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ABSTRACT

The thesis aims to investigate the dynamical criticality of a pedestrian footbridge

and the use of a semi-active tuned mass damper. In this respect, the work appears

threefold since the first and third part regard identification of a realistic model for the

damping device and semi-active control of the magneto-rheological damper. In this

respect, input identification techniques are a useful tool and an aid for the control

law design. As a consequence, the second part involves both input identification

strategies for a dynamic system and analysis of issues related to the inherent delay.

In this respect, the so called “collocation” of measurement devices with respect to

the application points of the input is critical, together with the concept of kernel.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The work of the thesis starts from the project founded by the Autonomous

Province of Trento and regarding to the Nomi-Calliano footbridge. The design of

the Nomi-Calliano footbridge was executed by the T&D Associated Engineers of

Trento with the aim of connecting the two banks of the Adige River giving conti-

nuity to the existing cycling road. Because of the recent events related to some

famous footbridges such as the Solferino and the Millennium bridge, the aim of

the research project was to investigate the dynamical criticality of this structure in

reference to both the cycle and pedestrian action. In addition also the aeroelastic

behavior of the footbridge was investigated since the structure is characterized by

high slenderness and high sensitivity to dynamic loads. This increased flexibility

may compromise the serviceability state since the excessive amplitude of vibra-

tions induced by external loads (wind, pedestrian and so on) unsettles the users

comfort while just some modes are subject to resonance induced by loads acting

in phase. In this respect, a damping system and a one-year monitoring system be-

came necessary. An experimental campaign was carried out on the Nomi-Calliano

footbridge on the 12th of July 2012 with the aims to identify the modal dynamic

characteristics of the structure and consequently to design a damping system.

However, uncertainties on soil stiffness depending of changes in temperature, sug-

gested that frequencies of the modes to be damped can vary substantially within

a range. For this purpose, a semi-active Magneto-Reological Tuned Mass Damper

(MR TMD) was chosen to be installed on the footbridge. The semi-active control
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system lets change on-line the mechanical characteristic of the device which, after

the induced modification, acts like a passive TMD. In this respect, two issues arise;

the first is the identification of the hysteretic behavior of the damper; the second

is the control law to be adopted for the device control. In this respect, in order

to identify both the main properties and the detailed model able to reproduce the

experimental behavior, tests on the MR damper were conducted at the Materials

and Structural Testing Laboratory of the University of Trento. The main hysteresis

models are described and a study on the Unscented Kalman filter (UKF) as tool to

identify hysteretic parameters is performed. An accurate parametric model of the

damper was finally obtained with the support of trial tests, optimization techniques

and the UKF. Eventually, the semi-active control law was preliminary numerically

simulated and then the control validation took place by using real data. A clipped

control strategy in conjunction with the well known Linear Quadratic Regulator al-

gorithm was chosen as control algorithm. The resulting clipped optimal control law

was used in order to find the optimal force able to reduce accelerations of the main

structure in absence of a properly tuned tuned mass damper. The thesis has also

a second path regarding to the input identification topic. Input identification com-

prises a range of techniques aimed to the solution of inverse problems. The classi-

cal aspect of the input identification is related to the knowledge of the input acting

on a structure since we are interested in inferring something about loads starting

from output sampled data. In this respect, the input identification comprises three

different parts: the identification of number, position and eventually time histories

of loads. The thesis considers linear time invariant systems subject to excitations

fixed in space and with long duration when compared to the fundamental period

of the structure. For this conditions it shows that the number of independent in-

puts can be extracted from the output measurements and that their position can

be established with the aid of a model without the need to perform a combinatorial

inspection of all the possible scenarios. The problem of the inherent delay between

inputs and outputs is addressed and a sequential deconvolution approach called

Segmented Deconvolution Algorithm (SDR) is proposed. The sequential process

is conditionally stable and the condition for stability is derived together with hints

about the possible presence of ill conditioning. Input identification techniques are
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used within the framework of a real application with the aim of validating the in-

vestigated semi-active strategy. The reconstructed input is in fact applied on the

simplified 2DoF model outlined by the Den Hartog theory and used in the design of

the controller. The final result is that the validation of the control strategy took ad-

vantage of both the recorded data from the monitoring system of the real structure

and the input identification technique.

1.2 Organization of the thesis

This thesis presents the research proposed by the author on system identifica-

tion and control of a MR damper together with a study on the input identification

strategies. This research is sponsored by the Autonomous Province of Trento and

includes the following chapters.

• Chapter 1 presents the thesis objectives and motivation.

• Chapter 2 is an introductory Chapter summarizing the linear time invariant

systems theory. Both continuous and discrete time state space representa-

tion of dynamical systems are introduced together with the concept of observ-

ability and dynamic response in terms of Markov parameters. A brief portion

of the control theory is reported with the description of the LQR algorithm.

Eventually, both the modal domain representation and the order reduction of

the system are presented.

• Chapter 3 treats the Kalman Filter theory. The chapter is focused mainly

on the linear filter and on its non linear version called Unscented Kalman

Filter since they have been used within the input identification field. The in-

depth analysis of references with respect to the Kalman filter application has

highlighted some significant issues.

• Chapter 4 summarizes the state of the art in both vibration mitigation prob-

lem and control in civil structures, analyzing passive, active, and semi-active

solutions; in addition, some actual examples are shown. Then the Nomi-

Calliano footbridge is introduced together with its vibrational criticality in order

to design the damping system including three passive and one semi-active
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devices. At his purpose, dynamic identification and model updating are per-

formed.

• Chapter 5 is dedicated to the input identification theory and to issues re-

lated to the input reconstruction. The Segmented Deconvolution Algorithm is

presented and validated by means of both numerical and experimental tests.

• Chapter 6 is about testing, identification and semi-active control of the tuned

mass damper with the aid of numerical and experimental tools such as the

input reconstruction and real data.

• Chapter 7 contains summary, conclusions and future perspectives.

1.3 Objectives

The objective of the thesis is the investigation of dynamical criticality of a pedes-

trian footbridge and the use of a semi-active tuned mass damper. In this respect,

the work appears threefold since first and third parts regard identification of a

realistic model for the damping device and semi-active control of the magneto-

rheological damper. In this respect, input identification techniques are a useful

tool and an aid for the control law design. As a consequence, the second part

involves both input identification strategies for a dynamic system and analysis of

issues related to the inherent delay. In this respect, the so called “collocation” of

measurement devices with respect to the application points of the input is critical,

together with the concept of kernel.
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CHAPTER 2

STATE SPACE REPRESENTATION, OBSERVERS AND

CONTROLLERS

2.1 Introduction

In this chapter there are some basic concepts regarding the theory of the Linear

Time Invariant systems (LTI). These systems are described in term of state space

representation which is a mathematical model of a physic system composed by

a set of inputs, outputs and state variables connected by first order differential

equations. First, the continuous and the discrete space representation and their

relation is reported and the hypothesis at the base of both the Zero Order Hold

(ZOH) and the First Order Hold (FOH) discretization is described in detail. Then,

the concepts of observability, reconstructability and detectability are introduced

and more attention about the asymptotic state estimator in open and closed loop is

payed. In addition, the dynamic properties of the LTI system are described in terms

of Markov parameters. A brief description of Linear Quadratic Regulator (LQR)

and Linear Quadratic Gaussian regulator (LQG) are reported and eventually, the

system dynamic behavior is described in term of modal coordinates in state space

and the concept of modal truncation is introduced.

2.2 Continuous time state space representation

The equation of motion for a finite dimensional linear dynamic system viscous

damped in second order form is in Juang and Phan (2001) and can be described

as,

Mü(t) + Cu̇(t) + Ku(t) = Sd(t) (2.1)
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where M, C and K ∈ Rnxn are the mass, damping and stiffness matrix, respectively.

ü(t), u̇(t) and u(t)∈ Rn are the acceleration, velocity and displacement vector, re-

spectively. S ∈ Rnxr gives the spatial distribution of the r excitations d(t) ∈ Rr .

Assuming that M is invertible, one can write,

ü(t) = −M−1Cu̇(t) − M−1Ku(t) + M−1Sd(t) (2.2)

Adding the equation u̇(t) = u̇(t), one has

d
dt

 u(t)

u̇(t)

 =

 0 I

−M−1K −M−1C

u(t)

u̇(t)

 +

 0

M−1S

 d(t) (2.3)

where x(t) =

 x1(t)

x2(t)

 =

 u(t)

u̇(t)

is the state vector and x(t) ∈ R2n. Substituting

the state vector into Eq. 2.1 one gets,

ẋ(t) = Acx(t) + Bcd(t) (2.4)

with the system matrix Ac ∈ R2nx2n, where Ac =

 0 I

−M−1K −M−1C

, the input

to the state matrix Bc ∈ R2nxr where Bc =

 0

M−1S

 and the input vector d(t) ∈

Rr . Assuming that measurements are linear with respect to the state, the set of

equations describing the outputs in terms of state variables and with zero initial

conditions, reads

y(t) = Hx(t) (2.5)

where H ∈ Rmx2n is the output influence matrix and depends by the number and

location of sensors used to measure the system output. If the output is accelera-

tion, then,

y(t) = Ra ü(t) (2.6)

Substituting the equation of motion solved for ü(t) as shown in Eq. 2.2 into Eq. 2.6,

yields

y(t) = RaM−1 [Sd(t) − Cu̇(t) − Ku(t)] (2.7)
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thus the general form writes

y(t) = Hx(t) + Dd(t) (2.8)

where H = [−RaM−1K,−RaM−1C] and D =
[
RaM−1S

]
and the matrix D is the di-

rect transmission matrix with dimension mxr - m and r number of outputs and inputs

respectively. Eqs. 2.4 and 2.8 form the continuous-time state-space description of

a linear time-invariant system.

2.2.1 Response to a general input

In order to obtain the state x(t) at any time, we simply need to integrate the

state equation 2.4, which can be conveniently solved with the method of matrix

exponential. First, we rearrange the differential equation

ẋ(t) − Acx(t) = Bcd(t) (2.9)

and multiply both sides by e−Act

e−Act
(

dx
dt

− Acx(t)
)

= e−Act Bcd(t) (2.10)

that is the perfect differential of

fracdxdt
[
e−Act x(t)

]
= e−Act Bcd(t) (2.11)

Integrating both sides from t0 to t and using τ as dummy variable, yields

t∫
t0

dx
dτ

[
e−Act x(ξ)

]
ξ =

t∫
t0

e−AcξBd(ξ)dξ = e−Acξx(t) − e−Act0x(t0) (2.12)

and solving for x(t), one obtains the solution of Eq. 2.9 at any time t given by the

well known convolution integral,

x(t) = eAc(t−t0)x(t0) +

t∫
t0

eAc(t−ξ)Bd(ξ)dξ (2.13)

where x(t0) is the initial state at time t = t0. Since the output term is expressed as

linear combination of the state,

y(t) = Hx(t) + Dd(t) (2.14)
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Figure 2.1: system representation by means of block diagrams.

then following that,

y(t) = HeAc(t−t0)x(t0) +

t∫
t0

HeAc(t−ξ)Bcd(ξ)dξ + Dd(t) (2.15)

The general system representation in state space form and based on block dia-

grams is shown in figure 2.1.

2.3 Discrete time state-space representation

Physical quantities change continuously with time since systems in real word

are characterized by a continuous-time dynamics. So what happens is that sensors

generate analog acquisition continuously, but computers handle with the digital

sampled signal and as a consequence state estimation and control algorithms are

usually implemented by means of digital electronic (Simon, 1990). In general, a

continuous time invariant system can be represented by a sampled one, as follows

x(t) = eAc(t−t0)x(t0) +

t∫
t0

eAc(t−ξ)Bcd(ξ)dξ (2.16)

Consider the discrete sampling interval ∆t and substitute t0 = k∆t and t = (k + 1)∆t

into the above continuous solution,

x [(k + 1)∆t ] = eAc∆t x(k∆t ) +

(k+1)∆t∫
k∆t

eAc[(k+1)∆t−ξ]Bcd(ξ)dξ (2.17)

Then with the final change of variables −τ = (k + 1)∆t − ξ and with some simplifi-

cations one gets,

x (k + 1) = eAc∆t x(k∆t) +

∆t∫
0

e−AcτBcd(τ )dτ (2.18)
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and finally, posed Ad = eAc(∆t), the solution in discrete time writes

x (k + 1) = Adx(k ) +

∆t∫
0

e−AcτBcd(τ )dτ (2.19)

and the general form

x(k + 1) = Adx(k ) + Bdd(k ) (2.20)

It is evident that the integration in Eq. 2.19 depends on the inter-sample behavior of

the input d(k). Some assumption must be done about d(k ) and the parametrization

for the inter sample behavior of the input can be expressed as (Bernal, 2007),

d(τ ) = f0(τ )d(k ) + f1(τ )d(k + 1) (2.21)

where f0(τ ) and f1(τ ) are arbitrary basis function defined over the time step and

with origin at the beginning of each time step. In general a finite dimensional input

can be expressed in the inter-sample as follows,

d(τ ) =
∑
alljs

fj (τ )dk+j (2.22)

Since the true analog input does not generally belong to the class that fits the

discrete time state space model, for any duplet {f0, f1}, a residual exists between

the true analog input and the sampled-based reconstruction. Substituting Eq. 2.21

into the integral in Eq. 2.19, the generic form of the discrete state space equation

is expressed as (Hanselman, 1987)

x(k + 1) = Adx(k ) +
∑
all js

Bjd(k + j) (2.23)

where

Bj = Ad

∆t∫
0

e−AcτBc fj (τ ) dτ , for j = 0, 1 (2.24)

The state matrices depend on the inter-sample behavior of the input; they are

summarized in Table 2.1 and studied in detail in the following two subsections.

More in general it is possible to parametrize the continuous-discrete relationships
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Table 2.1: Closed form of the state matrices as function of the discrete

assumptions on the input.

Inter sample assumption B0 B1

Zero Order Hold (A − I)A−1
c Bc 0

First Order Hold (A − I)A−1
c Bc − B1 (A − Ac∆t − I)A−2

c Bc/∆t

as,

Ac =
log(Ad )
∆t

(2.25)

Bc = (T0 + AdT1)−1Bd (2.26)

Cc = Cd (2.27)

Dc = Dd − CcT1Bc (2.28)

where

Tj = Ad

∫ ∆t

0
e−Acτ fj (τ )dτ (2.29)

2.3.1 Zero order hold

For the Zero Order Hold (ZOH) the assumption is {f0, f1} = {1, 0}, so j = 0.

The continuous signal is sampled and holds at a certain value for all the intervals,

becoming a stepwise as shown in figure 2.2. Let’s assume,

d(τ ) = f0(τ )d(k ) (2.30)

Let’ s define Bd , assuming that t0 = 0, then,

t∫
0

eAc(t−τ )Bcd(τ )dτ = (2.31)
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Figure 2.2: discrete and continuous signal.

=

t∫
0

eAc(t−τ )Bc f0(τ )d(k )dτ = (2.32)

=

t∫
0

eAc(t−τ )Bc1d(k )dτ = (2.33)

= −AdA−1
c e−AcτBc

∣∣∣∆t

0
d(k) = (2.34)

= −AdA−1
c

(
A−1

d − I
)

Bcd(k ) = (2.35)

= A−1
c
(
Ad − I

)
Bcd(k) (2.36)

Comparing Eqs. 2.19 and 2.20, it is evident that the ZOH solution is valid for for

Bd = A−1
c
(
Ad − I

)
Bc . In addition remembering Eq. 2.24 we define that Bd = B0

and B1 = 0.

2.3.2 First order hold

For the First Order Hold (FOH) the assumption is {f0, f1} = {1 − τ/∆t , τ/∆t}.

Let’s assume,

d(τ ) = f0(τ )d(k ) + f1(τ )d(k + 1) (2.37)
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This parameterization is not widely used in identification theory but is likely to be

more accurate than the ZOH assuming that in this case causality is not an issue,

(Bernal, 2007). The state space system becomes

x(k + 1) = Adx(k ) + B0d(k ) + B1d(k + 1) (2.38)

y(k ) = Hdx(k ) + Ddd(k ) (2.39)

The above-formulation is not in a standard discrete time state-space form due to

the presence of the term d(k + 1). However, it is possible to convert it in standard

form using the following transformation introduced by Hanselman (1987):

x(k ) = z(k ) +
∑
all js

j∑
i=1

A j−i
d Bjdk+i−1 (2.40)

and

z(k + 1) = Adz(k ) +

∑
all js

A j
dBj

 d(k) (2.41)

y(k ) = Ccz(k ) + Cc
∑
all js

j∑
i=1

A j−1
d Bjd(k + i − j) + Dcd(k) (2.42)

In detail, for the FOH discretization,

x(k ) = z(k ) + B1d(k ) (2.43)

and as a consequence,

x(k + 1) = z(k + 1) + B1d(k + 1) (2.44)

That yields,

z(k + 1) + B1d(k + 1) =

= Adx(k ) + B0d(k ) + B1d(k + 1) = Ad [z(k ) + B1d(k)] + B0d(k ) + B1d(k + 1) (2.45)
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z(k + 1) = Adz(k ) + AdB1d(k ) + B0d(k ) = Adz(k ) +
[
AdB1 + B0

]
d(k ) (2.46)

and

y(k + 1) = Hd
[
z(k ) + B1d(k )

]
+ Ddd(k) = Hdz(k ) +

[
HdB1 + Dd

]
d(k ) (2.47)

Finally,

z(k + 1) = Adz(k ) +
[
AdB1 + B0

]
d(k) = A2z(k ) + B2d(k ) (2.48)

and

y(k + 1) = Hdz(k ) +
[
HdB1 + Dd

]
d(k ) = H2z(k ) + D2d(k ) (2.49)

since

A2 = Ad (2.50)

B2 = AdB1 + B0 (2.51)

H2 = Hd (2.52)

D2 = H2B1 + Dc (2.53)

Let’s now define B2, assuming that t0 = 0 and knowing the solution in continuous

time,

x(t) = eAct x(0) +

t∫
0

eAc(t−τ )Bcd(τ )dτ (2.54)

The input is sampled with a FOH:

d(τ ) = d(k ) +
τ

∆t
(d(k + 1) − d(k )) (2.55)
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Substituting the input above into the forced part of the solution

t∫
0

eAc(t−τ )Bcd(τ )dτ =

t∫
0

eAc(t−τ )Bc
(
f0(τ )d(k ) + f1(τ )d(k + 1)

)
dτ (2.56)

Then we need to solve the following three integrals:

∆t∫
0

eAc(t−τ )Bcd(τ )dτ = (2.57)

=

∆t∫
0

eAc(t−τ )Bcd(k )dτ −
∆t∫
0

eAc(t−τ )Bc
τ

∆t
d(k )dτ +

∆t∫
0

eAc(t−τ )Bc
τ

∆t
d(k + 1)dτ

(2.58)

Remembering that Bj = Ad

∆t∫
0

e−AcτBc fj (τ ) dτ , j = 0, 1and that B0 and B1 are

the two terms needed to find B2:

B0 =

∆t∫
0

eAc(∆t−τ )Bc f0(τ )dτ =

=

∆t∫
0

eAc(∆t−τ )Bcd(k)dτ −
∆t∫
0

eAc(∆t−τ )Bc
τ

∆t
d(k )dτ (2.59)

B1 =

∆t∫
0

eAc(∆t−τ )Bc f1(τ )dτ =

∆t∫
0

eAc(∆t−τ )Bc
τ

∆t
d(k + 1)dτ (2.60)

It is possible to show that the solution for this integral results,

Ad (I1 − I2
∆t

)d(k ) +
Ad
∆t

I2d(k + 1) (2.61)

where

I1 = A−1
c

[
A−1

d − I
]

Bc (2.62)

I2 =
[
−A−1

c A−1
d Bc∆t − A−2

c (A−1
d − I)Bc

]
(2.63)
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2.4 Observability, reconstructability and detectability

The observability (and also the recontructability and detectability) of a system

is a basic concept in the estimation and control theory (Simon, 1990). A system is

observable if the current state can be determined in a finite amount of time steps

using both the information contained in outputs y(t) and inputs d(t). Since we use

also the outputs in order to find the current state, we must be sure that the current

state can be distinguishable from another one. The pair of states x1 ̸= x2 ∈ R2n

is called indistinguishable from the output y(·) if for any input sequence d(·) the

following applies,

y(k ; x1, d(·)) = y(k ; x2, d(·)),∀k ≥ 0 (2.64)

So the system is called completely observable if no pair of states are indistinguish-

able from the output. The issue related to the observability process consists in

determining the initial state x(k0)through observations of both the inputs d(k ) and

the outputs y(k ) of the actual system, for k ≥ k0. Let’ s consider the following LTI

system in discrete time,

 x(k + 1) = Adx(k ) + Bdd(k )

y(k ) = Hdx(k ) + Ddd(k )
, x(0) = 0 (x ∈ R2n, d ∈ Rr , y ∈ Rm) (2.65)

with output:

y(k ; x0, d(·)) = HdAk
d x0 +

k−1∑
j=0

HdA j
dBdd(k − 1 − j) + Ddd(k ) (2.66)

The problem of reconstructing the initial condition from m output measurements is

outlined in the following. The output recurrence is



y(0) = Hdx0 + Ddd(0)

y(1) = HdAdx0 + HdBdd(0) + Ddd(1)
...

y(N − 1) = HdAN−1
d x0 +

∑N−2
j=1 HdA j

dBdd(N − 2 − j) + Ddd(N − 1)

(2.67)
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and we define

YY =


y(0) − Ddd(0)

y(1) − HdBdd(0) − Ddd(1)
...

y(N − 1) −
∑N−2

j=1 HdA j
dBdd(N − 2 − j) + Ddd(N − 1)

 (2.68)

and

Θ =


Hd

HdAd
...

HdAN−1

 (2.69)

So, the initial state x0 is determined by solving the linear system

YY = Θx0 (2.70)

where the matrix Θ ∈ RNm×2n is the observability matrix of the system. With

regard eq. 2.70,

• the solution is unique if rank(Θ) = 2n;

• there exist infinite solutions if rank(Θ) < 2n; in this case, all solutions are

given by x0 + ker(Θ), where x0 is any particular solution of the system.

Then, assuming that the solution is unique and knowing the initial condition x0 and

the inputs, the current state for any time instant k can be easily determined,

x(k ) = Ak
d x0 +

k−1∑
i=0

A i
dBdd(k − 1 − i) (2.71)

In order to find the initial state, we use the Rouch-Capelli theorem and as a conse-

quence the system in 2.70 has a solution if

rank(Θ) = rank([ΘYY]) (2.72)

It is possible to show that a linear system is observable if and only if rank(Θ) = 2n.

The observability property does not depend on the input signal but only on the
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matrix Θ, that means on the couple {Ad , Hd}. So the couple {Ad , Hd} is observable

if

rank




Hd

HdAd
...

HdA2n−1
d



 = 2n (2.73)

We are interested in the kernel since in general ker(Θ) is the set of statesx ∈ R2n

that are indistinguishable from the origin for any input sequence d(·), which means

that

y(k ; x, d(·)) = y(k ; 0, d(·)),∀k ≥ 0 (2.74)

A system is observable if and only if there are no states that are indistinguishable

from the origin x = 0 and this happens when ker(Θ) = {0} or, in other words, when

rank(Θ) = 2n. A linear system x(k +1) = Adx(k )+Bdd(k ) is called reconstructable in

k steps if, for each initial condition x0, x(k ) is uniquely determined by {d(j), y(j)}k−1
j=0 .

A system reconstructable in N steps in completely reconstructable. Finally, the lin-

ear system is detectable if it is reconstructable asymptotically for t → ∞. It is useful

to investigate the observability property since a system is in general endowed with

sensors that allow to measure only a part of some state variables or their linear

combination. The set of the measured variable form the set of the system outputs

y(·) but there is a lack of knowledge about the dynamic field induced by a general

load since the number of sensors is limited. Using the observability property of the

LTI system, it is however possible to estimate the state of the system x̂(k ) with the

so called asymptotic state estimator, starting from the measurement of both the

input d(·) and the output y(·), with a estimate error the asymptotically goes to zero,

lim
t→∞

∥x(t) − x̂(t)∥ = 0 (2.75)

The asymptotic state estimator, also called the state observer, has an initial esti-

mate error which is initially not zero and which became void after a certain amount

of time since the state estimate drifts to its real state value.
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2.4.1 The initial condition issue

The structure of the open loop estimator is nothing else than a “copy” of the

dynamic equations of real system which uses both the input d(t) and the model

of the system, as shown in figure 2.3. Of course initial conditions are not known,

so the output of the simulated system is biased by the error due to the lack of

knowledge on initial conditions. The equations for this open loop estimator write,

Figure 2.3: Open loop state estimator.

x̂(k + 1) = Ad x̂(k ) + Bdd(k ) (2.76)

The estimate error result to be

e(k) = x(k ) − x̂(k ) (2.77)

and the dynamics of the estimate error

e(k+1) = x(k+1)−x̂(k+1) = Adx(k )+Bdd(k)−Ad x̂(k )−Bdd(k) = Ad (x(k )−x̂(k )) = Ade(k)

(2.78)

The evolution with an initial condition e(0) = x(0) − x̂(0) results

e(k) = e(0)Ad (2.79)

It appears clear that the evolution of the error is function of the eigenvalues of the

system matrix A or in other words the estimate error depends from the dynamic

of the system itself. However, assuming the system stability (the system is stable

since outputs are not diverging), it is not possible to arbitrarily choose with which

velocity the error goes to zero. The only advantage of such a type of open loop mir-

rored system is that the estimator is extremely easy since it is sufficient to replicate

the dynamic equations of the system.

18



2.4.2 Closed loop asymptotic estimator

The idea behind the closed loop asymptotic estimator is to feed back the esti-

mation error using the available measurements, i.e. the outputs y(t), through an

appropriate gain used to change the asymptotic behavior of the estimator (Juang

and Phan, 2001; Kailath, 1990). This is shown schematically in figure 2.4. The

Figure 2.4: closed loop asymptotic estimator.

closed loop asymptotic estimator uses all available information. Indeed, through

an appropriate choice of the feedback gain matrix L , it is possible to control the

convergence rate of the estimate error. The equation of the estimator in closed

loop reads,

x̂(k +1) = Ad x̂(k )+Bdd(k )+L[y(k )−Hd x̂(k )] = (Ad−LHd )x̂(k )+Ly(k )+Bdd(k) (2.80)

The initial state x(0) is unknown, so one uses an initial random value on the initial

state estimate x̂(0). The dynamic of the error estimate writes,

e(k + 1) = x(k + 1) − x̂(k + 1) = (2.81)

= Adx(k ) + Bdd(k ) − Ad x̂(k ) − Bdd(k) − L[y(k ) − Hd x̂(k )] =

= Adx(k ) − Ad x̂(k ) − LHdx(k ) + LHd x̂(k ) =

= (Ad − LHd )(x(k ) − x̂(k )) = (Ad − LHd )e(k )

The dynamic of the error is function of the matrix (Ad − LHd ) and the estimator

performance is governed by the eigenvalues of this matrix. The convergence to

zero is ensured by the fact that the eigenvalues have a negative real part, while the
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convergence rate can be modulated by choosing the magnitude of the real part of

the eigenvalues through the matrix L .

2.5 Dynamic response and Markov parameters

For discrete time model, the dynamic response to a general input is already

built into the model. We simply need to compute the state at each time step,

x(1) = Adx(0) + Bdd(0) (2.82)

x(2) = Adx(1) + Bdd(1) = A2
d x(0) + AdBdu(0) + Bdu(1) (2.83)

x(3) = Adx(2) + Bdd(2) = A3
d x(0) + A2

d Bdu(0) + AdBdu(1) + Bdu(2) (2.84)

and so on. Eventually,

x(k ) = Ak
d x0 +

k−1∑
i=0

A i
dBdd(k − 1 − i) (2.85)

and the corresponding output is

y(k ) = HdAk
d x0 +

k−1∑
i=0

HdA i
dBdd(k − 1 − i) + Ddd(k ) (2.86)

The output equation can be rearranged in order to highlight the Markov parame-

ters Yk ; in fact, the outputs are the result of the convolution between the Markov

parameters and the input load.

y(k ) = HdAk
d x0 +

[
Dd HdBd HdAdBd HdA2

d Bd ... HdAk−1
d Bd

]


d(k )

d(k − 1)

...

...

d(1)

d(0)


(2.87)
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or 

y(k )

y(k − 1)

...

...

y(1)

y(0)


=



HdAk
d

HdAk−1
d

...

...

HdAd

Hd


x0 +



Y0 Y1 Y2 Y3 ... Yk

0 Y0 Y1 Y2 ... ...

0 0 Y0 Y1 Y2 Y3

0 0 0 Y0 Y1 Y2

0 0 0 0 Y0 Y1

0 0 0 0 0 Y0





d(k)

d(k − 1)

...

...

d(1)

d(0)


(2.88)

For zero initial condition, the well know formulation of the impulse response holds,

y(t) = Md(t) (2.89)

We note that the solution to the same input d(k) is not the same if we are integrat-

ing the differential equation in continuous time or if we are solving the difference

equation in discrete time. In discrete time, the response is due to the discretized

version of d(k).

2.6 LQR and LQG controller

In this chapter we introduce the basic equations of the Optimal Linear Quadratic

Regulator (LQR) in continuous and discrete time and finite/infinite horizon.

