml introduces the
relationship play between an agent and a role (graphically shown in Figure 4.2).

Alice DonorPlay

Figure 4.2: Graphical representation of a plays relationship

Some observations about the play relationship are worth. An agent can play multiple roles.
In some cases, multiple roles can be played simultaneously (e.g., a physician may be both a
surgeon and the head of surgery in a hospital). In other cases, an agent changes its role in the
socio-technical system (e.g., Alice may play role nurse and, after work, switch to role donor).

STS-ml considers actors in a socio-technical system as peers, and therefore, it does not make
use of association relationships among roles [Zannone, 2007] or agents [Yu, 1995].

4.2.1 Actors’ assets

A fundamental element of security is the identification and protection of the assets that stake-
holders care about. As pointed out in Principle 3, STS-ml is concerned with high-level assets
that can be identified at requirements time, before design decisions about the system-to-be are
made.

In STS-ml, we take the standpoint that every stakeholder, that is, every modeled actor has
a set of assets that it wants to protect, its primary assets [ISO/IEC, 2005]. These assets be-
come subject to vulnerabilities and many be exploited through supporting assets [ISO/IEC,
2005], which refer to tangible or concrete assets. For instance, a donor’s personal information

Representing stakeholders in socio-technical systems 65

and health status are her primary assets, while the donor’s certificate is a supporting asset that
contains this relevant information.

Whenever a supporting asset is handled in an unauthorised way, the primary assets it is
related to could be harmed too. Therefore, the necessity of protecting supporting assets depends
on the criticality of their corresponding primary assets. If the certificate did not contain any
health related data or personal information, the donor would not consider its protection critical.

In STS-ml, we are concerned with the security issues actors face in the socio-technical sys-
tem, and consider two main types of assets: informational and intentional. This categorization
is related to the fact that actors in a socio-technical system enter with the intention of achiev-
ing their objectives, and they interact with others to achieve their objectives while exchanging
related information.

Informational assets

Actors are concerned about the information that they own, which they often consider as con-
fidential (it is a primary asset for them). STS-ml distinguishes between information—the data
that actors own, care about, and may deem confidential—and its representation via documents.
The latter, intended in a broad sense (e.g., an email or a text message are documents too) are
the means through which actors transfer information.

Thus, in STS-ml we consider actors’ information to be made available in the form of docu-
ments, while documents themselves represent transferable entities (e.g., donor certificate, iden-
tity document, driving license, an email), which contain some information (e.g., date of birth,
name, surname, address, medical status). Since documents represent information, they are
supporting assets. Hence, in order to protect information from misuse, it is crucial to protect
the documents that make available (materialize) this information and enable its transmission
[ISO/IEC, 2005]. The two concepts are illustrated in Figure 4.3. Note the similarity in the
representation, the shape for both is a rectangle to denote the fact that they refer to different rep-
resentations of information, but the principle of perceptual discriminability [Moody et al., 2009]
with a visual distance of 1 (only the contour line has been changed to distinguish information—
dashed line, from document—continuous line).

Document

(a) Document

Information

(b) Information

Figure 4.3: Graphical representation of informational assets

66 The Socio-Technical Security Modelling Language

In STS-ml, we use the possesses relationship to denote the fact that the actor has a document
in the socio-technical system. For instance, Red Cross BTC possesses donor certificates. The
graphical representation of actor possession is shown in Figure 4.4a. Actors can manipulate
only (perform operations or actions over) documents that they possess. Moreover, they can
get in possession of a document when the document is transferred to them from some other
actor. Possession implies the actor’s capability of transferring the document to other actors. In
general, the actor transferring the document would not possess the document after transferal.
In STS-ml, we simplify this view, keeping track only of the actors possessing the document
and the operations they can do over those documents. We will explain document manipulation
(aka operations actors may perform over them) and transferral in Section 4.2.2 and Section 4.3,
respectively.

Information may have one or more legitimate owners. For example, a patient’s personal data
is owned by the patient, a credit card number is owned by the cardholder, and a bank account
number is owned by its holder(s). In STS-ml, the relation owns indicates that an actor (a role or
an agent) is the legitimate owner of the information it is related to, and can freely make use of it,
as well as decide to transfer rights over it to others. The graphical representation of information
ownership is shown in Figure 4.4b.

Note that possession is different from ownership, for it refers only to the actor having a
document, not necessarily owning the information therein.

Document

Agent1

(a) Document Possession

Agent1

Information

Own

(b) Information Ownership

Figure 4.4: Graphical representation of document possession and information ownership

In order to talk about confidentiality and other security requirements concerning informa-
tion, it is crucial to model the relationships between documents and information, which are the
supporting and primary assets in the category of informational assets, respectively. We will
show how STS-ml enables a fine-grained modeling of these relationships in Section 4.2.3.

Representing stakeholders in socio-technical systems 67

Intentional assets

The behavior of agents is a result of their attempts (following their intentions) of fulfilling their
objectives 1. Thus, agents care about their intentions not to be threatened by other agents with
different intentions (including attackers). A role characterizes a specific class of agents; we
ascribe intentions to roles too, with the meaning that any agent that plays that role at runt-ime
would inherit those intentions.

STS-ml represents intentional assets using the notion of goal, which denotes a desired state
of affairs (e.g., donor approved, blood donated) for an agent or a class of agents (a role). Actors
enter the socio-technical system with the intent to achieve their desired goals, thus, actors’ main
goals also are primary assets for them.

Goals are different from activities and processes: goals are part of the motivational compo-
nent of an agent, and express why and what an agent aims to achieve, rather than how the agent
is to achieve its objectives. Figure 4.5a shows how a goal is graphically represented, while
Figure 4.5b illustrates that an actor (in the example, agent) has the intention of achieving a goal.

Goal

(a) Goal

Goal

Agent

(b) Intention

Figure 4.5: Graphical representation of goals and intentions

Figure 4.6 provides examples of some of the intentions the actors in the healthcare sce-
nario have. The agent Red Cross BTC, for instance, has the goals of distributing, collecting,
examining blood, and performing statistical analysis among others. The Patient has the goal of
receiving a treatment, while the Donor has the goal of performing blood donations on a regular
basis. Notice that Alice is an agent that plays role Donor, but her goals are not the same as of
the role it adopts. In other words, agents may have personal goals that differ from those of the
roles they play.

1We consider only rational agents, i.e., agents whose actions are directed towards the fulfillment of their goals. Techni-
cal components are agents whose requirements are expressed via models from goal-oriented requirements engineering [van
Lamsweerde, 2001].

68 The Socio-Technical Security Modelling Language

blood
donated

tests taken
neg results
received

Alice

blood donat
regularly

Donor

infect
disease test

ModernLabs

treatment
received

Patient

blood
distributed

blood
collected

blood
examined

stat analysis
perf

blood cons
estim

Red Cross
BTC

health svc
provided

healthc rec
maintained

blood
transfused

Hospital

medical
advice given

Physician

privacy
ensured

Hospital
Authority

Play

Figure 4.6: Actors’ intentions in the healthcare scenario

Note that in Figure 4.6 goal labels are in passive voice. This form is chosen since a goal
refers to desired state of the world the actor wants to achieve.

Representing stakeholders in socio-technical systems 69

4.2.2 Actor models

The goals and documents of a specific actor in a socio-technical system relate one to another.
There are important relationships that need to be captured, and that enable defining the rationale
of that actor, i.e., how it aims to attain its goals. The purpose of this section is to explain how
STS-ml supports modeling an actor’s rationale.

The rationale of an actor is expressed by the elements and relationships that are contained
within an actor model. This model consists of the actor’s intended goals, its possessed docu-
ments, and the relationships between these elements that are described in this section. Graphi-
cally, an actor model consists of all elements and relationships within the boundary of the ellipse
attached to the actor shape as in Figure 4.4a, Figure 4.5b, and Figure 4.6.

Relationships among goals

A fundamental way to relate the goals within an actor model is to refine (decompose) them into
subgoals. Goal decomposition is widely adopted in requirements engineering (see, e.g., [van
Lamsweerde, 2009; Yu, 1995; Bresciani et al., 2004]), and it allows reading goal hierarchies
both top-down (to answer the question “How is the goal achieved?”) and bottom-up (to answer
the question “Why does this goal exist?”).

Inspired by the literature in goal-oriented requirements engineering, STS-ml supports two
types of goal decompositions, wherein one goal G is hierarchically refined into a non-empty set
of subgoals {G1, . . . , Gn}. Specifically, the followin are the two relationships to support goal
decomposition in STS-ml:

• and-decomposes (illustrated in Figure 4.7a): the achievement of all the subgoals implies
the achievement of the decomposed goal G. For instance, the actor model of Red Cross
BTC in Figure 4.9 includes an and-decomposition of goal blood distributed into subgoals
blood collected and blood consumption estimated, meaning that both collection and con-
sumption estimation are necessary for blood distribution;

• or-decomposes (illustrated in Figure 4.7b): the achievement of at least one subgoal implies
the achievement of the parent goal. For example, in Figure 4.9, goal statistical analysis
performed is or-decomposed into subgoals on blood type eval, on hospital requests, and
on donors, referring to the different types of statistical analysis that could be performed
by the Red Cross BTC.

As shown in Figure 4.9, subgoals can be further decomposed. In STS-ml, a goal has at
most one parent. As a result, an actor model is a set of goal trees; each tree refines a top-level
(root) goal into a set of leaf-level goals. Since the subgoals are a means to achieve actors’ main
(root) goals, the set of subgoals constitutes the supporting assets for the actors’ corresponding

70 The Socio-Technical Security Modelling Language

AND

G

G1 G2

Role

(a) And-decomposes

OR

G

G1 G2

Role

(b) Or-decomposes

Figure 4.7: Graphical representation of goal and/or decompositions

top-level goal (primary asset). Following this intuition, the achievement of leaf-level goals is
critical to the achievement of actors’ top-level goals.

The refinement of goals in subgoals indicates how actors intend to achieve their root goals.
Refinement continues up to the point in which there are enough details for the actor to evaluate
the achievement of the goal. As an analogy, think of reducing complex problems to simpler
ones. The actor needs to achieve leaf-goals first, in order to achieve their parent and ancestor
goals, in order to achieve its the root goals.

Leaf-level goals in an actor model indicate the responsibilities of that actor. For a role, these
responsibilities apply to every agent that adopts that role. For an agent, the responsibilities
apply to the specific modeled individual.

Goal-documents relationships

Actors often need to make use of information in order to achieve their goals. As explained
in Section 4.2.3, information is made accessible through documents. STS-ml supports sev-
eral relationships between goals and documents, which represent the operations actors perform
over documents (and, potentially, the information therein) while pursuing their goals. These
relationships 2, illustrated in Figure 4.8, are:

• reads: indicates that an actor reads the content of a document while achieving a goal,
thereby making the document necessary for the actor to achieve the goal. For example, in
Figure 4.9, document test results is read by actor Red Cross BTC to achieve goal donor
approved, for the adequacy of the potential donor shall be determined.

2We use the “-s” in the formal definition for accuracy, and omit it in the graphical notation for ease of understanding.

Representing stakeholders in socio-technical systems 71

• modifies: indicates that an actor changes the informational content of a document while
achieving a goal. For instance, in Figure 4.9, document blood bank is modified by the
Physician while achieving goal transfusion needed.

• produces: indicates that an actor creates a new document while achieving a goal. For
instance, in Figure 4.9, document donor certificate is produced by Red Cross BTC while
achieving goal donor approved, as a proof that a certain individual has been recognized
as a certified donor.

G1 G2

Doc1 Doc2

Role

Produce Read Modify

Figure 4.8: Graphical representation of goal-document relationships

Figure 4.9 shows an actor model for the Red Cross BTC that illustrates the goals of the actor
(e.g., blood distributed, blood collected), its possessed documents (e.g., test results, report),
decomposition relationships among the goals, as well as goal-document relationships.

As mentioned before, the availability of needed documents is crucial for the achievement of
related goals. Therefore, the set of subgoals and documents necessary for the fulfilment of an
actor’s top-level goal are the supporting assets for that root goal (primary asset).

72 The Socio-Technical Security Modelling Language

AND

blood
distributed

AND

blood
collected

blood
examined

OR

statTanalysis
performed

AND

bloodTcons
estimated

donor
approved bloodTusage

evaluated

onTblood
typeTeval onThospital

requests
onTdonors

report

bloodTbank

donor
certificate

testTresults

RedTCross
BTC

bloodTusagebloodTusage
listings

bloodT
transported

Produce

Read

Produce

Modify

Read

Figure 4.9: Actor model for Red Cross BTC

4.2.3 Structuring information and documents

Information is an important asset that stakeholders want to protect. Information becomes vul-
nerable when a document that represents it (e.g., a database record, an email, a letter, an instant
message) can be accessed and modified by others. STS-ml introduces three primitives (their
graphical representation is in Figure 4.10) that allow for structuring information and documents:

• tangible by is a relationship that relates an information entity and a document (illustrated
in Figure 4.10a). It indicates that the specified information is represented through that
document. For example, in Figure 4.11, information medical history is made tangible by
the document report, while health status is made tangible by the test results.

• part-of between two documents (illustrated in Figure 4.10b) denotes that one document is
essential part of another document (the latter document cannot exist without the former).
For example, in Figure 4.11, the report created by the red cross while assessing a donor’s
adequacy is part of the health record of that potential donor.

• part-of between two information entities (illustrated in Figure 4.10c) denotes that a certain

Representing stakeholders in socio-technical systems 73

Doc2

Info1

Tangible By

(a) Tangible by

Doc2

Doc1

Part Of

(b) Part-of

Info1

Info2

Part Of

(c) Part-of

Figure 4.10: Graphical representation of part-of and tangible by

test results

report

donor
certificate

health
record

health status

medical
history

personal
information

infoTangible By

Part Of

Tangible By

Part Of

Tangible By

Tangible By

Part Of

Tangible By

Figure 4.11: Some information and/or document relationships in the healthcare scenario

information is essential part of another information (the latter information cannot exist
without the former). For example, in Figure 4.11, information health status is part of
medical history. Also, personal data is part of medical history.

Note that these three relationships are of type many-to-many: an information entity can be
made tangible by several document, while a document can make tangible more information
entities. For instance, in Figure 4.11, information entity personal information is made tangible
by both document health record and document donor certificate, while both information entities
personal information and health status are made tangible by document test results.

Similarly, an information entity can be part of multiple information entities or an information
entity may have multiple parts. The same applies to documents too. In Figure 4.11, for instance,
both health status and personal information are part of medical history.

74 The Socio-Technical Security Modelling Language

4.3 Modelling the interactions among actors

The actors in a socio-technical system are not isolated entities, but rather they interact with
others either to fulfill their objectives—either because they cannot achieve them on their own or
because it is more convenient or easier to rely on someone else— or to exchange information.

In requirements engineering, the notion of social dependency [Yu et al., 2011] has been
suggested as a way to represent the fact that actors rely on others for the achievement of goals,
the execution of tasks, and the availability of resources. An example of social dependency is for
instance that of a patient depending on a doctor for performing blood transfusion (goal blood
transfused). In STS-ml, we refine the notion of dependency into two more specific primitives
that are explicitly thought for security requirements models:

• goal delegation (illustrated in Figure 4.12a): one actor (delegator) delegates to a different
actor (delegatee) the fulfilment of a goal (delegatum). Delegation refines dependency by
requiring the existence of an agreement between the delegator and the delegatee, and the
transfer of responsibility. In STS-ml, a goal delegation results in the delegatee having the
goal (graphically represented within its rationale) and being responsible to achieve it. For
instance, in Figure 4.13, Alice delegates to ModernLabs goal tests taken. By doing so,
ModernLabs becomes responsible for testing Alice’s blood sample.

• document transmission (illustrated in Figure 4.12b): one actor (sender) transfers a docu-
ment to a different actor (receiver). This refines dependency in the sense that the receiver
depends on the sender for the availability of the document. The receiver possesses the
document as a result of document transmission. In Figure 4.13, ModernLabs transmits
document test results to Alice. In turn, she transmits it to actor Red Cross BTC.

In addition to interacting through goal delegations and document transmissions, STS-ml
includes a primitive (authorisation, illustrated in Figure 4.12c) to capture two key concepts in se-
curity, i.e., permissions and prohibitions. The basic meaning is that one actor (in the illustrative
relationship, Role1) specifies authorisations for another actor (Role2) on a set of information
elements (Info1 and Info2). For example, in Figure 4.14, Alice specifies an authorisation on in-
formation health status for Red Cross BTC, and one authorisation on personal data and health
status for ModernLabs. Each authorisation specifies what the authorised actor can/cannot do
with the information:

• Allowed/prohibited operations: they define whether the actor is permitted (green tick sym-
bol) or prohibited (red cross symbol) to Read (R), Modify (M), Produce (P), and Transmit
(T) any document that makes tangible the information. In Figure 4.12c, reading is al-
lowed, modification is prohibited, and no authorisation is specified on production and
transmission. In the healthcare scenario (Figure 4.14), the authorisation from Alice to

Modelling the interactions among actors 75

Role1 Role2Goal

(a) Goal delegation

Role1 Role2D1

(b) Document transmission

Role1 Role2

R M P T

Info1 Info2

Goal2

(c) Authorisation

Figure 4.12: Graphical representation of goal delegation, document transmission, and authorisation

Alice

Donor

ModernLabs

Red Cross
BTC

tests taken

test results

test results

Play

Figure 4.13: Some interactions in the healthcare scenario: Delegations and transmissions

76 The Socio-Technical Security Modelling Language

ModernLabs grants permission to read and produce documents that make tangible her
personal data and/or health status; the authorisation from Alice to Red Cross BTC per-
mits reading but prohibits modification of documents containing her health status.

• Information: authorisation is granted over at least one information entity. Given the struc-
turing of information in term of part-of relationships, authorising some actor over some
information means that the actor is authorised for parts of information as well, because
ownership of information propagates top-down through part-of relationships.

• Scope of authorisation: authority over information can be limited to the scope of a cer-
tain goal. As such, scope of authorisation defines the goals for the fulfilment of which
the authorisation is granted. In other words, the authorisation is restricted to a certain
purpose, and does not apply to different purposes. In Figure 4.12c, the permissions and
prohibitions are restricted to the scope of goal Goal2. Our notion of goal scope adopts the
definition in [Dalpiaz et al., 2010], which includes the goal tree rooted by that goal. As
a result, if a goal is specified in the scope of authority, authority is given to make use of
the information not only for the specified goal, but also for all its sub-goals. We assume
that goal decompositions are part of the domain knowledge: there is no dispute between
actors about how goals are hierarchically structured.

Alice

ModernLabs

Red Cross

R M P T

health status

donor approved

R M P T

personal health status

results provided

information

BTC

Figure 4.14: Some interactions in the healthcare scenario: Authorisations

In the healthcare scenario of Figure 4.14, the agent Red Cross BTC receives authorisations
in the scope of goal donor approved; therefore, the permission to read and the prohibition
to modify Alice’s health status apply only when Red Cross BTC is carrying out activities
concerning the approval of Alice as a donor.

• Transferability of the permissions: it specifies whether the actor that receives the au-

Events and threats 77

thorisation is in turn entitled to transfer the received permissions or specify prohibitions
(concerning the received permissions) to other actors. Graphically, transferability of the
authorisation is allowed when the line connecting the two actors is solid, while it is not
granted when it is dashed. In Figure 4.14, Alice allows the transferability of the autho-
risation granted to Red Cross BTC, while she does not allow the transferability of the
authorisation granted to ModernLabs. Therefore, Red Cross BTC can authorise other ac-
tors, specifying both permissions and prohibitions concerning the reading of information
health status in the context of goal donor approved.

Alice

Red Cross
BTC

R M P

health status

donor approved

R M P

health status

R M P

health status

donor approved

T

T

T

Physician

Figure 4.15: Some interactions in the healthcare scenario: summing authorisations

Note that in STS-ml authorisations are summed up, that is, whenever different authorisation
relationships are drawn towards one given actor, then it is enough that at least one authorisa-
tion grants a given right (say to read) and none prohibits this right, then the authorised actor
has the right to read the specified information. For instance, in Figure 4.15, actor Red Cross
BTC obtains two authorisations for information health status: together, they specify that Red
Cross BTC can read and produce documents representing health status, and is prohibited from
modifying any document representing that information.

4.4 Events and threats

As per Principle 6, our language supports the representation of threats in terms of events that
exploit the vulnerabilities of actors’ supporting assets, namely subgoals and documents, in order
to undermine their primary assets, root goals and information respectively. The primitives of

78 The Socio-Technical Security Modelling Language

STS-ml are the entity Event and the relationship threatens; the latter links an event to a document
or a goal.

 A D

G E
Threaten

Threaten

Figure 4.16: Graphical representation of events threatening actors’ supporting assets in STS-ml

The graphical representation of events threatening actors’ assets for the two categories is
shown in Figure 4.16. We provide two examples of events threatening actors’ assets in Figure
4.17, one for each category: (i) the event specialised physician sick threatens the goal transfu-
sion performed via specialist (Figure 4.17a), as a specialised physician is selected to perform
the transfusion procedure to the patient; (ii) the event test results lost threatens the document test
results produced by ModernLabs (Figure 4.17b). This event affects ModernLabs in providing a
timely service to its patients, in this scenario to Alice.

A key component of information security is to conduct risk assessment, which enables iden-
tifying events and the threatened supporting assets. In STS-ml, we assume that the represented
events threatening actors’ assets and the identification of the assets they threaten, are the result
of risk analysis (following the identification phase of some risk analysis method [Tixier et al.,
2002]), which is out of the scope of this work.

As we will show in Section 6.2.2, STS offers stakeholders a way to verify how the identified
events threaten the rest of their assets, while leaving them the choice among CORAS [Lund
et al., 2010], OCTAVE [Albert and Dorofee, 2001], or any other risk analysis methodology that
better suits their needs. In this way, STS-ml does not impose a specific method in particular to
security engineers, but advocates the usage of a method that allows the systematic identification
of events and threatens relationships.

Specifying security requirements in STS-ml 79

transfusion
needed

AND

medical advice
given

medical record
consulted AND

transfusion
performed via

specialistmedical visit
performed

blood typing
performed

cross-matching
performed

blood bank

Physician specialised
physician sick

Modify

Threaten

(a) On goals

infect disease
tested

AND

tests taken

results provided

drug test
performed

test results

ModernLabs

test results lost

Produce

Threaten

(b) On documents

Figure 4.17: Some threats affecting actors’ supporting assets is STS-ml

4.5 Specifying security requirements in STS-ml 3

The main purpose of STS-ml is to represent and capture through its models the security needs
expressed by the stakeholders of the socio-technical system (represented through the modelled
actors) to then derive security requirements for the system to be. As shown earlier in this

3STS-ml supports a rich set of security requirements types, illustrated in Figure 4.18. We use the term “security require-
ments” for brevity, but we mean “security requirements types”.

80 The Socio-Technical Security Modelling Language

chapter, a preliminary step to do this is to represent the structure of a socio-technical system in
terms of actors, their goals, documents and information, as well as to represent actors’ social
interactions.

Guided by Principle 7, we would like our language to capture security requirements using a
terminology that security experts are already familiar with. As already discussed in Chapter 3,
our classification consists of the following six aspects of security: Confidentiality, Integrity,
Availability, Authenticity, Reliability, and Accountability. Starting from these core aspects,
STS-ml supports the security requirements types in the taxonomy of Figure 4.18.

The final security requirements (end nodes) are the result of what STS-ml supports, in terms
of operations one can perform over information (through documents) and actions one can ex-
ecute with respect to the social interactions it is involved. Moreover, they are the result of
interactions and suggestions received by practitioners with whom STS-ml has been evaluated 4

and improved through the course of its development.
We do not claim that this classification is a standard one, rather it is useful for illustrative

purposes, to guide security engineers in selecting the appropriate security requirements when
representing stakeholders’ security needs. Additionally, this classification aims to be compre-
hensive, and as a result, not all security requirements types are applicable to all domains. The
security engineers should evaluate whether the given security requirements adequately capture
stakeholders’ security needs.

Note that in STS-ml there is a one-to-one mapping of security needs and security require-
ments, for the latter are derived from the modelling of the former. That is, each security need
expressed by an actor to another results in a security requirement from the second actor to the
first for the satisfaction of the security need. Security requirements in STS-ml are specified as
relationships among a requester actor and a responsible actor for the satisfaction of a security
need. Security needs are expressed through the various security requirements types, and thus,
determine the type of security requirement to be satisfied by the responsible actor.

An important advantage of having the classification of security requirements types is that
it facilitates (aided by automated analysis techniques) answering questions such as: “Are there
any violations of donors’ confidentiality requirements?”, “Are Alice’s interactions reliable?”,
“Is the integrity of patients’ medical history preserved?”, etc.

In the following sections 4.5.1 to 4.5.6 we describe in detail what each security aspect means,
explain the security requirements types for each of the considered aspects, and provide examples
from the healthcare scenario to illustrate how these security requirements types are captured
in STS-ml. Given the one-to-one mapping between security needs and security requirements
types, for simplicity we explain directly the security requirements specified with STS-ml.

4More information on evaluation activities will be provided in Chapter 9

Specifying security requirements in STS-ml 81

Figure 4.18: Security requirements types supported by STS-ml

4.5.1 Confidentiality

In this work, the security aspect of confidentiality encompasses both information confidentiality
and privacy [Stallings and Brown, 2008]. Confidentiality assures that private or confidential
information is not made available or disclosed to unauthorised users. Moreover, it assures that
a stakeholder specifies what information related to her or him may be collected (used), and to
whom that information may be disclosed.

An example of this category of requirements concerns sensitive information such as one’s
credit card number. Typically, one would like to ensure that only authorised people can access
it (and for specific purposes). Additionally, one would like to be the person that specifies these
authorisations.

In STS-ml, confidentiality requirements are expressed through authorisation relationships.

82 The Socio-Technical Security Modelling Language

The language supports the following security requirements types about confidentiality (illus-
trated in the example of Figure 4.19): need-to-know, non-reading, non-production, non-disclosure,
non-reauthorisation, and confidentiality of transmission. We discuss each in detail below.

Need-to-know

This requirement is derived from the need-to-know principle, which states that one shall have
access to and rights about only the information that is necessary to accomplish one’s tasks. In
STS-ml, this requirement is expressed by an actor when it grants an authorisation to another
actor, and the purpose of this authorisation is not empty. In other words, the authoriser does re-
strict the permissions that are granted to the authorisee, to one or more goals. Thus, graphically
a need-to-know security requirement is expressed anytime the goal scope of an authorisation is
not empty.

The authorisee can perform the permitted operations over documents representing that in-
formation only in the specified purpose, but not for achieving other goals. The prohibitions
relate only to the specified goals too.

Notice that, when determining the purpose for which the permissions and prohibitions are
specified, we consider not only the very goals that are in the authorisation purpose (scope), but
also all their descendants in the actor model of the authorisee. For instance, if the authorisa-
tion is given on goal blood collected, and this goal is and-decomposed as in Figure 4.9, the
authorisation applies to the subgoals donor approved and blood examined too.

For instance, in Figure 4.19a, the Patient requires the Hospital to ensure need-to-know over
information present illness, personal data, and medical history in the scope of goal medical
advice given. This means that the Hospital can perform the allowed operations (only read) to
achieve goal medical advice given (including its subgoals and descendants), but not for achiev-
ing other unrelated goals. Similarly, the prohibition to modify and disclose the same information
elements is restricted to the goal medical advice given and its descendants in the actor model of
the Hospital.

Non-reading

This confidentiality requirement indicates that the authoriser wants the authorisee not to read the
information in the expressed authorisation. Non-reading is specified whenever the authoriser
prohibits the read operation to the authorisee. This means that the authorisee shall not read
an documents representing the given information. Graphically, this is expressed with a cross
symbol over the reading (R) operation of the given authorisation relationship.

In Figure 4.19a, the patient expresses a non-reading requirement on her personal data to-
wards the physician, given that the authorisation from the patient to the physician on infor-

Specifying security requirements in STS-ml 83

medical history

personal data

Patient

Physician

Hospital

R M P T

personal data medical history

blood transfused

R M P T

medical history

medical advice given

R M P T

personal data

Non-usage

Need-to-know

Non-disclosure

Non-reauthorisation

Non-production

present illness

present illness

present illness
Own

Own

Own

(a) Non-reading, non-production, non-disclosure, non-reauthorisation, need-to-know

Alice

Donor

ModernLabs

Red Cross BTC

tests taken

test results

Con

test results

Con

Sender

Receiver

Play

(b) Confidentiality of transmission

Figure 4.19: Confidentiality security requirements in STS-ml

mation personal data prohibits the read operation. Notice that the very same authorisation
expresses other requirements as well that we introduce later in this section: non-distribution,

84 The Socio-Technical Security Modelling Language

non-reauthorisation, non-modification, and non-production.

Non-production

This requirement indicates that the authoriser wants the authorisee not to produce any docu-
ments that contain any of the information for which authorisation is granted. Non-production
is expressed whenever the authoriser prohibits the produce operation to the authorisee. Graph-
ically, this is expressed with a cross symbol over the production (P) operation of the given
authorisation relationship.

The produce operation is equivalent to copying the information, since it considers rewriting
the information into a new document. Making unauthorised copies of information results in
a threat to confidentiality [Stallings and Brown, 2008], therefore this requirement is classified
under the confidentiality principle.

In Figure 4.19a, for example, the patient expresses a non-production requirement on her
personal data to the Physician, by prohibiting the produce operation.

Non-disclosure

Non-disclosure is an important confidentiality requirement that considers unauthorised disclo-
sures of information. In STS-ml, non-disclosure is expressed by an authoriser to indicate that
information shall not be disclosed in an unauthorised way by the authorisee. Given that in
STS-ml information can be disclosed by transmitting some document that represents the said
information, this requirement is expressed whenever the authoriser prohibits the transmit oper-
ation to the authorisee. To comply with this requirement, the latter actor shall not transmit any
document that contains the specified information to unauthorised actors.

Graphically, this is expressed with a cross symbol over the transmission (T) operation of the
given authorisation relationship. In Figure 4.19, for instance, the Patient requires the hospital
not to disclose information present illness, personal data, or medical history. Similarly, as an-
ticipated in the section related to non-reading, the Patient requires the Physician not to disclose
her personal data.

Non-reauthorisation

This requirement indicates that the authoriser wants the authorisee not to redistribute the re-
ceived permissions to other actors. If the authorisee receives an authorisation that contains
only prohibitions, then not-reauthorisation cannot be specified. An authorisee is subject to this
requirement in two cases:

• explicitly, when the authorisee receives an authorisation that is non-transferable (graphi-
cally, when the line connecting the authoriser and the authorisee is dashed);

Specifying security requirements in STS-ml 85

• implicitly, when no actor specifies permissions or prohibitions for performing a certain
operation on a given information.

Note that the information owner has all permissions (all operations are allowed) over its own
information, and prohibitions over this information do not apply to such actor. Information
owners are the legitimate actors to grant authorisations to others in the socio-technical system.

Graphically, an explicit non-reauthorisation requirement is expressed with a dashed arrow
line for the given authorisation relationship, to indicate that transferibility is false and authori-
sation chain should end with the authorisee. Implicit non-reauthorisation, on the other hand, is
a result of postprocessing performed over the modelled authorisation relationship, and as such
does not have a distinguishable graphical notation.

In Figure 4.19a, an example of explicit expression of this requirement is the authorisation
from Hospital to Physician (dashed arrow line) for information elements present illness and
medical history. Moreover, if we removed the authorisation (including only prohibitions) from
Patient to Physician, we would have an example of implicit specification, because no actor
would have granted permission to the physician to read the Patient’s personal data.

Notice the key difference between the explicit and the implicit cases. In the former case,
an actor wants to ensure that another cannot do specific operations on some information. In
the latter case, the lack of permissions is a temporary situation, which could be changed by any
actor having permission and authority to transfer such permission, if they used this authority and
specified an authorisation that passed such permission. For example, in Figure 4.19a, removing
the authorisation between Patient and Physician would allow the hospital to pass its permission
on personal data to the Physician.

We provide a thorough discussion on conflicting authorisations, their identification, and
resolution in Chapter 6.

Confidentiality of Transmision

This requirement indicates that the confidentiality of information shall be preserved while it
is transmitted from one actor to another. In STS-ml, information is transmitted through docu-
ment transmission. The burden of ensuring confidentiality of transmission may affect either the
sender, the receiver, or the socio-technical system’s infrastructure:

• Sender Confidentiality: the sender shall ensure the confidentiality of transmission for the
given document is preserved. Thus, the requirement is expressed by the receiver to re-
quire that the sender ensures the confidentiality of transmission of the document being
transmitted. In Figure 4.19b, Alice requires ModernLabs to ensure the confidentiality of
transmission of document test results.

86 The Socio-Technical Security Modelling Language

• Receiver Confidentiality: the receiver shall ensure the confidentiality of transmission for
the given document is preserved. Thus, the requirement indicates that the sender requires
the receiver to ensure the confidentiality of transmission of the document being trans-
mitted. In Figure 4.19b, Alice requires Red Cross BTC to ensure the confidentiality of
transmission of document test results.

• System Confidentiality: the system shall ensure that the confidentiality of transmission
of a document in transit is preserved. This indicates that the requirement is imposed by
the socio-technical system’s infrastructure itself deeming the document as important to
preserve confidentiality while being transmitted.

Graphically, in Figure 4.19b, the transmission of document test results from Alice to Red
Cross BTC and that from ModernLabs to Alice are annotated with a padlock and with a small
rectangle with label “conf”. The former annotation indicates that a security requirement ap-
plies to the document transmission (as we will see later, multiple requirements can apply to
the same element). The latter annotation indicates the type of requirement: “conf” stands for
“confidentiality of transmission”.

4.5.2 Integrity

The security aspect of integrity requires assurance that information is not changed (modified)
or destroyed in an unauthorised way [Stallings and Brown, 2008]. Notice that, when one refers
to informational entities, it is very challenging to identify a deletion, for an information can be
made tangible by many documents, and copies of these documents. Therefore, in STS-ml, we
focus only on the unauthorised modification of documents that make some information tangible.
In STS-ml, the following security requirements fall into the category of the integrity security
principle (see Figure 4.20 illustrating them): non-modification and integrity of transmission. We
discuss each in detail below.

Non-modification

This integrity requirement requires that information is not modified in an unauthorised way.
The requirement is expressed through authorisations and specifies that the authoriser wants the
authorisee not to modify any document that makes tangible the information in the authorisation
in the context of the specified purpose.

For instance, in Figure 4.20a, the Patient requires the Hospital that information present
illness and personal data are not modified. The same requirement is expressed by the patient
on the physician.

A non-modification requirement may seem over-restrictive: how can one model the fact that
only the sections of the document that contain that information shall not be modified? The

Specifying security requirements in STS-ml 87

Patient Hospital

R M P T

personal data

blood transfused

Non-modification

present illness

(a) Non-modification

Alice

ModernLabs

Red Cross BTC

tests taken

test results

Int

test results

Int Receiver

Sender

(b) Integrity of transmission

Figure 4.20: Integrity security requirements in STS-ml

part-of relationship between document is the answer. One can structure a document into sub-
documents (e.g., header, body, signature), each being part of the overall document. By relating
information to a specific part, the other parts can be modified without affecting the integrity of
the information at hand.

Integrity of transmission

This requirement indicates that some information shall not get corrupted while it transits from
one actor to another. In STS-ml, information is transmitted through document transmission.
Integrity of transmission might be required by the sender, the receiver, as well as by the system
(meaning the socio-technical system). Therefore, the requirement is expressed as a constraint
on document transmissions , and is specialised into:

• Sender Integrity: the sender shall ensure the integrity of transmission for the given docu-
ment. Thus, the requirement is expressed by the receiver to require that the sender ensures
the integrity of transmission of the document being transmitted. In Figure 4.20b, Alice
requires ModernLabs to ensure the integrity of transmission of document test results.

88 The Socio-Technical Security Modelling Language

• Receiver Integrity: the receiver shall ensure the integrity of transmission for the given
document is preserved. Thus, the requirement indicates that the sender requires the re-
ceiver to ensure the integrity of transmission of the document being transmitted. In Figure
4.20b, Alice requires Red Cross BTC to ensure the integrity of transmission of document
test results.

• System Integrity: the system shall ensure that the integrity of transmission of a document
in transit is preserved. This indicates that the requirement is imposed by the organisation
itself deeming the document as important to preserve integrity while being transmitted.

The transmission of document test results from Alice to Red Cross BTC and that from
ModernLabs to Alice are annotated with a padlock and with a small rectangle with label “Int”,
which indicates the type of requirement: “Int” stands for “Integrity of transmission”.

4.5.3 Availability

Availability is the property that the system works promptly, service is not denied to authorised
users, and timely and reliable access to and use of information is ensured [Stallings and Brown,
2008]. STS-ml does not support deletion of information to consider complete denial of service
or denial of access to information. However, in STS-ml we consider potential problems in the
communications between delegators and delegatees, as well as among senders and receivers of
information affecting availability of goals and documents respectively. Hence, STS-ml supports
two types of availability, namely document availability and goal availability.

Document availability

This requirement indicates that the actor that possesses the document has to ensure a certain
level of availability to some actor that needs the document. As such, this requirement is ex-
pressed over document transmissions, and it requires the sender to guarantee an availability
level expressed in percentage for the document being transmitted to the receiver. For instance,
in Figure 4.21, the hospital authority requires hospitals to guarantee an availability of 99.9% for
the document registration record, which is created whenever a patient is hospitalised.

Availability requirements are graphically expressed by annotating document transmissions
with a small rectangle labeled “Ava”, which stands for “Availability”. Notice that, in Figure
4.21, the box showing the availability level is not part of the graphical notation. As we will
show in Chapter 7, some details of the expressed requirements are shown through the STS-
Tool’s property view.

Specifying security requirements in STS-ml 89

Patient

Hospital

Hospital
Authority

patient
registered

Ava

registration
record

Ava

99%

99.9%

Figure 4.21: Availability security requirements in STS-ml

Goal availability

This availability requirement is expressed by a delegator to indicate that a minimum level of
availability shall be provided by the delegatee of a given goal. Thus, it is expressed over goal
delegations. Its graphical syntax is the same as for document availability.

For instance, in Figure 4.21, the patient request to the hospital an availability level of 99% for
the delegated goal patient registered, meaning that the hospital shall guarantee that patient reg-
istration shall be ensured in 99% of the cases. Expressing an availability level is often required
to accommodate unpredictable circumstances, e.g., too many concurrent patients showing up at
the hospital the same day.

Notice that goal availability is highly related to the notion of service availability, where
a provider specifies an uptime level for the service 5. In service-oriented settings, availability
levels often become integral part of service-level agreements between providers and consumers.

4.5.4 Authenticity

The security aspect of authenticity is the property of being genuine and being able to be ver-
ified and trusted [Kissel, 2011]. Authenticity is ensured through authentication processes and
mechanisms that aim at verifying whether users are who they say they are (entity authentic-
ity [Stallings and Brown, 2008]). This aspect of security is sometimes treated as part of in-
tegrity [PUB, 2004], although many recognize its value to be treated separately from the others
[Stallings and Brown, 2008]. In STS-ml, we treat authenticity as part of security requirements

5The interaction between a delegator and a delegatee is similar to that of a service consumer (represented by the delegator)
and a service provider (represented by the delegatee) on using/providing a service (represented by the goal).

90 The Socio-Technical Security Modelling Language

it supports, in order to provide a comprehensive account on security requirements engineering.
In STS-ml, the authenticity requirement applies over actors’ interactions related to their

assets, namely goal delegations and document transmissions. We, then, specialise authenticity
into two sub-requirements: the former relates to the authentication of the delegator/sender, the
latter is concerned with the authentication of the delegatee/receiver.

Given a goal delegation or document transmission, one can express either delegator/sender
authentication, or the delegatee/receiver authentication, or both. Graphically, authenticity re-
quirements are expressed as an annotation of a goal delegation/document transmission with a
small rectangle labeled “Auth”, which stands for “Authenticity”. The details concerning the
exact type of the chosen authenticity requirement are not shown graphically, so as to keep the
graphical notation less heavy.

Delegator/Sender Authentication

This requirement about authenticity indicates the delegatee/receiver’s request that the delega-
tor/sender shall be authenticated. This is the kind of authentication that is typically implemented
in electronic commerce websites, wherein a certification authority guarantees the authenticity
of the seller’s website.

In the healthcare scenario, the hospital authority expresses the requirement that the trans-
mission of document registration record necessitates the sender’s (Hospital) authentication, see
Figure 4.22. Moreover, the delegation of goal tests taken from Alice to ModernLabs includes a
delegator authentication requirement: ModernLabs wants to ensure that the test is requested by
the same person that will be tested.

Delegatee/Receiver Authentication

This type of the authenticity requirement expresses the delegator/sender’s need that the dele-
gatee/receiver is authenticated. We encounter this kind of authentication everyday when we
browse the web and use our credentials (username/password) to access web information such
as our email.

In the healthcare scenario, patients impose this requirement on the delegation of goal patient
registered to Hospital, for they want to be certain that registration is performed by authorised
hospital staff, see Figure 4.22. Also, the transmission of the donor certificate from Red Cross
BTC to the Donor includes this requirement, which indicates that the given donors themselves
are the only individuals (each his/her own) who can receive the certificate.

Specifying security requirements in STS-ml 91

Alice ModernLabs

RedfCrossfBTC

Hospital
Authority

testsftaken

Auth

Patient Hospital

Delegator

Delegatee

Receiver

Sender

patient
registered

Auth

registration
record

Auth

Donordonorfcertificate

Auth

Figure 4.22: Authenticity security requirements in STS-ml

4.5.5 Reliability

Reliability is an aspect of security that is concerned with addressing the consequences of ac-
cidental errors [Gollmann, 2011]. In the age of the Internet, however, the notion of accident
encompasses non-designed usages, including attackers trying to misuse the system. While reli-
ability is sometimes treated independently from security, we include it in our supported aspects,
with the intent of providing a comprehensive approach. In STS-ml, reliability is supported
through the following requirements:

Trustworthiness

Patient Physiciantransf needed

Tru

Figure 4.23: Reliability security requirements in STS-ml: Trustworthiness

It lays down a requirement on the trustworthiness of the actor one has to rely upon. It is

92 The Socio-Technical Security Modelling Language

expressed over goal delegations by the delegator, which requires the delegatee to be trustwor-
thy, i.e., the goal will be delegated only to trusted delegatees. This requirement implies that the
delegatee shall provide a proof of trustworthiness, e.g., issued by a certification authority. For
instance, in the healthcare scenario (Figure 4.23), the Patient imposes a trustworthiness require-
ment on the Physician with respect to transf needed (performing a transfusion procedure when
needed).

Redundancy

This requirement is expressed on goal delegations by the delegator, who wants the delegatee
to adopt redundant strategies for a delegated goal, either by using alternative internal strategies
(single actor), or by relying on other actors (multi-actor). We consider two types of redundancy
requirements:

1. Fallback redundancy: a primary strategy shall be selected to fulfil the goal, while at least
another strategy shall be deployed as backup, and shall be used only if the primary strategy
fails.

2. True redundancy: two or more different strategies shall be executed simultaneously by the
delegatee to fulfill the goal.

Alice ModernLabstestsytaken

Red

Hospital

True,ysingleyactor

Expressymedical
courier

blood
transported

Red

Fallback,ysingleyactor

DrugTestsyInc
drugytest

performed

Red

True,ymultipleyactors

SurgeryyUnit

Fallback,ymultipleyactors

transfusion
performedyin

surgery

Red

Figure 4.24: Reliability security requirements in STS-ml: Redundancy

By intertwining single/multi-actor with the redundancy types (1-2), STS-ml supports four
mutually exclusive redundancy security requirements:

1. True redundancy single actor indicates that one actor has to deploy concurrent means
for achieving the delegated goal. For example, in Figure 4.24, Alice requires Modern-

Specifying security requirements in STS-ml 93

Labs to provide true redundancy for goal tests taken, e.g., testing the blood through two
instruments.

2. True redundancy multi actor specifies that the delegatee shall ensure that more than one
actor (possibly, including the delegatee herself) shall act concurrently towards the achieve-
ment of the delegated goal. In Figure 4.24, ModernLabs requires DrugTests Inc that con-
current ways for performing drug tests (goal drug test performed) are used, and multiple
actors are involved.

