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Hybrid system/Hardware-in-the-loop simulator
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- The remaining structure is computed 
analytically

- Critical non-linear parts are tested in 
laboratory

Physical piers
-CRITICAL PARTS-

Numerical deck 
and piers

Civil eng. application of hybrid simul.: a RC bridge

Hybrid
system

NS

PS
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Mech. eng. application of hybrid simul.: a piping system

Physical piping
branch

-CRITICAL PARTS-

Numerical piping 
branch

Hybrid
system

NS

PS
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State of the art limitations in hybrid simulation

• PARTITIONED TIME INTEGRATION APPROACH APPLIED 
TO A REALISTIC CASE STUDY WITH COMPLEX NSs;

• MODEL UPDATING OF THE NS BASED ON THE 
RESPONSE OF A DIFFERENT PS SUBJECTED TO 
DIFFERENT LOADING;

• SIMULATION OF A HYBRID SYSTEM CHARACTERIZED BY 
A DISTRIBUTED PARAMETER PSs WITH DISTRIBUTED 
LOADING;



State of the art limit.: time integration

Experimental time [s]

Monolithic time 
integration

= testing time scale= integration time step, = controller time step,

NS 
response

PARTITIONED TIME INTEGRATION APPROACH APPLIED TO A 
REALISTIC CASE STUDY WITH COMPLEX NSs

Experimental time [s]

Partitioned time 
integration

NS 
response
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On-line model updating, Bouc-Wen model, Unscented Kalman filter

State of the art limit.: model updating of NSs

MODEL UPDATING OF THE NS BASED ON THE RESPONSE OF A 
DIFFERENT PS SUBJECTED TO DIFFERENT LOADING

NSPS
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State of the art limit.: distributed parameters PSs

SIMULATION OF A HYBRID SYSTEM CHARACTERIZED BY A 
DISTRIBUTED PARAMETER PSs WITH DISTRIBUTED LOADING

PS

= inertial seismic loading



• HYBRID SIMULATION OF THE RIO 
TORTO BRIDGE

• HYBRID SIMULATION OF AN 
INDUSTRIAL PIPING SYSTEM

Outline
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Rio Torto Bridge: innovative contributions

• Application of the partitioned time integration approach, 
which allowed for the simulation of nonlinear NSs;

• model updating of NSs -numerical piers- based on the 
response of PSs -physical piers-.
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• Application of model reduction techniques to handle the 
PS and to simulate a distributed seismic loading.

The piping system: innovative contributions

PS



HYBRID SIMULATION OF THE RIO TORTO 
BRIDGE
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RC bridge with plain rebars, structural assessment, seismic 
retrofitting, hybrid simulation

THE RIO TORTO BRIDGE CASE STUDY
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MAIN DIMENSIONS OF THE BRIDGE

• Total span = 412 m

• Single span = 33 m

• Taller pier height = 41.50 m, Pier #7

• Shorter pier height = 14.00 m, Pier #12
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2 x 12 Friction Pendulum Bearing (FPB) 
isolation device

TRANSVERSAL 
SEISMIC LOADING

PROPOSED SEISMIC RETROFITTING SCHEME



PHYSICAL 
SUBSTRUCTURES

(2 Piers + FPB 
isolation devices)

NUMERICAL 
SUBSTRUCTURES
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SUBSTRUCTURING SCHEME FOR TESTING PURPOSES



Gerber saddles (removed in the isolated case)

Bologna Firenze

About 900 Degrees-of-Freedom (DoFs)

Element types:

• nonlinearBeamColumn for piers

• elasticBeamColumn for the deck
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THE OPENSEES REFERENCE MODEL (RM) OF THE BRIDGE



Bologna Firenze

Materials:

• Kent-Scott-Park model for concrete (Concrete01)

• Menegotto-Pinto model for rebars (Steel02) 

• Nonlinear shear behaviour of transverse beam (hysteretic)

 

singleFPBearing elements with a

Coulomb frictionModel.