2.6.1 LQR in continuous time and finite/infinite horizon

Assuming the linear system in continuous time

ẋ(t) = Acx(t) + Bcu(t) (2.90)

Let’s start using a finite time horizon; the objective is to minimize the following

quadratic cost function within the time interval [t0, ..., t1],

J = x(t1)T Mx(t1) +
∫ t1

t0
(x(t)T Qx(t) + u(t)T Ru(t))dt (2.91)

The control law results to be,

u(t) = −KLQR (t)x(t) (2.92)

where KLQR (t) = R−1BT
c P(t) and P(t) is the solution of the Riccati differential equa-

tion in continuous time

−Ṗ(t) = AT
c P(t) + P(t)Ac − P(t)BcR−1BT

c P(t) + Q (2.93)
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Let’s now take the infinite time horizon; the objective now is to minimize the follow-

ing quadratic cost function within the time interval [t0, ...,∞],

J =
∫ t∞

t0
(x(t)T Qx(t) + u(t)T Ru(t))dt (2.94)

The control law results to be,

u(t) = −KLQR (t)x(t) (2.95)

where KLQR (t) = R−1BT
c P∞ and P∞ is the solution of the Riccati differential equa-

tion in continuous time

0 = AT
c P∞ + P∞Ac − P∞BcR−1BT

c P∞ + Q (2.96)

2.6.2 LQR in discrete time and finite/infinite horizon

Assuming the linear system in discrete time

x(k + 1) = Adx(k ) + Bdu(k ) (2.97)

Let’s start using a finite time horizon; the objective is to minimize the following

quadratic cost function within the time interval [k0, ..., k1],

J =
k1∑

i=k0

(x(k )T Qx(k) + u(k )T Ru(k)) (2.98)

The control law results to be,

u(k ) = −KLQR (k )x(k ) (2.99)

where KLQR (k ) = (RT + BT
d P(k)Bd )−1BT

d P(k)Ad and P(k − 1) is the solution of the

Riccati algebraic equation in discrete time

P(k − 1) = AT
d (P(k ) − P(K)Bd (R + BT

d P(k)Bd )−1BT
d P(k))Ad + Q (2.100)

Let’s now take the infinite time horizon; the objective now is to minimize the follow-

ing quadratic cost function within the time interval [k0, ...,∞],

J =
∞∑

i=k0

(x(k )T Qx(k) + u(k )T Ru(k)) (2.101)
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The control law results to be,

u(k ) = −KLQR (k )x(k ) (2.102)

where KLQR (k ) = (RT + BT
d P∞B)−1BT

d P∞Ad and P∞ is the solution of the Riccati

algebraic equation in discrete time

P∞ = AT
d (P∞ − P∞Bd (R + BT

d Bd )−1BT
d )Ad + Q (2.103)

2.7 Modal domain

The dynamic behavior of structures can be settled by only few vibrational modes

(Ewins, 2000). It can be useful to project the problem into the modal domain. Start-

ing from the equation of motion in continuous time,

Mü(t) + Cu̇(t) + Ku(t) = Sd(t) (2.104)

The change of coordinates writes,

u(t) = Φq(t) (2.105)

The introduction of modal coordinates and the pre-multiplication by ΦT , yields

ΦT MΦü(t) +ΦT CΦu̇(t) +ΦT KΦu(t) = ΦT Sd(t) (2.106)

and assuming proportional damping, the decoupled system becomes

Iq̈(t) + Γq̇(t) + Ω2q(t) = ΦT Sd(t) (2.107)

where the diagonal matrix Ω ∈ Rnxn collects the n eigenfrequencies. The state

space system in modal domain given ζ =
q(t)
q̇(t)

, results

ζ̇(t) =

 0 I

−Ω2 −Γ

 ζ(t) +

 0

ΦT S

 d(t) (2.108)

or

ζ̇(t) = Amζ(t) + Bmd(t) (2.109)

with Am ∈ R2nx2n, Bm ∈ R2nxr , ζ ∈ R2n andd(t) ∈ Rr . With regard to the measure-

ment equation, displacement, velocity and acceleration measurement can easily

be projected in the modal domain

y(t) = Rdu(t) = RdΦq(t) (2.110)
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y(t) = Rv u̇(t) = RvΦq̇(t) (2.111)

y(t) = Ra ü(t) = RaΦq̈(t) (2.112)

with Rd , Rv and Ra ∈ Rnxn allowable to selecting for the real position of displace-

ment, velocity and acceleration measurements, respectively. In turn, acceleration

can be written as,

Iq̈(t) = −Γq̇(t) − Ω2q(t) +ΦT Sd(t) (2.113)

and substituting (in the case of acceleration data),

y(t) = −RaΦΓq̇(t) − RaΦΩ
2q(t) + RaΦΦ

T Sd(t) (2.114)

or

y(t) =
[
−RaΦΩ2 −RaΦΓ

] q(t)

q̇(t)

 +
[
RaΦΦ

T S
]

d(t) (2.115)

Collecting different types of measurements, the output equation write

y(t) =


u(t)

u̇(t)

ü(t)

 =


RdΦ 0

0 RvΦ

−RaΦΩ2 −RaΦΓ

 ζ(t) +


0

0

RaΦΦT S

 d(t) (2.116)

or easily

y(t) = Hmζ(t) + Dmd(t) (2.117)

with Hm ∈ Rmx2n, Dm ∈ Rmxr , ζ ∈ R2n and d(t) ∈ Rr .

2.8 Model reduction

It is often necessary to cut off the problem dimension because of computa-

tional issues by means of a model reduction. When the reduction is performed,

the dynamics of the system is represented by a reduced number N of modal coor-

dinates. ζr (t) ∈ R2N is the modal state vector and the state vector is just a linear

combination of N modes where

u(t) ≃ Φr q(t) (2.118)
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ΦT
r MΦr ü(t) +ΦT

r CΦr u̇(t) +ΦT
r KΦr u(t) = ΦΦT Sd(t) (2.119)

The expression for modal acceleration becomes

Iq̈r (t) + Γr q̇r (t) + Ω2
r qr (t) = ΦT

r Sd(t) (2.120)

and the modal reduced model in state space yields,

ζ̇r (t) = Am,rζr (t) + Bm,r d(t) (2.121)

with Am ∈ R2Nx2N , Bm ∈ R2Nxr , ζ ∈ R2N and d(t) ∈ Rr . With regard to the output

equation,

y(t) =


u(t)

u̇(t)

ü(t)

 =


RdΦr 0

0 RvΦr

−RaΦrΩ2
r −RaΦrΓr

 ζr (t)+


0

0

RaΦrΦT
r S

 d(t) (2.122)

or easily

y(t) = Hm,rζ(t)r + Dm,r d(t) (2.123)

with Hm,r ∈ Rmx2N , Dm ∈ Rmxr , ζ ∈ R2N and d(t) ∈ Rr .
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CHAPTER 3

THE KALMAN FILTER THEORY FOR INPUT AND STATE

ESTIMATION

3.1 Introduction

Theory of state estimations stems from the necessity of estimating instanta-

neous state of a linear dynamic system by means of the output measurements

which are both linearly related to the state and corrupted by noise. The state esti-

mation arises from the fact that the control of complex dynamic systems need the

knowledge of the motion field, but the availability of measurement points is limited

and it not possible to measure all wanted variables.

The beginning of optimal estimation theory and of optimal estimate from noisy

data is the least squares method, established by the early 1800s with the work

of Gauss (1809). Then Norbert Wiener gave impulse to the theory of predic-

tion, smoothing and filtering and to the theory of ergodic processes. The report

titled “Extrapolation, interpolation and smoothing of stationary time series” dates

back to the late 1940s (Wiener, 1949). In 1960 Kalman (1960) published the mile-

stone contribution to the linear filtering and prediction problems with the well known

Kalman Filter (KF). The Kalman Filter provides a means for optimally inferring, in-

deed it proves to be the optimal linear estimator for systems subjected to gaussian

disturbances with gaussian measurement noise. The concept of filter grows in the

1930s and 1940s in the meaning of separation of signals from noise, both charac-

terized by their power spectral densities. In addition the KF also includes the idea

related to the solution of an inverse problem since it basically reconstructs the inde-

pendent random variables starting from the dependent but measurable one. In this
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chapter the basic concepts about the linear Kalman filter for state and input identi-

fication are introduced. Then the Chapter the focus shifts on the non-linear version

of the filter and on its utilization as state and parameter estimator for non-linear

systems.

3.2 The Kalman Filter

The model considered by the KF has uncertainties related to:

• unknown inputs;

• discrepancies between the real system and the analytical model;

• unknown initial conditions.

The KF is a recursive data processing algorithm, which provides the optimal state

estimate of the system that is subjected to stationary stochastic disturbances with

known covariances. More precisely, the Filter computes the conditional mean and

covariance of the probability distribution of the state of the linear stochastic system

with noises defined in the following. Let’s consider the following time invariant linear

system in discrete time,

xk = Axk−1 + Buk−1 + Gwk−1 (3.1)

yk = Hxk + vk (3.2)

where the system matrix are A ∈ R2nx2n, B ∈ R2nxr , H ∈ Rmx2n and G ∈ R2n.

xk ∈ R2n is the state vector, dk ∈ Rr is the deterministic input and yk ∈ Rm is

the available measurement vector. The sequence wk ∈ R2n is the known distur-

bance also known as process noise and vk ∈ Rm is the measurement noise. It is

assumed that the noises are Gaussian stationary white noise with zero mean and

known covariance matrices (although these assumptions are quite distant from

reality),

E(xk ) = x̂0

E((x0 − x̂0)(x0 − x̂0)T ) = P0

(3.3)
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E(wk ) = 0 (3.4)

E(vk ) = 0 (3.5)

and

E(wk wT
j ) = Qδkj (3.6)

E(vk vT
j ) = QRδkj (3.7)

E(wk vT
j ) = 0 (3.8)

where δkj is the Kronecker Delta. In addition, the state is uncorrelated with respect

to the noises, i. e.

E(xk wT
j ) = 0 (3.9)

E(xk vT
j ) = 0 (3.10)

3.2.1 The state estimator

A linear estimator for a LTI is,

x̂k+1 = Fx̂k + Zdk + Lk yk (3.11)

where x̂k is the estimate of xk and Lk is the observer gain. Let’s define the error

between the real state and its estimate,

ek = xk − x̂k (3.12)

and substituting for the time station k +1 Eq. 3.1 and Eq. 3.2 into Eq. 3.12, it holds,

ek+1 = (A − Lk Hk )xk + (B − Z)dk + Gwk + Fx̂k − Lk vk (3.13)
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replacing xk with x̂k − ek ,

ek+1 = (A − Lk Hk )(x̂k − ek ) + (B − Z)dk + Gwk + Fx̂k − Lk vk (3.14)

reordering

ek+1 = (A − Lk Hk )ek + (B − Z)dk + Gwk + (A − Lk H − F)x̂k − Lk vk (3.15)

and taking the expected value of Eq. 3.15 and knowing Eqs. 3.4 and 3.5, one

finally obtains,

E(ek+1) = (A − Lk Hk )E(ek ) + (B − Z)E(dk ) + (A − Lk H − F)E(x̂k ) (3.16)

Since the expected values of the state estimate and of the input are not necessarily

zero and since we want that the expected value of the error is zero, it is necessary

that,

Z = B (3.17)

and

F = A − Lk H (3.18)

So the error in the time station k + 1 is a function of the error and the noises at the

previous step,

ek+1 = (A − Lk Hk )ek + Gwk − Lk vk (3.19)

and its expected value

E(ek+1) = (A − Lk Hk )E(ek ) (3.20)

Hence, it is necessary that

limk→∞E(ek+1) = 0 (3.21)

or, in other words the eigenvalues of the matrix (A − Lk H) must be inside the unit

circle in the complex plane.
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3.2.2 Innovation form of the Filter

Let’s define now the error in the state before and after the measurement update

reads,

e−k = xk − x̂−k (3.22)

e+
k = xk − x̂+

k (3.23)

where x̂−k is the a priori estimate and x̂+
k is the a posteriori estimate. The covariance

of the estimation error before and after the update

P−
k = E[e−k e−

T
k ] = E[(xk − x̂−k )(xk − x̂−k )T ] (3.24)

P+
k = E[e+

k e+T
k ] = E[(xk − x̂+

k )(xk − x̂+
k )T ] (3.25)

We postulate the existence of the state estimate before and after that information

from measurements became available, so

x̂−k = Ax̂+
k−1 + Bdk−1 (3.26)

x̂+
k = x̂−k + Kk (yk − Hx̂−k ) (3.27)

The first step represented by Eq. 3.26 identifies the prediction step of the Filter,

while in the second step, an update of the current a priori state estimate occurs

since the first estimate is corrected by the measurement vector that now is avail-

able. The a priori estimate error writes

e−k = Axk−1 + Bdk−1 + Gwk−1 − Ax̂+
k−1 − Bdk−1 (3.28)

which reduces to

e−k = Ae+
k−1 + Gwk−1 (3.29)
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and its the covariance results

P−
k = AP+

k−1AT + GQGT (3.30)

Then, let’s take the a posteriori state estimate and use the substitution of Eq. 3.2,

x̂+
k = x̂−k + Kk (Hxk + vk − Hx̂−k ) (3.31)

substituting Eq. 3.23 into Eq. 3.31, yields

xk − e+
k = xk − e−k + Kk (Hxk + vk − Hx̂−k ) (3.32)

and reorganizing

e+
k = e−k − Kk (He−k + vk ) (3.33)

So the second important result is the covariance of the a posteriori estimation error

P+
k = E[e+

k e+T
k ] = E[(e−k − Kk (He−k + vk ))(e−k − Kk (He−k + vk ))T ] (3.34)

P+
k = P−

k − P−
k HT Kk + Kk RKT

k − Kk HP−
k − Kk HP−

k HT KT
k (3.35)

The goal is to find the gain Kk that minimizes this a posteriori covariance. Taking

the derivative of Eq. 3.35 with respect to Kk , gives

Kk = P−
k HT (HP−

k HT + R)−1 (3.36)

finally after obtaining the gain, we can reformulate the expression for the a poste-

riori covariance,

P+
k = (I − Kk H)P−

k (3.37)

The filter steps are summarized in table 3.1

3.2.3 The steady state form of the Filter

The formulation for the steady state version of the filter is quite similar. The

difference resides in the fact that the covariance and the filter gain are not changing
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Table 3.1: Discrete-Time filter equation.

Time update equations

x̂−k = Ax̂k−1 + Bdk−1

P−
k = AP+

k−1AT + GQGT

Measurement update equations

Kk = P−
k HT (HP−

k HT + R)−1

x̂+
k = x̂−k + Kk (yk − Hx̂−k )

P+
k = (I − Kk H)P−

k

in time since once the transient response due to the error in the initial estimate x̂0

is dissipated, the state estimation error become stationary and consequently the

error covariance converges at the steady state value. The steady state value is

available from the solution of the discrete algebraic Riccati Equation

P = APAT − APHT (HPH + R)−1HPAT + GQGT (3.38)

This equation can be solved under conditions of uniqueness:

• A is stable

• the pair (A, H) is observable

• the pair (A, GQGT )is controllable

• R > 0

• GQGT > 0.

Similarly the gain results to be

K = PHT (HPHT + R)−1 (3.39)

3.2.4 The Kalman-Bucy filter

The Kalman-Bucy filter is the continuous form of the filter. The continuous-time

random process x(t) and the observations are given by

ẋ(t) = Ac (t)x(t) + Bc (t)d(t) + Gcw(t) (3.40)
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y(t) = Hc (t)x(t) + v(t) (3.41)

with, as usual

E[w(t)vT (τ )] = 0 ∀t , τ ≥ 0 (3.42)

E[w(t)wT (τ )] = Q(t)δ(t − τ ) (3.43)

E[v(t)vT (τ )] = R(t)δ(t − τ ) (3.44)

E[x0] = x̄0 E[(x − x̄0)(x − x̄0)T ] = P0 (3.45)

E[x0wT (t)] = 0 E[x0v t (t)] = 0 (3.46)

The observer

˙̂x(t) = Ac (t)x̂(t) + Bc (t)d(t) + K(t)[y(t) − Hc (t)x̂(t)] (3.47)

whilst the matrix Riccati differential equation to be solved reads,

Ṗ(t) = Ac (t)P(t) + P(t)AT
c (t) − P(t)HT

c (t)R−1(t)Hc (t)P(t) + Q(t) (3.48)

and the gain in continuous time results,

K(t) = P(t)HT
c (t)R−1(t) (3.49)

3.3 The Kalman Filter for input identification

Kalman filter for input identification is attractive since it is a model based method

that allows minimum variance estimation of the input without a priori information

about the dynamic evolution of the input forces. The Kalman filter for force iden-

tification includes unknown forces in the state vector and estimates the loads in

conjunction with the states. As usual noise on both measurements and state vari-

ables is modeled as a stochastic process. Techniques based on filters stand out

from purely deterministic methods in which no errors are added to the state sys-

tem. In the following there are the main results about this application.
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3.3.1 RLS approach

Tuan et al. (1996) and Tuan et al. (1997) show a Kalman-like observer joined

with a Recursive Least Square (RLS) approach in order solve a typical Inverse

Heat Conduction Problem (IHCP). In such a problem, it is desired to estimate the

unknowns of a thermal system (heat fluxes or heat sources) providing temperature

measurements in the interior of the body. In the papers, the goal is to estimate the

thermal unknowns by using temperature measurements in order to estimate both

the states and the operating load. The algorithm consists in two parts: the Kalman

filter and the Recursive Least Square weighted by a forgetting factor.

Figure 3.1: state and input observer layout.

Figure 3.2: the Kalman observer.
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Table 3.2: RLS algorithm
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The Kalman filter generates the recursive relation between the observed value

of the innovation without knowledge of the input and the theoretical residual as-

suming that the input is obtained. In this relationship there is a deterministic bias

due to the unknown input and a random bias due to the process and measure-

ment noise. In the meanwhile, the RLS algorithm uses the residual to extract the

estimated deterministic input.The adaptive procedure can be implemented on-line.

The starting point is the discrete time invariant system and the complete observer

layout is in figure 3.1. In this procedure, the Kalman filter acts as a ”bias free“

estimator and the RLS function as a ”bias“ estimator. The input gain minimizes the

difference between actual and estimated loads; the forgetting factor weights the

error on the input estimate by giving less importance to the oldest samples. De-

tails of the algorithm are shown in figures 3.2 and 3.3. In Table 3.2 is reported the

Figure 3.3: the RLS observer.

whole algorithm. The application of the Kalman Filter with a recursive estimator is

also used in Liu et al. (2000) in order to determine the input force of a cantilever

plate.

3.3.2 Minimum-Variance Unbiased input and state estimation algorithms

In (Gillijns and De Moor, 2007a,b), an extension of methods presented in Kitani-

dis (1987) and Darouach and Zasadzinski (1997) is presented and necessary and

sufficient conditions of the method are discussed. The paper addresses the prob-

lem of unknown input identification without a priori knowledge on the input model

and in the same time assumes optimality conditions leading to a Minimum-Variance
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Unbiased (MVU) input and state estimation. The recursive filter is used on linear

discrete-time system in order to jointly estimate the state and the input. The input

estimate is obtained through a least square procedure and the extended state es-

timate is obtained from a standard Kalman approach. Results are coherent with

both the Kitanidis (1987) and Darouach and Zasadzinski (1997) state estimation,

and with the input estimation of Hsieh (2000). Consider the Linear Time Invariant

(LTI) discrete-time system,

xk+1 = Axk + Bdk + wk (3.50)

yk = Hxk + vk (3.51)

where xk ∈ R2n is the state vector, dk ∈ Rr is the unknown input and yk ∈ Rm

is the measurement vector. The process noise wk ∈ R2n and the measurement

noise vk ∈ Rm are assumed to be mutually uncorrelated, zero-mean, white random

signals with covariance matrices Qk and Rk .The input has unknown model and no

a priori assumption is made on it. The relevant pseudo-code results to be,

• Initialization: x0 = x̂k−1|k−1, P0 = Pk−1|k−1.

• Input estimation:

1. x̂k |k−1 = Ax̂k−1|k−1is biased by the unknown input

2. Pk |k−1 = APk−1|k−1AT + Q

3. R̃k = HPk−1|k−1AHT + R

4. Mk = (FT
k R̃−1

k Fk )FT
k R̃−1

k , where Fk = HB

5. ˆd − 1k = Mk (yk − Hx̂k |k−1) is the MVU estimate of the unknown input

given the innovation yk − Hx̂k |k−1.

• State estimation:

State update

1. x̂∗k |k = x̂k |k−1 + Bd̂k−1is the unbiased state estimate of xk

2. Kk = Pk |k−1HT R̃−1
k where the matrix Kk minimizes the variance of x̂k |k
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3. P∗
k |k = (In − BMk H)Pk |k−1(In − BMk H)T + BMk RMT

k BT .

Measurement update

1. x̂k |k = x̂∗k |k + Kk (yk − Hx̂∗k |k ) is the MVU estimator of xk

2. S∗
k = −BMk R

3. Pk |k = P∗
k |k − Kk (P∗

k |k HT + S∗
k )T .

Consider now the Linear Time Invariant (LTI) discrete-time system:

xk+1 = Axk + Bdk + wk (3.52)

yk = Hxk + Ddk + vk (3.53)

where xk ∈ R2n is the state vector, dk ∈ Rr is the unknown input and yk ∈ Rm

is the measurement vector. The process noise wk ∈ R2n and the measurement

noise nk ∈ Rm are assumed to be mutually uncorrelated, zero-mean, white ran-

dom signals with covariance matrices Qk and Rk . The input has unknown model

and no a priori assumption is made on it. The matrices A , B, H, D are known but

the algorithm can be applied to time-variant system substituting A , B, H, D with Ak ,

Bk , Hk , Dk . It is possible to extend this procedure also to linear discrete-time sys-

tem with direct feedthrough (Gillijns and De Moor, 2007a). The estimation of input

and state is still joined: the input estimate is developed with a Weighted Least-

Square approach (WLS), while the state estimate is performed using the Kitanidis

(1987) approach. On the one hand, the state estimation problem is conceptually

the same but on the other hand the input estimation problem is different in the two

cases. The main difference lies on the delay on the input estimate. In absence

of the direct feedthrough term, it is possible to estimate the input at time k − 1

through information at k |k − 1, since the first useful information about d̂k−1 comes

from ŷk |k−1. Dually, in presence of the feedthrougth term, it is possible to acquire

information about d̂k by means of ŷk |k−1, directly and without delay. As a con-

sequence, the first usefull information depends on ∆t and on distances between

inputs and outputs. An unbiased minimum-variance input estimate is eventually

obtained from innovation term. Relevant recursive equations are here reported:
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• Initialization: x0 = x̂k |k−1, Px
0 = Px

k |k−1.

• Input estimation:

1. R̃k = HPk |k−1AHT + R

2. Pd
k = (DR̃−1

k DT )−1

3. Mk = Pd
k DT R̃−1

k

4. d̂k = Mk (yk −Hx̂k |k−1) is the MVU estimate of the unknown input given

the innovation yk − Hx̂k |k−1.

• State estimation:

Measurement update

1. Kk = Px
k |k−HT R̃−1

k

2. x̂k |k = x̂k |k−1 + Kk (yk − Hx̂k |k−1 − Dd̂k )

3. Px
k |k = Px

k |k−1 − Kk (R̃k − DPd
k DT )KT

k

4. Pxd
k = (Pdx

k )T = −Kk DPd
k

Time update

1. x̂k+1|k = Ax̂k |k + Bd̂k

2. Px
k+1|k =

[
A B

]Px
k |k Pxd

k

Pdx
k Pd

k

AT

BT

 + Q

Lastly, time update and measurement update equations are the same used in the

Kalman filter with the significant difference that the unknown input is obtained from

a least square estimation. The input estimate relies on the state covariance matrix

and in turn the state estimate depends from the innovation taking into account for

the input estimate.

3.3.3 The steady state observer method

Hwang et al. (2009) developed a procedure to estimate external loads using

measured structural response and a steady state Kalman filter scheme. The pro-

cedure is reported in table 3.3. The estimation method is formulated in a closed-

loop form in the modal space to define, in the frequency domain, the transfer func-

tion from actual load to estimated load. This method is applied to a SDoF system
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subjected to sinusoidal load and to a MDoF system subjected to wind load, respec-

tively. Wind load identification using steady state Kalman filter is extensively pre-

sented also in (Hwang et al., 2009). The scheme starts, as usual, from the system

dynamic. The Kalman gain is obtained starting from the solution of the algebraic

Table 3.3: the steady state observer

Metric domain Modal domain

xk+1 = Axk + Bdk actual state ζk+1 = Amζk + Bmdk

yk = Hxk + Ddk + vk actual meas. yk = Hmζk + Dmdk + vk

x̂k+1 = (A − KH)x̂k + Kyk estimated state ζ̂k+1 = (Am − KmHm)ζ̂k + Kmyk

ŷk = Hx̂k estimated meas. ŷk = Hm ζ̂k

x̂k+1 = Ax̂k + Bd̂k at convergence ζ̂k+1 = Am ζ̂k + B ˆmdk

d̂k = B+(x̂k+1 − Ax̂k ) d̂k = B+
m(x̂k+1 − Am x̂k )

x̂k+1 − Ax̂k = K(yk − Hx̂k ) ζ̂k+1 − Am ζ̂k = Km(yk − Hm ζ̂k )

d̂k = B+K(yk − Hx̂k ) estimated load d̂k = B+
mKm(yk − Hm ζ̂k )

Riccati equation and it is used in steady state form in order to identify modal wind

load. Hwang et al. (2011) extended the method to a rectangular shaped concrete

chimney, by making use of measured responses from an aeroelastic wind tunnel

tests.

3.4 Introduction to non-linear filters

The usual applications of the non-linear filtering are:

• the state estimation

Given the observations yk the goals is to estimate the state xk of the following

discrete-time non-linear system

xk+1 = f(xk , dk , wk )

yk = h(xk , vk )
(3.54)

with the unobserved state vector xk ∈ R2n, the known exogenous input dk ∈ Rr ,

the measurements vector yk ∈ Rm, wk and vk the process and measurement

noises, respectively. The non-linear function f correlates the state at time k with
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the state at the current time k + 1, and it is function of both the input function dk

and the process noise wk . On the other side, the non-linear function h correlates

the state xk with the measurements yk . It is assumed that noises have Gaussian

probability distributions (white, with zero mean) uncorrelated with each other,

p(w) ∼ N(0, Q) (3.55)

p(v) ∼ N(0, R) (3.56)

• the parameter estimation

The parameter estimation consists in defining the non-linear map G(·) between

inputs xk and outputs yk ,

yk = G(xk , nk ) (3.57)

The non-linear map is defined and parameterized by the vector nk . It is also pos-

sible to update the parameters through a new state space representation,

nk+1 = nk + rk (3.58)

The minimization function is defined as the difference between the real output and

the one generated by the non-linear map,

ek = dk − G(xk , n) (3.59)

and the aim is to find a set of parameters that minimize a given error function.

• the dual estimation

The discrete state space non-linear system,

xk+1 = f(xk , dk , wk , n)

yk = h(xk , vk , n)
(3.60)

where both states and parameters are unknown and so jointly estimated starting

from the measured outputs yk .
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3.4.1 The process to be estimated

We can approximate both state vector and measurement vector by considering

the noise to be zero. Then,

x̂k+1 = f(x̂k , dk , 0) (3.61)

ŷk = h(x̂k , 0) (3.62)

where x̂k is the state estimation a posteriori. The traditional Kalman filter recur-

sively propagates the first two moments of the probability distribution of the system

state. However, if the dynamic system and the observation equations are non-

linear, the value of statistical variables can be calculated only if the probability

distribution of x̂k+1 is known. Conventionally for the linear case, it is assumed that

the distribution of the state x̂k+1 is Gaussian, so that the statistical distribution is

fully parameterized from the mean and the covariance. However, in the non-linear

case, the distribution does not have a general shape and generally is no longer

normal type.

3.4.2 The Extended Kalman Filter

One of the most known technique for performing the recursive estimation of

non-linear systems is the Extended Kalman Filter (EKF), which extends the tradi-

tional Kalman filter to non-linear systems. In the EKF method, the state variable are

approximated by Gaussian Random Variables (GRV) which propagate through the

first order linearization (around a point) of the system equations. As in the case of

the discrete Kalman filter, we obtain the estimates of both the state and covariance

from time update equations at the current time k , starting from the previous step

k − 1. Then the measurement update equations correct the state and covariance

estimate through the measurement yk . Note that there is no theoretical guarantee

that the estimator is the optimal one and that it is correct, since it provides only

an approximation to optimal non-linear estimation. Its behavior is as good as the

lower the initial error estimate is. Moreover, unlike the conventional Kalman filter,

the gain and covariance matrices must be calculated at each step as a function of
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the observations, together with the Jacobian of the matrices Ak and Hk , therefore,

the implementation of EKF turns out to be more costly from a computational point

of view.

3.4.3 The Unscented Transformation

The Unscented Kalman Filter (UKF) is a derivative-free version of the non-linear

filter used as an alternative to the EKF. It was first proposed in (Julier and Uhlmann,

1996, 2004a) and further developed by van der Merve et al. (2000); van der Merve

and Wan (2001a,b); van der Merve (2004); Wan et al. (2000); Wan and van der

Merve (2001). by The basic component of the UKF is the Unscented Transforma-

tion (UT) that is base on a deterministic sampling approach. The state variables

are approximated by a Gaussian probability distributions too and the distribution

is represented using a set of points appropriately weighted. Indeed, these sam-

pling points, propagated through the true non-linear model of the system and of

the measurements, are able to capture both the a posteriori mean and the covari-

ance of the Gaussian distribution. The nature of the transformation is such that the

process and the observations models should not be ”remodeled“, because it is not

necessary to linearize the equations, as is the case of the EKF. Therefore, UKF is

computationally slender than the EKF. In details, given the Gaussian random vari-

able χ , the UT gives a Gaussian approximation to the joint density distribution of

χ and y (Julier and Uhlmann, 2004b), i. e.χ
y

 ∼ N

x̄

ȳ

 ,

 Pχ Pχy

Pyχ Py

 (3.63)

where the random variable y is obtained by the non-linear transformation of χ. χ

are the so called sigma points and capture the mean and the covariance of the orig-

inal distribution. The sigma points are deterministically chosen . The unscented

transformation is a method capable of calculating the mean and the covariance

of a statistical variable which undergoes a nonlinear transformation. The transfor-

mation is based on the intuition that it is easier to approximate (using only some

points) a Gaussian distribution with respect to an arbitrary function or non-linear

transformation. The approach is shown in figure 3.4. It is necessary to choose a

set of points, sigma points, where it is applied the non-linear function in order to ob-
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Figure 3.4: The Unscented Transformation

tain a set of transformed points; starting from these points, it is possible to calculate

statistical variables. Consider the propagation of the random n-dimensional vari-

able χk with mean and covariance x̄ and Pχ , respectively, through the non-linear

function y = f(χ). In order to define statistical properties of X , the matrix containing

the sigma points is first defined and contains 2n + 1 vectors named sigma points

χi . Sigma points and their respective weights Wi are calculated according with the

following expressions:

χ0 = x̄ (3.64)

χi = x̄ + (
√

(n + λ)Pχ)i , i = 1, ..., n (3.65)

χi = x̄ − (
√

(n + λ)Pχ)i−n, i = n + 1, ..., 2n (3.66)

Wm
0 =

λ

λ + n
(3.67)

Wc
0 =

λ

λ + n
+ (1 − α2 + β) (3.68)
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Wm
i = Wc

i =
λ

2(λ + n)
(3.69)

where

• λ = α2(n + k) − n is a scaling parameter;

• α outlines the spread of sigma points around the mean x̄ and it usually is

small and positive (i.e. 1−3);

• k is a secondary scaling parameter and it can be zero;

• β embeds the previous knowledge of the distribution of xk and for Gaussian

distributions β = 2;

These sigma vectors are propagated through the non-linear function in order to

obtain the set of transformed sigma points,

yi = f(χi ), i = 1, .., 2n (3.70)

The mean and the covariance of yi are approximated using the weighted mean and

covariance of the transformed sigma points (a posteriori):

ȳ ≈
2n∑
i=0

Wm
i yi (3.71)

Py ≈
2n∑
i=0

Wc
i {yi − ȳ}{yi − ȳ}T (3.72)

Moreover, the cross-covariance between χ and Y can be estimated as

Pχy ≈
2n∑
i=0

Wc
i {χi − x̄}{χi − x̄}T (3.73)

The matrix form of the UT is

• X = [x̄ ... x̄] +
√

c[0
√

P −
√

P], c = α2(n + k)

• Y = f(X)

• ȳ = Ywm,with wm = [Wm
0 ... Wm

2n]T
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• Py = YWYT , with W = (I− [wm ... wm]) x diag(Wc
0 ... Wc

2n) x (I− [wm ... wm])T

• Pχy = XWYT

The mean and the covariance are calculated by standard operations between ma-

trices and vectors. This means that the algorithm is suitable for every type of

process model and the implementation is very rapid because it is not necessary to

calculate the Jacobian matrices as in the case of the EKF.