3. Fallback redundancy single actor means that the same actor has to provide a fallback
solution, in case the original one fails. In Figure 4.24, the Hospital requires the express
courier to deploy a fallback solution for goal blood transported. A possible way to do so
is to reserve a backup van, which is used only if the designated one is not working.

4. Fallback redundancy multi actor expresses that the delegatee shall ensure the involvement
of multiple actors towards the achievement of the delegated goal. In Figure 4.24, the Hos-
pital specifies this requirement to the surgery department for goal transfusion performed
in surgery. This means that more than one physician shall be ready to perform the trans-
fusion: one is the designated surgeon, the other ones are backup options, should the first
one become unavailable.

Given that redundancy requirements also are expressed over goal delegations, they too are
graphically expressed as an annotation of goal delegations. A small rectangle labeled “Red”,
which stands for “Redundancy” is used in this case, see Figure 4.24 showing a snippet from the
healthcare scenario, illustrating the use of redundancy requirements. The details concerning the
exact type of the chosen redundancy requirement are not shown graphically, in order to keep
the graphical notation less heavy. The labels below the annotation “Red” are added to Figure
4.24 for illustrative purposes. As we will see in Chapter 7, these details are inserted through the
property view of STS-Tool.

4.5.6 Accountability

The security aspect of accountability refers to the requirements for actions of an entity to be
traced uniquely to that entity [Kissel, 2011]. STS-ml supports expressing accountability secu-
rity requirements in different ways, as shown in the following sub-sections.

Non-repudiation

A key requirement related to accountability is non-repudiation, i.e., preventing either of the
entities involved in a communication (the origin or the destination) from denying having partic-
ipated in the communication [Stallings and Brown, 2008]. In STS-ml, communication among

94 The Socio-Technical Security Modelling Language

Alice

infect disease
test

ModernLabs

Patient Hospital medical advice
given

transfusion
performed

Physician

patient
registered

No-Rep

tests taken

No-del No-Rep

drug test
performed

Drug tests lab
Donor

Supervisor

Acceptance

Delegation

Play

Figure 4.25: Accountability security requirements in STS-ml

stakeholders could be one of: document transmission and goal delegation. Thus, a requirement
for non-repudiation is expressed with respect to transmitting information (document transmis-
sion), as well as with respect to delegating goals (goal delegation, which transfers responsibility
for goal fulfilment).

Graphically, the requirement is represented as an annotation for delegations with label “No-
rep”, which stands for “non-repudiation”. Again, we keep the annotation lightweight, without
providing the details of the exact type of non-repudiation being expressed on the label over the
goal delegation itself [Moody, 2009].

This requirement is specified to prevent the two interacting actors from denying having
transferred the document/delegated the goal (corresponding to non-repudiation—origin) or re-
ceived the document/accepted the delegation (corresponding to non-repudiation—destination)
respectively. Origin and destination is security refer to the two ends of a communication. In
STS-ml, we consider the two parties involved in goal delegations and document transmission
respectively. Therefore, non-repudiation is specialised into these security requirements:

• Non-repudiation of acceptance: this indicates that the delegator/sender requires the dele-
gatee/receiver not to repudiate the delegation/transfer of a goal/document. In Figure 4.25,
the patient requires the hospital not to repudiate the acceptance of the delegation of goal
patient registered.

Specifying security requirements in STS-ml 95

• Non-repudiation of delegation/transmission: this is expressed by the delegatee/receiver
to require that the delegator/sender does not repudiate the delegation/transmission of the
goal/document. In Figure 4.25, ModernLabs requires Alice not to repudiate that she has
delegated goal tests taken.

Not-redelegation

This requirement is expressed over goal delegations, and it is the delegator’s request for the
delegatee to take full responsibility of achieving the delegated goal, without relying on any other
actor. The delegatee shall therefore avoid delegating the goal or any of its subgoals, should there
be any. Graphically, the requirement is represented as an annotation for delegations with label
“No-del”, which stands for “not-redelegation”.

A main reason for specifying a not-redelegation requirement concerns trust: the delegator
trusts that specific delegatee for the given goal, but does not trust other actors the delegatee
might want to involve. However, for the time being, in STS-ml we do not explore the interrela-
tions between trust and security requirements. In Figure 4.25, Alice requires ModernLabs not
to redelegate goal tests taken to other actors, such as third-party labs or technicians.

Separation of Duties

This accountability requirement expresses segregation of duties among different people; this is
especially important when dealing with critical tasks. An example of this requirement is the
procedure for opening a bank’s vault, which often requires the joint effort (and information) of
more than one person.

Graphically, this is represented as an arrow between two entities annotated with the “differ-
ent” (6=) symbol, see Figure 4.25; note that the relationship is symmetric, therefore there are no
arrows pointing to the concepts it relates.

Specifically, separation of duties (SoD) comes in two versions in STS-ml:

• Role-based SoD defines that two roles are incompatible, i.e., when specified between the
two roles, it does not allow the same agent to play both the roles. For example, in Figure
4.25, roles patient and donor are incompatible: if Alice is a donor, she cannot be a patient
(blood receiver) at the same time.

• Goal-based SoD defines incompatible goals, i.e., an actor should not pursue and achieve
both goals among which SoD is defined. For example, in Figure 4.25, ModernLabs’ goal
to test for infection diseases conflicts with Drug tests lab’s goal of performing drug tests.
This requires that different actors shall be responsible for these two tests.

96 The Socio-Technical Security Modelling Language

Combination of Duties

This requirement originates from the retain familiar [Russell et al., 2004] principle, which is
symmetric to separation of duties. Combination of duties expresses that some entities should
be ascribed to the same agent, if one of them is already ascribed to that agent, considering
the familiarity the actor has with the entity. Graphically (see Figure 4.25), this is represented
as an arrow between two entities annotated with the “equal” (=) symbol, the relationship is
symmetric, therefore there are no arrows pointing to the concepts it relates.

Combination of duties (CoD) comes in two versions in STS-ml:

• Role-based CoD defines a binding between roles, i.e., if an agent adopts either of the
roles, it has to adopt (play) also the other role. In Figure 4.25, a role-based combination
of duties requirement is expressed over roles supervisor and physician, i.e., a physician
also has to supervise trainees in the hospital.

• Goal-based CoD defines that if an agent achieving one of the goals among which CoD is
defined, it should achieve the other goal too. In Figure 4.25, the physician role includes
a goal-based CoD for goals transfusion performed and medical advice given. This means
that the same physician has to be responsible for both goals (e.g., in order to increase the
patient’s trust about the physician/hospital).

4.6 Chapter Summary

In this chapter, we have presented the modelling primitives of STS-ml. These constructs allow
for expressing the stakeholders in a socio-technical systems, their objectives, and the security
requirements that they want other stakeholders to comply with.

We have shown the security requirements that the language supports, and we have classified
them in accordance with a taxonomy of aspects of security, which consists of confidentiality,
integrity, availability, authenticity, reliability, and accountability.

The language complies with the ten principles that we deem important for security require-
ments in socio-technical systems:

1. A socio-technical perspective is provided by modelling actors (social and technical) that
interact via goal delegations and document transmissions. This view follows the definition
of socio-technical systems, as an interplay of social and technical subsystems, represented
in STS-ml via actors.

2. The existence of multiple stakeholders is acknowledged by allowing every stakeholder
to express requirements. The requirements supported by STS-ml derive primarily from
stakeholders’ needs.

Chapter Summary 97

3. Modelling relies upon high-level representation of assets, modelling actors’ goals, infor-
mation, and documents.

4. Security is imposed as constraints that affect different types of interactions: goal delega-
tions, document transmission, and authorisations. This reflects the intuition that actors are
concerned about their objectives (goals) and their information (represented via documents,
usage dictated by authorisations).

5. The language focuses on security needs, and not on the mechanisms for fulfilling these
needs. STS-ml captures stakeholders’ concerns about protecting their objectives and their
information while in the socio-technical system, without jumping to technical security
mechanisms.

6. Representing events and how these threaten supporting assets is essential part of the lan-
guage.

7. The supported security requirements are classified and presented following a taxonomy
derived from existing standards. This categorisation is very important to guide require-
ments engineers in correctly modelling stakeholders’ security needs to then derive security
requirements, based on the types defined in the taxonomy.

8. Modeling is supported through diagrams (see Chapter 5), which have a formal semantics
as it will be shown in Chapter 6. Modelling helps capture stakeholders’ needs, however,
in order to verify specific properties over the models, they need to be equipped with a
formal semantics.

9. Minimality of concepts is ensured by carefully avoiding overlaps between the entities and
relationships. This is important to avoid confusions while using STS-ml.

10. Security requirements can be traced back to their requester and to the goal, document, or
information that originates the requirement.

This chapter provides the foundations for using the STS-ml language.

98 The Socio-Technical Security Modelling Language

Chapter 5

Social, Information, and Authorisation
Models

We show how the concepts and relationships described in Chapter 4 can be used to build STS-
ml models, thereby capturing security requirements for the system at hand. Specifically, we will
show what concepts and relationships are used for each and every model supported by the STS
methodology as described in Chapter 3, namely the social model (see Section 5.2), the informa-
tion model (see Section 5.3), and the authorisation model (see Section 5.4). Moreover, we will
describe how to express stakeholders’ security needs and capture security requirements through
the three models. These models are complementary and, together, form the STS-ml model for
the system-to-be. Inter-model consistency is ensured by STS-Tool (details in Chapter 7).

Acknowledgement. This chapter revises and extends [Paja et al., 2013b; Dalpiaz et al.,
2011].

5.1 Multi-view modelling approach

As discussed in Chapter 3, STS methodology supports multi-view modelling, that is, STS-ml
models are constructed by focusing on different views at a time. The name multi-view modelling
derives from the fact that modelling activities supported by STS-Tool are performed over three
different views in line with the major phases of the STS methodology. The creation of the
models over three views results in three outcome (sub)models, namely the social model, the
information model, and the authorisation model. Following this intuition, STS-ml primitives
are combined into three complementary models, which together form the system model.

The division of the modelling activities over three different views (resulting in three mod-
els) follows the separation of concerns principle. The phylosofy of STS methodology requires
the modelling of social and organisational aspects, in which we represent actors with their ob-

100 Social, Information, and Authorisation Models

jectives and interactions with others, separately from the informations they own and want to
protect, from the permissions and prohibitions flow. This separation facilitates also the collab-
oration of requirements analysts and security engineers. We describe in the following sections
what primitives and relationships are used to create each model. We show the three supported
models, but no complete model, because the overall STS-ml model of the system-to-be is only
conceptually maintained in STS to ensure inter-model consistency with STS-Tool (details in
Chapter 7).

5.2 Social model

The social model represents the stakeholders and their interactions. Stakeholders are repre-
sented via actors that are intentional—they have objectives they aim to attain—, and social—
they interact with others to achieve their objectives.

Therefore, the social model allows to represent actors together with their intentional assets
(goals) and documents, the representation of which results in constructing actor models. Apart
from representing the internal rationale of the various identified actors, the social model allows
to capture the different interactions each and every actor enters (if applicable). These interac-
tions could be either to fulfill their objectives (by delegating goals) or to obtain information (by
exchanging documents).

These concepts and relationships have been already introduced and extensively explained in
Chapter 4, here we present which of the supported concepts and relationships are used to build
the social model.

To facilitate understandability of the models we will create, we summarise the primitives in
the social model in various tables:

• in Table 5.1 we present the main concepts and intentional relationships; 1)

• in Table 5.2 we present the social relationships supported by the social model, namely
play, goal delegation and document transmission; and finally

• in Table 5.3 we present the event concept and the threatens relationship that allow threat
modelling.

Figure 5.1 depicts a partial social model for the motivating case study. Below, we explain and
illustrate the component parts of this model for each of the above concepts and relationships
(Tables 5.1–5.3).

1In Tables 5.1–5.5, for illustrative purposes, we interchangeably use the graphical syntax of role and agent to visualise
an actor, for these relationships apply to both roles and agents. The plays relationships is the exception, as in this case the
difference between agents and roles is crisp.

Social model 101

Concepts and intentional relationships. Stakeholders (system participants) are modelled via
roles and agents (see Table 5.1). In the healthcare scenario we identify various stakeholders 2,
such as: Alice, donors, patients, hospitals, physicians, laboratories (ModernLabs and Drug Test
Inc), Red Cross BTC, etc. We model donors, patients, hospitals, physicians through the concept
of role, while we model Alice, ModernLabs, Drug Test Inc, and Red Cross BTC through the
concept of agent (see Figure 5.1). The reason for this is that roles refer to general actors that
are instantiated at run time, while agents refer to concrete entities already known at design
time. In this scenario, we do not know the particular donor, patient or physician that will take
over the role, but we do know the responsibilities encapsulated in the said roles. As far as the
represented agents are concerned, we know that Alice intends to become a donor (thus, Alice
is modelled as an agent, while donor as a role, and we draw a plays relationship between them),
and ModernLabs is the laboratory in charge of infective disease tests, while Drug Test Inc is
the laboratory specialised in drug tests. Similarly, we assume that there is only one Red Cross
BTC, so we consider it as known to be part of the system already at design time.

The social model supports representing stakeholders’ goals (see Table 5.1). In the health-
care scenario, we analyse the various modelled roles and agents, to adequately represent their
goals and how they intend to pursue the identified goals (considering first intentional relation-
ships). For instance, in Figure 5.1, physicians (role Physician) intend to give medical advice
to patients (goal medical advice given). To pursue this goal, physicians need to consult pa-
tients’ medical records and perform a medical visit to assess current medical status. There-
fore, goal medical advice given is and-decomposed into goal medical record consulted and goal
medical visit performed. Donor has the goal of donating blood regularly (blood donat regularly).
Patient has the goal of receiving medical treatment (treatment received). In the context of
blood transfusion service, we consider medical treatment to be about blood transfusion. There-
fore, the patient needs to get registered in order to receive treatment and the transfusion: goal
treatment received is and-decomposed into goal patient registered and transfusion needed.

Alice has the goal blood donated, which is and-decomposed into test taken and neg results

received. Red Cross BTC has goal blood distributed, which is and-decomposed into goals blood

collected, blood consumption estimated, and blood transported; goal blood collected is further
and-decomposed into goals blood examined and donor approved, while goal blood consumption

estimated is and-decomposed into goals stat analysis performed and blood usage evaluated; fi-
nally goal stat analysis performed is or-decomposed into on blood type eval, on hospital requests,
and on donor, see Figure 5.1. Similarly we can analyse the various goals and goal decomposi-
tions for each and every modelled actor in the social model of the healthcare scenario.

Apart from actors’ goals, in the social model we can capture the documents actors possess

2Note that we show the modelling of stakeholders starting typically in the social model, however they could be modelled
(introduced in the STS-ml model) in any of the supported models.

102 Social, Information, and Authorisation Models

Table 5.1: Social model: concepts and intentional relationships

Graphical Notation Syntax and Description

Concepts

R
role(R): an abstract characterization used to model a class of partic-
ipants, defining a set of responsibilities for the said participants (e.g.,
professor, student)

A
agent(A): a concrete participant known to be in the system already at
design time (e.g., John, Laura)

G goal(G): represents stakeholders’ objectives (e.g., exam taken)

D document(D): represents information (e.g., transcripts file)

Intentional relationships

A
G

wants(A,G): actor A wants to achieve goal G, models the actor’s in-
tention to achieve the goal (e.g., student wants to pass the exam)

D
A possesses(A,D): actor A possesses document D, models the posses-

sion of the document by an actor (e.g., professor has the exam paper)

A
G

D

Produce
Read

Modify

reads/modifies/produces (A,G,D): actor A reads / modifies / pro-
duces document D when fulfilling goal G (e.g., professor reads student
exams to grade them)

A G

G1 Gn

AND

...

decomposes(A,G, S, DecT): A decomposes root goal G into sub-goals
from S, where S={G1, . . . , Gn} and |S| ≥ 2, and the decomposition is
of type DecT, such that DecT ∈ {and, or} (e.g., a student passes the
exam if she sits in for the exam and gets a grade higher than 65%)

Social model 103

or manipulate to achieve their goals. In Figure 5.1, Patient possesses document medical record,
it reads this document to get registered at the hospital (patient registered), while it modifies
personal records to achieve goal data refined. Physician modifies document blood bank when
transfusion is needed (goal transfusion needed). Donor needs a donor certificate to donate
blood regularly, which is represented through the read intentional relationship between goal
blood donat regularly and document donor certificate. Alice reads document test results to ver-
ify if she has received negative test results. Red Cross BTC produces document report for
goal blood distributed, modifies document blood bank to estimate blood consumption (goal
blood consumption estimated), reads document test results to approve donors and produces
document donor certificate for the same goal (donor approved), and finally it reads document
blood usage listings to perform statistical analysis on hospital requests (goal on hospital requests).

Social relationships. The social model represents the social relationships between actors in
the given socio-technical system. This model supports three social relationships: play, goal
delegation and document transmission (see Table 5.2).

In the healthcare case study, we know that Alice wants to become a donor, therefore we
represent this through the play relationship between the agent Alice and the role Donor. We do
not have information about other actual participants of the healthcare socio-technical system.

An example of goal delegation is that of Patient delegating goal transfusion needed to
Physician. This delegation results in the second actor having the goal, that is, Physician has
goal transfusion needed 3, which is part of the transfusion procedure performed by a spe-
cialised physician. Goal transfusion performed via specialist is delegated to the Physician by
the Hospital. Alice relies on ModernLabs to take tests, delegating goal test taken. ModernLabs

delegates goal drug test performed to Drug Tests Inc, which is a laboratory specialised in drug
tests. Similarly we can analyse the rest of goal delegations represented in Figure 5.1.

Note that in STS-ml only leaf goals (not decomposed) can be delegated.
As far as document transmissions are concerned, an example is that of ModernLabs transmit-

ting the document test results to Alice, who further transmits this document to Red Cross BTC

for evaluation and approval, see Figure 5.1. Red Cross BTC transmits document donor certificate

to Donor, while it transmits blood bank to Hospital. The latter transmits document blood usage

listings to Red Cross BTC, which needs this information to estimate blood consumption. These
are just few examples of the document transmissions modelled in Figure 5.1.

Events and threats. The social model supports representing events threatening stakeholders
assets. Therefore, the entity event and the relationship threaten are part of the social model,

3Note that delegated goals are represented with a darker shade than actors’ own goals to distinguish between the two types.
This will become clearer in Chapter 7.

104 Social, Information, and Authorisation Models

Table 5.2: Social model: social relationships

Graphical Notation Syntax and Description

PlayAg1 R2
plays(Ag1, R2): models the adoption of roles by agents, i.e., agent Ag1
plays role R2 (e.g., John plays role professor)

A1 A2G

delegates(A1, A2, G): models the transfer of responsibilities from an
actor to another, i.e., actor A1 (delegator) delegates the fulfilment of
goal G (delegatum) to actor A2 (delegatee) (e.g., professor delegates
grading exams to teaching assistant)

A1 A2D
transmits(A1, A2, D): specifies the exchange of documents between
two actors, i.e., actor A1 (sender) transmits document D to actor A2

(receiver) (e.g., teaching assistant transmits exam results to professor)

see Table 5.3. For instance, in the healthcare case study the event specialised physician sick

threatens goal transfusion performed via specialist of Physician, while the event test results lost

threatens document test results produced by ModernLabs (see Figure 5.1).

Table 5.3: Social model: events and threats

Graphical Notation Syntax and Description

E

event(E): represents uncertain circumstances that affect actors’ assets
(e.g., forgetting an important document at a shared printer)

E

D

G Threat

ThreatA
threaten(E,wants(A,G)) or threaten(E, possesses(A,D)): models
the influence of an event over actors’ supporting assets, i.e., event E
threatens goal G or document D of actor A (e.g., disclosing confidential
information to unauthorised users)

Security requirements in the social model. The social model enables specifying security re-
quirements on the social relationships among the modelled actors. In the following, we sum-
marise the security requirements supported by the social model from the list of STS-ml security
requirements depicted in Figure 4.18, and group the set of supported security requirements per
social relationship.

Over goal delegations. The following are the security requirement types expressed over
goal delegations (a complete summary is in Appendix A):

1. Non-repudiation of Delegation/Acceptance: for instance, ModernLabs requires Alice non-
repudiation of the delegation of goal tests taken, while Patient requires the Hospital non-

Social model 105

repudiation of acceptance of goal patient registered, see Figure 5.1.

2. Redundancy, in its four mutually exclusive types, true redundancy single, fallback re-
dundancy single, true redundancy multi, and fallback redundancy multi. In Figure 5.1,
Alice requires true redundancy single for goal tests taken, the Express medical courier re-
quires to the Hospital fallback redundancy single for goal blood transported, ModernLabs

requires Drug Tests Inc true redundancy multi for goal drug test performed, while the
Hospital requires the Surgery Unit fallback redundancy multi for goal transfusion performed.

3. No-redelegation: for instance, in Figure 5.1, Red Cross BTC requires Research Center not
to redelegate statistical analysis on donors.

4. Trustworthiness: for instance, the delegation of goal transfusion needed from Patient to
Physician will take place only to trustworthy physicians, see Figure 5.1.

5. Goal Availability: for instance, TAS requires Amadeus Service 85% availability for goal
Flight ticket booked, see Figure 5.1.

6. Delegator/Delegatee Authentication: in Figure 5.1, the delegation of goal tests taken from
Alice to ModernLabs includes a delegator authentication requirement. The delegation of
goal patient registered from Patient to Hospital , on the other hand, includes a delegatee
authentication requirement.

Over document transmissions. The following are the security requirement types expressed
over document transmissions (a complete summary is in Appendix A):

1. Non-repudiation of Transmission/Acceptance: for instance, in Figure 5.1, Hospital re-
quires Red Cross BTC not to repudiate transmission of document blood bank, as well as
the acceptance of transmission of document blood usage listings.

2. Integrity of transmission, in its three forms, sender integrity, receiver integrity, and sys-
tem integrity. For instance, in the healthcare case study the Hospital Authority requires
the Hospital to ensure sender integrity of document registration record, Red Cross BTC

requires Research Center receiver integrity over the transmission of report, while a sys-
tem integrity requirement is specified over the transmission of document report from
Red Cross BTC to Hospital Authority.

3. Document Availability: for instance, in Figure 5.1, Hospital requires an availability level
of 99.9% for the document blood bank from Red Cross BTC.

106 Social, Information, and Authorisation Models

4. Sender/Receiver Authentication: in the healthcare scenario, in Figure 5.1, the transmis-
sion of document test results from Alice to Red Cross BTC requires sender authentica-
tion, while the transmission of document donor certificate from Red Cross BTC to Donor

requires receiver authentication.

5. Confidentiality of Transmission, in its three forms, sender confidentiality, receiver con-
fidentiality, and system Confidentiality. For instance, in the healthcare case study the
transmission of document test results from Alice to Red Cross BTC requires sender con-
fidentiality, the transmission of document test results from ModernLabs to Alice requires
receiver confidentiality, while the transmission of document report from Red Cross BTC

to Research Center requires system confidentiality.

Over responsibility uptake. The security requirements constraining the uptake of responsi-
bilities, i.e., the adoption of roles and the pursuit of goals, are as follows 4 (a complete summary
is in Appendix A):

1. Separation of duties (SoD), over roles or goals, role-based SoD, and goal-based SoD
respectively. For instance, there is a separation of duties between roles Patient and Donor,
while the goals infect disease tested and drug test performed are defined as incompatible,
see Figure 5.1.

2. Combination of duties (CoD), over roles or goals, role-based CoD and goal-based CoD
respectively. For instance, there is a combination of duties between roles Physician and
Supervisor, while there is a goal-based combination of duties between goals medical advice

given and transfusion performed via specialist, see Figure 5.1.

4As discussed in Chapter 4, these security requirements from organisational constraints are translated to a set of relation-
ships, incompatible (represented as a circle with the unequal sign within) and combines (represented as a circle with the equals
sign within) respectively. This is related to the fact that they are not directly expressed over a social relationship, but constrain
the uptake of responsibilities of stakeholders.

Social model 107

A
N
D

bl
oo

dB
do

na
te

d

te
st

sB
ta

ke
n

ne
gB

re
su

lts
re

ce
iv

ed

te
st

Bre
su

lts
BB

Al
ic

e

bl
oo

dB
do

na
t

re
gu

la
rly

do
no

rBc
er

tif
ic

at
e

D
on

or

in
fe

ct
Bd

is
ea

se
te

st
ed

A
N
D

te
st

sB
ta

ke
n

re
su

lts
Bp

ro
vi

de
d

dr
ug

Bte
st

pe
rf

or
m

ed

te
st

Bre
su

lts
BB

M
od

er
nL

ab
s

A
N
D

tr
ea

tm
en

t
re

ce
iv

ed

pa
tie

nt
re

gi
st

er
ed

tr
an

sf
us

io
n

ne
ed

ed

m
ed

ic
al

Bre
co

rd

Pa
tie

nt

A
N
D

bl
oo

d
di

st
rib

ut
ed

A
N
D

bl
oo

dB
co

lle
ct

ed

bl
oo

dB
ex

am
in

ed

O
R

st
at

Ba
na

ly
si

s
pe

rf
or

m
ed

A
N
D

bl
oo

d
co

ns
um

pt
io

n
es

tim
at

ed

do
no

rBa
pp

ro
ve

d
bl

oo
dB

us
ag

e
ev

al
ua

te
d

on
Bb

lo
od

Bty
pe

ev
al

on
Bh

os
pi

ta
l

re
qu

es
ts

on
Bd

on
or

s

bl
oo

d
tr

an
sp

or
te

d

re
po

rt

bl
oo

dB
ba

nk

do
no

rBc
er

tif
ic

at
e

te
st

Bre
su

lts
BB

bl
oo

dB
us

ag
e

lis
tin

gs

Re
dB

Cr
os

sB
BT

C

A
N
D

he
al

th
Bs

er
vi

ce
pr

ov
id

ed

A
N
D

he
al

th
cB

re
co

rd
s

m
ai

nt
ai

ne
d

O
R

bl
oo

d
tr

an
sf

us
ed

pa
tie

nt
re

gi
st

er
ed

m
ed

ic
al

Bh
is

to
ry

ob
ta

in
ed

tr
an

sf
us

io
n

pe
rf

or
m

ed
Bv

ia
sp

ec
ia

lis
t

tr
an

sf
us

io
n

pe
rf

or
m

ed
Bin

su
rg

er
y

re
gi

st
ra

tio
n

re
co

rd

bl
oo

dB
ba

nk

bl
oo

dB
us

ag
e

lis
tin

gs

H
os

pi
ta

l
tr

an
sf

us
io

n
ne

ed
ed

A
N
D

m
ed

ic
al

Ba
dv

ic
e

gi
ve

n

m
ed

ic
al

Bre
co

rd
co

ns
ul

te
d

A
N
D

tr
an

sf
us

io
n

pe
rf

or
m

ed
Bv

ia
sp

ec
ia

lis
t

m
ed

ic
al

Bv
is

it
pe

rf
or

m
ed

bl
oo

dB
ty

pi
ng

pe
rf

or
m

ed

cr
os

s-
m

at
ch

in
g

pe
rf

or
m

ed

bl
oo

dB
ba

nk

Ph
ys

ic
ia

n

H
os

pi
ta

l
Au

th
or

ity

pa
tie

nt
re

gi
st

er
ed

N
o-
R
e
p

A
ut
h

A
va

re
gi

st
ra

tio
n

re
co

rd

A
ut
h

A
va

99
%

99
.9

%

te
st

sB
ta

ke
n

N
o-
R
e
p
N
o-
de
l

R
ed

A
ut
h

Su
pe

rv
is

or

tr
an

sf
us

io
n

ne
ed

ed

T
ru

te
st

Bre
su

lts
BB

C
on

In
t

te
st

Bre
su

lts
BB

In
t

C
on

A
va

bl
oo

dB
ba

nk

bl
oo

dB
ba

nk

sp
ec

ia
lis

ed
ph

ys
ic

ia
nB

si
ck

te
st

Bre
su

lts
Blo

st

do
no

rBc
er

tif
ic

at
e

A
ut
h

dr
ug

Bte
st

pe
rf

or
m

ed

D
ru

gB
Te

st
sB

In
c

dr
ug

Bte
st

pe
rf

or
m

ed

R
ed

Su
rg

er
yB

U
ni

t

tr
an

sf
us

io
n

pe
rf

or
m

ed
Bin

su
rg

er
y

R
ed

tr
an

sf
us

io
n

pe
rf

or
m

ed
Bv

ia
sp

ec
ia

lis
t

Ex
pr

es
sB

m
ed

ic
al

co
ur

ie
r

bl
oo

d
tr

an
sp

or
te

d

R
ed

on
Bd

on
or

s

on
Bb

lo
od

Bty
pe

ev
al

re
po

rt

Re
se

ar
ch

BC
en

te
r

on
Bd

on
or

son
Bb

lo
od

Bty
pe

ev
al

re
po

rt

A
ut
h

C
on

In
t

bl
oo

dB
us

ag
e

lis
tin

gs

re
po

rt

R
ea
d

P
la
y

R
ea
d

P
ro
d
uc
e

T
hr
ea
t

R
ea
d

P
ro
d
uc
e

M
od
ify

R
ea
d

P
ro
d
uc
e

M
od
ify

R
ea
d

T
hr
ea
t

P
ro
d
uc
e

R
ea
d

R
ea
d

P
ro
d
uc
e

R
ea
d

Figure 5.1: Partial STS-ml social model of the healthcare scenario

108 Social, Information, and Authorisation Models

5.3 Information model

As described in Chapter 4, STS-ml distinguishes between information—the data that actors
own, care about, and may deem confidential—and its representation via documents. The latter,
intended in a broad sense (e.g., an email or a text message are documents too) are the means
through which actors transfer information.

While the social model includes documents and their transmission, we do not know what
is the informational content of the exchanged documents. This is useful in an analysis of se-
curity requirements to determine whether information was exchanged among authorised users
for instance. For this, the information model represents the informational content of the docu-
ments in the social model. The model indicates information entities, their owners, and provides
a structured representation of information and documents.

Table 5.4 summarises the concepts and relationships of the information model.

Table 5.4: Information model: concepts and relationships

Graphical Notation Syntax and Description
I1 information(I1): informational entities (e.g., name, student grade)

Own
I2

A1
owns(A1, I2): actor A1 is the legitimate owner of information I2, i.e.,
it has full rights over that information (e.g., students own information
about their personal information)

Tangible By

I1

D2 makes-tangible(I1, D2): document D2 materializes information I1

(e.g., transcripts materialize information about course results)

Part Of

I1

I2
part-of-i(I1, I2): information I1 is part of information I2 (e.g., course
description is part of course syllabus)

Part Of

D2

D1

part-of-d(D1, D2): information D1 is part of information D2 (e.g., stu-
dent file is part of students registry)

Figure 5.2 represents a partial information model for the healthcare motivating case study.
From the social model, we have that Patient possesses document medical record. In the in-
formation model, we can define what information is contained in this document. Looking at
Figure 5.2, we can see that medical record makes tangible information personal data, which is
owned by the Patient. The Patient also owns information medical history.

Similarly, Alice owns her personal information, and health status, Hospital owns informa-
tion blood needs, while Red Cross BTC owns blood info. Information can be represented by
one or more documents (through multiple Tangible By relationships). For instance, informa-

Information model 109

tion personal information owned by Alice is made tangible by both document health record and
document donor certificate.

On the other hand, one or more information entities can be made tangible by the same docu-
ment. For instance, health status and personal information are both made tangible by document
test results of ModernLabs, see Figure 5.2.

Alice

test results

ModernLabs

medical record

Patient

report

blood bank

donor certificate

health record

Red Cross BTC

registration
record

blood usage
listings

Hospital

health status

medical history

personal data

personal
information

allergiespresent illness

medical history
info

blood typesblood info

blood needs

Own

Own

Tangible By

Part Of

Own
Own

Part Of

Part Of

Part OfPart Of

Part OfPart Of

Tangible By

Tangible By

Tangible By

Tangible By

Tangible By

Own

Part Of

Tangible By

Tangible By

Tangible By

Own

Tangible By

Figure 5.2: Partial STS-ml information model of the healthcare scenario

Another feature of the information model is to support composite information (documents).
The structuring of information and documents is done via part-of relationships, allowing de-
signers to build a hierarchy of information entities and documents, respectively. For instance,
this allows representing that information health status and personal information are part of the
information medical history info, information entities present illness and allergies are part of the
information medical history of Patient. The same applies to documents. For instance, document

110 Social, Information, and Authorisation Models

report is part of document health record in Figure 5.2.

5.4 Authorisation model

This model shows the authorisations actors grant to others over the informational entities that
are represented in the information model. In STS-ml, an authorisation is a directed relationship
between two actors, where one actor (authoriser) grants or prohibits certain rights to another
actor (authorisee) on the usage of some information. Authorisations can be defined along four
orthogonal dimensions, see Table 5.5. A partial authorisation model for the healthcare case
study is shown in Figure 5.3.

Table 5.5: Authorisation Modelling: Social relationships

Graphical Notation Syntax and Description

A1

A2

R M P T

Info 1
Goal 1

authorises(A1, A2, I, G,OP,TrAuth): actor A1 authorises/prohibits
actor A2 to perform operations OP ({R, M, P, T} ∪ {R̄, M̄, P̄, T̄}) on the
information in I, in the scope of the goals in G, and allows (prohibits)
A2 to transfer the authorisation to others if TrAuth is true (false);
(e.g., A1 authorises A2 to read information Info 1 (R is checked), but
prohibits modifying such information (M is crossed over), in the scope
of goal Goal 1 allowing transferrability (continuous arrow line))

For instance, Alice authorises Red Cross BTC to read information health status, but pro-
hibits modification of this information, for goal donor approved, granting a transferrable autho-
risation, see Figure 5.3. The authorisation relationship from Patient to Physician is the most
restrictive, for it prohibits all operations and transferability of the authorisation. The authorisa-
tion from Hospital to Physician to read information present illness and medical history for goal
medical advice given, but does not grant transferability of further granting permissions to other
actors.

As introduced already in Chapter 4, the authorisation relationship supports a variety of se-
curity requirement types (a complete summary is in Appendix A). Here, we describe which of
the supported security requirements from Figure 4.18, are expressed when modelling authori-
sations.

Implicitly express security needs. Security needs over authorisations are expressed by pro-
hibiting certain operations, limiting the scope, and prohibiting reauthorisations (further trans-
ferring permissions).

Let Auth stand for authorise(A1, A2, I, G,OP ,TrAuth), where A1, A2 are actors, I is a set
of information, G is a set of goals,OP is the set of allowed and prohibited operations {R, M, P, T}

Authorisation model 111

∪ {R̄, M̄, P̄, T̄}, and TrAuth is a boolean value determining transferability:

• G 6= ∅→Need-to-know: the authorisee shall not perform any operation (read/modify/produce)
on documents that make some information in I tangible, for any goals not included in G.
The authorisation from Patient to Hospital is an example: personal data, medical history

and present illness shall be read only for goal blood transfused, see Figure 5.3.

• R̄ ∈ OP → Non-reading: the authorisee shall not read documents representing informa-
tion in I. For instance, Patient requires this when prohibiting Physician to read informa-
tion personal data, see Figure 5.3.

• M̄ ∈ OP → Non-modification: the authorisee shall not modify documents that include
information in I. The authorisation from Patient to Hospital prohibits the production
operation, that is information personal data, medical history and present illness shall not
be modified by any goal of the Hospital, see Figure 5.3.

• P̄ ∈ OP → Non-production: the authorisee shall not produce any documents that include
information in I. For example, the Patient expresses a non-production requirement on
personal data to Physician, by prohibiting the production operation, see Figure 5.3.

• T̄ ∈ OP → Non-disclosure: the authorisee shall not transmit (disclose) to other actors
any document that includes information in I. For instance, Patient requires this in the au-
thorisation over information personal data, medical history and present illness to Hospital,
see Figure 5.3.

• TrAuth = false→ Not-reauthorisation: the authorisee shall not redistribute the permis-
sions to other actors. If the authorisee receives an authorisation that contains only pro-
hibitions, then not-reauthorisation does not apply. An example is the authorisation from
Alice to ModernLabs, which does not grant a transferrable authorisation, see Figure 5.3.

112 Social, Information, and Authorisation Models

Al
ic

eD
on

or

M
od

er
nL

ab
s

Pa
tie

nt

Re
dq

Cr
os

sq
BT

C

H
os

pi
ta

l

Ph
ys

ic
ia

n

he
al

th
qs

ta
tu

s

m
ed

ic
al

qh
is

to
ry

pe
rs

on
al

qd
at

a

R
M

P
T

he
al

th
qs

ta
tu

s

do
no

rqa
pp

ro
ve

d

R
M

P
T

he
al

th
qs

ta
tu

s
pe

rs
on

al
qin

fo
rm

at
io

n

re
su

lts
qp

ro
vi

de
d

R
M

P
T

he
al

th
qs

ta
tu

s

R
M

P
T

he
al

th
qs

ta
tu

s

do
no

rqa
pp

ro
ve

d

R
M

P
T

pe
rs

on
al

qd
at

a
m

ed
ic

al
qh

is
to

ry
pr

es
en

tqi
lln

es
s

bl
oo

dq
tr

an
sf

us
ed

pe
rs

on
al

in
fo

rm
at

io
n

al
le

rg
ie

s

pr
es

en
tqi

lln
es

s

R
M

P
T

pe
rs

on
al

qd
at

a

R
M

P
T

pr
es

en
tqi

lln
es

s
m

ed
ic

al
qh

is
to

ry

m
ed

ic
al

qa
dv

ic
eq

gi
ve

n

m
ed

ic
al

qh
is

to
ry

in
fo

bl
oo

dq
ty

pe
s

bl
oo

dq
in

fo

bl
oo

dq
ne

ed
s

R
M

P
T

bl
oo

dq
ne

ed
s

on
qh

os
pi

ta
lqr

eq
ue

st
s

O
w

n

O
w

n

P
la

y

O
w

n

O
w

n

P
ar

t O
f

P
ar

t O
f

P
ar

t O
f

P
ar

t O
f

P
ar

t O
f

O
w

n

P
ar

t O
f

O
w

n

Figure 5.3: Partial STS-ml authorisation model of the healthcare scenario

Chapter summary 113

5.5 Chapter summary

In this chapter we presented the three models supported by the STS-ml modelling language. The
social model represents actors and their interactions, the information model represents actors as
information owners and how their proprietary information is structured, while the authorisation
model represents the permissions and prohibitions actors specify over their proprietary informa-
tion to other actors in the system. Note that the information model serves as a bridge between
the social and authorisation models, since in the first actors manipulate and exchange docu-
ments, while in the latter actors specify their authorisations over information. These distinction
and the refinement of information supports expressing a richer set of security requirements, in
particular over information.

Through the multi-view modelling approach STS aims at tackling the visual (cognitive) scal-
ability problem of goal-models, and this separation of concerns is a first step towards that. The
supporting toolset, as we will see in Chapter 7, allows the creation of STS-ml models within
projects, where more STS-ml diagrams (overall model composed of the three models: social,
information, and authorisation) of the same project can be created and maintained. Ideally,
this modular approach should allow all the various diagrams to be integrated into one, while
ensuring consistency, to create the complete model of a system at hand. This would promote
collaboration of more requirements analysts and security engineers that create different dia-
grams of different parts of the system to be, instead of exchanging the same diagram. As of
now, unfortunately, the underlying platform of STS-Tool does not support inter-diagrams con-
sistency, only inter-model consistency within the same diagram is supported. This is a challenge
for future developments of STS methodology and releases of STS-Tool.

114 Social, Information, and Authorisation Models

Chapter 6

Automated analysis support

STS-ml models are actor- and goal-oriented, and they represent the business policies (how
they intend to achieve their root goals) of the participants, their security requirements over
information (informational assets), goals (intentional assets) and responsibility uptake. Being
specified independently by different actors, actors’ business policies and security requirements
are likely to clash, thus leading to inconsistent specifications that cannot be satisfied by an
implemented STS (at least one requirement would be violated).

In this chapter, we propose a framework for managing conflicts in STS-ml requirements.
The framework suggests to iteratively (i) create STS-ml models for the domain at-hand, (ii)
identify conflicts through automated reasoning techniques, and (iii) discuss possible conflicts’
resolution alternatives. We first present the formal framework of STS-ml that defines the se-
mantics of the language unambiguously (Section 6.1); then, we propose a number of different
analysis techniques over STS-ml models supported by the STS methodology (Section 6.2).

Acknowledgement. Section 6.1 builds on top of [Paja et al., 2013b], while Section 6.2.2
builds on top of [Meland et al., 2014].

6.1 Formal framework

We introduce the formal framework for STS-ml models that enables automated reasoning, and
illustrate it on the motivating scenario modelled in Chapter 4. Automated reasoning requires
that the graphical models are translated (mapped) to formal specification to be used as input
for the automated analysis techniques. Therefore, we define the elements and relationships
composing an STS-ml model in order to allow its translation to formal specification.

We employ the following notation: atomic variables are strings in italic with a leading capital
letter (e.g., G, I); sets are strings in the calligraphic font for mathematical expressions (e.g.,
G, I); relation names are in sans-serif with a leading non-capital letter (e.g., wants, possesses);
constants are in typewriter style with a leading non-capital letter (e.g., and, or). The atomic

116 Automated analysis support

concepts of an STS-ml model (e.g., goal, document, event, threaten) are represented by the
predicates in Tables 5.1–5.5 (e.g., goal, document, event, threaten), so we do not redefine them
here.

We define first the informational knowledge base, which represents the relationships among
elements of the information model. We define these relationships first given that the information
model bridges the social and authorisation models, and as such serve as a basis for the other
definitions.

Definition 1 (Informational knowledge base) A tuple IKB = 〈I,D, IDR〉, where I is a set
of information elements, D is a set of documents, and IDR is a set of relationships over infor-
mation in I and documents in D:

a) part-of-i(I1, I2): information I1 is part of information I2;

b) part-of-d(D1, D2): document D1 is part of document D2;

c) makes-tangible(I,D): document D materialises information I . �

The Definition 1 formalises the relationships among elements of the information model,
that is, how information and documents in the information model are interrelated: (a) part-of-i
can be only among information entities, while part-of-i can be only among documents (b),
therefore we cannot have any part-of relationship among an information entity and a document;
the relationship tangible by, on the other hand, relates information entities with documents (c).

The information model in Figure 5.2 includes, e.g., relationships makes-tangible(personal data,

medical record), part-of-i(present illness,medical history), and part-of-d(report, health record).

Next, we define intentional relationships, which characterise an actor in the socio-technical
system, establishing how it pursues its goals.

Definition 2 (Intentional relationship) A relationship within the scope of an individual actor
A, which, thus, has no social meaning:

• wants(A,G): actor A intends to achieve G;

• decomposes(A,G,S,DecT): A decomposes goal G into sub-goals from S, where
S={G1, . . . , Gn} and |S| ≥ 2 and the decomposition is of type DecT (and or or);

• possesses(A,D): actor A possesses document D (no other actor transmits it to A);

• reads(A,G,D): actor A uses document D while achieving G;

• modifies(A,G,D): actor A modifies document D while achieving G;

• produces(A,G,D): actor A produces document D while achieving G. �

Formal framework 117

Definition 2 enumerates the intentional relationships supported by STS-ml. Intentional relation-
ships characterise the rationale of a single actor, i.e., how its goals are interrelated, and which
documents the actor possesses and/or manipulates to fulfil its goals. For instance, consider ac-
tor Donor in Figure 5.1. The rationale of this actor (graphically represented by the oval shape
around the actor) includes the intentional relationship reads(Donor, blood donated regularly,

donor certificate).

The notion of an actor model formalises the contents of the oval balloon that is associ-
ated with a role or an agent shape in the social model. The goals and documents of a spe-
cific actor in a socio-technical system relate one to another. There are important relation-
ships that need to be captured, and that enable defining the rationale of an actor, i.e., how
it aims to attain its goals. This is the purpose of defining actor model, for it consists of
an actor’s intended goals, its possessed documents, and the relationships between these ele-
ments, aka its intentional relationships. For instance, the actor model of Red Cross BTC in
Figure 5.1 includes: Red Cross BTC wants to fulfil goal blood distributed, for which it has
to fulfil goals blood collected, blood consumption estimated, and blood transported; the fulfil-
ment of blood consumption estimated requires modifying the document blood bank, and so on.
Definition 3 ensures that all the relationships in an actor model are among elements of the same
actor.