Gerber saddles (removed in the isolated case)
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THE OPENSEES REFERENCE MODEL (RM) OF THE BRIDGE



Hysteretic loops of Pier #11 in the non-isolated case
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HYSTERETIC RESPONSES OF OPENSEES PIERS

NONLINEAR NUMERICAL PIERS WERE NEEDED !!!

SLS ULS

-0.06 +0.06 -0.20 +0.20



PHYSICAL 
SUBSTRUCTURES

(2 Piers + FPB 
isolation devices)

NUMERICAL 
SUBSTRUCTURES

SUBSTRUCTURING REQUIREMENTS
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OPENSEES FIBER-BASED FE MODEL:

- CONVERGENCE IS NOT ENSURED;

- HIGH VARIANCE OF SINGLE STEP SOLVING TIME (NON-

DETERMINISTIC).

FROM THE HYBRID SIMULATION PERSPECTIVE:

- TEST CAN FAIL;

- ACTUATORS CAN STOP UNTIL THE NUMERICAL PART IS 

SOLVED (MATERIAL RELAXATION IN THE PS)

SUBSTRUCTURING REQUIREMENTS

REDUCED NONLINEAR NUMERICAL PIERS WERE NEEDED !!!
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DYNAMIC SUBSTRUCTURING OF OPENSEES MODELS

Substructuring scheme and subparts

DECK: LINEAR

PIERS: 
LINEAR/NONLINEAR

ISOLATORS: 
NONLINEAR



Pier #9
CONSTRAINT MODE

CONSTRAINT MODES: static deformation shapes
owing to unit displacements applied to boundary
DoFs, one by one, whilst the others retained
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DYNAMIC SUBSTRUCTURING OF OPENSEES PIERS

GUYAN static condensation:

XR

XL

XL



7/10/2014Page 24

( ) ( )
( )2/ 1 ( ( ) ) | |

g

n

r c x m x f u t p t

r k x sgn x r r xρ α β γ

+ ⋅ + ⋅ = − ⋅ +
  = ⋅ + ⋅ − ⋅ ⋅ + ⋅  

ɺ ɺɺ ɺɺ

ɺ ɺ ɺ

�(�)= transversal force history from OpenSEES;

���(�)= input accelerogram;

�, 
,�, � = linear parameters;


,α, �, γ, �	= nonlinear parameters.

PIER REDUCED TO A S-DOF NONLINEAR HYSTERETIC SYSTEM
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XOS = displacement responses of the OpenSEES pier

Xred = displacement responses of the S-DOF reduced pier

PARAMETER IDENTIFICATION FOR THE S-DOF NONLINEAR REDUCED PIER
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Bilinear hysteretic model

ISOLATOR REDUCTION TO A S-DOF NONLINEAR SYSTEM
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Bilinear hysteretic model
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ISOLATOR REDUCTION TO A S-DOF NONLINEAR SYSTEM
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XOS = displacement responses of the OpenSEES isolator

Xred = displacement responses of the S-DOF reduced isolator

PARAMETER IDENTIFICATION FOR THE S-DOF REDUCED ISOLATOR



7/10/2014Page 29

Validation of reduced NSs at ULS

VALIDATION OF SUBSTRUCTURED NUMERICAL PARTS

Iso. of Piers #9Piers #9
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HYBRID MODEL OF THE NON-ISOLATED BRIDGE

88-DoFs       <<      ~900-DoFs

(Hybrid model)         (OpenSEES RM)

UNIFORM TRANSVERSAL 
SEISMIC LOADING



7/10/2014Page 31

88-DoFs       <<      ~900-DoFs

(Hybrid model)         (OpenSEES RM)

UNIFORM TRANSVERSAL 
SEISMIC LOADING

HYBRID MODEL OF THE ISOLATED BRIDGE
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PARTITIONED TIME INTEGRATION
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λ = extended testing time scale = 200