3.4.4 The Unscented Kalman Filter

Consider the discrete non-linear system of equations

xk+1 = f(xk , dk ; k ) + wk

yk = h(xk , dk ; k ) + vk
(3.74)

where xk is the n-dimensional state, dk is the input vector, wk is the q-dimensional

Gaussian process noise, yk is the observations vector and vk is the Gaussian

measurement noise. It’s assumed that wk and vk have zero mean and covariance,

E[w(i)w(j)T ] = ∂ijQ(i) (3.75)

E[v(i)v(j)T ] = ∂ijR(i) (3.76)

E[w(i)v(j)T ] = 0, ∀i, j (3.77)

The UKF prediction and update steps can be presented as follows,

1. Prediction equations

• Definition of sigma points:

Xk−1 = [x̄k−1 ... x̄k−1] +
√

c[0
√

Pχ,k−1 −
√

Pχ,k−1] (3.78)

• Propagate sigma points into the process non-linear equation:

X̂k = f(Xk−1, dk−1; k − 1) (3.79)
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• Compute the predicted mean:

x̄k = X̂k wm (3.80)

• Compute the predicted covariance:

P−
χ,k = X̂k WX̂T

k + Qk−1 (3.81)

2. Update equations

• Compute the a priori sigma points:

X−
k−1 = [x̄−k−1 ... x̄−k−1] +

√
c[0

√
P−
χ,k −

√
P−
χ,k ] (3.82)

• Propagate sigma points into the non-linear equation of the measure-

ments:

Z−
k = h(X−

k , dk ; k ) (3.83)

• Compute the predicted observations:

z̄k = Z−
k wm (3.84)

• Compute the innovation variance (the measurement noise is considered

additive and independent):

Pz,k = Rk + Z−
k W[Z−

k ]T (3.85)

• Compute the cross-correlation matrix:

Pχz,k = X−
k W[Z−

k ]T (3.86)

Finally, the filter gain, the state mean and the covariance read,

Kk = Pχz,k P−1
z,k (3.87)

xk = x−k + Kk (yk − z̄k ) (3.88)

Pχ,k = P−
χ,k − Kk Pz,k KT

k (3.89)
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CHAPTER 4

THE NOMI FOOTBRIDGE

4.1 Introduction

The Nomi-Calliano footbridge was funded by the Autonomous Province of Trento

and was executed by the T&D Associated Engineers of Trento with the aim of con-

necting the two banks of the Adige River giving continuity to the cycling road. In

particular, the design and the finite element model of the bridge are first presented

together with a special attention to the vibrational phenomena related to pedestrian

and wind action. Vibrational phenomena are already known to researchers and a

wide literature about control device can be found. Indeed, a brief description of

control in civil structures is reported focusing the attention on the concept of pas-

sive, active and semi-active control. Some bibliographic examples of structures en-

dowed with passive, active and semi-active devices complete the overview on the

structural control. Then, relevant issues inherent to the Nomi-Calliano footbridge

are presented and according to the Setra’ technical guide, the dynamic analysis

methodology is described. The guide is designed to both give information about

actions exerted by pedestrians and that may result in vibrational phenomena and

to guide the designer of a new footbridge in the analysis of the dynamic effects

induced by pedestrian. In general, these phenomena do not have effects at the

ultimate state limit, although the user may feel some discomfort and the service-

ability state limit may jeopardize. Consequently the analysis relative to this specific

bridge is addressed in order to prevent unwanted vibrational behavior induced by

pedestrian and wind. Analysis showed that the footbridge without additional damp-

ing devices suffers from the exceeding of some acceleration limits so the design of
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a damping system composed by 4 TMDs is performed with the support of the ex-

perimental modal analysis. The modal analysis has the aims of identify the modal

dynamic characteristics of the structure and consequently tune the damper param-

eters. Further analysis showed that the optimal solution for the specific footbridge

was the insertion of 3 passive and one semi-active TMD. At this purpose, a more

detailed focus on the Tuned Mass Damper and on its operating principles and rel-

evant design parameters is reported. Finally, the structure is endowed with a per-

manent monitoring system integrated with the structure with the aim of checking

along time the dynamic behavior related to pedestrian and wind action.

4.2 Control of structures

Structural control is related with the improvement of the dynamic behavior of

a structure through the use of specific devices. Some structural typologies, such

as concrete-steel composite floors, cable-stayed bridges or pedestrian footbridges,

are characterized by high slenderness or low distributed mass, since, in general,

the trend is toward taller, longer and more flexible structures. This increased flex-

ibility may compromise the serviceability state since the excessive amplitude of

external loads induced vibrations unsettles the users comfort. The structural con-

trol is an alternative to the modal properties modification (obtained through the

alteration of the structural mass and/or stiffness) and encouraged by economic or

aesthetic requirements. Suspended bridges affected by the dynamic action of the

wind load and characterized by considerable span and high slenderness is a com-

mon and descriptive example of the issue related to the control of vibrations (Diana

et al., 2006; Cigada et al., 2002). Also footbridges are affected by the dynamic in-

teraction with the pedestrian and cycling load if the input periods of vibration are

comparable with those of the structure (Occhiuzzi et al., 2002, 2008). The dynamic

characteristics of the structure are usually modified with additional devices that in-

crease damping or stiffness. This interaction between the generic damping device

and the structure can be passive, active or semi-active (Symans and Constantinou,

1999; Spencer and Nagarajaiah, 2003). Passive systems usually modify the damp-

ing of the primary structure and are fully operative without any external sources of

energy and with no necessity of a feedback control system. A second option is to

increase the stiffness of the structure out of the resonant range. On the contrary,
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active devices need of both one external source of energy and one control system

specifically designed. A control feedback loop and sensors arranged over all the

structure lead the active device that can be for example composed by pneumatic

or hydraulic actuators and governed by a fluid-mechanical control system. The

active control is expensive from both the points of view of money and design. Fi-

nally, semi-active systems permit a change in the mechanical characteristic of the

device on-line at the cost of a limited dissipation of energy. Then the device, after

the induced modification, acts like a passive object.

4.2.1 Passive control

Passive Control Systems do not require an external power of source and the

energy in the controlled system can not increase. Passive devices need neither

control algorithm nor acquisition of data from sensors. Passive devices are re-

Figure 4.1: working layout of the passive device.

liable since they are liable to blackouts, relatively inexpensive, inherently stable,

they consumes no external energy and they work even during a major earthquake.

Passive controllers are based on the dissipation or the transfer of kinetic energy.

Friction dampers, metallic yield dampers, viscoelastic dampers and viscous fluid

dampers dissipate the excess of energy in the system while Tuned Mass Dampers

(TMD) and Tuned Liquid Dampers (TLD) just transfer energy from the main system

to a secondary one (Casciati et al., 2006). Friction devices slip at a predetermined

optimum load before yielding occurs in primary structural members under severe

loading conditions (Filiatrault et al., 2000). Obviously, compatible materials must be

employed to maintain a consistent coefficient of friction over the intended life of de-

vice and it is furthermore important to minimize the stick-slip phenomena to avoid

introducing high-frequency excitations. Metallic dampers use the inelastic defor-

mation of metallic substances to dissipate energy and they usually are torsional

beams, flexural beams and energy dissipators with various shapes. Viscoelastic
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Figure 4.2: behavior of different types of dampers.

and fluid dampers use viscoelastic solid materials and viscous fluid materials, re-

spectively; the first can have elastic plus rate-dependent behavior while the second

can have linear or non-linear force-velocity relationship, and both store and dissi-

pate energy for defined deformation levels. Finally, TMDs and TLDs behave as

additional oscillators and act as vibration absorbers.

4.2.1.1 Millennium bridge

The suspension bridge opened in June 2000 has cables low positioned respect

the level of the deck and is shown in figure 4.3. Detailed information about the

footbridge design can be found in Dallard et al. (2001a,b). Despite the initial es-

timation of 80000/100000 people crossing the bridge during the first opening day,

just a maximum of 2000 people (density of 1.3/1.5 people per square meter) were

sufficient to activate unexpected excessive lateral vibrations. The oscillations were

at frequency of around 0.8 Hz along the south span (first south lateral mode), 0.5

Hz and 1.0 Hz along the central span (first and second lateral modes, respec-

tively). Vibration did not occur continuously and no vertical excessive vibrations

were recorded. Pedestrian interacted with the bridge since as the amplitude of

the bridge motion increased, the lateral force of the individual person increased

too generating a coupling self-exciting effect. This effect was caused by the fact

that this type of forces were applied at the resonant frequency and with a phase

favorable for the motion of the bridge in such an evident way that the bridge was

temporary closed to the public. The adequate level of damping was then achieved,
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Figure 4.3: Millennium Bridge, London.

after a long re-design phase, by placing a ”bracing“ pattern of low friction fluid vis-

cous dampers under the deck and a set of TMD with regard the vertical model of

the main span (Dallard et al., 2001b).

4.2.1.2 San Michele all’Adige

The ”San Michele“ footbridge in figure 4.4 is located in San Michele, a little town

close to Trento. The footbridge was founded by the Autonomous Province of Trento

with the aim of improving the cycling and pedestrian link between San Michele and

Grumo. The footbridge is a cable-stayed arch bridge made by steel. Cables have

a radial disposition with a step of 2.5 m and the deck is 170 m long and with a

net width of 3.20 m. The University of Trento was designate to perform dynamic

analysis of sensitivity against both wind and pedestrian load. The result was that

the structure was endowed with 3 TMDs tuned on the frequency of 0.67 Hz, 0.72

Hz and 2 Hz, respectively. TMDs tuned on the lower frequencies are horizontal

and the one tuned on the higher frequency damps vertical oscillations.
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Figure 4.4: San Michele Footbridge.

4.2.1.3 Ponte del Mare

The ”Ponte del Mare“ cable-stayed footbridge is shown in figure 4.5 and is lo-

cated in Pescara at the mouth of the Pescara river close to the sea, in the center

of Italy. The bridge has two curved decks sustained by cables connected to a tilted

mast, as illustrated in figure 4.5. The outer deck is for pedestrians, while the inner

one is for cyclists; both decks have constant radius, of approximately 80 m and

100 m, and their lengths are 173 m and 148 m, respectively. The two decks are

spatial steel trusses connected to two prestressed concrete access ramps. The

mast is made of steel filled with concrete and rises between the foot-track and the

cycle-track decks, with inclination about 11◦ with respect to the vertical; two cables

anchor the top of the mast to the ground. In order to ensure safety requirements

under premature aeroelastic instability owing to wind and to mitigate pedestrian

vibration, the bridge was provided with a passive control system designed by the

University of Trento. It consists in viscous fluid dampers aimed to provide positive

damping, but with limiting changes both in modal frequencies and shapes. The rel-

evant design included 8 devices all endowed with viscous fluid dampers and some
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Figure 4.5: Ponte del mare, Pescara.

with one spring positioned in series. In particular, three damper types, A, B and C,

with differing parameter values are used and are installed at the locations shown

in figure 4.6 a) and b). The dampers characteristic are reported in table 4.1 while

dampers of Type A/B and C are illustrated in figure 4.6 c) and d).

Table 4.1: dampers characteristics, Ponte del Mare, Pescara - Italy.

Damper A Damper B Damper C

Type Elastic-viscous Elastic-viscous Viscous

Units 2 2 2+2

Damping constant 128.0 kNs/m 349 kNs/m 794 kNs/m

Spring stiffness 127.6 (±5%) kNm 127.6 (±5%) kNm

4.2.2 Active control

A number of structures integrating active control technologies are in Japan and

represent the starting point for this type of innovative smart structures (Nishitani

and Inoue, 2001). We talk about active structural control in presence of devices

able to both subtract and add energy to the structural system they are working

on (Spencer and Nagarajaiah, 2003; Symans and Constantinou, 1999; Nishitani
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a) b)

c) d)

Figure 4.6: a) and b) passive control system positioning; c) damper Type A and B;

d) damper Type C.

and Inoue, 2001) by using a certain amount of external energy and through a

decision-making process based on data collected in real-time. Typically, electro-

hydraulic or electro-mechanic actuators generate the control forces as a function of

the structural response and, when possible, also of information about the external

excitations. The controller measures the response of the structure and the external

excitation and sends the control signal to the actuators thought an algorithm coded

in the computer, as shown in figure 4.7. Civil Engineering structures are statically

Figure 4.7: working layout of active devices.

stable, but the addition of purely active control forces may cause the destabilization
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of the structure. In addition, other disadvantages of active control devices is the

initial high cost, the requirement of periodic maintenance of both the actuators and

the electric accumulators and the reliance on external sources of power (Spencer

and Nagarajaiah, 2003). The most part of the active control systems is designed

to suspend its activity during severe seismic events because of the high probability

of blackouts. Indeed some devices require tens of kilowatts even if applied to small

structures and they can reach many megawatts for huge structures (Soong et al.,

1991). The active structural control is not very popular for seismic hazards but is

still very useful for reducing wind-induced vibrations in bridges and tall buildings.

4.2.2.1 Kyobashi Building, 1989

The first full-scale application of the active control is the Kyobashi center (Kobori

et al., 1991a,b), a 11-storey building erected in 1989 in Tokyo shown in figure 4.8.

A system consisting of two Active Mass Dampers (AMDs) with masses of 4 t and 1 t

respectively, was installed. They are auxiliary oscillators that influence the dynamic

of the structure by adding an inertial force due to the mass, reducing the motion on

a frequency range bigger than those of a passive mass damper. The function of

the AMDs is to reduce the translational and rotational oscillations of the structure

under the excitation induced by strong winds and moderate earthquakes. The total

mass of the devices is the 1.1% of the total mass of the building.

4.2.2.2 Osaka ORC 200 Building, 1992

Another example of an ATMD is the 50-storey Osaka Building reported in figure

4.9. The system consists in two masses of 200 tt in total of weight equipped with

a control force working along only one directions. The device works in a double

fashion: along one direction of oscillation it is just a TMD, along the other one is

controlled by a control load. The total mass of the primary structure is 57000 t

while the mass ratio is 0.35 %.

4.2.3 Semi-active control

Semi-active control systems overcome the limitations of both passive and ac-

tive devices. By definition, these systems can not feed power into the structure, but

they have the same adaptability that characterizes the active control systems since

57



Figure 4.8: Kyobashi Building.

they are typically devices with one or more parameters tunable in real time. As for

the active control, the system requires both a monitoring unit for the on-line data

acquisition and a control unit for the execution of the control algorithm. Semi-active

control systems require electrical power, but employ power of orders of magnitude

lower compared to active systems and in certain cases the energy can be supplied

by simple batteries. Preliminary studies (Spencer et al., 1997; Symans and Con-

stantinou, 1999; Spencer, 2002) show that if properly implemented, these systems

behave significantly better than passive systems, and that have the ability to reach

the performance of active systems.

4.2.3.1 The Kajima Shinozuoka Building in Shinozuoka

The Kajima Shinozuoka Building build in Japan and completed on 2000 is the

first real application of semi-active control for strong earthquakes. The building is a

5-story steel structure whose floor area is 11.8 m by 24 m and total structural height

is 18.6 m (Kurata et al., 1999). The semi-active structural control system is installed

in the structure to reduce structural deflections during earthquakes (Kurata et al.,

1999; Lynch, 2002; Lynch and Law, 2002). Seth and Jerome (2005) implemented
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Figure 4.9: Osaka Building

on the Kajima Shinozuoka Building the semi-active hydraulic dampers in figure

4.10 using both a centralized and decentralized network of wireless sensors and

with a Linear Quadratic Control law (LQR).

Figure 4.10: Kajima Shinozuka Building - semi-active hydraulic damper.
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4.2.3.2 The Bilbao footbridge

The Bilbao footbridge in figure 4.11 is a stainless steel structure next to the

Guggenheim Museum spanning the river Nervin and linking the Deusto Univer-

sity with the district of Abandoibarra. The dynamic behavior is characterized by

the possible excitation of higher vibrational modes because of large simultaneous

pedestrian loading. The dynamic response of this structure was improved by in-

stalling several passive dampers and one semi-active TMD (Millanes and Pascual,

2004).

Figure 4.11: The Bilbao footbridge.

4.2.3.3 Forcheim footbridge

In the framework of EU-founded SPACE program (Semi active and Passive of

Control the dynamic behavior of structures subjected to Earthquake, wind and vi-

bration), experimental tests were carried out on the Forcheim footbridge (Figure

4.12) located 200 km from Munich (Occhiuzzi et al., 2008). The bridge was nu-

merically modeled to compare numerical and experimental tests. Occhiuzzi et al.

(2002) applied a LQR clipped scheme for a tunable TMD giving a physical descrip-

tion and discussing performances. Then a prototype of the semi active device was

developed and the tunable TMD (figure 4.13) was installed with the purpose of
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Figure 4.12: Forcheim footbridge, Munich

testing the vibrations reduction.

Figure 4.13: Semi-active MR TMD.

4.3 The Nomi Calliano footbridge design

The Nomi-Calliano footbridge in figure 4.14 was designed by the T&D Associ-

ated Engineers of Trento (Raia, 2010) with the aim of connecting the two banks

of the Adige River giving continuity to the cycling road. The arch bridge has the

deck in the lower part of the structure and is made with painted Corten steel. The

structure is asymmetric along the direction orthogonal to the deck axis and in addi-

tion the arch is inclined respect to the vertical axis of about 30◦, the resulting effect

being that the whole deck is an overhanging element supported by cables. The

arch has a hollow rectangular section with dimension 1200 mm of depth and high

variable between 600 and 1200 mm with the maximum high on the key. The deck
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Figure 4.14: the Nomi-Calliano footbridge.

is composed by the upstream trapezoidal-like box section with high torsional re-

sistance, while the downstream section is a cantilever beam composed by welded

plates. The section is variable and goes from the maximum high near the shoulders

to the minimum value in the center line. The deck is sustained by 50 steel cables

made by spiral ropes with nominal diameter of 20 mm, fastened in turn to the arch

that is the element transferring all the loads to the foundation system. Furthermore

the deck is in-built with the foundation so it assumes also the function of chain in

order to zero the pushing action generated by the arch. The footbridge has the net

span of 102 m, the vertical deflection of 14.6 cm and the nett and gross width are

3.25 m and 5 m, respectively. Both the deck and the arch are composed by plates

made by CORTEN S355 steel and in particular:

• S355J0W for elements with thickness less than 20 mm.

• S355J2W for elements with thickness between 20 mm and 40 mm.

• S355K2W for elements with thickness between 40 mm and 60 mm.

With regard the cables, the steel has characteristic tensile strength fptk ≥ 1570

MPa and characteristic strength in correspondence of the 0.2 % of deformation of

fp(02) ≥ 1180 MPa.
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4.4 The FEM model

The FEM model is modeled with Ansys and composed of the deck, the arch

and the foundation system for a total of 17300 nodes, 19700 elements and 103000

DoFs. The deck is modeled by means of the shell element SHELL181, the BEAM4

element is used to model the arch (with hollow sections) and the LINK180 element

is used for the cables in order to take into account the stiffening effect. The foun-

dation deformability is modeled by independent elastic springs (Winkler behavior)

using the COMBIN14 element. Not structural masses such as the wood floor and

the handrail are handled with the MASS21 element.

Figure 4.15: the Nomi-Calliano FEM model.

4.5 The dynamic analysis methodology

The technical guide Sètra (Setra’, 2006) is based on researches started af-

ter the unexpected and unwanted oscillatory phenomena noticed in the Millenium

bridge (Dallard et al., 2001b) and Solferino bridge (Blekherman, 2007) with the pur-

pose of giving useful recommendations to the designers. The guide is designed

to both give information about actions exerted by pedestrians and that may result

in vibrational phenomena and to guide the designer of a new footbridge in the
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analysis of the dynamic effects induced by pedestrian. In general, these phenom-

ena do not have adverse effects on structure, although the user may feel some

discomfort. The guide does not take into account for marathon, parades and in-

auguration nor for the wind aerodynamic action. The load induced by the action

of the single pedestrian has a specific frequency range that changes in the case

of slow/normal/fast walk or jog. From a mathematical point of view, the pedestrian

moves in the time along the one axis and x is the pedestrian position in relation

to the footbridge center line. The load of a pedestrian moving at constant speed v

can therefore be represented as the product of a time component F(t) by a space

component δ(x − vt), δ being the Dirac operator,

P(x, t) = F(t)δ(x(t) − x̂(t)) (4.1)

Experimental tests show that this is a periodic load with a fundamental frequency

showed in table 4.2, that correspond to the number of steps per second. In par-

ticular, the normal walk has mean frequency of 2 Hz and standard deviation of 0.4

Hz. The periodic function F(t) is expressed as a Fourier series using the first har-

monic with frequency equal to the base frequency fm. In detail the load due to one

Table 4.2: frequency range for walking and running (Setra’, 2006).

Designation Specific features Frequency range for fm [Hz]

Walking Continuous contact with the ground 1.6 to 2.4

Running Discontinuous contact 2 to 3.5

pedestrian write:

• the vertical component

Fv (t) = G0 + 0.4G0sin(2πfmt) (4.2)

• the transverse horizontal component

FhT (t) = 0.05G0sin(πfmt) (4.3)

• the longitudinal horizontal component

FhL (t) = 0.2G0sin(2πfmt) (4.4)
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Table 4.3: density of the crowd.

Class density d

III 0.5 pedestrian/m2

II 0.8 pedestrian/m2

I 1 pedestrian/m2

The mean value of 700 N may be taken for G0 that represents the weight of one

pedestrian.

4.5.1 Determination of the footbridge class according with Setra’ guide

Footbridge class makes possible to determine the level of traffic on a bridge.

Footbridges classes are reported in the follow:

• Class IV: seldom used footbridge, built to link sparsely populated areas or

to ensure continuity of the pedestrian footpath in motorway or express lane

areas.

• Class III: footbridge for standard use, that may occasionally be crossed by

large groups of people but that will never be loaded throughout its bearing

area.

• Class II: urban footbridge linking up populated areas, subjected to heavy

traffic and that may occasionally be loaded throughout its bearing area.

• Class I: urban footbridge linking up high pedestrian density areas (for in-

stance, nearby presence of a rail or underground station) or that is frequently

used by dense crowds (demonstrations, tourists, etc.), subjected to very

heavy traffic.

The density of the crowd is function of the class as shown in table 4.3. The crowd

is uniformly distributed over the total area S of the footbridge

4.5.2 Determination of the resonant risk

The determination of the resonant risk is evaluated according to figures 4.16 a)

and b) as a function of the structure natural frequencies. So for pedestrian bridges
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belonging to the class I to III, it is necessary to determine the natural frequencies

of vibration of the structure. Their determination should be made by taking two

different configurations: the first in which pedestrians are considered merely as a

forcing (every pedestrian causes a force of 700 N), the second in which pedestrians

are intended as structural mass. Once defined the range it is possible to evaluate

the acceleration serviceability limits.

a)

b)

Figure 4.16: frequency range for a) vertical/longitudinal and b) transverse

oscillations.

4.5.3 Choose of the comfort levels

The Owner determines one of the comfort level foreseen by the Setra’ guide:

• Maximum comfort: accelerations undergone by the structure are practically

imperceptible to the users.

• Average comfort: accelerations undergone by the structure are merely per-

ceptible to the users.

• Minimum comfort: under loading configurations that seldom occur, accelera-

tions.

The maximum limit for the vertical and horizontal acceleration are defined accord-

ing to figure 4.17 for both vertical and horizontal accelerations. On the other hand,

the EN 1990-Basis of Structural Design (1990, 2006) recommends the accelera-

tion limits in table 4.4 for the serviceability state. In addition the important limit
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a)

b)

Figure 4.17: a) vertical and b) horizontal limit for accelerations.

Table 4.4: maximum values for acceleration according to EN1990 (1990, 2006).

Max acceleration [m/s2]

Vertical vibrations 0.7

Horizontal vibrations, normal flux 0.2

Horizontal vibrations, crowd 0.4

of 0.1 m/s2 for the horizontal acceleration is settled in order to avoid the lock in

phenomena.

4.5.4 Load cases

The load case are determined as function of both the frequency risk range and

the class of the footbridge. Load cases are three:

• Case 1: sparse and dense crowd

• Case 2: very dense crowd.

• Case 3: effects of the second harmonic of the crowd.

So eqs. 4.2, 4.3 and 4.4 can be written for the whole area S of the bridge and for

number of pedestrian equal to Neq.

• the vertical component

Fv (t) = S Neq 0.4 G0cos(2πfmt)ψ (4.5)
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Table 4.5: load cases.

Traffic Class Natural frequency range

1 2 3

Sparse III Case 1 None None

Dense II Case 1 Case 1 Case 3

Very dense I Case 2 Case 2 Case 3

• the transverse horizontal component

FhT (t) = S Neq 0.05G0sin(πfmt)ψ (4.6)

• the longitudinal horizontal component

FhL (t) = S Neq0.2G0sin(2πfmt) ψ (4.7)

where the load due to Neq pedestrians eventually writes,

Neq = 10.8
√

Nξ = 10.8
√

272 ∗ 0.002 = 7.96 [ped] (4.8)

and N is number of pedestrians involved with N = Sd [pedestrian]. The load that

is modified by a minus factor ψ which makes allowance for the fact that the risk

of resonance becomes less likely since the frequency of the load is far from the

natural one. Of course the direction of application of the load is the same as the

direction of the mode shape in order to produce the maximum effect.

4.5.5 The soil stiffness

Using ANSYS ® was found that the modal frequencies vary significantly accord-

ing to the stiffness of the soil (Lorenzi and Bursi, 2011), up to 18% between the

natural frequency for the minimum and maximum stiffness of the soil in the mode

3. The mass of pedestrians affects the natural frequencies since the increase of

the mass matrix values decrease the natural frequencies, with an average vari-

ation of 5% between the two cases. The stiffness matrix takes into account the

geometrical non-linearity and is calculated at the end of the static load application,

which considers also the stress stiffening effects. Assuming that the soil stiffness
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variation is linear according to eq. 4.9,

Ki = Kmin +
i

10

(
Kmax − Kmin

)
(4.9)

The natural frequencies for the first five critical modes are reported in table 4.6. The

Table 4.6: natural frequencies as function of the soil stiffness.

Frequency [Hz]

mode K0 K2 K4 K6 K8 K10

1 0.74 0.76 0.76 0.77 0.77 0.77

2 1.21 1.22 1.22 1.22 1.22 1.23

3 1.22 1.34 1.39 1.41 1.42 1.43

4 1.88 1.91 1.92 1.92 1.93 1.93

5 2.17 2.19 2.20 2.20 2.21 2.21

classification of the critical modes is in tables 4.7 and 4.8. There is an inversion

Table 4.7: Main characteristic of the first five modes for Kmin.

Mode Frequency [Hz] Element Direction Shape

1 0.74 arch out of the plane symmetric

2 1.21 deck transverse and vertical symmetric

3 1.22 deck vertical antisymmetric

4 1.88 arch out of the plane symmetric

5 2.17 deck vertical symmetric

of the shape of the second and third modes respectively because of the change of

the soil stiffness from the minimum to the maximum stiffness. Figures from 4.18 to

4.22 show the first five mode shapes.
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Table 4.8: Main characteristic of the first five modes for Kmax .

Mode Frequency [Hz] Element Direction Shape

1 0.77 arch out of the plane symmetric

2 1.23 deck vertical antisymmetric

3 1.43 deck transverse and vertical symmetric

4 1.93 arch out of the plane symmetric

5 2.21 deck vertical symmetric

a) b)

Figure 4.18: 1st natural mode for a) Kmin and b) Kmax

a) b)

Figure 4.19: 2nd natural mode a) Kmin and b) Kmax
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a) b)

Figure 4.20: 3rd natural mode a)Kmin and b) Kmax

a) b)

Figure 4.21: 4th natural mode a) Kmin and b) Kmax

a) b)

Figure 4.22: 5th natural mode a) Kmin and b) Kmax
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4.5.6 Design loads

As indicated by the Province, the Nomi-Calliano footbridge belongs to Class II

with average comfort. The acceleration limits according to the codes are as follows,

• Av,maxSetra = 1.0 m/s2

• Av,maxEN1990= 0.7 m/s2

• AT,maxSetra = 0.3 m/s2

• AT,maxSetra = 0.1 m/s2, because of the lock-in phenomena.