Definition 3 (Actor model) An actor model AM is a tuple 〈A,G,D, IRL, T 〉 where A is an
actor, G is a set of goals, D is a set of documents, IRL is a set of intentional relationships
(Table 5.1) over goals in G and documents in D, and T is an actor type (role or agent).

Given an intentional relationship IRL in IRL:

• if IRL = decomposes(A′, G,S,DecT), then A′ = A, and both G and all goals in S are
in G;

• if IRL = reads/modifies/produces(A′, G,D), then A′ = A, G is in G, and D is in D

We denote the set of actor models as AM. �

Definition 3 states that an actor model is defined by the role or agent (A, defined by the type
T), the goals it wants to achieve G, the documents D, together with goal decompositions,
and the goal-document relationships determining whether the actor possesses the document
or needs/modifies/produces it (in IRL). Given the intentional relationships in an actor model,
Definition 3 limits their creation only within an actor’s scope: (i) given that all goals are in
the set of goals of the actor, decompositions, also, are among these goals; and (ii) given goal-
document relationships (reads/modifies/produces), their goals are in the set of the goals of the
actor (G) and documents are in the set of documents of the actor (D).

118 Automated analysis support

The social model for the healthcare motivating scenario in Figure 5.1 includes multiple
actor models, one per each modelled actor. An excerpt of an actor model, specifically for the
Red Cross BTC is as follows:

A = Red Cross BTC,
G includes blood distributed, blood collected, blood consumption estimated, etc.,
IRL includes decomposes(Red Cross BTC, blood distributed, {blood collected, blood consumption

estimated, blood transported}, and),
modifies(Red Cross BTC, blood consumption estimated, blood bank), and
T = agent.

After defining actors and their internal intentional structure, we define actor interactions,
which are supported by social relationships in STS-ml.

Definition 4 (Social relationship) A relationship that has a social meaning, i.e., it specifies
how one or more actors are related in the STS:

a) delegates(A1, A2, G): actor A1 delegates goal G to actor A2;

b) transmits(A1, A2, D): actor A1 transmits document D to actor A2;

c) authorises(A1, A2, I,G,OP ,TrAuth): actor A1 authorises actor A2 to perform opera-
tions OP on the information in I, in the scope of the goals in G, and allows (prohibits)
A2 to transfer the authorisation to others if TrAuth is true (false);

d) plays(Ag1, R2): agent Ag1 plays role R2;

e) owns(A1, I2): actor A1 is the legitimate owner of information I2. �

Definition 4 enumerates and formally defines the social relationships supported by the STS-ml
modelling language. STS-ml social relationships are modelled in the social and authorisation
model. They define the social structure among the actors, i.e., relationships with validity in
the modelled socio-technical system. Therefore, goal delegations, document transmission and
authorisations are among actors in the socio-technical system for the achievement of a goal (a),
transfer of a document (b) and delegation of authority (c) respectively; play relationships, on the
other hand, relate an agent with a role (d), so in this case we do want to be explicit in specifying
that this relationship stands between an agent and a role, and is not applicable to the generic
actor term; finally, the social relationship for information ownership, owns, connects an actor
with the information entity it owns (e).

We now define the security requirements derived from the specification of security needs
over actors’ interactions, aka their social relationships.

Formal framework 119

Definition 5 (Sequrity requirements) A property that is required either (i) by an actor to an-
other actor over the social relationship between them (either a goal delegation or a document
transmission or an authorisation), or (ii) by the STS—here, intended as the legal context—any
participating actor to comply with.

Sequrity requirements over goal delegations. If Del = delegates(A1, A2, G):

R1. non-repudiation-del(A2, A1, Del): A2 (the delegatee) requires the delegator A1 not to
repudiate the delegation Del;

R2. non-repudiation-acc(A1, A2, Del): the delegatorA1 requires the delegatee A2 not to repu-
diate the acceptance of the delegation Del;

R3. true-single-red(A1, A2, G): the delegator A1 requires the delegatee A2 to deploy concur-
rent redundant means for G;

R4. fback-single-red(A1, A2, G): the delegator A1 requires the delegatee A2 that, if the first
strategy for G by A2 fails, A2 will deploy another strategy;

R5. true-multi-red(A1, A2, G): the delegator A1 requires the delegatee A2 to deploy concur-
rent redundant means for G involving at least another actor;

R6. fback-multi-red(A1, A2, G): the delegator A1 requires the delegatee A2 that, if the first
strategy for G by A2 (another actor A3) fails, A3 (A2) will deploy another strategy;

R7. no-redelegation(A1, A2, G): the delegator A1 requires the delegatee A2 to not redelegate
G;

R8. trustworthiness(A1, A2, G): the delegator A1 requires the delegatee A2 to be trustworthy
in order to delegate it the fulfillment of G;

R9. goal-availability(A2, A1, G): the delegator A1 wants the delegatee A2 to guarantee a min-
imum availability level expressed in percentage for goal G;

R10. delegator-auth(A2, A1, Del): the delegatee A2 needs that the delegator A1 authenticates
herself;

R11. delegatee-auth(A1, A2, Del): the delegator A1 needs that the delegatee A2 authenticates
herself.

Sequrity requirements over document transmissions. If Tx = transmits(A1, A2, D), then:

R12. non-repudiation-tx(A2, A1, Tx): the receiver A2 requires the sender A1 not to repudiate
the transmission Tx;

120 Automated analysis support

R13. non-repudiation-acc(A1, A2, Tx): the sender A1 requires the receiver A2 not to repudiate
the acceptance of the transmission Tx;

R14. sender-integrity(A2, A1, Tx): the receiver A2 requires the sender A1 to ensure the integrity
of transmission for the document D being transmitted;

R15. receiver-integrity(A1, A2, Tx): the sender A1 requires the receiver A2 to ensure the in-
tegrity of transmission for the document D being transmitted;

R16. system-integrity(STS,, Tx): the system shall ensure that the integrity of transmission of
the document D in transmission is preserved;

R17. doc-availability(A2, A1, D): the receiver A2 requires the sender A1 to guarantee an avail-
ability level expressed in percentage for the transmitted document D;

R18. sender-auth(A2, A1, Tx): the receiver A2 needs that the sender A1 authenticates herself
to transfer the document D;

R19. receiver-auth(A1, A2, Tx): the sender A1 needs that the receiver A2 authenticates herself
to have the document D;

R20. sender-conf(A2, A1, Tx): the receiver A2 requires the sender A1 to ensure the confiden-
tiality of the document D being transmited;

R21. receiver-conf(A1, A2, Tx): the sender A1 requires the receiver A2 to ensure the confiden-
tiality of the document D being transmited;

R22. system-conf(STS,, Tx): the system shall ensure that the confidentiality of transmission of
a document D in transfer is preserved.

Sequrity requirements over responsibility uptake. A property that the STS—here, intended as
the legal context—requires any participating actor to comply with:

R23. role-sod(STS, Ag,R1, R2): no agent Ag can play both roles R1 and R2;

R24. goal-sod(STS, Ag,G1, G2): every agent Ag must not pursue both goals G1 and G2;

R25. role-cod(STS, Ag,R1, R2): every agent Ag playing role R1 (R2), must also play R2 (R1);

R26. goal-cod(STS, Ag,G1, G2): an agent Ag pursuing goal G1 (G2), should also pursue G2

(G1) too.

Sequrity requirements over authorisations. If Auth = authorises(A1, A2, I, G,OP ,TrAuth) ∈
∆SR, where A1, A2 are actors, I is a set of information, G is a set of goals, OP is the set
of allowed and prohibited operations {R, M, P, T} ∪ {R̄, M̄, P̄, T̄}, and TrAuth is a boolean value
determining transferability, then:

Formal framework 121

R27. need-to-know(A1, A2, I,G): the authoriser actor A1 requires the authorisee A2 not to
perform any operation (use/modify/produce) on documents that make some information
in I tangible, for any goals not included in G;

R28. non-reading(A1, A2, I): the authoriser actor A1 requires the authorisee A2 not to read
documents representing information in I;

R29. non-modification(A1, A2, I): the authoriser actor A1 requires the authorisee A2 not to
modify documents that include information in I;

R30. non-production(A1, A2, I): the authoriser actor A1 requires the authorisee A2 not to
produce any documents that include information in I;

R31. non-disclosure(A1, A2, I): the authoriser actor A1 requires the authorisee A2 not to
transmit (disclose) to other actors any document that includes information in I;

R32. not-reauthorised(A1, A2, I,G, {R, M, P, T}): the authoriser actor (A1) requires the autho-
risee (A2) not to redistribute the permissions to other actor.

We denote the set of security requirements supported by STS-ml as SRQ, which is the set of
security requirements of the types R1–R32. �

Following Definition 5, security requirements are security expectations that are expressed
either by actors on social relationships or the STS itself, imposing security requirements on all
participating actors. The definition of security requirements follows the way these requirements
are captured in STS-ml. We provide an example of each.

In Figure 5.1, Del1 = delegates(Patient,Hospital, patient registered) has a security require-
ment non-repudiation-acc(Patient,Hospital, Del1); the transmission of document donor certificate

from Red Cross BTC to Donor requires receiver authentication as specified by the Red Cross BTC;
a combination of duties is specified among goals transfusion performed and medical advice given

of Physician; and finally, in Figure 5.3, the authorisation from Patient to Hospital implies, for in-
stance, requirements about need-to-know (due to the goal scope blood transfused), non-reading

and non-disclosure (for those operations are prohibited, R and T respectively).

We tie together all the elements in the social, information, and authorisation models to define
an STS-ml model, as specified in Definition 6.

Definition 6 (STS-ml model) An STS-ml model M is a tuple 〈AM,SR, IKB,SRQ〉 where
AM is a set of actor models, SR is a set of social relationships, IKB is an informational
knowledge base, SRQ is a set of security requirements of the categories R1–R32. �

122 Automated analysis support

An STS-ml model is composed of all the actor models (AM) of the identified actors, the
social relationships among them (SR), the information model (IM) tying together actors’ infor-
mation and documents, and the security requirements expressed by actors (SRQ) over social
relationships. The STS-ml model for the healthcare motivating scenario is composed of all the
actor models of the actors drawn in the social model (Figure 5.1), the social relationships drawn
in the social as well as the authorisation model (Figure 5.1 and 5.3), the information model
(Figure 5.2), and the set of security requirements R1–R32.

When tying together the different elements in a STS-ml model, we need to ensure its well-
formedness. Definition 7 lays down the constraints on the well-formedness of an STS-ml model.

Definition 7 (Well-formed STS-ml model) An STS-ml model M = 〈AM,SR, IKB,SRQ〉 is
well-formed if and only if:

1. social relationships are only over actors with models in AM, and:

2. only leaf goals are delegated: for each delegates(A,A′, G) in SR, there is an actor model
〈A,G,D, IRL, T 〉 in AM such that G ∈ G and there is no decomposition of G in IRL;

3. delegated goals appear in the delegatee’s actor model: for each delegates(A′, A,G) in
SR, there is an actor model 〈A,G,D, IRL, T 〉 in AM such that G ∈ G;

4. the transmitter must possess the transmitted document for the document transmittion to
take place: for each transmits(A,A′, D) in SR, there is an actor model 〈A,G,D, IRL, T 〉 ∈
AM such that D ∈ D. An actor possesses a document if:

(a) it has the document since scratch, in which case possesses(A,D) ∈ IRL, or

(b) it creates the document, i.e., ∃G ∈ G. wants(A,G)∧ produces(A,G,D) ∈ IRL, or

(c) there is an actor A′′ such that transmits(A′′, A,D) ∈ SR.

5. transmitted documents appear in the receiver’s actor model: for each transmits(A′, A,D)

in SR, there is an actor model 〈A,G,D, IRL, T 〉 in AM such that D ∈ D;

6. authorisations are syntactically well-formed: for each authorises(A,A′, I, G,OP ,TrAuth) ∈
SR, there must be at least one information entity specified (|I| ≥ 1), and at least one pro-
hibition or permission is specified;

7. all security requirements in SRQ are over social relationships in SR, actors with models
in AM, or over their goals;

8. the model M complies with the following constraints:

Formal framework 123

(a) delegations have no cycles: for each delegates(A,A′, G) in SR, there is no A′′ such
that delegates(A′′, A,G) in SR or delegates(A′′, A,Gi) in SR, where Gi is a de-
scendant of G in the goal tree of A′′;

(b) part-of relationships (either over information or documents) have no cycles. �

Following Definition 7 in the social model in Figure 5.1 we cannot have, for instance,
a delegation of goal treatment received of Patient, rather its subgoals patient registered and
transfusion needed are delegated (complying with 2); Patient’s goal transfusion needed dele-
gated to Physician appears in Physician’s actor model (following 3); the Hospital would not
be able to transfer document blood usage listings to the Red Cross BTC if it did not produce
this document when pursuing goal blood transfused (complying with 4, specifically with 4b
in this case); Hospital has document blood bank since it was transmitted from Red Cross BTC

(following 5); in Figure 5.3 the authorisation from Physician to Red Cross BTC would be not
well-formed, if the right to produce would not be specified (following 6);

The imposed constraints (see 8) are necessary as they determine exceptions that would not
allow us to reason over STS-ml models. For instance, delegation cycles would result in an
STS-ml model in which it is not clear which actor is responsible for fulfilling the delegated
goal. For instance, in Figure 5.1 there cannot be a delegation from Physician back to Hospital

of goals transfusion performed via specialist (following 8a). Cycles of part-of relationships, on
the other hand, would result in ambiguities over information ownership (when specified over
information entities) or ambiguities in reasoning over violations of security requirements (more
specifically confidentiality requirements, such as non-reading, non-disclosure, etc.) when over
documents. For instance, in Figure 5.2 there cannot be a part-of relationship from informa-
tion medical history to information personal data (following 8b). As we will see in Chapter 7,
the well-formedness of an STS-ml model can be verified with STS-Tool, which integrates this
checks.

We define authorisation closure in order to determine actors’ final rights and the security
requirements they have to comply with. Authorisation closure formalises the intuition that, if
an actor A2 has no incoming authorisation for an information I , then A2 has a prohibition for
I . Such prohibition is an authorisation from the information owner that prohibits all operations
as well as the right to transfer authorisations. Formally, it is defined in Definition 8.

Definition 8 (Authorisation closure) Let M = 〈AM,SR, IKB, SRQ〉 be a well-formed STS-
ml model. The authorisation closure of SR, denoted as ∆SR, is a superset of SR that makes
prohibitions explicit, when no authorisation is granted by any actor.
Formally, ∀A,A′ with an actor model in AM,
∀owns(A, I) ∈ SR. @A′′.authorises(A′′, A′, I,G,OP , TrAuth) ∈ SR ∧ I ∈ I →
authorises(A,A′′, I,G ′,OP , false) ∈ ∆SR, where G ′ is the set of goals of A′. �

124 Automated analysis support

As described in Chapter 4, Section 4.3 and 4.5.1, security requirements over authorisations
are generated over explicit prohibitions. But, since authorisations are summed up, it is not al-
ways clear from the models, what operations actors are ultimately granted over a given informa-
tion. Whenever there are no incoming authorisation (no single authorisation relation has been
drawn towards the actor), or no incoming authorisations grant a given operation from OP over
I (@A′′.authorises(A′′, A′, I,G,OP ,TrAuth) ∈ SR), we generate an authorisation from the in-
formation owner that prohibits all operations, for which no permissions were granted, and sets
transferability to false (authorises(A,A′′, I,G ′,OP , false) ∈ ∆SR, where A is the information
owner). We do this to reason over possible unauthorised operations over the given information.
For instance, in Figure 5.3, the lack of incoming authorisations towards the Red Cross BTC for
information personal information, implies authorises(Alice,Red Cross BTC, personal information,
G,OP , false) ∈ ∆SR, where G is the set of goals of the Red Cross BTC, and Alice is the owner
of information personal information, see Figure 5.2 or 5.3, in which the details about informa-
tion ownership are preserved.

We emphasise the key difference between the explicit prohibitions and the implicit (derived)
prohibitions from authorisation closure. In the former case, an actor wants to ensure that another
cannot do specific operations on some information. In the latter case, the lack of permissions
can be a temporary situation, which could be changed by any actor having permission and
authority to transfer such permission, and using this authority by specifying an authorisation
that grants the said permission.

Indeed, we apply Definition 8 when executing the automated reasoning, at the end of the
modelling process. This ensures that changes over the model are taken into account, and a
recalculation of the authorisation closure takes place.

6.2 STS Automated Reasoning

The formal framework in Section 6.1 allows us to build the formal specification of a given
STS-ml model, over which we can perform automated analysis. We support two main types
of analysis: (i) verifying that all security requirements can be satisfied, as well as (ii) verifying
the impact of events threatening actors’ assets. The first analysis is known as security analysis,
while the latter as threat analysis. Both analysis types are integrated in STS-Tool, as we will also
see in Chapter 7, and they are executed upon a well-formed STS-ml model following Definition
7. We describe each in the following sections, Section 6.2.1 and Section 6.2.2 respectively.

6.2.1 Security Analysis

The purpose of this analysis is to verify whether the created STS-ml model allows the sat-
isfaction of the specified security requirements. For all security requirements expressed by

STS Automated Reasoning 125

stakeholders, we check in the model whether there is any possibility for the security require-
ment to be violated. We do this at two levels: (i) identifying possible conflicts among security
requirements, i.e., two or more requirements cannot be all fulfilled by the same system, and
(ii) identifying conflicts between actors own business policies and the security requirements
imposed on them.

Conflicts among authorisations

We check if the stakeholders have expressed conflicting authorisations. This is non-trivial,
for STS-ml models contain multiple authorisations over the same information, and every au-
thorisation expresses both permissions and prohibition. For instance, the authorisation from
Municipality to InfoTN allows reading (tick symbol over R, Fig. 5.3) information personal info,
residential address and tax contributions, but prohibits the production (cross symbol over P) of
the given information, and specifies nothing on modification and transmission. The authorisa-
tion is limited to the scope of goal system maintained. If we had another authorisation towards
InfoTN for the same information which is not restricted to a goal scope, then we would have
an authorisation conflict. Similarly, if we had more authorisations towards InfoTN prohibit-
ing the granted operation (in this case R) or granting the right to perform any of the prohib-
ited operations (in this case P) over any of the specified information entities (personal info,
residential address or tax contributions) or parts of these information entities, in the scope of
the same goal (i.e. including its subgoals), then we would have an authorisation conflict. This
is formalised in Definition 9.

Definition 9 (Authorisation conflict) Two authorisations authorises(A1, A2, I1,G1,OP1,TrAuth1),
and authorises(A3, A2, I2,G2,OP2, TrAuth2) are conflicting (a-conflict(Auth1,Auth2)) if and
only if they both regulate the same information (I1 ∩ I2 6= ∅), and either:

1. G1 6= ∅ ∧ G2 = ∅ , or vice versa; or,

2. G1 ∩ G2 6= ∅, and either (i) ∃op. op ∈ OP1 ∧ op ∈ OP2, or vice versa (where op is one
of {R, M, P, T}); or (ii) TrAuth1 6= TrAuth2. �

Definition 9 states that an authorisation conflict occurs if both authorisations apply to the same
information, and either (1) one authorisation restricts the permission to a goal scope (G1 6= ∅),
while the other does not (G2 = ∅), that is, one implies a need-to-know requirement, while
the other grants rights for any purpose; or, (2) the scopes are intersecting (G1 ∩ G2 6= ∅), and
contradictory permissions are granted (on operations op, or authority to transfer TrAuth).

In Figure 5.3, there are two authorisations towards Physician on personal data: (i) that from
Hospital, which grants the right to read (R) and specifies nothing on modification (M), production

126 Automated analysis support

(P) or transmission (T) of information personal data, present illness, and medical history; (ii) that
from Patient, which prohibits all operations R, M, P, and T on information personal data. The
first authorisation specifies a need-to-know security requirement in the scope of goal medical

advice given, while the second authorisation does not specify anything, since imposes only pro-
hibitions over the information personal data. Thus, following Definition 9, the two authorisa-
tions have intersection scopes (the scope of the first authorisation) and they are both specified
over information personal data. Confronting the granted and prohibited operations from each,
we can deduce that they are conflicting with respect to the read (R) operation for information
personal data.

Definition 10 (Authorisation consistent STS-ml model) An STS-ml model is authorisation-
consistent when no authorisation conflicts exist. �

Following Definition 10, in order to have an authorisation-consistent model for the health-
care scenario we need to resolve the identified conflict. Resolving the conflict requires that
one of the actors changes its specified authorisations, either the Patient decides to grant the
Physician the right to read information personal data or the Hospital specifies a non-reading
security requirement too, prohibiting the right to read.

Conflicts between business policies and security requirements

Each actor model defines a specific actor’s business policy, i.e., its goals and the alternative
strategies to achieve these goals. Given an authorisation-consistent STS-ml model, we verify if
any security requirement is violated by the business policy of any actor in the model. For in-
stance, a requirement such as non-reading(Alice,Red Cross BTC, {personal information}) con-
flicts with a business policy for Red Cross BTC that includes the relationship reads(Red Cross

BTC, donor approved, personal information).
An actor’s business policy defines alternative strategies for an actor to achieve its root

goals. It is a sub-model of the social model that includes all the goals and documents in the
scope of that actor in the social model, the relationships (and/or-decompose, reads, modifies,
and produces) among those goals and documents, as well as goal delegations and document
transmissions that start from that actor. For instance, the business policy of Hospital includes
goals health service provided, which is and-decomposed in goals health records maintained and
blood transfused, the first is further and-decomposed into goals patient registered which pro-
duces document high quality data and medical history obtained, while the latter (goal search

module built) reads document blood bank, produces document blood usage listings and is or-
decomposed into transfusion performed via specialist and transfusion performed in surgery (see
Figure 5.1). The or-subgoals denote alternative strategies: the actor can choose either of them

STS Automated Reasoning 127

to achieve the upper level goal. Hence, Hospital may choose to perform transfusion procedures
either with the help of a specialist or during surgery.

Definition 11 (Actor strategy) Given a business policy for an actor A (denoted as PA), an
actor strategy SPA

is a sub-model of PA obtained by pruning PA as follows:

• for every or-decomposition, only one subgoal is kept. All other subgoals are pruned,
along with the elements that are reachable from the pruned subgoals only (via and/or-
decomposes, reads/produces/modifies, transmits, and delegates relationships);

• for every root goal G that is delegated to A, G can optionally be pruned. �

Definition 11 formalises the intuition that alternative strategies are introduced by: (i) choos-
ing one subgoal in an or-decomposition; and (ii) deciding whether to pursue root goals that are
delegated from other actors. In Figure 5.1, the business policy for Hospital includes one root
goal and one delegated goal patient registered, which is not a root goal. Therefore, one strat-
egy for the Hospital involves all goals (they are all and-decomposed) till goal blood transfused.
This goal is or-decomposed; by Definition 11, one subgoal is retained in the strategy (e.g.,
transfusion performed via specialist), while other goals are pruned (in this case, transfusion

performed in surgery). The reads relationship to document blood bank is retained, as well as the
document itself. The same applies to the produces relationship and document blood usage listings.
An alternative strategy could, however, involve not performing the transfusion via specialist, but
in surgery. However, even in this alternative the rest of the elements in the actor model remains
the same (given that these are leaf level goals and do not have any relationship to documents).

We define the notion of a variant to: (i) consistently combine actors’ strategies (each actor
fulfils the root goals in its strategy), by requiring that delegated goals are in the delegatee’s
strategy; and to (ii) include the authorises relationships in the STS-ml model. This enables us
to identify conflicts that occur only when the actors choose certain strategies, see Definition 12.

Definition 12 (Variant) Let M be an authorisation-consistent STS-ml model, PA1 , . . . , PAn be
the business policies for all actors in M . A variant for M (denoted as VM) consists of:

• a set of strategies {SPA1
, . . . , SPAn

} such that, for each A′, A′′, G, if delegates(A′, A′′, G)

is in SPA′ , then G is in SPA′′ , and

• all the authorises relationships from M . �

Variants constrain the strategies of the actors. In Figure 5.1, every variant includes ModernLab

pursuing goal tests taken, for this is a root goal delegated to ModernLab from Alice and Alice’s
root goal blood donated is not delegated to her by others (thus, it has to be in her strategy),
and the only possible strategy involves and-decomposing blood donated into tests taken and

128 Automated analysis support

neg results received, and delegating goal tests taken to ModernLab. Thus, there exists no vari-
ant where the latter actor does not pursue the goal tests taken.

An STS-ml model may have multiple variants depending on the existance of alternative
strategies (corresponding to or-decompositions). For example, if ModernLabs has to achieve
tests taken by having in its strategy all goals infec. disease tested, drug test performed, and
results provided, since these are and-subgoals of its root goal, however ModernLabs can choose
to achieve results provided through results retrieved in person or results sent via courier, see Fig-
ure 5.1 to verify these alternatives within ModernLabs’s actor model.

Variants enable detecting conflicts between actors’ business policies and security require-
ments they have to comply with. The latter define (dis)allowed relationships for the actors’
business policies, and at the interplay of the two we can identify conflicts, see Definition 13.

Definition 13 (Bus-Sec conflict) Given a variant VM , a conflict between business policies and
security requirements (Bus-Sec conflict) exists if and only if there is an actor A such that:

• the strategy of A in VM contains one or more relationships (as denoted by its business
policy) that are prohibited by a security requirement requested (prescribed) by another
actor A′ to A;

• the strategy of A in VM does not contain any relationships required by some requirement
requested by another actor A′ to A. �

Tables 6.1–6.6 describe semi-formally how these conflicts are verified at design time for the
different types of security requirements that STS-ml supports. Below, we provide some more
details.

We discuss the requirements for each category (see Figure 4.18 in Chapter 4) and give
insights on the verification of runtime requirements.

Accountability requirements. Non-repudiation requirements (R1,R2, and R12,R13) ex-
pressed over goal delegations and document transmissions respectively, cannot be verified at
design time for they require actions such as proof of fulfilment for the goal in case of non-
repudiation of acceptance.

Not-redelegation (R7) is verified if there is no delegation relationship having G or its sub-
goals as delegatum, from A2 to other actors in the variant.

Role-based separation and combination of duties (R23 and R25 respectively) require all Ag
not to or to play two roles through play relationships, respectively. Goal-based separation of
duties (R24) is verified if no Ag pursues both G1 and G2 or their subgoals. Finally, goal-based
combination of duties (R26) is verified in a similar way, but Ag should be the final performer
(i.e., does not delegate) of both goals.

STS Automated Reasoning 129

Table 6.1: Accountability security requirements: design-time verification against a variant VM

No. Requirement Verification at design-time

R1 non-repudiation-del(A2, A1, Del) No

R2 non-repudiation-acc(A1, A2, Del) No

R12 non-repudiation-tx(A2, A1, Tx) No

R13 non-repudiation-acc(A1, A2, Tx) No

R7 non-redelegation(A1, A2, G)
@delegates(A2, A3, G

′) ∈ VM . G′ = G or G′ is a
subgoal of G

R23 role-sod(STS, Ag,R1, R2) {plays(Ag,R1), plays(Ag,R2)} * VM

R24 goal-sod(STS, Ag,G1, G2) Ag should not pursue both G1 and G2 or their subgoals

R25 role-cod(STS, Ag,R1, R2) {plays(Ag,R1), plays(Ag,R2)} ⊆ VM

R26 goal-cod(STS, Ag,G1, G2) Ag should pursue both G1 and G2 or their subgoals

Reliability requirements. Redundancy requirements (R3 to R6) can be partially checked at
design time. The existence of redundant alternatives can be verified, but a variant does not tell
how alternatives are interleaved, i.e., if they provide true or fallback redundancy. As a result,
true and fallback redundancy are checked the same way. Single-actor redundancy (R3 and R4)
is fulfilled if A2 has at least two disjoint alternatives (via or-decompositions) for G. Multi-actor
redundancy (R5 and R6) requires that at least one alternative involves another actor A3.

Trustworthiness requirements (R8) cannot be verified at design time, since they require the
delegatee to provide a proof of trustworthiness, e.g., issued by a certification authority.

Table 6.2: Reliability security requirements: design-time verification against a variant VM

No. Requirement Verification at design-time

R3 true-single-red(A1, A2, G) Partial. A2 pursues goals in VM that define at

R4 fback-single-red(A1, A2, G) least two disjoint ways to support G

R5 true-multi-red(A1, A2, G) Partial. Both A2 and another actor A3 support

R6 fback-multi-red(A1, A2, G) G, each in a different way

R8 trustworthiness(A1, A2, G) No

Authenticity requirements. Delegator/sender authentication (R10,R18) is typically imple-

130 Automated analysis support

mented in electronic commerce website, wherein a certification authority guarantees the authen-
ticity of the sellers’ website. Therefore, the verification of such requirement involves actions
and mechanisms that can be verified only at runtime.

Delegatee/receiver authentication (R11,R19), on the other hand, is one we encounter ev-
eryday when browsing the web and using our credentials (username/password) to access web
information such as our email. The fulfilment of these type of requirements cannot be verified
at design time.

Table 6.3: Authenticity security requirements: design-time verification against a variant VM

No. Requirement Verification at design-time

R10 delegator-auth(A2, A1, Del) No

R11 delegatee-auth(A1, A2, Del) No

R18 sender-auth(A2, A1, Tx) No

R19 receiver-auth(A1, A2, Tx) No

Availability requirements. Verifying availability requirements (both goal and document
availability—R9,R17) calls for a way to measure availability level. Notice that goal availabil-
ity is highly related to the notion of service availability, where a provider specifies an uptime
level for the service. In service-oriented settings, availability levels often become integral part
of service-level agreements between providers and consumers. These requirements cannot be
verified at design time.

Table 6.4: Availability security requirements: design-time verification against a variant VM

No. Requirement Verification at design-time

R9 r-g-avail-ensured(A2, A1, G) No

R17 r-d-avail-ensured(A2, A1, D) No

Integrity requirements. Non-modification (R29) requires that A2’s strategy in the variant
includes no modifies relationship on documents that make tangible part of I ∈ I.

Integrity of transmission requirements (R14,R15,R16) prescribe that the integrity of trans-
mission of the document is preserved, and this can only be verified at runtime.

Confidentiality requirements. Confidentiality requirements expressed through different
types of authorisations prescribe the set of relationships that shall not be present in A2’s strategy
in the variant. Need-to-know (R27) is verified by the absence of reads, modifies, or produces

STS Automated Reasoning 131

Table 6.5: Integrity security requirements: design-time verification against a variant VM

No. Requirement Verification at design-time

R29 non-modification(A1, A2, I)
@modifies(A2, G,D) ∈ VM . D

makes tangible (part of) I ∈ I

R14 sender-integrity(A2, A1, Tx) No

R15 receiver-integrity(A1, A2, Tx) No

R16 system-integrity(STS,, Tx) No

relationships on documents that make tangible some information in I for some goal G′ that
is not in G or in descendants of some goal in G. Requirements R28 and R30 are verified if
A2’s strategy in the variant includes no read or produces relationships on documents that make
tangible part of I ∈ I, respectively. Non-disclosure (R31) does a similar check but looking at
document transmissions, i.e., transmits relationships. Non-reauthorisation (R32) is fulfilled if
there is no authorises relationship from A2 to others on any operation inOP over I in the scope
of G.

Confidentiality of transmission (R20,R21,R22) can only be verified at runtime for their veri-
fication involves mechanisms for checking that the confidentiality of the transmitted document
is preserved.

132 Automated analysis support

Table 6.6: Confidentiality security requirements: design-time verification against a variant VM

No. Requirement Verification at design-time

R27 need-to-know(A1, A2, I,G)
@reads/modifies/produces(A2, G,D) ∈ VM .
D makes tangible (part of) I ∈ I and G /∈ G

R28 non-reading(A1, A2, I)
@reads(A2, G,D) ∈ VM . D makes tangible
(part of) I ∈ I

R30 non-production(A1, A2, I)
@produces(A2, G,D) ∈ VM . D makes tangi-
ble (part of) I ∈ I

R31 non-disclosure(A1, A2, I)
@transmits(A2, A3, D) ∈ VM . D makes tan-
gible (part of) I ∈ I

R32 not-reauthorised(A1, A2, I,G,OP)
@authorises(A2, A3, I,G′,OP ′) ∈ VM . G′ ⊆
G ∧ OP ′ ⊆ OP

R20 sender-conf(A2, A1, Tx) No

R21 receiver-conf(A1, A2, Tx) No

R22 system-conf(STS,, Tx) No

6.2.2 Threat Analysis

The purpose of this analysis is to assess the impact of events threatening actors’ assets. As
introduced in Chapter 4, Section 4.4, events may threaten actors’ supporting assets (subgoals
and documents), to exploit their primary assets (root goals and information). Threat analysis
answers the question: how does an event threatening any actor’s supporting asset affect the rest
of an STS-ml model?

To answer this question, we calculate (Algorithm 1) how the impact of the event propagates
over goal decompositions, intentional relationships internal to the actor (reads, modifies, and
produces), as well as the social relationships involving goals and documents (delegates and
transmits).

The analysis starts with the known events, identifying the elements (supporting assets) they
threaten in a STS-ml model (line 1) and propagates their impact over goal decomposition trees,
documents and social relationships. Results are kept in a list (line 2). The newly discovered
elements are treated as threatened elements or objects. The analysis ends when all elements
have been visited and no new elements are found (lines 3 – 5). The propagation rules are the
following:

1. If an event threatens a goal (lines 6 – 14), then the threat is propagated to:

Chapter Summary 133

ALGORITHM 1: THREAT PROPAGATION
Input: Event e
Output: List of threatened assets.

1 Set 〈Element〉 tObj←− e.GETELEMENTSTHREATENEDBY();
2 Set 〈Element〉 result;
3 while tObj contains elements that are not visited do
4 obj = tObj.GETNEXTUNVISITEDELEMENT();
5 obj.SETVISITED();
6 if obj.GETTYPE()=Goal then
7 foreach parent in obj.GETGOALPARENTS() do
8 if parent.GETTYPE()=AND then
9 tObj += {parent};

10 tObj += obj.GETDELEGATEDFROM();
11 tObj += obj.GETDOCUMENTSPRODUCED();

12 end
13 end
14 end
15 if obj.GETTYPE() = Document then
16 tObj += obj.GETGOALSMODIFYING() + obj.GETGOALSREADING() +

obj.GETTRANSMISSIONSTO();

17 end
18 end
19 return result;

• the parent goal if the goal is an AND-subgoal (lines 8 and 9);

• the goal of the delegator if the goal is being delegated (line 10);

• documents being produced by the goal if any (line 11).

2. If an event threatens a document (lines 15 – 17), then the threat is propagated to the
documents read or modified by the goal, as well as to the receiver’s document (in case of
a transmission).

6.3 Chapter Summary

Modelling languages are useful means to represent knowledge, but as they grow in size, the
chance that they become inconsistent increases. STS-ml models are no exception to the rule.
The detection and handling of conflicts between requirements is a hard task Finkelstein et al.
[1994] due to the increasing size and complexity of models. This is true in STS-ml too: the
gained expressiveness and the richer set of supported security requirements come with a price,
conflict identification cannot be performed by looking at the models.

134 Automated analysis support

Handling these conflicts is crucial to avoid going to the design phase having an inconsistent
specification of security requirements that cannot be satisfied by any system. Automated rea-
soning techniques come to help in identifying inconsistencies and eventual errors in the models.

In this chapter we presented the formal framework which defines the various elements of an
STS-ml model in order to build the formal specification of a given STS-ml model, to be used
as input to automated reasoning techniques. We introduced the automated reasoning techniques
supported by STS methodology, spanning identification of security requirements conflicts, con-
ficts among actors business policies and the security requirements they have to comply with,
and determining the threat trace of events threatening actors’ assets. These activities are impor-
tant to avoid developing a system that violates some security requirements. Knowledge about
threats and their impact over stakeholders’ assets being spread across the socio-technical system
is crucial to anticipate and ideally avoid potential problems in a running system.

The details of the implementation of these techniques will be provided in Chapter 7, while
the results of the findings of the automated reasoning techniques applied to the healthcare mo-
tivating scenario will be shown in Chapter 9.

Chapter 7

Tool supported security requirements
engineering: STS-Tool

STS-Tool is the modelling and analysis support tool for the STS methodology. As such, the
modelling and analysis activities in STS-Tool are guided by the STS process. The tool supports
modelling a socio-technical system using STS-ml’s constructs and the supported set of security
requirements types (described in Chapter 4) to derive the list of security requirements once the
modelling is done. It also supports analysing the created STS-ml models in terms of (i) well-
formedness, (ii) violation of security requirements, and (iii) threats impact over actors’ assets
following the formal framework presented in Chapter 6.

We present the architecture of STS-Tool together with its main features and provide tech-
nical details of the modelling and analysis capabilities. STS-Tool’s modular architecture is
presented in Section 7.1; Section 7.2 provides details on the installation, while the tool’s main
features are presented in Section 7.3.

Acknowledgment. This chapter revises and extends [Paja et al., 2012a,b,c, 2013d,e].

7.1 STS-Tool Architecture

STS-Tool is a standalone application written in Java, and its core is based on the Eclipse RCP
(Rich Client Platform) Framework. The tool is distributed as a compressed archive for multiple
platforms (Windows 32 and 64 bits, Mac OS X, Linux), and is freely available for download
from the dedicated STS-Tool website 1.

STS-Tool has been developed using the Java programming language, and it has been build
on top of different frameworks produced by the Eclipse community, see STS-Tool’s architecture
in Figure 7.1. As shown in this figure, the architecture of STS-Tool is composed of three macro

1http://www.sts-tool.eu/

http://www.sts-tool.eu/

136 Tool supported security requirements engineering: STS-Tool

blocks. STS-Tool’s architecture is presented in a layered architectural style, indicating that the
layers above make use (rely) on the layers below.

Starting from the bottom, at the first layer (see Figure 7.1), we find the System Component
block that contains the underlying operating system (Windows, Linux or OsX) and the Java
virtual machine that executes the Java code.

AnalysisFModule SecurityFRequirements
DerivatorFModule

DocumentFGeneration
Module

GraphicalFEditorFforFtheFSTS)mlFLanguage

STS)ToolFEMFFMetamodel

OtherFuserFInterfaces
componentsFandFservices

WorkbenchF,CompatiblityFLayerPFtoFaccessFXUxFAPIs3

ModeledFUIPFCSSFstylingPFDependencyFInjectionPFApplicationFServices

OSGIF)FEquinox EMFFCore SWTPFJFace
S

T
S

)T
oo

lFC
o

m
po

ne
nt

s
E

cl
ip

se
FP

la
tfo

rm
F,

R
C

P
3

S
ys

te
m

FC
om

po
ne

n
ts

GEFF,GraphicalFEditingFFramework3

JVMF,JavaFVirtualFMachine3

OperatingFSystemF,WindowsPFLinuxPFOSX3

Figure 7.1: STS-Tool Architecture: Modules

At the second layer, we find the Eclipse Platform, also known as Eclipse Rich Client Plat-
form (RCP). But, why was Eclipse RCP chosen to develop STS-Tool? Eclipse RCP is de-
veloped and maintained by the Eclipse community2 and is a powerful framework for building
multi-platform standalone applications. An Eclipse application consists of individual software

2https://www.eclipse.org/

https://www.eclipse.org/

STS-Tool Architecture 137

components. One of the major advantages of this platform is modularity. To achieve this,
Eclipse uses plugins. Each plugin is an independent module that provides a specific function-
ality inside the application, and can be easily added or replaced. Moreover, every plugin can
define or consume extensions points; this feature allows other plugins to contribute functionality
to the defined plugin. Due to the high modularity of the system it is possible to add new features
with little effort and to maintain code in an easier way. Eclipse provides the SWT [Northover
and Wilson, 2004] graphical library, which allows building efficient and portable applications
that directly access the user-interface facilities of the operating systems it is implemented on.
This revolutionary technology makes it possible to create Java-based applications that are in-
distinguishable from a platform’s native applications. Last but not least, the Eclipse community
develops a lot of parallel projects for various purposes that can be integrated to the Eclipse Plat-
form, making the entire system more powerful. These are some of the reasons that Eclipse was
chosen as the underlying platform for developing the STS-Tool.

Finally, at the third layer, we find the STS-Tool Components. The STS-Tool allows the
user to create and modify STS-ml models (aka diagrams) described using a specific language,
namely STS-ml. To support the particular specification of STS-ml, a graphical editor has been
implemented using the GEF Framework [Foundation, 2014]. The STS-ml metamodel, based
on EMF, is incorporated to ensure that diagrams follow the syntax of STS-ml. The rest of STS-
Tool components correspond to the features it supports, such as analysis, security requirements
derivation, and security requirements document generation.

We focus on the STS-Tool Components and provide more details over its underlying mod-
ules, in particular how the STS-Tool supports modelling (Section 7.1.1), security requirements
derivation (Section 7.1.2), analysis (Section 7.1.3), and security requirements document gener-
ation (Section 7.1.4). Technical details of the implementation of STS-Tool are provided in [Paja
et al., 2014c].

7.1.1 Modelling with STS-Tool: Graphical Editor for the STS-ml Language

To implement the graphical editor for the STS-ml language, the GEF Framework Foundation
[2014] (see Figure 7.1 and 7.2) was chosen. The GEF Framework is an interactive Model-View-
Controller (MVC) framework, which fosters the implementation of SWT–based tree editors Vo-
gel [2013], and Draw2d–based Foundation [2014] graphical editors for the Eclipse Workbench
UI Xenos [2005]. One of the challenges faced in the development of the graphical editor is
related to the fact that the GEF framework is a single view editor, while the STS-Tool editor
had to be a multi-view editor in order to support the multi-view modelling of STS-ml models.
The problem was solved by implementing a custom multi-view editor (details in [Paja et al.,
2014c]), namely the Graphical Editor for the STS-ml Language (see Figure 7.1), which non
only supports the construction of the three models supported by STS (social, information, and

138 Tool supported security requirements engineering: STS-Tool

authorisation) through three corresponding views, but also considers insertion (addition) of new
views in the future (should there be any).

Model View Controller

GEF)Editor

G
ra

ph
ic

a
l)E

di
to

r
fo

r)
th

e)
S

T
S

-m
l)L

a
ng

ua
ge

STS-ml)Graphical)Editor)(For)a)single)view)

Figure 7.2: STS-Tool Graphical Editor

Apart from offering the multi-view feature, STS-Tool supports the fundamental modelling
features (within each view) of the editor extending a GEF Editor. Since GEF is a MVC Frame-
work, three main concepts should be provided for each, namely the Model, the View and the
Controller (see Figure 7.2).

STS-Tool supports modelling with STS-ml, using its concepts and relationships by integrat-
ing the STS-ml Metamodel, see Figure 7.1. The STS-ml Metamodel is a custom Domain Specific
Language metamodel to allow the creation of STS-ml models.

7.1.2 Security Requirements Derivator Module

The Security Requirements Derivator module supports the automatic generation of the security
requirements as derived by the given STS-ml model. Each Element in the STS-ml Metamodel
derives from the STSElement class which defines a containment relation (0..*) with an object of
type ElementNeed, which keeps track of the security need specified over the element. Therefore,
each Element in the model is related to its element need.

In STS-Tool, security requirements are a specialisation of the ElementNeed. They are defined
in a separate plugin unitn.disi.ststool. securityrequirements, which defines the Elements Need used
in the STS-ml language, and also provides a security requirement generator and a view (the
security requirements tab, as in Figure 7.8) to display the evaluated and generated security
requirements. Importantly, the security requirements are generated on-the-fly, while models are
being drawn, as such the plugin evaluates the STS-ml model from the active editor to generate
the new security requirements and update the list (also considering deletion of existing security
requirements).

STS-Tool Architecture 139

7.1.3 Analysis Module

STS-Tool supports analysis activities through a dedicated analysis module, namely the Analysis
Framework, see Figure 7.3. Similarly to the other STS-Tool supported features, the analysis
module has been developed and integrated through specific plugins.