4At ms∆ =
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Contr. time step: Subcycling:
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NS

PS

RESPONSE OF THE NS

PARTITIONED TIME INTEGRATION
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λ = extended testing time scale = 200

4At ms∆ =

2t ms∆ =

200 4 800At msλ ⋅∆ = ⋅ =Sim. time step: Exp. time step:

Contr. time step: Subcycling:
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THE GCbis-MG-α PARALLEL PARTITIONED TIME INTEGRATORS
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λ = 128, ∆t = 1/1024, ∆tA = 1/1024, ss = 128

2 0.01u =Free decay response to:

PS
DoF #1

PS
DoF #2

Time [s]

-- exp.
-- num.

EXPERIMENTAL VALIDATION OF THE GCbis-MG-α METHOD
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EXPERIMENTAL SET-UP AT THE ELSA LAB. OF THE JRC OF ISPRA (VA)

1:2.5 SCALE MOCK-UP PIERS
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EXPERIMENTAL SET-UP OF PIERS

PHOTOGRAMMETRIC 
MEASUREMENTS
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1:2.5 SCALE MOCK-UP ISOLATORS

EXPERIMENTAL SET-UP OF ISOLATORS

G ± ∆FV
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EXPERIMENTAL EQUIPMENT
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: Vertical actuator (12x) in force control mode;

: Horizontal actuator (6x) in displacement control mode;

Plan view of the experimental set-up

PID-based control architecture



PHYSICAL PIERS

NUMERICAL PIERS

NEED FOR AN UPDATING STRATEGY FOR NUMERICAL PIERS
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DAMAGE MUST ACCUMULATE ON BOTH PSs AND NSs TEST BY TEST



7/10/2014Page 41

PROPOSED MODEL UPDATING TESTING PROCEDURE



Disp. [mm]
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MODEL UPDATING OF OPENSEES FE MODEL OF PHYSICAL PIERS
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MODEL UPDATING OF THE OPENSEES RM OF THE BRIDGE

Pier #9

Pier #11

Hollow piers

Solid piers
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XOS = displacement responses of the UPDATED OpenSEES RM

Xred = displacement responses of the reduced pier

DYNAMIC IDENTIFICATION OF NONLINEAR REDUCED PIERS
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1) Test k06: non-isolated bridge at SLS (10% PGA)

2) Test k07: non-isolated bridge at SLS 

3) Test l01: isolated bridge at SLS 

4) Test l02: isolated bridge at ULS 

5) Test k09: non-isolated bridge at ULS 

6) Test k11: non-isolated bridge at ULS (after shock)

7) Test k12: non-isolated bridge at ULS (200% PGA)

LIST OF MAIN HYBRID SIMULATIONS
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NON-ISOLATED BRIDGE 
AT SLS

EVOLUTIONS OF CONCRETE COMPRESSIVE STRENGTHS IDENTIFIED ON 
PHYSICAL PIERS
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Pier #9, SLS Pier #9, ULS

Pier #11, SLS Pier #11, ULS

HYSTERETIC LOOPS OF PHYSICAL PIERS

isolated configuration
non-isolated configuration
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DAMAGE PATTERN AFTER ULS TESTS

Column ends uplifting, expulsion of concrete covers

Diffuse crack patterns
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EVOLUTIONS OF MAIN BRIDGE EIGENFREQUENCIES

Eigenvalues of linearized non-isolated models
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COMPARISON OF NUMERICAL RESPONSES TO PHYSICAL MEASUREMENTS

Hysteretic loops and dissipated 
energies of Piers #9 and #11

Pier #9, ULS

Pier #11, ULSPier #9, ULS

Pier #11, ULS
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HYBRID SIMULATION OF AN INDUSTRIAL 
PIPING SYSTEM