Eventually the limits chosen are 0.7 m/s2 for vertical accelerations and 0.1 m/s2

for transverse accelerations. The dynamic response of the structure is evaluated

by assigning the dynamic load in resonance with the jth mode. If application point

are equally spaced, the action exerted by pedestrian can be described as,

FV,ij = sign[ϕV,ij ]
AmpV
Nnodi

ψV (fi ), i = 1, ..., Nmodi , j = 1, ..., Nnodi (4.10)

FT,ij = sign[ϕT,ij ]
AmpT
Nnodi

ψT (fi ) i = 1, ..., Nmodi , j = 1, ..., Nnodi (4.11)

FL,ij = sign[ϕL,ij ]
AmpL
Nnodi

ψL (fi ) i = 1, ..., Nmodi , j = 1, ..., Nnodi (4.12)

where φij is the jth component of the ith mode, Nmodi is the number of node se-

lected on the deck and fi is the damped frequency of the ith mode. As antici-

pated, the amplitudes of the harmonic loads write AmpV = Neq0.4G0 = 2230 N,

AmpT = Neq0.05G0 = 279 N and AmpL = Neq0.2G0 = 1115 N. So let’s define the

load “with the ith shape” as the load with components having the same sign of the

ith mode,

FV,i = (FV,i 1, ..., FV,i Nnodi
) (4.13)

FT,i = (FT,i 1, ..., FT,i Nnodi
) (4.14)
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FL,i = (FL,i 1, ..., FL,i Nnodi
) (4.15)

The total load Fi = FV,i + FT,i + FL,i is the amplitude of the ith resonant load. The

modal load is of course Pi = ΦT (FV,i + FT,i + FL,i
)
. Remembering the dynamic

amplification factor,

H(βik ) =

√((
1 − β2

ik

)2
+
(
2ξβik

)2) (4.16)

it is easy to find the modal excitation at steady state for the ith mode and k th load

shape

λik =
1
K̂i

H(βik )Pik (4.17)

For any k frequency of the load, one has

λk =

(
1

K̂1
H(β1k )P1k , ...,

1
K̂Nmodi

H(βNmodik
)PNmodik

)
(4.18)

with βik = ωk /ωi where k is the load frequency and i is the natural frequency of the

structure. The steady state displacement, velocity and acceleration field, holds

uk = Φλk (4.19)

u̇k = ωk uk (4.20)

ük = ω2
k uk (4.21)

In tables 4.9 and 4.10 are summarized results for minimum soil stiffness while in

tables 4.11 and 4.12 are summarized result for maximum soil stiffness. In the case

of Kmin, longitudinal acceleration are negligible and vertical accelerations exceed

limits for a forcing load in resonance with the 5thmode while transverse accelera-

tions exceed limits for a forcing load in resonance with the 2nd and the 5thmode.

For Kmax , in the same way longitudinal acceleration are negligible but both vertical

and transverse accelerations exceed limits for a forcing load in resonance with the

3rdand the 5thmode. Consequently, in order to maintain the serviceability limit of

the footbridge, a damping system composed by 4 TMDs was chosen.
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Table 4.9: maximum vertical acceleration for minimum soil stiffness.

Modal load Direction Node a [m/s2] Coordinates [node, x, y, z]

1 v 18 0.000 {3237, -35.1, 3.3, -0.91}

2 v 41 0.469 {8011, 0.9, 2.75, 0.12}

3 v 27 0.609 {5178, -20.1, 2.75, -0.04}

4 v 53 0.094 {10241, 17.7, 2.75, 0.03}

5 v 41 1.846 {8011, 0.9, 2.75, 0.12}

Table 4.10: maximum transverse acceleration for minimum soil stiffness.

Modal load Direction Node a [m/s2] Coordinates [node, x, y, z]

1 t 42 0.001 {8018, 0.9, 0.44, 0.12}

2 t 42 0.389 {8018, 0.9, 0.44, 0.12}

3 t 36 0.060 {6760, -8.4, 0.44, 0.1}

4 t 62 0.038 {11816, 29.7, 0.47, -0.23}

5 t 41 0.604 {8011, 0.9, 2.75, 0.12}

4.6 Tuned Mass Damper

TMDs are passive devices used in the field of the structural control but they

are common also in the automotive field (Hartog, 1940). The device introduces

additional damping to the mode witch is tuned. It is constituted by a secondary

mass supported by a spring and a damper and the mass is a percentage of the

total mass of the mode to be damped. The mass vibrates with a phase shift respect

to the bridge motion. Hartog (1940) showed that the resonance of the external

force with the noticeable frequency generates a relative motion between primary

and secondary mass sufficient to activate the damper and to dissipate energy. The

damper activation has also the effect of enlarging the frequency interval over the

TMD is effective. Indeed the resonance frequency is split into other two frequencies

close to the initial and with the dynamic amplification factor lower than the original

one. The goal of an optimal tuning is to make equal the amplification factor of these

two frequencies by choosing the optimal level of damping. These devices need of
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Table 4.11: maximum vertical acceleration for maximum soil stiffness.

Modal load Direction Node a [m/s2] Coordinates [node, x, y, z]

1 v 41 0.000 {8011, 0.9, 2.75, 0.12}

2 v 55 0.606 {10636, 20.7, 2.75, 0.}

3 v 41 1.070 {8011, 0.9, 2.75, 0.12}

4 v 53 0.092 {10241, 17.7, 2.75, 0.03}

5 v 41 1.545 {8011, 0.9, 2.75, 0.12}

Table 4.12: maximum transverse acceleration for maximum soil stiffness.

Modal load Direction Node a [m/s2] Coordinates [node, x, y, z]

1 t 42 0.000 {8018, 0.9, 0.44, 0.12}

2 t 58 0.021 {11007, 23.4, 0.44, -0.1}

3 t 42 0.797 {8018, 0.9, 0.44, 0.12}

4 t 64 0.013 {12121, 32.1, 0.53, -0.29}

5 t 41 0.601 {8011, 0.9, 2.75, 0.12}

an accurate design and suffer of mistuning since the dynamic characteristic of the

structure may variate in time. Let’s consider a SDoF structure without tuned mass

damper and with structural mass ms , structural stiffness ks and damping cs . The

load acting on the primary structure Fs (t) is harmonic and u(t) is the displacement.

The equation of motion of a SDoF subjected to an harmonic excitation reads,

ms ü(t) + cs u̇(t) + ksu(t) = Fs (t) = p0sin(ωt) (4.22)

The particular solution is

xp(t) = X̄eiωt (4.23)

and substituting into the equation of motion, one obtains

xp(t) =
p0
k

1√
[1 − [( ω

ωs )2]2 + [2ξs ( ω
ωs )]2

=
p0
k

1
A

(4.24)

where A is the Dynamic Amplification Factor (DAM)

A =
√

(1 − β2)2 + (2ξsβ)2 (4.25)
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with β = ω/ωs . The angle phase is

tanϑ =
2ξsβ

1 − β2 , 0◦ < ϑ < 180◦ (4.26)

At steady state, the dynamic behavior is equal to the corresponding static one

multiplied by the amplification factor. The necessity to increase the dissipative

capacity in order to reduce the peak at β = 1 is evident for structures with low

damping ratio. By adding a second mass to the SDoF we obtain the 2DoF system,

as shown in figure 4.23, whose dynamic behavior is governed by the following

system of second order differential equations, ms 0

0 md

 üs

üd

 +

 cs + cd −cd

−cd cd

 u̇s

u̇d

 + (4.27)

+

 ks + kd −kd

−kd kd

 us

ud

 =

 Fs (t)

0


Hartog (1940) found the analytical steady state solution for sinusoidal load and

Figure 4.23: single oscillator endowed with the mass damper

zero structural damping ratio. So the dynamic amplification factor proves to be

A =

√
(α2 − β2)2 + (2ξsαβ)2

[(α2 − β2)(1 − β2) − α2β2µ]2 + (2ξsαβ)2(1 − β2 − β2µ)2
(4.28)

where α = ωd/ωs and the frequency of the damper is

ωd =

√
kd
md

(4.29)
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The damping ratio of the mass damper is

ξd =
cd

cd,crit
=

cd
2mdωd

(4.30)

and the TMD mass ratio is

µ =
md
ms

(4.31)

where a convenient value should be µ > 0.01. The insertion of the TMD involves

many consequences since the number of DoF increases with the resulting increase

of the number of natural modes of the structure. The two new frequencies are

respectively smaller and bigger than the initial one and the damper mass oscillates

with a circular frequency of ωd . Of course, the TMD requires a proper tuning in

order to minimize the maximum dynamic response. The initial peak is split into

other two peaks of equal amplitude and focused on the frequencies of the new

2DoF. The optimal constant parameters for the optimal tuning of the MD are the

optimal elastic stiffness αopt and the optimal damping ratio ξopt and they were

found by Hartog (1940)

αopt =
1

1 + µ
. 1 (4.32)

ξopt =

√
3µ

8(1 + µ)3
(4.33)

The maximum amplitude of the two new peaks is

Amax,opt =

√
1 +

2
µ

(4.34)

and it is a function of the mass ratio of the damper since it decreases with the

increase of the mass of the damper. Of course, the coefficient µ influences the

efficiency of the TMD and all the design parameters. In figure 4.24 α, ξd , cd and kd

are the design parameters of the mass damper and they are plotted as function of

the mass ratio of the system. In general α and kd decrease when µ increases while

ξd and cd increase with µ. The TMD is sensitive to the mistuning due basically to

the variations in the structure stiffness and in the structural mass along the time
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(the first one can be caused by settlement of the constraints and the second by the

presence of operating loads not expected or forecast in the design phase).

a) b)

c) d)

Figure 4.24: behavior of the optimal design parameters for the TMD as function of

the mass ratio.

Figure 4.25 a) shows the behavior of the dynamic amplification factor of an

optimal TMD subject to changes of the mass ratio (1% < µ < 5%) and of the

optimal stiffness parameter (with percentage difference of the 1%, 2%, 5% and

10% of αopt ). In particular figure 4.25 b) shows that the efficiency of the optimal

damper can dramatically change as a function of the secondary mass, till the effect

of the second mass totally vanishes. The effect of the damper damping ratio is

also essential. When ξd = 0, we have just an oscillating mass over the primary

structure. Indeed, in such a case, the amplification factor shows that the dynamic

amplification is quite evident over both the two modal frequencies of the 2DoF, as

shown in figure 4.26 a). When ξd ̸= 0, the resonant peaks does not go to infinite

and a better dynamic behavior is attained but still not the optimal one. It is not

suitable to adopt damping ratio too high since for ξd → ∞, the damper mass in

no more an oscillating object but results to be rigidly fixed to the primary structure

and the whole system become again a single DoF and the effect of the damper

is just an increase of mass with a tiny variation of the modal frequency and no
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a)

b)

Figure 4.25: dynamic amplification factors as function of a)the mass ratio and of

b)the optimal damper stiffness.

additional damping. The result is that when the dashpot has a huge damping, the

coupling effect between structure and damper is useless. Figure 4.26 b) shows

the dynamic factor for a ratio β equal to 1 and for different values of the damper

damping ratio. The response amplitude of the structure is zero in correspondence

of β = α, that is when the frequency of the load is the same of the frequency

of the oscillating mass; in this case, the additional mass oscillates in opposition of

phase respect to the load. In figure 4.27 the dynamic amplification factors for tuned

and mistuned TMD are shown (5% error) for different mass ratio. The possibility

of mistuning is greater if the mass ratio is small, that happens for TMDs of small

dimensions. It is important to remember that the Den Hartog solution considers

zero structural damping; for ξs ̸= 0, the results are just an approximation of the
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a)

b)

Figure 4.26: dynamic amplification factors as function of the damping ratio of the

damper for a) β ̸= 1 and b)β = 1

optimal one. However, if the structural damping is < 1% the solution is still a good

approximation.

4.6.1 The influence of the soil stiffness on the TMD design

The stiffness of the soil and its interaction with the footbridge influences the

natural frequencies and mode shapes. In this subsection the influence of the soil

stiffness on the TMD design is considered. In order to design the TMD for the

ith mode, it is necessary to do the conceptual and mathematical step from the ith

mode shape to the corresponding SDoF in principal coordinates. Given the well
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Figure 4.27: effects of the mistuning.

known equation of motion,

Mü(t) + Cu̇(t) + Ku(t) = F(t) (4.35)

the modal matrix is defined as

Φ =
(
ϕ1, ...,ϕm

)
(4.36)

where ϕi is the ith mode shape and N the number of degree of freedom of the

discrete system. The geometric field is a linear combination of all the modes,

u(t) = Φλ(t) (4.37)

where λ is the vector of the modal amplitudes. Eq. 4.35 became,

ΦT MΦλ̈(t) +ΦT CΦλ̇(t) +ΦT KΦλ(t) = ΦT F(t) (4.38)

and

M̂λ̈(t) + Ĉλ̇(t) + K̂λ(t) = P(t) (4.39)

If the damping is proportional and the matrices M̂, Ĉ and K̂ are diagonal, it is

possible to decouple the equations of motion in N independent equations,

m̂i λ̈i (t) + ĉi λ̇i (t) + k̂iλi (t) = Pi (t) (4.40)

From 4.37, the shape of the node called s is,

us (t) = Φ[row s]λ(t) =
∑

i
λiφis (4.41)
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Consequently, when the displacement component of the ith mode is much higher

than the components due to other modes (that happens when the load is resonant

with one natural frequency of the structure and the frequencies are well spaced), it

is possible to round off the displacement of the node s as follows,

us (t) ∼= us,i (t) = λiφis (4.42)

Substituting eq. 4.42 into eq. 4.40 and pre-multiplying for φ−1
is ,

m̂i
φ2

is
üs +

ĉi
φ2

is
u̇s +

k̂i
φ2

is
us =

Pi (t)
φis

(4.43)

and replacing with ms , cs and ks , respectively the mass, damping and stiffness

of the SDoF oscillator corresponding to a structure deforming exactly like the ith

mode,

ms =
m̂i
φ2

is
, cs =

ĉi
φ2

is
, ks =

k̂i
φ2

is
,

where for φis → 0 then ms , cs , ks → ∞. One obtains

ms üs + ks u̇s + ksus =
Pi (t)
φis

(4.44)

Let now be F0(t) the dynamic load on the structure without TMD. The ith modal

component of this load is Pi0(t),

Pi0(t) = ϕiF0(t) (4.45)

Meanwhile in the damper installed on the node s, the elastic and damping forces

in the TMD interact with the structure

Fs (t) = FE (t) + FD (t) (4.46)

with

FE (t) = kd
(
us (t) − ud (t)

)
(4.47)

FD (t) = cd
(
u̇s (t) − u̇d (t)

)
(4.48)
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Similarly, the ith modal component of Fs (t) writes,

Pis (t) = φisFs (t) (4.49)

So the dynamic load and the forces inside the TMD are summed up together

P(t) = Pi0(t) + Pis (t) = ϕiF0(t) + φisFs (t) (4.50)

Substituting eq. 4.50 into eq. 4.44, one has

ms üs + ks u̇s + ksus =
Pi (t)
φis

=
Pi0(t)
φis

+ Fs (t) (4.51)

and taking into account also eqs. 4.47 and 4.48, holds ms 0

0 md

 üs

üd

 +

 cs + cd −cd

−cd cd

 u̇s

u̇d

 + (4.52)

+

 ks + kd −kd

−kd kd

 us

ud

 =

 Pi0(t)
φis
0


Since the TMD mass ratio has the following formulation,

µ =
md
ms

=
mdϕ

2
is

M̂i
(4.53)

it results evident that in order to maximize µ for the ith mode, it is necessary to put

the TMD in correspondence of the maximum component of the ith mode shape. In

tables 4.28 and 4.29 are shown the optimal values for the elastic spring and for the

dash-pot of the TMD as a function of the soil stiffness.

Figure 4.28: optimal stiffness of the TMD spring.
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Figure 4.29: optimal damping of the TMD dashpot.

4.7 Experimental modal analysis and model updating

On the 12th of July 2012, an experimental campaign was carried out on the

Nomi-Calliano footbridge with the aims to identify the modal dynamic character-

istics of the structure and consequently tune the damper parameters. In detail,

during the tests the structure was dynamically excited and the response measured

by means of accelerometer acquisitions. Tests comprised environmental excita-

tion signals, free decay signals (by releasing a mass hanging from the bridge) and

hummer test signals. The identification tests were carried out on the structure not

yet complete, in particular, can be highlighted the lack of the following elements:

• the TMDs;

• the wood planking level;

• the handrail.

4.7.1 Set-up

The set-up was composed by 8 fixed and 9 temporary accelerometers and is

visible in figure 4.30. The effectiveness of the set-up was measured in terms of

MAC matrix on the modal shapes projected on the set-up accelerometer positions

and it appeared well decoupled till about 10 Hz. The 2600 kg masses were used

to simulate the presence of the TMD masses.
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Figure 4.30: accelerometers set-up.
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In more detail, all signals were acquired at 400 Hz and each test had 17 chan-

nels (8+9), becoming 18 during the hummer tests. The set of acquisition consisted

in:

• environmental excitation from 12.00 pm to 14.00 pm;

• impulsive excitation due to the 26 kN mass unfasten;

• impulsive excitation due to the hummer in three relevant positions: in the

middle and at one quarter of the deck and at the base of the arch;

• pedestrian load: 8 pedestrian well coordinated by means of a metronome on

the natural frequencies of interest walked back and forth along the footbridge.

4.7.2 Results

Figure 4.31 shows how the first 7 vibrational modes are extremely clear (degli

Studi di Trento, 2012). Identified mode shape are reported in figures 4.32 and are

related to the structure partially incomplete before the TMD installation.

Figure 4.31: spectrogram referred to Ch.1 and generated by the test with the

mass unfasten
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1stmode 0.81 Hz - ξ = 6.73−05

2ndmode 1.39 Hz - ξ = 0.000277

3rdmode 1.64 Hz - ξ = 0.00255

4thmode 2.03 Hz - ξ = 0, 000692

5thmode 2.40 Hz - ξ = 0.001585

Figure 4.32: first five modes identified within the campain.
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4.7.3 Refinement and updating

The refinement of the model was performed before the updating. The aim of the

refinement is to have a model as similar as possible to the real identified conditions.

So real situation reproduced into the model is:

• no handrails;

• presence of the masses;

• maximum soil stiffness;

• non structural elements attached to the lower part of the deck used in the

construction phase and still present during the identification

In the first columns of table 4.13, the frequency variation between identified and

FEM natural modes is reported. One notices that the variation appears high for

both the 2nd and 3rd modes, with errors about the 10%-15 %. The numerical

modes do not take into account for the inertial mass of the pedestrians. The first

five frequencies and mode shapes are used to tune the steel elastic modulus of the

FEM model. The model updating is performed updating the steel elastic modulus

and using the discrete cost function in eq. 4.54. The cost function changes inside

a predefined grid in order to match the vibrational properties of the model respect

to the experimental data. Results of the updating are summarized in the last two

columns of table 4.13. The error in decreased with a maximum value of about

8% on the 3rd mode and a minimum of about 1% on the 5th mode. The updating

considers also the mode shapes by adding the MAC matrix in the cost function.

The cost function writes,

obj =
∑

j
pf ,j

(
fn,j − fi,j

fij

)2

+ pm,j

(
1 − MAC

(
φn,j ,φi,j

))2
(4.54)

where

• fn,j numerical frequency of the jth mode;

• fi,j identified frequency of the jth mode;

• φn,j numerical mode shape of the jth mode;

88



Table 4.13: frequency variation between identified and FEM modes.

SDIT3 SDIT3 ANSYS ANSYS Error UPDATED Error

mode frequency mode frequency frequency

no [Hz] no [Hz] [%] [Hz] [%]

1 0.81 1 0.80 -1.2 0.85 4.7

2 1.39 2 1.25 -11.2 1.34 -3.7

3 1.64 3 1.43 -14.6 1.51 -8.6

4 2.03 4 1.99 -2 2.13 4.6

5 2.40 5 2.22 -8.1 2.38 -0.8

• φi,j identified mode shape of the jth mode;

• pf ,j weight on the frequency;

• pm,j weight on the shape

The Hooke-Jeeves derivative free algorithm is used for the optimization. It belongs

to the Direct Search family which don’t assume the analytical shape of the cost

function and for this reason are suitable for matching numerical and experimental

data.

4.8 The damping system

On the basis of both the identified frequencies and the errors between real and

updated values presented in table 4.13, a set of estimated frequencies is calcu-

lated and reported in table 4.14. These values are used to design TMDs according

to the Den Hartog theory. The final design in reported in table 4.15 while the de-

vice location is shown in figure 4.33. The first mode is symmetric and involves the

arch so the position of the TMD is in the center of the arch. The third mode is

asymmetric and is positioned at one third of the deck span. Remaining devices

damp two symmetric modes, the 2nd and the 5th , so they are positioned together

in the middle of the deck. The footbridge is rigidly connected to the foundations in

correspondence of its ends and is therefore characterized by hyperstatic external

constraints. As a consequence, modal frequencies present a range of variation

due to both uncertainty on the soil stiffness and gradients of temperature. In gen-
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Table 4.14: estimated frequencies for TMD design.

Mode SDIT3 frequency Error ESTIMATED frequency

no [Hz] [%] [Hz]

1 0.81 4.7 0.78

2 1.39 -3.7 1.33

3 1.64 -8.6 1.56

5 2.40 -0.8 2.28

eral, de-tuning resulting from several sources such as alteration of the structural

properties of the primary structure or deterioration of the TMD, leads to a loss in

performance. At this purpose, a detailed study in case of extreme working condi-

tion of soil stiffness and temperature variation have been performed in Lorenzi and

Bursi (2011) and resulted in a criticality on the 3rd mode with a exceeding of the

acceleration limit of 0.7 m/s2. A Semi-active TMD may be a good compromise to

overcome the de-tuning problem. In this case, the semi-active TMD is composed

by its mass, the passive spring and the controllable damper and the control law is

here used to modify only the damping. The semi-active TMD is a product of the

Maurer & Sohnne company.

Figure 4.33: the disposition of the damping system on the footbridge.
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4.9 The monitoring system

The bridge was equipped with a monitoring system integrated with the structure

with the purpose of checking the actual response, with particular interest in the

dynamic behavior related to the effect of wind and pedestrians. The monitoring

started in May 2013 and the position of accelerometers is the one used in the

experimental modal analysis campaign. In order to both identifying the wind load

and to determine daily and seasonal temperature gradients on decks, the following

sensors have been installed:

• 2 anemometers for the magnitude and direction of the wind: measuring range

of 0-60 m/s and 0-360o ; analog output 2x4-20 mA and power supply of 12

VDC.

• 2 thermometers PT100 with 4 chords: measuring range of -150/+450oC;

precision of class B (+0.3oC), analog output 4-20 mA and power supply of

24 VDC.

• 4 piezoelectric accelerometers 393B12: high sensitivity of 10 V/g, frequency

from 0.15 to 1000 Hz, 2-pin MIL C-5015 connector.

• 4 piezoelectric accelerometers 393A03: low sensitivity of 1 V/g, frequency

from 0.5 to 2000 Hz, 2-pin MIL C-5015 connector.

In addition the hardware comprises also one PXIe-6341 board for the acquisition of

low signals (wind and temperature) and one PXIe-4492 for fast signals (accelerom-

eters). The monitoring system has three type of outputs:

• Static monitoring: wind and temperature signal are acquired continuously

and the sampling frequency is 1 Hz.

• Daily dynamic monitoring: all the accelerometers are acquired once a day for

a duration of 328 s and with sampling frequency of 100 Hz.

• Threshold dynamic monitoring: the acquisition starts when a threshold on the

acceleration, on the frequency range or on the wind velocity are exceeded.

In particular, with regard accelerations, the limits are 0.07 m/s2 and 0.035
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m/s2 for vertical and horizontal accelerometers on the deck, 0.15 m/s2 and

0.3 m/s2 for the out of plane and in plane, respectively, accelerometers po-

sitioned in the arch. The frequency range is 0-10 Hz and the wind velocity

threshold is 14 m/s on both the anemometers.

With regard to the sensors placed on the deck, accelerations of relevant entity and

induced by the cycle transit has been detected; however, the phenomena is not

alarming since mainly due to the cycle impact on the wood axis not rigidly linked to

the main structure. These high frequency vibrations (more than 30 Hz) are rapidly

damped and do not belong to the frequency range interested by the pedestrian

vibrational issue. The maximum values of vertical and horizontal acceleration on

the deck in terms of RMS result to be 0.2 m/s2 and 0.07 m/s2, respectively.

Figure 4.34: acquisition 2013 11 11 04 14 47 AFW.txt, contribution of the

4thmode.

On the other hand with regard wind phenomena, the following behavior has

been detected along the whole span of time interested by the monitoring. In pres-

ence of low entity wind events, the structure oscillates mainly according to the first

mode; wind events with velocity higher than 15 m/s, excite the 4th vibrational mode

(event of 11/11/2013) since the 1st one get damped by the presence of the TMD,

as shown in figure 4.34. In this circumstance, the maximum values of vertical and

horizontal acceleration on the deck in terms of RMS resulted to be 0.224 m/s2
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and 0.074 m/s2, respectively. It is interesting to note that during the event of the

11/11/2013 between 1-11 a.m., the arch was interested by an high acceleration

levels with magnitude higher than 1 m/s2 while on the deck the value held around

0.4 m/s2, so below the imposed limits.

4.10 Conclusions

The University of Trento performed the dynamic analysis of the Nomi-Calliano

footbridge according to actual codes in order to avoid vibrational phenomena al-

ready observed in case such as the Solferino bridge or the Millennium bridge. The

dynamic analysis led to the conclusion that a damping system composed by four

TMDs needed to be added to the main structure tuned on the 1st , 2nd , 3rd and

5th mode and in order to ensure a behavior compatible with serviceability limits

imposed by the owner. The campaign voted to the experimental modal analysis

was organized in order to know the modal properties of the structure necessary

for the correct design of the system of passive TMDs. Both impulsive and envi-

ronmental excitation were used to obtain the first 7 vibrational modes. Since the

identification tests were carried out on the structure not yet complete the model re-

finement and the model updating (Hooke-Jeeves derivative free algorithm is used

for the optimization) needed to be performed in order to obtain the correct modal

mass necessary for the design of the tuned devices. Correct frequencies are ob-

tained after the model updating and model refinements and the correct design data

for the passive TMDs are evaluated as a function of the adjustment process. The

footbridge is rigidly connected to the foundations and therefore is characterized by

hyperstatic external constraints. A detailed study in case of extreme working con-

dition of both soil stiffness and temperature variations have been performed by the

University of Trento and resulted in a criticality due to the exceeding of accelera-

tion limits due to the third mode. The choose was oriented through the substitution

of the passive TMD on the third mode with a semi-active one. After the detailed

analysis and design of the damping system, the bridge was in addition equipped

with a monitoring system integrated with the structure with the purpose of check-

ing the actual response, with particular interest in the dynamic behavior related to

the effect of wind and pedestrians. After the first three trimester of monitoring, no

exceeding of the imposed limits is recorded. An interesting behavior is detected

93



and consists in the structure oscillation according to the 1st mode in presence of

low entity wind events; but when the wind velocity is higher than 15 m/sthe mainly

excited vibrational mode is the 4th .
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Table 4.15: TMD design.
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CHAPTER 5

INPUT IDENTIFICATION

5.1 Introduction

Problems are typically classified as direct and inverse, depending on what one

is interested in estimating. In the direct problem, we usually have both the causes

and the map between causes and effects and we search for the effects (displace-

ments, accelerations and so on). We also may be interested in obtaining causes

starting from effects as happens in the inverse problems, where we try to infer

something from recorded output data sampled with a selected rate. A common in-

verse problem is the reconstruction of the inputs that generated a certain recorded

data. This chapter deals with the input identification issue and with the analysis

of associated problems. The input identificability is related to the effective possi-

bility of reconstructing the inputs that generated the available outputs. The input

Figure 5.1: causes and effects on a structure.

reconstruction problem can be connected to several applications. For example,
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damage detection can be related to the identification of some unknown inputs ab-

sent that we use to simulate the changes resulting from damage (Koupra et al.,

2010). The Input Identification (ID) intended as identification of loads acting on

a system can also be split up into moving (Law and Chan, 1997; Law and Fang,

2001; Yu and T., 2003) and static loads detection (Nordstrom, 2006). In this work,

the input identification is used to validate the control strategies necessary for the

semi-active control of the bridge and numerically simulated in the testing laboratory

of the University of Trento.

5.2 Issues related to input identification

Number, location and time histories are the three aspects of the input identi-

fication problem. We focus on loads that are fixed in space and are applied to

systems with a linear and time invariant behavior, while the input/output (I/O) map

is available from a Finite Element model or from modal identification. A review of

the literature indicates that a survey on both the magnitude and the time history

of the loads have already received attention in many different fields since the de-

mand of knowing the unknown load involves several branches such as impact load

(Doyle, 1997; Inoue et al., 1995), contact force (Doyle, 1984) and damage detec-

tion (Koupra et al., 2010). In most cases, the input number and position is assumed

to be given and one has not to do the same kind of effort about this information,

since they are typically assumed to be known. A focus on the latter topics is in

Maia et al. (2012), namely both the force numbering and localization are obtained

by means of the concept of transmissibility of motion and using both the available

measured responses and a numerical model. The method adopts a trial and error

procedure that assumes an increasing number of forces acting on the system and

their consequent combinations. A series of force number and position is numeri-

cally generated and for any combination, the expected responses obtained from a

trial transmissibility matrix are compared with the measured ones. If the trial and

the real transmissibility matrix are the same, a minimum in the difference between

expected and real responses can be found and consequently the number and po-

sition of the inputs can be associated to the smallest response error. The limit here

is the large number of combinations necessary to find this information and the fact

that the model is always indispensable. In the first part of this chapter, we address
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the question of determining the number and the spatial position of the inputs given

a set of outputs and a model of the system. The premises are that the inputs are

less than the number of outputs, they are persistently exciting the system and that

the latter is linear and time invariant. The number of inputs and their position can

be identified without difficulty using data and a model. It is shown that the number

of inputs can be obtained from the effective rank of a matrix that can be formulated

from the Fourier transform of windowed versions of the response signals and that

the information on their location is encoded in the image of the same matrix. After

the definition of the number of inputs, there is no assumption made regarding their

spatial distribution. Namely, an input is a time history and it may be applied at one

or at more than one location simultaneously. In a first phase, we restrict the atten-

tion to the case where loads are applied at distinguish points, so one time history

means one load, two time histories mean two loads and so on. In a second phase,

the presence of multiple inputs with both repeated time history and magnitude is

addressed. It appears clear that it is mandatory to operate off line with a suffi-

ciently long record when the three above mentioned aspect are examined at the

same time. Furthermore, causes do not produce effects instantly since real prob-

lems are characterized by the presence of the inherent delay between inputs and

outputs. The inherent delay is related to the wave propagation speed that charac-

terizes the system. In this scenario, it appears evident that is not possible to speak

in terms of ”real time“ if this means to find the input at exactly the same instant it

occurred. In other words, sensors may be not necessary located in positions that

guarantee the direct transmission of the sources to the outputs and this implies

that we need time in order to receive information. This range of time is the Delay

Range (DL) and within this range, the output values are exactly zero. Taking into

account this consideration and in presence of problems where the input number

and the locations are already known, the time histories can be computed in online

fashion although not in real time. On the other hand, we usually manage models

that assume the existence of a finite dimensional (FD) system that is the result of

the discretization in space. It follows that during simulations, the use of discretized

models may violate physics twice. 1) The state space model does not engrain the

inherent delay of the real system and consequently they led to algorithm that can-
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not work in general. 2)Finite element discretization of a continuum does not have

impulse response functions with zero finite time segments. So the part of the im-

pulse response functions that are zero in the continuum are very small in the model.