Threat Analysis Security Analysis

A
na

ly
si

s
M

od
ul

e

STS-Tool Diagram

Well-formedness Analysis

Analysis Framework

Figure 7.3: STS-Tool Automated Analysis

Security Analysis and Threat Analysis provide automated reasoning capabilities to be run
over the created STS-ml models. Security analysis detects violations of the generated security
requirements. This analysis relies on the well-formedness of STS-ml models, and thus, the
Well-formedness Analysis module has been integrated to perform syntactical checks and verify
semantic constraints over the given STS-ml models.

Since the security analysis is implemented in disjunctive Datalog (see Figure 7.4), it requires
the use of Datalog program and engine (DLV Engine). But, the Datalog program is released only
in native OS executables, and thus, a Java wrapper had to be implemented. To make it reusable,
this wrapper was developed in a separate plugin.

The Analysis Framework is composed of a set of classes and interfaces that are used to
standardise the execution of automated analyses. They define how the automated analysis are
to be executed over the STS-ml models, the dialogs displayed to the user, the visualisation of
results over the models, and so on. In this way, handling more analysis in the future requires no
extra efforts with respect to this standard procedure to detect and render findings.

The execution of the security analysis is managed through a series of tasks, the main one
being Violation Analysis. This task configures the Datalog Engine and is responsible of parsing
results. Some other classes have been added to support this analysis:

• Predicate: this class object represent a Datalog predicate; it has a name and contains pa-
rameters that are mapped to a model object.

• Violation: a wrapper for a predicate. This class, apart from containing the predicate, con-

140 Tool supported security requirements engineering: STS-Tool

SecuritypAnalysis

AnalysispFramework

DLVpbinaries
EDatalog)JVMpEJavapVirtualpMachine)

OperatingpSystempEWindows,pLinux,pOsX)

S
ec

ur
ity

pA
na

ly
si

s

STS-ToolpDiagram DatalogpJavapEngine

Figure 7.4: STS-Tool Security Analysis

tains also other values derived from the analysis, such as the total number of occurrences
of the predicate, and the total number of models generated by the DLV Engine.

• ViolationDefinition: While Violation is used to wrap the result of the analysis, the ViolationDef-

inition class serves the purpose of containing the required values to discover a Violation.
In particular, this class contains two attributes: (i) a predefined list of Datalog predicates
that will compose the final Datalog program code, and (ii) the name of the predicate that
will be generated by the Datalog program execution when a violation is found.

The schema presented in Figure 7.5 summarizes the process guiding the security analysis
and the components involved in the process, which are integrated in STS-Tool. STS-ml model
(STSDiagram, see Figure 7.5) are drawn through the STS-Tool, then automatically translated
into Datalog textual files (Diagram Parser generates List of Predicates iterating over the entire
model). The generated predicates are transformed one by one into String (rules for mapping
each element of the model to a Datalog predicate have been specified) and the predicate values
are mapped in a temporary Map (Object Mapper). This allows us to be able to reconstruct the
predicates when the DLV output will be parsed. The DLV reasoner takes in input the gener-
ated STS-ml model file (Datalog Input Program) together with the Datalog rules specifying the
checks performed by the security analysis (from ViolationDefinition) in order to get the results.
The ViolationDefinition is set as a filter to the DLVEngine. Setting the output filter drastically
reduces the output produced by the DLV program and consequently improves memory foot-
print and efficiency. The output parser reads the output produced by the engine, interprets it
and creates instances of Predicates. When the DLVEngine completes its execution, all the gener-
ated predicates are transformed in Violations and returned to the specific Security analysis task

STS-Tool Architecture 141

List of Predicates
Diagram Parser

(ProduceLaLlistLofLpredicates
representingLtheLdiagram)

STSDiagram
(InLmemoryLmodelLasLjavaLobjects)

ViolationDefinition

Predicate Name

DLVEngine

DLVExecutionParameters

AsLoutput
filter

Object Mapper
(MapLtheLdiagramLobjectLtoLthe

predicateLvalue)

Datalog Input Program

Output Parser
(TransformLtheLengineLoutputLinLPredicate

objects)

Violation Mapper
(CreateLaLViolationLobjectLforLeveryLdifferentLpredicate)

LListLofLdatalog
predicatesLthat

defineLtheLviolation

Violations Analysis process and involved components

Result as a list of Violation

Figure 7.5: STS-Tool Security Analysis: Verification of Security Requirements Violations

that requested them, and are used to produce the analysis results. The results are then parsed
(Output Parser) and a mapping back to STS-ml models (Violation Mapper) is performed in or-
der to visualise the identified violations over the model (Results as a list of Violation). Results
are collected, stored, and displayed into the analysis tab, as in Figures 7.10 and 7.11. Every
results object has some properties: a text and a description that are used in the user interfaces
to describe the result, the gravity of the result (OK,WARNING,ERROR), and a list of elements (or
model object) that have to be highlighted when the user wants to display them over the STS-ml
model (diagram). After the results are displayed in the analysis tab, the user can select them
in order to visualise them over the diagram. Once a result is selected, this action causes a Re-

sultManager retrieve from the selected results, which returns the list of objects that need to be
highlighted and modified over the diagram (by setting a graphical property to each of this object
graphical constraint), so the editor can change the displayed colour of the element to highlight
it on the diagram (STS-ml model).

142 Tool supported security requirements engineering: STS-Tool

7.1.4 Document Generation Module

The STS-Tool supports the generation of the security requirements document through the doc-
ument generation module, see Figure 7.6. Similarly to the analysis module, the document gen-
eration module has been distributed into multiple plugins.

Report Module

Aspose Libraries D
oc

um
e

nt
 G

en
er

at
io

n
M

od
ul

e

STS-Tool Diagram

Content Contribution
for the Main Content

Content Contribution
for the Appendix

Content Contribution
for the Analysis

Figure 7.6: STS-Tool Security Requirements Document Generation

The Java Aspose Libraries allow editing and creating text documents and presentation doc-
uments in multiple formats, as well as some UI classes and a set of classes that generate the
final documents. The Report Module defines standard document generation procedure and
dialog windows to customise the document. As such, it has the same function the Analy-
sis Framework has for the security analysis. While this plugin is involved in managing the
creation of the documents, the content of the final document is obtained (contributed) via an
extension point it.unitn.disi.ststool.documents. report.contribution that other plugins can use to
add their own content. This extension point accepts multiple children of type contribution. A
contribution must have a unique id, a priority value (a number) to make contributions sortable
and a class that will perform the contribution (add the content of the document). Moreover
the contribution type must have at least one child of type part. The part object is used in the
graphical selection of the parts that can be generated, to allow customisation of the security
requirements document by the analyst. This object has a unique id that can be used later in
the code to retrieve the information about the selection, a name that is used in the UI, and
some Boolean properties. part can also have part children to allow multi-level part-selection.
While the it.unitn.disi.ststool.documents plugin contributes only to the report generation func-
tionality, the it.unitn.disi.ststool.documents.report.analysis.security, it.unitn.disi.ststool.documents. re-

port.analysis.wellformedness , it.unitn.disi.ststool.documents.report.securityrequirements, and it.unitn.

disi.ststool.documents.report.view contribution plugins contribute to the content providing it through
the extension points previously described. The content is generated analysing the STSDiagram;
static code retrieves from the model the required information, caches it and at the end generates
the content that has to be inserted into the document.

Installation details 143

7.2 Installation details

The STS-Tool is distributed as a compressed archive for multiple platforms and it is free to
download from the STS-Tool web site 3. The tool is available in both source and binary form,
and the license is APGL (Affere General Public License). As prerequisite, you need at least
version 7 of the Java Virtual Machine. Previous versions of the tool are also available online in
an Archive 4.

In order to install the STS-Tool, it is enough to download the version suitable for your
machine and operating system, and then extract the content of the archive, containing the tool,
to a folder on your computer. Finally, run the launcher file – no setup is needed.

The STS-Tool comes with Online Help. Help is produced by the Eclipse project, we provide
only the content of the help. To obtain updates of the STS-Tool, one does not need to download
the latest version from the website, rather an update system is already integrated in the tool. The
update system is a customization of the Eclipse P2 (Eclipse update system). A public web site
has been expressly created in order to update the new versions of the tool automatically. The
STS-Tool checks for updates and if any are found, it asks the user to install them. However, the
user has the choice of activating this feature (configuring updates from the menu: Windows –
Preferences – Updates) or get updates manually.

7.3 STS-Tool features

STS-Tool has the following features:

1. Modelling features

(a) Specification of projects: STS-ml models are created within the scope of project
containers. A project refers to a certain scenario, and contains a set of models. Typ-
ical operations on projects are supported: create, rename, import, and export. See
Figure 7.7 showing a screenshot of STS-Tool.

(b) Project Explorer: an interesting feature of STS-Tool developed as a customization of
the Eclipse RNF (Resource Navigator Framework). The project explorer allows the
user to manage files better, organising them into folders and projects, see Figure 7.7.

(c) Diagrammatic modelling: the tool enables the creation (drawing) of diagrams (mod-
els), see Figure 7.7. Diagrams are created only within a project and typical cre-
ate/modify/save/load/ undo/redo operations are supported.

3http://www.sts-tool.eu/
4http://www.sts-tool.eu/Archive/

http://www.sts-tool.eu/
http://www.sts-tool.eu/Archive/

144 Tool supported security requirements engineering: STS-Tool

ProjectFExplorer

ToolFnameFandFversion

Diagrams

DrawingFCanvas

CustomisedFPalette

Multi-viewFmodelling

SecurityFrequirementsFderivation

AutomatedFAnalysis

FilterFoptions

Figure 7.7: STS-Tool: Security Requirements Derivation

(d) Multi-view modelling: a particular feature of STS-Tool, which provides different tabs
(views) in the tool to allow modelling the various models of a socio-technical system
diagram, namely social, information, and authorisation model, following STS-ml’s
multi-view feature. Each tab (referred to as view) shows specific elements and hides
others, while keeping always elements that serve as connection points between the
models (e.g. roles and agents). STS-Tool supports separation of concerns through
its multi-view modelling feature. Moving from one view to another is simple and
quick. The palette of concepts and relationships is tailored (customised) for each
view, grouping the concepts and relationships one needs at that particular view, see
Figure 7.7. Inter-model consistency is ensured by for instance propagating insertion
(deletion) of certain elements to all models (social, information, and authorisation)
composing the overall STS-ml model. However, STS-Tool allows to hide specific
elements from one or more of the models, should they not have specific details in that
model. For instance, an actor that does not own any information and does not have
any documents, nor does it manipulate any document, might be hidden (omitted)
from the information view, for it does not add any details to the information view.
This helps keep the models neat.

(e) Visual scalability: to leverage the burden of visual scalability and complexity of STS-
ml models, STS-Tool allows to represent actors either collapsed (only the role/agent

STS-Tool features 145

notation is shown) or expanded (the whole actor model is shown, i.e., the actor to-
gether with its goals, documents and intentional relationships). It is possible to zoom
in specific elements (e.g. actors). We are working towards further improving this
feature, to support collapsing more STS-ml model elements.

(f) Export diagram to different file formats: STS-ml models (or parts of models, i.e.,
specific elements) can be exported to various formats, such as jpg, png, pdf, svg, etc.

2. Security Requirements

(a) Derivation of security requirements: the tool allows the automatic derivation of se-
curity requirements as relationships between a requester and a responsible actor for
the satisfaction of a requirement. STS-Tool visually represents security requirements
in a tabular form, in which they are listed and can be sorted or filtered according to
their different attributes (responsible, requirement, and requester respectively), see
Figure 7.8). For instance, filtering the requirements with respect to the responsible

mRed.Cross.BTCm.requires.no}redelegation.for.goal.mon.blood.type.evalmk.when.delegating.this.goal.Mon.blood.type.evalL.to.mResearch.CentermD.

Textual.description.of.the.selected.security.requirement

Security.Requirements.Tab Filter.OptionsSecurity Requirements

Hospital

Hospital

Red.Cross.BTC

Red.Cross.BTC

Red.Cross.BTC

Red.Cross.BTC
Red.Cross.BTC

Physician

Physician

Physician

Physician

Hospital

Hospital

ModernLabs

ModernLabs

ModernLabs Aliceno}redelegationM{tests.taken}L
no}redelegationM{on.blood.type.eval}L Red.Cross.BTC

Alice

Alice

Alice

Alice
Alice

Patient

Patient

non}disclosureM{blood.needs}L
non}disclosureM{health.statusk.personal.information}L
non}disclosureM{health.status}L
non}disclosureM{health.status}L
non}disclosureM{health.status}L
non}disclosureM{personal.datak.medical.historyk.present.illness}L

need}to}knowM{present.illnessk.medical.history}k{medical.advice.given}L
need}to}knowM{personal.datak.medical.historyk.present.illness}k{blood.transfused}L
need}to}knowM{health.status}k{donor.approved}L
need}to}knowM{health.status}k{donor.approved}L
need}to}knowM{health.statusk.personal.information}k{results.provided}L

Responsible Requirement Requester

Description:

Research.Center

Figure 7.8: STS-Tool: Security Requirements Derivation

actor, gives an idea of who are the actors responsible to fulfil the security require-
ments, and what security requirements each has to satisfy. On the other hand, filter-
ing security requirements according to their requirement type (as we have done in
Figure 7.8), groups together security requirements that should be satisfied to fulfil a
certain security requirement type. Finally, a textual description is provided for ev-
ery security requirement, which is displayed below the list of security requirements
when selected.

(b) Generation of requirements documents: the tool allows the automatic generation of
a security requirements document that contains the list of security requirements de-
rived from the model. This document contains information describing the models,
information that is customisable by the designer (by choosing which model features
to include, such as for instance including only a subset of the actors, focusing on one

146 Tool supported security requirements engineering: STS-Tool

view only, selecting only concepts or relations the involved parties want more infor-
mation about, and so on). Anyhow, the overall document provides a short description
of STS-ml and Tool and communicates security requirements by providing details of
each STS-ml view, together with their elements. The diagrams are explained in detail
providing textual and tabular descriptions of the models.

(a) (b)

Figure 7.9: Customising the security requirements document

In generating the document, the user may change the title it wants to give to the docu-
ment, the author and organisation by editing the fields in Figure 7.9a. The document
is organised in sections, which the designer can decide to include or not in the gen-
erated document (see Figure 7.9b). It is good practice to generate the requirements
document at the end of the modelling, and after refining the models in order to fix
eventual errors detected by the automated analyses. However, this document could
be generated at any point of the modelling process, to improve the models based
on the extra detail this document provides to the security requirements engineers.

STS-Tool features 147

The security requirements document is helpful especially when communicating with
stakeholders, for it provides details about the different elements of the diagram, the
discovered violations, for which negotiation with stakeholders might be necessary
(in order to fix the identified problems).

3. Analysis support

(a) Automated reasoning: STS-Tool integrates and supports the two automated reason-
ing techniques (security analysis and threat analysis) presented in Chapter 6. Secu-
rity analysis is based on the formal framework presented in Section 6.1 and verifies
the conflicts presented in Section 6.2.1, which are implemented in Datalog (the de-
tailed rules are presented in Appendix B). Threat analysis, on the other hand, imple-
ments Algorithm 1 introduced in Section 6.2.2. Note that the execution of automated
reasoning is to be performed over well-formed models. We verify well-formedness
following Definition 7. The verification is practically performed in two steps, de-
pending on the complexity of the check:

i. Online well-formedness checking: the tool checks the models for syntactic well-
formedness on-the-fly (online) while it is being drawn. For example, the tool
does not allow drawing certain relationships, such as for instance a delegations
leading to delegation cycles, part-of cycles, etc.;

ii. Offline well-formedness checking: some validity rules are either too computa-
tionally expensive for online verification, or their continuous verification would
limit the flexibility of the modelling activities. Thus, some checks about validity
are performed upon explicit user request (e.g., authorisation duplicates). These
checks are embedded within STS-Tool’s well-formedness analysis.

Security analysis and threat analysis are performed upon request of the end-user
(security requirements engineer).

(b) Visualisation of analyses’ results: the tool visualises the results of the analyses (per
each analysis) and provides details of the findings. Results are enumerated in a tab-
ular form below the diagram (Analysis tab, Figure 7.10) and rendered visible on the
STS-ml model itself when selected. A textual description provides details on the
selected analysis result.

i. Security analysis returns the list of security requirements conflicts and violations
of security requirements. In Figure 7.10, we have executed security analysis over
the healthcare case study and show some of the detected violations of security
requirements. One of the violations regards not-redelegation. As the description
of the selected violation explains, this violation occurs because Alice has ex-
pressed a not-redelegation security requirement over the delegation of goal tests

148 Tool supported security requirements engineering: STS-Tool

taken to ModernLabs, and the latter delegates goal drug test performed to Drug
Tests Inc, goal that is the and-subgoal of tests taken.

Description:

Description Task

,ModernLabs,vmakesvanvunauthorisedvredelegationvofvgoalv,testsvtaken,

,Alice,vhasvexpressedvavno-redelegationvsecurityvrequirementvovervthevdelegationvofvthevgoal.testsvtakenvtov,ModernLabs,,vandvyetv,ModernLabs,visvre-delegatingvgoalv,drugvtestvperformed,,vand-subgoalvofv,testsvtaken,vtov
,DrugvTestsvInc.,

No-redelegationvViolation

Non-productionvViolation
Not-reauthorisationvViolation:vTransmit
Non-readingvViolation

Non-readingvViolation
Need-to-knowvViolation

RedundancyvViolation:vMulti-actor

,RedvCrossvBTC,vmakesvanvunauthorisedvproductionvofvinformationv,persornalvinformation,

,RedvCrossvBTC,vviolatesvneed-to-know,vproducingvinformationv,personalvinformation,

,Hospital,vviolatesvitsvauthorityvgrantingvpermissionvtovtransmitvinvanvunauthorisedvway
,HospitalvAuthority,vmakesvanvunauthorisedvreadingvofvinformationv,bloodvinfo,

,HospitalvAuthority,vmakesvanvunauthorisedvreadingvofvinformationv,allergies,
,Hospital,vviolatesvthevmultivactorvredundancyvonv,transfusionvperformedvinvsurgery,

AND

AND

OR

No-Rep No-del Red

Auth

Con Int

test
results

Drug-Tests

Red

Inc

ModernLabs

tests-taken

tests-taken

test-resultsblood
donated

neg-results
received

tests-taken

test-results
test-results

infect-disease
tested

drug-test
performed

drug-test
performed

results
provided

results-provid
via-courier

results-provid
in-person

drug-test
performed

Alice

s-lost

Read

Produce

Threaten

Figure 7.10: Executing security analysis: visualisation of results

ii. Threat analysis returns the trace of the impact the event, threatening an actor’s
asset, has throughout the socio-technical system. The trace contains all concepts
and relationships affected by the threatening event, and is visualised as a whole
when selected. In Figure 7.11, we show the impact of event tests lost, threatening
ModernLabs’ document test results, has on Alice, which is one of the actors
interacting with ModernLabs. The latter transmits to Alice document test results,
and since this document is threatened, then Alice’s goal neg results received is
threatened too, since it needs to read test results. Similarly, goal blood donated
is threatened since its and-subgoal (neg results received) is threatened.

Chapter Summary 149

OR

No-Rep No-del Red

Auth

Con Int

results

Drug-Tests

Red

Inc

ModernLabs

tests-taken

tests-taken

test-resultsblood
donated

neg-results
received

tests-taken

test-results
test-results

infect-disease
tested

drug-test
performed

drug-test
performed

results
provided

results-provid
via-courier

results-provid
in-person

drug-test
performed

Alice

test results lost

Read

Produce

Threaten

AND

AND

The event "test results lost" threatening "test results" of "ModernLabs", threatens also "neg results received" and "blood donated" of "Alice".

Description:

Impact of event "test results lost" in the diagram
Description Task

Figure 7.11: Executing threat analysis: visualisation of results

7.4 Chapter Summary

The STS-Tool is quite a stable graphical requirements engineering modelling tool. It is based
on the Eclipse RCP/EMF/GMF frameworks and supports modelling and reasoning over the
created models. The tool was developed as part of the FP7 EU-funded project Aniketos, and
therefore, has involved many parties. However, the actual implementation was done by the
team of University of Trento, having a dedicated programmer working on the development.
My role in the development of the tool, apart from the proposal of the modelling language
and methodology, has been that of designing the tool and developing the automated reasoning
techniques in Disjunctive Datalog.

The latest version of the tool is the result of an iterative development process: we will present
in Chapter 8 how STS-Tool was proved suitable to model and reason over models of a large size
from different domains [Paja et al., 2013b], such as eGovernment and Air Traffic Management
Control; while in Chapter 9 we will present results of the evaluation activities conducted with
practitioners [Trösterer et al., 2012] in the scope of the EU FP7 Project Aniketos, evaluations
that have guided the development and improvement of STS-Tool.

The tool has been presented in many events, not only by us, but also by our industrial part-
ners, and has received very good comments. To this day, we amount to two thousand downloads
of the tool, and have received feedback from many researchers in academia, apart from indus-
trial partners.

150 Tool supported security requirements engineering: STS-Tool

Chapter 8

Application Scenario and Case Studies

This chapter presents the use of STS methodology in practice over an application scenario (via
self-evaluation), as well as over two case studies from different domains. The objective is
that of assessing the adequacy of STS methodology and the STS-ml modelling language (its
primitives) to model scenarios from different domains while capturing security requirements
for the considered socio-technical systems. Self-evaluation serves the purpose of assessing
the effectiveness of the automated reasoning capabilities for discovering authorisation conflicts
and security requirements violations. Therefore, in this chapter, we describe a self-evaluation
activity conducted with the help on an application scenario in Section 8.1. The scenario is used
also to perform a scalability study: running experiments (analysis) to demonstrate the efficiency
of the automated reasoning techniques supported by STS (Section 8.2).

We describe the results and obtained feedback from practitioners who have modelled two
case studies (Section 8.3.1 and Section 8.3.3) following STS methodology, applying it step by
step in modelling and reasoning about security requirements. We present the outcomes of the
modelling and reasoning activities for each, in Sections 8.1.1, 8.3.2 and 8.3.4 respectively.

Acknowledgement. Section 8.3.1 builds on top of [Paja et al., 2014a,b].

8.1 Self-evaluation Case Study: Trentino as a Lab

Trentino as a Lab (TasLab) 1 is an online collaborative platform to foster ICT innovation in
the Trentino province [Shvaiko et al., 2010]. It aims at creating a community of research in-
stitutions, universities, enterprises and public administration, which collaborate in research-
intensive ICT projects. TasLab provides information on local innovation trends, events, in-
vestment opportunities. It also offers an area where users can match innovation demand (from
local government and municipalities) with innovation supply (by enterprises and research insti-

1http://www.taslab.eu

152 Application Scenario and Case Studies

tutions), and they can collaboratively write project proposals.
We focus on a TasLab collaborative project about tax collection. This scenario is based

on the project Taxpayer’s Knowledge Base 2 and has been developed through discussions and
interviews with Informatica Trentina.

The innovation demand comes from the Autonomous Province of Trento (PAT) and the
Trentino Tax Agency, which require a system that verifies if correct revenues are gathered from
Citizens and Organisations, provides a complete profile of taxpayers, generates reports, and
enables online tax payments.

This is an example of a socio-technical system in which multiple actors interact with one
another and with technical systems: citizens and organisations pay taxes online; municipalities
(Municipality) furnish information about citizens, their addresses, and tax payments; Informat-
ica Trentina (InfoTN) is the system contractor; other IT companies develop specific function-
alities (e.g., data polishing, search modules); the Tax Agency is the system end user; and PAT
withholds the land register in its database (information about buildings and lots).

These actors exchange confidential information and interact for processing such informa-
tion. Each actor has its own business policy, i.e., goals achieved through processes that ma-
nipulate information, and expects others to comply with its security requirements, e.g., about
integrity and confidentiality. For example, citizens require that their income tax data is treated
confidentially by the municipality and it is not disclosed to third parties. The tax collection
system is not monolithic: its operation depends by the successful interaction among taxpayers,
the municipality, InfoTN, the Tax Agency, and the TasLab website.

Citizens are concerned with the protection of the confidentiality of their income declaration
(information asset). PAT is concerned with ensuring that the Tax Agency successfully handles
the tax verification process, i.e., fulfills goal tax verified (intentional asset). Our analysis should
highlight participants’ relevant assets, being these informational or intentional assets. Every
participant/stakeholder has its own security needs, which constrain the way they would like
others to behave when it comes to the assets they want to protect. For example, citizens allow the
municipality to use their data for tax verification purposes, but they do not want the involvement
of third parties.

8.1.1 Applying STS methodology to the TasLab application scenario

We apply STS methodology to the TasLab case study, following its modelling, automated anal-
ysis and specification phases. The activities are supported by STS-Tool, and therefore, we
emphasise how the tool facilitates these activities while constructing and analysing the STS-ml
models for the given scenario.

2http://www.openlivinglabs.eu/livinglab/trentino-lab

http://www.openlivinglabs.eu/livinglab/trentino-lab

Self-evaluation Case Study: Trentino as a Lab 153

The modelling and analysis activities have been directly conducted by myself, however,
they were performed through iterations and interactions with a representative of Informatica
Trentina. In particular some prototype modelling took place in collaboration with the represen-
tative during the discussion, before the actual modelling with STS-Tool was performed. This
was done to avoid inaccuracies in the model in representing the given application scenario.

Phase 1. Social modelling

Following the STS methodology, we start modelling activities with social modelling (refer to
Figure 3.2, Chapter 3). To build the social model, we consider answering these questions:
“Which are the stakeholders we can identify from the tax collection scenario?”, “How can they
be represented in terms of roles and agents?”, “What are the goals they have and how are
these goals achieved?”, “What are the documents actors have and manipulate (read, modify,
produce)?”, “What are the social interactions actors participate?”, “What are their security
expectations (needs)?”, “Are there any events threatening stakeholders’ assets?”, and so on.

Step 1.1. Identify stakeholders. As described in Chapter 4, stakeholders in STS-ml are repre-
sented via agents and roles. Therefore, we identify stakeholders in the TasLab case study and
represent them in terms of agents and roles. For instance, in Figure 8.1, we have modelled Infor-
matica Trentina (InfoTN) as an agent, knowing already at design time that it will be part of the
system, while we modelled TN Company Selector as a role, not knowing yet which company
will take over this responsibility, but knowing only the responsibilities encapsulated in this role.
Following the same logic, we model PAT, BP Engineering Srl, and Okkam Srl as agents, while
we represent Tax Agency as a role, see Figure 8.1.

Step 1.2. Identify assets and interactions. We identify for each modelled actor its intentional
assets, aka its goals, as well as its informational assets, aka its documents (since we are
in the social model). This step is important also to built actor models for each identified
actor. For this we need to identify actors’ intentional relationships. For instance, InfoTN

wants to achieve goal online system built, for which it has to achieve goals search module built,
navigation module built, and system maintained (and-decomposes relationship among these goals);
the achievement of the latter goal requires the achievement of goals data completeness ensured

and data files stored. InfoTN possesses document local copy of data, it reads document high

quality data to have data completeness ensured, while it modifies personal records to achieve
goal data refined, see Figure 8.1.

Tax Agency has the goal revenue system maintained, which it and-decomposes into goals
tax verification performed, tax details verified, data collected, and consultancy offered; goal tax

verification performed is further and-decomposed into historic maintained, payers record created,

154 Application Scenario and Case Studies

due taxes calculated, and data completeness ensured; goal data collected requires reading doc-
ument tax payers′ knowledge base; goal payers record created produces document payers record

and it is or-decomposed into goals corporate records created and citizens′ records created; fi-
nally goal due taxes calculated requires reading document high quality data.

Similarly, we construct the actor models for the other actors represented in Figure 8.1.

STS-Tool support: When first created, roles and agents come together with their rationale (open compart-
ment), so that we can specify the goals or documents (assets) they have. The rationales can be hidden or
expanded, to give the designer the possibility to focus on some role or agent at a time. We place actor goals
within their rationale. STS-Tool facilitates a correct modelling of goal trees, by not allowing goal cycles.
Several checks are performed live by the tool for this purpose, such as not permitting the designer to draw a
decomposition link from a subgoal to a higher level goal in a goal tree. Moreover, the tool helps the designer
by allowing goal-document intentional relationships to be drawn only starting from the goal to the document,
not vice-versa.

Notice that both InfoTN and the Tax Agency do not have from the beginning all the docu-
ments they need to read or modify in order to achieve their goals. For this they have to rely on
other actors. Additionally, not all the goals of InfoTN are its intended goals, some have been
delegated to InfoTN from other actors. Thus, let us now consider actors’ social interactions,
supported in STS-ml via social relationships.

In the TasLab case study, we do not have any knowledge at design time about agents adopt-
ing the identified roles, i.e., there are no examples of play in Figure 8.1. An example of goal
delegation is that of Tax Agency delegating goal data completeness ensured to InfoTN . More-
over, InfoTN delegates goal search module built to TN Company Selector, while it delegates
goal cadastre data verified to PAT .

STS-Tool support: When drawing a delegation, the tool makes sure that the actor does have a goal it
wants to pursue, before allowing the designer to draw the goal delegation relationship starting from the given
actor. It is worth emphasising that STS-ml allows only the delegation of leaf goals, delegation of upper level
goals is forbidden, and STS-Tool support this. If a leaf goal is delegated and the designer decides to further
decompose this goal within the delegator, the tool will prompt him with a message and not allow the further
decomposition. Once the goal delegation relationship is drawn, the delegated goal is automatically created
within the compartment of the delegatee. This goal is represented in a darker color than the original goal,
in order to clearly distinguish for each actor its own goals from the goals delegated to it. Additionally, the
tool does not allow the goal to be deleted from the delegatee’s compartment unless the delegation is deleted.
Importantly, delegation cycles are not permitted by the tool.

An example of document transmission, on the other hand, is that of InfoTN transmitting the
document high quality data, which it received from TN Company Selector, to Tax Agency, see
Figure 8.1. Moreover, PAT transmits document cadastre registry to InfoTN.

Self-evaluation Case Study: Trentino as a Lab 155

Step 1.3. Express security needs. STS-ml allows actors to express security needs over their
interactions, in this step we analyze these interactions (goal delegations and document trans-
missions) actors participate in to elicit their needs with regard to security. Additionally, security
needs derived from organisational constraints are modelled too.

STS-Tool support: To specify security needs using STS-Tool, the designer needs to right-click on the
delegated goal, to have a drop down list of security needs and select the desired ones. The selection of
at least one security need, shows a padlock on the goal or document. The selected security need can be
shown explicitly by clicking on the padlock, which shows small boxes below the delegated goal or provided
document; each box has a different colour and a different label (see Figure 8.1).

Over goal delegations. Let us consider InfoTN and analyse the security needs it expresses
over the goal delegations it participates: in Figure 8.1, InfoTN wants Tax Agency not to re-
pudiate the delegation of goal data completeness ensured; it requires TN Company Selector to
ensure true redundancy single for goal data refined; it requires TN Company Selector not to
redelegate goal search module built; it imposes a trustworthiness requirement when delegat-
ing tax contributions obtained to Municipality; and it requires the Municipality to guarantee
an availability level of 95% for the goal tax contributions obtained. The delegation of goal
data refined from InfoTN to TN Company Selector includes a delegator authentication require-
ment; the delegation of goal corporate data verified from InfoTN to PAT, on the other hand,
includes a delegatee authentication requirement: InfoTN wants to ensure that the verification is
performed by the same person that maintains the data record.

Over document transmissions. Okkam Srl requires Tax Agency not to repudiate the accep-
tance of transmission of document tax payers knowledge base, see Figure 8.1; Tax Agency re-
quires InfoTN (the sender) to guarantee the transmission integrity of high quality data; InfoTN

(receiver) requires TN Company Selector an availability level of 70% for the document high

quality data; InfoTN expresses the need that the transmission of document high quality data

necessitates the receiver’s authentication, while Okkam Srl expresses the requirement that the
transmission of document tax payers knowledge base necessitates the sender’s authentication.
An example of sender confidentiality of transmission is specified from InfoTN to Municipality:
Municipality shall ensure the confidentiality of transmission of document tax contributions file

is preserved when transmitting it to InfoTN.

Over responsibility uptake. An example of goal-sod is that between goals corporate records

created and citizens′ records created of Tax Agency, see Figure 8.1, while an example of goal-
cod is that between goals semantic search built and enterprise search built of TN Company

Selector, see Figure 8.1. There are no examples of separation of duty or combination of duty
between roles in this scenario.

156 Application Scenario and Case Studies

Step 1.4. Modelling threats. In the TasLab tax collection scenario we have identified two events
threatening stakeholders assets: the event auditor sick threatens goal corporate data verified,
while the event data lost threatens document high quality data of OkkamSrl (see Figure 8.1).

Self-evaluation Case Study: Trentino as a Lab 157

kkk

ad
dr

es
se

s

kk
kk
kk
kB

P
k

E
n

g
in

e
e

ri
n

g
kk
kk
kk
kS

rl

kk
kk
kT

N
C

o
m

p
a

n
y

kS
e

le
ct

o
r

O
kk

a
m

k
kk
kS

rl

kk
kT

a
x

A
g

e
n

cy

P
A

T

kk
kk
o

n
lin

e
k

sy
st

e
m

kb
u

ilt

se
a

rc
h

m
o

d
u

le
kk
b

u
ilt

n
a

vi
g

a
tio

n
kk
m

o
d

u
le

kk
kk
b

u
ilt

kk
ks

ys
te

m
k

m
a

in
ta

in
e

d

kk
kk
kk
d

a
ta

co
m

p
le

te
n

e
ss

kk
kk
e

n
su

re
d

kk
kk
d

a
ta

fil
e

sk
st

o
re

d

kk
kk
d

a
ta

in
te

g
ra

te
d

kk
d

a
ta

re
fin

e
d

ca
d

a
st

re
kk
d

a
ta

ve
ri
fie

d

co
rp

o
ra

te
kk
kd

a
ta

kv
e

ri
fie

d

kk
kk
kk
ta

x
co

n
tr

ib
u

tio
n

s
kk
ko

b
ta

in
e

d

kk
kk
ci

tiz
e

n
s.

p
e

rs
o

n
a

lkr
e

c.
kk
ko

b
ta

in
e

d

kk
kk
kk
h

ig
h

k
q

u
a

lit
yk

d
a

ta
p

e
rs

o
n

a
lk

re
co

rd
s

kk
kk
kk
ta

x
co

n
tr

ib
u

tio
n

s
kk
kk
kk
fil

e

kc
iv

ilk
m

a
p

kk
kk
w

ith
k

a
d

d
re

ss
e

s

ca
d

a
st

re
kr

e
g

is
tr

y

co
rp

o
ra

te
kr

e
g

is
tr

y

kk

A
N

D
A

N
D

A
N

D

A
N

D

A
N

D

co
rp

o
ra

te
kk
kk
d

a
ta

kk
ve

ri
fie

d

A
u

th

A
va

A
u

th
R

e
dkd

a
ta

re
fin

e
d

kk
kk
se

a
rc

h
k

m
o

d
u

le
kb

u
ilt

kn
a

vi
g

a
tio

n
m

o
d

u
le

kb
u

ilt

kk
kh

is
to

ri
c

m
a

in
ta

in
e

d

kk
n

a
vi

g
a

tio
n

m
o

d
u

le
kb

u
ilt

kd
a

ta
kr

e
fin

e
d

kk
kk
se

a
rc

h
m

o
d

u
le

kb
u

ilt

kk
kk
kk
h

ig
h

k
q

u
a

lit
yk

d
a

ta

kk
kk
kh

ig
h

q
u

a
lit

yk
d

a
ta

ke
n

te
rp

ri
se

se
a

rc
h

kb
u

ilt

kk
se

m
a

n
tic

se
a

rc
h

kb
u

ilt

kk
se

m
a

n
tic

se
a

rc
h

kb
u

ilt

kk
kk
kk
h

ig
h

q
u

a
lit

yk
d

a
ta

N
o

-R
e

p
N

o
-D

e
l

In
t

A
u

th

kk
kk
kk
kd

a
ta

co
m

p
le

te
n

e
ss

kk
kk
e

n
su

re
d

kk
kk
h

ig
h

q
u

a
lit

yk
d

a
ta

kk
se

m
a

n
tic

se
a

rc
h

kb
u

ilt

se
m

a
n

tic
k

ks
e

a
rc

h
k

ko
ff
e

re
d

kk
kk
p

a
ye

rs
.k

kk
kn

o
w

le
d

g
e

k
b

a
se

kc
re

a
te

d

kk
kk
kk
kd

a
ta

in
te

rc
o

n
n

e
ct

e
d

kk
kk
kh

ig
h

q
u

a
lit

yk
d

a
ta

kt
a

xk
p

a
ye

rs
kn

o
w

le
d

g
e

k
b

a
se

ta
xk

p
a

ye
rs

kn
o

w
le

d
g

e
k

kk
kk
kb

a
se

A
u

th
co

rp
o

ra
te

kk
re

co
rd

s
kk
cr

e
a

te
d

ci
tiz

e
n

s.
k

re
co

rd
sk

cr
e

a
te

d

kk
kk
kh

ig
h

q
u

a
lit

yk
d

a
ta

ta
xk

p
a

ye
rs

kn
o

w
le

d
g

e
k

kk
kk
kb

a
se

kk
kk
kk
d

a
ta

co
m

p
le

te
n

e
ss

kk
kk
e

n
su

re
d

d
u

e
kt
a

xe
s

ca
lc

u
la

te
d

kp
a

ye
rs

kr
e

co
rd

cr
e

a
te

d

kk
kh

is
to

ri
ck

m
a

in
ta

in
e

d

kk
kk
kt
a

xk
ve

ri
fic

a
tio

n
kp

e
rf

o
rm

e
d

ta
xk

d
e

ta
ils

kk
ve

ri
fie

d

kk
kd

a
ta

co
lle

ct
e

d

co
n

su
lta

n
cy

kk
kk
o

ff
e

re
d

kk
re

ve
n

u
e

kk
ks

ys
te

m
m

a
in

ta
in

e
d

kk
k

ca
d

a
st

re
kk
kd

a
ta

kv
e

ri
fie

d

ca
d

a
st

re
kr

e
g

is
tr

y

kr
e

g
is

tr
ie

s
m

a
in

ta
in

e
d

co
rp

o
ra

te
kk
d

e
ta

ils
re

g
is

te
re

d

ca
d

a
st

re
kk
d

e
ta

ils
re

g
is

te
re

d

A
N

D

kk
kc

a
d

a
st

re
d

a
ta

kv
e

ri
fie

d
kk
ca

d
a

st
re

kk
kk
kd

a
ta

m
a

in
ta

in
e

d

In
fo

T
N

R
e

a
d

M
o

d
ify

Modify
M

o
d

ify

R
e

a
dRea

d

R
e

a
d

R
e

a
d

O
R

n
a

vi
g

a
tio

n
m

o
d

u
le

kb
u

ilt

R
e

a
d

kk
kk
kk
h

ig
h

k
q

u
a

lit
yk

d
a

ta

h
ig

h
kq

u
a

lit
y

kk
kk
kd

a
ta

h
ig

h
kq

u
a

lit
y

kk
kk
d

a
ta

ta
x

co
n

tr
ib

u
tio

n
s

fil
e

kc
iv

ilk
m

a
p

kk
kk
w

ith
k

a
d

d
re

ss
e

s

p
e

rs
o

n
a

lk
re

co
rd

s

R
e

a
d

O
R

P
ro

d
u

ce

A
N

D
R

e
a

d

A
N

D

p
a

ye
rs

re
co

rd

R
e

a
d

P
ro

d
u

ce

A
N

D

co
rp

o
ra

te
kr

e
g

is
tr

y kc
o

rp
o

ra
te

kk
kk
kd

a
ta

m
a

in
ta

in
e

d

co
rp

o
ra

te
kk
kd

a
ta

kk
ve

ri
fie

d

P
ro

d
u

ce

A
N

D
A

N
D

da
ta

klo
st

T
h

re
a

te
n

T
h

re
a

te
n

au
di

to
rk

si
ck

Figure 8.1: Partial STS-ml social model of the tax collection scenario

158 Application Scenario and Case Studies

Phase 2. Information modelling

We continue modelling activities with the second phase, information modelling (see Figure 3.2,
Chapter 3). To build the information model, we consider answering these questions: “What
is the informational content of the documents represented in the social view?”, “Who are the
owners of this information?”, “What is the structure of information?”, “Is there a structure of
documents?”.

Step 2.1. Identify information/ownership. We consider the modelled actors and identify their
informational assets, connecting the latter to the actors that own them 3. For instance, Citizen is
the owner of information personal info, while land details, location and fiscal code are informa-
tion entities owned by PAT (see Figure 8.2). Municipality owns information residential address

and tax contributions.
Information is represented via documents. For instance, information personal info is made

tangible by Citizen’s personal data, while information location is made tangible by document
residential buildings (see Figure 8.2).

Information can be represented by one or more documents (through multiple Tangible By

relationships). For instance, information personal info is made tangible not only by document
personal data, but also by document local copy of data of InfoTN, and document personal records

of Municipality.
On the other hand, one or more information entities can be made tangible by the same

document. For instance, information fiscal code together with tax contributions is made tangible
by document corporate registry, see Figure 8.2.

STS-Tool support: STS-Tool allows the relation owns to be drawn starting from the role or agent towards
the information it owns, and the relationship Tangible By to be drawn only starting from information to
documents.

Step 2.2. Structure information. Another feature of the information model is to support com-
posite information (documents). The structuring of information and documents is done via
Part Of relationships, allowing designers to build a hierarchy of information entities and docu-
ments, respectively. For instance, this allows representing that information location is part of the
information residential address, while document land lots is part of document cadastre registry

in Figure 8.2.

3Recall that STS-ml supports multiple (shared) ownership, as such there can be multiple owners for the same information.

Self-evaluation Case Study: Trentino as a Lab 159

InfoTN Municipality

localPcopy
ofPdata

personal
address

Citizen

Engineering
TPributiPSrl PPPPPhigh

qualityPdata

personal
PPPdata

personal
PPPPinfo

residential
PPaddress

Own

TangiblePBy

Own

TangiblePBy

PartPOf

TangiblePBy

PartPOf

Par
tPO

f

PartPOf

PPPcivilPmap
PPPPPPPwithP
PPPaddresses

PPP

personal
records

PPPPPPPtax
contributions
PPPPPPPfile

payers
record

PPPPPPPtax
contributions

fiscalPcode
location

TangiblePBy

TangiblePBy

TangiblePBy

Own

TangiblePBy

TangiblePBy

PartPOf

PartPOf
Own Own TangiblePBy

TangiblePBy

TangiblePBy

Own

PartPOf
TangiblePBy

TangiblePBy

PartPOf

PartPOf

PAT

PPPTax
Agency

corporate
registry

cadastre
registry

landPlots

residential
buildings

PPland
details

PPPPPland
ownership
PPPP

Figure 8.2: Partial STS-ml information model of the tax collection scenario

STS-Tool support: The tool helps the designer in building this structure by allowing the Part Of relations
to be drawn only between information or documents respectively. Additionally, cycles of Part Of are not
allowed by the tool.

Phase 3. Authorisation modelling

We continue modelling activities with the third phase, authorisation modelling (see Figure 3.2,
Chapter 3). To build the authorisation model, we consider answering these questions: “Are
there any authorisations granted from the information owners?”, “Is authority to transfer au-
thorisations granted?”, “Which are the information for which authorisation is granted?”, “Are
there any limitations of authority?”.

Step 3.1. Model authorisations. In the TasLab case study, Figure 8.3, Municipality authorises
InfoTN to read information personal info, tax contributions, and residential address, but it pro-
hibits any modification of such information, in the scope of goal system maintained, while
granting a transferable authorisation.