Table Characteristics of the piping system

Pipe Size Material
Liquid/Internal 

Pressure

8” and 6” 
Schedule 40

API 5L Gr. X52
fy= 418 Mpa; fu = 554 Mpa; 

Elongation = 35.77%

Water/
3.2 MPa

A 3D model of the piping+support Dimensions and specifications of the piping
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THE INDUSTRIAL PIPING SYSTEM CASE STUDY
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#1

#2

,  ,  N P N P N P
x x y y z zθ θ θ θ θ θ≠ ≠ ≠

ANSYS REFERENCE MODEL (RM) OF THE PIPING

X

Positions of minimum bending moments were chosen as coupling nodes.

The seismic action was applied the x direction.

SEISMIC 
LOADING
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EXPERIMENTAL SET-UP OF THE PS

A pair of hydraulic actuators imposed displacements to coupling DoFs

X



Numerical-DoFs

Boundary-DoFs

Physical-DoFs

DOFS PARTITIONING
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Challenge: to reduce P-DoFs to B-DoFs and perform tests 
with two actuators only



A reduction basis T reflects a kinematic assumption:

N
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Reduced matrices of the PS:

REDUCTION BASIS REQUIREMENTS
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X: time history responses of the PS, i.e. B- and P-DoFs, arranged in row-wise.

U: orthonormal matrix of eigenvectors of XXT.

V: orthonormal matrix of eigenvectors of XTX.

Σ: diagonal matrix of the singular values of X, sorted in descending order.

X1

X2

X3

X4

XM

XM-1

1

... T

M

 
 = = 
  

X

X UΣV

X

The Principal Component Analysis (PCA) was applied to the dynamic 

response of the PS predicted by ANSYS RM.

REDUCTION BASIS REQUIREMENTS
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Σ11 > Σ22 > … > Σii: singular values of X in descending order

� = 	∑ Σ��
�
��� 	: total data energy

�� =	∑ Σ�� �⁄
�
��� : normalized cumulative data energy

• rank two;

• span principal component 
subspace;

• entail consistent kinematic 
assumptions.

REDUCTION BASIS REQUIREMENTS
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Constraint modes: static 
deformation shapes owing to 
unit displacements applied to 
B-DoFs, one by one, whilst 
the other retained 

Fixed interface vibration 
modes: eigenmodes of the 
PS constrained at its B-DoFs

Additional modal 
coordinates

THE CRAIG-BAMPTON METHOD APPLIED TO THE PSEUDODYNAMIC CASE
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STATIC AND DYNAMIC CONTRIBUTIONS
ARE PLEASANTLY UN-COUPLED !!!

Constraint mode contribution
Experimentally measured

Fixed interface vibration mode contribution
Numerically modelled
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THE CRAIG-BAMPTON METHOD APPLIED TO THE PSEUDODYNAMIC CASE



Errors between time history responses of the 

Reduced Model (NS + Reduced PS) and Reference Model

Error Coupling DoF #1 Coupling DoF #2
NRMSE 0.003 0.001

NEE 0.006 0.001
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X: response signal

N: length of response signal in sample

Sensitive to frequency 
mismatching

Sensitive to amplitude 
mismatching

THE CRAIG-BAMPTON METHOD APPLIED TO THE PSEUDODYNAMIC CASE



[ ]
RN LN

R L RB LB

RP LP

 
 = =  
  

Φ Φ

Φ Φ Φ Φ Φ

Φ Φ

1SE
RP RB

−

 
=  
 

I
T

Φ Φ

where:

Φ : mass normalized eigenvectors of the global system (column-wise)
ΦR : retained eigenmodes 
ΦL : truncated eigenmodes 

With relevant N-DoFs, B-DoFs and P-DoFs components (row-wise)
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THE SEREP METHOD APPLIED TO REAL-TIME HYBRID SIMULATION