The simulation of the discrete time system produces ”small“information during the

delay phase that sometimes we pretend to use for identification purposes even if

in reality there is absolutely no information because, in this delay span, there is no

motion field. While in the forward problem, the delay and the ensuing zero outputs

are not a critical point, on the other hand in the inverse problem of the input iden-

tification, we need to pay attention to this issue. Indeed, conditions 1) and 2) let to

misguided attempts to avoid the non-minimum phase nature of the problem by the

use of the ”not exactly zero“ values that are large respect to the machine precision.

In the light of these considerations, it is evident that the term ”real“ associated with

the input identification has no meaning because the input identification has at least

one time step of delay. The input reconstruction can be just ”on line“ or ”off line“.

On line algorithms must contain a ”delay parameter“ if they have to work in real

problems. In addition, the input reconstruction can be handled in the frequency

domain (Hwang et al., 2009) or in the time domain (Law et al., 2005; Lu and Law,

2006) if the inherent delay of the system and consequently the lag for the input

reconstruction is relevant. In the time domain, the general solution of the inverse

problem is simply obtained from the deconvolution of the impulse response from

the output measurements. However, the deconvolution must be constrained by the

true physics of the problem in order to avoid the formulation of ill-posed problems.

In fact, the I/O arrangement and the inherent delay of the problem define if the input

is identifiable or if it is identifiable on any subspace. It can be shown that the part

of the input affected by the delay is strictly related and can be detected through

inspection of the Toeplitz matrix kernel. This approach to the inverse problem has

received much attention but the kernel structure has not been deeply investigated

as a tool to connect the properties of the matrix H with the part of the solution not

affected by the delay. In this respect, the well posedness of the problem implies

the numerical stability of the solution. However a stable system can still be poorly

conditioned. In fact, stability and conditioning are two different issues related to

the problem of the input reconstruction even if they sometimes appear to be mixed
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up. The ill conditioning is due to the sensitivity of the solution to noise in measured

data and to error in initial conditions, and it shows up when the spectra of noise

realization is outside the bandwidth of the system. The inputs act on the range of

time and there are no loads supported on this range that give zero outputs. Con-

sequently, in order to find the unique solution of the Deconvolution Problem (DP),

it is necessary to avoid loads that can be added to the system without changing

the output itself. The ill conditioning mirrors in the fact that there are many high

frequency solutions of the ID problem, which match the recorded input.

5.2.1 The deconvolution approach

The equation of motion expressed with the discrete state space model reads,

xk+1 = Adxk + Bddk

yk = Cdxk + Dddk
(5.1)

where xk ∈ R2n is the state vector, dk ∈ Rr is the input vector and yk ∈ Rm

is the measurement vector. Ad , Bd , Cd and Dd are real matrices of appropriate

dimension, respectively, the system matrix, the input influence matrix, the output

influence matrix and the direct feed-through matrix. Solving for the output with zero

initial conditions, yields

yk =
k∑

i=0

Yk dk−i (5.2)

where Y0 = D and Yi = CA i−1B are the Markov of the system. This equation is

written to provide the matrix convolution equation,

yk = Hk d (5.3)

The coefficient matrix H is an upper-block triangular Toeplitz matrix. Hence, the

deconvolution problem has the following general solution,

dk = H−∗yk + N(H)h (5.4)

where N(H) is the null space of H and h is an arbitrary vector of appropriate di-

mension. The deconvolution problem can be addressed in several ways and can

display ill-posedness or ill-conditioning. This approach is presented in Law et al.
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(2005); Bernal and Ussia (2013) and it’s based on finding the input force sequence

U for a known sequence of outputs yk . In the trivial case, H is full rank and the

inverse problem is easy to treat because the null space of H is an empty space

and we just need to invert a full column rank matrix; this is the special case of col-

located measurements of acceleration with number of output greater than number

of inputs. In this special case, the solution for the input is already recognizable

as unique. In the most part of the cases, however, H is rank deficient and the

null space of H is not an empty space and, as consequence, the solution is not

unique on the complete output set. Nonetheless, this does not mean that there is

no solution.

5.2.2 Input-output relations in time-domain

Let’s consider a state space LTI system in discrete time in eq. 5.1, the dynamic

response to a general input is already built into the model,

xk = Ak
d x0 +

k∑
i=0

A i−1
d Bddk−i (5.5)

and the corresponding output reads,

yk = CdAk
d x0 +

k∑
i=0

CdA i−1
d Bddk−i + Dddk (5.6)

The output equation can be rearranged in order to highlight the Markov parameters

Yk . In this form it appears evident that the outputs are the result of the convolution

between the Markov parameters and the input load.

y0

y1

...

...

yk−1

yk


=



Cd

CdAd

...

...

CdAk−1
d

CdAk
d


x0+



Y0 0 0 0 0 0

Y1 Y0 0 0 0 0

Y2 Y1 Y0 0 0 0

Y3 Y2 Y1 Y0 0 0

... ... Y2 Y1 Y0 0

Yk ... Y3 Y2 Y1 Y0





d0

d1

...

...

dk−1

dk


(5.7)

The compact form reads

yk = Obk x0 +
k∑

i=0

Yidk−i (5.8)
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where Obk = CdA i
d , i = 0, ..., N are the elements of the observability matrix with

Obk ∈ RmNxn and N number of steps, Yi ∈ Rmxr are the Markov parameters. If

we define that H ∈ R(mxr)N is the Toeplitz matrix and the initial conditions are non

zero, the well know formulation of the convolution problem holds,

yk = Obk x0 + Hdk (5.9)

or, in a simplified formulation with zero initial conditions,

y = Hd (5.10)

where

y =



y0

y1

...

...

yk−1

yk


, d =



d0

d1

...

...

dk−1

dk


(5.11)

The deconvolution of the above equation is a critical aspect of the input reconstruc-

tion problem. The problem may not be well defined or posed indeed, because one

may ask for the wrong question.

5.3 Number and location of inputs

We focus on the case of point loads that are fixed in space and that act on sys-

tems that are linear and time invariant. We address the question of determining the

number and the spatial position of inputs given a set of outputs and, once located,

the question of estimating time histories. The localization problem is solved using

an approach that shows that the number of independent inputs can be extracted

from the Fourier transform of the measured output data and that their position can

be established with the aid of a model without the need for performing a combi-

natorial inspection of all the possible scenarios. Output data from a real system

are continuous and given the non-stationarity of the input the Continuous Time

Fourier Transform should be used (CTFT). The number and location problem is

solved using a multiple experiment scheme that in practice is realized by dividing

103



the output signals into segments and by data sampling. In addition the Fourier

Series perspective is adopted since the input in each segment is assumed peri-

odic (which, of course, it is not). However, the initial conditions are not zero at the

start of each segment and the arising approximation is due to the coefficients of

the Fourier series expansion. The observations of the output are ”truncated“ since

the response to the input in each window extends beyond the window itself, and as

consequence, the output is ”inconsistent“ with the assumptions at the start of each

segment for a time span that depends on the decay rate. In each segment, the

approximation necessarily leads a loss of resolution so other variables - such as

the size of the windows respect to the damping rate and the frequency inspected

- start to matter. Notwithstanding, adequate accuracy can be obtained by using a

Hanning window on the output and ensuring that the signal is sufficiently long so

the fraction of the segments that is affected by initial conditions is not too large,

that means that a good accuracy is obtained if the segments are long compared

to the decay time of the free vibrations. Once the loads are located the histories

can be estimated with a minimum lag that is affected by wave propagation delays

but that is typically controlled by stability requirements. As is well-known, satisfying

stability does not ensure accuracy and in this regard the paper shows that a key

issue in attaining good conditioning is that the spectrum of the inputs that are to be

identified, and the noise that is realized at the measurements, is contained within

the bandwidth of the model.

5.3.1 On the number

Given the standard discrete-time space problem, the system outputs in the fre-

quency domain are linear combination of the system transfer function,

Y(ω) = G(ω)U(ω) (5.12)

where G(ω) is the transfer matrix, Y(ω) is the transformed output signal and U(ω) is

the input transform. In terms of the jth experiment or window,

Yj (ω) = G(ω)Uj (ω) (5.13)

The rank of Y(ω) is limited by the smaller rank of the matrices that appear into

the product on the right hand side of eq. 5.13. At any given frequency ω = ωi
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and assuming that the number of experiment or window, is much greater than the

number of outputs (nw > nm), the Fourier Transforms of the output can be gathered

into a matrix called Bfft with number of rows and columns equal to the number of

sensors and the number of experiments, respectively.

Bfft{ω}(nm, nw ) =

 full


nmxnw

(5.14)

Since the vectors Yj (ω) are the columns of the matrix Bfft (ωi ) and since each col-

umn of Bfft (ωi ) are linear combination of the transfer function G(ωi ) , the rank of

Bfft (ωi ) cannot exceed the number of independent inputs that is encoded in the

product in eq. 5.13. In this respect, the Singular Value Decomposition (SVD) of

the matrix Bfft (ωi ) provides information about input locations. The SVD of Bfft (ωi )

reads,

[
U(ωi ), S(ωi ), V(ωi )

]
=

 full


(nmxnm)


#

#

#


(nmxnw)


full


(nwxnw)

(5.15)

where S(ωi ) is the singular value matrix, U(ωi ) and V(ωi ), are the left and the right

singular vector, respectively After rearranging the SVs corresponding to the fre-

quency ω = ωi into the columns of the matrix Ssv ∈ Rnmxnf , then the rank of Ssv

shows the number of independent loads acting on the system. The numerical test

refers to an 8-DoF uniform chain with unit masses and first fundamental mode fre-

quency of 1.17 Hz. Inputs are Gaussian noises and are on the 1th and 5th DoF

whilst measured outputs are accelerations in sensors #2, #3, #4, #6, #7, # 8. When

it is not possible to collect N sets of data, it is necessary to take a long unique sig-

nal and divide it into segments providing a shift from the conceptual framework of

the continuous Fourier transform to a periodic analysis in terms of Fourier series.

Nevertheless, as the window size grows the relative importance of this error source

decreases and for sufficiently long widows (the necessary length depending on the
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a)

b)

Figure 5.2: input quantification in a) linear and b) logarithmic scale

damping) and sufficiently accurate results can be obtained. From an implementa-

tion perspective, the approach is essentially the same as if using different tests,

except that the output is windowed and it’s transformed to frequency using the FFT

in order to overcome to the periodic assumption. The FFT procedure is indeed sen-

sitive to the window length not only respect the magnitude of each singular value,

but also respect the ratio between the bigger and the smallest one. The increased

ratio simplify the inspection of the plot and makes clearer the identification of the

number of applied inputs since the small singular values tend really to zero. In this

respect, we illustrates what happens when the sensitive variable changes size as

a function of the highest period of the structure. Fig.5 shows that the clarity in the

rank definition increases by increasing the window dimension where the window

sizes are 1T, 4T, 15T and 30T, as shown in figure 5.3 a), b), c) and d), respectively.

Last issue to keep in mind to search for the rank of the objective matrix, is that
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Figure 5.3: rank definition as a function of the window size.

the number of windows must be much greater than the number of outputs, so this

condition defines a constraint about the minimum length of the original signal. In

addition, around the resonance or in general inside the system bandwidth, it is not

obvious to understand clearly the matrix rank since the peaks due to the transfer

function cloud the information. As consequence, an extension of the inspected

frequency range respect the system band is mandatory.

5.3.2 On the location

Once the number of input is defined, it is also possible to infer information about

the acting loads position since Bfft (ωi ) also includes information about them. The

columns of the left singular vector U(ωi ) related to the not small singular values of

Bfft (ωi ) and consequently to the number of inputs, are named Q(ωi ) and writes,

Q(ωi ) = U(:, 1 : #input) (5.16)

Q(ωi ) is span for Bfft (ωi ) and for both G(ωi ) and Bfft (ωi ) when the input location is

the same. As consequence the span of Bfft (ωi ) is the same of the columns of the
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transfer matrix if the columns are associated to the correct position of the inputs. If

the angle between the two subspaces is small, the two spaces are nearly linearly

dependent and the base of the two subspace is the same. In addition, we have a

model, so it is possible to try all the load combinations in order to find the one that

make the angle between two subspaces minimum: one subspace is specified by

the columns of Bfft (ωi ) and the other by the columns of G(ωi ). G(ωi ) is a function

of Bd or in other words, it depends by the input number and location. If the input

location is correct, the subspace angle is minimum. Note that in the benchmark

test with 8-DoFs, the combinations should be the following,

Comb1 = [1, 2]

Comb2 = [1, 3]

Comb3 = [1, 4]

Comb4 = [1, 5]

Comb5 = [1, 6]

Comb6 = [1, 7]

Comb7 = [1, 8]

,

Comb8 = [2, 3]

Comb9 = [2, 4]

Comb10 = [2, 5]

Comb11 = [2, 6]

Comb12 = [2, 7]

Comb13 = [2, 8]

,

Comb14 = [3, 4]

Comb15 = [3, 5]

Comb16 = [3, 6]

Comb17 = [3, 7]

Comb18 = [3, 8]

(5.17)

However, in order to avoid the test on each combination, a second procedure can

be used. It is possible to evaluate the position of a single input individually. In

the same way, the information about each individual location is encoded into the

columns of the left singular vector and it suffices understand which columns of the

transfer matrix are contained in the span of Bfft (ωi ). Figure 5.4 is clearly visible that

inputs are on the 1th and 5th DoF. Another issue is whether there is any input that

is ”repeated“, namely, acting at more than one location. The test in figure 5.5 is

referred to a 10 DoF system and corresponds to the case where we have a total

number of inputs with n repeated time histories and with the same amplitude (in

other words, we have two repeated time histories in position #2 and #5). Since

the subspace angle in the band of the system is totally clouded, the previous non

combinatorial analysis does not allow for correct positioning; see in this respect

figure 5.5 a). This because the number of columns of b2 is equal to the number

of not repeated loads (one in this case) but its pattern is a combination of the two

repeated inputs. Consequently, the presence of repeated inputs requires (in our

approach anyway) a combinatorial analysis in order to correctly span the range of
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a) b)

Figure 5.4: input position by a) inspection of the subspace angle vs frequency;

and b) inspection of the means subspace angle related to each DoF.

the left singular vectors. This approach is not scalable if the number of repetitions is

large, and consequently this issue can be a limitation in the case of large models.

Anyway, the combinatorial analysis of figure 5.5 b) is satisfactory and correctly

define the two locations.

Figure 5.5: input position with repeated inputs: a) subspace angle vs. frequency

without combinatorial analysis; and b) subspace angle vs. frequency with

combinatorial analysis

5.4 Identificability

In literature (Bertero and Poggio, 1988), the identificability problem is usually

presented as follows. Given the problem y = Hd, where H : U → Y is the linear

continuous operator that map the space U into another space Y . We define d ∈ U

as the solution and dϵ ∈ U as the exact solution. The problem is well posed in
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the sense of Hadamard, on the pair of topological spaces U and Y , if the following

conditions hold:

1. Existence: given ∀y ∈ Y exists a solution dϵ ∈ U of y = Hd and y : R(H) = Y .

This means that the solution exists and belong to the range of H.

2. Uniqueness: the solution dϵ is unique in U, i.e. there exists an inverse oper-

ator H−1 : Y → U.

The problem is ill posed if one of the above conditions does not hold. In order

to define the identificability concept, let’s consider another approach. The Markov

formulation of the direct problem with non-zero initial conditions within the time

range [0, ℓ] results to be,

y[0,ℓ] − Obℓx0 = Hu[0,ℓ] (5.18)

The general solution of eq. 5.18,

u[0,ℓ] = H−∗y[0,ℓ] − H−∗Obℓx0 + Zh (5.19)

where H ∈ R(ℓ1m)x(ℓ1r), Obℓ is the observability block of order ℓ, ℓ is the total

number of time steps and ℓ1 = ℓ + 1 is the total number of time stations, ,−∗stand

for pseudo-inversion, Z = N(H) is the null space of H and h is an arbitrary vector

of appropriate dimension. If H has a null space, the general expression for the

solution d yields,

u0

...

up

up+1

...

uℓ


= H−∗y[0,ℓ] − H−∗Obℓx0 + Zh =



u0

...

up

#p+1

...

#ℓ


(5.20)

where # is the part of solution u affected by the non-zero rows of N(H). This means

that the solution is not unique in this range. The null space of H is empty if data are

collected from collocated accelerations. In this case there is only one set of d that

gives the field y. Otherwise, the null space is a not empty space. The dimension
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of the null space increases if the distance between the input and output position

increases. Displacement measurements also increase the dimension of the null

space. The dimension of the null space is relevant because it is an expression

of the causality and consequently of the posedness of the iverse problem. The

response of the FD model has time range [0, ℓ] but available information about the

input are constrained over [0, ℓ− d] , where d is some delay related to the not zero

columns of the kernel of H. The observation of the kernel structure might avoid

ambiguity related to the delay influencing the input estimation. If data are collected

from collocated accelerations, then the null space of H is empty and consequently

there is only one set of u[0,ℓ] for the set y[0,ℓ] since Z = 0. Otherwise, the null space

is a not empty space and the inputs are identifiable within the range [0, p] if the

initial conditions are known and the kernel of H is of the form,

Z =

 0pr x (·)
Z̄(ℓ1−p)r x (·)

 (5.21)

The response of the FD model has time range [0, ℓ1] but the available information

Figure 5.6: example of non empty null space.

are constrained over [0, ℓ1−p] by the not zero values of the rows of the kernel of H.

The observation of the structure of the kernel avoids ambiguity related to the delay

influencing the input estimation. Assuming the existence of the partition called Qp

in the form

Qp =
[

Ipxr 0(pr) x (ℓ1−p)

]
(5.22)
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where p is the number of time stations and r is the number of inputs, the recon-

structed input over [0, p] is simply,

u[0,p] = QpH−∗y[0,ℓ] − QpH−∗Obℓx0 + QpZh (5.23)

the pre-multiplication by Qp selects the first p values of the identified input vec-

tor that is the part of the solution not affected by the null space, given that the

necessary and sufficient condition for the input to be identifiable over p is,

QpZ = 0 (5.24)

As noted before, the only form of Z that satisfies eq. 5.24 is in eq. 5.21. Since the

necessary and sufficient condition for the uniqueness of ūp is that QpZ is zero, the

solution eventually writes

u[0,p] = QpH−∗y[0,ℓ] − QpH−∗Obℓx0 (5.25)

Tests on the kernel of a rod are shown in the following. The rod has a sectional

area A = 4, Elastic modulus E = 100, density ρ = 1 and length L = 10. Numerically

the rod can be modeled as a M-DoF composed by 40 masses. Since the wave

velocity through the material is equal to c0 =

√
E
ρ

, the time necessary for a wave

to pass through the rod is 1 s since the rod length is 10 units. The sampling time

is 0.05 s and the damping ratio is 2%. The 40-DoF uniform chain system is shown

in 5.7a with the load at coordinate #40 and the output at coordinate #1 and then

moved at coordinate #20. 5.7b and c shown the kernel of both the cases. In the

first case, the kernel is zero, except for the last 20 steps which correspond to the

1.0 second wave propagation time if dt = 0.05 s. Considering now that the output

is in the middle of the system, the time of the wave propagation decreases to 0.5

seconds and consequently the kernel is zero for just the last 10 steps. Other two

situations are described in figure 5.8a. In this case, we want to show that even

in the presence of a further sensor in position #20 in addition to sensor #1, the

delay time (see 5.8b) is exactly the same of the SISO case with output just at

coordinate#20 (as shown in 5.8c). Indeed, the input is in the position #40 and the

additional sensor is too far to reduce the delay time that remains 0.5 s. Let’s now

consider the same rod with now 2 acting loads located in position #5 (load #1) and
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a)

b) c)

Figure 5.7: kernel of a 40-DoF chain system subjected to variation of the sensor

location a) the model; b)SISO with the input in #40 and output on #1; and c) SISO

with the input in #40 and output on #20.

#40 (load #2) and sensors are in position #2, #10 and #30, as shown in 5.9. The

kernel rows have two sensitive information each related to each input. Bearing in

mind that we always need a number of sensors greater or equal to the number

of loads, the delay time necessary to the input #2 (in position #40) to reach the

closest sensor in position #30 and to go through 10 masses is 0.25 s and 5 steps

(magenta line) while the delay time necessary to the input #1 (in #5) to reach the

nearby and closest sensor in position #2 is 0.125 that corresponds to 2.5 steps

(blue line). For this specific configuration the identificability of both the inputs is

ensured after 0.25s. After 0.125 s, there is just one sensor (#2) giving information

about the load in position #5. After a while, also sensor in position #10 is receiving

information about the same nearby load #1, but no information is arriving yet from

the load in position #40 (at this point the problem is ill-posed even if we have the

same number of sensors and inputs). After 0.25 s also information about load #2

arrives and the mathematical problem results to be well posed. Eq. 5.18 can be

seen from a different point of view. If we are able to find the partition of H such that
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a)

b) c)

Figure 5.8: kernel of a 40-DoF chain system subjected to variation of the sensor

location: a) the model; b)SIMO with the input in #40 and outputs on #1 and #20;

and c) SISO with the input in #40 and output on #20.

Hd ∈(ℓ1m) x (pr) and Hp ∈(ℓ1m) x (ℓ1−p)xr , then

y[0,ℓ] − Obℓx0 =
[

Hp | Hd

] ūp

ūd

 (5.26)

with ūp = u[0,p−ℓ] and ūd = u[0,ℓ]. The resulting output is the sum of two parts,

y[0,ℓ] − Obℓx0 = Hp ūp + Hd ūd (5.27)

In order to cancel the part related to the null space Hd , if we are able to find Nd ,

the solution can be reformulated as follows,

Ndy[0,ℓ] − NdObℓx0 = NdHp ūp (5.28)

and

ūp = (NdHp)−∗Ndy[0,ℓ] − (NdHp)−∗NdObℓx0 (5.29)

As shown in Bernal and Ussia (2013), by inspection of the size of Hp and Hd , it

is possible to show that the number of outputs must be greater than the number

of inputs to be identified. It is interesting to highlight a pedagogical step. The
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a)

b)

Figure 5.9: kernel of a 40-DoF chain system with inputs in position #5 and #40, a)

the model; b) the kernel

existence of the kernel of H is guaranteed by the rank deficiency of the matrix

itself. If H is rank deficient, it follows that also the partition Hd it is. Obviously,

the kernel of H is just a subset and not a complete basis for Nd and Np but at the

same time it is a kernel for the two partitions Hp and Hd . This is the reason why we

cannot use the kernel N(H) in order to cancel the part of the solution affected by

the not zero row of the kernel itself. In conclusion, the necessary condition for ūp

to be identifiable is that Hd be rank deficient in order to ensure the existence of its

kernel Nd . The fraction ūp of the solution u is so unique for [0, p] and the partition

for which this happens define the identifiable part of the input u. Indeed, there is a

unique solution for a portion of the input and this set is called the identifiable set.

The discussion leads to the evidence that the well posedness may be restored over

a partition of the solution space or in other words over a partition of the available

data. Searching for u given the whole set of data may drags to an ill posed problem

while searching for up using the same set or searching for u using just a subset of

the output data provide a well posed problem, but it can still be ill conditioned or

unstable. The results show that the ill posedness may be removed just providing

more information to the problem (the lag delay, i.e. the functional space of interest),
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ill : find dk given y0 − yk

well :

find dk−ℓ given y0 − yk

find dk given y0 − yk−ℓ

(5.30)

Restoring existence and uniqueness means to redefine the solution U or the data

set Y . The null space of H is a closed subspace of U and represents the subspace

of invisible objects since it produces a zero image y of in Y . The range of H - R(H) -

is a closed subspace of Y and it is the subspace of visible objects since it produces

a set of y that are images of some u ∈ U. In other words, the set of invisible objects

is the part of solution that we want to discard and the set of visible objects is the

part of data that we want to use. Let be U and Y spaces and let U′ ⊂ U be a fixed

set. Now, we denote by H(U′) the image of U′ under the map H : U′ → Y ′ where

H(U′) = Y ′ ⊂ Y . The new subset Y ′ is in the range of H while U′ is in the range

of all the functions ⊥N(H). Well or ill posedness may depend from the question we

are asking for. The ill posedness arises because the topological subspaces to be

used for the restored solution are not yet defined. Their redefinition restores the

well posedness of the problem but not necessarily also the well conditioning or the

stability of the solution.

5.5 The segmented deconvolution algorithm

Reality is different from simulation. In treating with real problems there are

several issues related to time and space discretization of the problem, indeed. The

sampled measurements are corrupted by noise, the initial conditions are usually

unknown, the impulse response function of the FD system have no dead time

and the dimension of the inverse problem may be huge, since it increases also

because of the number of time steps. In detail, the last condition is related to the

fact that the time range and the sampling time of the measurement can lead to a big

number of step and consequently to a huge dimension of the H matrix. For large

dimension of the time vector, the batch (or off-line) mode became computationally

impracticable and we necessarily have to deal with windows. The format of the

inverse problem is the same but the windows authorize to reduce the dimension of

the deconvolution problem and consequently to solve the whole problem in smaller
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pieces. In this way, we work in a recursive fashion with the finite precision of the

machine and solve the problem respect the part that is unique, i.e. the part that

has NdHp with full column rank. The SDR algorithm is outlined in Bernal and Ussia

(2013) and solves recursively the deconvolution problem while the initial condition

is continuously updated. The algorithm model is scheduled herein in figure 5.10. A

Figure 5.10: SDR algorithm

window size of λ∆t slides along the time axis. At each slide, the p − 1 first steps of

the input related to the current window are obtained. The window then goes ahead

exactly of p steps and so on, till the end of the signal. Referring to the figure, j is

the general index used to indicate the position of the time station in the time axis,

while k , z and h are effective relative positions of the time station. Note that the

dimension of p respect to λ is selected so that the p − 1 steps of the identified

input are not affected by the not zero part of the kernel. In addition, after finding

the first p − 1 steps of the input, we search for the initial condition in p in order to

continuously update the initial conditions.

5.6 Stability

Although existence and uniqueness conditions are ascertained, a recursive al-

gorithm can still be unstable and lead to a divergent solution. The reason resides

in the fact that any error on the solution in each window gets magnified in the next

piece and the error on the state increases making the recursive solution diverges.

Actually, the issues rooted in the recursion are related to the presence of noise in
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the measurements and to the lack of knowledge about the initial condition. Starting

from eq. 5.25 and according to the indexes in figure 5.10, the identificable part of

the input is

ũk = QpH−∗ [ỹk − Obλxk
]

(5.31)

Since there are errors in the initial conditions and noises on the measurements,

the equation became

ũk + δũk = QpH−∗ [ỹk − Obλ(xk + δxk ) + vk
]

(5.32)

It is possible to isolate the portion of the identified input controlled by noise and

unknown, which may generate numerical instability

δũk = QpH−∗vk − QpH−∗Obλδxk (5.33)

As usual starting from

xk+1 = Adxk + Bduk (5.34)

the recursion is as follow

xk+2 = Adxk+1 + Bduk+1 (5.35)

= Ad (Adxk + Bduk ) + Bduk+1

= A2
d xk + AdBduk + Bduk+1

...

and, eventually

xk+p = Ap
d xk + Ap−1

d Bduk + Bduk+p−1

hence in a more compact form

xk+p = Ap
d xk +

[
Ap−1

d Bd Ap−2
d Bd ... Bd

]


uk

uk+1

...

uk+p−1


(5.36)
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Recognizing that the block row matrix is the controllability matrix in the reversed

order, it writes

δxk+p = Ap
d δxk + Rcp−1δũk (5.37)

We substitute eq. 5.33 into eq. 5.37 obtaining

δxk+p = Ppδxk + Zp ṽk (5.38)

where

Pp = Ap
d − Rcp−1QpH−∗Obλ (5.39)

and

Zp = Rcp−1QpH−∗ (5.40)

In the absolute time line, the k and k + p elements of the state vector advance as

indicated in table 5.1, where j=1,2,3. . . is the number of recursions. Substituting

Table 5.1: k and k + p in the time line with p = 4.

k=(j-1)p+1 k+p

j=1 k=1 k=5

j=2 k=2 k=9

j=3 k=3 k=13

j=4 k=4 k=17 and so on.

the expression for k and k + p in eq. 5.38, holds

δxjp+1 = Ppδx(j−1)p+1 + Zp ṽ(j−1)p+1 (5.41)

and substituting for the first three recursions

j = 1, δx5 = Ppδx1 + Zp ṽ1 (5.42)

j = 2, δx9 = Ppδx5 + Zp ṽ5

= Pp(Ppδx1 + Zp ṽ1) + Zp ṽ5

= P2
pδx1 + PpZp ṽ1 + Zp ṽ5
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j = 3, δx13 = Ppδx9 + Zp ṽ9

= Pp(Ppδx5 + Zp ṽ5) + Zp ṽ9

= P3
pδx1 + P2

pZp ṽ1 + PpZp ṽ5 + Zp ṽ9

and so on. In agreement with this outcome, it is possible to write the more general

formulation, i. e.

δxjp+1 = P j
pδx1 +

j∑
i=1

P i−1
p Zp ṽ(j−i)p+1, j = 1, 2, 3, ... (5.43)

Since the matrix Pp is raised to the power j corresponding to the number of recur-

sions and that increases as the window shift along the time axis, the requirement

for stability of the whole algorithm is defined on the eigenvalues of the Pp matrix,

ρ = ||λ||max ≤ 1 (5.44)

The matrix Pp is function of the system matrices and of the algorithm parameters

{p,λ}. Stability of thePp matrix means to avoid the growth of the error on the

identified input and the matrix is stable for a certain selection of p, λ and sensor

position. A check on the radio of convergence based on these two important pa-

rameters is mandatory in order to ensure the numerical stability of the algorithm. It

is important to note that the choice of p is related not only to the stability but also

to the criticality related to the kernel of the Markov matrix.
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a) b)

c)

Figure 5.11: relationship between radius of convergence and parameter p.