Authorisation modelling supports the specification of security requirements. The authorisa-

160 Application Scenario and Case Studies

TNRCompany

dataRrefined
P

P T

R M P T

R M P T

R M P T

semanticRsearchRbuilt

taxRverified

personalRinfotaxRcontributionsresidentialRaddress

fiscalRcode T

TPMR

PMRMR

TMR

M P TR

taxRcontributionsresidentialRaddresspersonalRinfo fiscalRcode taxRcontributions

taxRcontributionspersonalRinfo residentialRaddress

personalRinfo

residentialRaddress taxRcontributions

fiscalRcode

dataRintegrated

dataRrefined

registriesRmaintained

systemRmaintained

dataRinterconnected

searchRmoduleRbuiltnavigationRmoduleRbuilt

personalRinfo residentialRaddress

InfoTN

OkkamRSrl
RRRTax
Agency

PAT

Municipality

R M P T

citizensRregistered

Citizen

personalRinfo

Figure 8.3: Partial STS-ml authorisation model of the tax collection scenario

tion from Tax Agency to InfoTN is an example of need-to-know: personal info, residential address

and tax contributions shall be read only for goal data refined, see Figure 8.3. There is no ex-
ample of non-reading in the TasLab case study, for authority to read has not been explicitly
prohibited to any actor. Municipality requires the Tax Agency not to modify fiscal code and
tax contributions, see Figure 8.3 where authority to modify is prohibited. PAT expresses a non-
production requirement on fiscal codes to InfoTN, by prohibiting the production operation, see
Figure 8.3. Non-disclosure is, for instance, required by Municipality to PAT when authorising
the latter to read information personal info, residential address and tax contributions, but pro-
hibiting the right to produce and to transmit. An example of explicit non-reauthorisation is
the authorisation from Citizen to Municipality, see Figure 8.3, since the authorisation is non-
transferrable. while an example of implicit non-reauthorisation is, for instance, the case of
Tax Agency, which has no incoming authorisation over information personal info.

STS-Tool support: The tool helps the designer in specifying authorisations, once the relationship has been
drawn between two actors, via tooltips on specifying permissions and prohibitions, as well as inputing the
information by double-clicking in the second slot.

Self-evaluation Case Study: Trentino as a Lab 161

Phase 4. Automated Analysis

We run the automated analyses supported by STS-Tool over the created models to assess (i) the
ability of verifying the well-formedness of the STS-ml model, (ii) the ability of the reasoning
mechanisms to discover authorisation conflicts and security requirements violations rising as
a result of conflicts between business policies and security requirements (Bus-Sec conflict), as
well as (iii) the ability to calculate the impact of events threatening stakeholders’ assets.

Step 4.1. Wellformedness Analysis. The well-formedness analysis has found no errors over the
STS-ml model for the TasLab case study. We should emphasise, however, that STS-Tool helps
the construction of well-formed models, and the dimensions of the modelled scenario are not as
big as to go unnoticed by the security requirements engineer.

Step 4.2. Security Analysis. We provide evidence by presenting the findings from the appli-
cation of the STS-Tool in the modelling and analysis of the TasLab case study. Based on the
models that we created with the stakeholders (Figures 8.1, 8.2, 8.3), the analysis returned a
number of conflicts that we had not identified during the modelling, including:

• On authority to produce: Tax Agency authorises InfoTN to produce documents with in-
formation personal info, residential address and tax contributions to obtain refined data,
whereas Municipality authorises reading only, and requires not production of the same
information, see Figure 8.4 visualising this conflict.

• On authority to modify: InfoTN grants Okkam Srl the authority to modify documents with
information personal info to obtain interconnected data, whereas TN Company Selector

requires no document representing this information is modified.

These conflicts, which went unnoticed while modelling, originate from the different authorisa-
tion policies of the stakeholders. Conflict resolution activities can be used to ultimately reach a
consistent model. The former conflict can be resolved by negotiating the provision of adequate
rights with the Municipality, while the latter can be fixed by revoking the authorisation, given
that Okkam Srl does not need it (from the social view).

After fixing authorisation conflicts, we used the tool’s capabilities to identify Bus-Sec con-
flicts. This activity provided us with further useful insights:

• no-redelegation: InfoTN relies on TN Company Selector to refine the data obtained (del-
egation of data refined). On the other hand, Tax Agency relies on InfoTN to ensure data
completeness (delegation of data completeness ensured) and requires it not to redelegate
this goal. This security requirement is in conflict with the business policy on delegat-
ing data refined, since the later is a subgoal of data completeness ensured, for which no-
redelegation is required.

162 Application Scenario and Case Studies

MunicipalityR M P T
R M P T

R M P T

InfoTN residential address tax contributions personal info

fiscal code

system maintained

data refined
tax verification performed

residential address tax contributions
tax contributions

personal info

Tax Agency

Figure 8.4: Authorisation conflict towards InfoTN on authority to produce

• true-multi-red: TN Company Selector has not employed more strategies on its own to
fulfil the goal data refined, for which InfoTN has required multi actor true redundancy.

• non-production: PAT makes an unauthorised production of tax contributions, for this in-
formation is owned by the Municipality and the authorisation to produce is prohibited to
PAT.

• not-reauthorised: Tax Agency has no authority to modify information location, however
Tax Agency further authorises InfoTN to modify this information, see Figure 8.4, which
capture this conflict too.

• goal-cod: goals semantic search built and enterprise search built should be pursued by the
same actor, since a combination of duties is specified between these goals. A conflict
occurs because TN Company Selector is not the final performer for both goals (semantic

search built is delegated to Okkam Srl).

These conflicts are due to the different policies of the companies. They can be resolved
through trade-offs Elahi and Yu [2007] between business policies and security requirements.
Notice that relaxation is often not an option, especially if a requirement derives from norms in
the legal context.

Step 4.3. Threat Analysis. We execute the threat analysis over the two events modelled in
Step1.4. We provide evidence by presenting the findings from the application of the STS-Tool
threat analysis of the TasLab case study. The finding of the analysis are as follows:

• The event data lost threatening document high quality data of Okkam Srl, threatens goal
data interconnected that requires reading this document; as a result, it threatens goal

Self-evaluation Case Study: Trentino as a Lab 163

semantic search built for which data interconnected is an and-subgoal; semantic search built

has been delegated to Okkam Srl by Tn Company Selector, and thus Tn Company Selector’s
goal semantic search built is threatened too.

• The event auditor sick threatening goal corporate data verified of PAT, threatens also this
goal’s father corporate details registered, which, in turn, affects the document corporate

registry and its father goal registries maintained; goal corporate data verified is delegated
from InfoTN, and therefore InfoTN’s goal corporate data verified is threatened; this latter
goal is a leaf goal in the goal tree (all and-decompositions) of InfoTN, as such it affects
goals data integrated, data completeness ensured, system maintained, and online system

built; document corporate registry produced by PAT is transmitted to InfoTN, and there-
fore it affects InfoTN’s document corporate registry too; InfoTN’s goal data completeness

ensured has been delegated to InfoTN by the Tax Agency, and thus, Tax Agency’s goal is
threatened too; the effects of this are that goal tax verification performed and revenue system

maintained are threatened too.

In a nutshell, looking at these examples we can see how the impact in one end is propagated
throughout all parts of the system.

data refined

OR

search module
built

enterprise
search built

module built

high quality
data

TN Company
Selector

AND

semantic search
built

semantic search
offered

payers'
knowledge base

created

tax payers'
knowledge base

Okkam Srl

high quality
data

data lost

semantic search
built

semantic search
built

interconnected
data

high quality
data

Read Read

Produce

Read

Threaten

Figure 8.5: TasLab case study—Threat analysis results for the event data lost

164 Application Scenario and Case Studies

For simplicity, we show only the visualisation of the results of the first threat impact, see
Figure 8.5.

Phase 5. Specification

The security requirements specification is generated with the help of STS-Tool, as described
in Chapter 7. We report the security requirements for the online tax collection and verification
scenario in Figure 8.6.

Figure 8.6: List of security requirements for the TasLab case study

This outcome is useful for the security requirements engineer to identify security require-
ments for each category (type), in order to determine what requirements should be fulfilled to,
for instance, comply with non-disclosure security requirements. For this, we have ordered the
derived security requirements with respect to the requirement attribute, and identified one secu-
rity requirement of the type non-disclosure, for which PAT is responsible: Municipality requires
PAT non-disclosure of Informations personal info, residential address and tax contributions.,
see Figure 8.6 highlighting this security requirement. Similarly, we can check requirements for
need-to-know, authentication, and so on, for all the types of derived security requirements.

Scalability study 165

8.2 Scalability study

We report a scalability study to asses how well the automated reasoning techniques cope with
large STS-ml models. Specifically, we study how the execution time is affected by the model
size.

8.2.1 Design of experiments

We select a model to serve as a basic building block, and clone it to obtain larger models. For
the conducted experiments, we chose the model of the TasLab case study. However, any of the
other models could be used, for the other models are about the same size.

We increase the size of a model in two ways: first, we augment the number of elements
(nodes and relationships) in the model; second, we increase the number of variants in the model.
The latter strategy is motivated by our reasoning techniques, which rely upon the generation of
STS-ml model variants (Definition 12, Chapter 6) for identifying possible conflicts between
actors’ business policies and security requirements in the model.

To obtain larger versions of an STS-ml model M , we performed the following steps:

1. create an identical copy (clone) M ′ of the given STS-ml model M ;

2. add a fictitious leaf goal G to a randomly chosen actor A in M ;

3. delegate G to the clone of A (actor A′) in M ′;

4. decompose (see below for the decomposition type) the goal G of A′ into (a) the root goal
of its existing goal model, and (b) a fictitious goal.

This process increases the number of variants, for the initial model M already contains variabil-
ity. We repeat these steps to obtain larger and larger models.

In order to independently test the effect of increasing the number of elements and the number
of variants, we adopted three different customisations of the procedure above:

• no-variability: all decompositions in M and M ′ are treated as AND-decomposition, thus
leading to one variant;

• medium-variability: goal G of A′ is AND-decomposed, all other decomposition are not
modified;

• high-variability: goal G of A′ is OR-decomposed, all other decomposition are not modi-
fied.

166 Application Scenario and Case Studies

The first strategy (no-variability) enables assessing scalability with respect to the number
of elements, while the latter two strategies (medium- and high-variability) are meant to assess
scalability with respect to the number of variants.

We conduct three sets of tests with models of increasing size generated using each of the
strategies above (no-, medium-, and high-variability). For each cloned model, we run the anal-
ysis 7 times.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

 4
50

0

 5
00

0

 5
50

0

 6
00

0

Ti
m

e
(m

s)

Number of elements

Accountability
Confidentiality

Integrity
Reliability

Figure 8.7: Scalability analysis for no-variability: y-axis in linear scale

Scalability study 167

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

 4
50

0

 5
00

0

 5
50

0

 6
00

0

Ti
m

e
(m

s)

Number of elements

Figure 8.8: Scalability analysis for no-variability: y-axis in logarithmic scale

8.2.2 Results

We have conducted experiments on a DELL Optiplex 780 machine, Pentium(R) Dual-Core
CPU E5500 2.80GHz, 4Gb DDR3 399, powered by Windows 7. Figure 8.7–8.10 summarise
the results of our scalability experiments. Below, we detail and discuss the results for each set
of tests.

No-variability

The scalability graphs are shown in Figure 8.7 and 8.8, and are split according to the time
spent to analyse requirements of the different categories in Tables 6.1–6.6 that can be verified
at requirements time, aka security requirements pertaining to accountability, confidentiality, in-
tegrity, and reliability. We present the y-axis both in linear scale and logarithmic scale; the latter
visualisation serves to take a closer look at reliability and accountability, which take consider-
ably less time than the other types of requirements. As noticeable by the plot, all techniques
scale very well (linear or quasi-linear growth). Interestingly, the tool is able to reason about
extra-large models (>6000 elements) in about twelve seconds. We conclude that the number of

168 Application Scenario and Case Studies

elements does not constitute an obstacle to the scalability of our techniques.

16

64

256

1024

4096

16384

65536

262144

1048576

4194304

16777216

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Ti
m

e
(m

s)

Number of variants

Accountability
Confidentiality

Integrity
Reliability

Figure 8.9: Scalability analysis for medium-variability

Medium- and high-variability

The graphs in Figure 8.9 and Figure 8.10 present (in log2 scale) the results of the scalability
analysis with respect to the number of variants. This dimension affects the execution time of our
techniques the most. The analysis of reliability requirements is not affected by the increasing
number of variants: the reason for this is that our tool processes this type of requirements before
increasing the number of variants. As far as the other types of requirements are concerned, the
growth is still linear in the number of variants, but it is exponential in the number of elements
(the model with 1,048,576 variants in Figure 8.9 consists of 2,500 elements). Notice that the
tool deals with dozens of thousands of variants in less than a minute. In this case, we conclude
that the tool is adequate to deal with large models, but needs to be improved to deal with extra-
large models.

In general, the results are promising: the number of variants in all the modelled real world
scenarios from the case studies was significantly smaller than in the models obtained via cloning.

Scalability study 169

16

64

256

1024

4096

16384

65536

262144

1048576

4194304

16777216

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Ti
m

e
(m

s)

Number of variants

Accountability
Confidentiality

Integrity
Reliability

Figure 8.10: Scalability analysis for high-variability

170 Application Scenario and Case Studies

8.3 Case Studies

We present here two case studies that have been developed by the industrial partners of the FP7
EU Funded Project Aniketos 4.

8.3.1 Case Study 1: eGovernment

We consider here a scenario from the eGovernment case study, which is a variant of the “Land-
buying and e-Governance” case study of the Aniketos project. This case study is reported in
Deliverable 6.4 of the Aniketos project.

The Department of Urban Planning (DoUP) wants to build an application which integrates
the existing back-office system with the available commercial services to facilitate the interac-
tion of involved parties when searching for a lot. The Lot Owner wants to sell the lot, he defines
the lot location and may rely on a Real Estate Agency (REA) to sell the lot. REA then creates
the lot record with all the lot details, and has the responsibility to publish the lot record together
with additional legal information arising from the current Legal Framework. Ministry of Law
publishes the accompanying law on building terms for the lot. The Interested Party is searching
for a lot and: (i) accesses the DoUP application to invoke services offered by the various REAs;
(ii) defines a trustworthiness requirement to allow only trusted REAs to contact him; (iii) sets a
criteria to search and select a Solicitor and a Civil Engineer (CE) to asses the conditions of the
lot; (iv) assigns solicitor and CE to act on his behalf so that the lot information is available for
evaluation; and (v) populates the lot selection for the chosen CE and Solicitor. Aggregated REA
defines the list of trusted sources to be used to search candidate lots, it collects candidate lots
from trusted sources, and ranks them to visualize to the user. The Chambers provide the list of
creditable professionals (CE and Solicitors).

8.3.2 Applying STS methodology to the eGovernment case study

We have explained in detail the application of the steps of the STS methodology for Case Study
1, here we limit ourselves to provide the results of the modelling and automated analysis sup-
ported by the STS methodology.

The reported models were created by industrial partners from DAEM 5, who are domain
experts, and then revised by us, method designers, reading the supporting documentation and
talking to domain experts. Thus, the presented models have undergone a two iterations, one
conducted by pracitioners, and the other conducted by method designers. More details on this
eperience and the collected feedback are provided in Chapter 9.

4http://www.aniketos.eu
5http://www.daem.gr/

http://www.aniketos.eu
http://www.daem.gr/

Case Studies 171

Phase 1. Social modelling

Step 1.1. Identify stakeholders. The identified roles are Lot Owner, Real Estate Agency, Map

Service Provider, Interested Party, Solicitor, CE Chambers, and Solicitor Chambers, while the
represented agents are: DoUP Application, Aggregated REA, and Ministry of Law, see Fig-
ure 8.11. The reason for this is that roles refer to general actors that are instantiated at run
time, while agents refer to concrete entities already known at design time. That is, we do not
know who Lot Owner or Interested Party is going to be, but we consider that there is only one
Aggregated REA and one Ministry of Law in this scenario, which are known already at design
time.

Step 1.2. Identify assets and interactions. In Figure 8.11, Lot Owner has goal lot sold. He could
sell the lot either privately or through an agency. Therefore, Lot Owner or-decomposes lot sold

into lot sold privately and lot sold via agency. In the Lot searching scenario, we consider that the
Lot Owner interacts with a real estate agency (Real Estate Agency), hence we further refine how
this is achieved. To sell the lot through an agency: a lot record should be created, lot information
needs to be provided, the lot location needs to be defined and finally the lot price needs to be
approved. Thus, this is represented through the and-decomposition of goal lot sold via agency

into goals lot record created, lot info provided, lot price approved, and lot location defined.
To actually have the lot sold via agency, Lot Owner delegates goal lot record created to

the Real Estate Agency. Now, we consider how the Real Estate Agency achieves its goals.
Real Estate Agency reads lot info to achieve goal lot record created (the owners personal data
are necessary to create the lot record). This document (lot info) is produced by the Lot Owner

while providing lot information (goal lot info provided). Actors can transmit documents to others
only if they possess the required document. For instance, in Figure 8.11, Lot Owner is the cre-
ator of lot info (i.e., possesses the document) and he transmits this document to Real Estate Agency.

172 Application Scenario and Case Studies

lo
tIs

ol
d

lo
tIs

ol
dI

vi
a

ag
en

cy
lo

tIs
ol

d
pr

iv
at

el
y

lo
tIr

ec
or

d
cr

ea
te

d

lo
tIi

nf
o

pr
ov

id
ed

lo
tIl

oc
at

io
n

de
fin

ed

lo
tIi

nf
o

ow
ne

r
pe

rs
on

al

lo
tIp

ric
e

ap
pr

ov
ed

Lo
w

IO
w

ne
r

lo
tIr

ec
or

d
cr

ea
te

d

lo
tIr

ec
or

d
pu

bl
is

he
d

lo
tIi

nf
o

lo
ca

tio
n

m
ap

Ia
dd

ed

le
ga

lIi
nf

o
ad

de
d

le
ga

l
fr

am
ew

or
k

Re
al

IE
st

at
e

A
ge

nc
y

tr
us

te
dI

RE
A

se
le

ct
ed

ci
tiz

en
s

he
lp

ed
le

ga
l

fr
am

ew
or

k

cr
ed

ib
le

IC
E

pr
ov

id
ed

cr
ed

. s
ol

ic
ito

r

cr
ed

ib
le

CE
ng

lo
tIs

ea
rc

he
d

tr
us

te
dI

RE
A

be
st

Ilo
ts

lo
tIo

w
ne

r
re

gi
st

er
ed

IP
Ire

gi
st

er
ed

cr
ed

ib
le

so
lic

ito
r

D
oU

P
A

pp
lic

at
io

n

lo
tIa

cq
ui

re
d

lo
tIs

ea
rc

he
d

lo
tIs

ta
tu

s
as

se
ss

ed

lo
tIs

el
ec

te
d

lo
tIi

nf
o

as
se

ss
ed

so
lic

ito
r

se
le

ct
ed

tr
us

te
dI

RE
A

se
le

ct
ed

CE
Is

el
ec

te
d

cr
ed

ib
le

CE
ng

be
st

Ilo
ts

cr
ed

ib
le

so
lic

ito
r

In
te

re
st

ed
Pa

rt
y

le
ga

lIf
rm

w
pr

ov
id

ed

le
ga

l
fr

am
ew

or
k

lo
tIi

nf
o

as
se

ss
ed

So
lic

ito
r

le
ga

l f
ra

m
w

le
ga

l
fr

am
ew

or
k

M
in

is
tr

yI
of

La
w

cr
ed

ib
le

IC
E

pr
ov

id
ed

cr
ed

ib
le

CE
ng

CE Ch
am

be
rs

tr
us

te
d

so
ur

ce
s

lo
t

ca
nd

id
a.

..
lo

tIr
an

ke
d

tr
us

te
dI

RE
A

se
le

ct
ed

lo
tIs

ea
rc

he
d RE

A
co

lle
ct

ed
RE

A
Ira

nk
ed tr

us
te

dI
RE

A

be
st

Ilo
ts

A
gg

re
ga

te
d

RE
A

lo
ca

tio
n

m
ap

Ia
dd

ed

m
ap

M
ap

IS
er

vi
ce

Pr
ov

id
er

cr
ed

. s
ol

ic
ito

r
pr

ov
id

ed

cr
ed

ib
le

so
lic

ito
r

So
lic

ito
r

Ch
am

be
rs

lis
t

lis
tI

no
tI

fil
eI

st
ol

en

O
R

A
N

D

 P
ro

du
ce

O
R

A
N

D
A

N
D

A
N

D

 N
ee

d

A
N

D
A

N
D

 N
ee

d

A
N

D

A
N

D

 N
ee

d

A
N

D

 N
ee

d

A
N

D

 N
ee

d

A
N

D

 N
ee

d

 N
ee

d

A
N

D

 N
ee

d

A
N

D

A
N

D

A
N

D
A

N
D

A
N

D

A
N

D

 N
ee

d

 N
ee

d

A
N

D

 N
ee

d

 N
ee

d

A
N

D

 N
ee

d

 P
ro

du
ce

 P
ro

du
ce

 P
ro

du
ce

A
N

D

 N
ee

d

A
N

DA
N

D
A

N
D

 N
ee

d
 P

ro
du

ce

 P
ro

du
ce

 P
ro

du
ce

O
R

O
R

A
N

D
A

N
D

lo
t..

.

N
O

-D
...

A
V

A
IA

A
N

D

 P
ro

du
ce

lo
tIi

nf
o

 R
ea

d

A
N

D
A

N
D

A
N

D

A
N

D
A

N
D

A
N

D
A

N
D

A
N

D
A

N
D

tr
us

te
d

A
N

D

A
N

D

se
le

ct
ed

RE
A

 P
ro

du
ce

le
ga

l
fr

am
ew

or
k

 R
ea

d

 R
ea

d

IN
T

E
G

le
ga

l
fr

am
ew

or
k

 R
ea

d

le
ga

l
fr

am
ew

or
k

 R
ea

d

A
N

D
A

N
D

N
O

 R
E

cr
ed

ib
le

IC
E

pr
ov

id
ed

 P
ro

du
ce

cr
ed

ib
le

CE
ng

 R
ea

d

cr
ed

ib
le

 R
ea

d

lo
t

 R
ea

d

A
N

D

N
O

 R
E

lo
tI

se
ar

ch
ed

 R
ea

d

A
N

D
A

N
D

A
N

D
A

N
D

 P
ro

du
ce

tr
us

te
d

RE
A R

ea
d

 P
ro

du
ce

be
st

Ilo
ts

 R
ea

d

lo
ca

ti.
..

N
O

-D
...

be
st

Ilo
ts

 R
ea

d

A
N

D

A
N

D

ow
ne

r
pe

rs
on

al
in

fo

C
O

N
F

C
O

N
F

IN
T

E
G

IN
T

E
G

IN
T

E
G

C
O

N
F

IN
T

E
G

C
O

N
F

IN
T

E
G

 R
ea

d

A
N

D

N
O

 R
E

cr
ed

.
so

lic
ito

r
pr

ov
id

ed

 P
ro

du
ce

cr
ed

ib
le

so
lic

ito
r

 R
ea

d

cr
ed

ib
le

so
lic

ito
r

 R
ea

d

 R
ea

d

 P
ro

du
ce

A
U

T
H

lo
tIi

nf
o

 T
hr

ea
te

n

 T
hr

ea
te

n

 T
hr

ea
te

n

 T
hr

ea
te

n

no
tI

fo
un

dI

un
av

ai
l.I

Ias
se

ss
ed

CE
ng

in
fo

se
ar

ch
ed

ow
ne

r
pe

rs
on

al
in

fo

pr
ov

id
ed

tr
us

te
dI

se
le

ct
ed

RE
A

is
su

edap
pr

ov
ed

A
U

T
H

A
U

T
H

 R
ea

d

IN
T

E
G

A
V

A
IA

A
U

T
H

A
V

A
IA

A
V

A
IA

A
V

A
IA

A
V

A
IA

N
O

-D
T

R
U

S
T

Figure 8.11: eGov Land Selling scenario—Social Model

Case Studies 173

Step 1.2. Express security needs.
Over goal delegations. In Figure 8.12 Lot Owner requires the Real Estate Agency not to re-

delegate the goal lot record created; Interested Party imposes on the DoUP Application a true
redundancy single security need for the achievement of goal trusted REA selected; the delega-
tion of goal trusted REA selected from Interested Party to DoUP Application will take place
only towards trustworthy application providers; Lot Owner requires the Real Estate Agency

90% availability for goal lot record created. DoUP Application requires CE Chambers non-
repudiation of the acceptance of goal credible CE provided, see Figure 8.11.

Lot8Owner lot8sold

lot8sold
privately

lot8sold
via8agency

lot8record
created

lot8info
provided

lot8price8
approved

lot8location
defined

lot8info

owner
personal8info

OR

8Need8
ANDANDAND

8Need8

AND

OR
AND

8Need8

88

ANDAND
OROR

ANDANDANDAND
88

NO-D AVAIA

AVAIA

lot8info

lot8record
created

8Read8

8Read8

8Read8

8Read8

REA
lot8record
created

lot8info

legal8info
added

location8
map8added

lot8record
published

legal8
framework

90I

98I

integrity8of8transmission

no-redelegation

role-sod

goal-cod

receiver INTEG

AUTH

Figure 8.12: Expressing security needs: REA

Over document transmissions. In Figure 8.13, DoUP Application shall ensure sender in-
tegrity on the transmission of document best lots to Interested Party; DoUP Application shall
ensure sender confidentiality on the transmission of document credible solicitor to Interested Party;
DoUP Application shall ensure an availability level of 94% for the document best lots and an
availability level of 90% for the document credible solicitor, when transmitting both these doc-
uments to Interested Party.

Over responsibility uptake. As far as separation of duties is concerned, the goals lot record

published and location map added are defined as incompatible (unequals sign, see Figure 8.12).
An example of role-sod is that among roles CE Chambers and Solicitor Chambers, see Fig-
ure 8.11. With respect to combination of duties, in Figure 8.12, there is a goal-cod expressed
among goals solicitor selected and CE selected of Interested Party.

Step 1.4. Modelling threats. Figure 8.11 represents the events identified to threaten actors’
assets. For instance, event file stolen threatens document credible CE of CE Chambers (see Fig-
ure 8.14 which zooms over Figure 8.11).

174 Application Scenario and Case Studies

Interested
Party

lot9acquired

lot9searched

lot9status
assessed

solicitor
selected CE9selected

trusted9REA
selected

lot9selected
lot9info

assessed

credible
solicitor

credible9
CEng

best9lots

DoUP
Application

no-redelegation
trustworthiness

integrity9of9
transmission

confidentiality9of9
transmission

90N

94N

integrity9of9
transmission

goal-cod

receiver

receiver

redundancy

ANDANDANDAND

9Need9

9Need9

ANDAND 9Need9

AND

9Need9

ANDANDANDANDAND

ANDAND

NO-D TRUSTRED

INTEG

AVAIA

CONF

INTEG AVAIA AUTH

AUTH

99

99

Read

Read

Read Read

best9lots lot9searched

trusted9REA
selected

credible9
CEng

credible
solicitor

Figure 8.13: Expressing security needs for Interested Party

Solicitor
ChambersCE Chambers

credible CE
provided

credible solicitor
provided

credible CE
credible
solicitor

List
not found

File stolen

 Produce Produce Produce

 Threaten

Produce

Threaten

Figure 8.14: Modelling threats

Case Studies 175

Phase 2. Information modelling

Step 2.1. Identify information/ownership. Lot Owner provides information about the lot, we
identify information lot info details, which is owned by the Lot Owner himself and is repre-
sented (made tangible) by document lot info (see Figure 8.15). Additionally, Lot Owner owns
information VAT number, ID Card number and lot geo location.

Aggregated REA owns information list of credible REA, the CE Chambers owns information
list of credible CE, the Solicitor Chambers owns information list of credible sol, while Ministry of

Law owns information legal info.
Information VAT number and ID Card number are made tangible by document Owner Personal

Info, while information lot geo location is made tangible by map. Similarly, the rest of informa-
tion entities is represented via documents, see Figure 8.15.

lotSinfo
Owner
Perso...

LowSOwner

legal
framework

MinistrySof
Law

legalSinfo

listSof
credibleSREA

listSof
credibleSCE

listSof
credibleSsol

lotSgeo
location

listSofSlots

listSof
selectedSlot

lotSinfo
details

credible
CEng

CE
Chambers

trusted
sources

trustedSREA
bestSlots

Aggregated
REA

map

MapSService
Provider

credible
solicitor

Solicitor
Chambers

VATSnumber IDSCard
number

 PartOf PartOf

 Tangible By

 Tangible By

 PartOf

 Tangible By
 PartOf

 Tangible By Tangible By

 Tangible By

 PartOf PartOf

 Tangible By

 Tangible By

 Tangible By

 Tangible By

 Own

 Own

 Own

 Own
 Own

 Own

 Own
 Own

 Own

Figure 8.15: eGov Land Selling scenario—Information Model

Step 2.1. Structure information. We identify the Part Of relationships among information and
documents respectively. For instance, in Figure 8.15, information lot geo location is part of
information lot info details, while documents trusted REA and best lots are part of document
trusted sources.

176 Application Scenario and Case Studies

Phase 3. Authorisation modelling

Step 3.1 Model authorisations. For instance, in Figure 8.16, the Lot Owner authorises Real Estate

Agency to read, produce, and transmit information lot info details and lot geo location. No pro-
hibitions are specified through this authorisation relationship. Instead a prohibition on modify-
ing information legal info is expressed from the Ministry of Law toReal Estate Agency.

LowmOwner

RealmEstate
Agency

DoUP
Application

Interested
Party

Solicitor

Ministrymof
Law

legalminfo

listmof
crediblemREA

listmof
crediblemCElistmof

crediblemsol

lotmgeo
location

listmofmlots

listmof
selectedmlot

lotminfo
details

CE
Chambers

Aggregated
REA

MapmService
Provider

Solicitor
Chambers

VATmnumber
IDmCard
number

 PartOf

 PartOf

M P

lotminfomdetails lotmgeomlocation

lotmrecordmcreated M P

legalminfo

legalminfomadded

M P

listmofmcrediblemCE listmofmcrediblemREA

listmofmcrediblemsol listmofmlots

lotmacquired

M P

legalminfo

legalmfrmwmprovided

M P

legalminfo

citizensmhelped

M P

listmofmcrediblemREA listmofmlots

citizensmhelped

M P

listmofmcrediblemCE

crediblemCEmprovided

M P

listmofmcrediblemsol

cred.msolicitormprov

M P

IDmCardmnumber VATmnumber

lotmownermregistered

M P

legalminfo

R

R

R

R

R

R

R

R

R

R

T

T

T

T

T

T

T

T

T

T

 Own

 Own
 Own Own

 Own

 Own

 Own
 Own Own

Figure 8.16: eGov Land Selling scenario—Authorisation Model

Moreover, see how the Lot Owner authorises Real Estate Agency in the scope of goal lot

record created, not for every goal of Real Estate Agency. The authorisation from Lot Owner

to Real Estate Agency is a transferable authorisation (continuous arrow line), while the one
from DoUP Application to the Interested Party granting the authority to read information list of

credible CE, list of credible REA, list of credible sol and list of lots for goal lot acquired, is a
non-transferrable authorisation (dashed arrow line).

Security requirements over authorisations are captured implicitly by prohibiting certain
operations and limiting the scope of the authorisation: for instance, Lot Owner authorises

Case Studies 177

DoUP Application to read information ID Card number and VAT number only for the purpose
of being registered (goal lot owner registered), expressing a need-to-know security requirement
to DoUP Application, on reading this information only for lot owner registered, see Figure 8.16.
There are no examples of non-reading in our eGov scenario. DoUP Application shall not mod-
ify documents representing informationID Card number and VAT number, for the authorisation
from Lot Owner grants the right to read information ID Card number and VAT number, but
prohibits the right to modify these information entities, see Figure 8.16. DoUP Application

shall not produce documents that represent information list of credible solicitors or informa-
tion list of credible CE, given that the authorisations from Solicitor Chambers and CE Chambers

prohibit the operation to produce the respective information entities. Solicitor shall not transmit
documents representing information legalinfo, see Figure 8.16. An example of non-reauthorisation
is expressed towards Real Estate Agency, see Figure 8.16; Real Estate Agency shall not further
authorise other actors on legal info, for the authorisation coming from Ministry of Law on this
information is non-transferable (dashed arrow line).

Phase 4. Automated Analysis

Well-formedness Analysis. This analysis did not find any errors when executed over the mod-
els.

Security Analysis. The security analysis found several violations of the specified security needs
(identifying errors), such as for instance the violation of non-production by the Map Service

Provider. As it can be seen by the diagram in Figure 8.16 showing authorisation relations, there
is no authorisation relationship towards Map Service Provider on information lot geo location,
which following the semantics of STS-ml is translated into an authorisation from the owner
of this information, namely Lot Owner, prohibiting all operations over this information. This
means that the Map Service Provider is required all security requirements derived from an au-
thorisation relationship over the given information (i.e., non-reading, non-modification, non-
production, non-disclosure, not-reauthorisation). But, from Figure 8.11, we see that Map Service

Provider can produce lot geo location since there is a produce relationship from its goal location

map added towards document map representing (making tangible) information lot geo location,
owned by the Lot Owner who requires non-production of this information. Thus, we identify a
conflict that results in the violation of the non-production security requirement.

Similarly, there is a possible violation of a combination (binding) of duties between the goals
lot price approved and lot location defined of Lot Owner. A combination of duties requires that
the same actor pursues both goals, but there is no single actor achieving both these goals, see
Figure 8.17. However, this could change in runtime, and is to be verified through monitoring
techniques. At the design level, we verify throughout the models whether any strategies are

178 Application Scenario and Case Studies

Lot Owner

lot sold

lot sold
privately

lot sold
via agency

lot record
created lot info

provided

lot location
defined

lot price
approved

owner
personal info

lot info

location map
added

from Social View from Information View

map

map

lot geo
location

Map
Service
Provider

Map
Service
Provider

Produce

Goal "lot price approved" and goal "lot location" should be achieved by the same actor,
since a combination of duty is expressed between these goals,
but there is no actor to achieve them both.

There is no authorisation relationship towards "Map Service Provider", but "Map Service Provider"
can produce "lot info details" since there is a produce relationship from its goal
"location map added" towards document "map"s representing "lot info details"

Own Lot Owner

Produce

Figure 8.17: Executing security analysis: visualisation of results

undertaken to fulfil the imposed security requirement. Therefore, this conflict is considered
a warning, differently from the previous one which is considered an error, and needs to be
resolved before implementation. Resolution techniques might, however, require negotiation
among service consumers and providers and trade-off analysis Elahi and Yu [2007].

Threat Analysis. We calculate the propagation events threatening actors’ assets. We consider
the threats shown in Figure 8.14 and calculate their impact. We present the results of this
analysis for the event list not found threatening goal credible solicitor provided in Figure 8.18).

credibleNCE

credible
solicitor

credible
solicitor

trustedNREA
selected

lotNsearched

credibleN
solicitor
provided

credibleN
solicitor
provided

credibleNCE
provided

citizens
helped

bestNlots
OwnerNpersonal

Solicitor
Chambers

DoUP
Application

listNnotNfound

ANDAND
NProduceN

AND

NONRE

NN credible
solicitor

NN

Read

Read
Read

ReadRead

Reads

Produce

Threaten

credibleN
solicitor
provided

trustedNREA

Figure 8.18: Executing threat analysis

Given the results of the threat analysis, we may need to consider alternatives to ensuring
the provision of credible solicitors, such that do not account on Solicitor Chambers. However,

Case Studies 179

this may not always be possible, it depends on the resources available in the socio-technical
systems.

Phase 5. Specification

The security requirements specification is generated with the help of STS-Tool, as described in
Chapter 7. We report the security requirements for the Lot searching scenario in Figure 8.19.
The importance of automatically deriving security requirements and generating the security
requirements document stands in that it facilitates identifying what are the security requirements
to be satisfied in order to fulfill a given security requirement type, as well as identify security
requirements which are still violated (reported in the document).

In this scenario, we could ask questions such as: “What are the security requirements for
non-modification in the Lot searching scenario?”, or “ What about security requirements for
non-disclosure of legal information?”.

Figure 8.19: Security requirements for the Lot searching scenario

To identify security requirements for non-modification, we consider the security require-
ments for the Lot searching scenario (see Figure 8.19) and order them with respect to the re-
quirement, so to group together requirements on non-modification. Similarly, we identify secu-
rity requirements on non-disclosure, and identify only one on legal information, to be satisfied
by Aggregated REA (no violation was identified by the security analysis).

We generate the security requirements document, which allows to have more information on
the constructed view, explains in detail the findings of the analysis, and enumerates the list of
security requirements, facilitating the work of the security requirements engineer in preparing
this documentation.

180 Application Scenario and Case Studies

8.3.3 Case Study 2: Air Traffic Management

We consider here a scenario from the Air Traffic Management (ATM) case study, which is
a variant of the case study “The emerging European Air Traffic Management systems” of the
project Aniketos.

ATM systems are increasingly complex, pervasive and important in our everyday lives, ris-
ing stakeholders’ concerns about security risks accordingly. Over the course of last years, the
European Air Navigation Services and their supporting systems are going through subtantial
changes due to the introduction of the System Wide Information Management (SWIM) [Eu-
rocontrol, 2013], which will support the collaboration and communications (including data
exchange) of the various parties involved in the system. Importantly, SWIM will allow the
participation of numerous external parties. These will access a common virtual pool of infor-
mation, having data stored at different locations. However, this paradigm shift, makes ATM
systems open (interconnecting parties from all over Europe), in which newcomers (even un-
trusted players) might also participate. This opens up many security issues, for the services
offered by ATM through the SWIM vary from safety critical data to catering and lost luggage,
and security breaches could happen at any point of communication.

Traditionally, ATM was quite a closed system: it allowed only well-defined and established
trusted participants (actors) and ad-hoc point-to-point communication of technical systems with
other trusted technical systems. However, recently, pilots are starting to use iPads or Windows
Surface 2 tables as Electronic Flight Bags, connecting these general purpose (untrusted) equip-
ment to other (trusted) ATM systems. The results are expected to maximase the efficiency of the
airspace, however, at the expense of increased security threats. The lack of industrial experience
and background in security engineering in the ATM domain and the tremendous complexity of
all the trades involved in the ATM system of systems make security need elicitation a hot topic
amongst ATM stakeholders today [Meland et al., 2014].

The scenario we focus on, namely Meteo Datalink, is as follows. A pilot in an aircraft makes
a data link request for weather information via SWIM. SWIM routes the request to the meteo
data provider, obtains the response and returns the response to the pilot. A/G SWIM can offer
information on weather and turbulence forecasts, as well as current weather situation for areas
beyond the range of aircraft sensors and on-board weather radar. Data may include graphical
shape of a large hazardous area, or textual information (METAR, TAF) on weather situation at
alternative diversion airports.

8.3.4 Results of the Application of the STS methodology to the ATM case study

Differently from the previous case study, the application of the methodology to the ATM case
study, has been conducted entirely by practitioners, modellers and engineers, who work closely

Case Studies 181

with domain experts. The reported models are part of Deliverable 6.4 of the Aniketos project,
and have been created by industrial partners from Thales Research 6, Deep Blue Srl 7, and Sin-
tef 8. Our role in this process has been that of providing support and feedback throughout the
use of STS-ml and STS-Tool in creating the models. The relevance of this process is men-
tioned in Chapter 9, where we demonstrate how this interaction has helped improve the STS
methodology, STS-ml modelling language, and STS-Tool.

In this section, we report on the constructed models (describing the outcomes of each phase,
without detailing each step) and highlight how the modelling and automated analysis supported
by STS helped identify potential security violations and threats to the well-functioning of ATM
via the SWIM infrastructure. The modelling of this scenarios was performed in two STS-ml
models (diagrams) to simplify modelling and to allow different modellers to work on parts of
the scenario. We have merged the two diagrams into one to represent the complete scenario.
The reported feedback is adapted from Deliverable D6.4 of the Aniketos project.

Phase 1. Social modelling

The Meteo data link scenario considers a situation in which an aircraft flying its en-route Busi-
ness Trajectory and weather conditions are changing. Therefore, the pilots make a data-link
request for Meteo Information provision via SWIM, performing a manual request for an update
of MET information, due to changing weather conditions, through the ACARS aircraft system.
The Aircraft SWIM Node manages information exchanges of the airborne applications. These
airborne applications are consumers or providers of information placed on board the aircraft.
The aircraft SWIM Node interfaces directly with the A/G SWIM Access Point (SAP) to which
it is associated at a given moment. The A/G SWIM Access Point represents the A/G Gateway
on the ground making the link between the Airborne systems and the ground ATM systems. It
implements the A/G SWIM Interface on its top and the G/G SWIM Interface on the bottom,
controlling and managing all the SWIM information exchanges so they comply to the required
behaviour of these exchanges. As such, it has the goals of routing the meteorological informa-
tion request and routing the meteorological information itself, see Figure 8.20. SWIM MET
Node is related to the ground ATM systems MET service provider. The ATM Systems inter-
ested in communicating via SWIM with the aircraft implements on the SWIM Nodes a G/G
SWIM Interface. Meteo service provider is an ATM system willing to participate in the SWIM
information exchange with an aircraft, providing MET information through SWIM services.
The MET service providers update and publish the new MET information, while the SWIM TI
messaging provides the updated MET information to the aircraft. The aircraft Airborne Broker

6https://www.thalesgroup.com/en
7http://www.dblue.it/
8http://www.sintef.no/home/

https://www.thalesgroup.com/en
http://www.dblue.it/
http://www.sintef.no/home/

182 Application Scenario and Case Studies

calls an intermediary Ground Broker. The Ground Broker enriches the information (e.g. air-
craft request for meteorological data with flight id, a ground system transforms flight id with
its route) and provides the most updated Meteo Information to the Aircraft Airborne Broker.
This updated Meteo Information is timely stored in the SWIM by a Meteo Service Provider
to be exploited by all the Meteo Service subscribers. These interactions are all modelled in
Figure 8.20.

As far as the representation of security needs is concerned, a number of availability security
needs have been specified over both goal delegations and document provisions, see Figure 8.20.
For instance, a 99.9% availability level is required over from SAP to Meteo Service Provider on
Meteorological Information.

An integrity of transmission is specified over the transmission of Meteorological Information

between the Meteo Service Provider and SWIM in Figure 8.20.
A separation of duties is specified over the various Aircraft message Brokers, ACD Broker,

PIESD Broker and AISD Broker.