Errors between time history responses of the 

Reduced Model (NS + Reduced PS) and Reference Model

Error Coupling DoF #1 Coupling DoF #2
NRMSE 0.015 0.0016

NEE 0.069 0.0003
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RM 2 2

CM 2
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x x
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X: response signal
N: length of response signal in sample

THE SEREP METHOD APPLIED TO REAL-TIME HYBRID SIMULATION

Sensitive to frequency 
mismatching

Sensitive to amplitude 
mismatching



Test Case PGA (g)

Identification test of the PS, IDT Hammer Test -

Real time tests 1 RTDS 0.020

Real time tests 2 RTDS 0.020

Elastic test, ET PDDS 0.042

Operational limit state test, SLOT PDDS 0.079

Damage limit state test, SLDT PDDS 0.112

Safe life limit state test, SLVT PDDS 0.421

Collapse limit state test, SLCT PDDS 0.599

EXPERIMENTAL PROGRAM
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• Identified damping = 0.5%;

• Time scale factor λ = 50;

• Water pressure = 3.2MPa.

LSRT-2 time integration algorithm available 
on the Network for Earthquake Engineering
Simulation (NEES) repository as simlsrt2 -
id #209 tool.
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EXPERIMENTAL SET-UP

Piping system
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EXPERIMENTAL SET-UP
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Displacement responses at the Coupling DoF #1 and relevant errors w.r.t. 
numerical simulations.

Pseudodynamic case
SLCT, PGA = 0.599g

Error Coupling DoF #1 Coupling DoF #2

NRMSE 0.038 0.066
NEE 0.112 0.396

EXPERIMENTAL VALIDATION OF THE CRAIG-BAMPTON-BASED APPROACH 
APPLIED TO THE PSEUDODYNAMIC CASE
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Displacement responses at the Coupling DoF #1 and relevant errors w.r.t. 
numerical simulations.

Real-time case
ET, PGA = 0.020g

Error Coupling DoF #1 Coupling DoF #2

NRMSE 0.083 0.239
NENERR 0.289 0.379
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EXPERIMENTAL VALIDATION OF THE SEREP-BASED APPROACH
APPLIED TO THE REAL-TIME CASE

ANSYS Reference Model
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CONCLUSIONS

• THE PARTITIONED TIME INTEGRATION APPROACH WAS APPLIED FOR 
THE FIRST TIME TO A COMPLEX BRIDGE PROVIDED WITH 
NONLINEAR NSs IN BOTH ISOLATED AND NON-ISOLATED 
CONFIGURATIONS;

• NSs -NUMERICAL PIERS- WERE UPDATED OFFLINE ACCORDING TO 
RESPONSES OF PSs -PHYSICAL PIERS- CHARACTERIZED BY 
DIFFFERENT SHAPES AND LOADING;

• HYBRID SIMULATION WAS APPLIED FOR THE FIRST TIME TO AN 
INDUSTRIAL PIPING SYSTEM CHARACTERIZED BY A DISTRIBUTED 
PARAMETER PS.

• BOTH THE CRAIG-BAMPTON AND THE SEREP METHODS WERE 
SUCCESSFULLY APPLIED IN THE CASE OF SEISMIC LOADING.

• STATE SPACE APPROACH FACILITATES THE INTEROPERATION OF 
TIME INTEGRATION, SYSTEM IDENTIFICATION AND MODEL 
REDUCTION TOOLS.
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On the NS side:

- Development of state space modeling 
environments.

- Possible application of on-line model 
updating techniques.

FUTURE PERSPECTIVES

( ( ) ) | |nr A sgn x r r xβ γ = − ⋅ ⋅ + ⋅ ɺ ɺ ɺ
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On the PS side:

- Experimental validation of alternative reduction bases in the linear 
range (balanced truncation, proper orthogonal decomposition, etc.);

- Extension of the proposed approach to nonlinear PSs.

FUTURE PERSPECTIVES

YIELDING OF ELBOWS
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Thank you for your attention.

Any question?