The damping ratio is a parameter that can radically modify the identificability of

the input. In the test, the rod with input in DoF #40 and output in DoF #30 with

p = 1 and ∆t = 0.05 is used. Figure 5.12 shows that for a damping ratio of 0.02

the radius of convergence swings around one for the window size greater than 40

time stations. When the damping decreases to 0.002, the radius of convergence

stay still 1.011 even the size of the sliding window increases indefinitely and at the

same time the curve draws back. The stability now is no more ensured since the

radius of convergence is too close to one. Actually, from a mathematical point of

view the convergence is reached only if the radius is less than one. However, in

the case when it turns out to be more than one just because we have high machine

precision, it is anyway possible to find a solution. The divergence is just outlined

and it is possible to confuse it with a low frequency drift and eliminate it with a

low pass filter or with other forms of regularization. By increasing the number of

sensors (for example adding a sensor in DoF #35) and with a window size of 100

time station, the resultant in shown in figure 5.13 b) while figure 5.13 c) shows

the filtered input. So the absence of an adequate level of damping is critical since
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induce to add sensors or enlarge the sliding window dimension.

Figure 5.12: radius of convergence and damping

5.7 The Fisher information

Inferring anything from corrupted measurements necessarily reads to random

variables since it is intuitive that the variance whit which one can infer depends on

the level of noise on the system. The formulation of this idea in statistic is given

by the Fisher Information (FI) theory. In this section, we expect to find a useful

formulation for the FI in order have an accuracy measure for the inferred variables.

The Fisher information is defined as,

FI(θ) = E[score2] = E

[(
∂

∂θ
log f (Y |θ)

)2
]

= −E

[
∂2

∂2θ
log f (Y |θ)

]
(5.45)

• log f (Y |θ) is the logarithm of the likelihood function (that is the probability

density function of Y conditioned by θ).

• The score shows how sensitively is the log of the likelihood function with

respect to its parameter θ, i.e. it means that the score of the Fisher is a way

to show the accuracy of the parameter estimation using noisy data.

• The Fisher information is a way of measuring the amount of information that

an observable random variable Y (outputs) carries about an unknown param-

eter θ (inputs).

• The Fisher information is not a function of a particular observation.

In practice the likelihood function log f (Y |θ) is generally unknown so other quan-

tities derived from the data are typically used to estimate FI(θ). For example, if
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a) b)

c)

Figure 5.13: convergences problem: a) diverged solution, b) addition of a sensor,

c) filtered identified input.

data Y can be used to generate a vector X whose distribution is a member of the

linear exponential family having a mean g(θ) and a covariance Σ then the FI of the

parameter θ contained in X can be obtained as (Van Den Bos, 2007)

FI(θ) = ℑ(θ)TΣ−1ℑ(θ) (5.46)

where

ℑ(θ) =
∂g
∂θ

(5.47)

To illustrate the significance of eq. 5.46 let the ”true“ value of Y be deterministically

dependent on θ as depicted schematically in figure 5.14 for two cases. Let’ s

assume one wants to know the value of θ based on noisy values of Y . From the

sketch it is evident that the statistical accuracy of θ depends on the slope of the

functional relation at the location of the estimate and it is not difficult to see that

the variances are related by the square of the local slope. The inverse of the

Fischer information is a lower bound of any unbiased estimator of θ and it is called
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Figure 5.14: The dependence of Y on the parameter θ.

the Cramer Rao Lower Bound. The CRLB is the lower attainable variance on the

reconstruction of the input.

5.8 Conditioning in the frequency domain

The problem, although well posed or stable, can be ill conditioned. The ill

conditioning may be related to the physics of the problem. Usually what happens

is that small changes in the observations produce a big change in the solution

because of the presence of perturbation in the measurements. The effect of the ill

conditioning is that there are many solution to the input identification problem that

satisfy the recorded output. The classical procedure to evaluate the ill conditioning

is through the conditioning number. The conditioning number is the ratio between

the maximum and minimum singular value of the matrix (obviously excluding the

zero singular values). A high CN is related to the ill conditioning of the solution.

SV =


#

#

#

∼ 0

 ,
Smax
Smin

big → well cond

small → ill cond
(5.48)

Moreover, the ill-conditioning of the generalized solution depends on the number

of data points and, in general, it increases by increasing this number. Indeed, in

the frequency domain, the longer the time range, the bigger is the noise variance

in the output available data. When the conditioning is inspected in the frequency

domain the premise is that the variable are observed over all time. We want to ob-
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tain information about conditioning by inspection of the Cramer Rao Lower Bound.

Recalling that the Fisher information is,

FI(θ) =
∂gT (θ)
∂θ

∑ −1 ∂g(θ)
∂θ

(5.49)

If the model for the observations is g(θ) and θ is the set of parameters, the derivative

is simply the transfer function of the system in the z-domain,

dy(z)
du(z)

= G(z) (5.50)

where

F(z) =
1

σ2
v

GT (z)G(z) (5.51)

And the minimum variance attainable is the Cramer Rao Lower Bound,

CRLB(z) = σ2
(

GT (z)G(z)
)−1

(5.52)

The Cramer Rao Lower Bound is the minimum attainable covariance of an unbi-

ased estimator. To show some the issues related to the ill conditioning in the fre-

quency domain, let’s take the 40-DoF rod. Figure 5.15 a) represent the CRLB for

not collocated measurements, in particular the inputs are on the 5th and 40th DoF

and the outputs are located on the 1st , 10th and 30th DoF. Part b) of the same fig-

ure shows the collocated case, with inputs on the 10th and 40th DoF and outputs in

the same positions. Both the plot include information about displacement, velocity

or acceleration measurements. What it should be noted is that the ill conditioning

increases quickly for frequencies that are outside the system bandwidth. High fre-

quency disturbances arises almost always except for collocated measurements of

velocity. So the final conclusion is that the ∆t must be such that the realizations of

the measurements noise are restricted to the bandwidth of the system or, in other

words ∆t ≥ 0.5Bw . Let’s see the example in figures 5.16 and 5.17 where the case

of non collocated measurements of both accelerations and displacements are an-

alyzed. Figure 5.16 are referred to the rod with a stable solution after 11 and 6

steps in the case of the sampling time of 0.02 s and 0.05 s, respectively, and with

acceleration sensors. The 50 Hz sampling generates in the identified input an high

frequency disturbance that can be assimilated to the ill conditioning and that totally
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a) b)

Figure 5.15: the CRLB for a) not collocated; and b) collocated measurements.

distort the identified signal. On the other hand, using the sampling frequency of 20

Hz, there is a low frequency conditioning that shows through a low frequency drift.

Figure 5.17 are referred to the rod with stable solution after 18 and 7 steps and

with displacement sensors. Displacement measurements manifest only the high

frequency ill conditioning, so the 20 Hz sampling seems to be a good solution.

5.9 Conditioning in the time domain

An exact expression for the error in the p-inputs at the jp + 1 time station can

be obtained by substituting eq. 5.43 into eq. 5.33. After some tedious, albeit

elementary tracking of indices, one gets

δũj·p+1 = −QpH−∗ObλP j
pδx1 +

j∑
i=0

Di ṽ(j−i)p+1 (5.53)

where

Di = −QpH−∗ObλP i−1
p Zp (5.54)

and

D0 = QpH−∗ (5.55)

with Di ∈ R(pr)x((λ+1)m) . To simplify we focus on the situation where the window

advances one time station at a time, so p = 1. In this case the vector in eq. 5.53

contains the input vector only at the j +1 time station. Letting q be the number of the

input in the input vector, then with aq as the qth row of the matrix that pre-multiplies

the error in the initial state and bq as the concatenation of all the qth rows of the
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a)

b)

Figure 5.16: example of bad conditioning in the frequency domain.

matrices Di , one has

δu(q)
j+1 = aT

q δx1 + bT
q V (5.56)

where aq ∈ R1 x 2n,, bq ∈ R1 x (j+1)(λ+1)m and V ∈ R(j+1)(λ+1)m x ℓ is the concate-

nation of all the noise sequences ṽ(j−i)+1. Note that the vector V is not strictly

random since its length is ,(λ + 1)m(j + 1) while there are only (j + λ)m independent

noise entries. To aid in clarity with regards to the indices Appendix B presents

an illustration in a specific scenario. Assuming that the first term in eq. 5.56 can

be neglected for sufficiently large j (or for any j if the error in the initial state is

negligible) one has

δu(q)
j+1

∼= bT
q V (5.57)

bq is the concatenation of the rows of the Di matrices and is nothing else that

the index of the ill conditioning in the time domain. If b1 is not increasing, then

adequate performance are guaranteed as shown in figure 5.18.
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a)

b)

Figure 5.17: example of good conditioning in the frequency domain.

5.10 Singular Values Truncation

Assuming the following definition of the estimated input, i.e.

up = QH−∗y − QH−∗Ob x0 (5.58)

It is possible to sum up the general effects of noise as,

up = QH−∗(y + v) (5.59)

The expectation is that

H−∗y ≫ H−∗v (5.60)

1
smax

||ȳ|| ≫ 1
smin

||noise|| (5.61)

To decide on the singular value cutoff let the maximum and the minimum singular

values of S1 be smax and smin. The worst scenario is having the signal parallel to
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Figure 5.18: example of ill conditioning in the time domain.

the first singular vector and the noise parallel to the last. The ratio of the amplified

(de-amplified) vector norms is thus

1
smax

||ȳ|| =
1
β

1
smin

||noise|| (5.62)

||noise||
||ȳ||

smax
smin

= β (5.63)

from where it follows that a possible criterion for singular value truncation is

smin
smax

=
NSR
β

(5.64)

Regularization produces effect on both stability and conditioning. As shown in fig-

ures 5.19 and , the stability limit decreases if truncation is performed. In addition,

the un-regularized solution shows an increase in the standard deviation of the es-

timation error as presented in figure 5.20 a) and b).
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Figure 5.19: effect of regularization on stability.

a) b)

Figure 5.20: effect of regularization on conditioning in time domain.

5.11 Experimental test

This experiment was conducted at the Department of Civil and Environmental

Engineering of the Northeastern University at the Structural Dynamics and System

Identification Lab. The structure is an aluminum beam fixed at one end as shown in

Figure 4. The shaker originates a burst pseudo-random input with a whole duration

of 6.5 s in position #6 and the measurement set up includes 3 accelerometers PCB,

as shown in figure 5.21. The sampling frequency is 1280 Hz and a 7 DoF model

is used are used to discretize the structure. The modal frequencies are obtained

from the model and they are 13, 83, 239, 467, 726, 1016, 1350 Hz.
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Figure 5.21: the set-up of the experimental test on the beam.

5.11.1 Tests on number and position

Data collected from the test provided information about both the number and

position of the actual input. Figure 5.22 a) shows the singular values along the

frequency line of the matrix and as consequence, it is possible to infer that the

number of independent acting load is just one. Figure 5.22 b) shows then that right

input position is the one on 6th DoF.

a) b)

Figure 5.22: number and position of independent inputs acting on the beam.

5.11.2 Tests on the time histories

The SDR algorithm is stable for λ > 10 steps, the sampling frequency is

fc=1280 Hz and the band is Bw=13 Hz-1350 Hz. Even if the high frequency con-

ditioning is avoided but we still have low frequency drift so the error due to the

noise increases with time and it is related to the low frequency ill conditioning. The

input at coordinate #6 is reconstructed and compared with the actual values in fig-
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a)

b)

Figure 5.23: conditioning in a) frequency; and b) time domain in the experimental

test.

ure 5.24. The reconstruction in not exact because 0.5% NSR was added to the

measurements.

5.12 Conclusions

The Chapter addressed the determination of both number and position, and

time histories of unmeasured inputs. In the time domain, the general solution of the

inverse problem is simply obtained from the deconvolution of the impulse response

from the output measurements. However, the deconvolution must be constrained

by the true physics of the problem in order to avoid the formulation of ill-posed

problems. In fact, the I/O arrangement and the inherent delay of the problem de-

fine if the input is identifiable or if it is identifiable on any subspace. It should be

noted that FD models are made up of the sum of a series with finite terms. In

this respect, finite element discretization of a continuum does not have impulse

response functions with zero finite time segments. So the part of the impulse re-

sponse functions that are zero in the continuum are very small in the model and
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Figure 5.24: comparison between the actual and the predicted input.

have no consequence in the solution of forward problems but can bring to huge

mistakes in the solution of the inverse problem. In this respect, it can be shown

that the part of the input affected by the delay is strictly related and can be detected

through inspection of the Toeplitz matrix kernel. In a first phase the number and the

position of the unknown input is addressed. The chapter explains that the number

of inputs can be determined in a batch mode and with reasonable accuracy from

the effective rank of a matrix formed using the Fourier transform of the output sig-

nals. The position of the acting loads is subsequently established by inspecting the

generalized angles made by the columns of the transfer matrix of the model with

the basis identified from the data. Once the input mapping is complete the time

history of the load can be inferred with good accuracy using a sequential decon-

volution algorithm. The sequential deconvolution is an iterative method that takes

into account for the inherent delay of the system. For this purpose, the kernel is

fundamental for the comprehension of constraints and limitations on the input re-

construction especially if the input reconstruction has to be solved in the recursive
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fashion. The kernel makes clear which part of the solution is affected by the delay

and consequently if the I-O arrangement leads to the knowledge of inputs over the

whole time range of outputs or just on a subset of the axis time. The size of the

recursion window and the prediction lag have to be chosen carefully because they

affects the stability of the algorithm. Stability conditions are derived and result to

be function of the size of the forward shift, the observability, the Toeplitz matrix and

the state transition matrix. The ill conditioning conditions are investigated as well

as the conditioning in time and frequency domain in order to analyze the solution

accuracy. In this respect the error in the estimated inputs is a function of both the

noise and the error in the initial condition and as a consequence an index of ill

conditioning in time domain is derived. In frequency domain, the CRLB is a tool

to select the step for time discretization in order to limit the ill conditioning of the

solution. Both numerical and experimental tests have been performed with good

results.

5.13 Appendix A - Dead Time in Finite Dimensional Systems Impulse Re-

sponse Functions

This appendix presents a proof showing that the impulse response functions

of FD systems have no dead time. We begin by developing an expression for the

impulse response and then present the proof (Bernal and Ussia, 2013). The input

to state and state to output description of an arbitrarily damped linear system with

an excitation at coordinate ”s“ and a measurement at a spatially separated location

”z“ is,

ẋ = Ax + Bfs

yz = Cx
(5.65)

Taking fs as an impulse δ(t), yz is rendered the impulse response hz , and one can

thus write

ẋ = Ax + Bδ(t)

hz = Cx
(5.66)

The Jordan decomposition of A is ΦTΛΦ and thus taking x = ΦY gives

Ẏ = Λx + Γδ(t)

hz = Ψx
(5.67)
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where Γ = ΦY and Ψ = CΦ. Accepting that A is not defective Λ = diag(λj ), then the

solution for the jth term of eq. 5.67 writes

Yj (t) = Y0,je
λj t (5.68)

where the initial condition of the generalized coordinate is obtained by noting that

from eq. 5.66 one has∫ ϵ

0
ẋdt = A

∫ ϵ

0
xdt + B

∫ ϵ

0
δ(t)dt (5.69)

and thus given the definition of the impulse, for ϵ → 0, x0 = B. So it yields that

Y0 = Φ−1B and substituting eq.5.68 into eq. 5.67 gives

hz =
N∑

j=1

cje
λj t (5.70)

where cj = φjY0,j , Ψ = {φ1, ..., ...φN} and N is the system order.

• Preposition: the function hz =
N∑

j=1

cje
λj t is is not zero for any time segment

of finite extent.

• Proof: let the time segment be some arbitrary span [t1, t2], if the impulse is to

be zero over this segment then

N∑
j=1

cje
λj t = 0, t1 ≤ t ≤ t2 (5.71)

If any of the cj terms are zero they fall out of the series so, for generality we write

N1∑
j=1

cje
λj t = 0, t1 ≤ t ≤ t2 (5.72)

where N1 ≤ N. There is also the possibility that there are some zero eigenvalues,

letting the number of zero eigenvalues as q ≥ 0 and placing them as the last entries

in the series one has

N1−q∑
j=1

cje
λj t = P, t1 ≤ t ≤ t2 (5.73)
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where we now have λj ̸= 0 and P = −
N1∑

j=N1+1−q
cj . Differentiating eq. 5.73 gives

N1−q∑
j=1

cjλje
λj t = 0, t1 ≤ t ≤ t2 (5.74)

from where it follows that

eλ1t =

N1−q∑
j=2

c̄je
λj t (5.75)

where c̃j = −
cjλj
c1λ1

. Substituting 5.75 into 5.73 one has

N1−q∑
j=2

c̄je
λj t = P, t1 ≤ t ≤ t2 (5.76)

where one can easily confirm that c̄j = (c1c̃j + cj ). Since eq. 5.76 is exactly the

same as A.13 the procedure carried out to eliminate the first term of the series can

be repeated until there is a single term left and one has 5.73

N1−q∑
j=N1−q

ĉje
λj t = P, t1 ≤ t ≤ t2 (5.77)

where ĉj is some constant. A necessary condition for eq. 5.77 to be satisfied is

that the eigenvalue λj = 0 and since none of the eigenvalues in the series are zero

one concludes that eq. 5.77 is a contradiction and it thus follows that the initial

premise, i.e., that the impulse response was zero over the time interval selected,

is not possible – concluding the proof.

5.14 Appendix B - Illustration of Vectors in 5.9

Suppose that we want to characterize the error at t = 2∆t so in eq. 5.53 we

have j = 2, and the equation writes

δũ3 = −QpH−∗ObλP2
pδx1 + D0ṽ3 + D1ṽ2 + D2ṽ1 (5.78)

For r = 2, λ = 3 and m = 3, one has δu(1)
3

δu(2)
3

 =

 row #1

row #2

 {δx1}+

 row #1

row #2


D0

v̄3+

 row #1

row #2


D1

v̄2+

 row #1

row #2


D2

v̄1
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(5.79)

The rearrangement of eq. gives

δu(1)
3 =

[
row #1

]
{δx1}+

[
row #1|D0

row #1|D1
row #1|D2

]
ṽ3

ṽ2

ṽ1

 (5.80)

δu(2)
3 =

[
row #2

]
{δx1}+

[
row #2|D0

row #2|D1
row #2|D2

]
ṽ3

ṽ2

ṽ1

 (5.81)

The bT
q vectors are

bT
1 =

[
row #1|D0

row #1|D1
row #1|D2

]
(5.82)

bT
2 =

[
row #2|D0

row #2|D1
row #2|D2

]
(5.83)

and the vector V ∈ R(j+1)λm x 1 that is the concatenation of all the noise sequences

ṽ(j−i)+1, is now

V =


ṽ3

ṽ2

ṽ1

 (5.84)

where

ṽ3 =

 v(1)
3 v(2)

3 v(3)
3 v(1)

4 v(2)
4 v(3)

4 v(1)
5 v(2)

5 v(3)
5 v(1)

6 v(2)
6 v(3)

6

v(1)
7 v(2)

7 v(3)
7

T

ṽ2 =

 v(1)
2 v(2)

2 v(3)
2 v(1)

3 v(2)
3 v(3)

3 v(1)
4 v(2)

4 v(3)
4 v(1)

5 v(2)
5 v(3)

5

v(1)
6 v(2)

6 v(3)
6

T

ṽ1 =

 v(1)
1 v(2)

1 v(3)
1 v(1)

2 v(2)
2 v(3)

2 v(1)
3 v(2)

3 v(3)
3 v(1)

4 v(2)
4 v(3)

4

v(1)
5 v(2)

5 v(3)
5

T

(5.85)
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CHAPTER 6

MODELING AND SEMI-ACTIVE CONTROL OF A

MAGNETO-RHEOLOGICAL TUNED MASS DAMPER

6.1 Introduction

This chapter deals with the identification and control of a non-linear adaptive

rotational Magneto-Rheological (MR) damper produced by Maurer Söhne Gmbh

and used in a Magneto-Rheological Tuned Mass Damper (MR-TMD) installed on

the Nomi-Calliano footbridge. The chapter consists in three parts involving mod-

eling and identification of the hysteretic damper and the control of the semi-active

TMD.

The first macro part treats about the theory related to modeling of hysteretic

systems. The discussion is then divided between a panoramic on the classical

models used in the literature to describe hysteresis cycles and a more detailed

presentation related to MR fluids. In this respect, non-linear models for general

hysteretic systems are first presented with fundamental definitions and mathemat-

ical issues and, eventually, a review on main modification to the original Bouc-Wen

model is reported. Then, in more detail, non-linear models used in the current

literature specific for MR fluids are briefly described (Bouc-Wen based models,

Hyperbolic tangent, Dahl, LuGree and non-parametric models).

The second macro part involves aspects related to the parametric identification

of the non-linear hysteretic damper used on the Nomi-Calliano footbridge. In detail,

the investigation is directed to the identification of an accurate parametric model of

the MR damper being part of the semi-active TMD. Since, many control strategies

are known as model based, a focus on the nature of the MR fluid and eventually
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on the damper dynamics is needed in order to identify both main properties and a

detailed analytical model. Tests on the MR damper were conducted at the Mate-

rials and Structural Testing Laboratory of the University of Trento and the Test Rig

1 -TT1- was used. The TT1 is a dynamic system developed by the Department

of Civil, Mechanical and Environmental Engineering of the University of Trento be-

ing part of the project SERIES and now used for the experimental tests on the

damper. The identification of the model parameters is obtained using a non-linear

constrained optimization tool. In addition, a wide part of this second part is dedi-

cated to the study of the Unscented Kalman Filter (UKF) as a tool for identification

of non-linear models. Numerical tests on several classical models of hysteresis

such as Bouc-Wen, Baber-Wen, Baber-Noori and Foliente model are performed.

Moreover a final experimental test was performed using a set of time-invariant ex-

perimental data recorded from the damper positioned on the TT1 test rig. The final

outcome of the model identification was a model based on the Bouc-Wen model

validated at the end of the test campaign by means of experimental data.

Finally, the third part regards the semi-active control of the MR TMD installed

on the footbridge. In this respect, a semi-active control strategy known as clipped-

optimal control law was numerically simulated. Simulations also involved some

real data recorded from the actual structure by means of the installed permanent

monitoring system. Since the analysis involved just the third critical mode, actual

data, provided by accelerations in 8 points of the bridge, were projected in the

modal domain. After the projection, a modal load has been detected through the

input identification tool presented in Chapter 5. The reconstructed input was then

applied on the simplified 2DoF model outlined by the Den Hartog theory and used

in the validation of the controller. Eventually, the experimental set-up of the con-

trol system and the positioning on the footbridge of the device is described and

performed.

6.2 Non-linear models for hysteretic systems

Hysteresis is a mechanical phenomenon that supplies restoring force against

movement and dissipates energy. The input-output relations between variables

involves memory effect since restoring force depends not only by the instantaneous

deformation but also on the whole history of deformation. In addition, when the
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input displacement is periodic, the restoring force appears to be asymptotically

periodic too, with the same period. The hysteresis loop is the result of the force-

displacement plot and the parameters characterizing the model define of course

the loop shape. In the following section we describe the classical Bouc, the Wen,

the Bouc-Wen and other Bouc-Wen type models.

6.2.1 The Bouc model

The dynamic equation of a SDoF system in presence of the restoring force

governed by the Bouc model proposed in Bouc (1966, 1971) can be written as,mü(t) + cu̇(t) + ku(t) + z(t) = d(t)

ż(t) = [A − βzsign(u̇(t))]u̇(t)
(6.1)

where d(t) is the external load and A , β > 0. From a mechanical point of view, the

term z(t) is the component that depends from the velocity time history u̇(t). Then

a modification (Bouc, 1966) of the original model was proposed in order to better

modeling the hysteresis loop shape in particular the unloading branches,mü(t) + cu̇(t) + ku(t) + z(t) = d(t)

ż(t) = [A − βzsign(u̇(t)) − γ|z(t)|]u̇(t)
(6.2)

where A , β > 0 and γ < β.

6.2.2 The Wen model

Wen (1980) introduced an additional modification related to the issue of the post

yielding stiffness. The motion of an oscillator with non-linear stiffness is described

in the following form of the Newton’s second law,

mü(t) + f(u̇(t), u(t)) = d(t) (6.3)

By introducing the parameter α which defines the post to pre-yielding stiffness

ratio, the restoring force results,

f (t) = αku(t) + (1 − α)kz(t) (6.4)

where k is the initial total stiffness. So the new Wen model results to be,mü(t) + cu̇(t) + αku(t) + z(t) = d(t)

ż(t) =
{

(1 − α)k [A − |z(t)|n(γ + βsign(z(t)u̇(t))]
}

u̇(t)
(6.5)
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6.2.3 The Bouc-Wen model

Wen (1976) introduced a modification to the Bouc model. The model is de-

scribed by the following second order non-linear dynamic differential equation,mü(t) + cu̇(t) + ku(t) + z(t) = d(t)

ż(t) = Au̇(t) − βu̇(t)|z(t)|n − γ|u̇(t)|z(t)|z(t)|n−1
(6.6)

also written asmü(t) + cu̇(t) + ku(t) + z(t) = d(t)

ż(t) = [A − |z(t)|n(γ + βsign(z(t)u̇(t))]u̇(t)
(6.7)

A , β, γ and n are the hysteresis parameters that define the shape of the hystere-

sis cycle where A is the oscillator stiffness, β > 0, −β < γ < +β and n > 0,

respectively. Modifications into the relationship between these parameters modify

the behavior of the cycle inducing softening or hardening effects as reported in

table 6.1 (Baber and Wen, 1980). In addition figure 6.1 shows how the parameter

n influences the shape of the cycle. Properties related to the physical consistency

Table 6.1: relationship between β and γ and their effects on hysteresis

β + γ > 0

γ − β > 0
Weak softening

β + γ > 0

γ − β = 0
Weak softening on loading, mostly linear unloading

β + γ > β − γ

γ − β < 0
Strong softening loading and unloading, narrow hysteresis

β + γ = 0

γ − β < 0
Weak hardening

β + γ < 0

β + γ > γ − β
Strong hardening

of the model are listed below (Ismail et al., 2009):

• BIBO stability: for any bounded input, the output of the true hysteresis in

bounded since the treated system are stable and in open loop.
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• Consistency with the asymptotic motion of the physical system.

• Passivity is related to the energy dissipation: the system does not generate

energy and the model is passive respect to a storage function W .

• Thermodynamic admissibility is verified when a model fulfill the second prin-

ciple of the Thermodynamics; in the case of the Bouc-Wen model it happens

if n > 0, β > 0 and −β ≤ γ ≤ β hold.

• Accordance with the Drucker’s postulate implies that the system should not

produce negative energy dissipation when the unloading-reloading process

occurs without the load reversion. The Bouc-Wen model violates this pos-

tulate and attempts to reduce this violation have been done (Carli, 1999;

Casciati, 1988, 1989; Dominiquez et al., 2008).

We are in presence of a black-box approach that means what follows: given a

set of experimental input-output data, one searches for the set of parameters of a

model which could match the available data and the match is good enough such

that the error between numerical and experimental results is small. In any case, the

model requires physical and mathematical consistency. Mathematical consistency

on the other hand consists in the existence and uniqueness of the solution and also

in the uniqueness of the description of the model; the last issue is related to the

fact that the parameters of the model are redundant since there exists an infinite

number of parameter set the lead to the same input-output shape. The modeling

of an hysteretic system using the above-mentioned laws is an arduous task and

sometimes alternative model combining physical understanding of the hysteretic

behavior and some kind of black box modeling have been proposed.

6.2.4 The Baber-Wen model

The Baber Wen model takes into account for both the stiffness and strength

degradation effects on the hysteresis cycle (Baber and Wen, 1981, 1980).
mü(t) + cu̇(t) + αku(t) + z(t) = d(t)

ż(t) =
{

(1−α)
η [A − ν|z(t)|n(γ + βsign(z(t)u̇(t))]

}
u̇(t)

ė(t) = z(t)u̇(t)

(6.8)
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Figure 6.1: increasing effect of the parameter n on: a) softening; and b) hardening

hysteresis model (Heine, 2001).

with

ν = ν(e) = ν0 + δνe (6.9)

η = η(e) = η0 + δηe (6.10)

A = A(e) = A0 − δA e (6.11)

where, as usual, A , β, γ, n and α, k , A0 are the hysteresis parameters, while δA ,

δv , δη, v0and η0 are the degradation parameters. In details,
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• α is the ratio between the post yielding and the initial stiffness of the system

already introduced in Wen (1980).

• k = mω2
0

• c = 2ξ0ω0m

• e =
∫ t

0
zu̇dt is the total energy dissipated by the cycle

• ν and η are the controlling parameters for strength and stiffness degradation,

respectively and have energy dependent evolution.

6.2.5 The Baber-Noori model

The model introduced by Baber and Noori (1986) gives a good approximation

of hysteresis systems with degrading and pinching phenomena. The final result of

Baber and Noori’s work is the following model,
mü(t) + cu̇(t) + αku(t) + z(t) = d(t)

ż(t) =
{

(1−α)h
η [A − ν|z(t)|n(γ + βsign(z(t)u̇(t))]

}
u̇(t)

ė(t) = z(t)u̇(t)

(6.12)

as in the previous model A , v and η are linearly varying functions of the element

total energy dissipation,

A = A(e) = A0 − δA e (6.13)

ν = ν(e) = ν0 + δνe (6.14)

η = η(e) = η0 + δηe (6.15)

while the pinching is modeled through a specific function h(z, e),

h = h(z, e) = 1 − ζ1e

(
− z2

2ζ2
2

)
(6.16)
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a) b)

Figure 6.2: pinching function for: a) the Baber-Noori and b) Foliente model

(Foliente, 1995).

whose behavior is shown in figure 6.2 a). The function h is Gaussian (zero mean)

and with values into the range [0, 1]; when the pinching is maximum z = 0 and

h ∼ 0. Other parameters are summarized in the following,

ζ1 = ζ1(e) = ζ1,0(1 − e−pe) (6.17)

ζ2 = ζ2(e) = (ξ0 + δξ)(λ + ζ1) (6.18)

where p, ζ1,0, ξ0, δξ , and λ are constant parameters that define the shape and the

entity of the pinching effect. In particular,

• ζ1 ∈ [0, 1] controls the pinching;

• ζ1,0 is the maximum value of ζ1;

• p controls the rate of changing of ζ1;

• ζ2 governs the extension of the region interested by the pinching;

• ξ0, δξ and λ control the evolution of ζ2.
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6.2.6 The Foliente model

A further modification to the model with degrading and pinching was added by

Foliente (1995) and Foliente et al. (1996),
mü(t) + cu̇(t) + αku(t) + z(t) = d(t)

ż(t) =
{

(1−α)
η h[A − ν|z(t)|n(γ + βsign(z(t)u̇(t))]

}
u̇(t)

ė(t) = z(t)u̇(t)

(6.19)

In particular, the function h(z, e) has non-zero mean and equal to z̄. The maximum

pinching effect occurs for z = z̄ = qzu as shown in figure 6.2 b). The function h(z, e)

writes

h = h(z, e) = 1 − ζ1e

(
− (zsignu̇−z̄)2

ζ2
2

)
(6.20)

and

z̄ = z̄(e) = qzu = q
(

1
ν(γ + β)

)1
n

(6.21)

Other parameters result to be

ν = ν(e) = ν0 + δνe (6.22)

η = η(e) = η0 + δηe (6.23)

ζ1 = ζ1(e) = ζ1,0(1 − e−pe) (6.24)

ζ2 = ζ2(e) = (ξ0 + δξ)(λ + ζ1) (6.25)

6.3 MR fluids and hysteresis mathematical models

A MR fluid is typically composed for the 20-40 % (Spencer et al., 1997) of their

total volume by micron size (3-5 micron) soft iron particles, e.g. carbonyl iron,
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suspended in a non-magnetic fluid that acts as a carrier matrix for the polarizable

part. The particle size range from 10−7to 10−5 m (Carlson and Jolly, 2000). Upon

the application of a magnetic field, the rheological properties of these materials

drastically change since they modify the basic consistence from linear viscous fluid

to semi-solid state and the aggregation is reversible. The magnetization of the fluid

yields to the formation of chain-like structures composed by the magnetic part of

the fluid, parallel to the applied magnetic field and that restrict the flow of the fluid

dramatically changing the rheological behavior of the material. The change is really

quick (of the order of milliseconds) and fits to real-time control applications. Of

course, the yield stress is field dependent since the yield strength is controllable as

a function of the magnetic field in the coil of the device (Jolly et al., 1996). Carrier

fluids can be petroleum based oils, silicone, mineral oils, polyesters, polyethers,

water synthetic hydrocarbon oil (Carlson and Jolly, 2000) and other. The basic

physical properties are summarized in table 6.2.