Case Studies 183

M
et

eo
In

fo
O

b
j2

M
SP

M
et

eo
D

at
a

St
or

eM
et

eo
D

at
a

A
na

ly
se

M
et

e
oD

at
aPr

oc
es

sI
nf

oR
eq

Pr
ov

id
er

ID

M
ET

1c
on

dw
ob

se
rv

ed

In
fo

Re
qu

es
t

M
es

s2
TS

(

M
ET

1re
qw

1a
ck

w

www
fr

om
br

ok
er

G
at

he
r

M
et

eo
1D

at
a

M
ET

1in
fo

pu
bl

is
he

d
Le

ga
l1a

ct
io

n
av

oi
de

d

Re
pu

ta
tio

n
m

ai
nt

ai
ne

d

Fu
se

1M
et

eo
D

at
a

M
et

eo
Se

rv
ic

e
Pr

ov
id

er

A
M

I

A
ut

he
nt

ic
at

e

En
cr

yp
tIn

fo
R

eq

Si
gn

In
fo

Re
q

Ro
ut

eI
nf

oR
eq

St
or

eI
nf

oR
eq

Se
nd

In
fo

Re
q

M
on

ito
rQ

oS

In
fo

Re
qu

es
t

M
es

s2
M

C

M
ET

1in
fo

re
ce

iv
ed

M
et

eo
In

fo
O

b
j2

A
B

M
et

eo
In

fo
O

b
j2

TS

www
to

1S
er

vw
Pr

ov
id

er

www
vi

a1
SA

P
www

di
re

ct
ly

In
fo

Re
qu

es
t

M
es

s2
A

B

A
WC

1m
es

sa
ge

Br
ok

er

Ca
ch

e
m

es
sa

ge
s1

Lo
gg

in
g1

Er
ro

r
pr

oc
es

si
ng

M
an

ag
eT

ra
ns

po
rt

Lo
gi

c

Fi
lte

rin
g

M
et

eo
In

fo
O

b
j2

SA
P

M
et

eo
In

fo
O

b
j2

TS

M
et

eo
In

fo
O

b
j2

M
SP

In
fo

Re
qu

es
t

M
es

s2
A

B

www
vi

a1
SA

P
www

di
re

ct
ly

In
fo

Re
qu

es
t

M
es

s2
TS

(

In
fo

Re
qu

es
t

M
es

s2
TS

)

Ba
nd

w
id

th
th

ro
tt

lin
g

M
ET

1In
fo

tr
an

sp
or

te
d

Tr
an

sp
or

t
Se

rv
ic

es

In
fo

Re
qu

es
t

M
es

s2
M

C
A

irc
ra

ft
1ID

M
ET

1re
qw

fo
rm

at
te

d

M
ET

1In
fo

Re
qw

2P

www
by

1M
es

sw
Cl

ie
nt

ww

M
et

eo
In

fo
O

b
j2

A
B

www
fr

om
1M

ET
se

rv
ic

e
M

et
eo

In
fo

O
b

j2
M

C

A
WC

1m
es

sa
ge

cl
ie

nt

M
et

eo
D

at
a

G
at

he
r

M
et

eo
1D

at
a

M
et

eo
Se

ns
or

s

Ba
d1

W
ea

th
www

M
et

eo
In

fo
O

b
j2

M
SP

M
ET

1In
fo

si
gn

ed
M

on
ito

r1Q
oS

M
ET

1In
fo

st
or

ed
M

ET
1d

at
a

en
cr

yp
te

d

M
et

eo
In

fo
O

b
j2

SA
P

In
fo

Re
qu

es
t

M
es

s2
TS

)

M
ET

1In
fo

ro
ut

ed

M
ET

1In
fo

tr
an

sp
or

te
d

M
ET

1re
qw

1a
ck

w

SA
P

Se
cu

re
1M

ET
da

ta
1u

se
d

M
ET

1in
fo

pr
ov

id
ed

M
ET

1d
at

a
tr

an
sp

or
te

d

M
ET

1in
fo

pu
bl

is
he

d

M
ET

1in
fo

re
ce

iv
ed

Fi
lte

r1p
ol

w
ch

ec
ke

d
In

te
gr

ity
ch

ec
ke

d

M
ET

1c
on

dw
ob

se
rv

ed
Re

gu
la

tio
ns

co
m

pl
ie

d

M
ET

1in
fo

re
qu

es
te

d

Q
ua

lit
y

m
ai

nt
ai

ne
d

M
ET

1re
qw

1a
ck

w

M
ET

1in
fo

1re
qw

m
ad

e

M
ET

1in
fo

1re
qw

ro
ut

ed

A
ut

he
nt

ic
at

e
d

M
ET

1In
fo

ro
ut

ed

A
Wc

au
th

en
tic

aw
ww Se

rv
w1p

ro
vw

id
en

t
Se

rv
ic

e
ap

pr
ov

ed
A

Wc
1Id

1s
en

t A
Wc

1Id
va

lid
at

ed

Se
rv

w1P
ro

vw
Id

w1s
en

t

Se
rv

w1P
ro

vw
Id

w1v
al

w

SW
IM

Co
nt

ex
t

Fl
y1

sa
fe

M
ET

1in
fo

re
qu

es
te

d

www
to

1A
TC

Fv
oi

ce
Q

www
to

1s
ur

ro
un

w
aW

c
www

to
1M

ET
se

rv
ic

e
www

to
1e

m
bw

eq
ui

pw

M
ET

1re
qu

es
t

en
te

re
d

M
ET

1re
qu

es
t

ty
pe

d2
in

M
ET

1re
qw

fo
rm

at
te

d

M
ET

1In
fo

Re
qw

2P

M
ET

1re
qu

es
t

se
nt

M
ET

1R
eq

w
va

lid
at

ed
M

ET
1re

qw
m

es
sw

1s
en

t

www
by

1M
es

sw
Cl

ie
nt

ww
www

to
1S

er
vw

Pr
ov

id
er

M
ET

1in
fo

re
ce

iv
ed www

fr
om

1M
ET

se
rv

ic
e

www
fr

om
www

M
et

eo
In

fo
O

b
j2

M
C

RB
T1

co
m

pl
ie

d

Pi
lo

t

D
SN

A
1A

WG
SA

P

A
Z1

A
WG

1S
A

P

M
et

eo
Fr

an
ce

D
SN

A
1G

WG
SA

P

Fr
ee

1a
cc

ew
ww

Er
ro

ne
ou

www

U
na

bl
e1

to
www

A
CD

1B
ro

ke
r

A
IS

D
1B

ro
ck

er

PI
ES

D
Br

oc
ke

r

 P
ro

du
ce

 N
ee

d

 N
ee

d

A
N

D

A
N

D
A

N
D

 N
ee

d

 N
ee

d

 N
ee

d A
N

D

A
N

D
O

R

O
R

 N
ee

d

O
R

 P
ro

du
ce

 N
ee

d

 N
ee

d

 N
ee

d
 N

ee
d

O
R

O
R

 P
ro

du
ce

 P
ro

du
ce

A
N

D
A

N
D

 P
ro

du
ce

 N
ee

d

A
N

D

 N
ee

d
 N

ee
d

A
N

D
A

N
D

 P
ro

du
ce

 N
ee

d
 N

ee
d

 N
ee

d
 P

ro
du

ce

 N
ee

d

 P
ro

du
ce

 P
ro

du
ce

A
N

D

 N
ee

d P
ro

du
ce

A
N

D
A

N
D

A
N

D

 N
ee

d

A
N

D
A

N
D

A
N

D

A
N

D

A
N

D
A

N
D

A
N

D

A
N

D
A

N
D

A
N

D

A
N

D

A
N

D

A
N

D
A

N
D

A
N

D
A

N
D

A
N

D
A

N
D

A
N

D

A
N

D

A
N

D

A
N

D

A
N

D

A
N

D

A
N

D
A

N
D

 P
ro

du
ce

A
N

D

A
N

D

A
N

D

A
N

D

O
R

O
R

O
R

O
R

A
N

D

O
R

O
R

A
N

D

 P
la

y

M
et

eo
D

at
a

 R
ea

d

 R
ea

d
 P

ro
du

ce

A
N

D
A

N
D

A
N

D
A

N
D

 R
ea

d

O
R

O
R

In
fo

Re
qu

es
t

M
es

s2
M

C

 R
ea

d

 R
ea

d

 N
ee

d

IN
T

E
G

A
V

A
IA

A
N

D

A
N

D

A
N

D
A

N
D

A
N

D
A

N
D

A
N

D
A

N
D

M
ET

1in
fo

re
ce

iv
ed

M
et

eo
In

fo
O

bj
2M

SP

M
ET

1c
on

dw
ob

se
rv

ed

 T
hr

ea
te

n

A
N

D

O
R

O
R

O
R

O
R

A
N

D

A
N

D
A

N
D

M
ET

1In
fo

Re
qw

2P

M
ET

1re
qw

fo
rm

at
te

d

M
ET

1in
fo

re
qu

es
te

d

 R
ea

d

IN
T

E
G

M
et

eo
In

fo

A
N

D

A
N

D

M
et

eo
In

fo
O

bj
2S

A
P

 P
ro

du
ce

A
N

D

A
N

D

 P
la

y

 P
la

y

M
et

eo
In

fww
w

A
N

D

www
by

1M
es

sw
Cl

ie
nt

ww

 R
ea

d

www
to

1S
ew

ww

O
R

O
R

 R
ea

d

 P
ro

du
ce

In
fo

Re
qu

es
t

www
vi

a1
SA

P

www
di

re
ct

ly

M
es

s2
A

B

 R
ea

d
 R

ea
d

 P
ro

du
ce

 P

ro
du

ce

In
fo

Re
qu

es
t

M
es

s2
TS

(

M
ET

1re
qw

1a
ck

w

 R
ea

d

IN
T

E
G

O
R

A
N

D

A
N

D
A

N
D

A
N

D

A
N

D

In
fo

Re
qu

es
t

11M
es

s2
TS

)

G
at

he
r

M
et

eo
1D

at
a

 P
ro

du
ce

M

ET
1in

fo
pu

bl
is

he
d

 R
ea

d

A
N

D
A

N
D

A
N

D

 R
ea

d

A
N

D

 P
la

y

A
N

D

M
ET

1In
www

N
O

 R
E

R
E

D
A

V
A

IA

 R
ea

d
 P

ro
du

ce

A
N

D
A

N
D

A
N

D

A
N

D

 P
la

y

A
N

D

M
ET

1In
fo

 R
ea

d

 P
ro

du
ce

 N
ee

d

 P
ro

du
ce

M
et

eo
In

fo
O

b
j2

TS

M
ET

1in
fo

re
ce

iv
ed

 P
ro

du
ce

O
R

O
R

www
fr

om
1M

ET
se

rv
ic

e

 R
ea

d

 P
ro

du
ce

A
N

D
A

N
D

A
N

D

A
N

D
A

N
D

A
N

D
A

N
D

A
N

D

M
et

eo
In

fo
O

b
j2

M
C

 T
hr

ea
te

n

 T
hr

ea
te

n

 T
hr

ea
te

n
 T
hr

ea
te

n

 T
hr

ea
te

n

 T
hr

ea
te

n

 T
hr

ea
te

n

 T
hr

ea
te

n

 T
hr

ea
te

n

 T
hr

ea
te

n

 T
hr

ea
te

n

 T
hr

ea
te

n

 T
hr

ea
te

n

 T
hr

ea
te

n

A
N

D

 T
hr

ea
te

n

 T
hr

ea
te

n

 P
la

y

 P
la

y

 P
la

y

M
ET

1rw
ww

N
O

 R
E

R
E

D
A

V
A

IA

 R
ea

d

A
N

D

tr
an

sp
po

rt
ed

O
bj

2T
S

Figure 8.20: ATM Meteo data link scenario—Social model

184 Application Scenario and Case Studies

Phase 2. Information modelling

The following informational assets were identified for the Swim Access Point (SAP): meteoro-
logical information request (MET Info Request), owned by Pilot; Meteorological Information

and meteorological server identification (Provider ID Number), which are owned by Meteo

Service Provider; aircraft identification (Aircraft ID Number), owned by A/C Message Client,
see Figure 8.23.

MeteoInfoO
bjZMSP

ProviderID

MeteoServic
eProvider

AMI

MeteoInfoO
bjZAB

InfoRequest
MessZAB

A/C
message
Broker

MeteoInfoO
bjZTS

InfoRequest
MessZTS1

InfoRequest
MessZTS2

Transport
Services

InfoRequest
MessZMC

AircraftTID MeteoInfoO
bjZMC

A/C
message
client

MeteoData

MeteoSenso
rs

MeteoInfoO
bjZSAP

SAP

MeteoInfor
mation

WeatherCon
dition

AircrafIDNu
mber

MeteoInfoR
equest

ProviderIDN
umber

SWIM
Context

METTInfo
ReqFZP

Pilot

DSNATA/G
SAP

AZTA/GTSAP

METTimpact
onTOps

MeteoFranc
e

DSNATG/G
SAP

SEMP

ACDTBroker

AISD
Brocker

PIESD
Brocker

 PartOf

 Play

 Tangible By

 Own

 Tangible By

 Tangible By

 Tangible By

 Own

 Tangible By

 Tangible By

 Tangible By

 PartOf

 Tangible By

 Tangible By

 Play
 Play

 Tangible By

 Tangible By

 Tangible By

 PartOf

 Own

 Play

 Play

 Own

 Own

 Play

 Play

 Play

 PartOf

 Own

 Own

Figure 8.21: ATM Meteo data link scenario—Information model

All identified information entities are represented via documents which are local copies of
the information. As such, we have: local copies of the meteorological information request,
local copies of the meteorological information, local copies of the aircraft identification, and
local copies of the meteorological server identification.

Information forecasted meteorological impacts on operations (MET Impact on Ops) and
Weather Conditions were both identified to be parts of Meteorological Information. These were
the only identified decomposition of information, no composite documents were identified.

Phase 3. Authorisation modelling

MeteoServiceProvider only authorises SWIM to (transmit) distribute Meteorological Information,
i.e. the SWIM is not allowed to read, modify or produce meteorological information. This au-

Case Studies 185

MeteoServic
eProvider

AMI

AirborneBro
ker

TransportSe
rvices

SAP

Pilot

AZA627

MeteoSenso
rs

GroundBrok
er

MeteoInfor
mation

WeatherCon
dition

AircrafIDNu
mber

MeteoInfoR
equest

ProviderIDN
umber

 Play

 Play

M P

MeteoInformation

DistributeMeteoInfo

EncryptMeteoInfo RouteMeteoInfo

SignMeteoInfo

M P

WeatherCondition

StoreMeteoData AnaliseMeteoData

M P

MeteoInformation

Cachehmessagesh Loggingh

Errorhprocessing Filtering

ManageTransportLogic
M P

MeteoInformation

ReceiveMeteoInfo

M P

MeteoInfoRequest

EncryptInfoReq SignInfoReq

RouteInfoReq AskhforhMeteohInfo

M P

AircrafIDNumber

Authenticate

M P

ProviderIDNumber

AuthenticateProvider

M P

MeteoInformation

ReceiveMeteoInfo

M P T

MeteoInfoRequest

Cachehmessagesh Loggingh

Errorhprocessing

ManageTransportLogic Filtering

M P

MeteoInfoRequest

ReceiveInfoReq

M P

MeteoInfoRequest

ReceiveInfoReq ProcessInfoReq
 Own

 Own

 Own

 Own

 Own

R

R

R

R

R

R

R

R

R

R

R T

T

T

T

T

T
T

T

T

T

M P

MeteoInformation

METhInfohrouted

R T

M P

MeteoInfoRequest

R T

Figure 8.22: ATM Meteo data link scenario—Authorisation model

thorisation intends to express a security requirement on non-modification, with the purpose of
requiring some level of integrity.

SWIM cannot read the Meteorological Information, and it cannot produce its own Meteorological

Information, see Figure 8.22.

Phase 4. Automated Analysis

Well-formedness Analysis. The modellers report that, after finalising their model, they verified
well-formedness by running the corresponding analysis with STS-Tool. The analysis detected
only two warnings, both relating to sub-goals of the meteorological service provider that are
redelegated back (by the context) and part of the decomposition of the “process information
request”goal. Modellers conclude that the identified warning does not create problems with
the models, and therefore, the model remain as is. However, they consider it useful to have the
tool point out and raising the warning to attract attention on unusual constructs or problems that
could go unnoticed.

Security Analysis. The modellers report on 50 violations detected by the STS-Tool on security
requirements. The tool allows classifying the identified violations, and in this case, 4 main types
of security requirements were violated:

186 Application Scenario and Case Studies

1. fback-single-red: the analysis detected two errors on the routing of the Meteorological

Information(request and answer) by the SWIM Access Point (SAP); in Chapter 6, we
have explained that the verification performed by STS is partial, the real verification can
only be done at run-time. Indeed, the modellers note that there is no explicit redundancy
at STS level; redundancy will be made available at technical level, through a full-meshed
network. Therefore, the modellers have dropped this violation.

2. non-disclosure: the analysis detected ten violations of this security requirements. The
modellers state that the errors are all related to actors that are outside the perimeter of
the study. However, this concept is strictly related to the application domain, and as
such does not converge with the logic implemented in STS, in which all actors are peers
and permissions/prohibitions need to be made explicit to capture the possible violations
of authority in manipulating information. The violations were solved by assigning the
designated rights to the actors within the perimeter of the study.

3. non-reading: the analysis detected twenty four violations of this security requirements,
twenty one of which, again, relate to actors that are outside the perimeter of the study; the
other three remaining errors concern SAP reading the Meteorological Information Request,
the Meteorological Information, and the Meteorological Impact on Ops without having been
authorised to do so. The modellers identify the issue to rise because of an inappropriate
modelling of the reading relationship here, for they consider reading to only be necessary
for the distribution of the said information. In their view, distribution should encapsulate
reading too. However, this issue is again domain specific. Ideally, a carrier serving as a
transmission point needs to have only distribution permissions, not necessarily any about
reading what is being transferred.

4. non-production: security analysis detected fourteen errors, of which ten relate to actors
that are outside the perimeter of the study. Again, these were treated as the other two afore-
mentioned cases. The other four errors concern the SWIM Access Point (SAP) making
copies of information, in the form of documents, in order to route and log the information;
information is not produced, it is duplicated. STS, however, considers production to cover
copying information as well, as such this operation needs to be granted whenever infor-
mation is being represented via new documents, other than the original ones containing
it.

Phase 5. Specification

Modellers have interpreted the findings and discussed about the resolution of conflicts. At last,
they produced seventeen security requirements by applying the methodology and using STS-ml

Chapter Summary 187

and STS-Tool. The identified security requirements were confronted with SESAR’s imposed
security requirements, and it was found that STS helped capture these requirements, and in
addition, the modelling activities helped identify new security requirements (deemed useful by
the modellers) as well.

Figure 8.23: ATM Meteo data link scenario—Security requirements

Modellers have acknowledged that the new identified requirements correctly reflect their
modelling purposes. Examples include the security requirement on need-to-know from Meteo

Service Provider to SAP on information Meteorological Information, in the scope of goal MET

Info routed, the non-reading security requirement, as well as security requirements on non-
modification and non-production required again by Meteo Service Provider to SAP on informa-
tion Meteorological Information.

8.4 Chapter Summary

In this chapter we have evaluated our approach on an application scenario and two case stud-
ies. We applied STS methodology in an application scenario, namely TasLab, for which we
created STS-ml models (via the corresponding social, information, and authorisation models),
while capturing security requirements through the modelling of security needs, and finally, we
analysed the outputs of each activity to identify security violations and the impact of threats in
the overall socio-technical system. This evaluation activity was useful also to demonstrate the
efficiency of the reasoning techniques.

As far as the case studies are concerned, we report on the results of the application of STS
methodology, as performed by industrial partners of the European project Aniketos. The results
of the ATM case study are particularly useful, as they show modelling as conducted by practi-
tioners only, their findings, and above all their interpretations to the identified problems. This

188 Application Scenario and Case Studies

activity has resulted quite useful, not only in terms of validating the methodology, language and
tool with industrial case studies, but also to obtain feedback for their improvement through-
out their developement. We will discuss more on the development of STS methodology, the
different improvements on STS-ml and the various releases of STS-Tool in Chapter 9.

The contribution of the chapter is twofold. Apart from showing the adequacy of our mod-
elling primitives to represent realistic scenarios characterised by security issues over interac-
tions and threats over stakeholders’ assets, in particular information, we have performed scal-
ability experiments to determine if the proposed analysis techniques implemented in STS-Tool
scale well when considering larger settings (i.e., models).

Chapter 9

User-Oriented Empirical Evaluation

We have evaluated our approach with end-users (modellers) of STS methodology, STS-ml and
STS-Tool. We have conducted a set of experiments with modellers—expert practitioners and
M.Sc. students—to assess the adequacy of the methodology for supporting security require-
ments engineering in different domains. In this chapter, we report on evaluation activities de-
scribing the evaluation process in Section 9.1, as well as presenting the details of each evaluation
activity in Sections 9.2–9.4. Finally, in Section 9.5, we discuss the results, present threats to
validity and draw our conclusions.

Acknowledgement. Section 9.2 builds on top of [Trösterer et al., 2012].

9.1 Evaluating STS methodology: the process

STS methodology, as presented in this thesis, is the result of a continuous evaluation process
that started since the early design phases and has led to refinements of the primitives of the
language, the introduction of additional security needs, reasoning capabilities, on the basis of
the feedback from end-users. We adopted an iterative development process: new language and
tool releases have been applied to real settings and evaluated by practitioners. Specifically, we
interacted with industrial partners from the FP7 EU-funded research project Aniketos 1: secu-
rity engineers and analysts from Thales, Sintef, DeepBlue, domain experts from DAEM, ATOS
Research, and Selex Elsag. Moreover, additional feedback was obtained through two experi-
ments with M.Sc. students from the University of Trento. Carrying out appropriate evaluation
throughout the development of a comprehensive framework is crucial in order to reach a high
quality outcome, given the complexity of the task [Trösterer et al., 2012]. With this in mind, we
have started evaluation since the early design stages, actively involving end-users.

As a result, the presented version of STS-ml supports expressing a set of security require-

1Ensuring Trustworthiness and Security in Service Composition: http://aniketos.eu/

http://aniketos.eu/

190 User-Oriented Empirical Evaluation

ments types that addresses the needs of the practitioners in expressing security concerns for their
given domain of discourse, in addition to adhering to international security standards (Figure
4.18).

Notice that the purpose of this section is not to provide detailed description for each exper-
iment, but rather to give an overview of the evaluation process we followed and its impact on
the methodology. We were supported in the organisation of workshops and design of online
questionnaires by specialists from the HCI Usability Unit and Christian Doppler Laboratory at
the University of Salzburg.

Figure 9.1: Evaluation process followed throughout the development of the STS methodology

In the following sections we discuss in detail the evaluation activities depicted in Figure 9.1.
For each activity, we detail the research questions, experiment design, results, and conclusions.
Moreover, we outline how the methodology has evolved from one evaluation activity to another.

9.2 Formative User-Centred Evaluation

The first evaluation was conducted at an early design stage on initial version of STS-ml and
STS-Tool. At that stage, the tool supported a limited set of security requirements, and al-
lowed only modelling (no automated reasoning). We employed a formative user-centred evalu-
ation [Rosson and Carroll, 2002], whose aim was to identify problematic aspects in the design
artefact—here, language and tool—when the development process is not completed. A com-
prehensive report of this study is in [Trösterer et al., 2012], while details about this workshop
are provided in 2.

Research questions. We were particularly interested in the usability of the language and
tool. To such extent, we devised the following research questions (Ex-RQy stands for the y-th
research question of the x-th evaluation activity):

E1-RQ1 How usable are the modelling language and its support tool?

2http://disi.unitn.it/˜paja/pdf/WorkshopTrentoJuly2011_FinalReport.pdf

http://disi.unitn.it/~paja/pdf/WorkshopTrentoJuly2011_FinalReport.pdf

Formative User-Centred Evaluation 191

E1-RQ2 What are the missing concepts that would be essential to model security aspects?
E1-RQ3 How adequate/easy to understand is the graphical notation?
E1-RQ4 What are the concepts whose semantics is unclear/underspecified?
E1-RQ5 What are the technical issues that limit the usability of the tool?

9.2.1 Experiment Design

The evaluation was organised as a two day workshop (see Figure 9.2) and included seven appli-
cation domain experts from three companies: Thales, DeepBlue, and DAEM, participating as
end-users. These participants were all to interact with the modelling language and tool, but had
no knowledge of these artefacts (this was the first time they were introduced to the language and
tool). However, practitioners were domain experts, providing rich knowledge and experience,
each for its domain of expertise.

The first day was dedicated to training activities, where STS-ml and STS-Tool were pre-
sented by method designers. At the end of the training day, two questionnaires were provided
to the participants on the quality of the training, and the gained knowledge on the language and
tool respectively.

The second day consisted of the actual experiment. The day included modelling activi-
ties in the morning, and post modelling discussions in the afternoon to gather detailed feed-
back. During the modelling participants were asked to model a scenario from their area of
expertise—corresponding to their expertise (air traffic management and e-Government). Partic-
ipants were provided reference sheets for language and tool, as well as a set of cards to write
down comments, problems during modelling, ratings about concepts and graphical representa-
tions of concepts and relationships, missing concepts/relationships/security needs, etc. A third
questionnaire on concepts and graphical representations was required to be filled out by the
participants at the end of the modelling.

The participants were observed—paying attention to avoid intrusiveness—in their discus-
sions by the usability and user acceptance specialists from the University of Salzburg, who
also helped design the experiment and served as moderators during the interviews. Structured
interviews and group discussions were used to gain a deeper understanding of participants’ ex-
perience with the language and tool, as well as to collect, categorise, discuss and prioritise the
identified problems.

192 User-Oriented Empirical Evaluation

Figure 9.2: Experiment Design for the formative user-centred evaluation

9.2.2 Results

Different methods were applied to evaluate STS-ml and STS-Tool—questionnaires, cards, ob-
servation, interviews, group discussion—adopting then method triangulation [Golafshani, 2003]
to obtain accurate outcomes. Quantitative data were obtained from the questionnaires, while
qualitative data were obtained from observation, interviews complemented with cards’ notes,
and group discussions. An excerpt of the results for each research question are listed in Ta-
ble 9.1. We identified several tool usability issues, some concerns about the graphical notation
(size, color, etc.), and were suggested a number of missing concepts.

Concerning the language, most participants suggested to include threats to model risk per-
ception. The semantics of transferable authorisations was unclear to some participants. Mul-
tiple ownership of information was not supported, and considered crucial in some domains.
Concerning the tool, the participants highlighted the need for autosaving files, automated di-
agram layout, reduction of the GUI complexity depending on current work, online help, etc.
Model scalability was an issue related to supporting big real case studies, spanning hundreds of
actors.

Evaluation with novices 193

RQ Findings

E1-RQ1: Usability adaptive GUI; online help; scalability

E1-RQ2: Missing concepts threats and risks; multiple ownership; trustworthiness

E1-RQ3: Graphical representation adapt size, color

E1-RQ4: Semantics transferable authorisation unclear

E1-RQ5: Tool autosave; automated diagram layout

Table 9.1: Formative user-centred evaluation: findings for each research question

9.2.3 Conclusions and outlook

Based on the evaluation results, we discussed all those findings, and released a new version of
the methodology that addressed relevant problems. For instance, the next version of STS-ml
provided support for representing events threatening actors’ assets. Moreover, it clarified se-
mantical misconceptions, providing a clear-cut definition of resources in terms of information
and documents. Additionally, a richer set of security needs was supported, including refine-
ments of non-repudiation, redundancy, trustworthiness, integrity of transmission, non-reading,
non-modification, non-production, non-disclosure, separation of duties, and binding of duties.

A number of tool bugs was fixed, and a bug-tracking system was created. To improve
modelling scalability, we introduced the feature of hiding all goals related to an actor, and
provided zoom in and zoom out functions. The complexity of the GUI was reduced by providing
a customised palette in each model (social, information, authorisation). Also, we included was
improved to include the automatic derivation of the security requirements document, as well as
analysis capabilities in terms of validity verification and security analysis (Chapter 6).

The formative evaluation emphasised the need for and the importance of training in support-
ing users with different backgrounds and skills. As a result, following this first evaluation, we
improved the available material on the language and tool, providing extensive documentation
on each, while setting up a dedicated website with video tutorials, templates, examples, and the
different versions of the language and corresponding tool versions available for download.

9.3 Evaluation with novices

The second evaluation workshop we organised (Evaluation with novices in Figure 9.1) involved
improved versions of the modelling language and tool. Additionally, we had devised an initial
method that guided users through the modelling and reasoning activities. Again the workshop

194 User-Oriented Empirical Evaluation

was co-organised with the experts from the University of Salzburg.

Research Questions. The objective of the evaluation was to asses the adequacy of the
methodology for teaching security requirements engineering. This lead us to the following
research questions:

E2-RQ1 How do first time users of STS-ml and STS-Tool come along with it?
E2-RQ2 How long does it take to learn using STS-ml and STS-Tool?
E2-RQ3 How usable are STS-ml and STS-Tool?
E2-RQ4 What scenarios cannot be expressed?
E2-RQ5 What are the missing concepts?
E2-RQ6 Which are the most difficult to understand/less useful concepts?
These questions were mapped to three evaluation criteria: (i) Learnability: how easy is it

for first-time users to accomplish basic tasks?; (ii) Usability of STS-ml; and (iii) Usability of
STS-Tool.

9.3.1 Experiment Design

In accordance with the objective of this evaluation, we recruited as participants students attend-
ing the M.Sc. courses in Requirements Engineering and Organisational Information Systems at
the University of Trento. Most of the participants had already some experience in security mod-
elling and goal-orientation, having adopted in the past languages and tools like SI* [Giorgini
et al., 2005a, 2006]. However, they were all method ignorant, i.e., none of them had previous
knowledge of STS-ml or STS-Tool, and for this we refer to them as novices. As far as do-
main knowledge is concerned, no predefined scenario was imposed on the students in order to
avoid learning effects, rather each student could choose a desired scenario (for which they had
previous knowledge, in order to maximize expertise about the application domain).

The evaluation workshop was organised in three parts: (i) training—two lectures of 90
minutes each took place to present STS-ml and STS-Tool, while having a hands-on experience
with the tool; (ii) modelling session of about 3 hours, during which groups of two students were
instructed to model their chosen scenario; and (iii) interviews with the lecturers on the overall
experience. The design is outlined in Figure 9.3, while details about this workshop are provided
in 3.

The training was video recorded so to provide online training material to other prospective
users. At the end of the training, participants were asked to fill out an online questionnaire 4,
which assessed their gained knowledge, their previous experience with modelling, their esti-
mation on the quality of the training, among others. This questionnaire was adopted from the

3http://disi.unitn.it/˜paja/pdf/WorkshopTrento2_FinalReport.pdf
4http://disi.unitn.it/˜paja/pdf/Post-tutorial-questionnaire-May2012.pdf

http://disi.unitn.it/~paja/pdf/WorkshopTrento2_FinalReport.pdf
http://disi.unitn.it/~paja/pdf/Post-tutorial-questionnaire-May2012.pdf

Evaluation with novices 195

questionnaire used during the formative user-centred evaluation and adjusted for the needs of
this second evaluation.

During the modelling phase, students were provided with supporting material: slides and tu-
torials on STS-ml and STS-Tool, and a cheat sheet summarising all concepts, relationships and
security needs. The experiment involved 36 participants, which were split in three rooms to per-
form the modelling in a quieter environment. Participants worked in groups of two mainly, with
the exception of some students working on their own. They were provided with blank papers to
note any eventual problems during modelling as well as missing concepts or relationships.

One observer and one method designer (lecturer) were present in each classroom. The
observer played an active role and took notes of the questions raised by the participants, their
behaviour (discussions, notes, use of training material, etc.), and the behaviour of the method
designers (reaction to questions, answering individually or towards all present participants, and
other general impressions). The lecturers, on the other hand, played a passive role so to avoid
influencing their modelling: they answered only to general questions on the assigned task and
on the features of the tool, and the responses were given to all the students (not only to the
student who made the question). No solution to the raised problems or doubts was provided.

After the modelling session students were asked to fill out a second online questionnaire 5,
which comprised the standardised Subjective Usability Scale (SUS) [Bangor et al., 2009] pro-
vided separately for the modelling language and the tool. The questionnaire included also open
questions regarding concepts students considered as difficult to understand or useless, as well
as questions on their overall impression of STS-ml and STS-Tool respectively.

The interview with the lecturers was organised following the results of the formative user-
centred evaluation on the importance of training, with the purpose of understanding the impres-
sions of the lectures along those of the participants (provided through the first online question-
naire). Lecturers were asked about their impressions of the training and modelling sessions,
whether students seemed motivated, whether they thought students could easily follow the lec-
tures or do the modelling task, which were the most critical problems following the generated
models and according to the questions that arouse. Finally, they were asked if there were any
things they would change and do differently in the future.

5http://disi.unitn.it/˜paja/pdf/Post-exercise-questionnaire-May2012.pdf

http://disi.unitn.it/~paja/pdf/Post-exercise-questionnaire-May2012.pdf

196 User-Oriented Empirical Evaluation

Figure 9.3: Experiment Design for the evaluation with novices

9.3.2 Results

Different evaluation methods were employed, including questionnaires, cards, observation, and
interviews with method designers to obtain results. We provide the results for each research
question:

(E2-RQ1) In the post-training questionnaire, more than 75% of the students provided correct
judgements for 8 of the 10 sentences and were sure about their decision. Observation showed
that the students immediately started to model, and that they mostly worked with their laptops,
i.e. no drawing or writing on paper (except for the evaluation). Students appeared to be very
concentrated, fine with their modelling, not desperate, confused or lost. Most of the students
used the provided tutorial material (slides, cheat sheet) at least once during the modelling ses-
sion.

(E1-RQ2) We cannot give a quantitative answer to this question. However, we can say that
after two lectures of 90 minutes each over STS-ml and STS-Tool respectively, students were
able to understand the basic concepts of STS-ml and STS-Tool.

Usability of STS-ml, (E2-RQ3), was measured using the SUS-Score, which was 64 for STS-
ml, indicating that the usability of the language was ok to good [Bangor et al., 2009; Sauro,
2011]. Participants perceived the language as simple to use, easy to learn, with intuitive con-
cepts, good expressiveness, and “powerful enough to describe complex relationships”. The
results of the questionnaire, observation and the interviews support this outcome. However, par-
ticipants also explicitly stated aspects (concepts) that are missing in STS-ml, such as softgoals.
As far as the understandability of the STS-ml concepts is concerned, participants encountered
difficulties in clearly understanding some concepts and security needs. For instance, the dis-
tinction between information and documents was not clear in a couple of cases. Moreover, the
security needs of non-repudiation and redundancy also caused some difficulties in understand-

Evaluation with novices 197

ing, particularly the difference between true redundancy and fallback redundancy.
Usability of STS-Tool, (E2-RQ3), was also measured using the SUS-Score, which was 68,

indicating that the usability of the tool is ok to good [Bangor et al., 2009] or good [Sauro, 2011].
Participants indicated that the amount of features supported by the tool is good, in particular
the inter-model consistency which automatically generates related content in the other models.
Furthermore, it was pointed out that using the tool is very intuitive and simple. However, there
are some missing features that could improve usability, such as keyboard shortcuts for certain
operations, and undo/redo/copy/paste functionalities on individual concepts/relationships in a
diagram. It was pointed out also that the label naming was too short and should be extended.
These were already known to us designers, but were limited in the face of constraints imposed
by the platform upon which STS-Tool builds.

(E2-RQ4) Participants explicitly stated aspects (concepts) that are missing in STS-ml, such
as softgoals and partial contributions.

(E2-RQ5) The results have not indicated any cases of scenarios that could not be modelled.
Only one respondent expressed concerns about the adequacy of the language for modelling
machine-automated processes; however, this is clearly out of the scope of STS-ml.

(E2-RQ6) Participants encountered difficulties in clearly understanding some concepts and
security needs. For instance, the distinction between information and documents was not clear
in two cases. Moreover, the redundancy security need also caused some difficulties in under-
standing, particularly the difference between true redundancy (R3, R5) and fallback redundancy
(R4, R6).

9.3.3 Conclusions and outlook

The outcomes of this second evaluation helped us improve usability issues in STS-ml and STS-
Tool, and provided useful feedback on the use of our approach as a didactic tool in higher
education.

Learnability is influenced by the amount of previous knowledge users have and by the qual-
ity of the training they receive. So, we consider previous experience as an important factor.
Most of the students had experience with organisational modelling and goal-oriented modelling,
while some were even experienced in security modelling. However, we identified also a nega-
tive effect on STS-ml, for many participants tended to compare it to the previous approaches.
Hence, we discarded all recommendations that aimed to complete the language with concepts
coming from these existing approaches that we deemed not useful, and for which no strong
justification was provided on their necessity. We however took this into account to improve our
training materials.

As far as training quality is concerned, the results of the first questionnaire showed that the
students were able to understand the basic concepts of STS-ml and STS-Tool. The participants

198 User-Oriented Empirical Evaluation

rated the quality of the training as good to very good, and the pace of the training as normal.
However, it was pointed out that the training could be improved by extending the timing of the
lecture on STS-ml, as well as by having a more interactive session (which was limited by the
video-recording).

Meanwhile, after the first workshop, we kept receiving feedback on new releases from the
practitioners involved in the first evaluation workshop. Their feedback was obtained either
through direct interactions in meetings or by providing us feedback via the bug-tracking system.
As a result, the successive improvements of STS-ml and STS-Tool took into consideration both
sources of feedback.

The problems encountered with regard to the usability of STS-ml and Tool were in a way
foreseen, especially those related to security needs. The problems that the students encountered
were about the security requirements that cannot be verified at design time (or can be partially
verified). Practitioners, on the contrary, did not encounter any trouble; our interpretation is that
the practitioners had significantly more expertise in security.

9.4 Final Evaluation

The final evaluation involved different types of subjects: M.Sc. and Ph.D. students at the Uni-
versity of Trento, as well as experienced domain experts (most of them were first presented with
STS-ml and STS-Tool during the formative user-centred evaluation and had used it ever since).
The objective was to provide an assessment of the adequacy of our methodology for conducting
security requirements engineering, after almost three years of development.

Research questions. We assess the adequacy of the methodology via the following ques-
tions:

E3-RQ1 How effective is the methodology in identifying security requirements?
E3-RQ2 How efficient is the methodology for modelling and analysing real-world

scenarios?
E3-RQ3 How easy to use is the methodology?
E3-RQ4 How useful is the methodology in identifying security requirements?
E3-RQ5 How willing are the participants to adopt the methodology?

9.4.1 Experiment Design

Participants of the experiment were composed of two family of users, namely students and
practitioners. The first participants were M.Sc. or PhD students attending the Organisational
Systems Engineering course at the University of Trento. The students had no previous knowl-
edge of the methodology, however they were experienced in other goal-oriented methodologies.

Final Evaluation 199

As far as domain knowledge is concerned, again students chose a scenario from a domain they
knew quite well (this was done beforehand, not on the spot during the evaluation activity). The
group of practitioners consisted of the participants playing end-users in the first evaluation, and
some other colleagues that learned the methodology as part of the Aniketos project. As such,
a comprehensive overall training was not conducted for practitioners, instead updated material
and a presentation showing the updates on the current version of the methodology was made.

Practitioners had autonomously, and as part of their daily activities used the methodology
to model scenarios/case studies from their domain of expertise (see Figure 9.4). We had prac-
titioners from the three domains of air traffic control management, telecommunications, and
eGovernement, who had used the different versions of the methodology, language and tool over
the past three years. Thus, we can say that practitioners had both good method knowledge and
good domain knowledge.

In total, 30 students and 14 practitioners participated.
As far as the protocol followed with the students is concerned (see Figure 9.4), it included

extensive training as suggested by the outcomes of the second evaluation: (i) training was
organised so to provide more time to present the language, and give students time to understand
the newly introduced concepts; discussion took place to clarify doubts and determine their
acquired knowledge; (ii) a hands-on tutorial of STS-Tool followed, and students were asked to
use the tool on small examples within a few days; (iii) a session was organised to discuss doubts
and identified problems after their small modelling exercises. Most students had performed
the modelling before of this session, others continued modelling in class too; (iv) the actual
modelling session took place.

In the end, we asked both the students and practitioners to answer an online questionnaire 6

(see Figure 9.4) comprising questions for each and every aspect of the methodology, its per-
ceived ease of use, perceived usefulness, and intention to adopt. The questionnaire was designed
following the Method Evaluation Model [Moody, 2003] to assess all of these aspects.

6http://disi.unitn.it/˜paja/pdf/STSEvaluationQuestionnaireMay2013.pdf

http://disi.unitn.it/~paja/pdf/STS Evaluation Questionnaire May 2013.pdf

200 User-Oriented Empirical Evaluation

Figure 9.4: Experiment design for the final evaluation with students and experienced practitioners

9.4.2 Results

We analysed the produced models and the feedback provided through the questionnaire to derive
results for each research question:

(E3-RQ1) All users report the methodology—particularly the method and language—to be
effective in capturing all important security requirements for their given setting. While students
confirm the adequacy/exhaustiveness of the supported security requirements, domain experts
suggest a number of extensions. Their suggestions appeared useful for domain-specific variants
of the methodology, but not generalizable to all domains.

(E3-RQ2) The methodology is considered efficient in ensuring model validity and reducing
the effort of modelling and analysis large real-world scenarios, supported by STS methodology
and STS-Tool.

(E3-RQ3) Almost all practitioners find the methodology easy to use, while 20% of the stu-
dents did not take a stance.

(E3-RQ4) In general, the methodology was considered useful by practitioners (in particular
the method, the reasoning capabilities of the tool and information provided to the users).

(E3-RQ5) All but one practitioner (who was not sure about adoption) expressed their inten-
tion to adopt the methodology for security requirements engineering. The results from students’
answers show more reluctance in their decision, with about 50% choosing “difficult to say”.
However, when they were asked to confirm their intention for not adopting the methodology,
80% of them disagreed.

9.4.3 Conclusions and outlook

The experience in modelling heterogeneous case studies has proven useful in developing and
improving our methodology. Following users feedback (the ones adopting the methodology),

Discussion and threats to validity 201

the STS methodology facilitates the modelling process. Most users find the reasoning quite
useful and informative to then improve STS-ml models. The visualisation of errors and the
security requirements document facilitates the communication with stakeholders.

The feedback has been quite positive in terms of the adequacy of the methodology to model
the case studies and application domains. The features supported by the methodology and tool,
such as multi-view modelling (having three different sub models of the same model: social,
information, and authorisation) appear to ease the modelling process.

However there is still place for improvement especially with respect to usability issues,
reported also in the previous evaluation activity, which could not be addressed in the current
platform. These are mostly issues related to the toolset, not the conceptual work behind the
methodology which is quite stable by now. Nevertheless, the new version of STS-Tool has
considerably improved usability issues. The current version of the tool, 2.0, builds on top of
EMF as opposed to the previous one (v1.3.3), which was built on top of GMF framework, and
supports already undo/redo/copy/paste shortcuts that facilitate the work of the modellers.

9.5 Discussion and threats to validity

Apart from the general feedback on the methodology, each experiment had a different purpose,
and the heterogeneity of the participants provided evidence concerning both the applicability of
the methodology in practice, and its usage for teaching.

We have identified interesting outcomes and have received quite useful feedback to itera-
tively improve the methodology. The current version of the methodology is indeed the result
of such an iterative and incremental evaluation process. However, some issues are still to be
addressed.

First, practitioners have reported that modelling scalability—supporting models with hun-
dreds of actors—is to be improved in our methodology. As a matter of fact, this is a common
limitation of many model-based approaches, especially goal-oriented methods. We have con-
siderably improved scalability by separating concerns (building three different models—social,
information, and authorisation), offering the possibility to hide details within an actors’ ratio-
nale and zoom in on others. However, more work needs to be done to offer the flexibility that
practitioners demand. One way to tackle this, would be perhaps to have a many-to-many inter-
connection besides the one-to-one interconnection among the sub models of an STS-ml model,
in order to support several scenarios of the same case study at once.

Second, practitioners consider time or sequencing information an important factor in read-
ing/interpreting the models. Considering the procedural perspective goes beyond the purpose
of our methodology, which lies at a higher level of abstraction, and aims to understand “why”
[Yu and Mylopoulos, 1994] security requirements exist. However, the raised concern has to be

202 User-Oriented Empirical Evaluation

addressed in the future, so to better link the language with process modelling languages.
The presented evaluation activities suffer from some threats to validity.
Internal validity: the selection process involved mainly subjects that were in our professional

network; moreover, some of the subjects gained knowledge of the methodology over time, and
their opinions and experience are thus affected by this factor.

Construct validity: our evaluation suffers from the so-called mono-method bias, i.e., the
subjects were treated only with our method: further work involves conducting controlled exper-
iments that compare our methodology to others.

External validity: due to time limitations, the modellers have mainly used small- or medium-
sized examples. However, the practitioners have gained experience with large-scale models
outside the context of the experiment.

Finally, the sample of subjects is not a perfect representative of the population, the results
cannot be easily generalized.

One of the evidences in the reported feedback is that users need to be trained through either
workshops or online training materials. Otherwise, their experience shows a tendency of learn-
by-doing due to lack of time in consulting the accompanying extensive documentation.

9.6 Chapter Summary

In this chapter, we presented the evaluation activities conducted with end-users over time, since
the first proposal of the methodology, modelling language and tool till now. Each activity
has provided useful insights and feedback to improve these three components of this thesis
throughout their development.

One of the major challenges we faced and addressed throughout this process has been that
of presenting the language to an audience with different backgrounds, mainly non-professional
modellers, and getting feedback from them. Additionally, the shift to goal-orientation for prac-
titioners already proficient with other modelling practices such as UML, BPMN, etc., appears
to be a real shift of mind. Nonetheless, throughout the various interactions we have achieved
the goal of making the distinction clear, and explaining for what STS methodology is meant.