Table 6.2: typical MR fluid properties (Carlson et al., 1996; Carlson and Jolly,

2000).

Property Typical value

Maximum yield strength 50-100 kPa

Maximum field ∼250 kA/m

Plastic viscosity 0.1-1.0 Pa s

Operable temperature range -40/+150◦C

Contaminants unaffected by most impurities

Response time ¡ milliseconds

Density 3-4 g/cm3

ηp

τ2
y

10−10 − 10−11s/Pa

Maximum energy density 0.1 J/cm3

Power supply (typical) 2-25 V @1-2 A (2-50 watts)

Relevant MR fluids models currently used in literature are here reported.

• The Bingham model consists of a Coulomb friction element placed in parallel

with a viscous damper as shown in figure 6.3.
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Figure 6.3: the Bingham model (Zapateiro De La Hoz, 2009)

The Bingham model is often used to characterize the the stress-strain relationship.

The stress is proportional to the viscosity, defined as the ratio between shear stress

and gradient of the velocity orthogonal to the strain direction,

τ = µ
du
dy

(6.26)

The flow of the fluid is governed by the Bingham model when the body behaves as

a solid until the yielding stress is reached, then exhibits a linear relation between

the stress and the rate of deformation. Then the stresses τ ≥ τy result

τ = τy + µγ̇ (6.27)

meanwhile for stresses below τ < τy , the fluid behaves elastically,

τ = Gγ (6.28)

where G is the complex material modulus. The force fmr is given by the following

equation

fmr = fcsgn(ẋ) + c0x + f0 (6.29)

where c0 is the damping coefficient, fc is the frictional force, ẋ is the velocity of the

head of the piston and f0 is a general term used to model non-zero mean effects.

Modification to the Bingham model can be found in Stanway et al. (1985, 1987);

Gamota and Filisko (1991).

• Bouc-Wen based models have been extensively used to describe the rheo-

logical behavior of dissipative device such as MR fluid dampers since it pos-

sesses a behavior resembling that of the real MR dampers. Dominiquez et al.
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(2008, 2006) proposed a model based one the Bouc-Wen and including both

the amplitude and frequency of the excitation and the current flowing into the

device, as input variables finding the solution of the evolutionary variable z as

a function of 16 current/excitation dependent parameters. A more involved

model is presented by Spencer et al. (1997) based on the results of damping

testing on a Lord MR damper and showed in figure 6.4.

Figure 6.4: the Bouc-Wen mechanical model (Zapateiro De La Hoz, 2009)

• Hyperbolic tangent model is presented by Gamota and Filisko (1991) and

simplified by Gavin (2001). The model illustrated in figure 6.5 consists in

a damping coefficient c0 and a stiffness k0 both describing the post-yield

behavior while c1 and k1 represent the pre-yield behavior, respectively. The

Coulomb friction element is also present. Actually the model is constituted by

two Voight elements separated by a mass m0 representing the inertia of the

device or of the fluid. This model is used to approximate the both a signum

function and a yielding mechanism.

Figure 6.5: the Hyperbolic tangent model (Zapateiro De La Hoz, 2009)
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• Dahl friction model presented in figure 6.6 is described by the following set of

equations,

F = kx (v)ẋ + kw (v)z(t)

ż = ρ
(
ẋ − |ẋ|z

) (6.30)

Ikhouane and Dyke (2007) and Ikhouane et al. (2007) proposed the use of the

Figure 6.6: the Dahl friction model (Zapateiro De La Hoz, 2009)

Dahl model in conjunction with a viscous dash-pot for the behavior of damping

devices. The model is also suitable for a possible dependence of the parameters

from voltage.

• LuGree model is used in Jimenez and Alvarez-Icaza (2005) in order to model

a MR damper. The LuGree model is an extension of the Dahl model and is

a way to describe friction dynamics. The parameters are voltage dependent

and the model is given by,

fmr = σ0zv + σ1ż + σ2ẋ

ż = ẋ − σ0η0(v)|ẋ|z
(6.31)

where σ0 (N/mV), σ1 (Ns/m) and σ2 (Ns/m) are the characteristic parameters of

the model, stiffness and dissipation coefficients, respectively. η0 is related to the

voltage through the relation η0(v) = a0(1 + a1v) with a0 (V/N) and a1 (V−1) are

constant parameters.

• Non parametric such as neural network, fuzzy logic models and n-order poly-

nomial equations are also present in the literature (Nelles, 2001).

6.4 Non-linear identification of the MR damper

The goal of model identification is the realization of an accurate analytical model

based on the input-output measurements from actual structures or devices. With
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regard to the linear identification, the most popular classification of methods en-

tails: a) time domain such as Autoregressive methods (Maia and Silva, 1997;

Leuridan et al., 1985; Giorcelli et al., 1994), the Eigensystem Realization Algo-

rithm (ERA) (Maia and Silva, 1997; Juang and Phan, 2001), the Stochastic Sub-

space Identification method (SSI) (Van Overschee and De Moor, 1996), b) fre-

quency domain (Zanotti, 2012) and c) time-frequency domain strategies (Cohen,

1995; Ceravolo, 2004; Hlawatsch and Boudreaux-Bartels, 2006). Another common

classification is related to the objective of the identification; direct methods directly

identify the system matrices (mass, stiffness matrices of the system model, when

the system is small enough) while indirect methods estimate the modal character-

istic of the structure (frequencies and mode shapes) by means of the Frequency

Response Function (FRF). However, structures under sever load condition may

exhibit non-linearity since the restoring force shows hysteretic behavior, or one can

be in presence of local element with a clear non-linear behavior. So the second big

branch of the model identification is related to non-linear systems. A first partition

for non-linear identification methods is between parametric and non-parametric

methods; the first class of methods use a priori knowledge of the model class and

lead to the identification of model parameters by searching in the parameter space.

The latter, do not require any assumption about the type and the order of the non-

linearity of the system but at the cost of a certain mathematical complexity. An

exhaustive classification is in Zanotti (2012) and reported in figure 6.7. The main

distinction is between Non-Instantaneous and Instantaneous methods. In particu-

lar, the Kalman filter for parameter estimation is part of the so called on-line meth-

ods in time domain. Indeed, adaptive estimation procedure are really attractive

to perform on-line identification of non-liner systems (Smyth et al., 2002). In this

section a modified version of the Bouc-Wen model is used for simulating and iden-

tifying the non-linear behavior of the MR damper to be used within the damping

system of the Nomi-Calliano footbridge. Identifying a model consists in propos-

ing a set of unknown parameters and an identification algorithm able to precisely

simulate the input-output measured relationship. An overview of the identification

method is proposed in Ismail et al. (2009), so in addition to the above-mentioned

classification, one can add the following techniques:
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Figure 6.7: classification of non linear identification methods (Zanotti, 2012).

• Least-square based (Smyth et al., 1999);

• Bootstrap filter based (Li et al., 2004)

• Simplex method (Ramallo et al., 2004; Gunstona et al., 2004);

• Genetic Algorithm (GA) based (Kwok et al., 2007; Ma et al., 2006); briefly,

the GA deals with a set of potential solutions, i.e. the MR damper parame-

ters, called chromosomes randomly generated to represent parameters. The

algorithm proceeds along iteration called generations, going through the se-

lection, crossover and mutation operation till the best chromosome solution

is found

• Constrained non-linear Optimization (Savaresi et al., 2005);

• Non-parametric identification (Masri et al., 2004).

In this chapter, both a constrained non-linear and a Kalman filter based optimiza-

tion are used. In the first stage of identification, the hysteresis parameters are

identified by the solution of a non-linear minimum constrained problem. In the
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second identification stage, the UKF technique is tested as a tool for non-linear

identification of the model parameters.

6.4.1 MR damper and test description

Tests on the MR damper aimed to identify the parametric model toke place

using an experimental platform -the Test Rig 1 (TT1) - already existing in the Ma-

terials and Structural Testing Laboratory of the University of Trento. The TT1 is a

dynamic system developed by the Department of Civil, Mechanical and Environ-

mental Engineering of the University of Trento (Italy) as part of the project SERIES

(Seismic Engineering Research Structures for European Synergies) to study and

validate control techniques for evaluation of accuracy of Real-Time Heterogeneous

Simulations (RHS). By default there are two masses of 234 kg each free to trans-

late and rotate and handled by four electromechanical actuators. Different type of

springs and dampers are also available for the variation of the parameters of the

dynamic system. The masses are arranged on guides equipped with bearings to

definitely reduce the friction. The hardware of the TT1 is presented in figure 6.8 and

consists of four actuators Parker 890 CD (Common Drive) powered by the Parker

890 CS - Common Bus Supply, four load cells AEP-TC4 25 kN, four accelerome-

ters PCB 393B12 and 393C and eventually four optical displacement transducers

OPTO NCDT 1402-200. The dSPACE® platform is used for both measurement

acquisition and signal control. TT1 can be used with or without specimen. The

TT1 is endowed with:

• Four actuators Parker 890 CD with modular driving system AC 890 are fed by

the 890 CS Parker Common Bus Supply with a velocity control loop (figure

6.9 shows a sketch of the Parker actuator).

• Four displacement sensors OPTO NCDT 1402-200 detect the position of the

head of each actuator. These sensors exploit the principle of triangulation:

a visible light beam is projected onto a target surface and the reflection is

measured by a receiving high sensitivity optical element positioned with a

certain angle with respect to the laser beam. The measuring range is 60 mm

and the voltage-displacement relationship reads,
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Figure 6.8: The TT1 sensor and plant set-up.

d[mm] = d1∆V[V] + d0 (6.32)

where d1 = 0.05 m/V and d0 = −0.15 m

• The force exerted by the actuators is measured by means of four load cells

AEP TC4 25kN. The load cell shown in figure 6.10 contains a Wheatstone

bridge that links the mechanical deformation with the variation of an electri-

cal resistance in such a way that the loads is defined by a symmetric shear

deformation (figure6.10).

• There are four 393 B12 accelerometers made by PCB Piezotronics. The

sensitivity is 10 V/g that is 1 Vs2/m and the measuring range is ±0.5g (±5

m/s2). Accelerometers have their own power converter and power supply.

The planned set-up for the damper characterization is presented in figure 6.11

and shows the rotational MR damper produced by Maurer Shne Gmbh positioned

inside the TT1 without the default additional masses. This set-up is used to iden-

tify the non-linear behavior of the device, i. e. the non-linear dependence of the

damper force with the displacement and velocity. In addition the set-up is useful to

identify the current-damping force relationship. Besides actuators, load cells and

displacement transducers, the TT1 test rig was equipped with:
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Figure 6.9: sketch of the Parker actuator.

Figure 6.10: the load cell TC4 25kN.

• The dSPACE® platform which is used for both measurement acquisition and

signal control;

• the MR rotational damper with a current maximum limit of 6A and electrical

resistance of 3.6 Ω; it consists of a disk-type MR damper produced by Maurer

Shne Gmbh with MR fluid MRB10;

• the current regulator IASP Gmbh type CR 603 which is designed to ener-

gize the electrical component starting from a voltage set-point; the changing

speed of the current, for a unit step function, is only a few milliseconds;

• the load cell AEP TS of 200 kg placed in axis with the gear beam and its

analog transducer AEP TA/2.
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Figure 6.11: Control and acquisition instrumentation set-up in the TT1 Test rig.

The MR damper is a product of Maurer & Soehne and is a rotatory damper able

to change its characteristics after the application of a current. Technical data of

the MR damper are reported in table 6.3. The damper is composed by the main

Table 6.3: specifications of the MR damper

Technical data

Fmax ∼ 5000N

Tmin -40 ◦C

Tmax 60 ◦C

Supply current 4.5 A

Tension 24 V

Resistance 3.6 Ω

body an by the internal disk totally immersed in the fluid that is magnetizes by

two coils positioned on both sides of the internal disk. The current regulator is

designed to energize the damper and its power supply is 24V DC. Over an analog

input (-10...+10V), the device regulate a current between -8 A and +8 A if the load

resistance is less than 3 Ω. Since in the case of the damper the load resistance
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is 3.6 Ω, the regulation limits became ±6 A over an analog input of ±7.5 V. The

relationship between the applied voltage and the current flowing into the device is

linear and defined as,

i = 0.85V (6.33)

The declared changing speed of the current, for a step function, is only a few

milliseconds. The characterization of the damper consists of tests to acquire

displacement-force and velocity-force curves under different input and voltage con-

ditions. Several test were performed as shown in table 6.4 in displacement con-

trol for different level of voltage and different amplitude and frequency of the sinu-

soidal displacement. The displacement set points were defined according to the

footbridge characteristic in terms of both the damper allowable displacement and

modal frequencies of the primary structure. Since the maximum allowable damper

displacement is 40 mm, the desired actuator set-points are sinusoidal displace-

ment of 10 mm and 14 mm and with a frequency range of the harmonic excitation

in the range of 0.25 Hz 2 Hz and at different level of current ranging from 0 A to 6

A. Signals are filtered with a Butterworth filter characterized by a cut-off frequency

of 300 Hz. Force-time, force-displacement and force-velocity plot are arranged by

Table 6.4: list of tests.

Sinusoidal displacement
Voltage

Amplitude [mm] Frequency [Hz]

10 0.25 0V-1V-2V-3V-4V-5V-6V

10 0.5 0V-1V-2V-3V-4V-5V-6V

10 1.0 0V-1V-2V-3V-4V-5V-6V

10 1.5 0V-1V-2V-3V-4V-5V-6V

10 2.0 0V-1V-2V-3V-4V-5V-6V

14 0.25 0V-1V-2V-3V-4V-5V-6V

14 0.5 0V-1V-2V-3V-4V-5V-6V

14 1.0 0V-1V-2V-3V-4V-5V-6V

14 1.5 0V-1V-2V-3V-4V-5V-6V

14 2.0 0V-1V-2V-3V-4V-5V-6V
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different level of voltage and by different frequency and amplitude of the imposed

displacement. The damper force at 0 V is clearly frequency dependent as shown

in figure 6.33. This behavior tends to decrease for highest voltage applied as re-

ported in figure 6.34. In addition the damper behavior is almost viscous for zero

voltage and high frequencies. In the tested range, the force level spans between

-/+ 65 N at 0V and -/+2000 N at almost 6 V with a displacement amplitude of 10

mm and between -/+ 75 N at 0V and -/+2200 N at almost 6 V with a displacement

amplitude of 14 mm. Detailed results obtained from tests at 0.25 Hz, 1 Hz and 2

Hz are reported in the Appendix C at the end of the Chapter. In conclusion tests

demonstrated that the force level is both voltage and input dependent. Then, for

low frequency of the excitation, the behavior appears to be Bouc-Wen like while

for high frequency, the viscous component arises. In addition, the viscous compo-

nent increases with low voltage levels. So the global behavior results to be clearly

frequency and, of course, voltage dependent.

6.4.2 Parametric model of the damper and results

The adopted model is reported in figure 6.12 and reproduces the dynamic of

the experiment. The damper has been modeled by means of a Bouc-Wen-based

Figure 6.12: TT1 set-up for the damper identification.

model in parallel with a viscous element characterized by

f = αz + c0u̇ (6.34)

with

ż = Au̇ + βu̇|z|n − γz|u̇||z|n−1 (6.35)
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where

• αz is the hysteresis term;

• c0u̇ is the linear viscous dash-pot.

In order to characterize the damper parameters. Some trial and error pre-test

were been carried out in order to both define some initial condition useful for the

optimization problem and understand the Bouc-Wen parameters influence on the

hysteresis shape. Tests showed that A , β and γ are rate-dependent. Spencer

and Sain (1997) and Dyke et al. (1996) suggested the following linear relationship

between voltage and both the hysteresis scaling factor and the viscous damping

coefficient, i.e.

c0 = c0a + c0bV (6.36)

and

α0 = α0a + α0bV (6.37)

Pre-tests showed that:

• A , β and γ are function of both the frequency and the amplitude of the input

and independent from the applied voltage as shown in table 6.5.

Table 6.5: Values for parameters A , β and γ.

f [Hz]
10 mm amplitude 14 mm amplitude

A [Ns/mm] β [mm−2] γ [mm−2] A [Ns/mm] β [mm−2] γ [mm−2]

0.25 200 1.2 1.2 210 1.05 1.05

0.5 130 0.7 0.7 120 0.6 0.6

1.0 75 0.4 0.4 70 0.35 0.35

1.5 50 0.25 0.25 40 0.2 0.2

2.0 40 0.2 0.2 30 0.15 0.15

As a result, the characterizing equations for A , β and γ are represented by the

following polynomial expression,

A(f , Amp) = a00+a10f+a01Amp+a20f2+a11fAmp+a02Amp2+a30f3+a21f2Amp+a12fAmp2
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(6.38)

where f is normalized with mean 1.05 and std 0.6628 and Amp is normalized with

mean 9.667 and std 3.811. Coefficients with 95% confidence bounds result: a00 =

551.3, a10 = −711.9, a01 = −32.25, a20 = 440.7, a11 = 14.9, a02 = 1.131, a30 =

−93.37, a21 = −3.242 and a12 = −0.3205. The goodness of the fit is R − square =

0.9918.

A simpler model considering a constant frequency of 1.5 Hz writes

A(1.5, Amp) = 114.67 − 5.65667Amp (6.39)

With regard to β and γ,

β(f , Amp) = b00+b10f+b01Amp+b20f2+b11fAmp+b02Amp2+b30f3+b21f2Amp+b12fAmp2

(6.40)

Coefficients with 95% confidence bounds result: b00 = 1.965, b10 = −3.002, b01 =

−0.002913, b20 = 2.006, b11 = −0.006122, b02 = −0.001529, b30 = −0.4379, b21 =

−0.007047, b12 = 0.001457. The goodness of the fit is R − square = 0.9900.

β(x, y) = γ(f , Amp) (6.41)

and similarly a second model tuned on the single frequency of 1.5 Hz is estimated

β(1.5, Amp) = γ(1.5, Amp) = 0.4291 − 0.0168Amp (6.42)

• c and α are voltage dependent and the relationship with the voltage is pre-

sented in eqs. 6.43 and 6.44. Actually eq. 6.44 is the result of the interpola-

tion of the value reported in table 6.6 with R − square of 0.9925 and 0.9955 ,

respectively.

c0(V) = c00 + c10V + c01V2 (6.43)

with c00 = 0.4262, c10 = 0.1321, c01 = 0.0202.

α0(V) = α00 + α10V + α01V2 (6.44)

with α00 = 0.6, α10 = 0.59, α01 = 0.1694.
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Table 6.6: values of the parameter α0

Frequency [Hz]
Voltage [V]

0 1 2 3 4 5 6

0.25 0.95 2 2.8 3.9 6.00 8.00 1.00

0.5 0.85 1.9 2.7 3.8 6.00 8.00 1.00

1.0 0.6 1.5 2.6 3.8 6.00 8.00 1.00

1.5 0.5 1.3 2.3 3.8 6.00 8.00 1.00

2.0 0.4 1.2 2.2 3.8 6.00 8.00 1.00

• n is slightly voltage dependent: 1.15-1.05-0.9-0.85-0.85-0.85-0.85 for 0-1-2-

3-4-5-6 V and R − square = 0.972.

n(V) = 0.01361V2 − 0.1446V + 1.1536 (6.45)

Figure 6.13: model validation of the input dependent model.

The model presents good agreement with experimental data for higher frequencies

in the range of 1-2 Hz as shown in figure 6.13; while for low frequencies such as

0.25 Hz the numerical behavior can be improved at low voltages. The frequency

of the MR-TMD activation is related to the frequency of the pedestrian load so a

simplified model was adopted for the working frequency of 1.5 Hz of the bridge.

The choose is to use a simplified voltage dependent Bouc-Wen based model and

to optimize data around 1.5 Hz, i.e. the frequency of the resonant vertical pedes-

trian load. Parameters are optimized in order to find a second model working
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in a restricted range but dependent only by the voltage. Parameter optimization

took place by minimizing the residual between the measured force and the force

yielded by the adopted model. The objective function used to minimize the residual

between model and experimental data was:

J =
∑ ||fest (t) − fm(t)||2

||fm||2
(6.46)

where fest is the estimated damping force with known input and fm is the force

measured by the load cell on the damper. The non-linear minimum problem was

constrained in a range of +/- 50 % of parameters value, in order to ensure the BIBO

response of the model. The “Patternsearch” function in the MATLAB optimization

toolbox was used (Matlab®, 2009). Optimized parameters are reported in tables

6.7 and 6.8. The simplified model obtained from fitting the results is described by

Table 6.7: test with 10 mm of the sine amplitude: optimized parameters.

A β γ α0 c0

0V
i.c. 50 0.25 0.25 0.6 0.4

opt. par 42.83 0.38 0.22 0.43 0.54

1V
i.c. 50 0.25 0.25 1.5 0.6

opt. par 59.84 0.18 0.18 0.92 0.35

2V
i.c. 50 0.25 0.25 2.6 0.8

opt. par 57.5 0.27 0.22 1.99 0.6

3V
i.c. 50 0.25 0.25 3.8 1.00

opt. par 54.07 0.29 0.23 3.52 1.01

4V
i.c. 50 0.25 0.25 6 1.3

opt. par 51.28 0.27 0.24 5.82 0.87

5V
i.c. 50 0.25 0.25 8 1.5

opt. par 50.63 0.26 0.24 7.76 1.30

6V
i.c. 50 0.25 0.25 10 2

opt. par 50.95 0.24 0.23 9.31 1.66

the following relations,

A(V) = 0.0177V2 − 1.4301V + 55 (6.47)
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Table 6.8: test with 14 mm of the sine amplitude: optimized parameters.

A β γ α0 c0

0V
i.c. 40 0.2 0.2 0.6 0.4

opt. par 48.16 0.4 0.36 0.44 0.55

1V
i.c. 40 0.2 0.2 1.5 0.6

opt. par 66.43 0.11 0.11 0.68 0.44

2V
i.c. 40 0.2 0.2 2.6 0.8

opt. par 68.18 0.29 0.12 1.45 0.50

3V
i.c. 40 0.2 0.2 3.8 1.0

opt. par 48.12 0.26 0.17 3.26 1.05

4V
i.c. 40 0.2 0.2 6 1.3

opt. par 46.77 0.25 0.17 5.02 1.01

5V
i.c. 40 0.2 0.2 8 1.5

opt. par 45.74 0.23 0.17 6.99 1.15

6V
i.c. 40 0.2 0.2 10 2

opt. par 43.56 0.2 0.17 8.86 1.57

β(V) = 0.0036V2 − 0.033V + 0.3122 (6.48)

γ(V) = 0.0074V2 − 0.0499V + 0.2603 (6.49)

α(V) = 0.1501V2 + 0.6293V + 0.1941 (6.50)

c(V) = 0.0258V2 + 0.0318V + 0.4731 (6.51)

The validation is reported in figure 6.14 and shows the displacement-force cycle of

the model overlapped with experimental data for a forcing frequency of 1.5 Hz and

a displacement amplitude of 10 mm. The adherence with real data is good.
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Figure 6.14: model validation of the voltage dependent model.

6.5 The UKF for parameter identification

In order to understand the validity of the Unscented Kalman filter (UKF) for

the parameter estimation of non-linear hysteretic systems, we proceed with the

application of the filter for the state estimation of a hysteretic SDoF system. The

objective is to estimate parameters of a set of time invariant Bouc-Wen-like models

such as the Bouc-Wen, Baber-Wen, Baber-Noori and Foliente model. Eventually,

the experimental application on the damper performed by the use of the TT1 is

reported.

6.5.1 Numerical benchmarks

The dynamic system is a time invariant SDoF endowed with an hysteresis ele-

ment with restoring force is z(t). The input d(t) is the known sinusoidal input with

frequency varying from 0.1 Hz to 2 Hz and amplitude of 10 N. The benchmark

model has unitary mass, damping 0.3 Ns/m, stiffness equal to 9 N/m. Tests involve

among others Bouc-Wen and Baber-Noori.

• Bouc-Wen
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The state vector is defined as X = [u, u̇, z, A,β, γ, n]T and the initial conditions is

X0 = [0, 0, 0, 0.7, 1.5, 0.5, 1.5]T . The dynamic system in state space form results:

Ẋ = f (X, d, w) =



u̇(t)

ü(t)

ż(t)

Ȧ (t)

β̇(t)

γ̇(t)

ṅ(t)


=



u̇(t)

− 1
m (cu̇(t) + ku(t) + z(t)) + d(t)

[A(t) − |z(t)|n(t)(γ(t) + β(t)sign(z(t)u̇(t)))]u̇(t)

0

0

0

0


(6.52)

assuming to know the mass acceleration and the external excitation, the equation

of measurement results to be equal to

Y = h(X, v) = − 1
m

(cu̇(t) + ku(t) + z(t) + v(t)) (6.53)

The process noise and the measurement noise both have RMS equal to 10−6.

Furthermore, the filter parameters are α = 10−4, β = 2 and k = −5. Figure 6.15

shows results in term of comparison between numerical and estimated restoring

force vs. displacements and time.
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a)

b)

Figure 6.15: Bouc-Wen model, comparison between: a) numerical and estimated

hysteretic cycle; b) numerical and estimated restoring force.

Figure 6.16 shows the results for hysteresis parameter estimation of the Bouc

Wen model. The estimates of displacement, velocity and restoring force is ac-

Figure 6.16: parameters estimation of the Bouc-Wen model.
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curate, as shown in table 6.9 and the standard deviation of all variables is low.

The estimation errors of hysteresis parameters are reported in table 6.9 and have

average value of about 2.58% and maximum value of 4.61%.

Table 6.9: numerical, initial and estimated values of the Bouc-Wen model

parameters.

Parameters Exact value Initial value Estimated value Error

A 1 0.7 1.0027 0.27

β 2 1.5 1.9078 4.61

γ 1 0.5 0.9751 2.49

n 2 1.5 1.9410 2.95

• Baber-Noori

The state vector is defined as X = [u, u̇, z, e,β, γ, n, δA , δv , δη , ζ1,0, ξ0, δξ ,λ]T and

the initial conditions reads X0 = [0, 0, 0, 0, 1.7, 0.7, 1.7, 0.01, 0.01, 0.01, 0.6, 0.7, 0.1, 0.01, 0.1]T .

The dynamic system in state space form is described in equation 6.54:

Ẋ = f (X, d, w) =



u̇(t)

ü(t)

ż(t)

ė(t)

β̇(t)

γ̇(t)

ṅ(t)

δ̇A (t)

δ̇v (t)

δ̇η(t)

ζ̇1,0(t)

ξ̇0(t)

δ̇ξ(t)

λ̇(t)



=



u̇(t)

− 1
m (cu̇(t) + αku(t) + z(t)) + d(t) + w(t){

(1−α)A(t)
η h[1 − ν|z(t)|n(t)(γ(t) + β(t)sign(z(t)u̇(t))]

}
u̇(t)

z(t)u̇(t)

010x1



(6.54)
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Figures 6.17 and 6.18 showresults in term of hysteretic loop and parameters of

a)

b)

Figure 6.17: Baber-Noori model, comparison between: a) numerical and

estimated hysteretic cycle; b) numerical and estimated restoring force.

the Baber Noori model with acceleration measurements, Table 6.10 shows initial

and final values for the Baber Noori parameters and estimation errors.

6.5.2 Experimental application to time invariant MR damper

An additional test on the capability of the UKF is done by using real experimen-

tal data from the MR damper installed on the TT1. At this stage the identification

is performed in reference to the stationary system without any change in the input
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Figure 6.18: Baber Noori model; parameters estimation.

or in the applied voltage. The state space model is as follows,

Ẋ (t) =



ż

Ȧ

β̇

γ̇

α̇

ċ

˙fd


=



[A − |z(t)|n(γ + βsign(z ˙(t)u(t)))] ˙u(t) + w1(t)

0

0

0

0

0

α ˙z(t) + ˙αz(t) + ċu(t) + cü(t) + w2(t)


(6.55)

The adopted configuration is the same used for the damper identification and

showed in figure 6.11. The measured output is the force exerted by the damper,

Y(t) = h (X(t), v(t)) = [fm(t) + v(t)] (6.56)

As shown in figures 6.19 and 6.20, the matching is quite accurate since parameters

are continuously varying around the initial condition.

6.6 Semi-active control

The classical design of a TMD is described by the Den Hartog theory and the

original formulation assumes that frequency and modal mass of the critical mode

are known due to the simplification of the structure (coupled with the TMD) to a

simple 2DoF. In practical cases, the frequency of the structure can vary because of
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Table 6.10: numerical, initial and estimated values of the Baber-Noori model

parameters.