Chapter 10

Discussion, Conclusions and Future work

10.1 Fulfillment of success criteria

We discuss how the proposed methodology and evaluation activities presented in the previous
chapters have contributed to the fulfillment of the success criteria presented in Section 1.3.

Table 10.1: Fulfilment of success criteria via evaluation activities

Methodology Language Analysis

SC1.1 SC1.2 SC1.3 SC2.1 SC2.2 SC2.3 SC3.1 SC3.2 SC3.3

(E1) Self-
evaluation study

done done done done

(E2) Case study done done done done

(E3) Empirical
study

partially done done partially

(E4) Formal
semantics

done done partially done

(E5) Scalability
study

done

204 Discussion, Conclusions and Future work

Table 10.1 summarizes the fulfillment of the defined success criteria by the evaluation activ-
ities discussed in Section 1.3. In this table, done and partially mean that the evaluation activity
has fully or partially met the success criteria, respectively.

In the following, we discuss in more detail how each and every artefact produced by this
work, namely methodology, language, and analysis, addresses the research questions that have
guided this research work. Each artefact corresponds to one research question, the fulfillment
of which is verified with the fulfillment of the corresponding success criteria.

STS Methodology. Addressing RQ1:

SC1.1 Able to conduct modelling and analysis activities in few steps. We have verified the fulfill-
ment this success criteria by carrying out two evaluation activities, namely Self-evaluation
study (E1), and Case study (E2). Moreover, the definition of formal semantics (E4) For-
mal semantics has contributed to the fulfillment of this success criteria with respect to
conducting automated analysis, while (E3) Empirical study has partially fulfilled SC1.1.
More specifically:

– We have performed a self-evaluation study conducting modelling and analysis activ-
ities to build an STS-ml model following the steps of the STS process for a collab-
orative project in Trentino, focusing on a particular scenario, namely tax collection
(details in Section 8.1). Modelling and analysis activities were conducted in few
steps (with a maximum of two rounds of iterations), however, we do acknowledge
that this might be related to the size of the considered scenario.

– We have analysed two case studies developed by practitioners, who have built STS-
ml models from two domains, namely eGovernment (Section 8.3.1) and Air Traf-
fic Control Management (Section 8.3.3) respectively, showing the application of the
modelling and analysis steps, while presenting the interpretations of the results by
practitioners (domain experts). Notably, this evaluation activity is considered to ful-
fil SC1.1, for the involved practitioners were happy with the constructed models and
the obtained results.

– We have ascribed formal semantics (Section 6.1) to the constructs of STS-ml to sup-
port the automated analysis activities of the STS methodology. Automated analysis
is mainly supported by the STS-Tool, which allows security requirements engineers
to run automated analysis leaving transparent all technical details, while providing
useful information for all identified breaches and potential problems.

– We have continuously conducted empirical studies with both students and practi-
tioners, as reported in Chapter 9. We say that this activity partially fulfills SC1.1,
given that in the process we have worked with bigger case studies, not necessarily

Fulfillment of success criteria 205

focusing on particular scenarios. Dealing with the overall case study highlights the
need (already considered by the STS methodology) for an iterative and incremental
approach to completing the modelling and analysis activities. As such, these activ-
ities are conducted in few steps for given scenarios, but need to be followed over
various rounds (iterations of the STS process) for the overall case study (comprising
more scenarios). Thus, we determine that this evaluation activity partially fulfills this
success criteria.

SC1.2 Applicable to different domains, and different socio-technical systems. This success cri-
teria is important to prove the generality of the proposed methodology, which should
support the modelling of various socio-technical systems, and capturing different security
requirements types, while offering good coverage for different domains.

– The conducted self-evaluation, (E1) Self-evaluation study, and the case study ap-
proach, (E2) Case study, show the applicability of the methodology to different do-
mains, namely tax collection, eGovernment and land buying, and Air Traffic Man-
agement control. Details about the various scenarios and case studies, which are
from different domains, are discussed in Chapter 8.

– We have conducted a series of empirical studies, (E3) Empirical study, which ful-
fil this criteria by having end-users (practitioners, and students playing end-users)
follow the process supported by the STS methodology on a variety of domains. In
particular, leaving the students explore domains of their choice opens up to the appli-
cation of the methodology to a myriad of socio-technical systems and domains, see
Chapter 9.

SC1.3 Usable by both researchers and practitioners. It is important that the methodology finds
applicability not only among researchers, but also among practitioners. This adoption is
important to understand the limitations of the methodology when applied to real settings,
to then guide further improvements. We have fulfilled this success criteria by running a
series of empirical studies with both practitioners (actual end-users) and M.Sc. and PhD
students (playing end-users) as part of (E3) Empirical study. The analysis and results
reported in Chapter 9, and especially in Section 9.4, demonstrate not only the applica-
tion of the methodology by both types of end-users, but also their intention to adopt the
methodology to conduct security requirements engineering.

STS-ml Modelling Language. Addressing RQ2:

SC2.1 Able to capture stakeholders’security requirements (starting from security needs) along
system and stakeholders’requirements. This criteria is fulfilled through the self-evaluation

206 Discussion, Conclusions and Future work

(E1), case study approach (E2) and the empirical studies (E3), through which we apply
the STS-ml language constructs for the modelling of different socio-technical systems
from various domains, while capturing security and stakeholders’ requirements. We re-
fer to system and stakeholder requirements as actor’s business policy (see Section 6.2.1),
while the supported security requirements are derived by capturing stakeholders’ needs
with respect to security (details reported in Chapter 4).

SC2.2 In line with the terminology in international security standards. We have proposed a tax-
onomy of security requirements types inspired by international security standards, namely
ISO-27002 [ISO/IEC, 2005], see Section 4.5. The evaluation activities E1, E2, and E3,
have each contributed to fulfilling this success criteria, for they have allowed us to interact
with domain experts and practitioners, who have provided feedback on the need for ex-
pressing certain security requirements, while being in line with international standards for
security. Details about this feedback are provided in Chapter 8 and Chapter 9. However,
we consider this success criteria to be partially satisfied by the empirical studies, because
we consider that a full satisfaction/fulfillment of the criteria can be reached when a com-
pliance process is defined and/or certification or standardisation efforts are made. For now
this is left as future work.

SC2.3 Equipped with a formal semantics. We have provided a formal semantics for the con-
structs of STS-ml in Chapter 6, as part of (E4) Formal semantics.

Automated Analysis. Addressing RQ3:

SC3.1 The definition of a set of properties to be verified over security requirements models.
We provide a formal semantics for STS-ml in Section 6.1, where we present the formal
framework that allows the verification of a set of properties over STS-ml requirements
models. Such verification is guided by the following questions: (i) Is the model well-
formed?, (ii) Are there any security requirements conflicts? (Section 6.2.1), (iii) Are there
any violations of security requirements? (Section 6.2.1), and (iv) What is the impact of
events threatening stakeholders’ assets? (Section 6.2.2). The formal framework allows to
perform the verification of properties at design time, however, several STS-ml supported
security requirements can be verified only at run-time, when the system is operating.
Therefore, we consider this success criteria to be partially satisfied. Run-time verification
and monitoring, which requires a different type of reasoning approach, is left as future
work.

SC3.2 Automated analysis for conflict identification (with tool support). We have integrated and
implemented the formal framework, proposed in Section 6.1, into STS-Tool (see Chap-

Conclusions 207

ter 7). The formal framework supports among others, conflict identification, described in
detail in Section 6.2.1.

SC3.3 Analysis results are provided in acceptable time. We have fulfilled this success criteria by
conducting a scalability study as part of E5, see Section 8.2. The reported results show
the efficiency of the automated analysis, especially with respect to the model size.

10.2 Conclusions

Security has been a hot topic in software engineering and system development for over a decade
[Devanbu and Stubblebine, 2000; Giorgini et al., 2003]. Dealing with security issues is cru-
cial, since security violations may result in legal infringement, monetary sanctions, and loss of
reputation, resulting in loss of market value of threatened organisations. The socio-technical
perspective opens up new challenges for software engineers when dealing with security. The
threats analysts need to consider are not only technical, but also social. Analysts must consider
the underlying business policies of an organisation. Security is often an afterthought in the
development of systems [Mouratidis and Giorgini, 2007b; Anderson, 2008; Johnstone, 2009],
resulting in expensive and challenging after-the-fact fixes, when security incidents occur, given
that solutions need to be integrated into the architecture of already running systems.

We have proposed a security requirements engineering methodology for the design of secure
socio-technical systems, namely STS, to specify secure socio-technical systems. Key features
of STS are: (i) analysing the problem domain in terms of both social and technical aspects, and
(ii) relating security requirements to the interactions among the actors in the socio-technical
system.

In the following, we summarise the contributions made by this thesis.

STS Methodology. The methodology integrates with existing security requirements engineer-
ing methodologies, refer to Chapter 2 for an overview. Most mainstream approaches to security
requirements engineering do not take into account social aspects, focusing strictly on technical
mechanisms. Goal-oriented approaches, on the other hand, recognize the importance of con-
sidering security from a social and organisational perspective. Despite their advantages, goal-
oriented approaches have several limitations when applied to security requirements engineering:
(i) security requirements are expressed at a very high level of abstraction making them difficult
to operationalise to technical requirements for the system-to-be, (ii) information is not treated as
a first-class citizen, and (iii) their underlying ontologies are not expressive enough to effectively
represent real-world security requirements. STS takes advantage of social and organisational
approaches, modelling a socio-technical system in terms of goal-oriented actors that play dif-
ferent organisational roles and interact to fulfil their objectives. Specifically, STS addresses

208 Discussion, Conclusions and Future work

the limitations of previous approaches by: (i) relating security to interaction and recognising
the importance of considering social and organisational threats, not strictly technical ones; (ii)
giving information its rightful place, as a first-class citizen, when dealing with information se-
curity; and (iii) separating responsibility uptake from information and permission/prohibition
flow, which yields to a rich set of security requirements types from six categories, namely con-
fidentiality, integrity, availability, reliability, authentication, and accountability.

The STS methodology covers the entire security requirements engineering phase, starting
from the elicitation of stakeholders’ needs, their representation in models, their analysis, un-
til the specification of the security requirements for the system to-be. It supports over thirty
security requirement types that address a variety of security aspects (see Figure 4.18).

This high expressiveness is ensured by clearly distinguishing actors intentional and informa-
tional assets, keeping track of information ownership and the needs actors impose on the usage
and manipulation of their information (via authorisations), apart from considering security is-
sues over actors interactions.

The iterative and incremental nature of the STS methodology makes it appropriate for the
specification of secure socio-technical systems from initial design, but also for the analysis
of existing systems. In the latter case, the methodology could be applied to reverse engineer
existing systems, in order to understand the underlying security policies. This is particularly
useful in scenarios such as the migration of data or the merging/fusion of companies and their
information systems.

Modelling language. The STS methodology starts with the elicitation of stakeholders needs
with respect to security to then finally derive the security requirements specification for the
system-to-be. To do so, STS relies on the creation of security requirements models on the STS-
ml language [Dalpiaz et al., 2011]. STS-ml models represent the stakeholders in the socio-
technical system together with their assets (to be protected), their expressed security needs
concerning assets, and the threats affecting these assets.

STS-ml was designed following a set of principles that, firstly, reflect the challenges faced
in specifying secure socio-technical systems, and secondly, respect properties for general mod-
elling languages. Modelling with STS-ml is based upon high-level representation of assets,
modelling actors’ goals, information, and documents. STS-ml clearly distinguishes informa-
tion from its representation (in terms of documents), and keeps track of information structure
and permissions granted or prohibitions specified over the use of information. This allows STS-
ml to consider information as a first-class citizen (goals and documents are considered relevant
from a security point of view because of the information they use and represent, respectively)
when dealing with information security, and at the same time support a rich set of security
requirements types.

Conclusions 209

Formal framework supporting automated analysis. We have proposed a descriptive formal
framework that presents the semantics of STS-ml and enables automated analysis. We pre-
sented three analysis techniques: (i) validity checking, to determine model validity, (ii) security
analysis, to identify conflicts among security requirements and among staheloders’ business
policies and security requirements, and (iii) threat analysis, to identify the impact of events
on stakeholders’ assets. In particular, we have used Disjunctive Datalog to define the formal
semantics of the STS-ml modelling language and the supported security requirements types to
identify potential violations of security requirements (as a result of conflicts).

Requirements modelling and analysis support framework, STS-Tool. The modelling and analy-
sis activities of requirements engineers and analysts are supported by the STS-Tool. The STS-
Tool provides a graphical interface for creating STS-ml models through three different views:
social, information, and authorisation view. Multi-view modelling leads to the construction
of three corresponding (sub)models of the said STS-ml model, namely social model, informa-
tion model, and authorisation model. The tool supports inter-model consistency by allowing for
well-formedness checks on the fly, ensuring the models comply with the syntax of the modelling
language.

The STS-Tool provides analysis capabilities by integrating the formal framework for STS-
ml. Security analysis is implemented in Disjunctive Datalog and the DLV Engine is integrated
in the STS-Tool to support this analysis. The created STS-ml models are automatically mapped
to formal specifications in order to allow reasoning. Once the results are produced, the opposite
mapping is performed to visualise the findings of the analysis over the models and provide
detailed analysis results to the security requirements engineer.

Self-evaluation and case study evaluation. We have shown the applicability of STS methodol-
ogy to different domains with the help of an application scenario, namely TasLab, and two dis-
tinct case studies, namely eGovernment and Air Traffic Management. In particular, the method-
ology has been extensively used in the context of the European project Aniketos. Apart from our
own validation (self-evaluation) conducting modelling and analysis activities with the applica-
tion scenario, we have reported on the experience of practitioners in applying STS methodology
on two the case studies. From our validation and that of the practitioners, the methodology has
proved useful in modelling and reasoning over security requirements in the various application
domains. Finally, with the help of a scalability study, we demonstrated the efficiency of our
reasoning techniques in identifying security requirements conflicts. We used the TasLab case
study for the scalability experiments, however, any of the case studies could have been used.

210 Discussion, Conclusions and Future work

User-oriented empirical evaluation of the approach. We have evaluated the STS methodology,
STS-ml modelling language and the modelling and analysis tool, STS-Tool, through a series of
user-oriented empirical studies. STS is the result of ongoing work and an iterative development
process that included several evaluation activities involving both practitioners and M.Sc. and
PhD students. Working with different groups of users, especially with practitioners, has given
us the chance to investigate how modellers use STS-ml and STS-Tool in real settings. The ad-
vantage of the STS methodology is that it provides a guideline for the requirements analyst and
the security engineer for building the different models and capturing the applicable security re-
quirements. The iterative nature of the methodology reflects the way practitioners work, which
is decidedly iterative, with several iterations taking place, particularly during modelling. The
number of revisions, however, varies from practitioner to practitioner.

We have observed a tendency of learning by doing, i.e., jumping into modelling phases
without first knowing STS-ml and STS-Tool. This tendency has influenced some of the results
presented in Chapter 9, given that the use of the STS methodology while modelling and rea-
soning with STS-ml and STS-Tool, requires extensive training. Nonetheless, this is not to be
considered as a limitation of the methodology, rather it emphasizes the need for training, par-
ticularly for those new to goal-orientation. It is therefore important to help users understand the
importance of either learning (given the extensive documentation on the STS website) or train-
ing activities, along with efforts to reduce their learning struggles. This suggests an important
direction for future research, that of reducing the learning curve for STS-ml, e.g., by introduc-
ing self-learning mechanisms or step-by-step guidelines to acquire knowledge and skills for
particular activities on-demand.

10.3 Ongoing and future work

While the STS methodology, STS-ml and STS-Tool are quite mature, several future directions
remain open.

On the interplay with trust. Trust and security are closely related. In fact, a comprehensive se-
curity requirements engineering process requires a consideration of trust properties along with
security properties that the system-to-be should satisfy. In [Chopra et al., 2011; Paja et al.,
2013a] we have proposed a conceptual model for architectural trust that specifies a socio-
technical system in terms of trust relationships. The model considers trust relationships to
be essential in establishing interactions between the participants of a socio-technical system.
The proposed approach to designing trustworthy socio-technical systems is commitment-based
[Singh, 1999]. Commitments are used in the model as a warranty to create a more robust
architecture of the system-to-be with respect to trust. Exploiting this concept, we have pro-

Ongoing and future work 211

posed to iteratively specify a more trustworthy socio-technical system through a series of trust
supporting mechanisms. The definition of trust supporting mechanisms relies on patterns of
trust [Singh et al., 2009; Chopra and Singh, 2011], such as mutualTrust, renegotiate, compen-
sate, and revert. The intuition behind introducing the trust supporting mechanisms (through a
supports relationship) is exception-handling. If there is a supporting trust relation for a particu-
lar trust relationship, then exceptions pertaining to the latter can potentially be handled within
the system itself. In the absence of a supports relationship, the exception would have to be dealt
with outside the system. In [Paja et al., 2013a], we have presented a methodology to guide
the specification of a socio-technical system in terms of trust relationships starting from a set
of stakeholder requirements. Besides the requirements themselves, the methodology relies on
domain knowledge in order to come up with the supports relationships.

The establishment of trust relationships has an effect on the security needs that stakeholders
have when participating in interactions, in particular when exchanging information. Therefore,
we want to enrich STS-ml with more specific trust requirements, and perform the mapping of
the security and trust requirements from STS-ml to the architectural trust model. As such, the
next step will be to define this mapping, together with some simulations to evaluate eventual
designs that meet the given security and trust requirements. We will provide a clear semantics
for the mechanisms, and perform reasoning to identify trust characteristics over models, eval-
uating the impact of applying more mechanisms and possible conflicts. Mapping security and
trust specifications to trust supporting mechanisms is necessary, in order to take these specifica-
tions into account before the design is defined. The designer might complement stakeholders’
requirements, adding missing information, which might be domain-specific.

Cost Estimation and relation to Cognitive Trust: building a trustworthy socio-technical sys-
tem by introducing a number of trust supporting mechanisms can be expensive. We need to
evaluate the cost of introducing these mechanisms, and when the benefits outweigh the costs.
Perhaps, taking into account cognitive trust—referring to actors’ mental models of each other
[Castelfranchi and Tan, 2002]— will help in the process. Ideally, if two parties trust each other,
they might not need trust supporting mechanisms to enter interactions, lowering the cost of an
interaction. We want to explore how cognitive trust may influence the architectural design, and
vice versa, how a good architectural trust model may influence cognitive trust.

Assessing privacy and analysing privacy requirements. STS supports privacy as confidentiality,
by expressing security requirements concerning the use and manipulation of information by
other parties. Although expressive in terms of security requirements it supports, our approach
does not support other types of privacy requirements, such as privacy as control or privacy as
practice [Gürses et al., 2010; Berendt, 2012]. As such, an interesting direction would be to
extend STS-ml with other types of privacy requirements.

212 Discussion, Conclusions and Future work

In light of these ideas, we have initiated work in collaboration with Professor Travis Breaux
at Carnegie Mellon University, on using the STS methodology and extending STS-ml to capture
stakeholders’ privacy requirements when using mobile applications and participating in social
networks. Specifically, we have conduced a user study in order to identify stakeholders’ privacy
requirements when interacting within a system, including how privacy requirements change
with respect to time and space, as well as considering how stakeholders’ needs with respect
to privacy evolve when provided more information about the implications of their actions on
privacy.

Conducting comparative evaluation study. We reported on our experience about the evaluation
of the STS methodology with practitioners and M.Sc. and PhD students. However, we have not
yet conducted a comparative study to evaluate the effectiveness of the STS methodology with
respect to other security requirements engineering methodologies, such as, for instance, Secure
Tropos. We intend to conduct a controlled experiment in the near future to help us determine
the effectiveness and perception of the STS methodology as in [Labunets et al., 2013].

Informing later phases. Another interesting future direction involves exploring how STS-ml
can inform later phases for the design of secure socio-technical systems, such as, for instance,
the definition of access control policies. This will require mapping the security requirements
specification derived from the process followed by the STS methodology to specification policy
languages, e.g., XACML. We are currently working, in collaboration with Nicola Zannone, to-
wards extending STS-ml with other organisational relationships among actors which introduce
hierarchies and authority. These new relationships are necessary to apply policy-combining al-
gorithms supported by XACML to help eliminate some of the conflicts detected by our current
automated analysis techniques.

Optimising reasoning techniques. We intend to devise further analysis techniques for more so-
phisticated reasoning. In particular, efforts will be dedicated to further optimizing reasoning
techniques by: (i) checking whether there is a variant in which there is no conflict, and check-
ing whether there is one variant in which there is a conflict for a given security requirement, in
order to avoid generating all possible variants; and (ii) setting priorities among security require-
ments according to their severity in order to eliminate some of the possible conflicts [Liaskos
et al., 2010, 2011]. Last, but not least, we will explore techniques for conflict resolution [van
Lamsweerde et al., 1998; Elahi and Yu, 2007].

Improving STS-Tool. The future developments envisaged in the previous paragraphs will have
an impact on STS-Tool. Ongoing work includes: (i) the development of a new version of STS-

Future Lines of Research 213

Tool with improved usability, and (ii) the possibility to have multiple models of the same type,
e.g., three social models drawn by different analysts, in order to further promote separation of
concerns and modularity during the modelling process. Most importantly, a future development
of STS-Tool includes getting certified according to international security standards, such as, for
instance, ISO27002 or ISO15408 (Common Criteria). Such a process requires a comprehensible
documentation of the software product, including a detailed threat analysis [Beckers et al.,
2013]. This step is important for the industrial uptake of STS-Tool from companies other than
those we collaborated within the context of EU Funded Projects.

10.4 Future Lines of Research

Apart from ongoing and future work that aims to make STS more comprehensive and complete,
the work reported in this thesis opens up new lines of research.

Secure evolution and adaptation. Socio-technical systems are continuously evolving due to
various possible changes: (i) system and subsystems changes, (ii) organizational and domain
changes, (iii) normative and regulations changes, and (iii) assets and requirements changes.
Any of these changes might affect the ability of the socio-technical system to satisfy its in-
tended requirements, and in particular the specified security requirements. Considering this
evolving nature of socio-technical systems and the importance of dealing with security already
at requirements time, we envisage, as part of this line of research, to:

• Advance current security requirements engineering techniques in order to manage the
effects of evolution of socio-technical systems to maintain compliance with security re-
quirements.

• Exploit and explore secure adaptation as a means of preserving compliance with secu-
rity requirements. Threats to security requirements or properties will be considered as a
trigger to adaptation. One interesting direction of research is that of investigating domain
variability into STS-ml models through the use of awareness requirements [Silva Souza
et al., 2011] and context-based mechanisms [Ali et al., 2009; Dalpiaz et al., 2013b].

Reverse engineering. Security requirements engineering methodologies are typically used to
analyse a system-to-be, to then derive security requirements for the to-be system, assuming that
there is no system already operating or that there is going to be a new version of the existing
system. However, often it is the case that socio-technical systems are already working, but they
might undergo changes or evolution. For instance, an emerging new technology such as the

214 Discussion, Conclusions and Future work

cloud, has led many organizations to migrate their data to the cloud. On the other hand, orga-
nizational changes, such as fusion of companies and their information systems, might have an
impact on security, which remains a desired property of the system. But, if we are dealing with
an already running system, “how do we establish what were the initial security requirements for
the said socio-technical system?” in order to maintain compliance with existing requirements.

Improving the learning curve for STS-ml. The proposed modelling language suffers from well-
known goal-modelling limitations, such as scalability and the learning curve. In light of the
results of the conducted evaluation activities, an interesting line of research is related to making
efforts for dealing with scalability and reducing the learning curve for goal-oriented modelling
languages. The idea would be that of starting with STS-ml, and making efforts about improving
(reducing) the cognitive scalability, providing step by step guidelines, as well as pattern-based
modelling to foster reuse. Such efforts should ideally have an impact not only on STS-ml,
but also on other goal-oriented and model-driven approaches. Most importantly, they should
contribute to improving the industrial uptake of goal-oriented modelling languages.

Serious games. Many areas of software development do not necessarily follow software engi-
neering practices. One such area is game production, and in particular serious games, which
might benefit from requirements engineering techniques to better capture the functional, non-
functional, and other desired requirements a given game should satisfy. A variant of STS could
be used for this purpose, for which we envisage the extension of STS, in particular STS-ml,
with other requirements such as emotional requirements, which are essential to the assessment
of a produced game. The STS approach would be applicable to such domain since a running
game can be seen as a socio-technical system consisting of the game itself, its users, and the
interactions among them. Following a requirements engineering approach will help the devel-
opment of games that reflect not only functional requirements, but also users’ needs resulting
in other types of requirements.

Bibliography

Common Criteria for Information Technology Security Evaluation. Technical report, COMMON CRI-
TERIA, September 2012.

COBIT 5 for Information Security. Technical report, ISACA, 2012.

Albert, Cecilia and Dorofee, Audrey J. Octave criteria, version 2.0. 2001.

Ali, Raian; Dalpiaz, Fabiano, and Giorgini, Paolo. A goal modeling framework for self-contextualizable
software. In Enterprise, Business-Process and Information Systems Modeling, pages 326–338.
Springer, 2009.

Anderson, Ross. Security engineering: A guide to building dependable distributed systems. Wiley, April
2008. ISBN 978-0-470-06852-6.

Appari, Ajit and Johnson, M Eric. Information security and privacy in healthcare: current state of
research. International journal of Internet and enterprise management, 6(4):279–314, 2010.

Ashley, Paul; Hada, Satoshi; Karjoth, Günter; Powers, Calvin, and Schunter, Matthias. Enterprise privacy
authorization language (epal 1.2). Submission to W3C, 2003.

Asnar, Yudistira; Paja, Elda, and Mylopoulos, John. Modeling design patterns with description logics:
a case study. In Proceedings of the 23rd International Conference on Advanced Information Systems
Engineering, volume 6741 of LNCS, pages 169–183, 2011.

Bangor, Aaron; Kortum, Philip, and Miller, James. Determining what individual sus scores mean: adding
an adjective rating scale. Journal of Usability Studies, 4(3):114–123, May 2009.

Basin, David; Clavel, Manuel, and Egea, Marina. A decade of model-driven security. In Proceedings of
the 16th ACM symposium on Access control models and technologies, pages 1–10. ACM, 2011.

Baxter, Gordon and Sommerville, Ian. Socio-technical systems: From design methods to systems engi-
neering. Interacting with Computers, 23(1):4–17, 2011.

Becker, Moritz Y; Fournet, Cédric, and Gordon, Andrew D. Secpal: Design and semantics of a decen-
tralized authorization language. Journal of Computer Security, 18(4):619–665, 2010.

216 Bibliography

Beckers, Kristian. Comparing privacy requirements engineering approaches. In 2012 Seventh Interna-
tional Conference on Availability, Reliability and Security (ARES), pages 574–581. IEEE, 2012.

Beckers, Kristian; Hatebur, Denis, and Heisel, Maritta. A problem-based threat analysis in compliance
with common criteria. In Availability, Reliability and Security (ARES), 2013 Eighth International
Conference on, pages 111–120. IEEE, 2013.

Berendt, Bettina. More than modelling and hiding: towards a comprehensive view of web mining and
privacy. Data Mining and Knowledge Discovery, 24(3):697–737, 2012.

Breaux, Travis D. and Antón, Annie I. Analyzing Regulatory Rules for Privacy and Security Require-
ments. IEEE Transactions on Software Engineering, 34(1):5 –20, 2008. ISSN 0098-5589. doi:
10.1109/TSE.2007.70746.

Bresciani, Paolo; Perini, Anna; Giorgini, Paolo; Giunchiglia, Fausto, and Mylopoulos, John. Tropos: an
agent-oriented software development methodology. Autonomous Agents and Multi-Agent Systems, 8
(3):203–236, May 2004.

Brucker, Achim D.; Doser, Jürgen, and Wolff, Burkhart. A model transformation semantics and analysis
methodology for secureuml. In Proceedings of the 9th International Conference on Model Driven
Engineering Languages and Systems, volume 4199 of LNCS, pages 306–320, 2006.

Butch, Suzanne H. Computerization in the transfusion service. Vox sanguinis, 83(s1):105–110, 2002.

Cardoso, Evellin; Almeida, João Paulo A.; Guizzardi, Renata S.S., and Guizzardi, Giancarlo. A method
for eliciting goals for business process models based on non-functional requirements catalogues. In-
ternational Journal of Information System Modeling and Design, 2(2):1–18, 2011.

Castelfranchi, Cristiano and Tan, Yao-Hua. The role of trust and deception in virtual societies. Interna-
tional Journal of Electronic Commerce, 6(3):55–70, 2002.

Chopra, Amit K. and Singh, Munindar P. Specifying and applying commitment-based business patterns.
In Proceedings of the 10th International Conference on Autonomous Agents and Multi-Agent Systems,
pages 475–482. IFAAMAS, 2011.

Chopra, Amit K.; Paja, Elda, and Giorgini, Paolo. Sociotechnical trust: An architectural approach. In
Proceedings of 30th International Conference on Conceptual Modeling, pages 104–117, 2011.

Colwill, Carl. Human factors in information security: The insider threat–who can you trust these days?
Information security technical report, 14(4):186–196, 2009.

Constante, Elisa; Paci, Federica, and Zannone, Nicola. Privacy-aware web service composition and
ranking. In 20th International Conference on Web Services, pages 131–138. IEEE, 2013.

Bibliography 217

Cranor, Lorrie; Langheinrich, Marc; Marchiori, Massimo; Presler-Marshall, Martin, and Reagle, Joseph.
The platform for privacy preferences 1.0 (p3p1.0) specification. URL http://www.w3.org/TR/

P3P/.

Dalpiaz, Fabiano; Ali, Raian; Asnar, Yudistira; Bryl, Volha, and Giorgini, Paolo. Applying tropos to
socio-technical system design and runtime configuration. In Proceedings of the 9th Workshop on
Objects and Agents, pages 101–107, 2008.

Dalpiaz, Fabiano; Chopra, Amit K; Giorgini, Paolo, and Mylopoulos, John. Adaptation in open sys-
tems: giving interaction its rightful place. In Proceedings of the 29th International Conference on
Conceptual Modeling, volume 6412 of LNCS, pages 31–45, 2010.

Dalpiaz, Fabiano; Paja, Elda, and Giorgini, Paolo. Security requirements engineering via commitments.
In Proceedings of the First Workshop on Socio-Technical Aspects in Security and Trust, pages 1–8,
2011.

Dalpiaz, Fabiano; Giorgini, Paolo, and Mylopoulos, John. Adaptive socio-technical systems: a
requirements-driven approach. Requirements Engineering, 18(4):1–24, 2013a. ISSN 0947-3602. URL
http://dx.doi.org/10.1007/s00766-010-0110-z.

Dalpiaz, Fabiano; Giorgini, Paolo, and Mylopoulos, John. Adaptive socio-technical systems: a
requirements-based approach. Requirements engineering, 18(1):1–24, 2013b.

Dalpiaz, Fabiano; Paja, Elda, and Giorgini, Paolo. Security Requirements Engineering: Designing Secure
Socio-Technical Systems. Accepted for publication, MIT Press, 2014.

Danezis, George and Gürses, Seda. A critical review of 10 years of privacy technology. Proceedings of
Surveillance Cultures: A Global Surveillance Society, 2010.

Dardenne, Anne; van Lamsweerde, Axel, and Fickas, Stephen. Goal-directed requirements acquisition.
Science of Computer Programming, 20(1–2):3–50, April 1993.

De Landtsheer, Renaud and Van Lamsweerde, Axel. Reasoning about confidentiality at requirements
engineering time. In Proceedings of the 13th ACM SIGSOFT International Symposium on the Foun-
dations of Software Engineering, pages 41–49, 2005.

Deng, Mina; Wuyts, Kim; Scandariato, Riccardo; Preneel, Bart, and Joosen, Wouter. A privacy threat
analysis framework: supporting the elicitation and fulfillment of privacy requirements. Requirements
Engineering, 16(1):3–32, 2011.

Devanbu, Premkumar T. and Stubblebine, Stuart. Software Engineering for Security: a Roadmap. In
Proceedings of the Conference on The Future of Software Engineering (FOSE 2000), pages 227–239,
2000. ISBN 1581132530.

http://www.w3.org/TR/P3P/
http://www.w3.org/TR/P3P/
http://dx.doi.org/10.1007/s00766-010-0110-z

218 Bibliography

Dubois, Eric and Mouratidis, Haralambos. Guest Editorial: Security Requirements Engineering: Past,
Present and Future. Requirements Engineering, 15(1):1–5, 2010. ISSN 0947-3602.

Easterbrook, Steve. An introduction to formal modeling in requirements engineering. In Proceedings of
the 10th Joint International Requirements Engineering Conference, Essen, Germany, 2002.

Elahi, Golnaz and Yu, Eric. A goal oriented approach for modeling and analyzing security trade-offs.
In Proceedings of the 26th International Conference on Conceptual Modeling, volume 4801 of LNCS,
pages 375–390, 2007.

Emery, Fred E. Characteristics of socio-technical systems. Technical Report 527, London: Tavistock
Institute, 1959.

Ernst, Neil A; Mylopoulos, John, and Wang, Yiqiao. Requirements evolution and what (research) to
do about it. In Design Requirements Engineering: A Ten-Year Perspective, pages 186–214. Springer,
2009.

Ernst, Neil A.; Borgida, Alex; Mylopoulos, John, and Jureta, Ivan J. Agile requirements evolution via
paraconsistent reasoning. In Proceedings of 24th International Conference on Advanced Information
Systems Engineering, pages 382–397. 2012.

Eurocontrol, (Producer). System wide information management (swim), April 2013. URL http://

www.eurocontrol.int/services/system-wide-information-management-swim.

Fabian, Benjamin; Gürses, Seda; Heisel, Maritta; Santen, Thomas, and Schmidt, Holger. A comparison
of security requirements engineering methods. Requirements engineering, 15(1):7–40, 2010.

Finkelstein, Anthony; Gabbay, Dov; Hunter, Anthony; Kramer, Jeff, and Nuseibeh, Bashar. Inconsis-
tency handling in multiperspective specifications. IEEE Transactions on Software Engineering, 20(8):
569–578, 1994.

Firesmith, Donald G. Security use cases. Journal of Object Technology, 2(3):53–64, May–June 2003.

Foundation, The Eclipse. Gef (mvc), 2014. URL http://www.eclipse.org/gef/gef_mvc/

index.php. Lastchecked: March, 2014.

Fuxman, Ariel; Pistore, Marco; Mylopoulos, John, and Traverso, Paolo. Model checking early require-
ments specifications in tropos. In Proceedings of the 5th IEEE International Symposium on Require-
ments Engineering, pages 174–181, 2001.

Giorgini, Paolo; Mylopoulos, John; Nicchiarelli, Eleonora, and Sebastiani, Roberto. Reasoning with
goal models. In Proceedings of the 21st International Conference on Conceptual Modeling, volume
2503 of LNCS, pages 167–181, 2002.

http://www.eurocontrol.int/services/system-wide-information-management-swim
http://www.eurocontrol.int/services/system-wide-information-management-swim
http://www.eclipse.org/gef/gef_mvc/index.php
http://www.eclipse.org/gef/gef_mvc/index.php

Bibliography 219

Giorgini, Paolo; Massacci, Fabio, and Mylopoulos, John. Requirement engineering meets security: a
case study on modelling secure electronic transactions by visa and mastercard. In Proceedings of
the 22nd International Conference on Conceptual Modeling, volume 2813 of LNCS, pages 263–276,
2003.

Giorgini, Paolo; Massacci, Fabio; Mylopoulos, John, and Zannone, Nicola. Modeling security require-
ments through ownership, permission and delegation. In Proceedings of the 13th IEEE International
Conference on Requirements Engineering, pages 167–176, 2005a.

Giorgini, Paolo; Mylopoulos, John, and Sebastiani, Roberto. Goal-oriented requirements analysis and
reasoning in the tropos methodology. Engineering Applications of Artificial Intelligence, 18(2):159–
171, 2005b.

Giorgini, Paolo; Massacci, Fabio; Mylopoulos, John, and Zannone, Nicola. Requirements engineering
for trust management: model, methodology, and reasoning. International Journal of Information
Security, 5:257–274, October 2006.

Golafshani, Nahid. Understanding reliability and validity in qualitative research. The Qualitative Report,
8(4):597–607, December 2003.

Gollmann, Dieter. Computer security. John Wiley & Sons, 3 edition, 2011.

Guizzardi, Giancarlo. Agent roles, qua individuals and the counting problem. In Software Engineering
for Multi-Agent Systems IV, pages 143–160. Springer, 2006.

Gürses, Seda; HMDB, CS; COSIC, ESAT, and Leuven, KU. Multilateral Privacy Requirements Analysis
in Online Social Networks. PhD thesis, Ph. D. Thesis, HMDB, Department of Computer Science, KU
Leuven, Belgium, May, 2010.

Haley, Charles B.; Laney, Robin R.; Moffett, Jonathan D., and Nuseibeh, Bashar. Security requirements
engineering: a framework for representation and analysis. IEEE Transactions on Software Engineer-
ing, 34(1):133–153, January–February 2008.

Hernan, Shawn; Lambert, Scott; Ostwald, Tomasz, and Shostack, Adam. Threat modeling-uncover
security design flaws using the stride approach. MSDN Magazine, pages 68–75, November 2006.

Horkoff, Jennifer and Yu, Eric. Evaluating goal achievement in enterprise modeling–an interactive pro-
cedure and experiences. In The Practice of Enterprise Modeling, pages 145–160. Springer, 2009.

Horkoff, Jennifer and Yu, Eric. Finding solutions in goal models: an interactive backward reasoning
approach. In Proceedings of the 29th International Conference on Conceptual Modeling, volume
6412 of LNCS, pages 59–75, 2010.

220 Bibliography

Horkoff, Jennifer and Yu, Eric. Analyzing goal models: different approaches and how to choose among
them. In Proceedings of the 2011 ACM Symposium on Applied Computing, pages 675–682. ACM,
2011.

Houmb, Siv Hilde; Islam, Shareeful; Knauss, Eric; Jürjens, Jan, and Schneider, Kurt. Eliciting security
requirements and tracing them to design: an integration of common criteria, heuristics, and umlsec.
Requirements Engineering, 15(1):63–93, March 2010.

ISO/IEC, . BS ISO/IEC 27002:2005. Technical report, 2005.

Jackson, Michael. Problem frames: analysing and structuring software development problems. Addison-
Wesley, 2001.

Johnstone, Michael N. Security requirements engineering-the reluctant oxymoron. In Australian Infor-
mation Security Management Conference, page 5, 2009.

Jureta, Ivan; Borgida, Alexander; Ernst, Neil A, and Mylopoulos, John. Techne: Towards a new gen-
eration of requirements modeling languages with goals, preferences, and inconsistency handling. In
Proceeding of the 18th IEEE International Requirements Engineering Conference, pages 115–124,
2010.

Jürjens, Jan. Umlsec: Extending uml for secure systems development. In Proceedings of the 5th In-
ternational Conference on Model Engineering, Concepts, and Tools, volume 2460 of LNCS, pages
412–425, 2002.

Jürjens, Jan; Marchal, Loı̈c; Ochoa, Martı́n, and Schmidt, Holger. Incremental security verification for
evolving umlsec models. In Proceedings of the 7th European Conference on Modelling Foundations
and Applications, volume 6698 of LNCS, pages 52–68, 2011.

Kalloniatis, Christos; Kavakli, Evangelia, and Gritzalis, Stefanos. Addressing privacy requirements in
system design: the pris method. Requirements Engineering, 13(3):241–255, 2008.

Kissel, Richard. Glossary of key information security terms. Technical Report IR 7298 Rev 1, NIST,
2011.

Kissel, Richard. Glossary of key information security terms. Technical Report IR 7298 Revision 2,
NIST, May 2013.

Labunets, Katsiaryna; Massacci, Fabio; Paci, Federica, and Tran, Le Minh Sang. An experimental
comparison of two risk-based security methods. In Empirical Software Engineering and Measurement,
2013 ACM/IEEE International Symposium on, pages 163–172. IEEE, 2013.

Lapouchnian, Alexei. Goal-oriented requirements engineering: An overview of the current research.
Technical Report Technical report, University of Toronto, Canada (available online: http://www.
cs.toronto.edu/˜alexei/pub/Lapouchnian-Depth.pdf), 2005.

http://www.cs.toronto.edu/~alexei/pub/ Lapouchnian-Depth.pdf
http://www.cs.toronto.edu/~alexei/pub/ Lapouchnian-Depth.pdf

Bibliography 221

Lewis, Nicole. Health it managers say tablets can cause prob-
lems, 2012. URL http://www.informationweek.com/regulations/

health-it-managers-say-tablets-can-cause-problems/d/d-id/1102641?

Liaskos, Sotirios; McIlraith, Sheila A; Sohrabi, Shirin, and Mylopoulos, John. Integrating preferences
into goal models for requirements engineering. In 18th IEEE International Requirements Engineering
Conference, pages 135–144. IEEE, 2010.

Liaskos, Sotirios; McIlraith, Sheila A; Sohrabi, Shirin, and Mylopoulos, John. Representing and rea-
soning about preferences in requirements engineering. Requirements Engineering, 16(3):227–249,
2011.

Liu, Lin; Yu, Eric, and Mylopoulos, John. Analyzing security requirements as relationships among
strategic actors. In Symposium on Requirements Engineering for Information Security, 2002.

Liu, Lin; Yu, Eric, and Mylopoulos, John. Security and privacy requirements analysis within a social
setting. In Proceedings of the 11th IEEE International Conference on Requirements Engineering,
pages 151–161, 2003.

Lodderstedt, Torsten; Basin, David, and Doser, Jürgen. Secureuml: A uml-based modeling language
for model-driven security. In Proceedings of the 5th International Conference on Model Engineering,
Concepts, and Tools, volume 2460 of LNCS, pages 426–441, 2002.

Loucopoulos, Pericles and Karakostas, Vassilios. System requirements engineering. McGraw-Hill, Inc.,
1995.

Lund, Mass Soldal; Solhaug, Bjørnar, and Stølen, Ketil. Model-driven risk analysis: the CORAS ap-
proach. Springer, 2010.

Masolo, Claudio; Vieu, Laure; Bottazzi, Emanuele; Catenacci, Carola; Ferrario, Roberta; Gangemi,
Aldo, and Guarino, Nicola. Social roles and their descriptions. In 9th International Conference on the
Principles of Knowledge Representation and Reasoning, pages 267–277, 2004.

Massacci, Fabio and Zannone, Nicola. Detecting conflicts between functional and security requirements
with secure tropos: John rusnak and the allied irish bank. Social modeling for requirements engineer-
ing. MIT Press, Cambridge, 2008.

McDermott, John and Fox, Chris. Using abuse case models for security requirements analysis. In
Proceedings of the 15th Annual Computer Security Applications Conference, pages 55–64, 1999.

Mead, Nancy R.; Hough, Eric D., and Stehney II, Theodore R. Security quality requirements engineering
(square) methodology. Technical Report CMU/SEI-2005-009, 2005.

http://www.informationweek.com/regulations/health-it-managers-say-tablets-can-cause-problems/d/d-id/1102641?
http://www.informationweek.com/regulations/health-it-managers-say-tablets-can-cause-problems/d/d-id/1102641?

222 Bibliography

Meland, Per Håkon; Paja, Elda; Gjære, Erlend Andreas; Paul, Stéphane; Dalpiaz, Fabiano, and Giorgini,
Paolo. Threat analysis in goal-oriented security requirements modelling. International Journal of
Secure Software Engineering, 2014.

Mellado, Daniel; Fernández-Medina, Eduardo, and Piattini, Mario. A common criteria based security
requirements engineering process for the development of secure information systems. Computer stan-
dards & interfaces, 29(2):244–253, February 2007.

Mellado, Daniel; Blanco, Carlos; Sánchez, Luis E., and Fernández-Medina, Eduardo. A systematic
review of security requirements engineering. Computer Standards & Interfaces, 32(4):153–165, jun
2010.

Menzel, Michael; Thomas, Ivonne, and Meinel, Cristoph. Security requirements specification in service-
oriented business process management. In 2009 International Conference on Availability, Reliability
and Security, pages 41–48. IEEE, 2009.

Mohammed, Noman; Fung, Benjamin; Hung, Patrick CK, and Lee, Cheuk-kwong. Anonymizing health-
care data: a case study on the blood transfusion service. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1285–1294. ACM, 2009.

Moody, Daniel L. The method evaluation model: a theoretical model for validating information systems
design methods. In Proceedings of the 11th European Conference on Information Systems, pages
1327–1336, 2003.

Moody, Daniel L. The“physics”of notations: toward a scientific basis for constructing visual notations
in software engineering. IEEE Transactions on Software Engineering, 35(6):756–779, 2009.

Moody, Daniel L.; Heymans, Patrick, and Matulevicius, Raimundas. Improving the effectiveness of
visual representations in requirements engineering: An evaluation of i* visual syntax. In 17th IEEE
International Requirements Engineering Conference, pages 171–180. IEEE, 2009.

Mouratidis, Haralambos and Giorgini, Paolo. Secure tropos: a security-oriented extension of the tropos
methodology. International Journal of Software Engineering and Knowledge Engineering, 17(2):
285–309, April 2007a.

Mouratidis, Haralambos and Giorgini, Paolo. Integrating security and software engineering: Advances
and future visions. Igi Global, 2007b.

Mouratidis, Haralambos; Giorgini, Paolo, and Manson, Gordon. Integrating security and systems en-
gineering: Towards the modelling of secure information systems. In Advanced Information Systems
Engineering, pages 63–78. Springer, 2003.

Bibliography 223

Mylopoulos, John; Chung, Lawrence, and Nixon, Brian. Representing and using nonfunctional require-
ments: A process-oriented approach. IEEE Transactions on Software Engineering, 18(6):483–497,
1992.

Mylopoulos, John; Chung, Lawrence, and Yu, Eric. From object-oriented to goal-oriented requirements
analysis. Communications of the ACM, 42(1):31–37, 1999.

Northover, Steve and Wilson, Mike. Swt: the standard widget toolkit, volume 1. Addison-Wesley
Professional, 2004.

Northrop, Linda; Feiler, Peter; Gabriel, Richard P.; Goodenough, John; Linger, Rick; Kazman, Rick;
Schmidt, Douglas; Sullivan, Kevin, and Wallnau, Kurt. Ultra-large-scale systems—the software chal-
lenge of the future. Technical report Software Engineering Institute Carnegie Mellon University, 2006.

OASIS, Standard. extensible access control markup language (xacml) version 3.0, January 2013. URL
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf.

Object Management Group, Standard. Business process model and notation 2.0.
http://www.omg.org/spec/BPMN/2.0, Jan 2011.

Paja, Elda; Dalpiaz, Fabiano; Poggianella, Mauro; Roberti, Pierluigi, and Giorgini, Paolo. Modelling
security requirements in socio-technical systems with STS-Tool. In Proceedings of the 24th Inter-
national Conference on Advanced Information Systems Engineering, CAiSE Forum, volume 855 of
CEUR-WS, pages 155–162, 2012a.

Paja, Elda; Dalpiaz, Fabiano; Poggianella, Mauro; Roberti, Pierluigi, and Giorgini, Paolo. STS-Tool:
Using commitments to specify socio-technical security requirements. In Proceedings of the 31st In-
ternational Conference on Conceptual Modeling, ER Workshops, pages 396–399, 2012b.

Paja, Elda; Dalpiaz, Fabiano; Poggianella, Mauro; Roberti, Pierluigi, and Giorgini, Paolo. STS-Tool:
socio-technical security requirements through social commitments. In Proceedings of the 20th IEEE
International Conference on Requirements Engineering, pages 331–332, 2012c.

Paja, Elda; Chopra, Amit K, and Giorgini, Paolo. Trust-based specification of sociotechnical systems.
Data & Knowledge Engineering, 87:339–353, 2013a.

Paja, Elda; Dalpiaz, Fabiano, and Giorgini, Paolo. Managing security requirements conflicts in socio-
technical systems. In Proceedings of the 32nd International Conference on Conceptual Modeling,
volume 8217 of LNCS, pages 270–283, 2013b.

Paja, Elda; Dalpiaz, Fabiano, and Giorgini, Paolo. Designing secure socio-technical systems with STS-
ml. In 6th International i* Workshop (iStar’13), 2013c.

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

224 Bibliography

Paja, Elda; Dalpiaz, Fabiano; Poggianella, Mauro; Roberti, Pierluigi, and Giorgini, Paolo. Specifying
and reasoning over socio-technical security requirements with STS-Tool. In Proceedings of the 32nd
International Conference on Conceptual Modeling, ER Workshops, pages 504–507, 2013d.

Paja, Elda; Dalpiaz, Fabiano; Poggianella, Mauro; Roberti, Pierluigi, and Giorgini, Paolo. STS-Tool:
Specifying and reasoning over socio-technical security requirements. In 6th International i* Workshop
(iStar’13), pages 79–84, 2013e.

Paja, Elda; Dalpiaz, Fabiano, and Giorgini, Paolo. The socio-technical security requirements modelling
language for secure composite services. In Aniketos book. 2014a.

Paja, Elda; Dalpiaz, Fabiano, and Giorgini, Paolo. Sts-tool: Security requirements engineering for socio-
technical systems. In NESSOS book. 2014b.

Paja, Elda; Poggianella, Mauro; Dalpiaz, Fabiano; Roberti, Pierluigi, and Giorgini, Paolo. Security
requirements engineering with sts-tool. In Aniketos book. 2014c.

Pavlovski, Christopher J. and Zou, Joe. Non-functional requirements in business process modeling. In
Proceedings of the fifth Asia-Pacific conference on Conceptual Modelling-Volume 79, pages 103–112.
Australian Computer Society, Inc., 2008.

Pfleeger, Charles P. and Pfleeger, Shari L. Analyzing computer security: a
threat/vulnerability/countermeasure approach. Prentice Hall, 2012.

PUB, FIPS. Standards for security categorization of federal information and information systems. 2004.

Rodrı́guez, Alfonso; Fernández-Medina, Eduardo, and Piattini, Mario. A bpmn extension for the mod-
eling of security requirements in business processes. IEICE transactions on information and systems,
90(4):745–752, 2007.

Rosson, Mary B. and Carroll, John J. M. Usability engineering: scenario-based development of human-
computer interaction. Morgan Kaufmann, 2002.

Roy Sarkar, Kuheli. Assessing insider threats to information security using technical, behavioural and
organisational measures. Information Security Technical Report, 15(3):112–133, 2010.

Russell, Nick; Ter Hofstede, Arthur HM; Edmond, David, and van der Aalst, Wil MP. Workflow re-
source patterns. Technical report, BETA Working Paper Series, WP 127, Eindhoven University of
Technology, 2004.

Sankar, Pamela; Mora, Susan; Merz, Jon F, and Jones, Nora L. Patient perspectives of medical confiden-
tiality. Journal of general internal medicine, 18(8):659–669, 2003.

Sauro, Jeff. Measuring usability with the system usability scale (sus), February 2011. URL http:

//www.measuringusability.com/sus.php.

http://www.measuringusability.com/sus.php
http://www.measuringusability.com/sus.php

Bibliography 225

Schumacher, Markus; Fernandez-Buglioni, Eduardo; Hybertson, Duane; Buschmann, Frank, and Som-
merlad, Peter. Security patterns: integrating security and systems engineering. John Wiley & Sons,
2005.

Shvaiko, Pavel; Mion, Luca; Dalpiaz, Fabiano, and Angelini, Giuseppe. The taslab portal for collabo-
rative innovation. In Proceedings of the 16th International Conference on Concurrent Enterprising,
2010.

Silva Souza, Vı́tor E; Lapouchnian, Alexei; Robinson, William N, and Mylopoulos, John. Awareness
requirements for adaptive systems. In Proceedings of the 6th international symposium on Software
engineering for adaptive and self-managing systems, pages 60–69. ACM, 2011.

Sindre, G. Mal-activity diagrams for capturing attacks on business processes. Requirements Engineering:
Foundation for Software Quality, pages 355–366, 2007.

Sindre, Guttorm and Opdahl, Andreas L. Eliciting security requirements with misuse cases. Require-
ments Engineering, 10(1):34–44, January 2005.

Singh, Munindar P. An ontology for commitments in multiagent systems: Toward a unification of nor-
mative concepts. Artificial Intelligence and Law, 7:97–113, 1999.

Singh, Munindar P.; Chopra, Amit K., and Desai, Nirmit. Commitment-based service-oriented architec-
ture. IEEE Computer Society, 42(11):72–79, 2009. ISSN 0018-9162.

Sommerville, Ian and Sawyer, Pete. Requirements engineering: a good practice guide. John Wiley &
Sons, Inc., 1997.

Sommerville, Ian; Cliff, Dave; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; Mcder-
mid, John, and Paige, Richard. Large-scale complex IT systems. Communications of the ACM, 55(7):
71–77, July 2012.

Spiekermann, Sarah and Cranor, Lorrie Faith. Engineering privacy. IEEE Transactions on Software
Engineering, 35(1):67–82, 2009.

Stallings, William and Brown, Lawrence V. Computer Security. Prentice Hall, 2008.

Tixier, Jerome; Dusserre, G; Salvi, O, and Gaston, D. Review of 62 risk analysis methodologies of
industrial plants. Journal of Loss Prevention in the Process Industries, 15(4):291–303, 2002.

Trösterer, Sandra; Beck, Elke; Dalpiaz, Fabiano; Paja, Elda; Giorgini, Paolo, and Tscheligi, Manfred.
Formative user-centered evaluation of security modeling: results from a case study. International
Journal of Secure Software Engineering, 3(1):1–19, 2012.

van Lamsweerde, Alex. Goal-oriented Requirements Engineering: A Guided Tour. In Proceedings of
the 5th IEEE International Symposium on Requirements Engineering, pages 249–263, 2001.

226 Bibliography

van Lamsweerde, Axel. Elaborating security requirements by construction of intentional anti-models. In
Proceedings of the 26th International Conference on Software Engineering, pages 148–157, 2004.

van Lamsweerde, Axel. Requirements engineering: From system goals to uml models to software spec-
ifications, 2009.

van Lamsweerde, Axel; Darimont, Robert, and Letier, Emmanuel. Managing conflicts in goal-driven
requirements engineering. IEEE Transactions on Software Engineering, 24(11):908–926, November
1998.

Vogel, Lars. Building eclipse rcp applications based on eclipse 4, 2013. URL http://www.vogella.

com/tutorials/EclipseRCP/article.html. Revision history: Revision 0.1 - 6.9 14.02.2009 -
04.07.2013.

Wolter, Christian; Menzel, Michael, and Meinel, Cristoph. Modelling security goals in business pro-
cesses. Modellierung 2008, 127:201–216, 2008.

Xenos, Stefan. Inside the workbench a guide to the workbench internals, October 2005. URL http:

//www.eclipse.org/articles/Article-UI-Workbench/workbench.html. Lastchecked:
March, 2014.

Yu, Eric. Modelling strategic relationships for process reengineering. PhD thesis, University of Toronto,
Canada, 1995.

Yu, Eric and Cysneiros, Luiz. Designing for privacy and other competing requirements. In 2nd Sympo-
sium on Requirements Engineering for Information Security, Raleigh, North Carolina, pages 15–16,
2002.

Yu, Eric and Liu, Lin. Modelling trust for system design using the i* strategic actors framework. In Trust
in Cyber-societies, pages 175–194. Springer, 2001.

Yu, Eric and Mylopoulos, John. Understanding “why” in software process modelling, analysis, and
design. In Proceedings of the 16th International Conference on Software Engineering, pages 159–
168, 1994.

Yu, Eric; Giorgini, Paolo; Maiden, Neil, and Mylopoulos, John. Social Modeling for Requirements
Engineering. MIT Press, 2011.

Yu, Eric SK. Towards modelling and reasoning support for early-phase requirements engineering. In
Proceedings of the Third IEEE International Symposium on Requirements Engineering, pages 226–
235. IEEE, 1997.

Zannone, Nicola. A requirements engineering methodology for trust, security, and privacy. PhD thesis,
Ph. D. dissertation, University of Trento, 2007.

http://www.vogella.com/tutorials/EclipseRCP/article.html
http://www.vogella.com/tutorials/EclipseRCP/article.html
http://www.eclipse.org/articles/Article-UI-Workbench/workbench.html
http://www.eclipse.org/articles/Article-UI-Workbench/workbench.html

Bibliography 227

Zhu, Yan-xin; Qian, Zheng; Ding, Yi-qiang; Zhao, Na, and Wang, Yu. Enforce medical risk management
to improve medical service qualitity. Journal of Medical Postgraduates, 1:023, 2006.

228 Bibliography

Appendix A

Security Requirements in STS-ml

We list the security requirements supported by STS-ml, grouping them with respect to the social rela-
tionships that allow expressing them. We provide their syntax and description of the expressed security
requirement.

Table A.1 presents security requirement types supported over goal delegation relationships, Table A.2
presents the types of security requirements that can be expressed over document transmission relation-
ships, Table A.3 presents the types of security requirements constraining responsibility uptake, and last
but not least, Table A.4 presents the types of security requirements implicitly captured through authori-
sation relationships.

230 Security Requirements in STS-ml

Table A.1: Security requirement types over goal delegations

Requirement type Description

R1 non-repudiation-del(A2, A1, Del)
the delegatee (A2) requires the delegator (A1) not to repu-
diate the delegation Del

R2 non-repudiation-acc(A1, A2, Del)
the delegator (A1) requires the delegatee (A2) not to repu-
diate the acceptance of the delegation Del

R3 true-single-red(A1, A2, G)
the delegator (A1) requires the delegatee (A2) true redun-
dancy single for the achievement of goal G

R4 fback-single-red(A1, A2, G)
the delegator (A1) requires the delegatee (A2) fallback re-
dundancy single for achieving goal G

R5 true-multi-red(A1, A2, G)
the delegator (A1) requires the delegatee (A2) true redun-
dancy multi for the achievement of goal G

R6 fback-multi-red(A1, A2, G)
the delegator (A1) requires the delegatee (A2) fallback re-
dundancy multi for achieving goal G

R7 no-redelegation(A1, A2, G)
the delegator (A1) wants the delegatee (A2) not to further
delegate fulfilment of goal G 1

R8 trustworthiness(A1, A2, G)
the delegator (A1) requires the delegatee (A2) to be trust-
worthy in order to delegate it the fulfillment of G

R9 goal-availability(A2, A1, G)
the delegator (A1) wants the delegatee (A2) to guarantee a
minimum availability level for goal G

R10 delegator-auth(A2, A1, Del)
the delegatee (A2) needs that the delegator (A1) authenti-
cates herself

R11 delegatee-auth(A1, A2, Del)
the delegator (A1) needs that the delegatee (A2) authenti-
cates herself

231

Table A.2: Security requirement types over document transmissions

Requirement type Description

R12 non-repudiation-tx(A2, A1, Tx)
the receiver (A2) requires the sender (A1) not to repudiate
the transmission Tx

R13 non-repudiation-acc(A1, A2, Tx)
the sender (A1) requires the receiver (A2) not to repudiate
the acceptance of the transmission Tx

R14 sender-integrity(A2, A1, Tx)
the receiver (A2) requires the sender (A1) to ensure the in-
tegrity of transmission for the document being transmitted

R15 receiver-integrity(A1, A2, Tx)
the sender (A1) requires the receiver (A2) to ensure the in-
tegrity of transmission for the document being transmitted

R16 system-integrity(STS,, Tx)
the system shall ensure that the integrity of transmission of
the document in transmission is preserved

R17 doc-availability(A2, A1, D)

the receiver (A2) requires the sender (A1) to guarantee
an availability level expressed in percentage (x%) for the
transmitted document (D)

R18 sender-auth(A2, A1, Tx)
the receiver (A2) needs that the sender (A1) authenticates
herself to transfer the document

R19 receiver-auth(A1, A2, Tx)
the sender (A1) needs that the receiver (A2) authenticates
herself to have the document

R20 sender-conf(A2, A1, Tx)
the receiver (A2) requires the sender (A1) to ensure the
confidentiality of the document being transmited

R21 receiver-conf(A1, A2, Tx)
the sender (A1) requires the receiver (A2) to ensure the
confidentiality of the document being transmited

R22 system-conf(STS,, Tx)
the system shall ensure that the confidentiality of transmis-
sion of a document in transfer is preserved

232 Security Requirements in STS-ml

Table A.3: Security requirement types over responsibility uptake

Requirement type Description

R23 role-sod(STS, Ag,R1, R2) no agent Ag can play both roles R1 and R2

R24 goal-sod(STS, Ag,G1, G2) every agent Ag must not pursue both goals G1 and G2

R25 role-cod(STS, Ag,R1, R2)
every agent Ag playing role R1 (R2), must also play R2

(R1)

R26 goal-cod(STS, Ag,G1, G2)
an agent Ag pursuing goal G1 (G2), should also pursue G2

(G1) too

Table A.4: Security requirement types over authorisation relationships

Requirement type Description

R27 need-to-know(A1, A2, I,G)

the authoriser actor (A1) requires the authorisee (A2) not to
perform any operation (use/modify/produce) on documents
that make some information in I tangible, for any goals not
included in G

R28 non-reading(A1, A2, I)
the authoriser actor (A1) requires the authorisee (A2) not
to read documents representing information in I

R29 non-modification(A1, A2, I)
the authoriser actor (A1) requires the authorisee (A2) not
to modify documents that include information in I

R30 non-production(A1, A2, I)
the authoriser actor (A1) requires the authorisee (A2) not
to produce any documents that include information in I

R31 non-disclosure(A1, A2, I)
the authoriser actor (A1) requires the authorisee (A2) not
to transmit (disclose) to other actors any document that in-
cludes information in I

R32
non-reauthorisation(A1, A2, I,G,
{R, M, P, T})

the authoriser actor (A1) requires the authorisee (A2) not
to redistribute the permissions to other actors

Appendix B

Reasoning about conflicts in STS-ml using
Datalog

We have implemented our framework using Datalog, to support the automatic identification of conflicting
authorisations as well as that of violations of security requirements.

In the following, we present the Datalog rules for identifying conflicts, together with the general rules
necessary for defining the propagation of properties, as well as for capturing actors’ business policies.

B.1 Informational Knowledge Base

Table B.1 presents the rules for the model’s informational knowledge base, which define when a given
actor possesses a certain document (rules 1-4): an actor possess a document that is within his model
(has-in-scope) (1), the actor is not producing the document and no other actor is providing this document
to him (2), the actor has a goal that produces the document and possesses such document being the first
actor to create the document (3), and finally an actor possesses a document if it is provided the document
by some other actor (4). Additionally, the rules specify ownership propagation over parts of information
(rule 5), that is, an actor that owns a given information, owns also its constituent pieces of information.

234 Reasoning about conflicts in STS-ml using Datalog

Table B.1: Informational Knowledge Base Rules

Id Datalog Rules

1.
possesses(A,D) :- has in scope(A,D), 0 = #count{G:- produce(A,D,G)}, 0 =

#count{A1 : transmits(A1, A,D)}.

2. possesses(A,D) :- produces(A,D,G), has(A,G).

3. transmitted(A1, A2, D) :- possesses(A1, D), transmits(A1, A2, D), A1 6= A2.

4. possesses(A2, D) :- transmitted(, A2, D).

5. own(A, I1) :- own(A, I), partOfI(I1, I).

B.2 Verifying Security Requirements over Goal Delegations

Table B.2 and B.3 present the datalog rules for the verification of no-redelegation and redundancy

respectively. These checks identify a conflict if there is a conflict in at least one variant of the considered
STS-ml model. no-redelegation is violated if this security requirement is specified over the delegation,
but the delegatee redelegates the delegatum or a subgoal of it.

Table B.2: Interaction Requirements Verification: No-redelegation

Id Datalog Rules for no-redelegation

1.
violate-no-redelegation(A2, A1, G,Gi) :- delegated(A1, A2, G),
no-redelegation(A1, A2, G,Gi), delegated(A2, , Gi).

2.
no-redelegation(A1, A2, G,Gi) :- no-redelegation(A1, A2, , G), has(A2, G),
is-refined(A2, G,Gi).

3. has(A,Gi) :- has(A,G), and-dec(A,G), is-refined(A2, G,Gi).

4. has(A,Gi) ∨ −has(A,Gi) :- has(A,G), or-dec(A,G), is-refined(A2, G,Gi).

5. −has(A,Gi):-or-dec(A,G),0 = #count{Gi:is-refined(A,G,Gi),has(A,Gi)}.

6. −has(A,Gi) :- or-dec(A,G),1 < #count{Gi:is-refined(A,G,Gi),has(A,Gi)}.

7. delegated(A1, A2, Gi) :- has(A1, G), delegates(A1, A2, Gi).

8. has(A2, Gi) :- delegated(, A2, Gi).

9. subgoal(Gi, G,A) :- is-refined(A,G,Gi).

10. subgoal(G1, G2, A) :- subgoal(G1, G3, A), subgoal(G3, G2, A).

Verifying Security Requirements over Goal Delegations 235

The verification of redundancy considers goal tree as composed of and-decompositions (all decom-
positions, being them or-decompositions or and-decompositions are considered as and-decompositions
by the framework), to be pursued by the actor. This is the only way (and a partial one) for us to reason
over redundancy, for decisions on which alternative the actor has selected are verifiable only at run-
time. This means that only one variant is generated, since we cannot verify redundancy in case only one
alternative is selected to accomplish the desired goal.

236 Reasoning about conflicts in STS-ml using Datalog

Table B.3: Interaction Requirements Verification: Redundancy

Id Datalog Rules for Redundancy

Single actor redundancy: single-red(A1, A2, G)

1.
violate-single-red(A2, A1, G) :- delegated(A1, A2, G), single-red(A1, A2, G), 1 ≥
#count{Gi: or-dec(A2, G), is-refined(A2, G,Gi)}.

2.
violate-single-red(A2, A1, G) :- delegated(A1, A2, G), single-red(A1, A2, G),
or-dec(A2, G), is-refined(A2, G,Gi), delegated(A2, , Gi).

3. has(A,Gi) :- has(A,G), and-dec(A,G), is-refined(A,G,Gi).

4. has(A,Gi) :- has(A,G), or-dec(A,G), is-refined(A,G,Gi).

5. delegated(A1, A2, Gi) :- has(A1, G), delegates(A1, A2, Gi).

6. has(A2, Gi) :- delegated(, A2, Gi).

7. subgoal(Gi, G,A) :- is-refined(A,G,Gi).

8. subgoal(G1, G2, A) :- subgoal(G1, G3, A), subgoal(G3, G2, A).

Multi actor redundancy: multi-red(A1, A2, G)

1.
violate-multi-red(A2, A1, G):-delegated(A1, A2, G), multi-red(A1, A2, G), 1 ≥
#count{Gi: or-dec(A2, G), is-refined(A2, G,Gi)}.

2.
violate-multi-red(A2, A1, G):-delegated(A1, A2, G), multi-red(A1, A2, G), 0 =

#count{A3: delegated(A2, A3, Gi), subgoal(Gi, G,A2)}.

3. has(A,Gi) :- has(A,G), and-dec(A,G), is-refined(A,G,Gi).

4. has(A,Gi) :- has(A,G), or-dec(A,G), is-refined(A,G,Gi).

5. delegated(A1, A2, Gi) :- has(A1, G), delegates(A1, A2, Gi).

6. has(A2, Gi) :- delegated(, A2, Gi).

7. subgoal(Gi, G,A) :- is-refined(A,G,Gi).

8. subgoal(G1, G2, A) :- subgoal(G1, G3, A), subgoal(G3, G2, A).

Verifying Security Requirements over Authorisations 237

B.3 Verifying Security Requirements over Authorisations

Table B.4 introduces the authorisation rules, which are necessary to capture the transfer of authorisations
from actor to actor. Since authorisations in STS-ml capture permissions and prohibitions over the opera-
tions that actors may perform over information, we maintain three states over operations: 0 corresponds
to prohibition, 1 corresponds to neither prohibition nor permission, while 2 corresponds to permission
over the given information. Transferrability is binary, either true or false, which are captured through
values 1 and 0 respectively.

Security requirements over authorisations are derived on the basis of prohibitions, therefore it is im-
portant to capture anytime a 0 is passed through the authorises relationship. Similarly, we need to know
who are the actors authorised explicitly, which calls for keeping track of the permissions (2 through the
authorises). As far as implicit prohibitions are concerned, they are derived from summing authorisations.
Based on the authorisations an actor receives, we can determine what authority this actor has over the
information it wants to manipulate. For this, we use the predicate hasAuthority.

The owner of an information has full authority (all operations are permitted—setting their values to
2, and the authorisation is transferrable—setting it to 1) over its information (rules 1), even when this
actor has no goals (rule 2); whenever an actor authorises another to perform operations over information
for the scope of some goal, it also authorises the actor to perform operations over information while
achieving subgoals of the authorised goals (rule 3), similarly for parts of information (rule 4); when-
ever a given authorisation is granted the predicate hasAuthority keeps track of an actor’s authority to
perform operations over a given information, in the scope of some goal, having the authority to transfer
authorisations or not (rule 5).

Rules 6 to 17 define when an actor could (because of their intentional or social relationships) read,
modify, produce or transmit (disclose) a given information. In particular, rules 8, 11, 14, and 17 capture
the fact that the actor has no authority to perform operations read, modify, produce and transmit respec-
tively, as a result of summing authorisations (no incoming authorisation grants the actor permission to
perform the operation).

The authorisation scope limiting an authorisation to a goal scope defines for which goals the actor has
authority to perform operations on the granted information (rule 18). Rule 19 instead defines the goals
that are outside an authorisation’s scope. These rules lay the ground for the verification of authorisation
requirements.

Table B.5 defines the rules for identifying authorisation conflicts. For all actors, the incoming au-
thorisations are considered and for every pair an authorisation conflict is detected whenever one of the
authorisations grants permission on performing an operation (authorise-reading, authorise-modification,
authorise-production, and authorise-transmission), or grants the authority to further transfer authorisa-
tions (authorise-transferibility), whereas the other authorisation prohibits either performing the opera-
tions or transferring the authorisation (rules 11 to 15).

To lay down these rules, however, we first need to capture when permission is granted or prohibition

238 Reasoning about conflicts in STS-ml using Datalog

Table B.4: Authorisation Rules

Id Datalog Rules for Authorisations Propagation

1. hasAuthority(A, 2, 2, 2, 2, I, G, 1) :- own(A, I), has(A,G).

2. hasAuthority(A, 2, 2, 2, 2, I, all goals, 1):-own(A, I),0 =#count{G:has(A,G)}.

3.
authorise(A1, A2, I, G1, R, M, P, T, TrAuth) :- authorises(A1, A2, I, G, R, M, P, T,

TrAuth), subgoal(G1, G,A2).

4.
authorise(A1, A2, I1, G, R, M, P, T, TrAuth) :- authorises(A1, A2, I, G, R, M, P, T,

TrAuth), partOfI(I1, I).

5.
hasAuthority(A2, R, M, P, T, I, G, TrAuth) :- authorises(A1, A2, I, G, R, M, P, T,

TrAuth).

6. can-read(A, I,D,G) :- has(A,G), reads(A,D,G), madeTangibleBy(I,D).

7.
−has-authority-to-read(A, I) :- role(A), information(I), not own(A, I), 0 =

#count{A2: authorises(A2, A, I,G, 2, , , ,)}.

7.
−has-authority-to-read(A, I) :- agent(A), information(I), not own(A, I), 0 =

#count{A2: authorises(A2, A, I,G, 2, , , ,)}.

9. can-modify(A, I,D,G) :- has(A,G), modifies(A,D,G), madeTangibleBy(I,D).

10.
−has-authority-to-modify(A, I) :- role(A), information(I), not own(A, I), 0 =

#count{A2: authorises(A2, A, I,G, , 2, , ,)}.

11.
−has-authority-to-modify(A, I) :- agent(A), information(I), not own(A, I), 0 =

#count{A2: authorises(A2, A, I,G, , 2, , ,)}.

12. can-produce(A, I,D,G):-has(A,G), produces(A,D,G), madeTangibleBy(I,D).

13.
−has-authority-to-produce(A, I) :- role(A), information(I), not own(A, I), 0 =

#count{A2: authorises(A2, A, I,G, , , 2, ,)}.

14.
−has-authority-to-produce(A, I) :- agent(A), information(I), not own(A, I), 0 =

#count{A2: authorises(A2, A, I,G, , , 2, ,)}.

15. can-transmit(A, I,D) :- transmits(A, ,D), madeTangibleBy(I,D).

16.
−has-authority-to-transmit(A, I) :- role(A), information(I), not own(A, I), 0 =

#count{A2: authorises(A2, A, I,G, , , , 2,)}.

17.
−has-authority-to-transmit(A, I) :- agent(A), information(I), not own(A, I), 0 =

#count{A2: authorises(A2, A, I,G, , , , 2,)}.

18. scope-g(A, I,G) :- hasAuthority(A, , , , , I, G,).

19.
−scope-g(A, I,G) :- hasAuthority(A, , , , , I, G1,), has(A,G), has(A,G1),
G 6= G1, 0 = #count{G2: hasAuthority(A, , , , , I, G2,), G2 = G}.

20. −has-authority-to-authorise(A, I) :- hasAuthority(A, , , , , I, , 0).

Verifying Security Requirements over Authorisations 239

is specified; we do this for all operations, as well as for the transferability dimention (rules 1 to 10).

Table B.5: Authorisation Conflicts Verification

Id Datalog Rules for Authorisations Conflicts

1. authorise-reading(A1, A2, I) :- authorise(A1, A2, I, , 2, , , ,).

2. −authorise-reading(A1, A2, I) :- authorise(A1, A2, I, , 0, , , ,).

3. authorise-modification(A1, A2, I) :- authorise(A1, A2, I, , , 2, , ,).

4. −authorise-modification(A1, A2, I) :- authorise(A1, A2, I, , , 0, , ,).

5. authorise-production(A1, A2, I) :- authorise(A1, A2, I, , , , 2, ,).

6. −authorise-production(A1, A2, I) :- authorise(A1, A2, I, , , , 0, ,).

7. authorise-trasnsmission(A1, A2, I) :- authorise(A1, A2, I, , , , , 2,).

8. −authorise-transmission(A1, A2, I) :- authorise(A1, A2, I, , , , , 0,).

9. authorise-transferability(A1, A2, I) :- authorise(A1, A2, I, , , , , , 2).

10. −authorise-transferability(A1, A2, I) :- authorise(A1, A2, I, , , , , , 0).

11.
authorisation-conflict(A2, I):-authorise-reading(A1, A2, I),
−authorise-reading(A3, A2, I).

12.
authorisation-conflict(A2, I):-authorise-modification(A1, A2, I),
−authorise-modification(A3, A2, I).

13.
authorisation-conflict(A2, I):-authorise-production(A1, A2, I),
−authorise-production(A3, A2, I).

14.
authorisation-conflict(A2, I):-authorise-transmission(A1, A2, I),
−authorise-transmission(A3, A2, I).

15.
authorisation-conflict(A2, I):-authorise-transferibility(A1, A2, I),
−authorise-transferibility(A3, A2, I).

After detecting authorisation conflicts, the analysis verifies if there are any conflicts among business
policies and security requirements derived from authorisation. Tables B.6 to B.11 present the rules for
identifying these conflicts, per each security requirement derived from authorisations. All the violations
are propagated through the information structure (following the part of relationships).

Thus, Table B.6 identifies violations of need-to-know. Note that this requirement is verified only
when permissions on operations are granted; we cannot talk about need-to-know in case of prohibitions.
Moreover, this requirement is related to goal-document operations, therefore transmission is not one of

240 Reasoning about conflicts in STS-ml using Datalog

Table B.6: Authorisation Requirements Verification: Need to Know

Id Datalog Rules for: need-to-know(A1, A2, I, G)

1.
violate-ntk(A2, I, G) :- −scope-g(A2, I, G), read(A2, I, G), not

violate-non-reading(A2, I, G).

2.
violate-ntk(A2, I, G) :- −scope-g(A2, I, G), modified(A2, I, G), not

violate-non-modification(A2, I, G).

3.
violate-ntk(A2, I, G) :- −scope-g(A2, I, G), produced(A2, I, G), not

violate-non-production(A2, I, G).

4. violate-ntk(A2, I1, G) :- violate-ntk(A2, I, G), partOfI(I1, I).

5. violate-ntk(A2, I, G) :- violate-ntk(A2, I1, G), partOfI(I1, I).

the operations that affects need-to-know.

Table B.7: Authorisation Requirements Verification: Non reading

Id Datalog Rules for: non-reading(A1, A2, I)

1. violate-non-reading(A2, I, G) :- −has-authority-to-read(A2, I),read(A2, I, G).

2. read(A2, I, G) :- possesses(A2, D), can-read(A2, I,D,G).

3. violate-non-reading(A2, I1, G) :- violate-non-reading(A2, I, G), partOfI(I1, I).

4. violate-non-reading(A2, I, G) :- violate-non-reading(A2, I1, G), partOfI(I1, I).

Table B.7 identifies violations of non-reading.
Table B.8 identifies violations of non-modification.
Table B.9 identifies violations of non-production.
Table B.10 identifies violations of non-disclosure.
Finally, Table B.11 enumerates the rules for identifying all actors which violate their authorities,

while reauthorising other actors: (i) without having the right to tranfer authorisations (TrAuth = 0); (ii)
authorising others on operations they do not have permission (or are prohibited) to perform themselves.

Verifying Security Requirements over Authorisations 241

Table B.8: Authorisation Requirements Verification: Non modification

Id Datalog Rules for: non-modification(A1, A2, I)

1.
violate-non-modification(A2, I, G) :- −has-authority-to-modify(A2, I),
modified(A2, I, G).

2. modified(A2, I, G) :- possesses(A2, D), can-modify(A2, I,D,G).

3.
violate-non-modification(A2, I1, G) :- violate-non-modification(A2, I, G),
partOfI(I1, I).

4.
violate-non-modification(A2, I, G) :- violate-non-modification(A2, I1, G),
partOfI(I1, I).

Table B.9: Authorisation Requirements Verification: Non production

Id Datalog Rules for: non-production(A1, A2, I)

1.
violate-non-production(A2, I, G) :- −has-authority-to-produce(A2, I),
produced(A2, I, G).

2. produced(A2, I, G) :- can-produce(A2, I,D,G).

3.
violate-non-production(A2, I1, G) :- violate-non-production(A2, I, G),
partOfI(I1, I).

4.
violate-non-production(A2, I, G) :- violate-non-production(A2, I1, G),
partOfI(I1, I).

Table B.10: Authorisation Requirements Verification: Non disclosure

Id Datalog Rules for: non-disclosure(A1, A2, I)

1.
violate-non-disclosure(A2, I,D) :- −has-authority-to-transmit(A2, I),
transmitted(A2, I,D).

2. transmitted(A2, I,D) :- possesses(A2, D), can-transmit(A2, I,D).

3.
violate-non-disclosure(A2, I1, D) :- violate-non-disclosure(A2, I,D),
partOfI(I1, I).

4.
violate-non-disclosure(A2, I,D) :- violate-non-disclosure(A2, I1, D),
partOfI(I1, I).

242 Reasoning about conflicts in STS-ml using Datalog

Table B.11: Identifying unauthorised transfer of authorisations

Id Datalog Rules for non-reauthorisation(A1, A2, I, G,Op)

1.
violate-non-reauthorisation(A1, A2, I) :- −has-authority-to-authorise(A1, I),
authorise-reading(A1, A2, I).

2.
violate-non-reauthorisation(A1, A2, I) :- −has-authority-to-authorise(A1, I),
authorise-modification(A1, A2, I).

3.
violate-non-reauthorisation(A1, A2, I) :- −has-authority-to-authorise(A1, I),
authorise-production(A1, A2, I).

4.
violate-non-reauthorisation(A1, A2, I) :- −has-authority-to-authorise(A1, I),
authorise-transmission(A1, A2, I).

5.
non-reauthorisation-reading(A1, A2, I) :- not has-authority-to-read(A1, I),
authorise-reading(A1, A2, I), not violate-non-reauthorisation(A1, A2, I).

6.
non-reauthorisation-modification(A1, A2, I) :- not has-authority-to-modify(A1, I),
authorise-modification(A1, A2, I), not violate-non-reauthorisation(A1, A2, I).

7.
non-reauthorisation-production(A1, A2, I) :- not has-authority-to-produce(A1, I),
authorise-production(A1, A2, I), not violate-non-reauthorisation(A1, A2, I).

8.

non-reauthorisation-transmission(A1, A2, I) :- not

has-authority-to-transmit(A1, I), authorise-transmission(A1, A2, I), not

violate-non-reauthorisation(A1, A2, I).

Verifying Security Requirements over Responsibility Uptake 243

B.4 Verifying Security Requirements over Responsibility Uptake

As far as security requirements over responsibility uptake (imposed as organisational constraints) are
concerned, security analysis verifies whether the specification of role-sod, role-cod, goal-sod, and goal-cod

brings up conflicts with actors business policies. The analysis defines a final performer actor, and prop-
agates the normative requirements over an actor’s model and over social relationships it has with others,
to identity conflicts (see Tables B.12 and B.13).

Table B.12: Security Requirements over Responsibility Uptake: Goal Rules

Id Goal Rules for SoD and CoD

1. has(A,Gi) :- has(A,G), and-dec(A,G), is-refined(A,G,Gi).

2. has(A,Gi) :- has(A,G), or-dec(A,G), is-refined(A,G,Gi).

3. delegated(A1, A2, Gi) :- has(A1, G), delegates(A1, A2, Gi).

4. has(A2, Gi) :- delegated(, A2, Gi).

5. subgoal(Gi, G,A) :- is-refined(A,G,Gi).

6. subgoal(G1, G2, A) :- subgoal(G1, G3, A), subgoal(G3, G2, A).

7. final-performer(R,G) :- has(R,G), 0 = #count{R1:delegates(R,R1, G)}.

244 Reasoning about conflicts in STS-ml using Datalog

Table B.13: Verification of Security Requirements over Responsibility Uptake

Id Datalog Rules for Separation and Combination of Duty

Separation of Duty: role-sod(STS, Ag,R1, R2), goal-sod(STS,A,R1, R2)

1. violate-sod-role(A,R1, R2) :- sod-role(R1, R2), plays(A,R1), plays(A,R2).

2.
violate-sod-goal(A,R1, G1, R2, G2) :- sod-goal(G1, G2), final-performer(R1, G1),
final-performer(R2, G2), play(A,R1), plays(A,R2).

3.
violate-sod-goal(R,R,G1, R,G2) :- sod-goal(G1, G2), final-performer(R1, G1),
final-performer(R2, G2), 0 = #count{A :plays(A,R)}.

4.
violate-sod-goal(A,A,G1, R,G2) :- sod-goal(G1, G2), final-performer(A,G1),
final-performer(R,G2), agent(A), role(R), plays(A,R).

5.
sod-goal(Ga, G2) :- sod-goal(G1, G2), or-dec(R,G1), is-refined(R,G1, Ga),
final-performer(R,Ga).

6.
sod-goal(G1, Ga) :- sod-goal(G1, G2), or-dec(R,G2), is-refined(R,G2, Ga),
final-performer(R,Ga).

Combination of Duty: role-cod(STS, Ag,R1, R2), goal-cod(STS,A,R1, R2)

1. violate-cod-role(A,R1, R2) :- cod-role(R1, R2), not plays(A,R1), plays(A,R2).

2. violate-cod-role(A,R1, R2) :- cod-role(R1, R2), plays(A,R1), not plays(A,R2).

3.

violate-cod-goal(A,R1, G1, R2, G2) :- cod-goal(G1, G2), final-performer(R1, G1),
final-performer(R2, G2), agent(A), role(R1), role(R2), plays(A,R2), not

plays(A,R1).

4.

violate-cod-goal(A,R1, G1, R2, G2) :- cod-goal(G1, G2), final-performer(R1, G1),
final-performer(R2, G2), agent(A), role(R1), role(R2), plays(A,R1), not

plays(A,R2).

5.
violate-cod-goal(R1, R1, G1, R2, G2) :- cod-goal(G1, G2),
final-performer(R1, G1), final-performer(R2, G2), 0 = #count{A :agent(A)}.

6.

violate-cod-goal(R1, R1, G1, R2, G2) :- cod-goal(G1, G2),
final-performer(R1, G1), final-performer(R2, G2), agent(A), not plays(A,R1), not

plays(A,R2).

7.
violate-cod-goal(A,A,G1, R,G2) :- cod-goal(G1, G2), final-performer(A,G1),
final-performer(R,G2), agent(A), role(R), not plays(A,R).

8.
cod-goal(Ga, G2) :- cod-goal(G1, G2), or-dec(R,G1), is-refined(R,G1, Ga),
final-performer(R,Ga).

9.
cod-goal(G1, Ga) :- cod-goal(G1, G2), or-dec(R,G2), is-refined(R,G2, Ga),
final-performer(R,Ga).

	Introduction
	The security problem in socio-technical systems
	Security requirements engineering to the rescue
	Research Roadmap
	Research Questions
	Evaluation activities

	Motivating scenario: Red Cross Blood Transfusion Centre
	Overview and Contributions
	The STS methodology
	The STS-ml modelling language
	Automated analysis techniques
	The STS-Tool
	Evaluation of the methodology, language, and tool

	Organisation of the thesis
	Published papers
	Refereed
	Non-refereed
	Under preparation

	State of the art
	Goal-oriented requirements engineering
	Security requirements engineering
	Security requirements engineering methodologies
	Security requirements modelling languages

	Reasoning with requirements
	Conflict identification
	Reasoning with security requirements

	Beyond security requirements engineering
	Business processes modelling
	Privacy modelling
	Policy specification languages

	Security standards
	Chapter summary

	The STS methodology for security requirements engineering
	Security requirements engineering with STS
	STS phases
	Phase 1. Social modelling
	Phase 2. Information modelling
	Phase 3. Authorisation modelling
	Phase 4. Automated analysis
	Phase 5. Specification

	Chapter Summary

	The Socio-Technical Security Modelling Language
	STS-ml: principles
	Representing stakeholders in socio-technical systems
	Actors' assets
	Actor models
	Structuring information and documents

	Modelling the interactions among actors
	Events and threats
	Specifying security requirements in STS-ml STS-ml supports a rich set of security requirements types, illustrated in Figure ??. We use the term ``security requirements'' for brevity, but we mean ``security requirements types''.
	Confidentiality
	Integrity
	Availability
	Authenticity
	Reliability
	Accountability

	Chapter Summary

	Social, Information, and Authorisation Models
	Multi-view modelling approach
	Social model
	Information model
	Authorisation model
	Chapter summary

	Automated analysis support
	Formal framework
	STS Automated Reasoning
	Security Analysis
	Threat Analysis

	Chapter Summary

	Tool supported security requirements engineering: STS-Tool
	STS-Tool Architecture
	Modelling with STS-Tool: Graphical Editor for the STS-ml Language
	Security Requirements Derivator Module
	Analysis Module
	Document Generation Module

	Installation details
	STS-Tool features
	Chapter Summary

	Application Scenario and Case Studies
	Self-evaluation Case Study: Trentino as a Lab
	Applying STS methodology to the TasLab application scenario

	Scalability study
	Design of experiments
	Results

	Case Studies
	Case Study 1: eGovernment
	Applying STS methodology to the eGovernment case study
	Case Study 2: Air Traffic Management
	Results of the Application of the STS methodology to the ATM case study

	Chapter Summary

	User-Oriented Empirical Evaluation
	Evaluating STS methodology: the process
	Formative User-Centred Evaluation
	Experiment Design
	Results
	Conclusions and outlook

	Evaluation with novices
	Experiment Design
	Results
	Conclusions and outlook

	Final Evaluation
	Experiment Design
	Results
	Conclusions and outlook

	Discussion and threats to validity
	Chapter Summary

	Discussion, Conclusions and Future work
	Fulfillment of success criteria
	Conclusions
	Ongoing and future work
	Future Lines of Research

	Bibliography
	Security Requirements in STS-ml
	Reasoning about conflicts in STS-ml using Datalog
	Informational Knowledge Base
	Verifying Security Requirements over Goal Delegations
	Verifying Security Requirements over Authorisations
	Verifying Security Requirements over Responsibility Uptake