Parameters Exact value Initial value Estimated value Error

β 2 1.7 2.0079 0.39

γ 1 0.7 0.9745 2.55

n 2 1.7 2.0037 0.18

δA 0.02 0.01 0.0159 30.30

δv 0.02 0.01 0.0219 9.36

δη 0.02 0.01 0.0265 32.65

ζ1,0 0.5 0.6 0.4977 0.46

p 1 0.7 1.0037 0.37

ξ0 0.2 0.1 0.1684 15.78

δξ 0.05 0.01 0.0214 328.8

λ 0.2 0.1 0.2503 25.13

uncertainties of the model, time varying loads or changes in the modal character-

istic of the structure due to the temperature. On one hand the frequency variation

can be detected by means of an on-line fast estimation using measured accelera-

tions, on the other hand the estimation of the modal mass is more critical and can

have different values because of the above-mentioned instances. This is the sce-

nario for a possible de-tuning of the passive device resulting in a suboptimal TMD.

To overcome the issue of de-tuning, semi-active control strategies have been de-

veloped. Semi active control systems use a fraction of the power required by active

devices and they are inherently stable because they have bounded input in such a

way they are also bounded output systems. In addition they have low operational

costs, and low power requirements and don’t add energy in the system. Basically

the passive protection of the structure change while some mechanical parameters

change in real time: in this way semi-active devices preserve in the same time reli-

ability and adaptability, with an interesting compromise between passive and active

strategy. The objective is to replace the passive optimal damper with a semi-active

one characterized by a behavior based on a Bouc-Wen model. Then, an appro-
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Figure 6.19: experimental test: comparison between measured and estimated

hysteresis cycle.

priate control algorithm is applied to the damper by clipping in it the active control

forces and taking into account the dissipative properties of the alternative damper.

6.6.1 Semi-active control strategies: state of the art

One of the most simple semi-active control law is the “Hook strategy” (Cas-

ciati et al., 2006). “Sky hook” and “ground hook” control strategies are based on

a discrete or continuous damping variation between high and low state and are

both called “intuitive” methods. These methods are quite practical because add

damping and reduce the vibrations of the primary system in a very intuitive way.

Sky hook and Ground hook are developed in order to reduce vibration amplitude

of the upper body mass (mb ) and bottom body mass (mt ), respectively (Casciati

et al., 2006) as showed in figure 6.21 a) and b). The goal is achieved by using the

following control,

vb (vb − vt ) > 0, c = chigh

vb (vb − vt ) < 0, c = clow
(6.57)

and

vt (vb − vt ) < 0, c = chigh

vt (vb − vt ) > 0, c = clow
(6.58)

The control algorithm is based on a position logic and relevant parameters are

reported in figure 6.22 It results that,
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a) b)

c)

Figure 6.20: comparison between measured and estimated: a)A ; b) β; and c)γ

parameters.

• if the two masses go to different directions, the damping is set in high state

and pull or push the masses close or far each other;

• in the Sky-hook logic, if the upper mass goes in the same direction of the

bottom mass but it is faster, then damping is in high state, otherwise damping

is in off state; dually, for the Ground hook logic we point attention on the

bottom mass and if the bottom mass goes in the same direction of the upper

mass but it is faster, then damping is in high state, otherwise damping is in

off state.

An example is given in Koo (2003) where the Ground hook technique is used to

re-design both the structure and the controller, minimizing the maximum value of

trasmissibility as objective function in order to find the tuned vibration absorber pa-

rameters. The main idea is to find TMD parameters that generate the best model in

terms of minimization of the maximum transmissibility value (ratio between output

and input) or transfer function. Setareh (2001) searches for the optimum design
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a) b)

Figure 6.21: a) sky-hook logic; and b) ground-hook logic.

parameters of a continuously variable semi-active damper inside a TMD with the

ground hook technique based on the minimization of the steady-state displace-

ment response of the main mass. He wants to reduce the level of vibration of

a single-degree-of-freedom system subjected to harmonic base excitations. The

clipped control is the second most common intuitive control logic. In this respect,

Dyke (1996) conducted a number of pilot studies to assess the usefulness of MR

dampers for seismic response reduction. She proposed the clipped optimal control

algorithm and tested it on a three story model configured with a single MR damper

subjected to ground excitation. Jansen and Dyke (2000) used a variety of algo-

rithms common in recent semi-active control studies; one of these is the clipped

optimal control. They use accelerations in selected points and displacements of

each control device to test the feedback loop of the H2/LQR clipped control meth-

ods of a six story building controlled by four MR dampers and subjected to the N-E

El Centro earthquake components. Pinkaew and Fujino (2001) investigated Semi-

active Tuned Mass Damper (STMD) with variable damping under harmonic excita-

tion. Using an optimal control law that minimize the quadratic performance index,

they evaluated response of a SDoF system with passive and semi-active TMD by

modification of damping. Results showed that vibration suppression by an STMD

is superior to that of a conventional passive TMD in both transient and steady-

state responses. Also Yuen et al. (2007) used a clipped optimal control to design

one simulated MR damper based on robust reliability-based control methodology.

In order to evaluate the feasibility and efficiency of the method, they used a ten

story shear type building with two dampers under ground motion loading. Occhi-
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Figure 6.22: the “Hook” logic.

uzzi et al. (2002) performed a numerical simulation of the feedback LQR clipped

optimal law of a 2DoF system (one DoF for the footbridge mode and one DoF for

the device) subjected to sinusoid wave in resonance with the first vibration mode

of the structure.

6.6.2 Clipped optimal control in detail

The approach proposed in Dyke (1996) consists in the use of a feedback loop

to force the MR damper to generate approximately the desired optimal control force

r(t). r(t) is designed by means of a linear optimal controller KLQR based on mea-

sured structural responses y(t) and Fd (t) is usually defined as the force actually

exerted by the damper. The Clipped control is composed by two steps (Casciati

et al., 2006): i) the first part consists of the design of an active control law for an

ideal active damper; so here we can use every type of control law; ii) in the sec-

ond part the clipping controller develops a force matching the desired control force.
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The second step is independent and consists in the design of a clipping controller

that develops a force able to match approximately the desired control force. In a

MR damper we cannot command the force Fd (t) but only the voltage V applied to

the current driver. The voltage modifies the MR properties to generate the desired

control force. The control law read the force Fd (t) produced by the damper and its

sign; if the damper force is lower than the desired force and their sign is the same,

the voltage applied is increased to the maximum level in order to increase the force

exerted by the damper itself, zero otherwise. The control law read the force Fd (t)

produced by the damper and its sign and then applies the clipped algorithm as

shown in eq. 6.59. In this way, the optimal control force tracks at any time the force

Fd (t) provided by the damper as close as possible to the control law r(t) avoiding

to introduce energy into the system. Indeed, the clipped logic results in adding to

the structure an higher damping if the active control law is dissipative, but when the

algorithm generates a not dissipative control force, then the effective force exerted

by the damper is kept as lower as possible. On the other hand if r(t) results to be

higher than the actual Fd (t), the maximum voltage is applied in order to provide the

maximum force. The graphical representation of the algorithm is in figure 6.23 and

can be stated as,

V = VmaxH(r − Fd )Fd (6.59)

or

i = imaxH(r − Fd )Fd (6.60)

where r(t) is the desired control force, Fd (t) is the force exerted by the damper, H

is the Heaviside function, Vmax is the maximum applicable voltage and imax is the

maximum applicable current if the command is used in voltage or current, respec-

tively. Since the strategy consists in two separate stages (i-optimal control force

calculation and ii-control voltage/current estimation) a variety of control approaches

can be used to design the optimal control law. For example H2/LQR strategies had

successful application. Dyke (1996) and Occhiuzzi et al. (2002) used LQR clipped

optimal strategy in their work. The main goal of so called LQR implementation

strategies is minimizing an object function with both the full state and the control

force. Let the model of the open-loop process be the dynamical system in state
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Figure 6.23: the clipped logic.

space form. The optimal damping minimizes the following performance index in

continuous time,

J(t) =
∫ ∞

0

(
xT (t)Qx(t) + rT (t)Rr(t)

)
dt (6.61)

such that the optimal control law with state feedback reads

r(t) = −KLQRx(t) (6.62)

In order to find the gain KLQR , the unique solution P∞ of the algebraic Riccati

equation (ARE) is obtained by using the Q and R matrices

0 = AT P∞ + P∞A + P∞BR−1BT P∞ + Q (6.63)

and the gain results

KLQR = R−1BT P∞ (6.64)

In the most common case, the full state is not available from the structure. As

a consequence, it is possible to reconstruct the full state by means of the optimal

observer. The stationary Kalman predictor in continuous time is obtained by solving

the following Algebraic Riccati Equation

0 = AT P∞ + P∞A + P∞CR−1CT P∞ + Q (6.65)
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As a result, we reconstructed the full state by means of the optimal Kalman ob-

server with gain, i.e.

L = P∞CT R−1 (6.66)

The components of the semi-active controller are shown in figure 6.24 and are

composed by several theoretical blocks: a) the controlled system or plant, b) the

observer, c) the system controller, d) the damper clipped controller, e) the current

driver, f) the damping element. The plant is subject to external excitations modeled

as plant noise and has noise corrupted outputs. If only accelerations are available

or just part of the state is known, the optimal observer reconstructs the full state

of the system, otherwise the full state must be available for the control algorithm.

Then the selected controller generates the optimal control force in this case through

the LQR algorithm and sends the control law r(t) to the clipping block. At this point,

the output of the clipping block is the voltage; and the voltage sent to the damper is

function of the clipped logic explained above. Only after the voltage definition, the

current driver transforms the voltage signal into a current signal and sends it to the

MR damper. Consequently, the current signal activates the damper which exerts

the optimal damping force on the plant.

Figure 6.24: LQG clipped control scheme.
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6.6.3 The model of the controlled structure

The Den Hartog scheme is composed by a 2DoF system where the first DoF

is the mode to be damped and the second DoF is the TMD mass; the simplified

controlled system is governed by a second order differential equations,

Mü(t) + Cu̇(t) + Ku(t) = HF(t) + Gr(t) (6.67)

where H =
[

0 1
]

and G =
[

+1 −1
]

are matrices that depend on the position

of external load and of the controlled forces in the dynamic system, F(t) is the

applied external force, r(t) is the target control force for the damper. The goal of

the clipped logic is to emulate r(t) by means of the actual force exerted by the

damper Fd (t) that is available in the experimental environment from the load cell.

The mass damping and stiffness matrices eventually are,

M =

 ms 0

0 md

 , C =

 cs 0

0 0

 , K =

 ks + kd −kd

−kd kd

 (6.68)

Defining the state vector as x =

 u

u̇

, the classical equation of motion in state

space form and in discrete form time reads,

ẋ(t) = Ax(t) + Br(t) + Bf F(t) (6.69)

ẋ =

 0 I

−M−1C −M−1K

 x +

 0

−M−1G

 r +

 0

−M−1H

F (6.70)

Of course, the state is obtained through the Kalman observer since in the foot-

bridge application only acceleration of the deck and the relative displacement be-

tween deck and TMD mass are measured. The available deck acceleration mea-

surement can be related to the modal acceleration of the chosen mode. The MR-

TMD active control is based on the theory of optimal control so the damper is

controlled by a Linear Quadratic Gaussian Control.

6.6.4 Control concept applied to the simulated MR damper

The semi-active control is numerically tested with the outline presented in fig-

ure 6.24. The benchmark 2DoF system is composed by two masses, two passive
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springs, a passive and an active damper and has the following characteristics cor-

responding to the third mode of the Nomi Calliano footbrdge,

• ms = 1.3556e5Kg

• ks = 1.3074e7N/m

• ωs = 2π1.5 Hz

• ξs = 0.002

• md = 2000 Kg

• kopt = 187320 N/m

• copt = 2817 Ns/m

• αopt = 0.9855 N/m

• µ = 0.0148

The dynamic behavior of the 2DoF is investigated with a chirp force with a varying

frequency range spanning from −50% to +50% of the primary mass frequency. The

sinusoidal force has an amplitude proportional to the modal force corresponding to

about 8 equivalent pedestrian. The basic idea is to replace the optimal MR damper

of the TMD with the Maurer’s prototype so some initial sensitivity test have been

performed using the four models shown in figure 6.25. The four models shown in

figure 6.25 represent the 2DoF equivalent system introduced by Den Hartog: a)

without damper; b) with optimal damper; c) with a Bouc-Wen-like damper; and d)

with a controlled damper. Eventually, seven case have been simulated in order

to find the 1) steady state Acceleration Frequency Response (AFR) of the 2DoF

system without damper, 2) AFR of the 2DoF system with optimal damper, 3) AFR

of the 2DoF system with suboptimal damper with a variation in the modal mass of

the 20%, 4) AFR of the 2DoF system with a MR damper settled to 0 V and mod-

eled with the frequency and amplitude dependent parameters already validated, 5)

AFR of the 2DoF system with a MR damper settled to 4 V and modeled with the

frequency and amplitude dependent parameters already validated, 6) semi-active

controlled system with nominal modal mass and 7) semi-active controlled system
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a) b)

c) d)

Figure 6.25: 2DoF models for preliminary tests: a) wo damper; b) optimal damper,

c) Bouc-Wen-based damper; and d) forced system with clipped MR damper.

with an increase of the modal mass of the 20%. The sampling frequency is 100 Hz.

Since the model if both frequency, amplitude and voltage dependent, it has been

necessary to take into account for the hysteretic parameters in correspondence of

both the relative motion between the two masses and the motion frequency. Of

course the current is proportional to the applied voltage applied to the model ac-

cording to eq. 6.33. Results of simulations are in figure 6.26. We want to show

that:

• The insertion of the secondary mass induces the AFR to split into two peaks

with similar amplitude. When the damper in not well tuned, that means that a

variation in the modal mass or modal stiffness is occurred, the AFR shifts to

the left or into the right of the frequency axis and the two peaks assume differ-

ent amplitude. The damper is called suboptimal since the de-tuning doesn’t

produce a dramatic change bringing the structure to the initial condition rela-

tive to the absence of the damper.

• The presence of the properly tuned damper provides the lower frequency

response.

• The de-tuned TMD yields a peak acceleration in correspondence of the new
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Figure 6.26: FRFs of the seven tested cases.

frequency of the structure.

• TMDs based on semi-active MR dampers driven by the clipped LQG optimal

control algorithm have a better effectiveness in the frequency range around

the tuning frequency but slightly lower performances around 0.95 and 1.05

the tuning frequency.

• In the presence of uncertainties on the dynamic characteristics of the foot-

bridge, the performance of the passive device are invalidate and the use of a

semi-active control strategy becomes of interest

• In presence of the sub-optimal damper the semi-active control reduces the

peaks AFR amplitude.

6.6.5 Experimental set-up on the footbridge

After numerical tests, the MR-TMD was eventually positioned on the footbridge

in the middle of the deck in correspondence of piece n. 24 and the controller fully

activated. The device is instrumented with:

• one displacement transducer AEP with measuring range of 100 mm;

• one acceloremeter PCB 393B12 with black coaxial cable of 3.5 m;

• one load cell AEP of 200 kg with black coaxial cable of 3.5 m;
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• two signal transmitters AEP TA4/2 fot both the load cell and the displacement

transducer (protection class IP65)

Figure 6.27 shows the final configuration of the instrumented damper within the

TMD housing. The displacement transducer is mounted so that both the movable

head is in contact with the surface of the deck and the body is integral with and fixed

to the mobile mass of the TMD. The accelerometer is just attached to the deck. The

load cell is on the top of the rotative gear and measures the force generated by the

damper. The transmitters are on the side of the moving mass feeding sensors and

amplifying/filtering the return signal. There is also a control room placed in the

Figure 6.27: the instrumented damper within the TMD.

right shoulder of the bridge. In this cabin, there are several software and hardware

components within a humidity protection rack:

• one industrial PC and its power supply;

• one ACE 1104 CLP kit composed by the control board DS 1104 R&D, in-

put/output led panel and software package CDP;

• one Matlab®/Simulink®licence with Real-time Workshop®;

• one PCB accelerometer conditioner model 482A21 and its power supply;
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• the current regulator associated to the MR damper used for the voltage to

current inversion;

• UPS;

• Power supply 24 V used for conditioners;

• web connection by means of the industrial router IR791.

Figure 6.28: the control loop.

As shown in figure 6.28, signals coming from instruments on the MR-TMD are

conveyed by means of coaxial cables in the dSPACE®console and then acquired

by the hardware/software platform dSPACE®, while the control strategy is drawn

in real time by Matlab®/Simulink®. Then, the voltage control signal is converted

into a current signal by the driver located in the control cabin. All the wiring along

the deck connecting the control room with the dissipation device was previously

set during the construction phases of the footbridge. The detailed scheme of the

whole equipment is shown in figure 6.29 where it is possible to distinguish between

the input signals to dSPACE®from sensors and the output signal from dSPACE®to

the damper (and consisting in the on/off control command).
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Figure 6.29: detailed scheme of instruments located on both the control room and

the deck.

6.6.6 Control validation

The control validation is performed in Matlab/Simulink® through the dSPACE®

platform and with a sampling frequency of 100 Hz. In order to experimental vali-

date the control concept and given the availability or real data from the real struc-

ture, a set of real events have been selected and are listed in table 6.11. Events

Table 6.11: selected events chosen for the control validation.

no Events freq. content

1 2013 10 01 17 16 36 F 1.5 Hz

2 2013 10 03 10 15 00 F 2 Hz-2.5Hz

3 2013 10 03 16 59 07 F 1.5 Hz

4 2013 10 03 17 28 20 F 2 Hz-2.5Hz

are recorded by 8 accelerometers belonging to the permanent monitoring system

showed in figure 4.30 and referring to the geometric domain. The main frequency

content is around 1.5 Hz for events #1 and #3 and 2-2.5 Hz for events #2 and #4.

Modal shapes from the updated model with the maximum soil stiffness are used to

185



project accelerations from the geometric to the modal domain and the third modal

acceleration is selected to be used in the modal input identification. The goal is

the application to the 2DoF simplified model of the input reconstructed from real

recorded data. With regard the input identification, the SDR algorithm is stable for

λ > 10 steps. It is chosen a λ = 30 so the dimension of the sliding window is quite

small and corresponding to 0.3 s with a sampling time of 0.01s. The forward shift

p is equal to 1. The bandwidth of the system is small and the chosen sampling

frequency of 100 Hz results to be accurate in order to avoid the ill conditioning in

the frequency domain since the CRLB outside the bandwidth of the system is of

the same order of magnitude of the CRLB into the band. The ill conditioning in

the time domain is under control as shown in figure 6.30. The NSR is 1 with the

regularization parameter β equal to 0.5. The input reconstruction is performed for

Figure 6.30: conditioning in the time domain of the 2DoF validation system.

all events from the modal acceleration of the third mode and it is in turn applied to

the same 2DoF. The reconstruction is validated since real accelerations and accel-

erations obtained applying to the model the identified input result to be the same

as shown in figure 6.31. Eventually, the input reconstruction for all the selected

events is accurate. Then, by means of the reconstructed input, it is possible to

simulates the semi-active control designed to damp the third asymmetric mode.

Figure 6.32 shows results in term of reduction of acceleration of the first event with

main frequency content around 1.5 Hz. The semi-active TMD appears to have an
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Figure 6.31: reconstructed and real modal accelerations for event #1.

Figure 6.32: plot of reduced accelerations for event #1

increased efficiency respect to the optimal tuned, as detected in figure 6.26, since

the forcing frequency belong to the range where the efficiency of the semi-active

TMD is higher respect than the one of the passive TMD according to figure . Al-

ways according to figure 6.26, event #2 has a different frequency range, however

acceleration in presence of the semi-active controller present a slightly reduction

respect to the passive situation.

6.7 Conclusions

With regard to the non-linear identification of the MR damper, two parametric

models have been evaluated at the Testing Laboratory of the University of Trento.
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The first, more complex, results to be both input and voltage dependent, while the

second one is a simplified version and it is only voltage dependent even if tuned

on 1.5 Hz. Both models seem to be accurate and the validation exhibit a good

matching between experimental and numerical.

Simulation of the semi-active control showed that the presence of the properly

tuned damper provides the lower frequency response while of course the de-tuned

TMD yields a peak acceleration in correspondence of the new frequency of the

structure. TMDs based on semi-active MR dampers driven by the clipped optimal

control algorithm have a better effectiveness in the frequency range around the

tuning frequency but slightly lower performances in correspondence of 0.95 and

1.05 time the tuning frequency. If there are uncertainties on the dynamic char-

acteristics of the footbridge, the use of a semi-active control strategy becomes of

interest since a small variation in the acceleration response is detected.

Eventually, the semi-active control strategy consisting of the clipped LQG con-

trol is validated by the use of a real load history. The load is the result of an input

identification process stable for λ > 10 step and with a forward shift p equal to 1.

The chosen sampling frequency of 100 Hz is such that the ill conditioning in the

frequency domain is avoided while the ill conditioning in the time domain presents

no criticality.
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6.8 Appendix C - hysteresis behavior of the MR damper

a)

b) c)

Figure 6.33: test with sinusoidal reference of 14 mm amplitude and subjected to

0V: a) Damper force time history; b) Force vs. Displacements cycle; and c) Force

vs. Velocity cycle.
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a)

b) c)

Figure 6.34: test with sinusoidal reference of 14 mm amplitude and subjected to

3V: a) Damper force time history; b) Force vs. Displacements cycle; and c) Force

vs. Velocity cycle.

a)

b) c)

Figure 6.35: test with sinusoidal reference of 14 mm and 0.25 Hz: a) Damper

force time history; b) Force vs. Displacements cycle; and c) Force vs. Velocity

cycle.
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a)

b) c)

Figure 6.36: test with sinusoidal reference of 14 mm and 0.5 Hz: a) Damper force

time history; b) Force vs. Displacements cycle; and c) Force vs. Velocity cycle.

a)

b) c)

Figure 6.37: test with sinusoidal reference of 14 mm and 1 Hz: a) Damper force

time history; b) Force vs. Displacements cycle; and c) Force vs. Velocity cycle.
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a)

b) c)

Figure 6.38: test with sinusoidal reference of 14 mm and 2 Hz: a) Damper force

time history; b) Force vs. Displacements cycle; and c) Force vs. Velocity cycle.
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CHAPTER 7

SUMMARY, CONCLUSIONS AND FUTURE PERSPECTIVES

7.1 Summary

The thesis deal with two main research topics: input identification and identifi-

cation and control of a MR TMD.

1. The first topic regards the reconstruction of inputs from measured outputs.

With regard to the state of the art, different approach are present in literature

such as the Recursive Least Square approach, the Minimum-variance unbi-

ased input and state estimate algorithm as well as a multitude of steady state

observer based on the Kalman filter. However, the original contribution of the

thesis is related to the formulation of the SDR algorithm; in particular the at-

tention is focused on the case where the system is linear and time invariant,

the input-output map is available either from a Finite Element model or from

system identification and inputs are not repeated in space. Identificability,

stability and ill conditioning are relevant problems addressed in the study. In

addition, a second element of originality is related to the off-line inspection of

the number and position of inputs from recorded data. Eventually, numerical

and experimental tests have been performed.

2. The second topic deals with modeling of magneto-rheological fluids and con-

trol of the magneto-rheological damper to be installed on the Nomi-Calliano

footbridge. In view of the installation, modeling and control of the device is

consequently performed. Non-linear model for hysteretic systems are firstly

presented and, then, the attention is shifted on hysteretic models for MR flu-

ids. After an introduction about the use of the Unscented Kalman Filter for
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non-linear estimation of general model of hysteresis, a parametric model for

the MR damper is found and validated. Eventually, with the aim of tools such

as input identification and real data from the installed monitoring system, a

clipped control law is formulated to control the semi-active device.

7.2 Conclusions

• Chapter 4 deals with the dynamic analysis of the Nomi footbridge. Analysis

showed that the footbridge without additional damping devices suffers from

the exceeding of acceleration limits; so the design of a damping system com-

posed by 4 TMDs was performed with the support of the experimental modal

analysis and with the aim of identifying the modal dynamic characteristics

of the system. The dynamic analysis led to the conclusion that a damping

system composed by four TMDs needed to be added to the main structure

in order to both ensure a behavior compatible with the serviceability limits

imposed by the owner and avoid vibrational phenomena already observed

in literature. The campaign devoted to the experimental modal analysis was

organized to define the modal properties of the structure necessary for the

correct design of the passive system of TMDs. Impulsive excitation and envi-

ronmental excitation were used to obtain the first 7 vibrational modes. Since

the identification tests were carried out on the structure not yet complete, in

order to obtain the correct modal mass necessary for the design of the tuned

devices, both model refinement and model updating were needed. Correct

frequencies were eventually extrapolated after model updating and model

refinements and the proper design parameters of the passive TMDs were

evaluated as a function of the adjustment process. Additional analysis inher-

ent the sensitivity of the damper parameters respect to the soil stiffness and

the gradient of temperature showed that the optimal solution for the specific

footbridge was the insertion of three passive and one semi-active TMD. Even-

tually, the damping system was designed and the bridge was equipped with a

monitoring system integrated with the structure with the purpose of checking

the actual response, with particular reference to the dynamic behavior related

to the effect of wind and pedestrians. After the first three trimester of monitor-

194



ing, no exceeding of imposed limits was recorded. An interesting behavior of

the footbridge was detected and consisted of the fact that in presence of low

entity wind events, the structure oscillates according to the first mode while

wind velocity higher than 15 m/s, mainly excites the 4th vibrational mode.

• Chapter 5 addresses the determination of the number the position and the

time histories of unmeasured inputs. It was shown that the number of inputs

can be determined in a batch mode and with good accuracy from the rank

of a matrix formed using the Fourier transform of the output data and pro-

vided that the number of unknown input is less than the measurements and

that the available output is sufficiently long. The position of the inputs can

subsequently be established with the aid of a model. The position of the act-

ing loads indeed established by inspecting the generalized angles made by

the columns of the transfer matrix of the model with the basis identified from

the data. Once the input mapping is complete the time history of the load

was inferred with good accuracy using a sequential deconvolution algorithm.

In this respect, the I/O arrangement and the inherent delay of the problem

define if the input is identifiable or if it is identifiable on any subspace. The

sequential deconvolution is an iterative method that takes into account for

the inherent delay of the system. For this purpose, the kernel of the Toeplitz

was fundamental for the comprehension of constraints and limitations on the

input reconstruction, especially if the input reconstruction has to be solved in

the recursive fashion. It was shown that the part of the input affected by the

delay is strictly related and can be detected through inspection of the Toeplitz

matrix. Since the deconvolution is carried out on a sliding window, the SDR

algorithm is a conditionally stable process and the condition for stability is

derived. The size of the sliding window has to be chosen carefully because

it affects the stability of the algorithm. It has been proved that both the dis-

cretization in time and space also affects the conditioning in the solution. An

expression for the error in the reconstructed input as a function of the noise

sequence is developed and is used to control the regularization or decide if

regularization is needed. Both numerical and experimental tests have been

performed and were characterized by favorable results.
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• Chapter 6 treated the identification and control of a magneto-rheological

damper to be installed on the Nomi-Calliano footbridge. With regard the

non-linear identification of the MR damper, two parametric model have been

evaluated at the Testing Laboratory of the University of Trento. The first re-

sulted to be more complex since parameters describing the hysteretic cycle

were both input and voltage dependent; the second model was a simplified

version and was just voltage dependent and if tuned on 1.5 Hz and around 12

mm of input amplitude. Both the models seemed to be accurate and the val-

idation presents a good matching between experimental data and numerical

model. The Unscented Kalman filter as a tool for non-linear identification was

investigated on time invariant benchmarks: tests showed that in the presence

of varying parameters and huge noise, longer acquisition were needed in or-

der to reach convergence. Moreover, an additional test on the capability of

the UKF was done by using real experimental data from the MR damper in-

stalled on the TT1. At this stage the identification is performed in reference to

the stationary system without any change in the input or in the applied volt-

age. Good matching results were obtained since parameters are obtained

on-line and present time-varying values around the initial condition. The sec-

ond part of the Chapter was about the control of the semi-actice tuned mass

damper. Simulation showed that the presence of the properly tuned damper

provides the lower frequency response while of course the de-tuned TMD

yields a peak acceleration in correspondence of the new frequency of the

structure. So a semi-active strategy called Clipped optimal control law based

on the Linear Quadratic Regulator was chosen and implemented on the TMD

model. Basically, the approach consisted of a feedback loop that force the

damper to produce a desired control force according to LQR algorithm and

by means of an on-off control of the voltage. The semi-active TMD driven

by the clipped optimal control algorithm showed a better effectiveness in the

frequency range around the tuning frequency but slightly lower performances

around peaks of the 2DoF system.

• Eventually, the semi-active control strategy was validated by the use of a real

load histories. In order to select the third modal acceleration and in view of
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the control validation, eight events, whose geometric acceleration have been

projected in the modal domain, have been used. Modal loads correspond-

ing to the third mode have been reconstructed through an input identification

process stable for λ > 10 step and with a forward shift p equal to 1. The

chosen sampling frequency of 100 Hz was such that the ill conditioning in

the frequency domain is avoided while the ill conditioning in the time do-

main presented no criticality. In turn, loads have been applied to the 2DoF

system representing the semi-active TMD and the control logic has been ap-

plied to damp the third asymmetric mode. The semi-active TMD exhibited

an increased efficiency with respect to the optimal tuning in the presence

of events with main frequency content around 1.5 Hz. In addition, also in

the presence of suboptimal conditions, the semi-active controller yielded a

slightly reduction of accelerations with respect to the passive condition.

7.3 Future perspectives

As presented in the previous sections, this research has deepened some as-

pects of the input identification and control of a MR-TMD. Other aspects are how

to deal with model uncertainties and how to include the damper dynamics into the

control model. It is not always possible to know or to predict the input acting on a

structure, so unknown loads are of mayor concern since they can have big impact

on the structure since they are just considered as unknown disturbances within

the model. In addition, modeling of large-scale structures lead to model errors.

Errors may result from the inclusion or the neglect of highly nonlinear elements in

the system dynamic, from mismodeling in material and geometric properties, dis-

cretization and linear approximation of nonlinearities. As consequence, modelling

errors and uncertain parameters affect the controller robustness. Finally, it is not al-

ways possible to measure all the state variables, so the control performance might

be affected by property of measurements channels and a compromise involving

the number and position of available sensors must be done. Lastly, smart material

such as magneto-rheological dampers have limitations associated with their hys-

teretic and nonlinear behavior. Limitations are mainly due to the difficulty to include

in the model also the damper dynamic since parameters describing the hysteretic
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shape are load dependent and exhibit a time delay that must be taken into ac-

count. As a consequence, in presence of parametric uncertainties, unknown dis-

turbances and limited measurements, application of nonlinear control techniques

became mandatory and must be pursued.
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